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Solving the DVRPMB through re-optimization

EXTENDED SUMMARY IN GREEK (XYNOYH AIATPIBHX)

2m mapovoa daTpiPn depgvvatar to TIpoPanua Avvapukng Apopoidynong Oymudtov pe
[MaparaBés (ITAAOII). Xt6xog t0v mpoPAuatog eivar 1 PBEATioTn avabeon SvvouK®V
ATOUTNOEMV TOPAAUPOV TOV AaUPAvOVIOL G TPAYUOTIKO YpOVO GE GTOAO OYNUATOV TTOL
exterel TpokaBopiopéva SPOUOAdYIL «OTATIKOVY TTapadocemy. To TpoPAnua evooudtmong
TOV SVVAUIK®V OTOITHCEDV OVTILETOTILETOL P TEPLOdIKT avadpopoidynon. ' v enilvon
TOVL TPOPANUATOC OVOOPOUOAOYNONG, TPOTEIVETOL VEO LOONUATIKO HOVTELD, KAOMG Kot Vi
npocéyyion PETiog enilvong péow g pebddov Branch-and-Price (B&P). I v enihvon
AmOLTNTIKOV TPoPANUdTeV (.. yopic xpovikd Tapabupa), TPOTEIVETAL KOVOTOLOG EVPETIKN
uébodog mapepPfoing (insertion heuristic) mov Paciletor ot pébodo Avvapukng Anuovpyiog
Metoafintov (AAM 1 Column Generation) kot mapéyel amoTEAEGHOTIKEC ADGELS GE GUVTOUO

VROAOYIOTIKO YPOVO pe PiKpn amOKAo omd T BEATIOTY.

XPNOYWOTOUDVTOG T TPOAVAPEPOUEVT] TPOGEYYIOT, 1 O TPIPY] EMKEVIPOVETAL ETIONG OTN
dwdkacio avadpouoAdYNoNG, MOV OamOTEAEITOL Omd: o) TNV TOMTIKY OVOIPOLOAOYNONG
(ovyvomrta), Ko PB) N TokTik) vAomoinonc. H tehevtoio oyetieton pe 1o tuipo Tov
dpoporoyiov mov Kotvomoteitar 6tov 00Myo mpog ektéreon. [lapovsialovtan ko avolvovton
TPOKTIKEG OTPOTNYIKES OVAOPOUOAOYNONG (GLVOVOGUOS TOMTIKNG KOl TOKTIKNG) HECH
EKTEVOVG TEPAUATIKNIG OlEPEVVNONG, OPYIKA OepdVTag OmEPLOPIGTO GTOAO OYNUAT®OV
owbéoo pe otoéxo povo TV eAyloTonoincn ToL KOGTOLG. Bdoel twv amoteAecpdtov,
poteivovtol 0dnyieg Yo TV VIOBETNON TG KATAAANAOTEPNG GTPATIYIKNG AVAOPOUOAIYNOTG
avaAoya LE To EKACTOTE YOPOUKTNPIGTIKA TOL TEPPAALOVTOG TG EPOOIACTIKTG 0AVGTOAG (TT.).

YED@YPOPIKN KATOVOUT], XPOVIKE TtapdBupa melatdv, duvokdtnTa, KAT.).

AxoAoVBmg, peketdton N TEPINTOON TEPLOPIGUEVOD GTOAOL OYNUATOV GTNV omoia Hovo €va
HEPOG TV OLVOUIKAOV omoutnoe®y umopel va eEumnpemBel. T v avtipetodmion tov
mpoPAquatog, Tpoteivovror ot amapaitnteg ahloyéc 1000 oto poviédo ITAAOIL 660 kot ot
puéBodo emidvone. Ocov apopd 0 TPOPANLUA AVOOPOLOAOYNONG, XPNOLOTOIOVUE aPYIKE pia
GLUPOTIKY OVTIKEWEVIKT GUVAPTNGN, M oTtoia TpooTadel va peyiotomomaoet Tnv eEumnpénon
neAatov. [ v Tepintwon ovtr), VITOSEIKVOOVIE HEGH TEPAUATIKNG JEPEVVIONG TTMOG Ol
GTPUTNYIKES OVAOPOLOADYNONG TOPOVGIALOVY TAPOUOLN CLUTEPIPOPA LLE TN TEPIMTOGT TOV M

ofectdéTNTOL TOV GTOAOL €ivol OMEPLOPLOTY. ZTN| GLVEYELD, TPOTEIVOVIOL KOLVOTOWES
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Extended Summary in Greek (Zovoym datpiing)

OVTIKEWLEVIKEG GUVOPTNOELS, OTIC OTOIEC AaUPAveTarl LTOYN 1) TOPAYOYIKOTNTO TWV OXNUAT®V,
Topovotdlovtag £T61 peyalvtepo meplimplo yio TNV eELANPETNOT OVVUUIKOV OTOLTHCEWDY TOV
fo mopovcleTOVY GTO HEAAOV, E€0IKO GE TEPITTAOGCELS UE GYETIKA LVYNAN OtabecipudTra
oYNUATOV Kol peYdAa ypovikd mapdbupa. EmmpdcOeta, ot mpotewvopeves pébodot
epopuolovial Ge TPAYUATIKO GEVAPLO ETOLPEING TOYVUETOPOPDV KOl ETOEIKVIETOL TTOG
ATOPEPOLY PEATIOUEVE OMOTEAECUOTO GLYKPITIKA HE TIS YPTOUOTOIOVUEVES TPOKTIKES

dpoporoyNoNg kabmg Kot pe Tponyrévn evpetikn nébodo.

Téhog, peAetdror evilapépovca Kot TPokTikn mopordayn tov I[TAAOIT mov emtpémet
UETOPOPTOON HETAED TMV OYNUATOV KOTA TN SLOPKELN EKTEAEGNG TOL OPOLOAOYiOL, e KOPLO
6TOYO TNV AVOKOTOVOUY TOV (POPTOV EPYOGIOG TMV «OTUTIKOV» TOPOYYEAMMDY TAPAOOONG OE
mpaypatikd xpovo. I'a v enilvon tov TPoPAUATOG AVASPOLOAOYNONG LE UETAPOPTMOT),
nmpoteivetal Kovotopo pafnpotikd povtéro, kabag kot KatdAAnAn evpetikr] pEBodog, kavn
VO OVTULETOTICEL TEPWMTMOES TPOUKTIKOV peyéBovc. EmumAéov, extevic melpapotikn
OlepeuNoN KAT® omd SLAPOPES EMYEPNGIOKES GUVONKES VTOOEIKVVEL TMG 1 CLYKEKPLULEVN
TPOCEYYION OMOPEPEL CNUAVTIKEG PEATIOOELS, EMTPOCHETO OO OVTEG TOV TPOCPEPOLY Ol

TPONYOVLEVES TTPOGEYYIGELS.
TO MTIPOBAHMA AYNAMIKHX APOMOAOTHEHX OXHMATQN ME [TAPAAABEX

To TIAAOITl pmopet va eEnynBet mpaktikd Oewpdvtag TLMIKO o©evaplo  etoupeiog
TAYVUETAPOPAV, OTTOC Paivetar oto Zynuo [1.1. Xvykexpyuéva, Bempeitar 6TL 6TOAOC OYNUATOV
(cbvoro V) e mepropiopévn yopntikdm o avd oynuo Q Ppioketon drabéoyloc oe KEVIpo
dwavoung. Katd v apyn tov ypovikov opilovia mpoypappatiopod [0, Trnax], €va cbvoro
oudtov K c V avalapupdavel tnv eKTEAEGT TPOYPOUUUATICUEVOV dPOUOAOYI®MV TPOKEUEVOD
va ELTINPETNGEL TPOKAOOPIGUEVO GOVOAO (CTATIKMV) TEANTAOV, EVO TO oynuatov Ky =V — K
napopével dStubéoyo oto kévipo oavoung (Zy. I1.1a). Kébe dynua opsirel va emotpéyet 6to
KEVTPO dtovoung LExpt ™ ypovikn oTiypn t = Tppqy- Katd ) S1dpkela vAomoinong tov mAdvov,
véeg amarthioelg ywoo moporofn (pickup) siodyovion oto ovotua (eeeéfig ovopdalovtat
Avvogurég Aroutnoeig, AA4), or omoieg Ba mpémet va GuAAe)BoVV Kol Vo ETGTPAPOVY GTO KEVTIPO
otavoung yu tepartépw eneéepyacio (Zy. I1.2p). Or 44 Ba npénet va avateBodv ota dabéoiua
OYNLOTO LLE AULECT] GLVETELD TNV avaBe®PN o™ TV dpoporoyimvy Tovg (Zy. I1.1y). Emonpaiveton
TG Ol OTATIKEG AMOLTNOELS 0€ UITOPOHV Vo avaTeBovV 6g AAA0 dynua, evd ot AA pmopodv va

eEummpemBovv amd kabe oymua V = K U K.

Vi DeOPSys Lab



Solving the DVRPMB through re-optimization

210y0G Tov TTAAOII givon 1 avdbeon TOV SOLVOUK®OV OVTOV ATOUTHCEOV (TOPAYYEAMDY) oTa
KOTAAAN A OYNLLATO, EITE GE OVTA TTOL 1)OT) EKTEAOVV KATO10 OPOLOADY10 EITE GTA LITOAOITO TOV
Bpiokovtal 610 KEVTIPO Slavoung. Xe TEPITTOON OmOVCinG TEPLOPIGUOD AVAPOPIKAE LE TO
dwbéoo o6toho, oVVNB®G EAUYICTOTTOLEITOL TO KOGTOG OPOUOAGYNONG, OPOPETIKGE, OF
TEPIMTOON TEPLOPICUEVOL  GTOAOVL, HEYIOTOTOIEITOL O OopBUdS TOV  EEVTNPETOVUEVOV
aroutnoewv. Mio epikti] Aor tov mpoPAnuatog Oa tpémel vo EVTNPETEL OAEC TIC GTOTIKEG
OTTOLTIOELG KO VO TKOVOTIOLEL TN YWPNTIKOTNTA TOV OYNUAT®V KOl TOV YPOVIKOVS TEPLOPIGUOVS
AVOQOPIKA pHE TO YpoviKd Tapdbupa TV meloTdv kot T PBapdiog tov odnymv. Ot dvo
OLOKPLTEC TEPIMTOGELS SLOOEGIUATNTOSC GTOAOV (amEPIOPIOTOG Kol TEPLOPIGUEVOG), EeTalovTal

EexwPIOTA TOPAKATO.

Depot A

T

A A
Static Served A
Requests Requests .
Dynamic
Requests
— Plannedarc ----» Executed arc == Arc been travelled at re-routing instance

(a) (b) (c)

Yympe I1.1. Atotdonwon tov ITAAOIT; (2) apykd mhavo, (b) deién vémv amatoswy Katd ™
SLdpKeLn EKTELEGTC TV OPOLOLOYI®V, (C) EVOEIKTIKT ADGN UETE TNV 0VAOPOUOAGYT oM

Avadpoporoynon oto IIAAOII

H avdbeon tov AA avtipetonileton pe mepiooiky ovaopouoioynon (PA. Zy. I1.2). Ocwpeiton
g Yo oAdKANPpo ToV 0pilovia [0, Tinax ], 00 VAoTOMO0VV L mepiodor avadpouoloynong, 6mov
kd0e mepiodoc Ba avtictoryel og éva otatikd TpoPinua I, Iy, ..., I}, o omoio Ba emAdeTon oTIC
ypovikég otiypés Tpf =1,2,...,Lpe Tp=0<T; <+ <T, <Thpax — T Ot mepiodot
avadpopordynong ([Tp—q1, Tel, £ = 1) dev éyovv anapaitnta Ty i ypovikn didpKelo. 110
oTaTIKO TPOPANUA TOV EMAVETOL KAOE Ypovikn oTryun avadpopordynong T,, ypnoiponoteiton
TO GUVOAO NG MANPOQOpiag ov elval yvoot) pEXPL eketvn 1N otiyun. Ocwpeiton Tog to

npoPAnua (Ip) emiveton otiyuaio.

0 Tl Tg TL Tmax

Initial Reoptimization Reoptimization Executed
routes cycle 1 oyele L routes

Yype I1.2. H dwdikacio avadpoporloynong

> Time
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Extended Summary in Greek (Zovoym datpiing)

‘Eva mpopinua avadpopordynong Iy, € € {1,...,L} AopPdver vmoyn tov 600 cHVOAL
ATOLTAHGEMV TTOV OeV EYovv e&umnpetnOel axoun: 1) T1g deouevuéves araitioeis (cvvoro C), Tov
TEPAAUPAVOVY TIG OMOUTNOES oL €yovv avatedel oe éva Oynuo Kol O UTOpPOVV va
petapifoctodv oe GA o oynuata, kot i) T un deoucvuéves omautioeis (cOvoro F), mov
avTioTolyovV o€ véeg AA, 1| oe AA mov eMeOncav o€ TPoNyoOUEVEC TEPLOOOVS KoL OEV £YOVV
eEumnpet et axoun, aAld propovv va eEumnpem oy amod kdbe oynua V = K U K;. Avaloya
ue ™ raxtiky viomoinons (6nwg 0o cuintnoel TapoakdT®), SVO GEVAPLO EVOEYETAL VA 1GYDOVV:
L) 01 SECUEVUEVES QAT GELG APOPOVV UOVO GE CTOTIKEG ATOITNOELS, EVAO 0L AA OV deVv £yovv
eEumnpemBel Bewpovvion oG un OSecuevpéves, kol ) Ol OECUELHEVEC  OMOLTNGEL
nepapPdvouyv OAeg 6cec £xovv avatebel oe oyNUATO GE TPONYOVUEVEG TEPLOOOVS KO OEV

&xovv e&umnpetnBel, evd ¢ un decpevpéves opilovtan povo ot véeg AA.

H Mon tov mpofinuatog avadpopordoynong ot nepiodo £ Bempel 6Ao TOV LIOAEUTOUEVO
yxpovikd opilovrtar [Ty, Tax]- MEpog Tng ADOME 0TNG VAOTOEITAL GUVETMG UEXPL TNV ETOUEVN
YPOVIKT otryur| avadpoporoynong Ty -

MoaOnpotiko povréro tov tpofinnortog avadspoporoynong oto IAAOIIL

To mapakdtw povtédo meptypdeel To TPOPANLA avadPOLOAOYNONG ayvodvTag Tov Ogiktn £,

Kka06TL TO TPOPAN A ExEL TNV 1010 LOPPT G€ KAOE TEPI0d0 OVALOPOUOAOYNONC.

Oewpeitar cbvorho N = C U F 10 omoio avTimtpos®mTEVEL TO GOVOAO TMV OMOLTGEMY OV OEV
éxet eEumnpeOet, pe € kot F 1o cOVOAL TOV SEGUEVUEVOV KOL LT OEGUEVUEVOV OTOLTICEDV,
avtiotorya, Kot pe C = Ugeg Ck, Omov Cp, 0pileTor 1o cHVOAO TV SEGUEVUEVOV OTOLTICEDV
7oL &yovv avatedei oto Oy k Tov ektelel NN Eva dpopordylo (kabodov). Opileton emiong
obvoro M = Upeg{ttr}, 0TOL 1) avimpoconedel t mapodoa BEorn Tov oynuatog k € K ko
o¢ 0 opifetar o kO6uPog apyNg ko téAovg TV dpoporoyiov (kévtpo davoung). Emiong, o
ypapog opiletar wg G = (W, A), ue W = CUF UM U {0} ka1 A 10 6OVOLO TOV OKUOV TOV
ouvdéel OAovg tovg kopPovg W(A = {(i,j):i € W,j € W\M}). To k066T0OG dAvuong g
oxpung (i,/),{i € W,j € W\M} opiletan wg c;j, evod t;; dnAdvetar o xpdvog dtévoong Tng

amoctoong Hetash dvo KOUPwv.
Kdabe anaitmon i € N oyetileton e TO TOPAKATO YOPAKTPIOTIKA:

d; H {fmon g anaitnong tov meddtn (o1 emddcelg oyetilovror pe apvnTiké Tiés,
eV 01 ToparaPEg e BeTKEC).

S; O xpovog eEumnpétnong TG amaiTnong Tov TEAATT

viii DeOPSys Lab



Solving the DVRPMB through re-optimization

h; O yxpovog apiEng g amaitnong i. [popavng, 0 < h; < Thex — T, VI € F kot h; =
oviecC
[a;, b;] To ypovikd mapdBvpo g anaitnone. o tig otatkég amattioeg, 0 < a; < b; <

Tnax VO Y. Tic AA, h; < a; < b; < Trpax-

To povtého meprhauPaver tpia dapopeticd chvora petaPintov: i) m petofAnt x;j mov
oovton pe 1 av to dynua k € V dwavoer v axun (i,j) € A kou undév oe GAn mepintwon, ii)
™ UETAPANT Wik, TOL OVTITPOCSOTEVEL TO YPOVO Evapéng eEummpémmong ¢ amaitnong
(k6uPov) i €E N and to oynuo. k € V, evd yo. 10 KEVIPO dlavoune, Wor = T, ko iii)
petaPAnT) Qjx, TOL ONA®VEL TO POPTio TOV OYNUATOC k € V apéomc petd v e&uanpétnon tov

Koupov i € W.

IlgpinTmon omEPLOPLETOV GTOAOL OYNUATOV

AVTIKELEVIKOG GTOYOC TOV TPOPANLOTOG GTNV TEPINTTOOT OmePLOPIETOL TANOOLS dobEc®Y
oYNUATOV gival 1 EAOYLGTOTOINGN TOL GLVOAKOD KOGTOVS dPOLOAOYNONG KB’ OAO TO €0POG

0V ¥povikoV opilovta [Ty, Tmax] Kot divetar amd ) cvvaptnon (I1.1) mapaxdtm:

min(z) = Z Z CijkXijk (IL.1)

kev (i,))eA

Y16 tovg TEPLOPIGUOVG:

Xijk = 1 vk € K, Vi € C U {1} (IL2)
jECxUFU{0}
Xjjk = 1 ViEF (IL.3)
keview
Xiok = 1 vk € K (T1.4)
ieECxUFU{uy}
D xop <1 v € K (I1.5)
jEF
Z Xojk = inOk vk € K¢ (IL.6)
jEF JEF
Z Xihk ~ Z Xpjk = 0 VheN, vk eV (I1.7)
IEW JEW
Qik = Qik + dj — Z(1 — Xyjx) v(i,j) EAVkEV (I1.8)
max{0,d;} < Qix < min{Q, Q + d;} VieN,VkeV (I1.9)

Dpt. of Financial & Management Engineering iX



Extended Summary in Greek (Zovoym datpiing)

Wik = Wi + 8; + tjj — Z(1 — Xjjx) v(i,j) EAVkEV (I1.10)

max(a;, T) Z Xijk < Wik < by Z Xijk VkEV,VieW (IL11)
jEw jeEw

Xijk € {0,1} v(i,j) EAVkEV (IT.13)

H avtweevikn ovvaptnon (I1.1) apopd 6t0 Guvoiikod K66T0G dpopordynone. O meploptopdg
(I1.2) e€aoparilet 0t KaOe OyMua k (kaBodov) Ba Tpémel va eEVTNPETNOEL OLEC TIG OEGUEVIEVES
amotoelg mov Tov Exovv avartebel. O mepropiopog (I1.3) opiler mwg OAeg ot pun decpevpéveg
amortoelg Oo eEummpetn oy, gite amd Eva Oymua Kabodov, eite and dynua wov Ppicketon 610
Kkévtpo dravounc. O mepropiopdg (I1.4) opilel mwg kdbe kaBodov Oynua Bo TpEnel va eMGTPEYEL
oto kévipo dSwavouns. O meplopopdg (I1.5) opiler mog eivor duvatd véa oynuato vo
ATOGTOAOVV OO TO KEVTPO SLOVOUNG KATE TNV ovadpOLoAOYNoN Yo Vo KaAvyouv AA, evd o
neplopiopog (I1.6) avaykdalel o oynuate avTd va eTGTPEYOVY 6TO0 KEVTPO dtavouns. Ot
nepropopol (I1.7) avapépovror 6t datpnon pong Kabe oynuatos. MEGm TV TEPLOPIGUDV
(IL.8) ko (I1.9) kaBopileTan mmwg To Poptio KAOe oynuatog o€ Ba vepPel TV YwPNTIKOTNTA TOL
(6mov Z évag peydhog Betikdg apBpdc). Ormepropiopoi (I1.10) ko (I1.11) kaBopilovv nwg kébe
anaitnon evmnpeteiton €vidg Tov ypovikov mapabdpov g, evd ot mepropiopoi (I1.12)
eEacearilovv mTmwg véa oynuata, mov dvvnTikd Ba amoctolobv and To KEVTIPO dtavoung, Ha
EKKIVIIGOLV UETA OO T YPOVIKI GTIYUN OvOOPOUOAOYNoTG Kot O emoTpéyouy pEGa GTovV
emtpentd ypoviko opilovta. Térog, o1 meplopiopoi (I1.13) deopedovv Tig petafAntég pong oe

dvadikég Tipés {0, 13.

IepintTtmon TEPLOPIGUEVOD GTOLOV OYNUATOV

X mepintmon 6mov 10 TANH0¢ oynudT®V Tov 6TOAOL Elvar meplopiopévo, ivar Thavo vo unyv
eumpemBovv Okeg ot AA. Zuvenm®G, OPIGUEVEC TPOTOMOUGELS OMOLTOVVIOL GTO
TpoavaPePOUEVO (YeEVIKO) povtéro. H Tpdtn Tpomomoinot apopd to TEPLopIoUd aVapOPIKA LUE
mv e&ummpémon tov AA. Zvykekpyéva, o meplopiopds (I1.3) pmopel va petatponet otov

(I1.14) mopaxdro:

2 Z Xijie < 1 VieF (IL.14)

H 6g0tepn tpomonoinon agopd v aviikeeviky cvvaptnon (I1.1). H gloyiotomoinon tov
KOGTOVG Oev tval TAEOV KATAAANAOG OVTIKEWUEVIKOG GTOYOG, EPOGOV GE GUVOVOAGUO LE TOV

(I1.14), 3¢ Ba e&vmmpetovoe kopioo AA. 'Eva katadinAdtepog aviikelpuevikdg otoyos o

X DeOPSys Lab



Solving the DVRPMB through re-optimization

umopovoe va glval n peylotomoinon eEumnpéong tov AA, 6€ GLUVOLOGUO LE TO EAAYLOTO

KO0010C, OT™G Paivetor oty (I1.15) Tapakdto:

min(z) = —Euz z Xije + z Z CijkXijk (I1.15)

kev (ij)€EA|ieF jew kKeV (i,j)eA
omov &, vmodnAdvel Eva «k€POog» Yo kibe AA mov eéummpeteitan. H kataAAnAdinta g
TapoVGOS OAVIIKEWUEVIKNG, KABMG Kol 1 mePInT®ON Tov TTEPLOPIoUEVOD 6TOAOL, eetdlovTat
OVOAVTIKOTEPO GTNV GYETIKT EVOTNTO TOPAKATO.
Té\og, mpootibetar o mapokdtom mepropopds (I1.16) mov apopd 10 TAB0G TV drabécimy

OYMNUAT®V TOL YPNCLOTOLOVVTOL KAOE dedOUEVN OTIYUN).

> e <Vl (IL16)

keV iew

ATIAXITAYXH TOY MAOHMATIKOY MONTEAOY ANAAPOMOAOI'HXHX

o v PBértiot enilvon 1oV mOPUTEVED HOVIEAOD UEIKTOD YPOUUKOD TPOYPOLUATIGLOV,
APYIKE EMAVETOL 1] YPOLLUIKT] «XOALP®CT» TOL AVAOTEP® TPOPANLULATOG LEGH TG neBddov AAM
v v €bpeon kotodtatwv opiov (lower bounds). H AAM dtoomtd 10 yolopmuéVo LOVTELD O
éva Kopiwg Ipofinuoe (KIT) xon moAlandd Yzo-Ilpofinuoza (YII). I'a v e0peon aképoimv
Moewv ypnoonoteitar 1 uéBodog branch-and-price, otnv omoio. 1 AAM ypnoponoteitol og

KkdOe kOUPO TOV GYETIKOD OEVTPOV.

2 mopovca VOTNTO TOPOVGLALETOL 1) S1ACTOGT TOV HOONUOTIKOD HOVTEAOL Y10 TN YEVIKT
nepintwon tov [TAAOII (amepidpiotog 6tOA0G). XN Mepintwon avty|, to KII meprhapfavet
poévo Toug mEPOPIGHOVS avapoptkd pe v eévmmpémon tov arnoutioewv. Ta YII
TEPIAAUPEVOVY TOVG AOITOVG TEPLOPIGLOVG OVOPOPIKA LE TNV EPIKTOTNTO T®V OPOUOAOYIWmV.
Ol TPOTOTOMGELS TOV LOVTEAOD Y10 TIV OVTILETMICT] TOV TEPLOPIGHOV OVOPOPIKEL [LE TO GTOAO

OYMNUAT®V TEPLYPAPOVTOL GE EMOLEVT] EVOTNTO.
To npotewvopevo Kvpiong Ipopinpa (KII)

To KIT yia o ITAAOIT povtelomoteitar cuvnBmg mg éva TpdPAnpa dtapepiopod cuvorov (set
partitioning problem, SPP), tov omoiov kdbe petafAntn (KOA®VA) QVTIOTOLEL GE Eva eQIKTO
dpopoAdylo kon kbbe meploplopdg avtiotolyel o pia amaitnon mov e&vanpeteital. Luvenmg,
opileton dvadwkn petafAnt a; n onoia wovtol pe 1 av n anaitnon i € N e§ummpeteiton and
70 dpoporOYI0 T € (2 Kot undév o€ kdbe GAAN TepinTmOoT, KaBDG emioNg KOl CUVTEAEGTES Y, OL

omoiot oovvton pe 1 av to dpopordylo r € 2 ypnowonoteitor amd T ADoN Kot Undév
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SLPOPETIKA. OepOVTAG TG TO ¢, OMADVEL TO KOGTOG TOV Opopoioyiov 1 € (2, 10TE N

avtikelpevikn tov KIT €yet v akdAovdn popoen:

Elayiotonoinon z Cr¥r (I1.17)
TEN
Ynd OG:
O TOVG TEpIOpIoHObS z Ay Yr =1 VieN (I1.18)
TEN
yr = {0, 1} Vr € N (I1.19)

Yuvenmg, to KIT mepthapfdvel pdévo ekelvoug tovg meplopiopods mov eTBAAAOVY HOVAOIKN
eEumnpétnon oe kdbe amaitnon. Ot vrdAowol mepropiopol aviipetonilovror omd to YII.
TapoHoo LOVIEAOTOINGT, TO GUVOAO {2 OA®V TV EQIKT®OV dpoporoyiov (LETOPANT®V),
amotereitan amd 800 vrocvvolra, 2 = (Ukek k) U 2, 6mov: a) 2 09popd 10 vToGHVORO T®V
dpoporoyiov mov Aapfdavovv ydpa and ta kabodov oynuate K (Kabe tétoto dpopordylo
EKKIVEL OO TN TOPOVGA BECT) TOV OYNIATOG, KATOANYEL GTO KEVTPO O10VOUNG KOt TEPIAAUPAVEL
Oheg T1¢ Seopevpéveg Cp omonthoels kat, Thavde, opiopéveg un deopeopéveg F' € F), ko )
{2, mov aopd 6To GHVOAO TV dpoporoyimv yia ta oxfuata Ky mov Bpickovtal 6to kKEvipo
dwvopng (tar dpOpHOAOYIDL OVTA EKKIVOOV Kol KOTOANYOUV GTO KEVIPO OOVOUNG Kot

coumepappavoovy uévo F amoitnoeig).

Adyo 100 TARBOVE TOV SVVATOV GLVIVOCUOV amaIThoE®VY, opilovue W 2’ va VITOGVVOLO TOV
£ mov meprhapPavel yvootd Kot epiktd dpoporoyia (Iepropiopévo Kupiwmg Ipopinua, TIKIT).
[Ma ™ kaTackev] AVTOV TOV VITOGLVOAOD, ¥PNCLUOTOIEITAL 1] TANPOPOPiL ATd TN AVOT NG
TPONYOVEVNS  TEPLOOOV  avadpopordynons (mov  meptlopfdver  €iktd  SpoporOYLa),
APALPAOVTOG TIG OTOLTNOELG TTOL £xovv O e&uanpetn el 610 dtdotnpa [To_q, Tp]. T T1g véeg
AA mov éyovv apybei oto ddomua [To_q, Te], dnuovpyeitar €va Spopordyo ava AA
([depot — i — depot], Vi € F) ka1 tpootibetarl 610 vrocvuvoro 2. Zvuvenmc, pe Pdon avtd 1o
VITOGVUVOAO EPIKTMV OPOUOAOYI®V EMADETOL YPAUHKT XOAAP®OT (BE@POVTOG SEKUOIKES TULES
Yoo TG UHETaPANTEG Y, avtl Yoo SvadikEC) Tov TPOPANUATOS OTn Tapovca TEPI0O0
avadpOoLOAGYNONG.

Ta Yrompofiqpota

[Tpoxeévou va avoyvmplotohv VEES LETAPANTES (OPOUOAOYLN) LLE OPVNTIKO UELOWUEVO KOGTOG
ava@optkd pe tn Avomn tov [KII, emddeton dSapopetikd mpdPinpa Bertiotonoinong (YII). Xto
TPOPANa ovTd AapPdvovtotl VoYM OAOL Ol TEPLOPIGLOTL EPIKTOTNTOG EVOG Opoporoyiov (0mmg

Y Topddelypa, N anaitnon eEVINPETNONG OA®Y TOV OECUEVUEVOV OTAITIGEMY TOV EXOVV
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avatedel oe &va Oynuo, ol yPoviKol TePLoPIcHol, KaBMG Kol 01 TEPLOPIGHOL PopTiov). X1n
napovoa dworpiPny, mpoteivetar péBodoc akpiPovg emilvong (exact) tov YII, xabd¢ wan

evpetikn pébodog (heuristic).

Mo ™ pébodo axpifovg emidvong, to YII poviedomoteiton wg €va Ztoryeiddeg [Ipdfinua
Yvvrouotepng Awdpoung pe Xpovikd IlapdBvpa wor Ilepropiopovg XwopntikodOtntog
(ZIZEAXTIIIX) ko emAveton pe pedddove Avvaukot Ipoypoppotiopod. I'a ) mepintwon
™G evpeTkng uebddov, ypnotlpomoteitar katdAnin pébodoc mapepforng (insertion-based
heuristic) n onoio ekpeTodieveTon ™ TANPOEOPIo ad TIC SVIKEG TYEG OV TPOKVITTOLY Ot
™V emiAvon g YPapUKnG yordapwaong tov TIKII. AveEaptitog e pedddov, n Avon tov YII
KOTOANYEL UE £va 1} TEPIGCOTEPU OPOLOAIYLO (KOAMVES) TOL OO0 ELOYIGTOTOIOUV Lio OEO0UEVN
OVTIKEWEVIKT] ovvaptnon. Ta dpopoAdyln mov TPOKVLZTOVYV amd TNV €miAvon tov YII
evoopatovovior o€ ovtd tov IKIT mpoxewévou va emivbel Eava. H dwdikacio ovtn

enovoropBavetor £mg dtov 1 Avon tov TIKIT givor un apvnricn.

Mé£0odoc axpiovc emilvonc tov YII

"o o ITAAOIT, opiCovpe ko emddovpe |K| + 1 avesaptra YII, éva yio kdbe kaBodov dynpa
K (dnAadn ya t dnuiovpyia tov dpoporoyimv 2y ), kabog kot Eeympiotd YT wov avtictoryst
o OAo To oynuoTo oL Ppickoviol 6to KEVIPO dtavoung (InAadn yio T dnpovpyio TV
dpoporoyimv 2,). Kabe YII povteromoreitan wg éva ZITZAXIIIX kot emivetor pe tov
alyopiBuo ooplwonc etiketwv (label correcting algorithm). Kafe éva and ta k = 1,2, ..., | K|
YII Oewpovv aroutioelg N, = C, U F (6mov Cy avTimpoo®meEVEL TIC SEGUEVUEVES OTOLTNOELS
mov éxovv avatedel 6to Oynua k € K), evad 1o |[K| + 1 YII Oewpel amotioeg N4+ = F. H
EPELVNTIKY] GLVEICPOPA TNG Tapovoag HeBOOOL £ykertar otV evioyvuon TV KpLtnpiov
Koplopyiog, WHE OMOTEAEGUO TNV  OTOPPYYN ETIKETOV GE€ TPOYO OTAS0 KOl TNV

OTOTEAEGUATIKOTEPT EVPEST TNG PEATIOTNG ADoNG.

Evpetikn nuébodoc eridvonc tov YII

v mpotewvopevn véa evpetikn péBodo, Bempeitar 1 Avom g TPONYOUUEVNS TTEPLOOOV
VA POLOAGYNONG Kol dNUOVPYyoLuvToL VEX dpOHoAdYL (KOAMVES) Yoo Ta. kaBodov oynuaTa
EVOOUATMOVOVTOG TNG OTOLTNGES F 0TAL VOIOTAUEVA dPOLOAOYLO LEG® adyopiBpov TaperPoAng
(insertion) o omoiog Paciletot 6T SVIKEG TIWEC TTOL TPOKVITOVY Amd TNV EMIAVOT TOV EKAGTOTE
[IKIIL. T ) dnuovpyio vEmv dpopoioyimv yio ta oyfuate mov Ppiokovial 610 KEVIPO
dtovopng, emiveton £va XITEAXTIIITX xpnoiomotdviog TePloptopévn (EVPETIKT) TOPUALAYT

oV aAyopifpov d1OpOBwoNg ETIKETOV.
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Yvvovalovrtag to Iepropropévo Kvpiog [popinpa pe 1o Yrorpofporta

Onwc mpoavaeépbnie, av pe v enidvon tov Y11, onpiovpyndel Eéotm kot £va dpopordyto pe
apVNTIKO HEI®UEVO KOOTOG (gite Yo kaB0dOV dynua, ite yro dynuo omd T0 KEVTIPO SVouNG),
t61E 10 dpopoAdyo mpootifetar oto TTKIT kot 1 ypoappkn xaddpmon tov véov TTKIT emAdeTon
Eava. Av og Kamotlo emavaAnyn g otadikaciog avtng o€ Ppefovv véa OpoLLOAdYLO LLE APVITIKO
UEIOUEVO KOOTOG, TOTE 1) O1001KAGi0. OAOKANPDVETOL Kot TO PBéEATIoTO Katmtato opto (lower
bound) éyer emrevyfeil. Emonuaivetor ko A moc 1 wpoavoeepouevn dadikacio AAM
emAvel ) ypapky yoAdpwon tov IIKII T v enitevén axéporwv Adocewv, 1 AAM
gevoopatoveta o mhaicto Branch & Bound. Ev yével, 1 evooudtoon tg AAM ue Branch &

Bound, cuviotd tov alyopiBuo Branch-and-Price.
YTPATHI'IKEX ANAAPOMOAOTHXHX (AITEPIOPIETOX XTOAOY)

Ewcdyeton n évvola g arpatnyixng ovadpouoioynong, 1 omoio 0moTeAEITAL 0O TOV GUVOVAGLO
a) ™G molitikng avadpouoloynong (re-optimization policy) mov oyetileton pe ™ ocvyvotto,
avadpopordynong ka, B) g raxtikic viomoinong (implementation tactic), mtov agopd 6to

TUMLO TOV VEOL dPOLOAOYIOV TOV KOWVOTMOLEITAL 6TO GTOAO TPOG LAOTOINGT).

AlepeuvVOVTOL S10POPETIKEG TOMTIKES AVASPOUOAGYNONG OVOPOPIKA LE TOV aplOpd Tv AA oV

Exouv apyBel peta&d 00O JBOYIKDOV TEPLOOWMV AVAOPOUOAGYNONG:

o Avadpouoioynon avé kable amoitnon (Single-request re-optimization, SRR): Apeon
avadpopoAdynon pe v aeiEn kabs AA

o Avadpouoioynon avé.  apifué  amortiioewv  (N-request re-optimization, NRR):
Avadpoporoynon petd v apién evog mpokabopiopévov apibuov N (N>1) AA

o Avadpouoioynon  kabopiouévoo  ypévov  (Fixed-Time  Re-optimization, FTR):
Avadpoporoynon e mpokafopioEVES XPOVIKEG GTIYUES (T.y. KABE pia dpa).

Emumpdcheta, diepeuvarvtat 600 Pacikég TOKTIKEG VAOTOINGNG TOL VEOL TAGVOL:

o Toxtukn mlipovg korvomoinong (Full-Release tactic, FR): Okeg ot AA petd v avadpopord-
YNON KOLWVOTMOOLVTOL GTO GTOAO AGueco Kot O UmOpovv va avoadpoporoyndodv ce
UEALOVTIKEG TTEPIOOOVC.

o Taxuxny uepixns rowvormoinon (Partial-Release tactic, FR): Mdévo ot AA mov éxovv
TPOYPOUUOTIOTEL TPOG vVAOTOINoN €mC TNV  EMOUEVI] TEPIOOO  OVOOPOUOAOYNONG
Kowvomolovvtal (otnv 7PAEn otadlokd pion mpog pio g TV emopevn mepiodo

avadpopordynong). Ot vroromeg AA Bepodvtal TPoG avadPOUOAIYNOT GE HEALOVTIKEG
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neplodovg. Tlpaxtikd, avtd onuaivel twg ot AA mov dev Exovv e&vmnpetn el péypt ™
YPOVIKN OTIYUN ovOdPOROAOYNONG BemPovVTOL €K VEOU G UN OECUEVHIEVES KO OVIIKOVV

610 cvvoro F.

H mopovca dwtpiPn e&etalet emiong Bempntikd {NTHUHOTO OVOQOPIKA LLE TNV OVOUEVOUEVN
CUUTEPLPOPE TOV GTPUTIYIKAOV OVAOPOHOAOYNONG. ZVYKEKPIUEVO OTOOEIKVOETOL OTL: O) OTN)
TEPIMTOON EVOC OYNUATOG, Kol 01 OVO0 TOKTIKES VAOTOINGNG AVAUEVETOL VO ATTOPEPOLV TOL 1010,
aroteAéouata, B) T0 KOGTOG OPOUOAOYNONG oL avTlcTOolKEl TV TakTik PR &ivon mavta
YOUNAOTEPO (1] 100) amd ekeivo oL avtioTolyel otV TokTiKy FR Yo T1g mpdteg 600 meptodovg
avadpopordynong (¢ < 3), y) vy £ = 3 Kot €0IKA v €vo 1 TEPIGGOTEPU OYNLOTO EXOVV
amootalel amd TO KEVTIPO OlavouNG 6€ omoladnmote mepiodo £ > 0, dev elvar BEPato OTL TO

KkO60610¢ TG TakTKNG PR taktikn eivon yaunAdtepo amnd exeivo g toktikng FR.
Iewpapatikn dgpevvnon

To kprtnplo pétpnonc TotdTNTUC TNC AVGNC

[a ™ pétpnon motdtrag g Avong, ypnotponoteitol n petpikn Value of Information (Vol,
Mitrovic-Minic et al., 2004), n omoio 1G0VTAL HE TNV TOCOGTIONO SLAPOPE TOV SVVOALKOD
mpoPAquatog and tn Bewpntikny Avon Tov otatikov TpofPAnuoatoc. To tedevtaio avtiotouyet
OTNV TMEPIMTOOT KATA TNV 0omoio T0 6UVOAD TV AA gival YVOOTEG TPV TV EKKIVIOT TOV

oynudtov amd 1o kEvipo dtavoung (otov xpdvo t = 0).

[ewpapuaTikéc TEPIMTOGELC TOL YPNGLULOTOMOnKay

["a ) mepapatikn diepedvnon tov ITAAOIL, ypnoipomomOnkay to chvora tpofAnuatov R1,
C1 xo1 RC1 tov Solomon (1987). Exriong, ypnowonomdnkoy to cvvora tpoPfinudtov MR2,
MC2 ka1 MRC2 towv Kontoravdis and Bard (1995), mov xpnoitomotovy 1o, YapaKkTnploTiKe TV
npofinpato R2, C2 xar RC2 tov Solomon, adld pe petopévn yo@pnTikOTTO OXNUATOV.
Svumephappavovtal miong ko to mepdpata VIpne8 katr vrpnel4 tov Christofides et al.
(1979) 1o omoia dev £xovv ypovikd mapdbvpa, CAAG ¥PNOUOTOOVV IO1EC GUVIETOYUEVEG
nehatdv O0nmg to. oOvoAa R1 kot Cl (to mewpdpata avtd avapépovtatl peing g R100 kot
C100).

Me Baon 1 mopamdve Gepd TEPAUATOV, HTOPoVY Vo ovoAvOoDV TapAUETPOL 0TS o) M
YEWYPAPIKY KoTOavoun meiatwv, Kou B) 1o ypovika mopabvpo. EmmpocOeta eEetaleton to
duvapukod mepexoduevo Tov TpofAnudtov (dnAadn, 10 TococTd TV AA 6T0 GUVOAO OAWDV TOV

AmOTNoE®V TOL TEWPANaTog). [ to Adyo avtd, efetalovior TPeES TIHES OLVOUIKOV
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nepexopévov 25%, 50% kot 75% vy ta yuo tao sovora mepapdtov R1, C1 ko RC1, kabog
kot 50% yw ta MR2, MC2 a1 MRC2. Xvvenac, eEetdlovtor cvvolikd 120 mepimtdoelg
wpofAnudtev (3 Tipéc dSuvapikov mepeyopévov yia ta 31 tepdpata tov R1, C1, RC1 kot pia
T o ta 27 wepapato tov MR2, MC2 kot MRC2). T kéBe pio amd tig 120 nepintdoeig
mpofAnudtwv, dnuiovpyovvtal 10 dapopetikd TpoPAoTa (S10POPETIKY EMAOYN OTOLTICEDV

¢ oTaTIKOV Kot AA), pe amotédeopo ™ dnovpyia 1,200 wpofAnudtov cuvoMKd.

A&oAdynon e gvpetikne uefoddov enibvonc avoeopikd pe th fEAtiotn Adon

Apykd, e&etaletan 1 amdd00M TG EVPETIKNG HeBddoL eniAvong o oyéon pe ) PEATIoT Adon
Y0l LEYOAO UEPOG TV TPOUVUPEPOUEVOV TPOPANUdTmV. ['o kédBe TPpOPANUa, OempnOnke Twg
o) OAEG O1 OTATIKEG AMOTNGELS £xoVV avatedel ota oynpata (Kot 0 pmopovv va avatefodv ce
dAho Oynuo mEpa amd To apyko), kot B) OAeg or AA givar YvooTéG Tpo TG eKKivnong twv

OYNUATOV OO TO KEVTPO SLOVOUNG.

O ITivakag I1.1 mapovoidlet ta amoTeAEoHATO 0V GOVOAO TPOPANUATOV, 1O TO HEGO OpO OAWV
TOV TEPAPATOV Kot TpofAnudtov ava cbvoro. O Ilivaxog mapovcsidlel tn mocootioio
amdxion g evpetikng Aong (HEUR) amd ™ Bértiot (OPT) yuo kabe pio and tig Tipnég
duvapukob mepteyopévov 25% kot 50%. Iapovoidloviot emiong ot avticToryol VIOAOYIGTIKOL
xpOVoL TV dV0 peBddmv avd tun (og devtepdienta). H tedevtaio otiAn divel v amdrkiion
g peboddov HEUR avd cvvoro mpoPfAnudtov katd HEGo 0po Yo Tig dVO TES SVVOUKOD
nepieyopévovn. Zopepmva pe tov Iivaxa, n pébodog HEUR ¢aivetotl va mapéyet avtoyovioTikég
Moetg, pe péomn amokiion 2.2% amd tn PEATIOTN. AVAQOPIKA LLE TOVG VTOAOYIGTIKOVGS XPOVOUG,
N 1éBodog gaivetar va givar 13101TEPA AMOTELEGUATIKY, GLYKPITIKG e T péEBodo akpiPoig

emilvong.

Mivaxag I1.1. Anddoon tng gvpetikng uebddov emilvong

dod = 25% dod = 50% Average
Dataset  Nodes %Dev  CT CT %Dev  CT CT %Dev
0 OPT HEUR 0 OPT HEUR

R1 100 2.0% 719.3 36.8 1.8% 5239.5 56.6 1.9%
C1 100 2.6% 136.1 24.8 2.5% 2029.0 68.6 2.6%
RC1 100 2.5% 188.4 32.3 2.0% 896.1 35.7 2.3%
MR2 50 2.1% 651.0 13.1 2.1% 6108.1 94.9 2.1%
MC2 50 1.4% 632.9 10.6 1.9% 3509.9 140.6 1.7%
MRC?2 50 2.7% 382.3 8.7 2.2% 1031.3 75.5 2.5%
Average 2.2% 451.7 21.1 2.1% 3135.7 78.7 2.2%

Iewpapatikn S1EPEHVNOTN TOV GTPATNYIKOV 0VOOPOUOAOYNONC
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H mopovoca mepapatikn diepedvnon meptlopPdvel Ol o TEPAUOTO TOV TEPIEYPAPNKAV
TOPOTOVD. AQOpa OpYIKA TNV GLUVOMKN GULUTEPLPOPE TMV TPOTEWVOUEVOV GTPUTNYIKOV
avadPOUOADYNONG KOl OTY] CULVEYELDL TN GLUTEPLPOPO GE Oxéorn e Opopes Pacikég
TAPOUETPOVG TOV GLOTHHATOC. [l T diepedvnon avth ypnooromOnkav ot tolrtikés SRR
kot NRR. Avagopika pe tig moatikéc NRR, ypnowyonomOnkoav ot NRR-1, NRR-2 kot NRR-
3, mov avagépovtat og avadpopordynon kabe 10%, 20% xat 33% twv AA mov gicdyoviat 6To
ovotua, ovtiotorya. Kdabe moltikn efetdotnke kdtow amd tig toktikég FR kot PR (dpa,

oLVoMK( e£€TALOVTAL OYTM GTPATIYIKEG AVAOPOUOAGYNONG).

>t0 Tynfuoa I1.3 mapovsidletor | amddoon (avapopikd pe to Vol) tov otpatnyik®dv yio kabe
oUVOAO TPOoPANUATOV, ©OC HECOG Opog OAMV TV TPOPANUATOV Kol TIUOV SVVOULKOD
nepleyopévov. I'a opotoyévela tov amotelecpdtwv, OAo To TEPAUOTO ETAVONKAY LE TV
evpetikn péBodo (HEUR). Amd to Zynua givar mpogoavég mwe: o) 1 otpotnyiky SRR-PR
TOPEXEL TO, KOADTEPA OTOTEAEGUATA KOTA HEGO Opo (to eddyioto Vol), kot B) n toktiky PR
apéxel KaAOTEPA amoteAéopata Katd pEco 6po and v FR yio OAa to shvora wpoPAnpdtov.

H dweopd twv d00 TOKTIKGOV TEIVEL VO PEWOVETOL HE TNV oOENON NG GLYVOTNTOG

avadpopoAdynong.
80%
FR
70%
m PR
60%
§ 50%
=
E
= am
340/0
£
S 30%
v
=2
S 20%
. I LAAEE A
g o g e g ol g 0l g ol oo gl o0
E o o o K o oc o K oo o occc o K oo oo o«
£ £ £ £ = £ £ C £ £ o
z =z = z z = z z = z =z = z z =2 z z =
R1 C1 RC1 MR2 MC2 MRC2

Yypo I1.3. Méon amddoon TV GTpatnyiK®dv avadpopoAdynong yio kae cuvoro mpofinudtov

Emumpdcheta, 1 StatpiP] EXKEVIPOVETOL GTN GLUTEPLPOPE TOV CTPATYIKMV OVOPOPIKHL TPELS
Baocwéc mopapétpoug: o) To ypovikd mapdbuvpo meElatdv, P) TO OElKTN SLVAUIKOV
TEPLEYOUEVOV, KOl ¥) TO TTEPOMPLO amOKPIoNS amd TNV APEN TG AA péypl TO EMTPENTO OPLO

eEumpétong mge. H ev Aoym diepedivnon mapeiye ta €ENG (YeVIKA) cuumepdopoTo:
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a) Otav emrpémetal amd 10 EKACTOTE EMYEPNOIOKO CEVAPLO, o TPEMEL Vo TPOTIUATOL M
taxtikn PR pe 660 10 duvotd peyalvtepn cuyvotnto avadpopoAdynong.

B) Ortav n taxtikn FR gtvar avamdeevktn, AOym TV YopaKTNpIoTIKGV TOV TEPPAAAOVTOS, 1
avoadpopordynon Ba mpémel va Aapfdvel ydpa og 1) Kkpd g HETPLO XPOVIKG SLOGTHUATA
YO0 TEPUTTAOGELS LUKPODH VPOV YPOVIK®DV TTopalBipwv 1 pkpov weptBwpiov amdkpiong Kot
i) pétpla émg peydlo SOCTAUOATO VIO TEPITTMOOELS UEYAAOVS €0povE mopadupwv M
nepmpiov amdKPILoNG.

vY) Xe mpoPAjuoto pe LVYMAG duvopKO TEPIEXOUEVO, GLVIOTATOL METPLL GLYVOTNTO

avadPOpoAdYNoNG (avEENPTNTMOC TAKTIKNG VAOTOINGNG).

Téhog, Otepevvnnke kotd mOco m ypnon Pértiomc emihvong oe kdbe mepiodo
avadPOUOADYNONG ATOPEPEL KOADTEPO OMOTEAEGHOTO GE OAOKANPO TO SVVOAIKO TPOPANLLAL
(moAdhomAég mepiodol). Ta omoteréopoto VTOdEKVOOLY TG M PEATIoT emihvon TOL
npoPAnpatog oe kébe mepiodo evoE ETAL VO 0ONYNOEL GE QUGUEVECTEPO OMOTEAEGLLOTO OO
eKeiva TOV AVTIGTOLYOVV GTNV TPOKTIKY| EMIAVGNG TOL TPOPANLATOS OVAIPOLOAOYNONG HECH
NG €VPETIKNG HeBddoL (Yo KAOe mEPI0d0 OvVaOPOLOAOYNONG), O0UTEPO GE TEPUTTMOOELS LE

SlevpLpEVO TEST0 AVGEWV (). HEYAAO EVPOG YPOVIKMV TapafHpwV).
TO IMAAOII T'TA TH NEPHITQXH NEPIOPIXMENOY XTOAOY OXHMATQN

H nepintmon xotd v onoio 0 6TOAOG oyNUATOV gival TEPLOPICUEVOS KOL, GUVETMG, KATOLEG
and Tig AA evoéyetar va un umopovv vo géummpemBovv, opileton wg to [1AAOIl ue
Lepropropovs Iopwv (ITAAOIIIIIT). Mo v avtpetonion tov ITAAOIIIII, enekteiveTon 1
npotevopevn B&P péboodog yio v enilvon tov oyetikod mpoPAnpatog avadpouoAdynone.
E&etdlovtor eVOAUKTIKES AVTIKEYLEVIKEG GUVOPTNGELS TOL TPOSTOHOVV VO LEYIGTOTO|GOVY
™V €ELMNPETNON TOV OTATNCE®Y, EVAD TOVTOYPOVO LEYIGTOTOLOVV T TOPOYDYIKOTNTO TOV
oynudtwv. Té6co n apyn povrtelomoinon tov IMAAOIL 660 ko M dwdikacio emiivong
TpomonoovvIoLl avdioyo dcte va glval 6e BEom va AVIYETOTIGOLV TOV TEPLOPIGUO TOV
mANBovg oynuatov. H anddoon twv mpoTevOUEVOV OVTIKELLEVIKOV GLVOPTNCE®OV £EETAlETON
GUYKPITIKA HE TNV GULUPOTIKN OVTIKEWEVIKY] GLVAPTNGTN 7OL OTOYELEL POCKO O7TN
peyiotonoinon tov efumnpetodpevoy  onoautnoewv  (PA. T1.15), eEeralovroc mANHoc
EMYEPNCLOKOV cevapinv kot topapétpomv. H mpotevopevn pnébodog enidvong epappoleton

eniong o€ TPAKTIKO TEPPAAAOV LEYAANG ETALPEING TOYVUETAPOPDV.

IIpoTetvOpuEVES OVTIKEINEVIKEG CUVUPTIOELS
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Solving the DVRPMB through re-optimization

[Tpoteivovton Tpeig (3) d1aPopeTIKES AVTIKEIUEVIKEG GUVOPTNHGELS, AVOPOPIKA pe TO TPOPANUQ

OV EMAVETOL € KAOE TEPI0dO avadpopoAdynong:

o)

)

Y)

H avtikepevikn cuvaptnon Z;, 1 onoio omoteAsitan amd 300 0povg pe AEIKOYPOPIKT dou.
O pmTog 6pog mpoomabel va peylotonomaoet v eEumnpétnon tov AA, avabétovtag Eva
otabepd képdoc oe khbe AA mov e&ummpeteiton (PA. I1.15). O devtepo 6pog erayioTomolEl
To. KOOTN O100pounG (Yo To p€Y1oto aplono AA).

H avtikeyevikny cuvaptnon Z, n omoio amotedeiton omd Tpelg Ae&ikoypapikovg Opovs: o
TPAOTOG 0pog peylotonolel v e&uanpéton tov AA (otabepd kEpdog avd AA), o dedTEPOG
0pog TPoodidel emmpocheTo KEPOOG o€ KOs amaitnon (otatikn 1 dvvapukn) 1 omoio
eEummpeteitan PéYPL TN XPOVIKN GTIYUN TG EMEPYOUEVNS OVOIPOLOAGYNONG, KOl O TPITOG
Opog eraylotomolel Ta KOGTH O10OPOUNG.

Téhog, opileTal N OVTIKEEVIKT) GUVAPTNON Z3 1) OTOI0 TPOTOTTOLEL TNV Z, OVOPOPIKA LE TO
emmpOG0£TO KEPAOG (TOV BEVTEPOV OPOV TNG Z3). LTN MEPITTOOT QLTY, TO KEPSOG AUPOPAL TIG
QTOLTNGELS TOV EEVMNPETOVVTOL GE OTOLUONTOTE LEAALOVTIKT| TEPL0O0 AVAOPOLOAGYNONS KOl

LELOVETOL YPOLLIKA avAAOYOL LLE T TEPT000 EELMNPETNONS TG ATALTNONG.

‘Eotw &, 10 otabepd képdog mov avorifetar yio kdbe efommpetovpevn AA koi &, 10

empOcHeTO KEPAOG G€ MEPiMTOON OV o omaitnon (oTaTik 1 SLVALKY]) eEuTnpeTeitan PEyPt

NV enepyOpeVn mEPiodo avadpoporoynons. Me Baon v Tapamdve oporoyia, To KEPOOG OV

avatifetor og kKAOe amaitnon o€ oYEoM LE TIG TPEIS TPOTEVOUEVES OVTIKEILEVIKES GUVOPTNGELG

amotumveTal 610 Zynpa [1.4. Xpnoyomotdvtag T KOTAAANAT OVTIKEEVIKT avA TepinTon,

n pébodog emilvong pmopet vo odnynBel omd TNV OMOKAEICTIKY LEYIGTOMOINGN TMOV

e&umnpetovpevoy AA  (AVTIKEWEVIKT) ouvapTtnon Z;), €mG Kol T HEYIOTOMOINGN TG

TOPOYOYIKOTNTOG TOV OYNUATOV (OVTIKEWWEVIKEG GUVOPTHGELS Zo KOL Z3).
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Extended Summary in Greek (Zvvoyn dratpipng)

Objective Z;

5 Eu + Ep
=
[=]
g
g b L ARRR SEEED SECES
E
£ £ +1 L
Re — optimization cycle
Objective Z, Objective Z;
g Sut§  &ut -
_;'3 uTSp L %; uT Sp 0--“‘__;&
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g 3 ’*--‘_.
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2 2
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Re — optimization cycle Re — optimization cycle

Yynpo I1.4. To k€pdog ava amaitnon e oYEon UE TIG TPEIS TPOTEWOUEVES OVTIKELEVIKES GUVAPTNGELG

[o v vAOTOINCN TOV OVTIKEWEVIKOV GCULVOPTNOEMV Z, Kol Zz, Ol YPOVIKEG OTIYUEG
avadpopordynong Ba mpénet va eivar mpokabopiopéveg (Kot YvooTés ek TV mpotépwv). Ot
TOMTIKES avadpopordynong FTR mov mepleypdenikayv mTponyovuévmg eitvor To KaTaAANAES Yo
) mepintwon avt. [ToMtikég mov Paciloviar 6to TAN00¢ TV apybéviov AA, urtopovv vo

vAomonBovV UOVO E TNV OVTIKEWEVIKN Z;.
Tpomomouoeis Tov ITAAOII yra TNV €@appoyn 6€ TEPLOPIGUEVO GTOAO OYNNATOV

I'a ™ povtelomoinon tov ITAAOIIIIT wg mpofinua dapepicpod cuvorov (SPP), éywvav ot
TOPOKATEO TPOTOTOWCELS: ) EVOOUATOON TOV VE®V OVIIKEWEVIKOV CLVOPTHGE®VY, [3)
eEaopaiion g kdbe ototikn amaitnorn Ba e&vmnpetBel (axpPog pia opd), eved kébe AA
umopet va eEumnpetnBei 1o ToAD pia popd., Kot Y) EVOOUATOOT) TOV TEPLOPIGHOD AVAPOPIKE LLE
To dbéotpua oynuoto . Xuvendg, 1 povtelomoinon tov KIT (set-partitioning problem),

petaTpEmeTol ¢ £ENG:

Elayiotonoinon z CrVr (I1.20)
ren’
Ynd tove meplopiouovg:
STEPIOPIGHORE N ey =1 viec (m21)
TEN
Z exyr =1 ViEF (I1.22)
TEN
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Solving the DVRPMB through re-optimization

Z yr < |Kql (I1.23)
reﬂp
yr ={0,1} Vr € (I11.24)

H avtikepevikn cvvaptnon (I1.20) elayiotonotel 10 GuVOAKO KOGTOG TV dPOporoYimV (0TTov
¢ etvol 1o Tpomomomuévo k6oTog, 10 omoio cvumepthauPaver ta kEpdN &, kar &,). O
neplopiopog (I1.21) e€acparilel mog ke otatikn anaitnon o e&vanpetOei axpimg pio
Qopd amd Eva dymua, eved o mepropiopdg (I1.22) opiler mwg kdbe AA pmopet va e&vmnpetn el
0 oAV pia @opd. Téhog, o mepropiopdg (I1.23) mepropiler Tov apBud tov dwbiciumy

oynuUaTmv.
Hepapatikn digpgvvnon

[epapuaTikéc TEPIMTOGELC TOL YPNoluoromOnkay

2NV TOPOVGA TEPAUATIKT dlEPEHVNOT, YpNoLonomOnkay ta chvora mpoPfinudatov R1 ko
Cl tov Solomon (12 xou 9 mewpdpota, avtiotoyo). Onmwg kot yio 1o ITAAOII,
ypnoporomOnkav eniong to mepdpato R100 kot C100 (ywpic ypovikd mapdbupa). O Iivakog

1.2 cuvoyilel TIC TEPAUATIKEG TEPIMTMOELS.

