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EXTENDED SUMMARY IN GREEK (ΣΥΝΟΨΗ ΔΙΑΤΡΙΒΗΣ) 

 

Στη παρούσα διατριβή διερευνάται το Πρόβλημα Δυναμικής Δρομολόγησης Οχημάτων με 

Παραλαβές (ΠΔΔΟΠ). Στόχος του προβλήματος είναι η βέλτιστη ανάθεση δυναμικών 

απαιτήσεων παραλαβών που λαμβάνονται σε πραγματικό χρόνο σε στόλο οχημάτων που 

εκτελεί προκαθορισμένα δρομολόγια «στατικών» παραδόσεων. Το πρόβλημα ενσωμάτωσης 

των δυναμικών απαιτήσεων αντιμετωπίζεται με περιοδική αναδρομολόγηση. Για την επίλυση 

του προβλήματος αναδρομολόγησης, προτείνεται νέο μαθηματικό μοντέλο, καθώς και νέα 

προσέγγιση βέλτιστης επίλυσης μέσω της μεθόδου Branch-and-Price (B&P). Για την επίλυση 

απαιτητικών προβλημάτων (π.χ. χωρίς χρονικά παράθυρα), προτείνεται καινοτόμος ευρετική 

μέθοδος παρεμβολής (insertion heuristic) που βασίζεται στη μέθοδο Δυναμικής Δημιουργίας 

Μεταβλητών (ΔΔΜ ή Column Generation) και παρέχει αποτελεσματικές λύσεις σε σύντομο 

υπολογιστικό χρόνο με μικρή απόκλιση από τη βέλτιστη. 

Χρησιμοποιώντας τη προαναφερόμενη προσέγγιση, η διατριβή επικεντρώνεται επίσης στη 

διαδικασία αναδρομολόγησης, που αποτελείται από: α) την πολιτική αναδρομολόγησης 

(συχνότητα), και β) τη τακτική υλοποίησης. Η τελευταία σχετίζεται με το τμήμα του 

δρομολογίου που κοινοποιείται στον οδηγό προς εκτέλεση. Παρουσιάζονται και αναλύονται 

πρακτικές στρατηγικές αναδρομολόγησης (συνδυασμός πολιτικής και τακτικής) μέσω 

εκτενούς πειραματικής διερεύνησης, αρχικά θεωρώντας απεριόριστο στόλο οχημάτων 

διαθέσιμο με στόχο μόνο την ελαχιστοποίηση του κόστους. Βάσει των αποτελεσμάτων, 

προτείνονται οδηγίες για την υιοθέτηση της καταλληλότερης στρατηγικής αναδρομολόγησης 

ανάλογα με τα εκάστοτε χαρακτηριστικά του περιβάλλοντος της εφοδιαστικής αλυσίδας (π.χ. 

γεωγραφική κατανομή, χρονικά παράθυρα πελατών, δυναμικότητα, κλπ.).  

Ακολούθως, μελετάται η περίπτωση περιορισμένου στόλου οχημάτων στην οποία μόνο ένα 

μέρος των δυναμικών απαιτήσεων μπορεί να εξυπηρετηθεί. Για την αντιμετώπιση του 

προβλήματος, προτείνονται οι απαραίτητες αλλαγές τόσο στο μοντέλο ΠΔΔΟΠ, όσο και στη 

μέθοδο επίλυσης. Όσον αφορά το πρόβλημα αναδρομολόγησης, χρησιμοποιούμε αρχικά μία 

συμβατική αντικειμενική συνάρτηση, η οποία προσπαθεί να μεγιστοποιήσει την εξυπηρέτηση 

πελατών. Για την περίπτωση αυτή, υποδεικνύουμε μέσω πειραματικής διερεύνησης πως οι 

στρατηγικές αναδρομολόγησης παρουσιάζουν παρόμοια συμπεριφορά με τη περίπτωση που η 

διαθεσιμότητα του στόλου είναι απεριόριστη. Στη συνέχεια, προτείνονται καινοτόμες 
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αντικειμενικές συναρτήσεις, στις οποίες λαμβάνεται υπόψη η παραγωγικότητα των οχημάτων, 

παρουσιάζοντας έτσι μεγαλύτερο περιθώριο για την εξυπηρέτηση δυναμικών απαιτήσεων που 

θα παρουσιαστούν στο μέλλον, ειδικά σε περιπτώσεις με σχετικά υψηλή διαθεσιμότητα 

οχημάτων και μεγάλα χρονικά παράθυρα. Επιπρόσθετα, οι προτεινόμενες μέθοδοι 

εφαρμόζονται σε πραγματικό σενάριο εταιρείας ταχυμεταφορών και επιδεικνύεται πως 

αποφέρουν βελτιωμένα αποτελέσματα συγκριτικά με τις χρησιμοποιούμενες πρακτικές 

δρομολόγησης καθώς και με προηγμένη ευρετική μέθοδο.  

Τέλος, μελετάται ενδιαφέρουσα και πρακτική παραλλαγή του ΠΔΔΟΠ που επιτρέπει 

μεταφόρτωση μεταξύ των οχημάτων κατά τη διάρκεια εκτέλεσης του δρομολογίου, με κύριο 

στόχο την ανακατανομή του φόρτου εργασίας των «στατικών» παραγγελιών παράδοσης σε 

πραγματικό χρόνο. Για την επίλυση του προβλήματος αναδρομολόγησης με μεταφόρτωση, 

προτείνεται καινοτόμο μαθηματικό μοντέλο, καθώς και κατάλληλη ευρετική μέθοδος, ικανή 

να αντιμετωπίσει περιπτώσεις πρακτικού μεγέθους. Επιπλέον, εκτενής πειραματική 

διερεύνηση κάτω από διάφορες επιχειρησιακές συνθήκες υποδεικνύει πως η συγκεκριμένη 

προσέγγιση αποφέρει σημαντικές βελτιώσεις, επιπρόσθετα από αυτές που προσφέρουν οι 

προηγούμενες προσεγγίσεις.  

ΤΟ ΠΡΟΒΛΗΜΑ ΔΥΝΑΜΙΚΗΣ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΠΑΡΑΛΑΒΕΣ  

Το ΠΔΔΟΠ μπορεί να εξηγηθεί πρακτικά θεωρώντας τυπικό σενάριο εταιρείας 

ταχυμεταφορών, όπως φαίνεται στο Σχήμα Π.1. Συγκεκριμένα, θεωρείται ότι στόλος οχημάτων 

(σύνολο 𝑉) με περιορισμένη χωρητικότητα ανά όχημα 𝑄̅ βρίσκεται διαθέσιμος σε κέντρο 

διανομής. Κατά την αρχή του χρονικού ορίζοντα προγραμματισμού [0, 𝑇𝑚𝑎𝑥], ένα σύνολο 

οχημάτων 𝐾 ⊂ 𝑉 αναλαμβάνει την εκτέλεση προγραμματισμένων δρομολογίων προκειμένου 

να εξυπηρετήσει προκαθορισμένο σύνολο (στατικών) πελατών, ενώ το οχημάτων 𝐾𝑑 = 𝑉 − 𝐾 

παραμένει διαθέσιμο στο κέντρο διανομής (Σχ. Π.1α). Κάθε όχημα οφείλει να επιστρέψει στο 

κέντρο διανομής μέχρι τη χρονική στιγμή 𝑡 = 𝑇𝑚𝑎𝑥. Κατά τη διάρκεια υλοποίησης του πλάνου, 

νέες απαιτήσεις για παραλαβή (pickup) εισάγονται στο σύστημα (εφεξής ονομάζονται 

Δυναμικές Απαιτήσεις, ΔΑ), οι οποίες θα πρέπει να συλλεχθούν και να επιστραφούν στο κέντρο 

διανομής για περαιτέρω επεξεργασία (Σχ. Π.2β). Οι ΔΑ θα πρέπει να ανατεθούν στα διαθέσιμα 

οχήματα με άμεση συνέπεια την αναθεώρηση των δρομολογίων τους (Σχ. Π.1γ). Επισημαίνεται 

πως οι στατικές απαιτήσεις δε μπορούν να ανατεθούν σε άλλο όχημα, ενώ οι ΔΑ μπορούν να 

εξυπηρετηθούν από κάθε όχημα 𝑉 = 𝐾 ∪ 𝐾𝑑. 
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Στόχος του ΠΔΔΟΠ είναι η ανάθεση των δυναμικών αυτών απαιτήσεων (παραγγελιών) στα 

κατάλληλα οχήματα, είτε σε αυτά που ήδη εκτελούν κάποιο δρομολόγιο είτε στα υπόλοιπα που 

βρίσκονται στο κέντρο διανομής. Σε περίπτωση απουσίας περιορισμού αναφορικά με το 

διαθέσιμο στόλο, συνήθως ελαχιστοποιείται το κόστος δρομολόγησης, διαφορετικά, σε 

περίπτωση περιορισμένου στόλου, μεγιστοποιείται ο αριθμός των εξυπηρετούμενων 

απαιτήσεων. Μία εφικτή λύση του προβλήματος θα πρέπει να εξυπηρετεί όλες τις στατικές 

απαιτήσεις και να ικανοποιεί τη χωρητικότητα των οχημάτων και του χρονικούς περιορισμούς 

αναφορικά με τα χρονικά παράθυρα των πελατών και της βάρδιας των οδηγών. Οι δύο 

διακριτές περιπτώσεις διαθεσιμότητας στόλου (απεριόριστος και περιορισμένος), εξετάζονται 

ξεχωριστά παρακάτω. 

 

Σχήμα Π.1. Αποτύπωση του ΠΔΔΟΠ; (a) αρχικό πλάνο, (b) άφιξη νέων απαιτήσεων κατά τη 

διάρκεια εκτέλεσης των δρομολογίων, (c) ενδεικτική λύση μετά την αναδρομολόγηση 

Αναδρομολόγηση στο ΠΔΔΟΠ 

Η ανάθεση των ΔΑ αντιμετωπίζεται με περιοδική αναδρομολόγηση (βλ. Σχ. Π.2). Θεωρείται 

πως για ολόκληρο τον ορίζοντα [0, 𝑇𝑚𝑎𝑥], θα υλοποιηθούν 𝐿 περίοδοι αναδρομολόγησης, όπου 

κάθε περίοδος θα αντιστοιχεί σε ένα στατικό πρόβλημα Γ1, Γ2, … , ΓL, το οποίο θα επιλύεται στις 

χρονικές στιγμές Tℓ, ℓ = 1,2, … , L με T0 = 0 < T1 < ⋯ < TL < Tmax − τ. Οι περίοδοι 

αναδρομολόγησης ([Tℓ−1, Tℓ], ℓ ≥ 1) δεν έχουν απαραίτητα την ίδια χρονική διάρκεια. Στο 

στατικό πρόβλημα που επιλύεται κάθε χρονική στιγμή αναδρομολόγησης Tℓ, χρησιμοποιείται 

το σύνολο της πληροφορίας που είναι γνωστή μέχρι εκείνη τη στιγμή. Θεωρείται πως το 

πρόβλημα (Γℓ) επιλύεται στιγμιαία. 

 

Σχήμα Π.2. Η διαδικασία αναδρομολόγησης 
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Ένα πρόβλημα αναδρομολόγησης  Γℓ, ℓ ∈ {1,… , 𝐿} λαμβάνει υπόψη του δύο σύνολα 

απαιτήσεων που δεν έχουν εξυπηρετηθεί ακόμη: i) τις δεσμευμένες απαιτήσεις (σύνολο 𝐶), που 

περιλαμβάνουν τις απαιτήσεις που έχουν ανατεθεί σε ένα όχημα και δε μπορούν να 

μεταβιβαστούν σε άλλα οχήματα, και ii) τις μη δεσμευμένες απαιτήσεις (σύνολο 𝐹), που 

αντιστοιχούν σε νέες ΔΑ, ή σε ΔΑ που ελήφθησαν σε προηγούμενες περιόδους και δεν έχουν 

εξυπηρετηθεί ακόμη, αλλά μπορούν να εξυπηρετηθούν από κάθε όχημα 𝑉 = 𝐾 ∪ 𝐾𝑑. Ανάλογα 

με τη τακτική υλοποίησης (όπως θα συζητηθεί παρακάτω), δύο σενάρια ενδέχεται να ισχύουν: 

α) οι δεσμευμένες απαιτήσεις αφορούν μόνο σε στατικές απαιτήσεις, ενώ οι ΔΑ που δεν έχουν 

εξυπηρετηθεί θεωρούνται ως μη δεσμευμένες, και β) οι δεσμευμένες απαιτήσεις 

περιλαμβάνουν όλες όσες έχουν ανατεθεί σε οχήματα σε προηγούμενες περιόδους και δεν 

έχουν εξυπηρετηθεί, ενώ ως μη δεσμευμένες ορίζονται μόνο οι νέες ΔΑ.  

Η λύση του προβλήματος αναδρομολόγησης στη περίοδο ℓ θεωρεί όλο τον υπολειπόμενο 

χρονικό ορίζονται [Tℓ, Tmax]. Μέρος της λύσης αυτής υλοποιείται συνεπώς μέχρι την επόμενη 

χρονική στιγμή αναδρομολόγησης Tℓ+1.  

Μαθηματικό μοντέλο του προβλήματος αναδρομολόγησης στο ΠΔΔΟΠ 

Το παρακάτω μοντέλο περιγράφει το πρόβλημα αναδρομολόγησης αγνοώντας τον δείκτη ℓ, 

καθότι το πρόβλημα έχει την ίδια μορφή σε κάθε περίοδο αναδρομολόγησης.  

Θεωρείται σύνολο 𝑁 = 𝐶 ∪ 𝐹 το οποίο αντιπροσωπεύει το σύνολο των απαιτήσεων που δεν 

έχει εξυπηρετηθεί, με 𝐶 και 𝐹 τα σύνολα των δεσμευμένων και μη δεσμευμένων απαιτήσεων, 

αντίστοιχα, και με 𝐶 = ⋃ 𝐶𝑘𝑘∈𝐾 , όπου 𝐶𝑘 ορίζεται το σύνολο των δεσμευμένων απαιτήσεων 

που έχουν ανατεθεί στο όχημα 𝑘 που εκτελεί ήδη ένα δρομολόγιο (καθοδόν). Ορίζεται επίσης 

σύνολο 𝑀 = ⋃ {𝜇𝑘}𝑘∈𝐾 , όπου 𝜇𝑘 αντιπροσωπεύει τη παρούσα θέση του οχήματος 𝑘 ∈ 𝐾 και 

ως 0 ορίζεται ο κόμβος αρχής και τέλους των δρομολογίων (κέντρο διανομής). Επίσης, ο 

γράφος ορίζεται ως 𝐺 = (𝑊,𝐴), με 𝑊 = 𝐶 ∪ 𝐹 ∪ 𝑀 ∪ {0} και 𝐴 το σύνολο των ακμών που 

συνδέει όλους τους κόμβους 𝑊(𝐴 = {(𝑖, 𝑗): 𝑖 ∈ 𝑊, 𝑗 ∈ 𝑊\𝑀}). Το κόστος διάνυσης μιας 

ακμής (𝑖, 𝑗), {𝑖 ∈ 𝑊, 𝑗 ∈ 𝑊\𝑀} ορίζεται ως 𝑐𝑖𝑗, ενώ 𝑡𝑖𝑗 δηλώνεται ο χρόνος διάνυσης της 

απόστασης μεταξύ δύο κόμβων. 

Κάθε απαίτηση 𝑖 ∈ 𝑁 σχετίζεται με τα παρακάτω χαρακτηριστικά: 

𝑑𝑖 Η ζήτηση της απαίτησης του πελάτη (οι επιδόσεις σχετίζονται με αρνητικές τιμές, 

ενώ οι παραλαβές με θετικές).  

𝑠𝑖 Ο χρόνος εξυπηρέτησης της απαίτησης του πελάτη  
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ℎ𝑖 Ο χρόνος άφιξης της απαίτησης 𝑖.  Προφανώς, 0 < ℎ𝑖 < 𝑇𝑚𝑎𝑥 − 𝜏, ∀𝑖 ∈ 𝐹 και ℎ𝑖 =

0,∀𝑖 ∈ 𝐶  

[𝑎𝑖, 𝑏𝑖] Το χρονικό παράθυρο της απαίτησης. Για τις στατικές απαιτήσεις, 0 ≤ 𝑎𝑖 < 𝑏𝑖 ≤

𝑇𝑚𝑎𝑥 ενώ για τις ΔΑ, ℎ𝑖 < 𝑎𝑖 < 𝑏𝑖 ≤ 𝑇𝑚𝑎𝑥.  

Το μοντέλο περιλαμβάνει τρία διαφορετικά σύνολα μεταβλητών: i) τη μεταβλητή 𝑥𝑖𝑗𝑘 που 

ισούται με 1 αν το όχημα 𝑘 ∈ 𝑉 διανύει την ακμή (𝑖, 𝑗) ∈ 𝐴 και μηδέν σε άλλη περίπτωση, ii) 

τη μεταβλητή 𝑤𝑖𝑘, που αντιπροσωπεύει το χρόνο έναρξης εξυπηρέτησης της απαίτησης 

(κόμβου) 𝑖 ∈ 𝑁 από το όχημα 𝑘 ∈ 𝑉, ενώ για το κέντρο διανομής, 𝑤0𝑘 ≥ 𝑇, και iii) τη 

μεταβλητή 𝑄𝑖𝑘, που δηλώνει το φορτίο του οχήματος 𝑘 ∈ 𝑉 αμέσως μετά την εξυπηρέτηση του 

κόμβου 𝑖 ∈ 𝑊.  

Περίπτωση απεριόριστου στόλου οχημάτων 

Αντικειμενικός στόχος του προβλήματος στην περίπτωση απεριόριστου πλήθους διαθέσιμων 

οχημάτων είναι η ελαχιστοποίηση του συνολικού κόστους δρομολόγησης καθ’ όλο το εύρος 

του χρονικού ορίζοντα [Tℓ, Tmax] και δίνεται από τη συνάρτηση (Π.1) παρακάτω: 

min(z) =∑ ∑ cijkxijk
(i,j)∈Ak∈V

  (Π.1)  

Υπό τους περιορισμούς: 

∑ xijk
j∈Ck∪F∪{0}

= 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶𝑘 ∪ {𝜇𝑘} (Π.2)  

∑∑xijk
j∈Wk∈V

= 1 ∀𝑖 ∈ 𝐹 (Π.3)  

∑ xi0k
i∈Ck∪F∪{μk}

= 1 ∀𝑘 ∈ 𝐾 (Π.4)  

∑x0jk
j∈F

≤ 1 ∀𝑘 ∈ 𝐾𝑑 (Π.5)  

∑x0jk
j∈F

=∑xj0k
j∈F

 ∀𝑘 ∈ 𝐾𝑑 (Π.6)  

∑xihk
i∈W

−∑xhjk
j∈W

= 0 ∀ℎ ∈ 𝑁, ∀𝑘 ∈ 𝑉 (Π.7)  

Qjk ≥ Qik + dj − Z(1 − xijk) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝑉 (Π.8)  

max {0, di} ≤ Qik ≤ min {𝑄̅, 𝑄̅ + di} ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (Π.9)  
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wjk ≥ wik + si + tij − Z(1 − xijk) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝑉 (Π.10)  

max(ai, T)∑ xijk
j∈W

≤ wik ≤ bi∑xijk
j∈W

 ∀𝑘 ∈ 𝑉, ∀𝑖 ∈ 𝑊 (Π.11)  

T ≤ w0k ≤ b0 ∀𝑘 ∈ 𝐾𝑑 (Π.12)  

xijk ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝑉 (Π.13)  

Η αντικειμενική συνάρτηση (Π.1) αφορά στο συνολικό κόστος δρομολόγησης. Ο περιορισμός 

(Π.2) εξασφαλίζει ότι κάθε όχημα 𝑘 (καθοδόν) θα πρέπει να εξυπηρετήσει όλες τις δεσμευμένες 

απαιτήσεις που του έχουν ανατεθεί. Ο περιορισμός (Π.3) ορίζει πως όλες οι μη δεσμευμένες 

απαιτήσεις θα εξυπηρετηθούν, είτε από ένα όχημα καθοδόν, είτε από όχημα που βρίσκεται στο 

κέντρο διανομής. Ο περιορισμός (Π.4) ορίζει πως κάθε καθοδόν όχημα θα πρέπει να επιστρέψει 

στο κέντρο διανομής. Ο περιορισμός (Π.5) ορίζει πως είναι δυνατό νέα οχήματα να 

αποσταλούν από το κέντρο διανομής κατά την αναδρομολόγηση για να καλύψουν ΔΑ, ενώ ο 

περιορισμός (Π.6) αναγκάζει τα οχήματα αυτά να επιστρέψουν στο κέντρο διανομής. Οι 

περιορισμοί (Π.7) αναφέρονται στη διατήρηση ροής κάθε οχήματος. Μέσω των περιορισμών 

(Π.8) και (Π.9) καθορίζεται πως το φορτίο κάθε οχήματος δε θα υπερβεί την χωρητικότητά του 

(όπου 𝛧 ένας μεγάλος θετικός αριθμός). Οι περιορισμοί (Π.10) και (Π.11) καθορίζουν πως κάθε 

απαίτηση εξυπηρετείται εντός του χρονικού παραθύρου της, ενώ οι περιορισμοί (Π.12) 

εξασφαλίζουν πως νέα οχήματα, που δυνητικά θα αποσταλούν από το κέντρο διανομής, θα 

εκκινήσουν μετά από τη χρονική στιγμή αναδρομολόγησης και θα επιστρέψουν μέσα στον 

επιτρεπτό χρονικό ορίζοντα. Τέλος, οι περιορισμοί (Π.13) δεσμεύουν τις μεταβλητές ροής σε 

δυαδικές τιμές {0, 1}.  

Περίπτωση περιορισμένου στόλου οχημάτων 

Στη περίπτωση όπου το πλήθος οχημάτων του στόλου είναι περιορισμένο, είναι πιθανό να μην 

εξυπηρετηθούν όλες οι ΔΑ. Συνεπώς, ορισμένες τροποποιήσεις απαιτούνται στο 

προαναφερόμενο (γενικό) μοντέλο. Η πρώτη τροποποίηση αφορά το περιορισμό αναφορικά με 

την εξυπηρέτηση των ΔΑ. Συγκεκριμένα, ο περιορισμός (Π.3) μπορεί να μετατραπεί στον 

(Π.14) παρακάτω: 

∑∑𝑥𝑖𝑗𝑘
𝑗∈𝑊𝑘∈𝑉

≤ 1 ∀𝑖 ∈ 𝐹 (Π.14)  

Η δεύτερη τροποποίηση αφορά την αντικειμενική συνάρτηση (Π.1). Η ελαχιστοποίηση του 

κόστους δεν είναι πλέον κατάλληλος αντικειμενικός στόχος, εφόσον σε συνδυασμό με τον 

(Π.14), δε θα εξυπηρετούσε καμία ΔΑ. Ένα καταλληλότερος αντικειμενικός στόχος θα 
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μπορούσε να είναι η μεγιστοποίηση εξυπηρέτησης των ΔΑ, σε συνδυασμό με το ελάχιστο 

κόστος, όπως φαίνεται στην (Π.15) παρακάτω: 

min(𝑧) = −𝜉𝑢∑ ∑ 𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴|𝑖∈𝐹,𝑗∈𝑊

 

𝑘∈𝑉

+∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

 (Π.15)  

όπου 𝜉𝑢 υποδηλώνει ένα «κέρδος» για κάθε ΔΑ που εξυπηρετείται. Η καταλληλόλητα της 

παρούσας αντικειμενικής, καθώς και η περίπτωση του περιορισμένου στόλου, εξετάζονται 

αναλυτικότερα στην σχετική ενότητα παρακάτω.  

Τέλος, προστίθεται ο παρακάτω περιορισμός (Π.16) που αφορά το πλήθος των διαθέσιμων 

οχημάτων που χρησιμοποιούνται κάθε δεδομένη στιγμή.  

∑∑𝑥𝑖0𝑘
𝑖∈𝑊𝑘∈𝑉

≤ |𝑉|  (Π.16)  

ΔΙΑΣΠΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΑΝΑΔΡΟΜΟΛΟΓΗΣΗΣ 

Για την βέλτιστη επίλυση του παραπάνω μοντέλου μεικτού γραμμικού προγραμματισμού, 

αρχικά επιλύεται η γραμμική «χαλάρωση» του ανωτέρω προβλήματος μέσω της μεθόδου ΔΔΜ 

για την εύρεση κατώτατων ορίων (lower bounds). Η ΔΔΜ διασπά το χαλαρωμένο μοντέλο σε 

ένα Κυρίως Πρόβλημα (ΚΠ) και πολλαπλά Υπό-Προβλήματα (ΥΠ). Για την εύρεση ακέραιων 

λύσεων χρησιμοποιείται η μέθοδος branch-and-price, στην οποία η ΔΔΜ χρησιμοποιείται σε 

κάθε κόμβο του σχετικού δέντρου.  

Στη παρούσα ενότητα παρουσιάζεται η διάσπαση του μαθηματικού μοντέλου για τη γενική 

περίπτωση του ΠΔΔΟΠ (απεριόριστος στόλος). Στη περίπτωση αυτή, το ΚΠ περιλαμβάνει 

μόνο τους περιορισμούς αναφορικά με την εξυπηρέτηση των απαιτήσεων. Τα ΥΠ 

περιλαμβάνουν τους λοιπούς περιορισμούς αναφορικά με την εφικτότητα των δρομολογίων. 

Οι τροποποιήσεις του μοντέλου για την αντιμετώπιση του περιορισμού αναφορικά με το στόλο 

οχημάτων περιγράφονται σε επόμενη ενότητα.  

Το προτεινόμενο Κυρίως Πρόβλημα (ΚΠ) 

Το ΚΠ για το ΠΔΔΟΠ μοντελοποιείται συνήθως ως ένα πρόβλημα διαμερισμού συνόλου (set 

partitioning problem, SPP), του οποίου κάθε μεταβλητή (κολώνα) αντιστοιχεί σε ένα εφικτό 

δρομολόγιο και κάθε περιορισμός αντιστοιχεί σε μία απαίτηση που εξυπηρετείται. Συνεπώς, 

ορίζεται δυαδική μεταβλητή 𝑎𝑖𝑟 η οποία ισούται με 1 αν η απαίτηση 𝑖 ∈ 𝑁 εξυπηρετείται από 

το δρομολόγιο 𝑟 ∈ 𝛺 και μηδέν σε κάθε άλλη περίπτωση, καθώς επίσης και συντελεστές 𝑦𝑟 οι 

οποίοι ισούνται με 1 αν το δρομολόγιο 𝑟 ∈ 𝛺 χρησιμοποιείται από τη λύση και μηδέν 
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διαφορετικά. Θεωρώντας πως το 𝑐𝑟 δηλώνει το κόστος του δρομολογίου 𝑟 ∈ 𝛺, τότε η 

αντικειμενική του ΚΠ έχει την ακόλουθη μορφή: 

Ελαχιστοποίηση ∑𝑐𝑟𝑦𝑟
𝑟∈𝛺

  (Π.17)  

Υπό τους περιορισμούς: ∑𝑎𝑖𝑟𝑦𝑟
𝑟∈𝛺

= 1 ∀𝑖 ∈ 𝑁 (Π.18)  

 𝑦𝑟 = {0, 1} ∀𝑟 ∈ 𝛺 (Π.19)  

Συνεπώς, το ΚΠ περιλαμβάνει μόνο εκείνους τους περιορισμούς που επιβάλλουν μοναδική 

εξυπηρέτηση σε κάθε απαίτηση. Οι υπόλοιποι περιορισμοί αντιμετωπίζονται από τα ΥΠ. Στη 

παρούσα μοντελοποίηση, το σύνολο 𝛺 όλων των εφικτών δρομολογίων (μεταβλητών), 

αποτελείται από δύο υποσύνολα, 𝛺 = (⋃ 𝛺𝑘)𝑘∈𝐾 ∪ 𝛺𝑝, όπου: α) 𝛺𝑘 αφορά το υποσύνολο των 

δρομολογίων που λαμβάνουν χώρα από τα καθοδόν οχήματα 𝐾 (κάθε τέτοιο δρομολόγιο 

εκκινεί από τη παρούσα θέση του οχήματος, καταλήγει στο κέντρο διανομής και περιλαμβάνει 

όλες τις δεσμευμένες 𝐶𝑘 απαιτήσεις και, πιθανώς, ορισμένες μη δεσμευμένες 𝐹′ ⊆ 𝐹), και β) 

𝛺𝑝 που αφορά στο σύνολο των δρομολογίων για τα οχήματα 𝐾𝑑 που βρίσκονται στο κέντρο 

διανομής (τα δρομολόγια αυτά εκκινούν και καταλήγουν στο κέντρο διανομής και 

συμπεριλαμβάνουν μόνο 𝐹 απαιτήσεις).  

Λόγω του πλήθους των δυνατών συνδυασμών απαιτήσεων, ορίζουμε ως 𝛺′ ένα υποσύνολο του 

𝛺 που περιλαμβάνει γνωστά και εφικτά δρομολόγια (Περιορισμένο Κυρίως Πρόβλημα, ΠΚΠ). 

Για τη κατασκευή αυτού του υποσυνόλου, χρησιμοποιείται η πληροφορία από τη λύση της 

προηγούμενης περιόδου αναδρομολόγησης (που περιλαμβάνει εφικτά δρομολόγια), 

αφαιρώντας τις απαιτήσεις που έχουν ήδη εξυπηρετηθεί στο διάστημα [𝑇ℓ−1, 𝑇ℓ]. Για τις νέες 

ΔΑ που έχουν αφιχθεί στο διάστημα [𝑇ℓ−1, 𝑇ℓ], δημιουργείται ένα δρομολόγιο ανά ΔΑ 

([𝑑𝑒𝑝𝑜𝑡 − 𝑖 − 𝑑𝑒𝑝𝑜𝑡], ∀𝑖 ∈ 𝐹) και προστίθεται στο υποσύνολο 𝛺′. Συνεπώς, με βάση αυτό το 

υποσύνολο εφικτών δρομολογίων επιλύεται γραμμική χαλάρωση (θεωρώντας δεκαδικές τιμές 

για τις μεταβλητές 𝑦𝑟 αντί για δυαδικές) του προβλήματος στη παρούσα περίοδο 

αναδρομολόγησης. 

Τα Υποπροβλήματα 

Προκειμένου να αναγνωριστούν νέες μεταβλητές (δρομολόγια) με αρνητικό μειωμένο κόστος 

αναφορικά με τη λύση του ΠΚΠ, επιλύεται διαφορετικό πρόβλημα βελτιστοποίησης (ΥΠ). Στο 

πρόβλημα αυτό λαμβάνονται υπόψη όλοι οι περιορισμοί εφικτότητας ενός δρομολογίου (όπως 

για παράδειγμα, η απαίτηση εξυπηρέτησης όλων των δεσμευμένων απαιτήσεων που έχουν 
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ανατεθεί σε ένα όχημα, οι χρονικοί περιορισμοί, καθώς και οι περιορισμοί φορτίου). Στη 

παρούσα διατριβή, προτείνεται μέθοδος ακριβούς επίλυσης (exact) του ΥΠ, καθώς και 

ευρετική μέθοδος (heuristic).  

Για τη μέθοδο ακριβούς επίλυσης, το ΥΠ μοντελοποιείται ως ένα Στοιχειώδες Πρόβλημα 

Συντομότερης Διαδρομής με Χρονικά Παράθυρα και Περιορισμούς Χωρητικότητας 

(ΣΠΣΔΧΠΠΧ) και επιλύεται με μεθόδους Δυναμικού Προγραμματισμού. Για τη περίπτωση 

της ευρετικής μεθόδου, χρησιμοποιείται κατάλληλη μέθοδος παρεμβολής (insertion-based 

heuristic) η οποία εκμεταλλεύεται τη πληροφορία από τις δυικές τιμές που προκύπτουν από 

την επίλυση της γραμμικής χαλάρωσης του ΠΚΠ. Ανεξαρτήτως της μεθόδου, η λύση του ΥΠ 

καταλήγει με ένα ή περισσότερα δρομολόγια (κολώνες) τα οποία ελαχιστοποιούν μία δεδομένη 

αντικειμενική συνάρτηση. Τα δρομολόγια που προκύπτουν από την επίλυση του ΥΠ 

ενσωματώνονται σε αυτά του ΠΚΠ προκειμένου να επιλυθεί ξανά. Η διαδικασία αυτή 

επαναλαμβάνεται έως ότου η λύση του ΠΚΠ είναι μη αρνητική.  

Μέθοδος ακριβούς επίλυσης των ΥΠ 

Για το ΠΔΔΟΠ, ορίζουμε και επιλύουμε |𝐾| + 1 ανεξάρτητα ΥΠ, ένα για κάθε καθοδόν όχημα 

𝐾 (δηλαδή για τη δημιουργία των δρομολογίων 𝛺𝑘), καθώς και ξεχωριστό ΥΠ που αντιστοιχεί 

σε όλα τα οχήματα που βρίσκονται στο κέντρο διανομής (δηλαδή για τη δημιουργία των 

δρομολογίων 𝛺𝑝). Κάθε ΥΠ μοντελοποιείται ως ένα ΣΠΣΔΧΠΠΧ και επιλύεται με τον 

αλγόριθμο διόρθωσης ετικετών (label correcting algorithm). Κάθε ένα από τα 𝑘 = 1,2, … , |𝐾| 

ΥΠ θεωρούν απαιτήσεις 𝑁𝑘 = 𝐶𝑘 ∪ 𝐹 (όπου 𝐶𝑘 αντιπροσωπεύει τις δεσμευμένες απαιτήσεις 

που έχουν ανατεθεί στο όχημα 𝑘 ∈ 𝐾), ενώ το |𝐾| + 1 ΥΠ θεωρεί απαιτήσεις 𝑁|𝐾|+1 = 𝐹. Η 

ερευνητική συνεισφορά της παρούσας μεθόδου έγκειται στην ενίσχυση των κριτηρίων 

κυριαρχίας, με αποτέλεσμα την απόρριψη ετικετών σε πρώιμο στάδιο και την 

αποτελεσματικότερη εύρεση της βέλτιστης λύσης.  

Ευρετική μέθοδος επίλυσης των ΥΠ 

Στην προτεινόμενη νέα ευρετική μέθοδο, θεωρείται η λύση της προηγούμενης περιόδου 

αναδρομολόγησης και δημιουργούνται νέα δρομολόγια (κολώνες) για τα καθοδόν οχήματα 

ενσωματώνοντας της απαιτήσεις 𝐹 στα υφιστάμενα δρομολόγια μέσω αλγορίθμου παρεμβολής 

(insertion) ο οποίος βασίζεται στις δυικές τιμές που προκύπτουν από την επίλυση του εκάστοτε 

ΠΚΠ. Για τη δημιουργία νέων δρομολογίων για τα οχήματα που βρίσκονται στο κέντρο 

διανομής, επιλύεται ένα ΣΠΣΔΧΠΠΧ χρησιμοποιώντας περιορισμένη (ευρετική) παραλλαγή 

του αλγορίθμου διόρθωσης ετικετών. 
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Συνδυάζοντας το Περιορισμένο Κυρίως Πρόβλημα με τα Υποπροβλήματα 

Όπως προαναφέρθηκε, αν με την επίλυση των ΥΠ, δημιουργηθεί έστω και ένα δρομολόγιο με 

αρνητικό μειωμένο κόστος (είτε για καθοδόν όχημα, είτε για όχημα από το κέντρο διανομής), 

τότε το δρομολόγιο προστίθεται στο ΠΚΠ και η γραμμική χαλάρωση του νέου ΠΚΠ επιλύεται 

ξανά. Αν σε κάποια επανάληψη της διαδικασίας αυτής δε βρεθούν νέα δρομολόγια με αρνητικό 

μειωμένο κόστος, τότε η διαδικασία ολοκληρώνεται και το βέλτιστο κατώτατο όριο (lower 

bound) έχει επιτευχθεί. Επισημαίνεται και πάλι πως η προαναφερόμενη διαδικασία ΔΔΜ 

επιλύει τη γραμμική χαλάρωση του ΠΚΠ. Για την επίτευξη ακέραιων λύσεων, η ΔΔΜ 

ενσωματώνεται σε πλαίσιο Branch & Bound. Εν γένει, η ενσωμάτωση της ΔΔΜ με Branch & 

Bound, συνιστά τον αλγόριθμο Branch-and-Price.  

ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΑΔΡΟΜΟΛΟΓΗΣΗΣ (ΑΠΕΡΙΟΡΙΣΤΟΣ ΣΤΟΛΟΣ) 

Εισάγεται η έννοια της στρατηγικής αναδρομολόγησης, η οποία αποτελείται από τον συνδυασμό 

α) της πολιτικής αναδρομολόγησης (re-optimization policy) που σχετίζεται με τη συχνότητα 

αναδρομολόγησης και, β) της τακτικής υλοποίησης (implementation tactic), που αφορά στο 

τμήμα του νέου δρομολογίου που κοινοποιείται στο στόλο προς υλοποίηση.  

Διερευνώνται διαφορετικές πολιτικές αναδρομολόγησης αναφορικά με τον αριθμό των ΔΑ που 

έχουν αφιχθεί μεταξύ δύο διαδοχικών περιόδων αναδρομολόγησης:  

 Αναδρομολόγηση ανά κάθε απαίτηση (Single-request re-optimization, SRR): Άμεση 

αναδρομολόγηση με την άφιξη κάθε ΔΑ 

 Αναδρομολόγηση ανά αριθμό απαιτήσεων (N-request re-optimization, NRR): 

Αναδρομολόγηση μετά την άφιξη ενός προκαθορισμένου αριθμού 𝛮 (N>1) ΔΑ  

 Αναδρομολόγηση καθορισμένου χρόνου (Fixed-Time Re-optimization, FTR): 

Αναδρομολόγηση σε προκαθορισμένες χρονικές στιγμές (π.χ. κάθε μία ώρα).  

Επιπρόσθετα, διερευνώνται δύο βασικές τακτικές υλοποίησης του νέου πλάνου:  

 Τακτική πλήρους κοινοποίησης (Full-Release tactic, FR): Όλες οι ΔΑ μετά την αναδρομολό-

γηση κοινοποιούνται στο στόλο άμεσα και δε μπορούν να αναδρομολογηθούν σε 

μελλοντικές περιόδους. 

 Τακτική μερικής κοινοποίηση (Partial-Release tactic, FR): Μόνο οι ΔΑ που έχουν 

προγραμματιστεί προς υλοποίηση έως την επόμενη περίοδο αναδρομολόγησης 

κοινοποιούνται (στην πράξη σταδιακά μία προς μία έως την επόμενη περίοδο 

αναδρομολόγησης). Οι υπόλοιπες ΔΑ θεωρούνται προς αναδρομολόγηση σε μελλοντικές 
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περιόδους. Πρακτικά, αυτό σημαίνει πως οι ΔΑ που δεν έχουν εξυπηρετηθεί μέχρι τη 

χρονική στιγμή αναδρομολόγησης θεωρούνται εκ νέου ως μη δεσμευμένες και ανήκουν 

στο σύνολο 𝐹.  

Η παρούσα διατριβή εξετάζει επίσης θεωρητικά ζητήματα αναφορικά με την αναμενόμενη 

συμπεριφορά των στρατηγικών αναδρομολόγησης. Συγκεκριμένα αποδεικνύεται ότι: α) στη 

περίπτωση ενός οχήματος, και οι δύο τακτικές υλοποίησης αναμένεται να αποφέρουν τα ίδια 

αποτελέσματα, β) το κόστος δρομολόγησης που αντιστοιχεί την τακτική PR είναι πάντα 

χαμηλότερο (ή ίσο) από εκείνο που αντιστοιχεί στην τακτική FR για τις πρώτες δύο περιόδους 

αναδρομολόγησης (ℓ < 3), γ) για ℓ ≥ 3 και ειδικά αν ένα ή περισσότερα οχήματα έχουν 

αποσταλεί από το κέντρο διανομής σε οποιαδήποτε περίοδο ℓ > 0, δεν είναι βέβαιο ότι το 

κόστος της τακτικής PR τακτική είναι χαμηλότερο από εκείνο της τακτικής FR.  

Πειραματική διερεύνηση 

Το κριτήριο μέτρησης ποιότητας της λύσης 

Για τη μέτρηση ποιότητας της λύσης, χρησιμοποιείται η μετρική Value of Information (VoI, 

Mitrovic-Minic et al., 2004), η οποία ισούται με την ποσοστιαία διαφορά του δυναμικού 

προβλήματος από τη θεωρητική λύση του στατικού προβλήματος. Το τελευταίο αντιστοιχεί 

στην περίπτωση κατά την οποία το σύνολο των ΔΑ είναι γνωστές πριν την εκκίνηση των 

οχημάτων από το κέντρο διανομής (στον χρόνο 𝑡 = 0).  

Πειραματικές περιπτώσεις που χρησιμοποιήθηκαν 

Για τη πειραματική διερεύνηση του ΠΔΔΟΠ, χρησιμοποιήθηκαν τα σύνολα προβλημάτων R1, 

C1 και RC1 του Solomon (1987). Επίσης, χρησιμοποιήθηκαν τα σύνολα προβλημάτων MR2, 

MC2 και MRC2 των Kontoravdis and Bard (1995), που χρησιμοποιούν τα χαρακτηριστικά των 

προβλήματα R2, C2 και RC2 του Solomon, αλλά με μειωμένη χωρητικότητα οχημάτων. 

Συμπεριλαμβάνονται επίσης και τα πειράματα vrpnc8 και vrpnc14 των Christofides et al. 

(1979) τα οποία δεν έχουν χρονικά παράθυρα, αλλά χρησιμοποιούν ίδιες συντεταγμένες 

πελατών όπως τα σύνολα R1 και C1 (τα πειράματα αυτά αναφέρονται εφεξής ως R100 και 

C100).  

Με βάση τη παραπάνω σειρά πειραμάτων, μπορούν να αναλυθούν παράμετροι όπως α) η 

γεωγραφική κατανομή πελατών, και β) τα χρονικά παράθυρα. Επιπρόσθετα εξετάζεται το 

δυναμικό περιεχόμενο των προβλημάτων (δηλαδή, το ποσοστό των ΔΑ στο σύνολο όλων των 

απαιτήσεων του πειράματος). Για το λόγο αυτό, εξετάζονται τρεις τιμές δυναμικού 
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περιεχομένου 25%, 50% και 75% για τα για τα σύνολα πειραμάτων R1, C1 και RC1, καθώς 

και 50% για τα MR2, MC2 και MRC2. Συνεπώς, εξετάζονται συνολικά 120 περιπτώσεις 

προβλημάτων (3 τιμές δυναμικού περιεχομένου για τα 31 πειράματα των R1, C1, RC1 και μία 

τιμή για τα 27 πειράματα των MR2, MC2 και MRC2). Για κάθε μία από τις 120 περιπτώσεις 

προβλημάτων, δημιουργούνται 10 διαφορετικά προβλήματα (διαφορετική επιλογή απαιτήσεων 

ως στατικών και ΔΑ), με αποτέλεσμα τη δημιουργία 1,200 προβλημάτων συνολικά.  

Αξιολόγηση της ευρετικής μεθόδου επίλυσης αναφορικά με τη βέλτιστη λύση 

Αρχικά, εξετάζεται η απόδοση της ευρετικής μεθόδου επίλυσης σε σχέση με τη βέλτιστη λύση 

για μεγάλο μέρος των προαναφερόμενων προβλημάτων. Για κάθε πρόβλημα, θεωρήθηκε πως 

α) όλες οι στατικές απαιτήσεις έχουν ανατεθεί στα οχήματα (και δε μπορούν να ανατεθούν σε 

άλλο όχημα πέρα από το αρχικό), και β) όλες οι ΔΑ είναι γνωστές προ της εκκίνησης των 

οχημάτων από το κέντρο διανομής.  

Ο Πίνακας Π.1 παρουσιάζει τα αποτελέσματα ανά σύνολο προβλημάτων, ως το μέσο όρο όλων 

των πειραμάτων και προβλημάτων ανά σύνολο. Ο Πίνακας παρουσιάζει τη ποσοστιαία 

απόκλιση της ευρετικής λύσης (HEUR) από τη βέλτιστη (OPT) για κάθε μία από τις τιμές 

δυναμικού περιεχομένου 25% και 50%. Παρουσιάζονται επίσης οι αντίστοιχοι υπολογιστικοί 

χρόνοι των δύο μεθόδων ανά τιμή (σε δευτερόλεπτα). Η τελευταία στήλη δίνει την απόκλιση 

της μεθόδου HEUR ανά σύνολο προβλημάτων κατά μέσο όρο για τις δύο τιμές δυναμικού 

περιεχομένου. Σύμφωνα με τον Πίνακα, η μέθοδος HEUR φαίνεται να παρέχει ανταγωνιστικές 

λύσεις, με μέση απόκλιση 2.2% από τη βέλτιστη. Αναφορικά με τους υπολογιστικούς χρόνους, 

η μέθοδος φαίνεται να είναι ιδιαίτερα αποτελεσματική, συγκριτικά με τη μέθοδο ακριβούς 

επίλυσης.  

Πίνακας Π.1. Απόδοση της ευρετικής μεθόδου επίλυσης 

Dataset Nodes 
𝒅𝒐𝒅 =  𝟐𝟓% 𝒅𝒐𝒅 =  𝟓𝟎% Average 

%Dev %Dev 𝑪𝑻𝑶𝑷𝑻 𝑪𝑻𝑯𝑬𝑼𝑹 %Dev 𝑪𝑻𝑶𝑷𝑻 𝑪𝑻𝑯𝑬𝑼𝑹 

R1 100 2.0% 719.3 36.8 1.8% 5239.5 56.6 1.9% 

C1 100 2.6% 136.1 24.8 2.5% 2029.0 68.6 2.6% 

RC1 100 2.5% 188.4 32.3 2.0% 896.1 35.7 2.3% 

MR2 50 2.1% 651.0 13.1 2.1% 6108.1 94.9 2.1% 

MC2 50 1.4% 632.9 10.6 1.9% 3509.9 140.6 1.7% 

MRC2 50 2.7% 382.3 8.7 2.2% 1031.3 75.5 2.5% 

Average 2.2% 451.7 21.1 2.1% 3135.7 78.7 2.2% 

Πειραματική διερεύνηση των στρατηγικών αναδρομολόγησης 
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Η παρούσα πειραματική διερεύνηση περιλαμβάνει όλα τα πειράματα που περιεγράφηκαν 

παραπάνω. Αφορά αρχικά την συνολική συμπεριφορά των προτεινόμενων στρατηγικών 

αναδρομολόγησης και στη συνέχεια τη συμπεριφορά σε σχέση με διάφορες βασικές 

παραμέτρους του συστήματος. Για τη διερεύνηση αυτή χρησιμοποιήθηκαν οι πολιτικές SRR 

και NRR. Αναφορικά με τις πολιτικές NRR, χρησιμοποιήθηκαν οι NRR-1, NRR-2 και NRR-

3, που αναφέρονται σε αναδρομολόγηση κάθε 10%, 20% και 33% των ΔΑ που εισάγονται στο 

σύστημα, αντίστοιχα. Κάθε πολιτική εξετάστηκε κάτω από τις τακτικές FR και PR (άρα, 

συνολικά εξετάζονται οχτώ στρατηγικές αναδρομολόγησης).  

Στο Σχήμα Π.3 παρουσιάζεται η απόδοση (αναφορικά με το VoI) των στρατηγικών για κάθε 

σύνολο προβλημάτων, ως μέσος όρος όλων των προβλημάτων και τιμών δυναμικού 

περιεχομένου. Για ομοιογένεια των αποτελεσμάτων, όλα τα πειράματα επιλύθηκαν με την 

ευρετική μέθοδο (HEUR). Από το Σχήμα είναι προφανές πως: α) η στρατηγική SRR-PR 

παρέχει τα καλύτερα αποτελέσματα κατά μέσο όρο (το ελάχιστο VoI), και β) η τακτική PR 

παρέχει καλύτερα αποτελέσματα κατά μέσο όρο από την FR για όλα τα σύνολα προβλημάτων. 

Η διαφορά των δύο τακτικών τείνει να μειώνεται με την αύξηση της συχνότητας 

αναδρομολόγησης. 

 

Σχήμα Π.3. Μέση απόδοση των στρατηγικών αναδρομολόγησης για κάθε σύνολο προβλημάτων 

Επιπρόσθετα, η διατριβή επικεντρώνεται στη συμπεριφορά των στρατηγικών αναφορικά τρεις 

βασικές παραμέτρους: α) τα χρονικά παράθυρα πελατών, β) το δείκτη δυναμικού 

περιεχομένου, και γ) το περιθώριο απόκρισης από την άφιξη της ΔΑ μέχρι το επιτρεπτό όριο 

εξυπηρέτησής της. Η εν λόγω διερεύνηση παρείχε τα εξής (γενικά) συμπεράσματα: 
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α) Όταν επιτρέπεται από το εκάστοτε επιχειρησιακό σενάριο, θα πρέπει να προτιμάται η 

τακτική PR με όσο το δυνατό μεγαλύτερη συχνότητα αναδρομολόγησης. 

β) Όταν η τακτική FR είναι αναπόφευκτη, λόγω των χαρακτηριστικών του περιβάλλοντος, η 

αναδρομολόγηση θα πρέπει να λαμβάνει χώρα σε i) μικρά έως μέτρια χρονικά διαστήματα 

για περιπτώσεις μικρού εύρους χρονικών παραθύρων ή μικρού περιθωρίου απόκρισης και 

ii) μέτρια έως μεγάλα διαστήματα για περιπτώσεις μεγάλους εύρους παραθύρων ή 

περιθωρίου απόκρισης.  

γ) Σε προβλήματα με υψηλό δυναμικό περιεχόμενο, συνιστάται μέτρια συχνότητα 

αναδρομολόγησης (ανεξαρτήτως τακτικής υλοποίησης).  

Τέλος, διερευνήθηκε κατά πόσο η χρήση βέλτιστης επίλυσης σε κάθε περίοδο 

αναδρομολόγησης αποφέρει καλύτερα αποτελέσματα σε ολόκληρο το δυναμικό πρόβλημα 

(πολλαπλές περίοδοι). Τα αποτελέσματα υποδεικνύουν πως η βέλτιστη επίλυση του 

προβλήματος σε κάθε περίοδο ενδέχεται να οδηγήσει σε δυσμενέστερα αποτελέσματα από 

εκείνα που αντιστοιχούν στην πρακτική επίλυσης του προβλήματος αναδρομολόγησης μέσω 

της ευρετικής μεθόδου (για κάθε περίοδο αναδρομολόγησης), ιδιαίτερα σε περιπτώσεις με 

διευρυμένο πεδίο λύσεων (π.χ. μεγάλο εύρος χρονικών παραθύρων).  

ΤΟ ΠΔΔΟΠ ΓΙΑ ΤΗ ΠΕΡΙΠΤΩΣΗ ΠΕΡΙΟΡΙΣΜΕΝΟΥ ΣΤΟΛΟΥ ΟΧΗΜΑΤΩΝ 

Η περίπτωση κατά την οποία ο στόλος οχημάτων είναι περιορισμένος και, συνεπώς, κάποιες 

από τις ΔΑ ενδέχεται να μη μπορούν να εξυπηρετηθούν, ορίζεται ως το ΠΔΔΟΠ με 

Περιορισμούς Πόρων (ΠΔΔΟΠΠΠ). Για την αντιμετώπιση του ΠΔΔΟΠΠΠ, επεκτείνεται η 

προτεινόμενη B&P μέθοδος για την επίλυση του σχετικού προβλήματος αναδρομολόγησης. 

Εξετάζονται εναλλακτικές αντικειμενικές συναρτήσεις που προσπαθούν να μεγιστοποιήσουν 

την εξυπηρέτηση των απαιτήσεων, ενώ ταυτόχρονα μεγιστοποιούν τη παραγωγικότητα των 

οχημάτων. Τόσο η αρχική μοντελοποίηση του ΠΔΔΟΠ, όσο και η διαδικασία επίλυσης 

τροποποιούνται ανάλογα ώστε να είναι σε θέση να αντιμετωπίσουν τον περιορισμό του 

πλήθους οχημάτων. Η απόδοση των προτεινόμενων αντικειμενικών συναρτήσεων εξετάζεται 

συγκριτικά με την συμβατική αντικειμενική συνάρτηση που στοχεύει βασικά στη 

μεγιστοποίηση των εξυπηρετούμενων απαιτήσεων (βλ. Π.15), εξετάζοντας πλήθος 

επιχειρησιακών σεναρίων και παραμέτρων. Η προτεινόμενη μέθοδος επίλυσης εφαρμόζεται 

επίσης σε πρακτικό περιβάλλον μεγάλης εταιρείας ταχυμεταφορών.  

Προτεινόμενες αντικειμενικές συναρτήσεις 
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Προτείνονται τρεις (3) διαφορετικές αντικειμενικές συναρτήσεις, αναφορικά με το πρόβλημα 

που επιλύεται σε κάθε περίοδο αναδρομολόγησης:  

α) Η αντικειμενική συνάρτηση 𝑧̌1, η οποία αποτελείται από δύο όρους με λεξικογραφική δομή. 

Ο πρώτος όρος προσπαθεί να μεγιστοποιήσει την εξυπηρέτηση των ΔΑ, αναθέτοντας ένα 

σταθερό κέρδος σε κάθε ΔΑ που εξυπηρετείται (βλ. Π.15). Ο δεύτερο όρος ελαχιστοποιεί 

τα κόστη διαδρομής (για το μέγιστο αριθμό ΔΑ). 

β) Η αντικειμενική συνάρτηση 𝑧̌2 η οποία αποτελείται από τρεις λεξικογραφικούς όρους: ο 

πρώτος όρος μεγιστοποιεί την εξυπηρέτηση των ΔΑ (σταθερό κέρδος ανά ΔΑ), ο δεύτερος 

όρος προσδίδει επιπρόσθετο κέρδος σε κάθε απαίτηση (στατική ή δυναμική) η οποία 

εξυπηρετείται μέχρι τη χρονική στιγμή της επερχόμενης αναδρομολόγησης, και ο τρίτος 

όρος ελαχιστοποιεί τα κόστη διαδρομής.   

γ) Τέλος, ορίζεται η αντικειμενική συνάρτηση 𝑧̌3 η οποία τροποποιεί την 𝑧̌2 αναφορικά με το 

επιπρόσθετο κέρδος (του δευτέρου όρου της 𝑧̌2). Στη περίπτωση αυτή, το κέρδος αφορά τις 

απαιτήσεις που εξυπηρετούνται σε οποιαδήποτε μελλοντική περίοδο αναδρομολόγησης και 

μειώνεται γραμμικά ανάλογα με τη περίοδο εξυπηρέτησης της απαίτησης.  

Έστω 𝜉𝑢 το σταθερό κέρδος που ανατίθεται για κάθε εξυπηρετούμενη ΔΑ και 𝜉𝑝 το 

επιπρόσθετο κέρδος σε περίπτωση που μία απαίτηση (στατική ή δυναμική) εξυπηρετείται μέχρι 

την επερχόμενη περίοδο αναδρομολόγησης. Με βάση την παραπάνω ορολογία, το κέρδος που 

ανατίθεται σε κάθε απαίτηση σε σχέση με τις τρεις προτεινόμενες αντικειμενικές συναρτήσεις 

αποτυπώνεται στο Σχήμα Π.4. Χρησιμοποιώντας τη κατάλληλη αντικειμενική ανά περίπτωση, 

η μέθοδος επίλυσης μπορεί να οδηγηθεί από την αποκλειστική μεγιστοποίηση των 

εξυπηρετούμενων ΔΑ (αντικειμενική συνάρτηση 𝑧̌1), έως και τη μεγιστοποίηση της 

παραγωγικότητας των οχημάτων (αντικειμενικές συναρτήσεις 𝑧̌2 και 𝑧̌3).  
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Σχήμα Π.4. Το κέρδος ανά απαίτηση σε σχέση με τις τρεις προτεινόμενες αντικειμενικές συναρτήσεις  

Για την υλοποίηση των αντικειμενικών συναρτήσεων 𝑧̌2 και 𝑧̌3, οι χρονικές στιγμές 

αναδρομολόγησης θα πρέπει να είναι προκαθορισμένες (και γνωστές εκ των προτέρων). Οι 

πολιτικές αναδρομολόγησης FTR που περιεγράφηκαν προηγουμένως είναι πιο κατάλληλες για 

τη περίπτωση αυτή. Πολιτικές που βασίζονται στο πλήθος των αφιχθέντων ΔΑ, μπορούν να 

υλοποιηθούν μόνο με την αντικειμενική 𝑧̌1.  

Τροποποιήσεις του ΠΔΔΟΠ για την εφαρμογή σε περιορισμένο στόλο οχημάτων 

Για τη μοντελοποίηση του ΠΔΔΟΠΠΠ ως πρόβλημα διαμερισμού συνόλου (SPP), έγιναν οι 

παρακάτω τροποποιήσεις: α) ενσωμάτωση των νέων αντικειμενικών συναρτήσεων, β) 

εξασφάλιση πως κάθε στατική απαίτηση θα εξυπηρετηθεί (ακριβώς μία φορά), ενώ κάθε ΔΑ 

μπορεί να εξυπηρετηθεί το πολύ μία φορά, και γ) ενσωμάτωση του περιορισμού αναφορικά με 

τα διαθέσιμα οχήματα . Συνεπώς, η μοντελοποίηση του ΚΠ (set-partitioning problem), 

μετατρέπεται ως εξής: 

Ελαχιστοποίηση ∑ 𝑐̃𝑟𝑦𝑟
𝑟∈𝛺′

  (Π.20)  

Υπό τους περιορισμούς: 
∑𝑒𝑖𝑟𝑦𝑟
𝑟∈𝛺

= 1 ∀𝑖 ∈ 𝐶 (Π.21)  

 
∑𝑒𝑖𝑟𝑦𝑟
𝑟∈𝛺

≤ 1 ∀𝑖 ∈ 𝐹 (Π.22)  
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 ∑ 𝑦𝑟
𝑟∈𝛺𝑝

≤ |𝐾𝑑|  (Π.23)  

 𝑦𝑟 = {0,1} ∀𝑟 ∈ 𝛺 (Π.24)  

Η αντικειμενική συνάρτηση (Π.20) ελαχιστοποιεί το συνολικό κόστος των δρομολογίων (όπου 

𝑐̃𝑟 είναι το τροποποιημένο κόστος, το οποίο συμπεριλαμβάνει τα κέρδη 𝜉𝑢 και 𝜉𝑝). Ο 

περιορισμός (Π.21) εξασφαλίζει πως κάθε στατική απαίτηση θα εξυπηρετηθεί ακριβώς μία 

φορά από ένα όχημα, ενώ ο περιορισμός (Π.22) ορίζει πως κάθε ΔΑ μπορεί να εξυπηρετηθεί 

το πολύ μία φορά. Τέλος, ο περιορισμός (Π.23) περιορίζει τον αριθμό των διαθέσιμων 

οχημάτων.  

Πειραματική διερεύνηση 

Πειραματικές περιπτώσεις που χρησιμοποιήθηκαν 

Στην παρούσα πειραματική διερεύνηση, χρησιμοποιήθηκαν τα σύνολα προβλημάτων R1 και 

C1 του Solomon (12 και 9 πειράματα, αντίστοιχα). Όπως και για το ΠΔΔΟΠ, 

χρησιμοποιήθηκαν επίσης τα πειράματα R100 και C100 (χωρίς χρονικά παράθυρα). Ο Πίνακας 

Π.2 συνοψίζει τις πειραματικές περιπτώσεις.  

Επιπρόσθετα, εξετάστηκαν διαφορετικές τιμές αναφορικά με τη διαθεσιμότητα των οχημάτων, 

δηλαδή τον αριθμό των επιπλέον οχημάτων που είναι διαθέσιμα στο κέντρο διανομής για την 

εξυπηρέτηση ΔΑ. Για κάθε ένα από τα 23 παραπάνω πειράματα, εξετάστηκαν τρεις (3) 

διαφορετικές τιμές διαθέσιμων οχημάτων στο κέντρο διανομής, 0, 2 ή 4 οχήματα (εφεξής 

ορίζονται ως V-0, V-2 και V-4, αντίστοιχα). Συνεπώς, κατασκευάστηκαν 69 διαφορετικές 

περιπτώσεις (3 x 23). Για κάθε περίπτωση, θεωρήθηκε η περίπτωση μέτριου δυναμικού 

περιεχομένου (50% ΔΑ αναφορικά με το σύνολο των απαιτήσεων) και κατασκευάστηκαν 10 

διαφορετικά προβλήματα (επιλέγοντας διαφορετικές στατικές απαιτήσεις). Συνεπώς, 

δημιουργήθηκαν 690 διαφορετικά προβλήματα.  

Πίνακας Π.2. Πειράματα που χρησιμοποιήθηκαν για το ΠΔΔΟΠΠΠ 

Γεωγραφική 

κατανομή 

Χρονικά 

Παράθυρα 

# 

Πειραμάτων 
Πειράματα  

Ομοιόμορφη ΝΑΙ 12 R101, R102 ,R103, R104, R105, R106, R107, R108, R109, R110, R111, R112 

Ομαδοποιημένη ΝΑΙ 9 C101, C102, C103, C104, C105, C106, C107, C108, C109 

Ομοιόμορφη ΟΧΙ 1 R100 

Ομαδοποιημένη ΟΧΙ 1 C100 

Αξιολόγηση της ευρετικής μεθόδου επίλυσης αναφορικά με τη βέλτιστη λύση 
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Αρχικά, εξετάζεται η απόδοση της ευρετικής μεθόδου επίλυσης σε περιβάλλον περιορισμένου 

στόλου οχημάτων, συγκριτικά με τη βέλτιστη λύση. Τα αποτελέσματα υποδεικνύουν πως η 

ευρετική μέθοδος εμφανίζει παρόμοια αποτελέσματα με τη περίπτωση του απεριόριστου 

στόλου. Συγκεκριμένα, στο περιβάλλον αυτό, η ευρετική μέθοδος αποκλίνει 1.9% από τη 

βέλτιστη λύση κατά μέσο όρο για όλα τα προβλήματα, παρέχοντας λύσεις σε ιδιαίτερα 

αποτελεσματικούς υπολογιστικούς χρόνους.  

Αξιολόγηση της στρατηγικών αναδρομολόγησης 

Στη συνέχεια εξετάζεται η συμπεριφορά των στρατηγικών αναδρομολόγησης σε περιβάλλον 

περιορισμένου στόλου οχημάτων, με κύριο στόχο την συσχέτιση της συμπεριφοράς με αυτή 

που παρατηρήθηκε στη περίπτωση του απεριόριστου στόλου. Προκειμένου να αποτελέσματα 

να είναι συγκρίσιμα, χρησιμοποιήθηκαν πολιτικές που βασίζονται στον αριθμό των ΔΑ (SRR, 

NRR-1, NRR-2 και NRR-3). Εφόσον οι περίοδοι αναδρομολόγησης δεν είναι 

προκαθορισμένες, η παρούσα ανάλυση χρησιμοποιεί την αντικειμενική συνάρτηση 𝑧̌1. Η 

ανάλυση υποδεικνύει πως τα αποτελέσματα συμφωνούν με για τα αντίστοιχα της περίπτωσης 

απεριόριστου στόλου. Συγκεκριμένα, η στρατηγική SRR-PR παρέχει τα καλύτερα 

αποτελέσματα (ελάχιστο VoI) και η τακτική PR υπερισχύει της FR (κατά μέσο όρο) σε όλες 

τις περιπτώσεις. Παρόμοια συμπεριφορά παρατηρείται για τις διαφορετικές τιμές 

διαθεσιμότητας οχημάτων. 

Αξιολόγηση των προτεινόμενων αντικειμενικών συναρτήσεων 

Στην ενότητα αυτή, αξιολογείται η απόδοση των τριών προτεινόμενων αντικειμενικών 

συναρτήσεων που περιγράφηκαν ανωτέρω (𝑧̌1, 𝑧̌2 και 𝑧̌3). Η παρούσα διερεύνηση 

περιλαμβάνει όλα τα προβλήματα του συνόλου R1 (13 πειράματα, μαζί με το R100), για τις 

τρεις τιμές διαθεσιμότητας οχημάτων (V-0, V-2 και V-4) και χρησιμοποιώντας τα 10 

διαφορετικά προβλήματα ανά πείραμα (390 προβλήματα στο σύνολο). Εφόσον οι 

αντικειμενικές συναρτήσεις 𝑧̌2 και 𝑧̌3 μπορούν να χρησιμοποιηθούν μόνο σε περιπτώσεις 

προκαθορισμένων περιόδων αναδρομολόγησης, χρησιμοποιήθηκαν οι πολιτικές FTR. 

Συγκεκριμένα, εξετάστηκαν τέσσερις (4) πολιτικές: FTR-10, FTR-20, FTR-40 και FTR-60 που 

αντιστοιχούν σε αναδρομολόγηση κάθε 10, 20, 40 και 60 μονάδες του 𝑇𝑚𝑎𝑥 (230 μονάδες στα 

πειράματα), αντιστοίχως. Κάθε πολιτική εκτελέστηκε σε συνδυασμό με τις πολιτικές FR και 

PR (συνεπώς συνολικά 3,120 προβλήματα = 390x8).  

Στο Σχήμα Π.6 παρουσιάζεται η απόδοση (αναφορικά με το VoI) της κάθε αντικειμενικής 

συνάρτησης για κάθε ένα από τα 13 πειράματα. Τα αποτελέσματα αφορούν τη μέση τιμή των 
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διαφόρων στρατηγικών αναδρομολόγησης και προβλημάτων. Σύμφωνα με το Σχήμα, οι 

αντικειμενικές συναρτήσεις 𝑧̌2 και 𝑧̌3 (που λαμβάνουν υπόψη τη παραγωγικότητα των 

οχημάτων) καταλήγουν σε αποτελεσματικότερες λύσεις συγκριτικά με την 𝑧̌1, κατά κύριο λόγο 

σε περιπτώσεις με μεγάλο εύρος χρονικών παραθύρων (R103, R104, R107, R108) ή σε 

περιπτώσεις χωρίς χρονικά παράθυρα (R100).  

 
Σχήμα Π.6. Συνολική μέση απόδοση των τριών αντικειμενικών συναρτήσεων ανά πείραμα 

Στην διατριβή διερευνήθηκε επίσης η συμπεριφορά των αντικειμενικών συναρτήσεων 

αναφορικά με τη συχνότητα αναδρομολόγησης. Η ανάλυση υποδεικνύει πως η αντικειμενική 

συνάρτηση 𝑧̌3 επιτυγχάνει καλύτερα αποτελέσματα με χαμηλότερη συχνότητα 

αναδρομολόγησης (FTR-10, FTR-20) λόγω του ότι ευνοεί την ευέλικτη κατανομή των ΔΑ στην 

πλέον κατάλληλη περίοδο (χωρίς να εξαναγκάζει τις απαιτήσεις να εξυπηρετηθούν μέχρι την 

επερχόμενη περίοδο, όπως η 𝑧̌2). Παρατηρείται επίσης πως η απόδοση των αντικειμενικών 𝑧̌2 

και 𝑧̌3 συγκριτικά με την 𝑧̌1 βελτιώνεται σημαντικά όταν η ακολουθείται η τακτική FR. 

