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Abstract 

 

Hidden Markov Models, usually referred to as HMMs, are one of the most successful concepts in 

statistical modeling conceived and analyzed in the last 40 years. They belong to the stochastic mixture 

models family and have been broadly implemented in numerous sectors to address the problem of data 

model fitting and forecasting. Their structure usually is comprised by an observed sequence which is 

conditioned on an underlying hidden (unobserved) process. This way HMMs provide flexibility to 

address various complicated problems and can be implemented for modeling univariate and 

multivariate financial time series. Moreover, based on current literature, economic variables exhibit 

patterns dependent on different economic regimes which can be successfully captured by HMMs. Their 

parsimonious structure and attractive properties along with the existence of efficient algorithms for their 

estimation were the main drivers for the selection of HMM as the main topic of this thesis. 

Consequently, in this thesis we thoroughly investigate HMMs and their capabilities to simulate 

financial systems. The contribution of this study is threefold: First we perform an extensive review of 

HMM theory and applications. Our aim is to summarize the most significant applications of HMM with 

special focus in the field of finance. We offer a thorough and compact summary of the uses and the 

results of HMM in the last 40 years. Secondly, we extend the framework of HMMs by proposing a 

theoretical variation, injecting greater flexibility in their structure.  Based on bibliography, in many 

real-world scenarios the modeled data entail temporal dynamics the patterns of which change over time. 

We address this problem by proposing a novel HMM formulation, treating temporal dependencies as 

latent variables over which inference is performed. Specifically, we introduce a hierarchical graphical 

model comprising two hidden layers: on the first layer, we postulate a chain of latent observation-

emitting states, the temporal dependencies between which may change over time; on the second layer, 

we postulate a latent first-order Markov chain modeling the evolution of temporal dynamics 

(dependence jumps) pertaining to the first-layer latent process. As a result of this construction, our 
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method allows for effectively modeling non-homogeneous observed financial data. Finally in the third 

part of this thesis we investigate the HMM efficiency in the problem of corporate credit scoring. We 

propose a novel corporate credit rating system based on Student’s-t hidden Markov models (SHMMs). 

Corporate credit scoring is widely used by financial institutions for portfolio risk management, and for 

pricing financial products designed for corporations. In addition, from a regulatory perspective, internal 

rating models are commonly used for establishing a more risk-sensitive capital adequacy framework for 

financial institutions. We evaluate our method against other state of the art statistical techniques like 

Neural Networks, SVM, and logistic regression and conclude that SHMM offer significant improved 

forecasting capabilities.   

 

 

 

Keywords:Corporate credit rating, hidden Markov model, Student’s-t distribution, expectation-

maximization, Basel framework, statistical machine learning, temporal dynamics, hidden Markov 

models, expectation-maximization, variable order, dependence jumps, volatility modeling. 

  



5 

 
 

 

 

 

 

 

 

 

«11:15, restate my assumptions: 1. Mathematics is the language of nature. 2. Everything around us can be represented and 

understood through numbers. 3. If you graph these numbers, patterns emerge. Therefore: There are patterns everywhere in 

nature. » - Movie “Pi” (1998) 

 

 

 

 

 

 

 

 

 

  



6 

 

 

 

 

This thesis is dedicated to my wife and my two beautiful daughters 

Thank you for your patience, support, love and encouragement 

 

  



7 

Acknowledgements 

 

 

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr Xanthopoulos, for 

his support, continued motivation, enthusiasm and most especially, his long-lasting patience. I would 

like to thank Dr. Chatzis for his invaluable help on the two research projects that became part of this 

thesis and for his insightful ideas and suggestions on some aspects of my academic research. 

Additionally, I would like to thank Dr Tsimikas and Dr Yannakopoulos for giving me the opportunity 

for this research work and for their guidance throughout these years.  

 

 



8 

Table of Contents 

 

Chapter 1 Introduction ......................................................................................... 17 

1.1 About this Thesis ............................................................................................... 17 

1.2 Financial Time Series and forecasting ................................................................ 18 

1.3 Why HMM - Motivation .................................................................................... 20 

1.3.1 Flexible and enhanced modeling capabilities ................................................ 20 
1.3.2 Physical interpretation - Information Asymmetry ......................................... 21 

1.3.3 Interpretation of the properties of asset prices ............................................... 21 
1.3.4 The elegant and transparent mathematical theory.......................................... 22 

1.4 Main Contribution of the thesis .......................................................................... 22 

1.5 Structure of the thesis ......................................................................................... 24 

Chapter 2 Hidden Markov Models Fundamentals ................................................. 26 

2.1 Hidden Markov Models ...................................................................................... 26 

2.2 Definition ........................................................................................................... 27 

2.3 Estimation problems of a hidden Markov model ................................................. 31 

2.3.1 Sequence Likelihood Evaluation .................................................................. 32 
2.3.2 Inference of emitting state sequences ............................................................ 36 

2.3.3 Training Process ........................................................................................... 40 
2.3.4 EM algorithm solving a discrete HMM ........................................................ 43 

2.3.5 Continuous HMM ........................................................................................ 44 

2.4 Issues related to the practical implementation of HMMs ..................................... 47 

2.4.1 Thresholding or parameter values Limits ...................................................... 47 
2.4.2 HMM structure selection .............................................................................. 47 

2.4.3 Adequacy of data ......................................................................................... 48 
2.4.4 Multiple data sequences ............................................................................... 49 

2.4.5 Scaling / Weighting ...................................................................................... 49 
2.4.6 Initial values of variables .............................................................................. 49 

2.4.7 On-line learning Parameters ......................................................................... 50 
2.4.8 Length of training observations / frequency time series data ......................... 51 

2.5 Forecasting using an HMM model...................................................................... 52 
2.5.1 Prediction based on the optimal path ............................................................ 52 

2.5.2 Prediction based on the forward algorithm .................................................... 53 
2.5.3 Pattern identification approach ..................................................................... 54 

2.5.4 Use two or more HMM for classification data .............................................. 54 

2.6 Evaluation of  Hidden Markov Models ............................................................... 54 

2.6.1 Likelihood Ratio Test - Index Entropy.......................................................... 55 
2.6.2 Penalized likelihood criteria BIC AIC .......................................................... 55 

2.6.3 Accuracy Prediction - Error Rate .................................................................. 56 



9 

2.6.4 Mean Square Error ....................................................................................... 56 
2.6.5 Annualized Return ....................................................................................... 56 

Chapter 3 Hidden Markov Models Applications and Variations ........................... 57 

3.1 HMM Applications in various Fields .................................................................. 57 

3.1.1 Speech Recognition ...................................................................................... 58 
3.1.2 Computer Vision and Image processing........................................................ 59 

3.1.3 Biomedical Applications .............................................................................. 59 
3.1.4 Epidemiology and Sociology ........................................................................ 60 

3.1.5 Other Applications ....................................................................................... 60 

3.2 HMM applications in finance ............................................................................. 61 

3.2.1 Exchange Rates ............................................................................................ 61 
3.2.2 Stock Market forecasting .............................................................................. 62 

3.2.3 Other financial applications .......................................................................... 63 

3.3 HMM Variations ................................................................................................ 64 

3.3.1 Discrete - Continuous HMM ........................................................................ 65 
3.3.2 Ergodic - Stationary HMM ........................................................................... 65 

3.3.3 Higher order or Weak HMM ........................................................................ 65 
3.3.4 Input - Output HMM or HMM with covariates ............................................. 66 

3.3.5 Left - Right HMM ........................................................................................ 67 
3.3.6 Hidden Semi Markov Models ....................................................................... 67 

3.3.7 Multistream fusion HMMs ........................................................................... 68 
3.3.8 Markov Modulated Time Series or Regime Switching or Markov Regime Models or 

Autoregressive HMMs ..................................................................................... 69 
3.3.9 Other HMM with more complicated structure .............................................. 69 

Chapter 4 A variable order hidden Markov model with dependence jumps .......... 71 

4.1 Introduction........................................................................................................ 71 

4.2 Proposed Approach ............................................................................................ 76 
4.2.1 Motivation.................................................................................................... 76 

4.2.2 Model Definition .......................................................................................... 77 
4.2.3 Model Training ............................................................................................ 82 

4.2.3.1 E-step .................................................................................................. 84 
4.2.3.2 M-step ................................................................................................. 87 

4.2.4 Inference Algorithm ..................................................................................... 89 
4.2.5 Computational Complexity ........................................................................... 91 

4.3 Experiments ....................................................................................................... 92 
4.3.1 Volatility Forecasting ................................................................................... 94 

4.3.1.1 Euro-United States Dollar exchange rate volatility ............................... 94 
4.3.1.2 Time-series of multiple correlated exchange rates and market indices .. 98 

4.3.1.3 Oil price time-series volatility ............................................................ 102 
4.3.1.4 Gold market time-series volatility ...................................................... 105 

4.3.2 Return Value Prediction ............................................................................. 107 
4.3.2.1 Euro-United States Dollar exchange rate ............................................ 107 

4.3.2.2 Taiwan stock market .......................................................................... 110 
Chapter 5 A Novel Corporate Credit Rating System Based on Student’s-t Hidden Markov Models
 112 



10 

5.1 Introduction...................................................................................................... 112 

5.2 Existing Applications of HMMs to Credit Risk Assessment ............................. 118 

5.3 Methodological Background ............................................................................ 120 
5.3.1 Student’s-t Hidden Markov Models ............................................................ 120 

5.3.2 Model Training .......................................................................................... 122 
5.3.3 Inference Algorithm ................................................................................... 130 

5.4 Proposed Approach .......................................................................................... 131 
5.4.1 Research Motivation .................................................................................. 131 

5.4.2 System Architecture ................................................................................... 132 
5.4.2.1 Data Collection and Processing .......................................................... 133 

5.4.2.2 HMM Model Training ....................................................................... 138 
5.4.2.3 Model Aggregation ............................................................................ 141 

5.4.2.4 System Calibration ............................................................................ 142 

5.5 Experimental Evaluation .................................................................................. 144 

5.5.1 Benchmark Models Implementation ........................................................... 145 
5.5.1.1 CHAID .............................................................................................. 145 

5.5.1.2 LDA .................................................................................................. 145 
5.5.1.3 Logistic regression ............................................................................. 146 

5.5.1.4 SVMs ................................................................................................ 146 
5.5.1.5 RFs .................................................................................................... 147 

5.5.1.6 FNNs ................................................................................................. 147 
5.5.2 Comparative Results .................................................................................. 148 

5.5.2.1 Discriminatory Power Results ............................................................ 148 
5.5.2.2 Calibration Results ............................................................................ 158 

Chapter 6 Conclusions and ideas for further research ......................................... 160 
6.1.1 VDJ-HMM variation .................................................................................. 160 

6.1.2 Student-t HMM credit rating system ........................................................... 162 
6.1.3 Other topics worth exploring regarding HMM in finance............................ 164 

6.1.3.1 Maximum weighted likelihood Estimation ......................................... 164 
6.1.3.2 Mixed Mixture Components from different distribution families ........ 165 

6.1.3.3 Multivariate VaR under an HMM framework .................................... 165 
Appendix 1: Estimation Algorithms for VDJ HMM ..................................................... 167 

Definition of VDJ-HMM .......................................................................................... 167 

Expectation – Maximization (Baum –Welch) ............................................................ 168 

Forward Algorithm ................................................................................................... 174 

Backward Algorithm ................................................................................................. 175 

Migration Probability ................................................................................................ 176 

Log-likelihood Estimation......................................................................................... 179 

Appendix 2: Expectation Maximization Algorithm ...................................................... 180 
Appendix 3: Maximum weighted likelihood for GHMM ............................................. 183 

EM for Maximum Weighted Likelihood ................................................................... 183 



11 

The EM for the MWL estimation for the GHMM ...................................................... 183 

EM Algorithm for Solving a GHMM for MWL ........................................................ 184 

Appendix 4: k-MEANS Initialization Algorithm for GHMM ....................................... 186 
References ................................................................................................................... 188 

 

  



12 

List of Tables 

Table 1: EUR-USD exchange rate volatility: Optimal VDJ-HMM model configuration. ...................... 95 

Table 2: EUR-USD exchange rate volatility: Performance (RMSE %) of the evaluated methods. ........ 96 

Table 3: EUR-USD exchange rate volatility: Performance (RMSE %) of the evaluated methods 
(cont.). ......................................................................................................................................... 96 

Table 4:Time-series of multiple correlated exchange rates and market indices: Optimal VDJ-HMM 
model configuration under the univariate modeling setup. .......................................................... 101 

Table 5:Time-series of multiple correlated exchange rates and market indices: Performance (RMSE 
%) obtained under the univariate modeling setup. ...................................................................... 101 

Table 6:Time-series of multiple correlated exchange rates and market indices: Optimal VDJ-HMM 
model configuration under the multivariate modeling setup........................................................ 101 

Table 7: Time-series of multiple correlated exchange rates and market indices: Performance (RMSE 
%) obtained under the multivariate modeling setup. ................................................................... 102 

Table 8: Oil price time-series volatility: Optimal VDJ-HMM model configuration. ........................... 103 

Table 9: Oil price time-series volatility: Performance (MSE and MAE) of the evaluated approaches. 103 

Table 10: Gold market time-series volatility: Optimal VDJ-HMM model configuration..................... 106 

Table 11: Gold market time-series volatility: Performance (MSE and MAE) of the evaluated 
approaches. ................................................................................................................................ 106 

Table 12:Gold market time-series volatility: Performance (MSE and MAE) of the evaluated 
approaches (cont.). ..................................................................................................................... 106 

Table 13: EUR-USD exchange rate price prediction: Optimal VDJ-HMM model configuration. ....... 108 

Table 14: EUR-USD exchange rate price prediction: Performance of the evaluated models. .............. 109 

Table 15: Taiwan stock market price prediction: Optimal VDJ-HMM model configuration. .............. 111 

Table 16: Taiwan stock market price prediction: Performance (RMSE) of the evaluated models. ....... 111 

Table 17: Dataset split into in-sample, out-of-sample, and out-of-time sets. ....................................... 135 

Table 18: Distribution of the used data by asset size. ......................................................................... 135 

Table 19: Average optimal size of trained SHMMs by obligor category. ............................................ 141 

Table 20: Financial ratio weights obtained by application of the used genetic algorithm. ................... 143 

Table 21: Discriminatory Power Results of the Evaluated Algorithms. .............................................. 150 

Table 22: Calibration Results: Chi-squared test outcomes. ................................................................. 159 



13 

List of Figures  

 
Figure 2.1: Hidden Markov Models graphical representation ............................................................... 27 

Figure 2.2: An ergodic Markov process of four states .......................................................................... 30 

Figure 2.3: Normal Mixture Distribution with three components ......................................................... 31 

Figure 2.4: Graph of all possible transitions of the hidden states of an HMM ....................................... 33 

Figure 2.7: Graph of the optimal path based on the Viterbi algorithm .................................................. 40 

Figure 2.9: The evolution of an observed sequence following GHMM ................................................. 44 

Figure 3.1: Recognition of isolated words using an HMM classifier..................................................... 58 

Figure 3.2: Graph HMM with covariates.............................................................................................. 66 

Figure 3.3: Graph of Semi HMM ......................................................................................................... 67 

Figure 3.4: Different HMM structures. The white circles represent hidden states. The dark gray are 
observations processes and the light gray circles are input variables. a) Coupled HMM b) Event 
- Coupled HMM c) Factorial HMM d) Input - Output HMM ........................................................ 70 

Figure 4.1: Graphical illustration of the generative model and the latent interdependencies 
assumptions of VDJ-HMM. Here, λ denotes the active dependence form inferred at time t by 
the model. Effectively, the value of λ determines which past observation-emitting latent state 
currently affects the temporal dynamics of observation generation. .............................................. 81 

Figure 4.2: EUR-USD exchange rate volatility: Performance (RMSE %) fluctuation obtained by 
varying model configuration (validation set). ............................................................................... 97 

Figure 4.3: EUR/USD daily volatility forecasting graph under the VDJ-HMM .................................... 98 

Figure 4.4: Scenario 1 - USD/CAD volatility forecasting graph under the univariate approach .......... 102 

Figure 4.5: Oil WTI daily volatility forecasting graph under the VDJ-HMM ..................................... 104 

Figure 4.6: Brent daily volatility forecasting graph under the VDJ-HMM .......................................... 105 

Figure 4.7: EUR-USD exchange rate price prediction: Performance fluctuation (directional 
prediction accuracy) obtained by varying model configuration (validation set). .......................... 109 

Figure 4.8: EUR-USD exchange rate (right axis) vs return prediction using VDJ-HMM (left axis) .... 110 

Figure 5.1: Directed acyclic graph representing the SHMM (Chatzis et al., 2009). The box (plate) 
denotes a set of T observation points, {ymt}Tt=1 (of which only a single example for time t is 
shown explicitly), with their corresponding previous and current state indicators, and their 
mixture component indicators. ................................................................................................... 123 

Figure 5.2: Proposed Rating System Architecture (Training and Building). ....................................... 133 



14 

Figure 5.3: Proposed rating system calculation workflow................................................................... 133 

Figure 5.4: BIC values as a function of model size. ............................................................................ 140 

Figure 5.5: Analysis of obtained GINI performance values. ............................................................... 157 

Figure 5.6: Calibration Results........................................................................................................... 158 

 
 



15 

Acronyms List 

 

Acronym Definition 
 

ΗΜΜ Hidden Markov Model 

GHMM Gaussian Mixture Hidden Markov Model 

SHMM Student-t mixtures Hidden Markov Model 

EM Expectation Maximization Algorithm 

MLE Maximum Likelihood Estimation 

MWL Maximum Weighted Likelihood 

HSMM  Hidden Semi-MarkovModel 

MSE Mean Squared Error 

MAE Mean Absolute Error 

RMSE Root Mean Squared Error 

TPM Transition probability matrix 

 GSHMM Gaussian Student-t HMM 

SME  Small, Medium Enterprises  
 

 

 

  



16 

 

Symbols 

 

T = Number of observation 

L = Likelihood 

l = the log likelihood 

N = number of hidden states 

Μ = the number of different values of the observed variable of an HMM in the discrete case or the 

number of components in a Gaussian Mixture distribution 

S = (s� ,… ,s� ) the group of possible hidden states 

O = (o� ,… ,o� ) an observation sequence  

Q = (q� ,… ,q� )a sequence of hidden states of lengthΤwith values from S 

A = {��� ,���,… ,α��} the transition matrix of the hidden Markov chain 

B = { ���
(o�)} the matrix of the probability density of the observed sequence for every hidden states. 

The definition of matrix B depends on whether the HMM analyzed is continuous or discrete 

Π = {π� ,… ,π�} the initial probability distribution 

λ = {A,B,π} the group of parameters that characterize an HMM 

  



17 

Chapter 1 Introduction 

 

1.1 About this Thesis 

 

A significant amount of academic research performed in finance nowadays aims to predict the evolution 

of significant indicators of the economy and asset prices. The basic tool for the analysis of financial 

time series is the science of statistics. The constant changes of the economic conditions, the volatility in 

prices, the business cycle, the monetary policy, the evolution of interest rates and the political situation 

by country are some of the main drivers that increase the complexity of financial time series. This in 

turn leads to the enrichment of the statistical theory with new, synthetic and complicated models for 

increasing their efficiency in forecasting of economic variables. Each of these statistical methods 

presents advantages and disadvantages and usually there is not a one fits all remedy. Furthermore, the 

introduction of electronic and algorithmic trading also gave a boost in the need for improved 

forecasting of financial assets prices. In recent years HMM have been successfully implemented to 

address the problem of forecasting financial times series, exhibiting positive results against other state 

of the art techniques. In this thesis HMM are explored in depth, their applications are investigated and 

their efficiency is expanded by proposing a theoretical extension of their structure, to address better the 

analysis of financial data like shares, exchange rates, the oil market and gold.  Moreover this study 

explores the predictive ability of HMM in assessing the credit quality of companies. The research 

belongs to the interdisciplinary field of computational financial. In a similar way to traditional 

econometrics, we build and implement models for analyzing and forecasting financial time series. 

However our approach differs in that the models used in the context of this analysis is not based on 

regression techniques (ARIMA, GARCH, ARCH), but instead belong to the field of machine learning 

and pattern recognition. 
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This chapter describes the basic concepts of financial time series, the difficulties of accurate economic 

forecasts, the motivation and reasons for selecting HMM as the main topic for our research and the 

contribution of this thesis in the field of computational finance. The organization of the remaining 

chapters of the thesis is also described in the last section of this chapter.  

 

1.2 Financial Time Series and forecasting 

 

Since the 1960’s numerous studies have been implemented involving the analysis and prediction of the 

financial markets and the significant macroeconomic indicators. Many analysts and economists 

presented articles, thesis, with the aim of better modeling economic variables and achieve more 

accurate predictions for risk management purposes and better investment selections. Established model 

frameworks are summarized into four main categories of economic analysis: the fundamental analysis, 

technical analysis, econometric time series analysis and recently machine learning methods. 

 

Fundamental analysis refers to the examination of the underlying forces that affect the wellbeing of the 

economy, industry sectors and individual companies. For example, to forecast future price of a stock, 

fundamental analysis combines economic situation of the country, industrial and sector situation of the 

company and its financial figures for the fair value of the share and based on this analysis formulates 

forecasts for the future value of a company. On the other hand, the technical analysis is the examination 

of past price movements to predict future price movements. Technical analysis uses complex equations, 

graphs and indicators, calculated on the historical time series in order to detect signals for evaluating 

the trend of a financial market. The third category includes the traditional linear econometric models 

based on the method of regression such as AR, MA, ARIMA, ARCH, and GARCH. Most of them are 

trying to link a variable with its lag values or/and with other contemporaneous variables usually under 

the assumption of normality. The fourth category includes sophisticated nonlinear models from 
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computational data analysis and machine learning statistical area such as neural networks, Bayesian 

networks, Support Vector Machines, random forests and hidden Markov models. It’s evident that 

applications researched in this study belong to the field of machine learning analysis of financial data, 

but have much in common with the principles of technical analysis and econometric times series 

analysis. Results in our experiments are evaluated in relation to methods that belong to categories 2 and 

3. 

 

The main principals behind the statistical framework and analysis embodied in the last three groups of 

methods are the following: the current price of an asset usually reflects all current and relevant 

information, the price fluctuations are not completely random, and that history repeats itself. All of the 

pre-mentioned principles are connected to the belief of inefficient functioning of financial markets. In 

other words, the philosophy of technical analysis, econometric models and pattern recognition models 

is based on the fact that various time series show some patterns in behavior and that often the 

hypothesis of random motion can be rejected i.e. the efficient market hypothesis does not always hold. 

Under the assumption of efficient markets stated by Eugene Fama [1; 2] trading systems based on the 

available information cannot produce higher yields than expected performance of an index in the long 

run. Furthermore according to the EMH the present value if the best predictor for the future value of an 

asset, and that prices follow a random walk. Consequently, recent econometric studies focus mainly on 

the analysis of volatility of financial time series instead of the price changes. This is because it is 

commonly accepted that the prediction of long-term financial market trends is difficult or impossible. 

This is based on the theory that the patterns usually disappear due to the forces of the free market. 

However this fact is not true when predictions are conducted for short periods of time. The shorter 

horizon does not permit direct adaptation to the new conditions leaving space for correct short-term 

predictions. Patterns also exist due to information asymmetry. It is evident, that information in financial 

market is not evenly distributed and this has implications for the different behavior of market 
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participants. A well-informed investor is more likely to avoid the risks associated to an event from a 

less informed one. Although the theory of market efficiency supports that the market is anonymous and 

that all participants are equally well informed, this is rarely the case in the short term, granting the 

opportunity to some investors or investment firms to create models producing better returns. This is also 

supported by the fact that algorithmic trading has significantly expanded in recent years. In our thesis 

we focus mainly in the problem of daily forecasting in order to filter patterns that emerge from the 

inefficiency of the markets. 

 

1.3 Why HMM - Motivation 

 

The reasons leading to the selection of HMM as the main research topic for this thesis is qualitative and 

quantitative or theoretical, and are outlined below: 

 

1.3.1 Flexible and enhanced modeling capabilities   

 

Financial time series consist of multidimensional nonlinear data that make the process of modeling and 

accurate prediction difficult and burdensome. Specifically, there are three major difficulties for the 

accurate prediction of financial time series. First, patterns of known economic time series are dynamic 

continuously shifting in time, meaning there exist no single model constant throughout the duration of 

the data that captures efficiently all the information contained in the data. Secondly, it is difficult to 

distinguish the long-term trend and short-term movements in the modeled process. In other words, an 

effective system should be able to adjust its sensitivity through time, based on the increasing amount of 

the data analyzed. Third, it is usually difficult to determine the usefulness of information and to separate 

the noise from the essential information. HMM, combining data processing, machine learning and 
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forecasting techniques, offer the necessary flexibility to address these complicated temporal properties 

and successfully simulate non homogeneous processes. 

 

1.3.2 Physical interpretation - Information Asymmetry 

 

It is a fact that all market participants in a financial system do not share the same information. 

Investment firms often have the ability to manipulate the market by having access to more information 

than a retail investor. Moreover, all market participants usually share different opinion for the current 

point in the economic cycle. Finally there are many factors that influence and shape the value of various 

assets such as psychology, supply and demand which are often not directly measurable and visible. The 

asymmetry of information described makes several forces affecting the evolution of financial markets 

invisible, i.e. hidden. The hidden forces that determine the stock price movement (like movements in 

large investment portfolios) or the unobserved underlying process that determines the exchange rate of 

two currencies leads naturally to the study of HMM for modeling financial time series.  

 

1.3.3 Interpretation of the properties of asset prices 

 

According to the research work in [3], Ryden analyzed the time series of daily returns of the index S & 

P 500 using a Gaussian Mixture HMM model and documented their ability to reproduce both the 

distributional properties of daily returns of stock values and the temporal properties of econometric time 

series. Specifically, distribution of log returns is completely different in various stages of the economy.  

For example, during recession data exhibit huge spikes with negative drift. These regimes switching 

behavior is captured by the underlying Markov process. Moreover, the long-run log returns follow a 

distribution with heavier tails compared to those of the normal distribution. A powerful solution is the 

use of mixture distributions with weights assigned to its various components. These mixture 
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distributions families can produce a distribution that captures stylized features of data observed during 

economic downturns or market recovery. Their distribution gives various shapes reflecting levels of 

skewness and excess kurtosis. Consequently, in the current thesis mixtures of Gaussians or Student-t are 

employed in modeling. 

 

1.3.4 The elegant and transparent mathematical theory 

 

Fitted HMM, based on their theory, offer powerful statistical tools to analyze the time series: 

1.  Availability of all the moments: mean, variance, autocorrelations. 

2. The likelihood function can be calculated with a relatively easy manner using specific algorithms and 

the required calculations order is linear with respect to the number of observations. 

3. The marginal distributions are feasible and easy to identify and missing observations can be treated 

with small effort by using the properties of Markov chains. 

4. The conditional distributions exist, and depend on the structure of the HMM 

5. It is robust in modeling outliers using mixture distributions 

6. Efficient algorithm exists for implementing a continuous online learning process. 

 

1.4 Main Contribution of the thesis 

 

In this thesis we thoroughly investigate HMMs and their relationship to models finance problems. The 

contribution of this research thesis is threefold. First we perform an extensive review of HMM theory 

and applications. Moreover, it aims to summarize the most significant applications of HMM in general 

and with special focus in the field of finance. We offer a thorough and compact summary of the uses 

and the results of HMM in the last decades.  
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Secondly, we extend the framework of HMMs by proposing a theoretical variation which offers greater 

flexibility in their structure.  Hidden Markov models (HMMs) are popular approach for modeling 

sequential data, typically based on the assumption of a first- or moderate-order Markov chain. 

However, in many real-world scenarios the modeled data entail temporal dynamics the patterns of 

which change over time. In this thesis, we address this problem by proposing a novel HMM 

formulation, treating temporal dependencies as latent variables over which inference is performed. 

