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Summary

The purpose of this thesis is to introduce a semi-parametric financial forecasting
model that combines an intelligent learning technique, artificial neural networks, with
common econometric GARCH models of volatility. We show how this flexible mod-
elling framework can accommodate most of the stylised facts reported about financial
prices or rates of return (nonlinear corrections, asymmetric GARCH effects and non-
gaussian errors). We analytically discuss several strategies for the specification of the
mean and variance components of the model by means of sequential statistical tests
and propose variations of the standard testing framework that are robust to model
misspecification, i.e. they preserve their asymptotic validity when the model is not
correctly specified for the true conditional distribution. The finite-sample perfor-
mance of testing procedures is investigated by means of Monte-Carlo simulations. To
demonstrate various aspects of the model-building strategy, we present two empirical
studies. In the first one, we apply NN-GARCH models to forecasting the conditional
distribution of daily returns on three major international stock indexes (DAX, FTSE
100, S&P 500) and in the second one we compare the performance of the sequential
testing procedure with other statistical and heuristic neural network model-selection
strategies in accurately pricing options on the S&P 500 index.
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Preface

I Motivation

In the past twenty years, both financial science and practice have changed in a truly
fundamental way. These changes were fuelled in part by remarkable advances in fi-
nancial theory and modelling techniques, the liberalisation of financial markets and
the development of complex financial products (derivatives), the growth of infor-
mation and computer technology and the overall increase in financial uncertainty
followed some unprecedent financial disasters in the 90’s. This emerging financial
environment coupled with the advancing theory has led to a critical demand on
sophisticated tools and methods for assessing, pricing and forecasting increasingly
complex financial outcomes. This is the purpose of financial engineering (FE), a re-
cently emerged cross-disciplinary field that combines financial theory, mathematical
techniques, numerical methods and computer algorithms to solve financial problems.
Utilizing a variety of techniques, practitioners of FE aim to derive methods for fore-
casting the market price of primarily and derivative securities, quantifying the risk
associated with trading in these assets and designing portfolios that best meet the
financial purposes and needs of the issuing authority.

Traditionally, probabilistic concepts/techniques such as expectations, distribu-
tions, stochastic processes and martingales were used to model the uncertainty in
financial markets and to construct solutions to financial problems. On the other
hand, recent advances in computer science have led to the development of computer
algorithms that simulate elements of learning, adaptation and evolution to create pro-
grammes characterised by “intelligent” behaviour. Computational intelligence (CI)
embraces a variety of modelling techniques, from Artificial Neural Networks, Fuzzy
Inference Systems and Evolutionary Computation to Swarm Intelligent techniques
and Artificial Immune Systems. The sophistication of these methodologies, the sig-
nificant increase in computing power and the need for models that rely on more
realistic assumptions inspired researchers to revise traditional solutions to FE prob-
lems. The result has been an explosive number of intelligent applications in financial
engineering tasks with significant improvements in many cases.

Ever since computational intelligent techniques were used in application domains
with a strong statistical culture, there appeared a tendency to apply well-known
econometric principles in the construction and testing of CI models. The ultimate
purpose of econometrics is to derive models that approximate the probabilistic rela-
tionship between the target and a set of explanatory variables, which is summarised
by the conditional probability distribution or probability density function. This is a

xi
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measure of the relative frequency of the target variable taking values in a specific
interval given the values of the explanatory variables. Finding an acceptable ap-
proximation to the real density typically requires a specification step, by which the
researcher restricts attention to a parametric family of densities, an estimation step,
by which the researcher finds the member of the family that offers the optimal ap-
proximation to the real density, and a diagnostic step, in which the researcher judges
the quality or the redundancy of the current approximation. Model-building iterates
between the above steps until an acceptable specification is found.

Depending on the class of specifications the researcher restricts attention to, differ-
ent aspects of the conditional distribution are modelled. Most computational learning
techniques essentially employ a regression model that focuses on mean dependencies
between the target and explanatory variables. This is because these algorithms have
been initially designed for engineering application domains, such as signal processing,
where either the conditional mean is the only object of interest to the researcher or
the “noise” contained in measurements has no special statistical features resembling
a memoryless process with constant variance. The empirical study of financial time-
series, however, has revealed that asset price changes or rates of return follow more
complex statistical laws, which highly deviate from the “white-noise” prototype. The
empirical distribution of stock returns or exchange rates exhibit a substantial degree
of asymmetry and kurtosis. Additionally, the conditional distribution is not invariant
but changes in dependence to the recent history of price movements. In particular,
large unanticipated fluctuations tend to increase on average the short-term variability
of price changes, resulting in a wider conditional distribution. This effect is known in
the literature as autoregressive conditional heteroskedasticity (ARCH)2. Quite often,
the sign of returns is important to the determination of volatility, so that a sudden
price drop has a different impact on future uncertainty about the realised return than
an unexpected rise.

Such asymmetries in the short-term dynamic behaviour of asset prices are also
observed when an asset is mispriced, i.e. its market price differs from the fundamen-
tal value. Classical asset-pricing models assume that securities traded in the market
are on average correctly priced, so that the deviation between market and fundamen-
tal value does not contain any predictive information about future price movements.
However, numerous empirical studies on market prices have confirmed large and per-
sistent deviations from fundamental levels, which led scientists to review their inter-
pretation of the price-formation mechanism. Modern theories of behavioural finance
support that the trading activity of irrational “trend-chasing” investors drives prices
away from fundamentals. Due to institutional restrictions and transaction costs, ra-
tional traders are not able to instantly “arbitrage away” pricing inefficiencies and
thus bring prices back to fundamentals. The larger is the deviation the more likely
is a future price movement in the direction that corrects the mispricing, although
the speed of correction may depend on the level and/or the sign (direction) of mis-
pricing. This fact results in a complex dynamic behaviour, in which the probability
distribution of future returns may depend both on the size and sign of the mispricing
as well as on recent price movements.

2A time-series is said to be heteroskedastic if its variance exhibits temporal changes.



CHAPTER 0. PREFACE xiii

One of the challenges of financial engineering is to develop models that are capa-
ble of capturing the main aspects of the statistical distribution of price movements
and returns. Based however on the above discussion on the statistical properties of
financial time-series, we realise that in order to obtain a faithful representation of
the dynamic behaviour of financial instruments we need to consider a general class
of models that could possibly accommodate nonlinear adjustments, symmetric or
asymmetric ARCH effects and non-gaussian distributions. These models can in turn
be used in common prediction or forecasting tasks or as simulators of realistic future
market scenarios for pricing more advanced derivative products, such as options,
futures and swaps.

II Main contribution

The purpose of this thesis is to present a new class of time-series models that com-
bine a computational intelligent method, artificial neural networks, with econometric
GARCH models of volatility. This flexible modelling framework can accommodate
most of the stylised facts associated with financial time-series. The NN-GARCH mod-
els considered in this thesis belong to the general class of dynamic models that jointly
parametrise the mean and the variance of the conditional distribution. They combine
a neural network model for capturing nonlinear adjustments in the conditional mean
of the distribution with GARCH parametrisations for the modelling of the condi-
tional variance dynamics. By jointly modelling the conditional mean and volatility
of the data-generating process, we extend the scope of NNs from function approxi-
mation to density forecasting tasks and we also reconsider the construction of neural
network models under special statistical features existing in financial and economic
data. This combination enables also the researcher to investigate interesting hy-
potheses concerning both the mean and the variance structure of the data-generating
process. Joint mean-variance models are nowadays very popular in economic and
financial time-series applications and their statistical properties are well-documented
(see Bollerslev and Wooldridge (1992)).

In the application of any flexible semi-parametric methodology, the issue of choos-
ing the model specification becomes of paramount importance. Not all data sets share
the same features and therefore in any practical application it is important to deter-
mine the level of model complexity that is most appropriate for the particular data
set. In this thesis, we devote much attention to this issue. Following the econometric
tradition, we discuss several model-building strategies for NN-GARCH parametrisa-
tions that are based on solid statistical procedures rather than heuristic criteria. In
this way, model-selection becomes a transparent and clearly-defined process that is
applicable to a wide range of data sets.

In econometrics, there are generally two procedures for reaching the final model
specification. One starts with a large, possibly “over-parametrised”, model and sim-
plifies the structure by “pruning” redundant or insignificant components. This is the
so-called “top-down”, pruning or backward approach to model specification, often en-
countered in computational intelligent techniques. When trying however to combine
pruning with statistical inference, a puzzling theoretical issue arises that is related
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to the possibility that the large model is redundant for the particular data sets. Re-
dundancy generally implies that a subset of model parameters can take any value
without effecting its output and are thus non-identifiable. The non-identifiability of
parameters has important consequences for the asymptotic distribution of common
test statistics (Wald, Lagrange Multiplier, Information Criteria) and renders them
inappropriate to use in significance tests.

These theoretical considerations led us to adopt the opposite (“bottom-up” or
forward) route in model specification that starts with the simplest possible model
and gradually complicates the structure in the direction indicated by special features
existing in data3. If, for example, the price of an asset responds asymmetrically to
previous movements, extra neurons are added to capture this effect. If nevertheless
the residuals of the neural network model are heterogeneously distributed and the con-
ditional volatility tends to cluster, an extra GARCH model is placed to parametrise
the volatility dynamics. The model-specification strategy that we adopt in this thesis
is based on sequential Lagrange-Multiplier (LM) hypotheses tests of neglected struc-
ture in the mean and the variance equation of the model. Roughly speaking, the
model-building procedure begins with a linear model of the conditional mean. The
residuals are then used to compute regression-based tests for additional nonlinearity,
serial correlation or other misspecifications and further neurons are added according
to the test results. Once the model for the conditional mean is deemed satisfactory,
additional tests are carried out to detect strong features in the conditional variance
of the distribution, such as ARCH heteroskedasticity. On the basis of these tests,
GARCH models for the conditional variance are estimated in conjunction with the
mean equation and tested against other effects.

The tests involved in each intermediate step of the above procedure are generally
simple and inexpensive to construct compared to other computationally intensive
specification procedures. LM tests involve only the computation of first derivatives
and the asymptotic null distributions of the test statistics are standard (chi-square)
and well-tabulated. Each time a new candidate model is tested against the existing
specification, the researcher does not have to re-estimate the full model, as tests are
directly computable from the model imposed by the null hypothesis by running a set
of auxiliary regressions. This is a big advantage for highly nonlinear specifications,
as it significantly lowers the computational burden that would be associated with
estimating all candidate model.

While this “bottom-up” strategy follows a natural progression, its ability to suc-
cessfully identify the data structure is very much determined by the type of spec-
ification tests employed. Generally, most of specification tests currently applied in
the literature implicitly impose additional assumptions that are only tested on sub-
sequent stages of the model-building cycle. For example, standard LM tests for ad-
ditional nonlinearity or serial correlation in mean implicitly assume homogeneously
distributed errors and are thus invalid in the presence of ARCH or other forms of
heteroskedasticity. As simulation results show in this thesis, when applied to het-
eroskedastic data, they generally misinterpret consecutive large price movements,
attributed to a temporal increase in the volatility level, as systematic nonlinearity

3This type of strategy in model selection is also termed as forward.
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or serial correlation and hence spuriously indicate additional structure in the mean
equation (more neurons or more lags) to capture these effects. As these price move-
ments however are not due to systematic market reactions, the extended model is
expected to have poorer performance on new unseen data. One strategy to avoid this
deficiency of the testing procedure would be to continue the model-building cycle,
specify a model for volatility and then go back and test the conditional mean equa-
tion. However, this procedure is not theoretically justified because the estimation of
the volatility model is also based on the assumption that the conditional mean model
is correctly specified.

Two remedies are applied in this thesis against the adverse effects of changing
variance on the validity of mean specification tests. The first is to ignore het-
eroskedasticity and perform the LM test in way that is robust to general forms of
heteroskedasticity. This approach is based on the general regression-based robust-
testing framework, suggested by Wooldridge (1991), and also commonly applied in
the context of other nonlinear econometric models. As simulations presented in this
thesis show, robustified LM tests manage to closely follow the nominal type I error
under heteroskedasticity, allowing thus the researcher to control the complexity of
the mean model. However, this improvement comes occasionally with a loss of ef-
ficiency in detecting hidden nonlinearity or serial correlation in mean, which poses
a problem if one is equally interested in modelling strong features in mean apart
from heteroskedastic effects. The other approach is to model heteroskedasticity, i.e.
incorporate information from the volatility structure during the testing procedure,
which seems to offer a good choice between ignoring heteroskedasticity and using a
non-robust test. To our knowledge, this strategy of model specification has not been
previously applied in the context of neural networks and other popular nonlinear
specifications (e.g. smooth transition or threshold models) encountered in the liter-
ature. The new test is carried out in a way that is robust to misspecification of the
variance model, which means that the researcher does not need to explicitly model
the volatility dynamics in order to obtain a valid testing procedure. However, as sim-
ulation results show, the more accurate is the model the higher is the efficiency of the
LM test to identify neglected serial correlation or nonlinearity in the mean equation.
Hence, when it comes to model construction, it always pays to put some effort on
deriving a good approximation to both moments of the conditional distribution.

Besides the specification of a NN-GARCH model, a considerable part of this thesis
is also devoted to derive procedures for in-sample statistical evaluation of the model.
Based on the maximum likelihood theory, we device Wald-type tests for testing the
joint significance of parameters of an estimated NN-GARCH model and thus offer the
opportunity to the researcher to investigate hypotheses of interest regarding the data-
generating process. We also present a series of diagnostics, based on LM tests, that
examine the extend to which the derived specification is a faithful approximation to
the conditional distribution. The distinguishing feature of these testing procedure is
that they lead to valid inference regarding insignificance or structural misspecification
even in the case where the distributional assumptions made by the model are not
correct (i.e. the empirical density of standardised errors is fat-tailed or asymmetric).
This is a quite useful feature as it permits statistical inference without having to
explicitly model all aspects of the conditional distribution.
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Once a NN-GARCH model has been specified for a particular data set, it can
be used in deriving density predictions or confidence intervals on the future value
of the variable of interest. The issue of forecasting with NN-GARCH models is also
discussed in this thesis. We present a technique for obtaining one- as well as multi-
step-ahead predictions, which avoids any restrictive assumption on the conditional
density of errors (normality, symmetry, etc), and also discuss methods for evaluating
model forecasts. Quite often in the econometric literature, forecasts are evaluated
on a pure statistical basis by employing criteria that concentrate on the goodness-
of-fit to the data. However, from a financial engineering perspective, the economic
significance of forecasts is also an important issue. To this end, we give many ideas
on how to design a trading strategy suitable for NN-GARCH or other density models
that takes into account confidence bounds rather than point forecasts, as is customary
in the NN literature. This is based on the detection of “exceptional” price movements.

The performance of the sequential statistical testing procedure, examined in this
thesis, is also compared with other statistical and heuristic neural network model-
selection techniques in a special application: the pricing of derivative securities. The
purpose of this study is to derive “flexible” models that can be used for the pricing of
option derivative contracts, relaxing the restrictive assumptions of parametric models,
such as the famous Black-Scholes.

In summary, the main points of contribution of the thesis are the following:

1. We propose a new class of combined neural network GARCH models that can
accommodate major properties of financial prices or rates of return (nonlinear
correction, ARCH effects, leptokurtic error distribution).

2. NN-GARCH models provide density predictions in the form of confidence in-
tervals on the future value of the target variable. Therefore, they give a better
description of the underlying dynamics and, most important, of the risk associ-
ated with trading in the securities represented by the corresponding time-series
data.

3. We examine various strategies for model selection, i.e. the determination of
the number of hidden neurons in the mean and the level of complexity in the
variance equation. The proposed tests are generally simple to implement and
computationally inexpensive, as the model has been already estimated under
the null hypothesis.

4. Model-selection strategies are also robust, meaning that they give the oppor-
tunity to the researcher to progressively build the model without referring to
the properties of higher moments of the conditional distribution. Hence, when
investigating mean relations, the researcher does not have to explicitly model
the variance dynamics or when structuring the variance model, the researcher
does not have to impose restrictive assumptions on the error distribution.

5. One strategy that we propose in this thesis for the specification of the neural
network model uses information from the conditional variance structure. This
procedure seems to increase the efficiency of the mean tests in separating non-
linearities in mean from heteroskedasticity.
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6. We device Wald-type tests for testing the joint significance of the parame-
ters of a pre-estimated NN-GARCH model and thus offer the opportunity to
the researcher to investigate hypotheses of interest regarding the “true” data-
generating process.

7. We also present a series of simple diagnostic tests that examine the extend to
which the derived specification is a faithful approximation to the conditional
distribution.

8. The distinguishing feature of these testing procedures is that they lead to valid
inference even in the case where the distributional model is inappropriate, i.e.
the empirical density of standardised errors is fat-tailed or even asymmetric.

9. We investigate the finite-sample performance of specification/diagnostic tests in
a realistic simulation environment, which takes into account common statistical
features of financial time-series data (heteroskedasticity, non-normality).

10. We present a technique for obtaining one- as well as multi-step-ahead predic-
tions based on a NN-GARCH model, which avoids any restrictive assumption
on the conditional density of errors (normality, symmetry, etc).

11. We design a trading strategy suitable for NN-GARCH or other density models
that takes into account confidence bounds rather than point forecasts. This
strategy is based on the detection of statistically “exceptional” price movements
and hence attains a better control on the risk associated with trading positions.

12. We derive “flexible” semi-parametric neural network models that can be used
for the pricing of option-type derivative contracts. We also present a hybrid
methodology for estimating/forecasting the price of stock options that takes
into account relevant parameters from established models and augments them
using non-linear neural network techniques. The emphasis is on model selection
strategies that can lead to optimal performance of the hybrid model.

III Organisation of the thesis

This thesis is organised into eight chapters:
Chapters 1 to 3 provide the essential background on the topics covered in our

research. Chapter 1 discusses financial engineering, computational intelligence and
artificial neural networks. Chapter 2 reviews characteristic features or stylised facts
associated with the behaviour of financial prices (leptokurtosis, volatility clustering,
leverage effects and nonlinear adjustments) and show how these features generally
convey information about the probability distributions that govern future prices.
This chapter provides also an introduction to the dynamic behaviour of asset prices,
based on empirical evidence and modern theories of behavioural finance. Chapter 3
discusses the principles of econometric modelling with emphasis on the basic stages
of the model-building cycle (specification, estimation, evaluation).
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Chapter 4 introduces NN-GARCH models and discusses several statistical and
numerical issues pertaining to the estimation and the specification of these models.
To examine the extend to which our testing procedures can identify the right com-
plexity of the data-generating process (number of hidden units, serial correlation),
we perform two Monte-Carlo simulation studies, whose details are given in chapter 5.

The empirical properties of the modelling techniques presented in this thesis is
investigated in chapters 6 and 7. Chapter 6 presents an empirical application of
NN-GARCH models to predicting the conditional distribution of daily returns on
three major international stock indexes (DAX, FTSE 100, S&P 500). This study
gives us the opportunity to discuss several issues related to forecasting with NN-
GARCH models. Special emphasis is given to the computation of one- and multi-
period predictions, the construction of confidence intervals and the evaluation of
the forecasting performance. In chapter 7 we provide another empirical study that
compares the performance of the sequential testing procedure with other statistical
and heuristic neural network model-selection strategies in accurately pricing options
on the S&P 500 stock index.

This text concludes with chapter 8 that summarises the main findings and results.
It also emphasises on the major contributions of this work to the research fields of
financial engineering, computational intelligence and econometrics, and points to
directions of future research.



Chapter 1

Essential background

1.1 Introduction

The purpose of this chapter is to provide the essential background on the topics
covered in this thesis. Section 1.2 introduces the reader to financial engineering
and discusses common areas of research in this discipline. Section 1.3 is devoted to
the presentation of computational intelligent (CI) algorithms, a modern approach
to extracting knowledge from data that has recently become popular in financial
engineering. Popular intelligent learning models, such as artificial neural networks,
neuro-fuzzy inference systems and genetically-evolved regressions, have been success-
fully applied to a wide range of complex financial tasks, with rather promising results
(an up-to-date review of financial applications with CI models is provided). This ap-
parent success has attracted the interest of many researchers in quantitative finance
and econometrics, as most of the CI techniques have fundamental differences from
conventional statistical methods. Section 1.4 discusses Artificial Neural Networks, a
class of parallel semi-parametric computational models that have been mostly appre-
ciated among all CI methods by practitioners and researchers in financial engineering.
After a brief introduction to the topic, we concentrate the discussion on methods and
techniques for determining the architecture of a NN model, an important issue in
practical applications. Section 1.5 summarises and concludes the chapter.

1.2 Financial Engineering

1.2.1 The new trend

By the late 80’s finance was changing in a truly fundamental way. This change
was driven in large part by the globalisation and automation of financial markets,
the development of complex financial products, the new regulatory framework con-
cerning the management of financial risk and some remarkable advances in financial
modelling. The challenges of this emerging financial environment, coupled with the
advancing theory, gave rise to a new area of research and development characterised
by the term financial engineering. Broadly speaking, financial engineering (FE) is
the use of financial products or instruments, such as stocks, futures, swaps, options,

1
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to restructure or rearrange an existing financial profile in order to achieve certain
financial goals, particularly the management of financial risk1.

Just as any engineering field, FE is based upon fundamental sciences, such as
economics or finance, that seek to understand the principles governing financial phe-
nomena, and therefore they are unavoidably abstractive. Scientific theories rest on a
series of assumptions or “idealisations” of the real world that, although they capture
some of the essential features, they are not very accurate descriptions of the char-
acteristic behavior of financial objects. Real markets are often filled with anomalies
that disagree with standard economic theories. These anomalies lead to character-
istic patterns of price evolution that cannot be successfully described by a physical
model, such as the Brownian motion, or to explain by an economic theory of ratio-
nal investment behaviour. Although the purpose of financial science is to “simplify
and decompose in order to understand”, engineering involves structuring solutions to
complex problems by creative development and composition of modelling techniques,
theories and financial instruments2.

1.2.2 Some fundamental problems in Financial Engineering

Securities pricing

In most financial markets, one typically identifies two classes of securities: primi-
tive and derivative. Primitive securities are tradable assets, such as stocks or bonds,
whose price largely depends on the financial status of the issuer. Derivative securi-
ties, such as options, futures and swaps, derive their value from the performance of
other underlying, mostly primitive, securities3. One of the main concerns of financial
engineering is the development of theoretical or empirical models that describe the
price evolution of both primitive and derivative securities. Most pricing models sug-
gested in the financial literature typically assume a well-developed market with many
tradable assets and enough rational agents who make investment decisions based on
fundamental information regarding the prospects of each asset. All the information
available to investors is almost instantly reflected to market asset prices and one
cannot continuously make excessive trading profits based on publicly available infor-
mation. This is the well-known efficient markets hypothesis, perhaps one of the most
debated concepts in modern finance (see Fama (1970, 1991, 1998); Farmer and Lo
(1999)).

Popular frameworks for the pricing of primitive assets such as common stocks, are
the Capital Asset Pricing Model (CAPM), developed by Sharpe (1964); Litner (1965);
Mossin (1966), or the Arbitrage Pricing Theory, which dates back to the seminar
contributions of Ross (1976, 1977). The underlying idea of both models is to relate

1See e.g. the website of International Association of Financial Engineers (accessed from
http://www.iafe.org at December 2006) and Galitz (1995) for relative definitions.

2The on-line magazine Financial Engineering News accessed from http://www.fenews.com/what-
is-fe/what-is-fe.html [February 2007] provides a discussion on financial engineering and how this is
related to other scientific or engineering fields. For some general references on financial engineering,
the reader is referred to Mulvey et al. (1997); Zenios (2002) and the special issues of the Annals of

Operations Research (Konno et al. (1993); Vladimirou (2007a,b)).
3See e.g. http://financial-dictionary.thefreedictionary.com [December 2006] for definitions of

terms.
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the expected rate of return on primitive securities to their exposure on a number of
fundamental factors driving the market (stock indexes or other economic indicators).
Based on a set of assumption discussed above, they suggest that what is important
in the determination of the price of an asset is its exposure to fundamental factors,
what is called the fundamental or factor -related risk, and not the risk associated with
the issuing company. This is because in a well-developed market with many tradable
assets, “idiosyncratic” risk can be diversified away by holding a proper portfolio of
primitive securities.

The approach that is often adopted in the pricing of derivative assets is the no-
arbitrage framework, initiated by Black and Scholes (1973) and developed by Merton
(1973), Harrison and Kreps (1979) and Harrison and Pliska (1981). Arbitrage is
the act of simultaneously buying and selling assets in order to create a riskless and
profitable investment opportunity. The starting point in a no-arbitrage pricing theory
is that a well-organised financial market should not permit the persistent gain of
profits without any exposure to risk. Therefore, any arbitrage opportunities will
be sooner or latter exploited by investors, ensuring that prices reach an equilibrium
state where arbitrage is no more feasible. The assumption of arbitrage lies behind
the famous Black and Scholes (1973) model for European-type options as well other
parametric derivative pricing models, such as the Jump-Diffusion (Merton (1976)),
Constant Elasticity of Variance (Cox et al. (1976)), and Hull and White (1987)’s
Stochastic Volatility.

It is commonly believed that financial engineering is mainly concerned with pric-
ing derivative instruments using arbitrage arguments, while the pricing of primitive
assets is in the scope of financial economics. However, this distinction is illusive as
the price evolution of primitive assets is an important determinant of the derivative
pricing model.

Risk analysis

Following the overall increase in financial uncertainty in the 90’s associated with
a number of famous financial disasters, there has been an intensive research from
financial institutions, regulators and academics to develop more sophisticated tools
for properly measuring and managing financial risk4. The central concept was the
Value-at-risk (VaR), a statistical measure of how the market value of an asset or
a portfolio of assets is likely to decrease over a certain time period under usual
market conditions. The calculation of a VaR statistic involves three parameters: the
investment horizon, the confidence level and a loss amount (or loss percentage). All
these components are important in the quantification of the risk of a trading position.
To illustrate the above concept, assume that the predicted distribution of the price
of an asset ten days ahead is given by figure 1.1. Let P0 be the current value of the
asset. Note that with probability (1 − α) the maximum downfall is not expected to
be below P1, the “worse” α% quantile of the distribution. Hence, the maximum loss,
i.e. the VaR, at the given significance level is equal to the difference P0 − P1.

Note that the Value-at-Risk is an estimator of the tails of the empirical dis-
tribution of the portfolio value after a certain period of time. Hence, for accurate

4Dowd (1998); Jorion (1997); Ris (1996); Basle (1996).
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Figure 1.1: The calculation of Value-at-Risk.

quantification of risk one needs a model for the time-evolution of the joint distribution
of the assets composing the portfolio. Various methods are available in the literature
(see Jorion (1997); Sinha and Chamu (2000) for good surveys) each of which has its
own advantages and disadvantages. It is important to note that if asset returns were
normally distributed, VaR would be a function of the standard deviation of returns.
However, it is widely documented that the empirical distribution of asset returns ex-
hibit richer statistical properties, such as skewness and excess kurtosis, that raise the
need for more sophisticated models than a gaussian distribution. These properties
are very crucial in the modelling of financial asset prices and hence are analytically
discussed in chapter 2.

Portfolio optimisation

The ultimate goal of financial engineering is the design of a trading strategy, i.e.
a rule of allocating capital between different assets, that optimises the objectives
posed by the investor under various institutional constraints. Depending on these
objectives we obtain a number of portfolio construction methods. The traditional
mean-variance portfolio analysis, originated with Markowitz (1952), attempts to si-
multaneously maximise the expected return on a portfolio and minimise its expected
risk, as measured by the standard deviation of returns. To this end, historical quan-
titative analysis and forecasting are carried out in order to optimise the risk/return
relationship. Other portfolio selection methods are not based on the maximisation of
expected profit but rather concentrate on the avoidance of “bad outcomes”. Using
the VaR framework, for example, portfolio managers allocate assets in a way that the
VaR of a portfolio is not greater than a pre-specified amount, the maximum allowed
loss that will only be exceeded with a small probability5.

1.3 Models of Computational Intelligence

The last two decades have experienced a growing development of computer-based
algorithms inspired by

5See Elton et al. (2003) and Michalopoulos et al. (2004), section 3, for a comprehensive discussion
on portfolio selection methods.
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• various aspects of physical human intelligence (knowledge acquisition and rep-
resentation, approximate reasoning, etc.)

• biological structures or formations (cells, organs, human brain, ant colonies,
etc.)

• and biological processes (evolution of species)

Popular examples of these methodologies are artificial neural networks, adaptive
neuro-fuzzy inference systems (ANFIS) and genetically-evolved models. Although
most of these intelligent-learning paradigms are in principle different in nature and
have historically emerged from a variety of scientific fields, they are nowadays grouped
under the umbrella of computational intelligence (CI). CI models manifest themselves
in a great variety of forms and combinations and a detailed exposition of the topic
would certainly go beyond the scope of our analysis. Therefore, in what follows we
avoid getting into the details of each technique and rather focus on general character-
istics which seem to be the unifying features of these intelligent methodologies. For
a comprehensive and systematic introduction to computational intelligence methods,
the reader is referred to Chen (2000); Engelbrecht (2003); Konar (2005). In section
1.4, we provide an analytical discussion on artificial neural networks (NN), the type
of CI methodology employed in our thesis. Further references are given in the text
when necessary.

Intelligent tools and techniques have been successfully applied to a wide range of
complex application domains with promising modelling and forecasting results. The
growing interest in this type of methodologies is generally justified by the fact that
they are purely empirical or data-driven and offer very flexible model specifications
that rest on few (if any) assumptions on the data-generating process. Many intelligent
learning methods, such as feedforward NNs or Takagi-Sugeno fuzzy inference systems
(Jang et al. (1996); Takagi and Sugeno (1985)), possess a universal approximation
property, which means that under weak assumptions they are capable of approxi-
mating highly nonlinear mappings to an arbitrary degree of accuracy6,7. This is a
quite desirable property as in many application domains (especially in economics and
finance) theory can not fully guide the model-building process by suggesting the rel-
evant input variables or the correct functional form that an empirical model should
take.

6See Tikk et al. (2003) for a comprehensive review of the universal approximation properties of
common intelligent techniques.

7As computational intelligent models do not make explicit assumptions on the type of relations
inherent in data, they are characterised as semi- or non-parametric to discriminate them from other
models that cannot accommodate any functional form (e.g. linear regressions). In this sense, they are
comparable to other non-parametric techniques, such as wavelets, splines, projection pursuit or kernel
smothers, often used in empirical statistics. The interested reader is refereed to Hardle et al. (1997)
for a comprehensive review on non-parametric time-series analysis and Percival and Walden (2006);
Gencay et al. (2001) for time-series and economic/financial applications of wavelets. Cherkassky
et al. (1996) present a study whose purpose is to compare the predictive performance of various
function estimation methods, including artificial neural networks, projection pursuit and adaptive
regression splines. Based on artificially-generated data sets, they show that no single method is
superior to the others and each method’s performance depends significantly on the type of the target
function and on the properties of the data used in model selection/estimation.
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Another difference between CI and conventional statistical models lies in the rep-
resentation of knowledge obtained from data. Common statistical empirical meth-
ods, such as regression models, are in fact mathematical equations. However, many
intelligent paradigms provide alternative representations of the underlying data rela-
tionships, such as a system of logical rules or a decision tree, that are often easier to
understand, interpret and validate by experts.

Intelligent modelling gives finally the researcher great flexibility in combining indi-
vidual algorithms to create hybrid systems which share the advantages and minimise
the disadvantages of individual schemes8. A neuro-fuzzy combination, for exam-
ple, keeps the powerful approximating capability of NNs while it adds much to the
comprehensibility of the induced model. An evolutionary algorithm, such as genetic
programming, is often useful for performing a more consistent exploration of the
space of possible network topologies (or else model specifications).

The last two decades have experienced an explosion in the number of applications
of intelligent learning methodologies in time-series forecasting. A great majority of in-
telligent approaches employ a network learning technique, such as feedforward, radial
basis function or recurrent NN (Zhang et al. (1998); Swanson and White (1997b)),
although certain paradigms such as genetically-evolved regression models (Cortez
et al. (2001); Farley and Jones (1996); Szpiro (1997); Koza (1991)) or inductive
fuzzy inference systems (Fiordaliso (1998)) are also encountered in the literature.
CI methodologies have been particularly popular in financial applications, including
the prediction of stock prices and interest rates, the pricing of derivatives and the
forecasting of foreign exchange rates and volatility. Table 1.1 gives a indicative list of
references classified by the application task and the type of the learning technology
(neural, fuzzy, evolutionary, etc.). Apparently, due to the rapidly growing literature
it would be difficult to provide an exhaustive classification of intelligent applications
in financial time-series. Besides, CI methods are often more difficult to categorise
as they appear in many variations and different combinations (i.e. hybrid systems).
Nevertheless, table 1.1 gives a good indication of the research trends in this area.
More references of CI applications in financial engineering can be found in Abu-
Mostafa et al. (2001); Trippi and Turban (1996); Chen (2002); Azoff (1994); Kingdon
et al. (1997).

Computational intelligent algorithms are flexible semi-parametric models and this
seems to be an important desirable property as concerns complex real-life applica-
tions. However, the “atheoretical” nature of CI models can also be the source of
many problems in applied work. A too complex CI model may not only capture
salient features of the relationship between variables of interest but also random ef-
fects pertaining to the particular data set. In this sense, the model is redundant for
the particular data set and may overfit the data. Overfitting is a serious problem
because although it reduces the approximation error in the training data set (i.e. the
data used to specify the structure and estimate the values of the parameters of the
model) it leads to bad performance on “unseen” data (i.e. out-of-sample). The possi-
bility that a particular CI model be over-adequate for a particular data set raises the
importance of a model-building strategy whose purpose is to determine the optimal

8See e.g. Tsakonas and Dounias (2002) for a review of this approach.
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Neural Network Architectures Fuzzy Systems Evolutionary Schemes

Stock markets McCluskey (1993); Bergerson and
Wunsch (1991); Kohara et al.
(1997); Schoneburg (1990); Kimoto
et al. (1990); White (1988a)

Fiordaliso (1998); Singh and
Fieldsend (2000); Setnes and van
Drempt (1999)

Chen and Yeh (1997); Nikolaev and
Iba (2001); Kanungo (2004); Mc-
Cluskey (1993)

Term Structure Barucci and Landi (1993); Deboeck
and Cader (1994)

Mohammadian and Kingham
(2004)

Mohammadian and Kingham
(2004)

Foreign Exchange Weigend et al. (1992); Kuan and
Liu (1995); Harm and Steurer
(1996); Bolland et al. (1998); Tenti
(1996); Nag and Mitra (2002)

Kim and Kim (1997); Li et al.
(1995); Ghoshray (1996a,b)

Nag and Mitra (2002); Kim and
Kim (1997)

Derivatives Garcia and Gencay (2000);
Hutchinson et al. (1994); Gencay
and Qi (2001)

Chen et al. (1998); Chidambaran
et al. (1999); Chen et al. (1999);
Chidambaran et al. (1998); Schus-
ter (2003)

Volatility Donaldson and Kamstra (1997);
Bartlmae and Rauscher (2000); Du-
nis and Huang (2001); Harrald and
Kamstra (1997)

Harrald and Kamstra (1997); Neely
and A.Weller (2002)

Table 1.1: An indicative list of computational intelligent applications in financial time-series as categorised by the application domain (rows)
and the intelligent technology used (columns). For hybrid schemes that combine more that one technologies, we occasionally quote each intelligent
component separately.
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complexity of a CI model that guarantees good fit in the training set and reasonable
out-of-sample performance. This systematic procedure is often referred to as model
selection, determination or identification.

It is important to note that despite the huge amount of CI theories and the
recognised success of these models in applied work, there are still no universal model-
building methodologies that can be applied to a wide range of application data sets.
Much of the model-building strategies are ad hoc, i.e. specially designed for the
particular methodology and application, and mainly driven by heuristic criteria or
“rules” of thumb. Hence in a typical application the success of any intelligent ap-
proach is the result of repeated and time-consuming experimentation involving much
trail and error.

In financial engineering and time-series analysis the contribution of CI models is
still questionable. This is mainly because in this type of application domain there is a
strong culture for investigating not only the predictive power but also the statistical
significance of various aspects of the derived model. Financial engineers are in many
cases interested in knowing how many of the lags of a model to keep in the final
specification, whether a particular variable is important in explaining future move-
ments of the target variable or which is a 5% confidence interval for a particular set
of model parameters. Such issues greatly enhance the modelling procedure and our
understanding of the underlying phenomenon. In contrast to other computational
intelligent paradigms, the investigation of the statistical properties of the final speci-
fication has been a very active research area in the neural networks literature, where
nowadays solid theoretical procedures exist for testing the individual or joint irrel-
evance of network inputs and weights (see e.g. Zapranis and Refenes (1999); White
(1989b); White and Racine (2001)).

