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PerÐlhyh

Sthn paroÔsa didaktorik  diatrib  ereunoÔme ton qarakt ra twn idiwm�twn pou dÔnantai

na emfanistoÔn se peperasmèno qrìno se isotropik� sÔmpanta kaj¸c kai se sÔmpanta

bran¸n.

XekinoÔme me mÐa anaskìphsh thc dom c kai twn idiot twn twn isotropik¸n q¸rwn.

Par�llhla, efarmìzoume èna genikì je¸rhma plhrìthtac se autoÔc touc q¸rouc kai

analÔoume pl rh kosmologik� montèla apì th sÔgqronh bibliografÐa.

SuneqÐzoume me th kataskeu  anagkaÐwn sunjhk¸n gia thn emf�nish idiwm�twn mèsw

thc qr shc tou antijetoantÐstrofou tou jewr matoc plhrìthtac. Autì mac odhgeÐ se mÐa

taxinìmhsh twn idiwm�twn twn isotropik¸n sump�ntwn h opoÐa basÐzetai sth sumperifor�

tou rujmoÔ diastol c Hubble kai mac prosfèrei mÐa pr¸th èndeixh gia th fÔsh twn

idiwm�twn. 'Epeita epekteÐnoume kai sumplhr¸noume aut  thn taxinìmhsh me th qr sh

thc enèrgeiac Bel-Robinson. EpÐshc, susqetÐzoume thn Ôparxh kleist¸n pagideumènwn

epifanei¸n me ton apeirismì thc enèrgeiac Bel-Robinson prokeimènou na kajorÐsoume thn

exèlixh sugkekrimènwn kosmologik¸n montèlwn.

ProqwroÔme sth melèth montèlwn apì thn sÔgqronh bibliografÐa ta opoÐa prosfè-

roun tic kat�llhlec sunj kec gia thn emf�nish diafìrwn apì touc tÔpouc twn idiwm�twn

pou problèpontai apì thn taxinìmhs  mac. Apì th melèth aut  prokÔptei ìti h taxinìmh-

s  mac ìqi mìno perilamb�nei ìlouc touc  dh gnwstoÔc tÔpouc idiwm�twn all� epiplèon

problèpei kai polloÔc nèouc tÔpouc.

Katal goume me th melèth sÔmpantwn bran¸n mÐac trisdi�stathc br�nhc embapti-

smènhc se èna pentadi�stato perib�llonta q¸ro mèsa ston opoÐo dra èna bajmwtì pedÐo

  èna idanikì reustì. Stìqoc mac se aut n thn perÐptwsh eÐnai h diereÔnhsh twn idiwm�-

twn pou mporoÔn na anaptuqjoÔn se peperasmènh apìstash apì th br�nh. Efarmìzontac

th mèjodo twn asumptwtik¸n diasp�sewn apodeiknÔoume ìti aut� ta sÔmpanta bran¸n

mporoÔn na emfanÐsoun kurÐwc tri¸n eid¸n idi¸mata.
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Abstract

In this thesis we explore the character of finite-time singularities that are possible to arise

in FRW universes and in specific braneworld configurations.

We begin with a review of the structure and properties of RW-spaces. We then give

an adaptation of a completeness theorem and analyse complete model universes from the

recent literature.

We continue with the construction of a classification plan of singularities that may

appear in FRW universes. Our tool for this quest is the contrapositive of the complete-

ness theorem which translates in necessary conditions for singularities. The classification

derived in this way is based on the behaviour of the Hubble rate and offers a first insight

into the nature of singularities. We further extend and complete this classification with

the use of the Bel-Robinson energy. We also associate the existence of a closed trapped

surface with a divergence in the Bel-Robinson energy and use this relation to determine

the evolution of various specific cosmologies.

Next we study models from the recent literature that offer the appropriate physical

conditions for the appearance of singularities predicted by our classification. This study

shows that our classification not only accommodates all known types of singularities but

it also predicts new ones.

Finally, we focus on braneworld models consisting of a three-brane embedded in a five-

dimensional bulk space that is inhabited by a scalar field or a perfect fluid. Our goal is to

study the singularities that may occur within a finite distance from the brane. Our analysis

that is performed with the method of asymptotic splittings shows that these braneworlds

can exhibit three main types of finite-distance singularities.
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Chapter 1

Introduction

Ever since the fundamental discovery of the big bang and big crunch singularities in the

general relativistic FRW universes of dust and radiation a lot of effort has been focused on

finding ways to avoid these philosophically and physically puzzling features of spacetime

structure. Indeed, spacetime singularities constitute a challenging issue philosophically

since they imply that the immense universe emerged a finite time ago through a region of

spacetime of infinite curvature and zero size, as well as physically since general relativity

fails to describe such a state of spacetime. A common way out of this situation is to modify

general relativity to obtain theories of gravity that do not possibly contain singularities. A

different attitude is to accept that singularities are essential features of our universe and

investigate further conditions that trigger their existence as well as those that describe

their nature.

The singularity theorems of general relativity [1] gave appropriate conditions that led to

the existence of singularities in generic spacetimes; they did not, however, provide detailed

information about their nature. Uncovering the nature of spacetime singularities remains

therefore an open issue in cosmology and this thesis focuses on the precise pathologies that

may determine the character of singularities in the class of isotropic spacetimes. Before we

analyse more carefully our goals, let us briefly review the development of recent research

on the issue of finite-time singularities that partly motivates our own research reported

1



2 CHAPTER 1. INTRODUCTION

herein.

An investigation of the recent literature actually shows that interest in the issue of

spacetime singularities has been renewed through the construction of various cosmological

models with finite-time singularities. Among these are those similar to the standard big

bang and big crunch singularities ones albeit appearing in universes containing different and

even ‘exotic’ forms of matter, as well as other kinds not met in the standard cosmological

models studied in the usual textbook expositions of cosmology.

Interestingly, these novel types of singularities sometimes involve the presence of quite

an exotic type of matter (cf. [2]-[47]), a characteristic example of such a singularity being

the so-called big-rip singularity (cf. [3], [14], [38], [48], [49], [50], [51], [52], [53]). The

study of some of these newer types of singularities started off as soon as data from the

WMAP (cf. [54], [55]) became available. These data indicate that the universe is currently

undergoing an accelerating phase typically attributed to a form of dark energy that may be

described by a linear equation of state with a parameter w converging, however, towards

the value w = −1. The case with w < −1 is not ruled out by the data [3] and this provides

a surprising implication for the future of the universe which had not been appreciated

earlier: once such a dark energy component becomes dominant, the universe is destined to

face up with a violent end towards which the scale factor, the Hubble expansion rate, the

horizon distance, the density and the pressure all experiencing a divergence. In this sense

every bound structure will be ripped apart.

The type of dark energy that leads to the emergence of the big-rip type of singularity

mentioned above has some awkward characteristics (see Section 4.3) but it nonetheless

sparkled new interest on finite-time singularities. In particular, research focused (cf. [49],

[50], [56]-[66]) in finding paradigms of cosmologies that exhibited future finite-time sin-

gularities potentially distinct from big crunches and rips but still feasible to arise in an

expanding phase of a model universe which did not require exotic forms of matter. This

led to the discovery of sudden and other milder types of singularities. These singularities

are characterised by the fact that the second or higher order derivatives of the scale factor
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diverge while the scale factor itself and the Hubble rate remain finite.

The models described in the preceding paragraphs played the important role of pro-

viding the appropriate physical circumstances for the appearance of such singularities.

But still they provide mere examples not general theorems that could capture the unify-

ing reasons for the occurrence of such spacetime singularities. In fact, the study of an

increasing number of models accommodating finite-time singularities leaves one with the

impression that different singular behaviours are totally determined by (or connected to)

the particularities of each model.

This situation, however, provides us with a fertile ground for the formulation of some

basic questions such as: What do all these different singular cosmologies have in common?

Is there some underline reason that unifies all these ‘phenomenologically’ different singular

behaviours? Are there other types of finite-time singularities which are possible in these

models but have not yet been uncovered? What are the general criteria that predict and

describe the possible kinds and nature of finite-time singularities?

This thesis aims to provide answers to such questions. We will show that singular

isotropic universes are characterised by the basic property that their Hubble expansion rate

fails in one way or another to be an integrable function of the proper time for an infinite

time-interval. The various ways in which this non-integrability can be implemented leads

to a classification of finite-time singularities that consists of three possible types which

accommodate all the recently introduced singularities mentioned above [67], [68]. This

result offers first evidence for a more detailed description of the nature of singularities in

isotropic spacetimes.

Note that such a ‘classification’ of singularities is totally effected by the geometry of

the spacetime in question; in no way do the various matter fields influence its construction.

A more subtle examination of the character of a singularity implies however that matter

fields may strongly affect the asymptotic behaviour of these model universes and hence

play a role in changing the nature of their singularities. This type of classification needs

therefore to be refined by somehow incorporating the various matter fields into the picture.
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This refinement results in a more detailed classification scheme that sharpens our view of

the nature of singularities [69]-[71].

Our approach in constructing a classification of singularities is a geometric one. In

particular, for the Hubble rate classification mentioned above we make use of the contra-

positive of the completeness theorem of [72], [73], while for the second we use the notion of

the Bel-Robinson energy (an invariant geometric quantity representing the slice-projected

energy of the gravitational field). This latter approach makes our classification conducive

to more general spacetimes as well as more flexible since now more functions describe the

possible different types of singularities and trace the properties and structure of spacetime.

After the completion of the classification of singularities in isotropic universes, this the-

sis focuses on the analysis of singularities that occur in the different context of braneworld

universes. The study of these models (originally motivated by string theory) offers many

interesting scenarios in cosmology and particle physics (see Section 5.1 for a short review).

Our interest in this recently issued research area originates from the fact that these models

exhibit finite-distance singularities that have many analogies with the finite-time singular-

ities predicted in our classification and not met in simpler, more standard models.

For instance, the specific braneworld model of [74] captured our interest precisely

because it involves the appearance of a finite-distance singularity. This model consists of a

flat three-brane sitting at a fixed position of an extra spatial dimension, and a scalar field

propagating throughout the whole of the enveloping five-dimensional space. At the vicinity

of the singularity occurring within a finite-distance from the brane, the energy density of

the scalar field becomes infinite and this may offer an explanation to the small, observed

value of the vacuum energy (actualised in this model by the scalar field).

We further explore whether this singularity continues to appear when we consider a

curved instead of a flat brane. Our preliminary results indicate that the singularity is in

fact removed at an infinite distance from the brane [75]. This work is further extended

here by examining other types of finite-distance singularities that become possible once we

consider a different form of bulk matter such as a perfect fluid.
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By the use of the method of asymptotic splittings developed in [76], we find that there

are three possible types of finite-distance singularities, triggering an infinite leak of energy

of the matter that inhabits the background space.

A more detailed plan of this thesis is as follows:

In Chapter 2, after a review of the basic properties of Robertson-Walker spaces we

give an adaptation of the proof of the general completeness theorem of [72] for the specific

case of such spaces and analyse complete model universes from the recent literature.

In Chapter 3, we use the contrapositive of the completeness theorem [72], [73] to derive

necessary conditions for singularities in isotropic spacetimes. These in turn provide us with

a first classification plan of singularities. This plan is later extended and completed with

the use of the Bel-Robinson energy. We also associate the existence of a closed trapped

surface with a divergence in the Bel-Robinson energy and use this relation to determine

the evolution of various specific isotropic models.

In Chapter 4, we exploit model universes appearing in the recent literature to demon-

strate how some particular members of our classification indeed arise during the evolution

of such models. It follows from the analysis in this chapter that our classification scheme

accommodates all known types of singularities. In fact, an examination of the literature

shows that many new types of singularities -predicted by our classification- have not yet

been embodied in appropriate cosmological models.

In Chapter 5, we present an asymptotic analysis of braneworld models that consist

of a three-brane embedded in a five-dimensional bulk space filled with a scalar field or a

perfect fluid. Our analysis, performed with the method of asymptotic splittings, shows

that these models are constrained to exhibit only three main types of singularities within

a finite distance from the position of the brane which is taken to be at the origin.

In Chapter 6 we conclude and discuss projects of future work. This thesis has also

five appendices. In Appendix A, we explain the notation and conventions that we use

throughout, and in the appendices that follow we give some background of some of the basic

concepts that we use in this work such as the extrinsic curvature and the Gauss-Codazzi
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formalism (Appendix B), the Bel-Robinson energy (Appendix C), the energy-momentum

tensor of a scalar field (Appendix D) and the method of asymptotic splittings (Appendix

E).

We declare that all statements in this work correspond to original research conducted

by the author except in all those places where it is otherwise stated and proper citations

are then given.



Chapter 2

Completeness and Robertson-Walker

geometry

In this Chapter we explore the character of Robertson-Walker spaces, the basic spacetimes

used and studied in this work. We start by reviewing, in Section 2.1, the motivation

behind the adaptation of such spaces, their basic properties and structure as well as some

simple features of singularities that they may exhibit. In Section 2.2, we first review the

assumptions of the completeness theorem stated and proved in [72] for generic spacetimes

and then give a version of that proof for the case of a Robertson-Walker space. The key

idea of the proof of that theorem is to study the geodesic equations satisfied by every causal

geodesic; this is a different approach from the one taken in the proof of the ‘antipodal’

singularity theorems, where the idea is to study instead the Raychaudhouri equation which

describes the expansion of a bundle of geodesics. The completeness theorem applied to

the case of a Robertson-Walker space guarantees that the integrability of the norm of the

extrinsic curvature, or equivalently of the Hubble expansion rate, on an infinite-proper

time interval suffices for the completeness of such spaces. Finally, in Section 2.3 we analyse

complete universes from the recent literature.

7
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2.1 Structure and properties of Robertson-Walker spaces

Since observations on the large-scale structure of the universe are limited, the construction

of cosmological models includes at a most basic level philosophical ideas that we accept

as principles. The cosmological principle plays a central role in the construction of model

universes and can be viewed as a generalisation of the Copernican principle according to

which the earth does not occupy a privileged position in the solar system. The cosmological

principle assumes that in turn the solar system, our galaxy, and our local group of galaxies

do not occupy a privileged position in the universe.

The cosmological principle therefore implies that the universe on a large enough scale

ought to be spatially homogeneous. A spacetime is spatially homogeneous if at any instant

of time, represented by a spacelike hypersurface Σt, any two points on Σt are equivalent.

More precisely, a spatially homogeneous spacetime can be foliated by a one-parameter

family of spacelike hypersurfaces Σt such that for each t and for any pair of points p, q on

Σt, there exists an isometry that maps p into q (cf. [77], pp. 92-93). This implies that the

curvature of Σt cannot vary from point to point i.e., the spacelike slices Σt are surfaces of

constant curvature.

Apart from imposing homogeneity, the cosmological principle also requires isotropy

about every point in spacetime; this means that there are no privileged directions, or

equivalently, that the universe is spherically symmetric about every point.

The strongest evidence for isotropy is provided by the discovery of Penzias and Wilson

[78] that the universe is filled with a microwave background radiation of about 3 K that

is highly isotropic. Since isotropy implies homogeneity [79], this fundamental discovery

provided evidence for the validity of the cosmological principle.

The requirement of isotropy further implies that there exists a class of privileged ob-

servers, the isotropic observers, that move along a congruence of timelike geodesics with

tangent vectors orthogonal to the homogeneous slices Σt. These timelike geodesics do not

intersect, except possibly at singular points, so that through every non-singular point in

spacetime passes at most one isotropic observer. The orthogonality between these geodesics
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and the slices Σt is a necessary feature of isotropic spacetimes: if these geodesics did not

cut the surfaces Σt orthogonally, then we would be able to construct a preferred spatial

direction in violation of isotropy (cf. [77], p. 93).

The suitable metric for the description of an isotropic spacetime is the Robertson-

Walker metric given by

ds2 = −dt2 + a2(t)dΩ2, (2.1.1)

where dΩ2 is the metric of the three-spaces of constant negative, zero or positive curvature.

The non-zero constant curvature can be normalised to be ±1, (so that dΩ2 is the metric of

the unit three-sphere or of the unit hyperbolic three-space respectively, and the trichotomy

of possibilities reads as follows:

ds2 = −dt2 + a2(t)(dr2 + f 2(r)(dθ2 + sin2 θdφ2)), (2.1.2)

where a(t) is the scale factor, and

f(r) =





r, k = 0

sin r, k = 1

sinh r, k = −1,

(2.1.3)

with r ∈ [0,∞) if k = 0,−1, whereas r ∈ [0, 2π] if k = +1. We call a universe with

constant curvature k equal to −1, 0, or +1, an open, flat, or closed universe respectively.

Note that the spacelike slices of a flat or open universe are of an infinite extent in contrast

to those of a closed universe which are finite.

As we have already remarked already in a isotropic universe we are always able to

construct a privilege class of isotropic observers. Each of these observers can be thought

of as a particle of a cosmic fluid filling spacetime; the world lines of the observers become

then the flow lines of the fluid. Because of the orthogonality between these flow lines

and the spacelike slices Σt, the spacelike coordinates of a particle in the fluid are constant

-co-moving coordinates- along these lines. This cosmic fluid models the matter content of
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the universe and the scale factor describes the separation of neighboring flow lines (cf. [1]

p.136). In the simplest case the energy-momentum tensor of the cosmic fluid is thus taken

to be that of a perfect fluid with density µ and pressure p which are functions only of the

(proper) time. The resulting Einstein-Friedman equations can be written in the form

3H2 = µ + 3
k

a2
, (2.1.4)

ä

a
= −1

6
(µ + 3p), (2.1.5)

while the conservation of the energy-momentum tensor gives

µ̇ + 3H(µ + p) = 0, (2.1.6)

where H = ȧ/a is the Hubble rate.

In the absence of exotic forms of matter, we assume that µ > 0 and p ≥ 0 for all

t. Then Eq. (2.1.5) shows that ȧ cannot be constant and thus the universe is either

expanding or contracting. The discovery of the expansion of the universe by Hubble in

1929 offered a very interesting implication for its history: because its density decreases as

the universe expands (see Eq. (2.1.6)), it follows that it should have been infinite in the

past as a(t) → 0; the universe must have therefore began its existence with a singularity.

In fact, the singularity theorems predict that this is inevitable in all models satisfying

µ + 3p > 0.

The first cosmological models with a RW geometry that were found to possess such a

singularity were the dust and radiation-filled universes. Dust is a pressureless fluid that

provides a good approximation for a matter component comprised solely by non-interacting

galaxies. This follows because the observed relative velocities of galaxies in groups are small

and hence galaxies are interpreted as particles of a pressureless fluid. On the other hand, an

adequate approximation to the matter content of the universe in an early epoch is provided

by radiation which is described by taking p = µ/3. Away from an initial singularity open

and flat universes typically expand forever, whereas, closed ones end their existence with
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another singularity that arises within a finite time from the initial big bang.

2.2 Completeness theorems

Although we are going to focus on exclusively isotropic spacetimes, we refer briefly in

this Section to the basic properties of general spacetimes used in the formulation of the

completeness theorem of [72]. In the end of this Section, we give an adapted version of

the original theorem and proof of [72], for our case of interest -isotropic spacetimes. We

will refer to the original version of the completeness theorem (Theorem 2.2.1 below) later

in Chapter 3 when we shall discuss the possible extensions of our work to more general

spacetimes.

We begin by giving some basic definitions. Consider a spacetime (V , g) with V =

M×I, I = (t0,∞), whereM is a smooth manifold of dimension n and (n+1)g a Lorentzian

metric which in the usual n + 1 splitting, reads

(n+1)g ≡ −N2dt2 + gij(dxi + βidt)(dxj + βjdt) (2.2.1)

Here N = N(t, xi) is called the lapse function, βi(t, xj) is called the shift function and the

spatial slicesMt (= M×{t}) are spacelike submanifolds endowed with the time-dependent

spatial metric gt ≡ gijdxidxj. We call such a spacetime a sliced space [80]. A sliced space

is time-oriented by increasing t and we choose I = (t0,∞) (or I = (−∞, t0)) when we

study the future (past) singularity behaviour of an expanding (contracting) universe with

a singularity in the past (future), for instance at t = 0 < t0 (t = 0 > t0). However, since t

is just a coordinate, our study could apply as well to any interval I ⊂ R.

A natural causal assumption for (V , g) is that it is globally hyperbolic. This implies the

existence of a time function on (V , g). In a globally hyperbolic space, spacetime splits as

above with each spacelike slice Mt being a Cauchy surface; this means that each timelike

and null curve without end points cuts Mt exactly once [81]. In such a spacetime therefore

the future and history of the universe can be predicted or retrodicted from conditions at
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the instant of time represented by Mt (cf. [77], pp.200-202).

Following the definitions given in [72], we say that a sliced space has uniformly bounded

lapse if the lapse function N is bounded below and above by positive numbers Nm and

NM ,

0 < Nm ≤ N ≤ NM . (2.2.2)

A sliced space has uniformly bounded shift if the gt (t ∈ I) norm of the shift vector β,

projection on the tangent space to Mt of the tangent to the lines {x} × I, is uniformly

bounded by a number B.

A sliced space has uniformly bounded spatial metric if the time-dependent metric gt ≡
gijdxidxj is uniformly bounded below for all t ∈ I by a metric γ = gt0 , that is there exists

a number A > 0 such that for all tangent vectors v to M it holds that

Aγijv
ivj ≤ gijv

ivj. (2.2.3)

Definition 2.2.1 A sliced space (V , g) with uniformly bounded lapse, shift and spatial

metric is called regularly sliced.

Denoting by ∇N the space gradient of the lapse N , by Kij the extrinsic curvature of

Mt, and by |K|2g the product gamgbnKabKmn, we have the following theorem of [72] which

gives sufficient conditions for geodesic completeness:

Theorem 2.2.1 Let (V , g) be a sliced space such that the following assumptions hold:

C1 (V , g) is globally hyperbolic

C2 (V , g) is regularly sliced

C3 For each finite t1, the space gradient of the lapse, |∇N |g, is bounded by a function of

t which is integrable on [t1, +∞)

C4 For each finite t1, |K|g is bounded by a function of t which is integrable on [t1, +∞).

Then (V , g) is future timelike and null geodesically complete.
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It was later proved in [80] that in a regularly sliced spacetime, condition C1 is in fact

equivalent to the condition that each slice of (V , g) is a complete Riemannian manifold.

Turning back now to isotropic spacetimes we see from the definition of a sliced space

and the form of the RW metric (Eqs. (2.1.2), (2.1.3)), that an isotropic spacetime is a

sliced space with N = 1, β = 0. Following the Definition (2.2.1) we note that:

Remark 2.2.1 An isotropic spacetime is regularly sliced iff the scale factor is a bounded

from below function of time.

We can now reformulate the completeness theorem 2.2.1 so as to apply directly to the

case of an isotropic spacetime.

Theorem 2.2.2 (Completeness of RW spacetimes) Every globally hyperbolic, regu-

larly sliced RW space such that for each finite t1 the norm of the extrinsic curvature is

integrable on [t1, +∞), is future timelike and null geodesically complete.

Proof.

Consider a causal geodesic in an isotropic universe. The tangent vector to these

geodesics ua = dxa/ds, where xa = (x0, x1, x2, x3) = (t, r, θ, φ) and s is the proper time or

an affine parameter measured along a timelike or null geodesic respectively, satisfies the

geodesic equations
d2xa

ds2
+ Γa

mn

dxm

ds

dxn

ds
= 0. (2.2.4)

The a = 0 component of these equations for this type of universe is

d2t

ds2
+ Γ0

ij

dxi

ds

dxj

ds
= 0, (2.2.5)

where i, j = 1, 2, 3 (the rest of the Christoffel symbols Γ0
0i and Γ0

00 vanish).

Dividing Eq. (2.2.5) by (dt/ds)2 we find,

ds

dt

d

dt

(
dt

ds

)
+ Γ0

ij

dxi

dt

dxj

dt
= 0. (2.2.6)
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Setting y = dt/ds and denoting by ẏ the derivative of y with respect to t, the above

equation is written in the form
ẏ

y
= −Γ0

ij

dxi

dt

dxj

dt
. (2.2.7)

Integrating over the interval [t1, t], we find

ln
y(t)

y(t1)
= −

∫ t

t1

Γ0
ijυ

iυjdt, (2.2.8)

where we have set υi = dxi/dt. Since Γ0
ij = Kij

1 we can write Eq. (2.2.8) as follows:

ln
y(t)

y(t1)
= −

∫ t

t1

K0
ijυ

iυjdt. (2.2.9)

Substitution then in Eq. (3.16) of [72] gives

ln
y(t)

y(t1)
<

∫ t

t1

|K|gdt =
√

3

∫ t

t1

∣∣∣∣
ȧ

a

∣∣∣∣ dt, (2.2.10)

where in the last equation we have used Eq. (B.1.15) from Appendix B. Using the hypoth-

esis of the integrability of |K|g, we see that y = dt/ds is uniformly bounded. This means

that ds/dt is bounded away from zero and hence the length of the geodesic given by 2

∫ ∞

t1

ds

dt
dt (2.2.11)

is infinite. This implies that the spacetime is causally geodesically complete.

Past completeness is derived by exchanging future with past and [t1, +∞) with (−∞, t1].

It follows from the above theorem that a globally hyperbolic and regularly sliced isotropic

spacetime is complete provided that the spacelike slices Σt do not curve too much as they

are seen by an observer located outside Σt in spacetime, for all t ∈ [t1, +∞).

Now since the norm of the extrinsic curvature in an isotropic spacetime is proportional

1Using Eqs. (B.1.14)-(B.1.14) we can verify that Γ0
11 = ȧa = K11, Γ0

22 = ȧaf2 = K22, Γ0
33 =

ȧaf2 sin2 θ = K33.
2As it was shown in [72] a future-directed causal curve C : s 7→ C(s) can be reparametrised by t: if

n = (−1, 0) is the timelike normal to Mt then g
(

dC
ds , n

)
= − dt

ds < 0 and hence dt
ds > 0.
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to the Hubble expansion rate H(t) (see Appendix B, Eq. (B.1.15)), we conclude that such

a spacetime is complete if it exhibits an expansion rate that is an integrable function of

proper time on [t1, +∞).

In the following Section, we will see that there exist complete FRW models that have

an expansion rate which is non-integrable on [t1, +∞). This implies that the integrability

of the Hubble rate on an infinite proper-time interval is a sufficient but not a necessary

condition for completeness. In order to prove completeness of these universes we take a

different approach in which we make use of the Bel-Robinson energy.

As we discuss in Appendix C, the Bel-Robinson energy is a kind of energy of the

gravitational field projected in a sense to a slice in spacetime. In particular, for a RW

metric the Bel-Robinson energy at time t, B(t), is given by

B(t) =
C

2

(|E|2 + |D|2) , (2.2.12)

where C is the constant volume of (or in, in the case of a non-compact space) the three

dimensional slice at time t and |E|, |D| are the norms of the two electric tensors, namely,

|E|2 = 3
ä2

a2
, (2.2.13)

|D|2 = 3

(
ȧ2

a2
+

k

a2

)2

. (2.2.14)

It can be proved that a closed or flat, expanding at t∗, FRW universe that has a

bounded Bel-Robinson energy is causally geodesically complete [82]. Therefore complete

FRW models which fail to have a Hubble expansion rate that is integrable on an infinite

proper-time interval may still manage to be complete provided that they have a bounded

Bel-Robinson energy. In the following Section we will illustrate this result with the analysis

of various models.
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2.3 Complete FRW cosmologies

Completeness is not a property only shared by ‘normal’ cosmologies. Although later in

Section 4.3, we meet isotropic universes filled with dark energy that end their existence in

a big-rip singularity, this need not always be the case. There are many examples of such

‘exotic’ universes containing dark energy that still manage to evade the big-rip singularity

and exist forever. This is achieved either by assuming that the dark energy component

satisfies simultaneously two different equations of state, or that it satisfies a generalised

equation of state that includes matter ranging from Chaplygin gasses to perfect fluids. We

shall presently analyse examples of complete universes belonging to both of these categories

in turn.

