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EuxapioTieg

Oa nBeha va euxapioTiow TOV K. Mupitdry yia Tnv ammoé@acr) Tou va
OUMTTOPEUTOUNE O€ MIa TTopEia Ol auoTnpd PJadnuaTikh yia TNV TTPooEyyion
NG BaAGoolag OIKOAoyiag.

Emiong, euxapiotw Tov K. TOIPTOA yia Tov BITTO TOU POAO OTNV EKTTOVNON
autig NG OIaTpIBAG, auTOV NG KaBodiynong Tavw o€ Bféuata
MovTeAoTTOINONG TTEPIBAAAOVTIKWY OIEPYACIWV KAl AUTOV TNG OIKOAOYIKNG
ETTECAYNONG TOUG.

H k. Zmabdpn €ixe kaipia kal TTOMATIA} CUPPETOXA 0TV OAOKANpWON AUTAG
NG dIATPIRNAS TTPOCPEPOVTAG ATTAOXEPA ETTIOTNMOVIKN YVWOT, CUVTOVIOUO Kal
EMYUXWOoN Kal dev JUTTOPW TTapd va TNV EUYVWHOVW yia Tnv OAn Tng
TTPOCPOPd.

Akoua, Ba BeAa va euxapioTHoW Tov KABE éva attod Ta PEAN TNG ETTTAMEAOUG
ETTITPOTING EEXWPIOTA: TOV K. AVayVWOTOTTOUAO yIa TN CUVEPYATIa Kal TIG I0€€G
TOu, TOV K. TogkoUpa yia TNV apépioTn OTAPIEN Tou, ToV K. MewpyaKkapdko yia
TIG TTOAUTIMEG OUUPBOUAEG TOU TTAvVW O€ BEPATA VEUPWVIKWY BIKTUWYV KAl TOV K.
KOkkopn yia TIG OTITIKEG KAl TIG AUCEIG TTOU JOU TTPOCEPEPE EIBIKA 0€ DUOKOAEG
OTIYMEG.

TéNog, Ba nBeAa va euxapioTACOW Ta PHEAN TNG OIKOYEVEIOG POoU (OUCUYO, YOVEIG,
TEOEPIKA Kal TTaudId) yia TNV KATavonaon Kal T BorBgia TTou Jou TTpocEéPepav

TIPOKEIJEVOU VO €Xw XPOVO Vyia va OOUAEUwW QTTEPIOTTACTA  TTPOG TNV
oAokAfpwaon TNG dISAKTOPIKAG Jou dIaTPIRAG.
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EKTENHZ NEPIAHWYH

O BaAdcoiog euTpo@IoPOG €ival Eva OUVOETO QAIVOUEVO TTOU €EOPTATAl ATTO
QPUOIKOXNMIKOUG  TTAPAYOVTEG, PBIOAOYIKEG OIEPYOATIES, XWPIKA ETEPOYEVEIQ,
ETTOXIKEG  OIOKUPAVOEIG, TOTTIKEG 1DIAITEPOTNTEG KAl  XOPAKTNPIETAl  OTTO
OTOXOOTIKOTATA. 2TA TTAPAKTIA OIKOOUOTHUATO O EUTPOQPIOUOG OXETICETAl ME
TTOIKIAEG OIEPYATIEG TTOU N DIEPEUVNOT TOUG OTTOTEAEI KPIOINO {NTOUMEVO TNG
ouyxpovng BaAdocoiag oikoAoyiag 10iwg PETA TNV BEoTmon TNG Eupwtraiknig
odnyiag yia Ta udata (European Water Framework Directive).

2TV TTapouca OlaTpIB N TTPWTOYEVAS TTAPAYWYIKOTATA, N OIKOAOYIKNA
KAaTtaoTaon Twv TAPAKTIWY UdATWYV KaBwg Kal n  PIOTTOIKIANOTNTA  TWV
QUTOTTAQYKTIKWV KOIVOTATWYV povTeAoTTOINONKAV XPNOIMOTTOIWVTAG
OTTOKAEIOTIKA QPIOTIKEG TTAPAPETPOUG  ME XPron OIOQOPETIKWY UEBGdWV
MNXavikAg udbnong (machine learning techniques). Zuykekpipyéva, yia tnv
TTPOBAEWN TNG TTPWTOYEVOUG TTAPAYWYIKOTNTAG XPENOIYoTToINdnkav dévopa
TPORAewnS (model trees) TTou ETTETPEWPAV VA TTEPIYPOYPEI PE ETTECNYNMATIKO
TPOTTO N KATAOTAON TOU OIKOOUOTAMATOG. H oikoAoyik katdoTtaon Twv
UBATWY  TAgIVOPNBNKE  XPENOIMOTIOIWVTAG TOV  OUVOUAOTIKO  aAyopiBuo
wneogopiag (voting ensemble method), evw évag véog &eikTng TTPOTABNKE
TTpoKeINEVOU va OlEUKOAUVOET n BeATioTotmoinon Tng atmdédoong Tou. TEAOG,
TE00EPIC  Paoikoi  aAyopiBuol  pabnong TPoEBAEwav TN TTOIKIAOTNTA
QUTOTTAQYKTIKWYV KOIVOTHTWYV EKPPACHEVN WG TTAOUTO €10WV, ICOKATAVOUN KAl
ETMKPATNON, XPNOIMOTIOIWVTAG QPUOIKEG KAl TTPOCOUOIWPEVES ouvabpoioelg. H
TTaPATTAVW PEAETN 0BYNOE OTNV KATAOKEUN €VOG €10IKOU AOYIOUIKOU yia Tnv
TPOBAEWN TNG TOIKINOTNTAG  TWV  QUTOTTAAYKTIKWY OUVABPOoIicEWV TG
AvaTtoAIkig Meooyeiou XxpnOILOTTOIVTAG OTTOKAEIOTIKA ABIOTIKEG METARBANTEG.

MeAérn mepimrwoncg I: MetewpoAoyikéS emdpdoeis oro BaAdooio
gutpo@iouo — MovreAomoinon ue 8évopa mpoBAswng (Model Trees)

H TpwTtn PEAETN TTEPITITWONG APOPA OTNV TTOCOTIKA €KTINNON TNG BaAdoaoiag
TTPWTOYEVOUG  TTAPAYWYIKOTNTAG,  EKQPACHEVNG WG  XAWPOPUAAN-a
(BaoikdTeEPN METABANTH TTOU XOPAKTNPICEI TOV EUTPOPICHO), ATTOKAEIOTIKG aTTd
OBIOTIKEG  QUOIKOXNMIKEG TTapapéTpoug. H  ekTipnon TG  XAWPOQUAANG
emXeIPnonke péow evog aAyopiBuou pnxavikng pdédnong, Ta  dévopa
TPORAewns (model trees). O aAyopIBPOS autdg diaxwpilel Ta dedouéva o€
opoyevry oUvoAa (QUAAa OEvOpou) Kal OTn CUVEXEID €@apuolel o€ autd



YPOUMIKA PJoVTEAD TTPOBAEWYNG. ZTNV CUVEXEIQ, TTPOKEIMEVOU VA KABOPIOTE Kal
va OUYKPIBEI n OXETIKA €midpacn TNG KABE aBIOTIKAG TTAPAUETPOU PECA OTA
OMOYEVI] OUVOAQ, £QAPUOCTNKE TUTTOTTOINKEVN YPAUMIKN TTAAIVOPOUNON £vavTi
NG amAnG. H TTPORAETITIKA 1KAvOTNTA TOU QAyOpIBuou OuykpiBnke pe Ta
QVTIOTOIXO ATTOTEAEOUATA: (A) TWV VEUPWVIKWYV JIKTUWV TTOU €ival 0 eupuTEPA
XPNOIMOTTOIOUPEVOG OAYOPIBUOG pnXavikhng padnong kai (B) TnG KAQOOIKAG
OTATIOTIKAG MEBGOOU TNG TTOAAATTANG YPAPUIKAG TTAAIVOPOUNONG. ETTiTAéoy, n
duvatoTNTa TOU OAYOPIBUOU VA TTEPIYPAWEI TIG DIEPYATIEG TTOU OXETICOVTAI PE
TOV EUTPOQPIONO BIEPEUVIONKE PE TNV EQAPHOYN TOU O€ dUO DIOPOPETIKA KAl EK
dlapéTpou avtiBeTa £1n delypatoAnyiag: evog Idiaitepa ¢gnpou ('04-'05) kai evog
TUTTIKA uypou ('09-"10) €toug yia Tnv TrePIOXr) Tou KOATTOU KaAAoviig vrioou
NéoBou.

Ta atmoteAéopara €6€iEav OTI Ta OEvOpa TTPORBAEWNS TTAPEXOUV augnuévn
IKavoTNTa TTPOPRAEWNS TNG XAWPOPUAANG oe oxéon HeE Toug AANoug duo
aAyopiBuoug. Autd To yeyovog ouvdéeTal uE TO OTI N TTPORAewn oTa dévdpa
ouvTeAeiTal yéoa oTa dlaxwpIouéva ouoyevh) oUvoAa dedouévwy Kal Oyl o€
éva eviaio oUVOAO OTTWG VYIVETAI OTA VEUPWVIKA OikTua Kal Tn TTOAAATTAN
TTaAivopounon. Ooov agopd ota dUo £Tn dEIYUATOANWIAS O BIAXWPICHOS TWV
oedopévwy, TTOU ATAV WG E€TTi TO TIAEIOTOV ETTOXIKOG, TTPOCQEPElI  €vav
ETTECNYNMATIKO TPOTTO TTEPIYPAPAG TOU CUOTAPATOGS. MpayuaTikd, ol apIOTIKEG
TTAPAPETPOI TTOU XPNOIMOTTOINONKAV yia TOV dIaXWPICHO oTa KAadIG KaBwg Kal
01 OUVTEAEOTEG BapuTNTAG TOUG OTA QUAAG atrodidouv pia Xprioiun KAIudkwon
TWV TTAPAUETPWY TTOU ETTNEEACOUV TOV EUTPOPIOUO. ETTOPéVWG, N HEBODOG TNG
avAaTITUENG OEVOPWYV TTPOPRAEWNS TTPOTEIVETAI WG £va XPOIUO EPYOAEIO yia TNV
€€OPUEN YyvWONG TTOU APOopPd OTIG OIKOOUCTNUIKES OIEPYQTIEG TTOU OXETICOVTAI
ME TOV €UTPOQIOUO, OUMBAAAOVTAG OUYXPOVWG ONnNUAvTiKd OTO €upUTEPO
TTAQiol0 TNG OAOKANpwHEVNG dlaxeipiong NG TTapAKTIag wvng.

MeAérn mepimrwong Il: Avixveuon tng BéAriorng raivounong mou
mPOOoPEPEl O oUVOUAOTIKOS aAyopibuog wneogopiag (voting ensemble
method) ue xprion evog véou mmporeivousvou SeikTn

O1 ouvduaoTikoi aAyépiBuoi (ensemble methods) pnxavikng pddnong civail pia
véa KaTnyopia aAyopiBuwv TTou TTPOCEEPOUV TAEIVOUNCTN XPNOIKNOTTOIWVTAG
ouvluaoTIK& Ta aTToTeAéopaTa  u@IoTAPEVWY  Tagivountwy. ‘Etol, ol
ouvOUAOTIKOI aAyopIBuol TTpoo@épouv Tagivounon tTou dgv PacileTal o€ pia
Kal JOvo TTpooéyyion aAAd ouvdudalouv TTEPIOCOTEPES DIAPOPETIKEG EBODOUG
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ME aTTroTéAeopa va Trapéxouv ouvnBwg emtuxéotepn TPORAswn. lMapoAa
QuTd, N €TMAOYN TWV TASIVOUNTWY, TTOU 8O CUPPETEXOUV OTOUG OAYOPIBUOUG
aQuToUG Kal €IBIKOTEPA OTOV OAyOpIBuo wneogopiag (voting algorithm) TToU
gival kal 0 eupuTEPA XPNOIUOTIOIOUPEVOG, €ival €va avOIXTO Kal Kaiplo
ETMOTNUOVIKO TTPOBANUA.

2€ auth TNV épeuva TrpoTeivoupe éva véo Ociktn (DP) TTou evowpaTwvel dUo
ONMAVTIKA KPITAPIO yia TNV €mTux €mAoyl Twv Tagivountwyv Tou Ba
OUMMETEXOUV OTOV OUVOUAOTIKO QAYyOpPIOUO Wwneo@opiag: TV avopoloTnTa
METAEU TwV aTroTeAeoudTwy Tagivounong (Dissimilarity) kai tnv idia TNV
ammodoor Toug (Performance). lMpokeipévou va avarmtuxBei o degiktng DP,
ouvdudoTnkav o€ TPIAdeg, OEKa ATTAOI TALIVOUNTEG TTOU AVTITTIPOCWTTEUOUV
OAeG TIG DIOQPOPETIKEG KATNYOPIEG TagIvounTwyY (Kavoveg, dévdpa, aAyoplBuol
utTodEIyudTWY, OUVAPTACEIS Kal TagivounTég Bayes). ETiTTAéov, uttoAoyioBnke
n oxéon METAaU UQPIOTAUEVWY OEIKTWV AVOUOIOTNTAG Kal aTTOdoong TOu
aAyopiBuou yneoopiag, pe Tov deikTtn Jaccard va emmiTuyXavel Tnv uwnAoTEpn
ouox£Tion. Bdoel autou Tou atmmoteAéopaTog o O€ikTnG avouoldtnTag Jaccard
OUMPTTEPIAAQPONKE padi Ye TNV atmddoon Twv TagivounTwy oTo véo Ociktn DP.
lNa va dokipyaoTtei N amédoon Tou deikTn DP, n ekmaideuon Twv aAyopibuwv
(ammAwv TOgIVOUNTWY Kal aAyOpIBUOU WneoYopiag) TTPAYHATOTTOINBNKE JE
Xpron Ouo evieAwg OIaQopeTikwy Bdoewv dedopévwyv. H tmpwtn Bdon
TTeEPIEixe PwvnNTIKG dedouéva Ta OTTOI XPNOIUOTTOIOUVTAI VIO VA aviXveEUOOUV
ETITA BIAPOPETIKA ouvalodnuarta (Bupdg, sutuxia, dyxog/eopog, BAiwn, avia,
aTTOOoTPOPA Kal oudeTepdTnTa). H deUTepn Pdaon Trepicixe TTEPIBAAAOVTIKA
d0edopéva TTou CUAAEXTNKAV O€ delyuaTtoAnyieg TTou KAAUTITOUV évav €TACIO
KUKAO oTov KOATTO KaAAovrig¢ vrioou Aéofou. 2ta Oedopéva autd
ouptrepIAapBavovTal evvéa  QUOIKOXNMIKEG METABANTEG Kal n  ¢nToupevn
TagIvounon a@opd o€ TTEVTE OIKOAOYIKEG KATAOTACEIS TNG TTOIOTNTAG TWwV
udaTWV (UWNARA, KaAr, YETPIA, TWXNA Kal KAKN) Baciopéveg otnv EupwTraikni
odnyia yia Ta udara.

O véog mpoteivopevog deiktng DP, €3e1Ee apevog uwnAr) oUuoXETION MPE TNV
amédoon TOou OAyOpPIBUOU  WNQOQOoPIag Kal  A@ETEPOU  KATAPEPE Vva
avayvwpioel Trolol g€ival oI KaTaAANAGTEPOI OUVOUAOHOI TAgIVOUNTWY TTOU
EMTUYXAVOUuV TIC UWNAOTEPESG aTToddOEIC OTaV TPOPODOTOUV TOV aAyOPIOUO
wneogopiag. O DP atreuBuveTtal oToug XpHoTeg HEBODWY PNXavikng pabnong
TTOU Ba TOV XPNOIYOTTOINOOUV, TTPOKEINEVOU va ETTIAEEOUV TOUG TAIVOUNTEG
TTou Ba TPOPOdOTACOUV TOV OAYOPIBUO WNYoopiag yia va mMTUXOUV TNV
BEATIOTN atrddoon TagIvounong. XpnoIKOTTOIWVTAG TOV OTTAG Kal QIAIKG OeiKTn
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DP, Ba atmoguyouv TNV €€avTANTIKY], XPOVOROPA KAl UTTOAOYIOTIKA QTTAITNTIKNA
avalnATnon Tou atrodoTIKOTEPOU CUVOUACHOU TAEIVOUNTWV.

MeAérn mepirrwonc lll: AmroreAsouarikn mpoBAswn NS BIOTTOIKIAGTNTAS
6aAdooIWV KOIVOTHTWY AITOKAEIOTIKA ATl afIOTIKES TTAPAUETPOUS

2Tn TTapouca  MEAETN  TTIEPITITWONG, TTPOTEIVETAI IO OAOKANPWHEVN
peEBodoAoyia yia TNV ATTOTEAECMOTIKA  TTPORAEWn TnNG  PBIOTTOIKIAGOTNTAG
ATTOKAEIOTIKA OTTd OBIOTIKEG TTapapéTpoug. H TTpOBAewn emmxeIpeiTal HEOW
TPIWV AAYOPIBUWY PNXAVIKAG NABNnong: Ta dévdpa TTpoRAswng (model trees),
TOoug TTOAUETTITTEOOUG a10BNnTAPES (multilayer perceptron) kai Tov aAyopiOuo
uttodelyudtwy (instance based learning). Q¢ aBioTikéG TTapaueTpol £10000U
TWV TTAPATTAvw OAyopiOuwy €TTIAEXONKav n Bepuokpacia, n aAatdTnTa, TO
OloAUPEVO avopyavo ACwTo Kal Ta QWOPOPIKA AAata TTou gival yvwoTo OTI
dlapopwvouv TN Ooun  TWV  QUTOTTAAYKTIKWV  ouvaBpoiccwv. H
BIOTTOIKIANOTNTA  eK@PACETAl  PEOW  APIBUOU  OIKOAOYIKWY  OEIKTWV  TTOU
eEK@pAalouv TOV TTAOUTO €1I0WV, TNV ICOKATAVOUR KAl TNV E€TMKPATNON TWV
QUTOTTAQYKTIKWY OUVaBPOoioEWV Kal Ol OTToiol atroTEAOUV TNV €000 TWV
aAyopiBuwyv. Tllpokelyévou va  PBeAtmiototroin®ei  n TTPORAewn  TNG
BIOTTOIKIAGTNTAG, Ol OIKOAOYIKOI OEIKTEG UTTOAOYIOTNKAV O€ €va hEYAAO apiBud
QUOIKWY QUTOTTAQYKTIKWY ouvaBpoicewv TToU CUAAEXBNKav oTo TTEdi0 aAAG
Kal O0€ TIPOCOUOIWHEVEG  OuvaBpoiocels  agboviag avrioToixng  Twv
ouvaBpoicswyv TTediou Kal atmaAlayuEveg BopuBou. O1 TTPOCONOIWPEVEG
ouvabpoioelg Taprnxébnoav Bdoel Tou PoviéAou TNG AoyapiBUOKAVOVIKAG
KATOVOPNG WOTE va OlaTnPoUVTal Ta OPXIKA XAPOKTNEIOTIKA TWV QUOIKWY
OuvaBPOoiIcEWV ATTO TIG OTTOIEG TTPONABAV.