Specifically, we introduce a hierarchical graphical model comprising two hidden layers: on the first 

layer, we postulate a chain of latent observation-emitting states, the temporal dependencies between 

which may change over time; on the second layer, we postulate a latent first-order Markov chain 

modeling the evolution of temporal dynamics (dependence jumps) pertaining to the first-layer latent 

process. As a result of this construction, our method allows for effectively modeling non-homogeneous 

observed data, where the patterns of the entailed temporal dynamics may change over time. We devise 

efficient training and inference algorithms for our model, following the expectation-maximization 

paradigm. We demonstrate the efficacy and usefulness of our approach considering several real-world 

datasets. As we show, our model allows for increased modeling and predictive performance compared 

to the state-of-the-art in the considered scenarios, for competitive computational complexity. 

 

Finally we investigate the HMM efficiency in the problem of corporate credit scoring. Corporate credit 

scoring is widely used by financial institutions for portfolio risk management, and for pricing financial 

products designed for corporations. In addition, from a regulatory perspective, internal rating models 

are commonly used for establishing a more risk-sensitive capital adequacy framework for financial 

institutions. In this context, a large variety of statistical and machine learning tools have been applied to 

allow for successfully distinguishing between good and bad obligors. In this work, we propose a novel 

corporate credit rating system based on Student’s-t hidden Markov models (SHMMs). SHMMs are a 

well established method for modeling heavy-tailed time-series data. Under our approach, we use a 
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properly selected set of financial ratios to perform credit scoring. For each one of these financial ratios, 

we postulate a distinct SHHM, trained on five-year time-series data. Eventually, we aggregate the 

prediction signals generated by these SHMMs, using a linear predictive model optimized by application 

of an efficient genetic algorithm. We evaluate our method using a dataset pertaining to Greek 

corporations and SMEs; this dataset includes five-year financial data, and delinquency behavioral 

information. We perform extensive comparisons of the credit risk assessments obtained from our 

method with other broadly-used models, namely methods based on feed-forward neural networks, 

random forests, support vector machines, linear discriminant analysis, logistic regression, and Chi-

squared Automatic Interaction Detector (CHAID). As we show, our approach yields better and more 

stable discriminatory performance in the considered scenarios compared to the considered state-of-the-

art alternatives. 

 

1.5 Structure of the thesis 

 

The rest of the thesis is organized as follows: In the second chapter the fundamentals of HMM’s theory 

are presented including main implementation issues, forecasting under an HMM framework and 

evaluation methods for their efficiency. In the third chapter an extended review of known HMM 

application are described with main concentration in the field of finance. In the same chapter a list of 

known variations of HMM structures are outlined. Chapter 4 presents in detail the novel theoretical 

HMM structure proposed in this thesis, called VDJ-HMM. The estimation and inference algorithms are 

thoroughly described and the relevant experimental results are outlined. Chapter 5 deals with the 

development of a novel credit rating system using Student-t Mixtures HMM as main component for its 

set up and outlines the experimental results of its efficiency against other state of the art models like 

Neural Networks and logistic regression.  A summary of findings and conclusions are considered and 
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possible extensions of the research work of this thesis are given in chapter 7. Furthermore other areas 

worth exploring referring to the application of HMM in finance are also described in the last chapter.    
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Chapter 2 Hidden Markov Models Fundamentals 

 

2.1 Hidden Markov Models 

 

A Hidden Markov Model is a statistical model in which the financial system under investigation is 

assumed to follow a non-visible Markov chain. Furthermore it is assumed that this variable affects 

another variable or variables that their price is observed and measured. Thus, an HMM’s structure 

offers a flexible and general purpose model framework for univariate and multivariate analysis, mainly 

for discrete time series and classification data. Moreover, HMM are considered as a special group class 

of models for mixture distributions. 

 

In a regular Markov chain the value of the variable modeled is visible and therefore the only thing that 

one needs to assess is the transition probabilities between the possible states of the system. In a Hidden 

Markov Model the state is not directly visible and we infer its changes only through the observable 

variables that they affect. More specifically for each state of the hidden variable a probability 

distribution is allocated for the observed variable and based on the sequence in the latter we can 

estimate theoretically the most likely sequence that created it. The term hidden refers to our inability to 

observe the actual state of the system, even if we know the probability transition matrix of the Markov 

process. This chapter provides a brief introduction to HMMs and a description of the basic theory 

around these models. 
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The diagram below shows the general architecture of a simple HMM. As shown the value of the 

variable which can be observed O depends on the value of the hidden variable Q. 

  

 

 

Figure 2.1: Hidden Markov Models graphical representation 

 

By modeling a system and assuming that the data were generated by an HMM process, various 

algorithms exist to estimate the parameters of the system like the transition matrix of the hidden 

process, the conditional distributions of the visible variable based on the state of the hidden variable, 

and the marginal distribution of the initial state of the hidden variable. A learning process can be 

established for the model to adapt to new observations and improve predicting efficiency. A more 

detailed presentation of HMM is available at [4]. 

 
2.2 Definition 

 

A hidden Markov model consists of two stochastic processes: one is measurable and observed while the 

second underlying stochastic process is not visible but hidden and the only way to be inferred is by 

observing the first sequence. These two stochastic processes have the following properties: 
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a. The hidden stochastic process follows a Markov chain that characterizes the state of the system 

at time t. Thus the hidden process satisfies the Markov property 

 

�(� ��� = ����|� � = ��) = �(� ��� = ����|� � = ��, � ��� = ����,… ,� � = ��) 

 

 
b. The observed stochastic process depends entirely on the state of the hidden stochastic process 

and satisfies the conditional independence property. This property is described by the following 

mathematical relationship: 

P(�� = ��|��
��� = ��

���,� �
� = ��

�) = P(�� = ��|� � = ��) 

 

where ��
��� = (���� ,…, ��) 

 
 

 

A discrete hidden Markov model is characterized by the following parameters: 

 

1. The number of states (N): The number of possible hidden system states. Although the states of 

the system are not visible many times there is a physical interpretation to determine their 

number. Typically the states are interconnected so that from any state, the system can migrate to 

any other state thus the  Markov process is ergodic .We symbolize {1, ..., N} the different states 

and �� the hidden state at time t 

2. The number of distinct values of the visible Stochastic Processes (M) for each state of the 

Markov chain. It is the set of possible values of the variable of the system we observe. We 

denote the number of possible values as V = {v�,… ,v�} 

3. The matrix of transition probabilities: For the Markov chain that characterizes the hidden states 

we denote by A = {α��} the transition matrix where 
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��� = �[���� = � | �� = �], 1≤i, j≤N. 
 

For the special case where it is possible to transition from any situation in any other state in one 

time step then α��> 0 for all i, j. For some specific types of HMM by assumption, α�� can be set 

to 0 for one or more pairs (i, j). 

4. The conditional on the hidden states distribution of the observed variable: If we denote by B = 

{b�(k)} the distribution then 

��(�) = �[�� = � | �� = �], 1≤ j≤N and 1≤ � ≤M. 

 

For example, in the case of discrete HMM, {b�(k)} is the distribution of the discrete variable 

that we observe in the hidden state k. 

 

5. The initial distribution of hidden states π = {π�} where 

 
�� =  �[�� = �], for every 1≤ i≤N 

Usually we denote λ = (A, B, π) the group of parameters of an HMM. Obviously an HMM is fully 

defined by λ. 
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Figure 2.2: An ergodic Markov process of four states 

 
 

In the above definition relationships governing the system refer to a discrete HMM that is an HMM that 

the conditional distribution of the observed stochastic process is discrete. However a very frequent 

HMM structure, applicable to continuous variables, are continuous HMM in which the distributions 

corresponding to each state belong to a family of continuous distributions like normal, student-t etc. 

Thus, a Gaussian mixture Hidden Markov Model is a continuous Markov model with the distributions 

of the observations being mixtures of normal distributions. 
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Figure 2.3: Normal Mixture Distribution with three components 

 

Two options exist when applying an HMM in a data system where the observed variables are 

continuous: either use continuous distribution for the emission probabilities thus train a continuous 

HMM or apply a discretization process of the continuous observed variable mapping intervals to 

discrete values and subsequently estimate a discrete HMM. The procedure in the second case is 

obviously not taking into account all available information, however many times is preferable. For 

example, in the case where we are not interested in predicting the accurate level of the volume of 

transactions, but instead we want to predict whether in the next timestamp trading volume will be high 

or low we can discretize the volume variable. This process is called codebook. 

 

2.3 Estimation problems of a hidden Markov model 

 

Based on the definition of HMMs three basic problems emerge for their estimation: 

 

The sequence likelihood evaluation: Given a sequence of observations O = (�� ,… ,��) and an HMM 

calculate the probability of this sequence occurring i.e P(O|λ) where λ = (π, Α, Β) is according to the 

definition. 
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The optimal state sequence inference: Given a sequence of observations O = (�� ,… ,��) and an 

HMM with parameters λ = (π, Α, Β) conduct inference on the optimum value �� of sequence of the 

underlying hidden states that best interpret the sequence O for a given t ∈ 1,..., n or each n. 

Parameter Estimation or Training Process: Given a sequence of observations O = (�� ,… ,��) and a 

specific structure of an HMM estimate the system parameters that maximize the likelihood function 

(maximum likelihood estimators) maxλ∗P(O|λ). 

 

For these fundamental estimation problems of hidden Markov models specific algorithms have been 

developed to address them. These algorithms are described in detail below: 

 

2.3.1 Sequence Likelihood Evaluation 

 

The estimation of the probability of occurrence of the sequence O = (o� ,… ,oΤ) of the observed 

variable can be considered as a scoring process signaling how well the estimated HMM interprets the 

specific sequence. In addition, using the likelihood of occurrence of a sequence, two HMM can be 

compared and evaluated based on their fitting efficiency to the data analyzed. To calculate the 

likelihood the sequence O = (o� ,… ,oΤ) from the theorem of total probability that P(O|λ) = 

∑ P( q|λ)�∈� P(O|λ,q)  where q =(q� ,… ,qΤ) is a likely sequence of hidden states and Q the set of all 

possible sequences corresponding to the hidden Markov chain. In the case where the different possible 

states q� are N then the possible different sequences belonging in space Q are NT. Based on the 

definition of an HMM P(O|λ,q)=∏ b��
(o�)�

���  holds, where b��
(. ) is the probability mass function or 

probability density function for the case of discrete or continuous hidden Markov model respectively. 

Moreover by definition of the Markov chain it holds P( q|λ)= π��
∏ α������

�
��� . Consequently, the 

following equation holds 
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P(O|λ) = ∑ π��
∏ α������

�
��� ∏ b��

(o�)�
����∈�    (3.1) 

 

  

 

Figure 2.4: Graph of all possible transitions of the hidden states of an HMM 

 

For the estimation of P(O|λ) by the definition of the relationship 3.1 the calculations required are of 

order  (T * NT), which means that even a moderate size HMM is highly computational intensive. 

Therefore to calculate the likelihood a more efficient algorithm is necessary. Such algorithm exists and 

is known as the forward - backward algorithm. Essentially consists of two separate algorithms the 

Forward and Backward steps where both calculate the relation (3.1) using order of computations 

(N2*T), making them much more efficient and faster than the direct calculation of relationship 3.1. 

These algorithms first appeared in article [5]. 
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The Forward algorithm is defined as follows: 

 

First we define the variable α�(i) = P[ο�,ο�,… ,ο�,q� = i |λ], i.e. α�(i) denotes the probability of the 

sequence of observations ο�,ο�,… ,ο� (until the time t) and the state of the Markov chain at time t equal 

to i, given the parameter λ of HMM. The forward algorithm is summarized in the following steps: 

1. Initialization of variables 

��(�) =�� ∗  ��(��) where i, 1≤ i≤N 
2. induction 

����(�) =�∑ ��(�)���
�
��� ���(����) where j, 1≤ i≤N and 1≤ t≤ � − 1 

3. completion 

P(O|λ) = ∑ ��(�)�
���  

 

 

 

Figure 2.5: Graph of migration the forward algorithm 
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The first step sets the initial values for the forward probabilities as the joint probability of each state for 

time point 1 and the chances of observing ο� given the individual hidden state. The second step (the 

step of induction) which is the most important step of the algorithm is shown in figure 2.6. The graph 

illustrates how the transition to state j at time t + 1 can be made from N possible states i, 1≤ i≤N, at time 

t. As α�(i) is the probability for the occurrence of the data sequence ο�,ο�,… ,ο� and condition that the 

hidden state at time t is i, then the product α�(i)α��expresses the probability of the sequence ο�,ο�,… ,ο�; 

and the transition to state j at time t + 1 from state i at time t. By summing the product of all possible 

states N, i, 1≤ i≤N, at time t we derive the probability that the state is j at time t + 1 and the occurrence 

of the sequence ο�,ο�,… ,ο� 

 

The Backward algorithm is defined in a similar manner as follows: 

 

��(�) = �[����,����,… ,��|�� = � ,�], 

where  β
�
(i) is the probability of occurrence of the partial sequence from time t + 1 until T given the 

state at time t is i and the parameters λ characterizing the trained HMM. In line with the forward 

algorithm for calculating β
�
(i) the following inductive steps are used: 

 

1. Initialization of variables 

�Τ(�) = 1, 1≤i≤N 

2. Induction 

 

��(�) =∑ �����(����)����(�)�
��� wherei, 1≤ i≤N and t=� − 1,� − 2,… ,1, 1≤ i≤N 
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Figure 2.6: Graph transition of backward algorithm 

 

The first step is setting arbitrarily all β
Τ

(i) equal to 1 for all i. In step 2, which is described in the figure 

2.6, the system is in state i at time t and all possible transitions from state i to state j are depicted. Thus 

β
�
(j) is estimated based on the value of β

���
(j) estimated in the previous step and the probability of 

occurrence of the observation ο��� for all possible transitions from state i to state j (α�� from the 

transition matrix). The total number of computational operations for backward algorithm is of order N2* 

T. 

 

2.3.2 Inference of emitting state sequences 

 

To inference the hidden state sequence we must first define what criterion determines the optimal 

sequence of hidden states that best interprets the sequence of observed variables. Assuming that the 

optimal sequence is the one that maximizes for every time point the likelihood of ο�,ο�,… ,οΤ. . this 
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criterion maximizes the expected number of correct hidden states. For the application of this criterion 

we define the probability 

 

��(�) = �[�� = � |�,�] 

 

That γ
�
(i) the likelihood that the hidden state at time t equal to i given the sequence of observations O 

and the parameters of HMM λ. Given the definitions of  α�(i) , β
�
(i) 

 

��(�) = �[�� = � |�,�]= 

�[����,�  |�]

�[� |�]
 = 

�[�� = �,� |�]

∑ �[�� = �,� |�]�
���

 

 

Because, P[q� = i |Ο,λ] is equal to α�(i)β
�
(i) we can write that 

 

��(�)= 
��(�)��(�)

∑ ��(�)��(�)�
���

 

 

 Using the definition for γ
�
(i) we derive that 

 

��
∗ = argmax[��(�)]

1 ≤  � ≤ �
,  1≤ t≤ �. 

 

Although the above definition maximizes the number of correct hidden state of the system (by selecting 

the most probable state for any time t), there are some problems with the final derived Markov chain. 
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For example, when the HMM transition matrix contain zero for some specific transitions (α�� = 0, for 

some i and j), then the optimal state switching sequence may not be valid if it contains one of these 

pairs. This is because this optimization criterion looks at q�
∗ individually. Moreover, the sequence may 

not result in the maximum likelihood for the complete observed sequence O.  

 

Finding the complete Markov chain sequence that maximizes the probability P(q | O, λ) which is 

equivalent to maximizing P(q, O |λ) leads to better and more acceptable estimates for the sequence of 

hidden states. A formal technique for finding the best path for the hidden states is based on methods of 

dynamic programming and is called the Viterbi algorithm. 

 

For finding the best path (q�,… q�)  according to the algorithm given the sequence of visible variables 

(ο�,ο�,… ,οΤ) first we must define the relationship: 

 

��(�)=  max P [��,… ,����,   �� = �,��,��,… ,��| �]
��,… ,����

 

 

δ�(i) is the maximum probability derived for the sequence until time t, which corresponds to the first t 

observations and ends in state i. By induction occurs 

 

����(�) =  max ���(�)������(����)

�
(2) 

To calculate the optimal state sequence at each step the state that maximizes the equation (2) should be 

stored. For this reason we store this information in a table ψ
�
(j) . The integrated process for finding the 

best path is summarized in the following steps: 

 

1. Initialization of variables 
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��(�)=  ����(o�), 1≤ i≤N 

��(�) = 0 

2. iteration 

��(�)=  max�����(�)������(��)

1 ≤  � ≤ �
 

   

� �(�)=  ���max�����(�)����

1 ≤  � ≤ �
 

3. completion 

 

�∗ =  max[��(�)]

1 ≤  � ≤ �
 

        

��
∗ =  ���max[��(�)]

1 ≤  � ≤ �
 

 

4. The optimal sequence 

��
∗ = � ���(����

∗) ,        t=� − 1,� − 2,… ,1. 

 

 Note that the Viterbi algorithm is similar to the forward algorithm with the exception of the 

optimization step and the step of the optimal sequence reversely estimated (step 4). 
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Figure 2.7: Graph of the optimal path based on the Viterbi algorithm 

 
2.3.3 Training Process 

 

The training process, relates to the definition of a method to estimate and update the parameters of an 

HMM, λ= (Α, Β, π) satisfying some specific optimization criterion. However, in the case of HMMs 

there is no analytical method for estimating parameter using closed form equations. The parameters are 

generally estimated using the method of maximum-likelihood (ML). The likelihood equations have a 

highly nonlinear structure and there is no analytical solution for the ML.  The two most common 

approaches to estimate the parameters of an HMM are the EM algorithm and direct numerical 

maximization (DNM) of the likelihood.  In this thesis we concentrate on the EM algorithm (Baum-

Welch algorithm) for estimating the parameters of an HMM which usually yields better results. Below 

the Baum - Welch algorithm is summarized with details on the way it chooses the parameters of an 

HMM so as to maximize the likelihood function. 
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To describe the parameters of a training process of an HMM first we define the auxiliary variable 

��(�,�) equal to the probability that the hidden state at time t is equal to i and at time t + 1 is equal to j, 

given the model λ and the observation sequence O: 

 

��(�,�)= �[�� = �, ���� = �| �,�] 

 

 

 

Figure 2.8: Graph of migration of the Baum - Welch algorithm 

 

 

In figure 2.8 the basic transition step of the Baum-Welch algorithm is summarized. From the definitions 

of variables ��(�),��(�),we derive 

 

��(�,�) =
�[�� = �, ���� = �,�|�]

�[�|�]
 

��(�,�) =
��(�)�����(����)����(�)

�[�|�]
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��(�,�) =
��(�)�����(����)����(�)

∑ ∑ ��(�)�����(����)����(�)�
���

�
���

 (2) 

 

The variable γ
�
(i) is the probability that the system is in hidden state i at time t given the model λ and 

the sequence of observations O, therefore based on the above definitions we get  

 

��(�)=∑ ��(�,�)�
��� =

��(�)��(�)

∑ ��(�)��(�)�
���

 (1) 

Summing γ
�
(i) over t, we estimate the probability of the system being at state i. Similarly summing 

ξ
�
(i,j) for all times t we estimate the average number of times the system transitions from the state i to 

state j. therefore: 

 

∑ γ
�
(i)���

���  = average expected number of transitions from state i corresponding to the sequence O 

∑ ξ
�
(i,j)���

��� = average expected number of transitions from state i to state j in the sequence O 

 

Using the predefined variables we can define equations for the estimation of the parameters of an 

HMM. 

 

��
′= probability that the system is in state i at time t = 1: ��(�) (3) 

���
′ = (expected number of transitions from state i to state j) / (expected number of transitions from state 

i) = 
∑ ��(�,�)���

���

∑ ��(�)���
���

 (4) 

��(�)= (expected number of transitions from state i and given that the observation is k) / (expected 

number of transitions from state i) = 
∑ ��(�)�:�����,�����

∑ ��(�)�
���

 (5) 
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2.3.4 EM algorithm solving a discrete HMM 

 

Summarizing all the above equations the final re-estimation algorithm is:  

 

Counter of iterations: k: = 0 

1. Set the initial values of the parameters of a discrete HMM 

2. Calculation using the forward - backward algorithm of ��(�)and ��(�) variables 

3. E-step: calculation of ��(�), ��(�,�) using the equations (1), (2), respectively 

4. M-step: calculation of variables ��, ��� , ��(�) using the relationship (3), (4), (5), respectively 

5. If  EM algorithm converges i.e. l – l’< threshold then stop else increase by 1 the iteration 

counter k: = k + 1 and repeat steps 2-5. 

 

If we define an HMM model with parameters λ = (A, B, π) and use the equations defined above then we 

can transition into a new configuration for the HMM denoted by λ� = (Α�,Β�,π�).  According to Baum 

Welch it holds that P(O|λ�) >  P(O|λ)  i.e. the new model is more efficient in interpreting the 

observation sequence O.  

Note that the equations (3), (4), (5), are the same as the formulas obtained by applying the expectation 

maximization algorithm [6] with Q function 

Q(��,�) = ∑ �(�,�|� ��)logP(O,q|�) δηλαδή, 

Q(λ, λ΄) = ∑ logπ���∈� P(O, q|λ΄) 

+∑ �∑ logα������
�
��� �P(O,q|λ )́ �∈� +∑ �∑ logb��

(o�)�
��� �P(O,q|λ )́ �∈�  (2) 
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For a detailed documentation and derivation of the EM algorithm equations details are contained in 

references [7] [8]. 

 

2.3.5 Continuous HMM 

 

Previously we described the theoretical approach to solve a discrete HMM, i.e. a HMM where the 

conditional distributions in hidden situations are discrete. However a very important group - class of 

HMM are the continuous HMM. The basic difference in the structure is that the conditional 

distributions of each state follow some continuous distributions.  

 

 

 

Figure 2.9: The evolution of an observed sequence following GHMM 

 

 

Note that the table B in the continuous HMM parameters at λ = (A, B, π) correspond to the parameters 

of the continuous distributions assumed in the structure. Therefore equations solving the problem 3 on 

the transition matrix and the initial distribution of statements are the same as the discrete case. For the 

parameters of the distributions (i) equation (2) must be solved:  

 



45 

θ =́ argmax �� �� logb��
(o�)

�

���

� P(O,q|λ )́ 

�∈�

�

�                                                          

 

This is equivalent to the relationship 

 

θ =́ argmax�∑ �∑ logb��
(o�)�

��� �P(O,q|λ )́ �∈� �

�                                                          
,  i≤ t≤ �. 

 

The most common structure for continuous distributions used in finance applications is mixture of 

normal distribution with a finite number of components. This is based on the fact that Gaussian 

Mixtures can reproduce all distributional properties of a financial time series based on Ryden [3]. In 

this case the form of conditional distributions is 

��(�)=  � ���N���,���,����
�

���
,1 ≤  � ≤ �  

 

where ∑ c��
�
��� =1, ot is the vector of observation we model and c��  is the weight of m normal 

distribution component added to the mixture distribution corresponding to the state j and N is the 

known multivariate normal distribution. 

���(��) ~ N���,���,���� = 
�

|���|
�
�(��)

�
�

��
�

�
��� � ����

�
���

����� � ���� 

Based on the literature the following equations define the auxiliary variables of the EM algorithm 

(Appendix 2) in the case of  GHMM: 
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���(��) ~ N���,���,���� = 
�

|���|
�
�(��)

�
�

��
�

�
��� � ����

�
���

����� � ���� 

��(�,�) =
��(�)�����(����)����(�)

∑ ∑ ��(�)�����(����)����(�)�
���

�
���

  (1) 

��(�)= 
��(�)��(�)

∑ ��(�)��(�)�
���

 (2) 

��(�,�) = �
��(�)��(�)

∑ ��(�)��(�)�
���

� �
����  ���,���,����

∑ ����  ���,���,�����
���

� (3) 

��� =  
∑ ��(�,�)�

���

∑ ∑ ��(�,�)�
���

�
���

 (4) 

��� =  
∑ ��(�,�)��

�
���

∑ ��(�,�)�
���

 (5) 

��� =  
∑ ��(�,�)��� � ���

������� � ���
����

�
�
���

∑ ��(�,�)�
���

 (6) 

��
�= ��(�) (7) 

���
�  = 

∑ ��(�,�)���
���

∑ ��(�)���
���

 (8) 

 

EM Algorithm for Solving a GHMM 

Using the above equations the EM algorithm for estimating a GHMM is:  

Iterations Counter: k: = 0 

1. Set the initial values of the parameters of an GHMM 

2. Calculation using the forward - backward algorithm of ��(�) and ��(�) variables 

3. E-step: calculation of the variables ��(�,�), ��(�), ��(�,�) using the relations (1), (2), (3) 

respectively 

4. M-step: calculation of variables ���, ���, ���, ��, ���  using the relations (6), (5), (4), (7), (8) 
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5. If EM algorithm converges i.e. l – l’< threshold then finish else increase by 1 the iteration 

counter k: = k + 1 and repeat steps 2-5. 

 

 

2.4 Issues related to the practical implementation of HMMs 

 

Due to the complexity of HMMs, there are several practical issues related to the implementation of the 

algorithms forward - backward, Viterbi, and Baum - Welsh (Expectation Maximization) when 

estimating the parameters of a system. Below, the most important of these issues are summarized.  

 

2.4.1 Thresholding or parameter values Limits 

 

During the application of the algorithms forward – backward, the number of calculations can be 

reduced by setting a limit, where if the value of intermediate variables falls below this threshold they 

can be set to 0 without decreasing the efficiency of the model. Specifically, in the intermediate stages of 

forward, backward algorithms some α�(i) , β�(i) which are assigned very small values (less than a 

threshold C) it is practically proved that they can be set to zero without this affecting the performance 

of the HMM while significantly reducing the number of calculations due to the decrease in the terms in 

the intermediate sums estimated by the aforementioned algorithms.  

 

2.4.2 HMM structure selection 

 

When analyzing data using HMM, researchers should choose among numerous variations developed in 

academic literature, the appropriate structure for modeling the problem under investigation. However 

there is not a standard procedure to be followed in order to choose the ideal HMM structure in terms of 
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the Markov chain properties, the number of hidden states, the type of conditional distributions, with 

covariates or not etc. Usually the choice depends on the already accumulated experience - literature in 

the respective field (finance, biology ...) along with any special features embedded in the sequences 

being analyzed. Especially in the case of GHMM one must additionally set the number of normal 

distributions components participating in each state conditioned mixture. The most frequent approach to 

address this issue is the development and training of various structures and selecting the best fit using 

some performance criteria like the Bayesian Information Criteria (BIC). Model selection in our 

experiments is extensively analyzed in chapter 4 and 5. It turns out that the optimal number of hidden 

states and mixtures components ranged between 2 to 6 under the GHMM set up from the experiments 

in this study. 

 

2.4.3 Adequacy of data 

 

In practice, it may be the case where the dataset available in a study is not enough to effectively 

estimate the parameters of an HMM. To address this issue in the case of multivariate Gaussian mixture 

HMM the following options are available: (i) assume parameter sharing across the Gaussians 

components, e.g. of the covariance matrices Σ, (ii) assume diagonal matrix for the covariance matrix Σ 

(γ) assume one Gaussian per hidden state. These options aim to decrease the number of parameters of 

the system in order to solve the issue of data limitations. In the discrete HMM case, when estimating the 

conditional distributions under a discrete HMM set up there is the chance that the combination �� = i 

and d�� =  ��does not exist in the data resulting in ��(�) = 0. This may affect the predictive ability of 

the model because of the zero estimates due to lack of sufficient numbers of data. In such cases the lack 

of data can be corrected by setting limits as minimum values of the parameters λ = (A, B, π). However 

when thresholds are applied the rest of the probabilities must be adjusted accordingly in order to sum up 

to 1.  
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2.4.4 Multiple data sequences 

 

In many cases (e.g. left - right HMMs) HMM training is performed with the simultaneous use of 

multiple data sequences for the efficient estimation of parameters. Therefore the equations described 

previously in the training algorithms should be extended to take into account the parallel data 

processing of multiple observation sequences. This extension is relatively obvious and is described in 

detail [8]. Moreover, the way that each sequence affects the estimation of the parameters can be 

weighted to vary the significance corresponding to each time series of observations which may be due 

to different levels of reliability allocated to each sequence. 

