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Abstract

Corporate credit scoring is widely used by financial institutions for portfolio risk
management, and for pricing financial products designed for corporations. In
addition, from a regulatory perspective, internal rating models are commonly
used for establishing a more risk-sensitive capital adequacy framework for fi-
nancial institutions. In this context, a large variety of statistical and machine
learning tools have been applied to allow for successfully distinguishing between
good and bad obligors. In this work, we propose a novel corporate credit rating
system based on Student’s-t hidden Markov models (SHMMs). SHMMs are a
well established method for modeling heavy-tailed time-series data. Under our
approach, we use a properly selected set of financial ratios to perform credit
scoring. For each one of these financial ratios, we postulate a distinct SHHM,
trained on five-year time-series data. Eventually, we aggregate the prediction
signals generated by these SHMMs, using a linear predictive model optimized
by application of an efficient genetic algorithm. We evaluate our method us-
ing a dataset pertaining to Greek corporations and SMEs; this dataset includes
five-year financial data, and delinquency behavioral information. We perform
extensive comparisons of the credit risk assessments obtained from our method
with other broadly-used models, namely methods based on feedforward neural
networks, random forests, support vector machines, linear discriminant analysis,
logistic regression, and Chi-squared Automatic Interaction Detector (CHAID).
As we show, our approach yields better and more stable discriminatory perfor-
mance in the considered scenarios compared to the considered state-of-the-art
alternatives.

Keywords: Corporate credit rating, hidden Markov model, Student’s-t
distribution, expectation-maximization, Basel framework, statistical machine
learning.

1. Introduction

In this work, we focus on the problem of credit scoring/rating of individual
corporations. In general, a credit scoring/rating system makes use of a statistical
technique that combines and analyzes a series of account statement data to
predict the future behavior of a company in terms of its ability to service its
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debt. The used account data are usually in the form of financial ratios, while
the system-generated predictions are typically quantified as the likelihood of
occurrence of a default event at some specific future time point.

Credit rating systems are extensively used by the financial sector for the
purpose of predicting the evolution of the financial behavior of an obligor. Re-
liable prediction of the future behavior of corporations and measurement of
their performance is crucial to private investors for pricing and evaluating their
alternative investment options. Financial institutions have been making exten-
sive use of scoring systems for many decades, as a prudent lending practice
that allows for better pricing their loan products, and properly quantifying the
credit risk embedded in their loan portfolios. In addition, procedures targeted
to credit portfolio quality improvement and management of credit losses in the
delinquent part of portfolios are highly dependent upon credit scoring systems,
which lay the foundation of best practice policies established among financial
institutions. As such, credit rating systems are nowadays attached to a series of
important internal processes in the financial sector, like pricing, loan granting,
provisioning, and risk management.

The introduction of the Basel II framework (Basel Committee on Bank-
ing Supervision, 2005a), and its continuation in Basel III (Basel Committee on
Banking Supervision, 2010), has triggered renewed interest in credit rating mod-
els research. Specifically, under these frameworks, financial institutions have
been granted with the right to develop rating systems for measurement of ex-
pected and unexpected losses, allowing for them to establish more risk-sensitive
capital adequacy policies. However, Basel II and III frameworks impose specific
technical constraints (accuracy requirements) that the used credit rating sys-
tems have to comply with. As such, since the introduction of Basel II, banks
have been consistently motivated to develop more accurate and robust predic-
tion systems, exploring new statistical techniques especially from the field of
statistical machine learning. At the same time, the emergence of the internal
ratings-based (IRB) framework has imposed increased requirements on finan-
cial institutions regarding collection of financial data from their clients (Basel
Committee on Banking Supervision, 2005b). As such, financial institutions have
nowadays accumulated vast amounts of financial ratio data, which can be lever-
aged by financial researchers so as to develop advanced corporate credit scoring
systems. These advances have resulted in a significant enhancement of the so-
phisticated internal models employed by financial institutions in recent years.
This achievement has in turn facilitated a significant decrease in the reliance of
the credit approval and risk monitoring internal processes of financial institu-
tions on subjective expert judgment, and has heralded a new era of advanced
quantitative reasoning based on objective predictive modeling techniques.

In the last decades, a plethora of alternative approaches have been developed
to address the problem of modeling the credit quality of a company, using both
quantitative information (e.g., account statements) and qualitative information
(e.g., other underwriting criteria, such as obligors market and sector indica-
tors). A first category of approaches belongs to the family of classical regression
techniques. Altman (1968) used multiple linear discriminant analysis (LDA) to
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build a rating system for predicting corporate bankruptcies. They estimated a
linear discriminant function using liquidity, profitability, leverage, solvency, and
turnover financial ratios to estimate credit quality; they dubbed their approach
as the Z-score model. One of the main drawbacks of this approach is its as-
sumption that the modeled variables are normally distributed, which is hardly
ever the case in real-world scenarios. As such, this method cannot effectively
capture nonlinear relationships among the modeled variables, which is crucial
for the performance of the credit rating system. In a similar vein, several stud-
ies have explored the utility of probit models (e.g, (Mizen and Tsoukas, 2012))
and linear regression models (e.g., Avery et al. (2004)). However, these models
continue to suffer from the same drawbacks that plague LDA, namely their clear
inability to capture non-linear dynamics, which are prevalent in financial ratio
data (Petr and Gurný, 2013).

Logistic regression is another approach broadly used for building corpo-
rate rating systems. It was first used by Ohlson (1980) to predict corporate
bankruptcy based on publicly available financial data pertaining to several en-
terprises (e.g., financial ratios). Logistic regression models employed in this
context are essentially used to classify corporations into two distinct classes
characterizing their credit risk (i.e., good or bad). Typically, a sigmoid likeli-
hood function is used for modeling purposes to allow for capturing non-linearities
and relaxing the normality assumption during model estimation (Kamstra et al.,
2001).

Decision trees comprise a further category of non-parametric methods used
for developing credit rating systems. Decision trees are models that consist of a
set of nodes, corresponding to the modeled explanatory variables, and split con-
ditions based on a hierarchical selection of the modeled explanatory variables.
Two well-known algorithms in this field are the Chi-squared Automatic Inter-
action Detector (CHAID) (GV, 1978) and CART (Breiman et al., 1984) tech-
niques. Decision trees offer simplicity and flexibility in the employed modeling
assumptions, while also allowing for easy visualization of the learned modeling
strategies (obtained after training). On the negative side, the entailed variable
discretization performed by these models results in potential loss of significant
information, as well as overfitting proneness.

Another popular class of statistical models used for credit rating is hazard
rate models. These models extend the time horizon of a rating system, by
looking at the probability of default during the life cycle of the examined loan
or portfolio (Chava and Jarrow, 2004; Shumway, 2001). To achieve this, hazard
models explicitly model a survival function for the behavior of an examined
borrower. Cox Proportional hazard models are one popular instance of this
type of models (DR, 1972); it is based on the assumption that the covariates
affecting the default rate are multiplicatively related to the hazard rate function
(Im et al., 2012).