1.4 Artificial Neural Networks

1.4.1 Introduction

Artificial Neural Networks are a class of parallel semi-parametric computational mod-
els inspired by the biology of human brain9. The most typical architecture for a NN
is the so-called single-hidden-layer feedforward network, depicted in figure 1.2. In this
topology, the values of explanatory variables are passed though links or “connections”
(represented by solid lines) to the intermediate or hidden layer. Each intermediate
processing unit, called hidden neuron, sums up the pre-weighted arriving signals and
passes them though a nonlinear “activation” function F : R → R. Common choices
for F are the logistic, the tan-sigmoid and the radial basis function. The output of
each neuron is also amplified and sent to the output layer. Note that the architec-
ture depicted in figure 1.2 also performs a linear mapping between input variables
(and a constant) to the output level through direct connections (dotted lines). The

9An introductory exposition to artificial neural networks can be found in Bishop (1995); Haykin
(1999).
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combined effect of the neural network can be expressed by the nonlinear function:

g(xt; µ) = φ′x̄t +
h
∑

j=1

λjF (w′
jxj − cj)

where x̄t = (1, x′
t)
′, φ ∈ R

n+1 is the vector of the parameters of the linear model, h
is the number of hidden neurons, wj ∈ R

n are the weights from input variables to
neuron j, λj ∈ R is the weight from neuron j to the output level and cj ∈ R is the
bias term.

Figure 1.2: A single-hidden-layer feedforward neural network with three inputs and two
hidden neurons.

As an example, consider a simple neural network with a single input x and an
output y with two neurons in the hidden layer. The function relating x to y is defined
as y =

∑3
j=1 yj , where y1 = 0.5 + 0.2x, y2 = F (−1.5x), y3 = 1.2F (11x + 21) and F

is the logistic function. Figure 1.3 provides a plot of the output of the NN, measured
in the vertical axis, with the input x measured on the horizontal axis. As seen, when
x ≪ −2, y2 = 1 and y3 = 0 hence y’s behaviour is largely determined by the linear
function y1 = 0.5+0.2x augmented by 1. As x rises past about -2, y3 rapidly increases
to its maximum (y3 = 1.2) so that by the time x reaches roughly -1.4, y has increased
from 1.1 to 2.3 approximately. As x continues towards zero, neuron y2 is beginning
to activate although its response is less abrupt due to the smaller coefficient of x (-1.5
compared to 11). By the time x ≈ 1, y2 = 0 and from that point onwards the output
of the network is largely determined by the linear function.

NNs are widely used as function approximators. Given a sample of observations
{xt, yt, t = 1, 2, . . . , T}, where T is the sample size, x ∈ R

n is the set of input variables
and y ∈ R is the target variable, the task is to determine the structure of the NN that
can optimally approximate the relationship between x and y. The goodness of the
approximation can be measured by a proper performance or error criterion πT (µ),
which is function of the parameters of the network and the data set. The definition of
this criterion is in the researcher’s judgement and largely depends on the particular
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Figure 1.3: An example of a neural network mapping.

application, although common choices are the root mean squared or the root mean
absolute error between the actual values of y and the response given by the network.
Once an appropriate measure has been defined, the last stage is finding the values of
the parameters that minimise the error or maximise the performance of the network.
This stage is often called training or estimation.

Artificial neural networks are indisputably the most popular CI methodology
within the area of financial engineering, especially in time-series forecasting and the
pricing of stocks and options10. Due to the complex nature of economic and financial
relationships, theory cannot fully guide the researcher as to which is the appropriate
set of input variables or which is the appropriate functional form of the model that
should be used for the particular data set. This difficulty makes it attractive to
consider a flexible class of models that do not make explicit assumptions about the
data-generating process. Artificial neural networks, as semi-parametric models, are
well suited for this purpose. A single-hidden-layer feedforward NN is capable of
approximating any Borel measurable function to an arbitrary degree of accuracy, by
appropriately adjusting the number of neurons in the hidden layer. This is the so-
called universal approximation property of NNs (see e.g. Hornik et al. (1989); Hornik
(1991)).

1.4.2 Architecture selection

Model selection in artificial neural networks involves making a decision on how many
neurons to include in the hidden layer and which subset of variables to connect to
each neuron. Over the years of development and research in the neural network area,
the number of model selection techniques that have been proposed in the relevant lit-

10See Zhang et al. (1998); Azoff (1994) for relatively recent surveys on the forecasting literature
and table 1.1 for general financial engineering applications. Chapter 7 is exclusively concerned with
the pricing of derivatives using NNs.
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erature is great. Most of the approaches borrow their principles from disciplines such
as statistics and information theory, however a great number of empirical heuristic
procedures is also encountered. In what follows we attempt a brief review of the
current practice in NN model selection. For further details, the interested reader is
referred to Zapranis and Refenes (1999); Fine (1999)11.

• Regularisation

The idea behind regularisation is to compromise between the goodness-of-fit and
the complexity of a neural network model, by penalising “over-parametrised”
topologies. This is typically achieved by adding a complexity penalty term to
the usual performance measure, thus minimising an objective function of the
type

lT (µ) = πT (µ) + acT (µ)

where cT (µ) is the regularisation or penalty term, an increasing function of
model parameters, and a is the decay or smoothing parameter, which repre-
sents the trade-off between model accuracy and complexity. A large value of a
indicates a preference towards simpler topologies.

In practice, various choices for the form of the penalty term are possible. Usu-
ally, cT (µ) is taken as the sum of squared parameters. Another common formu-
lation is cT (µ) = (

∑

i µi) / (1 +
∑

i µi). The choice of the value of the smoothing
parameter in an open issue. Weigend et al. (1991) proposed to iteratively in-
crease or decrease the value of a during the training of the NN. However, this
often requires much experimentation on behalf of the researcher and can also
bias the model-selection procedure. One approach to determining the optimal
value for the smoothing parameter has been proposed by MacKay (1992) in the
context of Bayesian analysis.

• Pruning

Pruning model-selection algorithms typically start with a complex network
topology and gradually simplify the structure by removing insignificant neu-
rons or connections. In this category, a vast number of techniques have been
proposed, the majority of which are based on a simple heuristic or “rule-of-
thumb”. Optimal Brain Damage (Le Cun et al. (1990)) and Optimal Brain
Surgeon (Hassibi and Stork (1993)) are two popular techniques of this sort that
approximate the change of the error function when pruning a certain weight.
A simple heuristic pruning strategy is also considered in chapter 7 for creating
semi-parametric NN-based option pricing models.

• Sequential statistical hypothesis testing

Ever since NNs were used in financial and economic problems, where well-
established statistical and econometric procedures had already existed, there
appeared a tendency to apply formal statistical procedures on NN model selec-
tion. These included among others statistical hypotheses tests and information

11Zapranis and Refenes (1999) provide a comprehensive survey on the application of statistical
techniques in neural network modelling.
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criteria. The popularity of statistical procedures in NNs was mainly because
in this application domain there is a strong culture for investigating not only
the predictive power but also the correct specification and the statistical signif-
icance of various aspects of the derived model.

Common statistical procedures in NN model selection typically follow a bottom-
up direction, meaning that they start with a small model, mostly linear, and
then gradually add hidden neurons if the data structure indicates so. The
decision to further complicate the topology of the NN is often based on the
value of some information criterion (AIC or SBIC) or the outcome of a statistical
hypothesis test (see e.g. Anders and Korn (1999); Teräsvirta and Lin (1993);
Medeiros et al. (2006); Swanson and White (1995, 1997a,b)). The latter is the
approach that we adopt in this thesis for determining the structure of neural
network models. In chapter 7, we compare bottom-up NN selection strategies
guided by statistical hypothesis tests and information criteria with a top-down
pruning algorithm on the basis of pricing S&P 500 stock index options.

1.5 Summary

The purpose of this chapter was to introduce the reader to the main topics covered
in this thesis. We discussed the essence of financial engineering, a recently emerged
multidisciplinary field that integrates financial theory with methods of engineering,
statistical tools and computer algorithms, in order to structure sophisticated solu-
tions to complex financial problems. We presented common research areas in financial
engineering, such as the development of pricing models for primitive and derivative
financial securities, the quantification of risk and the design of portfolios and trad-
ing strategies, and we reviewed the current practice in each of the above research
directions.

The second part of this chapter was devoted to the presentation of computational
intelligent algorithms, a modern approach to “learning-from-data” that has recently
become popular in financial engineering. Over the years of development and research
in this area, intelligent learning models such as artificial neural networks, neuro-fuzzy
inference systems and genetically-evolved models have been successfully applied to
a wide range of complex financial tasks, with rather promising results. The growing
interest on these models is generally justified by their flexibility and their empirical
or data-driven nature. A considerable part of this chapter is devoted to Artificial
Neural Networks, a class of parallel semi-parametric computational models that are
indisputably the most popular CI method among practitioners and researchers of
financial engineering. After a brief introduction to the topic, we concentrate the
discussion on methods and techniques for determining the architecture of a NN model.
This is perhaps the most crucial stage in a practical application, as careful model
selection helps to avoid overfitting and to find an adequate approximation of the true
data-generating process.

The extensive use of NNs in financial problems, where well-established statistical
and econometric procedures had already been used, led to an active research direction
whose purpose was to apply formal statistical procedures on NN model estimation
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and selection. The popularity of statistical methods in NNs was in part due to
the longstanding relationship between finance and stochastics but mainly came as a
need to base model-building on clearly defined statistical principles that increase the
transparency of the procedure. We will come back to the discussion on statistical
modelling principles in chapter 3. The following chapter is about distinguishing
properties of financial time-series.



Chapter 2

Some stylised facts on financial

returns

2.1 Introduction

This chapter presents some stylised facts on the statistics and dynamic behaviour
of financial prices and returns. Section 2.2 shows that the empirical distribution
of returns is typically more “peaked” around the centre and has fatter tails than a
normal probability density function. Section 2.3 shows that the average uncertainty
and risk about the size of fluctuations in an asset’s price typically changes over time,
resulting in periods of high and low volatility. Section 2.4 discusses the dynamic
behaviour of asset prices when the transaction price of an asset deviates from its
fundamental value. Section 2.5 summarises the main findings and concludes with a
discussion on the implications of the statistical properties for financial modelling.

2.2 Leptokurtosis

The empirical analysis of financial time-series has shown that price changes and rates
of returns typically have “fatter tails” than are compatible with a normal distribu-
tion. To illustrate the property, we collect a sample of daily data from the French
CAC 40 and German DAX stock indexes covering the period from July 3rd, 1987
to March 22nd, 20021. We exclude weekends, public holidays and other non-trading
days and we calculate the rates of return on each index by taking logarithmic dif-
ferences between successive trading days, i.e. rt = log(Pt) − log(Pt−1), where Pt

denotes the index’s closing value at time t and rt the corresponding return between
t − 1 and t. The daily values and logreturns time-series are depicted in figure 2.1
and figure 2.2 respectively. Table 2.1 provides summary statistics for the logarithmic
returns on CAC and DAX. We observe that the empirical distribution of returns is
characterised by negative skewness and excess kurtosis (greater than three implied

1CAC (Compagnie des Agents de Change) 40 is a stock market index that tracks the forty largest
French stocks based on the market capitalisation on the Paris Stock Exchange. DAX (Deutscher
Aktienindex) is the leading index of the Frankfurt Stock Exchange and it measures the performance
of the thirty largest German companies in terms of order book volume and market capitalisation.

14
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by a normal distribution). This means that more probability is assigned to negative
than positive returns and to extreme than moderate price movements. The Jarque-
Bera test statistic in either case strongly rejects the hypothesis of normality. Figure
2.3 shows the histograms of logarithmic returns along with a normal density that
provides the optimal fit to the data. As seen, the empirical distribution of returns
largely deviates from the normal prototype, being sharply peaked around the mean
and “heavy”-or “fat”-tailed. This leptokurtic shape of the empirical distribution is
characteristic of most financial and economic time-series.
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Figure 2.1: The CAC and DAX stock index values from July 3rd, 1987 to March 22nd,
2002.
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Figure 2.2: The CAC and DAX logreturns from July 3rd, 1987 to March 22nd, 2002.
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Descriptive statistics

CAC DAC
min -0.101 -0.137
max 0.082 0.115
mean 2.283 × 10−4 2.544 × 10−4

standard deviation 0.014 0.015
skewness -0.259 -0.364
kurtosis 7.251 9.154

Jarque-Bera normality test

statistic 3.355 × 103 7.028 × 103

p-value 0 0

Table 2.1: The sample statistics of the CAC and DAX returns series. Panel A provides
several distributional measures, while panel B shows the results of the Jarque-Bera normality
test. The null hypothesis is that returns were sampled from a normal distribution. The
p-value denotes the probability that one gets a value for the test statistic higher than the one
tabulated above, given that the null hypothesis is true.

2.3 Predictability of the variance of returns

Another distinguishing property of the financial time-series refers to the variability
of returns. Figure 2.4 shows the time evolution of the squared returns for both
CAC and DAX. Observe that in both time-series the average uncertainty about the
realised return is not constant but changes significantly with time. In particular, large
price movements tend to be followed by large movements of either sign, resulting in
succeeding periods of high and low volatility. On the contrary, the long-run variability
of returns tends to settle down to a mean level. This pattern, common in many
financial and economic time-series, was termed by Engle (1982) as Autoregressive
Conditional Heteroskedasticity (ARCH).

Observable ARCH effects add an extra degree of short-term predictability of price
movements that is related to the average uncertainty about future movements. It is
important to note, however, that this source of predictability stems from the second
moment of the conditional distribution of returns, i.e. the variance. Hence, although
price changes or rates of return may be found uncorrelated, this does not mean
that they are statistically independent, as the variability of returns may be largely
determined by past extreme returns. Some models that are intended to capture this
distinguishing pattern of volatility evolution are discussed in chapter 4.

Recent empirical studies on financial time-series have revealed additional fea-
tures of volatility dynamics. French et al. (1987); Nelson (1990); Schwert (1990),
among others, have confirmed that the short-term volatility does not often react in
a symmetric way to past extreme price changes but the direction or sign of change
is important to future volatility. Typically, a negative shock increases on average
the short-term volatility more than an unexpected positive movement of the same
magnitude, known as the leverage effect (see Engle and Ng (1993)). Inspired by the
asymmetries and nonlinearities observed in data, many authors have proposed new
models of volatility that are intended to capture these effects. Some examples are
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Figure 2.3: The empirical distribution of CAC and DAX logreturns. Along with the
histograms we show the best fit from the family of normal densities.

discussed in chapter 4.

2.4 Nonlinearities in price adjustments

In high-frequency financial time-series, especially those that describe the intraday
evolution of asset prices, different dynamic patterns arise when the market enters
into exceptional regimes. These patterns are often the outcome of investors’ actions
in adjusting the price of the asset towards its fundamental value.

Due to the fact that nowadays most financial assets are traded in well-organised
markets, where a great variety of securities exist, one can often derive a theoretical or
fair value for these assets which is in accordance with the value of similar -in terms
of payoffs- assets existing in the market. Typical examples are the Capital Asset
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Figure 2.4: The short-run volatility of returns on CAC and DAX, as proxied by the square
of logarithmic returns (r2

t
). Note that the time evolution of volatility shows a distinguishing

pattern of heteroskedasticity (i.e. changing variance), characterised by successive periods of
high uncertainty and relative “calm” (i.e. volatility clusters). This pattern, common in many
financial time-series, is known in the literature as Autoregressive Conditional Heteroskedas-
ticity (ARCH).

Pricing Model (CAPM), which links the price of a common stock with the value
of the market portfolio, and the famous Black-Scholes option pricing model, which
derives a fair value for a call option in relation to the price of the underlying security
and the risk-free interest rate prevailing in the market.

In an effort to derive a predictive model of asset prices, most fundamental valu-
ation theories start with the assumption that the actual price at which an asset is
traded in a market is approximately equal to its fundamental value. The difference
between these two does not convey any useful information from a modelers’ point
of view. This assertion is typically based on the standard financial argument that if
the price is significantly different from its fundamental value, there appears a low-
or even zero-risk profit opportunity through the tool of arbitrage. This is realised by
buying and selling differently priced items of the same value and thus profiting from
the difference. As this investment opportunity will attract many profit-seeking in-
vestors, one expects that the trading activity will almost instantly adjust the market
price so that arbitrage is no more feasible. At this equilibrium state, the price of the
asset is equal to its fundamental value.

This dogma has received extensive criticism by many researchers in financial eco-
nomics, especially in the light of growing empirical evidence confirming large and
persistent deviations from fundamental levels. These observations have led to the
development of a new theory that views the relationship between price and funda-
mentals from a new perspective. The so-called limits to arbitrage have become a
central issue in the recently emerged field of behavioural finance that tries to explain
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a variety of anomalies observed in the formation of market prices2.
Arbitrage theories are typically based on the assumption that securities can be

“substituted” or “replicated” by proper portfolios of other securities traded in the
market. They also assume an ideal market environment with no transaction costs
and enough well-informed rational traders. The common argument is that as soon
as there is a deviation from the fundamental value an attractive investment oppor-
tunity arises, which rational traders will immediately snap up thereby correcting the
mispricing. However, practical implementation issues pose limits to the profitabil-
ity and feasibility of arbitrage strategies. Hence, even when an asset is persistently
mispriced, strategies designed to correct the mispricing can be both risky and costly,
hence leaving prices in a non-equilibrium state for protracted periods of time.

The theory of limits to arbitrage suggests that transaction costs, liquidity con-
cerns, margin payments and limitations to short selling - which are often summarised
by the term market frictions - are very important as concerns the practical imple-
mentation of a trading strategy. Empirical research conducted in various market
environments revealed that these imperfections are responsible for statistically sig-
nificant deviations from the no-arbitrage situation. Some studies concluded, for ex-
ample, that the futures contract is selling at a discount relative to its theoretical
price (Cornell and French (1983a,b); Figlewski (1984)). Jawadi (2005) reports sim-
ilar results for prices of common stocks. Apparently, due to implementation costs,
arbitrage strategies are profitable only when the benefits from arbitrage well exceed
implementation costs.

Even when implementation costs are insignificant, arbitrage strategies may still
be unattractive due to the existence of uninformed “noise” traders that engage in
“trend-chasing” and drive prices away from fundamentals. Although fundamental
valuation theories claim that the activity of arbitrageurs will sooner or later lead
this type of investors out of the market, in the short-run arbitrageurs run the risk
that the trading of noise investors will cause further deviations from the fundamental
value. This is what is often called as noise-trading risk. As most arbitrageurs are
restrained by short-term investment horizons, the activity of noise traders makes
them less aggressive in combating any mispricing in the first place. On the other
hand, there is extensive evidence that noise trading is not always a “bad signal” for
rational investors but also a profitable opportunity. Occasionally, arbitrageurs may
find it more profitable to trade in the direction of noise traders rather than in the
direction that corrects the mispricing. This is the well-known “feeding the bubble”
strategy (see e.g. Samuels et al. (1998), ch. 8).

The fact that arbitrage can be of limited affectiveness in real markets has impor-
tant implications to the short-run dynamics of financial prices and often suggests a
new approach to the modelling of securities prices. Thomaidis and Dounias (2006a);
Thomaidis (2006) give an extensive discussion on the relationship between behav-
ioural finance and common econometric models and Thomaidis and Dounias (2005)
propose a new pricing methodology based on computational intelligent methodolo-
gies. To illustrate the ideas, consider figure 2.5 that depicts the contemporaneous
deviation of the actual price of an asset from its fundamental value. Note that when

2For recent surveys on the behavioural finance literature see Shleifer (2000); Barberis and Thaler
(2001).
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mispricings are in the order of transaction costs the price may meander without a
tendency to settle down to an equilibrium level, as perhaps none investor will find it
advantageous to correct the mispricing. However, the larger the deviation from the
fundamental value is the more investors are expected to engage in arbitrage trading,
thereby exerting a greater pressure on the price to return to the zero level (fundamen-
tal value). This market behaviour suggests a certain type of nonlinear relationship
between the mispricing occurring at some time and the correction of mispricing that
is expected to take place in the near future. This relationship is depicted in figure
2.6. We observe that the average speed of correction attains its minimum for val-
ues of the mispricing around zero. However, the impact of mispricing increases as
we move away from zero, possibly in an asymmetric way (i.e. negative mispricings
may be corrected more abruptly than positive ones). Of course, this figures gives a
rough approximation to reality. The mispricing-correction mechanism is very much
depended upon the level of transaction costs and other market frictions, the number
of investors engaged in arbitrage activity and the security under consideration. For
example, in liquid markets with low transaction costs, the area of inaction around
the fundamental value may be considerable smaller compared to illiquid securities.
Therefore, the exact pattern of price reversions has necessarily to be determined on
a case-to-case basis.

Figure 2.5: Nonlinear mean-reversion dynamics.

2.5 Summary

The purpose of this chapter was to discuss some distinguishable properties of financial
time-series. We showed that price changes or rates of return typically follow non-
trivial statistical laws that highly deviate from the “gaussian white noise” prototype,
assumed in most engineering applications of NNs. Empirical distributions are more
“peaked” around the mean and have heavier tails than a normal probability density.
The average uncertainty about price movements is not constant but depends on
the history of returns. In particular, large unanticipated price movements tend to
increase on average the short-term variability of the series and quite often a sudden
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Figure 2.6: Average price correction vs mispricing.

price drop has a different impact from an unexpected rise. Hence, although most
financial securities go through period of high and low volatility any shift in volatility
levels is largely determined by the size and sign of past unexpected movements and
hence is predictable.

A considerable part of this chapter was also devoted to a discussion on the short-
run dynamic behaviour of prices when an asset is mispriced, i.e. its market price
deviates from the fundamental value. Classical asset pricing models assume that
most securities traded in the market are priced according to their fundamental value,
because as soon as there is any deviation from fundamentals there appears an oppor-
tunity for arbitrage, which rational investors will instantly exploit thereby correcting
the mispricing. However, quite often practical implementation issues pose limits to
the profitability and feasibility of arbitrage strategies, resulting in persistent devi-
ations from fundamental levels. When mispricings are in the order of transaction
costs, the price may meander without a tendency to revert to an equilibrium level, as
perhaps none investor has any benefit from correcting the mispricing. However, the
larger is the deviation from the fundamental value the more investors are expected
to engage in arbitrage trading thereby exerting a greater pressure on the price to
return to the fundamental level. This means that the probability distribution of fu-
ture price changes may depend on the size/sign of the mispricing and on recent price
movements.

The empirical properties of financial time-series have important implications for
the modelling techniques used in financial engineering. Obtaining a faithful rep-
resentation of the dynamic behaviour of financial instruments requires considering
a general class of models that could possibly accommodate nonlinear adjustment
mechanisms, symmetric or asymmetric ARCH effects and non-gaussian distributions.
However, not all data sets share the same features. In high-frequency price series,
for example, asymmetric responses may arise more often than in a time-series rep-
resenting daily data where heteroskedasticity may be the dominant effect. From a
practical point of view, it is therefore absolutely important to have a model-selection
strategy that can adjust the level of complexity of the predictive model according to
the particular features existing in data.

However, these features may often invalidate the procedure used to determine
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the optimal structure of the model leading to unpleasant results. For example, as
we show later in chapters 4 and 5, standard statistical procedures that are used to
determine the number of neurons in a NN model may misinterpret heteroskedasticity
as systematic nonlinearity in data and hence increase the complexity of NN in order to
capture this effect. As heteroskedasticity, however, is a property of the error process
this can lead to overfitting and bad out-of-sample performance.



Chapter 3

Principles of statistical and

econometric modelling

3.1 Introduction

This chapter reviews the basic principles in the construction of statistical-econometric
models with financial applications. Section 3.2 discusses the main econometric as-
sumptions about the data-generating processes encountered in financial markets and
section 3.3 presents all stages of the econometric model-building cycle (specification,
estimation, evaluation). Section 3.4 summarises and concludes the chapter with a
discussion on the statistical properties of intelligent learning algorithms and the in-
teraction between statistics and computational intelligence.

3.2 The general setting

Most computational intelligent techniques are traditionally treated as approximators
to the functional relationship between a set of explanatory variables and another
target variable of interest to the researcher. However, this approach should be treated
with care in application domains where the researcher has incomplete control over
the process that generates the data. This situation arises when the “nature” or
“chance” has a hand in generating measurements1. Nature’ s involvement may be
partial, as for example in an experimental setting where observations are “noisy” i.e.
their precise value is also determined by chance, or complete, as in financial markets
where the modeler is a sole observer and has no control on the values that economic
variables take. In such an inherently uncertain environment, it is no longer possible
to express an exact functional relationship between target and explanatory variables;
however it is always possible to find a relationship in terms of probability.

Suppose the researcher is interested in explaining the behaviour of an observable
variable and for that purpose he assembles a sample of observations {(yt, zt), t =
1, 2, . . . , T}, where yt is the realisation of the target or dependent variable and zt

includes other “exogenous” variables that are believed to determine yt. For example,
zt could be measurements of various economic indexes up to a particular point in

1See White (1989b) for a comprehensive discussion.
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time and yt could be the closing value of the American Standard and Poor’s stock
index on the next day. The purpose of the analysis is to predict and test hypotheses
about the behaviour of yt given a set of predetermined conditioning variables xt.
The set of variables included in xt depends on the application domain and the type
of information the analyst wants to incorporate in his model. If, for example, yt

and zt represent independent observations that are not indexed by time, the set of
conditioning variables may be simply xt = zt. In a dynamic model, it is common to
view yt and zt as being contemporaneous variables and then xt is any subsequence
of (zt, yt−1, zt−1, . . . , y1, z1). If one wants to condition only on information observed
before t, zt can be excluded from xt. The probabilistic relationship between xt and
yt is completely summarised by the conditional probability law of yt, P (yt ∈ A|xt),
which essentially describes the relative frequency of yt taking values in A given the
values of xt. In this probabilistic context, the focus of interest is shifted from an
exact functional relationship to the probabilistic relationship between xt and yt. It
is this conditional probability that embodies everything there is to know about the
effect of xt on yt.

Assuming that the conditional probability law is well behaved, one can define the
conditional probability density function p(yt|xt), which is the probability of the target
variable taking a value close to yt given xt. Several features of the conditional density
are of particular interest in financial applications:

• The conditional expectation

The first moment or conditional expectation E(yt|xt) is a measure of the value of
yt that will be realised on average given xt. E(yt|xt) is a deterministic quantity
and its value is only determined by xt, hence E(yt|xt) = g(xt) for some nonlinear
mapping g : R

n → R. Since yt is stochastic, its actual realisation will (almost
certainly) differ from E(yt|xt), so there will be an expectational error

ǫt ≡ yt − E(yt|xt)

By definition of ǫt and by the properties of conditional expectation, it follows
that E(ǫt|xt) = 0, i.e. the average expectation of ǫt given xt is zero. This means
that ǫt is unpredictable by xt, which is why it is often called the innovation or
“surprise” term. In finance and economics, it is common to treat ǫt as a collec-
tive measure of news or events that occur at time t, through were not expected
by market participants and hence have not been discounted into current prices.
Because g(xt) = E(yt|xt) we can also write

yt = g(xt) + ǫt, (3.2.1)

The alternative representation (3.2.1) allows us to discuss some fundamental
differences in the meaning assigned to ǫt among different applications of NNs.
In signal processing, for example, yt is thought of being the result of a de-
terministic signal g(xt) and some exogenous noise source ǫt. Hence, equation
(3.2.1) is essentially read from right to left and yt is the outcome of xt and ǫt.
In econometrics, however, a fundamentally different interpretation is given to



CHAPTER 3. PRINCIPLES OF ECONOMETRIC MODELLING 25

(3.2.1): the process that generates yt can be decomposed into a part which can
be explained though xt and the remainder or unexplained part ǫt

2. Of course,
the properties of ǫt are largely determined by xt and the quality of approxi-
mation. If, for example, xt contains everything there is to know about yt then
ǫt should behave like white noise, i.e. an independent identically distributed
(iid) process with zero mean and constant variance. One the other hand, if xt

does not influence yt then all properties of yt are inherited by ǫt. In stochastic
environments where the researcher is a sole observer of variables, ǫt does not
simply enter (3.2.1) in the form of “exogenous” noise. On the contrary, it con-
tains important information about the conditional distribution of yt which may
deserve further investigation. One such feature is the conditional variance of yt

discussed below.

• The conditional variance

The second moment or conditional variance Var(yt|xt) of yt given xt is a mea-
sure of the average dispersion of yt around E(yt|xt). Hence it shows the un-
certainty or “risk” about the realisation of yt given the information included in
xt. In financial markets, the accurate modelling of the conditional variance be-
comes a very important task for risk analysis and portfolio management. This
is because, as we showed in the previous chapter, the second moment of eco-
nomic variables typically changes with time, following characteristic patterns
of evolution.

3.3 The construction of econometric models

The task of econometrics is to specify models that approximate the real conditional
distribution set by nature or certain features of it (conditional mean, conditional
variance). Finding these approximations typically requires a specification step, in
which one restricts attention to a class of candidate models believed to contain the
real distribution, and an estimation step that picks out one candidate model from the
class that by some criterion seems to be closest to the true density. The last stage
is concerned with judging the quality of model specification as an approximation
to reality and the plausibility of assumptions set by the model. The process of
econometric model-building is schematically presented in figure 3.1 and analytically
discussed below.

3.3.1 Specification

The first task of the researcher is to specify a set of explanatory variables xt and a
parametric family of specifications that is believed to encompass the true conditional
density. This parametric family is written as:

P(δ) = {ρ(yt|xt; δ), δ ∈ R
l}

where ρ(.; δ) is a candidate density model and δ is a vector of free parameters that
index each member of the family. Probably the most popular and commonly used

2See Hendry (1995) for a discussion on the topic.
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Figure 3.1: The process of constructing an econometric model (adapted from Zapranis
and Refenes (1999), p. 15).

econometric specifications are the regression or expectational models that are exclu-
sively focused on capturing first-moment relationships between yt and xt. A typical
regression model takes the form

yt = m(xt; θ) + ǫt

where m(.; θ) is a possibly nonlinear function of xt and ǫt’s follow a certain distribution
(normal or student) with constant variance. Apart from the classical regression model
where m(.) is specified as a linear function, nonlinear regression models are also
very popular in time-series applications, especially in finance and economics (see
Granger and Teräsvirta (1998) for a comprehensive discussion). Most computational
intelligent algorithms encountered in the literature, such as artificial neural networks,
genetically evolved models, adaptive neuron-fuzzy inference systems, etc, essentially
employ a regression model. However, there also exist methods, especially in the
neural network area, for directly approximating the conditional probability density
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of yt given xt. Popular examples are the mixture density (Bishop (1994)) and the
recurrent mixture density networks (Schittenkopf et al. (2000)). Dynamic models
that jointly parametrise the mean and the variance of the conditional distribution
are also often encountered in financial time-series analysis and forecasting. Perhaps,
the most popular examples of this class is the family of GARCH models and their
variations. These are examined in the next chapter.

3.3.2 Estimation

Once the parametric family of models is specified the next step is determine the
value of δ∗, i.e. to choose the member of P, that give the best approximation to the
true density. Different estimation methods are available in the literature, depending
on the type of specification employed. Least-squares is the most commonly used
method for expectational models; maximum likelihood is more relevant to models
that parametrise higher moments of the distribution.

3.3.3 Evaluation

The application of most econometric models is typically followed by a third stage of
model evaluation, in which the predictive ability of the model is judged by means of
several goodness-of-fit measures. In econometrics, there is also a tradition to apply in-
sample evaluation tests, which are mainly concerned with the adequacy of the model
for the particular data set as well as the statistical significance of its components.
Those are examined below.

• Adequacy or diagnostic tests form an integral part of a model’s post-evaluation
stage. They generally investigate whether the specified model structure is a
faithful representation of p(yt|xt). Diagnostic testing is based on the general
principle that if the model is well specified for the underlying data-generating
process, what is left unmodelled should not contain interesting features of the
conditional density. If, for example, a regression model is an adequate structure
for the data, the residuals (what is left unmodelled in this case) should resem-
ble a memoryless process with constant variance. The existence of “strong”
statistical properties in the error term indicates some sort of specification bias.

• Model significance tests. For a model that passes the adequacy test, a second
type of diagnostics is employed which concerns evaluating the statistical signif-
icance of the various parts thereof, especially the explanatory variables. The
common trend in econometric modelling is to identify models with minimal
complexity, enough to capture the salient features or “driving forces” of the
data-generating process. This is the well-known principle of parsimony or Oc-
cam’s razor, often found in econometrics textbooks (see for example Box et al.
(1994)). Parsimonious models are easier to handle and typically have better
forecasting performance on unseen data.

Depending on the type of the specification employed by the researcher, signif-
icance tests can change in nature. In linear regressions, model significance is
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equivalent to testing the coefficients of explanatory variables. In nonlinear re-
gression models, including neural networks, significance tests are also directed
to the parameters that contribute to nonlinearity (e.g. the weights connect-
ing input variables to hidden neurons and to the output level). In second- or
higher-moment density models, significance tests are typically directed to each
submodel corresponding to a specific moment of the distribution.

3.4 Summary and discussion

The purpose of this chapter was to review current trends in statistical-econometric
model-building. The ultimate purpose of econometrics is to specify models that
approximate the probabilistic relationship between the target variable and the set of
explanatory variables, as summarised by the conditional probability distribution or
density function. Finding this approximation typically requires a specification step,
in which one restricts attention to a class of density models, an estimation step, which
chooses the member of the class that seems to offer the best approximation to the true
density and a diagnostic step, in which the quality/redundancy of the approximation
is evaluated. These steps are repeated until an acceptable specification is found.

The majority of computational intelligent applications in financial engineering,
including neural networks, essentially employ a regression model, although various
methods for approximating the entire density are also available in the literature.
However, the discussion in chapter 2 on stylised facts on financial returns showed
that returns series typically follow no trivial statistical laws characterised by mean
and higher-order dependencies in data. For example, the existence of ARCH effects
in a time-series implies that a large price movement of either sign is expected to
temporarily increase the uncertainty about the size of future price changes, naturally
resulting in a wider conditional distribution.

In the light of this empirical evidence, a single regression model that focuses on
mean dependencies is not an adequate description of the data and hence is expected
to have worse forecasting performance compared to other models that are directed to
higher moments of the conditional distribution. The natural extension is to consider
models that modify the shape of the conditional distribution in dependence of past
data. Chapter 4 proposes a new class of intelligent models that have this property.

From an econometric point of view, computational intelligent models can be seen
as nonlinear semi-parametric approximations to the conditional density of yt given xt.
From this perspective, various model specification problems can be solved by applying
proper statistical inference. Statistical theory gives us also the tools to construct
confidence intervals on the values of the parameters of the model and test hypotheses
regarding the obtained specifications. Taking a statistical perspective is especially
important for semi-parametric CI models, like neural networks, because the reason
for applying them is the lack of knowledge about an adequate functional form. When
based on a clearly defined statistical decision rule, model-selection becomes more
transparent and easy to reconstruct. These issues are further discussed in the next
chapter that shows how artificial neural networks can be combined with econometric
models of volatility into an integrated modelling framework.



Chapter 4

Neural Network GARCH

models: a hybrid approach

4.1 Introduction

This chapter introduces a class of hybrid semi-parametric models that combine neural
networks with econometric GARCH parametrisations of volatility. Following the
main principles underlying the construction of econometric models, we propose a
flexible modelling framework that is intended to capture interesting features of the
entire conditional distribution. We show how the class of NN-GARCH models can
accommodate most of the stylised facts on financial returns discussed in chapter
2 (nonlinear adjustments, symmetric/asymmetric GARCH effects and non-gaussian
errors).

The structure of this chapter is as follows: Section 4.2 reviews current trends in
the modelling of volatility with GARCH-type models and section 4.3 introduces the
class of NN-GARCH models and extensively discusses several statistical and numer-
ical issues that arise in the estimation of parameters. In section 4.4 we propose a
statistical procedure for judging the significance of the parameters of the model that
also gives the opportunity to the researcher to test hypotheses of interest regarding
the mean and variance structure of the data-generating process. Section 4.5 proposes
a “bottom-up” model-building strategy for the family of NN-GARCH models that is
based on sequential statistical tests of additional structure in the mean/variance of
the model. The specification of the mean and the variance components are discussed
in detail and several hints are given. In section 4.6 we present a general framework
for diagnostic checking on an estimated NN-GARCH model, whose general purpose
is to judge the quality of approximation to the real density. All tests considered here
do not pose restrictive assumptions holding in addition to null hypothesis (normality,
heteroskedasticity), are simple to construct and involve much less computation com-
pared to other approaches proposed in the literature. The chapter concludes with
section 4.8 which summarises the main points.

