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Chapter 1

Introduction

1.1 Biomarkers

When the disease status of a patient/subject is of interest it is crucial that high quality
and accurate data are obtained to assist the clinicians in the decision making process.
These decisions are of great importance since they may affect the quality of life as well
as its prolonging when fatal diseases are involved. Biomarkers play a significant role
in decision making and are considered as the key to early diagnosis which may in turn
lead to complete cure of a disease or the limitation of its progress. It is desired that the
development of new biomarkers will contribute to obtaining more predictive information
regarding the disease status of a patient as well as to providing a better understanding
concerning the biological mechanism of various diseases. But what is considered as a
biomarker (or medical/diagnostic test or simply marker)? The Biomarkers and Surrogate
Endpoint Working Group provides the following definition (see Biomarker Definitions
Working Group (2002)): ‘‘A characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic processes or pharmacological
responses to a therapeutic intervention’’. This Working Group also defines a further
three type classification for biomarkers. Type 0 biomarkers involve measurements of
the history of a disease through time that is expected to be affected by known clinical
indicators. Type I biomarkers refer to the effect of a clinical intervention (i.e. a cure,
or a drug). Type II biomarkers refer to Surrogate Endpoints markers, namely markers
that are expected to predict clinical deterioration or amelioration based on epidemiologic,
therapeutic, pathophysiologic or other scientific evidence.

Another group at Bayer Corporation state the following definition for a biomarker (see
Colburn (2003)): ‘‘It is a measurable property that reflects the mechanism of action of
the molecule based on its pharmacology, pathophysiology of the disease, or an inter-
action between the two. A biomarker may or may not correlate perfectly with clinical
efficacy/toxicity but could be used for internal decision making within a pharmaceutical
company’’.

As mentioned in Naylor (2004) the definitions and classifications of biomarkers are
still being discussed and debated. However, this field is developing and as the discovery
of new biomarkers moves forward the use of reliable techniques for evaluating their accu-
racy is a crucial matter. Diagnostic biomarkers not only provide important information
for the patients’ health status, but also they contribute to reducing the cost of diagnosis
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and may help us understand the underlying mechanism of a disease.

The evaluation of diagnostic markers is a necessary procedure before a medical test
is used. Early detection of a disease may imply its complete cure or a slower progression
given that an effective treatment exists. An ideal medical test should be accurate and
harmless. Accurate, meaning that it is able to correctly distinguish the healthy from the
diseased subjects, and harmless, meaning that it causes no physical pain, emotional
discomfort, psychological stress or side-effects. A disadvantage of medical tests is the
cost. The medical cost may also depend on the accuracy of the medical test itself.
For example, when a healthy subject is falsely categorized as "positive", then this may
lead to unnecessary further tests increasing the cost as well the subject’s discomfort.
An inaccurate test may have a more serious impact when a diseased subject is falsely
categorized as healthy. Some criteria to be considered before applying a medical test in
practice have been discussed in the literature and a detailed overview is provided in Pepe
(2003). The main criteria are that the disease under study should be serious, treatable,
and that the test should be harmless to the subject and accurate.

In this thesis we will introduce new methodologies that contribute to the evalua-
tion of a marker regarding mainly its diagnostic accuracy in the presence of censoring.
Censoring is a phenomenon primarily met in survival analysis in which patients are
monitored over time until they experience an event. This event is usually death when
fatal diseases are involved. In many cases, due to practical, psychological or other rea-
sons many patients decide to leave/quit the study (for example due to their relocation to
another country or due to the end of a study when some patients are event-free). The
time at which these patients have or will experience the event is unknown to the clin-
ical researchers and the only information available is that they were event-free until a
given time. The time points at which these subjects left are considered as censored time
points, and in particular right censored since the event will occur or has occurred at a
time greater that the censoring time. Two other common censoring schemes that occur
in survival analysis are left and interval censoring. In the first case the event occurred
at some time point prior to the time of entering the study and interval censoring involves
cases where the event time lies in a closed interval defined by two time points. It might
be the case that a marker’s measurements change with time and are used to predict the
future disease status of a subject. An example of such a biomarker is the Framingham
risk score (FR-score), which is considered to be predictive of myocardial infarction and
stroke (see Wilson et al. (1998) and Grundy et al. (1998)). The FR-score is a score
system (different for men and women) that is computed based on factors such as age,
blood pressure, diabetes mellitus, blood cholesterol, and high density lipoprotein choles-
terol. It is used to predict the risk of a cardiovascular event of an individual within the
next 10 years. For such biomarkers it is expected that measurements taken closer to
the event will be more indicative of the disease or its progression so it is natural to as-
sume that biomarker measurements are related to the time to event variable. Hence, the
phenomenon of censoring naturally arises in the concept of evaluating such a biomarker.

Censoring can also occur on the biomarker value itself. There are cases where due to
practical reasons or technological limitations marker measurements cannot be provided
below or beyond some known limit, usually called limit of detection (LOD) which may
vary from batch to batch. In such cases the biomarker is itself subject to left or right
censoring respectively. In this thesis we examine settings where censoring may occur on
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the time to event as well as settings where the biomarker measurements themselves are
subject to censoring.

In the following sections of the Introduction we give quantities that refer to the clas-
sification problem in medical decision making. Marker measurements may be binary,
ordinal, or continuous. With ordinal or continuous measurements an ROC curve (for
the two class case) or an ROC surface (for the three class case) can be constructed for
assessing the accuracy of the biomarker. We also briefly discuss the framework where a
biomarker is time dependent. We end the first chapter by discussing in more detail the
basic features of the proposed techniques that are to be presented in this thesis.

1.2 Classification probabilities and the ROC

Diagnostic testing is an imperfect procedure. Assuming that there are two groups for
classification (healthy and diseased), a perfect diagnostic marker would perfectly dis-
criminate the diseased from the healthy group. On the other extreme, the classification
procedure of a non-informative biomarker would be equivalent to deciding the health
status of a subject by tossing a fair coin. In practice, the discriminatory capability of
most biomarkers falls between these two extremes.

The diagnostic accuracy of a binary biomarker is completely summarized by its sen-
sitivity and specificity. The sensitivity is defined as the probability of getting a positive
marker result, given that the subject has the disease, while the specificity is the proba-
bility of getting a negative marker result given that the subject is healthy. We denote with
Y the outcome of the diagnostic marker, and with D the binary indicator (which equals
to 1 if the disease is present and 0 otherwise) of the true health status of a subject. The
sensitivity and specificity are defined respectively as

Sensitivity = Se = P (Y = 1|D = 1),

Specificity = Sp = P (Y = 0|D = 0).

We desire high values of both sensitivity and specificity. The marker result can be one
of the following: A true positive is said to occur when the marker outcome is positive for
a subject that suffers from the disease, a true negative occurs when the marker outcome
is negative for a healthy subject, a false positive occurs when the marker outcome is
positive for a healthy subject, and finally a false negative occurs when the outcome of
the marker is negative for a subject that has the disease. The false positive rate (FPR)
and the true positive rate (TPR) are defined as:

FPR = P (Y = 1|D = 0),

TPR = P (Y = 1|D = 1) = Se.

Note that the TPR is the sensitivity, and that the false negative rate equals to 1−TPR.
Thus, the two components of the misclassification probability are 1 − TPR and FPR.
The impact of the misclassification errors referring to these two probabilities is generally
different. A false positive error is likely to lead to further examination of the health status
of the subject. This unnecessary procedure may increase the medical cost or cause
discomfort to the subject. The impact of a false negative error is usually more serious.
Based on a false negative marker value people may forego a suitable treatment which
may lead to death.
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1.2.1 ROC curves

The most popular tool for evaluating the discriminatory capability of a continuous (or
ordinal) biomarker is the receiver operating characteristic (ROC) curve. ROC curves were
initially used in signal detection (Green and Swets (1966)). Lusted (1971) indicated their
potential for medical diagnostic testing in which a decision must be made regarding the
presence or absence of a disease. For a thorough overview regarding the ROC curves we
refer the reader to Zhou et al. (2002) and Pepe (2003).

There are many examples of continuous markers. Cancer and liver disease biomark-
ers measure the serum concentration. Other examples are temperature, blood pressure,
serum cholesterol etc. Ordinal markers usually involve the subjectiveness of a medical
expert. For example a radiologist reading a mammography may classify the subject as
’definitely yes’, ’probably yes’, ’probably no’, ’definitely no’ regarding the presence of a
disease. Similar classification rules may be also applied regarding the severity of the
stage of progression of a disease. Also in psychology, it is common to base classification
on frequency, that is use a scale such as ’always’, ’sometimes’, ’never’ etc.

In most applications higher marker measurements, Y, are regarded to be more indica-
tive of the presence of the disease. However, when this is not the case one can simply
work with −Y . In practice a threshold c, is used to dichotomize Y so as to define a
decision rule. Conventionally if Y ≥ c then the marker value is regarded as ’positive’,
and otherwise as ’negative’. The choice of c depends on the tradeoff of the cost of a false
negative and a false positive result. The ROC curve is a tool that considers all possible
threshold values depicting all these tradeoffs.

Using a threshold c, the sensitivity and false positive rate can be written as:

TPR(c) = P (Y ≥ c|D = 1)

FPR(c) = P (Y ≥ c|D = 0).

The ROC curve is defined through:

ROC(c) = (FPR(c), TPR(c)), c ∈ (−∞,∞).

Hence, the ROC curve consists of all possible pairs of the false positive and true
positive rate constructed by the threshold c. Since TPR and FPR are probabilities, the
ROC is a non-decreasing curve lying in the positive unit square:

{(t, ROC(t)), t ∈ (0, 1)} .

An ROC curve is invariant to strictly increasing transformations of Y and it holds
that ROC(0) = 0 and ROC(1) = 1. The ROC curve referring to a perfect medical test,
that is a test that perfectly discriminates the healthy from the diseased, starts from the
point (1,1), moves on the upper left corner of the positive unit square (point (0,1)) and
drops down to point (0,0). The ROC curve referring to a useless biomarker coincides with
the unit square’s diagonal with endpoints (1,1) and (0,0). In practice most biomarkers
yield an ROC between those two extremes (see also Figure 1.1).

An ROC curve can be also represented by the survivor function of Y for the diseased
and the healthy group. If we denote by S0(y) = P (Y ≥ y|D = 0) and by S1(y) =
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Figure 1.1: Example of four ROC curves referring to four hypothetical biomarkers. The
diagonal line refers is an ROC curve that corresponds to a useless marker and the dashed
thick line refers to an ROC curve of a perfect biomarker. The other two ROC curves
indicate that marker B is better than marker A.

P (Y ≥ y|D = 1) the survivor functions corresponding to the heathy and the diseased
respectively, it can be shown that (see result 4.2. in Pepe (2003)):

ROC(t) = S1(S
−1
0 (t)), t ∈ (0, 1). (1.1)

Under the assumption of binormality, that is when both populations are assumed to
be normally distributed, the ROC curve can be written in closed form. This is not always
the case and the derivation of such closed form expressions depends on the complexity
of the assumed parametric models for the underlying populations.

The two most popular approaches for estimating an ROC curve is the empirical
(Lusted (1971) first adopted this for medical decision making) and the parametric one.
Green and Swets (1966) first employed the Gaussian model to estimate an ROC curve.
The empirical ROC curve involves estimating the TPR and FPR as follows:

ˆTPR(c) =

n1∑
i=1

I(Y1i ≥ c)/n1

ˆFPR(c) =

n0∑
j=1

I(Y0j ≥ c)/n0

where n0 and n1 are the number of healthy and diseased individuals, Y0i and Y1j
are the marker values of the i−th and j−th subjects that belong to the healthy and
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diseased group respectively. The empirical ROC curve is constructed by plotting ˆTPR(c)
versus ˆFPR(c) for the whole spectrum of c. The parametric approach involves fitting a
parametric model to each population and then simply plugging in the survival estimates
in (1.1).

1.2.1.1 Area under the ROC curve

The most commonly used index of a biomarker’s performance is the area under the ROC
curve (AUC). Bamber (1975) was the first to focus on the AUC as a measure of accuracy
of a biomarker. He first showed that the AUC equals to the U statistics of the Wilcoxon
2 sample nonparametric test. McClish (1989) employed parametric methods (binormal
model) for the estimation of AUC and noted that it is a global measure of a biomarker’s
accuracy. The AUC is defined as:

AUC =

∫ 1

0
ROC(t)dt.

A biomarker that perfectly discriminates the two groups yields an AUC=1, while a
useless marker yields an AUC=0.5. It can be shown that the AUC for a continuous
marker equals to

AUC = P (Y1 > Y0).

This means that if we randomly select a pair of two individuals, one of each group,
the probability that the marker will correctly classify them equals to the AUC. In the case
of an ordinal marker where ties may be present the AUC can be shown to equal to (see
Bamber (1975) and Hanley and McNeil (1982)):

AUC = P (Y1 > Y0) + 0.5P (Y1 = Y0).

Generally marker B is considered better than marker A if AUCB > AUCA (see also
Figure 1.1). However, in many cases one may be particularly interested in a specific
range of FPR values. It might be the case that two ROC curves, that correspond to two
different markers yield the same AUC without coinciding. One marker may be better than
the other for a specific range of FPR values. In these cases a commonly used index is the
partial area under the curve (pAUC) which is defined as

pAUC(t1, t2) =

∫ t2

t1

ROC(t)dt, 0 < t1 < t2 < 1.

The pAUC can be interpreted as the average sensitivity for the considered range of
specificities (see McClish (1989)).

For biomarkers subject to lower LODs, where measurements are undetected below
some value replacement values are typically used in order to proceed to the calculation
of the AUC. Nehls and Akland (1973) propose imputing the undetectable lower values
with dL/2, while the replacement value of dL/

√
2 has also been proposed (see Hughes

(2000) for an overview). However, these replacement values apply only to biomarkers that
are allowed to yield non-negative scores and this is not always the case. Although most
biomarkers yield positive scores, we often work with transformations that project the
score values to the real line. Furthermore, Perkins et al. (2006) showed that even in the
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case where the scores are non-negative any replacement value for the censored marker
scores will cause bias in estimating the AUC. One can always proceed by maximum
likelihood that takes into account the censored values after assuming parametric mod-
els for the marker measurements of the healthy and the diseased. However, parametric
models make strict assumptions that may not always be justified by the available data.
Non-parametric methods that would accommodate the censored nature of the measure-
ments still remain unexplored. In this thesis we propose a spline based approach for the
ROC estimation when the biomarker measurements are subject to a lower or an upper
LOD.

1.2.1.2 ROC surfaces and the VUS

In a situation where a discrimination of three populations is needed an ROC surface is
preferable and provides a natural generalization of the ROC curve in three dimensions
(see Mossman (1999)). For example, mammogram readings are evaluated by radiologists
who need to decide between between cancerous, benign growth or no nodules. In these
situations, where interest focuses in discriminating simultaneously three populations an
ROC surface is constructed, which in turn provides pairwise ROC curves for each pair of
the disease status. For an overview see also Nakas and Yannoutsos (2004).

In the three class case where Y3 tends to yield higher values than Y2 which in turn
tends to yield higher values than Y1, there are three rates referring to a correct decision:

TPRi = P (Y = i|D = i), i = 1, 2, 3

Since there are three populations for discrimination we consider that there are two
ordered decision thresholds c1 < c2. Then the following decision rule applies: if Y < c1
then classify as ’group 1’, else if c1 < Y < c2 then classify as ’group 2’, else classify as
’group 3’. As we vary the two thresholds to the support of all three underlying distribu-
tions, a three dimensional graph of an ROC surface can be constructed in the unit cube
with axes TPR1, TPR2, and TPR3. Hence the ROC surface is

ROC(c1, c2) = (TPR1(c1), TPR2(c1, c2), TPR3(c2), c1 < c2).

If Y1 ∼ F1(·), Y2 ∼ F2(·), and Y3 ∼ F3(·) the parametric representation of the corre-
sponding ROC surface value is

ROC(TPR1, TPR3) = F2(F
−1
3 (1− TPR3))− F2(F

−1
1 (TPR1)). (1.2)

As in the two class case, the two most popular ways to estimate an ROC surface is
the parametric and the empirical one. Under a parametric assumption of each of the
three underlying distributions one can construct the corresponding ROC surface based
on (1.2). The empirical estimate of an ROC surface can be obtained in an analogous way
as presented in the two class case. An appealing property of an ROC surface is that one
can simultaneously assess the discriminatory capability of a marker referring to three
groups without foregoing the pairwise analysis since the projections of the ROC surface
on the sides of the unit cube are actually the pairwise ROC curves referring to each of
the 3 couples of interest.



10 CHAPTER 1. INTRODUCTION

The summary index of interest when constructing an ROC surface is the volume
under the surface (VUS) and is defined as

V US =

∫ 1

0

∫ 1

0
F2(F

−1
3 (1− TPR3))− F2(F

−1
1 (TPR1))dTPR1dTPR3.

In the case of a continuous biomarker it can be shown (Dreiseitl et al. (2000)) that
the VUS equals to:

V US = P (Y1 < Y2 < Y2),

and when ties are present

V US = P (Y1 < Y2 < Y3)+0.5P (Y1 = Y2 < Y3)+0.5P (Y1 < Y2 = Y3)+
1

6
P (Y1 = Y2 = Y3).

If for two biomarkers, A and B, V USB > V USA, then biomarker B is considered to
discriminate better between the three groups compared to marker A. A perfect marker
would yield V US = 1. The ROC surface referring to a useless marker would be a trian-
gular surface with edges at (1,0,0), (0,1,0), (0,0,1) yielding V US = 1/6 (see also Figure
1.2).

Figure 1.2: Example of three hypothetical ROC surfaces. Left: Y1, Y2, Y3 follow the
standard normal distribution yielding an ROC surface for a useless marker, Middle: Y1 ∼
N(0, 1), Y2 ∼ N(0.5, 1), Y3 ∼ N(1, 1), Right: Y1 ∼ N(0, 1), Y2 ∼ N(1, 1), Y3 ∼ N(2, 1)

As in the two class case, more research is needed in developing non parametric
estimates for the ROC surface when the measurements are subject to a lower or an
upper limit of detection. This is an issue that will be explored in this thesis.

1.3 Time dependent biomarkers

1.3.1 Binary case

When two populations are under study, it may be the case that the diagnostic accuracy
of a marker may depend on time and thus the need of defining time dependent sensi-
tivity and specificity as well as the development of time dependent ROC curves arises.
Recently, such methodologies were explored by Heagerty et al. (2000) as well as Cai et al.
(2006) in the context of survival studies where the biomarker’s outcome is supposed to
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depend on the time to event. Interest also grows in modeling such a biomarker so as to
understand how its results vary over time and derive valuable information regarding its
(time dependent) accuracy.

In the case of a binary marker, one can model the sensitivity and FPR by using
generalized linear models. The available data would be of the form {Yi, Ti,∆i, Zi} , i =
1, . . . , n, where ∆i is the event indicator, that is ∆i = I(Xi < Ci), where Xi is the time to
event variable and Ti = min(Xi, Ci). With Ci we denote the censoring variable. Zi refers
to other fully observed covariate(s) that may be available. The models assumed would be
of the form

TPR = P (Yi = 1|X = x,Zi) = g1(x,Zi;ψ1), 0 ≤ t ≤ τ (1.3)
FPR = P (Yi = 1|X > τ,Zi) = g0(Zi;ψ0) (1.4)

where g0 and g1 are known link functions that relate a linear predictor to the FPR and
TPR respectively, ψ0 and ψ1 are the unknown parameter row vectors of the generalized
linear models assumed for FPR and TPR. Note that FPR does not depend on time. If we
denote all unknown parameters with the vector ψ = [ψ0 ψ1], then the corresponding
likelihood would be

n∏
i=1

pi(ψ)
Yi(1− pi(ψ))

1−Yi (1.5)

where pi(ψ) = P (Yi = 1|Ti,∆i, Zi) which can be shown to be equal to (Cai et al.
(2006)):

pi(ψ) =


TPRTi,Zi if Ti ≤ τ,∆i = 1
−

∫ τ
Ti

TPRt,Zi
dSZi

(x)+FPRτ,Zi
SZi

(τ)

SZi
(Ti)

if Ti ≤ τ,∆i = 0

FPRZi,τ if Ti > τ,

where the first and third group can be considered as cases and controls respectively.
Individuals of the second group have been censored before τ and hence have unknown
case/control status. A consistent estimator of ψ can be obtained by using only data that
fall into the first and third group (see also Leisenring et al. (1997)). The survival function
SZi(·) can be consistently estimated by assuming a proportional hazards model. In the
case when all data are exactly observed and measurements are repeatedly taken for each
subject over time, the so called ALR (alternating logistic regression) models have been
proposed (see Carey et al. (1993)). Handling a binary response that also depends on a
censored covariate when the data are longitudinal in nature is also a case that falls in
the class of generalized linear models and in need of further exploration.

1.3.2 Continuous case

Under the same notion it may be reasonable to assume that marker values of diseased
individuals may be a function of time, whereas healthy individuals exhibit marker values
that are independent of time. Under such a setting there is a time lag between the time of
the measurement and the occurrence of the event. One should take under consideration
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the time lag since measurements made closer to the time of the event tend to be higher.
Examples are the Framingham risk score (FR-score) and gene expression profiles of tumor
tissue that are used to predict survival in cancer patients. Note that the time to event
might be subject to right censoring, that is T = min(X,C) where X is the time to event
random variable and C is the censoring variable. The definition of sensitivity and FPR
for a continuous marker must be extended in a way that time dependency as well as
available covariates can be accommodated. One such extension is discussed in Cai et al.
(2006):

TPRZi,t(y) = P (Y ≥ y|X = x,Zi), 0 ≤ x ≤ τ (1.6)
FPRZi,τ (y) = P (Y ≥ y|X > τ,Zi) (1.7)

where Y is the marker, Zi is the covariate, and τ is some known ’distant’ time point.
Individuals who experience the event before τ are considered as diseased while individu-
als who survive beyond τ the control (healthy) group.

In a more general setting we assume that individuals are measured repeatedly at
various times sij . The data would then be of the form {Yij , Tij ,∆i, Zi} , i = 1, . . . , n,
where Yik is the marker measurement at sij and Tij = Ti − sij is the time lag between
the time of the event or censoring and the time of the measurement. When censoring is
not involved the use of popular techniques such as the Generalized Estimating Equation
method or the well known mixed models could be used (see Fitzmaurice et al. (2004) for
an in depth overview of both techniques). However, methods that could accommodate
both the longitudinal nature of the data as well as the presence of a censored covariate
are not available in the class of generalized linear models. In this thesis we evaluate the
sensitivity and FPR after modeling the marker process using generalized linear models.
We explore both the simple setting when one measurement per subject is available as
well as the more general longitudinal setting.

1.4 Thesis Overview

In this thesis we initially explore parameter estimation in the class of the generalized
linear regression models when one covariate is censored. As previously mentioned, this
is the typical situation that one may have to deal with when modeling a time depen-
dent biomarker, with the time to event being the censored covariate. More specifically
in Chapter 2 we propose a method for such a setting that is based on an estimating
function approach. This method need not assume a parametric form for the distribu-
tion of the response given the regressors and is computationally simple. In the linear
regression case the proposed approach implies the use of mean imputation of the cen-
sored regressor. We use flexible parametric models for the distribution of the covariate.
When survival time is considered as the covariate subject to censoring, we use the gen-
eralized gamma distribution, since it is considered as a platform distribution covering
a wide variety of hazard rate shapes. We further robustify our method by considering
models of nonparametric nature typically used in survival analysis such as the logspline
for the censored covariate. For models involving additional, fully observed, covariates we
employ the generalized gamma accelerated failure time regression model. In this setting
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no parametric family assumption for the extra covariates is needed. The proposed ap-
proach is broader than likelihood based multiple imputation techniques. Moreover, even
in cases with a known parametric form for the response distribution, our method can be
considered a feasible alternative to likelihood based estimation due to its computational
simplicity which allows use of standard software. In cases where a parametric model is
not justified by the data at hand we develop a spline based approach that can provide
an on parametric alternative. This spline approach involves convex optimization and
convergence is guaranteed unlike other likelihood based methods that assume complex
parametric models. We conduct simulation studies for continuous, binary and count
data to evaluate the performance of the proposed method and to compare the estimates
to standard ones.

In Chapter 3 we consider the generalization of the previous approach to the longitu-
dinal framework where the data are taken repeatedly over time. Our approach focuses
on population based characteristics and is different from the joint modeling approach
typically used in such situations (see Rizopoulos (2011)). The main advantage of our ap-
proach is that it does not require any assumptions regarding the parametric form of the
distribution of the marker measurements or the censored covariate. We do not assume
in any stage of our approach a model that incorporates random effects. We instead use
a working correlation matrix to accommodate the within subjects’ correlation of marker
measurements. For the survival function of the censored time to event covariate we em-
ploy our monotone natural cubic spline model and the accommodation of other baseline
covariates is done through semiparametric models.

In Chapter 4 we discuss and apply the above methodologies to the construction of
time dependent ROC curves and the evaluation of the biomarkers through AUC over
time. We consider the definition of 1.6 for the time dependent sensitivity and specificity
since we explore fitting a broken-line model where a distant time point is used to sep-
arate the healthy from the diseased group. We also consider another definition for the
time dependent sensitivity and specificity introduced by Heagerty et al. (2000)) for an
application where longitudinal data are involved.

In Chapter 5 we study the construction of a smooth ROC curve (or surface in the
case of three populations) when there is a lower or upper limit of detection. Again, we
use spline models that incorporate monotonicity constraints for the cumulative hazard
function of the marker distribution. The proposed technique is computationally stable
and can accommodate other covariates.

In Chapter 6 we state some issues for further research and mention cases where our
approaches may apply outside the field of biostatistics.

In the end of each chapter some technical notes regarding the proved results are
provided when necessary. In the Appendix we provide some additional simulations for
completeness of the results presented in the main body of the thesis. An algorithm
for a new survival estimation approach, along with the corresponding package/software
description built with MATLAB 2011a are also provided. An updated version of the soft-
ware will soon be available by the author’s current website:

www.leobantis.net23.net

or available upon request via e-mail:
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lbantis@aegean.gr or leobantis@gmail.com.

All graphs, simulations and computational development of the proposed methods
were done using MATLAB. Some of the competitive approaches were simulated in R. The
SAS was also used for applying traditional methods during data analysis.



Chapter 2

Generalized Linear Models with a
Censored Covariate

As discussed in the introduction time dependent ROC analysis involves modeling the
marker values as a function of time, and generalized models may need to be employed.
However, in such settings the time to event covariate may be subject to censoring. Pa-
rameter estimation and statistical inference in models where the response variable is
subject to censoring has been thoroughly studied in the past with the Cox proportional
hazards (PH) model and the accelerated failure time (AFT) model being the most cel-
ebrated models. Less attention has been paid to the situation where the covariate is
subject to censoring though. Gomez et al. (2003) consider a regression model with an
interval-censored covariate and develop an algorithm for the nonparametric maximum
likelihood estimation of the regression coefficients. In their setting no distributional form
is assumed for the covariate. However, this is not the case for the response distribu-
tion. Pawitan and Self (1993) consider a repeated marker measurement setting and use
Weibull regression models for infection and disease occurrence times that are subject to
censoring. They also present arguments in favor of constructing models that consider
modeling the disease marker process given the time variable (in their case, time to AIDS).

Another area where censored regressors are encountered frequently is econometrics
where the covariate includes unlimited top and bottom categories (Rigobon and Stoker
(2007)) or are categorized in groups (Hsiao (1983)). For instance observed household
income would have a top coded response. In survival studies, which is our focus, the
time to event variable may play the role of a covariate, and it is obvious that random
or bound censoring may be present in such a setting. Note, that in survival studies
bound censoring (or top coding) occurs due to the end of study (cutpoint). This type of
censoring is also known as a ceiling effect in many scientific disciplines. Left censoring
is somewhat less common in survival studies, but occurs frequently in econometrics and
other scientific fields where it is typically referred to as bottom coding or the floor effect.

A related problem that has received attention in the past deals with surrogate pre-
dictors. Some strategies based on approximate quasi likelihood techniques, including
Regression Calibration, are discussed in Carroll and Stefanski (1990). Prentice (1982)
and Armstrong (1985) discuss the regression calibration technique under the frame-
works of proportional hazards and generalized linear models respectively. Regression
calibration in failure time regression models when some covariate values may be missing

15
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or mismeasured is addressed in Wang et al. (1997). More recently Wang and Pepe (2000)
discussed the use of Expected Estimating Equations in problems with measurement error
in the covariate.

When dealing with a censored covariate the simplest approach is to discard the cen-
sored data and perform the analysis only with the observed data. This is called a Com-
plete Case (CC) analysis. The CC method provides consistent parameter estimates under
noninformative censoring. Obviously the CC method suffers from low efficiency which
can be dramatic when heavy censoring is involved. In the case where both the distri-
bution of the response given the covariates and the covariate distribution are assumed
to lie within known parametric families, one can estimate the parameters via maximum
likelihood. This is the approach taken by Austin and Hoch (2004) in the simple fully
parametric setting where a ceiling effect is present on the covariates and where the joint
distribution of the response and covariates is a multivariate normal distribution. How-
ever, when dealing with distributions other than the normal, computational issues arise.
The method proposed in this chapter is both computationally simple and can be used
without assumptions about the response distribution given the covariates. In many cases
a parametric model, regarding the censored covariates, may be justified. Consider, for
example, a situation where a new time dependent biomarker is to be evaluated. It is
not uncommon to have historical data that allow us to use a parametric model for the
distribution of the time to event covariate. Moreover, other fully observed covariates of
interest may be utilized via an accelerated failure time (AFT) model. A flexible parametric
model is the AFT generalized gamma regression model, which is considered as a platform
for parametric analysis for survival data (see Cox et al. (2007)).

This chapter is organized as follows: In Section 2.1 we discuss the simple linear
regression problem with the covariate being censored. In Section 2.2 we present our
method, based on Estimating Equation theory that deals with the generalized linear
model. We give details regarding the three most common settings, a continuous, a binary
and a count response. We show how our method can be extended to accommodate
other observed covariates, via the use of an AFT parametric model and in section 2.3
discuss the use of the Generalized Gamma distribution for the censored covariate. We
also present some simulations for this case. We apply our method on real data from a
randomized placebo controlled trial of the drug D-penicillamine (DPCA) for treatment of
primary biliary cirrhosis (PBC) conducted at the Mayo Clinic (Fleming and Harrington
(1990)). We continue with Section 2.4 where we explore a new spline approach (named
as HCNS) that is used to model the censored covariate. Our spline approach is evaluated
via simulations and compared to other non-parametric approaches. We discuss how this
spline approach can be used in the context of a GLM with a censored covariate as well as
in the case where additional (fully observed) covariates are present. Finally we present
some additional simulations to evaluate the non-parametric spline technique.

2.1 Simple Linear Regression with a Censored Covariate

Consider the case of the simple linear regression model

Yi = β0 + β1Xi + ϵi, i = 1, ..., n (2.1)
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with the covariate subject to random right censoring, Type I censoring, or both. The data
for the i-th subject consist of (Yi, Ti,∆i), where Yi is the response Ti = min(Xi, Ci), Ci

being the censoring variable and ∆i is the indicator variable that informs us whether the
i-th subject’s covariate value is censored (∆i = 0) or observed (∆i = 1).

We assume that E(ϵi|Xi) = 0. If we want to apply the Complete Case (CC) analysis,
then we use only data with ∆i = 1. For the regression model to be well specified and for
the CC to yield unbiased estimators, we assume that the mean of ϵi does not vary with
∆i, that is E(ϵi|∆i) = 0. Given the ∆i’s, a parametric approach is to assume that both
fY |X(yi|xi) (the conditional distribution of Yi given Xi = xi) and fX(xi) (the marginal
distribution of Xi) lie within known parametric families. Given that the censoring and
event times are independent we have

fY |T,∆=1(yi|ti, δi = 1) =
fY (yi)

fX(ti)SC(ti)

∫ ∞

ti

fX,C|Y (ti, c|yi)dc,

where SC(t) = P (C > t), and yi, ti, δi are the realizations of the random variables
Yi, Ti,∆i respectively. Furthermore, if we assume conditional independence of censoring
and event times given the response value Y = y we obtain

fY |T,∆=1(yi|ti, δi = 1) =
fY |X(yi|ti)
SC(ti)

∫ ∞

ti

fC|Y (c|yi)dc.

The contribution of an event (∆i = 1) to the likelihood is

fY,T,∆=1(yi, ti, δi = 1) = SC|Y (ti|yi)fX(ti)fY |X(yi|ti).

Similarly, for observations with a censored covariate value we have

fY,T,∆=0(yi, ti, δi = 0) = fC|Y (ti|yi)fY |X>t(yi|xi > ti)SX(ti).

For the case of the simple linear regression model in (2.1), let β = (β0, β1)
′, τ2 = var(ϵi)

and define θ to be the parameter vector of the distribution of the covariate. Assuming
that the distribution of the censoring variable given the marker depends on a parameter
vector, λ, which is not a function of the parameters of interest, we maximize the likelihood
L(yi, ti, δi;β, τ

2,θ) which is proportional to

n∏
i=1

[{
fY |X(yi|ti;β, τ)fX(ti;θ)

}δi {∫ ∞

ti

fY |X(yi|x;β, τ)fX(x;θ)dx

}1−δi
]
. (2.2)

A perfectly reasonable assumption in most settings would be to simply assume joint inde-
pendence of C, X and ϵ which also implies independence of C and Y . These assumptions
result in the same likelihood.

Computational issues may arise when evaluating of the integral in (2.2) for subjects
with a censored covariate (δi = 0). The case where both X and Y |X are assumed
to follow normal distributions leads to a multivariate normal distribution for (X,Y ),
with the X variable subject to censoring. In this case the integral is computationally
tractable and likelihood inference becomes feasible as investigated in Austin and Hoch
(2004). However, when dealing with survival data we expect the covariate distribution
to be positive supported. The case of a simple normal linear regression with a censored
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exponentially distributed covariate is computationally relatively simple. In this case it
can be shown that

∫ ∞

t
fY |X(y|x;β, τ)fX(x;θ)dx =

θ

|β1|

ϕ
(
y−β0

τ

)
ϕ
(
y−β0−τ2θβ−1

1
τ

) Φ̄( tβ1 − (y − β0 − τ2θβ−1
1 )

sign(β1)τ

)

fY |X>t(y) =
θeθt

|β1|

ϕ
(
y−β0

τ

)
ϕ
(
y−β0−τ2θβ−1

1
τ

) Φ̄( tβ1 − (y − β0 − τ2θβ−1
1 )

sign(β1)τ

)

fY (y) =
θ

|β1|

ϕ
(
y−β0

τ

)
ϕ
(
y−β0−τ2θβ−1

1
τ

)Φ(y − β0 − τ2θβ−1
1

sign(β1)τ

)

fX|Y (x) =
|β1|τ−1ϕ

(
x−β−1

1 (y−β0−τ2θβ−1
1 )

τ |β−1
1 |

)
Φ
(
y−β0−τ2θβ−1

1
sign(β1)τ

) .

We note that in this setting f(x|y) is simply a truncated Normal distribution, truncated at
0, i.e. X|Y = y ∼ TN[0,∞)(β

−1
1 (y−β0−τ2θβ−1

1 ), (τ |β1|−1)2). In cases where the covariate
distribution is more complex, such as the Weibull or the Generalized Gamma, it is harder
to derive the likelihood function explicitly. Thus, maximization problems naturally arise.
An alternative to the direct maximization of the likelihood is to apply multiple imputation
to the censored covariate values based on the conditional distribution fX|X>t,Y (x|x >
t, y). With the use of multiple imputation one avoids possible numerical difficulties
associated with the maximization of the likelihood. However, use of multiple imputation
in practice depends on the complexity of the form of fX|X>t,Y (x|x > t, y). In the setting
of an exponentially distributed covariate and a simple normal linear regression model
for fY |X , one can show that the distribution fX|X>t,Y (x|x > t, y) is a truncated normal,
truncated at t, i.e. TN[t,∞)(β

−1
1 (y− β0 − τ2θβ−1

1 ), (τ |β1|−1)2) and multiple imputation is
straightforward. We note that both maximum likelihood and multiple imputation require
the distribution of the covariate given the response.

Another approach would be to forego the normality assumption for the error term
in (2.1) and perform a weighted least squares regression. In this case the regression
model would be E(Yi|Ti,∆i) = β0 + β1E(Xi|Ti,∆i). The expected value E(Xi|Ti,∆i) is
equivalent to mean imputation of the censored values of the covariate. Note that the
mean imputation is performed only by the information given from T and ∆. As weights
one can select the inverse of V ar(Yi|Ti,∆i), i.e. wi = (τ2)−1 for data with the covariate
being uncensored, and wi = (β2

1V ar(X|T,∆)+τ2)−1 for the ones with censoring present.
The estimator produced is β̂ = (X′WX)−1X′Wy, with W = diag(w1, . . . , wn) and X the
design matrix with ones in the first column and the i−th element of the second column
equal to E(Xi|Ti,∆i). This estimator is dependent on the slope β1 and hence an iterative
procedure is needed. Moreover, an estimator of the first two moments E(Xi|Ti,∆i) and
E(X2

i |Ti,∆i) is required which leads to the use of a parametric model on the covariate.
In the next section we propose a method for parameter estimation in generalized linear
models (GLMs). The above estimator turns out to be a limiting case of the proposed
method.



2.2. PARAMETER ESTIMATION WHEN A SINGLE COVARIATE IS CENSORED 19

2.2 Parameter Estimation when a Single Covariate is Censored

We are interested in estimating the parameters of a GLM when the covariate suffers from
censoring. We consider the generalized linear model specified by

E(Yi|Xi = xi, zi) = µi

g(µi) = [x
′
i, z

′
i]
′[β0, β1,β

′
2]

′

V ar(Yi|Xi = xi, zi) = τ2v(µi); i = 1, . . . , n, (2.3)

where g(·) is the link function, β0 is the intercept, β1 is the coefficient of the censored
covariate, β2 is the vector of coefficients corresponding to the fully observed covariates,
the vector xi = [1, xi]

′ refers to the covariate values that may be censored, the vector
z
′
i = [zi1, . . . , zi,p−1] refers to the fully covariates values, v(µi) is the variance function

and τ2 is the dispersion parameter (McCullogh and Searle (2001)). The model (2.3) in
vector form can be written as

E(Y|X) = µ, g(µ) = Xβ, Var(Y|X) = τ2V(µ), (2.4)

where Y = [y1, . . . , yn]
′, X = [(x

′
1, z

′
1), . . . , (x

′
n, z

′
n)]

′, β = [β0, β1,β
′
2]

′
, µ = [µ1, . . . , µn]

′,
g(µ) = [g(µ1), . . . , g(µn)]

′ and V(µ) = diag(v(µ1), ..., v(µn)). The data is

{Y,T,∆,Z} =

 y1 t1 δ1 z1,1 . . . z1,p−1
...

...
...

... . . .
...

yn tn δn zn,1 . . . zn,p−1

 , (2.5)

where ti = min(xi, ci), ci is the censoring time for the i−th subject and δi = I(xi<ci),
where I(A) denoted the indicator function of the event A.

2.2.1 Optimal estimating functions in the case of a single covariate

In order to develop our method we recall the notation and the general theory regard-
ing optimal estimating functions and OF -optimality, as introduced by Heyde (1997). Let
{Dn, n ≤ N} be a sample of discrete or continuous data. Let also the class G of zero mean,
square integrable estimating functions GN = GN ({Dn, n ≤ N} ,β) of dimension p with
EGN (β) = 0 and for which the p-dimensional matrices EĠN and EGNG′

N are nonsin-
gular. The dot denotes the derivative with respect to β, that is EĠN = EdGN,i(β)/dβj .
If we consider H ⊆ G, then optimality within H is acquired if the covariance matrix
of the standardized estimating functions G

(s)
N = −(EĠN )′(EGNG′

N )GN is maximized.
Equivalently, if the score function (UN ) exists, an optimal estimating function within H
is one with minimum dispersion distance from UN , or alternatively, one with maximum
correlation with the generally unknown score function. OF -optimality is achieved by
choosing the estimating function that maximizes the information criterion

E(G
(s)
N G

(s)′

N ) = (EĠN )′(EGNG′
N )−1(EĠN ) (2.6)

which is a generalization of the Fisher information. It can be shown that G∗
N ∈ H is an

OF -optimal estimating function within H if (EĠN )−1E(GNG∗′
N ) is a constant matrix for

all GN ∈ H.
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In the following theorem we present a plausible family of estimating functions that
can be considered when a censored covariate is present in a generalized linear model and
derive the OF -optimal one. We assume a parametric model for the covariate, X, such
that V (Y ) = E(V ar(Y |X)) + V ar(E(Y |X)) < ∞.

Theorem 1. Consider the generalized linear model in (2.4). Assume our data, {Y,T,∆},
are the first three columns as in (2.5) with no fully observed covariates. Let the class H of
square integrable estimating functions G = GN (β):

H : {G = A(β)(Y − µc(β)) , A(β) is T,∆ measurable} . (2.7)

where the i− th component of µc is µc
i = EXi|Ti,∆i

{
g−1(x

′
iβ)
}
. Assume that E

{
A(β)µ̇c

}
and E

{
A(β)W−1A

′
(β)
}

are nonsingular, where W−1 = diag {V ar(Yi|Ti,∆i)}. If the

unconditional variance of the response is finite then the OF optimal estimating function
(G∗) for estimating β within H is given by

n∑
i=1

[
yi − EXi|Ti,∆i

{
g−1(x′

iβ)
}

τ2EXi|Ti,∆i

{
v(g−1(x

′
iβ))

}
+ V arXi|Ti,∆i

{
g−1(x

′
iβ)
}EXi|Ti,∆i

{
d(g−1(x′

iβ))

dβ

}]
.(2.8)

Proof. The proof is given in the technical notes section of this chapter.

When no censoring of the covariate occurs then (2.8) reduces to the well known es-
timating function used in generalized linear models presented in McCullogh and Searle
(2001). Other computationally simpler alternatives to the OF−optimal estimating func-
tion may exist in the family (2.7). For example, here we propose the use of an unweighted
method, defined by the estimating function GUn = µ̇c′(Y − µc). Thus the unweighted
estimator β̂Un is the solution of

n∑
i=1

[{
yi − EXi|Ti,∆i

(g−1(x′
iβ))

}{
EXi|Ti,∆i

(
d(g−1(x′

iβ))

dβ

)}]
= 0. (2.9)

Of course the computationally simplest method is to perform Complete Case analysis
which is a limiting case of the family we considered, obtained by setting the weights of
observations with a censored covariate to zero.

Under some natural conditions the asymptotic behavior of β̂, in the family defined by
(2.7), is derived using the results of Yuan and Jennrich (1998). They present three general
conditions for the existence, consistency and asymptotic normality of estimating function
estimators. 1. 1

nG
∗ → 0 with probability one, 2. There is a neighborhood of β on which

with probability one all G∗ are continuously differentiable and 1
nĠ

∗ converges uniformly

to a nonstochastic limit which is nonsingular at β, 3. 1√
n
G∗ d→ N(0,Σ). Assumptions

1 and 2 are for the existence and consistency of the estimator and assumption 3 for its
asymptotic normality.

In our case the proposed estimating function can be written as

G∗ =
n∑

i=1

{
wi(yi − µc

i )

(
dµc

i

dβ0
,
dµc

i

dβ1
, . . . ,

dµc
i

dβp−1

)′}
=

n∑
i=1

{
wi(yi − µc

i )µ̇
c
i
′
}
=

n∑
i=1

qi.
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The expected value of the derivative of the estimating function is E(Ġ∗) = −E(µ̇c′Wµ̇c)
with (s, t)-th element:

ETi,∆i

(
n∑

i=1

wi
dµc

i

dβs

dµc
i

dβt

)
= ETi,∆i

 n∑
i=1

EXi|Ti,∆i

{
dg−1(x

′
iβ)

dβs

}
EXi|Ti,∆i

{
dg−1(x

′
iβ)

dβt

}
τ2EXi|Ti,∆

{
v(g−1(x

′
iβ))

}
+ V arXi|Ti,∆i

{
g−1(x

′
iβ)
}
 .

The derivative is Ġ∗ =
∑n

i=1 q̇i where the (s, t)-th element of the q̇i equals to

d

dβs

(
wi(yi − µc

i )
dµc

i

dβt

)
.

Since the estimating equations are unbiased, the Strong Law of Large Numbers (SLLN)
implies that n−1G∗ a.s.→ 0 and the first assumption is satisfied. The third assumption
follows from the central limit theorem 1√

n

∑n
i=1 qi → N(0, V ar(qi)), where V ar(qi) =

E(µ̇c
i
′
wiµ̇c

i ). For the second assumption it can be shown that 1
nĠ

∗ = 1
n

∑n
i=1 q̇i converges

to −E(µ̇c
i
′
wiµ̇c

i ). If we further assume that the convergence is uniform, then the estimate
β̂ exists, is consistent and asymptotically normally distributed with mean β and variance{
E(µ̇c′Wµ̇c)

}−1
. An estimate of the covariance matrix is given by (µ̇c′Wµ̇c)−1. The

Fisher scoring iterative algorithm may be applied for solving the estimating equations,

where for the m+ 1 iteration we have β̂(m+1) = β̂(m) +
(
µ̇c′

(m)W(m)µ̇c
(m)

)−1
A∗

(m)(Y −
µc
(m)).

Similarly and under the same assumptions, the estimator β̂Un of the Unweighted es-
timating function exists, is consistent and asymptotically normally distributed with mean

β and variance
{
E(µ̇c′µ̇c)

}−1
E(µ̇c′W−1µ̇c)

{
E(µ̇c′µ̇c)

}−1
where the (s, t)-th element

of the matrix E(µ̇c′µ̇c) is
∑n

i=1

[
EXi|Ti,∆i

{
dg−1(x′

iβ)
dβs

}
EXi|Ti,∆i

{
dg−1(x′

iβ)
dβt

}]
.

The previous discussion assumes that the dispersion parameter, τ, and the parame-
ters of the distribution of the censored covariate, X, are known. In practice we estimate
the dispersion parameter using the CC analysis by the usual moment estimator (Mc-
Cullagh and Nelder, 1983). The parameters of the distribution of X are estimated by
maximizing the likelihood based solely on the observations of the censored covariate
which essentially defines additional estimating equations. Hence, strictly speaking the
asymptotic variance has to be adjusted for estimating these unknown parameters. Given
the high degree of complexity and difficulty in calculating this asymptotic variance we
propose inference based on the bootstrap. We evaluated the performance of confidence
intervals based on the unadjusted asymptotic variance and the bootstrap via simulation
which we present in Section 2.3.3.

We note here that our method is applicable even when we can assume a paramet-
ric model for the conditional distribution of Y |X. As discussed in Section 2.1 its main
advantage in this case is that it can be considerably easier to compute our estimates
compared to the direct maximum likelihood approach or the methods of multiple impu-
tation. In the parametric setting, knowledge of the marginal distribution of X and the
conditional Y |X (and hence the joint distribution of (X,Y )) allows the computation of
the conditional distribution of X|Y. As for example in survival studies, with X being a
survival time and Y a biomarker value, it is the predictive distribution, X|Y, that may
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ultimately be of interest. We can view Y |X as the biological or diagnostic model and X
as the marginal lifetime distribution. A parametric model of Y |X is not needed if one
is simply interested in assessing the diagnostic accuracy of a time dependent biomarker
(see Cai et al. (2006) and Heagerty et al. (2000)). However, given the parametric forms of
the distributions of X and Y |X, our methods allow a computationally convenient way of
obtaining estimates of the parameters in the predictive model X|Y in prospective survival
studies. The complete treatment of predictive inference based on this approach is beyond
the scope of this study.

2.2.2 Examples

2.2.2.1 Continuous data with identity link function

In this case we have

µc
i (β) = E(Yi|Ti,∆i) =

{
β0 + β1ti, if ∆i = 1
β0 + β1E(Xi|Xi > ti), if ∆i = 0

and

w−1
i = V ar(Yi|Ti,∆i) =

{
τ2 if ∆i = 1
β2
1V ar(Xi|Xi > ti) + τ2, if ∆i = 0.

The matrix µ̇c will be an n by 2 matrix with its first column equal to 1n, and the i−th
element of the second column equal to ti when the covariate is observed and E(Xi|Xi >
ti) when censoring occurs. This simply amounts to mean imputation of the censored
covariate values followed by computation of the appropriate weights. An estimate of
the variance τ2 can be derived from the CC analysis. In the linear case our method is
applicable provided that E(X2

i ) < ∞.