Finally, research in the field of corporate credit rating has also focused on
structural models and reduced form models (Arora et al., 2005). Both types
of models typically perform predictions on a continuous time frame. Structural
models make proper assumptions about the dynamics of a firm’s assets and the
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conditions under which a default may occur. For instance, in this context, Mer-
ton (1974) used the option-theoretical Black-Sholes model (Black and Scholes,
1973) to price default risk. According to the assumptions of Merton (1974), a
company defaults when the asset value modeled through equity value drops be-
low the debt of the firm. In general, structural models are considered to be more
forward-looking and reliable due to their taking into account of market exchange
variables. Nevertheless, a problem with such methods is their requirement of
availability of firm equity data to perform training, which is not an easy task
when dealing with non-listed private or SME companies. On the other hand,
the fact that these models take into account market volatility to perform pre-
diction may result in overestimation of default probabilities. In addition, their
use of market capitalization to estimate a firm’s asset value may lead to dis-
crepancies in information accuracy. Reduced form methods resolve these issues
by modeling bankruptcy as a statistical process without making any explicit
assumptions as to why a default occurs. Robert Jarrow and Stuart Turnbull
proposed in (Jarrow and Turnbull, 1995) one of the most well known types
of reduced-form models for pricing credit risk. This model utilizes multi-factor
and dynamic analysis of the term structure of risk-free interest rates, along with
martingale theory, to calculate the probability of default.

In this work, we consider following a completely different paradigm towards
corporate credit rating. Specifically, we consider using techniques inspired from
the literature on machine learning. Indeed, methods from the area of machine
learning have been already shown to enhance the capabilities of conventional cor-
porate credit scoring systems in several studies (e.g., (Maher and Sen, 1997)).
Among such works, feedforward neural networks (FNNs) constitute the most
commonly used machine learning method in the context of corporate credit
rating systems (Wilson and Sharda, 1994; Odom and Sharda, 1990). Their suc-
cessful application in the context of corporate credit rating is basically due to
their nonlinear and non-Gaussian modeling assumptions, and their capability
to capture dependencies between assets. On the negative side, the notorious
proneness of FNNs to overfitting (and, thus, their limited generalization capac-
ity), their need of tedious cross-validation to perform hyperparameter selection
(e.g., network size selection), along with their black-box nature that hinders
intuitive visualization of the obtained results, limit their potential appeal to the
financial community. Other researchers have considered using support vector
machines (SVMs) (Vapnik, 1998) to effect the credit rating task. Indeed, a sig-
nificant number of studies published in the last decade have shown that SVMs
outperform FNNs in credit rating scenarios (Lee, 2007; Kim and Ahn, 2012;
Huang, 2009; Chen and Shih, 2006; Chen and Li, 2014; Wang and Ma, 2012),
while reducing the possibility of overfitting, and alleviating the need of tedious
cross-validation for the purpose of appropriate hyperparameter selection. On
the negative side, SVMs also constitute black-box models, thus limiting their
potential of offering deeper intuitions and visualizations regarding the obtained
results of their modeling and inference procedure. A Bayesian inference-based
analogous to SVMs, namely Gaussian processes, have also been considered by
Huang (2011). A drawback of this approach is its high computational complex-
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ity, which is cubic to the number of available data points, combined with the
assumption of normally distributed data, which is clearly unrealistic, as we have
already explained. Finally, Random Forests (RFs) is another type of methods
that has recently garnered attention by researchers working in the field of cor-
porate credit rating. This sophisticated technique was introduced in (Breiman,
2001), while one successful application of RFs to the problem of corporate credit
rating can be found in (Yeh et al., 2012).

Contrary to the above-summarized existing work, in this paper we propose
a novel holistic corporate credit scoring system, that addresses all the parts of
the modeling pipeline, from financial ratio time-series selection and preprocess-
ing, to selection of appropriate time-series modeling techniques, and information
fusion strategies used to obtain the final credit scores. At the heart of the pro-
posed system lies a novel financial data modeling scheme based on Student’s-t
hidden Markov models (SHMMs) (Chatzis et al., 2009). SHMMs are a success-
ful machine learning technique for modeling data with temporal dynamics (i.e.,
time-series data), that may contain a number of outliers and related artifacts in
the available training datasets. As such, SHMMs arise as a natural selection for
effecting the task of modeling financial ratio data, which entail strong temporal
dependencies, while also being quite likely to comprise significant proportions of
outliers. Note that this key modeling selection of our approach is in stark con-
trast to the machine learning methods used in the context of existing corporate
credit scoring systems: existing approaches are based on machine learning mod-
els that neither are capable of capturing temporal dependencies in the modeled
data, nor can effectively handle outliers in their training datasets. Due to these
significant modeling advantages, our approach is expected to yield much bet-
ter discriminative performance compared to existing alternatives in real-world
modeling and prediction scenarios.

Our approach constitutes an intricate data processing pipeline, which com-
prises a data preprocessing and transformation stage, and a core modeling stage,
where SHMMs are used to capture salient temporal patterns in the modeled
time-series that are associated with different credit risk scores. To perform
modeling and prediction, our approach utilizes appropriate financial ratio time-
series, based on the assumption that financial ratios carry all the information
necessary to describe and predict the internal state of a company. Specifically,
we use five-year historical data of financial ratios, that provide adequate insights
on how profitable an examined company is, what the trends are, and how much
risk is embedded in its business models. We fit distinct SHMMs to each one of
the modeled financial ratios, and obtain separate credit scores from each one of
them. Eventually, we train one final information fusion layer that combines the
outputs of the individual SHMMs under a weighted linear combination scheme,
to generate the final predictions obtained by our system. Parameter optimiza-
tion of this final information fusion layer is performed by means of a simple yet
effective genetic algorithm (GA) (Deb et al., 2000).

The remainder of the paper is organized as follows. In Section 2, we provide
a brief overview of related work dealing with applications of hidden Markov
models (HMMs) to credit risk prediction, and explain the differences between
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our novel approach and the existing corpus of works. In Section 3, we provide
a concise introduction to HMMs, focusing on the case of SHMMs and their
training and inference algorithms under the maximum-likelihood framework. In
Section 4, we introduce our proposed system, and elaborate on the used data
selection and preprocessing schemes, the adopted modeling assumptions and
strategies, and the associated training and inference algorithms. In Section 5,
we perform the experimental evaluation of our approach: Initially, we elaborate
on our experimental setup, and provide details regarding our implementation of
the considered alternative methods that we evaluate in parallel to our approach
(for comparative purposes). Further, we present our empirical results, analyzing
the performance of our proposed SHMM-based corporate credit scoring model,
and comparing its performance to the considered state-of-the-art competitors.
Finally, in the concluding section, we highlight the performance advantages of
our approach, we outline possible limitations of our framework, and discuss
areas for future enhancements and research.

2. Existing Applications of HMMs to Credit Risk Assessment

HMMs constitute a rather popular method in financial literature. How-
ever, up to now their applications to risk assessment have been mostly limited
to quantifying risk on portfolio level, as opposed to individual company level,
which is the aim of this work. Specifically, HMMs first appeared in the financial
literature in (Thomas et al., 2002); therein, the authors use HMMs to model
rating migration of corporate bonds, a factor that affects pricing interest rate
margins and subsequently the fair value of corporate bonds. Further, Giacomo
et al. (2005) used HMMs to predict default events in a corporate portfolio. Un-
der this approach, the hidden states of the postulated HMMs reflect the state of
the economy, which can switch between expansion and recession periods (high
risk, normal risk), while the emission distributions of each state are taken as
binomial distributions modeling the number of defaults in the studied portfolio
at a specific point in time. In Banachewicz et al. (2008), the aforementioned
model is extended to include exogenous variables (covariates), such as inter-
est rates and GDP. More recently, (Ching et al., 2009) employed an interactive
HMM to model corporate bond defaults; this model essentially assumes that
the relationship between the hidden state of the economy and the evolution
of the creditworthiness of the companies in the modeled portfolio is bidirec-
tional. Finally, the authors of (Ching et al., 2010) proposed a multistream
HMM (MHMM) capable of modeling multiple financial sequences under the as-
sumption that all of them are driven by a common hidden sequence reflecting
the state of the economy. They utilize this model to analyze default data in a
network of financial sectors, and derive reliable estimates of credit value-at-risk
(VaR) and expected shortfall for portfolios of corporate bonds.

