ITANEIIIZTHMIO AITAIOY

IHANEIIIXTHMIO AIT'AIOY

TMHMA MHXANIKQN [IAHPO®OPIAKQN KAI
ENNIKOINQNIAKOQN XYXTHMATQN

AIATPIBH
Yl TNV amOKTNOT AOAKTOPIKOL AUTAMUOTOG
tov Tunpoatog Mnyavikov ITAnpopoprakmv kot
Enkovoviokov Zvotnuatov

I'eopyiog ®pavrtiickov

H MEOOAOX SCAP: MIA ITPOXEITIXH
EMIIEIPIKHYX TEXNOAOI'TAX AOT'TEMIKOY

(THE SOURCE CODE AUTHOR PROFILES (SCAP)
METHOD: AN EMPIRICAL SOFTWARE
ENGINEERING APPROACH)

2vuPovievtikn Extpornny: Eletaotixn Emitpony):

Tpoedpocg: Tlpoedpocg:
Ytépavog ['kpitlaing Xtépavog ['kpitlaing
Avaminpotg Kadnynme Avarinpotic Kabnyntig
[Mavemompiov Aryaiov ITavemompiov Atryaiov
Mén: Médn:
Kavotaviivog Z(DKpom]g Kdérowog

. Kafnynmg
AOQUTPIVOVdAKNG n (ou I ,
Enikoupoc Kadmymeic avemotpiov IMepaimg
[Mavemompiov Atryaiov Zroupidwv Avkobavaong

Kabnymtig

Evotdbiog Tropardro Iavemompiov [Hatpov

Aéxtopag

[Mavemotnpiov Atryaiov Nuknrag Nikntdkog
Kabnynig
Iavemompiov Aryaiov
Alopnong ZmvEAANG
Avominpotig Kabnyntmc

Owovopkov [Tavemiotpiov AGnvav

Kovotavtivog Aapmptvouddkng
Enikovpog Kabnyntg
ITavemompiov Aryaiov
Evotdfiog Zropatdrog
A€KTopog

ITavemompiov Aryaiov

Table of Contents

EYXAPIZTIEX 3
ACKNOWLEDGEMENTS 4
INEPIAHWH 5
EXECUTIVE SUMMARY 7
CHAPTER 1. INTRODUCTION 8
1.1. STATEMENT OF THE PROBLEMccuouiiiiiiiiiiiiiiiiiiciciciscc s 8
1.2 MOTIVATION ...ttt a e n e n e 10
1.3, CHALLENGESctttttitteiteitet ettt sttt ettt ettt ebe ettt e b et s b st e bt sbeebe et et et e nbenbesbe e bt eaeessensennen 11
1.4. CONTRIBUTION OF THE THESIScuteutiteuieienienienteeteeiteitete ettt sttt et sbe st ebe e e nees 12
1.5. THESIS OUTLINEcocuiiiiiiiiitcieieiccc s s 14
CHAPTER 2. SURVEY OF RELATED WORK 16
2.1. INTRODUCTION - DEFINITIONSccooviiiiiiiiiniiririrnieeeetetete et sesencas s 16
2.2. AUTHORSHIP ATTRIBUTION METHODS FOR NATURAL LANGUAGES..........ccoooiriiiieieieinnnes 18
2.2.1 Analytical techniques used on natural language authorship identification......................... 22

2.2.2 Keselj’s Approach to Natural Language Authorship Identification...............c.ccccccoceveencncnn. 24

2.3. AUTHORSHIP ATTRIBUTION METHODS FOR PROGRAMMING LANGUAGES..........ccccoviiieninnnnns 26
2.3.1. Features for Source Code Authorship Identification.................cccccccccovoinnnniieccnoronnnnn. 30
2.3.2. Features for Executable Code Authorship Identificationccccovvvvvecconocnncnn. 35

2.3.3 Analytical techniques used on programming authorship identification...............cccccee.... 37

2.4 SUMMARY ..ottt 41
CHAPTER 3. THE SCAP APPROACH 43
3.1. DESCRIPTION OF THE SCAP METHODc.ceuiuiuiiiiiiiiieieieeie ettt 45
3.2. EMPIRICAL STUDY — HYPOTHESES.AND METHODcocoviiiiiiiiiiiiiiiiiiieieiceeccnenesennnen 49
3.2. EVALUATING THE EFFECTIVENESS OF THE SCAP METHOD........ccccooiiiiiiiiiiiiniiiiiccicieeennes 51
3.2.1. Comparison of SCAP and Keselj’s approach on MacDonell Data.................cccccccccovvennn. 51
3.2.2. Performance of SCAP and Keselj’s approach on A Different Programming Language 54
3.2.3. Performance of SCAP and Keselj’s approach on Comment-free Source Code 55
3.2.4. Performance of SCAP and Keselj’s approach on Difficult Student Data 56
3.2.5. Dealing with many authors using the SCAP and Keselj’s approach..............c..ccc.cc..... 57
3.2.6. Performance of SCAP and Keselj’s approach on Comments..............ccccooveeecconncncncnn. 58
3.2.7. The Significance of Training Set Size................cccccviiiiiiiiiiiiiiiiiiiieceee s 59

3.3. IMPLEMENTING SCAP TO LANGUAGES THAT REPRESENT DIFFERENT PROGRAMMING STYLE. 61
3.3.1. The Common LiSP dtal SOtc.cccccoiviriniiiniiieiiiiiiiiii ettt 62
3.3.2. THE JAUA AAEA SCL ...ttt ettt 63

B4, SUMMARY ..ottt 64
CHAPTER 4. SIGNIFICANCE OF HIGH-LEVEL PROGRAMMING FEATURES............... 66
4.1. PROGRAM FEATURES AND SOURCE CODE AUTHORSHIP IDENTIFICATIONc.cccooveiiiniiiininnnnas 66
G100 COMIMEILES ... s 68
4.1.2. Programming Layout fetures..................cocccoiiiiiiiininiiiiieecccce e 71
413, IACHEIIETS ... 74

4.1.4. Programming SHUCIUTE fEATUTEScoiuiiiiiiiiieiieeeeeeccc e 77

4.2. DATASETS AND INITIAL EMPIRICAL ANALYSIS — HYPOTHESES AND METHOD..........cccceveneenne. 78
4.2.1. The Common LiSP dAtal SOcccccoiviririiiniiiiiciiiiiii et 80
4.2.1. THE JAUA AAEA SO ...ttt ettt ettt eae e 80

4.3. SIGNIFICANT FEATURES FOR THE COMMON LISP DATA SET.....ccueiiitieeieiieienienie e eeeeeeeeeeeneeees 81
4.3.1. Contribution of COMMENEScccccooiiiriiiiiiiiieiiiie e 81
4.3.2. Contribution of LAYOUEcccccooviiiiiiiiiiie s 82
4.3.3. Contribution of IAEHEIFIEYSc.cciiiiiriiiiiiiieicicict e 83

4.4. SIGNIFICANT FEATURES FOR THE JAVA DATA SEToecuviitieetieiteeieere e eeee st sveereeseeevessnessnesaeas 87
4.4.1. Contribution of COMMENESccccciviiiriiiiiiiiiieieie e 87
4.4.2 Contribution Of LAYOULcccocoiviiiiiiiiiiii s 88
4.4.3 Contribution of IAentifiersccoccoiiiiiiiiiiiiiiiccec e 89

4.5 SUMMARY OF PERFORMANCEccutiteutetirienietintentesestensestetesseseasenseseasensensasensensesessensesensensesesseneens 93

4.6 SUMMARY ...ttt ettt et eat et et e e bt sheebeeateae e e e s e ebeeeeebeemtemeens e s eabeebeebeeneen s et et eabeebeebeeneeneeneentan 95

CHAPTER 5. THE SIGNIFICANCE OF USER DEFINED IDENTIFIERS IN JAVA SOURCE

CODE AUTHORSHIP IDENTIFICATION 98
5.1. JAVA IDENTIFIERS AND SOURCE CODE AUTHORSHIP IDENTIFICATIONcccovverveeveenrenenenes 100
5.2 EMPIRICAL ANALYSIS - OUR APPROACHcocuciiiiiiiicicie et 101
5.3 DATA SETS ANALYSED.......coiiiiuiiiieieieiitccs et s st 102

5.3.1 The Open Source Java data Stocovueueuiuiiiiiioiiieieeeeccce e 104
5.3.2 The Student JAUA AAEA SEt............cccciiirieiiiieiieee st 104
5.4 SIGNTIFICANCE OF IDENTIFIERS......ccuttttettittettetenientesteeteeieettetenteste st sbeseeenteeensessestesbesieeneeneensenee 105
5.4.1 Contribution of Simple IAeNtIfiersocovuieuiuiiiiiiiiiiieeceeecee e 106
5.4.2 Contribution of Class IAentifiers................cccoceeiiiiiinioiiiieeeccceeee e 108
5.4.3 Contribution of Method IAentifiers..............ccccccoeiiiiinininiiiiicccccee e 110
5.4.4 Contribution of all User defined Identifiers................ccccocovoviiiiiiiniiiiiiiiccccc, 112
5.5 SUMMARY OF PERFORMANCEeiutrtirtiiiteuietenientesteatesieestetesteste st sbesaeesteeensessestesbesaeeneeneensenes 114
5.6 SUMMARY ..ottt a ettt 116

CHAPTER 6 CONCLUSIONS 118
6.1. DESCRIPTION AND COMPARISON OF PREVIOUS STUDIEScoiviiiiiieieieieiescecnenee e 119
6.2. DEVELOPMENT OF A NEW APPROACH TO SOURCE CODE AUTHORSHIP IDENTIFICATION 120
6.3. THE SIGNIFICANCE OF HIGH-LEVEL PROGRAMMING FEATURES IN SOURCE CODE AUTHORSHIP
IDENTIFICATIONouiuitiuiuiittesetetetetcs sttt ettt bttt s et s bbb s bbb bbb s e st 121

6.3.1 The significance of user-defined identifiers in Java source code authorship identification 123
6.4, FUTURE WORKcviiuiitintieiteiietestente sttt ettt ettt sttt et ettt st sbe st eat et et nae st e bt sae et et et enee 124
REFERENCES 126

EYXAPIXTIEX

Téooepa xoovix mépaoav yix va ptacw va yodpw avty tn oeAida v
OTIOlXt OVELQEVOHOLY ATO TN OTLYHT] oL Egkivnoa avt) TV MEOoTdOeX.
‘Epada moAA& 6xt Hévo yia tnv eToTun Hov aAA& kat yia péva, t) Cwn
KaL TOUG avOEWTOVG YVURW HOU.

Evxapotw mowta an’ 6Aa to Oco mov pe BorjOnoe va oAokAnowow
avTn T daKToQKN datELPT).

Elpatr amegogota evyvopwyv otov emuPAémovia kabnynt| pov .
Yrédpavo I'eoitCaAn. Me m dwkr} tov ovvexr] kabodrynon, v nowr tov
otELEN Kat evOAQQLVOT] OtV TA TIEAYHATH DVOKOAELAV KAL TNV &UEDT)
AVTATIOKQOLOT] TOL OTNV eTALOT TWV TMEOPANUATWY TIOV AVTIHETWTIOA,
HUTIOQE0A V& OAOKANQWOW avTr) TNV RooTtdOetx. AloBdvopat oAV Tuxen
TIOL HE EUTIOTEVONKE, APLEQWVOVTAC HOL TOV TIOAUTIHO XQOVO TOL KAl
HeTAdIDOVTAG POV YVWOT).

Ocepuéc evxaplotiec oto Apa EvotdOio Zrapatdto. Xwolg) dkr] tov
k0001 yNOoT, 010 CLYKEKQIUEVO €QeLVTTIKO Ttedio, de Oa Mtav duvatn 1)
oAokAT)pwo™ NG dratoPng avtr|c.

Evxagiotw moAv toug Prof. Stephen Mac Donell kat tnv Dr. Carole Chaski
TIOL AV Kol BolokovTay XAddec Hida pakpd pe foriOnoav ovoxoTika e
T OXOALX TOUG, TIC TAQATNENOES TOuG aAAd xat T d1oeOwon
TAQAYQADWY TWV ETUOTIHOVIKWV &000wV.

Evxaplotw to Apa XtéAo I'ewoytov v tnv moAvTiun orfewd tov oto
OTATIOTIKO HEQOG TNG dxTOLPT|G.

Oepuéc evxaplotiec otov Prof. Stephen Mac Donell, otov Emtix. KaO.
Anunton Pwtaxn kat otov AvanA. KaO. Tlavaywtn Adauidn yux ta
dedopéva TOL HOL €DWOAV Y TNV EKTEAEDT) TWV TELQAUATWV.

‘Eva peyddo evxapotw oto mpoowmikd tov Kévroov EEvmnoétnong
ITANQodoEKTIG LAHOUL Vit TNV AUECT) AVTATIOKQLOT) O€ OTIOLOdNTIOTE AlTNUA
Hov.

Evxaototw v kadnyntowx AyyAwrg @lodoyiag ka AAkn MapovAr
Yoo T BonOewx kot tig dropbwoelg 0o kelpevo e dTELPNG.

Kat tédog, Ba N0eAda va evxaplomow kat va TUow to oLlLYO HOL

Avdoéa BovPovva yix TN oUUTAQAOTAOT KL TV KATAVOTNOT] Tov €detée
AVTA T TEOTEQR XQOVLAL.

ACKNOWLEDGEMENTS

Four years have passed and I have reached the point where I can now write
this page; a page that I have been dreaming since I first started this task. I
have learned many things not only as far as my science is concerned but also
about myself, life and the people around me.

First of all, I would like to thank God that helped me to complete this
doctoral thesis.

I am extremely grateful to my supervisor Prof. Stefanos Gritzalis. This
thesis has been successfully completed with his continuous guidance, moral
support and encouragement when things were difficult. His direct response
to the problems I had faced was valuable. I feel very lucky that he trusted me,
dedicating precious time and knowledge.

I would also like to thank Dr. Efstathios Stamatatos. Without his guidance
in the particular research field of this thesis, it would not have been possible
for me to complete it.

I am so grateful to Prof. Stephen Mac Donell and Dr. Carole Chaski for
their guidance. They have also helped me substantially with their comments,
their observations and the correction of our scientific articles, although they
were thousands of miles away.

Special thanks to Dr. Stelios Georgiou for his support in the statistical part
of my thesis.

I would like to express my appreciation to Prof. Stephen Mac Donell, Prof.
Dimitris Fotakis, and Prof. Panagiotis Adamidis for providing the data sets
used in the experiments of this dissertation.

I would also like to thank the people in the HelpDesk of Samos for their
prompt response to my requests.

Moreover, thanks to the teacher of English literature Aliki Mamouli for
editing this thesis.

Finally, I would like to thank and honour my husband Andreas Vouvounas
for the support and understanding during these four years.

IMegiAnym

INueoa, o Hx evEela MOKIALX TEQLMTWOEWY, O TIQOODIOQLOHOG TOL
ovyyoadéa mnyalov kKwdka Taovotilel eEaxpetiko evdladéoov. Tétoleg
TEEQLMTWOELS UTIOQOVV va meQAapfavouy dadwvieg 6oov adoodk To
ovyyoadéa, amodeLEn Y TNV TAVTOTTA TOLV OLYYEADEN OTO DUKAOTIOLO,
ermféoelg 0to dadikTvo LTO HoEDN WV (Viruses), TOWIKWV AAOYwV (trojan
horses), Aoywwv PouPwv, amartn kAnw. H avaAvon pe okomd tnv
amokAdALY™ TOoL oLYYRAdEn TYALOL KOOWKA elval TO €QELVNTIKO Tedlo
miov mEooTiabel va avayvwloel TO OLVTAKT €VOG TEOYQAUMATOS, HE
dedopEVo éva oUVOAO TEOKAOORLOUEVWVY LTIOYNPIWV CLVTAKTWY KAL UE TN
Oewonon kdbe TMEOYOAUHATOS WG YAWOOIKA KAl OTIALOTIKA avaAvTéng
ovtomtac. O kaBopopds Tov ovyyeadPEéa VoS TIROYRAMUATOS Paoiletatl
ovvrOws oTNV avAALOT) DeLYUATWY TTIOYQAHUUATWY TOV LOLOoV.

Mepka amo Ta ONUAVTIKOTEQX AVOLKTA £0ELVNTIKA CNTHHATA OTOV TOEn

TOL TTEOTOLOQLOMOV OLYYQADPEX TIOOYQAHUUATWY TNYXloL kwdka elvat:

. H e&doton and) yAwooa TEOYQAUUATIOHOD TWV UETQLKWY TIOL
XONOLHOTIOOVVTAL OTNV AVATITLUEN HOVTEAWV IKAVWV Vi
duxxwploovv Tt XAQAKTNEOTIKA dladPoowv ovyyeadéwv

TIOOYQA U UATWV.

. H dwdwaoio emAoyng avtwv twv HETOKWY, N omolx dev elvat
TEOPAVT|G.

. O mEOOdOQOMOE TV XAQAKTNQWOTIKWV NG YAWOOAg

TIQOYQAUUATIOMOV, Tt OoTolx oLUPBAAAOLY OTNV AVAYVWELOT] TOL
ovyyoadéa £vOg MEOYQAUHUATOS, kaOwe emiong kot N Hétonon g
oLUPOATC TOLG.

ITookeéVOL VA AVTIHETWTILOTOVV auT& Tar CNTipata, 1 Tagovoa dToLB

cotwalet:

. Zmtv avantuln pag véag mEOTEYYLONG Y TOV TIQOODIOQLOHUO Kal
™V TaEvounon ovyyeadéa TQEOYQAUUATWV TNyalov Kwduca, 1
orolax amokaAeitar «ITgooéyywon SCAP - TlpodpiA ovyyoadéwv
T yalov kwdika», 1 omola elval IAITEQA ATIOTEAETUATIKY] KAL
aveEAQMTN YADOOAS TQOYQAUUATIOHOV, adoV Paociletar ot
xapunAov erumédov mAnpodopiec. Ta meRApATA O OXPOQETIKES
YAwooeg MEoyQappaTiopoy, onwg Java, C++ kat Common Lisp wat
MowIANG duvokoAlag (6 €éwg 30 vmoymdrot ovyyoadeic)
KATAdEKVOOLUV TNV ATIOTEAEOUATIKOTTA TG TEOTELVOLLEVNG
TIQOOEYYLOTC.

. LTOV TIQOOOLOQIOUO TV XAQAKTNOLOTIKWV LYNAOD €mImEdOL OV
OLUPBAAAOLY 0TIV AVAYVWELOT) TOL CLYYEADEX EVOS TTIQOYQAHATOG,
XONOLHOTIOWOVTAS s eoyaAeto 1t pébodo SCAP. E&etalovrtal

TIOKIAX XaQAKTNELOTIKA TwV YAwoowV Java kat Common Lisp, evw 1)
onuaoia TOoL KAOEe XAQAKTNOLOTIKOU OTNV aAvVAYVWELON TOU
ovYYQadER EVOC TOOYQAUMATOS HUETQLETAL MECW MG akoAovOiag
TEELQAUATWY OTNV OTIolt APALQOVHE £VA XAQAKTNELOTIKO T PoQd.
ITopotL avtr) N peAétn €detée OtL ot Java mpoodiloploTés (identifiers), ot
oTtotot kaBopilovTal amd ToV MEOYQAUUATIOT!, OeV €mNEEALOLY TNV
axpifela Tafvounong, oe auvtd TO onuelo emixewpeltat pia
eEedcevpevn peAétn meokelévovr va eAeyxOel eav avtd 1o
oLUTIEQAOUA LOXVEL edv efetdoovue KAOe TUTIO TIEOOOLOQLOTH
EEXWOLOTA.

Executive Summary

Nowadays, in a wide variety of cases, source code authorship identification

has become an issue of major concern. Such situations include authorship

disputes, proof of authorship in court, cyber attacks in the form of viruses,
trojan horses, logic bombs, fraud, and credit card cloning etc. Source code
authorship analysis is the particular field that attempts to identify the author
of a computer program, given a set of predefined author candidates, by
treating each program as a linguistically and stylistically analyzable entity.
This is usually .based on the analysis of other program samples of undisputed
authorship by the same programmer.

Some of the major open research issues in the field of source code authorship

identification are:

Dealing with the programming language-dependence of the software
metrics used to develop models that are capable of discriminating
among several authors.

Dealing with the selection process of these software metrics - a non
trivial task.

Identifying the language features that contribute to authorship
identification and measuring the significance of their contribution.

In order to address these issues, the focus of this dissertation is on:

The development of a new approach to source code authorship
identification and classification, called the SCAP (Source Code Author
Proftiles) approach, which is both highly effective and language-
independent, since it is based on low level information. Experiments on
data sets of different programming-languages (Java, C++ or Common
Lisp) and varying difficulty (6 to 30 candidate authors) demonstrate the
effectiveness of the proposed approach.

Identifying the high level features that contribute to source code
authorship identification using as a tool the SCAP method. A variety of
features are considered for Java and Common Lisp and the importance
of each feature in determining authorship is measured through a
sequence of experiments in which we remove one feature at a time. At
this stage, while this study has indicated that programmer -defined Java
identifiers do not influence classification accuracy a separate set of
experiments has been performed, in order to check whether this
conclusion holds when we examine each type of such identifiers
separately.

Chapter 1. Introduction

1.1. Statement of the problem

With the increasingly pervasive nature of software systems, cases arise in
which it is important to identify the author of a usually limited piece of
programming code. Such situations include cyber attacks in the form of
viruses, Trojan horses and logic bombs, fraud and credit card cloning, code

authorship disputes, and intellectual property infringement.

But why do we believe it is possible to identify the author of a computer
program? Humans are creatures of habit and habits tend to persist. That is
why, for example, we have a handwriting style that is consistent during
periods of our life, although the style may vary, as we grow older. Does the
same apply to programming? Could we identify programming constructs that
a programmer uses all the time? Spafford and Weber (1993) suggested that a
field they called software forensics could be used to examine and analyze
software in any form, be it source code for any language or executable
programs, to identify the author. Spafford and Weber wrote the following of

software forensics:

“It would be similar to the use of handwriting analysis by law enforcement
officials to identify the authors of documents involved in crimes or to provide

confirmation of the role of a suspect”

This identification process is also analogous to attempting to find
characteristics in humans that can be used later to identify a specific person.
Eye and hair colouring, height, weight, name and voice pattern are but a few
of the characteristics that we use on a day-to-day basis to identify persons. It

is, of course, possible to alter our appearance to match that of another person.

Hence, more elaborate identification techniques like fingerprinting, retinal
scans and DNA prints are also available, but the cost of gathering and
processing this information in large quantities is prohibitively expensive.
Similarly, we would like to find the set of characteristics within a program

that contribute in the identification of a corresponding programmer.

The closest parallel is found in computational linguistics. Authorship
analysis in natural language texts, including literary works has been widely
debated for many years, and a large body of knowledge has been developed.
Authorship analysis on computer software, however, is different and more

difficult than in natural language texts.

Several reasons make this problem difficult. Programmers reuse code,
programs are developed by teams of programmers, and programs can be

altered by code formatters and pretty printers.

Identifying the authorship of malicious or stolen source code in a reliable
way has become a common goal for digital investigators. Spafford and Weber
(1993) have suggested that it might be feasible to analyze the remnants of
software after a computer attack, through means such as viruses, worms or
Trojan horses, and identify its author through characteristics of executable
code and source code. Zheng et al. (2003) proposed the adoption of an
authorship analysis framework in the context of cybercrime investigation to

help law enforcement agencies deal with the identity tracing problem.

Researchers addressing the issue of code authorship have tended to adopt
a methodology comprising two main steps (Krsul and Spafford, 1995;
MacDonell et al. 2001; Ding and Samadzadeh, 2004). The first step is the
extraction of apparently relevant software metrics and the second step is
using these metrics to develop models that are capable of discriminating

between several authors, using a statistical or machine learning algorithm. In

general, the software metrics used are programming language-dependent.

Moreover, the metrics selection process is a non trivial task.

Our objective is to provide a language independent methodology to source
code authorship attribution. Additionally we aim to provide the features of a

piece of code that contribute to correct authorship attribution.

1.2. Motivation

Three basic areas can benefit considerably by our current work:

1. Authorship disputes: The legal community is in need of solid
methodologies that can be used to provide empirical evidence to show that a

certain piece of source code is written by a particular person.

2. The academic community: It is considered unethical for students to copy
programming assignments. While plagiarism detection can show that two
programs are similar, authorship analysis can be used to show that some code

fragment was indeed written by the person who claims authorship of it.

3. In industry, where there are large software products that typically run
for years, and millions of lines of code, it is a common occurrence that
authorship information about programs or program fragments is nonexistent,
inaccurate or misleading. Whenever a particular program module or program
needs to be rewritten, the author may need to be located. It would be
convenient to be able to determine the programmer who wrote a particular
piece of code from a set of several programmers, so as to better evaluate their

work and avoid future disputes over the authorship of projects.

10

1.3. Challenges

The task of identifying the author of a piece of code seems a difficult task at
tirst glance. Convincing arguments can be given about the intractability of
this problem. Consider the following examples of potential problems with the

identification of authors:

Given that millions of people write software, it seems unlikely that, given a

piece of software, we will find the programmer who wrote it.

Programming characteristics of programmers tend to change and evolve.
Education is only one of many factors that have an effect on the evolution of
programming styles. Not only do software engineering models impose
particular naming conventions, parameter passing methods and commenting
styles; they also impose a planning and development strategy. The waterfall
model (Ghezzi et al 1991), for example, encourages the design of precise
specifications, utilization of program modules and extensive module testing.
These have a marked impact on programming style. The programming style
of any given programmer varies also from language to language, or because

of external constraints placed by companies, projects or tools.