2.2.2.2 Binary data with the logit link function

In this case

µc
i (β) = E(Yi|Ti,∆i) =


exp(β0+β1ti)

1+exp(β0+β1ti)
, if ∆i = 1

E
(

exp(β0+β1Xi)
1+exp(β0+β1Xi)

|Xi > ti

)
, if ∆i = 0

and it can be shown that

w−1
i = V ar(Yi|Ti,∆i) = µc

i (β)(1− µc
i (β)).

The matrix µ̇c is an n by 2 matrix with the i−th element of the first column equal
to exp(β0+β1ti)

{1+exp(β0+β1ti)}2
when the covariate is observed and E

(
exp(β0+β1Xi)

{1+exp(β0+β1Xi)}2
|Xi > ti

)
when the covariate is censored. The i−th element of the second column equals to

tiexp(β0+β1ti)

{1+exp(β0+β1ti)}2
when the covariate is observed and E

(
Xiexp(β0+β1Xi)

{1+exp(β0+β1Xi)}2
|Xi > ti

)
when

the covariate is censored. Since V ar(Y ) < ∞, our method is always applicable. Of
course one should be aware of the well known problems that occur in logistic regression
such as total separation or the ‘only successes’ or ‘only failures’ scenarios.
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2.2.2.3 Count data with the log link function

We have

µc
i = E(Yi|Ti,∆i) =

{
exp(β0 + β1ti), if ∆i = 1
E {exp(β0 + β1Xi)|Xi > ti} , if ∆i = 0.

Assuming that the mean to variance relationship is V ar(Yi|Ti,∆i = 1) = τ2µi(β) =
τ2E(Yi|Xi = xi), as in the Wedderburn (1974) quasi likelihood setting, we get

w−1
i = V ar(Yi|Ti,∆i) =

{
τ2µi(β), if ∆i = 1
τ2E {µi(β)|Xi > ti}+ V ar {µi(β)|Xi > ti} , if ∆i = 0.

In this case the i−th row of µ̇c equals to [exp(β0 + β1ti), tiexp(β0 + β1ti)] when the covari-
ate is observed and [E {exp(β0 + β1Xi)|Xi > ti} , E {Xiexp(β0 + β1Xi)|Xi > ti}] when
censoring occurs. Our method is applicable when V ar {exp(β0 + β1Xi)} < ∞ or equiva-
lently E {exp(2β1x)} = MX(2β1) < ∞, where MX(.) is the moment generating function
(m.g.f) of the distribution of X. For example, if X follows the exponential distribution
with mean θ, then we require that β1 < (2θ)−1.

2.2.3 Accommodating other observed covariates

The method can be extended to accommodate additional fully observed covariates. We
propose the use of accelerated failure time (AFT) models to account for information that
the additional covariates may carry about the censored regressor.

For the i−th subject, denote the additional covariate values by z
′
i = [zi1, . . . , zi,p−1].

Assume a generalized linear model that relates Yi to xi and zi and is of the form (2.4).
Assume further the AFT model with unknown vector of coefficients ξ

log(Xi|zi1, ..., zi,p−1) = [1, z
′
i]ξ + σui (2.10)

where ui follows some distribution that depends on a parameter vector κ. For sim-
plicity, consider the case where in addition to the censored regressor, one covariate z is
fully observed (p = 2). We define ζ = [ξ0, ξ1,κ] and denote as η the parameter vector of
the distribution of the covariate z. Then, under similar assumptions that we made for
(2.2), the likelihood

∏n
i=1 L(yi, ti, δi,zi;β, ζ,η, τ

2), is proportional to

n∏
i=1

[{
fY |X,Z(yi|ti, zi;β, ζ, τ2)fX|Z(ti|zi; ζ)

}δi {fY |X>t,Z(yi|xi > ti, zi;β, ζ, τ
2)fX>t|Z(xi|zi; ζ)

}1−δi
]
.

The maximization of the above likelihood is a difficult task due to the presence of
censoring. Here, we assume that the additional, uncensored, covariates are fixed at their
observed values. In this setting and for the case of one additional fully observed covari-
ate the OF−optimal estimating function will be of the form G∗ = µ̇c′W(Y−µc) where the
i−th element ofµc isµc

i = EXi|Ti,∆i

{
g−1([x

′
i, zi]β)

}
and W−1 = diag {V ar(Yi|Ti,∆i, Zi)}.

Thus, the optimal estimating function can be written as

G∗ =
n∑

i=1


{
yi − EXi|Ti,∆i,Zi

(g−1([x
′
i, zi]β))

}{
EXi|Ti,∆i,Zi

(
d(g−1([x

′
i,zi]β))

dβ

)}
τ2EXi|Ti,∆i,Zi

{
v(g−1([x

′
i, zi]β))

}
+ V arXi|Ti,∆i,Zi

{
g−1([x

′
i, zi]β)

}
 . (2.11)
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An estimate of the asymptotic variance matrix is provided by (µ̇c′Wµ̇c)−1 where the

s, t-th element of (µ̇c′Wµ̇c) is
∑n

i=1

 EXi|Ti,∆i

{
dg−1([x

′
i,zi]β)

dβt

}
EXi|Ti,∆i

{
dg−1([x

′
i,zi]β)

dβs

}
τ2EXi|Ti,∆{v(g−1([x

′
i,zi]β))}+V arXi|Ti,∆i{g−1([x

′
i,zi]β)}

 .

The extension of our method to accommodate additional fully observed covariates,
that will be considered fixed (p > 2), is straightforward. Also, one can consider only a
subset of the additional covariates in the AFT model in equation (2.10). As in the case of
a single covariate, τ is estimated via the CC analysis, and the parameter vector ξ and σ
via maximum likelihood.

2.3 Parametric model for the censored covariate.

2.3.1 Case I: A single covariate

In many instances, historical data from previous studies suggest the use of a specific
parametric model for the censored covariate. In the absence of such information, we
propose the use of a flexible parametric model. Here, we explore the use of the Generalized
Gamma distribution which is considered as a platform for parametric analysis for survival
data. The generalized gamma is a parametric family which was initially introduced by
Stacy (1966). It includes most of the commonly used distributions in survival analysis
(e.g. exponential, Weibull, gamma, log-normal,...) either as special or limiting cases. Its
hazard function can be monotonically increasing, decreasing, arc-shaped or U-shaped
(bathtub). For a detailed study regarding the generalized gamma family see Cox et al.
(2007). Its density can be written as (see Lee and Wang (2003))

f(x;α, λ, γ) =
|α|
Γ(γ)

γγλαγxαγ−1exp {−γ(λx)α} ,

where α ̸= 0 and γ > 0 are the shape parameters, and λ > 0 is the scale parameter.
When α = 0 the limiting case of the lognormal distribution is obtained. When γ = 1 or
α = 1 we obtain the Weibull or the Gamma distribution respectively. Here, we denote
the Generalized Gamma distribution by GG(α,λ,γ). The survival function is

S(x;α, λ, γ) =

{
I {γ(λx)α, γ} , if α < 0
1− I {γ(λx)α, γ} , if α > 0.

where I {·, ·} is the incomplete gamma function. The r-th moment is given by:

E(Xr) =

{
(λγ

1
α )−r Γ{(αγ+r)α−1}

Γ(γ) , if r
α > −γ

∞, otherwise.

The hazard rate of the GG(α,λ,γ) distribution takes the form of the four most common
types, i.e. increasing, decreasing, arc-shaped and bathtub-shaped. The shapes of the
hazard can be described using the parameters α, γ as follows

1. {(α, γ) : α ≥ max(1, 1/γ)} the hazards are increasing

2. {(α, γ) : 1 < α < 1/γ} the hazards are bathtub-shaped
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3. {(α, γ) : (1/γ < α < 1) or (α ≤ 0)} the hazards are arc-shaped

4. {(α, γ) : 0 < α ≤ min(1, 1/γ)} decreasing hazard rate.

A graphical representation is given in Figure 2.1. A similar graph is provided by Cox et
al. (2007) for another parameterization of this distribution.
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Figure 2.1: The various forms of the hazard rate of the GG(α,λ,γ) distribution depend
on the parameters α and γ. The three solid curves define five regions that include the
most common forms of the hazard rate. When the identity link function is used, then the
method is inapplicable in the shaded region.

The computational issues of fitting the generalized gamma distribution to data are
still under study when either the sample size is relatively small or the proportion of
censored data is very high (or both).

To illustrate the applicability of the proposed method using the GG(α,λ,γ) distribution
for the covariate we focus on the three most widely used generalized linear models,
discussed in Section 3.3. We observe that (i) in the linear case the constraint E(X2

i ) < ∞
implies that α > 0 or α < −2/γ, (ii) in the binary case, no problems arise since the
response variance is always finite and (iii) in the case of count data with the log link
function, the constraint MX(2β1) < ∞ implies that our method can be used

(I) in the region {(α, γ) : α = 1, γ < 1} for slope values β1 ≤ γλ
2 (Gamma distribution)

(II) in {(α, γ) : α = 1, γ ≥ 1} for slope values β1 <
γλ
2 (Gamma distribution)

(III) in {(α, γ) : α < 1, γ > 0} for slope values β1 ≤ 0

(IV) in {(α, γ) : α > 1, γ ≥ 0} for all slope values.
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Thus, for count data with the log link, the method can be used if the slope β1 ≤ 0
regardless the shape of the hazard rate. When the hazard is bathtub shaped the method
is always applicable. For decreasing hazard rates the only case where the method works
for positive slopes is when X follows the Gamma distribution. For increasing hazard rates
the method works for all positive slopes except when X follows the Gamma distribution.
In any other case one should refer to the restrictions above.

2.3.2 Case II: Additional fully observed covariates

Assume an AFT model of the form (2.10) with unknown vector of coefficients ξ where ui
follows the log−generalized gamma distribution with density

f(ui) =
1

Γ(δ−2)
|δ|
{
exp(δui)/δ

2
}1/δ2

exp
{
−exp(δui)/δ

2
}
, if δ ̸= 0.

When δ = 0, f(ui) is taken to be a standard normal density. The AFT model implies that
Xi|zi1, ..., zi,p−1 follows the GG(α,λi,γ) with λi = exp(−[1, z

′
i]ξ), α = δ

σ , γ = 1
δ2
.

f(ui) =
1

Γ(δ−2)
|δ|
{
exp(δui)/δ

2
}1/δ2

exp
{
−exp(δui)/δ

2
}
, if δ ̸= 0.

When δ = 0, f(ui) is taken to be a standard normal density. The AFT model implies that
Xi|zi1, ..., zi,p−1 follows the GG(α,λi,γ) with λi = exp(−[1, z

′
i]ξ), α = δ

σ , γ = 1
δ2
.

The required moment condition for continuous data is E(X2
i |zi) < ∞, ∀i . Observe

that in the generalized gamma AFT regression model the covariate zi affects only the
parameter λi which plays no role in the existence of the moments of Xi. Thus, if the
moment condition is satisfied by one value of z then it will be satisfied for all values of z.

In the case of count data, we require that MXi|zi(2β1) < ∞, ∀i. Note that according
to the discussion in Section 2.3.1 the method is applicable, irrespective of the covariate
values, (i) for all β1 when α > 1 and γ ≥ 0, (ii) for β1 ≤ 0 when α < 1 and γ > 0. When
α = 1 then the method may or may not work for β1 > 0, depending on the observed
values of z in our data set.

2.3.3 Simulation Studies

We conducted Monte Carlo simulations for each of the three examples in Sections 2.2.2.1,
2.2.2.2, 2.2.2.3 as well as for the scenario of a linear model with one additional regressor
(section 2.3.3.2).

In all simulations with a single covariate, X was generated from an Exponential
distribution with mean 3. The censoring variable, C, was equal to min(C∗, cutpoint)
where C∗ had an exponential distribution. The mean of C∗ and the cutpoint were chosen
so that half of the censorings were expected to occur due to the cutpoint and the other half
due to random censoring. Two scenarios, one with 30% and one with 70% of expected
total censoring, were considered. Simulations were conducted for sample sizes of n = 300
and n = 100 in the linear case and of n = 300 in the cases of binary and count data.
We used the proposed method assuming the following distributions for the censored
covariate: (i) the Exponential, (ii) the Weibull, and (iii) the generalized gamma. We denote
the methods by QS(Exp), QS(Weib), QS(GG) respectively. Since the Exponential belongs
to the family of the Weibull distributions, which in turn belongs to the family of the
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GG distributions we were able to assess the loss in efficiency when moving to a broader
family of distributions. We also performed the Unweighted method (denoted by Un(Exp),
Un(Weib), Un(GG)) in the linear model. We did not apply the Unweighted method in
the cases of binary and count data since very slow convergence of the Fisher Scoring
algorithm was observed. We compared results of our methods to those obtained by the
Complete Case analysis (CC).

Due to the known computational problems regarding the fitting of the GG distribution
to the data (see also Gomes et al. (2008) for a detailed overview), especially when censor-
ing is present, we did not consider the QS(GG) or the Un(GG) method for the scenarios
of n = 100. For sample sizes of n = 300 and 70% censoring, we ended up discarding
approximately 0.03% of the repetitions. In all tables presenting the simulation results
the columns titled as, ‘Bias’, ‘SE’, and ‘MSE’ contain the simulation based estimates of
the Bias, Standard Error and Mean Squared Error of the estimates. The columns titled
as ‘Width’ and ‘Cover’ contain the observed average width and coverage of the asymptotic
95% confidence intervals. We note again that the asymptotic covariance used is an esti-
mate not adjusted for the estimation of the dispersion parameter and the parameters of
the censored covariate. For some cases where the performance of our confidence inter-
vals was extremely poor, we also show the corresponding results for the bootstrap based
coverage.

2.3.3.1 Simple Linear Model

We first simulated from the simple normal linear regression Y = 5 + β1X + ϵ, where
ϵ ∼ N(0, 1). Simulations were conducted for the values of β1 corresponding to correlation
values of ρ = 0.2, 0.3, 0.5, 0.8. The results are presented in Table 2.1. The proposed
methods outperform the CC analysis for all values of ρ considered with more dramatic
differences in MSE occurring the lower the ρ is. We note here that most often in practice
ρ is less than 0.5 and for those situations our simulations indicate a clear superiority of
our methods. As expected the use of the Exponential or the Weibull distribution yielded
even better results since fewer parameters needed to be estimated.

When ρ is large the asymptotic confidence intervals may have poor coverage, caused
by the estimation of the asymptotic SE. We performed some additional simulations (not
presented here) in order to explore the coverage properties when the dispersion parame-
ter, τ , is set to its true value. We observed no differences compared to the cases where the
use of the CC estimate of τ was used. However, when the parameter of the distribution
of the covariate X (here the Exponential) was set to its true value (and τ was estimated
by the CC) we noticed significant improvement in terms of MSE as well as nice cover-
age properties. Thus we conclude that the poor coverage observed in some scenarios
is primarily due to the estimation of the parameters of the distribution of the covariate.
However, when the percentile bootstrap technique was employed, the corresponding cov-
erage was satisfactory. This is highlighted in the footnotes of Table 2.1, as well as in
Tables A2 and A4 of the Appendix A. We see that when the correlation is very high and
the GG is assumed as the covariate distribution the coverage of the confidence intervals
that use the estimated asymptotic variance is unacceptable (lower than 30%). In con-
trast, the confidence intervals based on the resampling technique attains coverage close
to the nominal one. We note that in order to apply the bootstrap technique we resample
pairs of values of the response and the covariate. The dispersion parameter as well as
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the parameters of the distribution of the covariate are re-estimated in each bootstrap
iteration. Thus, it is not surprising that inference based on the bootstrap considerably
outperforms inference based on the estimated asymptotic covariance matrix.

We also present results for the maximum likelihood method (ML), assuming the true
form of the distribution of our data. As noted in Section 2.1, estimation of the MLE in
this special setting of a simple normal linear regression with an exponentially distributed
covariate is computationally feasible. Note that in the case of 30% total censoring the
results of the maximum likelihood method and the proposed method are relatively close.
Minor differences in MSE occur between the QS and the Unweighted method and one
might be tempted to choose the latter due to computational simplicity.

In order to investigate the robustness, we also considered a t distribution with 4
d.f. for the error term. In these simulations the ML method falsely assumed a N(0, 1)
distribution for the error term. In such scenarios, although the ML method proved fairly
robust to misspesification of the error term, it exhibited a higher MSE for lower values of
ρ. The results are presented in Appendix A (Tables A2 and A3).

We also performed simulations for small (n = 100) and large (n = 1000) sample sizes.
Since computational problems occur when fitting the GG distribution for small sample
sizes, we did not perform simulations based on the GG for n = 100. All the results of
simulations regarding sample size n = 100 are presented in Appendix A (Tables A1 and
A3). We further considered one simulation study with sample size equal to 1000. The
results are presented in Appendix A (Table A4) and the conclusions are similar to the case
with n = 300. In this scenario the proposed methods continue to outperform the CC and
yield minor differences in terms of MSE compared to the likelihood approach (where the
correct model for the response and the covariate is assumed). Finally we note that when
the GG distribution is used as the censored covariate distribution, our estimates and the
CC estimates are close, in terms of MSE, when ρ is large. The CC actually outperformed
our estimates for ρ = 0.8, n = 1000, and 70% censoring.

2.3.3.2 Linear Model with an additional fixed covariate

We conducted an additional simulation considering the case of two covariates, one
being censored and the other fully observed. The true values of the parameters for
this simulation, were close to the corresponding estimates of the application presented
in Section 2.5 (n=318). We performed the method based on the optimal estimating
function using the Weibull (QS(Weib)) as well as the GG AFT model (QS(GG)). In the
first scenario, we generated the time variable from the Weibull AFT model log(X|z) =
6.5038− 0.0263z + 0.7828u where u follows the extreme value distribution. The model of
interest is Y = β0 + β1X + β2z + ϵ, where ϵ ∼ N(0, 0.92), and the true values of β0, β1
and β2 were set at 3.4,−0.007 and −0.036 respectively. The censoring variable follows a
Weib(93, 2.6), thus the expected censoring was approximately 70%. The values of age (z)
were held fixed at the observed values of the data in the application. We compared our
results to the ones provided by the CC analysis and observed that the proposed method
(QS) outperformed the CC analysis in terms of MSE. The OF optimality based method
using the Weibull AFT regression model yielded smaller bias and standard error for all
three coefficients. The results are presented in Table 2.2.
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Table 2.1: Simulation results for 1000 repetitions for the linear case (n = 300). Half of
the censoring is due to the cutpoint (end of study). The noise ϵ is from N(0, 1).

β0 β1
Cens. ρ Method Bias SE MSE Width Cover Bias SE MSE Width Cover

Likelihood -0.0199 0.0719 0.0056 - - - - - - 0.0064 0.0153 0.0003 - - - - - -
CC -0.0025 0.1152 0.0133 0.4521 0.9530 0.0016 0.0558 0.0031 0.2197 0.9450

QS(Exp) -0.0005 0.0894 0.0080 0.3537 0.9610 -0.0001 0.0232 0.0005 0.0918 0.9550
0.2 Un(Exp) -0.0005 0.0893 0.0080 0.3537 0.9690 -0.0001 0.0232 0.0005 0.0918 0.9540

QS(Weib) -0.0008 0.0897 0.0080 0.3542 0.9590 0.0000 0.0235 0.0006 0.0920 0.9580
Un(Weib) -0.0008 0.0897 0.0080 0.3542 0.9570 0.0000 0.0235 0.0006 0.0920 0.9580
QS(GG) -0.0000 0.0900 0.0081 0.3538 0.9580 -0.0005 0.0243 0.0006 0.0917 0.9460
Un(GG) -0.0000 0.0900 0.0081 0.3539 0.9570 -0.0005 0.0243 0.0006 0.0917 0.9460

Likelihood 0.0020 0.0855 0.0073 - - - - - - 0.0002 0.0225 0.0005 - - - - - -
CC 0.0055 0.1161 0.0135 0.4530 0.9510 -0.0019 0.0565 0.0032 0.2205 0.9460

QS(Exp) 0.0021 0.0890 0.0079 0.3537 0.9560 0.0001 0.0241 0.0006 0.0344 0.9330
0.3 Un(Exp) 0.0020 0.0890 0.0079 0.3537 0.9560 0.0001 0.0241 0.0006 0.0348 0.9330

QS(Weib) 0.0016 0.0896 0.0080 0.3558 0.9500 0.0004 0.0248 0.0006 0.0343 0.9320
Un(Weib) 0.0015 0.0896 0.0080 0.3560 0.9530 0.0004 0.0248 0.0006 0.0343 0.9310
QS(GG) 0.0031 0.0898 0.0081 0.3540 0.9560 -0.0007 0.0264 0.0007 0.0335 0.9240
Un(GG) 0.0031 0.0989 0.0081 0.3554 0.9560 -0.0007 0.0264 0.0007 0.0335 0.9260

30% Likelihood 0.0062 0.0903 0.0082 - - - - - - -0.0015 0.0257 0.0007 - - - - - -
CC 0.0013 0.1140 0.0130 0.4542 0.9590 0.0010 0.0554 0.0031 0.2199 0.9540

QS(Exp) 0.0045 0.0932 0.0087 0.3591 0.9470 -0.0012 0.0263 0.0007 0.0989 0.9410
0.5 Un(Exp) 0.0047 0.0934 0.0087 0.3599 0.9460 -0.0012 0.0265 0.0007 0.0993 0.9400

QS(Weib) 0.0043 0.0938 0.0088 0.3593 0.9430 -0.0012 0.0279 0.0008 0.0989 0.9230
Un(Weib) 0.0043 0.0938 0.0088 0.3593 0.9430 -0.0012 0.0279 0.0008 0.0989 0.9230
QS(GG) 0.0055 0.0974 0.0095 0.3594 0.9340 -0.0021 0.0333 0.0011 0.0990 0.8570
Un(GG) 0.0059 0.0979 0.0096 0.3604 0.9300 -0.0023 0.0340 0.0012 0.0995 0.8500

Likelihood 0.0005 0.0954 0.0091 - - - - - - -0.0004 0.0334 0.0011 - - - - - -
CC 0.0014 0.1140 0.0130 0.4520 0.9530 -0.0010 0.0560 0.0031 0.2196 0.9480

QS(Exp) 0.0013 0.0971 0.0094 0.3761 0.9480 -0.0007 0.0340 0.0012 0.1243 0.9320
0.8 Un(Exp) 0.0001 0.1009 0.0102 0.3885 0.9460 -0.0004 0.0365 0.0013 0.4282 0.9380

QS(Weib) -0.0010 0.1004 0.0101 0.3761 0.9420 0.0005 0.0387 0.0015 0.1244 0.8930
Un(Weib) -0.0024 0.1055 0.0111 0.3880 0.9340 0.0011 0.0429 0.0018 0.1313 0.8750
QS(GG) 0.0018 0.1112 0.0124 0.3765 0.9100 -0.0016 0.0516 0.0027 0.1253 0.7660
Un(GG) 0.0035 0.1215 0.0148 0.3907 0.8460 -0.0032 0.0605 0.0037 0.1330 0.7190

Likelihood -0.0324 0.0850 0.0083 - - - - - - 0.0103 0.0218 0.0006 - - - - - -
CC 0.0044 0.1868 0.0349 0.7521 0.9510 -0.0113 0.2607 0.0681 1.0403 0.9460

QS(Exp) -0.0024 0.1203 0.0145 0.4713 0.9430 0.0001 0.0354 0.0013 0.1381 0.9500
0.2 Un(Exp) -0.0024 0.1204 0.0145 0.4714 0.9410 0.0001 0.0354 0.0013 0.1381 0.9520

QS(Weib) -0.0029 0.1210 0.0146 0.4731 0.9480 0.0010 0.0378 0.0014 0.1404 0.9350
Un(Weib) -0.0030 0.1210 0.0147 0.4731 0.9430 0.0010 0.0378 0.0014 0.1404 0.9350
QS(GG) -0.0038 0.1227 0.0151 0.4763 0.9460 0.0024 0.0503 0.0025 0.1465 0.7980
Un(GG) -0.0036 0.1224 0.0150 0.4752 0.9470 0.0020 0.0492 0.0024 0.1430 0.7850

Likelihood 0.0012 0.1036 0.0107 - - - - - - -0.0000 0.0315 0.0010 - - - - - -
CC 0.0048 0.1944 0.0378 0.7544 0.9550 -0.0005 0.2697 0.0727 1.0437 0.9470

QS(Exp) 0.0038 0.1210 0.0147 0.4733 0.9420 -0.0008 0.0378 0.0014 0.1398 0.9300
0.3 Un(Exp) 0.0037 0.1210 0.0147 0.4734 0.9440 -0.0008 0.0378 0.0014 0.1399 0.9310

QS(Weib) 0.0025 0.1224 0.0150 0.4751 0.9360 0.0011 0.0425 0.0018 0.1426 0.8990
Un(Weib) 0.0023 0.1224 0.0150 0.4753 0.9390 0.0011 0.0425 0.0018 0.1426 0.9000
QS(GG) 0.0001 0.1226 0.0159 0.4781 0.9320 0.0038 0.0648 0.0042 0.1479 0.6940
Un(GG) 0.0001 0.1258 0.0158 0.4763 0.9330 0.0037 0.0647 0.0042 0.1440 0.6840

70% Likelihood 0.0083 0.1039 0.0109 - - - - - - -0.0021 0.0356 0.0013 - - - - - -
CC 0.0003 0.1871 0.0350 0.7513 0.9560 0.0056 0.2599 0.0676 1.0329 0.9430

QS(Exp) 0.0046 0.1187 0.0141 0.4747 0.9590 -0.0011 0.0398 0.0016 0.1451 0.9320
0.5 Un(Exp) 0.0046 0.1187 0.0141 0.4759 0.9590 -0.0011 0.0397 0.0016 0.1453 0.9330

QS(Weib) 0.0030 0.1198 0.0144 0.4762 0.9610 0.0006 0.0507 0.0026 0.1466 0.8480
Un(Weib) 0.0030 0.1197 0.0143 0.4772 0.9610 0.0005 0.0506 0.0026 0.1468 0.8580
QS(GG) -0.0032 0.1295 0.0168 0.4813 0.9460 0.0110 0.1018 0.0105 0.1588 0.5320
Un(GG) -0.0023 0.1290 0.0167 0.4775 0.9350 0.0095 0.1014 0.0104 0.1466 0.5042

Likelihood 0.0015 0.1063 0.0113 - - - - - - -0.0009 0.0548 0.0030 - - - - - -
CC -0.0020 0.1868 0.0349 0.7517 0.9490 0.0061 0.2562 0.0657 1.0375 0.9580

QS(Exp)(1) 0.0020 0.1246 0.0155 0.4815 0.9430 -0.0016 0.0574 0.0033 0.1723 0.8590
0.8 Un(Exp) 0.0010 0.1277 0.0163 0.4940 0.9480 -0.0015 0.0576 0.0033 0.1747 0.8620

QS(Weib)(2) -0.0051 0.1330 0.0177 0.4837 0.9260 0.0078 0.0971 0.0095 0.1752 0.6460
Un(Weib) -0.0061 0.1358 0.0185 0.4961 0.9290 0.0082 0.0977 0.0096 0.1776 0.6560
QS(GG)(3) -0.0158 0.1762 0.0300 0.4881 0.8530 0.0286 0.2204 0.0494 0.1864 0.2730
Un(GG) -0.0157 0.1763 0.0313 0.4782 0.8370 0.0272 0.2240 0.0509 0.2176 0.2190

(1) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 95.3% and 93.2% respectively
(2) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 93.0% and 94.3% respectively
(3) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 95.2% and 96.1% respectively
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Table 2.2: Simulation when an additional fixed covariate is present. The true values of
the parameters β0, β1 and β2 are 3.4, -0.007 and -0.036 respectively. The time variable
was generated from an AFT model using the extreme value.

Method Parameter Est. SE Bias MSE Asympt. Cover. Boots. Cover.
β0 3.4299 0.5231 0.0299 0.2746 0.9540 –

CC β1 -0.0069 0.0030 4× 10−5 9× 10−6 0.9370 –
β2 -0.0366 0.0095 -0.0007 9× 10−5 0.9490 –

β0 3.37927 0.4531 -0.0207 0.2057 0.9090 0.9410
QS(Weib) β1 -0.0069 0.0012 10−5 10−6 0.7490 0.9510

β2 -0.0356 0.0083 0.0003 7× 10−5 0.8990 0.9390

β0 3.3962 0.4222 -0.0037 0.2136 0.9020 0.9510
QS(GG) β1 -0.0074 0.0022 0.0004 5× 10−6 0.4210 0.9640

β2 -0.0356 0.0084 0.0003 7× 10−5 0.8730 0.9590

2.3.3.3 Binary data

The real value of the intercept was set at β0 = log(9) so that P (Y = 1|X = 0) = 0.9.
If Y = 1 denotes a positive marker result, this implies a 90% chance of a positive test
at the time of death (!). Three values of β1 were studied, β1 = −2,−3,−4. These β1
values were chosen in order to avoid total separation and the ‘only successes’ or ‘only
failures’ scenario. A graphical representation of the scenarios considered is given in
Appendix A (Figure A1). The results are presented in Table 2.3. The simulations showed
superiority of the proposed method (QS) over the CC in all cases. Moreover, negligible
gains in MSE are obtained using the likelihood method. As in the linear case, when the
exponential distribution was fitted to the covariate the results were even better, because
fewer parameters needed to be estimated. The likelihood method was not implemented
here due to its computational cost. We also omitted the Unweighted method since very
slow convergence of the Fisher Scoring algorithm was observed. The results are presented
in Table 2.3.

2.3.3.4 Count data

For count data we considered the same censoring mechanism as in section 2.3.3.1.
The real value of the intercept was β0 = 1. For the slope we considered β1 = −1
and β1 = −1/3 for each scenario. Note that the relative change in mean (E(Y |X =
0) − E(Y |X = median))/E(Y |X = 0) is 0.875 for β1 = −1 and 0.5 for β1 = −1/3. We
set the overdispersion parameter at τ = 2. The proposed method (QS) was superior to
the CC in terms of MSE in all cases. The results are presented in Appendix A (Table
A5). 14% of the repetitions in QS(GG) were discarded when the censoring was 70% and
β1 = −1/3, due to violations of the conditions discussed in section 2.2.2.3. Overall,
the coverage seems satisfactory. However, we observed that when fitting the GG in the
presence of high censoring the proposed method yielded lower coverage when β1 = −1/3
with censoring level of 70%. This problem can be circumvented with the use of the
percentile bootstrap as in the linear case.
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Table 2.3: Simulation results of 1000 repetitions in the case of binary data. Sample
size is n=300, with 70% and 30% censoring, half of which is due to the cutpoint (end of
study), and the other half due to random censoring. The logit link function was used.
The real value of the intercept is log(9) so that P (Y = 1|X = 0) = 0.9.

β0 β1
Cens. β1 Method Bias SE MSE Width Cover Bias SE MSE Width Cover

CC 0.0685 0.3796 0.1488 1.4574 0.9490 -0.0654 0.3081 0.0992 1.1604 0.9530
Likelihood 0.0643 0.3683 0.1405 – – -0.0599 0.2927 0.0893 – –

-2 QS(Exp) 0.0641 0.3693 0.1405 1.4381 0.9390 -0.0598 0.2927 0.0892 1.1226 0.9550
QS(Weib) 0.0644 0.3694 0.1406 1.4382 0.9390 -0.0599 0.2928 0.0893 1.1226 0.9550
QS(GG) 0.0640 0.3695 0.1406 1.4381 0.9390 -0.0595 0.2929 0.0893 1.1223 0.9530

CC 0.0610 0.4329 0.1912 1.6801 0.9490 -0.0990 0.5124 0.2723 1.9103 0.9360
Likelihood 0.0588 0.4295 0.1879 – – -0.0951 0.5000 0.2591 – –

-3 QS(Exp) 0.0587 0.4295 0.1897 1.1042 0.9520 -0.0951 0.5000 0.2590 1.5126 0.9440
30% QS(Weib) 0.0589 0.4294 0.1879 1.6673 0.9520 -0.0949 0.4998 0.2588 1.8722 0.9440

QS(GG) 0.0589 0.4295 0.1879 1.6672 0.9430 -0.0949 0.5000 0.2590 1.8723 0.9520

CC 0.0956 0.5025 0.2616 1.9035 0.9610 -0.1716 0.7412 0.5788 2.8175 0.9570
Likelihood 0.0941 0.5001 0.2589 – – -0.1712 0.7323 0.5656 – –

-4 QS(Exp) 0.0941 0.5001 0.2589 1.8928 0.9680 -0.1712 0.7323 0.5656 2.7776 0.9560
QS(Weib) 0.0942 0.5001 0.2590 1.8930 0.9480 -0.1709 0.7321 0.5651 2.7772 0.9560
QS(GG) 0.0942 0.5004 0.2592 1.8930 0.9670 -0.1713 0.7323 0.5656 2.7777 0.9550

CC 0.0957 0.5662 0.3297 2.1175 0.9520 -0.1039 0.6944 0.4931 2.6001 0.9480
Likelihood 0.0651 0.4370 0.1952 – – -0.0620 0.3753 0.1447 – –

-2 QS(Exp) 0.0623 0.4368 0.1967 1.6518 0.9520 -0.0590 0.3760 0.1449 1.3689 0.9400
QS(Weib) 0.0673 0.4430 0.2008 1.6532 0.9430 -0.0635 0.3937 0.1590 1.3694 0.9270
QS(GG) 0.0689 0.4499 0.2071 1.6524 0.9550 -0.0583 0.4179 0.1781 1.3657 0.9270

CC 0.0853 0.5381 0.2969 2.0700 0.9550 -0.1490 0.7417 0.5723 2.8563 0.9640
Likelihood 0.0602 0.4759 0.2301 – – -0.1002 0.5653 0.3296 – –

-3 QS(Exp) 0.0587 0.4760 0.2300 1.8079 0.9520 -0.0984 0.5662 0.3303 2.0917 0.9380
70% QS(Weib) 0.0634 0.4780 0.2325 1.8080 0.9540 -0.1054 0.5731 0.3395 2.0905 0.9380

QS(GG) 0.0635 0.4799 0.2343 1.8076 0.9525 -0.1046 0.5764 0.3431 2.0885 0.9360

CC 0.1163 0.5557 0.3223 2.1594 0.9740 -0.2219 0.9260 0.9083 3.5378 0.9640
Likelihood 0.1049 0.5150 0.2763 – – -0.1918 0.7775 0.6413 – –

-4 QS(Exp) 0.1040 0.5150 0.2761 2.0101 0.9690 -0.1909 0.7777 0.6413 3.0124 0.9660
QS(Weib) 0.1061 0.5156 0.2771 2.0100 0.9710 -0.1938 0.7788 0.6441 3.0112 0.9660
QS(GG) 0.1077 0.5166 0.2785 2.0118 0.9710 -0.1976 0.7811 0.6491 3.0147 0.9650

2.4 Exploring non parametric models for the censored covari-
ate in a GLM

Modeling the covariate by a parametric model has the disadvantage of making strong
assumptions that in practice may be not justified. At the other extreme lies the non
parametric product limit estimator introduced by Kaplan and Meier (1958) (KM). How-
ever, the crude product limit estimator does not allow estimation of survival probabilities
beyond the greatest event time. There are settings where the largest time value may
correspond to a censored observation. In this case even if the last event is followed by
(greater) censored values, the estimation of the survival function is limited to the last
event (tmax).

Some strategies have been imposed to remedy this drawback. Efron (1967) proposes
setting survival probabilities at time points beyond tmax equal to 0 while Gill (1980)
proposes setting them equal to Ŝ(tmax). Efron’s and Gill’s approaches turn out to be
negatively and positively biased respectively. An approach regarding the completion of
the tail of the Kaplan Meier estimator by an exponential curve is discussed in Brown et
al. (1974) and the use of the more flexible Weibull parametric model was suggested by
Klein and Moeschberger (1985). Another approach may be the use of even more flexible
parametric models for completing the tails such as the generalized gamma model. In
general simulation studies have shown that smooth estimates of the survival function
are more efficient than the crude non parametric one (Pan (2000)).

The most celebrated methods to smooth non parametrically the survival function are
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based on kernel smoothers and splines. The kernel based methodologies are discussed in
detail by Silverman (1986) in the case of no censoring. Standard references that include
issues of censoring are Wand and Jones (1995) and Bowman and Azzalini (1997). Kernel
smoothers are widely used in survival analysis, but they too suffer from the drawback of
the ‘last is censored’ phenomenon.

In section 2.4.1 we briefly recall the logspline density estimation approach, as well
as the standard kernel smoothing method. In section 2.4.1.3 we introduce a new con-
strained natural spline based approach in estimating the survival function and discuss
the case where covariates are present.

2.4.1 Non-Parametric Approaches for Survival Estimation of a Censored
Variable

2.4.1.1 Log-spline Models

Logspline models have been studied in Stone and Koo (1986), Stone (1990) and Kooper-
berg and Stone (1991). In Kooperberg and Stone (1992) logspline density estimation was
developed for censored data. Here we briefly recall their methodology.

Consider the data (Ti, Di) i = 1, . . . , n, where Ti = min(Xi, Ci) is a survival time
random variable, Ci is the censoring variable, and Di is a binary indicator variable
taking values 1 for an event and 0 for censoring, i.e. Di = I(Xi < Ci). Let the integer
K ≥ 3, and the knot sequence τ1, . . . , τK with with −∞ ≤ L < τ1 < . . . < τK ≤ U ≤ ∞
where L and U are some numbers.

The logspline density model is stated as

f(x;θ) = exp(θ1B1(x) + . . .+ θpBp(x)− C(θ)), L < x < U, (2.12)

where

C(θ) = log(

∫ U

L
exp(θ1B1(x) + . . .+ θpBp(x))dx)

is the normalizing constant and the basis functions B1(x), B2(x), . . . , Bp(x) can be cho-
sen such that B1 is linear with negative slope on (L, τ1], B2, . . . , Bp are constant on
(L, τ1], Bp is linear with positive slope on [τK , U), B1, . . . , Bp−1 are constant on [τK , U),
and in each of the intervals [τ1, τ2], . . . , [τK−1, τK ] we have a cubic polynomial. This way
a natural cubic spline is formed. Note that for the above model the feasibility condition∫ U
L exp(θ1B1(x) + . . .+ θpBp(x))dx < ∞ is required. The survival function is then given

by

S(x;θ) = 1−
∫ x

L
f(z,θ)dz, L < x < U.

Note that if we set U = ∞, then the density function is exponential on [τK ,∞)
and if L = −∞ then the density is exponential on (−∞, τ1]. Here, we consider time
to event data, thus we expect the density to be positive supported, hence L = 0. If
Xi is right censored (Ti < Xi) or observed exactly (Ti = Xi), then Ai = (Ti, Ui) or
Ai = Xi respectively. Under the assumption that the random sample is independent of
the censoring mechanism, a maximum likelihood estimate of the vector θ is then obtained
by maximizing the log-likelihood
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l(θ) =
∑
i

φ(Ai,θ),θ ∈ Θ,

where φ(A;θ) = log(
∫
A f(x;θ)) and f(x;θ) is given by (2.12). The maximization of the

likelihood is possible via the Newton Raphson iterative procedure. Note that when there
is no censoring the Hessian is globally negative definite and the log likelihood function
is strictly concave, and hence the maximum likelihood of θ is unique. However, in the
presence of censoring, this is not always the case (Stone (1990)).

For choosing the number of knots Kooperberg and Stone (1992) apply a stepwise
procedure for addition and deletion of knots depending on their statistical significance
and model selection is based on AIC or BIC. Since the primary target of their methodology
is the estimate of the density, they present a sophisticated initial knot placement based
on experience. The knot placement in the density estimation setting is crucial, since
many peaks of the density may have to be detected without making the estimate very
noisy.

2.4.1.2 Kernel Smoothing

Kernel smoothers have received much attention in the literature. See for example Sil-
verman (1986) and in the case of censoring Wand and Jones (1995) and Bowman and
Azzalini (1997). The formula for the kernel density estimator in the case of no censoring
is

f̂(x;h) = (nh)−1
n∑

i=1

K

{
x−Xi

h

}
where K(·) is the kernel function for which K(x) = 1 and h > 0 is called the bandwidth.
The most popular kernels are the Epanechnikov, the Biweight, the Triweight, the Nor-
mal, the Triangular and the Uniform, mentioned with order of efficiency. We refer the
reader to Wand and Jones (1995). The efficiencies of the Epanechnikov and the Uniform
kernel are 1 and 0.930 respectively. It is evident that one loses very little in terms of
performance by using a suboptimal kernel. In effect, the choice of the kernel may be
relied on computationally simplicity. Note also that in practice the Epanechnikov kernel
is sometimes avoided due to its discontinuous first derivative. In contrast to the choice
of the kernel function, the bandwidth selection is a crucial issue. Various approaches
have been made regarding bandwidth selection, from computationally simple that can be
written in closed form, to computationally more cumbersome such as the cross validation
based techniques. For a review of common bandwidth selection approaches see Wand
and Jones (1995).

In the presence of censoring the kernel density estimator is based on the Kaplan
Meier estimator. Let T(i), D(i), i = 1, . . . , n be {Ti, Di} ordered with respect to the Ti’s.
The Kaplan Meier survival estimator is given by:

ŜKM (x) =

{
1, if 0 ≤ x ≤ T(1)∏j−1

i=1

(
n−i

n−i+1

)D(i)

, if T(j−1) ≤ x ≤ T(j), j = 2, . . . , n.
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and the estimated kernel density is

f̂X(x) =

n∑
i=1

siKh(x− Ti),

where Kh(u) = h−1K(u/h) and si is the size of the jump of the KM estimator at Ti.
Survival probabilities can be estimated through the density estimator. Note that si = 0
if and only if Ti corresponds to a censored observation. This is where the drawback of
kernel smoothing in the presence of censoring arises. The kernel estimate is constructed
by centering a kernel at each event time. In effect, the density estimator is not extended
further than the tail of the kernel placed at the last event, even if the last event is followed
by censored data. Similarly, the same problem would rise in the case of estimating the
distribution function by integrating the density (see also Azzalini (1980)). In effect, if one
wants to use the kernel methodology when censoring is present, then the condition that
the largest time is an event time is needed.

2.4.1.3 The HCNS Approach

In this section we consider the use of a positive monotone natural spline to smooth
the nonparametric estimate of the cumulative hazard function (HCNS method: Hazard
Constrained Natural Spline). The monotone increasing nature of the data obtained from
the Kaplan Meier estimator of the cumulative hazard function

ĤKM (x) = −log(ŜKM (x))

is expected to set the ground for a cubic spline to be adequately flexible to be fitted to the
points (Ti, Ĥ

KM (Ti)|Di = 1), i.e. the jumps of the Kaplan Meier estimator, and provide a
smooth estimate of the survival function.

Consider the K knots placed at τ1 < . . . < τK and let the natural spline for the
cumulative hazard

H(x) = θ1W1(x) + θ2W2(x) + . . .+ θK−2WK−2(x), (2.13)

where for j = 1, . . . ,K − 2 we have

Wj(x) = (x− τj)
3
+ −

(x− τK−1)
3
+(τK − τj)

τK − τK−1
+

(x− τK)3+(τK−1 − τj)

τK − τK−1
,

where x+ = max(0, x). It can be shown that Wj(x) is linear in x for x ≥ τK . Model (2.13)
can be written as

H(x) = θ1(x− τ1)
3
+ + . . .+ θK−2(x− τK−2)

3
+ + θK−1(x− τK−1)

3
+ + θK(x− τK)3+(2.14)

where

θK−1 =
θ1(τ1 − τK) + θ2(τ2 − τK) + . . .+ θK−2(τK−2 − τK)

τK − τK−1
(2.15)

θK =
θ1(τ1 − τK−1) + θ2(τ2 − τK−1) + . . .+ θK−2(τK−2 − τK−1)

τK−1 − τK
.
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Due to need of extrapolation beyond the last knot, Stone and Koo (1985) state advan-
tages of linearly extrapolating the model, which is also the case for our model. The model
(2.14) has the following properties:
(i) It is linear beyond the last knot,
(ii) It equals to zero before the first knot,
(iii) Its first and second derivative are continuous,
(iv) Its first derivative is zero at the first knot,
(v) It has K − 2 parameters to be estimated.

For the model above to be fitted to the cumulative hazard step function monotonicity
conditions are required. Necessary and sufficient conditions for the monotonicity of a
cubic spline are given in Fritsch and Carlson (1980). Consider a cubic polynomial P in
the interval [τj , τj+1] and denote its first derivative by P ′. Let aj =

τj+1−τj
P (τj+1)−P (τj)

P
′
(τj)

and bj =
τj+1−τj

P (τj+1)−P (τj)
P

′
(τj+1), be the respective ratios of the endpoint derivatives to

the slope of the secant line. Consider the region M = M1 ∪M2, where M1 is the
square defined by a = 0, 3 and b = 0, 3 and M2 is the ellipse defined by ϕ(a, b) =
(a− 1)2 + (a− 1)(b− 1)+ (b− 1)2 − 3(a+ b− 2) = 0, which is tangent to the coordinates
(0,3) and (3,0). Monotonicity in the interval [τj , τj+1] holds within region M but outside
this region the cubic polynomial is non-monotone. Under the further condition that
0 ≤ min(P

′
(τj), P

′
(τj+1)) the function is ensured to be non-decreasing. Note that any

subregion of M provides a sufficient condition for monotonicity.
Note that the exact region defines a nonlinear condition for monotonicity and one

might be tempted to consider other linear subregions such as M1 at the cost of excluding
other candidate models that may provide a significantly better fit to the data at hand.
On the other hand, one may try to approach the problem by using the entire region
of monotonicity, M. This would be computationally cumbersome because non linear
constraints would be applied for each of the subintervals that are defined by the knots.
In effect there would be no guarantee of convergence during an optimization procedure,
and very good initial values satisfying the initial constraints would be necessary.

In Figure 2.2 we illustrate a linear approximation, A, of the exact region M with the
use of 16 line segments. These correspond to a linear spline beginning from (a, b) =
(0, 0) where the a values are depicted on the horizontal axis. We move counterclockwise
starting from (0, 0) for the values of a=(0, 3.0000, 3.4664, 3.8024, 3.9778, 3.9777,
3.8021, 3.4663, 3.0000, 2.4461, 1.8517, 1.2700, 0.7529, 0.3474, 0.0889, 0, 0). These
values yield the optimal inscribed decahexagon within region M in terms of the enclosed
area. Note that the captured area from A is approximately 98.4% of the entire region,
M. This linear approximation reduces the problem to a linear programming one.

We derived the values of a that correspond to the optimal decahexagon by numerically
maximizing the area with respect to the points in the perimeter of region M. However,
there is a suboptimal way with minimum computational cost for calculating a linear ap-
proximating inscribed polygon within the area M. In Smith (1970) an easy to implement
algorithm for computing a piecewise representation of an ellipse is presented. This al-
gorithm computes the optimal placement of a fixed number of points for an ellipse, in
terms of inscribed area. However, only a part of our region M matches the curve of an
ellipse and we need to fix three of our available points to the locations (0,0), (0,3) and
(3,0). Thus, one computationally simple way to construct an efficient, but suboptimal,
inscribed polygon within region M would be to fix these three points ((0,0), (0,3) and
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(3,0)) and to include any points indicated by the algorithm of Smith (1970) that lie above
the line b = −a+3. This way one can easily fit very fine linear approximations. Moreover,
note that in the case that one chooses to construct a 12k−gon, k = 1, 2, . . . to approxi-
mate the ellipse ϕ(a, b) using Smith’s algorithm, then as discussed in the technical details
at the end of this chapter, it happens that the points (0,3) and (3,0) are included in the
approximation. In this case, we can discard all points below b = −a + 3 and use (0,0)
instead, to derive the optimal inscribed (8k + 2)−gon within region M. Thus by using
Smith’s algorithm we can easily optimally inscribe any (8k + 2)−gon within the region
of monotonicity and hence approximate M to any desired degree of accuracy. See also
the Appendix B. In the simulation studies we considered both the 16 line approximation,
as well as the 18 line approximation in all scenarios and observed no differences in the
results.
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Figure 2.2: Linear approximation with 16 line segments of the entire region of monotonic-
ity (M = M1∪M2) which is defined by the square (a = 0, 3 and b = 3, 0) and the ellipse
ϕ(a, b) = (a− 1)2 + (a− 1)(b− 1) + (b− 1)2 − 3(a+ b− 2) = 0 that are overlapping. The
linear approximation A of region M is given by linearly joining the consecutive points
beginning from (0, 0) and moving counterclockwise starting from (0, 0) for the values of
a=(0, 3.0000, 3.4664, 3.8024, 3.9778, 3.9777, 3.8021, 3.4663, 3.0000, 2.4461, 1.8517,
1.2700, 0.7529, 0.3474, 0.0889, 0, 0). The area captured by region A is approximately
98.4% of entire region M.