Επιπρόσθετα, κατάλληλη ανάλυση αναφορικά με το εύρος των χρονικών παραθύρων και τη 

διαθεσιμότητα των οχημάτων, υποδεικνύει πως μέσω των αντικειμενικών συναρτήσεων 𝑧̌2 και 

𝑧̌3 επιτυγχάνονται καλύτερα αποτελέσματα σε περιπτώσεις με διευρυμένα χρονικά παράθυρα 

(π.χ. >40% του 𝛵𝑚𝑎𝑥) και σχετικά υψηλή διαθεσιμότητα οχημάτων. Αντίθετα, σε περιπτώσεις 

στενών (περιορισμένων) χρονικών παραθύρων και περιορισμένης διαθεσιμότητας οχημάτων, 

αντικειμενικές συναρτήσεις που λαμβάνουν υπόψη τους τη παραγωγικότητα των οχημάτων, 

δεν επιφέρουν σημαντική βελτίωση στις αντίστοιχες λύσεις.  

Για την αρτιότερη αποτύπωση της απόδοσης των αντικειμενικών συναρτήσεων, στο Σχήμα Π.7 

παρουσιάζεται η απόδοση των συναρτήσεων αυτών αναφορικά με τον αριθμό των 

εξυπηρετημένων ΔΑ κάτω από παραμέτρους που ευνοούν τις 𝑧̌2 και 𝑧̌3. Συγκεκριμένα, α) τιμή 
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V-4 για τη διαθεσιμότητα οχημάτων, και β) πειράματα με μεγάλα ή καθόλου χρονικά παράθυρα 

(R104, R108 και R100). Από το Σχήμα αυτό διαφαίνεται πως οι εν λόγω αντικειμενικές 

συναρτήσεις καταλήγουν σε λύσεις στις οποίες εξυπηρετούνται έως και 15% περισσότερες ΔΑ 

(για συχνή αναδρομολόγηση με τακτική FR).  

 

Σχήμα Π.7. Συνολική μέση απόδοση των τριών αντικειμενικών ανά πείραμα 

Μελέτη περίπτωσης σε πραγματικό περιβάλλον εταιρείας ταχυμεταφορών 

Η προτεινόμενη μέθοδος επίλυσης του ΠΔΔΟΠΠΠ εφαρμόστηκε σε περιβάλλον της εταιρείας 

Ταχυμεταφορές ΕΛΤΑ Α.Ε., η οποία κατέχει το τρίτο μεγαλύτερο μερίδιο αγοράς στην 

Ελλάδα. Για τη μελέτη αυτή, χρησιμοποιήθηκαν πραγματικά δεδομένα της εταιρείας και 

εφαρμόστηκε η προτεινόμενη B&P μέθοδος για τη δρομολόγηση των ΔΑ. Τα αποτελέσματα 

συγκρίνονται με: α) τις χειρωνακτικές πρακτικές των διακινητών της εταιρείας, καθώς και β) 

με τα αποτελέσματα προηγμένου αλγορίθμου παρεμβολής.  

Η μελέτη περίπτωσης έλαβε χώρα σε κέντρο διανομής (ΚΔ) που καλύπτει συγκεκριμένη 

περιοχή της Αθήνας (700 km2). Το ΚΔ εξυπηρετεί κατά μέσο όρο 450 στατικές απαιτήσεις 

(ΣΑ) και 70 δυναμικές απαιτήσεις (ΔΑ) ανά ημέρα με στόλο 13 οχημάτων. Τα δεδομένα 

συλλέχθηκαν για περίοδο τριών ημερών (477, 491 και 370 στατικές απαιτήσεις, καθώς και 68, 

68 και 66 ΔΑ ανά ημέρα, αντίστοιχα). Το Σχήμα Π.8a αποτυπώνει τις θέσεις των απαιτήσεων 

(πελατών) για μία ημέρα και το Σχ. Π.8b τη χρονική κατανομή των ΔΑ σε συνάρτηση με την 

ώρα της ημέρας.  
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(a) (b) 

Σχήμα Π.8. (a) Αποτύπωση των απαιτήσεων μίας ημέρας σε ψηφιακό χάρτη (οι μπλε κύκλοι 

αντιπροσωπεύουν τις ΣΑ και οι κόκκινοι σταυροί τις ΔΑ); (b) κατανομή των ΔΑ σε σχέση με την ώρα τις 

ημέρας (όλες οι τρεις ημέρες) 

Για τη πειραματική διερεύνηση, χρησιμοποιήθηκαν τέσσερα βασικά εργαλεία δρομολόγησης, 

όπως φαίνεται στον Πίνακα Π.3. Ο συνδυασμός διαφορετικών εργαλείων για τη δρομολόγηση 

των στατικών απαιτήσεων και των ΔΑ παρέχει πέντε διαφορετικά σενάρια (βλ. Πίνακα Π.4).  

Πίνακας Π.3. Εργαλεία δρομολόγησης που εμπλέκονται στη πειραματική διερεύνηση 

Εργαλεία  Δρομολόγηση για Περιγραφή 

Manual ΣΑ & ΔΑ 
Οι παρούσες χειρωνακτικές διαδικασίες που ακολουθούνται από τους 

διακινητές. Συμπεριλαμβάνει δρομολόγηση για στατικές απαιτήσεις και ΔΑ 

SW ΣΑ 

 

Αρχικός προγραμματισμός των στατικών απαιτήσεων μέσω εμπορικής 

εφαρμογής δρομολόγησης  

HEUR ΔΑ Ο προηγμένος αλγόριθμος παρεμβολής (insertion heuristic) 

B&P ΔΑ Η προτεινόμενη B&P μέθοδος 

Πίνακας Π.4. Σενάρια δρομολόγησης  

Σενάριο 
Δρομολόγηση ΣΑ  Δρομολόγηση ΔΑ 

Manual SW Manual HEUR B&P 

S0      

S1      

S2      

S3      

S4      

Στο Σχήμα Π.9 παρουσιάζεται η απόδοση (μέσος όρος για τις τρεις ημέρες) των πέντε σεναρίων 

αναφορικά με τη χρονική διάρκεια των δρομολογίων (σε ώρες). Από το Σχήμα διακρίνεται πως 

το σενάριο S4 παρουσιάζει τα καλύτερα αποτελέσματα από όλα τα υπόλοιπα σενάρια, με μέση 

βελτίωση της τάξεως του 16% αναφορικά με το σενάριο S0. Αναφορικά με τη διαχείριση των 

ΔΑ, η B&P μέθοδος (S2) υπερισχύει του αλγορίθμου παρεμβολής (S1) κατά 33.8%. Η 
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βελτίωση αυτή μειώνεται στο 12.2% όταν η εμπορική εφαρμογή χρησιμοποιείται για την 

δρομολόγηση των ΣΑ.  

 

Σχήμα Π.9. Συνολική απόδοση των σεναρίων δρομολόγησης (μέσος όρος όλων των ημερών) 

Η ΠΕΡΙΠΤΩΣΗ ΜΕΤΑΦΟΡΤΩΣΗΣ ΣΤΟ ΠΔΔΟΠ 

Οι προηγούμενες αναλύσεις του ΠΔΔΟΠ (απεριόριστου και περιορισμένου αριθμού 

οχημάτων) θεωρούσαν ως σταθερή την αρχική ανάθεση των στατικών απαιτήσεων 

(παραδόσεων) στα οχήματα. Ωστόσο, η διατήρηση αυτής της αρχικής ανάθεσης ενδέχεται να 

περιορίσει τη απόδοση του συστήματος, εφόσον οι αλλαγές του πλάνου που προκαλούνται από 

την άφιξη νέων ΔΑ μπορεί να προσδώσουν πλεονέκτημα σε τυχόν αλλαγές των στατικών 

απαιτήσεων μεταξύ των οχημάτων. Με βάση αυτή την παρατήρηση, στη παρούσα ενότητα 

εξετάζεται και επιλύεται μία καινοτόμα παραλλαγή του ΠΔΔΟΠ η οποία επιτρέπει 

μεταφορτώσεις κατά τη διάρκεια εκτέλεσης των δρομολογίων. Το πρόβλημα αυτό αναφέρεται 

ως το ΠΔΔΟΠ με Μεταφορτώσεις (ΠΔΔΟΠΜΦ). Επιτρέποντας τέτοιου είδους αλλαγές, 

αναμένεται η αποτελεσματικότερη εκμετάλλευση του στόλου, ανά-κατανέμοντας το φόρτο 

εργασίας όπως απαιτείται βάσει της δυναμικότητας του συστήματος. Οι μεταφορτώσεις 

μπορούν να πραγματοποιηθούν επιτρέποντας στα οχήματα να συναντηθούν σε πραγματικό 

χρόνο. Η τακτική αυτή είναι ιδιαίτερα συνηθισμένη σε εταιρείες ταχυμεταφορών και 

χρηματαποστολών.  

Για την αντιμετώπιση του ΠΔΔΟΠΜΦ με απεριόριστο πλήθος οχημάτων, μοντελοποιείται 

αρχικά το σχετικό πρόβλημα αναδρομολόγησης και συγκρίνεται η βέλτιστη λύση του με το 

ΠΔΔΟΠ (που δεν επιτρέπει μεταβιβάσεις). Στη συνέχεια, αναπτύσσεται πλαίσιο ευρετική 

επίλυσης για την αντιμετώπιση προβλημάτων πρακτικού μεγέθους. Το πλαίσιο αυτό 

χρησιμοποιείται για την επίλυση του συνολικού προβλήματος (πολλαπλοί περίοδοι) και 

εξετάζεται η επίδραση διαφορετικών στρατηγικών αναδρομολόγησης στη ποιότητα της λύσης. 
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Το πρόβλημα αναδρομολόγησης στο ΠΔΔΟΠΜΦ 

Επιτρέποντας μεταφορτώσεις κατά την επίλυση του προβλήματος αναδρομολόγησης, 

ενδέχεται να αυξηθεί σημαντικά η πολυπλοκότητα του συστήματος. Από διοικητικής απόψεως, 

ενδέχεται να μην είναι πρακτικό να επιτρέπονται πολλαπλές μεταφορτώσεις ανά απαίτηση, ή 

μεταφορτώσεις μεταξύ άνω των δύο οχημάτων, εφόσον οι πρακτικές αυτές ενδέχεται να 

αποφέρουν σύγχυση στους οδηγούς και επιπρόσθετη διαχείριση. Υπολογίζοντας τα παραπάνω, 

το πρόβλημα αναδρομολόγησης για το ΠΔΔΟΠΜΦ επιλύεται λαμβάνοντας υπόψη τις 

παρακάτω παραδοχές:  

a) Όλες οι απαιτήσεις πρέπει να εξυπηρετηθούν (στατικές επιδόσεις και ΔΑ) 

b) Κάθε όχημα μπορεί να συμμετέχει σε μία μόνο μεταφόρτωση ανά επίλυση του 

προβλήματος αναδρομολόγησης.  

c) Αναφορικά με τα σημεία μεταφόρτωσης, εξετάζονται δύο περιπτώσεις όπου η 

μεταφόρτωση λαμβάνει χώρα: i) σε προκαθορισμένα σημεία (γνωστά εκ των προτέρων), ή 

ii) στις τοποθεσίες όλων των μη εξυπηρετούμενων στατικών και δυναμικών απαιτήσεων 

(συμπεριλαμβανομένων και των θέσεων των οχημάτων).  

Μαθηματική μοντελοποίηση του προβλήματος αναδρομολόγησης στο ΠΔΔΟΠΜΦ 

Η παρακάτω μοντελοποίηση βασίστηκε στην εργασία του Cortes et al. (2010), η οποία αναλύει 

μεταφορτώσεις για τη περίπτωση του Προβλήματος Παραλαβών και Επιδόσεων (στο οποίο 

κάθε απαίτηση σχετίζεται με μία τοποθεσία παραλαβής και μία επίδοσης).  

Βασικές παραδοχές μοντελοποίησης 

Στην ανάπτυξη του μοντέλου χρησιμοποιήθηκαν οι παρακάτω παραδοχές αναφορικά με τα 

σημεία μεταφόρτωσης: α) κάθε τέτοιο σημείο 𝑢 αποτελείται από δύο κόμβους 𝑠(𝑢) και 𝑓(𝑢), 

οι οποίοι σχετίζονται με την έναρξη και ολοκλήρωση της μεταφόρτωσης, β) δημιουργούνται 

κλώνοι των συνόλων των μη εξυπηρετούμενων απαιτήσεων (𝛮′) και των θέσεων των 

οχημάτων (𝛭′), γ) κάθε τοποθεσία μη εξυπηρετούμενου πελάτη χαρακτηρίζεται πλέον από 

τρεις κόμβους: τον αρχικό κόμβο 𝑖 ∈ (𝑁 ∪𝑀 ∪ 0), τον κόμβο έναρξης μεταφόρτωσης 𝑠(𝑢), 

και τον κόμβο ολοκλήρωσης της μεταφόρτωσης 𝑓(𝑢), όπου 𝑢 ∈ (𝑁′ ∪𝑀′ ∪ 0′) δηλώνει το 

σημείο μεταφόρτωσης που αντιστοιχεί στον κόμβο 𝑖 ∈ (𝑁 ∪𝑀 ∪ 0).  

Το μαθηματικό μοντέλο 

Επιπρόσθετα από τον συμβολισμό που παρατέθηκε στο ΠΔΔΟΠ προηγουμένως, ορίζεται το 

σύνολο όλων των σημείων μεταφόρτωσης 𝑈 = 𝑈𝑓 ∪ {0′} ∪ 𝑀
′ ∪ 𝑁′, όπου 𝑈𝑓 αντιπροσωπεύει 
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το σύνολο των προκαθορισμένων σημείων. Βάσει αυτού, ορίζουμε το σύνολο των κόμβων του 

μοντέλου ως 𝑊 = 𝑁 ∪𝑀 ∪ {0} ∪ 𝑠(𝑈) ∪ 𝑓(𝑈). Το σύνολο των ακμών 𝛢 ορίζεται επίσης 

κατάλληλα, έτσι ώστε ενώσεις κόμβων μη σχετικές με το πρόβλημα δε συμπεριλαμβάνονται.  

Το μοντέλο περιλαμβάνει τρία διαφορετικά σύνολα μεταβλητών: i) τη μεταβλητή 𝑥𝑖𝑗𝑘 που 

ισούται με 1 αν το όχημα 𝑘 ∈ 𝑉 διανύει την ακμή (𝑖, 𝑗) ∈ 𝐴 και μηδέν σε άλλη περίπτωση, ii) 

τη μεταβλητή 𝑤𝑖𝑘, που αντιπροσωπεύει το χρόνο έναρξης εξυπηρέτησης της απαίτησης 

(κόμβου) 𝑖 ∈ 𝑊 από το όχημα 𝑘 ∈ 𝑉, όπου 𝑤𝑠(𝑢)𝑘 και 𝑤𝑓(𝑢)𝑘 αντιστοιχούν στον χρόνο άφιξης 

και αναχώρησης από το σημείο μεταφόρτωσης, αντίστοιχα, και iii) τη μεταβλητή 𝑧𝑗
𝑘𝑖 η οποία 

χρησιμοποιείται για την ιχνηλάτηση της κατάστασης του φορτίου κάθε απαίτησης όταν 

ταξιδεύει από κόμβο σε κόμβο. Η μεταβλητή λαμβάνει τη τιμή 1 αν η απαίτηση 𝑖 ∈ 𝑁 υπάρχει 

στο όχημα 𝑘 ∈ 𝐾 όταν φτάνει στον κόμβο 𝑗 ∈ 𝑊\𝑀 και 0 διαφορετικά, για κάθε 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾. 

Αντικειμενικός στόχος του προβλήματος είναι η ελαχιστοποίηση του συνολικού κόστους 

δρομολόγησης καθ’ όλο το εύρος του χρονικού ορίζοντα [Tℓ, Tmax] και δίνεται από τη 

συνάρτηση (Π.25) παρακάτω: 

𝑚𝑖𝑛(𝑧) = ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

  (Π.25)  

Περιορισμοί δρομολογίων 

∑ 𝑥𝜇𝑘𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

= 1 ∀𝑘 ∈ 𝐾 (Π.26)  

∑ 𝑥𝑖0𝑘
𝑖∈𝑁∪{𝜇𝑘}∪𝑓(𝑈)

= 1 ∀𝑘 ∈ 𝐾 (Π.27)  

∑ 𝑥𝑖ℎ𝑘
𝑖∈𝑊\({0}∪𝑠(𝑈))

− ∑ 𝑥ℎ𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

= 0 ∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝑁 (Π.28)  

∑ 𝑥𝑖𝑠(𝑢)𝑘
𝑖∈𝑁∪{𝜇𝑘}

− 𝑥𝑠(𝑢)𝑓(𝑢)𝑘 = 0 ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (Π.29)  

∑ 𝑥𝑓(𝑢)𝑗𝑘
𝑗∈𝑁∪{0}

− 𝑥𝑠(𝑢)𝑓(𝑢)𝑘 = 0 ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (Π.30)  

Περιορισμοί απαιτήσεων 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))𝑘∈𝐾

= 1  ∀𝑖 ∈ 𝑁 (Π.31)  

Χρονικοί περιορισμοί  

𝑥𝜇𝑘𝑖𝑘 = 1 ⟹ 𝑤𝑖𝑘 ≥ 𝑡𝜇𝑘𝑖  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ∪ 0 (Π.32)  

𝑥𝜇𝑘𝑠(𝑢)𝑘 = 1 ⟹ 𝑤𝑠(𝑢)𝑘 ≥ 𝑡𝜇𝑘𝑠(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (Π.33)  

𝑥𝑖𝑗𝑘 = 1 ⟹ 𝑤𝑗𝑘 ≥ 𝑤𝑖𝑘 + 𝑡𝑖𝑗 + 𝑠𝑖  ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗): 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∪ 0} (Π.34)  
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𝑥𝑖𝑠(𝑢)𝑘 = 1 ⟹ 𝑤𝑠(𝑢)𝑘 ≥ 𝑤𝑖𝑘 + 𝑡𝑖𝑠(𝑢) + 𝑠𝑖  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑢 ∈ 𝑈 (Π.35)  

𝑥𝑠(𝑢)𝑓(𝑢)𝑘 = 1 ⟹ 𝑤𝑓(𝑢)𝑘 ≥ 𝑤𝑠(𝑢)𝑘 + 𝑡𝑠(𝑢)𝑓(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (Π.36)  

𝑥𝑓(𝑢)𝑗𝑘 = 1 ⟹ 𝑤𝑗𝑘 ≥ 𝑤𝑓(𝑢)𝑘 + 𝑡𝑓(𝑢)𝑗  ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 ∪ 0, ∀𝑢 ∈ 𝑈 (Π.37)  

𝑥𝑓(𝑢)𝑠(𝜑)𝑘 = 1 ⟹ 𝑤𝑠(𝜑)𝑘 ≥ 𝑤𝑓(𝑢)𝑘 + 𝑡𝑓(𝑢)𝑠(𝜑) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, ∀𝜑 ∈ 𝑈\{𝑢} (Π.38)  

Περιορισμοί ροής απαιτήσεων 

∑∑𝑧𝜇𝑘
𝑘𝑖

𝑖∈𝐹𝑘∈𝐾

= ∑∑ 𝑧𝜇𝑘
𝑘𝑖

𝑖∈𝐶𝑘𝑘∈𝐾

− |𝐶| = 0  (Π.39)  

∑∑𝑧0
𝑘𝑖

𝑖∈𝐶𝑘∈𝐾

= ∑∑𝑧0
𝑘𝑖

𝑖∈𝐹𝑘∈𝐾

− |𝐹| = 0  (Π.40)  

𝑥ℎ𝑗𝑘 = 1 ⟹ 𝑧ℎ
𝑘𝑖 = 𝑧𝑗

𝑘𝑖 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀(ℎ, 𝑗) ∈ 𝐴𝑈
1
 such that ℎ ≠

𝑖 
(Π.41)  

𝑥𝑖𝑗𝑘 = 1 ⟹ 𝑧𝑖
𝑘𝑖 − 𝑧𝑗

𝑘𝑖 = 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑊\(𝑀 ∪ 𝑓(𝑈)) (Π.42)  

𝑥𝑖𝑗𝑘 = 1 ⟹ 𝑧𝑗
𝑘𝑖 − 𝑧𝑖

𝑘𝑖 = 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝑊\(𝑀 ∪ 𝑓(𝑈)) (Π.43)  

∑𝑧𝑠(𝑢)
𝑘𝑖 −

𝑘∈𝐾

∑𝑧𝑓(𝑢)
𝑘𝑖

𝑘∈𝐾

= 0 ∀𝑢 ∈ 𝑈, ∀𝑖 ∈ 𝑁 (Π.44)  

𝑧𝑠(𝑢)
𝑘𝑖 + 𝑧𝑓(𝑢)

𝑚𝑖 = 2 ⟹ 𝑤𝑓(𝑢)𝑚 ≥ 𝑤𝑠(𝑢)𝑘 + 𝛯̃ ∀𝑢 ∈ 𝑈, ∀𝑘,𝑚 ∈ 𝐾, 𝑘 ≠ 𝑚, ∀𝑖 ∈ 𝑁 (Π.45)  

𝑧𝑠(𝑢)
𝑘𝑖 + 𝑧𝑓(𝑢)

𝑚𝑖 = 2 ⟹ 𝑤𝑓(𝑢)𝑘 ≥ 𝑤𝑠(𝑢)𝑚 ∀𝑢 ∈ 𝑈\𝑈𝑓 ∪ {0
′}, ∀𝑖 ∈ 𝑁, ∀𝑘,𝑚 ∈ 𝐾, 𝑘 ≠ 𝑚 (Π.46)  

Επιχειρησιακοί περιορισμοί 

∑∑𝑧𝑠(𝑢)
𝑘𝑖 ≤ 1

𝑘∈𝐾𝑟∈𝑈

 ∀𝑖 ∈ 𝑁 (Π.47)  

∑ ∑𝑥𝑖𝑠(𝑢)𝑘
𝑢∈𝑈𝑖∈𝑊\𝑓(𝑈)

≤ 1 ∀𝑘 ∈ 𝐾 (Π.48)  

𝑚𝑎𝑥(𝑎𝑖 , 𝑇) ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

≤ 𝑤𝑖𝑘 ≤ 𝑏𝑖 ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 (Π.49)  

∑𝑞𝑖𝑧𝑗
𝑘𝑖

𝑖∈𝑁

≤ 𝑄̅ ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (Π.50)  

Οι περιορισμοί (Π.26) και (Π.27) εξασφαλίζουν πως τα οχήματα θα εκκινήσουν από τις 

παρούσες θέσεις τους και θα καταλήξουν στο κέντρο διανομής. Ο περιορισμός (Π.28) 

διασφαλίζει τη διατήρηση ροής των κόμβων του συνόλου 𝑁, ενώ οι περιορισμοί (Π.29) και 

(Π.30) διατηρούν τη ροή στους κόμβους μεταφόρτωσης. Επισημαίνεται πως οι περιορισμοί 

αυτοί επιτρέπουν στα οχήματα να φτάσουν στους κόμβους μεταφόρτωσης το πολύ μία φορά.  

Οι περιορισμοί (Π.31) ορίζουν πως όλες οι απαιτήσεις θα εξυπηρετηθούν ακριβώς μία φορά. 

Οι περιορισμοί (Π.32) – (Π.38) διασφαλίζουν τη χρονική εφικτότητα ενός δρομολογίου και 

χρησιμοποιούνται για να εξαλείψουν κυκλικές διαδρομές (subtours). Επισημαίνεται επίσης πως 

για τον περιορισμό (Π.36), ο χρόνος διαδρομής μεταξύ του αρχικού και τελικού κόμβου του 

                                                 
1 𝐴𝑈 = 𝐴 \ {(𝑠(𝑢), 𝑓(𝑢)|𝑢 ∈ 𝑈)}  
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σημείου μεταφόρτωσης 𝑡𝑠(𝑢)𝑓(𝑢), θεωρείται ως πολύ μικρός θετικός αριθμός προς αποφυγή 

κυκλικών διαδρομών με μηδενικό κόστος.  

Οι περιορισμοί (Π.39) και (Π.40) ορίζουν τις αρχικές και τελικές συνθήκες φόρτωσης, 

αντίστοιχα. Συγκεκριμένα, ένα όχημα 𝑘 ∈ 𝐾 ξεκινά από τη παρούσα θέση του μεταφέροντας 

ήδη τις απαιτήσεις 𝐶 που του έχουν ανατεθεί και καταλήγει στο κέντρο διανομής μόνο με 

απαιτήσεις 𝐹. Ο περιορισμός (Π.41) εξασφαλίζει τη συνέχεια των φορτίων. Ένα φορτίο 

εκφορτώνεται μόνο στην αντίστοιχη θέση της απαίτησης (το φορτίο της απαίτησης 𝑖 ∈ 𝑁 θα 

βρίσκεται στο όχημα όταν φτάσει στην θέση της απαίτησης 𝑗 ∈ 𝑁 αν αυτό ήταν επίσης στο 

όχημα όταν το όχημα ήταν στην θέση της προηγούμενης απαίτησης ℎ ∈ 𝑁). Ο περιορισμός 

(Π.42) εξασφαλίζει πως μία απαίτηση επίδοσης εκφορτώνεται μόνο όταν φτάσει στην 

αντίστοιχη θέση της. Ομοίως, ο περιορισμός (Π.43) διασφαλίζει πως μία απαίτησης παραλαβής 

μπορεί να φορτωθεί μόνο στην αντίστοιχη θέση της. Ο περιορισμός (Π.44) ορίζει τη διατήρηση 

ροής των μεταβλητών φορτίου και εξασφαλίζει πως όταν μία απαίτηση φτάσει σε ένα σημείο 

μεταφόρτωσης με οποιοδήποτε όχημα, τότε θα πρέπει να εγκαταλείψει το σημείο αυτό με 

οποιοδήποτε όχημα (ουσιαστικά, με το ίδιο ή με το άλλο όχημα του ζεύγους). Ο περιορισμός 

(Π.45) ορίζει πως αν μία απαίτηση φτάσει σε ένα σημείο μεταφόρτωσης με το όχημα 𝑘1 ∈ 𝐾 

και αναχωρήσει από το σημείο αυτό με το όχημα 𝑘2 ∈ 𝐾, 𝑘2 ≠ 𝑘1, τότε το όχημα 𝑘1 θα πρέπει 

να φτάσει στο σημείο μεταφόρτωσης πριν από την αναχώρηση του οχήματος 𝑘2 από το σημείο 

αυτό. 𝛯̃ είναι μία τιμή η οποία αντιπροσωπεύει το χρόνο που απαιτείται για την απαίτηση να 

παραμείνει στο σημείο μεταφόρτωσης. Επιπρόσθετα, ο περιορισμός (Π.46) είναι παρόμοιος με 

τον (Π.45), αλλά εξασφαλίζει την ταυτόχρονη παρουσία των οχημάτων στο σημείο 

μεταφόρτωσης για τις περιπτώσεις που η μεταφόρτωση πραγματοποιείται σε κόμβους 

πελατών.  

Αναφορικά με τους επιχειρησιακούς περιορισμούς, ο περιορισμός (Π.47) περιορίζει τον αριθμό 

των μεταβιβάσεων απαίτησης (το πολύ μία φορά), ενώ ο περιορισμός (Π.48) περιορίζει τον 

αριθμό των μεταβιβάσεων ανά όχημα. Τέλος, ο περιορισμός (Π.49) εξασφαλίζει πως κάθε 

απαίτηση εξυπηρετείται εντός του αντίστοιχου χρονικού παραθύρου και ο περιορισμός (Π.50) 

ορίζει πως το φορτίο κάθε οχήματος δε θα ξεπεράσει τη χωρητικότητά (𝑄̅) του οχήματος. 

Πλαίσιο επίλυσης του προβλήματος αναδρομολόγησης με ανταλλαγές φορτίων 

Το προηγούμενο μοντέλο μπορεί να επιλυθεί με τη χρήση εμπορικής εφαρμογής (π.χ. CPLEX) 

για περιπτώσεις περιορισμένου μεγέθους. Για την επίλυση προβλημάτων πρακτικού μεγέθους, 

προτείνεται πλαίσιο ευρετικής επίλυσης (Load Transfer Algorithm, LTA). Συγκεκριμένα, 
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χρησιμοποιείται κατάλληλη διαδικασία η οποία αναγνωρίζει ζεύγη οχημάτων τα οποία 

ενδέχεται να επωφεληθούν από τη μεταφόρτωση (η αναγνώριση ζευγών βασίζεται στη σχετική 

παραδοχή). Στη συνέχεια, για κάθε υποψήφιο ζεύγος που έχει αναγνωριστεί, χρησιμοποιείται 

κατάλληλος αλγόριθμος, ο οποίος επιλύει το πρόβλημα μεταφόρτωσης φορτίων.  

Πειραματική διερεύνηση του ΠΔΔΟΠ με ανταλλαγές φορτίων 

Αξιολόγηση της ευρετικής μεθόδου για ένα ζεύγος οχημάτων (𝐿𝑇𝐴𝑝) 

Για την αξιολόγηση της ευρετικής μεθόδου, κατασκευάστηκαν τυχαία προβλήματα με 

διαφορετικές τιμές βασικών παραμέτρων (όπως φαίνεται στον Πίνακα Π.5). Το σύνολο των 

προβλημάτων αυτών περιλαμβάνει 360 προβλήματα.  

Πίνακας Π.5. Παράμετροι πειραματικής διερεύνησης 

Παράμετρο

ς 
Περιγραφή Τιμές (επίπεδα παραμέτρου) # επιπέδων 

𝐶𝑘 Επιδόσεις ανά όχημα 2, …, 7 6 

𝐹 Δυναμικές απαιτήσεις 2, …, 7 6 

℘ Διαφορετικά προβλήματα 1,…,10 10 

Κάθε ένα από τα προβλήματα επιλύθηκε αρχικά με τη συμβατική μέθοδο B&P που 

περιεγράφηκε για το ΠΔΔΟΠ, έτσι ώστε να ενσωματωθούν οι ΔΑ στο πλάνο, χωρίς 

μεταφορτώσεις (εφεξής θα αναφέρεται ως NTA). Στη συνέχεια τα προβλήματα επιλύθηκαν 

επιτρέποντας μεταφορτώσεις: α) βέλτιστα, με την επίλυση του μαθηματικού μοντέλου (OPT), 

καθώς και β) με τη χρήση του ευρετικού αλγορίθμου. Σε κάθε περίπτωση, εξετάστηκαν οι 

περιπτώσεις μεταφόρτωσης σε προκαθορισμένο σημείο (LTAf
opt

 για τη βέλτιστη και LTAf για 

την ευρετική μέθοδο), καθώς και μεταφόρτωση στις θέσεις όλων των μη εξυπηρετούμενων 

απαιτήσεων (αντίστοιχα, LTA𝑑
opt

 και LTA𝑑).  

 

Σχήμα Π.10. Συνολική αξιολόγηση της ευρετικής μεθόδου συγκριτικά με τη βέλτιστη 
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Στο Σχήμα Π.10 παρουσιάζεται η απόκλιση της ευρετικής λύσης από τη βέλτιστη. 

Συμπεραίνεται ότι η ευρετική μέθοδος παρέχει ιδιαίτερα αποτελεσματικές λύσεις που έχουν 

απόκλιση κατά μέσο όρο της τάξης του 1.8% για το προκαθορισμένο σημείο μεταφόρτωσης 

και 1.0% για όλες τις θέσεις των πελατών.  

Αναδρομολόγηση με μεταφόρτωση για δύο οχήματα 

Στη παρούσα διερεύνηση που επικεντρώνεται σε ένα μόνο ζεύγος οχημάτων εξετάζουμε δύο 

σχετικά επιχειρησιακά σενάρια: α) τη περίπτωση όπου και τα δύο οχήματα είναι καθοδόν, και 

β) τη περίπτωση όπου ένα από τα δύο οχήματα βρίσκεται στο κέντρο διανομής. Για τη πρώτη 

περίπτωση, χρησιμοποιούμε τα αποτελέσματα από την ανάλυση της ευρετικής μεθόδου που 

παρουσιάστηκε προηγουμένως. Για τη δεύτερη περίπτωση, χρησιμοποιούμε κατάλληλα 

πειράματα από τα σύνολα προβλημάτων R1,C1, R2 και C2 του Solomon (1987), τα οποία 

τροποποιούνται ανάλογα έτσι ώστε να αντικατοπτρίζουν τα σενάριο προς διερεύνηση. 

Στο Σχήμα Π.11 παρουσιάζεται η απόδοση των LTAf και LTA𝑑 ως ποσοστιαία διαφορά από 

την NTA για τη περίπτωση όπου τα δύο οχήματα είναι καθοδόν. Είναι διακριτό πως οι 

αλγόριθμοι LTAf και LTA𝑑 υπερέχουν σημαντικά της NTA, με βελτιώσεις της τάξεως του 7.9% 

και 16.5%, αντίστοιχα, κατά μέσο όρο. Η απόδοση φαίνεται να αυξάνεται με την αύξηση του 

αριθμού των επιδόσεων ανά όχημα.  

 

Σχήμα Π.11. Μέση απόδοση (βελτίωση) των αλγορίθμων LTA σε σχέση με τον αριθμό επιδόσεων 

ανά όχημα 

Στο Σχήμα Π.12 αποτυπώνεται η μέση συμπεριφορά των αλγορίθμων LTA (ως ποσοστιαία 

βελτίωση από τον αλγόριθμο NTA) σε σχέση με τη γεωγραφική κατανομή των απαιτήσεων και 

την ύπαρξη ή μη χρονικών παραθύρων. Οι αλγόριθμοι LTA φαίνεται μα βελτιώνουν σημαντικά 

τη λύση σε σχέση με αυτή του ΝΤΑ σε όλες τις περιπτώσεις. Η βελτίωση τείνει να αυξάνεται 

στις περιπτώσεις ομαδοποιημένων πελατών (ομάδα C). Επιπρόσθετα, επιτρέποντας 
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μεταφόρτωση σε όλες τις θέσεις των μη εξυπηρετούμενων απαιτήσεων (LTA𝑑) παρέχονται 

ιδιαίτερα βελτιωμένα αποτελέσματα συγκριτικά με τη περίπτωση των προκαθορισμένων 

σημείων (LTAf).  

 

Σχήμα Π.12. Μέση απόδοση της LTA σε σχέση με τη γεωγραφική κατανομή και χρονικά παράθυρα 

Αναδρομολόγηση με μεταφόρτωση για περισσότερα από δύο οχήματα 

Στην ενότητα αυτή διερευνάται η απόδοση της μεταφόρτωσης σε μία περίοδο αναδρομολό-

γησης, για πολλαπλά οχήματα. Χρησιμοποιήθηκαν τρία πειράματα R109, R112 και R100, με 

εύρος παραθύρου 25%, 50% και 100% του 𝑇𝑚𝑎𝑥, αντίστοιχα. Στο Σχήμα Π.13 παρουσιάζονται 

τα αποτελέσματα των τριών πειραμάτων αναφορικά με τη βελτίωση των λύσεων της LTA 

συγκριτικά με τις λύσεις της ΝΤΑ για: α) τη συνολική λύση (όλα τα δρομολόγια), και β) τα 

ζευγάρια οχημάτων που συμμετείχαν στη μεταφόρτωση. Από αυτό το Σχήμα φαίνεται πως η 

LTA υπερισχύει και σε αυτή τη περίπτωση της ΝΤΑ, με μέση βελτίωση 5.7% αναφορικά με 

τη συνολική λύση. Η βελτίωση φαίνεται να αυξάνεται αναλογικά με την αύξηση του εύρους 

των χρονικών παραθύρων των πειραμάτων.  

 

Σχήμα Π.13. Μέση απόδοση των LTA για το συνολικό πρόβλημα αναδρομολόγησης 
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Αξιολόγηση των στρατηγικών αναδρομολόγησης στο ΠΔΔΟΠΜΦ 

Τέλος, αξιολογείται η απόδοση των αλγορίθμων LTA συγκριτικά με την απόδοση του 

αλγόριθμου ΝΤΑ για το συνολικό δυναμικό πρόβλημα (ΠΔΔΟΠΜΦ – πολλαπλών 

αναδρομολογήσεων) και με διάφορες πολιτικές αναδρομολόγησης. Για το σενάριο αυτό, 

χρησιμοποιήθηκε το πείραμα R100 (5 διαφορετικά προβλήματα) και εξετάστηκαν οι πολιτικές 

SRR, NRR-1, NRR-2 και NRR-3 υπό την τακτική PR. Αναφορικά με την LTA, εξετάστηκε 

μόνο ο LTA𝑑 αλγόριθμος. Για την αξιολόγηση των αποτελεσμάτων χρησιμοποιήθηκε η 

μετρική VoI. Στο Σχήμα Π.14 παρουσιάζεται η απόδοση της LTAd ως ποσοστιαία διαφορά 

μεταξύ του VoI των δύο αλγορίθμων (LTAd και NTA) για κάθε πολιτική αναδρομολόγησης. 

Από το Σχήμα φαίνεται πως και σε αυτή τη περίπτωση η LTA βελτιώνει τις λύσεις που 

προκύπτουν από την ΝΤΑ σε κάθε περίπτωση. Η ποσοστιαία βελτίωση αυξάνεται αναλογικά 

με τη διάρκεια της περιόδου αναδρομολόγησης (συχνότερη αναδρομολόγηση, μικρότερη 

βελτίωση).  

 

Σχήμα Π.14. Μέση απόδοση της LTA σε σχέση με τις πολιτικές αναδρομολόγησης 
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ABSTRACT 

 

In this dissertation we studied the Dynamic Vehicle Routing Problem with Mixed Backhauls 

(DVRPMB), which seeks to assign, in the most efficient way, dynamic pick-up requests that 

arrive in real-time while a predefined distribution plan is being executed. We used periodic re-

optimization to deal with the dynamic arrival of pick-up orders. We developed the formulation 

of the re-optimization problem, and re-modelled it to a form amenable to applying Branch-and-

Price (B&P) for obtaining exact solutions. In order to address challenging cases (e.g. without 

time windows), we also proposed a novel Column Generation-based insertion heuristic that 

provides near-optimal solutions in an efficient manner. 

Using the aforementioned approach, the dissertation focused on the re-optimization process for 

addressing the DVRPMB, which comprises a) the re-optimization policy, i.e. when to re-plan, 

and b) the implementation tactic, i.e. what part of the new plan to communicate to the fleet 

drivers. We presented and analyzed several re-optimization strategies (combinations of policy 

and tactic) often met in practice by conducting an extensive series of designed experiments. We 

did so, by assuming initially unlimited fleet resources under a straightforward objective (i.e. 

minimize distance traveled). Based on the results obtained, we proposed guidelines for the 

selection of the appropriate re-optimization strategy with respect to various key problem 

characteristics (geographical distribution, time windows, degree of dynamism, etc.). 

Subsequently, we studied the case in which the number of available vehicles is limited and, 

consequently, not all orders may be served. To address this, we proposed the required 

modifications in both the DVRPMB model and the solution approach. By using a conventional 

objective that strictly maximizes service, we illustrated through appropriate experimentation 

that the performance of the re-optimization strategies have similar behavior as in the unlimited 

fleet case. Furthermore, we proposed novel objective functions that account for vehicle 

productivity during each re-optimization cycle and we illustrated that these objectives may offer 

improved customer service, especially for cases with relatively high vehicle availability and 

wide time windows. Moreover, we applied the proposed method to a case study of a next-day 

courier service provider and illustrated that the method significantly outperforms both current 

planning practices, as well as a sophisticated insertion-based heuristic. 
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Finally, we investigated an interesting and novel variant of DVRPMB that allows transfer of 

delivery orders between vehicles during plan implementation, in order to better utilize fleet 

capacity and re-distribute its workload as needed in a real-time fashion. We introduced a novel 

mathematical formulation for the re-optimization problem with load transfers, and proposed an 

appropriate heuristic that is able to address cases of practical size. We illustrated through 

extensive experimentation under various operating scenarios that this approach offers 

significant savings beyond those offered by the previous approaches that do not allow order 

transfers.   
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𝑠(𝑈) Set of all start nodes of transfer locations, i.e. 𝑠(𝑈) = {𝑠(𝑢): 𝑢 ∈ 𝑈} 

𝑆ℓ Solution of re-optimization cycle 

𝑡𝑖𝑗 The travel time between nodes (𝑖, 𝑗), {𝑖 ∈ 𝑊, 𝑗 ∈ 𝑊\𝑀} 

𝑇ℓ Re-optimization time instance, ℓ = 1,… , 𝐿 

𝑇𝑚𝑎𝑥 Available time horizon 

𝑢 Transfer location notation 

𝑈 Set of all transfer location nodes, i.e. 𝑈 = 𝑈𝑓 ∪ {0}′ ∪ 𝑀
′ ∪ 𝑁′ 

𝑈𝑓 Fixed transfer location node(s) 

𝑉 Set of all vehicles  

𝑊 Set of all nodes involved, i.e. 𝑊 = 𝑁 ∪𝑀 ∪ {0} ∪ 𝑈 ( where 𝑈 ≠ ∅ only for DVRPMB-LT) 

𝑤𝑖𝑘 Time variables specifying the time vehicle 𝑘 ∈ 𝑉 starts serving customer 𝑖 ∈ 𝑁 

𝑥𝑖𝑗𝑘 Binary flow variables equal to 1 if arc (𝑖, 𝑗) ∈ 𝐴 is used by vehicle 𝑘 ∈ 𝑉 

𝑦𝑟 Binary coefficient which equals to 1 if route 𝑟 ∈ 𝛺 is used 

𝑍 A very large positive constant  

𝑧𝑗
𝑘𝑖 

Binary variables equal to 1 if order 𝑖 ∈ 𝑁 is onboard vehicle 𝑘 ∈ 𝐾 when it arrives to node 𝑗 ∈
𝑊\𝑀, and 0 otherwise, for all 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 

Γℓ The (static) re-optimization problem solved 

𝛬𝛿𝑖 Label represented by a vector related to partial path δ ending to vertex 𝑖 ∈ 𝑁 

𝜇𝑘 Current position of each vehicle 𝑘 ∈ 𝐾 

𝛯̃ 
Constant value to simulate the time needed for the load to remain at the transfer location (till 

its departure).  

𝜉𝑢 A fixed profit assigned to each dynamic order served 

𝜉𝑝 A profit in case an order is served within the upcoming re-optimization cycle 

𝜉𝑐 A penalty related to the routing costs 

𝜋𝑖
𝑢 The value of the dual variable in the dual solution of RMP at iteration 𝑢 of the CG algorithm 

𝜏 Predefined time interval (e.g. the last hour of the available working period) 

𝛷 Penalty assigned for each dynamic order not served 

𝛹𝑘 Independent sub-problem, 𝑘 = 1,… , 𝐾 + 1 

𝛺 Set of all feasible routes (columns) in the set-partitioning formulation, i.e. 𝛺 = (⋃ 𝛺𝑘)𝑘∈𝐾 ∪ 𝛺𝑝 

𝛺𝑘 Columns correspond to vehicles 𝐾 already en route 

𝛺𝑝 Columns correspond to vehicles 𝐾𝑑 located at the depot 
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Chapter 1: INTRODUCTION 

 

 

 

 

 

 

Delivery and collection of goods accounts for a significant part of supply chain costs. Therefore, 

planning the distribution and pick-up of goods in an efficient manner is an appropriate way to 

reduce logistics costs, while, at the same time, improve the quality of service. In the attempt to 

address these issues, significant research has been conducted in vehicle routing. The majority 

of this research has focused on deterministic and static models, in which all information and 

problem parameters are assumed to be known in advance, and the related decisions are made 

prior to the start of plan execution.  

In practice, however, many factors may cause disruptions in the execution of the original 

distribution (and/or pick-up) plan. These usually stem from the occurrence of dynamic events, 

such as delays due to traffic congestion, unavailability of docking space, vehicle breakdowns, 

temporary alterations in the road network, etc. Moreover, increasing competitive pressures and 

expectations for high-quality service have led urban logistics operators to enhance their offering 

by responding to requests that arrive in a dynamic fashion. For example, dynamic arrival of 

orders, while the delivery and/or pick-up plan is being executed, is common in many practical 

applications, including courier, money-transfer and repair-maintenance services. In all these 

applications, oftentimes, only a moderate portion of the requests for service (orders) are known 

in advance, and there exists an initial routing plan (a priori plan) that assigns those known 

requests to the available fleet. The dynamic orders, which arrive during plan execution, must 

be assigned to appropriate vehicles in real-time. Incorporating dynamic orders in the a priori 

plan may reduce the plan’s quality or, even worse, may lead to infeasibilities. 
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Real-time decision-making appears to be an effective option for addressing dynamic situations2. 

In this approach, the a priori plan can be modified and updated (once or repeatedly) based on 

the real-time state of the logistics system. The updating process is also made possible and 

practical by the latest advances in fleet telematics, which are capable of: a) providing 

dispatchers with real-time information on the status and location of vehicles, status of 

customers, as well as network conditions, and b) transmitting the related re-optimization 

decisions to the fleet drivers in an effective manner. 

The process of updating the plan in real-time to incorporate the dynamic orders needs to 

consider two fundamental issues: a) The problem of re-optimizing (re-planning) the vehicle 

routes at a certain time instance considering the unserved customer orders (and their a priori 

assignment to vehicles), as well as all dynamic orders known up to that time instance, and b) 

the re-optimizing (re-planning) process; i.e. when to re-plan and which dynamic orders to 

release to the vehicles for execution. This dissertation focuses on both these issues. 

Re-optimization problem and re-optimization process 

Figure 1.1 provides an illustrative example for the re-optimization problem. Consider a fleet 

of vehicles initially located at a single depot (𝑡 = 0). The fleet is homogeneous and each vehicle 

is assigned a route (Figure 1.1a). Customer orders arrive over time (𝑡 > 0) during the execution 

of the initial routes through a call center. At time instance 𝑡1, the dispatcher decides to 

incorporate the newly arrived (dynamic) orders in the partially executed plan (Figure 1.1b). 

Note that at time 𝑡1, some customers have been already served and the available resources (e.g. 

fleet vehicles and their capacities, available time horizon, etc.) are limited. The dispatcher 

assigns some, or all, new orders to the available vehicles en route or to vehicles located at the 

depot, if any. Also the dispatcher may also reassign orders between the available vehicles, if 

this is possible. It is clear that the decisions to be made are often complex, since many 

assignment options are available. For example, as shown in Figure 1.1c, order 𝑑 may be 

assigned to one of two routes. Note also that due to problem constraints, customers may even 

be denied service. Thus, the underlying objective is to serve all static orders and as many as 

possible (or ideally all) dynamic orders, respecting all constraints (e.g. vehicle capacity, shift 

remaining time, etc.), while minimizing a cost metric for the entire fleet (Figure 1.1d). 

 

                                                 
2 Note that there are other options for dealing with such problems. For example, probabilistic information for future 

events can be incorporated and taken into account during (re)optimization (Powel, 1996).  
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Figure 1.1. Example of the re-optimization problem 

Based on the above illustrative example, we can define the Re-optimization Problem, as 

follows: 

Description 1.1.: The Re-optimization Problem 

Consider a fleet of vehicles executing a certain delivery/pick-up plan. Consider also 

that new requests for service (orders) arrive dynamically during execution. The 

problem seeks to assign as many of the new orders as possible to vehicles or/and 

reassign orders between the available vehicles, if possible, while achieving efficient 

routing cost, and respecting all service constraints.  

The re-optimization problem comprises a single step of the re-optimization process. A typical 

re-optimization process comprises the following decisions and actions: 

 Select a sequence of re-optimization periods (re-optimization cycles), not necessarily of 

equal duration. The dynamic orders arriving within each period (and perhaps some orders 

of the previous periods not yet served) are planned for execution by the fleet at the end of 

the period. The selection of an appropriate sequence of re-optimization periods is a 

challenging issue, which depends on several aspects, including the rate of the arriving 

orders, the characteristics of the plan been executed, etc.  
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 At the end of each re-optimization period, solve the re-optimization problem described 

above.  

 Communicate part of, or the entire new plan, to drivers and repeat in every re-optimization 

cycle. 

In addressing the re-optimization problem and the re-optimization process, one needs to 

consider significant operational characteristics, which are relevant virtually in every dynamic 

vehicle routing problem (see Table 1.1).  

Table 1.1. Operational characteristics of re-optimization in dynamic vehicle routing  

Category  Characteristic/Description 

Time 

Planning horizon 

The planning horizon refers to the available working period of the vehicles 

to serve customers (e.g. driver’s shift). Various planning horizon options 

such as flexible shifts, rolling shifts, etc. may offer different advantages.  

Arrival pattern of dynamic orders 

The timing of order arrival may play a significant role in the re-optimization 

process. For example, an arrival pattern with significant peaks (i.e. dynamic 

orders concentrated around certain times) may require a different sequence 

of re-optimization periods than a case in which dynamic orders arrive more 

or less uniformly over time. 

Re-optimization cycle 

Long re-optimization intervals limit the dispatcher’s options (since a larger 

portion of the route has been completed) and may lead to lost opportunities 

regarding favorable insertion locations for the newly arrived orders. On the 

other hand, short re-optimization intervals (frequent re-optimization) may 

not consider adequately favorable dependencies between arriving orders 

(adequately rich order combinations). Note also that in practice, frequent 

changes of the delivery plan may cause nervousness to the system. 

Time windows 

Time windows, which refer to the interval within which each customer may 

be served, may lead to considerable “dead” times due to vehicles waiting 

for a customer’s time window to open. “Dead” times may be better 

exploited in cases of frequent re-optimization, since frequent re- planning 

may use vehicle waiting times for servicing a nearby dynamic order. 
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Space 

The spatial distribution of customers is another essential parameter in both 

static and dynamic vehicle routing problems. For example, in the case in 

which customers form distinct groups (clustered case), the excess cost of an 

additional visit within the same cluster tends to be low, while an inter-

cluster visit is expensive. If the customers are uniformly distributed in 

space, then the excess cost of a visit may vary widely.  

Distribution 

environment 

and practice 

Distribution environment 

The characteristics of the distribution environment may also play an 

important role in the dispatcher’s decisions. Such characteristics may 

include a) traffic congestion (high or low) and b) the type of service (pick-

up, delivery or mixed). For example, highly congested areas decrease the 

service rate and may limit the options of re-optimization. Furthermore, in 

case of delivery only operations, orders may be serviced by the vehicle 

initially assigned to them, limiting the re-optimization options. To 

overcome this limitation, order exchanges between vehicles is necessary, 

increasing the complexity of the distribution process. 

Distribution practice 

In this context, distribution practice refers to the way resources are deployed 

to handle dynamic orders. For example, should all available vehicles be 

dispatched, or should some vehicles be kept at the depot to only serve 

dynamic orders? Additional examples include positioning of vehicles at 

forward points in anticipation of (dynamic) order assignments, or transfer 

loads (exchange) among vehicles as necessary to streamline routing 

operations.  

Dissertation motivation and focus 

The research in this dissertation has been motivated by practical courier applications (Ninikas 

et al., 2014). For example, in a typical courier setting, a fleet of delivery vehicles originating 

from a local distribution hub (depot) is tasked to deliver or pick-up orders known prior to the 

start of operations (static orders). As the work plan unfolds, however, customer orders are 

received through a call center, for on-site pick-up within the current period of operations. These 

pick-up orders have to be collected and returned to the hub for further processing. In this work, 

we seek to allocate in real-time dynamically arriving (pick-up) orders to the most appropriate 

vehicles, either to those en route or to extra vehicles stationed at the depot.  
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Beyond the courier case, such problems arise naturally in money-transfer and repair-

maintenance services. Service vehicles are called to serve requests for money pick-ups or faulty 

equipment repairs, respectively, which arrive to a dispatch center in a dynamic fashion. Related 

examples may also be found in coach transfers, in which vehicles that execute planned routes 

originating from major locations (e.g. airport) and serving predefined drop-off areas (e.g. 

accommodation sites), are requested to collect passengers from additional locations while en 

route. 

The problem investigated in this dissertation comprises a dynamic version of the one-to-many-

to-one pick-up and delivery problems (1-M-1-PDPs, Berbeglia et al., 2008; 2010; Gribkovskaia 

and Laporte, 2008). The term “one-to-many-to-one” denotes that vehicles deliver commodities 

initially loaded at the depot to customers (linehaul customers), while other commodities are 

picked up from customers and are transported back to depot (backhaul customers). Our case 

considers that a) each customer requires only pick-up or delivery, and b) pick-up and delivery 

customers may be served in an arbitrary order. The static version of this problem can be found 

in the literature as the Vehicle Routing Problem with Mixed Backhauls and Time Windows 

(VRPMBTW) as introduced by Kontoravdis and Bard (1995). For that reason, we refer to our 

problem as the Dynamic Vehicle Routing Problem with Mixed Backhauls (DVRPMB). To the 

best of our knowledge, the dynamic version of 1-M-1 PDPs and especially the DVRPMB has 

yet to be investigated (Parragh et al., 2008).  

In this dissertation, we approach DVRPMB by solving repeatedly static re-optimization 

problems. For the latter, we define the re-optimization model and propose a Branch-and-

Price (B&P) approach to obtain exact solutions. In order to address challenging cases (e.g. 

without time windows), we propose a novel Column Generation-based insertion heuristic that 

provides near-optimal solutions in an efficient manner.  

Using the aforementioned fundamental approach, the dissertation drills down to the re-

optimization process for addressing the DVRPMB. As mentioned above, the problem 

environment plays a significant role in this process. The rate of delivery, the rate of arrival of 

new orders, the space and temporal distribution of the orders, and the percentage of dynamic 

orders are some of the operational characteristics that may affect the adoption of the appropriate 

re-optimization process. In this dissertation, we consider various problem settings in order to 

provide basic guidelines in terms of managing various dynamic scenarios in a flexible and cost 

effective manner. Considering these operational characteristics, we propose and analyze several 

re-optimization policies often met in practice by conducting an extensive series of designed 
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experiments. In addition, we investigate those policies in combination with different tactics 

regarding the part of the plan that is released for implementation.  

Initially, we focus our study on the case of unlimited fleet using a straightforward objective (i.e. 

minimize distance traveled). Subsequently, we examine the case of DVRPMB, in which the 

number of available vehicles is limited. We introduce appropriate objective functions that 

account for both the service provided (in terms of orders served), and the cost of service.  

Finally, we examine the possibility of relaxing the intrinsic constraint of preventing delivery 

orders to be reassigned to other vehicles, which may impose significant limitations to re-

optimization and may lead to inability of servicing some newly received orders. Thus, we study 

the re-optimization problem by allowing delivery orders to be transferred between vehicles 

during the execution of the plan. By doing so, we attempt to better utilize the fleet by re-

distributing its workload as needed in a real-time fashion. 

For the above problems cases, we have accomplished the following: 

 Proposed an appropriate periodic re-optimization process for the DVRPMB 

 Proposed an exact and a novel heuristic approach in order to solve the underlying re-

optimization problem of DVRPMB 

 For the full dynamic case, presented and analyzed a) re-optimization tactics regarding the 

implementation of the plan, and b) re-optimization policies regarding the re-optimization 

frequency and the resulting solution quality.  Proposed guidelines on re-optimization 

depending on the characteristics of the dynamic environment   

 Proposed novel objective functions to address the case of limited fleet in DVRPMB that 

account for vehicle productivity, and investigated the effectiveness of these objective 

functions on the quality of the solutions for various characteristics of the dynamic routing 

environment 

 Validated the practicality of  the proposed methods through a large industrial case of a next-

day courier service provider 

 Introduced the case of load-transfer operations during the execution of the routing plan, and 

proposed a novel mathematical model for the underlying re-optimization problem.  

 Developed a new heuristic method to solve this problem and compared the results obtained 

with operations that do not allow load-transfers.  

 

 



Chapter 1: Introduction  

8  DeOPSys Lab 

The remainder of the dissertation is organized as follows:  

Chapter 2 presents and discusses the related problems in the literature, the most significant 

approaches used, and the similarities and differences with respect to the problem studied in this 

dissertation. Chapter 2 also identifies the related research gaps, as well as the contributions of 

the dissertation. 

Chapter 3 presents a formal description of the problem in hand. This is followed by the model 

of the (static) re-optimization problem considered in each re-optimization cycle. An overview 

of the solution framework is also given.  

Chapter 4 presents the Branch & Price (B&P) approach proposed to solve the re-optimization 

problem (of DVRPMB). This approach includes restructuring the problem to be amenable to 

column generation (CG), as well as required modifications to the conventional B&P approach 

so that it applies to the problem in hand. A novel CG-based insertion heuristic is also proposed 

to provide near optimal solutions in an efficient manner for computationally demanding cases 

(e.g. without time windows).  

Chapter 5 studies the re-optimization process for the case of unlimited fleet. Several re-

optimization strategies are discussed and analyzed. Based on the results obtained we propose 

re-optimization guidelines under various operational settings.  

Chapter 6 deals with the case of limited fleet. We describe the required modifications to the 

approach developed for the unlimited fleet case, and introduce appropriate objective functions. 

Moreover, we apply our proposed method to a real case of a next-day courier service provider.  

Chapter 7 introduces and examines a variant of the re-optimization problem that allows orders 

to be transferred between vehicles during execution. The Chapter provides an arc-based 

formulation for the re-optimization problem and an appropriate heuristic that is able to address 

(solve) cases of practical size. This approach is compared to the previous ones that do not allow 

transfers.  

Finally, Chapter 8 presents the conclusions of this dissertation, the theoretical and practical 

contributions, along with directions for further research. 
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Chapter 2: LITERATURE BACKGROUND 

 

 

 

 

 

 

 

 

 

 

As already mentioned in Chapter 1, this dissertation focuses on dynamic routing problems. The 

latter concern the dynamic version of Vehicle Routing Problems (VRPs), including the VRP 

with Backhauls and the Pickup and Delivery Problem (PDP). The VRP is essentially a Multiple 

Traveling Salesman Problem (MTSP) with a capacity constraint for each salesman. Likewise, 

other constraints and assumptions can be added to the basic form of VRP in order to take into 

account key aspects of distribution and scheduling, resulting into different VRP variants.  

Figure 2.1 illustrates how the Dynamic Vehicle Routing Problem with Mixed Backhauls 

(DVRPMB), which is the problem addressed in this dissertation, can be derived from MTSP by 

adding appropriate constraints. In the following Sections, the VRP with Time Windows 

(VRPTW), the VRP with Backhauls (VRPB), the Pickup and Delivery Problem (PDP) and the 

Dynamic VRP (DVRP) are reviewed. All are related to DVRPMB.  

Specifically, Section 2.2 overviews the static version of the problems related to DVRPMB, i.e. 

VRPTW, VRPB and PDP. Section 2.3 discusses the dynamic versions of VRP and PDP and 

related solution strategies to address dynamism. Section 2.4 provides a targeted discussion on 

the essentials of the basic technique employed in this dissertation (Branch-and-Price), and 

Section 2.5 highlights the contributions of the dissertation.  

Aspects of the literature that are quite specific to particular topics of the dissertation are 

presented and discussed within the corresponding Chapters.  
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Figure 2.1. From MTSP to DVRPMB 

2.1 The Vehicle Routing Problem 

The vehicle routing problem (VRP) is one of the most studied problems in the field of 

Operations Research and many mathematical programming techniques have been developed to 

solve it. VRP applications are of critical importance to aspects of logistics management, since 

they provide decision support to complex practical transportation and distribution problems. 

Efficient decisions on related applications may have significant impact on operating costs. 

Numerous practical applications have illustrated that the use of computerized procedures for 

planning the distribution process result in substantial savings (generally from 5% to 20%) in 

transportation costs (Toth and Vigo, 2002). 

The VRP is a generalization of the classic Traveling Salesman Problem (TSP) (Christofides, 

1979; Cornuejols and Nemhauser, 1978; Gendreau et al., 1997) and it consists of designing the 

optimal set of routes for a fleet of vehicles in order to serve a certain set of customers. It was 

firstly introduced by Dantzig and Ramser (1959), who proposed a mathematical programming 

formulation and an algorithmic approach to solve a practical problem of delivering gasoline to 

service stations. The definition of VRP and its variants, as well as an extensive analysis of 

solution methods, are presented by Toth and Vigo (2002). Currently numerous commercial 
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software applications are available that embed advanced algorithmic approaches for solving 

different practical VRP cases. 

In a typical VRP setting, customers are represented by nodes of a network, they have known 

demand, and each must be served once by only one vehicle. Every arc (𝑖, 𝑗) of the network 

(where 𝑖 and 𝑗 are network nodes) is associated with a cost 𝑐𝑖𝑗  representing the cost of traveling 

from 𝑖 to 𝑗. Each vehicle has a certain capacity and its route must start and end at a certain 

depot. The total demand of those customers served by a vehicle may not exceed the vehicle’s 

capacity. The objective of the problem is to minimize the total cost traveled by all vehicles. 

Figure 2.2 illustrates a feasible solution of a VRP for a given set of customers. 

According to Steward and Golden (1983), a compact and convenient formulation for the VRP 

can be written as follows: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑𝑐𝑖𝑗𝑥𝑖𝑗𝑘 
𝑖,𝑗𝑘

 

Subject to 

∑𝜇𝑖𝑥𝑖𝑗𝑘  ≤ 

𝑖,𝑗

𝑄 𝑘 = 1, 2, … ,𝑚 

𝑥 = ⌊𝑥𝑖𝑗𝑘⌋ ∈  𝑆𝑚 

where: 

𝑐𝑖𝑗 = the cost of traveling from 𝑖 to 𝑗 

𝑥𝑖𝑗𝑘 = 1 if the vehicle 𝑘 travels from 𝑖 to 𝑗 and 0 otherwise 

𝑚 = the number of available vehicles 

𝑆𝑚 = the set of all feasible solutions of the corresponding m-traveling salesman problem (m-

TSP) 

𝜇𝑖 = the demand at location 𝑖 

𝑄the vehicle capacity 

The VRP is modeled as an integer-programming problem and corresponds to an NP-hard 

problem (Lenstra and Kan, 1981); therefore, practical (large) problem instances cannot be 

solved to optimality within reasonable time. As a result, exact solution methods are used for 

limited-size problem instances, while heuristics and metaheuristics are normally applied for 

practical cases. There is extensive literature regarding methods for solving the VRP. The 

interested reader may refer to the work of Toth and Vigo (2002), Christofides et al. (1979), 
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Desrochers et al. (1990), Laporte (1992), Golden and Assad (1988), and Laporte and Osman 

(1995). 

 

Figure 2.2. A solution example of the VRP 

Beyond the classical VRP formulation, a number of problem variants have been studied, 

depending on the constraints of the problem in hand. Among the most common are the VRP 

with Time Windows (VRPTW), in which each customer must be visited within a certain, 

predefined time interval; the VRP with Pickup and Delivery (PDP), in which each customer is 

associated with two service locations, one for the pick-up and another for the delivery of goods; 

the Heterogeneous fleet VRP (HVRP), in which involved vehicles have different capacities; 

and the VRP with Backhauls (VRPB), in which a set of customers require the delivery of goods 

to their locations, while another set requires picking up the goods from their locations and 

returning them back to the depot. VRPs related to transporting persons between locations are 

referred to as Dial-a-Ride Problems (DARP).  

According to Psaraftis (1988), VRP-related applications often include two additional important 

dimensions: a) evolution of information, which relates to the fact that the information available 

to planners might change during the execution of planned routes (e.g. arrival of new customers), 

and b) type (quality) of information, i.e., possible uncertainty on the available data (e.g. the 

demand of a customer is only an estimate of the actual demand).  

Information evolution distinguishes a static VRP from a dynamic one. In static VRPs all input 

information is known a priori and initial vehicle routes do not change during execution. In 

dynamic VRPs, part of the input is unknown and is gradually revealed to the planners during 

execution. Information quality distinguishes a deterministic VRP from a stochastic one. In the 

latter, some information is probabilistic, especially the information related to customers, travel 
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or service times, and customer demand. Based on these dimensions, VRPs are often classified 

in the four categories of Table 2.1.  

Table 2.1. VRP taxonomy w.r.t. information evolution and quality  

 
Type (Quality) of information 

Deterministic Stochastic 

Evolution of 

information 

Static  

(Input known a priori) 
Static & Deterministic Static & Stochastic 

Dynamic 

(Input changes over time) 

Dynamic & Deterministic 

(also, online or real-time) 
Dynamic & Stochastic 

The problem setting and approach of this dissertation relate to deterministic information only, 

thus we review below static and dynamic VRPs with deterministic input. For stochastic VRPs, 

the reader may refer to: a) Bertsimas and Simchi-Levi (1996), Cordeau et al. (2007) and 

Gendreau et al. (1996) for the static case, and b) Powel (1996), Bent and Van Hentenryck 

(2004), Larsen et al. (2004) and Ichoua et al. (2006) for the dynamic case. 

2.2 Related Static Vehicle Routing Problems 

The review of this Section focuses on static VRPs related to the current work. Section 2.2.1 

overviews VRPTW, which is the most common static VRP variant; Section 2.2.2 presents the 

VRPB, the generalized static version of the DVRPMB studied in this dissertation. Finally, 

Section 2.2.3 drills-down to PDPs, which are also highly related to the static version of the 

DVRPMB. 

2.2.1 The Vehicle Routing Problem with Time Windows (VRPTW) 

VRPTW can be defined as follows: A fleet of homogeneous vehicles located at a central depot 

is tasked to serve a set of customers, each with known demand. A customer can only be served 

once and within a pre-specified time interval. In the hard TW variant, the customer must be 

visited after the opening time of this time window, and before its closing time; a vehicle may 

wait if it arrives to the customer prior to the opening time. In the soft TW variant, the customer 

may be served outside its time window, but a penalty is added to the objective function. Vehicle 

capacity cannot be exceeded. The objective of VRPTW is to minimize the total working time 

(i.e. the sum of travel and waiting times). 

The work of Solomon (1987) is one of earliest attempts to tackle VRPTW. The author proposed 

appropriate conditions for evaluating TW feasibility when a new customer is inserted in a route 
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in order to increase computational efficiency. He also proposed and compared several heuristics 

for VRPTW. The author found that one of the sequential insertion heuristics (known as 

Solomon’s I1 insertion heuristic), performed particularly well. This heuristic remains a 

benchmark for VRPTW solution methods.  

Over the last decades numerous solution methods have been proposed for addressing VRPTW, 

ranging from exact approaches to heuristic and metaheuristic methods. Table 2.2 summarizes 

the most important solution approaches, along with selected references from the literature.  