Finally, among the most serious problems that must be resolved with
authorship analysis is the reuse of code. All the work performed up to date on
this subject assumes that a significant part of the code being analyzed was
built and developed by a single individual. In commercial development

projects, this is rarely the case.

The authorship identification process in computer software can be made
reliable for a subset of the programmers and programs written in the same
language. Programmers that are involved in high security projects or
programmers that have been known to break the law are attractive candidates

for classification. Patterns of behaviour are all around us. Likewise for

11

programming, we can ask: which are the programming constructs that a
programmer uses all the time? Could we hide the provenance of a piece of

code by changing a certain programming feature?

1.4. Contribution of the Thesis

Authorship Identification in natural language texts including literary
works has been widely debated for many years and a lot of studies and
methodologies have been developed. More recently the widespread use of

software systems made software authorship identification an issue of concern.

Although source code is much more formal and restrictive than spoken or
written languages, there is still a large degree of flexibility for programmers to
develop their own programming styles (Krsul, and Spafford, 1995).
Consequently, the task of software code authorship identification is similar to
written text authorship identification (Sallis et al, 1996). Thus, the approaches
and methodologies used for traditional textual analysis and forensics can be

transferred to software analysis (Kilgour et al., 1998).
With this in mind there are two questions addressed in this Thesis?

. Could we find a methodology in source code authorship identification

which is more effective and accurate than the existing methodologies?

= Which are the features of the source code that contribute to effective

authorship identification?

Based on the two questions above, the contribution of the Thesis could be

divided in the following two categories.

. Development of a new methodology for source code identification
named the SCAP approach. Low level information was used so as to

achieve quantification of the programming style of each author.

12

. A number of empirical studies have been carried out in order to
identify the high level features that contribute to source code

authorship identification.

In more detail the contribution of the Thesis based on the above categories

is the following:

A review of the studies related to source code authorship identification has
been conducted, identifying the methodologies followed so far as well as
some of the advantages and weaknesses of these methods. (Frantzeskou and
Gritzalis 2004). A new approach to source code identification has been
developed named the SCAP (Source Code Author Profile) approach, which is
language-independent and highly effective. The SCAP method is an
extension of a method applied to text authorship identification (Frantzeskou.
et al 2005a, Frantzeskou et al 2007a). A comparison between the two
approaches was carried out on two data sets written in Java and C++
(Frantzeskou. et al 2005a, Frantzeskou et al 2005b). The significance of
training size has been examined in (Frantzeskou et al 2005a). The forensic
significance of the SCAP approach was outlined in (Frantezkou et al 2007a).
Satisfactory results have been obtained by testing the SCAP approach under
different circumstances: we used a data set with code written by students
during a Java introductory course (Frantzeskou et al 2006a). The data sets we
used showed the effectiveness of our approach with a limited number of
candidate authors (6 to 8). It has been demonstrated the effectiveness of the
proposed method when dealing with dozens of candidate authors (30
candidate authors) (Frantzeskou et al, 2006a). In addition, the role of
comments to source code authorship identification has been examined
(Frantzeskou et al 2006b). Finally we have performed more detailed
experiments to demonstrate that the SCAP approach is language independent

with two data sets using two different styles of programming language, Java

13

which uses objects, and Common Lisp, which uses a functional/imperative

programming style (Frantzeskou. et al 2007b).

The second part of our work involved a study in order to assess the impact
that the high level programming features (for example comments, identifiers)
have on the accuracy of authorship attribution. The results of this study have
been demonstrated on two data sets, one written in Java and another in
Common Lisp (Frantzeskou et al 2007b). A different study was carried out in
order to assess the significance that Java identifier types have on source code
authorship attribution using as a tool the SCAP approach (Frantzeskou et al
2007c).

1.5. Thesis Outline

This thesis is structured as follows. Chapter 2 contains a review of past
research efforts in the area of natural and programming languages
authorship, Chapter 3 describes our approach to source code authorship
identification called the SCAP approach. The same section contains an
empirical study which demonstrates that our method is both highly effective
and language-independent. Chapter 4 begins with a detailed description of
the high level features that might influence source code authorship
identification. The rest of this chapter details another empirical study in order
to examine which high level programming features contribute to authorship
identification, and to what degree. This study used programs written in Java
and Common Lisp. Chapter 5 describes the types of Java user-defined
identifiers that are thought to influence source code authorship identification.
It also includes a third empirical study in order to examine which (if any)
identifiers contribute to authorship identification and to what degree. This

study used two different Java data sets. The conclusions of this dissertation

14

can be found in chapter 6, in which we summarize the achievements of our

study and we propose future work directions.

15

Chapter 2. Survey of Related Work

2.1. Introduction - Definitions

Although source code is much more grammatically and syntactically
restrictive than natural languages, there is still a large degree of flexibility
when writing a program (Krsul and Spafford 1995) and the general
methodology of authorship attribution applies to texts in both natural and
programming languages. Authorship identification methodology for natural
or programming languages can be formulated as follows: Given a set of
writings of a number of authors, assign a new piece of writing to one of them.
The problem can be considered as a statistical hypothesis test or a
classification problem. The essence of this classification is identifying a set of
features that remain relatively constant for a large number of writings created
by the same person. Once a feature set has been chosen, a given writing can
be represented by an n-dimensional vector, where #n is the total number of
features. Given a set of precategorized vectors, we can apply many analytical
techniques to determine the category of a new vector created based on a new
piece of writing. Hence, the features set and the analytical techniques may

significantly affect the performance of authorship identification.

In the following sections we review the literature on authorship attribution
for both natural and programming languages, based on the perspectives
described above and giving at first the concept definitions related to this

study.

An Author is defined by Webster (Merriam-Webster 1992) as one that
writes or composes a literary work," or as one who originates or creates." In

the context of software development the author or programmer is someone

16

that originates or creates a piece of software." Authorship is then defined as,
“the state of being an author”. As in literature, a particular work can have
multiple authors. Furthermore, some of these authors can take an existing
work and add things to it, evolving the original creation.

A program is a collection of instructions that describes a task, or set of tasks,
to be carried out by a computer. More formally, it can be described as an
expression of a computational method written in a programming language

language (Knuth 1997).

A programming language is an artificial language that can be used to control
the behavior of a machine, particularly a computer. Programming languages,
like human languages, are defined through the use of syntactic and semantic
rules, to determine structure and meaning respectively. Programming
languages are used to facilitate communication about the task of organizing
and manipulating information, and to express algorithms precisely (Abelson

and Sussman; 1992 McLennan and Bruce,1987).

Programming style refers to a set of rules or guidelines used when writing
the source code for a computer program. It is often claimed that following a
particular programming style will help programmers quickly read and
understand source code conforming to the style as well as helping to avoid

introducing faults (McConell, S., 1993).

Authorship analysis is defined as the application of the study of linguistic
style, usually to written language often used to attribute authorship to
anonymous or disputed documents. Correspondingly, Source code
authorship analysis is the process of examining the characteristics of a piece of
code in order to draw conclusions on its authorship (Abbasi and Chen 2005).

More specifically, the problem can be broken down into the following sub-

fields.

17

1. Author identification. The aim here is to decide whether some piece of code
was written by a certain programmer. This goal is accomplished by
comparing this piece of code against other program samples written by that
author. This type of application area has a lot of similarities with the
corresponding literature where the task is to determine that a piece of text has

been written by a certain author.

2. Author characterisation. This application area determines some
characteristics of the programmer of a piece of code, such as cultural
educational background and language familiarity, based on their
programming style.

3. Plagiarism detection. This field attempts to find similarities among multiple
sets of source code files. It is used to detect plagiarism, which can be defined

as the use of another person’s work without proper acknowledgement.

4. Author discrimination. This task is the opposite of the above and involves
deciding whether some pieces of code were written by a single author or by
some number of authors. An example of this would be showing that a
program was probably written by three different authors, without actually

identifying the authors in question.

2.2. Authorship Attribution Methods for Natural Languages

The earliest studies into natural language authorship attribution include
those by Mendenhall (1887), Yule (1938, 1944) and Zipf (1932). Mendenhall
(1887) studied the authorship of Bacon, Marlowe and Shakespeare by
comparing word spectra or characteristic curves, which were graphic
representations of the arrangement of their word length and the relative
frequency of their occurrence. He suggested that if the curves remained

constant and were particular to the author, this would be a good method for

18

authorship discrimination. Zipf (1932) focussed his work on the frequencies of
the different words in an author’s documents. He determined that there was a
logarithmic relationship, which became known as Zipf's Law, between the
number of words appearing exactly r times in a text, where (r=1;2;3 :::) and
r itself. Yule (1938) initially used sentence length as a method for
differentiating authors but concluded that this was not completely reliable.
He later created a measure using Zipf’s findings based on word frequencies,
which has become known as Yule’s characteristic K. He found that a word’s

use is probabilistic and can be approximated with the Poisson distribution.

The Federalist papers are a series of articles written in 1787 and 1788 to
persuade the citizens of New York to adopt the Constitution of the United
States of America. There are 85 articles in total, with agreement by the authors
and historians that 51 were written by Alexander Hamilton and 14 were
written by James Madison. Of the remaining articles, five were written by
John Jay, three were jointly written by Hamilton and Madison and 12 have
disputed authorship between Hamilton and Madison. This authorship
attribution problem has been visited numerous times since the original study
of Mosteller and Wallace (1964), with a number of different techniques
employed. Using four different techniques to compare the texts under
examination, the original study compared frequencies of a set of function
words selected for their ability to discriminate between two authors. The
techniques used by Mosteller and Wallace included a Bayesian analysis, the
use of a linear discrimination function, a hand calculated robust Bayesian
analysis and a simplified word usage rate study. Mosteller and Wallace came
to the conclusion that the twelve disputed papers were written by Madison.
Subsequently, many researchers have confirmed the good discriminating
capability of function words (Baayen et al. 1996, Burrows 1989; Holmes &

Forsyth, 1995; Tweedie & Baayen, 1998). Rooted from linguistic research, part

19

of speech (POS) and punctuation usage are other important syntactic features

which have been applied to authorship research.

Another kind of lexical features used in authorship attribution was the
vocabulary richness measures. These features include the number of words
that occur once (hapax legomena) and twice (hapax dislegomena), as well as
several statistical measures defined by previous studies (Yule 1944, Holmes

1992).

In other attribution studies, Shakespeare has been compared with Edward
de Vere, the Earl of Oxford (Elliott and Valenza, 1991b), John Fletcher (Lowe
and Matthews, 1995) and Christopher Marlowe (Merriam, 1996). Elliott and
Valenza used incidences of badge words, fluke words, rare words, new
words, prefixes, suffixes, contractions and a number of other tests to build a
Shakespeare profile for comparison with other authors. Lowe and Matthews
used frequencies of five function words and a neural network analyser, while

Merriam used some function words and principal component analysis.

As punctuation is not guided by any strict placement rules (e.g., comment
placement), punctuation will vary from author to author. Chaski (1997) has
shown that punctuation can be useful in discriminating authors. It is well
known that punctuation has the potential of being a successful attributor of
authorship, but as Chaski (1997) points out, it has only really been successful
when combined on its own with an understanding of its syntactic role in a
text. Chaski developed software for the purpose of punctuation-edge
counting, lexical frequency ranking and part-of-speech tagging and
demonstrated (Chaski 2001) that if punctuation were syntactically classified, it
had a better performance in authorship attribution than simple punctuation

mark counting.

Stamatatos et al. (2001) introduced a fully automatic method to extract

syntax-related features and a better performance was achieved compared to

20

pure lexical-feature-based approaches. As a recently explored feature type,
structural features attracted more attention. People have different habits
when organizing an article. These habits, such as paragraph length, use of
indentation, and use of signature, can be strong: authorial evidence of
personal writing style. This is more prominent in online documents, which
have less content information but more flexible structures or richer stylistic
information. De Vel et al. (2001) proposed to use structural Iayout traits and
other features for e-mail authorship identification and achieved high
identification performance. In Zheng et al. (2003), approximately 10 content-
specific features were introduced in a cybercrime context and the results
showed that they were helpful in improving the author-identification

accuracy.

Due to the international nature of the Internet, it is of critical importance to
study authorship identification in a multilingual context. Writing style
features are largely language dependent. For instance, Chinese has no explicit
word boundaries. Consequently, the features and feature extraction
techniques for Chinese are very different from those for English. Stamatatos et
al. (2001) conducted authorship identification on Greek newspaper articles.
He proposed a computer-based feature extraction approach using a natural
language processing tool. But Greek is to some extent similar to English
because they share similar linguistic characteristics, such as the existence of
word boundaries. Keselj et al. (2003) conducted experiments on Greek,
English and Chinese data to examine the performance of authorship
attribution across different languages. They identified unique linguistic
characteristics of Chinese and concluded that some character-based features
such as n-gram should be used to avoid word-segmentation problems. They
also noted that the Chinese vocabulary is much larger than the English

vocabulary, which may give rise to sparse data problem. They examined the

21

n-gram language model on Greek newspaper articles, English documents,
and Chinese novels. In all three languages the best accuracy achieved was
90%. But the performance for Chinese writings was not as good as that for
English writings. Multiple-language support of authorship technology is an
important new research direction in this field in the light of the continuous

globalization of Internet applications.

Compression-based classification is a non-standard approach to authorship
attribution and has been used by many researchers (Khmelev, and Teahan,
2003; Benedetto et al, 2002; Frank et al 2000). Compression programs build a
model or dictionary of the files they process. Thus compression can be used to
“train” classifiers on the labelled documents for each class. Classification of a
new document is done by compressing it multiple times, each time using a
different class model or dictionary obtained during “training”. The new
document is assigned to the class that yielded the highest compression rate. A
main attraction of compression-based methods for classification is that they
are extremely easy to apply. However, compression based classification
methods have drawbacks (such as slow running time), and not all such

methods are equally effective.

2.2.1 Analytical techniques used on natural language authorship
identification

In early studies, most analytical tools used in authorship Analysis were
statistical univariate methods. The pioneering study by Mendenhall (1887)
was based on histograms of word-length distribution of various authors.
Another popular attribution tool of characterizing the stationary distribution
of words or letters is a Naive Bayes (NB) classifier of Mosteller and Wallace
(1964) developed during their long work over disputed Federalist Papers.
Their systematic work not only provided solid evidence to clarify the

disputation but also grounded this field.

22

The CUSUM statistics procedure is another tool applied to authorship
analysis by Farringdon (1996). The essence of this procedure is to create the
cumulative sum of the deviations; of the measured variable and plot that in a
graph to compare among authors. This technique showed some success and
even became a forensic tool to assist experts conducting authorship analysis.
Nevertheless, Holmes (1998) found that the CUSUM analysis was unreliable
because the stability of that test over multiple topics was warranted.
Univariate methods have another constraint in that they can only deal with
one or more features. These constraints called for the application of the

multivariate approaches.

Burrows (1987) first employed principle component analysis (PCA) on the
frequency of function words. PCA is capable of combining many measures
and project them into a graph. The geographic distance represents the
similarity between different authors’ style. The good results encouraged
many follow-up studies based on the multivariate method. Cluster analysis
and discriminant analysis were introduced to this filed later by Holmes (1992)
and Ledger and Merriam (1994). Mutually supportive results obtained by a
variety of multivariate methods have further validated the effectiveness of

multivariate approaches.

The advent of powerful computers instigated the extensive use of machine
learning techniques in authorship analysis. Tweedie et al. (1996) used a
teedforward neural network, also called multilayer perception, to attribute
authorship to the disputed Federalist Papers. Radial basis function (RBF)
networks were applied by Lowe and Matthews (1995) to investigate the extent
of Shakespeare’s collaboration with his contemporary, John Fletcher , on
various plays. More recently, Khmelev and Tweedie (2002) presented a
technique for authorship attribution based on a simple Markov Chain \,\the

key idea of which is using the probabilities of the subsequent letters as

23

teatures. Diederich et al. (2000) introduced Support Vector Machines (SVM) to
this field. Experiments were carried out to identify the writings of seven
target authors from a set of 2,265 newspaper articles written by several
authors covering three topic areas. This method detected the target authors in
60 to 80% of the cases. A new area of study is the identification of email
authors based on message content. De Vel et al. (2001) used SVM to classity
150 e-mail documents from three authors. In this experiment an average
accuracy of 80% was achieved. A variant of Exponentiated Gradient
algorithm was examined and showed that this algorithm outperforms other

popular classifiers such as NB and Ripper.

In general machine learning methods achieved higher accuracy than did
statistical methods. The machine learning methods can deal with a larger set
of features with fewer requirements on mathematical models or assumptions.
Meanland (1995) also noted that machine learning methods were tolerant to
noise and nonlinear interactions among features. Besides techniques,
parameters such as the number of authors to be identified and the number of
messages used to train the classification model also can impact the

performance of authorship identification.

2.2.2 Keselj’s Approach to Natural Language Authorship Identification

The SCAP method extends Keselj et al’'s 2003 work, so it is important to
describe this particular method. It is worth to note that the basic idea of the
method was originally introduced in Canvar and Trenkle (1994). In Keselj et
al’s 2003 work, the text is decomposed into character-level n-grams (using a
Perl text processing program by Keselj 2003). An n-gram is an n-contiguous
sequence and can be defined on the byte, character, or word level. For the
Roman alphabet’s 26 graphemes, 676 character-level bi-grams are thus

possible, although not all of these possible bi-grams will be instantiated in any

24

given text due to the phonotactic constraints of any particular natural of
programming language; for instance, English permits [xa] as in [Xavier] but
not [xb], although the bi-gram [xb] may occur in a mathematical equation or

programming variable name.

Keselj et al 2003 defines an author profile “to be a set of length L of the
most frequent n-grams with their normalized frequencies.” The profile of an
author is, then, the ordered set of pairs {(xi; f1); (x2; f2),...,(xc; fL)} of the L most
frequent n-grams xi and their normalized frequencies fi. The normalized
frequency fiis obtained by taking the ratio between the actual frequency of a
given n-gram and the total number of n-grams located in an author’s profile.
Keselj et al 2003 determine authorship based on the dissimilarity between two
profiles, comparing the most frequent n-grams. Identical texts will obviously
have an identical set of L most frequent n-grams, and thus have zero
dissimilarity. Different texts will be more or less similar to each other, based
on the amount of most-frequent n-grams which they share. It is important to
note that the normalized frequencies constitute the author profile in Kesel;j et

al’s 2003 approach.

The original dissimilarity measure used by Keselj et al. 2003 in text

authorship attribution is a form of relative distance:
2

2
S1Un) — f2(n) 2(f1(n) = f2(n))
Z £yt £2(n) - Z (] M
2

ne profile ne profile fl(n) + f2(}’l)

where fi(n) and f2(n) are either the normalized frequencies of an n-gram n
in the two compared texts or 0 if the n-gram does not exist in the text(s). In
this formula, the absolute difference of a given n-gram is divided by the
average frequency in order to tackle the sparse data problem. Thus for
example, the difference of 0.1 for an n-gram with frequencies 0.9 and 0.8 in

two profiles will be less weighted than the same difference for an n-gram with

25

frequencies 0.2 and 0.1. A text is classified to the author, whose profile has the
minimal distance from the text profile, using this measure. Hereafter, this

distance measure will be called Relative Distance (RD).

2.3. Authorship Attribution Methods for Programming Languages

On the evening of 2 November 1988, someone infected the Internet with a
worm program. Spafford (1989) conducted an analysis of the program using
three reversed-engineered versions. Coding style and methods used in the
program were manually analyzed and conclusions were drawn about the
author’s abilities and intent. Following this experience, Spafford and Weeber
(1993) suggested that it might be feasible to analyze the remnants of software
after a computer attack, such as viruses, worms or trojan horses, and identify
its author. This technique, called software forensics, could be used to examine
software in any form to obtain evidence about the factors involved. They
investigated two different cases where code remnants might be analyzed:
executable code and source code. Executable code, even if optimized, still
contains many features that may be considered in the analysis such as data
structures and algorithms, compiler and system information, programming
skill and system knowledge, choice of system calls, errors, etc. Source code
features include programming language, use of language features, comment

style, variable names, spelling and grammar, etc.

Cook and Oman (1989) wused “markers” based on typographic
characteristics to test authorship on Pascal programs. The experiment was
performed on 18 programs written by six authors. Each program was an
implementation of a simple algorithm and it was obtained from computer

science textbooks. They claimed that the results were surprisingly accurate.

26

Longstaff and Shultz (1993) studied the WANK and OILZ worms which in
1989 attacked NASA and DOE systems. They have manually analyzed code
structures and features and have reached a conclusion that three distinct
authors worked on the worms. In addition, they were able to infer certain
characteristics of the authors, such as their educational backgrounds and
programming levels. Sallis et al (1996) expanded the work of Spafford and
Weber by suggesting some additional features, such as cyclomatic complexity

of the control flow and the use of layout conventions.

An automated approach was taken by Krsul and Spafford (1995) to identify
the author of a program written in C. The study relied on the use of software
metrics, collected from a variety of sources. They divided over 50 metrics into
three categories: programming layout metrics, programming style metrics,
and programming structure metrics. Programming layout metrics includes
such fragile metrics as comment placement, indentation, bracket placement,
and while lines. These metrics can be easily altered by a code formatter and
pretty printer. Also, the text editor used to compose the program can modify
these metrics by changing the format to its default or to a preferred layout.
Programming style metrics are related to the code layout metrics, but are
more difficult to change. Such metrics include variable length, comment
length, naming preference, and preference of loop statements. Programming
structure metrics are assumed to be dependent on programming experience
and the ability of the programmer. Example metrics in the category of style
metrics are mean number of lines of code per method/function, data structure
usage and preference, and the cyclomatic complexity number (McCabe, 1976).
These features were extracted using a software analyzer program from 88
programs belonging to 29 programmers. A tool was developed to visualize
the metrics collected and help select those metrics that exhibited little within-

author variation, but large between-author variation. Although so many

27

measurements were collected, many were eliminated and a smaller set
remained for the final analysis (Krsul and Spafford, 1995). It can be argued
that the information hidden in the unselected measurements was ignored. A
statistical approach called discriminant analysis was applied on the chosen
subset of metrics to classify the programs by author. The experiment achieved

73% overall accuracy.

Other research groups have examined the authorship of computer
programs written in C++ (Kilgour et al., 1998); (MacDonell et al. 2001), a
dictionary based system called IDENTIFIED (integrated dictionary- based
extraction of non-language-dependent token information for forensic
identification, examination, and discrimination) was developed to extract
source code metrics for authorship analysis (Gray et al., 1998). In these studies
26 authorship-related metrics were extracted from 351 source code programs,
written by 7 different authors. Satisfactory results were obtained for C++
programs using case-based reasoning, feed-forward neural network, and

multiple discriminant analysis (MacDonell et al. 2001).

Ding and Samadzadeh (2004), investigated the extraction of a set of
software metrics of a given Java source code that could be used as a
fingerprint to identify the author of the Java code. They divided over 50
metrics into three categories: programming layout metrics, programming
style metrics, and programming structure metrics. The contributions of the
selected metrics to authorship identification were measured by a statistical
process, namely canonical discriminant analysis, using the statistical software
package SAS. A set of 56 metrics of Java programs was proposed for
authorship analysis. Forty-six groups of programs were diversely collected.
Classification accuracies were 62.7% and 67.2% when the metrics were
selected manually while those values were 62.6% and 66.6% when the metrics

were chosen by SDA (stepwise discriminant analysis).

28

Lange and Mancoridis (2007) proposed a technique in which code metrics
are represented as histogram distributions. 18 different metrics have been
considered in order to represent the style of an author. The most likely author
for a given piece of code is found by measuring the differences between
histogram distributions of code under scrutiny with those associated with
code from a pool of known developers. Their method has been demonstrated
using a very large data set comprising twenty developers each authored 3
projects. The definition of success was to classify 40 projects correctly. A
genetic algorithm was used in order to find good metric combinations. The
accuracy results was 55% in choosing the single nearest match and 75%

accuracy in choosing the top three ordered nearest matches.

Kothari et al (2007) used a combination of style and text based metrics in
order to represent each programmer’s style. The text based metrics used were
the 4-grams located in a piece of code and their corresponding frequencies.
The calculated metrics were then presented through a filtering tool in order to
determine, for each developer, which metrics are most effective in their
characterization. These filtered metrics represented the developer’s profile.
For a given piece of unidentified piece of code all metrics were calculated, and
then the database of developer profiles and the calculated metrics of the
unidentified piece of code were presented to two different classification tools,
the Bayes and the Voting Feature Interval (VFI). The approach was
demonstrated on two different data sets achieving greater than 70% accuracy
in choosing the single nearest match and greater than 90% accuracy in
choosing the top three ordered nearest matches. Another conclusion of this
study was that the 4-grams based metrics significantly outperformed the style
based metrics. This conclusion supports our approach which is entirely based

on the n-grams.

29

2.3.1. Features for Source Code Authorship Identification

Cook and Oman (1989) describe the use of markers to represent the
occurrences of certain peculiar characteristics, much like the markers used to
resolve authorship disputes of written works. The markers used in their work

are based purely on typographic characteristics.

For collecting data to support their claim they built a Pascal source code

analyzer that generated an array of Boolean measurements based on:

= Inline comments on the same line as source code.

Blocked comments (two or more comments occurring together).
* Bordered comments (set of by repetitive characters).

* Keywords followed by comments.

* One or two space indentation occurred more frequently.

= Three or four space indentation occurred more frequently.

* Five spaces or greater indentation occurred more frequently.
* Lower case characters only (all source code).

* Upper case characters only (all source code).

* Case used to distinguish between keywords and identifiers.
* Underscore used in identifiers.

= BEGIN followed by a statement on the same line.

* THEN followed by a statement on the same line.

* Multiple statements per line.