Under the constraints that force the cumulative hazard to be monotonically increas-
ing, it is easy to show that all moments of the r.v. X exist if we force the derivative of
the cumulative hazard to be strictly positive at the last knot (H ′(τK) > 0). We require
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no further monotonicity restrictions beyond τK since the linear tail will ensure that the
model H(x) will be strictly increasing beyond τK .

We can choose the first knot to be placed at τ1 = min(event times) = min(Ti|Di = 1),
and the last knot at τK = max(event times) = max(Ti|Di = 1). Note that model (2.14)
will always be smaller than the Kaplan Meier based estimate of H(x) at τ1 = min(Ti|Di =
1), since we assume to have zero values before the first knot and H ′(τ1) = 0. Thus,
we expect to underestimate the cumulative hazard function near the interval (0, τ1 =
min(Ti|Di = 1)). Alternatively, one may choose to set τ1 = 0 so as to allow positive
values of the cumulative hazard function near zero. The choice of τ1 = min(Ti|Di = 1)
may be justifiable if we expect that min(Ti|Di = 1) >> 0.

A usual way of placing the knots is at equally spaced quantiles (Harrell (2001)).
Another possible approach is to select equally spaced knots between min(Ti|Di = 1)
and max(Ti|Di = 1). We expect, again due to the nature of monotonically increasing
data, that such knot placement strategies will be robust enough since no modes or
valleys are need be detected and a sophisticated procedure such as the one presented
in Kooperberg and Stone (1992) may not be needed. Note that if the first knot is placed
at min(Ti|Di = 1), then property (ii) provides an imitation of the behavior of the Kaplan
Meier estimator, in that it is zero before the first event.

In this chapter, we consider three knot placement schemes based on the non censored
data: 1. Equally spaced knots from min(Ti|Di = 1) to max(Ti|Di = 1), 2. Knots at
min(Ti|Di = 1), 5th, 25th, 50th, 75th percentiles and max(Ti|Di = 1), 3. Knots at 0,
5th, 25th, 50th, 75th percentiles and max(Ti|Di = 1). In a given application we choose
the one that yields the smallest distance to the Kaplan Meier based cumulative Hazard
estimator

Ψ(θ̂) =
∑
i

(Ĥ(Ti|Di = 1)− ĤKM (Ti|Di = 1))2,

where Ĥ is the fitted model defined in (2.14) under the appropriate constraints of mono-
tonicity, and ĤKM is the Kaplan Meier based cumulative hazard estimator.

Another approach is to consider the knots as free parameters that have to be es-
timated. Since we fit the model under study to the Kaplan Meier estimator a criterion
regarding the goodness of fit would be to consider again Ψ = Ψ(θ, τ ), where θ is the vector
of the parameters of interest, τ is the vector of knots [τ1, τ2, . . . , τK ]. After the estimate of
the vector parameter θ is obtained, it can be considered fixed and we can set Ψ = Ψ(θ̂, τ )
where Ψ now depends only on the knot placement. Minimizing Ψ with respect to vector
τ , one can derive an improved fit of the model. However, function Ψ depends non linearly
on the knots and the convergence of the optimization is not guaranteed. The three pre-
viously mentioned knot placement schemes presented no computational problems and
seemed to be adequate in the simulation studies.

To derive the linear constraints we regard the points (0, 0), (0, 3) and (3, 0) as included
in the set of points that will define a linear approximation of the entire region M. Thus,
the set of distinct points we consider to define a linear approximation of M is (a0, b0) =
(aQ+2, bQ+2) = (0, 0), (a1, b1) = (3, 0), (a2, b2), . . . , (aQ, bQ), and (aQ+1, bQ+1) = (0, 3).
Denote the i−th segment that joins (ai, bi) with (ai+1, bi+1) by gi, with its equation given
by gi(a, b) = b+ ξ

(i)
1 a+ ξ

(i)
0 = 0, where i = 1, . . . , Q (see also Figure 2.2 where Q = 14).

First, we need to adjust for the direction of the inequality that will allow us to be on



38 CHAPTER 2. GENERALIZED LINEAR MODELS WITH A CENSORED COVARIATE

the correct half-plane for each of the Q line segments. The curve on the perimeter of M
is convex for b < 1 and concave for b > 1.

For the i−th segment:

1. If bi+1 ≤ 1 then we require gi(a, b) ≥ 0 (and set vi = −1)

2. If bi ≥ 1 then we require gi(a, b) ≤ 0 (and set vi = 1)

3. If bi < 1 and bi+1 > 1 then

• if ai < ai+1 we require gi(a, b) ≥ 0 (and set vi = −1)

• if ai ≥ ai+1 we require gi(a, b) ≤ 0 (and set vi = 1)

We derive the Q(K − 1) constraints defined by (2.16) that deal with capturing the
region A. See the technical details section of an example of K = 6 knots with an
inscribed decahexagon (Q = 14). For each of the J , (J = 1, 2, . . . ,K − 1), knot intervals
[τ1, τ2], [τ2, τ3], . . . , [τK−1, τK ] the restriction required for the i−th segment is given by

vi

{
θJ

[
3(τJ+1 − τJ)

2 + ξ
(i)
0 (τJ+1 − τJ)

2
]

+ I(J≥2)

J−1∑
j=1

θj

[
3(τJ+1 − τj)

2 + 3ξ
(i)
1 (τJ − τj)

2 + ξ
(i)
0

(τJ+1 − τj)
3 − (τJ − τj)

3

τJ+1 − τJ

]} ≤ 0,(2.16)

where i = 1, 2, . . . , Q and I(J≥2) = 1 if J ≥ 2 and 0 otherwise. Further we require that
the derivatives before the last knot be non negative. Based on our model (2.14) we have
H ′(τ1) = 0. We also require H ′(τj) ≥ 0, for j = 2, . . . ,K − 1 which yields the following
(K − 2) constraints

−
J−1∑
j=1

3θj(τJ − τj)
2 ≤ 0, J = 2, . . . ,K − 1 (2.17)

The strict inequality of the derivative at the last knot yields the additional constraint

−
K−1∑
j=1

3θj(τK − τj)
2 < 0. (2.18)

We can add an arbitrary small value u > 0 on the left of (2.18) to achieve u−
∑K−1

j=1 3θj(τK−
τj)

2 ≤ 0.
Note that the inequalities aj ≥ 0 and bj ≥ 0, ∀j = 1, . . . ,K− 1 are trivially satisfied since
τ1 < τ2 < . . . < τK and due to the restrictions (2.17) and (2.18).

The final equality restriction for θK−1 which is stated in (4). Thus, there is a total of
Q(K − 1)+ (K − 2)+ 1+1 = Q(K − 1)+K constraints, consisting of Q(K − 1)+K − 1
inequalities and one equality. Alternatively we can consider Q(K − 1)+K +1 inequality
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constraints, since the equality can be written as two inequalities (as in Liew (1976) where
the case of an untruncated covariance matrix of the parameters θ is studied), and so
finally the constraints in (2.16), (2.17) and (2.18) and the constraint for θK−1 can be
written as

A[θ1, θ2, . . . , θK−1]
′ ≤ 0.

where matrix A has nc = K − 1 columns and nr = Q(K − 1) +K + 1 rows.
We fit model (2.14), (2.15) to the Kaplan Meier based cumulative hazard estimated

function ĤKM , by minimizing their distance under the constraints (2.16), (2.17), (2.18),
i.e. minimizing the function

Ψ(θ) =
∑
i

(
H(Ti|Di = 1)− ĤKM (Ti|Di = 1)

)2
,

subject to the inequality constraints of the form A[θ1, θ2, . . . , θK−1]
′ ≤ 0. The lagrange

function is then of the form

L(θ,λ) = Ψ(θ) + λα,

where λ is the row vector of the lagrange multipliers and α = [α1, . . . , αnr ] with αi be
the i−th constraint. Note that the problem stated is always convex, and the global mini-
mum can be found through standard algorithms. The case of using the entire region of
monotonicity, M, would be computationally cumbersome because non-linear constraints
would be applied for each of the subintervals that are defined by the knots. In effect there
would be no guarantee of convergence during the minimization of least squares, and very
good initial values satisfying the initial constraints would be necessary. After fitting
model (2.14), (2.15) under the appropriate constraints we obtain the smooth estimate,
Ĥ(x), of the cumulative hazard function. The proposed estimator of the survival function
S(x), is

Ŝ(x) = exp(−Ĥ(x)),

with Ĥ(x) = H(x; θ̂) where θ̂ is the constrained least squares estimated vector of param-
eters. For the derivation of confidence intervals of Ŝ(x) we use the percentile bootstrap
technique.

The HCNS approach can be further extended to accommodate other fully observed
covariates through the semi-parametric Cox model. Consider the setting where measure-
ments are taken on p additional covariates, Z1, Z2, . . . , Zp, not subject to censoring, and
thus the available data are {Ti, Di, Zi1, . . . , Zip} = {Ti, Di,Zi}, i = 1, . . . , n. It is well
known that under the Cox model which is of the form

S(x|Z) = S0(x)
exp(γ′Z),

where γ is the parameter vector γ = [γ1, γ2, . . . , γp]
′ that relates the survival time to the

covariates Z1, . . . , Zp, one can derive a consistent estimator of survival for given values
of the covariates.

We apply model (2.14), (2.15) to the baseline hazard step function derived by the
Cox model, to obtain the constrained natural spline estimator of the baseline cumulative
hazard (Ĥ0). Thus the corresponding estimator of the baseline survival function is

Ŝ0 = exp(−Ĥ0).
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Given the profile of a subject, the estimated survival function is then given by

Ŝ(x|Z) = (Ŝ0)
exp(γ̂′Z),

where γ̂ is the estimated parameter vector derived by fitting the Cox model. Conditional
logspline estimation has been suggested by Mâsse and Truong (1995). However, their
method is not generalized to accommodate censoring. Other approaches are studied in
the literature such as the HEFT model (for the unconditional hazard function) and the
HARE model (in the case of hazard regression) presented in Kooperberg et al. (1995). An
appealing feature of these models is that the proportional hazards model is included as
a special case. However, these techniques are computationally cumbersome due to the
numerous numerical integrations required for cubic or quadratic splines, and only the
case of fitting a linear spline is addressed by the authors.

The use of medians are also used in survival analysis to summarize survival data and
a kernel based approach in the presence of a covariate is taken in Beran (1981) as well
as in Doksum and Yandell (1982) and Gentleman and Crowley (1991). At the covariate
value, weights are computed to construct a weighted Kaplan Meier survival curve, and
thus the median. In order to produce a smooth curve Wright and Bowman (1997) propose
a nonparametric regression procedure to the data representing the corners of the steps
(see also Bowman and Azzalini (1997)). The data used in constructing the Kaplan Meier
are extracted from a ‘window’ of the data, centered at a value of the covariate, from which
the local percentile of interest is computed. Repeating the procedure for several values of
the covariate, the dependence of the percentile of interest and covariate can be explored.
However, as the number of the covariates increases this approach is computationally
infeasible.

Our approach is different from the one presented in Herndon and Harrell (1995). They
consider a Cox model with a restricted (natural) spline being the baseline hazard. Under
their approach all parameters are simultaneously estimated, in contrast to the two stage
approach taken in this article. In our approach, once the Cox model is fitted, we do not
consider maximizing a likelihood function. Instead, we smooth over the Kaplan Meier step
function using a squared distance criterion. In many situations this may not be optimal
compared to a likelihood based approach. However, our method, in the first stage, relies
on the standard procedure to obtain the regression parameter estimates and during
the second stage deals with a restricted least squares problem with linear restrictions.
Thus, our method is computationally straightforward whereas likelihood based methods
usually involve nonlinear functions and the convergence of any optimization routine is
not guaranteed.

Our method can be easily adjusted to accommodate left censoring. However, when
dealing with interval censoring in the presence of covariates a simultaneous estimation
method of regression parameters and the baseline cumulative hazard function seems
inevitable. For this setting we refer the reader to Zhang et al. (2010). They consider
a spline-based semiparametric maximum likelihood approach. They approximate the
baseline cumulative hazard using monotone B−splines and extend the Rosen algorithm
to derive maximum likelihood estimates. Their approach is computationally intensive
due to the nature of estimation for interval censored data.

In Appendix B we provide a description of a user friendly software written with
MATLAB that is built to apply the HCNS method. The user can select the number of knots,
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where to place them as well as the degree of approximation of the region of monotonicity.
There is also an auto option for the knot placement where multiple knot placement
schemes are tested and the one that minimizes the distance from the corners of the
Kaplan Meier is finally chosen. For more details see the Appendix B. In Appendix C
we provide some simulation studies to evaluate the HCNS method based on the knot
schemes discussed in this chapter. We compare the HCNS approach with the Kaplan
Meier estimator, the logspline method, as well as with the restricted cubic spline approach
in the case of additional covariates. The comparisons are made with respect to the mean
integrated squared error, as well as the obtained coverage.

2.4.2 Using the HCNS model for the censored covariate

Assume again, that we are in the setting of estimating the parameters of a generalized
linear regression model when only a single censored covariate is available that might
be censored. Our goal is to non parametrically estimate the conditional expectations
E(Xi|Ti,∆i) and E(X2

i |Ti,∆i) that appear in the optimal estimating function discussed
in Section 2.2.1.

n∑
i=1

[
yi − EXi|Ti,∆i

{
g−1(x′

iβ)
}

τ2EXi|Ti,∆i

{
v(g−1(x

′
iβ))

}
+ V arXi|Ti,∆i

{
g−1(x

′
iβ)
}EXi|Ti,∆i

{
d(g−1(x′

iβ))

dβ

}]
.

Due to the fact that the spline (2.14) is linearly extrapolated beyond the last knot and
the derivative at the last knot is forced to be positive, it is obvious that under the above
spline modeling approach the second moment E(X2) =

∫∞
0 x2dF (x) is always finite,

which in turn yields V (X) < ∞.

In the case where the optimal estimating function above is employed and the HCNS
approach is used for the estimation of the covariate cumulative distribution, then pa-
rameter estimation is done with mild assumptions for the distributions of the response
and the covariate. Furthermore, the approach is computationally stable, since the opti-
mization problem involved is convex and can be handled by standard software. In effect,
convergence is guaranteed and no initial values in fitting the spline model are required.

In the case of count data and when the log−link function is used then, again, under
this spline formulation it can be shown that MX(2β1) < ∞. As already mentioned, in
the case of binary data, the required condition V (Y ) < ∞ is trivially satisfied.

The conditional expectations that appear in

G∗ =

n∑
i=1


{
yi − EXi|Ti,∆i,Zi

(g−1([x
′
i, zi]β))

}{
EXi|Ti,∆i,Zi

(
d(g−1([x

′
i,zi]β))

dβ

)}
τ2EXi|Ti,∆i,Zi

{
v(g−1([x

′
i, zi]β))

}
+ V arXi|Ti,∆i,Zi

{
g−1([x

′
i, zi]β)

}


could be evaluated if a model that would relate the censored time variable with the
other observed covariate was available. Assume now that the fully observed covariates, let
Z1, Z2, . . . ..., Zp, were available. The information they may carry regarding the censored
variable must be taken into account and thus the approach is divided in two stages:

• Stage 1: Model the censored variable using Z1, Z2, . . . ..., Zp as covariates.
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• Stage 2: Follow the estimating function approach to derive estimations of the pa-
rameters β of the desired GLM, using the model of the previous stage to calculate
all conditional expectations required.

Here, we explore the use of the well known semi parametric approach of the Cox
model to regress the censored variable on the fully observed covariates Z1, Z2, . . . ..., Zq.
We assume the proportional hazards model of the form:

H(x|Z) = H0(x)exp(γ1Z1 + γ2Z2 + · · ·+ γqZq), (2.19)

where F0(x) is the baseline cumulative hazard function which is completely unspec-
ified and the parameter vector γ = [γ1, γ2, . . . , γq] is the parameter vector that relates
the possibly censored variable to the covariate matrix Z = [Z1, Z2, . . . , Zq] in which each
column is one fully observed covariate. After fitting model (2.19), we obtain the Cox
based estimates, γ̂, as well as the baseline step cumulative hazard estimate Ŝ0. Model
2.14 can then be fitted to the the corners, at which events occur, of this step estimator
in the same way as discussed in the previous section where only a single covariate was
available. Thus, one can derive the CNS estimator for any desirable profile of a subject
by

Ĥcns(x|Z) = Ĥcns
0 (x)exp(γ̂1Z1 + γ̂2Z2 + · · ·+ γ̂qZq), (2.20)

with the corresponding survival estimate being equal to

Ŝcns(x|Z) = exp(−Ĥcns(x|Z)). (2.21)

All conditional expectations required for implementation of the estimating function
approach can be based on (2.21).

The approach presented above accommodates the additional covariates under the
assumptions of proportional hazards. This assumption, however, may no be justified
from the data at hand and a more general approach would be desirable. The Cox model
can be generalized to relax the assumption of proportionality by using time functions as
interactions with the observed covariates. For an overview of this approach see Klein and
Moeschberger (1985). Assume for simplicity that only one observed covariate, let Z, is
available, then under this formulation the Cox model takes the form

H(x|Z) = H0(x)exp(γ1Z + γ2Z × η(x)), (2.22)

where η(x) is a time function. Common choices are η(x) = x, η(x) =
√
x, η(x) =

log(x). Again, after fitting model (2.22), we obtain the step estimator of the baseline
cumulative hazard, Ĥ0(x), and then the implementation of the presented approach is
straightforward following the discussion provided for the proportional hazards model
case.
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2.4.2.1 Simulation Studies

Here, we consider some simulation studies to evaluate the performance of the estimating
function approach when the proposed spline technique is used for the censored covariate.
We generated the censored covariate from a Weibull(3,2) distribution. For the censoring
mechanism we considered a cutpoint due to which half of the expected censoring level
would occur. The censoring variable was taken to be exponentially distributed with a
proper value parameter so as to achieve expected total levels of censoring of 30% and
70%. (Half of the censoring are due to the censoring variable, and half due to the cutpoint
(end of study)).

Linear Case

The sample sizes were chosen to be n = 100 and n = 300, while the model that
generated the data was a simple linear model of the form Y = 5 + β1X + ϵ. The slope
values were chosen to result a correlation coefficient equal to ρ(X,Y ) = 0.2, 0.3, 0.5, 0.8
and ϵ was generated from a standard normal distribution. The asymptotic confidence
intervals are computed, and is some cases (where the desired coverage is not achieved)
we also provide the bootstrap based ones for comparison purposes. The latter, as we
observe, seem to have nice coverage properties even in the case of high correlation, high
censoring level and small sample sizes, which is not always the case for the asymptotic
one.

The simulation results for the linear case with a single censored covariate are pre-
sented in Table A4. We observe that for slope values that yield correlation coefficient
equal to 0.2, 0.3, and 0.5 the presented approach clearly outperforms the CC approach
in terms of MSE, in all cases (i.e. in all sample sizes and censoring levels). The CC ap-
proach seem to yield better results when the correlation coefficient is high (=0.8). We also
observe that the asymptotic confidence intervals based on the unadjusted variance does
not provide nice coverage properties for the QS approach as the slope and the censoring
level increases. This can be circumvented with the use of the percentile bootstrap. In this
table, results for the computationally simpler Unweighted approach are also presented.
We observe minor differences from the QS approach in terms of MSE, Bias and SE and
thus one might be tempted to use the Unweighted approach. However, with modern
computer technology the computational time of both approaches is not an issue.

We also looked at a case where an additional fully observed covariate, Z, is present.
We generated the censored values from a Cox model in which the baseline density
was taken to be a Weibull(2,3) and the true value of the coefficient, γ, of the covari-
ate Z, was set to 2. The response variable was then generated by the linear model
Y = β0 + β1X + β2Z + ϵ, where the true values of the parameters of interest are β0 = 5,
β1 = 0.5, β2 = 1, and ϵ ∼ N(0, 1). Following the two stage approach the parameter γ was
estimated by simply using a Cox model. The simulation results are presented in Table
(2.5). We observe that the proposed approach outperforms the CC method an all cases
yielding narrower asymptotic confidence intervals.

Binary data

In the case of binary data we set the value of the intercept equal to β0 = log(9), which
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in turn yields P (Y = 1|X = 0). We looked at the following slope values: β1 = −2,−3,−4.
The sample size is set to n = 300 with expected levels of censoring 30% and 70% using the
same censoring mechanism as in the linear case. The presented approach outperformed
the CC approach in all cases. The results are presented in Table 2.6. We note here that
we do not present results for the Unweighted method since the Fisher Scoring algorithm
needed significantly more iterations to converge, due to the absence of a weight matrix,
than the QS approach that is based on the optimal estimating functions. Unlike the lin-
ear case, in which the Unweighted method involves a simple least squares problem for the
imputed data set, in the binary data setting the time the Unweihted method needs to con-
verge may be essentially greater than the corresponding time of the QS approach. Thus,
there is no need for attempting to use the suboptimal Unweighted method in such a case.

Count data

For the count data we considered the same censoring mechanism as in the previous
settings and the sample size of n = 300. The true value of the intercept is set to β0 = 1
and the slope values are set equal to β1 = −1 and β1 = −1/3. The overdispersion
parameter τ is set equal to 2 and was estimated by the well known moment estimator
(see McCullogh 2001) using the CC approach. In this setting we also observe that the
presented approach outperforms the CC analysis in all cases (see Table 2.7).

2.5 Application

We applied our methods to data from a double-blinded randomized placebo controlled
clinical trial of the drug D-penicillamine (DPCA) used for treatment of primary biliary
cirrhosis (PBC). The trial was conducted at the Mayo Clinic during 1974-1984 (Fleming
and Harrington (1990)) and involved 312 subjects. In the analysis of our results, we
included an additional 112 subjects that did not participate in the clinical trial, but
consented to have basic measurements recorded and to be followed for survival. Six of
these subjects were lost to follow up, thus the available sample size was 418. The study
established that DPCA is not effective for treatment. The data have been used to create
a commonly used clinical prediction model which is based on the linear predictor of the
Cox model. This predictor includes edema, log(bilirubin), age, log(prothrombin time) and
albumin. However, Krzeski et al. (2003) question the applicability of the ‘Mayo Model’
and argue that selecting a prognostic variable, such as serum bilirubin, as a marker is
more appropriate. We looked at a subgroup of the sample in this clinical trial, consisting
of women with no edema (n=318). Our model considered log(bilirubin) as a marker (Y ),
versus survival time (X), adjusted for age (z). The plot of log(bilirubin) versus time is
presented in Figure (2.3). Initially, we considered an AFT model of X on z. We fitted
both a GG and a Weibull regression AFT model. The likelihood ratio test suggested that
the Weibull regression model is adequate (LR=0.3459, p-value=0.5564). However, we
performed analyses using both the Weibull and the GG regression models.

First, we considered the simple model

Y = α0 + α1X + α2z + ϵ (2.23)
log(X|z) = ξ0 + ξ1z + σu.
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Table 2.4: Simulation results for 1000 repetitions for the linear case. Half of the censoring
is due to the cutpoint (end of study). The noise ϵ is from N(0, 1). The distribution of the
censored covariate was estimated using the HCNS method.

β0 β1
ρ Method Bias SE MSE Width Cover Bias SE MSE Width Cover

n = 300 :
CC -0.0039 0.1672 0.0280 0.6722 0.9570 0.0018 0.0729 0.0053 0.2943 0.9600

0.2 QS 0.0190 0.1301 0.0173 0.5074 0.9510 -0.0018 0.0443 0.0021 0.1674 0.9230
Unweighted 0.0193 0.1300 0.0173 0.5063 0.9520 -0.0110 0.0443 0.0021 0.1662 0.9280

CC 0.0078 0.1724 0.0298 0.6741 0.9440 -0.0023 0.0758 0.0057 0.2955 0.9460
0.3 QS 0.0367 0.1341 0.0193 0.5092 0.9270 -0.0186 0.0472 0.0026 0.1686 0.8950

30% Unweighted 0.0373 0.1339 0.0193 0.5047 0.9210 -0.0189 0.0472 0.0026 0.1651 0.8880
Censoring CC 0.0008 0.1675 0.0281 0.6713 0.9590 0.0012 0.0735 0.0054 0.2942 0.9530

0.5 QS 0.0617 0.1452 0.0249 0.5173 0.9030 -0.0321 0.0549 0.0040 0.1754 0.8270
Unweighted 0.0664 0.1464 0.0258 0.5051 0.8820 -0.0344 0.0588 0.0043 0.1654 0.7860

CC 0.0027 0.1694 0.0287 0.6717 0.9570 -0.0012 0.0742 0.0055 0.2942 0.9590
0.8 QS 0.1006 0.1810 0.0429 0.5547 0.8360 -0.0549 0.0786 0.0092 0.2059 0.7380

Unweighted 0.1413 0.2086 0.0635 0.5058 0.7140 -0.0762 0.0956 0.0149 0.1660 0.5220
CC 0.0067 0.2829 0.0801 1.1155 0.9510 -0.0071 0.2027 0.0411 0.7853 0.9450

0.2 QS 0.0476 0.1521 0.0254 0.5853 0.9240 -0.0403 0.0490 0.0040 0.1698 0.7540
Unweighted 0.0476 0.1520 0.0254 0.5867 0.9320 -0.0404 0.0489 0.0040 0.1687 0.7520

CC 0.0070 0.2815 0.0813 1.1215 0.9490 -0.0033 0.1981 0.0392 0.7887 0.9450
0.3 QS 0.0772 0.1617 0.0321 0.5924 0.8970 -0.0608 0.0618 0.0075 0.1742 0.6110

70% Unweighted 0.0775 0.1614 0.0321 0.5890 0.8960 -0.0609 0.0617 0.0075 0.1702 0.6020
Censoring CC -0.0034 0.2800 0.0784 1.1131 0.9570 0.0048 0.1990 0.0396 0.7832 0.9480

0.5 QS 0.1386 0.1742 0.0496 0.5989 0.7970 -0.1099 0.0870 0.0196 0.1835 0.4230
Unweighted 0.1411 0.1736 0.0501 0.5894 0.7970 -0.1111 0.0869 0.0199 0.1712 0.3920

CC -0.0051 0.2752 0.0758 1.1179 0.9570 0.0051 0.1922 0.0369 0.7858 0.9580
0.8 QS 0.3070 0.2537 0.1587 0.6280 0.5030 -0.2500 0.1707 0.0917 0.2266 0.2390

Unweighted 0.3229 0.2566 0.1701 0.5891 0.4580 -0.0026 0.1729 0.0975 0.1708 0.1670
n = 100 :

CC -0.0199 0.2900 0.0845 1.1835 0.9520 0.0090 0.1271 0.0162 0.5207 0.9600
0.2 QS 0.0254 0.2316 0.0543 0.8618 0.9250 -0.0156 0.0780 0.0063 0.2800 0.8970

Unweighted 0.0258 0.2315 0.0543 0.8606 0.9320 -0.0158 0.0779 0.0063 0.2776 0.8990
CC 0.0025 0.3021 0.0913 1.1871 0.9500 0.0019 0.1328 0.0176 0.5210 0.9410

0.3 QS -0.0220 0.0830 0.0074 0.8725 0.9240 0.0475 0.2374 0.0586 0.2865 0.8850
30% Unweighted 0.0485 0.2372 0.0586 0.8677 0.9220 -0.0225 0.0830 0.0074 0.2809 0.8770

Censoring CC 0.0046 0.2932 0.0862 1.1875 0.9590 -0.0007 0.1273 0.0162 0.5199 0.9550
0.5 QS 0.0838 0.2582 0.0737 0.8891 0.8840 -0.0429 0.0987 0.0116 0.2995 0.8110

Unweighted 0.0902 0.2591 0.0752 0.8696 0.8750 -0.0460 0.0999 0.0121 0.2815 0.7850
CC 0.0068 0.3003 0.0902 1.1858 0.9540 -0.0026 0.1304 0.0170 0.5196 0.9560

0.8 QS 0.1406 0.3406 0.1358 0.9576 0.8560 -0.0749 0.1516 0.0286 0.3538 0.7950
Unweighted 0.1993 0.3864 0.1890 0.8706 0.7620 -0.1056 0.1783 0.0429 0.2824 0.6140

CC -0.0075 0.4977 0.2477 2.0308 0.9510 0.0002 0.3519 0.1238 1.4331 0.9580
0.2 QS 0.0391 0.2659 0.0722 1.0214 0.9310 -0.0381 0.0895 0.0095 0.2993 0.7960

Unweighted 0.0393 0.2657 0.0722 1.0259 0.9380 -0.0381 0.0895 0.0095 0.2981 0.7980
CC 0.0062 0.5192 0.2696 2.0331 0.9560 -0.0030 0.3627 0.1316 1.4288 0.9510

0.3 QS 0.0756 0.2810 0.0847 1.0228 0.9040 -0.0573 0.1086 0.0151 0.3028 0.7000
70% Unweighted 0.0761 0.2801 0.0843 1.0297 0.9150 -0.0575 0.1083 0.0150 0.2994 0.7070

Censoring CC 0.0289 0.4999 0.2508 2.0411 0.9470 -0.0277 0.3514 0.1240 1.4365 0.9570
0.5 QS 0.1443 0.3003 0.1110 1.0381 0.8540 -0.1138 0.1435 0.0335 0.3147 0.5640

Unweighted 0.1470 0.2999 0.1116 1.0267 0.8530 -0.1147 0.1438 0.0388 0.2955 0.5300
CC -0.0030 0.5184 0.2687 2.0476 0.9500 0.0088 0.3660 0.1341 1.4426 0.9500

0.8 QS 0.3175 0.4190 0.2764 1.0940 0.6630 -0.2524 0.2806 0.1425 0.3900 0.4120
Unweighted 0.3344 0.4165 0.2853 1.0298 0.6340 -0.2611 0.2817 0.1476 0.2997 0.3360
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Table 2.5: Simulation when an additional fixed covariate is present. The true values
of the parameters β0, β1 and β2 are 5, 0.5 and 1 respectively. The time variable was
generated from a Cox model in which the baseline density (for Z = 0) was taken to be a
Weibull(2,3).

Method Parameter Bias SE MSE Width Asympt. Cover.
β0 -0.0093 0.2389 0.0572 0.9242 0.9441

CC β1 0.0056 0.1300 0.0169 0.5103 0.9500
30% β2 0.0069 0.2467 0.0609 0.9653 0.9500

Censoring β0 -0.0051 0.2315 0.0536 0.8872 0.9381
QS β1 0.0032 0.1227 0.0151 0.4763 0.9471

β2 -0.0005 0.2263 0.0512 0.8725 0.9491

β0 -0.0141 0.3380 0.1144 1.3424 0.9450
CC β1 0.0166 0.2108 0.0447 0.8504 0.9520

70% β2 0.0013 0.4322 0.1171 1.3351 0.9540

Censoring β0 0.0125 0.3087 0.0954 1.1860 0.9430
QS β1 -0.0035 0.1757 0.0309 0.6647 0.9340

β2 -0.0164 0.2550 0.0653 0.9641 0.9390

Table 2.6: Simulation results of 1000 repetitions in the case of binary data. Sample size
is n = 300, with 70% and 30% censoring, half of which is due to the cutpoint (end of
study), and the other half due to random censoring. The logit link function was used.
The real value of the intercept is log(9) so that P (Y = 1|X = 0) = 0.9.

β0 β1

β1 Method Bias SE MSE Width Cover Bias SE MSE Width Cover
-2 CC 0.0745 0.5345 0.2913 2.0374 0.9590 -0.0604 0.3427 0.1211 1.2845 0.9520

QS 0.0630 0.5194 0.2738 1.9818 0.9550 -0.0519 0.3284 0.1105 1.2262 0.9440

30% -3 CC 0.1512 0.7350 0.5631 2.7753 0.9600 -0.1737 0.6548 0.4589 2.4453 0.9580
Censoring QS 0.1432 0.7231 0.5434 2.7375 0.9610 -0.1630 0.6360 0.4310 2.3860 0.9550

-4 CC 0.2496 1.0366 1.1367 3.6842 0.9580 -0.3720 1.2126 1.6087 4.2440 0.9520
QS 0.2426 1.0319 1.1236 3.6528 0.9590 -0.3651 1.1952 1.5618 4.1730 0.9540

-2 CC 0.0968 0.7344 0.5487 2.7572 0.9520 -0.0808 0.5517 0.3108 2.0635 0.9560
QS -0.0257 0.5900 0.3488 2.2090 0.9330 0.0278 0.3981 0.1593 1.4114 0.9180

70% -3 CC 0.1697 0.8597 0.7679 3.2288 0.9590 -0.2026 0.8205 0.7143 3.0411 0.9550
Censoring QS 0.1345 0.7999 0.6579 2.9524 0.9460 -0.1593 0.7211 0.5454 2.6190 0.9530

-4 CC 0.2746 1.1970 1.5083 4.0398 0.9620 -0.4173 1.4667 2.3254 4.8295 0.9630
QS 0.2549 1.1500 1.3875 3.8829 0.9590 -0.3937 1.3763 2.0492 4.5006 0.9530

Table 2.7: Simulation results of 1000 repetitions in the case of count data. Sample size
is n = 300, with 70% and 30% censoring, half of which is due to the cutpoint (end of
study), and the other half due to random censoring. The log link function was used. The
real value of the intercept is 1 and the values of the slope were set to -1 and -1/3.

β0 β1
β1 Method Bias SE MSE Width Cover Bias SE MSE Width Cover
-1 CC -0.0317 0.3852 0.1494 1.4247 0.9340 -0.0115 0.2503 0.0628 0.9287 0.9380

30% QS -0.0345 0.3700 0.1381 1.3456 0.9250 -0.0068 0.2286 0.0523 0.8259 0.9250

Censoring -1/3 CC -0.0130 0.2583 0.0669 1.0016 0.9450 -0.0011 0.1295 0.0168 0.4952 0.9440
QS -0.0222 0.2164 0.0473 0.8523 0.9350 0.0090 0.0919 0.0085 0.3559 0.9250

-1 CC -0.0258 0.5031 0.2538 1.9022 0.9280 -0.0247 0.4365 0.1911 1.6478 0.9080
70% QS -0.0839 0.3963 0.1641 1.4788 0.8860 0.0518 0.2632 0.0719 0.9485 0.8550

Censoring -1/3 CC -0.0416 0.3981 0.1602 1.5102 0.9360 0.0136 0.2924 0.0857 1.1263 0.9440
QS -0.0294 0.2347 0.0559 0.9552 0.7190 0.0370 0.1065 0.0127 0.4161 0.6990
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The proposed method based on OF optimality yielded smaller standard errors for all
three coefficients compared to the CC analysis. The results for this model are presented
in Appendix A (Tables 6 and 7).

Next, we fitted a brokenline type model

Y = β0 + β
(1)
1 (X − τ∗)− + β

(2)
1 (X − τ∗)+ + β2z + ϵ (2.24)

log(X|z) = ξ0 + ξ1z + σu

where ϵ ∼ (0, τ2), x+ = xI(x ≥ 0), x− = xI(x < 0) and τ∗ is some time point (change-
point). We obtained an estimate of the changepoint τ∗ using the algorithm presented
in Kuchenhoff (1997). Although the estimate obtained was τ̂∗ = 86.6 we considered it
fixed at 84 months (7 years) for illustrative purposes. We performed analyses using the
following methods: CC, QS(Weib), Un(Weib), QS(GG) and Un(GG) and the results are
presented in Table 2.8. In the same table we also include results that correspond to the
optimal QS approach and the Unweighted approach when the HCNS technique is con-
sidered for the covariate (QS(HCNS) and Un(HCNS) respectively). Note that the estimate
of the dispersion parameter τ̂ = 0.91 was provided from the CC analysis. The p−value of
the covariate of age in the underlying Cox model when using the HCNS approach equals
to 0.0014, indicating that the age is a significant predictor for the time to event variable.
We computed 95% CI’s using both the asymptotic covariance matrix and the bootstrap.
For each bootstrap sample we fitted the underlying AFT model for the methods QS(Weib),
Un(Weib), QS(GG) and Un(GG). For the methods QS(HCNS) and Un(HCNS) we considered
fitting the HCNS spline approach for each bootstrap sample.

To compare the brokenline type versus the linear model we tested H0 : β
(1)
1 −β

(2)
1 = 0

using 1000 bootstrap samples. The 95% CI for the difference β
(1)
1 − β

(2)
1 using QS(Weib)

and QS(GG) were (-0.0234, -0.0065) and (-0.0230, -0.0054) respectively, indicating that
model (2.24) is more appropriate than the simpler one in (2.23). The spline based
QS(HCNS) yielded similar results for this difference as well, i.e. (-0.0233, -0.0042).

The results showed smaller standard errors for the estimates of our methods when
compared to the CC analysis. The Unweighted method provided estimates similar to the
QS method in both the linear and the brokenline type model. The asymptotic CI’s were
fairly similar to the ones obtained by the resampling technique. For both the QS and
the Unweighted method a small increase in the SE’s was observed as we moved from the
Weibull to the GG model. When using the HCNS technique for the covariate we observe
that we obtain similar results as when using the GG model.

The model in (2.24) reduces to the so called hockey stick model when β
(2)
1 = 0. The

hockey stick model belongs to the family of models presented in Cai et al. (2006), where
they discuss a modeling approach to address the accuracy of a time dependent biomarker.
Their approach considers sensitivity and specificity as functions of time between the
measurement and the event. A suitably chosen distant time point (changepoint) is used
to distinguish the control group from the cases. Subjects that experience the event prior
to that time point are considered as cases. Under this modeling approach the marker
values for the control group are independent of survival time, given the covariates in the
model.

We note that when using the CC method we cannot reject the hypothesis that β(2)
1 = 0,

that corresponds to the hockey stick model, whereas the same hypothesis is rejected
when using our methods. A major difference here between ignoring the censoring (CC) or
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Figure 2.3: Left: Scatter plot for the pbc data of the marker log(bilirubin) vs. time to
event for women with no edema (n=318). Right: Fitted brokenline models for the age
of 50 based on the CC, the proposed method with a Weibull model for the covariate
(QS(Weib)), and the proposed method with a GG model for the covariate (QS(GG)).

taking it into account by our methods concerns the interpretation and use of the resulting
models. The CC analysis implies a model that can be used to evaluate the accuracy of
time dependent biomarkers as discussed in Cai et al. (2006). On the other hand, our
approach implies that the second linear segment (after the changepoint) has a negative
slope. A clear framework does not yet exist for assessing the accuracy of the biomarker
in this type of setting.

2.6 Discussion

In this chapter we study the problem of estimating the parameters of a generalized linear
model when a covariate is censored. We propose a quasi score based method that requires
no parametric assumptions for the distribution of the response and is computationally
simple. One setting in which the proposed methodology may be applied, is when dealing
with modeling a time dependent biomarker. There the marker value plays the role of
the response and the time to event, which is subject to censoring, is a covariate (Cai et
al. (2006)). The methods presented here differ from the Expected Estimating Equations
(EEE) approach in Wang and Pepe (2000) and the regression calibration (RC) technique
(see Carroll and Stefanski (1990)), which address measurement error in the covariates.
Our approach can be thought of as a compromise between the EEE, where the expectation
of the estimating equation given the data is considered, and the RC method, where
E(Xi|∆i) is simply plugged in for censored covariate values. Apart from the method
based on the optimal estimating function, we presented the computationally simpler
Unweighted method.

Simulation studies showed good performance, for various scenarios. In some cases,
the use of the percentile bootstrap technique is recommended in order to derive confi-
dence intervals. In the linear case, the simulations showed fairly similar results between
the suboptimal Unweighted method and the optimal one. In the case of binary and
count data we presented simulation results only for the optimal method since for the
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Table 2.8: Estimates of the coefficients of the brokenline type model for the PBC data.
Method Parameter Est. Asympt. SE Asympt. CI 95% Bootstrap CI 95%

β0 1.4778 0.5571 0.3720 2.5836 – –
β
(1)
1 -0.0187 0.0041 -0.0267 -0.0106 – –

CC β
(2)
1 0.0066 0.0104 -0.0141 0.0274 – –
β2 -0.0212 0.0100 -0.0411 -0.0013 – –

β0 1.9418 0.4368 1.0856 2.7980 1.2003 2.6052
β
(1)
1 -0.0179 0.0033 -0.0245 -0.0114 -0.0249 -0.0114

QS(Weib) β
(2)
1 -0.0030 0.0011 -0.0052 -0.0008 -0.0055 -0.0008
β2 -0.0291 0.0068 -0.0424 -0.0158 -0.0400 -0.0170

β0 1.9700 0.4577 1.0729 2.8671 1.2037 2.6320
β
(1)
1 -0.0184 0.0033 -0.0249 -0.0118 -0.0249 -0.0115

QS(GG) β
(2)
1 -0.0044 0.0018 -0.0079 -0.0009 -0.0076 -0.0008
β2 -0.0301 0.0070 -0.0439 -0.0163 -0.0405 -0.0179

β0 1.9038 0.4379 1.0455 2.7621 1.2144 2.5911
β
(1)
1 -0.0181 0.0033 -0.0246 -0.0116 -0.0251 -0.0110

QS(HCNS) β
(2)
1 -0.0039 0.0016 -0.0070 -0.0009 -0.0090 -0.0011
β2 -0.0286 0.0068 -0.0419 -0.0152 -0.0393 -0.0171

β0 1.9864 0.4380 1.1279 2.8450 1.2150 2.6662
β
(1)
1 -0.0180 0.0033 -0.0245 -0.0114 -0.0249 -0.0115

Un(Weib) β
(2)
1 -0.0030 0.0011 -0.0052 -0.0007 -0.0056 -0.0009
β2 -0.0299 0.0068 -0.0433 -0.0166 -0.0418 -0.0179

β0 1.9996 0.4580 1.1018 2.8973 1.2349 2.7065
β
(1)
1 -0.0184 0.0033 -0.0249 -0.0118 -0.0250 -0.0116

Un(GG) β
(2)
1 -0.0044 0.0018 -0.0079 -0.0009 -0.0076 -0.0008
β2 -0.0307 0.0070 -0.0445 -0.0168 -0.0416 -0.0183

β0 1.9530 0.4379 1.0948 2.8113 1.1865 2.6081
β
(1)
1 -0.0182 0.0033 -0.0247 -0.0117 -0.0248 -0.0114

Un(HCNS) β
(2)
1 -0.0039 0.0016 -0.0069 -0.0009 -0.0088 -0.0012
β2 -0.0295 0.0068 -0.0429 -0.0162 -0.0407 -0.0171
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Unweighted method we observed very slow convergence of the Fisher Scoring algorithm.
The extension of the proposed method to accommodate interval censoring is straight-

forward, when the data include a number of fully observed values of the covariate. When
all data are interval censored, as in the setting discussed by Gomez et al. (2003), some
aspects need further study, in particular regarding the estimation of the dispersion pa-
rameter τ . Due to the presence of censoring a kind of a parametric model for the covariate
is needed for the method to be applicable. The presented approach can be straightfor-
wardly generalized in the case of left censoring. In this case the difference would be that
the expectations required would be conditioned on Xi < ti instead of Xi > ti. Left trun-
cation could be also accommodated if the parametric model assumed for the regressor is
properly adjusted.

In this chapter, we explored fitting the flexible generalized gamma AFT model to the
time to event covariate as well as a new spline based approach. We investigated the fit
of a natural non-decreasing spline to smooth the Kaplan Meier based cumulative hazard
of the censored covariate. The constraints derived through a linear approximation of
a non linear region that defines the necessary and sufficient condition of monotonicity.
Thus, the spline fitting problem reduces to a restricted least squares one, with linear
restrictions on the parameters. The problem is always convex and the method can be
applied in the presence of small sample sizes and/or heavy censoring. In the case of
additional covariates our method is easily generalizable, under the proportional hazard
assumption, and computationally stable. This is due to the convex linear optimization
that the proposed methodology is based on.

Another important generalization which will be discussed in the next chapter is the
case when multiple measurements are taken repeatedly on each subject, until the time of
event or censoring. This last setting would appear to be the ideal one in which to consider
joint modeling for both, marker values and survival, an approach that is potentially more
informative. A good source of references on relevant work is given in Lawless (2003). In
particular the model with additional covariates presented in Section 2.2.3 is consistent
with the modeling approach concerning marker processes discussed in Cox (1999).

2.7 Technical Notes

2.7.1 Proof of Theorem 1

First, note that

µc
i = E(Yi|Ti,∆i) = EXi|Ti,∆i

{E(Yi|Ti,∆i, Xi)} = EXi|Ti,∆i

{
g−1(x′

iβ)
}

and

V ar(Yi|Ti,∆i) = EXi|Ti,∆i
{V ar(Yi|Ti,∆i, Xi)}+ V arXi|Ti,∆i

{E(Yi|Ti,∆i, Xi)}
= τ2EXi|Ti,∆i

{
v(g−1(x′

iβ))
}
+ V arXi|Ti,∆i

{
g−1(x′

iβ)
}
.

The estimating functions are unbiased since

E {A(β)(Y − µc)} = E [E {A(β)(Y − µc)|T,∆}] = E {A(β)E(Y − µc|T,∆)} = 0.
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We also have

E(Ġ) = E
{
Ȧ(β)(Ip ⊗ (y − µc)′)′ −A(β)µ̇c

}
= E

[
E
{
Ȧ(β)(Ip ⊗ (y − µc)′)′ −A(β)µ̇c|T,∆

}]
= −E

{
A(β)µ̇c

}
.

If we denote the error vector by e = Y − µc then we derive

E(GG∗′) = E
[
E
{
A(β)ee′A∗′(β)

}
|T,∆

]
= E

{
A(β)W−1A∗′(β)

}
.

Thus, (EĠ)−1E(GG∗′) is a constant matrix if A∗′(β) = A∗′ = Wµ̇c. So the optimal
estimating function is G∗ = µ̇c′W(Y − µc) and can be written as

G∗ =

n∑
i=1

{(
yi − E(Yi|Ti,∆i)

V ar(Yi|Ti,∆i)

)(
dE(Yi|Ti,∆i)

dβ

)}
,

from which the result in (2.8) is straightforward. This completes the proof.

2.7.2 Optimal points of approximation for the region of monotonicity

We use Smith’s algorithm (1970) to derive optimal polygons within the region of mono-
tonicity. Let n be any even number greater or equal to 4. Consider the set φ(n) of
incremented angles from 0 to 2π by 2π

n . Thus, φ(n) is the set

φ(n) =

{
0,

2π

n
,
4π

n
,
6π

n
,
8π

n
, , . . . , 2π

}
.

Obviously φ(n) ⊂ φ(kn), ∀k integer. Smith’s algorithm is based on the calculation of
sines and cosines of the incremented quantity, φ, to obtain the optimal approximation
(in terms of the inscribed area) of an ellipse, given a fixed number of points. By applying
Smith’s algorithm to derive the optimal 12−gon within the ellipse under study, ϕ(a, b),
we notice that the points (3,0), (0,3) and (3,3) are included in the set of the twelve points.
Thus, these points will be included in every 12k−gon, k = 1, 2, . . .