For the first case, consider the flat FRW universe studied in [83] (see also [84]). In this

case the dark energy component satisfies a ‘phantom’ equation of state of the form

p = wµ, with w = w(t) and w < −1,

as well as an equation of state of a Chaplygin gas (cf. [85], [86])

p = −A

µ
, where A > 0, constant,

(similar results will hold when w ∈ (−1,−1/3) -k-essence models, see, e.g., [84]). Sub-

stituting only the latter equation of state in the continuity equation, Eq. (2.1.6), and

integrating we find

µ2(t) = A + (µ2
0 − A)

(
a0

a(t)

)6

. (2.3.1)

We can now take into account the phantom equation of state and reform the above equation.

This is done by calculating, with the use of both equations of state, the time-dependent

parameter w(t),

w(t) = − A

µ2
. (2.3.2)

Substituting this back in Eq. (2.3.1), we find the following form for the energy density,
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µ(t) = µ0
2[−w0 + (1 + w0)(a0/a(t))6]

1/2
, (2.3.3)

where A = −w0µ0
2 and w0 < −1, which we can now insert in the Friedmann equation, Eq.

(2.1.4), and derive the following solution for the scale factor:

a(t) = (CeC1(t−t0))1/6, (2.3.4)

where C and C1 are positive constants. This model admits cosmic acceleration, ä > 0,

and a(t) →∞ as t →∞ and it is geodesically complete. The Hubble parameter takes the

constant value,

H =
C1C

6
. (2.3.5)

Here also the Bel-Robinson energy remains always finite and hence by the completeness

theorem in [82] we conclude that the model is geodesically complete.

As we mentioned in the beginning of this section, the second technique to trigger the

avoidance of a big-rip singularity in models containing dark energy is to assume that the

dark energy satisfies a generalised Chaplygin equation of state. This was done in [84] for

a flat universe. In particular, the equation of state is here chosen so that

p = −µ−α[C + (µ1+α − C)α/(1+α)], (2.3.6)

where C = A/(1 + w)− 1, 1 + α = 1/(1 + w), and α is a real parameter. Note that in the

limit w → 0 the gas reduces to a Chaplygin gas satisfying p = −Aµ−α, whereas as A → 0

it takes the form of a perfect fluid with equation of state p = wµ. The scale factor is given

by the form

a(t) = (C1e
−C3(t−t0) + C2e

C3(t−t0))2/3, (2.3.7)

where C1, C2 and C3 are parameters depending on a0 (the initial value of the scale factor),

A, w and B, with B being a positive integration constant. At the asymptotic limits t → t0

and t →∞, we find that H tends to suitable constants, that is it remains finite on [t0,∞).
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The complete character of this model is guaranteed by a clearly bounded Bel-Robinson

energy.

Assuming the existence of more conventional matter contents such as radiation and a

cosmological constant in a closed FRW universe, we obtain the following solution originally

given in [87],

a(t) = ai

[
1 + exp(

√
2t/ai)

]1/2

, (2.3.8)

where ai is a constant that bounds a(t) from below making this universe regularly hyper-

bolic. One then finds that H becomes zero as t → −∞, it is integrable on (−∞, 0] and

the Bel-Robinson energy is bounded. Thus we conclude that this universe is geodesically

complete, either using the result of [82] or alternatively by the completeness theorem 2.2.2.



Chapter 3

Classification of singularities

3.1 Introduction

Up to now we studied situations where geodesic completeness plays a major role. From now

on we shall focus on the other important issue, namely, that of gravitational singularities.

Spacetime singularities characterise solutions describing cosmological and gravitational col-

lapse situations in general relativity and in other metric theories of gravity. Understanding

the various aspects of spacetime singularities constitutes the so-called singularity prob-

lem. Viewed from a mathematical perspective the singularity problem apart from being

appealing because of its fundamental nature, it is also a pressing one, ever-present in man-

ifolds and metrics of arbitrary form under general topological and geometric assumptions

(see Section 3.4). From a physical perspective the singularity problem attracts attention

because of the wide variety of cosmological models in general relativity and other metric

theories of gravity that exhibit singularities that need to be analysed and understood (see

Sections 4.2-4.5 for a detailed analysis of singular cosmological models in general relativity).

Even though spacetime singularities represent an extensively studied area from both a

mathematical as well as a physical point of view, there are still many important unresolved

issues in this general area. It is essential to find appropriate tools that will serve to define

and analyse the structure and nature of spacetime singularities. This will hopefully lead to

19
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a more basic understanding of all those qualities that make up the character of singularities

along with a more detailed classification of them. But there exists a risk in performing such

a project: mapping out only a part of the field comprised of all possible types of singularities

would provide us with misleading conclusions about the generality of the types found since

we would then be shedding light only on some aspects of the field while others would

remain concealed [88]. It is thus important to attempt to plot a more or less complete

classification scheme. Any such scheme ought to acknowledge both the mathematical and

the physical qualities of a spacetime singularity. Among the mathematical qualities the

most important one is that of geodesic completeness/incompleteness and it should therefore

play a key role in the planning of a classification. On the other hand, physical qualities

describe the way matter fields behave on approach to the singularity and are expected to

contribute significantly to our understanding of its nature.

We begin the analysis of singularities in this chapter by focusing on those types of

singularity that may arise in the simplest class of isotropic spacetimes. The tools that we

use are of a geometric nature. Our geometric approach on one hand makes the resulting

classification scheme easily adjustable to a further future study of more complicated space-

times, and on the other it helps us find complementary results and generic properties of

the class of spacetimes being analysed.

Our attack to a realisation of a complete classification scheme as discussed above

is implemented in two stages. In the first stage, we exploit the contrapositive of the

completeness theorem Theorem 2.2.1 in the effort to derive necessary conditions for the

existence of singularities in the case of isotropic cosmological models. This provides us

with a classification of singularities that is solely based on the behaviour of the Hubble

expansion rate H.

For various reasons to be given later, the classification depicted in the first stage does

not provide us with all details necessary for a complete classification scheme referred to

above. We therefore need a complementary tool in order to bring to surface all the other

missing factors and complete our plan.
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This leads us to the second stage which consists of a classification scheme based on the

introduction of a new invariant, the Bel-Robinson energy, a geometric quantity built out

of combinations of various curvature components that traces successfully all those required

qualities missing from the first classification.

Apart from being involved in the second stage of our classification scheme, we show

that the use of the Bel-Robinson energy in combination with the notion of a closed trapped

surface induces important information about the dynamical evolution of isotropic models.

In particular, we prove that the existence of a closed trapped surface can be traced in the

dynamical behaviour of the Bel-Robinson energy. We show by analysing various examples

from the literature that when the existence of a closed trapped surface leads to a singularity

the Bel-Robinson energy also diverges, whereas in the opposite case the Bel-Robinson

energy remains finite and signatures the complete character of the model.

The plan of this chapter is as follows: In Section 3.2, we classify singularities according

to the behaviour of the Hubble rate. In Section 3.3 we analyse the necessity for refining

our classification scheme: In Subsection 3.3.1 we derive a complete classification scheme

based on the possible behaviours of three functions the Hubble rate, the scale factor and

the Bel-Robinson energy. In Section 3.4 we analyse the interplay of closed trapped surfaces

and the dynamical behaviour of the Bel-Robinson energy: In the Subsection 3.4.1 we show

how the existence of a closed trapped surface is linked to a possible divergence in the

Bel-Robinson energy and in Subsection 3.4.2 we illustrate this result for various model

universes. Finally, in Section 3.5 we discuss our conclusions.

3.2 Hubble parameter singularities

Theorem 2.2.2 provides us with sufficient conditions for completeness and we can therefore

use its contrapositive to derive necessary conditions for the existence of singularities. This

will also give us an insight into the character of possible singularities. In particular, consider

a singular, globally hyperbolic and regularly sliced isotropic universe. Then according to

Theorem 2.2.2, there is a finite time t1 for which H fails to be integrable on the proper time
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interval [t1,∞). In turn, this non-integrability of the expansion rate H can be implemented

in different ways and we arrive at the following result which provides first evidence for the

nature of finite-time singularities, based entirely on the behaviour of the Hubble parameter

[67], [68].

Theorem 3.2.1 Necessary conditions for the existence of finite time singularities in glob-

ally hyperbolic, regularly sliced isotropic universes are:

S1 For each finite t, H is non-integrable on [t1, t], or

S2 H blows up in a finite future time, or

S3 H is defined and integrable for only a finite proper time interval.

Condition S1 describes a big bang type of singularity when H blows up at t1 since then it

is not integrable on any interval of the form [t1, t], t > t1 (the condition of regular slicing

is violated in this case but the scale factor is bounded from above). However, under S1 we

can have other types of singularities: Since H(τ) is integrable on an interval [t1, t], if H(τ)

is defined on [t1, t], continuous on (t1, t) and the limits limτ→t+1
H(τ) and limτ→t− H(τ)

exist, the violation of any of these conditions leads to a singularity that is not of the big

bang type discussed previously.

Condition S2 describes a future singularity at ts (ts > t1) characterised by the diver-

gence of H at ts. Condition S3 may lead to a future singularity at ts with H being finite

on [ta, ts] where ta ≥ t1 but for this to be a genuine type of singularity, in the sense of

geodesic incompleteness, one needs to demonstrate that the metric is non-extendible to a

larger interval.

Note that these three conditions are not overlapping: clearly S1 and S2 are not over-

lapping with S3 but also S1 is not overlapping with S2. Indeed S1 is not implied by S2

for if H blows up at some finite time ts after t1, then it may still be integrable on [t1, t],

t1 < t < ts.

There are many examples of singularities met in the literature that belong to the

types predicted by the above theorem; they are analyzed in Chapter 4 in detail. They
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usually describe flat isotropic universes with various components of matter. For example,

the phantom dark energy models of [51] exhibit a future singularity which falls in the S2

category. The standard big bang singularities as well as the sudden singularity of [56] fall

in the S1 category. Other sudden singularities (which do not have a blow up of H at t = 0

(cf. [52])) and the inflation model of [89] both fall in the S3 category (for a detailed analysis

of these models see Chapter 4).

3.3 The (S, N) pairs

Although the classification based on the Hubble parameter is a first broad step to clearly

distinguish between the various types of singularities that can occur in isotropic universes,

it does not bring out some of the essential features of the dynamics that may differ from

singularity to singularity. To see this we note that S3 encloses altogether dissimilar types of

singularities each characterised by a distinct pathology, for example in higher order deriva-

tives of H, and as we have already mentioned we also accommodate distinct singularity

types under S1. In addition, condition S2 includes both a collapse singularity, where the

scale factor a → 0 as t → ts, and a singularity with a → ∞ as t → ts. This type of

degeneration is unwanted since it impedes the construction of a complete classification of

singularities. It is therefore necessary to extend and refine this classification.

We begin by including in our classification the behavior of the scale factor. That it is

only necessary to include this behaviour is seen most clearly by noticing that only in this

way one may consistently distinguish between initial and final singularities, or between past

and future ones, as it has been repeatedly emphasised by Penrose in his Weyl curvature

hypothesis (see for example [90] pp. 765-769). According to this physical conjecture, the

Weyl curvature which acts as a distorting source for matter is constrained to be almost

zero at initial singularities. In contrast, at final singularities it diverges to infinity.

Taking into account the behaviour of the scale factor in our singularity classification

scheme results in describing the various singularity types by a pair (Si, Nj), where the first

component reflects the behaviour of the Hubble parameter according to Theorem 3.2.1,
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while the second component symbolises one of the following three possible behaviours of

the scale factor on approach to the finite-time singularity at ts namely,

N1 a → 0 -collapse singularity or

N2 a → as 6= 0 -sudden singularity or

N3 a →∞ -rip singularity.

We thus end up with nine possible singularity types given by the pairs (Si, Nj) where

i, j = 1, 2, 3. We further note that in the (S2, N3) category we can accommodate singu-

larities having a Hubble rate which either diverges more rapidly or more slowly than the

scale factor, as well as singularities with these two functions diverging almost or exactly

at the same rate. Making such a further or more refined distinction between singularities

that otherwise belong to the same (S, N) type means that we allow for the relative be-

haviours of the Hubble rate and the scale factor to emerge as we approach the singularity.

This refinement can be accomplished by introducing in our analysis the following notion

of asymptotic strength.

First recall that for the relative asymptotic behaviour of two functions f, g on approach

to a point t∗, we say that:

1. f(t) is much smaller than g(t), f(t) << g(t), if and only if

limt→t∗ f(t)/g(t) = 0

2. f(t) is similar to g(t), f(t) ∼ g(t), if and only if 0 6= limt→t∗ f(t)/g(t) < ∞

3. f(t) is asymptotic to g(t), f(t) ↔ g(t), if and only if limt→t∗ f(t)/g(t) = 1,

There are three specific (S, N) pairs that can be further analysed according to the

possible relative asymptotic behaviours of H and a:

We note that while (S1, N3) and (S2, N3) singularities can accommodate all possible

relative behaviours between the Hubble rate and the scale factor, an (S3, N2) singularity

allows only for an asymptotic or similar relative behaviour between them.
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We have so far managed to derive a new classification that consists of nine types of

singularities described by the pairs (Si, Nj) where the first component reflects the behaviour

of the Hubble rate (according to Theorem 3.2.1), while the second one traces the behaviour

of the scale factor. This new classification can also be further refined with the use of the

notion of asymptotic strength.

3.4 Bel-Robinson energy and singularities

Even though we have at this point taken care of the two main functions that describe a

singularity, we still have to face another aspect of the problem of classifying singularities.

We have not yet taken into account the relative behaviour of the various matter components

as we approach the time singularities. A clear picture of the asymptotic behaviour of the

matter fields will provide us with the physical qualities of the singularity contributing

significantly to the understanding of its nature. In order to describe the behaviour of the

various matter components and include it in our geometric approach, we now exploit the

use of the Bel-Robinson energy by combining the behaviour of the electric parts of the

Bel-Robinson energy with that of the Hubble parameter in the following way: Suppose for

example that S2 holds. Then from Eq. (C.1.10) we see that for a flat or closed universe |D|
necessarily becomes divergent whereas for an open universe it can be finite since the term

k/a2 may, in the case of some collapse singularities, exactly counter-balance the divergence

of the H2 term. These different cases can in turn be combined with a finite or an infinite

|E|. Similarly, we can deduce the possible behaviours of |E| and |D| for a singular universe

satisfying S1 or S3. Thus the necessary conditions for singularities based on the behaviour

of the Hubble parameter given by Theorem 3.2.1 can now be rephrased in terms of the

electric parts of Bel-Robinson energy, to read:

Singularity type Relative asymptotic strength

(S1, N3) H >> a, H << a, H ↔ a, H ∼ a
(S2, N3) H >> a, H << a, H ↔ a, H ∼ a
(S3, N2) H ↔ a, H ∼ a
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Theorem 3.4.1 Necessary conditions for null and timelike geodesically incomplete globally

hyperbolic and regularly sliced isotropic universes are that at a finite time:

B1 |E| → ∞ and |D| → ∞

B2 |E| < ∞ and |D| → ∞

B3 |E| → ∞ and |D| < ∞

B4 |E| < ∞ and |D| < ∞

We can now move on to list all possible types of singularities that are formed in an isotropic

universe during its cosmic evolution and enumerate the possible types that result from the

different combinations of the three main functions in the problem, namely, the scale factor

a, the Hubble expansion rate H and the Bel-Robinson energy B. These types will by

necessity entail a possible blow up in the functions |E|, |D|.
If we suppose that a given model has a finite time singularity at t = ts, then the possible

behaviours of the functions in the triplet (H, a, (|E|, |D|)) in accordance with Theorems

3.2.1, 3.4.1 are as follows:

S1 H non-integrable on [t1, t] for every t > t1

S2 H →∞ at ts > t1

S3 H otherwise pathological

N1 a → 0

N2 a → as 6= 0

N3 a →∞

B1 |E| → ∞, |D| → ∞

B2 |E| < ∞, |D| → ∞
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B3 |E| → ∞, |D| < ∞

B4 |E| < ∞, |D| < ∞.

The nature of any prescribed singularity is thus described completely by specifying the

components in a triplet of the form

(Si, Nj, Bl),

with the indices i, j, l taking their respective values as above.

Note that there are a few types that cannot occur. For instance, we cannot have an

(S2, N2, B3) singularity because that would imply having a < ∞ (N2) and H → ∞ (S2),

while 3 ((ȧ/a)2 + k/a2)
2

< ∞ (B3), at ts which is impossible since |D|2 → ∞ at ts (k

arbitrary).

A complete list of the impossible singularities is model-dependent and is generally

given by triplets (Si, Nj, Bl) where the indices in the case of a flat or a closed universe take

the values i = 1, 2, j = 1, 2, 3, l = 3, 4, whereas in the case of an open universe they take

the values i = 1, 2, j = 2, 3, l = 3, 4 (here by S1 we denote for simplicity only the big bang

case in the S1 category). We thus see that some singularities which are impossible for a

flat or a closed universe become possible for an open universe. Consider for example the

triplet (S2, N1, B3) which means having H →∞, a → 0 and

|D|2 = 3
(
(ȧ/a)2 + k/a2

)2
< ∞

at ts. This behaviour is valid only for some cases of an open universe. With these ex-

ceptions, all other types of finite time singularities can in principle be formed during the

evolution of isotropic matter-filled models in general relativity or other metric theories of

gravity.

This classification allows us to speak consistently of strong, mild or weak singularities.

Note that the standard dust or radiation-filled big bang singularities fall under the strongest
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singularity type, namely, the type (S1, N1, B1), since for example, in a flat universe filled

with dust we have

a(t) ∝ t2/3 → 0, (N1), (3.4.1)

H ∝ t−1 →∞, (S1), (3.4.2)

|E|2 = 3/4H4 →∞, |D|2 = 3H4 →∞, (B1). (3.4.3)

Our classification scheme is organized in such a way that the character of the singularities

(i.e., the behaviour of the defining functions) becomes milder as the indices of S, N and

B increase. Milder singularities in isotropic universes are thus expected to occur as one

proceeds down the singularity list.

It is the purpose of this classification to apply both to vacuum as well as matter

dominated models. In fact, the Bel-Robinson energy takes care in a neat way the matter

case. For instance, in fluid-filled models the various behaviours Bi, i = 1, 2, 3, 4, of the

Bel-Robinson energy density can be instead given by asymptotic conditions imposed on

the density and pressure of the cosmological fluid:

B1 ⇔ µ →∞ and |µ + 3p| → ∞

B2 ⇔ µ →∞ and |µ + 3p| < ∞

B3 ⇔ µ < ∞ and |µ + 3p| → ∞ ⇔ µ < ∞ and |p| → ∞

B4 ⇔ µ < ∞ and |µ + 3p| < ∞ ⇔ µ < ∞ and |p| < ∞.

We can translate these conditions to asymptotic behaviours in terms of a, H, depending

on the value of k, for example,

1. If k = 0, µ < ∞ ⇒ H2 < ∞, a arbitrary

2. If k = 1, µ < ∞ ⇒ H2 < ∞ and a 6= 0

3. If k = −1, µ < ∞ ⇒ H2 − 1/a2 < ∞.
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It is useful at this point to name five particular members of our classification of singu-

larities that are of special interest.

Definition 3.4.1 Let (Si, Nj, Bk) be a triplet describing the type of a singularity.

We call the triplet:

i) (S1, N1, B1) ((S2, N1, B1)) a past-collapse (future-collapse) singularity.

ii) (S2, N3, B1) a big-rip singularity.

ii) (S3, N2, B3) a sudden singularity.

iv) (S3, N2, B1) a sudden-rip singularity.

These types of singularities arise in some of the most popular cosmologies appearing in the

recent literature (a detailed analysis of such cosmologies is given in Chapter 4).

In order to gain a deeper insight of the dynamics on approach to the singularity

we can make use of the notion of asymptotic strength defined in the previous Section.

The use of asymptotic strength apart from offering us a clear view of the way that the

three main functions, designating the nature of a singularity, compete asymptotically, and

helping us decide about how strong one singularity type is compared to another, it also

provides us with a refinement since it distinguishes singularities that fall in the same type.

For example, as we have mentioned already all standard big-bang type singularities met

in the literature belong to our past-collapse type (S1, N1, B1). Finding and comparing

the asymptotic strengths of the singularities that may be present in dust and radiation

filled universes we find that their precise nature is different since the radiation ones are

characterised by the asymptotic strength a << H << (|E| ↔ |D|), whereas the dust ones

have a << H << (|E| ∼ |D|). We shall give many examples of this later in Chapter 4.

3.5 Closed trapped surfaces and Bel-Robinson energy

In this section, we focus on the possible implications of the existence of a closed trapped

surface in an isotropic universe and show how its existence can be traced in the behaviour of
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the Bel-Robinson energy. We also illustrate through various examples how this association

can be used to shed some light on certain aspects of the dynamical evolution of isotropic

models.

A closed trapped surface is a two dimensional spherical surface S in spacetime with

the characteristic property that the expansion θ of both the incoming and outgoing bundle

of null geodesics orthogonal to S is negative as evaluated on S. That is, the light rays

that are emitted perpendicularly from and towards S converge. This is feasible when the

surface S encloses enough matter to attract all the incoming and outgoing rays of light.

Since nothing can travel faster than light, the matter inside S becomes trapped within

the boundary of this surface. If moreover the energy conditions hold (gravity remains

attractive), the radius of S will decrease gradually until a singularity is formed [1] p. 2-3.

In particular, sufficient conditions for the formation of a singularity are given by the

well-known singularity theorems and include the existence of a closed trapped surface

as well as appropriate energy and causality conditions imposed on the geometrical and

topological structure of the spacetime (cf. [1], p. 263-267):

Theorem 3.5.1 Spacetime (V , g) cannot be null geodesically complete if:

(1) RabK
aKb ≥ 0 for all null vectors Ka

(2) there is a non-compact Cauchy surface in V

(3) there is a closed trapped surface in V.

Theorem 3.5.2 Spacetime (V , g) is not timelike and null geodesically complete if:

(1) RabK
aKb ≥ 0 for every non-spacelike vector Ka

(2) every non-spacelike geodesic contains a point at which K[aRb]cd[eKf ]K
cKd 6= 0, where

Ka is the tangent vector to the geodesic

(3) the chronology condition holds on V (i.e. there are no closed timelike curves)

(4) there exists a closed trapped surface.
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We see that the formation of a closed trapped surface is triggered by the presence of a

strong gravitational field. A situation where this is possible is during the gravitational

collapse of a star. In particular, when a star of mass twice that of the sun has burned

out all the nuclear fuel which was supporting it against the influence of its own gravity

and starts collapsing, a singularity becomes inevitable after a closed trapped surface is

formed. A closed trapped surface is believed to have occurred even in the past of the

universe itself. Looking back in time the universe enclosed enough matter to provoke a

past trapped surface that led to a past-collapse singularity in the beginning of the universe.

3.5.1 Existence

Consider a past-directed bundle of radial null geodesics in an isotropic universe with metric

given by Eqs. (2.1.2), (2.1.3). Then

ds2 =
dθ

dv
=

dφ

dv
= 0, (3.5.1)

where v is an affine parameter along these curves. The geodesic equation

d2xs

dv2
+ Γs

ab

dxa

dv

dxb

dv
= 0, (3.5.2)

with xs = (t, r, θ, φ), for this type of geodesics has the following non-zero components:

d2t

dv2
+ Γt

rr

(
dr

dv

)2

= 0, (3.5.3)

d2r

dv2
+ 2Γr

rt

dr

dv

dt

dv
= 0. (3.5.4)

After substitution of the Christoffel symbols we obtain

d2t

dv2
+ ȧ(t)a(t)

(
dr

dv

)2

= 0, (3.5.5)

d2r

dv2
+ 2

ȧ(t)

a(t)

dr

dv

dt

dv
= 0. (3.5.6)
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Eq. (3.5.6) can be written in the form

d2r/dv2

dr/dv
dv = −2

ȧ(t)

a(t)
dt, (3.5.7)

and integrated out to give
dr

dv
= ± C

a2(t)
, (3.5.8)

where C is an arbitrary constant and the sign depends on whether the null geodesics are

incoming (+), or outgoing (−). Inserting this in Eq. (3.5.5) (with C = 1), multiplying by

dt/dv and integrating, we find
dt

dv
= ± 1

a(t)
, (3.5.9)

from which we choose the minus sign since we are looking for the past directed family of

null geodesics. The resulting tangent vector field is then

ka =
dxa

dv
=

(
− 1

a(t)
,± 1

a2(t)
, 0, 0

)
, (3.5.10)

which gives

gab
dxa

dv

dxb

dv
= −

(
dt

dv

)2

+ a2(t)

(
dr

dv

)2

, = 0 (3.5.11)

as desired. The divergence of the family of geodesics is calculated to be

ka
;a =

1√−g

∂

∂xa
(
√−gka) =

1

a3(t)f 2(r) sin θ

(
∂

∂t
(−a2(t)f 2(r) sin θ) +

∂

∂r
(±a(t)f 2(r) sin θ)

)

(3.5.12)

i.e.,

ka
;a =

2

a2(t)

(
−ȧ(t)± f ′(r)

f(r)

)
, (3.5.13)

where f(r) = sin r, r, or sinh r for k = 1, 0, or −1 respectively, [91]. A closed trapped

surface is then formed if the divergence of both families of null geodesics becomes negative,

that is if

ȧ(t) >

∣∣∣∣
f ′(r)
f(r)

∣∣∣∣ , (3.5.14)
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for some values of r, t.

An interesting fact for our purposes is that the above condition for the existence of

a closed trapped surface has a decisive effect on the electric part |D| of the Bel-Robinson

energy. This is seen clearly if we use Eqs. (C.1.9)-(C.1.10) to write |D| in the form

|D| =
√

3

a2(t)

∣∣∣∣
(

ȧ(t)− f ′(r)
f(r)

)(
ȧ(t) +

f ′(r)
f(r)

)
+

1

f 2(r)

∣∣∣∣ , (3.5.15)

and then use the closed trapped surface condition (3.5.14). In this case, the relation (3.5.14)

becomes equivalent to the inequality

|D| >
√

3

a2(t)f 2(r)
, (3.5.16)

from which it follows that collapse singularities (as predicted by the existence of a trapped

surface) are characterised by a divergent Bel-Robinson energy.

In the next Subsection we illustrate how some of the results found here help to deter-

mine the evolution of various model universes.