* Blank lines in program body

The results are encouraging, but further reflection shows that the
experiment is fundamentally flawed. This experiment fails to consider that

textbook algorithms are frequently cleaned by code beautifiers and pretty

30

printers, and that different problem domains will demand different
programming methodologies. The implementation of the three tree traversal

algorithms involves only slight modifications and hence is likely to be similar.

Their choice of metrics also limits the usefulness of their techniques. Some
of these metrics are useless in the analysis of C code because the language is
case sensitive and it is a common occurrence that programmers use uppercase

for constants and lowercase for variables and identifiers.

Oman and Cook (1991) collected a list of 236 style rules that could be used as
a base for extracting metrics dealing with programming style. The
programming style taxonomy they suggested includes the following basic

categories.

General programming practices: Rules and guidelines pertaining to the

programming process that directly affect the style of the product.

Typographic style: Style characteristics affecting only the typographic layout

and commenting of code with no affect on program execution.

Control structure style: Style characteristics pertaining to the choice and use of
control flow constructs, the manner in which the program or system is
decomposed into algorithms, and the method in which those algorithms are

implemented.

Information structure style: Style characteristics pertaining to the choice and use

of data structure and data flow techniques.

Spafford and Weber (1993) suggested that a technique they called software
forensics could be used to examine and analyze software in any form, be it
source code for any language or executable images, to identify the author. In
their study describe a set of high level features that could be considered as

author-specific programming features. These features include:

31

Programming language. The language choice can indicate a number of features
about the author. This can include their background (since they would be
unlikely to use a language that they were not already familiar with). Not
noted by Spafford and Weber (1993), but important nonetheless, are the
psychological preferences that some programmers may feel for certain

languages.

Formatting of code. The manner in which the source code is formatted can
indicate both author features and some psychological information about the
author. Pretty-printers are commonly used to automatically format source
code and while this removes author-specific features it introduces

information about what pretty-printer may have been used.

Special features such as macros may be used that indicate to some degree

which compiler or library was used.

Commenting style. This can be a very distinctive aspect of a programmer’s
style. If comments are sufficiently large then traditional textual linguistic

analysis may be appropriate.

Variable naming conventions are another distinctive aspect of an author’s style.
The use of meaningful versus non-meaningful names, the use of standards
(such as Hungarian notation), and the capitalisation of variable names are all

features that programmers can adopt.

Spelling and grammar. Where comments are available an examination of their
spelling and grammar can be a useful indication of authorship. Spelling errors

may also be present in function and variable names.

Use of language features. Some programmers prefer to use certain aspects of a

language than others.

Size. The size of routines can indicate the degree of cognitive chunking used

by the programmer.

32

Errors. As noted in the section above on executable code, programmers often

consistently make the same or similar errors.

The list of measurements suggested by Spafford and Weber is
comprehensive, but the derivation of some of these is difficult to automate.
Consider, for example, what they say about spelling and grammar

measurements:

“Many programmers have difficulty writing correct prose.
Misspelled variable names (e.g. TransactoingReciept) and words inside
comments may be quite telling if the misspelling is consistent.
Likewise, small grammatical mistakes inside comments or print
statements, such as misuse or overuse of em-dashes and semicolons
might provide a small, additional point of similarity between two

programs.”

MacDonell et al (2001) used a set of 26 metrics automatically extracted from
a set of 351 C++ programs. These metrics were extracted using as a tool
IDENTIFIED (Gray 1998) designed to assist with the extraction of count based

metrics. The metrics considered were:

WHITE Proportion of lines that are blank

SPACE-1 Proportion of operators with whitespace on both sides
SPACE-2 Proportion of operators with whitespace on left side
SPACE-3 Proportion of operators with whitespace on right side
SPACE-4 Proportion of operators with whitespace on neither side
LOCCHARS Mean number of characters per line

CAPS Proportion of letters that are upper case

LOC Non-whitespace lines of code

DBUGSYM Debug variables per line of code (LOC)

DBUGPRN Commented out debug print statements per LOC
COM Proportion of LOC that are purely comment

33

INLCOM Proportion of LOC that have inline comments
ENDCOM Proportion of end-of-block braces labeled with comments
GOTO Gotos per non-comment LOC (NCLOC)
COND-1 Number of #if per NCLOC

COND-2 Number of #elif per NCLOC

COND-3 Number of #ifdef per NCLOC

COND-4 Number of #ifndef per NCLOC

COND-5 Number of #else per NCLOC

COND-6 Number of #endif per NCLOC

COND Conditional compilation keywords per NCLOC
CCN McCabe’s cyclomatic complexity number
DEC-IF if statements per NCLOC

DEC-SWITCH switch statements per NCLOC
DEC-WHILE while statements per NCLOC

DEC Decision statements per NCLOC

Finally, Krsul and Spafford (1995) and Kilgour et al. (1998) used the
following set of quantitative metrics in order to classify C programs. Similar
metrics have been used by Ding (2004) in order to identify the author of

programs written in Java.

Programming layout metrics include those metrics that deal with the layout
of the program. For example metrics that measure indentation, placement of
comments, placement of braces etc. These metrics are fragile because the
information required can be easily changed using code formatters. Also many
programmers learn programming in university courses that impose a specific

set of style rules regarding indentations, placement of comments etc.

Programming style metrics are those features that are difficult to change
automatically by code formatters and are also related to the layout of the

code. For example such metrics include character preferences, construct

34

preferences, statistical distribution of variable lengths and function name

lengths etc.

Programming structure metrics include metrics that we hypothesize are
dependent on the programming experience and ability of the programmer.
For example such metrics include the statistical distribution of lines of code

per function, ratio of keywords per lines of code etc.

Measurements in these categories are automatically extracted from the
source code using pattern matching algorithms. These metrics are primarily
used in managing the software development process, but many are

transferable to authorship analysis.

2.3.2. Features for Executable Code Authorship Identification

It is possible to perform authorship analysis on the executable code, which
is the usual form of an attack in the form of viruses, trojan horses, worms etc.
In order to perform such analysis executable code is decompiled (Gray et al.,
1997), a process where a source program is created by reversing the compiling
process. Although there is a considerable information loss during this process
there are many code metrics still applicable. The most common types of

executable code that may attack a system are:

* Viruses. A virus can be defined as a program that attaches itself to
other programs in order to replicate.

* Worms. A worm is a standalone program that propagates through
making copies of itself, similar to a virus but without a host program.

* Trojan horse. A trojan horse is a program that carries out undesirable
behaviour whilemasquerading as a useful program. This can either be
a program written as a trojan, or may be the result of modifications
made to an existing program.

* Logic bomb. A logic bomb is a part of a program that is written to
cause undesirable actions when a certain event triggers its execution.

As Spafford and Weber (1993) note, viruses usually leave their code in

infected programs, and code remaining after a variety of attack methods may

35

include source code, object code, executables, scripts, etc. However, for
compiled code much evidence is lost, including variable names, layout, and
comments. Compilers may also perform optimisations that lead to the
executable code having a significantly different structure to the original
source code. Irrespective of the loss of some information, Spafford and Weber

are still able to point out some features that will remain. These include:

Data structures and algorithms. This can be a useful indication of the
programmer’s background since they are more likely to use certain
algorithms that they have been taught or had exposure to, and are therefore
more comfortable with. Non-optimal choices may indicate a lack of
knowledge or even that the programmer uses another language’s
programming style, perhaps indicating their preferred or first programming

language.

Compiler and system information. Executable code contains a number of signs

that may indicate the compiler used.

Level of programming skill and areas of knowledge. The degree of sophistication
and optimisation can provide useful indications of the author. Differences in
sophistication within a program may indicate a mixture of authors or an

author who specialises in a particular area.

Use of system and library calls. These may provide some information regarding

the author’s background.

Errors present in the code. Almost all code contains errors, and any complex
system will almost certainly have defects. Programmers are often consistent in

terms of the errors that they make.

Symbol table. If an executable is produced using a debug mode, rather then a
release mode, then much information that is part of the source code will still
remain. A debug version of a program contains much extra information in the

object code that the compiler uses to give feedback while the program is

36

executing. Surprisingly often, programmers release programs that contain this
additional data. A release version simply lacks this superfluous information,

making it smaller and faster to execute.

2.3.3 Analytical techniques used on programming authorship identification

Once the programmer -related metrics have been extracted, a number of
different modelling techniques, such as neural networks, discriminant
analysis, case based reasoning can be used to develop models that are capable
of discriminating between several authors. These analytical techniques belong

to the following categories:
Manual Approach.

This approach involves examination and analysis of a piece of code by an
expert. The objective is to draw conclusions about the authors” characteristics
such as educational background, and technical skill. This method has been
used in early studies (Spafford 89 and Longstaff and Shultz (1993) to analyze
worm programs that infected computer systems. This technique can also be
used also in combination with an automated approach (Kilgour et al., 1998),
in order to derive linguistic variables to capture more subjective elements of
authorship, such as the degree to which comments match the actual source

code’s behaviour etc.
Statistical Methods

The most widely used technique in source code authorship analysis is
discriminant analysis (Krsul and Spafford, 1995; Kilgour et al., 1998; Ding and
Samadzadeh, 2004). It uses continuous variable measurements on different
groups of items to highlight aspects that distinguish the groups and to use

these measurements to classify new items.

An important advantage of the technique (MacDonell et al., 2001) is the

availability of stepwise procedures for controlling the entry and removal of

37

variables. By working with only those necessary variables we increase the

chance of the model being able to generalize to new sets of data.
Machine Learning Techniques.

As discussed above the first step of program authorship identification
process makes measures of the discriminatory features proposed for
authorship attribution. This reduces the style of a particular author’s profile to
a pattern. Machine learning is particularly suited to pattern matching
problems and was used as a tool in this research for classification of
authorship patterns. Machine learning techniques have the ability to predict a

classification for an unseen test point, i.e. to generalize about unseen data.

A machine learning algorithm attempts to learn from a set of example data
in order to generalise about unseen data. We can train the algorithm by
optimizing the learning process via manipulation of the variables of the
algorithm itself and of the problem domain. The algorithm must produce
some type of model representing the knowledge it has learned, and we must
measure its performance or its ability to classify unknown examples to
determine how good the model is. The machine learning algorithms used in

program authorship attribution are:

. Neural Networks Neural networks are examples of nonparametric
methods, meaning that they can construct a representation of a
problem from data where an explicit model of the problem domain is
difficult to calculate or is unknown. Values for data features are fed
to the input nodes of the neural network and are manipulated by
transfer functions at each node. The input data is passed through one
or more hidden layers of nodes and finally on to a set of output
nodes. The input nodes are fully connected to each node in the
hidden layer and the hidden layer is similarly connected to each

node in the set of output nodes. The transfer functions may be non-

38

linear in nature. The neural network must be trained by adjusting the
weights of the connections between the nodes to minimise the error
rate of the output nodes with the training data. Unseen test data can
be fed into the trained neural network and the output class will be

predicted.

Feed-Forward Neural Networks (FFNNs) are the most commonly
used form of NNs and have been used in source code authorship
analysis (MacDonell et al., 2001). Krsul and Spafford, (1995) have also
used Multi-Layer Perceptron (MLP) neural network to classify the

programmer in the test data with error rates as low as 2%.

Case Base Reasoning is a machine learning method originating in
analogical reasoning, and dynamic memory and the role of previous
situations in learning and problem solving (Schank, 1982). Cases are
abstractions of events (solved or unsolved problems), limited in time

and space.

Aarmodt and Plaza (1994) describe CBR as being cyclic and
composed of four stages, the retrieval of similar cases, the reuse of the
retrieved cases to find a solution to the problem, the revision of the
proposed solution if necessary and the retention of the solution to

form a new case.

When a new problem arises, a possible solution can be found by
retrieving similar cases from the case repository. The solution may be
revised based upon experience of reusing previous cases and the
outcome retained to supplement the case repository. One particular
case-based reasoning system that has been previously used for
software metric research and in source code authorship analysis is

the ANGEL system (Shepperd and Schofield, 1997). MacDonell et al

39

(2001) used this technique and its performance reached accuracy of

88%, the highest of all methods used.

Rule Based Learners Rule based learners attempt to make rules from
the feature values in the training data. For each feature in the data,
the algorithm determines the frequency of the feature values or
discretised bands of feature values and determines the class of
instances to which the most common value belongs. A rule is created
for each feature that assigns the class from the feature value or range
of values and each rule is then tested using each feature. The rules
with the lowest error rates are then chosen to classify unseen data.
The Binary tree classifier used by Krsul and Spafford, (1995) belongs
in this category. However, its performance was less than optimal,

with an error rate of 30%.

Instance Based Learners An instance based learning algorithm uses a
distance function to determine which member of the training set an
unknown test instance is closest to. This method is particularly
suitable for numeric data as the distance function is easily calculated
in these cases. The k-nearest neighbour classifier uses the Euclidean
distance function and this method has become widely used for
pattern recognition problems. Keslej’s (2003) text authorship
classification method used this technique achieving very good
accuracy. Additionally our proposed SCAP (Frantzeskou et al 2007a)
source code authorship identification method uses a technique that

belongs to this category with surprisingly accurate results

40

2.4. Summary

In this chapter we reviewed the literature related to natural text and

computational authorship. The conclusions we reached are:

The general methodology of authorship attribution applies to texts in both
natural and computing languages. This authorship attribution methodology
requires two main steps. The first step is the extraction of data for selected
features that are said to represent each author’s style. The second step
normally involves the application of a statistical or machine learning
algorithm to these variables in order to develop models that are capable of

discriminating between potentially several authors.

In general, when authorship attribution methods have been developed for
programming languages, the software features used are language-dependent
and require computational cost and/or human effort in their derivation and
calculation. The main focus of the early approaches was on the definition of

the most appropriate features in representing the style of an author.

While the metric extraction approach to software forensics has been
dominant for the last decade it is not without its limitations. The first is that at
least some of the software metrics collected are programming-language
dependent. For example, metrics specifically appropriate to Java programs
are not inherently useful for examining C or Pascal programs — some may
simply not be available from programs written in a different language. The
second limitation is that the selection of useful metrics is not a trivial process
and usually involves setting (possibly arbitrary) thresholds to eliminate those
metrics that contribute little to a classification or prediction model. Third,
some of the metrics are not readily extracted automatically because they
involve judgments, adding both effort overhead and subjectivity to the

process.

41

In sum, the previous work in author identification of programming code
has exhibited varying degrees of language-dependence and has achieved a
range of levels of effectiveness. In this context, our goal is to provide a fully-
automated, language-independent method with high reliability for
distinguishing authors and assigning programs to programmers.
Furthermore, we aim to identify the language features that contribute to

authorship identification and measure the significance of their contribution.

42

Chapter 3. The SCAP Approach

Our approach to source code authorship attribution, named the Source
Code Author Profiles (SCAP) approach, is an extension of a method that has
been successfully applied to text authorship identification by Keselj et al.
(2003). It is based on the extraction and analysis of byte-level n-grams. An n-
gram is an n-contiguous sequence and can be defined at the byte, character, or
word level. Character level n-grams are defined as sequences of letters where
all other characters are replaced by a space, and letters are turned uppercase.
Byte level n-grams are defined as raw character n-grams, without any pre-
processing. For example the word sequence “In the” would be composed of

£“ 7

the following byte-level N-grams (the character stands for space) :

bi-grams: In,n_, t, th, he
tri-grams: In_, n_t, _th, the
4-grams: In_t, n_th, the

5-grams In_th, n_the
6-grams In_the

N-grams have been successfully used for a long time in a wide variety of
problems and domains, including information retrieval (Heer, 1974),
detection of typographical errors (Morris and Cherry, 1975), language
identification (Schmitt, 1991), automatic text categorization (Cavnar and
Trenkle, 1994), music representation (Downie, 1999), computational
immunology (Marceau, 2000), analysis of whole genome protein sequences
(Ganapathiraju et al., 2002), authorship attribution (Keselj et al., 2003), optical
character recognition (Adnan et al., 2003), protein classification (Solovyev and
Makarova, 1993), protein classification (Cheng et al., 2005) and phylogenetic

tree reconstruction (Qi et al., 2004).

43

We have chosen to use n-grams in this method as they are more flexible
and expressive in comparison with fixed lists of tokens, they are language
independent, and they can be extracted without the need to construct special
mining tools (Juola, 2006). In addition, their use has shown good results in the
natural language authorship identification field. Furthermore, the frequency-
based analysis method of the SCAP approach is preferred over machine
learning techniques since it is simpler to use and interpret, and we have
achieved better preliminary results in classification accuracy with this method

in comparison with a selection of machine learning techniques.

Programming languages resemble natural languages. Both ‘ordinary’ texts
written in natural language and computer programs can be represented as
strings of symbols (words, characters, sentences, etc.) (Miller, 1991; Kokol et

al., 1999; Schenkel et al., 1993).

While both rely on the application of rules regarding the structure and
formation of artifacts, programming languages are more restricted and formal
than (many) natural languages and have much more limited vocabularies.
This has been demonstrated by an experiment counting the number of
character n-grams (i.e. bigrams, 3-grams, 4- grams and so on) extracted from
three files equal in size (0.5 MB). One file contained Java source code text, the
second Common Lisp code and the third English text. Figure 3.1 shows the
results of a comparison of n-gram ‘density’, illustrating that the number of n-
grams is much larger in the natural language text for all but the smallest n-

gram size.

44

350000

300000 - /‘
B 250000
@
X 200000 e JAVA
Eg —=—LISP
g 150000 —a— Natural Lang
e
2
Z 100000
50000 -

N-gram size

Figure 3.1 Total number of n-gram types extracted from three files equal in size (1 Java
file, 1 Common Lisp, 1 Natural Language), for different sizes of n-gram.

3.1. Description of the SCAP method

The SCAP approach is based on the extraction and analysis of byte-level n-
grams. An n-gram is an n-contiguous sequence and can be defined at the byte,
character, or word level. For example, the byte level 3-grams extracted from
‘The first” are (the character _indicates the space character): The, he_, e_f, _fi,
tir, irs, rst. Byte, character and word n-grams have been used in a variety of
applications such as text authorship attribution, speech recognition, language
modelling, context sensitive spelling correction, and optical character

recognition.

45

Source Code
Sample

Extract frequencies of
occurrence for each byte level
n-gram (3.1)

\ 4

Sort byte level n-grams by
n » decreasing frequency (3.2)

\ 4

L »{ Keep the L most frequent byte
level n-grams (3.3)

l

Profile with n-gram
size n and length LL

Figure 3.2 Extraction of source code profiles for a given n (n-gram length) and L (profile
size).

The SCAP procedure is explained in the following steps and is illustrated
in Figures 3.2 and 3.3. Figure 3.2 shows step 3 of the procedure (dealing with
profile creation) in detail. The bolded numbers shown in the figures indicate
the corresponding step in the description that follows. The SCAP method, as
it is described below, calculates the most likely author of a given file for
different values of n-gram size n and profile length L. Figure 3.3 illustrates the
SCAP procedure for specific values of n-gram size n and profile size L. (For

this reason Steps 4.1 and 4.2 are omitted from the diagram.)

1. Divide the known source code programs for each author into training and
testing data.
2. Concatenate all the programs in each author’s training set into one file.

Leave the testing data programs in their own files.

46

3. For each author training and testing file, get the corresponding profile:

3.1.

3.2

3.3.

Extract the n-grams at the byte-level, including all non-printing
characters. That is, all characters, including spaces, tabs, and new
line characters are included in the extraction of the n-grams. In
our analyses, Keselj’s (2003) Perl package Text::N-grams has been
used to produce n-gram tables for each file or set of files that is
required.

Sort the n-grams by frequency, in descending order, so that the
most frequently-occurring n-grams are listed first. The n-grams
extracted from the training file correspond to the author profile,
which will have varying lengths depending on the length (in
terms of characters) of the programming data and the value of n
(n-gram length). The profile created for each author will be called
the Simplified Profile (SP) since it is simpler than the profile used
by Keselj (2003), which uses the n-grams together with their
normalized frequencies.

Keep the L most frequent n-grams {xi, x2, ..., xt}. The actual

frequency is not used except for ranking the n-grams.

4. For each test file, compare its profile to each author using the

Simplified Profile Intersection (SPI) measure:

4.1.

4.2.

4.3.

Select a specific n-gram length, such as trigram (For the
experiments in this paper, we used a range of lengths, 3-grams up
to 10-grams).

Select a specific profile length L, at which to cut off the author
profile, smaller than the maximum author profile length.

For each pair of test and known author profiles, create the SPI
measure. Letting SPa and SPr be the simplified profiles of one

known author and the test or disputed program, respectively,

47

4.4.

then the distance measure is given by the size of the intersection
of the two profiles:

|SP, N8P
In other words, the distance measure we propose is the amount of
common n-grams in the profiles of the test case T and the author
A. The SPI measure it is a similarity (rather than dissimilarity)

measure, that is the higher the |sP, nSP;| the more likely for the

test program T to be assigned to author A. In addition this
measure does not make use of the frequency information for each
n-gram.

Classify the test program to the author whose profile at the
specified length has the highest number of common n-grams with
the test program profile at the specified length. In other words,
the test program is classified to the author with whom we
achieved the largest amount of intersection. We have developed a
number of Perl scripts in order to create the sets of n-gram tables
for the different values of n (n-gram length), L (profile length) and
for the classification of the program file to the author with the
smallest distance (i.e., greatest overlap). By shifting the n-gram
length n and the profile length L (or cut-off, or number of n-gram
types included in the SPI), we can test how accurate the method is

under different n, L combinations.

48

Test files of
unknown
authorship

Divide all source programs into
training and test files (1)

A 4

Training files

per author
Select one file of unknown
authorship
Concatenate all training files per
author in one file (2)
Extract unknown file profile for a
l specific n-gram length n, and profile
Extract author profiles for a specific length L. 3 - see Figure 2)

n-gram length n, and profile length
L (3 —see Figure 2)

Compare each author profile SP,
with unknown file profile SPyusing
SPI=|SP, nSR| (4.3)

'

Most likely author: author
with max SPI (4.4)

Figure 3.3 Estimation of most likely author of an unknown source code sample using the
SCAP approach

3.2. Empirical Study — Hypotheses.and Method

The aim of the empirical study conducted was to check the following;:

H1 The SCAP method is an effective approach for identifying the author of a

source code program given a set of predefined authors.

Since the SCAP method is based on low level information the second
hypotheses will be:
H2 The SCAP method is language independent.

49

Furthermore, the fact that the SCAP method is an extension of a method
that has been successfully applied to text authorship identification (Keselj,
2003) leads us to the following hypotheses:

H3 The SCAP method can identify the most likely author of a piece of code by

using only the comments present in the program.

The following two sections, 3.2 and 3.3 include all the experiments
conducted in this empirical study. The first section includes experiments in
order to evaluate the effectiveness of the SCAP method (H1). Data sets
written in Java, C and C++ were used with different combinations of profile
size L and n-gram size n. In one of the experiments we used the data set used
by Mac Donell et al (2001) in order to compare the effectiveness of the SCAP
approach against a different source code authorship identification method. In
addition this section includes an experiment in order to check whether it is
possible to identify the author of a piece of code by using only the comments

of a program (H3.).

All the experiments in the first section were conducted using two similarity
measures: RD used by Keselj (2003) and SPI used in the SCAP approach. The
purpose of this was to check whether the similarity measure used by the
SCAP method (SPI) is more effective in identifying the author of a program
than the RD similarity measure (RD) used by Keselj in text authorship

identification.

Although the experiments with programs written in Java and C in section
3.2 have indicated that the SCAP method is language independent, another
set of experiments has been performed in section 3.3 with programs written in
Java and Common Lisp in order to evaluate hypotheses H2. These two
languages have been chosen as they represent different styles of
programming — Java is highly object-oriented, while Common Lisp is multi-

paradigm, supporting functional, imperative, and object-oriented

50

programming styles. Given language similarities it could be expected that

programs written in C++ would have similar results to those achieved with

Java code, and Prolog programs should behave similarly to Lisp programs.

3.2. Evaluating the effectiveness of the SCAP Method

Table 3.1. Data Sets

MacDo- Student OSJa- | NoCom OnlyCom (O]
nellC++ Java val Java Java Java2
No Authors 6 8 8 8 6 30
Samples 5-114 5-8 4-29 4-29 9-25 4-29
per Author
Total 268 54 107 107 92 333
Samples
Training Set 134 26 56 56 46 170
Samples
Testing Set 133 28 51 51 43 163
Samples
Size of 19 36 23 10 6 20
smallest
sample
Size of 1449 258 760 639 332 980
biggest
sample
Mean LOC | 2064 131.67 |155.48 | 122.28 64.58 170.84
in Training
Set
Mean LOC 213 127.19 |134.17 | 95.92 56.48 173.03
in Test Set
Mean 210 129 145 109.1 60.53 172
LOC/sample

3.2.1. Comparison of SCAP and Keselj’s approach on MacDonell Data

Our purpose in this experiment was to check that the SCAP works at least

equally as well as the previous methodologies for source code author

identification. As mentioned in the previous chapter, MacDonell et al. 2001

51

reported the best result using the case-based reasoning (that is, a memory-

based learning) algorithm for classification accuracy was 88%.

The MacDonell data set was split (as equally as possible) into the training
set (134 programs) and the test set (133 programs). We ran the
aforementioned perl programs to extract n-grams from two to eight
consecutive byte-level characters, to calculate the frequencies and assign the
authorship based on the greatest amount of overlapping or shared n-grams
between the known author profile and the test source code profile. Table 3.2
presents the results, demonstrating clearly that the Relative Distance method
and the SCAP method are both capable of highly reliable results, with most

assignments being 100% accurate.

Table 3.2. Classification accuracy (%) on the MacDonell C++ data set using RD
(Keselj’s approach) and SPI (SCAP approach).

