ENABLING USER INDEPENDENCE AND CREATIVITY
IN UBIQUITOUS COMPUTING ENVIRONMENTS:
CONCEPTS, MODELS, TOOLS, USER INTERFACES

IRENE MAVROMMATI

ENNOIEZ, MONTEAA, EPTAAEIA, AIENA®DEZ MNA THN ENAYNAMQZH THZ AYTONOMIAZ KAl
AHMIOYPIIKOTHTAZ TQN XPHZTQN ZE MEPIBAAAONTA AIAXYTHZ YINOAOTIZTIKHZ 1ZXYOZ

EIPHNH MAYPOMMATH

APRIL 2011

EmBAEnwy kabnyntng: Aaplévtag lwdavvng
Tpwuehnc Emtpon: Aaplévrag lwavvng, Zamidng NwkoAaog, Znupou OwUAC.

AnAove wwg giuot ooyypopéas avthg e O100KTOPIKNS AoTpLPnc kot kdbe Ponbeia tnv omoia eiya yia
TNV TPOETOLUOTIO. THS EIVOL TANPOG AVOYVWPLOUEVH] KOL AVOPEPETAL aTNV Epyadio. ETions éxw avopépel
TG TNYES ATO TIG OTOLEG EKAVO, YPHON OEOOUEVWIV, 1OV N AéCewv, eite aVTES avapépoviar akpifiag eite
ropoppocuéves. Erions Pefoiwve ot avty n epyooio. TpoETOUATTHKE OO EUEVO, TPOCWTIKA ELOIKA.

VIO, TH GOYKEKPIUEVY O100KTOPLKY O10TPIPH].

Eipipvy Movpouuory

Acknowledgements

I would like to acknowledge the contribution of the people that encouraged me and had an impact on

the research reported here. Without them this research would not have been possible.

I would primarily like to thank my supervising professor John Darzentas, as well as professors
Thomas Spirou and Nickolas Sapidis for sharing their thoughts, criticisms and suggestions which
have shaped my thought process, as well as their patience and encouragement. In particular, I would
like to thank professor John Darzentas for his understanding and encouragement during the various
circumstances I have encountered during the PhD process, and for inspiring me with his broad
multidisciplinary perspective, and Nicholas Sapidis for his enthusiastic encouragement and positive

comments.

I would also like to thank people who supported me and assisted me with their feedback, suggestions,
criticism, and discussions: the members of the research group DAISy of Research Unit 3 at Computer
Technology Institute, and in particular Achilles D. Kameas as well as the members of the e-Gadgets
and ASTRA FET research projects, for sharing their thoughts and perspectives. I express my
gratefulness to Panos Markopoulos for his assistance on evaluation and HCI issues as well as sharing
HCI knowledge with me. I appreciate my partner George Birbilis for providing insightful inspiration,
and my friend Guy Dugdale for his feedback and great assistance in editing the final text. Finally I
would like to thank my family, and in particular my mother as well as George for their support in

practical matters and my daughter Eriphille for enduring my unavailability.

I would like to devote this work to my family, the ones that are here and the ones that are missing.

Abstract

This thesis explored, through an interaction design process, aspects of enabling end user creativity in
ubiquitous computing environments and has defined related conceptual and methodological tools to
enable a vision of user empowerment and independence within pervasive computing environments.

Concepts, models, tools and user interfaces are explored by use of a scenario based design approach.

Research presented in this thesis has made some headway in the effort to empower people to actively
shape Ambient Computing environments. It has demonstrated the feasibility of letting end-users
shape their ubicomp environments. Experience from system implementation case studies, as well as
evaluation of expert and end-user trials, all suggest that an architectural model, where users act as

composers of predefined components, is a worthwhile approach.

Evaluation results show that people understand the split in the dual nature of artifacts: their tangible
and sensory characteristics and their connectable software counterparts. Conceptual models and
alternative information visualizations are needed to support people in creating their own applications.
Such visualization methods should combine different syntax styles that act complementarily to each
other, thus allowing people (including non-computer experts) to use different ways to describe to the
system what they want to achieve. More intuitive/natural ways to express user wishes should be
provided in parallel with more formal structures that enable more detailed descriptions and advanced

control.

A framework can act as an abridging tool, providing a conceptual basis and theoretical foundation, as
common ground for the communication and cooperation between the disciplines involved in user-
focused ubiquitous computing research. Theoretical and methodological constructs are presented
here, towards the definition of a broad framework that can facilitate the design of ubicomp systems

supporting end user development.