Ta atmoteAéopara €0€iEav 0TI N BIOTTOIKINOTATA  PTTOPEl va  TTPORAEPOEi
IKQVOTTOINTIKA XPNOIUOTTOIWVTOG ATTOKAEIOTIKA QUOIKOXNMIKEG TTAPANETPOUG
EVW N IKavotnta  TPOPRAswns  dimmAacialetar  6tav  XpnOolPoTTolouvTal
TTPOoOPOIWUEVEG ouvaBpoioel. O aAyopiBuog uTrodelyudTwy £dwoe Ta
BéATIoTa atmroteAéopata  €IOIKA yia Toug OcgikTeg: Menhinick (TTAouTOU),
Evenness E2 (icokatavoung) kai Berger-Parker (emkpdrtnong). Me Bdaon tov
aAyopIBuO, TOug BEIKTES KAl TN HOPPA TWV OuvaBPOoIcEWV TToU BEATIOTOTTOIOUV
TNV  TTPORAEWN, avaTrTuXOnkKe €10IKO AOyIOMIKO VYIO TNV  €KTIUNON TG
BIOTTOIKIAGTNTAG QUTOTTAQYKTOU OTNV TTEPIOXH TNG AvaTOAIKAG Meooyeiou.
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H tpoteivopevn 1rpocéyyion TTou Bacifetal o€ dedOpEVA QUTOTTAQYKTIKWV
ouvabpPOoIoEWY, EVOEXETAI VA EXEI EQAPHOYN KOl O AAAEG OPABES PUTIKWYV KAl
(WIKWV opyaviopwyv Oyl POovo o€ BaAdocoia oAAG Kol 0€  xepoaia
olkoouoTuara. H ammoteAeopartiky TPORBAEWn NG PIOTTOIKINOTNTAG ATTO
aBIOTIKEG  TTOPAMETPOUG  TTOPOUOCIAdel  TTANBOG  €@appoywyv  OTTwG N
EVOWMATWON TNG OOMNG KOIVOTATWY OE OIKOAOYIKA POVTEAQ Kal N PMEAETN TNG
BIOTTOIKIAGOTNTAG O CEVAPIA TTAYKOOKIAG aAAayrG.
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ABSTRACT

The exploration of processes leading to coastal eutrophication is a major
challenge in ecological research, particularly in light of important new policies
such as the European Water Framework Directive. In the present study
primary production, water quality status and phytoplankton diversity are
modeled based on exclusively abiotic parameters using different machine
learning techniques. Specifically, model trees showed increased predictive
power in primary production prediction offering an explanatory description of
ecosystem status. The water quality status was sufficiently classified using a
voting ensemble method and a novel index was proposed in order to facilitate
the optimization procedure during voting training. Finally, phytoplankton
biodiversity was predicted in terms of its three components (richness,
evenness and dominance) using both field and noise-free simulated
assemblages. Based on the optimization of biodiversity prediction, a software
package was developed for phytoplankton diversity prediction for Eastern
Mediterranean waters.

The study resulted in the development of information technology tools offering
useful insights into ecosystem processes affecting eutrophication in coastal
ecosystems, constituting also useful components in integrated coastal zone
management. Moreover, the proposed methodologies can be easily extended
or adapted to any group of organisms either in marine or terrestrial
ecosystems. Possible future applications include also the incorporation of
community structure in ecological models and global change scenarios.
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1 INTRODUCTION

Coastal areas worldwide are increasingly susceptible to eutrophication
phenomena often due to anthropogenic causes such as sewage and
terrestrial runoff (Beman et al., 2005). Recently, coastal eutrophication has
received special attention in light of new policies e.g. the Water Framework
Directive 2000/60/EC (WFD, 2000), the protocol for integrated coastal zone
management (ICZM) and marine biodiversity protection (Coll et al., 2010;
Karydis, 1996; Ruiz & Velasco, 2010). However, eutrophication assessment
remains a complex process (Arhonditsis et al., 2003; Kitsiou & Karydis, 2011;
Vollenweider, 1974) often associated with contrasting physicochemical and
biological criteria, spatial heterogeneity, seasonal variability, local conditions,
and stochastic processes (Spatharis et al., 2007a). Two crucial measures for
understanding and predicting eutrophication phenomena are the
phytoplankton biomass which is one of the most commonly used proxies
(Karydis & Tsirtsis, 1996) and phytoplankton diversity which provides valuable
information on changes in community structure (Collin et al., 2011). Another
contemporary measurement is the quality status of coastal waters as
determined for the purposes of WFD (Marin-Guirao et al., 2005), which
renders the corresponding classification useful component of successful ICZM
schemes. As a result, predicting phytoplankton biomass and diversity along
with classifying the quality status of coastal waters through a number of biotic
and abiotic parameters are current challenging issues in marine ecology
(Gontier et al., 2006; Ingram & Steel, 2010).

Numerous approaches have been used for modeling phytoplankton biomass
(in terms of chlorophyll a — chl a) (Kitsiou & Karydis, 2011) highlighting the
importance of this undertaking. Two of the most traditional statistical
approaches are linear regression models (Cho et al., 2009; Onderka, 2007)
and principal component analysis (Camdevyren et al., 2005; Liu et al., 2010;
Primpas et al., 2010). Bayesian statistics have also been applied for chl «a
prediction using a probabilistic, rather than a simple deterministic approach
(Borsuk et al., 2004; Freeman et al., 2009; Ramin et al., 2010). More
elaborate approaches include coupled models that incorporate both
hydrodynamic and ecological processes (Allen et al.,, 2007; Lewis & Allen,
2009; Wu et al., 2009). On the other hand, few attempts have been made so
far to predict phytoplankton biodiversity. Most studies are still based on
classical statistical approaches such as regression analysis (Arias-Gonzalez
et al., 2011; Brakstad et al., 1994; Denisenko, 2010; Thrush et al., 2001). But,
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estimating diversity is also essential when it comes to prioritizing sites for
management purposes (Lockwood et al., 2012), for assessing the ecological
status of ecosystems (WFD, 2000; (Spatharis & Tsirtsis, 2010) or for
predicting effects of global change on ecosystem diversity and function
(Dawson et al., 2011). Finally, the quality status of the European waters has
also been studied within more theoretical and comparative frameworks e.g. by
interpreting historical references (Nielsen et al., 2003; Andersen et al., 2004)
or by comparing data from different areas (Borja et al., 2007). Some other
studies included classical statistical approaches such as discriminant analysis
(Muxika et al., 2007) or principal component analysis (Romero et al., 2007;
Sondergaard et al., 2005).

In this context, alternative perspectives are called to provide a realistic
prediction of phytoplankton biomass, diversity and water quality status based
on a small number of abiotic parameters which are more straightforward to
measure. Machine Learning (ML), an area of artificial intelligence, includes
such techniques offering efficient predictive performance and interpretable
results to different scientific applications. Generally, ML techniques acquire
information from collected data (e.g. field samples) and yield generalization to
the computational system for the effective representation of the scientific
issue under consideration. This ML modeling perspective is appropriate to
ecology since in such assessments there is original data availability and the
oncoming generalization provides new insights on the study systems.
Moreover, these techniques are effective for exploring complex ecological
processes (Crisci et al., 2012; Fielding, 1999), and can handle non-linearity
without relying on implicit assumptions on the relationships between
parameters (Dzeroski & Drumm, 2003; Jeong et al., 2008; Junker et al., 2012;
Kanevski et al., 2004). Thus, ML techniques are considered particularly useful
in marine ecosystems, which are subject to stochastic and multi-dynamic
phenomena often resulting in non-linearity (Olden et al., 2008).

Among the most frequently applied ML algorithms are Decision Trees (DTs),
Neural Networks (NNs) including MultiLayer Perceptrons (MLPs), Support
Vector Machines (SVM), Instance Based Learning (IBL) and Naive Bayes
(NB) classifiers (Kotsiantis, 2007). These algorithms represent the main ML
categories (trees, functions, lazy and Bayes algorithms) that employ
completely different predictive and classifying approaches (Solomatine et al.,
2008). These span many applications in ecology (Dzeroski, 2001; Lek &
Guegan, 1999; Recknagel, 2001) whereas in the marine environment they
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have been used in hydrodynamics, wave forecasting, habitat modelling,
biomass prediction, and pollution assessment (e.g. Dakou et al., 2007;
Etemad-Shahidi & Mahjoobi, 2009; Millie et al., 2012; Solomatine et al., 2006;
Tian et al., 2011).

ML techniques have been successfully applied to phytoplankton biomass
assessment focusing on the influence of different environmental conditions to
chl a dynamics (Keiner & Yan, 1998; Zhan et al., 2003), eutrophication
changes (Freeman et al., 2009; Karul et al., 2000; Kuo et al., 2007; Lamon, IlI
et al., 2008; Scardi, 2003) and specific species abundance (Dzeroski, 2001;
Dzeroski & Drumm, 2003; Kocev et al., 2010; Naumoski & Mitreski, 2010).
However the applications of ML related to the classification of the quality
status of coastal waters for the WFD purposes are sparse and have been
accessed mainly with the training of NNs (Tison et al., 2007; Ocampo-Duque
et al., 2007). Concerning biodiversity prediction in particular, application of ML
techniques in both marine and terrestrial ecosystems has been based on
habitat features, biotic characteristics or a combination of both with some
abiotic parameters but never on abiotic variables alone (Cheng et al., 2012;
Debeljak et al., 2007; Demsar et al., 2006; Dominguez-Granda et al., 2011;
Dzeroski & Drumm, 2003; Knudby et al., 2010; Kocev et al., 2009; Pittman et
al.,, 2007). These studies have also only focused on one biodiversity
component (e.g. species richness or Shannon diversity) whereas so far there
has been no attempt to predict different diversity components (richness,
evenness, and dominance) exclusively from abiotic parameters related to the
physical and chemical environment. Finally, ML techniques and specifically
NNs and DTs have been used only in one occasion to classify the quality
status in surface waters as required by WFD, providing impressive
performance (Ocampo-Duque et al., 2007).

The increased interest in ML techniques has resulted in the development of
numerous classifiers (Laniak et al., 2013) differentiated in supervised or
unsupervised depending on whether the training dataset is labelled a priori or
not (Laskov et al., 2005). Despite the variety of ML approaches, there is no
optimal algorithm established so far. Instead, the classification performance
depends on the different characteristics of the data analyzed (e.g. selection of
input variables, number of training samples) (Chaudhuri & Bhattacharya,
2000; Lu & Weng, 2007) or the method used to assess algorithm performance
(Baldi et al., 2000).
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Current research on ML focuses on integrating optimal prediction or
classification results from the individual base classifiers using specialized
techniques called ensemble methods (EMs) (Opitz & Maclin, 1999; Wozniak
et al., 2014). The latter provide significantly improved performance compared
to the base classifiers (e.g. Assaad et al., 2008; Chen et al., 1997). Voting is a
particularly useful and comprehensible EM that collects votes (i.e. predicted
values or labels of the target class) from multiple individual algorithms and
predicts the value or label of the output variable by combining their single
results (i.e. for prediction tasks computes uses weighted MLR to compute the
output numeric value or either for classification tasks yields the label with the
highest value expressed as number of votes or probability). Regarding marine
ecology, voting EM has been used only recently in order to model the
influence of different environmental conditions on the abundance of specific
organisms (Kocev & Dzeroski, 2013; Mouton et al., 2011). Other resent
studies related to marine environment have applied the voting method in order
to classify marine oil spills (Xu et al., 2014; Topouzelis & Psyllos, 2012),
seaports (Halabi Echeverry et al., 2012) and coral reefs (Shihavuddin et al.,
2013).
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2 AIM AND OBJECTIVES

ML is a very promising technique for making progress in the understanding
and prediction of ecological phenomena (Olden et al., 2008). In this study
different ML algorithms were used in order to assess the complex issue of
coastal marine eutrophication. Special effort was put on possible coupling of
ML techniques and coastal management by developing effective predictive
tools for WFD and ICZM. In this context, the application and adjustment of ML
algorithms were refined aiming to meet the following objectives:

a) Assessment of the main processes that determine primary production
in coastal marine ecosystems affected by terrestrial inputs.

To this aim (case study 1), two different ML techniques were implemented:
MTs and the popular NNs in order to prioritize abiotic parameters regulating
primary production in coastal ecosystems affected by terrestrial runoff.

b) Derivation of the optimal classification scheme for coastal water
ecological quality using exclusively abiotic parameters.

In case study IlI, ten different base classifiers were implemented and their
results were then integrated for improving classification performance. A new
index was proposed in order to specify which base classifiers should be
integrated to offer optimal classification performance.

c) Optimization of the prediction of phytoplankton community structure
exclusively from abiotic parameters in coastal ecosystems.

A number of different ML algorithms were trained using both natural
assemblages and noise-free simulated assemblages (case study Ill) in order
to effectively predict the richness, evenness and dominance of phytoplankton
assemblages exclusively from abiotic parameters. Based on the optimal
results of ML algorithm training, a software package was developed
estimating phytoplankton diversity from four abiotic parameters.
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3 METHODOLOGY

3.1 STUDY AREAS

The database used was compiled using existing datasets from five coastal
areas in the Aegean Sea, Eastern Mediterranean representing a wide range
of productivity (Fig. 1). All stations were sampled repetitively on a monthly
basis covering at least a full annual cycle. Nutrient concentrations were
measured spectrophotometrically according to Parsons et al. (1984), whereas
physical variables were recorded in situ. Moreover, available phytoplankton
species-abundance data were used, analysed following the same protocol
according to the inverted microscope method of Utermohl (1958).

(c)

Saronikos gulf

Lesvos Island

R1

EER2

100 Km
—

Rhodos Island

Figure 1: Maps of the five coastal areas: (a) Rhodos R1 and Rhodos R2 in the
island of Rhodos, (b) Gera G and Kalloni K in the island of Lesvos, and (c)
Saronikos gulf S near the metropolitan area of Athens (Spatharis et al., 2008)

From the study areas the Inner Saronikos Gulf, near Athens, and the Kalloni
Gulf in Lesvos Island are characteristic of eutrophic conditions (Simboura et
al., 2005). Outer Saronikos Gulf and Gera Gulf in Lesvos Island are more
typical of mesotrophic conditions (Arhonditsis et al., 2000; Ignatiades et al.,
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1992), while offshore stations in Rhodes Island have been characterized as
oligotrophic (Kitsiou et al., 2002). Detailed information about the sampling
sites and data collection are provided in Spatharis et al. (2008) while an
account on the eutrophication level and ecological status of these areas is
provided in Spatharis & Tsirtsis (2010).

3.2 ALGORITHM DESCRIPTION

ML techniques can be used for various applications including classification
and prediction (Witten & Frank, 2005). Depending on whether the output
variable is categorical or numerical, ML includes algorithms that can be used
exclusively for classification tasks (i.e. classifiers), others that can be used
only for prediction (i.e. predictors) and a few algorithms that can be used for
both tasks (Table 1). In this study different ML algorithms were used for (a)
phytoplankton biomass prediction (case study 1), (b) water quality status
classification (case study Il) and (c) phytoplankton diversity prediction (case
study IlI).

The algorithms used in this study belong to all main ML categories such as
rules, trees, lazy algorithms, functions, Bayes and meta algorithms (Table 1).
Algorithms that represent each category use different approaches in order to
classify or predict the value of the output variable on new unseen instances.

More specifically, rule algorithms construct rules based on disjunctions of the
form“IF ... THEN ...” (Frank & Witten, 1998) such as:

» |F (blood type=warm)A(eggs=yes) THEN class=bird
» IF (income<5000)A(pension=yes) THEN tax=no

The goal of rule based algorithms is to construct the smallest set of rules that
is consistent with the available dataset. Thus, a large number of rules means
that the rule algorithm is rather reproducing the data (i.e. overfitting), than
discovering the main assumption that governs it (Kotsiantis, 2007).

Trees are conceptual schemas consisting of different paths that are followed
according to comparisons on one or more input variables. Each tree path
ends to a specific leaf in which the final classification or prediction of the
output variable is being made (Kothari & Dong, 2001). Different tree based
algorithms exists depending on (a) the tree construction method and (b) the
way that the instances of each leaf are combined in order to arrive at the final
classification or prediction.
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Another famous ML category is the lazy learning algorithms, which postpone
the induction process until classification or prediction is performed. The lazy
category contains algorithms that are based on the principle that instances
within a dataset generally exist in close proximity to other instances that have
similar properties (Aha et al., 1991). These similar instances are properly
used to provide the final prediction of the requested output label or value.

Function category, as highlights its name, contains algorithms that can be
written down as simple or more complex mathematical equations in a
reasonably natural way (Witten & Frank, 2005). This category includes
classical statistical methods such as linear or logistic regression models.
Substantially, NNs like MLPs or radial basis function networks, which are the
most popular ML methods, belong to the function category.

Bayes consists of statistical algorithms that incorporate probabilities to classify
the output variable. Bayes category contains algorithms that incorporate the
famous Bayes rule and by assuming independence are computing the
probabilities for every label of the output variable. Afterwards, these
probabilities are compared to indicate the label that is the most likely to be the
actual one (Aguilera et al., 2011).

Finally the meta algorithms use specialized techniques trying to improve the
final performance of existing algorithms by integrating their results (Kotsiantis
et al, 2006). Although meta algorithms are relatively newly proposed
techniques, they are popular and span numerous applications often showing
that are much more accurate than any of the single algorithms participating in
them (Opitz & Maclin, 1999).
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Table 1: The ML techniques used in the study

Case study
Category Abbreviation Description Reference Classifier Predictor used
Rules RIPPER Implements the repeated incremental (Cohen, 1995) v Il
pruning to produce error reduction
PART Generates a partial decision list (Frank & Witten, 1998) v Il
Trees J48 Generates a pruned C4.5 decision (Quinlan, 1993) v Il
tree
RF Constructs a forest of random trees. (Breiman, 2001) v Il
MTs Generates a tree with linear (Quinlan, 1992) v 1, 1
regression models at the leafs
Lazy IBk Implements k-nearest neighbors (Aha et al., 1991) v v I, 1l
method
Kstar Instance based learner with entropic (Cleary & Trigg, 1995) v v "
distance measure
Functions Log Multinomial logistic regression (le Cassie & van Houwelingen, 1992) v "
SMO Implements sequential minimal (Platt, 1999) v
optimization for training a support 1
vector learner
MLP Multilayer perceptron trained with (Pal & Mitra, 1992) v v [, 11, 11
back-propagation
MLR Multiple linear regression (Zar, 1984) v I, 1
Bayes NB Naive Bayes classifier using estimator (John & Langley, 1995) v Il
classes
Meta Voting Ensemble method for combining (Kittler et al., 1998) v v Il

learners using probability estimates
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3.2.1 RIPPER rule classifier

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is a rule
learner classifier introduced by Cohen (1995) as a successor to Incremental
Reduced Error Pruning (IREP) algorithm (Furnkranz, 1997). RIPPER begins
the learning process by sorting (in ascending order) the training data by the
output class labels beginning with the less frequent one. Thereafter RIPPER
starts producing a set of rules, one at time, through two steps: growth and
pruning. In the iterative growth phase, a rule is constructed to match as many
instances of the minority label class (i.e. the less frequent) as possible while
those instances are removed from the training set (Huhn & Hullermeier,
2009). The learner keeps producing rules in the same way until all remaining
training instances belong to one single class (i.e. the last and the more
frequent). Then a final default rule is added to the previous ones and the
procedure ends. To prevent the produced rules from overfitting (i.e. situation
where they become too specific for the training data), the pruning step
eliminates conditions from the rules that do not harm the classifier's accuracy
(Lorena et al., 2011). More details about the RIPPER’s rule construction can
be found in the Table 2.