For the optimal 12−gon we also notice that three points need to be discarded since
they are under the line b−a+3 = 0. Note that for every pair of angles in φ, an extra angle
is placed between them if k is increased by 1. In effect, as we move from k to k+1, we get
additional points, each one lying between two consecutive points obtained in the previous
approximation. Thus, for the optimal 12k−gon we should discard 4k − 1 points due to
the fact that they are under the line b− a+ 3 = 0, and insert the point (0,0) instead. So
finally, through Smith’s algorithm, we can instantly derive the optimal inscribed polygon
within the region of monotonicity, M, defined by the 12k − (4k − 1) + 1 = 8k + 2 points
of approximation.
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2.7.3 Constraints for capturing region A

We consider the derivation of the constraints given in (2.16). Suppose that we have 6
knots i.e. K = 6. For model (2.14) we can derive the following:

H(τ1) = 0
H(τ2) = θ1(τ2 − τ1)

3

H(τ3) = θ1(τ3 − τ1)
3 + θ2(τ3 − τ2)

3

H(τ4) = θ1(τ4 − τ1)
3 + θ2(τ4 − τ2)

3 + θ3(τ4 − τ3)
3

H(τ5) = θ1(τ5 − τ1)
3 + β2(τ5 − τ2)

3 + β3(τ5 − τ3)
3 + β4(τ5 − τ4)

3

H(τ6) = θ1(τ6 − τ1)
3 + β2(τ6 − τ2)

3 + β3(τ6 − τ3)
3 + β4(τ6 − τ4)

3 + θ5(τ6 − τ5)
3

Also for the derivatives of the model at the knots we have:

H ′(τ1) = 0
H ′(τ2) = 3θ1(τ2 − τ1)

2

H ′(τ3) = 3θ1(τ3 − τ1)
2 + 3θ2(τ3 − τ2)

2

H ′(τ4) = 3θ1(τ4 − τ1)
2 + 3θ2(τ4 − τ2)

2 + 3θ3(τ4 − τ3)
2

H ′(τ5) = 3θ1(τ5 − τ1)
2 + 3θ2(τ5 − τ2)

2 + 3θ3(τ5 − τ3)
2 + 3θ4(τ5 − τ4)

2

H ′(τ6) = 3θ1(τ6 − τ1)
2 + 3θ2(τ6 − τ2)

2 + 3θ3(τ6 − τ3)
2 + 3θ4(τ6 − τ4)

2 + 3θ5(τ6 − τ5)
2

Consider the region of approximation A that is defined by a decahexagon inscribed
in region M (thus Q = 14). Each of the Q line segments will lead to Q line equations of
the form:

gi = gi(a, b) = b+ ξ
(i)
1 a+ ξ

(i)
0 = 0, i = 1, . . . , Q

For a point (aj , bj) and following the notation of section 2.4.1.3 we require

vigi(aj , bj) ≤ 0, i = 1, 2, . . . , Q (2.25)

Note that (2.25) can be written as

vi

[
H ′(τj+1) + ξ

(i)
1 H ′(τj) + ξ

(i)
0

H(τj+1)−H(τj)

τj+1 − τj

]
≤ 0 (2.26)

Thus, for the interval [τ1, τ2], using formula (2.26) we derive for the gi:

gi(aj , bj) = θ1(3(τ2 − τ1)
2 + ξ

(i)
0 (τ2 − τ1)

2), i = 1, . . . , 14.

For the interval [τ2, τ3] :

gi(aj , bj) = θ1[3(τ3 − τ1)
2 + 3ξ

(i)
1 (τ2 − τ1)

2 + ξ
(i)
0

(τ3 − τ1)
3 − (τ2 − τ1)

3

τ3 − τ2
]+

θ2[3(τ3 − τ2)
2 + ξ

(i)
0 (τ3 − τ2)

2], i = 1, ..., 14

For [τ3, τ4]
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gi(aj , bj) = θ1[3(τ4 − τ1)
2 + 3ξ

(i)
1 (τ3 − τ1)

2 + ξ
(i)
0

(τ4 − τ1)
3 − (τ3 − τ1)

3

τ4 − τ3
]+

θ2[3(τ4 − τ2)
2 + 3ξ

(i)
1 (τ3 − τ2)

2 + ξ
(i)
0

(τ4 − τ2)
3 − (τ3 − τ2)

3

τ4 − τ3
]+

θ3[3(τ4 − τ3)
2 + ξ

(i)
0 (τ4 − τ3)

2] i = 1, ..., 14

For [τ4, τ5]

gi(aj , bj) = θ1[3(τ5 − τ1)
2 + 3ξ

(i)
1 (τ4 − τ1)

2 + ξ
(i)
0

(τ5 − τ1)
3 − (τ4 − τ1)

3

τ5 − τ4
]+

θ2[3(τ5 − τ2)
2 + 3ξ

(i)
1 (τ4 − τ2)

2 + ξ
(i)
0

(τ5 − τ2)
3 − (τ4 − τ2)

3

τ5 − τ4
]+

θ3[3(τ5 − τ3)
2 + 3ξ

(i)
1 (τ4 − τ3)

2 + ξ
(i)
0

(τ5 − τ3)
3 − (τ4 − τ3)

3

τ5 − τ4
]+

θ4[3(τ5 − τ4)
2 + ξ

(i)
0 (τ5 − τ4)

2] i = 1, ..., 14

For [τ5, τ6]

θ1[3(τ6 − τ1)
2 + 3ξ

(i)
1 (τ5 − τ1)

2 + ξ
(i)
0

(τ6 − τ1)
3 − (τ5 − τ1)

3

τ6 − τ5
]+

θ2[3(τ6 − τ2)
2 + 3ξ

(i)
1 (τ5 − τ2)

2 + ξ
(i)
0

(τ6 − τ2)
3 − (τ5 − τ2)

3

τ6 − τ5
]+

θ3[3(τ6 − τ3)
2 + 3ξ

(i)
1 (τ5 − τ3)

2 + ξ
(i)
0

(τ6 − τ3)
3 − (τ5 − τ3)

3

τ6 − τ5
]+

θ4[3(τ6 − τ4)
2 + 3ξ

(i)
1 (τ5 − τ4)

2 + ξ
(i)
0

(τ6 − τ4)
3 − (τ5 − τ4)

3

τ6 − τ5
]+

θ5[3(τ6 − τ5)
2 + ξ

(i)
0 (τ6 − τ5)

2] i = 1, ..., 14

Thus, it is easy to show that for an interval [τj , τj+1] the constraints required to
capture region A are of the form (2.16).
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Chapter 3

Generalized Linear Models with a
censored covariate for longitudinal
data

In many longitudinal clinical studies interest lies in modeling marker values that are
repeatedly taken on subjects. These marker values may depend on the time to event
variable (among others). For example in prostate cancer studies we are interested in
relating the PSA (prostate specific antigen) with the time to relapse. Studies regarding HIV
(human immunodeficiency virus) patients may also attempt to investigate the relationship
between CD4 cell count and time to death. Another example studied in Schluchter et
al. (2002) that focused on cystic fibrosis patients, explores the association between
pulmonary function and time to death. They use a standard joint model (also known
as shared parameter model) which involves two stages. The first stage specifies the
distributions of the subject specific characteristics (or random effects). The second stage
involves assumptions regarding the distributions of the longitudinal measurements and
the time to event variable given the subject specific effects. For detailed overviews of
this modeling approach see Tsiatis and Davidian (2004), Yu et al. (2004). Under the
joint model framework, Rizopoulos (2011) discusses estimation of survival probabilities
as well as the assessment of the discriminatory capability of a longitudinal marker by
appropriately defining sensitivity and specificity followed by ROC analysis.

In this Chapter we follow an estimating function approach considering marginal mod-
els. We present an extension of the method introduced in Chapter 2, under the longi-
tudinal framework. When repeated measurements are taken on each subject correlation
must be taken into account. In Chapter 2, our approach assumed parametric models
for the censored covariate. Here, we relax strict parametric assumptions by employing
monotone natural cubic splines for the survival function of the censored covariate. No
assumptions are made for the parametric form of the joint distribution of the repeated
measurements. We do not specify any parametric form of the conditional distribution
of the response given the subject specific effects even though such a modeling approach
may be more appropriate in some settings. In this Chapter our primary focus is to make
inferences about the population means. We also discuss other computationally simpler
approaches and comparisons are made via simulations. We contrast our approach with
common linear mixed models and the joint modeling approach.

55
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This Chapter is organized as follows: In Section 3.1 we briefly recall the joint modeling
approach and we refer to the linear model. In Sections 3.2 and 3.3 we present the
proposed approach and discuss some of the most commonly used link functions as well
as the assumptions imposed for the censored covariate. In section 3.4 we discuss the
way additional fully observed covariates can be accommodated under semiparametric
assumptions. In Section 3.5 we present a real data application and we conclude with a
discussion in which we contrast our approach with mixed models.

3.1 Joint Modeling Approach for the Linear Mixed Effect Model

Consider the marker measurements Yij = Yi(sij) for subject i taken at the time points
sij , with j = 1, . . . , ni and i = 1, . . . , n. Denote with Xi the time to event variable and Ci

the censoring variable. We only observe a censored version of the time to event variable,
let Ti = min(Xi, Ci). A status indicator ∆i = I(Xi < Ci) is also available, taking the
value 1 for an event and 0 otherwise. A usual choice it to employ a relative risk model to
associate the true response mi(t) with the risk of an event (see also Rizopoulos (2011)).

hi(t|Mi(t)) = h0(t)exp(αmi(t)), (3.1)

where Mi(t) = {mi(u), 0 ≤ u < t} is the history of the true longitudinal process
until time t and h0 is the baseline hazard rate that may be completely unspecified. Even
though additional covariates can be straightforwardly accommodated, we do not consider
them here for simplicity. The linear mixed effect model assumed is of the form:

yi(t) = mi(t) + ϵi(t) (3.2)
= x′

i(t)β + z∗
′

i (t)bi + ϵi(t), ϵi(t) ∼ N(0, σ2),

where β, bi are the vectors of fixed and random effects respectively, and xi(t), z∗i (t)
are the row vectors of the corresponding design matrices for the fixed and random effects.
The measurement error ϵ is assumed to be normally distributed. The random effects bi

are assumed to be independent of ϵi(t) and to follow a multivariate normal distribution
with some covariance matrix and zero mean. Maximum likelihood estimators can then
be derived by assuming a joint distribution for the available data Ti, δi, yi. Under the as-
sumption that the repeated measurements of the response are conditionally independent
from the time to event variable, given the subject specific effects we have:

f(Ti, δi, yi|bi;θ) = f(Ti, δi|bi;θ)f(yi|bi;θ) (3.3)

f(yi|bi;θ) =
∏
j

f(yi(sij)|bi;θ) (3.4)

where θ is the parameter vector. The contribution of the i−th subject to the log-
likelihood is given by

logf(Ti, δi, yi;θ) = log

∫
f(Ti, δi|bi;θ)

∏
j

f(yi(sij)|bi;θ)f(bi; θ)dbi (3.5)
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where for the survival function we have

Si(t|Mi(t)) = P (X > t|Mi(t)) = exp

(
−
∫ t

0
hi(s|Mi(s);θ)ds

)
. (3.6)

Computational issues may arise during maximization of the above log-likelihood func-
tion since the integrals in (3.6) and (3.5) do not generally have a closed form solution.
For illustration purposes, consider the special case where bi = [b0i, b1i], all data are fully
observed, and h0(t) is constant, h0(t) = λ, that is the baseline hazard rate correspond to
an exponential distribution, then the survival function in (3.6) is tractable we derive

Si(t|b0i, b1i) = exp

(
−
∫ t

0
h0(s)e

ami(s)ds

)
(3.7)

= exp

(
−
∫ t

0
λea[(β0+b0i)+(β1+b1i)s]ds

)
= exp

(
−λea(β0+b0i)

eat(β1+b1i) − 1

a(β1 + b1i)

)

and

f(t|b0i, b1i) =
(
λea[(β0+b0i)+(β1+b1i)t]

)
exp

(
−λea(β0+b0i)

eat(β1+b1i) − 1

a(β1 + b1i)

)
. (3.8)

If for the i−th subject θ∗ = λea(β0+b0) > 0 and a∗ = a(b1+β1) > 0 then (3.7) and (3.8)
correspond to the Gompertz distribution with density function

f(x) = θ∗ea
∗xexp

(
θ∗

α∗ (1− ea
∗x)

)
, x ≥ 0.

Numerical procedures have to be employed for the maximization of the log-likelihood
and the evaluation of its integrals. Even then, the approach is not computationally stable
and convergence is not guaranteed.

3.2 Marginal Models in the Presence of a Censored Covariate

We propose a population based modeling approach. We are interested in estimating the
parameters of a generalized linear model (GLM) when longitudinal data are available and
one covariate suffers from censoring. We assume that the other, fully observed covariates,
that may be available refer only to baseline measurements and are not longitudinal
in nature. We denote the time lag exists between the marker measurement and the
occurence of the event by X∗

ij = Xi − sij > 0. It is expected that marker measurements
taken closer to the time of the occurence of the event would be higher (if higher marker
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values are more indicative of the disease). For a detailed discussion about such a setting
see Cai et al. (2006). Consider the GLM of the form

E(Yij |X∗
ij = x∗ij , zi) = µij

g(µij) = [x∗′
ij , z

′
i]
′[β0, β1,β

′
2]

′

V ar(Yij |X∗
ij = x∗ij , zi) = τ2v(µij); i = 1, . . . , N, j = 1, . . . , ni

where g(·) is the link function, β0 is the intercept, β1 is the coefficient of the censored
covariate, β2 is the vector of coefficients corresponding to the fully observed covariates,
the vector x∗

ij = [1, x∗ij ]
′ refers to the covariate values that may be censored, the vector

z
′
i = [zi1, . . . , zi,p−1] refers to the fully observed covariate values, v(µi) is the variance

function and τ2 is the dispersion parameter (McCullogh and Searle (2001)). The within
subject association is denotes as ρjk. Assuming that there are K subjects in total, and
each one exhibits ni measurements, i = 1, . . . ,K, then model (3.9) in vector form can be
written as

E(Y|X) = µ, g(µ) = Xβ, Var(Y|X) = τ2V(µ), (3.9)

where Y = [y11, . . . , y1n1 , y21, . . . , y2n2 , . . . , yK1, . . . , yKnK
]′, X = [(x∗′

1 , z
′
1), . . . , (x

∗′
n , z

′
n)]

′,
β = [β0, β1,β

′
2]

′
, µ = [µ11, . . . , µKnK

]′, g(µ) = [g(µ11), . . . , g(µKnK
)]′ and for the vari-

ance we have that V = V(µ) which would be a symmetric positive-definite block diagonal
matrix of known functions with number of rows and columns equal to N =

∑K
i ni.

The available data are of the form

{Y,T,∆,Z} =



y11 t1 s11 δ1 z1,1 . . . zp−1,1
...

...
...

... . . .
...

y1n1 t1 s1n1 δ1 z1,1 . . . zp−1,1

y21 t1 s21 δ2 z1,2 . . . zp−1,2
...

...
...

... . . .
...

y2n2 t2 s2n2 δ2 z1,2 . . . zp−1,2
...

...
...

... . . .
...

yK1 tK sKn1 δK z1,K . . . zp−1,K
...

...
...

... . . .
...

yKnK
tK sKnK

δK z1,K . . . zp−1,K



, (3.10)

where ti = min(xi, ci), ci is censoring time for the i−th subject and δi = I(xi<ci), where
I(A) denotes the indicator function of the event A. We denote with t∗ij is the censored time
lag, namely, t∗ij = ti − sij .

3.3 Estimating Function Approach

Here, we extend the approach developed in Chapter 2 when repeated measurements are
available. We consider employing the estimating equations

G∗ = µ̇c′W(Y − µc) (3.11)
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where the i, j − th row of µc is µc
ij = EXi|Ti,∆i

{
g−1(x∗′

ijβ)
}
. We assume that the

unconditional variance of the response is finite and E
{
µ̇c′Wµ̇c

}
is nonsingular, where

W−1 = V.
In the case where there is no censoring these estimating function (3.11) reduces to the

usual estimating function employed in generalized linear models dealing with longitudinal
models under the marginal approach presented in Fitzmaurice et al. (2004). That is, the
well known approach of Generalized Estimating Equations (GEE). A computationally
easier alternative is to consider the Unweighted estimating function GUn = µ̇c′(Y−µc).
In practice, for solving G∗ = 0, estimates for the dispersion parameter and the correlation
parameter(s) are required. The CC approach can provide consistent estimates for both
the correlation and the dispersion parameters. Given these estimates one can proceed
by using the Fisher Scoring algorithm to solve the proposed quasi score (QS) estimating
equations:

β̂(m+1) = β̂(m) +
(
µ̇c′

(m)W(m)µ̇c
(m)

)−1
A∗

(m)(Y − µc
(m)).

One can use β(CC), that is the obtained estimate of the CC approach, as initial
estimate values of parameter vector β for the above iterative procedure.

3.3.1 Examples of commonly used link functions

Here we present some examples of three commonly used link functions, that is the iden-
tity, the logit and the log. We show the form of the QS estimating functions and discuss
what assumptions are trivially satisfied due to the nature of the data.

Identity link function for continuous data:

In this case we consider a simple regression setting relating the response to the time
lag. We have

µc
ij(β) = E(Yij |Ti,∆i) =

{
β0 + β1(ti − sij), if ∆i = 1
β0 + β1(E(Xi|Xi > ti)− sij), if ∆i = 0.

For the variance and covariance we derive:

V ar(Yij |Ti,∆i) =

{
τ2 if ∆i = 1
β2
1V ar(Xi|Xi > ti) + τ2, if ∆i = 0

and

Cov(Yij , Yik|Ti,∆i) =

{
ρτ2 if ∆i = 1
β2
1V ar(Xi|Xi > ti) + ρτ2, if ∆i = 0.

Thus in this case, the matrix µ̇c is an (N =
∑K

i=1 ni) ×2 matrix with its first column
equal to 1N . The elements of the second column equal to t∗ij = ti−sij when the covariate
is observed and E(X∗

i |Xi > ti) = E(Xi|Xi > ti) − sij when censoring occurs. Let A be
equal to the (N×N) diagonal matrix diag{τ2}Ni=1. Let also R be the block diagonal matrix
R = diag{R1,R2, . . . ,RK} where Ri is the correlation matrix of the measurements of
the i−th subject. Hence, matrix V in this case turns out to be
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V = A
1
2RA

1
2 +C

where C = diag{C1,C2, . . . ,CK} with Ci = β2
1V ar(Xi|Ti,∆i) × Jni . Note that if

we consider that all correlations are equal to ρ then Ri = ρJni . We note that in the
identity link case, our approach simply reduces to mean imputation of the censored co-
variate. Then the appropriate weights, that is matrix W = V−1, are calculated. Finally,
to solve the corresponding estimating equations an estimate of τ2 and ρ are needed, and
in practice can be obtained by the CC approach. The assumption that the unconditional
variance of the response is finite is satisfied in this case if E(X2

i ) < ∞. Note that matrix
V is similar to the corresponding matrix used in the common setting of no censoring (see
Fitzmaurice et al. (2004)), only now the correction C is added.

Binary data with the logit link function:

In the case of binary data and when the logit link is employed we derive

µc
ij(β) = E(Yij |Ti,∆i) =


exp(β0+β1(ti−sij))

1+exp(β0+β1(ti−sij))
, if ∆i = 1

E
(

exp(β0+β1(Xi−sij))
1+exp(β0+β1(Xi−sij))

|Xi > ti

)
, if ∆i = 0

where E(Yij |Ti,∆i) = P (Yij = 1|Ti,∆i) and it can be shown that

V ar(Yij |Ti,∆i) = µc
ij(β)(1− µc

ij(β)).

For the covariance we have

Cov(Yij , Yik|Ti,∆i) = E(Yij , Yik|Ti,∆i)− E(Yij |Ti,∆i)E(Yik|Ti,∆i)

= P (Yij = 1, Yik = 1|Ti,∆i)− P (Yij = 1|Ti,∆i)P (Yik = 1|Ti,∆i)

The within subject association is defined through the log odds ratio. Under the
unstructured pairwise log odds ratio pattern we have

γijk = log(OR(Yij , Yik|Ti,∆i)) = log

(
P (Yij = 1, Yik = 1|Ti,∆i)P (Yj = 0, Yk = 0|Ti,∆i)

P (Yj = 1, Yk = 0|Ti,∆i)P (Yj = 0, Yk = 1|Ti,∆i)

)
.

Following the ideas of Diggle (1992) and Carey et al. (1993) it is easy to show that

logit(P (Yij = 1|Yik = yik, Ti,∆i)) = γijkyik + wijk (3.12)

where

wijk = log

(
P (Yij = 1|Ti,∆i)− P (Yij = 1, Yik = 1|Ti,∆i)

1− P (Yij = 1|Ti,∆i)− P (Yik = 1|Ti,∆i) + P (Yij = 1, Yik = 1|Ti,∆i

)
.

In the simplest case we may assume that γijk = α. Thus, α is considered simply as a
regression coefficient in a logistic regression model where Yik plays the role of a covariate
and wijk is considered as an offset. Note that given the probabilities P (Yij = yij |Ti,∆i),
yij = 0, 1 and the value of the OR = exp(γijk), then one can obtain the probabilities of
the form P (Yij = yij , Yik = yik|Ti,∆i), yij = 0, 1, yijk = 0, 1. As in Carey et al. (1993) the
estimation procedure iterates between the following two steps:
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• Step 1: In the r−th iteration, given the estimates of α̂(r) and β̂(r), evaluate the
offset wijk and obtain α̂(r+1) through (3.12).

• Step 2: Given α̂(r+1) and β̂(r) one can obtain the probabilities P (Yij = 1, Yik =
1|Ti,∆i), P (Yij = 1|Ti,∆i), and P (Yik = 1|Ti,∆i) and hence Cov(Yij , Yik|Ti,∆i).
Thus, one can solve the proposed estimating equations obtained by (3.11) to derive
the updated estimate β̂(r+1).

In the more general setting one may assume that γijk = αr
′
ijk where r

′
ijk is a known

vector of pair specific covariates which specify the form of the association of Yij and
Yik. For example, rijk might involve indicators that inform us about the relation of the
subjects within clusters, such as husband-wife, parent-child etc (see Carey et al. (1993)).

We note that the design matrix µ̇c is an (
∑

ni × 2) matrix with the first element
of the i, j−th row equal to exp(β0+β1(ti−sij))

{1+exp(β0+β1(ti−sij))}2
when the covariate is observed exactly

and E
(

exp(β0+β1(Xi−sij))

{1+exp(β0+β1(Xi−sij))}2
|Xi > ti

)
when the covariate is right censored. The second

element of i, j−th row equals to (ti−sij)exp(β0+β1(ti−sij))

{1+exp(β0+β1(ti−sij))}2
when the covariate is observed ex-

actly and E
(
(Xi − sij)

exp(β0+β1(Xi−sij))

{1+exp(β0+β1(Xi−sij))}2
|Xi > ti

)
when right censoring occurs. Due

to the binary nature of the data, the unconditional variance of the response is always
finite, that is V ar(Yij) < ∞.

Count data with the log link function:

In the case of count data and when the log link is employed we have

µc
ij = E(Yij |Ti,∆i) =

{
exp(β0 + β1(ti − sij)), if ∆i = 1
E {exp(β0 + β1(Xi − sij))|Xi > ti} , if ∆i = 0.

Based on the usual mean to variance relationship the conditional variance given the
time to event or censoring can be written as

V ar(Yij |Ti,∆i) =

{
τ2µij(β), if ∆i = 1
τ2E {µij(β)|Xi > ti}+ V ar {µij(β)|Xi > ti} , if ∆i = 0.

If we denote µij = E(Yij |Xi = xi) and assume that we have only one correlation
parameter to estimate as in the linear case (let ρ), then for the conditional covariance
that corresponds to a censored covariate value we derive

Cov(Yij , Yik|Xi > ti) = E(YijYik|Xi > ti)− E(Yij |Xi > ti)E(Yik|Xi > ti)

= E(ρτ2
√
µij

√
µik|Xi > ti) + Cov(µij , µik|Xi > ti)

since

E(YijYik|Xi > ti) = E(E(YijYik|Xi = xi)|Xi > ti)

= E(Cov(YijYik|Xi = xi) + E(Yij |Xi = xi)E(Yik|Xi = xi)|Xi > ti)

= E(ρτ2
√
µij

√
µik + µijµik|Xi > ti)
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and E(Yij |Xi > ti) = µc
ij = E(E(Yij |Xi = xi)|Xi > ti) = E(µij |Xi > ti). Thus, for the

covariance we have

Cov(Yij , Yik|Ti,∆i) =

{
ρτ2

√
µij

√
µik, if ∆i = 1

E(ρτ2
√
µij

√
µik|Xi > ti) + Cov(µij , µik|Xi > ti), if ∆i = 0.

In this case the first element of the i, j−th row of matrix µ̇c equals to exp(β0+β1(ti−
sij)) when the covariate value is observed exactly and E {exp(β0 + β1(Xi − sij))|Xi > ti}
when the covariate value is right censored. The second element of i, j−th row of matrix
µ̇c equals to (ti−sij)exp(β0+β1(ti−sij)) and E {(Xi − sij)exp(β0 + β1(Xi − sij)|Xi > ti}
when right censoring occurs. For the proposed method to be applicable in this case, we
require V ar {exp(β0 + β1(Xi − sij))} < ∞ or equivalently MX(2β1) < ∞, where MX(.)
is the moment generating function (m.g.f) of the distribution of the time to event variable.

3.4 HCNS approach for modeling the censored covariate

In the case where only the censored covariate is available our approach is a two stage
one. Due to the need of calculation of the conditional expectations presented above
some assumptions regarding the distribution of X are required. One approach would
be to assume a parametric approach for the covariate distribution. Since the censored
covariate refers to a time to event random variable one may choose among the commonly
used parametric models used in survival analysis such as Exponential, Weibull, Gamma
etc. Note that for each model the applicability of our approach should be checked based
on the finite variance condition as also mentioned in the previous chapter. This is
discussed separately in the above examples that refer to the three commonly used link
functions.

Here we explore the spline approach that was utilized to model the censored covariate
in Chapter 2, namely model (2.14) under the linear restrictions (2.15) that are required
to impose monotonicity. After fitting model (2.14) under the necessary constraints of
monotonicity we derive θ̂, and an estimator of the smoothed version of the cumulative
hazard based on this constrained natural spline (HCNS) approach is obtained. Based on
the HCNS technique all conditions for the application of our method are satisfied. In this
case our approach is summarized in the following four stages:

• Stage 1: Obtain the usual Kaplan Meier based cumulative hazard step estimate
based only on the information provided by the censored covariate.

• Stage 2: Fit the spline model in (3.4) under the necessary constraints of monotonic-
ity

• Stage 3: Perform CC analysis to obtain initial estimates for the parameters of inter-
est, as well as consistent estimates for the dispersion and within subject association
parameters.

• Stage 4: Based on the previous three steps, solve G∗ = 0 using the Fisher Scoring
algorithm.
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Consider the case that another fully observed covariate, let Z, is available and need
to be accommodated in our modeling approach. We assume that this covariate, is not
longitudinal in nature and refers only to baseline or time invariant measurements of the
subjects. In this case the corresponding QS estimating functions can be shown to be
G∗ = µ̇c′W(Y − µc) where the i, j−th row of µc is µc

ij = EXi|Ti,∆i,Zi

{
g−1([x

′
i, zi]β)

}
.

The accommodation of other fully observed covariates, let Z = [Z1, Z2, . . . , Zp], can be
done straightforwardly in a similar fashion. The information that the fully observed
covariates may carry about the censored one should be taken into account. Here, we
explore spline models that relate the censored covariate with the fully observed ones
based on semiparametric assumptions in order to model X|Z1, Z2, . . . , Zp. We utilize the
well known Cox model and smooth the step function of the baseline cumulative hazard as
described in the previous section. That is, our approach is summarized in the following
stages:

• Stage 1: Perform usual Cox analysis and derive a consistent estimate of parameter
vector γ̂, along with the cox estimate of the baseline cumulative hazard function.

• Stage 2: Fit the spline model in (2.14) to the corners of the estimated step cumula-
tive hazard function of the previous stage.

• Stage 3: Perform CC analysis to obtain initial estimates for the parameters of
interest along with consistent estimates of the dispersion and the within subject
association parameters.

• Stage 4: Based on the estimated vector coefficients of the cox model used in stage
1, the spline modeling employed in stage 2, and the obtained estimates of stage 3,
solve G∗ = 0.

3.5 Application

We apply our methods to a data set that involves HIV patients. A clinical trial that involves
467 patients with advanced HIV infection who had previously failed or were intolerant
to treatment with zidovudine (AZT) is presented in Abrams et al. (1994). The aim of
this study is to compare two antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)
regarding their effect on time to death. Subjects were randomized to the two therapy
groups and were monitored by measuring their CD4 cell counts at 2, 6, 12 and 18
months. The CD4 cell count is widely used as a biomarker for AIDS progression and one
might be interested in how the CD4 cell count is affected by the time lag or time event
among other covariates. The level of censoring in this study is about 60%. For more
details of this study we refer to Abrams et.at. (1994). The data set is included in JM
R package written by Rizopoulos (2010) where an analysis based on the joint modeling
approach is provided. These data are also analyzed in Guo and Carlin (2004) where
parametric models are considered to link the time to survival to the other covariates.
The available variables of this data set are: the id of the patients, the treatment group
(ddC=0, ddI=1), previous opportunistic infection (prevOI=1 for AIDS, prevOI=-1 for No
Aids), gender (male=1, female=-1), and AZT (intolerance=-1 and failure=1). This is the
coding also used in SAS in Littell et al. (2006). We consider the square root of CD4
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as the biomarker response. It is common to work with
√
CD4 instead of CD4 since its

distribution may be skewed.
First, we provide the graphs that show the actual

√
CD4 measurements over time

for each profile and each patient (Figures 3.1, 3.2, 3.3 and 3.4). Note that there are no
patients with the following two profiles: (i) Drug = ddC, Gender = Female, PrevOI =
AIDS, AZT = failure, and (ii) Drug = ddI, Gender = Male, PrevOI = NoAIDS,
AZT = failure. Next, we consider exploring the survival curves that will account for
all the time invariant covariates and correspond to all possible profiles of a patient (see
Figure 3.5). Apart from the fact that this analysis is required to proceed to our modeling
approaches, it is also of clinical interest to explore the effect of the fixed covariates on
time to death. We observe that the Cox based survival curves that correspond to subjects
with PrevOI = NoAIDS yield greater survival probabilities in all cases (i.e. in all sub-
profiles). Along with the Cox survival curves the spline curves are also plotted in Figure
3.5.

Here, we consider relating the square root of CD4 cells to the other covariate by:

Yi =
√
CD4i = β0 + β

(C)
1 Xi + β

(L)
1 (Xi − sij) (3.13)

+ β2Drugi + β3DrugiXi + β4Drugi(Xi − sij)

+ β5Genderi + β6PrevOI + β7AZT + ϵij

Following our approaches presented above, we evaluate the underlying conditional
expectation E(Xi|Ti,∆i, Drugi, Genderi, AZTi). This is done by fitting the HCNS model
to the Cox based cumulative baseline hazard function. The results of the usual Cox anal-
ysis are: γ̂Drug = 0.2168, (SE = 0.1388, p − value = 0.1464), γ̂Gender = −0.1710(SE =
0.1227, p− value = 0.1636), γ̂prevOI = 0.6459(SE = 0.1135, p− value = 0.0000), γ̂AZT =
0.0768(SE = 0.0817, p− value = 0.3359).

Before applying the QS method we first discuss the Unweighted method which easier
to implement. After imputing the censored observations by replacing the time to cen-
soring with Ê(Xi|Ti,∆i, Drugi, Genderi, AZTi) which is evaluated based on the spline
survival estimate Ŝ(Xi|Ti,∆i, Drugi, Genderi, AZTi), we can straightforwardly perform
the Unweighted method. This is done by using the CC within subjects correlation
coefficient estimate (ρ̂(CC) = 0.688) as well as the CC dispersion parameter estimate
(σ̂(CC) = 2.9283). These CC estimates can be obtained by standard software since rou-
tines are readily available in SAS (proc genmod) and R (gee). Once the imputation is
employed then all times are regarded as fully observed and during the repetitive proce-
dure of solving the estimating equations ρ̂(CC) and σ̂(CC) are held fixed and considered
known. The results of the Unweighted method along with the ones of the CC are pre-
sented in Table 3.1. To obtain 95% confidence intervals for the Unweighted method we
considered the percentile bootstrap with 1000 bootstrap samples. For the CC we present
the usual asymptotic confidence intervals.

We observe that the Unweighted Method yields for almost all parameters essentially
narrower confidence intervals compared to ones obtained by the CC. An interesting fact
is that the cross sectional effect associated with the time to event variable turns out
to be statistically significant according to the Unweighted method while the CC yields
the asymptotic confidence interval (−0.1795, 0.0437) for this parameter. One might have
expected that the time to event variable not to be significant since at the time of the event
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Figure 3.1: The actual measurements of
√
CD4 of each patient over time for the profiles

mentioned separately in each title
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mentioned separately in each title
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√
CD4 of each patient over time for the profiles

mentioned separately in each title

Table 3.1: Parameter estimates and corresponding 95% confidence intervals as obtained
by the CC, the Unweighted method and the QS Method. The asterisk indicates statistical
significance for the corresponding estimates of the QS method at α = 0.05. (ρ̂(CC) = 0.688
and σ̂(CC) = 2.9283)

CC Unweighted method QS method
Parameters Estimates 95% CIs Estimates 95% CIs Estimates 95% CIs
intercept 5.1079 3.6779 6.5379 5.6980 4.4871 6.8030 5.5429 4.4410 6.7044∗

Xi -0.0679 -0.1795 0.0437 -0.1093 -0.1537 -0.0570 -0.1093 -0.1527 -0.0631∗

timelag 0.1883 0.0804 0.2962 0.1573 0.1152 0.1985 0.1597 0.1202 0.1991∗

drug × timelag -0.0356 -0.1069 0.1781 -0.0053 -0.0629 0.0534 -0.0078 -0.0615 0.0519
drug 0.0004 -1.8307 1.8316 0.1828 -0.7826 1.1976 -0.0555 -1.0348 0.9649

drug ×Xi -0.0310 -0.2322 0.1703 0.0264 -0.0379 0.0912 0.0395 -0.0263 0.1007
gender -0.1143 -0.9512 0.7226 -0.4784 -1.1508 0.1043 -0.2376 -0.9312 0.4080
prevOI -1.7649 -2.6152 -0.9146 -0.9591 -1.6467 -0.2827 -1.0815 -1.6787 -0.5357∗

AZT -0.2267 -0.6069 0.1535 -0.0486 -0.4122 0.3388 -0.0449 -0.3955 0.3434

the
√
CD4 cell counts should not significantly differ from subject to subject. However,

in such studies where new drugs are under study and comparison, it might be the case
that individuals do not die form the actual disease causes but due to drug side effects
(see Palella et al. (2006)). In their study they conclude that the proportion of deaths
attributable to non-AIDS diseases may include hepatic, cardiovascular, and pulmonary
disorders, as well as non-AIDS malignancies.

We continue by applying the QS estimating function approach assuming the same
model as before. To assess this method we need to obtain an estimate for the conditional
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Figure 3.4: The actual measurements of
√
CD4 of each patient over time for the profiles

mentioned separately in each title

variance V (Yij |Xi,∆i, Drugi, Genderi, P revOIi, AZTi) = V (Yij |Xi,∆i,Zi), where with
Zi we denote the i−th row of matrix Z which has as columns all fixed covariates, namely
Drugi, Genderi, P revOIi, AZTi, i = 1, ...467. Thus, for the conditional variance of the
model under study given an event we have V ar(Yij |Xi,∆i = 1,Zi) = τ2 while for a
censored time we derive:

V ar(Yij |Xi,∆i = 0,Zi) =

τ2 + V ar(Xi|Xi > ti,Zi)×
{
[(β

(C)
1 + β

(L)
1 ) +Drugi(β3 + β4)]

2
}

(3.14)

The conditional variance V ar(Xi|Xi > ti,Zi) can be evaluated through the spline
based survival estimate for any given patient’s profile. As in the computational simpler
Unweighted approach, we use the CC estimates for the within subjects correlation as well
as for the dispersion parameter, which are considered fixed and known at their estimated
values. The results of the parameter estimates based on this approach are also shown
in Table 3.1. We observe that results are consistent with the ones provided by the
Unweighted method, yielding also essentially narrower confidence intervals compared to
the ones yielded by the CC.

3.6 Discussion

In this chapter we explore a generalization of the method presented in Chapter 2 when
marker measurements are taken repeatedly over time. The proposed method is a popu-
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Figure 3.5: Cox and Spline based estimates of the survival curves. For each of the
four graphs the curves refer (moving upwards) to the following profiles (i) PrevOI=AIDS,
AZT=Failure (ii) PrevOI=AIDS AZT=Intolerance, (iii) PrevOI=NoAIDS AZT=Failure (iv) Pre-
vOI=Noaids AZT=Intolerance.

lation oriented one, and is based on an estimating equation approach. As such, it can
be considered as a generalization of the well known Generalized Estimating Equation
approach (see Fitzmaurice for a detailed overview) since it accommodates a censored
covariate. Our approach differs from the one taken in Rizopoulos where joint models
are employed. Joint models are subject specific oriented models for which inference is
made based on maximum likelihood techniques. Hence, parametric models need to be
assumed for the involved random effects as well as for the response given the covariates.
Our approach does not require such parametric assumptions. Even though a parametric
model might be chosen for the distribution of the time to event variable given the other
fully observed covariates, a flexible spline model may be considered instead, as a non-
parametric alternative. We consider using the spline approach developed in Chapter 2
which has the merit of being numerically stable since convex optimization is involved
and convergence is guaranteed. Additional, fully observed, covariates are incorporated
using the same ideas developed Chapter 2 using semi parametric models for the survival
function. We note that the linear case can be easily viewed as a natural generalization
of the GEE approach while for the case of binary data our approach is related to the one
presented in Carey et al. (1993).

A drawback of our approach is that it cannot address subject specific trajectories over
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time, as in the case of joint models which can be considered as the extension of linear
mixed models in the case of censoring (see Rizopoulos (2011)). In longitudinal studies
one should proceed with caution sice there might be two potential sources of information,
that is the cross sectional and the longitudinal. Longitudinal studies primarily focus on
characterizing the within subject change of the response over time. However, cross
sectional information must be also taken into account. These two sources of information
may conflict, hence it is essential to build models that accommodate both longitudinal
and cross sectional effects. By considering different parameters for these two sources of
information, and performing simultaneous estimation, one may also proceed to further
comparisons for these effects or even provide an estimate of a combined effect. For an
overview about separating cross sectional and longitudinal effects we refer to Fitzmaurice
et al. (2004).

Consider our setting, where the response marker measurements are taken repeatedly
over time on each subject. The baseline marker measurement would refer to cross
sectional information and the time-lag to longitudinal information. Assuming that its
association to the response is linear we consider

E(Yij) = β0 + β
(C)
1 Xi + β

(L)
1 (Xi − sij) (3.15)

where β
(C)
1 refers to the cross sectional effect of Xi and β

(L)
1 to the longitudinal, with

β
(C)
1 ̸= β

(L)
1 . The proposed approach can be implemented in a straightforward fashion to

account both longitudinal and cross sectional information.
Note that if the data are generated from a mixed effect model with a random intercept,

b0i, that is

Yij = β0 + β
(C)
1 Xi + β

(L)
1 (Xi − sij) + b0i + eij . (3.16)

then this model could be estimated by assuming that the within subject association
is common and equal to ρ. However, it would be interesting to investigate the robust-
ness of our estimating function approach by using this simple correlation structure to
broader models that may contain random effects for the time dependent slope. In the
classical setting, when no censoring is present, the obtained estimator of the parameters
of interest is robust to misspecification which makes the GEE approach attractive. An
appealing property of our approach is that, unlike likelihood based approaches such as
joint modeling, we make no distributional assumptions regarding the parametric form
of the response distribution. The covariate distribution is also non-parametrically esti-
mated through splines.

However, the above advantages of our approach come at cost. Consider for example
what happens when the mechanism that generated the data is of the form

Yij = β0 + β
(C)
1 Xi + β

(L)
1 (Xi − sij) + b0i + b1isij + eij . (3.17)

For the marginal expected value of the change of the response of the i−th subject
from the j−th time of measurement until the time of death we get
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E(Yij − YiXi) = β
(L)
1 (Xi − sij) + E(b1i(Xi − sij))

= β
(L)
1 (Xi − sij) + E(b1iXi) (3.18)

For the expectation of the right-hand side to be zero, one should assume independence
of b1i and Xi which may be an unjustified assumption. The joint modeling approach has
the advantage of relating the survival function based on the subject specific trajectory
of the subjects through a Cox model. When the association of b1i and Xi is weak, our
approach could be employed as an alternative that relaxes all parametric forms of the
underlying distributions of the parameters imposed in the joint modeling approach. Fur-
thermore our approach is computationally simpler compared to the joint model based
approaches. Specifically, the Unweighted method can be straightforwardly be applied
based on mean imputation given the covariate model. In the following chapter we will ex-
plore using the estimating function based approaches previously developed to construct
time dependent ROC and evaluate the time dependent accuracy of the corresponding
markers utilized in the PBC and HIV data sets.



Chapter 4

Assessing the accuracy of a marker
based on GLMs: Two examples

In this chapter we explore the construction of time dependent ROC curves based on the
approaches in the previous two chapters, that deal with a single baseline measurement
(one measurement per subject) as well as with longitudinal marker measurements (mul-
tiple measurements per subject). We consider estimating the sensitivity and specificity
with the use of generalized linear models that incorporate the censored random variable
of the time to event as a covariate. Similar models have been explored in Cai et al. (2006)
where an example regarding the Framingham risk score (FR-score) is discussed. They
consider the FR-score as a marker for the future risk of cardiovascular events which
may occur after the score is ascertained. The time-lag is taken into account since the
biomarker might be more indicative of the disease when the measurement is taken closer
to the time of the event. In this chapter we re-visit the PBC and HIV data to construct the
corresponding time dependent ROC curves. We recall the incident based and cumulative
incident based definitions of the sensitivity and FPR (see also Cai et al. (2006), Heagerty
et al. (2000) and Pepe (2003)) for the PBC data set where a changepoint might be used to
separate the diseased form the controls. We also explore the cumulative incident based
time dependent ROC and the area under it for the HIV data set discussed in the previous
chapter.

4.1 Time dependent ROC for continuous marker measurements

Recall that (see Introduction) the true positive and false positive rates are defined respec-
tively as

TPR(c) = P (Y ≥ c|D = 1), FPR(c) = P (Y ≥ c|D = 0) (4.1)

where c is the threshold value used to define a positive biomarker result. In the case
where Y is continuous the ROC curve is plotted as the pairs of TPR(c) and FPR(c) for
all possible threshold values of c.

The sensitivity and specificity can be extended in a situation where the true disease
status is based on a time to event variable, X. The marker measurement, Y , may be
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more predictive if marker measurements are taken at a timepoint closer to the event.
We denote with s the time at which a measurement is taken. That is, measurements
taken at time s are denoted with Y (s). A distant time point τ∗ is used to separate the
diseased from the control group. That is, subjects that experience the event prior to τ∗

are considered as cases, while subjects that manage to survive beyond τ∗ are defined as
the control group. Under this setting the sensitivity and FPR are defined as

TPRs,x(c) = P (Y (s) ≥ c|X − s = x), x ≤ τ∗ (4.2)

where the timelag between the time to event and the time of the measurement is
X − s = x. This means that given that a subject experienced the event at X, the
TPRs,x(c) is the probability of a positive marker measurement at x time units prior to
the event. The false positive rate function is defined as

FPRs,τ∗(c) = P (Y (s) ≥ c|X − s > τ∗) (4.3)

For these "incidence" based definitions and some additional references see Cai et
al. (2006). In the simple case where s = 0 is considered and a linear model is used
for modeling the marker measurements based on the time to event covariate X that is
subject to censoring as well on other fully observed covariates Z1, Z2, . . . , Zp we employ
the parametric model:

Y = β0 + β1(X − τ∗)− + β2Z1 + . . .+ βp−1Zp + ϵ (4.4)
log(X|z) = ξ0 + ξ1Z1 + ξ2Z2 + · · ·+ ξpZp + σAFTu

where an AFT model is used as a submodel to account the information that the fully
observed covariates carry for the censored one. The error term is assumed to be normally
distributed. Under a non-parametric method we may assume the HCNS approach to
model the censored covariate based on the other fully observed ones. Observe that:

TPR = P (Y > c|D = 1) (4.5)
= P (β0 + β1(X − τ∗)− + β2Z1 + . . .+ βp−1Zp + ϵ > c)

= 1− P (ϵ < (c− β0 + β1(X − τ∗)− + β2Z1 + . . .+ βp−1Zp))

and similarly for the false positive rate we obtain

FPR = P (Y > c|D = 0) (4.6)
= P (β0 + β2Z1 + . . .+ βp−1Zp + ϵ > c)

= 1− P (ϵ < c− β0 + β2Z1 + . . .+ βp−1Zp)

For the error term one could assume normality if this is justified by the data at hand.
Alternatively one may use a kernel based approach to non-parametrically estimate the
density of the error term. However, this would involve imposing restrictions that would
force a zero mean as we will see in the first example to follow. Note that the TPR
depends on the time to event variable whereas the FPR does not. This is a logical



4.1. TIME DEPENDENT ROC FOR CONTINUOUS MARKER MEASUREMENTS 73

assumption since for the controls the marker measurement is not expected to vary over
time. Heagerty et al. (2000) introduce the cumulative incidence based TPR and FPR
functions, namely:

TPR(CI)
s,x = P (Y (s) ≥ c|X − s ≤ x) (4.7)

FPR(CI)
s,x = P (Y (s) ≥ c|X − s > x). (4.8)

Note that the cumulative incidence based true and false positive rates can be evalu-
ated by the corresponding incidence based TPR and FPR functions, and this is a reason
that makes the former more attractive.

For the cumulative based definition one can derive that

TPR(CI)
s,x = P (Y (s) ≥ c|X − s ≤ x) =

P (Y (s) ≥ c,X ≤ x+ s)

P (X ≤ x+ s)
(4.9)

=

∫ s+x
0

∫∞
c fY |X(u1|u2)fX(u2)du1du2

FX(s+ x)
,

and the expression for the FPR is similarly obtained. Note again, that if common para-
metric models cannot be justified then we may use the HCNS approach or some other
non-parametric approach to estimate the distribution of Y |X and X. The correspond-
ing ROC curves as obtained by the above two definitions, at a given time point x, are
respectively:

ROCs,x = {FPRs,τ∗(c), TPRs,x(c), c ∈ (−∞,∞)} (4.10)

ROC(CI)
s,x = {FPR(CI)

s,x (c), TPR(CI)
s,x (c), c ∈ (−∞,∞)} (4.11)

The generalization of the above definitions for the case where additional covariates
are observed is straightforward and the ROC can be defined at a specific time point as
well as at a specific covariate profile.

Under a longitudinal framework where multiple measurements per subject are avail-
able, the data for analysis are of the form {Yij , sij , Ti,∆i,Zi}, where Yij is the j−th
measurement of the i−th subject, sij is the time of the j−th measurements on the i−th
subject, Ti is the time to event or censoring, ∆i the corresponding event indicator (∆i = 1
for an event) and Zi is a vector of covariates that define the profile of the i−th subject
that may affect the diagnostic accuracy of the biomarker under study.

In this case the ROC curve at a given covariate profile and a given time point is given
based on the usual definition:

ROCs,x = {FPRτ∗,s,Zi(c), TPRx,s,Zi(c), c ∈ (−∞,∞)}

where the TPRx,s,Zi and the FPRτ∗,Zi functions can either be defined using the "in-
cident" based definitions if a distant time-point is available to separate the diseased
from the controls, or the "cumulative incident" based definition in a similar fashion as
previously described.
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4.2 Time dependent ROC for the PBC data

Recall the PBC data set analyzed in Chapter 2 that involved subjects that participated
in a randomized placebo controlled clinical trial where log(bilirubin) is considered as a
marker for primary biliary cirrhosis. To use Cai’s definitions of TPR and FPR we now
consider a "hockey stick" model for the marker measurement given the censored time
to event variable, taking also into account the covariate of age (Z). As in Chapter 2, we
distinguish cases and controls based on a distant time point (changepoint) that equals to
84 months and is considered fixed and known. We assume as discussed in the previous
sections that the FPR function will not depend on the time to event variable, hence for
this application we will explore fitting a "hockey stick" stick model. That is, after the
changepoint τ∗ the slope that refers to the effect of time will be set equal to zero.