Joint NN-GARCH models were first introduced in Thomaidis et al. (2005a) and
Thomaidis and Dounias (2006b) under the assumption that the variance follows a
symmetric GARCH model. For the determination of the neural network model, we
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proposed the misspecification - robust LM test of White (1996) which has the de-
sirable property of leading to correct inference in the presence of general forms of
heteroskedasticity in errors. However, this test significantly increases the compu-
tational burden of model specification as it involves inversion of matrices and the
computation of second derivatives of the log-likelihood. In this work, we extend
the framework of NN-GARCH to incorporate asymmetric parametrisations for the
volatility and we also examine a new set of methods for determining the number of
hidden units in the neural network part, based on the robustified auxiliary-regression
testing framework of Wooldridge (1990, 1991).

4.2 Generalised autoregressive heteroskedastic models

Nowadays, the family of generalised autoregressive heteroskedastic (GARCH) para-
metrisations are no doubt the most popular models for volatility clustering. GARCH
parametrisations belong to the general class of dynamic models with time-dependent
volatility, whose form is:

yt = m(xt; δ) + ǫt (4.2.1a)

ǫt|xt ∼ D(0, ht(xt; δ)) (4.2.1b)

where yt ∈ R is the target variable, xt ∈ R
n is the vector of explanatory variables, δ

is a vector of parameters and m(xt; δ) is the mean or expectational model of yt given
xt. The unpredictable component ǫt is assumed to follow a certain distribution D
with zero mean and conditional variance ht, which is generally a function of xt and
δ. Typical choices for D are the normal and the Student t-distribution. Note that
(4.2.1) is implicitly a conditional density model for yt as yt|xt ∼ D(mt, ht).

Depending on the type of model employed in the expectational or the variance
part, we obtain a variety of linear and nonlinear parametrisations for the first two
moments of the conditional density. Possibly, most practical applications of GARCH
models assume a linear-in-mean model, where mt ≡ φ′x̄t, φ ∈ R

n+1 and x̄t = (1, x′
t)
′,

although various forms of nonlinear regressions, such as threshold (Li and Li (1996))
or smooth transition (Lundbergh and Teräsvirta (1998)), have also been used in the
parametrisation of mt.

As a first attempt to model volatility clustering, Engle (1982) introduced the
ARCH(q) model expressing the conditional variance as a linear function of the past
q squared innovations, i.e.

ht = a0 +

q
∑

i=1

aiǫ
2
t−i (4.2.2)

Later, Bollershev (1986) proposed a generalisation of ARCH, the GARCH(p, q) model,
which achieves simpler and more parsimonious parametrisations of volatility dynam-
ics. The general form of a GARCH(p, q) model is

ht = a0 +

p
∑

i=1

aiht−i +

q
∑

j=1

bjǫ
2
t−j (4.2.3)



CHAPTER 4. NEURAL NETWORK GARCH MODELS 31

where ht−i’s and ǫ2t−j ’s are often called the GARCH and ARCH terms. In an ARCH
or GARCH model, the effect of a shock on current volatility declines geometrically
with time. Empirically, the family of GARCH models, and especially the simplest
GARCH(1,1), has been very successful in practice1.

Despite the apparent success and simplicity of ARCH and GARCH models, these
parametrisations cannot sufficiently describe all empirical features of volatility dy-
namics. Note that equations (4.2.2) and (4.2.3) impose a symmetry in the response
of the conditional variance to past shocks ǫt−j , j = 1, 2, . . . , q. It is thus implicitly
assumed that the volatility depends on the size but not on the sign of the shock, i.e.
the amount of volatility following “bad news” is the same as the amount of volatility
following “good news”. Many authors have empirically discovered, however, that
the direction of news is important to future volatility. French et al. (1987); Nel-
son (1990); Schwert (1990) among others, report that an unexpected drop in price
(negative shock) seems to increase on average the short-term volatility more than
an unexpected increase in price (positive shock) of the same magnitude. In order to
capture the asymmetry observed in data, Nelson (1990) has introduced the family of
exponential GARCH, or EGARCH(p, q), models

ht = exp



a0 +

p
∑

i=1

ai log(ht−i) +

q
∑

j=1

bj(|ut−j | − E) +

q
∑

j=1

ljut−j



 (4.2.4)

where ut ≡ ǫt/
√

ht are the standardised residuals and E =
√

2/π if ut is gaussianly

distributed and E =
√

ν−2
π

Γ( ν−1

2
)

Γ( ν
2
)

if ut is t-distributed (with degrees of freedom

ν > 2). The parameters lj of the model are the leverage coefficients, allowing for
asymmetric responses of ht to ut−j . If lj ’s are identically equal to zero the EGARCH
becomes a symmetric volatility model in which a positive surprise (ut−1 > 0) has the
same effect on volatility as a negative surprise (ut−1 < 0). In the EGARCH(1,1), a
negative value of l1 implies that past unanticipated bad news (ut−1 < 0) has a greater
(lower) impact on future volatility than good news ut−1 > 0.

Apart from EGARCH models, a great number of alternative formulations of asym-
metric volatility have been proposed in the literature, motivated by empirical research
on financial data (see Engle and Ng (1993) for a good survey). Among them is the
GJR-GARCH(p, q) model proposed by Glosten et al. (1993):

ht = a0 +

p
∑

i=1

aiht−i +

q
∑

j=1

bjǫ
2
t−j +

q
∑

j=1

djS
−
t−jǫ

2
t−j (4.2.5)

where S−
t−j , j = 1, . . . , q is an indicator variable taking value 1 if ǫt−j < 0 and 0

otherwise. By means of S−
t−j ’s, the GJR-GARCH model allows for different response

of ht to positive and negative values of ǫt−j .

1See Bollerslev et al. (1992); Bera and Higgins (1993) for comprehensive surveys.
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4.3 A general class of neural network GARCH models

The NN-GARCH models, introduced in this dissertation, are members of the general
class (4.2.1) of dynamic models with GARCH heteroskedasticity, in which a neural
network is used in the conditional mean equation. In particular, we assume that

yt = φ′x̄t + f(xt; θ) + ǫt (4.3.1a)

ǫt|xt ∼ D(0, ht(xt; δ)) (4.3.1b)

where x̄t = (1, x′
t)
′, φ ∈ R

n+1 is the vector of the parameters of the linear model
(or weights directly connecting input variables to the output level) and f(xt; θ) is a
single-layer feedforward neural network with h hidden neurons, i.e.

f(xt; θ) =
h
∑

j=1

λjF (w′
jxj − cj) (4.3.2)

where F (z) = 1/(1 + e−z) is the logistic function, wj ∈ R
n are the weights from input

variables to neuron j, λj ∈ R is the weight from neuron j to the output level and
cj ∈ R is the bias term. The conditional variance of (4.3.1) is modelled using any of
the parametrisation (4.2.2) to (4.2.5) discussed in the previous chapter.

The vector of free parameters of the model is δ = (φ′, θ′, α′)′ ∈ R
m, where φ ∈

R
n+1 and

θ = (λ1, . . . , λh, w′
1, . . . , w

′
h, c1, . . . , ch)′ ∈ R

(n+2)h

are the parameters of the conditional mean equation and α are the parameters of the
conditional variance model. The dimensionality of this vector depends on the type
of the model employed.

If errors are assumed conditionally normal, the density function induced by the
family of NN-GARCH specifications is

ρ(yt|xt; δ) =
1√

2πht
exp

(

− ǫ2t
2ht

)

However, Bollerslev (1987) noted that ARCH or GARCH models do not fully account
for leptokurtosis in financial series and quite often the unconditional error distribution
corresponding to ARCH and GARCH models has fatter tails than predicted by a
normal distribution. Therefore, he proposed an extension of the original GARCH
model where errors follow a student-t distribution. In this case, the conditional
density function is given by

ρ(yt|xt; δ) =
Γ(ν+1

2 )

Γ(ν/2)
√

π(ν − 2)

(

1 +
u2

t

(ν − 2)

)−(ν+1)/2

where Γ(.) is the gamma function, ut ≡ ǫt/
√

ht are the standardised residuals and ν
are the degrees of freedom. The above density function is also symmetric around zero
and has an additional factor that controls the “heaviness” of the distribution tails.
For ν > 4 the conditional kurtosis equals 3(ν − 2)/(ν − 4), which is greater than that
of the normal’s. For large values of ν, the density converges to a standard normal.
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Note that formula (4.3.1) provides the researcher with a quite general class of mod-
els that incorporate linear/nonlinear-in-mean processes, linear/nonlinear GARCH ef-
fects in variance and possibly non-gaussian errors. GARCH specifications with linear
expectational models as well as pure neural network regression models are encom-
passed by the above framework.

4.3.1 Estimation of parameters

The parameters of the model are estimated by maximising the log-likelihood function
l(δ) = T−1

∑T
t=1 lt(δ) where

lt(δ) = −0.5 log(2πht) − 0.5 ǫ2t /ht (4.3.3)

assuming normally distributed disturbances or

lt(δ) = log

(

Γ[(ν + 1)/2]

Γ(ν/2)
(π(ν − 2))−0.5

)

− 0.5 log(ht)

− 0.5(ν + 1) log

(

1 +
ǫ2t

ht(ν − 2)

)

(4.3.4)

assuming t-distributed residuals. Typically, several numerical problems in the max-
imisation of the log-likelihood are avoided if analytical formulae for the gradient and
the hessian are used. Those are given in appendix A for the case of a normal den-
sity function. The value δ̂T that maximises the log-likelihood is called the maximum
likelihood estimator (MLE).

It is important to note that the MLE of the parameters of a neural network, and
hence of the full model, is generally not unique, unless the NN is identifiable. In the
general case, a density model is called identifiable if the mapping from the parameter
vector δ to p(yt|xt; δ) is one-to-one, in other words the model does not produce the
same output for different configurations of its parameters (Watanabe (2001)).

There are three characteristics of the neural network specification that cause non-
identifiability (see e.g. Anders and Korn (1999); Medeiros et al. (2006); Hwang and
Ding (1997) and their references). Note that in the topology presented in figure 1.2
the hidden neurons can be permuted resulting in different, though discrete, maxima
of the log-likelihood. Equivalent models are also obtained due to the property of
the logistic function F (x) = 1 − F (−x). The third and most important source of
non-identifiability is the possibility that the network is overly parametrised for the
conditional expectation, in which case some of its neurons are redundant. Note that
if a neuron j is redundant then either λj or wj are zero and the output is constant for
all sample observations. But if λj equals zero, the corresponding wj weights leading
into that neuron can take any value and are thus not identifiable. Similarly, if the
wj weights are all zero, the corresponding value of the λj weight does not have any
effect on the value of the log-likelihood. In either case, the set of optimum parameter
solutions to the maximization problem corresponds to flat regions of the log-likelihood
function across several directions of the parameter space.

The first two sources of non-identifiability can be easily remedied by applying
proper parameter constraints. This is done as in Trapletti et al. (2000); Medeiros et al.
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(2006)) by requiring that a) c1 < . . . < ch, which precludes permutation of hidden
neurons and b) w1j > 0, j = 1, 2, . . . , h, which remedies any possible misidentification
due to the symmetry of the logistic function. The existence of redundant neurons
however cannot be handled in the same way and requires careful selection of the
architecture of the neural network. This issue is further discussed in section 4.5.1.

Several restrictions also apply to the volatility part and depend on the condi-
tional variance model employed. Those generally guarantee positivity and non-
explosive behaviour of the variance process. In standard GARCH models, for ex-
ample, positivity of the conditional variance parameters requires that a0 > 0 and
ai, bj ≥ 0, i = 1, 2, . . . , p, j = 1, 2, . . . , q. In addition, if

∑p
i=1 ai +

∑q
j=1 bj < 1 we

also have stability and second order stationarity of the variance process (i.e. station-
arity in mean and variance), although weaker conditions could be used instead to
guarantee non-explosiveness of the volatility process (see e.g. Bougerol and Picard
(1992)). In contrast to GARCH specifications, no positivity restrictions need to be
imposed in the estimation of an EGARCH model, since the logarithmic transforma-
tion ensures that the forecasts of the variance are non-negative. The stationarity
constraint for this model is satisfied by ensuring that the roots of the characteristic
polynomial

λp − a1λ
p−1 − a2λ

p−2 − . . . − ap

are inside the unit circle. In the simplest EGARCH(1, 1) this condition simplifies
to |a1| < 1. Finally, for the GJR-GARCH(p, q) model the corresponding conditions
are a0 > 0 and ai, bj , bj + dj ≥ 0, i = 1, 2, . . . , p, j = 1, 2, . . . , q for positivity and
∑p

i=1 ai +
∑q

j=1 bj + 0.5
∑q

j=1 dj < 1 for stationarity.

4.3.2 Consistency and asymptotic normality of the MLE

Consistency and asymptotic normality for the maximum likelihood estimator of a
NN-GARCH model is guaranteed by imposing some further conditions regarding the
adequacy of the mean and variance specifications. Generally, a NN-GARCH model
is said to be structurally correct if the mean and the volatility model are correctly
specified for the corresponding moments of the conditional distribution. This means
that for some δ0 in the corresponding parameter space

E(yt|xt) = m(xt; δ0), correct specification of the mean (4.3.5a)

V (yt|xt) = h(xt; δ0), correct specification of the variance (4.3.5b)

where E(yt|xt) and V (yt|xt) are the conditional expectation and variance of yt given
xt. This conditions can be equivalently written in terms of the error process {ǫt, t =
1, 2 . . . , T} as

E(ǫ0t|xt) = 0 (4.3.6a)

E
[

ǫ20t

∣

∣xt

]

= h(xt; δ0) (4.3.6b)

where ǫ0t denotes the error of the model evaluated under the true parameter vector
δ0. Assume that the procedure used to estimate the parameters of the NN-GARCH
model is maximisation of the log-likelihood function under the assumption that yt
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given xt is normally distributed. If in addition to 4.3.6 the conditional distribution of
yt happens to be normal, the NN-GARCH model is said to be correctly specified for
the entire density. Otherwise, the model suffers from distributional misspecification
and the value of δ̂T that maximises the log-likelihood function is called the quasi
maximum likelihood estimator (QMLE)(see White (1996)).

Consistency and asymptotic normality of the QMLE in the particular class of NN-
GARCH models can be shown along the lines of Bollerslev and Wooldridge (1992),
who study the properties of the QMLE in general dynamic models that jointly para-
metrise the mean and variance of the conditional distribution. Let ∇l(δ), ∇2l(δ)
denote the gradient and the hessian of the log-likelihood evaluated at δ, st(δ) denote
the gradient of the t-contribution to the log-likelihood lt and dt(δ) = −E (∇st(δ)|xt),
the negative conditional expectation of the gradient of st. If the NN-GARCH model
is structurally correct and under some additional regularity and moment conditions,
the QMLE is consistent for δ0 and also asymptotically normally distributed around
δ0 with variance-covariance matrix

C = A−1IA−1 (4.3.7a)

A = E
(

−∇2l(δ0)
)

= −T−1
T
∑

t=1

E (∇st(δ0)) = T−1
T
∑

t=1

dt(δ0) (4.3.7b)

I = V
(

T 1/2∇l(δ0)∇′l(δ0)
)

= T−1
T
∑

t=1

E
(

st(δ0)
′st(δ0)

)

(4.3.7c)

where the equality in (4.3.7c) follows from conditions 4.3.6, the formulae for the gra-
dient and the hessian of the normal likelihood presented in the appendix, and the
properties of the conditional expectation. The matrix C is called the robust asymp-
totic variance-covariance matrix because it is valid under non-gaussianly distributed
errors (White (1982, 1996)). Following appendix A, it can further be shown that in
the case where the actual density is normal, E (∇st(δ0)) = E (st(δ0)

′st(δ0)), and the
variance-covariance matrix simplifies to C = A−1 = −I−1.

Note that the computation of C involves taking expectations under the true pa-
rameter vector δ0. Hence, from a practical point of view, it would useful to have a
consistent estimator of C that can be exclusively computed from sample quantities.
According to Bollerslev and Wooldridge (1992), such a sample estimator ĈT exists
and is given by

ĈT = Â−1
T ÎT Â−1

T (4.3.8a)

where

ÂT = T−1
T
∑

t=1

dt(δ̂T ) (4.3.8b)

ÎT = T−1
T
∑

t=1

st(δ̂T )′st(δ̂T ) (4.3.8c)
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are the corresponding sample estimators of A and I2. Matrix ĈT is practically useful
in obtaining confidence intervals on the estimates δ̂T and testing hypothesis involv-
ing the true parameter vector δ0. This is possible by treating δ̂T as approximately
normally distributed with mean value δ0 and variance Â−1

T ÎT Â−1
T /T .

The estimators ÂT and ÎT have the convenient property of being positive definite,
or at least positive semi-definite, which remedies several problems that arise in the
calculation of confidence intervals. Moreover, as the calculations in the appendix
show, they are computable entirely by the residuals, the mean and the variance
equations and the derivatives of the mean and the variance functions. Apart from
the computation of confidence intervals, ÂT can be also used in the optimisation of the
log-likelihood, as an estimate of the negative hessian which is much easier to compute
as it does not involve the calculation of second derivatives of the log-likelihood. It can
also be shown, along the lines of Engle (1982), that for a symmetric volatility model
(ARCH or GARCH) ÂT is block-diagonal between the parameters of the condition
mean and variance. Block-diagonality gives us the opportunity to use an alternative
estimation procedure for the NN-GARCH model, which splits the full optimisation
problem into two problems of lower dimensionality. This is as follows:

1. Start with estimating the parameters of the neural network using nonlinear
least squares and calculate the residuals ǫ̂t.

2. Use the residuals of the mean model to estimate the parameters of the variance
model, by means of maximum likelihood. Calculate the variance estimates ĥt.

3. Use ĥt in place of ht and re-estimate the parameters of the mean part maximis-
ing the full log-likelihood function. Repeat step 2 until a convergence criterion
for the parameter values is satisfied.

The iterative estimation procedure, presented above, is asymptotically efficient to
full maximum likelihood estimation and thus offers an alternative easier way to obtain
the optimal parameters of the NN-GARCH model (see Cox and Hinkley (1974), p.
308). Note, however, that such iterative estimation is theoretically justified only
under symmetry of the volatility model. In any case, where an EGARCH, GJR-
GARCH or any other asymmetric specification is used, splitting the optimisation
problem between the mean and variance parameters results in less efficient estimates
and loss of information.

Note that the correct specification of both conditional moments of the distrib-
ution is a necessary requirement for the consistency and asymptotic normality of
the QMLE. Hence, when estimating the parameters of the neural network by jointly
estimating the variance, there is the danger that the mean estimator is not consis-
tent unless the variance model is correctly specified for the conditional variance, and
vice versa. This is a major difference between estimation of NN-GARCH models
and estimation of neural networks using nonlinear least squares, where consistency of
NN parameters is independent from the variance specification. Additional regularity
conditions require that the likelihood is maximised in the interior of the parameter

2The summands in the formula of ÂT are calculated after applying the conditional expectation
operator
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space and the true parameter vector δ0 is uniquely identified. The first condition
precludes cases where the log-likelihood estimator falls into the boundary of the pa-
rameter space, e.g when a GARCH model is used under constant-variance errors.
The second condition is responsible for asymptotic normality of the QMLE. Indeed,
if convergence occurs in a flat region of the log-likelihood, the QMLE is no longer as-
ymptotically normally distributed. Identifiability would be invalidated, for example,
when the neural network contains inactive hidden neurons.

The implications of these conditions are very important for practical applications
of NN-GARCH models and signify the importance of the model-building procedure
employed by the researcher. Simply speaking, one cannot combine any neural net-
work with any model of volatility and expect this combination to be successful, unless
special attention is paid to identifying the right structure for the mean and variance
model. This issue takes a significant part of our thesis, where various model-building
procedures are proposed that take into account the interaction of the first two mo-
ments of the condition distribution. This discussion is given in sections 4.5.1 and
4.5.2.

4.4 Testing hypotheses about the parameters of a NN-

GARCH model

Most models used in empirical research do not typically cover all aspects of the
data-generating process. For instance, regression models leave the variance or higher
moments of the distribution unspecified. It is therefore an issue whether an a priori
misspecified model can serve as a valid device for statistical inference.

Hypotheses in the framework of maximum likelihood are typically formulated as
restrictions on the “true” parameter vector and tested by means of a Wald statistic.
A broad range of interesting hypotheses can be stated as

H0 : Sδ0 = 0,

against the alternative
H1 : Sδ0 6= 0,

where S is a p × m indicator matrix (p ≤ m) that picks certain elements of δ. If δ0

belongs to the interior of the parameter space, then under conditions that guarantee
consistency and asymptotic normality of the QMLE, the Wald statistic

WT = T δ̂′T S′
(

SĈT S′
)−1

Sδ̂T

follows asymptotically under H0 the χ2
p distribution, with p degrees of freedom. This

version of the Wald statistic uses the robust asymptotic variance-covariance matrix
and hence preserves its asymptotic chi-square distribution under non-normal errors.

Note that in practical applications, practitioners quite often use ÎT in place of ĈT

in the formula of the Wald statistic and thus implicitly employ a non-robust version
of this test. However, the validity of this choice depends on the assumption that the
parametric family of models is correct for the entire density. For regression models,
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this would imply that errors are homoskedastic and follow a gaussian distribution. In
the context of NN-GARCH models, the assumption requires that the conditionally
distribution of standardised errors is correctly specified (normal or t, in our case).
Under severe misspecification, the asymptotic distribution of the non-robust Wald
statistic is no longer normal and hence becomes impossible to control the theoretical
type I error or size of the test (i.e. the probability of falsely rejecting the null
hypothesis).

4.5 Model-building strategy

Assuming a specific structure for the NN-GARCH model (4.3.1), it is always possible
that a simpler submodel nested within the former can adequately describe the data
under consideration. For example, it is by no means impossible that the conditional
mean be a linear function of xt or the conditional variance be constant over time.
In this case, the addition of an extra neuron or the inclusion of a GARCH model
in the volatility model is redundant and unnecessarily increases the complexity of
the model. Therefore, it would be much more reasonable to start with the simplest
possible specification and complicate the model structure in the direction indicated
by special features existing in data.

This strategy takes also precautions against various statistical considerations that
arise from over-identifiable models and parameter redundancy. As discussed in previ-
ous sections, standard statistical inference using maximum likelihood is not possible
in NN-GARCH models that include inactive neurons in the mean part or a GARCH
volatility model when errors are homoskedastic. Non-identifiability renders also im-
possible to follow the opposite route in model specification, i.e. to start with a large,
possibly over-parametrised, model and then remove insignificant parts by testing hy-
potheses about certain subsets of parameters. Other model selection approaches such
as Bayesian regularization or information criteria (AIC, SBIC) implicitly assume that
the model is identifiable.

Finally, a simple-to-complex model-building strategy is also totally justifiable
when applying a NN-in-mean (and in fact any highly nonlinear) model to het-
eroskedastic data. As neural networks have a high approximating ability, it is very
likely that some affects due to the presence of conditional heteroskedasticity in the
data-generating process be misinterpreted as neglected nonlinearity and hence “ab-
sorbed” by the parameters of an over-parametrised NN. Simulations presented in
chapter 5 shed more light on this issue and show that standard statistical methodolo-
gies can lead to over-identifiable networks in the presence of strong properties in the
second-moment of the distribution. It is thus absolutely necessary that the method-
ology used in specifying the mean part offer some kind of robustification against these
adverse affects. Robustified tests are hopefully available within the QML theory and
discussed below.

In the specification of a NN-GARCH model, the general rule is to first spec-
ify the conditional mean equation, using linear or nonlinear least-squares, and then
the conditional variance. The theoretical motivation for this choice lies in the well-
documented result that if the expectational model mt is correctly specified for the
conditional expectation E(yt|xt), the parameters of the mean equation can be consis-
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tently estimated without reference to the conditional variance (see e.g. White (1996),
ch 5). On the contrary, it is not possible to consistently estimate the parameters of
the variance model if the conditional mean is badly specified. This is because com-
mon tests on the parameters of the variance equation implicitly impose under the
null correct specification of the mean part. Hence, rejecting the null gives no clear
indication to the researcher on how to proceed.

Our model-building procedure is schematically presented in figures 4.1 and 4.2
and analytically discussed in the following sections.

4.5.1 Specification of the mean part

The specification of the mean follows the sequential statistical testing procedure of
Medeiros et al. (2006). As seen from figure 4.1, this starts with specifying a linear
regression model using ordinary least-squares (OLS). The optimal number of variables
in the linear model is selected by means of an information criterion (AIC or SBIC) or
by an autocorrelation test. The researcher then chooses a significance level (say α%)
and tests the null hypothesis of linearity against a neural network model with a single
hidden neuron. This test for neglected nonlinearity is repeated for all combinations
of explanatory variables. If linearity is not rejected at the given significance level, the
final model is linear in mean. Otherwise, a NN model with a single hidden neuron is
estimated using nonlinear least squares. The set of variables attached to the neuron
are the ones for which the lowest p-value of the test is reported. The single-neuron
model is now tested against a NN with an additional neuron in the hidden layer. If
the null is rejected, the above procedure is repeated for NN models with h = 2, . . . ,
neurons until first acceptance of the null. To favour parsimonious models, Medeiros
et al. (2006) proposed to half the significance level at each stage of subsequent test.

The neglected nonlinearity test employed by Medeiros et al. (2006) is essentially
an application of a Lagrange Multiplier (LM) test on additional structure in the mean
model. Assume that at some stage of the procedure described above the analyst has
detected an additive NN model with h neurons in the hidden part:

yt = φ′x̄t + f(xt; θ) + ǫt (4.5.1)

where f(xt; θ) is given by (4.3.2). Starting with model (4.5.1), the question is whether
the current approximation to the conditional expectation can be improved by adding
more hidden neurons that capture neglected nonlinearities. If the answer is yes, the
data can be described more accurately by adding one more neuron to the mean model

yt = φ′x̄t + f(xt; θ) + λh+1F (wh+1xt − ch+1) + ǫ∗t (4.5.2)

The appropriate test on the additional neuron is the test against neglected nonlinearity
or simply nonlinearity test. If f(xt; θ) = 0 the neglected nonlinearity test becomes a
test of model linearity against model nonlinearity. Note that if the extra neuron is
redundant then either λh+1 or wh+1 are identically equal to zero in which case the
output of the neuron is constant and merges with the intercept of the linear part.
Hence, the appropriate null hypothesis for the neglected nonlinearity test can be
formulated as H0 : λh+1 = 0 or H0 : wh+1 = 0. However if either of the nulls hold the
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corresponding wh+1- or λh+1-parameters can take any values without effecting the
output of the neuron; in other words, they are non-identifiable. This is a problem in
statistical inference where some of the parameters of the model are only identifiable
under the alternative hypothesis (see e.g. Davies (1977)). Non-identifiability has
severe consequences for the properties of the least-squares estimators and renders
inappropriate the use of classical statistics to test restrictions on the parameters
imposed by the null hypothesis.

Two ways to carry out the nonlinearity test have been proposed in the literature
that bypass the problem of non-identifiability. One is due to White (1989a), who
proposed testing the hypothesis H0 : λh+1 = 0 by assigning random values to the
weights wh+1 of the extra neuron. The finite sample properties of this test were
investigated by Lee et al. (1993). Another technique with better performance was
proposed by Teräsvirta et al. (1993). In this approach, the identification problem
is solved in the spirit of Luukkonen et al. (1988); Davies (1977) by using a third-
order Taylor approximation to the hypothetical additional neuron, in which case the
augmented model (4.5.2) takes the form

yt = φ′x̄t + f(xt; θ) + ξ′zt + R3(xt) + ǫ∗t (4.5.3)

where ξ is a vector of parameters,

zt = (x2
1t, x1tx2t, . . . , xitxjt, . . . , x

2
nt, x

3
1t, x

2
1tx2t, . . . , xitxjtxkt, . . . , x

3
nt) ∈ R

l

is the vector of the extra regressors of the mean model, with l = n(n + 1)/2 + n(n +
1)(n + 2)/6, and R3(xt) is the Taylor remainder. A test for an extra neuron is now
equivalent to testing the hypothesis H0 : ξ = 0 against the alternative H1 : ξ 6= 0.
Note that if H0 is true, R3(xt) vanishes also, so the error process remains affectively
unchanged.

Teräsvirta et al. (1993) proposed testing the null hypothesis using an LM test on
the additional ξ parameters. Let

ǫ̂t = yt − φ̂′x̄t + f(xt; θ̂)

where φ̂ and θ̂ are the least-squares estimates of the parameters of the restricted
model (4.5.1). Let also ∇f̂t be the gradient of f(xt; θ̂) evaluated at φ = φ̂, θ = θ̂ and
ξ = 0. The LM test is carried out in three steps:

Procedure 4.5.1.1

1. Regress ǫ̂t on x̄t, ∇f̂t and compute the residuals ε̂t

2. Regress ε̂t on x̄t, ∇f̂t and zt and compute R2, the coefficient of determination
of the regression

3. The test statistic is calculated as LMT = TR2, where T is the sample size

The asymptotic (large-sample) distribution of LM is taken as χ2 with l degrees of
freedom. So, if the researcher wants the probability of falsely rejecting the null
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not to exceed α, the significance level, he should reject the hypothesis of no extra
neuron whenever LMT > χ2

α,l, where χ2
α,l denotes the 100α% critical value of the χ2

distribution with l degrees of freedom.
Typically, in applying least-squares optimisation to highly nonlinear neural net-

works convergence problems arise, so that ǫ̂t may not be precisely orthogonal to x̄t

and ∇f̂t, which is the first-order optimality condition for nonlinear least squares.
This adversely affects the size of the test, leading to over-rejections of the null hy-
pothesis. To circumvent numerical convergence problems in the computation of the
test statistic, it is typical to perform step 1 in the procedure above, where ǫ̂t’s are
regressed on x̄t, ∇f̂t and the new residuals ε̂t of the regression are used in place of
ǫ̂t. By the properties of the regression, ε̂t is orthogonal to x̄t and ∇f̂t.

Generally, the validity of the above procedure, henceforth called standard LM or
simply S-LM test, depends on the assumption that errors ǫt are independent iden-
tically distributed. In particular, the S-LM statistic no more follows an asymptotic
chi-square distribution in the presence of ARCH or other types of heteroskedasticity
(Wooldridge (1990)). This means that using chi-square critical values does not re-
sult in a test with theoretical type I error equal to α, in which case the test suffers
from size distortions as is commonly said in the statistical literature. Simulations
presented in chapter 5 show that in the presence of ARCH effects in the disturbances
of the mean model, the S-LM test tends to overreject the hypothesis of no additional
neuron, occasionally producing excessively nonlinear NN models.

To overcome the problems of the S-LM test, Wooldridge (1990, 1991) proposed a
modification of the test that is robust to changes in the variance of the errors. The
robustified LM test, henceforth called RB-LM, is carried out in a similar way by
running a set of auxiliary regressions:

Procedure 4.5.1.2

1. Regress ǫ̂t on x̄t, ∇f̂t and compute the residuals ε̂t

2. Regress zt on x̄t, ∇f̂t and take the 1 × l residuals vector ût

3. Run the regression 1 on ε̂tût and compute the sum of squared residuals SSR1

4. Compute the statistic as LMT = T − SSR1

The modified LMT statistic preserves its asymptotic χ2 distribution under hetero-
geneously distributed errors and is the one recommended in Granger and Teräsvirta
(1998); Medeiros et al. (2006) to resolve the problems of the standard nonlinearity
test. Simulations presented in chapter 5 show that although the null rejection rate
of the RB-LM test is close to the nominal size under various forms of variance mis-
specification, the test can have poor power in detecting hidden nonlinearity in the
residuals. This is a problem if one is also interested in modelling nonlinearity in mean
apart from heteroskedasticity.

Another version of the RB-LM test arises if one initially standardises the quanti-
ties ǫ̂t, x̄t, ∇f̂t and zt that enter in the procedure above by ĥt, an estimate of the time
t conditional variance of ǫt. In this way, one tests the hypothesis of additional non-
linearity in mean by incorporating information from the volatility structure of the
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time-series3. According to Wooldridge (1991), the validity of this test, henceforth
denoted by RBV-LM, is not affected by bad specification of the variance process,
however a good guess of the true variance ht may increase the power of the ro-
bustified test in detecting hidden nonlinearity in mean. Since in this thesis we are
concerned with economic and financial applications of NNs, a natural option for ob-
taining a good initial guess is fitting a GARCH(1,1) model to the residuals of the NN
model {ǫ̂t, t = 1, 2, . . . , T}, or any model the researcher believes that it adequately
describes the volatility structure of errors (apart, of course, from a model of constant
variance in which case the RBV-LM test is equivalent to RB-LM).

This modification of the LM test procedure reveals a new dimension in testing
hypotheses about the parameters of a regression model. It is an attempt to incorpo-
rate information from the second-moment structure of the conditional distribution
while testing for the adequacy of the mean specification. The main advantage of
this testing procedure, henceforth called RBV-LM, is that it is robust to failure of
the research’s initial assumption about the underlying volatility process, but it might
also have more power than the ordinary RB-LM if ĥt offers a better approximation
to the conditional variance of yt given xt than a model of constant variance does
(Wooldridge (1991)). In this thesis, we propose the following procedure to carry out
the RBV-LM test:

Procedure 4.5.1.3

1. Estimate the parameters of the restricted NN model using nonlinear least-
squares

2. Compute the residuals ǫ̂t and estimate a GARCH(1,1) model using maximum
likelihood.

3. Based on the GARCH specification, compute the time t variance estimates ĥt

and perform the testing procedure 4.5.1.2 by using ǫ̃t ≡ ǫ̂t/
√

ĥt, x̃t ≡ x̄t/
√

ĥt,

∇f̃t ≡ ∇f̂t/
√

ĥt, z̃t ≡ zt/
√

ĥt in place of the corresponding quantities.

Chapter 5 investigates the finite-sample performance of the RBV-LM under vari-
ous types of volatility dynamics (homoskedasticity, GARCH or EGARCH) and error
distributions (normal or t). Results show that the RBV-LM test with GARCH(1,1)
volatility estimates has the right size in detecting nonlinearity under heteroskedas-
ticity, even when the variance process is not correctly specified (i.e errors are ho-
moskedastic or EGARCH). However, the RBV-LM test leads to a substantial increase
in power if the volatility model is closely approximated. In any case, the RBV-LM
is at least as powerful as RB-LM and sometimes more powerful in detecting hidden
nonlinearity.

3To our knowledge, this version of the robustified LM test has not been previously applied in
other relevant studies considering the specification of either neural networks or common nonlinear
econometric models (see e.g. Becker and Hurn (2006); Medeiros and Veiga (2003); Medeiros et al.
(2006)). This is possibly because in these studies the emphasis is put on modelling mean dependen-
cies.
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4.5.2 Specification of the variance part

Once the appropriate complexity for the mean model has been identified, the next step
is to approximate the variance structure. As seen from figure 4.2, the model-building
procedure carries on with testing the hypothesis of homoskedasticity in errors against
ARCH effects. This can be done using Engle (1982)’s LM test. It should be noted
here however that the validity of this test depends on the assumption of conditional
homokurtosis and normality of errors (Wooldridge (1990)), hence Engle’s procedure
may lead to wrong inference under leptokurtic or asymmetric error distributions. A
robust version of the ARCH LM test can be derived along the lines of the general
robustification strategy proposed in Wooldridge (1991, 1990) (further details are given
in section 4.6.4). This test is also performed by running a set of auxiliary regressions
and, although robust against non-normality, it loses nothing in terms of asymptotic
efficiency if the normality assumption happens to hold. In this sense, Wooldridge’s
LM test dominates Engle’s and is the one we adopt in testing for heteroskedasticity.

If the null hypothesis of homoskedasticity in errors cannot be rejected, then no
model for volatility is specified. Otherwise, a joint NN(h)-GARCH(1, 1) model is
estimated, with h being the number of neurons specified by the nonlinearity test
(h = 0, 1, 2, . . .). Another set of diagnostics, tests the hypothesis of GARCH(1, 1)
against additional ARCH structure in the squared standardised residuals. This is a
test for neglected autoregressive heteroskedasticity in the residuals (see section 4.6.4)).
If the null hypothesis is rejected, a NN(h)-GARCH(p, q) model is estimated, where
p, q are determined accordingly. Once the appropriate symmetric volatility model
is specified, additional diagnostics are performed that examine asymmetric effects
in the variance process. Several alternatives are discussed in Engle and Ng (1993)
and include a test for sign, negative and positive size bias. As the Engle’s ARCH
test, however, these diagnostics are also sensitive to the normality assumption and
a rejection of the null hypothesis is not a clear indication of asymmetric effects in
variance. In section 4.6.4 we propose a robustification procedure of these tests along
the lines of Wooldridge (1991, 1990). If the null hypothesis of a symmetric variance
process is rejected against sign or size bias, the next step is to jointly estimate a NN
with an asymmetric variance model (EGARCH, GJR, etc).
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Figure 4.1: The strategy for specifying the conditional mean part of a NN-GARCH model. The neglected nonlinearity test is performed for
all possible combinations of explanatory variables. Upon each rejection of the null, we estimate an additive linear and neural network model
with h + 1 number of neurons. The variables attached to the extra neuron are the ones which produce the lowest p-value of the test.