 

 

2.4.5 Scaling / Weighting 

 

It is evident, that during the implementation of the training algorithms of HMMs intermediate variables 

α�(i) , β
�
(i) are decreasing converging to 0 with the increase in  t. Consequently, due to the precision 

limitations of the computer used to implement the algorithms they are eventually set to 0. To avoid the 

rounding of variables to zero due to computational accuracy, weighting or scaling should be applied to 

each execution step of the forward - backward algorithms. The weighting process is described in detail 

in [8]. 

 

2.4.6 Initial values of variables 

 

In theory, estimation algorithms lead to values of the parameters of HMMs that correspond to a local 

maximum of the likelihood function. Thus after selecting the structure of an HMM (number of states, 
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type of conditional distributions, etc.), a key question is how to choose the initial parameters of the 

HMM so that the local maximum achieved through the implementation of the EM is equal or as close as 

possible to the total maximum of the likelihood function. From the literature it is evident that there is no 

simple and straightforward answer to this question. Rather, experience has shown that the random 

initial choice (subject to stochastic constraints on parameter values and the case for values different that 

zero) or use of uniform values for the parameters π, A, in almost all cases lead to good estimates of the 

systems under investigation. However, for the parameters B, studies have shown that good initial 

estimates (which have resulted from a specific method) is useful in the discrete case and play an 

essential role in the case of continuous distributions. These initial estimates can therefore be achieved in 

many ways such as for example the calculation of the empirical distribution followed by the 

observations after classified in subgroups (using algorithms from data categorization theory as k- means 

etc.) and estimate the mean and the variance of the observations within each class. In the context of this 

thesis will use a variant of the k-means algorithm specifically for HMM as described in appendix 4. 

Moreover, it should be stated that in the case of a continues learning process, with new time data, initial 

estimates may be derived from the best estimates of the parameters of the previous training step under 

the problem of financial time series analysis [9]. 

 

 

2.4.7 On-line learning Parameters  

 

In forecasting financial time series new data gradually occur either periodically or ad hoc. This fact 

raises the question of the frequency of re-training of the parameters in the new data. The researcher has 

to decide between keeping the HMM up to date or establishing a learning process as computational 

efficient as possible. Obviously one of the criteria to take into account is the size of the sequence used 

for the training of HMM e.g. if data are stock prices per minute and the sequence length is 3 hours then 



51 

the training process must be activated between 1 and 3 hours from the previous training step. Another 

criterion is the stability of the HMM’s forecasting ability, i.e any significant deviation in the predictive 

accuracy that the system exhibited in the validation process (back testing) may trigger a retraining 

process. Furthermore techniques for exist in literature to address the restraining problem. On line 

learning of new data sequences allows adapting HMM parameters as new data becomes available, 

without having to retrain from the start on all accumulated training data. For example in [10] equations 

exist of the form 

�� = �(����,   �� ) 

that offer the possibility of adjusting the parameters of the current parameterization λ = (A, B, π) using 

the latest values of the observed sequence (�� ). With these estimates the renewal of the parameters is 

achieved based on the latest information while this process is less computational intensive than 

adjusting the parameters via the EM. A survey of techniques found in literature that are suitable for 

incremental learning of HMM parameters is outlined in [11]. 

 

 

2.4.8 Length of training observations / frequency time series data 

 

For an analysis of daily observations the size of the training window resulting from empirical evidence 

usually ranges between 30-150 days length. However this is particularly true in univariate analysis 

while in the multivariate case the length window should be adjusted to account for the significant 

increase in the number of parameters of the system. In addition the final window size used for HMM 

training can be calculated by comparing the performance of various structure set ups with different 

lengths of sequences. On the other hand, the frequency of observations in the sequence analyzed, 

whether daily, hourly, weekly is mainly determined by the strategy or the forecasting problem we are 

addressing. 
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2.5 Forecasting using an HMM model 

 

According to the literature, one of the main objectives of a data analysis with HMM is to develop 

forecast estimates of the modeled sequence. Specifically suppose we apply the structure of a GHMM in 

the return time series of a stock. In the case of the fitted HMM it is possible to predict the entire 

distribution of the variable analyzed and not only of a specific value. Therefore the information 

available to the analysts provide the opportunity of deciding between different risk-adjusted alternatives 

to follow. The following section describes possible approaches to conduct forecasting using HMM as 

they are studied and implemented in academic research: 

 

2.5.1 Prediction based on the optimal path 

  

First, using Viterbi algorithm the hidden state sequence that maximizes the likelihood function is 

estimated. Based on the states switching sequence derived by solving the decoding problem we can 

proceed to predict the distribution in the next time step in the following ways: 

• Based on the state of the system at the last observation it is assumed that it will remain constant 

therefore this holds also for the distribution of the observations of the corresponding hidden 

state [9]. 

• Based on the optimal state corresponding to the most recent observation and considering the 

maximum probability in the transition matrix the most likely transition state is identified for the 

next time point. Then using the conditional distribution corresponding to this state the prediction 

of the next observation is performed [12] 

• Based on the optimal hidden state corresponding to the most recent observation and considering 

all possible transitions, the weighted on the transition probabilities mixture distribution is 
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estimated. In the case of GHMM the forecast distribution is a mixture of mixture distributions 

with weights corresponding to all transition probabilities. 

  

 

 

Figure 2.10: Decoding the switching of the hidden states for a stock forecasting problem 

 

 

2.5.2 Prediction based on the forward algorithm 

 

One way to conduct n-step forecasting using HMM is by utilizing the forward algorithm [13]. 

Specifically, using the forward algorithm the most probable hidden state, given the whole observation 

sequence, is estimated using the variables ��(�). Based on this hidden state a migration distribution is 

estimated by combining the probabilities��(�), the transition matrix probabilities and the trained 

conditional distributions to conduct one step transition of the system. In experiments performed in this 

thesis in chapter 4 the forward algorithm was chosen as the most efficient way for forecasting. 
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2.5.3 Pattern identification approach 

 

An alternative method for forecasting through HMM belongs to the area of pattern recognition. 

Specifically, after training in the most recent observation sequence an HMM using the forward 

algorithm we estimate the likelihood of historical sequences and filter the ones were their likelihood is 

within a narrow range with the current sequence’ likelihood.  After the identification of one or more 

historical points in the observation sequence making we aggregate the one step subsequent values of the 

variable and using an appropriate weighting we formulate a prediction for the future performance.  This 

method with some variations can be found in [14; 15; 16; 17]. Finally, the search for pattern in the 

sequence of observations can be applied in the optimal states sequence using the Viterbi algorithm on 

historical data instead on the observable sequence. 

 

2.5.4 Use two or more HMM for classification data 

 

In the case of a binary prediction problem, for example the up/down movement of a stock then two 

HMMs are trained using multiple sequences were the price moved up or down respectively in the next 

time stamp. Subsequently for performing a prediction we score the current sequence through both 

trained hmm and based on the generated two likelihood values we infer the next stock movement. An 

example of this method is performed in [18]. Moreover this method of prediction is employed in 

chapter 5 for the development of an HMM credit classification system for companies. 

 

2.6 Evaluation of  Hidden Markov Models 

 



55 

From the literature it is evident that there is no standard evaluation framework for the HMM and their 

performance. Substantial differences exist in the case where the predictive power of an HMM, as part of 

a trading strategy, is assessed. Below we summarize a series of tests and indicators to be used in 

evaluating the performance of HMM. 

 

2.6.1 Likelihood Ratio Test - Index Entropy 

 

For comparison of two HMM with respect to better fitting the analyzed data sequence, the Likelihood 

Ratio Test can be used. The definition is given by the relationship: 

 

Likelihood Ratio Test = (1) / T [log (likelihood of the HMM modeled of the null hypothesis) - log 

(likelihood for alternative model HMM)] 

  

The Likelihood Ratio Test follows the X2distribution with degrees of freedom the difference in degrees 

of freedom of the two HMM. This test is further known as Kullback-Leibler [8]. 

 

2.6.2 Penalized likelihood criteria BIC AIC 

 

The Akaike Information Criterion (AIC) can be used for a comparison of two or more HMM. The index 

is given by the following equation AIC = -2 log L + 2p, and is an indication for best fitting of an HMM 

of the observation sequence. In this equation p represents the number of variables used in the HMM and 

L the likelihood of the data sequence. The Bayesian Information Criterion (BIC) can be used as a 

comparison of two or more HMM. The statistic is given by the following equation BIC = -2 log L + p 

logT, where T is the number of observations and p and L are the same as the AIC. [13] 
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2.6.3 Accuracy Prediction - Error Rate  

 

For each implementation of an HMM we apply it to historical data sequences and calculate the 

percentage error in one step forward binary prediction. For this statistic confidence intervals can be 

produced using the mean and deviation estimated on historical sequences. The confidence intervals are 

compared in order to select the HMM which exhibits the lowest error rate. In chapter 4 in the 

experiments on return forecasting the error rate is used to determine the directional accuracy of the VDJ 

HMM. 

 

2.6.4 Mean Square Error 

 

Using the trained HMM it is feasible to predict the entire distribution of the variable in the next time 

step which enables us to calculate the mean squared error for a number of estimates and to compare it 

with other HMM set ups. Moreover this criterion can be used to evaluate how well the data are 

approximated by the trained HMM. 

 

2.6.5 Annualized Return 

 

If the HMM are applied in the framework of building an investment strategy their efficiency can be 

measured through the annualized return of the portfolio profitability. This statistic is calculated based 

on the average yield of the portfolio following the signals generated from an underlying HMM. 

Similarly, using this statistic estimated in various historical sequences the dispersion in the HMM’s 

performance can be analyzed and the most profitable HMM candidate can be selected for supporting 

trading strategies. .  
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Chapter 3 Hidden Markov Models Applications and Variations 

 

In the first part of this chapter various applications of HMMs are outlined with special focus in the 

financial sector and economic modeling. This chapter tries to cover the fields of applications of HMMs 

in order to serve as a reference point for future research endeavors. Listing application of HMM from 

other fields can also inspire new applications in finance especially when problem from different areas 

exhibit common properties and characteristics with financial time series. For each sector, we try to 

examine some of the most recent results and especially for the area of finance that is the subject of this 

thesis, the list of articles and results is more detailed. In the second part of this chapter a group of 

significant HMM variations, aiming to better capture the underlying properties of the frameworks they 

are applied to, are presented. 

 

 

3.1 HMM Applications in various Fields 

 

HMM were conceived and introduced for the first time in a series of statistical articles of Leonard E. 

Baum in the second half of 1960’s. Specifically, HMMs appeared in the framework of a model for 

ecology [5] with their first name being «probabilistic functions of Markov chains». Since then they 

have been applied in numerous fields for data and signal analysis and pattern recognition. First, in 1970 

they were implemented successfully in voice and speech recognition problems. Today, most of the 

commercial speech recognition systems are based on some variant of an HMM. In the 80s the 

implementation of HMMs was extended in the analysis of biological sequences such as DNA. Since 

then their importance increased significantly in the field of Bio-informatics. In the 90s the interest in the 

theory and applications of HMMs has spread in many fields due to their generalization abilities. 

Nowadays, Hidden Markov Models are also known for their application in temporal pattern recognition 
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such as speech, handwriting, recognition gestures etc. In recent years HMM are also applied in fields 

like e-commerce for price forecasting of products sold via internet, to analyze the protein structure in 

molecular biology [19] and to predict oil prices [20]. Below is a short list of research areas of HMM 

applications and some illustrative studies applied.  

 

 

3.1.1 Speech Recognition 

 

As mentioned above, the initial researched majority of applications of HMM appear in speech 

recognition field. The literature on this subject is rich with thousands of conferences and publications in 

magazines and it would be almost impossible to outline their evolution up to date. Especially for this 

field the most important theory and results are included in the following articles [4] and [21] and in the 

following book [8]. According to the relevant theory, a separate hidden Markov model could be 

designed for each word in a vocabulary. Thus each HMM corresponds to different sounds like vowels, 

syllables and converts each audio signal to the respective words.  

  

 

 

Figure 3.1: Recognition of isolated words using an HMM classifier 
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3.1.2 Computer Vision and Image processing 

 

The HMM while originally developed in speech recognition systems in recent years have been 

implemented in many computer vision applications. Today successfully they are applied to text 

recognition systems, facial gestures, signatures and image processing. For example, in [22] HMM is 

applied in analysis of Car video real-time detection of front vehicles to support safer driving system. 

Furthermore in [23] a comparison of the performance of HMM for the recognition of handwritten 

Arabic words against dynamic Bayesian systems is performed. HMM have been applied as well in 

gesture recognition systems. An example of their applications in this area is described in [24]. Authors 

in [25] train an HMM for face recognition from video analysis. Although, images are by nature two-

dimensional, and usually modeled by application of a Hidden Markov random field, it is possible to use 

the HMM for the processing of one-dimensional information of an image. For example in [26] a texture 

classifier based on the application of the HMM on image data converted by using wavelets is proposed. 

Furthermore, in [27] HMM is used to classify movements of people on a moving staircase into normal 

and abnormal. Finally, HMM have been applied for recognition of signatures [28] and for the 

handwritten text recognition combined with neural networks in [29].  

 

3.1.3 Biomedical Applications 

 

In the field of biomedicine, bioinformatics and biostatistics the HMMs have been applied in several sub 

fields such as DNA analysis, protein mixture and classifying a sequence of medical data such as 

electrocardiograms [30], visual stimuli [31], seizures [32]. In molecular biology, the hidden Markov 

models are used to model different evolution rates at different points on a molecular sequence[33]. A 
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complete list of applications of HMM in the field of bioinformatics is contained in article [34] or in the 

book [35]. In [36] HMM were used for the analysis of protein sequences in different genes. 

 

3.1.4 Epidemiology and Sociology 

 

HMM have been applied to analyze the behavior of the sequence of animals under observation (kinetic 

behavior of locusts) [37]. In addition, the time series of homicides and suicides in Cape Town, South 

Africa, and birth data to a hospital in Africa have been analyzed with the use of hidden Markov models 

[38] and [13] respectively. In 2007 the hidden Markov models were applied to social conflict prediction 

in Indonesia [39]. 

 

3.1.5 Other Applications 

 

In this section we list a number of applications that enhance the flexibility of HMM and spread in 

almost all scientific areas. In climatology, the appearance or not of rainfall in different locations can be 

modeled as an HMM where the climate conditions are not visible, leading to different distributions of 

rainfall per area and time period [40]. HMMs are used also by radar sonar for classification of 

underwater acoustic signals [26]. In 2005 HMM were applied to analyze the data of a sonar fitted to a 

robot modeling its possible movements [41]. In recent years the HMM are used to detect fraud in credit 

cards transaction by analyzing the behavior of payments [42]. Moreover, Hidden Markov models have 

been implemented both in telecommunications and in information technology with applications in 

cryptography and data decoding. A recent study analyzes using HMM security attacks in Skype [43] the 

most famous VoIP service online. In 2008 HMMs were applied to study the traffic on the internet in 

various protocols [44]. The classification of Human emotions into different people’s profile was 
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attempted in 2011 using HMM [45]. In 2009 HMM were used for classification of seismic active 

volcanoes analyzing their behavior [46]. 

 

3.2 HMM applications in finance 

 

As we have already mentioned an HMM is a model that mixes different distributions based on an 

unobserved Markov process. This converts HMM as a strong statistical tool for time series modeling. 

Applications of HMM or Regime switching Markov models in finance are numerous and they first 

appeared in the late eighties. Today, HMM are used in finance with a wide range of applications like 

pricing derivatives, modeling of assets’ volatility (stocks, indices ...), to estimate life insurance losses, 

forecast changes in interest rates and exchange rates etc. The most important applications of HMM in 

the field of finance are presented below in detail both historically and by sector.  

 

3.2.1 Exchange Rates 

 

The behavior of many exchange rate time series cannot be modeled efficiently with linear econometric 

models. Properties such as mean reversion, volatility of stock markets and the abrupt structural breaks 

are not efficiently captured using simple regression models. Thus, a range of applications using hidden 

Markov switching models have been researched in order to model the nonlinear properties of the 

exchange rates. These models belong to the family of HMM where according to their structure the 

parameters of the models are determined based on an underlying discrete Markov chains. Usually an 

AR, GARCH, ARMA models and their coefficients change according to the state of the system. In this 

vain Hamilton in 1989 presented an analysis of exchange rates against the dollar proving the existence 

of periods (regimes) of strengthening, and weakening of the dollar that last a long time [47].  Engel in 

1994 [48] analyzed time series of exchange rates using HMM with mixed conclusions about their 
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performance and forecasting efficiency. Specifically, the survey results showed that the predictive 

power for returns in currency exchange rates is low but there is evidence that the HMM can detect their 

long-term trend. In 2004, Cheung, Yin-Wong, Erlandsson, Ulf G., [49] analyze the time series of three 

exchange rates against the dollar and conclude that the efficient characterization of the different hidden 

states is significantly influenced by the frequency of the data and the length of the time series used to 

train the HMM. In [50] authors analyze time series of exchange rates and conclude that the Markov 

Switching Auto Regressive model best explains their non - linear relationships. Finally in 2008 [12] 

Patrik Idvall, Conny Jonsson applied a GHMM in the EUR / USD exchange rate for the purpose of 

building strategies for algorithmic trading, resulting in mixed results for their predictive ability. 

  

3.2.2 Stock Market forecasting 

 

An important area in finance is the analysis and prediction of the evolution of stocks and stock indices. 

In this area many research efforts to identify the interpretation of the forces that affect their movement 

using HMM exist. These applications are divided into two major categories: 1) analysis using only 

HMM for the prediction of time series and 2) analysis using a combination of statistical models and 

theories to improve the effectiveness of the HMM. In the first case a famous application of HMM is 

included in the published work of [3], who analyzed the time series of daily returns of the index S & P 

500 using a GHMM model. This article documents the ability of GHMM to reproduce almost all 

features and stylized facts exhibited in the daily returns of stock indices and shares. In [51] the time 

series of six European stock indices are analyzed with HMM and the study concludes that mixtures of 

normal distributions best represent the times series of returns against the simple normal distribution 

while no clear differentiation in performance was evident with respect to the number of mixture’s 

components (2 or 3 normal distributions were investigated). In [52] and [53] the volatility of stocks 

using hidden Markov models is modeled and in [14] a new framework is presented for the 
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implementation of HMM in predicting stock movements. Under this approach a multivariate GHMM is 

trained in the most recent sequences (open, close, high, low) of a share and then attempts to locate 

similar patterns in the historical data to predict the future behavior of stocks. The authors in their study 

make the assumption that the history of the performance of a stock is repeated. In 2010 two studies are 

presented, the first one concerns the valuation of European options [54] and the second one [55] who 

apply a hierarchical HMM (Hierarchical Hidden Markov Model) for predicting the Indian Nifty index 

with positive results. In the second group of studies in HMM literature hybrid models are presented 

where hidden Markov models are combined with some other statistical technique for the prediction of 

stock movements. Usually HMM are combined with neural networks and the theory of fuzzy logic. 

Specifically in [56] a model called 'Hidden Markov Experts' is applied according to which the 

projection is conducted through combining three Neural Networks (experts) and a Markov chain that is 

hidden and determines which of the 3 experts interpret the data better at each time point. Based on this 

structure, the parallel use of unsupervised and supervised learning is employed to estimate the 

parameters of the system. In 2007 HMM were applied in conjunction with neural networks for pattern 

recognition in the pricing of shares in [16]. Finally, in [15] Md. Rafiul Hassan presents a combination 

of HMM with a fuzzy logic model that shows promising results for predicting shares while its 

performance is superior in comparison with the statistical model investigated in [16]. In many cases the 

applications analyzed, showed positive signs for the ability of HMM to predict the rate of return for 

stock and stock indices, creating signals with good accuracy for investment purposes. 

 

 

3.2.3 Other financial applications 

 

HMM applications in finance were extended in the analysis of macroeconomic time series where 

Hamilton (1989) applied the methods of hidden Markov models for analyzing the rate of postwar GDP 
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growth of the US using ARMA models for each hidden state in [57]. In the field of actuarial science in 

2000 Poisson HMM where used to analyze the number of insurance claims in [58]. Moreover, in [59], 

hidden Markov models were used for the pricing of bonds by modeling the movement of the short 

interest rate. The shift in interest rates varied based on an underlying hidden Markov process. This way, 

the projections of short-term interest rate for the next period were estimated. In 2010 discrete HMM 

were used to forecast oil prices in [20]. Furthermore [60] using data from heating oil futures propose a 

model for the evolution of arbitrage-free futures prices under a HMM framework. Finally, applications 

of HMM have been implemented in the scientific area of credit risk mainly for portfolio modeling or 

simulating the actual credit quality of corporations. A thorough list of applications in credit risk is 

outlined in chapter 5 where a novel HMM rating system for credit rating is introduced within the 

context of this thesis.  

 

3.3 HMM Variations 

 

It should be noted that the idea, the nature and structure of an HMM differs significantly in various real 

life applications. In some cases HMM are well defined with natural meaning (i.e. hidden states 

correspond naturally to states of the system under consideration), while in other cases the definition of 

the hidden sequence is less clear, and there are cases where the hidden Markov chain meaning is 

fictional i.e. has no real meaning. In these cases, HMM are applied due to their increased mixture 

distribution capabilities for modeling time series data. In addition, depending on the problem different 

structures where developed and analyzed in order to capture effectively the properties of the underlying 

data.  HMM variations are presented below along with a brief description: 
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3.3.1 Discrete - Continuous HMM 

 

This category is extensively described in other parts of the thesis, but for completeness is included here 

with a brief description. The classification of an HMM as discrete [20] or continuous [9] depends on the 

type of the conditional distribution corresponding to the hidden states. However the term discrete –

continuous HMM in the literature also refers to the time where the hidden Markov process is assumed 

to evolve, whether continuous or not. In this thesis we study mainly HMM having continuous 

distributions and a hidden Markov chain that changes in discrete time. 

 

3.3.2 Ergodic - Stationary HMM 

 

Ergodic - Stationary HMM are characterized depending on whether the Markov chain included in their 

structure is ergodic - stationary respectively. In this thesis, the HMM models applied, are assumed to  

comprise of an ergodic Markov chain to describe the evolution of hidden states. 

 

3.3.3 Higher order or Weak HMM 

 

In the case of Weak or higher order HMM the Markov chain describing the hidden process exhibit 

higher order than 1 i.e. the hidden state variable at time t + 1 depends on the hidden states not only at 

time t but also at t-1, t-2  etc. That is , the following relationship holds 

 

�(� ��� = ����|� � = ��, � ��� = ����,… ) = �(� ��� = ����|� � = ��, � ��� = ����,… ,� � =

��) 

In recent years, several studies indicated that financial time series exist that exhibit long memory which 

leads to the use of higher order Markov chains for HMM modeling [61]. 
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3.3.4 Input - Output HMM or HMM with covariates 

 

In this category the theoretical structure of HMM is extended to take into account external factors 

(covariates) affecting either the Markov process or the sequence of observed variables. Specifically, the 

HMM in this case can be interpreted as input - Output model (supervised learning) such as regression 

models or neural networks, where the observed variables are the dependent variables or the output 

variables. To convert HMM-based structure to an input model, exogenous data should be defined as 

input variables and the way affecting the design of a HMM must be defined. The external data can 

affect either the conditional distributions of the system or the chain transition matrix markov. Thus if 

we define a sequence of external data {Yt} then the new parameters of HMM with covariates in the 

general form can be denoted as L = (p, A (Y), B (Y)) 

  

 

Figure 3.2: Graph HMM with covariates 
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Examples of HMM implementations with external covariates can be found in [62; 63]. Most techniques 

and algorithms for the estimation of the parameter for the classical structure of HMM can be easily 

extended to take into account external data. More about the structure of the input - output HMM and the 

theory about them can be found by Frasconi and Bengio, 1995 and 1996 in Articles [64; 65] 

respectively. 

 

3.3.5 Left - Right HMM 

 

The left right HMM assumes a specific structure in the Markov chain transition matrix of hidden states. 

Specifically, the transition matrix (A) is upper triangular. This determines the flow in states from left to 

right and assumes that the system remains in the same state or moves from this to the right and does not 

return again to this state. Additionally according to the transition matrix the Markov chain eventually 

leads to state N which is an absorbing state i.e. after reaching this state it cannot migrate to another 

state. More on Left-Right HMM can be found in [4]and their application in a financial series analysis is 

studied in [14]. 

 

3.3.6 Hidden Semi Markov Models 

 

 

 

Figure 3.3: Graph of Semi HMM 
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The hidden semi-Markov model is an extension of the conventional hidden Markov model (HMM) 

which is useful for models where the underlying process stays in the same state for many consecutive 

time steps. In a conventional HMM the next hidden state at time t is determined only by the state at 

time t−1. This is usually represented as a state transition matrix A where each row represents a discrete 

distribution of the states that can be transitioned to from state i, hence the value aij represents this 

probability. This implies that the probability of remaining in the same state follows a geometric 

distribution. For models that stay in the same state for long periods of time the leading diagonal aii 

(representing self-transitions) will have the greatest probability mass. An alternative way to represent 

such a model is one where the state is represented by a state id i and a state duration d, both drawn from 

distribution a. This way the process describing the hidden states is considers semi Markov. For more 

information on the structure and the theory around the Hidden semi Markov models can be found in 

Articles [66; 67] . 

 

3.3.7 Multistream fusion HMMs 

 

A different probabilistic framework applied in multistream data is the multistream fusion HMMs 

approach [68], under which each stream is modeled separately using its own HMM. Then, analysis of 

the observed data can be conducted by creating a special HMM, recombining all the single stream 

HMM likelihoods at various specific temporal points. Obviously, depending on the specific selection of 

these recombination points, different solutions arise. For instance, in coupled hidden Markov models 

two component HMMs are linked by the dependence of their hidden states. 
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3.3.8 Markov Modulated Time Series or Regime Switching or Markov Regime Models or 

Autoregressive HMMs 

 

This class of HMM is one of the most important variations particularly for their application in the 

analysis of financial series. Their structure differs from the classic definition of HMM in the fact that 

the observations (observed sequence) are modeled using an autocorrelation models like AR, ARCH, 

ARMA, ARIMA, GARCH and not a distribution. Essentially the basic assumption in such models is 

that the parameters in the regression of the time series change based on some hidden Markov process. 

That is the Markov chain is modeling the switch between regimes where each regime correspond to 

deferent coefficient of the assumed regression models. They are part of the broad concept of the family 

of HMM and they relax the conditional independence property of the observed sequence. However 

these models are considered as a special case of the continuous HMM because the dependent variable - 

observation follows a continuous distribution resulting from the autocorrelation equations and the 

assumed distribution of errors. These models were first introduced in finance in 1989 by Hamilton [57]. 

Since then variety of applications appear in economic publications about exchange rates [48; 49; 69] 

and stocks [51; 54; 70]. More detailed description of these model’s properties and their estimation can 

be found in [71; 72]. 

 

3.3.9 Other HMM with more complicated structure 

 



70 

 

 

Figure 3.4: Different HMM structures. The white circles represent hidden states. The dark gray are 
observations processes and the light gray circles are input variables. a) Coupled HMM b) Event - 

Coupled HMM c) Factorial HMM d) Input - Output HMM 

 

 

In the family of HMM a number of other structures - variations are belong which have been applied to 

complex problems, such as Hierarchical HMM [73; 55], Abstract Hidden Markov Models [74], Layered 

Hidden Markov Models [75; 76], Interactive Hidden Markov Models [77; 78] (Interactive between the 

hidden states and the observations relationship exist which transmits information both ways), Factorial 

HMM, Coupled HMM [79], Hybrid HMM (HMM + NN) and Hidden Markov Experts [16; 80; 81], 

Profile HMM [82] (with applications to the analysis of DNA and protein in bioinformatics)  
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Chapter 4 A variable order hidden Markov model with dependence jumps 

 

4.1 Introduction 

 

Modeling sequential data continues to be a fundamental task and a key challenge in the field of machine 

learning, encountered in a plethora of real-world applications, including bioinformatics, document 

analysis, financial engineering, speech processing, and computer vision, to name just a few. In this 

chapter, we focus on the problem of sequence prediction, dealing with continuous, possibly high-

dimensional observations (time-series). Machine learning literature comprises a rather extensive corpus 

of proposed prediction algorithms for sequences of continuous observations. Among them, the hidden 

Markov model (HMM) is one of the most popular methods, used in a great variety of application 

contexts. This popularity is mainly due to the fact that HMMs are flexible enough to allow for modeling 

complex temporal patterns and structures in sequential data. Specifically, HMMs are popular for their 

provision of a convenient way of modeling observations appearing in a sequential manner and tending 

to cluster or to alternate between different possible components (subpopulations)[83].  