Table 2.2. Types of solution methods for the VRPTW 

Solution Method Algorithm Reference 

Exact 

Dynamic programming Kolen et al. (1987) 

Langrangian relaxation  

Fisher (1994) 

Fisher et al. (1997) 

Kohl and Madsen (1997) 

Kallehauge et al. (2006) 

Column generation 

Desrochers et al. (1992)  

Kohl et al. (1999) 

Danna and Le Pape (2003) 

Feillet et al. (2005)  

Chabrier (2006) 

Branch-and-cut Bard et al. (2002) 

Heuristic 

Construction 

Solomon (1986, 1987) 

Potvin and Rousseau (1993) 

Ioannou et al. (2001) 

Braysy and Gendreau (2005a) 

Route-improvement 

Russell (1977)  

Baker and Schaffer (1986) 

Solomon et al. (1988) 

Savelsbergh (1985, 1990, 1992) 

Potvin and Rousseau (1995) 

Construction & improvement 
Russell (1995) 

Cordone and Calvo (1997) 

Braysy (2002) 

Metaheuristic 

Simulated annealing 
Chiang and Russell (1996) 

Tan et al. (2001) 

Tabu search 

Garcia et al. (1994) 

Potvin et al. (1996) 

Taillard et al. (1997) 

Badeau et al. (1997) 

Chiang and Russell (1997) 

Cordeau et al. (2004) 

Pisinger and Ropke (2007) 

Braysy and Gendreau (2005b) 

Evolution (genetic) algorithms 

Berger et al. (2003) 

Homberger and Gehring (2005) 

Mester and Braysy (2005) 

Mester et al. (2007) 
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Solution Method Algorithm Reference 

Ant colony optimization Gambardella et al. (1999) 

Greedy Randomized Adaptive 

Search Procedure (GRASP) 
Kontoravdis and Bard (1995) 

Chaovalitwongse et al. (2003) 

Variable Neighborhood Search 
Rousseau et al. (2002) 

Braysy (2003) 

Braysy et al. (2004) 

2.2.2 The Vehicle Routing Problem with Backhauls 

In the VRP with Backhauls (VRPB), the demand of each customer corresponds to either a 

delivery (linehaul) or pick-up (backhaul), in which the related items need to be brought back to 

depot. Typically, VRPB is extended to consider time-windows (VRPBTW). The goal of VRPB 

is to minimize total travel distance in order to satisfy all delivery and collection requirements. 

This is typically combined with minimizing the total number of vehicles used. The VRPB may 

be also viewed as a special case of the Pickup and Delivery Problem (see Section 2.2.3). 

There are two main backhauling strategies found in the literature that fit the aforementioned 

problem setting; the Vehicle Routing Problem with Clustered Backhauls and Time Windows 

(VRPCBTW; Gelinas et al., 1995), and the Vehicle Routing Problem with Mixed Backhauls 

and Time Windows (VRPMBTW; Kontoravdis and Bard, 1995). The former (VRPCBTW) 

imposes visiting sequence restrictions, i.e. all linehaul customers of a route must be served prior 

to backhaul customers. From a practical perspective, this restriction is used to eliminate 

rearrangements of load within the vehicle, since normally vehicles are loaded according to the 

delivery sequence they follow. In case sequencing imposes no priorities, then linehaul and 

backhaul customers may be visited arbitrarily, as in VRPMBTW, which corresponds to the 

static version of the problem addressed in the current dissertation.  

Several heuristic and exact algorithms have been proposed to tackle the aforementioned 

problems. Yano et al. (1987) proposed one of the first exact approaches to address the 

VRPCBTW. The authors addressed a case of retail stores, in which the number of pick-up and 

delivery customers in a route is limited (≤ 4), and developed a Branch and Bound (B&B) 

algorithm to solve it. Derigs and Metz (1992) investigated a VRPCBTW problem arising in 

express mail services with up to 80 customers, and proposed various mathematical 

formulations. Gelinas et al. (1995) developed a B&B algorithm based on column generation 

using a set partitioning model for the VRPCBTW. The authors employed branching on resource 

variables (time and capacity) instead of network flow variables, which allowed them to solve 
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to optimality a series of Solomon (1987) based problems of up to 100 customers. Toth and Vigo 

(1997) presented another B&B scheme to solve the symmetric and asymmetric VRPCB, using 

a Langrangian lower bound by adding cuts, combined with a lower bound that results from 

relaxing the capacity constraints. Mingozzi et al. (1999) also proposed an efficient set-

partitioning based integer linear programming formulation for the VRPCB, capable to solve to 

optimality instances with up to 100 customers and 12 vehicles.  

Several heuristics and metaheuristics have also been put forth for tackling VRPB. Table 2.3 

summarizes references related to heuristic and metaheuristic approaches proposed to address 

the VRPCB and VRPMB. Complementary to our review, the reader is also referred to the 

survey of Parragh et al. (2008) for related work on the formulation of these problems, and to 

the work of Tarantilis et al. (2013) for computational results and comparison of various solution 

approaches on benchmark data sets.  

Table 2.3. Types of solution methods for the VRPB 

Solution Method Algorithm Reference 

VRPCB(TW) 

Heuristic 

Deif and Bodin (1984) 

Goetschalckx and Jacobs-Blecha (1989) 

Thangiah et al. (1996) 

Potvin et al. (1996) 

Toth and Vigo (1999) 

Metaheuristic 

Duhamel et al. (1997) 

Hasama et al. (1998) 

Reimann et al. (2002) 

Osman and Wassan (2002) 

Zhong and Cole (2005) 

Brandao (2006) 

Reimann and Ulrich (2006) 

Ropke and Pisinger (2006) 

Zachariadis et al. (2012) 

Tarantilis et al. (2013) 

VRPMB(TW) 

Heuristic 

Golden et al. (1988) 

Casco et al. (1988) 

Kontoravdis and Bard (1995)  

Salhi and Nagy (1999) 

Wade and Salhi (2002) 

Metaheuristic 

Hasama et al. (1998) 

Zhong and Cole (2005) 

Reimann and Ulrich (2006) 

Ropke and Pisinger (2006) 

Tarantilis et al. (2013) 
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2.2.3 The Pickup and Delivery Problem 

Pickup and delivery problems (PDPs) form a class of vehicle routing problems in which goods 

or passengers are transported between an origin and a destination. Therefore, each 

transportation request 𝑖 is associated with two vertices, 𝑝𝑖 and 𝑑𝑖, and the goods (or passengers) 

should be picked up at 𝑝𝑖 and delivered to 𝑑𝑖. For a solution to be feasible in this setting, 𝑝𝑖 and 

𝑑𝑖 should be included in the same route, and 𝑝𝑖 should be visited prior to 𝑑𝑖. Typically, capacity 

constraints are considered, and a time window is associated with each vertex. A characteristic 

example of time window and capacity constraints can be found in applications related to 

“Transportation on Demand” (Cordeau et al., 2007), which involve the transportation of people 

with special needs (Dial-a-Ride Problem, DARP). 

Berbeglia et al. (2008, 2010) introduced a classification scheme for PDPs based on the number 

of origins and destinations involved. Based on this scheme, PDPs can be classified into three 

(3) different categories:  

a) Many-to-Many (M-M) problems, in which any vertex may serve as source or a destination, 

b) One-to-Many-to-One (1-M-1) problems, in which goods/passengers initially available at a 

depot are to be transported to multiple sites, while other goods/passengers available at these 

or other sites need to be transported back to the depot, and 

c) One-to-One (1-1) problems, in which each item/passenger is associated with a certain origin 

and a certain destination. 

These problem types are reviewed below. 

2.2.3.1 Many-to-Many (M-M) PDPs 

According to Berbeglia et al. (2008), a typical example of the first category (M-M problems) 

is the so-called Swapping Problem (Anily and Hassin, 1992). In this problem, each vertex 

initially possesses an object of a known type, and requests an object of a desired type. The 

objective is to construct the pick-up and delivery routes in such a way that every vertex will 

eventually possess an object of the desired type. Interested readers may refer to Anily and 

Hassin (1992), Anily et al. (2006) and Wang et al. (2006).  

2.2.3.2 One-to-Many-to-One (1-M-1) PDPs 

In this class of problems, which constitutes a generalization of VRPB, some customers require 

delivery of commodities located at a depot (referred to as linehauls), while other customers 

require pick-up of commodities from their sites and delivery to the depot (referred to as 
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backhauls). In terms of demand, there are two variants of 1-M-1 PDPs: combined demand and 

single demand. The former relates to cases in which a customer requests both pick-up and 

delivery operations (simultaneously), while the latter relates to cases in which each customer 

requests either pick-up or delivery, as in the VRPB.  

A solution is said to be mixed if pick-up and delivery customers may be served in an arbitrary 

order; then, the related problem is called the 1-M-1 PDP with Single Demands and Mixed 

Solutions and is equivalent to the VRPMB described in Section 2.2.2. On the other hand, the 

VRPCB is equivalent to the 1-M-1 PDP with Single Demands and Backhauls.  

As explained earlier, the 1-M-1 PDP with single demands forms a generalization of the VRPB 

described in Section 2.2.2; thus, the references surveyed in that Section also apply in this case. 

For the combined demand case (which is not relevant to this dissertation), we refer interested 

readers to the review of Berbeglia et al. (2008) and the work of Gribkovskaia et al. (2007), 

Gribkovskaia and Laporte (2008), Chen and Wu (2006) and Bianchessi and Righini (2007).  

2.2.3.3 One-to-One (1-1) PDPs 

As already mentioned, 1-1 PDPs relate to problems in which each commodity is associated with 

exactly one pick-up and one delivery vertex (location). This type of problems can also be 

referred to as paired-PDPs. Two main variations can be found: a) the VRP with Pickups and 

Deliveries (VRPPD), which is related to the transportation of goods, and b) the Dial-a-Ride 

Problem (DARP), which deals with the transportation of people. The main difference of these 

two variants is that in the latter, passenger convenience is usually taken into account. Recently, 

researchers focused in another category of this type of problems: the VRPPD with 

Transshipments (VRPPDT), in which vehicles are allowed to drop off goods/passengers to 

intermediate locations to be picked up and delivered to the final destination by another vehicle. 

This class of problems is relevant to the problem addressed in Chapter 7 of this dissertation, 

and the related literature is discussed in Section 7.2.  

2.3 Dynamic Vehicle Routing Problems 

The Dynamic Vehicle Routing Problem (DVRP) is the dynamic counterpart of the classical 

VRP mentioned above (Larsen et al., 2008). Dynamic routing of a fleet of vehicles refers to 

distribution problems in which information is dynamically revealed to the decision maker. 

During the past decade, the research community has focused more and more on dynamic 

problems, and various related models and algorithms have been developed. Rapid growth in 
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telecommunications and information technology have led to this direction, since, distribution 

companies are now able to monitor the vehicles’ location and status in real-time, and, thus, to 

manage them in real time. Related applications of DVRP include courier service systems, dial-

a-ride systems, emergency systems, etc. 

Figure 2.3 presents a simple example of a dynamic vehicle routing situation. In this example, 

two vehicles must serve static orders that are known a priori (represented by closed black 

nodes), as well as dynamic orders (represented by open nodes) that are revealed during the 

execution of the initial routing plan. The latter is presented in Fig. 2.3a; Figure 2.3b presents an 

intermediate state in which the vehicles have already executed a part of the plan (denoted by a 

dashed line) and are on their way to their next destinations (denoted by thick continuous line). 

Between the departure of the vehicles from the depot and the time related to Fig. 2.3b, two 

dynamic orders (DO) have arrived and need to be incorporated in the current plan. In Fig. 2.3c, 

a DO has been successfully incorporated in the plan without significant cost or delay (route on 

top of the Figure). However, incorporating the second DO in the bottom route will cause a large 

detour, illustrating the complexity of incorporating new requests in the plan. 

 

Figure 2.3: A dynamic vehicle routing scenario: (a) initial routing solution, (b) state after DO arrival, 

(c) incorporation of DO into the plan 

The most common source of dynamism in VRPs is the arrival of customer requests during the 

execution of the routing plan. Another important dynamic component of practical applications 

is related to variable travel times (e.g. time-dependent) and variable onsite service times 
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(Fleischmann et al., 2004; Chen et al., 2006; Potvin et al., 2006; Guner et al., 2012, Haghani 

and Jung, 2005). Recent work has also considered the case in which customer demand is 

revealed when the vehicle reaches the customer site (Tatarakis and Minis, 2009; Novoa, 2009; 

Secomandri, 2009), as well as the case in which a vehicle executing a route becomes unavailable 

(e.g. vehicle breakdowns, Li et al., 2009a; 2009b, Mamassis et al., 2013; Mu et al. 2011).  

The source of dynamism for the problem addressed in this dissertation is the arrival of dynamic 

requests; therefore, in the following, we focus our review on this aspect.  

According to Larsen et al. (2007) the DVRP has two main differences w.r.t. the static VRP: a) 

not all information relevant to planning the routes is known by the planner when the routing 

process begins, b) information may change after the initial routes have been designed. DVRP 

is a more elaborate and complex problem than its static counterpart, and belongs to the class of 

NP-hard optimization problems (Psaraftis, 1988). As a result, it is not always feasible to obtain 

optimal solutions to problems of practical size within a reasonable timeframe. 

As mentioned above, DVRPs introduce new elements and challenges that increase the 

complexity of the related routing decisions. For example, in some contexts, such as in express 

(same-day) courier services, the company may deny a service request either because of 

significant high service costs or because it is impossible to serve the particular request (Ichoua 

et al., 2000; 2003; 2006). DVRPs also employ different objective functions. A common 

objective in static VRPs is the minimization of routing cost, while DVRPs may introduce 

additional elements such as service level, service or profit maximization, response times, etc. 

Finally, DVRPs require online decision making, which may compromise reactiveness (to input 

changes) in the light of decision quality (e.g. lower costs). The best trade-off between 

reactiveness and decision quality can also be an aspect of particular importance in many 

applications in which customers call for service (e.g. repair-maintenance services).  

2.3.1 Measuring dynamism (degree of dynamism) 

According to Ichoua et al. (2007), the dynamism of a problem may be characterized by two 

elements: a) the frequency of changes, i.e. the rate at which new information becomes available, 

and b) the urgency of requests, which is the elapsed time between the arrival of a new request 

and its required service time. Based on these aspects, three metrics have been proposed to 

measure the dynamism of a problem: 

(i) Lund et al. (1996) defined the degree of dynamism 𝛿 as the ratio between the number of 

dynamic requests 𝑛𝑑 and the total number of requests 𝑛𝑡𝑜𝑡: 
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𝛿 =
𝑛𝑑
𝑛𝑡𝑜𝑡

  (2.1)  

(ii) Larsen (2001) generalized 𝛿 in order to take into account the arrival time of requests and 

proposed the effective degree of dynamism, 𝛿𝑒. Let 𝑇𝑚𝑎𝑥 be the length of the planning 

horizon, 𝑁 the set of requests (𝑛𝑡𝑜𝑡 in total), and ℎ𝑖 the disclosure time of request 𝑖 

(operations start at time 0); then 𝛿𝑒 can be defined as: 

𝛿𝑒 =
1

𝑛𝑡𝑜𝑡
∑

ℎ𝑖
𝑇𝑚𝑎𝑥

𝑖∈𝑁

  (2.2)  

(iii) Finally, Larsen (2001) extended δe to problems with time windows in order to consider 

also the urgency of requests. The author defines the reaction time, as the difference between 

the closing of the time window 𝑏𝑖 of request 𝑖 and the disclosure time ℎ𝑖; longer reaction 

times denote higher flexibility to include a request in the current routes. Thus, the effective 

degree of dynamism is extended as follows:  

𝛿𝑇𝑊
𝑒 =

1

𝑛𝑡𝑜𝑡
∑(1 −

𝑏𝑖−ℎ𝑖
𝑇𝑚𝑎𝑥

)

𝑖∈𝑁

  (2.3)  

It should be noted that the aforementioned metrics assume values in the interval [0,1], and 

higher values within this interval denote higher level of dynamism.  

2.3.2 Classification of DVRPs 

DVRPs typically follow the taxonomy of VRPs, i.e. every VRP or PDP variant discussed in 

Section 2.2 may be related to a dynamic counterpart, in case portion of the related data is not 

known in advance and is revealed over time.  

In addition to classifications that follow the taxonomy of static VRP problems, DVRPs are 

typically classified according to dynamism, i.e. the extent of dynamic information with respect 

to static information (the information known prior to the start of operations). Larsen et al. (2002; 

2008) used the effective degree of dynamism (𝛿𝑒) to support such a classification. Prior to 

discussing their proposal, we discuss typical objectives employed in DVRPs considering the 

degree of dynamism. These objectives include the following: 

1) Transportation costs: This objective used extensively in static routing should also be 

considered in DVRP systems, due to the importance of transportation.  

2) Service maximization: Maximizing the number of dynamic orders served is relevant and 

significant in those DVRP systems which are not capable of serving all dynamic orders (e.g. 

in case of limited resources).  
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3) Responsiveness: Offering higher service level to customers may not be compatible with 

cost minimization, since a prompt response to a new dynamic request may imply sub-

optimal routing of the vehicle in terms of distance/cost. 

Using 𝛿𝑒, Larsen et al. (2002; 2008) classified DVRPs to weakly, moderately and strongly 

dynamic systems:  

 Weak dynamic systems (𝟎 < 𝜹𝒆 ≤ 𝟎. 𝟑): In those systems, only a limited number of 

customer orders is revealed dynamically, while most orders are known prior to the start of 

execution. The typical objective employed in this case is to minimize transportation costs. 

 Moderate dynamic systems (𝟎. 𝟑 < 𝜹𝒆 ≤ 𝟎. 𝟖): In this case, the proportion of dynamic 

orders is significant, but static orders should also be considered during the design of the 

initial plan. The typical objective here is a combination of cost minimization and 

maximization of dynamic orders served. 

 Highly dynamic systems (𝟎. 𝟖 < 𝜹𝒆 ≤ 𝟏): It is the most extreme case of dynamic routing 

systems, met mainly in emergency services such as police, fire department and ambulance 

services. Here, almost no requests are known in advance and the routing plan is constantly 

changing (in a real-time fashion) based on the newly received requests. These applications 

are characterized by a strong focus on responsiveness (or service maximization). 

The DVRP variants (problems) investigated in this dissertation are related to moderate dynamic 

systems. In particular, we investigate cases in which the total number of dynamic orders 

comprises a significant portion of the total number of orders to be served. Consequently, we 

focus on minimizing the total transportation costs when in case there are sufficient vehicles 

available to serve all orders (Chapters 5 and 7). For the case of limited fleet, we consider 

maximizing the number of dynamic orders served (Chapter 6).  

2.3.3 A review of DVRP applications 

DVRP research has also been inspired by applications (Pillac et al., 2013) in: i) on-site service 

delivery (e.g. maintenance), ii) transport of goods, and iii) transport of persons.  

In the category of onsite service delivery, a request is defined by a customer location and, 

oftentimes, a time-window. A typical application concerns the area of maintenance operations, 

in which companies offer scheduled periodic maintenance visits (planned offline), as well as 

corrective maintenance on short notice (planned online). Therefore, each technician starts a 

certain route at the beginning of the day, while new requests have to be incorporated 
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dynamically throughout the day. Vehicle capacity is oftentimes not an issue in this case. Studies 

related to onsite service delivery can be found in Larsen et al., 2004, Bertsimas and Van Ryzin, 

1991, Beaudry et al., 2010 and Gendreau et al., 1999. 

Related research on transportation of goods has normally addressed transportation within urban 

areas, typically referred to as city logistics. These cases are characterized by highly 

unpredictable travel times (Zeimpekis et al., 2007) and other aspects, including collaboration 

between companies to take advantage of economies of scale. One common application concerns 

courier services. In this setting, couriers are dispatched to deliver packages to customers while 

new requests are received in real-time through a call-center. Those new arriving requests have 

to be collected from the customer location and either delivered to a desired destination or to a 

unique depot. The problem then is to dynamically route vehicles taking into account the 

requests known prior to the start of operations, as well as the newly received (dynamic) ones; 

other dynamic information might be relevant in this environment, such as traffic conditions and 

variable travel times. Related studies include those by Gendreau et al. (2006), Ghiani et al. 

(2009), Attanasio et al. (2007) and Angelelli et al. (2009). Other practical settings with similar 

characteristics include the delivery of press media (Bieding et al., 2009; Ferucci et al., 2013), 

grocery delivery services (Campbell and Savelsbergh, 2005; Azi et al., 2014), and transport of 

goods in warehouses and hospitals (Fiegl and Pontow, 2009). 

Finally, applications related to transportation of passengers bear similarities to the transport of 

goods, although they include additional constraints related to service levels, such as passenger 

inconvenience (waiting, travel, and service times). Typical applications comprise planning of 

taxi services (Caramia et al., 2002; Fabri and Recht, 2006), transportation of children, patients, 

elderly or disabled people (Cordeau et al., 2007; Berbeglia et al., 2010).  

The research in this dissertation has been motivated by applications related to transport of goods 

(city logistics), such as courier services, money-transfer operations and repair-maintenance 

services. The dynamism comes from a single source, namely the occurrence of new service 

requests (dynamic orders); there is no uncertainty associated with service locations, travel times 

or traffic conditions.  

2.3.4 Significant solution methods 

Below we review significant methods and solution approaches for deterministic DVRPs, in 

which dynamism stems from the arrival of new dynamic requests. The interested reader may 

also refer to the review work of Gendreau and Potvin (1998, 2004), Ghiani et al. (2003), 
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Zeimpekis et al. (2007), Ichoua et al. (2007), Goel (2008), Larsen et al. (2008) and Pillac et al. 

(2013). For the case of stochastic DVRPs, we refer the reader to Powel (1996), Bent and Van 

Hentenryck (2004), Larsen et al. (2004), and Ichoua et al. (2006). 

In dynamic deterministic routing problems, the information is gradually revealed over time. 

Consequently, exact approaches may provide an optimal solution only for the current state and 

cannot guarantee that the overall solution will remain optimal, or even efficient, once new input 

is introduced. Therefore, most approaches employ heuristics that can quickly provide a solution 

which incorporates the up-to-date information.  

According to Pillac et al. (2013), the approaches for addressing deterministic DVRPs can be 

classified in two main categories: a) approaches that apply periodic re-optimization, and b) 

approaches which are based on continuous re-optimization. Those are described in the 

following paragraphs. In addition, we overview some advanced approaches. 

2.3.4.1 Periodic re-optimization approaches 

In this, the most common, solution strategy an efficient VRP algorithm is used or adapted to 

solve the static version of the problem at selected multiple times. Periodic re-optimization 

approaches typically commence at the beginning of the day with an initial optimization that 

produces an initial set of routes, either for orders known prior to the start of execution (for weak 

to moderate dynamic systems) or for the first (dynamic) orders received (for highly dynamic 

systems). Then the solution is re-optimized either whenever the available information changes, 

or at fixed re-optimization intervals, normally referred to as decision epochs (Chen and Xu, 

2006), or time slices (Kilby et al., 1998). A wide variety of algorithms may be used for re-

optimization, ranging from simple policy-based techniques and heuristics to exact algorithms; 

however, computational effort is of significant importance here. 

Psaraftis (1980) was the first to apply periodic re-optimization for a dynamic Dial-a-Ride 

problem. The author proposed a dynamic programming approach in order to find the optimal 

route each time a new request was received, and was able to solve problems with relatively 

small number of requests. 

Yang et al. (2004) proposed a linear programming approach that is applied whenever a new 

request is received for the real-time truckload PDP. Chen and Xu (2006) proposed a column-

generation-based approach for solving a DVRP with hard time windows, in which all requests 

need to be serviced; the algorithm uses fast heuristics to modify existing columns generated at 

an earlier stage in order to incorporate the up-to-date information. Those columns are then 
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included in the Restricted Master Problem (set-partitioning formulation), which is solved, and 

the process is repeated in an iterative manner. Their approach outperformed in solution quality 

an insertion-based heuristic used for comparison, but provided inferior results compared to a 

similar approach that allows unlimited computational time for solving the underlying static 

problems. 

Shieh and May (1998) studied the DVRP with time windows and proposed for each re-

optimization step an insertion-based heuristic followed by a local search. Larsen et al. (2002) 

compared various rule-based heuristics on instances with various degrees of dynamism for a 

dynamic travelling repairman problem, in which requests need to be served at minimum total 

cost. Their study illustrated that the route length increases linearly w.r.t. the degree of 

dynamism. Montenammi et al. (2005) employed an Ant Colony System (ACS) in order to solve 

the dynamic VRP by dividing the overall planning horizon in periods (time-slices), as in Kilby 

et al. (1998). During each time-slice a static optimization problem is solved by considering all 

requests known at the beginning of this time slice. A similar approach was also employed by 

Gambardella et al. (2003) and Rizzoli et al. (2007).  

It should be emphasized that the quality of the solution of the overall problem through multiple 

re-optimization steps is highly dependent on the solution approach employed at each step. On 

one hand, inferior re-optimization results at each step (e.g. obtained through simple heuristics) 

may lead to significantly inferior solutions. On the other hand, even the use of an exact 

algorithm cannot guarantee the generation of superior solutions for the entire problem. The 

computational results of Yang et al. (2004) and Chen and Xu (2006) concerning a range of 

dynamic routing problems, indicated that employing mathematical-programming-based 

approaches over simple ones may indeed yield better overall solutions. 

In addition to the problem definition and the solution approach, a critical problem element is 

when to re-optimize. Very limited research has focused on re-optimization policies and their 

impact on the overall solution. The majority of studies (e.g. Gendreau et al., 1999; Ichoua et 

al., 2000) re-optimize at every event, i.e. upon the arrival of a vehicle to a customer, or the 

introduction (or cancellation) of a customer order. Other studies deal with re-optimization at 

certain fixed periods. For example, Larsen (2001) studied the DVRP with time windows 

introducing the so-called batching strategies, and analyzed the effect of re-optimization on 

simple predefined fixed events (e.g. upon the arrival of three customers and every 10 minutes). 

Chen and Xu (2006) re-optimize at fixed cycles. More recently, Angelelli (2009) applied re-
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optimization on predefined time-events (e.g. 1, 2.5 and 5 hours) for a dynamic multi-period 

vehicle problem.  

2.3.4.2 Continuous re-optimization approaches 

In this type of approach, re-optimization is being performed continuously throughout the course 

of operations, based on the current state of the system and past knowledge.  

In particular, the approach commences at the beginning of operations with an initial set of routes 

(as in periodic re-optimization), and vehicles are informed only about their next destination. An 

elaborate mechanism is continuously executed (in the background) to further improve the 

solution according to the currently known state of the system, and stores good quality solutions 

consistent with this state in a memory that is adapted continuously (adaptive memory, Taillard 

et al., 2001). A decision procedure is used to update the solutions in the adaptive memory 

whenever the available information is updated. Updates typically occur due to a) service 

completion at a customer location, or b) the occurrence of a new (dynamic) request. For the 

updates that relate to service completion, the decision procedure identifies the next destination 

of the vehicle based on the best solution stored in the adaptive memory. When a new request 

occurs, the request is inserted (e.g. using a local search heuristic) in each solution stored in the 

adaptive memory, and, thus, all existing solutions are updated. As long as there are no incoming 

requests and no services are completed, the mechanism keeps running in an attempt to improve 

the routes in the adaptive memory. The latter is an important advantage for this approach.  

Gendreau et al. (1999) were the first to employ continuous re-optimization. The authors 

proposed a tabu search heuristic similar to the one introduced by Taillard et al. (1997) in order 

to address the DVRPTW arising in a long-distance courier service, in which time windows may 

be violated at some cost. No stochastic (forecasting) information about incoming (dynamic) 

requests has been assumed. Their approach maintains a pool of good solutions (routes) based 

on the available data in an adaptive memory which is used to generate initial solutions for a 

parallel tabu search. When a new request is received, it is inserted into each solution residing 

in the adaptive memory through a cheapest insertion process in order to decide whether to 

accept or reject the request. The best solution is selected after applying a fast local search 

procedure. The solutions in the adaptive memory are also updated upon service completion at 

a customer location. A similar approach has been employed by Ichoua et al. (2000, 2003) for 

the DVRP, by Gendreau et al. (2006) and Chang et al. (2003) for the DPDP, and Attanasio et 

al. (2004) for DARP.  
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Another tabu search approach with adaptive memory has been employed by Bent and Van 

Hentenryck (2004), who introduced the concept of the Multiple Plan Approach (MPA). The 

latter attempts to continuously generate different solutions, which incorporate both static and 

known dynamic requests. Under this concept, a pool of solutions (routing plans) is used to 

generate a so-called distinguished plan. Upon arrival of a new request, a mechanism (e.g. a 

local search heuristic) checks whether the request can be incorporated or not in the current pool 

of solutions; if yes, the request is incorporated in the solution pool (routing plans) and solutions 

from the pool that cannot fit this request are discarded. The pool of solutions is updated during 

each event in order to ensure that all solutions are consistent with the current state of the system.  

Finally, Genetic Algorithms (GA) have been also used in continuous re-optimization. GA 

algorithms in dynamic contexts are very similar to those designed for static problems, although 

they generally run throughout the planning horizon and solutions are constantly adapting to the 

input changes. The interested reader can refer to the work of Benyahia and Potvin (1998), 

Cheung et al. (2008), and Van Hemert and Poutre (2004).  

2.3.4.3 Advanced strategies  

The last type of approaches includes advanced methods that exploit the nature of dynamic 

problems. For example, Ichoua et al. (2000), motivated from courier applications, proposed a 

new method for the dynamic assignment of new requests, in which a vehicle may be diverted 

from its next destination in order to serve a new request. The method is integrated in the tabu 

search framework of Gendreau et al. (1999), and the authors demonstrate through 

computational experiments that this strategy yields a reduction in the total distance traveled, 

compared to the case in which the vehicle may not be diverted from its next destination.  

Other studies have introduced waiting strategies, which consider the possibility of positioning 

vehicles at strategic locations, or at customer sites, in order to wait for the arrival of potential 

new (dynamic) requests (see Branke et al., 2005; Mitrovic-Minic and Laporte, 2004; Ichoua et 

al., 2006). 

2.3.5 Performance assessment  

Measuring the performance of the solution of a dynamic optimization problem, such as the one 

addressed here, is not a straightforward task. The literature has suggested that new metrics are 

required for this task (Mitrovic-Minic et al., 2004; Pillac et al., 2013). 
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Sleator and Tarjan (1985) introduced competitive analysis (see also Borodin and El-Yaniv; 

2005, Jaillet and Wagner; 2008, Larsen et al.; 2007). Consider a problem instance 𝐼 in which 

data is revealed in real-time, and its offline counterpart 𝐼off in which all data (of instance 𝐼) are 

available beforehand (prior to constructing the solution). Let 𝑧∗(𝐼off) be the cost of the optimal 

solution of 𝐼off. Also, consider an algorithm 𝐴 solving 𝐼. Let 𝑧𝐴(𝐼) be the cost of the solution 

obtained by 𝐴 for instance 𝐼. Then, algorithm 𝐴 is said to be 𝑐 − 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 if there is a 

constant 𝛼 such that: 

𝑧𝐴(𝐼) ≤ 𝑐 ∙ 𝑧
∗(𝐼off) + 𝑎 ∀𝐼 ∈ 𝐼 ̈ (2.4)  

If 𝑎 is equal to zero, then the algorithm is said to be strictly-c-competitive, meaning that the 

value of the objective function of the solution determined by 𝐴 for instance 𝐼 will be at most of 

𝑐 times greater than the optimal value. For example, a strictly-2-competitive dynamic algorithm 

guarantees that the value of the solution would never be more than twice the value of the optimal 

solution of the static problem (for any investigated instance). Thus, competitive analysis offers 

a worst-case measure of performance. 

However, the competitive analysis metric assumes that Ineq. (2.4) should be explicitly proven, 

which in many cases (except very simple ones) is not possible.  

The value of information originally introduced by Mitrovic-Minic et al. (2004), provides a more 

practical metric. Consider a DVRP instance ℋ and the related static problem ℋ𝑠, in which all 

dynamic information is known prior to dispatching the vehicles (i.e. at time 𝑡 = 0). Then the 

value of information metric 𝑉ℱ corresponding to algorithm ℱ while solving dynamic problem 

ℋ is defined by the following expression 

𝑉ℱ(ℋ) =
𝑧ℱ(ℋ) − 𝑧ℱ(ℋ𝑠)

𝑧ℱ(ℋ𝑠)
× 100 (2.5)  

where 𝑧ℱ(ℋ) and 𝑧ℱ(ℋ𝑠) are the values of the objective function for dynamic problem ℋ and 

for the related static problem ℋ𝑠, both solved by algorithm ℱ. Note that ℱ is employed at each 

re-optimization step for ℋ, while ℱ is employed once to solve ℋ𝑠.  

2.3.6 Dynamic Pickup and Delivery Problems (DPDP) 

Limited work has been conducted on the dynamic counterpart of the PDPs. DPDPs can be 

classified along the lines discussed in Section 2.3.3. To the best of our knowledge, only the 

work of Chang et al. (2003) and Wang and Cao (2008) have investigated the dynamic version 

of 1-M-1-PDPs. In particular, Wang and Cao (2008) addressed a Dynamic VRPCBTW with 
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demand changes. The authors identify which demand changes disrupt the original plan and 

propose a disruption recovery model based on a local-search algorithm. They used a small scale 

example to illustrate their model’s ability to achieve savings in disruption situations. Chang et 

al. (2003) addressed the real-time VRPTW with simultaneous pick-up/delivery demands (RT-

VRPTWDP) and formulated it as a mixed-integer programming model. They proposed a tabu 

search algorithm to solve the problem every time a new request is received or altered. Their 

method outperformed simple route construction and improvement approaches on the 15 

benchmark instances of Gelinas et al. (1995).  

The majority of existing work has focused on dynamic one-to-one PDPs (1-1 DPDPs), in which 

each request has certain origin and destination. 1-1 DPDPs mostly deal with the transportation 

of passengers in urban areas, as in the dial-a-ride problem (DARP), or in the same-day 

transportation of letters/parcels, referred to as Dynamic PDP (DPDP). For this class of problems 

we refer the reader to the survey of Berbeglia et al. (2010), which overviews solution 

approaches and related studies. 

2.4 Branch and Price through Column Generation 

The main technique employed in this dissertation to tackle DVRPMB is based on the Branch-

and-Price method, which is reviewed briefly below. 

Branch-and-Price consists of a column generation algorithm embedded within a branch-and-

bound scheme (Barnhart et al., 1998; Desaulniers et al., 1998; Desrosiers and Lübbecke, 2005). 

Column generation is used to compute lower bounds at each node of the branch-and-bound 

search tree, while branch-and-bound is used to obtain the optimal integer solution. 

Column Generation (CG) is regarded as one of the most promising methods to solve vehicle 

routing problems by finding “good” lower bounds, especially when the objective is to minimize 

the cost (normally the distance travelled). In this setting, a VRP is modeled as a set-partitioning 

problem, in which each variable is a column representing a feasible route; the objective is to 

find the best set of routes (columns) that satisfy all problem constraints. Since the explicit 

generation of all feasible routes (columns) is clearly impractical, a column generation 

framework is used, in which a restricted problem is solved repeatedly using a limited set of 

possible “good” routes, which are generated by solving a series of simpler sub-problems. 

Specifically, by solving the set partitioning problem, the most appropriate routes from a 

restricted set of available ones are selected, aiming to determine the routing plan with the 
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minimum cost. The solution to this linear program is then used to determine if there are any 

routes not included in the formulation that may further reduce the value of the objective 

function. This is the column generation step. The values of the optimal dual variables provided 

by the restricted problem are incorporated as modified costs in the objective function of the 

sub-problems (usually simpler optimization problems), which, in turn, provide promising new 

routes (i.e. routes with negative reduced costs) that should be included in the formulation. 

Subsequently, the linear relaxation of this expanded problem is resolved. This process is 

performed iteratively until no other columns may be found to reduce the value of the objective 

function.  

In general, as defined in Bramel and Simchi-Levi (2002), the column generation (CG) approach 

for solving the linear relaxation of a problem ℋ can be described by the following steps: 

Step 1. Generate an initial set of columns ℛ′, which is a subset of all feasible columns ℛ of 

problem ℋ (in our case ℛ′ is a subset of all possible feasible routes) 

Step 2. Solve the restricted problem ℋ′ (containing only columns ℛ′) and obtain optimal 

primal variables, 𝑦̅, and optimal dual variables 𝜋̅ 

Step 3. Solve the column generating sub-problem, i.e. identify columns 𝑟 ∈ ℛ, which, if 

included in the basis, further reduce the value of the objective function (i.e. satisfying 

𝑐𝑟̅ < 0, which is a modified cost that incorporates the dual variables 𝜋̅). 

Step 4. For 𝑟 ∈ ℛ with 𝑐𝑟̅ < 0 add column 𝑟 to ℛ′ and go to Step 2. 

Step 5. If no columns 𝑟 with 𝑐𝑟̅ < 0 exist, i.e., 𝑐𝑚̅𝑖𝑛 ≥ 0, then stop. The optimal solution has 

been obtained. 

It is clear that the speed of convergence of the CG algorithm depends mostly on the column 

generation step (Step 3). If the optimal solution is pursued, then an exact algorithm may be used 

for this step (e.g. solution of a Shortest Path Problem with dynamic programming); otherwise, 

powerful heuristics and/or metaheuristics could be used in order to provide a sufficient trade-

off between solution quality and computational time. Depending on the algorithm used, a large 

number of columns with negative reduced cost may be generated at each step, in order to 

converge to a solution in fewer iterations.  

2.5 Dissertation objectives and contribution 

In this dissertation we focus on the deterministic version of dynamic 1-M-1 PDPs which have 

yet to be investigated as discussed in Section 2.3.6. In particular, we focus on a variant of 
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dynamic 1-M-1 PDP which is equivalent to the dynamic version of the Vehicle Routing 

Problem with Mixed Backhauls (DVRPMB). To the best of our knowledge, this problem has 

not been investigated in the literature. 

Although considerable progress has recently been made in studying dynamic vehicle routing 

problems, key issues remain to be investigated with significant implications to both the 

theoretical treatment of the underlying problems and the related application of the proposed 

approaches. Within the context of DVRPMB, we attempt to address some of these key issues 

(research questions): 

 For this type of problems, are there exact, or near-optimal, methods that may solve the static 

re-optimization problem in a time-efficient manner (suitable for a real time environment)? 

 Within the re-optimization framework, what is the appropriate sequence of time instances 

(re-optimization schedule) to invoke the re-optimization method in order to obtain superior 

solutions to the entire problem? Which factors of the environment affect the choice of the 

re-optimization schedule? 

 Within the re-optimization framework, what is the appropriate process to release the re-

optimized plan (to the fleet), and how does this process affect the quality of the solution of 

the overall problem? 

 Are there fundamental differences between problems that consider unlimited fleet 

resources, and problems with limited fleet resources? If so, how can one address these 

differences? 

 How can one capitalize on load transfer processes, in order to overcome one of the dominant 

problem constraints raised by the initial assignment of known (static) orders to vehicles? 

What are the implications on the formulation of the mathematical model, and on the 

performance of the system? 

By addressing the above research questions, this dissertation makes the following contributions: 

1. We propose an appropriate periodic re-optimization process to address DVRPMB and a 

mathematical formulation for the corresponding re-optimization problem (invoked in each 

re-optimization cycle). In addition to defining the re-optimization model, we drill-down to 

significant aspects concerning the re-optimization process; i.e. i) how to re-optimize, ii) 

when to re-optimize, and iii) which part of the new plan to communicate to the drivers. 

2. Regarding “how to re-optimize”, we propose an exact approach based on Branch-and-Price 

(B&P). The contribution of our method compared to typical B&P applications in vehicle 
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routing problems is two-fold. First, we introduce an appropriate structure that exploits the 

characteristics of the dynamic problem in hand and solves a series of sub-problems to 

identify columns that can further enhance the value of the objective function. This 

decomposition allows the algorithm to be amenable to dynamic problems of practical size, 

without losing optimality. Secondly, we appropriately enhance the dominance criteria used 

in the sub-problems in order to ensure optimality in a time-efficient manner; this is achieved 

by discarding a large number of non-promising paths.  

3. In order to address challenging cases (e.g. without time-windows), we propose a novel 

Column Generation-based insertion heuristic that provides near-optimal solutions in an 

efficient manner.  

4. Regarding “when to re-optimize” we present and analyze typical re-optimization policies 

that consider various re-optimization frequencies. In addition, we investigate the effect of 

two implementation tactics: i) immediate release of all dynamic orders for implementation 

(Full Release - FR) and, ii) release of only those dynamic orders that are scheduled for 

implementation prior to the next re-optimization cycle (Partial Release -PR). We provide 

theoretical insights regarding the expected behavior of those tactics and use extensive 

experimentation to test the proposed methods and analyze the related re-optimization 

policies. Based on the results obtained we propose re-optimization guidelines under various 

operational settings. 

5. In order to address significant practical aspects, we modify the DVRPMB model to consider 

the case of limited fleet (in which not all customer orders can be served within the planning 

horizon). To address this case, we introduce appropriate objective functions that account 

for vehicle productivity during each re-optimization cycle, and we illustrate that those 

objectives may offer higher customer service.  

6. We apply our proposed methods for the DVRPMB with limited resources to a large practical 

case of a next-day courier service provider. Through this case study, we illustrate that our 

approach outperforms the dispatchers’ current practices, as well as a sophisticated insertion-

based heuristic used for comparison.  

7. We also investigate an interesting problem that attempts to overcome or, at least, moderate 

the intrinsic constraint of preventing delivery (static) orders to be reassigned to vehicles 

other than the one originally assigned to. To do so, we examine a policy of transferring 

(delivery) orders between vehicles during execution of the distribution plan. We incorporate 

load-transfer operations within the DVRPMB framework; we refer to this problem as 
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DVRPMB with Load Transfers (DVRPMB-LT). We examine two types of exchange 

locations (fixed, or at the location of any customer not yet served). 

8. We model the re-optimization problem related to DVRPMB-LT using an arc-based 

formulation in order to be able to provide exact solutions, and compare them to the optimal 

solutions of the re-optimization problem that does not allow transfers. Furthermore, we 

develop an appropriate heuristic that is able to address (solve) practical cases with an 

extended solution space. We illustrate through extensive experimentation that load-transfer 

operations can offer substantial savings for the overall dynamic problem. 
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Chapter 3: THE DYNAMIC VEHICLE ROUTING PROBLEM 

WITH MIXED BACKHAULS  

 

 

 

 

 

 

 

 

The main scope of this Chapter is to define the Dynamic Vehicle Routing Problem with Mixed 

Backhauls (DVRPMB), and to set the foundation for the solution approach of Chapter 4. 

Section 3.1 presents basic characteristics and assumptions of DVRPMB. Section 3.2 provides 

an overview of the solution framework and the re-optimization problem to be solved in each 

iteration of this framework. It also presents the mathematical formulation of the re-optimization 

problem and discusses the problem’s complexity. 

3.1 Problem description 

3.1.1 Problem overview 

Consider a transportation network in a Euclidean plane. A sufficient number of homogeneous 

vehicles (set 𝑉) with limited capacity 𝑄̅ are located at a single depot prior to the start of 

operations. At time 0, at the beginning of the planning horizon [0, 𝑇𝑚𝑎𝑥], a set of vehicles 𝐾 ⊂

𝑉 commence the execution of their planned routes to serve a set of offline requests known in 

advance (typically requiring delivery services), while 𝐾𝑑 = 𝑉 − 𝐾 is the set of vehicles 

available at the depot. A vehicle, once dispatched, is required to return to the depot until 

𝑡 = 𝑇𝑚𝑎𝑥. Orders known in advance may require service within a certain time-window, and all 

information regarding those orders is known prior to the execution of the planned routes. We 

refer to such orders as Static Orders, SO.  
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During the execution of the distribution plan, new customers call-in, requesting (pick-up) 

services. These arriving requests (hereafter denoted as Dynamic Orders, DO) have to be 

collected and returned back to the depot. Only DO that arrive during a pre-defined admissible 

period [0, 𝑇𝑚𝑎𝑥 − 𝜏] must be served, where 𝜏 denotes a predefined time interval (e.g. the last 

hour of the available working period). Orders arriving at time 𝑡 ≥ 𝑇 − 𝜏 are deferred to the 

following day. Static orders originally assigned to vehicles in 𝐾 cannot be re-allocated to other 

vehicles, while DO may be served by any vehicle 𝑉 = 𝐾 ∪ 𝐾𝑑 as needed. In general, customer 

orders in the current context have the following characteristics: i) static orders (SO) may be 

deliveries or pick-ups, ii) all dynamic orders (DO) are related to pick-up operations, and iii) all 

DO are returned to the depot for further processing.  

The problem’s scope is to serve all SO and allocate DO to the vehicles of set 𝑉 as best as 

possible. This scope may be formalized according to the availability of the fleet; under this 

framework, there are two cases to be considered: 

i. Unlimited fleet of vehicles: Serve all static orders and all DO that arrive within the 

admissible period [0, 𝑇𝑚𝑎𝑥 − 𝜏], so as to minimize the sum of the total distance traveled by 

the dispatched vehicles. This case is studied in Chapters 4 and 5.  

ii. Limited fleet of vehicles: Serve all static orders and maximize the number of served DO 

throughout the available shift. This case is examined in Chapter 6. 

For case (i) above, a sufficient number of homogeneous vehicles are located at a single depot 

at the beginning of the planning horizon in order for the fleet to serve all orders; thus new 

vehicles may be dispatched to serve some DO that can’t be served by vehicles en route. For 

case (ii), the fleet is sufficient to serve static orders, but may not be sufficient to serve all DO. 

These objectives are considered under the following operational constraints: 

 All SO should be served 

 Each order may be served at most once, by a (single) vehicle 

 SO cannot be reassigned among vehicles, i.e. the static orders originally assigned to a 

vehicle, must be served only by this vehicle. Of course, the sequence of servicing SO by a 

certain vehicle may be changed, if this favors the objective function. 

 The service of an order must commence within a pre-specified time-window, i.e. the service 

of an order cannot commence prior to the opening of this time-window and after its closure.  

 All vehicles should return to the depot within [0, 𝑇𝑚𝑎𝑥], i.e. within the allowable working 

period (e.g. driver’s shift).  

 The total load of the vehicle at any time cannot exceed the vehicle’s capacity. 
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3.1.2 Assumptions of the generic problem 

This Section presents significant characteristics of DVRPMB, along with key assumptions.  

Regarding the arrival process of DO, we assume that it allows sufficient time for each order to 

be served by a new vehicle dispatched from the depot prior to the closing of its time window. 

This assumption secures that there is potential of all DO to be included in the current schedule 

of the vehicles en route, or served by a vehicle located at the depot (or, of course, not be served 

for the limited-fleet case).  

Additionally, we assume the following problem characteristics/assumptions regarding the 

operating scenarios considered for the DVRPMB: 

a) The current status of the logistics operations (i.e. current location of each vehicle of the 

fleet, availability in terms of remaining capacity and time for service, remaining unserved 

customers, etc.) is known at any time instance. In practice, this is achieved by employing 

appropriate fleet monitoring systems. 

b) A vehicle commits to travel at the latest possible time. For example, if a vehicle is planned 

to arrive to a customer prior to the opening of its time window, the vehicle will wait at the 

location of the previously served customer. This assumption facilitates re-optimization 

changes in case new orders arrive to the system.  

c) The route is updated only at customer locations, i.e. the problem considered does not allow 

diversion (Ichoua et al., 2000). Once a vehicle has left its previous service location and is 

en route to its next destination, the vehicle cannot be diverted. 

It should be noted that in similar studies, such as the work of Chen and Xu (2006) and the work 

of Ichoua et al. (2000), a time interval 𝛿𝑡 representing the time needed for the algorithm to run 

is added to the re-optimization instance 𝑇ℓ and the corresponding solution is then valid for the 

time period [𝑇ℓ + 𝛿𝑡, 𝑇𝑚𝑎𝑥] until, of course, the next re-optimization event occurs. In our case 

we make the simplifying assumption that 𝛿𝑡 is minimal (practically zero compared with the 

typical travel time between clients), provided that the computational times of the proposed 

algorithms are appropriately short. 

3.2 Re-optimization in DVRPMB 

As mentioned already, the allocation of DO in the available fleet is dealt through iterative re-

optimization as described below. The related solution strategy needs to define the following 

basic components:  
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i. The re-optimization problem: i.e. the static optimization problem to be solved at each re-

optimization cycle based on the information available. 

ii. The re-optimization cycle: i.e. the interval between two consecutive re-optimization steps. 

iii. The re-optimization tactic: i.e. the way of introducing newly received DO to the fleet for 

service, i.e. release all planned DO immediately for implementation or release for 

implementation only the DO scheduled for service prior to the next re-optimization cycle 

(i.e. during the next cycle, re-consider all DO not yet served)3.  

Items (i) and (ii) concern the re-optimization process, or strategy. Below we formulate the re-

optimization problem, and in Chapter 4 we propose an exact and a heuristic algorithm to solve 

it. In Chapters 5 and 6 we study the re-optimization cycle and the re-optimization tactic for the 

cases of unlimited and limited vehicle fleets, respectively. 

3.2.1 Solution framework 

We assume that in the overall planning horizon [0, 𝑇𝑚𝑎𝑥], there will be 𝐿 re-optimization cycles, 

each corresponding to an appropriate “static” problem Γ1, Γ2, … , ΓL, with re-optimization 

occurring at time instances Tℓ, ℓ = 1,2, … , L where T0 = 0 < T1 < ⋯ < TL < Tmax − τ. Re-

optimization cycles ([Tℓ−1, Tℓ], ℓ ≥ 1) may not be necessarily of equal duration and may not 

even be known a priori (e.g. when re-optimization depends on the number of DO received – 

see Chapter 5, Section 5.2). The “static” problem solved at each re-optimization time Tℓ, 

denoted as DVRPMB(ℓ), considers all information known up to the related point in time. It is 

assumed that this problem (Γℓ) is solved instantaneously. The structure of the re-optimization 

framework is illustrated in Figure 3.1 and described below. 

At the beginning of the planning horizon (𝑇0), there is a set of known (static) orders, and a 

sufficient number of vehicles located at the depot that may serve all these orders (even in the 

case of limited fleet). Based on this information, a set of initial routes 𝑅𝑠 = {𝑟1, 𝑟2, … , 𝑟𝐾} has 

been developed to serve the related orders. This initial solution 𝑆0 obtained at 𝑡 = 0 is defined 

over the planning horizon [0, 𝑇𝑚𝑎𝑥].  

A re-optimization problem Γℓ, ℓ ∈ {1, … , 𝐿} takes into account two sets of orders not yet served: 

i) the committed orders that include all orders assigned to a vehicle originally or during previous 

re-optimization cycles, which have not been served and cannot be re-allocated to other vehicles, 

                                                 
3 The implementation of this tactic depends on the technology used. Typically the driver receives only the DO to 

be served next. 
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and ii) the flexible orders, that correspond to newly arrived DO, or previously arrived DO not 

yet served. Typically, flexible orders correspond to all DO that have not been served during the 

current re-optimization cycle (time Tℓ). However, there are some practical cases in which this 

may not be applicable, and DO assigned to vehicles during a prior re-optimization cycle, may 

be considered as committed orders. This limitation may be caused by committed financial 

transactions, prior communications with the customers, etc. For the reason above, depending 

on the policy, two scenarios are relevant: a) committed orders correspond only to offline 

requests and flexible orders are all DO not yet served, and b) committed orders are all orders 

assigned to vehicles during previous re-optimization cycles and not yet served; flexible orders 

correspond only to newly arrived DO. Those two cases will be analyzed subsequently in 

Chapter 4. 

 

Figure 3.1. Overview of the re-optimization framework 

In practice, the solution framework of Figure 3.1 may be implemented using current 

communication and information technologies. Requests arriving in real-time through a call 

center are used as inputs into the planning system. The dispatcher chooses a certain re-

optimization policy, and an appropriate part of the resulting plan is transmitted to the drivers 

via onboard devices or PDAs.  

The vehicles involved in the static problem of re-optimization cycle ℓ include: i) those that were 

dispatched earlier (even at time 𝑇0) but have not returned to the depot by time 𝑇ℓ; and ii) the 

ones located at the depot. Note that the number of the latter is considered sufficiently large for 

the unlimited fleet case. The solution 𝑆ℓ of the static problem of re-optimization cycle ℓ 

concerns the entire remaining time horizon [𝑇ℓ, 𝑇𝑚𝑎𝑥]. Part of this solution is then implemented 

until the next re-optimization trigger, i.e. at time 𝑇ℓ+1. This process is illustrated in Figure 3.2.  
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Figure 3.2. A simple re-optimization process 

In the following, we specify precisely the sets of orders 𝑁ℓ, and the sets of vehicles 𝑉ℓ involved 

in the static problem of each re-optimization cycle ℓ, ℓ = 1,2, … , 𝐿. 

Suppose that we have solved the static problem of re-optimization cycle (ℓ − 1) and obtained 

a solution 𝑆ℓ−1 for some ℓ ∈ {2,… , 𝐿}. In order to implement this solution at time 𝑇ℓ−1, a set of 

vehicles from 𝑉ℓ−1 is used to serve known orders 𝑁ℓ−1 according to solution 𝑆ℓ−1. Denote those 

vehicles as 𝐾ℓ−1. Obviously, 𝐾ℓ−1 ⊆ 𝑉ℓ−1 and contains a finite number of vehicles. By time 𝑇ℓ 

(next re-optimization cycle), some of the vehicles, denoted as 𝐾ℓ−1
𝐶 , may have completed their 

trips and returned to the depot, while the others are en route and may still have capacity 

available to serve additional orders. In the static problem of the next re-optimization cycle ℓ, 

the vehicles in set 𝐾ℓ−1\𝐾ℓ−1
𝐶  and the remaining vehicles located at the depot 𝐾ℓ

𝑑 can be used. 

Thus, the set of vehicles involved in the static problem of re-optimization cycle ℓ, is: 𝑉ℓ =

(𝐾ℓ−1\𝐾ℓ−1
𝐶 ) ∪ 𝐾ℓ

𝑑. 

Let 𝑁ℓ−1
𝐶  ⊆ 𝑁ℓ−1 − denote the set of orders already served during the implementation of the 

portion of solution 𝑆ℓ−1 in interval [𝑇ℓ−1, 𝑇ℓ], and 𝑁ℓ−1
𝑑  the set of new orders received during 

the same interval. Then, the set of orders to be considered in the static problem of re-

optimization cycle ℓ, is: 𝑁ℓ = (𝑁ℓ−1\𝑁ℓ−1
𝐶 ) ∪ 𝑁ℓ−1

𝑑 . Figure 3.3 illustrates sets 𝑉ℓ and 𝑁ℓ that 

form the static problem of each re-optimization cycle ℓ. Based on this, we provide in the next 

subsection the mathematical formulation of the static problem of each re-optimization cycle.  
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Figure 3.3. Sets of vehicles and orders considered in the static problem 

3.2.2 Mathematical formulation of DVRPMB(𝓵) 

In describing the re-optimization problem we omit index ℓ, since the problem has the same 

form for any re-optimization cycle (for example, in the following, time 𝑇 corresponds to re-

optimization trigger time 𝑇ℓ). 

Let 𝑁 = 𝐶 ∪ 𝐹 denote the set of orders which have not been served, where 𝐶 and 𝐹 denote the 

sets of known committed and flexible orders, respectively. Furthermore, 𝐶 = ⋃ 𝐶𝑘𝑘∈𝐾 , where 

𝐶𝑘 represents the set of committed orders assigned to vehicle 𝑘 that is en route. Note that 𝐶𝑘 

may include both delivery and pick-up orders that are assigned to vehicle 𝑘 ∈ 𝐾 during previous 

re-optimization cycles and cannot be re-assigned to other vehicles. Let set 𝑀 = ⋃ {𝜇𝑘}𝑘∈𝐾 , 

where 𝜇𝑘 represents the current location of vehicle 𝑘 ∈ 𝐾, and node 0 represent the 

origin/destination depot. We consider a complete directed graph in a Euclidean plane 𝐺 =

(𝑊, 𝐴), where 𝑊 = 𝐶 ∪ 𝐹 ∪𝑀 ∪ {0}, and 𝐴 the set of arcs connecting all nodes 𝑊(𝐴 =

{(𝑖, 𝑗): 𝑖 ∈ 𝑊, 𝑗 ∈ 𝑊\𝑀}). The cost of traversing arc (𝑖, 𝑗), {𝑖 ∈ 𝑊, 𝑗 ∈ 𝑊\𝑀} is denoted by 𝑐𝑖𝑗, 

while 𝑡𝑖𝑗 denotes the travel time between these two nodes (assuming that cost matrix [𝑐𝑖𝑗] 

satisfies the triangular inequality). 

Each order 𝑖 ∈ 𝑁 is related to the following quantities: 

𝑑𝑖 is the demand/supply of the order at each client site (load to be delivered or picked-

up by a vehicle). Delivery orders are associated with a negative value and pick-up 

orders with a positive one. The demand/supply of the depot is zero (𝑑0 = 0).  

𝑠𝑖 is the service time of order 𝑖 at the client site; 𝑠0 = 0  

ℎ𝑖 is the arrival time of a new order 𝑖. Obviously, 0 < ℎ𝑖 < 𝑇𝑚𝑎𝑥 − 𝜏, ∀𝑖 ∈ 𝐹 and 

ℎ𝑖 = 0,∀𝑖 ∈ 𝐶  
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[𝑎𝑖, 𝑏𝑖] is the time window of order 𝑖. For orders known prior to time 𝑇0, 0 ≤ 𝑎𝑖 < 𝑏𝑖 ≤

𝑇𝑚𝑎𝑥 and for DO, ℎ𝑖 < 𝑎𝑖 < 𝑏𝑖 ≤ 𝑇𝑚𝑎𝑥. Additionally, 𝑎0 = 0 and 𝑏0 = 𝑇𝑚𝑎𝑥. The 

time window of a customer cannot be violated, i.e. order 𝑖 must be served within 

this time window. 

The proposed mathematical formulation involves three (3) types of decision variables: i) binary 

flow variables 𝑥𝑖𝑗𝑘, equal to 1 if arc (𝑖, 𝑗) ∈ 𝐴 is traversed by vehicle 𝑘 ∈ 𝑉 and zero otherwise, 

ii) time variables 𝑤𝑖𝑘, which represent the start of service for order 𝑖 ∈ 𝑁 by vehicle 𝑘 ∈ 𝑉, 

while for the depot 𝑤0𝑘 ≥ 𝑇, and iii) load variables 𝑄𝑖𝑘, which provide the load of vehicle 𝑘 ∈

𝑉 immediately after serving node 𝑖 ∈ 𝑊. Note that the initial load 𝑄𝜇𝑘𝑘 of vehicle 𝑘 ∈ 𝐾 at 

each re-optimization cycle is equal to the total amount to be delivered (and/or picked up) by 

vehicle 𝑘 (i.e. remaining SO originally assigned to it but not yet served and DO that have been 

served by the vehicle in the past, but not yet returned to the depot).  

The re-optimization model for DVRPMB is similar to the formulation proposed by Parragh et 

al. (2008) for the multi-vehicle PDP, which was, in turn, adapted from the model proposed by 

Cordeau et al. (2002) for the VRPTW. 

We first present the model for the unlimited-fleet case. Subsequently, the modifications needed 

for the limited fleet case are discussed.  

Unlimited-fleet Case 

The objective of the problem is to minimize the total cumulative routing cost over the planning 

horizon [Tℓ, Tmax] and is given by: 

min(z) =∑ ∑ cijkxijk
(i,j)∈Ak∈V

  (Π.1)  

Subject to: 

∑ xijk
j∈Ck∪F∪{0}

= 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶𝑘 ∪ {𝜇𝑘} (Π.2)  

∑∑xijk
j∈Wk∈V

= 1 ∀𝑖 ∈ 𝐹 (Π.3)  

∑ xi0k
i∈Ck∪F∪{μk}

= 1 ∀𝑘 ∈ 𝐾 (Π.4)  
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∑x0jk
j∈F

≤ 1 ∀𝑘 ∈ 𝐾𝑑 (Π.5)  

∑x0jk
j∈F

=∑xj0k
j∈F

 ∀𝑘 ∈ 𝐾𝑑 (Π.6)  

∑xihk
i∈W

−∑xhjk
j∈W

= 0 ∀ℎ ∈ 𝑁, ∀𝑘 ∈ 𝑉 (Π.7)  

Qjk ≥ Qik + dj − Z(1 − xijk) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝑉 (Π.8)  

max {0, di} ≤ Qik ≤ min {𝑄̅, 𝑄̅ + di} ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (Π.9)  

wjk ≥ wik + si + tij − Z(1 − xijk) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝑉 (Π.10)  

max(ai, T)∑ xijk
j∈W

≤ wik ≤ bi∑xijk
j∈W

 ∀𝑘 ∈ 𝑉, ∀𝑖 ∈ 𝑊 (Π.11)  

T ≤ w0k ≤ b0 ∀𝑘 ∈ 𝐾𝑑 (Π.12)  

xijk ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝑉 (Π.13)  

As mentioned before, the objective function (3.1) expresses the total routing cost over the entire 

available horizon. Constraint (3.2) specifies that each vehicle 𝑘 en route must serve all 

committed orders originally assigned to it (including its corresponding starting location). 

Constraint (3.3) ensures that all flexible orders will be served, either by a vehicle en route or 

by a vehicle available at the depot. Consequently, the above two Constraints ensure that all 

orders in the system will be served exactly once. Constraints (3.4) force active vehicles en route 

to eventually return to the depot. According to Constraint (3.5) new vehicles dispatched from 

the depot in the current re-optimization cycle can only serve DO. Constraints (3.6) force these 

new vehicles to return to the depot. Note also that Constraints (3.5) allow vehicles to remain at 

the depot if necessary (not all vehicles available at the depot must be used). Constraint (3.7) 

ensures flow conservation, and Constraints (3.8) and (3.9) ensure that the vehicle’s capacity 

limit is respected at all vertices, where 𝑍 is a large positive constant. Constraints (3.10) – (3.11) 

ensure that a route is time feasible; Constraint (3.10) updates the start time (of service) along 

the route, while (3.11) ensures that the service start time is within the time window of the node. 

Note that 𝑍 represents a large number, which should be larger than 𝑍𝑖𝑗 = max (𝑏𝑖 + 𝑡𝑖𝑗 − 𝑎𝑗 , 0) 

for each arc (𝑖, 𝑗). Constraints (3.12) force new vehicles 𝐾𝑑 to assume duty after the re-
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optimization time instance and return to the depot within the available planning horizon. 

Finally, Constraints (3.13) force the flow variables to assume binary values {0, 1}.  

Limited-fleet Case 

Under the limited fleet setting, it is possible that not all DO are served either by vehicles en 

route or by vehicles located at the depot. Due to this fact, certain modifications are necessary 

to the aforementioned generic formulation.  

The first modification concerns the customer service constraints, since it is not guaranteed that 

all DO may be served. Thus, we can relax Constraints (3.3) in as in Constraints (3.14): 

∑∑𝑥𝑖𝑗𝑘
𝑗∈𝑊𝑘∈𝑉

≤ 1 ∀𝑖 ∈ 𝐹 (Π.14)  

The second modification concerns the objective function of (3.1). Minimizing routing cost is 

no longer an appropriate objective, since it would preclude service of any dynamic (pick-up) 

orders. A more appropriate and conventional objective would be to optimize a functional that 

takes into account the number of dynamic orders served, and the routing cost. This objective is 

modeled by the modified functional: 

min(𝑧) = −𝜉𝑢∑ ∑ 𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴|𝑖∈𝐹,𝑗∈𝑊

 

𝑘∈𝑉

+∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

 (Π.15)  

where 𝜉𝑢 is a profit assigned for each DO served. If lexicographical (i.e. service is prioritized 

over routing costs), then the profit for serving a DO should be higher that the routing costs for 

incorporating this DO in the plan; if not, then the solution will not include this DO, since the 

overall objective will increase. Thus, 𝜉𝑢 may be larger than max
𝑖∈𝐹
(𝑐𝑟𝑖), where 𝑐𝑟𝑖 represents the 

cost of the unit route [𝐷𝑒𝑝𝑜𝑡 − 𝑖 − 𝐷𝑒𝑝𝑜𝑡]. Note that the suitability of such objective in a 

dynamic problem such the one in hand is discussed in detail in Chapter 6. More suitable 

objective functions are also proposed there. 

Note on complexity 

The DVRPMB(ℓ) is NP-hard in the strong sense, since it generalizes the basic version of 

VRPTW, arising when {𝜇𝑘} = {0}, ∀𝑘 ∈ 𝐾, which has been proven to be NP-hard in the strong 

sense (Toth and Vigo, 2002). This can be also supported by the following considerations: 

a) In case there is only one vehicle involved, i.e. 𝑘 = 1, the DVRPMB(ℓ) generalizes the well-

known TSPTW, arising when 𝑑𝑖 = |𝑑𝑖|, ∀𝑖 ∈ 𝐹, which is a special case of the VRPTW.  
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b) In case there are more than one vehicles involved, i.e. 𝑘 > 1, the DVRPMB(ℓ) generalizes 

the VRPTW, arising when 𝐶𝑘 = ∅, ∀𝑘 ∈ 𝐾 and 𝑑𝑖 = |𝑑𝑖|, ∀𝑖 ∈ 𝐹.  

To illustrate the computational implications of DVRPMB(ℓ)’s complexity, consider Figure 3.4. 

The latter concerns the case in which a simple exhaustive search algorithm is applied, which 

examines all available DO to be incorporated to all feasible insertion places within the existing 

routes. If no feasible location exists for a DO, a new vehicle will be dispatched from the depot 

to serve this order. In this, simpler than the one examined in the current Chapter case (due to 

fixed sequence of delivery orders), the Figure shows that an exhaustive algorithm can be 

computationally intractable for cases in which the number of DO is higher than say 8 or 9. 

These illustrative results were obtained considering a set of 20 SO, 2 vehicles and 1 to 8 DO4. 

 

Figure 3.4. Computational time increases prohibitively as number of requests increase  

                                                 
4 The exhaustive algorithm was implemented on MATLAB® 2009 and solved in a Dual-Core Windows 7 machine 

with 2GHz processors and 2GB RAM.  
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Chapter 4: BRANCH-AND-PRICE ALGORITHM FOR THE RE-

OPTIMIZATION PROBLEM  

 

 

 

 

 

 

 

 

This Chapter presents the solution approach for the re-optimization problem of DVRPMB and 

for the case of unlimited fleet. This problem is solved at each re-optimization cycle 𝑇ℓ, as 

described in Chapter 3. In Chapter 6 we consider the re-optimization problem for the case of 

limited fleet. 

Section 4.1 provides an overview of the branch-and-price (B&P) method and how it is applied 

to the problem in hand. Section 4.2 formulates the re-optimization problem in a set-partitioning 

model and discusses the initial feasible solution, which is provided as input to the column 

generation algorithm. Section 4.3 presents the framework that identifies variables (columns) to 

be added to the initial set that can further enhance the objective value (pricing sub-problem). 

Section 4.4 discusses the solution mechanism for the pricing sub-problem to obtain optimal 

solutions, which corresponds to an Elementary Shortest Path Problem with Resource 

Constraints (ESPPRC). Section 4.5 presents a conceptual synthesis of the overall column 

generation method for the re-optimization problem of DVRPMB, while Section 4.6 discusses 

the proposed Branch-and-Price algorithm to obtain optimal integer solutions. Finally, Section 

4.7 proposes a heuristic-based approach for the pricing sub-problem that produces near-optimal 

solutions for practical cases with extended solution space for which the optimal approach may 

not return a solution within reasonable computational times (e.g. cases without time windows). 
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4.1. Overview of the B&P approach  

We propose a new branch-and-price (B&P) approach to solve the re-optimization problem of 

DVRPMB. The B&P algorithm consists of a column generation (CG) algorithm embedded 

within a branch-and-bound (B&B) scheme; CG is used to compute lower bounds at each node 

of the B&B search tree, while B&B is used to obtain the optimal integer solution.  