Table of Contents

1. NEPINHWH ZTA EAAHNIKA ... ireiieiierteeitneeieneteneetasessnsessssesnssssnsssassssnsessnsessssssnssssnsssassne 18
1.1. OEMA THE AIATPIBHI .. eeeeeeertutiieeeeeererarsnnaeseeeessstsnnasesesssssssmnaseeeessssssnnnaeseesssssssnnmeeseessssssnnnnns 18
1.2. YTTOOEZEIS THE AIATPIBHE 1uvuueeeeererrrrtuieieeerererersnaaeeeesssssssnaesesssesssssssaesesssssssssnnesesssssssssnnneeeseees 20
1.3. MEOOAOAOTIA IXEAIAITIKHE EPEYNAT ..evvvutuueeeeerererersneeeeeesseresssnaesesssessssnnesessessessssneeeessssessnnns 24
1.4. EPEYNHTIKA ATTOTEAEZMATA cevtteieieieteeeeeeeteeeeeeeeeeeeeeeeeeeeseeesesesesesesesesssessssssesssesssssesssssasesssssnnnn 26
1.5. TTEPIAHWEIZ KEDAAAION ..uueeitieeeeiiieeettteeeetteeestneeseanaeeessnaeesssnnsasssnneesssnessssnsesssneeesssnaeessnnnees 27
1.6. ZYNOWH ..iituieieiiiieeettee ettt e eestaeesettserataeessansesaraseessnneesssnasessnnsesssnneeesssnsessnnnserssnneesssnneesenen 32

2. INTRODUCTION TO THE SUBJECT OF THE THESIS.....ccccctteiitmeiirnerencerencrrencrenernscesnscrsnssasenes 33
2.1. INTRODUCTION ...eeeeettttieseeeeeeestnnnaseeeesssssnnnnasesessssssnnnseeesssssssnnnnsesessssssnnneseessssssssnnnesessssssssnnnns 33
2.2. A HISTORY OF TERMS, FROM UBIQUITOUS COMPUTING TO AMBIENT INTELLIGENCE .cceveveiereiereiereeenans 34
2.3. INTRODUCTION TO THE SUBJECT OF THE THESIS, ASSUMPTIONS AND KEY ISSUEScccvvvvvveeeeeeeerernrnnnnns 40
2.4, SCOPE OF RESEARCH ..eevtvtttuueeeeeeretestuaaeeeesssasssnneseesssssssnnnaseeesssssssnsnnsesesssssssnnesessessssssnnnneeseees 42
2.5. GOALS AND OBJIECTIVES «.eetvturuuneeeeeererersnneeeeeresssssnaesesesssssssnnaseesssssssssnameesessssssssnssesessssssssnnnnns 46
2.6. POSITIONING AND SIGNIFICANCE OF THE THESIS...ceievvvurueeeeeeererrrsneeeeeereeesrsneseseresssssneseeesssesssnnns 47
2.7. PROCESS AND METHOD ..eeevvieieieieieieieieieieeeeeeeeeeeeeeeeeeeeeeseseseseseseseesssesssesesesssesesesasasesssssannnsnnnnnnen 49
2.8. RESULTS AND RESEARCH CONTRIBUTION ..vvvuuuneeeeeererssnnseseeesessssnnnaeseeessssssnneseseesssssssnnneesessssssnnns 50
2.9. OUTLINE AND CONTENTS OF THE THESIS.1uuuuneeeerereruueiereeeerrersnuneeeeessesssssnnseseessessssnnmneeessssssssnnnnens 54

3. RESEARCH APPROACH......citciittittecienernectrneerenetesserasessssessssesnssssnsssassssnsessssessssssnssssnsssasssse 58
3.1. INTRODUCTION ...eeteettttueeeeeeeetttnnnaseeeessessnnnnasesessssssnnnseeessssssssnnnsesesssssssnnnseessssssssnnnnsesessssssnnnns 58
3.1. INTERACTION DESIGN PROCESSuueeeeetrtttiiiieeeeerertrtneaeeeeesssssnnaesesssessssnnaeeessssssrsneeesesssessssnnnnns 61
3.2. DESIGN IMETHOD ..evvuuiettuneerenieeeettneeereseeerstnaeesssneeesanneeesssnaeesssnsessssnseesssnesesssnsesesseeesssnneessnnnnes 64
3.3. CAN THERE BE THEORY BASED DESIGN .. .uvvveeeeeeieittureeeeeeeietrereeeeeenssssssseesesesassseseseseesssssssseesssenes 66
3.4. ON TASK ANALYSIS VS DESIGN RATIONALEccetviiiiieieeeeeeiririeeeeeeeeertstteeeeeeesessssnneeeessessssnnnneeens 68
3.5. DESIGN RATIONALE AS THEORETICAL FOUNDATION ..evvuvuueeeeerrerrrniieeeeererssrnneeeesssesssssniesesesesesssnnns 71
3.6. EVALUATION APPROACH .ettetieteieieteieeeteteeeeeeeeeeeeeeeeeeeeeeeesesesesesesessesesssesesesesesssesesasasasasasssnsnnnnnen 79