 

Most popular HMM formulations are based on the postulation of first-order Markovian dependencies; 

in other words, only one-step-back temporal dynamics are considered. Such an assumption allows for 

increased simplicity and low computational complexity of the resulting model training and inference 

algorithms. However, postulating first-order temporal dynamics does also entail ignoring the possibility 

of the modeled data comprising longer temporal dynamics. Even though this assumption might be valid 

in some cases, it is well-known to be unrealistic in several application scenarios, including handwriting 

recognition, molecular biology, speech recognition, and volatility prediction in financial return series, 

thus undermining the modeling effectiveness.  
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To resolve this problem, several researchers have attempted to introduce HMM-type models with 

higher-order dependencies. Characteristic examples are the methods presented in [84]and [85], with 

successful applications to the problem of speech recognition, the method presented in [86], applied to 

handwriting recognition, the method of [87], designed to address challenges related to pattern 

recognition tasks in molecular biology, and the method presented in [88], which was successfully 

applied to the field of robotics. However, a major drawback of such higher-order HMM approaches is 

their considerably increased computational costs, which become rather prohibitive as model order 

increases. An effort to ameliorate these issues of higher-order HMMs is presented in [89]. In that work, 

instead of directly training R-th order HMMs on the data, a method of fast incremental training is used 

that progressively trains HMMs from first to R-th order.  

 

Note, though, that using higher-order HMMs gives rise to a source of significant burden for researchers 

and practitioners, namely the need to determine the most appropriate order for the postulated models. 

This procedure entails fitting multiple models to the available data to choose from, and application of 

some cross-validation procedure, which, apart from computationally cumbersome, is also likely to 

become prone to overfitting [90]. Finally, another limitation of the existing higher-order HMM 

formulations concern their static and homogeneous assumptions, i.e. their consideration that the 

temporal dynamics order in the modeled data does not change over time. Indeed, sequential data with 

variable order in the entailed temporal dynamics are quite often encountered in real-world application 

scenarios [91; 92; 93; 94]. Therefore, allowing for capturing more complex structure of temporal 

dynamics in the modeled data, where effective model order may change over time as a result of 

dynamic switching between different temporal patterns, is expected to result in much better modeling 

and predictive performances.  
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To address these problems of conventional higher-order HMMs, some researchers have proposed 

appropriate models with variable order Markovian dynamics assumptions. For instance, a variable order 

Markov model is presented in [92] to address the problem of prediction of discrete sequences over a 

finite alphabet; the method is successfully applied to three different domains, namely English text, 

music pieces, and proteins (amino-acid sequences). More recently, [93] presented a simple and effective 

generalization of variable order Markov models to full online Bayesian estimation. Generalization of 

variable order Markov models in this context enables perpetual model improvement and enrichment of 

the learned temporal patterns by accumulation of observed data, without any need for human 

intervention. Despite these merits, a drawback of both these approaches concerns their inability to 

model sequential data comprising continuous observations, i.e. sequences each frame of which is a 

(probably high-dimensional) D-dimensional vector of real values, defined in ℝ D. Finally, [95] propose 

a two-stage modeling approach towards variable order HMMs: the first stage consists in discovering 

repetitive temporal patterns of variable length, while the second stage consists in performing prediction 

by means of a separate simple HMM fit to the temporal pattern determined to be relevant at each 

specific time point. Similar to the previous approaches, a major limitation of [95]consists in its 

incapability to model sequential observations taking continuous values in ℝ D.  

 

In a different vein, a maximum-margin classifier for sequential data with (theoretically) infinitely-long 

temporal dependencies is presented in [91]. That paper devises a novel margin-maximizing model with 

convex objective function that allows for capturing arbitrarily-long temporal dependencies in sequential 

datasets. This is effected by utilizing a recently proposed nonparametric Bayesian model of label 

sequences with infinitely-long temporal dependencies, namely the sequence memoizer (SM) [96]. 

Training and inference for this model can be efficiently performed by employing a versatile mean-field-

like approximation [97; 98], this approximation allows for increased computational efficiency, almost 

comparable to analogous (large-margin) first-order HMM formulations, e.g. [99]. Further, since design 
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of the model of [91] is limited to classification tasks, a generalization of this model allowing to also 

perform sequence prediction was recently presented in [94].  

 

As discussed in [91] and [94] the proposed models, postulating infinitely-long temporal dependencies, 

perform inference over temporal dependence patterns. In other words, they do not try to determine the 

most appropriate model setup for a considered dataset. Instead, they essentially learn a posterior 

distribution over all possible temporal dependence patterns. During prediction, these models effectively 

perform marginalization over all possible temporal dependence modeling assumptions, with each 

assumption being given a different probability at each time point. As a result, the methods in the 

aforementioned studies do not suffer from issues regarding appropriate model selection, namely the 

need to fit multiple models and perform cross-validation, and the associated overfitting proneness. In 

addition, they inherently allow for handling the case where the form of temporal dependencies changes 

over time. Note also that both the methods presented in [91] and [94] can model discrete as well as 

continuous observations, contrary to previous approaches which can handle only discrete observations.  

 

Despite these merits, two major limitations of these approaches are:  

(i) The need to come up with a (rather brute-force) approximation to allow for deriving efficient model 

training and inference algorithms, namely the mean-field approximation. Indeed, although mean-field 

approximation does not affect the nature of the model, which takes into account infinitely-long histories 

of latent temporal states, it results in omitting the fluctuations of higher-order temporal states when 

performing training and inference [91] and [94].This procedure leads to suboptimal training and 

inference results, that do not exploit the full modeling capacity of the methods, and with no theoretical 

convergence guarantees.  

 

(ii) The need to perform inference for the employed model of (arbitrarily-long) temporal dynamics 
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(state-transitions), i.e. a postulated sequence memoizer [100]. SM is a nonparametric Bayesian method 

recently proposed for modeling sequential data with discrete values and dependencies over infinitely-

long time-windows. While effective in modeling sequential data with long temporal dynamics, 

inference for this model suffers from high computational costs, which increase with the length of the 

modeled sequences. As such, obviating the need of using an SM in the modeling pipeline is expected to 

significantly reduce computational costs.  

 

In this chapter, we address all the aforementioned shortcomings of the current state-of-the-art, by 

introducing an HMM variant capable of capturing jumps in the temporal dependence patterns of 

modeled sequential data. Specifically, we introduce a hierarchical graphical model comprising two 

hidden layers: on the first layer, we postulate a chain of latent observation-emitting states, the 

dependencies between which may change over time; on the second layer, we postulate a latent first-

order Markov chain modeling the evolution of temporal dynamics (dependence jumps) pertaining to the 

first-layer latent process. As a result of this construction, our model allows for effectively modeling 

non-homogeneous observed data, where the patterns of temporal dependencies may change over time. 

To allow for tractable training and inference procedures, our model considers temporal dependencies 

taking the form of variable order dependence jumps, the order of which is inferred from the data as part 

of the model inference procedure.  

 

Our method is designed to allow for modeling both discrete and continuous observations; it allows for 

capturing seasonal effects in the modeled sequences, and enhances modeling in the implied 

autocorrelation structure of the observed sequences. In addition, contrary to the related methods of [91] 

and [94], our method does not require utilization of any kind of approximation to perform model 

training and inference. Indeed, both model training and inference can be performed exactly and in a 

computationally efficient way, using elegant algorithms derived under the expectation-maximization 
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paradigm [6]. We demonstrate the efficacy of our approach in the task of sequential data prediction, 

considering real-world application scenarios.  

 

The remainder of this chapter is organized as follows: In Section 2, we introduce our proposed model 

and derive its training and inference algorithms. In Section 3, we experimentally evaluate our approach, 

and exhibit its advantages over existing approaches. Finally, in Section 4 we conclude this chapter, 

summarizing and discussing our results.  

 

 

4.2 Proposed Approach  

 

4.2.1 Motivation  

 

In real-world applications, it is often the case that stochastic processes are characterized by non-

homogeneous evolution, exhibiting higher-order dependencies. For example, time series of financial 

asset returns are known to exhibit variable autocorrelation and non-stationarity[101], such forms of 

dynamics in the modeled data cannot be sufficiently captured by using a simple Markov process. In the 

same vein, historical volatility of financial asset returns usually exhibits long temporal 

interdependencies, slow autocorrelation decay, fat distribution tails, as well as temporal pattern 

switching over time, e.g. shifting between low volatility and high volatility regimes [102; 103; 104; 

105] which are manifested as jumps driven by shocks or unexpected news [106; 107]. 

 

Several studies have examined whether conventional HMM formulations are capable of capturing such 

stylized facts in modeled time-series. For example, [3] examined the efficacy of simple first-order 

HMMs; further, [108] used hidden semi-Markov models (HSMMs) as an alternative solution allowing 
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for better capturing the autocorrelation structure. However, the outcome of all these studies has been 

quite unsatisfactory compared to the state-of-the-art in the literature pertaining to the related 

applications, e.g. the literature on financial return series modeling. Motivated from these results, in this 

work we aim to come up with an elegant and computationally efficient HMM variant capable of 

accommodating the above-mentioned stylized facts in observed time-series, namely: (i) distributions 

with fat tails; (ii) seasonality and temporal clustering dynamics; and (iii) non-homogeneous temporal 

dynamics patterns, exhibiting dependence jumps over time.  

 

4.2.2 Model Definition 

 

As we have already discussed, in this work we are seeking to devise an HMM variant allowing for 

modeling sequential data with variable temporal dependence patterns, i.e. a model capable of 

determining dependence jumps in the chain of observation-emitting latent states. For this purpose, we 

postulate an HMM variant, the hierarchical construction of which comprises two hidden layers: The 

first layer essentially consists of the chain of observation-emitting latent states, the dependencies 

between which may change form over time. The second layer comprises a latent first-order Markov 

chain that determines (and generates) the dependence jumps taking place in the observation-emitting 

latent chain of the first layer.  

 

Let us postulate N observation-emitting states on the chain of the first layer of our model, where the 

hidden emission density of each state is modeled by a M-component finite mixture model. Let us also 

postulate a latent first-order Markov chain comprising K states on the second layer; K is essentially the 

number of alternative temporal dependence patterns considered on the first layer of the model. Even 

though multiple alternative configurations could be considered for the form of the modeled temporal 

dependence patterns of the first-layer observation-emitting chain, in this work we limit ourselves to pair 
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wise latent emitting state transitions between the current emitting state and some previous state that 

occurred at a time point a number of steps back; this number of steps back is determined from the 

latent values generated from the second-layer dependence jumps-generating Markov chain of our 

model.  

 

Let us introduce here some useful notation. We denote as O = {ot}t  = 1
Tan observed data sequence, with 

ot ∈ ℝ D. The latent (unobserved) data associated with this sequence comprise: (i) the corresponding 

emitting state sequence Q = {qt}t  = 1
T, where qt = 1, …, N is the indicator of the state the tth observation 

is emitted from; (ii) the sequence of temporal dependence form indicators Z = {zt}t  = 1
T that indicate the 

pairwise emitting states transition that is relevant (“active”) at time t, where zt = 1, …, K; and (iii) the 

sequence of the corresponding mixture component indicators L = {lt}t  = 1
T , where lt = 1, …, M 

indicates the mixture component density that generated the tth observation. A graphical illustration of 

the generative model and the latent interdependencies assumptions of our model is provided in Fig. 4.1.  

 

The above-described VDJ-HMM model comprises the set of parameters Θ = {Φ, Ψ}, where Φ denotes 

the parameters set of the emission distributions of the model, and Ψ denotes the set of parameters of the 

postulated latent processes pertaining to the observed data dynamics (first-layer process) and the 

dependence jump dynamics (second-layer process). Specifically, since the second-layer process is a 

simple first-order Markov chain, it comprises the parameters  

 

ϖ̂k≜ p(z1 = k)  (1) 

 

that denote the (prior) probabilities of the initial state of this Markov chain, and the parameters 

 

π̂kk ’ = p(zt = k’|zt  − 1 = k) ∀t > 1  (2) 
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denoting the transition (prior) probabilities of this Markov chain. From the above model definition, we 

observe that, if the transition probability π̂11 in the above-defined transition matrix Π ̂≜ [πkk ’]k , k ’ is close 

to one, then the observation-emitting process of our model (first model layer) almost reduces to a first-

order Markov chain. In this chapter, for simplicity we set ϖ̂k = 1/K ∀k and π̂kk ’ = 1/K ∀k, k’; in other 

words, we consider all dependence forms a priori of equal probability. These assumptions, although 

relatively limiting, allow for deriving tractable and computationally efficient model training and 

inference algorithms, as we show further on. Appendix 1 presents analytically the general case for the 

first model layer, outlines the relevant training and inference algorithms, along with all the derivation 

formulas for the estimation of the parameters. 

 

In a similar fashion, the postulated first-layer process of our model comprises the parameters 

ϖi≜ p(q1 = i)    (3) 

 

denoting the (prior) probabilities of the initial observation-emitting state, with ϖ≜ [ϖi]i  = 1
N. In addition, 

turning to the variable-form temporal dynamics of this process, we also introduce the set of dependence 

form-conditional transition (prior) probability matrices {Πk}k  = 1
K, with 

 

Πk≜ [πij
k]i , j = 1

N   (4) 

where 

 

πij
k≜ p(qt = j |qt  − 1, …, qt  − k = i;zt = k) = p(qt = j |qt − k = i;zt = k)   (5) 

 

In other words, we consider different (pairwise) state transition probabilities, depending on the inferred 

dependence form k (number of steps back) generated from the postulated second-layer process.  
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Having defined the latent processes of our model, with effective parameters set Ψ = {ϖ, {Πk}k  = 1
K}, we 

can now proceed to the definition of the (conditional on the first-layer states) emission distributions of 

our model. For this purpose, and in order to allow for effective modeling of continuous-valued 

observations, we postulate M-component finite mixture models, as we have already discussed. 

Specifically, in our work, to allow for modeling distributions with fat tails, we consider two alternative 

selections: (i) multivariate Gaussian mixture models, yielding 

 

p(ot|qt = i) = ∑m  = 1
MwimN(ot|μim, Σim)    (6) 

 

whereN(⋅|μ, Σ) is a multivariate Gaussian with mean μ and covariance matrix Σ; and (ii) multivariate 

Student’s-t mixture models, yielding 

 

p(ot|qt = i) = ∑m  = 1
MwimS(ot|μim, Σim, νim)  (7) 

 

where S(⋅|μ, Σ, ν) is a multivariate Student’s-t distribution with parameters μ, Σ, and ν degrees of 

freedom. On this basis, the parameters set Φ yields Φ = {wim, μim, Σim}i , m or Φ = {wim, μim, Σim, νim}i , 

m, respectively. As discussed in [109], HMM-type models with Student’s-t mixture emission 

distributions allow for better modeling sequential data stemming from populations with long tails, 

which are quite common in real-world application scenarios.  

 

This concludes the definition of our model. We dub our approach the variable dependence jump HMM 

(VDJ-HMM). From Eqs. (1)-(7), the joint distribution of VDJ-HMM yields: 
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Note that, as observed from (8), a major advantage from the computational point of view of the 

proposed VDJ-HMM model compared to higher-order HMM formulations (e.g., [84; 88; 89]) is the 

much fewer number of parameters postulated from VDJ-HMM. As a result, VDJ-HMM is capable of 

capturing seasonal effects in the modeled data while allowing for significantly more efficient training 

and inference algorithms compared to existing alternatives. In addition, the lower number of trainable 

parameters reduces the tendency of the model to overfitting, as well as the associated requirements in 

training data availability to ensure effective model training.  

 

 

 
Figure 4.1: Graphical illustration of the generative model and the latent interdependencies assumptions 
of VDJ-HMM. Here, λ denotes the active dependence form inferred at time t by the model. Effectively, 

the value of λ determines which past observation-emitting latent state currently affects the temporal 
dynamics of observation generation. 
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4.2.3 Model Training  

 

To perform training for our model given a sequence O = {ot}t  = 1
T, we resort to the familiar expectation-

maximization (EM) paradigm [generalization of the here-derived algorithm for the case of training with 

multiple sequences is straightforward]. Based on the definition of VDJ-HMM [Eqs. (1)-(7)], the 

complete data of our model comprise the observable sequence O, the corresponding emitting state 

sequence Q = {qt}t  = 1
T, the dependence form sequence Z = {zt}t  = 1

T, and the sequence of corresponding 

mixture component indicators L = {lt}t  = 1
T. In addition, based on the derivations of [109]in the special 

case of considering multivariate Student’s-t mixture models as the emission distributions of VDJ-

HMM, to allow for effective model training and inference procedures, we resort to expressing the 

multivariate Student’s-t distributions as scale-mixtures of Gaussians, yielding [109]:  

 

 

 

 

 

 
where uimt is a precision scalar corresponding to the observation ot given it is generated from the jth 

component density of the ith emitting state, and is Gamma-distributed as [109]:  

 

 

 

 
Under this setup, the above introduced set of precision scalars {uimt} is also regarded as part of the 

complete data configuration of our model.  

 

The EM algorithm comprises optimization of the posterior expectation of the complete data log-

likelihood of the treated model [6] 
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where Θ̂ denotes the currently obtained estimator of the model parameters set Θ, and logLc(Θ) is the 

expression of the complete data log-likelihood of the model, which reads (ignoring constant terms) 

 

 

 

 

 
where I[⋅] is the boolean operator. In Eq. (12), logLc(ot|qt = i) is the complete data log-likelihood of the 

emission distribution of the ith hidden state with respect to ot, and the associated latent variables lt and 

(in case of Student’s-t models) {uimt}m. In the case of Gaussian mixture emission distributions, 

logLc(ot|qt = i) yields 

 

 

 
whered(ot, μim;Σim) is the Mahalanobis distance between ot and μim, with covariance matrix Σim. On the 

other hand, in the case of Student’s-t mixture emission distributions, logLc(ot|qt = i) yields 
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where Γ(⋅) is the Gamma function.  

 

As usual, the EM algorithm for our model is an iterative procedure, each iteration of which comprises 

an E-step and an M-step. On the E-step of the algorithm, we compute a set of posterior expectations 

pertaining to the latent variables of our model (sufficient statistics), using the current estimator of the 

model parameters set Θ̂. Subsequently, on the M-step of the algorithm, we optimize the model 

parameters set Θ using the sufficient statistics computed previously, in order to obtain an updated 

estimator of the model parameters set, Θ̂.  

 

4.2.3.1 E-step 

 

From (11) and (12), it directly follows that the E-step of our algorithm consists in computing the 

posterior probabilities of the latent states on the first and second hidden layers of our model, as well as 

the corresponding state transition posteriors. It also comprises computation of the emitting state-

conditional mixture component posteriors, as well as the posteriors of the precision scalars uimt, when 

considering Student’s-t mixture emission distributions.  

 
Let us begin with the mixture component posteriors, hereafter denoted as ξimt; we have 

 

 

 
This expression yields 
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when considering Gaussian mixture emissions, and  

 

 

 

 
in the case of Student’s-t mixture emissions.  

 

Regarding the posterior expectations of the precision scalars uimt (if applicable), we have 

 

 

 
Further, to obtain the rest of the sought posteriors, we need to define a set of auxiliary distributions, 

which can be computed by means of a variant of the well-known forward-backward algorithm 

[83; 4]. Specifically, let us define the forward probabilities 

 

 

 

 
These probabilities can be computed iteratively, with initialization 

 

 

 
and recursion 

 

 

 
In a similar way we define the backward probabilities of our model, which yield 
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These probabilities can also be computed iteratively, with initialization 

 

 
and recursion 

 

 

 

 
Having obtained the forward and backward probabilities of our model, we can now proceed to obtain 

the remaining sought posteriors. For the emitting state posteriors, hereafter denoted as γjt, we have 

 

 

 
Similarly, the emitting state transition posteriors yield 

 

 

 

 
Finally, regarding the (“active”) dependence form posteriors, hereafter denoted as ζkt, we have 

 

 

 

 
This concludes the E-step of our algorithm.  
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4.2.3.2 M-step  

 

Having obtained the required posterior expectation expressions on the E-step of the training algorithm 

of our model, we now proceed to optimization of the objective function (11) over the model parameters 

to obtain the expressions of the model parameter updates. Let us introduce the notation 

 

 

 
We then have 

 

 

 

 
Further, the parameters of the emission distributions yield the following expressions: 

(i) In case of Gaussian mixture emissions, we have 

 

 

 
(ii) In case of Student’s-t mixture emissions, we have 
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while the degrees of freedom are obtained by solving w.r.t. νim the equation 

 

 

 

 
where ν̂im is the current estimate of the degrees of freedom νim, and ψ(⋅) is the Digamma function.  

 

This concludes the training algorithm of our model. An outline of the EM algorithm for VDJ-HMM is 

provided in Alg. 1.  

 

EM ALGORITHM FOR THE VDJ-HMM MODEL. ALGORITHM 1  

 

 
Initialize the model parameters estimate Θ̂. Set the maximum number of iterations, MAXITER, and the 

convergence threshold of the EM algorithm. 

 

For MAXITER iterations or until convergence of the objective function Q(Θ;Θ̂)do: 

 

1. Conduct the forward-backward algorithm to obtain the forward probabilities αt(j, k) and the 

backward probabilities βt(i, k), using Eqs. (20)-(21) and (23)-(24), respectively.  
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2. Effect the E-step of the algorithm by computing the posteriors pertaining to the mixture 

components, ξimt, the precision scalars, ûimt, the chain of observation-emitting states, γjt and 

γijt
λ, and the Markov chain of dependence jumps, ζkt. For this purpose, use Eqs. (15), (18), 

(25)-(26), and (27), respectively.  

3. Effect the M-step by computing the new estimates of the model parameters πi, πhi
λ, wim, μim, 

Σim, and νim, using Eqs. (29)-(36), respectively.  

 
4.2.4 Inference Algorithm  

 

A first inference problem we consider in this work is the problem of predicting the next emitting state, 

say at time t + 1, denoted as qt  + 1, given the values of the currently observed data, i.e. the observations 

set {oτ}τ  = 1
t. From the definition of our model, it is easy to deduce that the probability of the emitting 

state at time t + 1, given the sequence of past observations {oτ}τ  = 1
t, can be written in the form 

 

 
 

where the emitting state posteriors γjt are computed by (25), using the sequence of observations {oτ}τ  = 

1
t. On this basis, determination of the first-layer state of our model, say q̂ , that is most likely to emit the 

(next) observation at time t + 1 can be performed by maximization of the conditionals p(qt  + 1 = j |{oτ}τ  = 

1
t), yielding:  
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Another inference problem quite common in the related literature is the task of determining the 

probability of a given sequence w.r.t. a trained VDJ-HMM model. For this purpose, we can resort to the 

forward algorithm of our model, similar to conventional HMMs. Specifically, let us consider a 

sequence O = {ot}t  = 1
T and a trained VDJ-HMM model with parameter estimate Θ̂. Then, following the 

definition of our model, the probability of sequence O w.r.t. the available VDJ-HMM model yields 

 

 

 

 
Finally, as discussed in the Introduction, the key inference problem we focus on in this work is the 

problem of sequence prediction. Let us consider a sequence {oτ}τ  = 1
t. Then, the sequence prediction 

problem we consider here is the problem of performing an one-step ahead forecast, i.e. predicting the 

observation value ot  + 1 at time t + 1, given the values {oτ}τ  = 1
t. To address this problem, we exploit the 

above obtained results regarding computation of the next-state probabilities, p(qt  + 1 = j |{oτ}τ  = 1
t). 

Specifically, we effect the sequence prediction task at time t + 1 as follows: 

 

(i) We use Eq. (38) to obtain the emitting state probabilities at the following time point (t + 1), given 

the current set of observations (up to time t), i.e. p(qt  + 1 = j |{oτ}τ  = 1
t). 

 

(ii) We set the generated predicted value o ̂ t  + 1 of the observation at time t + 1 equal to the mean value 

of the modeled variable o at time t + 1, based on the fitted VDJ-HMM model with parameters set Θ̂. 

Specifically, considering mixtures of Gaussians or Student’s-t densities as the emission distributions of 

our model, as discussed previously, this procedure yields: 
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4.2.5 Computational Complexity  

 

We conclude this section with a short discussion on the computational complexity of our model. We 

first focus on the training algorithm of our model: From Eqs. (19)-(27), we can easily observe that the 

main difference between VDJ-HMM model training and training of a simple first-order HMMs 

concerns computation of the set of forward and backward probabilities, {αt(j, k)}t , j, k and {βt(j, k)}t , j, k, 

respectively, which are distinct for each possible temporal dependence pattern, k = 1, …, K. Indeed, 

turning to each one of the probabilities in these sets, from Eqs. (21) and (24) we observe that their 

computation imposes computational costs similar to the corresponding quantities (forward and 

backward probabilities) pertaining to simple first-order HMMs. Thus, the only difference consists in 

repeating this computation procedure for each postulated temporal dependence pattern, k = 1, …, K. 

Given the fact that the dominant computational costs related to these quantities concerns computation of 

the emitting state density functions, which are shared across the considered temporal dependence 

patterns, k = 1, …, K, it is easy to deduce that, with proper algorithm implementation, VDJ-HMM 

model training imposes only negligible computational overheads compared to conventional HMM 

formulations.  

 

Similar results can be obtained regarding the computational costs of inference using our model. 

Specifically, from Eqs. (37)-(40) we observe that the extra computational costs of the inference 

procedures of the VDJ-HMM model compared to conventional first-order HMMs are related to the 

need of computing different state transition posteriors and different forward and backward probabilities 
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for each postulated temporal dependence pattern k = 1, …, K. Thus, inference using our model induces 

only negligible computational overheads compared to conventional HMM formulations, especially 

when the number of postulated temporal dependence patterns K is considered to be low (which is 

usually the case in real-world applications, since a relatively low K value selection typically suffices for 

optimal model performance).  

 

Finally the suggested model exhibits less number of parameters than a high order HMM thus decreasing 

computational requirements. The following table describes the number of parameters necessary for each 

of the following variations:  

1. Double Layer Hidden Markov Model with different transition probability matrix for each order 

K Gaussian Mixture HMM 

2. K-order Gaussian Mixture HMM 

 

 VDJ-HMM HOGHMM 

State Transition Parameters N*(N-1)*K NK*(N-1) 

 

The model is parsimonious because it involves N*(N-1)*K parameters instead of (N-1)*NK for the full 

K-order model. Thus for a model specification of order 3 with 4 states it has 36 parameters, instead of 

192 for the full high order model. So this structure is capable of modeling first order, higher order and 

seasonal effects with significant lower number of parameters. We assume that the parameters necessary 

for the conditional densities are common to all model variations.  

 

4.3 Experiments  

 

In this section, we perform an extensive evaluation of the proposed VDJ-HMM model. For this 

purpose, we consider a set of time-series forecasting experiments dealing with real-world applications 

from the computational finance domain. Specifically, we first consider volatility forecasting in financial 
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return series; further, we consider the problem of predicting the future return values for a set of 

considered assets. Broad empirical evidence (see, e.g.[102; 106; 104])has shown that financial return 

series exhibit variable order non-linear temporal dependencies, as well as dependence jumps, both when 

it comes to volatility forecasting and concerning future value prediction. As such, leveraging the merits 

of our model in the context of these applications is expected to yield a significant performance 

improvement over the competition.  