Emumpdcheta, e€etdotnioy SopopeTikés TILES OVAPOPIKE LE TN d100eaiUdTHTO TV OYHUATOY,
oNAadn tov aplfpd TV EMTAEOV OYNUATOV OV ival SBEGILO GTO KEVTPO SLOVOUNG YidL TV
eumpémon AA. T'a kéBe éva amd ta 23 mapandve mepdpato, eéetdommrov tpeg (3)
OLLPOPETIKES TIHES SBESIL®OY OYNUATOV 0TO KEVTPO dtavouns, 0, 2 11 4 oynuata (Epeéng
opilovtar wg V-0, V-2 kar V-4, avtictorya). Zuvenmg, KOTaoKeLdoTnKay 69 drapopeticég
nepumtdoelg (3 X 23). T kdbe mepintmon, OBewpndnke n mepintOon UETPIOV SVUVOLKOD
nepieyopévov (50% AA avapopikd pe To GHVOAO TOV OmOITHOE®V) Kal Kotaokevaotkay 10
Stapopetikd  mpoPAnuota  (emAEYOVTOG OOPOPETIKEG OTATIKEG OMOLTHOELS). XVVETWMC,

onpovpynnkav 690 drapopetikd TpoPAnpata.

Hivaxag I1.2. ITepdpata mov ypnoporombnkay yio to [TAAOTIIIIIT

riﬁsg{ﬂzﬂ H)((::)(()iv(;::ga Hs;lp;:ldrmv Hepdpora

Opotopopen NAI 12 R101, R102 ,R103, R104, R105, R106, R107, R108, R109, R110, R111, R112
Opadomompévn NAI 9 C101, C102, C103, C104, C105, C106, C107, C108, C109

Opotdpopon OXI 1 R100
Opoadomompévn OXI 1 C100

A&oAdynon e gvpetiknc ueboddov enihvonc avoeopikd pe th fEAtiotn Adon
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Extended Summary in Greek (Zovoym datpiing)

Apykd, eetaleTon 1 amddoom TG ELVPETIKNG HEBOAOL emilvong o€ TePPAALOV TEPLOPIGUEVOD
6TOAOV OYMNUAT®V, GLYKPITIKA pe T PEATIOTN Abon. To amoteAéouato VTOOEIKVOOLV TG M
gupetikn péBodog eppavifel mapoUolo amOTEAECUATO [LE TN TEPITTOON TOL OTEPIOPLGTOV
0TOAOL. ZVYKEKPUEVA, 6TO TEPIPAAAOV avTd, 1 gupeTiky PEBodog amoxiiver 1.9% amd
BéAtiotn Avom katd pEco 0po Yoo OAo To TPOPANUOTO, TOPEXOVTAS AVCELS OE 1010iTEPQ

OTOTEAECUATIKOVS VTOAOYIGTIKOVG YPOVOUG.

A&1oAdYNoN TNC GTPATNYIKOV 0vVadPOUOAOYNONG

2 ovvéyeto eEeTALETAL 1] CLUTEPIPOPA TOV GTPATNYIKAOV avadpOHoAOYNoNG o€ TepPiiiov
TEPLOPICUEVOD GTOAOV OYNUATOV, e KOPLO GTOYO TNV GLCYETION TNG GLUTEPLPOPAS LLE AT
ov opatnPRONKe 0N TEPiNTOON TOV AMEPLOPIGTOL GTOAOL. [Ipokeévon va amoteléopata
va glvat Guykpiotpa, ypnoiporodnkayv toAtikég mov Pacilovral otov apduod tov AA (SRR,
NRR-1, NRR-2 «xot NRR-3). E@décov ot mepiodol avadpopordynong oegv  &ivol
TPOKOOOPIGUEVES, N TOPOVGH AVAALGT YPTCILOTOLEL TNV OVTIKEWEVIKY cuvaptnon Z;. H
aVEALGT VITOJEIKVVEL TTMG TO OMOTEAEGLOTO. GUUPMVOVV LE Y10l TO AVTIGTOLYO TG TEPIMTMONG
amePLOPIGTOV  GTOAOV. Xvuykekpluéva, 1 otpatnyikny SRR-PR  mopéyer ta kaAdtepa
amoteAéopata (erdyioto VoI) ko 1 taxtikn PR vrepioyvet g FR (kotd péco 0po) ce dheg
TG mepmtooels. [lopduole cLUTEPIPOPA TAPOTNPEITOL VIO TIC OLOPOPETIKEG  TUUEG

OBECILOTNTOS OYNUATOV.

A&loAdynon TV TPOTEWOLEVOV OVTIKELWEVIKOV GUVOPTNCEMV

Xmv evomta ovtn, aflodoyeitar 1 omdO0CT TOV TPUDV TPOTEWOUEVOV OVTIKEUEVIKDOV
CLVOPTNGE®V TOV TEPLYPAPNKay ovotépw (Z;, Z, xor Zz). H mapovoo diepevvnon
neplapPdver 0o ta TpofAnuato tov cuvorov R1 (13 mepdpara, pali pe to R100), ya tig
Tpelg TéG dabeouodtrag oynudtov (V-0, V-2 kar V-4) kot ypnowonowwvtag to 10
dwapopetikd  mpoPfinuata ava meipapo (390 mpoPAfjuata oto ovvoro). Egdoov ot
OVTIKEYEVIKEG GUVOPTNOELS Z; KOl Z3 HIOPOvV Vo XpNoHomoinfodv Uovo o€ MEPUTTMOELS
mpokabopiopéveoy  mEPLOd®V  avadpopordynong, xpnowomomdnkov ot moltwkés FTR.
Yuykekpipéva, e&etaotnkoy técoepig (4) moatikég: FTR-10, FTR-20, FTR-40 kot FTR-60 mov
avTieToLy oV og avadpopordynon kade 10, 20, 40 kot 60 povadeg tov Trqy (230 povadeg oto
nepauota), avtiotoiyms. Kdabe moltikn exteléotnke o€ cuvovaoud pe Tig moAtikéc FR ko

PR (cuvenmg cvvorkd 3,120 mpopinpata = 390x8).

Y10 Zyquo I1.6 mapovoidletar n anddoon (avapopikd pe to Vol) e kabe avTikelevikng

cuvaptnong ya kabe Eva omd to 13 mepdparto. Ta aroteAéopata a@opodv T HECT T TV
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Solving the DVRPMB through re-optimization

SLPOP®Y CTPOTNYIK®V avVAOIPOUOAGYNONG Kot TPOPANUAT®Y. ZOUEOVO UE TO ZyNUd, Ol
OVTIKEWEVIKEG GUVOPTNOELS Z, Kot Zz (mov Aapfdvovv vadyn 1 mopaymykdtTo Tov
OYNUATOV) KOTOAYOVV GE ATOTEAEGUOTIKOTEPES ADGELG GUYKPLTIKA LLE TNV Z1, KOTA KOPLO AOYO
0€ MEPMTMOOELS UE UEYOAO €0pog ypovikmv mopabvpwv (R103, R104, R107, R108) 1 ot
TEPUTTMOGELS Y®PIg ypovikd mapdOvpa (R100).

35%

30%

m

25%
20%
Z
15% “2
| Z3
10%
5% | I
0%

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 R100

Value of Information

Yympo IL6. Xvvolikn péon amdd0on TV TPIOV AVTIKELEVIKMOV GUVOPTICEMY OV TEIPOLLOL

Xmv SwrpPn depeuvinke emioNG 1 CLUTEPLPOPE TOV OVTIKEWEVIKOV GLVOPTNCEDV
AVOPOPIKA UE TN cLYVOTNTO avadpopordynons. H aviivorn vmodekviel mwg n ovTIKEWUEVIKY|
oLUVOPTNON Z3  EMTVYYXAVEL KOADTEPO  OMOTEAECUOTO HE  YOUNAOTEPN  GLYVOTNTO
avadpopordynone (FTR-10, FTR-20) Aoym tov 6Tt euvoel TNV eVEAIKTN Katavoun Tov AA oty
TAEOV KATAAANAN Ttepiodo (ywpic va eEavaykalel Tig amoitioelg vo eEummpe oy péypt v
emePYOUEV TEPT0D0, OTIMG M Z5). [Tapatnpeitan eniong mmg 1 andS06T TOV AVTIKEWEVIKDOV Z;
KOl Z3 GUYKPUTIKG pe TV Z; Pektidvetar onuavtikd 6tav 1 akolovbeitor n taxtikny FR.
Eminpoofeta, KatdAAnAn avaAivon ava@opikd e TO E0POG TV YPOVIKAOV Topadupmv Kot 1
SOESIUOTNTO TOV OYNUATOV, VTTOSEIKVVEL TOG LEGH TOV OVTIKEWEVIKOV GUVAPTHCE®V Z, KOl
Z3 EMTVYYAVOVTOL KAADTEPO OMOTEAEGLOTO GE TEPIMTMGELS e dlevpuuéva ypovikd Tapddvpa
(.. >40% 1OV Tppgy) KO GYETIKA VYNAN StafeciudtnTo oynudtov. Avtibeta, o€ TEPITOCELS
GTEVAV (TEPLOPICUEVAV) XPOVIKADOV TopaBipmV Kot TEPLOPIGUEVNS OOOEGTUOTNTOG OYNUATOV,
OVTIKEYEVIKES GUVAPTIGELS TOV AGUBAVOLY VTTOYT] TOVG TN TOPAYOYIKOTNTA TOV OYNUAT®V,

dgV EMEEPOVY GNUOVTIKY PeATiON OTIS avTioTOolXEG AVGELC.

Mo v apTidTEPN ATOTOHTOGN TG ATOSOCTG TOV AVTIIKEUEVIKOV GUVOPTNGE®V, 6T0 Zynua [1.7
mopovctdletal 1 omdO0CT] TOV GLUVOPTNCEWV OLTAOV OVOPOPIKA HE TOV aplud TOV

eEummpemuévov AA KAT® 0T TOPAUETPOVS TOV EVVOOVV TIG Zy KoL Z3. ZVYKEKPIUEVA, OL) TIUN
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Extended Summary in Greek (Zvvoyn dtatpipng)

V-4 y10. 11 drobecipdtn o oynpdtomv, Kot B) meipdpato e peydia 1 kaBoiov ypovikd mapabvpo
(R104, R108 kou R100). Amd 10 Zyfuo avtd S10QaiveTol TmG Ol &V AOY® OVTIKEUEVIKES
GLVOPTNGELG KOTAAYOLV 6 ADGELG OTIC omoieg eEummpetovvian Emg kot 15% meprocotepec AA
(Yo ovyv avadpopordoynon pe taxtikn FR).

40

39

38
37

26 m Z
3 Zy
3 mZ
3

3

3

30

Frequent Infrequent Frequent Infrequent

Number of served DOs
N W B U

FR PR

Yympa IL7. Zuvolik péon amdd00n TV TPUOV OVIIKEYEVIKMY OVAL TEIPOLLOL
Melrétn mepinTOOoNG 6€ TPAYRATIKO TEPIPAILOV ETOPELOG TOYVUETAPOPDOV

H mpotevépevn pébodog emidvong tov ITAAOIIIIIT epapudotnke oe TepBAriov TG Topeiog
Tayvpetapopéc EATA A.E., n omoila katéyer to tpito peyoddtepo pepidto ayopdg otnv
EXGda. Ta ™ perdétm avtn, ypnoyomomdnkov mpaypatikd dedopéva e etanpelog Ko
epappootke 1 mpotevopevn B&P nébodog yia m opopordynon tov AA. Ta amoteléouarta
GLYKPIVOVTOL LE: O) TIG YEPOVOKTIKES TPOKTIKEG TOV SLOKIVITAOV TG £TApEing, Kabmg kot B)

LE TOL AmOTEAEGHLATO TPONYUEVOL aAyopiBov mapepoAng.

H perém mepintwong éhaPe yopa oe kévipo dwavouns (KA) mov koAdmtel cuykekpipévn
neployn ™ ABMvag (700 km?). To KA sévomnpetei kotd péco 6po 450 GTOTIKEG OMAITHGELG
(ZA) kar 70 dvvapkée amortioelg (AA) avd nuépa pe otoro 13 oynudtov. Ta dedopéva
SLAAEXONKaV Yo Tepiodo TPl nuepdv (477, 491 ko 370 otatikég amothoels, kadwg kot 68,
68 Kot 66 AA ava nuépa, avtictoya). To Lynua I1.8a arotundver Tig B€c€1g TV amoToE®V

(reratdv) yuo pio nuépa ko to Xy. I1.8b ) ypovikn katavoun t@v AA e Guvaptnomn pe mv

OPO TG NUEPOS.
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Solving the DVRPMB through re-optimization
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Yympoe IL8. (a) Arotdinwon tov aratioemv piog nuépag o€ ynetakd xaptn (ot prhe KOKAOL
AVTITPOSOTELOVV TIG XA Kol 01 KOKKIVOL 6Tawpoi Tig AA); (b) katavoun tov AA o€ 6yéom He TV ®Pa. TIG
nuepag (OAeg oL Tpeg NUEPES)

[Mo ) mepopatikn depedhvnon, ypnopomomonkay t€écoepo Pacikd epyareio dpopordynone,
omwg gaivetat otov [Mivaka I1.3. O cuvdLAGHAOC SLoPOPETIKMY EpYUrEi®V ylo TN SpOopoAdYNoN

TOV OTOTIKOV OmoIThoemV Kot TV AA Topéyel mévie dlapopetikd oevapia (BA. Tivaxa I1.4).

Mivaxag I1.3. Epyaleio dpopordynong mov eUmAEKOVTOL GT TELPALOTIKT JIEPELVNON

Epyolieia.  Apopordynon yio Ieprypaoi)

Ot mopodoeg YelpovakTiKES Sadikacieg mov oakolovBoldvior amd TOvg

Manual TA & AA SrakvnTég. ZoumepthapPavel SpopoAdYNoT| Y10 OTATIKEG OTALTGELG Kot AA
SW A ApyiKOG TPOYPOUUOTICUOC TOV OTOTIKAOV OTOITNOEOV HEC® EUTOPIKNG
epappoyNg dpopordynong
HEUR AA O mponyuévog alyopiBpog mapepfoing (insertion heuristic)
B&P AA H mpotewvopevn B&P pébodog
Hivakag I1.4. XZevipra dpopoidynong
Apoporidynon XA Apopoidynon AA
Yevapro
Manual SW Manual HEUR B&P
S0 v v
S1 v v
s2 v v
S3 v v
s4 v v

210 Zynpa I1.9 mapovcialetar n arddoon (LEGOG OPOG Yol TIG TPELG NUEPES) TOV TEVTE GEVAPIOV
AVOQOPIKA LLE TN POVIKT] OEPKELN TV dPOLOAOYI®VY (GE MPES). ATd TO Zynpa OloKpiveToL TMG
70 0evap1lo S4 Tapovctdlel To KOAVTEPQ ATOTEAECUATO OO OAM TO VITOAOLTO GEVAPLQ, LE LEGT
Bedtioon g td&emg Tov 16% avapopikd pe to oevaplo SO. Avagopikd pe ) dwyeipton Tov

AA, n B&P pébodog (S2) vrepioyder tov aiyopifuov mapeppoing (S1) kartd 33.8%. H
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Extended Summary in Greek (Zovoyn Swatpifing)

Bektioon avt pewwvetoar 610 12.2% Otav n EUTOPIKN €POAPLOYN YPNOLOTOEITOL Yot TV

dpopordynon tov XA.

110 4

100 ~ 14.6

Trip duration (hours)
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80 4 “.~ T
. . m Excess Cost

70 ~ Initial Cost

82.8 82.8 82.8
60 - 69.5 69.5
50 -

S0 S1 S2 S3 5S4

Scenarios

Yyqpo IL9. Xvvolikn amddoon Tov cevapiov dpopoidynong (LEGOS 0pog OAWDY TV NUEPDOV)
H IEPIIITQXH META®OPTQXHX XTO ITAAOIT

Ov mponyovpevee avorvoelg tov ITAAOIT (omepiopiotov Kot TEPLOPIGUEVOL  oplOpov
onuatov) Bewpovcav g otabepr] TV apyIKN ovVAOECT TOV GTATIKOV OTOLTHCEMV
(mapaddcewv) ota oynuate. QoT0c0, 1 OUTHPNCT AVTHG TNG APYIKNG ovABESTG EVOEXETAL VAL
TEPLOPIGEL TN ATOS0GT TOL GLGTHHOTOC, EPOGOV 01 AALAYESC TOV TAGVOL TOV TPOKOAOVVTOL 0T
™mv aeiEn véwv AA pmopel vo TPOGOIMGOVY TAEOVEKTNUO, GE TUYOV OAAAYEC TOV GTATIKGOV
AmOTNOE®V HETAED TV oynudtomv. Me Bdon avti v mopatipnon, otn topovca evotnta.
e€etdleton ko emAdeton pion kowvotopa maporiayny tov ITAAOIT m omoio emTpémet
LETOPOPTAOCELS KATA TN dLApKELN EKTELEONC TV dpoporoyiwv. To TpdPAnuUa avtd avapépeTon
oG 10 144011 pue Metopoprawoeis (ITAAOIIM®). Emitpénovtag tétolov €idovg oAAayé,
OVOUEVETOL 1 OTTOTEAECUATIKOTEPT) EKUETAALELGT TOL GTOAOV, OVA-KATAVELOVTOS TO GOPTO
gpyociog Omwg amorteitor Pdoet g SVVOHIKOTNTOS TOV GLGTHWATOS. Ol HETAPOPTMOCELS
UmopovV va TPAYLATOTOOoUV EMTPEMTOVTAG GTO OYNUOTO VO, GLVOVTNOOUV GE TPOYLATIKO
xpovo. H taxktikn avt) elvor dwitepo cuvnOiopévn oe etaupeieg TOYLUETAPOPDV Kol

APNHOTATOGTOADV.

Mo mv avtipetdmion tov [TAAOIIM® pe aneptopioto mAn00¢ oynUATOV, LovTELOTOlEiToL
aPYIKA TO OYETIKO TPOPANUO avadPOLOAdYNOoNG Kol cuykpiveTon 1) BEATIOTN ADON TOL pE TO
ITAAOII (mov dev emitpémel petafiPacelc). X cvVEXELX, OVOTTOGGETAL TAAIGIO EVPETIKN
entAvong Y TNV OVIIHETOTION TPOoPANudtov mpaxtikov peyédovg. To mhaicio oavtod
YPNOCOTOIEITOL Yo TNV EMIAVGT TOL GLVOAIKOD TPoPAnuatog (mollamiol mepiodor) Kot

e€etaleton n eniOPOOT SLUPOPETIKMY GTPATNYIKADOV aAVAdPOLOAGYNONG 6T TO1OTNTA TNG ADONG.
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Solving the DVRPMB through re-optimization

To npépfinpa avadpoporéoynong oto HAAOIIMD

Emtpémoviag pHeTaQopT®OE KOTA TNV €miAvon TOL TPOPANUOTOS OvVOdPOUOAGYNONG,
evoéyetat va avéndel onUavTikd 1 TOAVTAOKOTNTO TOV GLGTHUATOG. ATO S10IKNTIKNG ATOYEMG,
EVOEYETOL VO UMV EIVOIL TPOKTIKO VO EMTPETOVTOL TOALUTAEG LETAPOPTAOCELS OV amaitnon, 1
UETOPOPTAOCELS HETAED Gved TV dV0 OYNUAT®V, EPOCOV Ol TPOKTIKEG OVTEC EVOEYETOL VL
ATOPEPOLV GLYYVGT GTOLG 0ONYOVS Kol ETTPOGOETT dtayeipion. Ymoroyilovtag To mopamive,
0 TPOPAnua avadpopordynong vy to IAAOIIM® emidetor Aapfdavoviag vadyn Tig

TOPOKATO TOPASOYES:

a) Olec ot amoutnoelg mpénet va eEumnpetnovv (oTaTiké emdocelc Kot AA)

b) Kdbe Oynuo pmopel va ocvppetéyel oe pic povo peta@optoon ové emilvorn Tov
TPOPANLATOG VoS POUOAIYNOTG.

C) Avogopikd pe to onueia petapdptmong, egetalovial 600 TEPMTTOGES OTOVL 1|
petopopTwon AapPaver yopa: i) o mpokadopiopéva onueio (Yvmotd ek TV TPOTEP®V), 1)
i) otig Tomofesieg OAOV TV UN EVTNPETOVUEVOV GTOTIKOV KOl SUVOUIKOV OTOTHOEDV

(cvpmepropfavopuévoy kot tov 0EcEmV TV oxNUATOV).
MoaOnpotikn povreromoinoen tov tpofifqportog avadpoporéynong oto IAAOIIMD

H nopoxdto poviehomoinon faciotke oty epyacio tov Cortes et al. (2010), n omoio avaivet
LETAPOPTAOCELS Yo TN mepintmon tov [IpofAnpartog [Maporapdv kot Emdodcemv (610 omoio

Kk&Oe amaitnon oyetiCeton pe pio tonobecio mapaiafrg Kot pio enidoong).

Boaowéc mapadoyéc poviehomoinonc

2V ovantuén Tov HoVTEAOL YPNGILOTOWONKAV Ol TAPUKAT® TUPASOYESG OVAPOPIKE LE TOL
onNUEln LETOPOPTOONG: ) KAOe TETO10 onueio u amoteleitor amd dvo kopPpove s(u) ko f(u),
ot omoiot oyetiCovtot pe Vv €vapén Kol OAOKANP®ON TG LETOPOPTOONG, ) dnuovpyodvion
KAMOVOL TOV GLUVOA®V Tev pn eéumnpetovuevov anothosav (N') kol tov Oéceov tov
oynudtov (M"), v) kabe tomobeoia pun eEvmnpetoduevon mehdtn yapaktnpiletor mAéov amd
TPEIS KOuPovug: tov apykd koupo i € (N U M U 0), tov kouPo évapéng petapdptmong s(u),
KoL TovV KOpPo oAokAfpwonc g petapoptoong f (u), émov u € (N' U M' U 0") dnidvel to

ONUELD UETAPOPTMOONG TOV aVTIoTOLXEL 6TOV KOUPo i € (N UM U 0).

To pofnuotikd poviélo

Emumpdcheta amd tov cupfoliopd mov mapatédnke oto ITAAOIT mponyovpévac, opiletot 10

oOvoro dLmv TV onueinv petapoptoons U = Ur U {0} U M’ U N', émov Uy avtimpoconevet
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Extended Summary in Greek (Zovoym datpiing)

TO0 GVVOAO TV Tpokabopicuévav onueiwv. Bacet avto, opilovpe o 6Ovoro Twv KOUP®V ToL
poviéhov oc W =N UM U {0} U s(U) U f(U). To ocvvoro tov akpuov A opiletar emiong
KOTAAANAQ, £T01 OOTE EVOOELG KOUP®V 1N GYETIKES e TO TPOPANUA O cvumeptAapfavovTat.

To povtého meprhauPaver tpia drapopeticd chvora petaPintov: i) m petafint x;j mov
oovton pe 1 av to dynua k € V dwavoer v axun (i,j) € A kou undév oe GAn mepintwon, ii)
™ UETAPANT] Wik, TOL OVTITPOCSOTEVEL TO YPOVO Evapéng eEummpémmong ¢ amaitnong
(k6pPov) i € W amd 1o dynua k € V, Omov W)k KOl W) AVTIGTOL(OVV GTOV XPpOVO GP1ENG
Ko ovaympnong amd to onueio petapdptwong, avriotorya, kot iii) tn petapAnty Z}‘i n omoia
YPNOOTOIEITOL YloL TV 1YVNAATINOT TNG KOTAGTOONG TOL (opTiov KABe amaitnong otov
tagoevet ond kopPo og képuPo. H petafint Aappaver m i 1 av ) anaitnon i € N vrdpyet

610 Oynpa k € K otav gtavel otov kOpPo j € W\M ko 0 drapopeticd, yiokébei € N, k € K.

AVTIKEWPEVIKOG GTOYOG TOL TPOPANUOTOC €lvol 1 EAN(IOTOTOINGT] TOV GLVOAKOD KOGTOVG
dpoporoynong ko’ 6Ao 1o €0pog tov ypovikoh opilovta [Ty, Thax] Kot divetoar omd ™

ocuvvaptnon (I1.25) mopaxdtom:

min(z) = Z Z CijiXijk (I1.25)

KeV (i,))eA
I1epropiopoi dpoporoyimv
Xy jk = 1 vk € K (I1.26)
JEW\(MUF(U))
Xior = 1 vk € K (I1.27)
LENU{uEUf(U)
Xink — Z Xhjk =0 vkek,vheN (I1.28)
iew\({0}us(U)) JEW\MUS (1))
Xiswk ~ Xs)fk = 0 vk € K,Vu € U (IT1.29)
IENU{uk}
Xfwjk ~ Xsfk = 0 vk € K,Yu €U (I1.30)
JENU{0}

Ileplopiopol omartnosmv

Xijk =1 VieN (I1.31)
kEK jew\(MUf(U))

XpoviKol TEPLopto ol

X =1 = wye =ty vk € K,Yi € NUO (11.32)
xuks(u)k =1= Ws(u)k 2 tuks(u) Vk € K,YyvuelU (H'33)
X =1 = wye 2wyt +5; vkeK, V@i )efG:ieNjeNnuoy (IL34)
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Solving the DVRPMB through re-optimization

Xisawk = 1 = Wsapk = Wi + tis + S Vk € K,VieE N,Vu e U (IL.35)
Xsfak = 1 = Wrayk = Wsayk + Esaorw) Vk € K,VueU (I1.36)
Xpanjk =1 = Wi = Wrang + tran; Vk €K,V ENUO,VuEU (IL37)
Xras@)k = 1 = Wy = Wrak + Er)so) Vk € K,Vu € U,Vp € U\{u} (I1.38)

Ilepropiouoi pong amotnos®V

DD =) ) ai-Ici=0 (I139)

KEK i€F kEK i€ECk
DY A=Y - IF =0 (IL40)
kEK ieC KkEK i€F
. . Ut

Xpje =1 = zf' =z ?’k €EK,VieN,V(h,j) € AV suchthath =  (I1.41)
xgp=1=z -z =1 Vk € K,Vi € C,Vj € W\(M U f(U)) (IL.42)
xje=1= 7" =z =1 Vk € K, Vi € F,Vj € W\(M U f(U)) (I1.43)

ki ki _
Z Zstuy ~ Z Zf(wy = 0 Vu€eU,VieN (I1.44)
keK keK
2ty + 2y = 2 = Wrapm 2 Weaok + £ Vu € U, Vk,m € K,k #m, Vi € N (IL.45)
2ty * 2 = 2 = Wik = Wsam vu € U\U; U{0'},Vi € N,Yk,m € K,k #m (IT.46)

Enwysipnolakoi teplopiopoi

z Z S(u) VieN (11.47)

r€U kEK
> Z Xisor < 1 vk e K (I1.48)
LEW\f(U) ueu
max(ai,T) Z Xijk S wiy < bi Z Xijk vk € K, VieEN (H49)
JEWNMUS(U)) JEW\MUS(U))
Z 07" < Q Vj € N,Vk € K (IL.50)
iIEN

Ot mepropropoi (I1.26) kar (I1.27) e€acparilovv g ta oxfuate Bo eKKIViicovY amd TIG
napovoeg Béoelg toug kot Oa katoAnEovv oto kévipo dlavounc. O meplopiopog (I1.28)
dtacparilel ) dwtnpnon pong Tv kOuPwv tov cuvorov N, evd ot mepropiopoi (I1.29) ko
(I1.30) dratnpovv ™ pon otovg KOUPove petagdptwonc. Emonuaiverar nog ot meplopiopoi

AVTOL EMTPETOVLY GTA OYNLLATO VO PTACOVY GTOVG KOUPOLG HETAPOPTMOOTNG TO TOAD [id pOpd.

O mepropopoi (I1.31) opilovv Tmg 6Aeg ot amarthoelg Oa e&vmnpetnBodv axpifng pia eopd.
O mepropiopoi (I1.32) — (I1.38) draocparilovv T ¥POVIKY EPIKTOTNTO VO dPOUOAOYIOV Kot
YPNOLOTOLOVVTOL Y1 VO EaAEYOVV KUKALKEG Stadpopég (subtours). Emonpaivetal exiong mmg

v Tov weplopiopd (I1.36), o xpovog dadpoung peta&d Tov apykol Kot TEMKOD KOUBov Tov

U=\ {GW), flu e U)}
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Extended Summary in Greek (Zovoym datpiing)

ONUEIOL HETAPOPTOONG Ls(y)F(u), DEWPEITAL G TOAD piKkpdg OeTIKOG apBpdg mpog amopuym

KUKAIK®OV SL00POU®V e UNOEVIKO KOGTOC,.

Ot mepropiopoi (I1.39) war (IT.40) opiCovv TIC opyikéc Kot TEMKEG GLVONKEG (QPOPTMOONG,
avtiotolya. Xvykekpiuéva, Eva oynua k € K Eexva amd tn mapovca BE6M Tov LETOPEPOVTIG
Nnon 115 amoutnoelc C mov Tov €xovv avatebel Kol KATOAYEL GTO KEVIPO SLOVOUNG UOVO LE
amartioelg F. O mepopiopog (I1.41) e€acparilel ™ ocvvéxelo tov @optiov. ‘Eva @optio
EKQOPTOVETAL LOVO otV avtiotoyn 0éon g anaitnong (to eoprtio g anaitnong i € N Oa
Bpioketar 610 OYMuo 6tav eTdcel oty Béon g anaitnong j € N av avtd ftav eniong o1o
Oymua 6tav to OyMua NTav oty Béon g Tponyovuevng arnaitnong h € N). O meproptopde
(I1.42) e&aocpariler mo¢ pio amaitnon emidoong ekopt@veTol udvo OtV QTAGEL OTNV
avtiotoyn 0éon e. Opoiwng, o tepropiopds (I11.43) dracparilel Tmg pia omaitnong mapaiapig
umopel va poptmBei povo oty avtictoryn BEon tg. O neplopiopog (I1.44) opilet t darhpnon
PONG TOV LETOPANTOV QopTiov Kot eEacporilel Tmg 6Tav pio araitnon @Tdoetl e £va onpeio
LETAPOPTOONG He omolodnmote dynua, t0te Ba mpénel va eykotaAeiyel to onpeio avtd pe
onolodfmote oynua (ovolaoTikd, pe to 1010 1 e 1o GAho dynua Tov Levyoug). O TEPLopIordg
(I1.45) opilel mog av pio amaitnon @Tdcel o€ €va onueio petaPdptwong pe o oynua k; € K
Kot ovoywpn ot amd to onpeio avtd pe 1o Synpa k, € K, k, # k4, 10t 10 OyYMua kq Oa mpémet
VO TAGEL GTO ONUELD HETAPOPTMOONG TPV OO TNV AVOYDPTGT| TOL OYNUOTOC Ky amd TO onueio
ovto. £ etvon pio TN 1 0moia AVTUTPOGHOTEVEL TO YPOVO TOV OMOLTEITOL Y10 THY GTAITION VL
napapeivel 6to onpeio petapdptwong. Emmpochera, o mepropiopdc (IT1.46) eivor mopopotog pe
tov (I1.45), oAk eEaceodiler ™V TOwTOYPOVN TAPOLGIN TOV OYNUAT®V GTO GNUEI0
LETOPOPTOONG YO TIC TEPUWITMOCEIS TOL 1) UETAPOPTMOOT Tpoypotonoleital o€ kOUPovg

TEAOTAOV.

AVaQOpIKA LE TOVG EMLYELPNOLOKOVG TEPLOPIGLOVC, 0 TtEptoptopds (I1.47) mepropilet tov apOuod
Tov petofipdoewv amaitnong (to moAd pia eopd), evéd o meploptopds (I1.48) mepropilet Tov
apBpd tov petapifacewv ava oynua. Télog, o mepropiopog (I1.49) eEacpolrilel Tmg Kabe
anaitnon eEumnpeteital EVOg TOV aVTIGTOLOV YPOVIKoD Tapabvpov kat o Teptopiopdg (I1.50)

opilel g 0 Poptio kGHe oyuaTog de Oa Eemepdoet T xopNTKdT T (Q) TOL OYAUOTOG.
\aiowo erilvong 1oV TPOPANPATOS AVAIPOROLOYONG NE AVTAALAYES POPTIOV

To mponyovuevo poviélo pmopei vo emAvOEl e tn xpnon epumopikng epappoyng (m.y. CPLEX)
YO0 TEPIMTMOELG TEPLOPIGUEVOL peYEBOVG. [ TV emiAvom mpoAinudtomv mTpaxtikov peyédovug,

npoteiveTon mAaiolo evpetikng emidvong (Load Transfer Algorithm, LTA). Zvykekpiuéva,
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Solving the DVRPMB through re-optimization

YPNOOTOIEITON KATAAANAN dwdwkacio N omoia avayvopilel {edyn oynmuatwv to omoia
evogyeTon va, eT@eAnBovv amd T petapdptmon (n avayvopion (evyodv BacileTol otn oxeTIKN
TapodoyN]). TN GUVEXELD, Yo KAOE VITOYNPLO (EVYOS TOL £YEL AVAYVMPIOTEL, YPTCLLOTOLEITOL
KOTAAANAOG ahydp1OL0g, 0 0moi0g EMAVEL TO TPOPANLOL LETAPOPTMOONG POPTIWV.

Hewpapatikny oepevvnon tov INAAOII pe avrorrhayés gopticv

A&oldynon e eupetiknc uefodov yua éva Cedyoc oynudtaov (LT AP)

[a v adloAdynon g €vpetikng HeBOO0V, KATUOKELAGTNKAY TUYOi0. TPOPANUATH UE
SPOPETIKEG TIWES Pacik®dV mapapuétpov (0nwg eaivetar otov Ilivaka I1.5). To cvvoro TV

wpofAnudtev avtdv teptropBaver 360 TpofAinuara.

Hivaxag I1.5. [opapetpotl TEpApATIKNG dlEpEdVNONG

HoapapeTpo

< Heprypaoi Twég (emimeda mapapéTpov) # emmédwv
Cy Emdooeig avd dynuo 2,...,7 6
F AVVOIKEG OTONTHOELS 2,...,7 6
%) AwpopeTikd mpoPAnpota 1,...,10 10

KéBe éva amd to mpofiquota emAbOnke apywd pe tn ovpPatikny pébodo B&P mov
nepleypaonke vy to ITAAOIL €101 ®ote va evoopatwbobv ot AA oto mAdvo, ywpig
petapoptaoelg (epeéng Ba avapépetar wg NTA). Xt cvvéyela ta mpofAnuato emAbOnKay
EMTPEMOVTOG LETOPOPTHOCELS: o) BEXTIOTA, pe TV emilvon Tov padnpotikod poviélov (OPT),
kaBmg ko B) pe ™ ypnom Tov gvpeTkod aAryopiBuov. Xe Kabe mepintwon, e€etdoTnray ot
TEPMTOGELS LETAPOPTMOTG 6€ Tpokabopiopévo onpeio (LTA?pt v ™ BérTiot kot LTAf yia
Vv evpetikn nEB0d0), KaBMDC Kl HETAPOPT®OT oTIS BEcEC AWV TV Un e&uanpeTodUEVOV

anortiiceov (avtiotoryo, LTAO kot LTA,).

3.0%
. LTA;

HLTA,

2.5% 356
= 2.1%
g i 2.0% 2.0% °
- 2.0% 1.8%
=]
E sy 1.4%
&= 1.2% 1.3%
= 1.2%
K] 1.0% 1.0%
' 1.0%
]
=
- 0.5%

0.0% .

2 3 4 5 6 7 Average

Number of deliveries (C,) per vehicle

Yypo IL.10. Zuvolikn a&loAdynomn g EVPETIKNG LeBOS0V GUYKPITIKG e TN PEATIOT
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Extended Summary in Greek (Zvvoyn dratpipng)

Y10 Zynuoa IL10 mapovoidletar 1 amdOKAION NG €VPETIKNG Avong amd 1 PéATIom.
Yvumepaivetor 6Tt 1 VPETIKY HEDOOOG TaPEYEL 101AHTEPA OTOTEAEGLATIKEG AVGELS TTOL £YOLV
amdxkAon Katd péco 0po g TaEng tov 1.8% Yy 10 mpokabopiopévo onpeio PETAPOPTMOONG

Kot 1.0% o 0heg T1¢ B€0e1g TV TEAATOV.

Avadpopordynon Ue UETAQOPTMGT Yo OVO OYNLLATO

2 mopoHoa JEPEVVIOT TOV EMKEVIPOVETAL G £vol LOvo (ebyoc oymudtov eEetalovue 600
OYETIKA EMLYEIPNCLOKE GEVAPLAL: 0) TN TEPITTMOOT) OOV KO TOL VO OYLaTa ivart KaBodoV, Kot
B) T mepintmon 6mov €va amd To dvo oynuata fpiokeTot 6To KEVTIPO dtovouns. [ mpdn
TEPIMTOOT, YPNOLOTOIOVUE TO ATOTEAEGHUATO OO TNV AVAALGT| TNG EVPETIKNG HeBOOOL TOV
TAPOLGLICTNKE Tponyovpévee. o ™ debtepn mepimtmon, ¥PNOLOTOOVUE KOTAAANAL
nepauoto omd to cvvora TpoPinudrtov R1,C1l, R2 ka1 C2 tov Solomon (1987), ta omoia

TPOTOTOLOVVTOL OVAAOYO £TGL MGTE VO AVTIKATOTTPILOVV TOL GEVAPLO TTPOG JLEPEVVT|ON).

210 Zyqua I1.11 mapovoidletor n amddoon twv LTAf kou LTA,; o¢ mocootiaio dtoupopd amd
mv NTA ywo ™ zmepintoon 6mov to 600 oynuarte eivar kKabBodov. Eivar dwaxpitd mog ot
aryopOpot LTA¢f ko LTA ; vepéyovv onuavtikd g NTA, pe Bektidvoeig g tééemg tov 7.9%
kot 16.5%, avtictoya, katd péco 6po. H amdooon paivetor va av&dvetot pe tnv avénor tov
aplOLoD TOV EMSOCEDV AVA OYM L.

25%

. 20.6% 21.4%
< 20% W LTA, 1005
2 17.3%
pu 16.5%
2
Qo 15%
-
c 12.1% 12.0%
E 11.0%
2 10% 8.8% 9-5%
) 7.7% 7.9%
a
E 5o 4.8%
X 2.4%
0% .
2 3 4 5 6 7 Average

Number of deliveries (C,) per vehicle
Zyqpoa [1.11. Méon anddoon (Bertioon) Tov adyopibpwv LTA og oyéon e Tov apBpod emdocewmy
avé dynuo
210 EyMua I1.12 arotvnovetar 1 péon coumepipopd towv aryopibuwv LTA (o¢ mocootiaio
Beltioon and tov akyopOpo NTA) og oyéon L TN YEOYPOPIKT] KOTOVOUT TOV OTOITHCE®VY Kol
v Omapén N un xpovikdv tapadvpmv. Ot adydpBpot LTA eaivetar po feATidvouy onpovtikd
™ Aon o€ oyxéon pe avt) Tov NTA og 6Aeg T1g meputtdoeic. H Bedtioon teivel va avédvetal

ot mepmTMOoES opadomomuéveov meAatov  (opddo C). Emmpdcbeta, emtpémovrog
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Solving the DVRPMB through re-optimization

HeETAPOPTOOT o€ OAEG TG Béoelg tov pn eEumnpetovpevov anaitnoewv (LTA,;) mapéyovral

wwitepa PEATIOUEVO OMOTEAEGLOTO GUYKPLTIKE HE TN TEPITTOON TV TPOKaHoplopéEvev

onueiov (LTAg).
2% 1w LTA;
20.4%
H LTA

20% - d 18.1%
s
g 15.8%
5 14.1% 15.2% 14.0%
3 1% 12.8% 12.8% 13.4%
] 11.9% 10.9%
@ 9.8%
E 10%
<
&
E 5%
E

0.96 .

R C

NoTW ™ Average
Yypo I1.12. Méon anddoon ¢ LTA o€ oyéon e TN YE@YPAPIKT KOTAVOUT Kol ¥POVIKA Tapddupa

Avadpopordynon UE UETAPOPTOON Y10 TEPLGSOTEPQ Atd dVO OYNUATA

2V evOTNTO 0VTH JEPELVATOL 1] GOS0 TNG UETAPOPTMOONG o€ [io TEPI060 avadPOUOAD-
YNoNG, Yo ToAramAd oynuota. Xpnopwonomdnkay tpia nepdpoata R109, R112 ot R100, pe
gvpog mapadvpov 25%, 50% kar 100% tov Thygy, avticTtotya. to Zynua I1.13 tapovcidlovtal
TOL AMOTEAECLLOTO TOV TPLOV TEWPAUATOV avaQopIKa e tn PeAtioon tov Abcewv g LTA
CLYKPITIKA pe T1g Avoel g NTA yuo: o) ™ cuvolikry Avor (6Aa o dpoporoyia), kot B) ta
Cevydpila oyMUaT®V TOL GLUUETEYAV OTN HETAPOPT®ON. ATO avTd TO ZyNUo GAiVETOL TMOG M
LTA vrepioyvel ko g avt ) nepintoon g NTA, pe péon Bertioon 5.7% avoaeopikd e
M ovvolikn Avon. H Beltioon eaiveton va av&davetor avoroyikd pe v avEnor Tov e0povg

TOV YPOVIKOV TOpabOpOv TV TEPIUATOV.
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Extended Summary in Greek (Zvvoyn dratpipng)

A&oAdynon tov otpatnyik@v avadpouordynonc oto IIAAOIIM P

Téhog, a&loroyeitonw n amddoon TV oiyopibuwv LTA ocvykpitikd pe v amdo0oT TOL
adyopiOpov NTA 7y 10 ovvolikd OSvvoukd mpdfinua (ITAAOIIM® - molhamAmv
aVOOPOUOAOYNOEMY) Kol UE OAPOPES TOMTIKEG avadpopordoynons. o 1o cevéplo oo,
ypnooromdnke to neipapa R100 (5 drapopetikd TpoPAnuata) Kot eEETACTNKAY O1 TOAITIKEG
SRR, NRR-1, NRR-2 kot NRR-3 vté v taxtikr PR. Avaeopikd pe v LTA, egetdoke
uovo o LTA; adyopiBuog. T'io v afloAdynon Tov OmOTEAECUATOV YPTOLUOTOWONKE 1
petpikry Vol. Zto Zynua I1.14 mopovoialetor n anddoon g LTAy wg mocootiaio dtapopd
peta&v Tov Vol twv 600 aiyopibumv (LTAg kot NTA) yio kaOe moAtikn avadpouoidynong.
Amo 10 Lyfua @aivetoar mog Kol oe avt ) mepintwon 1 LTA BeAtidvel 11g AOceEC mov
nmpokvTovy and v NTA o¢ kdbe mepintmon. H mocootiaia Bedtiovoon avsavetor avoroyikd

HE TN OPKELD TNG TEPLOSOV AVASPOUOAOYNOTG (GUYVOTEPT OVOOPOLOAOYNGY, HKPOTEPT

BeAtioon).
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Solving the DVRPMB through re-optimization

ABSTRACT

In this dissertation we studied the Dynamic Vehicle Routing Problem with Mixed Backhauls
(DVRPMB), which seeks to assign, in the most efficient way, dynamic pick-up requests that
arrive in real-time while a predefined distribution plan is being executed. We used periodic re-
optimization to deal with the dynamic arrival of pick-up orders. We developed the formulation
of the re-optimization problem, and re-modelled it to a form amenable to applying Branch-and-
Price (B&P) for obtaining exact solutions. In order to address challenging cases (e.g. without
time windows), we also proposed a novel Column Generation-based insertion heuristic that

provides near-optimal solutions in an efficient manner.

Using the aforementioned approach, the dissertation focused on the re-optimization process for
addressing the DVRPMB, which comprises a) the re-optimization policy, i.e. when to re-plan,
and b) the implementation tactic, i.e. what part of the new plan to communicate to the fleet
drivers. We presented and analyzed several re-optimization strategies (combinations of policy
and tactic) often met in practice by conducting an extensive series of designed experiments. We
did so, by assuming initially unlimited fleet resources under a straightforward objective (i.e.
minimize distance traveled). Based on the results obtained, we proposed guidelines for the
selection of the appropriate re-optimization strategy with respect to various key problem

characteristics (geographical distribution, time windows, degree of dynamism, etc.).

Subsequently, we studied the case in which the number of available vehicles is limited and,
consequently, not all orders may be served. To address this, we proposed the required
modifications in both the DVRPMB model and the solution approach. By using a conventional
objective that strictly maximizes service, we illustrated through appropriate experimentation
that the performance of the re-optimization strategies have similar behavior as in the unlimited
fleet case. Furthermore, we proposed novel objective functions that account for vehicle
productivity during each re-optimization cycle and we illustrated that these objectives may offer
improved customer service, especially for cases with relatively high vehicle availability and
wide time windows. Moreover, we applied the proposed method to a case study of a next-day
courier service provider and illustrated that the method significantly outperforms both current

planning practices, as well as a sophisticated insertion-based heuristic.
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Abstract

Finally, we investigated an interesting and novel variant of DVRPMB that allows transfer of
delivery orders between vehicles during plan implementation, in order to better utilize fleet
capacity and re-distribute its workload as needed in a real-time fashion. We introduced a novel
mathematical formulation for the re-optimization problem with load transfers, and proposed an
appropriate heuristic that is able to address cases of practical size. We illustrated through
extensive experimentation under various operating scenarios that this approach offers
significant savings beyond those offered by the previous approaches that do not allow order

transfers.
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Chapter 1: INTRODUCTION

Delivery and collection of goods accounts for a significant part of supply chain costs. Therefore,
planning the distribution and pick-up of goods in an efficient manner is an appropriate way to
reduce logistics costs, while, at the same time, improve the quality of service. In the attempt to
address these issues, significant research has been conducted in vehicle routing. The majority
of this research has focused on deterministic and static models, in which all information and
problem parameters are assumed to be known in advance, and the related decisions are made

prior to the start of plan execution.

In practice, however, many factors may cause disruptions in the execution of the original
distribution (and/or pick-up) plan. These usually stem from the occurrence of dynamic events,
such as delays due to traffic congestion, unavailability of docking space, vehicle breakdowns,
temporary alterations in the road network, etc. Moreover, increasing competitive pressures and
expectations for high-quality service have led urban logistics operators to enhance their offering
by responding to requests that arrive in a dynamic fashion. For example, dynamic arrival of
orders, while the delivery and/or pick-up plan is being executed, is common in many practical
applications, including courier, money-transfer and repair-maintenance services. In all these
applications, oftentimes, only a moderate portion of the requests for service (orders) are known
in advance, and there exists an initial routing plan (a priori plan) that assigns those known
requests to the available fleet. The dynamic orders, which arrive during plan execution, must
be assigned to appropriate vehicles in real-time. Incorporating dynamic orders in the a priori

plan may reduce the plan’s quality or, even worse, may lead to infeasibilities.
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Real-time decision-making appears to be an effective option for addressing dynamic situations?.
In this approach, the a priori plan can be modified and updated (once or repeatedly) based on
the real-time state of the logistics system. The updating process is also made possible and
practical by the latest advances in fleet telematics, which are capable of: a) providing
dispatchers with real-time information on the status and location of vehicles, status of
customers, as well as network conditions, and b) transmitting the related re-optimization

decisions to the fleet drivers in an effective manner.

The process of updating the plan in real-time to incorporate the dynamic orders needs to
consider two fundamental issues: a) The problem of re-optimizing (re-planning) the vehicle
routes at a certain time instance considering the unserved customer orders (and their a priori
assignment to vehicles), as well as all dynamic orders known up to that time instance, and b)
the re-optimizing (re-planning) process; i.e. when to re-plan and which dynamic orders to

release to the vehicles for execution. This dissertation focuses on both these issues.
Re-optimization problem and re-optimization process

Figure 1.1 provides an illustrative example for the re-optimization problem. Consider a fleet
of vehicles initially located at a single depot (t = 0). The fleet is homogeneous and each vehicle
is assigned a route (Figure 1.1a). Customer orders arrive over time (t > 0) during the execution
of the initial routes through a call center. At time instance t,, the dispatcher decides to
incorporate the newly arrived (dynamic) orders in the partially executed plan (Figure 1.1b).
Note that at time t;, some customers have been already served and the available resources (e.g.
fleet vehicles and their capacities, available time horizon, etc.) are limited. The dispatcher
assigns some, or all, new orders to the available vehicles en route or to vehicles located at the
depot, if any. Also the dispatcher may also reassign orders between the available vehicles, if
this is possible. It is clear that the decisions to be made are often complex, since many
assignment options are available. For example, as shown in Figure 1.1c, order d may be
assigned to one of two routes. Note also that due to problem constraints, customers may even
be denied service. Thus, the underlying objective is to serve all static orders and as many as
possible (or ideally all) dynamic orders, respecting all constraints (e.g. vehicle capacity, shift

remaining time, etc.), while minimizing a cost metric for the entire fleet (Figure 1.1d).

2 Note that there are other options for dealing with such problems. For example, probabilistic information for future
events can be incorporated and taken into account during (re)optimization (Powel, 1996).
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Figure 1.1. Example of the re-optimization problem

Based on the above illustrative example, we can define the Re-optimization Problem, as

follows:

Description 1.1.: The Re-optimization Problem

Consider a fleet of vehicles executing a certain delivery/pick-up plan. Consider also
that new requests for service (orders) arrive dynamically during execution. The
problem seeks to assign as many of the new orders as possible to vehicles or/and
reassign orders between the available vehicles, if possible, while achieving efficient

routing cost, and respecting all service constraints.

The re-optimization problem comprises a single step of the re-optimization process. A typical

re-optimization process comprises the following decisions and actions:

e Select a sequence of re-optimization periods (re-optimization cycles), not necessarily of
equal duration. The dynamic orders arriving within each period (and perhaps some orders
of the previous periods not yet served) are planned for execution by the fleet at the end of
the period. The selection of an appropriate sequence of re-optimization periods is a
challenging issue, which depends on several aspects, including the rate of the arriving

orders, the characteristics of the plan been executed, etc.
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e At the end of each re-optimization period, solve the re-optimization problem described

above.

e Communicate part of, or the entire new plan, to drivers and repeat in every re-optimization

cycle.

In addressing the re-optimization problem and the re-optimization process, one needs to

consider significant operational characteristics, which are relevant virtually in every dynamic

vehicle routing problem (see Table 1.1).

Table 1.1. Operational characteristics of re-optimization in dynamic vehicle routing

Category

Characteristic/Description

Time

Planning horizon

The planning horizon refers to the available working period of the vehicles
to serve customers (e.g. driver’s shift). Various planning horizon options
such as flexible shifts, rolling shifts, etc. may offer different advantages.

Arrival pattern of dynamic orders

The timing of order arrival may play a significant role in the re-optimization
process. For example, an arrival pattern with significant peaks (i.e. dynamic
orders concentrated around certain times) may require a different sequence
of re-optimization periods than a case in which dynamic orders arrive more
or less uniformly over time.

Re-optimization cycle

Long re-optimization intervals limit the dispatcher’s options (since a larger
portion of the route has been completed) and may lead to lost opportunities
regarding favorable insertion locations for the newly arrived orders. On the
other hand, short re-optimization intervals (frequent re-optimization) may
not consider adequately favorable dependencies between arriving orders
(adequately rich order combinations). Note also that in practice, frequent
changes of the delivery plan may cause nervousness to the system.

Time windows

Time windows, which refer to the interval within which each customer may
be served, may lead to considerable “dead” times due to vehicles waiting
for a customer’s time window to open. “Dead” times may be better
exploited in cases of frequent re-optimization, since frequent re- planning

may use vehicle waiting times for servicing a nearby dynamic order.
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The spatial distribution of customers is another essential parameter in both

static and dynamic vehicle routing problems. For example, in the case in

which customers form distinct groups (clustered case), the excess cost of an
Space additional visit within the same cluster tends to be low, while an inter-
cluster visit is expensive. If the customers are uniformly distributed in
space, then the excess cost of a visit may vary widely.

Distribution environment

The characteristics of the distribution environment may also play an
important role in the dispatcher’s decisions. Such characteristics may
include a) traffic congestion (high or low) and b) the type of service (pick-
up, delivery or mixed). For example, highly congested areas decrease the
service rate and may limit the options of re-optimization. Furthermore, in
case of delivery only operations, orders may be serviced by the vehicle
initially assigned to them, limiting the re-optimization options. To

Distribution ~ overcome this limitation, order exchanges between vehicles is necessary,
environment increasing the complexity of the distribution process.
and practice

Distribution practice

In this context, distribution practice refers to the way resources are deployed
to handle dynamic orders. For example, should all available vehicles be
dispatched, or should some vehicles be kept at the depot to only serve
dynamic orders? Additional examples include positioning of vehicles at
forward points in anticipation of (dynamic) order assignments, or transfer
loads (exchange) among vehicles as necessary to streamline routing
operations.

Dissertation motivation and focus

The research in this dissertation has been motivated by practical courier applications (Ninikas
et al., 2014). For example, in a typical courier setting, a fleet of delivery vehicles originating
from a local distribution hub (depot) is tasked to deliver or pick-up orders known prior to the
start of operations (static orders). As the work plan unfolds, however, customer orders are
received through a call center, for on-site pick-up within the current period of operations. These
pick-up orders have to be collected and returned to the hub for further processing. In this work,
we seek to allocate in real-time dynamically arriving (pick-up) orders to the most appropriate

vehicles, either to those en route or to extra vehicles stationed at the depot.
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Beyond the courier case, such problems arise naturally in money-transfer and repair-
maintenance services. Service vehicles are called to serve requests for money pick-ups or faulty
equipment repairs, respectively, which arrive to a dispatch center in a dynamic fashion. Related
examples may also be found in coach transfers, in which vehicles that execute planned routes
originating from major locations (e.g. airport) and serving predefined drop-off areas (e.g.
accommodation sites), are requested to collect passengers from additional locations while en

route.

The problem investigated in this dissertation comprises a dynamic version of the one-to-many-
to-one pick-up and delivery problems (1-M-1-PDPs, Berbeglia et al., 2008; 2010; Gribkovskaia
and Laporte, 2008). The term “one-to-many-to-one” denotes that vehicles deliver commodities
initially loaded at the depot to customers (linehaul customers), while other commaodities are
picked up from customers and are transported back to depot (backhaul customers). Our case
considers that a) each customer requires only pick-up or delivery, and b) pick-up and delivery
customers may be served in an arbitrary order. The static version of this problem can be found
in the literature as the Vehicle Routing Problem with Mixed Backhauls and Time Windows
(VRPMBTW) as introduced by Kontoravdis and Bard (1995). For that reason, we refer to our
problem as the Dynamic Vehicle Routing Problem with Mixed Backhauls (DVRPMB). To the
best of our knowledge, the dynamic version of 1-M-1 PDPs and especially the DVRPMB has
yet to be investigated (Parragh et al., 2008).

In this dissertation, we approach DVRPMB by solving repeatedly static re-optimization
problems. For the latter, we define the re-optimization model and propose a Branch-and-
Price (B&P) approach to obtain exact solutions. In order to address challenging cases (e.g.
without time windows), we propose a novel Column Generation-based insertion heuristic that

provides near-optimal solutions in an efficient manner.

Using the aforementioned fundamental approach, the dissertation drills down to the re-
optimization process for addressing the DVRPMB. As mentioned above, the problem
environment plays a significant role in this process. The rate of delivery, the rate of arrival of
new orders, the space and temporal distribution of the orders, and the percentage of dynamic
orders are some of the operational characteristics that may affect the adoption of the appropriate
re-optimization process. In this dissertation, we consider various problem settings in order to
provide basic guidelines in terms of managing various dynamic scenarios in a flexible and cost
effective manner. Considering these operational characteristics, we propose and analyze several

re-optimization policies often met in practice by conducting an extensive series of designed
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experiments. In addition, we investigate those policies in combination with different tactics

regarding the part of the plan that is released for implementation.

Initially, we focus our study on the case of unlimited fleet using a straightforward objective (i.e.
minimize distance traveled). Subsequently, we examine the case of DVRPMB, in which the
number of available vehicles is limited. We introduce appropriate objective functions that

account for both the service provided (in terms of orders served), and the cost of service.

Finally, we examine the possibility of relaxing the intrinsic constraint of preventing delivery
orders to be reassigned to other vehicles, which may impose significant limitations to re-
optimization and may lead to inability of servicing some newly received orders. Thus, we study
the re-optimization problem by allowing delivery orders to be transferred between vehicles
during the execution of the plan. By doing so, we attempt to better utilize the fleet by re-
distributing its workload as needed in a real-time fashion.