C
H

A
P

T
E

R
4
.

N
E

U
R

A
L

N
E

T
W

O
R

K
G

A
R

C
H

M
O

D
E

L
S

45

Figure 4.2: The strategy for specifying the conditional variance part of a NN-GARCH model.
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4.6 Evaluation of the model specification

After constructing a NN-GARCH model it is important to test whether the hypothe-
ses implicitly imposed by the specification conform with the data, i.e. whether

1. errors contain no forecastable structure in mean, i.e. there is no autocorrelation
or neglected nonlinearity in the residuals

2. errors contain no forecastable structure in variance, i.e. there is no serial cor-
relation or asymmetric effects in the squared standardised residuals

3. errors are conditionally distributed according to the density model assumed by
the specification (gaussian or student)

From the requirements set above, 1 & 2 ensure that the NN-GARCH model is
structurally correct, i.e. conditions (4.3.6) hold, which guarantees that the QMLE
estimator is consistent and asymptotically normally distributed. Asymptotic nor-
mality is important for the chi-square distribution of the Wald statistic that tests
constraints on the parameters on the model, and this is why significance tests on the
final model specification can be safely performed after the diagnostic stage. Require-
ment 3 is concerned with the correct specification of the conditional distribution that
determines whether the researcher should use a standard or a robust estimator of the
variance-covariance matrix in the computation of the test statistic.

From a practical point of view, requirements 1& 2 are perhaps the most important
as they are directly linked to the adequacy of the model for the particular data-
generating process. Higher-order distributional properties of the data-generating
process, such as asymmetry or extra kurtosis, are of interest in some cases, especially
as concerns the ability of the model to predict realistic future scenarios on the target
variable or to estimate the risk associated with extreme price movements. Even in
this case, however, there are techniques for estimating the unconditional distribution
of errors without resting on a particular distributional model. A discussion is given in
chapter 6. Therefore, in what follows we shall mainly concentrate on diagnostics that
evaluate 1 & 2 and resort to common non-parametric procedures, such as the Jarque-
Bera, the Kolmogorov-Smirnov or Chi-Square test, for judging the goodness-of-fit of
the distributional model.

The importance of a subsequent stage of diagnostic checking as a safeguard against
specification bias has only recently been recognised by the computational intelligent
society. Most practitioners employ heuristic procedures or popular econometric di-
agnostics, such as the Ljung - Box - Pierce test for autocorrelation in the residuals
or the Breysch - Pagan test for heteroskedasticity. However, these tests have been
developed in the framework of linear models and cannot be directly applied to our
case. The reason is that the asymptotic distribution of the test statistics is not known
under a NN-GARCH process and hence it is not possible to access the theoretical
type I error of the test. In this section, we propose a unifying diagnostic frame-
work for NN-GARCH models that is based on LM tests. We particularly consider
tests of autocorrelation (or serial dependence in mean), heteroskedasticity (or serial
dependence in variance), neglected nonlinearity in mean and asymmetric effects in
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variance. Similar in nature tests have been applied to econometric nonlinear models
that jointly parametrise the conditional mean and variance (see e.g. Lundbergh and
Teräsvirta (1998, 2002)).

4.6.1 The general framework

To derive a general framework for diagnostic checking on mean and variance, we
consider the following extended NN-GARCH model:

yt = φ′x̄t + f(xt; θ) + g(zt; ξ) + ǫ∗t (4.6.1a)

ǫ∗t = ut

√

h(xt; α)ω(zt; β) (4.6.1b)

where ξ, β are vectors of parameters and g(zt; ξ), ω(zt; β) are assumed continuous
and twice differentiable for all ξ, β and (almost) everywhere in the sample space of
zt. zt is a set of variables derived from the information set of the researcher that does
not necessarily share common elements with xt. Assume without loss of generality
that g(zt; 0) = 0 and ω(zt; 0) = 1. Note that contrary to the mean model, in the
variance part we assume a multiplicative alternative volatility model. This structure
allows us to compute a greater variety of model diagnostics, including diagnostics on
an EGARCH model. The hypothesis of no additional structure in the mean and the
variance equation can be stated as

H0 : ξ = 0 and β = 0

Under the null, ǫ∗t = ǫt and the error structure remains unchanged. Let δ̂T =
(φ̂T , θ̂T , 0, α̂T , 0) be the QMLE of the restricted NN-GARCH, i.e. the model with
the restrictions imposed under the null imbedded, and

ǫ̂t = yt − φ̂′x̄t − f(xt; θ̂)

be the estimated residuals. A common way to investigate this hypothesis is by means
of an LM test on the parameters ξ and β of the joint NN-GARCH model. Let the
inverse of the fisher information matrix be

I−1 =









Jθθ′ Jθξ′ Jθα′ Jθβ′

Jξθ′ Jξξ′ Jξα′ Jξβ′

Jαθ′ Jαξ′ Jαα′ Jαβ′

Jβθ′ Jβξ′ Jβα′ Jββ′









where Jxy′ denotes the xy block of I−1. The LM test statistic is computed as

LMT = T

(

∇ξ l̂

∇β l̂

)′(
Ĵξξ′ Ĵξβ′

Ĵβξ′ Ĵββ′

)(

∇ξ l̂

∇β l̂

)

where hatted quantities are evaluated under the restricted QMLE. The above statistic
can be equivalently computed from a set of auxiliary regressions. Let

η̂t ≡
(

ǫ̂t

ǫ̂2t − ĥt

)
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Σ̂t ≡
(

ĥt 0

0 2ĥ2
t

)

Λ̂t ≡
( ∇′

µm̂t ∇′
ξ ĝt 0 0

∇′
µν̂t ∇′

ξν̂t ∇′
αν̂t ∇′

β ν̂t

)

and

Ψ̂t ≡
( ∇′

µm̂t 0

∇′
µĥt ∇′

αĥt

)

where m(.), ν(.) are the extended mean, volatility models and µ = (φ′, θ′)′ is the
vector of the mean parameters of the restricted model. The following procedure
delivers the LM statistic (see Bollerslev and Wooldridge (1992), p. 15):

Procedure 4.6.1.1

1. Regress Σ̂
−1/2
t η̂t on Σ̂

−1/2
t Λ̂t and save the vector residuals r̂t

2. Compute the LMT test statistic as 2TR2, where R2 is the correlation coefficient
of the regression

In a highly nonlinear NN-GARCH specification, convergence problems arise so
that the matrix of generalised residuals is not precisely orthogonal to the matrix of

Σ̂
−1/2
t Ψ̂t, which is the first-order condition for the optimality of the QMLE. This

may adversely affect the size of the test. To circumvent this problem, we can regress

Σ̂
−1/2
t η̂t on Σ̂

−1/2
t Ψ̂t and use the residuals of the regression η̆t in place of Σ̂

−1/2
t η̂t in

the above procedure.
Assuming normality of errors, LMT follows an asymptotic χ2 with lξ + lβ degrees

of freedom, where l∗ is the dimension of the corresponding vector. In order to derive
a test that is robust to distributional misspecification of the NN-GARCH model, we
can follow the procedure:

Procedure 4.6.1.2

1. Run the matrix regression

Σ̂
−1/2
t η̂t on Σ̂

−1/2
t Ψ̂t, t = 1, 2, . . . , T

and save the matrix residuals η̆t.

2. Run the matrix regression

Σ̂
−1/2
t Λ̂t on Σ̂

−1/2
t Ψ̂t, t = 1, 2, . . . , T

and save the matrix residuals Λ̆t.
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3. Run the OLS regression

1 on η̆′tΛ̆t, t = 1, 2, . . . , T

and compute LM as TR2 = T − SSR, where SSR is the sum of squared
residuals of the last regression.

Step 2 is effectively responsible for the robustification of the test. This form of
the LM test has several attractive features. First, it is valid under non-normality of
errors and also asymptotically equivalent to the standard LM test when the normal-
ity assumption happens to hold. In addition, the computation of the test statistic
involves only first derivatives and is based on a set of regressions, whose implementa-
tion is straightforward. Based on the above general testing framework, we can derive
a series of diagnostics on the NN-GARCH model by giving different forms to g and
ω. Several cases are discussed below:

4.6.2 Testing the conditional mean model

In conditional mean tests, function ω can be taken trivially equal to one also under
the alternative hypothesis, so it does not enter the formulae above. In this case, the
matrix of gradients of the unrestricted model, evaluated under the null, takes the
form:

Λ̂t ≡
(

∇′
µm̂t ∇′

ξ ĝt 0

∇′
µĥt ∇′

ξĥt ∇′
αĥt

)

Notice that Λ̂t has the first and the third column common with Ψ̂t. Hence these two
columns may be omitted from Λ̂t, when carrying out the test, as they do not affect
the value of the test statistic.

Testing for serial correlation in mean

Testing serial independence of errors is a typical step towards the evaluation of the
final model. Rejecting this hypothesis suggests that the model cannot adequately
describe the dynamic structure of yt. This is the case e.g. when more lags of yt have
to be included in xt.

Let us assume that the errors of the restricted NN-GARCH model follow an
autoregressive process of order lξ,

ǫt = ξ′zt + ǫ∗t

where zt = (ǫt−1, ǫt−2, . . . , ǫt−lξ)
′ and ǫ∗t is an iid error process. To test linear inde-

pendence in the residuals, we set g(zt; ξ) = ξ′zt and take the null to be H0 : ξ = 0
against the alternative hypothesis H1 : ξ 6= 0. The gradient ∇ξ ĝt of gt evaluated at
null is simply ẑt, where

ẑt = (ǫ̂t−1, ǫ̂t−2, . . . , ǫ̂t−lξ)
′

for t = lξ + 1, mξ + 2, . . . , T .
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Testing for omitted variables

An important case of misspecification arises, when the researcher has omitted from
the set of explanatory variables xt some exogenous variables that might influence
the target variable yt. Similarly to the test presented in the previous section, we
can test the hypothesis of omitted variables in the linear part of the model, by
stating the alternative as g(zt; ξ) = ξ′zt, with zt being the set of additional exogenous
regressors. Note that in this case ∇ξ ĝt is simply zt. We can also test the NN-GARCH
specification against the alternative that important variables have been excluded from
the neural network model. In this case, zt could be specified as a vector of second- or
higher-order cross product terms of the exogenous variables. This case is examined
below.

Testing for additional nonlinearity in mean

We can test neglected nonlinearity in the mean part, generalising the procedure of
Teräsvirta et al. (1993) for NN-GARCH specifications. In particular, we take g(zt; ξ)
to be equal to the third-order Taylor polynomial ξ′zt, where

zt = (x2
1,t, x1,tx2,t, . . . , xi,txj,t, . . . , x

3
1,t, . . . , xi,txj,txk,t, . . . , x

3
n,t)

Under the null hypothesis, ξ = 0 and the LM statistic follows asymptotically the χ2

distribution with lξ = n(n + 1)/2 + n(n + 1)(n + 2)/6 degrees of freedom, where n is
the number of the explanatory variables.

4.6.3 Testing the conditional variance structure

The general testing framework on volatility models is based on investigating whether
we can predict the squared normalised residuals by some variables observed in the
past but not included in the volatility model being used. If these variables have
predictive ability on the squared normalised residuals then the volatility model is
misspecified. In evaluating the conditional variance, we treat function g as being
trivially equal to zero also under the alternative hypothesis. In this case, the matrix
of gradients of the unrestricted model takes the form:

Λ̂t =

( ∇′
µm̂t 0 0

∇′
µν̂t ∇′

αν̂t ∇′
β ν̂t

)

which, for the range of hypotheses considered here, becomes

Λ̂t =

( ∇′
µm̂t 0 0

∇′
µĥt ∇′

αĥt ĥt∇′
βω̂t

)

Notice that the gradient matrix of the restricted model Ψ̂t shares the first two columns
with Λ̂t. Hence, these columns may be omitted from Λ̂t when performing the matrix
regressions.
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Testing for remaining serial correlation in the standardised squared residuals

Similarly to Lundbergh and Teräsvirta (1998), we can test the hypothesis of remain-
ing ARCH effects in the standardised residuals of a NN-GARCH model by setting
ω(zt; β) = 1 + β′zt, with

zt = (û2
t−1, û

2
t−2, . . . , û

2
t−lβ

)

and ût ≡ ǫ̂t

/
√

ĥt . Note that if the alternative hypothesis is true in this case, then

from the volatility part of the extended model it follows that E(ǫ2t ) = htωt, which
becomes

E

(

ǫ2t
ht

)

= 1 + ξ1
ǫ2t−1

ht−1
+ ξ2

ǫ2t−2

ht−2
+ . . . + ξlβ

ǫ2t−lβ

ht−lβ

This means that standardised errors are serially correlated and thus past û2
t−j ’s con-

tain useful information for the conditional variance.
The null hypothesis of no remaining heteroskedasticity is equivalent to testing

β = 0. Under this null, the LM statistic is asymptotically χ2-distributed with lβ
degrees of freedom.

Testing for asymmetries in the volatility model

The final set of diagnostics on the volatility model examine unmodelled asymmetries
in the variance of the squared errors. Following Engle and Ng (1993) we can derive
tests for sign, positive size and a negative size bias4. The first of these tests examines
whether positive or negative shocks can (further) predict future variance. The last
two tests examine whether large and small negative (positive) shocks have an impact
on volatility, not captured by the current conditional variance model.

Asymmetric variance effects can be tested by setting ωt(β) = eβ′zt , where zt

equals

• S−
t−1, for the sign bias test

• S−
t−1ǫt−1, for the negative size bias and

• S+
t−1ǫt−1, for the positive size bias test

S−
t (S+

t ) are dummy variables taking the value 1 if ǫ̂t < 0 (ǫ̂t > 0) and 0 oth-
erwise. One can also device a joint test against all these effects by taking zt =
(S−

t−1, S−
t−1ǫ̂t−1, S+

t−1ǫ̂t−1)
′. Critical values are taken from a χ2

lβ
distribution where

the degrees of freedom lβ are adjusted according to the number of terms included in
zt.

4In calculating the above test statistics, Engle and Ng (1993) assume a mean model that is
equal to a constant. However, these formulae do not directly apply to our case, where the mean is
parametrised as a neural network. In this section, we propose an extension of the testing procedure
that accommodates nonlinearities in mean.
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4.6.4 Some diagnostics for symmetric volatility models

Recall from section 4.3.2, that if the volatility formulation of the NN-GARCH model
is homoskedastic or symmetric, as in the case of an ARCH/GARCH model, the off-
diagonal blocks of the expected hessian are zero. In this case, the standard LM test
statistic simplifies to

LMT = T ∇′
β l̂(Ĵββ′)∇β l̂

so that the volatility specification can be tested without reference to the mean model5.
It is important to bear in mind, however, that this simplification is only valid for sym-
metric volatility models; in cases where the conditional variance is paramatrised as
an EGARCH or a GJR-GARCH process, one necessarily has to follow the procedure
described in section 4.6.3.

If we let ηt ≡ ǫ2t /ht − 1, the standard test statistic can be computed from the
following procedure

Procedure 4.6.4.1

1. Regress η̂t on ∇αĥt/ĥt for t = 1, 2, . . . , T and save the residuals η̆t.

2. Regress η̆t on ∇αĥt/ĥt and ∇βω̂t for t = 1, 2, . . . , T and compute LMT as TR2

from the regression.

LMT has an asymptotic chi-square distribution with lβ degrees of freedom assum-
ing normality and conditional homokurtosis of errors. A version of the LM that is
robust to non-normality can be computed in analogy to procedure 4.6.1.2 as follows:

Procedure 4.6.4.2

1. Regress η̂t on ∇αĥt/ĥt for t = 1, 2, . . . , T and save the residuals η̆t.

2. Run the vector regression

∇βω̂t on ∇αĥt/ĥt, t = 1, 2, . . . , T

and compute the residuals r̂t.

3. Run the ordinary least-squares regression

1 on η̆tr̂t, t = 1, 2, . . . , T

and compute LMT as TR2 = T − SSR, where SSR is the sum of squared
residuals.

Under a symmetric volatility process, the diagnostics discussed in the previous
section coincide with various variance diagnostics presented in the literature.

5Ĵββ′ denotes the ββ′ block of the inverse of Iν , the part of the Fisher information matrix
corresponding to the parameters of the volatility model.



CHAPTER 4. NEURAL NETWORK GARCH MODELS 53

Testing for ARCH

If we take the extended volatility model in (4.6.1b) to be a constant σ2
0 under the null

and an ARCH(q) model under the alternative, then we have a test for heteroskedas-
ticity in the residuals of the mean model, in the spirit of Engle’s LM test. In this
case, η̂2

t = ǫ̂2t /σ̂2 − 1, where σ̂2 = T−1
∑T

t=1 ǫ̂2t is the sample sum of squared errors,
and

ω̂t = 1 + β′ẑt

where ẑt = (ǫ̂2t−1/σ̂2, ǫ̂2t−2/σ̂2, . . . , ǫ̂2t−q/σ̂2). The standard version of the LM test, as
computed from procedure 4.6.4.1, produces the Engle (1982) ’s test for ARCH-type
heteroskedasticity6. We can also derive an improved version of Engle’s test that is
robust to non-normal (standardised) residuals (see Bollerslev and Wooldridge (1992)).
Let ǫ̃2t = ǫ̂2t − σ̂2 be the squared demeaned residual at time t. The test statistic is
computed as TR2 from the regression

1 on ǫ̃2t ǫ̃
2
t−1, ǫ̃

2
t ǫ̃

2
t−2, . . . , ǫ̃

2
t ǫ̃

2
t−lβ

, t = 1, 2, . . . , T

and follows a χ2
lβ

asymptotic distribution.

Testing for GARCH

Testing for remaining serial correlation in the squared normalised residuals when the
volatility model is a GARCH(p, q) is considered by Lundbergh and Teräsvirta (1998).
They also provide simulation evidence regarding the finite-sample properties of the
robust and the non-robust test statistics. A common finding in all misspecification
examples is that the robust version of the test proves superior to the non-robust one
when errors follow a non-gaussian distribution and loses nothing in terms of power
when errors happen to be normal.

Testing for sign bias, negative/positive size bias

The non-robust version of LM tests for asymmetric effects in the variance process
is investigated by Engle and Ng (1993). A robustification of these tests is straight-
forward following procedure 4.6.4.2. In this case, ω̂t = ẑt, where ẑt is either a sign
dummy variable or a product of a dummy with the past error.

4.7 Relevance to other approaches

At this point, it would be useful to compare the NN-GARCH modelling framework,
proposed in this thesis, with other relevant approaches appeared in the literature. It
has probably so far become clear that NN-GARCH specifications attempt to model
the entire conditional density, by jointly parametrising the mean, the variance struc-
ture and the density of errors. This practice to model the first two moments of the
distribution was very popular in econometrics in the 90’s. Although the majority of
GARCH models that have been proposed in the literature ignore the possibility of

6In this case step 1 is not necessary.
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nonlinearities in mean, various nonlinear regression models, such as threshold (Li and
Li (1996)) or smooth transition (Lundbergh and Teräsvirta (1998)) have appeared in
combination with parametric or semi-parametric models of volatility.

In the framework of computational intelligent models, NN-GARCH models draw
analogy with recurrent mixture density networks (RMDN) proposed by Schittenkopf
et al. (2000). This approach to time-series analysis attempts to directly model the
entire conditional probability density and shares several features with ours, mainly in
that it encompasses nonlinearities in mean, nonlinear GARCH effects in variance and
non-gaussian errors. However, Schittenkopf et al. (2000) discuss no particular model
specification strategy for recurrent mixture density networks and the number of hid-
den units is chosen ad hoc. This makes unsafe the application of statistical inference,
as simple heuristics do not exclude the possibility of obtaining an over-identifiable
network with all the unpleasant consequences discussed in section 4.3.2. Contrary to
this approach, in our thesis we pay special attention to identifying the right model
complexity given the available data and avoiding over-parametrised models by means
of sequential statistical tests.

Another approach that is related to our work is Donaldson and Kamstra (1997),
who developed a NN-based model for conditional volatility that is linear in mean and
nonlinear in variance. This was mainly intended to capture asymmetric responses
of stock index volatility to past innovations. In Donaldson and Kamstra (1997)’s
approach, nonlinearity enters directly into the variance part while in our approach
we also consider the possibility of nonlinearity in the mean7. As concerns the spec-
ification of the model, Donaldson and Kamstra (1997) parameterize the mean as a
linear AR process and estimate a variety of neural network-type GARCH models
with growing complexity. The number of hidden units is determined by means of
an information criterion. Despite its statistical foundations, this approach is more
computationally demanding and makes it difficult to control the probability of pro-
ducing over-identifiable models. On the contrary, in a sequential testing procedure,
the percentage of selected models being over-parameterized is bounded by the size
of the test, i.e. the probability of falsely rejecting the null hypothesis. This is an
argument for the use of sequential tests in model selection instead of information
criteria (see also Medeiros et al. (2006) for a discussion).

4.8 Summary and discussion

In this chapter, we showed how artificial neural networks and GARCH parametrisa-
tions can be combined into a flexible modelling framework that can accommodate a
variety of features observed in financial time-series: nonlinearities in mean, nonlinear
GARCH effects in variance and possibly non-gaussian errors. By jointly modelling
the conditional mean and volatility of the data-generating process, we extend the
scope of NNs from function approximation to density forecasting tasks and bring
NNs right in the centre of current econometric research. Besides detecting a func-
tional relationships between target and explanatory variables, with our combined

7Still, our methodological framework can be easily extended to incorporate a neural network in
variance. See the discussion at the end of the thesis.
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NN-GARCH model we can now capture other interesting features of the conditional
distribution.

Our goal was also to provide a complete model-building cycle for the family
of NN-GARCH specifications, which comprises all stages of econometric modelling:
specification, estimation and evaluation. As with every flexible class of models, the
issue of carefully selecting the final specification becomes of paramount importance.
The analysis of the statistical properties of NN-GARCH models revealed that any
combination of neural networks and GARCH parametrisation is not guaranteed to be
successful unless special attention is paid to the specification of the mean equation.
In fact, if nonlinear dependencies in data are due to GARCH effects extra hidden
neurons in the nonlinear model are redundant leading to inconsistency of parameter
estimates and possibly poor out-of-sample performance.

The specification of the NN-GARCH model follows a “bottom-up” procedure
which avoids many statistical and numerical problems arising from non-identifiability
of parameters. The specification of the mean structure is based on sequential La-
grange Multiplier (LM) tests of neglected nonlinearity that are robustified, i.e. pre-
serve their asymptotic validity in the presence of heteroskedasticity. One of the test-
ing procedure that we propose in this thesis for detecting the structure of the neural
network gives the opportunity to the researcher to incorporate information from the
variance structure of the distribution of errors while testing for extra neurons in the
data-generating process.

Based on the quasi maximum likelihood theory, we device in-sample robustified
diagnostics on the estimated model that investigate whether the derived model is a
faithful approximation to the data-generating process. The distinguishing feature of
these diagnostics is that they lead to valid inference regarding structural misspecifi-
cation despite the fact that the distributional assumptions made by the model may
not be correct (i.e. the empirical density of standardised errors is fat-tailed or asym-
metric). We particularly consider LM tests for remaining autocorrelation in mean,
remaining autocorrelation in variance, asymmetric variance effects and nonlinearity.
In general, these tests are simple and inexpensive to construct, as the model has
already been estimated under the null, and only require the computation of first
derivatives and a set of auxiliary regressions to determine whether the residuals (or
the standardised residuals) can be further explained by the conjectured alternative
hypothesis. This is a big advantage for highly nonlinear specifications, where the
numerical estimation of parameters becomes an issue. The empirical performance of
some of the testing procedures discussed above is investigated in the next chapter by
means of Monte-Carlo simulation.



Chapter 5

Monte Carlo simulation studies

5.1 Introduction

The testing procedures discussed in chapter 4 for detecting hidden nonlinearity in
data, asymmetric effects in variance or checking the adequacy of a NN-GARCH
model rest on asymptotic, large-sample size, theory. Therefore, it would be essential
from a practical point of view to investigate their performance in sample sizes relative
to financial applications, taking into account common statistical features of these ap-
plication data (heteroskedasticity, non-normality). Section 5.2 details a Monte-Carlo
simulation study on the sequential LM nonlinearity testing framework for detecting
the number of hidden units and section 5.3 presents a similar exercise related to the
diagnostic checking on a neural network regression model. Experimental results are
discussed in section 5.4 which concludes the chapter.

5.2 Detecting the number of hidden units under het-

eroskedasticity in errors

Monte Carlo simulation experiments presented in Anders and Korn (1999); Medeiros
et al. (2006); Teräsvirta et al. (1993) investigate the properties of the standard neural
network nonlinearity test assuming a neural network regression model, in which errors
follow a normal distribution with constant variance. In financial applications, how-
ever, it is highly possible that a pure NN model is not enough to capture the statistical
features of the underlying probability-generating model (e.g. heteroskedasticity in er-
rors). In this section we present a variety of simulations that examine the properties
of the standard sequential LM testing procedure under ARCH-type heteroskedasticity
and non-normality of errors and compare its performance with the two robustified
sequential procedures presented in section 4.5.1. All subsequent experiments were
conducted on Matlab c© version 7.

5.2.1 Design of experiments

For the empirical investigation of the size and power of LM tests, we consider two
data-generating processes for the conditional mean whose exact specification is given

56
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in table 5.1, Panel A. Model 0 is a typical linear autoregressive model with one lag-
dependent variable and model 1 is an additive AR(1)-NN process with one hidden
neuron. The set of conditioning variables in this case is (yt−1) for model 0 and
(yt−1, yt−3) for model 1. Errors are assumed to follow the general specification

ǫt = ζt

√

ht

where {ζt} are drawn from a N(0,1) or a Student t(ν) distribution with ν degrees of
freedom. In the second case, ζt’s are normalised to have unit sample variance. As
discussed in the section 4.5.1, the validity of LM nonlinearity tests does not depend
on the normality of errors and this seems a big advantage in the light of empirical
findings suggesting that the empirical distribution of economic time-series is heavy-
tailed and leptokurtic. It is therefore interesting to investigate the properties of
these tests when the distribution of residuals deviates from the normal prototype.
The density function of a student distribution is also symmetric around zero and the
additional factor ν controls the thickness of the distribution tails. In our experiments
we set ν = 5, which is also a common choice in other simulation studies. The use
of a student distribution as a model for the error process is motivated by numerous
empirical surveys supporting that the distribution of financial returns is often more
heavy-tailed than would be predicted by an heteroskedastic model (Bollerslev (1987)).

Panel A: Expectational models

Model 0 yt = 0.001 + 0.6yt−1 + ǫt

Model 1 yt = 0.25 + 0.45yt−1 + 0.5 F [2.5(yt−1 − 1.3yt−3 − 0.1)] + ǫt

Panel B: Volatility models

VGP0 ht = 10−3

VGP1 ht = 10−3 + 0.85ht−1 + 0.05ǫ2t−1

VGP2 ht = 10−3 + 0.90ht−1 + 0.07ǫ2t−1

VGP3 log(ht) = −0.008 + 0.93 log(ht−1) + 0.17(|ut−1| − E) − 0.085ut−1

Table 5.1: Specification of the models used in simulation.

The empirical performance of tests is investigated under a variety of volatility
processes, presented in table 5.1, Panel B. The first process (VGP0) imposes constant
variance, while VGP1 and VGP2 assume that the conditional variance follows a
GARCH(1,1) model. The difference between VGP2 and VGP1 is that volatility
shocks are on average more persistent for the former than the latter. The last model
for the conditional volatility is Nelson (1990)’s exponential GARCH (EGARCH),
which is also very popular in financial time-series analysis. In this simulation exercise,
motivated by empirical evidence presented in section 2.3, we assume that a negative
ǫt−1 has on average a greater impact on ht than a positive one and hence assign a
negative value to the coefficient of ut−1.

For each combination of mean and variance models, we generated 1000 sample
paths excluding the first 500 observations to eliminate the effect of initial values. The
sequential testing procedure described in section 4.5.1 was then applied to decide
the number of hidden neurons in the mean equation. In order to investigate the
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effects of heteroskedasticity in the specification of the mean part, we implemented
the above procedure using all versions of nonlinearity tests: the standard LM (S-LM),
the robustified LM (RB-LM) and the robustified LM test (RBV-LM) with volatility
estimates obtained from a GARCH(1,1) model (independently of the true volatility
generating process). In all experiments, the correct set of variables was given to
the model a priori as a way to obtain an idea of the behaviour of various statistics
free from the effects of an incorrectly selected set of variables. Perhaps, the extent
to which each test is able to determine the appropriate set of variables could be
the objective of another simulation study. SBIC was used to determine the set of
variables composing the linear model.

5.2.2 Simulation results

Tables 5.2 to 5.5 show the empirical test performance under the hypothesis that
the true expectational model is linear. We report results for three initial signifi-
cance levels (1%, 5% and 10%) and two sample size of 700 and 2000 observations.
Each cell shows the percentage of paths for which the corresponding testing pro-
cedure indicated a number of hidden neurons equal to the value of ĥ given in the
second column. A general conclusion drawn from the first set of experiments is that
a larger initial significance level α unavoidably leads to more false rejections of the
linearity hypothesis. When errors are homogeneously distributed (VGP0) the em-
pirical rejection rate of all tests closely follows the nominal type I error. However,
in the presence of heteroskedasticity the S-LM test tends to overreject the correct
hypothesis of linearity. The size distortions are especially dramatic for the processes
characterised by a strong or an asymmetric ARCH component, like VGP2 and VGP3,
or a heavy-tailed distribution of errors (t distribution). The situation does seem to
improve with an increasing number of observations. Note e.g. from tables 5.4 and 5.5
that at 10% significance 2000 observations and t-distributed errors the probability
that the S-LM test wrongly indicate nonlinearity in mean is more than 30% under
a persistent GARCH or an EGARCH volatility process. It seems that under strong
heteroskedasticity the test misinterprets changes in the levels of variance as neglected
nonlinearity in the residuals of the linear model and hence indicates additional neu-
rons to capture these effects. In this way various features of the error component are
transferred into the mean model and since these features are not due to systematic
movements in yt the resulting NN is expected to have poor performance on unseen
data. Generally, experiments on the S-LM test give a cautionary remark against
the use of non-heteroskedasticity-robust statistical procedures in the determination
of the NN architecture. On the other hand, simulations show that sequential testing
procedures based on robustified versions of the LM test are efficient in controlling the
empirical type I error of the testing procedure under various forms of heteroskedas-
ticity in errors. Of particular interest are the results for the RBV-LM test, whose
main difference with RB-LM is that the researcher chooses to explicitly model het-
eroskedasticity rather to ignore it. Tables 5.2 and 5.5 represent two cases where
the researcher has nevertheless incorrectly specified the form of heteroskedasticity.
In table 5.2 the researcher erroneously employs an heteroskedastic model when the
conditional variance of errors is in fact constant. Although in practical applications
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graphical inspection of the times-series or some preliminary data analysis would prob-
ably prevent the analyst from doing so, we see that the application of an RBV-LM
test with GARCH(1,1) volatility estimates does not distort the empirical size. The
same is true for the experiments reported in table 5.5, where in this case the GARCH
model employed by the researcher misses an important feature of volatility dynamics,
i.e. the asymmetric response of the conditional variance to past errors.

Tables 5.6 to 5.9 show the empirical rejection frequencies when the expectational
model includes one neuron in the hidden layer. This part of simulation experiments
allows us to investigate the ability of tests (or else the power) to detect hidden non-
linearity when various types of heteroskedasticity may also be present in the data-
generating process. Table 5.6 shows that under homogeneously distributed errors all
tests have similar power performance and tend to underreject the hypothesis of non-
linearity indicating a linear expectational process. Still, the percentage of rejections
increases with the sample size, which is somewhat expected as nonlinearity becomes
more apparent in large samples. Tables 5.7 to 5.9 show that all tests tend to detect
more often nonlinear structure in mean under heteroskedasticity and a fat-tailed t
distribution, the rejection rate being increased with the persistence of the volatility
process. A possible explanation for this finding stems from the fact that an increase
in the short-term volatility and the kurtosis of the unconditional distribution makes
more likely the appearance of extreme movements of yt in a specific sample path.
As the overall sample variability of yt is increased, the hidden neuron is activated
more often making thus nonlinearity more apparent in the data-generating process.
A common finding in this part of experiments is that the standard version of the LM
test is adversely affected by the presence of autoregressive heteroskedasticity. The
stronger is heteroskedasticity the more likely is S-LM to produce an excessive num-
ber of neurons. The RB-LM test is much well behaved against the adverse effects of
heteroskedasticity. However it tends to be overly conservative especially at low signif-
icance levels, although its power performance is improved when more observations are
used. Note also that the tendency of the RB-LM test to be conservative is slightly
increased when t(5) random variates are used in the simulation. Similar findings
have also been reported in simulation studies that employ the RB-LM test to detect
nonlinearity in other nonlinear regression models (see e.g. Becker and Hurn (2006);
Lundbergh and Teräsvirta (1998)). The robustified LM test that uses information
from the variance structure seems more efficient in isolating nonlinearity in mean
from heteroskedasticity and also has a good control over the empirical type I error.
The power of RBV-LM rapidly picks up with the persistence of the volatility process
(table 5.8) and also seems quite satisfactory in the case of an EGARCH volatility
process (table 5.9). The out-performance of the RBV-LM test with GARCH(1,1)
volatility estimates can be attributed to the fact that a GARCH model is a better
approximation to an EGARCH volatility-generating process than a model of constant
variance, implicitly assumed by RB-LM. Hence, even if the volatility model is not
the primary concern of the researcher, it pays to put some effort on deriving a good
approximation to the underlying volatility structure.
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Model 0, VGP0

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.995 0.965 0.920 0.992 0.953 0.919 0.994 0.956 0.915

ĥ = 1 0.005 0.035 0.079 0.008 0.047 0.081 0.006 0.043 0.084

ĥ = 2 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001

Student
ĥ = 0 0.992 0.961 0.919 0.996 0.970 0.928 0.995 0.967 0.924

ĥ = 1 0.008 0.039 0.081 0.004 0.029 0.071 0.005 0.033 0.074

ĥ = 2 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.002

2000 observations

Normal
ĥ = 0 0.991 0.952 0.917 0.991 0.959 0.908 0.993 0.960 0.911

ĥ = 1 0.009 0.047 0.079 0.009 0.041 0.090 0.007 0.039 0.086

ĥ = 2 0.000 0.001 0.004 0.000 0.000 0.002 0.000 0.001 0.003

Student
ĥ = 0 0.989 0.959 0.930 0.994 0.958 0.912 0.994 0.964 0.930

ĥ = 1 0.011 0.041 0.070 0.006 0.041 0.087 0.006 0.036 0.069

ĥ = 2 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001

Table 5.2: The extend of overfitting in the case of the expectational model 0 and the
variance-generating process VGP0. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.

Model 0, VGP1

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.979 0.928 0.857 0.991 0.956 0.903 0.990 0.950 0.896

ĥ = 1 0.021 0.069 0.140 0.009 0.042 0.095 0.010 0.049 0.103

ĥ = 2 0.000 0.003 0.003 0.000 0.002 0.002 0.000 0.001 0.001

Student
ĥ = 0 0.942 0.865 0.805 0.996 0.982 0.940 0.995 0.975 0.930

ĥ = 1 0.056 0.132 0.189 0.004 0.018 0.060 0.005 0.025 0.070

ĥ = 2 0.002 0.003 0.006 0.000 0.000 0.000 0.000 0.000 0.000

2000 observations

Normal
ĥ = 0 0.945 0.821 0.686 0.998 0.972 0.923 0.997 0.970 0.924

ĥ = 1 0.054 0.169 0.294 0.002 0.027 0.074 0.003 0.030 0.076

ĥ = 2 0.001 0.010 0.019 0.000 0.001 0.003 0.000 0.000 0.000

Student
ĥ = 0 0.909 0.820 0.742 0.996 0.964 0.925 0.996 0.963 0.916

ĥ = 1 0.079 0.164 0.236 0.004 0.036 0.075 0.004 0.037 0.082

ĥ = 2 0.012 0.016 0.022 0.000 0.000 0.000 0.000 0.000 0.002

Table 5.3: The extend of overfitting in the case of the expectational model 0 and the
variance-generating process VGP1. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.
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Model 0, VGP2

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.964 0.876 0.810 0.997 0.968 0.920 0.993 0.959 0.910

ĥ = 1 0.035 0.116 0.177 0.003 0.032 0.080 0.007 0.041 0.087

ĥ = 2 0.001 0.008 0.013 0.000 0.000 0.000 0.000 0.000 0.003

Student
ĥ = 0 0.894 0.810 0.739 0.991 0.957 0.908 0.992 0.953 0.906

ĥ = 1 0.102 0.174 0.233 0.009 0.043 0.088 0.008 0.044 0.090

ĥ ≥ 2 0.004 0.016 0.028 0.000 0.000 0.004 0.000 0.003 0.004

2000 observations

Normal
ĥ = 0 0.930 0.840 0.774 0.987 0.953 0.898 0.991 0.947 0.900

ĥ = 1 0.067 0.153 0.209 0.013 0.045 0.100 0.009 0.053 0.099

ĥ = 2 0.003 0.007 0.017 0.000 0.002 0.002 0.000 0.000 0.001

Student
ĥ = 0 0.834 0.722 0.641 0.996 0.969 0.926 0.992 0.939 0.901

ĥ = 1 0.148 0.245 0.308 0.004 0.031 0.074 0.008 0.060 0.095

ĥ = 2 0.017 0.030 0.048 0.000 0.000 0.000 0.000 0.001 0.004

ĥ = 3 0.001 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.4: The extend of overfitting in the case of the expectational model 0 and the
variance-generating process VGP2. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.