In a different vein, more closely related to our work, (MW Korolkiewicz,
2008) proposed an HMM-based model that uses credit ratings posted by rat-
ing agencies to perform prediction of the future behavior of an obligor (default
or non-default), where the behavior variable is modeled as the hidden state of
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a postulated two-state HMM. More recently, Elliott et al. (2014) proposed a
double-HMM approach which extends the method of (MW Korolkiewicz, 2008)
by considering as its observed variables both the credit ratings posted by rating
agencies and the calculated Altman Z-scores (Altman, 1968) of the examined
companies (two streams of information). Even though these approaches are
quite closely related to our work, as they are also dealing with individual cor-
porate credit rating, there is also a key difference that sets them apart from our
work: The applicability of the methods in (MWKorolkiewicz, 2008; Elliott et al.,
2014), depends on the availability of credit ratings posted by rating agencies,
which is hardly the case when dealing with private companies. In contrast, our
work does not impose such severely limiting constraints, but offers a bottom-up
architecture aiming to obtain reliable corporate credit scores without provision
of any prior (expert) information.

3. Methodological Background

3.1. Student’s-t Hidden Markov Models
HMMs are increasingly being adopted in a wide spectrum of applications,

since they provide a convenient way of modeling observations appearing in
a sequential manner and tending to cluster or to alternate between different
possible components (subpopulations) (Cappé et al., 2005). The observation
emission densities associated with each hidden state of a continuous density
HMM (CHMM) must be capable of approximating arbitrarily complex prob-
ability density functions. Finite Gaussian mixture models (GMMs) are the
most common selection of emission distribution models in the CHMM litera-
ture, yielding the so-called Gaussian HMMs (GHMMs) (Rabiner, 1989). The
vast popularity of GHMMs stems from the well-known capability of GMMs
to successfully approximate unknown random distributions, including distribu-
tions with multiple modes, while also providing a simple and computationally
efficient maximum-likelihood (ML) model fitting framework, by means of the
expectation-maximization (EM) algorithm (Dempster et al., 1977). Neverthe-
less, GMMs do also suffer from a significant drawback concerning their param-
eters estimation procedure, which is well-known that can be adversely affected
by the presence of outliers in the data sets used for the model fitting. Hence,
when outliers are present in the available fitting data sets (as it often happens
in real-world applications), GMMs tend to require excessively high numbers of
mixture components to capture the long tails of the approximated distributions
(corresponding to the existing outliers), so as to retain their pattern recognition
effectiveness. As a consequence of the induced model size increase, the com-
putational efficiency of the trained models deteriorates significantly, while high
requirements are also imposed in the size of the available training data sets, so
as to guarantee the dependability of the model fitting procedure.

As a solution for the amelioration of these drawbacks, the Student’s-t HMM
(SHMM) has been proposed in (Chatzis et al., 2009) as a highly tolerant to
outliers alternative to GHMMs. SHMM employs finite mixtures of the longer-
tailed multivariate Student’s-t distribution as its emission distribution models.
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This selection provides a much more robust approach to data modeling, as
training observations that are atypical of a mixture component density are given
reduced weight in the calculation of its parameters, under a model-inherent,
soundly-founded statistical procedure.

Let us consider a Student’s-t hidden Markov model comprising I states. Let
{yt}Tt=1 denote a sequence of observed data points modeled using the considered
SHMM. Let us also assume for convenience, and without any loss of generality,
that all the hidden state densities of the considered SHMM are approximated by
Student’s-t mixture models with the same number of component distributions,
J . Then, from the conditional independence property of the hidden Markov
chain (Cappé et al., 2005; Rabiner, 1989) it directly follows that the observations
emitted from the same hidden state of the SHMM are independent, identically
distributed (i.i.d), such that the probability density of the observation yt given
that it is emitted from the ith model state reads

p(yt;Θi) =

J∑
j=1

cijt(yt;µij ,Σij , νij) (1)

where cij , µij , Σij and νij are the mixing proportion, mean, covariance matrix
and the degrees of freedom of the jth component density of the hidden distribu-
tion of the ith state of the model, respectively, and Θi = {cij , νij ,µij ,Σij}Jj=1

(i = 1, ..., I). The probability density function (pdf) of a Student’s-t distribu-
tion with mean vector µ, covariance matrix Σ, and ν > 0 degrees of freedom is
(Liu and Rubin, 1995)

t(yt;µ,Σ, ν) =
Γ
(
ν+p
2

)
|Σ|−1/2(πν)−p/2

Γ (ν/2){1 + d(yt,µ;Σ)/ν}(ν+p)/2
(2)

where p is the dimensionality of the observations yt, d(yt,µ;Σ) is the squared
Mahalanobis distance between yt,µ with covariance matrix Σ, and Γ (s) is the
Gamma function, Γ (s) =

´∞
0
e−tzs−1dz.

3.2. Model Training
Training of the SHMM using multiple training sequences (tokens) can be

easily conducted by means of the expectation-maximization (EM) algorithm.
Let us consider M independent sequences of fitting data. We assume for con-
venience, that all the sequences have the same length T , i.e. they comprise T
data points, without any loss of generality. Let the mth sequence be ym =
{ymt}Tt=1, m = 1, ...,M , where ymt stands for the tth data point of the mth
fitting sequence. Then, from (1), we have

p(ymt;Θi) =

J∑
j=1

cijt(ymt;µij ,Σij , νij) (3)
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Figure 1: Directed acyclic graph representing the SHMM (Chatzis et al., 2009). The box
(plate) denotes a set of T observation points, {ymt}Tt=1 (of which only a single example for
time t is shown explicitly), with their corresponding previous and current state indicators,
and their mixture component indicators.

or, equivalently, using the properties of the Student’s-t distribution (c.f., (Chatzis
et al., 2009; Peel and McLachlan, 2000)):

p(ymt|{uijmt}Jj=1;Θi) =

J∑
j=1

cijN (ymt;µij ,Σij/uijmt) (4)

where uijmt is a precision scalar corresponding to the observation ymt given it is
generated from the jth component density of the ith hidden state distribution

uijmt ∼ G
(νij

2
,
νij
2

)
(5)

Let us denote as smt the state indicator vectors of the observed data, with
smt = (simt)

I
i=1, and

simt ,

{
1, if ymt is emitted from the ith model state

0, otherwise

Let us also denote as zimt the state-conditional mixture component indicator
vectors of the observed data, such that zimt = (zijmt)

J
j=1, and, given that ymt is

emitted from the ith state (simt = 1), it holds

zijmt ,

{ 1, if ymt is generated from the jth component

density of the state

0, otherwise
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The EM algorithm comprises optimization of the posterior expectation of the
complete data log-likelihood of the treated model

Q(Ψ; Ψ̂) , EΨ̂(logLc(Ψ)|y) (6)

where Ψ̂ denotes the obtained estimator of the model parameters vector Ψ =
{Θi, πi, πhi}Ih,i=1, πi are the initial state probabilities, and πhi are the state tran-
sition probabilities of the Markov chain. For a continuous hidden Markov model,
the expression of the complete data log-likelihood reads (Peel and McLachlan,
2000)

logLc(Ψ) =

M∑
m=1

I∑
h=1

[
shm1logπh +

I∑
i=1

T−1∑
t=1

shmtsim,t+1logπhi

]

+

I∑
i=1

M∑
m=1

T∑
t=1

simtlogp(y
comp
mt ;Θi)

(7)

where ycompmt stands for the complete data corresponding to the tth observation of
the mth sequence, ymt, and logp(ycompmt ;Θi) is the complete data log-likelihood
of the emission distribution of the ith hidden state with respect to ymt. A
graphical illustration (plate diagram) of the considered SHMM can be found in
Fig. 1.