 

 

To provide some comparative results, apart from our method we also evaluate the related HMM∞ model 

[94], which postulates infinitely-long temporal dependencies at each time point, baseline first-order 

HMMs, and explicit-duration HSMMs [67]. In addition, we cite the performance of methods yielding 

the state-of-the-art results in the considered experimental scenarios, as they have been reported in the 

recent literature. In all cases, to ensure the validity of our comparisons, we perform model training 

following exactly the same experimental setup as in the case of the papers reporting the cited state-of-

the-art results.  

 

Our experimental setup is the following: For each one of the considered applications, we split the 

available data into a training sample, a validation sample, and a testing sample; we adopt the same splits 

as the authors of the state-of-the-art methods reported in the literature, to render our performance 

measurements comparable with these results. We use the available training samples to train multiple 

VDJ-HMM models with different configurations; specifically, we evaluate models with different 

maximum allowed numbers of alternative temporal dependence patterns (maximum steps back) K, 

numbers of emitting states N, and numbers of mixture components per emitting state M. We select the 

optimal model configuration on the basis of the obtained predictive performances on the available 

validation samples. Finally, we use the available test samples to obtain the reported performance 
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figures. Similar is the experimental setup we adopt for the considered competitors. In all cases, to 

alleviate the effect of random model initialization on the reported performance results, we repeat our 

experiments 10 times, with different model initializations each time, and report average performance 

figures over these repetitions.  

 

4.3.1 Volatility Forecasting  

 

In this set of experiments, we apply our model to prediction of the volatility in daily returns of financial 

assets. Consider a modeled asset with price Pt at time t; then, its daily return at time t is defined as the 

logarithm rt≜ logPt/Pt  − 1. On this basis, (historic) volatility is defined as the square of the return series 

rt
2; as discussed in [110], this ground truth measurement constitutes one of the few consistent ways of 

volatility measuring. As our performance metric used to evaluate the considered algorithms, we 

consider the root mean squared error (RMSE) between the model-estimated volatilities and the squared 

returns of the modeled return series (except for the case of the experiments in Sections 3.1.3 and 3.1.4, 

where we use the mean square error (MSE) and mean absolute error (MAE), following the approach 

adopted in the related literature).  

 
4.3.1.1 Euro-United States Dollar exchange rate volatility  

 

Our first experimental scenario regarding volatility forecasting is dealing with the EUR-USD exchange 

rate time series [111]. Specifically, for the purposes of this experiment, we use data from the period 

5/17/2007 – 8/10/2008 as our training set, and data pertaining to the period 9/10/2008 - 2/3/2009 as our 

validation set. To perform model evaluation, we consider three distinct test samples, pertaining to the 

periods: 3/3/2009 - 10/12/2009, 10/13/2009 - 5/25/2010, and 5/26/2010 - 12/30/2010, respectively. This 

way, we allow for evaluating model performance in periods with different levels of inherent volatility in 

the European economy. In all cases, the evaluated methods are trained using a rolling window of the 
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previous 60 days of returns to make daily volatility forecasts for the following 10 days; we retrain the 

models every 10 days. In our experiments, all the considered HMM-based methods are evaluated using 

both Gaussian mixtures and Student’s-t mixtures as their state-conditional emission distributions. In the 

case of the HSMM method, we consider Poisson, Negative Binomial, Geometric, and Logarithmic 

densities for modeling state duration.  

 

Table 1: EUR-USD exchange rate volatility: Optimal VDJ-HMM model configuration.  

 

Parameter Value 

K 4  

N 2  

M 3  

 
In Table 1, we depict the optimal configuration parameters of our model, obtained by utilizing the 

available validation set, as described previously. In Tables 2 and 3, we illustrate the obtained 

performances of the evaluated methods. Note that these results are obtained for optimal model 

configuration (as determined in the validation set) both in the case of our model and the considered 

competitors. As we observe, in all cases our VDJ-HMM model yields the best performance among the 

evaluated methods. In addition, it appears that utilization of Student’s-t mixture emission distributions 

yields in most cases only negligible performance improvements over models postulating Gaussian 

mixture emission distributions. We also observe that the HSMM model yielded best performance when 

postulating Geometric state duration distributions (we omit the results pertaining to different HSMM 

model configurations for brevity).  

 

Finally, in Figs 4.2.a-c, we illustrate how model performance changes by varying model configuration, 

i.e. the hyper parameter values K (maximum order of dependence jumps), N (number of emitting 

states), and M (number of mixture components). It is apparent that model configuration plays a critical 
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role in the obtained performance. This is especially true for the maximum order of dependence jumps 

K: selecting too big a value results in performance deterioration, while values close to K = 1 (i.e., 

reducing to a simple first-order HMM) yield inferior performance compared to a fully-fledged VDJ-

HMM.  

 

Table 2: EUR-USD exchange rate volatility: Performance (RMSE %) of the evaluated methods.  

 

 HMM  HMM  HMM∞ HMM∞ 

 (Gaussian)  (Student’s-t)  (Gaussian)  (Student’s-t)  

3/3/2009 - 10/12/2009  1.607  1.559  1.591  1.534  

10/13/2009 - 5/25/2010  0.738  0.721  0.730  0.713  

5/26/2010 - 12/30/2010  0.683  0.696  0.677  0.691  

Total  1.094  1.07  1.086  1.059  

 
Table 3: EUR-USD exchange rate volatility: Performance (RMSE %) of the evaluated methods (cont.).  

 

 HSMM  HSMM  VDJ-HMM  VDJ-HMM  

 (Geometric - Gaussian)  (Geometric - Student’s-t)  (Gaussian)  (Student’s-t)  

3/3/2009 - 10/12/2009  1.689  1.74  1.504  1.435  

10/13/2009 - 5/25/2010  0.717  0.703  0.7  0.702  

5/26/2010 - 12/30/2010  0.681  0.687  0.672  0.669  

Total  1.113  1.146  1.028  1.011  
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 (a)  

 

 (b)  

 

 (c)  

 

Figure 4.2: EUR-USD exchange rate volatility: Performance (RMSE %) fluctuation obtained by 
varying model configuration (validation set).  
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Figure 4.3: EUR/USD daily volatility forecasting graph under the VDJ-HMM 

 

 

 

 
4.3.1.2 Time-series of multiple correlated exchange rates and market indices  

 

In this set of experiments, we consider three application scenarios:  

In the first scenario, we model the return series pertaining to the following currency exchange rates, 

over the period December 31, 1979 to December 31, 1998 (daily closing prices): 

 

1. (AUD) Australian Dollar / US $  

2. (GBP) UK Pound / US $  

3. (CAD) Canadian Dollar / US $  

4. (DKK) Danish Krone / US $  

5. (FRF) French Franc / US $  

6. (DEM) German Mark / US $  

7. (JPY) Japanese Yen / US $  

8. (CHF) Swiss Franc / US $. 
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In the second scenario, we model the return series pertaining to the following global large-cap equity 

indices, for the business days over the period April 27, 1993 to July 14, 2003 (daily closing prices): 

 

1. (TSX) Canadian TSX Composite  

2. (CAC) French CAC 40  

3. (DAX) German DAX  

4. (NIK) Japanese Nikkei 225  

5. (FTSE) UK FTSE 100  

6. (SP) US S&P 500. 

 

Finally, in the third scenario, we model the return series pertaining to the following seven global large-

cap equity indices and Euribor rates, for the business days over the period February 7, 2001 to April 

24, 2006 (daily closing prices for the first 6 indices, and annual percentage rate converted to daily 

effective yield for the last index): 

 

1. (TSX) Canadian TSX Composite  

2. (CAC) French CAC 40  

3. (DAX) German DAX  

4. (NIK) Japanese Nikkei 225  

5. (FTSE) UK FTSE 100  

6. (SP) US S&P 500  

7. (EB3M) Three-month Euribor rate. 

 

These series have become standard benchmarks for assessing the performance of volatility prediction 

algorithms[112][113][114]. In our experiments, we follow an evaluation protocol similar to [112; 115]. 
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We adopt the same data split as in [115], all the evaluated methods are trained using a rolling window 

of the previous 120 days of returns to make daily volatility forecasts for the following 10 days; we 

retrain the models every 7 days.  

 

To begin with, we consider modeling each asset with a different VDJ-HMM model; i.e. we postulate as 

many VDJ-HMM models as the assets modeled in each scenario. The same univariate setup is also 

adopted for the considered HMM-based competitors1. Under this setup, the determined optimal 

configuration for our model is provided in Table 4. In Table 5, we provide the obtained results for the 

three considered scenarios (for optimal model configuration, as determined in the validation set). These 

results are computed over all the assets modeled in each scenario (averages). The performances of the 

state-of-the-art methods GARCH [116; 117], mixGARCH [118], VHGP [119], and GPMCH [115]have 

been cited from [115]. We observe that VDJ-HMM performs better than the competition in all 

scenarios, with the obtained performance differences becoming more significant in the case of scenario 

#1, which involves only currency exchange rates in the set of modeled assets. We tend to attribute this 

finding to the fact that currency exchange rates have a unique mean-reverting property [120] which 

seems that our proposed VDJ-HMM model is capable of capturing much better than the competition.  

 

Further, we consider the case of jointly modeling all the assets available in each scenario. For this 

purpose, we essentially postulate VDJ-HMM models with D-variate emission distributions, where D is 

the number of jointly modeled assets. The same holds for all the considered HMM-type competitors of 

our method. In Table 6, we report the determined optimal configuration of our model for this 

experimental setup. The corresponding predictive performances are reported in Table 7. In this table, 

we also cite the performance of the multi-output GPMCH model (using Clayton copulas), as reported in 

[115]. As we observe, our approach yields results comparable to or slightly better than the state-of-the-

                                                

1 All HMM-based models are evaluated using Gaussian mixture emission distributions. 
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art in all cases. Note also that this performance improvement does also come for a significantly lower 

computational complexity compared to the second best performing method in these experiments, i.e. the 

GPMCH method.  

 

Table 4:Time-series of multiple correlated exchange rates and market indices: Optimal VDJ-HMM 
model configuration under the univariate modeling setup.  

 

Parameter Value 

K 3  

N 2  

M 2  

 
Table 5:Time-series of multiple correlated exchange rates and market indices: Performance (RMSE %) 

obtained under the univariate modeling setup.  

 

 HMM  HSMM  HMM∞ GARCH  mixGARCH  VHGP  GPMCH  VDJ-HMM  

Scenario #1  0.0442  0.0292  0.0235  0.0705  0.0625  0.0146  0.0121  0.0108  

Scenario #2  0.0841  0.0589  0.0353  0.2785  0.2623  0.0552  0.0360  0.0351  

Scenario #3  0.0744  0.0578  0.0331  0.0552  0.0550  0.0542  0.0345  0.0329  

 
 

Table 6:Time-series of multiple correlated exchange rates and market indices: Optimal VDJ-HMM 
model configuration under the multivariate modeling setup.  

 

Parameter  Value  

K 3  

N 2  

M 2  
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Figure 4.4: Scenario 1 - USD/CAD volatility forecasting graph under the univariate approach 

 

 

 
Table 7: Time-series of multiple correlated exchange rates and market indices: Performance (RMSE %) 

obtained under the multivariate modeling setup.  

 

 HMM  HMM∞ GPMCH  VDJ-HMM  

Scenario #1  0.0345  0.0333  0.0341  0.0330  

Scenario #2  0.0712  0.0609  0.0557  0.0605  

Scenario #3  0.1512  0.1109  0.9905  0.0744  

 

 

4.3.1.3 Oil price time-series volatility  

 

Further, we consider the problem of volatility forecasting in oil prices. For this purpose, and similar to 

the experimental setup of [121] we use the daily price data of the Brent index and the West Texas 

Intermediate (WTI) index from January 6, 1992, to December 31, 2009 (prices expressed in US dollars 

per barrel). From these time-series, the data pertaining to the last three years, i.e., 2007 to 2009, are 

used to evaluate the predictive performance of the evaluated models, while the data pertaining to the 
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period 1/3/2006 - 12/29/2006 are used as our validation sample (and the rest for model training). All the 

evaluated methods are trained using a rolling window of the previous 60 days of returns to make daily 

volatility forecasts; we retrain the models every 5 days.  

 

In Table 8, we report the optimal configuration of our model for our experiments with both time-series 

(Brent and WTI). In Table 9, we provide the obtained performances of the evaluated models. Note that 

all HMM-based models are evaluated using Gaussian mixture emission distributions. The performances 

of ARCH and its variants have been reported from [121]. As we observe, the proposed VDJ-HMM 

model consistently yields the best observed performance expressed in terms of the resulting MSE 

metric, with significant performance differences from all the considered competitors. On the other hand, 

when evaluation is performed using the MAE metric, we observe that our method manages to yield 

performance comparable to the state-of-the-art, but it cannot obtain further improvements; note though 

that the reported state-of-the-art MAEs are already exceptionally low, and therefore the room for further 

performance improvement is rather limited.  

 

Table 8: Oil price time-series volatility: Optimal VDJ-HMM model configuration.  

 

Parameter  Value (Brent time-series)  Value (WTI time-series)  

K 3  3  

N 2  2  

M 3  4  

 
Table 9: Oil price time-series volatility: Performance (MSE and MAE) of the evaluated approaches.  

 

Method  Brent: MSE  Brent: MAE  WTI: MSE  WTI: MAE  

GARCH  0.698  0.065  0.933  0.693  

IGARCH  0.856  0.000  0.690  0.000  
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GJR  0.987  0.811  0.847  0.000  

EGARCH  0.609  0.000  0.058  0.000  

APARCH  0.557  0.002  0.846  0.031  

FIGARCH  0.083  0.111  0.514  0.074  

FIAPARCH  0.157  0.586  0.501  0.668  

HYGARCH  0.080  0.030  0.546  0.000  

HMM  0.087  0.095  0.200  0.067  

HSMM  0.100  0.090  0.181  0.090  

HMM∞ 0.079  0.088  0.191  0.071  

VDJ-HMM  0.050  0.001  0.044  0.000  

 

 

 

Figure 4.5: Oil WTI daily volatility forecasting graph under the VDJ-HMM 
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Figure 4.6: Brent daily volatility forecasting graph under the VDJ-HMM 

 

 

 

 

 

4.3.1.4 Gold market time-series volatility  

 

Finally, we explore the performance of VDJ-HMM in volatility prediction for daily return series of 

Gold. The dataset used for this experiment consists of the daily Gold fixing prices of the London 

Bullion Market 2 . Specifically, following [122], we use the daily PM fixings price released at 15:00, and 

forecast the daily volatility during the second semester of 2008. This is an interesting and quite 

challenging experimental scenario, since the considered forecast period coincides with the period when 

the recent financial crisis took place. Similar to [122]our training and validation samples pertain to the 

period 1/4/1999 - 6/30/2008, while evaluation is performed using the MSE and MAE metrics.  

 

                                                

2 Data obtained from the official website of the London Bullion Market Association (www.lbma.org.uk). 
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In Table 10, we report the optimal configuration of our model. In Tables 11-12, we provide the obtained 

performances of the evaluated models. Note that all HMM-based models are evaluated using Gaussian 

mixture emission distributions. The performances of the reported state-of-the-art competitors, namely 

historical mean (HM), autoregressive models (AR(k)), moving average models (MA(k) and EWMA), 

ARMA, as well as several GARCH variants [117; 116], have been cited from [122]. As we observe, the 

proposed VDJ-HMM model yields a quite satisfactory performance in this experiment, yielding error 

figures comparable to the state-of-the-art results reported in the recent literature.  

 
Table 10: Gold market time-series volatility: Optimal VDJ-HMM model configuration.  

 

Parameter  Value  

K 3  

N 3  

M 2  

 

Table 11: Gold market time-series volatility: Performance (MSE and MAE) of the evaluated 
approaches.  

 

 HM  MA(20)  MA(40)  MA(120)  HMM  HSMM  HMM∞ 

MSE  105.24  84.64  83.29  87.97  85.77  85.5  84.52  

MAE  5.43  5.96  5.72  5.40  5.69  5.82  5.63  

 

 

 
Table 12:Gold market time-series volatility: Performance (MSE and MAE) of the evaluated approaches 

(cont.).  

 

 AR(5)  MAD(5)  ARMA  EMWA  GARCH  GARCH-M  VDJ-HMM  

MSE  86.08  90.08  84.24  83.81  86.94  86.35  84.16  

MAE  5.67  5.54  5.68  5.84  5.56  5.68  5.60  
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4.3.2 Return Value Prediction  

 

In this set of experiments, we apply our model to prediction of the future values of the daily return 

series of modeled financial assets, rt. Specifically, under our experimental setup, we are interested in 

correctly predicting the sign of the return value at future time points. This sign can be used as the 

foundation of a simple portfolio management policy as follows: If the predicted future return sign is 

positive, then the policy suggests that the asset be retained by the investment portfolio manager; on the 

other hand, if the predicted future return sign is negative, then the policy creates a “sell” signal. All 

HMM-based models evaluated in these experiments postulate Gaussian mixture models as their 

emission distributions.  

 
4.3.2.1 Euro-United States Dollar exchange rate  

 

We begin with evaluating our method considering future value prediction for the EUR-USD exchange 

rate. We use a training sample pertaining to the period 1/17//2002 – 5/16/2008, a validation sample 

pertaining to the period 5/17/2008 - 3/2/2009, and a test sample pertaining to the period 3/3/2009 - 

12/30/2010. All the evaluated methods are trained using a rolling window of the previous 60 days of 

returns to make daily price prediction for the following 10 days; we retrain the models every 5 days.  

On this basis, model evaluation is performed according to: (i) the comparison of the signs of the 

generated predictions with the actual ones (hereafter referred to as directional prediction); and (ii) the 

resulting annualized return of the aforementioned portfolio management policy, defined as the mean 

obtained profit adjusted for the return standard deviation over the whole forecasting period.  
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In Table 13, we depict the optimal configuration of our VDJ-HMM model as determined by utilizing 

the available validation set. In Figs. a-c, we show how VDJ-HMM model performance changes by 

varying the adopted configuration (results obtained on the available validation set). As we observe, 

model configuration plays a crucial role to the obtained performance. Further, another interesting 

finding is that, similar to the volatility forecasting experiment, model performance reaches its optimal 

value for a moderate value of K, while experiencing a significant decrease for too high values of K or 

when K = 1.  

 

In Table 14, we provide the obtained performance results for the evaluated methods (for optimal model 

configuration). Note that the performances of the methods k-nearest neighbour (KNN), Naïve Bayes, 

back-propagation neural network (BP), support vector machine (SVM) [123]and random forest (RF) 

[124]have been cited from [125]. As we observe, our method completely outperforms the competition, 

yielding the state-of-the-art result in this dataset.  

 

Table 13: EUR-USD exchange rate price prediction: Optimal VDJ-HMM model configuration.  

 

 

Parameter  Value  

K 3  

N 2  

M 2  
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Table 14: EUR-USD exchange rate price prediction: Performance of the evaluated models.  

 

Statistic  KNN  Naïve 
Bayes  

BP  SVM  RF  HMM  HSMM  HMM∞ VDJ-
HMM  

Directional Prediction 
Accuracy  

50.11%  48.83%  50.12%  52.65%  53.50%  52.5%  51.2%  53.18%  54.05%  

Annualized Return  -2.26%  -3.08%  1.59%  3.98%  7.28%  4.05%  1.5%  6.44%  9.50%  

 

 

 

 (a)  

 

 (b)  

 

 (c)  

Figure 4.7: EUR-USD exchange rate price prediction: Performance fluctuation (directional prediction 
accuracy) obtained by varying model configuration (validation set).  
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Figure 4.8: EUR-USD exchange rate (right axis) vs return prediction using VDJ-HMM (left axis) 

 
4.3.2.2 Taiwan stock market  

 

Finally, in this experiment, we apply our VDJ-HMM model to predicting the level of the Taiwan stock 

market (TAIEX). For transparency, in our experimental evaluations we use data pertaining to a seven-

year period of the TAIEX, from 1999/1/4 to 2005/12/31, and split them as described in the state-of-the-

art work presented in [126]. Specifically, we use the data from the first ten months of each year in the 

considered time period for model training and validation, and the data from the last two months as our 

test set. All the evaluated methods are trained using a rolling window of the previous 120 days of 

returns to make daily price prediction for the following 5 days; we retrain the models every 5 days.  

 

In Table 15, we depict the optimal configuration of our VDJ-HMM model as determined by utilizing 

the available validation set. In Table 16, we provide the obtained performance figures pertaining to our 

method and the considered competitors. Performance evaluation is conducted on the grounds of the 

resulting RMSE between the predicted prices and the actual ones. Note that, apart from HMM and 

HMM∞, performance of the rest of the considered competitors is cited from [126]. Based on the 
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reported RMSE results, we deduce that VDJ-HMM achieves a clearly competitive performance 

compared to existing state-of-the-art approaches. Specifically, in some years our VDJ-HMM model 

achieves the lowest RMSE among the considered competitors, while retaining a very competitive 

performance in the rest of the examined years.  

 

Table 15: Taiwan stock market price prediction: Optimal VDJ-HMM model configuration. 

 

Parameter  Value  

K 3  

N 2  

M 4  

 
Table 16: Taiwan stock market price prediction: Performance (RMSE) of the evaluated models.  

 

Models  1999  2000  2001  2002  2003  2004  2005  

Linear regression  164  420  1070  116  329  146  -  

Method of [127] -  139  144  82  73  -  -  

Method of [128] 109  152  130  84  56  79  69  

Method of [129] -  -  122  94  55  69  65  

Fuzzy Symmetric Method [126] 103  130  120  68  55  56  54  

Fuzzy Asymmetric Method [126] 109  122  125  68  58  58  53  

HMM  112  154  116  71  60  59  56  

HSMM  111  155  120  75  61  58  59  

HMM∞ 109  148  113  70  56  58  54  

VDJ-HMM  109  145  111  68  55  55  54  
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Chapter 5 A Novel Corporate Credit Rating System Based on Student’s-t Hidden Markov 

Models 

 

5.1 Introduction  

 

In this work, we focus on the problem of credit scoring/rating of individual corporations. In general, a 

credit scoring/rating system makes use of a statistical technique that combines and analyzes a series of 

account statement data to predict the future behaviour of a company in terms of its ability to service its 

debt. The used account data are usually in the form of financial ratios, while the system-generated 

predictions are typically quantified as the likelihood of occurrence of a default event at some specific 

future time point. 

 

Credit rating systems are extensively used by the financial sector for the purpose of predicting the 

evolution of the financial behaviour of an obligor. Reliable prediction of the future behaviour of 

corporations and measurement of their performance is crucial to private investors for pricing and 

evaluating their alternative investment options. Financial institutions have been making extensive use of 

scoring systems for many decades, as a prudent lending practice that allows for better pricing their loan 

products, and properly quantifying the credit risk embedded in their loan portfolios. In addition, 

procedures targeted to credit portfolio quality improvement and management of credit losses in the 

delinquent part of portfolios are highly dependent upon credit scoring systems, which lay the 

foundation of best practice policies established among financial institutions. As such, credit rating 

systems are nowadays attached to a series of important internal processes in the financial sector, like 

pricing, loan granting, provisioning, and risk management. 
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The introduction of the Basel II framework [130] and its continuation in Basel III [131] has triggered 

renewed interest in credit rating models research. Specifically, under these frameworks, financial 

institutions have been granted with the right to develop rating systems for measurement of expected and 

unexpected losses, allowing for them to establish more risk-sensitive capital adequacy policies. 

However, Basel II and III frameworks impose specific technical constraints (accuracy requirements) 

that the used credit rating systems have to comply with. As such, since the introduction of Basel II, 

banks have been consistently motivated to develop more accurate and robust prediction systems, 

exploring new statistical techniques especially from the field of statistical machine learning. At the 

same time, the emergence of the internal ratings-based (IRB) framework has imposed increased 

requirements on financial institutions regarding collection of financial data from their clients [132]. As 

such, financial institutions have nowadays accumulated vast amounts of financial ratio data, which can 

be leveraged by financial researchers so as to develop advanced corporate credit scoring systems. These 

advances have resulted in a significant enhancement of the sophisticated internal models employed by 

financial institutions in recent years. This achievement has in turn facilitated a significant decrease in 

the reliance of the credit approval and risk monitoring internal processes of financial institutions on 

subjective expert judgment, and has heralded a new era of advanced quantitative reasoning based on 

objective predictive modeling techniques. 

 

In the last decades, a plethora of alternative approaches have been developed to address the problem of 

modeling the credit quality of a company, using both quantitative information (e.g., account statements) 

and qualitative information (e.g., other underwriting criteria, such as obligors market and sector 

indicators). A first category of approaches belongs to the family of classical regression 

techniques. [133] used multiple linear discriminant analysis (LDA) to build a rating system for 

predicting corporate bankruptcies. They estimated a linear discriminant function using liquidity, 

profitability, leverage, solvency, and turnover financial ratios to estimate credit quality; they dubbed 
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their approach as the Z-score model. One of the main drawbacks of this approach is its assumption that 

the modeled variables are normally distributed, which is hardly ever the case in real-world scenarios. 

As such, this method cannot effectively capture nonlinear relationships among the modeled variables, 

which is crucial for the performance of the credit rating system. In a similar vein, several studies have 

explored the utility of probit models (e.g, [134]) and linear regression models (e.g., [135]). However, 

these models continue to suffer from the same drawbacks that plague LDA, namely their clear inability 

to capture non-linear dynamics, which are prevalent in financial ratio data [136]. 

 

Logistic regression is another approach broadly used for building corporate rating systems. It was first 

used by [137] to predict corporate bankruptcy based on publicly available financial data pertaining to 

several enterprises (e.g., financial ratios). Logistic regression models employed in this context are 

essentially used to classify corporations into two distinct classes characterizing their credit risk (i.e., 

good or bad). Typically, a sigmoid likelihood function is used for modeling purposes to allow for 

capturing non-linearities and relaxing the normality assumption during model estimation [138]. 

 

Decision trees comprise a further category of non-parametric methods used for developing credit rating 

systems. Decision trees are models that consist of a set of nodes, corresponding to the modeled 

explanatory variables, and split conditions based on a hierarchical selection of the modeled explanatory 

variables. Two well-known algorithms in this field are the Chi-squared Automatic Interaction Detector 

(CHAID) [139] and CART [140] techniques. Decision trees offer simplicity and flexibility in the 

employed modeling assumptions, while also allowing for easy visualization of the learned modeling 

strategies (obtained after training). On the negative side, the entailed variable discretization performed 

by these models results in potential loss of significant information, as well as overfitting proneness. 

Another popular class of statistical models used for credit rating is hazard rate models. These models 

extend the time horizon of a rating system, by looking at the probability of default during the life cycle 
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of the examined loan or portfolio [141; 142]. To achieve this, hazard models explicitly model a survival 

function for the behaviour of an examined borrower. Cox Proportional hazard models are one popular 

instance of this type of models [143]; it is based on the assumption that the covariates affecting the 

default rate are multiplicatively related to the hazard rate function [144]. 

 

Finally, research in the field of corporate credit rating has also focused on structural models and 

reduced form models [145]. Both types of models typically perform predictions on a continuous time 

frame. Structural models make proper assumptions about the dynamics of a firm’s assets and the 

conditions under which a default may occur. For instance, in this context, [146] used the option-

theoretical Black-Sholes model [147] to price default risk. According to the assumptions of [146], a 

company defaults when the asset value modeled through equity value drops below the debt of the firm. 

In general, structural models are considered to be more forward-looking and reliable due to their taking 

into account of market exchange variables. Nevertheless, a problem with such methods is their 

requirement of availability of firm equity data to perform training, which is not an easy task when 

dealing with non-listed private or SME companies. On the other hand, the fact that these models take 

into account market volatility to perform prediction may result in overestimation of default 

probabilities. In addition, their use of market capitalization to estimate a firm’s asset value may lead to 

discrepancies in information accuracy. Reduced form methods resolve these issues by modeling 

bankruptcy as a statistical process without making any explicit assumptions as to why a default occurs. 