Model 0, VGP3

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.951 0.862 0.785 0.990 0.962 0.915 0.989 0.952 0.908

ĥ = 1 0.049 0.135 0.204 0.010 0.038 0.080 0.011 0.046 0.088

ĥ = 2 0.000 0.003 0.011 0.000 0.000 0.005 0.000 0.002 0.004

Student
ĥ = 0 0.914 0.821 0.750 0.995 0.965 0.916 0.991 0.961 0.901

ĥ = 1 0.082 0.172 0.237 0.004 0.034 0.082 0.009 0.038 0.093

ĥ = 2 0.004 0.007 0.013 0.001 0.001 0.002 0.000 0.001 0.006

2000 observations

Normal
ĥ = 0 0.924 0.825 0.760 0.994 0.955 0.910 0.990 0.947 0.902

ĥ = 1 0.076 0.173 0.236 0.006 0.045 0.089 0.010 0.051 0.093

ĥ = 2 0.000 0.002 0.004 0.000 0.000 0.001 0.000 0.002 0.005

Student
ĥ = 0 0.849 0.730 0.653 0.994 0.953 0.906 0.991 0.952 0.899

ĥ = 1 0.145 0.253 0.318 0.006 0.046 0.090 0.009 0.046 0.098

ĥ = 2 0.006 0.017 0.027 0.000 0.001 0.004 0.000 0.002 0.003

Table 5.5: The extend of overfitting in the case of the expectational model 1 and the
variance-generating process VGP3. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.
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Model 1, VGP0

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.972 0.865 0.774 0.977 0.888 0.769 0.979 0.876 0.770

ĥ = 1 0.028 0.133 0.219 0.023 0.108 0.222 0.021 0.121 0.220

ĥ ≥ 2 0.000 0.002 0.007 0.000 0.004 0.009 0.000 0.003 0.010

Student
ĥ = 0 0.962 0.861 0.758 0.983 0.897 0.775 0.984 0.901 0.790

ĥ = 1 0.037 0.136 0.227 0.017 0.102 0.220 0.016 0.098 0.204

ĥ ≥ 2 0.001 0.003 0.015 0.000 0.001 0.005 0.000 0.001 0.006

2000 observations

Normal
ĥ = 0 0.951 0.827 0.691 0.958 0.827 0.707 0.960 0.835 0.707

ĥ = 1 0.048 0.169 0.300 0.041 0.170 0.279 0.040 0.164 0.285

ĥ ≥ 2 0.001 0.004 0.009 0.001 0.003 0.013 0.000 0.001 0.008

Student
ĥ = 0 0.943 0.812 0.672 0.961 0.848 0.706 0.967 0.869 0.749

ĥ = 1 0.057 0.186 0.322 0.039 0.147 0.284 0.033 0.127 0.243

ĥ ≥ 2 0.000 0.002 0.006 0.000 0.005 0.010 0.000 0.004 0.008

Table 5.6: The extend of overfitting in the case of the expectational model 1 and the
variance-generating process VGP0. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.

Model 1, VGP1

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.840 0.635 0.509 0.940 0.788 0.646 0.936 0.763 0.633

ĥ = 1 0.157 0.348 0.452 0.060 0.207 0.335 0.064 0.227 0.342

ĥ = 2 0.003 0.017 0.039 0.000 0.005 0.019 0.000 0.010 0.025

Student
ĥ = 0 0.720 0.515 0.382 0.965 0.797 0.648 0.941 0.763 0.615

ĥ = 1 0.263 0.430 0.534 0.035 0.200 0.338 0.059 0.233 0.370

ĥ = 2 0.014 0.050 0.078 0.000 0.003 0.014 0.000 0.004 0.015

ĥ ≥ 3 0.003 0.005 0.006 0.000 0.000 0.000 0.000 0.000 0.000

2000 observations

Normal
ĥ = 0 0.553 0.313 0.204 0.777 0.481 0.332 0.747 0.433 0.303

ĥ = 1 0.435 0.643 0.702 0.223 0.508 0.641 0.253 0.553 0.648

ĥ = 2 0.012 0.043 0.094 0.000 0.011 0.027 0.000 0.014 0.049

ĥ = 3 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000

Student
ĥ = 0 0.331 0.150 0.105 0.813 0.501 0.348 0.730 0.411 0.275

ĥ = 1 0.611 0.718 0.698 0.183 0.487 0.609 0.264 0.559 0.667

ĥ = 2 0.054 0.121 0.182 0.004 0.012 0.043 0.006 0.030 0.058

ĥ ≥ 3 0.003 0.010 0.012 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.7: The extend of overfitting in the case of the expectational model 1 and the
variance-generating process VGP1. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.
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Model 1, VGP2

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.620 0.393 0.267 0.916 0.713 0.554 0.875 0.638 0.495

ĥ = 1 0.353 0.533 0.621 0.081 0.275 0.423 0.123 0.347 0.479

ĥ = 2 0.026 0.070 0.104 0.003 0.012 0.023 0.002 0.015 0.025

ĥ ≥ 3 0.001 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.001

Student
ĥ = 0 0.458 0.281 0.196 0.936 0.740 0.580 0.871 0.634 0.466

ĥ = 1 0.467 0.579 0.607 0.064 0.257 0.407 0.126 0.349 0.498

ĥ = 2 0.061 0.117 0.166 0.000 0.003 0.013 0.003 0.017 0.036

ĥ ≥ 3 0.014 0.023 0.031 0.000 0.000 0.000 0.000 0.000 0.000

2000 observations

Normal
ĥ = 0 0.171 0.051 0.028 0.616 0.312 0.188 0.425 0.180 0.096

ĥ = 1 0.754 0.777 0.728 0.381 0.657 0.748 0.566 0.777 0.824

ĥ = 2 0.071 0.159 0.225 0.003 0.031 0.064 0.009 0.043 0.080

ĥ ≥ 3 0.004 0.012 0.019 0.000 0.000 0.000 0.000 0.000 0.000

Student
ĥ = 0 0.089 0.030 0.018 0.722 0.401 0.264 0.420 0.164 0.086

ĥ = 1 0.701 0.629 0.544 0.274 0.575 0.673 0.558 0.782 0.808

ĥ = 2 0.173 0.278 0.356 0.004 0.023 0.061 0.022 0.054 0.104

ĥ ≥ 3 0.037 0.063 0.082 0.000 0.001 0.002 0.000 0.000 0.002

Table 5.8: The extend of overfitting in the case of the expectational model 1 and the
variance-generating process VGP2. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.

Model 1, VGP3

Test type S-LM RB-LM RBV-LM

Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

700 observations

Normal
ĥ = 0 0.476 0.253 0.158 0.805 0.514 0.369 0.628 0.367 0.246

ĥ = 1 0.506 0.681 0.727 0.194 0.475 0.611 0.371 0.612 0.714

ĥ = 2 0.018 0.063 0.105 0.001 0.011 0.020 0.001 0.021 0.040

ĥ = 3 0.000 0.003 0.010 0.000 0.000 0.000 0.000 0.000 0.000

Student
ĥ = 0 0.512 0.310 0.213 0.901 0.682 0.530 0.761 0.468 0.339

ĥ = 1 0.444 0.581 0.632 0.099 0.312 0.456 0.237 0.515 0.620

ĥ = 2 0.042 0.102 0.143 0.000 0.006 0.014 0.002 0.017 0.039

ĥ = 3 0.001 0.007 0.012 0.000 0.000 0.000 0.000 0.000 0.002

2000 observations

Normal
ĥ = 0 0.401 0.197 0.137 0.813 0.559 0.406 0.587 0.334 0.217

ĥ = 1 0.541 0.659 0.653 0.182 0.426 0.558 0.407 0.628 0.705

ĥ = 2 0.057 0.139 0.199 0.005 0.015 0.035 0.006 0.038 0.078

ĥ = 3 0.001 0.005 0.011 0.000 0.000 0.001 0.000 0.000 0.000

Student
ĥ = 0 0.315 0.159 0.108 0.874 0.622 0.444 0.569 0.312 0.203

ĥ = 1 0.564 0.610 0.601 0.124 0.358 0.518 0.416 0.622 0.690

ĥ = 2 0.109 0.202 0.251 0.002 0.020 0.036 0.015 0.065 0.106

ĥ = 3 0.012 0.029 0.040 0.000 0.000 0.002 0.000 0.001 0.001

Table 5.9: The extend of overfitting in the case of the expectational model 1 and the
variance-generating process VGP3. We report results for all versions of the (non)linearity
LM-based test. Each cell corresponds to the percentage of replications for which the number
of neurons indicated by the test was equal to ĥ.
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5.3 Testing the adequacy of a neural network regression

model

Assume that the researcher is solely interested in conditional mean relations and does
not want to explicitly model the structure of higher moments of the distribution (e.g.
the variance). However, he would like to know whether the employed architecture
of a NN adequately captures the main elements of the conditional expectation. This
is a common problem one is typically faced with when applying a NN regression
model in real data. It is common sense that if a regression model is of adequate
structure it should not leave interesting features of the conditional expectation, such
as autocorrelation, nonlinear dependencies, or omitted variables in the residuals.
Therefore, most diagnostic procedures on a NN regression model are concentrated on
testing the residuals for “strong” properties.

In the great majority of NN applications, authors employ heuristic procedures,
such as sample autocorrelation diagrams or normality plots, to judge the randomness
of the residuals of the model. Zapranis and Refenes (1999) were among the first to
propose an integrated framework for neural network evaluation, which is essentially
an application of the Box-Jenkins diagnostic checking principles for linear ARMA
models (Box et al. (1994)). However, Medeiros et al. (2006) noticed that many
popular portmanteau tests, such as the Ljung-Box or Box-Pierce, are inapplicable in
the neural network case, because their asymptotic null distribution is unknown if the
test is based on the estimated residuals of a neural network model. Therefore, they
derived a series of Lagrange Multiplier (LM) test statistics specially designed for the
diagnostic checking of a neural network regression model. NN specification testing
based on maximum-likelihood statistics is also discussed in Kuan and White (1994).

In this chapter, we re-examine the issue of diagnostic checking on a neural network
regression model under the existence of strong properties in the distribution of errors.
We present the standard LM testing framework of Medeiros et al. (2006), suitable for
homogeneously distributed errors, and we propose two new diagnostic procedures for
neural network models that apply to heteroskedastic errors. These essentially employ
the Wooldridge (1991)’s modifications of the classical LM statistic, also considered
in previous sections. After presenting the general testing framework in section 5.3.1,
in section 5.3.2 we study some special cases of model adequacy tests, such as serial
correlation in errors and omitted variables. The finite-sample performance of the LM
tests is investigated in sections 5.3.3 and 5.3.4 by means of a Monte Carlo study, in
the special case of detecting error autocorrelation (of a fixed order) in a NN model
when GARCH heteroskedasticity is also present.

5.3.1 The general framework

A general diagnostic framework for NN-GARCH models can be based on the following
additive extension of (4.3.1a):

yt = φ′x̄t + f(xt; θ) + g(zt; ξ) + ǫ∗t (5.3.1)

where g(zt; ξ) is continuous and twice differentiable for all ξ ∈ R
l and (almost) every-

where in the corresponding sample space. Assume without loss of generality that
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g(zt; 0) = 0. If the restricted model is adequate then g(zt; 0) should be zero and
ǫ∗t = ǫt. Hence a general hypothesis of adequacy can be stated as

H0 : ξ = 0

Failing to reject this hypothesis, suggests that errors contain additional structure,
which is generally a problem if the NN model is intended for statistical inference or
forecasting.

The diagnostic testing procedure proposed by Medeiros et al. (2006) is essentially
an application of an LM test to the parameter vector ξ. The derivation of test
statistics was built on early works of Eitrheim and Teräsvirta (1996) and Teräsvirta
(1994). Let

ǫ̂t = yt − φ̂′x̄t − f(xt; θ̂)

where φ̂ and θ̂ are the least-squares estimates of the restricted model. Let also ∇f̂t,
∇ĝt denote the gradients of f(xt; θ), g(xt; ξ) evaluated at θ = θ̂ and ξ = 0. The
standard LM test is carried out in the following three steps:

Procedure 5.3.1.1

1. Regress ǫ̂t on x̄t, ∇f̂t and compute the new residual vector ε̂t

2. Regress ε̂t on x̄t, ∇f̂t, ∇ĝt and compute the sum of squared residuals SSR2 =
T−1

∑T
t=1 u2

t

3. Compute the test statistic as LMT = TR2, where R2 is the coefficient of deter-
mination of the regression.

The asymptotic distribution of LMT follows a χ2 distribution with l degrees of
freedom. However, the validity of the standard LM test depends on the correct spec-
ification of the volatility process of errors. Generally, the LM test statistic does not
follow a chi-square asymptotic distribution in the presence of ARCH or other forms
of heteroskedasticity. Hence using critical values from a chi-square distribution may
lead to wrong inference regarding the presence of additional structure in the mean of
the distribution. A robustified LM test that ignores the effect of heteroskedasticity
can be computed from the following procedure:

Procedure 5.3.1.2

1. Regress ǫ̂t on x̄t, ∇f̂t and compute the residuals ε̂t

2. Regress ∇ĝt on x̄t, ∇f̂t and take the l × 1 residuals vector ût

3. Run the regression 1 on ε̂tût and compute the sum of squared residuals SSR1

4. Compute the statistic as LMT = T − SSR1
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If one can also obtain an estimate of the conditional variance ĥt, it is possible
to carry out the above testing procedure by using standardised quantities in place
of the corresponding quantities in 5.3.1.2. The robustified LM statistics follow an
asymptotic χ2

l distribution under heterogeneously distributed errors and are also as-
ymptotically efficient under homoskedastic errors, i.e. no efficiency is lost in carrying
out the test.

In his discussion on the properties of robustified tests, Wooldridge (1991) assumes
that the parameters µ = (φ′, θ′)′ of the NN model are estimated using weighted least-

squares, where model’s error ǫt is weighted by 1
√

ĥt. However, estimators obtained
by other estimation procedures can be also used in the computation of the test
without affecting its asymptotic size. The key feature of this approach is that tests
are always asymptotically efficient, no matter which estimator is used for the variance
or, more importantly, the mean (subject of course that it is

√
T -consistent for the

mean parameters).
Although general statements can be made regarding asymptotic efficiency, one has

little knowledge as to whether these properties carry over to finite samples. Using
a more efficient estimation procedures for the parameters may lead to better power
performance of the test in different sample sizes. This issue is further discussed in
section 5.3.3. Among the many alternatives, we examine two possible ways to carry
out the test. The first is the one we followed in nonlinearity tests and amounts to
estimating the parameters of the NN model using nonlinear least-squares, computing
the residuals ǫ̂t and estimating a GARCH(p, q) model using maximum likelihood.
The other possibility is to jointly estimate the parameters of the mean and variance
models by forming the full maximum likelihood (FML) function:

l(µ, α) = (1/T )
T
∑

t=1

lt(µ, α)

where
lt(µ, α) = −0.5 log(2πht) − 0.5 ǫ2t /ht

FML is the most efficient estimation procedure whenever the parameters of the NN
model cannot be estimated without reference to the parameters of the variance model,
and vice versa. This case emerges when one combines a NN with a GARCH model
for volatility, as the conditional variance ht is implicitly a function of the parameters
of the mean model. However, a cautionary remark is in order here about the use of
a full maximum likelihood estimation method. As we pointed out in section 4.3.2,
where we discussed the conditions for consistency of the MLE of a NN-GARCH
model, when jointly estimating the mean and the variance parameters of a model,
there is a danger that the mean estimator is not consistent unless the variance model
is correctly specified for the true conditional variance. This possibility does not
theoretically justify the use of FML in the application of the RBV-LM test, however
it would be insightful to see the practical consequences of this choice. Section 5.3.4
sheds light on this issue by means of simulation.
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5.3.2 Adequacy tests

In this section, we apply the general testing framework presented above to derive two
special model adequacy tests: a test for serial correlation in the residuals and a test
for omitted variables.

Testing for serial correlation in the residuals

Let us assume that the errors of the a NN model follow an autoregressive process of
order l,

ǫt = ξ′zt + ǫ∗t

where zt = (ǫt−1, ǫt−2, ..., ǫt−l)
′ and ǫ∗t is an iid error process. To test serial indepen-

dence in the residuals, we set the additive extension g(zt; ξ) equal to ξ′zt and take
the null to be H0 : ξ = 0 against the alternative hypothesis H1 : ξ 6= 0. The gradient
∇ĝt of gt evaluated at null is simply ẑt, where

ẑt = (ǫ̂t−1, ǫ̂t−2, ..., ǫ̂t−l)
′

for t = l + 1, l + 2, ..., T .

Testing for omitted variables

The general framework presented above can be also used to test other specification
errors in the NN model. One important case is the omission of other exogenous
variables not included in xt, though they might influence the target variable yt.
Similarly to the test presented in the previous section, we can test the hypothesis
of omitted variables in the linear part of the model, by stating the alternative as
g(zt; ξ) = ξ′zt, with zt being the set of additional exogenous regressors. Note that in
this case ∇ĝt is simply zt. Testing for additional nonlinearity in the NN model can
be also treated as an omitted variable test, where in this case zt is a sufficiently high-
order polynomial of xt that is thought to well approximate the remaining nonlinear
structure (see section 4.5.1 for more details).

5.3.3 Design of experiments

The performance of the LM diagnostic procedures proposed above was investigated
in the special case of detecting error autocorrelation (of a fixed order) in a NN model
when GARCH heteroskedasticity is also present in errors. It is important to note that
in relevant simulation exercises, Medeiros and Veiga (2003); Medeiros et al. (2006)
provide evidence regarding the empirical performance of the standard LM test under
the assumption that the disturbances of the neural network are normally distributed
with constant variance. This simulation model however does not adequately resemble
the statistical properties of most economic and financial data, whose empirical distri-
bution is characterised by heavy-tails and changing variance (heteroskedasticity). To
evaluate the effectiveness of the procedures proposed in this section on a more realis-
tic basis, we compute the empirical size and power of LM tests under GARCH-type
heteroskedasticity and a fatter-tailed distribution.
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Simulations are based on the following single-hidden-neuron autoregressive NN
process1:

yt = 0.7yt−1 − 0.9F (2.2yt−1 + 1.4yt−2 − 5.1) + ǫt

with y−1 = y0 = 0. Errors ǫt follow the general specification

ǫt = ut

√

ht

where ut = ρut−2 + ζt, ht is the conditional variance and {ζt} is a sequence of iid
random variables drawn from a N(0,1) or a t distribution with 5 degrees of freedom.
In the second case, ζt’s were normalised to have unit variance. Varying the value of ρ
allows us to investigate the size and the power of tests in detecting serial correlation
of order 2 in the residuals. To investigate the performance of the LM tests under
conditional heteroskedasticity, we assume that ht follows a GARCH(1,1) model

ht = 0.001 + 0.9ht−1 + 0.08ǫ2t−1

or an EGARCH(1,1) model

log(ht) = −0.03 + 0.5 log(ht−1) + 0.25(|ut−1| − E) − 0.15ut−1

The initial values of ht−1, ǫ2t−1 are set equal to the sample mean of the squared inno-
vations. The first model represents a symmetric volatility process, with persistence
factor 0.9+0.08=0.98 very close to unity. This means that one average short-term dis-
turbances of ht die out at a slow rate. The EGARCH model incorporates asymmetric
responses to volatility. In the specification presented above, negative ǫt−1’s have a
greater impact on ht than positive ones due to the negative value of the leverage
coefficient (-0.15).

We generated 5000 sample paths from each data-generating process and removed
the first 500 observations to eliminate the effect of initial values. For each replica-
tion, we conduct the following three versions of the LM serial correlation test: the
standard LM (S-LM), the robustified LM (RB-LM) and the robustified LM test with
volatility estimates (RBV-LM). Those were obtained by fitting a GARCH(1,1) model,
independently of the true volatility generating process. The parameters of the NN
and the GARCH(1,1) model are estimated by two procedures: a) using nonlinear
least-squares for NN and maximum likelihood for the GARCH model and b) max-
imising the joint likelihood function of the mean and variance model. We denote the
corresponding test statistics by RBV-LM1 and RBV-LM2, respectively.

5.3.4 Simulation results

Tables 5.10 and 5.11 show the empirical rejection probabilities for the tests men-
tioned before under the assumption that errors are no serially dependent (ρ = 0)

1Although a vast variety of design models could be used in this study, experiments conducted
with more complex neural network models produced similar results. This makes us believe that the
simulation results are not specific to the particular choice of the parameters or the architecture of
the neural network.
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though heteroskedastic. This part of Monte Carlo experiments allows us to draw
conclusions on the size of the tests, i.e. the rate at which each test falsely rejects the
hypothesis of no serial correlation in the residuals. We report results for three nom-
inal significance levels 1%, 5% and 10% and three sample sizes (700, 1000 and 2000
observations). As seen, the S-LM test for the adequacy of a NN is strongly effected
by the heteroskedasticity of errors and produces more false rejections as the sample
size increases (especially for non-normal errors). This result is generally in accor-
dance with the findings of other simulation studies on linear models (see e.g. Furno
(2000); Hafner and Herwartz (2000); Whang (1998)). On the other hand, robustified
LM tests seem to preserve their finite-sample validity under heteroskedasticity. Ta-
ble 5.10 shows that under GARCH errors (i.e. correct specification of the volatility
process) the empirical rejection probabilities are very close to the nominal signifi-
cance levels for all robustified versions (RB-LM, RBV-LM1 RBV-LM2). The results
of Table 5.11 have some interesting implications for the two versions of RBV test.
In particular, they show that the size of the RBV-LM1 test in not distorted if the
assumed volatility model does not adequately describe the heteroskedastic pattern
of errors. This is important for practical applications of the test. Interestingly, no
significant size distortions are also observed for RBV-LM2 - at least for the range of
sample sizes studied here - despite the fact that for an EGARCH volatility process the
mean estimator employed by this statistic might be inconsistent for the parameters
of the NN model.

Tables 5.12-5.15 present the power performance of tests, i.e. the rejection prob-
abilities when errors are autocorrelated (ρ = {0.2, 0.3}). Each cell reports both the
actual and the size-corrected rejection probability (in parentheses). As seen, the S-
LM has the highest actual finite-sample power but, after size correction, its power
performance is similar or even inferior to RB-LM and RBV-LM. Tables 5.12 and
5.14 represent the cases where the researcher has correctly identified the volatility
process of errors. Under this condition, both versions of the RBV-LM test clearly
have the highest (size-corrected) power among all tests and also better power perfor-
mance than the RB-LM test in terms of actual and size-corrected rejection probabili-
ties. The RBV-LM2 statistic, computed by the joint maximum likelihood estimator,
seems to outperform RBV-LM1 in all sample sizes and distributions. Hence, using
a more efficient estimator of the parameters of the NN model seems to increase the
finite-sample efficiency of the robustified test with volatility information. In Tables
5.13 and 5.15 power results are reported under the assumption that errors follow the
EGARCH volatility process. Note that in contrast to GARCH errors, in this case
the power of all tests rapidly picks up as the sample size and the value of ρ increases.
Under the assumption of EGARCH conditional variance, the volatility model implicit
in all robustified tests is a priori misspecified for the conditional variance of errors.
Nevertheless, RBV-LM tests (especially RBV-LM2) typically lead to higher rejection
probabilities - especially when the sample size gets smaller - although the difference
is not as pronounced as in the previous case. In any case, the power of the RBV-LM
tests is not lower than RB-LM’s. The slight outperformance of the robustified test
with GARCH volatility estimates can be attributed to the fact that a GARCH model
is a better approximation to an EGARCH volatility-generating process than a model
of constant variance.
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ρ = 0, volatility generating process GARCH

Distribution Significance S-LM RB-LM RBV-LM1 RBV-LM2

Normal

700 observations
1.0% 0.036 0.008 0.008 0.008
5.0% 0.113 0.047 0.049 0.048
10.0% 0.184 0.102 0.096 0.097

1000 observations
1.0% 0.041 0.008 0.010 0.010
5.0% 0.115 0.046 0.049 0.049
10.0% 0.183 0.093 0.092 0.095

2000 observations
1.0% 0.052 0.010 0.008 0.008
5.0% 0.140 0.049 0.042 0.042
10.0% 0.219 0.100 0.092 0.090

Student

700 observations
1.0% 0.085 0.006 0.008 0.008
5.0% 0.186 0.046 0.044 0.044
10.0% 0.261 0.099 0.100 0.096

1000 observations
1.0% 0.112 0.008 0.011 0.010
5.0% 0.216 0.046 0.049 0.050
10.0% 0.303 0.100 0.100 0.099

2000 observations
1.0% 0.166 0.006 0.009 0.009
5.0% 0.293 0.043 0.052 0.053
10.0% 0.379 0.097 0.106 0.107

Table 5.10: The empirical rejection frequencies for the S-LM, RB-LM, RBV-LM1 and
RBV-LM2 serial correlation tests under the assumption that errors have no serial correlation
(ρ = 0) and follow a GARCH volatility model.
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ρ = 0, volatility generating process EGARCH

Distribution Significance S-LM RB-LM RBV-LM1 RBV-LM2

Normal

700 observations
1.0% 0.023 0.012 0.011 0.013
5.0% 0.076 0.055 0.052 0.053
10.0% 0.141 0.103 0.107 0.108

1000 observations
1.0% 0.022 0.011 0.011 0.011
5.0% 0.079 0.054 0.053 0.054
10.0% 0.145 0.104 0.107 0.108

2000 observations
1.0% 0.020 0.009 0.012 0.012
5.0% 0.071 0.046 0.054 0.055
10.0% 0.136 0.098 0.108 0.110

Student

700 observations
1.0% 0.038 0.006 0.007 0.007
5.0% 0.106 0.041 0.041 0.042
10.0% 0.179 0.088 0.097 0.096

1000 observations
1.0% 0.045 0.006 0.007 0.008
5.0% 0.127 0.047 0.047 0.049
10.0% 0.198 0.100 0.104 0.103

2000 observations
1.0% 0.060 0.011 0.012 0.014
5.0% 0.146 0.056 0.053 0.063
10.0% 0.222 0.106 0.104 0.116

Table 5.11: The empirical rejection frequencies for the S-LM, RB-LM, RBV-LM1 and
RBV-LM2 serial correlation tests under the hypothesis that errors have no serial correlation
(ρ = 0) and follow an EGARCH volatility model.
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ρ = 0.2, volatility generating process GARCH

Distribution Significance S-LM RB-LM RBV-LM1 RBV-LM2

Normal

700 observations
1.0% 0.213 (0.107) 0.058 (0.067) 0.102 (0.108) 0.116 (0.130)
5.0% 0.385 (0.256) 0.178 (0.182) 0.256 (0.261) 0.281 (0.285)
10.0% 0.484 (0.365) 0.276 (0.273) 0.379 (0.389) 0.408 (0.414)

1000 observations
1.0% 0.318 (0.162) 0.086 (0.095) 0.173 (0.178) 0.199 (0.199)
5.0% 0.502 (0.344) 0.234 (0.242) 0.386 (0.389) 0.417 (0.423)
10.0% 0.601 (0.476) 0.357 (0.370) 0.514 (0.525) 0.544 (0.554)

2000 observations
1.0% 0.605 (0.323) 0.235 (0.235) 0.466 (0.483) 0.519 (0.545)
5.0% 0.747 (0.598) 0.454 (0.456) 0.698 (0.719) 0.742 (0.769)
10.0% 0.818 (0.691) 0.575 (0.575) 0.796 (0.808) 0.831 (0.843)

Student

700 observations
1.0% 0.363 (0.108) 0.057 (0.074) 0.115 (0.135) 0.131 (0.148)
5.0% 0.522 (0.267) 0.182 (0.190) 0.310 (0.333) 0.333 (0.353)
10.0% 0.612 (0.393) 0.298 (0.300) 0.451 (0.451) 0.470 (0.479)

1000 observations
1.0% 0.505 (0.121) 0.093 (0.111) 0.214 (0.204) 0.242 (0.236)
5.0% 0.651 (0.338) 0.259 (0.270) 0.455 (0.461) 0.492 (0.494)
10.0% 0.731 (0.476) 0.387 (0.385) 0.586 (0.586) 0.627 (0.628)

2000 observations
1.0% 0.793 (0.209) 0.243 (0.286) 0.574 (0.587 0.629 (0.646)
5.0% 0.877 (0.535) 0.489 (0.514) 0.787 (0.781) 0.833 (0.827)
10.0% 0.912 (0.703) 0.631 (0.637) 0.868 (0.862) 0.903 (0.899)

Table 5.12: The empirical rejection frequencies for the S-LM, RB-LM, RBV-LM1 and RBV-
LM2 serial correlation tests under the assumption that errors have serial correlation of order
2 (ρ = 0.2) and follow a GARCH volatility model. Values in parentheses show size-corrected
rejection probabilities.
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ρ = 0.2, volatility generating process EGARCH

Distribution Significance S-LM RB-LM RBV-LM1 RBV-LM2

Normal

700 observations
1.0% 0.570 (0.460) 0.473 (0.462) 0.487 (0.475) 0.510 (0.479)
5.0% 0.765 (0.700) 0.700 (0.681) 0.707 (0.705) 0.722 (0.715)
10.0% 0.838 (0.796) 0.797 (0.794) 0.800 (0.794) 0.810 (0.798)

1000 observations
1.0% 0.786 (0.720) 0.706 (0.699) 0.725 (0.718) 0.747 (0.730)
5.0% 0.902 (0.871) 0.873 (0.868) 0.872 (0.868) 0.888 (0.882)
10.0% 0.942 (0.918) 0.920 (0.917) 0.924 (0.919) 0.933 (0.928)

2000 observations
1.0% 0.988 (0.982) 0.980 (0.980) 0.984 (0.983) 0.986 (0.986)
5.0% 0.996 (0.994) 0.994 (0.994) 0.996 (0.996) 0.997 (0.996)
10.0% 0.999 (0.998) 0.997 (0.997) 0.998 (0.998) 0.999 (0.999)

Student

700 observations
1.0% 0.697 (0.448) 0.504 (0.557) 0.530 (0.570) 0.549 (0.572)
5.0% 0.844 (0.744) 0.729 (0.752) 0.741 (0.759) 0.762 (0.779)
10.0% 0.900 (0.838) 0.826 (0.840) 0.836 (0.839) 0.852 (0.859)

1000 observations
1.0% 0.872 (0.656) 0.727 (0.773) 0.769 (0.801) 0.793 (0.802)
5.0% 0.950 (0.881) 0.885 (0.889) 0.904 (0.907) 0.918 (0.919)
10.0% 0.969 (0.935) 0.932 (0.931) 0.942 (0.940) 0.954 (0.953)

2000 observations
1.0% 0.995 (0.941) 0.966 (0.965) 0.987 (0.986) 0.989 (0.987)
5.0% 0.999 (0.994) 0.987 (0.986) 0.997 (0.997) 0.998 (0.997)
10.0% 0.999 (0.997) 0.994 (0.993) 0.999 (0.999) 0.999 (0.999)

Table 5.13: The empirical rejection frequencies for the S-LM, RB-LM, RBV-LM1 and RBV-
LM2 serial correlation tests under the hypothesis that errors have serial correlation of order 2
(ρ = 0.2) and follow an EGARCH volatility model. Values in parentheses show size-corrected
rejection probabilities.
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ρ = 0.3, volatility generating process GARCH

Distribution Significance S-LM RB-LM RBV-LM1 RBV-LM2

Normal

700 observations
1.0% 0.330 (0.204) 0.105 (0.119) 0.159 (0.166) 0.210 (0.224)
5.0% 0.497 (0.371) 0.267 (0.275) 0.341 (0.347) 0.408 (0.413)
10.0% 0.587 (0.477) 0.382 (0.380) 0.459 (0.465 0.527 (0.533)

1000 observations
1.0% 0.472 (0.306) 0.168 (0.181) 0.261 (0.267) 0.347 (0.347)
5.0% 0.629 (0.496) 0.363 (0.372) 0.484 (0.488) 0.579 (0.585)
10.0% 0.709 (0.606) 0.491 (0.501) 0.600 (0.612) 0.686 (0.696)

2000 observations
1.0% 0.771 (0.567) 0.383 (0.383) 0.594 (0.613) 0.742 (0.760)
5.0% 0.866 (0.767) 0.618 (0.620) 0.780 (0.796) 0.883 (0.896)
10.0% 0.905 (0.833) 0.720 (0.720) 0.854 (0.863) 0.932 (0.937)

Student

700 observations
1.0% 0.488 (0.192) 0.101 (0.131) 0.180 (0.203) 0.232 (0.254)
5.0% 0.643 (0.392) 0.270 (0.282) 0.392 (0.411) 0.471 (0.489)
10.0% 0.720 (0.519) 0.399 (0.401) 0.522 (0.521) 0.598 (0.605)

1000 observations
1.0% 0.615 (0.236) 0.149 (0.176) 0.287 (0.274) 0.389 (0.383)
5.0% 0.741 (0.468) 0.357 (0.370) 0.527 (0.533) 0.642 (0.643)
10.0% 0.800 (0.596) 0.489 (0.487) 0.658 (0.658) 0.751 (0.753)

2000 observations
1.0% 0.876 (0.413) 0.361 (0.409) 0.650 (0.659) 0.804 (0.815)
5.0% 0.899 (0.678) 0.606 (0.630) 0.831 (0.827) 0.926 (0.924)
10.0% 0.925 (0.783) 0.729 (0.734) 0.898 (0.893) 0.961 (0.957)

Table 5.14: The empirical rejection frequencies for the S-LM, RB-LM, RBV-LM1 and RBV-
LM2 serial correlation tests under the assumption that errors have serial correlation of order
2 (ρ = 0.3) and follow a GARCH volatility model. Values in parentheses show size-corrected
rejection probabilities.
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ρ = 0.3, volatility generating process EGARCH

Distribution Significance S-LM RB-LM RBV-LM1 RBV-LM2

normal

700 observations
1.0% 0.864 (0.800) 0.816 (0.809) 0.809 (0.799) 0.820 (0.801)
5.0% 0.947 (0.922) 0.922 (0.914) 0.916 (0.915) 0.925 (0.920)
10.0% 0.967 (0.955) 0.957 (0.955) 0.953 (0.951) 0.956 (0.952)

1000 observations
1.0% 0.956 (0.930) 0.930 (0.927) 0.932 (0.929) 0.943 (0.937)
5.0% 0.986 (0.977) 0.980 (0.978) 0.981 (0.980) 0.984 (0.983)
10.0% 0.992 (0.989) 0.990 (0.989) 0.988 (0.988) 0.991 (0.990)

2000 observations
1.0% 0.999 (0.998) 0.998 (0.998) 0.999 (0.999) 0.999 (0.999)
5.0% 1.000 (1.000) 0.999 (0.999) 0.999 (0.999) 1.000 (1.000)
10.0% 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

Student

700 observations
1.0% 0.904 (0.755) 0.789 (0.820) 0.805 (0.831) 0.823 (0.835)
5.0% 0.964 (0.927) 0.919 (0.928) 0.922 (0.927) 0.928 (0.935)
10.0% 0.979 (0.960) 0.957 (0.962) 0.954 (0.956) 0.959 (0.959)

1000 observations
1.0% 0.975 (0.895) 0.912 (0.932) 0.932 (0.945) 0.946 (0.950)
5.0% 0.993 (0.979) 0.973 (0.973) 0.980 (0.982) 0.986 (0.986)
10.0% 0.997 (0.991) 0.989 (0.989) 0.993 (0.992) 0.994 (0.994)

2000 observations
1.0% 0.999 (0.991) 0.989 (0.989) 0.999 (0.998) 0.999 (0.998)
5.0% 1.000 (0.999) 0.994 (0.994) 1.000 (1.000) 1.000 (1.000)
10.0% 1.000 (1.000) 0.996 (0.996) 1.000 (1.000) 1.000 (1.000)

Table 5.15: The empirical rejection frequencies for the S-LM, RB-LM, RBV-LM1 and RBV-
LM2 serial correlation tests under the hypothesis that errors have serial correlation of order 2
(ρ = 0.3) and follow an EGARCH volatility model. Values in parentheses show size-corrected
rejection probabilities.
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5.4 Summary and discussion

This chapter sheds light on the empirical performance of testing procedures proposed
in this thesis by means of Monte-Carlo simulations. We present two experiments
whose main issue is the ability of the standard and robustified LM testing procedures
to detect the number of hidden units and error autocorrelation in a neural network
regression model. Our attempt was to create a more realistic compared to other
studies simulation environment that closely resembles the statistical properties of
economic and financial data (heavy-tails and changing variance).

