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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ 

Ο θαλάσσιος ευτροφισμός είναι ένα σύνθετο φαινόμενο που εξαρτάται από 
φυσικοχημικούς παράγοντες, βιολογικές διεργασίες, χωρική ετερογένεια, 
εποχικές διακυμάνσεις, τοπικές ιδιαιτερότητες και χαρακτηρίζεται από 
στοχαστικότητα. Στα παράκτια οικοσυστήματα ο ευτροφισμός σχετίζεται με 
ποικίλες διεργασίες που η διερεύνησή τους αποτελεί κρίσιμο ζητούμενο της 
σύγχρονης θαλάσσιας οικολογίας ιδίως μετά την θέσπιση της Ευρωπαϊκής 
οδηγίας για τα ύδατα (European Water Framework Directive).  

Στην παρούσα διατριβή η πρωτογενής παραγωγικότητα, η οικολογική 
κατάσταση των παράκτιων υδάτων καθώς και η βιοποικιλότητα των 
φυτοπλαγκτικών κοινοτήτων μοντελοποιήθηκαν χρησιμοποιώντας 
αποκλειστικά αβιοτικές παραμέτρους  με χρήση διαφορετικών μεθόδων 
μηχανικής μάθησης (machine learning techniques). Συγκεκριμένα, για την 
πρόβλεψη της πρωτογενούς παραγωγικότητας χρησιμοποιήθηκαν δένδρα 
πρόβλεψης (model trees) που επέτρεψαν να περιγραφεί με επεξηγηματικό 
τρόπο η κατάσταση του οικοσυστήματος. Η οικολογική κατάσταση των 
υδάτων ταξινομήθηκε χρησιμοποιώντας τον συνδυαστικό αλγόριθμο 
ψηφοφορίας (voting ensemble method), ενώ ένας νέος δείκτης προτάθηκε 
προκειμένου να διευκολυνθεί η βελτιστοποίηση της απόδοσής του. Τέλος, 
τέσσερις βασικοί αλγόριθμοι μάθησης προέβλεψαν τη ποικιλότητα 
φυτοπλαγκτικών κοινοτήτων εκφρασμένη ως πλούτο ειδών, ισοκατανομή και 
επικράτηση, χρησιμοποιώντας φυσικές και προσομοιωμένες συναθροίσεις. Η 
παραπάνω μελέτη οδήγησε στην κατασκευή ενός ειδικού λογισμικού για την 
πρόβλεψη της ποικιλότητας  των φυτοπλαγκτικών συναθροίσεων της 
Ανατολικής Μεσογείου χρησιμοποιώντας αποκλειστικά αβιοτικές μεταβλητές. 

 

Μελέτη περίπτωσης I: Μετεωρολογικές επιδράσεις στο θαλάσσιο 
ευτροφισμό – Μοντελοποίηση με δένδρα πρόβλεψης (Model Trees) 

Η πρώτη μελέτη περίπτωσης αφορά στην ποσοτική εκτίμηση της θαλάσσιας 
πρωτογενούς παραγωγικότητας, εκφρασμένης ως χλωροφύλλη-α 
(βασικότερη μεταβλητή που χαρακτηρίζει τον ευτροφισμό), αποκλειστικά από 
αβιοτικές φυσικοχημικές παραμέτρους. Η εκτίμηση της χλωροφύλλης 
επιχειρήθηκε μέσω ενός αλγορίθμου μηχανικής μάθησης, τα δένδρα 
πρόβλεψης (model trees). Ο αλγόριθμός αυτός διαχωρίζει τα δεδομένα σε 
ομογενή σύνολα (φύλλα δένδρου) και στη συνέχεια εφαρμόζει σε αυτά 
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γραμμικά μοντέλα πρόβλεψης. Στην συνέχεια, προκειμένου να καθοριστεί και 
να συγκριθεί η σχετική επίδραση της κάθε αβιοτικής παραμέτρου μέσα στα 
ομογενή σύνολα, εφαρμόστηκε τυποποιημένη γραμμική παλινδρόμηση έναντι 
της απλής. Η προβλεπτική ικανότητά του αλγόριθμου συγκρίθηκε με τα 
αντίστοιχα αποτελέσματα: (α) των νευρωνικών δικτύων που είναι ο ευρύτερα 
χρησιμοποιούμενος αλγόριθμος μηχανικής μάθησης και (β) της κλασσικής 
στατιστικής μεθόδου της πολλαπλής γραμμικής παλινδρόμησης. Επιπλέον, η 
δυνατότητα του αλγόριθμου να περιγράψει τις διεργασίες που σχετίζονται με 
τον ευτροφισμό διερευνήθηκε με την εφαρμογή του σε δύο διαφορετικά και εκ 
διαμέτρου αντίθετα έτη δειγματοληψίας: ενός ιδιαίτερα ξηρού (’04-’05) και ενός 
τυπικά υγρού (’09-’10) έτους για την περιοχή του κόλπου Καλλονής νήσου 
Λέσβου. 

Τα αποτελέσματα έδειξαν ότι τα δένδρα πρόβλεψης παρέχουν αυξημένη 
ικανότητα πρόβλεψης της χλωροφύλλης σε σχέση με τους άλλους δύο 
αλγορίθμους. Αυτό το γεγονός συνδέεται με το ότι η πρόβλεψη στα δένδρα 
συντελείται μέσα στα διαχωρισμένα ομογενή σύνολα δεδομένων και όχι σε 
ένα ενιαίο σύνολο όπως γίνεται στα νευρωνικά δίκτυα και τη πολλαπλή 
παλινδρόμηση. Όσον αφορά στα δύο έτη δειγματοληψίας ο διαχωρισμός των 
δεδομένων, που ήταν ως επί το πλείστον εποχικός, προσφέρει έναν 
επεξηγηματικό τρόπο περιγραφής του συστήματος. Πραγματικά, οι αβιοτικές 
παράμετροι που χρησιμοποιήθηκαν για τον διαχωρισμό στα κλαδιά καθώς και 
οι συντελεστές βαρύτητάς τους στα φύλλα αποδίδουν μια χρήσιμη κλιμάκωση 
των παραμέτρων που επηρεάζουν τον ευτροφισμό. Επομένως, η μέθοδος της 
ανάπτυξης δένδρων πρόβλεψης προτείνεται ως ένα χρήσιμο εργαλείο για την 
εξόρυξη γνώσης που αφορά στις οικοσυστημικές διεργασίες που σχετίζονται 
με τον ευτροφισμό, συμβάλλοντας συγχρόνως σημαντικά στο ευρύτερο 
πλαίσιο της ολοκληρωμένης διαχείρισης της παράκτιας ζώνης.  

 

Μελέτη περίπτωσης II: Ανίχνευση της βέλτιστης ταξινόμησης που 
προσφέρει ο συνδυαστικός αλγόριθμος ψηφοφορίας (voting ensemble 
method) με χρήση ενός νέου προτεινόμενου δείκτη 

Οι συνδυαστικοί αλγόριθμοί (ensemble methods) μηχανικής μάθησης είναι μια 
νέα κατηγορία αλγορίθμων που προσφέρουν ταξινόμηση χρησιμοποιώντας 
συνδυαστικά τα αποτελέσματα υφιστάμενων ταξινομητών. Έτσι, οι 
συνδυαστικοί αλγόριθμοι προσφέρουν ταξινόμηση που δεν βασίζεται σε μία 
και μόνο προσέγγιση αλλά συνδυάζουν περισσότερες διαφορετικές μεθόδους 
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με αποτέλεσμα να παρέχουν συνήθως επιτυχέστερη πρόβλεψη. Παρόλα 
αυτά, η επιλογή των ταξινομητών, που θα συμμετέχουν στους αλγόριθμους 
αυτούς και ειδικότερα στον αλγόριθμο ψηφοφορίας (voting algorithm) που 
είναι και ο ευρύτερα χρησιμοποιούμενος, είναι ένα ανοιχτό και καίριο 
επιστημονικό πρόβλημα.  

Σε αυτή την έρευνα προτείνουμε ένα νέο δείκτη (DP) που ενσωματώνει δύο 
σημαντικά κριτήρια για την επιτυχή επιλογή των ταξινομητών που θα 
συμμετέχουν στον συνδυαστικό αλγόριθμο ψηφοφορίας: την ανομοιότητα 
μεταξύ των αποτελεσμάτων ταξινόμησης (Dissimilarity) και την ίδια την 
απόδοσή τους (Performance). Προκειμένου να αναπτυχθεί ο δείκτης DP, 
συνδυάστηκαν σε τριάδες, δέκα απλοί ταξινομητές που αντιπροσωπεύουν 
όλες τις διαφορετικές κατηγορίες ταξινομητών (κανόνες, δένδρα, αλγόριθμοι 
υποδειγμάτων, συναρτήσεις και ταξινομητές Bayes). Επιπλέον, υπολογίσθηκε 
η σχέση μεταξύ υφιστάμενων δεικτών ανομοιότητας και απόδοσης του 
αλγορίθμου ψηφοφορίας, με τον δείκτη Jaccard να επιτυγχάνει την υψηλότερη 
συσχέτιση. Βάσει αυτού του αποτελέσματος ο δείκτης ανομοιότητας Jaccard 
συμπεριλήφθηκε μαζί με την απόδοση των ταξινομητών στο νέο δείκτη DP. 
Για να δοκιμαστεί η απόδοση του δείκτη DP, η εκπαίδευση των αλγορίθμων 
(απλών ταξινομητών και αλγόριθμου ψηφοφορίας) πραγματοποιήθηκε με 
χρήση δύο εντελώς διαφορετικών βάσεων δεδομένων. Η πρώτη βάση 
περιείχε φωνητικά δεδομένα τα οποία χρησιμοποιούνται για να ανιχνεύσουν 
επτά διαφορετικά συναισθήματα (θυμός, ευτυχία, άγχος/φόβος, θλίψη, ανία, 
αποστροφή και ουδετερότητα). Η δεύτερη βάση περιείχε περιβαλλοντικά 
δεδομένα που συλλέχτηκαν σε δειγματοληψίες που καλύπτουν έναν ετήσιο 
κύκλο στον κόλπο Καλλονής νήσου Λέσβου. Στα δεδομένα αυτά 
συμπεριλαμβάνονται εννέα φυσικοχημικές μεταβλητές και η ζητούμενη 
ταξινόμηση αφορά σε πέντε οικολογικές καταστάσεις της ποιότητας των 
υδάτων (υψηλή, καλή, μέτρια, φτωχή και κακή) βασισμένες στην Ευρωπαϊκή 
οδηγία για τα ύδατα.  

Ο νέος προτεινόμενος δείκτης DP, έδειξε αφενός υψηλή συσχέτιση με την 
απόδοση του αλγόριθμου ψηφοφορίας και αφετέρου κατάφερε να 
αναγνωρίσει ποιοι είναι οι καταλληλότεροι συνδυασμοί ταξινομητών που 
επιτυγχάνουν τις υψηλότερες αποδόσεις όταν τροφοδοτούν τον αλγόριθμο 
ψηφοφορίας. Ο DP απευθύνεται στους χρήστες μεθόδων μηχανικής μάθησης 
που θα τον χρησιμοποιήσουν, προκειμένου να επιλέξουν τους ταξινομητές 
που θα τροφοδοτήσουν τον αλγόριθμο ψηφοφορίας για να επιτύχουν την 
βέλτιστη απόδοση ταξινόμησης. Χρησιμοποιώντας τον απλό και φιλικό δείκτη 
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DP, θα αποφύγουν την εξαντλητική, χρονοβόρα και υπολογιστικά απαιτητική 
αναζήτηση του αποδοτικότερου συνδυασμού ταξινομητών. 

 

Μελέτη περίπτωσης III: Αποτελεσματική πρόβλεψη της βιοποικιλότητας 
θαλάσσιων κοινοτήτων αποκλειστικά από αβιοτικές παραμέτρους 

Στη παρούσα μελέτη περίπτωσης, προτείνεται μια ολοκληρωμένη 
μεθοδολογία για την αποτελεσματική πρόβλεψη της βιοποικιλότητας 
αποκλειστικά από αβιοτικές παραμέτρους. Η πρόβλεψη επιχειρείται μέσω 
τριών αλγορίθμων μηχανικής μάθησης: τα δένδρα πρόβλεψης (model trees), 
τους πολυεπίπεδους αισθητήρες (multilayer perceptron) και τον αλγόριθμο 
υποδειγμάτων (instance based learning). Ως αβιοτικές παράμετροι εισόδου 
των παραπάνω αλγορίθμων επιλέχθηκαν η θερμοκρασία, η αλατότητα, το 
διαλυμένο ανόργανο άζωτο και τα φωσφορικά άλατα που είναι γνωστό ότι 
διαμορφώνουν τη δομή των φυτοπλαγκτικών συναθροίσεων. Η 
βιοποικιλότητα εκφράζεται μέσω αριθμού οικολογικών δεικτών που 
εκφράζουν τον πλούτο ειδών, την ισοκατανομή και την επικράτηση των 
φυτοπλαγκτικών συναθροίσεων και οι οποίοι αποτελούν την έξοδο των 
αλγορίθμων. Προκειμένου να βελτιστοποιηθεί η πρόβλεψη της 
βιοποικιλότητας, οι οικολογικοί δείκτες υπολογίστηκαν σε ένα μεγάλο αριθμό 
φυσικών φυτοπλαγκτικών συναθροίσεων που συλλέχθηκαν στο πεδίο αλλά 
και σε προσομοιωμένες συναθροίσεις αφθονίας αντίστοιχης των 
συναθροίσεων πεδίου και απαλλαγμένες θορύβου. Οι προσομοιωμένες 
συναθροίσεις παρήχθησαν βάσει του μοντέλου της λογαριθμοκανονικής 
κατανομής ώστε να διατηρούνται τα αρχικά χαρακτηριστικά των φυσικών 
συναθροίσεων από τις οποίες προήλθαν. 

Τα αποτελέσματα έδειξαν ότι η βιοποικιλότητα μπορεί να προβλεφθεί 
ικανοποιητικά χρησιμοποιώντας αποκλειστικά φυσικοχημικές παραμέτρους 
ενώ η ικανότητα πρόβλεψης διπλασιάζεται όταν χρησιμοποιούνται 
προσομοιωμένες συναθροίσεις. Ο αλγόριθμος υποδειγμάτων έδωσε τα 
βέλτιστα αποτελέσματα ειδικά για τους δείκτες: Menhinick (πλούτου), 
Evenness E2 (ισοκατανομής) και Berger-Parker (επικράτησης). Με βάση τον 
αλγόριθμο, τους δείκτες και τη μορφή των συναθροίσεων που βελτιστοποιούν 
την πρόβλεψη, αναπτύχθηκε ειδικό λογισμικό για την εκτίμηση της 
βιοποικιλότητας φυτοπλαγκτού στην περιοχή της Ανατολικής Μεσογείου.  
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Η προτεινόμενη προσέγγιση που βασίζεται σε δεδομένα φυτοπλαγκτικών 
συναθροίσεων, ενδέχεται να έχει εφαρμογή και σε άλλες ομάδες φυτικών και 
ζωικών οργανισμών όχι μόνο σε θαλάσσια αλλά και σε χερσαία 
οικοσυστήματα. Η αποτελεσματική πρόβλεψη της βιοποικιλότητας από 
αβιοτικές παραμέτρους παρουσιάζει πλήθος εφαρμογών όπως η 
ενσωμάτωση της δομής κοινοτήτων σε οικολογικά μοντέλα και η μελέτη της 
βιοποικιλότητας σε σενάρια παγκόσμιας αλλαγής. 

 

  



14 
 

ABSTRACT 

The exploration of processes leading to coastal eutrophication is a major 
challenge in ecological research, particularly in light of important new policies 
such as the European Water Framework Directive. In the present study 
primary production, water quality status and phytoplankton diversity are 
modeled based on exclusively abiotic parameters using different machine 
learning techniques. Specifically, model trees showed increased predictive 
power in primary production prediction offering an explanatory description of 
ecosystem status. The water quality status was sufficiently classified using a 
voting ensemble method and a novel index was proposed in order to facilitate 
the optimization procedure during voting training. Finally, phytoplankton 
biodiversity was predicted in terms of its three components (richness, 
evenness and dominance) using both field and noise-free simulated 
assemblages. Based on the optimization of biodiversity prediction, a software 
package was developed for phytoplankton diversity prediction for Eastern 
Mediterranean waters. 

The study resulted in the development of information technology tools offering 
useful insights into ecosystem processes affecting eutrophication in coastal 
ecosystems, constituting also useful components in integrated coastal zone 
management. Moreover, the proposed methodologies can be easily extended 
or adapted to any group of organisms either in marine or terrestrial 
ecosystems. Possible future applications include also the incorporation of 
community structure in ecological models and global change scenarios. 
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1 INTRODUCTION 

Coastal areas worldwide are increasingly susceptible to eutrophication 
phenomena often due to anthropogenic causes such as sewage and 
terrestrial runoff (Beman et al., 2005). Recently, coastal eutrophication has 
received special attention in light of new policies e.g. the Water Framework 
Directive 2000/60/EC (WFD, 2000), the protocol for integrated coastal zone 
management (ICZM) and marine biodiversity protection (Coll et al., 2010; 
Karydis, 1996; Ruiz & Velasco, 2010). However, eutrophication assessment 
remains a complex process (Arhonditsis et al., 2003; Kitsiou & Karydis, 2011; 
Vollenweider, 1974) often associated with contrasting physicochemical and 
biological criteria, spatial heterogeneity, seasonal variability, local conditions, 
and stochastic processes (Spatharis et al., 2007a). Two crucial measures for 
understanding and predicting eutrophication phenomena are the 
phytoplankton biomass which is one of the most commonly used proxies 
(Karydis & Tsirtsis, 1996) and phytoplankton diversity which provides valuable 
information on changes in community structure (Collin et al., 2011). Another 
contemporary measurement is the quality status of coastal waters as 
determined for the purposes of WFD (Marin-Guirao et al., 2005), which 
renders the corresponding classification useful component of successful ICZM 
schemes. As a result, predicting phytoplankton biomass and diversity along 
with classifying the quality status of coastal waters through a number of biotic 
and abiotic parameters are current challenging issues in marine ecology 
(Gontier et al., 2006; Ingram & Steel, 2010). 

Numerous approaches have been used for modeling phytoplankton biomass 
(in terms of chlorophyll α – chl α) (Kitsiou & Karydis, 2011) highlighting the 
importance of this undertaking. Two of the most traditional statistical 
approaches are linear regression models (Cho et al., 2009; Onderka, 2007) 
and principal component analysis (Camdevyren et al., 2005; Liu et al., 2010; 
Primpas et al., 2010). Bayesian statistics have also been applied for chl α 
prediction using a probabilistic, rather than a simple deterministic approach 
(Borsuk et al., 2004; Freeman et al., 2009; Ramin et al., 2010). More 
elaborate approaches include coupled models that incorporate both 
hydrodynamic and ecological processes (Allen et al., 2007; Lewis & Allen, 
2009; Wu et al., 2009). On the other hand, few attempts have been made so 
far to predict phytoplankton biodiversity. Most studies are still based on 
classical statistical approaches such as regression analysis (Arias-Gonzalez 
et al., 2011; Brakstad et al., 1994; Denisenko, 2010; Thrush et al., 2001). But, 
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estimating diversity is also essential when it comes to prioritizing sites for 
management purposes (Lockwood et al., 2012), for assessing the ecological 
status of ecosystems (WFD, 2000; (Spatharis & Tsirtsis, 2010) or for 
predicting effects of global change on ecosystem diversity and function 
(Dawson et al., 2011). Finally, the quality status of the European waters has 
also been studied within more theoretical and comparative frameworks e.g. by 
interpreting historical references (Nielsen et al., 2003; Andersen et al., 2004) 
or by comparing data from different areas (Borja et al., 2007). Some other 
studies included classical statistical approaches such as discriminant analysis 
(Muxika et al., 2007) or principal component analysis (Romero et al., 2007; 
Sondergaard et al., 2005). 