Table 2: Logical steps of RIPPER’s rules construction

RIPPER'’s rule classifier (for multi-labeled class problem)

1. Order instances by the label of the target class in increasing prevalence
(fraction of instances that belong to a particular class label)

2. Use instances that have the less frequent label to learn the rule set and treat
the rest instances as belonging to the negative class.
For the construction of a single rule follow the steps
a) Start from empty rule
b) Add conjuncts as long as they improve information gain
c) Stop when the rule no longer covers negative examples
(accuracy achieves100%)
d) Prune the rule using reduced error pruning
e) Remove the instances covered by the rule

3. Repeat using instances that have the next less frequent label of the target
class (treat them as positive class)

24



RIPPER classifier has the advantages of being (a) interpretable as it produces
a set of symbolic rules, (b) flexible as new rules can be added or modified as
new data are included to the database and (c) quick as it runs in linear time
(Cohen & Singer, 1999). However, RIPPER has rarely been used generally in
biology, having few applications related to genetics and ecology (Libralon et
al.,, 2009; Lorena et al., 2011; Khater & Gras, 2012). In the marine
environment it has been used once in order to determine the sex mechanism
of a fish species in aquaculture (Palaiokostas et al., 2013).

3.2.2 PART rule classifier

PART is a rule based ML technique constructed by Frank & Witten, 1998 in
order to avoid global optimization environment in which previous rule
classifiers (e.g. RIPPER) used to perform, because such techniques cannot
deal with problems that have many local optima (either maximal or minimal).
Thus, the PART learner generates compact rule sets by combining two
popular methods i.e. “separate and conquer” and “divide and conquer” (Tan et
al., 2003). PART follows the same procedure as RIPPER to construct the first
rule (separate and conquer method) followed by the removal of covered
instances. Substantially, PART continues constructing rules recursively by
generating a partial decision tree (i.e. not fully inducted) from the remaining
instances of the database (divide and conquer method). The leaf of the tree
with the largest coverage is converted into a rule and the tree is discarded.
The analytical steps of PART classifier can be found in the Table 3.

Table 3: Logical steps of PART rule classifier

PART rule classifier (for multi-labeled class problem)

1. Build a partial decision tree on the current set of instances
(for more details see Table 4)

2. Create a rule from the decision tree using the leaf with the largest
coverage

3. Discard the decision tree
4. Remove the instances covered by the rule

5. Goto step one
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The combined method of PART, adds flexibility and speed to the classifier
while protects it from over pruning (Frank & Witten, 1998). Moreover PART
maintains the essential advantage of rule classifiers offering a set of simple
and comprehensible rules which contain only the crucial input variables in a
scaling way. The latter can help towards the interpretation of the procedures
related to the desired issue by giving new insights to it (Bibi et al., 2008).
However, PART and generally the rule classifiers usually achieve medium
accuracy performances and thus are considered as simple classifiers (e.g.
Herrera et al., 2002; Bhasin & Raghava, 2005). PART has never been applied
to marine or coastal environment.

3.2.3 Decision Tree J.48

J.48 classifier (Witten & Frank, 2005) is an open source Java re-
implementation of the most popular algorithm for decision tree induction called
C4.5 (Table 4) (Quinlan, 1993). A decision tree is a hierarchical structure
consisting of nodes (i.e. a root, inner nodes and leaves) and branches (Fig 2).
The root and the inner nodes contain tests on input variables, while leaves
comprise the predicted label of the output variable. The branches connect the
nodes, starting from the root or an inner node and ending in another internal
node or a tree leaf (Quinlan, 1996).

Table 4: Logical steps of decision tree construction

Decision tree construction for a categorical output variable with ¢ labels

1. Create a root node for the tree

2. If all instances have the same label of the output variable then return a single
node tree root with that label.

3. If there are no input variables then return a single node tree root with the most
common label among instances.
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4. Otherwise

a. Select the input variable A that best classifies the instances as defined
by

S
Gain (S, A) = Entropy(S) — Z M15'”“”029)’(51;)

|S]
veValues(A)
c

Entropy(S) = z —pilog,p;
i=1
Where S is the collection of all training instances, S, is the subset of S for
which variable A has value v, c is the number of the labels of the output
variable, p; is the proportion of S belonging to the label i, Values(A) is

the set of all possible values v;of variable A and % is the fraction of

examples that belong to S,,.

b. Create tree root with the above variable A
c. For each possible value v; of the variable A
e add a new tree branch bellow the tree root corresponding to the
test A = v;
e LetS,, be the subset of the S that have value v; for A
e IfS,, is empty, then below this new branch add a leaf node with
the most common label of the output variable in S, else below
this new branch add the subtree constructed with the same
procedure and has S, for S and possible splitting variables all

the remaining variables except A.
5. Return the Root

Root

[test Variable_1]

1
[test Variable_?]
|
I T 1
Inner node_3
1
I 1

Figure 2: Diagram of a tree learner

I
Inner node_1
[test Variable_2]
|
I 1
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In order to construct a new node, J.48 computes the gain of all possible splits
(using a proper entropy measure) and substantially chooses the input variable
with the highest gain ratio. The variables that can participate in node splitting
can be either numeric or categorical. Thus, if J.48 chooses a numeric variable
for this purpose then the node is divided into two branches using a proper
inequality (e.g. input variable > constant value). The one of the two branches
is followed when the inequality is being satisfied and the other when not. On
the other hand, if the chosen splitting variable is categorical taking n discrete
labels, the node is also divided into n branches i.e. one for each categorical
label (Loh, 2008). The J.48 procedure is repeated until all instances are
correctly classified, however it usually results to an extremely large tree (i.e.
lots of nodes). The tree complexity and the resulting overfitting are being dealt
through the popular tree-pruning method that reduces the tree size and
enhances the classification accuracy (Quinlan, 1999).

J.48 classifier offers an interpretable extraction of hidden patterns even when
dealing with long-term multivariate datasets and thus it has been used in
many different classification tasks (Kothari & Dong, 2001). In the marine
environment, J.48 tree induction has been applied in several studies offering
sufficient classification results and new insights. Some of the most recent
studies dealing with classification trees concern the identification of the factors
affecting zooplankton community (Gal et al., 2013), the variation of sea water
quality (Chen et al., 2010), the impact of exotic species on lakes (Everaert et
al.,, 2011), the ciliate foraging behavior (Chang et al., 2011) and the
sustainable flood management of water basins (Yang et al., 2011).

3.2.4 Model trees (MTs)

MTs are constructed using a decision tree induction algorithm (Table 4) in
order to predict the value of a numeric output variable by storing a multiple
linear regression equation at each leaf (Quinlan, 1992). Initially, the MT is
constructed based on a criterion that determines which input variable best
discriminates the input samples in distinct homogeneous subsets (nodes or
leaves) (Fig. 2). For numeric prediction the criterion intends to minimize the
intra-subset variation of the predicting variable down each branch (Barros et
al.,, 2011; Witten & Frank, 2005). MT construction terminates when the
variance of the predicted values in a subset is sufficiently small (Frank et al.,
1998). Once the final homogeneous subsets have been defined (tree leaves)
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a linear regression model (LM) is constructed from data contained within each
subset/leaf. This LM predicts the values of the output variable based on a
number of selected input variables. Given a new sample for which the output
variable’s value should be predicted, the prediction procedure initiates from
the tree root (the first discriminating variable). In each inner node a decision
test is made to follow a particular branch based on the discriminating variable
associated with that node (Quinlan, 1996). Finally, when the sample is
classified into a subset/leaf, then the output value is predicted according to
the corresponding linear regression model.

MTs are used to approach pattern prediction and hierarchical problems in
various research fields. Applications can be found in medical science (Shao et
al., 2007), quality management (Srdoc et al., 2007), agriculture (Debeljak et
al., 2007; Kocev et al.,, 2009), water management (Bhattacharya &
Solomatine, 2005) and wave forecasting (Bonakdar & Etemad-Shahidi, 2011;
Etemad-Shahidi & Mahjoobi, 2009; Jain et al., 2011). Although MTs have
been regularly implemented in terrestrial ecology for describing and modeling
population dynamics (Demsar et al., 2006; Jurc et al., 2006; Ogris & Jurc,
2010; Stankovski et al., 1998), their applications related to modeling
ecological processes in aquatic ecosystems are restricted. These studies
have focused on the influence of environmental conditions on diatom
assemblage abundance (Kocev et al., 2010; Naumoski & Mitreski, 2010), the
effect of physical and biological factors on the spatial distribution of a sea
cucumber (Dzeroski & Drumm, 2003), changes in biomass of algal species
(Dzeroski, 2001), and phytoplankton dynamics of N. Adriatic Sea (Volf et al.,
2011). An application for chl a prediction using MTs was based on a Bayesian
approach to provide classification schemes of various water reservoirs
characterized by different geographic, morphometric, and chemical properties
(Freeman et al., 2009; Lamon, Ill et al., 2008).

3.2.5 Random Forest (RF)

Random Forest (RF) is an ensemble classifier developed by Breiman (2001)
that combines the results of individual tree classifiers participating in the forest
(Figure 3). Each of these trees is build using a bootstrap sample of the
dataset while at each tree node only a small random subset of the input
variables is available for the tree branch binary split. The constructed trees
remain unpruned (i.e. fully grown) to ensure low-bias (i.e. flexibility in data
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fitting). Substantially, RF classifier yields an ensemble using majority voting
over the individual tree classification results in order to predict the status of
the output class (Diaz-Uriarte & Alvarez de Andres, 2006). The performance
of the RF depends on the number of the trees that consist the forest, the
performance of the individual trees and the correlation between their results.
Applications to ecology have shown that RF can effectively model complex
and non-linear relationships offering high classification accuracy and
determination of the input variable importance (Cutler et al., 2007).

Dataset Bootstrap Samples

v v v
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Tree; Tr||332 Tree,
v

Majority Voting

RF Classification

Figure 3: Conceptual diagram of the random forest classifier

Within a relative short period of time, RFs have been successfully applied to
numerous classification tasks in a variety of fields, indicating their efficient
performance in comparison with other ML techniques (Verikas et al., 2011).
Specifically in the marine environment, RFs have been so far used to assess
the mapping of fish species richness (Knudby et al., 2010), the flux of benthic
light under toxic conditions (Kehoe et al., 2012), the sources of water fecal
contamination (Smith et al., 2010), the discrimination of fish population
(Perdiguero-Alonso et al.,, 2008) and the density of bacteria in water
(Parkhurst et al., 2005). During the last years RF has been also sufficiently
tested in different ecological tasks (Crisci et al., 2012; Cutler et al., 2007,
Prasad et al., 2006) but span very few studies related to marine
eutrophication mainly under a management perspective (Catherine et al.,
2010; Bergstrom et al., 2013).
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3.2.6 Lazy Instance Based Learner IBk

IBL algorithms are derived from the nearest neighbor pattern classifier (Cover
& Hart, 1967) and are based on the idea that similar instances have similar
behavior (Payne, 1995) thus the new input instances are predicted according
to the stored most similar neighboring instances (Table 5) (Aha et al., 1991).
The nearest neighbor classifier (k-NN) is one of the simplest and oldest
methods to perform classification tasks (Solomatine et al., 2006). It has been
used in various applications yielding excellent performances (Tsekouras
2005; Huang, 2006). IBL algorithms are also known as lazy learning
algorithms since they simply store the training instances and postpone all
effort until prediction time.

Table 5: Logical steps of IBL

Instance base learning (k neighbors)

1. For a new unseen instance, compute the distance metric between this
instance and all stored training instances of the dataset

2. Define the k instances that have the corresponding lowest distance values (set
of the nearest neighbors)

3. Compute the final prediction as the mean of the k values that the output
variable has in the set of the defined set of the nearest neighbors (numeric
output variable)
or
Estimate the label of the class using majority voting for the k labels that the
output variable has in the set of the defined set of the nearest neighbors
(categorical output variable)

4. Go to step one

The k-NN algorithm treats the input variables as dimensions of a Euclidean
space and the instances as points in this space (Cover & Hart, 1967). Once a
new unseen instance is given, a distance metric between this instance and all
stored training instances is calculated and the k nearest instances are been
defined. Many different distance metrics have been proposed but mostly used
are:

Euclidean: d(X,Y) = /T, (x; — ;)2
Manhattan: d(X,Y) = X%, |x; — il
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Chebychev: d(X,Y) = max{Z;|x; — vl

where X = (xq,x5,...,Xy) and Y = (yy,¥2, ..,¥m) are two instances of a
dataset that has m input variables.

Then, the prediction of the output variable is estimated as the mean of k

values that the output variable has in the set of the defined nearest instances.

The k-NN algorithm can be improved by weighing each of the k nearest

neighbors (X;) (Wettschereck et al., 1997) according to their distance

d(Xg4, X;) from the new query point (X,;) based on the following two functions:
F(X,) = ?=1I:/Vif(Xi)

i=1 Wi

where w; is a function of the distance d(X,, X;) with the following two weight

functions being commonly used:
w; =1 —d (X, X;) (Linear)

w; = m (Inverse)

IBk is a popular ML technique already applied either as predictor or classifier
in few studies related to the marine environment in order to assess hydrologic
and wave modeling, sea water quality or marine species habitat preference
(e.g. Dzeroski & Drumm, 2003, Hatzikos et al., 2008; Solomatine et al., 2008;
Zamani et al., 2008).

3.2.7 Lazy KStar

KStar is an instance based algorithm proposed by Cleary & Trigg (1995),
operating either as classifier or predictor and able to handle both numerical
and categorical input variables. The difference of KStar in relation to the
classic IBk algorithm is that the former uses a different approach to calculate
the distance between instances, based to an entropy measure (Morrison et
al., 2007). This entropy measure has been inspired from information theory
and can be defined as the complexity of transforming one instance into
another. More specifically KStar defines a finite set of transformations in order
to map instances to instances. Substantially, finite sequences of
transformations starting from an instance and terminating to another are
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defined covering all instance combinations. Finally, the entropy measure is
estimated as the length of the shortest sequence connecting two instances.
This entropy measure assessment makes KStar algorithm much more general
and greedy than the classic IBk, especially when dealing with missing values
(Yucel & Ozel, 2012). Thus, when using KStar it is considered that each
instance exerts a “sphere of influence” with soft boundaries rather than the
hard edged cutoff implied by the k-NN rule in which any particular instance of
the dataset either participates or not to the final prediction (Witten & Frank,
2005).

Although KStar is not so popular compared to IBk, it has been applied in
various studies with good results (e.g. Rocha et al., 2007; Grabar & Krivine,
2007; Uygun et al., 2010). In the coastal environment it has been used once
to assess biomass of mangroves i.e. type of trees that grow in saline coastal
sediment habitats (Jachowski et al., 2013).

3.2.8 Multinomial Logistic Regression (MLR)

Logistic Regression (Log) is a statistical method used in classification to
predict the outcome of a categorical variable (i.e. target class) based on input
variables that can be either numerical or categorical. According to the total
number of categories (i.e. labels) that the target class owes, the logistic
regression is called binary if the number of labels is two (e.g. “male=1" vs
“female=0") or multinomial if this number is larger.

During binary logistic regression, coefficients (as long as its standard errors
and significance levels) are generated in order to predict a logit transformation
of the probability of the occurrence of a situation (recorded with label “1” vs
the other label “0”).

logit(p) = In 1 P__ by + byxy + byxy + -+ brxy

where p is the probability of the occurrence of a situation (usually the
presence of a characteristic of interest in biological studies), b; are the linear
regression coefficients estimated using maximum likelihood (McCullagh &
Nelder, 1989) and x; are the k independent input variables. Thus, the general
multiple logistic regression model in terms of p is:
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eb0+b1x1+b2x2+-~-+bkxk

p - 1 + eb0+b1x1+b2x2+-~-+bkxk

Multinomial logistic regression is a simple extension of the binary one.

Logistic regression is commonly used in several environmental tasks (e.g.
Pearce & Ferrier, 2000; Keating & Cherry, 2004). More specifically, logistic
regression has been used to assess marine eutrophication tasks such as toxic
diatom blooms estimation (Lane et al., 2009), eutrophic classification of
hypoxic waters (Lowery, 1998), species presence-absence along with
different environmental factors (Bini & Thomaz, 2005) or sea grass pattern
modeling (Fonseca et al., 2002).

3.2.9 Sequential Minimal Optimization (SMO)

Sequential minimal optimization (SMO) implements a method proposed by
Platt (1999) that trains a support vector machine (SVM) classifier using
polynomial kernels. A normal SVM tries to solve a quadratic programming
problem that is expressed in the dual form as follows:

n

max,W(a) = a; — yiyjK(xl-,xj)aiaj

N| =

n n
i=1 i=1j=1

subject to:

0<ag;<cvi=12,..,n

n
Z yia; =0
i=1

where a; are Lagrange multipliers, n is the number of training instances (i.e.
examples), x; is the input variables vector, y; is the output label of the target
binary variable with y; € {—1,+1}, K(x;, x;) is the kernel function selected by

the user, and c is an appropriate parameter.

Essentially, training a SVM involves large matrix operations that solve the
above n'" (n is equal to the number of training instances) dimensional
quadratic problem. However, if the training set is too large, the SVM requires
a lot of computational effort (memory and time) making the algorithm very
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slow and impractical (Keerthi et al., 2001). The SMO solves the quadratic
problem by decomposing it into smaller problems, each one being a reduced
problem of the quadratic one that can be described as follows:

0<aqa,=<c
y1a1 +y2a; =K

During training process and for each iteration, SMO proceeds as follows: (a)
picks a pair of Lagrange multipliers to optimize the solution of a smaller
quadratic programming problem and (b) repeats the same process until it
converges on a solution. The advantage of SMO is that the solution for two
Lagrange multipliers can be done analytically and thus an entire inner iteration
is avoided. Even though more sub-problems are solved during SMO training,
each solution is so fast that the overall optimization is achieved rather quickly.
Additionally, SMO requires small data storages as it stores only the required
2x2 matrix for each iteration (Platt, 1999). However, the SMO classifier is
binary and in case of a multi-class problem (i.e. target class with more than
two labels), it must be reduced to a set of multiple binary classification
problems (Crammer & Singer, 2002).