For the above problems cases, we have accomplished the following:

e Proposed an appropriate periodic re-optimization process for the DVRPMB

e Proposed an exact and a novel heuristic approach in order to solve the underlying re-
optimization problem of DVRPMB

e For the full dynamic case, presented and analyzed a) re-optimization tactics regarding the
implementation of the plan, and b) re-optimization policies regarding the re-optimization
frequency and the resulting solution quality. Proposed guidelines on re-optimization
depending on the characteristics of the dynamic environment

e Proposed novel objective functions to address the case of limited fleet in DVRPMB that
account for vehicle productivity, and investigated the effectiveness of these objective
functions on the quality of the solutions for various characteristics of the dynamic routing
environment

e Validated the practicality of the proposed methods through a large industrial case of a next-
day courier service provider

¢ Introduced the case of load-transfer operations during the execution of the routing plan, and
proposed a novel mathematical model for the underlying re-optimization problem.

e Developed a new heuristic method to solve this problem and compared the results obtained

with operations that do not allow load-transfers.
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The remainder of the dissertation is organized as follows:

Chapter 2 presents and discusses the related problems in the literature, the most significant
approaches used, and the similarities and differences with respect to the problem studied in this
dissertation. Chapter 2 also identifies the related research gaps, as well as the contributions of

the dissertation.

Chapter 3 presents a formal description of the problem in hand. This is followed by the model
of the (static) re-optimization problem considered in each re-optimization cycle. An overview

of the solution framework is also given.

Chapter 4 presents the Branch & Price (B&P) approach proposed to solve the re-optimization
problem (of DVRPMB). This approach includes restructuring the problem to be amenable to
column generation (CG), as well as required modifications to the conventional B&P approach
so that it applies to the problem in hand. A novel CG-based insertion heuristic is also proposed
to provide near optimal solutions in an efficient manner for computationally demanding cases

(e.g. without time windows).

Chapter 5 studies the re-optimization process for the case of unlimited fleet. Several re-
optimization strategies are discussed and analyzed. Based on the results obtained we propose

re-optimization guidelines under various operational settings.

Chapter 6 deals with the case of limited fleet. We describe the required modifications to the
approach developed for the unlimited fleet case, and introduce appropriate objective functions.
Moreover, we apply our proposed method to a real case of a next-day courier service provider.

Chapter 7 introduces and examines a variant of the re-optimization problem that allows orders
to be transferred between vehicles during execution. The Chapter provides an arc-based
formulation for the re-optimization problem and an appropriate heuristic that is able to address
(solve) cases of practical size. This approach is compared to the previous ones that do not allow

transfers.

Finally, Chapter 8 presents the conclusions of this dissertation, the theoretical and practical

contributions, along with directions for further research.
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Chapter 2: LITERATURE BACKGROUND

As already mentioned in Chapter 1, this dissertation focuses on dynamic routing problems. The
latter concern the dynamic version of Vehicle Routing Problems (VRPs), including the VRP
with Backhauls and the Pickup and Delivery Problem (PDP). The VRP is essentially a Multiple
Traveling Salesman Problem (MTSP) with a capacity constraint for each salesman. Likewise,
other constraints and assumptions can be added to the basic form of VRP in order to take into
account key aspects of distribution and scheduling, resulting into different VRP variants.

Figure 2.1 illustrates how the Dynamic Vehicle Routing Problem with Mixed Backhauls
(DVRPMB), which is the problem addressed in this dissertation, can be derived from MTSP by
adding appropriate constraints. In the following Sections, the VRP with Time Windows
(VRPTW), the VRP with Backhauls (VRPB), the Pickup and Delivery Problem (PDP) and the
Dynamic VRP (DVRP) are reviewed. All are related to DVRPMB.

Specifically, Section 2.2 overviews the static version of the problems related to DVRPMB, i.e.
VRPTW, VRPB and PDP. Section 2.3 discusses the dynamic versions of VRP and PDP and
related solution strategies to address dynamism. Section 2.4 provides a targeted discussion on
the essentials of the basic technique employed in this dissertation (Branch-and-Price), and

Section 2.5 highlights the contributions of the dissertation.

Aspects of the literature that are quite specific to particular topics of the dissertation are
presented and discussed within the corresponding Chapters.
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Figure 2.1. From MTSP to DVRPMB

2.1 The Vehicle Routing Problem

The vehicle routing problem (VRP) is one of the most studied problems in the field of
Operations Research and many mathematical programming techniques have been developed to
solve it. VRP applications are of critical importance to aspects of logistics management, since
they provide decision support to complex practical transportation and distribution problems.
Efficient decisions on related applications may have significant impact on operating costs.
Numerous practical applications have illustrated that the use of computerized procedures for
planning the distribution process result in substantial savings (generally from 5% to 20%) in

transportation costs (Toth and Vigo, 2002).

The VRP is a generalization of the classic Traveling Salesman Problem (TSP) (Christofides,
1979; Cornuejols and Nemhauser, 1978; Gendreau et al., 1997) and it consists of designing the
optimal set of routes for a fleet of vehicles in order to serve a certain set of customers. It was
firstly introduced by Dantzig and Ramser (1959), who proposed a mathematical programming
formulation and an algorithmic approach to solve a practical problem of delivering gasoline to
service stations. The definition of VRP and its variants, as well as an extensive analysis of

solution methods, are presented by Toth and Vigo (2002). Currently numerous commercial
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software applications are available that embed advanced algorithmic approaches for solving

different practical VRP cases.

In a typical VRP setting, customers are represented by nodes of a network, they have known
demand, and each must be served once by only one vehicle. Every arc (i,j) of the network
(where i and j are network nodes) is associated with a cost c;; representing the cost of traveling
from i to j. Each vehicle has a certain capacity and its route must start and end at a certain
depot. The total demand of those customers served by a vehicle may not exceed the vehicle’s
capacity. The objective of the problem is to minimize the total cost traveled by all vehicles.

Figure 2.2 illustrates a feasible solution of a VRP for a given set of customers.

According to Steward and Golden (1983), a compact and convenient formulation for the VRP

Minimize z z CijXijk
k ij

can be written as follows:

Subject to

Z,ul-xijk < Q k= 1,2,...,m
iLj

x = lxiij € S
where:
c;j = the cost of traveling from i to j
x;j = 1 if the vehicle k travels from i to j and O otherwise
m = the number of available vehicles
S, = the set of all feasible solutions of the corresponding m-traveling salesman problem (m-
TSP)
u; = the demand at location i

Q =the vehicle capacity

The VRP is modeled as an integer-programming problem and corresponds to an NP-hard
problem (Lenstra and Kan, 1981); therefore, practical (large) problem instances cannot be
solved to optimality within reasonable time. As a result, exact solution methods are used for
limited-size problem instances, while heuristics and metaheuristics are normally applied for
practical cases. There is extensive literature regarding methods for solving the VRP. The
interested reader may refer to the work of Toth and Vigo (2002), Christofides et al. (1979),
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Desrochers et al. (1990), Laporte (1992), Golden and Assad (1988), and Laporte and Osman
(1995).

L

) oo
® o

Figure 2.2. A solution example of the VRP

Beyond the classical VRP formulation, a number of problem variants have been studied,
depending on the constraints of the problem in hand. Among the most common are the VRP
with Time Windows (VRPTW), in which each customer must be visited within a certain,
predefined time interval; the VRP with Pickup and Delivery (PDP), in which each customer is
associated with two service locations, one for the pick-up and another for the delivery of goods;
the Heterogeneous fleet VRP (HVRP), in which involved vehicles have different capacities;
and the VRP with Backhauls (VRPB), in which a set of customers require the delivery of goods
to their locations, while another set requires picking up the goods from their locations and
returning them back to the depot. VRPs related to transporting persons between locations are
referred to as Dial-a-Ride Problems (DARP).

According to Psaraftis (1988), VRP-related applications often include two additional important
dimensions: a) evolution of information, which relates to the fact that the information available
to planners might change during the execution of planned routes (e.g. arrival of new customers),
and b) type (quality) of information, i.e., possible uncertainty on the available data (e.g. the

demand of a customer is only an estimate of the actual demand).

Information evolution distinguishes a static VRP from a dynamic one. In static VRPs all input
information is known a priori and initial vehicle routes do not change during execution. In
dynamic VRPs, part of the input is unknown and is gradually revealed to the planners during
execution. Information quality distinguishes a deterministic VRP from a stochastic one. In the

latter, some information is probabilistic, especially the information related to customers, travel
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or service times, and customer demand. Based on these dimensions, VRPs are often classified

in the four categories of Table 2.1.

Table 2.1. VRP taxonomy w.r.t. information evolution and quality

Type (Quality) of information

Deterministic Stochastic
Static L Static & Deterministic Static & Stochastic
Evolution of (Input known a priori)
information  Dynamic Dynamic & Deterministic

(Input changes over time)  (also, online or real-time) Dynamic & Stochastic

The problem setting and approach of this dissertation relate to deterministic information only,
thus we review below static and dynamic VRPs with deterministic input. For stochastic VRPs,
the reader may refer to: a) Bertsimas and Simchi-Levi (1996), Cordeau et al. (2007) and
Gendreau et al. (1996) for the static case, and b) Powel (1996), Bent and Van Hentenryck
(2004), Larsen et al. (2004) and Ichoua et al. (2006) for the dynamic case.

2.2 Related Static Vehicle Routing Problems

The review of this Section focuses on static VRPs related to the current work. Section 2.2.1
overviews VRPTW, which is the most common static VRP variant; Section 2.2.2 presents the
VRPB, the generalized static version of the DVRPMB studied in this dissertation. Finally,
Section 2.2.3 drills-down to PDPs, which are also highly related to the static version of the
DVRPMB.

2.2.1 The Vehicle Routing Problem with Time Windows (VRPTW)

VRPTW can be defined as follows: A fleet of homogeneous vehicles located at a central depot
Is tasked to serve a set of customers, each with known demand. A customer can only be served
once and within a pre-specified time interval. In the hard TW variant, the customer must be
visited after the opening time of this time window, and before its closing time; a vehicle may
wait if it arrives to the customer prior to the opening time. In the soft TW variant, the customer
may be served outside its time window, but a penalty is added to the objective function. Vehicle
capacity cannot be exceeded. The objective of VRPTW is to minimize the total working time

(i.e. the sum of travel and waiting times).

The work of Solomon (1987) is one of earliest attempts to tackle VRPTW. The author proposed

appropriate conditions for evaluating TW feasibility when a new customer is inserted in a route
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in order to increase computational efficiency. He also proposed and compared several heuristics

for VRPTW. The author found that one of the sequential insertion heuristics (known as

Solomon’s Il insertion heuristic), performed particularly well. This heuristic remains a
benchmark for VRPTW solution methods.

Over the last decades numerous solution methods have been proposed for addressing VRPTW,

ranging from exact approaches to heuristic and metaheuristic methods. Table 2.2 summarizes

the most important solution approaches, along with selected references from the literature.

Table 2.2. Types of solution methods for the VRPTW

Solution Method

Algorithm

Reference

Exact

Dynamic programming

Langrangian relaxation

Column generation

Branch-and-cut

Kolen et al. (1987)

Fisher (1994)

Fisher et al. (1997)

Kohl and Madsen (1997)
Kallehauge et al. (2006)

Desrochers et al. (1992)
Kohl et al. (1999)

Danna and Le Pape (2003)
Feillet et al. (2005)
Chabrier (2006)

Bard et al. (2002)

Heuristic

Construction

Route-improvement

Construction & improvement

Solomon (1986, 1987)

Potvin and Rousseau (1993)
loannou et al. (2001)

Braysy and Gendreau (2005a)

Russell (1977)

Baker and Schaffer (1986)
Solomon et al. (1988)
Savelsbergh (1985, 1990, 1992)
Potvin and Rousseau (1995)

Russell (1995)
Cordone and Calvo (1997)
Braysy (2002)

Metaheuristic

Simulated annealing

Tabu search

Evolution (genetic) algorithms

Chiang and Russell (1996)
Tan et al. (2001)

Garcia et al. (1994)

Potvin et al. (1996)

Taillard et al. (1997)

Badeau et al. (1997)

Chiang and Russell (1997)
Cordeau et al. (2004)
Pisinger and Ropke (2007)
Braysy and Gendreau (2005b)
Berger et al. (2003)
Homberger and Gehring (2005)
Mester and Braysy (2005)
Mester et al. (2007)

14
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Solution Method Algorithm Reference
Ant colony optimization Gambardella et al. (1999)
Greedy Randomized Adaptive Kontoravdis and Bard (1995)
Search Procedure (GRASP) Chaovalitwongse et al. (2003)
Rousseau et al. (2002)
Variable Neighborhood Search Braysy (2003)

Braysy et al. (2004)

2.2.2 The Vehicle Routing Problem with Backhauls

In the VRP with Backhauls (VRPB), the demand of each customer corresponds to either a
delivery (linehaul) or pick-up (backhaul), in which the related items need to be brought back to
depot. Typically, VRPB is extended to consider time-windows (VRPBTW). The goal of VRPB
Is to minimize total travel distance in order to satisfy all delivery and collection requirements.
This is typically combined with minimizing the total number of vehicles used. The VRPB may

be also viewed as a special case of the Pickup and Delivery Problem (see Section 2.2.3).

There are two main backhauling strategies found in the literature that fit the aforementioned
problem setting; the Vehicle Routing Problem with Clustered Backhauls and Time Windows
(VRPCBTW, Gelinas et al., 1995), and the Vehicle Routing Problem with Mixed Backhauls
and Time Windows (VRPMBTW:; Kontoravdis and Bard, 1995). The former (VRPCBTW)
imposes visiting sequence restrictions, i.e. all linehaul customers of a route must be served prior
to backhaul customers. From a practical perspective, this restriction is used to eliminate
rearrangements of load within the vehicle, since normally vehicles are loaded according to the
delivery sequence they follow. In case sequencing imposes no priorities, then linehaul and
backhaul customers may be visited arbitrarily, as in VRPMBTW, which corresponds to the

static version of the problem addressed in the current dissertation.

Several heuristic and exact algorithms have been proposed to tackle the aforementioned
problems. Yano et al. (1987) proposed one of the first exact approaches to address the
VRPCBTW. The authors addressed a case of retail stores, in which the number of pick-up and
delivery customers in a route is limited (< 4), and developed a Branch and Bound (B&B)
algorithm to solve it. Derigs and Metz (1992) investigated a VRPCBTW problem arising in
express mail services with up to 80 customers, and proposed various mathematical
formulations. Gelinas et al. (1995) developed a B&B algorithm based on column generation
using a set partitioning model for the VRPCBTW. The authors employed branching on resource

variables (time and capacity) instead of network flow variables, which allowed them to solve
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to optimality a series of Solomon (1987) based problems of up to 100 customers. Toth and Vigo
(1997) presented another B&B scheme to solve the symmetric and asymmetric VRPCB, using
a Langrangian lower bound by adding cuts, combined with a lower bound that results from
relaxing the capacity constraints. Mingozzi et al. (1999) also proposed an efficient set-
partitioning based integer linear programming formulation for the VRPCB, capable to solve to

optimality instances with up to 100 customers and 12 vehicles.

Several heuristics and metaheuristics have also been put forth for tackling VRPB. Table 2.3
summarizes references related to heuristic and metaheuristic approaches proposed to address
the VRPCB and VRPMB. Complementary to our review, the reader is also referred to the
survey of Parragh et al. (2008) for related work on the formulation of these problems, and to
the work of Tarantilis et al. (2013) for computational results and comparison of various solution
approaches on benchmark data sets.

Table 2.3. Types of solution methods for the VRPB

Solution Method Algorithm Reference

Deif and Bodin (1984)

Goetschalckx and Jacobs-Blecha (1989)
Heuristic Thangiah et al. (1996)

Potvin et al. (1996)

Toth and Vigo (1999)

Duhamel et al. (1997)
VRPCB(TW) Hasama et al. (1998)
Reimann et al. (2002)
Osman and Wassan (2002)
Zhong and Cole (2005)
Brandao (2006)
Reimann and Ulrich (2006)
Ropke and Pisinger (2006)
Zachariadis et al. (2012)
Tarantilis et al. (2013)

Metaheuristic

Golden et al. (1988)
Casco et al. (1988)
Heuristic Kontoravdis and Bard (1995)
Salhi and Nagy (1999)
VRPMB(TW) Wade and Salhi (2002)
Hasama et al. (1998)
Zhong and Cole (2005)
Metaheuristic Reimann and Ulrich (2006)
Ropke and Pisinger (2006)
Tarantilis et al. (2013)
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2.2.3 The Pickup and Delivery Problem

Pickup and delivery problems (PDPs) form a class of vehicle routing problems in which goods
or passengers are transported between an origin and a destination. Therefore, each
transportation request i is associated with two vertices, p; and d;, and the goods (or passengers)
should be picked up at p; and delivered to d;. For a solution to be feasible in this setting, p; and
d; should be included in the same route, and p; should be visited prior to d;. Typically, capacity
constraints are considered, and a time window is associated with each vertex. A characteristic
example of time window and capacity constraints can be found in applications related to
“Transportation on Demand” (Cordeau et al., 2007), which involve the transportation of people
with special needs (Dial-a-Ride Problem, DARP).

Berbeglia et al. (2008, 2010) introduced a classification scheme for PDPs based on the number
of origins and destinations involved. Based on this scheme, PDPs can be classified into three

(3) different categories:

a) Many-to-Many (M-M) problems, in which any vertex may serve as source or a destination,

b) One-to-Many-to-One (1-M-1) problems, in which goods/passengers initially available at a
depot are to be transported to multiple sites, while other goods/passengers available at these
or other sites need to be transported back to the depot, and

c) One-to-One (1-1) problems, in which each item/passenger is associated with a certain origin

and a certain destination.

These problem types are reviewed below.

2.2.3.1 Many-to-Many (M-M) PDPs

According to Berbeglia et al. (2008), a typical example of the first category (M-M problems)
is the so-called Swapping Problem (Anily and Hassin, 1992). In this problem, each vertex
initially possesses an object of a known type, and requests an object of a desired type. The
objective is to construct the pick-up and delivery routes in such a way that every vertex will
eventually possess an object of the desired type. Interested readers may refer to Anily and
Hassin (1992), Anily et al. (2006) and Wang et al. (2006).

2.2.3.2 One-to-Many-to-One (1-M-1) PDPs

In this class of problems, which constitutes a generalization of VRPB, some customers require
delivery of commaodities located at a depot (referred to as linehauls), while other customers
require pick-up of commodities from their sites and delivery to the depot (referred to as
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backhauls). In terms of demand, there are two variants of 1-M-1 PDPs: combined demand and
single demand. The former relates to cases in which a customer requests both pick-up and
delivery operations (simultaneously), while the latter relates to cases in which each customer
requests either pick-up or delivery, as in the VRPB.

A solution is said to be mixed if pick-up and delivery customers may be served in an arbitrary
order; then, the related problem is called the 1-M-1 PDP with Single Demands and Mixed
Solutions and is equivalent to the VRPMB described in Section 2.2.2. On the other hand, the
VRPCB is equivalent to the 1-M-1 PDP with Single Demands and Backhauls.

As explained earlier, the 1-M-1 PDP with single demands forms a generalization of the VRPB
described in Section 2.2.2; thus, the references surveyed in that Section also apply in this case.
For the combined demand case (which is not relevant to this dissertation), we refer interested
readers to the review of Berbeglia et al. (2008) and the work of Gribkovskaia et al. (2007),
Gribkovskaia and Laporte (2008), Chen and Wu (2006) and Bianchessi and Righini (2007).

2.2.3.3 One-to-One (1-1) PDPs

As already mentioned, 1-1 PDPs relate to problems in which each commodity is associated with
exactly one pick-up and one delivery vertex (location). This type of problems can also be
referred to as paired-PDPs. Two main variations can be found: a) the VRP with Pickups and
Deliveries (VRPPD), which is related to the transportation of goods, and b) the Dial-a-Ride
Problem (DARP), which deals with the transportation of people. The main difference of these
two variants is that in the latter, passenger convenience is usually taken into account. Recently,
researchers focused in another category of this type of problems: the VRPPD with
Transshipments (VRPPDT), in which vehicles are allowed to drop off goods/passengers to
intermediate locations to be picked up and delivered to the final destination by another vehicle.
This class of problems is relevant to the problem addressed in Chapter 7 of this dissertation,

and the related literature is discussed in Section 7.2.

2.3 Dynamic Vehicle Routing Problems

The Dynamic Vehicle Routing Problem (DVRP) is the dynamic counterpart of the classical
VRP mentioned above (Larsen et al., 2008). Dynamic routing of a fleet of vehicles refers to
distribution problems in which information is dynamically revealed to the decision maker.
During the past decade, the research community has focused more and more on dynamic
problems, and various related models and algorithms have been developed. Rapid growth in

18 DeOPSys Lab



Solving the DVRPMB through re-optimization

telecommunications and information technology have led to this direction, since, distribution
companies are now able to monitor the vehicles’ location and status in real-time, and, thus, to
manage them in real time. Related applications of DVRP include courier service systems, dial-

a-ride systems, emergency systems, etc.

Figure 2.3 presents a simple example of a dynamic vehicle routing situation. In this example,
two vehicles must serve static orders that are known a priori (represented by closed black
nodes), as well as dynamic orders (represented by open nodes) that are revealed during the
execution of the initial routing plan. The latter is presented in Fig. 2.3a; Figure 2.3b presents an
intermediate state in which the vehicles have already executed a part of the plan (denoted by a
dashed line) and are on their way to their next destinations (denoted by thick continuous line).
Between the departure of the vehicles from the depot and the time related to Fig. 2.3b, two
dynamic orders (DO) have arrived and need to be incorporated in the current plan. In Fig. 2.3c,
a DO has been successfully incorporated in the plan without significant cost or delay (route on
top of the Figure). However, incorporating the second DO in the bottom route will cause a large

detour, illustrating the complexity of incorporating new requests in the plan.

O \

6 \ﬁ
(b) (c)

B Depot — 7 Planned route

------>  Route traveled

—Jp  Current vehicle movement
O Online customer request (dynamic) —> Newroute segment

(a)

® Advance request customer (static)

Figure 2.3: A dynamic vehicle routing scenario: (a) initial routing solution, (b) state after DO arrival,
(c) incorporation of DO into the plan

The most common source of dynamism in VRPs is the arrival of customer requests during the
execution of the routing plan. Another important dynamic component of practical applications

is related to variable travel times (e.g. time-dependent) and variable onsite service times
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(Fleischmann et al., 2004; Chen et al., 2006; Potvin et al., 2006; Guner et al., 2012, Haghani
and Jung, 2005). Recent work has also considered the case in which customer demand is
revealed when the vehicle reaches the customer site (Tatarakis and Minis, 2009; Novoa, 2009;
Secomandri, 2009), as well as the case in which a vehicle executing a route becomes unavailable
(e.g. vehicle breakdowns, Li et al., 2009a; 2009b, Mamassis et al., 2013; Mu et al. 2011).

The source of dynamism for the problem addressed in this dissertation is the arrival of dynamic

requests; therefore, in the following, we focus our review on this aspect.

According to Larsen et al. (2007) the DVRP has two main differences w.r.t. the static VRP: a)
not all information relevant to planning the routes is known by the planner when the routing
process begins, b) information may change after the initial routes have been designed. DVRP
is a more elaborate and complex problem than its static counterpart, and belongs to the class of
NP-hard optimization problems (Psaraftis, 1988). As a result, it is not always feasible to obtain

optimal solutions to problems of practical size within a reasonable timeframe.

As mentioned above, DVRPs introduce new elements and challenges that increase the
complexity of the related routing decisions. For example, in some contexts, such as in express
(same-day) courier services, the company may deny a service request either because of
significant high service costs or because it is impossible to serve the particular request (Ichoua
et al., 2000; 2003; 2006). DVRPs also employ different objective functions. A common
objective in static VRPs is the minimization of routing cost, while DVRPs may introduce
additional elements such as service level, service or profit maximization, response times, etc.
Finally, DVRPs require online decision making, which may compromise reactiveness (to input
changes) in the light of decision quality (e.g. lower costs). The best trade-off between
reactiveness and decision quality can also be an aspect of particular importance in many

applications in which customers call for service (e.g. repair-maintenance services).

2.3.1 Measuring dynamism (degree of dynamism)

According to Ichoua et al. (2007), the dynamism of a problem may be characterized by two
elements: a) the frequency of changes, i.e. the rate at which new information becomes available,
and b) the urgency of requests, which is the elapsed time between the arrival of a new request
and its required service time. Based on these aspects, three metrics have been proposed to
measure the dynamism of a problem:

(i) Lund et al. (1996) defined the degree of dynamism § as the ratio between the number of

dynamic requests n, and the total number of requests n,;:
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ng

6= (2.1)

N¢ot
(if) Larsen (2001) generalized & in order to take into account the arrival time of requests and

proposed the effective degree of dynamism, §€. Let T,,,, be the length of the planning
horizon, N the set of requests (n;,; in total), and h; the disclosure time of request i

(operations start at time 0); then §¢ can be defined as:

56= 1 z hi
Ntot ieNTmax

(iii) Finally, Larsen (2001) extended &€ to problems with time windows in order to consider

(22)

also the urgency of requests. The author defines the reaction time, as the difference between
the closing of the time window b; of request i and the disclosure time h;; longer reaction
times denote higher flexibility to include a request in the current routes. Thus, the effective

degree of dynamism is extended as follows:

DY
w Ntot Tmax (23)

IEN

It should be noted that the aforementioned metrics assume values in the interval [0,1], and

higher values within this interval denote higher level of dynamism.

2.3.2 Classification of DVRPs

DVRPs typically follow the taxonomy of VRPs, i.e. every VRP or PDP variant discussed in
Section 2.2 may be related to a dynamic counterpart, in case portion of the related data is not

known in advance and is revealed over time.

In addition to classifications that follow the taxonomy of static VRP problems, DVRPs are
typically classified according to dynamism, i.e. the extent of dynamic information with respect
to static information (the information known prior to the start of operations). Larsen et al. (2002;
2008) used the effective degree of dynamism (5€¢) to support such a classification. Prior to
discussing their proposal, we discuss typical objectives employed in DVRPs considering the
degree of dynamism. These objectives include the following:

1) Transportation costs: This objective used extensively in static routing should also be
considered in DVRP systems, due to the importance of transportation.

2) Service maximization: Maximizing the number of dynamic orders served is relevant and
significant in those DVRP systems which are not capable of serving all dynamic orders (e.g.

in case of limited resources).
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3) Responsiveness: Offering higher service level to customers may not be compatible with
cost minimization, since a prompt response to a new dynamic request may imply sub-

optimal routing of the vehicle in terms of distance/cost.

Using &¢, Larsen et al. (2002; 2008) classified DVRPs to weakly, moderately and strongly

dynamic systems:

o Weak dynamic systems (0 < §° < 0.3): In those systems, only a limited number of
customer orders is revealed dynamically, while most orders are known prior to the start of
execution. The typical objective employed in this case is to minimize transportation costs.

o Moderate dynamic systems (0.3 < §° < 0.8): In this case, the proportion of dynamic
orders is significant, but static orders should also be considered during the design of the
initial plan. The typical objective here is a combination of cost minimization and
maximization of dynamic orders served.

o Highly dynamic systems (0.8 < §° < 1): It is the most extreme case of dynamic routing
systems, met mainly in emergency services such as police, fire department and ambulance
services. Here, almost no requests are known in advance and the routing plan is constantly
changing (in a real-time fashion) based on the newly received requests. These applications

are characterized by a strong focus on responsiveness (or service maximization).

The DVRP variants (problems) investigated in this dissertation are related to moderate dynamic
systems. In particular, we investigate cases in which the total number of dynamic orders
comprises a significant portion of the total number of orders to be served. Consequently, we
focus on minimizing the total transportation costs when in case there are sufficient vehicles
available to serve all orders (Chapters 5 and 7). For the case of limited fleet, we consider
maximizing the number of dynamic orders served (Chapter 6).

2.3.3 A review of DVRP applications

DVRP research has also been inspired by applications (Pillac et al., 2013) in: i) on-site service
delivery (e.g. maintenance), ii) transport of goods, and iii) transport of persons.

In the category of onsite service delivery, a request is defined by a customer location and,
oftentimes, a time-window. A typical application concerns the area of maintenance operations,
in which companies offer scheduled periodic maintenance visits (planned offline), as well as
corrective maintenance on short notice (planned online). Therefore, each technician starts a

certain route at the beginning of the day, while new requests have to be incorporated

22 DeOPSys Lab



Solving the DVRPMB through re-optimization

dynamically throughout the day. Vehicle capacity is oftentimes not an issue in this case. Studies
related to onsite service delivery can be found in Larsen et al., 2004, Bertsimas and Van Ryzin,
1991, Beaudry et al., 2010 and Gendreau et al., 1999.

Related research on transportation of goods has normally addressed transportation within urban
areas, typically referred to as city logistics. These cases are characterized by highly
unpredictable travel times (Zeimpekis et al., 2007) and other aspects, including collaboration
between companies to take advantage of economies of scale. One common application concerns
courier services. In this setting, couriers are dispatched to deliver packages to customers while
new requests are received in real-time through a call-center. Those new arriving requests have
to be collected from the customer location and either delivered to a desired destination or to a
unique depot. The problem then is to dynamically route vehicles taking into account the
requests known prior to the start of operations, as well as the newly received (dynamic) ones;
other dynamic information might be relevant in this environment, such as traffic conditions and
variable travel times. Related studies include those by Gendreau et al. (2006), Ghiani et al.
(2009), Attanasio et al. (2007) and Angelelli et al. (2009). Other practical settings with similar
characteristics include the delivery of press media (Bieding et al., 2009; Ferucci et al., 2013),
grocery delivery services (Campbell and Savelsbergh, 2005; Azi et al., 2014), and transport of

goods in warehouses and hospitals (Fiegl and Pontow, 2009).

Finally, applications related to transportation of passengers bear similarities to the transport of
goods, although they include additional constraints related to service levels, such as passenger
inconvenience (waiting, travel, and service times). Typical applications comprise planning of
taxi services (Caramia et al., 2002; Fabri and Recht, 2006), transportation of children, patients,

elderly or disabled people (Cordeau et al., 2007; Berbeglia et al., 2010).

The research in this dissertation has been motivated by applications related to transport of goods
(city logistics), such as courier services, money-transfer operations and repair-maintenance
services. The dynamism comes from a single source, namely the occurrence of new service
requests (dynamic orders); there is no uncertainty associated with service locations, travel times
or traffic conditions.

2.3.4 Significant solution methods

Below we review significant methods and solution approaches for deterministic DVRPs, in
which dynamism stems from the arrival of new dynamic requests. The interested reader may
also refer to the review work of Gendreau and Potvin (1998, 2004), Ghiani et al. (2003),
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Zeimpekis et al. (2007), Ichoua et al. (2007), Goel (2008), Larsen et al. (2008) and Pillac et al.
(2013). For the case of stochastic DVRPs, we refer the reader to Powel (1996), Bent and Van
Hentenryck (2004), Larsen et al. (2004), and Ichoua et al. (2006).

In dynamic deterministic routing problems, the information is gradually revealed over time.
Consequently, exact approaches may provide an optimal solution only for the current state and
cannot guarantee that the overall solution will remain optimal, or even efficient, once new input
is introduced. Therefore, most approaches employ heuristics that can quickly provide a solution
which incorporates the up-to-date information.

According to Pillac et al. (2013), the approaches for addressing deterministic DVRPs can be
classified in two main categories: a) approaches that apply periodic re-optimization, and b)
approaches which are based on continuous re-optimization. Those are described in the
following paragraphs. In addition, we overview some advanced approaches.

2.3.4.1 Periodic re-optimization approaches

In this, the most common, solution strategy an efficient VRP algorithm is used or adapted to
solve the static version of the problem at selected multiple times. Periodic re-optimization
approaches typically commence at the beginning of the day with an initial optimization that
produces an initial set of routes, either for orders known prior to the start of execution (for weak
to moderate dynamic systems) or for the first (dynamic) orders received (for highly dynamic
systems). Then the solution is re-optimized either whenever the available information changes,
or at fixed re-optimization intervals, normally referred to as decision epochs (Chen and Xu,
2006), or time slices (Kilby et al., 1998). A wide variety of algorithms may be used for re-
optimization, ranging from simple policy-based techniques and heuristics to exact algorithms;

however, computational effort is of significant importance here.

Psaraftis (1980) was the first to apply periodic re-optimization for a dynamic Dial-a-Ride
problem. The author proposed a dynamic programming approach in order to find the optimal
route each time a new request was received, and was able to solve problems with relatively

small number of requests.

Yang et al. (2004) proposed a linear programming approach that is applied whenever a new
request is received for the real-time truckload PDP. Chen and Xu (2006) proposed a column-
generation-based approach for solving a DVRP with hard time windows, in which all requests
need to be serviced; the algorithm uses fast heuristics to modify existing columns generated at

an earlier stage in order to incorporate the up-to-date information. Those columns are then
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included in the Restricted Master Problem (set-partitioning formulation), which is solved, and
the process is repeated in an iterative manner. Their approach outperformed in solution quality
an insertion-based heuristic used for comparison, but provided inferior results compared to a
similar approach that allows unlimited computational time for solving the underlying static

problems.

Shieh and May (1998) studied the DVRP with time windows and proposed for each re-
optimization step an insertion-based heuristic followed by a local search. Larsen et al. (2002)
compared various rule-based heuristics on instances with various degrees of dynamism for a
dynamic travelling repairman problem, in which requests need to be served at minimum total
cost. Their study illustrated that the route length increases linearly w.r.t. the degree of
dynamism. Montenammi et al. (2005) employed an Ant Colony System (ACS) in order to solve
the dynamic VRP by dividing the overall planning horizon in periods (time-slices), as in Kilby
et al. (1998). During each time-slice a static optimization problem is solved by considering all
requests known at the beginning of this time slice. A similar approach was also employed by
Gambardella et al. (2003) and Rizzoli et al. (2007).

It should be emphasized that the quality of the solution of the overall problem through multiple
re-optimization steps is highly dependent on the solution approach employed at each step. On
one hand, inferior re-optimization results at each step (e.g. obtained through simple heuristics)
may lead to significantly inferior solutions. On the other hand, even the use of an exact
algorithm cannot guarantee the generation of superior solutions for the entire problem. The
computational results of Yang et al. (2004) and Chen and Xu (2006) concerning a range of
dynamic routing problems, indicated that employing mathematical-programming-based

approaches over simple ones may indeed yield better overall solutions.

In addition to the problem definition and the solution approach, a critical problem element is
when to re-optimize. Very limited research has focused on re-optimization policies and their
impact on the overall solution. The majority of studies (e.g. Gendreau et al., 1999; Ichoua et
al., 2000) re-optimize at every event, i.e. upon the arrival of a vehicle to a customer, or the
introduction (or cancellation) of a customer order. Other studies deal with re-optimization at
certain fixed periods. For example, Larsen (2001) studied the DVRP with time windows
introducing the so-called batching strategies, and analyzed the effect of re-optimization on
simple predefined fixed events (e.g. upon the arrival of three customers and every 10 minutes).
Chen and Xu (2006) re-optimize at fixed cycles. More recently, Angelelli (2009) applied re-
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optimization on predefined time-events (e.g. 1, 2.5 and 5 hours) for a dynamic multi-period

vehicle problem.

2.3.4.2 Continuous re-optimization approaches

In this type of approach, re-optimization is being performed continuously throughout the course

of operations, based on the current state of the system and past knowledge.

In particular, the approach commences at the beginning of operations with an initial set of routes
(as in periodic re-optimization), and vehicles are informed only about their next destination. An
elaborate mechanism is continuously executed (in the background) to further improve the
solution according to the currently known state of the system, and stores good quality solutions
consistent with this state in a memory that is adapted continuously (adaptive memory, Taillard
et al., 2001). A decision procedure is used to update the solutions in the adaptive memory
whenever the available information is updated. Updates typically occur due to a) service
completion at a customer location, or b) the occurrence of a new (dynamic) request. For the
updates that relate to service completion, the decision procedure identifies the next destination
of the vehicle based on the best solution stored in the adaptive memory. When a new request
occurs, the request is inserted (e.g. using a local search heuristic) in each solution stored in the
adaptive memory, and, thus, all existing solutions are updated. As long as there are no incoming
requests and no services are completed, the mechanism keeps running in an attempt to improve

the routes in the adaptive memory. The latter is an important advantage for this approach.

Gendreau et al. (1999) were the first to employ continuous re-optimization. The authors
proposed a tabu search heuristic similar to the one introduced by Taillard et al. (1997) in order
to address the DVRPTW arising in a long-distance courier service, in which time windows may
be violated at some cost. No stochastic (forecasting) information about incoming (dynamic)
requests has been assumed. Their approach maintains a pool of good solutions (routes) based
on the available data in an adaptive memory which is used to generate initial solutions for a
parallel tabu search. When a new request is received, it is inserted into each solution residing
in the adaptive memory through a cheapest insertion process in order to decide whether to
accept or reject the request. The best solution is selected after applying a fast local search
procedure. The solutions in the adaptive memory are also updated upon service completion at
a customer location. A similar approach has been employed by Ichoua et al. (2000, 2003) for
the DVRP, by Gendreau et al. (2006) and Chang et al. (2003) for the DPDP, and Attanasio et
al. (2004) for DARP.
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Another tabu search approach with adaptive memory has been employed by Bent and Van
Hentenryck (2004), who introduced the concept of the Multiple Plan Approach (MPA). The
latter attempts to continuously generate different solutions, which incorporate both static and
known dynamic requests. Under this concept, a pool of solutions (routing plans) is used to
generate a so-called distinguished plan. Upon arrival of a new request, a mechanism (e.g. a
local search heuristic) checks whether the request can be incorporated or not in the current pool
of solutions; if yes, the request is incorporated in the solution pool (routing plans) and solutions
from the pool that cannot fit this request are discarded. The pool of solutions is updated during

each event in order to ensure that all solutions are consistent with the current state of the system.

Finally, Genetic Algorithms (GA) have been also used in continuous re-optimization. GA
algorithms in dynamic contexts are very similar to those designed for static problems, although
they generally run throughout the planning horizon and solutions are constantly adapting to the
input changes. The interested reader can refer to the work of Benyahia and Potvin (1998),
Cheung et al. (2008), and Van Hemert and Poutre (2004).

2.3.4.3 Advanced strategies

The last type of approaches includes advanced methods that exploit the nature of dynamic
problems. For example, Ichoua et al. (2000), motivated from courier applications, proposed a
new method for the dynamic assignment of new requests, in which a vehicle may be diverted
from its next destination in order to serve a new request. The method is integrated in the tabu
search framework of Gendreau et al. (1999), and the authors demonstrate through
computational experiments that this strategy yields a reduction in the total distance traveled,

compared to the case in which the vehicle may not be diverted from its next destination.

Other studies have introduced waiting strategies, which consider the possibility of positioning
vehicles at strategic locations, or at customer sites, in order to wait for the arrival of potential
new (dynamic) requests (see Branke et al., 2005; Mitrovic-Minic and Laporte, 2004; Ichoua et
al., 2006).

2.3.5 Performance assessment

Measuring the performance of the solution of a dynamic optimization problem, such as the one
addressed here, is not a straightforward task. The literature has suggested that new metrics are
required for this task (Mitrovic-Minic et al., 2004; Pillac et al., 2013).
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Sleator and Tarjan (1985) introduced competitive analysis (see also Borodin and El-Yaniv;
2005, Jaillet and Wagner; 2008, Larsen et al.; 2007). Consider a problem instance I in which
data is revealed in real-time, and its offline counterpart I,¢ in which all data (of instance I) are
available beforehand (prior to constructing the solution). Let z*(I,¢) be the cost of the optimal
solution of I,¢. Also, consider an algorithm A solving I. Let z,(I) be the cost of the solution
obtained by A for instance I. Then, algorithm A is said to be ¢ — competitive if there is a

constant « such that:
(D) <c-z°y) + a viel (2.4)

If a is equal to zero, then the algorithm is said to be strictly-c-competitive, meaning that the
value of the objective function of the solution determined by A for instance I will be at most of
c times greater than the optimal value. For example, a strictly-2-competitive dynamic algorithm
guarantees that the value of the solution would never be more than twice the value of the optimal
solution of the static problem (for any investigated instance). Thus, competitive analysis offers

a worst-case measure of performance.

However, the competitive analysis metric assumes that Ineq. (2.4) should be explicitly proven,

which in many cases (except very simple ones) is not possible.

The value of information originally introduced by Mitrovic-Minic et al. (2004), provides a more
practical metric. Consider a DVRP instance H and the related static problem H, in which all
dynamic information is known prior to dispatching the vehicles (i.e. at time ¢t = 0). Then the
value of information metric V¢ corresponding to algorithm F while solving dynamic problem

H is defined by the following expression

Ve () = ZT(}Z(—;T)(HS) x 100 2.5)

where z¢(H) and zx (#;) are the values of the objective function for dynamic problem # and

for the related static problem H, both solved by algorithm F. Note that F is employed at each

re-optimization step for ', while F is employed once to solve H.

2.3.6 Dynamic Pickup and Delivery Problems (DPDP)

Limited work has been conducted on the dynamic counterpart of the PDPs. DPDPs can be
classified along the lines discussed in Section 2.3.3. To the best of our knowledge, only the
work of Chang et al. (2003) and Wang and Cao (2008) have investigated the dynamic version
of 1-M-1-PDPs. In particular, Wang and Cao (2008) addressed a Dynamic VRPCBTW with
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demand changes. The authors identify which demand changes disrupt the original plan and
propose a disruption recovery model based on a local-search algorithm. They used a small scale
example to illustrate their model’s ability to achieve savings in disruption situations. Chang et
al. (2003) addressed the real-time VRPTW with simultaneous pick-up/delivery demands (RT-
VRPTWDP) and formulated it as a mixed-integer programming model. They proposed a tabu
search algorithm to solve the problem every time a new request is received or altered. Their
method outperformed simple route construction and improvement approaches on the 15
benchmark instances of Gelinas et al. (1995).

The majority of existing work has focused on dynamic one-to-one PDPs (1-1 DPDPs), in which
each request has certain origin and destination. 1-1 DPDPs mostly deal with the transportation
of passengers in urban areas, as in the dial-a-ride problem (DARP), or in the same-day
transportation of letters/parcels, referred to as Dynamic PDP (DPDP). For this class of problems
we refer the reader to the survey of Berbeglia et al. (2010), which overviews solution

approaches and related studies.

2.4 Branch and Price through Column Generation

The main technique employed in this dissertation to tackle DVRPMB is based on the Branch-
and-Price method, which is reviewed briefly below.

Branch-and-Price consists of a column generation algorithm embedded within a branch-and-
bound scheme (Barnhart et al., 1998; Desaulniers et al., 1998; Desrosiers and Liibbecke, 2005).
Column generation is used to compute lower bounds at each node of the branch-and-bound

search tree, while branch-and-bound is used to obtain the optimal integer solution.

Column Generation (CG) is regarded as one of the most promising methods to solve vehicle
routing problems by finding “good” lower bounds, especially when the objective is to minimize
the cost (normally the distance travelled). In this setting, a VRP is modeled as a set-partitioning
problem, in which each variable is a column representing a feasible route; the objective is to
find the best set of routes (columns) that satisfy all problem constraints. Since the explicit
generation of all feasible routes (columns) is clearly impractical, a column generation
framework is used, in which a restricted problem is solved repeatedly using a limited set of

possible “good” routes, which are generated by solving a series of simpler sub-problems.

Specifically, by solving the set partitioning problem, the most appropriate routes from a
restricted set of available ones are selected, aiming to determine the routing plan with the
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minimum cost. The solution to this linear program is then used to determine if there are any
routes not included in the formulation that may further reduce the value of the objective
function. This is the column generation step. The values of the optimal dual variables provided
by the restricted problem are incorporated as modified costs in the objective function of the
sub-problems (usually simpler optimization problems), which, in turn, provide promising new
routes (i.e. routes with negative reduced costs) that should be included in the formulation.
Subsequently, the linear relaxation of this expanded problem is resolved. This process is
performed iteratively until no other columns may be found to reduce the value of the objective

function.

In general, as defined in Bramel and Simchi-Levi (2002), the column generation (CG) approach

for solving the linear relaxation of a problem # can be described by the following steps:

Step 1. Generate an initial set of columns R’, which is a subset of all feasible columns R of
problem 7 (in our case R’ is a subset of all possible feasible routes)

Step 2. Solve the restricted problem #' (containing only columns R') and obtain optimal
primal variables, ¥, and optimal dual variables

Step 3. Solve the column generating sub-problem, i.e. identify columns r € R, which, if
included in the basis, further reduce the value of the objective function (i.e. satisfying
¢, < 0, which is a modified cost that incorporates the dual variables 7).

Step 4. For r € R with ¢, < 0 add column r to R’ and go to Step 2.

Step 5. If no columns r with ¢, < 0 exist, i.e., C;pin = 0, then stop. The optimal solution has

been obtained.

It is clear that the speed of convergence of the CG algorithm depends mostly on the column
generation step (Step 3). If the optimal solution is pursued, then an exact algorithm may be used
for this step (e.g. solution of a Shortest Path Problem with dynamic programming); otherwise,
powerful heuristics and/or metaheuristics could be used in order to provide a sufficient trade-
off between solution quality and computational time. Depending on the algorithm used, a large
number of columns with negative reduced cost may be generated at each step, in order to

converge to a solution in fewer iterations.

2.5 Dissertation objectives and contribution

In this dissertation we focus on the deterministic version of dynamic 1-M-1 PDPs which have

yet to be investigated as discussed in Section 2.3.6. In particular, we focus on a variant of
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dynamic 1-M-1 PDP which is equivalent to the dynamic version of the Vehicle Routing
Problem with Mixed Backhauls (DVRPMB). To the best of our knowledge, this problem has

not been investigated in the literature.

Although considerable progress has recently been made in studying dynamic vehicle routing
problems, key issues remain to be investigated with significant implications to both the
theoretical treatment of the underlying problems and the related application of the proposed
approaches. Within the context of DVRPMB, we attempt to address some of these key issues
(research questions):

e For this type of problems, are there exact, or near-optimal, methods that may solve the static
re-optimization problem in a time-efficient manner (suitable for a real time environment)?

e Within the re-optimization framework, what is the appropriate sequence of time instances
(re-optimization schedule) to invoke the re-optimization method in order to obtain superior
solutions to the entire problem? Which factors of the environment affect the choice of the
re-optimization schedule?

e Within the re-optimization framework, what is the appropriate process to release the re-
optimized plan (to the fleet), and how does this process affect the quality of the solution of
the overall problem?

e Are there fundamental differences between problems that consider unlimited fleet
resources, and problems with limited fleet resources? If so, how can one address these
differences?

e How can one capitalize on load transfer processes, in order to overcome one of the dominant
problem constraints raised by the initial assignment of known (static) orders to vehicles?
What are the implications on the formulation of the mathematical model, and on the
performance of the system?

By addressing the above research questions, this dissertation makes the following contributions:

1. We propose an appropriate periodic re-optimization process to address DVRPMB and a
mathematical formulation for the corresponding re-optimization problem (invoked in each
re-optimization cycle). In addition to defining the re-optimization model, we drill-down to
significant aspects concerning the re-optimization process; i.e. i) how to re-optimize, ii)
when to re-optimize, and iii) which part of the new plan to communicate to the drivers.

2. Regarding “how to re-optimize”, we propose an exact approach based on Branch-and-Price
(B&P). The contribution of our method compared to typical B&P applications in vehicle
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routing problems is two-fold. First, we introduce an appropriate structure that exploits the
characteristics of the dynamic problem in hand and solves a series of sub-problems to
identify columns that can further enhance the value of the objective function. This
decomposition allows the algorithm to be amenable to dynamic problems of practical size,
without losing optimality. Secondly, we appropriately enhance the dominance criteria used
in the sub-problems in order to ensure optimality in a time-efficient manner; this is achieved
by discarding a large number of non-promising paths.

In order to address challenging cases (e.g. without time-windows), we propose a novel
Column Generation-based insertion heuristic that provides near-optimal solutions in an
efficient manner.

Regarding “when to re-optimize” we present and analyze typical re-optimization policies
that consider various re-optimization frequencies. In addition, we investigate the effect of
two implementation tactics: i) immediate release of all dynamic orders for implementation
(Full Release - FR) and, ii) release of only those dynamic orders that are scheduled for
implementation prior to the next re-optimization cycle (Partial Release -PR). We provide
theoretical insights regarding the expected behavior of those tactics and use extensive
experimentation to test the proposed methods and analyze the related re-optimization
policies. Based on the results obtained we propose re-optimization guidelines under various
operational settings.

In order to address significant practical aspects, we modify the DVRPMB model to consider
the case of limited fleet (in which not all customer orders can be served within the planning
horizon). To address this case, we introduce appropriate objective functions that account
for vehicle productivity during each re-optimization cycle, and we illustrate that those
objectives may offer higher customer service.

We apply our proposed methods for the DVRPMB with limited resources to a large practical
case of a next-day courier service provider. Through this case study, we illustrate that our
approach outperforms the dispatchers’ current practices, as well as a sophisticated insertion-
based heuristic used for comparison.

We also investigate an interesting problem that attempts to overcome or, at least, moderate
the intrinsic constraint of preventing delivery (static) orders to be reassigned to vehicles
other than the one originally assigned to. To do so, we examine a policy of transferring
(delivery) orders between vehicles during execution of the distribution plan. We incorporate

load-transfer operations within the DVRPMB framework; we refer to this problem as

32
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DVRPMB with Load Transfers (DVRPMB-LT). We examine two types of exchange
locations (fixed, or at the location of any customer not yet served).

8. We model the re-optimization problem related to DVRPMB-LT using an arc-based
formulation in order to be able to provide exact solutions, and compare them to the optimal
solutions of the re-optimization problem that does not allow transfers. Furthermore, we
develop an appropriate heuristic that is able to address (solve) practical cases with an
extended solution space. We illustrate through extensive experimentation that load-transfer

operations can offer substantial savings for the overall dynamic problem.
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Chapter 3: THE DYNAMIC VEHICLE ROUTING PROBLEM
WITH MIXED BACKHAULS

The main scope of this Chapter is to define the Dynamic Vehicle Routing Problem with Mixed
Backhauls (DVRPMB), and to set the foundation for the solution approach of Chapter 4.
Section 3.1 presents basic characteristics and assumptions of DVRPMB. Section 3.2 provides
an overview of the solution framework and the re-optimization problem to be solved in each
iteration of this framework. It also presents the mathematical formulation of the re-optimization

problem and discusses the problem’s complexity.

3.1 Problem description

3.1.1 Problem overview

Consider a transportation network in a Euclidean plane. A sufficient number of homogeneous
vehicles (set V) with limited capacity Q are located at a single depot prior to the start of
operations. At time 0, at the beginning of the planning horizon [0, Ty, 4], @ Set of vehicles K c
V. commence the execution of their planned routes to serve a set of offline requests known in
advance (typically requiring delivery services), while K¢ =V — K is the set of vehicles
available at the depot. A vehicle, once dispatched, is required to return to the depot until
t = Thhax- Orders known in advance may require service within a certain time-window, and all
information regarding those orders is known prior to the execution of the planned routes. We

refer to such orders as Static Orders, SO.
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During the execution of the distribution plan, new customers call-in, requesting (pick-up)
services. These arriving requests (hereafter denoted as Dynamic Orders, DO) have to be
collected and returned back to the depot. Only DO that arrive during a pre-defined admissible
period [0, T, — T] must be served, where t denotes a predefined time interval (e.g. the last
hour of the available working period). Orders arriving at time t > T — t are deferred to the
following day. Static orders originally assigned to vehicles in K cannot be re-allocated to other
vehicles, while DO may be served by any vehicle V = K U K¢ as needed. In general, customer
orders in the current context have the following characteristics: i) static orders (SO) may be
deliveries or pick-ups, ii) all dynamic orders (DO) are related to pick-up operations, and iii) all
DO are returned to the depot for further processing.

The problem’s scope is to serve all SO and allocate DO to the vehicles of set IV as best as
possible. This scope may be formalized according to the availability of the fleet; under this

framework, there are two cases to be considered:

I. Unlimited fleet of vehicles: Serve all static orders and all DO that arrive within the
admissible period [0, T;,,4, — 7], SO as to minimize the sum of the total distance traveled by
the dispatched vehicles. This case is studied in Chapters 4 and 5.

ii. Limited fleet of vehicles: Serve all static orders and maximize the number of served DO

throughout the available shift. This case is examined in Chapter 6.

For case (i) above, a sufficient number of homogeneous vehicles are located at a single depot
at the beginning of the planning horizon in order for the fleet to serve all orders; thus new
vehicles may be dispatched to serve some DO that can’t be served by vehicles en route. For
case (ii), the fleet is sufficient to serve static orders, but may not be sufficient to serve all DO.

These objectives are considered under the following operational constraints:

e All SO should be served

e Each order may be served at most once, by a (single) vehicle

e SO cannot be reassigned among vehicles, i.e. the static orders originally assigned to a
vehicle, must be served only by this vehicle. Of course, the sequence of servicing SO by a
certain vehicle may be changed, if this favors the objective function.

e The service of an order must commence within a pre-specified time-window, i.e. the service
of an order cannot commence prior to the opening of this time-window and after its closure.

e All vehicles should return to the depot within [0, T,y 4], i-e. within the allowable working
period (e.g. driver’s shift).

e The total load of the vehicle at any time cannot exceed the vehicle’s capacity.
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3.1.2 Assumptions of the generic problem
This Section presents significant characteristics of DVRPMB, along with key assumptions.

Regarding the arrival process of DO, we assume that it allows sufficient time for each order to
be served by a new vehicle dispatched from the depot prior to the closing of its time window.
This assumption secures that there is potential of all DO to be included in the current schedule
of the vehicles en route, or served by a vehicle located at the depot (or, of course, not be served
for the limited-fleet case).

Additionally, we assume the following problem characteristics/assumptions regarding the

operating scenarios considered for the DVRPMB:

a) The current status of the logistics operations (i.e. current location of each vehicle of the
fleet, availability in terms of remaining capacity and time for service, remaining unserved
customers, etc.) is known at any time instance. In practice, this is achieved by employing
appropriate fleet monitoring systems.

b) A vehicle commits to travel at the latest possible time. For example, if a vehicle is planned
to arrive to a customer prior to the opening of its time window, the vehicle will wait at the
location of the previously served customer. This assumption facilitates re-optimization
changes in case new orders arrive to the system.

c) The route is updated only at customer locations, i.e. the problem considered does not allow
diversion (Ichoua et al., 2000). Once a vehicle has left its previous service location and is

en route to its next destination, the vehicle cannot be diverted.

It should be noted that in similar studies, such as the work of Chen and Xu (2006) and the work
of Ichoua et al. (2000), a time interval &t representing the time needed for the algorithm to run
is added to the re-optimization instance T, and the corresponding solution is then valid for the
time period [T, + 8t, T,qx] Until, of course, the next re-optimization event occurs. In our case
we make the simplifying assumption that 6t is minimal (practically zero compared with the
typical travel time between clients), provided that the computational times of the proposed

algorithms are appropriately short.

3.2 Re-optimization in DVRPMB

As mentioned already, the allocation of DO in the available fleet is dealt through iterative re-
optimization as described below. The related solution strategy needs to define the following

basic components:
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i. The re-optimization problem: i.e. the static optimization problem to be solved at each re-

optimization cycle based on the information available.

ii. The re-optimization cycle: i.e. the interval between two consecutive re-optimization steps.

iii. The re-optimization tactic: i.e. the way of introducing newly received DO to the fleet for

service, i.e. release all planned DO immediately for implementation or release for
implementation only the DO scheduled for service prior to the next re-optimization cycle

(i.e. during the next cycle, re-consider all DO not yet served)?.

Items (i) and (ii) concern the re-optimization process, or strategy. Below we formulate the re-
optimization problem, and in Chapter 4 we propose an exact and a heuristic algorithm to solve
it. In Chapters 5 and 6 we study the re-optimization cycle and the re-optimization tactic for the

cases of unlimited and limited vehicle fleets, respectively.

3.2.1 Solution framework

We assume that in the overall planning horizon [0, Ty, ], there will be L re-optimization cycles,
each corresponding to an appropriate “static” problem I3, T5,...,I7, with re-optimization
occurring at time instances T,, ¢ = 1,2,...,Lwhere Ty =0 < T; < - < T}, < Tjpax — T- Re-
optimization cycles ([T,_,, T,],# = 1) may not be necessarily of equal duration and may not
even be known a priori (e.g. when re-optimization depends on the number of DO received —
see Chapter 5, Section 5.2). The “static” problem solved at each re-optimization time T,,
denoted as DVRPMB(¥), considers all information known up to the related point in time. It is
assumed that this problem (T',) is solved instantaneously. The structure of the re-optimization

framework is illustrated in Figure 3.1 and described below.

At the beginning of the planning horizon (T,), there is a set of known (static) orders, and a
sufficient number of vehicles located at the depot that may serve all these orders (even in the
case of limited fleet). Based on this information, a set of initial routes Ry = {ry, 15, ..., ¢} has
been developed to serve the related orders. This initial solution S, obtained at t = 0 is defined

over the planning horizon [0, Tyqx]-

A re-optimization problem Iy, € € {1, ..., L} takes into account two sets of orders not yet served:
1) the committed orders that include all orders assigned to a vehicle originally or during previous

re-optimization cycles, which have not been served and cannot be re-allocated to other vehicles,

3 The implementation of this tactic depends on the technology used. Typically the driver receives only the DO to
be served next.
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and ii) the flexible orders, that correspond to newly arrived DO, or previously arrived DO not
yet served. Typically, flexible orders correspond to all DO that have not been served during the
current re-optimization cycle (time T,). However, there are some practical cases in which this
may not be applicable, and DO assigned to vehicles during a prior re-optimization cycle, may
be considered as committed orders. This limitation may be caused by committed financial
transactions, prior communications with the customers, etc. For the reason above, depending
on the policy, two scenarios are relevant: a) committed orders correspond only to offline
requests and flexible orders are all DO not yet served, and b) committed orders are all orders
assigned to vehicles during previous re-optimization cycles and not yet served; flexible orders
correspond only to newly arrived DO. Those two cases will be analyzed subsequently in
Chapter 4.