In this context, alternative perspectives are called to provide a realistic 
prediction of phytoplankton biomass, diversity and water quality status based 
on a small number of abiotic parameters which are more straightforward to 
measure. Machine Learning (ML), an area of artificial intelligence, includes 
such techniques offering efficient predictive performance and interpretable 
results to different scientific applications. Generally, ML techniques acquire 
information from collected data (e.g. field samples) and yield generalization to 
the computational system for the effective representation of the scientific 
issue under consideration. This ML modeling perspective is appropriate to 
ecology since in such assessments there is original data availability and the 
oncoming generalization provides new insights on the study systems. 
Moreover, these techniques are effective for exploring complex ecological 
processes (Crisci et al., 2012; Fielding, 1999), and can handle non-linearity 
without relying on implicit assumptions on the relationships between 
parameters (Dzeroski & Drumm, 2003; Jeong et al., 2008; Junker et al., 2012; 
Kanevski et al., 2004). Thus, ML techniques are considered particularly useful 
in marine ecosystems, which are subject to stochastic and multi-dynamic 
phenomena often resulting in non-linearity (Olden et al., 2008). 

Among the most frequently applied ML algorithms are Decision Trees (DTs), 
Neural Networks (NNs) including MultiLayer Perceptrons (MLPs), Support 
Vector Machines (SVM), Instance Based Learning (IBL) and Naïve Bayes 
(NB) classifiers (Kotsiantis, 2007). These algorithms represent the main ML 
categories (trees, functions, lazy and Bayes algorithms) that employ 
completely different predictive and classifying approaches (Solomatine et al., 
2008). These span many applications in ecology (Dzeroski, 2001; Lek & 
Guegan, 1999; Recknagel, 2001) whereas in the marine environment they 
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have been used in hydrodynamics, wave forecasting, habitat modelling, 
biomass prediction, and pollution assessment (e.g. Dakou et al., 2007; 
Etemad-Shahidi & Mahjoobi, 2009; Millie et al., 2012; Solomatine et al., 2006; 
Tian et al., 2011).  

ML techniques have been successfully applied to phytoplankton biomass 
assessment focusing on the influence of different environmental conditions to 
chl α dynamics (Keiner & Yan, 1998; Zhan et al., 2003), eutrophication 
changes (Freeman et al., 2009; Karul et al., 2000; Kuo et al., 2007; Lamon, III 
et al., 2008; Scardi, 2003) and specific species abundance (Dzeroski, 2001; 
Dzeroski & Drumm, 2003; Kocev et al., 2010; Naumoski & Mitreski, 2010). 
However the applications of ML related to the classification of the quality 
status of coastal waters for the WFD purposes are sparse and have been 
accessed mainly with the training of NNs (Tison et al., 2007; Ocampo-Duque 
et al., 2007). Concerning biodiversity prediction in particular, application of ML 
techniques in both marine and terrestrial ecosystems has been based on 
habitat features, biotic characteristics or a combination of both with some 
abiotic parameters but never on abiotic variables alone (Cheng et al., 2012; 
Debeljak et al., 2007; Demsar et al., 2006; Dominguez-Granda et al., 2011; 
Dzeroski & Drumm, 2003; Knudby et al., 2010; Kocev et al., 2009; Pittman et 
al., 2007). These studies have also only focused on one biodiversity 
component (e.g. species richness or Shannon diversity) whereas so far there 
has been no attempt to predict different diversity components (richness, 
evenness, and dominance) exclusively from abiotic parameters related to the 
physical and chemical environment. Finally, ML techniques and specifically 
NNs and DTs have been used only in one occasion to classify the quality 
status in surface waters as required by WFD, providing impressive 
performance (Ocampo-Duque et al., 2007).  

The increased interest in ML techniques has resulted in the development of 
numerous classifiers (Laniak et al., 2013) differentiated in supervised or 
unsupervised depending on whether the training dataset is labelled a priori or 
not (Laskov et al., 2005). Despite the variety of ML approaches, there is no 
optimal algorithm established so far. Instead, the classification performance 
depends on the different characteristics of the data analyzed (e.g. selection of 
input variables, number of training samples) (Chaudhuri & Bhattacharya, 
2000; Lu & Weng, 2007) or the method used to assess algorithm performance 
(Baldi et al., 2000). 
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Current research on ML focuses on integrating optimal prediction or 
classification results from the individual base classifiers using specialized 
techniques called ensemble methods (EMs) (Opitz & Maclin, 1999; Wozniak 
et al., 2014). The latter provide significantly improved performance compared 
to the base classifiers (e.g. Assaad et al., 2008; Chen et al., 1997). Voting is a 
particularly useful and comprehensible EM that collects votes (i.e. predicted 
values or labels of the target class) from multiple individual algorithms and 
predicts the value or label of the output variable by combining their single 
results (i.e. for prediction tasks computes uses weighted MLR to compute the 
output numeric value or either for classification tasks yields the label with the 
highest value expressed as number of votes or probability). Regarding marine 
ecology, voting EM has been used only recently in order to model the 
influence of different environmental conditions on the abundance of specific 
organisms (Kocev & Dzeroski, 2013; Mouton et al., 2011). Other resent 
studies related to marine environment have applied the voting method in order 
to classify marine oil spills (Xu et al., 2014; Topouzelis & Psyllos, 2012), 
seaports (Halabi Echeverry et al., 2012) and coral reefs (Shihavuddin et al., 
2013). 
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2 AIM AND OBJECTIVES 

ML is a very promising technique for making progress in the understanding 
and prediction of ecological phenomena (Olden et al., 2008). In this study 
different ML algorithms were used in order to assess the complex issue of 
coastal marine eutrophication. Special effort was put on possible coupling of 
ML techniques and coastal management by developing effective predictive 
tools for WFD and ICZM. In this context, the application and adjustment of ML 
algorithms were refined aiming to meet the following objectives: 

a) Assessment of the main processes that determine primary production 
in coastal marine ecosystems affected by terrestrial inputs. 

To this aim (case study I), two different ML techniques were implemented: 
MTs and the popular NNs in order to prioritize abiotic parameters regulating 
primary production in coastal ecosystems affected by terrestrial runoff. 

b) Derivation of the optimal classification scheme for coastal water 
ecological quality using exclusively abiotic parameters. 

In case study II, ten different base classifiers were implemented and their 
results were then integrated for improving classification performance. A new 
index was proposed in order to specify which base classifiers should be 
integrated to offer optimal classification performance.  

c) Optimization of the prediction of phytoplankton community structure 
exclusively from abiotic parameters in coastal ecosystems. 

A number of different ML algorithms were trained using both natural 
assemblages and noise-free simulated assemblages (case study III) in order 
to effectively predict the richness, evenness and dominance of phytoplankton 
assemblages exclusively from abiotic parameters. Based on the optimal 
results of ML algorithm training, a software package was developed 
estimating phytoplankton diversity from four abiotic parameters. 
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3 METHODOLOGY 

3.1 STUDY AREAS 
The database used was compiled using existing datasets from five coastal 
areas in the Aegean Sea, Eastern Mediterranean representing a wide range 
of productivity (Fig. 1).  All stations were sampled repetitively on a monthly 
basis covering at least a full annual cycle. Nutrient concentrations were 
measured spectrophotometrically according to Parsons et al. (1984), whereas 
physical variables were recorded in situ. Moreover, available phytoplankton 
species-abundance data were used, analysed following the same protocol 
according to the inverted microscope method of Utermohl (1958). 

From the study areas the Inner Saronikos Gulf, near Athens, and the Kalloni 
Gulf in Lesvos Island are characteristic of eutrophic conditions (Simboura et 
al., 2005). Outer Saronikos Gulf and Gera Gulf in Lesvos Island are more 
typical of mesotrophic conditions (Arhonditsis et al., 2000; Ignatiades et al., 

Figure 1: Maps of the five coastal areas: (a) Rhodos R1 and Rhodos R2 in the 
island of Rhodos, (b) Gera G and Kalloni K in the island of Lesvos, and (c) 
Saronikos gulf S near the metropolitan area of Athens (Spatharis et al., 2008) 
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1992), while offshore stations in Rhodes Island have been characterized as 
oligotrophic (Kitsiou et al., 2002). Detailed information about the sampling 
sites and data collection are provided in Spatharis et al. (2008) while an 
account on the eutrophication level and ecological status of these areas is 
provided in Spatharis & Tsirtsis (2010).  

3.2 ALGORITHM DESCRIPTION 

ML techniques can be used for various applications including classification 
and prediction (Witten & Frank, 2005). Depending on whether the output 
variable is categorical or numerical, ML includes algorithms that can be used 
exclusively for classification tasks (i.e. classifiers), others that can be used 
only for prediction (i.e. predictors) and a few algorithms that can be used for 
both tasks (Table 1). In this study different ML algorithms were used for (a) 
phytoplankton biomass prediction (case study I), (b) water quality status 
classification (case study II) and (c) phytoplankton diversity prediction (case 
study III). 

The algorithms used in this study belong to all main ML categories such as 
rules, trees, lazy algorithms, functions, Bayes and meta algorithms (Table 1). 
Algorithms that represent each category use different approaches in order to 
classify or predict the value of the output variable on new unseen instances.  

More specifically, rule algorithms construct rules based on disjunctions of the 
form“ IF … THEN …” (Frank & Witten, 1998) such as:  

 IF (blood type=warm)˄(eggs=yes) THEN class=bird 
 IF (income<5000)˄(pension=yes)  THEN tax=no 

The goal of rule based algorithms is to construct the smallest set of rules that 
is consistent with the available dataset. Thus, a large number of rules means 
that the rule algorithm is rather reproducing the data (i.e. overfitting), than 
discovering the main assumption that governs it (Kotsiantis, 2007). 

Trees are conceptual schemas consisting of different paths that are followed 
according to comparisons on one or more input variables. Each tree path 
ends to a specific leaf in which the final classification or prediction of the 
output variable is being made (Kothari & Dong, 2001). Different tree based 
algorithms exists depending on (a) the tree construction method and (b) the 
way that the instances of each leaf are combined in order to arrive at the final 
classification or prediction. 
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Another famous ML category is the lazy learning algorithms, which postpone 
the induction process until classification or prediction is performed. The lazy 
category contains algorithms that are based on the principle that instances 
within a dataset generally exist in close proximity to other instances that have 
similar properties (Aha et al., 1991). These similar instances are properly 
used to provide the final prediction of the requested output label or value.  

Function category, as highlights its name, contains algorithms that can be 
written down as simple or more complex mathematical equations in a 
reasonably natural way (Witten & Frank, 2005). This category includes 
classical statistical methods such as linear or logistic regression models. 
Substantially, NNs like MLPs or radial basis function networks, which are the 
most popular ML methods, belong to the function category. 

Bayes consists of statistical algorithms that incorporate probabilities to classify 
the output variable. Bayes category contains algorithms that incorporate the 
famous Bayes rule and by assuming independence are computing the 
probabilities for every label of the output variable. Afterwards, these 
probabilities are compared to indicate the label that is the most likely to be the 
actual one (Aguilera et al., 2011).  

Finally the meta algorithms use specialized techniques trying to improve the 
final performance of existing algorithms by integrating their results (Kotsiantis 
et al., 2006). Although meta algorithms are relatively newly proposed 
techniques, they are popular and span numerous applications often showing 
that are much more accurate than any of the single algorithms participating in 
them (Opitz & Maclin, 1999). 
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Table 1: The ML techniques used in the study 

Category Abbreviation Description Reference Classifier Predictor 
Case study 

used 
Rules RIPPER 

 
Implements the repeated incremental 
pruning to produce error reduction 

(Cohen, 1995)   II 

 PART 
 

Generates a partial decision list (Frank & Witten, 1998)   II 

Trees J48 
 

Generates a pruned C4.5 decision 
tree 

(Quinlan, 1993)   II 

 RF 
 

Constructs a forest of random trees. (Breiman, 2001)   II 

 MTs 
 

Generates a tree with linear 
regression models at the leafs 

(Quinlan, 1992)   I, III 

Lazy IBk 
 

Implements k-nearest neighbors 
method 

(Aha et al., 1991)   II, III 

 Kstar 
 

Instance based learner with entropic 
distance measure 

(Cleary & Trigg, 1995)   
II 

Functions Log 
 

Multinomial logistic regression (le Cassie & van Houwelingen, 1992)   II 

 SMO 
 

Implements sequential minimal 
optimization for training a support 
vector learner 

(Platt, 1999)   
II 

 MLP 
 

Multilayer perceptron trained with 
back-propagation 

(Pal & Mitra, 1992)   I, II, III 

 MLR 
 

Multiple linear regression (Zar, 1984)   I, III 

Bayes NB 
 

Naïve Bayes classifier using estimator 
classes 

(John & Langley, 1995)   II 

Meta Voting 
 

Ensemble method for combining 
learners using probability estimates 

(Kittler et al., 1998)   II 
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3.2.1 RIPPER rule classifier 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is a rule 
learner classifier introduced by Cohen (1995) as a successor to Incremental 
Reduced Error Pruning (IREP) algorithm (Furnkranz, 1997). RIPPER begins 
the learning process by sorting (in ascending order) the training data by the 
output class labels beginning with the less frequent one. Thereafter RIPPER 
starts producing a set of rules, one at time, through two steps: growth and 
pruning. In the iterative growth phase, a rule is constructed to match as many 
instances of the minority label class (i.e. the less frequent) as possible while 
those instances are removed from the training set (Huhn & Hullermeier, 
2009). The learner keeps producing rules in the same way until all remaining 
training instances belong to one single class (i.e. the last and the more 
frequent). Then a final default rule is added to the previous ones and the 
procedure ends. To prevent the produced rules from overfitting (i.e. situation 
where they become too specific for the training data), the pruning step 
eliminates conditions from the rules that do not harm the classifier’s accuracy 
(Lorena et al., 2011). More details about the RIPPER’s rule construction can 
be found in the Table 2. 

 

Table 2: Logical steps of RIPPER’s rules construction 

RIPPER’s rule classifier (for multi-labeled class problem) 

1. Order instances by the label of the target class in increasing prevalence 
(fraction of instances that belong to a particular class label) 

2. Use instances that have the less frequent label to learn the rule set and treat 
the rest instances as belonging to the negative class.  
For the construction of a single rule follow the steps 
a) Start from empty rule 
b) Add conjuncts as long as they improve information gain 
c) Stop when the rule no longer covers negative examples  

(accuracy achieves100%) 
d) Prune the rule using reduced error pruning 
e) Remove the instances covered by the rule 

3. Repeat using instances that have the next less frequent label of the target 
class (treat them as positive class) 
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RIPPER classifier has the advantages of being (a) interpretable as it produces 
a set of symbolic rules, (b) flexible  as new rules can be added or modified as 
new data are included to the database and (c) quick as it runs in linear time 
(Cohen & Singer, 1999). However, RIPPER has rarely been used generally in 
biology, having few applications related to genetics and ecology (Libralon et 
al., 2009; Lorena et al., 2011; Khater & Gras, 2012). In the marine 
environment it has been used once in order to determine the sex mechanism 
of a fish species in aquaculture (Palaiokostas et al., 2013). 

3.2.2 PART rule classifier 

PART is a rule based ML technique constructed by Frank & Witten, 1998 in 
order to avoid global optimization environment in which previous rule 
classifiers (e.g. RIPPER) used to perform, because such techniques cannot 
deal with problems that have many local optima (either maximal or minimal). 
Thus, the PART learner generates compact rule sets by combining two 
popular methods i.e. “separate and conquer” and “divide and conquer” (Tan et 
al., 2003). PART follows the same procedure as RIPPER to construct the first 
rule (separate and conquer method) followed by the removal of covered 
instances. Substantially, PART continues constructing rules recursively by 
generating a partial decision tree (i.e. not fully inducted) from the remaining 
instances of the database (divide and conquer method). The leaf of the tree 
with the largest coverage is converted into a rule and the tree is discarded. 
The analytical steps of PART classifier can be found in the Table 3.  

 

Table 3: Logical steps of PART rule classifier 

PART rule classifier (for multi-labeled class problem) 

1. Build a partial decision tree on the current set of instances  
(for more details see Table 4) 

2. Create a rule from the decision tree using the leaf with the largest 
coverage 

3. Discard the decision tree 

4. Remove the instances covered by the rule 

5. Go to step one 
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The combined method of PART, adds flexibility and speed to the classifier 
while protects it from over pruning (Frank & Witten, 1998). Moreover PART 
maintains the essential advantage of rule classifiers offering a set of simple 
and comprehensible rules which contain only the crucial input variables in a 
scaling way. The latter can help towards the interpretation of the procedures 
related to the desired issue by giving new insights to it (Bibi et al., 2008). 
However, PART and generally the rule classifiers usually achieve medium 
accuracy performances and thus are considered as simple classifiers (e.g. 
Herrera et al., 2002; Bhasin & Raghava, 2005). PART has never been applied 
to marine or coastal environment.  

3.2.3 Decision Tree J.48 

J.48 classifier (Witten & Frank, 2005) is an open source Java re-
implementation of the most popular algorithm for decision tree induction called 
C4.5 (Table 4) (Quinlan, 1993). A decision tree is a hierarchical structure 
consisting of nodes (i.e. a root, inner nodes and leaves) and branches (Fig 2). 
The root and the inner nodes contain tests on input variables, while leaves 
comprise the predicted label of the output variable. The branches connect the 
nodes, starting from the root or an inner node and ending in another internal 
node or a tree leaf (Quinlan, 1996). 

 

Table 4: Logical steps of decision tree construction 

Decision tree construction for a categorical output variable with c labels 

1. Create a root node for the tree 

2. If all instances have the same label of the output variable then return a single 
node tree root with that label. 

3. If there are no input variables then return a single node tree root with the most 
common label among instances.  
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Root
[test Variable_1]

Inner node_1
[test Variable_2]

Leaf_1
Inner node_3

[test Variable_?]

Leaf_2 Leaf_3

Inner node_2
[test Variable_?]

Leaf_4 Leaf_5 Leaf_6

4. Otherwise  
a. Select the input variable 𝐴𝐴 that best classifies the instances as defined 

by 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑆𝑆,𝐴𝐴) = 𝐸𝐸𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆)− �
|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴)

𝐸𝐸𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣) 

𝐸𝐸𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) = �−𝐸𝐸𝑖𝑖𝑙𝑙𝐸𝐸𝑙𝑙2𝐸𝐸𝑖𝑖

𝑐𝑐

𝑖𝑖=1

 

Where 𝑆𝑆 is the collection of all training instances, 𝑆𝑆𝑣𝑣 is the subset of 𝑆𝑆 for 
which variable 𝐴𝐴 has value 𝑣𝑣, 𝑐𝑐 is the number of the labels of the output 
variable, 𝐸𝐸𝑖𝑖 is the proportion of 𝑆𝑆 belonging to the label 𝐺𝐺, 𝑉𝑉𝐺𝐺𝑙𝑙𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴) is 
the set of all possible values 𝑣𝑣𝑖𝑖of variable 𝐴𝐴 and |𝑆𝑆𝑣𝑣|

|𝑆𝑆|
 is the fraction of 

examples that belong to 𝑆𝑆𝑣𝑣. 

b. Create tree root with the above variable 𝐴𝐴 
c. For each possible value 𝑣𝑣𝑖𝑖 of the variable 𝐴𝐴 

• add a new tree branch bellow the tree root corresponding to the 
test 𝐴𝐴 = 𝑣𝑣𝑖𝑖 

• Let 𝑆𝑆𝑣𝑣𝑖𝑖 be the subset of the 𝑆𝑆 that have value 𝑣𝑣𝑖𝑖 for 𝐴𝐴 
• If 𝑆𝑆𝑣𝑣𝑖𝑖 is empty, then below this new branch add a leaf node with 

the most common label of the output variable in 𝑆𝑆, else below 
this new branch add the subtree constructed with the same 
procedure and has 𝑆𝑆𝑣𝑣𝑖𝑖 for 𝑆𝑆 and possible splitting variables all 
the remaining variables except 𝐴𝐴.  