To provide a proper complete data configuration for the SHMM, we have to
take into account that a closed form solution for log-likelihood optimization of
a Student’s-t mixture in the form (3) does not exist (Liu and Rubin, 1995; Peel
and McLachlan, 2000). However, exploiting the alternative expression (4)-(5)
of a Student’s-t distribution as a Gaussian distribution with scaled precision,
where the scalar is a Gamma distributed latent variable, a tractable optimization
framework is obtained. Hence, we let the complete data corresponding to the
mth sequence, ycompm , comprise the observable data and their corresponding
state indicator vectors, state-conditional mixture component indicator vectors,
and precision scalars. Then, we have

p(ycompmt ;Θi) =

J∏
j=1

[cijp(ymt|uijmt;Θi) p(uijmt;Θi)]
zijmt

which yields (ignoring constant terms)

logp(ycompmt ;Θi) =

J∑
j=1

zijmt

{
−logΓ

(νij
2

)
+
νij
2
×[

log
(νij

2

)
+ loguijmt − uijmt

]
+ logcij

− uijmt
2

d(ymt,µij ;Σij)−
1

2
log|Σij |

} (8)
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The E-step on the (k+1)th iteration of the EM algorithm requires calculation
of the quantity Q(Ψ;Ψ(k)), where Ψ(k) denotes the current estimator (obtained
by the kth iteration of the EM algorithm) of Ψ. Using (7) and (8), we have

Q(Ψ;Ψ(k)) =

M∑
m=1

I∑
h=1

[
γ
(k)
hm1logπh +

I∑
i=1

T−1∑
t=1

γ
(k)
himtlogπhi

]

+

I∑
i=1

M∑
m=1

T∑
t=1

γ
(k)
imtEΨ(k) (logp(y

comp
mt ;Θi)|y)

(9)

where γ(k)imt denote the kth iteration estimators of the state emission posterior
probabilities, defined as

γimt , p(simt = 1|y) = p(simt = 1|ym) (10)

(t = 1, ..., T ), and γ(k)himt denote the kth iteration estimators of the state transi-
tion posterior probabilities, defined as

γhimt , p(sim,t+1 = 1, shmt = 1|y) (11)

(t = 1, ..., T − 1) for m = 1, ...,M , h, i = 1, ..., I. Therefore, the E-step of
the algorithm comprises computation of the estimates γ(k)imt and γ

(k)
himt, and of

the expectation EΨ(k) (logp(y
comp
mt ;Θi)|y). Let us begin with the updates γ(k)imt

and γ
(k)
himt. These quantities can be obtained utilizing the forward-backward

algorithm. It holds (Rabiner, 1989; Cappé et al., 2005)

γ
(k)
himt =

a
(k)
hmtπ

(k)
hi p(ym,t+1;Θ

(k)
i )b

(k)
im,t+1∑I

υ=1

∑I
φ=1 a

(k)
υmtπ

(k)
υφ p(ym,t+1;Θ

(k)
φ )b

(k)
φm,t+1

(12)

and

γ
(k)
imt =

a
(k)
imtb

(k)
imt∑I

h=1 a
(k)
hmtb

(k)
hmt

(13)

where
a
(k)
im1 = π

(k)
i p(ym1;Θ

(k)
i ) (14)

a
(k)
im,t+1 = p(ym,t+1;Θ

(k)
i )

I∑
h=1

a
(k)
hmtπ

(k)
hi (t = 1, .., T − 1) (15)

b
(k)
hmT = 1 (16)

b
(k)
hmt =

I∑
i=1

π
(k)
hi p(ym,t+1;Θ

(k)
i )bim,t+1 (t = T − 1, ..., 1) (17)
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and the expression of p(ymt;Θi) is given by (3). Concerning the term EΨ(k) (logp(y
comp
mt ;Θi)|y),

it can be shown that its estimation reduces to computation of the conditional
posteriors of mixture component membership

ξ
(k)
ijmt , EΨ(k)(zijmt|ymt, simt = 1)

=
c
(k)
ij t(ymt;µ

(k)
ij ,Σ

(k)
ij , ν

(k)
ij )∑J

h=1 c
(k)
ih t(ymt;µ

(k)
ih ,Σ

(k)
ih , ν

(k)
ih )

(18)

and of the posterior expectations of the precision scalars uijmt

u
(k)
ijmt , EΨ(k) (uijmt|ymt)

=
ν
(k)
ij + p

ν
(k)
ij + d(ymt,µ

(k)
ij ;Σ

(k)
ij )

(19)

Finally, the M-step of the algorithm is effected by performing the computa-
tions

π
(k+1)
i =

1

M

M∑
m=1

γ
(k)
im1 (20)

π
(k+1)
hi =

∑M
m=1

∑T−1
t=1

γ
(k)
himt∑M

m=1

∑T
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and solving the equation
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Algorithm 1 EM Algorithm for the SHMM.
k := 0

1. Conduct the forward-backward algorithm to obtain the quantities a(k)imt

and b(k)imt.
2. Effect the E-step by computing the γ(k)himt, γ

(k)
imt, ξ

(k)
ijmt, r

(k)
ijmt, and u

(k)
ijmt,

using (12), (13), (18), (27), and (19), respectively.
3. Effect the M-step by computing the π(k+1)

i , π(k+1)
hi , c(k+1)

ij , µ(k+1)
ij , Σ

(k+1)
ij ,

and ν(k+1)
ij , using (20)-(25), respectively.

4. If the EM algorithm converges, exit; otherwise increase the iteration
counter (k := k + 1) and goto 1.

to obtain the estimates of νij , where, ψ(s) is the digamma function, and r(k)ijmt

is the joint posterior probability that ymt is generated from the ith state of the
model and particularly from its jth component distribution

rijmt , p(simt = 1, zijmt = 1|y) = γimtξijmt (26)

r
(k)
ijmt = γ

(k)
imtξ

(k)
ijmt (27)

An outline of the EM algorithm for the SHMM is given in Alg. 1.

3.3. Inference Algorithm
Given a trained SHMM, inference using this model consists in calculating

the likelihood of a given sequence, and estimating the emitting (hidden) states
sequence corresponding to an observed sequence presented to the model. Let us
consider an SHMM, trained using the EM algorithm, as described above, with
parameters set Ψ̂, and an observed sequence y = {yt}Tt=1. Then, likelihood
calculation can be performed by utilizing the forward algorithm. Specifically,
following (Chatzis et al., 2009), the likelihood p(y|Ψ̂) yields

p(y|Ψ̂) =

I∑
i=1

âi,T (28)

where {âi,t}I,Ti,t=1 are the forward probabilities corresponding to the observed
sequence y, computed using (14)-(15) and the parameter estimates Ψ̂ of the
postulated SHMM. On the other hand, the task of estimating the hidden states
sequence corresponding to the observed sequence y can be effected by means
of the Viterbi algorithm. Following (Chatzis et al., 2009), the estimate of the
current hidden state at time t, ŝt, yields

ŝt = arg max
1≤i≤I

δt(i) (29)
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where
δt(j) = max

1≤i≤I

{
p(xt|yt = j)πij

}
δt−1(i), t > 1 (30)

with initialization
δ1(j) = p(x1|y1 = j)πj (31)

4. Proposed Approach

4.1. Research Motivation
As we have already discussed, corporate credit risk modeling and prediction

is typically based on modeling appropriate financial ratio data. On this ba-
sis, our approach is motivated from some key insights regarding the nature of
the modeled data: It is well understood that creditworthiness patterns exhibit
strong temporal dependencies that are reflected in, and can be extracted from,
financial ratio data (Buijink and Jegers, 1986; Yli-Olli and Virtanen, 1989). In-
deed, corporate credit ratings are well-known to be largely driven by the hidden
state of the business cycle process. As such, using machine learning models ca-
pable of robustly capturing temporal dynamics in the modeled data is expected
to significantly enhance the discriminatory capacity of a developed corporate
risk rating system. In addition, outliers and related artifacts are rather com-
mon in financial time-series datasets used for model training (Sori et al., 2006;
Whittington, 1980). Therefore, coming up with a modeling method with train-
ing algorithms tolerant to the existence of outliers in the used training data is
expected to result in better trained models, with enhanced predictive accuracy.