Profile .
Size L n-gram Size
2 3 4 5 6 7 8
RD | SPI | RD | SPI | RD | SPI | RD | SPI | RD | SPI | RD | SPI | RD | SPI
200 98 |98 (98 |98 [97 |97 |96 [96 |95 |96 |93 93 93 95
500 100 | 100 | 100 | 100 | 100 | 100 | 99 | 100 | 98 | 98 98 98 98 98

1000 51 {99 | 100|100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99 |99

1500 5 98 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99 |99 |99 | 100
2000 2 98 |98 |100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
2500 2 96 |99 |100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
3000 2 96 |55 |100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Table 3.2 also shows that the SCAP method outperforms the RD method
especially with bi-grams and profile lengths of 1000 or more, although the RD
and SPI results equalize with tri-grams and larger n-grams at the 1000 profile
length. Consequently, bi-grams (n=2) seem insufficient to discriminate

between the authors and will not be examined in the remaining experiments.

In addition to demonstrating the effectiveness of the SCAP methodology
for authorship identification of source code, this experiment also allows us to
compare the effectiveness of RD and SPI calculations. More importantly, RD

performs much worse than SPI in all cases where at least one author profile is

52

shorter than the selected L profile length. Based on the definition of profile
length discussed earlier, Table 3.3 shows the profile length for each of the six

authors in this experiment

Table 3.3 Profile Lengths of Six Authors in MacDonell Dataset

Author 1 2 3 4 5 6
Profile Length for bigram 1949 | 2391 | 1580 |2219 | 767 1522
Profile Length for trigram 8487 | 12687 | 5778 | 7815 | 1893 6060
Profile Length for 4-gram 20080 | 21224 | 10666 | 14353 | 2915 13543
Profile Length for 5-gram 34407 | 31732 | 15268 | 20533 | 3710 | 22492
Profile Length for 6-gram 48462 | 41733 | 19338 | 26304 | 4411 31757
Profile Length for 7-gram 61362 | 51561 | 22992 | 31697 | 5008 | 41190
Profile Length for 8-gram 72791 | 61050 | 26122 | 36776 | 5533 50471

For L=1000 and n=2, L is greater than the size of the profile of Author
Number 5 (the maximum L of the profile of Author No 5 for n=2 is 769). The
accuracy rate declines to 51% using the RD similarity measure. This occurs
because the RD similarity measure (1) is affected by the size of the shortest
author profile. When the size of an author profile is lower than L, some
programs are wrongly classified to that author. This is because when the
shorthest profile of an author Par is compared with a test program Pr the
proportion of common n-grams located is more likely to be bigger with Par
than will with a bigger author profile Pa:. If you also take into account that the
contribution to RD similarity measure of a n-gram found in the author profile
but not found in the test program is 2% -then is more likelly RD(Pai, P1) to be
smaller than RD(Paz, Pr.). In summary, we can conclude that the RD similarity
measure is not as accurate for those n, L combinations where L exceeds the
size of even one author profile in the dataset. In all cases, the accuracy using
the SPI similarity measure is better than (or equal to) that of RD. This
indicates that this new and simpler similarity measure included in SCAP
approach is not affected by cases where L is greater than the smaller author

profile.

53

3.2.2. Performance of SCAP and Keselj’s approach on A Different
Programming Language

In order to check that the SCAP method can work effectively independent
of particular programming languages, the second experiment was performed
on programs written in Java, labelled dataset OS Java in Table 2. Source code
samples by 8 different authors were downloaded from the website
freshmeat.net. The amount of programs per programmer is highly
unbalanced, ranging from 4 to 29 programs per author. The source code
sample size was between 23-760 lines of code. In many cases, source code
samples by the same programmer share common comment lines at the
beginning of the program. Such “common comment” lines were manually
removed since they could (positively) influence the classification accuracy.
The total number of programs was 107 and they were split into equally-sized
training and test sets. This data set provides a more realistic case of source
code author identification than typical student programs. Open source code is
similar to commercial programs which usually contain comment, are well-
structured, and are longer than typical student programs.

Table 3.4. Classification accuracy (%) on the OSJaval data set for different

values of n-gram size, profile length and similarity measure (Relative
Distance or Simplified Profile Intersection)

n-gram Size
Profile

Size L

RD | SPI |RD | SPI|RD | SPI | RD SPI |RD |SPI | RD | SPI
1500 88 100 | 100 | 100 | 100 | 100 | 100 100 | 100 | 100 | 100 | 100
2000 35 100 | 80 100 | 100 | 100 | 100 100 | 100 | 100 | 100 | 100

Table 3.4 shows the classification accuracy for tri-grams and longer strings
with profile lengths of at least 1500 n-grams. The classification results for the
OS Java data set are perfect (100%) for any n-gram size with profile size at

least 1500 using the SPI similarity measure. The SPI similarity measure

54

outperforms the RD measure with trigrams and 4-grams, but then the two

measures equalize.

These very high accuracy results mainly are due to the fact that the source
code samples of this data set are relatively long, enabling us to set the length
of the compared profiles at 1500 and greater. Moreover, for many candidate
authors there is a sufficient amount of training samples so that the author
profiles are at least as long as the selected profile lengths. Finally, this
experiment demonstrates that the SCAP approach works very reliably

independently of which programming language (C++ or Java) is analyzed.

3.2.3. Performance of SCAP and Keselj’s approach on Comment-free Source
Code

Since the source code used in malicious cyber attacks typically do not
contain comments, the third experiment reported here examines the
performance of SCAP on comment-free code. We first filtered out any
comments from the OS Java data set resulting on a new data set identified as

NoCom]Java in Table 3.2.

Table 3.5 shows that the SPI metric consistently outperforms the RD metric
when the n-grams are less than seven characters long and the selected profile
lengths are 500 n-grams or greater. Further, the best accuracy rates for SPI
occur when the profile length is set at 2000.

Table 3.5 Classification accuracy (%) on the NoComJava data set for

different n-gram size, profile size and two similarity measures (Relative
Distance or Simplified Profile Intersection)

Profile n-gram Size
Size

3 4 5 6 7 8
RD | SPI | RD | SPI RD SPI | RD | SPI | RD SPI RD | SPI
500 94 94 |94 | 94 94 94 94 | 94 92 94 92 |92
1500 35 98 |47 |90 80 98 9 | 98 98 98 98 | 98
2000 33 92 |14 | 98 20 100 | 31 | 100 | 61 100 78 | 100

55

In more detail, for L=500, when the n-gram ranges from three to eight
consecutive characters, RD and SPI have (almost) identical performance.
When L increases to 1500, the accuracy of RD drops for shorter n-grams, i.e.,
low values of n (n<6). When L increases to 2000, the accuracy of RD drops for
all values of n. This happens because at least one author has an author profile
shorter than the predefined value of L. Just as we saw in the first experiment,
RD is not able to handle effectively cases in which an author’s profile is
shorter than the predefined length of the profile for comparison. Note that the
accuracy of SPI increases with L. This is a strong indication that the SPI
similarity measure in SCAP suits the source code author identification

problem well.

3.2.4. Performance of SCAP and Keselj’s approach on Difficult Student
Data

The fourth experiment reported here was performed on student programs
written in Java, identified as the Student Java dataset (see Table 3.2). Several
characteristics of this dataset make it particularly difficult. First, there are only
6-8 programs per author for the 8 different programmers in total. Second, the
size of the programs was between only 36 and 258 lines of code, with the
mean LOC per program 129 (see Table 3.2). In particular, the source code
samples of this data set include assignments from an introductory
programming course. The programs written by students usually have no
comments while their programming style is influenced by the guidelines of
the instructor. More significantly, the source code samples are plagiarised. All
these facts introduce some extra difficulties in the source code authorship
analysis. As a consequence, the classification results for the Student Java data

set are expected to be lower than that of MacDonell C++ data set.

The data set was split into quasi equally-sized training and test sets. As

shown in Table 3.6, the best result achieved for the similarity measure RD was

56

84.6% and the best result for the similarity measure SPI was 88.5% (which is at
least equal to MacDonell’s best result with case-based reasoning). These
results are quite satisfactory given the difficulties of this data set. This
indicates that the SCAP method can reliably handle difficult cases. Again, SPI
is more robust in comparison to RD, especially for high values of L when L is
more likely to be shorter than an author’s profile.

Table 3.6 Classification accuracy (%) on the StudentJava data set for

different values of n-gram size and profile size using two similarity
measures: Relative Distance and Simplified Profile Intersection.

Profile n-gram Size
Size L

3 4 5 6 7 8

RD SPI RD SPI |RD |SPI |RD |SPI |RD |SPI | RD | SPI

200 69.2 69.2 73.1 73.1 | 73.1 | 73.1| 69 69 73.1 | 731|731 | 73.1

500 769 1769 |80.8 |80.8 |80.8 |808 | 846 |84.6 |769 |769 | 731 |73.1

1000 80.8 |80.8 |846 |84.6 |84.6 |84.6| 808|808 | 808 |80.8|84.6 | 84.6

1500 84.6 | 84.6 76.9 76.9 | 80.8 | 80.8 | 84.6 | 84.6 | 80.8 | 80.8 | 80.8 | 80.8

2000 53.8 |80.8 |654 |808 |769 |80.8|84.6| 885 |84.6 | 84.6 | 84.6 | 84.6

2500 538 |731 |538 |76.9 |53.8 |80.8|84.6|885 |84.6 | 88.5|84.6 | 84.6

3000 53.8 | 731 |53.8 |80.8 |50 76.9 | 53.8 | 84.6 | 69.2 | 84.6 | 84.6 | 84.6

3.2.5. Dealing with many authors using the SCAP and Keselj’s approach

The previous experiments have shown that our approach is quite reliable
when dealing with a limited number of candidate authors (6 to 8). In this
section we present an experiment that demonstrates the effectiveness of the
proposed method when dealing with dozens of candidate authors. For that
purpose a data set was created by downloading open-source code samples by
30 different authors from freshmeat.net. Hereafter, this data set will be called
OSJava2. Details on this data set can be found in Table 3.2. Note that the
available texts per author ranges from 4 to 29. Moreover, in average the
samples of this data set are longer in comparison to the OSJaval. Again, all
the introductory comments, usually common in the samples of each author,

were manually removed. This data set includes programs on the same

57

application domain written by different authors. In addition the samples of
many authors are written over a long time period and therefore there might

be programming style changes of certain authors.

The samples were split into equally-sized training and test set. Note that
the training set was highly unbalanced (as OSJaval). The best accuracy result
was 96.9% and has been achieved using the SPI similarity measure as can be
seen in Table 3.7. Again, RD fails to deal with cases where at least one author
profile is shorter than L. In most cases, accuracy exceeds 95%, using the SPI
similarity measure indicating that the SCAP approach can reliably identify
the author of a source code sample even when there are multiple candidate

authors. Again, the best result corresponds to profile size of 1500.

Table 3.7 Classification accuracy (%) on the OSJava2 data set for different
values of n-gram size and profile size using the SPI similarity measure.

Profile n-gram Size
Size L

3 4 5 6 7 8
RD SPI | RD SPI | RD | SPI RD | SPI | RD SPI | RD | SPI

1000 929 1929 | 929 939|951 | 951 |939|939 | 957 | 951|939 | 94.5

1500 92 92 | 939 (939|951 | 951 |95.7]957 | 957 |96.9 | 95.1 | 95.1
2000 30.7 92 | 71.8 | 939|951 | 951 |951|945| 951 | 957|957 | 95.7

2500 128 1933 | 36.8 | 945|541 | 951 |79.1|945| 945 | 945|951 | 95.1
3000 141 | 89.0| 134 |945|245| 95.1 38 | 951 | 57.7 | 95.1|75.5]|95.1

3.2.6. Performance of SCAP and Keselj’s approach on Comments

The aim of this experiment was to check the performance of SCAP method
on Comments. Since the method is an extension of an approach applied to
natural language, we run this experiment in order to measure the
performance of the SCAP approach on text incorporated in source code
programs as comments. For this reason we filtered all source code from the
OSJaval data set, leaving the comments only. The resulting data set, which

will be called OnlyComJava, includes fewer programs than the original

58

because any source code files with no comments were removed. As can be
seen in Table 3.2 the OnlyComJava data set includes samples by 6 different

authors with 9 — 25 files per author.

The application of the SCAP methodology to OnlyComJava data set is
described in Table 3.8. Notice that two different profile sizes are indicated
(1500 and 2000) since they provide the best results (as can be seen from the

previous experiments).

The results demonstrate the RD similarity measure is more competitive,
which indicates that it better suits natural language. Again, the best results
are obtained using the SPI measure. Probably, this is explained by the
extremely short samples that constitute the OnlyComJava data set.
Furthermore, the results show that in some cases the author of a program

could be identified by examining the comments present in a source code file.

Table 3.8 Classification accuracy (%) on the OnlyComJava data set for
different values of n-gram size and profile size using two similarity
measures: Relative Distance and Simplified Profile Intersection.

. n-gram Size
Profile

Size L 3 4 5 6 7 8

RD | SPI RD SPI RD SPI | RD | SPI | RD | SPI | RD | SPI

1500 98 98 98 98 98 100 | 95 | 95 | 95 | 95 | 95 95

2000 232 | 91 98 100 98 100 | 95 | 100 | 95 98 | 95 98

3.2.7. The Significance of Training Set Size

The purpose of this experiment was to examine the degree in which the
training set size affects the classification accuracy. For this reason we used the
C++ data set for which we reached classification accuracy of 100% for many n,
L combinations with both similarity measures. This result has been achieved
by using a training set of 134 programs in total. For the purposes of this
experiment we used the same test set as in the experiment of section 4.1 but

now we used training sets of different, smaller size. The smallest training set

59

was comprised by only one program from each author and the biggest by 5
programs from each one (with the exception of one author for whom the
available training programs were only 3). The presented source code author
identification approach was applied to these new training sets using n=6 and
L=1500 and similarity measure SPI. Note that the training size of authors was
smaller than L in many of these experiments and as already explained, in such
cases the classification accuracy decreases dramatically when using the

similarity measure RD

The accuracy results achieved are shown in Table 3.9. As can be seen, even
with just one program per author available in the training set, high
classification accuracy was achieved. By adding a second program per author
the accuracy increased significantly above 96%. Note that the second
programs added in the training set were in average longer than the first
programs (see second column in Table 3.9). We reached 100% of accuracy for
training set based on five programs per author. This is a strong indication that
our approach is quite effective even when very limited size of training set is
available; a condition usually met in source code author identification

problemes.

Table 3.9 Classification Accuracy (%) on the C++ data set using different
training set size (in programs per author).

Training | Mean LOC | Accuracy
Set Size | in Training (%)
Set

1 52 63.9

2 212 96.2

3 171 97

+ 170 99.2

5 197 100

60

3.3. Implementing SCAP to languages that represent different
programming style

In order to check that the SCAP method works effectively independent of
any particular programming language, a number of initial tests were
performed on programs written in two programming languages — Java and
Common Lisp. These languages were chosen because they foster very
different styles of programming. Following this, a set of experiments were
undertaken in order to assess the importance of the factors above that are
asserted to contribute to authorship attribution (reported in the following

section).

When using Java, the programmer must ‘create’ some words when writing
a program, such as a class name or a method name (Lewis and Loftus, 1998).
Other terms, such as String, System.out.println, are not created by the
person who writes the piece of code but they are drawn from the author of
the Java API and are simply selected for use by the programmer. Reserved
words are terms that have special meaning in a programming language and
can only be used in predefined ways. The Java language comprises 59

reserved words, including for example class, public, static and void.

The fundamental values manipulated by Common Lisp are called atoms
(Lamkins, 2004). An atom is either a number (integer or real) or a symbol that
looks like a typical identifier (such as ABC or L10). Their most common use is
to assign a label to a value. This is the role played by variable and function
names in other languages. Symbols can be defined by the person who writes
the program (for example open-joysticks, padding-x) or by the author
of the package (sdl-data:data-file, sdl:init-video) or can be one
of the built-in symbols found in the Common Lisp package (for example
array, gensym). The Common Lisp package contains the primitives of the

Common Lisp system as defined by the language specification (The

61

Harlequin Group Ltd, 2007). It contains 978 symbols. All programs could use

any of these symbols as they are all defined by Common Lisp specification.

Table 3.10 Data Sets.
Common Lisp Java

No Authors 8 8
Samples 2-5 4-5
per Author
Total Samples 35 35
Training Set Samples 16 18
Testing Set Samples 19 17
Size of smallest sample 49 52
(LOC)
Size of biggest sample (LOC) 906 519
Mean LOC in Training Set 309 200
Mean LOC in Test Set 171 167
Mean LOC/sample 240 184

3.3.1. The Common Lisp data set

Common Lisp source code samples written by eight different authors were
downloaded from the website freshmeat.net. The authors were from four
different projects. Two were from projectl, three from project2, two from
project3 and one from project4. This distribution therefore presented an
additional challenge in terms of authorship attribution, as we had programs
on the same subject (project) written by different authors. The total number of
programs was 35. In order to ensure adequate splits of the sample for each
author, sixteen (16) programs were assigned to the training set and nineteen
(19) to the test set (see Table 3.10). The data set is from this point referred to as
the CLisp dataset. Table 3.11 shows the classification accuracy results
achieved on the test data set using various combinations of profile parameter
values. The highest level of accuracy achieved on this dataset was 89.5%,
shown in bold in the table. The best results were achieved in three instances,

all where n>6 and L>3000.

62

Table 3.11. Accuracy of classification for the CLisp data set

Profile n-gram size
Size (L) 3 4 5 6 7 8 9 10
2000 63.2 63.2 68.4 68.4 68.4 68.4 73.7 73.7
3000 73.7 73.7 68.4 68.4 73.7 73.7 78.9 84.2
4000 68.4 84.2 73.7 78.9 89.5 84.2 84.2 89.5
5000 68.4 84.2 78.9 78.9 84.2 78.9 84.2 89.5
6000 68.4 84.2 78.9 78.9 84.2 78.9 78.9 84.2
7000 68.4 84.2 78.9 78.9 84.2 78.9 78.9 78.9
8000 68.4 84.2 84.2 78.9 84.2 78.9 78.9 78.9
9000 68.4 84.2 84.2 78.9 84.2 84.2 78.9 78.9
10000 68.4 84.2 84.2 84.2 78.9 84.2 78.9 78.9

3.3.2. The Java data set

The Java data set included programs by eight different authors. The
programs were open source and were found in the freshmeat.net web site.
The programs were split into equally sized training and test sets. In order to
make the classification ‘subject independent” all programs from each author
that were placed in the training set were from a different project than the
programs placed in the test set. Hence, we had programs from sixteen
different projects, two projects for each author. Consequently, the programs
in each set did not share common characteristics because they were from
different projects. The total number of programs was 35. Eighteen (18)
programs were allocated to the training set and seventeen (17) to the test set.
This data set is from this point referred to as the Java dataset (see Table 3.10).
The results achieved in the Java data set experiment are given in Table 3.12.
As can be seen, accuracy reaches 100% in several cases, many of them for

L>4000 and n=6, 7 and 8.

63

Table 3.12. Accuracy of classification for the Java data set.

Profile n-gram size

Size (L) 3 4 5 6 7 8 9 10
2000 58.8 882 | 941 | 941 | 941 82.4 88.2 | 88.2
3000 35.3 824 | 941 | 941 | 100 88.2 88.2 | 88.2
4000 35.3 70.6 | 824 | 100 | 94.1 88.2 88.2 | 88.2
5000 35.3 47.1 88.2 | 100 100 100 88.2 | 88.2
6000 35.3 41.2 76.5 | 941 | 100 100 88.2 | 941
7000 35.3 41.2 70.6 88.2 100 100 94.1 82.4
8000 35.3 41.2 70.6 | 824 | 94.1 100 941 | 100
9000 35.3 41.2 70.6 | 76.5 | 94.1 94.1 941 | 94.1
10000 35.3 41.2 70.6 | 76.5 | 94.1 94.1 941 | 94.1

3.4. Summary

In this chapter we presented a new approach to source code authorship
identification, called the SCAP (Source Code Author Profiles) approach. It is
based on byte-level n-gram profiles in order to represent a source code
author’s style. Experiments on stratified data sets of different programming-
language (Java, C++ and Common Lisp) and varying difficulty (6 to 30

candidate authors) demonstrate the effectiveness of the proposed approach.

The conclusions reached in relation to the SCAP method are as follows:

e A comparison with a previous source code authorship identification
study based on more complicated information shows that the n-gram
author profiles are better able to capture the idiosyncrasies of the
source code authors.

e One of the inherent advantages of this approach over others is that it is
language independent since it is based on low-level non-metric
information. Also, the experiments performed with languages that
represent different programming styles have demonstrated that the

SCAP method can reliably identify the most likely author.

64

Experiments with data sets in Java and C++ and Common Lisp have
shown that it is highly effective in terms of classification accuracy.
Comments alone can be used to identify the most likely author in
open-source code samples, where there are detailed comments in each
program sample. Furthermore, the SCAP method can also reliably
identify the most likely author even when there are no comments in the
available source code samples.

The SCAP approach can deal with cases where very limited training
data per author is available or there are multiple candidate authors,
with no significant compromise in performance.

The SCAP approach outperforms Keselj’s method in cases where the
data set consists of a few training programs for an author and many
programs available for other authors.

Many experiments are required in order to identify the most

appropriate combination of n-gram size n and profile size L.

65

Chapter 4. Significance of high-level programming features

As described in the previous chapter, the use of Source Code Author
Proftiles (SCAP) represents a new, highly accurate approach to source code
authorship identification that is, unlike previous methods, language
independent. While accuracy is clearly a crucial requirement of any author
identification method, in cases of litigation regarding authorship, plagiarism,
and so on, there is also a need to know why it is claimed that a piece of code is
written by a particular author. What is it about that piece of code that
suggests a particular author? What features in the code make one author more
likely than another? The provision of evidence to support or refute claims of
authorship depends on our ability to answer this question (MacDonell et al.,
2002). In this chapter, we describe a means of identifying the high level
features that contribute to source code authorship identification using as a

tool the SCAP method.

4.1. Program features and source code authorship identification

Computer programs are written according to strict grammatical rules
(context free and regular grammars) (Floyd and Beigl, 1994). Programming
languages have vocabularies of keywords, reserved words and operators,
from which programmers select appropriate terms during the programming
process (Kokol and Kokol, 1996). In addition, programs have vocabularies of
numbers and vocabularies of identifiers (names of variables, procedures,
functions, modules, labels and the like) created by programmers. These are, in

general, not language dependent.

Based on previous research efforts (Ding and Samadzadeh, 2004; Krsul and

Spafford, 1995) and the broad language characteristics just described, the

66

features that could influence source code authorship attribution can be

considered in the following categorisation:

Comments: Comments are the natural language text statements created
by the programmer that generally explain the functionality of the
program, possibly including further information regarding the history
of the program’s development. The programmer is free to use any
words he or she prefers. Recently, a number of authorship attribution
approaches have been presented (Stamatatos et al., 2000; Peng et al.,
2004; Chaski, 2005) proving that the author of a natural language (i.e.
free-form) text can be reliably identified. Thus, we assert that

comments could contribute to source code authorship identification.

Programming layout features: This category includes those features that
deal with the layout of the program and could reflect a programmer’s
style. Such features include indentation, placement of comments,

placement of braces and placement of tabs spaces.

Identifiers: Each programmer is free to create his or her own variable
names, function names and similar labels. Also, within a program there
are commonly names not created by the programmer but by the author

of a package which is imported.

Programming structure features: In previous research efforts, this term
has been used to describe certain language-dependent features that
might reflect source authorship identification. For example, the “ratio
of keyword while to lines of non-comment code”, or “ratio of keyword
private to lines of non-comment code”. The way this term is used in
this paper is to describe the keywords that are “built-in” to the
language. In Java, this maps to 59 reserved words and in Common Lisp

to 978 symbols that are used in the Common Lisp package.

67

The following subsections describe the abovementioned program features

in more detail.

4.1.1. Comments

Source code can be divided into program code (which consists of machine-
translatable instructions); and comments which include human-readable

notes and other kinds of annotations in support of the program code (Grubb,

2003).

Some contend that comments are unnecessary because well-written source
should be self explanatory; others contend that source code should be
extensively commented (it is not uncommon for over 50% of the non-

whitespace characters in source code to be contained within comments).

In between these views is the philosophy that comments are neither
beneficial nor harmful by themselves, and what matters is that they are
correct and kept in synch with the source code, and omitted if they are
superfluous, excessive, difficult to maintain or otherwise unhelpful

(Dewhurst, 2002).

4.1.1.1 Styles of Comments
Comments are generally formatted as block comments, also called prologue

comments or line comments also called inline comments (Dixit, 2003). Block
comments are delimited by a sequence of characters that mark the start of the
comment and continue until the sequence of characters that mark the end of
the comment. Block comments are allowed to span multiple lines of the
source code. Typically, block comments do not nest, so any comment start
delimiter encountered within a comment body is ignored. Some languages
allow nested block comments to facilitate using comments to comment-out
blocks of code that may itself contain block comments. Line comments start

with a comment delimiter and continue until the end of the line, or in some

68

cases, start at a specific column (character line offset) in the source code and

continue until the end of the line.

Some programming languages employ both block and line comments with
different comment delimiters. For example, C++ has block comments
delimited by /* and */ that can span multiple lines and line comments

delimited by /7.

For example, C++-style comments could look like this

// this is a line comment
/*

This is the comment body.
*/

or maybe this

/***************************\
* *

* This is the comment body. *
* *

***************************/

Different styles can be chosen for different areas of code, from individual
lines to paragraphs, routines, files, and programs. If the syntax supports both
line comments and block comments, one approach is to use line comments
only for minor comments (declarations, blocks and edits) and to use block
comments to describe higher-level abstractions (functions, classes, files and

modules).