In this CG framework, the formulation presented in Chapter 3 is decomposed to a Master 

Problem (MP) and to several Sub-problems (SP). For formulating the MP we employ a set 

partitioning model, which is typically used in Column Generation formulations of the VRP. In 

the set partitioning formulation, each column corresponds to a feasible route and each constraint 

corresponds to a customer. Consequently, MP involves only constraints that impose a single 

visit to each customer. All other constraints are handled in the sub-problems. A detailed 

description of the set-partitioning formulation is presented in Section 4.2.1.  

Only a portion of known feasible routes are used to form the Restricted Master Problem (RMP). 

To preserve feasibility in the RMP, low quality columns (routes) are oftentimes used in the 

initial set of feasible columns (e.g. single-visit routes, i.e. 𝑑𝑒𝑝𝑜𝑡 − 𝑜𝑟𝑑𝑒𝑟 𝑖 − 𝑑𝑒𝑝𝑜𝑡). 

Obviously, better quality columns lead to faster convergence. For that reason, in the dynamic 

problem setting of DVRPMB we exploit the information of previous re-optimization cycles. By 

modifying appropriately the columns corresponding to a feasible solution of the previous re-

optimization cycle (as described in detail in Section 4.2.2), and adding new columns 

corresponding to the newly received orders, we provide an initial set of feasible columns and 

solve a linear relaxation5 of the re-optimization problem in the current cycle.  

In order to identify variables (columns) that have a negative reduced cost w.r.t. the dual solution 

of the RMP, a different optimization problem is solved (sub-problem), called the pricing 

problem. This latter problem handles all remaining constraints that a column (route) is required 

to satisfy. Such constraints include the requirement for serving the committed orders assigned 

to each vehicle, as well as all resource constraints. We propose both an exact and a heuristic 

approach to solve this problem. For the former case we formulate the pricing problem as an 

Elementary Shortest Path Problem with Time Windows and Capacity Constraints 

(ESPPTWCC), and we employ a dynamic programming-based method to solve it. For the latter 

case, we employ an insertion-based heuristic that uses the information of the dual prices 

                                                 
5 The RMP is solved by relaxing the variables that denote if a column (route) is included in the solution to assume 

fractional values (instead of binary). 
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returned by the solution of the linear relaxation of the RMP. In both cases, the solution is one 

or more columns/routes that minimize a certain objective function. If the solution of the pricing 

problem is non-negative, then the solution of the linear relaxation of RMP is optimal; otherwise, 

the resulting column(s) may enter the basis and is (are) added to the current collection of 

columns of the RMP.  

The proposed column generation scheme for the re-optimization problem comprises the 

following steps: 

Step 1. Restricted Master Problem (RMP) 

Generate an initial set of columns comprising a feasible solution to the RMP: To do so, modify 

the solution (routes) from the previous re-optimization cycle (in order to represent the up-to-

date information) and add single-visit columns for flexible (dynamic) orders (Section 4.2.2). 

Step 2. Solving the linear programming relaxation of RMP 

Solve the linear relaxation of the resulting RMP and obtain optimal primal and dual variables 

(also Section 4.2.2). 

Step 3. Pricing Problem (sub-problem) 

Solve the column generating sub-problem (pricing problem), i.e. identify columns that, if 

included in the basis of the RMP, they further reduce the objective function value: 

 Exact solution: Decompose the complete problem to |𝐾| + 1 independent sub-problems, 

where |𝐾| is the number of vehicles en route. Each sub-problem is an 𝐸𝑆𝑃𝑃𝑇𝑊𝐶𝐶, which 

is solved by the label correcting algorithm. For the 𝐾 sub-problems, consider orders 𝐶𝑘 ∪

𝐹, 𝑘 ∈ {1,2, … , 𝐾}, where 𝐶𝑘 and 𝐹 correspond to the set of committed and flexible orders, 

respectively. These sub-problems will return columns for each vehicle en route that will 

contain all committed orders 𝐶𝑘 and incorporate flexible ones from the 𝐹 set. For the 𝐾 + 1 

sub-problem consider only orders 𝐹; the returned columns will represent route(s) of newly 

dispatched vehicles from the depot. (see Sections 4.3 – 4.4) 

 Heuristic solution: Considering the solution (routes) of the previous re-optimization cycle, 

generate new columns for vehicles already en route that incorporate flexible orders using an 

insertion heuristic based on dual-prices. Use a limited (heuristic) version of ESPPTWCC to 

generate columns corresponding to vehicles dispatched from the depot in order to serve only 

flexible orders (Section 4.7). 

Step 4. Combining the RMP with the sub-problems 
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If there is at least one generated column with negative reduced cost corresponding to either a 

vehicle en route or a vehicle located at the depot, add it to the RMP and go to Step 2. If no new 

negative reduced cost column is found, then stop; the optimal solution (lower bound) has been 

obtained (see Section 4.5). 

Note that since the column generation procedure described above operates on the relaxed RMP, 

integer optimality is not guaranteed. For that reason, and in order to obtain the optimal integer 

solution, the column generation procedure is embedded in a Branch & Bound framework 

described in detail in Section 4.6.  

The contribution of our solution methodology compared to typical B&P applications in VRP is 

three-fold. First, we have introduced an appropriate structure that exploits the characteristics of 

the dynamic problem in hand. Secondly, we appropriately enhanced the dominance criteria in 

the solution of the sub-problem in order to discard a number of non-promising paths. Finally, 

we employed a new heuristic approach to generate new routes; this heuristic may address 

practical cases with extended solution space. 

4.2. A Set-Partitioning formulation for the proposed Master Problem  

4.2.1. The Master Problem 

As mentioned above from the formulation of Chapter 3 (Section 3.2.2), the Master Problem 

(MP) incorporates only those Constraints that cannot be treated independently by the pricing 

sub-problems, i.e. the linking Constraints (3.3). The MP is a Set Partitioning Problem (SPP), 

since every customer should be serviced exactly once.  

As mentioned in Chapter 3, the re-optimization problem seeks a solution that serves all known 

orders 𝑁 = (⋃ 𝐶𝑘)𝑘∈𝐾 ∪ 𝐹6 during the interval [𝑇ℓ, 𝑇𝑚𝑎𝑥]. Under the set-partitioning 

formulation, the feasible solution space comprises the entire set of feasible single-vehicle 

columns (routes), denoted as 𝛺. The latter comprises two separate sub-sets, 𝛺 = (⋃ 𝛺𝑘)𝑘∈𝐾 ∪

𝛺𝑝, where: 

i. The columns in sets 𝛺𝑘 correspond to vehicles 𝐾 already en route; each one of those 

columns/routes should originate from a current vehicle location 𝜇𝑘, end at the depot, 

and include all committed to this vehicle orders (𝐶𝑘) and, perhaps, some flexible orders.  

                                                 
6 Note that for simplicity purposes, we assume that set 𝐶𝑘 comprises all unserved committed orders of vehicle 𝑘 

and set 𝐹 contains all unserved flexible (dynamic) orders; those sets change in every re-optimization cycle as 

already stated in Chapter 3.  
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ii. Columns in 𝛺𝑝 correspond to vehicles 𝐾𝑑 located at the depot. These routes originate 

and end at the depot, and include only 𝐹 orders. 

All above routes originate at time 𝑇ℓ, and end when the corresponding vehicle returns to the 

depot (the latest at 𝑇𝑚𝑎𝑥). Furthermore, for each route, all resource constraints must be satisfied.  

It should be noted that set 𝐹 comprises the following: 

 DO that have arrived during previous re-optimization cycles (i.e. prior to time 𝑇ℓ−1), 

but not yet served, and 

 DO that have been received during the interval [𝑇ℓ−1, 𝑇ℓ]. 

Although orders of the first category above have been assigned to some vehicles during the 

solution 𝑆ℓ−1 of the previous re-optimization problem (if any), we treat those orders as flexible 

and allow them to be served by any vehicle 𝑘 ∈ 𝑉 during re-optimization cycle ℓ. If in 𝑆ℓ−1 a 

new vehicle 𝑘 has been dispatched to serve 𝐹 orders (now considered as vehicle en route with 

𝐶𝑘 = ∅), all DO assigned to it and not yet served are also considered as flexible orders. In 

Chapter 5, we also consider a policy for which any DO assigned to a certain vehicle during 

solution 𝑆ℓ−1 is restricted to be served by that vehicle only. However, the solution approach 

remains similar. Thus in the rest of the current Chapter we present the approach referring to the 

first problem variation. 

In order to formulate the Master Problem, we introduce binary coefficients 𝑒𝑖𝑟 and 𝑦𝑟, such 

that: 

𝑒𝑖𝑟 = {
1, if order 𝑖 ∈ 𝑁 is included in route 𝑟 ∈  𝛺

0, otherwise
  (4.1) 

𝑦𝑟 = {
1, if route 𝑟 ∈ 𝛺 is used in the solution

0, otherwise
  (4.2) 

If 𝑐𝑟 denotes the cost of route 𝑟 ∈ 𝛺, then the formulation of the Master Problem is as follows: 

(𝑺𝑷𝑷) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑𝑐𝑟𝑦𝑟
𝑟∈𝛺

  (4.3) 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑𝑒𝑖𝑟𝑦𝑟

𝑟∈𝛺

= 1 ∀𝑖 ∈ 𝑁 (4.4) 

  𝑦𝑟  =  {0, 1} ∀𝑟 ∈ 𝛺 (4.5) 
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The above formulation seeks to find a subset of single vehicle routes in 𝛺 that minimizes the 

total distance and serves each order in 𝛮 exactly once [Constraint (4.4)]. We denote this 

formulation by 𝑆𝑃𝑃. Eliminating binary Constraints (4.5) (or relaxing them to 𝑦𝑟 ≥ 0), permits 

the problem to be solved using known linear programming techniques. We will refer to the 

resulting linear relaxation problem as 𝐿𝑃 − 𝑆𝑃𝑃. 

Note that our formulation ensures that exactly one route in set 𝛺𝑘 (i.e. for each vehicle en route) 

will participate in the optimal solution. Consider a case of 𝐾 vehicles en route, each of which 

is located at a certain location 𝜇𝑘 and is tasked to serve a set 𝐶𝑘, 𝑘 ∈ 𝐾 of unserved committed 

orders. Since all routes in 𝛺 are feasible (as guaranteed by the solution of the sub-problems 

presented in Section 4.3), column 𝛺𝑘 includes all committed orders 𝐶𝑘 as well as the initial 

vehicle location 𝜇𝑘, since 𝑒𝑖𝑟 = 1, ∀𝑖 ∈ (𝐶𝑘 ∪ 𝜇𝑘), ∀𝑟 ∈ 𝛺𝑘, 𝑘 ∈ 𝐾 (Constraint 3.4 of Chapter 

3). Since all columns are feasible, partitioning Constraints (4.4) assign each column in the set 

𝛺𝑘 to at most one vehicle (each vehicle 𝑘 ∈ 𝐾 will be used at most once).  

However, flexible orders (𝐹 set) can be assigned to vehicles en route (𝐾 set) or to vehicles 

located at the depot (𝐾𝑑 set). For the former case, a column, which includes orders 𝐶𝑘 and the 

origin 𝜇𝑘, could also contain flexible orders. The latter can be formulated as a typical VRPTW 

set-partitioning problem.  

4.2.2. The Restricted Master Problem, RMP 

As already mentioned, the MP formulation requires the explicit enumeration of all columns a 

priori. Even if all feasible columns could be somehow found, the LP − SPP could not be solved 

within reasonable computational time.  

Suppose that a subset 𝛺′ ⊂ 𝛺 of feasible routes is known and forms the basis for the RMP. 

Based on this restricted set, we may define a restricted version of 𝑆𝑃𝑃, denoted as 𝑺𝑷𝑷∗. 

Consider now the following linear programming relaxation of the RMP (denoted as 𝑳𝑷 −

𝑺𝑷𝑷∗) involving the set 𝛺′: 

(𝑳𝑷 − 𝑺𝑷𝑷∗) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑟𝑦𝑟
𝑟∈𝛺′

  (4.6) 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑒𝑖𝑟𝑦𝑟

𝑟∈𝛺′

= 1 ∀𝑖 ∈ 𝑁 (4.7) 

  𝑦𝑟 ≥ 0 ∀𝑟 ∈ 𝛺′ (4.8) 
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Finding the initial set of columns 𝛺′ that contain a feasible solution is not a trivial task. In order 

to construct this set, we exploit the information from solution 𝑆ℓ−1 obtained during the re-

optimization cycle (ℓ − 1) for the interval [𝑇ℓ−1, 𝑇𝑚𝑎𝑥]. Eliminating all orders that have been 

served up to 𝑇ℓ (i.e. during [𝑇ℓ−1, 𝑇ℓ]) yields a feasible solution 𝑆′ℓ−1 of routes that comprise 

two types of columns corresponding to vehicles en route:  

 Those dispatched at time 𝑇0 = 0, which should serve remaining committed orders 

 Those dispatched from the depot at time 𝑇ℓ′, where 0 < ℓ′ ≤ ℓ − 1, which serve DO arrived 

during previous re-optimization cycles  

Following this process, a feasible set of columns (routes) is generated and used as an initial set 

𝛺′ in the corresponding 𝐿𝑃 − 𝑆𝑃𝑃∗. A note here about committed orders: In addition to the 

static orders assigned to vehicles prior to the start of operations, committed orders may include 

DO (received during previous re-optimization cycles and not yet served) depending on the 

policy followed (see Chapter 3 – Section 3.2).  

This (feasible) set of routes of vehicles en route (set 𝐾) that cover all committed orders may be 

used as an initial solution in the set 𝛺′ of the corresponding RMP in order to represent columns 

𝛺𝑘 in the restricted column-set 𝛺′. For the flexible orders (𝐹 set), we generate single-visit trips 

that originate and finish at the depot, i.e. [𝑑𝑒𝑝𝑜𝑡 − 𝑖 − 𝑑𝑒𝑝𝑜𝑡], ∀𝑖 ∈ 𝐹 to be added to the initial 

set of columns 𝛺′ of the RMP (𝛺𝑝 columns). 

A technical implementation issue that is worth mentioning corresponds to degeneracy issues7 

caused by potential redundant constraints (rows), even if the initial set of columns 𝛺′ comprises 

a feasible set of routes. In order to avoid degeneracy issues, we can add to this former set, 

single-visit trips (columns) for all committed orders of each route in 𝐾. Since it is not desirable 

to include such columns in the final solution of 𝐿𝑃 − 𝑆𝑃𝑃∗ (i.e. a new vehicle to be dispatched 

from the depot in order to a serve committed order), we incorporate the columns in the initial 

basis with a sufficiently large cost 𝑐𝑟. 

The RMP can be solved using known linear programming techniques (e.g. Simplex or the 

Revised Simplex Method). The solution also generates the dual (shadow) prices, which are 

provided to the pricing problem in step 3 and used in order to compute the reduced costs. 

                                                 
7 An LP is degenerate if in a basic feasible solution one of the basic variables assumes a value of zero. Degeneracy 

is caused by redundant constraint(s) and could necessitate additional iterations in Simplex. 
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Suppose that 𝐿𝑃 − 𝑆𝑃𝑃∗ (𝑅𝑀𝑃) has a feasible solution, and let 𝜋 be the associated dual 

solution, i.e. the dual variables 𝜋𝑖 (𝑖 ∈ 𝑁) that are associated with partitioning Constraints 

(4.7). Note that the solution provided by the current RMP is optimal with respect to the columns 

(routes) of the 𝛺′ set. In order to check if this solution is globally optimal for the MP, we should 

calculate the reduced costs (𝑐𝑟̂) of each non-basic route 𝑟 ∈ 𝛺. According to the duality theory 

of linear programming, the solution is optimal with respect to 𝐿𝑃 − 𝑆𝑃𝑃 (𝑀𝑃) if and only if 

the reduced cost 𝑐𝑟̂, is nonnegative for each 𝑟 in the global set 𝛺, i.e.,  

𝑐𝑟̂ = 𝑐𝑟 −∑𝑒𝑖𝑟𝜋𝑖
𝑖∈𝑁

 ≥ 0 ∀𝑟 ∈ 𝛺 (4.9) 

 

In order to provide a test for the optimality of this solution with respect to 𝐿𝑃 − 𝑆𝑃𝑃 (𝑀𝑃), i.e. 

to check whether there exist negative reduced cost variables, one could solve the following 

minimization problem (pricing problem): 

𝑚𝑖𝑛{𝑐𝑟 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈𝑁 | 𝑟 ∈ 𝛺}  (4.10) 

Let 𝑧 denote the value of the solution to the pricing problem in (4.10), and let 𝑟𝑧 denote the 

corresponding route. If 𝑧 ≥ 0, then 𝑥 is also optimal with respect to 𝐿𝑃 − 𝑆𝑃𝑃; otherwise 𝑟𝑧 

defines a column that can enter the basis and should be added to 𝛺′. In this case the 𝐿𝑃 − 𝑆𝑃𝑃∗ 

is solved again. This iterative procedure continues until no other negative columns exist.  

4.3. The Pricing Sub-Problem 

Having solved the RMP (by known linear programming techniques), a pricing sub-problem 

(SP) is solved to identify variables (columns) in 𝛺\𝛺′ with negative reduced cost w.r.t. the dual 

solution of the RMP (Desaulniers et al., 2005).  

In order to address the requirement that committed orders cannot be re-distributed among 

vehicles, we formulate and solve several independent SPs, one for each vehicle en route (𝐾 

set). We denote these independent SPs by 𝛹𝑘, ∀𝑘 ∈ 𝐾. The set of orders considered for each 

𝛹𝑘 consists of the remaining committed orders of vehicle 𝑘 (𝐶𝑘 set) plus all 𝐹 orders, i.e. 𝑁𝑘 =

𝐶𝑘 ∪ 𝐹. This 𝐹 set is common in each 𝛹𝑘. The solution of each 𝛹𝑘 will generate feasible trips 

(columns) that originate from the current vehicle location 𝜇𝑘 and cover all remaining 𝐶𝑘 orders 

and potentially some orders from the 𝐹 set. The subset of columns generated by each 𝛹𝑘 will 

comprise set 𝛺𝑘, 𝑘 ∈ 𝐾.  
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In order to consider also the assignment of 𝐹 orders to vehicles located at the depot, we solve 

an additional independent SP, denoted as 𝛹|𝐾|+1, that includes only the 𝐹 set, i.e. 𝑁|𝐾|+1 = 𝐹. 

The solution of this problem generates feasible trips (subject to all constraints) that originate 

from the depot, serve one or more 𝐹 orders and return to the depot. The columns generated from 

𝛹|𝐾|+1 comprise set 𝛺𝑝. Figure 4.1 illustrates the proposed decomposition approach.  

 

Figure 4.1. Illustration of the decomposition approach for the pricing sub-problem  

Since the |𝐾| + 1 independent SPs are of a much smaller scale, the aforementioned 

straightforward approach leads to an efficient generation of a large set of feasible columns to 

be added to the basis. The proof that the proposed decomposition approach provides the optimal 

solution is relatively straightforward. 

Claim: Given the above notation, the set of columns to enter the basis when solving the |𝐾| +

1 independent SPs (corresponding to order sets 𝐶𝑘 and 𝐹), is exactly the same to the one 

provided by the solution of a single monolithic sub-problem. 

Proof: As mentioned previously, the monolithic pricing sub-problem seeks to find the route 

with the minimum cost among the set of columns not yet examined. This set, denoted by 𝛺′′ =

𝛺\𝛺′, is given by: 

𝑧 = 𝑚𝑖𝑛{𝑐𝑟 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈𝑁 | 𝑟 ∈ 𝛺′′} 
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For the proposed decomposed approach, let 𝛺𝑘
′′ ≔ {𝛺1, 𝛺2, … , 𝛺|𝐾|} be the columns 

corresponding to the solution of 𝛹𝑘, and 𝛺𝑝
′′ be the ones corresponding to the solution of 

problem 𝛹|𝐾|+1. Then, the optimization problem that involves the different independent SPs 

can be formulated as: 

𝑧 = min (min
𝑘∈𝐾

{min{𝑐𝑟
𝑘 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈{𝐶𝑘∪𝐹} | 𝑟 ∈ 𝛺𝑘

′′}} , min{𝑐𝑟 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈𝐹 | 𝑟 ∈ 𝛺𝑝
′′}) 

Since only feasible columns are involved in the 𝛺𝑘
′′ set, the minimization problem for each 𝑘 ∈

𝐾 can be eliminated, and thus, the objective may assume the following form:  

𝑧 = min (min{𝑐𝑟 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈{𝐶𝑘∪𝐹} | 𝑟 ∈ 𝛺𝐾
′′} ,min{𝑐𝑟 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈𝐹 | 𝑟 ∈ 𝛺𝑝

′′}) 

Considering that 𝛺′′ ≔ {𝛺1, 𝛺2, … , 𝛺|𝐾|} ∪ 𝛺𝑝
′′ and 𝑁 ≔ {𝐶1, 𝐶2, … , 𝐶𝑘} ∪ 𝐹, the problem is 

also equivalent to: 

𝑧 = min{𝑐𝑟 − ∑ 𝑒𝑖𝑟𝜋𝑖𝑖∈𝑁 | 𝑟 ∈ 𝛺′′}, 

which is exactly the same as the one of the monolithic approach. 

Note that sub-problems 𝛹𝑘, 𝑘 ∈ 𝐾 and 𝛹|𝐾|+1 are solved using the same approach, that is, the 

as an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), based on the 

work of Irnich and Desaulniers (2005).  

As already discussed, in order to check if this solution is globally optimal for the MP, we should 

calculate the reduced costs of each non-basic route 𝑟 ∈ 𝛺\𝛺′. Assuming node 𝜇′ as the source 

point (which may represent either the depot 0 or the current location 𝜇𝑘), the reduced cost 𝑐̂𝑟 

of path 𝑟 from 𝜇′ to the depot is given by the following equation: 

𝑐𝑟̂ = ∑ (𝑐𝑖𝑗 − 𝜋𝑖
𝑢)

(𝑖,𝑗)∈𝐴𝑟

 ∀𝑟 ∈ 𝛺′′ (4.11) 

where 𝐴𝑟 is the set of arcs in the corresponding path, 𝜋𝑖
𝑢 is the value of the dual variable in the 

dual solution of the RMP at iteration 𝑢 (of the CG algorithm), and 𝜋𝜇′
𝑢 = 0. The calculation of 

Eq. (4.11) for every route contained in the current RMP is straightforward, since all elements 

are known. By replacing all arc costs 𝑐𝑖𝑗, (𝑖, 𝑗) ∈ 𝐴 by cost factors 𝑐𝑖𝑗
′ , the cost of a (feasible) 

route 𝑟 ∈ 𝛺′′ becomes the reduced cost of this route. Therefore, the next step is to generate 

routes 𝑟̀ ∈ {𝛺\𝛺′} that have not yet been included in the current RMP, along with their reduced 

costs 𝑐𝑟̂̀. To do so, we solve |𝐾| + 1 sub-problems, as previously discussed, and for each sub-

problem the route 𝑟̀∗ with the minimum reduced cost is derived as shown in Eq. (4.12).  
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𝑐𝑟̀∗̂ = min
𝑟̀
(∑𝑒𝑖𝑟̀𝑐𝑖𝑗

′

𝑖∈𝑁

)  (4.12) 

The modified costs 𝑐𝑖𝑗
′  of each arc (𝑖, 𝑗) ∈ 𝐴, which may also be negative, are given by the 

following Equation: 

𝑐𝑖𝑗
′ =

{
 
 

 
 
𝑐𝑖𝑗 − 𝜋𝑖

𝑢,

𝑐𝑖𝑗,

+∞,

+∞,

 

∀𝑖 ∈ 𝑁, 𝑗 ≠ {{𝜇′} ∪ {0}} 

𝑖 = 𝜇′, 𝑗 ≠ 0 

𝑖 = 0 

𝑗 = {{𝜇′} ∪ {0}} 

(4.13) 

The scope of each sub-problem is to define the values of coefficients 𝑎𝑖𝑟̀ that minimize the 

related reduced cost. Thus, in order to formulate the ESPPRCTW sub-problem we substitute 

coefficients 𝑎𝑖𝑟̀ by binary arc flow variables 𝑥𝑖𝑗 and Eq. (4.12) can be written as follows:  

𝑚𝑖𝑛 ∑ 𝑐𝑖𝑗
′ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

  (4.14) 

As discussed above, the solution of (4.14) should be restricted to generate only feasible routes. 

Thus, the problem is solved by respecting Constraints (4.15) – (4.22) [which are related to 

Constraints (3.4) – (3.12) of Chapter 3). Note that subscript 𝑘 denoting the vehicle is dropped 

from this formulation, since the vehicles are identical and the relevant vehicle constraints 

remain in the RMP. Thus, the model constraints are the following: 

∑ 𝑥𝑖0
𝑖∈𝛮∪{𝜇′}

= 1  (4.15) 

∑ 𝑥𝜇′𝑗
𝑗∈𝛮∪{0}

= 1  (4.16) 

∑ 𝑥𝑖ℎ
𝑖∈𝛮∪{𝜇′}

− ∑ 𝑥ℎ𝑗
𝑗∈𝛮∪{0}

= 0 ∀ℎ ∈ 𝛮 (4.17) 

𝑄𝑗 ≥ 𝑄𝑖 + 𝑑𝑗 − 𝑍(1 − 𝑥𝑖𝑗) ∀(𝑖, 𝑗) ∈ 𝐴 (4.18) 

𝑚𝑎𝑥 {0, 𝑑𝑖} ≤ 𝑄𝑖 ≤ 𝑚𝑖𝑛 {𝑄̅, 𝑄̅ + 𝑑𝑖} ∀𝑖 ∈ 𝑁 (4.19) 

𝑤𝑗 ≥ 𝑤𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝑍(1 − 𝑥𝑖𝑗) ∀(𝑖, 𝑗) ∈ 𝐴 (4.20) 

𝑚𝑎𝑥(𝑎𝑖, 𝑇) ∑ 𝑥𝑖𝑗
𝑗∈𝑁∪{𝜇′}∪{0}

≤ 𝑤𝑖 ≤ 𝑏𝑖 ∑ 𝑥𝑖𝑗
𝑗∈𝑁∪{𝜇′}∪{0}

 ∀𝑖 ∈ 𝑁 ∪ {𝜇′} ∪ {0} (4.21) 

𝑥𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (4.22) 
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Objective function (4.14) minimizes the sum of the arc reduced costs. Constraints (4.15) to 

(4.17) ensure that each route starts at the source point and ends at the depot, always preserving 

the flow along the arcs of the route. Constraints (4.18) and (4.19) ensure that the capacity of the 

vehicle assigned to the route is not exceeded. Constraints (4.20) and (4.21) ensure that every 

customer will be served within its time window. Finally, Constraints (4.22) force the flow 

variables to assume binary values [0,1].  

4.4. Solution procedure for the pricing sub-problem 

To solve the pricing sub-problems we use a label correcting algorithm similar to the one 

proposed by Feillet et al. (2004; 2005). This relies on the creation of multi-dimensional labels 

while processing nodes in an iterative manner. Each label is a vector that corresponds to a partial 

path 𝛿 from the source 𝜇′ to vertex 𝑖 ∈ 𝑁, and comprises several components that describe the 

state of 𝛿, typically the accumulated reduced cost 𝑐̃𝛿𝑖 , as well as the values of the resources 

upon reaching vertex 𝑖 as described below.  

Typically, in related studies, the corresponding label [𝑐̃𝛿𝑖, 𝑡𝛿𝑖, 𝑑𝛿𝑖] represents the accumulated 

reduced cost, time and demand between the origin and ending node (𝑖) of partial path 𝛿 (Irnich 

and Desaulniers, 2005). In this study, we have introduced a new label component, the 

equilibrium cost 𝑐𝛿̿𝑖, which represents an upper bound (worst case) of the total modified cost 

required to serve all committed orders not yet included in partial path 𝛿. Let 𝑂(𝛿𝑖) ⊂ 𝐶, denote 

the set of committed orders included in partial path 𝛿 ending at vertex 𝑖 and 𝑂′(𝛿𝑖) ⊂ {𝐶 ∪ 𝐹} 

denote the remaining set of all orders 𝑁 = 𝐶 ∪ 𝐹 not yet served by partial path 𝛿. Then, the 

equilibrium cost can be defined as: 

𝑐𝛿̿𝑖 = ∑ ( max
ℎ∈𝑂′(𝛿𝑖)∪{𝜇′}

(𝑐ℎ𝑖
′ ) + max

𝑗∈𝑂′(𝛿𝑖)∪{0}
(𝑐𝑖𝑗
′ ))

𝑖∈𝐶\Ο(𝛿𝑖)

 
(4.23) 

where 𝑐𝑖𝑗
′  is the modified cost associated with arc (𝑖, 𝑗) ∈ 𝐴. By including 𝑐𝛿̿𝑖, the label becomes 

𝛬𝛿𝑖 = [𝑐̃𝛿𝑖, 𝑡𝛿𝑖 , 𝑑𝛿𝑖, 𝑐𝛿̿𝑖], and indicates whether this partial path 𝛿 includes all the required 

committed orders or not. The label’s information is used in the dominance criteria described 

below.  

The procedure commences at the source point 𝜇′ with initial label 𝛬𝜇′ at time 𝑡 = 𝑡𝜇′
ℓ . For the 

𝛹|𝐾|+1 sub-problems, 𝑡𝜇′
ℓ = 𝑇ℓ; for 𝛹𝑘 , ∀𝑘 ∈ 𝐾, however, a vehicle may be on its way to the 

next destination or already serving a customer at re-optimization time 𝑇ℓ. Therefore, assuming 

customer ℎ as the current vehicle’s location, the time value that a vehicle is able to start the 
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distribution is set equal to max(𝑎ℎ, 𝑤ℎ) + 𝑠ℎ where 𝑎ℎ represents the opening of the time 

window of customer ℎ, 𝑤ℎ the time the vehicle is set to reach customer ℎ, and 𝑠ℎ the service 

time spent.  

From source point 𝜇′, each label 𝛬𝛿𝑖 is extended along all arcs (𝑖, 𝑗) ∈ 𝐴 to create new labels 

𝛬𝛿′𝑗. When extending label 𝛬𝛿𝑖 = [𝑐̃𝛿𝑖, 𝑡𝛿𝑖 , 𝑑𝛿𝑖 , 𝑐𝛿̿𝑖] to a node 𝑗, then the new label 𝛬𝛿′𝑗 of partial 

path 𝛿′ ending at node 𝑗 is given be the following extension Equations (note that component 

𝑐𝛿̿′𝑗 is calculated afresh during each extension according to Eq. (4.23)): 

𝑐̃𝛿′𝑗 = 𝑐̃𝛿′𝑖 + 𝑐𝑖𝑗
′   (4.24) 

𝑡𝛿′𝑗 = max  {𝑎𝑗 , 𝑡𝛿′𝑖 + 𝑡𝑖𝑗 + 𝑠𝑖}  (4.25) 

𝑑𝛿′𝑗 = 𝑑𝛿′𝑖 + 𝑑𝑗  (4.26) 

A label 𝛬𝛿′𝑗 is discarded if it is not feasible, i.e. if 𝑡𝛿′𝑗 > 𝑏𝑗 or 𝑑𝛿′𝑗 > 𝑄. Labels are extended 

based on a procedure which scans all nodes iteratively; each label is extended to all other nodes 

and checked for feasibility. All new created labels for node 𝑗 are characterized as non-processed 

and are stored in a set of non-processed labels, 𝐵(𝑗), which is called the bucket of node 𝑗. When 

label 𝛬𝛿𝑖 has already been extended to all reachable nodes, then it is considered as processed 

and can be deleted (or kept for supporting the dominance criteria, as will be described later). 

This is repeated for every 𝐵(𝑗) in an iterative manner until all labels have been processed. 

Following the work of Chabrier (2006), we also adopt the concept of storing all labels that have 

been extended to all successors in the set of processed labels 𝑃̌(𝑗), separately for each node 𝑗. 

The adoption of this concept supports the solution process during the dominance checks, as will 

be described below.  

When a partial path is extended to the ending node 0, then a full feasible path has been 

generated. This path is a potential solution to the minimization problem. For our case, all labels 

created for ending node 0 are directly stored if and only if they satisfy the following conditions: 

i) the criterion of negative reduced cost, i.e. 𝑐̃𝛿𝑖 < 0, and ii) all 𝐶 orders are included in the 

solution. 

During label generation, it is required to consider the constraint of not revisiting the same 

vertex, i.e. to extend labels strictly to nodes that have not yet been visited (elementary paths, 

Feillet et al., 2004). To do so, we include an additional component in the label, denoted as 𝑅𝛿𝑖, 

that represents partial route 𝛿 ending at node 𝑖 with a vector containing |𝑁𝛿| binary values, 
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where |𝑁𝛿| is the size of all nodes (excluding starting and ending ones). During the extension 

of label 𝛬𝛿𝑖 to node 𝑗, the 𝑗𝑡ℎ element of this vector is set to 1. In case node 𝑗 has already been 

visited in partial path 𝛿 (meaning that the 𝑗𝑡ℎ element of 𝑅𝛿𝑖 is equal to 1), then label 𝛬𝛿𝑖 is not 

extended to node 𝑗 and, thus, the new label is not created. This process leads to the generation 

of elementary paths, i.e. it avoids re-visiting the same nodes.  

Dominance Criteria 

In order to avoid enumerating all feasible paths, dominance rules are applied to eliminate 

(discard) labels that are not Pareto-optimal and, therefore, cannot yield an optimal path. 

Eliminating labels improves significantly the computational efficiency of the solution approach. 

To do so, we have employed applicable dominance criteria from the literature for ESPPTWCC. 

We have also proposed additional dominance criteria that are particular to the problem in hand. 

Given two labels, 𝛬𝛿′𝑖 and 𝛬𝛿′′𝑖 representing two different partial paths 𝛿′ and 𝛿′′ ending at the 

same vertex 𝑖, 𝛬𝛿′𝑖 dominates 𝛬𝛿′′𝑖 (i.e. 𝛿′′ is disregarded) if 𝛬𝛿′𝑖 ≤ 𝛬𝛿′′𝑖 (component-wise) 

and the inequality is strict for at least one component. In particular, the following inequalities 

must hold for the label components: 

𝑐̃𝛿′𝑖 ≤ 𝑐̃𝛿′′𝑖  (4.27) 

𝑡𝛿′𝑗 ≤ 𝑡𝛿′′𝑗  (4.28) 

𝑑𝛿′𝑗 ≤ 𝑑𝛿′′𝑗  (4.29) 

𝑐𝛿̿′𝑖 ≤ 𝑐𝛿̿′′𝑖  (4.30) 

𝑅𝛿′𝑖 ⊆ 𝑅𝛿′′𝑖  (4.31) 

Note that component 𝑐𝛿̿𝑖 ensures optimality by including all 𝐶 orders in a path, when needed. 

Note that this additional dominance criterion does not violate optimality when the associated 

ESPPTWCC is solved within a full column generation scheme, since it eliminates labels that 

lead to routes with higher reduced cost. Additionally, for the case of 𝛹𝐾+1 sub-problem, the 

equilibrium cost will be always zero (0), since 𝐶 = ∅ and, thus, there is no affect to the overall 

dominance criteria and, consequently, to optimality.  

Acceleration Techniques 

In order to speed up the solution process, we have employed appropriate acceleration techniques 

from the literature. The acceleration techniques used in this work have been based on the work 
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of Athanasopoulos (2011) for the Multi-Period VRP. Table 4.1 below lists the acceleration 

techniques adopted, which are briefly discussed below.  

Table 4.1. Acceleration techniques for the solution of ESPPTWCC for the DVRPMB 

Acceleration Technique Reference 

Unreachable nodes Feillet et al. (2004; 2005), Chabrier (2006) 

Limited Discrepancy Search (LDS) Feillet et al. (2005) 

Buckets / Storing Processed Labels Larsen (2001), Chabrier (2006) 

Early Termination Criterion Larsen (2001), Chabrier (2006) 

Parallel Implementation  

 

Unreachable nodes 

Unreachable vertices, as defined by Feillet et al. (2004), are “vertices that cannot be reached 

anymore due to resource constraints or because they have already been visited”. On top of the 

typical implementation of the unreachable nodes process, which discards non-feasible labels, 

we employ this technique for the solution of the SP for vehicles en route. Recall that in the sub-

problems related to this case, all committed orders have to be included in the final path; thus, 

we assume that if at least one committed order is denoted as unreachable, then this label is 

considered as infeasible and is discarded from the set of labels 𝐵(𝑖) to be extended, even at a 

very early stage of the label generation process.  

Limited Discrepancy Search (LDS) 

This is a tree search method, initially developed by Harvey and Ginsberg (1995) for Constraint 

Programming. Our implementation follows the LDS framework successfully incorporated by 

Feillet et al. (2005) for solving the ESPPTWCC. The algorithm works as follows: 

For each vertex 𝑖 ∈ 𝑁, the 𝑚 “closest” customers (referred to as “good neighbors”) are chosen 

and included in a set ℋ(𝑖); proximity is measured by the value of the reduced cost. Extending 

a label to a node ℎ that is not included in ℋ(𝑖) imposes a penalty (𝛾𝑖ℎ) equal to 1, otherwise 

the penalty equals zero. Thus, every partial path 𝛿 ending at vertex 𝑖, i.e. every label in 𝐵(𝑖), is 

assigned a penalty value. The ending node (depot) is always considered as a good neighbor; 

also, for the source node 𝜇′, 𝑚 = |𝑁|. At the beginning of the algorithm, the acceptable 

cumulative penalty (denoted as 𝐶𝑃) for a partial path 𝛿 (corresponding to a label 𝛬𝛿𝑖), is set to 

zero and thus, labels are extended only to good neighbors, i.e. ∑ 𝛾𝑖𝑗 = 0(𝑖,𝑗)∈𝑟 . This means that 

only arcs with 𝛾𝑖𝑗 = 0 are selected. If there are any negative reduced cost routes (columns) after 

expanding all labels, the ESPPTWCC terminates and passes the related routes to the RMP. If 
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not, 𝐶𝑃 is increased by 1 and labels with 𝛾𝑖𝑗 = 1 are also allowed. An upper bound 𝐶𝑃𝑚𝑎𝑥 is 

defined, beyond which 𝐶𝑃 may not be increased. If 𝐶𝑃𝑚𝑎𝑥 has been reached and no negative 

reduced cost columns have been generated, then the operation terminates.  

Buckets / Storing Processed Labels 

As already mentioned, in our implementation we use two different structures for storing labels 

ending at vertex 𝑖; i.e., 𝐵(𝑖) that contains all non-processed labels, and 𝑃̌(𝑖) that stores all 

processed labels (i.e. labels that have been extended to all successors). Storing the labels in 𝑃̌(𝑖) 

supports the solution process, since these labels can be considered in the dominance checks and 

may discard (eliminate) non-processed labels not yet extended to all successors. A label 𝛬𝛿𝑖 is 

checked if it dominates, or is dominated by, other labels within 𝐵(𝑖) and 𝑃̌(𝑖). A new label can 

eliminate labels from both sets 𝐵(𝑖) and 𝑃̌(𝑖) or may be eliminated by the labels in these sets. 

When a non-processed label 𝛬𝛿𝑖 is eliminated by a label within 𝑃̌(𝑖), then it is not extended 

further. This process enhances the efficiency of the algorithm since more labels can be 

discarded during the dominance checks. 

Early Termination Criterion 

Many researchers terminate the solution process of the sub-problem when a predefined number 

of negative cost columns (routes) have been reached. Although this technique does not 

guarantee optimality for the sub-problem, the optimality of the global algorithm is still 

maintained, due to the iterations of the global algorithm between the RMP and the SPs. In our 

case, we terminate the solution process when at least 300 feasible columns (routes) with 

negative reduced cost have been found at each of the sub-problems 𝛹𝑘 , ∀𝑘 = 1,2, … , |𝐾| + 1.  

Parallel Implementation 

Since the |𝐾| + 1 problems of the ESPPTWCC are independent, they can be solved in parallel, 

resulting to gains in computational efficiency (see Fig. 4.2).  
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Figure 4.2. Sequential and parallel implementations of the Pricing Sub-problem  

4.5. The integrated column generation scheme 

Figure 4.3 shows the complete column generation framework, which integrates the RMP with 

the |𝐾| + 1 sub-problems. The solution of the RMP provides the associated shadow prices, in 

addition to the cost and relevant routes. The former are provided to the |𝐾| + 1 sub-problems, 

and are used to compute the modified costs 𝑐𝑖𝑗
′ = 𝑐𝑖𝑗 − 𝜋𝑖 for each (𝑖, 𝑗) ∈ 𝐴. These modified 

costs are the elements of the modified cost matrix in ESPPTWCC.  

On the other hand, solving each sub-problem generates a set of negative cost routes. These 

routes (suitably represented as columns) are provided to the RMP and added to the existing 

routes/columns of the problem. The solution process terminates when no routes with negative 

cost can be generated by any sub-problem, matching the classical termination procedure of the 

simplex method. The minimum cost solution from the last RMP is the optimal solution.  
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Figure 4.3. The column generation procedure at each re-optimization cycle 

Example: single iteration of the column generation procedure 

Consider an example of two vehicles (𝐾 = {1,2}), with four (4) offline (delivery) orders 

assigned to each vehicle. During re-optimization timestamp 𝑇1, vehicle 𝐾1 is located at customer 

2, vehicle 𝐾2 is located at customer 6 and three (3) new DO ({𝑎, 𝑏, 𝑐}) have arrived in the 

interval [0, 𝑇1], as shown in Figure 4.4.  

The first step in solving the related re-optimization problem is to create the initial basis, i.e. the 

Restricted Master Problem (RMP). To do so, we construct a matrix comprising the route 

columns of the initial plan; naturally all rows that correspond to the customers already served 

are deleted from this matrix. New columns corresponding to single-visit routes for the three DO 

are also included. This forms the first RMP which comprises of five (5) columns, 𝑅𝑖, 𝑖 = 1,… ,5 

each associated with a cost 𝑐𝑖 (𝑖 = 1,… ,5). The RMP is solved using the Revised Simplex 

Method, and the dual prices produced for each customer generate the modified cost matrix for 

each sub-problem. 
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Thus, 2 + 1 sub-problems are solved. Each of the first two sub-problems (𝛹1, 𝛹2) consider the 

corresponding set of committed orders 𝐶𝑘, 𝑘 = 1,2 plus the set of all available DO (flexible 

orders), i.e. 𝑁𝑘 = 𝐶𝑘 ∪ 𝐹, 𝑘 = 1,2 (for example, 𝑁1 = {3,4, 𝑎, 𝑏, 𝑐}). The third sub-problem 

considers only the available DO, i.e. 𝑁3 = {𝑎, 𝑏, 𝑐}. Sub-problems 𝛹1, 𝛹2 will provide columns 

that assign flexible orders to vehicles en route, while sub-problem 𝛹3 will provide columns that 

assign flexible orders to vehicles located at the depot.  

Fig. 4.4 illustrates indicative columns generated by sub-problems 𝛹1, 𝛹2; based on the Figure, 

these SPs generated columns such that: a) each vehicle en route is able to serve all flexible 

orders (columns 𝑅1
′
 and 𝑅2

′
), and b) each vehicle is able to serve only a portion of flexible orders 

(columns 𝑅1
′′
 and 𝑅2

′′
). On the other hand, sub-problem 𝛹3 generates only one column that 

assigns all flexible orders to a single vehicle to be deployed from the depot (column 𝑅3
′′′

). These 

columns are then added to the RMP which is solved again. This procedure is performed 

iteratively until no more negative cost columns are found by any sub-problem. 

 

Figure 4.4. Example of the column generation process 

4.6. Solving the integer problem (Branch-and-Price) 

In case the solution of the column generation procedure is fractional, it provides a lower bound 

to the integer optimal solution. To obtain the latter, the column generation algorithm is 

embedded into a branch-and-bound (𝐵&𝐵) search scheme, which is implemented using a best-
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first strategy. In this case, column generation is used to compute lower bounds at each node of 

the branch-and-bound search tree. (Branch and Price – B&P).  

The B&P procedure is initialized by obtaining the overall Lower Bound (𝐿𝐵) (as described 

previously) and a Global Upper Bound (𝐺𝑈𝐵), which usually refers to the best known integer 

solution. 𝐺𝑈𝐵 is originally set equal to a very large number (𝑀). If 𝐿𝐵 does not correspond to 

an integer solution, the Branching Policy is triggered, which, given a fractional solution, divides 

the feasible solution space into two subspaces. Each subspace can be seen as a new node in the 

𝐵&𝑃 tree and is further explored separately. Explored 𝐵&𝑃 nodes are discarded, while new 

nodes are added in the list of unprocessed nodes. 𝐺𝑈𝐵 is updated based on improved integer 

solutions, if such solutions are found. Following the procedure, the next node to be explored 

from the unexplored node pool is selected by the Node Selection policy. The procedure 

terminates when all nodes from the pool have been explored, or when the 𝐿𝐵 of all those nodes 

is larger than the 𝐺𝑈𝐵.  

Branching Policy  

As proposed by several authors, we branch on arc flow variables 𝜓𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, i.e.: 

𝜓𝑖𝑗 = ∑ 𝑝𝑖𝑗𝑟𝑦𝑟
𝑟∈𝛺′

  (4.32) 

where 𝑝𝑖𝑗𝑟 denotes a binary variable equal to 1 if and only if route 𝑟 traverses arc (𝑖, 𝑗). The 

first subspace of the B&P scheme (i.e. 𝜓𝑖𝑗 = 0) is defined by an additional constraint which 

does not allow arc (𝑖, 𝑗) to participate in the solution (i.e. remove from the master problem all 

variables 𝑦𝑟 if route 𝑟 contains arc (𝑖, 𝑗)). The second subspace (𝜓𝑖𝑗 = 1) forces arc (𝑖, 𝑗) to be 

part of the solution. A major advantage of this strategy is that it can be easily implemented 

without adding new constraints to the Master Problem.  

Considering the first subspace, all routes containing arc (𝑖, 𝑗) are discarded, and coefficients 𝑐𝑖𝑗 

are set to ∞. In the second subspace, all routes containing customers 𝑖 and 𝑗 that are not in 

sequence are discarded from the current RMP of the father node, and all cost coefficients 𝑐𝑖ℎ 

and 𝑐ℎ𝑗, ∀ℎ ≠ {𝑖, 𝑗} used in the sub-problem, are set to ∞. These two modifications will allow 

direct connections only from customer 𝑖 to customer 𝑗.  

Variable Selection Policy  

To select the variable to branch on, we first identify the arc with the most fractional flow value 

(i.e. value 𝜚, for which ⌈𝜚⌉− 𝜚 is closest to 0.5). Every arc (𝑖, 𝑗)𝑟 of the routes 𝑟 that participate 
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in solution X, takes the corresponding value of variable xr; the values of the same arcs are 

summed up and the arc with the most fractional part is then selected to be branched.  

Node Selection Policy  

Many existing policies are available in the literature, such as depth-first, best-first, width-first 

and depth first with backtracking (see Larsen, 2001; Lee and Mitchell, 2001). We have 

employed the Best-First approach, which is most commonly used in the literature. This policy 

selects to explore the node with the minimum 𝐿𝐵 among all nodes of the tree.  

4.7. A heuristic-based column generation approach 

Given the requirements for time efficiency of the solution process, especially for practical cases 

with extended solution space (e.g. without time windows), we propose a heuristic procedure to 

generate negative cost columns to enter the RMP instead of solving the ESPPRC to optimality 

(which is NP-hard). Thus, we propose a heuristic to solve the pricing sub-problem described in 

Section 4.4. The rest of the branch-and-price framework described in previous Sections remains 

intact.  

The proposed CG-based heuristic requires distinct approaches for sub-problems 𝛹𝑘, 𝑘 ∈ 𝐾 and 

sub-problem 𝛹|𝐾|+1. For the former sub-problems, an efficient (but not optimal) approach may 

result by finding the minimal cost of inserting each one of the flexible orders to each one of the 

available routes. The 𝛹|𝐾|+1 sub-problem may be dealt as a new independent vehicle routing 

problem. Both are further explained below. 

4.7.1. Generating columns for vehicles en route 

To generate new columns with negative reduced costs, we use a local search procedure to 

modify the columns of the initial basis (𝛺𝑘 columns). The reason we utilize such columns is 

that each trip in the basis has zero reduced cost, and if such a trip is modified appropriately, it 

is likely to generate new trips with negative reduced cost. The modification is performed using 

a cheapest insertion algorithm, which tries to incorporate in a least-cost fashion each DO to 

each candidate column. For this insertion we use the flexible order-column combination that 

results in the minimum reduced cost; the latter is the difference between the reduced costs prior 

and after the order insertion. Let 𝑐𝑠 be the cost (distance) of a column 𝑠(𝑘), 𝑘 ∈ 𝐾 prior to the 

insertion of flexible order 𝑓, and let 𝑐𝑠𝑓 be the post-insertion cost. Also let 𝑅𝐶𝑠 and 𝑅𝐶𝑠𝑓 the 

respective reduced costs. The insertion criterion is provided by the following Equation: 
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𝐺(𝑠, 𝑓) = 𝑅𝐶𝑠𝑓 − 𝑅𝐶𝑠 = (𝑐𝑠𝑓 − ∑ 𝜋𝑎
𝑎∈𝑆𝑓

)− (𝑐𝑠 − ∑ 𝜋𝑎
𝑎∈𝑆

)    

= (𝑐𝑠𝑓 − ∑ 𝜋𝑎 − 𝜋𝑓
𝑎∈𝑆

) − (𝑐𝑠 − ∑ 𝜋𝑎
𝑎∈𝑆

) = 𝑐𝑠𝑓 − 𝑐𝑠 − 𝜋𝑓 

(4.33) 

where 𝑆 = {𝑠(1), 𝑠(2), … , 𝑠(𝐾)} denotes the set of columns in the optimal basis corresponding 

to columns for vehicles en route at re-optimization cycle 𝑇ℓ, and 𝜋𝛼, 𝜋𝑓 refer to the dual prices 

of each order 𝑎 ∈ 𝑆 and 𝑓 ∈ 𝐹, respectively. Using this criterion, each order in 𝐹 is tested for 

insertion in all possible positions of each column of the initial basis. Columns with negative 

reduced cost that are generated during the iterations of this process are maintained as candidates 

in a pool of columns to be added to the RMP. This operation is terminated when no negative 

cost columns can be found, or when all orders in 𝐹 have been tested for insertion. The operation 

is described in detail below; the pseudocode of the algorithm is given in Figure 4.5. 

Preliminary Stage: Initialization  

Let the set of new columns to be added to the RMP (column pool) be 𝛺′′ = ∅. Also let 𝐺 and 

𝑅𝐶 denote matrices of size |𝐾| × |𝐹|. The elements of matrices 𝐺 and 𝑅𝐶 store the information 

related to the values of the insertion criterion of Eq. (4.33) and the total reduced costs, 

respectively, for each assignment of flexible order 𝑓 ∈ 𝐹 to each one of the vehicle routes 𝑘 ∈

𝐾. At the initial state, all elements of the 𝐺 and 𝑅𝐶 matrices are set to a large positive number. 

Stage 1: Generating New Columns 

Step 1.1. Select a column 𝑠(𝑘) ∈ 𝑆. This column corresponds to a route that starts from the 

current position of the vehicle 𝜇𝑘, serves orders 𝑂(𝑠(𝑘)) and ends at the depot. Thus, there are 

|𝑂(𝑠(𝑘))| + 1 possible positions, denoted as 𝐴̃(𝑠𝑘), where 𝐹 orders can be inserted. Let the 

cost of this trip be 𝑐𝑠(𝑘).  

Step 1.2.For each flexible order 𝑓 ∈ 𝐹, set the current best cost 𝑐𝑓̅
 𝑠(𝑘)

= 𝑍 (where 𝑍 a very large 

positive number) and perform the steps below. If there is no such 𝑓, i.e. 𝐹 = ∅, go to Stage 2.  

1.2a. Try to incorporate 𝑓 on a possible position 𝜈 ∈ 𝐴̃(𝑠𝑘). If 𝐴̃(𝑠𝑘) = ∅, go to Step 1.2. 

If path 𝑠𝑘
𝑓𝜈 that incorporates flexible order 𝑓 in position 𝜈 of column 𝑠𝑘 satisfies all 

feasibility constraints (i.e. time windows and capacity), go to Step 1.2b, otherwise 

repeat Step 1.2a until all positions 𝜈 ∈ 𝐴̃(𝑠𝑘) are examined.  

1.2b. Improve trip 𝑠𝑘
𝑓𝜈 with a 2-opt post-optimization procedure (Li, 1965). Let 𝑐𝑘

𝑓𝜈 be the 

cost of this improved trip.  
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1.2c. If the reduced cost 𝑟𝑘
𝑓𝜈 of trip 𝑠𝑘

𝑓𝜈 (i.e., 𝑟𝑘
𝑓𝜈 = 𝑐𝑘

𝑓𝜈 − ∑ 𝜋𝛼𝛼∈𝑠(𝑘) ) is negative, then add 

trip 𝑠𝑘
𝑓𝜈 in the column pool, i.e. 𝛺′′ = 𝛺′′ ∪ {𝑠𝑘

𝑓𝜈} 

1.2d. If the current inclusion of flexible order 𝑓 does not provide a better cost than the 

previous ones, i.e., 𝑐𝑘
𝑓𝜈 ≥ 𝑐𝑓̅

 𝑠(𝑘)
, return to Step 1.2a. Otherwise, set element (𝑠, 𝑓) of 

matrix 𝑅𝐶 equal to the reduced cost of trip 𝑠𝑘
𝑓𝜈 and the same element of matrix 𝐺 

equal to (𝑐𝑘
𝑓𝜈 − 𝑐𝑠(𝑘)) − 𝜋𝑓. Finally, set the current best cost to be 𝑐𝑓̅

 𝑠(𝑘)
= 𝑐𝑘

𝑓𝜈.  

Stage 2: Pseudo-assignment of the “cheapest” pick-up order 

Step 2.1. If all elements of matrix 𝑅𝐶 are non-negative (i.e. there is no insertion operation that 

yields a negative reduced cost from Stage 1), terminate the procedure and return the column 

pool 𝛺′′ generated during the process. Otherwise, go to Step 2.2.  

Step 2.2. Select order 𝑓∗ ∈ 𝐹 to be pseudo-assigned in the current plan such that 𝑔𝑠𝑝 =

min(𝐺(𝑠, 𝑓) | ∀𝑠 ∈ 𝑆, ∀𝑓 ∈ 𝐹); i.e., the order that corresponds to the minimum element of 

matrix 𝐺. Denote as 𝑠(𝑘∗) the column that satisfies the above statement.  

Step 2.3. Update all problem data according to the pseudo-assignment of Step 2.2, i.e. the set 

of orders 𝑂(𝑠(𝑘∗)) =  𝑂(𝑠(𝑘∗)) ∪ {𝑓∗} and the set of flexible orders 𝐹 = 𝐹\{𝑓∗}. Finally, 

update matrices 𝐺 and 𝑅𝐶 by deleting the column that corresponds to 𝑓∗.  

Figure 4.5 below provides a pseudo-code of the above heuristic procedure for the generation of 

new columns to be added to the RMP for vehicles en route.  
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Algorithm 1: Heuristic for generating columns for vehicles en route 

1 𝛺′′ =  ∅; // New set of columns generated by the procedure 

2 𝐺 = ∅;  // Matrix that stores insertion costs of order 𝑓 to each column 𝑠 

3 𝑅𝐶 = ∅  // Matrix that stores the reduced cost of order 𝑓 to each column 𝑠  

4 While 𝐹 ≠ ∅    

5    For each column 𝑠(𝑘) ∈ 𝑆, 𝑘 ∈ 𝐾 do 

6        𝑐𝑠(𝑘)  Cost of column 𝑠(𝑘) 

7  For each order 𝑓 ∈ 𝐹 do 

8     𝑐𝑓̅
 𝑠(𝑘)

=  𝑍 // Best cost of including order 𝑓 in column 𝑠(𝑘)  

9     For every feasible arc 𝜈 in path 𝑠 for inserting order 𝑓 ∈ 𝐹 do 

10        Apply insertion of order 𝑓 in path 𝑠 

11        [path(ν)] = Apply 2-opt improvement on this temporary path 

12        𝑠𝑘
𝑓𝜈
 = path(ν)  // column 𝑠 with order 𝑓 on arc 𝜈 after 2-opt 

13        𝑐𝑘
𝑓𝜈 = Cost of path(ν) 

14        Compute reduced cost 𝑟𝑘
𝑓𝜈 = 𝑐𝑘

𝑓𝜈 − ∑ 𝜋𝛼𝛼∈𝑠(𝜅)  

15        If 𝑟𝑘
𝑓𝜈 < 0 then 

16           𝛺′′ = 𝛺′′ ∪ {𝑠𝑓
𝜈  } 

17        End 

18       If 𝑐𝑘
𝑓𝜈 < 𝑐𝑓̅

 𝑠(𝑘)
 then   

19                 𝐺(𝑠, 𝑓)  =  (𝑐𝑘
𝑓𝜈 − 𝑐𝑠(𝑘))  −  𝜋𝑓  

20           𝑅𝐶(𝑠, 𝑓) =  𝑟𝑠𝑓
𝜈 

21           𝑐𝑓̅
 𝑠(𝑘)

 = 𝑐𝑘
𝑓𝜈 

22        End 

23     End 

24  End 

25    End 

26    If 𝑎𝑙𝑙(𝑅𝐶) ≥ 0 

27       terminate procedure and return 𝜴′′ 

28    Else  

29       Find 𝑠(𝑘’) and 𝑓∗ ∈ 𝑁 such that 𝑔𝑠𝑝′ = min(𝐺{𝑠}{𝑓} | ∀ 𝑠 ∈ 𝑆, ∀ 𝑓 ∈ 𝐹) 
30       Update column  𝑠(𝑘∗) =  𝑠(𝑘∗) ∪ {𝑓

∗
}  // in the best feasible place 

31       Update matrices 𝐺 and 𝑅𝐶 

32       Update set of 𝐹 orders  𝐹 = 𝐹\{𝑓
∗
} 

33    End 

34 End 

Figure 4.5. Pseudo-code of heuristic approach for generating columns for vehicles en route 

Implementation techniques for computational efficiency 

Since the procedure seeks to insert a flexible order at each possible position of a column, 

followed by a post-optimization procedure, it is probable that it may generate multiple identical 

columns. For example, the assignment of flexible order 𝑓 in the 𝜈 − 𝑡ℎ position of the route 

that is represented by a column 𝑠 can also be the result of the 2-opt procedure when order 𝜑 is 
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tested for insertion at another position of the same route. In order to avoid generating identical 

columns and provide RMP with unnecessary information, we tag each generated path with an 

appropriate value, denoted as representative information, in order to discard them if they’ve 

been encountered again. This is carried out by employing Hashing Functions, introduced by 

Juliff (1990) and successfully implemented to a tabu search metaheuristic for a VRP variant by 

Osman and Wassan (2002). Hashing functions require a unique code to be computed for each 

solution. In our case, code 𝐻𝑠 is calculated for each generated column as the product of the 

column index with the sum of the products of the customer index times the total number of 

orders of the related path, i.e. 

𝐻𝑠 = 𝑠 × ∑ 𝑢𝑗
𝑢𝑗∈𝑂𝑠

× |𝑂𝑠|  (4.34) 

where 𝑂𝑠 is the set of orders in column 𝑠, |𝑂𝑠| represents the total number of orders in column 

𝑠, and 𝑢𝑗  represents the customer index of that column. The above equation ensures different 

codes or records for almost all generated columns with different characteristics;  any column 

that is found with the same code is discarded. 

A second simple and efficient acceleration technique deals with those flexible orders that can 

never be included in a certain column. This technique is almost similar to the unreachable nodes 

described in Section 4.4. Before the initialization of the procedure, each flexible order is 

checked for feasibility of inclusion in each one of the available columns. Once an order fails 

w.r.t. at least one of the feasibility criteria, i.e. time windows, capacity or total permitted length 

of the trip, it is no longer considered a candidate for the corresponding column.  

4.7.2. Generating columns for vehicles located at the depot 

The solution of sub-problem 𝛹|𝐾|+1 for generating columns for vehicles located at the depot is 

possible within the framework described in Section 4.4, since the resources ( remaining time 

horizon, capacity, etc.) are relatively limited at each re-optimization cycle. This, of course, 

holds when the number of orders in set 𝐹 is relatively limited. Thus, if the number of 𝐹 orders 

is less than or equal to a reasonably small number, e.g. |𝐹| ≤ 𝛯, we use the label correcting 

algorithm as described in Section 4.4. For |𝐹| > 𝛯, we apply the same algorithm but we exclude 

path elementarity from the dominance criteria; i.e. a label can be eliminated by another label 

even if the dominator is not a subtour of the dominated one. This may speed up the solution 

process, since it eliminates a significant number of columns, but cannot ensure that all feasible 

𝛺𝑝 will be generated, and the optimum will be reached.  
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Chapter 5: RE-OPTIMIZATION STRATEGIES FOR THE CASE OF 

UNLIMITED VEHICLE FLEET 

 

 

 

 

 

 

 

 

 

 

 

 

One of the most critical elements in a re-optimization process is the timing of re-optimization, 

i.e. the time(s) at which the current plan is recomputed in order to incorporate the up-to-date 

information. In this Chapter, we investigate the re-optimization strategy, that is the combination 

of i) the length of the re-optimization cycle (i.e. when to re-plan, hereafter the re-optimization 

policy) and, ii) the part of the plan that is released to the drivers for implementation (hereafter 

the implementation tactic). The main purpose is to analyze alternative strategies and propose 

guidelines under various operational settings with respect to key problem characteristics (time 

windows, degree of dynamism, time of occurrence of dynamic orders, etc.).  

Significant issues related to re-optimization in dynamic routing are overviewed in Section 5.1. 

In Section 5.2 we propose and analyze several re-optimization strategies. Theoretical insights 

regarding these strategies are discussed in Section 5.3. Section 5.4 presents the experimental 

investigation of the proposed strategies under various operational characteristics. Finally, 

Section 5.5 summarizes the key findings of this part of the study.  
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5.1 Re-optimization and the routing environment  

The selection of the appropriate re-optimization strategy may be affected by the characteristics 

of the routing environment. In this Section we discuss significant aspects regarding key factors 

and how they affect the routing results of the overall dynamic problem.  

The re-optimization frequency (length of the re-optimization cycle) in dynamic routing should 

strike an appropriate balance. Very frequent re-optimization (short re-optimization cycles) may 

limit the solution quality of the overall (long-term) problem, since it may not take advantage of 

combinations of newly arrived requests. On the other hand, infrequent re-optimization (long re-

optimization cycles) may limit the dispatcher’s options since a larger portion of the route has 

been completed during previous re-optimization cycles, and fewer options are available for 

incorporating the newly arrived requests.  

To illustrate the significance of the re-optimization frequency, we provide in Figures 5.1 and 

5.2 two examples, each reflecting potential inefficiencies when adopting short and longer re-

optimization cycles, respectively. For the former example (Fig. 5.1), two vehicles en route are 

scheduled to serve committed orders. Two re-optimization policies are tested. In the first policy, 

shown in Fig. 5.1a, re-optimization is applied whenever new information is received (every 

time a new order is received by the dispatchers). The Figure presents the evolution of the system 

in two successive re-optimization cycles. In the second policy, re-optimization is applied after 

two DO have been received (Fig. 5.2b). The Figure presents the evolution of the system after a 

single cycle. In this example, the second policy yields better overall results due to the 

opportunity provided to the algorithm to consider the allocation of both DO at the same time, 

and combine them appropriately.  

The second example considers a single vehicle executing a planned route (see Fig. 5.2) and 

illustrates the reverse case, in which re-optimizing after each DO is received yields better results 

than re-optimizing every two DO. Figure 5.2a is related to the policy in which re-optimization 

is performed upon the receipt of each DO (two re-optimization cycles), while Fig. 5.2b presents 

the result of the 2 DO re-optimization policy. In this case, the former policy yields superior 

results, since the portion of the route that favors the inclusion of DO A has not yet been 

completed under this policy.  
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(a) 

 

(b) 

Figure 5.1. Example in which (a) re-optimizing upon the receipt of each DO yields an inferior result 

than (b) re-optimizing when both DO are received 

The implementation tactic defines which DO are released to the fleet for implementation after 

the execution of re-optimization. It seems that releasing a DO only when it is absolutely 

necessary will provide more possibilities for DO combinations. However, as discussed in 

Chapter 3, there are some practical cases in which this may not be applicable and DO have to 

be released to the fleet immediately after re-optimization (and considered as committed). 

Consequently, in Section 5.2 we examine those two scenarios met in practice and we investigate 

their interaction with different re-optimization policies (frequency).   
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(a) 

 
(b) 

Figure 5.2. Example in which (a) re-optimizing upon the receipt of each DO yields a superior result 

than (b) re-optimizing when both DO are received 

As mentioned above, it is anticipated that the selection of a re-optimization strategy may be 

significantly affected by the characteristics of the underlying routing environment. In particular, 

we focus on the following characteristics:  

 Geographical distribution of customers: The spatial distribution of customer locations is 

essential in any type of vehicle routing system. For example, in the clustered case in which 

customers form distinct groups, the excess cost of an additional visit within the same cluster 

tends to be lower. Consequently, it is expected that in these cases, a larger portion of the 

route will be completed (more customers served) if infrequent re-optimization will be 

chosen. This may limit the allocation options of DO during future cycles.  

 Customer time windows (TW): The characteristics of TW is expected to significantly affect 

the solution quality with respect to the selection of the re-optimization strategy. For 

example, tight TW cases may limit the impact of the re-optimization strategies, since the 

solution space is significantly limited. On the other hand, wide TW provide more allocation 

options of the newly received DO in the current routing plan; this may favor the solution 
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under wider re-optimization intervals especially for cases where DO should be released 

immediately after re-optimization.  

 Degree of dynamism: The number of DO with respect to the total number of orders may 

also affect the selection of re-optimization strategy. Higher degrees of dynamism may 

require higher re-optimization frequencies. 

In this Chapter, we investigate the impact of the aforementioned characteristics on the selection 

of the re-optimization strategy. To do so, we apply the re-optimization approach of Chapter 4 

under various re-optimization strategies and operating scenarios. The results of the analysis lead 

to guidelines regarding the appropriate re-optimization strategy with respect to the 

characteristics of the routing environment. 

5.2 Re-optimization strategies  

As mentioned above, the re-optimization strategy is defined by the re-optimization policy 

(frequency of re-optimization) and the implementation tactic (order release tactic).  

We explore various re-optimization policies depending on the number of DO that have arrived 

between two successive re-optimization instances; that is:  

 Single-Request Re-optimization (SRR): Re-optimize upon the arrival of each DO 

 Number of Requests Re-optimization (NRR): Re-optimize after the arrival of a predefined 

number (more than 1) of DO (e.g. after three DO have been received)  

 Fixed-Time Re-optimization (FTR): Re-optimize at predefined time intervals (e.g. once per 

hour). 

The aforementioned re-optimization policies are illustrated in Figure 5.3 (Larsen, 2000).  

 

Figure 5.3. Illustration of re-optimization policies (NRR is applied for N=3; FTR is applied every 

hour) 
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In addition, we also explore two (2) tactics to implement the new plan: 

 Full-Release tactic (FR): All re-optimized DO are released to the fleet immediately for 

implementation and they cannot be reassigned at later re-optimization cycles (see the 

discussion of Chapter 3, Section 3.2.1 on relevant practical cases, in which this tactic is 

applicable) 

 Partial-Release tactic (PR): Only the DO scheduled for implementation prior to the next 

re-optimization cycle are released and the remaining DO are re-considered in the next cycle. 