3.5.2 Examples

Our first three examples illustrate the result that in the case when the CTS condition is

combined with the null energy condition in spatially flat universes, an initial or future

singularity is predicted to occur and this is reflected in the behaviour of the Bel-Robinson

energy. In contrast, our last example 3.5.4 shows that even though the existence of a

closed trapped surface is usually associated with the formation of a singularity this need

not always be the case. This was recently shown by Ellis in [91] who pointed out that a

closed universe can escape the initial singularity provided that the non-spacelike energy

condition does not hold. The null energy condition jointly with the condition for the

existence of a closed trapped surface are not sufficient to imply a singularity in the case of

a closed universe since Theorem 3.5.1 applies only in the case of an open or a flat universe.
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Example 3.5.1 (Graduated inflation)

Consider the flat graduated inflationary model developed in [92], a universe filled with a

fluid with an equation of state µ + p = γµ3/4 and γ > 0 (for more details on this family of

models see Subsection 4.1.3). The null energy condition1 is then automatically satisfied.

The scale factor for this universe is given by

a(t) = exp

(
− 16

33/2γ2t

)
, (3.5.17)

(this is derived by setting γ = 3/4 in Eq. (4.2.23) of Subsection 4.1.3), and the inequality

Eq. (3.5.14) for this case is equivalent to

ȧ(t) =
16

33/2γ2

1

t2
exp

(
− 16

33/2γ2t

)
>

1

r
. (3.5.18)

Hence we find that the condition for a CTS becomes valid for large values of r leading to

the existence of past CTSs. Therefore the assumptions of the singularity theorem 3.5.1 are

fulfilled making this model null geodesically incomplete in the past.

Example 3.5.2 (Massless scalar field)

A similar type of singularity is studied in [93] where we meet a flat model filled with a

massless scalar field (see Subsection 4.1.1). If we consider a scalar field with φ̇2 ≥ 0 then

the null energy condition is satisfied. The inequality (3.5.14) for this case reads

ȧ(t) =
1

3t2/3
>

1

r
, (3.5.19)

which is again true for large values of r. Then using the singularity theorem 3.5.1 we

conclude that this model is singular, and by the Bel-Robinson energy technique we arrive

at a past-collapse singularity of type (S1, N1, B1).

Example 3.5.3 (Sudden singularity)

1This condition leads to Eq. (C.1.14) which is equivalent to µ + p ≥ 0 for the case of a fluid of density
µ and pressure p.



3.5. CLOSED TRAPPED SURFACES AND BEL-ROBINSON ENERGY 35

A different situation is described by Barrow in [56] where he considers a model with scale

factor

a(t) =

(
t

ts

)q

(as − 1) + 1−
(

1− t

ts

)n

, (3.5.20)

with 1 < n < 2, 0 < q ≤ 1 and ts arbitrary but fixed from the beginning. This model

experiences a sudden singularity (see Definition 3.4.1 ii) and Section 4.4) at the future time

ts with a(t) → as, ȧ(t) → ȧs and ä(t) → −∞. For this model we find that the non-spacelike

energy condition2 is valid because of ä(t) → −∞, while for the case of a closed universe

there exists a future CTS (the analogous inequality of (3.5.14) is ȧ(t) < −|f ′(r)/f(r)|)
since the relation

ȧ(t) =
q

tqs
tq−1(as − 1) +

n

tns
(ts − t)n−1 < −| cot r|, (3.5.21)

is satisfied for r = π/2, as < 1 and 0 < t < ts. The singularity theorem 3.5.2 now applies

and guarantees that this model is timelike and null geodesically incomplete in the future,

while |E| → ∞ and |D| < ∞.

Example 3.5.4 (De Sitter universe)

The possibility of evading the singularity is feasible in a de Sitter universe for which a(t) =

A cosh Ht, k = 1, f(r) = sin r, so that the existence condition given by Eq. (3.5.14) is

satisfied if and only if

AH sinh Ht > | cot r|, (3.5.22)

which holds true for any t > 0 and r = π/2 [91]. This implies the existence of more than

one CTSs: every 2-sphere (t, r = const.) with t > 0 and area greater than

As = 4πA2 cosh2 Ht sin2(rs), (3.5.23)

2As we saw for a null vector this condition is equivalent to µ + p ≥ 0. In order to find an analogous
inequality for a timelike vector we multiply the Einstein equations by a unit timelike vector ka: Rabk

akb =
(Tab − (1/2)Tgab)kakb = Tabk

akb + (1/2)T . Then Rabk
akb ≥ 0 ⇔ Tabk

akb ≥ −1/2T . For a perfect fluid
this translates to µ + 3p = −6ä/a ≥ 0. Therefore the non-spacelike energy condition holds iff µ + 3p ≥ 0
and µ + p ≥ 0.
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where cot rs = AH sinh Ht, is a CTS. Nevertheless the spacetime is complete. The timelike

energy condition is violated, (µ + 3p) = −ä(t)/a(t) < 0, and so Theorem 3.5.2 does not

apply. However, the null energy condition (C.1.12) holds true but Theorem 3.5.1 does not

apply because the spatial slices are now compact. Then we find that since

|E| =
√

3

∣∣∣∣
ä(t)

a(t)

∣∣∣∣ =
√

3H2, (3.5.24)

and

|D| =
√

3

∣∣∣∣
ȧ2(t)

a2(t)
+

1

a2(t)

∣∣∣∣ =
√

3

∣∣∣∣H2 tanh2 Ht +
1

A2 cosh2 Ht

∣∣∣∣ , (3.5.25)

they always remain finite indicating the complete character of the spacetime in this case

(note that the assumptions of the completeness theorem of [82] which we discussed in the

end of Section 2.2 are satisfied).

3.6 Discussion

We started off in this chapter by giving a classification of the singularities that can occur

in an isotropic universe based on the behaviour of the Hubble parameter. However, such

a classification cannot lead to complete results and we have found it necessary to extend

this scheme by including succeedingly the behaviours of the scale factor and of the Bel-

Robinson energy. In this case, we have found that the resulting behaviours of the three

functions, H, a and B taken together exhaust the types of singularities that are possible

to form during the evolution of an isotropic universe.

The resulting classification is described by triplets of the form (Si, Nj, Bl) where the

S category monitors the asymptotic behaviour of the expansion rate, closely related to the

extrinsic curvature of the spatial slices, the N category that of the scale factor, describing

in a sense what the whole of space eventually does, while the B category describes how

the various matter fields contribute to the evolution of the geometry on approach to the

singularity. We know (cf. [72, 94]) that all these quantities need to be uniformly bounded

to produce geodesically complete universes. Otherwise, the whole situation can be very
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complicated and we have exploited what can happen in such a case in the relatively simple

geometry considered here.

Our scheme not only covers all the recently discovered types of singularities but it also

predicts many possible new ones. For example, in the case of a flat isotropic universe the

classification of [52] provides us with four main types of singularities. These four types

can be identified with four particular (Si, Nj, Bk) triplets of our scheme: Namely the ‘big

rip’ type of [52] characterised by a → ∞, µ → ∞ and |p| → ∞ at ts is an (S2, N3, B1)

singularity; their ‘sudden’ singularity described by a → as < ∞, µ → µs < ∞ and |p| → ∞
at ts is an (S3, N2, B3); further, their type III singularity, namely a → as < ∞, µ → ∞
and |p| → ∞ at ts, is clearly an (S2, N2, B1) type singularity, while type IV singularities of

[52] with a → as < ∞, µ → 0 and |p| → 0 at ts, all belong to the (S3, N2, B4) category.

Having all possible singularity types in the unified form expounded in this chapter has

the added advantage that we can consistently compare the various different types as we

asymptotically approach the time singularity. In this case we saw in detail that the relative

strength of the functions describing the singularity type becomes an important factor in

order to distinguish between all possible behaviours.

It is natural to consider the extension of our classification scheme in the context of

more general classes of cosmological spacetimes. We believe that an analysis of this more

complicated case is still feasible using the techniques of the present work. In particular,

the first step towards that direction would be to examine the family of homogeneous but

anisotropic universes. The nature of a singularity arising in such a universe would be given

by a triplet analogous to that of the isotropic case but now the number of possible types of

singularities will increase. This will result from the existence of more than one scale factors

describing the model and also from the fact that the magnetic parts of the Bel-Robinson

energy will not be zero as they were in the isotropic case studied here.

A further step in that direction would be to examine inhomogeneous spacetimes where

the space gradient of the lapse will be a function not only of the time but also of the space

variables and hence it will not vanish automatically. The nature of a singularity would
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then be given by a quadruplet with the new component describing the possible behaviours

of the space gradient of the lapse. These behaviours are predicted from the contrapositive

of the completeness theorem 2.2.1 and they include both a diverging |∇N |g in a finite time

(giving rise to a possible blow-up lapse singularity) as well as a |∇N |g which will be finite

only for a finite interval of proper time corresponding to a sudden lapse singularity. The

analysis of all these cases lies beyond the work in the present thesis.



Chapter 4

Singularities in isotropic cosmologies

4.1 Introduction

In the previous chapter we derived a complete classification of spacetime singularities that

are in principle possible to arise in isotropic cosmologies. The purpose of this chapter is

to look for physical circumstances that give rise to four particularly important members

of our classification given by Definition 3.4.1; ideally we would be content with prototypes

of cosmologies with every possible singularity type that is predicted by our classification

scheme.

The analysis of the various cosmologies appearing in this chapter is organised as fol-

lows. In Section 4.2 we study collapse singularities that arise in recently studied cosmologies

containing a massless scalar field (Subsection 4.2.1), a scalar filed with an exponential po-

tential (Subsection 4.2.2), or a graduated inflationary potential (Subsection 4.2.3). Section

4.3 provides an analysis of big-rip singularities which are met in models containing dark

energy in the form of phantom fields (Subsection 4.3.1), or Chaplygin gases (Subsection

4.3.2). This type of singularity offers a new possibility of a violent end for the universe

towards which every bound existing structure gets ‘ripped apart’. In Section 4.4, we ex-

plore the character of sudden singularities that may arise in cosmologies filled with a fluid

having either unconnected pressure and density (Subsection 4.4.1), or alternatively, obey-

39
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ing an equation of state (Subsection 4.4.2). In Subsection 4.4.3, we analyse models that

exhibit milder than sudden singularities. Finally, in Section 4.5, we discuss sudden-rip type

singularities.

In each one of these sections we prove theorems giving necessary and sufficient condi-

tions for the occurrence of the various types of singularity that are analysed. We expect the

proofs of all these theorems to be quite straightforward for we have now already identified

the type of singularity that we are looking for in accordance to our classification. Proving

such theorems without this knowledge would have been a problem of quite a different order.

The usefulness of these theorems lies in that they answer the question of whether or

not the behaviours met in known cosmological models described by exact solutions (which

as a rule have a flat spatial metric (k = 0)) continue to be valid in universes having nonzero

values of k, or described by solutions which are more general than being exact in the sense

that some or all of the arbitrary constants present in a solution remain arbitrary. We

will see that whenever the behaviour met in flat models passes over to curved ones either

the curvature term in the Friedman equation turns out to be subdominant compared to

the density term, or, in any case, cannot significantly alter the behaviour of the Hubble

parameter H.

It is worth mentioning that all the different example cases of cosmological models

analysed in this Chapter have been a primary source of motivation for finding more general

theoretical criteria which determine their evolution and mark their basic characteristics.

4.2 Collapse singularities

Following the Definition 3.4.1 given in the previous chapter, by past or future collapse

singularities we mean those that arise in solutions with a scale factor tending to zero at an

initial time (big-bang time), or within a finite future time (big-crunch time) respectively,

while the Hubble expansion rate and the electric parts of the Bel-Robinson energy diverge.

Originally, collapse singularities were discovered in simple FRW universes filled with dust

or radiation (cf. [77], pp. 96-101). Here, we will instead focus on recently analysed models
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that involve the presence of a scalar field (cf. [93], [95], [92], [96]).

Scalar fields play a substantial role in cosmology. In the framework of inflation, scalar

fields having a self-interaction potential are used to model the matter content of the early

universe and their dynamical evolution monitors the mechanism of inflation (cf., e.g., [97],

pp. 261-317). However, the role of scalar fields is not limited to early universe scenarios.

They are also crucial in the present phase of evolution of the universe since scalar fields

actualise a possible dark-energy component that is believed to drive the presently observed

accelerating expansion of the universe (cf. [51]). Furthermore, in grand unified theories

scalar fields are met in the spontaneous symmetry breaking (cf. [97], pp. 195-255, [98])

and other fundamental mechanisms proposed within these theories (cf. [97]).

In a homogeneous universe, scalar fields are functions of the proper time only. The

energy-momentum tensor of a scalar field is equivalent to that of a perfect fluid with density

µφ and pressure pφ given by (cf. Appendix D),

µφ =
φ̇2

2
+ V (φ), pφ =

φ̇2

2
− V (φ). (4.2.1)

The relation between the pressure and the energy density of the scalar field is therefore

pφ = µφ − 2V,

which is not an equation of state in the usual sense [99].

However, in the special case of a massless scalar field, V (φ) = 0, we have an equation of

state of the form pφ = µφ, that is it behaves as stiff matter. If on the other hand, the energy

of the scalar field is purely potential, or dominates over the kinetic energy, then the scalar

field is approximately described by the equation of state pφ = −µφ, and behaves therefore

like a cosmological constant. Within the framework of inflationary cosmology for example,

the energy of the scalar field becomes mainly potential as soon as the field enters the

slow-roll phase. This means that φ̇2 ¿ V (φ), or equivalently µφ + 3pφ < 0, and hence the

dominant energy condition is violated in this case. Therefore the singularity theorem 3.5.1
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does not apply and the initial singularity is not an inevitable consequence of inflationary

cosmologies. Nevertheless, there exist interesting, non-trivial scalar field cosmologies that

cannot avoid the initial singularity in this way and in the next subsections we shall focus

on the analysis of such cosmologies.

4.2.1 Massless scalar field

An example of a singular scalar field cosmology that possesses a past-collapse singularity

can be found in [93]. This model is a flat FRW universe with a massless scalar field, and

the Friedman and continuity equations read

3H2 =
1

2
φ̇2, φ̈ + 3Hφ̇ = 0, (4.2.2)

from which we readily find:

H =
1

3t
, φ = ±

√
2

3
ln

t

c
. (4.2.3)

Indeed, this universe emerges from a past-collapse singularity at t = 0, since a ∝ t1/3 → 0,

H →∞, while |E|2 = φ̇4/3 →∞ and |D|2 = 3H4 →∞.

In [93] Foster also found a condition that should be satisfied so that solution (4.2.3),

approximates that with an arbitrary potential V (φ) in the limit t → 0. This condition is

derived by simply substituting the solution given by Eq. (4.2.3) in the Friedmann equation

that is satisfied by a scalar field with potential V (φ), i.e. 3H2 = V (φ)+ φ̇2/2, and equating

the resulting terms. One then finds that

lim
t→0

t2V

(
±

√
2

3
ln

t

c

)
= 0, (4.2.4)

or

lim
φ→±∞

e−
√

6|φ|V (φ) = 0. (4.2.5)

Hence the solution given by Eq. (4.2.3) approximates the solution for a scalar field with

potential V (φ) when the potential decreases slower than e−
√

6|φ|. The following theorem
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implies that this type of singularity may also arise in more general, curved universes [69],

[70].

Theorem 4.2.1 A necessary and sufficient condition for the occurrence of a past-collapse

singularity of type (S1, N1, B1) at time t1 in an isotropic universe with a massless scalar

field is that φ̇ →∞ at t1.

Proof. We first prove necessity. Integrating the continuity equation φ̈ + 3Hφ̇ = 0, we

find that φ̇ ∝ a−3. Since φ̇ →∞, we have that a → 0. Because

H2 =
µ

3
− k

a2
→∞, as t → t1, (4.2.6)

H becomes unbounded at t1. In addition, since

|D|2 =
µ2

3
=

φ̇4

12
→∞, (4.2.7)

and

|E|2 =
1

12
(µ + 3p)2 =

φ̇4

3
→∞, (4.2.8)

as t → t1, both |D| and |E| diverge there. Conversely, assuming a past-collapse singularity

of type (S1, N1, B1) at t1, we have from condition B1 (⇔ µ → ∞, |µ + 3p| → ∞) that

µ →∞ and so φ̇2 →∞ as t → t1.

It follows that the asymptotic strength of the singularity in this model (described by

both the exact solution and the above theorem) is given by: a << H << (|E| ∼ |D|).

4.2.2 Multiple exponential potential

Since there is not as yet any unique well-established fundamental theory dictating and

predicting an exact form of the potential V (φ), there are many possible candidate potentials

currently studied depending on the underlying theory they intend to describe. For example,

in [95] the authors consider a scalar field with the ‘multiple’ exponential potential of the



44 CHAPTER 4. SINGULARITIES IN ISOTROPIC COSMOLOGIES

form

V (φ) = W0 − V0 sinh(
√

3/2φ),

where W0 and V0 are arbitrary constants The scalar field inhabits a flat FRW universe

containing also a separately conserved pressureless fluid. In this context, the field equations

become

3H2 =

(
φ̇

2
+ V (φ) + µ

)
, (4.2.9)

2Ḣ + 3H2 = −
(

φ̇

2
− V (φ)

)
, (4.2.10)

φ̈ + 3Hφ̇ + V ′(φ) = 0, (4.2.11)

µ̇ + 3Hµ = 0. (4.2.12)

Following [95], we split the scale factor in a product form by setting a3 = xy, while

the scalar field is written as φ =
√

2/3 log(y/x) with x and y positive. Setting

x = C[exp χ1 cos χ2 + exp(−χ1) cos χ2], (4.2.13)

y = C[exp χ1 sin χ2 + exp(−χ1) sin(−χ2)] (4.2.14)

(here, χ1 = w1(t− t0), χ2 = w2(t−T0), C > 0, t0 is an arbitrary constant, T0 is the ‘initial’

time and w1, w2 positive parameters such that w2
1 − w2

2 = 3/4W0, 2w1w2 = 3/4V0), we

find that for large and positive values of the time parameter t the scale factor becomes

a = C2/3 exp(2/3χ1) cos1/3 χ2 sin1/3 χ2, (4.2.15)

which is obviously divergent.

At the finite time value Ts = π/(2w2) + T0, we have that a → 0, H → w2(cot χ2 −
tan χ2)/3 →∞, and consequently we find that

|D| → ∞, (4.2.16)
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and also

|E| → |2w2(2(cot χ2 − tan χ2)− w2

9
(cot2 χ2 + tan2 χ2))| → ∞. (4.2.17)

This model therefore serves as a nice example that illustrates the structure of the future-

collapse type singularity predicted earlier in our classification.

4.2.3 Graduated inflation

In the original inflationary scenario the equation of state p = −µ that describes the scalar

field during the slow-roll period is eventually responsible for an accelerating exponential

expansion. However, milder forms of solutions, for example a power-law expansion a ∝ tp

with p > 1, can still suffice for inflation. Different forms of solutions in which the expansion

follows a power-law with an arbitrary in general exponent lead to the so-called intermediate

or graduated-inflationary universes (cf. [92] and references therein). These models were

first studied by Barrow who introduced an equation of state of the form

µ + p = γµλ, (4.2.18)

where λ, γ are constants and γ 6= 0, in a flat model. The set of solutions that Barrow found

(which naturally depended on the λ and γ parameters) included not only the traditional

power-law and exponential inflationary solutions but also new ones. In these solutions the

scale factor is an exponential of an arbitrary power of the time and in some cases describes

a universe that begins with a past-collapse singularity. In the original references, however,

no complete discussion of the structure of singularities predicted in these models is included

and so we give below such an analysis.

To see how a past-collapse singularity develops in the history of these cosmologies we

substitute the equation of state (4.2.18) in the continuity equation and integrate to find

µ =
(3γ(λ− 1))1/(1−λ)

(ln(a/a0))1/(λ−1)
, (4.2.19)
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where λ 6= 1 and a0 is a constant. Using then the Friedmann equation 3H2 = µ, we obtain

the scale factor in the following explicit form [92]:

ln

(
a

a0

)
=

3λ/(1−2λ)γ1/(1−2λ)(λ− 1/2)2(1−λ)/(1−2λ)

λ− 1
t2(1−λ)/(1−2λ), (4.2.20)

with λ 6= 1, 1/2. Setting

A =
3λ/(1−2λ)γ1/(1−2λ)(λ− 1/2)2(1−λ)/(1−2λ)

λ− 1
, (4.2.21)

f = 2(1− λ)/(1− 2λ), (4.2.22)

we can write the scale factor in the form

a(t) ∝ exp(Atf ). (4.2.23)

Considering the case that 1/2 < λ < 1 and γ > 0, we have that A < 0 and f < 0. This

means that a past-collapse singularity develops as t → 0, since then a → 0, H = Aftf−1 →
∞ and consequently

|D|2 = 3H4 →∞, (4.2.24)

and also µ →∞, which in turn implies that

|E|2 =
1

12
(−2µ + 3γµλ)2 →∞. (4.2.25)

The asymptotic strength of this singularity is therefore: a << (|E| ↔ |D|) << H. Actually

this type of behaviour is found to occur more generally due to the following result.

Theorem 4.2.2 A necessary and sufficient condition for a past-collapse singularity

(S1, N1, B1) to occur at time t1 in an open or flat universe filled with a fluid with equation

of state p + µ = γµλ, γ > 0 and λ < 1, is that µ →∞ as t → t1.

Proof. The continuity equation Eq. (2.1.6) gives directly the form of the scale factor,
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a = a0 exp

(
µ−λ+1

3γ(λ− 1)

)
, (4.2.26)

so that a → 0 as t → t1. Since

H2 =
µ

3
− k

a2
=

µ

3
− ka0

−2 exp

( −2µ−λ+1

3γ(λ− 1)

)
> 0,

|E|2 =
1

12
(−2µ + 3γµλ)2,

|D|2 =
µ2

3
,

we see that as t → t1 H, |E| and |D| diverge provided that k = 0 or k = −1. The converse

is straightforward.

As it was pointed out in [92] the matter content in a graduated inflationary universe

can be reinterpreted as a scalar field with the following potential:

V (φ) = 3

(
Af

(
f − 1

8A(1− f)

)(f−1)/f

φ2(f−1)/f

)2

−Af(1− f)

(
f − 1

8A(1− f)

)(f−2)/f

φ2(f−2)/f ,

(4.2.27)

where

φ =

(
8A(1− f)

f

)1/2

. (4.2.28)

and where f is given by Eq. (4.2.22). It is worth noting here that it is only recently that

this model has regained interest since, as it was shown in [96], a specific choice for the f

parameter offers a good fit to the WMAP observations [55] within the framework of the

slow-roll approximation.

In order to illustrate this result, let us briefly review the equations of the slow-roll

approximation. For large φ the potential (4.2.27) becomes [96]

V (φ) =
48A2

(β + 4)2
(2Aβ)β/2φ−β, (4.2.29)

where φ = (2Aβtf )1/2 and β = 4(f−1 − 1). In the slow-roll approximation it is assumed
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that φ̇2 ¿ V and φ̈ ¿ V ′ restricting the field equations to the form (cf. [100], [101])

3H2 ' V (4.2.30)

3Hφ̇ ' −V ′. (4.2.31)

Inflation then occurs if
ä

a
= Ḣ + H2 > 0 ⇔ − Ḣ

H2
< 1. (4.2.32)

Differentiating Eq. (4.2.30) with respect to t and using Eq. (4.2.31) we find that

Ḣ = − (V ′)2

18H2
, (4.2.33)

so that

− Ḣ

H2
=

1

2

(
V ′

V

)2

, (4.2.34)

while condition (4.2.32) holds if and only if the first slow-roll parameter ε, defined by [100],

[101]

ε ≡ 1

2

(
V ′

V

)2

, (4.2.35)

satisfies the condition

ε ¿ 1. (4.2.36)

If we further differentiate Eq. (4.2.31) and use Eq. (4.2.36) together with φ̈ ¿ V ′, we

conclude that the second slow-roll parameter η, defined by [100], [101]

η ≡ V ′′

V
, (4.2.37)

satisfies the condition

|η| ¿ 1. (4.2.38)

However, as it is stated in [102], it is not necessary to demand that the derivative of an

approximation equation is itself a valid approximation equation and so this last condi-
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tion can be regarded as independent from the first one given by Eq. (4.2.36). In the

intermediate-inflationary model of [96] these parameters are shown to be ε = β2/2φ2 and

η = β(1 + β/2)/φ2. As it is further shown in [96], the resulting values of two very impor-

tant spectral indices that are closely related to these slow-roll parameters come in good

agreement with their corresponding values measured by observations, provided that β = 2,

i.e, f = 2/3 and hence a(t) = exp(At2/3). A graduated-inflationary model with these

parameters and scale factor offers therefore an appropriate theoretical framework within

which the data from the WMAP observations is explained.

4.3 Big-rip singularities

Let us now move on to the discussion of a less standard type of model, nevertheless one

which is singular in a way predicted by our scheme. The notion of dark matter was

introduced in cosmology in order to explain a series of observations in the area of galactic

dynamics (cf. [103] pp. 417-424). These observations showed that the velocities of galaxies

in clusters are so high and the luminous masses enclosed within the galaxies so low that

these structures ought to have been ripped apart. A similar situation holds for the case

of spiral galaxies. In particular, it was found in [104] that at a distance r outside the

central luminous part of such a galaxy the rotational velocity v(r) does not follow the

anticipated third law of Kepler v(r) ∝ r−1/2 but is instead measured to be constant. This

leads to the counter-intuitive fact that the mass at the outskirts of such a galaxy grows

proportionally to distance (cf. [103] pp. 46-47). Such a pattern of matter distribution

could be attributed to the existence of a halo surrounding these galaxies and consisting of

low-luminosity matter, thereby called dark matter, that contributes the missing amount of

matter needed to fit the observed profile of these galaxies (see [103] pp. 45-53).

Dark matter is also considered in another context. Observations strongly indicate

that the value of Ω, the ratio of the present density of the universe to the critical density

µc = 3H2
0/8πG (H0 being the present value of H), is unity. However, the luminous mass

of the universe is currently measured to have a value of ΩLum only around 0.04 [105]. On
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the other hand, measurements of the amount of dark matter that is believed to exist in

clustered areas of the universe give ΩDm ' 0.26 [105]. This missing part, nearly 70% of

the critical density, is contributed by an unclustered component the dark energy which

has a ratio of pressure to density w = p/µ < −0.78 [105]. Taking this into account we

see that dark matter and dark energy may play an important role in the understanding of

the composition of the universe. Even though the nature of dark energy remains largely a

mystery it is an issue worth examining as it offers us the opportunity to discover new and

exciting possible fates of model universes with such forms of material content.

The simplest source of dark energy can be described by simply postulating the existence

of a cosmological constant Λ which satisfies a perfect fluid equation of state, p = wµ with

w = −1 [106]. However, the consideration of a cosmological constant Λ in this context leads

to the so-called cosmological constant problem - the expected value of the cosmological

constant from quantum field theories is some 120 orders of magnitude larger than the

observed one [3]. Another candidate for dark energy is the quintessence, a scalar field

which satisfies the equation of state for −1 < w < −1/3 (cf. [107]-[113]). Because recent

observations indicate that the universe is not only expanding but is also accelerating a lot

of attention has been drawn to use such matter components (or even more exotic ones, cf.

[2]-[47]) in an effort to explain the observed acceleration [54] [55]. Note that in order to

obtain an accelerating FRW universe filled with a perfect fluid equation of state p = wµ,

it is necessary to have a value of the w parameter that is less than −1/3 as this clearly

follows from the field equations (cf. 4.3.3) below).