4. FROM OBJECTS TO ARTIFACTS ... cteuiteeereecrrnncrenerescerasersssersssssnsssessssassssnsessssessssssnssssnsssasssee 83
4.1. INTRODUCGTION ...eeeetttttieeeeeeeeertsnieeeeeessessaneatesesssssssnnaseeesssssssnnnsesessssssnnneseessesssssnnaeeessssssssnnnns 83

4.2, ADDING INFORMATION TECHNOLOGY INTO OBJECTS eeeieiiiiieieieieieieieieeeeeeeeeeeeeeeeeeeeseneeeeeaeasaaesesenens 85

4.3, PEOPLE SHUFFLE OBJECTS” USAGEuuuvvrrieeeieiiurreeeseeiieiuseeeseeesasisssseesessssssssseesssesssssssseesssesssssesees 86
4.4, TOWARDS OPEN, FLEXIBLE, COLLABORATIVE SYSTEMS ..vvuuueeiiererrrrnieeeeereresrnneeeeeeseesssnnesesesessssnnnns 89
4.5, USAGE AND INTERFACE ISSUES cevteteieiereierereeereeeteeeeeseeeseeeeseeeeesesesesssesesessssssssesssesssssesssesesessssnnnns 91
4.6. IVIETA-ISSUES OF USE 1vuuuuieeeieetruueeseeesersssnnaeeeesssesssnnasesessssssnnnaesessssssssnnneseesssssssnnmeeeessssssssnnnns 93
4.7. CONGCLUSIONS «..eevttttieeeeeeeeeettssaeseeeseeessaseseeesesssssaaseeesssessssannaesessssssssanaeesssssssssnnaesesessssssnnnns 96

UBIQUITOUS COMPUTING AND APPROACHES TO AUGMENTING ARTIFACTSccccceverennans 97
5.1. INTRODUCTION ...eeeeettttieseeeeeeestnnnaseeeesssssnnnnasesessssssnnnseeesssssssnnnnsesessssssnnneseessssssssnnnesessssssssnnnns 97
5.2. APPROACHES TO CREATING AND ASSOCIATING ARTIFACTS . ueeertrrrruneereeerrrerrnnaeeeeereeesssnneseessessssnnnns 99
5.3. CONGCLUSIONS «.eevtttieeeeeeeeetttiieeeeesesesssssaeeeesssessasaaeeessessssannesessssssrsnnesesesessssnnnaesesssessssnnnns 111

HCI ISSUES FOR AMBIENT COMPUTING ENVIRONIMENTS.....cccccettenerennerenereeceennerenserensennnes 113
6.1. INTRODUCGTION ...cceetttttuteeeeeeeettrtneaeeeeereesstnnaaeeeesessssnnnaseeesesssssnnnaseesssssssssnseessesssssnnnneessssneses 113
6.2. CONCERNS ABOUT THE AMBIENT INTELLIGENCE WORLD ...ccvvvuueieeeiereriitiiieeeeererenrieeeeeeereesnnnneeeees 114
6.3. ISSUES INTRODUCED IN HCl c.ceveieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e s e e s e s e s e s 115
6.4. (@7 T Tl 5 (O Y[o] = 116
6.5. A SHIFT IN THE NATURE OF INTERACTION ...evttuuneeeeeerernseneeeessrersnsnneeesessssssssnesesessssssssnnneesessesssnnnn 117
6.6. ORGANIZATIONAL CONCERNS OF USERS +vvvvvvvvrvrsssrsrsrsssssrssssssesesesesssessssssssssssssssssrsrsessessrersrererens 119
6.7. DIFFERENT INTERACTION CHANNELS....cevvtvtuuueeeeererersunneseeeeseersssneeesessssssnsnnseeeesssssssnnneeseesssssnnns 119
6.8. THE ROLE OF INTELLIGENCE ...eevvvvruuueeeeerersrsneaeeeeesesssssnnieseessssssssseseessssssssnnmesessssssssnnseseessesssnes 120
6.9. VISIBILITY, REVERSIBILITY OF ACTIONS, ERROR TOLERANCEccvvuueeeeeerererrniieeeeerererrnnneeeeeeseressnnnns 121
6.10. CONCLUSIONS vvvvvvvvvrsrersrsrsseresesesesesesesesesesesssreessssesrerersssreretereteressteteeeseeeteseeeeeeeeeseesesessseneees 122