Under this motivation, in this work we suggest to use SHMMs as the core
component of a corporate credit rating system, trained on financial ratio time-
series. SHMMs satisfy both our requirements of postulating models capable of
capturing temporal dynamics in the modeled data, and using models tolerant
to outliers in their training data. This formulation is in stark contrast to ex-
isting machine learning-based approaches used for corporate credit rating, e.g.,
approaches based on FNNs and RFs, regression techniques, decision trees, and
hazard models, which are not capable of extracting temporal dynamics in the
modeled data, and, thus, cannot capture changes in the business cycle that could
lead in a significant shift in the behavior of the modeled businesses. Another
significant merit of our approach that sets it apart from existing approaches is
that our use of SHMMs affords modeling continuous measured variables pertain-
ing to financial ratios. Finally, as we have shown in Section 3, model training
and inference for SHMMs can be performed using robust, elegant, and compu-
tationally efficient algorithms with proved convergence (Chatzis et al., 2009).
It allows for increased robustness to outliers in the training data, and poses no
substantial computational overheads compared to existing competitors.

4.2. System Architecture
As depicted in Fig. 2, the proposed corporate credit scoring system com-

prises four distinct processing stages, namely: (i) data collection and processing;
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Figure 2: Proposed System Architecture.

(ii) SHMM model training for each financial ratio; (iii) model aggregation; and
(iv) system calibration. We elaborate on each one of these stages in the remain-
der of this section.

4.2.1. Data Collection and Processing
This comprises data collection, data processing and transformation, and data

selection and samples creation.
Data Collection. Training data collection is a significant procedure for

the effectiveness of a machine learning system. In the context of our corporate
credit rating system, we have collected information on performing and non-
performing entities from the supervisory database of the Central Bank of Greece.
These data were aggregated during each year from 2006 to 2012, according
to the established regulatory framework. The collected information is related
with both SMEs and corporations with loans granted from Greek banks; the
adopted definition of a default event in this dataset is in line with the rules
of Basel III (Basel Committee on Banking Supervision, 2010). Specifically, a
loan is flagged as delinquent if it is either 90 days past due or it gets rated
as delinquent based on each bank’s internal rating rules. In the beginning of
the observation periods, all considered obligors are performing. In our data
collection procedures, we do not consider special cases of obligors from the
financial sector, including banks, insurance, leasing, and factoring companies,
due to the very unique nature of their business models, which deviate quite a
lot from the business models of commercial companies. Under our proposed
framework, each obligor is considered to be categorized as either good (i.e.,
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Table 1: Dataset split into in-sample, out-of-sample, and out-of-time sets.

Dataset Split Good Obligors Bad Obligors Default Rate (%) Total
in-sample 5513 328 5.62 5841

out-of-sample 1652 100 5.7 1752
out-of-time 536 115 17.7 651

Total 7701 543 6.58 8244

performing) or bad (i.e., non-performing). Each company was either good or
bad at the end of the observation periods. An obligor is categorized as good if
at least one of the following criteria is met: (i) the obligor manages to get an
upgrade of their rating by their bank (according to the bank’s internal rules);
(ii) the obligor is not delinquent; and (iii) the obligor receives a good rating
based on the internal rating system of their bank.

Data Selection and Samples Creation. To create our used datasets, we
randomly select good and bad clients from the available population. Each of
these clients is represented using a set of financial ratio time-series, extracted
using their available balance sheet data and income (P&L) statements. In each
case, the dependent variable in our training datasets is a binary indicator, with
the on value indicating a default event (i.e., the obligor is categorized as bad at
the end of the observation period). Finally, some necessary data cleansing is
performed on the available data sheets, to remove entries with missing values.
This way, we eventually obtain a dataset comprising 8244 obligors, which mainly
include Greek SMEs (total assets worth less than 50 Million Euro), as well as
some large corporations.

To develop our model, we split the so-obtained dataset into three parts:
An in-sample dataset, comprising data pertaining to the 70% of the examined
companies, obtained over the observation period 2006-2011; an out-of-sample
dataset, comprising the data pertaining to the rest 30% of the companies for
the period 2006-2011; and an out-of-time dataset that comprises all the data
pertaining to the observation period of year 2012. A summary of the aforemen-
tioned split of our dataset is provided in Table 1. In Table 2, we provide a brief
summary of the breakout of the used data, showing the numbers of the available
samples that pertain to SMEs and large corporations, respectively.

System development, calibration, and analysis is performed using our in-
sample dataset. The out-of-sample and out-of-time datasets are in turn used
to perform system evaluation under two different scenarios: Evaluation of the
generalization capacity of our system across companies, and evaluation of the
generalization capacity of our system over time. To allow for reliable estimation
of the hyperparameters of our system (i.e., of the number of hidden states, I,
of the postulated SHMMs, and the number of components, J , of the entailed
Student’s-t mixture models), we further split our in-sample dataset into a train-
ing set and a validation set: the training sample is used to train the postulated
SHMMs pertaining to each financial ratio and each of the two obligor charac-
terizations (good or bad), while the validation set is used for model selection,
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Table 2: Distribution of the used data by asset size.

Assets (in Million Euro) Frequency
5 1837
50 5028
100 707
200 338
500 190
>500 144
Total 8244

i.e. optimal determination of the model hyperparameters (model size).
Data Processing and Transformation. For each examined corporation,

we elect to model a set of well-known and broadly used financial ratio time-series,
extracted by exploiting their available balance sheets and income statements.
Specifically, the used set of financial ratios comprises the following indices:

• A set of broadly used financial ratios reflecting liquidity, including: (i)
current ratio (X1); (ii) immediate cash ratio (X2); (iii) working capital
(X3); (iv) total employed capital (X4).

• A set of financial ratios that reflect profitability, including: (i) return on
equity (X5); (ii) return on total employed capital (X6); (iii) gross profit
margin (X7); (iv) operating profit margin (X8); (v) net profit margin (X9).

• A set of financial ratios that reflect capital structure, including: (i) fixed
assets coverage ratio (X10); (ii) leverage ratio (X11); (iii) interest coverage
(X12); (iv) equity over employed capital (X13).

• A set of financial ratios that reflect activity, including: (i) receivables
turnover ratio (X14); (ii) trade creditors to purchases ratio (X15); (iii) in-
ventories turnover ratio (X16); (iv) employed capital turnover ratio (X17);
(v) equity turnover ratio (X18).