Cosmological observations do not exclude the fact that the w parameter be less than−1

[3]. An entity satisfying such an exotic equation of state is dubbed phantom dark energy ;

this is a becoming name for the description of something that is physically unorthodox but

which nevertheless seems to provide an explanation to the observations [53]. To begin with,

phantom dark energy immediately violates the dominant energy condition since p + µ =

µ(w +1) < 0. This leaves room for the existence of wormholes and times machines (see [3]

for a discussion). Another interesting albeit unphysical property of phantom dark energy
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is that it exhibits a sound speed that it is both imaginary and superluminal [2].

Despite the strange properties of phantom-dark energy it is still an interesting type of

matter field to study in cosmology (see Refs. [2]-[47], [53], for phantom filled cosmological

models) since its presence influences the future of the universe through the development

of a big-rip singularity as is shown in the next Subsection. In what follows, we will use the

term phantom cosmology to refer to any model that includes a phantom-matter component.

4.3.1 Phantom dark energy

Consider the case of a flat FRW universe with metric ds2 = −dt2 + a2(t)dx̄2, filled with a

fluid with equation of state p = wµ. The Einstein field equations for such a universe are

µ = 3H2, (4.3.1)

µ̇ + 3Hµ(1 + w) = 0, (4.3.2)

ä

a
= −1

6
µ(1 + 3w). (4.3.3)

Integrating the continuity equation we have

µ = Ca−3(w+1), (4.3.4)

where C is the integration constant. For ordinary matter (w ≥ 0), or for dark matter

with w > −1, the energy density decreases as the universe expands. In contrast, phantom

dark energy has a density that increases as the expansion proceeds in an FRW universe

(irrespectively of its spatial geometry). This implies that it will at first overcome and

finally dominate over all components of ordinary matter.

Solving the Friedmann equation (4.3.1) for a, we find [51]

a =

[
a0

3(1+w)/2 +
3(1 + w)

√
A

2
(t− t0)

] 2
3(1+w)

, (4.3.5)
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where A = C/3 and a0 is an integration constant. The behaviour that would have been

expected had we considered only ordinary matter is that a → ∞ as t → ∞, and the

Hubble distance H−1 to grow more rapidly than the scale factor (as it follows from Eq.

(4.3.5) and Eq. (4.3.7) below), which means that more and more galaxies would become

visible asymptotically [51]. In contrast to this situation, in a phantom dark energy model

a big-rip singularity arises within the finite value of time given by [51]

trip = t0 +
2

3
√

A(|w| − 1)a
3(|w|−1)/2
0

, (4.3.6)

and called the big-rip time. Note that trip depends on the initial size of the universe, a0,

and the exact value of the w parameter in such a way that the bigger the values of a0 and

w, the briefer the existence of the phantom universe. Indeed, from Eq. (4.3.5) we see that

the scale factor becomes divergent as t → trip. Also the Hubble rate and hence the norms

the electric parts of the Bel-Robinson energy become diverge there since we can obtain the

following forms:

H2 = A

[
a0

3(1+w)/2 +
3(1 + w)

√
A

2
(t− t0)

]−2

, (4.3.7)

|E|2 =
3

4
H4(1 + 3w)2, (4.3.8)

|D|2 = 3H4. (4.3.9)

Eq. (4.3.7) implies in particular that the Hubble distance H−1 now tends to zero as t → trip.

Combining this with the infinite growth of the scale factor as t → trip, we see that this

type of accelerated expansion forces galaxies to disappear beyond the cosmological horizon

rendering the end of the universe dark and rather violent. The latter attribute follows from

the fact that it can be shown (see [3]) that as the big-rip time approaches gravitationally

bound structures such as galaxies, planetary systems or even atoms, become unbound due

to the enormous repulsive pressure.

The following theorem [69], [70] characterises the future singularity in phantom cos-
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mologies irrespective of the value of the curvature k and implies that the singularities in

such models can be milder than the standard all-encompassing future-collapse singulari-

ties and have necessarily diverging pressure. This theorem generalises and unifies previous

results (cf. [3], [48], [49], [50], [51], [52], [53], [14], [38]).

Theorem 4.3.1 Necessary and sufficient conditions for a big-rip singularity (S2, N3, B1)

to occur at the finite future time ts in a universe filled with a fluid with equation of state

p = wµ, are that w < −1 and |p| → ∞ at ts.

Proof. Substituting the equation of state p = wµ in the continuity equation µ̇ + 3H(µ +

p) = 0, we have

µ ∝ a−3(w+1), (4.3.10)

and so if w < −1 and p blows up at ts, a also blows up at ts. Since

H2 =
µ

3
− k

a2
, |D|2 =

µ2

3
, |E|2 =

1

12
µ2(1 + 3w)2, (4.3.11)

we conclude that at ts, H, a, |D| and |E| are divergent. Conversely, assuming a big-rip

singularity (S2, N3, B1) at ts in an FRW universe with the equation of state p = wµ, we

have from the (B1) hypothesis that µ → ∞ at ts and so p also blows up at ts. Since a is

divergent as well, we see from (4.3.10) that w < −1.

It is interesting to note that the relative strength of this big-rip singularity is strongly

influenced by the choice of the w parameter. In particular, there are three possible be-

haviours depending on the given ranges of the w parameter:

• if −4/3 < w < −1, then H << (|E| ∼ |D|) << a,

• if −5/3 < w < −4/3, we have H << a << (|E| ∼ |D|), whereas

• if w < −5/3, we have a << H << (|E| ∼ |D|).

We note that for all three ranges of w, |E| and |D| diverge similarly while H remains

always much smaller compared to these two quantities. On the other hand, the scale factor

diverges less strongly relatively to H and |E|, |D| as w decreases below −1.
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4.3.2 Chaplygin gas

As we saw in the previous Section a phantom equation of state drives the universe towards

a big-rip singularity. In this section we will see that a big-rip singularity can still arise in

models with forms of dark energy different from phantoms such as the so-called generalised

Chaplygin gases; these fields play a central role in dark energy cosmology and specifically

in the unification of dark energy and dark matter (see Refs. [114]-[138]).

For example, consider a flat FRW universe containing a dark-energy component which

at late times satisfies a general equation of state of the form [48]

p = −µd − Aµα
d (4.3.12)

where A and α are real parameters. Integrating the continuity equation

µ̇d − 3HAµα
d = 0, (4.3.13)

we find that the energy density µd of the dark component behaves as follows,

µd = µd0

(
1 + 3Ā(1− α) ln

a

a0

) 1
1−α

, (4.3.14)

where Ā = Aµα−1
d0 > 0 and µd0 is an integration constant. Note that

dµd

da
=

3Āµd0

a

(
1 + 3Ā(1− α) ln

a

a0

) 1
1−α

−1

, (4.3.15)

so that the parameter Ā monitors the behaviour of the dark energy as the universe expands:

if Ā > 0 the density of the dark energy increases with expansion if Ā = 0, the density is

constant, whereas if Ā < 0, the density decreases [48]. Recall that for the occurrence of

a big-rip singularity the density needs to grow with expansion and hence for the study of

such a singularity we may focus here in the case Ā > 0.

Substituting in the Friedmann equation (2.1.4) we find the scale factor in the following
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implicit form

(
1 + 3Ā(1− α) ln

a

a0

) 1−2α
2(1−α)

−
(

1 + 3Ā(1− α) ln
ad

a0

) 1−2α
2(1−α)

=
3

2
Ā(1− 2α)C(t− td).

(4.3.16)

Here B =
√

µd0/3, td is the time at which the dark energy becomes dominant and ad is

the corresponding value of the scale factor ad = a(td). The Hubble expansion rate is then

given by

H = B

((
1 + 3Ā(1− α) ln

ad

a0

) 1−2α
2(1−α)

+
3

2
Ā(1− 2α)C(t− td)

) 1
1−2α

. (4.3.17)

We now show that the future behaviour of this model is quite sensitive to the values of the

parameter α. Although the case with α ∈ (1/2, 1) leads to the development of a big-rip

singularity in finite time, when α < 1/2 we are led instead a singularity-free universe.

Indeed, taking α ∈ (1/2, 1) we allow for the dark energy density, the scale factor and the

Hubble rate H all to increase with time until they diverge at the finite time tf where

tf = td +
2

3Ā(2α− 1)C

(
1 + 3Ā(1− α) ln

ad

a0

) 1−2α
2(1−α)

. (4.3.18)

In addition, the Bel-Robinson energy blows up there since the electric parts take the forms:

|E|2 =
1

12
(2µ + 3Aµa)2, (4.3.19)

|D|2 = 3H4. (4.3.20)

If instead one assumes that α < 1/2, we see from Eq. (4.3.17) that H is always finite

(so that the Bel-Robinson energy is also finite) and therefore the model is geodesically

complete. (The case with α > 1 leads to an (S2, N2, B1) singularity since as it follows

from (4.3.14) µd and consequently pd, H, |E| and |D| all diverge at the finite value as =

a0e
1/(3Ā(α−1)).)

Summing up the results of this Section, the consideration of these unconventional dark



56 CHAPTER 4. SINGULARITIES IN ISOTROPIC COSMOLOGIES

energy components in the framework of FRW cosmology leads to the possibility of a big-rip

singularity. Even though Theorem 3.2.1 predicts such a singular behaviour in condition

S2, it is only very recently that the study of physically motivated models described here

has offered sufficient physical grounds for the appearance of such a structure distinct from

the standard future-collapse types considered so far (cf. [3], [48], [49], [50], [51], [52], [53],

[14], [38]).

4.4 Sudden singularities

In the previous Section, we saw that the violation of the dominant energy condition is

sufficient for the occurrence of future finite-time singularities during the expansion of the

universe. But is this also necessary? Can a finite-time singularity develop during the

expansion of the universe without violating the dominant energy condition? If yes, then

what are the qualitative differences between the resulting types of singularities?

Barrow initiated a study of these questions in [56]. He found a new type of singularity

that can arise in a universe where matter does not violate the dominant energy condition.

Actually in his example matter satisfies even the strong-energy conditions µ > 0 and

µ + 3p > 0. This fact implies that the violation of the dominant-energy condition is

sufficient but not necessary for the occurrence of a finite-time singularity during expansion.

Moreover, the nature of the resulting singularity is substantially different from the big-rip

singularities discussed earlier. In particular, the finite-time singularity of Barrow is a

sudden singularity according to our Definition 3.4.1 occurring at an arbitrary but fixed

value of finite time ts at which the scale factor, the Hubble rate and consequently |D|,
all remain finite but |E|, or equivalently the acceleration, diverges. This becomes possible

since by the Raychaudhuri equation at ts we have

ä

a
= −p

2
− H2

s

2
− k

2a2
s

, (4.4.1)

where as ≡ a(ts), Hs ≡ H(ts) > 0, which implies that a singularity with ä/a → −∞ can
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occur provided the pressure blows up at ts.

In the following Subsections we analyse how a sudden singularity arises in universes

filled with a fluid having µ and p unconnected (Subsection 4.4.1), or satisfying an equation

of state (Subsection 4.4.2). In Subsection 4.4.3 we explore model universes that exhibit

singularities that are milder than the sudden ones.

4.4.1 Fluids with p and µ unconnected

A special exact solution acquiring all the characteristics needed for the development of a

sudden singularity is given in [56] and reads

a(t) = 1 +

(
t

ts

)q

(as − 1) + (1− t

ts
)n, (4.4.2)

with 1 < n < 2, 0 < q ≤ 1. For the more detailed analysis of the properties of this solution

given below we follow [67], [68]. This solution exists smoothly only on the interval (0, ts),

with as and Hs and therefore |D| is finite at the right end. By setting A = q(as−1)/tqs, B =

n/tns , we find that

ȧ(t) = Atq−1 + B(ts − t)n−1, (4.4.3)

which means that unless q = 1, ȧ blows up as t → 0, making H continuous only on (0, ts).

Also a(0) is finite and we can extend H and define it to be finite also at 0, H(0) ≡ H0,

so that H is defined on [0, ts]. However, since limt→0+ H(t) = ±∞, H is non-integrable

on [0, ts], ts arbitrary and thus this model universe implements exactly Condition S1 of

Theorem 3.2.1.

Another basic feature of this solution is that the second derivative of the scale factor

is

ä(t) = q(q − 1)Btq−2 − n(n− 1)

t2s(1− t/ts)2−n
→ −∞, as t → ts, (4.4.4)

so that |E|, and consequently p, diverges at ts as it is expected for a sudden singularity.

Note that µs > 0 for q2t−2
s (as−1)2 > −k, and since (µ+3p) = −6ä/a (see Eq. (2.1.5)), we

can have µ > 0 and µ + 3p > 0 throughout the evolution of such an expanding universe.
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We can further prove that under the additional assumption p ≥ 0, a universe exhibiting

a sudden singularity is geodesically incomplete [67]. Firstly, we know (cf. [1], pp. 141-2)

that in an FRW universe with µ > 0 and p ≥ 0, given any vector X at any point q, the

geodesic γ(υ) which passes through the point q = γ(0) in the direction of X is such that

• either γ(υ) can be extended to arbitrary values of its affine parameter υ, or

• there is some value υ0 > 0 such that the scalar invariant (Rαβ − 1/2Rgαβ)(Rαβ −
1/2Rgαβ) is unbounded on γ([0, υ]).

For a RW spacetime, the invariant (Rαβ − 1/2Rgαβ)(Rαβ − 1/2Rgαβ) is found to be

12k

a4
+

24ȧ2k

a4
+

12ȧ4

a4
+

12ä

a3
+

12ȧ2ä

a3
+

12ä2

a2
, (4.4.5)

and since a → a(ts), H(t) → Hs, p(t) → ∞, ä/a → −∞ as t → ts, we see that (Rαβ −
1/2Rgαβ)(Rαβ − 1/2Rgαβ) is unbounded at ts. Hence, we find that such a spacetime

is geodesically incomplete. Note that this holds true irrespectively of the exact form of

the scale factor, we only use the qualitative properties that define a sudden singularity

(Definition 3.4.1).

Further, the relative asymptotic strength of a sudden singularity is immediately implied

by the definition of this type of singularity and it is necessarily of the form (H ∼ |D| ∼
a) << |E|.

4.4.2 Fluids with p and µ connected

Although Barrow in [56] kept the pressure and the density unconnected in his example

of a sudden singularity, Nojiri et al. in [52] focused on finding specific equations of state

appropriate for the emergence of such a structure in a flat universe. An example of such

an equation of state is given in [52],

p + µ = −C(µ0 − µ)−γ, (4.4.6)
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where γ is a positive constant. We are interested below in the asymptotic behaviour of

the resulting solution of the cosmological equations in the limit of µ → µ0. Integrating the

continuity equation, we find that the scale factor, given by

a = a0 exp

(
−(µ0 − µ)γ+1

3C(γ + 1)

)
(4.4.7)

(a0 is an integration constant), remains finite as µ → µ0. From the Friedmann equation

3H2 = µ, it follows that H and therefore |D| must also remain finite. However, in the

limit µ → µ0, the pressure, and hence |E| blow up. Solving the Friedmann equation for

H, substituting in the continuity equation µ̇ = 3HC(µ0 − µ)−γ, and integrating we find

t = t0 +

∫
dµ√

3µC(µ0 − µ)−γ
, (4.4.8)

which remains finite (since the integrand decreases to zero) even when µ → µ0 (recall

that γ > 0). This fact leads to the conclusion that singular behaviour is met within a

finite interval of proper time t and, as the following theorem shows, this type of behaviour

continues to be valid also in curved models.

Theorem 4.4.1 A necessary and sufficient condition for a sudden singularity of type

(S3, N2, B3) to occur at t0 in a universe filled with a fluid with equation of state p + µ =

−C(µ0 − µ)−γ, γ > 0, is that µ → µ0 at t0.

Proof. Integrating the continuity equation µ̇− 3CH(µ0 − µ)−γ = 0, we find

a ∝ exp

{
−(µ0 − µ)γ+1

3C(γ + 1)

}
, (4.4.9)

which is finite as t → t0. Also since

H2 =
µ

3
− k

a2
, (4.4.10)
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|E|2 = 3
ä2

a2
=

1

12
(µ + 3p)2 =

1

12
(2µ + 3C(µ0 − µ)−γ)2, (4.4.11)

|D|2 = 3

(
H2 +

k

a2

)2

=
µ2

3
, (4.4.12)

we see that as t → t0, H and |D| remain finite whereas |E| diverges, leading to a sudden

singularity. The converse is immediate.

4.4.3 Milder-than-sudden singularities

A sudden singularity is a very mild type of singularity in the sense that the only diverging

physical quantity that characterises it is the |E| component of the Bel-Robinson energy.

The only other milder type of singularity that could occur would be one with a bounded

Bel-Robinson energy as this is described by the B4 case in our classification scheme. This

can indeed happen. Consider a flat universe filled with a fluid with equation of state (cf.

[52])

p + µ = − ABµ2β−1

Aµβ−1 + B
, 0 < β < 1/2. (4.4.13)

Such a fluid, admits the exact solution a = a0e
τ8/3

when β = 1/5. Then H = (8/3)τ 5/3,

Ḣ = (40/9)τ 2/3 and Ḧ = (80/27)τ−1/3, and thus as τ → 0, a, ȧ, ä, H, Ḣ all remain finite

whereas Ḧ becomes divergent. We can see that in this model the Bel Robinson energy at

the initial time, B(0), is finite whereas its time derivative is given by

Ḃ(τ) = 3

[
2
ä

a
(Ḧ + 2HḢ) + 4

(
k

a2
+ H2

)(
−kH

a2
+ HḢ

)]
, (4.4.14)

hence Ḃ(τ) → ∞ at τ → 0. Since the derivative of the Bel-Robinson energy diverges we

may interpret this singularity geometrically as one in the velocities of the Bianchi (frame)

field. At ts, the Bianchi field encounters a cusp and its velocity diverges there [70]. We

believe this to be the mildest type of singularity known in the literature to date.

Another example of a very mild singularity is given by Borde et al in [89]. These
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authors define an averaged-out Hubble function, Hav (given by Eq. (4.4.18) below), along

a null or timelike geodesic and showed that every past-directed null or timelike geodesic

satisfying Hav > 0 throughout the past is not past complete. To see this consider first a null

geodesic with affine parameter λ. Then using Eq. (2.2.5) and substituting the Christoffel

symbols (see footnote (1) in p. 14), we find that the geodesic equation is given by

d2t

dλ2
+

ȧ

a

(
a2

(
dr

dλ

)2

+ f 2a2

(
dθ

dλ

)2

+ a2f 2 sin2 θ

(
dφ

dλ

)2
)

= 0. (4.4.15)

Using the fact that the geodesic is null (ds2 = 0) we have that

d2t

dλ2
+

ȧ

a

(
dt

dλ

)2

= 0 (4.4.16)

and by integration we find that

dλ ∝ a(t)dt. (4.4.17)

Setting dλ = (a(t)/a(ts))dt, the affine parameter can be normalised so that dλ/dt = 1 for

t = ts.The averaged-out Hubble function is defined by

Hav =
1

λ(ts)− λ(ti)

∫ λ(ts)

λ(ti)

H(λ)dλ. (4.4.18)

Now by considering those null geodesics that satisfy Hav > 0, we find

0 < Hav =
1

λ(ts)− λ(ti)

∫ λ(ts)

λ(ti)

H(λ)dλ =
1

λ(ts)− λ(ti)

∫ a(ts)

a(ti)

da

a(ts)
<

1

λ(ts)− λ(ti)
.

(4.4.19)

This shows that the affine parameter of every past-directed null geodesic having Hav >

0 must take values only in a finite interval, which implies geodesic incompleteness. A

similar proof is obtained for the case of a timelike geodesic. Hence, all causal past-directed

geodesics obeying the condition Hav > 0 are past incomplete.

Note that for null geodesics, Eq. (4.4.19) implies that H is finite but only in a finite

time interval (an analogous conclusion holds for a timelike geodesic) and this is no other
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than the S3 (necessary) condition for a singularity of Theorem 3.2.1. We therefore conclude

that under the assumptions of [89], privileged observers cannot exist in such expanding

universes for an infinite proper time because had they existed Theorem 2.2.2 would imply

that spacetime ought to be timelike and null geodesically complete.

4.5 Sudden-rip singularities

A sudden-rip singularity arises once we allow not only |E| but also |D| to diverge at a

finite time, while the scale factor remains finite there. This of course implies that H, p

and µ become also divergent. This possibility was explored in some examples in [52]. An

appropriate equation of state to illustrate this type of asymptotic behaviour is to take [52]

p + µ = −Bµβ, β > 1. (4.5.1)

Integration of the continuity equation µ̇− 3BHµβ = 0 then gives directly [52]

a = a0 exp

(
µ1−β

3(1− β)B

)
, (4.5.2)

which is finite everywhere since we have chosen β > 1. We can find the relation between

the proper time and the density by first substituting Eq. (4.5.1) in the continuity equation

and then using the Friedmann equation 3H2 = µ. We obtain

dt =

∫
dµ√

3µBµβ
, (4.5.3)

or equivalently [52]

t ∼ t0 +
2√
3B

µ−β+1/2

1− 2β
. (4.5.4)

Therefore, when µ → ∞, t → t0 and so |p|, H, |D| and |E| all diverge within the finite

time t0, meaning that this is an (S2, N2, B1) singularity. The asymptotic strength of this

singularity is found to be: a << H << |D| << |E|.
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This behavior is a special case of the following general result which holds also in curved

models.

Theorem 4.5.1 A necessary and sufficient condition for a sudden-rip singularity (of type

(S2, N2, B1)) to occur at ts in an isotropic universe filled with a fluid with equation of state

p + µ = −Bµβ, β > 1, is that µ →∞ as t → ts.

Proof. From the continuity equation we have

a = a0 exp

(
µ1−β

3B(1− β)

)
, (4.5.5)

and so a → a0 as t → ts. Since

H2 =
µ

3
− k

a2
, |E|2 =

1

12
(2µ + 3Bµβ)2, |D|2 =

µ2

3
, (4.5.6)

we see that as t → ts, H, |E| and |D| diverge leading precisely to a sudden-rip singularity.

The converse is obvious.

4.6 Discussion

We have illustrated in this chapter that our methods of classifying singularities through the

behaviour of the Hubble parameter the scale factor and the Bel-Robinson energy provide a

rigorous basis for a useful description of the dynamics of a variety of cosmological models

that exhibit finite-time singularities. Even though these model universes come from com-

pletely different motivations yet they reveal their tendencies to have finite-time singularities

in the sense of geodesic incompleteness for primarily one reason, the non-integrability of

H. Finite-time singularities such as collapse, big-rip or sudden singularities occur because

H fails to be integrable for an infinite time interval. In such universes, privileged observers

cannot exist for an infinite proper time. We know from Theorem 2.2.2 that if such observers

existed for an infinite proper time, then the universe would be timelike and null geodesi-
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cally complete. Indeed, this is the case in various families of complete models ranging from

dark energy, to inflationary to braneworlds that we have already studied.

Naturally, the fact that the non-integrability condition for H can be sustained in differ-

ent models stems from the various ways that these models are constructed and the specific

features they share. This non-integrability may be supported either by the presence of

phantom-dark energy driving the observed cosmic acceleration and leading to a divergence

of both |E| and |D|, or by a fluid with only a diverging |E| as in [56], or in the inflationary

character of the specific model as in [89], etc. All these different particularities are acknowl-

edged and brought to light with the use of the Bel-Robinson energy. We have shown that

with the combination of our classifying methods we have succeeded to obtain a complete

picture of the reasons underlying a wide variety of possible dynamical behaviours of the

universe on approach to a spacetime singularity.



Chapter 5

Braneworld singularities

5.1 Introduction

In previous chapters we studied singularities that arise within the framework of a four-

dimensional RW-spacetime that models the whole entity of the observed universe. In this

chapter we study possible singularities that develop when we consider the different case

in which the observed universe is modeled by a four-dimensional hypersurface situated at

a fixed position of an extra spatial dimension. The whole spacetime is five dimensional:

there are four dimensions of space out of which only three are spanned by the hypersurface

and one dimension of time; such a hypersurface is called a 3-brane while the full higher

dimensional space is called the bulk.

Although a brane can trap particles and forces making it impossible for them to escape,

it does interact with the matter and forces in the bulk. This happens because gravity

naturally extends over all dimensions of space and time and it can therefore influence the

fields that are constrained to live within the boundaries of the brane [139]. Other matter

fields in the bulk can also interact with the fields on the brane, and the strength of this

interaction is controlled by a coupling function that is model-dependent [139].

Branes were discovered within the framework of string theory as locations where open

strings are constrained to end. Their importance was reinforced when it was realised that

65
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they can play a catalytic role in proving duality between the different versions of string

theory. Driven by these new discoveries, a great deal of recent research focuses on building

model universes that include branes (see Refs. [140]-[197] for a partial list).

All these different model universes that flourish in the recent literature are termed

braneworlds and in many cases provided satisfactory explanations to some of the most

challenging unresolved issues of cosmology and particle physics such as the hierarchy prob-

lem and the cosmological constant problem. Below, we refer briefly to the ideas behind

three of the most recognised braneworld cosmological scenarios and to the implications

they offer for the singularity problem. The first scenario is the one introduced by Nima

Arkani-Hamed, Savas Dimopoulos and Gia Dvali in [198] dubbed as the ADD scenario and

the two scenarios that follow are those introduced by Lisa Randall and Raman Sundrum

in [199] and [200] known as RS1 and RS2.

According to the ADD scenario all standard particles and forces except gravity are

confined on a brane while the extra dimension is as big as a tenth of a millimeter; this is

surprising since until then it was believed that extra dimensions were significantly smaller.

In this scenario the hierarchy problem, that poses the question of why gravity at small

distances appears to be so much weaker than the other forces, is solved: the effect of

gravity on particles could fade away because of the large extra dimension so that gravity

would appear much weaker than the brane-restricted electromagnetic strong and weak

forces whose strength remains unaffected exactly because they cannot experience the extra

dimension.

A different approach to the hierarchy problem is provided in [199] and [200]. In the

RS1 scenario the extra dimension is considered to be small in size and bounded between

two branes called the Gravitybrane and the Weakbrane. In this model the authors make

essential use of a warped geometry where the warp factor that defines how space, time,

energies and masses change with distance (measured along the fifth extra dimension) de-

creases exponentially along the fifth dimension. A consequence of this configuration is that

the energy of the bulk and the branes warps the spacetime in such a way that gravity is felt
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strong on the Gravitybrane and weak on the Weakbrane which accommodates all standard

particles and forces. In contrast, in the RS2 scenario where there is only one brane, the

extra dimension is infinite in size but it can nonetheless remain invisible provided that the

spacetime is suitably warped.

In this chapter we use the concept of a warped geometry in our braneworld models

but we will not focus so much on the exploration of the phenomenological implications

that these models offer, rather on the interesting features of finite-distance singularities

that they exhibit as well as on very basic questions (to which we refer below) that the

development of such singularities erases.

