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Abstract—Hidden Markov models (HMMs) are a popular approach for
modeling sequential data, typically based on the assumption of a first-
or moderate-order Markov chain. However, in many real-world scenar-
ios the modeled data entail temporal dynamics the patterns of which
change over time. In this paper, we address this problem by proposing
a novel HMM formulation, treating temporal dependencies as latent
variables over which inference is performed. Specifically, we introduce
a hierarchical graphical model comprising two hidden layers: on the first
layer, we postulate a chain of latent observation-emitting states, the
temporal dependencies between which may change over time; on the
second layer, we postulate a latent first-order Markov chain modeling
the evolution of temporal dynamics (dependence jumps) pertaining to
the first-layer latent process. As a result of this construction, our method
allows for effectively modeling non-homogeneous observed data, where
the patterns of the entailed temporal dynamics may change over time.
We devise efficient training and inference algorithms for our model,
following the expectation-maximization paradigm. We demonstrate the
efficacy and usefulness of our approach considering several real-world
datasets. As we show, our model allows for increased modeling and pre-
dictive performance compared to the state-of-the-art in the considered
scenarios, for competitive computational complexity.

Index Terms—Temporal dynamics, hidden Markov models,
expectation-maximization, variable order, dependence jumps.

1 INTRODUCTION

Modeling sequential data continues to be a fundamental
task and a key challenge in the field of machine learning, en-
countered in a plethora of real-world applications, including
bioinformatics, document analysis, financial engineering,
speech processing, and computer vision, to name just a few.
In this paper, we focus on the problem of sequence prediction,
dealing with continuous, possibly high-dimensional observa-
tions (time-series). Machine learning literature comprises a
rather extensive corpus of proposed prediction algorithms
for sequences of continuous observations. Among them, the
hidden Markov model (HMM) is one of the most popular
methods, used in a great variety of application contexts. This
popularity is mainly due to the fact that HMMs are flexible
enough to allow for modeling complex temporal patterns
and structures in sequential data. Specifically, HMMs are
popular for their provision of a convenient way of mod-
eling observations appearing in a sequential manner and
tending to cluster or to alternate between different possible
components (subpopulations) [1].

Most popular HMM formulations are based on the pos-
tulation of first-order Markovian dependencies; in other

words, only one-step-back temporal dynamics are consid-
ered. Such an assumption allows for increased simplicity
and low computational complexity of the resulting model
training and inference algorithms. However, postulating
first-order temporal dynamics does also entail ignoring the
possibility of the modeled data comprising longer temporal
dynamics. Even though this assumption might be valid in
some cases, it is well-known to be unrealistic in several
application scenarios, including handwriting recognition,
molecular biology, speech recognition, and volatility pre-
diction in financial return series, thus undermining the
modeling effectiveness.

To resolve this problem, several researchers have at-
tempted to introduce HMM-type models with higher-order
dependencies. Characteristic examples are the methods pre-
sented in [2] and [3], with successful applications to the
problem of speech recognition, the method presented in [4],
applied to handwriting recognition, the method of [5], de-
signed to address challenges related to pattern recognition
tasks in molecular biology, and the method presented in
[6], which was successfully applied to the field of robotics.
However, a major drawback of such higher-order HMM
approaches is their considerably increased computational
costs, which become rather prohibitive as model order in-
creases. An effort to ameliorate these issues of higher-order
HMMs is presented in [7]. In that work, instead of directly
training R-th order HMMs on the data, a method of fast
incremental training is used that progressively trains HMMs
from first to R-th order.

Note, though, that using higher-order HMMs gives rise
to a source of significant burden for researchers and practi-
tioners, namely the need to determine the most appropriate
order for the postulated models. This procedure entails
fitting multiple models to the available data to choose from,
and application of some cross-validation procedure, which,
apart from computationally cumbersome, is also likely to
become prone to overfitting [8]. Finally, another limitation
of the existing higher-order HMM formulations concerns
their static and homogeneous assumptions, i.e. their consid-
eration that the temporal dynamics order in the modeled
data does not change over time. Indeed, sequential data
with variable order in the entailed temporal dynamics are
quite often encountered in real-world application scenarios
[9], [10], [11], [12]. Therefore, allowing for capturing more
complex structure of temporal dynamics in the modeled
data, where effective model order may change over time
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as a result of dynamic switching between different temporal
patterns, is expected to result in much better modeling and
predictive performances.

To address these problems of conventional higher-order
HMMs, some researchers have proposed appropriate mod-
els with variable order Markovian dynamics assumptions.
For instance, a variable order Markov model is presented
in [10] to address the problem of prediction of discrete
sequences over a finite alphabet; the method is successfully
applied to three different domains, namely English text,
music pieces, and proteins (amino-acid sequences). More
recently, [11] presented a simple and effective generalization
of variable order Markov models to full online Bayesian es-
timation. Generalization of variable order Markov models in
this context enables perpetual model improvement and en-
richment of the learned temporal patterns by accumulation
of observed data, without any need for human intervention.
Despite these merits, a drawback of both these approaches
concerns their inability to model sequential data comprising
continuous observations, i.e. sequences each frame of which
is a (probably high-dimensional) D-dimensional vector of
real values, defined in RD . Finally, [13] propose a two-stage
modeling approach towards variable order HMMs: the first
stage consists in discovering repetitive temporal patterns
of variable length, while the second stage consists in per-
forming prediction by means of a separate simple HMM fit
to the temporal pattern determined to be relevant at each
specific time point. Similar to the previous approaches, a
major limitation of [13] consists in its incapability to model
sequential observations taking continuous values in RD .

In a different vein, a maximum-margin classifier for
sequential data with (theoretically) infinitely-long tempo-
ral dependencies is presented in [9]. That paper devises
a novel margin-maximizing model with convex objective
function that allows for capturing arbitrarily-long temporal
dependencies in sequential datasets. This is effected by
utilizing a recently proposed nonparametric Bayesian model
of label sequences with infinitely-long temporal dependen-
cies, namely the sequence memoizer (SM) [14]. Training and
inference for this model can be efficiently performed by
employing a versatile mean-field-like approximation [15],
[16]; this approximation allows for increased computational
efficiency, almost comparable to analogous (large-margin)
first-order HMM formulations, e.g. [17]. Further, since de-
sign of the model of [9] is limited to classification tasks,
a generalization of this model allowing to also perform
sequence prediction was recently presented in [12].

As discussed in [9] and [12], the proposed models, pos-
tulating infinitely-long temporal dependencies, perform in-
ference over temporal dependence patterns. In other words,
they do not try to determine the most appropriate model
setup for a considered dataset. Instead, they essentially
learn a posterior distribution over all possible temporal
dependence patterns. During prediction, these models ef-
fectively perform marginalization over all possible temporal
dependence modeling assumptions, with each assumption
being given a different probability at each time point. As
a result, the methods of [9] and [12] do not suffer from
issues regarding appropriate model selection, namely the
need to fit multiple models and perform cross-validation,
and the associated overfitting proneness. In addition, they

inherently allow for handling the case where the form of
temporal dependencies changes over time. Note also that
both the methods presented in [9] and [12] can model
discrete as well as continuous observations, contrary to
previous approaches which can handle only discrete obser-
vations.