5. Return the Root 

 

 

 

 

 

 

 

Figure 2: Diagram of a tree learner 
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In order to construct a new node, J.48 computes the gain of all possible splits 
(using a proper entropy measure) and substantially chooses the input variable 
with the highest gain ratio. The variables that can participate in node splitting 
can be either numeric or categorical. Thus, if J.48 chooses a numeric variable 
for this purpose then the node is divided into two branches using a proper 
inequality (e.g. input variable > constant value). The one of the two branches 
is followed when the inequality is being satisfied and the other when not. On 
the other hand, if the chosen splitting variable is categorical taking n discrete 
labels, the node is also divided into n branches i.e. one for each categorical 
label (Loh, 2008). The J.48 procedure is repeated until all instances are 
correctly classified, however it usually results to an extremely large tree (i.e. 
lots of nodes). The tree complexity and the resulting overfitting are being dealt 
through the popular tree-pruning method that reduces the tree size and 
enhances the classification accuracy (Quinlan, 1999). 

J.48 classifier offers an interpretable extraction of hidden patterns even when 
dealing with long-term multivariate datasets and thus it has been used in 
many different classification tasks (Kothari & Dong, 2001). In the marine 
environment, J.48 tree induction has been applied in several studies offering 
sufficient classification results and new insights. Some of the most recent 
studies dealing with classification trees concern the identification of the factors 
affecting zooplankton community (Gal et al., 2013), the variation of sea water 
quality (Chen et al., 2010), the impact of exotic species on lakes (Everaert et 
al., 2011), the ciliate foraging behavior (Chang et al., 2011) and the 
sustainable flood management of water basins (Yang et al., 2011). 

3.2.4 Model trees (MTs) 

MTs are constructed using a decision tree induction algorithm (Table 4) in 
order to predict the value of a numeric output variable by storing a multiple 
linear regression equation at each leaf (Quinlan, 1992). Initially, the MT is 
constructed based on a criterion that determines which input variable best 
discriminates the input samples in distinct homogeneous subsets (nodes or 
leaves) (Fig. 2). For numeric prediction the criterion intends to minimize the 
intra-subset variation of the predicting variable down each branch (Barros et 
al., 2011; Witten & Frank, 2005). MT construction terminates when the 
variance of the predicted values in a subset is sufficiently small (Frank et al., 
1998). Once the final homogeneous subsets have been defined (tree leaves) 
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a linear regression model (LM) is constructed from data contained within each 
subset/leaf. This LM predicts the values of the output variable based on a 
number of selected input variables. Given a new sample for which the output 
variable’s value should be predicted, the prediction procedure initiates from 
the tree root (the first discriminating variable). In each inner node a decision 
test is made to follow a particular branch based on the discriminating variable 
associated with that node (Quinlan, 1996). Finally, when the sample is 
classified into a subset/leaf, then the output value is predicted according to 
the corresponding linear regression model.  

MTs are used to approach pattern prediction and hierarchical problems in 
various research fields. Applications can be found in medical science (Shao et 
al., 2007), quality management (Srdoc  et al., 2007), agriculture (Debeljak et 
al., 2007; Kocev et al., 2009), water management (Bhattacharya & 
Solomatine, 2005) and wave forecasting (Bonakdar & Etemad-Shahidi, 2011; 
Etemad-Shahidi & Mahjoobi, 2009; Jain et al., 2011). Although MTs have 
been regularly implemented in terrestrial ecology for describing and modeling 
population dynamics (Demsar et al., 2006; Jurc et al., 2006; Ogris & Jurc, 
2010; Stankovski et al., 1998), their applications related to modeling 
ecological processes in aquatic ecosystems are restricted. These studies 
have focused on the influence of environmental conditions on diatom 
assemblage abundance (Kocev et al., 2010; Naumoski & Mitreski, 2010), the 
effect of physical and biological factors on the spatial distribution of a sea 
cucumber (Dzeroski & Drumm, 2003), changes in biomass of algal species 
(Dzeroski, 2001), and phytoplankton dynamics of N. Adriatic Sea (Volf et al., 
2011). An application for chl α prediction using MTs was based on a Bayesian 
approach to provide classification schemes of various water reservoirs 
characterized by different geographic, morphometric, and chemical properties 
(Freeman et al., 2009; Lamon, III et al., 2008). 

3.2.5 Random Forest (RF) 

Random Forest (RF) is an ensemble classifier developed by Breiman (2001) 
that combines the results of individual tree classifiers participating in the forest 
(Figure 3). Each of these trees is build using a bootstrap sample of the 
dataset while at each tree node only a small random subset of the input 
variables is available for the tree branch binary split. The constructed trees 
remain unpruned (i.e. fully grown) to ensure low-bias (i.e. flexibility in data 
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fitting). Substantially, RF classifier yields an ensemble using majority voting 
over the individual tree classification results in order to predict the status of 
the output class (Diaz-Uriarte & Alvarez de Andres, 2006). The performance 
of the RF depends on the number of the trees that consist the forest, the 
performance of the individual trees and the correlation between their results. 
Applications to ecology have shown that RF can effectively model complex 
and non-linear relationships offering high classification accuracy and 
determination of the input variable importance (Cutler et al., 2007). 

 

Within a relative short period of time, RFs have been successfully applied to 
numerous classification tasks in a variety of fields, indicating their efficient 
performance in comparison with other ML techniques (Verikas et al., 2011).  
Specifically in the marine environment, RFs have been so far used to assess 
the mapping of fish species richness (Knudby et al., 2010), the flux of benthic 
light under toxic conditions (Kehoe et al., 2012), the sources of water fecal 
contamination (Smith et al., 2010), the discrimination of fish population 
(Perdiguero-Alonso et al., 2008) and the density of bacteria in water 
(Parkhurst et al., 2005). During the last years RF has been also sufficiently 
tested in different ecological tasks (Crisci et al., 2012; Cutler et al., 2007; 
Prasad et al., 2006) but span very few studies related to marine 
eutrophication mainly under a management perspective (Catherine et al., 
2010; Bergstrom et al., 2013).  

Figure 3: Conceptual diagram of the random forest classifier 
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3.2.6 Lazy Instance Based Learner IBk 

IBL algorithms are derived from the nearest neighbor pattern classifier (Cover 
& Hart, 1967) and are based on the idea that similar instances have similar 
behavior (Payne, 1995) thus the new input instances are predicted according 
to the stored most similar neighboring instances (Table 5) (Aha et al., 1991). 
The nearest neighbor classifier (k-NN) is one of the simplest and oldest 
methods to perform classification tasks (Solomatine et al., 2006). It has been 
used in various applications yielding excellent performances (Tsekouras 
2005; Huang, 2006). IBL algorithms are also known as lazy learning 
algorithms since they simply store the training instances and postpone all 
effort until prediction time.  

 

Table 5: Logical steps of IBL 

Instance base learning (k neighbors)  

1. For a new unseen instance, compute the distance metric between this 
instance and all stored training instances of the dataset 

2. Define the k instances that have the corresponding lowest distance values (set 
of the nearest neighbors) 

3. Compute the final prediction as the mean of the k values that the output 
variable has in the set of the defined set of the nearest neighbors (numeric 
output variable) 
or 
Estimate the label of the class using majority voting for the k labels that the 
output variable has in the set of the defined set of the nearest neighbors 
(categorical output variable) 

4. Go to step one 

 

The k-NN algorithm treats the input variables as dimensions of a Euclidean 
space and the instances as points in this space (Cover & Hart, 1967). Once a 
new unseen instance is given, a distance metric between this instance and all 
stored training instances is calculated and the k nearest instances are been 
defined. Many different distance metrics have been proposed but mostly used 
are: 

Euclidean: 𝑑𝑑(𝑋𝑋,𝑌𝑌) = �∑ (𝑥𝑥𝑖𝑖 − 𝐸𝐸𝑖𝑖𝑚𝑚
𝑖𝑖=1 )2 

Manhattan: 𝑑𝑑(𝑋𝑋,𝑌𝑌) = ∑ |𝑥𝑥𝑖𝑖 − 𝐸𝐸𝑖𝑖|𝑚𝑚
𝑖𝑖=1  
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Chebychev: 𝑑𝑑(𝑋𝑋,𝑌𝑌) = 𝑚𝑚𝐺𝐺𝑥𝑥𝑖𝑖=1𝑚𝑚 |𝑥𝑥𝑖𝑖 − 𝐸𝐸𝑖𝑖| 

where 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) and 𝑌𝑌 = (𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑚𝑚) are two instances of a 
dataset that has 𝑚𝑚 input variables. 

Then, the prediction of the output variable is estimated as the mean of 𝑘𝑘 
values that the output variable has in the set of the defined nearest instances. 
The 𝑘𝑘-NN algorithm can be improved by weighing each of the 𝑘𝑘 nearest 
neighbors (𝑋𝑋𝑖𝑖) (Wettschereck et al., 1997) according to their distance 
𝑑𝑑(𝑋𝑋𝑞𝑞,𝑋𝑋𝑖𝑖) from the new query point (𝑋𝑋𝑞𝑞) based on the following two functions: 

𝑓𝑓(𝑋𝑋𝑞𝑞) =
∑ 𝑤𝑤𝑖𝑖𝑓𝑓(𝑋𝑋𝑖𝑖)𝑘𝑘
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖
𝑘𝑘
𝑖𝑖=1

 

where 𝑤𝑤𝑖𝑖 is a function of the distance 𝑑𝑑(𝑋𝑋𝑞𝑞 ,𝑋𝑋𝑖𝑖) with the following two weight 

functions being commonly used: 

𝑤𝑤𝑖𝑖 = 1 − 𝑑𝑑(𝑋𝑋𝑞𝑞,𝑋𝑋𝑖𝑖)  (𝐿𝐿𝐺𝐺𝐺𝐺𝑉𝑉𝐺𝐺𝐸𝐸) 

𝑤𝑤𝑖𝑖 =
1

𝑑𝑑(𝑋𝑋𝑞𝑞 ,𝑋𝑋𝑖𝑖)
        (𝐼𝐼𝐺𝐺𝑣𝑣𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉)  

IBk is a popular ML technique already applied either as predictor or classifier 
in few studies related to the marine environment in order to assess hydrologic 
and wave modeling, sea water quality or marine species habitat preference 
(e.g. Dzeroski & Drumm, 2003, Hatzikos et al., 2008; Solomatine et al., 2008; 
Zamani et al., 2008).  

3.2.7 Lazy KStar 

KStar is an instance based algorithm proposed by Cleary & Trigg (1995), 
operating either as classifier or predictor and able to handle both numerical 
and categorical input variables. The difference of KStar in relation to the 
classic IBk algorithm is that the former uses a different approach to calculate 
the distance between instances, based to an entropy measure (Morrison et 
al., 2007). This entropy measure has been inspired from information theory 
and can be defined as the complexity of transforming one instance into 
another. More specifically KStar defines a finite set of transformations in order 
to map instances to instances. Substantially, finite sequences of 
transformations starting from an instance and terminating to another are 
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defined covering all instance combinations. Finally, the entropy measure is 
estimated as the length of the shortest sequence connecting two instances. 
This entropy measure assessment makes KStar algorithm much more general 
and greedy than the classic IBk, especially when dealing with missing values 
(Yucel & Ozel, 2012). Thus, when using KStar it is considered that each 
instance exerts a “sphere of influence” with soft boundaries rather than the 
hard edged cutoff implied by the k-NN rule in which any particular instance of 
the dataset either participates or not to the final prediction (Witten & Frank, 
2005). 

Although KStar is not so popular compared to IBk, it has been applied in 
various studies with good results (e.g. Rocha et al., 2007; Grabar & Krivine, 
2007; Uygun et al., 2010). In the coastal environment it has been used once 
to assess biomass of mangroves i.e. type of trees that grow in saline coastal 
sediment habitats (Jachowski et al., 2013).  

3.2.8 Multinomial Logistic Regression (MLR) 

Logistic Regression (Log) is a statistical method used in classification to 
predict the outcome of a categorical variable (i.e. target class) based on input 
variables that can be either numerical or categorical. According to the total 
number of categories (i.e. labels) that the target class owes, the logistic 
regression is called binary if the number of labels is two (e.g. “male=1” vs 
“female=0”) or multinomial if this number is larger.  

During binary logistic regression, coefficients (as long as its standard errors 
and significance levels) are generated in order to predict a logit transformation 
of the probability of the occurrence of a situation (recorded with label “1” vs 
the other label “0”). 

𝑙𝑙𝐸𝐸𝑙𝑙𝐺𝐺𝐸𝐸(𝐸𝐸) = ln
𝐸𝐸

1 − 𝐸𝐸
= 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ⋯+ 𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘 

where 𝐸𝐸 is the probability of the occurrence of a situation (usually the 
presence of a characteristic of interest in biological studies), 𝑏𝑏𝑖𝑖  are the linear 
regression coefficients estimated using maximum likelihood (McCullagh & 
Nelder, 1989) and 𝑥𝑥𝑖𝑖   are the 𝑘𝑘 independent input variables. Thus, the general 
multiple logistic regression model in terms of 𝐸𝐸 is: 
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𝐸𝐸 =
𝑉𝑉𝑏𝑏0+𝑏𝑏1𝑥𝑥1+𝑏𝑏2𝑥𝑥2+⋯+𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘

1 + 𝑉𝑉𝑏𝑏0+𝑏𝑏1𝑥𝑥1+𝑏𝑏2𝑥𝑥2+⋯+𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘
 

Multinomial logistic regression is a simple extension of the binary one.  

Logistic regression is commonly used in several environmental tasks (e.g. 
Pearce & Ferrier, 2000; Keating & Cherry, 2004). More specifically, logistic 
regression has been used to assess marine eutrophication tasks such as toxic 
diatom blooms estimation (Lane et al., 2009), eutrophic classification of 
hypoxic waters (Lowery, 1998), species presence-absence along with 
different environmental factors (Bini & Thomaz, 2005) or sea grass pattern 
modeling (Fonseca et al., 2002). 

3.2.9 Sequential Minimal Optimization (SMO) 

Sequential minimal optimization (SMO) implements a method proposed by 
Platt (1999) that trains a support vector machine (SVM) classifier using 
polynomial kernels. A normal SVM tries to solve a quadratic programming 
problem that is expressed in the dual form as follows: 

𝑚𝑚𝐺𝐺𝑥𝑥𝑣𝑣𝑊𝑊(𝐺𝐺) = �𝐺𝐺𝑖𝑖 −
1
2
��𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�𝐺𝐺𝑖𝑖𝐺𝐺𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

subject to: 

0 ≤ 𝐺𝐺𝑖𝑖 ≤ 𝑐𝑐∀𝐺𝐺 = 1,2, … ,𝐺𝐺 

�𝐸𝐸𝑖𝑖𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 

where 𝐺𝐺𝑖𝑖 are Lagrange multipliers, 𝐺𝐺 is the number of training instances (i.e. 

examples), 𝑥𝑥𝑖𝑖 is the input variables vector, 𝐸𝐸𝑖𝑖 is the output label of the target 

binary variable with  𝐸𝐸𝑖𝑖 ∈ {−1, +1}, 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is the kernel function selected by 

the user, and 𝑐𝑐 is an appropriate parameter.  

Essentially, training a SVM involves large matrix operations that solve the 
above 𝐺𝐺𝑡𝑡ℎ (𝐺𝐺 is equal to the number of training instances) dimensional 
quadratic problem. However, if the training set is too large, the SVM requires 
a lot of computational effort (memory and time) making the algorithm very 
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slow and impractical (Keerthi et al., 2001). The SMO solves the quadratic 
problem by decomposing it into smaller problems, each one being a reduced 
problem of the quadratic one that can be described as follows:  

0 ≤ 𝐺𝐺1,𝐺𝐺2 ≤ c 

y1𝐺𝐺1 + y2𝐺𝐺2 = k 

During training process and for each iteration, SMO proceeds as follows: (a) 
picks a pair of Lagrange multipliers to optimize the solution of a smaller 
quadratic programming problem and (b) repeats the same process until it 
converges on a solution. The advantage of SMO is that the solution for two 
Lagrange multipliers can be done analytically and thus an entire inner iteration 
is avoided. Even though more sub-problems are solved during SMO training, 
each solution is so fast that the overall optimization is achieved rather quickly. 
Additionally, SMO requires small data storages as it stores only the required 
2x2 matrix for each iteration (Platt, 1999). However, the SMO classifier is 
binary and in case of a multi-class problem (i.e. target class with more than 
two labels), it must be reduced to a set of multiple binary classification 
problems (Crammer & Singer, 2002). 

SMO classifier is easy to implement and has already yielded excellent 
generalization performance on a wide range of problems (Keerthi et al., 
2001). In the marine environment it has been used to predict water quality 
(Hatzikos et al., 2008), to monitor seagrass population (Musavi et al., 2007), 
to estimate an aquatic fern species distribution (Sadeghi et al., 2012), and to 
retrieve chlorophyll concentration from remote sensing (Haigang et al., 2003).  

3.2.10 Multiple Linear Regression (MLR) 

Multiple Linear Regression (MLR) is a statistical approach to model the 

relationship between a numeric dependent output variable 𝑌𝑌 and more than 

one explanatory input variables 𝑋𝑋𝑖𝑖. Given a dataset �𝑋𝑋1𝑗𝑗,𝑋𝑋2𝑗𝑗, … ,𝑋𝑋𝑚𝑚𝑗𝑗,𝑌𝑌𝑗𝑗� 

containing 𝑚𝑚 input variables and 𝐺𝐺 instances, the linear model takes the form: 

𝑌𝑌𝑗𝑗 = 𝐺𝐺 + 𝑏𝑏1𝑋𝑋1𝑗𝑗 + 𝑏𝑏2𝑋𝑋2𝑗𝑗 + ⋯+ 𝑏𝑏𝑚𝑚𝑋𝑋𝑚𝑚𝑗𝑗 + 𝑉𝑉𝑗𝑗 , 𝑗𝑗 = 1, … ,𝐺𝐺 

The parameters 𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑚𝑚 are called partial regression coefficients and 

express how much 𝑌𝑌 would change for a unit change of each input variable. 
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The intercept 𝐺𝐺, is the value of 𝑌𝑌 when all input variables 𝑋𝑋𝑖𝑖 are zero. The 

residual or error 𝑉𝑉𝑗𝑗 is the amount by which 𝐸𝐸𝑗𝑗 differs from what is predicted by 

𝑌𝑌�𝑗𝑗 = 𝐺𝐺 + 𝑏𝑏1𝑋𝑋1𝑗𝑗 + 𝑏𝑏2𝑋𝑋2𝑗𝑗 + ⋯+ 𝑏𝑏𝑚𝑚𝑋𝑋𝑚𝑚𝑗𝑗. Note that the sum of all 𝑉𝑉’s is zero (Zar, 

1984).  

The criterion for defining the best fit (i.e. optimal 𝐺𝐺, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚) of the MLR 

equation is the minimum residual sum of squares i.e. the minimum value of   

∑ (𝑌𝑌𝑗𝑗 − 𝑌𝑌�𝑗𝑗)2𝑛𝑛
𝑗𝑗=1  (Flury & Riedwyl, 1988). 

3.2.11 Multilayer Perceptron (MLP) 

MLP is an artificial neural network that maps input instances onto values or 
labels of the output variable. A MLP architecture consists of one or more 
layers of nodes (neurons) between the input and output layers in a directed 
graph (feedforward), while each layer is fully connected with weighted 
connections to the next one (Fig.4) (Lek & Park, 2008). The input layer 
typically contains as many neurons as the number of the input variables; the 
hidden layer has a number of neurons which can be selected arbitrarily or 
determined empirically, while the output layer has usually one neuron 
referring to the output variable.  

 

 

Input Layer Hidden Layer Output Layer 

. 

. 

. 

Input 1 

Input 2 

Input n 

Output 

. 

. 

. 

Figure 4: The classical MLP architecture consisting by three layers of 
neurons 
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Technically, each neuron receives weighted input signals which are used as a 
sum to feed an activation function for producing an output signal that 
substantially activates the neurons of the next layer (Table 6) (Lek & Guegan, 
1999). During the training phase a set of instances (having values for both the 
input and output variables) is presented to the MLP again and again. The 
MLP is being trained by an update procedure based to the simple concept: if 
the network gives an insufficient response, the connection weights are 
corrected so that the error is reduced and future responses of the network are 
more likely to be closer to the real wishing outputs (Olden et al., 2008).Thus, 
the information hidden in the input data flows within the network from the input 
to output layer in order to improve the MLP’s predictive performance. More 
details about the MLP training technique can be found in the Table 6.  