In particular, we will focus on the analysis of a new version of a braneworld model

that was originally proposed by Arkani-Hamed et al. in [74]. In the original version [74]

the model consists of a flat three-brane embedded in a five dimensional bulk space that

is filled with a scalar field minimally coupled to the bulk and conformally coupled to the

fields on the brane. The metric describing the five dimensional spacetime is a warped

product as in the RS scenarios. A basic feature of this model is the development of a

singularity at a finite distance from the brane around which the warp factor, its derivative

and the energy density of the scalar field all diverge. This singularity was used in [74] in

order to provide an explanation to the cosmological constant problem while preserving four

dimensional flatness. In particular, the authors in [74] argue that this singularity on the

one hand successfully cuts off the size of the extra dimension giving rise to the observed

four dimensional flatness, and on the other hand it acts as a reservoir through which all of

the vacuum energy is emptied so that its value is brought to agrement with the observed

one.

Our interest in this particular braneworld model springs precisely from the fact that it

exhibits a finite-distance singularity which bares resemblance to the finite-time singularities

that are the core of our research. Our quest is to provide answers to the following questions

that naturally arise: How general is the behaviour found in [74]? Is the finite-distance

singularity the only possible outcome when we pass on to a curved instead of a flat brane?
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How strongly are the dynamical features of the model affected by a different form of bulk

matter such as a perfect fluid? Is the type of singularity found in [74] the only possible one

in these new braneworld models, and if not, what other types of finite-distance singularities

can arise?

In this chapter we show that in a curved brane the finite-distance singularity found

in [74] shifts to an infinite distance away from the brane, while with a perfect fluid in the

bulk new types of finite-distance singularities emerge. On approach to these singularities

the warp factor can do only two things: It will either tend to zero (collapse-brane I or

II), or diverge (big rip-brane singularities1) while the energy density of the bulk-matter

components usually diverges. Our analysis implies that the effect of an infinite energy leak

to the extra dimension is indeed generic. For a qualitative analysis of such models the

method of asymptotic splittings, expounded in Appendix E, is a most useful tool.

The plan of this chapter is as follows: In Section 5.2, we review the basic aspects

of the embedding of a three-brane in a five dimensional bulk space. In Section 5.3, we

give the field equations that describe the dynamics of a three-brane embedded in a five

dimensional bulk with a scalar field; in Subsection 5.3.1, we analyse the possible asymptotic

behaviours of that model using the method of asymptotic splittings. In Section 5.4, we

explore the consequences of altering the matter in the bulk. In particular, the case where

the bulk is filled with a perfect fluid has a dramatic effect on the global dynamics. We no

longer encounter just the singularities of the type found in [74] but now we have dynamics

characterised by the finite-distance singularities referred to in the previous paragraph. In

Section 5.6, we conclude and discuss our results.

5.2 Brane geometry

Consider a four-dimensional hypersurface Σ that is situated at the arbitrary but fixed

position Y∗ where Y is the coordinate along the fifth dimension of the embedding space.

The brane has negligible thickness compared to the extra dimension (and also the other

1See Def. 5.4.1
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dimensions) extending over the higher dimensional bulk space and can be viewed as a

thin surface (surface layer). The brane therefore naturally divides the bulk in two regions

V + and V − each containing one of the boundary surfaces Σ+ and Σ− that confine the

brane. The two regions V + and V − are expected to look identical from Σ+ and Σ−,

the only difference being that their normal vector should be reversed; in other words our

braneworld admits a Y → −Y symmetry. The extrinsic curvatures of the two embeddings,

K+
ab and K−

ab, therefore satisfy

K+
ab = −K−

ab, everywhere on Σ. (5.2.1)

Using the Gauss-Codazzi formalism, analysed in Appendix B.2, we can write the Ricci

5-tensor in a form analogous to (B.2.20) (note that ε(n) = 1 ), i.e.,

Rab =(4) Rab −KabK + 2KanK
n
b −

∂Kab

∂Y
, (5.2.2)

or

Rab = −∂Kab

∂Y
+ Zab, (5.2.3)

where

Zab =(4) Rab −KabK + 2KanK
n
b . (5.2.4)

Tracing the Einstein equations

Rab − 1

2
gabR = κ2

5Tab, (5.2.5)

where κ2
5 = 8πG5 = M−3

5 with G5 being the five dimensional Newton’s constant and M5

the five dimensional Planck mass, we find that the scalar curvature is given by

R = −2

3
κ2

5T. (5.2.6)

Substituting back in (5.2.5) leads to the following equivalent form of the Einstein equations:
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Rab = κ2
5

(
Tab − 1

3
gabT

)
. (5.2.7)

Inserting Eq. (5.2.3) in Eq. (5.2.7) and integrating over the layer defined by the thickness

of the brane we obtain [201], [202]

−K+
ab + K−

ab +

∫ Y∗+ε

Y∗−ε

ZabdY = κ2
5

(
Tab − 1

3
gabT

)
. (5.2.8)

In the passage to the limit ε → 0 and for fixed −K+
ab, K−

ab we naturally expect that

Kab remains bounded inside the layer and hence the integral of Zab over the layer should

vanish [201], [202]. Taking thus the limit of the above equation for ε → 0 and using Eq.

(5.2.1), we find the following junction condition [201], [202] (see also [203] pp. 551-556)

[Kab] ≡ K+
ab −K−

ab = 2K+
ab = −κ2

5

(
Sab − 1

3
gabS

)
, (5.2.9)

that relates the jump of the extrinsic curvature [Kab] across the brane to the surface-energy

momentum tensor Sab (this follows from the discussion below) defined by

Sab ≡ lim
ε→0

∫ Y∗+ε

Y∗−ε

TabdY, (5.2.10)

with S = gabSab being the trace of Sab. It can be proved (cf. [201], [202], and [203] pp.

551-556) that integration of the rest of the components of the Einstein equations gives

S55 and S5a with a = 1, 2, 3, 4 both zero and and hence, we conclude that there is no

flow of energy from the fields restricted on Σ into the bulk. It is thus implied that the

quantity Sab acts as a delta function source of matter existing only on Σ and vanishing

off Σ. This last property suggests that Sab plays the role of a surface-energy momentum

tensor. Combining this with Eq. (5.2.9), it follows that the extrinsic curvature of the brane

is completely determined by the matter confined inside the brane [204].
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5.3 Asymptotics of scalar field-brane configuration

Consider the braneworld model consisting of the three-brane configuration analysed in the

previous Section and filled with a scalar field minimally coupled to the five-dimensional

bulk and conformally coupled to any fields restricted on the brane. The total action Stotal

then splits in two parts, namely, the bulk action Sbulk and the brane action Sbrane, i.e.,

Stotal = Sbulk + Sbrane, (5.3.1)

with

Sbulk =

∫
d4xdY

√
g5

(
R

2κ2
5

− λ

2
(∇φ)2

)
, (5.3.2)

Sbrane = −
∫

d4x
√

g4f(φ), at Y = Y∗, (5.3.3)

where λ is a parameter defining the type of scalar field φ, κ2
5 = M−3

5 , M5 is the five

dimensional Planck mass, and f(φ) denotes the tension of the brane depending on the

scalar field. The tension of the brane can be understood physically as the resistance that

one encounters when trying to distort the brane: zero tension means that the brane has

no resistance so that any distortion would influence its form dramatically, while infinite

tension would deprive the brane’s liberty to evolve dynamically [139].

Varying the total action (5.3.1) with respect to gAB, we find the five-dimensional

Einstein field equations in the form [74]

RAB − 1

2
gABR = λκ2

5

(
∇Aφ∇Bφ− 1

2
gAB(∇φ)2

)
− 2κ2

5√
g5

δSbrane

δgαβ
δA
α δB

β δ(Y ), 2 (5.3.4)

while the scalar field equation is obtained by variation of the action (5.3.1) with respect to

φ [74] 3

2Note here that by working in a similar way as in Appendix D, we may interpret the energy-momentum
tensor of the scalar field as that of a perfect fluid in the bulk having density ρ = ρ(Y ) and pressure
P = P (Y ), i.e., TAB = (ρ + P )uAuB − PgAB , where uA = (0, 0, 0, 0, 1), so that P = 1/2(∇φ)2 = ρ.

3The left-hand side of this equation is the analogous left-hand side of the equation of motion (D.0.7)
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λ25φ = − 1√
g4

δSbrane

δφ
δ(Y ), (5.3.5)

where A, B = 1, 2, 3, 4, 5 and α, β = 1, 2, 3, 4 while δ(Y ) = 1 at Y = Y∗ and vanishing

everywhere else.

We assume a bulk metric of the form

ds2 = a2(Y )ds̃2 + dY 2, (5.3.6)

where ds̃2 is the four dimensional flat, de Sitter or anti de Sitter metric, i.e.,

ds̃2 =





−dt2 + dr2 + r2dσ2

−dt2 + cosh2(Ht)
H2 (dr2 + sin2 rdσ2)

−dt2 + cos2(Ht)
H2 (dr2 + sinh2 rdσ2),

(5.3.7)

where dσ2 = dθ2 + sin2 θdϕ2. The field equations then take the form

a′2

a2
=

λκ2
5φ
′2

12
+

kH2

a2
(5.3.8)

a′′

a
= −λκ2

5φ
′2

4
(5.3.9)

φ′′ + 4
a′

a
φ′ = 0, (5.3.10)

where k = 0,±1 and H−1 is the de Sitter curvature radius and the prime denotes dif-

ferentiation with respect to Y . The variables to be determined are a, a′ and φ. These

three equations are not independent since Eq. (5.3.9) was derived after substitution of Eq.

(5.3.8) in the field equation Gαα = κ2
5Tαα, α = 1, 2, 3, 4,

a′′

a
+

a′2

a2
− kH2

a2
= −λκ2

5

φ′2

6
. (5.3.11)

In our analysis we use the independent equations (5.3.9) and (5.3.10) to determine the

of a scalar field in a four-dimensional spacetime with V (φ) = 0 (see appendix D).
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unknown variables a, a′ and φ′ and the Eq. (5.3.8) will then play the role of a constraint

equation for our system.

The extrinsic curvature of the three-brane is calculated to be

Kαβ =
1

2

∂

∂Y
gαβ = a′(Y )a(Y ), (5.3.12)

while the surface energy-momentum tensor (defined only on the brane and vanishing off

the brane) is now given by

Sαβ = − 2κ2
5√

g5

δSbrane

δgαβ
δA
α δB

β δ(Y ) = −a2(Y∗)f(φ(Y∗)). (5.3.13)

Solving Eq. (5.3.4) on the brane is equivalent to substituting Eqs. (5.3.12) and (5.3.13) in

condition (5.2.9) which leads to the following relation to be satisfied by a′(Y∗):

a′(Y∗) = −κ2
5

6
f(φ(Y∗))a(Y∗). (5.3.14)

On the other hand, Eq. (5.3.5) gives directly

λ√
g5

∂

∂Y
(
√

g5φ
′) =

1√
g4

∫
dx4√g4f

′(φ)δ(Y ). (5.3.15)

Integrating over the interval [Y∗ − ε, Y∗ + ε] and taking the limit as ε → 0, we finally find

φ′(Y∗) =
f ′(φ(Y∗))

2λ
, (5.3.16)

where we have used the Y → −Y symmetry, i.e., φ′+ = φ′(Y∗ + ε) = −φ′(Y∗ − ε) = −φ′−.

Our purpose now is to find all possible asymptotic behaviours around the assumed

position of a singularity, denoted by Ys, emerging from general or particular solutions of the

system of equations (5.3.8)-(5.3.10) describing our braneworld cosmology. As we mentioned

in the Introduction a most useful tool for this analysis is the method of asymptotic splittings
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([76], see also Appendix E). According to this method, we start by setting

x = a, y = a′, z = φ′, (5.3.17)

where the differentiation is considered with respect to Υ = Y − Ys. The field equations

(5.3.9) and (5.3.10) become the following system of ordinary differential equations:

x′ = y (5.3.18)

y′ = −λAz2x (5.3.19)

z′ = −4y
z

x
, (5.3.20)

where A = κ2
5/4. Hence, we have the vector field

f =
(
y,−λAz2x,−4y

z

x

)ᵀ
. (5.3.21)

Equation (5.3.8) does not include any terms containing derivatives with respect to Υ; it is

to be regarded as a constraint equation for the above system (5.3.18)-(5.3.20). In terms of

the new variables the constraint is written in the form

y2

x2
=

Aλ

3
z2 +

kH2

x2
. (5.3.22)

Substituting the forms

(x, y, z) = (αΥp, βΥq, δΥr),

where

(p, q, r) ∈ Q3 and (α, β, δ) ∈ C3 r {0}, (5.3.23)

in the dynamical system (5.3.18)-(5.3.20), we seek to determine the possible dominant

balances in the neighborhood of the singularity, that is pairs of the form

B = {a,p}, where a = (α, β, δ), p = (p, q, r). (5.3.24)
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For our system (5.3.18)-(5.3.20) we find†:

B1 = {(α, α/4,
√

3/(4
√

Aλ)), (1/4,−3/4,−1)} (5.3.25)

B2 = {(α, α, 0), (1, 0,−1)} (5.3.26)

Since (5.3.18)-(5.3.20) is a weight-homogeneous system, the scale invariant solutions

given by the above balances are exact solutions of the system. The balance B1 satisfies the

constraint Eq. (5.3.22) only for k = 0 corresponding thus to a general (as we will see in the

next paragraphs) solution that allows only for a flat spatial brane geometry. In contrast,

B2 corresponds to a particular solution for a curved brane since it satisfies Eq. (5.3.22) for

k 6= 0 and α2 = kH2 (here we have to sacrifice one arbitrary constant by setting it equal

to kH2).

Let us now focus on each of the two possible balances separately and build series ex-

pansions in the neighborhood of the singularity. We start by calculating the Kowalevskaya

exponents, eigenvalues of the matrix K = Df(a) − diag(p), where Df(a) is the Jacobian

matrix of f ,

Df(x, y, z) =




0 1 0

−Aλz2 0 −2Aλxz
4yz

x2
−4z

x
−4y

x


 , (5.3.27)

evaluated on a. For the first balance we have that a = (α, α/4,
√

3/(4
√

Aλ)), and p =

(1/4,−3/4,−1), thus

K =




−1

4
1 0

− 3

16

3

4
−
√

3Aλα

2√
3

4α
√

Aλ
−

√
3

α
√

Aλ
0




. (5.3.28)

3† We have ignored here a third balance B3 = {(α, 0, 0), (0,−1,−1)} since it does not give the necessary
−1 as one of the Kowalevskaya exponents (see Appendix E for more details).
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The K-exponents are then given by

spec(K) = {−1, 0, 3/2}. (5.3.29)

As it follows from the analysis in Appendix E, these exponents correspond to the indices of

the series coefficients where arbitrary constants first appear. The −1 exponent signals the

arbitrary position of the singularity, Ys. This first balance has two non-negative rational

eigenvalues which means that it describes a general solution, i.e., a solution having the

full number of arbitrary constants. In order to construct an asymptotic expansion of this

solution, we substitute in the system (5.3.18)-(5.3.20) the series expansions

x = Υp(a + Σ∞
j=1cjΥ

j/s),

where x = (x, y, z), cj = (cj1, cj2, cj3), and s is the least common multiple of the denomi-

nators of the positive eigenvalues; here s = 2, and the corresponding series expansions are

given by,

x = Σ∞
j=0cj1Υ

j/2+1/4, y = Σ∞
j=0cj2Υ

j/2−3/4, z = Σ∞
j=0cj3Υ

j/2−1. (5.3.30)

Following this, we arrive at the asymptotic solution around the singularity in the form

x = αΥ1/4 +
4

7
c32Υ

7/4 + · · · (5.3.31)

y =
α

4
Υ−3/4 + c32Υ

3/4 + · · · (5.3.32)

z =

√
3

4
√

Aλ
Υ−1 − 4

√
3

7α
√

Aλ
c32Υ

1/2 + · · · . (5.3.33)

The last step is to check if for each j satisfying j/2 = ρ with ρ a positive eigenvalue,

the corresponding eigenvector v of the K matrix is such that the compatibility conditions

hold, namely,

v> · Pj = 0, (5.3.34)
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where Pj are polynomials in ci, . . . , cj−1 given by

Kcj − (j/s)cj = Pj. (5.3.35)

Here the corresponding relation j/2 = 3/2, is valid only for j = 3 and the associated

eigenvector is

υ =

(
−α

√
Aλ√
3

,−7α
√

Aλ

4
√

3
, 1

)
. (5.3.36)

The compatibility condition, υ · (K − (3/2)I3)c3 = 0, therefore indeed holds since,

(K − (3/2)I3)c3 = c32




−7

4
1 0

− 3

16
−3

4
−α

√
3Aλ

2

√
3

4α
√

Aλ
−

√
3

α
√

Aλ
−3

2







4

7

1

− 4
√

3

7α
√

Aλ




=




0

0

0




.

(5.3.37)

This shows that a representation of the solution asymptotically with a Puiseux series as

this is given by Eqs. (5.3.31)-(5.3.33) is valid. We thus conclude that near the singularity

at finite distance Ys from the brane the asymptotic forms of the variables are

a → 0, a′ →∞, φ′ →∞. (5.3.38)

This is exactly the asymptotic behaviour of the solution found previously by Arkani-

Hammed et al in [74].

However, the previous behaviour is not the only possible one; the analysis below shows

that a very different outcome results by the asymptotic analysis of the second balance.

The K-matrix of the second balance is



78 CHAPTER 5. BRANEWORLD SINGULARITIES

K = Df((α, α, 0))− diag(1, 0,−1) =




−1 1 0

0 0 0

0 0 −3


 , (5.3.39)

with eigenvalues

spec(K) = {−1, 0,−3}. (5.3.40)

For the balance B2 we find two distinct negative integer K-exponents and and hence we

expect to find an infinite negative expansion of a particular solution (recall that we had to

sacrifice one arbitrary constant) around the presumed singularity at Ys with the negative

K-exponents signaling the positions where the arbitrary constants first appear [205]. We

therefore expand the variables in series with descending powers of Υ in order to meet the

two arbitrary constants occurring for j = −1 and j = −3, i.e.,

x = Σ−∞
j=0cj1Υ

j+1, y = Σ−∞
j=0cj2Υ

j, z = Σ−∞
j=0cj3Υ

j−1. (5.3.41)

Substituting these series expansions back in the system (5.3.18)-(5.3.20), we find the fol-

lowing asymptotic behaviour

x = αΥ + c−1 1 + · · · (5.3.42)

y = α + · · · (5.3.43)

z = c−3 3Υ
−4 + · · · . (5.3.44)

We now check the compatibility condition for j = −3 (the associated eigenvector here is

υ = (0, 0, 1)). We find that

P−3 = (K + 3I3)c−3 =




2 1 0

0 3 0

0 0 0







0

0

c33


 =




0

0

0


 , (5.3.45)
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so that the compatibility condition is indeed satisfied. The expansions given by Eqs.

(5.3.42)-(5.3.44) are therefore valid and we can say that as Υ → 0, or equivalently as

S = 1/Υ →∞, we have that

a →∞, a′ →∞, φ′ →∞. (5.3.46)

We thus conclude that there exist two possible outcomes given by Eqs. (5.3.38) and (5.3.46)

for these braneworld models, the dynamical behaviours of which strongly depend on the

spatial geometry of the brane. For a flat brane the model experiences a finite-distance

singularity through which all the vacuum energy decays (since φ′ → ∞, as Y → Ys),

whereas for a de Sitter or anti-de Sitter brane the singularity is now located at an infinite

distance. Flat solutions correspond to the particular coupling used by Arkani-Hammed et

al in [74], the only choice to make this possible. This easily follows by using equations

(5.3.14) and (5.3.16) and solving the FRW equation (5.3.8) on the brane for kH2:

kH2 =
a2(Y∗)κ2

5

12

(
κ2

5

3
f 2(φ(Y∗))− f ′2(φ(Y∗))

4λ

)
.

Clearly, k is identically zero if and only if:

f ′(φ)

f(φ)
= 2

√
λ

3
κ5,

or equivalently, if and only if f(φ) ∝ e2
√

λ/3κ5φ (Arkani-Hammed et al in [74] have λ = 3,

and hence the appropriate choice for the brane tension is f(φ) ∝ e2κ5φ).

By working with other couplings we can allow for non-flat, maximally symmetric solu-

tions to exist and avoid having the singularity at a finite distance away from the position

of the brane.

In the following Section we replace the scalar field in the bulk with a perfect fluid and

explore the outcome of the resulting dynamical system.
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5.4 Perfect fluid in the bulk

We consider here the case that the bulk matter takes the form of a perfect fluid with

equation of state P = γρ, where P and ρ are functions of Y only. This fluid can be viewed

as an entity in its own right but we can also use it to represent an average contribution of

the various scalar fields living in the bulk.

The field equations describing the braneworld model in this case are derived by replac-

ing the energy-momentum tensor in the first term of the RHS of Eq. (5.3.4) by that of a

perfect fluid, TAB = (ρ + P )uAuB − PgAB, uA = (0, 0, 0, 0, 1). They read:

a′′

a
= −κ2

5

(1 + 2γ)

6
ρ, (5.4.1)

ρ′ + 4(1 + γ)Hρ = 0, (5.4.2)

a′2

a2
=

κ2
5

6
Aρ +

kH2

a2
. (5.4.3)

Introducing the new variables

x = a, y = a′, w = ρ, (5.4.4)

Eqs. (5.4.1)-(5.4.3) can be written in the form

x′ = y, (5.4.5)

y′ = −2A
(1 + 2γ)

3
wx, (5.4.6)

w′ = −4(1 + γ)
y

x
w, (5.4.7)

with the constraint equation given by

y2

x2
=

2

3
Aw +

kH2

x2
, A = κ2

5/4. (5.4.8)

The system (5.4.5)-(5.4.7) is weight homogeneous with vector field
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f =

(
y,−2A

(1 + 2γ)

3
wx,−4(1 + γ)

y

x
w

)ᵀ
,

and by setting (x, y, w) = (αΥp, βΥq, δΥs), we find the following set of five possible bal-

ances:

γB1 =

{(
α, αp,

3

2A
p2

)
, (p, p− 1,−2)

}
, p =

1

2(γ + 1)
, γ 6= −1/2,−1,(5.4.9)

γB2 = {(α, α, 0), (1, 0,−2)}, γ 6= −1/2, (5.4.10)

−1/2B3 = {(α, α, 0), (1, 0, r)}, (5.4.11)

−1/2B4 = {(α, α, δ), (1, 0,−2)}, (5.4.12)

−1/2B5 = {(α, 0, 0), (0,−1, r)}, (5.4.13)

where −1/2Bi ≡γ=−1/2 Bi. These balances are exact solutions of the system and they should

therefore also satisfy the constraint equation (5.4.8). This fact alters the generality of the

solution represented by each balance and determines the type of spatial geometry that it

admits: The balances γB1 and −1/2B5 describe a potentially general solution corresponding

to a flat brane, while the balances γB2 and −1/2B3 describe particular solutions of curved

branes since we already have to sacrifice the arbitrary constant α by accepting that α2 =

kH2. The balance −1/2B4 on the other hand describes a particular solution of a curved or

flat brane since we have to set δ = (3/(2A))(1− kH2/α2) in order to satisfy Eq.(5.4.8).

Before we proceed to the analysis of each of these balances in the next Subsections,

we find it useful to introduce the following definition of finite-distance singularities:

Definition 5.4.1 Let a be the warp factor in the metric (5.3.6), a′ its derivative and %

the energy density of the matter component in the bulk. We call a finite-distance brane-

singularity occurring with:

i) a → 0, a′ →∞ and % →∞: a collapse-brane I singularity.

ii) a → 0, a′ → c, where c is an arbitrary constant, and % → ∞: a collapse-brane II

singularity.
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iii) a →∞, a′ →∞ and % →∞: a big rip-brane singularity.

Note that with this terminology, the finite-distance singularity we met in the previous

Section is a collapse-brane I singularity.

5.4.1 The balance γB1

We begin our analysis by calculating the Kowalevskaya-matrix for the first balance. The

Jacobian matrix of f is given by,

Df(x, y, z) =




0 1 0

−2

3
(1 + 2γ)Aw 0 −2

3
(1 + 2γ)Ax

4(1 + γ)
yw

x2
−4(1 + γ)

w

x
−4(1 + γ)

y

x




(5.4.14)

and

γK1 = Df

(
α, αp,

3

2A
p2

)
− diag(p, p− 1,−2)

= Df

(
a,

a

2(1 + γ)
,

3

8A(1 + γ)2

)
− diag

(
1

2(1 + γ)
,− 1 + 2γ

2(1 + γ)
,−2

)

=




− 1

2(1 + γ)
1 0

− 1 + 2γ

4(1 + γ)2

1 + 2γ

2(1 + γ)
−2

3
(1 + 2γ)Aα

3

4(1 + γ)2Aα
− 3

2(1 + γ)Aα
0




. (5.4.15)

The eigenvalues of this matrix are

spec(γK1) =

{
−1, 0,

1 + 2γ

1 + γ

}
. (5.4.16)
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The last eigenvalue is a function of the γ parameter and it is positive when either γ < −1

or γ > −1/2. We are going to focus on each of these two ranges of γ and explore the

possible outcome of the system and the character of the finite-distance singularities that

occur each time.

Consider first the case with γ < −1. For purposes of illustration, we take γ = −2.

Then the balance and the −2K1-exponents read respectively,

−2B1 = {(α,−α/2, 3/(8A)), (−1/2,−3/2,−2)}, (5.4.17)

spec(−2K1) = {−1, 0, 3}. (5.4.18)

Substituting the value γ = −2 in the system given by Eqs. (5.4.5)-(5.4.7) and also the

forms

x = Σ∞
j=0cj1Υ

j−1/2, y = Σ∞
j=0cj2Υ

j−3/2, z = Σ∞
j=0cj3Υ

j−2, (5.4.19)

we expect to meet the third arbitrary constant at j = 3. Indeed we find,

x = αΥ−1/2 +
2

3
Aαc3 3Υ

5/2 + · · · , (5.4.20)

y = −α

2
Υ−3/2 +

5

3
Aαc3 3Υ

3/2 + · · · , (5.4.21)

w =
3

8A
Υ−2 + c3 3Υ + · · · . (5.4.22)

The compatibility condition is trivially satisfied for j = 3 since

(K − 3I3)c3 =




−5

2
1 0

3

4
−3

2
2Aα

3

4Aα

3

2Aα
−3




c3 3




2

3
Aα

5

3
Aα

1




=




0

0

0


 . (5.4.23)

The series expansions given by Eqs. (5.4.20)-(5.4.22) are therefore valid asymptotically for
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Υ → 0 so that

a →∞, a′ → −∞, ρ →∞. (5.4.24)

We therefore conclude that the balance γB1 describes a general solution (corresponding to a

flat brane) around a big rip-brane singularity when the perfect fluid satisfies a phantom-like

equation of state, i.e., γ < −1. Note that using the analogy between the warp factor and

the scale factor we can say that this singularity bares many similarities to the analogous

one arising in the classical theory (see Section 4.3) since it is characterized by all quantities

a, ρ and consequently P and H becoming divergent asymptotically.