Robert Jarrow and Stuart Turnbull proposed in [148]one of the most well known types of reduced-form 

models for pricing credit risk. This model utilizes multi-factor and dynamic analysis of the term 

structure of risk-free interest rates, along with martingale theory, to calculate the probability of default. 

In this work, we consider following a completely different paradigm towards corporate credit rating. 

Specifically, we consider using techniques inspired from the literature on machine learning. Indeed, 

methods from the area of machine learning have been already shown to enhance the capabilities of 
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conventional corporate credit scoring systems in several studies (e.g., [149]). Among such works, 

feedforward neural networks (FNNs) constitute the most commonly used machine learning method in 

the context of corporate credit rating systems [150],[151]. Their successful application in the context of 

corporate credit rating is basically due to their nonlinear and non-Gaussian modeling assumptions, and 

their capability to capture dependencies between assets. On the negative side, the notorious proneness 

of FNNs to overfitting (and, thus, their limited generalization capacity), their need of tedious cross-

validation to perform hyperparameter selection (e.g., network size selection), along with their black-box 

nature that hinders intuitive visualization of the obtained results, limit their potential appeal to the 

financial community. Other researchers have considered using support vector machines (SVMs) [123]to 

effect the credit rating task. Indeed, a significant number of studies published in the last decade have 

shown that SVMs outperform FNNs in credit rating scenarios [152; 153; 154; 155; 156; 157], while 

reducing the possibility of overfitting, and alleviating the need of tedious cross-validation for the 

purpose of appropriate hyperparameter selection. On the negative side, SVMs also constitute black-box 

models, thus limiting their potential of offering deeper intuitions and visualizations regarding the 

obtained results of their modeling and inference procedure. A Bayesian inference-based analogous to 

SVMs, namely Gaussian processes, have also been considered by [158]. A drawback of this approach is 

its high computational complexity, which is cubic to the number of available data points, combined 

with the assumption of normally distributed data, which is clearly unrealistic, as we have already 

explained. Finally, Random Forests (RFs) is another type of methods that has recently garnered 

attention by researchers working in the field of corporate credit rating. This sophisticated technique was 

introduced in [124], while one successful application of RFs to the problem of corporate credit rating 

can be found in [159]. 

 

Contrary to the above-summarized existing work, in this chapter  we propose a novel holistic corporate 

credit scoring system, that addresses all the parts of the modeling pipeline, from financial ratio time-
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series selection and pre-processing, to selection of appropriate time-series modeling techniques, and 

information fusion strategies used to obtain the final credit scores. At the heart of the proposed system 

lies a novel financial data modeling scheme based on Student’s-t hidden Markov models 

(SHMMs) [109]. SHMMs are a successful machine learning technique for modeling data 

with temporal dynamics (i.e., time-series data), that may contain a number of outliers and related 

artefacts in the available training datasets. As such, SHMMs arise as a natural selection for effecting the 

task of modeling financial ratio data, which entail strong temporal dependencies, while also being quite 

likely to comprise significant proportions of outliers. Note that this key modeling selection of our 

approach is in stark contrast to the machine learning methods used in the context of existing corporate 

credit scoring systems: existing approaches are based on machine learning models that neither are 

capable of capturing temporal dependencies in the modeled data, nor can effectively handle outliers in 

their training datasets. Due to these significant modeling advantages, our approach is expected to yield 

much better discriminative performance compared to existing alternatives in real-world modeling and 

prediction scenarios. 

 

Our approach constitutes an intricate data processing pipeline, which comprises a data pre-processing 

and transformation stage, and a core modeling stage, where SHMMs are used to capture salient 

temporal patterns in the modeled time-series that are associated with different credit risk scores. To 

perform modeling and prediction, our approach utilizes appropriate financial ratio time-series, based on 

the assumption that financial ratios carry all the information necessary to describe and predict the 

internal state of a company. Specifically, we use five-year historical data of financial ratios, that provide 

adequate insights on how profitable an examined company is, what the trends are, and how much risk is 

embedded in its business models. We fit distinct SHMMs to each one of the modeled financial ratios, 

and obtain separate credit scores from each one of them. Eventually, we train one final information 

fusion layer that combines the outputs of the individual SHMMs under a weighted linear combination 
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scheme, to generate the final predictions obtained by our system. Parameter optimization of this final 

information fusion layer is performed by means of a simple yet effective genetic algorithm (GA) [160]. 

The remainder of the chapter is organized as follows. In Section 2, we provide a brief overview of 

related work dealing with applications of hidden Markov models (HMMs) to credit risk prediction, and 

explain the differences between our novel approach and the existing corpus of works. In Section 3, we 

provide a concise introduction to HMMs, focusing on the case of SHMMs and their training and 

inference algorithms under the maximum-likelihood framework. In Section 4, we introduce our 

proposed system, and elaborate on the used data selection and pre-processing schemes, the adopted 

modeling assumptions and strategies, and the associated training and inference algorithms. In Section 5, 

we perform the experimental evaluation of our approach: Initially, we elaborate on our experimental 

setup, and provide details regarding our implementation of the considered alternative methods that we 

evaluate in parallel to our approach (for comparative purposes). Further, we present our empirical 

results, analyzing the performance of our proposed SHMM-based corporate credit scoring model, and 

comparing its performance to the considered state-of-the-art competitors. Finally, in the concluding 

section, we highlight the performance advantages of our approach; we outline possible limitations of 

our framework, and discuss areas for future enhancements and research. 

 

5.2 Existing Applications of HMMs to Credit Risk Assessment  

 

HMMs constitute a rather popular method in financial literature. However, up to now their applications 

to risk assessment have been mostly limited to quantifying risk on portfolio level, as opposed 

to individual company level, which is the aim of this work. Specifically, HMMs first appeared in the 

financial literature in [161], therein, the authors use HMMs to model rating migration of 

corporate bonds, a factor that affects pricing interest rate margins and subsequently the fair value of 

corporate bonds. Further,[162]used HMMs to predict default events in a corporate portfolio. Under this 
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approach, the hidden states of the postulated HMMs reflect the state of the economy, which can switch 

between expansion and recession periods (high risk, normal risk), while the emission distributions of 

each state are taken as binomial distributions modeling the number of defaults in the studied portfolio at 

a specific point in time. In [63]the aforementioned model is extended to include exogenous variables 

(covariates), such as interest rates and GDP. More recently, [78]employed an interactive HMM to 

model corporate bond defaults; this model essentially assumes that the relationship between the hidden 

state of the economy and the evolution of the creditworthiness of the companies in the modeled 

portfolio is bidirectional. Finally, the authors of [163] proposed a multistream HMM (MHMM) capable 

of modeling multiple financial sequences under the assumption that all of them are driven by a common 

hidden sequence reflecting the state of the economy. They utilize this model to analyze default data in a 

network of financial sectors, and derive reliable estimates of credit value-at-risk (VaR) and expected 

shortfall for portfolios of corporate bonds. 

 

In a different vein, more closely related to our work, [164]proposed an HMM-based model that uses 

credit ratings posted by rating agencies to perform prediction of the future behaviour of an obligor 

(default or non-default), where the behaviour variable is modeled as the hidden state of a postulated 

two-state HMM. More recently, [165]proposed a double-HMM approach which extends the method 

of [164]by considering as its observed variables both the credit ratings posted by rating agencies and the 

calculated Altman Z-scores [133]of the examined companies (two streams of information). Even 

though these approaches are quite closely related to our work, as they are also dealing with individual 

corporate credit rating, there is also a key difference that sets them apart from our work: The 

applicability of the methods in[164; 165], depends on the availability of credit ratings posted by rating 

agencies, which is hardly the case when dealing with private companies. In contrast, our work does not 

impose such severely limiting constraints, but offers a bottom-up architecture aiming to obtain reliable 

corporate credit scores without provision of any prior (expert) information. 
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5.3 Methodological Background  

 

5.3.1 Student’s-t Hidden Markov Models 

 

HMMs are increasingly being adopted in a wide spectrum of applications, since they provide a 

convenient way of modeling observations appearing in a sequential manner and tending to cluster or to 

alternate between different possible components (subpopulations) [83]. The observation emission 

densities associated with each hidden state of a continuous density HMM (CHMM) must be capable of 

approximating arbitrarily complex probability density functions. Finite Gaussian mixture models 

(GMMs) are the most common selection of emission distribution models in the CHMM literature, 

yielding the so-called Gaussian HMMs (GHMMs) [4]. The vast popularity of GHMMs stems from the 

well-known capability of GMMs to successfully approximate unknown random distributions, including 

distributions with multiple modes, while also providing a simple and computationally efficient 

maximum-likelihood (ML) model fitting framework, by means of the expectation-maximization (EM) 

algorithm [6].Nevertheless, GMMs do also suffer from a significant drawback concerning their 

parameters estimation procedure, which is well-known that can be adversely affected by the presence of 

outliers in the data sets used for the model fitting. Hence, when outliers are present in the available 

fitting data sets (as it often happens in real-world applications), GMMs tend to require excessively high 

numbers of mixture components to capture the long tails of the approximated distributions 

(corresponding to the existing outliers), so as to retain their pattern recognition effectiveness. As a 

consequence of the induced model size increase, the computational efficiency of the trained models 

deteriorates significantly, while high requirements are also imposed in the size of the available training 

data sets, so as to guarantee the dependability of the model fitting procedure. 
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As a solution for the amelioration of these drawbacks, the Student’s-t HMM (SHMM) has been 

proposed in [109]as a highly tolerant to outliers alternative to GHMMs. SHMM employs finite mixtures 

of the longer-tailed multivariate Student’s-t distribution as its emission distribution models. This 

selection provides a much more robust approach to data modeling, as training observations that are 

atypical of a mixture component density are given reduced weight in the calculation of its parameters, 

under a model-inherent, soundly-founded statistical procedure. 

 

Let us consider a Student’s-t hidden Markov model comprising I states. Let {yt}
T

t  = 1 denote a sequence 

of observed data points modeled using the considered SHMM. Let us also assume for convenience, and 

without any loss of generality, that all the hidden state densities of the considered SHMM are 

approximated by Student’s-t mixture models with the same number of component distributions, J. 

Then, from the conditional independence property of the hidden Markov chain [83; 4]it directly follows 

that the observations emitted from the same hidden state of the SHMM are independent, identically 

distributed (i.i.d), such that the probability density of the observation yt given that it is emitted from 

the ith model state reads 

 

where cij, μi j, Σi j and νij are the mixing proportion, mean, covariance matrix and the degrees of freedom 

of the jth component density of the hidden distribution of the ith state of the model, respectively, and Θi 

= {cij, νij, μi j, Σi j}
J

j = 1 (i = 1, ..., I). The probability density function (pdf) of a Student’s-t distribution 

with mean vector μ, covariance matrix Σ, and ν > 0degrees of freedom is [166] 
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where p is the dimensionality of the observations yt,  d(yt, μ;Σ) is the squared Mahalanobis distance 

between yt, μ with covariance matrix Σ, and Γ(s) is the Gamma function, 

 

Directed acyclic graph representing the SHMM Figure 5.1 [109].The box (plate) denotes a set 

of T observation points, {ymt}
T

t  = 1 (of which only a single example for time t is shown explicitly), with 

their corresponding previous and current state indicators, and their mixture component indicators. 

 

5.3.2 Model Training  

 

Training of the SHMM using multiple training sequences (tokens) can be easily conducted by means of 

the expectation-maximization (EM) algorithm. Let us consider M independent sequences of fitting data. 

We assume for convenience, that all the sequences have the same length T, i.e. they comprise T data 

points, without any loss of generality. Let the mth sequence be ym = {ymt}
T

t  = 1,  m = 1, ..., M, 

where ymt stands for the tth data point of the mth fitting sequence. Then, from (1), we have 
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Figure 5.1: Directed acyclic graph representing the SHMM (Chatzis et al., 2009). The box (plate) 
denotes a set of T observation points, {ymt}Tt=1 (of which only a single example for time t is shown 
explicitly), with their corresponding previous and current state indicators, and their mixture component 
indicators. 

 

 

or, equivalently, using the properties of the Student’s-t distribution (c.f., [167; 109]): 

 

 

 

where uijmt is a precision scalar corresponding to the observation ymt given it is generated from the jth 

component density of the ith hidden state distribution 

 

 

 

Let us denote as smt the state indicator vectors of the observed data, with smt = (simt)
I
i  = 1, and 
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Let us also denote as zi
mt the state-conditional mixture component indicator vectors of the observed 

data, such that zi
mt = (zi

jmt)
J

j = 1, and, given that ymt is emitted from the ith state (simt = 1), it holds 

 

 

 

The EM algorithm comprises optimization of the posterior expectation of the complete data log-

likelihood of the treated model 

 

 

 

where Ψ ̂ denotes the obtained estimator of the model parameters vector Ψ = {Θi, πi, πhi}
I
h , i  = 1, πi are 

the initial state probabilities, and πhi are the state transition probabilities of the Markov chain. For a 

continuous hidden Markov model, the expression of the complete data log-likelihood reads [167] 
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where ycomp
mt stands for the complete data corresponding to the tth observation of the mth 

sequence, ymt, and logp(ycomp
mt;Θi) is the complete data log-likelihood of the emission distribution of 

the ith hidden state with respect to ymt. A graphical illustration (plate diagram) of the considered 

SHMM can be found in Fig. 5.1. 

 

To provide a proper complete data configuration for the SHMM, we have to take into account that a 

closed form solution for log-likelihood optimization of a Student’s-t mixture in the form (3) does not 

exist [166; 167]. However, exploiting the alternative expression (4)-(5) of a Student’s-t distribution as a 

Gaussian distribution with scaled precision, where the scalar is a Gamma distributed latent variable, a 

tractable optimization framework is obtained. Hence, we let the complete data corresponding to the mth 

sequence, ycomp
m, comprise the observable data and their corresponding state indicator vectors, state-

conditional mixture component indicator vectors, and precision scalars. Then, we have 

 

 

 

which yields (ignoring constant terms) 
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The E-step on the (k+1)th iteration of the EM algorithm requires calculation of the quantity Q(Ψ;Ψ(k )), 

where Ψ(k ) denotes the current estimator (obtained by the kth iteration of the EM algorithm) of Ψ. 

Using (7) and (8), we have 

 

 

 

 

where γ(k )
imt denote the kth iteration estimators of the state emission posterior probabilities, defined as 

 

 

 

(t = 1, ..., T), and γ(k )
himt denote the kth iteration estimators of the state transition posterior probabilities, 

defined as 

 

 

 

(t = 1, ..., T − 1) for m = 1, ..., M, h, i = 1, ..., I. Therefore, the E-step of the algorithm comprises 

computation of the estimates γ (k )
imt and γ(k )

himt, and of the expectationEΨ
(k )(logp(ycomp

mt;Θi)|y). Let us 

begin with the updates γ (k )
imt and γ(k )

himt. These quantities can be obtained utilizing the forward-

backward algorithm. It holds [4; 83] 
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and 

 

 

where 

 

 

 

 

 

 

 

 

 

 

and the expression of p(ymt;Θi) is given by (3). Concerning the term EΨ
(k )(logp(ycomp

mt;Θi)|y), it can be 

shown that its estimation reduces to computation of the conditional posteriors of mixture component 

membership 
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and of the posterior expectations of the precision scalars uijmt 

 

 

 

Finally, the M-step of the algorithm is effected by performing the computations 
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and solving the equation 

 

 

 

to obtain the estimates of νij, where, ψ(s) is the digamma function, and r(k )
i jmt is the joint posterior 

probability that ymt is generated from the ith state of the model and particularly from its jth component 

distribution 

 

 

 

 

An outline of the EM algorithm for the SHMM is given in Alg. 1. 

 

EM ALGORITHM FOR THE SHMM. ALGORITHM 1 
k: = 0 

1. Conduct the forward-backward algorithm to obtain the quantities a(k )
imt and b(k )

imt. 
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2. Effect the E-step by computing the γ(k )
himt, γ

(k )
imt, ξ

(k )
i jmt, r

(k )
i jmt, and u(k )

i jmt, using (12), (13), 

(18), (27), and (19), respectively. 

3. Effect the M-step by computing the π(k  + 1)
i, π

(k  + 1)
hi, c

(k  + 1)
i j, μ

(k  + 1)
i j, Σ

(k  + 1)
i j, and ν(k  + 1)

i j, using 

(20)-(25), respectively. 

4. If the EM algorithm converges, exit; otherwise increase the iteration counter (k: = k + 1) and 

goto 1. 

 

5.3.3 Inference Algorithm  

 

Given a trained SHMM, inference using this model consists in calculating the likelihood of a given 

sequence, and estimating the emitting (hidden) states sequence corresponding to an observed sequence 

presented to the model. Let us consider an SHMM, trained using the EM algorithm, as described above, 

with parameters set Ψ̂, and an observed sequence y = {yt}
T

t  = 1. Then, likelihood calculation can be 

performed by utilizing the forward algorithm. Specifically, following [109] the likelihood p(y|Ψ ̂) yields 

 

 

where {âi , t}
I , T

i , t  = 1 are the forward probabilities corresponding to the observed sequence y, computed 

using (14)-(15) and the parameter estimates Ψ̂ of the postulated SHMM. On the other hand, the task of 

estimating the hidden states sequence corresponding to the observed sequence y can be effected by 

means of the Viterbi algorithm. Following [109], the estimate of the current hidden state at time t, ŝt, 

yields 
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where 

 

 

 

with initialization 

 

 

5.4 Proposed Approach  

 

5.4.1 Research Motivation  

 

As we have already discussed, corporate credit risk modeling and prediction is typically based on 

modeling appropriate financial ratio data. On this basis, our approach is motivated from some key 

insights regarding the nature of the modeled data: It is well understood that creditworthiness patterns 

exhibit strong temporal dependencies that are reflected in, and can be extracted from, financial ratio 

data [168; 169]. Indeed, corporate credit ratings are well-known to be largely driven by the hidden state 

of the business cycle process. As such, using machine learning models capable of robustly capturing 

temporal dynamics in the modeled data is expected to significantly enhance the discriminatory capacity 

of a developed corporate risk rating system. In addition, outliers and related artifacts are rather common 

in financial time-series datasets used for model training [170; 171]. Therefore, coming up with a 

modeling method with training algorithms tolerant to the existence of outliers in the used training data 

is expected to result in better trained models, with enhanced predictive accuracy. 
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Under this motivation, in this work we suggest to use SHMMs as the core component of a corporate 

credit rating system, trained on financial ratio time-series. SHMMs satisfy both our requirements of 

postulating models capable of capturing temporal dynamics in the modeled data, and using models 

tolerant to outliers in their training data. This formulation is in stark contrast to existing machine 

learning-based approaches used for corporate credit rating, e.g., approaches based on FNNs and RFs, 

regression techniques, decision trees, and hazard models, which are not capable of extracting temporal 

dynamics in the modeled data, and, thus, cannot capture changes in the business cycle that could lead in 

a significant shift in the behaviour of the modeled businesses. Another significant merit of our approach 

that sets it apart from existing approaches is that our use of SHMMs affords modeling continuous 

measured variables pertaining to financial ratios. Finally, as we have shown in Section 3, model training 

and inference for SHMMs can be performed using robust, elegant, and computationally efficient 

algorithms with proved convergence [109]. It allows for increased robustness to outliers in the training 

data, and poses no substantial computational overheads compared to existing competitors. 

 

5.4.2 System Architecture  

 

As depicted in Fig. 5.2, the proposed corporate credit scoring system comprises four distinct processing 

stages, namely: (i) data collection and processing; (ii) SHMM model training for each financial ratio; 

(iii) model aggregation; and (iv) system calibration. We elaborate on each one of these stages in the 

remainder of this section. 
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Figure 5.2: Proposed Rating System Architecture (Training and Building). 

 

 

 

 
Figure 5.3: Proposed rating system calculation workflow. 

 

 

 
5.4.2.1 Data Collection and Processing  
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This comprises data collection, data processing and transformation, and data selection and samples 

creation. 

Data Collection.  Training data collection is a significant procedure for the effectiveness of a machine 

learning system. In the context of our corporate credit rating system, we have collected information on 

performing and non-performing entities from the supervisory database of the Central Bank of Greece. 

These data were aggregated during each year from 2006 to 2012, according to the established 

regulatory framework. The collected information is related with both SMEs and corporations with loans 

granted from Greek banks; the adopted definition of a default event in this dataset is in line with the 

rules of Basel III [131]. Specifically, a loan is flagged as delinquent if it is either 90 days past due or it 

gets rated as delinquent based on each bank’s internal rating rules. In the beginning of the observation 

periods, all considered obligors are performing. In our data collection procedures, we do not consider 

special cases of obligors from the financial sector, including banks, insurance, leasing, and factoring 

companies, due to the very unique nature of their business models, which deviate quite a lot from the 

business models of commercial companies. Under our proposed framework, each obligor is considered 

to be categorized as either good (i.e., performing) or bad (i.e., non-performing). Each company was 

either good or bad at the end of the observation periods. An obligor is categorized as good if at least 

one of the following criteria is met: (i) the obligor manages to get an upgrade of their rating by their 

bank (according to the bank’s internal rules); (ii) the obligor is not delinquent; and (iii) the obligor 

receives a good rating based on the internal rating system of their bank. 

 

Data Selection and Samples Creation.  To create our used datasets, we randomly select good and bad 

clients from the available population. Each of these clients is represented using a set of financial ratio 

time-series, extracted using their available balance sheet data and income (P&L) statements. In each 

case, the dependent variable in our training datasets is a binary indicator, with the on value indicating a 

default event (i.e., the obligor is categorized as bad at the end of the observation period). Finally, some 
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necessary data cleansing is performed on the available data sheets, to remove entries with missing 

values. This way, we eventually obtain a dataset comprising 8244 obligors, which mainly include Greek 

SMEs (total assets worth less than 50 Million Euro), as well as some large corporations. 

 

To develop our model, we split the so-obtained dataset into three parts: An in-sample dataset, 

comprising data pertaining to the 70% of the examined companies, obtained over the observation period 

2006-2011; an out-of-sample dataset, comprising the data pertaining to the rest 30% of the companies 

for the period 2006-2011; and an out-of-time dataset that comprises all the data pertaining to the 

observation period of year 2012. A summary of the aforementioned split of our dataset is provided in 

Table 17. In Table 18, we provide a brief summary of the breakout of the used data, showing the 

numbers of the available samples that pertain to SMEs and large corporations, respectively. 

 
Table 17: Dataset split into in-sample, out-of-sample, and out-of-time sets.  

 

Dataset Split Good Obligors Bad Obligors Default Rate (%) Total 

in-sample 5513 328 5.62 5841 

out-of-sample 1652 100 5.7 1752 

out-of-time 536 115 17.7 651 

Total 7701 543 6.58 8244 

 

 
Table 18: Distribution of the used data by asset size.  

 

 

Assets (in Million Euro) Frequency 

5 1837 

50 5028 

100 707 

200 338 
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500 190 

>500 144 

Total 8244 

 

 
 

System development, calibration, and analysis is performed using our in-sample dataset. The out-of-

sample and out-of-time datasets are in turn used to perform system evaluation under two different 

scenarios: Evaluation of the generalization capacity of our system across companies, and evaluation of 

the generalization capacity of our system over time. To allow for reliable estimation of the 

hyperparameters of our system (i.e., of the number of hidden states, I, of the postulated SHMMs, and 

the number of components, J, of the entailed Student’s-t mixture models), we further split our in-

sample dataset into a training set and a validation set: the training sample is used to train the postulated 

SHMMs pertaining to each financial ratio and each of the two obligor characterizations (good or bad), 

while the validation set is used for model selection, i.e. optimal determination of the model 

hyperparameters (model size). 

 

Data Processing and Transformation. For each examined corporation, we elect to model a set of 

well-known and broadly used financial ratio time-series, extracted by exploiting their available balance 

sheets and income statements. Specifically, the used set of financial ratios comprises the following 

indices: 

 

 A set of broadly used financial ratios reflecting liquidity, including: (i) current ratio (X1); (ii) 

immediate cash ratio (X2); (iii) working capital (X3); (iv) total employed capital (X4). 
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 A set of financial ratios that reflect profitability, including: (i) return on equity (X5); (ii) return 

on total employed capital (X6); (iii) gross profit margin (X7); (iv) operating profit margin (X8); 

(v) net profit margin (X9). 

 A set of financial ratios that reflect capital structure, including: (i) fixed assets coverage ratio 

(X10); (ii) leverage ratio (X11); (iii) interest coverage (X12); (iv) equity over employed capital 

(X13). 

 A set of financial ratios that reflect activity, including: (i) receivables turnover ratio (X14); (ii) 

trade creditors to purchases ratio (X15); (iii) inventories turnover ratio (X16); (iv) employed 

capital turnover ratio (X17); (v) equity turnover ratio (X18). 

 

In addition to these standard financial ratios, we have also experimented with various transformations 

of these ratios, with the aim to obtain more representative financial times-series to train our credit rating 

models with. Specifically, for this purpose, we subsequently followed three distinct procedures:  

(i) We applied a series of simple transformations on the original time-series, including square, cube 

power, log, sin, 1/(1+x), and inverse.  

(ii) Subsequently, we computed the year-over-year percentage changes of the considered time-series. 

(iii) Finally, in an effort to obtain more robust input variables to train our models upon, we generated 

50,000 random (derivative) financial ratios based on the available datasets. For this purpose, we 

followed an iterative procedure that consists in randomly selecting 4 original items of the original 

balance sheets and income statements, say a, b, c, and d, and computing a derivative ratio of the 

form (a±b) ⁄ (c±d) 

. 

This process led to a set of almost 2,000 predictor variables (distinct time-series) as potential candidates 

for our modeling procedures. The so-obtained set of time-series was narrowed down in three 

consecutive stages: On the first stage, we kept the 200 time-series exhibiting the highest in-sample 
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correlation with the modeled (binary) dependent variable, i.e. the categorization of obligors 

as good or bad at the end of the observation period. On the second stage, we omitted those of the 

aforementioned 200 time-series that bear no economic meaning/intuition. Finally, on the third stage, we 

narrowed down the selected variables (derivative financial ratios) by setting a threshold of at least +/-

10% correlation with the default flag variable. This way, we eventually retained 8 

new derivative financial ratio time-series that we use to perform model training in the context of our 

system, additional to the previously mentioned, commonly used ones. Note that we have transformed 

the above-mentioned ratio values into the [0, 1] interval, using a simple linear transformation [172]. 

 

These newly-obtained financial ratio time-series are namely the following: (i) (Operating profit-Interest 

Expenses) / Sales (X19); (ii) (Short term liabilities + Cost of Sales) / Sales (X20); (iii) (Long term 

liabilities - Gross profit) / Total Assets (X21); (iv) Bank Loans/ Gross profit (X22); (v) (Gross profit + 

Equity)/Total Liabilities (X23); (vi) Current Assets/Sales (X24); (vii) Borrowed funds/ Turnover (X25); 

and (viii) the 1/(1+x) transform of the interest coverage ratio (X26). Note that the first seven derivative 

financial ratio time-series mentioned above essentially reflect capital structure, thus bearing a clear 

financial intuition/relevance. 

 

5.4.2.2 HMM Model Training  

 

As previously discussed, for every examined company and for every modeled financial ratio, we build a 

time-series comprising values recorded over five consecutive years. This dataset is subsequently used to 

perform model training. As we have also discussed, each sequence is categorized 

as good or bad, depending on the corresponding obligor performances. To effectively model these data 

in the context of the proposed system, we postulate two distinct SHMMs for each financial ratio, one 

pertaining to obligors categorized as good, and one pertaining to obligors categorized as bad. Our 



139 

modeling selection allows for capturing salient temporal patterns and dynamics in our modeled time-

series, in an effort to detect shifts in the state of the economy and their correlations with changes in the 

behaviour patterns of the examined companies. As we have discussed, we split our in-sample dataset 

into one training set and one validation set. The training set comprises 200 sequences for each financial 

ratio, and for each category of obligors (good or bad), either large corporations or SMEs. Parameter 

initialization (before model training using the EM algorithm, described in Section 3) was performed 

using the segmental K-means algorithm described in [4]; the degrees of freedom ν of the Student’s-

t distributions are initialized at ν = 1. 