SMO classifier is easy to implement and has already yielded excellent
generalization performance on a wide range of problems (Keerthi et al.,
2001). In the marine environment it has been used to predict water quality
(Hatzikos et al., 2008), to monitor seagrass population (Musavi et al., 2007),
to estimate an aquatic fern species distribution (Sadeghi et al., 2012), and to
retrieve chlorophyll concentration from remote sensing (Haigang et al., 2003).

3.2.10 Multiple Linear Regression (MLR)

Multiple Linear Regression (MLR) is a statistical approach to model the
relationship between a numeric dependent output variable Y and more than
one explanatory input variables X;. Given a dataset {X;; Xy, .., Xm; Y}

containing m input variables and n instances, the linear model takes the form:
Y]=a+b1X1]+b2X2]++memJ+e], j=1,...,7’l

The parameters by, b,,...,b,, are called partial regression coefficients and

express how much Y would change for a unit change of each input variable.
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The intercept a, is the value of Y when all input variables X; are zero. The

residual or error e; is the amount by which y; differs from what is predicted by
17j =a+ by Xy + b Xy + - + by Xy j. Note that the sum of all e’s is zero (Zar,
1984).

The criterion for defining the best fit (i.e. optimal a, by, by, ..., b,,) of the MLR
equation is the minimum residual sum of squares i.e. the minimum value of
(Y = 17]-)2 (Flury & Riedwyl, 1988).

3.2.11 Multilayer Perceptron (MLP)

MLP is an artificial neural network that maps input instances onto values or
labels of the output variable. A MLP architecture consists of one or more
layers of nodes (neurons) between the input and output layers in a directed
graph (feedforward), while each layer is fully connected with weighted
connections to the next one (Fig.4) (Lek & Park, 2008). The input layer
typically contains as many neurons as the number of the input variables; the
hidden layer has a number of neurons which can be selected arbitrarily or
determined empirically, while the output layer has usually one neuron
referring to the output variable.

Input Layer Hidden Layer Output Layer
Input1 /7 "\ N
Input2 /7 . Outpu:

Inputn

—/

Figure 4: The classical MLP architecture consisting by three layers of
neurons
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Technically, each neuron receives weighted input signals which are used as a
sum to feed an activation function for producing an output signal that
substantially activates the neurons of the next layer (Table 6) (Lek & Guegan,
1999). During the training phase a set of instances (having values for both the
input and output variables) is presented to the MLP again and again. The
MLP is being trained by an update procedure based to the simple concept: if
the network gives an insufficient response, the connection weights are
corrected so that the error is reduced and future responses of the network are
more likely to be closer to the real wishing outputs (Olden et al., 2008).Thus,
the information hidden in the input data flows within the network from the input
to output layer in order to improve the MLP’s predictive performance. More
details about the MLP training technique can be found in the Table 6.

Table 6: Logical steps of MLP (Lek and Guegan, 1999)

Feed-forward MLP training by back-propagation algorithm with the use of sigmoid

activation function

1. Initialize the number of hidden nodes

2. Initialize the maximum number of iterations and the learning rate (n). Set
all connection weights Wgand thresholds to small random numbers.

Thresholds are weights with corresponding inputs always equal to 1.

3. For each training instance (input X,=(x71, X2, ..., Xn), output Y) repeat steps
4-7.

4. Present the input X, to the input nodes and the output Y to the output

node;

5. Calculate the input to the hidden nodes: a* = YL, W/}x;, — 6;

Calculate the output from the hidden nodes: x = f(al') = ——

1+e Y

Calculate the inputs to the output nodes: a; = X5_; Wyex/* — 6,

1
1+e %

Calculate the output from the output nodes: ¥, = f(ay) =

If the network has a single output and one hidden layer then: k=1, ¥, =¥

L is the number of nodes of the hidden layer, 6;, 6, are the thresholds

6. Calculate the error term for the output node: 8, = (Y — ¥,,) - f (ax)

Calculate the error for the hidden nodes: 8/ = f'(a]") - Xk 6, Wiy
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f'is the derivative of the sigmoid function

7. Update weights on the output layer: W, (t + 1) = W, (¢t) + nSKxjh
and on the hidden layer: W;;(t + 1) = W;;(t) + n6}'x;
as long as the network errors are larger than a predefined threshold or the

number of iterations is smaller than the maximum number of iterations

envisaged, repeat steps 4-7.

All MLPs used in this study belong to the classic group of feed-forward neural
networks with one hidden layer in which sigmoid activation function is used to
all neurons while it is trained by the backpropagation algorithm (Rumelhart et
al., 1986).

Among ML algorithms, NNs including MLPs are the most commonly used and
span numerous and various applications (Bhattacharya & Solomatine, 2005;
Tsekouras & Tsimikas, 2013). In the marine environment MLPs has been
used in eutrophication modeling (Karul et al., 2000; Kuo et al., 2007), wave
forecasting (Altunkaynak, 2013; Etemad-Shahidi & Mahjoobi, 2009), biomass
prediction (Musavi et al., 2007; Scardi, 1996) and pollution assessment (Tian
et al., 2011; Topouzelis et al., 2008).

3.2.12 Naive Bayes (NB)

A Naive Bayes (NB) classifier is a probabilistic method based on the Bayes
rule in combination with the independence assumption (Naive) of the input
variables (Lewis, 1998). The NB classifier assigns every new instance
E = (xq,x5, ..., X,) into a class label ¢ of the output target variable C. According
to Bayes rules the probability of an instance E to belong to class c is:

p(Elc) - p(c)

p(clE) = (E)

By assuming that all input variables (categorical or numeric) are independent
given the label of the output class, the conditional probability p(E|c) can be
calculated as:

n
P(EIS) = ey, o, 2al0) = | [p11)
i=1
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Combining the above two notions, the Naive Bayes classifier picks the label of
the class that is the most probable to happen (maximum a posteriori decision
rule). As a result the NB function can be written:

fne(E) = fnp(x1, %2, ..., xn) = argmax.p(c) np(xi|0)
i=1

Note: p(E) is a constant for every category (Peng et al., 2004) and argmax,
returns the label of the output class with the maximum probability.

If an input variable x; is numerical then the method uses the variable’s mean
u. and variance o2 for each class label of the output variable. Then the
probability density of a value v given a class label ¢ can be computed as
follows:

_ (V_Nc)z

p(x; = vlc) =

1
\ 2mo?

Although NB classifier is a popular machine learning technique (Lewis, 1998),
it has been rarely used to classification assessments in environmental
modelling (Aguilera et al., 2011). Only recently, the NB classifier has been
applied in the marine environment in order to estimate the phytoplankton
structure and composition, to map the seafloor using image data and to
predict fish recruitment in fisheries management (Fernandes et al., 2010;
Ludtke et al., 2012; Zarauz et al., 2009).

3.2.13 Voting

Current research on ML focuses on integrating optimal classification results
from the individual base classifiers using specialized techniques called
ensemble methods (EMs) (Opitz & Maclin, 1999; Wozniak et al., 2014). The
latter provide significantly improved classification performance compared to
the base classifiers (Assaad et al., 2008; Chen et al., 1997).

Voting is a particularly useful and comprehensible EM that collects votes (i.e.
predicted labels of the target class) from multiple individual classifiers and
predicts the label of the target class yielding the highest value expressed as
number of votes (simple majority voting). One refinement on simple majority
voting, weights the participating classifiers by using probability estimates than
just a simple classification decision. Using the “average probability” method
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during voting, for every new instance E = (xq,x,, ..., x,), the corresponding
class-probability estimate is calculated as follows:

L

1
p(f(E)=c)=7 z=1p(f(E) = clhy)

where n is the number of input variables,c states for every label of the output
variable, L is the number of base classifiers h; ... h; participating in the voting
schema, and finally p(f (E) = c|h;) is the probability that the true (i.e. correct)
label is c. Note that the predicted label of Eresulted from the above equation
for all labels, is the one with the highest computed probability.

Voting is the most widely applicable EM method, as other EMs (including
bagging and boosting) employ voting approaches in order to provide their own
final outcome (Bauer & Kohavi, 1999; Dietterich, 2000a). Voting is also the
simplest and easiest way to combine classifiers (Tan & Gilbert, 2003),
demanding no extra training except when applying the voting scheme
(Dzeroski & Zenko, 2004). For these reasons, voting spans many applications
ranging from simple classification tasks (Saha & Ekbal, 2013; Srinivas et al.,
2009) to more complex implementations such as clustering (Dimitriadou et al.,
2001), pairwise comparison (Loza Mencia et al., 2010) and fuzzy systems
(Ishibuchi et al., 1999; Kaburlasos & Pachidis, 2014).

3.3 ALGORITHM EVALUATION
3.3.1 Cross Validation

Cross Validation (CV) is a popular technique for estimating the error of
algorithm predictions. CV is efficient for datasets containing neither few (few
tens) nor too many (tens of thousands) records (Stone, 1978) providing a
nearly unbiased estimate using exclusively original data (Efron, 1983). The
main advantage of this method is that it protects the system from overlearning
(i.e. overfitting) and for this reason it is more commonly used in data analysis
(Witten and Frank, 2005).

In K-fold CV the dataset is randomly partitioned into K subsamples, K minus 1
of which are used as training data while the remaining subsample is retained
for testing the algorithm. This process is repeated K times (the folds) and
results are averaged to produce the performance estimation. Leave-One-Out
(LOOCV) is a specific category of CV, in which the parameter K is equal to
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the number of instances of the dataset. During LOOCYV, a single instance is
used for the validation of the algorithm and the remaining instances are used
for training. Thus, the same procedure is repeated as many times as the
number of instances of the dataset and then the results produce the overall
algorithm performance (Cawley & Talbot, 2003).

3.3.2 Measures of performance

Three measures of performance were considered in order to evaluate the
numeric prediction (i.e. prediction of chl a or phytoplankton diversity) of the
algorithms (Table 7). These measures are: a) the correlation coefficient (R)
which measures the statistical correlation between predicted and observed
values, b) the mean absolute error (MAE) which averages the magnitude of
the differences between predicted and observed values ignoring their sign
and c) the root mean squared error (RMSE) which represents the standard
deviation of the above differences (Witten & Frank, 2005).

Table 7: Measures of performance used to evaluate the algorithm’s numeric
prediction

Measures of performance
Name Abbreviatio Formula

n

Spa

_ 2= =) — @)

Correlation R where Spy = n—1 ,
coefficient o > (pi — P)? ¢ - > (a; — a)?
P n—1 g n—1
5= =1 D G = Yie1 4
n n
Mean Absolute MAE Y Ipi — a
Error n
Root Mean RMSE Y™ (p; — a;)?
Squared Error n

where p; are the predicted values of the algorithm, a; are the actual values according
to the dataset and n is the number of instances in the dataset.
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Furthermore, in classification tasks the principal measure of a classifier's
performance is the percentage of the correctly classified instances over the
total number of instances in the dataset (CCIl). Another measure is the
Cohen’s kappa statistic (k) (Cohen, 1960) which is calculated as the
proportion of all possible cases of the presence or absence that are predicted
correctly by a classifier after accounting for chance predictions (Everaert et
al., 2011). Classifiers with CCI higher than 70% and « higher than 0.4 can be
considered reliable (Dakou et al., 2007). The classification performance of a
classifier can be also determined using a scaling system for k proposed by
Landis & Koch (1977), that is: < 0 (poor), 0-0.2 (slight), 0.2-0.4 (fair), 0.4-0.6
(moderate), 0.6-0.8 (substantial), and 0.8-1 (almost perfect).
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4 CASE STUDY |I: EFFECTS OF METEOROLOGICAL
FORCING ON COASTAL EUTROPHICATION: MODELLING
WITH MODEL TREES

41 SUMMARY

In the present case study primary production (in terms of chlorophyll a — chl a)
is modeled based on a number of abiotic parameters using MTs, a ML
approach whereby linear regressions are induced within homogeneous
subsets of samples (tree leaves). Standardized regression was applied to
determine the relative weight of abiotic parameters in the MT tree leaves
whereas the efficiency of the MT method in chl a prediction was tested
against NNs which is the most frequently used ML approach, and the classical
MLR. To assess the efficiency of models to describe eutrophication-related
responses under different environmental conditions, the methods were
applied on a coastal ecosystem affected by terrestrial runoff for two
meteorologically contrasting annual cycles: a typical dry ('04-°05) and a typical
wet ('09-10). MTs showed increased predictive power in chl a prediction
attributed to the discrimination of input data space into tree leaves, instead of
using a uniform space as in NNs and MLR. By grouping samples of each
tested annual cycle (wet and dry) on a seasonal basis into discrete
groups/leaves, MTs offer a much more explanatory description of ecosystem
status than NNs and MLR. The discriminating variables forming tree leaves
and the weighing coefficients of Linear Models (LMs) in each leaf provided a
useful scaling of abiotic parameters driving chl a dynamics. The MT method is
thus proposed as an efficient tool for obtaining insights into ecosystem
processes leading to eutrophication events in coastal ecosystems and a
useful component in integrated coastal zone management.

4.2 INTRODUCTION

ML algorithms, including MTs and MLPs, are considered as appropriate in
ecological studies because of their efficiency when dealing with non-linearity
(Huang & Foo, 2002; Ornella & Tapia, 2010). This advantage of MTs could be
particularly useful in marine ecosystems, which are subject to highly complex
and multi-dynamic phenomena (Olden et al., 2008) often resulting in non-
linearity. In this chapter, an MT approach was applied in order to evaluate the
efficiency of this methodology to model chl a dynamics in coastal waters but
also to verify whether the method can be used to prioritize factors regulating
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primary production in coastal ecosystems. The two datasets used were
collected from an enclosed coastal ecosystem influenced by terrestrial runoff,
under two contrasting meteorological regimes, namely a dry and a wet annual
cycle. The main objectives of the study were: (a) to assess the efficiency of
MTs in modeling chl a compared to two alternative techniques: the most
widely used ML method of MLPs and secondly the classical statistical
approach of MLR, (b) to evaluate the relative weight of environmental factors
regulating chl a variability in the study area, (c) to compare the results of the
two contrasting meteorological regimes and discuss whether the approach
may assist in the understanding of eutrophication-related processes in coastal
ecosystems affected by terrestrial runoff.

4.3 METHODOLOGY

4.3.1 Datasets

Kalloni gulf is a semi-enclosed shallow water body located in the
southwestern part of Lesvos lIsland, Greece in E. Mediterranean. The
surrounding watershed of 413 km? is used for horticulture and agriculture,
mainly of olive trees (Spatharis et al., 2007b). These cultivations involve the
application of fertilizers during winter, coinciding with the period of high
precipitation that usually occurs in February (Spatharis et al., 2007a;
Spyropoulou et al., 2013)

The compiled database included information from two annual cycles
corresponding to contrasting meteorological conditions. In the dry annual
cycle (August ‘04 to July '05) the total amount of rainfall was low (291 mm)
and so was the corresponding amount of terrestrial runoff into the gulf
(1.4x108 m3® month'). On the other hand, in the typical wet cycle (August ‘09
to July '10) rainfall was high (755 mm), resulting to an increase of one order of
magnitude in runoff (14x10% m® month-') (Spyropoulou et al., 2013). Previous
studies (Spatharis et al., 2007a; Spatharis et al., 2007b) have demonstrated
that the interior part of the gulf is characterized by high nutrient and chl a
concentrations compared to the E. Mediterranean typical levels. This is due to
nutrient enrichment from intermittent rivers flowing from November to April,
mainly in the northern part of the gulf.

For August '04 to July '05 the dataset was compiled from 140 samples
collected on a monthly basis from the water column (1 and 5 m depth) from
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six stations (K3-K8) located in the inner part of the gulf. For August ‘09 to July
10 information on a monthly basis was available for 120 samples from a
similar network of stations in the interior of the gulf (KA3-KA7). The two
sampling networks have been described in detail in previous studies
(Spatharis et al., 2007a; Spyropoulou et al., 2013). Each dataset included
information on physical, chemical, and biotic variables. More specifically,
physico-chemical parameters selected as input variables for the model were
temperature (T), salinity (S), photoperiod (F), nitrogen (N), phosphate (POa),
and silicate (SiO2). Chl a was the output variable that is predicted by the
model, which was compared with observed chl a values from the field
samples. Summary statistics of the parameters for both annual cycles used as
inputs in the LMs during the MT development are provided in Table 8.
Irradiance, being highly correlated with photoperiod, was excluded from the
input variables in tree construction.
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Table 8: Mean, standard deviation (in parenthesis), and number of samples (n) in each of the predicted LMs, for the parameters used
in MT method.

Dry annual cycle Wet annual cycle
'04-'05 '09-'10
_ _ LM1 LM2 LM3 LM4 LMA1 LM2 LM3
Variables Units

(n=20) (n=23) (n=57) (n=40) (n=61) (n=25) (n=34)

Temperature - T °C 10.3 15.5 15.7 24.0 19.5 21.0 15.5
(0.7) (3.7) (4.6) (2.9) (5.4) (2.7) (5.0)

Salinity - S psu 36.3 36.9 39.7 38.9 38.4 40.4 38.6
(1.2) (0.8) (0.7) (0.6) (1.1) (0.3) (2.0)

Photoperiod - F hrs 9.9 11.8 10.1 13.6 11.2 10.8 12.5
(0.1) (1.0) (1.2) (0.3) (1.7) (1.1) (1.7)

Nitrogen - N UM 12.50 1.76 1.84 2.1 0.51 0.49 0.86
(13.5) (0.8) (1.1) (0.8) (0.5) (0.4) (0.7)

Phosphate - PO4 uM 0.385 0.036 0.059 0.062 0.036 0.042 0.147
(0.58) (0.03) (0.05) (0.04) (0.03) (0.03) (0.04)

Silicate - SiO- UM 34.9 13.2 13.3 8.1 17.0 7.3 18.5
(31.7) (7.6) (8.0) (3.2) (10.3) (2.6) (15.6)

Chl a pg/L 3.16 1.01 0.66 1.06 0.76 1.34 1.75
(0.51) (0.60) (0.26) (0.46) (0.63) (0.77) (0.71)
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The size of the two datasets (n=140 for '04-'05 and n=120 for '09-'10) is
considered sufficient for the application of the MT method since even a small
number of training samples (50-100) is sufficient to design a reliable tree
decision rule when the number of tree rules is not too large (<10) (Raudys &
Jain, 1991) as in the present case study. Moreover, in order to ensure that
samples do not violate the condition of independence, a multifactor ANOVA
analysis was performed to test chl a and nutrient variability within each annual
cycle ('04-'05 and '09-'10). The effect of time is stronger than space (higher F
values) suggesting a higher temporal than spatial system turnover. However,
since both time and space have a significant effect on the variables (ANOVA,
P<0.01), the system seems to present sufficient heterogeneity in space and
time.