In order to illustrate the second range of values of γ, γ > −1/2, we assume that

γ = −1/4. Then

−1/4B1 = {(α,−2α/3, 2/(3A)), (2/3,−1/3,−2)}, (5.4.25)

spec(−1/4K1) = {−1, 0, 2/3}. (5.4.26)

Substituting in the system (5.4.5)-(5.4.7) the particular value γ = −1/4 and the forms

x = Σ∞
j=0cj1Υ

j/3+2/3, y = Σ∞
j=0cj2Υ

j/3−1/3, z = Σ∞
j=0cj3Υ

j/3−2, (5.4.27)

we arrive at the following asymptotic expansions:

x = αΥ2/3 − Aα

2
c2 3Υ

4/3 + · · · , (5.4.28)

y =
2

3
αΥ−1/3 − 2

3
Aαc2 3Υ

1/3 + · · · , (5.4.29)

w =
2

3A
Υ−2 + c2 3Υ

−4/3 + · · · . (5.4.30)

Again, the compatibility condition is bound to be satisfied since in this case
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(K − (2/3)I3)c2 =




−4

3
1 0

−2

9
−1

3
−Aα

3

4

3Aα
− 2

Aα
−2

3




c2 3




−Aα

2

−2Aα

3

1




=




0

0

0




. (5.4.31)

Eqs. (5.4.28)-(5.4.30) then imply that as Υ → 0,

a → 0, a′ →∞, ρ →∞. (5.4.32)

This second asymptotic behaviour corresponds to a general solution of a flat brane that

is valid around a collapse-brane I singularity. We thus regain a behaviour similar to that

of the balance in (5.3.25). However, an important outcome of our analysis is that there is

now in addition to that previously met, an equally general distinct big rip-brane singularity

that may also arise during the evolution of a flat brane.

5.4.2 The balance γB2

For the second balance γB2, we find that

γK2 = Df (α, α, 0)− diag (1, 0,−2) =




−1 1 0

0 0 −2

3
Aα(1 + 2γ)

0 0 −2(1 + 2γ)


 , (5.4.33)

and hence its spectrum is

spec(γK2) = {−1, 0,−2(1 + 2γ)}. (5.4.34)

We note here that the third arbitrary constant will appear at j = −2(1 + 2γ). After
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substituting the forms

x = Σ∞
j=0cj1Υ

j+1, y = Σ∞
j=0cj2Υ

j, z = Σ∞
j=0cj3Υ

j−2, (5.4.35)

in the system (5.4.5)-(5.4.7), we may try giving different values to γ: inserting γ = −3/4

in the system we meet the third arbitrary constant at j = 1 (spec(−3/4K2) = {−1, 0, 1}).
The variables (x, y, w) then expand in the following way:

x = αΥ +
Aα

6
c1 3Υ

2 + · · · , (5.4.36)

y = α +
Aα

3
c1 3Υ + · · · , (5.4.37)

w = c1 3Υ
−1 + · · · . (5.4.38)

We ought to check the validity of the compatibility condition for j = 1. But this is again

trivially satisfied since

(−3/4K2 − I3)c1 =




−2 1 0

0 −1 Aα/3

0 0 0


 c1 3




Aα/6

Aα/3

1


 =




0

0

0


 . (5.4.39)

The series expansions Eqs. (5.4.36)-(5.4.38) are therefore valid ones, and we conclude that

as Υ → 0,

a → 0, a′ → α, ρ →∞, α 6= 0. (5.4.40)

It will follow from the analysis below that the behaviour of ρ may vary according to our

choice of γ.

Indeed for γ = −1 (spec(−1K2) = {−1, 0, 2}) we find that

x = αΥ +
Aα

9
c2 3Υ

3 + · · · , (5.4.41)

y = α +
Aα

3
c2 3Υ

2 + · · · , (5.4.42)

w = c2 3 + · · · . (5.4.43)
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Note that the compatibility condition is satisfied also here:

(−1K2 − 2I3)c2 =




−3 1 0

0 −2 2Aα/3

0 0 0


 c2 3




Aα/9

Aα/3

1


 =




0

0

0


 . (5.4.44)

We see then that as Υ → 0,

a → 0, a′ → α, ρ → c2 3, α 6= 0, (5.4.45)

which shows that distinctly different behaviour than (5.4.40).

A yet different behaviour is met if we choose γ = −5/4: The K-exponents are in this

case given by spec(−5/4K2) = {−1, 0, 3}, and the series expansions read:

x = αΥ +
Aα

12
c3 3Υ

4 + · · · , (5.4.46)

y = α +
Aα

3
c3 3Υ

3 + · · · , (5.4.47)

w = c3 3Υ + · · · . (5.4.48)

These expansions are valid locally around the singularity since the compatibility condition

holds true,

(−5/4K2 − 3I3)c1 =




−4 1 0

0 −3 Aα

0 0 0


 c3 2




Aα/12

Aα/3

1


 =




0

0

0


 . (5.4.49)

For Υ → 0 we have that,

a → 0, a′ → α, ρ → 0, α 6= 0. (5.4.50)

This balance describes therefore the asymptotic behaviour of a particular solution of

a curved brane around a finite-distance singularity where a → 0 and a′ → α, i.e., a and a′
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behave exactly as in the case of a collapse-brane II singularity but now the behaviour of the

energy density of the perfect fluid varies dramatically from zero to infinity (ρ → 0, ρs,∞)

depending on the value of γ. This allows for new dynamical outcomes of the system

(5.4.5)-(5.4.8): we can have a constant or even no flow of energy through the finite-distance

singularity and into the extra dimension.

A totally different result is obtained when we consider a family of fluids having a γ

greater than −1/2. For γ = 0, we have that spec(0K2) = {−1, 0,−2} and hence we may

expand (x, y, w) in descending powers in order to meet the arbitrary constant appearing

at j = −1 and j = −2, i.e.,

x = Σ−∞
j=0cj1Υ

j+1, y = Σ−∞
j=0cj2Υ

j, z = Σ−∞
j=0cj3Υ

j−2. (5.4.51)

We find:

x = αΥ + c−1 1 − Aα

3
c−2 3Υ

−1 + · · · , (5.4.52)

y = α +
Aα

3
c−2 3Υ

−2 + · · · , (5.4.53)

w = c−2 3Υ
−4 + · · · . (5.4.54)

The compatibility condition is satisfied since

(0K2 + 2I3)c−2 =




1 1 0

0 2 −2Aα/3

0 0 0


 c−2 3




−Aα/3

Aα/3

1


 =




0

0

0


 . (5.4.55)

As S = 1/Υ →∞ we conclude that

a →∞, a′ →∞, ρ →∞, (5.4.56)

and we can therefore avoid the finite-distance singularity in this case.



5.4. PERFECT FLUID IN THE BULK 89

5.4.3 The balances −1/2B3, −1/2B4 and −1/2B5

In this Section, we analyse the behaviours that are described by the three balances which

are valid once we set γ = −1/2 in the system (5.4.5)-(5.4.7). We show that the balance

−1/2B3, for r < −2, and the balance −1/2B4 imply the existence of a collapse-brane II

singularity. However, setting r > −2 in the balance −1/2B3 leads to the avoidance of

the finite-distance singularity. The balance −1/2B5 on the other hand, describes a smooth

behaviour since the warp factor, its derivative and the energy density of the fluid, remain

finite asymptotically.

We begin with the analysis of the balance −1/2B3. The K-matrix for this balance is

−1/2K3 = Df (α, α, 0)− diag(1, 0, r) =




−1 1 0

0 0 0

0 0 −2− r


 , (5.4.57)

and hence,

spec(−1/2K3) = {−1, 0,−2− r}. (5.4.58)

Taking −2− r > 0, we have two non-negative K-exponents. For r = −3 we substitute the

forms

x = Σ∞
j=0cj1Υ

j+1, y = Σ∞
j=0cj2Υ

j, z = Σ∞
j=0cj3Υ

j−3, (5.4.59)

and arrive at the expansions

x = αΥ + · · · , (5.4.60)

y = α + · · · , (5.4.61)

w = c1 3Υ
−2 + · · · . (5.4.62)

The compatibility condition is satisfied since
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(−1/2K3 − I3)c1 =




−2 1 0

0 −1 0

0 0 0


 c1 3




0

0

1


 =




0

0

0


 . (5.4.63)

The expansions (5.4.67)-(5.4.69) are therefore valid ones in the vicinity of the singularity

and the general behaviour of the solution is characterised by

a → 0, a′ → α, ρ →∞, α 6= 0. (5.4.64)

The balance −1/2B3 for r < −2 implies therefore the existence of a collapse-brane II singu-

larity.

If on the other hand we take r > −2, we have two negative K-exponents. If we choose

the value r = 0, then the spectrum is found to be

spec(−1/2K3) = {−1, 0,−2}, (5.4.65)

and so inserting the forms

x = Σ−∞
j=0cj1Υ

j+1, y = Σ−∞
j=0cj2Υ

j, z = Σ−∞
j=0cj3Υ

j, (5.4.66)

we obtain

x = αΥ + c−1 1, (5.4.67)

y = α, (5.4.68)

w = c−2 3Υ
−2 + · · · , (5.4.69)

which validates the compatibility condition at j = −2 since
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(−1/2K3 + 2I3)c−2 =




1 1 0

0 2 0

0 0 0


 c−2 3




0

0

1


 =




0

0

0


 . (5.4.70)

We see that as S = 1/Υ →∞,

a → c−1 1, a′ → α, ρ →∞, α 6= 0, (5.4.71)

so that the balance −1/2B3 for r > −2 offers the possibility of avoiding the finite-distance

singularity met previously.

The balance −1/2B4 is one with

−1/2K4 = Df (α, α, 0)− diag(1, 0,−2) =




−1 1 0

0 0 0
2δ

α
−2δ

α
0


 , (5.4.72)

and

spec(−1/2K4) = {−1, 0, 0}. (5.4.73)

We note that the double multiplicity of the zero eigenvalue reflects the fact that there were

already two arbitrary constants, α and δ in this balance (δ will have to be later sacrificed

in order for that balance to satisfy the constraint Eq. (5.4.8)). We can thus write

x = αΥ + · · · , (5.4.74)

y = α + · · · , (5.4.75)

w = δΥ−2 + · · · , (5.4.76)

so that as Υ → 0 a collapse-brane II singularity arises, i.e.,

a → 0, a′ → α, ρ →∞, α 6= 0. (5.4.77)
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Finally we come to the balance −1/2B5 = {(α, 0, 0), (0,−1, r)}. This has

−1/2K5 = Df (α, 0, 0)− diag(0,−1, r) =




0 1 0

0 1 0

0 0 −r


 , (5.4.78)

and

spec(−1/2K5) = {1, 0,−r}, (5.4.79)

so we shall have to set r = 1 in order to have the −1 eigenvalue corresponding to the

arbitrary position of the singularity, ts. After substitution of the forms

x = Σ−∞
j=0cj1Υ

j, y = Σ−∞
j=0cj2Υ

j−1, z = Σ−∞
j=0cj3Υ

j+1, (5.4.80)

we find that

x = α + c1 1 + · · · , (5.4.81)

y = c1 1 + · · · , (5.4.82)

w = 0 + · · · . (5.4.83)

The compatibility condition is satisfied since

(−1/2K5 − I3)c1 =




−1 1 0

0 0 0

0 0 0


 c1 1




1

1

0


 =




0

0

0


 , (5.4.84)

and we see that as Υ → 0,

x → α, y → c1 1, w → 0, α 6= 0. (5.4.85)
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5.5 Conclusions

The following two tables summarise the overall features of a braneworld consisting of a

flat, or curved three-brane embedded in a five-dimensional bulk space with a scalar field

(Table 5.1), or a perfect fluid (Table 5.2). In what follows, we denote by fs the non-zero

constant that is the limit of a function f on approach to the singularity at Ys, and by FDS,

IDS a finite-distance and an infinite-distance singularity respectively.

Table 5.1: Singularities in the case of a scalar field in the bulk
Balance k Type of singularity

B1 k = 0 FDS: a → 0, a′ →∞, φ →∞
B2 k 6= 0 IDS: a →∞, a′ →∞, φ →∞

Table 5.2: Singularities in the case of a perfect fluid in the bulk
Balance k γ r Type of singularity

γB1 k = 0 γ > −1/2 - FDS: a → 0, a′ →∞, ρ →∞
γ < −1 - FDS: a →∞, a′ →∞, ρ →∞

γB2 k 6= 0 γ < −1/2 - FDS: a → 0, a′ → α, ρ → 0, ρs,∞
γ > −1/2 - IDS: a →∞, a′ →∞, ρ →∞

−1/2B3 k 6= 0 γ = −1/2 r < −2 FDS: a → 0, a′ → α, ρ →∞
r > −2 IDS: a →∞, a′ →∞, ρ →∞

−1/2B4 k = 0,±1 γ = −1/2 - FDS: a → 0, a′ → α, ρ →∞

For a flat brane and for both forms of bulk matter we find that there exists a collapse-

brane I singularity as this is implied by the balances B1 and γB1 with γ > −1/2. When

we consider a scalar field this is the only possible type of FDS that may arise. In contrast,

when a perfect fluid is present in the bulk there are in addition two new types of FDS:

The first one is a very distinct big rip-brane singularity that appears only when a phantom

equation of state is considered (γ < −1). This new possibility is offered by the balance

γB1 and corresponds to a general solution. The second new type of FDS is that of a

collapse-brane II singularity that is implied by the balance −1/2B4. However this feature

is less general than the ones described by the balance γB1. This follows not only because

we had to fix the value of γ equal to −1/2 in the balance −1/2B4, but also because we had
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to sacrifice one arbitrary constant by setting δ = 3/(2A) in order to satisfy the constraint

Eq. (5.4.8). This implies that −1/2B4 describes a particular solution with two arbitrary

constants.

For a non-flat brane on the other hand, the dynamical evolution of the braneworlds

under consideration depends strongly on the form of their bulk matter: although FDSs

cannot arise when a scalar field fills the bulk, they do become possible once this field is

replaced with a perfect fluid. In particular, both −1/2B4 and −1/2B3, with r < −2 offer the

possibility of a collapse-brane II singularity, while the balance γB2 with γ < −1/2 implies

the existence of a FDS around which a → 0 and a′ → α, i.e., a and a′ behave exactly as

in the case of a collapse-brane II singularity but the energy leak into the extra dimension

is monitored each time by the γ parameter that defines the type of fluid (or the dominant

exponent). However, for a non-flat brane there still exists the possibility of escaping the

FDSs and this is suggested by the balances γB2 with γ > −1/2 and −1/2B3 with r > −2.

(Recall that all possible balances in the case of a non-flat brane correspond to particular

solutions with two arbitrary constants.)

It would be interesting to further investigate if the FDSs found here continue to emerge

when we consider the case in which the scalar field coexists with the perfect fluid in the

bulk. The analysis of this more involved case may also shed light to the factors that control

how these two bulk matter components compete on approach to the singularity or even

predict new types of FDSs that might then become feasible.



Chapter 6

Conclusions and future work

Two main themes throughout this thesis were completeness and singularities. In particular,

in Chapter 2 we stated and proved the general completeness theorem of [72] for the case

of an isotropic spacetime. This theorem indicates the underlying reasons that lead to

completeness in the category of isotropic models, some examples of which we analysed

later on in that Chapter.

We continued in Chapter 3 by formulating necessary conditions for the appearance of

finite-time singularities in isotropic universes based entirely on the behaviour of the Hubble

parameter. These conditions provided us with a first classification of such singularities,

a scheme which was then further refined and expanded with the use of the Bel-Robinson

energy. This energy represents the energy of the gravitational field projected in a sense to

a slice in spacetime and it has been previously used for the proof of global-in-time results

(see [206], [207], [208]). Combining the quantities that constitute the Bel Robinson energy

with the pressure and density of the matter fields through the field equations, we were

thus led to a clear picture of how the matter fields influence the nature of the singularities.

The new classification scheme is based on the behaviour of the Hubble parameter, the

Bel-Robinson energy and the scale factor. As it was shown later on in Chapter 4, an

examination of models from the recent literature illustrates that this classification not only

includes all known types of singularities but it also predicts new ones. We believe that
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this classification is complete in the isotropic category in the sense that it depicts all the

different qualities in which singularities may differ. Chapter 3 ended with the formulation

of a relation that holds between the existence of a closed trapped surface and the divergence

of the Bel-Robinson energy; this relation provided us with the information needed to decide

on the fate of isotropic cosmologies and we illustrated this important result with various

examples.

In Chapter 4, we analysed under the prism of our classification a wide variety of

isotropic cosmologies that accommodate during their existence one or even more of the

four highlighted singularity types of our classification scheme, namely a collapse, big-

rip, sudden, or a sudden-rip singularity. There are many more types predicted by our

classification and the search for adequate physical circumstances giving rise to these types

of singularities is a project of future work.

Incorporating these new singularities in the evolution of particular cosmologies will

lead to a precise understanding of the role that these singularities may play in determining

the overall destiny of such cosmologies. Recall from Section 4.3 that it was only after

observations indicated that dark energy may be described by the phantom equation of

state that the possibility of a big-rip singularity was considered seriously for the first time.

This led to the discovery that our universe may face a violent end on approach to which

every bound structure such as galaxies, stars, planetary systems or even atoms would be

ripped apart.

A similar situation may arise in the consideration of models accommodating the not-

so-far studied singularity types of our classification: in the case that some model comes in

agreement with observations we may be able to make predictions about the future evolution

of the observed universe.

Another project of future work is to extend the present classification by first considering

anisotropic and then inhomogeneous spacetimes within the framework of general relativity;

we have already discussed in Chapter 3 (see Section 3.5) the way that the classification

scheme presented in this work is expected to be enriched with singularities that are by
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necessity impossible to occur in isotropic models.

A step towards another direction is to examine how our classification does change when

we abandon general relativity and consider other metric theories of gravity such as f(R)

theories or scalar-tensor gravity. With this examination we will be able to recognise the

way that these different theories of gravity affect the number and types of singularities

that are possible to occur in a given class of spacetimes.

The main body of this thesis ended with Chapter 5 at which point we took a turn from

the classical case of a four-dimensional spacetime to explore the character of singularities

that arise in the different cosmological landscape of braneworlds. Our research focused on

the asymptotic analysis of singularities that may arise during the dynamical evolution of a

three-brane embedded in a five-dimensional bulk space that is inhabited by a scalar field or

a perfect fluid. Our analysis, which was performed with the method of asymptotic splittings

of [76], shows that there are three main possible types of finite-distance singularities which

we call collapse-brane I, II and big rip-brane singularities. A common characteristic of

these singularities is that they act as a reservoir through which all the energy density of

the bulk-matter components may be emptied.

This phenomenon of an infinite leak of energy into the extra dimension was previously

used in [74] as an explanation to the cosmological constant problem. Their model consisted

of a flat three-brane embedded in a five dimensional bulk with a scalar field and exhibited

a collapse-brane I singularity that successfully cut off the extra dimension and swallowed

the vacuum energy, offering thus an explanation for the observed four-dimensional flatness

and the vanishing value of the cosmological constant. We showed that this singularity is

removed to an infinite distance from the brane when instead of a flat brane we considered

a curved one while by altering the matter in the bulk we allowed for the new distinct types

of finite-distance singularities mentioned above to emerge.

Future work in the field of braneworld singularities includes the construction of new

versions of our model with the consideration of other forms of bulk matter such as the

combination of a scalar field and a perfect fluid, or a fluid with unconnected pressure and
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density. Studying different forms of bulk matter may lead to the discovery of new finite-

distance singularities which will help us to draw conclusions about the possible variety of

singularities that these braneworlds can accommodate and hence help to determine their

true range of validity.



Appendix A

Notation and conventions

In this thesis we use the signature (−, +, +, +) for the metric tensor gab. The Riemann

tensor is defined by

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

cfΓ
f
bd − Γa

fdΓ
f
bc, (A.0.1)

where ∂a stands for the partial derivative ∂/∂xa and

Γa
bd =

1

2
gac(∂bgcd + ∂dgcb − ∂cgbd). (A.0.2)

are the Christoffel symbols. The Ricci tensor is defined by contracting the first and the

third index of the Riemann tensor, i.e.,

Rab = Rc
acb. (A.0.3)

The Einstein tensor is given by

Gab = Rab − 1

2
gabR, (A.0.4)

where R is the scalar curvature, R = gabRab.
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In Chapters 2,3,4 we use units so that 8πG = c = 1. The Einstein equations then read

Gab = +Tab (A.0.5)

where Tab is the energy-momentum tensor.

The symbol ∇a stands for the covariant derivative.

We also use the following abbreviations: RW for Robertson-Walker, FRW for Friedmann-

Robertson-Walker, CTS for closed trapped surface, FDS for finite-distance singularity and

IDS for infinite-distance singularity.



Appendix B

Some submanifold geometry formulae

In this appendix we review some useful formulae from submanifold geometry. In Section

B.1, we calculate the extrinsic curvature of the spacelike slices of an arbitrary globally

hyperbolic spacetime. In Subsection B.1.1, we show that the extrinsic curvature of an RW

space is proportional to the Hubble rate. In Section B.2, we derive the basic Gauss-Codazzi

relations that associate the Riemann and the Ricci tensor of the spacelike slices with the

Riemann and the Ricci tensor of the spacetime.

B.1 Extrinsic curvature

Consider a globally hyperbolic spacetime (V , g), that is a spacetime which can be foliated

by Cauchy surfaces Σt ≡ Σ× {t} parametrised by a global time function t, and a smooth

congruence of timelike geodesics in (V , g) orthogonal to the spacelike hypersurfaces Σt. If

na is the unit tangent vector field (nana = −1) to these geodesics, then na is also the unit

normal vector field to the hypersurfaces Σt. The spacetime metric gab induces the spatial

metric hab on Σt given by [77]

hab = gab + nanb. (B.1.1)

It then follows that hab satisfies
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habn
a = 0, habh

b
c = hac. (B.1.2)

To understand the role that hab plays consider a spacetime vector wa. We can split wa

into components tangent and normal to Σt so that

wa = w⊥na + wa
‖ , (B.1.3)

where wa
‖na = 0. If wa is a tangential vector, then wa = wa

‖ and w⊥ = 0, or equivalently

wa = ha
bw

b. (B.1.4)

This condition can be generalised to apply to an arbitrary tensor in the following way: we

say that the tensor T a1...ak
b1...bl

is tangential to Σt if

T a1...ak
b1...bl

= ha1
c1
· · ·hak

ck
hd1

b1
· · ·hdl

bl
T c1...ck

d1...dl
. (B.1.5)

This means that ha
b is the projection operator onto the tangential plane perpendicular to

na.

The extrinsic curvature Kab of Σt is defined as

Kab = ∇anb. (B.1.6)

Therefore the extrinsic curvature describes the bending of Σt in the spacetime. To see this

more clearly, consider the orthogonal deviation vector ξa representing the spatial infinites-

imal displacement between two neighboring geodesics of the congruence. Then Lnξa = 0,

which means that nb∇bξ
a = ξb∇bn

a = Ka
b ξb. The last equality implies that the extrinsic

curvature measures the failure of na to be parallelly transported along a spacelike geodesic

with tangent vector ξa. In the same time, the first equality says that this failure is equal

to the failure of ξa to be parallelly transported along the timelike geodesic with tangent
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na. This means that an observer on one of the geodesics would see a nearby geodesic being

stretched and twisted [209].

Note that Kab is purely spatial because Kabn
b = 0. Since we have considered a

hypersurface-orthogonal congruence of geodesics, it can be proved (cf. [77], p. 217) that

the rotation ωab, defined by ωab = 1
2
(∇bna −∇anb) = K[ba], is zero and hence the extrinsic

curvature tensor is symmetric Kab = Kba. We can therefore write

2Kab = ∇anb +∇bna. (B.1.7)

The right hand side of the above equation equals the Lie derivative of gab with respect to

na, hence

Kab =
1

2
Lngab =

1

2
Ln(hab − nanb) =

1

2
Lnhab − 1

2
Ln(nanb). (B.1.8)

But

Ln(na)nb = (nc∇cna + nc∇an
c)nb =

(
gadn

c∇cn
d +

1

2
∇a(ncn

c)

)
nb = 0, (B.1.9)

because of the geodesic equation nc∇cn
d = 0, and the fact that ncnc = −1. Using this and

the Leibnitz rule in Eq. (B.1.8), we find the following formula for the extrinsic curvature:

Kab =
1

2
Lnhab. (B.1.10)

Since a Gaussian coordinate system is adapted to na, we finally get

Kab =
1

2

∂hab

∂t
. (B.1.11)

This relation states that the extrinsic curvature is the rate of change of the spatial metric

hab along the congruence.
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B.1.1 Extrinsic curvature for a RW space

Consider now a RW metric, i.e., one with

ds2 = −dt2 + a2(t)
(
dr2 + f 2(r)(dθ2 + sin2 θdφ2)

)
, (B.1.12)

where

f(r) =





r, k = 0

sin r, k = 1

sinh r, k = −1.

(B.1.13)

Then by the use of Eq. (B.1.11), we find

K11 = a(t)ȧ(t),

K22 = f 2(r)a(t)ȧ(t),

K33 = f 2(r) sin2 θ a(t)ȧ(t).

Now, since the spatial norm of a 2-covariant tensor Xij is given by

|X|2 = gijgklXikXjl i, j, k, l = 1, 2, 3, (B.1.14)

we find that the norm of the extrinsic curvature is given by

|K|2 = gijgrsKirKjs = (g11)2K2
11 + (g22)2K2

22 + (g33)2K2
33 = 3

ȧ2(t)

a2(t)
= 3H2(t), (B.1.15)

where H(t) is the Hubble expansion rate, H = ȧ/a.

B.2 Gauss-Codazzi formalism

As we saw in the previous Section, the metric gab induces a Riemannian metric hab on each

hypersurface Σt. We know that there exists a unique derivative operator associated with
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this metric, which we denote by Dc. It can be proved that Dc is given by [77]

DcT
a1...ak
b1...bl

= ha1
d1

. . . he1
bl

hf
c∇fT

d1...dk
e1...el

. (B.2.1)

In turn Dc determines a curvature tensor (3)Rd
abc on Σt. This tensor is defined in analogy

with the four dimensional case by the relation

DaDbuc −DbDauc =(3) Rd
abcud. (B.2.2)

Our goal is to find the relation between the Riemann tensor of the hypersurface (3)Rd
abc

and the Riemann tensor of the whole spacetime Rd
abc (Eq. B.2.12 below). We start by

calculating DaDbuc:

DaDbuc = Da(h
e
ch

d
b∇due) = hg

bh
k
ch

f
a∇f (h

e
kh

d
g∇due)

= hg
bh

k
ch

e
kh

d
gh

f
a(∇f∇due) + hd

gh
g
bh

k
ch

f
a(∇due)∇fh

e
k

+ hg
bh

k
ch

f
ah

e
k(∇due)(∇fh

d
g). (B.2.3)

But by the use of

hf
ah

k
c∇fh

e
k = hf

ah
k
c∇f (g

e
k + nkn

e)

= hf
ah

k
c (∇fnk)n

e + hf
ah

k
cnk∇fn

e + hf
ah

k
c∇fg

e
k

= hk
cKakn

e = Kacn
e, (B.2.4)

Eq. (B.2.3) becomes,

DaDbuc = hg
bh

d
gh

k
ch

e
kh

f
a(∇f∇due) + Kacn

ehd
b(∇due) + he

cKabn
d(∇due). (B.2.5)

Now since

hd
b(∇due)n

e = hd
b∇d(uen

e)− hd
b(∇dn

e)ue = −Ke
b ue, (B.2.6)
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we find for DaDbuc,

DaDbuc = hf
ah

d
bh

e
c∇f∇due + he

cKabn
d∇due −Ke

bueKac. (B.2.7)

Similarly, we get an analogous expression for DbDauc,

DbDauc = hd
bh

f
ah

e
c∇d∇fue + he

cKban
d∇due −Ke

aueKbc. (B.2.8)

Subtracting Eqs. (B.2.3) and (B.2.8) we have that

DaDbuc −DbDauc = −KacK
e
b ue + KbcK

e
aue + hf

ah
d
bh

e
c(∇f∇due −∇d∇fue)

= −KacK
e
b h

d
eud + KbcK

e
ah

d
eud + hf

ah
d
bh

e
cR

j
fdeuj

= −KacK
d
b ud + KbcK

d
aud + hf

ah
d
bh

e
ch

d
jR

j
fdeud. (B.2.9)

Then from Eq. (B.2.9) and Eq. (B.2.2) follows the first Gauss-Codazzi relation:

(3)Rd
abc = hf

ah
d
bh

e
ch

d
jR

j
fde −KacK

d
b + KbcK

d
a . (B.2.10)

In Gaussian normal coordinates it holds that

hf
a = hfλhλa = δf

a , (B.2.11)

so that Eq. (B.2.10) becomes

(3)Rd
abc = Rd

abc −KacK
d
b + KabK

d
c , (B.2.12)

where we have used the fact that KbcK
d
a = glcg

laKabK
d
a = KabK

d
c .