 

Table 6: Logical steps of MLP (Lek and Guegan, 1999) 

Feed-forward MLP training by back-propagation algorithm with the use of sigmoid 

activation function 

1. Initialize the number of hidden nodes 

2. Initialize the maximum number of iterations and the learning rate (η). Set 

all connection weights 𝑊𝑊𝑖𝑖𝑗𝑗
ℎand thresholds to small random numbers. 

Thresholds are weights with corresponding inputs always equal to 1. 

3. For each training instance (input Xp=(x1, x2, …, xn), output Y)  repeat steps 

4-7. 

4. Present the input Xp to the input nodes and the output Y to the output 

node; 

5. Calculate the input to the hidden nodes: 𝐺𝐺𝑗𝑗ℎ = ∑ 𝑊𝑊𝑖𝑖𝑗𝑗
ℎ𝑥𝑥𝑣𝑣𝑛𝑛

𝑣𝑣=1 − 𝜃𝜃𝑗𝑗 

Calculate the output from the hidden nodes: 𝑥𝑥𝑗𝑗ℎ = 𝑓𝑓�𝐺𝐺𝑗𝑗ℎ� = 1

1+𝑣𝑣−𝑎𝑎𝑗𝑗
ℎ 

Calculate the inputs to the output nodes: 𝐺𝐺𝑘𝑘 = ∑ 𝑊𝑊𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗ℎ𝐿𝐿
𝑗𝑗=1 − 𝜃𝜃𝑘𝑘 

Calculate the output from the output nodes: 𝑌𝑌�𝑘𝑘 = 𝑓𝑓(𝐺𝐺𝑘𝑘) = 1
1+𝑣𝑣−𝑎𝑎𝑘𝑘

 

If the network has a single output and one hidden layer then: k = 1, 𝑌𝑌�𝑘𝑘 = 𝑌𝑌� 

L is the number of nodes of the hidden layer, 𝜃𝜃𝑗𝑗,𝜃𝜃𝑘𝑘 are the thresholds 

6. Calculate the error term for the output node: 𝛿𝛿𝑘𝑘 = (𝑌𝑌 − 𝑌𝑌�𝑘𝑘) ∙ 𝑓𝑓 ′(𝐺𝐺𝑘𝑘) 

Calculate the error for the hidden nodes: 𝛿𝛿𝑗𝑗ℎ = 𝑓𝑓 ′(𝐺𝐺𝑗𝑗ℎ) ∙ ∑ 𝛿𝛿𝜅𝜅𝑊𝑊𝑗𝑗𝑘𝑘𝑘𝑘  
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𝑓𝑓′ is the derivative of the sigmoid function 

7. Update weights on the output layer: 𝑊𝑊𝑗𝑗𝑘𝑘(𝐸𝐸 + 1) = 𝑊𝑊𝑗𝑗𝑘𝑘(𝐸𝐸) + 𝜂𝜂𝛿𝛿𝜅𝜅𝑥𝑥𝑗𝑗ℎ 

and on the hidden layer: 𝑊𝑊𝑖𝑖𝑗𝑗(𝐸𝐸 + 1) = 𝑊𝑊𝑖𝑖𝑗𝑗(𝐸𝐸) + 𝜂𝜂𝛿𝛿𝑗𝑗ℎ𝑥𝑥𝑖𝑖 

as long as the network errors are larger than a predefined threshold or the 

number of iterations is smaller than the maximum number of iterations 

envisaged, repeat steps 4-7. 

 

All MLPs used in this study belong to the classic group of feed-forward neural 
networks with one hidden layer in which sigmoid activation function is used to 
all neurons while it is trained by the backpropagation algorithm (Rumelhart et 
al., 1986). 

Among ML algorithms, NNs including MLPs are the most commonly used and 
span numerous and various applications (Bhattacharya & Solomatine, 2005; 
Tsekouras & Tsimikas, 2013). In the marine environment MLPs has been 
used in eutrophication modeling (Karul et al., 2000; Kuo et al., 2007), wave 
forecasting (Altunkaynak, 2013; Etemad-Shahidi & Mahjoobi, 2009), biomass 
prediction (Musavi et al., 2007; Scardi, 1996) and pollution assessment (Tian 
et al., 2011; Topouzelis et al., 2008). 

3.2.12 Naïve Bayes (NB) 

A Naïve Bayes (NB) classifier is a probabilistic method based on the Bayes 
rule in combination with the independence assumption (Naïve) of the input 
variables (Lewis, 1998). The NB classifier assigns every new instance 
𝐸𝐸 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) into a class label 𝑐𝑐 of the output target variable 𝐶𝐶. According 
to Bayes rules the probability of an instance 𝐸𝐸 to belong to class 𝑐𝑐 is: 

𝐸𝐸(𝑐𝑐|𝐸𝐸) =
𝐸𝐸(𝐸𝐸|𝑐𝑐) ∙ 𝐸𝐸(𝑐𝑐)

𝐸𝐸(𝐸𝐸)
 

By assuming that all input variables (categorical or numeric) are independent 
given the label of the output class, the conditional probability 𝐸𝐸(𝐸𝐸|𝑐𝑐) can be 
calculated as: 

𝐸𝐸(𝐸𝐸|𝑐𝑐) = 𝐸𝐸(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝑐𝑐) = �𝐸𝐸(𝑥𝑥𝑖𝑖|𝑐𝑐)
𝑛𝑛

𝑖𝑖=1
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Combining the above two notions, the Naïve Bayes classifier picks the label of 
the class that is the most probable to happen (maximum a posteriori decision 
rule). As a result the NB function can be written: 

𝑓𝑓𝑁𝑁𝑁𝑁(𝐸𝐸) = 𝑓𝑓𝑁𝑁𝑁𝑁(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝐺𝐺𝐸𝐸𝑙𝑙𝑚𝑚𝐺𝐺𝑥𝑥𝑐𝑐𝐸𝐸(𝑐𝑐) �𝐸𝐸(𝑥𝑥𝑖𝑖|𝑐𝑐)
𝑛𝑛

𝑖𝑖=1

 

Note: 𝐸𝐸(𝐸𝐸) is a constant for every category (Peng et al., 2004) and 𝐺𝐺𝐸𝐸𝑙𝑙𝑚𝑚𝐺𝐺𝑥𝑥𝑐𝑐 
returns the label of the output class with the maximum probability. 

If an input variable 𝑥𝑥𝑖𝑖 is numerical then the method uses the variable’s mean 
𝜇𝜇𝑐𝑐 and variance 𝜎𝜎𝑐𝑐2 for each class label of the output variable. Then the 
probability density of a value 𝑣𝑣 given a class label 𝑐𝑐 can be computed as 
follows: 

𝐸𝐸(𝑥𝑥𝑖𝑖 = 𝑣𝑣|𝑐𝑐) =
1

�2𝜋𝜋𝜎𝜎𝑐𝑐2
𝑉𝑉
−(𝑣𝑣−𝜇𝜇𝑐𝑐)2

2𝜎𝜎𝑐𝑐2  

Although NB classifier is a popular machine learning technique (Lewis, 1998), 
it has been rarely used to classification assessments in environmental 
modelling (Aguilera et al., 2011). Only recently, the NB classifier has been 
applied in the marine environment in order to estimate the phytoplankton 
structure and composition, to map the seafloor using image data and to 
predict fish recruitment in fisheries management (Fernandes et al., 2010; 
Ludtke et al., 2012; Zarauz et al., 2009).  

3.2.13 Voting 

Current research on ML focuses on integrating optimal classification results 
from the individual base classifiers using specialized techniques called 
ensemble methods (EMs) (Opitz & Maclin, 1999; Wozniak et al., 2014). The 
latter provide significantly improved classification performance compared to 
the base classifiers (Assaad et al., 2008; Chen et al., 1997).  

Voting is a particularly useful and comprehensible EM that collects votes (i.e. 
predicted labels of the target class) from multiple individual classifiers and 
predicts the label of the target class yielding the highest value expressed as 
number of votes (simple majority voting). One refinement on simple majority 
voting, weights the participating classifiers by using probability estimates than 
just a simple classification decision. Using the “average probability” method 
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during voting, for every new instance 𝐸𝐸 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), the corresponding 
class-probability estimate is calculated as follows: 

𝐸𝐸(𝑓𝑓(𝛦𝛦) = 𝑐𝑐) =
1
𝐿𝐿
� 𝐸𝐸(𝑓𝑓(𝐸𝐸) = 𝑐𝑐|ℎ𝑣𝑣)

𝐿𝐿

𝑣𝑣=1
 

where 𝐺𝐺 is the number of input variables,𝑐𝑐 states for every label of the output 
variable, 𝐿𝐿 is the number of base classifiers ℎ1 … ℎ𝐿𝐿 participating in the voting 
schema, and finally 𝐸𝐸(𝑓𝑓(𝐸𝐸) = 𝑐𝑐|ℎ𝑣𝑣) is the probability that the true (i.e. correct) 
label is 𝑐𝑐. Note that the predicted label of 𝐸𝐸resulted from the above equation 
for all labels, is the one with the highest computed probability. 

Voting is the most widely applicable EM method, as other EMs (including 
bagging and boosting) employ voting approaches in order to provide their own 
final outcome (Bauer & Kohavi, 1999; Dietterich, 2000a). Voting is also the 
simplest and easiest way to combine classifiers (Tan & Gilbert, 2003), 
demanding no extra training except when applying the voting scheme 
(Dzeroski & Zenko, 2004). For these reasons, voting spans many applications 
ranging from simple classification tasks (Saha & Ekbal, 2013; Srinivas et al., 
2009) to more complex implementations such as clustering (Dimitriadou et al., 
2001), pairwise comparison (Loza Mencia et al., 2010) and fuzzy systems 
(Ishibuchi et al., 1999; Kaburlasos & Pachidis, 2014). 

3.3 ALGORITHM EVALUATION 

3.3.1 Cross Validation 

Cross Validation (CV) is a popular technique for estimating the error of 
algorithm predictions. CV is efficient for datasets containing neither few (few 
tens) nor too many (tens of thousands) records (Stone, 1978) providing a 
nearly unbiased estimate using exclusively original data (Efron, 1983). The 
main advantage of this method is that it protects the system from overlearning 
(i.e. overfitting) and for this reason it is more commonly used in data analysis 
(Witten and Frank, 2005).  

In K-fold CV the dataset is randomly partitioned into K subsamples, K minus 1 
of which are used as training data while the remaining subsample is retained 
for testing the algorithm. This process is repeated K times (the folds) and 
results are averaged to produce the performance estimation. Leave-One-Out 
(LOOCV) is a specific category of CV, in which the parameter K is equal to 
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the number of instances of the dataset. During LOOCV, a single instance is 
used for the validation of the algorithm and the remaining instances are used 
for training. Thus, the same procedure is repeated as many times as the 
number of instances of the dataset and then the results produce the overall 
algorithm performance (Cawley & Talbot, 2003).  

3.3.2 Measures of performance 

Three measures of performance were considered in order to evaluate the 
numeric prediction (i.e. prediction of chl α or phytoplankton diversity) of the 
algorithms (Table 7). These measures are: a) the correlation coefficient (R) 
which measures the statistical correlation between predicted and observed 
values, b) the mean absolute error (MAE) which averages the magnitude of 
the differences between predicted and observed values ignoring their sign 
and c) the root mean squared error (RMSE) which represents the standard 
deviation of the above differences (Witten & Frank, 2005). 

 

Table 7: Measures of performance used to evaluate the algorithm’s numeric 
prediction 

Measures of performance 

Name Abbreviatio

n 

Formula 

Correlation 

coefficient 
R 

𝑆𝑆𝑃𝑃𝐴𝐴
�𝑆𝑆𝑃𝑃𝑆𝑆𝐴𝐴

 

𝑤𝑤ℎ𝑉𝑉𝐸𝐸𝑉𝑉  𝑆𝑆𝑃𝑃𝐴𝐴 =
∑ (𝐸𝐸𝑖𝑖 − �̅�𝐸)(𝐺𝐺𝑖𝑖 − 𝐺𝐺�)𝑛𝑛
𝑖𝑖=1

𝐺𝐺 − 1
, 

𝑆𝑆𝑃𝑃 =
∑ (𝐸𝐸𝑖𝑖 − �̅�𝐸)2𝑛𝑛
𝑖𝑖=1
𝐺𝐺 − 1

,  𝑆𝑆𝐴𝐴 =
∑ (𝐺𝐺𝑖𝑖 − 𝐺𝐺�)2𝑛𝑛
𝑖𝑖=1
𝐺𝐺 − 1

 

�̅�𝐸 =
∑ 𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝐺𝐺

,𝐺𝐺� =
∑ 𝐺𝐺𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝐺𝐺

 

Mean Absolute 

Error 
MAE ∑ |𝐸𝐸𝑖𝑖 − 𝐺𝐺𝑖𝑖|𝑛𝑛

𝑖𝑖=1
𝐺𝐺

 

Root Mean 

Squared Error 
RMSE �∑ (𝐸𝐸𝑖𝑖 − 𝐺𝐺𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
𝐺𝐺

 

where 𝐸𝐸𝑖𝑖 are the predicted values of the algorithm, 𝐺𝐺𝑖𝑖 are the actual values according 
to the dataset and 𝐺𝐺 is the number of instances in the dataset. 
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Furthermore, in classification tasks the principal measure of a classifier’s 
performance is the percentage of the correctly classified instances over the 
total number of instances in the dataset (CCI). Another measure is the 
Cohen’s kappa statistic (κ) (Cohen, 1960) which is calculated as the 
proportion of all possible cases of the presence or absence that are predicted 
correctly by a classifier after accounting for chance predictions (Everaert et 
al., 2011). Classifiers with CCI higher than 70% and κ higher than 0.4 can be 
considered reliable (Dakou et al., 2007). The classification performance of a 
classifier can be also determined using a scaling system for κ proposed by 
Landis & Koch (1977), that is: ≤ 0 (poor), 0-0.2 (slight), 0.2-0.4 (fair), 0.4-0.6 
(moderate), 0.6-0.8 (substantial), and 0.8-1 (almost perfect). 
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4 CASE STUDY I: EFFECTS OF METEOROLOGICAL 
FORCING ON COASTAL EUTROPHICATION: MODELLING 
WITH MODEL TREES 

4.1 SUMMARY 

In the present case study primary production (in terms of chlorophyll α – chl a) 
is modeled based on a number of abiotic parameters using MTs, a ML 
approach whereby linear regressions are induced within homogeneous 
subsets of samples (tree leaves). Standardized regression was applied to 
determine the relative weight of abiotic parameters in the MT tree leaves 
whereas the efficiency of the MT method in chl α prediction was tested 
against NNs which is the most frequently used ML approach, and the classical 
MLR. To assess the efficiency of models to describe eutrophication-related 
responses under different environmental conditions, the methods were 
applied on a coastal ecosystem affected by terrestrial runoff for two 
meteorologically contrasting annual cycles: a typical dry (’04-’05) and a typical 
wet (’09-’10). MTs showed increased predictive power in chl α prediction 
attributed to the discrimination of input data space into tree leaves, instead of 
using a uniform space as in NNs and MLR. By grouping samples of each 
tested annual cycle (wet and dry) on a seasonal basis into discrete 
groups/leaves, MTs offer a much more explanatory description of ecosystem 
status than NNs and MLR. The discriminating variables forming tree leaves 
and the weighing coefficients of Linear Models (LMs) in each leaf provided a 
useful scaling of abiotic parameters driving chl α dynamics. The MT method is 
thus proposed as an efficient tool for obtaining insights into ecosystem 
processes leading to eutrophication events in coastal ecosystems and a 
useful component in integrated coastal zone management. 

4.2 INTRODUCTION 

ML algorithms, including MTs and MLPs, are considered as appropriate in 
ecological studies because of their efficiency when dealing with non-linearity 
(Huang & Foo, 2002; Ornella & Tapia, 2010). This advantage of MTs could be 
particularly useful in marine ecosystems, which are subject to highly complex 
and multi-dynamic phenomena (Olden et al., 2008) often resulting in non-
linearity. In this chapter, an MT approach was applied in order to evaluate the 
efficiency of this methodology to model chl α dynamics in coastal waters but 
also to verify whether the method can be used to prioritize factors regulating 
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primary production in coastal ecosystems. The two datasets used were 
collected from an enclosed coastal ecosystem influenced by terrestrial runoff, 
under two contrasting meteorological regimes, namely a dry and a wet annual 
cycle. The main objectives of the study were: (a) to assess the efficiency of 
MTs in modeling chl α compared to two alternative techniques: the most 
widely used ML method of MLPs and secondly the classical statistical 
approach of MLR, (b) to evaluate the relative weight of environmental factors 
regulating chl α variability in the study area, (c) to compare the results of the 
two contrasting meteorological regimes and discuss whether the approach 
may assist in the understanding of eutrophication-related processes in coastal 
ecosystems affected by terrestrial runoff. 

4.3 METHODOLOGY 

4.3.1 Datasets 

Kalloni gulf is a semi-enclosed shallow water body located in the 
southwestern part of Lesvos Island, Greece in E. Mediterranean. The 
surrounding watershed of 413 km2 is used for horticulture and agriculture, 
mainly of olive trees (Spatharis et al., 2007b). These cultivations involve the 
application of fertilizers during winter, coinciding with the period of high 
precipitation that usually occurs in February (Spatharis et al., 2007a; 
Spyropoulou et al., 2013) 

The compiled database included information from two annual cycles 
corresponding to contrasting meteorological conditions. In the dry annual 
cycle (August ‘04 to July ’05) the total amount of rainfall was low (291 mm) 
and so was the corresponding amount of terrestrial runoff into the gulf 
(1.4x106 m3 month-1). On the other hand, in the typical wet cycle (August ‘09 
to July ’10) rainfall was high (755 mm), resulting to an increase of one order of 
magnitude in runoff (14x106 m3 month-1) (Spyropoulou et al., 2013). Previous 
studies (Spatharis et al., 2007a; Spatharis et al., 2007b) have demonstrated 
that the interior part of the gulf is characterized by high nutrient and chl α 
concentrations compared to the E. Mediterranean typical levels. This is due to 
nutrient enrichment from intermittent rivers flowing from November to April, 
mainly in the northern part of the gulf. 

For August ’04 to July ’05 the dataset was compiled from 140 samples 
collected on a monthly basis from the water column (1 and 5 m depth) from 
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six stations (K3-K8) located in the inner part of the gulf. For August ’09 to July 
’10 information on a monthly basis was available for 120 samples from a 
similar network of stations in the interior of the gulf (KA3-KA7). The two 
sampling networks have been described in detail in previous studies 
(Spatharis et al., 2007a; Spyropoulou et al., 2013). Each dataset included 
information on physical, chemical, and biotic variables. More specifically, 
physico-chemical parameters selected as input variables for the model were 
temperature (T), salinity (S), photoperiod (F), nitrogen (N), phosphate (PO4), 
and silicate (SiO2). Chl α was the output variable that is predicted by the 
model, which was compared with observed chl α values from the field 
samples. Summary statistics of the parameters for both annual cycles used as 
inputs in the LMs during the MT development are provided in Table 8. 
Irradiance, being highly correlated with photoperiod, was excluded from the 
input variables in tree construction. 
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Table 8: Mean, standard deviation (in parenthesis), and number of samples (n) in each of the predicted LMs, for the parameters used 
in MT method. 