4.1.1.2 Uses of Comments
How best to make use of comments is subject to dispute, different

commentators have offered varied and sometimes opposing viewpoints

(Dietrich, 2003; Keyes, 2003):

* Code description Comments can be used to summarise code or to explain

the programmer's intent. This is called the why rather than how approach.

69

According to this school of thought, restating the code in plain English is a
waste of time; the need to explain the code may be a sign that it is too
complex and should be rewritten. "Good comments don't repeat the code
or explain it. They clarify its intent. Comments should explain, at a higher
level of abstraction than the code, what you're trying to do." (Mc Connell,

1993).

Algorithmic description Sometimes source code contains a novel or
noteworthy solution to a specific problem. In such cases, comments may
contain an explanation of the methodology. Such explanations may
include diagrams and formal mathematical proofs. This might especially
be true in the case of highly-specialized problem domains; or rarely-used
optimizations, constructs or function-calls (Spinellis 2003). For example, a
programmer may add a comment to explain why an insertion sort was
chosen instead of a quicksort, as the former is, in theory, slower than the

latter.

Resource inclusion Logos, diagrams, and flowcharts consisting of ASCII art
constructions can be inserted into source code formatted as a comment.
Additionally, copyright notices can be embedded within source code as
comments. Binary data may also be encoded in comments through a
process known as binary to text encoding, although such practice is

uncommon and typically relegated to external resource files.

Debugging A common developer practice is to comment out a code snippet

as a comment, such that it will not be executed in the final program.

Automatic documentation generation Some programming tools read
structured information in comments and automatically generate
documentation. Automatic documentation generation from the comments
in the source code provides a means of maintaining consistency between

the documentation of the interface and use of the code. Keeping the

70

documentation within the code makes it easier, and thus more likely, to
keep the documentation up to date with changes in the code. Examples of
documentation generators include the javadoc program, designed to be
used with the Java programming language, Ddoc for the D programming

language and doxygen, to be used with C++, C, Java, IDL and others.

Metadata and annotations Developer tools sometimes store metadata in
comments, such as insert positions for automatic header file inclusion,
commands to set the file's syntax highlighting mode, or the file's revision
number. These functional control comments are commonly referred to as
annotations.Comments are often employed for these and related methods
because they allow the use of syntax and lexical conventions that might
otherwise conflict with those of the enclosing programming language.
This is another sense in which it is helpful that compilers and interpreters

"ignore" comments.

Warnings Some comments are intended as warnings to other programmers
that code may not be complete or may have known limitations which
should be addressed. One convention for such comments is to prefix them

with XXX in order to allow ease of later identifications of potential problems

(Arensburger, 2001).

4.1.2. Programming Layout features

Programming layout features refer to a set of rules or guidelines used

when writing the source code for a computer program. It is often claimed that

following a particular programming style will help programmers quickly

read and understand source code conforming to the style as well as helping to

avoid introducing faults (McConell 1993).

The programming layout features used in a particular program may be

derived from the coding standards or code conventions of a company, a project or

71

other computing organization (Mozilla.org 2007), as well as the preferences of
the author of the code. Furthermore, many programming languages (Sun
Developer Network, 1999; Norvig and Pitman 1993; Cargill, 1992) have their
own of “how to write a program” guidelines. The issues considered as part of

the of the programming layout features include:

Identing Indent styles assist in identifying control flow and blocks of code. In
programming languages that use indentation to delimit logical blocks of code,
indentation style directly affects the behaviour of the resulting program. In
other languages, such as those that use brackets to delimit code blocks, the
indentation style does not directly affect the product. Instead, using a logical
and consistent indentation style makes code more readable. An example with
code written in C++ is given below. The second example is more readable

than the first because proper indentation has been used.

int main(Q{

char apples[];

it (apples == "green){

cout << "Apples are green" << endl;

i3

int main()
{
char apples[];
it (apples == "green')

cout << "Apples are green" << endl;

}

Vertical Alignment. It is often helpful to align similar elements vertically, to

make typo-generated bugs more obvious. Compare:

$search = array("a", "b", "c", "d", "e");

72

array("foo", "bar®, "baz", "quux");

$replacement

with:
$search = array(a-, "b-, “cT, “d-, "e");
$replacement = array("foo", "bar®", "baz", "quux®);

Whitespace The term white space refers to how text displays in contrast to the
surrounding white space. For example, in reading this book, the text displays
in a readable manner due to the use of indents, spaces, and paragraphs. Using
white space in programming provides the same results as it does for this
book: It provides easier readability. Consider the following two Java code

samples.

//Prompt the user to enter the commission rate
SimplelO.prompt(*'Enter commission rate: ');
userinput=SimplelO.readLine();

double commissionRate=Double.parseDouble(userinput)/100;
//Compute and display the commission

double commission=totalValue*commissionRate;
commission=Math.round(commission*100)/100.0;
System.out.printIn(*'Commission:$"+commission);

// Prompt the user to enter the commission rate
SimplelO.prompt(*'Enter commission rate: ");

userlnput = SimplelO.readLine();

double commissionRate = Double.parseDouble(userlnput) 7/ 100;

// Compute and display the commission, roundin
double commission = totalValue * commissionRate;
commission = Math.round(commission * 100) / 100.0;
System.out.printIn(''‘Commission: $" + commission);

The first example does not use white space, but the second example does. .
Although not required, it's usually good practice to incorporate white space
into your code. Readable code not only aids you in reducing and debugging
errors quickly, but it also aids others who might need to read and understand

your application's code at a later date.

73

4.1.3. Identifiers

In computer languages, identifiers are textual tokens (also called symbols)
which name language entities. Some of the kinds of entities an identifier

might denote include variables, data types, subroutines, and packages.

Variables In computer source code, a variable name is one way to bind a
variable to a memory location; the corresponding value is stored as a data
object in that location so that the object can be accessed and manipulated
later via the variable's name. In statically-typed languages such as Java or
ML, a variable also has a "type", meaning that only values of a given class
(or set of classes) can be stored in it. In dynamically-typed languages such
as Python, it is values, not variables, which carry type. In Common Lisp,
both situations exist simultaneously: a variable is given a type (if
undeclared, it is assumed to be "T", the universal supertype) which exists at
compile time. Values also have types, which can be checked and queried at

runtime.

A data type is a constraint placed upon the interpretation of data in
computer programming. Common types of data in programming

languages include
* Primitive types (such as integers, floating point numbers or characters)

* Composite types are datatypes which can be constructed in a
programming language out of that language's primitive types and other

composite types.

* (lass type is a programming language construct that is used to group
related instance variables and methods. A method, called a function in
some languages, is a set of instructions that are specific to a class.
Depending on the language, classes may support multiple inheritances or

may require the use of interfaces to extend other classes.

74

A subroutine (function, method, procedure, or subprogram) is a portion of
code within a larger program, which performs a specific task and is
relatively independent of the remaining code. The syntax of many
programming languages includes support for creating self contained

subroutines, and for calling and returning from them.

Packages are components used in a modular program that can be integrated
into the main program through a well-defined interface at source code
level. In object-oriented programming packages are used to name a group
of related classes of a program. In this meaning, packages are especially
useful to measure and control the inherent coupling of a program.
Identifiers that belong on “Package” category are usually not written by
the programmer who writes the program file we examine. They can be
either standard packages, relevant to the programming language or they
could be project specific. Consequently these packages could be used by all

programmers on a certain project.

4.1.3.1 Naming Convention
Computer languages usually place restrictions on what characters may

appear in an identifier. For example, in early versions the C and C++
language, identifiers are restricted to being a sequence of one or more ASCII
letters, digits (these may not appear as the first character), and underscores.
Later versions of these languages, along with many other modern languages
support almost all Unicode characters in an identifier (a common restriction is
not to permit white space characters and language operators). In Lisp, these

are called symbols.

Although in most programming languages there is no character restriction
there is a naming convention to be followed (IRT Group and CERN, 2000; Sun
Microsystems, 1997). That is a set of rules for choosing the character sequence

to be used for identifiers in source code and documentation.

75

Reasons for using a naming convention as opposed to allowing

programmers to choose any character sequence include the following are:
* to make source code easier to read and understand with less effort

* to enhance source code appearance (for example, by disallowing overly

long names or abbreviations);

The exact rules of a naming convention depend on the context in which
they are employed. Nevertheless, there are several common elements that

influence most if not all naming conventions in common use today:

Length of Identifiers A fundamental element of all naming conventions are
the rules related to identifier length (i.e., the finite number of individual
characters allowed in an identifier). Some rules dictate a fixed numerical

bound, while others specify less precise heuristics or guidelines.

Identifier length rules are routinely contested in practice and subject to

much debate academically.

It is an open research issue whether programmers prefer shorter identifiers
because they are easier to type, or think up, than longer identifiers, or
because in many situations a longer identifier simply clutters the visible

code and provides no perceived additional benefit.

Brevity in programming could be in part attributed to early linkers which
required variable names to be restricted to 6 characters in order to save

memory.

Letter case and numerals Some naming conventions limit whether letters may
appear in uppercase or lowercase. Other conventions do not restrict letter
case, but attach a well-defined interpretation based on letter case. Some
naming conventions specify whether alphabetic, numeric, or alphanumeric

characters may be used, and if so, in what sequence.

76

Multiple word identifiers A common recommendation is "Use meaningful
identifiers." A single word may not be as meaningful, or specific, as
multiple words. Consequently, some naming conventions specify rules for

the treatment of "compound" identifiers containing more than one word.

Word boundaries As most programming languages do not allow whitespace
in identifiers, a method of delimiting each word is needed (to make it
easier for subsequent readers to interpret which characters belong to which
word).One approach is to delimit separate words with a no alphanumeric
character. The two characters commonly used for this purpose are the
hyphen ('-') and the underscore ('_'), e.g., the two-word name two words
would be represented as two-words or two_words. An alternate approach is
to indicate word boundaries using capitalization, thus rendering two words

as either twoWords or TwoWords.

4.1.4. Programming Structure features

In previous research efforts in source code authorship identification, this
term has been used to describe certain language-dependent features that
might reflect source authorship identification. For example, the “ratio of
keyword while to lines of non-comment code”, or “ratio of keyword private
to lines of non-comment code”. The way this term is used in this paper is to
describe the keywords that are “built-in” to the language. For example in C
and its kin, this maps to a reserved word which identifies a syntactic form
(Kernighan and Ritsie, 1988; Sun Microsystems, 2007). Words used in control
flow constructs, such as if, then, and else are programming structure
features. In these languages, these keywords cannot also be used as the names
of variables or functions. In Common Lisp this maps to 978 symbols that are

used in the Common Lisp package which contains the primitives of the

77

Common Lisp system as defined by this specification (The Harlequin Group

Ltd, 2007).

4.2. Datasets and initial empirical analysis — Hypotheses and Method

As it is stated above, the questions we have tried to answer in this
empirical study are: What is it about that piece of code that suggests a
particular author? What features in the code make one author more likely
than another? Since all features described in section 4.1 could influence source

code authorship identification, the hypotheses of this empirical study is:
H1 Comments influence source code authorship identification.
H2 Layout features influence source code authorship identification
H3 Identifiers influence source code authorship identification.

Note, that this empirical study did not examine the influence that
programming structure features had on authorship identification. As these
features are influenced heavily by the program topic, it would be necessary to
create a special data set in order to check their contribution. This data set
should contain sufficient programs from each author (8-10 programs) where
each program has been written by all the authors of interest. Thus, by
examining the contribution of each language keyword, the result will be

related to each author’s choice and not to the underlying program algorithm.

The approach we have followed in order to measure the contribution of
each feature to authorship identification is to run a sequence of experiments,
each time removing (or disguising) a certain feature. We are then able to
measure the effect that each feature removal has on the authorship
classification accuracy. This measure effectively indicates the relative

significance of this feature’s contribution to authorship identification. If a high

78

level programming feature is positively influential in reflecting program
authorship then we would expect that classification performance would
deteriorate if this feature was ‘hidden” or ‘removed’ from the analysis (shown
as ‘Worse’ column in Symmary Tables, Tables 4.11 and 4.12 and with the -
sign after the accuracy value in the detailed tables.). On the other hand, if a
certain feature was not influenced by their authors then we would likely see
the same levels of performance achieved in the allocation of test programs to
authors as that achieved in the benchmark tests (i.e. ‘Same’ column in
Symmary Tables Tables 4.11 and 4.12, and with no sign in the detailed tables).
The two examples below demonstrate this approach by showing a piece of

Java code before and after the removal of the layout features.

public void add(Playlistltem[] items, int pos) {
int start=playlist._size();
for (int i=0; i<items.length; i++) {
playlist.add(start + i, items[i]);

fireltemsAdded(pos, pos + (items.length - 1));
FixCursor();
for (int i=0; i<items.length; i++) {
if (items[i].-supportsTagsQ)) {
tagThread.add(items[i]);
}

public void add(Playlistltem[]items, int pos)

int start = playlist.size();
for (int i = 0; i1 < items.length; i++)

playlist.add(start + i, items[i]);

FireltemsAdded(pos, pos + (items.length - 1));
FixCursor();
for (int i = 0; 1 < items.length; i++)

{
it (items[i].-supportsTags())

{
tagThread.add(items[i]);
}
}
}

79

The experiments have been performed using programs written in Java and
Common Lisp. These two languages have been chosen as they represent
different styles of programming — Java is highly object-oriented, while
Common Lisp is multi-paradigm, supporting functional, imperative, and
object-oriented programming styles. We acknowledge that this is just one set
of experiments, and that further work could be done with larger samples,
other languages and so on. Having said that, given language similarities it
could be expected that programs written in C++ would have similar results to
those achieved with Java code, and Prolog programs should behave similarly

to Lisp programs.

4.2.1. The Common Lisp data set

The Common Lisp data set used for these experiments is the same as the

one described in subsection 3.3 and is presented in detail in Table 3.10.

We ran a first experiment on this data set, with all features intact, to
establish benchmark classification accuracy figures (referred to as the “CLisp
benchmark”) against which we could compare performance after the removal
of comments. Table 3.11 shows the classification accuracy results achieved on
the test data set using various combinations of profile parameter values. (Note
that in all other experiments performance is compared to that achieved with
the non-commented version of the data set, referred to as the “CLisp[or
Java]NoCom benchmark”, because our aim in those tests was to consider the
features of the source code that contributed to authorship identification

without the “influence’” of comments).

4.2.1. The Java data set

The Java data set used for these experiments is the same as the one

described in subsection 3.3 and is presented in detail in Table 3.10. The results

80

achieved in the Java all-features benchmark experiment (referred to as the

“Java benchmark”) with this data set are given in Table 3.12.

4.3. Significant features for the Common Lisp data set

Focusing on the features said to influence authorship identification, as
described in subsection 4.1 a set of experiments was performed on both the
Common Lisp and Java program sets in order to measure each feature’s
contribution to accurate classification. To aid understandability of the
following results, we have augmented the entries in each table with an
indication of comparative performance. In all subsequent tables, the sign ‘-’ to
the right side of a value indicates a drop in accuracy in comparison with the
associated benchmark data (either all features or NoCom), the sign ‘+
indicates increased accuracy, whereas no sign alongside the value indicates

the same level of performance.

Our first set of experiments was conducted with the Common Lisp
programs. We retained the same split of programs across training and test

sets as used in the initial empirical analysis reported above.

4.3.1. Contribution of Comments

In order to assess the level of influence that comments have on authorship
attribution, all comments were removed from the programs, including the
documentation part of Common Lisp statements such as deffun, defvar,
defparameter. The accuracy achieved on the test data set dropped from
that reported previously in the CLisp benchmark. Comparing the results
obtained in this experiment (on the CLispNoCom data set) with those
obtained from the analysis of the original Common Lisp data set (i.e.

comparing the results presented in Tables 3.11 and 4.1) we can see that

81

accuracy dropped in 61 of the 72 cases, by 10.5% on average. In the remaining
11 cases, accuracy remained the same. The conclusion we reach from this
experiment is that comments do appear to influence authorship attribution in

Common Lisp programs.

Table 4.1 Accuracy of classification for the CLispNoCom data set.

Profile n-gram size

Size (L) 3 4 5 6 7 8 9 10
2000 63.2 63.2 63.2- | 579- |63.2- |684 63.2- | 63.2-
3000 68.4- | 63.2- 63.2- | 68.4 57.9- | 68.4- 73.7- | 68.4-
4000 68.4 68.4- 68.4- | 684- | 684- | 68.4- 73.7- | 68.4-
5000 68.4 68.4- 63.2- | 684- |63.2- |73.7- 68.4- | 73.7-
6000 68.4 68.4- 68.4- | 684- |63.2- |73.7- 68.4- | 73.7-
7000 68.4 68.4- 68.4- | 73.7- | 73.7- | 73.7- 68.4- | 73.7-
8000 68.4 68.4- 68.4- | 73.7- | 73.7- | 73.7- 68.4- | 68.4-
9000 68.4 68.4- 68.4- | 73.7- | 73.7- | 73.7- 73.7- | 73.7-
10000 68.4 68.4- 68.4- | 73.7- | 73.7- | 73.7- 73.7- | 73.7-

4.3.2. Contribution of Layout

Does the layout of Common Lisp programs contribute to authorship
classification accuracy, and if yes, to what degree? Note that in general,
Common Lisp programs do not differ a lot in terms of layout (Lamkins, 2004).
The reason for this is that Common Lisp's simple, consistent syntax eliminates
the need for the rules of style that characterize more complicated languages.
The most important prerequisite, in terms of legible Common Lisp code, is a

simple consistent style of indentation (Seibel 2005).

The objective of this particular experiment was to assess the contribution of
program layout to authorship attribution. This was made possible by the
removal of the layout features of all programs in the CLispNoCom data set
followed by measurement of the effect that this had on classification accuracy.
All programs were transformed to a unified-layout data set by removing all
indentation and by placing in the previous line of source code all parentheses

that were on a separate line. The resulting dataset is referred to as the

82

CLispLayout data set. The accuracy results achieved with this dataset are

given in the Table 4.2.

Comparing the results obtained from this analysis with the CLispNoCom
benchmark results (comparing Tables 4.1 and 4.2), we found that the
classification accuracy was unaffected in 15 of the 72 cases, in 3 cases we
attained better results (by 5.3% on average) and in 54 cases classification
accuracy decreased (typically by about 5.5%). The conclusion drawn from this
experiment is that, in this case, layout-related features have a consistent but

relatively low level of influence in correctly assigning authorship.

Table 4.2 Accuracy of classification for the CLispLayout data set.

Profile n-gram size

Size (L) 3 4 5 6 7 8 9 10
2000 579- | 57.9- |63.2 57.9 57.9- | 63.2- 57.9- | 63.2-
3000 63.2- | 57.9- |63.2 63.2- | 632+ |5709- 68.4- |57.9-
4000 63.2- | 684 |63.2- 737+ | 63.2- | 68.4 68.4- | 63.2-
5000 63.2- | 63.2- | 63.2 68.4 63.2 68.4- 68.4- | 68.4-
6000 63.2- | 63.2- | 63.2- 68.4 68.4+ | 68.4- 68.4- | 68.4-
7000 63.2- | 63.2- | 63.2- 68.4- | 68.4- |684- 68.4- | 68.4-
8000 63.2- | 63.2- | 63.2- 68.4- | 68.4- |684- 68.4- | 68.4-
9000 63.2- | 63.2- | 63.2- 68.4- | 68.4- |684- 68.4- | 68.4-
10000 63.2- | 63.2- | 63.2- 68.4- | 68.4- |684- 68.4- | 68.4-

4.3.3. Contribution of Identifiers

Another aspect of source code that is author-dependent is the naming
convention used. As explained earlier, in Common Lisp the programmer
creates his or her own symbols that are analogous to identifiers in other
languages. In our experiments, we divided the symbols used in a Common
Lisp program into two main categories and conducted a separate experiment
for the set of Common Lisp programs, masking instances of symbols from

each category in turn.

83

The first category comprises all symbols that are defined by the
programmer who wrote the piece of code. This category is referred to as
Symbol Name Identifiers. In the second category, we include all symbols that
are package-related but do not belong to the Common Lisp package. Lisp uses
packages in order to avoid namespace collisions in a group development
environment. In some cases, these symbols are not defined by the user who
wrote the piece of code but by the author of the package. These symbols can
be distinguished because they include the character “:”. Some examples of
such symbols are foo:bar, -bar, and cl::print-name. This category is

referred to as Package Name Identifiers.

4.3.3.1 Contribution of Symbol Name Identifiers
The first Identifiers experiment was conducted on the CLispNoCom data

set, after changing all names that belonged to the Symbol Name Identifiers
category to unique identifiers. This action neutralized the effect that these
names might have had on authorship attribution. If the same identifier was
used in two different files then it was changed to two different unique names.
An example could be the symbol name ‘action’ that was used (perhaps by a
certain programmer) in two different programs. It was changed to ‘al23’ in
the first program and ‘a234’ in the second. The data set thus derived is

referred to as CLispSymbol.

The accuracy results obtained in this experiment are shown in Table 4.3.
Comparing these results with the CLispNoCom benchmark results, it can be
seen that in 17 out of the 72 cases we had poorer attribution performance (by
about 13.0% on average), in 33 cases the same level of accuracy was achieved,
and in 22 cases we achieved improved results (by 6.7% on average). This is
explained in part by the fact that the unique identifiers, that replaced the user-
defined names, eliminated some of the common n-grams between programs

from different authors, which were based on coincidentally common variable

84

names between different programmers. The conclusion drawn from these
rather mixed results is that the names defined by the user in Common Lisp
programs do not play a significant role in authorship attribution using the

SCAP method.

Table 4.3. Accuracy of classification for the CLispSymbol data set.

Profile n-gram size
Size (L) 3 4 5 6 7 8 9 10

2000 73.7+ | 68.4+ | 73.7+ |57.9 68.4+ | 63.2- |579- |63.2

3000 47.4- | 684+ |73.7+ |73.7+ | 684+ | 68.4 68.4- | 73.7+
4000 474- |68.4 73.7+ | 737+ | 73.7+ | 68.4 68.4- | 73.7+

5000 47.4- | 68.4 68.4+ | 73.7+ | 73.7+ | 73.7 73.7+ | 63.2-

6000 47.4- | 68.4 68.4 73.7+ | 73.7+ | 73.7 73.7+ | 68.4-

7000 47.4- |68.4 68.4 73.7 73.7 73.7 73.7+ | 68.4-

8000 474- |68.4 68.4 73.7 73.7 73.7 73.7+ | 68.4

9000 474- |68.4 68.4 73.7 73.7 73.7 73.7 68.4-
10000 474- |68.4 68.4 73.7 73.7 73.7 73.7 68.4-

4.3.3.2 Contribution of Package Name Identifiers
Similarly, in the second Common Lisp Identifier experiment each name in

the training and test program sets that pertained to the Package Naming
category was changed to a unique identifier, affecting multiple instances as
above. (All the names that belonged to the first category remained
unchanged.) An example could be the name cl:print-name used in two
different programs. It was changed to b45:b671 in the first file and to
€c56:k43 in the second. This action eliminated all common n-grams between
the test and author profiles that were based on package-related names. The

resulting data set is referred to as CLispPackNam.

The attribution accuracy results obtained from this experiment can be seen
in Table 4.4. Comparing these results with the CLispNoCom benchmark
results, it can be observed that in 34 of the 72 cases we achieved poorer
accuracy outcomes (by approximately 9.1% on average), in 23 cases we
achieved the same level of accuracy, and in 15 cases we achieved better results

(typically by about 5.6%). Overall, we conclude that in this case Package

85

Naming does influence accuracy, albeit only slightly, and that it seems to

have a greater impact than Symbol Naming.

Table 4.4 Accuracy of classification for the CLispPackNam data set.

Profile n-gram size
Size (L) 3 4 5 6 7 8 9 10
2000 63.2 57.9- |63.2 52.6- |63.2 57.9- | 52.6- |52.6-
3000 63.2- | 57.9- | 684+ |63.2- |63.2+ |579- |63.2- |52.6-
4000 63.2- | 684 68.4 68.4 68.4 68.4 57.9- | 57.9-
5000 63.2- | 684 73.7+ | 68.4 68.4+ | 68.4- |579- |63.2-
6000 63.2- | 684 73.7+ | 68.4 68.4+ | 73.7 57.9- | 57.9-
7000 63.2- | 684 73.7+ | 73.7 68.4- | 73.7 57.9- | 57.9-
8000 63.2- | 684 73.7+ | 79.0+ | 73.7 73.7 57.9- | 57.9-
9000 63.2- | 684 73.7+ | 79.0+ | 79.0+ | 73.7 63.2- | 57.9-
10000 63.2- | 684 73.7+ | 79.0+ | 79.0+ | 73.7 63.2- | 63.2-

4.3.3.3 Contribution of All Identifiers
One further experiment was conducted to assess the impact of the

neutralizing of all names, belonging to either the Symbol or Package Name
category. The data set derived is referred to as CLispAllNames. This would
show us the effect of naming as a whole on authorship classification accuracy.
The results of this experiment are presented in Table 4.5. Comparing these
results with those obtained for the CLispNoCom benchmark, accuracy
decreased in 34 of the 72 cases (by 8.2% on average), it was improved in 27
cases (by around 6.4%) and in 11 cases it was the same as for the benchmark
data. Again, the improvement in accuracy is explained by the fact that the
unique identifiers, that replaced the user-defined names, eliminated some of
the common n-grams between programs from different authors, which were
based on coincidentally common variable names between different

programmers.

86

4.4. Significant features for the Java data set

Our second set of experiments was conducted using the set of open source
Java programs described previously. We retained the same split of programs
across training and test sets as used in the initial empirical analysis reported

above.