Start of end of

Horizon (£ —1th (O)th receiving

static problem static problem DOs
solved Replanning solved
Cycle T, “«—T—> Planning
...... ' . v Horizon

| [ | |

| ¢ ¢ —>
TO T€—1 T-f Tmax

solution Sp_,

| \ J
1

solution S,

implementation of
solution Sy_4

Figure 3.1. Overview of the re-optimization framework

In practice, the solution framework of Figure 3.1 may be implemented using current
communication and information technologies. Requests arriving in real-time through a call
center are used as inputs into the planning system. The dispatcher chooses a certain re-
optimization policy, and an appropriate part of the resulting plan is transmitted to the drivers
via onboard devices or PDAs.

The vehicles involved in the static problem of re-optimization cycle £ include: i) those that were
dispatched earlier (even at time T,) but have not returned to the depot by time T,; and ii) the
ones located at the depot. Note that the number of the latter is considered sufficiently large for
the unlimited fleet case. The solution S, of the static problem of re-optimization cycle ¢
concerns the entire remaining time horizon [Ty, Tp,4.]. Part of this solution is then implemented

until the next re-optimization trigger, i.e. at time T, 4. This process is illustrated in Figure 3.2.
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Figure 3.2. A simple re-optimization process

In the following, we specify precisely the sets of orders N,, and the sets of vehicles V, involved

in the static problem of each re-optimization cycle ¢, ¢ = 1,2, ..., L.

Suppose that we have solved the static problem of re-optimization cycle (¢ — 1) and obtained
a solution S,_, for some ¢ € {2, ..., L}. In order to implement this solution at time T,_,, a set of
vehicles from V,_, is used to serve known orders N,_; according to solution S,_. Denote those
vehicles as K,_,. Obviously, K,_; € V,_; and contains a finite number of vehicles. By time T,
(next re-optimization cycle), some of the vehicles, denoted as K/_,, may have completed their
trips and returned to the depot, while the others are en route and may still have capacity
available to serve additional orders. In the static problem of the next re-optimization cycle ¢,
the vehicles in set K,_;\K5_, and the remaining vehicles located at the depot K can be used.
Thus, the set of vehicles involved in the static problem of re-optimization cycle ¢, is: V, =
(Ke-1\K£_1) U K.

Let NS, S N,_, — denote the set of orders already served during the implementation of the
portion of solution S,_; in interval [T,_,,T,], and N&, the set of new orders received during
the same interval. Then, the set of orders to be considered in the static problem of re-
optimization cycle ¢, is: N, = (N,_;\NS_,) U N ,. Figure 3.3 illustrates sets V, and N, that
form the static problem of each re-optimization cycle £. Based on this, we provide in the next

subsection the mathematical formulation of the static problem of each re-optimization cycle.
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Figure 3.3. Sets of vehicles and orders considered in the static problem

3.2.2 Mathematical formulation of DVRPMB(¥)

In describing the re-optimization problem we omit index #, since the problem has the same
form for any re-optimization cycle (for example, in the following, time T corresponds to re-

optimization trigger time T,).

Let N = C U F denote the set of orders which have not been served, where C and F denote the
sets of known committed and flexible orders, respectively. Furthermore, C = Ueg Ci, Where
C represents the set of committed orders assigned to vehicle k that is en route. Note that C,
may include both delivery and pick-up orders that are assigned to vehicle k € K during previous
re-optimization cycles and cannot be re-assigned to other vehicles. Let set M = Upex{tix}
where p, represents the current location of vehicle k € K, and node 0 represent the
origin/destination depot. We consider a complete directed graph in a Euclidean plane G =
(W, A), where W =CUFUMU {0}, and A the set of arcs connecting all nodes W (A =
{(i,)):i € W,j € W\M3}). The cost of traversing arc (i, j),{i € W,j € W\M} is denoted by c;;,
while t;; denotes the travel time between these two nodes (assuming that cost matrix [c;;]

satisfies the triangular inequality).
Each order i € N is related to the following quantities:

d; is the demand/supply of the order at each client site (load to be delivered or picked-
up by a vehicle). Delivery orders are associated with a negative value and pick-up

orders with a positive one. The demand/supply of the depot is zero (d, = 0).

S; is the service time of order i at the client site; s, = 0
h; is the arrival time of a new order i. Obviously, 0 < h; < Tyqx — T, Vi € F and
hi=0ViecC
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[a;, b;] is the time window of order i. For orders known prior to time Ty, 0 < a; < b; <
Tonax @nd for DO, h; < a; < b; < Tiax- Additionally, ay = 0 and by = Ty, The
time window of a customer cannot be violated, i.e. order i must be served within

this time window.

The proposed mathematical formulation involves three (3) types of decision variables: i) binary
flow variables x;,, equal to 1 if arc (i, j) € A is traversed by vehicle k € V and zero otherwise,
i) time variables w;;, which represent the start of service for order i € N by vehicle k € V/,
while for the depot wy, = T, and iii) load variables Q;;, which provide the load of vehicle k €
V immediately after serving node i € W. Note that the initial load Q,,, . of vehicle k € K at
each re-optimization cycle is equal to the total amount to be delivered (and/or picked up) by
vehicle k (i.e. remaining SO originally assigned to it but not yet served and DO that have been

served by the vehicle in the past, but not yet returned to the depot).

The re-optimization model for DVRPMB is similar to the formulation proposed by Parragh et
al. (2008) for the multi-vehicle PDP, which was, in turn, adapted from the model proposed by
Cordeau et al. (2002) for the VRPTW.

We first present the model for the unlimited-fleet case. Subsequently, the modifications needed

for the limited fleet case are discussed.

Unlimited-fleet Case

The objective of the problem is to minimize the total cumulative routing cost over the planning

horizon [T,, Tyax] @nd is given by:

min(z) = 2 z CijkXijk (IL.1)

keV (i,j)eA
Subject to:
Xije = 1 Vk € K, Vi € Ci U {} (IL.2
jECKUFU{0}
Z Z Xijk = 1 VieFr (13
KEV jeW
i€CRUFU{uk}
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ZXOik =1 Vk € K@ (IL5
jEF

Z Xojk = z Xjok vk € K¢ (1.6
jEF jEF

Z Xihk ~ Z Xpjk = 0 VhEN,VkEV (I1.7
iew JEW

Qjk = Qix +dj — Z(1 — xj5x) v(i,j) EAVkEV (1.8
max{0, d;} < Qx < min{Q, Q + d;} Vi € N,Vk €V (I1.9
Wik = Wik + i + tj; — Z(1 — Xyjp) v(i,j) EAVkEV (IL.1

JEW JEW

T < wok < by vk € K¢ (IT.1
xjjk € {0,1} v(i,j) EA Yk EV (IT.1

As mentioned before, the objective function (3.1) expresses the total routing cost over the entire
available horizon. Constraint (3.2) specifies that each vehicle k en route must serve all
committed orders originally assigned to it (including its corresponding starting location).
Constraint (3.3) ensures that all flexible orders will be served, either by a vehicle en route or
by a vehicle available at the depot. Consequently, the above two Constraints ensure that all
orders in the system will be served exactly once. Constraints (3.4) force active vehicles en route
to eventually return to the depot. According to Constraint (3.5) new vehicles dispatched from
the depot in the current re-optimization cycle can only serve DO. Constraints (3.6) force these
new vehicles to return to the depot. Note also that Constraints (3.5) allow vehicles to remain at
the depot if necessary (not all vehicles available at the depot must be used). Constraint (3.7)
ensures flow conservation, and Constraints (3.8) and (3.9) ensure that the vehicle’s capacity
limit is respected at all vertices, where Z is a large positive constant. Constraints (3.10) — (3.11)
ensure that a route is time feasible; Constraint (3.10) updates the start time (of service) along
the route, while (3.11) ensures that the service start time is within the time window of the node.

Note that Z represents a large number, which should be larger than Z;; = max(b; + t;; — a;, 0)

for each arc (i,j). Constraints (3.12) force new vehicles K¢ to assume duty after the re-
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optimization time instance and return to the depot within the available planning horizon.

Finally, Constraints (3.13) force the flow variables to assume binary values {0, 1}.

Limited-fleet Case

Under the limited fleet setting, it is possible that not all DO are served either by vehicles en
route or by vehicles located at the depot. Due to this fact, certain modifications are necessary

to the aforementioned generic formulation.

The first modification concerns the customer service constraints, since it is not guaranteed that

all DO may be served. Thus, we can relax Constraints (3.3) in as in Constraints (3.14):

szijksj- ViEF (L1

kev jew

The second modification concerns the objective function of (3.1). Minimizing routing cost is
no longer an appropriate objective, since it would preclude service of any dynamic (pick-up)
orders. A more appropriate and conventional objective would be to optimize a functional that
takes into account the number of dynamic orders served, and the routing cost. This objective is

modeled by the modified functional:

min(z) = —Euz Z Xijk + Z z CijkXijk (T1.1

kev (i,j)EA|i€F jew kevV (i,j)eA

where &, is a profit assigned for each DO served. If lexicographical (i.e. service is prioritized
over routing costs), then the profit for serving a DO should be higher that the routing costs for
incorporating this DO in the plan; if not, then the solution will not include this DO, since the

overall objective will increase. Thus, &, may be larger than man(crl.), where c,, represents the
AS

cost of the unit route [Depot — i — Depot]. Note that the suitability of such objective in a
dynamic problem such the one in hand is discussed in detail in Chapter 6. More suitable

objective functions are also proposed there.
Note on complexity

The DVRPMB(¥#) is NP-hard in the strong sense, since it generalizes the basic version of
VRPTW, arising when {u; } = {0}, Vk € K, which has been proven to be NP-hard in the strong

sense (Toth and Vigo, 2002). This can be also supported by the following considerations:

a) In case there is only one vehicle involved, i.e. k = 1, the DVRPMB(¥) generalizes the well-

known TSPTW, arising when d; = |d;|, Vi € F, which is a special case of the VRPTW.

Dpt. of Financial & Management Engineering 43



Chapter 3: The Dynamic Vehicle Routing Problem with Mixed Backhauls

b) In case there are more than one vehicles involved, i.e. k > 1, the DVRPMB(¥) generalizes
the VRPTW, arising when C,, = @,Vk € K and d; = |d;|,Vi € F.

To illustrate the computational implications of DVRPMB(#)’s complexity, consider Figure 3.4.
The latter concerns the case in which a simple exhaustive search algorithm is applied, which
examines all available DO to be incorporated to all feasible insertion places within the existing
routes. If no feasible location exists for a DO, a new vehicle will be dispatched from the depot
to serve this order. In this, simpler than the one examined in the current Chapter case (due to
fixed sequence of delivery orders), the Figure shows that an exhaustive algorithm can be
computationally intractable for cases in which the number of DO is higher than say 8 or 9.

These illustrative results were obtained considering a set of 20 SO, 2 vehicles and 1 to 8 DO*.

Exhaustive Search Algorithm
1,000 300.04
100

Time (sec)-loglOscale

Number of Dynamic Orders

Figure 3.4. Computational time increases prohibitively as number of requests increase

4 The exhaustive algorithm was implemented on MATLAB® 2009 and solved in a Dual-Core Windows 7 machine
with 2GHz processors and 2GB RAM.
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Chapter 4: BRANCH-AND-PRICE ALGORITHM FOR THE RE-
OPTIMIZATION PROBLEM

This Chapter presents the solution approach for the re-optimization problem of DVRPMB and
for the case of unlimited fleet. This problem is solved at each re-optimization cycle T,, as
described in Chapter 3. In Chapter 6 we consider the re-optimization problem for the case of

limited fleet.

Section 4.1 provides an overview of the branch-and-price (B&P) method and how it is applied
to the problem in hand. Section 4.2 formulates the re-optimization problem in a set-partitioning
model and discusses the initial feasible solution, which is provided as input to the column
generation algorithm. Section 4.3 presents the framework that identifies variables (columns) to
be added to the initial set that can further enhance the objective value (pricing sub-problem).
Section 4.4 discusses the solution mechanism for the pricing sub-problem to obtain optimal
solutions, which corresponds to an Elementary Shortest Path Problem with Resource
Constraints (ESPPRC). Section 4.5 presents a conceptual synthesis of the overall column
generation method for the re-optimization problem of DVRPMB, while Section 4.6 discusses
the proposed Branch-and-Price algorithm to obtain optimal integer solutions. Finally, Section
4.7 proposes a heuristic-based approach for the pricing sub-problem that produces near-optimal
solutions for practical cases with extended solution space for which the optimal approach may

not return a solution within reasonable computational times (e.g. cases without time windows).
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4.1. Overview of the B&P approach

We propose a new branch-and-price (B&P) approach to solve the re-optimization problem of
DVRPMB. The B&P algorithm consists of a column generation (CG) algorithm embedded
within a branch-and-bound (B&B) scheme; CG is used to compute lower bounds at each node

of the B&B search tree, while B&B is used to obtain the optimal integer solution.

In this CG framework, the formulation presented in Chapter 3 is decomposed to a Master
Problem (MP) and to several Sub-problems (SP). For formulating the MP we employ a set
partitioning model, which is typically used in Column Generation formulations of the VRP. In
the set partitioning formulation, each column corresponds to a feasible route and each constraint
corresponds to a customer. Consequently, MP involves only constraints that impose a single
visit to each customer. All other constraints are handled in the sub-problems. A detailed

description of the set-partitioning formulation is presented in Section 4.2.1.

Only a portion of known feasible routes are used to form the Restricted Master Problem (RMP).
To preserve feasibility in the RMP, low quality columns (routes) are oftentimes used in the
initial set of feasible columns (e.g. single-visit routes, i.e. depot — order i — depot).
Obviously, better quality columns lead to faster convergence. For that reason, in the dynamic
problem setting of DVRPMB we exploit the information of previous re-optimization cycles. By
modifying appropriately the columns corresponding to a feasible solution of the previous re-
optimization cycle (as described in detail in Section 4.2.2), and adding new columns
corresponding to the newly received orders, we provide an initial set of feasible columns and

solve a linear relaxation® of the re-optimization problem in the current cycle.

In order to identify variables (columns) that have a negative reduced cost w.r.t. the dual solution
of the RMP, a different optimization problem is solved (sub-problem), called the pricing
problem. This latter problem handles all remaining constraints that a column (route) is required
to satisfy. Such constraints include the requirement for serving the committed orders assigned
to each vehicle, as well as all resource constraints. We propose both an exact and a heuristic
approach to solve this problem. For the former case we formulate the pricing problem as an
Elementary Shortest Path Problem with Time Windows and Capacity Constraints
(ESPPTWCC), and we employ a dynamic programming-based method to solve it. For the latter

case, we employ an insertion-based heuristic that uses the information of the dual prices

® The RMP is solved by relaxing the variables that denote if a column (route) is included in the solution to assume
fractional values (instead of binary).
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returned by the solution of the linear relaxation of the RMP. In both cases, the solution is one
or more columns/routes that minimize a certain objective function. If the solution of the pricing
problem is non-negative, then the solution of the linear relaxation of RMP is optimal; otherwise,
the resulting column(s) may enter the basis and is (are) added to the current collection of
columns of the RMP.

The proposed column generation scheme for the re-optimization problem comprises the

following steps:
Step 1. Restricted Master Problem (RMP)

Generate an initial set of columns comprising a feasible solution to the RMP: To do so, modify
the solution (routes) from the previous re-optimization cycle (in order to represent the up-to-

date information) and add single-visit columns for flexible (dynamic) orders (Section 4.2.2).
Step 2. Solving the linear programming relaxation of RMP

Solve the linear relaxation of the resulting RMP and obtain optimal primal and dual variables
(also Section 4.2.2).

Step 3. Pricing Problem (sub-problem)

Solve the column generating sub-problem (pricing problem), i.e. identify columns that, if

included in the basis of the RMP, they further reduce the objective function value:

e Exact solution: Decompose the complete problem to |K| + 1 independent sub-problems,
where |K| is the number of vehicles en route. Each sub-problem is an ESPPTWCC, which
is solved by the label correcting algorithm. For the K sub-problems, consider orders C;, U
F,k € {1,2,...,K}, where C, and F correspond to the set of committed and flexible orders,
respectively. These sub-problems will return columns for each vehicle en route that will
contain all committed orders C,, and incorporate flexible ones from the F set. For the K + 1
sub-problem consider only orders F; the returned columns will represent route(s) of newly
dispatched vehicles from the depot. (see Sections 4.3 — 4.4)

o Heuristic solution: Considering the solution (routes) of the previous re-optimization cycle,

generate new columns for vehicles already en route that incorporate flexible orders using an
insertion heuristic based on dual-prices. Use a limited (heuristic) version of ESPPTWCC to
generate columns corresponding to vehicles dispatched from the depot in order to serve only
flexible orders (Section 4.7).

Step 4. Combining the RMP with the sub-problems
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If there is at least one generated column with negative reduced cost corresponding to either a
vehicle en route or a vehicle located at the depot, add it to the RMP and go to Step 2. If no new
negative reduced cost column is found, then stop; the optimal solution (lower bound) has been
obtained (see Section 4.5).

Note that since the column generation procedure described above operates on the relaxed RMP,
integer optimality is not guaranteed. For that reason, and in order to obtain the optimal integer
solution, the column generation procedure is embedded in a Branch & Bound framework

described in detail in Section 4.6.

The contribution of our solution methodology compared to typical B&P applications in VRP is
three-fold. First, we have introduced an appropriate structure that exploits the characteristics of
the dynamic problem in hand. Secondly, we appropriately enhanced the dominance criteria in
the solution of the sub-problem in order to discard a number of non-promising paths. Finally,
we employed a new heuristic approach to generate new routes; this heuristic may address

practical cases with extended solution space.

4.2. A Set-Partitioning formulation for the proposed Master Problem

4.2.1. The Master Problem

As mentioned above from the formulation of Chapter 3 (Section 3.2.2), the Master Problem
(MP) incorporates only those Constraints that cannot be treated independently by the pricing
sub-problems, i.e. the linking Constraints (3.3). The MP is a Set Partitioning Problem (SPP),

since every customer should be serviced exactly once.

As mentioned in Chapter 3, the re-optimization problem seeks a solution that serves all known

orders N = (Ugex Cx) U F® during the interval [T, Thax]- Under the set-partitioning

formulation, the feasible solution space comprises the entire set of feasible single-vehicle
columns (routes), denoted as £2. The latter comprises two separate sub-sets, 2 = (Uyex £2x) U

2, where:

i.  The columns in sets £, correspond to vehicles K already en route; each one of those
columns/routes should originate from a current vehicle location y,, end at the depot,

and include all committed to this vehicle orders (Cy) and, perhaps, some flexible orders.

¢ Note that for simplicity purposes, we assume that set C, comprises all unserved committed orders of vehicle k
and set F contains all unserved flexible (dynamic) orders; those sets change in every re-optimization cycle as
already stated in Chapter 3.
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ii.  Columns in £, correspond to vehicles K¢ located at the depot. These routes originate

and end at the depot, and include only F orders.

All above routes originate at time T,, and end when the corresponding vehicle returns to the

depot (the latest at T;,,,,). Furthermore, for each route, all resource constraints must be satisfied.
It should be noted that set F comprises the following:

e DO that have arrived during previous re-optimization cycles (i.e. prior to time T,_,),
but not yet served, and

e DO that have been received during the interval [T,_4, T,].

Although orders of the first category above have been assigned to some vehicles during the
solution S,_, of the previous re-optimization problem (if any), we treat those orders as flexible
and allow them to be served by any vehicle k € V during re-optimization cycle . If in S,_; a
new vehicle k has been dispatched to serve F orders (now considered as vehicle en route with
C, = ©), all DO assigned to it and not yet served are also considered as flexible orders. In
Chapter 5, we also consider a policy for which any DO assigned to a certain vehicle during
solution S,_4 is restricted to be served by that vehicle only. However, the solution approach
remains similar. Thus in the rest of the current Chapter we present the approach referring to the

first problem variation.

In order to formulate the Master Problem, we introduce binary coefficients e;, and y,., such
that:

1, iforderi € N isincluded in router € 12

ey = { 4.2)
0, otherwise
1, ifrouter € 2 is used in the solution

Yr = { (4-2)
0, otherwise

If ¢, denotes the cost of route r € 2, then the formulation of the Master Problem is as follows:

(SPP)  Minimize Z CrYy (4.3)
Tren

subject to: z epyr =1 VieN 4.4
Tren

yr = {0,1} Vr €] (4.5)
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The above formulation seeks to find a subset of single vehicle routes in £ that minimizes the
total distance and serves each order in N exactly once [Constraint (4.4)]. We denote this
formulation by SPP. Eliminating binary Constraints (4.5) (or relaxing them to y,. = 0), permits
the problem to be solved using known linear programming techniques. We will refer to the

resulting linear relaxation problem as LP — SPP.

Note that our formulation ensures that exactly one route in set (2, (i.e. for each vehicle en route)
will participate in the optimal solution. Consider a case of K vehicles en route, each of which
is located at a certain location u;, and is tasked to serve a set Cy, k € K of unserved committed
orders. Since all routes in 2 are feasible (as guaranteed by the solution of the sub-problems
presented in Section 4.3), column £2; includes all committed orders C; as well as the initial
vehicle location p,, since e, = 1,Vi € (C, U uy), Vr € 0, k € K (Constraint 3.4 of Chapter
3). Since all columns are feasible, partitioning Constraints (4.4) assign each column in the set

0, to at most one vehicle (each vehicle k € K will be used at most once).

However, flexible orders (F set) can be assigned to vehicles en route (K set) or to vehicles
located at the depot (K¢ set). For the former case, a column, which includes orders C,, and the
origin u;, could also contain flexible orders. The latter can be formulated as a typical VRPTW

set-partitioning problem.

4.2.2. The Restricted Master Problem, RMP

As already mentioned, the MP formulation requires the explicit enumeration of all columns a
priori. Even if all feasible columns could be somehow found, the LP — SPP could not be solved

within reasonable computational time.

Suppose that a subset 2’ c 2 of feasible routes is known and forms the basis for the RMP.
Based on this restricted set, we may define a restricted version of SPP, denoted as SPP".
Consider now the following linear programming relaxation of the RMP (denoted as LP —
SPP*) involving the set 2':

(LP — SPP*)  Minimize Z Crr (4.6)
ren’

subject to: Z eiryr =1 ViEN 4.7
ren’

¥ =0 vreq (4.8)
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Finding the initial set of columns Q' that contain a feasible solution is not a trivial task. In order
to construct this set, we exploit the information from solution S,_, obtained during the re-
optimization cycle (£ — 1) for the interval [T,_1, Trnax]- Eliminating all orders that have been
served up to T, (i.e. during [T,_4, T,]) yields a feasible solution S’,_, of routes that comprise

two types of columns corresponding to vehicles en route:

e Those dispatched at time T, = 0, which should serve remaining committed orders
e Those dispatched from the depot at time T/, where 0 < ¢’ < £ — 1, which serve DO arrived

during previous re-optimization cycles

Following this process, a feasible set of columns (routes) is generated and used as an initial set
0" in the corresponding LP — SPP*. A note here about committed orders: In addition to the
static orders assigned to vehicles prior to the start of operations, committed orders may include
DO (received during previous re-optimization cycles and not yet served) depending on the
policy followed (see Chapter 3 — Section 3.2).

This (feasible) set of routes of vehicles en route (set K) that cover all committed orders may be
used as an initial solution in the set 2’ of the corresponding RMP in order to represent columns
0, in the restricted column-set £2". For the flexible orders (F set), we generate single-visit trips
that originate and finish at the depot, i.e. [depot — i — depot], Vi € F to be added to the initial

set of columns 2’ of the RMP (£2,, columns).

A technical implementation issue that is worth mentioning corresponds to degeneracy issues’
caused by potential redundant constraints (rows), even if the initial set of columns 2’ comprises
a feasible set of routes. In order to avoid degeneracy issues, we can add to this former set,
single-visit trips (columns) for all committed orders of each route in K. Since it is not desirable
to include such columns in the final solution of LP — SPP* (i.e. a new vehicle to be dispatched
from the depot in order to a serve committed order), we incorporate the columns in the initial

basis with a sufficiently large cost c,..

The RMP can be solved using known linear programming techniques (e.g. Simplex or the
Revised Simplex Method). The solution also generates the dual (shadow) prices, which are

provided to the pricing problem in step 3 and used in order to compute the reduced costs.

" An LP is degenerate if in a basic feasible solution one of the basic variables assumes a value of zero. Degeneracy
is caused by redundant constraint(s) and could necessitate additional iterations in Simplex.
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Suppose that LP — SPP* (RMP) has a feasible solution, and let = be the associated dual
solution, i.e. the dual variables m; (i € N) that are associated with partitioning Constraints
(4.7). Note that the solution provided by the current RMP is optimal with respect to the columns
(routes) of the Q' set. In order to check if this solution is globally optimal for the MP, we should
calculate the reduced costs (¢;-) of each non-basic route r € 2. According to the duality theory
of linear programming, the solution is optimal with respect to LP — SPP (MP) if and only if

the reduced cost ¢,., is nonnegative for each r in the global set 2, i.e.,

E;:Cr—zeirﬂ'i =0 vr e (49)
iEN
In order to provide a test for the optimality of this solution with respect to LP — SPP (MP), i.e.
to check whether there exist negative reduced cost variables, one could solve the following

minimization problem (pricing problem):

min{c, — Yien €iyT; | 7 € 2} (4.10)

Let z denote the value of the solution to the pricing problem in (4.10), and let r, denote the
corresponding route. If z > 0, then x is also optimal with respect to LP — SPP; otherwise 7,
defines a column that can enter the basis and should be added to 2’. In this case the LP — SPP*

Is solved again. This iterative procedure continues until no other negative columns exist.

4.3. The Pricing Sub-Problem

Having solved the RMP (by known linear programming techniques), a pricing sub-problem
(SP) is solved to identify variables (columns) in 2\ with negative reduced cost w.r.t. the dual
solution of the RMP (Desaulniers et al., 2005).

In order to address the requirement that committed orders cannot be re-distributed among
vehicles, we formulate and solve several independent SPs, one for each vehicle en route (K
set). We denote these independent SPs by ¥, Vk € K. The set of orders considered for each
Y, consists of the remaining committed orders of vehicle k (Cy, set) plus all F orders, i.e. N, =
C, U F. This F set is common in each ¥,,. The solution of each ¥}, will generate feasible trips
(columns) that originate from the current vehicle location u; and cover all remaining C,, orders
and potentially some orders from the F set. The subset of columns generated by each ¥, will

comprise set 2,k € K.
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In order to consider also the assignment of F orders to vehicles located at the depot, we solve
an additional independent SP, denoted as ¥ k.1, that includes only the F set, i.e. Njx41 = F.
The solution of this problem generates feasible trips (subject to all constraints) that originate
from the depot, serve one or more F orders and return to the depot. The columns generated from

¥k|+1 comprise set £,,. Figure 4.1 illustrates the proposed decomposition approach.

[ MASTER PROBLEM ]

——

New Columns:
{24,0;,.., 01}V 02,

SUBPROBLEM 2
Orders:{C, UF}

SUBPROBLEM |K|
Orders: {Cx UF)

Vehicles atdepot

SUBPROBLEM K| +1
Orders:F

Figure 4.1. lllustration of the decomposition approach for the pricing sub-problem

Since the |K|+ 1 independent SPs are of a much smaller scale, the aforementioned
straightforward approach leads to an efficient generation of a large set of feasible columns to
be added to the basis. The proof that the proposed decomposition approach provides the optimal

solution is relatively straightforward.

Claim: Given the above notation, the set of columns to enter the basis when solving the |K| +
1 independent SPs (corresponding to order sets C, and F), is exactly the same to the one

provided by the solution of a single monolithic sub-problem.

Proof: As mentioned previously, the monolithic pricing sub-problem seeks to find the route
with the minimum cost among the set of columns not yet examined. This set, denoted by 2" =

0O\', is given by:

z = min{c, — Yieneym; | 7 € 2"}
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For the proposed decomposed approach, let 0 := {!21,!22, ...,!2|K|} be the columns
corresponding to the solution of ¥, and (2, be the ones corresponding to the solution of
problem ¥k,1. Then, the optimization problem that involves the different independent SPs

can be formulated as:
_ . . . k .
Z = min (rlglellgl {mm{cr — Yie(c,UF} €irTTi | r €y },mln{cr — Yier €irT; | r €L )

Since only feasible columns are involved in the 2} set, the minimization problem for each k €

K can be eliminated, and thus, the objective may assume the following form:
Z = min (min{cr — Yie{c,uF} CirTr | rE .Q}{},min{cr — Yier €ir T | T E M )

Considering that 2" := {24, 2y, ..., 2k} U 2, and N :={C,C,, ..., Cx} U F, the problem is

also equivalent to:

z =min{c, — Yiene;rm; | 7 €N},

which is exactly the same as the one of the monolithic approach.

Note that sub-problems ¥y, k € K and ¥, are solved using the same approach, that is, the
as an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), based on the

work of Irnich and Desaulniers (2005).

As already discussed, in order to check if this solution is globally optimal for the MP, we should
calculate the reduced costs of each non-basic route r € 2\2'. Assuming node ' as the source
point (which may represent either the depot 0 or the current location ), the reduced cost ¢,

of path r from p' to the depot is given by the following equation:

G= ) (- vre o (4.10)
(L.j)eAr

where 4, is the set of arcs in the corresponding path, r}* is the value of the dual variable in the

dual solution of the RMP at iteration u (of the CG algorithm), and rr;;, = 0. The calculation of

Eq. (4.11) for every route contained in the current RMP is straightforward, since all elements

!

are known. By replacing all arc costs c;;, (i,j) € A by cost factors c;;, the cost of a (feasible)

route r € 2" becomes the reduced cost of this route. Therefore, the next step is to generate
routes € {\2'} that have not yet been included in the current RMP, along with their reduced
costs ¢;. To do so, we solve |K| + 1 sub-problems, as previously discussed, and for each sub-

problem the route 7* with the minimum reduced cost is derived as shown in Eq. (4.12).
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Cp = min <Z eir\ci’j> (4.12)
T

iEN
The modified costs c;; of each arc (i,j) € A, which may also be negative, are given by the

following Equation:

cy -, Vi€Nj#{{u}u{0}
o) G L= #0 (4.13)
ij .
|+, i=0
U oo, j =} on

The scope of each sub-problem is to define the values of coefficients a;; that minimize the
related reduced cost. Thus, in order to formulate the ESPPRCTW sub-problem we substitute

coefficients a;; by binary arc flow variables x;; and Eq. (4.12) can be written as follows:

min. ) - cijxi; (4.14)
(e

As discussed above, the solution of (4.14) should be restricted to generate only feasible routes.
Thus, the problem is solved by respecting Constraints (4.15) — (4.22) [which are related to
Constraints (3.4) — (3.12) of Chapter 3). Note that subscript k denoting the vehicle is dropped
from this formulation, since the vehicles are identical and the relevant vehicle constraints

remain in the RMP. Thus, the model constraints are the following:

Xpp =1 (4.15)
ieNU{ur}

Xuj =1 (4.16)
JENU{0}

Xin — Z Xpj =0 VhEN (4.17)
ieNu{ur} JENU{0}
Qj = Qi+dj_Z(1_xij) V(l,]) EA (418)
max{0,d;} < Q; < min{Q,Q + d;} ViEN (4.19)
max(al-, T) Z xij < Wi < bl' Z xl-j vie NU {,Ll’} U {0} (421)

JENU{unu{0} JENU{uU{0}
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Obijective function (4.14) minimizes the sum of the arc reduced costs. Constraints (4.15) to
(4.17) ensure that each route starts at the source point and ends at the depot, always preserving
the flow along the arcs of the route. Constraints (4.18) and (4.19) ensure that the capacity of the
vehicle assigned to the route is not exceeded. Constraints (4.20) and (4.21) ensure that every
customer will be served within its time window. Finally, Constraints (4.22) force the flow

variables to assume binary values [0,1].

4.4. Solution procedure for the pricing sub-problem

To solve the pricing sub-problems we use a label correcting algorithm similar to the one
proposed by Feillet et al. (2004; 2005). This relies on the creation of multi-dimensional labels
while processing nodes in an iterative manner. Each label is a vector that corresponds to a partial
path § from the source u' to vertex i € N, and comprises several components that describe the
state of &, typically the accumulated reduced cost ¢s;, as well as the values of the resources

upon reaching vertex i as described below.

Typically, in related studies, the corresponding label [Cs;, tsi, ds;i] represents the accumulated
reduced cost, time and demand between the origin and ending node (i) of partial path § (Irnich
and Desaulniers, 2005). In this study, we have introduced a new label component, the
equilibrium cost Cg;, which represents an upper bound (worst case) of the total modified cost
required to serve all committed orders not yet included in partial path . Let 0(6;) < C, denote
the set of committed orders included in partial path § ending at vertex i and 0'(6;) < {C U F}
denote the remaining set of all orders N = C U F not yet served by partial path §. Then, the

equilibrium cost can be defined as:

Coi = Z (hEO («s)u{w}( ) + Jeoyggﬁ(uw}(c”)) (4.23)

iec\0(s))
where c;; is the modified cost associated with arc (i, j) € A. By including c5;, the label becomes
Asi = [Csi tsi» dsir Csi], and indicates whether this partial path & includes all the required
committed orders or not. The label’s information is used in the dominance criteria described

below.

The procedure commences at the source point u" with initial label 4, at time t = tfj,. For the

¥ k|+1 Sub-problems, t,, = T,; for ¥y, Vk € K, however, a vehicle may be on its way to the

1 I,Ll
next destination or already serving a customer at re-optimization time T,. Therefore, assuming

customer h as the current vehicle’s location, the time value that a vehicle is able to start the
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distribution is set equal to max(ay, wy,) + s, where a,; represents the opening of the time
window of customer h, wy, the time the vehicle is set to reach customer h, and s;, the service

time spent.

From source point u', each label Ag; is extended along all arcs (i, j) € A to create new labels
As,;- When extending label As; = [Cs;, tsi, dsi, Csi] to anode j, then the new label A ; of partial
path 6’ ending at node j is given be the following extension Equations (note that component

Cs'j is calculated afresh during each extension according to Eq. (4.23)):

E(?’j = E(S’i + Cl,] (424)
t(g’j = max {aj, t5’i + tij + Si} (425)
ds'j = dg'; + d; (4.26)

A label Ag,; is discarded if it is not feasible, i.e. if t5; > b; or dg/; > Q. Labels are extended
based on a procedure which scans all nodes iteratively; each label is extended to all other nodes
and checked for feasibility. All new created labels for node j are characterized as non-processed
and are stored in a set of non-processed labels, B(j), which is called the bucket of node j. When
label Ags; has already been extended to all reachable nodes, then it is considered as processed
and can be deleted (or kept for supporting the dominance criteria, as will be described later).
This is repeated for every B(j) in an iterative manner until all labels have been processed.
Following the work of Chabrier (2006), we also adopt the concept of storing all labels that have
been extended to all successors in the set of processed labels P(j), separately for each node j.
The adoption of this concept supports the solution process during the dominance checks, as will

be described below.

When a partial path is extended to the ending node 0, then a full feasible path has been
generated. This path is a potential solution to the minimization problem. For our case, all labels
created for ending node 0 are directly stored if and only if they satisfy the following conditions:
i) the criterion of negative reduced cost, i.e. ¢s; < 0, and ii) all C orders are included in the

solution.

During label generation, it is required to consider the constraint of not revisiting the same
vertex, i.e. to extend labels strictly to nodes that have not yet been visited (elementary paths,
Feillet et al., 2004). To do so, we include an additional component in the label, denoted as Rg;,

that represents partial route § ending at node i with a vector containing |Ng| binary values,

Dpt. of Financial & Management Engineering 57



Chapter 4: Branch-and-Price Algorithm for the Re-Optimization Problem

where |Ng| is the size of all nodes (excluding starting and ending ones). During the extension
of label Ag; to node j, the j* element of this vector is set to 1. In case node j has already been
visited in partial path & (meaning that the j** element of Rg; is equal to 1), then label Ag; is not
extended to node j and, thus, the new label is not created. This process leads to the generation

of elementary paths, i.e. it avoids re-visiting the same nodes.
Dominance Criteria

In order to avoid enumerating all feasible paths, dominance rules are applied to eliminate
(discard) labels that are not Pareto-optimal and, therefore, cannot yield an optimal path.
Eliminating labels improves significantly the computational efficiency of the solution approach.
To do so, we have employed applicable dominance criteria from the literature for ESPPTWCC.
We have also proposed additional dominance criteria that are particular to the problem in hand.

Given two labels, A; and Agr; representing two different partial paths 6’ and §”’ ending at the
same vertex i, Ag; dominates Ag; (i.e. 8" is disregarded) if Ag; < Agr; (component-wise)
and the inequality is strict for at least one component. In particular, the following inequalities

must hold for the label components:

Cs'i < Cot1 (4.27)
by < tan (4.28)
dyi; < dgrr; (4.29)
Eyri < By (4.30)
Rsi S Rgrr; (4.31)

Note that component cs; ensures optimality by including all C orders in a path, when needed.
Note that this additional dominance criterion does not violate optimality when the associated
ESPPTWCC is solved within a full column generation scheme, since it eliminates labels that
lead to routes with higher reduced cost. Additionally, for the case of Wy, sub-problem, the
equilibrium cost will be always zero (0), since C = @ and, thus, there is no affect to the overall

dominance criteria and, consequently, to optimality.
Acceleration Techniques

In order to speed up the solution process, we have employed appropriate acceleration techniques
from the literature. The acceleration techniques used in this work have been based on the work
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of Athanasopoulos (2011) for the Multi-Period VRP. Table 4.1 below lists the acceleration

techniques adopted, which are briefly discussed below.

Table 4.1. Acceleration techniques for the solution of ESPPTWCC for the DVRPMB

Acceleration Technique Reference
Unreachable nodes Feillet et al. (2004; 2005), Chabrier (2006)

Limited Discrepancy Search (LDS) Feillet et al. (2005)
Buckets / Storing Processed Labels  Larsen (2001), Chabrier (2006)
Early Termination Criterion Larsen (2001), Chabrier (2006)

Parallel Implementation

Unreachable nodes

Unreachable vertices, as defined by Feillet et al. (2004), are “vertices that cannot be reached
anymore due to resource constraints or because they have already been visited”. On top of the
typical implementation of the unreachable nodes process, which discards non-feasible labels,
we employ this technique for the solution of the SP for vehicles en route. Recall that in the sub-
problems related to this case, all committed orders have to be included in the final path; thus,
we assume that if at least one committed order is denoted as unreachable, then this label is
considered as infeasible and is discarded from the set of labels B(i) to be extended, even at a

very early stage of the label generation process.

Limited Discrepancy Search (LDS)

This is a tree search method, initially developed by Harvey and Ginsberg (1995) for Constraint
Programming. Our implementation follows the LDS framework successfully incorporated by
Feillet et al. (2005) for solving the ESPPTWCC. The algorithm works as follows:

For each vertex i € N, the m “closest” customers (referred to as “good neighbors”) are chosen
and included in a set # (i); proximity is measured by the value of the reduced cost. Extending
a label to a node h that is not included in H (i) imposes a penalty (y;) equal to 1, otherwise
the penalty equals zero. Thus, every partial path § ending at vertex i, i.e. every label in B(i), is
assigned a penalty value. The ending node (depot) is always considered as a good neighbor;
also, for the source node u’, m = |N|. At the beginning of the algorithm, the acceptable
cumulative penalty (denoted as CP) for a partial path § (corresponding to a label Ag;), is set to
zero and thus, labels are extended only to good neighbors, i.e. ¥.; jer ¥ij = 0. This means that
only arcs with y;; = 0 are selected. If there are any negative reduced cost routes (columns) after

expanding all labels, the ESPPTWCC terminates and passes the related routes to the RMP. If
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not, CP is increased by 1 and labels with y;; = 1 are also allowed. An upper bound CB,,, is
defined, beyond which CP may not be increased. If CP,,,, has been reached and no negative

reduced cost columns have been generated, then the operation terminates.

Buckets / Storing Processed Labels

As already mentioned, in our implementation we use two different structures for storing labels
ending at vertex i; i.e., B(i) that contains all non-processed labels, and P (i) that stores all
processed labels (i.e. labels that have been extended to all successors). Storing the labels in P (i)
supports the solution process, since these labels can be considered in the dominance checks and
may discard (eliminate) non-processed labels not yet extended to all successors. A label Ag; is
checked if it dominates, or is dominated by, other labels within B(i) and P (i). A new label can
eliminate labels from both sets B (i) and P(i) or may be eliminated by the labels in these sets.
When a non-processed label Ag; is eliminated by a label within P(i), then it is not extended
further. This process enhances the efficiency of the algorithm since more labels can be

discarded during the dominance checks.

Early Termination Criterion

Many researchers terminate the solution process of the sub-problem when a predefined number
of negative cost columns (routes) have been reached. Although this technique does not
guarantee optimality for the sub-problem, the optimality of the global algorithm is still
maintained, due to the iterations of the global algorithm between the RMP and the SPs. In our
case, we terminate the solution process when at least 300 feasible columns (routes) with

negative reduced cost have been found at each of the sub-problems ¥, vk = 1,2, ..., |K| + 1.

Parallel Implementation

Since the |K| + 1 problems of the ESPPTWCC are independent, they can be solved in parallel,

resulting to gains in computational efficiency (see Fig. 4.2).
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Figure 4.2. Sequential and parallel implementations of the Pricing Sub-problem

4.5. The integrated column generation scheme

Figure 4.3 shows the complete column generation framework, which integrates the RMP with
the |K| + 1 sub-problems. The solution of the RMP provides the associated shadow prices, in
addition to the cost and relevant routes. The former are provided to the |K| + 1 sub-problems,
and are used to compute the modified costs ¢;; = ¢;; — m; for each (i, j) € A. These modified

costs are the elements of the modified cost matrix in ESPPTWCC.

On the other hand, solving each sub-problem generates a set of negative cost routes. These
routes (suitably represented as columns) are provided to the RMP and added to the existing
routes/columns of the problem. The solution process terminates when no routes with negative
cost can be generated by any sub-problem, matching the classical termination procedure of the
simplex method. The minimum cost solution from the last RMP is the optimal solution.
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Figure 4.3. The column generation procedure at each re-optimization cycle

Example: single iteration of the column generation procedure

Consider an example of two vehicles (K = {1,2}), with four (4) offline (delivery) orders
assigned to each vehicle. During re-optimization timestamp T;, vehicle K; is located at customer
2, vehicle K, is located at customer 6 and three (3) new DO ({a, b, c}) have arrived in the

interval [0, T; ], as shown in Figure 4.4.

The first step in solving the related re-optimization problem is to create the initial basis, i.e. the
Restricted Master Problem (RMP). To do so, we construct a matrix comprising the route
columns of the initial plan; naturally all rows that correspond to the customers already served
are deleted from this matrix. New columns corresponding to single-visit routes for the three DO
are also included. This forms the first RMP which comprises of five (5) columns, R;,i = 1, ...,5
each associated with a cost c; (i = 1, ...,5). The RMP is solved using the Revised Simplex
Method, and the dual prices produced for each customer generate the modified cost matrix for

each sub-problem.
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Thus, 2 + 1 sub-problems are solved. Each of the first two sub-problems (¥, ¥,) consider the
corresponding set of committed orders Ci, k = 1,2 plus the set of all available DO (flexible
orders), i.e. N, = C, UF,k = 1,2 (for example, N; = {3,4,a,b,c}). The third sub-problem
considers only the available DO, i.e. N3 = {a, b, c}. Sub-problems ¥,, ¥, will provide columns
that assign flexible orders to vehicles en route, while sub-problem ¥ will provide columns that

assign flexible orders to vehicles located at the depot.

Fig. 4.4 illustrates indicative columns generated by sub-problems ¥;, ¥,; based on the Figure,

these SPs generated columns such that: a) each vehicle en route is able to serve all flexible
orders (columns R'1 and R'Z), and b) each vehicle is able to serve only a portion of flexible orders
(columns R and R;). On the other hand, sub-problem ¥, generates only one column that

assigns all flexible orders to a single vehicle to be deployed from the depot (column R'3"). These
columns are then added to the RMP which is solved again. This procedure is performed

iteratively until no more negative cost columns are found by any sub-problem.
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Figure 4.4. Example of the column generation process

4.6. Solving the integer problem (Branch-and-Price)

In case the solution of the column generation procedure is fractional, it provides a lower bound
to the integer optimal solution. To obtain the latter, the column generation algorithm is

embedded into a branch-and-bound (B&B) search scheme, which is implemented using a best-
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first strategy. In this case, column generation is used to compute lower bounds at each node of

the branch-and-bound search tree. (Branch and Price — B&P).

The B&P procedure is initialized by obtaining the overall Lower Bound (LB) (as described
previously) and a Global Upper Bound (GUB), which usually refers to the best known integer
solution. GUB is originally set equal to a very large number (M). If LB does not correspond to
an integer solution, the Branching Policy is triggered, which, given a fractional solution, divides
the feasible solution space into two subspaces. Each subspace can be seen as a new node in the
B&P tree and is further explored separately. Explored B&P nodes are discarded, while new
nodes are added in the list of unprocessed nodes. GUB is updated based on improved integer
solutions, if such solutions are found. Following the procedure, the next node to be explored
from the unexplored node pool is selected by the Node Selection policy. The procedure
terminates when all nodes from the pool have been explored, or when the LB of all those nodes
is larger than the GUB.

Branching Policy

As proposed by several authors, we branch on arc flow variables vy;;, (i,)) € 4, i.e..

Yy = z Dijr¥r (4.32)

where p;;, denotes a binary variable equal to 1 if and only if route r traverses arc (i, ). The
first subspace of the B&P scheme (i.e. 1;; = 0) is defined by an additional constraint which
does not allow arc (i, j) to participate in the solution (i.e. remove from the master problem all
variables y,. if route r contains arc (i, j)). The second subspace (y;; = 1) forces arc (i, j) to be
part of the solution. A major advantage of this strategy is that it can be easily implemented

without adding new constraints to the Master Problem.

Considering the first subspace, all routes containing arc (i, ) are discarded, and coefficients c;;
are set to oo. In the second subspace, all routes containing customers i and j that are not in
sequence are discarded from the current RMP of the father node, and all cost coefficients c;,
and cyj, Yh # {i,j} used in the sub-problem, are set to . These two modifications will allow

direct connections only from customer i to customer j.
Variable Selection Policy

To select the variable to branch on, we first identify the arc with the most fractional flow value

(i.e. value g, for which [g] — g is closest to 0.5). Every arc (i, j),- of the routes r that participate
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in solution X, takes the corresponding value of variable x,; the values of the same arcs are

summed up and the arc with the most fractional part is then selected to be branched.
Node Selection Policy

Many existing policies are available in the literature, such as depth-first, best-first, width-first
and depth first with backtracking (see Larsen, 2001; Lee and Mitchell, 2001). We have
employed the Best-First approach, which is most commonly used in the literature. This policy

selects to explore the node with the minimum LB among all nodes of the tree.

4.7. A heuristic-based column generation approach

Given the requirements for time efficiency of the solution process, especially for practical cases
with extended solution space (e.g. without time windows), we propose a heuristic procedure to
generate negative cost columns to enter the RMP instead of solving the ESPPRC to optimality
(which is NP-hard). Thus, we propose a heuristic to solve the pricing sub-problem described in
Section 4.4. The rest of the branch-and-price framework described in previous Sections remains

intact.

The proposed CG-based heuristic requires distinct approaches for sub-problems ¥, k € K and
sub-problem ¥, ... For the former sub-problems, an efficient (but not optimal) approach may
result by finding the minimal cost of inserting each one of the flexible orders to each one of the
available routes. The ¥,;, sub-problem may be dealt as a new independent vehicle routing

problem. Both are further explained below.

4.7.1. Generating columns for vehicles en route

To generate new columns with negative reduced costs, we use a local search procedure to
modify the columns of the initial basis (12, columns). The reason we utilize such columns is
that each trip in the basis has zero reduced cost, and if such a trip is modified appropriately, it
is likely to generate new trips with negative reduced cost. The modification is performed using
a cheapest insertion algorithm, which tries to incorporate in a least-cost fashion each DO to
each candidate column. For this insertion we use the flexible order-column combination that
results in the minimum reduced cost; the latter is the difference between the reduced costs prior
and after the order insertion. Let c, be the cost (distance) of a column s(k), k € K prior to the

insertion of flexible order f, and let Csp be the post-insertion cost. Also let RC and RCs, the

respective reduced costs. The insertion criterion is provided by the following Equation:
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G(s, f) = RCsf —RCs = <Csf - Z cs T[a> - (Cs - Z EST[a)
aesyr a
O T T S I
aes aes

where S = {s(1),s(2), ..., s(K)} denotes the set of columns in the optimal basis corresponding

(4.33)

to columns for vehicles en route at re-optimization cycle T, and m,, 7y refer to the dual prices
of each order a € S and f € F, respectively. Using this criterion, each order in F is tested for
insertion in all possible positions of each column of the initial basis. Columns with negative
reduced cost that are generated during the iterations of this process are maintained as candidates
in a pool of columns to be added to the RMP. This operation is terminated when no negative
cost columns can be found, or when all orders in F have been tested for insertion. The operation

is described in detail below; the pseudocode of the algorithm is given in Figure 4.5.
Preliminary Stage: Initialization

Let the set of new columns to be added to the RMP (column pool) be 2" = @. Also let G and
RC denote matrices of size |K| x |F|. The elements of matrices G and RC store the information
related to the values of the insertion criterion of Eq. (4.33) and the total reduced costs,
respectively, for each assignment of flexible order f € F to each one of the vehicle routes k €

K. At the initial state, all elements of the G and RC matrices are set to a large positive number.

Stage 1: Generating New Columns

Step 1.1. Select a column s(k) € S. This column corresponds to a route that starts from the
current position of the vehicle y,, serves orders O(s(k)) and ends at the depot. Thus, there are
|0(s(k))| + 1 possible positions, denoted as A(sy), where F orders can be inserted. Let the

cost of this trip be cg(.

Step 1.2.For each flexible order f € F, set the current best cost c‘fs(k) = Z (where Z a very large

positive number) and perform the steps below. If there is no such f, i.e. F = @, go to Stage 2.

1.2a. Try to incorporate f on a possible position v € A(sy). If A(s;) = @, go to Step 1.2.

If path s;” that incorporates flexible order f in position v of column s, satisfies all
feasibility constraints (i.e. time windows and capacity), go to Step 1.2b, otherwise
repeat Step 1.2a until all positions v € A(s,) are examined.

1.2b. Improve trip s;” with a 2-opt post-optimization procedure (Li, 1965). Let c,fv be the

cost of this improved trip.
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1.2c. Ifthe reduced cost r;,” of trip s;.” (i.e., 1, = c,]:" — Yaes(k) Ta) 1S Negative, then add
trip s,f” in the column pool, i.e. 2" = N" U {s,f”}
1.2d. If the current inclusion of flexible order f does not provide a better cost than the

previous ones, i.e., c,f” > c‘fs(k), return to Step 1.2a. Otherwise, set element (s, f) of

matrix RC equal to the reduced cost of trip s,f” and the same element of matrix G

equal to (c,f” — Csky) — 5. Finally, set the current best cost to be c‘fs(") = c,’:V.

Stage 2: Pseudo-assignment of the “cheapest” pick-up order

Step 2.1. If all elements of matrix RC are non-negative (i.e. there is no insertion operation that
yields a negative reduced cost from Stage 1), terminate the procedure and return the column

pool 2" generated during the process. Otherwise, go to Step 2.2.
Step 2.2. Select order f* € F to be pseudo-assigned in the current plan such that gs, =
min(G(s, f) | Vs € S,Vf € F); i.e., the order that corresponds to the minimum element of

matrix G. Denote as s(k*) the column that satisfies the above statement.

Step 2.3. Update all problem data according to the pseudo-assignment of Step 2.2, i.e. the set
of orders O(s(k*)) = O(s(k™)) U {f*} and the set of flexible orders F = F\{f*}. Finally,

update matrices G and RC by deleting the column that corresponds to f*.

Figure 4.5 below provides a pseudo-code of the above heuristic procedure for the generation of

new columns to be added to the RMP for vehicles en route.
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Algorithm 1: Heuristic for generating columns for vehicles en route

1 N"=0; // New set of columns generated by the procedure

2 G=0; // Matrix that stores insertion costs of order f to each column s
3 RC=¢ // Matrix that stores the reduced cost of order f to each column s
4 While F # @

5 For each column s(k) €S,k € K do

6 Cs(y > Cost of column s(k)

7 For each order f E€F do

8 C_'fs(k) = 7 // Best cost of including order f in column s(k)

9 For every feasible arc v in path S for inserting order f €F do
10 Apply insertion of order f in path s

11 [path(v)] = Apply 2-opt improvement on this temporary path
12 S,{V = path(v) // column § with order f on arc V after 2-opt
13 C}{V = Cost of path(v)

14 Compute reduced cost kav = C,{V — Daes) Ta

15 If 1," <0 then

16 n'"=0"u {S}’ }

17 End

18 1f ¢ <&’™ then

19 Gs.f) = (& = cw) = 1y

20 RC(s,f) = 7y

21 C:fS(k) _ C,f"

22 End

23 End

24 End

25 End

26 If all(RC)=0

27 terminate procedure and return 2"

28 Else

29 Find s(k’) and f* € N such that Ispr = min(G{s}{f}|Vs €S, VfEF)

30 Update column s(k*) = S(k*)U{f*} // in the best feasible place

31 Update matrices G and RC

32 Update set of F orders > F =F\{f*}

33 End

34 End

Figure 4.5. Pseudo-code of heuristic approach for generating columns for vehicles en route
Implementation techniques for computational efficiency

Since the procedure seeks to insert a flexible order at each possible position of a column,
followed by a post-optimization procedure, it is probable that it may generate multiple identical
columns. For example, the assignment of flexible order f in the v — th position of the route

that is represented by a column s can also be the result of the 2-opt procedure when order ¢ is
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tested for insertion at another position of the same route. In order to avoid generating identical
columns and provide RMP with unnecessary information, we tag each generated path with an
appropriate value, denoted as representative information, in order to discard them if they’ve
been encountered again. This is carried out by employing Hashing Functions, introduced by
Juliff (1990) and successfully implemented to a tabu search metaheuristic for a VRP variant by
Osman and Wassan (2002). Hashing functions require a unique code to be computed for each
solution. In our case, code H; is calculated for each generated column as the product of the
column index with the sum of the products of the customer index times the total number of
orders of the related path, i.e.

HS =sX Z U.j X |OS| (434)

Uu;j€O0s
where Oy is the set of orders in column s, |O,| represents the total number of orders in column
s, and u; represents the customer index of that column. The above equation ensures different

codes or records for almost all generated columns with different characteristics; any column

that is found with the same code is discarded.

A second simple and efficient acceleration technique deals with those flexible orders that can
never be included in a certain column. This technique is almost similar to the unreachable nodes
described in Section 4.4. Before the initialization of the procedure, each flexible order is
checked for feasibility of inclusion in each one of the available columns. Once an order fails
w.r.t. at least one of the feasibility criteria, i.e. time windows, capacity or total permitted length

of the trip, it is no longer considered a candidate for the corresponding column.

4.7.2. Generating columns for vehicles located at the depot

The solution of sub-problem ¥ ., for generating columns for vehicles located at the depot is
possible within the framework described in Section 4.4, since the resources ( remaining time
horizon, capacity, etc.) are relatively limited at each re-optimization cycle. This, of course,
holds when the number of orders in set F is relatively limited. Thus, if the number of F orders
is less than or equal to a reasonably small number, e.g. |F| < Z, we use the label correcting
algorithm as described in Section 4.4. For |F| > =, we apply the same algorithm but we exclude
path elementarity from the dominance criteria; i.e. a label can be eliminated by another label
even if the dominator is not a subtour of the dominated one. This may speed up the solution
process, since it eliminates a significant number of columns, but cannot ensure that all feasible

2, will be generated, and the optimum will be reached.
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Chapter 5: RE-OPTIMIZATION STRATEGIES FOR THE CASE OF
UNLIMITED VEHICLE FLEET

One of the most critical elements in a re-optimization process is the timing of re-optimization,
i.e. the time(s) at which the current plan is recomputed in order to incorporate the up-to-date
information. In this Chapter, we investigate the re-optimization strategy, that is the combination
of i) the length of the re-optimization cycle (i.e. when to re-plan, hereafter the re-optimization
policy) and, ii) the part of the plan that is released to the drivers for implementation (hereafter
the implementation tactic). The main purpose is to analyze alternative strategies and propose
guidelines under various operational settings with respect to key problem characteristics (time

windows, degree of dynamism, time of occurrence of dynamic orders, etc.).

Significant issues related to re-optimization in dynamic routing are overviewed in Section 5.1.
In Section 5.2 we propose and analyze several re-optimization strategies. Theoretical insights
regarding these strategies are discussed in Section 5.3. Section 5.4 presents the experimental
investigation of the proposed strategies under various operational characteristics. Finally,

Section 5.5 summarizes the key findings of this part of the study.
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5.1 Re-optimization and the routing environment

The selection of the appropriate re-optimization strategy may be affected by the characteristics
of the routing environment. In this Section we discuss significant aspects regarding key factors

and how they affect the routing results of the overall dynamic problem.

The re-optimization frequency (length of the re-optimization cycle) in dynamic routing should
strike an appropriate balance. Very frequent re-optimization (short re-optimization cycles) may
limit the solution quality of the overall (long-term) problem, since it may not take advantage of
combinations of newly arrived requests. On the other hand, infrequent re-optimization (long re-
optimization cycles) may limit the dispatcher’s options since a larger portion of the route has
been completed during previous re-optimization cycles, and fewer options are available for

incorporating the newly arrived requests.