4.3.2 Details of MTs construction

A number of algorithms exists for inducing MTs from samples, such as CART
(Wu et al.,, 2009), and M5P (Wang & Witten, 1997) which is the most
frequently used for MT induction. The package WEKA was used for the
analysis (Hall et al., 2009). The parameters of M5 were set to their default
values and the important mechanism of tree pruning (Quinlan, 1999) was
applied on model construction. Smoothing was not applied, since it has the
undesirable property of altering the weight of the original regression
coefficients of input variables.

In linear regression, useful indications concerning the ecosystem functioning
may be drawn by evaluating the relative importance of independent/input
variables in the chl a prediction process. This cannot be done with the original
regression coefficients because of the different measurement units and
variances of the variables (Zar, 1984). In order to render the variables directly
comparable to each other, we performed a standardization of the ordinary
regression coefficients contained in the equations of each MT leaf. The
standardization of LMs was not provided by the WEKA package and was thus
carried out using the SPSS statistical package version 16.

4.3.3 Details of MLPs construction

The MLP system that is used in the present case study belongs to the feed-
forward group, and it is being trained by the back-propagation algorithm with
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the use of the sigmoid activation function. The used MLP contains three
layers: the input layer comprising by as many neurons as the number of the
input parameters (i.e. six), the hidden layer of neurons whose number was set
to the default value that is provided by the WEKA package (i.e. three) and the
output layer which has a single neuron referring to the output variable (i.e. chl
a).

4.3.4 Comparison of MTs vs the MLPs and MLR approaches

In order to compare the efficiency of MTs against the MLPs and MLR
approaches a 10-fold cross validation technique was performed (Stone, 1974)
to assess the model performance on unseen input data (paragraph 3.3.1).
Three measures of performance were considered in order to compare the
results of MTs with MLPs and MLR in modeling chl a: R, MAE and RMSE
(paragraph 3.3.2). This procedure was carried out for both annual cycles ('04-
'05 and '09-10) in order to compare the performance of the three approaches
using two independent and contrasting datasets.

4.4 RESULTS

4.4.1 Efficiency of the MT over the MLPs and MLR approaches

The MLR equations for predicting the dependent variable chl a for the two
studied annual cycles are given below, the numbers in parentheses showing
the standardized coefficients:

For’'04-'05:

chla =- 0.285(- 0.475) #S - 1.362(- 0.364) *P04 + 0.097(+ 0.656) *N
+ 11.963(0.0) (1)

For '09-'10:
chla = + 5.893(+ 0.430) *P04 + 0.757(0.0) (2)

For the ’'04-'05 cycle (Equation 1), a significant influence of nitrogen and a
weaker negative effect of phosphate and salinity on chl a concentration was
observed. For the ’09-10 cycle (Equation 2) the only statistically significant
variable in the MLR having a positive effect on chl a was phosphate.
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MT provided a more realistic estimation of chl a concentrations in Kalloni gulf
than MLPs and MLR based on all three performance criteria (Table 8) for both
annual cycles ('04-'05 and ’09-'10). More particularly for '04-'05, MTs had
higher correlation coefficient (R) and lower estimation errors (MAE and
RMSE) than MLPs and MLR (Table 9), whereas for '09-10, MTs performed
slightly better than MLPs(same R but lower errors) and MLR (higher R with
lower errors).

Table 9: Validation of the Model Tree (MT), Neural Network (NN) and Multiple
Linear Regression (MLR) methods for chl a prediction using three validation

criteria: multiple correlation coefficient (R), mean absolute error (MAE) and
root mean squared error (RMSE).

Annual cycle  Method R MAE RMSE
MT 0.849 0.342 0.491
Dry '04-'05 NN 0.768 0.430 0.614
MLR 0.676 0.519  0.680
MT 0.376 0.565 0.732
Wet '09-'10 NN 0.377 0.586 0.756
MLR 0.344 0.587 0.755

As MTs offer the better predictions than the other two approaches, a
comparison of measured chl a values with those predicted by MTs is made in
Figure 5.
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Figure 5: Comparison of observed and predicted chl a values by each Linear
Model (LM) based on the MT method for the '04-°05 (left) and '09-’10 (right)
annual cycles. The black line corresponds to the dichotomous (y = x) line.
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The points near the dichotomous (y = x) line are better approximations of
observed chl a values compared to more distant points representing larger
prediction errors. Thus, chl a modeling based on the available parameters is
much more accurate for '04-'05 than '09-10, which is in agreement with the
performance criteria (R, MAE and RMSE) described above. Considering
some LMs the predictive capability of the model seems weak. In particular, for
LM1 of '04-'05 and LM2, LM3 of the '09-10 annual cycle, the model gives a
very narrow range of predicted chl a values (y) for a wide range of observed
chl a values (x). In these LMs, either the number of samples was relatively
small (LM1 of '04-'05) or the corresponding equation was independent of the
input variables (LM2, LM3 of ’09-’10 annual cycle) (Fig. 6).

4.4.2 Resulting LMs

MTs and the resulting LMs are shown in Figure 6 for the two annual cycles.
For ’'04-05, the 140 samples fall within four well defined subsets
corresponding to distinct and continuous time periods (Fig. 6a). The grouping
of samples into each of the four subsets was based on three discriminating
variables, namely salinity, temperature, and photoperiod. For the '09-10
annual cycle, the resulting MT is much different comprising of three
subsets/leaves, and the 120 samples were grouped within leaves based on
phosphate and salinity (Fig. 6b). As in the ’04-05 cycle, subsets are
comprised of samples corresponding to different months, however, in '09-'10,
months are not always continuous within a subset, therefore not always
representing continuous time periods of the year.
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(@) ‘ salinity > 37.93 ’ () | Phosphate > 0.1

no es no
‘ Temperature > 11.53 ‘ ‘ Photoperiod > 12.76 ‘ Salinity > 39.87 l yes
no ves no ves no yes
LM1 (n=20)  LM2(n=23)  LM3(n=57)  LM4 (n=40) LM1 (n=61) LM2 (n=25) LM3 (n=34)
chla= chla= chla= chla= chla= chla= chla=
~0156*s  +0448*N  -0011*T  *+353817PO +9.446 * PO, +1.342 +1.749
+8.827 +0.226 +0.833 -0.044 * SiO> +0.420
g0 i3y l ! l
Months: 2 3.4 9.10, 11, 12, 1 56,78 Months: 3,4, 5,6, 7 8, 10, 11 9,12, 1,2
Mean N/P: 54 60 51 36 Mean N/P: 18 12 6

Figure 6: Model Trees (MTs) showing the grouping of input samples based on discriminating variables into Linear Model
(LM) subsets for (a) the ‘04-’05 (dry) and (b) the '09-°10 (wet) annual cycles. Each LM provides a regression equation of the
output variable (chl a) on the significant input variables, as well as the number of samples (n) grouped within each subset.
The number at the bottom shows the months falling inside each LM.
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Trying to further explore the subsets (LMs) formed by the MTs for each
annual cycle, samples were plotted on a two dimensional graph based on two
discriminating variables (Fig. 7). For '04-'05, the 140 input samples were
plotted on a temperature vs salinity plain superimposing chl a concentrations
and indicating the four subsets of samples corresponding to each LM. The
LM1 subset was induced using 20 input samples collected during February,
reflecting peak chl a concentrations and the lowest salinity and temperature of
the year. For LM2, a total of 23 input samples was used, corresponding to
March and April characterized by medium to high chl a concentrations, low
salinity, and medium temperature. LM3 was developed using 57 samples
collected from September to January characterized by low chl a
concentrations, high salinity, and a wide temperature range. Finally, LM4
subset comprised of 40 samples corresponding to summer conditions from
May to August characterized by medium chl a concentrations and high
temperature and salinity (see also Table 8).
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Figure 7: Two-dimensional plots based on discriminating variables from the MT
method. For the ‘04-‘05 cycle (n=140 samples) aggregation was based on
temperature and salinity whereas for the ‘09-“10 cycle (n=120 samples) on
phosphate and salinity. Each point has a diameter proportional to the
measured chl a concentration for the specific sample. Also shown are the
groupings of samples based on the Linear Model (LM) subsets.

For the '09-"10 annual cycle the 120 samples were aggregated in a phosphate
vs salinity plain (Fig. 7) based on the three LMs formed by MT. LM1 was
constructed of 61 samples collected from March to July presenting the lowest
chl a concentrations, medium salinity, and very low phosphate concentrations,
whereas other nutrients had a medium to high concentration compared to
background annual means (see Table 7). LM2 represents warmer conditions
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since it was constructed by 25 samples collected in August, October, and
November and describes fairly high chl a concentrations in combination with
higher temperature, salinity, and phosphate than the previous time period
(LM1). Finally, LM3 contains 34 samples from all winter months plus
September and describes cold winter conditions with the highest nutrient
concentrations and chl a values. Based on this analysis, it is evident that for
both annual cycles the aggregation of samples in subsets corresponding to
different LMs is achieved on a seasonal basis with temperature, photoperiod,
salinity, and phosphate being the most important discriminating variables.
Sample aggregation was entirely unaffected by the location of sampling
stations in the gulf since no such classification was observed in the LM
formation.

During the '04-'05 annual cycle, the N:P ratio was rather high; in particular,
the subsets of data in LM1, LM2, and LM3 have mean N:P values close or
above the threshold for P limitation (Fig. 8) as defined in Guildford and Hecky
(2000). An exception to this was LM4 which had an N:P ratio closer to N
limitation due to higher PO4 concentrations during the warm period. On the
other hand all LMs of the wet annual cycle ('09-'10) are characterized by
mean N:P values below the threshold of N limitation (Guildford and Hecky
2000).

180+
150+
120+
2~ 90+
60+
30+

P-limitation

Figure 8: Box-and-whisker plot of the N:P ratio for the LMs of Model trees
constructed for both annual cycles compared to thresholds for N deficient
(N:P<20) and P deficient (N:P>50) phytoplankton growth according to Guildford
and Hecky (2000). Boxes show lower and upper quartiles with median (line) and
mean (square) inside the box.
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4.4.3 Weighing the LM variables for chl a prediction

In order to detect the relative importance of input variables for chl a prediction,
standardized regression coefficients were computed for the LMs of each MT
(Table 10) corresponding to the two annual cycles. For '04-'05, different
variables seem to be important for modeling chl a throughout the year. Salinity
seemed to be the most important variable during peak chl a conditions of
February (LM1) although the effect of this variable was not statistically
significant (Table 10). This variable was probably selected during the LM
construction since it presented a relatively higher correlation coefficient with
chl a (Pearson R= -0.365, p=0.114, n=20) compared to other variables.
Among the variables that played a statistically significant role, nitrogen
affected the period following the peak chl a concentrations of February (LM2),
phosphate affected the medium chl a values from May to August (LM4),
whereas temperature was correlated with the low winter chl a from September
to January (LM3).

Table 10: Results for the Linear Models (LMs) resulting from MT application for
'04-°05 and ’09-’10 annual cycles. B are the unstandardized and Beta the
standardized regression coefficients with the corresponding t-test results.

Annual Linear

Parameter B Beta t

cycle Model
LMA Constant 8.827 2.586*
S -0.156 -0.365 -1.663
LM Constant 0.226 0.884
) o
o onstan . .812**
04-05  LM3 T -0.011 —0.191 —2.121*
Constant 1.083 5.907**
LM4 PO, 5.381 0.483 3.380**
SiO; -0.044 —0.312 -2.183*
LMA Constant 0.420 3.194**
Wet PO, 9.446 0.383 3.182**
'09-10 LM2 Constant 1.342 8.731**
LM3 Constant 1.749 14.410**

* Statistically significant relation at the 0.05 level
** Statistically significant relation at the 0.01 level

For the '09-10 annual cycle, phosphate seems to be the most important
variable for modeling chl a variability since it is the main tree separation
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variable and the only prediction variable for LM1 (Fig. 6b) corresponding to
spring and summer conditions. Instead of a linear regression equation,
subsets LM2 and LM3 predict chl a concentration as a constant value,
resulting from the mean of samples contained within each LM. This is
because within each of these two LMs, none of the input variables had a
statistically significant importance or correlation with chl a.

4.5 DISCUSSION

According to the results of the current study, when modeling phytoplankton
biomass in an enclosed coastal area, the MT method seems to have
increased predictive power on unseen cases (as estimated with 10-fold cross
validation) compared to MLPs and MLR statistical approach. This is
consistent with previous studies showing a better performance of MTs over
the MLPs (Ajmera and Goyal, 2012; Bhattacharya and Solomatine, 2005;
Solomatine and Siek, 2006). Apart from the higher predictive power, MTs offer
more insight into the generated model (Singh et al., 2010). Indeed, MTs
provide the opportunity to easily interpret the effects of input variables to the
output variable (e.g. chl a). This is not the case in MLPs where special
treatment for the weighing of input variables is required to evaluate their
contribution (Gevrey et al., 2003; Ruck et al., 1990; Tirelli and Pessani, 2011).
Considering the MLR approach, MTs have also shown a better performance
which was also confirmed by previous works (e.g. Dzeroski and Drumm,
2003; Jurc et al., 2006). The main advantage of MTs, is that they subdivide
the initial dataset into homogeneous subsets/leaves with distinct
characteristics based on a number of discriminating variables, instead of the
use of a uniform space as in MLPs and MLR.

The data discrimination process in MT induction is based on selected input
variables that may reflect characteristics of ecosystem functioning (salinity,
temperature, photoperiod for ’'04-'05 and phosphate, salinity for ’09-'10). In the
resulting subsets the method focuses on the most important variables (if any),
incorporating them in the LMs constructed by the MT. Consequently each final
subset, expressing an ecosystem state, is described by a linear regression
equation with its own input variables affecting chl a concentration in contrast
to the MLR approach where a single equation originating from the whole
dataset aims to predict the output variable (e.g. chl a). However, predictions
must be made with caution since the predictive power of the method is
occasionally low within LMs. Possible reasons for this low predictive capability
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may be the small number of samples in the LM, or the possibility that chl a
variability cannot be described by any of the input variables.

Using MTs, inferences about processes regulating ecosystem functioning can
be made considering the discriminating variables, the subsets formed (LMs),
and the regression coefficients in each LM (e.g. Dzeroski and Drumm, 2003;
Lamon lll et al., 2008; Kocev et al., 2010). These coefficients may be used for
ranking the importance of independent variables, provided that they are
standardized prior to analysis. This standardization is essential since many
variables of different orders of magnitude are involved. However the
explanation of the physical meaning of the weighing coefficients must be
carried out with caution, since the number of samples within each subset is
small and consequently the statistical power of the linear regression analysis
is low. For example in the present application of MTs, some LM subsets
contained only 20 samples or weak predictive parameter, indicating that more
data may be needed to improve the models. This fact may act as a limitation
to the MT application compared to the classic MLR approach which develops
linear models using the whole sample dataset.

Two independent datasets were used in the current application of MTs,
characteristic of two contrasting meteorological regimes, a typical wet and dry
annual cycle (Spyropoulou et al., 2011). The aim was to assess the efficiency
of the method to reveal factors regulating primary production. In agreement
with the two other applications of MTs on marine ecosystems (Pereira et al.
2009; Volf et al. 2011), salinity seems to play a crucial role on ecosystem
functioning, since it was selected as discriminating variable for both the dry
and wet annual cycle in the coastal area under consideration. The effect of
salinity is probably indirect and is related to the important role of freshwater
inputs from the surrounding watershed. These inputs affect both the
hydrodynamic regime and the nutrient content of the receiving water body
(Tsirtsis et al., 2008). Previous attempts to explain phytoplankton structure
(but not chl a) for the dry annual cycle ('04-'05) have also shown that salinity
and temperature were the two most important parameters explaining
assemblage variability (Spatharis et al. 2007a). High freshwater inputs seem
to develop a well-formed pycnocline and also decrease residence time in the
gulf (Spyropoulou et al., 2011), whereas nutrient-rich freshwater inputs were
identified in the past as the driving factor for development of winter algal
blooms (Spatharis et al., 2007a; 2009).
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The role of freshwater inputs and the seasonal pattern are further stressed
due to the fact that temperature and photoperiod were also identified as
discriminating variables during the dry annual cycle. Moreover, during winter
and particularly February when chl a is generally high, salinity and
temperature are low, underlining the already observed trend that winter
blooms are driven by the cold, nutrient-rich freshwater from the watershed
(Spatharis et al., 2007b). A strong seasonal pattern is also revealed when
considering the subsets (LMs) formed. For the wet annual cycle three periods
were identified characterized by high, medium precipitation, and dryness. For
the dry annual cycle however, four periods were formed (summer,
autumn/early winter, February and early spring) with considerable fluctuations
in chl a values possibly related to strong seasonal variability in the physical
setting of the system (residence time and stratification). Depth which was
found as the main discriminating variable when studying eutrophication in
lakes (Lamon Il et al., 2008), does not play a significant role in Kalloni gulf as
it was also observed in previous studies (Spatharis et al., 2007b), possibly
due to the shallowness of the system.