Parametric modeling:

The assumed parametric model of the time to event variable given the age, X|Z, is
an AFT generalized gamma regression model, upon which the mean imputation is based.
The "hockey stick" model and the corresponding survival submodel will be of the form:

Y = β0 + β1(X − τ∗)− + β2z + ϵ (4.12)
log(X|z) = ξ0 + ξ1z + σAFTu

and the corresponding estimated parameters as obtained by using the optimal esti-
mating function approach discussed in Chapter 2 are presented in Table 4.1. We remind
that results for the fitted AFT model are presented in Table A7 of Appendix A. The hockey
stick models are plotted for the age of 50 in Figures 4.1.
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Figure 4.1: Hockey stick models for the Complete Case (CC) and the Optimal Estimating
function approach for the PBC data set given that the age is equal to 50 years.
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Table 4.1: Estimates of the coefficients of the hockey stick type model for the PBC
data.(The estimated standard deviation based on the CC analysis is σ(CC) = 0.9125)

Method Parameter Est. Asympt. SE Asympt. CI 95%
β0 1.5354 0.5478 0.4480 2.6229

CC β1 -0.0169 0.0035 -0.0238 -0.0100
β2 -0.0206 0.0100 -0.0405 -0.0007

β0 1.0640 0.2649 0.5448 1.5833
QS(GG) β1 -0.0240 0.0024 -0.0287 -0.0194

β2 -0.0192 0.0053 -0.0296 -0.0087

β0 1.0624 0.2646 0.5830 1.5418
QS(HCNS) β1 -0.0240 0.0024 -0.0287 -0.0194

β2 -0.0190 0.0053 -0.0294 -0.0086

For this application we only have one baseline measurement for each subject, namely
sij = 0, and the log(bilirubin) is considered as the response. Assuming normality we
obtain:

ˆTPRx,age(c) = 1− Φ

(
c− (1.0640 + 0.0240x+ 0.0192× age)

0.9125

)
(4.13)

ˆFPRτ∗,age(c) = 1− Φ

(
c− (1.0640 + 0.0192× age)

0.9125

)
(4.14)

We observe (see Figure 4.2) that the TPR function is a decreasing function of time, as
expected. This means that when the time of the baseline measurement is close to event,
that is the time of death, then the sensitivity of the marker is high. The sensitivity reduces
essentially for larger time-lags. For example, given a positivity threshold of 1.5 the TPR
at early event times is above 0.9 while near 6 years (72 months) the sensitivity reduces
to approximately 0.5. Similarly the AUC is a decreasing function of time as expected (see
Figure 4.3). For early times the log(bilirubin) turns out to be a very accurate marker
yielding AUC above 0.95 while at near 70 months the AUC is decreased to approximately
0.6.

Non-Parametric modeling:

We also consider the HCNS approach to model the censored covariate instead of using
the AFT submodel presented in 4.12. Even though strict parametric assumptions are
relaxed the values of the estimated coefficients are similar when using the spline model
and the GG AFT model (see Table 4.1). Even though the spline model is employed and
the coefficients of the GLM are estimated with no assumptions regarding the parametric
form of the distribution of the response, we need a density estimate for the response to
proceed with the estimation of the time dependent ROC. Hence, to further robustify the
modeling approach in this example we relax the assumption of the normal distribution
assumed for the residuals. We instead employ a kernel density approach to estimate the
density of the estimated residuals, ϵ̂i with i = 1, 2, . . . , 98 obtained after performing the
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Figure 4.2: The TPR and FPR functions versus time for the PBC data given the age of
50. The positivity threshold is taken to be equal to 0.5, 1 or 1.5. The dashed lines refer
to 95% confidence intervals obtained by the percentile bootstrap using 1000 bootstrap
samples.

CC analysis (there are 98 fully observed data). We employ the normal kernel with the
following bandwidth that is optimal for normal densities (see also Bowman and Azzalini
(1997)):

h =

(
4

3n

)1/5

σ̃,

where σ̃ = median(|ϵ̂i−median(ϵ̂i)|)/0.6745. Even though, based on these residuals,
normality cannot be rejected (Kolmogorov Smirnov p−value=0.9892), we provide the ker-
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Figure 4.3: The AUC of the time dependent ROC curve for the PBC data at the age of 50.
The dashed lines refer to 95% confidence intervals obtained by the percentile bootstrap.
Normality is assumed for the response

nel based approach for illustration purposes. The qq-plot along with the kernel density
estimate for the CC based residuals are given in Figure 4.4. We observe that the ob-
tained kernel density estimate is very close to the standard normal density. The absolute
value of the estimated kernel based mean for the residual distribution is < 10−4. The
corresponding standard deviation is estimated as 0.9776. Luckily, there is no need to
apply any restrictions that would force the kernel based estimated density to have zero
mean since this is intrinsically satisfied in this application. We proceeded by estimating
the TPR and FPR functions over time using this estimated kernel density for the error
term. The results are given in Figure 4.5. Based on this approach we do not make
any strict parametric approaches at no stage of analysis since the HCNS approach is
employed to model the censored covariate based on the fully observed covariate of age,
and the kernel approach is used for the response. For the derivation of the confidence
intervals we considered the bootstrap technique using 1000 bootstrap samples. How-
ever, we did not consider re-estimating the error distribution with the kernel approach
previously discussed. A more preferable approach would involve re-estimating the er-
ror distribution for every bootstrap sample by also forcing a restriction for a zero mean,
and taking censoring into account. This is a very interesting point for future research
since there is no such approach available currently in the literature (to our knowledge).
An exception is the paper of Hall and Presnell (1999) in which they present a weighted
bootstrap based approach for density estimation with moment constraints. However, as
noted by the authors, there might be cases that will result in negative weights. Further-
more, their approach cannot account for censoring. Moreover, in many cases where such
an approach is to be employed for every bootstrap sample, it might be computationally
very intense since this would involve a "bootstrap within a bootstrap" technique. Here,
we limit our analysis by considering the estimated density based on the complete data
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which we keep fixed when we apply the bootstrap. The time dependent AUC is presented
in Figure 4.6. We observe that the trajectory of the AUC vs time is similar for the cases
when normality is assumed, and when normality is relaxed by using the kernel approach
for the response.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

f(
x)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 4.4: Left: Kernel density estimate of the raw residuals based on the CC method
for the PBC data (solid line) vs standard normal density (dashed line). Right: The corre-
sponding qq-plot for normality checking

4.3 Time dependent ROC for the HIV data

Recall the HIV data set discussed in the previous chapter, where marker measurements
were taken repeatedly over time for each of the 467 patient. Let’s focus on the covariate
profile of Z: Drug = ddC, Gender = Male, PrevOI = AIDS, AZT = Intolerance for
which there are 57 patients. See also Figure 3.5 for the subjects’ trajectory over time. We
desire to construct the underlying time dependent ROC curve that refers to this specific
covariate profile and explore the discriminatory capability of the CD4 marker. Here, we
use the "cumulative incident" definitions for the FPR and TPR, and consider assessing
the accuracy when s = 0, namely we have:

TPR(CI)
x = P (Y < c|X ≤ x,Z) =

P (Y < c,X ≤ x|Z)
P (X ≤ x|Z)

=

∫ x
0

∫ c
0 fY |X,Z(u1|u2)fX|Z(u2)du1du2

FX|Z(x)
,

where Y =
√
CD4. For the estimation of the density fX|Z we employ the HCNS ap-

proach, and assume normality for Y |X,Z, that is we assume (based on model (3.13)
and results of Table 3.1 for the covariate profile previously mentioned) that Y |X,Z ∼
N((β0 − β7) + β

(C)
1 x + β

(L)
1 (x − s), σ2

(CC)). For the double integral that appears in the
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Figure 4.5: The TPR and FPR functions versus time for the PBC data given the age of
50 when the kernel density estimate is used for the error term. The positivity threshold
is taken to be equal to 0.5, 1 or 1.5. The dashed lines refer to 95% confidence intervals
obtained by the percentile bootstrap using 1000 bootstrap samples.

denominator of the TPR numerical integration is required and this makes the "cumula-
tive incident" definition computationally more intense compared to the "incident" based
definition employed in the previous example. Here, we do not consider a "distant" time
point that defines the true health status of the subjects. Furthermore, note that all sub-
jects are HIV patients, and one could argue that they are all cases. The ROC obtained
in this example refers to the marker’s capability of distinguishing at a given time point
x, and a given covariate profile Z subjects that are able to survive beyond x and sub-
jects who cannot. Obtaining the TPR trajectories versus time would be computationally
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Figure 4.6: The AUC of the time dependent ROC curve for the PBC data at the age of 50.
The dashed lines refer to 95% confidence intervals obtained by the percentile bootstrap.
The kernel approach is employed for estimating the responce distribution.

very expensive and for this example we only consider providing the estimated ROCs at
time x = 2.5, 5, 7.5, 10 and 12.5 months (see Figure 4.7). We observe that these ROC
curves almost coincide. Furthermore the resulting AUC at the timepoints mentioned
along with their bootstrap based confidence intervals are the respectively the following:
0.5919 (0.5563, 0.6911), 0.5942 (0.5511, 0.6946), 0.5962 (0.5578, 0.7028), 0.5994 (0.5667,
0.7062), 0.6049 (0.5685, 0.7132). Unfortunately, we do not observe that the discriminatory
capability is better for early times. We observe that it is the same over time yielding
an AUC around 0.6. This result may be related to the fact the in HIV studies it is not
uncommon that subjects die not from the actual disease but due to drug side effects as
mentioned in Chapter 3. However, as will be discussed in the further research issues of
Chapter 6, the development of an analogous to the so called "sandwich" estimator (see
Fitzmaurice et al. (2004)) for the error variance might improve estimation. Under the
examined approach a working correlation matrix is assumed, the robustness of which
needs to be further explored.

At this stage, one could also employ more robust approaches that would relax the
normality assumption Y |X,Z or the underlying estimated residuals. As in the previous
example, here too, this would involve developing a non-parametric technique that would
accommodate the observed covariates, could account for censoring, and provided the
option to impose first moment restrictions. To our knowledge, such a technique does not
exist and would be of interest for further research as also discusses in Chapter 6.
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Figure 4.7: The cumulative incident based ROC curves for the HIV data at times 2.5, 5,
7.5, 10 and 12.5. The curves almost coincide yielding AUCs equal to 0.5919, 0.5942,
0.5962, 0.5994, 0.6049 respectively
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Chapter 5

ROC curves and surfaces for
biomarkers with a limit of detection

Until now we considered settings of time dependent biomarkers where the time to event
covariate was subject to censoring. Censoring can also occur on the biomarker itself due
to practical reasons regarding the mechanism/nature of the marker. Here, we consider
biomarkers that yield continuous values, Y with high marker values being indicative of
the presence of the disease. As mentioned in the introduction, the ROC curve may be
represented through the survival functions of the diseased and the healthy populations,
denoted with S1 and S0 respectively, as

ROC(t) = S1(S
−1
0 (t)) (5.1)

In some studies marker measurements cannot be obtained above or below some value
(dU and dL respectively) due to practical limitations (for an example of a biomarker with
an upper limit of detection see Jafarzadeh et al. (2010)). Then, only a possibly censored
version, Y (c), of the true marker measurement, Y , is observed. Some ad-hoc methods
have been used to deal with biomarker measurements in the presence of a lower limit
of detection (LOD). One approach is to set measurements that are left censored at dL
equal to the LOD value and then perform the usual ROC analysis (see Hughes (2000) for
an overview of approaches regarding inference in the presence of a lower LOD). Another
approach is to impute the undetectable lower values with dL/2, and is based on the
technique presented by Nehls and Akland (1973). This is equivalent to assuming that
all values from 0 to dL are equally likely, i.e. assuming a uniform distribution in the
interval [0, dL] for the undetectable values. Another approach for data subject to a lower
LOD is to impute the unobserved values by dL/

√
2 (see Hornung and Reed (1990)). These

simple imputation techniques attempt to decrease the bias induced by simply ignoring
the censored nature of data subject to an LOD. Obviously such a technique provides a
computationally simple way to deal with the problem but it suffers from some drawbacks.
First, it cannot accommodate right censored data (upper LOD). Second, it assumes that
the marker values are positive and this is not always the case. Even in a situation where
the marker measurements are intrinsically positive, it is often the case that we work with
transformations that may project the measurements to the real line. Moreover, Perkins
et al. (2007) showed that any replacement value for the censored data as described above
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will induce bias in the AUC index.

Some parametric approaches are also available. Mumford (2006) focused only on
normally distributed biomarkers. Perkins et al. (2007), as well as Vexler et.al.(2008),
focus on the use of common parametric models for the distribution of the biomarker
such as the binormal and the bigamma models. These authors also consider the case of
multiple biomarkers subject to left LODs. A standard parametric approach is to assume
a distribution for each of the two populations and perform classical ROC analysis.

We consider data of the form {Y (c)
i , Di,∆i}, i = 1, . . . , n, where Y

(c)
i are the possibly

censored marker values, Di indicates the group of the i−th subject, and ∆i is the cen-
soring indicator taking the value 0 for a censored observation and 1 otherwise. For the
moment, assume that the marker values are only right censored due to an upper LOD
(dL = −∞). When the parametric form of the distributions for the healthy, Y0, and the
diseased group, Y1, is known, one can simply maximize the corresponding likelihood for
each group. Let the sample be ordered with respect to the health status. For simplicity
assume that the first r subjects are the healthy individuals and the remaining n − r

individuals belong to the diseased group. If we denote with y
(c)
i , δi, the realizations of the

random variables Y
(c)
i ,∆i then for the likelihood we have:

r∏
i=1

f0(y
(c)
i ;θ0)

δiS0(y
(c)
i ;θ0)

1−δi

n∏
i=r+1

f1(y
(c)
i ;θ1)

δiS1(y
(c)
i ;θ1)

1−δi

where f0 and f1 are the densities corresponding to S0 and S1 with θ0 and θ1 being
their parameter vectors respectively. Once these parameters are estimated by maximizing
the above likelihood then one can construct the smooth parametric form of an ROC curve
that corresponds to the two populations based on the ROC representation in (5.1). The
likelihood in the case of a lower LOD is obtained in a similar fashion.

However, if a parametric assumption cannot be justified by the data at hand then a
likelihood based approach may not be appropriate. Note also that if more complex para-
metric models are entertained, such as mixture distributions, then parameter estimation
is not trivial and computational problems may arise. Under a linear regression framework
where the covariate is subject to a limit of detection, Schisterman et al. (2006) use least
squares estimation to determine the suitable replacement value for the non detectable
values. In this chapter we employ the spline based HCNS approach discussed in the
second chapter. Hence, unlike other maximum likelihood based methods that involve
splines or mixtures of distributions, the proposed constrained natural spline (CNS) ROC
estimate is computationally stable since it involves convex optimization.

This chapter is organized as follows. In Section 5.1 we present the CNS based ROC
curve estimate and discuss how it can be generalized in the presence of covariates. In
Section 3 we discuss the generalization of the proposed technique to ROC surfaces. In
Section 4 we present simulation studies comparing our approach to the simple imputa-
tion techniques and the likelihood approach. We conclude with a discussion and point
out some issues for future research.
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5.1 CNS ROC curve/surface estimation

The CNS (constrained natural spline) estimator of the survival function S(y), with K
knots which is defined as

Ŝcns(y) = exp(−Ĥcns(y)),

with Ĥcns(y) = H(y; β̂) where β̂ = [β̂1, . . . , β̂K ] is the constrained least squares esti-
mated vector of parameters as discussed in the second chapter. One might consider
various knot placement schemes and select the one that yields the smallest distance
from the corners of the nonparametric maximum likelihood step estimator, that is the
one that minimizes the quantity

∑
(Ŝcns(Y

(c)
i |∆i = 1)−SKM (Y

(c)
i |∆i = 1))2, where SKM

is the Kaplan Meier survival estimation. Since this is a simple optimization problem, one
might want to consider multiple (even hundreds) knot placement schemes. With modern
computer technology this strategy is not time consuming, and the required minimiza-
tions can be easily carried out. In effect, it is feasible to base inference on resampling
techniques such as the bootstrap as we will see later.

The proposed CNS estimator of an ROC curve is of the form

ˆROC
(cns)

(t) = Ŝ
(cns)
1 (Ŝ

(cns)−1

0 (t)). (5.2)

The AUC estimate is simply given by

ˆAUC
(cns)

=

∫ 1

0

ˆROC
(cns)

(t)dt

The proposed estimator is based on the smooth survival estimator Ŝcns(y) for each
of the two populations. This estimator expands the survival estimation through an ex-
ponential curve beyond the last censored observation, which in the setting of a censored
biomarker is usually the limit of detection. This holds also for a lower LOD, which
is more often the case, if the ordering of the measurements is reversed (e.g. by sim-
ply multiplying all values by -1). In this case the proposed estimator is of the form
ˆROC

(cns)
(t) = F̂

(cns)
1 (F̂

(cns)−1

0 (t)). A simulated example of the proposed estimator of an
ROC curve compared to the Naive method of ignoring the censored nature of the data is
given in Figure 1.

Our approach can be straightforwardly applied to the case where three popula-
tions are under study. In the classical setting the aim is to evaluate a biomarker
that distinguishes between the three populations with corresponding marker distribu-
tions F1, F2, and F3. In the three class case two thresholds c1 and c2 are used for
which c1 < c2. As discussed in the introduction the three true positive rates are
obtained by: TPR1 = P (Y < c1|D = 1), TPR2 = P (c1 < Y < c2|D = 2), and
TPR3 = P (Y > c2|D = 3), where D denotes the population. A three dimensional
plot can then be used to visualize the ROC surface constructed in the unit cube. The
parametric form of the ROC surface is given by

ROC(TPR1, TPR3) = F2(F
−1
3 (1− TPR3))− F2(F

−1
1 (TPR1)).
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Figure 5.1: An ROC curve from a simulated data set with a lower limit of detection that
yields 50% censoring where Y0 ∼ N(3, 1) and Y1 ∼ N(4, 0.82). The solid bold line is the
true ROC curve. The thin step solid line is the empirical ROC obtained by ignoring the
censored nature of the data (Naive method). The dashed line is the ROC curve obtained
by the proposed method.

In the two class case Perkins et al. (2007) showed that any replacement value below
the limit of detection dL induces bias to the AUC index. The following proposition gen-
eralizes this result also for the three class case where an ROC surface is to be constructed.

Proposition 1. Let Y1 < Y2 < Y3 be marker measurements from distributions F1, F2

and F3 respectively and dL be a lower limit of detection. Let a, be any replacement
value that is less than the limit of detection (a < dL). Denote the imputed marker scores
that are constructed by imputing the left censored measurements with a, as M1,M2,M3

respectively. For every a < dL, the volume under the ROC surface based on the imputed
marker scores (M1,M2,M3) is biased.

Proof. It can be shown that

V USM = P (M3 > M2 > M1)

+
1

2
P (M3 = M2 > M1) +

1

2
P (M3 > M2 = M1) +

1

6
P (M3 = M2 = M1)

=

∫ ∞

d
F2(x)f3(x)dx− S3(d)

(∫ ∞

d
F2(z)f1(z)dz − F1(d)F2(d)

)
+

1

2
S1(d)F2(d)F1(d) +

1

6
F3(d)F2(d)F1(d),

which is independent of the replacement value a. The details are given in the technical
notes at the end of this chapter.
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When the measurements of a trichotomous marker are available we estimate a smooth
version of the ROC surface by using the CNS method to obtain a smooth estimate of the
cumulative distributions, F cns

1 , F cns
2 and F cns

3 , of each one of the three populations, Y1, Y2
and Y3, respectively. Then the proposed estimator is of the form

ˆROC
cns

(TPR1, TPR3) = F̂ cns
2 (F̂ cns−1

3 (1− TPR3))− F̂ cns
2 (F̂ cns−1

1 (TPR1)). (5.3)

The discriminatory capability of such a trichotomous marker is summarized by the
corresponding volume under the surface, and provides an estimator of the probability of
a correct classification, P (Y1 < Y2 < Y3):

ˆV US
cns

=

∫ 1

0

∫ 1

0

ˆROC
cns

(TPR1, TPR3)dTPR1dTPR3. (5.4)

The variance of the estimated volume under the surface following the proposed
methodology, ˆV US

cns
, is obtained using the percentile bootstrap technique. Some graph-

ical examples of the proposed method estimation in the case of a trichotomous marker
appear in Figure 5.2 where the true setting is trinormal.

Figure 5.2: ROCcns surfaces from a simulated example. An upper LOD was used so
as to achieve expected level of censoring of 30%. Left: The obtained ROCcns referring
to Y1 ∼ N(0, 1), Y2 ∼ N(0, 1), Y3 ∼ N(0, 1). Middle: The obtained ROCcns referring to
Y1 ∼ N(0, 1), Y2 ∼ N(0.5, 1), Y3 ∼ N(1, 1). Right: The obtained ROCcns referring to
Y1 ∼ N(0, 1), Y2 ∼ N(1, 1), Y3 ∼ N(2, 1).

5.2 Adjusting for Covariates

In many settings it is natural to assume that covariates may affect the marker value or
even the diagnostic ability of a marker as measured by the area under the ROC curve or
the volume under the ROC surface. It is known that if one ignores the covariates then
bias may be induced regarding the inference about the test accuracy (Pepe 2003). Note
that these covariates may or may not be the same for each population.

Consider the two population setting. Without loss of generality assume that the
covariates for the healhty and the diseased group are the same. Denote the covariates
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with Z1, Z2, . . . , Zp. Using matrix notation the covariates can be denoted more compactly
as the matrix Z with each column representing one covariate. The ROC curve is then
defined as

ROC(t) = S1:Z(S
−1
0:Z(t)), (5.5)

where Si:Z(t) = S(t|D = i,Z) = P (Y ≥ t|D = i,Z). To construct an ROC curve in the
presence of covariates we investigate a two stage approach. At the first stage, in order to
assess the influence of the covariates on each one of the groups we explore the use of a
proportional hazards model of the form

Sj:Z(t) = Sj:Z=0(t)
exp(Zγj), j = 0, 1. (5.6)

where γ0 is the parameter vector [α1, α2, . . . , αp]
′ that relates the covariates with the

marker measurements for the healthy group, and γ1 is the parameter vector [γ1, γ2, . . . , γk]′

that relates the covariates with the marker measurements for the diseased group.
The proportional hazards model (also known as the Cox model) is primarily used in

survival analysis, and the target is to model survival time, that is subject to censoring,
in the presence of other covariates.

In our setting, we aim to derive a consistent estimator of Sj:Z(t). Suppose for sim-
plicity (and without loss of generality) that we only have one covariate that takes two
values (0 or 1) and its corresponding coefficient is γ1. Model (5.6) implies that, given
that a subject belongs to group i, if exp(γ1) < 1 then the probability of getting a mea-
surement greater than a threshold value c is higher for a subject for which Z = 1,
that is P (Y > c|Z = 1, D = j) > P (Y > c|Z = 0, D = j). Similarly, if exp(γ1) > 1 then
P (Y > c|Z = 1, D = j) < P (Y > c|Z = 0, D = j). The baseline functions Sj:Z(t), j = 0, 1
are completely unspecified. In the case of a three way analysis then three Cox models
are required in order to derive an ROC surface (in this case j = 1, 2, 3).

The second stage of our approach deals with smoothing the derived survival functions
of the first stage. We fit the constrained natural spline to the baseline step function of
the cumulative hazard, H(y|Z = 0, D = j) = −log(S(y|Z = 0, D = j)), obtained via
fitting a Cox model for each j. Thus we aim to minimize the following functions

Ψ(β(j)) =
∑
i

(H(Y
(c)
i |Z = 0, Di = j,∆i = 1)−HKM (Y

(c)
i |Z = 0, Di = j,∆i = 1)2, (5.7)

where j = 0, 1 (for a three way analysis j = 1, 2, 3), and β(j) = [β
(j)
1 , . . . , β

(j)
K ]′ are the

spline coefficients referring to group j, under the constraints

A[β
(j)
1 , β

(j)
2 , . . . , β

(j)
K−1]

′ ≤ 0.

Thus, for the construction of an ROC curve we deal with minimizing two functions
under linear constraints. Note again that the minimizations refer to convex optimization
that can be applied with standard software. Under this approach we can naturally
derive the survival function for any profile of covariate values based on the Cox model’s
formulation:
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Ŝcns
j:Z (t) = (Ŝcns

j:Z=0)
exp(Zγ̂j), j = 0, 1 (5.8)

and construct the corresponding ROC curve

ˆROC
cns
Z (t) = Ŝcns

1:Z (Ŝ
cns−1
0:Z (t)). (5.9)

The corresponding estimate for the area under the curve is

ˆAUC
cns
Z =

∫ 1

0

ˆROC
cns
Z (t)dt (5.10)

and is a measure of the discriminatory capability of the marker for the diseased and
healthy group given the profiles of the two populations based on their covariate values.

Similarly, the proposed two stage approach for constructing an ROC surface involves
the fit of three Cox models in the first stage, and at the second stage the derivation of the
ROC surface:

ˆROC
cns
z (TPR1, TPR3) = F̂ cns

2:Z (F̂ cns−1
3:Z (1− TPR3))

− F̂ cns
2:Z (F̂ cns−1

1:Z (TPR1)), (5.11)

where F̂ cns
j:Z (t) = 1 − Ŝcns

j:Z (t), j = 1, 2, 3. And the corresponding estimation for the
volume under the surface is

ˆV US
cns

=

∫ 1

0

∫ 1

0

ˆROC
cns
Z (TPR1, TPR3)dTPR1dTPR3. (5.12)

This is a measure of the discriminatory capability of the marker for group 1, 2, and 3
given the profiles of interest.

It may be the case that the proportional hazards assumption that allows the use
of the Cox model in (5.8) may not be justified for marker data. For example if log(Y )
follows a simple linear regression model with normal errors (in survival settings this
is a lognormal AFT model) then it is known that the proportional hazards assumption
does not hold for the distribution of the marker value. In our approach the proportional
hazards assumption can be relaxed by allowing an interaction with some function g(y).
This is also the approach taken when modeling time dependent covariates in a survival
setting (see also Klein and Moeschberger (2003)). Thus the cox model can be written as

Sj:Z(t) = exp

(
−
∫ y

−∞
h0(u)exp(γ

′Zg(u))du

)
(5.13)

where h0 is completely unspecified and g(y) is a known function. When the marker
measurements are positive supported then one can consider g(y) = log(y) or g(y) =

√
y.

When the marker measurements can also take negative values then one can consider
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g(y) = y. These are popular choices used in survival settings. A more flexible approach
would be to use an interaction with polynomials or splines. After fitting model (5.13) the
estimate γ̂, as well as the baseline cumulative hazard function Ĥ0 can be obtained. At
the second stage model (2.14) is fitted on the cumulative step baseline hazard function
Ĥ0 and the Ĥcns

0 is obtained. Given a profile of a subject the covariate adjusted survival
function can be estimated as

Ŝj:Z(t) = exp

(
−
∫ y

τ1

ĥcns0 (u)exp(γ̂ ′Zg(u))du

)
(5.14)

where ĥcns0 (y) is the first derivative based on model (2.14) with respect to y. Note
that we integrate from τ1 because model (2.14) equals to zero before the first knot. The
construction of the ROC curve or surface, for any given profile of a subject, is straight-
forward.

5.3 Simulation Studies

We conducted some simulation studies to evaluate the proposed method and compare
it with the dL/

√
2, dL/2 and dL imputation schemes as well as with the likelihood ap-

proach. The naive approach of proceeding with the empirical ROC curve/surface by
ignoring the censored nature of the data is also considered. Note that the imputation
based approaches were considered only in the left censoring scenarios. In all simulations
presented in this chapter we examined sample sizes of ni = 100, and ni = 200 where
i = 1, 2 for an ROC curve and i = 1, 2, 3 for an ROC surface. Simulation results tables
that refer to the ROC curve with equal sample sizes considered for the two populations
are Table 5.1, and Tables D1 and D2 of Appendix D regarding scenarios based on the
normal, the gamma and the non-central t distribution respectively as we will see right
next. For the corresponding simulation results in the three class case see Table 5.2 and
Tables D3 and D4 of Appendix D. We also considered scenarios with unequal sample sizes
where n1 = 100, n2 = 300, the results of which are presented in the Appendix D (see D5,
D6, D7 for unequal sample size scenarios involving normals, gammas and non-central t
distributions respectively). The limit of detection was selected to achieve 10%, 30% and
50% expected levels of censoring (these percentages refer to the total sample size (both
populations)). The tables that refer to our simulation results also show in parentheses
the two (or three) population specific censoring levels obtained in each simulation. As ex-
pected the likelihood method is superior when the underlying distributional assumptions
hold.

We explored the use of six knots for the proposed spline based technique and consider
the following scheme regarding their location: We consider 10 equally spaced points
between the first and last fully observed marker measurements. (The first and last fully
observed marker measurements are included in this set of 10 points). These points
are candidates for placing the knots. Thus, there are 10!/(6!4!) = 210 combinations
of knot placement schemes to choose from. The scheme that is finally selected, is the
one that yields the smallest distance from the corners of the nonparametric maximum
likelihood step estimator, that is the one that minimizes the quantity

∑
(Ŝcns(Y

(c)
i |∆i =

1)− ŜKM (Y
(c)
i |∆i = 1))2, where ŜKM is the Kaplan Meier survival estimation.
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Initially we performed some simulations regarding the ROC curve using the AUC as
a comparison criterion since this index is usually of most interest. First, we considered
a binormal scenario where Y0 ∼ N(3, 1), Y1 ∼ N(4, 0.82). We looked at left as well as
right censoring. In the presence of left censoring and for moderate censoring levels the
proposed approach compared to the naive and the simple imputation approaches yielded
minor differences in terms of mean squared error (MSE) of the estimated AUC. However,
in the cases where the expected level of censoring is 50% we observe essential differ-
ences in terms of MSE due to the essentially lower bias that is provided by the proposed
approach. The likelihood approach yielded somewhat better results, as expected, since
it assumes the correct model for each of the two populations. The results were similar
for the cases when the measurements where generated from two gamma distributions
(Y1 ∼ Gamma(25, 0.2), Y2 ∼ Gamma(35, 0.2)). The results of the binormal are presented
in Table 5.1. The results that correspond to the bi-gamma scenario are presented in the
Appendix D (see D1). The likelihood approach in these two cases assumed the correct
models for the two distributions. We also performed a simulation where the two popula-
tions were generated from two non-central t distributions (Y1 ∼ t(4, 7) and Y2 ∼ t(5, 10))
where the likelihood approach falsely assumed normality for the two groups. These dis-
tributions are heavy tailed (see Appendix D, Figure D1). However, in the presence of
an upper limit of detection the tails are in the undetectable region and hence one could
falsely assume normality in such a scenario. The likelihood approach seems to be fairly
robust in this setting (see Appendix D). However, in a setting where the distributions of
the two groups are bimodal, or a common parametric model cannot be assumed, com-
putational problems may occur during the maximization of the likelihood (for example
identifiability problems in the case of mixture distributions). For the derivation of con-
fidence intervals we considered the percentile bootstrap technique in all methods (i.e.
the proposed, the naive and the simple imputation methods). In all cases of heavier
censoring, the proposed method yielded markedly better coverage compared to its com-
petitors (apart from the likelihood approach when it assumes the correct models for the
two groups).

One may argue that 50% censoring is unlikely to occur. The merit of our approach is
however evident when one considers the partial AUC, even with low censoring rates. It is
often the case, that clinicians focus their interest on a specific range of FPR values. We
also explored the estimation of the partial area under the curve for 0.8 ≤ FPR ≤ 1, in
the case of a lower LOD for the binormal scenario mentioned above with unequal sample
sizes (n1 = 100, n2 = 300). The expected total censoring was set at 10%. The coverage,
as obtained by the percentile bootstrap, using the imputation schemes dL/

√
2, dL/2 and

dL is respectively 0.9080, 0.8690 and 0.0240. The proposed (CNS) approach and the
likelihood approach yielded coverages of 0.9490 and 0.9370 respectively.

We note that in the case of an uninformative or almost uninformative biomarker the
naive method might be preferred since as it is easier to compute. In that case the linear
extension of the ROC curve from the FPR point that corresponds to the lower limit of
detection, to the point (1,1) may provide an adequate approximation to the true ROC.
This might even be the case when the true ROC beyond (or prior in the case of an upper
LOD) the FPR point that corresponds to the LOD is approximately linear. However, the
true ROC is not known in practice and use of the naive method is not to be preferred. The
other simple imputation approaches still have the merit of being computationally easier
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than our approach but may not perform as well (particularly in terms of coverage).
We also conducted simulations for the three class case for the same sample sizes for

each population and the same expected levels of censoring. Again, we considered three
scenarios. In the first scenario the measurements were generated from three normal
distributions (Y1 ∼ N(5, 1), Y2 ∼ N(6, 1), Y3 ∼ N(7, 1)). In the second scenario we
consider a tri-gamma setting where Y1 ∼ Gamma(25, 0.2), Y2 ∼ Gamma(35, 0.2), and
Y3 ∼ Gamma(45, 0.2). In both of these cases the likelihood approach assumes the
correct models for estimation of the distribution parameters. In the third scenario marker
measurements were generated from three non central t distributions, Y1 ∼ t(4, 7), Y2 ∼
t(5, 10) and Y3 ∼ t(6, 12) (the figure of the densities of all all distribution is given in
Appendix D (see D2)). In this setting the likelihood approach falsely assumed normality
for each of the distributions. The conclusions from these simulations are the same as
in the two class case (Table 5.2 and Tables D3, D4 of Appendix D). Note again, that for
higher censoring, the coverage of the bootstrap based confidence intervals is essentially
better when using the proposed approach compared to the corresponding obtained by
the simple imputation techniques or the naive method.

Other knot placement schemes may also be employed. In most applications involving
splines, knots are placed at equally spaced percentiles (see Harrell (2001) for example).
However, in our case restrictions of monotonicity are imposed. Moreover the CNS cu-
mulative hazard function is forced to be zero before the first knot. Hence, it may be
necessary that more knots need to be placed near the minimum measurement value of
each group so that the proposed splines achieve enough flexibility. This is allowed by
providing 10 equally spaced points at which the six knots can be placed. A criterion that
could account for the sample size and the number of knots would be of great interest
and could be considered as future research. The simulations for the two class case with
unequal sample sizes and 6 knots for each spline are given in Appendix D. Another issue
might be the way the initial points (that the candidate knots are to be placed) are spread
or how many initial points should be considered. In Appendix D we also provide the
results of simulations that were carried out, using 5 or 7 knots for the two population
and a lower LOD scenarios (see Appendix D , Tables D8, D9 and D10).

For the estimation of the ROC and the AUC or VUS computational time is not an
issue. For the construction of the ROC curve, when the sample size of each population
equals to 200, 6 knots are used and the level of censoring is 30% the required CPU time
is approximately 2 seconds with a 2.8GHz processor. The corresponding time for an ROC
surface is about 5 seconds. For the calculation of the AUC or VUS numerical integration
is required. However, the bootstrap procedure is a more intensive task and the compu-
tational time depends on how many bootstrap samples are to be used for inference. The
computational time needed can be found with multiplication of the mentioned required
times for estimation, with the number of bootstrap samples.

5.4 Application

To demonstrate our method we use a liver cancer data set generated by the surface-
enhanced laser desorption/ionization (SELDI) time of flight mass spectrometer. The
serum samples of the liver cancer data were taken at Shanghai Chang-zheng Hospital,
China. There were three groups to discriminate: hepatoma (H) patients, chronic liver
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Table 5.1: Simulation results for 1000 repetitions for the bi-normal scenario. The likeli-
hood approach assumes the correct model for both populations. The coverage is derived
by using the percentile bootstrap with 200 samples for each repetition. (True AUC equals
to 0.7826)

AUC

Direction Sample Censoring Method Bias SE MSE Coverage
Likelihood -0.0005 0.0332 0.0011 0.9330

Naive -0.0015 0.0340 0.0012 0.9530
10% (Y0 : 19.1%, Y1 : 0.9%) dL/

√
2 -0.0001 0.0337 0.0011 0.9340

dL/2 -0.0020 0.0325 0.0011 0.9360
dL -0.0026 0.0355 0.0013 0.9330

CNS 0.0006 0.0351 0.0012 0.9500
Likelihood -0.0006 0.0342 0.0012 0.9330

Naive -0.0123 0.0346 0.0014 0.9440
n = 100 30% (Y0 : 50%, Y1 : 10%) dL/

√
2 -0.0066 0.0369 0.0014 0.9340

dL/2 -0.0048 0.0367 0.0014 0.9360
dL -0.0289 0.0374 0.0022 0.8720

CNS -0.0015 0.0352 0.0012 0.9550
Likelihood -0.0025 0.0387 0.0015 0.9440

Naive -0.0502 0.0346 0.0037 0.6750
50% (Y0 : 71%, Y1 : 29%) dL/

√
2 -0.0351 0.0385 0.0027 0.8290

dL/2 -0.0320 0.0390 0.0025 0.8540
dL -0.0696 0.0369 0.0062 0.4800

CNS -0.0025 0.0440 0.0019 0.9630
Left Likelihood -0.0008 0.0227 0.0005 0.9450

Censoring Naive -0.0015 0.0229 0.0005 0.9490
10% (Y0 : 19.1%, Y1 : 0.9%) dL/

√
2 0.0001 0.0230 0.0005 0.9440

dL/2 -0.0017 0.0222 0.0005 0.9410
dL -0.0025 0.0243 0.0006 0.9460

CNS -0.0001 0.0233 0.0005 0.9510
Likelihood -0.0010 0.0235 0.0006 0.9440

Naive -0.0125 0.0236 0.0007 0.9470
n = 200 30% (Y0 : 50%, Y1 : 10%) dL/

√
2 -0.0068 0.0254 0.0007 0.9320

dL/2 -0.0050 0.0254 0.0007 0.9420
dL -0.0291 0.0255 0.0015 0.7960

CNS -0.0012 0.0241 0.0006 0.9490
Likelihood -0.0021 0.0265 0.0007 0.9560

Naive -0.0503 0.0235 0.0031 0.4560
50% (Y0 : 71%, Y1 : 29%) dL/

√
2 -0.0352 0.0261 0.0019 0.7440

dL/2 -0.0321 0.0264 0.0017 0.7820
dL -0.0700 0.0255 0.0055 0.1770

CNS 0.0006 0.0292 0.0009 0.9460
10% (Y0 : 4%, Y1 : 16%) Likelihood -0.0005 0.0336 0.0011 0.9340

CNS 0.0025 0.0345 0.0012 0.9320
n = 100 30% (Y0 : 14%, Y1 : 46%) Likelihood -0.0010 0.0352 0.0012 0.9420

CNS 0.0020 0.0357 0.0013 0.9420
50% (Y0 : 29%, Y1 : 71%) Likelihood -0.0027 0.0403 0.0016 0.9450

CNS 0.0085 0.0453 0.0021 0.9500
Right 10% (Y0 : 4%, Y1 : 16%) Likelihood -0.0007 0.0228 0.0005 0.9520

Censoring CNS 0.0012 0.0231 0.0005 0.9460
n = 200 30% (Y0 : 14%, Y1 : 46%) Likelihood -0.0008 0.0234 0.0005 0.9540

CNS 0.0017 0.0241 0.0006 0.9490
50% (Y0 : 29%, Y1 : 71%) Likelihood -0.0019 0.0271 0.0007 0.9520

CNS 0.0091 0.0300 0.0010 0.9460
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Table 5.2: Simulation results for 1000 repetitions for the tri-normal scenario. The like-
lihood approach assumes the correct model for the three populations. The coverage is
derived by using the percentile bootstrap with 200 samples for each repetition. (True
VUS equals to 0.5362)

V US
Direction Sample Censoring Method Bias SE MSE Coverage

Likelihood 0.0008 0.0344 0.0012 0.9290
Naive -0.0015 0.0351 0.0012 0.9490

10% dL/
√
2 -0.0070 0.0351 0.0013 0.9280

(Y1 : 29.4%, Y2 : 4.7%, Y3 : 0.4%) dL/2 -0.0183 0.0361 0.0016 0.9160
dL -0.0041 0.0342 0.0012 0.9360

CNS 0.0061 0.0367 0.0014 0.9610
n = 100 Likelihood 0.0001 0.0376 0.0014 0.9350

Naive -0.0226 0.0339 0.0017 0.8920
30% dL/

√
2 -0.0229 0.0345 0.0017 0.8840

(Y1 : 61.6%, Y2 : 24%, Y3 : 4.4%) dL/2 -0.0374 0.0342 0.0026 0.8020
dL -0.0306 0.0326 0.0020 0.8460

CNS 0.0014 0.0436 0.0019 0.9760
Left Likelihood -0.0007 0.0234 0.0005 0.9470

Censoring Naive -0.0027 0.0238 0.0006 0.9530
10% dL/

√
2 -0.0080 0.0236 0.0006 0.9430

(Y1 : 29.4%, Y2 : 4.7%, Y3 : 0.4%) dL/2 -0.0195 0.0242 0.0010 0.8840
dL -0.0049 0.0234 0.0006 0.9450

CNS 0.0018 0.0245 0.0006 0.9520
n = 200 Likelihood -0.0008 0.0262 0.0007 0.9440

Naive -0.0234 0.0230 0.0011 0.8330
30% dL/

√
2 -0.0231 0.0233 0.0011 0.8550

(Y1 : 61.6%, Y2 : 24%, Y3 : 4.4%) dL/2 -0.0375 0.0231 0.0019 0.6400
dL -0.0309 0.0227 0.0015 0.7330

CNS 0.0031 0.0285 0.0008 0.9570
10% Likelihood 0.0009 0.0340 0.0012 0.9350

(Y1 : 0.37%, Y2 : 4.7%, Y3 : 24.93%) CNS 0.0054 0.0369 0.0014 0.9500
n = 100 30% Likelihood -0.0003 0.0382 0.0015 0.9340

(Y1 : 4.4%, Y2 : 24%, Y3 : 61.6%) CNS 0.0002 0.0428 0.0018 0.9720
Right 10% Likelihood -0.0007 0.0236 0.0006 0.9410

Censoring (Y1 : 0.37%, Y2 : 4.7%, Y3 : 24.93%) CNS 0.0020 0.0245 0.0006 0.9490
n = 200 30% Likelihood -0.0017 0.0257 0.0007 0.9540

(Y1 : 4.4%, Y2 : 24%, Y3 : 61.6%) CNS 0.0024 0.0279 0.0008 0.9600
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disease (LD) patients, and normal individuals (No) with sample sizes 54, 39 and 52
respectively. Wang and Chang (2011) studied a procedure of marker selection for these
data using pairwise analysis. They propose a wrapper-type algorithm for selecting the
best linear combination of markers that has high TPR rate within a specificity range. We
will explore the discriminatory capability of marker 4271.37 which was ranked in the top
five of markers in the study of Wang and Chang (2011).

Since there are three groups for classification, an ROC surface approach would be
preferable for the evaluation of such a marker. We explored both an ROC surface analysis
as well as an ROC curve analysis. The ROC curve analysis was conducted after merging
the hepatoma patients with chronic liver disease patients to a single ’diseased’ group.
This is in line with the results of the Kolmogorov-Smirnov test for the equality of the H
and LD marker distributions (p−value=0.239), as well as with the results of the Mann-
Whitney test (p−value=0.131). For discriminating the ’diseased’ from the non-diseased
the empirical ROC curve yields an AUC equal to 0.8563 (see also Figure D3 of Appendix
D). Our CNS estimate yielded an AUC equal to 0.8898 (see Table 5.3). The two ROC
curve estimates in Appendix D. The empirical ROC surface as well as the CNS estimated
surface are shown in Figure 5.3. The empirical VUS equals to 0.4563 and the CNS
based volume is 0.4796. The empirical survival estimates along with the CNS survival
estimates are shown in the same figure. In Appendix D we provide the projections of
the ROC surface needed for pairwise analysis (see Figure D4 of Appendix D). These
projections are equivalent to ROC curves even though it is not the sensitivity against the
false positive rate that is plotted. However, the interpretation is similar with higher AUC
values indicating better pairwise discriminatory capability of the marker. Thus, using
the ROC surface approach provides the merit of evaluating the marker simultaneously
for all three groups without foregoing a pairwise analysis. A discussion is also provided
in Yannoutsos et.al. (2008). All results regarding the three way analysis along with the
corresponding confidence intervals are shown in Table 5.3.

To investigate the performance of our method in this particular application in the
presence of an upper (lower) LOD we censored the marker values. For the ROC curve
analysis we used LOD values to achieve 30% and 50% censoring. For the ROC surface
analysis we used LOD values to achieve 10% and 30% censoring. Higher censoring was
not investigated for ROC surfaces since it is very likely that marker measurements for a
specific group may all end up censored. The results and the bootstrap based confidence
intervals are presented in Table 5.3. The corresponding ROC curves are presented in
Figures 5.4, and 5.5 for the cases of no censoring as well as the cases where a lower
detection limit was used. In the case of right censoring we compared our approach with
a dU replacement technique to see how estimates change as censoring increases. We
observe that the ’naive’ approach yielded an essentially reduced estimate in the case of
50% censoring whereas our estimate does not seem to be very sensitive to the level of
censoring. In the presence of left censoring the naive approach yielded similar results
to the proposed one. This is probably due to the almost linear part of the ROC curve at
high TPR values. Figure 5.6 shows the obtained CNS ROC surfaces for 10% and 30%
right censoring along the obtained survival curves which are extrapolated.

In Table 5.4 we present results derived from the projections of the corresponding ROC
surfaces in the unit cube. Bootstrap based confidence intervals are also reported for each
pair of the health status. Even though the pair LD-H yields an AUC estimate above 0.5,
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Table 5.3: AUC and VUS estimates for the liver data. The 95% confidence intervals are
derived using the percentile bootstrap using 500 bootstrap samples (LCL and UCL are
lower and upper confidence limits respectively).

AUC:
Direction Censoring Method Estimation 95% LCL 95% UCL

No censoring 0% Empirical 0.8563 0.7866 0.9205
CNS 0.8898 0.7992 0.9492

30% Naive 0.8507 0.7879 0.9129
Right CNS 0.8594 0.7892 0.9265

50% Naive 0.7964 0.7302 0.8565
CNS 0.8503 0.7426 0.9531

30% Naive 0.8478 0.7798 0.9161
Left CNS 0.8513 0.7485 0.9190

50% Naive 0.8511 0.7763 0.9160
CNS 0.8606 0.7830 0.9228

VUS:
No censoring 0% Empirical 0.4563 0.3497 0.5683

CNS 0.4796 0.3733 0.5913
10% Naive 0.4522 0.3498 0.5635

Right CNS 0.4477 0.3488 0.5758
30% Naive 0.4315 0.3295 0.5333

CNS 0.4447 0.3226 0.5594
10% Naive 0.4534 0.3564 0.5509

Left CNS 0.4514 0.3548 0.5674
30% Naive 0.4474 0.3509 0.5486

CNS 0.4658 0.3366 0.5755

the confidence intervals indicate a non-informative biomarker for this pair. This is also
the case when one uses the naive approach. This is consistent with the results of the
non-parametric tests for the equality of these distributions mentioned above. Overall, the
marker seems to discriminate well between the healthy and each one of the remaining
groups, yielding somewhat better performance for the H −No pair, as expected from the
survival curves shown in Figure 5.3. This is also evident by looking at the projections
of the ROC surfaces that allow visualization of a pairwise analysis (see Figure D5 of
Appendix D).

5.5 Discussion

In this chapter we considered a method of constructing an ROC curve or surface in
the case of a biomarker with a limit of detection. The proposed approach is a spline
based one and allows exponential extrapolation of the survival function when multiple
measurements that are left (or right) censored pile up at the limit of detection. Usual
ROC analysis can then be performed using the proposed CNS estimates for the survival
functions of each population.
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Table 5.4: AUC estimates for the liver data based on the projections of the ROC surface on
the sides of the unit cube. The 95% confidence intervals are derived using the percentile
bootstrap using 500 bootstrap samples (LCL and UCL are lower and upper confidence
limits respectively).

Direction Censoring Pair AUC Estimation 95% LCL 95% UCL
CNS

LD-No 0.8713 0.7322 0.9385
No censoring LD-H 0.5954 0.4705 0.7177

H-No 0.9035 0.8204 0.9598
LD-No 0.8314 0.7234 0.9273

Right 10% censoring LD-H 0.5852 0.4849 0.7193
H-No 0.8736 0.7957 0.9420
LD-No 0.8222 0.6899 0.9067

30% censoring LD-H 0.5938 0.4809 0.7093
H-No 0.8840 0.8097 0.9424
LD-No 0.8372 0.7517 0.9337

10% censoring LD-H 0.5845 0.4478 0.6959
Left H-No 0.8744 0.8046 0.9400

LD-No 0.8279 0.7394 0.9244
30% censoring LD-H 0.6035 0.4338 0.7057

H-No 0.8726 0.7818 0.9349
IMPUTATION

LD-No 0.8343 0.7465 0.9103
No censoring LD-H 0.5921 0.4810 0.7123

H-No 0.8722 0.7999 0.9409
LD-No 0.8314 0.7414 0.9162

Right 10% censoring LD-H 0.5926 0.4684 0.6982
H-No 0.8738 0.8006 0.9370
LD-No 0.8247 0.7340 0.9122

30% censoring LD-H 0.5933 0.4651 0.6911
H-No 0.8741 0.7954 0.9348
LD-No 0.8348 0.7490 0.9152

10% censoring LD-H 0.5878 0.4696 0.7004
Left H-No 0.8723 0.7883 0.9370

LD-No 0.8346 0.7401 0.9083
30% censoring LD-H 0.5668 0.4608 0.6797

H-No 0.8691 0.7869 0.9252
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Figure 5.3: Empirical and CNS ROC surface estimates for the liver data. Down: Kaplan
Meier and CNS estimates for the three survival functions (one for each group H, LD and
No, from left to right respectively).
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Figure 5.4: ROC curves for the liver data when an upper limit of detection is chosen to
censor the measurements. Left: 30% censoring. Right: 50% censoring.
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Figure 5.5: ROC curves when the H and LD group are combined to single ’diseased’ group
plotted together for 0% and 50% left censoring. Thin line: Empirical ROC with using all
available data. Dashed line: The empirical ROC when 50% of the data are left censored
(Naive approach). Thick line: CNS estimate when 50% of the data are left censored.