END USER DEVELOPMENT IN SOFTWARE: BASIC CONCEPTS....ccccteteerrecrencrecrencencenrencennsnns 123
7.1. INTRODUCTION ... etttieeeetteeretteeertneeresteerssaneesssnesesssaneesssnneesssnnsessnnneesssneeesssnseesssneeessnnnsesnnns 123
7.2. HOW 1S END USER PROGRAMMING DEFINED?uvvvereeeeieniurrereeeeeeennrrereeeesessssresseesesensnsseseeeseenns 124
7.3. FROM ADAPTATION TO NEW FUNCTIONALITY 1.ueeeereerreunieseeereressnnnaseesessesssnnnesesessssssnnnneeesesssssnnnns 125
7.4. THE PROFILE OF END USERS — DEVELOPERS ... ueeeetetrtttieeeeerererannneeeeeessesssnnnesesesssssssnnneeesessesssnnns 126
7.5. VISIONS AND CONTRADICTIONS ..vvvuuueeeeeerereraneeeeeererssssseeeeeesssssssnieseeesssssssseesessssssssniesesssesssnns 127
7.6. CHALLENGES: SEMANTICS, SYNTAX, VISUAL PARADIGIMScevvruueeereeererernneeeeeeseressnnaeseessesssnnnnneeees 129
7.7. CONCLUSIONS «.eevvtutieeeeeeeeetessneeeeesesesssssnaeeesssssssanaaseessesssssnnaesessssssssnneseesssssssnnnnesessssssssnnnns 132

END USER DEVELOPMENT IN AMBIENT COMPUTING ENVIRONMENTS......ccccceeeueencrencennnnee 134
8.1. [N T015] U o 1 o | N 134
8.2. RATIONALE: WHY EUD FOR AMI APPLICATIONS. ..evvvvtuueereeerereraniieseeeeeressnnnieseeessssssnneeeesesssssnnnns 135

8.3. AMBIENT INTELLIGENCE VISION AND END USERS....ccvtuuiieieeeiriiritiieeeeeeeeerrnnieeeeeeeeeessnnneeeeesssessnnnns 136