In addition to these standard financial ratios, we have also experimented with
various transformations of these ratios, with the aim to obtain more represen-
tative financial times-series to train our credit rating models with. Specifically,
for this purpose, we subsequently followed three distinct procedures:
(i) We applied a series of simple transformations on the original time-series,
including square, cube power, log, sin, 1/(1+x), and inverse.
(ii) Subsequently, we computed the year-over-year percentage changes of the
considered time-series.
(iii) Finally, in an effort to obtain more robust input variables to train our mod-
els upon, we generated 50,000 random (derivative) financial ratios based on the
available datasets. For this purpose, we followed an iterative procedure that
consists in randomly selecting 4 original items of the original balance sheets and
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income statements, say a, b, c, and d, and computing a derivative ratio of the
form (a± b)/(c± d).

This process led to a set of almost 2,000 predictor variables (distinct time-
series) as potential candidates for our modeling procedures. The so-obtained
set of time-series was narrowed down in three consecutive stages: On the first
stage, we kept the 200 time-series exhibiting the highest in-sample correlation
with the modeled (binary) dependent variable, i.e. the categorization of obligors
as good or bad at the end of the observation period. On the second stage,
we omitted those of the aforementioned 200 time-series that bear no economic
meaning/intuition. Finally, on the third stage, we narrowed down the selected
variables (derivative financial ratios) by setting a threshold of at least +/-10%
correlation with the default flag variable. This way, we eventually retained 8
new derivative financial ratio time-series that we use to perform model training
in the context of our system, additional to the previously mentioned, commonly
used ones. Note that we have transformed the above-mentioned ratio values
into the [0, 1] interval, using a simple linear transformation (Kotsiantis et al.,
2006).

These newly-obtained financial ratio time-series are namely the following:
(i) (Operating profit-Interest Expenses) / Sales (X19); (ii) (Short term liabili-
ties + Cost of Sales) / Sales (X20); (iii) (Long term liabilities - Gross profit)
/ Total Assets (X21); (iv) Bank Loans/ Gross profit (X22); (v) (Gross profit
+ Equity)/Total Liabilities (X23); (vi) Current Assets/Sales (X24); (vii) Bor-
rowed funds/ Turnover (X25); and (viii) the 1/(1+x) transform of the interest
coverage ratio (X26). Note that the first seven derivative financial ratio time-
series mentioned above essentially reflect capital structure, thus bearing a clear
financial intuition/relevance.

4.2.2. SHMM Model Training
As previously discussed, for every examined company and for every mod-

eled financial ratio, we build a time-series comprising values recorded over five
consecutive years. This dataset is subsequently used to perform model training.
As we have also discussed, each sequence is categorized as good or bad, de-
pending on the corresponding obligor performances. To effectively model these
data in the context of the proposed system, we postulate two distinct SHMMs
for each financial ratio, one pertaining to obligors categorized as good, and one
pertaining to obligors categorized as bad. Our modeling selection allows for
capturing salient temporal patterns and dynamics in our modeled time-series,
in an effort to detect shifts in the state of the economy and their correlations
with changes in the behavior patterns of the examined companies. As we have
discussed, we split our in-sample dataset into one training set and one validation
set. The training set comprises 200 sequences for each financial ratio, and for
each category of obligors (good or bad), either large corporations or SMEs. Pa-
rameter initialization (before model training using the EM algorithm, described
in Section 3) was performed using the segmental K-means algorithm described
in (Rabiner, 1989); the degrees of freedom ν of the Student’s-t distributions are
initialized at ν = 1.
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Table 3: Average optimal size of trained SHMMs by obligor category.

Category Good Bad
# Mixture components 4.00 4.06

# States 5.06 4.09

Turning to model (size) selection, in each case our selections are made be-
tween models comprising 2-6 mixture component Student’s-t distributions, and
2-6 hidden states. To perform model selection, at first we utilize the popular
Bayesian information criterion (BIC) (Zucchini and MacDonald, 2009). BIC is
widely used for selecting proper model size in the HMM literature, by appropri-
ately penalizing the obtained log-likelihood of the trained model with a penalty
term the accounts for the number of postulated parameters (i.e., model size),
to prevent overfitting. In the context of our system, we utilize BIC so as to
retain the 10 highest-ranked possible model configurations (out of a set of 25
initial alternatives). To alleviate the effect of random initialization (of the seg-
mental K-means algorithm) on the obtained results, we repeat training of each
considered model multiple (namely, 20) times, and retain the random restart
that yielded the best BIC value. In Fig. 3, we show how BIC values change
(on average over the modeled assets) with model size in our experiments, both
in cases of models pertaining to good obligors, and in cases pertaining to bad
obligors.

Further, for each of the retained model configurations (sizes), we use the
forward algorithm to compute the likelihood of each corresponding time-series
in our validation set. We perform this procedure with respect to both the
corresponding postulated SHMMs pertaining to obligors categorized as good,
and the corresponding postulated SHMMs pertaining to obligors categorized
as bad, and compute the log-ratio of the two likelihoods. Finally, we rank the
postulated alternative SHMM configurations on the basis of the correlation of
these obtained (good to bad) likelihood log-ratios with the actual ratings of the
considered obligors: the higher the value of these log-ratios, the more correlated
they are with obligors actually rated as good, and the less correlated they are
with obligors actually rated as bad.

On the basis of this procedure, for each financial ratio we retain the good/bad
obligor SHMM pair configuration that yields the best ranking among the consid-
ered alternatives. In Table 3, we depict the average obtained SHMM size (over
all the modeled financial ratios) separately for the models fitted to data from
good obligors, and for the models fitted to data from bad obligors. As we ob-
serve, to sufficiently capture the underlying temporal patterns, companies rated
as good require larger models than companies rated as bad. This is a rather
intuitive result, since companies rated as good are expected to exhibit more
heterogeneous patterns than companies eventually defaulting on their debt.
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(b)

Figure 3: BIC values as a function of model size.
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4.2.3. Model Aggregation
After obtaining the component SHMMs of our system, we apply a sample

scoring procedure for the entire in-sample dataset. Specifically, for every com-
pany in our in-sample dataset, we produce a 26-dimensional vector containing
the likelihood log-ratio scores pertaining to the two trained SHMMs (good/bad)
for each modeled financial ratio (for this purpose, the forward algorithm is used
as described in Section 3.3). As previously discussed, the likelihood log-ratio
scores of a modeled company essentially encode how likely our trained models
consider the company to end up with a good rating at the end of the observation
period. Apparently, as a result of our modeling choices, each pair of postulated
SHMMs (modeling a different financial ratio) generates a different likelihood
log-ratio score. Hence, it is necessary that we come up with an optimal way of
combining these scores so as to derive a final predictive score from our model.

For this purpose, we postulate a simple linear score combination model
driven by the likelihood log-ratio scores generated as described previously. To
train this model, we use a genetic algorithm (Deb et al., 2000) that aims to
maximize the overall score correlation with the dependent variable (good/bad
obligor flag) over the modeled in-sample population. Our selection of the afore-
mentioned genetic algorithm as the optimization method of choice is motivated
from its simple black-box nature, and its attractive properties it terms of the
obtained rates of convergence to the global optimum of the solved complex op-
timization problem. We experiment with various mutation rates and numbers
of generations, in order to select the optimal genetic algorithm configuration.
For completeness sake, in Table 4 we provide the final linear model parameter
(weight) values estimated through the used genetic algorithm.