Unlike traditional methods that consider imputation of a single value for observation
below the lower limit of detection the proposed approach provides a smooth estimate of
the ROC curve or surface. The proposed approach provides a flexible way of estimat-
ing the underlying survival distributions, yet with no computational problems since it
involves least squares problems with linear restrictions. The function to be minimized
is always convex and the procedure can be applied with standard software. The corre-
sponding algorithms have already been developed for such optimization tasks by some
packages (we used lsqlin of MATLAB). Furthermore, the inverse of the survival func-
tion based on the proposed approach can be derived in a closed form, since it is the real
root of a cubic polynomial. The inversion of the survival function might not be such a
simple task when a common parametric model is not justified by the available data. Our
method can be generalized to take into account information carried by covariates. This
is made under the formulation of a Cox model for biomarker measurements.

Simulations that were performed under various scenarios for AUC (or VUS) estimation
showed satisfactory performance of the proposed method yielding in some cases differ-
ences in terms of bias (and MSE) from its naive and imputation based competitors. The
confidence intervals for the AUC (or VUS) that was obtained by the percentile bootstrap
technique yielded values close to the nominal level. This was not always the case for
the naive and the simple imputation techniques. Our method was also compared to
the maximum likelihood approach assuming the correct models for the populations and
we observed small disfferences in terms of MSE. In some cases, the proposed approach
turned out to be more efficient when the parametric assumption was misspecified.

When left censoring is present (left censoring is more common than right censoring)
the proposed approach can be promising in settings where the ROC region of high FPR
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Figure 5.6: CNS ROC surface estimates for the liver data when an upper limit of detection
is used. Up: CNS ROC surface estimate with a limit of detection that causes a level of
10% censoring along with the three survival estimates (KM and CNS). It is shown how
the cns survival estimates are extended beyond the limit of detection (vertical dashed
line). Down: ROC surface estimate with a limit of detection that causes a level of 30%
censoring.

rates is of interest. For example, the assessment of the discriminatory capability of PSA-
related biomarkers could involve investigation of the ROC curve for higher FPR’s (see
Miyakubo et al. (2009)). Exploring the partial area of an ROC curve in its high sensitivity
part may be more reasonable in some cases, since it may lead to avoiding unnecessary
procedures. Another example is given in Jiang et al. (1996) who study a partial AUC
index in the case of highly sensitive diagnostic tests. They use a mammography example
to indicate the need of focusing on the high sensitivity region of an ROC curve. Screening
mammography demands high sensitivity which can contribute to reducing mortality of
women with breast cancer. In this case, we desire high sensitivity because women with
false negative tests cannot take advantage of early detection and treatment (see Kopans
(1985)). As seen in our simulation studies the proposed approach is expected to be more
efficient than the naive and the simple imputation techniques.

We note here, that these replacement value imputation methods should not be con-
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fused with the multiple imputation based techniques, mostly used in the concept of
missing data. The latter should be further explored in the setting of a biomarker with an
LOD. However, some strict parametric assumptions should also be imposed, as in the
maximum likelihood approach. A recent strategy based on multiple imputation under a
regression framework is proposed by Arunajadai and Rauh (2012). They use a 7 stage
multiple imputation based procedure, following the ideas of Rubin (2004) for a setting
where the LOD refers to the covariate of a regression model. Their approach might be
adapted to the ROC setting.

Another interesting case may regard biomarkers applied on patients in different loca-
tions (centers). If the LOD of the biomarker differs from center to center then the censored
data will not be piled up at one limit of detection d, but spread out at the center-specific
limits of detection. In such a case one still has the knowledge (a-priori) which measure-
ment is censored and which is exactly observed for the same reason described above (the
LOD is known a-priori for each center). Our approach can accommodate such data with
no modifications.

5.6 Technical Notes

5.6.1 Bias of the VUS using a replacement value a < d

We drop the subscript of dL for convenience (dL = d). Consider that we use a value a,
a < d, to impute the values that are left censored. The marker values are obtained by:

M3i =

{
Y3i , if Y3i ≥ d
a, if Y3i < d

M2i =

{
Y2i , if Y2i ≥ d
a, if Y2i < d

M1i =

{
Y1i , if Y1i ≥ d
a, if Y1i < d.

The volume under the surface based on the imputed values is:

V USM = P (M3 > M2 > M1)

+
1

2
P (M3 = M2 > M1) +

1

2
P (M3 > M2 = M1)

+
1

6
P (M3 = M2 = M1).

Let
P (M3 > M2 > M1) = A,

P (M3 > M2 = M1) = B,

P (M3 = M2 > M1) = C,

P (M3 = M2 = M1) = D.

We derive:
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P (M3 > M2 > M1) = P (Y3 > Y2 > Y1, Y3 ≥ d, Y2 ≥ d, Y1 ≥ d)

+ P (Y3 > Y2 > a, Y3 ≥ d, Y2 ≥ d, Y1 < d).

We also derive:

A = P (Y3 > Y2 > Y1, Y3 ≥ d, Y2 ≥ d, Y1 ≥ d) + P (Y3 > Y2 > a, Y3 ≥ d, Y2 ≥ d, Y1 < d)

= P (Y3 > Y2 > Y1, Y3 ≥ d, Y2 ≥ d, Y1 ≥ d) + P (Y3 > Y2 > d, Y1 < d)

=

∫ ∞

d

∫ ∞

d
P (y1 < Y2 < y3)f(y3, y1)dy3dy1 +

∫ ∞

d
P (d < Y2 < y3)f(y3)dy3F1(d)

=

∫ ∞

d

∫ ∞

d
(F2(y3)− F2(y1))f3(y3)f1(y1)dy3dy1 +

∫ ∞

d
(F2(y3)− F2(d))f3(y3)dy3F1(d)

=

∫ ∞

d
F2(y3)f3(y3)S1(d)dy3 −

∫ ∞

d
F2(y1)f1(y1)S3(d)dy1

+

(∫ ∞

d
F2(y3)f3(y3)dy3 −

∫ ∞

d
F2(d)f3(y3)dy3

)
F1(d)

=

∫ ∞

d
F2(y3)f3(y3)dy3 −

∫ ∞

d
F2(y1)f1(y1)S3(d)dy1 − F1(d)

∫ ∞

d
F2(d)f3(y3)dy3

=

∫ ∞

d
F2(y3)f3(y3)dy3 − S3(d)

(∫ ∞

d
F2(y1)f1(y1)dy1 − F1(d)F2(d)

)
.

Note that this probability is independent of a. It can be shown that B = 0 and for C
and D we have respectively:

C = P (M3 > M2 = M1)

= P (Y3 > Y2 = Y1, Y3 ≥ d, Y2 < d, Y1 < d)

= P (Y3 > a = a, Y3 ≥ d, Y2 < d, Y1 < d)

= P (Y3 > a, Y3 ≥ d, Y2 < d, Y1 < d)

= P (Y3 ≥ d, Y2 < d, Y1 < d)

= S3(d)F2(d)F1(d)

D = P (M3 = M2 = M1) = P (Y3 < d, Y2 < d, Y1 < d) = F3(d)F2(d)F1(d).

Thus,

V USM = A+
1

2
B +

1

2
C +

1

6
D

=

∫ ∞

d
F2(y3)f3(y3)dy3 − S3(d)

(∫ ∞

d
F2(y1)f1(y1)dy1 − F1(d)F2(d)

)
+

1

2
S3(d)F2(d)F1(d) +

1

6
F3(d)F2(d)F1(d).



5.6. TECHNICAL NOTES 103

Note that if we set d = −∞ we derive that V USM = V US (as expected):

V USM =

∫ ∞

−∞
F2(y3)f3(y3)dy3 −

∫ ∞

−∞
F2(y1)f1(y1)dy1

=

∫ ∞

−∞

∫ ∞

−∞
F2(y3)f3(y3)f1(y1)dy3dy1 −

∫ ∞

−∞

∫ ∞

−∞
F2(y1)f3(y3)f1(y1)dy3dy1

=

∫ ∞

−∞

∫ ∞

d
(F2(y3)− F2(y1))f3(y3)f1(y1)dy3dy1

=

∫ ∞

−∞

∫ ∞

−∞
P (y1 < Y2 < y3)f(y3, y1)dy3dy1

= P (Y1 < Y2 < Y3)

= V US.

Thus, since the probabilities A,B,C, and D are independent of the value a, we con-
clude that the volume under the ROC surface V USM will be biased for any replacement
value a < d.
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Chapter 6

Summary and further research

Diagnostic marker evaluation is a developing field. Strategies that deal with modeling
the marker measurements based on covariates have been proposed by many authors
(see Pepe (2003) and the references provided therein). A typical setting would involve
the use of a generalized linear model that could relate the predictors with the biomarker
as a response. Based on such a model one could then proceed to constructing the
corresponding ROC for a specific covariate profile. Settings that involve the evaluation
or modeling of a biomarker in the presence of censoring have been recently developed
(see Cai et al. (2006), Heagerty et al. (2000)). Censoring is typically present when a time
to death (or more generally a time to event) variable is involved. When fatal diseases
are under study, it is desired to model the biomarker values based on the time to death
variable. It is expected that marker values taken closer to the event are more indicative.

Maximum likelihood and semi-parametric approaches have been proposed to model
such time-dependent biomarkers (see Austin and Hoch (2004), Cai et al. (2006), Hea-
gerty et al. (2000)). In this thesis Estimating Function approaches are proposed that
do not assume any parametric form for the distribution of the biomarker values and
can accommodate a censored covariate. Settings that involve biomarker values that are
taken repeatedly over time are also included and discussed. The repeated measure-
ments setting needs to be explored through simulation studies and compared with the
joint modeling approach when parametric assumptions are satisfied or violated for the
latter. Particularly when binary data are involved and ALR type models are employed
the computational cost must be explored and evaluated. A parametric model might be
used to model the censored covariate, however a spline based approach that relaxes
strict parametric assumptions can also be used for this purpose. We propose a new
spline based approach for survival estimation that has the appealing property of always
converging since convex optimization is involved, unlike the splines fitted by maximum
likelihood.

Even though in most cases there is only one censored variable available along with
other fully observed variables for analysis, there might be cases that two or more censored
variables are available. Hence it would be interesting to see how our methods can be
extended to such a setting when building a generalized linear regression model. In these
cases the covariance between the two (or more) censored variables must be addressed.
This might involve obtaining a smooth version of the bivariate distribution of the two
censored covariates by extending our spline approach to account for bivariate survival

105
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functions (or even higher dimensions). This might involve smoothing the bivariate Kaplan
Meier survival function introduced by Dabrowska (1988). As a further extension, the
same setting could be studied when measurements are taken repeatedly over time. In
that case, the covariance of the two censored variables as well as the longitudinal nature
of the data must be taken into account. Another interesting point would be to consider
cases where apart from the censored covariate, the response values are also censored.
This could be observed in a setting where modeling a biomarker that is subject to a lower
(or an upper) limit of detection and also depends on a time to event variable. Further
exploration is also required in different types of censoring such as the more general
interval censoring. In our estimating function approach interval censoring is a case that
can only be accommodated only if at least some data are exactly observed, since the
dispersion parameter, as well as the correlation parameters, are estimated based solely
on the fully observed data. The modification of our method that would accommodate this
kind of censoring when all data are interval censored is challenging since it might involve
the extension of the estimating equations to also account for the dispersion parameter.
Furthermore, the exploration/construction of an analogous to the so called "sandwich"
variance estimator (see Fitzmaurice et al. (2004)) would be of great interest. This would
involve defining the appropriate residuals and studying their properties.

As seen in Chapter 4, the derivation of the time dependent sensitivity might imply the
use of a parametric model for the underlying residuals. It would be of great interest (par-
ticularly under a longitudinal framework) to develop a non-parametric density estimation
technique that could accommodate the censored nature of the data and could also pro-
vide the option to impose equality restrictions for the mean (and maybe the variance).
The extension of our HCNS approach under this notion might be a computationally chal-
lenging task since these equality constraints are not linear with respect to the spline
parameters and need to be employed simultaneously with the monotonicity constraints.

Apart from cases where time to event variables are present, the censoring phe-
nomenon may appear in the biomarker itself. The most common setting is the case of a
lower limit of detection (LOD) where due to technical limitations measurements cannot be
taken below some limit. Some simple imputation approaches have been employed to deal
with such settings however our simulation studies have shown may be inefficient. Max-
imum likelihood approaches have also been proposed (see Perkins et al. (2007), Vexler
et al. (2008)) but strict parametric assumptions must be imposed. We prove that in the
three class case bias is invoked in estimating the VUS when simple replacement values
are used and we explore our spline approach to construct the ROC curve (or surface in
the three class case). Our approach does not require any strict parametric assumption
and is shown to be more efficient than simple replacement value based approaches via
simulations. The proposed approach can also accommodate right censored data as well
as marker values that lie on the real line, unlike the simple replacement value methods
which can only deal with let censored biomarker values and positive valued biomarkers.

Regarding the HCNS approach and its use for ROC curve/surface estimation further
research could focus on more sophisticated knot placement strategies and methods of
selecting the number of knots. Another point of interest for further study might be the
use of the disease status variable, D, as a covariate in the Cox model used in section
5.2. Building such a model could allow testing whether the populations are stochastically
ordered. This approach is taken in Gonen and Heller (2010) in which the Lehmann family
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or ROC curves is studied (see also Lehmann (1953)). When the available data consist
of a possibly censored marker and the disease status, they consider fitting a cox model
where the disease status plays the role of a covariate. If another covariate is also present
they consider also an interaction term with the disease status. Under this formulation
the proposed method would involve fitting the constrained spline model to the baseline
survival and thus force a stochastic ordering of the population distributions.

It is worth mentioning that the approaches introduced in this thesis are not limited
to settings in the field of biostatistics. In many cases econometricians are asked to model
variables where income plays the role of a covariate, and in most studies income is right
censored above some specific value. Environmetrics is another field that the approaches
introduced in this thesis may apply. For example wind speed might be subject to a lower
limit of detection and might play the role of a covariate in forecasting wildfire hazard (see
also Chang (2007)). Another example might refer to the field of entomology where wind
speed might affect fly activity (see Steelman et al. (1993)).
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Appendices

1 Appendix A

1.1 Additional Simulations for continuous, count and binary data
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Figure A1: (a): The three sigmoidals corresponding to the values of β1 = −2,−3,−4 at which the simulations
were conducted using the logit link function. On the x−axis the three quartiles for the true distibution of the covariate
(Exponential with mean 3) are plotted. (b): Example of simulated data set where the probability of a positive result given
the true value of X, versus the censored covariate (T = min(X,C)) is plotted. The slope value is -2 and the total
censoring 70%, half of which is due to the cutpoint (end of study). The value of β0 is log(9). (c): Example of simulated
data set where the probability of a positive result given the true value of X versus the censored covariate (T = min(X,C))
is plotted. The slope value is -2 and the total censoring 30%, half of which is due to the cutpoint (end of study). The value
of β0 is log(9).
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Table A1: Simulation results of 1000 repetitions for the linear case (n = 100). Half of the
censoring is due to the cutpoint (end of study). The noise ϵ is from N(0, 1).

β0 β1
Cens. ρ Method Bias SE MSE Width Cover Bias SE MSE Width Cover

Likelihood -0.0380 0.1280 0.0178 - - - - - - 0.0119 0.0277 0.0009 - - - - - -
CC -0.0135 0.1954 0.0384 0.7963 0.9580 0.0065 0.0961 0.0093 0.3910 0.9540

QS(Exp) -0.0063 0.1586 0.0252 0.6131 0.9500 0.0010 0.0413 0.0017 0.1607 0.9450
0.2 Un(Exp) -0.0063 0.1587 0.0252 0.6133 0.9510 0.0010 0.0413 0.0017 0.1608 0.9460

QS(Weib) -0.0069 0.1596 0.0255 0.6151 0.9480 0.0012 0.0424 0.0018 0.1515 0.9420
Un(Weib) -0.0070 0.1597 0.0256 0.6151 0.9470 0.0012 0.0424 0.0018 0.1615 0.9450

Likelihood -0.0006 0.1483 0.0220 - - - - - - 0.0028 0.0374 0.0014 - - - - - -
CC 0.0029 0.2037 0.0415 0.7957 0.9440 0.0025 0.0986 0.0097 0.3895 0.9500

QS(Exp) 0.0047 0.1596 0.0255 0.6146 0.9380 0.0008 0.0430 0.0018 0.1626 0.9410
0.3 Un(Exp) 0.0046 0.1595 0.0255 0.6149 0.9380 0.0008 0.0430 0.0018 0.1627 0.9410

QS(Weib) 0.0037 0.1605 0.0258 0.6167 0.9440 0.0012 0.0443 0.0020 0.1637 0.9390
Un(Weib) 0.0036 0.1603 0.0257 0.6170 0.9430 0.0012 0.0443 0.0020 0.1639 0.9400

30% Likelihood 0.0101 0.1585 0.0252 - - - - - - -0.0026 0.0461 0.0021 - - - - - -
CC 0.0030 0.1999 0.0400 0.7962 0.9470 0.0002 0.0970 0.0094 0.3896 0.9550

QS(Exp) 0.0070 0.1651 0.0273 0.6215 0.9420 -0.0020 0.0477 0.0023 0.1719 0.9270
0.5 Un(Exp) 0.0073 0.1647 0.0272 0.6232 0.9400 -0.0021 0.0476 0.0023 0.1727 0.9280

QS(Weib) 0.0057 0.1667 0.0278 0.6230 0.9390 -0.0015 0.0509 0.0026 0.1726 0.9050
Un(Weib) 0.0058 0.1663 0.0277 0.6248 0.9380 -0.0016 0.0510 0.0026 0.1735 0.9000

Likelihood 0.0080 0.1660 0.0276 - - - - - - -0.0032 0.0577 0.0033 - - - - - -
CC 0.0029 0.2018 0.0407 0.7969 0.9470 -0.0011 0.0957 0.0092 0.3891 0.9560

QS(Exp) 0.0087 0.1709 0.0293 0.6552 0.9420 -0.0043 0.0590 0.0035 0.2154 0.9250
0.8 Un(Exp) 0.0076 0.1766 0.0313 0.6743 0.9380 -0.0040 0.0637 0.0041 0.2278 0.9230

QS(Weib) 0.0046 0.1772 0.0314 0.6530 0.9300 -0.0025 0.0673 0.0045 0.2158 0.8780
Un(Weib) 0.0034 0.1850 0.0342 0.6742 0.9320 -0.0023 0.0748 0.0056 0.2274 0.8640

Likelihood -0.0565 0.1475 0.0250 - - - - - - 0.0183 0.0377 0.0018 - - - - - -
CC -0.0108 0.3337 0.1115 1.3594 0.9510 0.0051 0.4687 0.2198 1.8982 0.9500

QS(Exp) -0.0103 0.2087 0.0436 0.8172 0.9420 0.0027 0.0614 0.0038 0.2418 0.9520
0.2 Un(Exp) -0.0103 0.2086 0.0436 0.8175 0.9420 0.0027 0.0614 0.0038 0.2419 0.9520

QS(Weib) -0.0127 0.2117 0.0450 0.8250 0.9390 0.0053 0.0696 0.0049 0.2506 0.9220
Un(Weib) -0.0127 0.2116 0.0449 0.8253 0.9410 0.0053 0.0696 0.0049 0.2506 0.9230

Likelihood -0.0095 0.1649 0.0273 - - - - - - 0.0060 0.0489 0.0024 - - - - - -
CC 0.0028 0.3498 0.1223 1.3631 0.9490 -0.0002 0.4801 0.2304 1.8938 0.9530

QS(Exp) 0.0044 0.2073 0.0430 0.8163 0.9390 0.0009 0.0647 0.0042 0.2424 0.9410
0.3 Un(Exp) 0.0044 0.2069 0.0428 0.8166 0.9390 0.0009 0.0646 0.0042 0.2425 0.9390

QS(Weib) -0.0005 0.2107 0.0444 0.8260 0.9340 0.0070 0.0768 0.0060 0.2564 0.8990
Un(Weib) -0.0005 0.2102 0.0442 0.8265 0.9360 0.0070 0.0768 0.0059 0.2565 0.8990

70% Likelihood 0.0174 0.1813 0.0332 - - - - - - -0.0045 0.0624 0.0039 - - - - - -
CC 0.0162 0.3251 0.1060 1.3755 0.9600 -0.0257 0.4515 0.2045 1.9145 0.9620

QS(Exp) 0.0039 0.2142 0.0459 0.8258 0.9290 -0.0008 0.0708 0.0050 0.2520 0.9130
0.5 Un(Exp) 0.0039 0.2145 0.0460 0.8282 0.9300 -0.0007 0.0710 0.0050 0.2524 0.9140

QS(Weib) -0.0028 0.2178 0.0475 0.8347 0.9340 0.0075 0.0920 0.0085 0.2635 0.8250
Un(Weib) -0.0028 0.2180 0.0475 0.8371 0.9370 0.0076 0.0922 0.0086 0.2641 0.8270

Likelihood 0.0108 0.1792 0.0322 - - - - - - -0.0021 0.0959 0.0092 - - - - - -
CC -0.0001 0.3433 0.1178 1.3635 0.9480 0.0068 0.4770 0.2276 1.8964 0.9400

QS(Exp) 0.0047 0.2163 0.0468 0.8348 0.9380 -0.0017 0.1024 0.0105 0.2996 0.8490
0.8 Un(Exp) 0.0036 0.2198 0.0483 0.8576 0.9440 -0.0015 0.1020 0.0104 0.3040 0.8520

QS(Weib) -0.0123 0.2327 0.0543 0.8448 0.9260 0.0194 0.1676 0.0285 0.3115 0.6480
Un(Weib) -0.0135 0.2343 0.0551 0.8675 0.9280 0.0200 0.1678 0.0286 0.3159 0.6530



1. APPENDIX A 119

Table A2: Simulation results of 1000 repetitions for the linear case (n = 300). Half of the
censoring is due to the cutpoint (end of study). The noise ϵ is from Student t with 4 d.f.

β0 β1
Cens. ρ Method Bias SE MSE Width Cover Bias SE MSE Width Cover

Likelihood -0.1491 0.2669 0.0935 - - - - - - 0.0457 0.0691 0.0069 - - - - - -
CC 0.0009 0.1652 0.0273 0.6315 0.9510 -0.0010 0.0805 0.0065 0.3062 0.9440

QS(Exp) -0.0006 0.1275 0.0163 0.4944 0.9530 0.0002 0.0329 0.0011 0.1285 0.9490
0.2 Un(Exp) -0.0006 0.1275 0.0162 0.4983 0.9530 0.0002 0.0329 0.0011 0.1284 0.9500

QS(Weib) -0.0013 0.1279 0.0163 0.4954 0.9520 0.0005 0.0335 0.0011 0.1291 0.9470
Un(Weib) -0.0013 0.1278 0.0163 0.4954 0.9520 0.0005 0.0335 0.0011 0.1292 0.9480
QS(GG) -0.0003 0.1287 0.0166 0.4948 0.9490 -0.0003 0.0347 0.0012 0.1285 0.9280
Un(GG) -0.0003 0.1286 0.0165 0.4949 0.9500 -0.0003 0.0346 0.0012 0.1285 0.9310

Likelihood -0.0906 0.2460 0.0687 - - - - - - 0.0274 0.0680 0.0054 - - - - - -
CC 0.0032 0.1611 0.0259 0.6358 0.9560 -0.0009 0.0775 0.0060 0.3091 0.9490

QS(Exp) 0.0032 0.1290 0.0166 0.4990 0.9500 -0.0008 0.0350 0.0012 0.1312 0.9340
0.3 Un(Exp) 0.0032 0.1295 0.0167 0.4997 0.9360 -0.0008 0.0350 0.0012 0.1309 0.9450

QS(Weib) -0.0071 0.1356 0.0185 0.5002 0.9350 0.0017 0.0354 0.0013 0.1312 0.9370
Un(Weib) -0.0070 0.1355 0.0184 0.5003 0.9360 0.0017 0.0354 0.0013 0.1313 0.9360
QS(GG) -0.0056 0.1367 0.0187 0.4998 0.9310 0.0006 0.0381 0.0015 0.1307 0.9050
Un(GG) -0.0055 0.1366 0.0187 0.5000 0.9310 0.0006 0.0382 0.0015 0.1308 0.9020

30% Likelihood -0.0405 0.2366 0.0576 - - - - - - 0.0102 0.0651 0.0043 - - - - - -
CC -0.0059 0.1609 0.0259 0.6335 0.9490 0.0002 0.0818 0.0067 0.3081 0.9390

QS(Exp) -0.0044 0.1268 0.0161 0.5038 0.9550 -0.0002 0.0364 0.0013 0.1395 0.9520
0.5 Un(Exp) -0.0042 0.1272 0.0162 0.5053 0.9560 -0.0003 0.0365 0.0013 0.1402 0.9520

QS(Weib) -0.0043 0.1276 0.0163 0.5043 0.9530 -0.0003 0.0385 0.0015 0.1397 0.9410
Un(Weib) -0.0042 0.1283 0.0165 0.5056 0.9540 -0.0004 0.0387 0.0015 0.1403 0.9350
QS(GG) -0.0022 0.1322 0.0175 0.5042 0.9430 -0.0018 0.0463 0.0021 0.1397 0.8540
Un(GG) -0.0018 0.1330 0.0177 0.5057 0.9440 -0.0022 0.0470 0.0022 0.1404 0.8520

Likelihood -0.0140 0.1610 0.0261 - - - - - - 0.0034 0.0507 0.0026 - - - - - -
CC -0.0078 0.1584 0.0251 0.6320 0.9610 0.0021 0.0787 0.0062 0.3078 0.9590

QS(Exp) -0.0057 0.1311 0.0172 0.5268 0.9560 0.0005 0.0483 0.0023 0.1746 0.9290
0.8 Un(Exp) -0.0070 0.1339 0.0180 0.5456 0.9560 0.0008 0.0520 0.0027 0.1851 0.9290

QS(Weib) -0.0075 0.1344 0.0181 0.5271 0.9460 0.0013 0.0546 0.0030 0.1748 0.8780
Un(Weib) -0.0089 0.1385 0.0193 0.5501 0.9500 0.0016 0.0611 0.0037 0.1851 0.8570
QS(GG) -0.0058 0.1520 0.0231 0.5274 0.9190 0.0001 0.0736 0.0054 0.1757 0.7620
Un(GG) -0.0037 0.1634 0.0267 0.5482 0.9130 -0.0022 0.0865 0.0075 0.1870 0.7160

Likelihood -0.1982 0.2679 0.1111 - - - - - - 0.0631 0.0798 0.0104 - - - - - -
CC -0.0012 0.2684 0.0721 1.0406 0.9520 -0.0043 0.3634 0.1321 1.4399 0.9540

QS(Exp) -0.0030 0.1731 0.0300 0.6524 0.9390 0.0007 0.0510 0.0026 0.1925 0.9420
0.2 Un(Exp) -0.0030 0.1730 0.0300 0.6525 0.9400 0.0006 0.0510 0.0026 0.1924 0.9440

QS(Weib) -0.0046 0.1738 0.0302 0.6553 0.9390 0.0026 0.0545 0.0030 0.1965 0.9310
Un(Weib) -0.0045 0.1737 0.0302 0.6554 0.9390 0.0026 0.0545 0.0030 0.1965 0.9320
QS(GG) -0.0059 0.1768 0.0313 0.6591 0.9400 0.0047 0.0749 0.0056 0.2028 0.7890
Un(GG) -0.0054 0.1761 0.0310 0.6670 0.9430 0.0041 0.0738 0.0055 0.2163 0.7760

Likelihood -0.1454 0.2764 0.0975 - - - - - - 0.0453 0.0865 0.0095 - - - - - -
CC 0.0019 0.2619 0.0686 1.0479 0.9580 -0.0111 0.3647 0.1331 1.4506 0.9470

QS(Exp) -0.0037 0.1661 0.0276 0.6591 0.9590 -0.0004 0.0516 0.0026 0.1963 0.9320
0.3 Un(Exp) -0.0038 0.1663 0.0277 0.6694 0.9460 -0.0004 0.0517 0.0027 0.1974 0.9540

QS(Weib) -0.0053 0.1666 0.0278 0.6614 0.9550 0.0008 0.0572 0.0033 0.1986 0.9050
Un(Weib) -0.0055 0.1669 0.0279 0.6596 0.9560 0.0008 0.0573 0.0033 0.1987 0.9060
QS(GG) -0.0104 0.1844 0.0341 0.6746 0.9380 0.0056 0.0925 0.0086 0.2069 0.6800
Un(GG) -0.0102 0.1844 0.0341 0.6717 0.9360 0.0053 0.0924 0.0086 0.2006 0.6700

70% Likelihood -0.0521 0.2850 0.0839 - - - - - - 0.0126 0.0729 0.0055 - - - - - -
CC 0.0020 0.2618 0.0686 1.0482 0.9580 -0.0114 0.3646 0.1330 1.4510 0.9470

QS(Exp) -0.0038 0.1672 0.0280 0.6647 0.9580 -0.0002 0.0572 0.0033 0.2038 0.9150
0.5 Un(Exp) -0.0046 0.1681 0.0283 0.7740 0.9560 -0.0000 0.0573 0.0033 0.2041 0.9150

QS(Weib) -0.0067 0.1685 0.0284 0.6645 0.9480 0.0024 0.0727 0.0053 0.2060 0.8410
Un(Weib) -0.0072 0.1694 0.0288 0.6662 0.9480 0.0025 0.0729 0.0053 0.2064 0.8390
QS(GG) -0.0121 0.1821 0.0333 0.6704 0.9400 0.0129 0.1398 0.0197 0.2181 0.5280
Un(GG) -0.0124 0.1827 0.0335 0.6647 0.9358 0.0125 0.1405 0.0199 0.2034 0.5041

Likelihood 0.0130 0.1694 0.0289 - - - - - - -0.0034 0.0798 0.0064 - - - - - -
CC -0.0085 0.2622 0.0688 1.0511 0.9640 0.0125 0.3652 0.1336 1.4519 0.9620

QS(Exp) -0.0017 0.1741 0.0303 0.6740 0.9520 -0.0003 0.0828 0.0069 0.2426 0.8610
0.8 Un(Exp) -0.0027 0.1784 0.0318 0.6926 0.9500 -0.0000 0.0834 0.0070 0.2462 0.8580

QS(Weib) -0.0083 0.1834 0.0337 0.6762 0.9390 0.0078 0.1314 0.0173 0.2453 0.6450
Un(Weib) -0.0093 0.1862 0.0348 0.6950 0.9380 0.0082 0.1321 0.0175 0.2489 0.6640
QS(GG)(1) -0.0189 0.2413 0.0586 0.6804 0.8370 0.0295 0.3018 0.0920 0.2588 0.2700
Un(GG) -0.0190 0.2453 0.0606 0.6660 0.8200 0.0277 0.3074 0.0953 0.2051 0.2180

(1) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 95.8% and 96.7% respectively
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Table A3: Simulation results of 1000 repetitions for the linear case (n = 100). Half of the
censoring is due to the cutpoint (end of study). The noise ϵ is from Student t with 4 d.f.

β0 β1
Cens. ρ Method Bias SE MSE Width Cover Bias SE MSE Width Cover

Likelihood -0.0970 0.2388 0.0664 - - - - - - 0.0304 0.0572 0.0042 - - - - - -
CC -0.0127 0.2792 0.0781 1.1067 0.9630 0.0060 0.1396 0.0195 0.5411 0.9560

QS(Exp) -0.0063 0.2188 0.0479 0.8526 0.9540 0.0016 0.0575 0.0033 0.2225 0.9490
0.2 Un(Exp) -0.0063 0.2187 0.0479 0.8529 0.9530 0.0016 0.0575 0.0033 0.2225 0.9500

QS(Weib) -0.0075 0.2202 0.0485 0.8553 0.9510 0.0020 0.0588 0.0035 0.2236 0.9450
Un(Weib) -0.0075 0.2202 0.0485 0.8555 0.9510 0.0020 0.0588 0.0035 0.2237 0.9470

Likelihood -0.0421 0.2401 0.0594 - - - - - - 0.0147 0.0623 0.0041 - - - - - -
CC 0.0015 0.2815 0.0792 1.1095 0.9530 0.0001 0.1377 0.0190 0.5436 0.9540

QS(Exp) 0.0007 0.2216 0.0491 0.8567 0.9470 0.0017 0.0602 0.0036 0.2280 0.9360
0.3 Un(Exp) 0.0006 0.2220 0.0493 0.8572 0.9480 0.0018 0.0603 0.0036 0.2282 0.9370

QS(Weib) -0.0011 0.2229 0.0497 0.8601 0.9490 0.0026 0.0616 0.0038 0.2301 0.9360
Un(Weib) -0.0013 0.2232 0.0498 0.8606 0.9490 0.0027 0.0618 0.0038 0.2303 0.9370

30% Likelihood -0.0010 0.2480 0.0615 - - - - - - 0.0004 0.0689 0.0047 - - - - - -
CC 0.0131 0.2790 0.0780 1.1112 0.9580 -0.0049 0.1359 0.0185 0.5419 0.9470

QS(Exp) 0.0082 0.2230 0.0498 0.8699 0.9500 -0.0022 0.0632 0.0040 0.2419 0.9340
0.5 Un(Exp) 0.0072 0.2238 0.0501 0.8727 0.9520 -0.0019 0.0637 0.0041 0.2433 0.9310

QS(Weib) 0.0051 0.2260 0.0511 0.8725 0.9510 -0.0007 0.0675 0.0046 0.2435 0.9070
Un(Weib) 0.0041 0.2271 0.0516 0.8753 0.9520 -0.0003 0.0684 0.0047 0.2448 0.9110

Likelihood -0.0010 0.2447 0.0599 - - - - - - 0.0027 0.0829 0.0069 - - - - - -
CC -0.0122 0.2835 0.0805 1.1041 0.9430 0.0074 0.1375 0.0190 0.5390 0.9470

QS(Exp) -0.0027 0.2432 0.0592 0.9053 0.9430 0.0017 0.0844 0.0071 0.3023 0.9210
0.8 Un(Exp) -0.0038 0.2526 0.0638 0.9403 0.9500 0.0020 0.0924 0.0085 0.3218 0.9150

QS(Weib) -0.0099 0.2500 0.0626 0.9068 0.9370 0.0053 0.0961 0.0093 0.3029 0.8790
Un(Weib) -0.0116 0.2619 0.0687 0.9404 0.9320 0.0057 0.1082 0.0117 0.3213 0.8580

Likelihood -0.1574 0.2559 0.0894 - - - - - - 0.0492 0.0721 0.0076 - - - - - -
CC -0.0176 0.4539 0.2063 1.8495 0.9600 0.0186 0.6242 0.3899 2.5771 0.9620

QS(Exp) -0.0111 0.2874 0.0827 1.1042 0.9470 0.0033 0.0869 0.0076 0.3281 0.9320
0.2 Un(Exp) -0.0112 0.2877 0.0829 1.1046 0.9500 0.0033 0.0870 0.0076 0.3282 0.9320

QS(Weib) -0.0148 0.2922 0.0856 1.1180 0.9490 0.0086 0.0995 0.0100 0.3464 0.9160
Un(Weib) -0.0149 0.2926 0.0858 1.1184 0.9490 0.0086 0.0997 0.0100 0.3466 0.9140

Likelihood -0.0861 0.2660 0.0782 - - - - - - 0.0298 0.0827 0.0077 - - - - - -
CC 0.0081 0.4754 0.2261 1.8802 0.9550 0.0032 0.6747 0.4542 2.6143 0.9370

QS(Exp) 0.0100 0.2969 0.0833 0.8249 0.9320 -0.0014 0.0908 0.0082 0.3351 0.9270
0.3 Un(Exp) 0.0090 0.2973 0.0882 0.8274 0.9370 -0.0012 0.0907 0.0082 0.3360 0.9260

QS(Weib) 0.0030 0.3020 0.0912 1.1408 0.9370 0.0071 0.1081 0.0117 0.3565 0.8900
Un(Weib) 0.0028 0.3023 0.0914 1.1419 0.9380 0.0072 0.1082 0.0117 0.3566 0.8900

70% Likelihood -0.0089 0.2644 0.0700 - - - - - - 0.0050 0.0929 0.0087 - - - - - -
CC 0.0191 0.4537 0.2062 1.8637 0.9590 -0.0163 0.6399 0.4097 2.5836 0.9570

QS(Exp) 0.0092 0.2950 0.0871 1.1265 0.9430 -0.0005 0.0990 0.0098 0.3447 0.9080
0.5 Un(Exp) 0.0091 0.2950 0.0871 1.1303 0.9440 -0.0005 0.0986 0.0097 0.3499 0.9110

QS(Weib) -0.0021 0.3025 0.0915 1.1407 0.9350 0.0147 0.1327 0.0178 0.3691 0.8130
Un(Weib) -0.0023 0.3023 0.0914 1.1445 0.9390 0.0148 0.1326 0.0178 0.3698 0.8180

Likelihood 0.0134 0.2694 0.0726 - - - - - - -0.0013 0.1376 0.0189 - - - - - -
CC -0.0262 0.4686 0.2203 1.8754 0.9430 0.0140 0.6555 0.4299 2.6080 0.9610

QS(Exp) -0.0172 0.3019 0.0915 1.1451 0.9360 0.0044 0.1418 0.0201 0.4174 0.8590
0.8 Un(Exp) -0.0181 0.3094 0.0961 1.1819 0.9400 0.0044 0.1424 0.0203 0.4273 0.8680

QS(Weib) -0.0447 0.3285 0.1099 1.1605 0.9170 0.0389 0.2437 0.0609 0.4360 0.6390
Un(Weib) -0.0458 0.3342 0.1138 1.1974 0.9240 0.0396 0.2454 0.0618 0.4428 0.6550
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Table A4: Simulation results of 1000 repetitions for the linear case (n = 1000). Half of
the censoring is due to the cutpoint (end of study). The noise ϵ is from N(0, 1).

β0 β1
Cens. ρ Method Bias SE MSE Width Cover Bias SE MSE Width Cover

Likelihood -0.0117 0.0409 0.0018 - - - - - - 0.0042 0.0086 0.0001 - - - - - -
CC 0.0014 0.0639 0.0041 0.2464 0.9490 -0.0003 0.0303 0.0009 0.1197 0.9420

QS(Exp) 0.0010 0.0498 0.0025 0.1937 0.9520 -0.0000 0.0126 0.0002 0.0501 0.9560
0.2 Un(Exp) 0.0010 0.0497 0.0025 0.1937 0.9520 -0.0000 0.0126 0.0002 0.0501 0.9560

QS(Weib) 0.0009 0.0499 0.0025 0.1930 0.9490 0.0000 0.0127 0.0002 0.0501 0.9570
Un(Weib) 0.0009 0.0499 0.0025 0.1939 0.9490 0.0000 0.0127 0.0002 0.0501 0.9560
QS(GG) 0.0013 0.0500 0.0025 0.1937 0.9480 -0.0002 0.0131 0.0002 0.0500 0.9470
Un(GG) 0.0013 0.0500 0.0025 0.1937 0.9490 -0.0002 0.0131 0.0002 0.0500 0.9470

Likelihood -0.0022 0.0487 0.0024 - - - - - - 0.0008 0.0129 0.0002 - - - - - -
CC -0.0046 0.0630 0.0040 0.2466 0.9410 0.0018 0.0307 0.0009 0.1196 0.9470

QS(Exp) -0.0028 0.0493 0.0024 0.1945 0.9380 0.0010 0.0131 0.0002 0.0509 0.9350
0.3 Un(Exp) -0.0027 0.0493 0.0024 0.1945 0.9380 0.0010 0.0131 0.0002 0.0509 0.9360

QS(Weib) -0.0030 0.0495 0.0025 0.1946 0.9360 0.0011 0.0134 0.0002 0.0510 0.9370
Un(Weib) -0.0029 0.0495 0.0025 0.1945 0.9360 0.0011 0.0134 0.0002 0.0510 0.9360
QS(GG) -0.0027 0.0501 0.0025 0.1946 0.9400 0.0009 0.0144 0.0002 0.0510 0.9220
Un(GG) -0.0026 0.0501 0.0025 0.1946 0.9390 0.0009 0.0144 0.0002 0.0509 0.9230

30% Likelihood 0.0014 0.0509 0.0026 - - - - - - -0.0003 0.0141 0.0002 - - - - - -
CC 0.0030 0.0684 0.0047 0.2465 0.9220 -0.0016 0.0325 0.0011 0.1196 0.9390

QS(Exp) 0.0011 0.0525 0.0028 0.1966 0.9380 -0.0002 0.0145 0.0002 0.0541 0.9330
0.5 Un(Exp) 0.0010 0.0524 0.0027 0.1971 0.9380 -0.0002 0.0144 0.0002 0.0543 0.9330

QS(Weib) 0.0009 0.0530 0.0028 0.1967 0.9350 -0.0001 0.0154 0.0002 0.0542 0.9220
Un(Weib) 0.0008 0.0530 0.0028 0.1971 0.9370 -0.0001 0.0155 0.0002 0.0543 0.9220
QS(GG) 0.0016 0.0554 0.0031 0.1967 0.9230 -0.0007 0.0184 0.0003 0.0541 0.8620
Un(GG) 0.0016 0.0555 0.0031 0.1970 0.9210 -0.0007 0.0186 0.0003 0.0543 0.8530

Likelihood -0.0006 0.0521 0.0027 - - - - - - -0.0004 0.0177 0.0003 - - - - - -
CC -0.0011 0.0629 0.0040 0.2468 0.9210 -0.0004 0.0298 0.0009 0.1198 0.9650

QS(Exp) -0.0009 0.0542 0.0029 0.2063 0.9430 -0.0004 0.0184 0.0003 0.0680 0.9420
Un(Exp) -0.0010 0.0561 0.0031 0.2130 0.9390 -0.0003 0.0199 0.0004 0.0718 0.9230

0.8 QS(Weib) -0.0018 0.0559 0.0031 0.2063 0.9290 0.0002 0.0208 0.0004 0.0681 0.8960
Un(Weib) -0.0020 0.0582 0.0034 0.2131 0.9260 0.0003 0.0232 0.0005 0.0718 0.8750
QS(GG) -0.0017 0.0620 0.0039 0.2100 0.9090 0.0000 0.0278 0.0008 0.0681 0.7710
Un(GG) -0.0013 0.0669 0.0045 0.2133 0.8810 -0.0002 0.0323 0.0010 0.0720 0.7360

Likelihood -0.0164 0.0486 0.0026 - - - - - - 0.0057 0.0122 0.0002 - - - - - -
CC 0.0035 0.1064 0.0113 0.4066 0.9390 -0.0027 0.1453 0.0211 0.5616 0.9500

QS(Exp) 0.0023 0.0675 0.0046 0.2588 0.9500 -0.0005 0.0195 0.0004 0.0760 0.9510
0.2 Un(Exp) 0.0021 0.0675 0.0046 0.2588 0.9500 -0.0005 0.0195 0.0004 0.0760 0.9510

QS(Weib) 0.0021 0.0678 0.0046 0.2592 0.9460 -0.0001 0.0206 0.0004 0.0765 0.9410
Un(Weib) 0.0021 0.0677 0.0046 0.2592 0.9460 -0.0001 0.0206 0.0004 0.0765 0.9420
QS(GG) 0.0009 0.0695 0.0048 0.2606 0.9360 0.0022 0.0311 0.0010 0.0791 0.8030
Un(GG) 0.0009 0.0695 0.0048 0.2606 0.9380 0.0022 0.0311 0.0010 0.0791 0.8020

Likelihood -0.0014 0.0602 0.0036 - - - - - - 0.0004 0.0183 0.0003 - - - - - -
CC -0.0082 0.1043 0.0110 0.4079 0.9440 0.0075 0.1416 0.0201 0.5633 0.9570

QS(Exp) -0.0039 0.0672 0.0045 0.2598 0.9420 0.0012 0.0209 0.0004 0.0768 0.9270
0.3 Un(Exp) -0.0038 0.0671 0.0045 0.2598 0.9420 0.0012 0.0209 0.0004 0.0768 0.9230

QS(Weib) -0.0043 0.0674 0.0046 0.2601 0.9420 0.0017 0.0229 0.0005 0.0773 0.9120
Un(Weib) -0.0042 0.0673 0.0046 0.2601 0.9400 0.0017 0.0229 0.0005 0.0773 0.9120
QS(GG) -0.0060 0.0702 0.0050 0.2615 0.9329 0.0048 0.0404 0.0017 0.0773 0.6764
Un(GG) -0.0059 0.0701 0.0050 0.2615 0.9329 0.0048 0.0404 0.0017 0.0773 0.6743

70% Likelihood 0.0037 0.0592 0.0035 - - - - - - -0.0010 0.0195 0.0004 - - - - - -
CC 0.0086 0.1038 0.0108 0.4071 0.9490 -0.0091 0.1382 0.0192 0.5614 0.9570

QS(Exp) 0.0038 0.0703 0.0050 0.2604 0.9350 -0.0011 0.0228 0.0005 0.0796 0.9130
0.5 Un(Exp) 0.0036 0.0703 0.0050 0.2604 0.9280 -0.0011 0.0228 0.0005 0.0796 0.9010

QS(Weib) 0.0029 0.0706 0.0050 0.2608 0.9320 0.0002 0.0281 0.0008 0.0802 0.8450
Un(Weib) 0.0029 0.0706 0.0050 0.2614 0.9360 0.0002 0.0281 0.0008 0.0803 0.8450
QS(GG) -0.0018 0.0800 0.0064 0.2629 0.9020 0.0091 0.0686 0.0048 0.0838 0.4680
Un(GG) -0.0020 0.0800 0.0064 0.2636 0.9040 0.0092 0.0687 0.0048 0.0839 0.4640

Likelihood 0.0009 0.0556 0.0031 - - - - - - -0.0017 0.0293 0.0009 - - - - - -
CC 0.0004 0.1038 0.0108 0.4078 0.9510 -0.0024 0.1400 0.0196 0.5621 0.9470

QS(Exp)(1) 0.0002 0.0684 0.0047 0.2649 0.9400 -0.0015 0.0315 0.0010 0.0944 0.8500
0.8 Un(Exp) 0.0005 0.0699 0.0049 0.2663 0.9400 -0.0015 0.0315 0.0010 0.0946 0.8510

QS(Weib)(2) -0.0018 0.0715 0.0051 0.2653 0.9430 0.0012 0.0510 0.0026 0.0949 0.6340
Un(Weib) -0.0015 0.0726 0.0053 0.2720 0.9430 0.0012 0.0511 0.0026 0.0976 0.6510
QS(GG)(3) -0.0127 0.1069 0.0116 0.2671 0.8020 0.0220 0.1525 0.0237 0.0980 0.2550
Un(GG) -0.0128 0.1086 0.0120 0.2749 0.8020 0.0222 0.1539 0.0242 0.0993 0.2600

(1) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 94.2% and 93.6% respectively
(2) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 94.5% and 93.6% respectively
(3) Coverage of CI for β0 and β1 based on 100 bootstrapped samples per iteration is 94.5% and 96.1% respectively
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Table A5: Simulation results of 1000 repetitions in the case of count data. Sample size
is n=300. Half of the censoring is due to the cutpoint (end of study). The real value of
the β0 is 1.