Despite these merits, two major limitations of these
approaches are:
(i) The need to come up with a (rather brute-force) approx-
imation to allow for deriving efficient model training and
inference algorithms, namely the mean-field approximation.
Indeed, although mean-field approximation does not affect
the nature of the model, which takes into account infinitely-
long histories of latent temporal states, it results in omit-
ting the fluctuations of higher-order temporal states when
performing training and inference [9], [12]. This procedure
leads to suboptimal training and inference results, that do
not exploit the full modeling capacity of the methods, and
with no theoretical convergence guarantees.
(ii) The need to perform inference for the employed model of
(arbitrarily-long) temporal dynamics (state-transitions), i.e.
a postulated sequence memoizer [18]. SM is a nonparametric
Bayesian method recently proposed for modeling sequential
data with discrete values and dependencies over infinitely-
long time-windows. While effective in modeling sequential
data with long temporal dynamics, inference for this model
suffers from high computational costs, which increase with
the length of the modeled sequences. As such, obviating the
need of using an SM in the modeling pipeline is expected to
significantly reduce computational costs.

In this paper, we address all the aforementioned short-
comings of the current state-of-the-art, by introducing an
HMM variant capable of capturing jumps in the temporal
dependence patterns of modeled sequential data. Specifically,
we introduce a hierarchical graphical model comprising
two hidden layers: on the first layer, we postulate a chain
of latent observation-emitting states, the dependencies between
which may change over time; on the second layer, we postulate
a latent first-order Markov chain modeling the evolution of
temporal dynamics (dependence jumps) pertaining to the first-
layer latent process. As a result of this construction, our
model allows for effectively modeling non-homogeneous
observed data, where the patterns of temporal dependencies
may change over time. To allow for tractable training and
inference procedures, our model considers temporal depen-
dencies taking the form of variable order dependence jumps, the
order of which is inferred from the data as part of the model
inference procedure.

Our method is designed to allow for modeling both
discrete and continuous observations; it allows for capturing
seasonal effects in the modeled sequences, and enhances
modeling in the implied autocorrelation structure of the
observed sequences. In addition, contrary to the related
methods of [9] and [12], our method does not require uti-
lization of any kind of approximation to perform model
training and inference. Indeed, both model training and
inference can be performed exactly and in a computationally
efficient way, using elegant algorithms derived under the
expectation-maximization paradigm [19]. We demonstrate
the efficacy of our approach in the task of sequential data
prediction, considering real-world application scenarios.
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The remainder of this paper is organized as follows: In
Section 2, we introduce our proposed model and derive its
training and inference algorithms. In Section 3, we experi-
mentally evaluate our approach, and exhibit its advantages
over existing approaches. Finally, in Section 4 we conclude
this paper, summarizing and discussing our results.

2 PROPOSED APPROACH

2.1 Motivation

In real-world applications, it is often the case that stochastic
processes are characterized by non-homogeneous evolution,
exhibiting higher-order dependencies. For example, time
series of financial asset returns are known to exhibit variable
autocorrelation and non-stationarity [20]; such forms of dy-
namics in the modeled data cannot be sufficiently captured
by using a simple Markov process. In the same vein, histor-
ical volatility of financial asset returns usually exhibits long
temporal interdependencies, slow autocorrelation decay, fat
distribution tails, as well as temporal pattern switching over
time, e.g. shifting between low volatility and high volatility
regimes [21], [22], [23], [24], which are manifested as jumps
driven by shocks or unexpected news [25], [26].

Several studies have examined whether conventional
HMM formulations are capable of capturing such stylized
facts in modeled time-series. For example, [27] examined
the efficacy of simple first-order HMMs; further, [28] used
hidden semi-Markov models (HSMMs) as an alternative
solution allowing for better capturing the autocorrelation
structure. However, the outcome of all these studies has
been quite unsatisfactory compared to the state-of-the-art
in the literature pertaining to the related applications, e.g.
the literature on financial return series modeling. Motivated
from these results, in this work we aim to come up with an
elegant and computationally efficient HMM variant capable
of accommodating the above-mentioned stylized facts in
observed time-series, namely: (i) distributions with fat tails;
(ii) seasonality and temporal clustering dynamics; and (iii)
non-homogeneous temporal dynamics patterns, exhibiting
dependence jumps over time.

2.2 Model Definition

As we have already discussed, in this work we are seeking
to devise an HMM variant allowing for modeling sequen-
tial data with variable temporal dependence patterns, i.e. a
model capable of determining dependence jumps in the chain
of observation-emitting latent states. For this purpose, we
postulate an HMM variant, the hierarchical construction of
which comprises two hidden layers: The first layer essentially
consists of the chain of observation-emitting latent states, the
dependencies between which may change form over time.
The second layer comprises a latent first-order Markov chain
that determines (and generates) the dependence jumps taking
place in the observation-emitting latent chain of the first
layer.

Let us postulate N observation-emitting states on the
chain of the first layer of our model, where the hidden emis-
sion density of each state is modeled by a M -component
finite mixture model. Let us also postulate a latent first-
order Markov chain comprising K states on the second

layer; K is essentially the number of alternative tempo-
ral dependence patterns considered on the first layer of
the model. Even though multiple alternative configurations
could be considered for the form of the modeled temporal
dependence patterns of the first-layer observation-emitting
chain, in this work we limit ourselves to pairwise latent
emitting state transitions between the current emitting state
and some previous state that occurred at a time point a number
of steps back; this number of steps back is determined from
the latent values generated from the second-layer dependence
jumps-generating Markov chain of our model.

Let us introduce here some useful notation. We de-
note as O = {ot}Tt=1 an observed data sequence, with
ot ∈ RD . The latent (unobserved) data associated with
this sequence comprise: (i) the corresponding emitting state
sequence Q = {qt}Tt=1, where qt = 1, . . . , N is the indicator
of the state the tth observation is emitted from; (ii) the
sequence of temporal dependence form indicators Z = {zt}Tt=1

that indicate the pairwise emitting states transition that is
relevant (“active”) at time t, where zt = 1, . . . ,K ; and (iii)
the sequence of the corresponding mixture component indica-
tors L = {lt}Tt=1 , where lt = 1, . . . ,M indicates the mixture
component density that generated the tth observation. A
graphical illustration of the generative model and the latent
interdependencies assumptions of our model is provided in
Fig. 1.