4.2.4. System Calibration
Eventually, we utilize the credit score values generation capabilities of our

system to obtain a default probability prediction mechanism. For this purpose,
we apply a credit rating system calibration process. Calibration of a credit
rating system is a mapping process under which each possible generated score
value is allocated an associated probability of default. To perform calibration of
our system on the in-sample population, we divide the set of obtained likelihood
log-ratio scores, generated in the previous stage, into ranges. Each range is
associated with a probability of default. Computation of ranges is performed
in such a way that ensures maximum intra-rate homogeneity of the obtained
probabilities of default, and maximum inter-range heterogeneity. To achieve
this, we use a well known discretization algorithm, namely MDLP; our adopted
algorithm follows the minimum description length (MDL) estimation principle
(Fayyad and Irani, 1993), which optimizes continuous variable ranges based on
a class entropy criterion. Finally, we correct for monotonicity (if needed) by
fitting an exponential function.
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Table 4: Financial ratio weights obtained by application of the used genetic algorithm.

Financial Ratio Weight
X1 3.8
X2 6.2
X3 9.2
X4 3.4
X5 1.4
X6 6.3
X7 0
X8 2.7
X9 6.1
X10 1.6
X11 1.7
X12 2.4
X13 3.6
X14 1.6
X15 6.5
X16 0
X17 0
X18 1.9
X19 4.9
X20 3.3
X21 3.1
X22 6.6
X23 3.1
X24 5.6
X25 3.1
X26 12.2
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5. Experimental Evaluation

Here, we report the performance results obtained from the experimental
evaluation of our method, both in terms of out-of-sample performance, and in
terms of out-of-time performance. To obtain some comparative results, apart
from our method we also evaluate a set of established benchmark models in
the field of corporate credit rating, namely CHAID, LDA, logistic regression,
SVMs, RFs, and FNNs. Since the considered benchmark approaches are not
capable of modeling time-series data, we opt to retain from (the corresponding
time-series of) each financial ratio only those of the five constituent observed
variables that do not exhibit strong intercorrelations. Specifically, to perform
this procedure, we first compute the Pearson correlation matrix of the available
5-year data (of each financial ratio). On this basis, we exclude the time point
variables exhibiting more than 60% absolute correlation with (some) other time
point variables, to avoid multicollinearity. Eventually, for each pair of correlated
variables, we retain the one that exhibits higher correlation with the dependent
variable and drop the other one.

We implemented our method in Microsoft Excel Visual Basic (VBA). We also
used the SolveXL add-in of Microsoft Excel to perform genetic algorithm-based
optimization. We implemented the MDLP algorithm based on the Discretization
package of R.

The remainder of this section is organized as follows: In Section 5.1, we
describe the details of our implementation of the considered benchmark ap-
proaches (evaluated in parallel to our method). In Section 5.2, we provide an
analytical account of our experimental results, and discuss how performance of
our method compares to the competition.

5.1. Benchmark Models Implementation
5.1.1. CHAID

CHAID is well-established algorithm for building decision trees (GV, 1978).
Similar to other decision trees algorithms, CHAID allows for simplicity and
intuitive visualizations of the obtained results. In addition, the non-parametric
nature of CHAID allows for increased flexibility compared to other regression
models. Nevertheless, these simplicity advantages come at the cost of significant
overfitting proneness due to the entailed discretization of the observed time-
series. In our experiments, variable discretization is performed by utilizing
10-bin histograms. We implemented CHAID using the XLSTAT package for
VBA.

5.1.2. LDA
LDA is broadly used for credit scoring. For instance, the popular Z-Score

algorithm of Altman (1968) is based on LDA. In essence, LDA is used to build
binary classification models, predicting whether an examined company will go
bankrupt or not. LDA is based on two main assumptions: (i) that the modeled
independent variables are normally distributed; and (ii) that the two groups of
modeled obligors (good and bad) exhibit homoscedasticity. As we previously
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discussed though, these assumptions are hardly plausible in real-world financial
time-series. We implemented this approach in R, using the MASS R package.

5.1.3. Logistic regression
Logistic regression is very often used by financial institutions for building

credit scoring models due to its parsimonious structure. Similar to LDA, it is
used to estimate the non-linear relationship between the modeled continuous
independent variables and a categorical/binary dependent variable (in our case,
good or bad obligors). In our implementation, model training is performed using
maximum-likelihood estimation. To perform optimization in the context of the
M-step of the algorithm, we resort to the Newton-Raphson iterative optimization
method. We implemented logistic regression in VBA, using the XLSTAT add-in.

5.1.4. SVMs
SVMs are one of the most popular types of non-linear, large-margin binary

classifiers, estimating a separating hyperplane that achieves maximum separabil-
ity between the data of the modeled two classes (Vapnik, 1998). In our study, we
evaluate soft-margin SVM classifiers using linear, radial basis function (RBF),
polynomial, and sigmoid kernels, and retain the model configuration yielding
optimal performance. For the latter purpose, we exploit the available validation
set. Similarly, to select the hyperparameters of the evaluated kernels, as well
as the cost hyperparameter of the SVM (related to the adopted soft margin),
we resort to cross-validation; the candidate values of these hyperparameters are
selected based on a grid-search algorithm (Vapnik, 1998). We implemented this
model in R using the e1071 package; grid-search is a functionality included in
the e1071 package (Tune routine). The employed cross-validation procedure
determines the optimal SVM structure to comprise a linear kernel function with
cost hyperparameter equal to 150.

5.1.5. RFs
RFs have recently received considerable attention in various financial re-

search fields (Breiman, 2001). RFs are supervised statistical machine learning
methods that combine bootstrap aggregation and random subspace selection to
generate or grow trees that all together define a forest. In more detail, RFs com-
bine many binary regression decision trees that are selected by bootstrapping
samples of the modeled explanatory variables and the corresponding classifier
variables. Final prediction is made by averaging the predictions from all the
individual trees in cases of regression problems, or using majority voting in
cases of classification problems. The final set of random forest variables is se-
lected using a variable importance index, which reflects the “importance” of a
variable based on its contribution to classification accuracy. This is estimated
by looking at how much prediction error increases when omitting a considered
variable. Our implementation of RFs was based on the randomForest package
of R. To perform optimal selection of the maximum number of trees in the
forest, we perform cross-validation using the available validation set; we select
among specifications comprising 20, 50, 100, 200, 500, 600, 700, 800, 900, and
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1000 trees. This procedure yields a forest comprising 600 trees. The maximum
number of selected variables for each tree is set equal to the 1/3 of the available
financial ratios.

5.1.6. FNNs
Typically, credit rating systems employ multilayer perceptron (MLP) FNNs

comprising the following layers: the input layer, where the explanatory variables
are presented to the network, one or more hidden layers comprising sigmoid
transfer functions, and an output layer where the predicted values are generated
(Bishop, 2006, Chapter 5). To perform model training, we use back-propagation
(Bishop, 2006, Chapter 5). We perform cross-validation to select the number
of hidden layers and their component hidden neurons, exploiting the available
validation set. This procedure selects an MLP with 1 hidden layer and 21
hidden neurons. Training algorithm hyperparameters, including learning rates
and momentum values, are also selected by means of cross-validation. Early
stopping is employed to avoid overfitting. Our implementation of MLPs was
based on the NeuroSolutions toolbox for VBA.

5.2. Comparative Results
5.2.1. Discriminatory Power Results

High discriminatory power is a key requirement for rating systems, and the
main evaluation criterion for selecting between alternative rating approaches.
To quantitatively measure the performance of a scoring model, researchers and
practitioners typically use statistical measures of performance such as the area
under the receiver operating characteristic (ROC) curve, the GINI coefficient
(accuracy ratio), the Kolmogorov-Smirnoff (K-S) statistic, the Bayesian error
rate, Kendall’s τ and Somer’s D. In this work, we assess the discriminatory
power of the evaluated rating systems using the GINI metric, K-S metric,
and obtained Bayesian error rates (Basel Committee on Banking Supervision,
2005b). Area under the ROC curve is not used, as it is directly connected with
GINI, and essentially captures the same performance characteristics. Similarly,
Kendall’s τ and Somer’s D usually provide similar insights with the aforemen-
tioned statistical measures, and, therefore, we decide to omit them from our
analyses (Basel Committee on Banking Supervision, 2005b).