β0 β1
Cens. β1 Method Bias SE MSE Width Cover Bias SE MSE Width Cover

CC -0.0059 0.2032 0.0413 0.7760 0.9470 -0.0210 0.2038 0.0420 0.7912 0.9470
QS(Exp) -0.0036 0.1985 0.0394 0.7563 0.9430 -0.0221 0.1908 0.0369 0.7288 0.9440

-1 QS(Weib) -0.0034 0.1986 0.0394 0.7562 0.9430 -0.0222 0.1908 0.0369 0.7287 0.9440
QS(GG) -0.0044 0.1994 0.0398 0.7566 0.9410 -0.0214 0.1913 0.0370 0.7290 0.9430

30% CC -0.0061 0.1602 0.0257 0.6267 0.9540 -0.0064 0.1012 0.0103 0.3954 0.9500
QS(Exp) -0.0035 0.1433 0.0206 0.5631 0.9480 -0.0055 0.0710 0.0051 0.2775 0.9390

-1/3 QS(Weib) -0.0033 0.1433 0.0205 0.5632 0.9380 -0.0055 0.0709 0.0051 0.2776 0.9390
QS(GG) -0.0042 0.1437 0.0207 0.5632 0.9460 -0.0047 0.0715 0.0051 0.2776 0.9350

CC -0.0169 0.2762 0.0766 1.0265 0.9360 -0.0288 0.4766 0.2280 1.7851 0.9370
QS(Exp)(1) -0.0070 0.2189 0.0479 0.8366 0.9400 -0.0229 0.2336 0.0551 0.8751 0.9330

-1 QS(Weib)(1) -0.0040 0.2195 0.0482 0.8374 0.9260 -0.0272 0.2378 0.0573 0.8767 0.9440
QS(GG)(2) -0.0014 0.2199 0.0483 0.8376 0.9380 -0.0389 0.2471 0.0626 0.8734 0.9140

70% CC -0.0174 0.2360 0.0560 0.9385 0.9470 -0.0106 0.3454 0.1194 1.4013 0.9560
QS(Exp)(3) -0.0116 0.1656 0.0275 0.6647 0.9500 -0.0200 0.0968 0.0098 0.3786 0.9480

-1/3 QS(Weib)(4) -0.0126 0.1666 0.0279 0.6671 0.9540 -0.0217 0.1006 0.0106 0.3810 0.9460
QS(GG)(5) 0.0173 0.1691 0.0289 0.6708 0.9530 -0.0379 0.1234 0.0167 0.3898 0.8991

(1) Approximately 1.3% of the repetitions were discarded due to violations of the required restrictions.
(2) Approximately 6.0% of the repetitions were discarded due to violations of the required restrictions.
(3) Approximately 5.7% of the repetitions were discarded due to violations of the required restrictions.
(4) Approximately 14% of the repetitions were discarded due to violations of the required restrictions.
(5) Approximately 23% of the repetitions were discarded due to violations of the required restrictions.

Table A6: Estimates of the coefficients of the linear model for the PBC data.
Method Parameter Est. Asympt. SE Asympt. CI 95% Bootstrap CI 95%

α0 2.8111 0.5563 1.7068 3.9154 – –
CC α1 -0.0129 0.0028 -0.0184 -0.0074 – –

α2 -0.0203 0.0102 -0.0405 -0.0002 – –

α0 3.2785 0.4084 2.4780 4.0790 2.5280 4.0026
QS(Weib) α1 -0.0065 0.0007 -0.0079 -0.0051 -0.0088 -0.0043

α2 -0.0354 0.0070 -0.0491 -0.0217 -0.0485 -0.0220

α0 3.5526 0.3964 2.7755 4.3296 2.9565 4.2475
QS(GG) α1 -0.0090 0.0009 -0.0108 -0.0072 -0.0108 -0.0075

α2 -0.0384 0.0065 -0.0512 -0.0256 -0.0490 -0.0285

α0 3.5001 0.4146 2.6875 4.3128 2.6599 4.3321
Un(Weib) α1 -0.0063 0.0007 -0.0077 -0.0050 -0.0088 -0.0041

α2 -0.0400 0.0071 -0.0538 -0.0261 -0.0556 -0.0246

α0 3.6853 0.4028 2.8958 4.4748 2.5527 4.1720
Un(GG) α1 -0.0089 0.0009 -0.0107 -0.0071 -0.0106 -0.0033

α2 -0.0411 0.0066 -0.0429 -0.0393 -0.0498 -0.0226

Table A7: Estimates of the coefficients of the AFT models for the PBC data.
Model Parameter Est. SE CI 95%

ξ0 6.5038 0.4741 5.5745 7.4330
Weibull AFT ξ1 -0.0263 0.0086 -0.0431 -0.0096

σ 0.7828 0.0684 0.6596 0.9291

ξ0 6.5359 0.5955 5.3686 7.7031
GG AFT ξ1 -0.0242 0.0078 -0.0394 -0.0090

σ 0.3269 0.6799 0.0055 19.2673
δ 2.7674 5.8436 -8.6857 14.2206
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2 Appendix B

2.1 A MATLAB package for survival estimation with constrained splines

In section 2.2 we recall the modeling technique along with the required constraints of
monotonicity. In section 2.3 we give a description of the routine HCNS (Hazard Constraint
Natural Spline), along with some examples that can be straightforwardly re-produced by
the reader using MATLAB. In section 2.4 we present a small simulation study and in
section 2.5 an application, showing the necessary code for analysis.

2.2 Background methodology

Consider again data of the form Ti, Di where Ti = min(Xi, Ci) with Ci being the censoring
variable, Xi the time to event variable and ∆i is the event indicator taking the value 1
for an event and zero otherwise (Note that in MATLAB all routines that accommodate
censoring have the opposite coding for the events/censorings, however we decide to use
the common coding in theory to avoid confusion. In the code examples we repeat the
coding used when necessary). Recall the spline based approach introduced in Chapter
2 (section 2.5.2.). Survival estimation based on the available data Ti,∆i is obtained in
two stages. In the first stage the Kaplan Meier based cumulative step hazard function
is obtained. In the second stage, model (2.14) is fitted to the corners of the cumulative
step hazard function. The steps of the KM estimator occur only at event times, that is
Ti|∆i = 1. However the cumulative hazard function monotone, and thus monotonicity
restrictions must be imposed.

As discussed in chapter 2, the monotonicity region, M, is a non linear region and
if one attempts to fit model 2.14 under the implied conditions of this then computa-
tional problems may occur. If one considers a linearly defined subregion, A, of M, then
monotonicity would be achieved but other candidate models would be excluded. On the
other hand, a linearly defined region has the merit of reducing the problem to be a re-
stricted least squares one, with linear restrictions on the parameters. Thus, convergence
is guaranteed since the function to minimize is always convex. We explore a linear ap-
proximation A, of the entire region of approximation M by using optimal (in terms of
inscribed area) polygons within M. Smith (1970) presents an algorithm for deriving the
optimal inscribed polygon within an ellipse. Using Smith’s algorithm we showed that
any optimal inscribed (8k + 2)-gon, k = 1, 2, . . . within M can be exactly calculated. The
MATLAB code given in the appendixend of this appendix provides the optimal inscribed
polygon along with the corresponding plot for region M. The user is only expected to
provide the value of k in the first line.

We already have explored the use of an optimal 18-gon to approximate region M
(k = 2). In Figure B1, we show the approximation obtained from the optimal 10-gon
(k = 1), 18-gon (k = 2), 26-gon (k = 3) and 34-gon (k = 4), and these figures can be
reproduced by the code given in the end of this appendix.

We recommend the use of at least six knots due to the restrictions that force the
model to be zero before the first knot. For the same reason one may choose placing more
knots near the first events (i.e. for smaller Ti’s) where additional flexibility is required
to avoid underestimation of the cumulative hazard function in that region. Regard-
ing the knot placement, in this chapter, we consider the following strategy: We derive
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Figure B1: The shaded region is the linear approximation of the monotonicity region for
k = 1, 2, 3, 4. The circles refer to the approximation of the region M. The dots refer to
the approximation of the ellipse ϕ(a, b).

10 equally spaced points expanding from min(event times) = min(Ti|∆i = 1) up to
max(event times) = max(Ti|∆i = 1), and each of these points is a candidate for placing
a knot. Using 6 knots, there are 10!/(6!4!) = 210 possible combinations, and thus 210
possible knot schemes. Next, we consider 10 points at the following percentiles that are
calculated only by the fully observed data: 0, 2.5th, 5th, 10th, 20th, 40th, 50th, 60th, 80th,
and 100th. Exploring again all possible combinations, there are 210 additional combi-
nations (knot schemes) to be explored. In a given application, and if asked by the user
as we will see in the next section, all 420 knot schemes are tested by fitting model (2.14)
to the Kaplan Meier based cumulative hazard function. Finally, the knot scheme that
results to the smallest distance for the corners of the step function is the one chosen.
That is, the knot scheme selection is based on the criterion

Ψ(θ̂) =
∑
i

(Ĥ(Ti|∆i = 1)− ĤKM (Ti|∆i = 1))2, (.1)

where Ĥ is the fitted model defined in (2.14) under the appropriate constraints of
monotonicity, and ĤKM is the Kaplan Meier based cumulative hazard estimator.
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This may seem a difficult task from a computing time point of view. However, with
current computer technology, this procedure is only a matter of seconds, as can be seen
from the simulation studies later on. In effect, resampling methods are feasible for the
inference of a given data set. The use of percentile bootstrap showed satisfactory coverage
of the corresponding confidence intervals (see also Appendix C).

Recall that the function to minimize is

Ψ(θ̂) =
∑
i

(Ĥ(Ti|∆i = 1)− ĤKM (Ti|∆i = 1))2,

where Ĥ is the fitted model defined in (2.14) under the appropriate constraints of mono-
tonicity, and ĤKM is the Kaplan Meier based cumulative hazard estimator.

Denote with Q the linear segments that form the approximation of the entire region
of monotonicity M without including the ones that lie on the horizontal and vertical axis
(for example, Q = 16 for the the optimal 18-gon). There are Q(K − 1) +K constraints,
consisting of Q(K − 1) +K − 1 inequalities and one equality given in Chapter 2. Alter-
natively, one can consider Q(K − 1) + K + 1 inequality constraints, since the equality
can be written as two inequalities, and so finally all constraints can be written as

A[θ1, θ2, . . . , θK−1]
′ ≤ 0.

where matrix A has nc = K − 1 columns and nr = Q(K − 1) +K + 1 rows.
Thus, the problem stated is restricted least squares one with linear restrictions. The

function to minimize is always convex and convergence is guaranteed. MATLAB’s built
in function for these kind of optimization problems is lsqlin.

The generalization of the approach to accommodate covariates is done under the as-
sumption of proportional hazards. The usual Cox model can be fitted to the data in order
to obtain the baseline cumulative step hazard estimate. Then model 2.14 is fitted to this
crude estimate under the same constraints discussed above. Thus the two stage analysis
required in a setting with p covariates Z1, Z2, . . . , Zp is

• Stage 1: Fit the Cox model which of the form H(x) = H0(x)exp(γ1Z1+γ2Z2+ . . .+
γpZp) and derive Ĥcox

0 (x)

• Stage 2: Fit model (2.14) to the corners of the Ĥcox
0 (x) (that is where events oc-

cur) under the constraints A[θ1, θ2, . . . , θK−1]
′ ≤ 0 and derive the corresponding

estimate Ĥ0.

Once the model 2.14 is fitted, then one can easily derive any survival estimation for
any profile of a subject based on Ĥ(x) = Ĥ0(x)exp(γ̂1Z1 + γ̂2Z2 + . . . + γ̂pZp), where
γ̂i, i = 1, 2, . . . , p are simply the estimates provided by the usual Cox model fit.

2.3 Software Description

The routine has been developed using MATLAB R2011a and is available for download from
the authors’ website (or upon request). The algorithm of the program is summarized by
the flowchart given in Figure B3.
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The functions included in the file are HCNS, HCNSboots, HCNSsup, HCNScox,
HCNScoxsup, conlsqlin, cnsk, and approxM. Apart from functions HCNS and
HCNSboots, all others are interior functions that are called depending on the choices of
the user. Right next we provide a description of these two functions which are the only
ones that are of interest to the user. The inputs of the HCNS function are the following
(mentioned with the order that are required from the user):

INPUT

• time: an array that may contain event times and/or right censored times

• status: a boolean array taking values 0 or 1 if the corresponding element of time
is an event time or a censoring time respectively. (Note that MATLAB uses this
coding in all its "survival" related functions, which is the opposite of the common
coding used in a survival settings. We developed the code using MATLAB’s coding)

• Z: a covariate matrix (each column corresponds to one covariate). If there are no
covariates available then use "[]" instead.

• knots: The knots provided by the user. There is also an option of setting this
field to "auto" and 6 knots will be used after checking all 210 combinations of knot
schemes described in section 2.2.

• k: A positive integer greater or equal to 1. Based on the value of k, the optimal
in terms of inscribed area 8k + 2-gon will be used for approximating the region of
monotonicity.

OPTIONAL INPUT

• plots: Can be set as cumulative hazard, survivor, cdf or none to plot the
corresponding functions along with the corresponding empirical function. In the
case where covariates (Z) are available the baseline corresponding functions are
plotted (i.e. at Z=0, for all covariates). The ’none’ option does not create any graph
and allows you to proceed to the next optional input arguments.

• profil: It may contain a specific profile of covariate values and the estimates
produced will refer to that specific profile. It is an array with length equal to the
number of columns of the covariate matrix Z. (The ’plots’ input argument must be
given if the ’profil’ argument is to be used).

• profilplots: Can be set as ’cumulative hazard’, ’survivor’, ’cdf’ to plot the corre-
sponding functions along with the empirical corresponding function for the specific
profile given in ’profil’.

OUTPUT

• bhat: the estimated spline coefficients

• Hx: a "function handle" that can yield the value of the estimate of the cumulative
hazard estimator based on the presented method, for any value(s) of x.
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Figure B3: Flowchart of the underlying algorithm of the HCNS approach

• Fx: a "function handle" that can yield the value of the estimate of the cumulative
distribution estimator based on the presented method, for any value(s) of x.
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• Sx: a "function handle" that can yield the value of the estimate of the survival
estimator based on the presented method, for any value(s) of x.

• knots: The knots used. If the knots were provided by the user then these knots
are simply returned. If the knots were set to auto then the selected knot scheme
is returned.

• KMdist: The sum of squares of the spline model from the corners of the step
cumulative hazard function (that is the quantity presented in (.1)).

• ghat: the estimated cox coefficients if covariates are available. If there are no
covariates then ghat is returned to be NaN (i.e. "not a number")

Next, we provide some examples that can be straightforwardly reproduced by the
reader in MATLAB so as to clarify the input/output arguments:

Example 1. Generate some data (n = 300) from the Weibull distribution with parameters
2 and 3 and then apply the presented method:

n=300
x=wblrnd(2,3,n,1); %Generate some data from Weib(2,3)
c=wblrnd(2,3,n,1); %Generate the censoring variable (Weib(2,3))
xcen=min(x,c); %Create the censored data (expected censoring=50%)
status=(x>c); %Derive the censoring indicator

% The data for analysis are the variables xcen and status.
% The presented approach is carried out from the following line:

[bhat Hx Fx Sx KMdist knots gcoxhat]=HCNS(xcen, status, [], ...
’auto’, 2, ’survivor’)

An optimal 18-gon is used to approximate the monotonicity region (since k is set to 2).
The array bhat contains the spline coefficients estimates, and the gcoxhat is returned
to be NaN since no covariates are available. The knot placement procedure is set to
’auto’, thus 6 knots are used and 210 knot placement schemes are tested. The knots
returned for this specific data set generated are knots=[ 0.2591 0.5761 0.8931
1.2101 2.4781 2.7951] (as can also be seen by B4) and the sum of the squared
distance from the corners of the KM estimator is KMdist=0.1114. Alternatively the
user could manually provide the knots desired. The plot of the survival estimate is asked
by the user and the plot that is generated by the above code is given in Figure B4. The
survival estimate is plotted up to the last event time, however the user can also plot the
presented estimates beyond the last event time. The ’function handles’ Hx, Fx,and Sx
can be used to evaluate the proposed estimate at any time value. Of course, caution is
needed when extrapolating the curves. For example, to evaluate the estimate at 0.5 1 1.5
and 2 we request:

Hx([0.5 1 1.5 2])
which yields as a result 0.0087 0.1276 0.3855 1.1723. Similarly we derive:
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Fx([0.5 1 1.5 2])
which yields 0.0087 0.1198 0.3199 0.6903 and
Sx([0.5 1 1.5 2])
which yields 0.9913 0.8802 0.6801 0.3097
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Figure B4: Survival estimate of the presented method as generated by the code in Exam-
ple 1.

Example 2. In this example we will generate some time values from a Cox model and
then use the presented routine for estimation:

n=300;
u=rand(n,1); % Generate n number from the Uniform(0,1)
a=2;b=3;g=2; % True parameters of the Weibull baseline survival,
%and true value of cox coefficient g=2.
z=exprnd(0.3,n,1); % Generate exponentially distributed
% covariate with mean 0.3
x=(-log(u)./(a.∧(-b).*exp(g.*z))).

∧(1./b); %Generate values from
%the Cox model
c=exprnd(4,n,1); % Generate the censoring variable
status=(x>c); % Derive the censoring indicator
xcen=min(x,c); % Derive censored time values

% The data for analysis now are the variables xcen, status,
% and z (the covariate)
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% We apply the presented approach by using only the
%following line:
[bhat Hx Fx Sx KMdist knots gcoxhat]=HCNS(xcen, status, z, ...
’auto’, 2, ’survivor’)

The interpretation of the output is similar to the one provided in Example 1. Here we
derive a value of ghat=2.041 which is the estimated coefficient of the covariate based
on the usual Cox model. The plot requested now, is the survival estimate for the baseline
survival, that is for Z = 0, and is presented in Figure B5.
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Figure B5: Survival estimate of the baseline survival (Z=0) as generated by the code in
Example 2.

We base inference on the percentile bootstrap technique. HCNSboots can be used to
obtain 95% confidence intervals for the cumulative hazard, survival, or cumulative dis-
tribution functions. The input/output arguments of the HCNSboots are the following:

INPUT:

• time: As defined in the HCNS routine.

• status: As defined in the HCNS routine.

• Z: As defined in the HCNS routine.

• knots: As defined in the HCNS routine. The auto option is still available. If
chosen, then all knot combinations will be explores for each bootstrap sample.

• kgon: As defined in the HCNS routine.
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• CIat: Time values at which the 95% confidence intervals are to be obtained.

• boots: The number of the bootstrap samples.

OPTIONAL INPUT:

• profil: As defined in the HCNS routine. If given, then the confidence intervals
will be derived for the selected covariate profile. Obviously, input argument Z must
be also given if this optional input argument is to be used.

OUTPUT:

• CIH: A two column matrix that contains the derived 95% bootstrap based confi-
dence intervals for the cumulative hazard. Its left column are the lower confidence
limits and its left refer to the upper ones. These confidence intervals refer to the
specific profile profil, if provided.

• CIS: Confidence intervals for the survival function.

• CIF: Confidence intervals for the cumulative distribution function.

A usage example for the HCNSboots is given in the Application section.

2.4 Simulation Study

We present a small simulation study to evaluate the approach when the automatic knot
placement is selected and compare the results with the KM estimator using the Mean
Integrated Squared Error criterion (= E(

∫
(Ŝ − S)2)). Since the KM estimator cannot

provide estimation beyond the last event time we consider that the KM estimate of the
survival beyond the last event time equal to ŜKM (tmax), where tmax = max(event time).
This is proposed by Efron (1967). For this reason we integrated the squared error from
10th to 90th, 20th to 80th and 30th to 70th percentiles of the true survival functions.
That is, we obtained ISE(10−90) =

∫ 90th
10th (Ŝ − S)2, ISE(20−80) =

∫ 80th
20th (Ŝ − S)2, and

ISE(30−70) =
∫ 70th
30th (Ŝ − S)2 for 1000 repetitions and then we evaluated the average to

obtain the corresponding MISE’s: MISE(10−90),MISE(20−80) and MISE(30−70). We
used the knot placement set in auto and k = 2. This means that an optimal 18-gon
is used to approximate the region of monotonicity for each iteration. We also report the
CPU time needed on average for each iteration. All simulations were carried out on a
laptop with a 2.8GHz processor.

We observe that in nearly all cases the presented approach outperforms the KM
estimator. Most differences however seem to appear for heavier censoring and/or lower
sample sizes. From Table 1 we observe that the computational time in using the HCNS
routine is low (about 2 seconds in most cases). We also checked the time needed to
perform analysis for simulated data sets where the sample size was 10,000 with 50%
expected censoring. That was about 5.5 seconds.

2.5 Examples

We also use the routine to apply the HCNS approach to a real data set with an available
covariate. The data set is presented by Kardaun (1983) and refer to 90 males with cancer
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Table B1: Simulation results of 1000 repetitions for the KM and HCNS approach. The
MISE is calculated for the 10th to 90th, 20th to 80th, and 30th to 70th percentile of the
real underlying densities. The mean CPU time of the HCNS approach is also reported.

Kaplan Meier HCNS CPU time
Distributionn Censoring 10-90 20-80 30-70 10-90 20-80 30-70 sec./iteration

30% 0.0030 0.0023 0.0016 0.0035 0.0024 0.0015 2.0051
300 50% 0.0040 0.0030 0.0020 0.0043 0.0030 0.0019 1.7762

70% 0.0069 0.0049 0.0031 0.0065 0.0044 0.0028 1.7452

30% 0.0089 0.0068 0.0045 0.0095 0.0068 0.0044 1.6796
Wei(2,3) 100 50% 0.0121 0.0090 0.0059 0.0121 0.0086 0.0055 1.6824

70% 0.0210 0.0144 0.0092 0.0189 0.0134 0.0083 1.8009

30% 0.0179 0.0135 0.0091 0.0181 0.0131 0.0084 1.7070
50 50% 0.0245 0.0180 0.0119 0.0237 0.0171 0.0108 1.7350

70% 0.0437 0.0302 0.0192 0.0374 0.0284 0.0184 1.6439

30% 0.0021 0.0016 0.0011 0.0020 0.0015 0.0010 2.1706
300 50% 0.0029 0.0022 0.0015 0.0026 0.0020 0.0013 1.9289

70% 0.0046 0.0035 0.0024 0.0043 0.0032 0.0022 1.9150

30% 0.0063 0.0049 0.0033 0.0060 0.0045 0.0030 1.8411
Wei(7,8) 100 50% 0.0086 0.0066 0.0045 0.0083 0.0062 0.0041 1.8484

70% 0.0138 0.0107 0.0072 0.0135 0.0100 0.0065 1.8685

30% 0.0129 0.0099 0.0067 0.0131 0.0094 0.0062 1.8511
50 50% 0.0176 0.0135 0.0091 0.0177 0.0129 0.0084 1.8230

70% 0.0287 0.0218 0.0146 0.0286 0.0209 0.0134 1.7030

30% 0.0028 0.0023 0.0018 0.0028 0.0023 0.0018 2.3636
300 50% 0.0038 0.0032 0.0024 0.0037 0.0031 0.0024 2.0029

70% 0.0059 0.0050 0.0038 0.0057 0.0046 0.0036 1.9281

30% 0.0080 0.0069 0.0053 0.0078 0.0065 0.0050 1.9943
Mixture 100 50% 0.0113 0.0096 0.0074 0.0107 0.0089 0.0068 1.9582
Weibulls 70% 0.0185 0.0156 0.0119 0.0172 0.0145 0.0109 1.9862

30% 0.0158 0.0134 0.0104 0.0152 0.0125 0.0095 2.1252
50 50% 0.0227 0.0192 0.0147 0.0220 0.0183 0.0137 2.1016

70% 0.0389 0.0325 0.0247 0.0355 0.0303 0.0230 1.7753



2. APPENDIX B 133

of the larynx at a Dutch hospital during the period 1970-1978. The data contain the time
to event (death) or censoring, the age of the patient as well as the stage of the disease.
There are four stages which are ordered from the least serious to the most serious (stage
1 is the least serious). The data are publicly available and a usual Cox analysis is also
presented in Klein and Moeschberger (2003). This data is analyzed with the proposed
method in Appendix C with a much simpler knot placement rule than the one provided
by the auto option of the software described here. Here, we present the following code to
derive survival estimates for each stage at the mean of age (64.6111) and the reproduction
of Figure B6.
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Figure B6: Survival estimates for the four stages of larynx cancer at the mean age
(64.6111). The solid lines refer to the HCNS approach, and the step functions refer to the
corresponding Cox estimates. For the HCNS approach the auto procedure was used for
the knot placement.

data=[...] % A matrix that contains the data. Each column is
%one variable.
% 1st column contains the cancer stage variable,
% 2nd:time variable, 3rd:age, 4th:status
stage=data(:,1);time=data(:,2); %derive variables from the
%data matrix.
age=data(:,3);status=data(:,4);
% In the original data set code 0 is for censoring and
%1 for death. MATLAB needs the opposite coding:
status=status.*(-1)+1;
Z=[(stage==2) (stage==3) (stage==4) age]; % build the
%covariate matrix

% Now the data are ready for analysis
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% Fit cox model to derive baseline S0 (for Z=0):
[bcox logL H stats] = coxphfit(Z,time,’censoring’,status, ...
’baseline’,0);
S0cox=exp(-H(:,2)); % this is the cox baseline survival.

% Apply the HCNS routine to estimate baseline functions:
[bhat H0 F0 S0 KMdist knots gcoxhat]=HCNS(time, status, Z, ...
’auto’, 2);
g2=gcoxhat(1);g3=gcoxhat(2);g4=gcoxhat(3);gage=gcoxhat(4);
% These are the cox coefs.

gr=0:0.01:8.5; % construct a grid of points over which the
%survival estimates will be plotted.
figure
hold on
% Plot the HCNS survival estimates for each stage:
plot(gr,S0(gr).∧(exp(gage.*mean(age))),’k’,’LineWidth’,2)
plot(gr,S0(gr).∧(exp(gage.*mean(age)+g2)),’k’,’LineWidth’,2)
plot(gr,S0(gr).∧(exp(gage.*mean(age)+g3)),’k’,’LineWidth’,2)
plot(gr,S0(gr).∧(exp(gage.*mean(age)+g4)),’k’,’LineWidth’,2)

% Plot the Cox survival estimates for each stage:
stairs(H(:,1),S0cox.∧(exp(gage.*mean(age))),’k’)
stairs(H(:,1),S0cox.∧(exp(gage.*mean(age)+g2)),’k’)
stairs(H(:,1),S0cox.∧(exp(gage.*mean(age)+g3)),’k’)
stairs(H(:,1),S0cox.∧(exp(gage.*mean(age)+g4)),’k’)
xlabel(’t’);ylabel(’S(t)’)

From the generated Figure B6 we observe that, at the mean of age (64.6111), the
survival curve of stage 1 provides higher survival probabilities. As we move to stage 4
we observe that the survival curves yield lower survival probabilities which is what we
expect.

In the previous example we estimated the baseline survival and used the Cox model
formulation to obtain estimates for the desired profile. If, for example, we were interested
in estimating directly the survival of an individual with age equal to 64.6111 and the
most serious cancer stage, i.e. S(t|age = 64.6111, stage = 4) for t = 1, 2, . . . , 6 along
with the corresponding 95% confidence intervals for the survival estimate, based on 300
bootstrap samples, we could simply type:

% Derive the desired estimates for the specific profile
%[0 0 1 mean(age)]:
[bhat Hx Fx Sx]=HCNS(time, status, Z, ’auto’, 2,...
’none’, [0 0 1 mean(age)] );
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Shat=Sx(1:6) % obtained survival estimate values for t=1,2,...,6
Shat=
0.9266 0.8535 0.7945 0.7446 0.6885 0.6094
%Now derive the corresponding 95% CI’s for these estimates:
[CIH CIS CIF]=HCNSboots(x, status, Z, ’auto’, 2, [1:6], 300, [0 0
1 mean(age)])
CIS=
0.8861 0.9898
0.7912 0.9304
0.7224 0.8835
0.6409 0.8508
0.5572 0.8324
0.4739 0.7702

The left column of CIS contains lower confidence limits and the right the upper ones.
In tables CIH and CIF the corresponding confidence intervals for the cumulative hazard
and cumulative distribution respectively are also provided. Note that in this example we
used the auto procedure for the knot placement. Hence, in each bootstrap sample 420
minimizations are employed. In effect, even though the procedure is feasible, it can be
time consuming. It took about 20 minutes to derive the CI’s mentioned above. In the
case where the knots are supplied by the user then this time is significantly reduced. We
used HCNSboots with knots set equal to the ones derived by the HCNS estimate analysis
using the auto option. The time needed for the HCNSboots to perform all calculations
(using again 300 bootstrap samples) was about 8 seconds, yielding the following CI’s:

CIS =
0.8835 0.9695
0.7757 0.9232
0.6938 0.8882
0.6309 0.8706
0.5559 0.8397
0.4660 0.7776

2.6 Code for approximating the region of monotonicity

The following code provides, for a given k = 1, 2, . . ., the optimal in terms of inscribed
area 8k + 2-gon for approximating the region of monotonicity M. (If k is not set to be a
positive integer then an error will appear.)

k=3;% This can be set to any positive integer
%for finer approximations
xc=2;yc=2; % center of the ellipse
theta=-pi/4; % tilt of the major axis
a=2.44949; % major semi-axis of the ellipse
b=sqrt(2); % minor semi-axis of the ellipse
N=12*k; % Points to approximate the ellipse
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N=N+1;

% ------Apply Smith’s algorithm to approximate the ellipse:
df=2*pi/(N-1);
CT=cos(theta);ST=sin(theta);
x=zeros(1,N);y=x; %preallocation
for n=1:N

xp=a*CNDP;
yp=b*SNDP;
x(n)=xc+xp*CT-yp*ST;
y(n)=yc+xp*ST+yp*CT;
TEMP=CNDP*CDP-SNDP*SDP;
SNDP=SNDP*CDP+CNDP*SDP;
CNDP=TEMP;

end

% Plot the approximation of the ellipse:
plot(x,y,’.k’);hold on
axis square;axis([0 4 0 4]);

%Re arrange data so as the first point to be (x,y)=(3,0):
n=N-1;kk=n/12;
M=[x’ y’];M(max(size(M)),:)=[];M=circshift(M,kk);
x=M(:,1);y=M(:,2);

%Plot the approximation of the region of monotonicity:
plot(x(1:(8*k+1)),y(1:(8*k+1)),’o-k’)
plot([3 0 3 0],[3 3 0 0],’ok’)
xlabel(’a’);ylabel(’b’)

%Shade the approximated region:
fill([x(1:(8*k+1));0],[y(1:(8*k+1));0],[0.7,0.7,0.7]);alpha(0.5)
hold off

3 Appendix C

3.1 Simulation Studies for the evaluation of the HCNS method

In the simulation studies we considered the proposed (HCNS, Hazard Constrained Nat-
ural Spline) method, as well as the logspline and the Kaplan Meier methods. For the
logspline approach we use the oldlogspline function provided by Kooperberg and
Stone (1992) in the polspline library of R, with stepwise deletion of knots (in contrast
to the logspline function provided also by Kooperberg, the oldlogspline function
can handle censored data). For the HCNS method we used the lsqlin function of
MATLAB to minimize the constrained least squares. The lsqlin function allows the
user to directly provide both equality and inequality constraints, thus it is not necessary
to write our single equality constraint as two inequalities. The MATLAB code is available
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upon request. We used the MISE criterion (= E(
∫
(Ŝ−S)2)) for comparison of the method-

ologies based on 1000 repetitions for each scenario. For all three approaches we consid-
ered their performances in the 10th to 90th, 20th to 80th and 30th to 70th percentiles
of the true survival functions (that is, we calculated the ISE(10−90) =

∫ 90th
10th (Ŝ − S)2,

ISE(20−80) =
∫ 80th
20th (Ŝ −S)2, and ISE(30−70) =

∫ 70th
30th (Ŝ −S)2 for 1000 repetitions and we

used the average to obtain the associated MISE’s). Due to the fact that the Kaplan Meier
estimator is limited up to the last event (tmax), we considered expanding the estimation of
the survival function to be ŜKM (tmax) beyond tmax when necessary (i.e. in the repetitions
where the last event occurred earlier that X90). A small sample study presented in Klein
(1991) concludes that this approach, which is taken in Gill (1980), is more preferable for
small sample sizes than the one one taken in Efron (1967) where S(t) = 0, ∀ t > tmax.

For the HCNS approach we considered 6 knots. Harrell (2001) suggests that the
principal decision is between 3, 4, or 5 knots for a natural cubic spline. However, the
proposed approach deals with monotonicity constraints. Moreover, our spline model for
the cumulative hazard is zero before the first knot and linear beyond the last knot. Thus,
the flexibility of the spline would be seriously compromised when using just 3 knots. As
seen by the simulation results the choice of 6 knots performed very well overall. We also
conducted simulations studies for 4 and 5 knots but the results were unsatisfactory and
are omitted for brevity.

We considered three main scenarios for the true density of X shown in Figure B7. In
all scenarios we considered the proposed, the Kaplan Meier and the logspline method.
The censoring variable C was taken to be exponentially distributed with an appropriate
parameter so as to achieve expected levels of censoring of 30%, 50% and 70%. The
sample sizes considered were 60, 100 and 300 (we did not consider smaller sample sizes
due to convergence problems of the logspline approach that increased for small samples
and heavy censoring). The results are presented in Table C1.

At the first scenario we generated data from a positive skewed distribution, Weib(1.5, 4).
We observed that the logspline technique yielded somewhat better results in all cases (i.e.
all sample sizes and censoring levels) in terms of MISE while the proposed method yielded
somewhat better results than the Kaplan Meier in nearly all cases. Note that as the level
of censoring increases the logspline technique had a few problems of convergence where
the proposed technique did not. In these cases we discarded the repetitions that the
logspline technique yielded a convergence warning.

At the second scenario we generated data from an approximately bell shaped distri-
bution, the Weib(3, 3). We observed that the logspline technique, again, yielded better
results in terms of MISE while the proposed method yielded somewhat better results from
the Kaplan Meier. However, the logspline approach suffered from multiple convergence
problems in cases of heavy censoring (70%). In cases where the convergence problems
are about 10% or more, the results are not presented.

At the third scenario we considered the bimodal mixture of distributions 0.5Weib(5, 4)+
0.5Weib(4, 2). We observe that the HCNS method yields smaller MISE with minor differ-
ences from the logspline approach and the Kaplan Meier in cases of smaller sample sizes.
Note again that in cases of 70% censoring the logspline approach has approximately 10%
convergence problems and simulation results are not presented.

Generally, the simulations did not reveal major differences regarding the performance
of the compared methods. The differences seem to be in favor of the logspline density
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Table C1: Simulation results of 1000 repetitions for the Kaplan Meier, HCNS and
logspline methodologies. Sample size is n = 300, n = 100 and n = 60 with 70%,
50% and 30% censoring. The mean integrated squared error is calculated for the 10th
to 90th, 20th to 80th, and 30th to 70th percentile of the real corresponding distribution
functions.

Kaplan Meier HCNS Logspline
Dist. n Cens. 10-90 20-80 30-70 10-90 20-80 30-70 10-90 20-80 30-70

30% 0.0050 0.0038 0.0025 0.0055 0.0041 0.0026 0.0044 0.0034 0.0024
300 50% 0.0073 0.0052 0.0034 0.0075 0.0053 0.0034 0.0059 0.0044 0.0029

70% 0.0166 0.0099 0.0059 0.0139 0.0088 0.0052 0.0105(1) 0.0071(1) 0.0043(1)

30% 0.0151 0.0112 0.0074 0.0166 0.0121 0.0076 0.0119 0.0090 0.0061
Wei(1.5,4) 100 50% 0.0221 0.0156 0.0099 0.0215 0.0149 0.0093 0.0161 0.0120 0.0079

70% 0.0529 0.0318 0.0185 0.0388 0.0275 0.0168 0.0293(3) 0.0208(3) 0.0130(3)

30% 0.0257 0.0194 0.0129 0.0263 0.0194 0.0124 0.0199 0.0154 0.0105
60 50% 0.0388 0.0272 0.0174 0.0345 0.0249 0.0157 0.0268 0.0202 0.0134

70% 0.0879 0.0549 0.0323 0.0606 0.0455 0.0291 0.0487(2) 0.0347(2) 0.0222(2)

30% 0.0021 0.0016 0.0011 0.0020 0.0015 0.0009 0.0019 0.0015 0.0010
300 50% 0.0030 0.0023 0.0015 0.0027 0.0020 0.0014 0.0025 0.0020 0.0014

70% 0.0047 0.0035 0.0024 0.0042 0.0032 0.0021 −(5) −(5) −(5)

30% 0.0063 0.0049 0.0033 0.0059 0.0044 0.0030 0.0049 0.0040 0.0027
Wei(3,3) 100 50% 0.0086 0.0066 0.0044 0.0079 0.0060 0.0040 0.0063(1) 0.0051(1) 0.0035(1)

70% 0.0140 0.0105 0.0070 0.0121 0.0095 0.0063 −(5) −(5) −(5)

30% 0.0109 0.0085 0.0058 0.0100 0.0077 0.0051 0.0084 0.0067 0.0046
60 50% 0.0151 0.0117 0.0080 0.0132 0.0104 0.0069 0.0107 0.0087 0.0060

70% 0.0249 0.0186 0.0122 0.0206 0.0164 0.0110 0.0155(4) 0.0125(4) 0.0089(4)

30% 0.0027 0.0023 0.0017 0.0030 0.0023 0.0017 0.0026 0.0021 0.0016
300 50% 0.0038 0.0031 0.0023 0.0040 0.0032 0.0023 0.0035 0.0029 0.0022

70% 0.0068 0.0053 0.0037 0.0064 0.0051 0.0036 −(5) −(5) −(5)

30% 0.0079 0.0066 0.0049 0.0075 0.0062 0.0045 0.0081 0.0069 0.0050
Mixt. 100 50% 0.0110 0.0090 0.0066 0.0102 0.0085 0.0061 0.0119(3) 0.0100(3) 0.0074(3)

70% 0.0207 0.0161 0.0113 0.0178 0.0150 0.0108 −(5) −(5) −(5)

30% 0.0144 0.0120 0.0088 0.0133 0.0110 0.0080 0.0149 0.0128 0.0094
60 50% 0.0193 0.0157 0.0115 0.0170 0.0142 0.0103 0.0191(1) 0.0167(1) 0.0123(1)

70% 0.0350 0.0275 0.0193 0.0284 0.0243 0.0181 −(5) −(5) −(5)

(1) 0.5% of the iterations were discarded due to convergence problems
(2) 1.5% of the iterations were discarded due to convergence problems
(3) 2.0% of the iterations were discarded due to convergence problems
(3) 4.0% of the iterations were discarded due to convergence problems
(5) Simulation was not conducted due to ≥ 10% convergence problems
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Table C2: Simulation results of 1000 repetitions for the coverage of the bootstrap (300
samples for each repetition) for the 10-th to 90-th percentile of the true underlying
density. Sample size is n = 300, n = 100 and n = 60 with 70%, 50% and 30% censoring.

Coverage of the HCNS method for the corresponding percentiles
Dist. Sample Cens. X10 X20 X30 X40 X50 X60 X70 X80 X90

30% 0.772 0.948 0.972 0.961 0.946 0.957 0.957 0.952 0.945
300 50% 0.902 0.964 0.968 0.945 0.953 0.958 0.957 0.935 0.900

70% 0.962 0.978 0.957 0.956 0.947 0.953 0.940 0.912 0.886

30% 0.870 0.958 0.976 0.966 0.959 0.957 0.956 0.945 0.917
Wei(1.5,4) 100 50% 0.929 0.965 0.951 0.934 0.946 0.961 0.956 0.916 0.878

70% 0.958 0.947 0.942 0.947 0.942 0.913 0.892 0.871 0.896

30% 0.890 0.951 0.959 0.952 0.939 0.946 0.941 0.923 0.874
60 50% 0.924 0.968 0.953 0.949 0.950 0.946 0.944 0.912 0.863

70% 0.973 0.945 0.933 0.928 0.895 0.864 0.845 0.838 0.905

30% 0.958 0.955 0.956 0.953 0.947 0.945 0.943 0.946 0.932
300 50% 0.964 0.958 0.957 0.958 0.950 0.950 0.949 0.937 0.911

70% 0.970 0.956 0.951 0.951 0.946 0.942 0.934 0.932 0.901

30% 0.964 0.954 0.948 0.949 0.950 0.952 0.938 0.922 0.900
Wei(3,3) 100 50% 0.953 0.941 0.944 0.950 0.955 0.944 0.932 0.922 0.884

70% 0.966 0.944 0.941 0.945 0.940 0.935 0.924 0.880 0.861

30% 0.958 0.943 0.942 0.948 0.950 0.942 0.935 0.919 0.894
60 50% 0.968 0.937 0.938 0.943 0.937 0.928 0.916 0.883 0.834

70% 0.939 0.925 0.925 0.930 0.920 0.892 0.854 0.820 0.824

30% 0.929 0.954 0.956 0.954 0.959 0.941 0.948 0.947 0.937
300 50% 0.941 0.946 0.956 0.966 0.956 0.947 0.938 0.939 0.917

70% 0.944 0.942 0.953 0.962 0.954 0.944 0.931 0.917 0.917

30% 0.964 0.945 0.936 0.949 0.954 0.949 0.946 0.931 0.899
Mixt. 100 50% 0.964 0.935 0.922 0.940 0.939 0.944 0.933 0.913 0.913

70% 0.952 0.950 0.949 0.951 0.953 0.950 0.918 0.903 0.930

30% 0.972 0.950 0.936 0.941 0.938 0.941 0.925 0.918 0.912
60 50% 0.957 0.956 0.950 0.950 0.964 0.941 0.925 0.887 0.900

70% 0.925 0.916 0.915 0.926 0.905 0.874 0.843 0.819 0.892
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Table C3: Simulation results of 1000 repetitions for the coverage of the Greenwood
formula for the 10-th to 90−th percentile of the true underlying density. Sample size is
n = 300, n = 100 and n = 60 with 70%, 50% and 30% censoring.

Coverage of the Greenwood formula for the corresponding percentiles
Dist. Sample Cens. X10 X20 X30 X40 X50 X60 X70 X80 X90

30% 0.951 0.946 0.950 0.948 0.946 0.952 0.947 0.937 0.942
300 50% 0.937 0.940 0.944 0.940 0.935 0.945 0.954 0.928 0.927

70% 0.948 0.936 0.951 0.966 0.955 0.938 0.945 0.928 0.833

30% 0.911 0.923 0.942 0.937 0.934 0.951 0.930 0.935 0.916
Wei(1.5,4) 100 50% 0.927 0.926 0.947 0.960 0.954 0.952 0.935 0.926 0.869

70% 0.924 0.937 0.945 0.938 0.934 0.929 0.913 0.855 0.588

30% 0.916 0.933 0.943 0.951 0.956 0.943 0.936 0.906 0.885
60 50% 0.916 0.933 0.939 0.942 0.933 0.929 0.931 0.921 0.793

70% 0.910 0.919 0.918 0.927 0.915 0.907 0.884 0.773 0.533

30% 0.942 0.939 0.942 0.937 0.945 0.952 0.962 0.945 0.939
300 50% 0.944 0.952 0.939 0.954 0.949 0.949 0.945 0.956 0.945

70% 0.949 0.936 0.932 0.942 0.946 0.940 0.937 0.917 0.897

30% 0.927 0.939 0.954 0.947 0.940 0.943 0.926 0.933 0.925
Wei(3,3) 100 50% 0.929 0.923 0.942 0.930 0.935 0.938 0.934 0.932 0.904

70% 0.913 0.938 0.936 0.934 0.936 0.936 0.936 0.922 0.812

30% 0.895 0.926 0.941 0.939 0.939 0.950 0.942 0.932 0.909
60 50% 0.900 0.923 0.931 0.929 0.931 0.929 0.925 0.914 0.867

70% 0.885 0.919 0.921 0.923 0.924 0.918 0.898 0.863 0.678

30% 0.937 0.943 0.952 0.945 0.946 0.947 0.942 0.933 0.924
300 50% 0.929 0.940 0.948 0.951 0.953 0.953 0.953 0.948 0.918

70% 0.937 0.943 0.944 0.945 0.952 0.948 0.932 0.922 0.896

30% 0.948 0.943 0.941 0.951 0.949 0.946 0.943 0.918 0.926
Mixt. 100 50% 0.922 0.933 0.936 0.949 0.945 0.948 0.941 0.916 0.883

70% 0.913 0.934 0.932 0.944 0.931 0.933 0.923 0.899 0.745

30% 0.920 0.944 0.937 0.949 0.951 0.959 0.941 0.941 0.883
60 50% 0.906 0.909 0.921 0.933 0.931 0.939 0.931 0.906 0.854

70% 0.879 0.931 0.941 0.932 0.941 0.933 0.893 0.816 0.581
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Table C4: Simulation results of 1000 repetitions for the coverage of the Greenwood
formula for the 10-th to 90−th percentile of the true underlying density. Sample size is
n = 300, n = 100 and n = 60 with 70%, 50% and 30% censoring.

Coverage of the Greenwood formula for the corresponding percentiles
Dist. Sample Cens. X10 X20 X30 X40 X50 X60 X70 X80 X90

30% 0.951 0.946 0.950 0.948 0.946 0.952 0.947 0.937 0.942
300 50% 0.937 0.940 0.944 0.940 0.935 0.945 0.954 0.928 0.927

70% 0.948 0.936 0.951 0.966 0.955 0.938 0.945 0.928 0.833

30% 0.911 0.923 0.942 0.937 0.934 0.951 0.930 0.935 0.916
Wei(1.5,4) 100 50% 0.927 0.926 0.947 0.960 0.954 0.952 0.935 0.926 0.869

70% 0.924 0.937 0.945 0.938 0.934 0.929 0.913 0.855 0.588

30% 0.916 0.933 0.943 0.951 0.956 0.943 0.936 0.906 0.885
60 50% 0.916 0.933 0.939 0.942 0.933 0.929 0.931 0.921 0.793

70% 0.910 0.919 0.918 0.927 0.915 0.907 0.884 0.773 0.533

30% 0.942 0.939 0.942 0.937 0.945 0.952 0.962 0.945 0.939
300 50% 0.944 0.952 0.939 0.954 0.949 0.949 0.945 0.956 0.945

70% 0.949 0.936 0.932 0.942 0.946 0.940 0.937 0.917 0.897

30% 0.927 0.939 0.954 0.947 0.940 0.943 0.926 0.933 0.925
Wei(3,3) 100 50% 0.929 0.923 0.942 0.930 0.935 0.938 0.934 0.932 0.904

70% 0.913 0.938 0.936 0.934 0.936 0.936 0.936 0.922 0.812

30% 0.895 0.926 0.941 0.939 0.939 0.950 0.942 0.932 0.909
60 50% 0.900 0.923 0.931 0.929 0.931 0.929 0.925 0.914 0.867

70% 0.885 0.919 0.921 0.923 0.924 0.918 0.898 0.863 0.678

30% 0.937 0.943 0.952 0.945 0.946 0.947 0.942 0.933 0.924
300 50% 0.929 0.940 0.948 0.951 0.953 0.953 0.953 0.948 0.918

70% 0.937 0.943 0.944 0.945 0.952 0.948 0.932 0.922 0.896

30% 0.948 0.943 0.941 0.951 0.949 0.946 0.943 0.918 0.926
Mixt. 100 50% 0.922 0.933 0.936 0.949 0.945 0.948 0.941 0.916 0.883

70% 0.913 0.934 0.932 0.944 0.931 0.933 0.923 0.899 0.745

30% 0.920 0.944 0.937 0.949 0.951 0.959 0.941 0.941 0.883
60 50% 0.906 0.909 0.921 0.933 0.931 0.939 0.931 0.906 0.854

70% 0.879 0.931 0.941 0.932 0.941 0.933 0.893 0.816 0.581
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when we are dealing with a unimodal density, and in favor of the proposed technique
in the case of the bimodal density for smaller sample sizes. The main advantage of the
proposed approach is that it converges where the logspline technique might not (i.e in
cases of small sample sizes or heavy censoring (or both)). The Kaplan Meier yielded
consistently greater values of MISE compared two the other two approaches.
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Figure B7: Real densities used in simulations, Left: Weibull(1.5,4), Middle: Weibull(3,3),
Right: 0.5Weib(5, 4) + 0.5Weib(4, 2).

For the derivation of confidence intervals of the survival function we explored the
percentile bootstrap technique. We consider resampling pairs of the form {Ti, Di} from
the available data and considered 300 bootstrap samples in each repetition. We estimated
the coverage of confidence intervals for the 10−th, 20−th, . . ., and 90−th percentile of
the true underlying distribution. The results are presented in Table C2. These coverage
estimates were compared to those based on the well known Greenwood formula used
to derive confidence intervals for the Kaplan Meier survival funcion presented in Table
C2) of the Greenwood formula are presented in Table C4. We observe that the coverage
provided by the percenile bootstrap for the HCNS approach is satisfactory in the range
of the 20−th to the 80−th percentile where enough data are available. Moreover, the
coverage of the confidence intervals based on our proposed methodology is satisfactory.
Furthermore, the coverage achieved by the HCNS confidence intervals for the 90−th
percentile is markedly better in all cases compared to the Greenwood’s one. For example,
in the scenario of the Weibull mixture when n = 100 with 70% censoring, we achieved
93% coverage while the corresponding coverage for the Kaplan Meier estimator yields
74.5%.