Considering nutrients, the '09-10 annual cycle (wet) seems to be driven
mostly by phosphate, although a higher number of samples would probably
be needed to improve the model predictive power. Phosphate was identified
both as the discriminating variable in LM construction and it was also included
as a significant variable in the subset corresponding to the warm period
(LM1). It was also included in the significant variables affecting chl a during
the warm period (LM4) of ‘04-‘05 (dry annual cycle). In both cases (the ‘09-10
tree and LM4 of ‘04-'05) the N:P ratio was low, close to the threshold for N
limitation. These results seem contradictory because although chl a variability
during these periods should be depending on nitrogen, it is better explained
by POasaccording to the MT results. The reverse trend was observed for March
and April of ‘05 (LM2), where nitrogen affected the post peak chl a
concentrations although the N:P ratio in this subset suggested P-limitation.
Previous studies (Spatharis et al., 2007a) have attributed this phenomenon to
the presence of nitrophilous species such as the diatom Pseudo-nitzschia
calliantha. These trends are in agreement with Carstensen et al. (2011) who
found that TP was a better predictor of chl a in regions having TN:TP ratios
consistent with nitrogen limitation and vice versa. It seems therefore that
nitrogen is the driving factor for the growth of phytoplankton biomass (in terms
of chl a) during periods of high freshwater input and low renewal rate,
whereas phosphate plays a key-role when nutrients are generally low and
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renewal rate is high. A possible explanation may be related to the tendency of
phosphate ions to be adsorbed on particles and consequently be removed
from the water column (Krom et al., 2010). During periods of low renewal rate
(e.g. February), phosphate is removed from the water column and nitrogen
plays a key-role since nitrophilous phytoplankton species form the winter
bloom. However, during periods of high renewal rate (e.g. winter of wet
annual cycle or summer), phosphate plays a major role driving primary
production.
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5 CASE STUDY II: OPTIMIZING CLASSIFICATION TASKS
WITH A NEW INDEX FOR COMBINING MACHINE
LEARNING ALGORITHMS

5.1 SUMMARY

Voting is a commonly used ensemble method that combines base classifier
results in order to improve classification in the output variable. However, the
selection of proper classifiers to participate in the voting algorithm is currently
an open issue. In this study we developed a novel Dissimilarity-Performance
(DP) index which incorporates two important criteria for the selection of the
base algorithms: their different response in classification (dissimilarity) when
combined in triads and their individual performance. To develop this index we
firstly evaluated the relationship between voting results and different
measures of dissimilarity among classifiers covering heterogeneous algorithm
groups (rules, trees, lazy classifiers, functions and Bayes) and using two
substantially different datasets (i.e. emotion recognition based on speaker
data and ecological state prediction based on physicochemical data). The
Jaccard dissimilarity index computed among the classifier triads has shown
the strongest relationship (R>0.60) with the corresponding voting results for
both datasets and was thus selected as the most appropriate index to
represent dissimilarity in our newly proposed DP index. The DP index is highly
correlated with the voting performance and can efficiently identify the best and
worst performing classifier triads.

5.2 INTRODUCTION

ML techniques can be applied for classification tasks whereby an output
variable (target class) with discrete and unordered values (labels) is predicted
from a set of collected samples (instances) that consist the training set
(Kotsiantis et al., 2006). This approach spans cutting edge applications over a
wide variety of scientific fields such as bioinformatics (Cline & Karchin, 2011;
Pinero et al., 2004), computing (Huang et al., 2010; Nigam et al., 2000),
astronomy (Brescia et al., 2012) and the environment (Cutler et al., 2007;
Kubat et al., 1998). The above classification approach could be extremely
useful to the evaluation of the ecological quality status of coastal waters for
the purposes of WFD (2000); however it has not so far been studied using
different ML techniques except NNs (Tison et al., 2007; Ocampo-Duque et al.,
2007).
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Voting is the simplest and easiest ensemble method for combining classifiers
(Tan & Gilbert, 2003) in order to achieve better classifying performance. The
challenging step when employing a voting algorithm is selecting the base
classifiers to be combined. When the number of potential classifier
combinations and the size of the dataset are rather small, then the optimal
classifier combination can be found exhaustively. Otherwise, such sequential
search is impossible due to the exponential increase of the system’s
complexity and the amount of time required (Ruta & Gabrys, 2005). To
simplify this process, appropriate criteria must be applied for the selection of
optimal classifiers to participate in the voting algorithm. For instance when
classifiers in a voting scheme are highly dissimilar or independent (as
assessed with dissimilarity indices), the classification performance may be
significantly improved (Banfield et al., 2005; Kuncheva et al., 2003; Shipp &
Kuncheva, 2002). However, previous attempts to incorporate dissimilarity
indices within the voting procedure resulted in highly complex and user-
unfriendly techniques (Li et al., 2012; Opitz & Shavlik, 1996; Ruta & Gabrys,
2005). Selection of the best combination of base algorithms should thus be
based on simple and flexible criteria that will jointly consider the dissimilarity
or independency of classifiers along with their individual performance in
classification tasks.

In this study we aim to develop a user-friendly index capable of identifying the
optimal combination of base classifiers maximizing the classification
performance of the voting algorithm. To this aim, the specific objectives are:
(a) to assess the efficiency of individual classifiers in two substantially
different classification tasks (i.e. classify emotion recognition based on
speaker data and eutrophication state based on physicochemical data), (b) to
identify combinations of individual classifiers that have markedly different
behavior (i.e. high dissimilarity), (c) to test whether these combinations also
have a corresponding high performance in voting classification, and (d) to
develop a new user-friendly index that joints the two criteria of classifier
dissimilarity and individual classifier performance. We expect that this
dissimilarity-performance (DP) index will be more efficient in quantifying the
classifying performance of different combinations of base classifiers than the
traditionally applied dissimilarity indices. DP will be confronted with two
essentially different classification tasks to subjectively evaluate the index
efficiency.
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5.3 METHODOLOGY

5.3.1 Outline

The development of the DP index, identifying the optimal combination of base
classifiers to perform classification tasks, was carried out as follows (Figure
9). Initially 10 base classifiers were trained in order to assess their individual
performance in two substantially different classification tasks (i.e. emotion
recognition based on speaker data and prediction of eutrophication state
based on physicochemical data). This information is useful, as it enables
direct comparison of classifiers and secondly, it clarifies whether sufficient
classifiers participate afterwards in the devolvement of the new index. The
next step involves the training of the voting algorithm with all possible
combinations of the 10 base classifiers in triads using both datasets.
Thereafter, Binary Dissimilarity Indices (BDls) were computed for all possible
classifier triads, to assess possible differences in the outcome of base
classifiers. Additionally, this classifier dissimilarity within each triad measured
by BDIs and the corresponding voting performance were related using the
correlation coefficient. The last step is the development of the new DP index
that will take into account the classification performance of each base
classifier and the dissimilarity of classifiers in the triads during the voting
procedure. In order to assess the efficiency of DP index we tested whether its
performance values were correlated with the corresponding voting
performance of triads. To further test the efficiency of our new index, we
checked whether the triads identified by DP as having the best or worst index
value are the same as those giving the best or worst classification
performance based on voting. The latter will show whether DP (which is
considerably less computationally intensive than the exhaustive search) can
identify the optimal classifier combinations.

All base classifiers were trained with the WEKA machine learning package
(Hall et al., 2009). The same package was also used for the training of the
voting algorithm with all possible classifier triads. The purpose of DP index is
to identify the optimal combination of classifiers maximizing the classification
performance during voting and is thus not concerned whether base classifiers
participate with their highest potential performance. For this reason, each
classifier was trained using the default parameter values of the WEKA
package.
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Figure 9: Schematic diagram of the methodological steps followed for the
development and testing of the proposed Dissimilarity-Performance (DP)
index. This index takes into account both the individual performance of base
classifiers (D) and the dissimilarity of classifiers results -measured with Binary
Dissimilarity Indices (BDIs) - when these are combined in triads.

5.3.2 Datasets

Two substantially different datasets were used for the training of base
classifiers and voting EM. The first dataset includes voice speaker data used
to recognize 7 emotion states and the second dataset includes
physicochemical parameters used to classify 5 ecological status levels of
seawater. These datasets are different in the number of input variables (133
vs 9), samples (525 vs 188), and predicted labels of the target class (7 vs 5).
It is therefore expected, that these two datasets will show different
classification efficiency due to the aforementioned data characteristics.
Additionally, datasets differ both in structure and functionality as the first deals
with human emotional states having unclear boundaries (due to differences
among humans) (Anagnostopoulos et al., 2012), whereas the second is
subject to high stochasticity and noise, inherent in ecological data (Kitsiou &
Karydis, 2011).
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More specifically, the first dataset was based on the Berlin Emotional
database (EMO-DB) (Burkhardt et al., 2005), which contains 535 utterances
of 10 actors (5 male, 5 female) simulating 7 emotional states (anger,
happiness, anxiety/fear, sadness, boredom, disgust and neutral). After
processing with PRAAT software (Boersma & Weenink, 2005) each utterance
was converted to a 133-dimensional prosodic feature vector based on well-
established speech features, such as Pitch, Mel Frequency Cepstral
Coefficients (MFCCs), energy and formant frequencies (Anagnostopoulos &
lliou, 2010). Thus, the dataset consists of 535 samples with 133 prosodic
inputs to be categorized in 7 class labels.

The second dataset comprises of 188 seawater samples collected on monthly
campaigns during one annual cycle (August '04-July ’05) in Kalloni Gulf,
Lesvos Island, Greece (Spatharis et al., 2007a). The dataset includes 9
physico-chemical input parameters (e.g. temperature and nutrients) and one
target class including 5 ecological status levels (high, good, moderate, poor
and bad) (Table 11).The latter is based on chlorophyll a limits set by
Simboura et al. (2005) for the evaluation of ecological quality of coastal
waters for the purposes of the WFD.

Table 11: Classification schemes developed for chl a and the corresponding
water quality status (Simboura et al., 2005).

Water quality status
Index High Good Moderate Low Bad

Chl a <0.10 0.10-0.40 0.40 - 0.60 0.60 - 2.21 >2.21

5.3.3 Training of base classifiers and voting EM

The 10 base classifiers were selected in order to represent all different
categories of classification such as rules, trees, lazy classifiers, functions, and
Bayes (Table 12). The voting EM combines the results of the base classifiers
in triads to offer its own classification for all samples (Kuncheva, 2004). In this
work, an exhaustive training of the voting algorithm was achieved by combing
the 10 base classifiers at all possible triads (i.e. 120 different classifier triads).
We used classifier triads because during voting the combination of an odd
number of classifiers avoids the risk of ties (Ruta & Gabrys, 2005).
Additionally, three is the minimum odd number that can be used in voting and
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thus combining classifiers in triads simplifies the whole procedure with respect
to complexity and time.

Table 12: Predictive performance in terms of CCl and k (number in parenthesis)
of the 10 base classifiers for both datasets.

Dataset
o Emotion Ecological
Category Abbreviation N o
recognition state prediction
Rules JRip 58.7 (0.51) 60.1 (0.38)
Part 64.4 (0.57) 50.5 (0.29)
Trees J48 62.4 (0.55) 55.9 (0.37)
RF 73.1 (0.65) 62.2 (0.45)
Lazy IBk 80.6 (0.77) 63.3 (0.47)
KStar 78.1 (0.74) 55.3 (0.36)
Functions Log 67.5 (0.62) 52.1 (0.29)
MLP 81.7 (0.79) 59.0 (0.42)
SMO 78.7 (0.75) 45.7 (0.07)
Bayes NB 51.6 (0.43) 46.3 (0.25)
Meta Vote 86.8 (0.84) 70.0 (0.59)
best triad

The efficiency of the 10 base classifiers and the voting algorithm to perform
emotion recognition and ecological state prediction was evaluated using the
10-fold cross validation procedure (Stone, 1978). The voting EM was trained
based on the averaged probability estimates of the base classifiers (Witten &
Frank, 2005). The classification performance was assessed on the basis of
two criteria i.e. the percentage of CCl and the Cohen’s k statistic (Cohen,
1960).

5.3.4 Binary diversity indices (BDIs)

BDIs quantify the dissimilarity or independency of results among base
classifiers combined in triads. This is later used to determine whether
combinations of dissimilar or independent classifiers also have a
corresponding high performance during voting. Dissimilarity of classifiers is an
essential measure because combinations of classifiers that are markedly
different (i.e. commit classification mistakes on different instances) are
expected to improve classification results during voting (Kuncheva &
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Whitaker, 2003). BDIs expressing dissimilarity, measure the differences in
classification results among classifiers (Wonda, 1981), whereas BDls
expressing independency are used to assess correlation between classifiers.
Both BDI categories have been extensively used in various disciplines (e.g.
psychology, engineering or economics) for assessing the relation between
situations consisting of potential occurrences of a specific event (Seifoddini &
Djassemi, 1991; Taylor et al., 2012; Yin & Yasuda, 2005).

In the present case study, the correct classification of an instance by a
classifier was assigned a “1” score, whereas misclassification was assigned a
“0” score. Using this binary assessment for all 10 classifiers, four well-known
BDIs (Table 13) were computed. The first three BDIs can be estimated by
combining the classification results of two classifiers. Thus, to express
dissimilarity (simple matching distance SMD, Jaccard distance (JD) or
independency (Phi) in triads, an average of the paired combinations was
calculated. The last index (Q), being also a measure of independency
(positive or negative) between classifiers, is estimated by using three
classifiers as described in Kuncheva et al. (2003).
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Table 13: Definition and ranges of four binary similarity (or dissimilarity) indices

. No of alg.

Coefficient _ Range Formula (S;; or S; k) Reference

required J J
Simple Matching N10 4 o1
Distance (SMD) [0.1] N11 4 N10 4 NO1 4 pOO (Sokal & Sneath, 1963)
Jaccard Distance 10 01

2 [0,1] N_+N (Jaccard, 1908)
(JD) N11 4 Ny10 4 poO1
NllNOO _ N10N01

Phi 2 [-1,1] (Yule, 1912)

\/(Nll + NlO)(Nll + NOl)(NlO + NOO)(NOl + NOO)

11177001 57010 77100 __ 0117710177110 77000
Q 3 [-1,1] NN NN _—N"NN N (Yule, 1900)
NlllNOOlNOlONlOO + NOllNlOlNllONOOO

N1 Number of instances that have been correctly classified by both classifiers

N0 NO1 Number of instances that have been correctly classified by the 1t classifier but not by the 2" and likewise respectively

N©0 Number of instances that have been correctly classified by neither classifier

N1 Number of instances that have been correctly classified by all three classifiers

NO11 101 110 Number of instances that have been correctly classified by the 2" and 3" classifiers but not by 1t and likewise
respectively

N001 010 py100 Number of instances that have been correctly classified by 3™ classifiers but not by 15! nor 2" and likewise respectively

N000 Number of instances that have been correctly classified by neither classifier

66



5.3.5 Dissimilarity-Performance index (DP)

Apart from the traditionally used BDIs, the individual performance of
classifiers was also considered in the present case study to provide further
information on the classifiers to be combined in order to achieve improved
classification (Sharkey & Sharkey, 1997). To identify the best performing
classifier triad it is thus essential to jointly consider the criterion of dissimilarity
among classifiers along with their individual performance in the development
of an integrated Dissimilarity-Performance (DP) index. The formula proposed
for this DP index is the following:

_ Xixjlij + Xisapi
6
where J; jis the JD index calculated from the binary classification results of

DP

i,j=123

thei-th and j-th classifiers and p; is the ratio of the correctly classified samples
by the i-th classifier to the total number of instances. The first addend in the
numerator represents the sum of the JD for all classifier pairs, while the
second is the sum of the single performance of each classifier used in voting.
The denominator is used to standardize results on 0 to 1 scale. JD index was
selected as a dissimilarity measure in the new DP index as it showed the best
correlation with voting performance compared to other BDIs. The
characteristics of diversity and performance of the classifiers existing in each
triad have equal contributions in DP index.

The efficiency of BDIs and DP based on the performance criteria (i.e. CCl and
k) for the 120 different classifier triads was assessed with Spearman’s rank
correlation coefficient. DP was further tested for monotonicity (consistent
increase or decrease along the CCI spectrum) as this is an important
prerequisite for an index (Spatharis & Tsirtsis, 2010).

5.4 RESULTS

The classification performance of the ten base classifiers for both datasets is
presented in Table 13. Overall, the results of the emotional recognition are
significantly better for all classifiers than the corresponding results of
ecological state classification. The best classifier is IBk, as it is the most
efficient in classifying ecological state and the second more efficient for
emotional recognition. RF and MLP can also be considered as satisfactory
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classifiers for both classification tasks. On the other hand, classification
results of Jrip and SMO algorithms were contradicting. Although Jrip showed
a satisfactory classification of ecological states compared to other classifiers,
it failed to give statistically significant results for emotional recognition. The
opposite was found for the SMO classifier. Finally, NB had low performance
for both datasets while the remaining classifiers (i.e. Part, J48, K* and Log)
were characterized by moderate predictive performance.

Voting EM, combining the aforementioned base classifiers in triads, has
shown higher classification performance compared to the performance of
individual classifiers (Table 13). The best classifier triad for each of the two
datasets achieved an increase in performance higher than 5%, based on the
CCI and « performance criteria, compared to the corresponding results of the
best base classifier (i.e. MLP for emotional recognition and IBk for
eutrophication). Thus, the best classifier triad for emotion recognition (i.e. 1Bk,
MLP, SMO) classified correctly 86.8% of the samples whereas the k
performance criterion indicates that the classification performance is almost
“perfect”’. Considering ecological state classification, the best triad was JRip,
RF and MLP classifiers, which correctly classified 70% of samples with
performance that can be characterized as almost “substantial” (k = 0.59).

The voting performance of various classifier combinations in terms of the CCI
and k performance criteria has shown statistically significant correlation
(p<0.01) with JD and DP indices (Table 14) for both datasets. Other BDIs
such as SMD were more weakly but significantly correlated with CCI and « for
both datasets, whereas Q was significantly correlated with CCl and k only for
emotional recognition. The positive correlation between SMD or JD and the
performance measures shows that when combining highly dissimilar
classifiers, the resulting classification performance is also high. On the other
hand, the negative correlation with the Q index is observed due to the
ambivalent relationship with voting classification performance (Kuncheva et
al., 2000). Finally, Phi index was not correlated with the performance
measures for both classifications tasks. Therefore, assuming that voting
performance can be expressed with CCI and k, the most efficient among the
indices considered is DP showing high correlation coefficient values for both
datasets (R>0.80).
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Table 14: Results of correlation analysis (Spearman) between the performance
(based on CCI and k) of the voting algorithm and the BDIs trained on the 120
classifier combination triads.

Emotion Ecological
recognition state prediction
Index CCl K CClI K

Phi 0.005 0.003 0.163 0.177

SMD 0.529** 0.520** 0.218* 0.234*

JD 0.618** 0.610**  0.429** 0.451**

Q -0.385** -0.378* -0.178 -0.146

DP 0.811**  0.813** 0.824*  0.845**
** Correlation is significant at the 0.01 level (2-tailed)

The efficiency of the new DP index to identify classifier triads with significantly
high or low performance in voting procedure is shown in Table 15. DP has
determined in the best decade, 9 out of 10 classifier combinations having the
higher voting performance in terms of both CCl and k for emotional
recognition. The corresponding values were 8 and 9 respectively, for
eutrophication state classification. On the other hand, in the worst decade of
classifier triads DP managed to identify 7 out of 10 with the worse CCI after
voting for both datasets. The DP performance was slightly improved (i.e. 8 out
of 10 identifications), when in the worst decade the classifier triads with the
lower k value were only considered. Additionally, the combination triad
identified as best by DP for each dataset, was the triad that finally presented
the best performance during voting.

Table 15: Number of classifier combination triads that both one of the
performance measures (CCIl or k) and DP placed in the worst or best tens for
each datasets.

Classifier Emotion recognition Ecological state prediction
combinations CCl K CClI K
10 worse 7 8 7 8
10 better 9 9 8 9
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The monotonic behavior of DP was checked by plotting its variability in
specific percentiles of CCl performing measure (Fig. 10) for comparative
reasons. To this aim, six percentiles of CCIl were selected for both datasets:
the minimum and maximum values, and the 20%, 40", 60" and 80"
percentiles. DP has shown consistent increase along the CCI spectrum for
both datasets and thus its behavior is considered as monotonic.