To illustrate the significance of the re-optimization frequency, we provide in Figures 5.1 and
5.2 two examples, each reflecting potential inefficiencies when adopting short and longer re-
optimization cycles, respectively. For the former example (Fig. 5.1), two vehicles en route are
scheduled to serve committed orders. Two re-optimization policies are tested. In the first policy,
shown in Fig. 5.1a, re-optimization is applied whenever new information is received (every
time a new order is received by the dispatchers). The Figure presents the evolution of the system
in two successive re-optimization cycles. In the second policy, re-optimization is applied after
two DO have been received (Fig. 5.2b). The Figure presents the evolution of the system after a
single cycle. In this example, the second policy yields better overall results due to the
opportunity provided to the algorithm to consider the allocation of both DO at the same time,

and combine them appropriately.

The second example considers a single vehicle executing a planned route (see Fig. 5.2) and
illustrates the reverse case, in which re-optimizing after each DO is received yields better results
than re-optimizing every two DO. Figure 5.2a is related to the policy in which re-optimization
is performed upon the receipt of each DO (two re-optimization cycles), while Fig. 5.2b presents
the result of the 2 DO re-optimization policy. In this case, the former policy yields superior
results, since the portion of the route that favors the inclusion of DO A has not yet been

completed under this policy.

Dpt. of Financial & Management Engineering 71



Chapter 5: Re-optimization strategies for the case of unlimited vehicle fleet

1%t re-optimization cycle

g —Q——@

v

Depot
. Committed orders

O Dynamic (flexible) orders

. Current vehicle location
O Served orders

---- Implemented route

— Scheduled route

(@)

(b)

Figure 5.1. Example in which (a) re-optimizing upon the receipt of each DO yields an inferior result
than (b) re-optimizing when both DO are received

The implementation tactic defines which DO are released to the fleet for implementation after
the execution of re-optimization. It seems that releasing a DO only when it is absolutely
necessary will provide more possibilities for DO combinations. However, as discussed in
Chapter 3, there are some practical cases in which this may not be applicable and DO have to
be released to the fleet immediately after re-optimization (and considered as committed).
Consequently, in Section 5.2 we examine those two scenarios met in practice and we investigate

their interaction with different re-optimization policies (frequency).
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O ----+ Implemented route

— Scheduled route

Depot

Depot
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Figure 5.2. Example in which (a) re-optimizing upon the receipt of each DO yields a superior result
than (b) re-optimizing when both DO are received

As mentioned above, it is anticipated that the selection of a re-optimization strategy may be
significantly affected by the characteristics of the underlying routing environment. In particular,

we focus on the following characteristics:

e Geographical distribution of customers: The spatial distribution of customer locations is
essential in any type of vehicle routing system. For example, in the clustered case in which
customers form distinct groups, the excess cost of an additional visit within the same cluster
tends to be lower. Consequently, it is expected that in these cases, a larger portion of the
route will be completed (more customers served) if infrequent re-optimization will be
chosen. This may limit the allocation options of DO during future cycles.

e Customer time windows (TW): The characteristics of TW is expected to significantly affect
the solution quality with respect to the selection of the re-optimization strategy. For
example, tight TW cases may limit the impact of the re-optimization strategies, since the
solution space is significantly limited. On the other hand, wide TW provide more allocation

options of the newly received DO in the current routing plan; this may favor the solution
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under wider re-optimization intervals especially for cases where DO should be released
immediately after re-optimization.

e Degree of dynamism: The number of DO with respect to the total number of orders may
also affect the selection of re-optimization strategy. Higher degrees of dynamism may

require higher re-optimization frequencies.

In this Chapter, we investigate the impact of the aforementioned characteristics on the selection
of the re-optimization strategy. To do so, we apply the re-optimization approach of Chapter 4
under various re-optimization strategies and operating scenarios. The results of the analysis lead
to guidelines regarding the appropriate re-optimization strategy with respect to the

characteristics of the routing environment.

5.2 Re-optimization strategies

As mentioned above, the re-optimization strategy is defined by the re-optimization policy

(frequency of re-optimization) and the implementation tactic (order release tactic).

We explore various re-optimization policies depending on the number of DO that have arrived

between two successive re-optimization instances; that is:
¢ Single-Request Re-optimization (SRR): Re-optimize upon the arrival of each DO

e Number of Requests Re-optimization (NRR): Re-optimize after the arrival of a predefined

number (more than 1) of DO (e.g. after three DO have been received)

e Fixed-Time Re-optimization (FTR): Re-optimize at predefined time intervals (e.g. once per

hour).

The aforementioned re-optimization policies are illustrated in Figure 5.3 (Larsen, 2000).

Call center CaIII center
opens closes
l * * * * * l
ehiehl NS EEEES L oo - »
N A A L O B B ™ e
0 1 2 3 4 5 6 (hours)
A A A A A

? SRR Y NRR A FTR

Figure 5.3. lllustration of re-optimization policies (NRR is applied for N=3; FTR is applied every

hour)
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In addition, we also explore two (2) tactics to implement the new plan:

O Full-Release tactic (FR): All re-optimized DO are released to the fleet immediately for
implementation and they cannot be reassigned at later re-optimization cycles (see the
discussion of Chapter 3, Section 3.2.1 on relevant practical cases, in which this tactic is

applicable)

 Partial-Release tactic (PR): Only the DO scheduled for implementation prior to the next
re-optimization cycle are released and the remaining DO are re-considered in the next cycle.
In practical terms this means that not yet served DO up to the re-optimization timestamp

are included in the F set as flexible orders.

Specifically, the FR tactic considers as flexible orders only DO that arrived during the interval
[T,—1,T,], while the PR tactic considers also DO arrived in [Ty, T,—1] but not served yet (see
relevant discussion in Chapter 3.2). During the implementation under the FR tactic, the entire
plan is released for implementation and has to be executed as designed (solution S,). For the
PR tactic, only the DO allocated for the interval [T}, T ] are released for implementation. The
implementation of this tactic depends on the technology used; typically, the driver receives only
the DO to be served next. The above considerations and differences between the two (2) tactics
are illustrated in Figure 5.4.

12:00

10:00
11:00
14:00 16:00

A
Initial
Route

08:00

Call center Call center
opens closes

B
15t Re-
optimization

)
| 15 Re-optimization

Call center a ! Call center
opens e '?I_ 2{5_ gongDosk closes

C1

Full
Release

I
Call center m E Call center
opens closes

C.2
Partial
Release

' (@)
E
call center @ m Call center
opens closes

@ Committed Order O Unallocated DO O Planned but not released DO @ Released DO

Figure 5.4. Full release vs. partial release tactic for a single re-optimization cycle and a single route
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5.3 Theoretical insights for re-optimization strategies

It is reasonable to expect that the PR tactic is superior to FR. Below we examine in which cases

this holds assuming the following conditions:

e All orders are served in the final solution
e Vehicles located at the depot are eligible to be dispatched at any £ > 0
e Both release tactics are compared under the same number of re-optimization cycles

e An optimal method is used for re-optimization.

We should initially note that in the trivial case of a single-vehicle, both release tactics lead to
identical results. This is due to the fact that although FR commits flexible orders for the next
re-optimization cycles, the sequence of customer service within the route of each vehicle (the
only one in this trivial case) is not committed; thus, the re-optimization state is the same for

both tactics, which generate identical optimal solutions.

Claim 1: It is guaranteed that the cost of the overall solution (for [T, T;qx]) Obtained under
the PR tactic is always lower than or equal to the cost of the solution obtained under the FR
tactic, for £ < 3.

Consider a simple example with L = 2 re-optimization cycles, K vehicles scheduled to be
dispatched at time Ty, and K¢ available vehicles at the depot eligible to be dispatched at any
¢ > 0. Let K, denote the vehicles en route considered at each cycle £ (comprising of vehicles
that have not completed their assignments). Let RP(w, £) denote the re-optimization problem
for each implementation tactic w € {FR,PR} with total routing cost O(w,¢). Note that
O0(w, ) = Op(w, ) + O¢(w, ), where O,(w,t) denotes the cost of the already completed

portion of the routes up to T;, and O (w, £) the cost of the solution for [T}, Tpqx].

The feasible space of each RP(w, ), £ > 0 may be formed by considering (a) all feasible
combinations of assigning the flexible orders among the vehicles en route (¥, sub-problems)
and the vehicles located at depot (¥|k,+1 Sub-problem), and (b) for each sub-problem, all

feasible sequences of customer orders assigned to each vehicle.

The problem solution at each ¢ is affected by the re-optimization state, which is comprised of
i) the set of committed orders Cy(w, €),k = {1,2, ..., K,, K, + 1}, ii) the set of flexible orders
F(w,¥), and iii) the current location of the vehicle(s). Note that there are no committed orders

for the ¥, +1 sub-problem, i.e. Cx,.1(w,£) = @.
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During £ = 1 both tactics consider the same re-optimization state and 0, (FR, 1) = 0,(PR, 1);
therefore, the related re-optimization problems (for PR and FR) are identical with identical
solutions, and O(FR,1) = O(PR, 1).

During ¢ = 2 (at time T3), it holds that the current locations of the vehicles en route at T, are
identical for both tactics and 0,(FR,2) = 0,(PR, 2). For each tactic, the related problems
consider the sets of orders Ni(w,2) = Cx(w,2) UF(w,2),k ={1,2,..,K,, K, +1}; more
explicitly:

e FR-tactic: Ny (FR,2) = C,(FR,2) U F(FR,2) = [C¥(2) U F/(2)] U F,(2), where CX(2)
denotes the set of unserved static orders and F (2) the subset of DO arrived during [T, T4 ]
and assigned to vehicle k but not yet served; F,(2), denotes new orders arrived during
[T, T,]. Note that Ny, ., (FR, 2) = Fy(2).

e PR-tactic: Ni(PR,2) = C,(PR,2) UF(PR,2) = C¥(2) U [F'(2) U Fy(2)], where F'(2)
denotes all orders arrived during [T, T;] and not yet served. Also, Ni,.1(PR,2) = F'(2) U
Fo(2).

Since F'(2) = Ugeg Fr(2), itis clear that N, (FR,2) € N (PR,2),Vk € {1,2,...,K,, K, + 1}.
Thus, the feasible subspace corresponding to the PR tactic is a superset of that of the FR tactic
(only for £ = 2), and Of(FR, 2) < O¢(PR, 2), consequently, O(PR,2) < O(PR, 2).

Based on the above, up to £ = 2, the PR tactic will always provide superior or equivalent

results.

For £ > 2, however, such a comparison between the two tactics is not possible, since i) the state
of the system at each re-optimization event is not the same and, ii) the cost 0,(w, ¢) up to that

event is, in general, different for each tactic.

Claim 2: For £ = 3, and if more than one vehicles are involved (dispatched at either £ = 0 or
at £ > 0), it is not guaranteed that the overall routing cost under the PR tactic is lower or equal

than the one obtained by the FR tactic.

We will show this claim through a counter-example illustrated in Figure 5.5. At £ = 0, two
vehicles are planned to execute four (4) deliveries (customers 1, 2, 3, 4). During the course of
implementing this plan, three (3) DO arrive and should be incorporated in the plan (customers
5, 6, 7). Re-optimization is triggered upon arrival of each DO. Table 5.1 provides the

coordinates of all customers; the depot (denoted by node 0) is located at point (0,0).
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Table 5.1. Customer coordinates for counter-example of Claim 2

Customer 1D Coordinates (X,Y)
1 (5,2.5)
(10,5)
(10,-5)
(5,—2.5)
(10,0)
(10,10)
(5.0

NO U Wi

Figure 5.5 illustrates two states per implementation tactic for £ > 0; the state prior to re-

optimization (“Before”) and the state after re-optimization (“After”).

At £ = 1, both implementation tactics provide the same routing plans, as expected. At £ = 2,
order (6) has arrived. The F,(2) set for FR comprises only the new order 6, while for PR the
Fy(2) set includes all DO not yet served ({5,6}). PR generates a superior solution, since the
flexible order set is a superset of the one considered by FR. However, for £ = 3, the (initial) re-
optimization states of the two implementation tactics are different. Thus, the two generated
plans are different, and, in this case, the overall solution of the FR tactic is superior to that of
the PR tactic. Table 5.2 presents the final routing costs after each re-optimization cycle for each

implementation period ([T, Tmax]) @nd the entire planning horizon ([Ty, Trnax])-

Table 5.2. Routing costs under both tactics for three re-optimization cycles

FR — tactic PR — tactic

Cost [Tt’: Tmax] Cost [TO' Tmax] Cost [Tt" Tmax] Cost [TOI Tmax]

£=0 44.72 44.72 44.72 44.72
£=1 31.77 48.54 31.77 48.54
=2 36.18 58.54 35.32 57.68
£=3 25.59 58.54 27.23 59.59
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Figure 5.5. Planned and actual routes under both tactics for three re-optimization cycles (solid line is
the planned route, dotted line the executed route)
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5.4 Computational experiments

We study below the performance of the proposed re-optimization heuristic (Section 4.7) and of
the proposed re-optimization strategies (policies and tactics) through extensive experi-
mentation. In Section 5.4.1 we describe how the test problems were generated; in Section 5.4.2
we assess the performance of the proposed heuristic w.r.t. the exact B&P method. Finally, in
Section 5.4.3 we investigate the performance of the re-optimization strategies. In this latter
Section, in order to be able to report results under a unified solution framework, we employ the
heuristic method described in Chapter 4.7 for all experiments. The experimental study was
conducted using a Quad-Core Intel i7 processor of 2.8GHz and 4GB of RAM.

5.4.1 Experimental setup

5.4.1.1 The value of information

Measuring the solution efficiency of a dynamic optimization problem, such as the one addressed
here, is not a straightforward task, as also discussed in Mitrovic-Minic et al. (2004) and Pillac
et al. (2013). In this study we report the performance of the proposed method based on the so-
called value of information, which was originally introduced by Mitrovic-Minic et al. (2004).
Consider the DVRPMB instance H and the related static problem g, in which all DO are
known prior to vehicle dispatching (at ¢t = 0). Then the value of information metric V¢
corresponding to algorithm F when solving dynamic problem 7 is defined by the following

expression:

Ve () = ZT(}?T(_;T)(HS) x 100 (5.1)

where z¢(H) and z () are the values of the objective function for dynamic problem H and

for the related static problem H, both solved by algorithm F. Note that F is employed at each

re-optimization step for £, while F is employed once to solve H.

5.4.1.2 Test instances

For the experimental study we have employed all R1, C1 and RC1 benchmark datasets of
Solomon (1987). Furthermore, we employ datasets MR2, MC2 and MRC2 of Kontoravdis and
Bard (1995), who have used Solomon’s R2, C2 and RC2 datasets; the authors also reduced the
original value of the vehicle capacity from 1000 to 250 units. Thus, effectively, our
experimental investigation considers the full array of features of the Solomon benchmarks. In

the latter, as shown in Fig. 5.6, the Cartesian coordinates of customers in the R configuration
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are randomly generated from a uniform distribution. Configuration C relates to clustered
customers, whereas RC contains semi-clustered customers (i.e. a combination of clustered and
randomly distributed customers). The datasets contain between 8 and 12 100-node instances;
datasets R1, C1 and RC1 correspond to short-horizon problems requiring multiple vehicles with
limited number of customers per route. In contrast, instances included in datasets MR2, MC2
and MRC2 consider long scheduling horizons and allow the assignment of many customers per

vehicle.

In our experimental investigation, we have also employed instances vrpnc8 and vrpncl4 of
Christofides et al. (1979) that have no TW for the uniform and clustered cases, respectively,
but use the same customer coordinates of the R1 and C1 datasets. We designate these instances
as R100 and C100, respectively.
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Figure 5.6. Geographical distribution patterns of Solomon benchmarks; (a) Uniform distribution (R1
and R2), (b) Clustered case (C1 and C2), (c) Semi-clustered case (RC1 and RC2); blue circles
represent the customer locations and red square the depot.
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Using the above benchmark instances, the experimental study has investigated the impact of a)
customer geographical distribution, and b) customer time-windows on the effectiveness of the
various strategies. Figure 5.6 and Figure 5.7 illustrate the patterns of these two customer
attributes, respectively. We have also investigated the impact of the degree of dynamism (dod)
(Larsen et al., 2002) on strategy effectiveness. To do so, for all R1, C1 and RC1 instances we
examined cases of low dod (25% DO), moderate dod (50% DO) and high dod (75% DO). For
the MR2, MC2 and MRC2 we examined cases of moderate dod (50% DO), as proposed by
Kontoravdis and Bard (1995).
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Figure 5.7. Time window information for the Solomon datasets (bars indicate the range between the
min & max TW values of each instance; squares represent the average TW width)

Thus, we constructed 120 different cases (3 dod values for each one of the 31 test instances of
R1, C1 and RC1 and 1 dod value for the 27 instances of MR2, MC2 and MRC2). For each of
the 120 cases, we generated 10 different problems (different selection of static orders), resulting
in a total of 1200 test problems. Note that static orders were randomly selected from each 100-
customer problem and the remaining customers formed the set of DO. Also for the problems
that involve TW, we skewed the selection of offline requests towards those with early TW

opening. The initial solutions (original assignment of offline requests to vehicles) were obtained
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by a Clark and Wright savings heuristic (Clark and Wright, 1964), followed by a Reactive Tabu

Search metaheuristic (Osman and Wassan, 2002) as a post-optimization process.

Finally, DO arrive during the window [0, 0.75 * T,,,,] according to a continuous uniform
distribution (e.g. for cases of 12 hour service period, only DO that arrive during the first 9 hours
can be served). The selection of the arrival window has been motivated by a real-life courier
service as illustrated in Figure 5.8a. The latter presents a) the number of requests received by
the provider’s call-center (operating from 08:00 to 18:00) per day, as well as the average for
the three day period. The working horizon is 12 hours (from 08:00 to 20:00) and the policy of
the provider is to offer service for pick-up requests at minimum one hour after the call (Figure
5.8b). The Figure clearly shows that DO are received during the first 75% of the working

horizon.

For the remaining customer characteristics, i.e. on-site service times, customer demand, and the
actual time-window characteristics (opening and closing times) we used the information from

the original benchmark instances.
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Figure 5.8. (2) Number of DO per hour for a 3-day period; (b) average number of DO per hour
(received and served)

5.4.2 Assessment of the heuristic B&P algorithm

In order to assess the performance of the proposed heuristic, we considered all datasets of
Section 5.1.2 under the following settings: a) for datasets R1, C1, RC1, we have used all 100-
node instances with 25% and 50% dod; b) for datasets MR2, MC2 and MRC2 we reduced the
size of the related instances to 50-nodes by considering only the first 50 nodes of each original
instance; subsequently, we generated problems with 25% and 50% dod. This reduction was
necessary, since the full sized problems could not be solved to optimality by the exact algorithm

within reasonable time.
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For each instance, we assumed that a) all offline requests have been assigned to vehicles
according to Section 5.4.1.2, and b) all DO are known before the vehicles are dispatched from
the depot. Each static instance is solved by both the exact (OPT) and the heuristic (HEUR)
algorithm. Note that instances R104, R108, C104, MR204, MR208 and MC204 are not included

in the averages, since the OPT algorithm could not solve them within reasonable time.

Following the notation introduced in Section 5.4.1.2, Table 5.3 summarizes the results obtained
for each dataset. The results have been averaged over all test problems solved per dataset
(including the 10 problems per instance). The first two columns of Table 5.3 denote the dataset
and the nodes per instance considered for each dataset. The subsequent column sets report the
performance of HEUR and OPT for 25% and 50% dod. For each dod set, the Table reports the
percentage deviation of the solution of HEUR from that of OPT (%Dev), and the computational
times CTypr and CTygyr (in sec). The last column provides the average deviation from OPT
over the two dod. The bottom section of the Table reports the average performance indicators
per dataset. Additional indicators (distance traveled, number of routes) are provided in Table
A.1 of Appendix A.

Table 5.3. Performance of heuristic B&P algorithm

dod = 25% dod = 50% Average
Dataset Nodes 5 5 %Dev
YoDev CTopr CTyeyr YoDev CTopr CThyrur 0

R1 100 2.0% 719.3 36.8 1.8% 5239.5 56.6 1.9%
C1 100 2.6% 136.1 24.8 2.5% 2029.0 68.6 2.6%
RC1 100 2.5% 188.4 323 2.0% 896.1 35.7 2.3%
MR2 50 2.1% 651.0 131 2.1% 6108.1 94.9 2.1%
MC2 50 1.4% 632.9 10.6 1.9% 3509.9 140.6 1.7%
MRC2 50 2.7% 382.3 8.7 2.2% 1031.3 75.5 2.5%
Average 2.2% 451.7 211 2.1% 3135.7 78.7 2.2%

Based on Table 5.3, HEUR seems to yield efficient solutions with an average deviation of 2.2%
from the optimum over all datasets. Regarding the computational effort, HEUR seems to be

highly efficient compared to its exact counterpart.

5.4.3 Experimental investigation of re-optimization strategies

In this Section we focus initially on the overall performance of the re-optimization strategies
(Section 5.4.3.1). Subsequently, we drill down on how key parameters affect the strategy
performance (Section 5.4.3.2). In Section 5.4.3.3 we investigate the quality of the solutions for
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the entire dynamic routing problem using the proposed re-optimization algorithms and an

indicative set of instances.

For the experimental analysis, we employed all instances described in Section 5.4.1.2 and used
the SRR and NRR policies. For NRR, we used N = 0.1N, 0.2N, 0.33N (where N is the total
number of DO) hereafter designated as NRR-1, NRR-2 and NRR-3. Each policy was tested
under the FR and PR release tactics, resulting to a total of eight (8) strategies for each one of

the test problem (i.e. 9,600 problems in total).

It is noted that the analysis of the experimental results uses appropriate averages. The results of
the re-optimization strategies for all instances have been included in Appendix A (Tables A.2-
A.3). Detailed performance indicators (distance travelled and number of routes) per strategy

and instance can also be found in Appendix A (Tables A.4 — A.7).

5.4.3.1 Overall performance of re-optimization strategies (tactic-policy

combination)

Figure 5.9 presents the performance (w.r.t. VVol) of each re-optimization strategy (policy-tactic
combination) for each investigated dataset, averaged over all instances of the related dataset
and all degrees of dynamism. From this Figure, it is clear that a) the SRR-PR strategy leads to
the best average performance (minimum Vol), and b) the PR tactic outperforms FR (on the
average) in all datasets. The performance difference between the two tactics decreases as the
number of elapsed DO per re-optimization cycle increases (less number of re-optimization

cycles).

Figure 5.9 also indicates that the performance of each tactic is related to the frequency of re-
optimization. The PR tactic seems to be more efficient for shorter re-optimization cycles.
Possible causes for this include: i) short route portions have been completed when re-
optimization is applied, allowing for more options, and ii) DO that are not planned for service
until the next re-optimization timestamp are reconsidered, providing more possibilities for DO

combinations. This behavior seems to be consistent for all investigated datasets.

The FR tactic seems to be less efficient when re-optimization is applied very frequently (SRR)
for all datasets or infrequently (NRR-3) for datasets R1, C1, RC1. A possible cause for the
former may be that frequent re-optimization (i.e. upon the arrival of every request) is greedy,
not taking advantage of combinations of newly arrived DO. In the case of infrequent re-
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optimization, a larger portion of the route has been completed and fewer options are available

for incorporating the newly arrived DO.
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Figure 5.9. Average performance of re-optimization strategies for the different datasets

Table 5.4 reports the computational times (per re-optimization cycle) for all re-optimization

strategies averaged over all test instances per dataset for 50% dod. The computational effort is

reported in seconds and corresponds to the average running time of the heuristic during each

re-optimization cycle. As expected, PR requires more computational effort. Regarding policies,

again as expected, the computational effort increases as the re-optimization frequency

decreases. Furthermore, the MR2, MC2, MRC2 problems (with increased horizons) seem to be

more demanding. In general, the results indicate the efficiency of the proposed heuristic, since

the average computational time under the FR tactic is less than 20 sec, while under the PR tactic

less than 1 minute. Similar trends are valid for the 25% and 75% dod cases; the 75% dod case

requires about twice the effort of the 50% dod case.

Table 5.4. Average computational effort of re-optimization strategies per dataset for 50% dod

Dataset FR PR
SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3

R1 0.1 0.6 2.1 10.7 3.6 6.9 13.1 20.2
C1 0.1 0.5 1.4 8.4 2.3 3.6 4.5 19.0
RC1 0.2 0.8 25 7.2 7.4 10.0 12.7 18.0
MR2 0.1 1.2 6.5 17.5 16.9 19.5 254 325
MC2 0.2 11 4.3 19.3 214 37.7 44.2 49.9

MRC2 0.1 1.0 4.1 20.2 19.7 234 25.6 355
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5.4.3.2 Performance of re-optimization strategies under various conditions

Below we drill down to the interactions of the various re-optimization strategies with three (3)
key parameters: i) TW pattern, ii) urgency of DO w.r.t. the requested service, and c) the degree

of dynamism (dod).

First we investigate how the strategies perform for various TW patterns (the latter characterized
by the ratio of the average TW width of all customers in the instance over. T,,,,). To do so, we
grouped all investigated instances in four categories, as shown in Table 5.5. TW-1 group
comprises instances with relatively narrow TW, while TW-4 comprises instances with wide or
no TW.

Table 5.5. Classification of instances in TW-pattern groups

Group % of Tjaxe  # INnstances Instances
R101, R105, C101, C105, C106, C107, RC101, R201,
TW-1 <15% 17 C201, C205, C206, RC201, RC202, RC205, RC206,

RC207, RC208
R102, R109, C102, C108, C109, RC102, RC105,

- 0f - 0,
TW-2 15% - 30% 14 RC106, R205, C202, C207, C208, RC203, RC204
R103, R106, R107, R110, R111, C103, RC103, RC107
- 0, - 0, 1 ’ 1 1 ’ ’ ’ ’
TW-3 30% - 50% 14 RC108, R202, R206, R209, R210, R211
TW-4 >50% 11 R104, R108, R112, R100,C104, C100, RC104, R203,

R204, R207, R208, C203, C204

Figure 5.10 presents the average performance of all strategies for the aforementioned TW-
pattern groups. For the PR tactic, all policies seem to follow similar behavior; that is, more
frequent re-optimization (SRR and NRR-1) yields better results in almost all cases, irrespective
of the TW width, reflecting the fact that frequent re-optimization may allow re-allocation of
orders in a more flexible manner. The performance of SRR under PR appears slightly inferior
to NRR-1 for instances with average TW width more than 30% of T,,,,. For the FR case,
frequent re-optimization seems to favor solution quality for tight TW cases (TW-1 category).
Medium-interval re-optimization cycles (NRR-1 and NRR-2) display more consistent behavior

for all TW-pattern groups.
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Figure 5.10. Average performance of re-optimization strategies for different TW pattern groups

To study the behavior of the re-optimization strategies for various levels of urgency w.r.t. TW
closing, we have used the effective degree of dynamism (edod), as defined by Larsen (2002).
The edod considers the reaction time, i.e. the difference between the closing time b; of the TW
and the arrival time h; of request i; longer reaction times provide higher flexibility in inserting
arequest in the current plan. Denoting as N the set of customers of an instance, edod is defined

as:

CTINL T T (5.2)

iEN

We have grouped all experimental instances into four levels according to the average edod of
all test problems (10 replicates) in each instance. The grouping is shown in Table 5.6 where
edod-1 comprises instances of high urgency (limited reaction time), while edod-4 comprises

instances with low urgency.

Table 5.6. Classification of instances in different edod levels

Level edod # Instances Instances

R101, R105, C101, C105, RC101, RC105, R201,
R205, C201, C205, RC201, RC205

R102, R106, R109, R110, C102, C106, C107, C109,
edod-2 55% - 65% 18 RC102, RC106, R202, R209, C206, C207, C208,
RC202, RC206, RC207

R103, R107, R111, C108, RC103, RC107, RC108,
R206, R210, R211, C202, RC203, RC208

R104, R108, R112, C103, C104, RC104, R203, R204,
R207, R208, C203, C204, RC204

edod-1 >65% 12

edod-3 45% - 55% 13

edod-4 30% - 45% 13

88 DeOPSys Lab



Solving the DVRPMB through re-optimization

Figure 5.11 presents the average performance of re-optimization strategies for the various edod
levels. For the PR tactic, similarly to the TW-pattern analysis, frequent re-optimization (SRR
and NRR-1) yields better results across all edod levels, while infrequent re-optimization
deteriorates the solution’s performance. Furthermore, it seems that in cases of low urgency
(edod-4), NRR-1 is very competitive and performs even better than SRR. Regarding the FR
tactic, medium-interval re-optimization policies (NRR-1 and NRR-2) seem to favor the solution

quality for all edod levels.
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Figure 5.11. Average performance of re-optimization strategies for different edod levels

In terms of the interaction of the re-optimization strategies with the degree of dynamism (dod)
and the customer geographical distribution, Figures 5.12 and 5.13 present the performance of
each policy w.r.t. dod for the PR and FR tactics, respectively, and for different geographical
distributions (R1, C1 and RC1). Note that this is the average performance over all related

instances.

For the PR tactic (Fig. 5.12), SRR and NRR-1 outperform all other policies for all cases of dod,
while the performance deteriorates with increasing degree of dynamism across all policies. In
environments with strong dynamism, many vehicles are dispatched from the depot to handle
the increased DO numbers. This causes additional non-productive costs (travel to/from depot).
Infrequent re-optimization in such cases causes vehicles en route to return to the depot at an
early stage (because of the limited number of committed orders) and new vehicles to be
dispatched in order to cover the high demand. For FR (Fig. 5.13), the NRR-1 (and partially
NRR-2) policy yield improved solution quality across dod, more so in cases of strong dod.
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Figure 5.13. Performance of policies under FR tactic for various geographical distributions and dod
levels

Finally, the related Figures indicate that policies present similar relative behavior for different
values of dod for the R, C and RC configurations (no strong interaction). For the C
configuration, the solution quality deteriorates significantly when infrequent re-optimization is
used (NRR-2 and NRR-3), especially for cases with medium to strong dynamism. This may be
caused by the fact that a large portion of the route corresponds to travelling back to depot; since
no diversion is allowed, vehicles en route are not considered as available during their return
trip and, thus, re-optimization tends to use more vehicles located at the depot to serve DO.
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5.4.3.3 Performance of re-optimization strategies w.r.t. the algorithm employed

It is worth investigating whether finding an optimal solution during each re-optimization cycle
leads to superior solutions for the entire dynamic problem. For example, one may suspect that
such a practice may lead to locally aggressive optimization that allows new DO to be

incorporated into the current plan at a significant detour cost.

To investigate the effect of the re-optimization algorithm, we solved using both OPT and HEUR
a series of selected problems (selected R1 instances with 25% and 50% dod), for which the
exact B&P approach is applicable. For those problems we applied the SRR, NRR-1 and NRR-
2 policies under the PR tactic. Figure 5.14 illustrates the results obtained averaged over the two
dod values (25% and 50%). The results have been reported as the difference between Vol
provided by HEUR minus the Vol provided by OPT (Vy(HEUR) — Vz(OPT)); thus, positive

values reflect superiority of OPT results over HEUR.

The results are divided among OPT and HEUR. The positive effect of HEUR over OPT to the
overall problem seems to concern cases with wide TW of varying width values (e.g. R103,
R106, R110). On the other hand, OPT seems to perform better for cases with consistent TW
patterns (low or zero variance). These cases in general provide limited options for incorporating
DO in the routing plan; hence, inferior quality solutions during early re-optimization cycles

may not provide better results on later re-optimization cycles.

Overall the suspicion that aggressive re-optimization may in some cases lead to inferior overall

solutions has been confirmed.
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Figure 5.14. Comparison of the effects OPT and HEUR
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5.5 Concluding remarks

In this Chapter, we drilled-down to significant aspects concerning the re-optimization process,
i.e. when to re-optimize, and what part of the new plan to communicate to the drivers. We
presented and analyzed typical re-optimization policies found in practice, i.e.: i) re-optimization
upon the arrival of each DO, ii) re-optimization after a certain number of DO have been
received. In addition, we investigated the effect of two implementation tactics: 1) immediate
release of all DO for implementation (FR) and, ii) release of only those DO that are scheduled
for implementation prior to the next re-optimization cycle (PR). We provided theoretical
insights regarding the expected behavior of those tactics and we illustrated through extensive
experimentation that re-optimization upon the arrival of each DO under the PR tactic provides
superior results on the average. However, this policy seems to be the least favorite, when the

FR tactic is employed.

Furthermore, we assessed the performance of the re-optimization strategies under various

operating scenarios. Our experimentation has illustrated the following:

i)  When the business case allows it, one should always re-optimize under the PR tactic in as
short re-optimization intervals as possible

i)  When the FR tactic is unavoidable due to the characteristics of the practical environment,
one should prefer re-optimization over short to medium intervals for cases of tight to
medium TW, and over medium to larger intervals for wider TW cases

iii) In environments with strong dynamism, medium interval policies (regardless of tactic)

seem to provide the safest option.

Table 5.7 summarizes the aforementioned results. Considering that PR is superior to FR, the
Table presents the best possible re-optimization option under each tactic as it emerged from the
experimental study, w.r.t. to the problem attributes. For simplicity, we included two (2) options

for the NRR policy; medium and long re-optimization periods.
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Table 5.7. Preferable re-optimization policies per parameter

FR PR
Parameter Description
p SRR (negium) _(ong) PR SRR (nedium) _(ong) TR
Geographical ~ Uniform v v
distribution Clustered v ,
Tight v v
Time Medium/Wide v v
Windows Very wide v v
No TW v v
Weak v v
DoD Moderate v v
Strong v v
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Chapter 6: THE DVRPMB FOR THE CASE OF LIMITED
RESOURCES

In Chapter 5 we studied the re-optimization problem by assuming an unlimited vehicle fleet
available to serve all (static and dynamic) orders. This allowed us to investigate the performance
of re-optimization strategies under a single objective, i.e. minimize distance traveled. In this
Chapter, we examine the case of DVRPMB, in which the number of available vehicles is
limited. To do so, we introduce appropriate objective functions that account for vehicle
productivity during each re-optimization cycle and we illustrate that these objectives can offer
higher customer service compared to conventional ones that account strictly for either cost

minimization or service maximization.

Section 6.1 presents significant considerations related to the constraint of limited resources,
along with a review of the relevant literature. Section 6.2 discusses the objective functions for
DVRPMB with limited resources and sets the related theoretical foundation. Section 6.3
presents the necessary modifications of the branch-and-price algorithm of Chapter 4 to address
the re-optimization problem. Section 6.4 investigates experimentally the effect of the proposed
objective functions on the efficiency of the solution under different problem settings. Finally,

Section 6.5 describes the application of the proposed method in a practical courier environment.
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6.1 Introduction and background

We refer to the case of DVRPMB with limited available vehicles as the DVRPMB with limited
resources (m-DVRPMB). In this case, due to the resource constraints, some of the newly
received dynamic orders (DO) may not be served, raising some interesting considerations

discussed below.

The first of these considerations relates to the objective function of the re-optimization problem.
As we will demonstrate below, conventional objectives that account strictly for either cost
minimization or service maximization are either inappropriate, or may not be adequate to
address the problem effectively. In the case of cost minimization, and since the constraint of
serving all orders is not enforced, dynamic orders increase cost and, thus, are left unserved. On
the other hand, in the service maximization case, in an effort to include as many orders as
possible in the current re-optimization cycle costs may increase significantly, which may lead

to serving less DO eventually.

A related consideration in this dynamic setting concerns the prioritization of clients at each re-
optimization cycle. Specifically, during a certain re-optimization cycle it may be beneficial to
favor the service of certain customer orders (e.g. urgent ones) in the expense of others, under
the assumption that the excluded (e.g. not urgent) ones can fit in the plan during a subsequent
re-optimization cycle. Thus, one should examine whether it is beneficial to prioritize service of
certain orders, and if so, under which conditions this is favorable to the problem’s objective.
This consideration is even more important in a dynamic, deterministic environment, in which

no forecasting information is available.

Despite the practical importance of m-DVRPMB, the problem has not been addressed in the
literature. If all orders to be served in the future would be known in advance, the m-DVRPMB
would reduce to the Pickup and Delivery Problem (PDP) with Selective Pickups (Sural and
Bookbinder, 2003; Gribkovskaia et al, 2008; Gutiérrez-Jarpa et al., 2010). In this very
interesting and practical problem, all deliveries must be performed but pick-ups are optional,
however, pick-ups generate a profit when fully collected (i.e. partial pick-ups are not allowed).
The objective is to minimize the routing cost minus the collected revenue. This problem arises
naturally in reverse logistics contexts, in which customers return goods (e.g. empties) to the

depot.

The PDP with Selective Pickups was first addressed by Sural and Bookbinder (2003) for a

single vehicle. The authors used an exact branch-and-bound technique to solve it by employing
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flow variables and adaptations of the well-known Miller—Tucker—Zemlin constraints (Miller et
al., 1960) in order to prevent subtours. Their approach was able to solve instances of up to 30
customers. More recently, Gutiérrez-Jarpa et al. (2009) proposed a branch-and-cut algorithm,
able to solve instances of up to 90 customers. Prive et al. (2006) developed heuristic methods
to study a practical problem, which involved the delivery of soft drinks to convenience stores
in the city of Quebec, and the collection of empties (bottles or cans) using a heterogeneous fleet
of vehicles. In their problem formulation, pick-ups were associated with revenue and they could

be performed only if they didn’t violate vehicle capacity constraints.

Aas et al. (2007) studied the routing of supply vessels to offshore installations, in which vessels
pick-up empty containers (or waste). In this problem, due to limited capacity, it is not always
possible to serve all collections and, thus, priority is given to the most important ones. The
authors formulated the problem as a mixed integer linear program, and they were able to solve
practical instances with 10 installations to optimality using CPLEX 9.0. Gribkovskaia et al.
(2008) studied a similar application and proposed a tabu search method to the single vehicle

pick-up and delivery problem with selective pick-ups.

More recently, Gutiérrez-Jarpa et al. (2010) developed an exact branch-and-price algorithm for
the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows
(VRPDSPTW). The authors categorized the customer requests in: i) pick-up and delivery
requests that are disjoint (P/D) and ii) pick-up and delivery operations associated with the same
customer (P&D). Based on this classification, they addressed five variants of the VRPDSPTW,
i.e. i) P/D problems, in which customers may be served in an arbitrary order, ii) P/D problems
with backhauls (i.e. all pick-ups must be performed after the deliveries), iii) P&D problems, in
which each customer can be visited exactly once, iv) P&D problems that allow multiple visits
to the same customer, and customers can be visited in an arbitrary order, and v) P&D problems
with multiple visits and backhauls. The authors were able to solve instances of up to 50

customers to optimality.

The static version of the problem investigated in this chapter would be similar to the one studied
in the above references, if all pick-up (collection) orders had equal or zero profit (therefore, in
effect, the profit gained from including a pick-up order in the plan would not be dependent on
the routing costs). We differentiate our work in the following two aspects; first, to the best of
our knowledge, no other study has focused on the dynamic version of this problem. Second, to
deal with dynamism and leverage on the opportunity offered by the multiple re-optimization

cycles, we propose to consider vehicle productivity in the re-optimization process, i.e. to
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maximize vehicle utilization within an appropriate period of time in anticipation of additional

dynamic orders.

To address m-DVRPMB, we extend the branch-and-price (B&P) approach presented in Chapter
4 for solving the related re-optimization problem. To do so, we study alternative objective
functions that maximize service, while, at the same time, enhance vehicle productivity. Both
the original formulation of DVRPMB and the solution procedure (Master Problem and
Subproblems) have been modified appropriately. We evaluate the performance of the proposed
objective functions with respect to a conventional, but relevant, objective function that accounts
only for service maximization, under various operating scenarios and parameters. Finally, we

apply our proposed method to a case study of a next-day courier service provider.

6.2 Objective functions for the m-DVRPMB

We introduce three objective functions to deal with limited resources in the context of the re-
optimization problem: a) a conventional one that maximizes service by assigning a fixed profit
to each DO served (objective Z;) and b) a proposed objective function that provides additional
profit for each order (static or dynamic) served within the next (upcoming) re-optimization
cycle (objective z,), and c) an objective that modifies Z, in terms of the additional profit term;
in this case, the profit concerns all orders to be served at any future period and it decreases

linearly depending on the period (re-optimization cycle) the order is served (objective Z;).

Let &, denote the fixed profit assigned to each served DO and ¢,, the additional profit in case
an order (static or dynamic) is served within the upcoming re-optimization cycle; thus, the profit
per order corresponding to the three (3) alternative objective functions varies as illustrated in
Figure 6.1. By using the appropriate function, we may steer the solution method into
maximizing customer service (objective Z;), as well as maximizing vehicle productivity
(objectives z, and Z3). Sections 6.2.1 and 6.2.2 describe the structure of the proposed objective
functions; Section 6.2.3 discusses some fundamental aspects regarding the expected

performance of these objectives.
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Figure 6.1. The profit per order according to the three objective functions employed

For objectives Z, and Z; to be relevant, the re-optimization time instances have to be
predetermined (known a priori). The Fixed-Time Re-optimization (FTR) policies discussed in
Chapter 5 (see Section 5.2) are appropriate in this case. Re-optimization policies that depend
on the number of arrived DO (e.g. SRR and NRR policies) may be only implemented under

objective Z,.

6.2.1 A conventional objective function that maximizes service

Recall that in the re-optimization problem of the typical DVRPMB all customers may be served
(i.e. there are enough resources to serve all customer orders). Thus, the objective function of
DVRPMB (as stated in Chapters 3 and 4) strictly minimizes the routing cost. Under this
objective, if the constraint for serving all orders is relaxed in the re-optimization problem, then
(in general) no dynamic order will be included in the final solution, since serving it will increase
the routing cost. To address this issue, one can introduce additional (profit) terms in the

objective function in order to simultaneously:

(@) Increase the number of DO (set F) served throughout the remaining horizon — primary
objective
(b) Decrease the total cumulative routing costs (over the remaining horizon) — secondary

objective.

That is,
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min(Z;) = —fuz: Z Xijie T Z z CijkXijk (6.1)

keV (ij)EAlieF,jew kevV (i,j)eA

Under an appropriately large positive value of &,, this objective maximizes the number of
served DO, and among the solutions with maximal number of served DO, selects the one with
minimum routing cost. Determining this value is straightforward: consider a re-optimization
problem in which an additional DO is to be included in the current plan. If the routing cost for
incorporating this DO is higher than &, then the solution will not incorporate this DO, since
the overall objective value will increase. Thus, &, should be set to a value that exceeds the upper
bound of the cost (worst case) of incorporating a DO in the current plan. This can be achieved

by setting &, to a value larger than mea}:x(crl.), where c,, represents the cost of the unit route
1
[Depot — i — Depot],Vi € F .

This straightforward objective may be appropriate for a static planning problem with limited
resources (for which all orders are known a priori), but may not be adequate in the setting under
study, since additional orders are expected to arrive. The anticipation of additional work favors
reserving fleet capacity for the latter periods of the operational horizon so that newly arriving
DO may be served. This, in turn, indicates that the available fleet should complete as much of
the known work as early as possible (i.e. increase the productivity of the system in the early re-

optimization cycles), in order to reserve capacity for the later re-optimization cycles.

Specifically, there are multiple ways that fleet productivity, and thus the capacity of the system
to serve new DO, may be impacted adversely by objective Z,, especially during early re-
optimization cycles, in which the few DO known up to that point in time may all fit in the plan.

In these early cycles using Z;:

i.  May cause the incorporation of DO at a significant detour cost (as also discussed and
illustrated experimentally in Section 5.4.3.3)

ii.  Some vehicles may be forced to wait for long periods at customer sites for a TW to open
(since it may be more cost-efficient to assign a DO with late opening time to a vehicle
closer to it — see also example in Figure 6.2)

ii.  Vehicles stationed at the depot may not be used, since it might be more cost-efficient to

assign a DO to a vehicle already en route.

All these potentialities may decrease significantly the productivity of the fleet.
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However, neglecting entirely the routing costs in an attempt to increase the productivity of the
fleet is also not appropriate, since an excessive increase of costs in the current re-optimization
cycle, might decrease the productivity of the vehicles in the subsequent (future) re-optimization

cycles.

Below we enhance the objective function in order to maximize productivity of the fleet
appropriately in the upcoming re-optimization cycle(s), in anticipation of additional work to
come, without excessively compromising the capacity of the system at later re-optimization

cycles.

6.2.2 A proposed objective function that accounts for vehicle productivity

In addition to maximizing the total number of DO served, we propose an enhanced objective
function, which attempts to maximize the number of orders served within the upcoming re-
optimization cycle (the length of which is known in advance); it does so, however, among the
solutions with the same number of DO served. Consider the re-optimization problem during the
{-th cycle, and let w;;, denote a decision variable that is equal to 1 iforderi e N (N =CUF
are all orders involved in the re-optimization cycle) is served during the time interval [T, Ty44]
by vehicle k € V and 0 otherwise. Then, the proposed objective function (denoted as Z,) seeks

the following in lexicographical order:
(@) Maximize the number of dynamic orders (F) served throughout the remaining horizon

(b) Maximize the number of both static and dynamic orders (N) served within the upcoming

re-optimization cycle (i.e. within time interval [T, T;;4])

(c) Minimize the routing cost

min(Z,) = =&, Z Z Xijk —$p Z Z wix +&¢ Z Z CijkXijk (6.2)

keV (i,j)EA|i€F,jew keV ieN keV (i,j)EA
where &, corresponds to a positive value (profit) if an order is served within the time interval

[T;, Ty441] (of known duration).

Although the primary goal of objective Z, is to maximize the DO served, the purpose of term
(b) in the objective function is to maximize the productivity of the fleet during the current cycle
in anticipation of additional work to come; i.e. with this term we attempt to encourage the
deployment of resources as early as possible (during early re-optimization cycles), even if this
results in higher routing costs in the solution of the current re-optimization problem. Note that
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objective Z, attempts to maximize the productivity of the fleet in the current re-optimization

cycle by favoring all N orders (both static and dynamic) to be served within time interval
[Te, Te4a]-

Prioritizing term (a) over term (b) in the objective function is important in such dynamic
context, since it is uncertain if a DO not included in the solution of the current re-optimization
cycle can be served at a later stage. For solutions under the FR tactic, this is obvious, since DO
that do not fit in the solution of the current re-optimization cycle are not considered during
future ones. However, for solutions under the PR tactic, in which DO not included in the

solution of the current cycle are re-considered, we distinguish two relevant scenarios:

i) In cases in which all DO can be served by the solution of the current re-optimization cycle,
term (a) of the objective is not important, and term (b) guides the solution to serve as many
orders as possible within the interval [T,, T;41]. In these cases term (b) then will avoid the
incorporation of DO in the expense of significant resources (e.g. cost/time).

ii) In cases in which not all DO fit in the plan, then prioritizing term (a) over (b) ensures that
the objective will not force the service of more orders (static and dynamic) during the interval

[T;, Tr4+] at the expense of incorporating a DO in the current plan.

To better illustrate the latter case, consider the example of Figure 6.2a, which presents the state
of a single route at the re-optimization time instance T; = 10: 00. At time T;, the vehicle is
located at customer 1 and is scheduled to serve three static orders (2, 3 and 4), while dynamic
order A needs to be incorporated in the current plan (with time window opening at 10: 30). The
expected time of arrival to each order (prior to re-optimization and incorporation of order A),
as well as the travel duration of each planned arc are also displayed in the Figure (note that in
this state, the vehicle arrives at customer 1 at 10:00, but waits for 45 minutes, due to the opening
of the time window of customer 2). Assume also that T, = 11: 00. If we prioritize term (a) over
term (b) in this example, the objective will attempt to maximize the number of orders served
within time interval [Ty, T,] among the solutions that incorporate order A. The result of this
scenario is illustrated in Fig. 6.2b, in which order A has been incorporated in the plan and one
static order (order 3) has been also served till the next re-optimization (till 11: 00). Fig. 6.2c
illustrates the opposite, i.e. when term (a) is not prioritized over term (b). It is clear from Fig.
6.2c that dynamic order A will remain unplanned, since due to the objective, the preferred

solution is the one that serves the three static orders (2, 3 and 4) during the interval [10:00,11:00]
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(i.e. one more order will be served during this interval compared to solution of Fig. 6.2b). Order

A may not be served since its time window has elapsed.

Before re-optimization

nir | timevivdo |
10:00 11:00 11:15
1 [09:30, 11:00] o 5 ,o 15"

2 [11:00, 13:00]
3 [10:00, 14:00] 15
4 [10:00, 14:00]

o " O
A [10:30, 11:00] h

12:00 11:30
(a)
After re-optimization After re-optimization

(Service maximization is prioritized) (Service maximization is not prioritized)

10:30’0-......___ o
10:00 74y T 10:50 10:00 11:00 10:45
O ' o o

"
11:25
, N2 15 . 15
20 N o
300
11:45 11:05 11:20 10:30
(b) (c)

Figure 6.2. Example for comparing between alternative expressions of objective z,

Thus, we choose to maintain the primacy of term (a) of the objective over term (b). To do so,

the following should hold:

§u>6 ) ) (63)

KEV ieN
Note that the largest possible value of the right hand side of (6.3) is obtained if all remaining

orders (of set N) are served in the next re-optimization cycle (i.e. Y.xey Yier @ix = |N|). Thus,

Ineg. (6.3) can be written as:

$u
This may be satisfied with:
$u
= 6.5
¢ IN| +1 (65)
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Working along the same lines, in order to guarantee the primacy of term (b) over term (c), the

value of &, should be larger than the largest possible value of the routing cost, i.e..

$p > fcz Z CijkXijk (6.6)

kev (i,j)eA
The largest possible value of the routing cost (upper bound) can be assumed when all N orders
are included in the solution and they are served directly from the depot, since each order i € N

can be served exactly once and the fleet is homogeneous. Thus, Ineq. (6.6) can be reduced to:

$p > & Z Z Cojk (6.7)

kEV jEN

Assuming € = Ypey X jen Cojk and replacing &, based on Ineqg. (6.5), we have:

$u
LTI & .
This may be satisfied by:
¢
& S (6.9)

TN+ D#C+1

Using in Z, the values of Egs. (6.5) and (6.9) will ensure that from those solutions that maximize
the number of served DO, the one to be selected a) serves as many orders as possible in the
interval (T, T;4+1], and b) has the minimum routing cost among the ones serving the same

number of orders in this interval.

As already discussed, forcing as many orders as possible to be served until time T, ; may cause
higher routing costs, compared to scenarios in which orders may be served at an appropriate
time. Objective function Z;, already discussed above, moderates this effect by encouraging
orders to be served as early as possible, even beyond T,,,. Objective Z; has a similar structure
to that of objective Z,, but assigns to each served order a revenue that decreases linearly

depending on the period (re-optimization cycle) the order is served (as in Figure 6.1).

In particular, consider a DVRPMB instance with L re-optimization cycles of known duration,
and the solution of the re-optimization problem during cycle #. Let f},"' denote the profit
obtained by serving an order i € N during time interval (T,,T,.1], ¥ € {1,2,...,L — £}. Then
profit fz’,’i is provided by the following Equation:

;’i =&, - (%)Ep ViEeN (6.10)

Finally note that objectives Z, and Z; reduce to objective Z; if &, = 0and ¢, = 1.
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6.2.3 Discussion regarding the terms of the Objective Function

Here we discuss some fundamental aspects of the objective functions introduced in Section
6.2.1 and 6.2.2. The first statement compares the routing costs obtained when using objectives

71 OF Zy.
Statement 1

Given that all customer orders are known, the routing cost 0(z,) of the solution to the re-
optimization problem obtained under objective Z,, is always lower than or equal to the routing

cost 0(Z,) obtained under objective Z,.

This statement points out the obvious. Recall that both objectives will yield equal number of
DO to be served. The optimal way of serving all orders (static and dynamic) in terms of routing
cost will be the one obtained under Z,, and therefore, 0(Z;) < 0(Z,). The same statement holds

of course for the routing cost under objective Z;, i.e. 0(Z;) < 0(Z3).
Statement 2

The optimal solution that maximizes customer service and minimizes routing costs (objective
Z;) cannot guarantee superior solutions in terms of dynamic orders served for the overall

routing problem (multiple re-optimization cycles).

We illustrate the above statement with two examples that address the overall routing problem
(entire working period). In the first (Example 1) the solution obtained under objective z, for
the entire dynamic routing problem includes a greater number of DO w.r.t. the solution obtained
under Z;. This is typically the case as illustrated experimentally in Section 6.4.4. In the second
example (Example 2), the reverse is observed; that is, more DO are served in the entire routing
problem under Z; compared to the solution of the problem under Z,. However, the latter is not

a typical outcome but rather an exception.

Example 1

Consider the instance of Figure 6.3 with the depot located at the origin 0. Customers are located
at the endpoints of five (5) neighboring vertices of a regular octagon with center at point O and

"/a

R = 1. The side of the octagon is a = 2 * R * sin (T) = 0.77. Two vehicles are available,

and the maximum duration of each route (T,,4,) (by assuming the vehicle speed to be 1) equals
t0 4.4.
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Figure 6.3. Customer topology for Example 1 of Statement 2

Assume that during ¢ = 0 (T, = 0), only customers A, B and C are known and a vehicle (K;)
has been assigned to serve the route [0 — A — B — C — O]; the length of this route is equal to
3.54. The second vehicle (K,) is available at the depot to be used as necessary. During the
course of implementing this plan, DO D and E are received at times h, = 1.25 and hy = 2.5,

respectively. Re-optimization takes place at fixed intervals, i.e. every 1.25 units of time.

For this scenario, we study the effect of objectives Z; and Z, considering two (2) re-optimization
cycles. In Figure 6.4 we present for each objective and re-optimization cycle (¢ > 0) the state

of the system prior to re-optimization (“Before”) and the state after re-optimization (“After”).

During ¢ = 1 (at time T; = 1.25), vehicle K, is en route to customer B (under both objectives),
while customer D is to be incorporated in the current plan. Solution under objective Z;
incorporates customer D with the best possible routing cost, i.e. immediately after customer C,
yielding an overall routing cost (or, working time) of 0(Z;) = 4.31. On the other hand,
objective Z, seeks to serve as many orders as possible within the current and the next re-
optimization cycle and not just the next one, i.e. during time interval [1.25,2.5]. The optimal
solution under such an objective is customer D to be served by vehicle K, located at the depot
(K, arrives at customer D at time 2.5). This solution provides an overall routing cost 0(Z,) =
0(Ky) + O(K,) = 3.54 + 2 = 5.54.
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Solution under objective 7, Solution under objective z,
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Figure 6.4. Example 1 for Statement 2 (blue color corresponds to vehicle K4 and red to K)

The DO for customer E is received prior to £ = 2 (at time T, = 2.5),. Vehicle K; is located at
customer C under both objectives, while vehicle K, is located at the depot for the solution under
objective z; and at customer D for the solution under objective Z,. For Z,, customer E can be

served either by K; with total time of 5.08 or by K, with total time of 4.5 (since K, can begin
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service at T, = 2.5); both of these options exceed the available working horizon (T;,,45), Which
means that customer E is not served under objective Z;. However, customer E can be served
under objective Z, by vehicle K, with total working time of 4.22, which is within the available
working horizon. Thus, objective Z, leads to a superior solution in terms of number of
customers served. This example clearly illustrates that the objective that maximizes the number
of served DO and minimizes routing costs, may lead to inappropriate commitment of resources

w.r.t. the future state emerging after new DO are received.

Example 2

Consider the example of Figure 6.5. The depot (0), customers A, B, C and their coordinates

along with important distances are shown in Figure 6.5, with a = 0.9 and b = ¢ = 0.56.

(0,1) (1,1)

{®

B 1 9

C
1,0)

—_
o

o
=
—_

Figure 6.5. Network representation for Example 2 of Statement 2

As before, during ¢=0 (T,=0), a vehicle has been assigned to perform route
[0 —A— B — C — 0], serving all static customers with cost equal to 4. During the course of
implementing this plan, DO D and E are received at times h, =1 and hy = (1+a+b) =
2.46, respectively. Assume that two re-optimization cycles take place at fixed time instances
(known in advance),i.e. T; = 1and T, = 1+ a + b = 2.46. The total planning horizon (T, 4x)
is equal to 4.5.

As before, Figure 6.6 illustrates the two system states per objective and re-optimization cycle

for £ > 0: prior to re-optimization (“Before”) and after re-optimization (“After”).
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Figure 6.6. Solution provided under both objectives for Example 2 of Statement 2

At ¢ =1 (time T; = 1), the vehicle is located at customer A. The solution under objective z,
incorporates customer D with the best possible routing cost, i.e. immediately after customer B,

yielding an overall routing cost of 0(Z,) = 3 + 2b = 4.12. Objective Z, seeks to serve as many
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orders as possible within interval [1,1 4+ a + b ); this yields a solution in which customer D is

visited after customer A; the overall routing cost is 0(Z,) =3+ a + b = 4.46.

At¢ =2 (T, =1+ a+ b), the DO for customer E has been received and is to be served by the
available vehicles. For the solution under objective Z;, the vehicle is en route to customer D,
and customers A and B have already been served. Customer E can be incorporated in the current
plan after customer C (i.e. route D — C — E — 0) with overall routing cost 0(Z;) = 2+ 2b +
2c = 4.24. For the solution obtained under objective Z,, the vehicle is currently located at
customer B and customers A and D have been served. The optimal inclusion of customer E (i.e.
route B — C — E — 0) yieldsacostof 0(Z;) = 2+ a + b + 2c = 4.58, which exceeds the total
available working horizon. Thus, customer E will remain unserved in this case, indicating that
there might be cases where Z; offers higher customer service compared to Z,. However,
according to the experimentation of Section 6.4.4, this is not a typical outcome, but an

exception.

In Section 6.4.4 we investigate experimentally under which conditions each of the investigated

objectives is favored or not.