  
 Dry annual cycle 

’04-’05 
 Wet annual cycle 

’09-’10 

Variables Units 
 LM1 

(n=20) 
LM2 

(n=23) 
LM3 

(n=57) 
LM4 

(n=40) 
 LM1 

(n=61) 
LM2 

(n=25) 
LM3 

(n=34) 
Temperature - T oC  10.3 

(0.7) 
15.5 
(3.7) 

15.7 
(4.6) 

24.0 
(2.9) 

 19.5 
(5.4) 

21.0 
(2.7) 

15.5 
(5.0) 

Salinity - S psu  36.3 
(1.2) 

36.9 
(0.8) 

39.7 
(0.7) 

38.9 
(0.6) 

 38.4 
(1.1) 

40.4 
(0.3) 

38.6 
(2.0) 

Photoperiod - F hrs  9.9 
(0.1) 

11.8 
(1.0) 

10.1 
(1.2) 

13.6 
(0.3) 

 11.2 
(1.7) 

10.8 
(1.1) 

12.5 
(1.7) 

Nitrogen - N μM  12.50 
(13.5) 

1.76 
(0.8) 

1.84 
(1.1) 

2.11 
(0.8) 

 0.51 
(0.5) 

0.49 
(0.4) 

0.86 
(0.7) 

Phosphate - PO4 μM  0.385 
(0.58) 

0.036 
(0.03) 

0.059 
(0.05) 

0.062 
(0.04) 

 0.036 
(0.03) 

0.042 
(0.03) 

0.147 
(0.04) 

Silicate - SiO2 μM  34.9 
(31.7) 

13.2 
(7.6) 

13.3 
(8.0) 

8.1 
(3.2) 

 17.0 
(10.3) 

7.3 
(2.6) 

18.5 
(15.6) 

Chl α μg/L  3.16 
(0.51) 

1.01 
(0.60) 

0.66 
(0.26) 

1.06 
(0.46) 

 0.76 
(0.63) 

1.34 
(0.77) 

1.75 
(0.71) 
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The size of the two datasets (n=140 for ’04-’05 and n=120 for ’09-’10) is 
considered sufficient for the application of the MT method since even a small 
number of training samples (50-100) is sufficient to design a reliable tree 
decision rule when the number of tree rules is not too large (<10) (Raudys & 
Jain, 1991) as in the present case study. Moreover, in order to ensure that 
samples do not violate the condition of independence, a multifactor ANOVA 
analysis was performed to test chl α and nutrient variability within each annual 
cycle (’04-’05 and ’09-’10). The effect of time is stronger than space (higher F 
values) suggesting a higher temporal than spatial system turnover. However, 
since both time and space have a significant effect on the variables (ANOVA, 
P<0.01), the system seems to present sufficient heterogeneity in space and 
time. 

4.3.2 Details of MTs construction 

A number of algorithms exists for inducing MTs from samples, such as CART 
(Wu et al., 2009), and M5P (Wang & Witten, 1997) which is the most 
frequently used for MT induction. The package WEKA was used for the 
analysis (Hall et al., 2009). The parameters of M5 were set to their default 
values and the important mechanism of tree pruning (Quinlan, 1999) was 
applied on model construction. Smoothing was not applied, since it has the 
undesirable property of altering the weight of the original regression 
coefficients of input variables. 

In linear regression, useful indications concerning the ecosystem functioning 
may be drawn by evaluating the relative importance of independent/input 
variables in the chl α prediction process. This cannot be done with the original 
regression coefficients because of the different measurement units and 
variances of the variables (Zar, 1984). In order to render the variables directly 
comparable to each other, we performed a standardization of the ordinary 
regression coefficients contained in the equations of each MT leaf. The 
standardization of LMs was not provided by the WEKA package and was thus 
carried out using the SPSS statistical package version 16. 

4.3.3 Details of MLPs construction 

The MLP system that is used in the present case study belongs to the feed-
forward group, and it is being trained by the back-propagation algorithm with 
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the use of the sigmoid activation function. The used MLP contains three 
layers: the input layer comprising by as many neurons as the number of the 
input parameters (i.e. six), the hidden layer of neurons whose number was set 
to the default value that is provided by the WEKA package (i.e. three) and the 
output layer which has a single neuron referring to the output variable (i.e. chl 
a).  

4.3.4 Comparison of MTs vs the MLPs and MLR approaches 

In order to compare the efficiency of MTs against the MLPs and MLR 
approaches a 10-fold cross validation technique was performed (Stone, 1974) 
to assess the model performance on unseen input data (paragraph 3.3.1). 
Three measures of performance were considered in order to compare the 
results of MTs with MLPs and MLR in modeling chl α: R, MAE and RMSE 
(paragraph 3.3.2). This procedure was carried out for both annual cycles (’04-
’05 and ’09-’10) in order to compare the performance of the three approaches 
using two independent and contrasting datasets. 

4.4 RESULTS 

4.4.1 Efficiency of the MT over the MLPs and MLR approaches 

The MLR equations for predicting the dependent variable chl α for the two 
studied annual cycles are given below, the numbers in parentheses showing 
the standardized coefficients: 

For ’04-’05: 

𝑐𝑐ℎ𝑙𝑙 𝐺𝐺 = –  0.285(–  0.475) ∗ 𝑆𝑆 –  1.362(–  0.364) ∗ 𝑃𝑃𝑃𝑃4 +  0.097(+ 0.656) ∗ 𝑁𝑁 
+  11.963(0.0)                                                                                         (1) 

For ’09-’10: 

𝑐𝑐ℎ𝑙𝑙 𝐺𝐺 =  + 5.893(+ 0.430) ∗ 𝑃𝑃𝑃𝑃4 +  0.757(0.0)                                                    (2) 

For the ’04-’05 cycle (Equation 1), a significant influence of nitrogen and a 
weaker negative effect of phosphate and salinity on chl α concentration was 
observed. For the ’09-’10 cycle (Equation 2) the only statistically significant 
variable in the MLR having a positive effect on chl α was  phosphate.  
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Figure 5: Comparison of observed and predicted chl α values by each Linear 
Model (LM) based on the MT method for the ’04-’05 (left) and ’09-’10 (right) 
annual cycles. The black line corresponds to the dichotomous (𝒚𝒚 =  𝒙𝒙) line. 

MT provided a more realistic estimation of chl α concentrations in Kalloni gulf 
than MLPs and MLR based on all three performance criteria (Table 8) for both 
annual cycles (’04-’05 and ’09-’10). More particularly for ’04-’05, MTs had 
higher correlation coefficient (R) and lower estimation errors (MAE and 
RMSE) than MLPs and MLR (Table 9), whereas for ’09-’10, MTs performed 
slightly better than MLPs(same R but lower errors) and MLR (higher R with 
lower errors).  

Table 9: Validation of the Model Tree (MT), Neural Network (NN) and Multiple 
Linear Regression (MLR) methods for chl α prediction using three validation 
criteria: multiple correlation coefficient (R), mean absolute error (MAE) and 
root mean squared error (RMSE). 

Annual cycle Method R MAE RMSE 

Dry ’04-’05 
MT 0.849 0.342 0.491 
NN 0.768 0.430 0.614 
MLR 0.676 0.519 0.680 

Wet ’09-’10 
MT 0.376 0.565 0.732 
NN 0.377 0.586 0.756 
MLR 0.344 0.587 0.755 

 
As MTs offer the better predictions than the other two approaches, a 
comparison of measured chl α values with those predicted by MTs is made in 
Figure 5.  
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The points near the dichotomous (𝐸𝐸 =  𝑥𝑥) line are better approximations of 
observed chl α values compared to more distant points representing larger 
prediction errors. Thus, chl α modeling based on the available parameters is 
much more accurate for ’04-’05 than ’09-’10, which is in agreement with the 
performance criteria (R, MAE and RMSE) described above. Considering 
some LMs the predictive capability of the model seems weak. In particular, for 
LM1 of ’04-’05 and LM2, LM3 of the ’09-’10 annual cycle, the model gives a 
very narrow range of predicted chl α values (y) for a wide range of observed 
chl α values (x). In these LMs, either the number of samples was relatively 
small (LM1 of ’04-’05) or the corresponding equation was independent of the 
input variables (LM2, LM3 of ’09-’10 annual cycle) (Fig. 6). 

4.4.2 Resulting LMs 

MTs and the resulting LMs are shown in Figure 6 for the two annual cycles. 
For ’04-’05, the 140 samples fall within four well defined subsets 
corresponding to distinct and continuous time periods (Fig. 6a). The grouping 
of samples into each of the four subsets was based on three discriminating 
variables, namely salinity, temperature, and photoperiod. For the ’09-’10 
annual cycle, the resulting MT is much different comprising of three 
subsets/leaves, and the 120 samples were grouped within leaves based on 
phosphate and salinity (Fig. 6b). As in the ’04-’05 cycle, subsets are 
comprised of samples corresponding to different months, however, in ’09-’10, 
months are not always continuous within a subset, therefore not always 
representing continuous time periods of the year.  
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Figure 6: Model Trees (MTs) showing the grouping of input samples based on discriminating variables into Linear Model 
(LM) subsets for (a) the ‘04-’05 (dry) and (b) the ’09-’10 (wet) annual cycles. Each LM provides a regression equation of the 
output variable (chl α) on the significant input variables, as well as the number of samples (n) grouped within each subset. 
The number at the bottom shows the months falling inside each LM. 
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Trying to further explore the subsets (LMs) formed by the MTs for each 
annual cycle, samples were plotted on a two dimensional graph based on two 
discriminating variables (Fig. 7). For ’04-’05, the 140 input samples were 
plotted on a temperature vs salinity plain superimposing chl α concentrations 
and indicating the four subsets of samples corresponding to each LM. The 
LM1 subset was induced using 20 input samples collected during February, 
reflecting peak chl α concentrations and the lowest salinity and temperature of 
the year. For LM2, a total of 23 input samples was used, corresponding to 
March and April characterized by medium to high chl α concentrations, low 
salinity, and medium temperature. LM3 was developed using 57 samples 
collected from September to January characterized by low chl α 
concentrations, high salinity, and a wide temperature range. Finally, LM4 
subset comprised of 40 samples corresponding to summer conditions from 
May to August characterized by medium chl α concentrations and high 
temperature and salinity (see also Table 8). 

For the ’09-’10 annual cycle the 120 samples were aggregated in a phosphate 
vs salinity plain (Fig. 7) based on the three LMs formed by MT. LM1 was 
constructed of 61 samples collected from March to July presenting the lowest 
chl α concentrations, medium salinity, and very low phosphate concentrations, 
whereas other nutrients had a medium to high concentration compared to 
background annual means (see Table 7). LM2 represents warmer conditions 

Figure 7: Two-dimensional plots based on discriminating variables from the MT 
method. For the ‘04-‘05 cycle (n=140 samples) aggregation was based on 
temperature and salinity whereas for the ‘09-‘10 cycle (n=120 samples) on 
phosphate and salinity. Each point has a diameter proportional to the 
measured chl α concentration for the specific sample. Also shown are the 
groupings of samples based on the Linear Model (LM) subsets. 
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since it was constructed by 25 samples collected in August, October, and 
November and describes fairly high chl α concentrations in combination with 
higher temperature, salinity, and phosphate than the previous time period 
(LM1). Finally, LM3 contains 34 samples from all winter months plus 
September and describes cold winter conditions with the highest nutrient 
concentrations and chl α values. Based on this analysis, it is evident that for 
both annual cycles the aggregation of samples in subsets corresponding to 
different LMs is achieved on a seasonal basis with temperature, photoperiod, 
salinity, and phosphate being the most important discriminating variables. 
Sample aggregation was entirely unaffected by the location of sampling 
stations in the gulf since no such classification was observed in the LM 
formation. 

During the ’04-’05 annual cycle, the N:P ratio was rather high; in particular, 
the subsets of data in LM1, LM2, and LM3 have mean N:P values close or 
above the threshold for P limitation (Fig. 8) as defined in Guildford and Hecky 
(2000). An exception to this was LM4 which had an N:P ratio closer to N 
limitation due to higher PO4 concentrations during the warm period. On the 
other hand all LMs of the wet annual cycle (’09-’10) are characterized by 
mean N:P values below the threshold of N limitation (Guildford and Hecky 
2000). 

Figure 8: Box-and-whisker plot of the N:P ratio for the LMs of Model trees 
constructed for both annual cycles compared to thresholds for N deficient 
(N:P<20) and P deficient (N:P>50) phytoplankton growth according to Guildford 
and Hecky (2000). Boxes show lower and upper quartiles with median (line) and 
mean (square) inside the box. 
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4.4.3 Weighing the LM variables for chl α prediction 

In order to detect the relative importance of input variables for chl α prediction, 
standardized regression coefficients were computed for the LMs of each MT 
(Table 10) corresponding to the two annual cycles. For ’04-’05, different 
variables seem to be important for modeling chl α throughout the year. Salinity 
seemed to be the most important variable during peak chl α conditions of 
February (LM1) although the effect of this variable was not statistically 
significant (Table 10). This variable was probably selected during the LM 
construction since it presented a relatively higher correlation coefficient with 
chl α (Pearson R= –0.365, p=0.114, n=20) compared to other variables. 
Among the variables that played a statistically significant role, nitrogen 
affected the period following the peak chl α concentrations of February (LM2), 
phosphate affected the medium chl α values from May to August (LM4), 
whereas temperature was correlated with the low winter chl α from September 
to January (LM3). 

 

Table 10: Results for the Linear Models (LMs) resulting from MT application for 
’04-’05 and ’09-’10 annual cycles. B are the unstandardized and Beta the 
standardized regression coefficients with the corresponding t-test results. 

Annual 
cycle 

Linear 
Model Parameter B Beta t 

Dry 
’04-’05 

LM1 Constant 8.827  2.586* 
S  –0.156 –0.365 –1.663 

LM2 Constant 0.226  0.884 
N 0.448 0.593 3.371** 

LM3 Constant 0.833  6.812** 
T  –0.011 –0.191 –2.121* 

LM4 
Constant 1.083  5.907** 
PO4 5.381 0.483 3.380** 
SiO2 –0.044 –0.312 –2.183* 

Wet 
’09-’10 

LM1 Constant 0.420  3.194** 
PO4 9.446 0.383 3.182** 

LM2 Constant 1.342  8.731** 
LM3 Constant 1.749  14.410** 

* Statistically significant relation at the 0.05 level 
** Statistically significant relation at the 0.01 level 

 
For the ’09-’10 annual cycle, phosphate seems to be the most important 
variable for modeling chl α variability since it is the main tree separation 
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variable and the only prediction variable for LM1 (Fig. 6b) corresponding to 
spring and summer conditions. Instead of a linear regression equation, 
subsets LM2 and LM3 predict chl α concentration as a constant value, 
resulting from the mean of samples contained within each LM. This is 
because within each of these two LMs, none of the input variables had a 
statistically significant importance or correlation with chl α. 

4.5 DISCUSSION 

According to the results of the current study, when modeling phytoplankton 
biomass in an enclosed coastal area, the MT method seems to have 
increased predictive power on unseen cases (as estimated with 10-fold cross 
validation) compared to MLPs and MLR statistical approach. This is 
consistent with previous studies showing a better performance of MTs over 
the MLPs (Ajmera and Goyal, 2012; Bhattacharya and Solomatine, 2005; 
Solomatine and Siek, 2006). Apart from the higher predictive power, MTs offer 
more insight into the generated model (Singh et al., 2010). Indeed, MTs 
provide the opportunity to easily interpret the effects of input variables to the 
output variable (e.g. chl α). This is not the case in MLPs where special 
treatment for the weighing of input variables is required to evaluate their 
contribution (Gevrey et al., 2003; Ruck et al., 1990; Tirelli and Pessani, 2011). 
Considering the MLR approach, MTs have also shown a better performance 
which was also confirmed by previous works (e.g. Dzeroski and Drumm, 
2003; Jurc et al., 2006). The main advantage of MTs, is that they subdivide 
the initial dataset into homogeneous subsets/leaves with distinct 
characteristics based on a number of discriminating variables, instead of the 
use of a uniform space as in MLPs and MLR.  

The data discrimination process in MT induction is based on selected input 
variables that may reflect characteristics of ecosystem functioning (salinity, 
temperature, photoperiod for ’04-’05 and phosphate, salinity for ’09-’10). In the 
resulting subsets the method focuses on the most important variables (if any), 
incorporating them in the LMs constructed by the MT. Consequently each final 
subset, expressing an ecosystem state, is described by a linear regression 
equation with its own input variables affecting chl α concentration in contrast 
to the MLR approach where a single equation originating from the whole 
dataset aims to predict the output variable (e.g. chl α). However, predictions 
must be made with caution since the predictive power of the method is 
occasionally low within LMs. Possible reasons for this low predictive capability 



56 
 

may be the small number of samples in the LM, or the possibility that chl α 
variability cannot be described by any of the input variables. 

Using MTs, inferences about processes regulating ecosystem functioning can 
be made considering the discriminating variables, the subsets formed (LMs), 
and the regression coefficients in each LM (e.g. Dzeroski and Drumm, 2003; 
Lamon III et al., 2008; Kocev et al., 2010). These coefficients may be used for 
ranking the importance of independent variables, provided that they are 
standardized prior to analysis. This standardization is essential since many 
variables of different orders of magnitude are involved. However the 
explanation of the physical meaning of the weighing coefficients must be 
carried out with caution, since the number of samples within each subset is 
small and consequently the statistical power of the linear regression analysis 
is low. For example in the present application of MTs, some LM subsets 
contained only 20 samples or weak predictive parameter, indicating that more 
data may be needed to improve the models. This fact may act as a limitation 
to the MT application compared to the classic MLR approach which develops 
linear models using the whole sample dataset. 

Two independent datasets were used in the current application of MTs, 
characteristic of two contrasting meteorological regimes, a typical wet and dry 
annual cycle (Spyropoulou et al., 2011). The aim was to assess the efficiency 
of the method to reveal factors regulating primary production. In agreement 
with the two other applications of MTs on marine ecosystems (Pereira et al. 
2009; Volf et al. 2011), salinity seems to play a crucial role on ecosystem 
functioning, since it was selected as discriminating variable for both the dry 
and wet annual cycle in the coastal area under consideration. The effect of 
salinity is probably indirect and is related to the important role of freshwater 
inputs from the surrounding watershed. These inputs affect both the 
hydrodynamic regime and the nutrient content of the receiving water body 
(Tsirtsis et al., 2008). Previous attempts to explain phytoplankton structure 
(but not chl α) for the dry annual cycle (’04-’05) have also shown that salinity 
and temperature were the two most important parameters explaining 
assemblage variability (Spatharis et al. 2007a). High freshwater inputs seem 
to develop a well-formed pycnocline and also decrease residence time in the 
gulf (Spyropoulou et al., 2011), whereas nutrient-rich freshwater inputs were 
identified in the past as the driving factor for development of winter algal 
blooms (Spatharis et al., 2007a; 2009). 
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The role of freshwater inputs and the seasonal pattern are further stressed 
due to the fact that temperature and photoperiod were also identified as 
discriminating variables during the dry annual cycle. Moreover, during winter 
and particularly February when chl α is generally high, salinity and 
temperature are low, underlining the already observed trend that winter 
blooms are driven by the cold, nutrient-rich freshwater from the watershed 
(Spatharis et al., 2007b). A strong seasonal pattern is also revealed when 
considering the subsets (LMs) formed. For the wet annual cycle three periods 
were identified characterized by high, medium precipitation, and dryness. For 
the dry annual cycle however, four periods were formed (summer, 
autumn/early winter, February and early spring) with considerable fluctuations 
in chl α values possibly related to strong seasonal variability in the physical 
setting of the system (residence time and stratification). Depth which was 
found as the main discriminating variable when studying eutrophication in 
lakes (Lamon III et al., 2008), does not play a significant role in Kalloni gulf as 
it was also observed in previous studies (Spatharis et al., 2007b), possibly 
due to the shallowness of the system. 