Table 4.5. Accuracy of classification for the CLispAllNames data set.

Profile n-gram size
Size(L) 3 4 5 6 7 8 9 10
2000 63.2 73.7+ | 79.0+ | 63.2+ | 63.2 63.2- 59.0- | 68.4+

3000 57.9- 68.4+ | 79.0+ | 684 63.2+ | 63.2- 59.0- | 68.4
4000 57.9- 73.7+ | 737+ | 737+ | 737+ | 63.2- 59.0- | 68.4
5000 57.9- 73.7+ | 7377+ | 73.7+ | 68.4+ | 73.7 63.2- | 68.4-
6000 57.9- 7377+ | 7377+ | 73.7+ | 68.4+ | 73.7 63.2- | 63.2-
7000 57.9- 73.7+ | 73.7+ | 73.7 68.4- | 68.4- 63.2- | 63.2-
8000 57.9- 73.7+ | 73.7+ | 73.7 68.4- | 68.4- 63.2- | 59.0-
9000 57.9- 737+ | 737+ | 737 68.4- | 68.4- 63.2- | 52.6-
10000 57.9- 737+ | 7377+ | 73.7 68.4- | 68.4- 63.2- | 52.6-

4.4.1. Contribution of Comments

By removing the comments from the original data set we were able to
evaluate their impact on classification accuracy. The results achieved for this
new data set, referred to as JavaNoCom, are shown in Table 4.6. Comparing
the results shown in this table with those obtained from the analysis of the
original data set represented as the Java benchmark (i.e. comparing Tables
3.12 and 4.6) we can see that in 5 out of 72 cases we achieved the same levels
of accuracy, in 17 cases the results were better (by 12.5% on average) and in 50
cases the results were worse (typically by 14.5%). The dominance of poorer
results leads us to conclude from this experiment, that comments do play an

important role in authorship attribution in Java programs.

87

Table 4.6 Accuracy of classification for the JavaNoCom data set.

Profile n-gram size
Size (L) 3 4 5 6 7 8 9 10

2000 52.9- 58.8- 70.6- | 76.5- | 70.6- 76.5- 82.4- | 82.4-

3000 41.2+ | 70.6- 64.7- | 76.5- | 76.5- 82.4- | 76.5- |824-
4000 41.2+ | 64.7- 70.6- | 82.4- | 76.5- 82.4- 76.5- | 76.5-

5000 412+ | 64.7+ |70.6- |824- |824- 82.4- 82.4- | 82.4-

6000 412+ | 64.7+ |70.6- | 88.2- |824- 82.4- 76.5- | 88.2-

7000 412+ | 64.7+ | 70.6 88.2 82.4- 82.4- 70.6- | 76.5-

8000 412+ | 64.7+ | 70.6 88.2+ | 82.4- 82.4- 70.6- | 76.5-

9000 412+ | 64.7+ | 70.6 88.2+ | 82.4- 82.4- 70.6- | 76.5-
10000 412+ | 6477+ | 70.6 88.2+ | 82.4- 82.4- | 70.6- | 76.5-

4.4.2 Contribution of Layout

In order to assess the contribution of program layout to authorship
classification we needed to first create a data set with a unified layout style for
all authors. To achieve this, we transformed the programs in the JavaNoCom
data set with the use of the style formatter SourceFormatX. The coding style
used by the formatter is based on the layout style devised by Sun

Microsystems (1997).
The layout features that were unified were as follows:
e All braces were placed on a separate line.
e The indentation of braces was made uniform at two blank characters.

e A blank character was added after each conditional statement, a comma

and a semicolon.
e Line length was set to a maximum of 80 characters.
e Long lines were split.

e A blank character was added on the right and left side of the following

symbols: ;, if and ?.

88

e A blank character was added on the right and left side of all operators.
Operators included were: ==, +-, *, /%, += -= *= [5!=5%=, =><>=

<=&&, | 1,&,|,1,<<,>>>>> &=, | ="\=,<<=>>=>>>=

The resulting dataset is referred to as JavaLayout. The accuracy levels
achieved in author attribution with this data set are shown in Table 4.7.
Comparing these results with the JavaNoCom benchmark results, we can see
that performance was worse in all 72 cases, by about 38.6% on average. In
other words, for this data set at least, the impact that the layout-related
features have on authorship attribution is significant. In many cases the

accuracy drops below 40%.

Table 4.7 Accuracy of classification for the JavaLayout data set.

Profile n-gram size
Size(L) 3 4 5 6 7 8 9 10
2000 41.2- 23.5- | 47.1- |52.9- |47.1- |47.1- 41.2- | 52.9-

3000 17.6- 29.4- 29.4- |1294- |41.2- |52.9- 52.9- | 52.9-
4000 17.6- 29.4- 29.4- | 353- |294- |41.2- 41.2- | 47.1-
5000 17.6- 29.4 353- |294- |353- |353- 41.2- | 35.3-
6000 17.6- 29.4- 35.3- | 17.6- |353- |35.3- 41.2- | 35.3-
7000 17.6- 29.4- 35.3- | 17.6- |353- |35.3- 41.2- | 35.3-
8000 17.6- 29.4- 35.3- | 17.6- |353- |35.3- 41.2- | 35.3-
9000 17.6- 29.4- 353- | 17.6- |35.3- |353- 41.2- | 35.3-
10000 17.6- 29.4- 353- | 17.6- |35.3- |353- 41.2- | 35.3-

4.4.3 Contribution of Identifiers

As for the Common Lisp data set, we addressed the influence of Identifiers
on Java program authorship attribution through three experiments, dealing
with the effect of user defined identifiers, package name identifiers and then

their combination in turn.

4.4.3.1 Contribution of User Defined Identifiers

The aim of the first experiment was to assess the degree to which the

names defined by the programmer contributed to authorship identification.

89

This category included all simple variable names, method names, class
names, class variable names and so on that were defined within the program
by the programmer. All instances of these names were changed to a unique
identifier comprised of a letter and a number. If the same name was used in
more than one program, these were changed to different unique identifiers in
order to eliminate the common byte level n-grams based on these variables
(thus creating a conservative test). The only identifiers that were left
unchanged for this experiment were those that were not user defined but

were imported using the import statement at the beginning of the program.

The results achieved with this data set (referred to as JavaUserNam) are
shown in Table 4.8. By comparing these results to those obtained from the
analysis of the JavaNoCom benchmark, it can be observed that accuracy
remained the same in 23 of the 72 cases and was in fact improved in the other
49 cases (by 9.0% on average). This indicates that, in this case, the names
defined by the user did not contribute positively to authorship attribution.
This apparent improvement in accuracy for many of the n, L combinations is
explained by the fact that, as evident in the programs in this sample, many
programmers use the same names for simple variables or class variable names
or methods. Some examples of the commonly used names encountered across
different programmers were name, €, File, text, and X. The byte-level n-
grams derived from these commonly used names were responsible for the
incorrect classification of some programs in the JavaNoCom dataset. By
making each user-defined identifier unique in each program, we eliminated
all these common n-grams across the different programmers, thus improving

overall classification accuracy.

90

Table 4.8 Accuracy of classification for the JavaUserNam data set.

Profile n-gram size
Size(L) 3 4 5 6 7 8 9 10
2000 52.9 76.5+ | 76.5+ 82.4+ | 82.4+ | 88.2+ | 82.4+ | 82.4+

3000 47.1+ | 76.5+ | 88.2+ 88.2+ | 88.2+ | 82.4+ | 76.5+ | 88.2+
4000 47.1+ | 64.7 82.4+ 88.2+ | 88.2+ | 88.2+ | 88.2+ | 88.2+
5000 47.1+ | 64.7 76.5+ 88.2+ | 88.2+ | 82.4+ | 88.2+ | 88.2+
6000 47.1+ | 64.7 76.5+ 88.2+ | 88.2+ | 88.2+ | 82.4+ | 88.2+
7000 47.1+ | 64.7 76.5+ 88.2+ | 82.4+ | 88.2+ | 88.2+ | 88.2+
8000 47.1+ | 64.7 76.5+ 88.2+ | 82.4+ | 88.2+ | 88.2+ | 88.2+
9000 47.1+ | 64.7 76.5+ 88.2+ | 82.4+ | 88.2+ | 88.2+ | 88.2+
10000 47.1+ | 64.7 76.5+ 88.2+ | 82.4+ | 88.2+ | 88.2+ | 88.2+

4.4.3.2 Contribution of Package-Related Name Identifiers

This experiment was performed to evaluate the degree to which package-
related naming contributed to accurate authorship attribution. Any program
written in Java can have a number of import package statements (with
associated naming) at the beginning of the file. The import statements allow
all classes and methods of the associated packages to be visible to the classes
in the current program. These packages could be either project-related (an
example could be the org.alltimeflashdreamer.util.StringUtils
package) or one of the numerous standard packages defined in Java (for
instance the java.io.FilelnputStream package). The second case is the
more commonly used. The project related packages in our sample were a very
small percentage — less than 1% of all packages. Among the standard classes
and their related methods defined by Java that were ‘neutralized” were the
class String, File and I0Exception, which are used heavily by all
programmers. This experiment was performed in a similar way as the
previous one, the only difference being that in this experiment we changed
only names within the program that were related to all imported packages,
leaving all user defined names unchanged. This data set is referred to as
JavaPackNam. The authorship attribution results for this experiment are

shown in Table 4.9. In general, they indicate that package-related naming

91

does reflect authorship identification. Comparing these outcomes with the
JavaNoCom benchmark, the results are worse (by about 11% on average) in
55 of the 72 cases, in 7 cases performance was improved (by typically 5.9%)

and in 10 cases the same levels of accuracy were achieved.

Table 4.9. Accuracy of classification for the JavaPackNam data set.

Profile n-gram size
Size(L) 3 4 5 6 7 8 9 10
2000 47.1- 52.9- 64.7- 52.9- 70.6 70.6- 70.6- 70.6-

3000 41.2 64.7- 64.7 64.7- | 70.6- | 70.6- | 70.6- 70.6-
4000 41.2 70.6+ | 58.8- | 70.6- | 70.6- |70.6- | 70.6- 70.6-
5000 41.2 70.6+ | 64.7- | 70.6- |64.7- |64.7- | 64.7- 70.6-
6000 41.2 70.6+ | 64.7- | 70.6- | 70.6- |64.7- | 64.7- 70.6-
7000 41.2 70.6+ | 64.7- | 70.6- | 70.6- |64.7- | 64.7- 70.6-
8000 41.2 70.6+ | 64.7- | 70.6- |70.6- |64.7- |64.7- 70.6-
9000 41.2 70.6+ | 64.7- | 70.6- |70.6- |64.7- |64.7- 70.6-
10000 41.2 70.6+ | 64.7- | 70.6- |70.6- |64.7- |64-7- | 70.6-

4.4.3.3 Contribution of All Identifiers
For this experiment, all names were changed. This included simple

variables, class variables and methods defined by the programmer and all
class names and method names imported with the import package
statement(s) at the beginning of each program. The resulting data set is
referred to as JavaAllNames. The purpose of this experiment was to assess the
extent of influence that all names used within a program had on authorship
attribution. The programs were changed so that all names were replaced by
unique identifiers. If the same name appeared in more than one program, it
was replaced by a different identifier in each case. The results achieved from
the analysis of this data set are given in Table 4.10. In comparing these levels
of accuracy against those obtained for the JavaNoCom benchmark, it appears
that the likelihood of improvement and deterioration are roughly equivalent —
in 9 cases the results were the same, in 34 they were better (by about 17.8%)

and in 29 cases they were worse (by about 8.3% on average).

92

Table 4.10 Accuracy of classification for the JavaAllNames data set.

Profile n-gram size
Size(L) 3 4 5 6 7 8 9 10
2000 76.5+ 82.4+ 76.5+ | 70.6- | 70.6 70.6- 70.6- | 70.6-

3000 64.7+ 88.2+ | 82.4+ | 82.4+ | 70.6- | 70.6- 70.6- | 70.6-
4000 64.7+ 88.2+ | 88.2+ | 824 76.5 70.6- 70.6- | 70.6-
5000 64.7+ 88.2+ | 88.2+ | 88.2+ |82.4 70.6- 64.7- | 70.6-
6000 64.7+ 88.2+ | 88.2+ | 88.2 88.2+ | 76.5- 64.7- | 70.6-
7000 64.7+ 88.2+ | 88.2+ | 88.2 88.2+ | 76.5- 64.7- | 70.6-
8000 64.7+ 88.2+ | 88.2+ | 88.2 88.2+ | 76.5- 64.7- | 70.6-
9000 64.7+ 88.+2 | 88.2+ | 88.2 88.2+ | 76.5- 64.7- | 70.6-
10000 | 64.7+ 88.2+ | 88.2+ | 88.2 88.2+ | 76.5- 64.7- | 70.6-

4.5 Summary of performance

We here provide a set of summary tables that illustrate the various levels of
accuracy achieved under the different experimental scenarios for each data

set.

In Tables 4.11 and 4.12, the numbers shown in the second, third and fourth
columns are out of the 72 considered in total in each experiment, with the
number in parentheses indicating the mean deviation from the associated
benchmark data set. For the ‘comments removed’ experiment (row 2 in each
table), the benchmark data set is the original all-features set (referred to as
‘CLisp benchmark’ and ‘Java benchmark’ respectively). For the remaining
experiments, the benchmark data set is the ‘NoCom’ version for each

language.

Table 4.11 Summary of results for the set of CLisp programs

Dataset Worse Same Better Mean accuracy
CLisp 78.0%
CLispNoCom 61 (-10.5%) 11 0 69.0%
CLispLayout 54 (-5.5%) 15 3 (5.3%) 65.1%
CLispSymbols | 17 (-13%) 33 22 (6.7%) 68.0%
CLispPackNam | 34 (-9.1%) 23 15 (5.6%) 65.9%
CLispAllNam 34 (-8.2%) 11 27 (6.4%) 67.3%

93

Table 4.12 Summary of results for the set of Java programs

DataSet Worse Same Better Mean Accuracy
Java 79.3%
JavaNoCom 50 (-14.5%) 5 17 (12.5%) 72.2%
JavaLayout 72 (-38.6%) 0 0 33.7%
JavaUserNam | 0 23 49 (9.0%) 78.3%
JavaPackNam | 55 (-11%) 10 7 (5.9%) 64.5%
JavaAllNam 29 (-8.3%) 9 34 (17.8%) 77.3%

The relative contribution of the various high-level program features to

authorship attribution are summarised in Tables 4.13 and 4.14 (for the Lisp

and Java programs, respectively). Again, the values for the ‘Comments’

entries reflect the difference between the original all-features programs and

those excluding comments. The remaining differences are between the

‘NoComments” versions and those produced through manipulation of the

other features. When a certain feature contributes positively to authorship

attribution, it is indicated by a positive number, and when an other feature

does not contribute positively to authorship attribution this is indicated by a

negative number in parentheses.

Table 4.13 High-level features and mean accuracy deviation - Common Lisp

programs
Common Lisp
High-Level Feature Contributions
Original/Comments +9.0%
NoComments/Layout +3.9%
NoComments/Identifiers:Symbols +1.0%
NoComments/Identifiers:Package +3.1%
NoComments/Identifiers +1.7%

Table 4.14 High-level features and mean accuracy deviation — Java

programs
Java
High-Level Feature Contribution
Original/Comments +7.1%
NoComments/Layout +38.5%
NoComments/Identifiers:User Defined (-6.1%)
NoComments/Identifiers:Package +7.7%
NoComments/Identifiers (-5.1%)

94

In examining the results presented in Tables 4.13 and 4.14, it is evident that,
as might be expected, comments play a significant role in authorship
attribution, an outcome that holds across both the Common Lisp and Java
experiments. Layout is the next most influential feature, but was much more
significant in our Java analysis than in our experiments with Common Lisp
code. The use of Identifiers produced mixed outcomes. In assessing its impact
on Common Lisp authorship, naming had a small but evident impact on the
ability to identify an author using the SCAP approach. While the same
outcome was found in relation to Package Naming in Java code in fact the
removal of user-defined names enhanced the levels of classification accuracy.
While initially unexpected, an explanation for this was identified in terms of
the incidence of coincidentally common names in programs written by

different authors.

4.6 Summary

A number of experiments have been performed in order to empirically
identify and assess the impact of high level program features that contribute
to source code authorship attribution, using the Source Code Author Profile
approach. In these experiments, programs written in two languages that
represent two different programming styles were used: Java, which uses
objects, and Common Lisp, which uses a functional/imperative programming
style. We acknowledge that this is just one set of experiments, and that further
work could be done with larger samples, other languages and so on. Having
said that, we intentionally selected languages that represent two different
programming styles, so that insights into a range of languages might be
gained. Given language similarities it could be expected that programs

written in C++ would have similar results to those achieved with Java code,

95

and Prolog programs should behave similarly to Lisp programs. The code

used in the data sets was Open Source, which also implies that it follows

(without being mandatory) the code conventions recommended by the Open

Source Community (Spinellis, 2003), thus reducing the distinctions that might

arise if programmers were allowed to use their 'natural’ approach.

In each case one feature at a time was either removed or ‘neutralised’, in

order to provide a means of measuring the difference between classification

accuracy with and without the feature available. The results of these

experiments (presented in summary form in Tables 4.11 through 4.14) have

shown the following for the data sets assessed here:

The accuracy of source code authorship attribution is improved by the

existence of comments in the code.

Layout-related features play a role in determining program authorship,
but the extent to which this is an influential characteristic may vary
from language to language. In our experiments, the level of impact for
the programs written in Java was substantial, but this level was much
lower for the programs written in Common Lisp. (The contribution of
layout-related features in identifying the author of a Java program is

also a conclusion reached by Ding and Samadzadeh (2004).)

Variable and function names defined by the programmer do not seem
to influence classification accuracy — and in fact in some cases accuracy
might be improved by ‘neutralizing’ these names. This is due to the
fact that programmers have been shown to use the same names for
simple variables, class variable names, methods or functions. In our
case, this conclusion certainly applied to the Java programs, and to

those written in Common Lisp to a lesser extent.

96

e DPackage-related naming influences accuracy, an outcome evident for

programs written in both languages.

Overall, the authorship of Java programs was generally more susceptible to
influence, with particularly high influence from program layout. In
comparison, the authorship of Common Lisp programs did not appear to be
as strongly influenced by the features we considered. This could be explained
by the fact that the programming structure features that remained unchanged,
influence authorship identification more in Common Lisp than in Java,

perhaps because Common Lisp has a richer vocabulary than Java.

97

Chapter 5. The significance of user defined identifiers in Java
source code authorship identification

Although programming languages are generally more formal and
restrictive in their form and composition than spoken or written languages,
program authors are still afforded a large degree of flexibility when
composing source code (Krsul, and Spafford, 1995]. Each programming
language has a vocabulary of keywords, reserved words and operators, from
which program authors select appropriate terms during the programming
process (Kokol, and Kokol, 1996). In addition, source code contains
vocabularies of identifiers (names of variables, procedures, functions,
modules, labels and the like) created by programmers. Identifier naming can
be influenced by many things — the application domain, agreed coding styles,
organisational guidelines, or an educator’s advice in the case of code written
by students. Although the importance of meaningful identifiers is stressed by
educators, Sneed observes that “in many legacy systems, procedures and data
are named arbitrarily.... programmers often choose to name procedures after
their girlfriends [sic] or favourite sportsmen” (Sneed 1996). Thus while coding
styles and the like exist, the degree to which these actually influence identifier
naming — and the consequent impact on authorship analysis — is unknown. It
may be that programmers create their identifiers in a systematic or consistent
way so that any resulting program reflects its author. With this in mind, our
aim is to assess the impact that identifiers have on the accuracy of Java source
code authorship attribution, using two sets of Java programs. In other words,
the questions we address here are: Do Java identifiers contribute to correct
authorship identification? Is it possible to hide the provenance of some Java

program by identifier renaming?

98

These questions are very important whenever a need for evidence arises in
regard to source code authorship (Mac Donell et al 2002), such as in formal
dispute proceedings. For example, we may be able to assert with evidence that
Java programmer A is the author of a disputed program because the class
variables and/or method names used closely resemble those used elsewhere
by programmer A — and because they do not resemble those used by one or
more other Java programmers. While the work described in subsection 4.4.3
has indicated that Java identifiers defined by the programmer do not
influence classification accuracy, and in fact in some cases accuracy might be
improved by ‘neutralizing’ these names, that study examined all user-defined
identifiers together. In this chapter we check whether this conclusion holds

when we examine each type of programmer-defined identifier separately.

In conducting our analysis, we use the SCAP approach as a tool for
assessing the significance of each type of Java identifier. Three different types
of Java identifiers are considered here: class, method and simple identifiers. A
number of experiments have been performed in order to assess the impact
that each type of identifier has on source code authorship attribution. We first
assess classification accuracy using the complete source programs, creating an
initial performance benchmark. We then measure the contribution of each
identifier type in authorship identification by running a sequence of
experiments, each time disguising a certain type of identifier in the source
code. We are therefore able to measure the effect that ‘neutralization” of each
type of identifier has on the accuracy of the classification — the difference in
each case effectively indicates the relative significance of this type of identifier
to authorship identification. The experiments have been performed using two
different data sets for which the authors of the programs are known. One data
set comprises open source programs and the second is made up of programs

written by students during an introductory Java course.

99

5.1. Java Identifiers and Source Code Authorship Identification

Computer programs are written according to strict grammatical rules
(context free and regular grammars) (Floyd and Beigl, 1994). Each language
has a vocabulary of keywords, reserved words and operators, from which
programmers select appropriate terms during the programming process
(Kokol and Kokol, 1996). In addition, programs have vocabularies of numbers
and vocabularies of identifiers (names of variables, procedures, functions,
modules, labels and the like) created by programmers. These are, in general,

not language dependent.

When using Java, the programmer must ‘create’ some words when writing
a program, such as a class name or a method name (Lewis and Loftus, 1998).
Our aim in this study is to measure the significance of Java programmer
defined identifiers to authorship identification. We have considered these

identifiers in terms of three main categories:

Simple Identifiers: This category includes all variables defined within the
program with type, Iint, char, byte, long, Boolean, int[]
and long[]. Some examples of such variables are year with type int or

Tlag with type boolean.

Class Identifiers: This category includes all variables that are defined within the
program and their type is a class. For example, name with type String or ex
with type Exception.

Method Identifiers: This category includes all method names that are defined
within the program. Some examples are getlnteger, drive and

getYear.

All Identifiers: All user-defined identifiers, effectively the aggregation of

those elements in the three categories listed.

100

Other source code terms, such as String and System.out.println, are
not created by the person who writes the piece of code but they are drawn
from the author of the Java API and are simply selected for use by the
programmer. These names are not part of our current study even though they
might influence classification accuracy of Java programs as it has been shown

in the previous chapter in subsection 4.4.3.

Table 5.1. Characteristics of the two Data Sets

OS]Java Student
Java

No Authors 8 8
Samples per Author 4-5 5-8
Total Samples 35 54
Training Set Samples 18 26
Testing Set Samples 17 28
Size of smallest sample 52 36
(LOC)
Size of biggest sample 519 258
(LOC)
Mean LOC in Training Set 200 131.67
Mean LOC in Test Set 167 127.19
Mean LOC/sample 184 129

5.2 Empirical Analysis - Our approach

The questions we address in this empirical study are: Do Java identifiers
contribute to correct authorship identification? Is it possible to hide the

provenance of some Java program by identifier renaming?

Focusing on each of the four categories of identifiers that might influence
authorship identification in turn, as described in the previous section, a set of
experiments was performed on two program sets, the OSJava and

StudentJava that are described below. The aim of each experiment was to

101

measure the contribution of each type of identifier to accurate classification.
Hence, for each category of identifier we report the results obtained from both
the OSJava and the Student]ava data sets after disguising the relevant
identifiers and then analyzing and classifying the programs using the SCAP
approach. The approach we have followed in this empirical study is the same
with the method used in the previous chapter. If a category of identifiers is
positively influential in reflecting program authorship then we would expect
that classification performance would deteriorate if those identifiers were
‘hidden’ from the analysis (shown as ‘Worse than OSJava/Student]Java’ in
Symmary Tables, Tables 5.12 and 5.13 and with the sign — after the accuracy
value in the detailed tables.). On the other hand, if a certain group of
identifiers was not influenced by their authors then we would likely see the
same levels of performance achieved in the allocation of test programs to
authors as that achieved in the benchmark tests (i.e. ‘Same as
OSJava/Student]Java’, and with no sign in the detailed tables). The two
examples below demonstrate this approach by showing a piece of Java code

before and after disgusing the simple identifiers.

int start=playlist.size();
for (int i=0; i<items.length; i++) {
playlist.add(start + i, items[i]);

int a2b2g2 = playlist.size();
for (int a3b3g3 = 0; a3b3g3 < items.length; a3b3g3++) {
playlist.add(a2b2g2 + a3b3g3, items[a3b3g3]);

}

5.3 Data Sets Analysed

In order to assess the contribution of user- (or programmer-) defined

identifiers to authorship identification of Java programs, two different data

102

sets have been considered here. The first data set included open source (OS)
programs written by eight different authors (see Table 5.1, column OSJava) as
found in the freshmeatnet web site. The programs were allocated to
approximately equally-sized training and test sets. In order to make the
allocation and analysis ‘domain independent” all programs from each author
that were placed in the training set were from a different project from the
programs placed in the test set. Hence, we had programs from sixteen
different projects, two projects for each author. Consequently, since they were
from different projects the programs in each set for each author did not share
inherently common characteristics. The total number of programs in this data
set was 35. Eighteen programs were allocated to the training set and 17 to the

test set. This data set is from this point referred to as the OSJava data set.