6.3 Modifications in the B&P algorithm to deal with limited resources

In this Section we present the necessary modifications of the B&P algorithm that solves the re-
optimization problem of Chapter 4 (both exact and heuristic) in order to address the case of

limited resources.

6.3.1 Modifying the Set-Partitioning formulation

In order to formulate the m-DVRPMB as a set-partitioning problem, the following should be
addressed: a) incorporate the objective function described in Section 6.2 above, b) ensure that
each delivery order is served (once), whereas each DO is served at most once, and c) limit the

number of fleet resources.

Using the notation presented in Chapter 4, let A,- denote the set of orders served by route r € 2,
where (2 refers to the set of all feasible routes. Let e;; be a binary coefficient that takes the value
1ifi € A,, and let w;, be a binary coefficient that indicates whether an order i € N is served
during the time interval [T, T;, 1] by route r or not. Also, let c,- denote the routing cost of route

r € Q. Finally, let & reflect the revenue if order i € F is served. For simplicity and without
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loss of generality, let &, = &,,Vi € F and &£ = 0,Vi € C. Thus, the total cost ¢, of route r € 12

for objective Z, is given from:
Cr=8&c*Cp — Z (f?l:l + Ep * wir) Vr € (6.11)

i€A,

For objective Z;, the total cost ¢, is:

5r=€c*cr—2(s‘5+€p—(er_1><s‘p>) Vren (6.12)

i€A,
where y;,- denotes the re-optimization cycle (time interval) in which customer i € N is served

inroute r € Q withy;, € {1,2, ..., L — ¢} (where £ represents the current re-optimization cycle).

It should be noted that the total cost ¢, of route r € 2 for objective Z; is given from Eq. (6.11)

when &, = 0and &, = 1;i.e. & = ¢, — ieq, &L

Recall from Chapter 4 (Section 4.2) that2 (set of all feasible routes-columns) in our
formulation comprises two subsets, i.e. 2 = (Ugex £2x) U £2,,, where columns (2, correspond
to vehicles K en route and columns 2,, to vehicles K, located at depot. Consequently, the set

partitioning problem for the Master Problem of m-DVRPMB may be formulated as follows:

(LP — SPP)  Minimize Z CrYr (6.13)
ren’
subject to: z eiryr =1 VieC (6.14)
ren’
Z eryr =1 VieF (6.15)
ren’
Z ¥r < |Kql (6.16)
TENQy
v ={0,1} Vr € () (6.17)

Obijective function (6.13) minimizes the total net cost of the selected routes. Constraint (6.14)
ensures that each static order is visited by exactly one vehicle, while Constraints (6.15) state
that each DO can be visited at most once. Finally, Constraint (6.16) limits the number of

vehicles.

6.3.2 The Subproblem and its solution procedure

As already described in Chapter 4 (Sections 4.2 and 4.3), initially we construct a set of columns

' based on the solution at re-optimization timestamp T, and solve a restricted version of the
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Master Problem (RMP). In order to check if this solution is globally optimal for the MP, we need
to calculate the reduced costs ¢, of each non-basic route r € 2\2'. The reduced cost ¢, of a
route r € 2\’ for the m-DVRPMB is given by:

¢ = Cp — Z €irT; — T vre O\R',Vk eV (6.18)

ieCUF
where 7; (i € C U F) are the shadow (dual) prices related to customer Constraints (6.14) -

(6.15), and ;, (k € K) are the shadow (dual) prices related to resource Constraints (6.16).

Working along the same lines as in Chapter 4, the next step is to generate routes r € {2\2'}
that have not yet been included in the current RMP, along with their reduced costs ¢;. To do
so, we solve the |K| + 1 sub-problems and for each sub-problem k = 1,2, ..., |K| + 1 the route

7* with the minimum reduced cost is derived based on Eq. (6.19) (see also Section 4.3);

ek = min <z eircij — ﬁk> (6.19)

iEN
where c;; is the modified cost associated with arc (i, j) € A. Specifically, for m-DVRPMB, the

modified costs are given by:

cij=8cxcy— &L —m (6.20)
Recall from Chapter 4 that the scope of each sub-problem is to define the values of coefficients

e;» that minimize the related reduced cost. In order to formulate the ESPPRCTW sub-problem

for m-DVRPMB, we modify appropriately the objective function (4.14) with Eq. (6.21) below:
min z CijXij = Z zfng/ (6.21)
(i,))€A YyEL' ieN
where wl?’ denotes a decision variable that is equal to 1 if order i € N is served during time
interval [T, T, 4,], ¥ € L', where L' = {¢',{" + 1, ..., L} (¢' denoting the current re-optimization
cycle) and 0 otherwise. Profit E;,’ is calculated according to Section 6.2.2 (depending on the
objective). In addition to Constraints (4.15)-(4.22) of the original formulation of Chapter 4, we
also introduce Constraints (6.22)-(6.24) below. It should be noted that variables a)l?’ do not

participate in the solution under objective Z;, since for this case 52; =0.

w; € [Ty, Toy1) = wip =1 VieN, (€L (6.22)
> st vien (6.23)
teL
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w;ip € {0,1} VieEN,l€L (6.24)
Constraint (6.22) ensures that variable w;, will be equal to 1 if customer i € N is served within
re-optimization cycle [Ty, T4+1), £ € L, where L = {£'} when objective %, is employed and L =
{¢',¢' +1,...,L — 1} when objective Z; is used. Finally, Constraints (6.23) ensure that each
order will be served only once during all re-optimization cycles and Constraints (6.24) force
variables w;, to assume binary values. Constraints (6.22) can be linearized using Ineq. (6.25)
below (where Z is a large positive number), ensuring that variables w;, will be equal to zero
(i.e. will not be considered by the objective function) when an order i € N does not participate

in the final solution (i.e. when w; = 0).

ZA-wip)+Tp<w; <Tpp1 —Z(1 - wip), VieEN,l€L (6.25)
Based on the above, the final model of the ESPPRCTW sub-problem for the m-DVRPMB

comprises objective function (6.21) and the set of Constraints (4.15)-(4.22), (6.23)-(6.24) and
(6.25).

Solution of the pricing sub-problem in m-DVRPMB

We solve the pricing sub-problems with the label correcting algorithm (Feillet et al., 2004;
2005) described in Chapter 4 (Section 4.4). The application of the label correcting algorithm is
straightforward when objective Z; is employed, based on the aforementioned modifications.
For objectives Z, and Z; we calculate profit &, afresh during the extension functions within the
label correcting algorithm (see Chapter 4, Egs. (4.24) — (4.26)). In particular, Eq. (4.24) (in
Section 4.4), which describes the extension function for the accumulated reduced cost of label

As; when extending to node j (resulting to new partial path §), is re-written as follows:

~ ! Yj !
! s+ Cij otherwise
where 5;/" =&, and T’ = T, when objective Z, is employed, and E;/j = (& — (”L—jl X &)

and T' = Ty, When objective Z; is used.

6.4 Computational experiments

The experimental analysis is described in four Sections: Section 6.4.1 presents the test problems
employed and the metric used for evaluating the results. Section 6.4.2 assesses the performance

of the re-optimization B&P heuristic (of Chapter 4) w.r.t. its exact counterpart in solving the
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re-optimization problem under limited resources. Section 6.4.3 investigates the performance of
those re-optimization strategies for which re-optimization is triggered based on the number of
received DO; in this part of the study we employ only objective Z;, since objectives Z, and Z;
may only be used under known re-optimization times. Finally, in Section 6.4.4 we compare the

performance of objective functions Z, and Z; w.r.t. Z; considering the entire dynamic problem.

All experiments have been implemented in Matlab® 7.14.0 (R2012a) using an Intel Core i7 PC
System with processor speed 2.8 GHz and 4.00 GB of RAM running Windows 7.

6.4.1 Experimental setup

6.4.1.1 Test instances

For the experimental study we have employed the R1 and C1 datasets of Solomon (12 and 9
instances, respectively), as described in Chapter 5 (see Section 5.4.1.2). We have also employed
instances R100 and C100 that have no TW, but use the same customer coordinates as the R1

and C1 datasets. Table 6.1 summarizes the instances employed.

Table 6.1. Test instances

Distribution V\;I;:]rggw Insthces Instances
Uniform YES 12 R101, R102 ,R103, R104, R105, R106, R107, R108, R109, R110, R111, R112
Clustered YES 9 C101, C102, C103, C104, C105, C106, C107, C108, C109
Uniform NO 1 R100
Clustered NO 1 C100

We also investigate how customer service is affected by fleet availability, i.e. by the number of
extra vehicles stationed at the depot to serve DO. To do so, for each one of the 23 instances, we
examined three (3) cases of 0, 2 and 4 vehicles available at the depot (denoted as V-0, V-2, V-
4, respectively). Figure 6.7 illustrates the average number of DO (as a percent of total) served
per dataset (R1 and C1) for each value of vehicle availability at the depot, along with the
minimum and maximum values. The percentages illustrated are the averages over all instances

(and test problems) by assuming that all DO are known in advance (see Section 6.4.2).
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Figure 6.7. Average percentage of DO served vs. the available vehicles at depot per dataset

Thus, in total we constructed 69 different cases (3 x 23). For each case we assumed moderate
dod (50% DO) and generated 10 different problems (different selection of offline requests),
resulting in a total of 690 test problems. The generation process of the test problems and the
process of generating the initial solutions remains the same as the one described in Chapter 5
(Section 5.4.1.2).

6.4.1.2 The metric used for comparison (value of information)

In this experimental investigation we report the performance of the proposed methods (for both
the re-optimization problem and the entire dynamic one) based on the value of information
(\Vol), as described in Chapter 5 (Section 5.4.1.1). In this study, we enhance this metric in order
to take into account both the number of DO served and the routing cost. Let Fz(H) denote the
total number of DO served in the final solution of dynamic problem H under objective F and
Cr(H) the corresponding total routing cost. Then, the value zz of problem H when solved

under F can be calculated as:
zp(H) = =& * Fp(3) + Cp(30) (6.27)

Since the objective function results in negative values, the Vol used in this Chapter is given by

the following formula:

_ 2p(H) = zp(34)
Ve(H) = bsaaany) X 100 (6.28)

where zxz(H,) denotes the value of the metric for the related static problem H (in which all

DO are known prior to the dispatching of the vehicles; i.e. at time t = 0). It should be also

noted that for &, was set to 1000 throughout the entire experimentation.
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6.4.2 Assessment of the re-optimization B&P heuristic in m-DVRPMB

In this Section we assess the performance of the proposed heuristic B&P algorithm of Section
4.7 in solving the re-optimization problem with limited resources. To do so, we employ all test
problems described in Section 6.4.1.1 by assuming that a) all static orders have been assigned
to vehicles according to the methodology described in Section 5.4.1.2, and b) all DO are known
before the vehicles are dispatched from the depot. Each test problem is then solved by both the
exact (OPT) and the heuristic (HEUR) algorithm. Due to the fact that re-optimization takes
place only once (since all DO are known in advance), both algorithms were executed under

objective Z;.

Table 5.3 summarizes the results obtained per instance as an average over all test problems
solved. For each instance, the Table reports the percentage deviation of the solution of HEUR
from that of OPT (%Dev) in terms of Vol (as described in Section 6.4.1.2), and the
computational times CTypr and CTygyr (in sec). The bottom Section of the Table reports the

average performance indicators for the R1 and C1 datasets.

Table 6.2. Performance of heuristic B&P algorithm

Instance ~ %Dev CTopr CTygur Instance  %Dev CTopr CTyrur
R101 0.3% 9.6 15.2 Cc101 0.2% 10.1 21.2
R102 0.7% 40.9 16.6 C102 1.7% 98.4 25.3
R103 2.0% 1,255.2 21.2 C103 2.5% 459.2 57.2
R104 2.8% 1,496.2 70.5 C104 2.5% 1045.6 69.4
R105 1.1% 60.29 24.6 C105 1.5% 109.5 32.6
R106 1.8% 196.58 39.2 C106 1.9% 121.3 315
R107 2.3% 509.2 50.8 c107 2.1% 147.4 38.6
R108 2.6% 1,564.1 67.9 C108 2.9% 164.1 45.3
R109 1.6% 349.2 45.3 C109 2.3% 138.4 39.2
R110 1.7% 1,443.12 61.7
R111 1.9% 1,202.83 65.9
R112 2.4% 22215 58.4

Average R1 1.8% 695.8 44.8 Average C1 2.0% 254.9 40.1

Based on Table 5.3, HEUR seems to yield efficient solutions with an average deviation of 1.9%
from the optimum over all instances, a performance similar to that of the HEUR in the unlimited
fleet case (all DO served). Regarding the computational effort, HEUR seems to be highly
efficient compared to its exact counterpart, as expected.
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6.4.3 Performance of re-optimization strategies in m-DVRPMB when re-

optimization depends on the number of DO received

In this Section, we investigate the performance of the re-optimization strategies for the limited
fleet case. The main objective is to investigate the trends of the various strategies and compare
them to those observed in the unlimited fleet case (Chapter 5, Section 5.4.3). In order to align
our analysis in this Section to the one of Chapter 5, we employ re-optimization policies that
depend on the number of DO received. Since the re-optimization cycles under such policies are

not of known duration, we perform the current analysis only under Z,.

We employed all instances described in Section 6.4.1.1, and, similarly to Chapter 5, we used
the SRR, NRR-1, NRR-2 and NRR-3 policies; each policy was tested under the FR and PR
release tactics, resulting to a total of eight (8) strategies for each one of the 690 test problems
(i.e. 5,520 problems in total). It is noted that the analysis of the experimental results uses
appropriate averages. The detailed results of the strategies for all instances and for the different

values of fleet availability have been included in Appendix B (Table B.1).

Figure 6.8 presents the performance (w.r.t. Vol) of each re-optimization strategy (policy-tactic
combination) for each investigated dataset (R1 and C1), averaged over all test problems of the
related dataset (and of course over all cases w.r.t. the number of vehicles available at the depot).
From this Figure it is clear that the SRR-PR strategy provides the best average performance
(minimum Vol) and the PR tactic outperforms FR (on the average) in all datasets. The
performance difference between the two tactics decreases as the number of elapsed DO per re-
optimization cycle increases (less number of re-optimization cycles). Furthermore, the PR tactic
seems to be more efficient for shorter re-optimization cycles and the FR tactic seems to be less
efficient when re-optimization is applied very frequently (SRR) or infrequently (NRR-3). The
observed performance seems to agree with the behavior of the re-optimization strategies for the
unlimited fleet case (see Section 5.4.3, Fig. 5.9), indicating that the performance of the

strategies is not affected significantly by limiting the available resources.
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Figure 6.8. Average performance of re-optimization strategies for the different datasets

In terms of the interaction of the re-optimization strategies with fleet availability, Figure 6.9
and Figure 6.10 present the performance of each tactic w.r.t. the policies for the R1 and C1
datasets, respectively, and for different values of fleet availability (V-0, V-2 and V-4). Note
that this is the average performance over all related instances (and test problems). The Figures
illustrate similar patterns with the aforementioned analysis w.r.t. the performance of re-
optimization strategies for all values of fleet availability, i.e. there is no significant interaction
between fleet availability and the re-optimization strategies on the average.

25%

20%

15%
B FR
10%
5%
0

NRR-1 NRR-2 NRR-3 NRR-1 NRR-2 NRR-3 NRR-1 NRR-2 NRR-3

Value of Information

=

V-0 V-2 V-4

Figure 6.9. Performance of strategies for R1 dataset for various values of fleet availability
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Figure 6.10. Performance of strategies for C1 dataset for various values of fleet availability

6.4.4 Performance of proposed objective functions under re-optimization

cycles of known duration

We assess the performance of the three proposed objectives discussed in Section 6.2, i.e. i) Z;,
which provides a fixed profit for each DO served; ii) Z,, which provides an additional profit for
each order served within the next re-optimization period (in lexicographical order), and iii)
objective Z3, which assigns profit to all orders, with the profit decreasing linearly depending on

the period the order is served (in lexicographical order as well).

The investigation of this Section includes all instances described in Section 6.4.1.1 for the R1
dataset (13 instances, including R100), under three values of fleet availability (V-0, V-2 and V-

4), and using 10 different test problems per instance (i.e. 390 test problems in total).

Since objectives Z, and Z; may be used only if the re-optimization time instances (and intervals)
are known in advance, we employed fixed-time re-optimization policies (FTR policies; see
Chapter 5.2), which comprise cycles of equal duration. In particular, we investigated four values
of re-optimization frequency, i.e. every 10, 20, 40 and 60 units of time w.r.t. Tp,q, (Which is
equal to 230 units of time in the Solomon instances), hereafter designated as FTR-10, FTR-20,
FTR-40 and FTR-60. Each policy was tested under the FR and PR release tactics, resulting to
a total of eight (8) strategies for each one of the 390 test problems of R1 dataset (i.e. 3,120
problems in total). The analysis of the experimental results uses appropriate averages. The
detailed results of the re-optimization strategies for all instances, objectives and the different

values of fleet availability are included in Appendix B (Tables B.2 — B.4).
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Figure 6.11 presents the performance (w.r.t. Vol described in Section 6.4.1.2) of each objective
for each investigated instance of the R1 dataset (incl. R100), averaged over all test problems
and re-optimization policies and tactics. According to the Figure, objectives Z, and Z; (that
consider vehicle productivity) seem to provide more efficient solutions for cases with increasing
TW width, compared to objective Z,; this improvement is more pronounced in cases with wide
TW (R103, R104, R107, R108) or no time windows (R100).
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Figure 6.11. Overall average performance of objectives per investigated instance

This trend may be attributed to the fact that wide (or no) TWs allow for more customer
combinations and, thus, more opportunities for customers to be served sooner (e.g. till the next
re-optimization cycle). In addition, objectives Z, and Z; keep vehicles busy, delaying their
return to the depot. This allows for increased opportunities when new orders are considered in
subsequent cycles. On the other hand, Z, and Z; do not seem to favour the solution for cases
with limited TW width (e.g. R101, R102, R105); the limited feasible timeslot for service of DO
in those case decreases the possibilities of including future DO in the plan. This fact, in
combination with the expected increase of routing costs under objectives Z, and Z; (based on

Statement 1), can cause their performance to deteriorate compared to objective Z;.

Figure 6.12 illustrates the performance of the objectives with respect to re-optimization
strategies (policy and tactic combination), averaged over all test instances and values of vehicle
availability. Based on the Figure, objective Z; seems to lead to more efficient solutions when
re-optimization is applied more frequently (FTR-10 and FTR-20). This may be attributed to the

fact that frequent re-optimization (e.g. FTR-10) leads to higher number of re-optimization
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cycles, thus allowing Z; to allocate the DO to the appropriate period (but not forcing service of
orders only on the upcoming re-optimization cycle as in Z,). On the other hand, objective Z,

performs slightly better in cases of longer re-optimization intervals.

Another interesting observation resulting from Figure 6.12 is that performance under objectives
Z, and Z; improves in the FR tactic. This is expected, since using Z; (and thus not accounting
for vehicle productivity) under the FR tactic, may schedule the service of newly received DO
way into the future in the expense of significant resources, e.g. time (especially for newly
dispatched vehicles from depot). This is not the case with Z, and Z;, which tend to use the
vehicles en route as much as possible given the current information and the additional work to

come.
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Figure 6.12. Average performance of objectives w.r.t. re-optimization policy and tactic

Finally, we investigate the interaction of different values of vehicle availability and different
TW patterns (the latter characterized by the ratio of the average TW width of all customers
w.r.t. T,q,)- TO do so, we grouped all investigated instances in two categories, as shown in

Error! Not a valid bookmark self-reference..

Table 6.3. Classification of investigated instances in TW-pattern groups

Group % of T pax # Instances  Instances
TW-1 5% - 40% 7 R101, R102, R105, R106, R109, R110, R111
TW-2 >40% 6 R103, R104, R107, R108, R112, R100

Figure 6.13 presents the average performance of the objectives for the aforementioned TW-
pattern groups and for the three values of vehicle availability. The results shown are averaged

over all instances and re-optimization policies and tactics. The Figure illustrates that the higher
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the number of available vehicles and the wider the TW, the better objectives Z, and Z; perform.
This may be attributed to the tendency of objectives Z, and Z; to serve DO as early as possible,
leading to additional flexibility of vehicles employed during future re-optimization cycles
(when additional DO arrive). On the other hand, objective Z; may schedule more DO to be

served during future periods, limiting this flexibility.
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Figure 6.13. Average performance of objectives for different TW pattern groups and vehicle
availability values

The above experimental analysis indicates that objectives which account for vehicle
productivity are more appropriate for challenging cases (wide or no TW), or cases for which
more than say 50-60% of DO may be served by the available fleet (more than 2 vehicles
available at depot, according to Figure 6.7). In cases with narrow TW or limited fleet
availability, accounting for vehicle productivity does not seem to help appreciably.
Furthermore, for the preferred short re-optimization intervals (i.e. 5-15% of the available

working horizon) using objective Z; seems more efficient.

In order to put the aforementioned analysis into context, we present in Figure 6.14 the average
performance of the objectives in terms of number of DO served for those parameters that favor
objectives Z, and Z; (according to previous analysis), i.e.: @) V-4 regarding vehicle availability,
and b) instances R104, R108 and R100 (wide or no TW). Results are reported w.r.t. re-
optimization tactic and frequency; for the latter, we grouped FTR-10 and FTR-20 under
category “Frequent” and FTR-40 and FTR-60 under category “Infrequent”. The Figure
illustrates that, as discussed previously, objective Z; is more appropriate for frequent re-
optimization under FR tactic, offering up to about 15% more DO served,; this is limited to about

4% when the PR tactic is employed. On the other hand, objective Z; seems to perform best
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under infrequent re-optimization, offering up to 10% more DO served under the FR tactic and

4% under PR.
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Figure 6.14. Average number of served DO per objective w.r.t. re-opt. frequency and tactic

Using objectives that account for vehicle productivity is recommended under operational

settings with relatively high vehicle availability, wide TW and especially when the FR tactic is

necessary.
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6.5 Case study in a Courier environment

We have applied the proposed method for the DVRPMB with limited resources to a typical
case in a next-day courier service provider. ELTA Courier is a part of the Greek Postal Service
(ELTA) and has the third largest market share among all couriers operating in Greece. In
addition to its own network, ELTA Courier uses the extended distribution network of the Greek
Postal Service.

The case study was part of the project “MADREL (Management of Dynamic Requests in
Logistics)” conducted in the DeOPSys Lab of the University of the Aegean. The project focused
on the design, implementation and evaluation of an integrated system that supports planners
and dispatchers to deliver enhanced courier operations. The MADREL system supports, in
addition to the daily routing of all known orders, two significant activities: a) planning of mass
deliveries over a multiple-day horizon (orders with flexible delivery dates within a pre-specified
service level), and b) allocation of real-time dynamic orders (DO) that occur during service
execution. The method for allocating mass deliveries solves a special variation of the multi-
period VRP using a Branch-and-Price technique. For planning DO in real time, MADREL uses
an efficient insertion heuristic. More information regarding the context of this project can be
found in Ninikas et al. (2014).

In this Section we employ the real-life data used in testing the MADREL system and we apply
our proposed B&P-based method for the allocation of DO. The resulting solutions are compared
to a) those of the conventional approach followed by the dispatchers, and b) those obtained by

the MADREL insertion-based heuristic mentioned above.

6.5.1 Current issues in courier distribution

Figure 6.15 presents a typical model of the courier supply chain. The distribution vehicles
depart loaded early in the morning (e.g. 08:00) from a Local Service Point (LSP) to perform
deliveries or pick-ups; typically, each delivery vehicle serves a certain geographical area. By
the end of the shift, all vehicles return to the LSP having delivered their entire load (minus
unserved returns), and carrying items that were picked-up. After processing all collected items
(08:00 pm in the example of Figure 6.15), the LSP forwards them to the corresponding hub. In
turn, the hubs, process and forward the items delivered by their LSPs, typically overnight, to
the destination hubs. The latter, after processing, forward these items (e.g. by 6:00 am) to the

LSPs, which are responsible for delivering them.
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Figure 6.15. A typical model of courier service operations

For the delivery/pick-up operation, the LSP dispatcher typically knows in advance only a subset

of the tasks. A number of requests for pick-ups of parcels/documents appear dynamically over

time as the delivery plan is executed. As a result, vehicle routing includes a dynamic

component, which makes it more challenging than typical (static) routing. In addition to daily

pick-ups and deliveries, the LSPs also deal with mass deliveries. The promise dates of these

deliveries have some flexibility within a pre-specified service level. For example, internet Kits

may be delivered to the clients within a week from the time of order, by providing a day’s notice

for the exact time of delivery.

Figure 6.16, overviews the typical planning and routing process followed by an LSP to deal

with planned deliveries and pick-ups (regular orders), mass deliveries (mass orders), and

requests for service during delivery execution (dynamic orders).
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Figure 6.16. Typical routing process (the initial routing plan is generated at t=0)
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Initially, the dispatcher allocates the mass orders to delivery days by taking into consideration
the expiration day of each order. The second step involves routing of all known orders; that is,
regular orders, as well as the mass orders allocated by the previous step to that particular day.
The result of the first two steps is the synthesis of the initial routing plan. To incorporate the
DO in the initial plan, the dispatcher re-routes certain vehicles. This is done dynamically
throughout the shift.

In the following analysis, we deal only with the two latter steps of this integrated scheme for
managing hybrid courier operations. For more information regarding a solution framework for
handling the first step (allocation of mass deliveries), the reader can refer to Athanasopoulos
and Minis (2011) and Ninikas et al. (2014).

6.5.2 Key data for the case study

The case study concerns a single LSP serving an urban area in Athens of average size (700
km?). The LSP serves approximately 450 static (delivery) orders (SO) and 70 DO daily with a
heterogeneous fleet of 5 vans and 8 scooters. The data collected comprise of a 3-day period
(Tuesday to Thursday). All geographical data (x,y coordinates) of the customers involved (both
static and dynamic) were provided from appropriate GPS devices installed on the vehicles of

the corresponding LSP.

The pick-up and delivery demand from the customers correspond to either letters/small parcels
that are typically handled by scooters, or medium to big parcels that fit only to vehicles (vans).
Let Ng and Ny, denote customers of the former and the latter type, respectively; thus the total
customer set is denoted as N = Ng U Ny,. Note that N, cannot be accessed by a scooter whereas

Ns can be served by both vans and scooters. Table 6.4 presents key characteristics of the case

study.
Table 6.4. Key indicators of the case study (number of customers and resources)
Resources Customers
Day v Seoot Ny Ny Ny
ans cooters

SO DO SO DO SO DO
Day 1 5 8 477 68 150 26 327 42
Day 2 5 8 491 68 160 23 331 45
Day 3 5 6 370 66 146 30 224 36
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Figure 6.17 represents the customers’ locations over the LSP’s service region on a digital map
for the busiest day of the 3-day period (Day 2). The dispersion of the customers for the

remaining two days has a similar pattern.
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Figure 6.17. Representation of customer locations for the busiest day on a digital map (blue circles
correspond to static customers and red crosses to DO)

A call-center is available and can receive calls (DO) requesting on-site pick-up from 08:00 till
18:00. DO typically request a time-window (TW), which normally ranges from 2 to 4 hours
and starts within 30 to 60 minutes after the call has been received. Figure 6.18 and Figure 6.19
present the temporal distribution of DO as a function of the time of day (early morning and late

afternoon hours are less busy) and arrival and TW pattern, respectively.
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Figure 6.18. Distribution of DO received w.r.t. the time of day (all three days)
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Figure 6.19. Arrival and TW patterns of DO for Day 3 (a blue star reflects the time each DO was
received; the bars indicate the related TW)

Onsite service times at the customer location were recorded through GPS-based devices. It is
worth mentioning that, on average, DO require almost 50% more on-site service time than static
requests, mostly because they involve additional work from the driver.

Concerning the estimation of travel times, we analyzed the correlation between historical travel
times and distances for a 2-month period (approximately 1000 locations per day) and used the
results to estimate the travel time as a function of the Euclidean distance between two locations.

We constructed the distance and time matrix based on these estimates.

Finally, Table 6.5 presents information regarding the average number of static (SO) and
dynamic (DO) orders assigned to each van and scooter. Scooters are normally assigned on
average 30% more orders than vans, since the former are able to travel faster in the congested

city streets.

Table 6.5. Average number of customers served per vans and scooters

Order type  Average orders served per Van  Average orders served per Scooter

SO 30,4 39,9
DO 5,3 5,6
Total 35,7 455

6.5.3 The MADREL insertion heuristic

As mentioned above, for MADREL we developed an insertion-based heuristic in order to
incorporate the available unserved DO in the current plan in a time-efficient manner. The

complexity of the insertion heuristic is highly dependent on the number of DO and the number
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of available arcs (that a DO can be potentially inserted). Furthermore, since insertion is
sequence dependent, an optimal insertion procedure is of factorial complexity O(|F|' YN, (g +
i — 1)), where |F| is the number of DO, and ¢ is the number of available arcs in the planned
routes. Thus, if the number of DO to be re-optimized is higher than say 8 or 9, then an
exhaustive algorithm is computationally intractable. Thus, the current insertion-based heuristic

considers the sequence dependency of neighbor DO only without evaluating all sequences.
The heuristic comprises three steps, as described below.

Step 1: Initialization.

The first step processes all available information up to re-optimization event T,; i.e., the
remaining static orders which have yet to be served, the remaining capacity in both time and
load of the vehicles en route, and the dynamic orders (DO). Concerning the DO, we consider
two cases (as in Chapter 5.2); for re-optimization under FR tactic, we consider only the DO
arrived during the interval [T,_4, T,]. For re-optimization under the PR tactic, we also consider

DO that have arrived in [Ty, T,_;] but not served yet.

Step 2: Clustering of DRs

As discussed previously, it is assumed that the order of inserting DO in the routes is significant
only when DO compete for the same arcs. Based on this assumption, the algorithm decomposes
the entire set of DO to smaller subsets [,,,n = 1,2, ..., A, each containing competing DO. Due
to the complexity considerations discussed above, the number of DO per subset is kept low,

|L,,| < 6. The clustering of DO to competing sets is performed as follows:

Step 2.1. For each DO, i € F, the most preferable, feasible insertion arcs are determined and
stored in set S;. Feasibility refers to respecting order time windows, vehicle capacities and
shift duration (T,,,4,). The maximum number of feasible arcs stored in each S; has been set
to 10 (i.e. S; contains up to ten of the most favorable and feasible arcs), which has been
determined through experiments to be a fairly adequate number regardless the number of

customer orders involved.

Step 2.2. The arc-set S; of each DO i € F, is compared with each set S;,j € F,j #1i, to
determine whether DO i and j compete for one or more common arcs. If there is at least one
common arc between the (i,j) pair of DO, then these DO are grouped together in a

temporary buffer set B;. Finally, all sets B; are checked to examine the existence of common
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DO; if two buffer sets B; and B; contain at least one common DO, then they are joined to a

cluster. This procedure terminates with the creation of A clusters.

Step 2.3. If there is n € A for which |[,,| > 6,, then the last arc stored in each arc-set S;, of all
DO i € F is discarded (i.e. |S;| « |S;| — 1,Vi € F), and step 2.2 is repeated. Once |[,,]| <
6,Vn € A, continue to Step 3.

Step 3: Final Solution

The sequence of selecting clusters to be examined for DO insertion affects the overall solution.
For that reason, all possible combinations of selecting clusters are checked (primary
combinations). When intractable, i.e. A > 6, 100 random sequences of clusters are used. For
each cluster, all possible insertion combinations of the available DO in this cluster are checked
(secondary combinations), and the best one is implemented. Figure 6.20 illustrates the above
process.

Example Primary Combinations Secondary Combinations
A->B->C-D
B->A->C-D
A->B->D-C
B->A-D-C
C->D->A-B
D-C—->A-B
C-D->B-A
D-C—-B—-A

Figure 6.20. Example of considering combinations in the local update heuristic

{1 I} - {[A,B] [C,D]}

{l; l;} - {[C,D] [A,B]}

Specifically:
Step 3.1. Enumerate all primary combinations of clusters, denoted as f = 1,2, ..., £. Begin with

f = 1 and execute Steps 3.2. to 3.6.

Step 3.2. For each cluster L, of DO in primary combination f, determine all possible insertion
combinations of competing DO, denoted as C» (called hereafter secondary combinations).

Initialize the procedure with n = 1 and proceed to Step 3.3.

Step 3.3. For each secondary combination Cf(“, where k corresponds to the secondary
combination examined (i.e. k = 1,2, ..., |C'*|), apply an insertion heuristic to insert all DO in
the order they appear in Cﬁg‘. For successful insertion of a DO, all problem constraints should

be satisfied. In case of any violation, the corresponding DO is not inserted. After each insertion,

apply a 2 — opt post-optimization procedure. After completing the insertion of all feasible

orders in Cf(", compute the cost and number of serviced DO for this secondary combination,
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C(Ci?) and w(cﬁf), respectively. Repeat this procedure for all combinations Cﬁf for cluster [,

and proceed to step 3.4.

Step 3.4. Amongst the secondary combinations of cluster [, select the one that serves the
maximum number of DO. If there are two or more combinations with the same number of DO,

then select the one with the minimum cost. We refer to this combination as Ci».

Step 3.5. If all clusters are checked, i.e. n = A, go to Step 3.6, otherwise n = n + 1 and go to
Step 3.2.

Step 3.6. Compute the final number of served DO and the associated total cost of primary

combination £, i.e. Wy = Yi_, w(Clh) and ¢; = T 5, c(Ch)

Step 3.7.If f < L, set f = f + 1 and go back to Step 3.2. Otherwise, terminate the procedure
and determine the solution, or solutions, f,, that serve the maximum number of DO. From those

solutions, implement solution f with the lowest routing cost Crina: OVer all solutions f-

In case the final solution contains DO that may not be inserted, these orphan requests will be
added to a pool to be checked for insertion, along with the newly arrived requests, in the next

re-optimization cycle.

6.5.4 Computational results

In this Section, we apply the proposed B&P method on the MADREL data for DO planning.
We compare the results obtained with: a) the current practice, in which planners assign
manually the DO and b) the insertion heuristic presented in Section 6.5.3. The re-optimization

period is 1 hour, and we employ the PR tactic.

In addition to DO planning, the case study also analyzed the performance of the algorithms
when a commercial software is used to plan the initial routes for the static orders (SO). Thus,
the experimental analysis involved the variants presented in Table 6.6.

Table 6.6. Components involved in the experimental investigation

Planning

Variants Involved in Description

The current manual process followed by the dispatchers of the courier

Manual Planning SO, DO company; it involves planning SO and DO

SW Planning SO Initial routing of SO using a commercial routing software
HEUR Planning DO The MADREL insertion heuristic
B&P Planning DO The proposed branch-and-price method
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Table 6.7 provides information regarding the testing scenarios. SO corresponds to the baseline
comprising manual planning for DO and SO; S1 and S2 employ manual planning for SO and
the MADREL heuristic (HEUR) or the proposed B&P algorithm, respectively, for DO
planning; in S3 and S4 the commercial software is used for SO planning and, the heuristic or
the B&P for DO planning.

Table 6.7. Planning scenarios

) SO planning DO planning
Scenario ~\ranual  SW Manual  HEUR B&P
SO v v
S1 v v
S2 v v
S3 v v
S4 v v

Table 6.8 presents the overall results obtained for the 3-day period. The first column notes the
five scenarios as indicated in Table 6.7. In the following columns, key information regarding
the results obtained under each scenario is presented for each day. In particular, for each day,
we report: i) D, which denotes the total duration (in hours) of the initial routing plan
(assignment of SO to routes), ii) D,, which denotes the excess trip duration (in hours) that is
due to the insertion of the DO, and iii) the TD, which corresponds to the total (final) duration

of all trips.

Table 6.8. Total routing results (in hours) for all scenarios on the 3-day period

. Day 1 Day 2 Day 3
Scenario — = —= = = =

D D, TD D D, TD D¢ D, TD
SO 87,8 14,6 102,4 90,2 15,1 105,2 70,3 14,2 84,5
S1 87,8 9,2 97,0 90,2 10,6 100,8 70,3 9,6 79,9
S2 87,8 6,9 94,7 90,2 5,3 95,5 70,3 7,3 77,6
S3 73,1 14,3 87,4 75,4 12,6 88,1 60,0 12,3 72,2
S4 73,1 11,9 85,0 75,4 11,7 87,2 60,0 10,8 70,8

Figure 6.21 presents the average performance of all scenarios during the 3-day period with
respect to D, and Dy. It is clear that S4 outperforms all other scenarios, reaching an
improvement of around 16% on the total trip duration compared to the current planning
practices of the courier operator (baseline scenario — S0). The proposed B&P heuristic (S2)
outperforms the insertion heuristic (S1) on all days of the investigated period. The B&P

algorithm outperforms the insertion heuristic by 33.8% on the average in terms of the additional
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cost (excess cost), i.e. the cost above the initial routing cost. This saving is decreased to 12.2%
when SO planning is undertaken by the commercial software. Additionally, employing a
commercial software for the planning phase may yield an average of 16% improvement
compared to the manual processes. An interesting observation is that optimal (or near-optimal)
SO plans lead to considerably higher excess costs for the DO (as shown in S3 and S4). This
may be due to the fact that including DO in the initial optimal routes results to significant

deviations from these routes.

110 -
m Excess Cost

—
@ 100 | 146 Initial Cost
g T 98

| e 6,5
= - e 131 11,5
: 80 | l“\\\ . }
ol
-
3 70 D E—
a 82,8 82,8 82,8
= 60 69,5 69,5

50 -
1] s1 s2 s3 sS4
Scenarios

Figure 6.21. Overall performance of all scenarios (average of all days)

Figure 6.22 presents the average working time per vehicle per day. It also shows the average
improvement in vehicle productivity; that is %100|(Tso — Tsx)/Tso|, Where T, is to the overall
trip duration per vehicle of SO and Ty, the trip duration of scenarios Sx, where x € {1,2,3,4}.
The Figure shows that employing sophisticated tools for SO and DO planning can offer to the
courier service provider savings of up to 17% per driver shift (i.e. around 1.3 hours on an 8-

hour working shift).

30 1 =—4=—Day 1 Day 2 [ 18%
% 8,5 - —#—Day3 =—e—%Impr. r16%
= - 14%
1]
Z 80 - - 12%
1]
o - 10%
2 75 -
3 - 8%
=
w 7,0 - L 6%
£
5 65 -
O 65 -
2 L 2%

6,0 0%

S0 S1 52 S3 54
Scenarios

Figure 6.22. Overall performance of scenarios w.r.t. the working hours per vehicle
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Finally, Figure 6.23 illustrates the improvement of the cost per routed request (for both SO and
DO), as well as the cost per DO for all scenarios. The y-axis provides the percentage difference
(improvement) of the cost under each scenario over SO. The cost is calculated by dividing the
TD (see Table 6.7) with the total number of routed requests. As stated earlier, S4 results to the
best overall unit cost performance (the unit cost per request improves by almost 18%). The
improvement of the unit cost per DO for scenarios S1 and S2 is up to 56%, which illustrates the

efficiency of applying sophisticated methods for the allocation of DO.

60% -
50% -
Cost per Order
-
E 40% - M Cost per DO
g
3 30% -
o
E 20% -
xR
o i
0% T T . .
S0 51 52 S3 54
Scenarios

Figure 6.23. Average performance of scenarios w.r.t. unit cost (cost per request)
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Chapter 7: THE DVRPMB wWITH LOAD TRANSFERS

7.1 Introduction

We have already studied DVRPMB by considering that static delivery orders originally
assigned to vehicles cannot be re-allocated to other vehicles, while dynamic orders may be
served by any vehicle as needed. However, maintaining the original assignment of delivery
orders to vehicles may limit system performance, since the changes in the system state caused
by the arriving dynamic orders may grant re-assignments of such orders advantageous. Thus,
in this Chapter, we introduce and solve a variant of DVRPMB that allows orders to be
transferred between vehicles during plan implementation. This significant differentiation from
DVRMB introduces considerable complexity that needs to be dealt in a fundamentally different
way. We refer to this problem as the DVRPMB with Load Transfers (DVRPMB-LT). By
allowing load transfers between vehicles, we attempt to better utilize the fleet by re-distributing

its workload as needed based on the dynamic state of the system.

A significant observation from the analysis of typical DVRPMB settings that prompted this
work is that the original assignments of static delivery orders to vehicles may result in
significant overlaps of vehicle routes in the solution of the re-optimization problem. These
overlaps are caused by the dynamic pick-up orders (DO), and, by definition, increase costs (see
Figure 7.1). In general, we have identified two (2) main conditions under which such

undesirable overlaps might occur:
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a) New vehicles may be dispatched from the depot to serve newly received dynamic orders; in
those cases, route overlaps are possible

b) A vehicle that has completed its tasks at an early stage may be assigned to serve newly
received dynamic orders resulting to overlaps.

B
>

v

(a) (b)
Figure 7.1. Example of (a) overlapping, and (b) non-overlapping vehicle routes
It is noted that urban logistics companies use load transfer practices to facilitate their
distribution operations. Specifically, certain courier companies employ real-time load-transfers
especially in cases in which the service area has been partitioned into a number of geographic
zones (regions) and each vehicle (driver) is tasked to work within the boundaries of such a zone.
If an order (e.g. package) is picked up from a location within a certain zone and needs to be
delivered to a different zone, the drivers communicate and decide where and when to meet in
order to transfer the corresponding order. In some cases, there are predefined locations where

this operation may be performed, usually referred to as “transshipment points” (Mitrovic-Minic

and Laporte, 2006).

In addition, this practice is also met in money-transfer operations. In those settings, armored
vehicles executing a distribution plan are called to serve ATM requests for money collection
(or service) that arrive to a dispatch center in a dynamic fashion. A unique (physical) key exists
per ATM that allows drivers to access it; no other driver is allowed to access an ATM unless
she/he holds its key. Typically, drivers are given the keys for all ATMs of their responsible area
at the beginning of the day. However, the arrival of dynamic requests disrupts the predefined
plan and may result to delays on the agreed time windows or inability of the vehicle covering a
certain region to serve all dynamic orders. In those cases, drivers can meet during execution

and exchange keys, in order to better re-distribute the work and lower costs.
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To the best of our knowledge, this is the first study that addresses transfer operations in such a
context. As in DVRPMB, we deal with the DVRPMB-LT by updating (re-optimizing) the a
priori plan at certain points in time during execution, in order to incorporate the dynamic orders
received up to that point. We model the underlying re-optimization problem using an arc-based
and we compare the exact solutions obtained to the exact solutions of DVRPMB, which does
not allow transfers. Furthermore, we develop a practical heuristic framework in order to address
the complexity of DVRPMB-LT and solve cases of practical size. Subsequently, we employ
the proposed framework to solve and analyze the full dynamic problem, and investigate the

impact of different re-optimization policies on the solution quality.

The remainder of this Chapter is structured as follows: Section 7.2 overviews the most relevant
approaches in the literature regarding transfer (or transshipment) operations in VRPs. Section
7.3 describes the problem setting and formalizes the re-optimization problem with load
transfers. Section 7.4 introduces the proposed heuristic solution framework to solve the re-
optimization problem for instances of practical size. Finally, Section 7.5 presents computational
results for both the re-optimization problem and the overall dynamic problem. The solutions
obtained are also compared to the solutions of DVRPMB without load transfers.

7.2 Related literature on transfer (transshipment) operations

The re-optimization problem of DVRPMB-LT is relevant to the PDP with Transfers (PDPT,
Cortes et al.; 2010), the PDP with Time Windows and Transshipment (PDPTWT, Mitrovic-
Minic and Laporte; 2006), and the DARP with Transfers (DARPT, Masson; 2014). In those
problems, goods or passengers are associated with a pick-up and a delivery location and may
be transshipped at pre-specified locations; i.e., vehicles are allowed to drop goods or persons
temporarily so that they are picked up and delivered to the final destination by another vehicle.
Other related environments where transfer operations have been studied include the school bus
routing problem (Nakao and Nagamochi, 2008), the robotized pick-up and delivery process of
items requested by users in an office building (Coltin and Veloso, 2012), and environments
related to supply chain decisions (Dondo et al., 2009), or cross-docking operations (Petersen
and Ropke, 2011).

In the following paragraphs we review work related to the PDPT and PDPTWT. Table 7.1

summarizes information on interesting references related to transfer operations.
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Shangh and Cuff (1996) were the first to discuss the PDPT. The authors employ a look-ahead
heuristic approach for picking up and delivering patient records, equipment and supplies for a
health maintenance organization (HMO). The heuristic constructs mini-routes and assigns them
to vehicles. Transfers are only considered when an order cannot be inserted in the current
solution without adding an extra vehicle. The dynamic version of a similar problem is
considered by Thangiah et al. (2007) who improved the results of Shangh and Cuff (1996) by
incorporating a local search phase. Mitrovic-Minic and Laporte (2006) studied the PDPTWT
motivated by a large San Francisco-based courier company that uses transshipment of loads
between vehicles. A single transshipment is allowed per request and up to 4 locations were
considered as potential fixed transfer locations. The authors proposed a two-phase heuristic to
solve generated instances with up to 100 orders, and demonstrated that transshipment
operations can significantly reduce the total distance traveled by vehicles, especially in

clustered cases.

Mues and Pickl (2005) proposed a column generation-based heuristic for the PDPT with a
single fixed transfer location. They evaluated their algorithm considering instances of up to 70
orders. Gortz et al. (2008) considered a version of PDPT, and proposed heuristics for the
capacitated and uncapacitated cases in order to minimize the maximum completion time
(makespan) of operations. Petersen and Ropke (2011) considered a case of pick-up and delivery
of flowers in Denmark with a single fixed transfer location. They proposed an Adaptive Large
Neighborhood Search (ALNS) algorithm, which they applied to practical instances of up to 982
orders. For the PDPT, Qu and Bard (2012) also proposed an ALNS within a greedy randomized
adaptive search procedure (GRASP) framework. They applied their method to instances with
up to 25 orders, obtaining solutions within 1% of the optimal ones. Masson et al. (2011) also
proposed an ALNS algorithm for the PDPT and reported competitive results for the Mitrovic-
Minic and Laporte (2006) instances, and for practical instances with up to 193 orders. Masson
et al. (2014) extended the ALNS technique in order to solve the Dial-a-Ride Problem with
Transfers (DARPT). They reported savings up to 8% due to the introduction of transfer
operations. Lin (2008) presented a PDPTWT in which all requests share the same delivery
location (but delivery time windows are different), and a transfer can occur at the last pick-up
before a delivery. The authors presented an integer programming formulation and were able to

solve instances of up to 100 orders using a commercial solver.

Few exact approaches exist for the PDPT. Cortes et al. (2010) introduced an arc-based

formulation by considering fixed transfer locations. They employed a Branch-and-Cut
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algorithm using Benders Decomposition and were able to solve to optimality instances with up
to six orders and two vehicles, reporting superior computational performance compared to a
standard Branch-and-Bound technique. Kerivin et al. (2008) presented a Branch-and-Cut
algorithm in order to solve a PDPT without time windows, in which every order can be
transferred from one vehicle to another at every node of the network. The authors were able to

solve instances with up to 15 orders. Nakao and Nagamochi (2008) presented a lower bound

calculation for the PDPT with a single transfer location and no time windows.

Table 7.1. Key information in references investigating transshipment operations

Reference Problem Capacity TW Environ- Transfer Locations Solution
ment Procedure
Shangh and Cuff 1-1 P&D of medical ) v Static All problem nodes Look-ahead insertion
(1996) equipment heuristic
Mues and Pickl (2005) 1-1 P&D of freight - v Static Single location Column-generation
Mitrovic-Minic and 1-1 P&D of parcels v . . . Two-phase local
Laporte (2006) and letters ) Static Predefined locations search
. 1-1 P&D of freight v - -
Thangiah et al. (2007) or passengers - Dynamic All problem nodes Heuristic
. 1-1 P&D of parcels ) v . Special customer .
Lin (2008) and letters Static locations Integer programming
L 1-1 P&D of freight . Mixed-integer linear
Kerivin et al. (2008) or passengers - - Static All problem nodes programming
Nakao and Nagamochi School bus routing . . .
(2008) problem Static Single location
Gortz et al. (2009) Dial-a-ride v - Static All problem nodes Heuristic
Cortes et al. (2010) Dial-a-ride v v Static Predefined locations Branch-and-Cut
Masson et al. (2011) 1-1 P&D of freight v v Static Predefined locations ALNS
or passengers
Petersen and Ropke 1-1P&D pf flower v v Static Single location ALNS
(2011) containers
Masson et al. (2014) Dial-a-ride v v Static Predefined locations ALNS
Qu and Bard (2012) 1-1 P&D of freight v v Static Single location GRASP combined

with ALNS

We differentiate our current work in the following three aspects: first, to the best of our
knowledge, this is the first study that introduces transfer operations in the 1-M-1 PDPs, in which
orders are not associated to a pick-up and delivery pair, but to a single location, either pick-up
or delivery. Second, in this work we introduce transfer operations in a dynamic environment in
which we investigate how transfer practices affect the solution of the overall dynamic problem
with respect to different frequencies of re-optimization. Finally, the majority of the related work
considers fixed (predefined) locations, in which transfers are allowed, whereas in this study we
investigate additional options for allowing transfer operations to take place at all nodes of the

network. The latter has been investigated by limited number of studies (see Table 7.1).
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7.3 Re-optimization in DVRPMB-LT

7.3.1 The role of re-optimization in solving the DVRPMB-LT

As already mentioned, DVRPMB-LT employs the DVRPMB setting described in previous
chapters and is dealt through iterative re-optimization (see also Figure 7.2). However, in
DVRPMB-LT a vehicle k € K is allowed to serve delivery (static) orders assigned to another
vehicle k' € K, k' # k during the solution of the re-optimization problem, provided that the
required order transfer is feasible. This makes the re-optimization problem quite different from
that of DVRMB and quite interesting. In addition, it introduces significant complexity that

needs to be dealt in a fundamentally different way.

0 T, Ty T, Thax

Initial Reoptimization Reoptimization Executed
routes cycle 1 oyole L routes

Figure 7.2. The re-optimization process

> Time

The setting and the formulation of the re-optimization problem with transfers, henceforth
denoted as DVRPMB-LT(¥), is described below (Sections 7.3.2 and 7.3.3). Consequently, its

solution approach is described in Section 7.4.

It should be noted, however, that the solution strategy for the DVRPMB-LT via re-optimization
requires also the definition of the appropriate re-optimization policy and tactic. Regarding the
former, we investigate in Section 7.5.4 how different policies affect the solution of DVRPB-
LT. Regarding the latter (implementation tactic), we investigate DVRPMB-LT under the PR
policy, since our extensive experiments in Chapters 5 and 6 indicated that it is the most

promising tactic.

7.3.2 Basic assumptions of the re-optimization problem DVRPMB-LT (¥)

Allowing load transfers may raise significantly the operational complexity of a logistics system.
For example, it may not be practical from a management perspective to allow multiple transfers
per order, or a vehicle to exchange orders with more than one vehicle(s). Such practices may
confuse both drivers and dispatchers, and lead to excessive managerial overheads. Taking into
consideration this operational issue, below we define a set of assumptions within which load

transfers are practical and possible. Note that transfer operations are relevant to delivery (static)
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orders only, since pick-up orders (DO) can be collected by any vehicle. The operating

assumptions are as follows:

d) All orders need to be satisfied (both delivery and pick-up ones)

e) For the re-optimization problem, each vehicle is allowed to participate in only one transfer
operation throughout its remaining (not executed) route prescribed by the revised plan. Of
course, a vehicle may participate in more than one transfer operations during its entire
executed route (multiple re-optimizations).

f) With respect to transfer locations, we investigate two cases; vehicles may meet and transfer
loads: i) at fixed (predefined) locations known prior to the start of operations, or ii) at all
not yet served customer locations (including current vehicle locations and those of dynamic

order clients).

Regarding the third assumption, it should be noted that fixed transfer locations are typically
predefined facilities dispersed throughout the distribution area, where a vehicle is able to
discharge load that may be later picked-up by a different vehicle. In this fixed location, vehicles
are not required to be physically present at the same time. On the other hand, when transfers
are allowed at the location of any not yet served customer, vehicles have to be physically present
at the same location (even if that means that one of the two vehicles will have to wait for the

other one to arrive).

From a business perspective, the second assumption (one-to-one transfer policy) is practical,
streamlining fleet management and driver overhead. From an algorithmic perspective, this
assumption limits the problem’s complexity significantly and allows the re-optimization
problem to be considered as the combination of pairwise sub-problems, as will be described in
Section 7.4.

In general, a feasible solution of DVRPMB-LT (¥) should satisfy the following:

i) All vehicle routes should start at the current vehicle location and finish at the depot (no
cycles)

i) All customer nodes (delivery orders and DO) must be served and should be visited exactly
once (note that in Section 7.3.3 we introduce additional nodes where transfer takes place,
thus customer nodes will be always visited once).

iii) If an order is to be transferred from vehicle k € K to vehicle k' € K, then vehicle k should
arrive at the transfer location prior to the departure of vehicle k'

iv) Each vehicle should participate in a single transfer operation at most
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v) The load of each customer has to be transported by a single vehicle at any time
vi) All customers should be served within their associated time windows (if any)
vii) Vehicles should return to the depot prior to the end of the working horizon (T;,4x)

viii) The vehicle capacity cannot be exceeded.

The problem’s objective is to minimize the routing costs (i.e. distance traveled), subject to
constraints (i)-(viii) above. We should note here that load transfers might cause additional
delays due to transfer operations (e.g., onsite time to load/unload items, waiting for the other
vehicle to arrive, etc.). Within our setting, we do not attempt to minimize such delays in the
objective function; however, such delays are considered by the problem constraints.

An illustrative example

Consider the example of Figure 7.3 for a case with two vehicles. Initially, the two vehicles are
set to serve delivery (static) orders only. At the re-optimization timestamp, the vehicles have
already executed a portion of their planned routes and are currently located at customers 2 and
6, respectively (Figure 7.3a). Furthermore, a number of DO have been received and are to be
incorporated in the current plan. Figure 7.3b illustrates the results of the DVRPMB re-
optimization algorithm of Chapter 5 with all DO been assigned to vehicles. The total routing
cost is 108.1. Given this solution, we examine the possible efficiencies from load transfers.

Figure 7.3c illustrates a possible solution, assuming that transfer operations are allowed only at
a predefined (fixed) location with coordinates (15,0). This solution includes the transfer of
orders 7 and 8 from the red to the blue vehicle; the total routing cost is 86.4, resulting in
approximately 20% savings. Figure 7.3d illustrates a solution in which transfer is allowed at
the location of any not yet served customer. The two vehicles meet at the location of customer
10, where the red vehicle will again transfer customer orders 7 and 8 to the blue vehicle. This
solution results to a cost of 84.5 and total savings of 21.9% compared to the solution of Figure
7.3b.
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B Depot

@ Vehicle 1 deliveries
@ Vehicle 2 deliveries
(O Dynamic orders

¢ Fixed transfer location
® Transfer (at customer)

210+

(b) (d)

Figure 7.3. lllustrative example for the DVRPMB-LT (#); (a) routes prior to re-optimization, (b)
solution of DVRPMB without transfers, (c) load transfers at fixed location; (d) load transfers at
customer location

7.3.3 Mathematical formulation of DVRPMB-LT(#)

The proposed formulation has been based on the work of Cortes et al. (2010), in which the
authors present a Mixed Integer Linear Programming (MILP) model for the Pickup and
Delivery Problem with Transfers (PDPT). In the current work, we extend and adjust this
formulation to be able to consider: i) pick-up and delivery orders which are not paired, and ii)
potential locations for transferring loads to be all not yet served customer locations (including

current locations of vehicles).

7.3.3.1 Modelling assumptions

In the classical DVRPMB setting, each customer node is associated only with a single type of
operation, which is either unloading (delivery orders) or loading (pick-up orders), but not both.
The setting of DVRPMB-LT uses the concept of transfer locations, where vehicles may load
and unload goods. These locations may be client locations, or special pre-designated locations
in the operational area. As in the work of Cortes et al. (2010), in order to capture the difference
between operations (load/unload), every transfer location u is split into two separate nodes,

s(u) and f(u), which correspond to the start and finish of the transfer operation, respectively
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(see Figure 7.4). When a vehicle enters a transfer location w, it initially enters node s(u) to
unload the orders to be transferred to another vehicle (if any). The vehicle then proceeds
(notionally) to node f(u), where orders (dropped at node s(u)by another vehicle) may be

waiting to be loaded.

Physical transfer location Modeled transfer location

(W

Figure 7.4. Representation of the transfer location

To consider transfers at customer locations, we define two additional sets of nodes M’ and N’
to duplicate the sets containing the current vehicle locations (set M) and the customer nodes
(set N), respectively. We also define as 0’ the transfer location corresponding to the depot.
Those duplicate nodes will participate in the set of possible transfer locations (set U, see Table
7.2). Thus, each location of not yet served customer is represented by three (3) distinct nodes,
namely: a) the original node i € (N U M U 0), b) the start transfer node s(u), and c) the finish
transfer node f(u), where u € (N U M’ U 0") denotes the transfer node associated with node
i € (NUMUO0). Note that all three nodes are considered to be at the same geographical

location (and the distances between them are equal to zero).

In case the transfer location corresponds to a customer location i € N, the vehicle first visits
(and serves) the customer node, then proceeds to node s(u) to begin the transfer operation
(unload) and finally proceeds to node f(u) (in order to exit the transfer location). The second
vehicle, which participates in the transfer operation but does not serve node i arrives directly to
node s(u) (and immediately moves to node f (u) to reload). This operation is modeled as shown

in Figure 7.5.

Transfer location Virtual representation of
(customer) customer (all nodes have the
same coordinates)

Figure 7.5. Modeling the case of transferring loads at customer location i
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7.3.3.2 Mathematical model

Below we present the mathematical model for the re-optimization problem (DVRPMB-LT (¥)).
It should be noted that this formulation is able to solve instances with K vehicles with the
assumption that each vehicle can participate in only one transfer operation throughout its

remaining route.