Now we can use the Eq. (B.2.12) in order to deduce the analogous relation that holds

between the Ricci tensor of the hypersurface (3)Rab and the Ricci tensor of the spacetime,
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Rab. For that purpose, we start by calculating the component Rn
anb (cf. [210], pp. 163-164):

Rd
arbndn

rhb
qh

a
m = (∇a∇rnb −∇r∇anb)n

rhb
qh

a
m = (∇aKrb)n

rhb
qh

a
m − (∇rKab)n

rhb
qh

a
m

= ∇a(Krbn
rhb

qh
a
m)−Krb(∇an

r)hb
qh

a
m −Krbn

r∇a(h
b
qh

a
m)

− (£nKab −Krb∇an
r −Kar∇bn

r)hb
qh

a
m

= (KarK
r
b −£nKab)h

b
qh

a
m, (B.2.13)

so that

Rd
arbndn

r = KarK
r
b −£nKab. (B.2.14)

Introducing Gaussian-normal coordinates and contracting the first and the third index,

we have that

Rn
anb = −KarK

r
b +

∂Kab

∂n
. (B.2.15)

The Ricci tensor is then given by

Rab = Rm
amb + Rn

anb =(3) Rab + KabK − 2KanKn
b +

∂Kab

∂n
. (B.2.16)

We can work in a similar way for the case of a timelike hypersurface with normal vector

na (now nana=1). Both cases of a spacelike and timelike normal vector can be treated at

the same time throughout the previous calculations by using the symbol ε(n) = nana = ±1.

In particular, with the use of ε, the key equations (B.1.1), (B.2.12), (B.2.14) and (B.2.16)

can be written in the following form:

hab = gab − ε(n)nanb, (B.2.17)

(3)Rd
abc = Rd

abc + ε(n)(KacK
d
b −KabK

d
c ), (B.2.18)

Rn
anbε(n) = KarK

r
b −£nKab, (B.2.19)

Rab = (3)Rab + ε(n)

(
−KabK + 2KanK

n
b −

∂Kab

∂n

)
. (B.2.20)
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Appendix C

Bel-Robinson energy

This appendix deals with the notion of the Bel-Robinson energy. In Section C.1, we give

the definition of the Bel-Robinson energy for the general form of a sliced space and in

Subsection C.1.1, we calculate the Bel-Robinson energy of a RW space. In the end of

the Subsection C.1.1, we show that the null energy condition in closed or flat accelerating

universes translates into an inequality satisfied by the electric parts of the Bel-Robinson

energy.

C.1 Definition

The Bel-Robinson energy and related quantities play an important role in proving global

properties of spacetimes. For example, they were used in [208], [207] to prove global

existence results in the case of asymptotically flat and cosmological spacetimes respectively.

In this thesis, the Bel-Robinson energy is used for the purposes of classification of spacetime

singularities.

The Bel-Robinson energy is a kind of energy of the gravitational field projected in a

sense to a slice in spacetime. Consider the sliced spacetime with metric

(3+1)g ≡ −N2(θ0)2 + gij θiθj, θ0 = dt, θi ≡ dxi + βidt, (C.1.1)
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where N = N(t, xi) is the lapse function and βi(t, xj) is the shift function. The 2-covariant

spatial electric and magnetic tensors are defined as follows

Eij = R0
i0j, (C.1.2)

Dij =
1

4
ηihkηjlmRhklm, (C.1.3)

Hij =
1

2
N−1ηihkR

hk
0j , (C.1.4)

Bji =
1

2
N−1ηihkR

hk
0j , (C.1.5)

where ηijk is the volume element of the space metric gt ≡ gijdxidxj. These four time-

dependent space tensors comprise what is called a Bianchi field, (E,H, D, B), a very im-

portant frame field used to prove global in time results, cf. [94]. The Bel-Robinson energy

at time t is given by

B(t) =
1

2

∫

Mt

(|E|2 + |D|2 + |B|2 + |H|2) dµgt , (C.1.6)

where by |X|2 = gijgklXikXjl we denote the spatial norm of the 2-covariant tensor X.

C.1.1 Bel-Robinson energy of an isotropic universe

Consider the RW metric (2.1.2). In order to compute the Bel-Robinson energy at time t,

B(t), we first calculate the two covariant spatial tensors Eij and Dij using relations (C.1.2)

and (C.1.3). These relations give

E11 = aä,

E22 = f 2aä,

E33 = f 2 sin2 θ aä,

while
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D11 = f−2(1− f ′2 + f 2ȧ2),

D22 = f 2

(
ȧ2 − f ′′

f

)
,

D33 = f 2 sin2 θ

(
ȧ2 − f ′′

f

)
,

where a prime denotes the differentiation of f ≡ f(r) with respect to r, while a dot denotes

the differentiation of a ≡ a(t) with respect to t. The magnetic tensors Hij, Bji make no

contribution to the Bel-Robinson energy since for a RW metric we have that Rhk
0j = 0 for

h, k, j = 1, 2, 3.

Next, we make use of Eq. (B.1.14) in order to calculate the spatial norms of the two

electric tensors. We find

|E|2 = (g11)2E2
11 + (g22)2E2

22 + (g33)2E2
33 = 3

ä2

a2
, (C.1.7)

and

|D|2 = (g11)2D2
11 + (g22)2D2

22 + (g33)2D2
33 =

(
1− f ′2

a2f 2
+

ȧ2

a2

)2

+ 2

(
ȧ2

a2
− f ′′

fa2

)2

. (C.1.8)

It then follows from the form of f(r) (cf. Eq. (2.1.3)) that

1− f ′2

f 2
= −f ′′

f
= k, (C.1.9)

where k is the constant curvature of the spatial slice. We can therefore write |D| in the

form

|D|2 = 3

(
ȧ2

a2
+

k

a2

)2

. (C.1.10)

The Bel-Robinson energy at time t is then given by
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B(t) =
C

2

(|E|2 + |D|2) =
3C

2

(
ä2

a2
+

(
ȧ2

a2
+

k

a2

)2
)

, (C.1.11)

where C is the constant volume of (or in, in the case of a non-compact space) the three

dimensional slice at time t.

Finally, we have the following proposition that translates the null energy condition

into an inequality satisfied by the electric parts of the Bel-Robinson energy.

Proposition C.1.1 In an accelerating flat or closed universe the null energy condition is

equivalent to the inequality |E| ≤ |D|.

Proof. The null energy condition demands that

Rabk
akb ≥ 0, for every null vector ka. (C.1.12)

In an isotropic universe with metric described by Eqs. (2.1.2) and (2.1.3), the above

condition translates to

Rabk
akb = R11(k

1)2 + R22(k
2)2 + R33(k

3)2 + R44(k
4)2

=

(
2ȧ2 − 2

f ′′

f
+ aä

)
(k1)2 + (1− f ′2 − ff ′′ + f 2(2ȧ2 + aä))(k2)2+

+ sin2 θ(1− f ′2 − ff ′′ + f 2(2ȧ2 + aä))(k3)2 − 3
ä

a
(k4)2. (C.1.13)

Keeping in mind that 1− f ′2 = −ff ′′, we can write Eq. (C.1.13) as follows

Rabk
akb =

(
2
ȧ2

a2
+

ä

a
− 2

f ′′

fa2

)
[a2((k1)2 + f 2((k2)2 + sin2 θ(k3)2))− (k4)2] +

+

(
−3

ä

a
+ 2

ȧ2

a2
+

ä

a
− 2

f ′′

fa2

)
(k4)2 =

(
−2

ä

a
+ 2

ȧ2

a2
− 2

f ′′

fa2

)
(k4)2.

Therefore if the null energy condition, Eq. (C.1.12), holds then

− ä

a
+

ȧ2

a2
+

k

a2
≥ 0, (C.1.14)
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where we have used the fact that −f ′′/f = k, with k being the constant curvature of the

spatial slices. Since we have assumed a k ≥ 0 accelerating universe, the electric parts are

given by

|D| =
√

3

(
ȧ2

a2
+

k

a2

)
,

|E| =
√

3
ä

a

hence Eq.(C.1.14) implies that |E| ≤ |D|.
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Appendix D

Energy-momentum tensor of a scalar

field

In order to define the energy-momentum tensor for a scalar field we start from the action

Sφ =

∫
Lφ

√−gd4x, (D.0.1)

where the Lagrangian density is

Lφ = −1

2
(∇cφ∇cφ + 2V (φ)) = −1

2
(gdc∇dφ∇cφ + 2V (φ)). (D.0.2)

The energy-momentum tensor for a matter field is defined to be, cf. [77], p. 455,

Tµν ≡ − 2√−g

δ(Lmatter

√−g)

δgµν

, (D.0.3)

for the Lagrangian (D.0.2), we find that

Tµν =
2√−g

(
(∇cφ∇cφ + 2V (φ))

δ(
√−g)

δgµν
+
√−g

δ(gµν∇µφ∇νφ)

δgµν

)
= (D.0.4)

=
1√−g

(
(∇cφ∇cφ + 2V (φ))(−1

2

√−ggµν) +∇µφ∇νφ
√−g

)
. (D.0.5)
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Thus the energy-momentum tensor of a scalar field is

Tµν = ∇µφ∇νφ− 1

2
gµν(∇cφ∇cφ + 2V (φ)), (D.0.6)

or equivalently,

Tµν = ∇µφ∇νφ− 1

2
gµν(g

dc∇dφ∇cφ + 2V (φ)). (D.0.7)

Comparing this with the energy-momentum tensor of a perfect fluid,

Tµν = (µ + p)uµuν + pgµν , (D.0.8)

where uµ is the unit timelike vector (uµuµ = −1), it follows that

p = Lφ = −1

2
(gdc∇dφ∇cφ + 2V (φ)), (D.0.9)

and

(µ + p)uµuν = ∇µφ∇νφ. (D.0.10)

Contracting the above equation, we find [99]

−(µ + p) = ∇νφ∇νφ = −2Lφ − 2V (φ), (D.0.11)

and substituting for the pressure from Eq. (D.0.9) leads to

µ = Lφ + 2V (φ). (D.0.12)

In a homogeneous universe, a scalar field is a function of time only and hence Eqs. (D.0.9),

(D.0.12) give the standard result,

p =
φ̇2

2
− V (φ), (D.0.13)

µ =
φ̇2

2
+ V (φ). (D.0.14)
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The equation of motion of a scalar field can be found either by using the conservation law

of energy, i.e., ∇νTµν = 0, or by variation of the action Sφ with respect to φ. We use the

second approach. We have that:

δLφ

δφ
=

∂Lφ

∂φ
−

(
∂Lφ

∂(φ,µ)

)

,µ

= 2V ′(φ)− 2∇c∇cφ, (D.0.15)

and so δLφ/δφ = 0 gives directly

2φ− V ′(φ) = 0, (D.0.16)

where 2φ = (−g)−1/2∇d((−g)1/2gdc∇cφ).
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Appendix E

The method of asymptotic splittings

Consider a system of n first order ordinary differential equations

ẋ = f(x), (E.0.1)

where x = (x1, . . . , xn) ∈ Rn and f(x) = (f1(x), . . . , fn(x)). The general solution of the

above system contains n arbitrary constants and hence describes the behaviour of the

system for arbitrary initial data. A particular solution on the other hand contains less

than n arbitrary constants and describes the behaviour of the system for a subset of initial

data.

We say that a general or particular solution of the above dynamical system exhibits a

finite-time singularity if there exists a ts ∈ R and a x0 ∈ Rn such that

lim
t→ts

‖x(t;x0)‖ → ∞, (E.0.2)

where ‖ ¦ ‖ is any Lp norm.

The purpose of singularity analysis (cf. [76], [211], pp. 129-155) is to build series

expansions of solutions around the presumed position of a singularity at ts in order to

study the different asymptotic behaviours of the solutions of the system (E.0.1).

In particular, we look for series expansions of solutions that take the form of a Puiseux
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series,

x = τp
(
a + Σ∞

i=1ciτ
i/s

)
, (E.0.3)

where τ = t− ts, p ∈ Qn, s ∈ N.

The method of asymptotic splittings for the system (E.0.1) is realised in the following

steps1:

• First, we find all the possible weight-homogeneous decompositions of the vector field

f by splitting it into components f (j):

f = f (0) + f (1) + . . . + f (k), (E.0.4)

with each of these components being weight homogeneous, that is to say

f (j)(aτp) = τp+1(q(j)−1)f (j)(a) j = 0, . . . , k, (E.0.5)

where a ∈ Rn and q(j) are the positive non-dominant exponents that are defined by (E.0.7)

below.

• We then substitute the forms x = aτp in the system ẋ = f (0)(x) in order to find

all possible dominant balances, i.e., sets of the form {a,p}. The order of each balance is

defined by the number of the non-zero components of a.

• For each of these balances we check the validity of the following dominance condition

lim
τ→0

Σk
j=1f

(j)(aτp)

τp−1
= 0, (E.0.6)

and define the non-dominant exponents q(j), j = 1, . . . , k by the requirement

Σk
j=1f

(j)(τp)

τp−1
∼ τ q(j)

. (E.0.7)

The balances that cannot satisfy the condition (E.0.6) are then discarded.

1Here we will refer briefly to the basic steps of the method of asymptotic splittings. A detailed analysis
can be found in [76], [212].
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• Next, we compute the Kovalevskaya matrix K defined by

K = Df (0)(a)− diagp, (E.0.8)

where Df (0)(a) is the Jacobian matrix of f (0) evaluated on a.

• We calculate the spectrum of the K-matrix, spec(K), that is the set of its n eigen-

values, called also the K-exponents. The arbitrary constants of any particular or general

solution first appear in those terms in the series (E.0.3) whose coefficients ck have indices

k = ρs, where ρ is a non-negative K-exponent and s is the least common multiple of the

denominator of the set consisting of the non-dominant exponents q(j) and of the positive

K-exponents (cf. [76], [212]). The number of non-negative K-exponents equals therefore

the number of arbitrary constants that appear in the series expansions of (E.0.3). There

is always the −1 exponent that corresponds to an arbitrary constant that is the position

of the singularity at ts. A dominant balance corresponds thus to a general solution if it

possesses n−1 non-negative K-exponents (the nth arbitrary constant is the position of the

singularity, ts).

• Next, we substitute the Puiseux series:

xi = Σ∞
j=0cjiτ

pi+j/s, i = 1, . . . , n, (E.0.9)

in the system (E.0.1).

• We find the coefficients cj by solving the recursion relations

Kcj − j

s
cj = Pj(c1, . . . , cj−1) (E.0.10)

where Pj are polynomials that are read off from the original system.

• We verify that for every j = ρs, with ρ a positive K-exponent, the following com-

patibility conditions hold:

υᵀ ·Pj = 0, (E.0.11)
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where υ is the eigenvector associated with the positive K-exponent ρ.

• We repeat the procedure for each possible decomposition.

We note here that if the compatibility condition is violated in some eigenvalue then

the Puiseux series is not valid and instead we have to substitute a ψ-series, which is a

series of the form

x = τp
(
a + Σ∞

i=1Σ
∞
j=1cijτ

i/s(τ ρ log τ)j/s
)
, (E.0.12)

where ρ is the first K-exponent for which the compatibility condition is violated. The rest

of the procedure in this case is the same as before.



Bibliography

[1] S. W. Hawking, G. F. R. Ellis, The large-scale structure of space-time, Cambridge

University Press, 1973.

[2] G. W. Gibbons, Phantom matter and the cosmological constant, [arXiv:hep-

th/0302199].

[3] R. R. Caldwell et al, Phantom energy and cosmic doomsday, Phys. Rev. Lett. 91 (2003)

071301, [arXiv:astro-ph/0302506].

[4] A. V. Yurov, Phantom scalar fields result in inflation rather than Big Rip, [arXiv:astro-

ph/0305019].

[5] P. Singh, M. Sami, N. Dadhich, Cosmological dynamics of phantom field , Phys. Rev.

D68 (2003) 023522, [arXiv:hep-th/0305110].

[6] P. F. Gonzalez-Diaz, You need not be afraid of phantom energy, Phys. Rev. D68 (2003)

021303, [arXiv:astro-ph/0305559].

[7] L. P. Chimento, R. Lazkoz, Constructing phantom cosmologies from standard scalar

field universes, Phys. Rev. Lett. 91 (2003) 211301, [arXiv:gr-qc/0307111].

[8] M. P. Dabrowski, T. Stachowiak, M. Szydlowski, Phantom cosmologies, Phys. Rev. D68

(2003) 103519, [arXiv:hep-th/0307128].

[9] H. Stefancic, Generalized phantom energy, Phys. Lett. B586 (2004) 5-10, [arXiv:astro-

ph/0310904].

123



124 BIBLIOGRAPHY

[10] V. B. Johri, Phantom cosmologies, Phys. Rev. D70 (2004) 041303, [arXiv:astro-

ph/0311293].

[11] M. Sami, A. Toporensky, Phantom field and the fate of universe, Mod. Phys. Lett.

A19 (2004) 1509, [arXiv:gr-qc/0312009].

[12] P. F. Gonzalez-Diaz, K-Essential Phantom energy: Doomsday around the corner?

Phys. Lett. B586 (2004) 1-4, [arXiv:astro-ph/0312579].

[13] J. M. Aguirregabiria, L. P. Chimento, R. Lazkoz, Phantom k-essence cosmologies,

Phys. Rev. D70 (2004) 023509, [arXiv:astro-ph/0403157].

[14] L. R. Chimento and R. Laskoz, On big rip singularities, Mod. Phys. Lett. A19 (2004)

2479-2484, [arXiv:gr-qc/0405020].

[15] E. Elizalde, S. Nojiri, Sergei D. Odintsov, Late-time cosmology in (phantom) scalar-

tensor theory: dark energy and the cosmic speed-up, Phys. Rev. D70 (2004) 043539,

[arXiv:hep-th/0405034].

[16] L. P. Chimento, R. Lazkoz, Unified phantom cosmologies, Int. J. Mod. Phys. D14

(2005) 587-598, [arXiv:astro-ph/0405518].

[17] P. F. Gonzalez-Diaz, J. A. Jimenez-Madrid, Phantom inflation and the “Big trip”,

Phys. Lett. B596 (2004) 16-25, [arXiv:hep-th/0406261].

[18] A. Vikman, Can dark energy evolve to the Phantom?, Phys. Rev. D71 (2005) 023515,

[arXiv:astro-ph/0407107].

[19] S. Nesseris, L. Perivolaropoulos, The fate of bound systems in phantom and

quintessence cosmologies, Phys. Rev. D70 (2004) 123529, [arXiv:astro-ph/0410309].

[20] R. J. Scherrer, Phantom dark energy, cosmic doomsday, and the coincidence problem,

Phys. Rev. D71 (2005) 063519, [arXiv:astro-ph/0410508].



BIBLIOGRAPHY 125

[21] M. P. Dabrowski, T. Stachowiak, Phantom Friedmann cosmologies and higher-order

characteristics of expansion, Annals Phys. 321 (2006) 771-812, [arXiv:hep-th/0411199].

[22] L. Perivolaropoulos, Constraints on linear-negative potentials in quintessence and

phantom models from recent supernova data, Phys. Rev. D71 (2005) 063503, [arXiv:astro-

ph/0412308].

[23] R. Curbelo, T. Gonzalez, I. Quiros, Interacting phantom energy and avoidance of the

big rip singularity, Class. Quant. Grav. 23 (2006) 1585-1602, [arXiv:astro-ph/0502141].

[24] H. Stefancic, Dark energy transition between quintessence and phantom regimes - an

equation of state analysis, Phys. Rev. D71 (2005) 124036, [arXiv:astro-ph/0504518].

[25] V. Faraoni, Phantom cosmology with general potentials, Class. Quant. Grav. 22 (2005)

3235-3246, [arXiv:gr-qc/0506001].

[26] S. Capozziello, S. Nojiri, S. D. Odintsov, Unified phantom cosmology: inflation, dark

energy and dark matter under the same standard, Phys. Lett. B632 (2006) 597-604,

[arXiv:hep-th/0507182].

[27] H. K. Jassal, J. S. Bagla, T. Padmanabhan, The vanishing phantom menace,

[arXiv:astro-ph/0601389].

[28] S. K. Srivastava, Gravitational origin of phantom dark energy and late cosmic accel-

eration, Int. J. Mod. Phys. A22 (2007) 1123-1134, [arXiv:hep-th/0605010].

[29] H. M. Sadjadi, M. Alimohammadi, Transition from quintessence to phantom phase in

quintom model, Phys. Rev. D74 (2006) 043506, [arXiv:gr-qc/0605143].

[30] R. Gannouji, D. Polarski, A. Ranquet, A. A. Starobinsky, Scalar-tensor models of

normal and phantom dark energy, JCAP 0609 (2006) 016, [arXiv:astro-ph/0606287].

[31] L. P. Chimento, R. Lazkoz, R. Maartens, I. Quiros, Crossing the phantom divide

without phantom matter, JCAP 0609 (2006) 004, [arXiv:astro-ph/0605450].



126 BIBLIOGRAPHY

[32] R. Lazkoz, R. Maartens, E. Majerotto, Observational constraints on phantom-like

braneworld cosmologies, Phys. Rev. D74 (2006) 083510, [arXiv:astro-ph/0605701].

[33] J. Kujat, R. J. Scherrer, A. A. Sen, Phantom dark energy models with negative kinetic

term, Phys. Rev. D74 (2006) 083501, [arXiv:astro-ph/0606735].

[34] S. K. Srivastava, Scale factor dependent equations of state for curvature inspired dark

energy, phantom barrier and late cosmic acceleration, Phys. Lett. B643 (2006) 1-4,

[arXiv:astro-ph/0608241].

[35] Y.-H. Wei, Critical state of phantom universe, [arXiv:astro-ph/0607359].

[36] N. Cruz, S. Lepe, F. Pena, Dissipative generalized Chaplygin gas as phantom dark

energy, Phys. Lett. B646 (2007) 177-182, [arXiv:gr-qc/0609013].

[37] M. Kunz, D. Sapone, Crossing the phantom divide, Phys. Rev. D74 (2006) 123503,

[arXiv:astro-ph/0609040].

[38] F. Briscese, E. Elizalde, S. Nojiri, S. D. Odintsov, Phantom scalar dark energy as

modified gravity: understanding the origin of the Big Rip singularity, Phys. Lett. B646

(2007) 105-111, [arXiv:hep-th/0612220].

[39] L. Amendola, S. Tsujikawa, Phantom crossing, equation-of-state singularities, and

local gravity constraints in f(R) models, Phys. Lett. B660 (2008) 125-132, [arXiv:astro-

ph/0705.0396].

[40] S. K. Srivastava, Can phantom-dominated universe decelerate also in future?,

[arXiv:gr-qc/0707.1376].

[41] J. E. Madriz Aguilar, M. Bellini, Passing to an effective 4D phantom cosmology from

5D vacuum theory of gravity, Phys. Lett. B660 (2008) 107-112, [arXiv:gr-qc/0709.3543].

[42] J. E. Madriz Aguilar, M. Bellini, M. A. S. Cruz, Phantom cosmology with a decay-

ing cosmological function Λ(t) induced from five-dimensional (5D) geometrical vacuum,

[arXiv:gr-qc/0710.4115].



BIBLIOGRAPHY 127

[43] A. Shatskiy, Dynamics of phantom matter, J. Exp. Theor. Phys. 104 (2007) 743-750,

[arXiv:gr-qc/0711.0226].

[44] V. Dzhunushaliev, V. Folomeev, 4D static solutions with interacting phantom fields,

[arXiv:gr-qc/0711.2840].

[45] J. C. Fabris, D. F. Jardim, S. V. B. Goncalves, Instability of scalar perturbation in a

phantomic cosmological scenario, [arXiv:gr-qc/0712.0272].

[46] Y.-S. Piao “Phantom” inflation in warped compactification, [arXiv:gr-qc/0712.3328].

[47] S. T. Hong, J. Lee, T. H. Lee, P. OH, A higher dimensional cosmological model with

a phantom field, [arXiv: gr-qc/0801.3781].

[48] H. Stephancic, Expansion around the vacuum equation of state-sudden future sin-

gularities and asymptotic behaviour, Phys. Rev. D71 (2005) 084024, [arXiv: astro-

ph/0411630v2].

[49] M. P. Dabrowski, A. Balcerzak, Big-rip, sudden future, and other exotic singularities in

the universe, to appear in the proceedings of MG11, Berlin 2006, [arXiv:gr-qc/0701056].

[50] M. Bouhmadi-Lopez, P. F. Gonzalez-Diaz, P. Martin-Moruno, On the generalised

Chaplygin gas: worse than a big rip or quieter than a sudden singularity?, [arXiv:gr-

qc/0707.2390].

[51] P. F. Gonzalez-Diaz, Axion phantom energy, Phys. Rev. D69 (2004) 063522, [arXiv:

hep-th/0401082].

[52] S. Nojiri, S. D. Odintsov and S. Tsujikawa, Properties of singularities in (phantom)

dark energy universe, Phys. Rev. D71 (2005) 063004, [arXiv: hep-th/0501025].

[53] R. R. Caldwell, A Phantom Menace? Cosmological consequences of a dark energy

component with super-negative equation of state, Phys. Lett. B545 (2002) 23-29, [arXiv:

astro-ph/9908168].



128 BIBLIOGRAPHY

[54] L. Page et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) observa-

tions: interpretation of the TT and TE angular power spectrum peaks, Astrophys. J.

Suppl. 148 (2003) 233, [arXiv:astro-ph/0302220].

[55] D. N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year

results: implications for cosmology, ApJS 170 (2007) 377, [arXiv:astro-ph/0603449].

[56] J. D. Barrow, Sudden future singularities, Class. Quant. Grav. 21 (2004) L79-L82,

[arXiv: gr-qc/0403084].

[57] S. Nojiri, S. D. Odintsov, Quantum escape of sudden future singularity, Phys. Lett.

B595 (2004) 1-8, [arXiv:hep-th/0405078].