The second data set comprised programs written during an introductory
Java course. These programs were written by 8 different programmers,
making up a sample of 54 programs in total. The data set was split into quasi
equally-sized training and test sets. As these programs were student
assignments from an introductory programming course there is a high degree
of likelihood that the identifiers used will have been influenced by the
guidance of the instructor, and perhaps by that found in course texts. More
significantly, we know that some of the source code samples had been
plagiarized. In addition, most of the program samples are from the same
domain (i.e. sorting algorithms, binary search). All these facts imply that the
programs in this data set potentially share several common characteristics.
More details on this data set can be found in Table 5.1. This data set is from

this point referred to as the StudentJava data set.

103

5.3.1 The Open Source Java data set

In order to establish our performance benchmark for this data set (referred
to as OSJava benchmark), we removed all comments from the OSJava
programs and ran a first experiment with all identifiers intact. The comments
were removed from the data set because our aim in the tests was to consider
the degree to which identifiers in the source code contributed to authorship
identification without the ‘influence’ of comments. Table 5.2 shows the
classification accuracy results achieved on the test data set using various
combinations of profile parameter values. The highest level of accuracy
achieved on this dataset was 88.2%, shown in bold in the table. The best

results were achieved in four instances, all where n>5 and L>5000.

Table 5.2 Accuracy of classification for the OSJava data set.

Profile n-gram size

Size (L) 3 4 5 6 7 8 9 10
2000 52.9 58.8 70.6 | 76.5 70.6 76.5 824 | 824
3000 41.2 70.6 647 | 76.5 76.5 82.4 76.5 | 824
4000 41.2 647 | 70.6 | 824 76.5 82.4 76.5 | 76.5
5000 41.2 647 | 706 | 824 82.4 824 | 824 | 824
6000 41.2 647 | 70.6 | 88.2 82.4 82.4 76.5 | 88.2
7000 41.2 647 | 706 | 88.2 82.4 82.4 706 | 76.5
8000 41.2 647 | 70.6 | 88.2 82.4 82.4 70.6 | 76.5

5.3.2 The Student Java data set

In order to establish our second data set benchmark (referred to as
StudentJava benchmark), as above we removed all comments from the
StudentJava programs and ran a first experiment with all identifiers intact.
Table 5.3 shows the classification accuracy results achieved on the test data set
using various combinations of profile parameter values. The highest level of
accuracy achieved on this dataset was 88.5%, shown in bold in the table. The

best result was achieved in one instance, for n=8 and L=3000.

104

Table 5.3 Accuracy of classification for the StudentJava data set.

Profile n-gram size
Size
(L) 3 4 5 6 7 8 9 10

2000 69.2 | 76.9 80.8 84.6 84.6 84.6 80.8 76.9
3000 69.2 | 769 76.9 80.8 80.8 88.5 84.6 84.6
4000 69.2 | 80.8 76.9 76.9 76.9 80.8 80.8 84.6
5000 69.2 | 80.8 76.9 76.9 76.9 80.8 80.8 80.8
6000 69.2 | 80.8 76.9 76.9 76.9 76.9 80.8 80.8
7000 69.2 | 80.8 76.9 76.9 76.9 76.9 80.8 76.9
8000 69.2 | 80.8 76.9 76.9 76.9 76.9 80.8 80.8

5.4 Significance of Identifiers

Focusing on the different types of identifiers that might influence
authorship identification, as described in subsection 5.3, a set of experiments
was performed on both the OSJava and Student]Java program sets in order to
measure the contribution of each type of identifier to accurate classification.
Hence, for each type of identifier we report the results obtained from both the
OSJava and the StudentJava data sets, after disguising a certain type of
identifier. To aid understandability of the results, we have augmented the
entries in each table with an indication of comparative performance. In all
subsequent tables, the sign ‘~" to the right side of a value indicates a drop in
accuracy after neutralization in comparison with the associated benchmark
data, the sign ‘+ indicates increased accuracy, whereas no sign alongside the

value indicates the same level of performance.

In order to assess the statistical significance of the results we obtained, we
performed one-tailed t-tests to compare the mean accuracy achieved in the
benchmark OSJava and Student]Java tests and the mean accuracy obtained
after disguising each identifier type. The significance level used was 5% for all

experiments. (Note that we first checked whether our data were normally

105

distributed and it was found that they were approximately normal. In any

case our results have been confirmed using the nonparametric Wilcoxon test.)

5.4.1 Contribution of Simple Identifiers

The aim of this set of experiments was to assess the degree to which the
simple identifiers defined by the programmer contributed to authorship
identification. This category included all simple variable names that were
defined within the program by the programmer. For example, variable names

of type Int, Int[],long, char, boolean and so on.

All instances of these names were changed to a unique identifier comprised
of a letter and a number followed by a different letter and the same number.
This task was performed on both benchmark datasets, OSJava and
StudentJava, resulting in two datasets named OSSimple and StudentSimple.
An example of one such unique identifier after disguising would be al15b15.
If the same variable name was used in more than one program, these were
changed to different unique identifiers in order to eliminate the common byte
level n-grams based on these variables (thus creating a conservative test).
User defined Identifiers that remained unchanged for this experiment, were

all class variables and method names.

The results achieved on the OSSimple data set are shown in Table 5.4. By
comparing these results to those obtained from the analysis of the OSJava
benchmark, it can be observed that accuracy remained the same in 17 of the 56
OSSimple n-L cases, it was improved in 23 cases and in the remaining 16 cases
accuracy was worse. As illustrated in Table 5.14 the difference between the
two means is negative, meaning that (on average) the ability to classify
authorship correctly improved slightly with the disguising of simple
identifiers. Using the one-tailed t-test to compare the mean levels of accuracy

achieved with the OSJava and OSSimple data sets we found that the p-value

106

was 0.0989, greater than our threshold of 0.05. Therefore the difference
between the accuracy levels across the two data sets (at mean -1.06) is not

statistically significant.

The results achieved on the StudentSimple data set are shown in Table 5.5.
Comparing the results obtained from this analysis with the StudentJava
benchmark results (comparing Tables A2 and A4), we found that
classification accuracy was unaffected in 25 of the 56 cases, in 26 cases we
attained better results and in 5 cases classification accuracy decreased — thus
again suggesting that classification accuracy improved with the disguising of
simple identifiers. Using the one-tailed t-test of the difference between the
StudentJava and StudentSimple mean accuracy (-1.72 as shown in Table 5.15),
we found that the p-value was 0.0000. The difference between the two data

sets is in this case statistically significant.

The conclusion drawn from these rather mixed results is that, when
analyzed using the SCAP method, simple variables in these programs do not
play a significantly positive role in authorship attribution. The apparent
improvement in accuracy achieved for many of the n, L combinations across
both data sets appears to be due to the fact that many programmers use the
same (or similar) names for simple variables. Some examples of the
commonly used names encountered across different programmers were
year, e, F, 1, mid. The byte-level n-grams derived from these
commonly used names were responsible for the initially incorrect
classification of some programs in the benchmark analyses, particularly in the
StudentJava data set. By making each user-defined simple variable unique in
each program, we eliminated all these common n-grams across the different
programmers, leading to an apparent improvement in overall classification

accuracy.

107

Table 5.4. Accuracy of classification for the OSSimple data set.

Profile n-gram Size

Size (L) 3 4 5 6 7 8 9 10
2000 47.1- 64.7+ | 76.5+ | 76.5 | 82.4+ 82.4 70.6- | 824
3000 47.1+ 70.6- | 76.5+ | 70.6- | 82.4+ | 76.5- 76.5 76.5-
4000 471+ 529- | 765+ |824 |765 82.4 76.5 76.5
5000 47 1+ 58.8- | 76.5+ | 76.5- | 824 76.5- 82.4 76.5-
6000 47 1+ 58.8- | 82.4+ |82.4- |88.2+ |824 82.4+ |88.2
7000 47 1+ 58.8- | 82.4+ |82.4- |88.2+ |824 70.6 82.4+
8000 47 1+ 58.8- | 82.4+ |82.4- |88.2+ |824 70.6 82.4+

Table 5.5. Accuracy of classification for the StudentSimple data set.

Profile n-gram size

Size (L) 3 4 5 6 7 8 9 10
2000 76.9+ |80.8+ |84.6+ | 88.5+ 88.5+ | 84.6 84.6+ | 80.8+
3000 731+ [76.9 |80.8+ |84.6+ |88.5+ |88.5 84.6 |84.6
4000 73.1+ |769- |769 [84.6+ |[80.8+ [80.8 80.8 | 84.6
5000 73.1+ [769- 769 [769 84.6+ | 84.6+ |84.6+ |80.8
6000 73.1+ |769- 769 [769 76.9 |80.8+ |84.6+ |80.8
7000 73.1+ |769- 769 [769 769 |80.8+ |80.8 |80.8+
8000 731+ |769- 769 [769 76.9 |80.8+ |80.8 |80.8

5.4.2 Contribution of Class Identifiers

In the second set of Identifier experiments each name in the training and
test program sets from both data sets (OSJava and StudentJava) that pertained
to the Class Identifiers category was changed to a unique identifier following
the same pattern as above. Again, if the same class identifier was used in two
different files, then it was changed to two different unique names. An
example could be the class name ‘owner’ that was used (perhaps by a certain
programmer) in two different programs. It was changed to ‘a123b123’ in the
tirst program and ‘a34b34’ in the second. The data sets thus derived are
referred to as OSClass and StudentClass. (All the names that are either simple

variables or method names remained unchanged.).

The accuracy results obtained in this experiment from the OSClass data set

are shown in Table 5.6. Comparing these results with the OSJava benchmark

108

results, it can be seen that in 33 of the 56 cases we had poorer author
attribution performance, in 18 cases the same level of accuracy was achieved,
and in 5 cases we achieved improved accuracy after identifier neutralization.
The p-value obtained from the one-tailed t-test comparing the OSJava and
OSClass mean accuracy values (being 4.42) was 0.0000, indicating that the
disguising of class identifiers makes a statistically significant difference to

classification accuracy (Table 5.14).

The results obtained in this experiment from the StudentClass data set are
shown in Table 5.7. When these results are compared with those obtained for
the StudentJava benchmark experiment, it can be seen that in 18 of the 56
cases we had poorer attribution performance, in 37 cases the same level of
accuracy was achieved, and in 1 case we achieved an improved result. The p-
value obtained from the one-tailed t-test comparing the mean accuracy levels
achieved for the StudentJava and StudentClass data sets (at 1.31) was 0.0000
(Table 5.15), illustrating that once again the difference in accuracies between

the two data sets is statistically significant.

The results from these two experiments consistently indicate that class
variables do appear to reflect program authorship. While it is true that the
mean difference between the StudentClass and Student]Java data sets is
smaller than that found between the OSJava and OSClass sets, this is due in
part to the fact that identifier naming in the StudentJava data set had been
influenced to a degree by the instructor and the domain (being the same in
most programs). In addition some of the programs had been plagiarised. Each
of these factors would increase the likelihood of finding the same or similar
class names across programs from different authors. Even when these
inherently similar names were replaced by the unique identifiers (thus
eliminating some of the common n-grams between programs from different

authors), accuracy only improved in a single case. Thus, we can be reasonably

109

confident that class naming (i) is influential in reflecting authorship, and (ii) is
reasonably robust to external influence and potentially to manipulation

associated with the masking of plagiarism.

Table 5.6 Accuracy of classification for the OSClass data set.

Profile n-gram size

Size (L) 3 4 5 6 7 8 9 10
2000 58.8+ | 58.8 70.6 | 64.7- [76.5+ |70.6- |824 82.4
3000 353- |58.8- |588-]|64.7- |70.6- |76.5- [765 88.2+
4000 35.3- |58.8- |58.8-]70.6- |76.5 76.5- |76.5 76.5
5000 35.3- [58.8- |64.7-|70.6- |82.4 82.4 76.5- |824
6000 35.3- [58.8- |70.6 |76.5- |76.5- |82.4 76.5 82.4-
7000 35.3- [58.8- |70.6 |76.5- |70.6- |70.6- |70.6 82.4+
8000 353- |588- |[70.6 |76.5- |70.6- |64.7- |[70.6 82.4+

Table 5.7. Accuracy of classification for the StudentClass data set.
Profile
Size (L) n-gram size s
3 4 5 6 7 8 9 10
2000 69.2 |769 [80.8 |84.6 [80.8- |[80.8- [769- |[76.9
3000 69.2 |769 [769 |80.8 |80.8 80.8- [80.8- |76.9-
4000 69.2 [76.9- [76.9 |73.1- [80.8+ |80.8 80.8 80.8-
5000 69.2 |769- [769 |769 |[769 80.8 76.9- |80.8
6000 69.2 [76.9- |769 |769 |76.9 76.9 76.9- | 80.8
7000 69.2 |769- [769 |769 |[769 76.9 76.9- |76.9
8000 69.2 [76.9- |[769 |769 |76.9 76.9 76.9- | 76.9-

5.4.3 Contribution of Method Identifiers

This set of experiments was performed to evaluate the degree to which
method names contributed to accurate authorship attribution. All method
names defined within the programs in both the OSJava and StudentJava data
sets were changed to unique identifiers. If the same method name appeared in
more than one program, it was replaced by a different identifier in each case.
All identifiers that were either simple variables or class variables were left
unaffected. The resulting data sets are referred to as OSMethod and

StudentMethod respectively.

110

The authorship attribution results for the experiment on the OSMethod
data set are shown in Table 5.8. Comparing these outcomes with the OSJava
benchmark, the results are worse in 15 of the 56 cases, in 27 cases performance
was improved and in 14 cases the same levels of accuracy were achieved. The
next step was to perform a one-tailed t-test to evaluate the difference between
the accuracies achieved using the OSJava and OSMethod programs (at a value
of -1.06). The p-value of this test was found to be 0.0987, higher than our
threshold for p of 0.05 (Table 5.14). This shows that the difference between the

accuracies in these data sets is not significant.

The results achieved from the analysis of the StudentMethod data set are
given in Table 5.9. Comparing these levels of accuracy against those obtained
for the StudentJava benchmark, the results are worse in 5 of the 56 cases, in 37
cases performance was improved and in 14 cases the same levels of accuracy
were achieved. The p-value obtained by comparing the Student]Java and
StudentMethod mean accuracy values (at -2.62) was 0.0000 (see Table 5.15).
This shows that the SCAP analysis of the StudentMethod data set, with its
method names disguised, achieved statistically better classification accuracy

than achieved through the analysis of the StudentJava data set.

The improvement in accuracy in both sets, in spite of the disguising of
method names, is again explained in part by the fact that the unique
identifiers that replaced the user-defined method names eliminated some of
the common n-grams that were derived from coincidentally common or
similar method names used by different programmers (and that negatively
affected the level of correct classification achieved in the benchmark tests).
Examples of such names included getinteger, setString, Init set.
The degree of improvement observed after identifier neutralization is greater
in the instructor-influenced single domain StudentJava data set because the

number of common method names used by different programmers is higher

111

in this set. The conclusion drawn from these results is that method names
defined by the user in these Java programs do not play a significantly positive

role in authorship attribution using the SCAP method.

Table 5.8 Accuracy of classification for the OSMethod data set.

Profile n-gram Size

Size (L) 3 4 5 6 7 8 9 10
2000 58.8+ |64.7+ |[76.5+ |76.5 76.5+ | 824+ |824 82.4
3000 471+ | 64.7- |76.5+ |[76.5 824+ |76.5- |76.5 82.4
4000 471+ |[58.8- |[76.5+ |[88.2+ |824+ |824 82.4+ | 82.4+
5000 47.1+ | 58.8- |[82.4+ |88.2+ |88.2+ |824 82.4 82.4
6000 471+ |58.8- |76.5+ [824- |824 76.5- [70.6- |82.4-
7000 471+ |[58.8- |[76.5+ |765- |824 70.6+ | 70.6 82.4+
8000 471+ |58.8- |[76.5+ [765- |[824 70.6+ |76.5+ | 82.4+

Table 5.9 Accuracy of classification for the StudentMethod data set.
Profile n-gram size
Size (L) 3 4 5 6 7 8 9 10
2000 73.1+ |80.8+ |80.8 |[84.6 |[84.6 |84.6 84.6+ | 84.6+
3000 73.1+ | 76.9 80.8+ | 84.6+ | 84.6+ | 88.5 88.5+ | 88.5+
4000 73.1+ | 76.9- |769 88.5+ | 80.8+ |[84.6+ |88.5+ | 88.5+
5000 731+ |76.9- |76.9 |80.8+ [80.8+ |[84.6+ |[84.6+ |885+
6000 73.1+ |769- |769 |[80.8+ |80.8+ [80.8+ |[80.8 84.6+
7000 73.1+ | 76.9- |769 80.8+ | 80.8+ |80.8+ |84.6+ |84.6+
8000 73.1+ |769- |769 |80.8+ [80.8+ |80.8+ |80.8 80.8

5.4.4 Contribution of all User defined Identifiers

One further experiment was conducted to assess the impact of neutralizing
all names, belonging to all three categories examined above. In this
experiment all identifiers including simple variables, method names and class
variables defined by the programmer within each program in the OSJava and
StudentJava datasets have been replaced by unique identifiers. If the same
name appeared in more than one program, it was replaced by a different
identifier in each case. The purpose of this experiment was to assess the extent

of influence that all names used within a program had on authorship

112

attribution. The data sets derived are referred to as OSAIll and StudentAll

correspondingly.

The results achieved with the OSAIl data set are shown in Table 5.10. By
comparing these results to those obtained from the analysis of the OSJava
benchmark, it can be observed that accuracy remained the same in 17 of the 56
cases and was in fact improved in the other 39 cases. This indicates that, in
this case, the names defined by the users did not contribute positively to
authorship attribution. The p-value obtained in comparing the OSJava and
OSAIl mean accuracies using a paired-sample t-test was 0.0000 (Table 5.14).
This shows that the levels of classification accuracy obtained from the two

analyses are significantly different.

Similarly the results from the StudentAll data set are shown in Table 5.11.
A comparison of the StudentJava and StudentAll classification performance
reveals that accuracy was the same in 1 of the 56 cases and was improved in
the other 55. This again provides evidence that the user-defined names in
these programs did not contribute positively to authorship attribution. The t-
test p-value obtained in comparing the two mean accuracies was 0.0000,
suggesting that the levels of accuracy achieved in the analysis of the two data

sets are significantly different (Table 5.15).

The improvement in classification accuracy obtained after the disguising of
identifiers is highest in this last experiment, for both data sets — not
unexpected given the results obtained in the three preceding tests.
Examination of the analyses revealed that, as for the prior experiments, this
improvement can be explained by the fact that programs written by different
programmers contained the same or similar names (for example value and
val, or fragment, fragmentation, fragmentname and fragments).
The byte-level n-grams derived from these commonly used names were

responsible for the originally incorrect classification of some programs in the

113

benchmark analyses. By making each user-defined identifier unique in each
program we eliminated all these common n-grams across the different
programmers, thus improving overall classification accuracy when compared

to the two benchmark sets.

Table 5.10 Accuracy of classification for the OSAIl data set.

Profile n-gram size

Size(L) 3 4 5 6 7 8 9 10
2000 52.9 76.5+ [76.5+ |[82.4+ |82.4+ |88.2+ |82.4+ |82.4+
3000 47 1+ 76.5+ | 88.2+ | 88.2+ |88.2+ [82.4+ |76.5+ |88.2+
4000 47.1+ 64.7 82.4+ | 88.2+ |88.2+ | 88.2+ | 88.2+ | 88.2+
5000 47.1+ 64.7 76.5+ | 88.2+ |[88.2+ | 82.4+ |88.2+ | 88.2+
6000 47 1+ 64.7 76.5+ | 88.2+ |[88.2+ | 88.2+ |82.4+ |88.2+
7000 47.1+ 64.7 76.5+ |88.2+ |82.4+ |88.2+ |88.2+ |88.2+
8000 47.1+ 64.7 76.5+ | 88.2+ |[82.4+ |88.2+ |88.2+ |88.2+

Table 5.11 Accuracy of classification for the StudentAll data set.

Profile n-gram size

Size(L) 3 4 5 6 7 8 9 10
2000 88.5+ | 84.6+ | 885+ |[92.3+ |92.3+ |885+ |84.6+ |[80.8+
3000 84.6+ |88.5+ |88.5+ |[885+ [92.3+ |92.3+ |84.6 88.5+
4000 84.6+ |84.6+ |885+ |[92.3+ | 885+ |88.5+ |885+ |[88.5+
5000 84.6+ | 84.6+ |80.8+ |88.5+ |92.3+ |92.3+ |88.5+ |[88.5+
6000 84.6+ |84.6+ |[80.8+ |80.8+ | 88.5+ |88.5+ |92.3+ [88.5+
7000 84.6+ |84.6+ |80.8+ |80.8+ |84.6+ |88.5+ |885+ |[88.5+
8000 84.6+ | 84.6+ |80.8+ |[80.8+ [84.6+ |84.6+ |88.5+ |88.5+

5.5 Summary of Performance

We here provide a set of tables that show a summary of the classification
accuracy results achieved for the four OS data set and the four StudentJava set
experiments across the various combinations of SCAP profile parameter
values. Tables 5.12 and 5.13 present in summary form the results obtained
from all experiments described in this section. Tables 5.14 and 5.15 show the
results of the one-tailed t-test paired difference between the

OSJava/StudentJava and corresponding identifier type data sets.

114

Table 5.12 Performance summary of the OSJava and corresponding identifier type data sets
OSJava OSSimple | OSClass | OSMethod | OSAIll
Mean classification accuracy 72.3% 73.3% 67.9% 73.3% 78.4%
Median classification accuracy 76.5% 76.5% 70.6% 76.5% 82.4%
Minimum classification accuracy 41.2% 47.1% 35.3% 47.1% 47.1%
Maximum classification accuracy 88.2% 88.2% 88.2% 88.2% 88.2%
Std. Deviation 13.3% 12.7% 13.9% 12.1% 13.6%
Worse than OSJava 16 33 15 0
Better than OSJava 23 5 27 39
Same as OSJava 17 18 14 17

Table 5.13 Performance summary of the StudentJava and corresponding identifier type data sets

StudentJava | StudentSimple | StudentClass | StudentMethod | StudentAll
Mean classification
accuracy 78.3% 80.0% 77.0% 80.9% 86.8%
Median
classification
accuracy 76.9% 80.8% 76.9% 80.8% 88.5%
Minimum
classification
accuracy 69.2% 73.1% 69.2% 73.1% 80.8%
Maximum
classification
accuracy 88.5% 88.5% 84.6% 88.5% 92.3%
Std. Deviation 4.4% 4.3% 3.6% 4.6% 3.5%
Worse than
StudentJava 5 18 5 0
Better than
StudentJava 26 1 37 55
Same as
StudentJava 25 37 14 1

Table 5.14 One-tailed t-test paired difference between the OSJava and corresponding identifier type

data sets
Mean | Std. Deviation p-value
OSJavaAccuracy - OSSimpleAccuracy -1.06 6.06 0.0989
OSJavaAccuracy - OSClassAccuracy 4.42 5.64 0.0000
OSJavaAccuracy - OSMethodAccuracy -1.06 6.05 0.0987
OSJavaAccuracy - OSAllAccuracy -6.07 5.48 0.0000

Table 5.15 One-tailed t-test paired difference between StudentJava and corresponding identifier type

data sets
Mean | Std. Deviation p-value
StudentJavaAccuracy - StudentSimpleAccuracy -1.72 2.94 0.0000
Student]JavaAccuracy - StudentClassAccuracy 1.31 2.24 0.0000
StudentJavaAccuracy - StudentMethodAccuracy -2.62 3.14 0.0000
StudentJavaAccuracy - StudentAllAccuracy -8.47 443 0.0000

115

5.6 Summary

We have performed a number of experiments in order to assess the impact
of different Java identifier types on source code authorship attribution, using
the Source Code Author Profile approach. In these experiments, programs
from two different Java data sets with different characteristics were used. The
tirst data set contained open source code and programs that were ‘domain
independent” since all programs from each author that were placed in the
training set were from a different project than the programs placed in the test
set. Hence, the programs in this data set did not share common
characteristics. In contrast, the second data set was formed by programs
written during an introductory Java course, the consequence being that
naming in these programs was influenced by the instructor and that some
program samples had been plagiarized. In addition most programs in this
data set belonged to the same application domain. As a result the programs in

this data set shared several common characteristics and identifiers.

In each experiment one category of identifiers was neutralized, in order to
provide a means of measuring the difference between classification accuracy
with and without the certain type of identifier available. The results of these
experiments (presented in summary form in Tables 5.12 to 5.15) have shown

the following for the data sets assessed here:

. Simple variables and method names defined by the programmer do not
seem to positively influence classification accuracy — and in fact in some
cases accuracy could be improved if these names were neutralized
before the SCAP analysis. This is due to the fact that programmers have
been shown to use the same or similar names for simple variables and
method names. This conclusion applied to both Java data sets

considered here but to a lesser extent for the OSJava data set, where the

116

programs were from a different application domain for each

programmer.

. Class naming does positively influence authorship classification

accuracy, an outcome evident for programs in both data sets.

. Accuracy classification is improved by neutralizing all user-defined

identifiers in both data sets.

At the outset of this study we asked the following questions: Do Java
identifiers contribute to correct authorship identification? Is it possible to hide
the provenance of some Java program by identifier renaming? The results of
our analyses suggest that the answer to the first question is a partial “Yes’,
Java class identifiers do contribute to correct authorship identification. The
answer to the second question appears to be “No” — it is not possible to hide
the provenance of some Java program by identifier renaming. In fact, globally
renaming all identifiers — neutralizing them — enabled us to actually improve
our authorship classification accuracy over the benchmark levels achieved

with identifiers intact.