The above-described VDJ-HMM model comprises the set
of parameters Θ = {Φ,Ψ}, where Φ denotes the parameters
set of the emission distributions of the model, and Ψ denotes
the set of parameters of the postulated latent processes per-
taining to the observed data dynamics (first-layer process)
and the dependence jump dynamics (second-layer process).
Specifically, since the second-layer process is a simple first-
order Markov chain, it comprises the parameters

$̂k , p(z1 = k) (1)

that denote the (prior) probabilities of the initial state of this
Markov chain, and the parameters

π̂kk′ = p(zt = k′|zt−1 = k) ∀t > 1 (2)

denoting the transition (prior) probabilities of this Markov
chain. From the above model definition, we observe that, if
the transition probability π̂11 in the above-defined transition
matrix Π̂ , [πkk′ ]k,k′ is close to one, then the observation-
emitting process of our model (first model layer) almost
reduces to a first-order Markov chain. In this paper, for
simplicity we set $̂k = 1

K ∀k and π̂kk′ = 1
K ∀k, k′; in

other words, we consider all dependence forms a priori of
equal probability. These assumptions, although relatively
limiting, allow for deriving tractable and computationally
efficient model training and inference algorithms, as we
show further on.

In a similar fashion, the postulated first-layer process of
our model comprises the parameters

$i , p(q1 = i) (3)

denoting the (prior) probabilities of the initial observation-
emitting state, with$ , [$i]

N
i=1. In addition, turning to the

variable-form temporal dynamics of this process, we also
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introduce the set of dependence form-conditional transition
(prior) probability matrices {Πk}Kk=1, with

Πk , [πkij ]
N
i,j=1 (4)

where

πkij ,p(qt = j|qt−1, . . . , qt−k = i; zt = k)

= p(qt = j|qt−k = i; zt = k)
(5)

In other words, we consider different (pairwise) state tran-
sition probabilities, depending on the inferred dependence
form k (number of steps back) generated from the postu-
lated second-layer process.

Having defined the latent processes of our model, with
effective parameters set Ψ =

{
$, {Πk}Kk=1

}
, we can

now proceed to the definition of the (conditional on the
first-layer states) emission distributions of our model. For
this purpose, and in order to allow for effective model-
ing of continuous-valued observations, we postulate M -
component finite mixture models, as we have already dis-
cussed. Specifically, in our work, to allow for modeling distri-
butions with fat tails, we consider two alternative selections:
(i) multivariate Gaussian mixture models, yielding

p(ot|qt = i) =
M∑
m=1

wimN (ot|µim,Σim) (6)

where N (·|µ,Σ) is a multivariate Gaussian with mean µ
and covariance matrix Σ; and (ii) multivariate Student’s-t
mixture models, yielding

p(ot|qt = i) =
M∑
m=1

wimS(ot|µim,Σim, νim) (7)

where S(·|µ,Σ, ν) is a multivariate Student’s-t distribution
with parameters µ, Σ, and ν degrees of freedom. On this
basis, the parameters set Φ yields Φ = {wim,µim,Σim}i,m
or Φ = {wim,µim,Σim, νim}i,m, respectively. As discussed
in [29], HMM-type models with Student’s-t mixture emis-
sion distributions allow for better modeling sequential data
stemming from populations with long tails, which are quite
common in real-world application scenarios.

This concludes the definition of our model. We dub
our approach the variable dependence jump HMM (VDJ-
HMM). From Eqs. (1)-(7), the joint distribution of VDJ-HMM
yields:

p(O,Q,Z|Θ) =$̂z1$s1

T−1∏
t=1

π̂zt,zt+1

∏
t>1

πztst−zt ,st

×
T∏
t=1

p(ot|qt = i)

(8)

Note that, as observed from (8), a major advantage from
the computational point of view of the proposed VDJ-
HMM model compared to higher-order HMM formulations
(e.g., [2], [6], [7]) is the much fewer number of parame-
ters postulated from VDJ-HMM. As a result, VDJ-HMM is
capable of capturing seasonal effects in the modeled data
while allowing for significantly more efficient training and
inference algorithms compared to existing alternatives. In
addition, the lower number of trainable parameters reduces

Figure 1: Graphical illustration of the generative model and
the latent interdependencies assumptions of VDJ-HMM.
Here, λ denotes the active dependence form inferred at time
t by the model. Effectively, the value of λ determines which
past observation-emitting latent state currently affects the
temporal dynamics of observation generation.

the tendency of the model to overfitting, as well as the as-
sociated requirements in training data availability to ensure
effective model training.

2.3 Model Training

To perform training for our model given a sequence O =
{ot}Tt=1, we resort to the familiar expectation-maximization
(EM) paradigm [generalization of the here-derived algo-
rithm for the case of training with multiple sequences
is straightforward]. Based on the definition of VDJ-HMM
[Eqs. (1)-(7)], the complete data of our model comprise the
observable sequence O, the corresponding emitting state
sequence Q = {qt}Tt=1, the dependence form sequence
Z = {zt}Tt=1, and the sequence of corresponding mixture
component indicators L = {lt}Tt=1. In addition, based on
the derivations of [29], in the special case of considering
multivariate Student’s-t mixture models as the emission
distributions of VDJ-HMM, to allow for effective model
training and inference procedures, we resort to expressing
the multivariate Student’s-t distributions as scale-mixtures
of Gaussians, yielding [29]:

p(ot|qt = i; {uimt}Mm=1) =
M∑
m=1

wimN (ot;µim,Σim/uimt)

(9)
where uimt is a precision scalar corresponding to the ob-
servation ot given it is generated from the jth component
density of the ith emitting state, and is Gamma-distributed
as [29]

uimt ∼ G
(νim

2
,
νim
2

)
(10)

Under this setup, the above introduced set of precision
scalars {uimt} is also regarded as part of the complete data
configuration of our model.

The EM algorithm comprises optimization of the poste-
rior expectation of the complete data log-likelihood of the
treated model [19]

Q(Θ; Θ̂) , EΘ̂(logLc(Θ)|O) (11)

where Θ̂ denotes the currently obtained estimator of the
model parameters set Θ, and logLc(Θ) is the expression of
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the complete data log-likelihood of the model, which reads
(ignoring constant terms)

logLc(Θ) =
N∑
h=1

{
I[q1 = h] log$h

+
K∑
k=1

∑
t

I[zt = k]
N∑
i=1

I[qt−k = h, qt = i] logπkhi

}

+
T∑
t=1

N∑
i=1

I[qt = i]logLc(ot|qt = i)

(12)

where I[·] is the boolean operator. In Eq. (12), logLc(ot|qt =
i) is the complete data log-likelihood of the emission dis-
tribution of the ith hidden state with respect to ot, and
the associated latent variables lt and (in case of Student’s-t
models) {uimt}m. In the case of Gaussian mixture emission
distributions, logLc(ot|qt = i) yields

logLc(ot|qt = i) =
M∑
m=1

I[lt = m]

{
logwim −

1

2
log|Σim|

− 1

2
d(ot,µim;Σim)

}
(13)

where d(ot,µim;Σim) is the Mahalanobis distance between
ot and µim, with covariance matrix Σim. On the other hand,
in the case of Student’s-t mixture emission distributions,
logLc(ot|qt = i) yields

logLc(ot|qt = i) =
M∑
m=1

I[lt = m]
{
−logΓ

(νim
2

)
+
νim
2
×[

log
(νim

2

)
+ loguimt − uimt

]
+ logwim

− uimt
2

d(ot,µim;Σim)− 1

2
log|Σim|

}
(14)

where Γ (·) is the Gamma function.
As usual, the EM algorithm for our model is an iterative

procedure, each iteration of which comprises an E-step and
an M-step. On the E-step of the algorithm, we compute a set
of posterior expectations pertaining to the latent variables of
our model (sufficient statistics), using the current estimator
of the model parameters set Θ̂. Subsequently, on the M-step
of the algorithm, we optimize the model parameters set Θ
using the sufficient statistics computed previously, in order
to obtain an updated estimator of the model parameters set,
Θ̂.