In Table 5, we depict the results obtained from the evaluated models. It is
evident that the proposed SHMM-based rating system exhibits higher discrim-
inatory power compared to all the considered competitors. More significantly,
the obtained performance is more stable and more consistent across all test sam-
ples, resulting in lower performance standard deviation. This is an important
merit of our approach, since achieving high average performance is as signifi-
cant for a rating system as it is for it to achieve low performance variance, and
thus, higher consistency and better performance guarantees. Another interest-
ing finding stemming from our results is that CHAID performs very poorly in
the cases of the out-of-sample and out-of-time datasets. To our perception,
this finding is most likely due to overfitting. On the other hand, we observe
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that FNNs perform slightly better than logistic regression and other machine
learning techniques. Note though that the performance superiority of FNNs is
not significant enough to counterbalance the advantages of other machine learn-
ing approaches, such as LDA and RFs, which offer much better computational
complexity, while RFs have also the major advantage of allowing for yielding
intuitive visualizations of the results of the inference algorithm.

Regarding the obtained Bayesian error rate, we observe that our results con-
firm the stability of our approach, since the values of this statistic are similar
in all the considered scenarios (in-sample, out-of-sample, and out-of-time), and
the classification errors are significantly lower than the considered benchmark
models. Finally, we underline that the obtained GINI performance of our model
is equal to or greater than 80% in all cases; according to industry benchmarks,
SME credit rating systems yielding a GINI index exceeding 80% are consid-
ered to possess significantly high (industry-level) discriminatory power. Hence,
our approach possesses the significant merit of yielding industry-level predictive
performance, which increases its potential attractiveness to real-world finan-
cial institutions. A graphical illustration of the evolution of the obtained GINI
values is provided in Fig. 4.

5.2.2. Calibration Results
Finally, we elaborate on the results obtained from the system calibration

procedure described in Section 4.2.4. This procedure yields 9 rating grades.
The default rates obtained by the calibrated 9-grade rating system are depicted
in Fig. 5 (solid black line). In the same figure, we also show the results obtained
from applying calibration to the out-of-sample and out-of-time datasets, using
the rate ranges determined on the in-sample population. Looking at the out-of-
sample results, we observe a rather stable performance in the estimation of the
actual default rate that corresponds to the out-of-sample population. This is
also verified by a performing a chi-square test (Table 6) to compare the in- and
out-of-sample calibrated populations. Therefore, we deduce that our SHMM-
based prediction system does not exhibit statistically significant performance
differences between the in-sample and out-of-sample datasets.

Further, we perform a similar analysis regarding the out-of-time samples. In
this case, we observe quite different a result: Indeed, we observe a deviation
of obligors behavior (implied default rate) equal to 5.6% w.r.t. the in-sample
dataset, and equal to 17.7% w.r.t. the out-of-sample dataset. We would like to
underline that this is not an unexpected system behavior: credit rating systems
typically need recalibration in their rating scale when dealing with out-of-time
datasets, in order to allow for capturing significant changes in the business
environment that cannot be otherwise predicted using the modeled financial
ratio time-series. To resolve this issue, one could consider introducing into the
fitted models some additional macroeconomic variable as a covariate (e.g., GDP,
unemployment rate).
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Table 5: Discriminatory Power Results of the Evaluated Algorithms.

Table 6: Calibration Results: Chi-squared test outcomes.

out-of-sample out-of-time
χ2value (8 DoF) 8.8 288

p-value >0.10 <0.0001
Null Hypothesis Accept Reject
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Figure 4: Analysis of obtained GINI performance values.
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Figure 5: Calibration Results.

6. Conclusions and Future Work

In this paper, we proposed a novel credit rating system, leveraging the at-
tractive properties of SHMMs. Our proposed approach is a holistic corporate
credit scoring system, that addresses all the parts of the modeling pipeline, from
financial ratio time-series selection and preprocessing, to selection of appropri-
ate time-series modeling techniques, and information fusion strategies used to
obtain the final credit scores. The core modeling stage of our system constitutes
a novel financial time-series modeling scheme based on SHMMs. The utiliza-
tion of SHMMs allows for capturing intricate temporal dynamics in the modeled
data, reflecting the evolution of corporate behavior and risk depending on the
latent state of the economy. Furthermore, for the first time in the related lit-
erature, we employ an HMM using multivariate Student’s-t mixture models as
its state emission distributions. This selection allows for us to obtain a model
training algorithm with high robustness to outliers in the observed datasets,
which constitute a common problem in financial time-series data; in addition,
it also allows for better capturing correlations between the modeled financial
ratios. Finally, our model obviates the need of resorting to the information-
wasting observed variable quantization procedures related approaches require,
which in turn offers increased robustness to overfitting.

We performed extensive experimental evaluations of our approach using data
from the Central Bank of Greece that pertain to both SMEs and large cor-
porations, recorded over the period 2006-2012. As we showed, our approach
consistently outperforms a series of benchmark approaches, both in terms of
the obtained GINI coefficients and K-S statistics, and in terms of the obtained
predictive variance, which quantifies the model’s capacity to retain the high per-
formance levels observed in the in-sample dataset when evaluation is performed
using out-of-sample and out-of-time datasets. This performance consistency im-
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plies a much stronger generalization capacity compared to the state-of-the-art,
which renders our approach much more attractive to researchers and practi-
tioners working in real-world financial institutions, who are mainly interested
in the generalization capacity of their systems, rather than in their in-sample
performance. Finally, as a concluding note, we underline that both training and
prediction generation using our system are extremely efficient and scalable to
large datasets, without noteworthy overheads compared to existing benchmark
systems. Thus, our system does not bring to the fore any kind of trade-off
between computational complexity and predictive performance.

One aspect that this work did not consider is whether allowing for our model
to account for skewness in the observed data could result in yielding even bet-
ter predictive performances. For example, for this purpose we could consider
using mixtures of multivariate skewed-t distributions as the postulated emission
distributions (Gupta, 2003; Azzalini and Dalla Valle, 1996), instead of simple
multivariate Student’s-t distributions. However, the trade-offs between the ob-
tained predictive performance increase and the increased computational costs
resulting from such a modeling selection must be thoroughly examined. Further,
exploration of Bayesian inference techniques for our model, that could allow for
better accounting for uncertainty in the modeled data, is also worth of investi-
gation. Finally, we also consider possible extensions of our model to allow for
embedding expert judgments as an overlay, macroeconomic covariates, or co-
variates pertaining to qualitative information that credit officers may get aware
of before it becomes depicted in the balance sheets of the examined companies.
Such modifications could allow for addressing one of the main criticisms against
scoring models, regarding their inability to capture rapid changes in corporation
state, that cannot be immediately reflected in their balance sheets.

Finally, as an aside we note that in our approach we have postulated uni-
variate component SHMMs, modeling each financial ratio independently of all
the others. Even though this modeling selection may result in not allowing for
the employed dynamic models (SHHMs) to extract salient covariances informa-
tion, it it also true that it offers a set of significant merits in the context of
our approach: Specifically, it protects our system from problems arising from
multi-colinearities in the modeled data, and it prevents overfitting, which is
likely to occur when modeling high-dimensional data. Nevertheless, exploring
the utility of equivalent multivariate SHMM formulations in the context of our
system remains an interesting question we intent to explore in our future work.
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