Simulations show that the non-robust version of the LM test cannot distinguish
between mean dependencies and changing variance levels. The empirical size of
the test is generally distorted under ARCH heteroskedasticity, leading to excessively
false indications of nonlinearity or serial correlation in errors. This is a cautionary
remark against using non-robust statistical procedures for testing NN specifications.
Robustified LM tests, on the other hand, closely follow the nominal type I error under
heteroskedasticity, allowing thus the researcher to control the complexity of the neural
network without having to explicitly model variance and higher-order dependencies in
the data-generating process. This is particularly desirable for practical applications of
NNs given the empirical properties of economic and financial time-series. In addition,
adopting robustified versions of the test when data are not in fact heteroskedastic
does not result in a power decrease.

Comparing the two robustified versions of the LM test, we find that the RB-
LM test that ignores heteroskedasticity in errors manages to restore the size of the
test but this improvement comes occasionally with a loss in power when data are
also characterised by additional structure in mean. Incorporating estimates of the
conditional volatility of errors into the testing procedure, gives the researcher a more
efficient device for testing the adequacy of a given NN parametrisation. Simulations
show that the validity of this test is not affected by misspecification of the volatility
process; in other words the test is robust to a failure of the researcher’ prior guess
on the true volatility dependencies. However, the finite-sample performance depends
on the choice of the volatility model and more power is gained the closer are the
prior estimates to the conditional volatility. Hence, although the primary concern
of the researcher may be to investigate first-moment relations between the variables
of interest (i.e. relations in mean), it pays to put some effort on deriving a good
approximation to the underlying volatility structure. This is another argument for
extending modelling to higher-order dependencies of conditional distributions.

The experiments performed in this study can be extended in various directions.
First of all, more network configurations can be tested with different distributions,
volatility models and signal-to-noise ratios. Further research is necessary to compare
the empirical performance of the robustified testing procedures, examined in this
thesis, with that of other statistical or heuristic methods encountered in the literature
for selecting the structure of a neural network. A third important aspect is to see how
the selection strategies work when the “true” data-generating model is not nested in
the class of neural networks. In this case, the neural network is only an approximator
to the underlying functional relation and therefore a priori misspecified for the data-
generating process. Simulation experiments presented in Anders and Korn (1999)
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show that the sequence of hypothesis tests employing a Taylor expansion leads to
reliable results compared to information criteria or cross-validation, when the “true”
model in not encompassed by the class of neural network architectures. However,
in their experiments random variates are drawn from a normal distribution with
constant variance. It would be thus interesting to evaluate the effectiveness of the
above procedures under the presence of strong statistical features in disturbances,
such as heteroskedasticity or non-normality.



Chapter 6

Short-term predictability of

daily stock index returns

6.1 Introduction

This chapter presents an empirical application of NN-GARCH models to forecast-
ing the conditional distribution of daily returns on three major international stock
indexes (DAX, FTSE 100, S&P 500)1. By means of this study, we try to address an-
other important issue in modern finance, the predictability of asset prices. Although
supporters of market efficiency claim that stock prices follow random walks and are
generally unpredictable, recent empirical finance research has revealed several “non-
linearities” in the dynamics of prices that enhance their predictability. These were
discussed in chapter 2.

While researches believe that financial markets are nonlinear, there is generally
disagreement on the sources of nonlinearity and hence on the proper type of models
that should be employed in each case to capture price dependencies. Some authors
believe that nonlinearities enter through the conditional mean, mostly as a result of
asymmetric market responses, while others believe that they enter through the condi-
tional variance, in the form of autoregressive conditional heteroskedasticity (ARCH)
or leverage effects. In any case, it is important to distinguish between these types of
nonlinearities as each type has different implications for portfolio selection and the
design of risk management strategies (see Hsieh (1993)). Note however that both
types of dynamic behaviour may as well coexist, as the existence of asymmetric and
threshold affects in one moment of the distribution does not imply anything for the
other. In a process exhibiting autoregressive conditional heteroskedasticity, nonlinear
adjustments may also be present, because ARCH does interact with the conditional
mean.

By means of this study, we take the opportunity to discuss several issues in a
forecasting application of a NN-GARCH model. Special emphasis is given to the

1FTSE 100, is a financial Stock Exchange index of the 100 most highly capitalised companies
listed on the London Stock Exchange. The S&P (Standard and Poor’s) 500 index is a market
weighted value index consisting of 500 stocks, chosen for their market size, liquidity and industry
group representation.
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computation of one- and multi-period predictions, the construction of confidence in-
tervals and the evaluation of the forecasting performance. Besides statistical criteria,
we introduce a new framework for judging the economic significance of forecasts pro-
vided by a NN-GARCH or a general dynamic model that parametrises conditional
densities.

The plan of this chapter is as follows: section 6.2 provides the motivation for this
study and reviews the current literature on predictability of asset prices. Section 6.3
presents the data set employed in our empirical application and section 6.4 details
the construction of forecasting models. As we are interested in real-time forecasting,
we re-estimate the parameters of models on a daily basis each time a new observation
becomes available and occasionally re-specify the structure of forecasting models. In
section 6.4.2 we discuss a method for computing one- and multi-step-ahead prediction
densities, which is based on the simulation of future market scenarios. Section 6.5 is
devoted to the evaluation of forecasting models and proposes a set of criteria suitably
adjusted to density predictions. Quite often, in the literature, forecasting models are
evaluated by purely statistical measures that concentrate on the goodness-of-fit of the
model. However, from a financial engineering perspective, the economic significance
of forecasts is also an important issue. We propose a trading strategy that takes into
account confidence bounds rather than point forecasts, as is customary in the NN
literature, and is based on the detection of “exceptional” price movements. Section
6.6 discusses the results of the forecasting exercise and section 6.7 summarises and
concludes the chapter.

6.2 Motivation and empirical evidence

The issue of short-term predictability of financial prices has a long history in empiri-
cal finance. Although most of the theoretical literature traditionally supports market
efficiency and thus unpredictability of returns, recent empirical research has reported
short-term predictability and nonlinear dynamics. In most empirical studies, the is-
sue of predictability of financial prices has been investigated using linear regression
models with possible searches for macroeconomic variables that further explain ab-
normal returns. The evidence from this empirical research is mixed: some authors
report predictability while others claim that stock prices follow a (geometric) random
walk possibly with a drift2. There is a strong objection however that any evidence of
unpredictability may in reality be a statistical bias introduced by the non-adequacy
of linear-in-mean models to capture all features of the return-generating process.

A good deal of research addressed the same issues employing flexible or less
“tightly” parametrised specifications as a means of accommodating generic nonlin-
earity in the conditional mean. Among them neural networks seemed to offer an
ideal choice for flexible nonlinear modelling, mostly due to their universal approxi-
mation property. The empirical results where though inconclusive. White (1988b),
for example, found that neural networks have poor out-of-sample forecasting ability
when applied to IBM daily stock prices. For monthly New York stock-index returns,
Chuah (1992) found that neural networks could not beat the benchmark linear model

2See e.g. Fama (1970, 1991, 1998); Farmer and Lo (1999) for related literature.
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in terms of forecasting accuracy. On the other hand, Wu and Zheng (2003) showed
that the daily closing prices of several American stock indexes (S&P 500, Dow Jones,
and NASDAQ 1003) are highly forecastable and quite often a recurrent NN outper-
formed linear ARIMA models in terms of profit rates. Phua et al. (2003) confirmed
that for European markets such as DAX, FTSE 100.

Short-term predictability of financial time-series has also been investigated by
means of parametric nonlinear econometric models, such as threshold and smooth-
transition autoregressions. These empirical models are often consistent with a behav-
ioural interpretation of the price formation process, discussed in section 2.4. Unin-
formed noise traders typically engage in “trade-chasing” which in the short-run drives
prices away from fundamentals, with abnormal changes in returns, but with the result
that in the long-run arbitrage traders will cause a reversion of prices back to funda-
mentals. Applying smooth-transition autoregressive models to the returns on indexes
of six international stock markets (France, Germany, Hong Kong, Japan, Malaysia,
Singapore), McMillan (2005) showed that these models are likely to improve in- and
out-of-sample fit compared to linear alternatives.

Among the various forecasting exercises involving nonlinear models, Teräsvirta
et al. (2005) deserves special attention as it addresses the issue of in-sample model
specification. Based on a number of monthly macroeconomic time-series, Teräsvirta
et al. (2005) compare the forecasting accuracy of linear models against smooth tran-
sition autoregressions (STAR) and neural networks. They found that, as far as point
forecasts are concerned, a carefully specified STAR model generally outperforms its
linear counterpart. The results for the NN models are mixed: typically there is not
much gain in using a NN instead of a simple linear autoregressive model, although
a NN obtained by Bayesian regularisation produces more accurate forecasts that a
corresponding model specified using a specific-to-general methodology. In the last
approach, Teräsvirta et al. (2005) adopted the non-robust version of the neglected
nonlinearity test, proposed by Teräsvirta et al. (1993) and also examined in section
4.5.1, to judge the significance of extra neurons. They empirically show that care-
ful in-sample specification of NN models is important in order to obtain acceptable
and successful out-of-sample forecasting results. Arbitrarily determined NN architec-
tures containing redundant neurons, can cause instability and explosive forecasting
behaviour, especially when applied to multi-step-ahead predictions.

A number of authors claim that nonlinear dependencies in daily prices are more
the result of GARCH effects and volatility clustering rather than mean interactions.
Hsieh (1989), after conducting a systematic specification of the conditional mean
and variance parts, concludes that reported nonlinearity in daily exchange rates is
more likely to enter through variances rather than through means and a GARCH(1,1)
model with a fat-tailed distribution can account for most of the nonlinear dependence.
Hong and White (2005), applying entropy measures of serial dependence, give mixed
evidence of serial dependence in S&P 500 log-returns after removing the persistent
effects of GARCH volatility (using an AR-GARCH). Their results support that a lin-
ear AR-GARCH model cannot fully capture the dynamics of S&P 500 daily returns,

3A stock index including 100 of the largest domestic and international securities listed on the
NASDAQ Stock Market based on market capitalisation. The index mainly reflects companies across
major industry groups and does not contain securities of financial or investment companies.
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although they claim that this may be due to misspecification of the conditional mean
and variance.

In the empirical studies presented above, some authors focus exclusively on mean
and others on variance dependencies, often ignoring the interaction between these two
moments. It is therefore possible that nonlinear dependencies detected in mean are
in fact the result of ARCH effects, and vice versa. McMillan (2005); Teräsvirta et al.
(2005), for example, employ the non-robust version of the neglected nonlinearity test
to build nonlinear regression models, although both report substantial excess kurtosis
in data. Whether this excess kurtosis is the results of homogeneously distributed
heavy-tailed errors or ARCH effects in the variance of errors is not clear. In the second
case, reported nonlinearities are questionable, because, as simulation results presented
in chapter 5 show, the empirical size of the standard version of the nonlinearity test
is distorted in the presence of ARCH effects leading to excessively false indications
of nonlinearity in mean.

When investigating the source of dependencies in financial data, there is a need
for jointly determining the first two moments of the distribution and also employ
model specifications that can account for generic nonlinearity in the mean and the
variance of the data-generating process. Experience gained from other forecasting
exercises suggests that introducing much flexibility in modelling can have adverse ef-
fects as concerns the long-run performance of forecasting models. Over-parametrised
mean structures, such as neural networks, can absorb some affects due to the pres-
ence of conditional heteroskedasticity in the data-generating process. Therefore, it
is absolutely necessary that the methodology used to determine the right complex-
ity of the mean model offer some kind of robustification against the adverse affects
of conditional heteroskedasticity. The common practice to remove persistent het-
eroskedasticity, by applying for example a linear GARCH model, is probably not the
proper way to deal with nonlinearities in variance, because as we discussed in section
4.3.2, bad specification of the mean process can yield inconsistency for the variance
model, and vice versa.

In this chapter, we investigate the predictability of daily returns on three major
stock indexes (DAX, S&P 500, FTSE 100) using NN-GARCH models. Due to the
dual nature of this class of parametrisations, it is possible to investigate whether past
returns or return “surprises” contain useful information as regards future returns and
the volatility of returns.

6.3 Data set

Our sample data comprise daily closing values of DAX, FTSE 100 and S&P 500
from 30/11/1994 to 10/09/2001, a total of 1700 approximately trading days. The
rates of return on each index are calculated by taking logarithmic differences between
successive trading days, i.e. rt = log(Pt) − log(Pt−1), where Pt denotes the index’s
closing value at time t and rt the corresponding return between t − 1 and t.

Many authors have noted systematic effects both in the mean and variance of
price movements that are related to calendar, weekday or exchange holiday influ-
ences. These price anomalies are likely to cause spurious nonlinearity in the return-
generating process and hence have to be filtered-out in advance. In order to adjust
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for irregular shifts, we apply the two-stage adjustment process described in Gallant
et al. (1992) in which systematic effects are first removed from the mean and then
from the variance. This is done by running two linear regressions against a set of
dummy variables capturing calendar, weekday and exchange holiday effects.

Figure 6.1 shows the resulting log-return time-series and table 6.1 provides sum-
mary statistics. The empirical distribution of returns is generally characterised by
negative skewness and excess kurtosis. The Jarque-Bera test statistic strongly rejects
the hypothesis of normality in each case. The last two rows of table 6.1 report the
Box-Pierce Q and Q2 test for up to fifth order autocorrelation in returns and squared
returns. Test statistics are corrected for heteroskedasticity or higher-moment de-
pendencies according to Diebold (1988) (see also Lobato et al. (2001)). The Q-test
rejects the hypothesis of no correlation in mean returns for all indexes except DAX.
The non-modified Q test (not reported here) indicated serial dependence in mean
in all indexes. The modified Q2 statistic for autocorrelation in the squared returns
is highly significant in all cases indicating strong dependencies in the volatility of
returns. Similar results are obtained using the non-modified Q2 statistic.
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Figure 6.1: Daily log-returns on the DAX, CAC and S&P indexes from 30/11/1994 to
10/09/2001 after adjusting for calendar, week-of-the-day and exchange holiday effects.

6.4 Forecasting models

6.4.1 Model building

NN-GARCH specifications are used to derive out-of-sample predictions on the one-
day ahead DAX, FTSE and S&P returns conditionally on the returns observed in the
last five consecutive trading days. As we are interested in real-time forecasting, we
re-estimate the parameters of models on a daily basis each time a new observation
becomes available. In flexible forecasting structures, such as NN-GARCH models,
that encompass a variety of specifications, attention should also be paid to the spec-
ification of the model. Owning to the time-varying nature of economic and trading
activity, one expects that the return-generating process has undergone many changes
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DAX FTSE S&P

min -0.068 -0.040 -0.074
max 0.058 0.038 0.063
mean 5.956 × 10−4 3.160 × 10−4 5.033 × 10−4

std 0.014 0.010 0.011
skewness -0.297 -0.193 -0.281
kurtosis 4.517 4.130 6.907
JB test 187.478 (0.000) 100.904 (0.000) 1.106 × 103 (0.000)
Q(5) 4.034 (0.545) 24.114 (0.000) 8.981 (0.110)
Q2(5) 86.095 (0.000) 90.070 (0.000) 39.410 (0.000)

Table 6.1: Summary statistics on DAX, FTSE and S&P 500 logarithmic returns after
adjusting for seasonality, calendar and week-of-the-day effects. JB is the Jarque-Bera test of
normality and Q(5), Q2(5) are the Box-Pierce tests for up to fifth order autocorrelation in
returns and squared returns, respectively. Test statistics are corrected for heteroskedasticity.
The significance is given in parentheses.

in the almost seven-year period spanned by our sample data. Hence, it is possible
that the expectational law of returns switches from nonlinear to linear or that the
returns series is locally homoskedastic. But in the former case, pre-detected hid-
den neurons are not identifiable which yields inconsistency for the parameters of the
NN-GARCH model. In order to obtain more parsimonious specifications and thus
decrease the possibility of parameter redundancy, we chose to periodically re-specify
the structure of the model.

Specification, estimation, and forecasting were carried out in rolling samples of
700 observations The beginning of the first sample window is placed at 30/11/1994
and the last window ends at 10/09/2001. All models are re-estimated each day
and re-specified only once every fifty days (or two trading months approximately)
to reduce the computational burden. At each re-specification stage, the bottom-up
procedure described in section 4.5 was used to determine the optimal structure of
the conditional mean and variance parts of the NN-GARCH model. The variables of
the linear model where determined using SBIC. Additional lags where added when
necessary to remove serial correlation of order 1 to 10 in the residuals of the linear
model. In order to investigate the effects of heteroskedasticity or higher-moment
model misspecification in the performance of the forecasting models, we applied all
three versions of the LM neglected nonlinearity test to determine the number of neu-
rons in the hidden layer: the standard LM (S-LM), the robustified LM (RB-LM) and
the robustified LM with GARCH(1,1) volatility estimates (RBV-LM)4. For simplic-
ity, we shall henceforth refer to the models resulting from the above procedures as
S-LM, RB-LM and RBV-LM. After the specification of the mean part, we tested the
residuals for autoregressive conditional heteroskedasticity. Whenever the test indi-
cated the presence of ARCH effects, we jointly estimated a NN-GARCH(1,1) model.
The adequacy of the GARCH(1,1) model structure was then tested against neglected

4All models were estimated and specified in Matlab c© version 7. The code that implements
the neural network model-building strategy with the standard LM test was downloaded from
http://swopec.hhs.se/hastef/abs/hastef0508.htm on January 2005.
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ARCH and asymmetric GARCH effects, using either the standard or the robust test-
ing procedures described in section 4.5.2, in accordance to the type of the nonlinearity
test employed in the mean. Whenever tests indicated the presence of asymmetric ef-
fects in the conditional variance, we jointly estimated a NN-EGARCH(1,1) model
and then further tested its adequacy5. All intermediate models were estimated using
QML under a normal density assumption. Return data were standardised before
presented to the NN-GARCH model. This has been found to significantly improve
the numerical optimisation of the empirical log-likelihood function.

In order to compare the relative advantage of careful in-sample model selection
as opposed to simple re-estimation of parameters, we also considered two other fixed-
specification forecasting structures: a linear-in-mean AR(5)-EGARCH(1,1) model,
with five lags in the mean part, and a fully-interconnected neural network with three
neurons in the hidden layer and no volatility component. The latter model helps
us to clarify whether there is any advantage in modelling time-varying conditional
heteroskedasticity against a model that assumes steady conditional distribution. The
predefined forecasting models will be henceforth referred to as LFEG and NL3F,
respectively.

6.4.2 Computing multi-step density forecasts

All models are compared on the basis of a set of criteria discussed below and on
a forecasting horizon of one, three and five days ahead. Comparison on multiple
horizons helps us to determine whether forecasting models have captured the salient
features of the underlying data-generating probability model and not merely over-
fitted the data. Multi-step-ahead forecasts were computed from the same (one-step
ahead) model, presented in the form of confidence bounds on the future return on the
stock index. In the context of NN-GARCH models, and in most nonlinear models of
mean and variance, there is no analytical formulae for the j-step ahead conditional
density ρ(yt+j |xt) and the estimation has to be done either by numeric approximation
of nested integrals or by Monte-Carlo simulation6. In the present work, we adopt the
second approach. In order to derive the j-step-ahead conditional distribution of daily
returns, we simulate N = 2000 return scenarios (paths) of length j. For each sce-
nario i, a set of j disturbances is sampled with replacement from model’s in-sample
standardised residuals (the residuals divided by the estimated standard deviation).

These are denoted by
{

û
(i)
t , t = 1, . . . , j

}

. The error scenario is then computed as
{
√

ĥ
(i)
t û

(i)
t , t = 1, . . . , j

}

, where ĥ
(i)
t is the model’s volatility forecast at time t based

on the history of errors. For homoskedastic models, where no dependence in con-
ditional volatilities is assumed, this is set equal to the in-sample variance σ̂2. Note
that bootstrapping standardised residuals from the in-sample distribution of errors,
effectively by-passes any restrictive assumption on the conditional density of errors

5In order to reduce the computational burden due to the large number of estimated models, we
did not apply a posteriori tests for parameter and variable significance. Because of this omission,
more complicated structures for the forecasting models may have been occasionally obtained.

6Granger and Teräsvirta (1998); Tay and Wallis (2002) give an analytical discussion on techniques
for density forecasting with nonlinear econometric models.
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S-LM RB-LM RBV-LM

DAX

ĥ = 0 0.007 0.901 1.000

ĥ = 1 0.695 0.099 0.000

ĥ = 2 0.199 0.000 0.000

ĥ ≥ 3 0.099 0.000 0.000

FTSE

ĥ = 0 0.099 0.596 0.249

ĥ = 1 0.255 0.404 0.701

ĥ = 2 0.299 0.000 0.050

ĥ = 3 0.150 0.000 0.000

ĥ = 4 0.099 0.000 0.000

ĥ ≥ 5 0.099 0.000 0.000

S&P

ĥ = 0 0.000 0.304 0.249

ĥ = 1 0.304 0.646 0.701

ĥ = 2 0.497 0.050 0.050

ĥ ≥ 3 0.199 0.000 0.000

Table 6.2: Model specifications (a): percentage of samples where each test indicated a

number of neurons equal to the value of ĥ given in the second column.

imposed by the model specification (normality, symmetry, etc).

6.4.3 Final specifications

Due to space limitations, we are confined to a short description of the specification of
models that were derived for each index and sample period, though further details are
available from the author upon request. Table 6.2 shows the percentage of samples
where each test indicated a number of neurons equal to the value of ĥ given in the
second column. As seen, the S-LM test was generally supportive of nonlinearity in
mean and in many cases the number of neurons in the hidden layer exceeded 2. On
average, more nonlinearity was detected in FTSE than in other indexes. The RB-
LM and the RBV-LM tests on the other hand produced overall simpler models. An
entirely linear-in-mean return-generating process was suggested by RBV-LM for DAX
returns. An analysis of the in-sample residuals of the S-LM models derived for each
index showed that the addition of extra neurons and lag variables did not significantly
reduce the skewness and kurtosis of the empirical distribution. The adjusted Q2 was
in most cases significant indicating strong heteroskedasticity in errors. It is therefore
likely that the extra neurons placed by the S-LM test were the result of size distortions
rather than actual nonlinear dynamics in index returns.

Table 6.3 provides details about the specification of the variance part. Each cell
reports the percentage of samples where the (standard or robustified) volatility tests
detected heteroskedasticity and asymmetric variance effects in errors. Note that the
ARCH LM tests reject on average more often the hypothesis of homoskedasticity for
the residuals of the RB-LM and RBV-LM than the residuals of the S-LM model.
This difference could be attributed to the inclusion of extra neurons in the mean
part of S-LM models, whose result is to absorb part of the heteroskedasticity. Strong
asymmetric responses of conditional variance to past shocks was detected in the
residuals of most rolling models, hence an EGARCH model was estimated. In all
cases, the simplest EGARCH(1,1) volatility model was found adequate to capture
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S-LM RB-LM RBV-LM

DAX

NO ARCH 0.047 0.000 0.000
GARCH 0.140 0.233 0.187

EGARCH 0.813 0.767 0.813

FTSE

NO ARCH 0.234 0.047 0.093
GARCH 0.094 0.374 0.374

EGARCH 0.672 0.579 0.533

S&P

No ARCH 0.354 0.188 0.235
GARCH 0.000 0.141 0.141

EGARCH 0.646 0.671 0.624

Table 6.3: Model specifications (b): percentage of samples where ARCH effects and asym-
metric volatility were detected in errors.

volatility clustering in unexpected returns and there was no need to add further
ARCH or GARCH terms.

Generally, the in-sample specification of forecasting models reveals strong asym-
metries and nonlinear dependencies in daily returns on the three major stock indexes,
though there is generally disagreement on the source of these nonlinearities. Some
models indicate that nonlinearities enter through the mean and others through the
variance of the return-generating process. Since these results may be due to model
specification bias and the deficiency of the statistical procedures to discriminate be-
tween these two effects, this issue has necessarily to be addressed out-of-sample.

6.5 Performance measures

In our study, density forecasts are obtained from models that focus on different as-
pects of the conditional density. Some parametrise the mean and assume homoskedas-
ticity while others jointly parametrise the mean and the variance of the conditional
distribution. The different nature of these models generally makes it difficult to find
a widely acceptable set of criteria to compare alternative density forecasts. Besides,
many popular out-of-sample criteria that are often applied in the literature, such as
the root mean squared error or the confusion rate (Swanson and White (1997a)),
are mostly applicable to point forecasts. The criteria we adopt in this study are an
attempt to generalise the notions of forecasting error and goodness-of-fit to densities.
For the evaluation of the out-of-sample forecasting performance of the models speci-
fied above, we use both statistical and non-statistical (economic) criteria. Those are
described below in detail.

6.5.1 Statistical criteria

The most natural indicator of the out-of-sample “fitness” of a model is the empirical
log-likelihood (ELL), the performance criterion used at the estimation stage. This
addresses the question of how likely model forecasts given the new data. Apart from
the ELL, we also used the Schwarz’s Bayesian information criterion (SBIC), which
adds a complexity penalty term to the empirical log likelihood, and the model that
minimises this penalized log-likelihood is preferred. The penalty term is an increasing
function of m, the total number of model’s parameters, which poses a problem to
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our case since most models are not of fixed specification and thus the number of the
parameters changes over time. To calculate the SBIC of flexible specifications, we
use in place of m the average number of parameters in the corresponding samples.
Although in this case the information theoretic interpretation of the criterion is not
clear, SBIC may still serve as a good indicator of the balance between complexity
and goodness-of-fit achieved by each specification.

As our models are in fact approximations to the true underlying conditional den-
sity p(yt|xt), they can be used to calculate confidence bounds on future returns. The
empirical confidence level (ECL), i.e. the percentage of observations that fall outside
the confidence bounds, is another indicator of how well the model approximates the
underlying statistical process. In a well-specified model one expects that the per-
centage of sample returns lying outside the confidence bounds is close to the nominal
significance level.

The last two criteria of density forecasting performance are the normalised mean
absolute error (NMAE) and the hit rate (HR), both adapted from Schittenkopf et al.
(2000). These are two indicators of the ability of models to forecast short-term
changes in conditional volatility. NMAE compares model’s conditional volatility es-
timates with those obtained by a “naive” predictor. HR is the relative frequency of
correctly predicted increases and decreases of volatility, i.e. it measures how often
the model gives the correct direction of change of volatility. In order to apply both
criteria, one needs a measure for the true volatility of unexpected index returns on
each day. In our application, we used the simplest possible proxy, the squared model’s
error at time t (ǫ̂2t ). As a naive predictor, we used an average of the past squared
shocks over a window of 30 observations. We thus define NMAE and HR as follows:

NMAE =

∑

t

∣

∣

∣
ǫ̂2t+j − ĥt+j

∣

∣

∣

∑

t

∣

∣

∣
ǫ̂2t+j − n̂t+j

∣

∣

∣

HR =
1

T

∑

t

δt, δt =

{

1, (ǫ̂2t+j − ǫ̂2t )(ĥt+j − ǫ̂2t ) ≥ 0

0, otherwise

where ĥt+j denotes the t+j model’s volatility forecast given the information available
up to time t and n̂t+j denotes the naive predictor. Note that NMAE generally takes
positive values, though in order for a model to beat the naive predictor, it should
attain a NMAE less than 1. The HR lies between 0 and 1. A value of 0.5 indicates
that the model is not better than a random predictor of ups and downs.

6.5.2 Non-statistical criteria

Quite often in the literature forecasting models are evaluated on a statistical, goodness-
of-fit basis. However, when comes to financial engineering applications, the economic
significance of forecasts is also an important issue. To investigate this, one typically
converts the predictions provided by the model into a suitable trading strategy that
involves buying and selling orders and then calculates the distribution of profits/losses
at the end of the investment period.
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In most empirical studies with NN models, predictions are given in the form of
point forecasts hence trading strategies usually evolve buying or selling the asset if
the predicted value is higher or lower than the current price. In our application,
we deviate from the main trend and design a trading strategy that takes into ac-
count confidence bounds rather than point forecasts. The economic performance of
the trading strategy becomes another means of testing the credibility of confidence
bounds provided by the forecasting model. The underlying idea is to buy (sell) the
asset when its value becomes “exceptionally” low (high). Note that forecasting mod-
els are estimated based on the log-returns time-series, as this is mean-reverting, while
the tradable “quantity” is the index7. However, experiments conducted in this the-
sis have shown that a model that is successful in predicting shifts in returns does
not necessarily have good forecasting performance on an index level, when comes to
multi-period predictions. As the ultimate objective of this study is not to create a
trading strategy for daily stock indexes but rather to evaluate the predictive per-
formance of different models, we assume that index returns form a “hypothetical”
tradable asset whose price evolution is described by the corresponding time-series.

The trading strategy adopted is this study takes a buying (long) position on
the asset when rt < r̂L,α

t+j and a selling (short) position when rt > r̂H,α
t+j , where rt

is the observed return at time t and r̂L,α
t+j r̂H,α

t+j denote the (1 − α)% low and high
j-step-ahead confidence bounds. The above trading strategy was first introduced in
Thomaidis et al. (2006) for exploiting price discrepancies in a pair of related stocks.
A trade entered at some time t closes after j trading days ahead, although this is not
necessary as in order to avoid placing too many orders, one could leave the position
open unless the model predicts a movement in the opposite direction (e.g. if for some
t1 > t, rt1 ≥ r̂L,α

t1+h while rt < r̂L,α
t+h , and so on)).

Based on the profit/loss distribution of the aforementioned trading strategy, we
report three performance measures: a) the accumulated profit (AP) gained by the
end of the forecasting period, b) the number of trades (NT) placed by the model and
c) the average profit per trade (APT), i.e. the total profit divided by the number
of trades. Note that in a real market environment with transaction costs, the AP
can be a misleading index of economic performance as it does not explicitly specify
the number of trades been placed to achieve the final wealth. Note that a trading
system that puts an excessive number of orders may eventually experience gross
losses, if trades are on average not profitable enough to overbalance costs. From this
perspective, the APT is an equally important to the AP performance measure that
is often overlooked in the forecasting literature.

6.6 Empirical results

The out-of-sample performance of forecasting models is summarised in tables 6.4-6.9,
at the end of the chapter. It should be noted here that occasionally the numerical
estimation of highly nonlinear models (especially S-LM or NL3F) resulted in instable
values for the parameters and explosive out-of-sample behaviour at long prediction

7In fact, stock indexes per se are not tradable securities. However, one can track index movements
by holding a portfolio of stocks composing the index or by trading on the index future contract.
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horizons. In order to create more realistic forecasting devices and to make model
comparison fair, we decided to truncate implausible out-of-sample index forecasts by
implying a filter, in the spirit of Swanson and White (1995); Teräsvirta et al. (2005).
For each trading day t, we computed the average and the standard deviation of past
returns in a window of 30 days. If the upper or lower 10% confidence bound was
beyond plus/minus three standard deviations from the average, model’s forecast was
replaced by this naive predictor.

For an illustration of the forecasting differences between models, figure 6.2 plots
the one-day-ahead conditional density estimates (excluding RB-LM’s, whose pre-
dicted density is very similar to RBV-LM) for two specific days of the DAX sample
set: October 1st, 1998 (bottom figure) and May 18th, 1999 (top figure). The first
date signals the last day of a series of consecutive large negative returns and the 18th
of May 1999 represents a normal period in the German Stock Exchange with returns
fluctuating around zero. For these particular days, the structure of the flexible fore-
casting models is as follows: RBV-LM, RB-LM are linear in mean (with no lags)
while S-LM includes one neuron in the hidden layer. The volatility part of all models
is parametrised as an EGARCH(1,1) process.

The top plot of figure 6.2 shows that under normal market conditions, all models
deliver approximately the same forecast in the form of a leptokurtic distribution. The
large unexpected price drop that took place on the 1st of October 1998 increased on
average the short-term uncertainty about the next-day price movement, resulting
in wider density forecasts for the heteroskedastic models (see bottom plot). The
distribution of the pure NN model however remains largely unaffected. Note that on
October 1st, 1998 the one-step-ahead prediction densities are skewed to the right,
assigning higher probability to a subsequent positive than negative return. The
density corresponding to the S-LM forecasting structure has its peak further shifted
to the right, which is mainly the result of nonlinearity existing in the mean model.
We thus observe that different parametrisations of the conditional mean and variance
result in a different response to the same market conditions.

Figures 6.3 to 6.6 show models’ density forecasts based on the information avail-
able up to October, 1st 1998 for one, three and five days ahead. Note that multi-day-
ahead densities are generally less skewed that the following-day’s density forecast,
meaning that the large negative shock on DAX returns that took place on the 1st of
October is absorbed and the market moves into a steady state. The deviation be-
tween density forecasts is more pronounced in models that contain extra nonlinearity
in mean, such as the S-LM and NL3F, and exhibit richer forecasting behaviour.

Table 6.4 shows the normalised mean absolute error across different models and for
various forecasting horizons. We observe that RB-LM, RBV-LM and LFEG models
appear slightly better than a naive volatility predictor, although in some cases the
value of the normalised mean absolute error is above 1. Highly parametrised models
like S-LM or NL3F, one the other hand, have worse performance, especially at longer
forecasting horizons. The values of the hit rate in table 6.5 are generally greater
than 0.5 for all models indicating an advantage over a random predictor of volatility
increases and decreases. Overall, the results for NMAE and HR are inconclusive and
also questionable, as the ability of both criteria to identify a good forecasting model
relies on a reliable estimate of the true conditional volatility, an otherwise ill-defined
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Figure 6.2: The estimated one-day-ahead conditional densities for DAX log-returns on
18/05/99 (top figure), 01/10/98 (bottom figure). Solid lines show the density forecast of
the pure neural network model (NL3F), dashed line shows the density of RBV-LM, dash-
dotted line shows the density of LFEG and dotted line shows the density of S-LM. Densities
estimates were obtained using the Epanechnikov kernel-smoothing method.

concept (see Schittenkopf et al. (2000) for a discussion).
Tables 6.6 and 6.7 show the empirical likelihood and the SBIC for the forecasting

models. Although differences are not generally significant, the empirical likelihood
of the S-LM and NL3F models tends to be lower. The complexity penalised log-
likelihood mostly favours flexible-specification models that also take into account
the volatility structure. It seems that robustified LM tests result in parsimonious
specifications that combine reasonable fit with minimum complexity. On the contrary,
the extra complexity indicated by the standard LM test, or included in LFEG and
NL3F specifications, does not add much to the out-of-sample fit of the models. Table
6.7 shows a slight advantage of flexible specifications versus a linear fixed AR(5)-
EGARCH(1,1) model, possibly because in the latter the number of parameters is not
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Figure 6.3: The 1,3 and 5-day-ahead distribution of returns predicted by the S-LM model
on the 1st of October 1998.
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Figure 6.4: The 1,3 and 5-day-ahead distribution of returns predicted by the RBV-LM
model on the 1st of October 1998.
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Figure 6.5: The 1,3 and 5-day-ahead distribution of returns predicted by the LFEG model
on the 1st of October 1998.

adjusted according to data complexity.
As pertains to the empirical confidence, the results from table 6.8 clearly advo-
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Figure 6.6: The 1,3 and 5-day-ahead distribution of returns predicted by the pure NN
model (NL3F) on the 1st of October 1998.

cate the credibility of the confidence bounds provided by models that specify the
conditional variance (RB-, RBV, S-LM and LFEG). For this class of models, the
percentage of observations falling outside the confidence areas closely follows the cor-
responding nominal rates for all forecasting horizons. The bounds provided by the
standard neural network model, on the other hand, are often too narrow missing a
greater percentage of observations. Hence, a pure nonlinear-in-mean model cannot
fully account for the variability of index returns. The results of table 6.8 do not
show significant differences between a flexible specification NN-GARCH and a fixed
specification AR(5)-EGARCH model, meaning that in terms of empirical confidence
the two classes of models are almost operationally equivalent.