2.3.1 E-step

From (11) and (12), it directly follows that the E-step of our
algorithm consists in computing the posterior probabilities
of the latent states on the first and second hidden layers of
our model, as well as the corresponding state transition pos-
teriors. It also comprises computation of the emitting state-
conditional mixture component posteriors, as well as the
posteriors of the precision scalars uimt, when considering
Student’s-t mixture emission distributions.

Let us begin with the mixture component posteriors,
hereafter denoted as ξimt; we have

ξimt , EΘ(lt = m|ot, qt = i) =
p(ot|qt = i, lt = m)∑M
h=1 p(ot|qt = i, lt = h)

(15)
This expression yields

ξimt =
wimN (ot|µim,Σim)∑M
h=1 wihN (ot|µih,Σih)

(16)

when considering Gaussian mixture emissions, and

ξimt =
wimS(ot|µim,Σim, νim)∑M
h=1 wihS(ot|µih,Σih, νih)

(17)

in the case of Student’s-t mixture emissions.
Regarding the posterior expectations of the precision

scalars uimt (if applicable), we have

ûimt , EΘ (uimt|ot) =
νim +D

νim + d(ot,µim;Σim)
(18)

Further, to obtain the rest of the sought posteriors, we
need to define a set of auxiliary distributions, which can be
computed by means of a variant of the well-known forward-
backward algorithm [30], [1]. Specifically, let us define the
forward probabilities

αt(i, k) , p({oτ}tτ=1; qt = i|zt = k) (19)

These probabilities can be computed iteratively, with initial-
ization

α1(i, k) =

{
$ip(o1|q1 = i), k = 1

0, k > 1
(20)

and recursion

αt(j, k) = p(ot|qt = j)
∑
i

∑
λ

πkijαt−k(i, λ) (21)

In a similar way we define the backward probabilities of our
model, which yield

βt(i, k) , p({oτ}Tτ=t+1|qt = i; zt+k = k) (22)

These probabilities can also be computed iteratively, with
initialization

βT (i, k) = 1, ∀k (23)

and recursion

βt(i, k) =
M∑
j=1

∑
λ

πkijp(ot+k|qt+k = j)βt+k(j, λ) (24)

Having obtained the forward and backward probabili-
ties of our model, we can now proceed to obtain the re-
maining sought posteriors. For the emitting state posteriors,
hereafter denoted as γjt, we have

γjt , p(qt = j|O) ∝
[ K∑
k=1

ζktαt(j, k)

][ K∑
k′=1

ζk′,t+k′βt(j, k
′)

]
(25)

Similarly, the emitting state transition posteriors yield

γλijt ,p(qt = i, qt+λ = j|zt+λ = λ;O)

∝
K∑

k,k′=1

αt(i, k)βt+λ(j, k′)πλijp(ot+λ|qt+λ = j)
(26)
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Finally, regarding the (“active”) dependence form posteri-
ors, hereafter denoted as ζkt, we have

ζkt , E(zt = k|O) ∝
N∑
i=1

αt(i, k)
∑
λ

ζλ,t+λβt(i, λ) (27)

This concludes the E-step of our algorithm.

2.3.2 M-step

Having obtained the required posterior expectation expres-
sions on the E-step of the training algorithm of our model,
we now proceed to optimization of the objective function
(11) over the model parameters to obtain the expressions of
the model parameter updates. Let us introduce the notation

rimt , γitξimt (28)

We then have

πi = γi1 (29)

πλhi =

∑
t γ

λ
hit∑

t γht
(30)

wim =

∑T
t=1 rimt∑T
t=1 γit

(31)

Further, the parameters of the emission distributions yield
the following expressions:
(i) In case of Gaussian mixture emissions, we have

µim =

∑T
t=1 rimtot∑T
t=1 rimt

(32)

Σim =

∑T
t=1 rimt(ot − µim)(ot − µim)T∑T

t=1 rimt
(33)

(ii) In case of Student’s-t mixture emissions, we have

µim =

∑T
t=1 rimtûimtot∑T
t=1 rimtûimt

(34)

Σim =

∑T
t=1 rimtûimt(ot − µim)(ot − µim)T∑T

t=1 rimt
(35)

while the degrees of freedom are obtained by solving w.r.t.
νim the equation

1− ψ
(νim

2

)
+ log

(νim
2

)
+ ψ

(
ν̂im +D

2

)
− log

(
ν̂im +D

2

)
+

1∑T
t=1 rimt

T∑
t=1

rimt (logûimt − ûimt) = 0

(36)

where ν̂im is the current estimate of the degrees of freedom
νim, and ψ(·) is the Digamma function.

This concludes the training algorithm of our model. An
outline of the EM algorithm for VDJ-HMM is provided in
Alg. 1.

Algorithm 1 EM Algorithm for the VDJ-HMM model.

Initialize the model parameters estimate Θ̂. Set the maxi-
mum number of iterations, MAXITER, and the conver-
gence threshold of the EM algorithm.
For MAXITER iterations or until convergence of the ob-
jective function Q(Θ; Θ̂) do:

1) Conduct the forward-backward algorithm to obtain
the forward probabilities αt(j, k) and the backward
probabilities βt(i, k), using Eqs. (20)-(21) and (23)-
(24), respectively.

2) Effect the E-step of the algorithm by computing
the posteriors pertaining to the mixture compo-
nents, ξimt, the precision scalars, ûimt, the chain
of observation-emitting states, γjt and γλijt, and
the Markov chain of dependence jumps, ζkt. For
this purpose, use Eqs. (15), (18), (25)-(26), and (27),
respectively.

3) Effect the M-step by computing the new estimates of
the model parameters πi, πλhi, wim, µim, Σim, and
νim, using Eqs. (29)-(36), respectively.