In practical terms this means that not yet served DO up to the re-optimization timestamp 

are included in the 𝐹 set as flexible orders.  

Specifically, the FR tactic considers as flexible orders only DO that arrived during the interval 

[𝑇ℓ−1, 𝑇ℓ], while the PR tactic considers also DO arrived in [𝑇0, 𝑇ℓ−1] but not served yet (see 

relevant discussion in Chapter 3.2). During the implementation under the FR tactic, the entire 

plan is released for implementation and has to be executed as designed (solution 𝑆ℓ). For the 

PR tactic, only the DO allocated for the interval [𝑇ℓ, 𝑇ℓ+1] are released for implementation. The 

implementation of this tactic depends on the technology used; typically, the driver receives only 

the DO to be served next. The above considerations and differences between the two (2) tactics 

are illustrated in Figure 5.4. 

 

Figure 5.4. Full release vs. partial release tactic for a single re-optimization cycle and a single route 
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5.3 Theoretical insights for re-optimization strategies 

It is reasonable to expect that the PR tactic is superior to FR. Below we examine in which cases 

this holds assuming the following conditions:  

 All orders are served in the final solution 

 Vehicles located at the depot are eligible to be dispatched at any ℓ > 0 

 Both release tactics are compared under the same number of re-optimization cycles 

 An optimal method is used for re-optimization. 

We should initially note that in the trivial case of a single-vehicle, both release tactics lead to 

identical results. This is due to the fact that although FR commits flexible orders for the next 

re-optimization cycles, the sequence of customer service within the route of each vehicle (the 

only one in this trivial case) is not committed; thus, the re-optimization state is the same for 

both tactics, which generate identical optimal solutions.  

Claim 1: It is guaranteed that the cost of the overall solution (for [𝑇0, 𝑇𝑚𝑎𝑥]) obtained under 

the PR tactic is always lower than or equal to the cost of the solution obtained under the FR 

tactic, for ℓ < 3.  

Consider a simple example with 𝐿 = 2 re-optimization cycles, 𝐾 vehicles scheduled to be 

dispatched at time 𝑇0, and 𝐾𝑑 available vehicles at the depot eligible to be dispatched at any 

ℓ > 0. Let 𝐾ℓ denote the vehicles en route considered at each cycle ℓ (comprising of vehicles 

that have not completed their assignments). Let 𝑅𝑃(𝜔, ℓ) denote the re-optimization problem 

for each implementation tactic 𝜔 ∈ {𝐹𝑅, 𝑃𝑅} with total routing cost 𝑂(𝜔, ℓ). Note that 

𝑂(𝜔, ℓ) = 𝑂𝑝(𝜔, ℓ) + 𝑂𝑓(𝜔, ℓ), where 𝑂𝑝(𝜔, ℓ) denotes the cost of the already completed 

portion of the routes up to 𝑇ℓ, and 𝑂𝑓(𝜔, ℓ) the cost of the solution for [𝑇ℓ, 𝑇𝑚𝑎𝑥].  

The feasible space of each 𝑅𝑃(𝜔, ℓ), ℓ > 0 may be formed by considering (a) all feasible 

combinations of assigning the flexible orders among the vehicles en route (𝛹𝛫ℓ sub-problems) 

and the vehicles located at depot (𝛹|𝛫ℓ|+1 sub-problem), and (b) for each sub-problem, all 

feasible sequences of customer orders assigned to each vehicle.  

The problem solution at each ℓ is affected by the re-optimization state, which is comprised of 

i) the set of committed orders 𝐶𝑘(𝜔, ℓ), 𝑘 = {1,2, … , 𝐾ℓ, 𝐾ℓ + 1}, ii) the set of flexible orders 

𝐹(𝜔, ℓ), and iii) the current location of the vehicle(s). Note that there are no committed orders 

for the 𝛹|𝛫ℓ|+1 sub-problem, i.e. 𝐶𝐾ℓ+1(𝜔, ℓ) = ∅. 
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During ℓ = 1 both tactics consider the same re-optimization state and 𝑂𝑝(𝐹𝑅, 1) = 𝑂𝑝(𝑃𝑅, 1); 

therefore, the related re-optimization problems (for PR and FR) are identical with identical 

solutions, and 𝑂(𝐹𝑅,1) = 𝑂(𝑃𝑅,1). 

During ℓ = 2 (at time 𝑇2), it holds that the current locations of the vehicles en route at 𝑇2 are 

identical for both tactics and 𝑂𝑝(𝐹𝑅, 2) = 𝑂𝑝(𝑃𝑅, 2). For each tactic, the related problems 

consider the sets of orders 𝑁𝑘(𝜔, 2) = 𝐶𝑘(𝜔, 2) ∪ 𝐹(𝜔, 2), 𝑘 = {1,2, … , 𝐾ℓ, 𝐾ℓ + 1}; more 

explicitly: 

 FR-tactic: 𝑁𝑘(𝐹𝑅, 2) = 𝐶𝑘(𝐹𝑅, 2) ∪ 𝐹(𝐹𝑅, 2) = [𝐶0
𝑘(2) ∪ 𝐹𝑘

′(2)] ∪ 𝐹0(2), where 𝐶0
𝑘(2) 

denotes the set of unserved static orders and 𝐹𝑘
′(2) the subset of DO arrived during [𝑇0, 𝑇1] 

and assigned to vehicle 𝑘 but not yet served; 𝐹0(2), denotes new orders arrived during 

[𝑇1, 𝑇2]. Note that 𝑁𝐾ℓ+1(𝐹𝑅, 2) = 𝐹0(2). 

 PR-tactic: 𝑁𝑘(𝑃𝑅, 2) = 𝐶𝑘(𝑃𝑅, 2) ∪ 𝐹(𝑃𝑅, 2) = 𝐶0
𝑘(2) ∪ [𝐹′(2) ∪ 𝐹0(2)], where 𝐹′(2) 

denotes all orders arrived during [𝑇0, 𝑇1] and not yet served. Also, 𝑁𝐾ℓ+1(𝑃𝑅, 2) = 𝐹
′(2) ∪

𝐹0(2). 

Since 𝐹′(2) = ⋃ 𝐹𝑘
′(2)𝑘∈𝐾 , it is clear that 𝑁𝑘(𝐹𝑅, 2) ⊆ 𝑁𝑘(𝑃𝑅, 2), ∀𝑘 ∈ {1,2, … , 𝐾ℓ, 𝐾ℓ + 1}. 

Thus, the feasible subspace corresponding to the PR tactic is a superset of that of the FR tactic 

(only for ℓ = 2), and 𝑂𝑓(𝐹𝑅, 2) ≤ 𝑂𝑓(𝑃𝑅, 2); consequently, 𝑂(𝑃𝑅,2) ≤ 𝑂(𝑃𝑅,2).  

Based on the above, up to ℓ = 2, the PR tactic will always provide superior or equivalent 

results.  

For ℓ > 2, however, such a comparison between the two tactics is not possible, since i) the state 

of the system at each re-optimization event is not the same and, ii) the cost 𝑂𝑝(𝜔,ℓ) up to that 

event is, in general, different for each tactic.  

Claim 2: For ℓ ≥ 3, and if more than one vehicles are involved (dispatched at either ℓ = 0 or 

at ℓ > 0), it is not guaranteed that the overall routing cost under the PR tactic is lower or equal 

than the one obtained by the FR tactic.  

We will show this claim through a counter-example illustrated in Figure 5.5. At ℓ = 0, two 

vehicles are planned to execute four (4) deliveries (customers 1, 2, 3, 4). During the course of 

implementing this plan, three (3) DO arrive and should be incorporated in the plan (customers 

5, 6, 7). Re-optimization is triggered upon arrival of each DO. Table 5.1 provides the 

coordinates of all customers; the depot (denoted by node 0) is located at point (0,0).  
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Table 5.1. Customer coordinates for counter-example of Claim 2 

Customer ID Coordinates (X,Y) 

1 (5,2.5) 
2 (10,5) 
3 (10,−5) 
4 (5,−2.5) 
5 (10,0) 
6 (10,10) 
7 (5,0) 

Figure 5.5 illustrates two states per implementation tactic for ℓ > 0; the state prior to re-

optimization (“Before”) and the state after re-optimization (“After”).  

At ℓ = 1, both implementation tactics provide the same routing plans, as expected. At ℓ = 2, 

order (6) has arrived. The 𝐹0(2) set for FR comprises only the new order 6, while for 𝑃𝑅 the 

𝐹0(2) set includes all DO not yet served ({5,6}). PR generates a superior solution, since the 

flexible order set is a superset of the one considered by FR. However, for ℓ = 3, the (initial) re-

optimization states of the two implementation tactics are different. Thus, the two generated 

plans are different, and, in this case, the overall solution of the FR tactic is superior to that of 

the PR tactic. Table 5.2 presents the final routing costs after each re-optimization cycle for each 

implementation period ([𝑇ℓ, 𝑇𝑚𝑎𝑥]) and the entire planning horizon ([𝑇0, 𝑇𝑚𝑎𝑥]). 

Table 5.2. Routing costs under both tactics for three re-optimization cycles 

 𝑭𝑹 − 𝒕𝒂𝒄𝒕𝒊𝒄 𝑷𝑹 − 𝒕𝒂𝒄𝒕𝒊𝒄 

 Cost [𝑻𝓵, 𝑻𝒎𝒂𝒙] Cost [𝑻𝟎, 𝑻𝒎𝒂𝒙] Cost [𝑻𝓵, 𝑻𝒎𝒂𝒙] Cost [𝑻𝟎, 𝑻𝒎𝒂𝒙] 

𝓵 = 𝟎 44.72 44.72 44.72 44.72 

𝓵 = 𝟏 31.77 48.54 31.77 48.54 

𝓵 = 𝟐 36.18 58.54 35.32 57.68 

𝓵 = 𝟑 25.59 58.54 27.23 59.59 
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Figure 5.5. Planned and actual routes under both tactics for three re-optimization cycles (solid line is 

the planned route, dotted line the executed route) 
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5.4 Computational experiments 

We study below the performance of the proposed re-optimization heuristic (Section 4.7) and of 

the proposed re-optimization strategies (policies and tactics) through extensive experi-

mentation. In Section 5.4.1 we describe how the test problems were generated; in Section 5.4.2 

we assess the performance of the proposed heuristic w.r.t. the exact B&P method. Finally, in 

Section 5.4.3 we investigate the performance of the re-optimization strategies. In this latter 

Section, in order to be able to report results under a unified solution framework, we employ the 

heuristic method described in Chapter 4.7 for all experiments. The experimental study was 

conducted using a Quad-Core Intel i7 processor of 2.8GHz and 4GB of RAM. 

5.4.1 Experimental setup 

5.4.1.1 The value of information 

Measuring the solution efficiency of a dynamic optimization problem, such as the one addressed 

here, is not a straightforward task, as also discussed in Mitrovic-Minic et al. (2004) and Pillac 

et al. (2013). In this study we report the performance of the proposed method based on the so-

called value of information, which was originally introduced by Mitrovic-Minic et al. (2004). 

Consider the DVRPMB instance ℋ and the related static problem ℋ𝑠, in which all DO are 

known prior to vehicle dispatching (at 𝑡 = 0). Then the value of information metric 𝑉ℱ 

corresponding to algorithm ℱ when solving dynamic problem ℋ is defined by the following 

expression: 

𝑉ℱ(ℋ) =
𝑧ℱ(ℋ) − 𝑧ℱ(ℋ𝑠)

𝑧ℱ(ℋ𝑠)
× 100 (5.1) 

where 𝑧ℱ(ℋ) and 𝑧ℱ(ℋ𝑠) are the values of the objective function for dynamic problem ℋ and 

for the related static problem ℋ𝑠, both solved by algorithm ℱ. Note that ℱ is employed at each 

re-optimization step for ℋ, while ℱ is employed once to solve ℋ𝑠.  

5.4.1.2 Test instances 

For the experimental study we have employed all R1, C1 and RC1 benchmark datasets of 

Solomon (1987). Furthermore, we employ datasets MR2, MC2 and MRC2 of Kontoravdis and 

Bard (1995), who have used Solomon’s R2, C2 and RC2 datasets; the authors also reduced the 

original value of the vehicle capacity from 1000 to 250 units. Thus, effectively, our 

experimental investigation considers the full array of features of the Solomon benchmarks. In 

the latter, as shown in Fig. 5.6, the Cartesian coordinates of customers in the R configuration 
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are randomly generated from a uniform distribution. Configuration C relates to clustered 

customers, whereas RC contains semi-clustered customers (i.e. a combination of clustered and 

randomly distributed customers). The datasets contain between 8 and 12 100-node instances; 

datasets R1, C1 and RC1 correspond to short-horizon problems requiring multiple vehicles with 

limited number of customers per route. In contrast, instances included in datasets MR2, MC2 

and MRC2 consider long scheduling horizons and allow the assignment of many customers per 

vehicle.  

In our experimental investigation, we have also employed instances vrpnc8 and vrpnc14 of 

Christofides et al. (1979) that have no TW for the uniform and clustered cases, respectively, 

but use the same customer coordinates of the R1 and C1 datasets. We designate these instances 

as R100 and C100, respectively.  

  

(a) (b) 

 
(c) 

Figure 5.6. Geographical distribution patterns of Solomon benchmarks; (a) Uniform distribution (R1 

and R2), (b) Clustered case (C1 and C2), (c) Semi-clustered case (RC1 and RC2); blue circles 

represent the customer locations and red square the depot. 
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Using the above benchmark instances, the experimental study has investigated the impact of a) 

customer geographical distribution, and b) customer time-windows on the effectiveness of the 

various strategies. Figure 5.6 and Figure 5.7 illustrate the patterns of these two customer 

attributes, respectively. We have also investigated the impact of the degree of dynamism (dod) 

(Larsen et al., 2002) on strategy effectiveness. To do so, for all R1, C1 and RC1 instances we 

examined cases of low dod (25% DO), moderate dod (50% DO) and high dod (75% DO). For 

the MR2, MC2 and MRC2 we examined cases of moderate dod (50% DO), as proposed by 

Kontoravdis and Bard (1995). 

  

  

  

Figure 5.7. Time window information for the Solomon datasets (bars indicate the range between the 

min & max TW values of each instance; squares represent the average TW width) 

Thus, we constructed 120 different cases (3 dod values for each one of the 31 test instances of 

R1, C1 and RC1 and 1 dod value for the 27 instances of MR2, MC2 and MRC2). For each of 

the 120 cases, we generated 10 different problems (different selection of static orders), resulting 

in a total of 1200 test problems. Note that static orders were randomly selected from each 100-

customer problem and the remaining customers formed the set of DO. Also for the problems 

that involve TW, we skewed the selection of offline requests towards those with early TW 

opening. The initial solutions (original assignment of offline requests to vehicles) were obtained 
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by a Clark and Wright savings heuristic (Clark and Wright, 1964), followed by a Reactive Tabu 

Search metaheuristic (Osman and Wassan, 2002) as a post-optimization process. 

Finally, DO arrive during the window [0, 0.75 ∗ 𝑇𝑚𝑎𝑥] according to a continuous uniform 

distribution (e.g. for cases of 12 hour service period, only DO that arrive during the first 9 hours 

can be served). The selection of the arrival window has been motivated by a real-life courier 

service as illustrated in Figure 5.8a. The latter presents a) the number of requests received by 

the provider’s call-center (operating from 08:00 to 18:00) per day, as well as the average for 

the three day period. The working horizon is 12 hours (from 08:00 to 20:00) and the policy of 

the provider is to offer service for pick-up requests at minimum one hour after the call (Figure 

5.8b). The Figure clearly shows that DO are received during the first 75% of the working 

horizon.  

For the remaining customer characteristics, i.e. on-site service times, customer demand, and the 

actual time-window characteristics (opening and closing times) we used the information from 

the original benchmark instances.  

  
(a) (b) 

Figure 5.8. (a) Number of DO per hour for a 3-day period; (b) average number of DO per hour 

(received and served) 

5.4.2 Assessment of the heuristic B&P algorithm 

In order to assess the performance of the proposed heuristic, we considered all datasets of 

Section 5.1.2 under the following settings: a) for datasets R1, C1, RC1, we have used all 100-

node instances with 25% and 50% dod; b) for datasets MR2, MC2 and MRC2 we reduced the 

size of the related instances to 50-nodes by considering only the first 50 nodes of each original 

instance; subsequently, we generated problems with 25% and 50% dod. This reduction was 

necessary, since the full sized problems could not be solved to optimality by the exact algorithm 

within reasonable time. 
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For each instance, we assumed that a) all offline requests have been assigned to vehicles 

according to Section 5.4.1.2, and b) all DO are known before the vehicles are dispatched from 

the depot. Each static instance is solved by both the exact (OPT) and the heuristic (HEUR) 

algorithm. Note that instances R104, R108, C104, MR204, MR208 and MC204 are not included 

in the averages, since the OPT algorithm could not solve them within reasonable time. 

Following the notation introduced in Section 5.4.1.2, Table 5.3 summarizes the results obtained 

for each dataset. The results have been averaged over all test problems solved per dataset 

(including the 10 problems per instance). The first two columns of Table 5.3 denote the dataset 

and the nodes per instance considered for each dataset. The subsequent column sets report the 

performance of HEUR and OPT for 25% and 50% dod. For each dod set, the Table reports the 

percentage deviation of the solution of HEUR from that of OPT (%Dev), and the computational 

times 𝐶𝑇𝑂𝑃𝑇 and 𝐶𝑇𝐻𝐸𝑈𝑅 (in sec). The last column provides the average deviation from OPT 

over the two dod. The bottom section of the Table reports the average performance indicators 

per dataset. Additional indicators (distance traveled, number of routes) are provided in Table 

A.1 of Appendix A.  

Table 5.3. Performance of heuristic B&P algorithm 

Dataset Nodes 
𝒅𝒐𝒅 =  𝟐𝟓% 𝒅𝒐𝒅 =  𝟓𝟎% Average 

%Dev %Dev 𝑪𝑻𝑶𝑷𝑻 𝑪𝑻𝑯𝑬𝑼𝑹 %Dev 𝑪𝑻𝑶𝑷𝑻 𝑪𝑻𝑯𝑬𝑼𝑹 

R1 100 2.0% 719.3 36.8 1.8% 5239.5 56.6 1.9% 

C1 100 2.6% 136.1 24.8 2.5% 2029.0 68.6 2.6% 

RC1 100 2.5% 188.4 32.3 2.0% 896.1 35.7 2.3% 

MR2 50 2.1% 651.0 13.1 2.1% 6108.1 94.9 2.1% 

MC2 50 1.4% 632.9 10.6 1.9% 3509.9 140.6 1.7% 

MRC2 50 2.7% 382.3 8.7 2.2% 1031.3 75.5 2.5% 

Average 2.2% 451.7 21.1 2.1% 3135.7 78.7 2.2% 

 

Based on Table 5.3, HEUR seems to yield efficient solutions with an average deviation of 2.2% 

from the optimum over all datasets. Regarding the computational effort, HEUR seems to be 

highly efficient compared to its exact counterpart.  

5.4.3 Experimental investigation of re-optimization strategies 

In this Section we focus initially on the overall performance of the re-optimization strategies 

(Section 5.4.3.1). Subsequently, we drill down on how key parameters affect the strategy 

performance (Section 5.4.3.2). In Section 5.4.3.3 we investigate the quality of the solutions for 
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the entire dynamic routing problem using the proposed re-optimization algorithms and an 

indicative set of instances.  

For the experimental analysis, we employed all instances described in Section 5.4.1.2 and used 

the SRR and NRR policies. For NRR, we used 𝑁 = 0.1𝑁̂, 0.2𝑁̂, 0.33𝑁̂ (where 𝑁̂ is the total 

number of DO) hereafter designated as NRR-1, NRR-2 and NRR-3. Each policy was tested 

under the FR and PR release tactics, resulting to a total of eight (8) strategies for each one of 

the test problem (i.e. 9,600 problems in total).  

It is noted that the analysis of the experimental results uses appropriate averages. The results of 

the re-optimization strategies for all instances have been included in Appendix A (Tables A.2-

A.3). Detailed performance indicators (distance travelled and number of routes) per strategy 

and instance can also be found in Appendix A (Tables A.4 – A.7).  

5.4.3.1 Overall performance of re-optimization strategies (tactic-policy 

combination) 

Figure 5.9 presents the performance (w.r.t. VoI) of each re-optimization strategy (policy-tactic 

combination) for each investigated dataset, averaged over all instances of the related dataset 

and all degrees of dynamism. From this Figure, it is clear that a) the SRR-PR strategy leads to 

the best average performance (minimum VoI), and b) the PR tactic outperforms FR (on the 

average) in all datasets. The performance difference between the two tactics decreases as the 

number of elapsed DO per re-optimization cycle increases (less number of re-optimization 

cycles). 

Figure 5.9 also indicates that the performance of each tactic is related to the frequency of re-

optimization. The PR tactic seems to be more efficient for shorter re-optimization cycles. 

Possible causes for this include: i) short route portions have been completed when re-

optimization is applied, allowing for more options, and ii) DO that are not planned for service 

until the next re-optimization timestamp are reconsidered, providing more possibilities for DO 

combinations. This behavior seems to be consistent for all investigated datasets.  

The FR tactic seems to be less efficient when re-optimization is applied very frequently (SRR) 

for all datasets or infrequently (NRR-3) for datasets R1, C1, RC1. A possible cause for the 

former may be that frequent re-optimization (i.e. upon the arrival of every request) is greedy, 

not taking advantage of combinations of newly arrived DO. In the case of infrequent re-
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optimization, a larger portion of the route has been completed and fewer options are available 

for incorporating the newly arrived DO. 

 

Figure 5.9. Average performance of re-optimization strategies for the different datasets 

Table 5.4 reports the computational times (per re-optimization cycle) for all re-optimization 

strategies averaged over all test instances per dataset for 50% dod. The computational effort is 

reported in seconds and corresponds to the average running time of the heuristic during each 

re-optimization cycle. As expected, PR requires more computational effort. Regarding policies, 

again as expected, the computational effort increases as the re-optimization frequency 

decreases. Furthermore, the MR2, MC2, MRC2 problems (with increased horizons) seem to be 

more demanding. In general, the results indicate the efficiency of the proposed heuristic, since 

the average computational time under the FR tactic is less than 20 sec, while under the PR tactic 

less than 1 minute. Similar trends are valid for the 25% and 75% dod cases; the 75% dod case 

requires about twice the effort of the 50% dod case. 

Table 5.4. Average computational effort of re-optimization strategies per dataset for 50% dod 

Dataset 
FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

R1 0.1 0.6 2.1 10.7 3.6 6.9 13.1 20.2 

C1 0.1 0.5 1.4 8.4 2.3 3.6 4.5 19.0 

RC1 0.2 0.8 2.5 7.2 7.4 10.0 12.7 18.0 

MR2 0.1 1.2 6.5 17.5 16.9 19.5 25.4 32.5 

MC2 0.2 1.1 4.3 19.3 21.4 37.7 44.2 49.9 

MRC2 0.1 1.0 4.1 20.2 19.7 23.4 25.6 35.5 
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5.4.3.2 Performance of re-optimization strategies under various conditions 

Below we drill down to the interactions of the various re-optimization strategies with three (3) 

key parameters: i) TW pattern, ii) urgency of DO w.r.t. the requested service, and c) the degree 

of dynamism (dod).  

First we investigate how the strategies perform for various TW patterns (the latter characterized 

by the ratio of the average TW width of all customers in the instance over. 𝑇𝑚𝑎𝑥). To do so, we 

grouped all investigated instances in four categories, as shown in Table 5.5. TW-1 group 

comprises instances with relatively narrow TW, while TW-4 comprises instances with wide or 

no TW.  

Table 5.5. Classification of instances in TW-pattern groups 

Group % of 𝑻𝒎𝒂𝒙 # Instances Instances 

TW-1 <15% 17 
R101, R105, C101, C105, C106, C107, RC101, R201, 

C201, C205, C206, RC201, RC202, RC205, RC206, 

RC207, RC208  

TW-2 15% - 30% 14 
R102, R109, C102, C108, C109, RC102, RC105, 

RC106, R205, C202, C207, C208, RC203, RC204 

TW-3 30% - 50% 14 
R103, R106, R107, R110, R111, C103, RC103, RC107, 

RC108, R202, R206, R209, R210, R211 

TW-4 >50% 11 
R104, R108, R112, R100,C104, C100, RC104, R203, 

R204, R207, R208, C203, C204 

Figure 5.10 presents the average performance of all strategies for the aforementioned TW-

pattern groups. For the PR tactic, all policies seem to follow similar behavior; that is, more 

frequent re-optimization (SRR and NRR-1) yields better results in almost all cases, irrespective 

of the TW width, reflecting the fact that frequent re-optimization may allow re-allocation of 

orders in a more flexible manner. The performance of SRR under PR appears slightly inferior 

to NRR-1 for instances with average TW width more than 30% of 𝑇𝑚𝑎𝑥. For the FR case, 

frequent re-optimization seems to favor solution quality for tight TW cases (TW-1 category). 

Medium-interval re-optimization cycles (NRR-1 and NRR-2) display more consistent behavior 

for all TW-pattern groups. 
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Figure 5.10. Average performance of re-optimization strategies for different TW pattern groups 

To study the behavior of the re-optimization strategies for various levels of urgency w.r.t. TW 

closing, we have used the effective degree of dynamism (𝑒𝑑𝑜𝑑), as defined by Larsen (2002). 

The 𝑒𝑑𝑜𝑑 considers the reaction time, i.e. the difference between the closing time 𝑏𝑖 of the TW 

and the arrival time ℎ𝑖 of request 𝑖; longer reaction times provide higher flexibility in inserting 

a request in the current plan. Denoting as 𝑁̅ the set of customers of an instance, 𝑒𝑑𝑜𝑑 is defined 

as:  

𝑒𝑑𝑜𝑑 =
1

|𝑁̅|
∑(1 −

𝑏𝑖−ℎ𝑖
𝑇𝑚𝑎𝑥

)

𝑖∈𝑁̅

  (5.2) 

We have grouped all experimental instances into four levels according to the average 𝑒𝑑𝑜𝑑 of 

all test problems (10 replicates) in each instance. The grouping is shown in Table 5.6 where 

edod-1 comprises instances of high urgency (limited reaction time), while edod-4 comprises 

instances with low urgency. 

Table 5.6. Classification of instances in different 𝒆𝒅𝒐𝒅 levels 

Level 𝒆𝒅𝒐𝒅 # Instances Instances 

edod-1 >65% 12 
R101, R105, C101, C105, RC101, RC105, R201, 

R205, C201, C205, RC201, RC205 

edod-2 55% - 65% 18 
R102, R106, R109, R110, C102, C106, C107, C109, 

RC102, RC106, R202, R209, C206, C207, C208, 

RC202, RC206, RC207 

edod-3 45% - 55% 13 
R103, R107, R111, C108, RC103, RC107, RC108, 

R206, R210, R211, C202, RC203, RC208 

edod-4 30% - 45% 13 
R104, R108, R112, C103, C104, RC104, R203, R204, 

R207, R208, C203, C204, RC204 
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Figure 5.11 presents the average performance of re-optimization strategies for the various edod 

levels. For the PR tactic, similarly to the TW-pattern analysis, frequent re-optimization (SRR 

and NRR-1) yields better results across all edod levels, while infrequent re-optimization 

deteriorates the solution’s performance. Furthermore, it seems that in cases of low urgency 

(edod-4), NRR-1 is very competitive and performs even better than SRR. Regarding the FR 

tactic, medium-interval re-optimization policies (NRR-1 and NRR-2) seem to favor the solution 

quality for all 𝑒𝑑𝑜𝑑 levels.  

 

Figure 5.11. Average performance of re-optimization strategies for different 𝑒𝑑𝑜𝑑 levels 

In terms of the interaction of the re-optimization strategies with the degree of dynamism (dod) 

and the customer geographical distribution, Figures 5.12 and 5.13 present the performance of 

each policy w.r.t. dod for the PR and FR tactics, respectively, and for different geographical 

distributions (R1, C1 and RC1). Note that this is the average performance over all related 

instances.  

For the PR tactic (Fig. 5.12), SRR and NRR-1 outperform all other policies for all cases of dod, 

while the performance deteriorates with increasing degree of dynamism across all policies. In 

environments with strong dynamism, many vehicles are dispatched from the depot to handle 

the increased DO numbers. This causes additional non-productive costs (travel to/from depot). 

Infrequent re-optimization in such cases causes vehicles en route to return to the depot at an 

early stage (because of the limited number of committed orders) and new vehicles to be 

dispatched in order to cover the high demand. For FR (Fig. 5.13), the NRR-1 (and partially 

NRR-2) policy yield improved solution quality across dod, more so in cases of strong dod.  
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Figure 5.12. Performance of policies under the PR tactic for various geographical distributions and 

𝑑𝑜𝑑 levels 

 

Figure 5.13. Performance of policies under FR tactic for various geographical distributions and 𝑑𝑜𝑑 

levels 

Finally, the related Figures indicate that policies present similar relative behavior for different 

values of dod for the R, C and RC configurations (no strong interaction). For the C 

configuration, the solution quality deteriorates significantly when infrequent re-optimization is 

used (NRR-2 and NRR-3), especially for cases with medium to strong dynamism. This may be 

caused by the fact that a large portion of the route corresponds to travelling back to depot; since 

no diversion is allowed, vehicles en route are not considered as available during their return 

trip and, thus, re-optimization tends to use more vehicles located at the depot to serve DO. 
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5.4.3.3 Performance of re-optimization strategies w.r.t. the algorithm employed 

It is worth investigating whether finding an optimal solution during each re-optimization cycle 

leads to superior solutions for the entire dynamic problem. For example, one may suspect that 

such a practice may lead to locally aggressive optimization that allows new DO to be 

incorporated into the current plan at a significant detour cost.  

To investigate the effect of the re-optimization algorithm, we solved using both OPT and HEUR 

a series of selected problems (selected R1 instances with 25% and 50% dod), for which the 

exact B&P approach is applicable. For those problems we applied the SRR, NRR-1 and NRR-

2 policies under the PR tactic. Figure 5.14 illustrates the results obtained averaged over the two 

dod values (25% and 50%). The results have been reported as the difference between VoI 

provided by HEUR minus the VoI provided by OPT (𝑉𝐹(𝐻𝐸𝑈𝑅) − 𝑉𝐹(𝑂𝑃𝑇)); thus, positive 

values reflect superiority of OPT results over HEUR.  

The results are divided among OPT and HEUR. The positive effect of HEUR over OPT to the 

overall problem seems to concern cases with wide TW of varying width values (e.g. R103, 

R106, R110). On the other hand, OPT seems to perform better for cases with consistent TW 

patterns (low or zero variance). These cases in general provide limited options for incorporating 

DO in the routing plan; hence, inferior quality solutions during early re-optimization cycles 

may not provide better results on later re-optimization cycles. 

Overall the suspicion that aggressive re-optimization may in some cases lead to inferior overall 

solutions has been confirmed.  

 

Figure 5.14. Comparison of the effects OPT and HEUR 
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5.5 Concluding remarks 

In this Chapter, we drilled-down to significant aspects concerning the re-optimization process, 

i.e. when to re-optimize, and what part of the new plan to communicate to the drivers. We 

presented and analyzed typical re-optimization policies found in practice, i.e.: i) re-optimization 

upon the arrival of each DO, ii) re-optimization after a certain number of DO have been 

received. In addition, we investigated the effect of two implementation tactics: i) immediate 

release of all DO for implementation (FR) and, ii) release of only those DO that are scheduled 

for implementation prior to the next re-optimization cycle (PR). We provided theoretical 

insights regarding the expected behavior of those tactics and we illustrated through extensive 

experimentation that re-optimization upon the arrival of each DO under the PR tactic provides 

superior results on the average. However, this policy seems to be the least favorite, when the 

FR tactic is employed.  

Furthermore, we assessed the performance of the re-optimization strategies under various 

operating scenarios. Our experimentation has illustrated the following:  

i) When the business case allows it, one should always re-optimize under the PR tactic in as 

short re-optimization intervals as possible 

ii) When the FR tactic is unavoidable due to the characteristics of the practical environment, 

one should prefer re-optimization over short to medium intervals for cases of tight to 

medium TW, and over medium to larger intervals for wider TW cases  

iii) In environments with strong dynamism, medium interval policies (regardless of tactic) 

seem to provide the safest option.  

Table 5.7 summarizes the aforementioned results. Considering that PR is superior to FR, the 

Table presents the best possible re-optimization option under each tactic as it emerged from the 

experimental study, w.r.t. to the problem attributes. For simplicity, we included two (2) options 

for the NRR policy; medium and long re-optimization periods.  
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Table 5.7. Preferable re-optimization policies per parameter 

Parameter Description  

FR PR 

SRR 
NRR 

(medium) 
NRR 

(long) 
FTR SRR 

NRR 

(medium) 
NRR 

(long) 
FTR 

Geographical 

distribution 

Uniform         

Clustered         

Time 

Windows 

Tight         

Medium/Wide         

Very wide         

No TW         

DoD 

Weak         

Moderate         

Strong         
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Chapter 6: THE DVRPMB FOR THE CASE OF LIMITED 

RESOURCES 

 

 

 

 

 

 

 

 

 

 

 

In Chapter 5 we studied the re-optimization problem by assuming an unlimited vehicle fleet 

available to serve all (static and dynamic) orders. This allowed us to investigate the performance 

of re-optimization strategies under a single objective, i.e. minimize distance traveled. In this 

Chapter, we examine the case of DVRPMB, in which the number of available vehicles is 

limited. To do so, we introduce appropriate objective functions that account for vehicle 

productivity during each re-optimization cycle and we illustrate that these objectives can offer 

higher customer service compared to conventional ones that account strictly for either cost 

minimization or service maximization.   

Section 6.1 presents significant considerations related to the constraint of limited resources, 

along with a review of the relevant literature. Section 6.2 discusses the objective functions for 

DVRPMB with limited resources and sets the related theoretical foundation. Section 6.3 

presents the necessary modifications of the branch-and-price algorithm of Chapter 4 to address 

the re-optimization problem. Section 6.4 investigates experimentally the effect of the proposed 

objective functions on the efficiency of the solution under different problem settings. Finally, 

Section 6.5 describes the application of the proposed method in a practical courier environment. 
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6.1 Introduction and background 

We refer to the case of DVRPMB with limited available vehicles as the DVRPMB with limited 

resources (m-DVRPMB). In this case, due to the resource constraints, some of the newly 

received dynamic orders (DO) may not be served, raising some interesting considerations 

discussed below. 

The first of these considerations relates to the objective function of the re-optimization problem. 

As we will demonstrate below, conventional objectives that account strictly for either cost 

minimization or service maximization are either inappropriate, or may not be adequate to 

address the problem effectively. In the case of cost minimization, and since the constraint of 

serving all orders is not enforced, dynamic orders increase cost and, thus, are left unserved. On 

the other hand, in the service maximization case, in an effort to include as many orders as 

possible in the current re-optimization cycle costs may increase significantly, which may lead 

to serving less DO eventually. 

A related consideration in this dynamic setting concerns the prioritization of clients at each re-

optimization cycle. Specifically, during a certain re-optimization cycle it may be beneficial to 

favor the service of certain customer orders (e.g. urgent ones) in the expense of others, under 

the assumption that the excluded (e.g. not urgent) ones can fit in the plan during a subsequent 

re-optimization cycle. Thus, one should examine whether it is beneficial to prioritize service of 

certain orders, and if so, under which conditions this is favorable to the problem’s objective. 

This consideration is even more important in a dynamic, deterministic environment, in which 

no forecasting information is available.  

Despite the practical importance of m-DVRPMB, the problem has not been addressed in the 

literature. If all orders to be served in the future would be known in advance, the m-DVRPMB 

would reduce to the Pickup and Delivery Problem (PDP) with Selective Pickups (Sural and 

Bookbinder, 2003; Gribkovskaia et al, 2008; Gutiérrez-Jarpa et al., 2010). In this very 

interesting and practical problem, all deliveries must be performed but pick-ups are optional; 

however, pick-ups generate a profit when fully collected (i.e. partial pick-ups are not allowed). 

The objective is to minimize the routing cost minus the collected revenue. This problem arises 

naturally in reverse logistics contexts, in which customers return goods (e.g. empties) to the 

depot.  

The PDP with Selective Pickups was first addressed by Sural and Bookbinder (2003) for a 

single vehicle. The authors used an exact branch-and-bound technique to solve it by employing 
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flow variables and adaptations of the well-known Miller–Tucker–Zemlin constraints (Miller et 

al., 1960) in order to prevent subtours. Their approach was able to solve instances of up to 30 

customers. More recently, Gutiérrez-Jarpa et al. (2009) proposed a branch-and-cut algorithm, 

able to solve instances of up to 90 customers. Prive et al. (2006) developed heuristic methods 

to study a practical problem, which involved the delivery of soft drinks to convenience stores 

in the city of Quebec, and the collection of empties (bottles or cans) using a heterogeneous fleet 

of vehicles. In their problem formulation, pick-ups were associated with revenue and they could 

be performed only if they didn’t violate vehicle capacity constraints.  

Aas et al. (2007) studied the routing of supply vessels to offshore installations, in which vessels 

pick-up empty containers (or waste). In this problem, due to limited capacity, it is not always 

possible to serve all collections and, thus, priority is given to the most important ones. The 

authors formulated the problem as a mixed integer linear program, and they were able to solve 

practical instances with 10 installations to optimality using CPLEX 9.0. Gribkovskaia et al. 

(2008) studied a similar application and proposed a tabu search method to the single vehicle 

pick-up and delivery problem with selective pick-ups.  

More recently, Gutiérrez-Jarpa et al. (2010) developed an exact branch-and-price algorithm for 

the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows 

(VRPDSPTW). The authors categorized the customer requests in: i) pick-up and delivery 

requests that are disjoint (P/D) and ii) pick-up and delivery operations associated with the same 

customer (P&D). Based on this classification, they addressed five variants of the VRPDSPTW, 

i.e. i) P/D problems, in which customers may be served in an arbitrary order, ii) P/D problems 

with backhauls (i.e. all pick-ups must be performed after the deliveries), iii) P&D problems, in 

which each customer can be visited exactly once, iv) P&D problems that allow multiple visits 

to the same customer, and customers can be visited in an arbitrary order, and v) P&D problems 

with multiple visits and backhauls. The authors were able to solve instances of up to 50 

customers to optimality.  

The static version of the problem investigated in this chapter would be similar to the one studied 

in the above references, if all pick-up (collection) orders had equal or zero profit (therefore, in 

effect, the profit gained from including a pick-up order in the plan would not be dependent on 

the routing costs). We differentiate our work in the following two aspects; first, to the best of 

our knowledge, no other study has focused on the dynamic version of this problem. Second, to 

deal with dynamism and leverage on the opportunity offered by the multiple re-optimization 

cycles, we propose to consider vehicle productivity in the re-optimization process, i.e. to 
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maximize vehicle utilization within an appropriate period of time in anticipation of additional 

dynamic orders.  

To address m-DVRPMB, we extend the branch-and-price (B&P) approach presented in Chapter 

4 for solving the related re-optimization problem. To do so, we study alternative objective 

functions that maximize service, while, at the same time, enhance vehicle productivity. Both 

the original formulation of DVRPMB and the solution procedure (Master Problem and 

Subproblems) have been modified appropriately. We evaluate the performance of the proposed 

objective functions with respect to a conventional, but relevant, objective function that accounts 

only for service maximization, under various operating scenarios and parameters. Finally, we 

apply our proposed method to a case study of a next-day courier service provider. 

6.2 Objective functions for the m-DVRPMB 

We introduce three objective functions to deal with limited resources in the context of the re-

optimization problem: a) a conventional one that maximizes service by assigning a fixed profit 

to each DO served (objective 𝑧̌1) and b) a proposed objective function that provides additional 

profit for each order (static or dynamic) served within the next (upcoming) re-optimization 

cycle (objective 𝑧̌2), and c) an objective that modifies 𝑧̌2 in terms of the additional profit term; 

in this case, the profit concerns all orders to be served at any future period and it decreases 

linearly depending on the period (re-optimization cycle) the order is served (objective 𝑧̌3).  

Let 𝜉𝑢 denote the fixed profit assigned to each served DO and 𝜉𝑝 the additional profit in case 

an order (static or dynamic) is served within the upcoming re-optimization cycle; thus, the profit 

per order corresponding to the three (3) alternative objective functions varies as illustrated in 

Figure 6.1. By using the appropriate function, we may steer the solution method into 

maximizing customer service (objective 𝑧̌1), as well as maximizing vehicle productivity 

(objectives 𝑧̌2 and 𝑧̌3). Sections 6.2.1 and 6.2.2 describe the structure of the proposed objective 

functions; Section 6.2.3 discusses some fundamental aspects regarding the expected 

performance of these objectives.  
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Figure 6.1. The profit per order according to the three objective functions employed 

For objectives 𝑧̌2 and 𝑧̌3 to be relevant, the re-optimization time instances have to be 

predetermined (known a priori). The Fixed-Time Re-optimization (FTR) policies discussed in 

Chapter 5 (see Section 5.2) are appropriate in this case. Re-optimization policies that depend 

on the number of arrived DO (e.g. SRR and NRR policies) may be only implemented under 

objective 𝑧̌1. 

6.2.1 A conventional objective function that maximizes service 

Recall that in the re-optimization problem of the typical DVRPMB all customers may be served 

(i.e. there are enough resources to serve all customer orders). Thus, the objective function of 

DVRPMB (as stated in Chapters 3 and 4) strictly minimizes the routing cost. Under this 

objective, if the constraint for serving all orders is relaxed in the re-optimization problem, then 

(in general) no dynamic order will be included in the final solution, since serving it will increase 

the routing cost. To address this issue, one can introduce additional (profit) terms in the 

objective function in order to simultaneously: 

(a) Increase the number of DO (set 𝐹) served throughout the remaining horizon – primary 

objective 

(b) Decrease the total cumulative routing costs (over the remaining horizon) – secondary 

objective. 

That is, 
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min(𝑧̌1) = −𝜉𝑢∑ ∑ 𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴|𝑖∈𝐹,𝑗∈𝑊

 

𝑘∈𝑉

+∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

 
(6.1)  

Under an appropriately large positive value of 𝜉𝑢, this objective maximizes the number of 

served DO, and among the solutions with maximal number of served DO, selects the one with 

minimum routing cost. Determining this value is straightforward: consider a re-optimization 

problem in which an additional DO is to be included in the current plan. If the routing cost for 

incorporating this DO is higher than 𝜉𝑢, then the solution will not incorporate this DO, since 

the overall objective value will increase. Thus, 𝜉𝑢 should be set to a value that exceeds the upper 

bound of the cost (worst case) of incorporating a DO in the current plan. This can be achieved 

by setting 𝜉𝑢 to a value larger than max
i∈F
(𝑐𝑟𝑖), where 𝑐𝑟𝑖 represents the cost of the unit route 

[𝐷𝑒𝑝𝑜𝑡 − 𝑖 − 𝐷𝑒𝑝𝑜𝑡], ∀𝑖 ∈ 𝐹 .  

This straightforward objective may be appropriate for a static planning problem with limited 

resources (for which all orders are known a priori), but may not be adequate in the setting under 

study, since additional orders are expected to arrive. The anticipation of additional work favors 

reserving fleet capacity for the latter periods of the operational horizon so that newly arriving 

DO may be served. This, in turn, indicates that the available fleet should complete as much of 

the known work as early as possible (i.e. increase the productivity of the system in the early re-

optimization cycles), in order to reserve capacity for the later re-optimization cycles.  

Specifically, there are multiple ways that fleet productivity, and thus the capacity of the system 

to serve new DO, may be impacted adversely by objective 𝑧̌1, especially during early re-

optimization cycles, in which the few DO known up to that point in time may all fit in the plan. 

In these early cycles using 𝑧̌1:   

i. May cause the incorporation of DO at a significant detour cost (as also discussed and 

illustrated experimentally in Section 5.4.3.3)  

ii. Some vehicles may be forced to wait for long periods at customer sites for a TW to open 

(since it may be more cost-efficient to assign a DO with late opening time to a vehicle 

closer to it – see also example in Figure 6.2) 

iii. Vehicles stationed at the depot may not be used, since it might be more cost-efficient to 

assign a DO to a vehicle already en route.  

All these potentialities may decrease significantly the productivity of the fleet. 
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However, neglecting entirely the routing costs in an attempt to increase the productivity of the 

fleet is also not appropriate, since an excessive increase of costs in the current re-optimization 

cycle, might decrease the productivity of the vehicles in the subsequent (future) re-optimization 

cycles. 

Below we enhance the objective function in order to maximize productivity of the fleet 

appropriately in the upcoming re-optimization cycle(s), in anticipation of additional work to 

come, without excessively compromising the capacity of the system at later re-optimization 

cycles.  

6.2.2 A proposed objective function that accounts for vehicle productivity 

In addition to maximizing the total number of DO served, we propose an enhanced objective 

function, which attempts to maximize the number of orders served within the upcoming re-

optimization cycle (the length of which is known in advance); it does so, however, among the 

solutions with the same number of DO served. Consider the re-optimization problem during the 

ℓ-th cycle, and let 𝜔𝑖𝑘 denote a decision variable that is equal to 1 if order 𝑖 ∈ 𝑁 (𝑁 = 𝐶 ∪ 𝐹 

are all orders involved in the re-optimization cycle) is served during the time interval [𝑇ℓ, 𝑇ℓ+1] 

by vehicle 𝑘 ∈ 𝑉 and 0 otherwise. Then, the proposed objective function (denoted as 𝑧̌2) seeks 

the following in lexicographical order: 

(a) Maximize the number of dynamic orders (𝐹) served throughout the remaining horizon 

(b) Maximize the number of both static and dynamic orders (𝑁) served within the upcoming 

re-optimization cycle (i.e. within time interval [𝑇ℓ, 𝑇ℓ+1]) 

(c) Minimize the routing cost 

min (𝑧̌2) = −𝜉𝑢∑ ∑ 𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴|𝑖∈𝐹,𝑗∈𝑊

 

𝑘∈𝑉

− 𝜉𝑝∑∑𝜔𝑖𝑘
𝑖∈𝑁

 

𝑘∈𝑉

+ 𝜉𝑐∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

 (6.2)  

where 𝜉𝑝 corresponds to a positive value (profit) if an order is served within the time interval 

[𝑇ℓ, 𝑇ℓ+1] (of known duration).  

Although the primary goal of objective 𝑧̌2 is to maximize the DO served, the purpose of term 

(b) in the objective function is to maximize the productivity of the fleet during the current cycle 

in anticipation of additional work to come; i.e. with this term we attempt to encourage the 

deployment of resources as early as possible (during early re-optimization cycles), even if this 

results in higher routing costs in the solution of the current re-optimization problem. Note that 
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objective 𝑧̌2 attempts to maximize the productivity of the fleet in the current re-optimization 

cycle by favoring all 𝑁 orders (both static and dynamic) to be served within time interval 

[𝑇ℓ, 𝑇ℓ+1].  

Prioritizing term (a) over term (b) in the objective function is important in such dynamic 

context, since it is uncertain if a DO not included in the solution of the current re-optimization 

cycle can be served at a later stage. For solutions under the FR tactic, this is obvious, since DO 

that do not fit in the solution of the current re-optimization cycle are not considered during 

future ones. However, for solutions under the PR tactic, in which DO not included in the 

solution of the current cycle are re-considered, we distinguish two relevant scenarios:  

i) In cases in which all DO can be served by the solution of the current re-optimization cycle, 

term (a) of the objective is not important, and term (b) guides the solution to serve as many 

orders as possible within the interval [𝑇ℓ, 𝑇ℓ+1]. In these cases term (b) then will avoid the 

incorporation of DO in the expense of significant resources (e.g. cost/time).  

ii) In cases in which not all DO fit in the plan, then prioritizing term (a) over (b) ensures that 

the objective will not force the service of more orders (static and dynamic) during the interval 

[𝑇ℓ, 𝑇ℓ+1] at the expense of incorporating a DO in the current plan.  

To better illustrate the latter case, consider the example of Figure 6.2a, which presents the state 

of a single route at the re-optimization time instance 𝑇1 = 10: 00. At time 𝑇1, the vehicle is 

located at customer 1 and is scheduled to serve three static orders (2, 3 and 4), while dynamic 

order A needs to be incorporated in the current plan (with time window opening at 10: 30). The 

expected time of arrival to each order (prior to re-optimization and incorporation of order A), 

as well as the travel duration of each planned arc are also displayed in the Figure (note that in 

this state, the vehicle arrives at customer 1 at 10:00, but waits for 45 minutes, due to the opening 

of the time window of customer 2). Assume also that 𝑇2 = 11: 00. If we prioritize term (a) over 

term (b) in this example, the objective will attempt to maximize the number of orders served 

within time interval [𝑇1, 𝑇2] among the solutions that incorporate order A. The result of this 

scenario is illustrated in Fig. 6.2b, in which order A has been incorporated in the plan and one 

static order (order 3) has been also served till the next re-optimization (till 11: 00). Fig. 6.2c 

illustrates the opposite, i.e. when term (a) is not prioritized over term (b). It is clear from Fig. 

6.2c that dynamic order A will remain unplanned, since due to the objective, the preferred 

solution is the one that serves the three static orders (2, 3 and 4) during the interval [10:00,11:00] 
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(i.e. one more order will be served during this interval compared to solution of Fig. 6.2b). Order 

A may not be served since its time window has elapsed.  

Before re-optimization 

  
(a) 

After re-optimization  
(Service maximization is prioritized) 

 

After re-optimization 
(Service maximization is not prioritized) 

 
(b) (c) 

Figure 6.2. Example for comparing between alternative expressions of objective 𝒛̌𝟐  

Thus, we choose to maintain the primacy of term (a) of the objective over term (b). To do so, 

the following should hold: 

𝜉𝑢 > 𝜉𝑝∑∑𝜔𝑖𝑘
𝑖∈𝑁

 

𝑘∈𝑉

 (6.3)  

Note that the largest possible value of the right hand side of (6.3) is obtained if all remaining 

orders (of set 𝑁) are served in the next re-optimization cycle (i.e. ∑ ∑ 𝜔𝑖𝑘𝑖∈𝐹  𝑘∈𝑉 = |𝑁|). Thus, 

Ineq. (6.3) can be written as: 

𝜉𝑢 > 𝜉𝑝 ∗ |𝑁|  ⇒  𝜉𝑝 <
𝜉𝑢
|𝑁|

 (6.4)  

This may be satisfied with: 

𝜉𝑝 =
𝜉𝑢

|𝑁| + 1
 (6.5)  
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Working along the same lines, in order to guarantee the primacy of term (b) over term (c), the 

value of 𝜉𝑝 should be larger than the largest possible value of the routing cost, i.e.: 

𝜉𝑝 > 𝜉𝑐∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

 (6.6)  

The largest possible value of the routing cost (upper bound) can be assumed when all 𝑁 orders 

are included in the solution and they are served directly from the depot, since each order 𝑖 ∈ 𝑁 

can be served exactly once and the fleet is homogeneous. Thus, Ineq. (6.6) can be reduced to: 

𝜉𝑝 > 𝜉𝑐∑∑𝑐0𝑗𝑘
𝑗∈𝑁𝑘∈𝑉

 (6.7)  

Assuming 𝐶̌ = ∑ ∑ 𝑐0𝑗𝑘𝑗∈𝑁𝑘∈𝑉  and replacing 𝜉𝑝 based on Ineq. (6.5), we have: 

𝜉𝑝 > 𝜉𝑐 ∗ 𝐶̌
𝜉𝑝=

𝜉𝑢
|𝑁|+1

⇒       
𝜉𝑢

|𝑁| + 1
 > 𝜉𝑐 ∗ 𝐶̌ (6.8)  

This may be satisfied by: 

𝜉𝑐 =
𝜉𝑢

(|𝑁| + 1) ∗ 𝐶̌ + 1
 (6.9)  

Using in 𝑧̌2 the values of Eqs. (6.5) and (6.9) will ensure that from those solutions that maximize 

the number of served DO, the one to be selected a) serves as many orders as possible in the 

interval (𝑇ℓ, 𝑇ℓ+1], and b) has the minimum routing cost among the ones serving the same 

number of orders in this interval.  

As already discussed, forcing as many orders as possible to be served until time 𝑇ℓ+1 may cause 

higher routing costs, compared to scenarios in which orders may be served at an appropriate 

time. Objective function 𝑧̌3, already discussed above, moderates this effect by encouraging 

orders to be served as early as possible, even beyond 𝑇ℓ+1. Objective 𝑧̌3 has a similar structure 

to that of objective 𝑧̌2, but assigns to each served order a revenue that decreases linearly 

depending on the period (re-optimization cycle) the order is served (as in Figure 6.1).  

In particular, consider a DVRPMB instance with 𝐿 re-optimization cycles of known duration, 

and the solution of the re-optimization problem during cycle ℓ. Let 𝜉𝑝
𝛾𝑖 denote the profit 

obtained by serving an order 𝑖 ∈ 𝑁 during time interval (𝑇𝛾, 𝑇𝛾+1], 𝛾 ∈ {1,2, … , 𝐿 − ℓ}. Then 

profit 𝜉𝑝
𝛾𝑖 is provided by the following Equation: 

𝜉𝑝
𝛾𝑖 = 𝜉𝑝 − (

𝛾𝑖 − 1

𝐿 − ℓ
)𝜉𝑝 ∀𝑖 ∈ 𝑁 (6.10)  

Finally note that objectives 𝑧̌2 and 𝑧̌3 reduce to objective 𝑧̌1 if 𝜉𝑝 = 0 and 𝜉𝑐 = 1.  
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6.2.3 Discussion regarding the terms of the Objective Function 

Here we discuss some fundamental aspects of the objective functions introduced in Section 

6.2.1 and 6.2.2. The first statement compares the routing costs obtained when using objectives 

𝑧̌1 or 𝑧̌2. 

Statement 1  

Given that all customer orders are known, the routing cost 𝑂(𝑧̌1) of the solution to the re-

optimization problem obtained under objective 𝑧̌1, is always lower than or equal to the routing 

cost 𝑂(𝑧̌2) obtained under objective 𝑧̌2. 

This statement points out the obvious. Recall that both objectives will yield equal number of 

DO to be served. The optimal way of serving all orders (static and dynamic) in terms of routing 

cost will be the one obtained under 𝑧̌1, and therefore, 𝑂(𝑧̌1) ≤ 𝑂(𝑧̌2). The same statement holds 

of course for the routing cost under objective 𝑧̌3, i.e. 𝑂(𝑧̌1) ≤ 𝑂(𝑧̌3). 

Statement 2 

The optimal solution that maximizes customer service and minimizes routing costs (objective 

𝑧̌1) cannot guarantee superior solutions in terms of dynamic orders served for the overall 

routing problem (multiple re-optimization cycles).  

We illustrate the above statement with two examples that address the overall routing problem 

(entire working period). In the first (Example 1) the solution obtained under objective 𝑧̌2 for 

the entire dynamic routing problem includes a greater number of DO w.r.t. the solution obtained 

under 𝑧̌1. This is typically the case as illustrated experimentally in Section 6.4.4. In the second 

example (Example 2), the reverse is observed; that is, more DO are served in the entire routing 

problem under 𝑧̌1 compared to the solution of the problem under 𝑧̌2. However, the latter is not 

a typical outcome but rather an exception.  

Example 1 

Consider the instance of Figure 6.3 with the depot located at the origin 𝑂. Customers are located 

at the endpoints of five (5) neighboring vertices of a regular octagon with center at point 𝑂 and 

𝑅 = 1. The side of the octagon is 𝑎 = 2 ∗ 𝑅 ∗ sin (
𝜋
4⁄

2
) = 0.77. Two vehicles are available, 

and the maximum duration of each route (𝑇𝑚𝑎𝑥) (by assuming the vehicle speed to be 1) equals 

to 4.4. 
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Figure 6.3. Customer topology for Example 1 of Statement 2 

Assume that during ℓ = 0 (𝑇ℓ = 0), only customers 𝐴, 𝐵 and 𝐶 are known and a vehicle (𝐾1) 

has been assigned to serve the route [𝑂 − 𝐴 − 𝐵 − 𝐶 − 𝑂]; the length of this route is equal to 

3.54. The second vehicle (𝐾2) is available at the depot to be used as necessary. During the 

course of implementing this plan, DO 𝐷 and 𝐸 are received at times ℎ𝐷 = 1.25 and ℎ𝐸 = 2.5, 

respectively. Re-optimization takes place at fixed intervals, i.e. every 1.25 units of time.  

For this scenario, we study the effect of objectives 𝑧̌1 and 𝑧̌2 considering two (2) re-optimization 

cycles. In Figure 6.4 we present for each objective and re-optimization cycle (ℓ > 0) the state 

of the system prior to re-optimization (“Before”) and the state after re-optimization (“After”). 

During ℓ = 1 (at time 𝑇1 = 1.25), vehicle 𝐾1 is en route to customer 𝐵 (under both objectives), 

while customer 𝐷 is to be incorporated in the current plan. Solution under objective 𝑧̌1 

incorporates customer 𝐷 with the best possible routing cost, i.e. immediately after customer 𝐶, 

yielding an overall routing cost (or, working time) of 𝑂(𝑧̌1) = 4.31. On the other hand, 

objective 𝑧̌2 seeks to serve as many orders as possible within the current and the next re-

optimization cycle and not just the next one, i.e. during time interval [1.25,2.5]. The optimal 

solution under such an objective is customer 𝐷 to be served by vehicle 𝐾2 located at the depot 

(𝐾2 arrives at customer 𝐷 at time 2.5). This solution provides an overall routing cost 𝑂(𝑧̌2) =

𝑂(𝐾1) + 𝑂(𝐾2) = 3.54 + 2 = 5.54. 
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Figure 6.4. Example 1 for Statement 2 (blue color corresponds to vehicle 𝑲𝟏 and red to 𝑲𝟐) 

The DO for customer 𝐸 is received prior to ℓ = 2 (at time 𝑇2 = 2.5),. Vehicle 𝐾1 is located at 

customer 𝐶 under both objectives, while vehicle 𝐾2 is located at the depot for the solution under 

objective 𝑧̌1 and at customer 𝐷 for the solution under objective 𝑧̌2. For 𝑧̌1, customer 𝐸 can be 

served either by 𝐾1 with total time of 5.08 or by 𝐾2 with total time of 4.5 (since 𝐾2 can begin 
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service at 𝑇ℓ = 2.5); both of these options exceed the available working horizon (𝑇𝑚𝑎𝑥), which 

means that customer 𝐸 is not served under objective 𝑧̌1. However, customer 𝐸 can be served 

under objective 𝑧̌2 by vehicle 𝐾2 with total working time of 4.22, which is within the available 

working horizon. Thus, objective 𝑧̌2 leads to a superior solution in terms of number of 

customers served. This example clearly illustrates that the objective that maximizes the number 

of served DO and minimizes routing costs, may lead to inappropriate commitment of resources 

w.r.t. the future state emerging after new DO are received.  

Example 2 

Consider the example of Figure 6.5. The depot (0), customers A, B, C and their coordinates 

along with important distances are shown in Figure 6.5, with 𝑎 = 0.9 and 𝑏 = 𝑐 = 0.56.  

 

Figure 6.5. Network representation for Example 2 of Statement 2 

As before, during ℓ = 0 (𝑇ℓ = 0), a vehicle has been assigned to perform route 

[𝑂 − 𝐴 − 𝐵 − 𝐶 − 𝑂], serving all static customers with cost equal to 4. During the course of 

implementing this plan, DO 𝐷 and 𝐸 are received at times ℎ𝐷 = 1 and ℎ𝐸 = (1 + 𝑎 + 𝑏) =

2.46, respectively. Assume that two re-optimization cycles take place at fixed time instances 

(known in advance), i.e. 𝑇1 = 1 and 𝑇2 = 1 + 𝑎 + 𝑏 = 2.46. The total planning horizon (𝑇𝑚𝑎𝑥) 

is equal to 4.5.  

As before, Figure 6.6 illustrates the two system states per objective and re-optimization cycle 

for ℓ > 0: prior to re-optimization (“Before”) and after re-optimization (“After”). 
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Figure 6.6. Solution provided under both objectives for Example 2 of Statement 2 

At ℓ = 1 (time 𝑇1 = 1), the vehicle is located at customer 𝐴. The solution under objective 𝑧̌1 

incorporates customer 𝐷 with the best possible routing cost, i.e. immediately after customer 𝐵, 

yielding an overall routing cost of 𝑂(𝑧̌1) = 3 + 2𝑏 = 4.12. Objective 𝑧̌2 seeks to serve as many 
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orders as possible within interval [1,1 + 𝑎 + 𝑏 ); this yields a solution in which customer 𝐷 is 

visited after customer 𝐴; the overall routing cost is 𝑂(𝑧̌2) = 3 + 𝑎 + 𝑏 = 4.46.  

At ℓ = 2 (𝑇2 = 1 + 𝑎 + 𝑏), the DO for customer 𝐸 has been received and is to be served by the 

available vehicles. For the solution under objective 𝑧̌1, the vehicle is en route to customer 𝐷, 

and customers 𝐴 and 𝐵 have already been served. Customer 𝐸 can be incorporated in the current 

plan after customer 𝐶 (i.e. route 𝐷 − 𝐶 − 𝐸 − 0) with overall routing cost 𝑂(𝑧̌1) = 2 + 2𝑏 +

2𝑐 = 4.24. For the solution obtained under objective 𝑧̌2, the vehicle is currently located at 

customer 𝐵 and customers 𝐴 and 𝐷 have been served. The optimal inclusion of customer 𝐸 (i.e. 

route 𝐵 − 𝐶 − 𝐸 − 0) yields a cost of 𝑂(𝑧̌1) = 2 + 𝑎 + 𝑏 + 2𝑐 = 4.58, which exceeds the total 

available working horizon. Thus, customer 𝐸 will remain unserved in this case, indicating that 

there might be cases where 𝑧̌1 offers higher customer service compared to 𝑧̌2. However, 

according to the experimentation of Section 6.4.4, this is not a typical outcome, but an 

exception. 

In Section 6.4.4 we investigate experimentally under which conditions each of the investigated 

objectives is favored or not.  

6.3 Modifications in the B&P algorithm to deal with limited resources  

In this Section we present the necessary modifications of the B&P algorithm that solves the re-

optimization problem of Chapter 4 (both exact and heuristic) in order to address the case of 

limited resources.  

6.3.1 Modifying the Set-Partitioning formulation 

In order to formulate the m-DVRPMB as a set-partitioning problem, the following should be 

addressed: a) incorporate the objective function described in Section 6.2 above, b) ensure that 

each delivery order is served (once), whereas each DO is served at most once, and c) limit the 

number of fleet resources. 

Using the notation presented in Chapter 4, let 𝐴𝑟 denote the set of orders served by route 𝑟 ∈ 𝛺, 

where 𝛺 refers to the set of all feasible routes. Let 𝑒𝑖𝑗 be a binary coefficient that takes the value 

1 if 𝑖 ∈ 𝐴𝑟, and let 𝜔𝑖𝑟 be a binary coefficient that indicates whether an order 𝑖 ∈ 𝑁 is served 

during the time interval [𝑇ℓ, 𝑇ℓ+1] by route 𝑟 or not. Also, let 𝑐𝑟 denote the routing cost of route 

𝑟 ∈ 𝛺. Finally, let 𝜉𝑢
𝑖  reflect the revenue if order 𝑖 ∈ 𝐹 is served. For simplicity and without 
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loss of generality, let 𝜉𝑢
𝑖 = 𝜉𝑢, ∀𝑖 ∈ 𝐹 and 𝜉𝑢

𝑖 = 0, ∀𝑖 ∈ 𝐶. Thus, the total cost 𝑐̃𝑟 of route 𝑟 ∈ 𝛺 

for objective 𝑧̌2 is given from:  

𝑐̃𝑟 = 𝜉𝑐 ∗ 𝑐𝑟 − ∑(𝜉𝑢
𝑖

𝑖∈𝐴𝑟

+ 𝜉𝑝 ∗ 𝜔𝑖𝑟) ∀𝑟 ∈ 𝛺 (6.11)  

For objective 𝑧̌3, the total cost 𝑐̃𝑟 is: 

𝑐̃𝑟 = 𝜉𝑐 ∗ 𝑐𝑟 − ∑(𝜉𝑢
𝑖 + 𝜉𝑝 − (

𝛾𝑖𝑟 − 1

𝐿
× 𝜉𝑝))

𝑖∈𝐴𝑟

  ∀𝑟 ∈ 𝛺 (6.12)  

where 𝛾𝑖𝑟 denotes the re-optimization cycle (time interval) in which customer 𝑖 ∈ 𝑁 is served 

in route 𝑟 ∈ 𝛺 with 𝛾𝑖𝑟 ∈ {1,2, … , 𝐿 − ℓ} (where ℓ represents the current re-optimization cycle).  

It should be noted that the total cost 𝑐̃𝑟 of route 𝑟 ∈ 𝛺 for objective 𝑧̌1 is given from Eq. (6.11) 

when 𝜉𝑝 = 0 and 𝜉𝑐 = 1; i.e. 𝑐̃𝑟 = 𝑐𝑟 − ∑ 𝜉𝑢
𝑖

𝑖∈𝐴𝑟 .  

Recall from Chapter 4 (Section 4.2) that 𝛺 (set of all feasible routes-columns) in our 

formulation comprises two subsets, i.e. 𝛺 = (⋃ 𝛺𝑘)𝑘∈𝐾 ∪ 𝛺𝑝, where columns 𝛺𝑘 correspond 

to vehicles 𝐾 en route and columns 𝛺𝑝 to vehicles 𝐾𝑑 located at depot. Consequently, the set 

partitioning problem for the Master Problem of m-DVRPMB may be formulated as follows: 

 (𝑳𝑷 − 𝑺𝑷𝑷) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐̃𝑟𝑦𝑟
𝑟∈𝛺′

  (6.13)  

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑒𝑖𝑟𝑦𝑟

𝑟∈𝛺′

= 1 ∀𝑖 ∈ 𝐶 (6.14)  

 
 ∑ 𝑒𝑖𝑟𝑦𝑟

𝑟∈𝛺′

≤ 1 ∀𝑖 ∈ 𝐹 (6.15)  

 
 ∑ 𝑦𝑟

𝑟∈𝛺𝑝

≤ |𝐾𝑑|  (6.16)  

  𝑦𝑟 = {0,1} ∀𝑟 ∈ 𝛺 (6.17)  

Objective function (6.13) minimizes the total net cost of the selected routes. Constraint (6.14) 

ensures that each static order is visited by exactly one vehicle, while Constraints (6.15) state 

that each DO can be visited at most once. Finally, Constraint (6.16) limits the number of 

vehicles.  