We conducted an additional simulation study to evaluate and compare our method to
the semiparametric estimator of the survival function in the Cox model. We also consider
the method taken in Herndon and Harrell (1995) (restricted cubic spline (or RCS method)
in that the spline is restricted to have linear tails). They restate the Cox model using a
natural cubic spline as a baseline hazard and the estimation is done simultaneously for
all parameters. In their approach, no restrictions are imposed to any of the parameters
of interest and initial values are required. We used the fitted Cox model to derive an
initial value for the coefficient of the covariate. In their approach the spline model also
includes an intercept, the initial value of which was derived by assumming an exponential
distribution for the baseline hazard rate. For all other parameters we set zeros as initial
values. We used 4 knots for their approach placed at equally spaced percentiles that are
calculated by the uncensored data.
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One covariate, Z, was considered, taken to be exponentially distributed with mean
equal to 0.3. The sample sizes and expected levels of censoring were set identical to
the ones in the previous simulations. The real value of the coefficient γ of the covariate
of the Cox model was set equal to 2. The baseline distribution (at Z = 0) was taken
to be a Weibull(2,3). We used the estimated coefficient γ̂ obtained by the fitted Cox
model to estimate S(x|Z = 0.3). The ISE for the percentiles was used as in the previous
simulations (for the semiparametric estimator of the survival function beyond tmax we
set Ŝ(tmax|Z = z) when the larger time was a censoring time). The results for 1000
repetitions are shown in Table C5. For larger sample sizes we observe minor differences
between the two approaches. However, the proposed approach yields in almost all cases
smaller MISE, particularly for smaller sample sizes and/or heavier censoring. We note
that in the scenario where n = 60 with 70% censoring, min(Ti|Di = 1) was very often
identical to the 5−th percentile, which led to convergence problems concerning the knot
placement scheme that uses min(Ti|Di = 1) as the first knot. When this occurred only
the other two schemes were considered. We note that the RCS method yielded in general
smaller MISE but suffered from some convergence problems.

For the derivation of confidence intervals we used the percentile bootstrap technique
considering the covariate values fixed and resampling pairs of the form (Ti, Di). The sim-
ulation presented in Table C6 shows satisfactory coverage properties of this resampling
technique. In the same table the corresponding coverages of the survival confidence in-
tervals for the Cox model are also presented (see Link (1984)). We observe that at X10 and
X90 the coverage provided by the proposed method is significantly better as the censoring
gets heavier. For example, at X90 the coverage based on the traditional approach for the
Cox model is 79%, for n = 100 and 70% censoring. This drops to 73% for n = 60 and
70% censoring. In contrast, the coverages provided by the proposed technique are 95.1%
and 96.7% respectively. Similar results were obtained when comparing the coverage of
the two methods at X10 for small samples and heavy censoring.
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Table C5: Simulation results of 1000 repetitions for the Kaplan Meier, HCNS and RCS
methods in the case of a covariate Z. The mean integrated squared error is calculated
for the 10th to 90th, 20th to 80th, and 30th to 70th percentile of the real corresponding
distribution functions. The covariate is exponentially distributed with mean 0.3. The
HCNS and Cox model estimate S(x|Z = 0.3) (baseline is a Weibull(3,2) and the real value
of the parameter of the Cox model is γ = 2.)

Cox model HCNS RCS
Sample Cens. 10-90 20-80 30-70 10-90 20-80 30-70 10-90 20-80 30-70

30% 0.0013 0.0010 0.0007 0.0013 0.0010 0.0006 0.0012(1) 0.0009(1) 0.0007(1)

300 50% 0.0017 0.0013 0.0009 0.0017 0.0013 0.0008 0.0015(2) 0.0012(2) 0.0008(2)

70% 0.0028 0.0021 0.0015 0.0027 0.0020 0.0013 0.0023(4) 0.0018(4) 0.0012(4)

30% 0.0039 0.0030 0.0021 0.0039 0.0029 0.0019 0.0031(3) 0.0024(3) 0.0016(3)

100 50% 0.0051 0.0039 0.0026 0.0051 0.0037 0.0024 0.0040(3) 0.0032(3) 0.0021(3)

70% 0.0087 0.0064 0.0042 0.0081 0.0061 0.0039 −(5) −(5) −(5)

30% 0.0062 0.0048 0.0033 0.0062 0.0047 0.0031 0.0054(2) 0.0042(2) 0.0028(2)

60 50% 0.0086 0.0066 0.0045 0.0084 0.0064 0.0043 0.0072(2) 0.0056(2) 0.0038(2)

70% 0.0150 0.0110 0.0074 0.0135 0.0106 0.0070 −(5) −(5) −(5)

(1) Approximately 5% of the iterations were discarded due to convergence problems
(2) Approximately 6% of the iterations were discarded due to convergence problems
(3) Approximately 7% of the iterations were discarded due to convergence problems
(4) Approximately 9% of the iterations were discarded due to convergence problems
(5) Simulation was not conducted due to > 10% convergence problems

Table C6: Simulation results of 1000 repetitions for the coverage of the bootstrap (300
samples for each repetition) for the 10-th to 90-th percentile of the true underlying
distribution. The covariate Z is exponentially distributed with mean 0.3 and the following
coverages refer to S(x|Z = 0.3) where the baseline was considered to be for Z = 0

Coverage of the HCNS method for the corresponding percentiles
Dist. Sample Cens. X10 X20 X30 X40 X50 X60 X70 X80 X90

30% 0.936 0.956 0.944 0.940 0.944 0.948 0.944 0.948 0.933
300 50% 0.935 0.946 0.952 0.960 0.951 0.942 0.940 0.920 0.918

70% 0.945 0.943 0.939 0.949 0.951 0.947 0.926 0.923 0.953

30% 0.930 0.950 0.952 0.943 0.938 0.943 0.936 0.916 0.911
HCNS 100 50% 0.931 0.952 0.953 0.954 0.947 0.944 0.925 0.903 0.919

70% 0.947 0.963 0.957 0.942 0.935 0.913 0.887 0.914 0.951

30% 0.928 0.941 0.961 0.948 0.942 0.937 0.918 0.907 0.917
60 50% 0.926 0.951 0.958 0.948 0.943 0.932 0.926 0.924 0.946

70% 0.944 0.955 0.957 0.938 0.919 0.908 0.932 0.941 0.967

30% 0.939 0.935 0.940 0.949 0.942 0.958 0.959 0.963 0.951
300 50% 0.932 0.948 0.960 0.946 0.944 0.944 0.938 0.942 0.932

70% 0.943 0.943 0.940 0.942 0.944 0.944 0.949 0.959 0.951

30% 0.940 0.944 0.942 0.929 0.950 0.936 0.938 0.934 0.925
Cox 100 50% 0.929 0.929 0.942 0.939 0.946 0.942 0.943 0.930 0.900

70% 0.916 0.936 0.949 0.939 0.936 0.920 0.924 0.887 0.795

30% 0.934 0.940 0.937 0.942 0.961 0.950 0.947 0.959 0.930
60 50% 0.911 0.936 0.932 0.945 0.951 0.941 0.936 0.925 0.867

70% 0.884 0.902 0.925 0.935 0.915 0.905 0.876 0.832 0.732
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4 Appendix D

4.1 Additional simulations for the ROC curve and surfaces subject to an
LOD
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Figure D1: Densities used in the simulation studies in the two class case. Left: Y1 ∼
N(3, 1), Y2 ∼ N(4, 0.82). Middle: Y1 ∼ Gamma(25, 0.2), Y2 ∼ Gamma(35, 0.2). Right:
Noncentral t distributions Y1 ∼ t(4, 7) and Y2 ∼ t(5, 10)
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Figure D2: Densities used in the simulation studies in the three class case. Left:
Y1 ∼ N(5, 1), Y2 ∼ N(6, 1), Y3 ∼ N(7, 1) . Middle: Y1 ∼ Gamma(25, 0.2), Y2 ∼
Gamma(35, 0.2), Y3 ∼ Gamma(45, 0.2). Right: Noncentral t distributions Y1 ∼ t(4, 7),
Y2 ∼ t(5, 10) and Y3 ∼ t(6, 12)
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Figure D3: Empirical ROC curve and CNS ROC curve for the liver cancer data when the
H and LD group are combined to single ’diseased’ group.
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Figure D4: The projections of the ROC surface on the sides of the unit cube are equivalent
of a pairwise ROC analysis. The corresponding ROC curves for each pair of disease status
for the liver data are shown.
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Figure D5: Projections of the empirical and CNS ROC surfaces on the sides of the unit
cube for the liver data. Up: Corresponding ROC curves in the case of an upper LOD that
causes approximately 10% censoring. Down: Corresponding ROC curves in the case of
an upper LOD that causes approximately 30% censoring.
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Table D1: Simulation results for 1000 repetitions for the bi-gamma scenario. The likeli-
hood approach assumes the correct model for both populations. The coverage is derived
by using the percentile bootstrap with 200 samples for each repetition. (True AUC equals
to 0.9037)

AUC

Direction Sample Censoring Method Bias SE MSE Coverage
Likelihood -0.0004 0.0202 0.0004 0.9440

Naive -0.0007 0.0208 0.0004 0.9570
10% (Y0 : 19.5%, Y1 : 0.25%) dL/

√
2 -0.0119 0.0192 0.0005 0.9210

dL/2 -0.0360 0.0181 0.0016 0.4540
dL 0.0052 0.0209 0.0005 0.9270

CNS 0.0032 0.0212 0.0005 0.9410
Likelihood -0.0004 0.0206 0.0004 0.9480

n = 100 Naive -0.0063 0.0219 0.0005 0.9390
30% (Y0 : 56%, Y1 : 4%) dL/

√
2 0.0027 0.0230 0.0005 0.9480

dL/2 -0.0090 0.0246 0.0007 0.9320
dL -0.0075 0.0231 0.0006 0.9400

CNS 0.0000 0.0212 0.0004 0.9520
Likelihood -0.0018 0.0241 0.0006 0.9560

Naive -0.0432 0.0254 0.0025 0.5850
50% (Y0 : 82.2%, Y1 : 17.8%) dL/

√
2 -0.0086 0.0281 0.0009 0.9350

dL/2 -0.0087 0.0302 0.0010 0.9370
dL -0.0576 0.0238 0.0039 0.2930

CNS 0.0011 0.0270 0.0007 0.9610
Left Likelihood -0.0005 0.0146 0.0002 0.9430

Censoring Naive -0.0007 0.0148 0.0002 0.9470
10% (Y0 : 19.5%, Y1 : 0.25%) dL/

√
2 -0.0119 0.0140 0.0003 0.8550

dL/2 -0.0361 0.0132 0.0015 0.1500
dL 0.0051 0.0152 0.0003 0.9060

CNS 0.0019 0.0149 0.0002 0.9400
Likelihood -0.0005 0.0149 0.0002 0.9380

n = 200 Naive -0.0062 0.0155 0.0003 0.9530
30% (Y0 : 56%, Y1 : 4%) dL/

√
2 0.0024 0.0169 0.0003 0.9280

dL/2 -0.0094 0.0182 0.0004 0.9140
dL -0.0078 0.0165 0.0003 0.9160

CNS 0.0001 0.0152 0.0002 0.9500
Likelihood -0.0009 0.0173 0.0003 0.9370

Naive -0.0436 0.0177 0.0022 0.2450
50% (Y0 : 82.2%, Y1 : 17.8%) dL/

√
2 -0.0087 0.0198 0.0005 0.9160

dL/2 -0.0087 0.0213 0.0005 0.9190
dL -0.0581 0.0172 0.0037 0.0530

CNS 0.0041 0.0183 0.0004 0.9640
10% (Y0 : 0.45%, Y1 : 19.55%) Likelihood -0.0005 0.0201 0.0004 0.9460

CNS 0.0041 0.0210 0.0005 0.9470
n = 100 30% (Y0 : 4.7%, Y1 : 55.3%) Likelihood -0.0008 0.0207 0.0004 0.9480

CNS 0.0012 0.0216 0.0005 0.9600
50% (Y0 : 17.8%, Y1 : 82.2%) Likelihood -0.0021 0.0250 0.0006 0.9560

CNS 0.0043 0.0257 0.0008 0.9700
Right 10% (Y0 : 0.45%, Y1 : 19.55%) Likelihood -0.0005 0.0146 0.0002 0.9470

Censoring CNS 0.0029 0.0151 0.0002 0.9300
n = 200 30% (Y0 : 4.7%, Y1 : 55.3%) Likelihood -0.0005 0.0149 0.0002 0.9440

CNS 0.0010 0.0155 0.0002 0.9430
50% (Y0 : 17.8%, Y1 : 82.2%) Likelihood -0.0012 0.0174 0.0003 0.9330

CNS 0.0058 0.0194 0.0004 0.9320
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Table D2: Simulation results for 1000 repetitions for the scenario of two populations that
follow a non-central t distribution. The likelihood approach falsely assumes the normal
model for both populations. The coverage is derived by using the percentile bootstrap
with 200 samples for each repetition. (True AUC equals to 0.7355)

AUC

Direction Sample Censoring Method Bias SE MSE Coverage
Likelihood -0.0452 0.0385 0.0035 0.8080

Naive 0.0015 0.0355 0.0013 0.9540
10% (Y0 : 18.9%, Y1 : 1.1%) dL/

√
2 -0.0528 0.0421 0.0046 0.7830

dL/2 -0.0470 0.0417 0.0040 0.8240
dL -0.0628 0.0423 0.0057 0.6960

CNS -0.0047 0.0383 0.0015 0.9530
Likelihood -0.0295 0.0349 0.0021 0.8820

n = 100 Naive -0.0118 0.0361 0.0014 0.9330
30% (Y0 : 47.5%, Y1 : 12.5%) dL/

√
2 -0.0585 0.0421 0.0052 0.7370

dL/2 -0.0454 0.0417 0.0038 0.8340
dL -0.0852 0.0418 0.0090 0.4330

CNS -0.0080 0.0297 0.0009 0.9480
Likelihood -0.0221 0.0440 0.0024 0.9240

Naive -0.0507 0.0356 0.0038 0.7080
50% (Y0 : 67.3%, Y1 : 32.7%) dL/

√
2 -0.0812 0.0415 0.0083 0.4630

dL/2 -0.0677 0.0412 0.0063 0.6380
dL -0.1133 0.0409 0.0145 0.1350

CNS -0.0078 0.0388 0.0016 0.9620
Left Likelihood -0.0496 0.0280 0.0032 0.5830

Censoring Naive -0.0003 0.0249 0.0006 0.9530
10% (Y0 : 18.9%, Y1 : 1.1%) dL/

√
2 -0.0575 0.0310 0.0043 0.5360

dL/2 -0.0515 0.0308 0.0036 0.6010
dL -0.0676 0.0310 0.0055 0.3800

CNS -0.0025 0.0346 0.0012 0.9420
Likelihood -0.0322 0.0248 0.0017 0.7350

n = 200 Naive -0.0134 0.0251 0.0008 0.9040
30% (Y0 : 47.5%, Y1 : 12.5%) dL/

√
2 -0.0631 0.0308 0.0049 0.4380

dL/2 -0.0496 0.0304 0.0034 0.6310
dL -0.0900 0.0306 0.0090 0.1240

CNS -0.0049 0.0270 0.0008 0.9420
Likelihood -0.0221 0.0323 0.0015 0.8710

Naive -0.0513 0.0249 0.0033 0.4550
50% (Y0 : 67.3%, Y1 : 32.7%) dL/

√
2 -0.0855 0.0301 0.0082 0.1620

dL/2 -0.0716 0.0297 0.0060 0.3170
dL -0.1178 0.0299 0.0148 0.0070

CNS -0.0058 0.0367 0.0014 0.9420
10% (Y0 : 5.8%, Y1 : 14.1%) Likelihood -0.0181 0.0379 0.0018 0.9390

CNS 0.0098 0.0368 0.0015 0.9300
n = 100 30% (Y0 : 17.8%, Y1 : 42.2%) Likelihood 0.0064 0.0392 0.0016 0.9520

CNS 0.0072 0.0388 0.0016 0.9450
50% (Y0 : 32.7%, Y1 : 67.3%) Likelihood 0.0218 0.0431 0.0023 0.9050

CNS 0.0133 0.0534 0.0030 0.9600
Right 10% (Y0 : 5.8%, Y1 : 14.1%) Likelihood -0.0196 0.0267 0.0011 0.8770

Censoring CNS 0.0066 0.0259 0.0007 0.9500
n = 200 30% (Y0 : 17.8%, Y1 : 42.2%) Likelihood 0.0048 0.0272 0.0008 0.9330

CNS 0.0050 0.0275 0.0008 0.9510
50% (Y0 : 32.7%, Y1 : 67.3%) Likelihood 0.0198 0.0299 0.0013 0.8840

CNS 0.0134 0.0375 0.0016 0.9620
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Table D3: Simulation results for 1000 repetitions for the tri-gamma scenario. The like-
lihood approach assumes the correct model for the three populations. The coverage is
derived by using the percentile bootstrap with 200 samples for each repetition. (True
VUS equals to 0.7747)

V US
Direction Sample Censoring Method Bias SE MSE Coverage

Likelihood 0.0010 0.0269 0.0007 0.9360
Naive -0.0001 0.0273 0.0007 0.9380

10% dL/
√
2 -0.0086 0.0273 0.0008 0.9420

(Y1 : 29.4%, Y2 : 0.6%, Y3 : 0%) dL/2 -0.0320 0.0290 0.0019 0.8190
dL 0.0061 0.0278 0.0008 0.9250

CNS 0.0096 0.0280 0.0009 0.9300
n = 100 Likelihood 0.0001 0.0284 0.0008 0.9340

Naive -0.0281 0.0284 0.0017 0.8460
30% dL/

√
2 -0.0154 0.0294 0.0011 0.9290

(Y1 : 76.65%, Y2 : 13.1%, Y3 : 0.25%) dL/2 -0.0432 0.0301 0.0028 0.7460
dL -0.0367 0.0284 0.0022 0.7740

CNS 0.0096 0.0280 0.0009 0.9300
Left Likelihood 0.0000 0.0197 0.0004 0.9540

Censoring Naive -0.0006 0.0200 0.0004 0.9390
10% dL/

√
2 -0.0099 0.0201 0.0005 0.9160

(Y1 : 29.4%, Y2 : 0.6%, Y3 : 0%) dL/2 -0.0339 0.0216 0.0016 0.6270
dL 0.0051 0.0203 0.0004 0.9350

CNS 0.0052 0.0207 0.0005 0.9501
Likelihood -0.0001 0.0207 0.0004 0.9550

n = 200 Naive -0.0285 0.0209 0.0012 0.7578
30% dL/

√
2 -0.0162 0.0219 0.0007 0.8830

(Y1 : 76.65%, Y2 : 13.1%, Y3 : 0.25%) dL/2 -0.0441 0.0226 0.0025 0.4970
dL -0.0382 0.0204 0.0019 0.5400

CNS 0.0052 0.0207 0.0005 0.9501
10% Likelihood 0.0007 0.0271 0.0007 0.9360

(Y1 : 0%, Y2 : 1.75%, Y3 : 28.25%) CNS 0.0130 0.0288 0.0010 0.9340
n = 100 30% Likelihood -0.0003 0.0292 0.0009 0.9570

(Y1 : 0.34%, Y2 : 16.6%, Y3 : 73.06%) CNS 0.0025 0.0343 0.0012 0.9767
Right 10% Likelihood 0.0000 0.0197 0.0004 0.9490

Censoring (Y1 : 0%, Y2 : 1.75%, Y3 : 28.25%) CNS 0.0080 0.0208 0.0005 0.9359
n = 200 30% Likelihood -0.0006 0.0217 0.0005 0.9580

(Y1 : 0.34%, Y2 : 16.6%, Y3 : 73.06%) CNS 0.0064 0.0228 0.0006 0.9780
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Table D4: Simulation results for 1000 repetitions for the scenario of three non central t
distributions. The likelihood approach falsely assumes the normal model for the three
populations. The coverage is derived by using the percentile bootstrap with 200 samples
for each repetition. (True VUS equals to 0.4185)

V US
Direction Sample Censoring Method Bias SE MSE Coverage

Likelihood -0.0609 0.0418 0.0055 0.6580
Naive -0.0001 0.0344 0.0012 0.9620

10% dL/
√
2 -0.0748 0.0430 0.0074 0.5730

(Y1 : 27.08%, Y2 : 2.74%, Y3 : 0.18%) dL/2 -0.0663 0.0431 0.0062 0.6380
dL -0.0890 0.0422 0.0097 0.4070

CNS -0.0013 0.0411 0.0017 0.9600
n = 100 Likelihood -0.0401 0.0445 0.0036 0.8520

Naive -0.0314 0.0324 0.0020 0.8350
30% dL/

√
2 -0.0885 0.0404 0.0095 0.3830

(Y1 : 59.6%, Y2 : 23.2%, Y3 : 7.2%) dL/2 -0.0730 0.0392 0.0069 0.5270
dL -0.1203 0.0404 0.0161 0.1250

CNS -0.0013 0.0411 0.0017 0.9600
Left Likelihood -0.0639 0.0326 0.0051 0.4210

Censoring Naive -0.0008 0.0243 0.0006 0.9460
10% dL/

√
2 -0.0779 0.0334 0.0072 0.2620

(Y1 : 27.08%, Y2 : 2.74%, Y3 : 0.18%) dL/2 -0.0693 0.0336 0.0059 0.3960
dL -0.0922 0.0328 0.0096 0.1250

CNS -0.0055 0.0391 0.0016 0.9614
Likelihood -0.0403 0.0353 0.0029 0.7490

n = 200 Naive -0.0321 0.0230 0.0016 0.6960
30% dL/

√
2 -0.0914 0.0313 0.0093 0.1030

(Y1 : 59.6%, Y2 : 23.2%, Y3 : 7.2%) dL/2 -0.0756 0.0303 0.0066 0.2320
dL -0.1235 0.0313 0.0162 0.0080

CNS -0.0078 0.0376 0.0015 0.9495
10% Likelihood -0.0325 0.0352 0.0023 0.8290

(Y1 : 4.2%, Y2 : 9.85%, Y3 : 15.95%) CNS 0.0162 0.0377 0.0017 0.9240
n = 100 30% Likelihood -0.0029 0.0392 0.0015 0.9420

(Y1 : 12.4%, Y2 : 30.1%, Y3 : 47.5%) CNS 0.0080 0.0441 0.0020 0.9760
Right 10% Likelihood -0.0344 0.0251 0.0018 0.7110

Censoring (Y1 : 4.2%, Y2 : 9.85%, Y3 : 15.95%) CNS 0.0110 0.0269 0.0008 0.9330
n = 200 30% Likelihood -0.0031 0.0273 0.0008 0.9440

(Y1 : 12.4%, Y2 : 30.1%, Y3 : 47.5%) CNS 0.0079 0.0313 0.0010 0.9670
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Table D5: Simulation results for 1000 repetitions for the bi-normal scenario with unequal
sample sizes for the two populations (100 and 300 for Y0 and Y1 respectively). The
likelihood approach assumes the correct model for both populations. The coverage is
derived by using the percentile bootstrap with 200 samples for each repetition. (True
AUC equals to 0.7826)

AUC

Direction Censoring Method Bias SE MSE Coverage
Likelihood -0.0008 0.0281 0.0008 0.9440

Naive -0.0036 0.0284 0.0008 0.9420
10% (Y0 : 30.94%, Y1 : 3.02%) dL/

√
2 -0.0006 0.0289 0.0008 0.9460

dL/2 -0.0013 0.0279 0.0008 0.9470
dL -0.0097 0.0304 0.0010 0.9390

CNS -0.0013 0.0292 0.0009 0.9430
Likelihood -0.0011 0.0295 0.0009 0.9470

Naive -0.0291 0.0278 0.0016 0.8300
Left 30% (Y0 : 62.05%, Y1 : 19.32%) dL/

√
2 -0.0195 0.0310 0.0013 0.9020

Censoring dL/2 -0.0168 0.0310 0.0012 0.9110
dL -0.0496 0.0307 0.0034 0.6220

CNS -0.0012 0.0314 0.0010 0.9530
Likelihood -0.0048 0.0385 0.0015 0.9390

Naive -0.0798 0.0253 0.0070 0.0240
50% (Y0 : 78.39%, Y1 : 40.35%) dL/

√
2 -0.0564 0.0308 0.0041 0.5350

dL/2 -0.0536 0.0311 0.0038 0.5750
dL -0.0925 0.0298 0.0094 0.0450

CNS -0.0011 0.0461 0.0021 0.9860
10% (Y0 : 2.71%, Y1 : 12.43%) Likelihood -0.0011 0.0281 0.0008 0.9400

CNS 0.0003 0.0288 0.0008 0.9450
Right 30% (Y0 : 10.17%, Y1 : 36.61%) Likelihood -0.0016 0.0291 0.0008 0.9470

Censoring CNS 0.0003 0.0292 0.0009 0.9550
50% (Y0 : 21.06%, Y1 : 59.65%) Likelihood -0.0023 0.0312 0.0010 0.9330

CNS 0.0014 0.0345 0.0012 0.9470
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Table D6: Simulation results for 1000 repetitions for the bi-gamma scenario with unequal
sample sizes for the two populations (100 and 300 for Y0 and Y1 respectively). The
likelihood approach assumes the correct model for both populations. The coverage is
derived by using the percentile bootstrap with 200 samples for each repetition. The case
of 50% is not presented for left censoring since the level of censoring for Y0 is over 90%.
(True AUC equals to 0.9037)

AUC

Direction Censoring Method Bias SE MSE Coverage
Likelihood -0.0002 0.0167 0.0003 0.9380

Naive -0.0013 0.0169 0.0003 0.9380
10% (Y0 : 36.53%, Y1 : 1.16%) dL/

√
2 -0.0059 0.0168 0.0003 0.9540

dL/2 -0.0264 0.0172 0.0010 0.6720
dL 0.0034 0.0174 0.0003 0.9290

CNS 0.0017 0.0172 0.0003 0.9300
Likelihood -0.0006 0.0183 0.0003 0.9490

Naive -0.0313 0.0175 0.0013 0.5852
Left 30% (Y0 : 78%, Y1 : 14%) dL/

√
2 -0.0020 0.0206 0.0004 0.9460

Censoring dL/2 -0.0037 0.0226 0.0005 0.9420
dL -0.0449 0.0176 0.0023 0.1780

CNS 0.0014 0.0198 0.0004 0.9623
10% (Y0 : 0.22%, Y1 : 13.26%) Likelihood -0.0003 0.0165 0.0003 0.9400

CNS 0.0029 0.0172 0.0003 0.9350
Right 30% (Y0 : 1.99%, Y1 : 39.34%) Likelihood -0.0003 0.0164 0.0003 0.9400

Censoring CNS 0.0017 0.0171 0.0003 0.9460
50% (Y0 : 7.41%, Y1 : 64.19%) Likelihood -0.0007 0.0175 0.0003 0.9390

CNS 0.0008 0.0189 0.0004 0.9600
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Table D7: Simulation results for 1000 repetitions for the scenario where the two popu-
lations follow two non-central t distributions. The sample sizes for the two populations
(100 and 300 for Y0 and Y1 respectively). The likelihood approach falsely assumes nor-
mality for both populations. The coverage is derived by using the percentile bootstrap
with 200 samples for each repetition. (True AUC equals to 0.7355)

AUC

Direction Censoring Method Bias SE MSE Coverage
Likelihood 0.1607 0.0333 0.0269 0.7750

Naive 0.1988 0.0342 0.0407 0.9500
10% (Y0 : 29.66%, Y1 : 3.45%) dL/

√
2 0.1472 0.0392 0.0232 0.7020

dL/2 0.1565 0.0389 0.0260 0.7810
dL 0.1305 0.0389 0.0185 0.5200

CNS 0.2002 0.0318 0.0411 0.9460
Likelihood 0.1732 0.0327 0.0311 0.8440

Naive 0.1746 0.0307 0.0314 0.8400
Left 30% (Y0 : 57.39%, Y1 : 20.87%) dL/

√
2 0.1326 0.0384 0.0191 0.5270

Censoring dL/2 0.1465 0.0380 0.0229 0.6680
dL 0.1026 0.0375 0.0119 0.1350

CNS 0.1887 0.0375 0.0370 0.9440
Likelihood 0.1760 0.0462 0.0331 0.8880

Naive 0.1292 0.0277 0.0175 0.1850
50% (Y0 : 73.59%, Y1 : 42.14%) dL/

√
2 0.1067 0.0366 0.0127 0.1620

dL/2 0.1192 0.0361 0.0155 0.3060
dL 0.0754 0.0358 0.0070 0.0030

CNS 0.1289 0.0276 0.0174 0.9560
10% (Y0 : 4.86%, Y1 : 11.72%) Likelihood -0.0232 0.0332 0.0016 0.8940

CNS 0.0065 0.0327 0.0011 0.9420
Right 30% (Y0 : 14.55%, Y1 : 35.15%) Likelihood -0.0011 0.0338 0.0011 0.9390

Censoring CNS 0.0025 0.0335 0.0011 0.9460
50% (Y0 : 26.47%, Y1 : 57.85%) Likelihood 0.0134 0.0358 0.0015 0.9000

CNS 0.0044 0.0407 0.0017 0.9460



4. APPENDIX D 155

Table D8: Simulation results for 1000 repetitions in the case of a lower LOD when
5 or 6 or 7 knots are used with the proposed method (CNS(5), CNS(6), and CNS(7)

respectively). The sample size for each of the two populations equals to 100. (Results
that correspond to CNS(6) are restated here for convenience)

AUC

True Models Censoring Method Bias SE MSE
CNS(5) 0.0005 0.0351 0.0012

10% (Y0 : 19.1%, Y1 : 0.9%) CNS(6) 0.0006 0.0351 0.0012
CNS(7) -0.0016 0.0344 0.0012
CNS(5) -0.0016 0.0352 0.0012

Bi-Normal 30% (Y0 : 50%, Y1 : 10%) CNS(6) -0.0015 0.0352 0.0012
CNS(7) -0.0025 0.0350 0.0012
CNS(5) -0.0026 0.0424 0.0018

50% (Y0 : 71%, Y1 : 29%) CNS(6) -0.0025 0.0440 0.0019
CNS(7) -0.0028 0.0436 0.0019
CNS(5) 0.0034 0.0212 0.0005

10% (Y0 : 19.5%, Y1 : 0.25%) CNS(6) 0.0032 0.0212 0.0005
CNS(7) 0.0004 0.0210 0.0004
CNS(5) 0.0002 0.0213 0.0005

Bi-Gamma 30% (Y0 : 56%, Y1 : 4%) CNS(6) 0.0000 0.0212 0.0004
CNS(7) -0.0012 0.0213 0.0005
CNS(5) 0.0012 0.0265 0.0007

50% (Y0 : 82.2%, Y1 : 17.8%) CNS(6) 0.0011 0.0270 0.0007
CNS(7) 0.0009 0.0277 0.0008
CNS(5) -0.0003 0.0415 0.0017

10% (Y0 : 18.9%, Y1 : 1.1%) CNS(6) -0.0047 0.0383 0.0015
CNS(7) -0.0018 0.0402 0.0016
CNS(5) -0.0031 0.0368 0.0014

Bi-Non central t 30% (Y0 : 47.5%, Y1 : 12.5%) CNS(6) -0.0080 0.0297 0.0009
CNS(7) -0.0033 0.0366 0.0014
CNS(5) -0.0046 0.0451 0.0021

50% (Y0 : 67.3%, Y1 : 32.7%) CNS(6) -0.0078 0.0388 0.0016
CNS(7) -0.0047 0.0455 0.0021
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Table D9: Simulation results for 1000 repetitions in the case of a lower LOD when
5 or 6 or 7 knots are used with the proposed method (CNS(5), CNS(6), and CNS(7)

respectively). The sample size for each of the two populations equals to 200. (Results
that correspond to CNS(6) are restated here for convenience)

AUC

True Models Censoring Method Bias SE MSE
CNS(5) -0.0001 0.0234 0.0005

10% (Y0 : 19.1%, Y1 : 0.9%) CNS(6) -0.0001 0.0233 0.0005
CNS(7) -0.0014 0.0230 0.0005
CNS(5) -0.0012 0.0239 0.0006

Bi-Normal 30% (Y0 : 50%, Y1 : 10%) CNS(6) -0.0012 0.0241 0.0006
CNS(7) -0.0018 0.0240 0.0006
CNS(5) -0.0005 0.0281 0.0008

50% (Y0 : 71%, Y1 : 29%) CNS(6) 0.0006 0.0292 0.0009
CNS(7) -0.0004 0.0276 0.0008
CNS(5) 0.0026 0.0152 0.0002

10% (Y0 : 19.5%, Y1 : 0.25%) CNS(6) 0.0019 0.0149 0.0002
CNS(7) -0.0009 0.0152 0.0002
CNS(5) 0.0001 0.0152 0.0002

Bi-Gamma 30% (Y0 : 56%, Y1 : 4%) CNS(6) 0.0001 0.0152 0.0002
CNS(7) 0.0033 0.0185 0.0004
CNS(5) 0.0034 0.0180 0.0003

50% (Y0 : 82.2%, Y1 : 17.8%) CNS(6) 0.0041 0.0183 0.0004
CNS(7) 0.0001 0.0149 0.0002
CNS(5) -0.0050 0.0381 0.0015

10% (Y0 : 18.9%, Y1 : 1.1%) CNS(6) -0.0025 0.0346 0.0012
CNS(7) -0.0061 0.0371 0.0014
CNS(5) -0.0050 0.0381 0.0015

Bi-Non central t 30% (Y0 : 47.5%, Y1 : 12.5%) CNS(6) -0.0049 0.0270 0.0008
CNS(7) -0.0052 0.0269 0.0008
CNS(5) -0.0048 0.0367 0.0014

50% (Y0 : 67.3%, Y1 : 32.7%) CNS(6) -0.0058 0.0367 0.0014
CNS(7) -0.0049 0.0370 0.0014
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Table D10: Simulation results for 1000 repetitions in the case of a lower LOD when
5 or 6 or 7 knots are used with the proposed method (CNS(5), CNS(6), and CNS(7)

respectively). The sample sizes are 100 and 300 for Y0 and Y1 respectively. (Results that
correspond to CNS(6) are restated here for convenience)

AUC

True Models Censoring Method Bias SE MSE
CNS(5) -0.0014 0.0292 0.0009

10% (Y0 : 19.1%, Y1 : 0.9%) CNS(6) -0.0013 0.0292 0.0009
CNS(7) -0.0030 0.0288 0.0008
CNS(5) -0.0024 0.0314 0.0010

Bi-Normal 30% (Y0 : 50%, Y1 : 10%) CNS(6) -0.0012 0.0314 0.0010
CNS(7) -0.0026 0.0314 0.0010
CNS(5) -0.0029 0.0447 0.0020

50% (Y0 : 71%, Y1 : 29%) CNS(6) -0.0011 0.0461 0.0021
CNS(7) -0.0027 0.0468 0.0022
CNS(5) 0.0018 0.0171 0.0003

10% (Y0 : 19.5%, Y1 : 0.25%) CNS(6) 0.0017 0.0172 0.0003
Bi-Gamma CNS(7) -0.0003 0.0173 0.0003

CNS(5) 0.0009 0.0193 0.0004
30% (Y0 : 56%, Y1 : 4%) CNS(6) 0.0014 0.0198 0.0004

CNS(7) 0.0006 0.0198 0.0004
CNS(5) -0.0042 0.0346 0.0012

10% (Y0 : 18.9%, Y1 : 1.1%) CNS(6) -0.0013 0.0292 0.0009
CNS(7) -0.0054 0.0343 0.0012
CNS(5) -0.0138 0.0372 0.0016

Bi-Non central t 30% (Y0 : 47.5%, Y1 : 12.5%) CNS(6) -0.0012 0.0314 0.0010
CNS(7) -0.0145 0.0374 0.0016
CNS(5) -0.0178 0.0513 0.0029

50% (Y0 : 67.3%, Y1 : 32.7%) CNS(6) -0.0011 0.0461 0.0021
CNS(7) -0.0184 0.0521 0.0031
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ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟ∆ΟΙ
ΑΞΙΟΛΟΓΗΣΗΣ ∆ΙΑΓΝΩΣΤΙΚΩΝ
ΕΛΕΓΧΩΝ ΠΑΡΟΥΣΙΑ ΛΟΓΟΚΡΙΣΙΑΣ

Περίληψη:

Η χρήση διαγνωστικών ελέγχων (ή ϐιοδεικτών) για την ανίχνευση κάποιας ασθένειας είναι
σηµαντική γιατί συµβάλλει τόσο στην κατανόηση του µηχανισµού της ασθένειας αλλά και
στην ϐελτίωση της ποιότητας της Ϲωής των ασθενών ή και στην πλήρη αντιµετώπισή της.
΄Οταν έχουµε να κάνουµε µε καταληκτικές ασθένειες τότε η έγκαιρη διάγνωση µπορεί να
συµβάλλει στην επιµήκυνση του υπολοιπόµενου χρόνου Ϲωής. Ωστόσο η διάγνωση είναι µια
ατελής διαδικασία. ΄Ετσι, η αξιολόγηση των διαγνωστικών ελέγχων είναι κρίσιµης σηµασίας.

Στην περίπτωση που έχουµε δύο οµάδες προς διαχωρισµό (π.χ. ασθενείς και υγιείς) και
ο διαγνωστικός έλεγχος δίνει συνεχείς ή µετρήσεις διατεταγµένης κλίµακας τότε η πιο διαδε-
δοµένη τεχνική για την αξιολόγησή του, είναι η καµπύλη ROC (receiver operating char-
acteristic) (ϐλέπε Pepe (2003) για µια λεπτοµερή ανασκόπηση των καµπυλών ROC). ΄Ενας
δείκτης που συνοψίζει την διαχωριστική ικανότητα ενός τέτοιου διαγνωστικού ελέγχου είναι
το εµβαδό κάτω από την καµπύλη ROC (area under the curve ή AUC). Σε προβλήµατα
διαχωρισµού τριών πληθυσµών χρησιµοποιείται η επιϕάνεια ROC (ϐλέπε Mossman 1999).
Ο δείκτης ο οποίος συνοψίζει την διαχωριστική ικανότητα ενός τέτοιου διαγνωστικού ελέγχου
είναι ο όγκος κάτω από την επιϕάνεια ROC (volume under the surface ή V US).

Πολλοί διαγνωστικοί έλεγχοι εξαρτώνται από το χρόνο. Για παράδειγµα το Framing-
ham risk score (FR-score) είναι ένας διαγνωστικός έλεγχος που ϑεωρείται δεικτικός του
εµϕράγµατος του µυοκαρδίου και του εγκεϕαλικού (ϐλέπε και Wilson et al. (1998) και
Grundy et al. (1998)). Το FR-score (διαϕορετικό για γυναίκες και άντρες) ϐασίζεται σε
παράγοντες όπως η τιµή της χοληστερίνης, του σακχαρώδη διαβήτη, της ηλικίας και της
πίεσης. Για τέτοιους διαγνωστικούς ελέγχους αναµένεται ότι µετρήσεις που λαµβάνονται
πιο κοντά στο «γεγονός» (που συχνά είναι ο ϑάνατος) είναι µεγαλύτερες. Πολλές φορές,
όταν µελετώνται καταληκτικές ασθένειες παρατηρείται το φαινόµενο τη λογοκρισίας. Αυτό
συµβαίνει επειδή κάποιοι ασθενείς αποϕασίζουν για διάϕορους λόγους να παραιτηθούν
από την έρευνα και έτσι η µόνη πληροϕορία που έχουµε για τα εν λόγω άτοµα είναι ότι
κατάϕεραν να επιζήσουν πέραν του χρονικού σηµείου που παραιτήθηκαν από την έϱευνα.
΄Ετσι οι χρόνοι µέχρι τον ϑάνατο αυτών των ατόµων ϑεωρούνται λογοκριµένοι µιας και δεν
παρατηρούνται πλήρως. Αυτό είναι ένα παράδειγµα δεξιάς λογοκρισίας. Αριστερή λο-
γοκρισία έχουµε όταν ένα άτοµο έχει υποστεί το υπό µελέτη γεγονός πριν την εισαγωγή
του στην έρευνα. ΄Ενα άλλο είδος λογοκρισίας είναι η λογοκρισία σε διάστηµα, όπου το
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µόνο που µας είναι γνωστό για κάποιον λογοκριµένο ασθενή είναι ότι υπέστη το γεγονός σε
κάποιο κλειστό χρονικό διάστηµα.

Σε αυτήν την διδακτορική διατριβή αναπτύσσουµε νέες στατιστικές µεθόδους που συ-
νεισϕέρουν στην αξιολόγηση διαγνωστικών ελέγχων παρουσία λογοκρισίας. Η µοντελοποίηση
ενός χρονοεξαρτώµενου διαγνωστικού ελέγχου µπορεί να συνεισϕέρει στην κατασκευή χρονο-
εξαρτώµενων καµπυλών ROC και κατ’επέκταση στην µελέτη της διαγνωστικής ακρίβειας του
ελέγχου στον χρόνο. Σε αυτήν την εργασία επικεντρωνόµαστε στη χρήση των γενικευµένων
γραµµικών µοντέλων για τη µοντελοποίηση τέτοιων διαγνωστικών ελέγχων. Ωστόσο κατά
την προσαρµογή των γενικευµένων γραµµικών µοντέλων πρέπει να ληϕθεί υπόψη η λο-
γοκριµένη συµµεταβλητή του χρόνου µέχρι το γεγονός. Για αυτό το σκοπό αναπτύσσουµε
µία νέα µεθοδολογία που ϐασίζεται σε ϐέλτιστες εκτιµητικές εξισώσεις. Με τη µεθοδολογία
αυτή δε χρειάζεται καµία υπόθεση για την παραµετρική µορϕή της κατανοµής της απόκρισης.
Για την κατανοµή της λογοκριµένης συµµεταβλητής του χρόνου, µπορεί κανείς να υποθέσει
είτε παραµετρικά µοντέλα είτε άλλες µη παραµετρικές τεχνικές. Εµείς, για την µοντε-
λοποίηση της λογοκριµένης συµµεταβλητής αναπτύσσουµε µια νέα spline τεχνική. Προ-
σαρµόζουµε µία φυσική κυβική spline στην αθροιστική συνάρτηση κινδύνου κάτω από περι-
ορισµούς µονοτονίας. Με αυτήν την µέθοδο επιτυγχάνουµε εκτίµηση της κατανοµής της λο-
γοκριµένης συµµεταβλητής και πέραν της τελευταίας (χρονικά) παρατήρησης ακόµα και αν
αυτή είναι λογοκριµένη. Κάτι τέτοιο δεν είναι δυνατό µε τη γνωστή µη παραµετρική εκτίµηση
µέγιστης πιθανοϕάνειας των Kaplan και Meier (1959). Επίσης, κάτι τέτοιο δεν είναι δυνατό
ούτε µε γνωστές τεχνικές λείανσης όπως αυτή των πυρήνων (ϐλέπε Wand and Jones (1995)
για µια λεπτοµερή ανασκόπηση αυτών των τεχνικών). Κάτω από την spline τεχνική που
αναπτύσσουµε, εξασϕαλίζουµε εγγυηµένη σύγκλιση µιας και το πρόβληµα ελαχιστοποίησης
αϕορά σε άθροισµα τετραγώνων µε γραµµικούς περιοριορισµούς ως προς τις παραµέτρους.
Κάτι τέτοιο δεν εξασϕαλίζεται από spline τεχνικές που αϕορούν σε µέγιστη πιθανοϕάνεια
όπως η logspline τεχνική (ϐλέπε Kooperberg (1991)) ή λεγόµενη restricted cubic spline
(RCS) προσέγγιση (ϐλέπε Harrell (2001)). Επιπλέον, επεκτείνουµε τη µεθοδολογία των
εκτιµητικών εξισώσεων και σε καταστάσεις όπου έχουµε επαναλαµβανόµενες µετρήσεις.
∆ηλαδή σε περιπτώσεις που ασθενείς παρακολουθούνται στο χρόνο και από τους οποίους
λαµβάνονται µετρήσεις ανά τακτά χρονικά διαστήµατα µέχρι το γεγονός ή τη λογοκρία.
Επίσης, παρουσιάζουµε κάποιες εϕαρµογές µε πραγµατικά δεδοµένα που αϕορούν είτε
σε περιπτώσεις όπου λαµβάνεται µία µέτρηση για κάθε ασθενή είτε σε περιπτώσεις που
λαµβάνονται περισσότερες από µια µετρήσεις και οι ασθενείς παρακολουθούνται στο χρόνο.

Εκτός από το φαινόµενο της λογοκρισίας στην µεταβλητή του χρόνου από την οποία
µπορεί να εξαρτάται ένας διαγνωστικός έλεγχος, λογοκρισία µπορεί να εµϕανιστεί και σε
αυτές καθεαυτές τις τιµές του διαγνωστικού ελέγχου. Κάτι τέτοιο µπορεί να συµβεί όταν
εξαιτίας τεχνικών δυσκολιών που αϕορούν στην τεχνολογία ή την φύση του διαγνωστικού
ελέγχου, δε µπορούν να ληϕθούν τιµές κάτω ή πάνω από κάποιο όριο (limit of detection
ή LOD). Κάποιες τεχνικές που έχουν προταθεί για την αξιολόγηση τέτοιων διαγνωστικών
ελέγχων ϐασίζονται είτε σε απλές τιµές αντικατάστασης των λογοκριµένων παρατηρήσεων
είτε σε µεθόδους µέγιστης πιθανοϕάνειας ύστερα από αυστηρές παραµετρικές υποθέσεις για
την κατανοµή των µετρήσεων. Αποδεικνύουµε ότι οι τεχνικές απλών τιµών αντικατάστασης
προκαλούν µεροληψία κατά την εκτίµηση του V US γενικεύοντας το αποτέλεσµα του Perkins
et al. (2007) που αϕορά στην περίπτωση διαχωρισµού δύο πληθυσµών. Για την αξιολόγηση
τέτοιων διαγνωστικών ελέγχων µελετάµε τη χρήση της spline µεθόδου που αναϕέραµε στην
προηγούµενη παράγραϕο για να λάβουµε µια λεία εκτίµηση της αθροιστικής συνάρτησης
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κινδύνου των µετρήσεων. ΄Ετσι είναι δυνατή η κατασκευή της αντίστοιχης ROC καµπύλης
ή επιϕάνειας και η εκτίµηση του AUC ή V US αντίστοιχα. Μέσω προσοµοιώσεων δείχνουµε
ότι η τεχνική µας δίνει καλύτερες εκτιµήσεις ως προς αυτούς τους δύο δείκτες σε σχέση
µε άλλες γνωστές τεχνικές. Επίσης η προτεινόµενη spline µεθοδολογία µπορεί να φανεί
ιδιαίτερα χρήσιµη όταν το ενδιαϕέρον µας επικεντρώνεται σε υψηλές τιµές εσϕαλµένα
ϑετικών µετρήσεων του διαγνωστικού ελέγχου όπου σαν δείκτης αξιολόγησης χρησιµοποιείται
η µερική επιϕάνεια κάτω από την καµπύλη ROC (partial AUC).

Οι τεχνικές που παρουσιάζονται σε αυτήν την διδακτορική διατριβή µπορούν να εϕαρµο-
στούν και σε άλλα επιστηµονικά πεδία πέραν της ϐιοστατιστικής. Για παράδειγµα στην
Οικονοµετρία πολλές φορές το εισόδηµα παίζει το ϱόλο της συµµεταβλητής και υπόκειται
συχνά σε δεξιά ή αριστερή λογοκρισία µιας και δεν είναι γνωστή η ακριβής τιµή του αν
αυτή ϐρίσκεται πάνω/κάτω από κάποιο συγκεκριµένο όριο. Παραδείγµατα επίσης αϕορούν
στην πρόβλεψη πυρκαγιών όπου σαν συµµεταβλητή χρησιµοποιείται η ένταση του ανέµου
η µέτρηση της οποίας µπορεί να λογοκρίνεται εξαιτίας κάποιου ορίου ανίχνευσης (ϐλέπε
Chang (2007)). ΄Αλλα παραδείγµατα µπορεί να αϕορούν στην εντοµολογία όπου η ένταση
του ανέµου επιδρά στην δραστηριότητα εντόµων (ϐλέπε Steelman et al. (1993)).


	cover_thesis_new
	thesis6(1).pdf