The results for the non-statistical criteria have some interesting implications for
the economic significance of forecasting models. Tables 6.9, 6.10 and 6.11 show the
accumulated profit, the number of trades placed by the models in the investment
period and the average profit per trade. A general remark is that the higher is the
significance level α, the more trades are placed by the trading system and the average
profit per trade tends to go down. The reason is that as α increases confidence bounds
become narrower and more points are characterised as “exceptional”. Note that on
average the S-LM and the pure neural network model give systematically more buy
and sell signals than the others, possibly because nonlinearity in mean results in
narrower confidence bounds. However, the trades indicated by these models are not
more profitable than GARCH ones, and in many cases (mainly for longer forecasting
horizons) they tend to be less profitable. We observe that GARCH models are on
average more conservative in placing orders, hence the tendency of the average profit
per trade to increase over samples. Interestingly, models indicated by robustified
tests very often outperform S-LMs in terms of average profit per trade, rendering
thus the addition model complexity that the standard test induces non economically
significant.
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6.7 Summary and discussion

This chapter presented an empirical application of NN-GARCH models on three
major stock indexes (DAX, S&P 500, FTSE 100) with the purpose of investigating
the predictability of daily returns. The joint nature of these models permitted us
to investigate whether past return shocks contain useful information as regards both
future returns and the volatility of returns.

On the occasion of this study, we discussed several issues related to forecasting
with NN-GARCH models, such as the computation of one- and multi-period predic-
tions, the construction of confidence intervals and the evaluation of the forecasting
performance. Quite often, in the literature, forecasting models are evaluated by pure
statistical criteria that concentrate on the goodness-of-fit of the model. However,
from a financial engineering perspective, the economic significance of forecasts is also
an important issue. Judging the economic significance is possible by designing a trad-
ing strategy that incorporates models’ forecasts. In the class of models studied in this
thesis, forecasts are presented in the form of density predictions or confidence bounds.
For this reason we introduce a trading strategy that explicitly takes into account this
information and focuses on the detection of abnormal or “exceptional” price move-
ments. In this way, we deviate from the main trend in forecasting applications of
NNs, where trading strategies are commonly based on point forecasts.

Owing to the time-varying nature of economic activity, we applied an adaptive
forecasting scheme which amounts to re-estimating the parameters of the models each
time a new observation becomes available and occasionally re-specify their structure.
The model-building strategy analysed in section 4.5.1 was used to derive the optimal
specification of the mean and variance equations of forecasting models. In order to
investigate the effects of heteroskedasticity or higher-moment model misspecification
in the performance of forecasting models, we applied robust as well as non-robust
versions of the tests for additional structure in mean and variance.

The results of the forecasting exercise have some interesting implications regard-
ing both the nature of predictability of asset prices and the performance of testing
procedures presented in this thesis. Many were the cases where robustified tests
simplified the structure of the forecasting device, sometimes as much as to a linear
in mean model. The standard LM nonlinearity test, on the other hand, produced
on average more parametrised neural network models that “absorbed” much of the
heteroskedasticity in errors. However, the additional nonlinearity introduced by the
S-LM typically brought no gain in forecasting accuracy and occasionally led to unsta-
ble performance on unseen data. This makes us believe that nonlinearities reported
in daily stock index movements are more the result of GARCH effects and asymmet-
ric volatility response to past shocks rather than mean interactions. However, this
result is strongly depended upon the market and time-period under study as well as
on the frequency at which data were sampled. As most of the stocks composing the
German, English and U.S. stock index are heavily traded, it is very likely that excep-
tional price movements and nonlinear adjustments disappear within hours, minutes
or even seconds, and hence cannot be seen on daily data.

It should be noted that the computational burden imposed by the large number
of forecasting models, did not allow us to perform detailed in-sample evaluation of



CHAPTER 6. SHORT-TERM PREDICTABILITY OF STOCK INDEXES 94

estimated models before applying them to out-of-sample forecasting. We believe
that a combination of diagnostics with significance tests would generally improve the
parsimony and performance of forecasting models.

The most important lesson gained from this forecasting exercise is that when
one considers choosing a forecasting structure from a large family of models, care-
fully determining the right model complexity (i.e. the right member of the family)
improves out-of sample forecasting performance. The existence of heteroskedastic-
ity and higher-moment properties in the distribution of errors may often invalidate
standard model-selection procedures leading to over-parametrised models with poor
generalising ability. Robustified tests seem unaffected by the presence of strong het-
eroskedasticity in the disturbances and also result in parsimonious specifications that
combine reasonable fit with minimal complexity. It is thus absolutely necessary that
the procedures used to specify the complexity of the mean part offer some kind of
robustification against the adverse effects of heteroskedasticity. Of course, further
experimentation with financial and economic time-series is necessary to reveal the
real benefits of robustification, but this is left to future research.
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Forecasting Horizon 1 3 5

DAX
S-LM 0.983 1.096 1.431
RB-LM 0.986 0.998 0.995
RBV-LM 0.990 0.989 0.979
LFEG 0.970 0.962 0.964
NL3F 0.955 0.973 0.964

FTSE
S-LM 0.940 0.989 1.525
RB-LM 1.108 1.159 0.995
RBV-LM 0.953 0.989 0.999
LFEG 0.957 0.946 0.936
NL3F 0.958 1.172 1.426

S&P
S-LM 0.899 3.328 3.597
RB-LM 0.920 0.940 1.069
RBV-LM 0.930 1.076 1.154
LFEG 1.576 2.235 3.848
NL3F 0.879 1.266 2.086

Table 6.4: The normalised mean absolute error.

Forecasting Horizon 1 3 5

DAX
S-LM 0.709 0.697 0.666
RB-LM 0.715 0.706 0.684
RBV-LM 0.720 0.705 0.694
LFEG 0.707 0.706 0.691
NL3F 0.699 0.687 0.684

FTSE
S-LM 0.711 0.705 0.691
RB-LM 0.715 0.689 0.695
RBV-LM 0.719 0.702 0.711
LFEG 0.718 0.716 0.723
NL3F 0.722 0.674 0.654

S&P
S-LM 0.725 0.708 0.685
RB-LM 0.723 0.716 0.708
RBV-LM 0.717 0.716 0.703
LFEG 0.682 0.576 0.717
NL3F 0.731 0.654 0.630

Table 6.5: The hit rate.
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Forecasting Horizon 1 3 5

DAX
S-LM 2.691 2.704 2.692
RB-LM 2.723 2.717 2.707
RBV-LM 2.723 2.715 2.709
LFEG 2.722 2.713 2.713
NL3F 2.578 2.638 2.638

FTSE
S-LM 2.930 2.936 2.909
RB-LM 3.071 2.970 2.995
RBV-LM 3.007 2.961 2.943
LFEG 2.937 2.979 2.982
NL3F 2.864 2.882 2.841

S&P
S-LM 2.878 2.844 2.805
RB-LM 2.949 2.904 2.882
RBV-LM 2.951 2.888 2.873
LFEG 2.663 2.736 2.564
NL3F 2.837 2.632 2.542

Table 6.6: The empirical log-likelihood.

Forecasting Horizon 1 3 5

DAX
S-LM -5.284 -5.311 -5.288
RB-LM -5.412 -5.399 -5.379
RBV-LM -5.411 -5.396 -5.384
LFEG -5.374 -5.357 -5.357
NL3F -4.970 -5.090 -5.090

FTSE
S-LM -5.722 -5.733 -5.676
RB-LM -5.885 -5.884 -5.809
RBV-LM -5.860 -5.860 -5.824
LFEG -5.945 -5.888 -5.894
NL3F -5.541 -5.577 -5.495

S&P
S-LM -5.659 -5.591 -5.603
RB-LM -5.836 -5.745 -5.702
RBV-LM -5.846 -5.720 -5.690
LFEG -5.257 -5.403 -5.059
NL3F -5.488 -5.078 -4.896

Table 6.7: The Schwarz’s Bayesian information criterion.
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α 0.01 0.05 0.10 0.20 0.50 0.80

DAX
S-LM 1 day 0.028 0.069 0.128 0.228 0.506 0.809

3 days 0.013 0.051 0.111 0.217 0.506 0.795
5 days 0.012 0.048 0.112 0.211 0.505 0.797

RB-LM 1 day 0.014 0.059 0.120 0.220 0.504 0.802
3 days 0.015 0.060 0.114 0.231 0.517 0.804
5 days 0.016 0.063 0.116 0.235 0.517 0.806

RBV-LM 1 day 0.013 0.060 0.116 0.219 0.505 0.817
3 days 0.016 0.060 0.120 0.228 0.517 0.807
5 days 0.013 0.063 0.120 0.228 0.522 0.810

LFEG 1 day 0.014 0.061 0.124 0.226 0.509 0.818
3 days 0.013 0.063 0.127 0.235 0.529 0.817
5 days 0.015 0.063 0.125 0.237 0.532 0.809

NL3F 1 day 0.023 0.097 0.167 0.285 0.550 0.839
3 days 0.025 0.081 0.144 0.275 0.553 0.825
5 days 0.023 0.081 0.151 0.276 0.546 0.825

FTSE
S-LM 1 day 0.022 0.093 0.156 0.265 0.542 0.804

3 days 0.024 0.093 0.161 0.265 0.555 0.826
5 days 0.039 0.111 0.172 0.295 0.556 0.823

RB-LM 1 day 0.014 0.066 0.129 0.235 0.525 0.787
3 days 0.016 0.060 0.121 0.230 0.533 0.816
5 days 0.016 0.064 0.123 0.238 0.542 0.824

RBV-LM 1 day 0.016 0.076 0.139 0.246 0.538 0.811
3 days 0.022 0.075 0.144 0.244 0.545 0.815
5 days 0.027 0.076 0.144 0.253 0.547 0.815

LFEG 1 day 0.011 0.066 0.123 0.226 0.518 0.789
3 days 0.017 0.072 0.139 0.242 0.542 0.818
5 days 0.021 0.081 0.133 0.241 0.540 0.816

NL3F 1 day 0.032 0.103 0.170 0.292 0.587 0.828
3 days 0.045 0.111 0.159 0.256 0.495 0.840
5 days 0.069 0.200 0.257 0.368 0.623 0.843

S&P
S-LM 1 day 0.023 0.072 0.129 0.270 0.573 0.822

3 days 0.020 0.060 0.132 0.267 0.560 0.826
5 days 0.025 0.074 0.134 0.261 0.562 0.828

RB-LM 1 day 0.016 0.053 0.119 0.241 0.536 0.817
3 days 0.019 0.057 0.123 0.242 0.549 0.813
5 days 0.020 0.059 0.119 0.245 0.541 0.821

RBV-LM 1 day 0.017 0.053 0.121 0.232 0.538 0.812
3 days 0.017 0.055 0.114 0.241 0.542 0.810
5 days 0.019 0.061 0.112 0.242 0.542 0.816

LFEG 1 day 0.007 0.041 0.074 0.199 0.453 0.709
3 days 0.003 0.003 0.006 0.082 0.309 0.439
5 days 0.005 0.035 0.085 0.143 0.449 0.761

NL3F 1 day 0.029 0.085 0.152 0.284 0.590 0.833
3 days 0.102 0.245 0.346 0.452 0.691 0.878
5 days 0.107 0.246 0.321 0.422 0.651 0.885

Table 6.8: The empirical confidence levels.
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α 0.01 0.05 0.10 0.20 0.50 0.80

DAX
S-LM 1 day 0.158 0.785 2.686 5.066 9.865 11.090

3 days 0.142 0.946 2.220 5.129 10.071 11.821
5 days 0.090 0.716 2.251 5.049 9.612 11.751

RB-LM 1 day 0.134 0.948 2.678 5.244 9.998 11.704
3 days 0.113 1.100 2.796 5.682 10.140 12.198
5 days 0.101 1.114 3.189 5.226 10.055 11.971

RBV-LM 1 day 0.167 0.962 2.710 5.199 10.298 11.681
3 days 0.062 1.045 2.913 5.823 10.325 12.131
5 days 0.122 0.966 3.239 5.453 9.983 11.898

LFEG 1 day 0.094 0.962 2.808 5.163 9.835 11.761
3 days 0.173 1.057 2.940 5.817 10.321 12.080
5 days 0.158 1.152 3.208 5.458 9.834 12.012

NL3F 1 day 0.781 2.890 4.659 6.706 10.010 11.495
3 days 0.797 2.813 4.596 6.956 10.754 12.056
5 days 0.761 2.668 4.523 6.506 10.106 11.826

FTSE
S-LM 1 day 0.426 1.301 2.366 4.085 6.835 8.137

3 days 0.409 1.848 3.449 5.321 7.942 9.673
5 days 0.409 1.326 2.826 4.704 7.734 9.078

RB-LM 1 day 0.021 0.729 1.837 3.373 6.989 8.294
3 days 0.025 1.129 2.505 4.460 8.139 10.142
5 days 0.000 0.909 2.322 3.917 7.770 9.363

RBV-LM 1 day 0.109 1.037 2.206 3.752 6.913 8.158
3 days 0.086 1.370 2.846 4.834 8.411 10.003
5 days 0.131 1.533 3.226 4.911 8.024 9.475

LFEG 1 day 0.025 0.669 1.978 3.538 7.095 8.217
3 days 0.025 0.717 2.172 3.982 7.877 10.047
5 days 0.033 0.856 2.229 3.870 7.353 9.296

NL3F 1 day 0.673 1.715 2.874 4.380 7.223 8.324
3 days 1.082 2.430 3.280 4.446 7.082 8.433
5 days 0.746 1.838 2.642 4.159 6.510 7.507

S&P
S-LM 1 day 0.751 1.852 2.802 4.586 7.388 8.691

3 days 0.616 1.563 2.682 5.051 8.773 10.187
5 days 0.485 1.549 2.827 4.797 8.456 9.537

RB-LM 1 day 0.347 1.285 2.203 4.229 7.445 8.697
3 days 0.375 1.322 2.586 4.987 8.919 10.518
5 days 0.185 1.626 2.620 4.994 8.618 9.979

RBV-LM 1 day 0.524 1.235 2.283 4.185 7.549 8.629
3 days 0.273 1.316 2.468 5.037 8.969 10.486
5 days 0.274 1.364 2.640 5.048 8.716 9.935

LFEG 1 day 0.000 0.266 0.470 0.979 2.321 3.796
3 days 0.000 0.000 0.012 0.693 3.659 4.874
5 days 0.000 0.000 0.000 0.104 3.940 4.494

NL3F 1 day 1.035 2.399 3.877 5.148 7.290 8.859
3 days 1.532 2.948 3.230 4.000 6.244 7.192
5 days 1.725 2.236 2.818 3.841 6.127 7.045

Table 6.9: The accumulated profit at the end of the forecasting period.
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α 0.01 0.05 0.10 0.20 0.50 0.80

DAX
S-LM 1 day 9 36 95 206 522 817

3 days 3 23 69 180 513 814
5 days 1 18 70 184 502 804

RB-LM 1 day 3 27 79 195 521 821
3 days 2 27 84 198 519 824
5 days 2 26 91 203 524 823

RBV-LM 1 day 4 26 83 195 529 819
3 days 1 26 90 204 525 823
5 days 2 25 92 207 524 819

LFEG 1 day 2 27 82 192 519 821
3 days 3 27 91 207 525 821
5 days 3 27 91 208 523 818

NL3F 1 day 15 87 172 284 544 825
3 days 19 79 136 268 541 815
5 days 19 72 143 264 537 815

FTSE
S-LM 1 day 18 56 112 211 509 785

3 days 16 75 150 273 562 823
5 days 27 78 158 272 565 826

RB-LM 1 day 1 25 66 156 493 795
3 days 2 36 91 190 523 818
5 days 0 31 87 184 527 812

RBV-LM 1 day 5 40 95 192 508 798
3 days 5 52 114 225 549 805
5 days 4 55 134 239 547 807

LFEG 1 day 1 24 73 170 484 793
3 days 1 25 79 166 488 787
5 days 1 27 77 174 479 798

NL3F 1 day 24 70 137 240 540 811
3 days 71 185 247 356 611 830
5 days 35 98 150 253 490 831

S&P
S-LM 1 day 18 57 104 221 528 804

3 days 16 51 104 242 560 824
5 days 19 62 124 257 567 822

RB-LM 1 day 8 35 74 192 516 807
3 days 10 40 92 226 541 815
5 days 7 43 93 234 544 819

RBV-LM 1 day 11 35 80 184 513 798
3 days 9 39 85 228 542 807
5 days 7 36 97 232 545 813

LFEG 1 day 0 18 32 80 225 432
3 days 0 0 1 42 303 447
5 days 0 0 0 7 349 459

NL3F 1 day 27 79 154 249 539 824
3 days 103 240 327 450 684 871
5 days 111 242 317 421 639 874

Table 6.10: The number of trades.
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α 0.01 0.05 0.10 0.20 0.50 0.80

DAX
S-LM 1 day 0.018 0.022 0.028 0.025 0.019 0.014

3 days 0.047 0.041 0.032 0.028 0.020 0.015
5 days 0.090 0.040 0.032 0.027 0.019 0.015

RB-LM 1 day 0.045 0.035 0.034 0.027 0.019 0.014
3 days 0.057 0.041 0.033 0.029 0.020 0.015
5 days 0.050 0.043 0.035 0.026 0.019 0.015

RBV-LM 1 day 0.042 0.037 0.033 0.027 0.019 0.014
3 days 0.062 0.040 0.032 0.029 0.020 0.015
5 days 0.061 0.039 0.035 0.026 0.019 0.015

LFEG 1 day 0.047 0.036 0.034 0.027 0.019 0.014
3 days 0.058 0.039 0.032 0.028 0.020 0.015
5 days 0.053 0.043 0.035 0.026 0.019 0.015

NL3F 1 day 0.052 0.033 0.027 0.024 0.018 0.014
3 days 0.042 0.031 0.026 0.024 0.020 0.015
5 days 0.040 0.030 0.032 0.025 0.019 0.015

FTSE
S-LM 1 day 0.024 0.023 0.021 0.019 0.013 0.010

3 days 0.026 0.025 0.023 0.019 0.014 0.012
5 days 0.015 0.017 0.018 0.017 0.014 0.011

RB-LM 1 day 0.021 0.029 0.028 0.022 0.014 0.010
3 days 0.013 0.031 0.028 0.023 0.016 0.012
5 days - 0.029 0.027 0.021 0.015 0.012

RBV-LM 1 day 0.022 0.026 0.023 0.020 0.014 0.010
3 days 0.017 0.026 0.025 0.021 0.015 0.012
5 days 0.033 0.028 0.024 0.021 0.015 0.012

LFEG 1 day 0.025 0.028 0.027 0.021 0.015 0.010
3 days 0.025 0.029 0.027 0.024 0.016 0.013
5 days 0.033 0.032 0.029 0.022 0.015 0.012

NL3F 1 day 0.028 0.025 0.021 0.018 0.013 0.010
3 days 0.015 0.013 0.013 0.012 0.012 0.010
5 days 0.021 0.019 0.018 0.016 0.013 0.009

S&P
S-LM 1 day 0.042 0.032 0.027 0.021 0.014 0.011

3 days 0.038 0.031 0.026 0.021 0.016 0.012
5 days 0.026 0.025 0.023 0.019 0.015 0.012

RB-LM 1 day 0.043 0.037 0.030 0.022 0.014 0.011
3 days 0.038 0.033 0.028 0.022 0.016 0.013
5 days 0.026 0.038 0.028 0.021 0.016 0.012

RBV-LM 1 day 0.048 0.035 0.029 0.023 0.015 0.011
3 days 0.030 0.034 0.029 0.022 0.017 0.013
5 days 0.039 0.038 0.027 0.022 0.016 0.012

LFEG 1 day - 0.015 0.015 0.012 0.010 0.009
3 days - - 0.012 0.016 0.012 0.011
5 days - - - 0.015 0.011 0.010

NL3F 1 day 0.038 0.030 0.025 0.021 0.014 0.011
3 days 0.015 0.012 0.010 0.009 0.009 0.008
5 days 0.016 0.009 0.009 0.009 0.010 0.008

Table 6.11: Average profit per trade. Dashes denote cases where no trades were placed.



Chapter 7

A comparison of neural network

model-selection strategies for

the pricing of S&P 500 stock

index options1

7.1 Introduction

An option is a type of tradeable financial contract whose price depends on a number
of factors such as the exercise price, the time to maturity, the price and the volatility
of the underlying asset and the risk-free interest rate prevailing in the market. The
growing interest on option pricing was stimulated by the seminal work of Black and
Scholes (1973) who managed to derive a “fair” value for a European-type call option
based on dynamic hedging and arbitrage arguments. Since the publication of the
Black-Scholes model in 1973, considerable research effort has been made on deriving
parametric models that relax some of the restrictive assumptions underlying the
Black-Scholes formula (normality of log-returns, constant volatility, etc.). Despite
the elegance of functional forms and their theoretical appeal, most of these models
are difficult to implement, have poor out-of-sample performance and are sometimes
inconsistent with market data.

Semi-parametric computational intelligent models, especially neural networks, are
more flexible in relaxing the restrictive assumptions of parametric models with a
potential for improvement on out-of-sample pricing performance. The success of
NN-based option pricing models is now well documented (see e.g. Hutchinson et al.
(1994); Gencay and Qi (2001)). Essentially, a neural network offers to the researcher
an estimation technique that puts up a flexible pricing formula with a set of unknown
parameters and lets the optimisation routine search for the values of parameters that
provide the optimal fit to the data.

In Tzastoudis et al. (2006), we applied a series of neural network models, de-
termined by heuristic criteria, to the pricing of call options on the S&P 500 index.

1This chapter also appears in Thomaidis et al. (2007).
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We attempted to reduce the overall number of inputs to the model by taking advan-
tage of the no-arbitrage value of a forward contract, written on the same underlying
asset. In addition, we experimented with hybrid intelligent schemes that combine
a semi-parametric NN model with theoretical option-pricing formulae. Theoretical
arguments were used in “problematic” data regions and NN learning was directed
to more actively traded areas of the option surface. This combination seemed to
increase the efficiency of the learning process and also reduce the overall in-sample
and out-of-sample error.

In this chapter, we present an extension to our previous work, which contrary to
many approaches on option pricing pays special attention to model selection. For
the choice of the optimal architecture of the neural net, we experiment with both an
iterative “top-down” pruning techniques as well as two “bottom-up” strategies that
start with simple models and gradually complicate the architecture if data indicate
so. Apart from heuristics, we also employ methods that base model selection on solid
statistical techniques, such as statistical hypothesis tests and information criteria,
and we compare their performance in accurately pricing and forecasting stock index
options. We start with fitting the entire surface using a single NN and then examine
fitting restricted areas of the option matrix using hybrid intelligent models, in the
spirit of Tzastoudis et al. (2006).

The structure of this chapter is as follows: in section 7.2 we provide the necessary
financial background on option contracts and we present the famous Black & Scholes
and other parametric approaches to option pricing. In section 7.3 we review the lit-
erature on option pricing with neural networks. Section 7.4 presents the procedures
employed in our study for the selection of the optimal NN architecture; section 7.4.1
details bottom-up model selection based on sequential statistical hypothesis tests and
information criteria and section 7.4.2 reviews an iterative “top-down” pruning tech-
nique. Section 7.5 discusses the application data used in comparing the performance
of different model selection strategies. Section 7.6 presents a first approach to option
pricing, fitting the entire option matrix, and section 7.7 considers hybrid intelligent
NN models directed to restricted areas of the option surface. Section 7.8 summarises
the main findings and proposes future research directions.

7.2 Financial background

7.2.1 Options theory

An option is a certain type of financial contract that gives the right to the owner to
buy or sell certain quantities of an asset, also called the underlying asset or simply
the underlying, at some future date (expiration or maturity date) and at a price that
is agreed in advance (exercise or strike price). In this way, options allow investors to
bet on future market scenarios and also reduce financial risk. Call options give one
the right to buy while put options give the right to sell the underlying. An investor
who makes use of this right in expiration is said to have exercised the option. In
standard option terminology, a call option is said to be in-the-money if the current
market price of the underlying is greater than the strike price, out-of-the-money if
the underlying price is lower than the strike price and at-the-money if the above
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two are close to each other. “Deep” in-the-money calls are generally highly priced,
especially those that are near to expiration, as the holder can buy the underlying
from the counter-party and make profit by selling it at the market at a higher price.
For the same reason, far out-of-the money calls are almost worthless as the holder
has no benefit from exercising the contract.

7.2.2 Black & Scholes option pricing

As soon as option trading started in organised markets, there came the problem of
discovering a fair price to be paid by an investor who enters an option contract. This
is known in the literature as the option pricing problem. The Black and Scholes
(1973) model is considered to be the first successful attempt to obtain a fair value for
a call option which is based on the fundamental idea of arbitrage (see sections 1.2.2
& 2.4). The original Black & Scholes mathematical formula for European-style call
options, which was later modified by Merton (1973) for a dividend-paying underlying
asset, is as follows:

C = Se−δTN(d1) − Ke−rT N(d2) (7.2.1)

d1 =
ln(S/K) + [(r − δ) + (1/2)σ2]T

σ
√

T
(7.2.2)

d2 = d1 − σ
√

T (7.2.3)

where C is the fair value of a call option at some time T before expiration, S is the
current price of the underlying, K is the strike price of the option, r is the risk-free
interest rate, δ is the dividend yield, σ is the volatility of the underlying and N(.)
denotes the standard normal cumulative density function.

The BS model links the price of a call option with a number of factors that
affect its value. Intuitively, a rise in the underlying price S or in the volatility σ has
a positive impact on the value of the call, as it increases the probability that the
option will expire in the in-the-money area (i.e. above K). Dividends decrease the
price of the underlying (i.e. stock) and hence the value of the call option. The effect
of time-to-maturity and risk-free interest rate is less clear.

If we take into account the no-arbitrage value of a forward contract written on
the same index, F = Se(r−δ)T, we can reformulate the BS formula as follows2

C = DF (F N(d1) − K N(d2)) (7.2.4)

d1 =
ln(F/K) + (1/2)σ2T

σ
√

T
(7.2.5)

d2 = d1 − σ
√

T (7.2.6)

where DF is the discounting term, representing the amount of money that has to
be invested in the risk-free interest rate r in order to obtain 1$ after time T . This
transformation proves to be more convenient than the original BS formula, as the
forward price is a well-defined tradable quantity that incorporates all information

2See e.g. Hull (1998).
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about the prevailing interest rate and the dividends. Formula 7.7.3 forms our basis
for setting-up a neural network mapping from (F , K, DF , σ) to the target value C.

Although pioneering in its conception, the BS model has been empirically shown
to suffer from systematic biases when compared to market prices (Bakshi et al. (1997);
Cont and Forseca (1997)). Most of the biases steam from the fact that the develop-
ment of the BS formula has been based on a set of assumptions that fail to hold true
in practice. In an attempt to relax the BS assumptions, researchers have come up
with a variety of other parametric option pricing models, such as the jump-diffusion
(Merton (1976)), constant elasticity of variance (Cox et al. (1976)), and Hull and
White (1987)’s stochastic volatility. Despite their analytical tractability, the major-
ity of these models are often too complex to implement, have poor out-of-sample
pricing performance and sometimes inconsistent with implied parameters (Bakshi
et al. (1997)). In addition, they are often based on restrictive assumptions concern-
ing the market infrastructure and/or investors’ attitude, which are often questionable
from a theoretical or empirical point of view.

7.3 Option pricing with semi-parametric neural network

models

Computational intelligent models, like neural networks or genetic programming, seem
to offer a promising semi-parametric alternative to option pricing. This is mainly due
to their ability to approximate highly nonlinear relationships without relying on the
restrictive assumptions concerning the time-evolution of the underlying price, the ef-
ficiency of the market, the rationality of agents, etc. Option pricing with neural net-
works, in particular, has attracted the interest of many practitioners and researchers
worldwide. Hutchinson et al. (1994) were among the first to apply a neural network
model to the pricing of S&P 500 futures options. In order to reduce the number of
inputs to the neural net they applied the so called “homogeneity property” of the
BS formula. Their research shows that the resulting network model can be used
successfully out-of-sample for the pricing and delta-hedging of options. An approach
analogous to the above was followed by Garcia and Gencay (2000) in pricing Eu-
ropean S&P 500 index options for various periods between 1987 and 1994. Bennell
and Sutcliffe (2004) used a neural network to price options on FTSE 100 index and
concluded that this nonparametric model is superior to the BS formula for out-the-
money options. Lajbcygier et al. (1996) price options on futures using a two-input
(S/K,T ) and a four-input (S/K, T , r, σ) model. Their results suggest that the four-
input model outperforms both the two-input one and the BS model and it works
extremely well for a reduced data region (i.e. for options near the money and short
maturity). Yao et al. (2000) use neural nets to forecast option prices on NIKKEI 225
index futures3. Their work also shows that a neural network model can outperform
the BS model in volatile markets, even when the parameter of volatility is not feeded
as an input into the neural network.

3NIKKEI 225 is an unweighted index of the largest 225 shares traded on the Tokyo Stock Ex-
change.
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7.4 Neural network identification strategies

One major problem with semi-parametric approaches is the selection of model archi-
tecture. Many studies on option pricing typically employ a heuristic criterion (such
as cross validation or sequential pruning) to determine the optimal architecture of
the neural net. This however raises doubts as to whether the model has managed to
reproduce the pricing formula assumed by the market or simply overfitted the data.

Many popular NN specification techniques follow a “general-to-specific” or “top-
down” approach in which one starts with a large model and applies appropriate
techniques to remove “redundant” components, i.e. hidden neurons and variables,
that do not contribute much to the prediction accuracy of the model. Another strat-
egy is the so-called “bottom-up” or “simple-to-complex”. The idea is to start with
the simplest (linear) model and gradually complicate the structure by adding neurons
if nonlinearity exists in data. The procedure is sequential so that at each step two
decisions are made as regards the specification of the neural network model: first
whether to add an (extra) neuron and second which input variables to append to this
neuron.

The neural network models considered in this work belong to the general class
of single-hidden-layer feedforward NNs with a linear component. The performance
measure used in the estimation of these models is either the mean squared error
(MSE)

MSE = (1/T )
T
∑

t=1

(yt − ŷt)
2 (7.4.1)

or the mean weighted squared error (MWSE)

MWSE = (1/T )

T
∑

t=1

ωt(yt − ŷt)
2 (7.4.2)

where ŷt denotes the neural network’s forecast for yt and ω = (ω1,ω2, . . . , ωT ) is
a vector of weights with ωt ≥ 0. In what follows, we shall discuss various model
selection strategies assuming a MWSE criterion, as the MSE is a special case of
MWSE with ωt being equal to one for all observations.

7.4.1 Simple-to-complex

The first two approaches employed in our work use a simple-to-complex strategy to
determine the optimal architecture for a neural net. Model selection in this case is
guided by statistical procedures, such as sequential statistical hypothesis tests and
information criteria.

Neural network identification based on sequential statistical tests

The first approach is the sequential testing procedure presented in section 4.5.1, suit-
ably modified for the case where the network is estimated using weighted nonlinear
least-squares. As the data of our option pricing problem are not chronologically or-
dered, certain statistical properties, such as heteroskedasticity, are not likely to occur
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here. Hence, in choosing the number of units in the NN model we used the standard
version of the LM test of neglected nonlinearity, although robustified versions could
be used instead. It should be noted here that the LM testing procedures presented
in section 4.5.1 implicitly assumes a least-squares estimation method for the NN. A
modification of the tests for weighted LS is possible if one initially multiplies ǫ̂t, x̄t,
∇f̂t and zt by

√
ωt, where ωt is the weight applying to observation t.

Neural network identification based on information criteria

Information criteria, such as the AIC or SBIC, are often used in choosing between
two models with different degrees of complexity. These are typically a decreasing
function of the goodness-of-fit of a model and an increasing function of the number
of parameters. They thus favour parsimonious models, models that attain a good fit
with minimum complexity.

Our model selection strategy based on information criteria is similar to the sta-
tistical testing procedure described above instead that it decides on the grounds of
an information criterion whether the model can be improved by adding more hidden
neurons. The strategy was adapted from Anders and Korn (1999), although in our
case we followed the “bottom-up” route to determine both the number of hidden
units of the network and the optimal combination of hidden neurons and variables.
Problems in applying information criteria to neural network model selection also arise
if the model includes redundant neurons. Therefore information criteria can only be
combined with a simple-to-complex strategy. In the comparison between NN mod-
els the extra neuron is approximated by a third-order Taylor polynomial, as in the
sequential testing procedure.

The NN model-specification strategy based on information criteria is described
below:

1. Start with estimating a linear model yt = φ′x̄t by weighted ordinary least
squares and choose the number of variables by means of an information criterion
(i.e. AIC, SBIC).

2. Calculate the errors of the linear model and regress them on a third-order Taylor
expansion of an additional hidden neuron for all combinations of explanatory
variables. Compute the value of the information criterion for the errors of the
linear model, assuming a zero number of parameters (an “empty”model), and
compare it to that obtained from the new regressions.

3. If the value of either AIC or SBIC shows no improvement over the “empty”
model stop. Otherwise, estimate a NN model with one hidden unit and the
combination of variables showing the lowest value for the information criterion
connected to it.

4. Repeat steps 2-3: compute new errors, judge the relevance of an additional
hidden neuron on the basis of an information criterion and if necessary estimate
enlarged models. The procedure stops when an additional hidden neuron does
not lead to further improvements.
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Model selection based on information criteria involves approximately the same
amount of computation with statistical sequential testing, as only auxiliary regres-
sions are run at each step of the process.

7.4.2 Neural network identification based on sequential pruning

The opposite route to the afore described methods is sequential pruning. According
to this strategy, a model with a large number of hidden neurons is first estimated and
the size of the model is subsequently reduced by applying an appropriate technique.
In this paper we adopt a simple network-pruning heuristic proposed by Kaashoek and
van Dijk (1998). It is based on the concept of incremental contribution, originally
proposed by Theil (1971) as a method for choosing variables in a linear model. The
main idea is to find how much of the variance of the target variable yt is explained
by inclusion of an additional neuron or explanatory variable, holding all other parts
of the model constant. This approach is different in two aspects from the ones
listed above. First, it follows the opposite direction in the specification of the NN
model going from larger to smaller networks, which as noted in the previous section
is not possible if one intends to apply statistical procedures. Second, it employs a
simple heuristic rather than a solid statistical criterion to decide whether to remove
a redundant component (neuron/variable) of the model. In this sense, it serves as a
good benchmark to judge the performance of more sophisticated approaches.

Let ǫ̂t be the error of the full network and ǫ̂j
t the error of the network with the

j-th neuron excluded. The incremental contribution of hidden neuron j is defined by
R2

full − R2
j where

R2
full = 1 −

T
∑

t=1

ǫ̂2t

/

T
∑

t=1

ȳ2
t (7.4.3)

R2
j = 1 −

T
∑

t=1

(

ǫ̂j
t

)2
/

T
∑

t=1

ȳ2
t (7.4.4)

and ȳt denotes the demeaned value of yt. Based on this definition, the network
pruning method is implemented as follows:

1. Start with a large NN model, including h neurons.

2. Remove the i-th neuron, i = 1, . . . , h, re-estimate the restricted models and
compute the value of the percentage incremental contribution

∆R2
j =

R2
full − R2

j

R2
full

(7.4.5)

1. If ∆R2
j is smaller than a threshold TH, say 1%, remove the corresponding

neuron from the model.

2. Repeat the above step until the incremental contribution of each neuron is
significant.
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3. Continue with variable selection by removing one input variable each time and
comparing the correlation coefficients. Finally, remove all variables for which
∆R2

k, k = 1, ...., n, is smaller than TH and re-estimate the restricted model.

Contrary to model selection based on sequential testing and information criteria,
this method is much more computationally demanding, as for each comparison of
the correlation coefficients the restricted model has to be re-estimated. Another
drawback of pruning is that it estimates NN models with a large number of inputs
and hidden units, which is problematic as quite often the optimisation algorithm
converges to a local optimum.