8.4. APPROACHES FOR ACCESSING UBIQUITY .ceiiiuriiiiiirieiiiieesiittesniree e snntessiree e sirseesnneeessrenesnnne 137
8.5. APPLICATIONS AND INTERFACE PARADIGMS OF EUD APPROACHES IN AMI ...couveeiineieeieieeieeiieneeens 138
8.6. BROAD PERSPECTIVE ON AMI DEVELOPMENT TOOLS...c.veuvirerueeseeueeneentensensenseseessessessesseeseensensenees 139
8.7. MECHANISMS AND RESOURCES FOR EUD IN AMIceiviiiiiiiiiiiiiiiec e 142
8.8. VARIOUS CONCEPTS FOR TOOLS INTERFACES «..veuvveveeteenteeneesueenseesseesessesaeesseessesnsesseessesnsesnsenns 144
8.9. AUTOMATIC INTERFACE GENERATIONveutiteeteteeuteneentetententessessessessesseeneessensensenseseessessessesseens 144
8.10. PROGRAMMING BY EXAMPLE....ciiiiuuteeiiriteiiitieeinneessinneessinesessasessssbsessssrasessssaeessnasesssasessans 145
8.11. HIGH LEVEL ABSTRACTIONSuvtiiiirieeeirireseiteesssreessneeeseite e e ssaaessssrteessarasesensneessanaeessnanessnns 147
8.12. IMIETAPHORSeettttiett ittt ettt s et e e s e s e e e e s e a e et e e s s e snraeeeesssennnnes 148
8.13. CONCLUSIONS AND CHALLENGES ..ceuuvveeiiiriieiiirieeiirteesinneesssireeessnneessnaeessnaeesssnnssesnsnesssnnesens 149
9. A PROPOSED MODEL FOR THE RECOMBINATION OF ARTIFACTSccccoviummrerrinsssssnneenennns 150
9.1. INTRODUCTION ..ctttttettieitett e ettt e et e e st e e e e s e aa e s e e e s e sanb e e e e e s s e snnraneresesesannnes 151
9.2. BACKGROUND SUMMARYeuuteueententetentensessensessesseestensensensensessessessessessesseeseensensensensensensensens 151
9.3. ASSUMPTIONS .ttt iittieieite e sitt e st sib et b e s st e e s a e e s b e e s s sab e e e s bbb e e s saba e e s saba s e ssabaeessabaeesas 153
9.4. IMIETHODS PROPOSEDvvieiiuriieinriesiireee sttt e seissee s siraeesebae e s ssaeessnatesssnbesesnraeesanneeessaranesnns 155
9.5. MODELS, ABSTRACTIONS, AFFORDANCESeuteuterterersentessessessesseeseensensesessensessessessessessesneeneen 156
9.6. CONCEPTS, CONSTRUCTS AND APPLICATION .. .cevvturuueeseeererrrsnniaeseeresesssnnnesesessssssnnneeeessessssnnnnnsees 160
9.7. THE EDITOR ROLE AND FUNCTIONALITY ..cvtttiiriieiiireeesneeessnteessireeesnaeesssreessssnaeesnneesssnnesesnnne 161
9.8. AFFORDANCES AS CONNECTIVITY PLUGS ..ceeeuttteiiireeeiieeeseireeseieeeesneeesssree e ssrneesnneeessmneeesnnne 163
9.9. ISSUES . vteuteuteutetetestestesbe st et e st eut e st et e e s b et e b e sb e e bt s bt e bt e st e st e st et et e b e et e b e sheeb e ebe e bt e st et entenens 165
9.10. CONCLUSIONS ..viiiiiieeeiireee sttt et e sttt a e st e e s b e e e s e aa e e e saba e e s s bb e e s s ara s e snnaeessaraeesas 167
10. APPLICATION OF THE CAPABILITIES AND LINKS MODEL: THE E-GADGETS CASE.........cccceu... 168
101, INTRODUCTION weuteutertirerttstesseeueesteneensesessenseseesbesbessesseemtensessensenteseesbesbesaeebeeneessensensensensensen 169
10.2. AN INFRASTRUCTURE WHICH SUPPORTS COMMUNICATION ..coouvvieiinrireinriesinnieesinneeesnneesssnnesesnns 169
10.3. ENABLING ARTIFACTS TO BECOME COMPONENTS IN THE HOME.....ceiiuriieiiriesiirieessneeesinnee e 173
10.4. CREATING ARTIFACTS et tiuttteeeureeesureeessnrteessresesenneessnaeeseaneeesssnreeesanseeesanreeesanneeesannneessanenesan 174
10.5. EDITING FUNCTIONALITY w.vttiiuriieiinriesiireee sttt ssine e s smas e snat e s ssarssesmrneesssnaeessnranesnns 177
10.6. THEIMPLEMENTED EDITOR INTERFACES....cceiiuuteieiurieerirreessiireessisreeesnaeessssreeesssnaeesannaesssnesesannne 179
10.7. CONCLUSIONS .tteiiiteeeireee sttt e st ee e st e e ettt e ssee e st e e s s b et e s enn e e e saneeesenreeeeanreeesnnneessnnenenan 181

11. VALIDATION OF END USER DEVELOPMENT AND THE PROPOSED MODEL, THROUGH
DEPLOYMENT IN E-GADGETS.......ciiiiiiiiiiiinniinninniiinniinniisniisniisssnssnnes 183

11.1. INTRODUCGTION ...cceeettttuieeeeeeererertnaeeeeeeeesstanaaeeeesessssnsnaseessesssssnnnssesessssssssnseessesssssnnnnsesessssses 183