Considering nutrients, the ’09-’10 annual cycle (wet) seems to be driven 
mostly by phosphate, although a higher number of samples would probably 
be needed to improve the model predictive power. Phosphate was identified 
both as the discriminating variable in LM construction and it was also included 
as a significant variable in the subset corresponding to the warm period 
(LM1). It was also included in the significant variables affecting chl α during 
the warm period (LM4) of ‘04-‘05 (dry annual cycle). In both cases (the ‘09-’10 
tree and LM4 of ‘04-‘05) the Ν:Ρ ratio was low, close to the threshold for Ν 
limitation. These results seem contradictory because although chl α variability 
during these periods should be depending on nitrogen, it is better explained 
by ΡΟ4according to the MT results. The reverse trend was observed for March 
and April of ‘05 (LM2), where nitrogen affected the post peak chl α 
concentrations although the Ν:Ρ ratio in this subset suggested P-limitation.  
Previous studies (Spatharis et al., 2007a) have attributed this phenomenon to 
the presence of nitrophilous species such as the diatom Pseudo-nitzschia 
calliantha. These trends are in agreement with Carstensen et al. (2011) who 
found that ΤΡ was a better predictor of chl α in regions having TN:TP ratios 
consistent with nitrogen limitation and vice versa. It seems therefore that 
nitrogen is the driving factor for the growth of phytoplankton biomass (in terms 
of chl α) during periods of high freshwater input and low renewal rate, 
whereas phosphate plays a key-role when nutrients are generally low and 
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renewal rate is high. A possible explanation may be related to the tendency of 
phosphate ions to be adsorbed on particles and consequently be removed 
from the water column (Krom et al., 2010). During periods of low renewal rate 
(e.g. February), phosphate is removed from the water column and nitrogen 
plays a key-role since nitrophilous phytoplankton species form the winter 
bloom. However, during periods of high renewal rate (e.g. winter of wet 
annual cycle or summer), phosphate plays a major role driving primary 
production. 
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5 CASE STUDY II: OPTIMIZING CLASSIFICATION TASKS 
WITH A NEW INDEX FOR COMBINING MACHINE 
LEARNING ALGORITHMS 

5.1 SUMMARY 

Voting is a commonly used ensemble method that combines base classifier 
results in order to improve classification in the output variable. However, the 
selection of proper classifiers to participate in the voting algorithm is currently 
an open issue. In this study we developed a novel Dissimilarity-Performance 
(DP) index which incorporates two important criteria for the selection of the 
base algorithms: their different response in classification (dissimilarity) when 
combined in triads and their individual performance. To develop this index we 
firstly evaluated the relationship between voting results and different 
measures of dissimilarity among classifiers covering heterogeneous algorithm 
groups (rules, trees, lazy classifiers, functions and Bayes) and using two 
substantially different datasets (i.e. emotion recognition based on speaker 
data and ecological state prediction based on physicochemical data). The 
Jaccard dissimilarity index computed among the classifier triads has shown 
the strongest relationship (R>0.60) with the corresponding voting results for 
both datasets and was thus selected as the most appropriate index to 
represent dissimilarity in our newly proposed DP index. The DP index is highly 
correlated with the voting performance and can efficiently identify the best and 
worst performing classifier triads.  

5.2 INTRODUCTION 

ML techniques can be applied for classification tasks whereby an output 
variable (target class) with discrete and unordered values (labels) is predicted 
from a set of collected samples (instances) that consist the training set 
(Kotsiantis et al., 2006). This approach spans cutting edge applications over a 
wide variety of scientific fields such as bioinformatics (Cline & Karchin, 2011; 
Pinero et al., 2004), computing (Huang et al., 2010; Nigam et al., 2000), 
astronomy (Brescia et al., 2012) and the environment (Cutler et al., 2007; 
Kubat et al., 1998). The above classification approach could be extremely 
useful to the evaluation of the ecological quality status of coastal waters for 
the purposes of WFD (2000); however it has not so far been studied using 
different ML techniques except NNs (Tison et al., 2007; Ocampo-Duque et al., 
2007). 
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Voting is the simplest and easiest ensemble method for combining classifiers 
(Tan & Gilbert, 2003) in order to achieve better classifying performance. The 
challenging step when employing a voting algorithm is selecting the base 
classifiers to be combined. When the number of potential classifier 
combinations and the size of the dataset are rather small, then the optimal 
classifier combination can be found exhaustively. Otherwise, such sequential 
search is impossible due to the exponential increase of the system’s 
complexity and the amount of time required (Ruta & Gabrys, 2005). To 
simplify this process, appropriate criteria must be applied for the selection of 
optimal classifiers to participate in the voting algorithm. For instance when 
classifiers in a voting scheme are highly dissimilar or independent (as 
assessed with dissimilarity indices), the classification performance may be 
significantly improved (Banfield et al., 2005; Kuncheva et al., 2003; Shipp & 
Kuncheva, 2002). However, previous attempts to incorporate dissimilarity 
indices within the voting procedure resulted in highly complex and user-
unfriendly techniques (Li et al., 2012; Opitz & Shavlik, 1996; Ruta & Gabrys, 
2005). Selection of the best combination of base algorithms should thus be 
based on simple and flexible criteria that will jointly consider the dissimilarity 
or independency of classifiers along with their individual performance in 
classification tasks. 

In this study we aim to develop a user-friendly index capable of identifying the 
optimal combination of base classifiers maximizing the classification 
performance of the voting algorithm. To this aim, the specific objectives are: 
(a) to assess the efficiency of individual classifiers in two substantially 
different classification tasks (i.e. classify emotion recognition based on 
speaker data and eutrophication state based on physicochemical data), (b) to 
identify combinations of individual classifiers that have markedly different 
behavior (i.e. high dissimilarity), (c) to test whether these combinations also 
have a corresponding high performance in voting classification, and (d) to 
develop a new user-friendly index that joints the two criteria of classifier 
dissimilarity and individual classifier performance. We expect that this 
dissimilarity-performance (DP) index will be more efficient in quantifying the 
classifying performance of different combinations of base classifiers than the 
traditionally applied dissimilarity indices. DP will be confronted with two 
essentially different classification tasks to subjectively evaluate the index 
efficiency. 
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5.3 METHODOLOGY 

5.3.1 Outline 

The development of the DP index, identifying the optimal combination of base 
classifiers to perform classification tasks, was carried out as follows (Figure 
9). Initially 10 base classifiers were trained in order to assess their individual 
performance in two substantially different classification tasks (i.e. emotion 
recognition based on speaker data and prediction of eutrophication state 
based on physicochemical data). This information is useful, as it enables 
direct comparison of classifiers and secondly, it clarifies whether sufficient 
classifiers participate afterwards in the devolvement of the new index. The 
next step involves the training of the voting algorithm with all possible 
combinations of the 10 base classifiers in triads using both datasets. 
Thereafter, Binary Dissimilarity Indices (BDIs) were computed for all possible 
classifier triads, to assess possible differences in the outcome of base 
classifiers. Additionally, this classifier dissimilarity within each triad measured 
by BDIs and the corresponding voting performance were related using the 
correlation coefficient. The last step is the development of the new DP index 
that will take into account the classification performance of each base 
classifier and the dissimilarity of classifiers in the triads during the voting 
procedure. In order to assess the efficiency of DP index we tested whether its 
performance values were correlated with the corresponding voting 
performance of triads. To further test the efficiency of our new index, we 
checked whether the triads identified by DP as having the best or worst index 
value are the same as those giving the best or worst classification 
performance based on voting. The latter will show whether DP (which is 
considerably less computationally intensive than the exhaustive search) can 
identify the optimal classifier combinations.    

All base classifiers were trained with the WEKA machine learning package 
(Hall et al., 2009). The same package was also used for the training of the 
voting algorithm with all possible classifier triads. The purpose of DP index is 
to identify the optimal combination of classifiers maximizing the classification 
performance during voting and is thus not concerned whether base classifiers 
participate with their highest potential performance. For this reason, each 
classifier was trained using the default parameter values of the WEKA 
package. 
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Figure 9: Schematic diagram of the methodological steps followed for the 
development and testing of the proposed Dissimilarity-Performance (DP) 
index. This index takes into account both the individual performance of base 
classifiers (D) and the dissimilarity of classifiers results -measured with Binary 
Dissimilarity Indices (BDIs) - when these are combined in triads. 
 

5.3.2 Datasets 

Two substantially different datasets were used for the training of base 
classifiers and voting EM. The first dataset includes voice speaker data used 
to recognize 7 emotion states and the second dataset includes 
physicochemical parameters used to classify 5 ecological status levels of 
seawater. These datasets are different in the number of input variables (133 
vs 9), samples (525 vs 188), and predicted labels of the target class (7 vs 5). 
It is therefore expected, that these two datasets will show different 
classification efficiency due to the aforementioned data characteristics. 
Additionally, datasets differ both in structure and functionality as the first deals 
with human emotional states having unclear boundaries (due to differences 
among humans) (Anagnostopoulos et al., 2012), whereas the second is 
subject to high stochasticity and noise, inherent in ecological data (Kitsiou & 
Karydis, 2011). 
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More specifically, the first dataset was based on the Berlin Emotional 
database (EMO-DB) (Burkhardt et al., 2005), which contains 535 utterances 
of 10 actors (5 male, 5 female) simulating 7 emotional states (anger, 
happiness, anxiety/fear, sadness, boredom, disgust and neutral). After 
processing with PRAAT software (Boersma & Weenink, 2005) each utterance 
was converted to a 133-dimensional prosodic feature vector based on well-
established speech features, such as Pitch, Mel Frequency Cepstral 
Coefficients (MFCCs), energy and formant frequencies (Anagnostopoulos & 
Iliou, 2010). Thus, the dataset consists of 535 samples with 133 prosodic 
inputs to be categorized in 7 class labels. 

The second dataset comprises of 188 seawater samples collected on monthly 
campaigns during one annual cycle (August ’04-July ’05) in Kalloni Gulf, 
Lesvos Island, Greece (Spatharis et al., 2007a). The dataset includes 9 
physico-chemical input parameters (e.g. temperature and nutrients) and one 
target class including 5 ecological status levels (high, good, moderate, poor 
and bad) (Table 11).The latter is based on chlorophyll α limits set by 
Simboura et al. (2005) for the evaluation of ecological quality of coastal 
waters for the purposes of the WFD. 

 

Table 11: Classification schemes developed for chl α and the corresponding 
water quality status (Simboura et al., 2005). 
 

 Water quality status 
Index High Good Moderate Low Bad 
Chl α < 0.10 0.10 - 0.40 0.40 - 0.60 0.60 - 2.21 > 2.21 

5.3.3 Training of base classifiers and voting EM 

The 10 base classifiers were selected in order to represent all different 
categories of classification such as rules, trees, lazy classifiers, functions, and 
Βayes (Table 12). The voting EM combines the results of the base classifiers 
in triads to offer its own classification for all samples (Kuncheva, 2004). In this 
work, an exhaustive training of the voting algorithm was achieved by combing 
the 10 base classifiers at all possible triads (i.e. 120 different classifier triads). 
We used classifier triads because during voting the combination of an odd 
number of classifiers avoids the risk of ties (Ruta & Gabrys, 2005). 
Additionally, three is the minimum odd number that can be used in voting and 
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thus combining classifiers in triads simplifies the whole procedure with respect 
to complexity and time.  

Table 12: Predictive performance in terms of CCI and κ (number in parenthesis) 
of the 10 base classifiers for both datasets. 

 Dataset 

Category Abbreviation 
Emotion 

recognition 
Ecological  

state prediction 
Rules JRip 58.7 (0.51) 60.1 (0.38) 
 Part 64.4 (0.57) 50.5 (0.29) 
Trees J48 62.4 (0.55) 55.9 (0.37) 
 RF 73.1 (0.65) 62.2 (0.45) 
Lazy IBk 80.6 (0.77) 63.3 (0.47) 
 KStar 78.1 (0.74) 55.3 (0.36) 
Functions Log 67.5 (0.62) 52.1 (0.29) 
 MLP 81.7 (0.79) 59.0 (0.42) 
 SMO 78.7 (0.75) 45.7 (0.07) 
Bayes NB 51.6 (0.43) 46.3 (0.25) 
Meta Vote 

best triad 
86.8 (0.84) 70.0 (0.59) 

 

The efficiency of the 10 base classifiers and the voting algorithm to perform 
emotion recognition and ecological state prediction was evaluated using the 
10-fold cross validation procedure (Stone, 1978). The voting EM was trained 
based on the averaged probability estimates of the base classifiers (Witten & 
Frank, 2005). The classification performance was assessed on the basis of 
two criteria i.e. the percentage of CCI and the Cohen’s κ statistic (Cohen, 
1960).  

5.3.4 Binary diversity indices (BDIs) 

BDIs quantify the dissimilarity or independency of results among base 
classifiers combined in triads. This is later used to determine whether 
combinations of dissimilar or independent classifiers also have a 
corresponding high performance during voting. Dissimilarity of classifiers is an 
essential measure because combinations of classifiers that are markedly 
different (i.e. commit classification mistakes on different instances) are 
expected to improve classification results during voting (Kuncheva & 
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Whitaker, 2003). BDIs expressing dissimilarity, measure the differences in 
classification results among classifiers (Wonda, 1981), whereas BDIs 
expressing independency are used to assess correlation between classifiers. 
Both BDI categories have been extensively used in various disciplines (e.g. 
psychology, engineering or economics) for assessing the relation between 
situations consisting of potential occurrences of a specific event (Seifoddini & 
Djassemi, 1991; Taylor et al., 2012; Yin & Yasuda, 2005).  

In the present case study, the correct classification of an instance by a 
classifier was assigned a “1” score, whereas misclassification was assigned a 
“0” score. Using this binary assessment for all 10 classifiers, four well-known 
BDIs (Table 13) were computed. The first three BDIs can be estimated by 
combining the classification results of two classifiers. Thus, to express 
dissimilarity (simple matching distance SMD, Jaccard distance (JD) or 
independency (Phi) in triads, an average of the paired combinations was 
calculated. The last index (Q), being also a measure of independency 
(positive or negative) between classifiers, is estimated by using three 
classifiers as described in Kuncheva et al. (2003). 
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Table 13: Definition and ranges of four binary similarity (or dissimilarity) indices 

Coefficient 
No of alg. 
required 

Range Formula (𝑆𝑆𝑖𝑖𝑗𝑗 or 𝑆𝑆𝑖𝑖𝑗𝑗𝑘𝑘) Reference 

Simple Matching 

Distance (SMD) 
2 [0,1] 𝑁𝑁10 + 𝑁𝑁01

𝑁𝑁11 +𝑁𝑁10 + 𝑁𝑁01 + 𝑁𝑁00 (Sokal & Sneath, 1963) 

Jaccard Distance 

(JD) 
2 [0,1] 𝑁𝑁10 + 𝑁𝑁01

𝑁𝑁11 + 𝑁𝑁10 + 𝑁𝑁01 (Jaccard, 1908) 

Phi 2 [-1,1] 
𝑁𝑁11𝑁𝑁00 − 𝑁𝑁10𝑁𝑁01

�(𝑁𝑁11 +𝑁𝑁10)(𝑁𝑁11 + 𝑁𝑁01)(𝑁𝑁10 + 𝑁𝑁00)(𝑁𝑁01 + 𝑁𝑁00)
 (Yule, 1912) 

Q  3 [-1,1] 𝑁𝑁111𝑁𝑁001𝑁𝑁010𝑁𝑁100 − 𝑁𝑁011𝑁𝑁101𝑁𝑁110𝑁𝑁000

𝑁𝑁111𝑁𝑁001𝑁𝑁010𝑁𝑁100 + 𝑁𝑁011𝑁𝑁101𝑁𝑁110𝑁𝑁000 (Yule, 1900) 

 
𝑁𝑁11   Number of instances that have been correctly classified by both classifiers 
𝑁𝑁10,𝑁𝑁01   Number of instances that have been correctly classified by the 1st classifier but not by the 2nd and likewise respectively 
𝑁𝑁00   Number of instances that have been correctly classified by neither classifier 
𝑁𝑁111   Number of instances that have been correctly classified by all three classifiers 
𝑁𝑁011,𝑁𝑁101,𝑁𝑁110 Number of instances that have been correctly classified by the 2nd and 3rd classifiers but not by 1st and likewise 

respectively  
𝑁𝑁001,𝑁𝑁010,𝑁𝑁100 Number of instances that have been correctly classified by 3rd classifiers but not by 1st nor 2nd and likewise respectively  
𝑁𝑁000   Number of instances that have been correctly classified by neither classifier 
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5.3.5 Dissimilarity-Performance index (DP) 

Apart from the traditionally used BDIs, the individual performance of 
classifiers was also considered in the present case study to provide further 
information on the classifiers to be combined in order to achieve improved 
classification (Sharkey & Sharkey, 1997). To identify the best performing 
classifier triad it is thus essential to jointly consider the criterion of dissimilarity 
among classifiers along with their individual performance in the development 
of an integrated Dissimilarity-Performance (DP) index. The formula proposed 
for this DP index is the following: 

𝐷𝐷𝑃𝑃 =
∑ 𝐽𝐽𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖<𝑗𝑗 + ∑ 𝐸𝐸𝑖𝑖𝑛𝑛

𝑖𝑖=1

6
       𝐺𝐺, 𝑗𝑗 = 1,2,3 

where 𝐽𝐽𝑖𝑖,𝑗𝑗 is the JD index calculated from the binary classification results of 
the𝐺𝐺-th and 𝑗𝑗-th classifiers and 𝐸𝐸𝑖𝑖 is the ratio of the correctly classified samples 
by the 𝐺𝐺-th classifier to the total number of instances. The first addend in the 
numerator represents the sum of the JD for all classifier pairs, while the 
second is the sum of the single performance of each classifier used in voting. 
The denominator is used to standardize results on 0 to 1 scale. JD index was 
selected as a dissimilarity measure in the new DP index as it showed the best 
correlation with voting performance compared to other BDIs. The 
characteristics of diversity and performance of the classifiers existing in each 
triad have equal contributions in DP index. 

The efficiency of BDIs and DP based on the performance criteria (i.e. CCI and 
κ) for the 120 different classifier triads was assessed with Spearman’s rank 
correlation coefficient. DP was further tested for monotonicity (consistent 
increase or decrease along the CCI spectrum) as this is an important 
prerequisite for an index (Spatharis & Tsirtsis, 2010). 

5.4 RESULTS 

The classification performance of the ten base classifiers for both datasets is 
presented in Table 13. Overall, the results of the emotional recognition are 
significantly better for all classifiers than the corresponding results of 
ecological state classification. The best classifier is IBk, as it is the most 
efficient in classifying ecological state and the second more efficient for 
emotional recognition. RF and MLP can also be considered as satisfactory 
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classifiers for both classification tasks. On the other hand, classification 
results of Jrip and SMO algorithms were contradicting. Although Jrip showed 
a satisfactory classification of ecological states compared to other classifiers, 
it failed to give statistically significant results for emotional recognition. The 
opposite was found for the SMO classifier. Finally, NB had low performance 
for both datasets while the remaining classifiers (i.e. Part, J48, K* and Log) 
were characterized by moderate predictive performance. 

Voting EM, combining the aforementioned base classifiers in triads, has 
shown higher classification performance compared to the performance of 
individual classifiers (Table 13). The best classifier triad for each of the two 
datasets achieved an increase in performance higher than 5%, based on the 
CCI and κ performance criteria, compared to the corresponding results of the 
best base classifier (i.e. MLP for emotional recognition and IBk for 
eutrophication). Thus, the best classifier triad for emotion recognition (i.e. IBk, 
MLP, SMO) classified correctly 86.8% of the samples whereas the κ 
performance criterion indicates that the classification performance is almost 
“perfect”. Considering ecological state classification, the best triad was JRip, 
RF and MLP classifiers, which correctly classified 70% of samples with 
performance that can be characterized as almost “substantial” (κ = 0.59). 

The voting performance of various classifier combinations in terms of the CCI 
and κ performance criteria has shown statistically significant correlation 
(p<0.01) with JD and DP indices (Table 14) for both datasets. Other BDIs 
such as SMD were more weakly but significantly correlated with CCI and κ for 
both datasets, whereas Q was significantly correlated with CCI and κ only for 
emotional recognition. The positive correlation between SMD or JD and the 
performance measures shows that when combining highly dissimilar 
classifiers, the resulting classification performance is also high. On the other 
hand, the negative correlation with the Q index is observed due to the 
ambivalent relationship with voting classification performance (Kuncheva et 
al., 2000). Finally, Phi index was not correlated with the performance 
measures for both classifications tasks. Therefore, assuming that voting 
performance can be expressed with CCI and κ, the most efficient among the 
indices considered is DP showing high correlation coefficient values for both 
datasets (R>0.80). 
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Table 14: Results of correlation analysis (Spearman) between the performance 
(based on CCI and κ) of the voting algorithm and the BDIs trained on the 120 
classifier combination triads. 
 