2.4 Inference Algorithm

A first inference problem we consider in this work is the
problem of predicting the next emitting state, say at time
t + 1, denoted as qt+1, given the values of the currently
observed data, i.e. the observations set {oτ}tτ=1. From the
definition of our model, it is easy to deduce that the proba-
bility of the emitting state at time t + 1, given the sequence
of past observations {oτ}tτ=1, can be written in the form

p(qt+1 = j|{oτ}tτ=1) =
∑
k

N∑
i=1

p(qt−k+1 = i|{oτ}tτ=1)

×p(qt+1 = j|qt−k+1 = i; zt−k+1 = k)

=
∑
k

N∑
i=1

πkijγi,t−k+1

(37)
where the emitting state posteriors γjt are computed by (25),
using the sequence of observations {oτ}tτ=1. On this basis,
determination of the first-layer state of our model, say q̂,
that is most likely to emit the (next) observation at time
t+ 1 can be performed by maximization of the conditionals
p(qt+1 = j|{oτ}tτ=1), yielding:

q̂ , argmax
j

p(qt+1 = j|{oτ}tτ=1) (38)

Another inference problem quite common in the related
literature is the task of determining the probability of a
given sequence w.r.t. a trained VDJ-HMM model. For this
purpose, we can resort to the forward algorithm of our
model, similar to conventional HMMs. Specifically, let us
consider a sequence O = {ot}Tt=1 and a trained VDJ-
HMM model with parameter estimate Θ̂. Then, following
the definition of our model, the probability of sequence O
w.r.t. the available VDJ-HMM model yields

p(O|Θ̂) =
N∑
i=1

K∑
k=1

αT (i, k) (39)
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Finally, as discussed in the Introduction, the key inference
problem we focus on in this work is the problem of sequence
prediction. Let us consider a sequence {oτ}tτ=1. Then, the
sequence prediction problem we consider here is the prob-
lem of performing an one-step ahead forecast, i.e. predicting
the observation value ot+1 at time t + 1, given the values
{oτ}tτ=1. To address this problem, we exploit the above
obtained results regarding computation of the next-state
probabilities, p(qt+1 = j|{oτ}tτ=1). Specifically, we effect
the sequence prediction task at time t+ 1 as follows:
(i) We use Eq. (38) to obtain the emitting state probabilities
at the following time point (t + 1), given the current set of
observations (up to time t), i.e. p(qt+1 = j|{oτ}tτ=1).
(ii) We set the generated predicted value ôt+1 of the obser-
vation at time t+ 1 equal to the mean value of the modeled
variable o at time t+1, based on the fitted VDJ-HMM model
with parameters set Θ̂. Specifically, considering mixtures of
Gaussians or Student’s-t densities as the emission distribu-
tions of our model, as discussed previously, this procedure
yields:

ôt+1 =
N∑
n=1

M∑
m=1

p(qt+1 = n|{oτ}tτ=1)wnmµnm (40)

2.5 Computational Complexity

We conclude this section with a short discussion on the
computational complexity of our model. We first focus on
the training algorithm of our model: From Eqs. (19)-(27), we
can easily observe that the main difference between VDJ-
HMM model training and training of a simple first-order
HMMs concerns computation of the set of forward and
backward probabilities, {αt(j, k)}t,j,k and {βt(j, k)}t,j,k,
respectively, which are distinct for each possible temporal
dependence pattern, k = 1, . . . ,K . Indeed, turning to each
one of the probabilities in these sets, from Eqs. (21) and
(24) we observe that their computation imposes compu-
tational costs similar to the corresponding quantities (for-
ward and backward probabilities) pertaining to simple first-
order HMMs. Thus, the only difference consists in repeating
this computation procedure for each postulated temporal
dependence pattern, k = 1, . . . ,K . Given the fact that
the dominant computational costs related to these quan-
tities concerns computation of the emitting state density
functions, which are shared across the considered temporal
dependence patterns, k = 1, . . . ,K , it is easy to deduce that,
with proper algorithm implementation, VDJ-HMM model
training imposes only negligible computational overheads
compared to conventional HMM formulations.

Similar results can be obtained regarding the compu-
tational costs of inference using our model. Specifically,
from Eqs. (37)-(40) we observe that the extra computational
costs of the inference procedures of the VDJ-HMM model
compared to conventional first-order HMMs are related to
the need of computing different state transition posteriors
and different forward and backward probabilities for each
postulated temporal dependence pattern k = 1, . . . ,K .
Thus, inference using our model induces only negligible
computational overheads compared to conventional HMM
formulations, especially when the number of postulated
temporal dependence patterns K is considered to be low

(which is usually the case in real-world applications, since
a relatively low K value selection typically suffices for
optimal model performance).

3 EXPERIMENTS

In this section, we perform an extensive evaluation of the
proposed VDJ-HMM model. For this purpose, we consider a
set of time-series forecasting experiments dealing with real-
world applications from the computational finance domain.
Specifically, we first consider volatility forecasting in financial
return series; further, we consider the problem of predicting
the future return values for a set of considered assets. Broad
empirical evidence (see, e.g. [21], [23], [25]) has shown
that financial return series exhibit variable order non-linear
temporal dependencies, as well as dependence jumps, both
when it comes to volatility forecasting and concerning future
value prediction. As such, leveraging the merits of our model
in the context of these applications is expected to yield a
significant performance improvement over the competition.

To provide some comparative results, apart from our
method we also evaluate the related HMM∞ model [12],
which postulates infinitely-long temporal dependencies at
each time point, baseline first-order HMMs, and explicit-
duration HSMMs [31]. In addition, we cite the performance
of methods yielding the state-of-the-art results in the con-
sidered experimental scenarios, as they have been reported
in the recent literature. In all cases, to ensure the validity
of our comparisons, we perform model training following
exactly the same experimental setup as in the case of the
papers reporting the cited state-of-the-art results.

Our experimental setup is the following: For each one
of the considered applications, we split the available data
into a training sample, a validation sample, and a testing
sample; we adopt the same splits as the authors of the state-
of-the-art methods reported in the literature, to render our
performance measurements comparable with these results.
We use the available training samples to train multiple VDJ-
HMM models with different configurations; specifically, we
evaluate models with different maximum allowed numbers
of alternative temporal dependence patterns (maximum
steps back) K , numbers of emitting states N , and numbers
of mixture components per emitting state M . We select the
optimal model configuration on the basis of the obtained
predictive performances on the available validation sam-
ples. Finally, we use the available test samples to obtain the
reported performance figures. Similar is the experimental
setup we adopt for the considered competitors. In all cases,
to alleviate the effect of random model initialization on the
reported performance results, we repeat our experiments 10
times, with different model initializations each time, and
report average performance figures over these repetitions.

3.1 Volatility Forecasting

In this set of experiments, we apply our model to prediction
of the volatility in daily returns of financial assets. Consider
a modeled asset with price Pt at time t; then, its daily
return at time t is defined as the logarithm rt , log Pt

Pt−1
.

On this basis, (historic) volatility is defined as the square of
the return series r2

t ; as discussed in [32], this groundtruth
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Table 1: EUR-USD exchange rate volatility: Optimal VDJ-
HMM model configuration.

Parameter Value
K 4
N 2
M 3

measurement constitutes one of the few consistent ways of
volatility measuring. As our performance metric used to
evaluate the considered algorithms, we consider the root
mean squared error (RMSE) between the model-estimated
volatilities and the squared returns of the modeled return
series (except for the case of the experiments in Sections
3.1.3 and 3.1.4, where we use the mean square error (MSE)
and mean absolute error (MAE), following the approach
adopted in the related literature).