11.2. AN EXAMPLE SCENARIO DEPLOYED FOR EVALUATION ...cvvvtreeeienerereeeseeeinrreeeesssennneeeeesssmnnneeeens 184

11.3. CONCEPT EVALUATION ..ovvieiiiriteiirtee st ee st e s eiae e smat e s s mre e s s ina e e smae e e s sabaeesenbaeessanaeessnaeeeas 188
11.4. EXPERT APPRAISAL .eetiiiiirettieeeieiiitttee e s e sttt e e s s et e e e s s s sraae e e e e s esnra et e e s s s snraeeeeessesannnes 189
11.5. COGNITIVE DIMENSIONS EVALUATION ...cuveuvtereeueeneentensentensessessessessesseeneessensensensensessessessessesneenes 190
11.6. SURVEYS AT TWO CONFERENCES.....uttiiiurteeiiurieeiirreesiireeessreressnaeessreeessnasesssnneessanasessnsneessannes 192
11.7. SHORT USER TESTS AT THE I-DORM ...eeiuuueeeiiureresanreeesneeessneeesannreessnseessnseesssnnesesansnessansesesannns 193
11.8. SUMMARY OF OUTCOMES c..euvteueeueeutensentensensessessessesseeseestensensessessensessessessessesseensensensensensessenses 194
11.9. CONCLUSIONS ..vviiiiiriieiiiriie ittt st s e s e s aa e saba e e s s bb e e s s aba s e snbaeessabaeeeas 195
12. THE FUNCTIONS OF THE EDITOR.......uctttiiiiiiiiiiunenneiiiiissssssneesisssssssssssessssssssssssssssssssssssssssees 197
12.1. INTRODUCTION ...tttiett ittt e ettt et e e s e e e e s e a e e s e e e s e sanb e et e e e s e snnraeeeesssennnnes 197
12,2, THEEDITOR ROLE...tiiiiuuiiiiriieiiiiieiitiee sttt st et saa e sra e s s bb e sbaa e s sna e e e snna s e sananes 197
12.3. EDITOR KEY FUNCTIONS ...vtetuuritesnrtessiireee st e s eisne e s srae e s enne e s smaeessmatesssnreeesmnaeessnneeessaranesanns 199
12.4. EDITOR HIGH LEVEL ARCHITECTURE ...eevvtiieeeiiiiierteeeesieiirrt e e e s senareee e e s s ssnnnteeessseimnnaeeeesssennns 199
12.5. TASKS THAT CAN BE SUPPORTED BY THE EDITOR ...cuveuvetinteriinienieeieeiieeeie e seesre s sre e 201
12.6. THE OVERVIEW / CONTROL SCREEN ... uvveeeeeuteeeiesreeeessseeesesseeeeeaeesessesesssseesessssssesssssesssssesesnnns 204
12.7. THE ROLE OF COMMUNITIES IN END USER DEVELOPMENT: THE ASTRA PROJECT CASEccuvveerrreeennne 205
12.8. INTERACTION DIAGRAMS FOR EDITOR: THE ASTRA CASE ...c.veeuerueeuienieieienieneesieseesnesaeeneeeeneeee e 209
12.9. CONCLUSIONS ..vviiiiiiiieiiirtie ittt et e s e s aa e sba e e s s bb e e e s aba s e snaneessabaeeeas 210

13. GRAPHICAL USER INTERFACES: ABSTRACTIONS AND SYNTAXES, FOR END USER

CONFIGURATION IN AMI.....uutiiiiieeiiiiiieeiiiunesiesanessssssnessssssesssssssessssssessssssnesssssssesssssssssssssessns 212
131, INTRODUCTION weuteutetitenttetesueeueesteneentesessebeseesbesbesbeebeeseesse s e s e besbeabenbesaeebeeneeseenseneensensensen 212
13.2. PIPELINE STYLE: INTERFACE EXAMPLES AND EXPERIMENTS ...cceiiviieiiiirieennreessinreeessineressnnseessneeenns 218
13.3. GRAPHICAL INTERFACE EXPERIMENTS FOR END USER PROGRAMMING: THE E-GADGETS CASE 223
13.4. OTHER INTERFACE EXPERIMENTS FOR END USER PROGRAMMINGcuvevinrertinrenierueneeeneeneeeeneesenee 227
13.5. FORM BASED EDITORS: THE ASTRA INTERFACE SCENARIOS ..ccovuvviiiiiriiiiiriesiiiieeiinnnesnnneesnneeeens 229
13.6. GENERAL PROGRAMMING ISSUES: ..uvvieieirireiiriesiireessirenesinee s sine e e seinnesssnneeessnesesennneessanaeesns 235
13.7. CONCLUSIONS ..vteiitteeesiteeeseieee e s ee e st e s et e e ssee e e st e e s s abeeesemnee e saneeesenreeeeannesesnnneessnnenenan 237