6.3.2 The Subproblem and its solution procedure 

As already described in Chapter 4 (Sections 4.2 and 4.3), initially we construct a set of columns 

𝛺′ based on the solution at re-optimization timestamp 𝑇ℓ and solve a restricted version of the 
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Master Problem (RMP). In order to check if this solution is globally optimal for the MP, we need 

to calculate the reduced costs 𝑐̂𝑟 of each non-basic route 𝑟 ∈ 𝛺\𝛺′. The reduced cost 𝑐̂𝑟 of a 

route 𝑟 ∈ 𝛺\𝛺′ for the m-DVRPMB is given by: 

𝑐̂𝑟 = 𝑐̃𝑟 − ∑ e𝑖𝑟𝜋𝑖
𝑖∈C∪F

− 𝜋̅𝑘 ∀𝑟 ∈ 𝛺\𝛺′, ∀𝑘 ∈ 𝑉 (6.18)  

where 𝜋𝑖 (𝑖 ∈ 𝐶 ∪ 𝐹) are the shadow (dual) prices related to customer Constraints (6.14) - 

(6.15), and 𝜋̅𝑘 (𝑘 ∈ 𝐾𝑑) are the shadow (dual) prices related to resource Constraints (6.16).  

Working along the same lines as in Chapter 4, the next step is to generate routes 𝑟̀ ∈ {𝛺\𝛺′} 

that have not yet been included in the current RMP, along with their reduced costs 𝑐̂𝑟̀. To do 

so, we solve the |𝐾| + 1 sub-problems and for each sub-problem 𝑘 = 1,2, … , |𝐾| + 1 the route 

𝑟̀∗ with the minimum reduced cost is derived based on Eq. (6.19) (see also Section 4.3); 

𝑐̂𝑟̀∗
𝑘 = min

𝑟̀
(∑𝑒𝑖𝑟̀𝑐𝑖𝑗

′

𝑖∈𝑁

− 𝜋̅𝑘)  (6.19)  

where 𝑐𝑖𝑗
′  is the modified cost associated with arc (𝑖, 𝑗) ∈ 𝐴. Specifically, for m-DVRPMB, the 

modified costs are given by: 

𝑐𝑖𝑗
′ = 𝜉𝑐 ∗ 𝑐𝑖𝑗 − 𝜉𝑢

𝑖 − 𝜋𝑖  (6.20)  

Recall from Chapter 4 that the scope of each sub-problem is to define the values of coefficients 

𝑒𝑖𝑟̀ that minimize the related reduced cost. In order to formulate the ESPPRCTW sub-problem 

for m-DVRPMB, we modify appropriately the objective function (4.14) with Eq. (6.21) below: 

𝑚𝑖𝑛 ∑ 𝑐𝑖𝑗
′ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

− ∑∑𝜉𝑝
𝛾
𝜔𝑖
𝛾

𝑖∈𝑁𝛾∈𝐿′

  (6.21)  

where 𝜔𝑖
𝛾
 denotes a decision variable that is equal to 1 if order 𝑖 ∈ 𝑁 is served during time 

interval [𝑇𝛾, 𝑇𝛾+1], 𝛾 ∈ 𝐿
′, where 𝐿′ = {ℓ′ , ℓ′ + 1,… , 𝐿} (ℓ′ denoting the current re-optimization 

cycle) and 0 otherwise. Profit 𝜉𝑝
𝛾
 is calculated according to Section 6.2.2 (depending on the 

objective). In addition to Constraints (4.15)-(4.22) of the original formulation of Chapter 4, we 

also introduce Constraints (6.22)-(6.24) below. It should be noted that variables 𝜔𝑖
𝛾
 do not 

participate in the solution under objective 𝑧̌1, since for this case 𝜉𝑝
𝛾
= 0.  

𝑤𝑖 ∈ [𝑇ℓ, 𝑇ℓ+1) ⇒ 𝜔𝑖ℓ = 1 ∀𝑖 ∈ 𝑁, ℓ ∈ 𝐿̃ (6.22)  

∑𝜔𝑖ℓ
ℓ∈𝐿̃

≤ 1 ∀𝑖 ∈ 𝑁 (6.23)  
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𝜔𝑖ℓ ∈ {0,1} ∀𝑖 ∈ 𝑁, ℓ ∈ 𝐿̃ (6.24)  

Constraint (6.22) ensures that variable 𝜔𝑖ℓ will be equal to 1 if customer 𝑖 ∈ 𝑁 is served within 

re-optimization cycle [𝑇ℓ, 𝑇ℓ+1), ℓ ∈ 𝐿̃, where 𝐿̃ = {ℓ′} when objective 𝑧̌2 is employed and 𝐿̃ =

{ℓ′, ℓ′ + 1,… , 𝐿 − 1} when objective 𝑧̌3 is used. Finally, Constraints (6.23) ensure that each 

order will be served only once during all re-optimization cycles and Constraints (6.24) force 

variables 𝜔𝑖ℓ to assume binary values. Constraints (6.22) can be linearized using Ineq. (6.25) 

below (where 𝑍 is a large positive number), ensuring that variables 𝜔𝑖ℓ will be equal to zero 

(i.e. will not be considered by the objective function) when an order 𝑖 ∈ 𝑁 does not participate 

in the final solution (i.e. when 𝑤𝑖 = 0).  

𝑍(1 −𝜔𝑖ℓ) + 𝑇ℓ ≤ 𝑤𝑖 ≤ 𝑇ℓ+1 − 𝑍(1 −𝜔𝑖ℓ), ∀𝑖 ∈ 𝑁, ℓ ∈ 𝐿̃ (6.25)  

Based on the above, the final model of the ESPPRCTW sub-problem for the m-DVRPMB 

comprises objective function (6.21) and the set of Constraints (4.15)-(4.22), (6.23)-(6.24) and 

(6.25).  

Solution of the pricing sub-problem in m-DVRPMB 

We solve the pricing sub-problems with the label correcting algorithm (Feillet et al., 2004; 

2005) described in Chapter 4 (Section 4.4). The application of the label correcting algorithm is 

straightforward when objective 𝑧̌1 is employed, based on the aforementioned modifications. 

For objectives 𝑧̌2 and 𝑧̌3 we calculate profit 𝜉𝑝 afresh during the extension functions within the 

label correcting algorithm (see Chapter 4, Eqs. (4.24) – (4.26)). In particular, Eq. (4.24) (in 

Section 4.4), which describes the extension function for the accumulated reduced cost of label 

𝛬𝛿𝑖 when extending to node 𝑗 (resulting to new partial path 𝛿′), is re-written as follows: 

𝑐̃𝛿′𝑗 = {
𝑐̃𝛿′𝑖 + 𝑐𝑖𝑗

′ − 𝜉𝑝
𝛾𝑗 ,

𝑐̃𝛿′𝑖 + 𝑐𝑖𝑗
′

 
𝑤ℎ𝑒𝑛 𝑡𝛿′𝑗 < 𝑇

′ 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(6.26)  

where 𝜉𝑝
𝛾𝑗 = 𝜉𝑝 and 𝑇′ = 𝑇ℓ′+1 when objective 𝑧̌2 is employed, and 𝜉𝑝

𝛾𝑗 = (𝜉𝑝 − (
𝛾𝑗−1

𝐿′
× 𝜉𝑝) 

and 𝑇′ = 𝑇𝑚𝑎𝑥 when objective 𝑧̌3 is used. 

6.4 Computational experiments 

The experimental analysis is described in four Sections: Section 6.4.1 presents the test problems 

employed and the metric used for evaluating the results. Section 6.4.2 assesses the performance 

of the re-optimization B&P heuristic (of Chapter 4) w.r.t. its exact counterpart in solving the 
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re-optimization problem under limited resources. Section 6.4.3 investigates the performance of 

those re-optimization strategies for which re-optimization is triggered based on the number of 

received DO; in this part of the study we employ only objective 𝑧̌1, since objectives 𝑧̌2 and 𝑧̌3 

may only be used under known re-optimization times. Finally, in Section 6.4.4 we compare the 

performance of objective functions 𝑧̌2 and 𝑧̌3 w.r.t. 𝑧̌1 considering the entire dynamic problem. 

All experiments have been implemented in Matlab® 7.14.0 (R2012a) using an Intel Core i7 PC 

System with processor speed 2.8 GHz and 4.00 GB of RAM running Windows 7®. 

6.4.1 Experimental setup 

6.4.1.1 Test instances 

For the experimental study we have employed the R1 and C1 datasets of Solomon (12 and 9 

instances, respectively), as described in Chapter 5 (see Section 5.4.1.2). We have also employed 

instances R100 and C100 that have no TW, but use the same customer coordinates as the R1 

and C1 datasets. Table 6.1 summarizes the instances employed.  

Table 6.1. Test instances 

Distribution 
Time-

window 

# 

Instances 
Instances 

Uniform YES 12 R101, R102 ,R103, R104, R105, R106, R107, R108, R109, R110, R111, R112 

Clustered YES 9 C101, C102, C103, C104, C105, C106, C107, C108, C109 

Uniform NO 1 R100 

Clustered NO 1 C100 

We also investigate how customer service is affected by fleet availability, i.e. by the number of 

extra vehicles stationed at the depot to serve DO. To do so, for each one of the 23 instances, we 

examined three (3) cases of 0, 2 and 4 vehicles available at the depot (denoted as V-0, V-2, V-

4, respectively). Figure 6.7 illustrates the average number of DO (as a percent of total) served 

per dataset (R1 and C1) for each value of vehicle availability at the depot, along with the 

minimum and maximum values. The percentages illustrated are the averages over all instances 

(and test problems) by assuming that all DO are known in advance (see Section 6.4.2).  
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Figure 6.7. Average percentage of DO served vs. the available vehicles at depot per dataset 

Thus, in total we constructed 69 different cases (3 x 23). For each case we assumed moderate 

dod (50% DO) and generated 10 different problems (different selection of offline requests), 

resulting in a total of 690 test problems. The generation process of the test problems and the 

process of generating the initial solutions remains the same as the one described in Chapter 5 

(Section 5.4.1.2).  

6.4.1.2 The metric used for comparison (value of information) 

In this experimental investigation we report the performance of the proposed methods (for both 

the re-optimization problem and the entire dynamic one) based on the value of information 

(VoI), as described in Chapter 5 (Section 5.4.1.1). In this study, we enhance this metric in order 

to take into account both the number of DO served and the routing cost. Let 𝐹ℱ(ℋ) denote the 

total number of DO served in the final solution of dynamic problem ℋ under objective ℱ and 

𝐶ℱ̿(ℋ) the corresponding total routing cost. Then, the value 𝑧ℱ of problem ℋ when solved 

under ℱ can be calculated as: 

𝑧ℱ(ℋ) = −𝜉𝑢 ∗ 𝐹ℱ(ℋ) + 𝐶ℱ̿(ℋ) (6.27)  

Since the objective function results in negative values, the VoI used in this Chapter is given by 

the following formula: 

𝑉ℱ(ℋ) =
𝑧ℱ(ℋ) − 𝑧ℱ(ℋ𝑠)

𝑎𝑏𝑠(𝑧ℱ(ℋ𝑠))
× 100 (6.28)  

where 𝑧ℱ(ℋ𝑠) denotes the value of the metric for the related static problem ℋ𝑠 (in which all 

DO are known prior to the dispatching of the vehicles; i.e. at time 𝑡 = 0). It should be also 

noted that for 𝜉𝑢 was set to 1000 throughout the entire experimentation. 
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6.4.2 Assessment of the re-optimization B&P heuristic in m-DVRPMB 

In this Section we assess the performance of the proposed heuristic B&P algorithm of Section 

4.7 in solving the re-optimization problem with limited resources. To do so, we employ all test 

problems described in Section 6.4.1.1 by assuming that a) all static orders have been assigned 

to vehicles according to the methodology described in Section 5.4.1.2, and b) all DO are known 

before the vehicles are dispatched from the depot. Each test problem is then solved by both the 

exact (OPT) and the heuristic (HEUR) algorithm. Due to the fact that re-optimization takes 

place only once (since all DO are known in advance), both algorithms were executed under 

objective 𝑧̌1.  

Table 5.3 summarizes the results obtained per instance as an average over all test problems 

solved. For each instance, the Table reports the percentage deviation of the solution of HEUR 

from that of OPT (%Dev) in terms of VoI (as described in Section 6.4.1.2), and the 

computational times 𝐶𝑇𝑂𝑃𝑇 and 𝐶𝑇𝐻𝐸𝑈𝑅 (in sec). The bottom Section of the Table reports the 

average performance indicators for the R1 and C1 datasets. 

Table 6.2. Performance of heuristic B&P algorithm 

Instance %Dev 𝑪𝑻𝑶𝑷𝑻 𝑪𝑻𝑯𝑬𝑼𝑹 Instance %Dev 𝑪𝑻𝑶𝑷𝑻 𝑪𝑻𝑯𝑬𝑼𝑹 

R101 0.3% 9.6 15.2 C101 0.2% 10.1 21.2 

R102 0.7% 40.9 16.6 C102 1.7% 98.4 25.3 

R103 2.0% 1,255.2 21.2 C103 2.5% 459.2 57.2 

R104 2.8% 1,496.2 70.5 C104 2.5% 1045.6 69.4 

R105 1.1% 60.29 24.6 C105 1.5% 109.5 32.6 

R106 1.8% 196.58 39.2 C106 1.9% 121.3 31.5 

R107 2.3% 509.2 50.8 C107 2.1% 147.4 38.6 

R108 2.6% 1,564.1 67.9 C108 2.9% 164.1 45.3 

R109 1.6% 349.2 45.3 C109 2.3% 138.4 39.2 

R110 1.7% 1,443.12 61.7     

R111 1.9% 1,202.83 65.9     

R112 2.4% 222.15 58.4     

Average R1 1.8% 695.8 44.8 Average C1 2.0% 254.9 40.1 

Based on Table 5.3, HEUR seems to yield efficient solutions with an average deviation of 1.9% 

from the optimum over all instances, a performance similar to that of the HEUR in the unlimited 

fleet case (all DO served). Regarding the computational effort, HEUR seems to be highly 

efficient compared to its exact counterpart, as expected. 
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6.4.3 Performance of re-optimization strategies in m-DVRPMB when re-

optimization depends on the number of DO received 

In this Section, we investigate the performance of the re-optimization strategies for the limited 

fleet case. The main objective is to investigate the trends of the various strategies and compare 

them to those observed in the unlimited fleet case (Chapter 5, Section 5.4.3). In order to align 

our analysis in this Section to the one of Chapter 5, we employ re-optimization policies that 

depend on the number of DO received. Since the re-optimization cycles under such policies are 

not of known duration, we perform the current analysis only under 𝑧̌1.  

We employed all instances described in Section 6.4.1.1, and, similarly to Chapter 5, we used 

the SRR, NRR-1, NRR-2 and NRR-3 policies; each policy was tested under the FR and PR 

release tactics, resulting to a total of eight (8) strategies for each one of the 690 test problems 

(i.e. 5,520 problems in total). It is noted that the analysis of the experimental results uses 

appropriate averages. The detailed results of the strategies for all instances and for the different 

values of fleet availability have been included in Appendix B (Table B.1). 

Figure 6.8 presents the performance (w.r.t. VoI) of each re-optimization strategy (policy-tactic 

combination) for each investigated dataset (R1 and C1), averaged over all test problems of the 

related dataset (and of course over all cases w.r.t. the number of vehicles available at the depot). 

From this Figure it is clear that the SRR-PR strategy provides the best average performance 

(minimum VoI) and the PR tactic outperforms FR (on the average) in all datasets. The 

performance difference between the two tactics decreases as the number of elapsed DO per re-

optimization cycle increases (less number of re-optimization cycles). Furthermore, the PR tactic 

seems to be more efficient for shorter re-optimization cycles and the FR tactic seems to be less 

efficient when re-optimization is applied very frequently (SRR) or infrequently (NRR-3). The 

observed performance seems to agree with the behavior of the re-optimization strategies for the 

unlimited fleet case (see Section 5.4.3, Fig. 5.9), indicating that the performance of the 

strategies is not affected significantly by limiting the available resources.  
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Figure 6.8. Average performance of re-optimization strategies for the different datasets 

In terms of the interaction of the re-optimization strategies with fleet availability, Figure 6.9 

and Figure 6.10 present the performance of each tactic w.r.t. the policies for the R1 and C1 

datasets, respectively, and for different values of fleet availability (V-0, V-2 and V-4). Note 

that this is the average performance over all related instances (and test problems). The Figures 

illustrate similar patterns with the aforementioned analysis w.r.t. the performance of re-

optimization strategies for all values of fleet availability, i.e. there is no significant interaction 

between fleet availability and the re-optimization strategies on the average.  

 

Figure 6.9. Performance of strategies for R1 dataset for various values of fleet availability 
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Figure 6.10. Performance of strategies for C1 dataset for various values of fleet availability 

6.4.4 Performance of proposed objective functions under re-optimization 

cycles of known duration  

We assess the performance of the three proposed objectives discussed in Section 6.2, i.e. i) 𝑧̌1, 

which provides a fixed profit for each DO served; ii) 𝑧̌2, which provides an additional profit for 

each order served within the next re-optimization period (in lexicographical order), and iii) 

objective 𝑧̌3, which assigns profit to all orders, with the profit decreasing linearly depending on 

the period the order is served (in lexicographical order as well).  

The investigation of this Section includes all instances described in Section 6.4.1.1 for the R1 

dataset (13 instances, including R100), under three values of fleet availability (V-0, V-2 and V-

4), and using 10 different test problems per instance (i.e. 390 test problems in total). 

Since objectives 𝑧̌2 and 𝑧̌3 may be used only if the re-optimization time instances (and intervals) 

are known in advance, we employed fixed-time re-optimization policies (FTR policies; see 

Chapter 5.2), which comprise cycles of equal duration. In particular, we investigated four values 

of re-optimization frequency, i.e. every 10, 20, 40 and 60 units of time w.r.t. 𝑇𝑚𝑎𝑥 (which is 

equal to 230 units of time in the Solomon instances), hereafter designated as FTR-10, FTR-20, 

FTR-40 and FTR-60. Each policy was tested under the FR and PR release tactics, resulting to 

a total of eight (8) strategies for each one of the 390 test problems of R1 dataset (i.e. 3,120 

problems in total). The analysis of the experimental results uses appropriate averages. The 

detailed results of the re-optimization strategies for all instances, objectives and the different 

values of fleet availability are included in Appendix B (Tables B.2 – B.4). 
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Figure 6.11 presents the performance (w.r.t. VoI described in Section 6.4.1.2) of each objective 

for each investigated instance of the R1 dataset (incl. R100), averaged over all test problems 

and re-optimization policies and tactics. According to the Figure, objectives 𝑧̌2 and 𝑧̌3 (that 

consider vehicle productivity) seem to provide more efficient solutions for cases with increasing 

TW width, compared to objective 𝑧̌1; this improvement is more pronounced in cases with wide 

TW (R103, R104, R107, R108) or no time windows (R100).  

 

Figure 6.11. Overall average performance of objectives per investigated instance 

This trend may be attributed to the fact that wide (or no) TWs allow for more customer 

combinations and, thus, more opportunities for customers to be served sooner (e.g. till the next 

re-optimization cycle). In addition, objectives 𝑧̌2 and 𝑧̌3 keep vehicles busy, delaying their 

return to the depot. This allows for increased opportunities when new orders are considered in 

subsequent cycles. On the other hand, 𝑧̌2 and 𝑧̌3 do not seem to favour the solution for cases 

with limited TW width (e.g. R101, R102, R105); the limited feasible timeslot for service of DO 

in those case decreases the possibilities of including future DO in the plan. This fact, in 

combination with the expected increase of routing costs under objectives 𝑧̌2 and 𝑧̌3 (based on 

Statement 1), can cause their performance to deteriorate compared to objective 𝑧̌1.  

Figure 6.12 illustrates the performance of the objectives with respect to re-optimization 

strategies (policy and tactic combination), averaged over all test instances and values of vehicle 

availability. Based on the Figure, objective 𝑧̌3 seems to lead to more efficient solutions when 

re-optimization is applied more frequently (FTR-10 and FTR-20). This may be attributed to the 

fact that frequent re-optimization (e.g. FTR-10) leads to higher number of re-optimization 
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cycles, thus allowing 𝑧̌3 to allocate the DO to the appropriate period (but not forcing service of 

orders only on the upcoming re-optimization cycle as in 𝑧̌2). On the other hand, objective 𝑧̌2 

performs slightly better in cases of longer re-optimization intervals.  

Another interesting observation resulting from Figure 6.12 is that performance under objectives 

𝑧̌2 and 𝑧̌3 improves in the FR tactic. This is expected, since using 𝑧̌1 (and thus not accounting 

for vehicle productivity) under the FR tactic, may schedule the service of newly received DO 

way into the future in the expense of significant resources, e.g. time (especially for newly 

dispatched vehicles from depot). This is not the case with 𝑧̌2 and 𝑧̌3, which tend to use the 

vehicles en route as much as possible given the current information and the additional work to 

come.  

 

Figure 6.12. Average performance of objectives w.r.t. re-optimization policy and tactic 

Finally, we investigate the interaction of different values of vehicle availability and different 

TW patterns (the latter characterized by the ratio of the average TW width of all customers 

w.r.t. 𝑇𝑚𝑎𝑥). To do so, we grouped all investigated instances in two categories, as shown in 

Error! Not a valid bookmark self-reference.. 

Table 6.3. Classification of investigated instances in TW-pattern groups 

Group % of 𝑻𝒎𝒂𝒙 # Instances Instances 

TW-1 5% - 40% 7 R101, R102, R105, R106, R109, R110, R111 

TW-2 >40% 6 R103, R104, R107, R108, R112, R100 

Figure 6.13 presents the average performance of the objectives for the aforementioned TW-

pattern groups and for the three values of vehicle availability. The results shown are averaged 

over all instances and re-optimization policies and tactics. The Figure illustrates that the higher 
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the number of available vehicles and the wider the TW, the better objectives 𝑧̌2 and 𝑧̌3 perform. 

This may be attributed to the tendency of objectives 𝑧̌2 and 𝑧̌3 to serve DO as early as possible, 

leading to additional flexibility of vehicles employed during future re-optimization cycles 

(when additional DO arrive). On the other hand, objective 𝑧̌1 may schedule more DO to be 

served during future periods, limiting this flexibility. 

 

Figure 6.13. Average performance of objectives for different TW pattern groups and vehicle 

availability values 

The above experimental analysis indicates that objectives which account for vehicle 

productivity are more appropriate for challenging cases (wide or no TW), or cases for which 

more than say 50-60% of DO may be served by the available fleet (more than 2 vehicles 

available at depot, according to Figure 6.7). In cases with narrow TW or limited fleet 

availability, accounting for vehicle productivity does not seem to help appreciably. 

Furthermore, for the preferred short re-optimization intervals (i.e. 5-15% of the available 

working horizon) using objective 𝑧̌3 seems more efficient. 

In order to put the aforementioned analysis into context, we present in Figure 6.14 the average 

performance of the objectives in terms of number of DO served for those parameters that favor 

objectives 𝑧̌2 and 𝑧̌3 (according to previous analysis), i.e.: a) V-4 regarding vehicle availability, 

and b) instances R104, R108 and R100 (wide or no TW). Results are reported w.r.t. re-

optimization tactic and frequency; for the latter, we grouped FTR-10 and FTR-20 under 

category “Frequent” and FTR-40 and FTR-60 under category “Infrequent”. The Figure 

illustrates that, as discussed previously, objective 𝑧̌3 is more appropriate for frequent re-

optimization under FR tactic, offering up to about 15% more DO served; this is limited to about 

4% when the PR tactic is employed. On the other hand, objective 𝑧̌3 seems to perform best 
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under infrequent re-optimization, offering up to 10% more DO served under the FR tactic and 

4% under PR.  

 

Figure 6.14. Average number of served DO per objective w.r.t. re-opt. frequency and tactic 

Using objectives that account for vehicle productivity is recommended under operational 

settings with relatively high vehicle availability, wide TW and especially when the FR tactic is 

necessary. 
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6.5 Case study in a Courier environment 

We have applied the proposed method for the DVRPMB with limited resources to a typical 

case in a next-day courier service provider. ELTA Courier is a part of the Greek Postal Service 

(ELTA) and has the third largest market share among all couriers operating in Greece. In 

addition to its own network, ELTA Courier uses the extended distribution network of the Greek 

Postal Service.  

The case study was part of the project “MADREL (Management of Dynamic Requests in 

Logistics)” conducted in the DeOPSys Lab of the University of the Aegean. The project focused 

on the design, implementation and evaluation of an integrated system that supports planners 

and dispatchers to deliver enhanced courier operations. The MADREL system supports, in 

addition to the daily routing of all known orders, two significant activities: a) planning of mass 

deliveries over a multiple-day horizon (orders with flexible delivery dates within a pre-specified 

service level), and b) allocation of real-time dynamic orders (DO) that occur during service 

execution. The method for allocating mass deliveries solves a special variation of the multi-

period VRP using a Branch-and-Price technique. For planning DO in real time, MADREL uses 

an efficient insertion heuristic. More information regarding the context of this project can be 

found in Ninikas et al. (2014). 

In this Section we employ the real-life data used in testing the MADREL system and we apply 

our proposed B&P-based method for the allocation of DO. The resulting solutions are compared 

to a) those of the conventional approach followed by the dispatchers, and b) those obtained by 

the MADREL insertion-based heuristic mentioned above. 

6.5.1 Current issues in courier distribution 

Figure 6.15 presents a typical model of the courier supply chain. The distribution vehicles 

depart loaded early in the morning (e.g. 08:00) from a Local Service Point (LSP) to perform 

deliveries or pick-ups; typically, each delivery vehicle serves a certain geographical area. By 

the end of the shift, all vehicles return to the LSP having delivered their entire load (minus 

unserved returns), and carrying items that were picked-up. After processing all collected items 

(08:00 pm in the example of Figure 6.15), the LSP forwards them to the corresponding hub. In 

turn, the hubs, process and forward the items delivered by their LSPs, typically overnight, to 

the destination hubs. The latter, after processing, forward these items (e.g. by 6:00 am) to the 

LSPs, which are responsible for delivering them. 
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Figure 6.15. A typical model of courier service operations 

For the delivery/pick-up operation, the LSP dispatcher typically knows in advance only a subset 

of the tasks. A number of requests for pick-ups of parcels/documents appear dynamically over 

time as the delivery plan is executed. As a result, vehicle routing includes a dynamic 

component, which makes it more challenging than typical (static) routing. In addition to daily 

pick-ups and deliveries, the LSPs also deal with mass deliveries. The promise dates of these 

deliveries have some flexibility within a pre-specified service level. For example, internet kits 

may be delivered to the clients within a week from the time of order, by providing a day’s notice 

for the exact time of delivery. 

Figure 6.16, overviews the typical planning and routing process followed by an LSP to deal 

with planned deliveries and pick-ups (regular orders), mass deliveries (mass orders), and 

requests for service during delivery execution (dynamic orders).  

 

Figure 6.16. Typical routing process (the initial routing plan is generated at t=0) 
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Initially, the dispatcher allocates the mass orders to delivery days by taking into consideration 

the expiration day of each order. The second step involves routing of all known orders; that is, 

regular orders, as well as the mass orders allocated by the previous step to that particular day. 

The result of the first two steps is the synthesis of the initial routing plan. To incorporate the 

DO in the initial plan, the dispatcher re-routes certain vehicles. This is done dynamically 

throughout the shift. 

In the following analysis, we deal only with the two latter steps of this integrated scheme for 

managing hybrid courier operations. For more information regarding a solution framework for 

handling the first step (allocation of mass deliveries), the reader can refer to Athanasopoulos 

and Minis (2011) and Ninikas et al. (2014).  

6.5.2 Key data for the case study 

The case study concerns a single LSP serving an urban area in Athens of average size (700 

km2). The LSP serves approximately 450 static (delivery) orders (SO) and 70 DO daily with a 

heterogeneous fleet of 5 vans and 8 scooters. The data collected comprise of a 3-day period 

(Tuesday to Thursday). All geographical data (x,y coordinates) of the customers involved (both 

static and dynamic) were provided from appropriate GPS devices installed on the vehicles of 

the corresponding LSP.  

The pick-up and delivery demand from the customers correspond to either letters/small parcels 

that are typically handled by scooters, or medium to big parcels that fit only to vehicles (vans). 

Let 𝑁𝑆 and 𝑁𝑉, denote customers of the former and the latter type, respectively; thus the total 

customer set is denoted as 𝑁𝑇 = 𝑁𝑆 ∪ 𝑁𝑉. Note that 𝑁𝑉 cannot be accessed by a scooter whereas 

𝑁𝑆 can be served by both vans and scooters. Table 6.4 presents key characteristics of the case 

study. 

Table 6.4. Key indicators of the case study (number of customers and resources) 

Day 

Resources Customers 

Vans Scooters 
𝑁𝑇 𝑁𝑉 𝑁𝑆 

SO DO SO DO SO DO 

Day 1 5 8 477 68 150 26 327 42 

Day 2 5 8 491 68 160 23 331 45 

Day 3 5 6 370 66 146 30 224 36 
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Figure 6.17 represents the customers’ locations over the LSP’s service region on a digital map 

for the busiest day of the 3-day period (Day 2). The dispersion of the customers for the 

remaining two days has a similar pattern.  

 

Figure 6.17. Representation of customer locations for the busiest day on a digital map (blue circles 

correspond to static customers and red crosses to DO) 

A call-center is available and can receive calls (DO) requesting on-site pick-up from 08:00 till 

18:00. DO typically request a time-window (TW), which normally ranges from 2 to 4 hours 

and starts within 30 to 60 minutes after the call has been received. Figure 6.18 and Figure 6.19 

present the temporal distribution of DO as a function of the time of day (early morning and late 

afternoon hours are less busy) and arrival and TW pattern, respectively.  

 

Figure 6.18. Distribution of DO received w.r.t. the time of day (all three days) 
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Figure 6.19. Arrival and TW patterns of DO for Day 3 (a blue star reflects the time each DO was 

received; the bars indicate the related TW) 

Onsite service times at the customer location were recorded through GPS-based devices. It is 

worth mentioning that, on average, DO require almost 50% more on-site service time than static 

requests, mostly because they involve additional work from the driver. 

Concerning the estimation of travel times, we analyzed the correlation between historical travel 

times and distances for a 2-month period (approximately 1000 locations per day) and used the 

results to estimate the travel time as a function of the Euclidean distance between two locations. 

We constructed the distance and time matrix based on these estimates. 

Finally, Table 6.5 presents information regarding the average number of static (SO) and 

dynamic (DO) orders assigned to each van and scooter. Scooters are normally assigned on 

average 30% more orders than vans, since the former are able to travel faster in the congested 

city streets.  

Table 6.5. Average number of customers served per vans and scooters 

Order type Average orders served per Van Average orders served per Scooter 

SO 30,4 39,9 

DO 5,3 5,6 

Total 35,7 45,5 

6.5.3 The MADREL insertion heuristic 

As mentioned above, for MADREL we developed an insertion-based heuristic in order to 

incorporate the available unserved DO in the current plan in a time-efficient manner. The 

complexity of the insertion heuristic is highly dependent on the number of DO and the number 
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of available arcs (that a DO can be potentially inserted). Furthermore, since insertion is 

sequence dependent, an optimal insertion procedure is of factorial complexity 𝑂(|𝐹|! ∑ (ℊ +𝑁
𝑖=1

𝑖 − 1)), where |𝐹| is the number of DO, and ℊ is the number of available arcs in the planned 

routes. Thus, if the number of DO to be re-optimized is higher than say 8 or 9, then an 

exhaustive algorithm is computationally intractable. Thus, the current insertion-based heuristic 

considers the sequence dependency of neighbor DO only without evaluating all sequences. 

The heuristic comprises three steps, as described below.  

Step 1: Initialization. 

The first step processes all available information up to re-optimization event Tℓ; i.e., the 

remaining static orders which have yet to be served, the remaining capacity in both time and 

load of the vehicles en route, and the dynamic orders (DO). Concerning the DO, we consider 

two cases (as in Chapter 5.2); for re-optimization under FR tactic, we consider only the DO 

arrived during the interval [Tℓ−1, Tℓ]. For re-optimization under the PR tactic, we also consider 

DO that have arrived in [𝑇0, Tℓ−1] but not served yet.  

Step 2: Clustering of 𝐷𝑅𝑠  

As discussed previously, it is assumed that the order of inserting DO in the routes is significant 

only when DO compete for the same arcs. Based on this assumption, the algorithm decomposes 

the entire set of DO to smaller subsets 𝑙𝑛, 𝑛 = 1,2, … , 𝛬, each containing competing DO. Due 

to the complexity considerations discussed above, the number of DO per subset is kept low, 

|𝑙𝑛| ≤ 6. The clustering of DO to competing sets is performed as follows:  

Step 2.1. For each DO, 𝑖 ∈ 𝐹, the most preferable, feasible insertion arcs are determined and 

stored in set 𝑆𝑖. Feasibility refers to respecting order time windows, vehicle capacities and 

shift duration (𝑇𝑚𝑎𝑥). The maximum number of feasible arcs stored in each 𝑆𝑖 has been set 

to 10 (i.e. 𝑆𝑖 contains up to ten of the most favorable and feasible arcs), which has been 

determined through experiments to be a fairly adequate number regardless the number of 

customer orders involved. 

Step 2.2. The arc-set 𝑆𝑖 of each DO 𝑖 ∈ 𝐹, is compared with each set 𝑆𝑗, 𝑗 ∈ 𝐹, 𝑗 ≠ 𝑖, to 

determine whether DO 𝑖 and 𝑗 compete for one or more common arcs. If there is at least one 

common arc between the (𝑖, 𝑗) pair of DO, then these DO are grouped together in a 

temporary buffer set 𝐵𝑖. Finally, all sets 𝐵𝑖 are checked to examine the existence of common 
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DO; if two buffer sets 𝐵𝑖 and 𝐵𝑗 contain at least one common DO, then they are joined to a 

cluster. This procedure terminates with the creation of 𝛬 clusters. 

Step 2.3. If there is 𝑛 ∈ 𝛬 for which |𝑙𝑛| > 6, , then the last arc stored in each arc-set 𝑆𝑖, of all 

DO 𝑖 ∈ 𝐹 is discarded (i.e. |𝑆𝑖| ← |𝑆𝑖| − 1, ∀𝑖 ∈ 𝐹), and step 2.2 is repeated. Once |𝑙𝑛| ≤

6, ∀𝑛 ∈ 𝛬, continue to Step 3.  

Step 3: Final Solution 

The sequence of selecting clusters to be examined for DO insertion affects the overall solution. 

For that reason, all possible combinations of selecting clusters are checked (primary 

combinations). When intractable, i.e. 𝛬 > 6, 100 random sequences of clusters are used. For 

each cluster, all possible insertion combinations of the available DO in this cluster are checked 

(secondary combinations), and the best one is implemented. Figure 6.20 illustrates the above 

process.  

 
Figure 6.20. Example of considering combinations in the local update heuristic 

Specifically: 

Step 3.1. Enumerate all primary combinations of clusters, denoted as 𝑓 = 1,2, … , ℒ. Begin with 

𝑓 = 1 and execute Steps 3.2. to 3.6. 

Step 3.2. For each cluster 𝑙𝑛 of DO in primary combination 𝑓, determine all possible insertion 

combinations of competing DO, denoted as ∁𝑙𝑛  (called hereafter secondary combinations). 

Initialize the procedure with 𝑛 = 1 and proceed to Step 3.3. 

Step 3.3. For each secondary combination ∁𝑘
𝑙𝑛, where 𝑘 corresponds to the secondary 

combination examined (i.e. 𝑘 = 1,2, … , |∁𝑙𝑛|), apply an insertion heuristic to insert all DO in 

the order they appear in ∁𝑘
𝑙𝑛. For successful insertion of a DO, all problem constraints should 

be satisfied. In case of any violation, the corresponding DO is not inserted. After each insertion, 

apply a 2 − opt post-optimization procedure. After completing the insertion of all feasible 

orders in ∁𝑘
𝑙𝑛, compute the cost and number of serviced DO for this secondary combination, 

Example Primary Combinations Secondary Combinations 

 

{𝑙1 𝑙2} → {[𝐴, 𝐵] [𝐶, 𝐷]} 

𝐴 → 𝐵 → 𝐶 → 𝐷 

𝐵 → 𝐴 → 𝐶 → 𝐷 

𝐴 → 𝐵 → 𝐷 → 𝐶 
𝐵 → 𝐴 → 𝐷 → 𝐶 

{𝑙2 𝑙1} → {[𝐶, 𝐷] [𝐴, 𝐵]} 

𝐶 → 𝐷 → 𝐴 → 𝐵 

𝐷 → 𝐶 → 𝐴 → 𝐵 

𝐶 → 𝐷 → 𝐵 → 𝐴 
𝐷 → 𝐶 → 𝐵 → 𝐴 

 

A B

C

D
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c(∁k
ln) and 𝑤(∁𝑘

𝑙𝑛), respectively. Repeat this procedure for all combinations ∁𝑘
𝑙𝑛 for cluster 𝑙𝑛 

and proceed to step 3.4. 

Step 3.4. Amongst the secondary combinations of cluster 𝑙𝑛, select the one that serves the 

maximum number of DO. If there are two or more combinations with the same number of DO, 

then select the one with the minimum cost. We refer to this combination as ∁̃𝑙𝑛.  

Step 3.5. If all clusters are checked, i.e. 𝑛 = 𝛬, go to Step 3.6, otherwise 𝑛 = 𝑛 + 1 and go to 

Step 3.2.  

Step 3.6. Compute the final number of served DO and the associated total cost of primary 

combination 𝑓, i.e. 𝑊𝑓 = ∑ 𝑤(∁̃li𝐿
𝑖=1 ) and 𝐶𝑓 = ∑ 𝑐(∁̃li𝐿

𝑖=1 ) 

Step 3.7. If 𝑓 < ℒ, set 𝑓 = 𝑓 + 1 and go back to Step 3.2. Otherwise, terminate the procedure 

and determine the solution, or solutions, 𝑓𝑤 that serve the maximum number of DO. From those 

solutions, implement solution 𝑓 with the lowest routing cost 𝐶𝑓𝑖𝑛𝑎𝑙 over all solutions 𝑓𝑤.  

In case the final solution contains DO that may not be inserted, these orphan requests will be 

added to a pool to be checked for insertion, along with the newly arrived requests, in the next 

re-optimization cycle.  

6.5.4 Computational results 

In this Section, we apply the proposed B&P method on the MADREL data for DO planning. 

We compare the results obtained with: a) the current practice, in which planners assign 

manually the DO and b) the insertion heuristic presented in Section 6.5.3. The re-optimization 

period is 1 hour, and we employ the PR tactic. 

In addition to DO planning, the case study also analyzed the performance of the algorithms 

when a commercial software is used to plan the initial routes for the static orders (SO). Thus, 

the experimental analysis involved the variants presented in Table 6.6. 

Table 6.6. Components involved in the experimental investigation 

Planning 

Variants 
Involved in Description 

Manual Planning SO, DO 
The current manual process followed by the dispatchers of the courier 

company; it involves planning SO and DO 

SW Planning SO Initial routing of SO using a commercial routing software  

HEUR Planning DO The MADREL insertion heuristic 

B&P Planning DO The proposed branch-and-price method 
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Table 6.7 provides information regarding the testing scenarios. S0 corresponds to the baseline 

comprising manual planning for DO and SO; S1 and S2 employ manual planning for SO and 

the MADREL heuristic (HEUR) or the proposed B&P algorithm, respectively, for DO 

planning; in S3 and S4 the commercial software is used for SO planning and, the heuristic or 

the B&P for DO planning. 

Table 6.7. Planning scenarios  

Scenario 
SO planning DO planning 

Manual SW Manual HEUR B&P 

S0      

S1      

S2      

S3      

S4      

Table 6.8 presents the overall results obtained for the 3-day period. The first column notes the 

five scenarios as indicated in Table 6.7. In the following columns, key information regarding 

the results obtained under each scenario is presented for each day. In particular, for each day, 

we report: i) 𝐷̌𝑠, which denotes the total duration (in hours) of the initial routing plan 

(assignment of SO to routes), ii) 𝐷̌𝑑, which denotes the excess trip duration (in hours) that is 

due to the insertion of the DO, and iii) the 𝑇𝐷, which corresponds to the total (final) duration 

of all trips.  

Table 6.8. Total routing results (in hours) for all scenarios on the 3-day period 

Scenario 
Day 1 Day 2 Day 3 

𝑫̌𝒔 𝑫̌𝒅 𝑻𝑫 𝑫̌𝒔 𝑫̌𝒅 𝑻𝑫 𝑫̌𝒔 𝑫̌𝒅 𝑻𝑫 

S0 87,8 14,6 102,4 90,2 15,1 105,2 70,3 14,2 84,5 

S1 87,8 9,2 97,0 90,2 10,6 100,8 70,3 9,6 79,9 

S2 87,8 6,9 94,7 90,2 5,3 95,5 70,3 7,3 77,6 

S3 73,1 14,3 87,4 75,4 12,6 88,1 60,0 12,3 72,2 

S4 73,1 11,9 85,0 75,4 11,7 87,2 60,0 10,8 70,8 

Figure 6.21 presents the average performance of all scenarios during the 3-day period with 

respect to 𝐷̌𝑠 and 𝐷̌𝑑. It is clear that S4 outperforms all other scenarios, reaching an 

improvement of around 16% on the total trip duration compared to the current planning 

practices of the courier operator (baseline scenario – S0). The proposed B&P heuristic (S2) 

outperforms the insertion heuristic (S1) on all days of the investigated period. The B&P 

algorithm outperforms the insertion heuristic by 33.8% on the average in terms of the additional 
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cost (excess cost), i.e. the cost above the initial routing cost. This saving is decreased to 12.2% 

when SO planning is undertaken by the commercial software. Additionally, employing a 

commercial software for the planning phase may yield an average of 16% improvement 

compared to the manual processes. An interesting observation is that optimal (or near-optimal) 

SO plans lead to considerably higher excess costs for the DO (as shown in S3 and S4). This 

may be due to the fact that including DO in the initial optimal routes results to significant 

deviations from these routes. 

 

Figure 6.21. Overall performance of all scenarios (average of all days) 

Figure 6.22 presents the average working time per vehicle per day. It also shows the average 

improvement in vehicle productivity; that is %100|(𝑇𝑆0 − 𝑇𝑆𝑥)/𝑇𝑆0|, where 𝑇𝑆0 is to the overall 

trip duration per vehicle of S0 and 𝑇𝑆𝑥 the trip duration of scenarios Sx, where 𝑥 ∈ {1,2,3,4}. 

The Figure shows that employing sophisticated tools for SO and DO planning can offer to the 

courier service provider savings of up to 17% per driver shift (i.e. around 1.3 hours on an 8-

hour working shift).  

 

Figure 6.22. Overall performance of scenarios w.r.t. the working hours per vehicle 
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Finally, Figure 6.23 illustrates the improvement of the cost per routed request (for both SO and 

DO), as well as the cost per DO for all scenarios. The y-axis provides the percentage difference 

(improvement) of the cost under each scenario over S0. The cost is calculated by dividing the 

𝑇𝐷 (see Table 6.7) with the total number of routed requests. As stated earlier, S4 results to the 

best overall unit cost performance (the unit cost per request improves by almost 18%). The 

improvement of the unit cost per DO for scenarios S1 and S2 is up to 56%, which illustrates the 

efficiency of applying sophisticated methods for the allocation of DO. 

 

Figure 6.23. Average performance of scenarios w.r.t. unit cost (cost per request) 

 

 

  



Chapter 7: The DVRPMB with Load Transfers  

134  DeOPSys Lab 

Chapter 7: THE DVRPMB WITH LOAD TRANSFERS  

 

 

 

 

 

 

 

 

7.1 Introduction 

We have already studied DVRPMB by considering that static delivery orders originally 

assigned to vehicles cannot be re-allocated to other vehicles, while dynamic orders may be 

served by any vehicle as needed. However, maintaining the original assignment of delivery 

orders to vehicles may limit system performance, since the changes in the system state caused 

by the arriving dynamic orders may grant re-assignments of such orders advantageous. Thus, 

in this Chapter, we introduce and solve a variant of DVRPMB that allows orders to be 

transferred between vehicles during plan implementation. This significant differentiation from 

DVRMB introduces considerable complexity that needs to be dealt in a fundamentally different 

way. We refer to this problem as the DVRPMB with Load Transfers (DVRPMB-LT). By 

allowing load transfers between vehicles, we attempt to better utilize the fleet by re-distributing 

its workload as needed based on the dynamic state of the system. 

A significant observation from the analysis of typical DVRPMB settings that prompted this 

work is that the original assignments of static delivery orders to vehicles may result in 

significant overlaps of vehicle routes in the solution of the re-optimization problem. These 

overlaps are caused by the dynamic pick-up orders (DO), and, by definition, increase costs (see 

Figure 7.1). In general, we have identified two (2) main conditions under which such 

undesirable overlaps might occur: 
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a) New vehicles may be dispatched from the depot to serve newly received dynamic orders; in 

those cases, route overlaps are possible 

b) A vehicle that has completed its tasks at an early stage may be assigned to serve newly 

received dynamic orders resulting to overlaps. 

 

(a) (b) 

Figure 7.1. Example of (a) overlapping, and (b) non-overlapping vehicle routes 

It is noted that urban logistics companies use load transfer practices to facilitate their 

distribution operations. Specifically, certain courier companies employ real-time load-transfers 

especially in cases in which the service area has been partitioned into a number of geographic 

zones (regions) and each vehicle (driver) is tasked to work within the boundaries of such a zone. 

If an order (e.g. package) is picked up from a location within a certain zone and needs to be 

delivered to a different zone, the drivers communicate and decide where and when to meet in 

order to transfer the corresponding order. In some cases, there are predefined locations where 

this operation may be performed, usually referred to as “transshipment points” (Mitrovic-Minic 

and Laporte, 2006). 

In addition, this practice is also met in money-transfer operations. In those settings, armored 

vehicles executing a distribution plan are called to serve ATM requests for money collection 

(or service) that arrive to a dispatch center in a dynamic fashion. A unique (physical) key exists 

per ATM that allows drivers to access it; no other driver is allowed to access an ATM unless 

she/he holds its key. Typically, drivers are given the keys for all ATMs of their responsible area 

at the beginning of the day. However, the arrival of dynamic requests disrupts the predefined 

plan and may result to delays on the agreed time windows or inability of the vehicle covering a 

certain region to serve all dynamic orders. In those cases, drivers can meet during execution 

and exchange keys, in order to better re-distribute the work and lower costs. 
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To the best of our knowledge, this is the first study that addresses transfer operations in such a 

context. As in DVRPMB, we deal with the DVRPMB-LT by updating (re-optimizing) the a 

priori plan at certain points in time during execution, in order to incorporate the dynamic orders 

received up to that point. We model the underlying re-optimization problem using an arc-based 

and we compare the exact solutions obtained to the exact solutions of DVRPMB, which does 

not allow transfers. Furthermore, we develop a practical heuristic framework in order to address 

the complexity of DVRPMB-LT and solve cases of practical size. Subsequently, we employ 

the proposed framework to solve and analyze the full dynamic problem, and investigate the 

impact of different re-optimization policies on the solution quality.  

The remainder of this Chapter is structured as follows: Section 7.2 overviews the most relevant 

approaches in the literature regarding transfer (or transshipment) operations in VRPs. Section 

7.3 describes the problem setting and formalizes the re-optimization problem with load 

transfers. Section 7.4 introduces the proposed heuristic solution framework to solve the re-

optimization problem for instances of practical size. Finally, Section 7.5 presents computational 

results for both the re-optimization problem and the overall dynamic problem. The solutions 

obtained are also compared to the solutions of DVRPMB without load transfers. 

7.2 Related literature on transfer (transshipment) operations 

The re-optimization problem of DVRPMB-LT is relevant to the PDP with Transfers (PDPT, 

Cortes et al.; 2010), the PDP with Time Windows and Transshipment (PDPTWT, Mitrovic-

Minic and Laporte; 2006), and the DARP with Transfers (DARPT, Masson; 2014). In those 

problems, goods or passengers are associated with a pick-up and a delivery location and may 

be transshipped at pre-specified locations; i.e., vehicles are allowed to drop goods or persons 

temporarily so that they are picked up and delivered to the final destination by another vehicle. 

Other related environments where transfer operations have been studied include the school bus 

routing problem (Nakao and Nagamochi, 2008), the robotized pick-up and delivery process of 

items requested by users in an office building (Coltin and Veloso, 2012), and environments 

related to supply chain decisions (Dondo et al., 2009), or cross-docking operations (Petersen 

and Ropke, 2011).  

In the following paragraphs we review work related to the PDPT and PDPTWT. Table 7.1 

summarizes information on interesting references related to transfer operations.  
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Shangh and Cuff (1996) were the first to discuss the PDPT. The authors employ a look-ahead 

heuristic approach for picking up and delivering patient records, equipment and supplies for a 

health maintenance organization (HMO). The heuristic constructs mini-routes and assigns them 

to vehicles. Transfers are only considered when an order cannot be inserted in the current 

solution without adding an extra vehicle. The dynamic version of a similar problem is 

considered by Thangiah et al. (2007) who improved the results of Shangh and Cuff (1996) by 

incorporating a local search phase. Mitrovic-Minic and Laporte (2006) studied the PDPTWT 

motivated by a large San Francisco-based courier company that uses transshipment of loads 

between vehicles. A single transshipment is allowed per request and up to 4 locations were 

considered as potential fixed transfer locations. The authors proposed a two-phase heuristic to 

solve generated instances with up to 100 orders, and demonstrated that transshipment 

operations can significantly reduce the total distance traveled by vehicles, especially in 

clustered cases.  

Mues and Pickl (2005) proposed a column generation-based heuristic for the PDPT with a 

single fixed transfer location. They evaluated their algorithm considering instances of up to 70 

orders. Gørtz et al. (2008) considered a version of PDPT, and proposed heuristics for the 

capacitated and uncapacitated cases in order to minimize the maximum completion time 

(makespan) of operations. Petersen and Ropke (2011) considered a case of pick-up and delivery 

of flowers in Denmark with a single fixed transfer location. They proposed an Adaptive Large 

Neighborhood Search (ALNS) algorithm, which they applied to practical instances of up to 982 

orders. For the PDPT, Qu and Bard (2012) also proposed an ALNS within a greedy randomized 

adaptive search procedure (GRASP) framework. They applied their method to instances with 

up to 25 orders, obtaining solutions within 1% of the optimal ones. Masson et al. (2011) also 

proposed an ALNS algorithm for the PDPT and reported competitive results for the Mitrovic-

Minic and Laporte (2006) instances, and for practical instances with up to 193 orders. Masson 

et al. (2014) extended the ALNS technique in order to solve the Dial-a-Ride Problem with 

Transfers (DARPT). They reported savings up to 8% due to the introduction of transfer 

operations. Lin (2008) presented a PDPTWT in which all requests share the same delivery 

location (but delivery time windows are different), and a transfer can occur at the last pick-up 

before a delivery. The authors presented an integer programming formulation and were able to 

solve instances of up to 100 orders using a commercial solver.  

Few exact approaches exist for the PDPT. Cortes et al. (2010) introduced an arc-based 

formulation by considering fixed transfer locations. They employed a Branch-and-Cut 
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algorithm using Benders Decomposition and were able to solve to optimality instances with up 

to six orders and two vehicles, reporting superior computational performance compared to a 

standard Branch-and-Bound technique. Kerivin et al. (2008) presented a Branch-and-Cut 

algorithm in order to solve a PDPT without time windows, in which every order can be 

transferred from one vehicle to another at every node of the network. The authors were able to 

solve instances with up to 15 orders. Nakao and Nagamochi (2008) presented a lower bound 

calculation for the PDPT with a single transfer location and no time windows.  

Table 7.1. Key information in references investigating transshipment operations 

Reference Problem Capacity TW 
Environ- 

ment 
Transfer Locations 

Solution 

Procedure 

Shangh and Cuff 

(1996) 

1-1 P&D of medical 

equipment 
-  Static All problem nodes 

Look-ahead insertion 

heuristic 

Mues and Pickl (2005) 1-1 P&D of freight -  Static Single location Column-generation 

Mitrovic-Minic and 

Laporte (2006) 

1-1 P&D of parcels 

and letters 
-  Static Predefined locations 

Two-phase local 

search 

Thangiah et al. (2007) 
1-1 P&D of freight 

or passengers 
-  Dynamic All problem nodes Heuristic 

Lin (2008) 
1-1 P&D of parcels 

and letters 
-  Static 

Special customer 

locations  
Integer programming 

Kerivin et al. (2008) 
1-1 P&D of freight 

or passengers 
- - Static All problem nodes 

Mixed-integer linear 

programming 

Nakao and Nagamochi 

(2008) 

School bus routing 

problem 
- - Static Single location - 

Gørtz et al. (2009) Dial-a-ride  - Static All problem nodes Heuristic 

Cortes et al. (2010) Dial-a-ride   Static Predefined locations Branch-and-Cut 

Masson et al. (2011) 
1-1 P&D of freight 

or passengers 
  Static Predefined locations ALNS 

Petersen and Ropke 

(2011) 

1-1 P&D of flower 

containers 
  Static Single location ALNS 

Masson et al. (2014) Dial-a-ride   Static Predefined locations ALNS 

Qu and Bard (2012) 1-1 P&D of freight   Static Single location 
GRASP combined 

with ALNS 

We differentiate our current work in the following three aspects: first, to the best of our 

knowledge, this is the first study that introduces transfer operations in the 1-M-1 PDPs, in which 

orders are not associated to a pick-up and delivery pair, but to a single location, either pick-up 

or delivery. Second, in this work we introduce transfer operations in a dynamic environment in 

which we investigate how transfer practices affect the solution of the overall dynamic problem 

with respect to different frequencies of re-optimization. Finally, the majority of the related work 

considers fixed (predefined) locations, in which transfers are allowed, whereas in this study we 

investigate additional options for allowing transfer operations to take place at all nodes of the 

network. The latter has been investigated by limited number of studies (see Table 7.1). 
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7.3 Re-optimization in DVRPMB-LT 

7.3.1 The role of re-optimization in solving the DVRPMB-LT 

As already mentioned, DVRPMB-LT employs the DVRPMB setting described in previous 

chapters and is dealt through iterative re-optimization (see also Figure 7.2). However, in 

DVRPMB-LT a vehicle 𝑘 ∈ 𝐾 is allowed to serve delivery (static) orders assigned to another 

vehicle 𝑘′ ∈ 𝐾, 𝑘′ ≠ 𝑘 during the solution of the re-optimization problem, provided that the 

required order transfer is feasible. This makes the re-optimization problem quite different from 

that of DVRMB and quite interesting. In addition, it introduces significant complexity that 

needs to be dealt in a fundamentally different way.  

 

Figure 7.2. The re-optimization process 

The setting and the formulation of the re-optimization problem with transfers, henceforth 

denoted as DVRPMB-LT(𝓵), is described below (Sections 7.3.2 and 7.3.3). Consequently, its 

solution approach is described in Section 7.4.  

It should be noted, however, that the solution strategy for the DVRPMB-LT via re-optimization 

requires also the definition of the appropriate re-optimization policy and tactic. Regarding the 

former, we investigate in Section 7.5.4 how different policies affect the solution of DVRPB-

LT. Regarding the latter (implementation tactic), we investigate DVRPMB-LT under the PR 

policy, since our extensive experiments in Chapters 5 and 6 indicated that it is the most 

promising tactic.  

7.3.2 Basic assumptions of the re-optimization problem DVRPMB-LT(𝓵) 

Allowing load transfers may raise significantly the operational complexity of a logistics system. 

For example, it may not be practical from a management perspective to allow multiple transfers 

per order, or a vehicle to exchange orders with more than one vehicle(s). Such practices may 

confuse both drivers and dispatchers, and lead to excessive managerial overheads. Taking into 

consideration this operational issue, below we define a set of assumptions within which load 

transfers are practical and possible. Note that transfer operations are relevant to delivery (static) 
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orders only, since pick-up orders (DO) can be collected by any vehicle. The operating 

assumptions are as follows: 

d) All orders need to be satisfied (both delivery and pick-up ones) 

e) For the re-optimization problem, each vehicle is allowed to participate in only one transfer 

operation throughout its remaining (not executed) route prescribed by the revised plan. Of 

course, a vehicle may participate in more than one transfer operations during its entire 

executed route (multiple re-optimizations).  

f) With respect to transfer locations, we investigate two cases; vehicles may meet and transfer 

loads: i) at fixed (predefined) locations known prior to the start of operations, or ii) at all 

not yet served customer locations (including current vehicle locations and those of dynamic 

order clients).  

Regarding the third assumption, it should be noted that fixed transfer locations are typically 

predefined facilities dispersed throughout the distribution area, where a vehicle is able to 

discharge load that may be later picked-up by a different vehicle. In this fixed location, vehicles 

are not required to be physically present at the same time. On the other hand, when transfers 

are allowed at the location of any not yet served customer, vehicles have to be physically present 

at the same location (even if that means that one of the two vehicles will have to wait for the 

other one to arrive). 

From a business perspective, the second assumption (one-to-one transfer policy) is practical, 

streamlining fleet management and driver overhead. From an algorithmic perspective, this 

assumption limits the problem’s complexity significantly and allows the re-optimization 

problem to be considered as the combination of pairwise sub-problems, as will be described in 

Section 7.4. 

In general, a feasible solution of DVRPMB-LT(ℓ) should satisfy the following: 

i) All vehicle routes should start at the current vehicle location and finish at the depot (no 

cycles) 

ii) All customer nodes (delivery orders and DO) must be served and should be visited exactly 

once (note that in Section 7.3.3 we introduce additional nodes where transfer takes place, 

thus customer nodes will be always visited once). 

iii) If an order is to be transferred from vehicle 𝑘 ∈ 𝐾 to vehicle 𝑘′ ∈ 𝐾, then vehicle 𝑘 should 

arrive at the transfer location prior to the departure of vehicle 𝑘′  

iv) Each vehicle should participate in a single transfer operation at most 
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v) The load of each customer has to be transported by a single vehicle at any time 

vi) All customers should be served within their associated time windows (if any) 

vii) Vehicles should return to the depot prior to the end of the working horizon (𝑇𝑚𝑎𝑥) 

viii) The vehicle capacity cannot be exceeded.  

The problem’s objective is to minimize the routing costs (i.e. distance traveled), subject to 

constraints (i)-(viii) above. We should note here that load transfers might cause additional 

delays due to transfer operations (e.g., onsite time to load/unload items, waiting for the other 

vehicle to arrive, etc.). Within our setting, we do not attempt to minimize such delays in the 

objective function; however, such delays are considered by the problem constraints.  

An illustrative example 

Consider the example of Figure 7.3 for a case with two vehicles. Initially, the two vehicles are 

set to serve delivery (static) orders only. At the re-optimization timestamp, the vehicles have 

already executed a portion of their planned routes and are currently located at customers 2 and 

6, respectively (Figure 7.3a). Furthermore, a number of DO have been received and are to be 

incorporated in the current plan. Figure 7.3b illustrates the results of the DVRPMB re-

optimization algorithm of Chapter 5 with all DO been assigned to vehicles. The total routing 

cost is 108.1. Given this solution, we examine the possible efficiencies from load transfers.  

Figure 7.3c illustrates a possible solution, assuming that transfer operations are allowed only at 

a predefined (fixed) location with coordinates (15,0). This solution includes the transfer of 

orders 7 and 8 from the red to the blue vehicle; the total routing cost is 86.4, resulting in 

approximately 20% savings. Figure 7.3d illustrates a solution in which transfer is allowed at 

the location of any not yet served customer. The two vehicles meet at the location of customer 

10, where the red vehicle will again transfer customer orders 7 and 8 to the blue vehicle. This 

solution results to a cost of 84.5 and total savings of 21.9% compared to the solution of Figure 

7.3b. 
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(a) 

 
(b) (c) (d) 

Figure 7.3. Illustrative example for the DVRPMB-LT(𝓵); (a) routes prior to re-optimization, (b) 

solution of DVRPMB without transfers, (c) load transfers at fixed location; (d) load transfers at 

customer location  

7.3.3 Mathematical formulation of DVRPMB-LT(𝓵) 

The proposed formulation has been based on the work of Cortes et al. (2010), in which the 

authors present a Mixed Integer Linear Programming (MILP) model for the Pickup and 

Delivery Problem with Transfers (PDPT). In the current work, we extend and adjust this 

formulation to be able to consider: i) pick-up and delivery orders which are not paired, and ii) 

potential locations for transferring loads to be all not yet served customer locations (including 

current locations of vehicles). 

7.3.3.1 Modelling assumptions 

In the classical DVRPMB setting, each customer node is associated only with a single type of 

operation, which is either unloading (delivery orders) or loading (pick-up orders), but not both. 

The setting of DVRPMB-LT uses the concept of transfer locations, where vehicles may load 

and unload goods. These locations may be client locations, or special pre-designated locations 

in the operational area. As in the work of Cortes et al. (2010), in order to capture the difference 

between operations (load/unload), every transfer location 𝑢 is split into two separate nodes, 

𝑠(𝑢) and 𝑓(𝑢), which correspond to the start and finish of the transfer operation, respectively 
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(see Figure 7.4). When a vehicle enters a transfer location 𝑢, it initially enters node 𝑠(𝑢) to 

unload the orders to be transferred to another vehicle (if any). The vehicle then proceeds 

(notionally) to node 𝑓(𝑢), where orders (dropped at node 𝑠(𝑢)by another vehicle) may be 

waiting to be loaded.  

 

Figure 7.4. Representation of the transfer location 

To consider transfers at customer locations, we define two additional sets of nodes 𝑀′ and 𝑁′ 

to duplicate the sets containing the current vehicle locations (set 𝑀) and the customer nodes 

(set 𝑁), respectively. We also define as 0′ the transfer location corresponding to the depot. 

Those duplicate nodes will participate in the set of possible transfer locations (set 𝑈, see Table 

7.2). Thus, each location of not yet served customer is represented by three (3) distinct nodes, 

namely: a) the original node 𝑖 ∈ (𝑁 ∪𝑀 ∪ 0), b) the start transfer node 𝑠(𝑢), and c) the finish 

transfer node 𝑓(𝑢), where 𝑢 ∈ (𝑁′ ∪𝑀′ ∪ 0′) denotes the transfer node associated with node 

𝑖 ∈ (𝑁 ∪𝑀 ∪ 0). Note that all three nodes are considered to be at the same geographical 

location (and the distances between them are equal to zero).  

In case the transfer location corresponds to a customer location 𝑖 ∈ 𝑁, the vehicle first visits 

(and serves) the customer node, then proceeds to node 𝑠(𝑢) to begin the transfer operation 

(unload) and finally proceeds to node 𝑓(𝑢) (in order to exit the transfer location). The second 

vehicle, which participates in the transfer operation but does not serve node 𝑖 arrives directly to 

node 𝑠(𝑢) (and immediately moves to node 𝑓(𝑢) to reload). This operation is modeled as shown 

in Figure 7.5. 

 

Figure 7.5. Modeling the case of transferring loads at customer location 𝒊 



Chapter 7: The DVRPMB with Load Transfers  

144  DeOPSys Lab 

7.3.3.2 Mathematical model 

Below we present the mathematical model for the re-optimization problem (DVRPMB-LT(ℓ)). 

It should be noted that this formulation is able to solve instances with 𝐾 vehicles with the 

assumption that each vehicle can participate in only one transfer operation throughout its 

remaining route.  

Prior to presenting the mathematical model for the DVRPMB-LT(ℓ), we first summarize the 

notation involved in the formulation (see Table 7.2). Additionally, we define the set of links 

involved in the formulation, i.e. we exclude edges (arcs) that are not reasonable within the 

context of DVRPMB-LT, as for example direct links from the start transfer nodes 𝑠(𝑢), 𝑢 ∈ 𝑈 

to any customer node 𝑖 ∈ 𝑁. Let 𝐴 be the set of arcs, with 𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4, where (see 

also Figure 7.6): 

𝐴1 = {{𝜇𝑘: 𝑘 ∈ 𝐾} × (𝑁 ∪ 𝑠(𝑈) ∪ {0})} 

𝐴2 = (𝑁 × (𝑁 ∪ 𝑠(𝑈) ∪ {0})) \{(𝑖, 𝑖): 𝑖 ∈ 𝑁} 

𝐴3 = {(𝑠(𝑢), 𝑓(𝑢)): 𝑢 ∈ 𝑈} 

𝐴4 = (𝑓(𝑈) × (𝑁 ∪ {0} ∪ 𝑠(𝑈))) \{(𝑓(𝑢), 𝑠(𝑢)): 𝑢 ∈ 𝑈}  

Table 7.2. Notation for DVRPMB-LT(𝓵) 

Notation Description Comment 

𝐾 Set of vehicles en route
8
   

𝑀 Starting location of vehicles 𝐾 𝑀 = ⋃ {𝜇𝑘𝑘∈𝐾 }  

𝐶 Set of nodes associated to committed (delivery) orders  𝐶 = ⋃ 𝐶𝑘𝑘∈𝐾   

𝐹 Set of nodes of flexible (pick-up) orders – DO  

𝑁 Set of nodes associated with customer orders 𝑁 = 𝐶 ∪ 𝐹  

0 Depot location  

𝑈𝑓 Set of fixed transfer location node(s)  

𝑀′ 
Set of transfer locations corresponding to starting location 

of vehicles  
 

𝑁′ Set of transfer locations corresponding to customer nodes   

0′ 
Transfer location corresponding to the depot (may be used 

for intermediate exchange) 
 

𝑈 Set of all transfer location nodes 𝑈 = 𝑈𝑓 ∪ {0′} ∪ 𝑀
′ ∪ 𝑁′  

𝑠(𝑢) Start node of transfer location 𝑢 ∈ 𝑈  

𝑓(𝑢) Finish node of transfer location 𝑢 ∈ 𝑈  

𝑠(𝑈) Set of all start nodes of transfer locations 𝑠(𝑈) = {𝑠(𝑢): 𝑢 ∈ 𝑈}  

𝑓(𝑈) Set of all finish nodes of transfer locations 𝑓(𝑈) = {𝑓(𝑢): 𝑢 ∈ 𝑈}  

𝑊 Set of all nodes 𝑊 = 𝑁 ∪𝑀 ∪ {0} ∪ 𝑠(𝑈) ∪ 𝑓(𝑈)  

                                                 
8 Note that no vehicles are assumed available at depot   
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Figure 7.6. Allowable arcs (𝒊, 𝒋) ∈ 𝑨 (possible connections from any 𝒊 to any 𝒋, ∀𝒊, 𝒋 ∈ 𝑾) 

We also denote 𝑐𝑖𝑗 and 𝑡𝑖𝑗 to be the travel cost and travel time corresponding to arc (𝑖, 𝑗) ∈ 𝐴, 

respectively. Finally, recall that each node 𝑖 ∈ 𝐶 ∪ 𝐹 is related to a demand/supply value 𝑑𝑖 and 

requires service within time window [𝑎𝑖, 𝑏𝑖], with a service duration 𝑠𝑖.  

The proposed mathematical formulation involves three (3) types of decision variables: a) binary 

variables 𝑥𝑖𝑗𝑘 which are used to model the vehicle routes and are equal to 1 if arc (𝑖, 𝑗) ∈ 𝐴 is 

transversed by vehicle 𝑘 ∈ 𝐾 and zero otherwise; b) binary variables 𝑧𝑗
𝑘𝑖 which are used to and 

keep track of the status of each customer order while it is traveling from node to node, as in the 

formulation of Cortes et al. (2010). These variables are equal to 1 if customer order 𝑖 ∈ 𝑁 is 

onboard vehicle 𝑘 ∈ 𝐾 when it arrives to node 𝑗 ∈ 𝑊\𝑀, and 0 otherwise, for all 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾; 

c) finally, real variables 𝑤𝑖𝑘 are associated with the arrival time of vehicle 𝑘 ∈ 𝐾 at each node 

𝑖 ∈ 𝑊; accordingly, 𝑤𝑠(𝑢)𝑘 and 𝑤𝑓(𝑢)𝑘 correspond to the time of arrival and time of departure 

of vehicle 𝑘 ∈ 𝐾 to/from the transfer location, respectively.  