117

Chapter 6 Conclusions

Nowadays, in a wide variety of cases source code authorship identification
has become an issue of major concern. Such situations include authorship
disputes, proof of authorship in court, cyber attacks in the form of viruses,
trojan horses, logic bombs, fraud, and credit card cloning etc. Identifying the
authorship of malicious or stolen source code in a reliable way has become a
common goal for digital investigators. Zheng et al. (2003) proposed the
adoption of an authorship analysis framework in the context of cybercrime
investigation to help law enforcement agencies deal with the identity tracing

problem.
In this context, the goals of this research work were:

. to describe and compare all the previous studies in the field of source

code authorship identification.

. to develop a new approach to source code authorship identification
that will eliminate some of the limitations of the previous

methodologies.

. to identify the features of the source code that contributes to correct

authorship identification.

The following sections contain conclusions reached on each of the above

studies.

118

6.1. Description and comparison of previous studies

The most extensive and comprehensive application of authorship analysis
is in literature. One famous authorship analysis study is related to

Shakespeare’s works and is dating back over several centuries.

The general methodology of authorship attribution applies to texts in both
natural and computing languages. This authorship attribution methodology
requires two main steps. The first step is the extraction of data for selected
features that are said to represent each author’s style. The second step
normally involves the application of a statistical or machine learning
algorithm to these variables in order to develop models that are capable of

discriminating between potentially several authors.

In general, when authorship attribution methods have been developed for
programming languages, the software features used are language-dependent
and require computational cost and/or human effort in their derivation and
calculation. The main focus of the early approaches was on the definition of

the most appropriate features in representing the style of an author.

While the metric extraction approach to software forensics has been
dominant for the last decade it is not without its limitations. The first is that at
least some of the software metrics collected are programming-language
dependent. For example, metrics specifically appropriate to Java programs
are not inherently useful for examining C or Pascal programs — some may
simply not be available from programs written in a different language. The
second limitation is that the selection of useful metrics is not a trivial process
and usually involves setting (possibly arbitrary) thresholds to eliminate those
metrics that contribute little to a classification or prediction model. Third,

some of the metrics are not readily extracted automatically because they

119

involve judgments, adding both effort overhead and subjectivity to the

process.

In sum, the previous work in author identification of programming code
has exhibited varying degrees of language-dependence and has achieved a

range of levels of effectiveness.

6.2. Development of a new approach to source code authorship
identification

We have developed the Source Code Author Profiles (SCAP) methodology
that represents a new approach to source code authorship identification and
classification that is both highly effective and language-independent, since it
is based on low-level non-metric information. In this method, byte-level n-
grams are utilised to establish and assess code against author profiles. Our
method was applied to data sets of different programming languages (C++,
Java and Common Lisp) and varying difficulty demonstrating surprising

effectiveness.

The conclusions reached in relation to the SCAP method are as follows:

e A comparison with a previous source code authorship identification
study based on more complicated information shows that the n-gram
author profiles are better able to capture the idiosyncrasies of the

source code authors.

e One of the inherent advantages of this approach over others is that it is

language independent since it is based on low-level information.

e Experiments with data sets in Java and C++ and Common Lisp have

shown that it is highly effective in terms of classification accuracy.

e Comments alone can be used to identify the most likely author in

open-source code samples, where there are detailed comments in each

120

program sample. Furthermore, the SCAP method can also reliably
identify the most likely author even when there are no comments in the

available source code samples.

e The SCAP approach can deal with cases where very limited training
data per author is available or there are multiple candidate authors,

with no significant compromise in performance.

e Many experiments are required in order to identify the most

appropriate combination of n-gram size n and profile size L.

6.3. The significance of high-level programming features in source
code authorship identification

The question we addressed here is: which are the features of the source
code that contribute to correct authorship identification? What is it about that
piece of code that suggests a particular author? A number of experiments
have been performed in order to answer the questions above using programs
written in two languages that represent two different programming styles we:
Java, which uses objects; and Common Lisp, which wuses a
functional/imperative programming style. We intentionally selected
languages that represent two different programming styles, so that insights
into a range of languages might be gained. Given language similarities it
could be expected that programs written in C++ would have similar results to
those achieved with Java code, and Prolog programs should behave similarly

to Lisp programs.

In each case one feature at a time was either removed or ‘neutralised’, in
order to provide a means of measuring the difference between classification
accuracy with and without the feature available. The results of these

experiments have shown the following for the data sets assessed here:

121

study.

The accuracy of source code authorship attribution is improved by the

existence of comments in the code.

Layout-related features play a role in determining program authorship
but the extent to which this is an influential characteristic may vary
from language to language. In our experiments, the level of impact for
the programs written in Java was substantial, but this level was much
lower for the programs written in Common Lisp. (The contribution of
layout-related features in identifying the author of a Java program is

also a conclusion reached by Ding and Samadzadeh (2004).)

Variable and function names defined by the programmer do not seem
to influence classification accuracy — and in fact in some cases accuracy
might be improved by ‘neutralizing’ these names. This is due to the
fact that programmers have been shown to use the same names for
simple variables, class variable names, methods or functions. In our
case, this conclusion certainly applied to the Java programs, and to

those written in Common Lisp to a lesser extent.

Package-related naming influences accuracy, an outcome evident for

programs written in both languages.

One of the implications of our work is that future authorship identification
systems, which are intended to explain ‘why’ it is claimed that a piece of code
is written by a particular author, should concentrate on the features that are

the most important in determining authorship based on the findings of this

On the other hand, systems that deal with plagiarism detection could use
the findings of our work in order to locate the features of a piece of code that
could be plagiarised. For example, when looking for plagiarism in a piece of

code written in Java one should first concentrate on the comments and the

122

layout of the program and not on the user defined identifiers which might be

otherwise one of the most obvious first choices.

6.3.1 The significance of user-defined identifiers in Java source code
authorship identification

While the work described above has indicated that Java identifiers defined
by the programmer do not influence classification accuracy, and in fact in
some cases accuracy might be improved by ‘neutralizing’ these variable
names, that study examined all user-defined identifiers together. Further
experiments have been performed to check whether this conclusion holds
when we examine each type of Java programmer-defined identifier
separately. In these experiments, programs from two different Java data sets
with different characteristics were used. The first data set contained open
source code and programs that were ‘domain independent” since all programs
from each author that were placed in the training set were from a different
project than the programs placed in the test set. Hence, the programs in this
data set did not share common characteristics. In contrast, the second data set
was formed by programs written during an introductory Java course, the
consequence being that naming in these programs was influenced by the
instructor and that some program samples had been plagiarized. In addition
most programs in this data set belonged to the same application domain. As a
result the programs in this data set shared several common characteristics and

identifiers.

In each experiment one category of identifiers was neutralized, in order to
provide a means of measuring the difference between classification accuracy
with and without the certain type of identifier available. The results of these

experiments have shown the following for the data sets assessed here:

123

e Simple variables and method names defined by the programmer do not
seem to positively influence classification accuracy — and in fact in some
cases accuracy could be improved if these names were neutralized
before the SCAP analysis. This is due to the fact that programmers have
been shown to use the same or similar names for simple variables and
method names. This conclusion applied to both Java data sets
considered here but to a lesser extent for the OSJava data set, where the
programs were from a different application domain for each

programimer.

e (lass naming does positively influence authorship classification

accuracy, an outcome evident for programs in both data sets.

e Accuracy classification is improved by neutralizing all user-defined
identifiers in both data sets. This conclusion has also been reached
when in the previous experiment where we examined all user-defined

identifiers together.

One of the implications of our work is that future Java authorship
identification systems that are intended to explain why it is claimed that a
piece of code is written by a particular author should concentrate on the class
identifiers in analysing and assigning authorship. More broadly, identifier
neutralization could be used as a means of improving accuracy in Java
authorship identification cases. In contexts in which identifiers might be
named in ‘standard” ways the masking of identifiers (perhaps apart from class

names) should be performed before authorship analysis in undertaken.

6.4. Future Work

The research work described in this thesis has revealed a number of open

issues that could be investigated in the future:

124

All the experiments to classify a program to an author have been
performed using a number of different combinations of n-gram size n
and profile size L. Although these experiments have indicated some
optimum combinations of the n-gram size n and profile size L, more
experiments have to be performed on various data sets in order to be
able to define the most appropriate combination of n-gram size and

profile size for a given problem.

Further work could be undertaken for the development of a statistical
likelihood which we can attach to the yes/no classification results, since
courts are not only interested in the accuracy rates of methods such as
SCAP, but also the likelihood of a particular classification for a

particular set of programs in a particular case.

Another useful direction worthy of research investigation would be the
discrimination of different programming styles — and authors — in

collaborative and community-authored projects.

Analysis of code written in other languages would add to our
understanding of the influence of particular programming features — as
the SCAP method is language-independent it is ideally suited to such

work.

Further research could include applying the SCAP approach to

programs written by the same authors in different languages.

We have performed a number of experiments in order to assess the
impact of different Java identifier types on source code authorship
attribution, using the Source Code Author Profile approach. Future
work could include research on other specific programming languages,
in order to check in detail whether our findings are language-or data

set-specific.

125

References

Aarmodt, A, and Plaza, E., 1994. Case-Based Reasoning: Foundational issues,
Methodical Variations and System Approaches. Al Communications, vol 7(1)

Abbasi, A., and Chen., H., 2005. Applying Authorship Analysis to Extremist-Group
Web Forum Messages, IEEE Intelligent Systems 20(5): 67-75.

Abelson, H., and Sussman., G., J., 1996. Structure and interpretation of computer
programs. MIT Press, Cambridge, Mass., second edition.

Adnan, El-N., Veermachaneni, S., Nagy, G., 2003. Handwriting recognition using
position sensitive letter n-gram matching, Proceedings of the Seventh International
Conference on Document Analysis and Recognition (ICDAR 2003).

Arensburger, A., 2001 /* You Are Expected to Understand This */.
http://freshmeat.net/articles/view/238/.

Baayen, R., H., Van Halteren, H., and Tweedie., F. J., 1996. Outside the cave of
shadows: Using syntactic annotation to enhance authorship attribution. Literary and
Linguistic Computing, 11(3):121-131.

Benedetto, B., Caglioti, E., Loreto, V., 2002. Language trees and zipping. Physical
Review Letters 88(048702) (2002).

Burrows, J., F., 1989. “An ocean where each kind...” Statistical Analysis and some
major determinants of literary style. Computers and the Humanities 23, 309-321

Burrows, J., F., 1987. Word patterns and story shapes: The statistical analysis of
narrative style. Literary and Linguistic Computing, 61-67.

Cargill, T., 1992. C++ Programming/Code Style, Addison-Wesley.

Cavnar, W.,B., Trenkle, J., M., 1994. N-Gram-based text categorization, Proceedings
of the 1994 Symposium on Document Analysis and Information Retrieval.

Chaski, C., 1998. A Daubert-inspired assessment of current techniques for language-
based author identi_cation". Technical report, US National Institute of Justice.
Available through www.ngjrs.org.

Chaski, C., 2001. Empirical evaluations of language-based author identification
techniques". Forensic Linguistics.

Chaski, C.E., 2005. Who's At the Keyboard? Recent results in authorship attribution,
International Journal of Digital Evidence, 4(1). Available at www.ijde.org

Cheng, B.)Y., Carbonell, J.,G., Klein-Seetharaman, J., 2005. Protein classification
based on text document classification techniques, Proteins 58, 955-970.

126

Dewhurst, S., C., 2002. C++ Gotchas: Avoiding Common Problems in Coding and
Design. Addison-Wesley Professional.

Diederich, J., Kindermann, J., Leopold, E., and Paass. G., 2000. Authorship
attribution with Support Vector Machines". Applied Intelligence, 19, 109-123.

Dietrich, W., R., 2003. Applied Pattern Recognition: Algorithms and Implementation
in C++. Springer.

Ding, H., Samadzadeh, M. H., 2004. Extraction of Java program fingerprints for
software authorship identification, The Journal of Systems and Software, 72(1): 49-57.

Dixit, J.B. 2003. Computer Fundamentals and Programming in C. Laxmi
Publications.

Downie, J.,S., 1999. Evaluating a simple approach to musical information retrieval:
conceiving melodic n-grams as text, PhD thesis, University of Western Ontario.

Elliott, W., E., Y., and Valenza, R., J., 1991. Was the Earl of Oxford the true
Shakespeare? A computer aided analysis. Notes and Queries, 236:501-506.

Farringdon, J., M., Morton, A., Q., and Farringdon, M., G., 1996. Analysing for
Authorship: A Guide to the Cusum Technique, University of Wales Press, Cardiff.

Floyd, R. W., Beigl, R., 1994. The language of Machines, New York: Computer
Science Press.

Frank, E., Chui, C., Witten, I.,H., 2000. Text Categorization Using Compression
Models. Proc. of DCC-00, IEEE Data Compression Conference (2000) 200-209.

Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.,E., and Howald B.,S.,
2007a. Identifying Authorship by Byte- Byte-Level N-Grams: The Source Code
Author Profile Method, International Journal of Digital Evidence, 6(1).

Frantzeskou, G., MacDonell, S.G., Stamatatos, E., and Gritzalis, S., 2007b.
Examining the significance of high-level programming features in source code
author classification, Journal Systems and Software, in press,
d0i:10.1016/j.jss.2007.03.004, Elsevier.

Frantzeskou, G., MacDonell, S.G., Stamatatos, E., and Gritzalis, S., 2007c. The
significance of user-defined identifiers in Java source code authorship identification,
Journal of Information and Software Technology, Elsevier, submitted for publication.

Frantzeskou, G., Stamatatos, E., Gritzalis, S., and Katsikas, S., 2006a. Effective
Identification of Source Code Authors Using Byte-Level Information, in Proceedings of

the 28th International Conference on Software Engineering ICSE 2006 - Emerging Results
Track, B. Cheng, B. Shen (Eds.), Shanghai, China, ACM Press.

127

Frantzeskou, G., E. Stamatatos, S. Gritzalis, and S., Katsikas 2006b. Source Code
Author Identification Based on N-gram Author Profiles In Proceedings of 3rd IFIP
Conference on Artificial Intelligence Applications & Innovations (AIAI'06), pp. 508-515,
Springer.

Frantzeskou, G., Stamatatos, E., Gritzalis, S., 2005a. Supporting the Digital Crime
Investigation Process: Effective Discrimination of Source Code Authors based on
Byte-level Information, in Proceedings of the ICETE’2005 International Conference
on eBusiness and Telecommunication Networks — Security and Reliability in
Information Systems and Networks Track, UK, Springer.

Frantzeskou, G., Stamatatos, E., Gritzalis, S., 2005b. "Source Code Authorship
Analysis using N-grams", in Proceedings of the 7th Biennial Conference on Forensic
Linguistics, July 2005, Cardiff, UK

Frantzeskou, G., Gritzalis, S., MacDonell, S., 2004. Source Code Authorship
Analysis for supporting the cybercrime investigation process, in Proceedings of the
ICETE’2004 International Conference on eBusiness and Telecommunication

Networks — Security and Reliability in Information Systems and Networks Track,
Vol. 2, 85-92, Springer.

Ganapathiraju, M., Weisser, D., Rosenfeld, R., Carbonell, J.,, Reddy, R., Klein-
Seetharaman, J., 2002. Comparative n-gram analysis of whole-genome protein
sequences, HLT'02, Proceedings of the Human Language Technologies Conference,
San Diego.

Ghezzi, C., Jazayeri, M., Mandrioli, D., 1991. Fundamentals of Software
Engineering, Prentice Hall, first edition.

Gray, A., Sallis, P., MacDonell, S., 1997. Software forensics: Extending authorship
analysis techniques to computer programs, in Proc. 3rd Biannual Conf. Int. Assoc. of
Forensic Linguists (IAFL'97), pages 1-8.

Gray, A,, Sallis, P., MacDonell, S., 1998. Identified: A dictionary-based system for
extracting source code metrics for software forensics, in Proceedings of SE:E&P’98,
IEEE Computer Society Press, 252-259.

Grubb, P., A, Takang, A., 2003. Software Maintenance: Concepts and Practice,
World Scientific.

Heer, T. De, 1974. Experiments with syntactic traces in information retrieval, Inform.
Storage Retrieval 10, 133-144.

Holmes., D., I., 1998. The evolution of stylometry in humanities scholarship, Literary
and Linguistic Computing, 13(3):111-117.

Holmes, D., I., and Forsyth, R., 1995. The Federalist revisited: New directions in
authorship attribution. Literary and Linguistic Computing, 10(2):111-127.

128

Holmes, D.]J., 1992. A stylometric analysis of Mormon scripture and related texts.
Journal of Royal Statistical Society, 155, 91-120.

IRT Group, CERN, 2000. C++ Coding Standard Specification,
Handbook/Programming/CodingStandard/c++standard.pdf

Juola, P., 2006. Authorship attribution for electronic documents, In Olivier and
Shenoi (Eds.), Advances in Digital Forensics II, pp. 119-130, Springer.

Kernighan, B., W., and Ritchie, D., M., 1978. The C Programming Language,
Prentice-Hall, Inc.

Keselj, V., Peng, F., Cercone, N., Thomas, C., 2003. N-gram based author profiles for
authorship attribution, in Proceedings of. Pacific Association for Computational
Linguistics.

Keyes, J., 2003. Software Engineering Handbook, Auerbach.

Khmelev, D., V., and Tweedie, F., J., 2002. Using Markov chains for identification of
writers, Literary and Linguistic Computing, 16(4):299-307.

Khmelev, D., and Teahan, W., 2003. A Repetition Based Measure for Verification of
Text Collections and for Text Categorization, in Proc. of the 26th ACM SIGIR, 2003,
pp. 104-110.

Knuth, D., E., 1997. The Art of Computer Programming, Volume 1, 3rd Edition.
Boston: Addison-Wesley.

Kokol, P., Podgorelec, V, Zorman, M., Kokol, T., Njivar, T., 1999. Computer and
Natural Language Texts — A Comparison Based on Long-Range Correlations, Journal
of the American Society for Information Science, John Wiley & Sons, 50(14), 1295-
1301. Miller, G.A., 1991. The Science of Words, New York: Scientific American
Library.

Kokol, P., Kokol, T., 1996. Linguistic laws and computer programs, Journal of the
American Society for Information Science, 47(10), 781-785.

Kothari, J., Shevertalov, M., Stehle, E., and Mancoridis, S., 2007. A Probabilistic
Approach to Source Code Authorship Identification, in Proc. of Third International
Conference on Information Technology New Generations (ITNG 2007).

Krsul, I, and Spafford, E. H, 1995. Authorship analysis: Identifying the author of a
program, in Proceedings of 8th National Information Systems Security Conference,
National Institute of Standards and Technology, 514-524.

Kilgour, R. I., Gray, A.R,, Sallis, P. J., and MacDonell, S. G., 1998. A Fuzzy Logic
Approach to Computer Software Source Code Authorship Analysis, in Proceedings
of ICONIP'97, Springer-Verlag, 865-868.

129

Lamkins, D., 2004. Successful Lisp: How to Understand and Use Common Lisp,
bookfix.com. Also available at http://psg.com/~dlamkins/sl/

Lange, R., S., Mancoridis, 2007. Using Code Metric Histograms and Genetic
Algorithms to Perform Author Identifcation for Software Forensics, in Proc of
Genetic and Evolutionary Computation Conference (GECCO 2007), Track Real —
World Applications 5.

Ledger, G.R., & Merriam 1994. Shakespeare, Fletcher and the two noble Kingmen,
Literary and Linguistic Computing, 9, 235-248

Longstaff, T. A., and Schultz, E. E., 1993. Beyond Preliminary Analysis of the
WANK and OILZ Worms: A Case Study of Malicious Code, Computers and
Security, 12(1), 61-77.

Lowe, D., and Matthews, R., 1995. Shakespeare vs. Fletcher: A stylometric analysis
by Radial Basis Functions. Computers and the Humanities, 29:449-461.

MacDonell, S.G., Buckingham, D., Gray, A.R., and Sallis, P.J., 2002. Software
forensics: extending authorship analysis techniques to computer programs, Journal
of Law and Information Science 13(1), 34-69.

MacDonell, S.G, and Gray, A.R., 2001. Software forensics applied to the task of
discriminating between program authors, Journal of Systems Research and
Information Systems 10:113-127.

MacLennan, Bruce, J., 1987. Principles of Programming Languages, Oxford
University Press.

Marceau, C., 2000. Characterizing the behaviour of a program using multiple-length
n-grams, Proceedings of the 2000 Workshop on New Security Paradigms, pp. 101-
110.

Mc Connell, S., 1993. Code Complete, Microsoft Press.

Meanland, D.,L., 1995. Correspondence analysis of Luke, Literary and Linguistic
Computing, 10, 171-182

Mendenhall, T., C., 1887. The characteristic curves of composition. Science, 9:237—
249.

Merriam, T., 1996. Marlowe’s hand in Edward III revisited. Literary and Linguistic
Computing, 11(1):19-22.

Merriam-Webster., 1992. Webster's 7th collegiate dictionary.

Morris, A., and Cherry, L., 1975. Computer Detection of Typographical Errors, IEEE
Transactions on Professional Communication, 18(1), 54-56.

130

Mosteller, F., and Wallace, D., L., 1964. Inference and Disputed Authorship: The
Federalist, Addison-Wesley Publishing Company, Inc., Reading, MA.

Mozilla.org , 2007. Mozilla Coding Style Guide,
http://www.mozilla.org/hacking/mozilla-style-guide.html

Norvig P., Pitman, K., 1993. Tutorial on Good Lisp Programming Style, in Proc of
Lisp users and Vendors conference

Oman, P.,, and Cook, C., 1989. Programming style authorship analysis, In
Seventeenth Annual ACM Science Conference Proceedings, ACM.

Oman P., and Cook, C., 1991. A programming style taxonomy, Journal of Systems
Software, 15(4):287-301.

Peng, F., Shuurmans, D., and Wang S., 2004. Augmenting naive bayes classifiers
with statistical language models, Information Retrieval Journal, 7(1): 317-345.

Qi, J., Luo, H., Hao, B., 2004. CVTree: a phylogenetic tree reconstruction tool based
on whole genomes, Nucleic Acids Res, 32, 45-47.

Sallis P., Aakjaer, A., and MacDonell, S., 1996. Software Forensics: Old Methods for
a New Science, in Proceedings of SE:E&P’96. Dunedin, New Zealand, IEEE
Computer Society Press, 367-371.

Schank, R., 1982. Dynamic Memory: A theory of reminding and learning in
computers and people, Cambridge University Press.

Schenkel, A., Zhang, J., Zhang, Y., 1993. Long range correlations in human writings,
Fractals, 1(1), 47-55.

Seibel, P., 2005. Practical Common Lisp, Apress. Also on line
http://www.gigamonkeys.com/book/

Shepperd, M. J., and Schofield, C., 1997. Estimating software project effort using
analogies, IEEE Transactions on Software Engineering, 23(11), 736-743

Schmitt, J., C., 1991. Trigram-based method of language identification, U.S. Patent
5,062,143.

Sneed, H., 1996. Object-oriented COBOL recycling. In Proc. of the 34 Working
Conference on Reverse Engineering, IEEE Computer Society, pp 169-178.

Solovyev, V. V., and Makarova, K.,S., 1993. A novel method of protein sequence
classification based on oligopeptide frequency analysis and its application to search
for functional sites and to domain localization, Comput. Appl. Biosci., 9, 17-24.

Spafford, E. H., 1989. The Internet Worm Program: An Analysis, Computer
Communications Review, 19(1), 17-49.

131

Spafford, E. H.,, and Weber, S. A., 1993. Software forensics: tracking code to its
authors, Computers and Security, 12(6), 585-595.

Spinellis, D., 2003. Code reading: The Open Source Perspective. Addison-Wesley.

Stamatatos, E., Fakotakis, N., Kokkinakis, G., 2001. Computer based authorship
attribution without lexical measures. Computers and the Humanities, 35(2), 193-214.

Stamatatos, E., Fakotakis N., and Kokkinakis G., 2000. Automatic text
categorization in terms of genre and author, Computational Linguistics, 26(4), 471-
495.

Sun Developer Network, 1999. Code Conventions for the Java Programming
Language, http://java.sun.com/docs/codeconv/

Sun Microsystems 1997, Code Conventions
java.sun.com/docs/codeconv/CodeConventions.pdf

Sun Microsystems 2007, Java Language Keywords
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/ keywords.html

The Harlequin Group Ltd 2007, Common Lisp Specification, Available at
http://www lisp.org/HyperSpec/FrontMatter/index.html

Tweedie F., J., Baayen R., H., 1998. How variable may a constant be? Measures of
lexical richness in perspective. Computers and the Humanities, 32(5):323-352.

Tweedie, F., J., Singh, S., and Holmes, D., 1., 1996. Neural network applications in
stylometry: The Federalist papers. Computers and the Humanities, 30(1):1-10.

Yule G., U,, 1938. On sentence-length as a statistical characteristic of style in prose,
with applications to two cases of disputed authorship, Biometrika, 30:363-390.

Yule, G., U, 1944. The Statistical Study of Literary Vocabulary, Cambridge
University Press.

Vel, O., Anderson, A., Corney, M., and Mohay, G., 2001. “Mining E-mail Content
for Author Identification Forensics”, SIGMOD Record Web Edition, 30(4).

Zipf, G., K., 1932. Selected Studies of the Principle of Relative Frequency in
Language, Harvard University Press, Cambridge, MA.

Zheng, R., Qin, Y., Huang, Z., Chen, H., 2003. Authorship Analysis in Cybercrime
Investigation, NSF/NIJ Symposium on Intelligence and Security Informatics (ISI'03),
Tucson, Arizona, Springer-Verlag Berlin Heidelberg.

132