 
Turning to model (size) selection, in each case our selections are made between models comprising 2-6 

mixture component Student’s-t distributions, and 2-6 hidden states. To perform model selection, at first 

we utilize the popular Bayesian information criterion (BIC) [13]. BIC is widely used for selecting 

proper model size in the HMM literature, by appropriately penalizing the obtained log-likelihood of the 

trained model with a penalty term the accounts for the number of postulated parameters (i.e., model 

size), to prevent overfitting. In the context of our system, we utilize BIC so as to retain the 10 highest-

ranked possible model configurations (out of a set of 25 initial alternatives). To alleviate the effect of 

random initialization (of the segmental K-means algorithm) on the obtained results, we repeat training 

of each considered model multiple (namely, 20) times, and retain the random restart that yielded the 

best BIC value. In Fig. 5.4, we show how BIC values change (on average over the modeled assets) with 

model size in our experiments, both in cases of models pertaining to good obligors, and in cases 

pertaining to bad obligors. 
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 (a) 

   

 

 (b) 

Figure 5.4: BIC values as a function of model size. 

  

 
Further, for each of the retained model configurations (sizes), we use the forward algorithm to compute 

the likelihood of each corresponding time-series in our validation set. We perform this procedure with 

respect to both the corresponding postulated SHMMs pertaining to obligors categorized as good, and 

the corresponding postulated SHMMs pertaining to obligors categorized as bad, and compute the log-

ratio of the two likelihoods. Finally, we rank the postulated alternative SHMM configurations on the 

basis of the correlation of these obtained (good to bad) likelihood log-ratios with the actual ratings of 
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the considered obligors: the higher the value of these log-ratios, the more correlated they are with 

obligors actually rated as good, and the less correlated they are with obligors actually rated as bad. 

 

On the basis of this procedure, for each financial ratio we retain the good/bad obligor SHMM pair 

configuration that yields the best ranking among the considered alternatives. In Table 19, we depict the 

average obtained SHMM size (over all the modeled financial ratios) separately for the models fitted to 

data from good obligors, and for the models fitted to data from bad obligors. As we observe, to 

sufficiently capture the underlying temporal patterns, companies rated as good require larger models 

than companies rated as bad. This is a rather intuitive result, since companies rated as good are 

expected to exhibit more heterogeneous patterns than companies eventually defaulting on their debt. 

 

Table 19: Average optimal size of trained SHMMs by obligor category.  

 

Category Good Bad 

# Mixture components 4.00 4.06 

# States 5.06 4.09 

 

5.4.2.3 Model Aggregation  

 

After obtaining the component SHMMs of our system, we apply a sample scoring procedure for the 

entire in-sample dataset. Specifically, for every company in our in-sample dataset, we produce a 26-

dimensional vector containing the likelihood log-ratio scores pertaining to the two trained SHMMs 

(good/bad) for each modeled financial ratio (for this purpose, the forward algorithm is used as 

described in Section 3.3). As previously discussed, the likelihood log-ratio scores of a modeled 

company essentially encode how likely our trained models consider the company to end up with 

a good rating at the end of the observation period. Apparently, as a result of our modeling choices, each 
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pair of postulated SHMMs (modeling a different financial ratio) generates a different likelihood log-

ratio score. Hence, it is necessary that we come up with an optimal way of combining these scores so as 

to derive a final predictive score from our model. 

 

For this purpose, we postulate a simple linear score combination model driven by the likelihood log-

ratio scores generated as described previously. To train this model, we use a genetic algorithm [160]that 

aims to maximize the overall score correlation with the dependent variable (good/bad obligor flag) over 

the modeled in-sample population. Our selection of the aforementioned genetic algorithm as the 

optimization method of choice is motivated from its simple black-box nature, and its attractive 

properties it terms of the obtained rates of convergence to the global optimum of the solved complex 

optimization problem. We experiment with various mutation rates and numbers of generations, in order 

to select the optimal genetic algorithm configuration. For completeness sake, in Table 20 we provide 

the final linear model parameter (weight) values estimated through the used genetic algorithm. 

 
5.4.2.4 System Calibration  

 

Eventually, we utilize the credit score values generation capabilities of our system to obtain 

a default probability prediction mechanism. For this purpose, we apply a credit rating system 

calibration process. Calibration of a credit rating system is a mapping process under which each 

possible generated score value is allocated an associated probability of default. To perform calibration 

of our system on the in-sample population, we divide the set of obtained likelihood log-ratio scores, 

generated in the previous stage, into ranges. Each range is associated with a probability of default. 

Computation of ranges is performed in such a way that ensures maximum intra-rate homogeneity of the 

obtained probabilities of default, and maximum inter-range heterogeneity. To achieve this, we use a 

well known discretization algorithm, namely MDLP; our adopted algorithm follows the minimum 

description length (MDL) estimation principle [173], which optimizes continuous variable ranges based 
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on a class entropy criterion. Finally, we correct for monotonicity (if needed) by fitting an exponential 

function. 

 
Table 20: Financial ratio weights obtained by application of the used genetic algorithm.  

 

Financial Ratio Weight 

X1 3.8 

X2 6.2 

X3 9.2 

X4 3.4 

X5 1.4 

X6 6.3 

X7 0 

X8 2.7 

X9 6.1 

X10 1.6 

X11 1.7 

X12 2.4 

X13 3.6 

X14 1.6 

X15 6.5 

X16 0 

X17 0 

X18 1.9 

X19 4.9 

X20 3.3 

X21 3.1 

X22 6.6 

X23 3.1 
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X24 5.6 

X25 3.1 

X26 12.2 

 

 
5.5 Experimental Evaluation  

 

Here, we report the performance results obtained from the experimental evaluation of our method, both 

in terms of out-of-sample performance, and in terms of out-of-time performance. To obtain some 

comparative results, apart from our method we also evaluate a set of established benchmark models in 

the field of corporate credit rating, namely CHAID, LDA, logistic regression, SVMs, RFs, and FNNs. 

Since the considered benchmark approaches are not capable of modeling time-series data, we opt to 

retain from (the corresponding time-series of) each financial ratio only those of the five constituent 

observed variables that do not exhibit strong inter-correlations. Specifically, to perform this procedure, 

we first compute the Pearson correlation matrix of the available 5-year data (of each financial ratio). On 

this basis, we exclude the time point variables exhibiting more than 60% absolute correlation with 

(some) other time point variables, to avoid multicollinearity. Eventually, for each pair of correlated 

variables, we retain the one that exhibits higher correlation with the dependent variable and drop the 

other one. 

 

We implemented our method in Microsoft Excel Visual Basic (VBA). We also used the SolveXL add-

in of Microsoft Excel to perform genetic algorithm-based optimization. We implemented the MDLP 

algorithm based on the Discretization package of R. 
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The remainder of this section is organized as follows: In Section 5.1, we describe the details of our 

implementation of the considered benchmark approaches (evaluated in parallel to our method). In 

Section 5.2, we provide an analytical account of our experimental results, and discuss how performance 

of our method compares to the competition. 

 

5.5.1 Benchmark Models Implementation 

 
5.5.1.1 CHAID  

 

CHAID is well-established algorithm for building decision trees [139]. Similar to other decision trees 

algorithms, CHAID allows for simplicity and intuitive visualizations of the obtained results. In addition, 

the non-parametric nature of CHAID allows for increased flexibility compared to other regression 

models. Nevertheless, these simplicity advantages come at the cost of significant overfitting proneness 

due to the entailed discretization of the observed time-series. In our experiments, variable discretization 

is performed by utilizing 10-bin histograms. We implemented CHAID using the XLSTAT package for 

VBA. 

 
5.5.1.2 LDA  

 

LDA is broadly used for credit scoring. For instance, the popular Z-Score algorithm of [133]is based on 

LDA. In essence, LDA is used to build binary classification models, predicting whether an examined 

company will go bankrupt or not. LDA is based on two main assumptions: (i) that the modeled 

independent variables are normally distributed; and (ii) that the two groups of modeled obligors 

(good and bad) exhibit homoscedasticity. As we previously discussed though, these assumptions are 

hardly plausible in real-world financial time-series. We implemented this approach in R, using the 

MASS R package. 



146 

 
5.5.1.3 Logistic regression  

 

Logistic regression is very often used by financial institutions for building credit scoring models due to 

its parsimonious structure. Similar to LDA, it is used to estimate the non-linear relationship between the 

modeled continuous independent variables and a categorical/binary dependent variable (in our 

case, good or bad obligors). In our implementation, model training is performed using maximum-

likelihood estimation. To perform optimization in the context of the M-step of the algorithm, we resort 

to the Newton-Raphson iterative optimization method. We implemented logistic regression in VBA, 

using the XLSTAT add-in. 

 

5.5.1.4 SVMs  

 

SVMs are one of the most popular types of non-linear, large-margin binary classifiers, estimating a 

separating hyperplane that achieves maximum separability between the data of the modeled two 

classes [123]. In our study, we evaluate soft-margin SVM classifiers using linear, radial basis function 

(RBF), polynomial, and sigmoid kernels, and retain the model configuration yielding optimal 

performance. For the latter purpose, we exploit the available validation set. Similarly, to select the 

hyperparameters of the evaluated kernels, as well as the cost hyperparameter of the SVM (related to the 

adopted soft margin), we resort to cross-validation; the candidate values of these hyperparameters are 

selected based on a grid-search algorithm [123]. We implemented this model in R using the e1071 

package; grid-search is a functionality included in the e1071 package (Tune routine). The employed 

cross-validation procedure determines the optimal SVM structure to comprise a linear kernel function 

with cost hyperparameter equal to 150. 

 



147 

5.5.1.5 RFs  

 

RFs have recently received considerable attention in various financial research fields [124]. RFs are 

supervised statistical machine learning methods that combine bootstrap aggregation and random 

subspace selection to generate or grow trees that all together define a forest. In more detail, RFs 

combine many binary regression decision trees that are selected by bootstrapping samples of the 

modeled explanatory variables and the corresponding classifier variables. Final prediction is made by 

averaging the predictions from all the individual trees in cases of regression problems, or using majority 

voting in cases of classification problems. The final set of random forest variables is selected using a 

variable importance index, which reflects the ‘‘importance’’ of a variable based on its contribution to 

classification accuracy. This is estimated by looking at how much prediction error increases when 

omitting a considered variable. Our implementation of RFs was based on the randomForest package of 

R. To perform optimal selection of the maximum number of trees in the forest, we perform cross-

validation using the available validation set; we select among specifications comprising 20, 50, 100, 

200, 500, 600, 700, 800, 900, and 1000 trees. This procedure yields a forest comprising 600 trees. The 

maximum number of selected variables for each tree is set equal to the 1/3 of the available financial 

ratios. 

 
5.5.1.6 FNNs  

 

Typically, credit rating systems employ multilayer perceptron (MLP) FNNs comprising the following 

layers: the input layer, where the explanatory variables are presented to the network, one or 

more hidden layers comprising sigmoid transfer functions, and an output layer where the predicted 

values are generated [174]. To perform model training, we use back-propagation [174]. We perform 

cross-validation to select the number of hidden layers and their component hidden neurons, exploiting 

the available validation set. This procedure selects an MLP with 1 hidden layer and 21 hidden neurons. 
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Training algorithm hyperparameters, including learning rates and momentum values, are also selected 

by means of cross-validation. Early stopping is employed to avoid overfitting. Our implementation of 

MLPs was based on the NeuroSolutions toolbox for VBA. 

 

5.5.2 Comparative Results  

 

5.5.2.1 Discriminatory Power Results  

 

High discriminatory power is a key requirement for rating systems, and the main evaluation criterion 

for selecting between alternative rating approaches. To quantitatively measure the performance of a 

scoring model, researchers and practitioners typically use statistical measures of performance such as 

the area under the receiver operating characteristic (ROC) curve, the GINI coefficient (accuracy ratio), 

the Kolmogorov-Smirnoff (K-S) statistic, the Bayesian error rate, Kendall’s τ and Somer’s D. In this 

work, we assess the discriminatory power of the evaluated rating systems using the GINI metric, K-S 

metric, and obtained Bayesian error rates [132]. Area under the ROC curve is not used, as it is directly 

connected with GINI, and essentially captures the same performance characteristics. Similarly, 

Kendall’s τ and Somer’s D usually provide similar insights with the aforementioned statistical 

measures, and, therefore, we decide to omit them from our analyses [132]. 

 

In Table 21, we depict the results obtained from the evaluated models. It is evident that the proposed 

SHMM-based rating system exhibits higher discriminatory power compared to all the considered 

competitors. More significantly, the obtained performance is more stable and more consistent across all 

test samples, resulting in lower performance standard deviation. This is an important merit of our 

approach, since achieving high average performance is as significant for a rating system as it is for it to 

achieve low performance variance, and thus, higher consistency and better performance guarantees. 



149 

Another interesting finding stemming from our results is that CHAID performs very poorly in the cases 

of the out-of-sample and out-of-time datasets. To our perception, this finding is most likely due to 

overfitting. On the other hand, we observe that FNNs perform slightly better than logistic regression 

and other machine learning techniques. Note though that the performance superiority of FNNs is not 

significant enough to counterbalance the advantages of other machine learning approaches, such as 

LDA and RFs, which offer much better computational complexity, while RFs have also the major 

advantage of allowing for yielding intuitive visualizations of the results of the inference algorithm. 

Regarding the obtained Bayesian error rate, we observe that our results confirm the stability of our 

approach, since the values of this statistic are similar in all the considered scenarios (in-sample, out-of-

sample, and out-of-time), and the classification errors are significantly lower than the considered 

benchmark models. Finally, we underline that the obtained GINI performance of our model is equal to 

or greater than 80% in all cases; according to industry benchmarks, SME credit rating systems yielding 

a GINI index exceeding 80% are considered to possess significantly high (industry-level) 

discriminatory power. Hence, our approach possesses the significant merit of yielding industry-level 

predictive performance, which increases its potential attractiveness to real-world financial institutions. 

A graphical illustration of the evolution of the obtained GINI values is provided in Fig. 5.5. 
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Table 21: Discriminatory Power Results of the Evaluated Algorithms.  
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Figure 5.5: Analysis of obtained GINI performance values.  
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Figure 5.6: Calibration Results.  

 
5.5.2.2 Calibration Results  

 

Finally, we elaborate on the results obtained from the system calibration procedure described in Section 

4.2.4. This procedure yields 9 rating grades. The default rates obtained by the calibrated 9-grade rating 

system are depicted in Fig. 5.6 (solid black line). In the same figure, we also show the results obtained 

from applying calibration to the out-of-sample and out-of-time datasets, using the rate ranges 

determined on the in-sample population. Looking at the out-of-sample results, we observe a rather 

stable performance in the estimation of the actual default rate that corresponds to the out-of-sample 

population. This is also verified by a performing a chi-square test (Table 22) to compare the in- and out-

of-sample calibrated populations. Therefore, we deduce that our SHMM-based prediction system does 

not exhibit statistically significant performance differences between the in-sample and out-of-sample 

datasets. 
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Further, we perform a similar analysis regarding the out-of-time samples. In this case, we observe quite 

different a result: Indeed, we observe a deviation of obligor’s behaviour (implied default rate) equal to 

5.6% w.r.t. the in-sample dataset, and equal to 17.7% w.r.t. the out-of-sample dataset. We would like to 

underline that this is not an unexpected system behaviour: credit rating systems typically need 

recalibration in their rating scale when dealing with out-of-time datasets, in order to allow for capturing 

significant changes in the business environment that cannot be otherwise predicted using the modeled 

financial ratio time-series. To resolve this issue, one could consider introducing into the fitted models 

some additional macroeconomic variable as a covariate (e.g., GDP, unemployment rate). 

 
Table 22: Calibration Results: Chi-squared test outcomes.  

 

 out-of-sample out-of-time 

χ2value (8 DoF) 8.8 288 

p-value >0.10 <0.0001 

Null Hypothesis Accept Reject 
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Chapter 6 Conclusions and ideas for further research 

 

In this final chapter we review our main results and discuss possible extensions to our work. The 

common theme of all chapters in this thesis is the application of HMMs in finance. After investigating 

the evolution of HMM and their theory in the last decades and tracking down the most significant 

results in the field of finance we extended theoretically the framework of HMMs by proposing a 

variable order with dependence jumps variation. We thorough investigated its forecasting ability in a 

broad group of financial time series and benchmarked our result with a wide group of state of the art 

models. Finally we designed a novel approach for building a corporate credit rating system using 

Student-t Hidden Markov Models that exhibits increased efficiency and stability.  

 

 

6.1.1 VDJ-HMM variation 

 

In chapter 4, we focused on the problem of modeling sequential data the temporal dynamics of which 

may switch between different patterns over time. To address this problem, we introduced a hierarchical 

model comprising two hidden chains of temporal dependencies: on the first layer, our model comprises 

a chain of latent observation-emitting states, the dependencies between which may change over time; 

on the second layer, our model utilizes a latent first-order Markov chain modeling the evolution of 

temporal dynamics pertaining to the first-layer latent process. To allow for tractable training and 

inference procedures, our model considers temporal dependencies taking the form of variable order 

dependence jumps, the order of which is inferred from the data as part of the model inference 

procedure. We devised efficient model training and inference algorithms under the maximum-

likelihood paradigm.  
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To evaluate the capacity of our method in effectively modeling non-homogeneous observed sequential 

data, where the patterns of temporal dependencies may change over time, we considered a number of 

computational finance applications. Specifically, we considered both volatility forecasting applications 

as well as value prediction applications dealing with financial return series for sets of considered assets. 

As we discussed, this setting allows for an objective evaluation of whether our approach does actually 

achieve its goals, since empirical evidence has shown that financial return series exhibit variable order 

non-linear temporal dependencies, as well as dependence jumps.  

 

Our experimental results provided strong evidence that our method is actually capable of delivering on 

its goals, allowing for obtaining much better performance compared to: (i) baseline (first-order) HMMs; 

(ii) the HMM∞ model, designed for capturing arbitrarily long temporal dependencies; and (iii) state-of-

the-art methods in the considered application domains, e.g. methods belonging to the GARCH family. 

As we showed, these encouraging performance results come at a very low additional computational cost 

compared to existing approaches; thus, our method offers a favourable performance/complexity trade-

off.  

 

An issue we have not fully addressed in this work is how we could allow for automatic determination of 

the optimal model configuration, without the need of resorting to cross-validation (as we did in our 

experimental evaluations). For this purpose, one could resort to devising a nonparametric Bayesian 

construction for the VDJ-HMM model, by imposing appropriate priors over the model parameters (e.g., 

Dirichlet process priors [175] over the transition probability matrices of our model), and performing 

Bayesian inference instead of maximum-likelihood training. This issue remains to be addressed in our 

future work.  
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6.1.2 Student-t HMM credit rating system 

 

In chapter 5, we proposed a novel credit rating system, leveraging the attractive properties of SHMMs. 

Our proposed approach is a holistic corporate credit scoring system, that addresses all the parts of the 

modeling pipeline, from financial ratio time-series selection and pre-processing, to selection of 

appropriate time-series modeling techniques, and information fusion strategies used to obtain the final 

credit scores. The core modeling stage of our system constitutes a novel financial time-series modeling 

scheme based on SHMMs. The utilization of SHMMs allows for capturing intricate temporal dynamics 

in the modeled data, reflecting the evolution of corporate behaviour and risk depending on the latent 

state of the economy. Furthermore, for the first time in the related literature, we employ an HMM using 

multivariate Student’s-t mixture models as its state emission distributions. This selection allows for us 

to obtain a model training algorithm with high robustness to outliers in the observed datasets, which 

constitute a common problem in financial time-series data; in addition, it also allows for better 

capturing correlations between the modeled financial ratios. Finally, our model obviates the need of 

resorting to the information-wasting observed variable quantization procedures related approaches 

require, which in turn offers increased robustness to overfitting. 

 

We performed extensive experimental evaluations of our approach using data from the Central Bank of 

Greece that pertain to both SMEs and large corporations, recorded over the period 2006-2012. As we 

showed, our approach consistently outperforms a series of benchmark approaches, both in terms of the 

obtained GINI coefficients and K-S statistics, and in terms of the obtained predictive variance, which 

quantifies the model’s capacity to retain the high performance levels observed in the in-sample dataset 

when evaluation is performed using out-of-sample and out-of-time datasets. This performance 

consistency implies a much stronger generalization capacity compared to the state-of-the-art, which 

renders our approach much more attractive to researchers and practitioners working in real-world 
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financial institutions, who are mainly interested in the generalization capacity of their systems, rather 

than in their in-sample performance. Finally, as a concluding note, we underline that both training and 

prediction generation using our system are extremely efficient and scalable to large datasets, without 

noteworthy overheads compared to existing benchmark systems. Thus, our system does not bring to the 

fore any kind of trade-off between computational complexity and predictive performance. 

 

One aspect that this work did not consider is whether allowing for our model to account for skewness in 

the observed data could result in yielding even better predictive performances. For example, for this 

purpose we could consider using mixtures of multivariate skewed-t distributions as the postulated 

emission distributions [176; 177] instead of simple multivariate Student’s-t distributions. However, the 

trade-offs between the obtained predictive performance increase and the increased computational costs 

resulting from such a modeling selection must be thoroughly examined. Further, exploration of 

Bayesian inference techniques for our model, which could allow for better accounting for uncertainty in 

the modeled data, is also worth of investigation. Finally, we also consider possible extensions of our 

model to allow for embedding expert judgments as an overlay, macroeconomic covariates, or covariates 

pertaining to qualitative information that credit officers may get aware of before it becomes depicted in 

the balance sheets of the examined companies. Such modifications could allow for addressing one of 

the main criticisms against scoring models, regarding their inability to capture rapid changes in 

corporation state that cannot be immediately reflected in their balance sheets. 

 

Finally, as an aside we note that in our approach we have postulated univariate component SHMMs, 

modeling each financial ratio independently of all the others. Even though this modeling selection may 

result in not allowing for the employed dynamic models (SHHMs) to extract salient covariances 

information, it also true that it offers a set of significant merits in the context of our approach: 

Specifically, it protects our system from problems arising from multi-colinearities in the modeled data, 
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and it prevents overfitting, which is likely to occur when modeling high-dimensional data. 

Nevertheless, exploring the utility of equivalent multivariate SHMM formulations in the context of our 

system remains an interesting question we intent to explore in our future work. 

 

6.1.3 Other topics worth exploring regarding HMM in finance 

 

Other interesting issues around the application of HMM in finance not addressed in the current 

literature and not exploited in this thesis but worth investigating in the future are listed below 

 

6.1.3.1 Maximum weighted likelihood Estimation 

 

The maximum likelihood estimation approach allocates equal weight in each observation of a sequence. 

There is often the case though that analyst needs to allocate different weights in each point in time due 

to different level of confidence for the information included in the respective value. For example a 

variable is measured with a different level of noise/error which is known. Then it is possible to adjust 

the estimation of the parameters of HMMs using different weights for each time stamp to account for 

this. Another use is the case were recent observations are considered more important and we want to 

allocate more weight to them in the estimation process. The Maximum weighted likelihood function is 

given by  

 

L = ∏ �(��;�)� ��
���  

 

Hu and Zidek analyze the MWL estimation in [178]. In appendix 3 an extension of the EM for the 

GHMM is outlined producing MWL estimation for the parameters.  
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6.1.3.2 Mixed Mixture Components from different distribution families 

 

In the current thesis and in most studies using HMM the conditional distribution family is symmetric 

for each hidden state and its component belong to the same family of distributions. Although Gaussian 

and Student-t mixture enhance distribution fitting efficiency many real life dataset especially in finance 

exhibit distributional properties which may be better capture using an non homogeneous mixture 

components for example Gaussian and exponential or student-t and Gaussian or inverse Gaussian, 

Skewed Student-t and Gaussian components. This variation is probable to offer an increase in the 

ability of HMM to fit financial time series. Their estimation is relevant easy since the EM algorithm can 

be extended to calculate the components weights for each mixture taking into account the different 

distribution family.   For example  

γ�(j,m)= �
��(�)��(�)

∑ ��(�)��(�)�
���
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� (3) 

extends the probability estimation that an observation ot was produced by Student-t m component at the 

hidden state j in a HMM set up where each conditional mixture includes both student-t and Gaussian 

components. Another example of a mixture with components from different families can be found in 

[179]. 

 

6.1.3.3 Multivariate VaR under an HMM framework 

 

HMM have been applied for estimating univariate VaR in [180] and produced satisfactory results. The 

multivariate case though to our knowledge has not been investigated in the literature. Based on theory, 

HMM with mixture distributions are efficiently extended to analyzing multivariate time series. Under 

this approach asset correlation can be directly modeled and Value at risk estimation can be robustly 

enhanced.  
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As an overall conclusion for our research study if that HMM offer a powerful framework for financial 

time series modeling, with competitive performance in many real life problems against well established 

statistical techniques. Moreover based on the current application and studies around Hidden Markov 

Models it is evident that HMM capabilities have not been fully explored in the current academic 

literature for addressing problems in the field of computational finance.  
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Appendix 1: Estimation Algorithms for VDJ HMM  

 

Definition of VDJ-HMM 

 

Let’s denote by ot the observation sequence, qt the hidden states affecting the observation and zt a 

hidden Markov process which sets the order on qt process. In our setup qt is not a Markov process since 

the Markov property is relaxed and the process exhibits jumps in the order affecting its evolution.  

 

Based on the graph we have the following setup: 

Let λbe the maximum order of the structure. 

��. The initial distribution of the Markov process that defines the evolution of the order of the hidden 

process   

��.The initial distribution of the hidden process affecting the observation process. It is the distribution 

of the first λ-ple of the ��,� = 1,… ,� and we can introduce parameters for this but the number needed 

will be large. Instead we can distribute the same probability in occurring of each λ-ple so we set 

��(�� = ��,… �� = ��)=
�

��  

Let’s denote by Aa matrix describing the transition probabilities of process qt. And  

A��
� = �[�� = � | ���� = ��,. . . ,���� = ��  ,�� = �] = �[�� = � | ���� = ��] 

k= 1,…,λ 

The A matrix can either not depend on k so A�� = �[�� = � | ���� = ��,. . . ,���� = ��  ,�� = �] =

�[�� = � | ���� = �] For k =1 , …,λ A�� 

or can depend on k where in this case we will have k different ��  matrices.  
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The conditional distribution corresponding to each hidden state can be either continuous (Gaussian, 

Gaussian Mixture, Student-t) or discrete   

 

Where j have discrete values from 1… N 

��(ℎ)= �[�� = ℎ | �� = �] 

As mentioned above process zt is a Markov process not observed with discrete values 1…λ. This means 

that the maximum order modeled through this novel approach is λ.  

��� = �[���� = � | �� = �] 

In the ���  transition matrix if the probability  ��� is close to 1 then the process qt  is almost a first order 

Markov process. In addition for λ=1 we get the first order hidden Markov model.  At the same time 

with λ>1 we can model higher order time series.  

 

Conditioned on zt-1,  qt the first layer process becomes a Markov process because  

�[�� = � | ���� = ��,. . . ,���� = ��  ,���� = �] =∑ �[�� = � | ���� = ��]�
��� * �[�� = ℎ | ���� = �].  

(Raftery 1985, A model for high order Markov chains)  

The estimation for this novel structure is accomplished using the EM algorithm.  