3.1.1 Euro-United States Dollar exchange rate volatility

Our first experimental scenario regarding volatility forecast-
ing is dealing with the EUR-USD exchange rate time series1.
Specifically, for the purposes of this experiment, we use data
from the period 5/17/2007 – 8/10/2008 as our training set,
and data pertaining to the period 9/10/2008 - 2/3/2009
as our validation set. To perform model evaluation, we
consider three distinct test samples, pertaining to the pe-
riods: 3/3/2009 - 10/12/2009, 10/13/2009 - 5/25/2010, and
5/26/2010 - 12/30/2010, respectively. This way, we allow
for evaluating model performance in periods with different
levels of inherent volatility in the European economy. In
all cases, the evaluated methods are trained using a rolling
window of the previous 60 days of returns to make daily
volatility forecasts for the following 10 days; we retrain the
models every 10 days. In our experiments, all the considered
HMM-based methods are evaluated using both Gaussian
mixtures and Student’s-t mixtures as their state-conditional
emission distributions. In the case of the HSMM method,
we consider Poisson, Negative Binomial, Geometric, and
Logarithmic densities for modeling state duration.

In Table 1, we depict the optimal configuration pa-
rameters of our model, obtained by utilizing the available
validation set, as described previously. In Tables 2 and 3,
we illustrate the obtained performances of the evaluated
methods. Note that these results are obtained for optimal
model configuration (as determined in the validation set)
both in the case of our model and the considered com-
petitors. As we observe, in all cases our VDJ-HMM model
yields the best performance among the evaluated methods.
In addition, it appears that utilization of Student’s-t mixture
emission distributions yields in most cases only negligible
performance improvements over models postulating Gaus-
sian mixture emission distributions. We also observe that the
HSMM model yielded best performance when postulating
Geometric state duration distributions (we omit the results
pertaining to different HSMM model configurations for
brevity).

Finally, in Figs. 2a-2c, we illustrate how model perfor-
mance changes by varying model configuration, i.e. the

1. The used data have been obtained from the official website of the
European Central Bank.

hyperparameter values K (maximum order of dependence
jumps), N (number of emitting states), and M (number of
mixture components). It is apparent that model configura-
tion plays a critical role in the obtained performance. This
is especially true for the maximum order of dependence
jumps K : selecting too big a value results in performance
deterioration, while values close to K = 1 (i.e., reducing
to a simple first-order HMM) yield inferior performance
compared to a fully-fledged VDJ-HMM.

3.1.2 Time-series of multiple correlated exchange rates
and market indices
In this set of experiments, we consider three application
scenarios:

• In the first scenario, we model the return series
pertaining to the following currency exchange rates,
over the period December 31, 1979 to December 31,
1998 (daily closing prices):
1. (AUD) Australian Dollar / US $
2. (GBP) UK Pound / US $
3. (CAD) Canadian Dollar / US $
4. (DKK) Danish Krone / US $
5. (FRF) French Franc / US $
6. (DEM) German Mark / US $
7. (JPY) Japanese Yen / US $
8. (CHF) Swiss Franc / US $.

• In the second scenario, we model the return series
pertaining to the following global large-cap equity in-
dices, for the business days over the period April 27,
1993 to July 14, 2003 (daily closing prices):
1. (TSX) Canadian TSX Composite
2. (CAC) French CAC 40
3. (DAX) German DAX
4. (NIK) Japanese Nikkei 225
5. (FTSE) UK FTSE 100
6. (SP) US S&P 500.

• Finally, in the third scenario, we model the return
series pertaining to the following seven global large-
cap equity indices and Euribor rates, for the business
days over the period February 7, 2001 to April 24,
2006 (daily closing prices for the first 6 indices, and
annual percentage rate converted to daily effective
yield for the last index):
1. (TSX) Canadian TSX Composite
2. (CAC) French CAC 40
3. (DAX) German DAX
4. (NIK) Japanese Nikkei 225
5. (FTSE) UK FTSE 100
6. (SP) US S&P 500
7. (EB3M) Three-month Euribor rate.

These series have become standard benchmarks for assess-
ing the performance of volatility prediction algorithms [33],
[34], [35]. In our experiments, we follow an evaluation
protocol similar to [34], [36]. We adopt the same data split as
in [36]; all the evaluated methods are trained using a rolling
window of the previous 120 days of returns to make daily
volatility forecasts for the following 10 days; we retrain the
models every 7 days.

To begin with, we consider modeling each asset with a
different VDJ-HMM model; i.e. we postulate as many VDJ-
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Table 2: EUR-USD exchange rate volatility: Performance (RMSE %) of the evaluated methods.

HMM HMM HMM∞ HMM∞

(Gaussian) (Student’s-t) (Gaussian) (Student’s-t)
3/3/2009 - 10/12/2009 1.607 1.559 1.591 1.534
10/13/2009 - 5/25/2010 0.738 0.721 0.730 0.713
5/26/2010 - 12/30/2010 0.683 0.696 0.677 0.691

Total 1.094 1.07 1.086 1.059

Table 3: EUR-USD exchange rate volatility: Performance (RMSE %) of the evaluated methods (cont.).

HSMM HSMM VDJ-HMM VDJ-HMM
(Geometric - Gaussian) (Geometric - Student’s-t) (Gaussian) (Student’s-t)

3/3/2009 - 10/12/2009 1.689 1.74 1.504 1.435
10/13/2009 - 5/25/2010 0.717 0.703 0.7 0.702
5/26/2010 - 12/30/2010 0.681 0.687 0.672 0.669

Total 1.113 1.146 1.028 1.011

(a) (b)

(c)

Figure 2: EUR-USD exchange rate volatility: Performance (RMSE %) fluctuation obtained by varying model configuration
(validation set).

HMM models as the assets modeled in each scenario. The
same univariate setup is also adopted for the considered
HMM-based competitors2. Under this setup, the determined
optimal configuration for our model is provided in Table 4.
In Table 5, we provide the obtained results for the three con-
sidered scenarios (for optimal model configuration, as de-
termined in the validation set). These results are computed
over all the assets modeled in each scenario (averages). The
performances of the state-of-the-art methods GARCH [37],
[38], mixGARCH [39], VHGP [40], and GPMCH [36] have
been cited from [36]. We observe that VDJ-HMM performs
better than the competition in all scenarios, with the ob-
tained performance differences becoming more significant
in the case of scenario #1, which involves only currency
exchange rates in the set of modeled assets. We tend to
attribute this finding to the fact that currency exchange
rates have a unique mean-reverting property [41], which seems

2. All HMM-based models are evaluated using Gaussian mixture
emission distributions.

that our proposed VDJ-HMM model is capable of capturing
much better than the competition.