7.5 Sample data

For the application and testing of the proposed methodologies, we used equity option
contracts on the S&P 500 index of the New York Stock Exchange. S&P 500 index
options are European-style options and considered to be among the most tradable
index options worldwide in terms of liquidity. We obtained two “snapshots” of the
option matrix, quoted on May, 17th 2002 and July, 29th 2002. Figure 7.1 depicts
the market price of options quoted on May, 17th 2002 as a function of the time to
maturity T and the strike level K. Both strike and option prices are given as a
percentage of the underlying and maturities range from 0.083 to 5 years. Note that
in the option surface the value of the call is a characteristic U-shaped function of
the strike price that is more skewed for short maturities. Furthermore, the value
is monotonically increasing with time-to-maturity, the slope being more pronounced
for around-the-money options. These features are related to the “smile” and “skew”
of the implied volatility surface as often mentioned in the literature (see e.g. Hull
(1998); Jackwerth and Rubinstein (1996)).
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Figure 7.1: The S&P 500 call option surface on 17/05/2002.
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7.6 Study A: Fitting the entire option surface

In the first set of experiments, we employed neural network models to fit the entire
option surface. The call option matrix quoted on 17/05/2002 (a total of 378 obser-
vations) was used as a training set and the same amount of data corresponding to
the option matrix on 29/07/2002 were used in out-of-sample evaluation of the NN
models. Our purpose is to determine the value C of the call in terms of the forward
price F , the strike level K, the discounting factor DF, and the volatility σ on that
day, e.g

CNN = fNN (F, K, DF, σ) (7.6.1)

Note that among all inputs, the volatility depends exclusively on the price of the
underlying asset and it is thus constant for a given day. This poses a problem to
our network approximation problem because one input variable takes the same value
over the whole training set and is perfectly correlated with the constant of the linear
model. As our focus is on capturing the shape of the option surface, volatility can be
safely excluded from the set of input variables. Of course, if we possessed more option
surfaces at different time-frames and the task was to forecast option prices in a time-
series context then the dynamics of volatility would be an important explanatory
factor.

All three model-building strategies were applied to the selection of the NN ar-
chitecture. As a performance measure, we adopted the mean squared error between
the call option market price and the network output. In order to avoid constantly
firing hidden neurons at the saturation area, input data were standardised so that
they have mean and standard deviation equal to zero and one, respectively. The
Schwarz’s Bayesian information criterion was used in the selection of parsimonious
NN architectures. In the literature, SBIC has been found to deliver more conserva-
tive (i.e. less complex) models than the Akaike’s information criterion. Due to the
fact that more parsimonious models often outperform more complicated models when
used in forecasting tasks and because the SBIC has been found to perform well in
selecting forecasting models in other contexts (see e.g. Engle and Brown (1986)), we
also adopt it in the present pricing task as a method for penalising the mean squared
error.

The specification of the NN models indicated by each methodology is summarised
in Table 7.1. Note that all models include from one to three neurons in the hidden
layer and K and/or DF in the linear part. Interestingly, both sequential statistical
testing (SST) and SBIC have chosen the same network architecture. Sequential prun-
ing (SP), on the other hand, indicated a much simpler one-neuron NN model with
only the strike price K contributing to nonlinearity. Table 7.2 shows the performance
of SST and SP selection methods (IC is excluded as it indicated the same model as
SST) for the training and test data sets. As measures of performance, we report the
mean squared error, the mean absolute error and Schwarz’s information criterion.
Although the latter is commonly used in model selection tasks, we also adopted here
as an indicator of the parsimony of the model (i.e. how much complexity was neces-
sary to achieve the given fitting accuracy). Table 7.2 shows that the neural network
specified by SST is better than SP in terms of in-sample and output-of-sample fit.
The extra two neurons that sequential statistical tests indicated significantly increase
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the forecasting ability of the NN model both in the training and test set. In addition,
and much more important, this decrease in model’s error is enough to compensate
for the additional complexity, as shown by the significantly lower value of SBIC in
both sets. Hence, “bottom-up” approaches seem to deliver more parsimonious archi-
tectures than the heuristic-driven “top-down” pruning.

Table 7.2 also reports the corresponding fitting measures for the Black-Scholes
(BS) model. This is mainly to get an idea of the relative advantage of modelling with
a semi-parametric approach in comparison to a parametric market standard. Note
that the BS formula requires an estimate for the volatility of the stock index at the
day corresponding to the training and test option surface. Volatility forecasts were
obtained by fitting a NN-GARCH model in the daily S&P 500 time-series. For com-
parison purposes we also employed a exponential weighted moving average (EWMA)
model, suggested by J.P. Morgan in RiskMetricsTM (Ris (1996)). This model tries
also to incorporate the empirical observation that the time evolution of stock in-
dexes is characterised by succeeding periods of relatively high and low variability.
In this study, we used a time-period of almost 500 days preceding 17/05/2002 and
29/07/2002 to estimate the two models and then obtained one-day-ahead volatility
forecasts. Both models gave similar results. The volatility estimates were σ2

EWMA =
0.107 and σ2

GARCH = 0.127 for 17/05/2002 and σ2
EWMA = 0.301 σ2

GARCH = 0.281
for 29/07/2002. We chose the volatility forecasts of the NN-GARCH model as in-
put to the BS model, although similar results were obtained when feeding EWMA
estimates.

Architecture Sequential

Statistical

Testing

Information

Criterion

Sequential

Pruning

Linear Part K, DF K, DF DF

Nonlinear

Part

Neuron 1 F , K, DF F , K, DF K
Neuron 2 K, DF K, DF -
Neuron 3 K, DF K, DF -

Table 7.1: The architecture of neural network models obtained by sequential statistical
tests (SST), Schwarz’s information criterion (SBIC) and sequential pruning (SP). All models
include from one to three neurons in the nonlinear part. Row two shows the variables of the
linear part and rows three-to-five shows the variables connected to each neuron. Note that
both SST and SBIC have chosen the same architecture for the neural network and SP has
indicated a one-neuron feedforward NN model with only the strike price K contributing to
nonlinearity.

Table 7.2, last column, shows the various measures of performance for the BS
model. The value of the SBIC in this particular case was computed assuming a
zero number of parameters; it is thus expected that our comparison will be slightly
biased towards the BS model. Nevertheless, all NN models clearly outperform the
BS model both in terms of goodness-of-fit and complexity-penalised mean squared
error. It would be instructive to illustrate the quality of fitting obtained by a NN
compared to the BS model. Figure 7.2 shows various intersections of the test option
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surface corresponding to a short (0.083 years), medium (2 years) and long (3 years)
maturity. Solid lines denote market option prices, squared lines show the forecast
of the SST-NN model and circled lines correspond to the forecast of the BS model.
Observe that the BS model tends to underprice in-the-money options, especially at
shorter maturities, and to overprice out-of-the money options at longer maturities.
The NN model, on the other hand, manages to closely follow the gradual decrease in
the slope of the skew as maturity gets longer.

Data Set Measure SST SP BS

Training Set MSE 0.331 5.215 30.281
MAE 0.319 1.761 4.250
SBIC -1.219 1.730 3.411

Test Set MSE 0.440 4.427 24.353
MAE 0.491 1.621 3.839
SBIC -0.570 1.566 3.193

Table 7.2: The performance of the SST and SP selection methods in the training and testing
data set. We report three measures of the goodness-of-fit and parsimony of the models: the
mean squared error, the mean absolute squared error and Schwatz’s information criterion.

7.7 Study B: Fitting restricted areas of the option ma-

trix

When applying a neural net to option pricing tasks, it should be noted that not
all areas of the option surface are equally “dense”, in the sense that most liquid
options are traded in certain strike-maturity pairs. These are mainly characterised
by short-to-medium maturity and strike prices around 100. The absence of an active
market usually gives rise to unpleasant phenomena, such as bid/ask spreads and
longer average times between consecutive transactions. This means that reliable
training data are available for certain areas of the option surface, which poses a
problem to the application of a NN, and in fact of any semi-parametric technique. As
the out-of-sample performance of semi-parametric methods is very much determined
by the quality of the training data, it is expected that a NN would have a lower
generalisation ability and higher prediction error for non-liquid areas of the option
matrix.

In addition to liquidity concerns, it should be noted that not all areas of the
option matrix are equally interesting to traders. Typically, the value of deep out- or
deep in-the-money options is more or less predictable, especially at short maturities,
and the majority of trading activity mainly takes place in around-the-money options
not so close to expiration. Using standard financial arguments of arbitrage, we can
approximately derive the value of a call option that is “deep” in- or deep out-of-the
money and close to expiration (i.e. |K − 100| > 50 and T < 1). Starting with
in-the-money options, if S ≫ K the holder of the option can benefit from paying
K$ to buy the underlying from the counter-party and then sell it at the market at
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Figure 7.2: The quality of fitting in the test option matrix. We present three intersections
of the option surface corresponding to a short (0.083 years), medium (2 years) and long (5
years) maturity. Pure line shows the option market prices, squares show the forecast of the
SST-NN model and circles show the forecast of the BS model.
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a higher price. This results in an immediate profit of S − K. But, S = Fe(δ−r)Tand
for options with short time to maturity (T ≪ 1), e(δ−r)T ≈ 1. Hence, the value of a
deep in-the-money option is approximately equal to F − K.

Using a similar argument, we can show that the value of a deep out-of-the money
option is close to 0. If S ≪ K it is not worth exercising the option, as the underlying
is sold in the market at a much lower price. Furthermore, none will be interested in
buying a deep out-of-the-money option, rendering its value close to zero. For options
that are around-the-money (S ≈ K), their value cannot be easily determined as it
depends on the short-term volatility of the asset. If S is currently slightly below K
and the underlying is highly volatile, then it is likely that S will cross the K-threshold
and the option become valuable.

From the above discussion, we infer that it makes more sense to direct a NN
model to short-maturity at-the-money options and gradually increase the range of
strikes as maturity gets longer. This was actually the pricing approach adopted in
Tzastoudis et al. (2006). In this case, the price of a call option is defined as the
outcome of the hybrid model:

C =







F − K,
fNN (F, K, DF ),

0,

S ≫ K, T ∈ [T1, T2]
S ≈ K, T ∈ [T1, T2]
S ≪ K, T ∈ [T1, T2]

(7.7.1)

where fNN denotes the NN component. One way to implement the above model is
to employ a mean weighted squared error objective function for the NN

MWSE =
∑

T

∑

K

ωK,T

(

CK,T
market − CK,T

)

(7.7.2)

where each ωK,T denotes the weight assigned to the strike-maturity pair (K, T ). In
our research, we experimented with three matrices of weights, W1, W2 and W3 that
cover a range of 60-150% of strike levels and specific ranges of maturities aiming at
short-, middle- and long-horizon fitting. The three weighting schemes are presented
in Table 7.3. The graduation of weights reveals the importance assigned by experts
to each pair of the option matrix.

The three methods described in section 7.4 were applied to the selection of the
NN architecture using a mean weighted squared error criterion. For the bottom-up
model selection approach based on information criteria, we adopted the following
formula for the SBIC applying to weighted least squares

SBIC = log(MWSE) + p log(T )/T (7.7.3)

where MWSE is defined as above and p is the number of free parameters in the
model.

Table 7.4 presents the architecture of the NN indicated by each methodology for
the three weighting schemes. Column three shows the variables of the linear part
and columns four to six the number of hidden neurons and the variables connected
to each of them. Note that directing neural network to restricted areas of the option
matrix generally results in a simplification of the architecture of the model. Fewer
neurons are needed in this case than those employed in study A to represent the entire
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Strike

Levels

Weights

60 0 0 0 0 0 0.5 0.5 0.7 0.7 0.7 0.7 0.7
70 0 0 0.5 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
80 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
90 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
100 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
110 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0
120 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5
130 0 0.5 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
140 0 0 0.5 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
150 0 0 0 0 0 0.5 0.5 0.7 0.7 0.7 0.7 0.7

Ranges of Maturities

R1 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
R2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
R3 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Table 7.3: The three matrices of weights corresponding to a short-, middle- and long-
maturity fitting (R1, R2 & R3). Pairs that do not appear in the table are assigned a weight
of zero.

option matrix. The only exception is models generated by SBIC. The specification
of models at all maturity ranges are very similar, possibly because the shape of the
fitted surface for around-the-money options does not significantly alter from short to
long maturities.

Weighting scheme Models Linear part Nonlinear part

Neuron 1 Neuron 2 Neuron 3

W1

SST K K, DF - -
SBIC K F, K F, K F, K

SP K, DF K - -

W2

SST K F, K, DF - -
SBIC K F, K, DF K, DF F, K, DF

SP DF K - -

W3

SST F, K, DF DF - -
SBIC K K, DF K, DF K, DF

SP K, DF K - -

Table 7.4: The architecture of the hybrid NN models used in fitting restricted areas of the
option matrix, designated by the three weighting schemes W1, W2 and W3 (see also table
7.3). Column three shows the variables of the linear part and columns four to six the number
of hidden neurons and the variables connected to each of them. Statistical sequential testing
(SST) and sequential pruning (SP) choose one hidden neuron for all weighting schemes, while
the number of neurons specified by the SBIC is three.

Table 7.5 reports goodness-of-fit and parsimony measures for the various NN se-
lection methods in the training and test data set. In restricted areas fitting, all models
are of almost equal performance and none seems to clearly excel the others. Only
SST-NN models seem to score better in the second range of maturities (W2). Exper-
iments conducted with various weighting schemes have shown that the performance
of the NN models is sensitive to the placement of weights and a different weighting
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scheme typically results in different values for MWSE, MWAE and SBIC. The ar-
chitecture of models, on the other hand, is partially unaffected by shifts in weights
except when the area where the NN is effective (i.e. the area with higher weights)
gets wider. All NN model-selection strategies tend to indicate more complex pricing
formulae as higher weights are assigned to far from-the money areas with previously
low or zero importance. This is also because the effective number of observations
presented to the network (i.e. those with non-zero weight) increases and nonlinearity
becomes more apparent with a larger sample of data. Note that for the weighting
schemes presented in table 7.3, only 105 out of the 378, i.e. less than half, input data
are used in training and testing.

7.8 Summary and further research

This chapter compared a number of neural network model selection approaches to
pricing options on the S&P 500 stock index. Generally, the accurate forecasting of
an option matrix is a difficult task though very important to traders and investors
in option markets. The price of an option is determined by multiple factors through
highly nonlinear relationships. Thus, the application of a semi-parametric intelligent
technique with high approximation ability, such as a neural network, is very much
recommended. However, most of these techniques have an open architecture and
much effort is needed to determine the structure of the model that is appropriate for
the particular application domain or data set.

In our approach, we attempted to treat model selection in a more systematic way.
For the choice of the optimal architecture of the neural network model, we exper-
imented with a “top-down” pruning technique and two “bottom-up” specification
strategies that start with simple models and gradually complicate the architecture, if
data indicate so. Apart from heuristic-driven approaches, we also employed methods
that base model selection on statistical hypothesis tests and information criteria. In
the first set of experiments, NN models were employed to fit the entire option surface
and in the second one they were used as parts of a hybrid scheme directed to capture
certain areas of the surface.

Results from both experiments generally indicate that “bottom-up” approaches
outperform the “top-down” heuristic both in terms of in-sample error and out-of-
sample forecasting accuracy. In particular, architecture selection based on sequen-
tial statistical tests seems to deliver the most parsimonious structures that combine
good out-of-sample performance with minimum model complexity. Both simple-to-
complex strategies considered in this paper are also much more preferred in terms of
the computational burden needed to reach the final specification. In each method,
subsequent training of enlarged NN models is avoided and the decision of whether
to add an extra neuron is based on auxiliary regressions whose implementation is
straightforward.

The experiments performed in this study can be extended in various directions.
First of all, additional model selection approaches could be employed and more com-
parative results be obtained. A more interesting task would be to employ different
NN models to learn a generalised option pricing formula in a time-series context.
For this purpose, one needs various snapshots of the option surface taken at different
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time-frames. It is our belief that in this case the estimated volatility would be an
important factor in determining the time-evolution of option prices.

Weighting Scheme W1

SST IC SP BS

Training Set MWSE 1.205 0.913 1.034 4.016
MWAE 0.601 0.519 0.584 1.001
SBIC 0.336 0.257 0.183 1.390

Test Set MWSE 1.383 1.566 1.221 10.242
MWAE 0.660 0.695 0.650 1.846
SBIC 0.473 0.797 0.349 2.327

Weighting Scheme W2

SST IC SP BS

Training Set MWSE 1.814 1.837 1.871 3.822
MWAE 0.795 0.769 0.793 1.010
SBIC 0.770 1.006 0.751 1.341

Test Set MWSE 1.636 1.925 2.051 14.960
MWAE 0.769 0.790 0.841 2.322
SBIC 0.667 1.053 0.843 2.705

Weighting Scheme W3

SST IC SP BS

Training Set MWSE 4.674 4.725 4.741 4.027
MWAE 1.243 1.220 1.237 1.105
SBIC 1.692 1.901 1.706 1.393

Test Set MWSE 4.882 4.926 4.936 20.78
MWAE 1.283 1.258 1.263 2.816
SBIC 1.735 1.943 1.746 3.034

Table 7.5: The performance of the hybrid NN models used in fitting restricted areas of the
training and test option matrix, designated by the three weighting schemes W1, W2 and W3

(see also table 7.4).



Chapter 8

Conclusions and further research

In this thesis, we showed how computational intelligent models (artificial neural net-
works) and econometrics GARCH parametrisations can be combined into a flexible
modelling framework that can accommodate most of the stylised facts associated with
financial time-series (nonlinearities in mean, asymmetric GARCH effects in variance
and possibly non-gaussian errors). By jointly modelling the conditional mean and
volatility of the data-generating process, we manage to extend the scope of NNs from
function approximation to density forecasting tasks and thus investigate interesting
dependencies on higher-moments of the conditional distribution.

As with every flexible class of models, the issue of carefully selecting the final
specification becomes of paramount importance. The analysis of the statistical prop-
erties of NN-GARCH models revealed that any combination of neural networks with
GARCH parametrisations is not guaranteed to be successful unless special attention
is paid to the specification of the mean and the variance equation. In fact, if nonlin-
ear dependencies in data are due to GARCH effects the placement of extra hidden
neurons in the mean model renders some of the parameters of the model redundant,
which destroys the asymptotic normality of the maximum likelihood estimator and
leads to poor out-of-sample performance. On the other hand, it is not possible to
consistently estimate a GARCH model unless the specification of the mean equation
is adequate for the conditional mean. Therefore, in a practical application it is im-
portant for the researcher to have a systematic procedure that can decide on the level
of complexity to be placed on each side of the model, according to special features
existing in data.

Following the principles underlying the construction of econometric models, we
propose a complete model-building cycle that comprises specification, estimation and
evaluation of the model. For the determination of the number of hidden neurons in
the mean and the level of complexity in the variance equation, we follow a sequen-
tial testing procedure which avoids many statistical and numerical problems arising
from the non-identifiability of neural networks. Based on the maximum likelihood
theory, we device Wald-type tests for testing the joint significance of parameters of
an estimated NN-GARCH model and thus offer the opportunity to the researcher to
investigate hypotheses of interest regarding the nature of the underlying statistical
process. We also present a series of in-sample diagnostics for the mean and vari-
ance equation that examine the extent to which the derived specification is a faithful
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approximation to the conditional distribution. These are very important as far as
the quality of approximation as well as the forecasting performance of the model
are concerned. Among the various cases of structural misspecification that we con-
sider are remaining autocorrelation in mean, remaining autocorrelation in variance,
nonlinearity in mean and asymmetric variance effects. The distinguishing feature of
significance or diagnostic tests is that they lead to valid inference even in the case
where the distributional assumptions made by the model are not correct (i.e. the
empirical density of standardised errors is fat-tailed or asymmetric). This is a quite
useful feature as it permits statistical inference without having to explicitly model
all aspects of the conditional distribution.

The statistical procedures considered in this thesis are generally simple and inex-
pensive to construct, as they directly apply to a pre-estimated model, and only require
the computation of first derivatives and a set of auxiliary regressions to determine
whether the residuals (or the standardised residuals) contain additional features con-
jectured by the alternative hypothesis. Most important, the validity of tests does not
depend on restrictive assumptions, such as homoskedasticity or normality of errors,
holding in addition to the null hypothesis being investigated. This makes possible
to control the empirical type I error of the test (i.e. the probability that it mistak-
enly rejects the null hypothesis) without having to explicitly model all aspects of the
conditional distribution.

A considerable part of this thesis is devoted to investigating the finite-sample-size
performance of testing procedures in a simulation environment that resembles most
of the statistical features observed in financial data (nonlinearity, heteroskedasticity,
non-normality). The results of simulation studies show that the non-robust version
of the LM test cannot distinguish between mean dependencies and changing variance
levels. The empirical size of the test is generally distorted under ARCH heteroskedas-
ticity, leading to excessively false indications of nonlinearity or serial correlation in
errors. This is a cautionary remark against using non-robust statistical procedures
for testing NN specifications. Similar problems quite probably arise in other neural
network specification or diagnostic procedures proposed in the literature (information
criteria, pruning heuristics, etc), although general statements about the magnitude of
the size and power distortions that can be expected in each case are difficult to come
by. This issue can be investigated by means of further Monte Carlo simulations.

The robustification of testing procedures considered in this thesis, along the lines
of Wooldridge (1990, 1991), allows the researcher to closely follow the nominal type I
error when investigating certain hypotheses on the conditional mean, without having
to explicitly model the variance structure or the distribution of standardised errors.
Incorporating estimates of the conditional volatility of errors into the testing proce-
dure, gives the researcher an option for increasing the efficiency (or else the power) of
the conditional mean test in detecting hidden nonlinearity or serial correlation in the
residuals. The forecasting exercise presented in chapter 6 shows that robustified tests
are generally able to distinguish between nonlinearities in mean and ARCH effects,
something which is not feasible with the non-robust LM test.

After establishing a complete model-building cycle for the family of NN-GARCH
specifications, our next goal is to compare the performance of sequential statistical
tests with other statistical or non-statistical procedures used in the design of neural
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network GARCH models. This comparison can be made on the basis of simulated as
well as real data In parallel, work has to be done on the asymptotic statistical theory
of the model, including conditions for the existence of moments and for consistency
and asymptotic normality of the QML estimator. These are very important as far as
the validity of diagnostic tests is concerned. Some specialised domains of application
are discussed below.

Statistical arbitrage

An interesting application area for NN-GARCH models is related to the detection of
statistical mispricings in a group of assets. Several authors have suggested approaches
that attempt to take advantage of price discrepancies by taking proper transforma-
tions of financial time-series and creating “synthetic” assets; see e.g. Burgess (2002,
2000); Towers (2002) for stocks of FTSE 100 Burgess and Refenes (1996); Garrett
and Taylor (2001) for equity index futures and Steurer and Hann (1996) for exchange
rates. Amongst them, Burgess and Refenes (1996); Burgess (2002); Steurer and
Hann (1996) note that the correction of statistical mispricings is often characterised
by strong nonlinearity and hence employ neural network autoregressions to model
the dynamics of statistical mispricings. This is to obtain an idea of how mispricings
of different size and sign (positive/negative) are on average corrected over time.

In Thomaidis et al. (2006) an intelligent NN-based system was also used in the
detection of mispricings in a pair of two closely related stocks. The mispricing series
{zt, t = 1, 2, ...T} was constructed by comparing the price of each stock to a funda-
mental value indicator based on the price of the other stock. A statistical analysis of
mispricings at a high (intra-day) sampling-frequency revealed to us that the volatil-
ity of zt is not constant over time but strongly depends, in an ARCH fashion, on
the history of mispricings. Any changes in the short-term volatility of the synthetic
asset have important implications for the risk control of statistical arbitrages; hence
a combined neural network-GARCH autoregressive model was used to model both
nonlinearities in the correction of zt as well as volatility clustering. The trading strat-
egy employed in that work is similar to the one presented in section 6.5 and is based
on the idea of taking proper positions on the constituent assets when mispricings
become exceptionally high or low.

At the moment, our statistical arbitrage detector comprises only symmetric GARCH
parametrisations for the modelling of the conditional variance, although it shows an
improvement over a pure NN or a linear AR-GARCH model. An immediate extension
would be to introduce asymmetric models for the volatility, such as EGARCH, GJR-
GARCH, etc. In this way, the model could track more efficiently short-term changes
in the uncertainty associated with any deviation of the synthetic from the mean and
hence have a better control over the risk associated with the trading strategy.

Semi-parametric estimation of volatility

Although the initial version of the proposed NN-GARCH model includes parametric
variance models, such GARCH or EGARCH, it can be easily extended to include
more flexible parametrisations of the variance equation that do not make explicit
assumptions on the nature of asymmetries in the volatility-generating process. One
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of our future research directions is to extend the neural network model from the mean
to the variance part, thus creating a combined NN-NNGARCH model. This is also
the tendency in other nonlinear time-series methodologies (see e.g. Lundbergh and
Teräsvirta (1998) for smooth transition mean-variance models). To avoid problems
of non-identifiability, an incremental strategy based on sequential LM tests could also
be used to determine the number of hidden neurons in the volatility process. First
experiments conducted on this type of models showed that a bottom-up approach
similar to that used in the specification of the mean is advisable, as the inclusion
of many neurons in the volatility equation quite often leads to numerical problems
in the optimisation of the likelihood as well as instability of the variance process.
However, an immediate application of mean nonlinearity tests based on third-order
Taylor series approximations of extra neurons may not be appropriate in this case, as
further conditions on the parameters need to be imposed to guarantee positive and
non-explosive variance estimates.

Interdependencies between financial markets

In recent years, global markets tend to become more integrated as a result of a broad
tendency toward liberalisation and deregulation in the capital markets of developed
as well as developing countries. Empirical research documents a significant level of
interdependence among international markets, with the U.S. market being one of the
most influential in the world (see e.g. Hamao et al. (1990); Koch and Koch (1991);
Masih and Masih (1997); Berben and Jansen (2005)). Hence, in order to capture the
whole picture of the price formation mechanism, it seems more appropriate to depart
from pure time-series models and include other exogenous economic variables that
could possibly help in forecasting the target variable.

Interdependencies between domestic and international markets are often complex
and can manifest themselves in various ways (see e.g. Thomaidis et al. (2005b) for a
discussion). Short-term return transmissions are perhaps the most common type of
dependencies been investigated in the literature. Transmission of returns takes place
between two markets when past returns on one index can one average forecast future
returns on the other. In this case, a causality relationship exists between the two
indexes and we say that the one index “causes” the other. Causality may or may not
be bi-directional and can vary substantially in time.

Apart from short-term dependencies, markets are often tied-up in long-run rela-
tions that act as an attractor or equilibrium to individual series. Whenever short-run
deviations are observed, markets are expected to react in the direction that restores
the equilibrium. Detecting equilibrium relations may be useful in predicting the long-
run behavior of a group of markets, hence long-run relations can be combined with
short-term causalities to better describe the dynamic response paths of individual
series.

Perhaps, the most common type of models used to investigate the short-run dy-
namics are the so-called equilibrium correction models (see e.g. Engle and White
(1999); RSAS (2003); Thomaidis and Dounias (2005)). Assume two variables xt

and yt, possibly representing the value of two stock indexes at time t, and another
variable zt that measures temporal deviations from the long-run relation. A typical



CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 121

equilibrium correction model is specified as:

∆yt = a1
0 + γ1zt−1 +

∑

i

a1
i ∆yt−i +

∑

j

b1
j∆xt−j + e1

t (8.0.1a)

∆xt = a2
0 + γ2zt−1 +

∑

i

a2
i ∆yt−i +

∑

j

b2
j∆xt−j + e2

t (8.0.1b)

where a’s b’s and γ’s are free parameters, ∆ denotes the first difference operator
(∆xt = xt − xt−1) and e1

t , e2
t are two (not necessarily independent) innovation

processes. According to the above specification, market Y is not caused by X if
the coefficients of ∆xt−j in the first regression, including γ1, are jointly statistically
insignificant. In other words, a causality test is equivalent to testing the hypothesis

H0: b1
j ’s and γ1 are altogether 0

against the alternative

H1: at least one b1
j or γ1 is different from 0

Such tests can be easily designing using an F or Wald statistic.
Note that causality is immediately implied if there exists an equilibrium between

the two time-series. Since series are tied up to a long-run relation, at least one of
them must “take care” of preserving this relationship by reacting in such a way that
corrects temporal deviations.

The majority of causality tests applied in studies of international equity markets
are based on linear regression models such as (8.0.1), further equipped with an error
correction term if cointegration exists. However, such models cannot capture nonlin-
ear influences between equity markets, which might be especially profound in periods
of instability and crises. Hence, (8.0.1) is in fact a device for testing linear short-term
influences and rejection of the null does not imply lack of causality but rather lack
of linear causality.

In order to draw finer conclusions on the nature of short-term dynamics between
the two markets, one can use a wider class of regression models:

∆yt = g1(zt−1, lagged(∆yt, ∆xt)) + e1
t (8.0.2a)

∆xt = g2(zt−1, lagged(∆yt, ∆xt)) + e2
t (8.0.2b)

where g1 and g2 are two possibly nonlinear mappings. In Thomaidis et al. (2005b) we
employed neural network regression models of the form (4.2.1a) to approximate g1 and
g2 in a study of the cross-dynamics between the German and French equity market.
We investigated causalities and long-run equilibria in daily values of DAX and CAC
indexes from July 1987 to March 2005, by slitting the whole sampling period into
four subperiods characterised by important economic and political events. By means
of Wald significance tests on proper sets of parameters in the linear and the neural
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network part of the models1, we investigated a variety of hypotheses concerning the
nature of inter-market dynamics:

• Do lagged returns on one index provide any predictive information about re-
turns on the other?

• Is this information mainly the result of linear or nonlinear reactions?

• Which market is responsible for preserving the long-run equilibrium (whenever
existed)?

• How does each market respond to temporal deviations from the equilibrium?

The results of this study showed that interdependencies between indexes are vary-
ing in nature and highly dependent on the historic period under study. Frequently,
linear with nonlinear effects are combined to create a complex dynamic behaviour.

We believe that this study reveals a broader utility of artificial neural networks,
and in fact any intelligent learning technique, which goes far beyond the estima-
tion of data relationships. From a statistical perspective, NNs can be considered as
semi-parametric devices for testing interesting hypotheses regarding the nature of fi-
nancial/economic phenomena. As NNs have the ability to extract complex nonlinear
interactive effects between the variables of interest, they can be utilised in testing
hypotheses that are possibly beyond the reach of traditional linear models2. The
separation between linear and nonlinear causalities, discussed in the above study, is
a good an example.

Multivariate density models

It is important to note that mean causalities are not the only type of information
exchanged between markets. Interdependencies are also observed among the second
moment of the distribution of returns, i.e. the volatility. Empirical observation
confirms that a sudden price increase or drop in one market can have an impact
on the short-term volatility of the domestic as well as “neighbouring” markets3.
This fact adds additional levels or dimensions into the analysis of the cross-dynamics
between international markets and this is where a NN-GARCH modelling framework
can be exploited. In order to model the transmission of news and volatility between
markets, one could incorporate additional GARCH or ARCH terms, corresponding
to exogenous influences, in the volatility equation of each market.

One of our future research objectives is to extend the two-equation model, pre-
sented above, so that it can cover a broader range of markets. Apart from equities,
our financial network could also include bond and foreign exchange markets, which
seem to be an important determinant of the course of stocks. Much of the method-
ology presented above can be almost directly applied to more than two time-series,

1See e.g. Kuan and White (1994) for the application of the Wald test in a neural network
regression model.

2See White and Racine (2001) for a discussion on the use of NNs in statistical inference.
3This is phenomenon is often termed in the literature as volatility spill-overs (see e.g. Engle

(1987)).
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although in this case more sophisticated tools are needed for detecting long-run equi-
libria between more than two variables4.

Another important research direction is concerned with a behavioural analysis of
inter-market dynamics. Knowing how markets behave over time, especially in ex-
treme events, gives us important insight into their functioning and helps to predict
their reaction to similar, low-probability, events that may occur in the future. A
behavioural analysis of financial markets attempts to address many interesting ques-
tions, such as how much time it takes on average until a shock is absorbed, how
shocks of different magnitude or sign (“good/bad news”) are propagated through the
financial network, how long-run equilibriums are restored, etc. The ultimate goal
of this research direction is to create statistical models that can capture the main
features of cross-market dependencies, as those are imprinted in the joint empirical
distribution of returns. These models can in turn be used as Monte Carlo simula-
tors of realistic market scenarios upon which other financial engineering tasks can be
based, such as the estimation of financial risk (relevant to trading purposes) and the
pricing of more advanced financial products (derivatives).

4See e.g Enders (1995) and the references therein.



Appendix A

Analytical derivatives of the

NN-GARCH model

1.1 Introduction

In appendix A we provide analytical expressions for the gradient and the hessian
of the log-likelihood function of a NN-GARCH model, under the assumption of a
normal distribution of errors. These are very useful in optimisation routines or in the
computation of test statistics. Section 1.2 computes the gradient and section 1.3 the
hessian of the log-likelihood function. For purposes of brevity, we adopt the following
notation in the subsequent formulae: for a scalar function f(x, y) : R

n × R
m → R,

where x = (x1, . . . , xn)′ ∈ R
n and y = (y1, . . . , ym)′ ∈ R

m are two vector variables,
we denote by ∇xf the gradient of f(.) across the direction of x and by ∇2

xy′f the xy
block of the hessian matrix of f(.).

1.2 Gradient of the log-likelihood
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The gradient of the neural network part of the mean model is
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The gradient of the volatility part for a GARCH model is
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1.3 Hessian of the log-likelihood

The hessian of the log-likelihood is
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The above matrix is block-symmetric hence we only provide formulae for the upper
diagonal blocks
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Let A denote the minus expected hessian of the log-likelihood:
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Assuming that conditions 4.3.6 are fulfilled, i.e. the NN-GARCH model is structurally
correct, and by the property E(.) = E(E(.|xt)) of conditional expectations we have
for the diagonal blocks of A
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It can be proven along the lines of Engle (1982), theorem 4, that the off-diagonal
blocks Aφα′ and Aθα′ are zero provided that the conditional variance model is symmet-
ric (in the sense that the model responds similarly to positive and negative inputs of
the same size) and satisfies certain regularity conditions. The classical GARCH spec-
ification is symmetric and satisfies the regularity conditions (see Bollershev (1986))
and so the combined NN-GARCH model presented above possesses this property.
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R. Luukkonen, P. Saikkonen, and T. Teräsvirta. Testing linearity in univariate time-
series models. Scandinavian Journal of Statistics, 15:161175, 1988.

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.

H. M. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

A. M. M. Masih and R. Masih. Dynamic linkages and the propagation mechanism
driving major international stock markets: An analysis of the pre- and post-crash
eras. The Quarterly Review of Economics and Finance, 37(4):859–885, 1997.

P. C. McCluskey. Feedforward and Recurrent Neural Networks and Genetic Programs
for Stock and time-series Forecasting. PhD thesis, 1993. Department of Computer
Science, Brown University.

D. G. McMillan. Linear models, smooth transition autoregressions, and neural net-
works for forecasting macroeconomic time-series: A re-examination. Review of
Financial Economics, 14:81–91, 2005.
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T. Teräsvirta, D. van Dijk, and M. Medeiros. Linear models, smooth transition
autoregressions, and neural networks for forecasting macroeconomic time-series: A
re-examination. International Journal of Forecasting, 21:755–774, 2005.

H. Theil. Principle of Econometrics. John Wiley & Sons, 1971.

N. S. Thomaidis. The implications of behavioural finance to the modelling of securities
prices. In D. Satish and P. Krishna Kishore, editors, Behavioral Finance, Finance
Series. The ICFAI University Press, 2006.

N. S. Thomaidis and D. Dounias. Cointegration and error-correction models: towards
a reconcilation between behavioural finance and econometrics. The ICFAI Journal
of Behavioral Finance, 3(3):51–73, 2006a.

N. S. Thomaidis and G. Dounias. Equilibrium correction models in the framework
of computational intelligence. URL http://ssrn.com[February2007]. Working
Paper, 2005.

N. S. Thomaidis and G. Dounias. A general class of combined neural network GARCH
models for financial time-series analysis. URL http://ssrn.com[February2007].
Working Paper, 2006b.

N. S. Thomaidis, G. Dounias, and N. Kondakis. Financial statistical modelling with
a new nature-inspired technique. In Proceedings of the 1st European Symposium on
Nature-Inspired Smart Information Systems (NISIS), Albufeira, Portugal, 2005a.

N. S. Thomaidis, N. Kondakis, and G. Dounias. The cross-dynamics of international
financial markets: a suitable domain for applying nature inspired intelligent tech-
niques. In Proceedings of the 1st European Symposium on Nature-Inspired Smart
Information Systems (NISIS), Albufeira, Portugal, 2005b.

N. S. Thomaidis, N. Kondakis, and G. Dounias. An intelligent statistical arbitrage
trading system. Lecture Notes in Artificial Intelligence, 3955:596–599, 2006.



BIBLIOGRAPHY 140

N. S. Thomaidis, V. Tzastoudis, and G. Dounias. A comparison of neural network
model selection strategies for the pricing of S&P 500 stock index options. Interna-
tional Journal of Artificial Intelligence Tools, 2007. forthcoming.
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