0,7 1 —O— Emotion recognition
= I -Ecological state prediction
0,65 -
o
a 06 -
0,55 T ’A - —A
_a--t
0,5 k T T T T T 1

0 20 40 60 80 100
Percentiles of CCl

Figure 10: Monotonic behavior of DP along CCI gradient for both datasets.

5.5 DISCUSSION

In the present case study, 10 base classifiers corresponding to various ML
categories, were trained using two substantially different datasets (i.e.
recognition of emotion and eutrophication state classification) in order to
access their classifying efficiency. Best performance in recognition of emotion
was achieved by MLP, although IBk and SMO were also efficient. This is in
agreement with previous applications where these three classifiers accurately
recognized emotions from data offering significantly better performance
(Fragopanagos & Taylor, 2005; lliou & Anagnostopoulos, 2010; Morrison et
al., 2007; Rani et al.,, 2006; Shami & Verhelst, 2007). On the other hand,
classification performance of ecological state using base classifiers was
moderate, an observation also holding for previous studies on this topic
(Tamvakis et al., 2014). Higher performance was observed for IBk, MLP and
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tree classifiers in agreement with previous studies on eutrophication analysis
by ML techniques (Recknagel, 2001; Tamvakis et al., 2012; Volf et al., 2011).

The voting algorithm was trained with all possible classifier triads resulting
from combinations of the 10 base classifiers in order to give its own combined
classification. The best triad has shown improved performance in agreement
with the general principle that ensembles of classifiers are often substantially
more accurate than their individual base classifiers (Dietterich, 1997; Pal &
Mather, 2003; Saha & Ekbal, 2013; Tsai, 2014; Wozniak et al., 2014). For
both datasets the % increase of CCl was over 5%, which is considered as
remarkable improvement in classification performance (Pal & Mather, 2003).
Moreover, according to k performance criterion, voting increased the
classification performance from “substantial” to “almost perfect” for the
recognition of emotion, whereas the performance for seawater ecological
state increased significantly to the lower limit of “substantial” classification.

Each base classifier employs a different learning strategy to give its own
classification results which are fed into the voting algorithm for the final
classification outcome. When the individual results are similar then the voting
outcome will be based more or less on the same information (errors and
corrects) (Dietterich, 2000b). Thus, combining classifiers with similar results
does not offer any additive value in voting, increasing however the system
complexity (Ruta & Gabrys, 2005). On the other hand, EMs consisting of
classifiers offering different results have the potential to achieve significantly
better performance compared to those of individual base classifiers (Ruta &
Gabrys, 2005; Tan & Gilbert, 2003; Tsymbal et al., 2003). This finding was
confirmed in the present case study, with JD dissimilarity measure showing
the highest statistically significant correlation with the two measures of voting
performance for both datasets. The positive correlation indicates that classifier
triads with highly differentiated results (as expressed by JD) tend to be more
accurate during voting. These results are in agreement with Kuncheva &
Hadjitodorov, 2004 who employed JD in cluster ensembles. However the two
measures of independency (i.e. Q and Phi) being considered to offer
improvement in voting accuracy (Kuncheva et al., 2000; 2003), showed low
relationship with voting performance also in agreement with previous studies
(Banfield et al., 2005; Ruta & Gabrys, 2005; Shipp & Kuncheva, 2002).

Although dissimilarity among individual classifiers combined to develop EMs
may be the key towards the improvement of classification efficiency (e.g.
(Canuto et al., 2007; Mao et al., 2011), dissimilar but powerless classifiers are
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unlikely to bring any benefits in EMs performance (Ruta & Gabrys, 2005).
These two crucial characteristics, classifier dissimilarity and efficiency in
individual performance, have been coupled in the current study to propose a
new index highlighting the optimum classifier combinations to train voting
algorithms. The DP index integrates dissimilarity using the JD measure, which
is considered as an efficient and stable indicator (Yin & Yasuda, 2005), while
it is sensitive on following the voting performance variability for both datasets.
In addition, DP index integrates the performance characteristic using the
individual performance of the classifiers, as it is reasonable to assume that
optimal combinations should include classifiers with high individual
performances (Sharkey & Sharkey, 1997).

Considering (a) the high and significant correlation between DP and the voting
performance, (b) the fact that DP achieved to determine the best performing
classifier triads and (c) the consistent monotonic behavior of DP for both
datasets, this newly proposed index is very efficient to identify base classifiers
that should be combined in order to optimize the classification performance
during voting. DP is recommended to individual ML users (rather than EMs
designers) seeking to optimize their classification performance by selecting
appropriate base classifiers. Indeed, DP can be easily calculated in three
steps. First, the user trains any set of base classifiers, being composed by
representatives of any ML category, trained through any learning platform or
even composed by a single classifier trained by different training sets. Then,
using the obtained classification results for every instance of the database
(i.e. correctly or falsely classified), the user calculates the JD index for every
triad of base classifiers. Finally, using the derived information (performances
from the first step and dissimilarities from the second) DP values are
computed for every triad and subsequently the triad that possibly offers the
best voting performance (i.e. the triad with the grater DP value) is identified.

Apart from the easiness in application, DP has a number of additional
advantages: (a) simplicity as it uses only three combined classifiers, (b)
efficiency in the selection of classifiers to participate in voting schema as
proven in the present case study for two different datasets, (c) flexibility as
any base classifier can be included in the voting scheme and (d) innovation in
the joint consideration of the dissimilarity among classifiers as well as their
individual performance. On the other hand, DP cannot be compared with
complex EM schemes that perform thorough search towards inducing all
possible kinds of classification errors which however need highly qualified
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designers to apply them to new tasks. DP mainly aims at individual users
aiming to achieve a combined and more accurate classification using their
own familiar and tested ML algorithms.
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6 CASE STUDY lll: OPTIMIZING BIODIVERSITY PREDICTION
FROM ABIOTIC PARAMETERS USING MACHINE
LEARNING TECHNIQUES

6.1 SUMMARY

An integrated methodology is proposed for the effective prediction of
biodiversity exclusively from abiotic parameters. Prediction is based on three
machine learning techniques: MTs, MLP and IBk algorithms. Abiotic
parameters (input parameters) include temperature, salinity, dissolved
inorganic nitrogen and phosphates that are known to affect phytoplankton
assemblage structure. Biodiversity is expressed as a number of indices
(output variables) representing richness, evenness and dominance. To
optimize diversity prediction, indices were calculated on a large number of
phytoplankton field assemblages, but also on corresponding noise-free
simulated assemblages that retain the structure of field ones. Results indicate
that biodiversity can be accurately predicted using exclusively abiotic
parameters and the efficiency is doubled with simulated assemblages. The
Instance Based learning algorithm was the most effective and achieved the
best prediction for Menhinick richness (R = 0.80), Evenness E2 (R = 0.81)
and Berger Parker dominance (R = 0.80) indices. Based on the optimal
algorithm, indices, and dataset, a software package was developed for
phytoplankton diversity prediction typical for Eastern Mediterranean waters.

6.2 INTRODUCTION

Diversity can be expressed through a number of indices which quantify
community structure and the changes it undergoes due to natural or
anthropogenic stress (Magurran, 2004). However, field communities are also
driven by multiple stochastic factors such as seasonality and spatial
heterogeneity which impose a degree of uncertainty and distortion on data
(Straten, 1992). This ‘environmental noise’ inherent in field communities is
also reflected on the subsequent calculation of indices (Vounatsou & Karydis,
1991). This problem can be overcome with the use of simulated communities
via a species abundance distribution (e.g. the log-series, lognormal) however
retaining the structure of field ones (Blackwood et al., 2007; Lyashevska &
Farnsworth, 2012; Schloss & Handelsman, 2006; Spatharis & Tsirtsis, 2010).
Calculations on noise-free simulated communities seem appropriate when
trying to establish cause-and-effect relationships, e.g. between diversity and

74



abiotic parameters, due to the removal of noise or distortion that more easily
supports the revealing of possible signals.

In this paper we propose an integrated methodology for the optimization of
diversity prediction exclusively from abiotic parameters (Fig. 11). The diversity
is expressed by diversity, evenness, and dominance indices calculated on
both field and simulated phytoplankton assemblages covering a wide
productivity range typical of Eastern Mediterranean waters. Predictions were
carried out based on three ML algorithms. The objectives of the study were
thus: (a) to distinguish the ML technique offering the most accurate prediction,
(b) to select the indices representative of all three diversity components
(richness, evenness, and dominance) (c) to optimize prediction by calibrating
the methodology with indices calculated on simulated assemblages, and (d) to
develop a software tool for biodiversity prediction based on the proposed
methodology.

Input Algorithm Index
datasets training prediction
! " Abiotic variables ‘: OMTs = \‘:
| & :|:|'>i : i 11 diversity |
i 19 indices calculated on | ! : ! |
. field assemblages | l IBk ] — l
S e ! ! ' 6 evenness |
: & : : : : :
i 19 indices calculated on ::>: : ! i
' simulated assemblages ,: '\\ MLR ,:',:>'\\ )
Selection of Selection of Selection of
optimal dataset optimal algorithm optimal indices

Figure 11: Conceptual diagram of the methodological procedure followed in
order to optimize diversity prediction from abiotic parameters.
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6.3 METHODOLOGY

6.3.1 Datasets

The first dataset employed in the study includes 658 field samples and was
compiled using existing data from coastal areas of the Aegean Sea, E.
Mediterranean representing a wide range of productivity. Among the various
abiotic parameters available in the dataset, a subset was selected for the
aims of the present case study, including: (a) concentrations of limiting
nutrients, Dissolved Inorganic Nitrogen (DIN) and Phosphates (POs), that
directly influence the growth and composition of phytoplankton in the areas
under consideration (Spatharis et al., 2008) and (b) Salinity (S) and
Temperature (T), which may also indirectly affect phytoplankton synthesis
through stratification in coastal waters (Spyropoulou et al., 2013). Dataset
information and summary statistics of the above parameters in each of the
four areas are provided in Table 16. The dataset covers a wide range of
phytoplankton abundance (103-9x10¢ cells/L) and species richness (4-39
species). There were no missing values in the dataset and no special
treatment was performed for outlying values. It was considered that the latter
often correspond to extreme events such as algal blooms due to episodic
terrestrial inputs (Spatharis et al., 2007b) or to the photoperiod increase
during spring, that have to be included in the models to be developed.The
variables’ positive skeweness (Table 16), that is almost always observed for
environmental data, was taken into account in the application of the ML
algorithms. According to the requirements of each algorithm standardization
or normalization procedures were applied, described in detail below.
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Table 16: Dataset information (mean annual values, range in parenthesis and skeweness) of abiotic (input) and phytoplankton
parameters for the coastal areas in Aegean Sea.

Rhodes offshore Gera Gulf Kalloni Gulf Saronikos Gulf
n=143 n=114 n=186 n=215
Abiotic parameters T (°C) 19.67 19.06 17.73 19.21
(15.86-26.39) (9.90-26.70) (9.43-28.20) (13.10-27.60)
0.66 0.32 0.11 0.33
S (pcu) 39.16 38.92 38.58 38.30
(38.92-39.39) (36.39-40.28) (34.02-41.06) (37.20-39.70)
11.63 0.23 0.91 8.50
DIN (uM) 0.91 1.48 3.94 2.70
(0.21-12.45) (0.40-5.82) (0.47-45.20) (0.36-37.95)
9.08 2.36 4.66 5.18
PO4(uM) 0.0700 0.194 0.088 0.236
(0.010-4.090) (0.050-0.850) (0.00-1.577) (0.010-6.00)
11.60 2.1 5.88 7.54
Biotic parameters Cell No. 6,291 47,237 592,441 283,201
(103-6x10%) (2x103-4x10°) (3%103-9x106) (103-6x10°)
4.37 3.04 5.03 6.30
Species No. 12 16 23 19
(5-23) (4-37) (4-39) (5-39)
0.18 0.95 0.40 0.35
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The second dataset includes 658 simulated phytoplankton assemblages with
abundances corresponding exactly to the abundances of the 658 field
samples. The simulation was based on the log-series statistical distribution
which assumes that most species in an assemblage are rare (Fisher et al.,
1943). The log-series distribution is shaped by parameters x and a, that can
be calculated knowing the ratio of species richness to total abundance (S/N)
in an assemblage. The S/N ratio was estimated via a simple linear regression
equation between S and N using the 658 field samples as described in
Spatharis & Tsirtsis (2010). Regression analysis was also used to identify the
relation of the abundance of the most dominant species N1 with the total
phytoplankton abundance N in the 658 field samples. When parameters x and
a were estimated, the expected number of species S was allocated for each
abundance (total cells N). By feeding the previous two relationships which
characterize field phytoplankton assemblages onto the log-series distribution,
simulated assemblages are generated that retain the structure of the initial
field ones (Fig. 12). This approach has been described in detail in previous
studies (Spatharis & Tsirtsis, 2010; Tsirtsis et al., 2008) resulting in a wide
range of assemblage diversity closely matching reality (Spatharis et al., 2011).
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‘ Sample 2 S L
Sample 1
Linear Equations ‘ B
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Figure 12: Schematic presentation of the procedure followed for the generation
of 658 simulated phytoplankton assemblages corresponding to the 658 field
assemblages.
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6.3.2 Indices expressing diversity components

Indices can express different aspects of biological diversity such as richness,
evenness, and dominance. Thus, diversity indices weigh more on the richness
component of assemblages, evenness indices account more for the
distribution of individuals to species, and dominance indices consider only the
proportion of most abundant species in an assemblage (Karydis & Tsirtsis,
1996). In the current study, the most commonly used diversity, evenness and
dominance indices (Krebs, 1999; Magurran, 2004) were used in order to
express all aspects of phytoplankton diversity (Table 17). These indices were
considered as output parameters for the ML algorithms described below.

6.3.3 Details of the ML algorithms

MTs

The M5 algorithm is one of the most well-known MT induction methods. The
M5P algorithm in Java implementation which is part of WEKA machine
learning package (Hall et al.,, 2009) was used for the MT induction. An
optimization of the method was attempted based on the minimum number of
instances reaching a leaf that is crucial since it controls the tree pruning
(Quinlan, 1999). To this aim, different values were used in order to optimize
results, that is 4 (default), 8, 16, 32 and 64 instances. Prior to analysis, abiotic
parameters were standardized using the z-score procedure to ensure equal
weights during tree induction.

IBk

The IBk algorithm was applied with the use of k nearest training instances (k-
NN) in order to predict the value of the output variable in new unseen
instances. The Manhattan (city-block) distance was used as distance metric,
as it was found more powerful compared to the classic Euclidean distance. In
the software package WEKA (Hall et al., 2009) the initial setting of parameter
k may significantly affect the prediction power. To optimise results, different
values of this parameter were tested, i.e. 2, 4, 8, 12 and 20. Prior to data
analysis, abiotic parameters were standardized using the z-scores, as
performed in the application of MTs.

MLP
The MLPs used in this study belong to the classic group of feed-forward NNs
with one hidden layer in which sigmoid activation function is used to all nodes
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while it is being trained by the backpropagation algorithm. To select the
network’s topology that maximizes the algorithm effectiveness, five numbers
of neurons were tested (4, 8, 10, 15, and 20).

The performance of the three algorithms was also compared to the classic
multiple linear regression (MLR) technique. Prior to data analysis, abiotic
parameters were log transformed to approach normality, as it is common for
natural data to follow positively skewed distributions. Although NNs do not
require any assumption regarding input data, it has been shown that their
performance is often improved through data transformation using
mathematical functions (Shi, 2000).

6.3.4 Assessment of optimal diversity prediction

To estimate the prediction accuracy of different algorithms on unseen data,
the K-fold CV approach was employed (paragraph 3.3.1) (Stone, 1974). To
optimize algorithm results, biodiversity prediction was based on three
numbers of CV folds: 10, 20 and 658 i.e. LOOCV. The basic measure of
performance for assessing the predictive power of the three algorithms is the
R coefficient between the calculated values of indices (based on field or
simulated assemblages) and those predicted by the algorithm while the
RMSE is also presented. The variability of R coefficient within the K-folds of
each algorithm was estimated by the coefficient of variation which quantifies
the variability (or stability) of the results. A two-factor ANOVA was used to
determine the relative effect of testing different CV folds and different values
of algorithm parameters (i.e. number of instances reaching an MT leaf,
number of neighbours for IBK, or number of neurons for MLP).Percent errors
between calculated and predicted values were used as an additional measure
of performance. Instead of using solely instances (e.g. the 658 samples) to
assess the performance of predicted indices, we also assessed the behavior
of predictions using average monthly values of biodiversity for each of the four
areas.
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6.4 RESULTS

6.4.1 Selection of optimal parameters for algorithm training

The relative effect of three numbers of CV folds (10, 20, 658) on algorithm
performance based on R was tested using both field and simulated data. This
factor was not significant for MTs and IBk (ANOVA, p>0.05), but was
statistically significant for MLP (ANOVA, p<0.001). For the latter, the best
performance was achieved with the 10-fold CV. The minimum number of
instances reaching an MT leaf (4, 8, 16, 32, 64) was not statistically different
for field dataset (ANOVA, p>0.05) but was strongly significant when using
indices calculated on simulated data (ANOVA, p<0.005). The optimal number
of instances selected for MT parameterization was 8. Significant differences in
R were observed among the different numbers of neighbors for 1Bk (2, 4, 8,
12, 20) and neurons for MLP (4, 8, 10, 15, 20) (ANOVA, p<0.05). The optimal
number of neighbors was 8 and the optimal number of neurons was 10.

6.4.2 Selection of optimal dataset, algorithm and indices

The performance of the three ML algorithms (using the optimal parameters
described above) with the respective performance of MLR in terms of R for all
indices is presented in Table 17. Additionally, the performance of the
algorithms in terms of RMSE is presented in Table 18. Overall, the use of
indices calculated on simulated instead of field assemblages resulted in
significantly improved predictive power. This was observed for all tested
algorithms and almost all indices as indicated by the higher and in some
cases doubled correlation coefficients. The most efficient algorithm for
diversity prediction was IBk and the least efficient was MLR. Based on IBk,
the most effective indices calculated on simulated data were Species
Richness, Menhinick, Evenness E1, Evenness E2, Evenness E3 and Berger-
Parker (R > 0.80). On the other hand, Shannon and Hill N1 indices had lower
predictive power (R<0.72). According to the coefficient of variation, variability
of R among the 10 folds of CV was low (<25%) for the majority of indices
tested, whereas it was minimised for IBk on simulated data (e.g. 5.1% for
Species Richness, 5.9% for Menhinick, 5.3% for Evenness E2, 5.1% for
Berger-Parker). Therefore, Species Richness, Menhinick, Evenness E2 and
Berger-Parker were selected as representative of the three components of
assemblage diversity i.e. richness, evenness and dominance.
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Table 17 Predictive performance in terms of R of MTs, IBk, MLP and MLR for all indices using data from field (F.A.) and simulated

assemblages (S.A.) evaluated by 10-CV.