The objective of the re-optimization problem is to minimize the total cumulative routing cost 

over the planning horizon [Tℓ, Tmax] and is given by: 

𝑚𝑖𝑛(𝑧) = ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝑉

  (7.1) 
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Route constraints 

∑ 𝑥𝜇𝑘𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

= 1 ∀𝑘 ∈ 𝐾 (7.2) 

∑ 𝑥𝑖0𝑘
𝑖∈𝑁∪{𝜇𝑘}∪𝑓(𝑈)

= 1 ∀𝑘 ∈ 𝐾 (7.3) 

∑ 𝑥𝑖ℎ𝑘
𝑖∈𝑊\({0}∪𝑠(𝑈))

− ∑ 𝑥ℎ𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

= 0 ∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝑁 (7.4) 

∑ 𝑥𝑖𝑠(𝑢)𝑘
𝑖∈𝑁∪{𝜇𝑘}

− 𝑥𝑠(𝑢)𝑓(𝑢)𝑘 = 0 ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (7.5) 

∑ 𝑥𝑓(𝑢)𝑗𝑘
𝑗∈𝑁∪{0}

− 𝑥𝑠(𝑢)𝑓(𝑢)𝑘 = 0 ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (7.6) 

Customer constraints 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))𝑘∈𝐾

= 1  ∀𝑖 ∈ 𝑁 (7.7) 

Time-based constraints 

𝑥𝜇𝑘𝑖𝑘 = 1 ⟹ 𝑤𝑖𝑘 ≥ 𝑡𝜇𝑘𝑖  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ∪ 0 (7.8) 

𝑥𝜇𝑘𝑠(𝑢)𝑘 = 1 ⟹ 𝑤𝑠(𝑢)𝑘 ≥ 𝑡𝜇𝑘𝑠(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (7.9) 

𝑥𝑖𝑗𝑘 = 1 ⟹ 𝑤𝑗𝑘 ≥ 𝑤𝑖𝑘 + 𝑡𝑖𝑗 + 𝑠𝑖  ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗): 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∪ 0} (7.10) 

𝑥𝑖𝑠(𝑢)𝑘 = 1 ⟹ 𝑤𝑠(𝑢)𝑘 ≥ 𝑤𝑖𝑘 + 𝑡𝑖𝑠(𝑢) + 𝑠𝑖  ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑢 ∈ 𝑈 (7.11) 

𝑥𝑠(𝑢)𝑓(𝑢)𝑘 = 1 ⟹ 𝑤𝑓(𝑢)𝑘 ≥ 𝑤𝑠(𝑢)𝑘 + 𝑡𝑠(𝑢)𝑓(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (7.12) 

𝑥𝑓(𝑢)𝑗𝑘 = 1 ⟹ 𝑤𝑗𝑘 ≥ 𝑤𝑓(𝑢)𝑘 + 𝑡𝑓(𝑢)𝑗  ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 ∪ 0, ∀𝑢 ∈ 𝑈 (7.13) 

𝑥𝑓(𝑢)𝑠(𝜑)𝑘 = 1 ⟹ 𝑤𝑠(𝜑)𝑘 ≥ 𝑤𝑓(𝑢)𝑘 + 𝑡𝑓(𝑢)𝑠(𝜑) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, ∀𝜑 ∈ 𝑈\{𝑢} (7.14) 

Flow of requests constraints 

∑∑𝑧𝜇𝑘
𝑘𝑖

𝑖∈𝐹𝑘∈𝐾

= ∑∑ 𝑧𝜇𝑘
𝑘𝑖

𝑖∈𝐶𝑘𝑘∈𝐾

− |𝐶| = 0  (7.15) 

∑∑𝑧0
𝑘𝑖

𝑖∈𝐶𝑘∈𝐾

= ∑∑𝑧0
𝑘𝑖

𝑖∈𝐹𝑘∈𝐾

− |𝐹| = 0  (7.16) 

𝑥ℎ𝑗𝑘 = 1 ⟹ 𝑧ℎ
𝑘𝑖 = 𝑧𝑗

𝑘𝑖 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀(ℎ, 𝑗) ∈ 𝐴𝑈
9
 such that ℎ ≠ 𝑖 (7.17) 

                                                 
9 𝐴𝑈 = 𝐴 \ {(𝑠(𝑢), 𝑓(𝑢)|𝑢 ∈ 𝑈)}  
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𝑥𝑖𝑗𝑘 = 1 ⟹ 𝑧𝑖
𝑘𝑖 − 𝑧𝑗

𝑘𝑖 = 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑊\(𝑀 ∪ 𝑓(𝑈)) (7.18) 

𝑥𝑖𝑗𝑘 = 1 ⟹ 𝑧𝑗
𝑘𝑖 − 𝑧𝑖

𝑘𝑖 = 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝑊\(𝑀 ∪ 𝑓(𝑈)) (7.19) 

∑𝑧𝑠(𝑢)
𝑘𝑖 −

𝑘∈𝐾

∑𝑧𝑓(𝑢)
𝑘𝑖

𝑘∈𝐾

= 0 ∀𝑢 ∈ 𝑈, ∀𝑖 ∈ 𝑁 (7.20) 

𝑧𝑠(𝑢)
𝑘𝑖 + 𝑧𝑓(𝑢)

𝑚𝑖 = 2⟹ 𝑤𝑓(𝑢)𝑚 ≥ 𝑤𝑠(𝑢)𝑘 + 𝛯̃ ∀𝑢 ∈ 𝑈, ∀𝑘,𝑚 ∈ 𝐾, 𝑘 ≠ 𝑚, ∀𝑖 ∈ 𝑁 (7.21) 

𝑧𝑠(𝑢)
𝑘𝑖 + 𝑧𝑓(𝑢)

𝑚𝑖 = 2 ⟹ 𝑤𝑓(𝑢)𝑘 ≥ 𝑤𝑠(𝑢)𝑚 ∀𝑢 ∈ 𝑈\𝑈𝑓 ∪ {0
′}, ∀𝑖 ∈ 𝑁, ∀𝑘,𝑚 ∈ 𝐾, 𝑘 ≠ 𝑚 (7.22) 

Operational constraints 

∑∑𝑧𝑠(𝑢)
𝑘𝑖 ≤ 1

𝑘∈𝐾𝑟∈𝑈

 ∀𝑖 ∈ 𝑁 (7.23) 

∑ ∑𝑥𝑖𝑠(𝑢)𝑘
𝑢∈𝑈𝑖∈𝑊\𝑓(𝑈)

≤ 1 ∀𝑘 ∈ 𝐾 (7.24) 

𝑚𝑎𝑥(𝑎𝑖 , 𝑇) ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

≤ 𝑤𝑖𝑘 ≤ 𝑏𝑖 ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))

 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 (7.25) 

∑𝑞𝑖𝑧𝑗
𝑘𝑖

𝑖∈𝑁

≤ 𝑄̅ ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (7.26) 

 

Constraints (7.2) – (7.6) correspond to basic route constraints; in particular, Constraints (7.2) 

and (7.3) ensure that the vehicles will depart from their current locations and will eventually 

return to the depot; Constraint (7.4) ensures flow conservation at the nodes in set 𝑁, while 

Constraints (7.5) and (7.6) ensure flow conservation at the transfer locations. Note also that 

those constraints permit vehicles to reach a transfer location at most once. 

Constraints (7.7) correspond to customer constraints, which ensure that all customer orders will 

be served and the corresponding customer nodes will be visited exactly once. Constraints (7.8) 

– (7.14) ensure time feasibility of a route, and are used to eliminate subtours (cycles). This set 

of constraints can be written as linear expressions using the big-M technique (Desrosiers et al., 

1995; Desrochers et al., 1988; see Section 7.3.3.3). It should be noted that for Constraint (7.12), 

the travel time between start and end nodes of the transfer location 𝑡𝑠(𝑢)𝑓(𝑢), is considered to be 

a very small positive number in order to avoid zero-cost cycles.  

Constraints (7.15) – (7.23) ensure the flow of orders. In particular, Constraints (7.15) and (7.16) 

define the initial and final loading conditions, respectively; i.e., vehicle 𝑘 ∈ 𝐾 starts from its 

initial location carrying the 𝐶 orders assigned to it (since the PR tactic is considered, no 𝐹 orders 

are considered at the beginning of re-optimization) and ends at the depot with only 𝐹 orders on 
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board (no 𝐶 order should be brought back to depot). Constraint (7.17) ensures load continuity; 

i.e. the load is only unloaded at the designated customer location (the load of node 𝑖 ∈ 𝑁 will 

be onboard when the vehicle arrives at customer location 𝑗 ∈ 𝑁 if it is also onboard when the 

vehicle was at the previous customer location ℎ ∈ 𝑁). Constraint (7.18) ensures that a delivery 

order is unloaded when it reaches the location of the corresponding customer. Similarly, 

Constraint (7.19) ensures that a pick-up order will be loaded at the appropriate location. 

Constraint (7.20) refers to the flow conservation of the load variables, i.e. it ensures that a 

customer order that arrives to a transfer location on any vehicle must leave the transfer location 

by any vehicle (essentially, with the same vehicle and/or the other vehicle of the pair). 

Constraint (7.21) ensures that if an order is exchanged between two vehicles at a transfer 

location (i.e. reaches transfer location with vehicle 𝑘1 ∈ 𝐾 and leaves transfer location with 

vehicle 𝑘2 ∈ 𝐾, 𝑘2 ≠ 𝑘1), then vehicle 𝑘1 has to arrive to the transfer location prior to the 

departure of vehicle 𝑘2 from the transfer location; 𝛯̃ is a scalar that represents the time needed 

for the load to remain at the transfer location (till its departure). Furthermore, Constraint (7.22) 

is similar to Constraint (7.21) but ensures the simultaneous presence of both vehicles at the 

transfer location for those cases for which the transfer operation takes place at a customer 

location.  

Moreover, we consider additional operational constraints in (7.23) to (7.25). Specifically, 

Constraint (7.23) limits the number of times any customer order may be transferred to at most 

once, while Constraints (7.24) limit the number of transfers per vehicle (as per our original 

assumption of Section 3.2). Finally, Constraints (7.25) ensure that the each customer 𝑖 ∈ 𝑉 is 

served within its time window, and Constraints (7.26) ensure that the load carried on the vehicle 

must not exceed the vehicle’s maximum capacity (𝑄̅). Details regarding the linearization of 

those constraints are provided below (Section 7.3.1.3).  

As mentioned above, here we investigate the case for which all orders may be served by the 

available fleet. In the case of limited resources, for which it is not necessary to satisfy all flexible 

(pick-up) orders (as discussed mostly in Chapter 6), Constraint (7.7) can be replaced by 

Constraints (7.27) and (7.28) below.  

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))𝑘∈𝑉

= 1 ∀𝑖 ∈ 𝐶 (7.27) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑊\(𝑀∪𝑓(𝑈))𝑘∈𝑉

≤ 1 ∀𝑖 ∈ 𝐹 (7.28) 
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7.3.3.3 Constraint linearization 

Several sets of constraints presented in the above mathematical formulation are expressed by 

non-linear relationships. Here we present the way these constraints may be linearized in order 

for the model to be solved by a commercial solver (CPLEX). The linearization was based on 

the big-M technique (Desrosiers et al., 1995; Desrochers et al., 1988).  

Consider the set of Constraints (7.8) – (7.14), which ensure time feasibility and eliminate 

subtours. This set may be replaced by linear Constraints (7.29) – (7.35) below, where 𝑍 

corresponds to a very large positive constant: 

 − 𝑤𝑖𝑘 + 𝑍 ∗ 𝑥𝜇𝑘𝑖𝑘 ≤ 𝑍 − 𝑡𝜇𝑘𝑖 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ∪ 0 (7.29) 

 − 𝑤𝑠(𝑢)𝑘 + 𝑍 ∗ 𝑥𝜇𝑘𝑠(𝑢)𝑘 ≤ 𝑍 − 𝑡𝜇𝑘𝑠(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (7.30) 

 𝑤𝑖𝑘 −  𝑤𝑗𝑘 + 𝑍 ∗ 𝑥𝑖𝑗𝑘 ≤ 𝑍 − 𝑠𝑖 − 𝑡𝑖𝑗  ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗): 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∪ 0} (7.31) 

 𝑤𝑖𝑘 −  𝑤𝑠(𝑢)𝑘 + 𝑍 ∗ 𝑥𝑖𝑠(𝑢)𝑘 ≤ 𝑍 − 𝑠𝑖 − 𝑡𝑖𝑠(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑢 ∈ 𝑈 (7.32) 

𝑤𝑠(𝑢)𝑘 −𝑤𝑓(𝑢)𝑘 + 𝑍 ∗ 𝑥𝑠(𝑢)𝑓(𝑢)𝑘 ≤ 𝑍 − 𝑡𝑠(𝑢)𝑓(𝑢) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (7.33) 

𝑤𝑓(𝑢)𝑘 −  𝑤𝑗𝑘 + 𝑍 ∗ 𝑥𝑓(𝑢)𝑗𝑘 ≤ 𝑍 − 𝑡𝑓(𝑢)𝑗 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 ∪ 0, ∀𝑢 ∈ 𝑈 (7.34) 

𝑤𝑓(𝑢)𝑘 −  𝑤𝑠(𝜑)𝑘 + 𝑍 ∗ 𝑥𝑓(𝑢)𝑠(𝜑)𝑘 ≤ 𝑍 − 𝑡𝑓(𝑢)𝑠(𝜑) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑇, ∀𝜑 ∈ 𝑈\{𝑢} (7.35) 

Constraints (7.18) ensure that the order is only unloaded at the designated customer. We 

linearize this constraint by replacing it with Inequalities (7.36) and (7.37): 

(𝑍 − 1)𝑧ℎ
𝑘𝑖 − 𝑧𝑗

𝑘𝑖 + 𝑍𝑥ℎ𝑗𝑘 ≤  2𝑍 − 2 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀(ℎ, 𝑗) ∈ 𝐴𝑈
10

 such that ℎ ≠ 𝑖 (7.36) 

−𝑧ℎ
𝑘𝑖 + 𝑧𝑗

𝑘𝑖 + 𝑍𝑥ℎ𝑗𝑘 ≤  𝑍 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀(ℎ, 𝑗) ∈ 𝐴𝑈 such that ℎ ≠ 𝑖 (7.37) 

Constraints (7.19) and (7.20), which ensure that an order is unloaded or loaded at the designated 

location, are linearized using Inequalities (7.38) and (7.39), respectively.  

−𝑧𝑖
𝑘𝑖 + 𝑧𝑗

𝑘𝑖 + 𝑍𝑥𝑖𝑗𝑘 ≤ 𝑍 − 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑊\(𝑀 ∪ 𝑓(𝑈)) (7.38) 

−𝑧𝑗
𝑘𝑖 + 𝑧𝑖

𝑘𝑖 + 𝑍𝑥𝑖𝑗𝑘 ≤ 𝑍 − 1 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝑊\(𝑀 ∪ 𝑓(𝑈)) (7.39) 

Finally, we use Inequalities (7.40) and (7.41) below in order to linearize Constraints (7.21) and 

(7.22).  

                                                 
10 𝐴𝑈 = 𝐴 \ {(𝑠(𝑢), 𝑓(𝑢)|𝑢 ∈ 𝑈)}  
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(7.21) ⟹ 

𝑧𝑠(𝑢)
𝑘𝑖 + 𝑧𝑓(𝑢)

𝑚𝑖 = 2⟹ 𝑤𝑓(𝑢)𝑚 ≥ 𝑤𝑠(𝑢)𝑘 

 ⟹𝑤𝑓(𝑢)𝑚 ≥ 𝑤𝑠(𝑢)𝑘 − 𝛧(2 − 𝑧𝑠(𝑢)
𝑘𝑖 − 𝑧𝑓(𝑢)

𝑚𝑖 ) 

 ⟹𝑤𝑓(𝑢)𝑚 −𝑤𝑠(𝑢)𝑘 − 𝛧 ∗ 𝑧𝑠(𝑢)
𝑘𝑖 − 𝛧 ∗ 𝑧𝑓(𝑢)

𝑚𝑖 ≥ −2 ∗ 𝛧 

 ⟹−𝒘𝒇(𝒖)𝒎 +𝒘𝒔(𝒖)𝒌 + 𝜡 ∗ 𝒛𝒔(𝒖)
𝒌𝒊 + 𝜡 ∗ 𝒛𝒇(𝒖)

𝒎𝒊 ≤ 𝟐 ∗ 𝜡 

(7.40) 

(7.22) ⟹ 

𝑧𝑠(𝑢)
𝑘𝑖 + 𝑧𝑓(𝑢)

𝑚𝑖 = 2⟹ 𝑤𝑓(𝑢)𝑘 ≥ 𝑤𝑠(𝑢)𝑚 

 ⟹𝑤𝑓(𝑢)𝑘 ≥ 𝑤𝑠(𝑢)𝑚 − 𝛧(2 − 𝑧𝑠(𝑢)
𝑘𝑖 − 𝑧𝑓(𝑢)

𝑚𝑖 ) 

 ⟹𝑤𝑓(𝑢)𝑘 −𝑤𝑠(𝑢)𝑚 − 𝛧 ∗ 𝑧𝑠(𝑢)
𝑘𝑖 − 𝛧 ∗ 𝑧𝑓(𝑢)

𝑚𝑖 ≥ −2 ∗ 𝛧 

 ⟹−𝒘𝒇(𝒖)𝒌 +𝒘𝒔(𝒖)𝒎 + 𝜡 ∗ 𝒛𝒔(𝒖)
𝒌𝒊 + 𝜡 ∗ 𝒛𝒇(𝒖)

𝒎𝒊 ≤ 𝟐 ∗ 𝒁 

(7.41) 

Based on the above, the final model may be solved by a commercial solver (CPLEX), and 

comprises objective function (7.1) and Constraints (7.2) – (7.7), (7.29) – (7.41), (7.15) – (7.16), 

(7.20) and (7.23) – (7.26).  

7.4 Solution approach for DVRPMB-LT(𝓵) 

The model presented in Section 7.3.3 can be solved to optimality by a commercial solver (e.g. 

CPLEX). However, due to the large number of variables involved in the model, the solution 

may be limited only to cases of small size. For that reason, we have also developed a simple 

and straightforward heuristic procedure (framework) that is able to address cases of practical 

size. Specifically, we solve DVRPMB-LT(ℓ) using first a procedure that evaluates and 

identifies pairs of vehicles that may benefit from the transfer operation. Note that focusing on 

vehicle pairs is based on the assumption that each vehicle can participate in a single transfer 

along its route. Subsequently, we solve the problems of the promising pair of vehicles with an 

appropriate heuristic procedure. In the following, we introduce initially the solution framework 

for DVRPMB-LT(ℓ) (Section 7.4.1) and subsequently, in Section 7.4.2, we focus on the 

solution procedure for a single pair of vehicles. 

7.4.1 The solution framework for DVRPMB-LT(𝓵)  

The proposed framework for solving the DVRPMB-LT(ℓ) is hereafter denoted as Load 

Transfer Algorithm, LTA. The latter commences from the solution of the re-optimization 

problem that does not allow transfers. To do so, we employed the heuristic Branch-and-Price 

algorithm outlined in Chapter 4, which allows the incorporation of all DO to the vehicles en 

route or to vehicles stationed at depot. For convenience, we denote this algorithm as the No-
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Transfer Algorithm (NTA). Then, the solution framework comprises three additional steps as 

shown in Figure 7.7 and described below.  

 

Figure 7.7. Solution framework for DVRPMB-LT(𝓵) (LTA) 

In the second step of Figure 7.7 (“B. Transfer candidates”) we identify candidate pairs of 

vehicle routes that may benefit from the transfer operation (typically, but not necessarily, 

vehicle routes with overlaps). To do so, for each pair of vehicle routes of the NTA solution 

(route set 𝑅̌), we consider the related customers and solve a VRP-like problem with two 

vehicles. The routing cost of the resulting solution is then compared to the routing cost of the 

pair in the NTA solution. If the cost of the VRP-like problem is lower (even if the solution 

results to a single route), then this pair is a candidate to be further examined (for load transfer). 

In particular, for each pair of routes (𝑖, 𝑗), 𝑖 ≠ 𝑗, let 𝐸(𝑖, 𝑗) = 𝐶′(𝑖, 𝑗) − 𝐶(𝑖, 𝑗), where 𝐶′(𝑖, 𝑗) is 

the cost corresponding to the VRP solution for the two vehicles and their respective customers, 

and 𝐶(𝑖, 𝑗) is the cost corresponding to the original re-optimization solution (NTA). In case 

𝐸(𝑖, 𝑗) is negative, then pair (𝑖, 𝑗) is a candidate for the transfer operation; if not, then this pair 

is discarded. Note that all possible vehicle pairs are evaluated at this step, even if a vehicle 

participates in more than one pairs. In general, each route will participate in |𝑅̌| − 1 pairs, and 

may correspond to up to |𝑅̌| − 1 negative 𝐸(𝑖, 𝑗) values. Let 𝐸̃ be the list containing the 𝐸(𝑖, 𝑗) 
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values for all possible pairs. Before proceeding to step C, this list is sorted in ascending order, 

in order to evaluate first pairs with the higher negative value (and ensure that each vehicle will 

participate only in the best possible pair; see Step C below).  

During the third step (“C. Application of load transfer”), we apply a heuristic algorithm, 

henceforth denoted as 𝑳𝑻𝑨𝒑 and further described in Section 7.4.2, considering the pair 

(𝑖′, 𝑗′), 𝑖 ≠ 𝑗, with the lowest (negative) value in list 𝐸̃. If such pair does not exist, then the 

procedure terminates. If the solution for pair (𝑖′, 𝑗′) is feasible and results to a routing cost, 

denoted as 𝐶′′(𝑖′, 𝑗′), lower than the routing cost of NTA for this pair (𝐶(𝑖′, 𝑗′)), then the pair 

is qualified for the next step and all pairs (𝑖, 𝑗′) and (𝑖′, 𝑗) are removed from list 𝐸̃. If not, then 

this pair is discarded and the procedure iterates until list 𝐺̃ is empty (no remaining pairs for 

evaluation).  

During the fourth step (“D. Solution synthesis”), we construct the final solution starting from 

the NTA solution and replacing the vehicle routes belonging to each pair of the third step with 

the solution of LTA for that pair.  

7.4.2 Load transfer algorithm for a single pair of vehicles (𝑳𝑻𝑨𝒑) 

Assume that any order may be served by any vehicle of the pair under consideration. Consider 

the optimal (or near-optimal) solution of this VRP problem. If the delivery orders are served by 

the vehicles following the original assignment, then no transfer is required and the routing cost 

of the pair is optimal (or near optimal). If, however, one or more (delivery) orders are not served 

by the vehicle(s) according to the original assignment, then a transfer operation is needed. In 

this case, we identify the best transfer location by using an insertion-like algorithm and 

respecting all involved constraints. Finally, the solution obtained is further improved with post-

optimization techniques. In particular, the method comprises three (3) distinct stages 

summarized below and further analyzed in the following Sections: 

In particular, the method comprises three (3) distinct stages summarized below and is further 

analyzed in the following paragraphs: 

Stage I. Routing: A VRP-like problem is solved by assuming all not yet served orders.  

Stage II. Meeting: Identify the best available transfer location (if any).  

Stage III. Post-Optimization: The resulting solution from Stage II is further improved.  
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7.4.2.1 Stage I: Routing 

Consider a pair of vehicles each assigned with a set of not yet served orders (deliveries and/or 

pick-ups – DO). Each vehicle can either be located at a customer location or originate from the 

depot (new vehicle dispatched from depot under the NTA solution). At this stage, a VRP-like 

problem is solved by considering all unserved orders of the vehicle pair and the two available 

vehicles, without considering the original assignment of orders to vehicles. The network of the 

VRP-like problem ensures that: i) the first customer of each route will correspond to the current 

(starting) location of the vehicle, ii) no vehicle will travel to the starting location from any other 

customer, and iii) all involved times will be aligned to the re-optimization timestamp. 

We solve the resulting VRP problem by using a Clark & Wright savings heuristic (Clark and 

Wright, 1964) followed by a Reactive Tabu Search metaheuristic (Osman and Wassan, 2002) 

as a post-optimization process. It should be noted here that early experimentation has indicated 

that the performance of the proposed load transfer framework (LTA) is highly dependent on 

the results of this Stage; thus, the selection of an appropriate VRP algorithm is important to the 

quality of the final solution.  

7.4.2.2 Stage II: Identify best available transfer location 

The solution obtained from Stage I provides the best possible assignment of customer orders to 

vehicles, without considering the original order assignments. We refer to the orders that are 

served in the solution of the VRP-like problem by a vehicle (or vehicles) other than the original 

one(s) as transferred orders (henceforth, denoted as t-orders). The t-orders (if they exist) need 

to be transferred prior to the service of the corresponding customers. To do so, we identify the 

most suitable location where the collaborating vehicles can potentially transfer the related loads. 

Note that it may not always be possible to identify such a location, since the process should 

respect the following constraints:  

1. Transfer constraints: According to our original assumption (Section 7.3.2), each vehicle 

is restricted to be diverted to a transfer location at most once 

2. Precedence constraints: Any t-order should exchange vehicles prior to serving the related 

customer  

3. Meeting constraints: For the case of an a priori fixed transfer location, the vehicle that 

transfers the load to this location should arrive prior to the vehicle that receives the load, 

since for this case vehicles do not have to be simultaneously present at the transfer location. 

On the other hand, when the transfer takes place at a customer location, both vehicles need 
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to be present concurrently at that location. Thus, when a vehicle arrives to the transfer 

location prior to the other one, it has to wait until the other vehicle arrives. 

4. Load constraints: The capacities of the collaborating vehicles should always be respected 

5. Time constraints: The solution should respect all customer TW (if any), and both vehicles 

should return to the depot prior to the end of their available working horizon (𝑇𝑚𝑎𝑥). 

Using the VRP-like solution of the first stage, the potential transfer locations are considered 

and evaluated; i.e. each candidate transfer location of one route is temporarily inserted between 

two consecutive customers served by the other route. Each resulting route configuration is 

further improved by a post-optimization procedure. The pair of routes that incorporate the 

transfer location with the minimum cost is provided to the third phase of the method. In the 

remainder of this Section, we provide a formal description of the proposed heuristic. 

Consider vehicles 𝑘1 and 𝑘2 and the sets of orders originally assigned to them Θk1 =

{𝑜1, 𝑜2, … , 𝑜𝑚} and Θk2 = {𝑜𝑚+1, 𝑜𝑚+2, … , 𝑜𝑚̈}, respectively. Assuming that each vehicle is 

currently located at positions 𝜇𝑘1 and 𝜇𝑘2, respectively, and node 0 represents the depot, then 

each vehicle route resulting from Stage I can be represented as a vector, i.e. 𝑅𝑘1 =

[𝑟́𝑘1(𝜇𝑘1), 𝑟́𝑘1(1),… , 𝑟́𝑘1(𝑚), 𝑟́𝑘1(0)] and 𝑅𝑘2 = [𝑟́𝑘2(𝜇𝑘2), 𝑟́𝑘2(1),…, 𝑟́𝑘2(𝑚̈), 𝑟́𝑘2(0)], where 

𝑟́𝑘(𝑖) represents the sequence of order 𝑖 ∈ 𝛩𝑘 , 𝑘 ∈ {𝑘1, 𝑘2} in vehicle route 𝑅𝑘, 𝑘 ∈ {𝑘1, 𝑘2}. We 

also denote as rk(ek), k ∈ {1,2} the first node in the route of vehicle 𝑘 that corresponds to a t-

order, where 𝑒𝑘, 𝑘 ∈ {𝑘1, 𝑘2} corresponds to the sequence of this node in the vehicle route. The 

𝑒𝑘 nodes are crucial for ensuring the precedence constraints.  

In the following, we describe separately the procedure for the two transfer cases. 

Transfer operation at a customer location 

Figure 7.8 provides an overview of the process used to identify the best transfer location among 

the candidate locations of the not yet served customers. The related algorithm operates in an 

iterative manner. During each iteration of the process, a node 𝑗 of route 𝑅𝑘1 is inserted between 

two consecutive nodes of route 𝑅𝑘2, where 𝑘1, 𝑘2 ∈ {1,2}, 𝑘1 ≠ 𝑘2.  

In order to impose precedence constraints, this process investigates only the nodes of each route 

sequence that are prior to nodes rk(ek), k ∈ {1,2}. In case the insertion of node 𝑗 to route 𝑅𝑘′ 

maintains feasibility (satisfying the time and capacity constraints), and the total cost (distance) 

of the updated routes is the lowest one so far, location 𝑟𝑘′(𝑗) is selected as the transfer location 

(𝑈∗) and the corresponding pair of routes is kept as the best found to this point (𝑅∗) with 



  Solving the DVRPMB through re-optimization 

Dpt. of Financial & Management Engineering  155 

corresponding cost 𝐶∗. Prior to identifying a solution that improves the total routing cost, we 

also apply a post-optimization procedure (Line 11 of Algorithm 1) similar to the one described 

in the third stage of the process (see below). It is important to apply this refinement to every 

solution (even to the infeasible ones), since an infeasible one may be rendered feasible (due to 

the possible re-arrangement of the customers involved in the routes). 

Algorithm 1: Identify best transfer location 

Input: {𝑅
1 
, 𝑅2 }, 𝐶

0
 // 𝐶0 the total routing cost resulted from NTA 

Output: 𝑅∗,𝐶∗,𝑇∗ 

1 𝐶∗ = 𝐶0, 𝑅∗ = {𝑅
1 
, 𝑅2 } // Initialization  

2 For each 𝑘1 ∈ {1, 2} // FOR LOOP A 

3    For each 𝑘2 ∈ {1, 2}, 𝑘2 ≠ 𝑘1 // FOR LOOP B 
4       If 𝑘1 = 1 then 𝑎 = 𝑚 else 𝑎 = 𝑚̈ −𝑚 end 

5       For each 𝑗 = 1 to 𝑒𝑘2 do // FOR LOOP C 

6          For each 𝑖 = 1 to 𝑒𝑘1 − 1 do // FOR LOOP D 

7         𝑅𝑘1 = [𝑟́𝑘1(𝜇), 𝑟́𝑘1(1), … , 𝑟́𝑘1
(𝑖), 𝑟́𝑘2(𝑗), 𝑟́𝑘1(𝑖 + 1), … , 𝑟́𝑘1(0)] 

8        𝑅𝑘2 = [𝑟́𝑘2
(𝜇), 𝑟́𝑘2(1), … , 𝑟́𝑘2(𝑎), 𝑟́𝑘2(0)] 

9        Compute cost 𝐶̈ = Cij = C(r1) + C(r2) 
10        If 𝐶̈ < 𝐶∗ 

11               (𝐶∗, 𝑅∗) = 𝑶𝒑𝒕(𝐶∗, 𝑅∗) // Solution improvement 
12            If 𝑅𝑘1 and 𝑅𝑘2 feasible (Time & Load constraints) 

13               𝐶∗ = 𝐶̈ 

14               𝑅∗ = {𝑅
𝑘1 
, 𝑅𝑘2} 

15               𝑈∗ = 𝑟́𝑘2(𝑗) 
16            End If 

17        End if 

18          End for loop // FOR LOOP D 

19       End for loop // FOR LOOP C 

20    End for loop // FOR LOOP B 

21 End for loop // FOR LOOP A 

Figure 7.8. Pseudo-code for identifying the most appropriate transfer location among the locations of 

the customers not yet served  

Fixed transfer location 

In this case, the procedure attempts to identify the best time instance for the vehicles to visit the 

fixed transfer location (𝑈𝑓). At each iteration, the procedure evaluates visiting the transfer 

location between two consecutive nodes of route 𝑅1 or 𝑅2. Of course, the operation in this case 

is also performed only for the nodes of the two routes that are prior to 𝑟́𝑘(𝑒𝑘), 𝑘 ∈ {𝑘1, 𝑘2}. A 

valid inclusion of 𝑈𝑓 in each route satisfies time and load constraints. An additional feasibility 

criterion is the sequence of visiting the transfer location (meeting constraint); the vehicle 
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discharging the load should arrive at 𝑈𝑓 prior to the vehicle receiving it. In case both vehicles 

discharge loads, they have to be at the transfer location at the same time. If feasibility is 

maintained and the total cost is the best found to this point, then the fixed location is used for 

the transfer (𝑈∗), otherwise it is discarded and the solution resulted from the solution of NTA 

is used. The algorithm is outlined in Figure 7.10.  

Algorithm 2: Incorporation of fixed transfer location 

Input: {𝑅1,𝑅2},𝐶
0
,𝑈𝑓 // 𝐶

0
 the total routing cost resulted from NTA 

Output: 𝑅∗,𝐶∗ 

1 𝐶∗ = 𝐶0, 𝑅∗ = {𝑅
1 
, 𝑅2 }  // Initialization  

2 For each j ∈ {1, … , e2} do // FOR LOOP A 

3    For each i ∈ {1, … , e1-1} // FOR LOOP B 

4       𝑅𝑘1 = [𝑟́1(𝜇), 𝑟́1(1),… , 𝑟́1(𝑖),𝑈𝑓, 𝑟́1(𝑖 + 1), … , 𝑟́1(0)] 

5       𝑅𝑘2 = [𝑟́2(𝜇), 𝑟́2(1),… , 𝑟́2(𝑗),𝑈𝑓, 𝑟́2(𝑗 + 1),… , 𝑟́2(0)] 

6       Compute cost 𝐶̈ = Cij = C(r1) + C(r2) 
7       If 𝐶̈ < 𝐶∗ 

8          If 𝑅𝑘1 and 𝑅𝑘2 feasible (Time & Load constraints) 

9         𝐶∗ = 𝐶̈ 

10         𝑅∗ = {𝑅𝑘1 ,𝑅𝑘2} 

12          End If 

13       End if 

14    End for loop // FOR LOOP B 

15 End for loop // FOR LOOP A 

Figure 7.9. Pseudo-code of heuristic approach for incorporating the fixed transfer location 

7.4.2.3 Stage III: Post-optimization 

After identifying the best route sequence, including the location for the load transfer operation, 

a simple post optimization procedure attempts to refine the solution by node interchanging 

moves (2-opt) (Croes, 1958; Lin, 1965) are employed a) within any single route and b) between 

the routes of the pair as illustrated in Figure 7.10. Appropriate checks are also conducted to 

ensure that no constraints are violated.  
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Figure 7.10. Interchange moves; (a) within a single route, (b) between a route pair 

7.5 Computational experiments 

To assess the benefits of load transfers within the DVRPMB setting, we compare the solutions 

provided allowing load transfers to the ones that do not allow transfers. The experimental 

investigation is structured as follows: in Section 7.5.1 we evaluate the performance of the 

proposed heuristic approach (LTA) for solving DVRPMB-LT(ℓ) for a pair of vehicles with 

respect to its optimal counterpart. In Section 7.5.2 we investigate the performance of LTA 

compared to NTA by considering pairs of (overlapping) vehicle routes in order to assess the 

advantage of allowing transfers in the re-optimization problem. To do so, we consider two 

typical operating scenarios; i) both vehicles of the investigated pair are en route at the re-

optimization timestamp (Section 7.5.2.1), and ii) one vehicle is en route and the other is located 

at the depot (Section 7.5.2.2). In Section 7.5.3 we evaluate the benefits of the proposed 

framework for the solution of DVRPMB-LT(ℓ) where more than two vehicles are involved 

(LTA). Finally, in Section 7.5.4 we investigate the performance of load transfers under different 

re-optimization strategies for the entire dynamic problem (DVPRMB-LT).  

The experiments presented below were conducted using a Quad-Core Intel i7 processor of 

2.8GHz and 4GB of RAM. The MILP model was solved using the commercial MILP solver 

TOMLAB/CPLEX Version 7.5 (R7.5.0). The solver’s default settings were used, and the 

initialization computational time was not included in the computational time values presented 

below.  
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7.5.1 Assessment of the 𝑳𝑻𝑨𝒑 heuristic  

In order to assess the performance of the proposed 𝐿𝑇𝐴𝑝 heuristic, we considered re-

optimization problems involving a single pair of vehicles en route. At the re-optimization 

timestamp, each vehicle is assigned with a set of static (delivery) orders not yet served, where 

new DO have been received and need to be incorporated in the current plan. We then solve the 

underlying problems with 𝐿𝑇𝐴𝑝 and compare the solution with its optimal counterpart. In order 

to ensure that the solution of the re-optimization problem will require only two vehicles, we 

assumed no limitations w.r.t. time windows, shift duration and capacity.  

For this experimental study, we have employed randomly generated data within a service area 

of 1 × 1 𝑘𝑚2. We generated test instances varying: a) the number of static (delivery) orders per 

vehicle (𝐶𝑘, 𝑘 ∈ {1,2}), and b) the number of DO (𝐹). The number of either type of orders was 

varied from 2 to 7 for each set, leading to a total of 36 test instances (see Table 7.3). The total 

number of nodes per instance depends on the number of static and dynamic orders considered; 

for example, if |𝐶𝑘| = 4 and |𝐹| = 4, the total number of nodes (|𝑁|) in the network for this 

test instance is 15 (8 static delivery nodes, 4 DO nodes, 2 nodes for the vehicle starting 

locations, and one for the depot). For each test instance, we generated 10 different problems by 

assigning the node locations randomly within the defined area using a uniform distribution. 

Thus, the full problem set involves 360 test problems. For each test problem, delivery orders 

were randomly assigned to each vehicle, and the resulting route (from the current location to 

the depot) was improved by a 2-opt procedure (Li, 1965). Finally, we assumed that one distance 

unit equals to one time unit.  

Table 7.3. Parameters of test problems 

Parameter Description  Values (levels) # of levels 

𝐶𝑘 Deliveries per vehicle 2, …, 7 6 

𝐹 Pickup orders (DO) 2, …, 7 6 

℘ Test problems/instance 1,…,10 10 

Each generated test problem was originally solved using the B&P heuristic method of Chapter 

4.7 in order to optimally assign DO to vehicles en route, without transfers (NTA). Subsequently, 

each test problem was solved by allowing load transfers: i) to optimality, by solving the MILP 

model of Section 7.3.3 with a commercial MILP solver, and ii) using 𝐿𝑇𝐴𝑝. For the load transfer 

operation, we investigated both the case of fixed transfer location and the case of load transfers 

at the locations of any not yet served customers. The fixed transfer location was selected to be 
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the center of mass of the customer nodes. Table 7.4 summarizes the algorithms studied in this 

experimental phase and the corresponding designations to be used hereafter.  

Table 7.4. Description of the algorithms employed 

Alias Description 

NTA Solution with no transfers 

LTAf
opt

 Solution of 𝐿𝑇𝐴𝑝 considering a fixed transfer location and using the MILP solver  

LTAd
opt

 
Solution of 𝐿𝑇𝐴𝑝 considering load transfer at the location of any not yet served customer 

and using the MILP solver  

LTAf Solution of 𝐿𝑇𝐴𝑝 considering a fixed transfer location and using the heuristic  

LTAd 
Solution of 𝐿𝑇𝐴𝑝 considering load transfer at the location of any not yet served customer 

and using the heuristic approach 

Table 7.5 summarizes the results obtained as an average of all (10) test problems (|℘|) per 

instance. The first three columns of the table denote the number of delivery orders per vehicle, 

the number of DO, and the total number of nodes, respectively. The remaining columns 

illustrate for each one of the investigated algorithms the total distance traveled (TD), the number 

of test problems (out of 10) that a transfer operation took place (|𝑈|) and the computational 

time in seconds (CT). Finally, the bottom section of the Table presents the average values per 

column (‘Mean’) and the percentage improvement (‘%Imp’) w.r.t the reference case (i.e. NTA 

solution). Note that results are not provided for 𝐿𝑇𝐴𝑑
𝑜𝑝𝑡

 for|𝐶𝑘| ∈ {6,7}, since 𝐿𝑇𝐴𝑑
𝑜𝑝𝑡

 could not 

solve the related cases within reasonable computational times (due to the problem size).  

Table 7.5. Detailed results for NTA and the investigated LTA algorithms  

|𝑪𝒌| |𝑭| |𝑵| 
𝑵𝑻𝑨 𝑳𝑻𝑨𝒇

𝒐𝒑𝒕
 𝑳𝑻𝑨𝒇 𝑳𝑻𝑨𝒅

𝒐𝒑𝒕
 𝑳𝑻𝑨𝒅 

TD CT TD |U| CT TD |U| CT TD |U| CT TD |U| CT 

2 

2 9 3,218.6 0.1 3,032.2 7 0.3 3037.4 7 1.8 2,878.0 9 105.7 2,882.7 8 0.3 

3 10 3,425.4 0.1 3,340.3 8 0.5 3382.5 6 1.4 3,038.5 9 246.8 3,067.6 9 0.7 

4 11 3,435.5 0.2 3,297.6 6 3.6 3297.6 6 1.8 3,162.3 7 3,486.3 3,194.3 7 0.7 

5 12 3,608.2 0.5 3,517.2 7 2.7 3608.2 5 1.5 3,293.0 9 3,600.2 3,301.6 9 1.7 

6 13 3,651.2 1.3 3,527.0 8 25.1 3560.7 6 1.7 3,294.1 9 3,229.0 3,321.5 9 3.1 

7 14 3,825.9 2.4 3,694.4 8 19.0 3768.6 7 3.8 3,537.0 9 3,364.6 3,537.7 9 3.6 

3 

2 11 3,770.2 0.1 3,494.9 9 3.7 3578.8 8 2.5 3,223.1 9 3,208.8 3,299.0 8 1.2 

3 12 4,037.4 0.2 3,760.7 9 8.7 3852.1 7 1.5 3,556.3 10 3,600.2 3,603.4 8 1.3 

4 13 3,912.0 0.6 3,592.9 8 13.1 3730.1 6 2.7 3,192.0 8 3,631.7 3,244.3 8 2.7 

5 14 4,196.7 1.2 3,981.5 8 27.7 4098.0 7 4.1 3,912.3 9 3,601.2 3,937.7 7 3.5 

6 15 4,025.2 3.5 3,613.8 9 290.7 3657.9 8 11 3,297.6 10 3,218.7 3,317.8 10 4.8 

7 16 4,037.3 5.5 3,895.4 8 204.7 3906.9 8 11.8 3,653.7 10 5,249.4 3,684.4 10 5.3 

4 
2 13 4,204.5 0.2 3,877.3 9 2.0 3900.1 9 2 3,556.6 10 3,600.4 3,590.0 10 3.1 

3 14 4,269.5 0.6 3,779.2 10 4.0 3806.3 10 4 3,220.5 10 3,602.5 3,260.2 10 4.3 
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|𝑪𝒌| |𝑭| |𝑵| 
𝑵𝑻𝑨 𝑳𝑻𝑨𝒇

𝒐𝒑𝒕
 𝑳𝑻𝑨𝒇 𝑳𝑻𝑨𝒅

𝒐𝒑𝒕
 𝑳𝑻𝑨𝒅 

TD CT TD |U| CT TD |U| CT TD |U| CT TD |U| CT 

4 15 4,255.3 1.4 4,147.5 7 5.5 4153.2 7 5.5 3,677.0 10 3,605.5 3,717.0 10 9.1 

5 16 4,540.7 3.8 4,150.5 9 9.8 4263.6 9 9.8 3,912.7 10 3,656.1 3,932.7 10 9.8 

6 17 4,528.2 8.1 3,917.9 10 52.7 4006.5 10 11.2 3,475.6 10 4,261.6 3,546.5 10 12.6 

7 18 4,510.9 16.8 4,043.3 10 593.4 4161.6 10 11.6 3,587.5 10 4,567.4 3,709.9 10 14 

5 

2 15 4,151.0 0.7 3,636.1 10 67.1 3729.5 10 8.1 3,301.1 10 3,813.3 3,338.2 10 7 

3 16 4,987.0 0.5 4,165.3 9 59.6 4262.9 9 7.6 3,724.1 10 3,794.9 3,725.0 10 5.9 

4 17 4,512.9 0.7 3,932.0 10 408.7 4034.9 10 6.3 3,708.9 10 4,974.2 3,758.7 10 8.4 

5 18 4,920.9 1.0 4,459.3 9 1551.2 4559.6 8 8.9 3,910.7 10 5,558.3 4,018.0 10 9.6 

6 19 4,817.8 1.8 4,503.4 10 1271.1 4591.2 8 12 3,995.3 10 7,236.4 4,154.8 10 12.7 

7 20 5,140.5 3.4 4,458.5 10 1142.7 4647.3 9 13.5 4,121.5 10 8,013.2 4,126.3 10 12.8 

6 

2 17 4,589.0 0.5 4,115.2 10 189.9 4191.6 10 8 - - - 3,764.9 10 6.9 

3 18 4,972.9 0.5 4,355.3 9 183.5 4506.6 9 8.1 - - - 3,990.1 9 6.2 

4 19 4,816.6 0.9 4,137.2 10 1001.6 4366.4 10 9.7 - - - 3,914.8 10 9.7 

5 20 5,206.0 1.5 4,428.6 10 2301.1 4539.8 10 9.4 - - - 3,983.9 10 10.7 

6 21 5,370.7 3.0 4,529.1 9 1078.3 4534.9 9 10.5 - - - 4,234.6 10 11.6 

7 22 5,401.2 3.9 4,851.4 10 1652.4 4874.8 10 12.8 - - - 4,215.7 10 12.2 

7 

2 19 5,337.7 0.5 4,341.5 10 293.0 4439.7 10 8.4 - - - 3,961.0 10 9.4 

3 20 5,128.0 1.1 4,358.4 9 2529.7 4475.8 9 8.3 - - - 3,915.8 10 10.6 

4 21 5,322.3 1.4 4,451.3 10 1843.0 4607.8 9 10.9 - - - 4,086.9 10 11.9 

5 22 5,159.7 2.8 4,454.8 10 1056.6 4651.6 9 10.6 - - - 4,235.0 10 10.4 

6 23 5,539.8 4.3 4,952.4 8 812.1 4972.1 8 12.3 - - - 4,406.9 10 12.8 

7 24 5,350.9 6.6 4,806.6 8 3734.0 4878.7 8 15.8 - - - 4,406.6 10 23 

Mean 4,504.9 2.3 4,044.4 8.9 623.4 4,128.8 8.4 7.5 3,509.6 9.5 3,884.4 3,732.9 9.5 7.6 

%Imp   10.2%   8.3%   22.1%   17.1%   

In the following, we analyze the performance of the heuristic approach compared to its optimal 

counterpart. The performance of LTA compared to NTA is analyzed in Section 7.5.2. Figure 

7.11 presents the average deviation of LTAf and LTAd from their optimal counterparts LTAf
opt

 

and LTAd
opt

, respectively. Performance is assessed in terms of routing costs, and results are 

presented for each number of deliveries per vehicle (𝐶𝑘) averaged over all DO levels and test 

problems (|℘|). According to this figure, the proposed heuristic seems to be highly competitive 

with respect to the optimal solutions of the MILP solver. In particular, for the fixed transfer 

location case, the solutions obtained by the heuristic have an average deviation of 1.8% from 

the optimal ones. When load transfer is allowed at any not yet served customer, the average 

deviation of the heuristic solution from the optimal is about 1.0%. The deviation for both cases 

seems to be consistent throughout the different numbers of delivery orders per vehicle (value 

𝐶𝑘). 
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Figure 7.11. Overall heuristic assessment (deviation from optimal) 

Regarding computational effort, Table 7.5 shows that the proposed heuristic arrives at the 

solution in less than 10 seconds on average for all cases. This validates its efficiency and 

suitability for practical dynamic applications for which fast solutions are required. It should be 

noted here that the greatest portion of computational effort is spent in solving the VRP-like 

problem (Stage I of the algorithm described in Section 7.4.2.1).  

7.5.2 Re-optimization with load transfers for a pair of vehicle routes  

In this Section we consider again the case of two vehicles, and investigate further the benefit of 

load transfers during re-optimization w.r.t. the policy that does not allow such transfers. To do 

so, we investigate the application of load transfers (LTA) for a pair of vehicles with overlapping 

routes and compare it with the solution provided by NTA. Recall that LTA is applied after the 

solution of the re-optimization problem, which typically results to overlapping routes, as 

described in Section 7.3.1. We investigate two operating scenarios: a) a case in which both 

vehicles are en route, and b) a case in which one of the two vehicles is located at the depot (i.e. 

dispatched from depot to serve newly received DO after the solution of NTA, but before the 

application of LTA).  

7.5.2.1 Both vehicles en route 

This is the case of Section 7.5.1. Thus, no new experiments are conducted, but the results 

presented already in Table 7.5 are further analyzed.  

Figure 7.12 illustrates the performance of LTAf and LTAd (heuristic procedure of Section 7.4.2) 

in terms of percentage difference (improvement) from the NTA solution (B&P heuristic of 



Chapter 7: The DVRPMB with Load Transfers  

162  DeOPSys Lab 

Chapter 4.7), that is %(𝑇𝐷𝑁𝑇𝐴 − 𝑇𝐷𝐿𝑇𝐴)/𝑇𝐷𝑁𝑇𝐴. The results are presented per number of 

deliveries per vehicle (𝐶𝑘). For each 𝐶𝑘 value the Figure presents the average cost 

improvements over all DO levels and test problems. The overall average performance is also 

provided.  

According to the Figure, both LTA algorithms outperform NTA in all investigated instances in 

terms of routing costs. In particular, LTAf and LTAd offer savings of 7.9% and 16.5% on 

average, respectively. As expected, the option of allowing loads to be transferred at the location 

of any not yet served customer (LTAd) leads to significantly higher savings. Furthermore, the 

performance of both LTA algorithms improves w.r.t. the number of delivery orders per vehicle, 

as expected, since the longer the routes, the more chances for significant overlaps and more 

possibilities for load transfers. This indication leads also to the assumption that load transfer 

policies might be more preferable during early re-optimization cycles, when vehicles have not 

executed significant portion of their routes.  

 

Figure 7.12. Average performance of LTA w.r.t. the number of delivery orders per vehicle 

7.5.2.2 The case of one vehicle located at the depot 

The tests for this case were generated based on the customer coordinates of the Solomon 

benchmarks (Solomon, 1987; see description on benchmarks in Chapter 5, Section 5.4.1.2). In 

order to assess the impact of customer geographical distribution on the performance of LTA, 

we used Solomon instances from both the R and C configurations. For each configuration, we 

generated cases consisting of 15, 25, and 50 customer orders. The number of customers was 

limited to 50, since only two vehicles were involved. For each of those 6 test sets (2 types of 

geographical distribution, 3 levels of number of customers), we investigated cases with and 

without TW, resulting in a total of 12 test cases, as shown in Table 7.6.  
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For the test cases with 15 customers and TW, we generated one test problem for every 

benchmark instance in the R1 and C1 datasets, i.e. 11 and 8 test problems, respectively (note 

that R101 and C101 instances were excluded because their tight TW profile cannot offer any 

savings by applying load transfers). For the test cases with 25 or 50 customers and TW, we 

generated one test problem for every instance in the R2 and C2 datasets (i.e. 11 and 8 test 

problems, respectively) for each level of the number of customers. It is noted that the R2 and 

C2 datasets permit the assignment of 25 and 50 customers in 2 vehicles. For the test cases (of 

15, 25 and 50 customers) with no TW, we employed instances vrpnc8 and vrpnc14 of 

Christofides et al. (1979). These instances do not have customer TW but use the same customer 

coordinates as in Solomon’s R1 and C1 datasets. For each one of the vrpnc8 and vrpnc14, we 

generated 10 different test problems (using random selection of customers from the original 

vrpnc8 and vrpnc14 instances). Based on the above, a total of 117 test problems were generated, 

as shown in Table 7.6. 

 Table 7.6. Test cases  

Test 

case 

Corresponding 

Benchmark 

Customer 

Orders (V) 

Geographical 

Distribution (R2) 

Time windows 

(TW) 

# Test 

problems  

1 R1 15 R TW 11 

2 vrpnc8 15 R NoTW 10 

3 C1 15 C TW 8 

4 vrpnc14 15 C NoTW 10 

5 R2 25 R TW 11 

6 vrpnc8 25 R NoTW 10 

7 C2 25 C TW 8 

8 vrpnc14 25 C NoTW 10 

9 R2 50 R TW 11 

10 vrpnc8 50 R NoTW 10 

11 C2 50 C TW 8 

12 vrpnc14 50 C NoTW 10 

For each test problem, customers were randomly selected from their original corresponding 

benchmark problem. Note that we skewed the selection towards consecutive customers for the 

C configuration instances (due to the sequential order of customers within clusters in the 

original benchmark instances). Customer characteristics, shift duration and capacity restrictions 

were considered as per the original benchmarks. 

The following also hold for all test problems: i) for each test problem, we randomly selected 

static (delivery) orders and DO as per Table 7.7; ii) the initial solution corresponds to the 

optimal assignment of all delivery orders to one of the two available vehicles, while the other 

is located at the depot, iii) re-optimization is triggered at the time the vehicle arrives at 
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(𝑛̌ + 1) − 𝑡ℎ customer (see Table 7.7); iv) as in previous Sections, for each test problem, we 

applied NTA, LTAf and LTAd; v) the fixed transfer location was considered to be the centre of 

mass of the customer nodes.  

Table 7.7. Customer characteristics of the generated instances  

Number of customer orders  
𝒏̃ 

Total Deliveries DO 

15 9 6 2 

25 13 12 2 

50 32 18 5 

Table 7.8 summarizes the results obtained for each test case. Results have been averaged over 

all test problems within a test case. The first three columns of the Table indicate the 

characteristics of each case, according to Table 7.6. The subsequent column sets present the 

performance of NTA, LTAf and LTAd; i.e., the total distance travelled (TD), the total 

computational effort (CT), the number problems in which a transfer operation took place (|U|) 

and the percentage deviation of each LTA strategy from NTA (%Dev).  

Table 7.8. Detailed results for NTA and the proposed LTA algorithms  

Test 

case 
V 𝐑𝟐 TW 

# 

Insta

-nces 

𝐍𝐓𝐀 𝐋𝐓𝐀𝐟 𝐋𝐓𝐀𝐝  

TD CT TD |U| CT %Dev TD |U| CT %Dev 

1 15 R TW 11 297.1 3.1 281.2 7 4.6 5.4% 267.1 10 4.7 10.1% 

2 15 R NoTW 10 287.7 6.3 257.6 9 4.3 10.5% 249.4 10 6.1 13.3% 

3 15 C TW 8 223.7 3.4 176.0 7 4.1 21.3% 168.7 8 5.9 24.6% 

4 15 C NoTW 10 210.5 7.8 183.9 9 4.5 12.6% 180.3 10 6.3 14.3% 

5 25 R TW 11 469.4 6.1 402.6 9 25.1 14.2% 397.8 11 27.2 15.2% 

6 25 R NoTW 10 386.6 18.2 335.0 10 21.7 13.4% 325.1 10 22.6 15.9% 

7 25 C TW 8 285.2 5.4 253.9 8 20.3 11.0% 236.3 8 13.9 17.1% 

8 25 C NoTW 10 304.2 30.4 260.0 10 19.3 14.5% 251.4 10 16.3 17.4% 

9 50 R TW 11 688.0 15.1 620.6 11 43.8 9.8% 598.8 11 41.6 13.0% 

10 50 R NoTW 10 571.4 33.9 503.0 10 42.6 12.0% 496.6 10 40.3 13.1% 

11 50 C TW 8 547.5 15.2 475.4 8 41.9 13.2% 440.7 8 49.4 19.5% 

12 50 C NoTW 10 405.8 45.1 359.9 10 43.1 11.3% 341.6 10 45.9 15.8% 

Mean 389.8 15.8 342.4 9.0 22.9 12.4% 329.5 9.7 23.4 15.8% 

The table clearly shows the superiority of both LTAf and LTAd over NTA for all investigated 

cases. Another interesting observation is that load exchanges are performed in more than 90% 

of the investigated cases (value |𝑈|), illustrating the significance of employing a transfer policy 

in such a setting. LTA provides the solution in less than 1 minute (even for the case of 50 

customers). 
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Figure 7.13 illustrates the overall performance of LTA w.r.t. geographical distribution and TW 

parameters. The results shown are the averages of all related test problems. The performance is 

reported as a percentage improvement (saving) over NTA. According to the Figure, LTA 

outperforms NTA in all cases with a tendency of savings to increase when customers are 

clustered (C configuration). This can be attributed to the fact that the vehicle en route (assigned 

with delivery orders) may travel to different clusters. When the DO are introduced, under NTA 

both vehicles may be forced to visit the same clusters, leading to inferior results.  

 

Figure 7.13. Average performance of LTA w.r.t. geographical distribution and TW patterns 

According to Figure 7.13, LTAd consistently outperforms LTAf in all cases and this superior 

performance seems to be enhanced in clustered cases. What is interesting to note in this 

operating scenario and in contrast to the case investigated in Section 7.5.2.1 (both vehicles en 

route), is that LTAf seems to be more competitive to LTAd, especially for cases where customers 

are distributed uniformly (R) and TW are not present. This may be caused by the flexibility of 

the vehicle located at the depot to travel directly to the fixed transfer location and pick-up the 

transferred loads. Finally, LTA seems to offer higher savings when TW are imposed and 

customers are clustered, compared to the non-TW cases. This may be attributed to the fact that 

TW may force vehicles under NTA to re-visit the same clusters more than once, which will 

cause higher costs due to the typically long inter-cluster distances. This effect may be 

moderated when load transfers are introduced (i.e. each vehicle travels to a single cluster). 

7.5.3 Re-optimization with load transfers for multiple (more than two) vehicles 

To investigate the performance of LTA in cases in which more than two vehicles are involved, 

we employed indicative cases with and without TW. For the former, we used two (2) of the 
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benchmark instances of Solomon (1987), i.e. R109 and R112 with average TW width of 25% 

and 50% of the allowed working time (𝑇𝑚𝑎𝑥), respectively. Note that computational 

experiments not presented in this Section have illustrated that there is very limited benefit from 

allowing transfer operations in cases in which the average TW width is relatively tight (i.e. less 

than 25% of 𝑇𝑚𝑎𝑥). In order to investigate cases with no TW, we employed the vrpnc8 instance 

of Christofides et al. (1979) that uses the same customer coordinates as the Solomon R109 and 

R112 instances. 

For each one of the three instances, we generated 5 different problems (different selection of 

delivery orders), resulting in a total of 15 test problems. 50% of delivery orders were randomly 

selected from the 100-customer problem; for the remaining 50 orders (of the 100-customer 

problem), we randomly assigned a time of arrival (ℎ𝑖 , 𝑖 ∈ 𝐹) during the window [0,0.75 ∗ 𝑇𝑚𝑎𝑥] 

according to a continuous uniform distribution. We selected 33% of those that arrive earlier to 

form the set of DO. 

The following also apply in the current experimental cycle: (i) the initial solutions (assignment 

of delivery orders to routes) were obtained by a Clark & Wright savings heuristic (Clark and 

Wright, 1964) followed by a Reactive Tabu Search metaheuristic (Osman and Wassan, 2002) 

used as post-optimization; (ii) re-optimization is triggered at the time when the last DO have 

been received; (iii) the re-optimization problem was solved following the framework presented 

in Section 7.4.1 (Figure 7.7); (iv) for the following investigation, we employed only the LTAd 

algorithm.  

Table 7.9 provides relevant information per instance as an average of all test problems of this 

instance; in particular, we present the total number of orders considered during re-optimization 

(Total), the total number of delivery orders (SO) and the number of DO. Additionally, 

information regarding the number of SO and DO per route is provided. The number of routes 

reported corresponds to the solution prior to LTA.  

Table 7.9. Information of each investigated instance during the re-optimization cycle 

Instance Total SO DO # Routes SO/route DO/route 

R109 46.5 29.5 17 8.5 3.5 2.0 

R112 48.6 31.6 17 7.2 4.4 2.4 

vrpnc8 48.6 31.6 17 7.6 4.2 2.2 

The results obtained are summarized in Table 7.10 per instance, averaged over all test problems. 

The first two columns correspond to the instance and the percentage of routes involved in load-

transfers w.r.t. the total number of routes after the application of NTA (%𝑃̂). The subsequent 
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columns are grouped in two sets: a) the first set (4 columns) presents the performance of LTA 

vs. NTA w.r.t. the complete solution (all routes), and b) the second set presents the performance 

of LTA vs. NTA w.r.t. the routes participating in load-transfer operations (transfer pairs). In 

each set, we report the routing cost obtained from NTA and LTAd, the percentage savings of 

LTAd over NTA (%Dev) and the total computational effort (CT) in seconds. The CT for the 

first set (complete solution) comprises the time for the solution of the re-optimization problem 

and the application of LTA; CT for the second set reports only the average time for the solution 

of LTA involving the pairs for which transfers took place. Finally, the last row of the Table 

reports average performance indicators per instance.  

Table 7.10. Detailed results for NTA and LTAd 

Instance %𝑷̂ 
Complete solution Transfer pairs 

𝐍𝐓𝐀 𝐋𝐓𝐀𝐝 %Dev CT 𝐍𝐓𝐀 𝐋𝐓𝐀𝐝 %Dev CT 

R109 16.0% 762.7 751.5 1.5% 15.3 196.8 189.8 3.5% 3.6 

R112 16.7% 646.4 629.9 2.5% 20.8 203.9 190.2 6.7% 5.4 

vrpnc8 27.0% 581.0 548.1 5.7% 50.7 222.0 206.5 7.0% 12.9 

Average 19.9% 663.3 643.2 3.2% 28.9 207.6 195.5 5.7% 7.3 

Based on the computational results presented in Table 7.10, LTA seems to provide savings over 

all reported instances, with routing cost reductions of up to 5.7% with respect to the complete 

solution. The savings reported for the transferred pairs present similar behavior to the one 

reported in Section 7.5.2 (on the average), especially for the NoTW case (vrpcn8), considering 

that in the current scenario, each route comprises of 4 delivery orders on the average. The results 

also indicate that as TW width increases, LTA is able to identify more candidate pairs for 

transfer (%𝑃̂ value). This also leads to improved results. The results are also illustrated, perhaps 

more clearly, in Figure 7.14. From this Figure it is clear that the performance of LTA improves 

significantly when the TW width increases from medium (R109) to large (R112) or none 

(vrpnc8).  
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Figure 7.14. Average performance of LTA on the full re-optimization problem 

7.5.4 Performance of re-optimization strategies in DVRPMB-LT 

In this Section, we evaluate the performance of LTA compared to NTA under different re-

optimization policies. To do so, we employed the 100-customer instance without TW of Section 

7.5.3 (vrpnc8). Based on this instance, we generated 5 different test problems (different 

selection of delivery orders) by randomly selecting 50% of the customers to be delivery orders. 

The remaining 50% customers form the set of DO. Each DO was assigned with a time of arrival 

during the window [0,0.75 ∗ 𝑇𝑚𝑎𝑥] according to a continuous uniform distribution. The initial 

solutions (routes) were obtained with the same process described in Section 5.3 (note that initial 

solutions involved between 5 and 6 vehicle routes).  

For the experimental analysis, we employed the SRR and NRR policies, described in Chapter 

5 (see Section 5.2). Recall that in SRR the re-optimization problem is solved upon the arrival 

of each DO, while in NRR re-optimization is performed after the arrival of a predefined number 

𝑁 of DO. For the latter, we used 𝑁 = 0.1𝑁̂, 0.2𝑁̂, 0.33𝑁̂ (where 𝑁̂ is the total number of DO) 

hereafter designated as NRR-1, NRR-2 and NRR-3. Each policy was tested under the partial-

release tactic, i.e. only the DO scheduled for implementation prior to the next re-optimization 

cycle are released for implementation; the others are re-considered in the following re-

optimization cycle. Each re-optimization problem was solved following the framework 

presented in Section 7.4.1 and only the LTAd algorithm was employed.  

In order to assess the performance of LTA and NTA under the different re-optimization 

policies, we employed the so-called value of information (VOI) metric (Mitrovic-Minic et al., 

2004), described in Chapter 5 (see Section 5.4.1.1) which measures the percentage deviation of 
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the dynamic problem’s solution compared to the solution of its static counterpart (i.e. when all 

DO are known prior to vehicles are dispatched from the depot).  

Table 7.11 summarizes the results obtained from solving the dynamic test problems by each re-

optimization policy using the NTA and LTA re-optimization algorithms. Specifically, the Table 

presents the average VOI for all five test problems per policy and re-optimization algorithm 

(VOI∗ designates the average VOI for the * algorithm). The percentage improvement in the last 

column is the relative percentage improvement of the VOI resulting from the load transfer 

approach; i.e. −(
𝑉𝑂𝐼𝐿𝑇𝐴−𝑉𝑂𝐼𝑁𝑇𝐴

𝑉𝑂𝐼𝑁𝑇𝐴
) 𝑥100.  

Table 7.11. Performance of LTA and NTA per re-optimization policy 

Re-optimization Policy 𝐕𝐎𝐈𝐍𝐓𝐀 𝐕𝐎𝐈𝐋𝐓𝐀 %Improvement 

SRR 29.3% 26.9% 8.3% 

NRR-1 30.2% 27.0% 10.4% 

NRR-2 37.0% 31.8% 14.0% 

NRR-3 50.0% 40.2% 19.5% 

The table shows that LTA improves the results provided by NTA under all re-optimization 

policies. It is interesting to notice that the percentage improvement increases when the number 

of elapsed DO per re-optimization cycle increases (less re-optimization cycles). This can be 

attributed to the fact that infrequent re-optimization causes larger portion of the routes to be 

completed and allows fewer options available for incorporating newly arrived DO in the current 

vehicles en route. Thus, new vehicles stationed at depot are dispatched in order to cover the 

demand, causing significant overlaps, which benefit from load transfer operations (LTA). On 

the other hand, SRR re-considers all DO not yet served providing more possibilities for DO 

combinations and, thus, better allocation to the available fleet. Thus, load transfer operations 

may offer limited savings. It should be noted that the percentage improvement (of Table 7.11) 

in terms of distance travelled ranges from 1.9% (for SRR policy) to 6.5% (for NRR-3 policy) 

on the average.  
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8.1 Conclusions 

The Dynamic Vehicle Routing Problem with Mixed Backhauls (DVRPMB) seeks to assign in 

the most efficient way dynamic pick-up requests that arrive in real-time while a predefined 

distribution plan is being executed. We addressed the DVRPMB through iterative re-

optimization. In addition to defining the re-optimization model and appropriate solution 

methods, we drilled-down to significant aspects concerning the re-optimization process, we 

addressed the case of limited fleet (in which not all dynamic orders may be served), and the 

case in which delivery orders are allowed to be transferred to other vehicles.  

Re-optimization strategies for DVRPMB 

One of the critical elements for tackling DVRPMB concerns the process of updating the a priori 

plan. In this research we considered two fundamental issues: a) the re-optimization problem 

(how to re-optimize), and b) the re-optimization process; i.e. when to re-plan (re-optimization 

frequency) and what part of the new plan to communicate to the drivers (implementation tactic). 