Prior to presenting the mathematical model for the DVRPMB-LT (¥), we first summarize the
notation involved in the formulation (see Table 7.2). Additionally, we define the set of links
involved in the formulation, i.e. we exclude edges (arcs) that are not reasonable within the
context of DVRPMB-LT, as for example direct links from the start transfer nodes s(u),u € U
to any customer node i € N. Let A be the set of arcs, with A = A; U A, U A; U A,, where (see

also Figure 7.6):
Ay = {ue:k € K} x (NUs(U) U {0})}
A, = (N x (NUsU)U{0D)\{(,i):i€ N}
A; ={(s), fW):u € U}
Ay = (fF(U) x (N U {0} U s(UN) \{(f (), s(w):u € U}
Table 7.2. Notation for DVRPMB-LT (€)

Notation  Description Comment
K Set of vehicles en route®
M Starting location of vehicles K M = Upex{ti}
C Set of nodes associated to committed (delivery) orders C = Ugek Cx
F Set of nodes of flexible (pick-up) orders — DO
N Set of nodes associated with customer orders N=CUF
0 Depot location
Uf Set of fixed transfer location node(s)
M’ Set of .transfer locations corresponding to starting location
of vehicles
N’ Set of transfer locations corresponding to customer nodes
0’ Trapsfer Iocgtion corresponding to the depot (may be used
for intermediate exchange)
U Set of all transfer location nodes U=UsUu{03JUM UN’
s(u) Start node of transfer location u € U
fw Finish node of transfer location u € U
s(U) Set of all start nodes of transfer locations s(U) ={s(u):u € U}
f ) Set of all finish nodes of transfer locations f) ={f(w):uel}
w Set of all nodes W=NuUMu{0}usU) U f)

8 Note that no vehicles are assumed available at depot
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)

s

As: [san Ay [rank

Figure 7.6. Allowable arcs (i, j) € A (possible connections from any i to any j, Vi,j € W)

We also denote c;; and t;; to be the travel cost and travel time corresponding to arc (i, j) € A4,
respectively. Finally, recall that each node i € C U F is related to a demand/supply value d; and

requires service within time window [a;, b;], with a service duration s;.

The proposed mathematical formulation involves three (3) types of decision variables: a) binary
variables x; ;, which are used to model the vehicle routes and are equal to 1 if arc (i,j) € A is
transversed by vehicle k € K and zero otherwise; b) binary variables z}‘i which are used to and
keep track of the status of each customer order while it is traveling from node to node, as in the
formulation of Cortes et al. (2010). These variables are equal to 1 if customer order i € N is
onboard vehicle k € K when it arrives to node j € W\M, and 0 otherwise, forall i € N, k € K;
c) finally, real variables w;;, are associated with the arrival time of vehicle k € K at each node
[ € W; accordingly, wge,yx and wyey,), correspond to the time of arrival and time of departure

of vehicle k € K to/from the transfer location, respectively.

The objective of the re-optimization problem is to minimize the total cumulative routing cost

over the planning horizon [T,, T,ax] @nd is given by:

min(z) = 2 z CijkXijk (7.1)

kev (i,j)eA
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Route constraints

Xpgejie = 1 vk € K (7.2)
JEW\MUS(U))
Xiok =1 vk € K (7.3)
LENU{ug}Uf (U)
Xink — Z Xnjk =0 vkek,vheN (7.4)
iew\({o3us(U)) JEW\(MUF(U))
Z Xisuk ~ Xsw)fak = 0 vk € K,YueU (7.5)
IENU{p}
Z Xfujie ~ Xsafak = 0 vk EK,Vu€eU (7.6)
JENU{0}

Customer constraints

Xijk = 1 VieN (7.7)
IeK jew\(MUf (U))

Time-based constraints

Xy =1 = Wi =ty VkEK,YiENUO (7.8)
Xpsaok = 1 = Wsar = tusn vkeK,YueU (7.9)
Xijp =1 = Wi S wy +t;+s; vk € K,V(i,j) € {(i,j):i €N,j € N U0} (7.10)
Xisaor = 1 = Wsar = Wi + tisy) + Si vk € K,Vi€ N,Vu €U (7.11)
Xsarak = 1 = Wrank = Wsak + tsarw) vk EK,VueU (7.12)
Xraje = 1 = Wik = Wragk + tra; vk €EK,VjENUO,Vu€eU (7.13)
Xraysoe = 1 = Wsoyke = Wrak T trasie) vk € K,Yu € U,V € U\{u} (7.14)

Flow of requests constraints

Zzzﬁ=zzzﬁ—|ﬂ=0 (7.15)

KEK i€F keK ieCy
ki _ ki —
2,2, 4= 0, ) A= IFl =0 (716
keK ieC kEK i€F
=1 ki _ ki . i s ) 717
Xnjk =1 = zp = z; vk € K,Vie N,V(h,j) € A” suchthath = i ( . )

PAY = AN {GW), fWu € U)}
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Xijp =1 = zkl — z]’-‘i =1 vk € K,Vi € C,Vj € W\(M U f(U)) (7.18)
xpe=1= z"'—z*=1 Vk € K, Vi € F,Vj € W\(M U f(U)) (7.19)
Z Z;c(iu) Z Zf(u) = vu€eUViEN (7.20)
keEK keEK

z8y + 20ty = 22 Wram = Wsaoi + & Vu € U,Vk,m € K,k #m,Vi € N (7.21)
z¥y + 2y = 2 = Wraok = Wswm VueU\U; {0}, VieN,vkmeK kzm  (7.22)

Operational constraints

Z Z s(u) ViEeN (7.23)

reU keK

Z Xisape = 1 vk € K (7.24)
IEW\f(U) ueu
max(a;, T) Z Xijk S Wix < b; Z Xijk Wk € K,VYieN (7.25)

JEW\(MUF(U)) JEW\(MUF(U))
ki _

z qizj" < Q Vj € N,vk € K (7.26)
iEN

Constraints (7.2) — (7.6) correspond to basic route constraints; in particular, Constraints (7.2)
and (7.3) ensure that the vehicles will depart from their current locations and will eventually
return to the depot; Constraint (7.4) ensures flow conservation at the nodes in set N, while
Constraints (7.5) and (7.6) ensure flow conservation at the transfer locations. Note also that

those constraints permit vehicles to reach a transfer location at most once.

Constraints (7.7) correspond to customer constraints, which ensure that all customer orders will
be served and the corresponding customer nodes will be visited exactly once. Constraints (7.8)
— (7.14) ensure time feasibility of a route, and are used to eliminate subtours (cycles). This set
of constraints can be written as linear expressions using the big-M technique (Desrosiers et al.,
1995; Desrochers et al., 1988; see Section 7.3.3.3). It should be noted that for Constraint (7.12),

the travel time between start and end nodes of the transfer location ¢, is considered to be

a very small positive number in order to avoid zero-cost cycles.

Constraints (7.15) — (7.23) ensure the flow of orders. In particular, Constraints (7.15) and (7.16)
define the initial and final loading conditions, respectively; i.e., vehicle k € K starts from its
initial location carrying the C orders assigned to it (since the PR tactic is considered, no F orders

are considered at the beginning of re-optimization) and ends at the depot with only F orders on
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board (no C order should be brought back to depot). Constraint (7.17) ensures load continuity;

I.e. the load is only unloaded at the designated customer location (the load of node i € N will
be onboard when the vehicle arrives at customer location j € N if it is also onboard when the
vehicle was at the previous customer location h € N). Constraint (7.18) ensures that a delivery
order is unloaded when it reaches the location of the corresponding customer. Similarly,
Constraint (7.19) ensures that a pick-up order will be loaded at the appropriate location.
Constraint (7.20) refers to the flow conservation of the load variables, i.e. it ensures that a
customer order that arrives to a transfer location on any vehicle must leave the transfer location

by any vehicle (essentially, with the same vehicle and/or the other vehicle of the pair).
Constraint (7.21) ensures that if an order is exchanged between two vehicles at a transfer

location (i.e. reaches transfer location with vehicle k; € K and leaves transfer location with
vehicle k, € K, k, # k,), then vehicle k, has to arrive to the transfer location prior to the
departure of vehicle k, from the transfer location; = is a scalar that represents the time needed
for the load to remain at the transfer location (till its departure). Furthermore, Constraint (7.22)
is similar to Constraint (7.21) but ensures the simultaneous presence of both vehicles at the

transfer location for those cases for which the transfer operation takes place at a customer

location.
Moreover, we consider additional operational constraints in (7.23) to (7.25). Specifically,
Constraint (7.23) limits the number of times any customer order may be transferred to at most

once, while Constraints (7.24) limit the number of transfers per vehicle (as per our original

assumption of Section 3.2). Finally, Constraints (7.25) ensure that the each customer i € V is
served within its time window, and Constraints (7.26) ensure that the load carried on the vehicle
must not exceed the vehicle’s maximum capacity (Q). Details regarding the linearization of

those constraints are provided below (Section 7.3.1.3).
As mentioned above, here we investigate the case for which all orders may be served by the

available fleet. In the case of limited resources, for which it is not necessary to satisfy all flexible

(pick-up) orders (as discussed mostly in Chapter 6), Constraint (7.7) can be replaced by
(7.27)

Constraints (7.27) and (7.28) below.
Xije =1 VieC
kev jew\(MUf(U))
Xije < 1 ViEF (7.28)
DeOPSys Lab

KeV jew\(MUf (U))
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7.3.3.3 Constraint linearization

Several sets of constraints presented in the above mathematical formulation are expressed by
non-linear relationships. Here we present the way these constraints may be linearized in order
for the model to be solved by a commercial solver (CPLEX). The linearization was based on
the big-M technique (Desrosiers et al., 1995; Desrochers et al., 1988).

Consider the set of Constraints (7.8) — (7.14), which ensure time feasibility and eliminate
subtours. This set may be replaced by linear Constraints (7.29) — (7.35) below, where Z

corresponds to a very large positive constant:

Wik +Z * Xy S Z —ty, vk € K,Vie NUO (7.29)
— Wk tZ * Xy sk < Z = tusu) vk € K,VueU (7.30)
Wi — Wik +Z * Xjji < Z —5; — tjj vk e K, V(i) €{G:ieNjeNuv0}  (7.31)
Wik — Wsak T Z * Xisak < Z — S; — tis) vk € K,YiE N,VueU (7.32)
Wsaok — Wraok T Z * Xsayraok < Z — tsayrwy Vk EK,Yu el (7.33)
Wraok — Wik +Z * Xpapje < Z — tr vk €K,ViENUO,Vu€EU (7.34)
Wrk = Wik T Z * Xrwsoik S Z = tras(e) Vk € K,Yu € T,Vp € U\{u} (7.35)

Constraints (7.18) ensure that the order is only unloaded at the designated customer. We

linearize this constraint by replacing it with Inequalities (7.36) and (7.37):

(Z = Dzf' — 2" + Zopj < 22 -2 vk € K,Vi € N, V(h,j) € AV such that h # i (7.36)

2§+ 2"+ T < Z Vk € K,Vi € N,V(h,j) € AU such that h # i (7.37)

Constraints (7.19) and (7.20), which ensure that an order is unloaded or loaded at the designated
location, are linearized using Inequalities (7.38) and (7.39), respectively.
—Zl-ki + iji +Zxijp <72 -1 vk € K,Vi € C,Vj € W\(M U f(U)) (7.38)
_iji +zM+ Zxj <Z -1 vk € K,Vi € F,Vj € W\(M U f(U)) (7.39)

Finally, we use Inequalities (7.40) and (7.41) below in order to linearize Constraints (7.21) and
(7.22).

AT = AN {(sW), fWu € U)}
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i -
Zgtu) + Z}r(lilt) = 2= Wraym = Wsuk

= Wrawym = Wsuwk — z(2- Zf(lu) - Z}r(lllt))

(7.21) = = Wraym — W@k — Z * z;‘(iu) — 7% z}r(’ft) >—-2%Z (7.40)
= ~Wsaym + Wsayk + Z * zf(iu) +Z z}’g‘) <2xZ
25w + 2 = 2= Wraok = Wstwm
= Wrwk = Wswm — Z(Z - Zf(iu) - Z}Zr(llit)
(7.22) = (7.41)

= Wraok — Wsqum — Z * 2ty — Z * 2l = —2% Z

= Wk + Wsqom + Z * Zoiy + Z* 20y S 2+ Z

Based on the above, the final model may be solved by a commercial solver (CPLEX), and
comprises objective function (7.1) and Constraints (7.2) — (7.7), (7.29) — (7.41), (7.15) — (7.16),
(7.20) and (7.23) — (7.26).

7.4 Solution approach for DVRPMB-LT(#)

The model presented in Section 7.3.3 can be solved to optimality by a commercial solver (e.g.
CPLEX). However, due to the large number of variables involved in the model, the solution
may be limited only to cases of small size. For that reason, we have also developed a simple
and straightforward heuristic procedure (framework) that is able to address cases of practical
size. Specifically, we solve DVRPMB-LT(#) using first a procedure that evaluates and
identifies pairs of vehicles that may benefit from the transfer operation. Note that focusing on
vehicle pairs is based on the assumption that each vehicle can participate in a single transfer
along its route. Subsequently, we solve the problems of the promising pair of vehicles with an
appropriate heuristic procedure. In the following, we introduce initially the solution framework
for DVRPMB-LT(#) (Section 7.4.1) and subsequently, in Section 7.4.2, we focus on the

solution procedure for a single pair of vehicles.

7.4.1 The solution framework for DVRPMB-LT(¥)

The proposed framework for solving the DVRPMB-LT(¥#) is hereafter denoted as Load
Transfer Algorithm, LTA. The latter commences from the solution of the re-optimization
problem that does not allow transfers. To do so, we employed the heuristic Branch-and-Price
algorithm outlined in Chapter 4, which allows the incorporation of all DO to the vehicles en

route or to vehicles stationed at depot. For convenience, we denote this algorithm as the No-
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Transfer Algorithm (NTA). Then, the solution framework comprises three additional steps as

shown in Figure 7.7 and described below.

/A. Reoptimization % % B. Transfer candidates '{> - C. Application of Load transfer %> D. Solution Synthesis _(>

Select a pair of

Replanning
Trigger

routes (i, j)eR
i*j

forall (i,j)eR

Solve a VRP-like
problem
for pair (i, j)

Solve re-
optimization

(NTA)

Calculate

NTA Solution Eij) = C'i,)-Clij)

E(ij) < 0 Apply LT AP
’ . el sl
(ascending) Sfor pair (i',j")

Synthesize final

. 2 =y = oar
Pick (i, ) from Remove E(¥',j') solution for all

top of the list from the list

(i) < CL )
pairs

pair (i',j)eR

Remove all
E(i,j") and
E(i', j) from list

Figure 7.7. Solution framework for DVRPMB-LT(#) (LTA)

In the second step of Figure 7.7 (“B. Transfer candidates”) we identify candidate pairs of
vehicle routes that may benefit from the transfer operation (typically, but not necessarily,
vehicle routes with overlaps). To do so, for each pair of vehicle routes of the NTA solution
(route set R), we consider the related customers and solve a VRP-like problem with two
vehicles. The routing cost of the resulting solution is then compared to the routing cost of the
pair in the NTA solution. If the cost of the VRP-like problem is lower (even if the solution
results to a single route), then this pair is a candidate to be further examined (for load transfer).
In particular, for each pair of routes (i,j),i # j, let E(i,j) = C'(i,j) — C(i,j), where C'(i,j) is
the cost corresponding to the VRP solution for the two vehicles and their respective customers,
and C(i,j) is the cost corresponding to the original re-optimization solution (NTA). In case
E(i,]) is negative, then pair (i, ) is a candidate for the transfer operation; if not, then this pair
is discarded. Note that all possible vehicle pairs are evaluated at this step, even if a vehicle

participates in more than one pairs. In general, each route will participate in |R| — 1 pairs, and

may correspond to up to |R| — 1 negative E (i, ) values. Let E be the list containing the E (i, )
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values for all possible pairs. Before proceeding to step C, this list is sorted in ascending order,
in order to evaluate first pairs with the higher negative value (and ensure that each vehicle will

participate only in the best possible pair; see Step C below).

During the third step (“C. Application of load transfer”), we apply a heuristic algorithm,
henceforth denoted as LTAP and further described in Section 7.4.2, considering the pair
(i',j"),i # j, with the lowest (negative) value in list E. If such pair does not exist, then the
procedure terminates. If the solution for pair (i’,j") is feasible and results to a routing cost,
denoted as C"'(i’,j"), lower than the routing cost of NTA for this pair (C(i’,j")), then the pair
is qualified for the next step and all pairs (i, ;') and (i’, j) are removed from list £. If not, then
this pair is discarded and the procedure iterates until list G is empty (no remaining pairs for

evaluation).

During the fourth step (“D. Solution synthesis”), we construct the final solution starting from
the NTA solution and replacing the vehicle routes belonging to each pair of the third step with
the solution of LTA for that pair.

7.4.2 Load transfer algorithm for a single pair of vehicles (LT AP)

Assume that any order may be served by any vehicle of the pair under consideration. Consider
the optimal (or near-optimal) solution of this VRP problem. If the delivery orders are served by
the vehicles following the original assignment, then no transfer is required and the routing cost
of the pair is optimal (or near optimal). If, however, one or more (delivery) orders are not served
by the vehicle(s) according to the original assignment, then a transfer operation is needed. In
this case, we identify the best transfer location by using an insertion-like algorithm and
respecting all involved constraints. Finally, the solution obtained is further improved with post-
optimization techniques. In particular, the method comprises three (3) distinct stages
summarized below and further analyzed in the following Sections:

In particular, the method comprises three (3) distinct stages summarized below and is further

analyzed in the following paragraphs:

Stage I.  Routing: A VRP-like problem is solved by assuming all not yet served orders.
Stage 1. Meeting: Identify the best available transfer location (if any).
Stage I11. Post-Optimization: The resulting solution from Stage 11 is further improved.
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7.4.2.1 Stage I: Routing

Consider a pair of vehicles each assigned with a set of not yet served orders (deliveries and/or
pick-ups — DO). Each vehicle can either be located at a customer location or originate from the
depot (new vehicle dispatched from depot under the NTA solution). At this stage, a VRP-like
problem is solved by considering all unserved orders of the vehicle pair and the two available
vehicles, without considering the original assignment of orders to vehicles. The network of the
VRP-like problem ensures that: i) the first customer of each route will correspond to the current
(starting) location of the vehicle, ii) no vehicle will travel to the starting location from any other

customer, and iii) all involved times will be aligned to the re-optimization timestamp.

We solve the resulting VRP problem by using a Clark & Wright savings heuristic (Clark and
Wright, 1964) followed by a Reactive Tabu Search metaheuristic (Osman and Wassan, 2002)
as a post-optimization process. It should be noted here that early experimentation has indicated
that the performance of the proposed load transfer framework (LTA) is highly dependent on
the results of this Stage; thus, the selection of an appropriate VRP algorithm is important to the

quality of the final solution.

7.4.2.2 Stage Il: lIdentify best available transfer location

The solution obtained from Stage | provides the best possible assignment of customer orders to
vehicles, without considering the original order assignments. We refer to the orders that are
served in the solution of the VRP-like problem by a vehicle (or vehicles) other than the original
one(s) as transferred orders (henceforth, denoted as t-orders). The t-orders (if they exist) need
to be transferred prior to the service of the corresponding customers. To do so, we identify the
most suitable location where the collaborating vehicles can potentially transfer the related loads.
Note that it may not always be possible to identify such a location, since the process should
respect the following constraints:

1. Transfer constraints: According to our original assumption (Section 7.3.2), each vehicle
is restricted to be diverted to a transfer location at most once

2. Precedence constraints: Any t-order should exchange vehicles prior to serving the related
customer

3. Meeting constraints: For the case of an a priori fixed transfer location, the vehicle that
transfers the load to this location should arrive prior to the vehicle that receives the load,
since for this case vehicles do not have to be simultaneously present at the transfer location.

On the other hand, when the transfer takes place at a customer location, both vehicles need
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to be present concurrently at that location. Thus, when a vehicle arrives to the transfer
location prior to the other one, it has to wait until the other vehicle arrives.
4. Load constraints: The capacities of the collaborating vehicles should always be respected
5. Time constraints: The solution should respect all customer TW (if any), and both vehicles

should return to the depot prior to the end of their available working horizon (T, 4)-

Using the VRP-like solution of the first stage, the potential transfer locations are considered
and evaluated,; i.e. each candidate transfer location of one route is temporarily inserted between
two consecutive customers served by the other route. Each resulting route configuration is
further improved by a post-optimization procedure. The pair of routes that incorporate the
transfer location with the minimum cost is provided to the third phase of the method. In the

remainder of this Section, we provide a formal description of the proposed heuristic.

Consider vehicles k; and k, and the sets of orders originally assigned to them @y =
{01,02, ..., 00} aNd Oy, = {0111, Om42, -, O}, TESPECtively. Assuming that each vehicle is
currently located at positions ., and uy,, respectively, and node 0 represents the depot, then
each vehicle route resulting from Stage | can be represented as a vector, i.e. Ry, =
[Fie, (e, )s Fiey (1) wovs Fie, (M), e, (0)] @nd Ry, = [, (ti, ), ey (1), v o, (112), Fie, (0)], Where
74 (i) represents the sequence of order i € 0,k € {kq, k,} invehicle route Ry, k € {ky, k,}. We
also denote as ri(ey), k € {1,2} the first node in the route of vehicle k that corresponds to a t-
order, where ey, k € {k4, k,} corresponds to the sequence of this node in the vehicle route. The

e, nodes are crucial for ensuring the precedence constraints.
In the following, we describe separately the procedure for the two transfer cases.

Transfer operation at a customer location

Figure 7.8 provides an overview of the process used to identify the best transfer location among
the candidate locations of the not yet served customers. The related algorithm operates in an

iterative manner. During each iteration of the process, a node j of route Ry, is inserted between

two consecutive nodes of route Ry, where kq, k, € {1,2}, ky # k5.

In order to impose precedence constraints, this process investigates only the nodes of each route
sequence that are prior to nodes ry(ex), k € {1,2}. In case the insertion of node j to route Ry,
maintains feasibility (satisfying the time and capacity constraints), and the total cost (distance)
of the updated routes is the lowest one so far, location ry,(j) is selected as the transfer location

(U*) and the corresponding pair of routes is kept as the best found to this point (R*) with
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corresponding cost C*. Prior to identifying a solution that improves the total routing cost, we
also apply a post-optimization procedure (Line 11 of Algorithm 1) similar to the one described
in the third stage of the process (see below). It is important to apply this refinement to every
solution (even to the infeasible ones), since an infeasible one may be rendered feasible (due to
the possible re-arrangement of the customers involved in the routes).

Algorithm 1: Identify best transfer location

Input: {R ,R,}, c® // €% the total routing cost resulted from NTA
Output: R*,C",T"

1 ¢'=c R ={R,R,} // Initialization

2 For each k; € {1,2} // FOR LOOP A

3 For each k, € {1,2},k, # k; // FOR LOOP B

4 If k;, =1 then a=m else a=m—m end

5 For each j=1 to ¢, do // FOR LOOP C

6 For each i=1 to ¢, —1 do // FOR LOOP D

) Ry = 12, (0,72, (D, .71, (D, (4 1),y (O]

8

R, = [Fy (1), Fy (D, werFy (@), 5, (0)]

9 Compute cost € = CV = C(r;) + C(ry)

10 If C<C

11 (¢*,R*) = Opt(C*,R*) // Solution improvement
12 If Ry, and Ry, feasible (Time & Load constraints)
13 c'=C

14 R = {Rkl’sz}

15 U =1,0()

16 End If

17 End if

18 End for loop // FOR LOOP D

19 End for loop // FOR LOOP C

20 End for loop // FOR LOOP B

21 End for loop // FOR LOOP A

Figure 7.8. Pseudo-code for identifying the most appropriate transfer location among the locations of
the customers not yet served

Fixed transfer location

In this case, the procedure attempts to identify the best time instance for the vehicles to visit the
fixed transfer location (Ur). At each iteration, the procedure evaluates visiting the transfer
location between two consecutive nodes of route R, or R,. Of course, the operation in this case
is also performed only for the nodes of the two routes that are prior to 7. (ex), k € {ki, k;}. A
valid inclusion of U in each route satisfies time and load constraints. An additional feasibility

criterion is the sequence of visiting the transfer location (meeting constraint); the vehicle
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discharging the load should arrive at Ur prior to the vehicle receiving it. In case both vehicles
discharge loads, they have to be at the transfer location at the same time. If feasibility is
maintained and the total cost is the best found to this point, then the fixed location is used for
the transfer (U™), otherwise it is discarded and the solution resulted from the solution of NTA

is used. The algorithm is outlined in Figure 7.10.

Algorithm 2: Incorporation of fixed transfer location

Input: {Rl,RZ},CO,Uf // C€° the total routing cost resulted from NTA
Output: R",C”

1 ' =C"R = {Rl,Rz} // Initialization

2 For each je{l,..,e;} do // FOR LOOP A

3 For each i€({l,..,e;-1} // FOR LOOP B

4 Ry, = [ (W), 71 (1), ...,fl(i), Uy, r1(i+1),..,71(0)]
5 Ry, = [F2(W), 72 (1), ...,7'”2(]'), Up, 72 + 1), ...,72(0)]
6 Compute cost € = C = C(r;) + C(r,)

7 If (< C

8 If Rk1 and sz feasible (Time & Load constraints)
9 c'=C

10 R" = {Ri), Ry, }

12 End If

13 End if

14 End for loop // FOR LOOP B

15 End for loop // FOR LOOP A

Figure 7.9. Pseudo-code of heuristic approach for incorporating the fixed transfer location
7.4.2.3 Stage Il1: Post-optimization

After identifying the best route sequence, including the location for the load transfer operation,
a simple post optimization procedure attempts to refine the solution by node interchanging
moves (2-opt) (Croes, 1958; Lin, 1965) are employed a) within any single route and b) between
the routes of the pair as illustrated in Figure 7.10. Appropriate checks are also conducted to

ensure that no constraints are violated.
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Figure 7.10. Interchange moves; (a) within a single route, (b) between a route pair

7.5 Computational experiments

To assess the benefits of load transfers within the DVRPMB setting, we compare the solutions
provided allowing load transfers to the ones that do not allow transfers. The experimental
investigation is structured as follows: in Section 7.5.1 we evaluate the performance of the
proposed heuristic approach (LTA) for solving DVRPMB-LT(#) for a pair of vehicles with
respect to its optimal counterpart. In Section 7.5.2 we investigate the performance of LTA
compared to NTA by considering pairs of (overlapping) vehicle routes in order to assess the
advantage of allowing transfers in the re-optimization problem. To do so, we consider two
typical operating scenarios; i) both vehicles of the investigated pair are en route at the re-
optimization timestamp (Section 7.5.2.1), and ii) one vehicle is en route and the other is located
at the depot (Section 7.5.2.2). In Section 7.5.3 we evaluate the benefits of the proposed
framework for the solution of DVRPMB-LT (¥) where more than two vehicles are involved
(LTA). Finally, in Section 7.5.4 we investigate the performance of load transfers under different

re-optimization strategies for the entire dynamic problem (DVPRMB-LT).

The experiments presented below were conducted using a Quad-Core Intel i7 processor of
2.8GHz and 4GB of RAM. The MILP model was solved using the commercial MILP solver
TOMLAB/CPLEX Version 7.5 (R7.5.0). The solver’s default settings were used, and the
initialization computational time was not included in the computational time values presented

below.
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7.5.1 Assessment of the LT AP heuristic

In order to assess the performance of the proposed LTAP heuristic, we considered re-
optimization problems involving a single pair of vehicles en route. At the re-optimization
timestamp, each vehicle is assigned with a set of static (delivery) orders not yet served, where
new DO have been received and need to be incorporated in the current plan. We then solve the
underlying problems with LT AP and compare the solution with its optimal counterpart. In order
to ensure that the solution of the re-optimization problem will require only two vehicles, we

assumed no limitations w.r.t. time windows, shift duration and capacity.

For this experimental study, we have employed randomly generated data within a service area
of 1 x 1 km?. We generated test instances varying: a) the number of static (delivery) orders per
vehicle (Cy, k € {1,2}), and b) the number of DO (F). The number of either type of orders was
varied from 2 to 7 for each set, leading to a total of 36 test instances (see Table 7.3). The total
number of nodes per instance depends on the number of static and dynamic orders considered,
for example, if |C,| = 4 and |F| = 4, the total number of nodes (|N|) in the network for this
test instance is 15 (8 static delivery nodes, 4 DO nodes, 2 nodes for the vehicle starting
locations, and one for the depot). For each test instance, we generated 10 different problems by
assigning the node locations randomly within the defined area using a uniform distribution.
Thus, the full problem set involves 360 test problems. For each test problem, delivery orders
were randomly assigned to each vehicle, and the resulting route (from the current location to
the depot) was improved by a 2-opt procedure (Li, 1965). Finally, we assumed that one distance

unit equals to one time unit.

Table 7.3. Parameters of test problems

Parameter  Description Values (levels) # of levels
Cy Deliveries per vehicle 2,...,7 6
F Pickup orders (DO) 2,...,7 6
o Test problems/instance 1,...,10 10

Each generated test problem was originally solved using the B&P heuristic method of Chapter
4.7 in order to optimally assign DO to vehicles en route, without transfers (NTA). Subsequently,
each test problem was solved by allowing load transfers: i) to optimality, by solving the MILP
model of Section 7.3.3 with a commercial MILP solver, and ii) using LT AP. For the load transfer
operation, we investigated both the case of fixed transfer location and the case of load transfers

at the locations of any not yet served customers. The fixed transfer location was selected to be
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the center of mass of the customer nodes. Table 7.4 summarizes the algorithms studied in this
experimental phase and the corresponding designations to be used hereafter.

Table 7.4. Description of the algorithms employed

Alias  Description

NTA Solution with no transfers

LTA‘f’pt Solution of LT AP considering a fixed transfer location and using the MILP solver

Solution of LT AP considering load transfer at the location of any not yet served customer

opt

LTAq and using the MILP solver

LTA Solution of LT AP considering a fixed transfer location and using the heuristic

LTA Solution of LT AP considering load transfer at the location of any not yet served customer
d

and using the heuristic approach

Table 7.5 summarizes the results obtained as an average of all (10) test problems (|g]) per
instance. The first three columns of the table denote the number of delivery orders per vehicle,
the number of DO, and the total number of nodes, respectively. The remaining columns
illustrate for each one of the investigated algorithms the total distance traveled (TD), the number
of test problems (out of 10) that a transfer operation took place (JU]) and the computational
time in seconds (CT). Finally, the bottom section of the Table presents the average values per
column (‘Mean’) and the percentage improvement (‘%Imp’) w.r.t the reference case (i.e. NTA
solution). Note that results are not provided for LTASP® for|Cy| € {6,7}, since LTAS* could not

solve the related cases within reasonable computational times (due to the problem size).

Table 7.5. Detailed results for NTA and the investigated LTA algorithms

cd IFl N NTA LT LTA; LTAY" LTA,
TD CT 1D U __CT TD |y _CT 1D |y _cT TD U CT
2 9 32186 01 30322 7 03 30374 7 18 2880 9 1057 2827 8 03
3 10 34254 01 33403 8 05 33825 6 14 30385 9 2468 30676 9 07
4 11 34355 02 32976 6 36 32076 6 18 31623 7 34863 31943 7 07
5 1 ae.2 05 as2 7 27 082 5 15 32080 O 36002 33016 9 17
6 13 36512 13 35270 8 251 35607 6 17 32041 9 32290 33215 9 31
7 14 38259 24 36944 8 190 37686 7 38 35370 9 33646 35377 9 36
2 11 37702 01 34949 9 37 35788 8 25 32231 9 32088 32090 8 12
3 12 40374 02 37607 9 87 3821 7 15 3563 10 36002 36034 8 13
4 13 39120 06 35929 8 131 37301 6 27 31920 8 363L7 32443 8 27
3 5 1 4167 12 39815 8 277 40080 7 41 39123 9 36012 89377 7 35
6 15 40252 35 36138 9 2007 36579 8 11 32076 10 32187 33178 10 48
7 16 40373 55 38954 8 2047 30069 8 118 36537 10 52494 36844 10 53
2 13 42045 02 38773 9 20 30001 9 2 35566 10 36004 35900 10 31
3 14 a5 06 3792 10 40 063 10 4 32205 10 36025 32602 10 43
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icl IFl N NTA LTA?" LTA; LTAY" LTA,
TD CT__ 1D U __CT TD U _CT 1D U _CT TD |y _CT
4 15 42553 14 41475 7 55 41532 7 55 36770 10 36055 37170 10 91
5 16 45407 38 41505 9 98 42636 9 98 39127 10 36561 39327 10 98
6 17 45282 81 39179 10 527 40065 10 112 34756 10 42616 35465 10 126
7 18 45109 168 40433 10 5934 41616 10 116 3587.5 10 45674 37009 10 14
2 15 41510 07 36361 10 671 372905 10 81 33011 10 38133 33382 10 7
3 16 49870 05 41653 9 506 42629 9 76 37241 10 37949 37250 10 59
4 17 45129 07 39320 10 4087 40349 10 63 37089 10 49742 37587 10 84
> 5 18 4909 10 44593 O 15512 45596 8 89 39107 10 55583 40180 10 96
6 19 48178 18 45034 10 12711 45912 8 12 39953 10 72364 41548 10 127
7 20 51405 34 44585 10 11427 46473 9 135 41215 10 80132 41263 10 128
2 17 45890 05 41152 10 1899 41916 10 8 - - - 37649 10 69
3 18 49729 05 43553 9 1835 45066 9 81 - - - 3901 9 62
4 19 48166 09 41372 10 10016 43664 10 97 - - - 39148 10 97
® 5 0 52060 15 44286 10 23011 45398 10 94 - - - 39839 10 107
6 21 53707 30 45291 9 10783 45349 9 105 - - - 42346 10 116
7 22 54012 39 48514 10 16524 48748 10 128 - - - 42157 10 122
2 19 53377 05 43415 10 2030 44397 10 84 - - - 39610 10 94
3 20 51280 11 43584 9 25207 44758 9 83 - - - 39158 10 106
4 21 53223 14 44513 10 18430 46078 9 109 - - - 4089 10 119
"5 22 51507 28 44548 10 10566 46516 O 106 - - - 42350 10 104
6 23 55398 43 49524 8  8l21 49721 8 123 - - - 44069 10 128
7 24 53509 66 48066 8 37340 48787 8 158 - - - 44066 10 23
Mean 45049 23 40444 89 6234 41288 84 75 35096 O5 38844 37329 95 7.6
%Imp 10.2% 8.3% 22.1% 17.1%

In the following, we analyze the performance of the heuristic approach compared to its optimal
counterpart. The performance of LTA compared to NTA is analyzed in Section 7.5.2. Figure

7.11 presents the average deviation of LTA¢ and LTA4 from their optimal counterparts LTA‘f’pt

and LTA‘&pt, respectively. Performance is assessed in terms of routing costs, and results are
presented for each number of deliveries per vehicle (C;) averaged over all DO levels and test
problems (|g2]). According to this figure, the proposed heuristic seems to be highly competitive
with respect to the optimal solutions of the MILP solver. In particular, for the fixed transfer
location case, the solutions obtained by the heuristic have an average deviation of 1.8% from
the optimal ones. When load transfer is allowed at any not yet served customer, the average
deviation of the heuristic solution from the optimal is about 1.0%. The deviation for both cases

seems to be consistent throughout the different numbers of delivery orders per vehicle (value
Cr).
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Figure 7.11. Overall heuristic assessment (deviation from optimal)

Regarding computational effort, Table 7.5 shows that the proposed heuristic arrives at the
solution in less than 10 seconds on average for all cases. This validates its efficiency and
suitability for practical dynamic applications for which fast solutions are required. It should be
noted here that the greatest portion of computational effort is spent in solving the VRP-like
problem (Stage | of the algorithm described in Section 7.4.2.1).

7.5.2 Re-optimization with load transfers for a pair of vehicle routes

In this Section we consider again the case of two vehicles, and investigate further the benefit of
load transfers during re-optimization w.r.t. the policy that does not allow such transfers. To do
S0, we investigate the application of load transfers (LTA) for a pair of vehicles with overlapping
routes and compare it with the solution provided by NTA. Recall that LTA is applied after the
solution of the re-optimization problem, which typically results to overlapping routes, as
described in Section 7.3.1. We investigate two operating scenarios: a) a case in which both
vehicles are en route, and b) a case in which one of the two vehicles is located at the depot (i.e.
dispatched from depot to serve newly received DO after the solution of NTA, but before the

application of LTA).

7.5.2.1 Both vehicles en route

This is the case of Section 7.5.1. Thus, no new experiments are conducted, but the results

presented already in Table 7.5 are further analyzed.

Figure 7.12 illustrates the performance of LTA¢and LTA4 (heuristic procedure of Section 7.4.2)

in terms of percentage difference (improvement) from the NTA solution (B&P heuristic of
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Chapter 4.7), that is %(TDyra — TDyra)/TDnra. The results are presented per number of
deliveries per vehicle (C). For each C, value the Figure presents the average cost
improvements over all DO levels and test problems. The overall average performance is also

provided.

According to the Figure, both LTA algorithms outperform NTA in all investigated instances in
terms of routing costs. In particular, LTA¢ and LTAy offer savings of 7.9% and 16.5% on
average, respectively. As expected, the option of allowing loads to be transferred at the location
of any not yet served customer (LTAq) leads to significantly higher savings. Furthermore, the
performance of both LTA algorithms improves w.r.t. the number of delivery orders per vehicle,
as expected, since the longer the routes, the more chances for significant overlaps and more
possibilities for load transfers. This indication leads also to the assumption that load transfer
policies might be more preferable during early re-optimization cycles, when vehicles have not
executed significant portion of their routes.

25%
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< 20% M LTA, 19.0%
17.3%
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2
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=]
c 12.1% 12.0%
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Figure 7.12. Average performance of LTA w.r.t. the number of delivery orders per vehicle

7.5.2.2 The case of one vehicle located at the depot

The tests for this case were generated based on the customer coordinates of the Solomon
benchmarks (Solomon, 1987; see description on benchmarks in Chapter 5, Section 5.4.1.2). In
order to assess the impact of customer geographical distribution on the performance of LTA,
we used Solomon instances from both the R and C configurations. For each configuration, we
generated cases consisting of 15, 25, and 50 customer orders. The number of customers was
limited to 50, since only two vehicles were involved. For each of those 6 test sets (2 types of
geographical distribution, 3 levels of number of customers), we investigated cases with and

without TW, resulting in a total of 12 test cases, as shown in Table 7.6.
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For the test cases with 15 customers and TW, we generated one test problem for every
benchmark instance in the R1 and C1 datasets, i.e. 11 and 8 test problems, respectively (note
that R101 and C101 instances were excluded because their tight TW profile cannot offer any
savings by applying load transfers). For the test cases with 25 or 50 customers and TW, we
generated one test problem for every instance in the R2 and C2 datasets (i.e. 11 and 8 test
problems, respectively) for each level of the number of customers. It is noted that the R2 and
C2 datasets permit the assignment of 25 and 50 customers in 2 vehicles. For the test cases (of
15, 25 and 50 customers) with no TW, we employed instances vrpnc8 and vrpncl4 of
Christofides et al. (1979). These instances do not have customer TW but use the same customer
coordinates as in Solomon’s R1 and C1 datasets. For each one of the vrpnc8 and vrpncl4, we
generated 10 different test problems (using random selection of customers from the original
vrpnc8 and vrpncl4 instances). Based on the above, a total of 117 test problems were generated,

as shown in Table 7.6.

Table 7.6. Test cases

Test Corresponding Customer Geographical Time windows # Test
case Benchmark Orders (V) Distribution (R?) (TW) problems
1 R1 15 R ™ 11
2 vrpnc8 15 R NoTW 10
3 C1 15 C TW 8
4 vrpncl4 15 C NoTW 10
5 R2 25 R TW 11
6 vrpnc8 25 R NoTW 10
7 Cc2 25 C TW 8
8 vrpncl4 25 C NoTW 10
9 R2 50 R TW 11
10 vrpnc8 50 R NoTW 10
11 Cc2 50 C TW 8
12 vrpncl4 50 C NoTW 10

For each test problem, customers were randomly selected from their original corresponding
benchmark problem. Note that we skewed the selection towards consecutive customers for the
C configuration instances (due to the sequential order of customers within clusters in the
original benchmark instances). Customer characteristics, shift duration and capacity restrictions

were considered as per the original benchmarks.

The following also hold for all test problems: i) for each test problem, we randomly selected
static (delivery) orders and DO as per Table 7.7; ii) the initial solution corresponds to the
optimal assignment of all delivery orders to one of the two available vehicles, while the other

is located at the depot, iii) re-optimization is triggered at the time the vehicle arrives at
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(11 + 1) — th customer (see Table 7.7); iv) as in previous Sections, for each test problem, we
applied NTA, LTAf and LTAg; V) the fixed transfer location was considered to be the centre of

mass of the customer nodes.

Table 7.7. Customer characteristics of the generated instances

Number of customer orders

Total Deliveries DO n
15 9 6 2
25 13 12 2
50 32 18 5

Table 7.8 summarizes the results obtained for each test case. Results have been averaged over
all test problems within a test case. The first three columns of the Table indicate the
characteristics of each case, according to Table 7.6. The subsequent column sets present the
performance of NTA, LTA; and LTAy; i.e., the total distance travelled (TD), the total
computational effort (CT), the number problems in which a transfer operation took place (|U|)

and the percentage deviation of each LTA strategy from NTA (%Dev).

Table 7.8. Detailed results for NTA and the proposed LTA algorithms

Test Rz Tw In?:ta NTA LTA¢ LTAq

case nces TD CT D U CT %Dev TD |U CT  %Dev
1 15 R TW 11 2971 31 2812 7 46  54% 2671 10 47  101%
2 15 R NoTW 10 2877 63 2576 9 43  105% 2494 10 61 133%
3 15 C TW 8 2237 34 1760 7 41  213% 1687 8 59  24.6%
4 15 C NoTW 10 2105 78 1839 9 45 126% 1803 10 63  143%
5 25 R TW 11 4694 61 4026 9 251 1429% 3978 11 272  152%
6 25 R NoTW 10 386 182 3350 10 217 134% 3251 10 226 159%
7 25 C TW 8 2852 54 2539 8 203 110% 2363 8 139 17.1%
8 25 C NoTw 10 3042 304 2600 10 193 145% 2514 10 163 17.4%
9 5 R TW 11 6880 151 6206 11 438 98% 5988 11 416 13.0%
10 50 R NoTW 10 5714 339 5030 10 426 120% 496 10 403 13.1%
11 5 C TW 8 5475 152 4754 8 419 132% 4407 8 494  195%
12 50 C NoTW 10 4058 451 3599 10 431 113% 3416 10 459 158%

Mean  389.8 158 3424 9.0 22.9 12.4% 3295 9.7 23.4 15.8%

The table clearly shows the superiority of both LTA; and LTA4 over NTA for all investigated
cases. Another interesting observation is that load exchanges are performed in more than 90%
of the investigated cases (value |U]), illustrating the significance of employing a transfer policy
in such a setting. LTA provides the solution in less than 1 minute (even for the case of 50

customers).
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Figure 7.13 illustrates the overall performance of LTA w.r.t. geographical distribution and TW
parameters. The results shown are the averages of all related test problems. The performance is
reported as a percentage improvement (saving) over NTA. According to the Figure, LTA
outperforms NTA in all cases with a tendency of savings to increase when customers are
clustered (C configuration). This can be attributed to the fact that the vehicle en route (assigned
with delivery orders) may travel to different clusters. When the DO are introduced, under NTA

both vehicles may be forced to visit the same clusters, leading to inferior results.
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Figure 7.13. Average performance of LTA w.r.t. geographical distribution and TW patterns

According to Figure 7.13, LTAq4 consistently outperforms LTA¢ in all cases and this superior
performance seems to be enhanced in clustered cases. What is interesting to note in this
operating scenario and in contrast to the case investigated in Section 7.5.2.1 (both vehicles en
route), is that LTA seems to be more competitive to LTA, especially for cases where customers
are distributed uniformly (R) and TW are not present. This may be caused by the flexibility of
the vehicle located at the depot to travel directly to the fixed transfer location and pick-up the
transferred loads. Finally, LTA seems to offer higher savings when TW are imposed and
customers are clustered, compared to the non-TW cases. This may be attributed to the fact that
TW may force vehicles under NTA to re-visit the same clusters more than once, which will
cause higher costs due to the typically long inter-cluster distances. This effect may be

moderated when load transfers are introduced (i.e. each vehicle travels to a single cluster).

7.5.3 Re-optimization with load transfers for multiple (more than two) vehicles

To investigate the performance of LTA in cases in which more than two vehicles are involved,

we employed indicative cases with and without TW. For the former, we used two (2) of the
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benchmark instances of Solomon (1987), i.e. R109 and R112 with average TW width of 25%
and 50% of the allowed working time (T,qx), respectively. Note that computational
experiments not presented in this Section have illustrated that there is very limited benefit from
allowing transfer operations in cases in which the average TW width is relatively tight (i.e. less
than 25% of T,,,4,). In order to investigate cases with no TW, we employed the vrpnc8 instance
of Christofides et al. (1979) that uses the same customer coordinates as the Solomon R109 and

R112 instances.

For each one of the three instances, we generated 5 different problems (different selection of
delivery orders), resulting in a total of 15 test problems. 50% of delivery orders were randomly
selected from the 100-customer problem; for the remaining 50 orders (of the 100-customer
problem), we randomly assigned a time of arrival (h;, i € F) during the window [0,0.75 * Ty, qx]
according to a continuous uniform distribution. We selected 33% of those that arrive earlier to
form the set of DO.

The following also apply in the current experimental cycle: (i) the initial solutions (assignment
of delivery orders to routes) were obtained by a Clark & Wright savings heuristic (Clark and
Wright, 1964) followed by a Reactive Tabu Search metaheuristic (Osman and Wassan, 2002)
used as post-optimization; (ii) re-optimization is triggered at the time when the last DO have
been received; (iii) the re-optimization problem was solved following the framework presented
in Section 7.4.1 (Figure 7.7); (iv) for the following investigation, we employed only the LTA4

algorithm.

Table 7.9 provides relevant information per instance as an average of all test problems of this
instance; in particular, we present the total number of orders considered during re-optimization
(Total), the total number of delivery orders (SO) and the number of DO. Additionally,
information regarding the number of SO and DO per route is provided. The number of routes
reported corresponds to the solution prior to LTA.

Table 7.9. Information of each investigated instance during the re-optimization cycle

Instance Total SO DO # Routes SO/route DO/route
R109 46.5 29.5 17 8.5 35 2.0
R112 48.6 31.6 17 7.2 4.4 2.4

vrpnc8 48.6 31.6 17 7.6 4.2 2.2

The results obtained are summarized in Table 7.10 per instance, averaged over all test problems.
The first two columns correspond to the instance and the percentage of routes involved in load-

transfers w.r.t. the total number of routes after the application of NTA (%P). The subsequent
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columns are grouped in two sets: a) the first set (4 columns) presents the performance of LTA
vs. NTA w.r.t. the complete solution (all routes), and b) the second set presents the performance
of LTA vs. NTA w.r.t. the routes participating in load-transfer operations (transfer pairs). In
each set, we report the routing cost obtained from NTA and LTA4, the percentage savings of
LTA4 over NTA (%Dev) and the total computational effort (CT) in seconds. The CT for the
first set (complete solution) comprises the time for the solution of the re-optimization problem
and the application of LTA; CT for the second set reports only the average time for the solution
of LTA involving the pairs for which transfers took place. Finally, the last row of the Table

reports average performance indicators per instance.

Table 7.10. Detailed results for NTA and LTA4

_ Complete solution Transfer pairs
Instance %P
NTA LTA; %Dev CT NTA LTA; %Dev CT
R109 16.0%  762.7 751.5 1.5% 15.3 196.8 189.8 3.5% 3.6
R112 16.7%  646.4 629.9 2.5% 20.8 203.9 190.2 6.7% 54

vrpnc8 27.0% 581.0 5481 5.7% 50.7 2220  206.5 7.0% 12.9

Average 19.9% 663.3  643.2 3.2% 28.9 207.6 1955 5.7% 7.3

Based on the computational results presented in Table 7.10, LTA seems to provide savings over
all reported instances, with routing cost reductions of up to 5.7% with respect to the complete
solution. The savings reported for the transferred pairs present similar behavior to the one
reported in Section 7.5.2 (on the average), especially for the NoTW case (vrpcn8), considering
that in the current scenario, each route comprises of 4 delivery orders on the average. The results
also indicate that as TW width increases, LTA is able to identify more candidate pairs for
transfer (%P value). This also leads to improved results. The results are also illustrated, perhaps
more clearly, in Figure 7.14. From this Figure it is clear that the performance of LTA improves
significantly when the TW width increases from medium (R109) to large (R112) or none

(vrpnc8).
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Figure 7.14. Average performance of LTA on the full re-optimization problem

7.5.4 Performance of re-optimization strategies in DVRPMB-LT

In this Section, we evaluate the performance of LTA compared to NTA under different re-
optimization policies. To do so, we employed the 100-customer instance without TW of Section
7.5.3 (vrpnc8). Based on this instance, we generated 5 different test problems (different
selection of delivery orders) by randomly selecting 50% of the customers to be delivery orders.
The remaining 50% customers form the set of DO. Each DO was assigned with a time of arrival
during the window [0,0.75 * Ty, ] according to a continuous uniform distribution. The initial
solutions (routes) were obtained with the same process described in Section 5.3 (note that initial

solutions involved between 5 and 6 vehicle routes).

For the experimental analysis, we employed the SRR and NRR policies, described in Chapter
5 (see Section 5.2). Recall that in SRR the re-optimization problem is solved upon the arrival
of each DO, while in NRR re-optimization is performed after the arrival of a predefined number
N of DO. For the latter, we used N = 0.1N, 0.2N, 0.33N (where N is the total number of DO)
hereafter designated as NRR-1, NRR-2 and NRR-3. Each policy was tested under the partial-
release tactic, i.e. only the DO scheduled for implementation prior to the next re-optimization
cycle are released for implementation; the others are re-considered in the following re-
optimization cycle. Each re-optimization problem was solved following the framework
presented in Section 7.4.1 and only the LTA4 algorithm was employed.

In order to assess the performance of LTA and NTA under the different re-optimization
policies, we employed the so-called value of information (VOI) metric (Mitrovic-Minic et al.,

2004), described in Chapter 5 (see Section 5.4.1.1) which measures the percentage deviation of
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the dynamic problem’s solution compared to the solution of its static counterpart (i.e. when all

DO are known prior to vehicles are dispatched from the depot).

Table 7.11 summarizes the results obtained from solving the dynamic test problems by each re-
optimization policy using the NTA and LTA re-optimization algorithms. Specifically, the Table
presents the average VOI for all five test problems per policy and re-optimization algorithm
(VOI, designates the average VOI for the * algorithm). The percentage improvement in the last

column is the relative percentage improvement of the VOI resulting from the load transfer

VOILTAo—VOINTA
VOINTA

approach; i.e. — ( )x100.

Table 7.11. Performance of LTA and NTA per re-optimization policy

Re-optimization Policy VOInta VOI;ta %Improvement
SRR 29.3% 26.9% 8.3%
NRR-1 30.2% 27.0% 10.4%
NRR-2 37.0% 31.8% 14.0%
NRR-3 50.0% 40.2% 19.5%

The table shows that LTA improves the results provided by NTA under all re-optimization
policies. It is interesting to notice that the percentage improvement increases when the number
of elapsed DO per re-optimization cycle increases (less re-optimization cycles). This can be
attributed to the fact that infrequent re-optimization causes larger portion of the routes to be
completed and allows fewer options available for incorporating newly arrived DO in the current
vehicles en route. Thus, new vehicles stationed at depot are dispatched in order to cover the
demand, causing significant overlaps, which benefit from load transfer operations (LTA). On
the other hand, SRR re-considers all DO not yet served providing more possibilities for DO
combinations and, thus, better allocation to the available fleet. Thus, load transfer operations
may offer limited savings. It should be noted that the percentage improvement (of Table 7.11)
in terms of distance travelled ranges from 1.9% (for SRR policy) to 6.5% (for NRR-3 policy)

on the average.
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Chapter 8: CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

The Dynamic Vehicle Routing Problem with Mixed Backhauls (DVRPMB) seeks to assign in
the most efficient way dynamic pick-up requests that arrive in real-time while a predefined
distribution plan is being executed. We addressed the DVRPMB through iterative re-
optimization. In addition to defining the re-optimization model and appropriate solution
methods, we drilled-down to significant aspects concerning the re-optimization process, we
addressed the case of limited fleet (in which not all dynamic orders may be served), and the

case in which delivery orders are allowed to be transferred to other vehicles.

Re-optimization strategies for DVRPMB

One of the critical elements for tackling DVRPMB concerns the process of updating the a priori
plan. In this research we considered two fundamental issues: a) the re-optimization problem
(how to re-optimize), and b) the re-optimization process; i.e. when to re-plan (re-optimization

frequency) and what part of the new plan to communicate to the drivers (implementation tactic).

Regarding “how to re-optimize”, we proposed a Branch-and-Price (B&P) approach, which
exploits the characteristics of the dynamic problem in hand to solve multiple sub-problems of
limited size in order to identify columns that can further enhance the value of the objective
function. This allows the algorithm to address re-optimization problems of practical size.
Additionally, we appropriately enhanced the dominance criteria used in solving the sub-
problems to discard non-promising paths without compromising optimality. For challenging
cases (e.g. without time-windows), we proposed a novel insertion heuristic operating within a
column generation framework. The latter provides efficient solutions with a limited deviation

from the optimum (2.2% on the average).
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Regarding the “when to re-optimize”, we presented and analyzed typical re-optimization
policies, i.e.: i) re-optimization upon arrival of each DO, ii) re-optimization after a certain
number of DO have been received. In addition, we investigated the effect of two
implementation tactics regarding the “what part” to release for implementation: i) immediate
release of all DO for implementation (FR) and, ii) release of only those DO that are scheduled
for implementation prior to the next re-optimization cycle (PR)!. We provided theoretical

insights regarding the expected behavior of those tactics.

We illustrated through extensive experimentation that re-optimization upon the arrival of each
DO under the PR tactic provides superior results on the average. However, this policy seems to
be the least favorite when the FR tactic is employed. Furthermore, our experimentation under
various operating scenarios has indicated the following: i) when the business case allows it, one
should always re-optimize under the PR tactic in as short re-optimization intervals as possible.
i) When the FR tactic is required due to the characteristics of the practical environment, one
should prefer re-optimization over short to medium intervals for cases of tight to medium TW,
and over medium to large intervals for wider TW cases. iii) In environments with strong

dynamism, medium interval policies (regardless of tactic) seem to provide the safest option.

The DVRPMB with limited resources (m-DVRPMB)

We also investigated the above problem for the case of limited fleet. In this case, we tested three
objective functions. In the first alternative (Z,), the primary objective is to maximize the number
of served DO; among the solutions with equal number of served DO, the one with the minimum
routing cost is the preferred one. We also introduced a second objective function (objective Z,)
that accounts for vehicle productivity during each re-optimization cycle. The objective function
attempts to maximize the number of orders served (static and dynamic) within the upcoming
re-optimization cycle, among the solutions with the same number of served DO. The third
objective function (objective Z3) assigns a profit to each order to be served at any future period,
but this profit decreases linearly depending on the period (re-optimization cycle) the order is
served. For the latter two objectives, the re-optimization time instances have to be
predetermined (known a priori). To address the m-DVRPMB, we proposed the required

modifications in both the DVRPMB model and the solution approach (column generation).

11 The implementation of this tactic depends on the technology used. Typically the driver receives only the DO to
be served next.
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We investigated initially through experimentation the effectiveness of the re-optimization
heuristic under limited resources and objective Z;. We show that the proposed B&P heuristic
offers efficient solutions also in this case with average deviation from the optimum in the order
of 1.8%. The experimentation also illustrated that the performance of the re-optimization
strategies (policies and tactics) is not affected significantly by limiting the available resources.

We also assessed the performance of the three proposed objectives in m-DVRPMB with re-
optimization occurring at predefined time instances. The results illustrated that objectives Z,
and Z; (which consider vehicle productivity) can yield higher customer service compared to
objective Z;, offering up to about 15% more DO served under certain conditions. In particular,
the experiments indicated that objectives Z, and Z; are more appropriate for cases with
increasing time-window widths (e.g. with average TW width greater than 40% of the available
working horizon), or cases for which a majority (more than 50-60%) of DO may be served by
the available fleet. In cases with narrow TW or limited fleet availability, accounting for vehicle
productivity does not seem to help appreciably. Furthermore, with respect to re-optimization
strategies (policy and tactic), the results illustrate that objectives Z, and Z; perform significantly
better than objective Z; under the FR tactic, and objective Z; seems to be more efficient for the

preferred short re-optimization intervals (i.e. 5-15% of the available working horizon).

The application of the proposed method for the m-DVRPMB in a next-day courier service
provider compared the performance of the proposed B&P heuristic with a) the performance of
the process followed by the dispatchers, and b) that of an insertion-based heuristic proposed by
Ninikas et al. (2014). The results indicate that our B&P algorithm significantly outperforms

both the current planning practices of the courier operator and the heuristic used for comparison.

The DVRPMB with Load Transfers (DVRPMB-LT)

We investigated a challenging variant of DVRPMB that allows transfer of orders between
vehicles during plan implementation (real-time). In particular, load transfers are considered in
the re-optimization problem, which is solved repeatedly in order to incorporate newly received
orders in the plan. Allowing for load transfers adds significant complexity to the problem and

needs to be dealt in a fundamentally different way compared to the conventional DVRPMB.