[58] K. Lake, Sudden future singularities in FLRW cosmologies, Class. Quant. Grav. 21

(2004) L129, [arXiv:gr-qc/0407107].

[59] J. D. Barrow, More general sudden singularities, Class. Quant. Grav. 21 (2004) 5619-

5622, [arXiv:gr-qc/0409062].

[60] M. P. Dabrowski, Inhomogenized sudden future singularities, Phys. Rev. D71 (2005)

103505, [arXiv:gr-qc/0410033].

[61] L. F. Jambrina, R. Lazkoz, Geodesic behavior of sudden future singularities, Phys.

Rev. D70 (2004) 121503, [arXiv:gr-qc/0410124].

[62] J. D. Barrow, C. G. Tsagas, New isotropic and anisotropic sudden singularities , Class.

Quant. Grav. 22 (2005) 1563-1571, [arXiv:gr-qc/0411045].

[63] A. K. Chu, Comments on “Sudden future singularities”, [arXiv:astro-ph/0501009].

[64] M. P. Dabrowski, Statefinders, higher-order energy conditions and sudden future sin-

gularities, Phys. Lett. B625 (2005) 184-188, [arXiv:gr-qc/0505069].



BIBLIOGRAPHY 129

[65] C. Cattoen, M. Visser Necessary and sufficient conditions for big bangs, bounces,

crunches, rips, sudden singularities, and extremality events, Class. Quant. Grav. 22

(2005) 4913-4930, [arXiv:gr-qc/0508045].

[66] M. P. Dabrowski, T. Denkiewicz, M. A. Hendry, How far is it to a sudden future

singularity of pressure?, Phys. Rev. D75 (2007) 123524, [arXiv:astro-ph/0704.1383].

[67] S. Cotsakis, I. Klaoudatou, Future singularities of isotropic cosmologies, J. Geom.

Phys. 55 (2005) 306-315, [arXiv:gr-qc/0409022].

[68] S. Cotsakis, I. Klaoudatou, Modern approaches to cosmological singularities, J. Phys.

Conf. Ser. 8 (2005) 150, [arXiv:gr-qc/0501104].

[69] S. Cotsakis, I. Klaoudatou, Singular isotropic cosmologies and Bel-Robinson energy,

J.-M. Alimi and A. Fuzfa (eds.), AIP (2006) 842-7, [arXiv:gr-qc/0603130].

[70] S. Cotsakis, I. Klaoudatou, Cosmological singularities and Bel-Robinson energy, J.

Geom. Phys. 57 (2007) 1303-1312, [arXiv:gr-qc/0604029].

[71] I. Klaoudatou, S. Cotsakis, Bel-Robinson energy and the nature of singularities in

isotropic cosmologies, to appear in the Proceedings of the Greek Relativity Meeting

NEB12, June 29-July 2, 2006, Nauplia, Greece, [arXiv:gr-qc/0609077].

[72] Y. Choquet-Bruhat, S. Cotsakis, Global hyperbolicity and completeness, J. Geom.

Phys. 43 (2002) 345-350, [arXiv: gr-qc/0201057].

[73] Y. Choquet-Bruhat, S. Cotsakis, Completeness theorems in general relativity, in Recent

developments in gravity, Proceedings of the 10th Hellenic Relativity Conference, K. D.

Kokkotas and N. Stergioulas eds., World Scientific (2003) 145-149.

[74] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, R. Sundrum, A small cosmological

constant from a large extra dimension, Phys. Lett. B 480 (2000) 193-199, [arXiv:hep-

th/0001197v2].



130 BIBLIOGRAPHY

[75] I. Antoniadis, S. Cotsakis, I. Klaoudatou, Braneworld cosmological singularities, to

appear in the proceedings of MG11, Berlin 2006, [arXiv:gr-qc/0701033].

[76] S. Cotsakis, J. D. Barrow, The Dominant balance at cosmological singularities, J.

Phys. Conf. Series 68 (2007) 012004, [arXiv:gr-qc/0608137].

[77] R. M. Wald, General relativity, University of Chicago Press, 1984.

[78] A. A. Penzias and R. W. Wilson, A measurement of excess antenna temperature at

4080 Mc/s, Astrophys. J. 142 (1965) 419-421.

[79] A. G. Walker, Completely symmetric spaces, J. Lond. Math. Soc. 19 (1944) 219-26.

[80] S. Cotsakis, Global hyperbolicity of sliced spaces, Gen. Rel. Grav. 36 (2004) 1183-1188,

[arXiv: gr-qc/0309048].

[81] R. Geroch, The domain Of dependence, J. Math. Phys. 11 (1970) 437-439.

[82] S. Cotsakis, Talking about singularities, rapporteur contribution to the Parallel Session

on Cosmological Singularities, MG11, Berlin 2006, [arXiv:gr-qc/0703084].

[83] S. K. Srivastava, Future universe with w < −1 without Big Smash, Phys. Lett. B 619

(2005) 1-4, [arXiv:astro-ph/0407048].

[84] P. F. Gonzalez-Diaz, You need not be afraid of phantom energy, Phys. Rev. D68 (2003)

021303, [arXiv:astro-ph/0305559].

[85] G. W. Gibbons, Thoughts on tachyon cosmology, Class. Quant. Grav. 20 (2003) S321-

S346, [arXiv:hep-th/0301117].

[86] G. W. Gibbons, Cosmological evolution of the rolling tachyon, Phys. Lett. (2002),

[arXiv:hep-th/0204008].

[87] E. R. Harrison, Mon. Not. R. Astron. Soc. 137 (1967) 69.



BIBLIOGRAPHY 131

[88] C. B. Collins, The road to singularities and the roses on the way, Gen. Rel. Grav. 9

(1978) 565-568.

[89] A. Borde, et al, Inflationary spacetimes are not past-complete, Phys. Rev. Lett. 90

(2003) 151301, [arXiv:gr-qc/0110012].

[90] R. Penrose, The road to reality, J. Cape, London, 2004.

[91] G. F. R. Ellis, Closed trapped surfaces in cosmology, Gen. Rel. Grav. 35 (2003) 1309-

1319.

[92] J. D. Barrow, Graduated inflationary universes, Phys. Lett. B 235 (1990) 40-43.

[93] S. Foster, Scalar field cosmological models with hard potential walls, [arXiv:gr-

qc/9806113].

[94] Y. Choquet-Bruhat and J. W. York Constraints and evolution in cosmology, in Cos-

mological crossroads, S. Cotsakis and E. Papantonopoulos, Eds. Springer, 2002.

[95] V. R. Gavrilov, V. N. Melnikov, S. T. Abdyrakhmanov, Friedmann universe with dust

and scalar field, Gen. Rel. Grav. 36 (2004) 1579-1592, [arXiv:gr-qc/0403059].

[96] J. D. Barrow, A. R. Liddle, C. Pahud, Intermediate inflation in light of the three-year

WMAP observations, Phys. Rev. D 74 (2006) 127305, [arXiv:astro-ph/0610807].

[97] E. W. Kolb, M. S. Turner, The early universe, Addison-Wesley Publishing Company,

1994.

[98] S. Coleman, Aspects of symmetry, CPU, 1988.

[99] M. S. Madsen, A note on the equation of state of a scalar field, Astrophys. and Space

Sci. 113 (1985) 205-207.

[100] A. R. Liddle, An introduction to cosmological inflation, Trieste (1998) High energy

physics and cosmology 260-295, [arXiv:astro-ph/9901124].



132 BIBLIOGRAPHY

[101] A. R. Liddle and D. H. Lyth, COBE, gravitational waves, inflation and extended

inflation, Phy. Lett. B. 291 (1992) 391-398.

[102] D. H. Lyth, Introduction to cosmology, Trieste HEP Cosmol. (1993) 0069-136,

[arXiv:astro-ph/9312022].

[103] P. J. E. Peebles, Principles of physical cosmology, Princeton University Press, 1993.

[104] T. S. Van Albada and R. Sancisi, Phil. Trans. R. Soc. London A320 (1986) 447.

[105] T. Padmanabhan, Darker side of the universe, 29th International Cosmic Ray Con-

ference 10 (2005) 47-62, [arXiv:astro-ph/0510492].

[106] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1-23.

[107] R. R. Caldwell, R. Dave, P. J. Steinhardt, Cosmological imprint of an energy compo-

nent with general equation of state, Phys. Rev. Lett. 80 (1998) 1582-1585, [arXiv:astro-

ph/9708069].

[108] B. Ratra, P. J. E. Peebles, Cosmological consequences of a rolling homogeneous scalar

field, Phys. Rev. D 37 (1988) 3406-3427.

[109] P. J. E. Peebles, B. Ratra, Cosmology with a time-variable cosmological ‘constant’,

Astrophys. J. 325 (1988) L17.

[110] C. Wetterich, Cosmology and the fate of dilatation symmetry, Nuc. Phys. B 302

(1988) 668.

[111] K. Coble, S. Dodelson, J. Frieman, Dynamical Lambda models of structure formation,

Phys. Rev. D 55 (1997) 1851-1859, [arXiv:astro-ph/9608122v1].

[112] M. S. Turner, M. White, CDM models with a smooth component, Phys. Rev. D 56,

(1997) 4439-4443, [arXiv:astro-ph/9701138v2].

[113] L. Boyle, R. R. Caldwell, M. Kamionkowski, Spintessence! New models for dark

matter and dark energy, Phys. Lett. B 545 (2002) 17-22, [arXiv:astro-ph/0105318].



BIBLIOGRAPHY 133

[114] A. Dev, J. S. Alcaniz, D. Jain, Cosmological consequences of a Chaplygin gas dark

energy, Phys. Rev. D67 (2003) 023515, [arXiv:astro-ph/0209379].

[115] R. Colistete Jr, J. C. Fabris, S. V. B. Gonalves, P. E. de Souza, Bayesian analysis of

the Chaplygin gas and cosmological constant models using the SNe Ia data, Int. J. Mod.

Phys. D13 (2004) 669-694, [arXiv:astro-ph/0303338].

[116] J. V. Cunha, J. S. Alcaniz, J. A. S. Lima, Cosmological constraints on Chaplygin

gas dark energy from galaxy clusters X-ray and supernova data, Phys. Rev. D69 (2004)

083501, [arXiv:astro-ph/0306319].

[117] M. Szydlowski, W. Czaja, Stability of FRW cosmology with generalized Chaplygin

gas, Phys. Rev. D69 (2004) 023506, [arXiv:astro-ph/0306579].

[118] J. C. Fabris, S. V. B. Gonalves, R. de S Ribeiro, Generalized Chaplygin gas with α = 0

and the ΛCDM cosmological model, Gen. Rel. Grav. 36 (2004) 211-216, [arXiv:astro-

ph/0307028].

[119] N. Bilic, R. J. Lindebaum, G. B. Tupper, R. D. Viollier, Nonlinear evolution of

dark matter and dark energy in the Chaplygin-gas cosmology , JCAP 0411 (2004) 008,

[arXiv:astro-ph/0307214].

[120] N. Bilic, R. J. Lindebaum, G. B. Tupper, R. D. Viollier Inhomogeneous Chaplygin

gas cosmology, [arXiv:astro-ph/0310181].

[121] L. P. Chimento, Extended tachyon field, Chaplygin gas and solvable k-essence cos-

mologies , Phys. Rev. D69 (2004) 123517, [arXiv:astro-ph/0311613].

[122] O. Bertolami, Challenges to the generalized Chaplygin gas cosmology, [arXiv:astro-

ph/0403310].

[123] M. Bouhmadi-Lopez, P. Vargas Moniz, FRW Quantum cosmology with a generalized

Chaplygin gas, Phys. Rev. D71 (2005) 063521, [arXiv:gr-qc/0404111].



134 BIBLIOGRAPHY

[124] L. P. Chimento, R. Lazkoz, Large-scale inhomogeneities in modified Chaplygin gas

cosmologies, Phys. Lett. B615 (2005) 146-152, [arXiv:astro-ph/0411068].

[125] R. Colistete Jr., J. C. Fabris, Bayesian analysis of the (generalized) Chaplygin gas

and cosmological constant models using the 157 gold SNe Ia data, Class. Quant. Grav.

22 (2005) 2813-2834, [arXiv:astro-ph/0501519].

[126] M. K. Mak, T. Harko, Chaplygin gas dominated anisotropic brane world cosmological

models, Phys. Rev. D71 (2005) 104022, [arXiv:gr-qc/0505034].

[127] L. P. Chimento, R. Lazkoz, Duality extended Chaplygin cosmologies with a big rip ,

Class. Quant. Grav. 23 (2006) 3195-3204, [arXiv:astro-ph/0505254].

[128] Z. -K. Guo, Y. -Z. Zhang, Cosmology with a variable Chaplygin gas, Phys. Lett. B645

(2007) 326-329, [arXiv:astro-ph/0506091].

[129] X. -H. Meng, M. -G. Hu, J. Ren, Cosmology with extended Chaplygin gas media and

w = −1 crossing, [arXiv:astro-ph/0510357].

[130] J. A. S. Lima, J. V. Cunha, J. S. Alcaniz, A simplified approach for Chaplygin-type

cosmologies, [arXiv:astro-ph/0608469].

[131] N. Bilic, G. B. Tupper, R. D. Viollier, Chaplygin gas cosmology - unification of

dark matter and dark energy, J. Phys. A Math. Theor. 40 (2007) 68776882, [arXiv:gr-

qc/0610104].

[132] P. Pedram, S. Jalalzadeh, S. S. Gousheh, Schrödinger-Wheeler-DeWitt equation

in Chaplygin gas FRW cosmological model, Int. J. Theor. Phys. 46 (2007) 3201-3208,

[arXiv:gr-qc/0705.3587].

[133] W. Chakraborty, U. Debnath, Effect of dynamical cosmological constant in presence

of modified Chaplygin gas for accelerating universe, Astrophys. Space Sci. 313 (2008)

409-417, [arXiv:gr-qc/0705.4147].



BIBLIOGRAPHY 135

[134] M. Bouhmadi-Lpez, R. Lazkoz, Chaplygin DGP cosmologies, Phys. Lett. B654 (2007)

51-57, [arXiv:astro-ph/0706.3896].

[135] P. Pedram, S. Jalalzadeh, Quantum FRW cosmological solutions in the presence of

Chaplygin gas and perfect fluid, Phys. Lett. B659 (2008) 6-13, [arXiv:gr-qc/0711.1996].

[136] M. R. Setare, Holographic Chaplygin DGP cosmologies, [arXiv:hep-th/0712.4004].

[137] C. S. J. Pun, L. . Gergely, M. K. Mak, Z. Kovcs, G. M. Szab, T. Harko, Vis-

cous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models,

[arXiv:gr-qc/0801.2008].

[138] R. A. Sussman, A numerical approach to inhomogeneous cosmological sources: the

Chaplygin gas and mixtures of dark matter and dark energy, [arXiv:gr-qc/0801.3324].

[139] L. Randall, Warped passages: Unravelling the mysteries of the universe’s hidden

dimensions, HarperCollins Publishers (2005).

[140] P. Binetruy, C. Deffayet, U. Ellwanger, D. Langlois, Brane cosmological evolution

in a bulk with cosmological constant, Phys. Lett. B477 (2000) 285-291, [arXiv:hep-

th/9910219].

[141] C. P. Burgess, R. C. Myers, F. Quevedo, A Naturally small cosmological constant on

the brane? , Phys. Lett. B495 (2000) 384-393, [arXiv:hep-th/9911164].

[142] P. Kanti, I. I. Kogan, K. A. Olive, M. Pospelov, Single-brane cosmological solu-

tions with a stable compact extra dimension, Phys. Rev. D61 (2000) 106004, [arXiv:hep-

ph/9912266].

[143] P. F. Gonzalez-Diaz, Quintessence in brane cosmology, Phys. Lett. B481 (2000) 353-

359, [arXiv:hep-th/0002033].

[144] R. Maartens, Cosmological dynamics on the brane, Phys. Rev. D62 (2000) 084023,

[arXiv:hep-th/0004166].



136 BIBLIOGRAPHY

[145] P. Kanti, K. A. Olive, M. Pospelov, Solving the hierarchy problem in two-brane cos-

mological models, Phys. Rev. D62 (2000) 126004, [arXiv:hep-ph/0005146].

[146] S. -H. H. Tye, I. Wasserman, A Brane world solution to the cosmological constant

problem, Phys. Rev. Lett. 86 (2001) 1682-1685, [arXiv:hep-th/0006068].

[147] P. Bowcock, C. Charmousis, R. Gregory, General brane cosmologies and their global

spacetime structure, Class. Quant. Grav. 17 (2000) 4745-4764, [arXiv:hep-th/0007177].

[148] K. Enqvist, E. Keski-Vakkuri, S. Rasanen, Constraints on brane and bulk ideal fluid in

Randall-Sundrum cosmologies, Phys. Rev. D64 (2001) 044017, [arXiv:hep-th/0007254].

[149] J. M. Cline, H. Firouzjahi, A small cosmological constant from warped compactifica-

tion with branes, Phys. Lett. B514 (2001) 205-212, [arXiv:hep-ph/0012090].

[150] N. Tetradis, On brane stabilization and the cosmological constant, Phys. Lett. B509

(2001) 307-314, [arXiv:hep-th/0012106].

[151] E. Flanagan, Nicholas Jones, H. Stoica, S. -H. H. Tye, I. Wasserman, A brane

world perspective on the cosmological constant and the hierarchy problems, Phys.Rev.

D64 (2001) 045007, [arXiv:hep-th/0012129].

[152] A. Campos, C. F. Sopuerta, Evolution of cosmological models in the brane-world

scenario, Phys. Rev. D63 (2001) 104012, [arXiv:hep-th/0101060].

[153] A. Kehagias, K. Tamvakis, A note on brane cosmology, Phys. Lett. B515 (2001)

155-160, [arXiv:hep-ph/0104195].

[154] A. Campos, C. F. Sopuerta, Bulk effects in the cosmological dynamics of brane-world

scenarios, Phys. Rev. D64 (2001) 104011, [arXiv:hep-th/0105100].

[155] P. Brax, A. C. Davis, On brane cosmology and naked singularities, Phys. Lett. B513

(2001) 156-162, [arXiv:hep-th/0105269].



BIBLIOGRAPHY 137

[156] D. Langlois, M. Rodriguez-Martinez, Brane cosmology with a bulk scalar field, Phys.

Rev. D64 (2001) 123507, [arXiv:hep-th/0106245].

[157] S. C. Davis, Cosmological brane world solutions with bulk scalar fields, JHEP 0203

(2002) 054, [arXiv:hep-th/0106271].

[158] K. E. Kunze, M. A. Vazquez-Mozo, Quintessential brane cosmology, Phys. Rev. D65

(2002) 044002, [arXiv:hep-th/0109038].

[159] A. Coley, Dynamics of brane-world cosmological models, Phys. Rev. D66 (2002)

023512, [arXiv:hep-th/0110049].

[160] D. K. Park, H. Kim, S. Tamaryan, Nonvanishing cosmological constant of flat uni-

verse in brane-world scenario, Phys. Lett. B535 (2002) 5-10, [arXiv:hep-th/0111081].

[161] B. Kyae, Q. Shafi, Branes and inflationary cosmology, Phys. Lett. B526 (2002) 379-

387, [arXiv:hep-ph/0111101].

[162] H. Collins, R. Holman, M. R. Martin, RS1 cosmology as brane dynamics in an

AdS/Schwarzschild bulk, Phys. Rev. D65 (2002) 125018, [arXiv:hep-ph/0203077].

[163] D. Langlois, Gravitational and cosmological properties of a brane-universe, Int. J.

Mod. Phys. A17 (2002) 2701-2706, [arXiv:gr-qc/0205004].

[164] K. Ghoroku, M. Yahiro , Origin of small cosmological constant in brane-world, Phys.

Rev. D66 (2002) 124020, [arXiv:hep-th/0206128].

[165] E. Kiritsis, G. Kofinas, N. Tetradis, T.N. Tomaras, V. Zarikas, Cosmological evolution

with brane-bulk energy exchange, JHEP 0302 (2003) 035, [arXiv:hep-th/0207060].

[166] A. V. Toporensky, P. V. Tretyakov, V. O. Ustiansky, New properties of scalar field

dynamics in brane isotropic cosmological models, Astron. Lett. 29 (2003) 1-5, [arXiv:gr-

qc/0207091].



138 BIBLIOGRAPHY

[167] C. P. Burgess, F. Quevedo, S. -J. Rey, G. Tasinato, I. Zavala, Cosmological space-

times from negative tension brane backgrounds, JHEP 0210 (2002) 028, [arXiv:hep-

th/0207104].

[168] S. Khlebnikov, Relaxation of the cosmological constant in a movable brane world,

Phys. Lett. B551 (2003) 211-217, [arXiv:hep-th/0207258].

[169] K. Ichiki, P. M. Garnavich, T. Kajino, G. J. Mathews, M. Yahiro, Disappearing dark

matter in brane world cosmology: New limits on noncompact extra dimensions, JHEP

0212 (2002) 056, [arXiv:astro-ph/0210052].

[170] K. Ghoroku, M. Yahiro, Scalar field localization on a brane with cosmological con-

stant, Class. Quant. Grav. 20 (2003) 3717-3728, [arXiv:hep-th/0211112].

[171] R. Easther, B. R. Greene, M. G. Jackson, D. Kabat, Brane gas cosmology in M-

theory: late time behavior, Phys. Rev. D67 (2003) 123501, [arXiv:hep-th/0211124].

[172] Z. Chang, S. -X. Chen, X. -B. Huang, H. -B. Wen, Vacuum energy density and cosmo-

logical constant in dS brane world, Int. J. Mod. Phys. A20 (2005) 2157-2168, [arXiv:hep-

th/0212310].

[173] D. Langlois, Cosmology in a brane-universe, Astrophys. Space Sci. 283 (2003) 469-

479, [arXiv:astro-ph/0301022].

[174] A. Biswas, S. Mukherji, S. Sekhar Pal, Nonsingular Cosmologies from branes, Int. J.

Mod. Phys. A19 (2004) 557-574, [arXiv:hep-th/0301144].

[175] P. Brax (Saclay), C. van de Bruck, Cosmology and brane worlds: A review, Class.

Quant. Grav. 20 (2003) R201-R232, [arXiv:hep-th/0303095].

[176] J. E. Kim, B. Kyae, Q. Shafi, Brane gravity, massless bulk scalar and self-tuning of

the cosmological constant, Phys. Rev. D70 (2004) 064039, [arXiv:hep-th/0305239].

[177] G. Kofinas, R. Maartens, E. Papantonopoulos, Brane cosmology with curvature cor-

rections, JHEP 0310 (2003) 066, [arXiv:hep-th/0307138].



BIBLIOGRAPHY 139

[178] B. Gumjudpai, Brane-cosmology dynamics with induced gravity, Gen. Rel. Grav. 36

(2004) 747-766, [arXiv:gr-qc/0308046].

[179] M. Bander, Expanding cosmologies in brane geometries, Phys. Rev. D69 (2004)

043505, [arXiv:hep-th/0308125].

[180] N. Mohammedi, Dynamical evolution of the extra dimension in brane cosmology,

Class. Quant. Grav. 21 (2004) 3505-3514, [arXiv:hep-th/0401097].

[181] C. Gerhardt, Transition from big crunch to big bang in brane cosmology, Phys. Rev.

D70 (2004) 047303, [arXiv:astro-ph/0404146].

[182] S. del Campo, R. Herrera, J. Saavedra, Open inflationary universes in a brane world

cosmology, Phys. Rev. D70 (2004) 023507, [arXiv:hep-th/0404148].

[183] N. Okuyama, K.-I. Maeda, Domain wall dynamics in brane world and non-singular

cosmological models, Phys. Rev. D70 (2004) 064030, [arXiv:hep-th/0405077].

[184] S. Mizuno, S.-J. Lee, E. J. Copeland, Cosmological evolution of general scalar fields

in a brane-world cosmology, Phys. Rev. D70 (2004) 043525, [arXiv:astro-ph/0405490].

[185] J. Vinet, J. M. Cline, Can codimension-two branes solve the cosmological constant

problem?, Phys. Rev. D70 (2004) 083514, [arXiv:hep-th/0406141].

[186] N. Okada, O. Seto, Relic density of dark matter in brane world cosmology, Phys. Rev.

D70 (2004) 083531, [arXiv:hep-ph/0407092].

[187] A. Lue, G. D. Starkman, How a brane cosmological constant can trick us into thinking

that w < −1, Phys. Rev. D70 (2004) 101501, [arXiv:astro-ph/0408246].

[188] S. Nojiri, S. D. Odintsov, Is brane cosmology predictable?, Gen. Rel. Grav. 37 (2005)

1419-1425, [arXiv:hep-th/0409244].

[189] P. S. Apostolopoulos, N. Tetradis, Brane cosmological evolution with a general bulk

matter configuration, Phys. Rev. D71 (2005) 043506, [arXiv:hep-th/0412246].



140 BIBLIOGRAPHY

[190] M. Demetrian, False vacuum decay in a brane world cosmological model, Gen. Rel.

Grav. 38 (2006) 953-962, [arXiv:gr-qc/0506028].

[191] K. Umezu, K. Ichiki, T. Kajino, G. J. Mathews, R. Nakamura, M. Yahiro, Observa-

tional constraints on accelerating brane cosmology with exchange between the bulk and

brane, Phys. Rev. D73 (2006) 063527, [arXiv:astro-ph/0507227].

[192] U. Ellwanger, Brane universes and the cosmological constant, Mod. Phys. Lett. A20

(2005) 2521-2532, [arXiv:hep-th/0509062].

[193] T. Bandyopadhyay, S. Chakraborty, A. Banerjee, Brane world solutions of perfect

fluid in the background of a bulk containing dust or cosmological constant, [arXiv:gr-

qc/0609067].

[194] C. Bogdanos, K. Tamvakis, Brane cosmological evolution with bulk matter, Phys.

Lett. B646 (2007) 39-46, [arXiv:hep-th/0609100].

[195] C. Bogdanos, A. Dimitriadis, K. Tamvakis, Brane cosmology with a non-minimally

coupled bulk-scalar field, Class. Quant. Grav. 24 (2007) 3701-3712, [arXiv:hep-

th/0611181].

[196] K. Nozari, Embedding of FRW cosmology in DGP scenario with a non-minimally

coupled scalar field on the brane, Phys. Lett. B 652 (2007) 159-164, [arXiv:hep-

th/0707.0719].

[197] S. Das, D. Maity, S. SenGupta, Cosmological constant, brane tension and large hier-

archy in a generalized Randall-Sundrum braneworld scenario, [arXiv:hep-th/0711.1744].

[198] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B 429 (1998) 263-272, [arXiv:hep-ph/9803315].

[199] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension,

Phys. Rev. Lett. 83 (1999) 3370-3373, [arXiv:hep-ph/9905221].



BIBLIOGRAPHY 141

[200] L. Randall, R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83

(1999) 4690-4693, [hep-th/9906064].

[201] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento,

B 44 (1966).

[202] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento,

B 48 (1967).

[203] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Com-

pany, 1973.

[204] P. Binetruy, C. Deffayet, D. Langlois, Non-conventional cosmology from a brane-

universe, Nucl. Phys. B565 (2000) 269-287, [arXiv:hep-th/9905012].

[205] A. Fordy and A. Pickering, Analysing negative resonances in the Panlaivé test, Phys.
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