Regarding “how to re-optimize”, we proposed a Branch-and-Price (B&P) approach, which 

exploits the characteristics of the dynamic problem in hand to solve multiple sub-problems of 

limited size in order to identify columns that can further enhance the value of the objective 

function. This allows the algorithm to address re-optimization problems of practical size. 

Additionally, we appropriately enhanced the dominance criteria used in solving the sub-

problems to discard non-promising paths without compromising optimality. For challenging 

cases (e.g. without time-windows), we proposed a novel insertion heuristic operating within a 

column generation framework. The latter provides efficient solutions with a limited deviation 

from the optimum (2.2% on the average).  
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Regarding the “when to re-optimize”, we presented and analyzed typical re-optimization 

policies, i.e.: i) re-optimization upon arrival of each DO, ii) re-optimization after a certain 

number of DO have been received. In addition, we investigated the effect of two 

implementation tactics regarding the “what part” to release for implementation: i) immediate 

release of all DO for implementation (FR) and, ii) release of only those DO that are scheduled 

for implementation prior to the next re-optimization cycle (PR)11. We provided theoretical 

insights regarding the expected behavior of those tactics. 

We illustrated through extensive experimentation that re-optimization upon the arrival of each 

DO under the PR tactic provides superior results on the average. However, this policy seems to 

be the least favorite when the FR tactic is employed. Furthermore, our experimentation under 

various operating scenarios has indicated the following: i) when the business case allows it, one 

should always re-optimize under the PR tactic in as short re-optimization intervals as possible. 

ii) When the FR tactic is required due to the characteristics of the practical environment, one 

should prefer re-optimization over short to medium intervals for cases of tight to medium TW, 

and over medium to large intervals for wider TW cases. iii) In environments with strong 

dynamism, medium interval policies (regardless of tactic) seem to provide the safest option.  

The DVRPMB with limited resources (m-DVRPMB) 

We also investigated the above problem for the case of limited fleet. In this case, we tested three 

objective functions. In the first alternative (𝑧̌1), the primary objective is to maximize the number 

of served DO; among the solutions with equal number of served DO, the one with the minimum 

routing cost is the preferred one. We also introduced a second objective function (objective 𝑧̌2) 

that accounts for vehicle productivity during each re-optimization cycle. The objective function 

attempts to maximize the number of orders served (static and dynamic) within the upcoming 

re-optimization cycle, among the solutions with the same number of served DO. The third 

objective function (objective 𝑧̌3) assigns a profit to each order to be served at any future period, 

but this profit decreases linearly depending on the period (re-optimization cycle) the order is 

served. For the latter two objectives, the re-optimization time instances have to be 

predetermined (known a priori). To address the m-DVRPMB, we proposed the required 

modifications in both the DVRPMB model and the solution approach (column generation).  

                                                 
11 The implementation of this tactic depends on the technology used. Typically the driver receives only the DO to 

be served next. 



Chapter 8: Conclusions and future research  

172  DeOPSys Lab 

We investigated initially through experimentation the effectiveness of the re-optimization 

heuristic under limited resources and objective 𝑧̌1. We show that the proposed B&P heuristic 

offers efficient solutions also in this case with average deviation from the optimum in the order 

of 1.8%. The experimentation also illustrated that the performance of the re-optimization 

strategies (policies and tactics) is not affected significantly by limiting the available resources.  

We also assessed the performance of the three proposed objectives in m-DVRPMB with re-

optimization occurring at predefined time instances. The results illustrated that objectives 𝑧̌2 

and 𝑧̌3 (which consider vehicle productivity) can yield higher customer service compared to 

objective 𝑧̌1, offering up to about 15% more DO served under certain conditions. In particular, 

the experiments indicated that objectives 𝑧̌2 and 𝑧̌3 are more appropriate for cases with 

increasing time-window widths (e.g. with average TW width greater than 40% of the available 

working horizon), or cases for which a majority (more than 50-60%) of DO may be served by 

the available fleet. In cases with narrow TW or limited fleet availability, accounting for vehicle 

productivity does not seem to help appreciably. Furthermore, with respect to re-optimization 

strategies (policy and tactic), the results illustrate that objectives 𝑧̌2 and 𝑧̌3 perform significantly 

better than objective 𝑧̌1 under the FR tactic, and objective 𝑧̌3 seems to be more efficient for the 

preferred short re-optimization intervals (i.e. 5-15% of the available working horizon).  

The application of the proposed method for the m-DVRPMB in a next-day courier service 

provider compared the performance of the proposed B&P heuristic with a) the performance of 

the process followed by the dispatchers, and b) that of an insertion-based heuristic proposed by 

Ninikas et al. (2014). The results indicate that our B&P algorithm significantly outperforms 

both the current planning practices of the courier operator and the heuristic used for comparison.  

The DVRPMB with Load Transfers (DVRPMB-LT) 

We investigated a challenging variant of DVRPMB that allows transfer of orders between 

vehicles during plan implementation (real-time). In particular, load transfers are considered in 

the re-optimization problem, which is solved repeatedly in order to incorporate newly received 

orders in the plan. Allowing for load transfers adds significant complexity to the problem and 

needs to be dealt in a fundamentally different way compared to the conventional DVRPMB. 

For the underlying re-optimization problem, we developed an appropriate model using an arc-

based formulation. To solve re-optimization problems related to practice, we restricted each 

vehicle to participate to up to one transfer operation, and proposed an efficient heuristic 

framework. The latter considers all possible vehicle pairs that may benefit from a load transfer 
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operation, and solves the related pair-wise problems with an appropriate heuristic procedure. 

The latter provides solutions of high quality with a limited deviation from the optimal ones (less 

than 2% on the average). 

Considering the re-optimization problem for a pair of vehicles, our experimental results have 

indicated that load transfer operations may offer average savings of up to 22% when transfer 

may take place at the location of any not yet served customer, and up to 14% when a fixed 

(predefined) transfer location is considered. These savings tend to increase when the number of 

delivery orders increases or when customers are clustered. For the case of multiple vehicles, 

the re-optimization savings with load transfers reached 5.7% w.r.t. the no transfer case. These 

savings tend to increase under wider time-windows.  

Considering the full dynamic case, load transfer operations result in significant savings, 

especially under less frequent re-optimization, in which the possibilities of load transfers 

increase. Even if re-optimization is performed upon the arrival of each new order (SRR policy), 

the savings are substantial and in the order of 7%. 

8.2 Future research 

The DVRPMB studied in this dissertation forms a dynamic variant of the more generic one-to-

many-to-one PDPs (1-M-1 PDPs). An interesting research direction is to consider the dynamic 

counterparts of other relevant problems of this family, including the: i) dynamic version of 

VRPCB, in which linehaul orders (deliveries) must be served prior to backhaul orders (pick-

ups) and ii) the dynamic version of VRP with Simultaneous Pickup and Delivery Demands. 

The performance of the various re-optimization strategies (policies and tactics) proposed in this 

dissertation may be assessed within these contexts.  

A second interesting extension of the current work is to study probabilistic models that consider 

historical data in order to forecast dynamic demand. Such a model may be combined with the 

proposed re-optimization process in order to select the appropriate re-optimization policy (i.e. 

dynamically adapt the re-optimization frequency according to the expected arrival pattern of 

DO) and tactic (selectively release DO for implementation, regardless of the time they are 

scheduled to be served).  

A related consideration in this dynamic setting concerns the prioritization of orders at each re-

optimization cycle. Specifically, during a certain re-optimization cycle it may be beneficial to 

favor the service of certain customer orders (e.g. urgent ones) in the expense of others, under 
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the assumption that the excluded (e.g. not urgent) ones can fit in the plan during a subsequent 

re-optimization cycle. Thus, one should examine whether it is beneficial to prioritize service of 

certain orders, and if so, under which conditions this is favorable to the problem’s objective. 

This consideration can be also be beneficial when forecasting information is available and may 

be used to prioritize certain orders appropriately. 

In the current research, it has been assumed that vehicles are dispatched according to the 

problem needs, i.e. in order to respond to the demand (customer orders) as it is known at the 

time of re-optimization. An interesting direction, which is also relevant in practice, is to study 

different dispatching policies, i.e. dispatch more vehicles than necessary (or all vehicles 

available at depot) at the start of operations or during execution (re-optimization), in 

anticipation of additional work to come. The performance of these dispatching policies may be 

studied with respect to various factors of the environment (e.g. degree of dynamism, time-

window profiles, etc.), or under the various re-optimization strategies. Those dispatching 

policies can be investigated in combination with waiting strategies (Mitrovic-Minic and 

Laporte; 2004, Ichoua et al.; 2006) and with stochastic methods that exploit knowledge about 

future demands (Ichoua et al.; 2006).  

Regarding the solution of the re-optimization problem, we have focused in this dissertation on 

column-generation-based algorithms, since we could exploit the structure of the problem in 

hand and offer near-optimal solutions in reasonable times. However, advanced heuristics or 

metaheuristics may be investigated targeting faster computational times that can be scalable to 

the problem size.  

Proposals for future research in the interesting case of load transfer operations include the 

following: 

 Following the formulation we developed in Chapter 7, a set-partitioning problem can be 

also formulated (route-based) in order to develop more efficient algorithms of the column 

generation type (B&P). As proposed by Cortes et al. (2010), the set-partitioning problem 

could be formulated by introducing additional columns when the transfer location is 

introduced. Feasibility of the route sequence in order to build a complete trip will be ensured 

by appropriate binary variables. This approach is expected to permit column generation 

algorithms to deal with cases of large size.  

 In this dissertation, for the solution of the re-optimization problem we have assumed that 

each vehicle is allowed to participate in only one transfer operation throughout its remaining 



  Solving the DVRPMB through re-optimization 

Dpt. of Financial & Management Engineering  175 

(not executed) route. Relaxing this assumption and allowing multiple transfers per vehicle 

(one-to-many policy) could potentially lead to lower costs. Development of more efficient 

algorithms to handle this context, is encouraged as part of future research.  

 The investigation of load transfer operations along with diversion strategies (Ichoua et al.; 

2000, see also Section 2.3.3.3) may also be an interesting topic of future research. Diverting 

a vehicle away from its current destination to meet another vehicle operating in the vicinity, 

may offer higher savings in the total distance traveled.  

 More practical aspects for future research on load transfer operations may involve: a) 

examining the behavior of the algorithm and the overall benefit of load transfers for  

heterogeneous fleets (those with vehicles of different capacities) and b) applying  penalties 

reflecting the duration of the load-transfer operations, as well as the related interruption, in 

order to ensure that  load-transfers will not be performed in the expense of valuable 

resources (e.g. time). 
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APPENDICES 

 

 

Appendix A. Detailed results of the experiments presented in Chapter 5 

We present here the detailed experimental results, which were summarized in Chapter 5. 

Specifically, Table A.1 provides additional performance indicators of HEUR and OPT 

algorithms per investigated dataset, following the results displayed in Table 5.3 of Chapter 5 

(see Section 5.4.2); TD refers to total distance traveled and NR refers to number of routes in 

the final solution. All values are averages w.r.t. all problems and instances. 

Tables A.2-A.7 present the detailed results of the re-optimization strategies per instance as 

illustrated in Section 5.4.3 of Chapter 5. In particular, Tables A.2-A.3, provide the detailed 

results in terms of VOI, while Tables A.4-A.7 present detailed performance indicators (distance 

travelled and number of routes) per re-optimization strategy and instance. Note that for those 

Tables, the values presented are averages w.r.t. all problems (replicates). 

Table A.1. Additional performance indicators of HEUR and OPT algorithms 

Dataset Nodes 

𝒅𝒐𝒅 =  𝟐𝟓% 𝒅𝒐𝒅 =  𝟓𝟎% 

HEUR OPT HEUR OPT 

𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 

R1 100 1404.0 15.6 1375.9 15.0 1443.8 16.1 1417.9 15.7 

C1 100 958.9 11.1 933.8 10.6 941.1 10.8 917.8 10.5 

RC1 100 1573.4 15.1 1534.3 14.6 1597.2 14.7 1565.8 14.7 

MR2 50 802.4 4.1 785.9 3.5 816.0 5.0 798.8 4.1 

MC2 50 483.4 3.8 476.9 3.6 517.3 3.9 507.6 3.7 

MRC2 50 879.3 5.0 855.9 4.3 926.4 5.4 906.0 4.3 

Average 1016.9 9.1 993.8 8.6 1040.3 9.3 1019.0 8.8 
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Table A.2. Detailed performance of re-optimization strategies for R1, C1 and RC1 instances and for 25% and 75% dod 

Instance 

𝒅𝒐𝒅 = 𝟐𝟓% 𝒅𝒐𝒅 = 𝟕𝟓% 

FR PR FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

R101 4.8% 4.6% 5.7% 8.9% 3.1% 4.0% 5.5% 8.9% 38.3% 36.2% 49.7% 87.7% 27.2% 32.4% 49.5% 87.7% 

R102 14.3% 13.2% 12.4% 19.6% 12.1% 13.1% 12.3% 19.6% 47.2% 42.7% 43.9% 94.1% 45.4% 41.2% 43.4% 94.0% 

R103 16.9% 19.0% 17.4% 25.5% 15.0% 18.2% 17.4% 25.5% 42.9% 37.5% 46.8% 81.6% 24.5% 27.7% 36.1% 77.7% 

R104 28.8% 31.7% 31.9% 41.1% 25.9% 30.3% 31.9% 41.1% 69.0% 40.9% 45.5% 39.1% 15.4% 14.5% 29.3% 32.6% 

R105 8.8% 8.3% 7.1% 13.1% 3.9% 5.8% 6.9% 13.0% 22.6% 17.2% 27.9% 53.3% 5.9% 7.0% 20.2% 54.0% 

R106 10.9% 11.1% 13.7% 22.2% 9.0% 10.8% 13.0% 22.2% 64.1% 66.6% 79.9% 139.8% 47.8% 62.3% 79.2% 139.8% 

R107 13.4% 15.0% 16.1% 28.7% 10.8% 14.6% 15.5% 28.7% 43.7% 41.1% 47.3% 94.9% 31.0% 28.4% 38.0% 86.7% 

R108 31.0% 23.5% 25.9% 46.5% 27.2% 20.4% 25.9% 46.5% 66.2% 45.9% 48.5% 42.1% 16.0% 18.4% 29.3% 35.4% 

R109 7.0% 5.7% 5.4% 6.1% 2.4% 2.7% 4.0% 5.6% 41.8% 21.8% 15.2% 27.3% 6.0% 8.3% 11.7% 26.2% 

R110 19.0% 18.1% 20.9% 21.4% 13.7% 15.2% 19.2% 21.2% 64.7% 45.9% 54.9% 79.3% 29.0% 28.6% 49.6% 75.7% 

R111 17.4% 18.2% 19.7% 25.4% 12.2% 14.7% 17.9% 24.1% 50.4% 45.0% 50.9% 85.9% 24.8% 22.5% 35.7% 80.5% 

R112 17.6% 12.7% 11.6% 9.6% 3.8% 4.6% 4.6% 6.3% 95.2% 56.5% 38.0% 25.2% 19.3% 16.9% 15.1% 15.8% 

R100 30.6% 28.4% 26.1% 23.6% 15.3% 20.1% 19.9% 19.4% 109.3% 79.1% 87.0% 101.0% 40.5% 44.5% 59.6% 80.9% 

C101 6.1% 10.8% 17.7% 44.6% 5.7% 10.7% 17.7% 44.6% 1.4% 46.4% 46.4% 59.7% 1.4% 46.3% 46.3% 51.7% 

C102 5.6% 9.4% 15.0% 33.0% 4.5% 8.4% 15.1% 33.0% 71.9% 24.8% 70.6% 86.1% 63.5% 24.4% 69.5% 76.6% 

C103 14.3% 16.4% 20.4% 38.1% 12.1% 14.7% 20.8% 38.1% 58.3% 56.8% 118.3% 146.7% 52.3% 21.7% 104.1% 125.6% 

C104 33.9% 20.1% 39.9% 54.6% 33.9% 20.1% 39.9% 54.6% 69.4% 63.2% 113.0% 130.2% 55.3% 43.0% 88.0% 98.8% 

C105 3.3% 6.9% 17.5% 45.3% 1.6% 6.3% 16.4% 45.3% 44.0% 37.0% 145.9% 154.2% 3.6% 24.5% 136.0% 139.5% 

C106 2.5% 9.6% 14.5% 38.9% 2.4% 9.5% 14.3% 38.9% 75.7% 82.9% 149.3% 169.4% 16.6% 56.9% 148.8% 177.4% 

C107 21.1% 27.2% 31.4% 58.9% 19.5% 26.7% 30.8% 58.9% 51.3% 49.7% 68.2% 78.8% 17.2% 30.1% 55.7% 66.4% 

C108 5.6% 10.3% 9.3% 22.5% 1.7% 6.9% 6.9% 21.7% 65.8% 44.1% 66.7% 74.7% 17.0% 31.5% 62.3% 72.8% 

C109 13.9% 16.0% 17.0% 24.5% 8.8% 11.9% 13.4% 23.8% 51.7% 43.3% 61.5% 79.1% 21.1% 26.2% 57.8% 69.3% 

C100 21.7% 22.4% 15.7% 23.4% 15.4% 13.2% 14.5% 18.6% 67.4% 65.6% 71.6% 83.2% 55.6% 61.2% 66.5% 74.7% 

RC101 7.1% 7.2% 7.9% 10.9% 4.3% 4.2% 6.6% 10.0% 39.1% 31.5% 36.5% 38.1% 22.1% 21.7% 30.5% 34.0% 

RC102 8.4% 7.7% 7.7% 10.8% 4.7% 6.7% 6.4% 10.8% 30.8% 27.9% 26.0% 39.0% 19.5% 19.1% 20.3% 39.0% 

RC103 8.1% 7.0% 8.4% 7.4% 4.5% 5.0% 7.2% 6.8% 58.3% 50.1% 48.0% 61.4% 18.2% 23.8% 18.8% 44.6% 

RC104 12.5% 11.5% 13.0% 21.6% 8.7% 6.7% 12.4% 21.9% 88.6% 60.0% 52.8% 69.1% 21.7% 24.8% 29.6% 37.8% 

RC105 12.8% 16.0% 14.3% 17.5% 10.0% 12.7% 12.9% 16.9% 48.1% 35.1% 30.5% 41.8% 18.2% 20.1% 22.9% 29.9% 

RC106 13.0% 13.1% 12.7% 11.2% 8.2% 9.9% 9.6% 9.9% 60.4% 40.5% 37.5% 35.0% 22.4% 24.6% 29.9% 31.2% 

RC107 17.4% 15.4% 17.5% 18.2% 10.3% 10.3% 11.0% 12.6% 78.3% 48.4% 49.4% 39.8% 23.3% 21.6% 26.2% 28.3% 

RC108 24.2% 17.5% 15.6% 12.0% 10.1% 10.5% 7.4% 9.0% 94.8% 60.3% 56.3% 42.3% 25.3% 20.6% 23.3% 29.0% 
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Table A.3. Detailed performance of re-optimization strategies for R1, C1, RC1, MR2, MC2 and MRC2 instances and for 50% dod 

Instance 

𝒅𝒐𝒅 = 𝟓𝟎% 

Instance 

𝒅𝒐𝒅 = 𝟓𝟎% 

FR PR FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

R101 15.9% 15.4% 17.4% 37.3% 9.4% 12.1% 17.0% 37.3% MR201 13.1% 10.1% 7.5% 8.0% 3.0% 2.4% 3.0% 4.0% 

R102 30.1% 33.0% 30.8% 56.7% 24.6% 30.2% 30.6% 56.6% MR202 15.9% 11.5% 8.7% 9.0% 1.5% 1.9% 3.8% 5.0% 

R103 44.3% 43.9% 41.3% 70.1% 38.9% 42.8% 40.5% 70.0% MR203 12.4% 17.4% 23.7% 24.0% 7.4% 13.8% 22.9% 25.0% 

R104 33.3% 30.7% 34.9% 50.4% 25.6% 23.0% 28.9% 48.6% MR204 33.3% 47.7% 42.2% 45.0% 17.2% 27.1% 37.9% 50.0% 

R105 11.4% 8.9% 12.2% 18.5% 5.2% 5.1% 9.3% 18.2% MR205 17.9% 14.9% 9.7% 10.0% 4.9% 2.3% 2.8% 6.0% 

R106 29.4% 32.7% 33.7% 69.5% 18.5% 26.2% 32.1% 69.5% MR206 21.5% 21.8% 11.7% 15.0% 5.4% 3.9% 3.7% 5.0% 

R107 42.5% 35.9% 40.2% 82.7% 31.4% 35.7% 39.6% 82.4% MR207 21.6% 14.3% 8.7% 10.0% 6.2% 3.3% 6.0% 7.0% 

R108 37.7% 29.9% 34.2% 54.3% 24.1% 20.3% 28.6% 50.9% MR208 42.2% 42.1% 40.8% 43.0% 21.3% 22.4% 38.5% 35.0% 

R109 17.7% 15.6% 12.9% 14.3% 3.8% 4.3% 5.3% 12.9% MR209 19.9% 10.7% 9.9% 10.0% 7.1% 2.2% 2.7% 7.0% 

R110 39.6% 39.0% 43.4% 57.3% 27.7% 25.6% 37.6% 56.0% MR210 19.0% 15.5% 9.9% 10.0% 3.4% 2.0% 4.6% 7.0% 

R111 36.5% 31.0% 32.7% 53.8% 21.1% 25.2% 27.4% 52.7% MR211 24.9% 25.8% 17.2% 18.0% 10.9% 11.7% 12.0% 13.0% 

R112 54.1% 32.2% 25.3% 20.0% 9.9% 10.8% 11.6% 11.5%          

R100 67.5% 56.8% 53.8% 64.9% 29.5% 31.6% 38.6% 52.2%          

C101 14.4% 23.4% 72.2% 88.2% 11.8% 22.0% 72.0% 92.9% MC201 38.2% 21.8% 17.3% 8.8% 4.9% 5.3% 5.0% 5.8% 

C102 30.6% 40.7% 62.1% 72.1% 25.7% 38.1% 62.1% 69.5% MC202 25.5% 10.7% 8.5% 5.0% 6.5% 4.8% 3.8% 3.5% 

C103 64.1% 30.0% 70.7% 90.9% 62.5% 29.2% 68.8% 77.9% MC203 60.4% 53.9% 47.2% 66.5% 29.7% 24.9% 43.1% 66.8% 

C104 57.0% 46.7% 103.9% 119.7% 64.7% 42.5% 89.0% 106.6% MC204 44.1% 51.6% 80.7% 81.4% 10.7% 15.9% 35.2% 42.3% 

C105 16.9% 30.2% 70.0% 84.3% 7.9% 26.2% 65.4% 80.3% MC205 70.5% 37.7% 35.4% 26.6% 2.8% 2.7% 4.3% 4.7% 

C106 17.4% 27.8% 58.5% 71.7% 5.8% 18.1% 53.1% 59.0% MC206 50.1% 32.1% 21.8% 18.8% 4.7% 5.7% 9.2% 6.6% 

C107 35.0% 37.2% 73.8% 84.9% 19.9% 28.4% 66.8% 82.3% MC207 55.8% 31.5% 22.2% 24.1% 3.4% 4.0% 5.8% 7.5% 

C108 50.3% 45.2% 37.4% 43.9% 1.1% 5.6% 32.6% 40.9% MC208 33.8% 43.3% 21.1% 15.0% 5.7% 4.4% 2.9% 1.7% 

C109 33.5% 34.1% 14.2% 18.3% 7.1% 3.7% 8.2% 9.9%          

C100 48.5% 48.2% 49.0% 54.8% 37.0% 41.8% 46.5% 54.8%          

RC101 24.0% 18.7% 22.2% 36.1% 15.8% 16.1% 19.8% 36.1% MRC201 19.9% 17.1% 13.7% 14.0% 3.9% 1.2% 1.3% 5.0% 

RC102 22.4% 17.7% 28.3% 38.5% 9.9% 11.8% 24.7% 38.5% MRC202 30.5% 20.8% 11.3% 15.0% 3.4% 1.4% 1.4% 5.0% 

RC103 23.1% 20.0% 22.0% 41.9% 11.6% 13.0% 20.1% 41.8% MRC203 41.9% 29.7% 22.3% 24.0% 14.1% 11.5% 21.9% 25.0% 

RC104 34.9% 36.3% 38.6% 36.1% 17.6% 18.2% 18.8% 27.3% MRC204 34.8% 41.3% 60.8% 62.0% 12.6% 27.6% 53.4% 60.0% 

RC105 23.7% 24.8% 24.6% 29.0% 12.2% 15.5% 19.1% 23.1% MRC205 24.7% 16.7% 15.6% 20.0% 5.1% 1.8% 2.9% 6.0% 

RC106 28.5% 22.5% 19.8% 23.4% 13.7% 14.1% 14.0% 21.9% MRC206 29.5% 18.4% 10.5% 13.0% 3.1% 1.8% 1.4% 5.0% 

RC107 33.4% 27.3% 28.6% 29.8% 15.9% 15.9% 20.2% 30.2% MRC207 29.4% 21.6% 14.2% 17.0% 11.4% 3.6% 4.9% 10.0% 

RC108 47.8% 30.9% 24.3% 17.8% 10.6% 12.1% 16.5% 13.1% MRC208 33.1% 24.0% 20.1% 25.0% 8.9% 7.4% 10.9% 12.0% 
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Table A.4. Additional performance indicators of re-optimization strategies for R1, C1 and RC1 instances and for 25% dod 

Instance 

FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 

R101 1840.1 21.3 1836.6 21.4 1855.9 21.9 1912.1 23.6 1810.3 21.1 1826.1 21.4 1852.4 21.9 1912.1 23.6 

R102 1847.4 23.8 1829.7 23.8 1816.7 23.9 1933.1 26.8 1811.9 23.5 1828.0 23.9 1815.1 23.9 1933.1 26.8 

R103 1700.8 21.2 1731.3 22.3 1708.0 22.6 1825.9 25.7 1673.1 21.2 1719.7 22.1 1708.0 22.6 1825.9 25.7 

R104 1583.0 21.6 1618.6 21.5 1621.1 22.6 1734.1 26.3 1547.3 21.5 1601.4 21.3 1621.1 22.6 1734.1 26.3 

R105 1663.8 18.2 1656.1 18.5 1637.8 18.4 1729.5 20.3 1588.8 17.4 1617.9 18.0 1634.7 18.5 1728.0 20.3 

R106 1555.3 17.3 1558.1 17.2 1594.5 19.0 1713.7 21.7 1528.6 17.2 1553.9 17.4 1584.7 18.9 1713.7 21.7 

R107 1478.4 15.4 1499.3 16.6 1513.6 16.9 1677.9 21.2 1444.5 15.1 1494.0 16.7 1505.8 16.8 1677.9 21.2 

R108 1500.1 18.6 1414.2 16.4 1441.7 17.9 1677.6 24.9 1456.6 18.3 1378.7 16.6 1441.7 17.9 1677.6 24.9 

R109 1427.2 14.0 1409.9 14.0 1405.9 14.2 1415.2 15.2 1365.9 14.4 1369.9 14.3 1387.2 14.5 1408.6 15.1 

R110 1495.1 16.1 1483.8 16.6 1519.0 17.6 1525.3 19.2 1428.5 16.2 1447.4 16.4 1497.6 17.6 1522.8 19.3 

R111 1472.0 16.9 1482.0 17.2 1500.8 17.6 1572.3 19.6 1406.8 16.3 1438.1 16.8 1478.2 17.4 1556.0 19.4 

R112 1330.7 12.0 1275.2 11.8 1262.8 12.2 1240.1 12.3 1174.5 11.5 1183.6 11.9 1183.6 11.7 1202.8 12.3 

R100 1317.7 13.4 1295.5 13.9 1272.3 14.3 1247.1 13.9 1163.3 12.2 1211.8 13.6 1209.8 13.4 1204.7 13.3 

C101 973.0 12.3 1016.1 13.0 1079.4 14.5 1326.1 18.5 969.3 12.2 1015.2 13.0 1079.4 14.5 1326.1 18.5 

C102 1044.4 12.0 1082.0 13.0 1137.3 14.1 1315.4 17.3 1033.5 12.2 1072.1 12.9 1138.3 14.1 1315.4 17.3 

C103 1211.2 12.1 1233.5 12.8 1275.9 13.6 1463.4 16.8 1187.9 12.4 1215.5 12.8 1280.1 13.7 1463.4 16.8 

C104 1596.3 23.9 1431.8 20.8 1667.9 27.2 1843.1 31.0 1596.3 23.9 1431.8 20.8 1667.9 27.2 1843.1 31.0 

C105 928.7 10.9 961.1 11.5 1056.4 12.8 1306.3 17.2 913.4 10.9 955.7 11.5 1046.5 12.8 1306.3 17.2 

C106 940.4 11.1 1005.5 12.5 1050.5 13.3 1274.3 17.6 939.5 11.1 1004.6 12.3 1048.6 13.3 1274.3 17.6 

C107 1130.1 10.5 1187.0 11.5 1226.2 12.6 1482.8 16.9 1115.2 10.6 1182.4 11.6 1220.6 12.8 1482.8 16.9 

C108 973.3 10.4 1016.7 11.0 1007.5 11.5 1129.1 14.1 937.4 10.8 985.3 11.3 985.3 11.5 1121.7 14.1 

C109 1067.8 10.0 1087.5 10.0 1096.8 10.3 1167.2 11.5 1020.0 10.4 1049.0 10.4 1063.1 10.5 1160.6 11.6 

C100 1326.4 13.1 1334.0 13.6 1261.0 12.9 1344.9 14.5 1257.7 13.9 1233.7 13.3 1247.9 13.1 1292.6 14.0 

RC101 1995.0 20.0 1996.9 20.0 2009.9 20.6 2065.8 21.8 1942.8 20.0 1941.0 20.0 1985.7 20.4 2049.0 21.8 

RC102 1817.1 18.4 1805.4 18.8 1805.4 18.8 1857.3 19.6 1755.1 18.2 1788.6 18.8 1783.6 18.6 1857.3 19.8 

RC103 1653.6 15.6 1636.7 15.8 1658.2 16.0 1642.9 16.2 1598.5 15.6 1606.1 15.6 1639.8 15.6 1633.7 16.2 

RC104 1557.2 14.0 1543.3 14.0 1564.1 14.8 1683.1 17.0 1504.6 14.0 1476.9 13.6 1555.8 14.8 1687.3 17.0 

RC105 2018.4 20.0 2075.7 20.6 2045.3 20.4 2102.5 21.6 1968.3 19.8 2016.7 20.4 2020.2 20.2 2091.8 21.6 

RC106 1755.1 14.8 1756.7 15.6 1750.5 15.2 1727.2 15.2 1680.6 15.2 1707.0 15.6 1702.3 15.4 1707.0 15.2 

RC107 1669.2 14.8 1640.8 15.2 1670.6 15.6 1680.6 16.4 1568.2 15.2 1568.2 14.8 1578.2 15.2 1600.9 15.6 

RC108 1741.5 14.6 1647.6 14.2 1620.9 14.6 1570.5 13.8 1543.8 14.0 1549.4 13.8 1506.0 13.8 1528.4 13.4 
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Table A.5. Additional performance indicators of re-optimization strategies for R1, C1 and RC1 instances and for 50% dod 

Instance 

FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 

R101 2472.7 25.1 2435.2 25.7 2676.5 27.1 3356.0 37.3 2274.3 23.7 2367.2 24.6 2673.0 26.7 3356.0 37.3 

R102 2407.8 29.1 2334.2 30.1 2353.8 30.3 3175.0 42.0 2378.4 27.6 2309.7 29.5 2345.7 30.2 3173.4 42.0 

R103 2037.4 28.8 1960.4 28.7 2093.0 30.7 2589.1 41.3 1775.0 28.0 1820.7 28.1 1940.4 30.5 2533.5 41.2 

R104 1890.1 15.4 1575.9 15.9 1627.3 18.5 1555.7 24.4 1290.7 16.9 1280.6 15.7 1446.1 18.2 1483.0 24.3 

R105 1887.2 18.3 1804.1 17.8 1968.8 18.9 2359.8 21.8 1630.1 17.8 1647.1 17.9 1850.3 18.7 2370.5 22.1 

R106 2285.1 19.9 2319.9 21.5 2505.1 23.2 3339.3 37.2 2058.1 18.7 2260.1 20.2 2495.4 23.0 3339.3 37.2 

R107 1806.7 19.9 1774.0 19.6 1852.0 24.2 2450.5 37.6 1647.0 19.1 1614.4 20.1 1735.1 24.0 2347.4 37.5 

R108 1820.3 13.2 1597.9 13.9 1626.4 17.2 1556.3 24.2 1270.5 14.8 1296.7 14.0 1416.1 16.9 1482.9 23.3 

R109 1902.5 15.2 1634.1 14.8 1545.6 15.3 1707.9 16.5 1422.1 14.6 1453.0 14.2 1498.6 14.7 1693.2 16.1 

R110 2025.2 18.7 1794.1 19.0 1904.7 24.2 2204.8 29.4 1586.2 19.1 1581.3 18.0 1839.6 23.6 2160.5 29.3 

R111 1872.1 19.1 1804.9 18.6 1878.4 20.8 2314.0 27.5 1553.5 17.7 1524.8 18.6 1689.2 19.9 2246.8 27.1 

R112 2280.8 14.1 1828.6 13.5 1612.4 13.8 1462.9 13.9 1393.9 13.3 1365.9 12.9 1344.9 12.5 1353.0 13.0 

R100 2154.3 17.9 1843.5 18.0 1924.8 19.6 2068.9 23.7 1446.2 16.0 1487.3 16.2 1642.8 18.5 1862.0 21.5 

C101 936.7 12.3 1352.4 14.2 1352.4 22.9 1475.2 24.1 936.7 12.4 1351.5 14.3 1351.5 23.1 1401.3 24.1 

C102 1799.3 13.5 1306.3 15.8 1785.7 20.2 1947.9 25.2 1711.4 13.9 1302.1 15.8 1774.2 20.2 1848.5 25.2 

C103 1881.0 16.3 1863.2 15.8 2593.9 20.2 2931.4 22.3 1809.7 15.9 1446.1 14.3 2425.2 19.3 2680.7 22.3 

C104 1730.8 11.9 1667.5 13.8 2176.3 29.1 2352.0 28.5 1586.7 18.3 1461.1 15.1 1920.9 27.1 2031.2 26.5 

C105 1285.1 11.2 1222.7 13.3 2194.6 19.9 2268.6 23.4 924.6 11.1 1111.1 13.8 2106.2 19.8 2137.4 20.3 

C106 1629.7 12.2 1696.5 14.7 2312.4 21.2 2498.8 23.6 1081.5 11.8 1455.3 13.8 2307.7 20.9 2573.0 22.7 

C107 1424.9 10.1 1409.8 10.3 1584.0 15.8 1683.9 18.9 1103.7 10.1 1225.2 10.9 1466.3 16.7 1567.1 17.6 

C108 1402.9 10.5 1219.3 11.0 1410.5 14.7 1478.2 16.1 990.0 10.0 1112.7 10.4 1373.3 14.7 1462.2 15.3 

C109 1523.7 10.0 1439.3 10.1 1622.1 11.7 1798.9 16.6 1216.3 11.4 1267.6 10.7 1584.9 11.2 1700.4 17.4 

C100 1867.3 16.1 1847.2 16.7 1914.1 17.7 2043.5 20.8 1735.6 16.7 1798.1 16.7 1857.2 17.9 1948.7 20.3 

RC101 2551.9 23.2 2412.5 23.0 2504.2 25.0 2533.6 29.4 2240.0 22.2 2232.7 22.4 2394.2 24.4 2458.4 29.4 

RC102 2167.6 19.0 2119.6 19.6 2088.1 21.6 2303.5 25.0 1980.4 18.4 1973.7 18.8 1993.6 21.4 2303.5 25.0 

RC103 2373.1 15.8 2250.2 16.0 2218.7 18.2 2419.6 23.6 1772.0 14.8 1855.9 15.4 1781.0 18.6 2167.7 23.6 

RC104 2372.0 13.8 2012.3 15.2 1921.7 16.2 2126.7 16.6 1530.6 13.8 1569.6 13.4 1630.0 15.0 1733.1 16.2 

RC105 2664.3 22.0 2430.5 23.2 2347.7 23.6 2551.0 24.0 2126.4 20.6 2160.6 20.8 2211.0 22.4 2336.9 23.4 

RC106 2493.3 17.2 2184.0 16.4 2137.4 16.8 2098.5 19.4 1902.6 16.8 1936.8 16.4 2019.2 17.2 2039.4 19.0 

RC107 2535.3 16.2 2110.2 15.8 2124.4 17.2 1987.9 20.4 1753.3 16.4 1729.1 15.6 1794.5 17.0 1824.3 20.6 

RC108 2732.1 15.8 2248.2 15.2 2192.1 16.4 1995.8 15.8 1757.3 14.6 1691.4 14.4 1729.3 15.0 1809.2 14.8 
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Table A.6. Additional performance indicators of re-optimization strategies for R1, C1 and RC1 instances and for 75% dod 

Instance 

FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 

R101 1974.5 30.7 1966.0 32.3 2000.1 32.8 2339.1 41.0 1863.8 30.7 1909.8 31.9 1993.3 32.5 2339.1 41.0 

R102 2016.1 31.6 2061.1 30.2 2027.0 30.6 2428.3 34.9 1930.9 31.2 2017.7 30.0 2023.9 30.6 2426.8 34.9 

R103 1921.7 19.2 1916.3 19.7 1881.7 24.2 2265.2 39.3 1849.7 20.1 1901.7 20.5 1871.1 23.4 2263.9 38.6 

R104 1467.8 15.3 1439.2 14.0 1485.4 20.0 1656.1 19.6 1383.0 13.5 1354.4 13.2 1419.3 18.4 1636.2 18.8 

R105 1659.2 19.2 1622.0 18.4 1671.1 21.2 1765.0 34.3 1566.9 17.1 1565.4 17.4 1627.9 20.7 1760.5 34.9 

R106 1792.2 28.3 1837.9 29.8 1851.8 29.0 2347.6 41.5 1641.2 26.7 1747.9 29.4 1829.6 28.9 2347.6 41.5 

R107 1750.3 18.5 1669.2 18.9 1722.0 22.3 2244.0 38.5 1613.9 19.6 1666.7 18.4 1714.7 21.0 2240.3 36.2 

R108 1474.9 14.5 1391.4 13.7 1437.4 19.1 1652.7 19.5 1329.2 12.6 1288.5 13.1 1377.4 17.0 1616.3 18.7 

R109 1576.7 17.9 1548.5 16.5 1512.4 16.7 1531.1 19.8 1390.5 14.3 1397.2 14.9 1410.6 15.8 1512.4 20.5 

R110 1707.8 17.9 1700.5 17.7 1754.3 26.0 1924.4 36.3 1562.3 17.9 1536.6 17.4 1683.4 26.4 1908.5 35.5 

R111 1655.5 17.4 1588.8 18.1 1609.4 19.9 1865.3 36.1 1468.7 17.3 1518.5 16.1 1545.1 18.7 1852.0 35.1 

R112 1734.4 16.0 1487.9 14.4 1410.3 14.5 1350.6 13.6 1236.9 13.9 1247.1 13.1 1256.1 12.8 1254.9 13.6 

R100 1691.0 22.9 1582.9 21.6 1552.7 25.9 1664.7 31.9 1307.3 18.2 1328.5 19.0 1399.2 23.3 1536.5 28.9 

C101 946.1 10.3 1020.5 17.6 1424.1 17.6 1556.4 24.0 924.6 10.3 1008.9 17.6 1422.4 17.6 1595.3 24.0 

C102 1362.8 17.7 1468.2 19.4 1691.5 22.8 1795.9 23.2 1311.7 16.4 1441.1 18.7 1691.5 22.8 1768.7 23.2 

C103 1618.0 14.6 1281.8 16.4 1683.1 18.1 1882.3 25.2 1602.3 14.6 1273.9 15.3 1664.4 18.1 1754.1 19.2 

C104 1452.3 12.0 1357.0 13.9 1886.1 27.2 2032.2 24.5 1523.5 15.5 1318.1 14.9 1748.3 24.4 1911.1 23.8 

C105 962.1 12.2 1071.5 13.1 1399.1 21.7 1516.8 26.7 888.0 10.3 1038.6 14.1 1361.2 20.7 1483.9 25.2 

C106 1164.3 16.5 1267.4 21.2 1571.8 25.5 1702.7 30.4 1049.2 13.2 1171.2 20.3 1518.3 24.3 1576.8 25.8 

C107 1350.0 10.2 1372.0 11.8 1738.0 15.4 1849.0 20.1 1199.0 10.0 1284.0 12.5 1668.0 15.6 1823.0 19.8 

C108 1592.7 13.1 1538.7 13.7 1456.0 19.4 1524.9 22.4 1071.4 11.9 1119.0 13.7 1405.2 19.5 1493.1 20.1 

C109 1348.7 19.1 1354.7 20.1 1153.7 15.8 1195.1 16.8 1082.0 13.0 1047.6 13.8 1093.1 15.5 1110.3 15.8 

C100 1633.7 18.6 1630.4 20.0 1639.2 22.2 1703.0 26.1 1507.2 19.9 1560.0 20.0 1611.7 21.2 1703.0 25.8 

RC101 2266.9 24.4 2170.0 21.8 2234.0 23.4 2488.1 24.2 2117.0 22.0 2122.5 22.0 2190.1 23.2 2488.1 24.0 

RC102 2103.8 19.2 2023.0 19.2 2205.2 18.2 2380.5 23.0 1888.9 17.8 1921.6 17.6 2143.3 18.4 2380.5 22.6 

RC103 1783.8 16.8 1738.9 17.8 1767.9 17.6 2056.2 25.2 1617.2 15.0 1637.5 15.0 1740.3 14.8 2054.8 21.8 

RC104 1596.3 16.3 1612.8 14.7 1640.1 15.7 1610.5 22.3 1391.6 12.3 1398.7 12.0 1405.8 14.7 1506.3 17.0 

RC105 2168.1 22.0 2187.4 22.0 2183.9 21.2 2261.0 23.8 1966.6 18.6 2024.4 18.8 2087.5 20.0 2157.6 22.2 

RC106 2012.6 19.2 1918.6 18.4 1876.4 20.6 1932.7 20.2 1780.8 17.4 1787.1 17.6 1785.5 20.4 1909.2 20.8 

RC107 1987.1 19.2 1896.2 17.0 1915.6 19.0 1933.4 17.4 1726.4 15.6 1726.4 15.0 1790.5 16.2 1939.4 16.4 

RC108 1976.3 18.0 1750.3 16.2 1662.1 16.8 1575.2 16.6 1478.9 15.0 1499.0 14.8 1557.8 14.6 1512.3 14.8 
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Table A.7. Additional performance indicators of re-optimization strategies for MR2, MC2 and MRC2 instances and for 50% dod 

Instance 

FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 𝑻𝑫 𝑵𝑹 

MR201 1525.4 5.0 1485.0 5.4 1449.9 6.0 1456.6 7.0 1389.2 5.0 1381.1 6.6 1389.2 7.6 1402.7 7.2 

MR202 1481.7 5.8 1425.4 5.6 1389.6 6.6 1393.5 7.6 1297.6 5.2 1302.7 6.6 1327.0 6.4 1342.3 7.8 

MR203 1353.7 5.2 1413.9 5.4 1489.8 6.6 1493.4 7.1 1293.5 5.0 1370.6 5.2 1480.2 6.4 1505.5 7.3 

MR204 1383.6 6.2 1533.1 8.4 1476.0 7.8 1505.0 8.3 1216.5 4.5 1319.2 6.0 1431.3 7.2 1556.9 8.6 

MR205 1286.7 6.0 1254.0 4.6 1197.2 5.2 1200.5 5.4 1144.8 4.6 1116.5 6.2 1121.9 6.0 1156.8 5.4 

MR206 1324.1 6.3 1327.4 6.4 1217.3 4.8 1253.3 5.5 1148.7 4.5 1132.3 4.4 1130.1 4.4 1144.3 4.6 

MR207 1388.0 5.2 1304.7 4.6 1240.7 4.4 1255.6 4.7 1212.2 4.2 1179.1 4.0 1209.9 4.4 1221.3 4.5 

MR208 1365.5 6.2 1364.6 7.6 1352.1 7.2 1373.2 8.0 1164.8 4.4 1175.4 5.2 1330.0 6.4 1296.4 5.9 

MR209 1295.9 6.6 1196.5 5.4 1187.8 5.6 1188.9 6.0 1157.6 4.2 1104.6 4.0 1110.0 4.1 1156.5 4.2 

MR210 1257.5 4.2 1220.5 5.2 1161.3 5.4 1162.4 5.4 1092.6 4.2 1077.9 4.1 1105.3 4.6 1130.7 4.8 

MR211 1244.7 4.0 1253.6 4.8 1167.9 4.0 1175.9 4.2 1105.1 4.2 1113.1 4.4 1116.1 4.6 1126.1 4.7 

MC201 1945.5 6.8 1714.7 7.2 1651.3 8.0 1531.6 8.0 1476.7 8.0 1482.4 7.8 1478.1 7.8 1489.4 8.2 

MC202 1371.4 7.8 1209.7 7.8 1185.6 8.2 1147.4 8.4 1163.8 8.2 1145.2 8.0 1134.3 8.0 1131.0 7.6 

MC203 1469.9 6.8 1410.3 7.2 1348.9 7.6 1525.8 10.6 1188.5 6.8 1144.6 6.6 1311.3 7.4 1525.8 10.6 

MC204 1290.7 7.0 1357.9 7.6 1618.5 9.0 1624.8 10.4 991.5 5.8 1038.1 6.0 1211.0 7.6 1274.6 10.2 

MC205 1317.4 5.0 1063.9 5.7 1046.2 5.0 978.2 5.7 794.3 4.3 793.5 4.3 805.9 4.3 809.0 4.0 

MC206 1039.3 5.2 914.7 4.6 843.3 5.4 822.6 5.4 724.9 4.4 731.9 4.2 756.1 4.8 738.1 4.6 

MC207 1257.6 5.5 1061.5 5.0 986.4 5.0 1001.8 5.3 834.7 4.5 839.5 4.5 854.0 4.3 867.8 4.3 

MC208 956.7 4.8 1024.6 4.6 865.9 5.2 822.3 5.4 755.8 5.2 746.5 5.0 735.7 4.8 727.2 5.0 

MRC201 1897.7 6.0 1853.3 6.2 1799.5 7.0 1804.3 8.1 1644.4 6.0 1601.7 5.0 1603.3 5.1 1661.8 5.7 

MRC202 1788.5 5.2 1655.6 5.8 1525.4 6.0 1576.1 7.5 1417.1 4.2 1389.7 5.4 1389.7 5.2 1439.0 6.2 

MRC203 1862.5 5.4 1702.4 6.8 1605.3 9.4 1627.6 10.0 1497.6 4.6 1463.5 4.4 1600.0 5.8 1640.7 9.1 

MRC204 1438.5 5.8 1507.9 7.4 1716.0 9.6 1728.8 10.2 1201.6 4.6 1361.7 5.2 1637.0 6.6 1707.5 9.2 

MRC205 1780.7 6.8 1666.5 6.4 1650.8 7.0 1713.6 8.2 1500.8 5.6 1453.7 5.2 1469.4 5.4 1513.7 6.5 

MRC206 1686.5 5.0 1541.9 5.4 1439.0 5.4 1471.6 6.3 1342.7 4.6 1325.7 4.8 1320.5 5.6 1367.4 6.0 

MRC207 1592.8 5.0 1496.8 5.4 1405.7 5.8 1440.2 7.5 1371.2 5.6 1275.2 4.4 1291.2 4.4 1354.0 6.5 

MRC208 1492.1 4.6 1390.0 4.6 1346.3 4.6 1401.3 5.7 1220.8 4.4 1204.0 4.0 1243.2 5.0 1255.5 5.2 
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Appendix B. Detailed results of the experiments presented in Chapter 6 

We present here the detailed experimental results, which were summarized in Chapter 6. Specifically, Table B.1 presents the detailed results (in 

terms of VOI) of the re-optimization strategies for all instances and different values of fleet availability, when re-optimization depends on the 

number of DO received (Section 6.4.3). Tables B.2-B.4 present the detailed results of the re-optimization strategies for all instances, objectives 

and the different values of fleet availability in terms of VOI, under re-optimization cycles of known duration (Section 6.4.4).  

Table B.1. Detailed performance of re-optimization strategies and different values of fleet availability 

Instance 

𝑽 − 𝟎 𝑽 − 𝟐 𝑽 − 𝟒 

FR PR FR PR FR PR 

SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 SRR NRR-1 NRR-2 NRR-3 

R101 5.3% 1.7% 2.2% 19.8% 3.5% 0.2% 2.2% 19.8% 10.8% 9.7% 10.9% 17.5% 8.0% 12.2% 10.9% 17.5% 9.6% 9.4% 11.7% 17.6% 7.2% 11.7% 11.7% 17.6% 

R102 3.3% 9.7% 12.8% 17.6% 1.6% 6.5% 9.7% 14.3% 3.1% 4.6% 10.0% 11.3% 0.1% 2.9% 7.1% 11.3% 3.1% 5.7% 8.3% 9.7% 0.3% 2.9% 5.5% 8.2% 

R103 24.5% 23.9% 24.2% 25.6% 11.9% 13.6% 14.6% 24.2% 11.5% 12.8% 16.8% 11.3% 5.7% 7.1% 5.8% 8.5% 6.0% 8.5% 8.4% 8.3% 4.3% 1.7% 5.6% 6.9% 

R104 26.5% 19.4% 15.4% 22.9% 5.1% 2.6% 9.2% 11.7% 26.8% 25.3% 21.3% 22.5% 7.9% 9.3% 15.8% 15.9% 20.4% 17.9% 17.8% 12.9% 5.9% 7.1% 9.3% 11.7% 

R105 9.8% 13.6% 9.1% 26.0% 3.7% 5.9% 9.1% 26.0% 12.1% 12.1% 13.2% 22.2% 5.2% 8.1% 13.2% 22.2% 16.6% 14.3% 19.7% 22.8% 8.7% 12.1% 18.5% 22.8% 

R106 13.6% 9.9% 6.6% 13.8% 5.0% 5.0% 6.6% 8.9% 17.3% 17.2% 19.5% 25.4% 12.2% 17.1% 15.9% 24.1% 16.9% 16.7% 17.9% 26.6% 15.7% 18.9% 18.9% 26.4% 

R107 30.9% 31.4% 23.3% 30.8% 3.8% 7.4% 9.5% 11.3% 24.7% 30.4% 24.3% 32.7% 10.2% 13.0% 14.2% 23.0% 13.4% 15.9% 10.6% 18.4% 3.9% 6.5% 6.5% 13.2% 

R108 40.4% 40.4% 25.3% 27.0% 16.9% 16.8% 15.1% 16.8% 42.3% 35.9% 31.1% 32.7% 19.1% 16.3% 22.8% 22.4% 29.3% 24.4% 23.8% 15.6% 6.1% 9.7% 12.1% 10.7% 

R109 13.0% 13.0% 5.3% 5.2% 3.3% 2.0% 3.9% 7.7% 9.4% 10.9% 7.3% 7.1% 0.1% 1.3% 3.5% 8.4% 6.5% 4.3% 5.2% 5.3% 1.0% 1.1% 2.1% 5.3% 

R110 29.6% 15.3% 18.9% 24.4% 2.7% 2.7% 10.8% 19.9% 22.0% 13.4% 15.5% 19.9% 2.5% 6.7% 14.2% 18.6% 18.3% 22.4% 20.1% 27.6% 12.6% 14.7% 17.8% 24.3% 

R111 24.9% 24.9% 20.0% 9.9% 2.6% 0.2% 9.8% 9.8% 19.0% 22.4% 20.3% 23.3% 11.1% 8.5% 13.9% 20.3% 13.5% 17.2% 21.9% 18.2% 7.4% 14.8% 15.8% 16.9% 

R112 22.1% 19.9% 15.5% 23.5% 3.7% 3.7% 3.7% 9.6% 31.9% 32.5% 17.2% 23.1% 4.4% 5.4% 5.4% 14.5% 27.8% 21.4% 19.1% 26.4% 9.4% 13.6% 14.8% 23.0% 

C101 3.0% 16.1% 33.1% 49.1% 3.0% 16.1% 33.1% 49.1% 1.1% 6.3% 29.3% 45.2% 1.1% 6.2% 28.3% 45.2% 0.2% 4.4% 25.4% 41.4% 0.2% 2.4% 24.4% 41.4% 

C102 3.1% 9.9% 22.9% 63.0% 3.0% 9.9% 22.9% 63.0% 4.6% 12.3% 32.1% 62.8% 1.2% 12.3% 32.1% 62.8% 4.6% 11.6% 31.2% 61.1% 3.4% 11.6% 31.2% 61.1% 

C103 13.0% 41.6% 53.8% 58.9% 12.7% 41.4% 53.8% 58.9% 35.3% 47.1% 58.9% 62.7% 35.3% 47.1% 58.9% 62.7% 39.7% 47.9% 54.7% 61.5% 38.3% 47.9% 54.7% 61.5% 

C104 21.2% 22.2% 21.3% 10.5% 10.5% 10.5% 10.5% 10.4% 7.7% 7.9% 19.7% 16.9% 7.3% 7.5% 9.7% 7.7% 4.0% 7.5% 14.6% 14.4% 3.5% 7.2% 7.2% 7.2% 

C105 4.1% 9.2% 28.0% 52.0% 3.9% 16.0% 28.0% 52.0% 1.3% 5.4% 24.3% 48.2% 0.0% 8.2% 22.2% 48.2% 0.4% 2.8% 20.6% 44.4% 0.1% 0.5% 18.5% 44.4% 

C106 7.2% 11.2% 25.4% 39.4% 3.2% 8.1% 25.2% 39.4% 3.2% 4.3% 21.5% 35.4% 1.0% 3.2% 22.3% 35.4% 0.3% 2.3% 16.7% 31.7% 0.1% 0.2% 17.5% 31.7% 

C107 54.2% 54.2% 60.5% 62.3% 54.2% 54.2% 60.5% 62.3% 37.8% 43.5% 55.6% 58.4% 33.6% 42.5% 55.6% 58.4% 22.9% 33.8% 49.7% 54.5% 20.9% 33.8% 49.7% 54.5% 

C108 45.8% 46.6% 46.6% 45.6% 40.3% 43.3% 44.3% 45.6% 22.2% 20.9% 21.8% 29.6% 17.5% 19.5% 21.6% 29.6% 7.4% 6.1% 8.8% 23.7% 4.8% 4.7% 6.8% 23.7% 

C109 63.3% 61.2% 63.2% 65.1% 60.1% 59.1% 62.2% 65.1% 31.1% 27.6% 30.6% 48.4% 25.5% 25.6% 27.4% 48.4% 5.1% 7.0% 13.8% 37.6% 3.7% 6.7% 13.7% 37.6% 
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Table B.2. Detailed performance of re-optimization strategies for the three objectives under vehicle availability V-0 

Instance 

𝒛̌𝟏 𝒛̌𝟐 𝒛̌𝟑 
FR PR FR PR FR PR 

FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 

R101 1.7% 5.5% 17.2% 21.3% 1.6% 5.5% 17.2% 21.3% 1.7% 5.5% 17.2% 21.3% 1.7% 5.5% 17.2% 21.3% 3.7% 5.5% 17.2% 21.3% 3.7% 5.5% 17.2% 21.3% 

R102 10.3% 11.4% 12.6% 13.7% 12.6% 11.5% 12.7% 12.6% 10.5% 13.7% 14.9% 11.8% 10.6% 14.8% 17.2% 11.8% 13.8% 14.9% 13.8% 14.0% 11.7% 14.9% 13.8% 12.9% 

R103 30.6% 25.6% 26.0% 34.1% 16.9% 21.7% 25.0% 28.1% 22.9% 24.9% 27.9% 30.9% 18.1% 18.7% 24.0% 27.0% 21.7% 22.6% 23.2% 28.8% 19.9% 19.8% 22.9% 26.8% 

R104 27.0% 21.3% 25.7% 22.9% 6.1% 14.4% 17.3% 21.3% 24.3% 16.2% 25.8% 24.4% 7.5% 6.1% 15.9% 21.4% 20.1% 21.5% 24.3% 24.2% 2.8% 6.0% 10.3% 18.7% 

R105 5.2% 12.1% 22.5% 29.3% 5.2% 12.1% 22.5% 29.3% 3.9% 12.1% 22.5% 31.2% 5.3% 12.1% 22.5% 31.2% 5.9% 10.2% 22.5% 29.7% 5.9% 10.2% 22.5% 29.7% 

R106 11.8% 10.5% 16.2% 16.3% 6.1% 5.8% 10.3% 16.2% 13.0% 14.4% 15.1% 9.5% 8.4% 10.7% 10.4% 9.3% 7.3% 10.7% 12.9% 10.1% 8.4% 12.0% 12.8% 13.8% 

R107 30.4% 31.6% 27.7% 25.5% 9.5% 15.6% 16.7% 19.0% 24.7% 29.2% 26.3% 25.6% 6.2% 10.7% 17.9% 17.7% 19.6% 27.9% 26.8% 19.8% 0.3% 7.2% 13.2% 14.6% 

R108 37.6% 28.3% 34.9% 26.6% 18.5% 18.7% 22.4% 21.0% 38.5% 28.7% 35.0% 28.0% 16.1% 19.1% 21.2% 20.0% 26.1% 22.1% 31.8% 23.2% 2.6% 5.8% 18.8% 15.1% 

R109 12.8% 9.7% 13.4% 2.2% 7.7% 10.0% 6.7% 3.2% 12.8% 10.5% 13.5% 2.2% 6.5% 9.7% 7.6% 3.2% 12.2% 9.4% 12.7% 3.9% 8.5% 8.7% 8.5% 4.0% 

R110 26.3% 23.2% 25.0% 22.1% 4.3% 11.2% 17.8% 14.0% 23.8% 19.6% 26.2% 21.5% 4.3% 10.3% 17.8% 10.5% 19.0% 19.6% 13.5% 13.5% 4.9% 6.2% 8.0% 15.9% 

R111 24.2% 19.4% 23.8% 23.9% 6.4% 9.4% 17.5% 15.8% 22.7% 18.0% 23.8% 23.9% 8.1% 4.8% 19.2% 17.3% 12.9% 24.2% 23.8% 20.7% 10.0% 5.0% 12.7% 19.2% 

R112 24.0% 16.1% 15.1% 23.6% 3.9% 8.0% 8.5% 15.6% 24.0% 16.2% 16.5% 25.0% 5.3% 9.4% 14.7% 13.2% 29.2% 24.4% 27.1% 24.0% 6.4% 8.1% 5.3% 16.0% 

R100 39.4% 42.8% 39.3% 37.3% 18.9% 29.1% 27.4% 27.3% 39.4% 41.1% 42.7% 37.3% 30.5% 25.7% 28.7% 25.7% 44.4% 42.8% 42.7% 35.6% 28.8% 22.3% 24.0% 25.7% 

 

Table B.3. Detailed performance of re-optimization strategies for the three objectives under vehicle availability V-2 

Instance 

𝒛̌𝟏 𝒛̌𝟐 𝒛̌𝟑 
FR PR FR PR FR PR 

FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 

R101 8.7% 12.3% 18.4% 24.1% 8.7% 12.3% 18.4% 24.1% 8.7% 10.4% 18.4% 24.1% 8.7% 10.4% 18.4% 24.1% 11.2% 10.4% 18.4% 24.1% 11.2% 10.4% 18.4% 24.1% 

R102 6.6% 8.4% 13.2% 10.4% 8.5% 10.3% 12.3% 11.4% 9.6% 10.4% 15.2% 10.6% 10.5% 12.2% 15.2% 10.6% 11.4% 12.2% 13.3% 10.6% 11.4% 12.2% 13.3% 11.6% 

R103 14.5% 12.8% 7.8% 15.3% 6.1% 8.6% 8.7% 12.3% 8.3% 7.3% 12.7% 8.9% 10.0% 8.2% 10.7% 12.9% 13.0% 9.2% 15.7% 12.0% 9.2% 9.2% 13.6% 12.9% 

R104 27.0% 27.8% 28.7% 25.9% 12.1% 18.1% 19.0% 22.4% 21.9% 17.6% 24.3% 21.6% 8.8% 8.0% 16.5% 19.0% 16.8% 16.7% 21.9% 23.3% 7.0% 12.2% 15.7% 19.9% 

R105 10.6% 10.3% 19.1% 25.6% 11.5% 10.3% 19.1% 25.6% 10.6% 11.2% 19.4% 28.2% 10.6% 11.2% 19.4% 28.2% 10.8% 11.1% 19.2% 27.3% 8.7% 11.1% 19.2% 27.3% 

R106 21.0% 21.8% 27.4% 25.6% 18.5% 20.0% 21.7% 28.0% 17.1% 19.4% 24.4% 23.4% 21.1% 23.5% 21.9% 24.3% 22.8% 20.2% 21.8% 25.0% 21.2% 21.9% 22.6% 26.7% 

R107 27.2% 29.7% 26.6% 29.9% 19.3% 17.0% 23.5% 28.0% 25.8% 23.9% 24.8% 26.4% 14.0% 13.3% 21.4% 26.4% 24.5% 23.5% 25.6% 27.3% 15.3% 18.5% 23.4% 26.6% 

R108 34.7% 34.8% 28.8% 28.2% 16.6% 19.0% 19.6% 21.1% 35.4% 27.0% 24.2% 24.5% 15.6% 15.7% 17.6% 18.1% 25.0% 26.2% 22.6% 24.5% 12.1% 12.0% 15.8% 17.1% 

R109 11.9% 12.3% 8.9% 7.1% 6.2% 7.0% 6.6% 7.0% 11.9% 10.7% 9.3% 6.3% 6.3% 6.9% 3.1% 6.2% 13.2% 12.3% 7.9% 6.3% 5.7% 5.4% 5.4% 6.2% 

R110 21.4% 15.9% 17.3% 15.3% 9.6% 13.4% 14.8% 19.6% 21.2% 14.4% 22.4% 17.4% 9.5% 12.4% 15.0% 16.3% 12.6% 14.6% 15.2% 15.3% 8.8% 12.8% 12.1% 16.4% 

R111 19.7% 22.7% 24.9% 22.5% 10.6% 14.5% 17.4% 17.3% 21.1% 21.1% 27.0% 22.5% 10.3% 12.6% 20.4% 20.2% 18.9% 21.2% 28.5% 24.5% 6.8% 13.6% 21.0% 19.2% 

R112 28.2% 22.2% 22.8% 21.3% 5.4% 8.3% 12.8% 16.5% 25.7% 21.2% 23.7% 29.1% 5.3% 6.6% 14.7% 18.3% 18.0% 19.6% 26.3% 23.9% 3.1% 10.2% 13.8% 17.6% 

R100 36.8% 34.9% 31.8% 37.4% 20.4% 25.2% 28.8% 34.4% 37.7% 33.7% 35.7% 32.7% 18.8% 22.2% 21.4% 28.4% 28.3% 35.3% 34.1% 36.3% 16.7% 20.9% 20.9% 28.3% 
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Table B.4. Detailed performance of re-optimization strategies for the three objectives under vehicle availability V-4 

Instance 

𝒛̌𝟏 𝒛̌𝟐 𝒛̌𝟑 
FR PR FR PR FR PR 

FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 FTR1 FTR2 FTR3 FTR4 

R101 8.0% 12.5% 19.5% 22.0% 8.0% 12.5% 19.5% 22.0% 8.0% 11.0% 19.5% 22.0% 8.0% 11.0% 19.5% 22.0% 8.8% 11.9% 19.5% 22.0% 8.8% 11.9% 19.5% 22.0% 

R102 6.1% 7.7% 13.7% 10.3% 7.8% 9.5% 14.5% 10.2% 5.3% 8.6% 15.5% 11.3% 7.1% 8.6% 15.5% 11.3% 6.3% 8.6% 13.9% 10.5% 6.3% 8.6% 13.9% 10.5% 

R103 8.4% 9.3% 8.9% 8.9% 7.3% 8.9% 8.0% 9.8% 5.0% 5.1% 7.5% 9.2% 8.6% 5.0% 9.2% 9.3% 4.2% 3.2% 7.4% 10.1% 5.9% 4.1% 7.5% 9.2% 

R104 18.1% 15.7% 19.5% 16.2% 6.3% 8.6% 11.7% 13.1% 11.3% 8.8% 8.8% 12.7% 7.3% 7.2% 8.7% 12.6% 7.5% 6.6% 8.8% 11.1% 5.7% 4.2% 8.7% 12.6% 

R105 14.5% 15.2% 20.0% 27.2% 15.2% 14.5% 20.0% 27.2% 13.8% 13.9% 19.3% 27.3% 14.0% 13.9% 19.3% 27.3% 13.8% 13.1% 18.5% 26.5% 11.5% 13.1% 18.5% 26.5% 

R106 17.5% 18.2% 26.2% 21.0% 18.2% 18.8% 26.2% 23.2% 17.6% 18.9% 19.8% 21.2% 19.1% 20.4% 21.9% 21.2% 15.5% 21.1% 19.7% 23.2% 14.8% 21.2% 20.5% 23.2% 

R107 15.8% 18.1% 19.1% 25.8% 14.8% 15.4% 16.4% 21.5% 19.3% 16.7% 21.1% 21.0% 14.0% 10.5% 16.6% 17.4% 17.8% 15.0% 20.0% 22.8% 12.3% 8.7% 15.7% 20.0% 

R108 20.1% 15.1% 11.1% 12.1% 3.3% 7.3% 9.5% 9.6% 17.2% 8.3% 11.3% 12.0% 5.0% 6.5% 9.6% 11.3% 5.9% 9.0% 10.5% 12.8% 4.2% 4.0% 8.0% 12.0% 

R109 3.7% 7.0% 7.3% 4.2% 2.2% 4.3% 3.6% 3.5% 3.0% 7.1% 5.7% 5.8% 1.6% 3.0% 3.0% 5.8% 4.4% 4.3% 5.7% 5.8% 0.9% 2.9% 3.5% 5.8% 

R110 23.2% 24.0% 17.4% 24.7% 15.0% 16.4% 16.6% 23.2% 21.8% 16.5% 18.1% 25.6% 14.3% 15.8% 17.3% 25.6% 21.8% 17.5% 18.2% 21.2% 15.3% 16.0% 18.8% 22.6% 

R111 21.2% 22.0% 22.1% 22.9% 14.2% 16.3% 18.9% 21.2% 19.8% 17.6% 20.6% 25.9% 14.8% 14.1% 19.7% 27.2% 17.6% 16.0% 20.4% 26.6% 14.4% 15.8% 19.6% 24.3% 

R112 24.0% 20.3% 24.9% 27.8% 9.1% 14.7% 18.8% 23.7% 17.8% 15.0% 23.9% 17.0% 8.5% 8.0% 16.8% 14.1% 14.3% 14.9% 16.2% 17.6% 6.5% 6.5% 14.8% 16.3% 

R100 34.1% 36.5% 36.3% 37.3% 25.2% 28.4% 33.9% 34.2% 32.1% 27.2% 17.5% 24.5% 23.7% 23.9% 21.3% 28.7% 22.4% 22.5% 21.4% 28.7% 20.1% 21.6% 20.6% 29.5% 

 