 

 

Expectation – Maximization (Baum –Welch) 

 

The Q-function of this structure  

� (�,�′)=  � ����(��
�,�,� |�)∗ �(��

�,�,� |�′)

�,�

 

Let the observation sequence ��
�  and initialization of the parameters Λ (Α, Β, Γ, πz,πq) 
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Then based on the structure and the conditional independence stemming from the graph we get  

����
�,��

� ,��
� ��)= �(��|�)∗ ����

���)∗ ∏ �(��|���� ,�)�
����� ∗ ∏ �(��|��,�����

,�)�
����� ∗ ∏ ���

(��|�)�
���  

(1) 

This is the probability of the joint event of observing the sequence O�
� and at the same time a specific 

realization of z�
�,q�

�. if we sum all possible q, z we estimate the P�O�
��Λ) under the specific group of 

parameters Λ. Based on our initial specification the following hold:  

�(��|�)= ���
 

�(��|���� ,�)=  �
������

 

�(��|��,�����
,�)= ������

��
 

�(��
�|��

�,��
� ,�)=  � ���

(��|�)

�

���

 

�(��
� ,|��

� ,�)=  
1

� �
� ������

��

�

�����

 

�(��
� |�)=  ���

� �
������

�

�����

 

Since,  

����
�,��

� ,��
� ��)= �(��|�)∗ ����

���)∗ ∏ �(��|���� ,�)�
����� ∗ ∏ �(��|��,�����

,�)�
����� ∗ ∏ ���

(��|�)�
���  

 

by taking the log in the above relationship and summing over all possible combinations of the hidden 

variables sequences the q- function becomes  

� (�,��) =  ∑ ����(��|�)∗ �(��
�,�,� |�′)�,�  (�)+ 

∑ ����(�
1

� |�)∗�,�
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�(��
�,�,� |�′)(B)∑ ∑ ����(��|��− 1 ,�) ∗ �(��

�,�,� |�′)�
������,�  (�)+∑ ∑ ������

�
���,�

�− ��
,�)∗

�
������,�

�(��
�,�,� |�′) (� )+∑ ∑ �����

�
(��|�)∗ �(��

�,�,� |�′)�
����,� (�) 

 

For each component (A) to (E) we sum over all possible combinations of z, q hidden sequences and the 

variables not included in the right hand side disappear and the marginal probabilities of the remaining 

variables are formed:  

 

A =>∑ ����(��|�)∗ �(��
�,�,� |�′)�,� =  ∑ �����(�)∗ �(��

�,�� = � |�′)�
���  

�(∑ �����(�)∗����
�,���� ���)�

��� � �∗(∑ ��(�)− 1)
�
���

���(�)
= 0 =>

�

��(�)
* �(��

�,�� = � |�′)+ � = 0 = >  

∑ �(��
�,�� = � |�′)�

��� +  � ∗ (∑ ��(�)− 1)
�
��� =0 =>γ=- �(��

�|�′)so  

 

��(�)=
����

�,���� ���)

�(��
�|��) 

 (2) 

B =>∑ ����(�
1

� |�)∗ �(��
�,�,� |�′)�,�  since this is the initial set to be����

���� =
�

��  no need to 

maximize  it 

C =>∑ ∑ ����(��|��− 1 ,�)∗ �(��
�,�,� |�′)�

������,� =  ∑ ∑ ∑ ����(�� = � |��− 1 = � ,�)∗
�
�����

�
���

�
�= 1

�(��
�,�,� |�′) = ∑ ∑ ∑ ������ ∗ �(��

�,�� = �, ��− 1 = �|�′)�
�����

�
���

�
�= 1  

�(��
�,�� = � |�′) =  � �(��

�,�� = �, ��− 1 = �|�′)

�

���

 

�(∑ ∑ ∑ ������ ∗ �(��
�,�� = �, ��− 1 = �|�′)�

�����
�
���

�
�= 1 +  ∑ ��(∑ ��� − 1))

�
���

�
���

����
= 0 

For specific j we get  
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�(∑ ∑ ������ ∗ �(��
�,�� = �, ��− 1 = �|�′)�

�����
�
��� +  ��(∑ ��� − 1)�

��� )

����
= 0 

 

By differentiating for all i with constant j and summing for all i we get 

�� ∗ ∑ ���
�
��� + ∑ ∑ �(��

�,�� = �, ��− 1 = �|�′)�
�����

�
���  = 0 =>�� =  −  ∑ �(��

�, ��− 1 = �|�′)�
�����  

��� =  
∑ ����

�,����, ���������)�
�����

∑ ����
�, ���������)�

�����

  , ∀ �,� (3) 

 

D =>∑ ∑ ������
�
���,�

�− ��
,�)∗ �(��

�,�,� |�′)�
������,�  = ∑ ∑ ∑ ∑ ������

�
= �,�� = �,�

�− �
=

�
�����

�
���

�
���

�
���

� |�)∗ ����
� ,�

�
= �,�� = �,�

�− �
= ���′)= ∑ ∑ ∑ ∑ ������

(�)
∗ ����

� ,�
�

= �,�� = �,�
�− �

= ���′)�
�����

�
���

�
���

�
���  

The k in the parenthesis indicates a different transition matrix for different values of k – lag (if preferred 

for modeling purposes) 

 

By differentiating we get  

��� =  
∑ ∑ ����

�,����,����,������ ���)�
�����

�
���

∑ ∑ ����
�,����,������ ���)�

�����
�
���

 (4) 

 

togetadifferenttransitionprobabilitybykorderwemayusethefollowingformula. 

���
(�)

=  
∑ � ��1

�
,�� = �,�� = �,���� = ���′)�

�= �+ 1

∑ � ��1
�

,�� = �,���� = ���′)�
�= �+ 1

 

 



172 

The state-conditional density distribution of the observed sequence can either be continuous or discrete-

valued and is estimated maximizing relationship (E). In our implementation we assume Gaussian 

mixtures distributions as the conditional densities distributions for each hidden state. Irrespective of the 

structure of the hidden stochastic process the relationship (conditional dependence) with the observe 

process remains the same as the usual structure. For Gaussian Mixtures, the form of the Q-function is 

slightly different, i.e., the hidden variables must include not only the hidden state sequence, but also a 

variable indicating the mixture component for each state at each time.  

Lets denote by  

���(��) ~ N ���,���,���� = 
�

|���|
�
�(��)

�
�

��
�

�
��������

�
���

�� �������� 

the m-component of the Gaussian mixture given that the hidden state is j (total components in the 

mixture c) 

and summing over m we get  ��(��) = �[�� | �� = � ] = ∑ ��� ∗ ���(��)�
���  

We denote���
(�,�) = �(�� = � ,�� = �   |�′,��

�)  the probability at time t the hidden state equals j and 

the component that produced the observation is the m-th component of the j-th mixture, where 

c�is the component at time t 

��(�)= �(�� = �|�′,��
�)  the probability at time t the hidden state equals j 

Due to the conditional independence embedded in the structure of the hmm we get  

�(�� = � ,�� = �   |�1
�

,�′)   = �(�� = �   |�1
�

,�� = � ,�′)  * �(�� = �|�1
�

,�′) 

So based on the above we get  

���
(�,�)= ��(�)∗ �

���� ���,���,����

∑ ���� ���,���,�����
���

�(5) 
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After the estimation of ���
(�,�) the means, standard deviations and weights for each component are 

calculated using (6), (7), (8) below and the derivations of these relationships are the same with every 

other hmm. For more details see [181], 

Weights:��� =  
∑ ���

(�,�)�
���

∑ ∑ ���
(�,�)�

���
�
���

(6) 

Mean: ��� =  
∑ ���

(�,�)��
�
���

∑ ���
(�,�)�

���
(7) 

Standard deviation:��� =  
∑ ���

(�,�)�������
�����������

����
�

�
���

∑ ���
(�,�)�

���
(8) 

To sum up in order to recalculate the variables in each iteration step of the Expectation Maximization 

Algorithm we have to estimate the following probabilities: 

��(�)= � (�� = �|��
�,�′), for  t=1,…,T 

���
(�,�)= �(��

�,�� = � ,�� = �   |�′), for t=1,…,T 

�����
(�,�,�)= �(��

�,�� = �,�� = �,���� = � |�′), for t=λ+1,…,T 

����
(�,�) = �(��

�,�� = �,���� = � |�′),for t=λ+1,…,T 

����
(�,�)=  �(��

�,�� = �, ���� = �|�′),for t=λ+1,…,T 

���
(�)= �(��

�, �� = �|�′),for t=λ+1,…,T 

 

In order to estimate the parameters of the model we need to define the respective a-pass and b-pass 

algorithms for the new structure to perform our calculations. In order to proceed with the estimation 

methodology we have to deal with the starting parameters, and to define the necessary forward a-pass 

and backward b-pass probabilities. Since the order of �� is λwe denote the initial state is Π(q1, …,qλ). 
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This is the distribution of the first λ hidden states. In order to avoid introducing more parameters into 

the system we assume that Π(q1, …,qλ) is uniformly distributed meaning that  

�( ��,… ,��|�′)=
�

��, and independent of ��. 

 

Forward Algorithm 

 

We define the a pass by  

��(��,… ,��,�)= �(��  =  ��,… ,������ = ��,��  =  �,��
�|�′)  

Initialize  

��(��,… ,��,�)= �(��  =  ��,… ,�� = ��,��  =  �,��
�|�′) =  

�(��  =  �|�′)∗ �(��  =  ��,… ,�� = ��|��,��  =  �) * ����
����,��  =  ��,… ,�� = �� ) 

=  ��(�)∗
�

��*∏ ���
�
��� (��). 

Induction Step 

�� (������
� ,��) = �� (��,… ,��,�)= �(��  =  ��,… ,������ = ��,��  =  �,��

�|�′) =  

 

�(��|��
���,������

� ,��,��)* �(��
���,������

� ,�� = �|��) = �(��|��,��)* �(��
���,������

� ,�� = �|��) =  

�(��|��,��)*∑ ∑ �(��
���,������

� ,�� = �,���� = �,���� = � |��)�
���

�
��� =  

 

�(��|��,��)*∑ ∑ �(�� = ����
���,������

�  ,���� = �,���� = � ,��) ∗ ����|��
���,������

��� ,����,=�
���

�
���

�,�� = �,���� = � ,���  ∗  �(��
���,������

��� ,���� = �,���� = � ,��)=  

 

�(��|��,��) *∑ ∑ �(�� = �|���� = �,��)∗ ����|������
��� ,�� = �,���� = � ,��� ∗�

���
�
��� ���� 

(����
���,����) =  
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���
(��|�)*∑ ∑ ��������� ∗ ����|�����

,��� ∗�
���

�
��� ���� (������

��� ,���� = �,���� = �) 

�� �� = � �ℎ�� �(��|���� = � ,��) 

���
(��|�)*∑ ∑ ��� ∗ �(��|����,��)∗�

���
�
��� ���� (������

��� ,���� = �,���� = �) 

 

Where�(��|����,��)=  �������

(���)
 

 

Backward Algorithm 

 

We define the β pass by  

��(��,… ,��,�)= �(����
�  | ��  =  ��,… ,������ = ��,��  =  � |�′)  

Initialize  

��(��,… ,��,�)= 1 ∀ 1 ≤  ��,… ,��  ≤ �  , 1 ≤  � ≤ �  

Induction Step 

 

Let� ≤  �≤ � 

Then, ��(��,… ,��,�) = �(����
�  | ��  =  ��,… ,������ = ��,��  =  � |�′)=  ∑ ∑ �(����

�  , ���� =�
���

�
���

�, ����  =  � | ��  =  ��,… ,������ = ��,��  =  � |�′) =    

 

∑ ∑ �(���� | ����
� , ���� = �, ����  = �, ��  =  ��,… ,������ = ��,��  =  � ,�′)�

���
�
���  ∗

 �(����
� ,���� = �, ����  =  �| ��  =  ��,… ,������ = ��,��  =  �,�′) =  

 

∑ ∑ �( ���� |  ���� = �,�′)∗ �(����
� | ���� = �, ����  =  �, ��  =  ��,… ,������ = ��,��  =�

���
�
���

 �,�′) ∗  �(���� = �|  ����  =  �,��  =  ��,… ,������ = ��,��  =  �,��)∗  �( ����  =  � |��  =

 ��,… ,������ = ��,��  =  �,�′)= 
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∑ ∑ �������(����)∗ �(����
� | ���� = �, ����  =  �, ��  =  ��,… ,������ = ����,�′)�

���
�
���  ∗

 �(���� = �|  ����  =  �,��  =  ��,… ,������ = ��,��)∗  �( ����  =  � | ��  =  �,�′)=  

 

∑ ∑ �������(����)∗�
���

�
��� ����(�,��,… ,����,�)∗  �(���� = �| ������ = ��,��)∗ ��� 

 

Where�(���� = �| ������ = ��,��)∗ =  �����

(�)
 

The upper script s refers to different by order transition matrix for the states  

 

Migration Probability 

We define the following probability (transition probability)  

��(��,… ,����,�)=����
�,��  =  ��,… ,���� = ����,��  =  � ��′)  = 

�(O���
� | O�

� , q�  =  i�,… ,q��� = i���,z�  =  k ��′)   * �(��
�,��  =  ��,… ,���� = ����,��  =  � |�′) = 

�(����
� |  ��  =  ��,… ,������ = ��,��  =  �,��) ∗   �(��

�,��  =  ��,… ,���� = ����,��  =  � |�′) =

 ��(��,… ,��,�) * �(�� ,��
���,��  =  ��,… ,���� = ����,��  =  � |�′) = 

��(��,… ,��,�) * �(�� |  ��
���,��  =  ��,… ,���� = ����,��  =  � ,��) * �( ��  =  ��| ��

���,����  =

 ��,… ,���� = ����,��  =  � ,��) * ∑ �(��
���,����  =  ��,… ,���� = ����,��  =  �, ����  =  �|��)�

���  

=��(��,… ,��,�)∗ ������
(�� )∗  A������

∗

 ∑ � (��  =  �|����  =  �,��) ∗   �(��
���,����  =  ��,… ,���� = ����,����  =  �|��)�

��� =  

��(��,… ,��,�)∗ ������
(�� )∗ A������

 ∗   � ��� ∗ ����(��,… ,����,�)

�

���
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Note that if we assume different transition matrix by order k, A(k+1) then in the last equation �������

(���)
 

Using ��(��,… ,����,�)=  �(��
�, ��  =  ��,… ,���� = ����,��  =  � |�′)we get the following 

relationship in a similar way 

���(��,… ,����,k,��)=  �(��
�,��  =  ��,… ,���� = ����,�� = �, ���� = ��|�′) = ��(��,… ,��,�)∗

������
(�� )∗  A������

 ∗ ���� ∗ ����(��,… ,����,��) 

 

Using the following probabilities ��(��,… ,����,�),���(��,… ,����,k,��), 

��(��,… ,��,�) and��(��,… ,��,�)we can estimate the probabilities (2) – (5) in the following way 

 

��(�)= � (�� = ��|��
�,�′) = 

� (�����,��
�|��) 

� (��
�|��) 

 = 
∑ ∑ ��(��,… ,��,�)∗��(��,… ,��,�)�

�= 1
�
��,… ,����

∑ ∑ ��(��,… ,��,�)∗��(��,… ,��,�)�
�= 1

�
��,… ,����

 (9) 

In addition from (5) we get ���
(�,�) = ��(�)∗ �

���� ���,���,����

∑ ���� ���,���,�����
���

� 

 

�����
(�,�,�)= ����

�,�
�

= �,�� = �,�
�− �

= ���′)= ∑ � ��1
�

,�� =  �,… ,��− �+ 1 = ��,��− � =�
�2 ,… ,��,��+ 2,… ,��+ 1= 1

�,��− �− 1 = ��+ 2 … ,�
�− �

= ��+ 1,�� =  � � �′)= ∑ ����,�2 ,… ,��,�,��+ 2,… ,��+ 1,���
�2 ,… ,��,��+ 2,… ,��+ 1= 1 (13) 

����
(�,�) = ����

�,�� = �,�
�− �

= ���′)  = ∑ � ��1
�

,�� =  �1 ,… ,��− �+ 1 = ��,��− � =�
�1 ,… ,��,��+ 2,… ,��+ 1= 1

�,��− �− 1 = ��+ 2 … ,�
�− �

= ��+ 1,�� =  � � �′)= ∑ ����1 ,�2 ,… ,��,�,��+ 2,… ,��+ 1,���
�1 ,… ,��,��+ 2,… ,��+ 1= 1 (14) 

 

����
(�,�) = ����

�,�� = �, ��− � = ����′)= ∑ � ��1
�

,�� =  �1,… ,��− � = ��+ 1,�� = �, ���� = �1��′) �
�1 ,… ,��+ 1= 1 = 

∑ ���(�1,… ,��+ 1,�,�1) �
�1 ,… ,��+ 1= 1 (15) 
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���
(�) = � ��� = �,��

���′�= 

∑ � ��1
�

,�� =  �,… ,��− � = ��+ 1,�� =  � ��′)�
�1 ,… ,��+ 1= 1 = ∑ ��(�1,… ,��+ 1,�,) �

�1 ,… ,��+ 1= 1  (16) 

Based on (2) we get  

��(�)=
����

�,���� ���)

�(��
�|��) 

=
∑ ��(��,… ,����,�,) �

�� ,… ,������

∑ ��(��,… ,����,�,) � ,�

�� ,… ,������,���

 (10) 

Based on (3) we get  

��� =  
∑ ����

�,����, ���������)�
�����

∑ ����
�, ���������)�

�����

=
∑ ����

(�,�)�
�����

∑ ���
(�)���

���

 (11) 

Based on (4) we get  

��� =  
∑ ∑ ����

�,����,����,������ ���)�
�����

�
���

∑ ∑ ����
�,����,������ ���)�

�����
�
���

=
∑ ∑ �����

(�,�,�)�
���

�
���

∑ ∑ ����
(�,�)�

�����
�
���

(12) 

 

EM Algorithm for Solving VDJ-HMM   

The following equations summarize the estimation procedure of the parameters of VDJ-HMM.  

Iterations Counter: k: = 0 

1. Set the initial values of the parameters of an VDJ-HMM. 

2. Calculation using the forward - backward algorithm of ��(��,… ,��,�) , ��(��,… ,��,�), 

��(��,… ,����,�),���(��,… ,����,k,��)variables 

3. E-step: calculation of the variables ��(�),���
(�,�),�����

(�,�,�),����
(�,�),����

(�,�),���
(�)using 

the equations(5), (9), (13),(14),(15),(16) respectively 

4. M-step: Calculation of variables ���, ���, ���, ��, ���
(�), ���usingtheequations(6), (7), (8), (10), 

(12) ,(11) respectively 

5. If EM algorithm converges iel – l’< threshold then finish else increase by 1 the iteration counter 

k: = k + 1 and repeat steps 2-5. 
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Log-likelihood Estimation 

Equation (6) describes the joint probability of��
�with a specific realization of ��

�,��
�hidden variables.  If 

we sum over all ��
�,��

�hidden sequences we get the �(��
�|�) under the specific parameterization. The 

likelihood of the observed sequence of length T (�(��
�|�) ) is, as usual, estimated using the forward 

algorithm described previously by summing over all possible values of the λ+1 ple, �� ,… ������,��  

�(��
�|�′)=

∑ �(��  =  ��,… ,������ = ��,��  =  �,��
� |�′)�,�

��,… ,����,��� =∑ �� (��,… ,��,�)�,�
��,… ,�� ��,���  
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Appendix 2: Expectation Maximization Algorithm 

 

A popular method for estimating the parameters of an HMM is Baum - Welch Algorithm [182], a 

technique where in the case of hidden Markov models coincides with the solution of the system using 

the well - known Expectation Maximization algorithm [6]. It should be noted that the solving method 

developed by Baum and his colleagues preceded the theoretical occurrence of EM by 10 years. Initially, 

the EM algorithm has been developed for estimating the maximum likelihood in the case of systems 

estimation with incomplete data. However, its use was expanded in the case of latent variables like the 

theory of HMM. For example in the case of GHMM for one length T sequence the hidden variables are 

the system states and the sequence that determines the component distribution of the mixture from 

which visible variable was produced. Today the Expectation Maximization algorithm is one of the most 

widespread methods for estimating maximum likelihood. This appendix summarizes the basic 

principles of the general form of the algorithm applied to a series of problems nowadays that contain 

hidden / incomplete data. 

 

The EM algorithm is a general method to estimate maximum likelihood for problems with incomplete 

data. From conception onwards has been applied to a variety of cases from the estimation of mixed 

probability distributions to the voice recognition problems and tomography. There are two main 

applications of the algorithm EM. The first is the data actually are missing values, due to problems and 

limitations in the observation process, while the second in optimizing the likelihood function is difficult 

to solve analytically, while assuming the existence of additional variables which are either missing (or 

hidden) can simplify the estimation process of the MLE. The second application is more common in 

computational pattern recognition community. 
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Suppose that dataset X is observed and follow a specific distribution. Let us denote by Y the set of data 

that is not observed. We assume that the full data set Z = (X, Y) have joint density function given by the 

following equation 

p(z|Θ) = p(x,y|Θ) = p(y| x,Θ)p(x|Θ) (1) 

. 

Because the dataset Y traditional methods to estimate the parameters maximizing the likelihood 

function is not possible. The algorithm EM, makes use of an auxiliary function, the so-called “Q-

function”, to deal with missing data. Essentially the EM initially estimates the expected value of the 

logarithm of the likelihood function for the data set based on all possible values of Y given the price of 

the set X and some initial estimates of the parameters in the function f( y| Χ, Θ(���)). Therefore the Q-

function is defined as follows: 

 

Q(Θ,Θ(���)) = ∫ ����(�,�|�)f( y| Χ,�(���))��
�∈�

 

 

Where Θ(���)are current estimates of the system variables used to calculate the expected value andΘ are 

the new values of the system parameters calculated by the function Q through maximization. 

Specifically the function (2)  Χ, Θ(���)are considered known, Θ is the set of values of the parameters to 

be estimated and Y is a set of random variables defined by the function f( y| Χ, Θ(���)). Therefore 

equation 2 can be rewritten as follows: 

 

Q(Θ,Θ(���)) = ∫ ����(�,�|�)f( y| Χ,�(���))��
�∈�

 

The function f( y| Χ, Θ(���))is the marginal distribution of the latent data and depend only on the values 

of the data set X and the current values of the parameters. The estimation of the expected value of the 

function is the so-called E-step of EM. From the definition of Q function Θ refers to the set of 
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parameters to be estimated in order to maximize the likelihood function while Θ(���)correspond to the 

parameters we use to estimate the expected value of the function in order to substitute the values of 

hidden variables with their respective expected values. The second step of the EM algorithm, the M-

Step involves the maximizing of  Q function with respect to Θ. That is  

Θ(�) = ������ Q(Θ,Θ(���))
Θ

 

 

These two steps are repeated in the same order. Each iteration has been proven to lead to greater or 

equal price of the log-likelihood function and the algorithm by default converges at least to a local 

maximum of the likelihood function. For a detailed presentation of properties and theoretical evidence 

of the algorithm please refer to [6]. 
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Appendix 3: Maximum weighted likelihood for GHMM 

 

 

EM for Maximum Weighted Likelihood 

In the general case the log weighted likelihood can be written as follows  

 

l=∑ w �log�p(x�;θ)��  

όπου∑ w� �
= 1 

 

Thus the following hold for the log function 

 

l =∑ w �log�∑ p(x�,z�;θ)
�(��|��;θ�)

�(��|��;θ�)��
��  

 

l =∑ w �log�∑ p(z�|x�;θ�)
�(��,��;θ)

�(��|��;θ�)��
�� >=∑ w � ∑ p(z�|x�;θ�)log

�(��,��;θ)

�(��|��;θ�)���  

 

=∑ w � ∑ p(z�|x�;θ�)log
�(��,��;θ)

�(��|��;θ�)���  

 

Θ = argmax�∑ w � ∑ p(z�|x�;θ�)log��� p(x�,z�;θ)� = argmax�∑ ∑ p(z�|x�;θ�)w �log��� p(x�,z�;θ)� 

 

Thus the weights appear in as a product for each observation in the Q function of the log weighted 

likelihood.  

 
The EM for the MWL estimation for the GHMM 

 

Based on the above result in the case of weighted likelihood with weight scheme  

�� , t=1,…, T Q function becomes: 
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Q(λ, λ΄) = ∑ ���������∈� P(O, q|λ΄) +∑ �∑ ������������
�
��� ��(�,�|� )́ �∈�  

+∑ �∑ ��������
(��)�

��� ��(�,�|� )́ �∈�  

 

where ���
(��) = ∑ ����

�
��� ����(��)and  

���(��) ~ N���,���,���� = 
�

|���|
�
�(��)

�
�

��
�

�
��� � ����

�
���

�� ��� � ���� 

It is straightforward that equations of the EM algorithm under the current set up become 

��(�,�)=
����(�)�����(����)����(�)

∑ �� ∑ ��(�)�����(����)����(�)�
���

�
���

  (1) 

��(�)= 
����(�)��(�)

∑ ����(�)��(�)�
���

 (2) 

��(�,�) = �
����(�)��(�)

∑ ����(�)��(�)�
���

� �
�������,���,����

∑ �������,���,�����
���

� (3) 

��� =  
∑ ����(�,�)�

���

∑ �� ∑ ��(�,�)�
���

�
���

 (4) 

��� =  
∑ ����(�,�)��

�
���

∑ ����(�,�)�
���

 (5) 

��� =  
∑ ����(�,�)��� � ���

������� � ���
����

�
�
���

∑ ����(�,�)�
���

 (6) 

��
�= ��(�) (7) 

���
�  = 

∑ ����(�,�)���
���

∑ ����(�)���
���

 (8) 

 

EM Algorithm for Solving a GHMM for MWL 

 

Iterations Counter: k: = 0 

1. Set the initial values of the parameters of an GHMM 

2. Calculation using the forward - backward algorithm of ��(�) and ��(�) variables 
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3. E-step: calculation of the variables ��(�,�), ��(�), ��(�,�) using the relations (1), (2), (3) 

respectively 

4. M-step: calculation of variables ���, ���, ���, ��, ���  using the relations (6), (5), (4), (7), (8) 

5. If EM algorithm converges i.e. l – l’< threshold then finish differently increase by 1 the 

iteration counter k: = k + 1 and repeat steps 2-5. 
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Appendix 4: k-MEANS Initialization Algorithm for GHMM 

 

The first thing that must be done to train an HMM is to set the initial values of the parameters (λ). An 

easy approach is to use a random number generator process to select the values of probabilities taking 

into account constraints such as ∑ π� = 1�
��� . Since the EM algorithm guarantees convergence to a local 

maximum means that the random initial values lead to satisfactory results. However it would be ideal to 

find the total maximum if it exists, because then the HMM will provide the optimal fitting in the 

dataset. In addition to the literature [8] shows that good initial values especially in the case of 

continuous HMM lead to a substantial improvement of the results. 

 

For a more efficient initialization process in [8] an adjusted to hmm K-means algorithm is described for 

the case of GHMM.  Below the steps of the algorithm are briefly described for the case of hidden 

Markov models with normal distributions mixture: 

 

• A large volume of data sequences are fed into the model. The parameters λ(π, A, Σ, μ, W) are 

initialized randomly. Then the likelihood of the sequence O is calculated based on the initialized 

HMM and the parameters λ. 

• Based on the sequence data and the Viterbi algorithm produced the optimal state sequence of 

hidden states is determined. Then, based on this sequence of observations O is grouped into N 

groups based on the hidden state allocated to it through the Viterbi decoding process 

• Each of the N groups obtained in step 2 is divided into M groups, equal to the number of 

component of Gaussian mixtures of initial HMM set up. The algorithm K-Means, applied in this 

step, is generally used for separating a dataset  D in K disjoint subsets S�, containing D�points 

such as to minimize the function 
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� � ��� −  ���
�

�∈��

�

���

 

 

• where x� is the price for d��observation and μ� is the average value for the data belonging to the 

subset S�. 

• The above steps have created N x M groups. For each group corresponding to a particular 

normal distribution of a Gaussian mixture corresponding to a particular hidden state new values 

of mean and variance are calculates using the conventional sample estimators of these variables. 

Additional weights in each normal mixture are calculated as: w ��= number of data in the group 

corresponding to the member i of a mixture distribution j to all the data that are assigned to the 

mixture distribution j.  

• In addition using the sequence of hidden states obtained in step two Table A of transitions 

probabilities is estimated as the number of transitions from state i to j against the number of 

occurrence of hidden state, and renewed. Finally the initial distribution π is updated as the total 

number of occurrences of hidden state I over the length of the sequence of hidden states. 

• Then using the renewed parameters λthe likelihood of the observation sequence is recalculated 

O and if the difference with the original likelihood is smaller than a threshold d then the process 

stops. Otherwise the process is repeated from step 2. 
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