Further, we consider the case of jointly modeling all
the assets available in each scenario. For this purpose,
we essentially postulate VDJ-HMM models with D-variate
emission distributions, where D is the number of jointly
modeled assets. The same holds for all the considered
HMM-type competitors of our method. In Table 6, we
report the determined optimal configuration of our model
for this experimental setup. The corresponding predictive
performances are reported in Table 7. In this table, we also
cite the performance of the multioutput GPMCH model
(using Clayton copulas), as reported in [36]. As we observe,
our approach yields results comparable to or slightly better
than the state-of-the-art in all cases. Note also that this
performance improvement does also come for a signifi-
cantly lower computational complexity compared to the
second best performing method in these experiments, i.e.
the GPMCH method.
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Table 5: Time-series of multiple correlated exchange rates and market indices: Performance (RMSE %) obtained under the
univariate modeling setup.

HMM HSMM HMM∞ GARCH mixGARCH VHGP GPMCH VDJ-HMM
Scenario #1 0.0442 0.0292 0.0235 0.0705 0.0625 0.0146 0.0121 0.0108
Scenario #2 0.0841 0.0589 0.0353 0.2785 0.2623 0.0552 0.0360 0.0351
Scenario #3 0.0744 0.0578 0.0331 0.0552 0.0550 0.0542 0.0345 0.0329

Table 7: Time-series of multiple correlated exchange rates and market indices: Performance (RMSE %) obtained under the
multivariate modeling setup.

HMM HMM∞ GPMCH VDJ-HMM
Scenario #1 0.0345 0.0333 0.0341 0.0330
Scenario #2 0.0712 0.0609 0.0557 0.0605
Scenario #3 0.1512 0.1109 0.9905 0.0744

Table 4: Time-series of multiple correlated exchange rates
and market indices: Optimal VDJ-HMM model configura-
tion under the univariate modeling setup.

Parameter Value
K 3
N 2
M 2

Table 6: Time-series of multiple correlated exchange rates
and market indices: Optimal VDJ-HMM model configura-
tion under the multivariate modeling setup.

Parameter Value
K 3
N 2
M 2

3.1.3 Oil price time-series volatility

Further, we consider the problem of volatility forecasting in
oil prices. For this purpose, and similar to the experimental
setup of [42], we use the daily price data of the Brent index
and the West Texas Intermediate (WTI) index from January
6, 1992, to December 31, 2009 (prices expressed in US dollars
per barrel). From these time-series, the data pertaining to
the last three years, i.e., 2007 to 2009, are used to evaluate
the predictive performance of the evaluated models, while
the data pertaining to the period 1/3/2006 - 12/29/2006
are used as our validation sample (and the rest for model
training). All the evaluated methods are trained using a
rolling window of the previous 60 days of returns to make
daily volatility forecasts; we retrain the models every 5 days.

In Table 8, we report the optimal configuration of our
model for our experiments with both time-series (Brent and
WTI). In Table 9, we provide the obtained performances of
the evaluated models. Note that all HMM-based models are
evaluated using Gaussian mixture emission distributions.
The performances of ARCH and its variants have been
reported from [42]. As we observe, the proposed VDJ-HMM
model consistently yields the best observed performance
expressed in terms of the resulting MSE metric, with signif-
icant performance differences from all the considered com-
petitors. On the other hand, when evaluation is performed
using the MAE metric, we observe that our method manages
to yield performance comparable to the state-of-the-art, but
it cannot obtain further improvements; note though that
the reported state-of-the-art MAEs are already exception-

Table 8: Oil price time-series volatility: Optimal VDJ-HMM
model configuration.

Parameter Value (Brent time-series) Value (WTI time-series)
K 3 3
N 2 2
M 3 4

Table 10: Gold market time-series volatility: Optimal VDJ-
HMM model configuration.

Parameter Value
K 3
N 3
M 2

ally low, and therefore the room for further performance
improvement is rather limited.

3.1.4 Gold market time-series volatility

Finally, we explore the performance of VDJ-HMM in volatil-
ity prediction for daily return series of Gold. The dataset
used for this experiment consists of the daily Gold fixing
prices of the London Bullion Market3. Specifically, following
[43], we use the daily PM fixings price released at 15:00, and
forecast the daily volatility during the second semester of
2008. This is an interesting and quite challenging experimen-
tal scenario, since the considered forecast period coincides
with the period when the recent financial crisis took place.
Similar to [43], our training and validation samples pertain
to the period 1/4/1999 - 6/30/2008, while evaluation is
performed using the MSE and MAE metrics.

In Table 10, we report the optimal configuration of our
model. In Tables 11-12, we provide the obtained perfor-
mances of the evaluated models. Note that all HMM-based
models are evaluated using Gaussian mixture emission dis-
tributions. The performances of the reported state-of-the-
art competitors, namely historical mean (HM), autoregres-
sive models (AR(k)), moving average models (MA(k) and
EWMA), ARMA, as well as several GARCH variants [38],
[37], have been cited from [43]. As we observe, the proposed
VDJ-HMM model yields a quite satisfactory performance in
this experiment, yielding error figures comparable to the
state-of-the-art results reported in the recent literature.

3. Data obtained from the official website of the London Bullion
Market Association (www.lbma.org.uk).

http://www.lbma.org.uk
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Table 9: Oil price time-series volatility: Performance (MSE and MAE) of the evaluated approaches.

Method Brent: MSE Brent: MAE WTI: MSE WTI: MAE
GARCH 0.698 0.065 0.933 0.693
IGARCH 0.856 0.000 0.690 0.000

GJR 0.987 0.811 0.847 0.000
EGARCH 0.609 0.000 0.058 0.000
APARCH 0.557 0.002 0.846 0.031
FIGARCH 0.083 0.111 0.514 0.074

FIAPARCH 0.157 0.586 0.501 0.668
HYGARCH 0.080 0.030 0.546 0.000

HMM 0.087 0.095 0.200 0.067
HSMM 0.100 0.090 0.181 0.090
HMM∞ 0.079 0.088 0.191 0.071

VDJ-HMM 0.050 0.001 0.044 0.000

Table 11: Gold market time-series volatility: Performance (MSE and MAE) of the evaluated approaches.

HM MA(20) MA(40) MA(120) HMM HSMM HMM∞

MSE 105.24 84.64 83.29 87.97 85.77 85.5 84.52
MAE 5.43 5.96 5.72 5.40 5.69 5.82 5.63

Table 12: Gold market time-series volatility: Performance (MSE and MAE) of the evaluated approaches (cont.).

AR(5) MAD(5) ARMA EMWA GARCH GARCH-M VDJ-HMM
MSE 86.08 90.08 84.24 83.81 86.94 86.35 84.16
MAE 5.67 5.54 5.68 5.84 5.56 5.68 5.60

3.2 Return Value Prediction

In this set of experiments, we apply our model to prediction
of the future values of the daily return series of modeled
financial assets, rt. Specifically, under our experimental
setup, we are interested in correctly predicting the sign of
the return value at future time points. This sign can be used
as the foundation of a simple portfolio management policy
as follows: If the predicted future return sign is positive,
then the policy suggests that the asset be retained by the
investment portfolio manager; on the other hand, if the
predicted future return sign is negative, then the policy
creates a “sell” signal. All HMM-based models evaluated
in these experiments postulate Gaussian mixture models as
their emission distributions.