Reference MTs IBk MLP MLR

F.A. S.A. F.A. S.A. F.A. S.A. F.A. S.A.

Abundance 0.76 0.77 0.73 0.73 0.39 0.39 0.26 0.26

Sp. Richness (Ludwig & Reynolds, 1988) 0.33 0.73 0.69 0.81 0.47 0.54 0.28 0.31

Margalef (Margalef, 1958) 0.39 0.69 0.60 0.79 0.33 0.58 0.19 0.29

Gleason (Ludwig & Reynolds, 1988) 0.37 0.69 0.59 0.79 0.29 0.58 0.18 0.28

Menhinick (Menhinick, 1964) 0.62 0.71 0.77 0.80 0.55 0.59 0.28 0.29

Diversity Odum (Odum et al., 1960) 0.35 0.65 0.75 0.74 0.58 0.59 0.26 0.23
indices Simpson (Ludwig & Reynolds, 1988) 0.60 0.67 0.66 0.77 0.35 0.51 0.25 0.35
H2-Shannon (Shannon & Weaver, 1949) 0.58 0.57 0.67 0.71 0.40 0.44 0.21 0.32

Hill N1 (Ludwig & Reynolds, 1988) 0.49 0.53 0.63 0.70 0.32 0.43 0.10 0.30

Hill N2 (Ludwig & Reynolds, 1988) 0.34 0.68 0.60 0.79 0.30 0.53 0.12 0.32

Hurlbert (Hulbert, 1971) 0.60 0.63 0.66 0.77 0.33 0.51 0.25 0.35

Mclntosh (Mclintosh, 1967) 0.55 0.61 0.66 0.78 0.32 0.52 0.22 0.35

Evenness E1 (Pielou, 1975) 0.59 0.70 0.68 0.80 0.33 0.56 0.27 0.33

Evenness E2 (Sheldon, 1969) 0.53 0.72 0.67 0.81 0.35 0.58 0.24 0.30

Evenness Evenness E3 (Ludwig & Reynolds, 1988) 0.43 0.71 0.67 0.80 0.35 0.57 0.24 0.30
indices Evenness E4 (Ludwig & Reynolds, 1988) 0.23 0.71 0.45 0.78 0.20 0.54 0.03 0.27
Evenness E5 (Ludwig & Reynolds, 1988) 0.35 0.70 0.54 0.79 0.24 0.56 0.23 0.31

Redundancy (Pattern, 1962) 0.59 0.69 0.64 0.78 0.35 0.55 0.27 0.33

Dominance  Berger-Parker (Berger & Parker, 1970) 0.51 0.70 0.64 0.80 0.34 0.54 0.23 0.34
indices McNaughton (McNaughton, 1967) 0.51 0.64 0.64 0.74 0.32 0.47 0.18 0.32
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Table 18: Predictive performance in terms of RMSE of MTs, IBk, MLP and MLR for all indices using data from field (F.A.) and
simulated assemblages (S.A.) evaluated by 10-CV.

Diversity
indices

Evenness
indices

Dominance
indices

Abundance
Sp. Richness
Margalef
Gleason
Menhinick
Odum
Simpson
H2-Shannon
Hill N1

Hill N2
Hurlbert
Mclntosh
Evenness E1
Evenness E2
Evenness E3
Evenness E4
Evenness E5
Redundancy
Berger-Parker
McNaughton

MTs
F.A. S.A. F.A. S.A. F.A. S.A. F.A. S.A.
4.2E+04 4.2E+04 4.9E+04 49E+04 7.0E+04 7.0E+04 9.0E+04 9.0E+04
5.57 2.63 3.93 2.19 5.30 3.23 7.48 4.99
0.36 0.13 0.31 0.11 0.43 0.16 0.54 0.24
0.36 0.12 0.31 0.10 0.44 0.15 0.53 0.23
0.06 0.02 0.03 0.02 0.04 0.03 0.06 0.05
1.28 0.71 0.67 0.55 0.86 0.78 1.40 1.14
0.14 0.04 0.13 0.03 0.17 0.05 0.23 0.07
0.60 0.10 0.54 0.09 0.78 0.12 1.00 0.17
2.33 0.60 2.05 0.50 2.95 0.66 3.71 0.96
1.90 0.61 1.60 0.49 2.20 0.69 2.82 1.07
0.14 0.04 0.13 0.03 0.17 0.05 0.23 0.07
0.12 0.04 0.10 0.03 0.14 0.05 0.19 0.07
0.17 0.07 0.12 0.06 0.17 0.09 0.23 0.14
0.15 0.11 0.12 0.09 0.16 0.13 0.23 0.21
0.19 0.12 0.13 0.09 0.17 0.14 0.24 0.22
0.08 0.05 0.07 0.04 0.08 0.06 0.11 0.09
0.11 0.06 0.10 0.05 0.12 0.07 0.16 0.11
0.17 0.07 0.12 0.06 0.16 0.09 0.23 0.14
0.15 0.04 0.13 0.04 0.17 0.06 0.23 0.10
0.13 0.05 0.11 0.04 0.15 0.05 0.20 0.08
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6.4.3 Prediction performance of optimal algorithm

The distribution of the percent error of prediction for the above indices is
depicted in Fig. 13. Half of the produced errors fall within a +10% range for all
four indices. Moreover, almost all errors do not exceed a *30% limit.
Menhinick and Berger-Parker seem to be overestimated by IBk giving positive
error values. On the other hand, the median is close to zero for Species
Richness and Evenness E2, while the skewness is similar to a normal
distribution indicating that IBk does not unilaterally overestimate or
underestimate these indices.

100
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% Error
o

-501

-100 | T T T
Menhinick Evenness-E2 Berger-Parker Species Richness

Figure 13: Box-plots of the percent errors for predicted values by the 4 best
performing diversity indices that were calculated on simulated assemblages.
Prediction was based on IBk algorithm.

For each of the four sampling areas, monthly data of Evenness E2 index
calculated on simulated and field assemblages were compared with the
corresponding predicted values by the IBk algorithm (Fig. 14). The deviation
between predicted and field or simulated values was expressed quantitatively
by calculating the Mean Absolute Error (MAE). Monthly predictions of
Evenness E2 using the simulated assemblages shown in Fig. 14a were more
accurate (MAE=0.048) than the values calculated on field data in Fig. 14b
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Mean Evenness-E2

(MAE=0.053). However, the latter can be also considered as satisfactory
indicating that IBk performs with high precision using mean monthly values
not only for noise-free simulated data but also for field data. IBk predictions
were least accurate for both simulated and field data in the case of Gera Gulf.
This area is characterized by mesotrophic conditions, and for this reason the
response of phytoplankton diversity to physico-chemical parameters is likely
to be more unpredictable.
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Figure 14: Monthly IBk predictions of Evenness E2 (shown with rhombus) for
each sampling area in comparison with the corresponding (a) simulated and
(b) field data (shown with stars).

6.5 DISCUSSION

Three novel ML techniques and 19 indices were tested in order to achieve the
best biodiversity prediction using exclusively abiotic parameters. Algorithm
training was based on an extensive dataset containing biotic (phytoplankton
species abundances) and physico-chemical information representative of a
wide productivity range of E. Mediterranean Sea. Biodiversity prediction,
particularly in the marine environment, is a complex task as multiple factors
and stochastic processes are acting upon community structure (Adjou et al.,
2012; Gontier et al., 2006). This problem was overcome by using diversity
indices calculated on simulated assemblages, free of environmental noise.
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The use of powerful modelling tools such as MLs and the further optimization
of the methodology with simulated assemblages provided an integrated
framework for biodiversity prediction with high predictive power (R>0.80 for all
selected indices between predicted and simulated values).

The simulated phytoplankton assemblages used in this study maintained the
structural characteristics of the corresponding field assemblages across a
wide productivity range (Tsirtsis et al., 2008), but were also free of noise
related to stochastic extrinsic factors such as patchiness, grazing, and
seasonality (Karydis, 1996). This property improved the relationship of
diversity indices with abiotic parameters, given that noise renders algorithms
sensitive to misleading (McCune, 1997; Van Straten, 1992). It also increased
or even doubled the predictive power of algorithms while maintaining the
realism of the natural system. Simulated communities originating from field
ones have been successfully used in the past to investigate the behavior of
diversity indices in microbes (Blackwood et al., 2007; Schloss and
Handelsman, 2006), benthos (Lyashevska and Farnsworth, 2012), and
phytoplankton (Tsirtsis and Spatharis, 2011).

Our results indicate that ML techniques can greatly increase the predictive
power of models; however, the three algorithms presented significant
differences in their predictive performance. IBk was the most efficient and
reliable in biodiversity prediction in agreement with other marine applications
of this algorithm (Dzeroski and Drumm, 2003; Hatzikos et al., 2008) or other
scientific disciplines such as hydrology, weather forecasting, bioinformatics,
banking and forensics (Bannayan and Hoogenboom, 2008; Bhasin et al.,
2005; Buchholz et al., 2009; Diplaris et al., 2005; Hinwood et al., 2006;
Solomatine et al., 2006, 2008). The observed increased efficiency of IBk in
our study can be explained considering the heterogeneous structure of our
dataset compiled from four different coastal areas, each one showing
variability on a monthly basis. In this algorithm, every single input instance
can be dynamically used with equal weight during prediction (Aha et al.,
1991). Therefore, when indices are associated to the abiotic information, 1Bk
maintains the localized information of the data in the heterogeneous dataset
(Solomatine et al., 2008). This also makes IBk sensitive to instances that
deviate from the main trends giving a more accurate prediction.

Instances that deviate from main trends (that characterize our heterogeneous
dataset) are missed by algorithms such as MTs and MLP, resulting in reduced
sensitivity. Contrary to IBk, these algorithms attempt to derive general
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relationships between diversity indices and abiotic parameters, described by
linear models in MTs or weighted neurons in MLP. The latter has been
proposed as a reliable model of ecological processes (Basheer and Hajmeer,
2000; Lek et al., 1996) however, its efficiency depends upon choosing the
correct topology (i.e. number of layers and neurons) and applying elaborate
adjustments such as pruning, constructive algorithms or recurrence (Rocha et
al., 2007; Wang et al.,, 1994). Although these adjustments may improve
predictive performance, they dramatically increase algorithm complexity and
thus application runtime. In the present case study, MLP was applied in its
simplest form and its efficiency was inferior compared to both MT and IBk
algorithms. MLP has also shown weakness to give accurate predictions
compared to other ML techniques in several other studies (e.g. Etemad-
Shahidi and Mahjoobi, 2009; Nisanci et al., 2011; Solomatine and Siek, 2006;
Soysal and Schmidt, 2010).

Almost all indices calculated on simulated assemblages were sufficiently
predicted by the IBk algorithm. However, Menhinick's, Evenness E2 and
Berger-Parker which scored higher based on their R values, are proposed for
predicting the three diversity components namely richness, evenness and
dominance. Although calculations on simulated data increase the predictive
power of algorithms, satisfactory predictions can be also made with field data.
We tested the predictive power using 658 discrete samples but also by
pooling together data from different stations within a sampling campaign at a
given study site. The latter predictions were much more accurate since the
use of averaged data smoothed the effect of time, space (local
dimensionality), and outlying values in agreement with previous studies
(Kumar, 2000; More and Deo, 2003).

Presently we propose an optimization procedure for biodiversity prediction
based on few abiotic parameters. Although optimization was based on
phytoplankton data, this methodology can be easily adapted for any group of
organisms, provided that there are sufficient samples covering a wide range
of environmental conditions so that biodiversity can be fully represented. The
proposed models are based on a black-box approach and do not offer
mechanistic explanations for the observed relations between abiotic variables
and diversity; however the performance of a sensitivity analysis in a future
work could reveal the underlying processes and shed light on theoretical
aspects (Refsgaard et al., 2007). The high predictive power (expressed with R
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correlation coefficient) in diversity prediction that the proposed methodology
provides, enables its integration in various crucial ecological implementations.

6.6 SOFTWARE FEATURES

PREdiction of PHYtoplankton Biodiversity (PREPHYB) is a MATLAB-based
software with a user-friendly interface (Fig. 15) that is freely downloadable at
http://www.mar.aegean.gr/biodiv/Prephyb. The software provides the optimal
phytoplankton diversity prediction with high predictive power, implementing
the IBk algorithm and methodological scheme described in Fig. 9. PREPHYB
incorporates an extensive dataset of 658 samples, and the built-in IBK is
trained through the relationship between physico-chemical parameters and
indices that are calculated on noise-free simulated phytoplankton
assemblages. User input is limited to four abiotic variables i.e. temperature,
salinity, DIN and POs; these can be either entered manually, or automatically
processed in batch mode through a standard comma-separated ASCII file.
The output consists of the predicted diversity, which corresponds to a wide
productivity range typical of coastal and offshore waters of the Eastern
Mediterranean Sea (103-9x10° cells/L), expressed by indices representing all
three diversity components (richness, evenness, dominance), as well as
additional descriptors of phytoplankton assemblage structure such as species
richness and cell number. It must be noted that the dataset used for model
training (abiotic variables and corresponding phytoplankton assemblages) is
characteristic of Eastern Mediterranean waters as mentioned above.
Therefore the use of PREPHYB as it is for biodiversity prediction with the
already stated accuracy is limited for waters of similar characteristics.
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Figure 15: Graphical user interface of the PREPHYB software developed in
MATLAB. Prediction of four indices and abundance of phytoplankton
assemblages is based on abiotic variables that are either manually entered by

the user, or batch processed from a comma-separated ASCII file.
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7 CONCLUSIONS - CONTRIBUTION TO ICZM

In the present work a wide range of supervised ML techniques was used in
order to investigate various aspects of coastal eutrophication i.e. chl a
prediction, water quality classification and phytoplankton diversity prediction.
All these tasks were performed for Aegean waters in Eastern Mediterranean
by exclusively using abiotic parameters as cause variables.

MTs, being less popular as an ML method, were assessed for their efficiency
to predict chl aunder high environmental variability usually encountered in
coastal ecosystems affected by terrestrial runoff. Compared to MLPs and
MLR, MT method showed (a) increased predictive power, (b) higher sensitivity
to discriminate different abiotic conditions driving chl a variability, (c) ability to
scale parameters affecting chl a variability, and (d) easiness of application.
For these reasons, MTs are recommended for the investigation of
eutrophication-related ecosystem processes offering new knowledge on chl a
dynamics from existing datasets. Based on the MT results, within each annual
cycle (wet and dry) chl a variability occurred on a seasonal basis (and not
spatial) and important differences were detected between the two
meteorological regimes since chl a seasonality was affected by quite different
abiotic factors. The efficiency of MTs to identify variables driving chl a, and
thus eutrophication, can be invaluable in ICZM, since most of these variables
are strongly linked to terrestrial processes. By reducing nutrient inputs (e.g.
phosphate), or altering freshwater inflow that affects salinity, effects on chl a
can be estimated using MTs. Therefore useful cause-and-effect relationships
can be established between terrestrial processes and the response of the
marine ecosystem (Tsirtsis et al., 2008), a prerequisite of modern approaches
in ICZM. It must be stressed however, that a sufficient number of samples
must be available in each tree leaf and variables need to be standardized in
order to scale their importance in describing chl a variability.

Chl avariability was also studied in a different context that is water quality
status classification for the needs of the European WFD. The ML algorithm
training for this aim (a) highlighted the base classifiers with the higher
accuracy and (b) showed that EMs such as voting algorithm can offer better
performance than single base classifiers. Moreover, the proposed DP index
can effectively show the way that voting EM could succeed higher
performance during ecological quality classification of coastal water bodies,
by identifying the best feeding combination triad of classifiers. Therefore, DP
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in combination with the newly proposed EMs can be incorporated as an
information technology (IT) tool to assist one of the main aims of WFD i.e. the
continuous monitoring for the protection of coastal waters. Moreover, the
proposed methodology can link water quality status with basic abiotic
parameters, and therefore offer new insights towards the prevention of water
bodies’ deterioration due to nutrient enrichment and support the achievement
of the demand for good quality status by 2015.

The successful prediction of phytoplankton diversity from abiotic parameters
offers important new insights on ‘phytoplankton’, often represented in
ecological models in terms of biomass of one or few components
characteristic of different size classes or main groups (Arhonditsis et al.,
2006). Based on the proposed methodology, a link is being established
between the most important abiotic variables and diversity, therefore the
whole diversity spectrum and its dynamics can be incorporated into an
ecological model (Laniak et al.,, 2013). This approach supports both the
testing of ecological questions regarding diversity, as well as environmental
quality assessment and protection, since changes in diversity are a focal point
in recent environmental protection measures, as in the WFD. In this context,
diversity prediction can be incorporated in models testing the effect of different
scenarios of climate change, habitat loss, or ecosystem management. For
phytoplankton in particular, diversity across a wide productivity range was
predicted from temperature, salinity, DIN and POs. Therefore important
changes in phytoplankton structure can be foreseen based on temperature
projections related to climate change scenarios, or in connection to nutrient
loading originating from potential changes in land use and management
practices.
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8 FUTURE WORK

Future perspectives may either fall into the more ‘technical’ part aiming to the
optimization/elaboration of existing approaches by exploring ML capabilities
and sensitivity, or in the more ‘ecological’ part by raising and answering ‘new’
ecological questions, or both of the above.

For the first approach, application of promising ML ensembles such as
stacking, bagging or boosting, which have not been yet applied to the marine
environment, may succeed in better predictive performance, or interpret the
eutrophication phenomenon in a more comprehensive way. Other studies
may include the identification of the most appropriate input variables or
training instances to participate in the ML techniques, as well as the better
calibration of the various algorithms. Furthermore, recent studies introduce
methods such as genetic algorithms or fuzzy logic in combination with NNs to
achieve improved accuracy. Application of such combinations in our
ecological questions with the existing databases, may improve the less
efficient performance of NNs compared to other ML techniques, observed in
the present study.

Towards the second approach of ecological perspective, the ML techniques
and the IT tools developed in the present work can be further used to quantify
the relative impact of each input abiotic parameter to primary production,
phytoplankton biodiversity and water quality status. To this aim an extensive
sensitivity analysis can be performed using the available predictive tools (i.e.
MTs, DP or PREPHYB) contributing to the identification of the main
mechanisms involved in eutrophication processes. Moreover, model sets of
instances representative of extreme conditions, climate changes or stressed
ecosystems can be developed and feed the IT predictive tools aiming to
assess the resulting changes in phytoplankton biomass or biodiversity. This
information is valuable for managerial purposes either in local/regional, or in
global scales. In this context, possible coupling of the ML methods with other
powerful tools such as GIS, hydrodynamic or watershed models would be
desirable.
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