Index 

Emotion  
recognition 

Ecological  
state prediction 

CCI  κ CCI κ 

Phi 0.005 0.003 0.163 0.177 
SMD  0.529** 0.520** 0.218* 0.234* 
JD 0.618** 0.610** 0.429** 0.451** 
Q  -0.385** -0.378** -0.178 -0.146 
DP 0.811** 0.813** 0.824** 0.845** 

** Correlation is significant at the 0.01 level (2-tailed) 
 
The efficiency of the new DP index to identify classifier triads with significantly 
high or low performance in voting procedure is shown in Table 15. DP has 
determined in the best decade, 9 out of 10 classifier combinations having the 
higher voting performance in terms of both CCI and κ for emotional 
recognition. The corresponding values were 8 and 9 respectively, for 
eutrophication state classification. On the other hand, in the worst decade of 
classifier triads DP managed to identify 7 out of 10 with the worse CCI after 
voting for both datasets. The DP performance was slightly improved (i.e. 8 out 
of 10 identifications), when in the worst decade the classifier triads with the 
lower κ value were only considered. Additionally, the combination triad 
identified as best by DP for each dataset, was the triad that finally presented 
the best performance during voting. 

 

Table 15: Number of classifier combination triads that both one of the 
performance measures (CCI or κ) and DP placed in the worst or best tens for 
each datasets. 

Classifier 
combinations 

Emotion recognition Ecological state prediction 
CCI κ CCI κ 

10 worse 7 8 7 8 
10 better 9 9 8 9 
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The monotonic behavior of DP was checked by plotting its variability in 
specific percentiles of CCI performing measure (Fig. 10) for comparative 
reasons. To this aim, six percentiles of CCI were selected for both datasets: 
the minimum and maximum values, and the 20th, 40th, 60th and 80th 
percentiles. DP has shown consistent increase along the CCI spectrum for 
both datasets and thus its behavior is considered as monotonic. 

 

 

Figure 10: Monotonic behavior of DP along CCI gradient for both datasets. 

5.5 DISCUSSION 

In the present case study, 10 base classifiers corresponding to various ML 
categories, were trained using two substantially different datasets (i.e. 
recognition of emotion and eutrophication state classification) in order to 
access their classifying efficiency. Best performance in recognition of emotion 
was achieved by MLP, although IBk and SMO were also efficient. This is in 
agreement with previous applications where these three classifiers accurately 
recognized emotions from data offering significantly better performance 
(Fragopanagos & Taylor, 2005; Iliou & Anagnostopoulos, 2010; Morrison et 
al., 2007; Rani et al., 2006; Shami & Verhelst, 2007). On the other hand, 
classification performance of ecological state using base classifiers was 
moderate, an observation also holding for previous studies on this topic 
(Tamvakis et al., 2014). Higher performance was observed for IBk, MLP and 
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tree classifiers in agreement with previous studies on eutrophication analysis 
by ML techniques (Recknagel, 2001; Tamvakis et al., 2012; Volf et al., 2011). 

The voting algorithm was trained with all possible classifier triads resulting 
from combinations of the 10 base classifiers in order to give its own combined 
classification. The best triad has shown improved performance in agreement 
with the general principle that ensembles of classifiers are often substantially 
more accurate than their individual base classifiers (Dietterich, 1997; Pal & 
Mather, 2003; Saha & Ekbal, 2013; Tsai, 2014; Wozniak et al., 2014). For 
both datasets the % increase of CCI was over 5%, which is considered as 
remarkable improvement in classification performance (Pal & Mather, 2003). 
Moreover, according to κ performance criterion, voting increased the 
classification performance from “substantial” to “almost perfect” for the 
recognition of emotion, whereas the performance for seawater ecological 
state increased significantly to the lower limit of “substantial” classification. 

Each base classifier employs a different learning strategy to give its own 
classification results which are fed into the voting algorithm for the final 
classification outcome. When the individual results are similar then the voting 
outcome will be based more or less on the same information (errors and 
corrects) (Dietterich, 2000b). Thus, combining classifiers with similar results 
does not offer any additive value in voting, increasing however the system 
complexity (Ruta & Gabrys, 2005). On the other hand, EMs consisting of 
classifiers offering different results have the potential to achieve significantly 
better performance compared to those of individual base classifiers (Ruta & 
Gabrys, 2005; Tan & Gilbert, 2003; Tsymbal et al., 2003). This finding was 
confirmed in the present case study, with JD dissimilarity measure showing 
the highest statistically significant correlation with the two measures of voting 
performance for both datasets. The positive correlation indicates that classifier 
triads with highly differentiated results (as expressed by JD) tend to be more 
accurate during voting. These results are in agreement with Kuncheva & 
Hadjitodorov, 2004 who employed JD in cluster ensembles. However the two 
measures of independency (i.e. Q and Phi) being considered to offer 
improvement in voting accuracy (Kuncheva et al., 2000; 2003), showed low 
relationship with voting performance also in agreement with previous studies 
(Banfield et al., 2005; Ruta & Gabrys, 2005; Shipp & Kuncheva, 2002). 

Although dissimilarity among individual classifiers combined to develop EMs 
may be the key towards the improvement of classification efficiency (e.g. 
(Canuto et al., 2007; Mao et al., 2011), dissimilar but powerless classifiers are 
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unlikely to bring any benefits in EMs performance (Ruta & Gabrys, 2005). 
These two crucial characteristics, classifier dissimilarity and efficiency in 
individual performance, have been coupled in the current study to propose a 
new index highlighting the optimum classifier combinations to train voting 
algorithms. The DP index integrates dissimilarity using the JD measure, which 
is considered as an efficient and stable indicator (Yin & Yasuda, 2005), while 
it is sensitive on following the voting performance variability for both datasets. 
In addition, DP index integrates the performance characteristic using the 
individual performance of the classifiers, as it is reasonable to assume that 
optimal combinations should include classifiers with high individual 
performances (Sharkey & Sharkey, 1997). 

Considering (a) the high and significant correlation between DP and the voting 
performance, (b) the fact that DP achieved to determine the best performing 
classifier triads and (c) the consistent monotonic behavior of DP for both 
datasets, this newly proposed index is very efficient to identify base classifiers 
that should be combined in order to optimize the classification performance 
during voting. DP is recommended to individual ML users (rather than EMs 
designers) seeking to optimize their classification performance by selecting 
appropriate base classifiers. Indeed, DP can be easily calculated in three 
steps. First, the user trains any set of base classifiers, being composed by 
representatives of any ML category, trained through any learning platform or 
even composed by a single classifier trained by different training sets. Then, 
using the obtained classification results for every instance of the database 
(i.e. correctly or falsely classified), the user calculates the JD index for every 
triad of base classifiers. Finally, using the derived information (performances 
from the first step and dissimilarities from the second) DP values are 
computed for every triad and subsequently the triad that possibly offers the 
best voting performance (i.e. the triad with the grater DP value) is identified.  

Apart from the easiness in application, DP has a number of additional 
advantages: (a) simplicity as it uses only three combined classifiers, (b) 
efficiency in the selection of classifiers to participate in voting schema as 
proven in the present case study for two different datasets, (c) flexibility as 
any base classifier can be included in the voting scheme and (d) innovation in 
the joint consideration of the dissimilarity among classifiers as well as their 
individual performance. On the other hand, DP cannot be compared with 
complex EM schemes that perform thorough search towards inducing all 
possible kinds of classification errors which however need highly qualified 
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designers to apply them to new tasks. DP mainly aims at individual users 
aiming to achieve a combined and more accurate classification using their 
own familiar and tested ML algorithms. 
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6 CASE STUDY III: OPTIMIZING BIODIVERSITY PREDICTION 
FROM ABIOTIC PARAMETERS USING MACHINE 
LEARNING TECHNIQUES 

6.1 SUMMARY 

An integrated methodology is proposed for the effective prediction of 
biodiversity exclusively from abiotic parameters. Prediction is based on three 
machine learning techniques: MTs, MLP and IBk algorithms. Abiotic 
parameters (input parameters) include temperature, salinity, dissolved 
inorganic nitrogen and phosphates that are known to affect phytoplankton 
assemblage structure. Biodiversity is expressed as a number of indices 
(output variables) representing richness, evenness and dominance. To 
optimize diversity prediction, indices were calculated on a large number of 
phytoplankton field assemblages, but also on corresponding noise-free 
simulated assemblages that retain the structure of field ones. Results indicate 
that biodiversity can be accurately predicted using exclusively abiotic 
parameters and the efficiency is doubled with simulated assemblages. The 
Instance Based learning algorithm was the most effective and achieved the 
best prediction for Menhinick richness (R = 0.80), Evenness E2 (R = 0.81) 
and Berger Parker dominance (R = 0.80) indices. Based on the optimal 
algorithm, indices, and dataset, a software package was developed for 
phytoplankton diversity prediction typical for Eastern Mediterranean waters. 

6.2 INTRODUCTION 

Diversity can be expressed through a number of indices which quantify 
community structure and the changes it undergoes due to natural or 
anthropogenic stress (Magurran, 2004). However, field communities are also 
driven by multiple stochastic factors such as seasonality and spatial 
heterogeneity which impose a degree of uncertainty and distortion on data 
(Straten, 1992). This ‘environmental noise’ inherent in field communities is 
also reflected on the subsequent calculation of indices (Vounatsou & Karydis, 
1991). This problem can be overcome with the use of simulated communities 
via a species abundance distribution (e.g. the log-series, lognormal) however 
retaining the structure of field ones (Blackwood et al., 2007; Lyashevska & 
Farnsworth, 2012; Schloss & Handelsman, 2006; Spatharis & Tsirtsis, 2010). 
Calculations on noise-free simulated communities seem appropriate when 
trying to establish cause-and-effect relationships, e.g. between diversity and 
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abiotic parameters, due to the removal of noise or distortion that more easily 
supports the revealing of possible signals. 

In this paper we propose an integrated methodology for the optimization of 
diversity prediction exclusively from abiotic parameters (Fig. 11). The diversity 
is expressed by diversity, evenness, and dominance indices calculated on 
both field and simulated phytoplankton assemblages covering a wide 
productivity range typical of Eastern Mediterranean waters. Predictions were 
carried out based on three ML algorithms. The objectives of the study were 
thus: (a) to distinguish the ML technique offering the most accurate prediction, 
(b) to select the indices representative of all three diversity components 
(richness, evenness, and dominance) (c) to optimize prediction by calibrating 
the methodology with indices calculated on simulated assemblages, and (d) to 
develop a software tool for biodiversity prediction based on the proposed 
methodology. 

 

Figure 11: Conceptual diagram of the methodological procedure followed in 
order to optimize diversity prediction from abiotic parameters. 
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6.3 METHODOLOGY 

6.3.1 Datasets 

The first dataset employed in the study includes 658 field samples and was 
compiled using existing data from coastal areas of the Aegean Sea, E. 
Mediterranean representing a wide range of productivity. Among the various 
abiotic parameters available in the dataset, a subset was selected for the 
aims of the present case study, including: (a) concentrations of limiting 
nutrients, Dissolved Inorganic Nitrogen (DIN) and Phosphates (PO4), that 
directly influence the growth and composition of phytoplankton in the areas 
under consideration (Spatharis et al., 2008) and (b) Salinity (S) and 
Temperature (T), which  may also indirectly affect phytoplankton synthesis 
through stratification in coastal waters (Spyropoulou et al., 2013). Dataset 
information and summary statistics of the above parameters in each of the 
four areas are provided in Table 16. The dataset covers a wide range of 
phytoplankton abundance (103-9×106 cells/L) and species richness (4-39 
species). There were no missing values in the dataset and no special 
treatment was performed for outlying values. It was considered that the latter 
often correspond to extreme events such as algal blooms due to episodic 
terrestrial inputs (Spatharis et al., 2007b) or to the photoperiod increase 
during spring, that have to be included in the models to be developed.The 
variables’ positive skeweness (Table 16), that is almost always observed for 
environmental data, was taken into account in the application of the ML 
algorithms. According to the requirements of each algorithm standardization 
or normalization procedures were applied, described in detail below. 
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Table 16: Dataset information (mean annual values, range in parenthesis and skeweness) of abiotic (input) and phytoplankton 
parameters for the coastal areas in Aegean Sea. 
 

 Rhodes offshore 
n=143 

Gera Gulf 
n=114 

Kalloni Gulf 
n=186 

Saronikos Gulf 
n=215 

Abiotic parameters T (oC) 19.67 
(15.86-26.39) 

0.66 

19.06 
(9.90-26.70) 

0.32 

17.73 
(9.43-28.20) 

0.11 

19.21 
(13.10-27.60) 

0.33 
S (pcu) 39.16 

(38.92-39.39) 
11.63 

38.92 
(36.39-40.28) 

0.23 

38.58 
(34.02-41.06) 

0.91 

38.30 
(37.20-39.70) 

8.50 
DIN (μΜ) 0.91 

(0.21-12.45) 
9.08 

1.48 
(0.40-5.82) 

2.36 

3.94 
(0.47-45.20) 

4.66 

2.70 
(0.36-37.95) 

5.18 
PO4(μΜ) 0.0700 

(0.010-4.090) 
11.60 

0.194 
(0.050-0.850) 

2.11 

0.088 
(0.00-1.577) 

5.88 

0.236 
(0.010-6.00) 

7.54 
Biotic parameters Cell No. 6,291 

(103-6×104) 
4.37 

47,237 
(2×103-4×105) 

3.04 

592,441 
(3×103-9×106) 

5.03 

283,201 
(103-6×106) 

6.30 
Species No. 12 

(5-23) 
0.18 

16 
(4-37) 
0.95 

23 
(4-39) 
0.40 

19 
(5-39) 
0.35 
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The second dataset includes 658 simulated phytoplankton assemblages with 
abundances corresponding exactly to the abundances of the 658 field 
samples. The simulation was based on the log-series statistical distribution 
which assumes that most species in an assemblage are rare (Fisher et al., 
1943). The log-series distribution is shaped by parameters x and a, that can 
be calculated knowing the ratio of species richness to total abundance (S/N) 
in an assemblage. The S/N ratio was estimated via a simple linear regression 
equation between S and N using the 658 field samples as described in 
Spatharis & Tsirtsis (2010). Regression analysis was also used to identify the 
relation of the abundance of the most dominant species N1 with the total 
phytoplankton abundance N in the 658 field samples. When parameters x and 
a were estimated, the expected number of species S was allocated for each 
abundance (total cells N). By feeding the previous two relationships which 
characterize field phytoplankton assemblages onto the log-series distribution, 
simulated assemblages are generated that retain the structure of the initial 
field ones (Fig. 12). This approach has been described in detail in previous 
studies (Spatharis & Tsirtsis, 2010; Tsirtsis et al., 2008) resulting in a wide 
range of assemblage diversity closely matching reality (Spatharis et al., 2011). 

 

Figure 12: Schematic presentation of the procedure followed for the generation 
of 658 simulated phytoplankton assemblages corresponding to the 658 field 
assemblages. 
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6.3.2 Indices expressing diversity components 

Indices can express different aspects of biological diversity such as richness, 
evenness, and dominance. Thus, diversity indices weigh more on the richness 
component of assemblages, evenness indices account more for the 
distribution of individuals to species, and dominance indices consider only the 
proportion of most abundant species in an assemblage (Karydis & Tsirtsis, 
1996). In the current study, the most commonly used diversity, evenness and 
dominance indices (Krebs, 1999; Magurran, 2004) were used in order to 
express all aspects of phytoplankton diversity (Table 17). These indices were 
considered as output parameters for the ML algorithms described below. 

6.3.3 Details of the ML algorithms 

MTs 
The M5 algorithm is one of the most well-known MT induction methods. The 
M5P algorithm in Java implementation which is part of WEKA machine 
learning package (Hall et al., 2009) was used for the MT induction. An 
optimization of the method was attempted based on the minimum number of 
instances reaching a leaf that is crucial since it controls the tree pruning 
(Quinlan, 1999). To this aim, different values were used in order to optimize 
results, that is 4 (default), 8, 16, 32 and 64 instances. Prior to analysis, abiotic 
parameters were standardized using the z-score procedure to ensure equal 
weights during tree induction. 

IBk 
The IBk algorithm was applied with the use of k nearest training instances (k-
NN) in order to predict the value of the output variable in new unseen 
instances. The Manhattan (city-block) distance was used as distance metric, 
as it was found more powerful compared to the classic Euclidean distance. In 
the software package WEKA (Hall et al., 2009) the initial setting of parameter 
k may significantly affect the prediction power. To optimise results, different 
values of this parameter were tested, i.e. 2, 4, 8, 12 and 20. Prior to data 
analysis, abiotic parameters were standardized using the z-scores, as 
performed in the application of MTs. 

MLP  
The MLPs used in this study belong to the classic group of feed-forward NNs 
with one hidden layer in which sigmoid activation function is used to all nodes 
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while it is being trained by the backpropagation algorithm. To select the 
network’s topology that maximizes the algorithm effectiveness, five numbers 
of neurons were tested (4, 8, 10, 15, and 20). 

The performance of the three algorithms was also compared to the classic 
multiple linear regression (MLR) technique. Prior to data analysis, abiotic 
parameters were log transformed to approach normality, as it is common for 
natural data to follow positively skewed distributions. Although NNs do not 
require any assumption regarding input data, it has been shown that their 
performance is often improved through data transformation using 
mathematical functions (Shi, 2000). 

6.3.4 Assessment of optimal diversity prediction 

To estimate the prediction accuracy of different algorithms on unseen data, 
the K-fold CV approach was employed (paragraph 3.3.1) (Stone, 1974). To 
optimize algorithm results, biodiversity prediction was based on three 
numbers of CV folds: 10, 20 and 658 i.e. LOOCV. The basic measure of 
performance for assessing the predictive power of the three algorithms is the 
R coefficient between the calculated values of indices (based on field or 
simulated assemblages) and those predicted by the algorithm while the 
RMSE is also presented. The variability of R coefficient within the K-folds of 
each algorithm was estimated by the coefficient of variation which quantifies 
the variability (or stability) of the results. A two-factor ANOVA was used to 
determine the relative effect of testing different CV folds and different values 
of algorithm parameters (i.e. number of instances reaching an MT leaf, 
number of neighbours for IBk, or number of neurons for MLP).Percent errors 
between calculated and predicted values were used as an additional measure 
of performance. Instead of using solely instances (e.g. the 658 samples) to 
assess the performance of predicted indices, we also assessed the behavior 
of predictions using average monthly values of biodiversity for each of the four 
areas.  
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6.4 RESULTS 

6.4.1 Selection of optimal parameters for algorithm training 

The relative effect of three numbers of CV folds (10, 20, 658) on algorithm 
performance based on R was tested using both field and simulated data. This 
factor was not significant for MTs and IBk (ANOVA, p>0.05), but was 
statistically significant for MLP (ANOVA, p<0.001). For the latter, the best 
performance was achieved with the 10-fold CV. The minimum number of 
instances reaching an MT leaf (4, 8, 16, 32, 64) was not statistically different 
for field dataset (ANOVA, p>0.05) but was strongly significant when using 
indices calculated on simulated data (ANOVA, p<0.005). The optimal number 
of instances selected for MT parameterization was 8. Significant differences in 
R were observed among the different numbers of neighbors for IBk (2, 4, 8, 
12, 20) and neurons for MLP (4, 8, 10, 15, 20) (ANOVA, p<0.05). The optimal 
number of neighbors was 8 and the optimal number of neurons was 10. 