3.2.1 Euro-United States Dollar exchange rate

We begin with evaluating our method considering future
value prediction for the EUR-USD exchange rate. We use
a training sample pertaining to the period 1/17//2002 –
5/16/2008, a validation sample pertaining to the period
5/17/2008 - 3/2/2009, and a test sample pertaining to the
period 3/3/2009 - 12/30/2010. All the evaluated methods
are trained using a rolling window of the previous 60 days
of returns to make daily price prediction for the following
10 days; we retrain the models every 5 days.

On this basis, model evaluation is performed according
to: (i) the comparison of the signs of the generated predic-
tions with the actual ones (hereafter referred to as directional
prediction); and (ii) the resulting annualized return of the
aforementioned portfolio management policy, defined as
the mean obtained profit adjusted for the return standard
deviation over the whole forecasting period.

In Table 13, we depict the optimal configuration of our
VDJ-HMM model as determined by utilizing the available
validation set. In Figs. 3a-3c, we show how VDJ-HMM

Table 13: EUR-USD exchange rate price prediction: Optimal
VDJ-HMM model configuration.

Parameter Value
K 3
N 2
M 2

model performance changes by varying the adopted con-
figuration (results obtained on the available validation set).
As we observe, model configuration plays a crucial role to
the obtained performance. Further, another interesting find-
ing is that, similar to the volatility forecasting experiment,
model performance reaches its optimal value for a moderate
value of K , while experiencing a significant decrease for too
high values of K or when K = 1.

In Table 14, we provide the obtained performance results
for the evaluated methods (for optimal model configura-
tion). Note that the performances of the methods k-nearest
neighbor (KNN), Naïve Bayes, back-propagation neural net-
work (BP), support vector machine (SVM) [44], and random
forest (RF) [45] have been cited from [46]. As we observe, our
method completely outperforms the competition, yielding
the state-of-the-art result in this dataset.

3.2.2 Taiwan stock market

Finally, in this experiment, we apply our VDJ-HMM model
to predicting the level of the Taiwan stock market (TAIEX).
For transparency, in our experimental evaluations we use
data pertaining to a seven-year period of the TAIEX, from
1999/1/4 to 2005/12/31, and split them as described in
the state-of-the-art work presented in [47]. Specifically, we
use the data from the first ten months of each year in the
considered time period for model training and validation,
and the data from the last two months as our test set. All the
evaluated methods are trained using a rolling window of the
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Table 14: EUR-USD exchange rate price prediction: Performance of the evaluated models.

Statistic KNN Naïve Bayes BP SVM RF HMM HSMM HMM∞ VDJ-HMM
Directional Prediction Accuracy 50.11% 48.83% 50.12% 52.65% 53.50% 52.5% 51.2% 53.18% 54.05%

Annualized Return -2.26% -3.08% 1.59% 3.98% 7.28% 4.05% 1.5% 6.44% 9.50%

(a) (b)

(c)

Figure 3: EUR-USD exchange rate price prediction: Performance fluctuation (directional prediction accuracy) obtained by
varying model configuration (validation set).

Table 15: Taiwan stock market price prediction: Optimal
VDJ-HMM model configuration.

Parameter Value
K 3
N 2
M 4

previous 120 days of returns to make daily price prediction
for the following 5 days; we retrain the models every 5 days.

In Table 15, we depict the optimal configuration of our
VDJ-HMM model as determined by utilizing the available
validation set. In Table 16, we provide the obtained per-
formance figures pertaining to our method and the con-
sidered competitors. Performance evaluation is conducted
on the grounds of the resulting RMSE between the pre-
dicted prices and the actual ones. Note that, apart from
HMM and HMM∞, performance of the rest of the con-
sidered competitors is cited from [47]. Based on the re-
ported RMSE results, we deduce that VDJ-HMM achieves
a clearly competitive performance compared to existing
state-of-the-art approaches. Specifically, in some years our
VDJ-HMM model achieves the lowest RMSE among the
considered competitors, while retaining a very competitive
performance in the rest of the examined years.

4 CONCLUSIONS

In this paper, we focused on the problem of modeling
sequential data the temporal dynamics of which may switch

between different patterns over time. To address this prob-
lem, we introduced a hierarchical model comprising two
hidden chains of temporal dependencies: on the first layer,
our model comprises a chain of latent observation-emitting
states, the dependencies between which may change over time;
on the second layer, our model utilizes a latent first-order
Markov chain modeling the evolution of temporal dynamics
pertaining to the first-layer latent process. To allow for
tractable training and inference procedures, our model con-
siders temporal dependencies taking the form of variable order
dependence jumps, the order of which is inferred from the
data as part of the model inference procedure. We devised
efficient model training and inference algorithms under the
maximum-likelihood paradigm.

To evaluate the capacity of our method in effec-
tively modeling non-homogeneous observed sequential
data, where the patterns of temporal dependencies may
change over time, we considered a number of computa-
tional finance applications. Specifically, we considered both
volatility forecasting applications as well as value prediction
applications dealing with financial return series for sets of
considered assets. As we discussed, this setting allows for
an objective evaluation of whether our approach does actu-
ally achieve its goals, since empirical evidence has shown
that financial return series exhibit variable order non-linear
temporal dependencies, as well as dependence jumps.

Our experimental results provided strong evidence that
our method is actually capable of delivering on its goals,
allowing for obtaining much better performance compared
to: (i) baseline (first-order) HMMs; (ii) the HMM∞ model,
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Table 16: Taiwan stock market price prediction: Performance (RMSE) of the evaluated models.

Models 1999 2000 2001 2002 2003 2004 2005
Linear regression 164 420 1070 116 329 146 -

Method of [48] - 139 144 82 73 - -
Method of [49] 109 152 130 84 56 79 69
Method of [50] - - 122 94 55 69 65

Fuzzy Symmetric Method [47] 103 130 120 68 55 56 54
Fuzzy Asymmetric Method [47] 109 122 125 68 58 58 53

HMM 112 154 116 71 60 59 56
HSMM 111 155 120 75 61 58 59
HMM∞ 109 148 113 70 56 58 54

VDJ-HMM 109 145 111 68 55 55 54

designed for capturing arbitrarily long temporal depen-
dencies; and (iii) state-of-the-art methods in the considered
application domains, e.g. methods belonging to the GARCH
family. As we showed, these encouraging performance re-
sults come at a very low additional computational cost
compared to existing approaches; thus, our method offers
a favorable performance/complexity trade-off.

An issue we have not fully addressed in this work is how
we could allow for automatic determination of the optimal
model configuration, without the need of resorting to cross-
validation (as we did in our experimental evaluations). For
this purpose, one could resort to devising a nonparametric
Bayesian construction for the VDJ-HMM model, by im-
posing appropriate priors over the model parameters (e.g.,
Dirichlet process priors [51] over the transition probability
matrices of our model), and performing Bayesian inference
instead of maximum-likelihood training. This issue remains
to be addressed in our future work.
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