For the underlying re-optimization problem, we developed an appropriate model using an arc-
based formulation. To solve re-optimization problems related to practice, we restricted each
vehicle to participate to up to one transfer operation, and proposed an efficient heuristic

framework. The latter considers all possible vehicle pairs that may benefit from a load transfer
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operation, and solves the related pair-wise problems with an appropriate heuristic procedure.
The latter provides solutions of high quality with a limited deviation from the optimal ones (less

than 2% on the average).

Considering the re-optimization problem for a pair of vehicles, our experimental results have
indicated that load transfer operations may offer average savings of up to 22% when transfer
may take place at the location of any not yet served customer, and up to 14% when a fixed
(predefined) transfer location is considered. These savings tend to increase when the number of
delivery orders increases or when customers are clustered. For the case of multiple vehicles,
the re-optimization savings with load transfers reached 5.7% w.r.t. the no transfer case. These

savings tend to increase under wider time-windows.

Considering the full dynamic case, load transfer operations result in significant savings,
especially under less frequent re-optimization, in which the possibilities of load transfers
increase. Even if re-optimization is performed upon the arrival of each new order (SRR policy),

the savings are substantial and in the order of 7%.

8.2 Future research

The DVRPMB studied in this dissertation forms a dynamic variant of the more generic one-to-
many-to-one PDPs (1-M-1 PDPs). An interesting research direction is to consider the dynamic
counterparts of other relevant problems of this family, including the: i) dynamic version of
VRPCB, in which linehaul orders (deliveries) must be served prior to backhaul orders (pick-
ups) and ii) the dynamic version of VRP with Simultaneous Pickup and Delivery Demands.
The performance of the various re-optimization strategies (policies and tactics) proposed in this

dissertation may be assessed within these contexts.

A second interesting extension of the current work is to study probabilistic models that consider
historical data in order to forecast dynamic demand. Such a model may be combined with the
proposed re-optimization process in order to select the appropriate re-optimization policy (i.e.
dynamically adapt the re-optimization frequency according to the expected arrival pattern of
DO) and tactic (selectively release DO for implementation, regardless of the time they are

scheduled to be served).

A related consideration in this dynamic setting concerns the prioritization of orders at each re-
optimization cycle. Specifically, during a certain re-optimization cycle it may be beneficial to

favor the service of certain customer orders (e.g. urgent ones) in the expense of others, under
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the assumption that the excluded (e.g. not urgent) ones can fit in the plan during a subsequent
re-optimization cycle. Thus, one should examine whether it is beneficial to prioritize service of
certain orders, and if so, under which conditions this is favorable to the problem’s objective.
This consideration can be also be beneficial when forecasting information is available and may

be used to prioritize certain orders appropriately.

In the current research, it has been assumed that vehicles are dispatched according to the
problem needs, i.e. in order to respond to the demand (customer orders) as it is known at the
time of re-optimization. An interesting direction, which is also relevant in practice, is to study
different dispatching policies, i.e. dispatch more vehicles than necessary (or all vehicles
available at depot) at the start of operations or during execution (re-optimization), in
anticipation of additional work to come. The performance of these dispatching policies may be
studied with respect to various factors of the environment (e.g. degree of dynamism, time-
window profiles, etc.), or under the various re-optimization strategies. Those dispatching
policies can be investigated in combination with waiting strategies (Mitrovic-Minic and
Laporte; 2004, Ichoua et al.; 2006) and with stochastic methods that exploit knowledge about
future demands (Ichoua et al.; 2006).

Regarding the solution of the re-optimization problem, we have focused in this dissertation on
column-generation-based algorithms, since we could exploit the structure of the problem in
hand and offer near-optimal solutions in reasonable times. However, advanced heuristics or
metaheuristics may be investigated targeting faster computational times that can be scalable to

the problem size.

Proposals for future research in the interesting case of load transfer operations include the

following:

e Following the formulation we developed in Chapter 7, a set-partitioning problem can be
also formulated (route-based) in order to develop more efficient algorithms of the column
generation type (B&P). As proposed by Cortes et al. (2010), the set-partitioning problem
could be formulated by introducing additional columns when the transfer location is
introduced. Feasibility of the route sequence in order to build a complete trip will be ensured
by appropriate binary variables. This approach is expected to permit column generation
algorithms to deal with cases of large size.

¢ In this dissertation, for the solution of the re-optimization problem we have assumed that

each vehicle is allowed to participate in only one transfer operation throughout its remaining
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(not executed) route. Relaxing this assumption and allowing multiple transfers per vehicle
(one-to-many policy) could potentially lead to lower costs. Development of more efficient
algorithms to handle this context, is encouraged as part of future research.

e The investigation of load transfer operations along with diversion strategies (Ichoua et al.;
2000, see also Section 2.3.3.3) may also be an interesting topic of future research. Diverting
a vehicle away from its current destination to meet another vehicle operating in the vicinity,
may offer higher savings in the total distance traveled.

e More practical aspects for future research on load transfer operations may involve: a)
examining the behavior of the algorithm and the overall benefit of load transfers for
heterogeneous fleets (those with vehicles of different capacities) and b) applying penalties
reflecting the duration of the load-transfer operations, as well as the related interruption, in
order to ensure that load-transfers will not be performed in the expense of valuable

resources (e.g. time).
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APPENDICES

Appendix A. Detailed results of the experiments presented in Chapter 5

We present here the detailed experimental results, which were summarized in Chapter 5.
Specifically, Table A.1 provides additional performance indicators of HEUR and OPT
algorithms per investigated dataset, following the results displayed in Table 5.3 of Chapter 5
(see Section 5.4.2); TD refers to total distance traveled and NR refers to number of routes in

the final solution. All values are averages w.r.t. all problems and instances.

Tables A.2-A.7 present the detailed results of the re-optimization strategies per instance as
illustrated in Section 5.4.3 of Chapter 5. In particular, Tables A.2-A.3, provide the detailed
results in terms of VOI, while Tables A.4-A.7 present detailed performance indicators (distance
travelled and number of routes) per re-optimization strategy and instance. Note that for those

Tables, the values presented are averages w.r.t. all problems (replicates).

Table A.1. Additional performance indicators of HEUR and OPT algorithms

dod = 25% dod = 50%

Dataset  Nodes HEUR OPT HEUR OPT
TD NR TD NR TD NR TD NR
R1 100 1404.0 15.6 1375.9 15.0 1443.8 16.1 1417.9 15.7
C1l 100 958.9 111 933.8 10.6 941.1 10.8 917.8 105
RC1 100 1573.4 15.1 1534.3 14.6 1597.2 14.7 1565.8 14.7
MR2 50 802.4 4.1 785.9 35 816.0 5.0 798.8 4.1
MC2 50 483.4 3.8 476.9 3.6 517.3 3.9 507.6 3.7
MRC2 50 879.3 5.0 855.9 4.3 926.4 5.4 906.0 4.3
Average 1016.9 9.1 993.8 8.6 1040.3 9.3 1019.0 8.8
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Table A.2. Detailed performance of re-optimization strategies for R1, C1 and RC1 instances and for 25% and 75% dod

dod = 25% dod = 75%
Instance FR PR FR PR

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3
R101 4.8% 4.6% 5.7% 8.9% 3.1% 4.0% 5.5% 8.9% 38.3% 36.2% 49.7% 87.7% 27.2% 32.4% 49.5% 87.7%
R102 14.3% 13.2% 12.4% 19.6% 12.1% 13.1% 12.3% 19.6% 47.2% 42.7% 43.9% 94.1% 45.4% 41.2% 43.4% 94.0%
R103 16.9% 19.0% 17.4% 25.5% 15.0% 18.2% 17.4% 25.5% 42.9% 37.5% 46.8% 81.6% 24.5% 27.7% 36.1% 77.7%
R104 28.8% 31.7% 31.9% 41.1% 25.9% 30.3% 31.9% 41.1% 69.0% 40.9% 45.5% 39.1% 15.4% 14.5% 29.3% 32.6%
R105 8.8% 8.3% 7.1% 13.1% 3.9% 5.8% 6.9% 13.0% 22.6% 17.2% 27.9% 53.3% 5.9% 7.0% 20.2% 54.0%
R106 10.9% 11.1% 13.7% 22.2% 9.0% 10.8% 13.0% 22.2% 64.1% 66.6% 79.9% 139.8% 47.8% 62.3% 79.2% 139.8%
R107 13.4% 15.0% 16.1% 28.7% 10.8% 14.6% 15.5% 28.7% 43.7% 41.1% 47.3% 94.9% 31.0% 28.4% 38.0% 86.7%
R108 31.0% 23.5% 25.9% 46.5% 27.2% 20.4% 25.9% 46.5% 66.2% 45.9% 48.5% 42.1% 16.0% 18.4% 29.3% 35.4%
R109 7.0% 5.7% 5.4% 6.1% 2.4% 2.7% 4.0% 5.6% 41.8% 21.8% 15.2% 27.3% 6.0% 8.3% 11.7% 26.2%
R110 19.0% 18.1% 20.9% 21.4% 13.7% 15.2% 19.2% 21.2% 64.7% 45.9% 54.9% 79.3% 29.0% 28.6% 49.6% 75.7%
R111 17.4% 18.2% 19.7% 25.4% 12.2% 14.7% 17.9% 24.1% 50.4% 45.0% 50.9% 85.9% 24.8% 22.5% 35.7% 80.5%
R112 17.6% 12.7% 11.6% 9.6% 3.8% 4.6% 4.6% 6.3% 95.2% 56.5% 38.0% 25.2% 19.3% 16.9% 15.1% 15.8%
R100 30.6% 28.4% 26.1% 23.6% 15.3% 20.1% 19.9% 19.4% 109.3% 79.1% 87.0% 101.0% 40.5% 44.5% 59.6% 80.9%
C101 6.1% 10.8% 17.7% 44.6% 57% 10.7% 17.7% 44.6% 1.4% 46.4% 46.4% 59.7% 1.4% 46.3% 46.3% 51.7%
C102 5.6% 9.4% 15.0% 33.0% 4.5% 8.4% 15.1% 33.0% 71.9% 24.8% 70.6% 86.1% 63.5% 24.4% 69.5% 76.6%
C103 14.3% 16.4% 20.4% 38.1% 12.1% 14.7% 20.8% 38.1% 58.3% 56.8% 118.3% 146.7% 52.3% 21.7% 104.1% 125.6%
C104 33.9% 20.1% 39.9% 54.6% 33.9% 20.1% 39.9% 54.6% 69.4% 63.2% 113.0% 130.2% 55.3% 43.0% 88.0% 98.8%
C105 3.3% 6.9% 17.5% 45.3% 1.6% 6.3% 16.4% 45.3% 44.0% 37.0% 145.9% 154.2% 3.6% 24.5% 136.0% 139.5%
C106 2.5% 9.6% 14.5% 38.9% 2.4% 9.5% 14.3% 38.9% 75.7% 82.9% 149.3% 169.4% 16.6% 56.9% 148.8% 177.4%
C107 21.1% 27.2% 31.4% 58.9% 19.5% 26.7% 30.8% 58.9% 51.3% 49.7% 68.2% 78.8% 17.2% 30.1% 55.7% 66.4%
C108 5.6% 10.3% 9.3% 22.5% 1.7% 6.9% 6.9% 21.7% 65.8% 44.1% 66.7% T4.7% 17.0% 31.5% 62.3% 72.8%
C109 13.9% 16.0% 17.0% 24.5% 8.8% 11.9% 13.4% 23.8% 51.7% 43.3% 61.5% 79.1% 21.1% 26.2% 57.8% 69.3%
C100 21.7% 22.4% 15.7% 23.4% 15.4% 13.2% 14.5% 18.6% 67.4% 65.6% 71.6% 83.2% 55.6% 61.2% 66.5% 74.7%
RC101 7.1% 7.2% 7.9% 10.9% 4.3% 4.2% 6.6% 10.0% 39.1% 31.5% 36.5% 38.1% 22.1% 21.7% 30.5% 34.0%
RC102 8.4% 7.7% 7.7% 10.8% 4.7% 6.7% 6.4% 10.8% 30.8% 27.9% 26.0% 39.0% 19.5% 19.1% 20.3% 39.0%
RC103 8.1% 7.0% 8.4% 7.4% 4.5% 5.0% 7.2% 6.8% 58.3% 50.1% 48.0% 61.4% 18.2% 23.8% 18.8% 44.6%
RC104 12.5% 11.5% 13.0% 21.6% 8.7% 6.7% 12.4% 21.9% 88.6% 60.0% 52.8% 69.1% 21.7% 24.8% 29.6% 37.8%
RC105 12.8% 16.0% 14.3% 17.5% 10.0% 12.7% 12.9% 16.9% 48.1% 35.1% 30.5% 41.8% 18.2% 20.1% 22.9% 29.9%
RC106 13.0% 13.1% 12.7% 11.2% 8.2% 9.9% 9.6% 9.9% 60.4% 40.5% 37.5% 35.0% 22.4% 24.6% 29.9% 31.2%
RC107 17.4% 15.4% 17.5% 18.2% 10.3% 10.3% 11.0% 12.6% 78.3% 48.4% 49.4% 39.8% 23.3% 21.6% 26.2% 28.3%
RC108 24.2% 17.5% 15.6% 12.0% 10.1% 10.5% 7.4% 9.0% 94.8% 60.3% 56.3% 42.3% 25.3% 20.6% 23.3% 29.0%
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Table A.3. Detailed performance of re-optimization strategies for R1, C1,

RC1, MR2, MC2 and MRC?2 instances and for 50% dod

dod = 50% dod = 50%
Instance FR PR Instance FR PR

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1  NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3
R101 15.9% 15.4% 17.4% 37.3% 9.4% 12.1% 17.0% 37.3% MR201 13.1% 10.1% 7.5% 8.0% 3.0% 2.4% 3.0% 4.0%
R102 30.1% 33.0% 30.8% 56.7% 24.6% 30.2% 30.6% 56.6% MR202 15.9% 11.5% 8.7% 9.0% 1.5% 1.9% 3.8% 5.0%
R103 44.3% 43.9% 41.3% 70.1% 38.9% 42.8% 40.5% 70.0% MR203 12.4% 17.4% 23.7% 24.0% 7.4% 13.8% 22.9% 25.0%
R104 33.3% 30.7% 34.9% 50.4% 25.6% 23.0% 28.9% 48.6% MR204 33.3% 47.7% 42.2% 45.0% 17.2% 27.1% 37.9% 50.0%
R105 11.4% 8.9% 12.2% 18.5% 5.2% 5.1% 9.3% 18.2% MR205 17.9% 14.9% 9.7% 10.0% 4.9% 2.3% 2.8% 6.0%
R106 29.4% 32.7% 33.7% 69.5% 18.5% 26.2% 32.1% 69.5% MR206 21.5% 21.8% 11.7% 15.0% 5.4% 3.9% 3.7% 5.0%
R107 42.5% 35.9% 40.2% 82.7% 31.4% 35.7% 39.6% 82.4% MR207 21.6% 14.3% 8.7% 10.0% 6.2% 3.3% 6.0% 7.0%
R108 37.7% 29.9% 34.2% 54.3% 24.1% 20.3% 28.6% 50.9% MR208 42.2% 42.1% 40.8% 43.0% 21.3% 22.4% 38.5% 35.0%
R109 17.7% 15.6% 12.9% 14.3% 3.8% 4.3% 5.3% 12.9% MR209 19.9% 10.7% 9.9% 10.0% 7.1% 2.2% 2.7% 7.0%
R110 39.6% 39.0% 43.4% 57.3% 27.7% 25.6% 37.6% 56.0% MR210 19.0% 15.5% 9.9% 10.0% 3.4% 2.0% 4.6% 7.0%
R111 36.5% 31.0% 32.7% 53.8% 21.1% 25.2% 27.4% 52.7% MR211 24.9% 25.8% 17.2% 18.0% 10.9% 11.7% 12.0% 13.0%
R112 54.1% 32.2% 25.3% 20.0% 9.9% 10.8% 11.6% 11.5%
R100 67.5% 56.8% 53.8% 64.9% 29.5% 31.6% 38.6% 52.2%
C101 14.4% 23.4% 72.2% 88.2% 11.8% 22.0% 72.0% 92.9% MC201 38.2% 21.8% 17.3% 8.8% 4.9% 5.3% 5.0% 5.8%
C102 30.6% 40.7% 62.1% 72.1% 25.7% 38.1% 62.1% 69.5% MC202 25.5% 10.7% 8.5% 5.0% 6.5% 4.8% 3.8% 3.5%
C103 64.1% 30.0% 70.7% 90.9% 62.5% 29.2% 68.8% 77.9% MC203  60.4% 53.9% 47.2% 66.5% 29.7% 24.9% 43.1% 66.8%
C104 57.0% 46.7% 103.9% 119.7% 64.7% 42.5% 89.0% 106.6% MC204  44.1% 51.6% 80.7% 81.4% 10.7% 15.9% 35.20% 42.3%
C105 16.9% 30.2% 70.0% 84.3% 7.9% 26.2% 65.4% 80.3% MC205 70.5% 37.7% 35.4% 26.6% 2.8% 2.7% 4.3% 4.7%
C106 17.4% 27.8% 58.5% 71.7% 5.8% 18.1% 53.1% 59.0% MC206  s50.1% 32.1% 21.8% 18.8% 4.7% 5.7% 9.2% 6.6%
C107 35.0% 37.2% 73.8% 84.9% 19.9% 28.4% 66.8% 82.3% MC207  s55.8% 31.5% 22.2% 24.1% 3.4% 4.0% 5.8% 7.5%
C108 50.3% 45.2% 37.4% 43.9% 1.1% 5.6% 32.6% 40.9% MC208  33.8% 43.3% 21.1% 15.0% 5.7% 4.4% 2.9% 1.7%
C109 33.5% 34.1% 14.2% 18.3% 7.1% 3.7% 8.2% 9.9%
C100 48.5% 48.2% 49.0% 54.8% 37.0% 41.8% 46.5% 54.8%
RC101 24.0% 18.7% 22.2% 36.1% 15.8% 16.1% 19.8% 36.1% MRC201 19.9% 17.1% 13.7% 14.0% 3.9% 1.2% 1.3% 5.0%
RC102 22.4% 17.7% 28.3% 38.5% 9.9% 11.8% 24.7% 38.5% MRC202  30.5% 20.8% 11.3% 15.0% 3.4% 1.4% 1.4% 5.0%
RC103 23.1% 20.0% 22.0% 41.9% 11.6% 13.0% 20.1% 41.8% MRC203  41.9% 29.7% 22.3% 24.0% 14.1% 11.5% 21.9% 25.0%
RC104 34.9% 36.3% 38.6% 36.1% 17.6% 18.2% 18.8% 27.3% MRC204 34.8% 41.3% 60.8% 62.0% 12.6% 27.6% 53.4% 60.0%
RC105 23.7% 24.8% 24.6% 29.0% 12.2% 15.5% 19.1% 23.1% MRC205 24.7% 16.7% 15.6% 20.0% 5.1% 1.8% 2.9% 6.0%
RC106 28.5% 22.5% 19.8% 23.4% 13.7% 14.1% 14.0% 21.9% MRC206  29.5% 18.4% 10.5% 13.0% 3.1% 1.8% 1.4% 5.0%
RC107 33.4% 27.3% 28.6% 29.8% 15.9% 15.9% 20.2% 30.2% MRC207  29.4% 21.6% 14.2% 17.0% 11.4% 3.6% 4.9% 10.0%
RC108 47.8% 30.9% 24.3% 17.8% 10.6% 12.1% 16.5% 13.1% MRC208 33.1% 24.0% 20.1% 25.0% 8.9% 7.4% 10.9% 12.0%
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Table A.4. Additional performance indicators of re-optimization strategies for R1, C1 and RC1 instances and for 25% dod

FR PR
Instance SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3

TD NR TD NR TD NR TD NR TD NR TD NR TD NR TD NR
R101 1840.1 21.3 1836.6 21.4 1855.9 21.9 1912.1 23.6 1810.3 21.1 1826.1 21.4 1852.4 21.9 1912.1 23.6
R102 1847.4 23.8 1829.7 23.8 1816.7 23.9 1933.1 26.8 1811.9 235 1828.0 23.9 1815.1 23.9 1933.1 26.8
R103 1700.8 21.2 1731.3 22.3 1708.0 22.6 1825.9 25.7 1673.1 21.2 1719.7 22.1 1708.0 22.6 1825.9 25.7
R104 1583.0 21.6 1618.6 215 1621.1 22.6 1734.1 26.3 1547.3 215 1601.4 213 1621.1 22.6 1734.1 26.3
R105 1663.8 18.2 1656.1 18.5 1637.8 18.4 1729.5 20.3 1588.8 17.4 1617.9 18.0 1634.7 18.5 1728.0 20.3
R106 1555.3 17.3 1558.1 17.2 1594.5 19.0 1713.7 21.7 1528.6 17.2 1553.9 17.4 1584.7 18.9 1713.7 21.7
R107 1478.4 15.4 1499.3 16.6 1513.6 16.9 1677.9 21.2 14445 15.1 1494.0 16.7 1505.8 16.8 1677.9 21.2
R108 1500.1 18.6 1414.2 16.4 1441.7 17.9 1677.6 249 1456.6 18.3 1378.7 16.6 1441.7 17.9 1677.6 24.9
R109 1427.2 14.0 1409.9 14.0 1405.9 14.2 1415.2 15.2 1365.9 14.4 1369.9 14.3 1387.2 145 1408.6 15.1
R110 1495.1 16.1 1483.8 16.6 1519.0 17.6 1525.3 19.2 1428.5 16.2 1447.4 16.4 1497.6 17.6 1522.8 19.3
R111 1472.0 16.9 1482.0 17.2 1500.8 17.6 1572.3 19.6 1406.8 16.3 1438.1 16.8 1478.2 17.4 1556.0 19.4
R112 1330.7 12.0 1275.2 11.8 1262.8 12.2 1240.1 12.3 11745 115 1183.6 11.9 1183.6 11.7 1202.8 12.3
R100 1317.7 13.4 1295.5 13.9 1272.3 14.3 1247.1 13.9 1163.3 12.2 1211.8 13.6 1209.8 13.4 1204.7 133
C101 973.0 12.3 1016.1 13.0 1079.4 14.5 1326.1 18.5 969.3 12.2 1015.2 13.0 1079.4 145 1326.1 18.5
C102 1044.4 12.0 1082.0 13.0 1137.3 14.1 1315.4 17.3 1033.5 12.2 1072.1 12.9 1138.3 14.1 1315.4 17.3
C103 1211.2 12.1 1233.5 12.8 1275.9 13.6 1463.4 16.8 1187.9 12.4 1215.5 12.8 1280.1 13.7 1463.4 16.8
C104 1596.3 239 1431.8 20.8 1667.9 27.2 1843.1 31.0 1596.3 23.9 1431.8 20.8 1667.9 27.2 1843.1 31.0
C105 928.7 10.9 961.1 115 1056.4 12.8 1306.3 17.2 913.4 10.9 955.7 115 1046.5 12.8 1306.3 17.2
C106 940.4 11.1 1005.5 125 1050.5 13.3 1274.3 17.6 939.5 11.1 1004.6 12.3 1048.6 133 1274.3 17.6
C107 1130.1 10.5 1187.0 115 1226.2 12.6 1482.8 16.9 1115.2 10.6 1182.4 11.6 1220.6 12.8 1482.8 16.9
C108 973.3 10.4 1016.7 11.0 1007.5 115 1129.1 14.1 937.4 10.8 985.3 113 985.3 115 1121.7 14.1
C109 1067.8 10.0 1087.5 10.0 1096.8 10.3 1167.2 115 1020.0 10.4 1049.0 10.4 1063.1 10.5 1160.6 11.6
C100 1326.4 13.1 1334.0 13.6 1261.0 12.9 1344.9 14.5 1257.7 13.9 1233.7 13.3 1247.9 13.1 1292.6 14.0
RC101 1995.0 20.0 1996.9 20.0 2009.9 20.6 2065.8 21.8 1942.8 20.0 1941.0 20.0 1985.7 20.4 2049.0 21.8
RC102 1817.1 18.4 1805.4 18.8 1805.4 18.8 1857.3 19.6 1755.1 18.2 1788.6 18.8 1783.6 18.6 1857.3 19.8
RC103 1653.6 15.6 1636.7 15.8 1658.2 16.0 1642.9 16.2 1598.5 15.6 1606.1 15.6 1639.8 15.6 1633.7 16.2
RC104 1557.2 14.0 1543.3 14.0 1564.1 14.8 1683.1 17.0 1504.6 14.0 1476.9 13.6 1555.8 14.8 1687.3 17.0
RC105 2018.4 20.0 2075.7 20.6 2045.3 20.4 2102.5 21.6 1968.3 19.8 2016.7 20.4 2020.2 20.2 2091.8 21.6
RC106 1755.1 14.8 1756.7 15.6 1750.5 15.2 1727.2 15.2 1680.6 15.2 1707.0 15.6 1702.3 15.4 1707.0 15.2
RC107 1669.2 14.8 1640.8 15.2 1670.6 15.6 1680.6 16.4 1568.2 15.2 1568.2 14.8 1578.2 15.2 1600.9 15.6
RC108 17415 14.6 1647.6 14.2 1620.9 14.6 1570.5 13.8 1543.8 14.0 1549.4 13.8 1506.0 13.8 1528.4 13.4
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Table A.5. Additional performance indicators of re-optimization strategies for R1, C1 and RC1 instances and for 50% dod

FR PR
Instance SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3

TD NR TD NR TD NR TD NR TD NR TD NR TD NR TD NR
R101 2472.7 25.1 2435.2 25.7 2676.5 27.1 3356.0 37.3 2274.3 23.7 2367.2 24.6 2673.0 26.7 3356.0 37.3
R102 2407.8 29.1 2334.2 30.1 2353.8 30.3 3175.0 42.0 2378.4 27.6 2309.7 29.5 2345.7 30.2 3173.4 42.0
R103 2037.4 28.8 1960.4 28.7 2093.0 30.7 2589.1 413 1775.0 28.0 1820.7 28.1 1940.4 30.5 2533.5 41.2
R104 1890.1 154 1575.9 15.9 1627.3 18.5 1555.7 244 1290.7 16.9 1280.6 15.7 1446.1 18.2 1483.0 243
R105 1887.2 18.3 1804.1 17.8 1968.8 18.9 2359.8 21.8 1630.1 17.8 1647.1 17.9 1850.3 18.7 2370.5 22.1
R106 2285.1 19.9 2319.9 215 2505.1 23.2 3339.3 37.2 2058.1 18.7 2260.1 20.2 2495.4 23.0 3339.3 37.2
R107 1806.7 19.9 1774.0 19.6 1852.0 24.2 2450.5 37.6 1647.0 19.1 1614.4 20.1 1735.1 24.0 2347.4 375
R108 1820.3 13.2 1597.9 13.9 1626.4 17.2 1556.3 242 1270.5 14.8 1296.7 14.0 1416.1 16.9 1482.9 233
R109 1902.5 15.2 1634.1 14.8 1545.6 153 1707.9 16.5 1422.1 14.6 1453.0 14.2 1498.6 14.7 1693.2 16.1
R110 2025.2 18.7 1794.1 19.0 1904.7 24.2 2204.8 29.4 1586.2 19.1 1581.3 18.0 1839.6 23.6 2160.5 29.3
R111 1872.1 19.1 1804.9 18.6 1878.4 20.8 2314.0 275 1553.5 177 1524.8 18.6 1689.2 19.9 2246.8 271
R112 2280.8 14.1 1828.6 135 1612.4 13.8 1462.9 13.9 1393.9 13.3 1365.9 12.9 1344.9 12.5 1353.0 13.0
R100 2154.3 17.9 1843.5 18.0 1924.8 19.6 2068.9 23.7 1446.2 16.0 1487.3 16.2 1642.8 18.5 1862.0 215
C101 936.7 12.3 1352.4 14.2 1352.4 22.9 1475.2 24.1 936.7 124 1351.5 143 1351.5 23.1 1401.3 24.1
C102 1799.3 13.5 1306.3 15.8 1785.7 20.2 1947.9 252 1711.4 13.9 1302.1 15.8 1774.2 20.2 1848.5 252
C103 1881.0 16.3 1863.2 15.8 2593.9 20.2 2931.4 223 1809.7 15.9 1446.1 143 2425.2 19.3 2680.7 223
C104 1730.8 11.9 1667.5 13.8 2176.3 29.1 2352.0 28.5 1586.7 18.3 1461.1 151 1920.9 27.1 2031.2 26.5
C105 1285.1 11.2 1222.7 133 2194.6 19.9 2268.6 23.4 924.6 1.1 11111 13.8 2106.2 19.8 2137.4 20.3
C106 1629.7 12.2 1696.5 14.7 2312.4 21.2 2498.8 23.6 1081.5 11.8 1455.3 13.8 2307.7 20.9 2573.0 227
C107 1424.9 10.1 1409.8 10.3 1584.0 15.8 1683.9 18.9 1103.7 10.1 1225.2 10.9 1466.3 16.7 1567.1 17.6
C108 1402.9 10.5 1219.3 11.0 1410.5 14.7 1478.2 16.1 990.0 10.0 1112.7 10.4 1373.3 147 1462.2 15.3
C109 1523.7 10.0 1439.3 10.1 1622.1 11.7 1798.9 16.6 1216.3 114 1267.6 10.7 1584.9 11.2 1700.4 17.4
C100 1867.3 16.1 1847.2 16.7 1914.1 17.7 2043.5 20.8 1735.6 16.7 1798.1 16.7 1857.2 17.9 1948.7 20.3
RC101 2551.9 232 24125 23.0 2504.2 25.0 2533.6 29.4 2240.0 22.2 2232.7 22.4 2394.2 24.4 2458.4 29.4
RC102 2167.6 19.0 2119.6 19.6 2088.1 216 2303.5 25.0 1980.4 18.4 1973.7 18.8 1993.6 21.4 2303.5 25.0
RC103 2373.1 15.8 2250.2 16.0 2218.7 18.2 2419.6 23.6 1772.0 14.8 1855.9 154 1781.0 18.6 2167.7 23.6
RC104 2372.0 138 2012.3 15.2 1921.7 16.2 2126.7 16.6 1530.6 13.8 1569.6 134 1630.0 15.0 1733.1 16.2
RC105 2664.3 22.0 2430.5 23.2 2347.7 23.6 2551.0 24.0 2126.4 20.6 2160.6 20.8 2211.0 22.4 2336.9 23.4
RC106 2493.3 17.2 2184.0 16.4 2137.4 16.8 2098.5 19.4 1902.6 16.8 1936.8 16.4 2019.2 17.2 2039.4 19.0
RC107 2535.3 16.2 2110.2 15.8 2124.4 17.2 1987.9 20.4 1753.3 16.4 1729.1 15.6 1794.5 17.0 1824.3 20.6
RC108 2732.1 15.8 2248.2 15.2 2192.1 16.4 1995.8 15.8 1757.3 14.6 1691.4 14.4 1729.3 15.0 1809.2 14.8
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Table A.6. Additional performance indicators of re-optimization strategies for R1, C1 and RC1 instances and for 75% dod

FR PR
Instance SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3

D NR TD NR TD NR D NR TD NR TD NR TD NR D NR
R101 1974.5 30.7 1966.0 323 2000.1 32.8 2339.1 41.0 1863.8 30.7 1909.8 31.9 1993.3 32.5 2339.1 41.0
R102 2016.1 31.6 2061.1 30.2 2027.0 30.6 2428.3 34.9 1930.9 31.2 2017.7 30.0 2023.9 30.6 2426.8 34.9
R103 1921.7 19.2 1916.3 19.7 1881.7 24.2 2265.2 39.3 1849.7 20.1 1901.7 20.5 1871.1 234 2263.9 38.6
R104 1467.8 153 1439.2 14.0 1485.4 20.0 1656.1 19.6 1383.0 135 1354.4 13.2 1419.3 18.4 1636.2 18.8
R105 1659.2 19.2 1622.0 18.4 1671.1 21.2 1765.0 343 1566.9 17.1 1565.4 17.4 1627.9 20.7 1760.5 34.9
R106 1792.2 28.3 1837.9 29.8 1851.8 29.0 2347.6 415 1641.2 26.7 1747.9 29.4 1829.6 28.9 2347.6 415
R107 1750.3 18.5 1669.2 18.9 1722.0 22.3 2244.0 38.5 1613.9 19.6 1666.7 18.4 1714.7 21.0 2240.3 36.2
R108 1474.9 145 1391.4 13.7 1437.4 19.1 1652.7 19.5 1329.2 12.6 1288.5 13.1 1377.4 17.0 1616.3 18.7
R109 1576.7 17.9 1548.5 16.5 1512.4 16.7 1531.1 19.8 1390.5 143 1397.2 14.9 1410.6 15.8 1512.4 20.5
R110 1707.8 17.9 1700.5 17.7 1754.3 26.0 1924.4 36.3 1562.3 17.9 1536.6 17.4 1683.4 26.4 1908.5 355
R111 1655.5 17.4 1588.8 18.1 1609.4 19.9 1865.3 36.1 1468.7 17.3 1518.5 16.1 1545.1 18.7 1852.0 35.1
R112 1734.4 16.0 1487.9 14.4 1410.3 14.5 1350.6 13.6 1236.9 13.9 1247.1 13.1 1256.1 12.8 1254.9 13.6
R100 1691.0 22.9 1582.9 21.6 1552.7 25.9 1664.7 31.9 1307.3 18.2 1328.5 19.0 1399.2 233 1536.5 28.9
Cc101 946.1 10.3 1020.5 17.6 1424.1 17.6 1556.4 24.0 924.6 10.3 1008.9 17.6 1422.4 17.6 1595.3 24.0
C102 1362.8 17.7 1468.2 19.4 1691.5 22.8 1795.9 23.2 1311.7 16.4 14411 18.7 1691.5 22.8 1768.7 23.2
C103 1618.0 14.6 1281.8 16.4 1683.1 18.1 1882.3 25.2 1602.3 14.6 1273.9 15.3 1664.4 18.1 1754.1 19.2
C104 1452.3 12.0 1357.0 13.9 1886.1 27.2 2032.2 24.5 1523.5 155 1318.1 14.9 1748.3 244 1911.1 23.8
C105 962.1 12.2 1071.5 13.1 1399.1 21.7 1516.8 26.7 888.0 10.3 1038.6 14.1 1361.2 20.7 1483.9 25.2
C106 1164.3 16.5 1267.4 21.2 1571.8 255 1702.7 30.4 1049.2 13.2 1171.2 20.3 1518.3 24.3 1576.8 25.8
C107 1350.0 10.2 1372.0 11.8 1738.0 15.4 1849.0 20.1 1199.0 10.0 1284.0 12.5 1668.0 15.6 1823.0 19.8
C108 1592.7 13.1 1538.7 13.7 1456.0 19.4 1524.9 22.4 1071.4 11.9 1119.0 13.7 1405.2 19.5 1493.1 20.1
C109 1348.7 19.1 1354.7 20.1 1153.7 15.8 1195.1 16.8 1082.0 13.0 1047.6 13.8 1093.1 15.5 1110.3 15.8
C100 1633.7 18.6 1630.4 20.0 1639.2 22.2 1703.0 26.1 1507.2 19.9 1560.0 20.0 1611.7 21.2 1703.0 25.8
RC101 2266.9 24.4 2170.0 21.8 2234.0 234 2488.1 24.2 2117.0 22.0 21225 22.0 2190.1 23.2 2488.1 24.0
RC102 2103.8 19.2 2023.0 19.2 2205.2 18.2 2380.5 23.0 1888.9 17.8 1921.6 17.6 21433 18.4 2380.5 22.6
RC103 1783.8 16.8 1738.9 17.8 1767.9 17.6 2056.2 25.2 1617.2 15.0 1637.5 15.0 1740.3 14.8 2054.8 21.8
RC104 1596.3 16.3 1612.8 14.7 1640.1 15.7 1610.5 22.3 1391.6 12.3 1398.7 12.0 1405.8 14.7 1506.3 17.0
RC105 2168.1 22.0 2187.4 22.0 2183.9 21.2 2261.0 23.8 1966.6 18.6 2024.4 18.8 2087.5 20.0 2157.6 22.2
RC106 2012.6 19.2 1918.6 18.4 1876.4 20.6 1932.7 20.2 1780.8 17.4 1787.1 17.6 1785.5 20.4 1909.2 20.8
RC107 1987.1 19.2 1896.2 17.0 1915.6 19.0 1933.4 17.4 1726.4 15.6 1726.4 15.0 1790.5 16.2 1939.4 16.4
RC108 1976.3 18.0 1750.3 16.2 1662.1 16.8 1575.2 16.6 1478.9 15.0 1499.0 14.8 1557.8 14.6 1512.3 14.8
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Table A.7. Additional performance indicators of re-optimization strategies for MR2, MC2 and MRC2 instances and for 50% dod

FR PR
Instance SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3
TD NR TD NR TD NR TD NR TD NR TD NR TD NR TD NR
MR201 1525.4 5.0 1485.0 5.4 1449.9 6.0 1456.6 7.0 1389.2 5.0 1381.1 6.6 1389.2 7.6 1402.7 7.2
MR202 1481.7 5.8 1425.4 5.6 1389.6 6.6 1393.5 7.6 1297.6 52 1302.7 6.6 1327.0 6.4 1342.3 7.8
MR203 1353.7 5.2 1413.9 5.4 1489.8 6.6 1493.4 7.1 1293.5 5.0 1370.6 5.2 1480.2 6.4 1505.5 7.3
MR204 1383.6 6.2 1533.1 8.4 1476.0 7.8 1505.0 8.3 1216.5 4.5 1319.2 6.0 1431.3 7.2 1556.9 8.6
MR205 1286.7 6.0 1254.0 4.6 1197.2 52 1200.5 5.4 1144.8 4.6 1116.5 6.2 1121.9 6.0 1156.8 5.4
MR206 1324.1 6.3 1327.4 6.4 1217.3 4.8 1253.3 55 1148.7 4.5 1132.3 4.4 1130.1 4.4 1144.3 4.6
MR207 1388.0 52 1304.7 4.6 1240.7 4.4 1255.6 4.7 1212.2 4.2 1179.1 4.0 1209.9 4.4 1221.3 4.5
MR208 1365.5 6.2 1364.6 7.6 1352.1 7.2 1373.2 8.0 1164.8 4.4 1175.4 5.2 1330.0 6.4 1296.4 59
MR209 1295.9 6.6 1196.5 5.4 1187.8 5.6 1188.9 6.0 1157.6 4.2 1104.6 4.0 1110.0 4.1 1156.5 4.2
MR210 1257.5 42 1220.5 5.2 1161.3 5.4 1162.4 5.4 1092.6 4.2 1077.9 4.1 1105.3 4.6 1130.7 4.8
MR211 1244.7 4.0 1253.6 4.8 1167.9 4.0 1175.9 4.2 1105.1 4.2 1113.1 4.4 1116.1 4.6 1126.1 4.7
MC201 19455 6.8 1714.7 7.2 1651.3 8.0 1531.6 8.0 1476.7 8.0 1482.4 7.8 1478.1 7.8 1489.4 8.2
MC202 1371.4 7.8 1209.7 7.8 1185.6 8.2 1147.4 8.4 1163.8 8.2 1145.2 8.0 1134.3 8.0 1131.0 7.6
MC203 1469.9 6.8 1410.3 7.2 1348.9 7.6 1525.8 10.6 1188.5 6.8 1144.6 6.6 1311.3 7.4 1525.8 10.6
MC204 1290.7 7.0 1357.9 7.6 1618.5 9.0 1624.8 10.4 991.5 5.8 1038.1 6.0 1211.0 7.6 1274.6 10.2
MC205 1317.4 5.0 1063.9 5.7 1046.2 5.0 978.2 5.7 794.3 4.3 793.5 4.3 805.9 4.3 809.0 4.0
MC206 1039.3 5.2 914.7 4.6 843.3 5.4 822.6 5.4 724.9 4.4 731.9 4.2 756.1 4.8 738.1 4.6
MC207 1257.6 55 1061.5 5.0 986.4 5.0 1001.8 5.3 834.7 4.5 839.5 4.5 854.0 4.3 867.8 4.3
MC208 956.7 4.8 1024.6 4.6 865.9 52 822.3 5.4 755.8 5.2 746.5 5.0 735.7 4.8 727.2 5.0
MRC201 1897.7 6.0 1853.3 6.2 1799.5 7.0 1804.3 8.1 1644.4 6.0 1601.7 5.0 1603.3 51 1661.8 5.7
MRC202 1788.5 52 1655.6 5.8 1525.4 6.0 1576.1 75 1417.1 4.2 1389.7 5.4 1389.7 52 1439.0 6.2
MRC203 1862.5 5.4 1702.4 6.8 1605.3 9.4 1627.6 10.0 1497.6 4.6 1463.5 4.4 1600.0 5.8 1640.7 9.1
MRC204 1438.5 5.8 1507.9 7.4 1716.0 9.6 1728.8 10.2 1201.6 4.6 1361.7 5.2 1637.0 6.6 1707.5 9.2
MRC205 1780.7 6.8 1666.5 6.4 1650.8 7.0 1713.6 8.2 1500.8 5.6 1453.7 5.2 1469.4 5.4 1513.7 6.5
MRC206 1686.5 5.0 1541.9 5.4 1439.0 5.4 1471.6 6.3 1342.7 4.6 1325.7 4.8 1320.5 5.6 1367.4 6.0
MRC207 1592.8 5.0 1496.8 5.4 1405.7 5.8 1440.2 7.5 1371.2 5.6 1275.2 4.4 1291.2 4.4 1354.0 6.5
MRC208 1492.1 4.6 1390.0 4.6 1346.3 4.6 1401.3 5.7 1220.8 4.4 1204.0 4.0 1243.2 5.0 1255.5 52
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Appendix B. Detailed results of the experiments presented in Chapter 6

We present here the detailed experimental results, which were summarized in Chapter 6. Specifically, Table B.1 presents the detailed results (in
terms of VOI) of the re-optimization strategies for all instances and different values of fleet availability, when re-optimization depends on the
number of DO received (Section 6.4.3). Tables B.2-B.4 present the detailed results of the re-optimization strategies for all instances, objectives

and the different values of fleet availability in terms of VVOI, under re-optimization cycles of known duration (Section 6.4.4).

Table B.1. Detailed performance of re-optimization strategies and different values of fleet availability

V-0 V-2 V-4

Instance FR PR FR PR FR PR

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3
R101 53% 1.7% 2.2% 198% 35% 02% 22% 19.8% 10.8% 9.7% 10.9% 17.5% 8.0% 12.2% 10.9% 175% 9.6% 9.4% 11.7% 17.6% 7.2% 11.7% 11.7% 17.6%
R102 33% 9.7% 12.8% 176% 16% 65% 9.7% 143% 3.1% 46% 10.0% 113% 01% 29% 7.1% 113% 31% 57% 83% 97% 03% 29% 55% 82%
R103 245% 23.9% 242% 25.6% 11.9% 13.6% 14.6% 242% 11.5% 12.8% 16.8% 11.3% 57% 7.1% 58% 85% 6.0% 85% 84% 83% 43% 17% 56% 6.9%
R104 265% 19.4% 15.4% 22.9% 51% 2.6% 92% 11.7% 26.8% 253% 21.3% 225% 7.9% 9.3% 158% 159% 204% 17.9% 17.8% 129% 59% 7.1% 9.3% 11.7%
R105 9.8% 136% 9.1% 260% 37% 59% 9.1% 26.0% 12.1% 12.1% 132% 22.2% 52% 8.1% 132% 222% 16.6% 14.3% 19.7% 22.8% 8.7% 12.1% 185% 22.8%
R106 136% 99% 6.6% 13.8% 50% 50% 6.6% 89% 17.3% 17.2% 195% 25.4% 12.2% 17.1% 159% 24.1% 16.9% 16.7% 17.9% 26.6% 15.7% 18.9% 18.9% 26.4%
R107 30.9% 31.4% 233% 30.8% 3.8% 7.4% 95% 113% 247% 304% 243% 327% 102% 13.0% 142% 23.0% 13.4% 159% 10.6% 18.4% 3.9% 65% 6.5% 13.2%
R108 404% 40.4% 253% 27.0% 16.9% 16.8% 15.1% 16.8% 42.3% 359% 31.1% 32.7% 19.1% 16.3% 22.8% 22.4% 29.3% 24.4% 23.8% 156% 6.1% 9.7% 121% 10.7%
R109 13.0% 13.0% 53% 52% 3.3% 20% 39% 77% 94% 109% 7.3% 7.1% 01% 1.3% 35% 84% 65% 43% 52% 53% 1.0% 11% 21% 53%
R110 29.6% 153% 18.9% 24.4% 2.7% 2.7% 10.8% 19.9% 22.0% 13.4% 155% 19.9% 25% 6.7% 142% 18.6% 18.3% 22.4% 20.1% 27.6% 12.6% 147% 17.8% 24.3%
R111 24.9% 24.9% 20.0% 9.9% 26% 02% 9.8%  9.8% 19.0% 224% 20.3% 23.3% 11.1% 85% 13.9% 20.3% 13.5% 17.2% 21.9% 182% 7.4% 14.8% 158% 16.9%
R112 221% 19.9% 155% 235% 3.7% 3.7% 3.7%  9.6% 31.9% 325% 17.2% 23.1% 4.4% 54% 54% 145% 27.8% 21.4% 19.1% 26.4% 9.4% 13.6% 14.8% 23.0%
C101 3.0% 16.1% 33.1% 49.1% 3.0% 16.1% 33.1% 49.1% 11% 6.3% 29.3% 452% 1.1% 6.2% 28.3% 452% 02% 4.4% 254% 41.4% 02% 2.4% 24.4% 41.4%
C102 31% 9.9% 229% 63.0% 30% 9.9% 229% 63.0% 46% 123% 32.1% 62.8% 1.2% 12.3% 32.1% 62.8% 4.6% 11.6% 31.2% 61.1% 34% 116% 312% 61.1%
C103 13.0% 41.6% 53.8% 58.9% 12.7% 41.4% 53.8% 589% 353% 47.1% 58.9% 62.7% 353% 47.1% 589% 62.7% 39.7% 47.9% 547% 61.5% 38.3% 47.9% 54.7% 61.5%
C104 21.2% 222% 21.3% 10.5% 10.5% 10.5% 10.5% 10.4% 7.7% 7.9% 19.7% 169% 73% 75% 97% 7.7% 40% 75% 14.6% 144% 35% 72% 72% 7.2%
C105 41% 92% 28.0% 52.0% 3.9% 16.0% 28.0% 52.0% 13% 54% 243% 482% 0.0% 82% 222% 48.2% 0.4% 2.8% 20.6% 44.4% 0.1% 05% 185% 44.4%
C106 72% 11.2% 25.4% 39.4% 32% 8.1% 252% 39.4% 32% 43% 215% 354% 1.0% 3.2% 223% 354% 03% 23% 167% 31.7% 01% 02% 175% 31.7%
C107 54.2% 54.2% 60.5% 62.3% 542% 542% 60.5% 62.3% 37.8% 43.5% 55.6% 58.4% 33.6% 425% 55.6% 58.4% 22.9% 33.8% 49.7% 545% 20.9% 33.8% 49.7% 54.5%
Cc108 458% 46.6% 46.6% 45.6% 40.3% 433% 443% 456% 22.2% 20.9% 21.8% 29.6% 17.5% 195% 21.6% 29.6% 7.4% 6.1% 8.8% 237% 48% 4T% 6.8% 23.7%
C109 63.3% 61.2% 63.2% 65.1% 60.1% 59.1% 62.2% 65.1% 31.1% 27.6% 30.6% 48.4% 255% 25.6% 27.4% 484% 51% 7.0% 13.8% 37.6% 37% 6.7% 13.7% 37.6%
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Table B.2. Detailed performance of re-optimization strategies for the three objectives under vehicle availability V-0

~ ~ N~

Z1 Z3 Z3
Instance FR PR FR PR FR PR
FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4

R101 1.7% 55% 17.2% 213% 16% 55% 172% 213% 1.7% 55% 17.2% 21.3% 17% 55% 172% 213% 3.7% 55% 172% 21.3% 3.7% 55% 172% 21.3%
R102 10.3% 114% 12.6% 13.7% 12.6% 11.5% 12.7% 12.6% 105% 13.7% 149% 11.8% 10.6% 14.8% 17.2% 11.8% 13.8% 149% 13.8% 14.0% 11.7% 149% 13.8% 12.9%
R103 30.6% 25.6% 26.0% 34.1% 169% 21.7% 25.0% 28.1% 22.9% 24.9% 27.9% 309% 18.1% 18.7% 24.0% 27.0% 21.7% 22.6% 232% 28.8% 19.9% 19.8% 22.9% 26.8%
R104 27.0% 21.3% 257% 229% 6.1% 144% 173% 21.3% 243% 16.2% 25.8% 244% 75% 6.1% 159% 21.4% 20.1% 21.5% 243% 242% 2.8% 6.0% 10.3% 18.7%
R105 52% 121% 225% 29.3% 52% 12.1% 225% 293% 3.9% 121% 225% 31.2% 53% 121% 225% 31.2% 59% 10.2% 225% 29.7% 59% 102% 225% 29.7%
R106 11.8% 105% 16.2% 16.3% 6.1% 58% 10.3% 16.2% 13.0% 144% 151% 95% 84% 10.7% 104% 93% 7.3% 10.7% 12.9% 10.1% 8.4% 12.0% 12.8% 13.8%
R107 30.4% 316% 27.7% 255% 9.5% 156% 16.7% 19.0% 24.7% 29.2% 26.3% 25.6% 6.2% 10.7% 17.9% 17.7% 19.6% 27.9% 26.8% 19.8% 03% 7.2% 13.2% 14.6%
R108 37.6% 283% 349% 266% 185% 18.7% 224% 21.0% 385% 28.7% 350% 28.0% 16.1% 19.1% 21.2% 20.0% 26.1% 22.1% 31.8% 232% 2.6% 58% 18.8% 15.1%
R109 128% 9.7% 134% 22% 7.7% 10.0% 6.7% 32% 128% 105% 135% 22% 65% @ 9.7%  7.6% 32% 122% 94% 12.7% 39% 85% 87% 85%  4.0%
R110 26.3% 232% 25.0% 221% 43% 11.2% 17.8% 14.0% 23.8% 19.6% 26.2% 215% 43% 10.3% 17.8% 10.5% 19.0% 19.6% 135% 135% 4.9% 6.2% 8.0% 15.9%
R111 242% 19.4% 23.8% 239% 6.4% 94% 175% 158% 22.7% 18.0% 23.8% 239% 8.1% 48% 192% 17.3% 12.9% 242% 238% 20.7% 10.0% 5.0% 12.7% 19.2%
R112 240% 16.1% 151% 236% 3.9% 8.0% 85% 156% 24.0% 16.2% 16.5% 25.0% 53% 9.4% 14.7% 13.2% 29.2% 24.4% 27.1% 240% 64% 81% 53% 16.0%
R100 39.4% 428% 39.3% 37.3% 189% 29.1% 27.4% 27.3% 39.4% 41.1% 427% 37.3% 305% 25.7% 28.7% 25.7% 44.4% 42.8% 42.7% 356% 28.8% 223% 24.0% 25.7%

Table B.3. Detailed performance of re-optimization strategies for the three objectives under vehicle availability V-2

~ ~ N~

Zq Zy Z3
Instance FR PR FR PR FR PR
FTRL FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTRl FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTRL FTR2 FTR3 FTR4 FTRL FTR2 FTR3 FTR4

R101 8.7% 123% 18.4% 241% 87% 123% 184% 241% 87% 104% 184% 241% 87% 104% 184% 241% 11.2% 10.4% 184% 241% 11.2% 10.4% 18.4% 24.1%
R102 6.6% 84% 132% 104% 85% 10.3% 123% 114% 9.6% 104% 152% 10.6% 105% 12.2% 152% 10.6% 11.4% 12.2% 13.3% 10.6% 11.4% 122% 13.3% 11.6%
R103 145% 128% 7.8% 153% 6.1% 86% 87% 123% 83% 73% 127% 89% 10.0% 82% 10.7% 129% 13.0% 9.2% 157% 12.0% 92% 9.2% 13.6% 12.9%
R104 27.0% 27.8% 28.7% 259% 121% 181% 19.0% 224% 21.9% 17.6% 243% 216% 88% 80% 165% 19.0% 16.8% 16.7% 219% 233% 7.0% 122% 15.7% 19.9%
R105 10.6% 10.3% 19.1% 25.6% 11.5% 10.3% 19.1% 25.6% 10.6% 11.2% 19.4% 28.2% 10.6% 11.2% 19.4% 28.2% 10.8% 11.1% 192% 273% 87% 11.1% 19.2% 27.3%
R106 21.0% 21.8% 27.4% 25.6% 185% 20.0% 21.7% 28.0% 17.1% 19.4% 244% 234% 21.1% 235% 21.9% 243% 228% 202% 21.8% 25.0% 21.2% 21.9% 22.6% 26.7%
R107 27.2% 29.7% 26.6% 29.9% 193% 17.0% 23.5% 28.0% 258% 23.9% 24.8% 26.4% 14.0% 13.3% 21.4% 26.4% 245% 235% 256% 27.3% 153% 185% 23.4% 26.6%
R108 347% 348% 28.8% 282% 16.6% 19.0% 19.6% 21.1% 354% 27.0% 242% 245% 156% 15.7% 17.6% 18.1% 25.0% 26.2% 22.6% 245% 12.1% 12.0% 15.8% 17.1%
R109 119% 123% 89% 7.1% 62% 7.0% 6.6% 70% 11.9% 10.7% 93% 63% 63% 69% 3.1% 6.2% 13.2% 123% 7.9% 6.3% 57% 54% 54% 6.2%
R110 21.4% 159% 17.3% 153% 9.6% 13.4% 14.8% 19.6% 21.2% 14.4% 224% 174% 95% 124% 150% 16.3% 12.6% 14.6% 152% 153% 8.8% 128% 12.1% 16.4%
R111 19.7% 22.7% 24.9% 225% 10.6% 145% 17.4% 17.3% 21.1% 21.1% 27.0% 225% 10.3% 12.6% 20.4% 20.2% 189% 212% 285% 245% 6.8% 13.6% 21.0% 19.2%
R112 282% 222% 228% 21.3% 54% 83% 128% 165% 257% 212% 23.7% 29.1% 53% 6.6% 147% 183% 18.0% 19.6% 26.3% 239% 3.1% 10.2% 13.8% 17.6%
R100 36.8% 34.9% 31.8% 37.4% 204% 252% 28.8% 344% 37.7% 33.7% 357% 32.7% 188% 222% 21.4% 284% 283% 353% 341% 36.3% 16.7% 20.9% 20.9% 28.3%
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Solving the DVRPMB through Re-optimization

Table B.4. Detailed performance of re-optimization strategies for the three objectives under vehicle availability V-4

~ v ~

41 22 Z3
Instance FR PR FR PR FR PR
FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4

R101 8.0% 125% 19.5% 22.0% 8.0% 125% 195% 22.0% 8.0% 11.0% 195% 22.0% 8.0% 11.0% 195% 22.0% 88% 11.9% 19.5% 22.0% 8.8% 11.9% 19.5% 22.0%
R102 6.1% 7.7% 13.7% 103% 7.8% 95% 145% 102% 53% 8.6% 155% 11.3% 7.1% 8.6% 155% 113% 6.3% 8.6% 13.9% 105% 6.3% 8.6% 13.9% 10.5%
R103 84% 93% 89% 89% 73% 89% 8.0% 9.8% 50% 51% 75% 92% 86% 50% 9.2% 93% 42% 32% 74% 101% 59% 41% 75% @ 9.2%

R104 18.1% 157% 19.5% 16.2% 6.3% 86% 11.7% 13.1% 113% 88% 88% 127% 73% 72% 87% 126% 75% 6.6% 88% 11.1% 57% 42% 87% 12.6%
R105 145% 152% 20.0% 27.2% 152% 145% 20.0% 27.2% 13.8% 13.9% 193% 27.3% 14.0% 139% 193% 27.3% 13.8% 13.1% 185% 26.5% 11.5% 13.1% 185% 26.5%
R106 175% 182% 26.2% 21.0% 18.2% 18.8% 26.2% 23.2% 17.6% 18.9% 19.8% 21.2% 19.1% 20.4% 21.9% 21.2% 155% 21.1% 19.7% 23.2% 14.8% 21.2% 205% 23.2%
R107 158% 18.1% 19.1% 258% 14.8% 154% 164% 21.5% 19.3% 16.7% 21.1% 21.0% 14.0% 105% 16.6% 17.4% 17.8% 150% 20.0% 22.8% 123% 87% 15.7% 20.0%
R108 20.1% 151% 11.1% 121% 33% 7.3%  9.5% 9.6% 17.2% 83% 11.3% 12.0% 50% 65% 9.6% 11.3% 59% 9.0% 105% 12.8% 42% 4.0% 8.0% 12.0%
R109 37%  7.0% 73% 42% 22% 43%  3.6% 3.5% 3.0% 71% 57% 58% 16% 3.0% 3.0% 58% 44% 43% 57% 58% 09% 29% 35% 5.8%
R110 23.2% 240% 17.4% 247% 150% 16.4% 16.6% 23.2% 21.8% 165% 18.1% 25.6% 14.3% 15.8% 17.3% 25.6% 21.8% 17.5% 182% 212% 153% 16.0% 18.8% 22.6%
R111 21.2% 220% 22.1% 229% 142% 163% 18.9% 21.2% 19.8% 17.6% 20.6% 259% 14.8% 14.1% 19.7% 27.2% 17.6% 16.0% 20.4% 26.6% 14.4% 158% 19.6% 24.3%
R112 24.0% 20.3% 249% 278% 9.1% 147% 188% 23.7% 17.8% 15.0% 23.9% 17.0% 85% 8.0% 16.8% 14.1% 143% 14.9% 162% 17.6% 6.5% 65% 14.8% 16.3%
R100 34.1% 36.5% 36.3% 37.3% 252% 28.4% 33.9% 342% 321% 27.2% 175% 245% 23.7% 23.9% 21.3% 28.7% 22.4% 225% 214% 28.7% 20.1% 21.6% 20.6% 29.5%
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