6.4.2 Selection of optimal dataset, algorithm and indices 

The performance of the three ML algorithms (using the optimal parameters 
described above) with the respective performance of MLR in terms of R for all 
indices is presented in Table 17. Additionally, the performance of the 
algorithms in terms of RMSE is presented in Table 18. Overall, the use of 
indices calculated on simulated instead of field assemblages resulted in 
significantly improved predictive power. This was observed for all tested 
algorithms and almost all indices as indicated by the higher and in some 
cases doubled correlation coefficients. The most efficient algorithm for 
diversity prediction was IBk and the least efficient was MLR. Based on IBk, 
the most effective indices calculated on simulated data were Species 
Richness, Menhinick, Evenness E1, Evenness E2, Evenness E3 and Berger-
Parker (R ≥ 0.80). On the other hand, Shannon and Hill N1 indices had lower 
predictive power (R<0.72). According to the coefficient of variation, variability 
of R among the 10 folds of CV was low (<25%) for the majority of indices 
tested, whereas it was minimised for IBk on simulated data (e.g. 5.1% for 
Species Richness, 5.9% for Menhinick, 5.3% for Evenness E2, 5.1% for 
Berger-Parker). Therefore, Species Richness, Menhinick, Evenness E2 and 
Berger-Parker were selected as representative of the three components of 
assemblage diversity i.e. richness, evenness and dominance.  
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Table 17 Predictive performance in terms of R of MTs, IBk, MLP and MLR for all indices using data from field (F.A.) and simulated 
assemblages (S.A.) evaluated by 10-CV. 
 

  Reference MTs IBk MLP MLR 
   F.A. S.A. F.A. S.A. F.A. S.A. F.A. S.A. 
 Abundance  0.76 0.77 0.73 0.73 0.39 0.39 0.26 0.26 

Diversity 
indices 
 

Sp. Richness (Ludwig & Reynolds, 1988) 0.33 0.73 0.69 0.81 0.47 0.54 0.28 0.31 
Margalef (Margalef, 1958) 0.39 0.69 0.60 0.79 0.33 0.58 0.19 0.29 
Gleason (Ludwig & Reynolds, 1988) 0.37 0.69 0.59 0.79 0.29 0.58 0.18 0.28 
Menhinick (Menhinick, 1964) 0.62 0.71 0.77 0.80 0.55 0.59 0.28 0.29 
Odum (Odum et al., 1960) 0.35 0.65 0.75 0.74 0.58 0.59 0.26 0.23 
Simpson (Ludwig & Reynolds, 1988) 0.60 0.67 0.66 0.77 0.35 0.51 0.25 0.35 
H2-Shannon (Shannon & Weaver, 1949) 0.58 0.57 0.67 0.71 0.40 0.44 0.21 0.32 
Hill N1 (Ludwig & Reynolds, 1988) 0.49 0.53 0.63 0.70 0.32 0.43 0.10 0.30 
Hill N2 (Ludwig & Reynolds, 1988) 0.34 0.68 0.60 0.79 0.30 0.53 0.12 0.32 
Hurlbert (Hulbert, 1971) 0.60 0.63 0.66 0.77 0.33 0.51 0.25 0.35 
McIntosh (McIntosh, 1967) 0.55 0.61 0.66 0.78 0.32 0.52 0.22 0.35 

Evenness 
indices 

Evenness E1 (Pielou, 1975) 0.59 0.70 0.68 0.80 0.33 0.56 0.27 0.33 
Evenness E2 (Sheldon, 1969) 0.53 0.72 0.67 0.81 0.35 0.58 0.24 0.30 
Evenness E3 (Ludwig & Reynolds, 1988) 0.43 0.71 0.67 0.80 0.35 0.57 0.24 0.30 
Evenness E4 (Ludwig & Reynolds, 1988) 0.23 0.71 0.45 0.78 0.20 0.54 0.03 0.27 
Evenness E5 (Ludwig & Reynolds, 1988) 0.35 0.70 0.54 0.79 0.24 0.56 0.23 0.31 
Redundancy (Pattern, 1962) 0.59 0.69 0.64 0.78 0.35 0.55 0.27 0.33 

Dominance 
indices 

Berger-Parker (Berger & Parker, 1970) 0.51 0.70 0.64 0.80 0.34 0.54 0.23 0.34 
McNaughton (McNaughton, 1967) 0.51 0.64 0.64 0.74 0.32 0.47 0.18 0.32 

 



83 
 

Table 18: Predictive performance in terms of RMSE of MTs, IBk, MLP and MLR for all indices using data from field (F.A.) and 
simulated assemblages (S.A.) evaluated by 10-CV. 

  MTs IBk MLP MLR 
  F.A. S.A. F.A. S.A. F.A. S.A. F.A. S.A. 
 Abundance 4.2E+04 4.2E+04 4.9E+04 4.9E+04 7.0E+04 7.0E+04 9.0E+04 9.0E+04 

Diversity 
indices 
 

Sp. Richness 5.57 2.63 3.93 2.19 5.30 3.23 7.48 4.99 
Margalef 0.36 0.13 0.31 0.11 0.43 0.16 0.54 0.24 
Gleason 0.36 0.12 0.31 0.10 0.44 0.15 0.53 0.23 
Menhinick 0.06 0.02 0.03 0.02 0.04 0.03 0.06 0.05 
Odum 1.28 0.71 0.67 0.55 0.86 0.78 1.40 1.14 
Simpson 0.14 0.04 0.13 0.03 0.17 0.05 0.23 0.07 
H2-Shannon 0.60 0.10 0.54 0.09 0.78 0.12 1.00 0.17 
Hill N1 2.33 0.60 2.05 0.50 2.95 0.66 3.71 0.96 
Hill N2 1.90 0.61 1.60 0.49 2.20 0.69 2.82 1.07 
Hurlbert 0.14 0.04 0.13 0.03 0.17 0.05 0.23 0.07 
McIntosh 0.12 0.04 0.10 0.03 0.14 0.05 0.19 0.07 

Evenness 
indices 

Evenness E1 0.17 0.07 0.12 0.06 0.17 0.09 0.23 0.14 
Evenness E2 0.15 0.11 0.12 0.09 0.16 0.13 0.23 0.21 
Evenness E3 0.19 0.12 0.13 0.09 0.17 0.14 0.24 0.22 
Evenness E4 0.08 0.05 0.07 0.04 0.08 0.06 0.11 0.09 
Evenness E5 0.11 0.06 0.10 0.05 0.12 0.07 0.16 0.11 
Redundancy 0.17 0.07 0.12 0.06 0.16 0.09 0.23 0.14 

Dominance 
indices 

Berger-Parker 0.15 0.04 0.13 0.04 0.17 0.06 0.23 0.10 
McNaughton 0.13 0.05 0.11 0.04 0.15 0.05 0.20 0.08 
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6.4.3 Prediction performance of optimal algorithm 

The distribution of the percent error of prediction for the above indices is 
depicted in Fig. 13. Half of the produced errors fall within a ±10% range for all 
four indices. Moreover, almost all errors do not exceed a ±30% limit. 
Menhinick and Berger-Parker seem to be overestimated by IBk giving positive 
error values. On the other hand, the median is close to zero for Species 
Richness and Evenness E2, while the skewness is similar to a normal 
distribution indicating that IBk does not unilaterally overestimate or 
underestimate these indices.  

 

Figure 13: Box-plots of the percent errors for predicted values by the 4 best 
performing diversity indices that were calculated on simulated assemblages. 
Prediction was based on IBk algorithm. 

 

For each of the four sampling areas, monthly data of Evenness E2 index 
calculated on simulated and field assemblages were compared with the 
corresponding predicted values by the IBk algorithm (Fig. 14). The deviation 
between predicted and field or simulated values was expressed quantitatively 
by calculating the Mean Absolute Error (MAE). Monthly predictions of 
Evenness E2 using the simulated assemblages shown in Fig. 14a were more 
accurate (MAE=0.048) than the values calculated on field data in Fig. 14b 
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(MAE=0.053). However, the latter can be also considered as satisfactory 
indicating that IBk performs with high precision using mean monthly values 
not only for noise-free simulated data but also for field data. IBk predictions 
were least accurate for both simulated and field data in the case of Gera Gulf. 
This area is characterized by mesotrophic conditions, and for this reason the 
response of phytoplankton diversity to physico-chemical parameters is likely 
to be more unpredictable. 

 

Figure 14: Monthly IBk predictions of Evenness E2 (shown with rhombus) for 
each sampling area in comparison with the corresponding (a) simulated and 
(b) field data (shown with stars). 

 

6.5 DISCUSSION 

Three novel ML techniques and 19 indices were tested in order to achieve the 
best biodiversity prediction using exclusively abiotic parameters. Algorithm 
training was based on an extensive dataset containing biotic (phytoplankton 
species abundances) and physico-chemical information representative of a 
wide productivity range of E. Mediterranean Sea. Biodiversity prediction, 
particularly in the marine environment, is a complex task as multiple factors 
and stochastic processes are acting upon community structure (Adjou et al., 
2012; Gontier et al., 2006). This problem was overcome by using diversity 
indices calculated on simulated assemblages, free of environmental noise. 
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The use of powerful modelling tools such as MLs and the further optimization 
of the methodology with simulated assemblages provided an integrated 
framework for biodiversity prediction with high predictive power (R>0.80 for all 
selected indices between predicted and simulated values). 

The simulated phytoplankton assemblages used in this study maintained the 
structural characteristics of the corresponding field assemblages across a 
wide productivity range (Tsirtsis et al., 2008), but were also free of noise 
related to stochastic extrinsic factors such as patchiness, grazing, and 
seasonality (Karydis, 1996). This property improved the relationship of 
diversity indices with abiotic parameters, given that noise renders algorithms 
sensitive to misleading (McCune, 1997; Van Straten, 1992). It also increased 
or even doubled the predictive power of algorithms while maintaining the 
realism of the natural system. Simulated communities originating from field 
ones have been successfully used in the past to investigate the behavior of 
diversity indices in microbes (Blackwood et al., 2007; Schloss and 
Handelsman, 2006), benthos (Lyashevska and Farnsworth, 2012), and 
phytoplankton (Tsirtsis and Spatharis, 2011). 

Our results indicate that ML techniques can greatly increase the predictive 
power of models; however, the three algorithms presented significant 
differences in their predictive performance. IBk was the most efficient and 
reliable in biodiversity prediction in agreement with other marine applications 
of this algorithm (Dzeroski and Drumm, 2003; Hatzikos et al., 2008) or other 
scientific disciplines such as hydrology, weather forecasting, bioinformatics, 
banking and forensics (Bannayan and Hoogenboom, 2008; Bhasin et al., 
2005; Buchholz et al., 2009; Diplaris et al., 2005; Hinwood et al., 2006; 
Solomatine et al., 2006, 2008). The observed increased efficiency of IBk in 
our study can be explained considering the heterogeneous structure of our 
dataset compiled from four different coastal areas, each one showing 
variability on a monthly basis. In this algorithm, every single input instance 
can be dynamically used with equal weight during prediction (Aha et al., 
1991). Therefore, when indices are associated to the abiotic information, IBk 
maintains the localized information of the data in the heterogeneous dataset 
(Solomatine et al., 2008). This also makes IBk sensitive to instances that 
deviate from the main trends giving a more accurate prediction.  

Instances that deviate from main trends (that characterize our heterogeneous 
dataset) are missed by algorithms such as MTs and MLP, resulting in reduced 
sensitivity. Contrary to IBk, these algorithms attempt to derive general 
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relationships between diversity indices and abiotic parameters, described by 
linear models in MTs or weighted neurons in MLP. The latter has been 
proposed as a reliable model of ecological processes (Basheer and Hajmeer, 
2000; Lek et al., 1996) however, its efficiency depends upon choosing the 
correct topology (i.e. number of layers and neurons) and applying elaborate 
adjustments such as pruning, constructive algorithms or recurrence (Rocha et 
al., 2007; Wang et al., 1994). Although these adjustments may improve 
predictive performance, they dramatically increase algorithm complexity and 
thus application runtime. In the present case study, MLP was applied in its 
simplest form and its efficiency was inferior compared to both MT and IBk 
algorithms. MLP has also shown weakness to give accurate predictions 
compared to other ML techniques in several other studies (e.g. Etemad-
Shahidi and Mahjoobi, 2009; Nisanci et al., 2011; Solomatine and Siek, 2006; 
Soysal and Schmidt, 2010). 

Almost all indices calculated on simulated assemblages were sufficiently 
predicted by the IBk algorithm. However, Menhinick’s, Evenness E2 and 
Berger-Parker which scored higher based on their R values, are proposed for 
predicting the three diversity components namely richness, evenness and 
dominance. Although calculations on simulated data increase the predictive 
power of algorithms, satisfactory predictions can be also made with field data. 
We tested the predictive power using 658 discrete samples but also by 
pooling together data from different stations within a sampling campaign at a 
given study site. The latter predictions were much more accurate since the 
use of averaged data smoothed the effect of time, space (local 
dimensionality), and outlying values in agreement with previous studies 
(Kumar, 2000; More and Deo, 2003). 

Presently we propose an optimization procedure for biodiversity prediction 
based on few abiotic parameters. Although optimization was based on 
phytoplankton data, this methodology can be easily adapted for any group of 
organisms, provided that there are sufficient samples covering a wide range 
of environmental conditions so that biodiversity can be fully represented. The 
proposed models are based on a black-box approach and do not offer 
mechanistic explanations for the observed relations between abiotic variables 
and diversity; however the performance of a sensitivity analysis in a future 
work could reveal the underlying processes and shed light on theoretical 
aspects (Refsgaard et al., 2007). The high predictive power (expressed with R 
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correlation coefficient) in diversity prediction that the proposed methodology 
provides, enables its integration in various crucial ecological implementations.  

6.6 SOFTWARE FEATURES 

PREdiction of PHYtoplankton Biodiversity (PREPHYB) is a MATLAB-based 
software with a user-friendly interface (Fig. 15) that is freely downloadable at 
http://www.mar.aegean.gr/biodiv/Prephyb. The software provides the optimal 
phytoplankton diversity prediction with high predictive power, implementing 
the IBk algorithm and methodological scheme described in Fig. 9. PREPHYB 
incorporates an extensive dataset of 658 samples, and the built-in IBk is 
trained through the relationship between physico-chemical parameters and 
indices that are calculated on noise-free simulated phytoplankton 
assemblages. User input is limited to four abiotic variables i.e. temperature, 
salinity, DIN and PO4; these can be either entered manually, or automatically 
processed in batch mode through a standard comma-separated ASCII file. 
The output consists of the predicted diversity, which corresponds to a wide 
productivity range typical of coastal and offshore waters of the Eastern 
Mediterranean Sea (103-9×106 cells/L), expressed by indices representing all 
three diversity components (richness, evenness, dominance), as well as 
additional descriptors of phytoplankton assemblage structure such as species 
richness and cell number. It must be noted that the dataset used for model 
training (abiotic variables and corresponding phytoplankton assemblages) is 
characteristic of Eastern Mediterranean waters as mentioned above. 
Therefore the use of PREPHYB as it is for biodiversity prediction with the 
already stated accuracy is limited for waters of similar characteristics. 

 

 

 

 

 

 

 

 

 

 

http://www.mar.aegean.gr/biodiv/Prephyb
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Figure 15: Graphical user interface of the PREPHYB software developed in 
MATLAB. Prediction of four indices and abundance of phytoplankton 
assemblages is based on abiotic variables that are either manually entered by 
the user, or batch processed from a comma-separated ASCII file. 
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7 CONCLUSIONS - CONTRIBUTION TO ICZM 

In the present work a wide range of supervised ML techniques was used in 
order to investigate various aspects of coastal eutrophication i.e. chl α 
prediction, water quality classification and phytoplankton diversity prediction. 
All these tasks were performed for Aegean waters in Eastern Mediterranean 
by exclusively using abiotic parameters as cause variables.  

MTs, being less popular as an ML method, were assessed for their efficiency 
to predict chl αunder high environmental variability usually encountered in 
coastal ecosystems affected by terrestrial runoff. Compared to MLPs and 
MLR, MT method showed (a) increased predictive power, (b) higher sensitivity 
to discriminate different abiotic conditions driving chl α variability, (c) ability to 
scale parameters affecting chl α variability, and (d) easiness of application. 
For these reasons, MTs are recommended for the investigation of 
eutrophication-related ecosystem processes offering new knowledge on chl a 
dynamics from existing datasets. Based on the MT results, within each annual 
cycle (wet and dry) chl α variability occurred on a seasonal basis (and not 
spatial) and important differences were detected between the two 
meteorological regimes since chl α seasonality was affected by quite different 
abiotic factors. The efficiency of MTs to identify variables driving chl α, and 
thus eutrophication, can be invaluable in ICZM, since most of these variables 
are strongly linked to terrestrial processes. By reducing nutrient inputs (e.g. 
phosphate), or altering freshwater inflow that affects salinity, effects on chl α 
can be estimated using MTs. Therefore useful cause-and-effect relationships 
can be established between terrestrial processes and the response of the 
marine ecosystem (Tsirtsis et al., 2008), a prerequisite of modern approaches 
in ICZM. It must be stressed however, that a sufficient number of samples 
must be available in each tree leaf and variables need to be standardized in 
order to scale their importance in describing chl α variability. 

Chl αvariability was also studied in a different context that is water quality 
status classification for the needs of the European WFD. The ML algorithm 
training for this aim (a) highlighted the base classifiers with the higher 
accuracy and (b) showed that EMs such as voting algorithm can offer better 
performance than single base classifiers. Moreover, the proposed DP index 
can effectively show the way that voting EM could succeed higher 
performance during ecological quality classification of coastal water bodies, 
by identifying the best feeding combination triad of classifiers. Therefore, DP 
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in combination with the newly proposed EMs can be incorporated as an 
information technology (IT) tool to assist one of the main aims of WFD i.e. the 
continuous monitoring for the protection of coastal waters. Moreover, the 
proposed methodology can link water quality status with basic abiotic 
parameters, and therefore offer new insights towards the prevention of water 
bodies’ deterioration due to nutrient enrichment and support the achievement 
of the demand for good quality status by 2015. 

The successful prediction of phytoplankton diversity from abiotic parameters 
offers important new insights on ‘phytoplankton’, often represented in 
ecological models in terms of biomass of one or few components 
characteristic of different size classes or main groups (Arhonditsis et al., 
2006). Based on the proposed methodology, a link is being established 
between the most important abiotic variables and diversity, therefore the 
whole diversity spectrum and its dynamics can be incorporated into an 
ecological model (Laniak et al., 2013). This approach supports both the 
testing of ecological questions regarding diversity, as well as environmental 
quality assessment and protection, since changes in diversity are a focal point 
in recent environmental protection measures, as in the WFD. In this context, 
diversity prediction can be incorporated in models testing the effect of different 
scenarios of climate change, habitat loss, or ecosystem management. For 
phytoplankton in particular, diversity across a wide productivity range was 
predicted from temperature, salinity, DIN and PO4. Therefore important 
changes in phytoplankton structure can be foreseen based on temperature 
projections related to climate change scenarios, or in connection to nutrient 
loading originating from potential changes in land use and management 
practices. 
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8 FUTURE WORK 

Future perspectives may either fall into the more ‘technical’ part aiming to the 
optimization/elaboration of existing approaches by exploring ML capabilities 
and sensitivity, or in the more ‘ecological’ part by raising and answering ‘new’ 
ecological questions, or both of the above.  

For the first approach, application of promising ML ensembles such as 
stacking, bagging or boosting, which have not been yet applied to the marine 
environment, may succeed in better predictive performance, or interpret the 
eutrophication phenomenon in a more comprehensive way. Other studies 
may include the identification of the most appropriate input variables or 
training instances to participate in the ML techniques, as well as the better 
calibration of the various algorithms. Furthermore, recent studies introduce 
methods such as genetic algorithms or fuzzy logic in combination with NNs to 
achieve improved accuracy. Application of such combinations in our 
ecological questions with the existing databases, may improve the less 
efficient performance of NNs compared to other ML techniques, observed in 
the present study.  

Towards the second approach of ecological perspective, the ML techniques 
and the IT tools developed in the present work can be further used to quantify 
the relative impact of each input abiotic parameter to primary production, 
phytoplankton biodiversity and water quality status. To this aim an extensive 
sensitivity analysis can be performed using the available predictive tools (i.e. 
MTs, DP or PREPHYB) contributing to the identification of the main 
mechanisms involved in eutrophication processes. Moreover, model sets of 
instances representative of extreme conditions, climate changes or stressed 
ecosystems can be developed and feed the IT predictive tools aiming to 
assess the resulting changes in phytoplankton biomass or biodiversity. This 
information is valuable for managerial purposes either in local/regional, or in 
global scales. In this context, possible coupling of the ML methods with other 
powerful tools such as GIS, hydrodynamic or watershed models would be 
desirable.  
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