14. TOWARDS A FRAMEWORK FOR THE DESIGN OF UBIQUITOUS SYSTEMS SUPPORTING END-

USER DEVELOPIVIENTcciciiieitiiteereneenctarenseeseescescrossessesssasssssssssssssassesssassassssssassssssassasssnssanssnssnne 238
14.1. INTRODUCTION ... tetttieeeetieeeetteeeeeneerestneesssaneesssnnserssaneesssnneesssnnsessnneesssneeesssnneessnneeessnnnsesnnns 238
14.2. RELATED WORK REGARDING UBICOMP EUD FRAMEWORKSceeveieieieieieieieieeeeeeeeeeeeeeeeeeeeneneeeeenenns 241
14.3. THEORETICAL FOUNDATIONS ..cevvttuueeeeeerettttnieseeeeesessnnaeseeersssssnnaseeesssssssnnaesesessssssnnsaseesssssnsen 245
14.4. FOUNDATIONS OF END USER PROGRAMMINGccvvvvuuniereeererrrnnnieseeereressnnniesesessssssnneseessessssnnnns 245

14.5.

THEORETICAL FOUNDATIONS OF END USER DESIGN c..ueeetieiieeeeeiireeeee e e e e 248

10

14.6. THEORETICAL FOUNDATIONS RELATING TO SEMANTICWEB ...cevvvuuiieeeeeieeiinnieeeeeeeeertnnaeeeeeeeeesnnnnns 249
14.7. CO-EVOLUTION OF USERS, ARTIFACTS, AND APPLICATIONS vvvuuieeeiererurneieeeeererensneeeeeeeressnnnaeeenns 252
14.8. METHODOLOGIES FOR EUD ENABLING DESIGN AND IMPLEMENTATION ...ceevvreieieeererereeeeeeeeeeeeeeeeeens 255
14.9. END USER DEVELOPMENT ..eevtvtutieeeeeeeeersntneeeeeeeeerssunnaeeesssessssnnsaseeesssssssnnsesesssessssnneeeessssssses 256
14.10. SYSTEM DESIGN AND DEVELOPMENT ..evvutueieeeeeeerrsieeeeeeererssnneeeeessssssssneeesesssesssmsmeeeesssssssnans 258
14.11. OPEN ISSUES ctttteieieieieieieieieieeeeeeeteeeeeeeeeeeeeeseeeeeeeeseseeeeeessesesesesesesesasesesasassssssnsssssnsnsnnnsnnn 267
14.12. FRAMEWORK WALKTHROUGH ...evvvvvuuieeeeererrrnneieseeereeessnnneseeesersssnnasessesssssssseseeessssssnnnneens 267
14.13. CONGCLUSIONS «.veeeeetitiieeseeeeeeessneaeeeesessssssaesesesssssssnnseessessssssnneseseessssssnnnseseessssssnnnneeseees 272
15. CONCLUSIONS AND OUTCOMIEScccituueiencreniirnncrencrnssssassissssrsssessssssnsssssssssssssnssssssssassssns 274
15.1. OVERVIEW OF CONCLUSIONS .uuuieeereertutuiesererererennnaseeessssssssnneseseesssssssnnseesesssssssnnnseseessssssnnnnnns 274
15.2. ACHIEVEMENTS OF THE REPORTED RESEARCHeeeetvtrtiieeeeereeeransneeeeeessesssnnnesesessesssssnneeeesssessnnnns 276
15.3. DIRECTIONS FOR FUTURE RESEARCHevttueerituneeettneeerenneesssneeeresneessnneeessnneesssnneesssneeessssneeessnnns 280
16. REFERENCES......ccccituititniitenirrncrennernnerenseresseressernsessnsssnssssnsessssesassessssssnssssssssnssssnsesassesassenns 282
17. APPENDIX 1 - EXPERT REVIEWcuieuiieiirencieniiennereeereecrenserenseressesnsessnsssssssensssensersnsesassssns 311
17.1. INTRODUCTIONcceetttttuieeeeeererestneeeeeeeeesstsnaaeeeesessssnnaseessessssannnasesesssssssnnseessesssssnnnneessssnsses 311
17.2. 1Y/ 123 1T o N 311
17.3. COMMENTS (FEEDBACK) FROM EXPERTS ..veeeiuurieeesureeesiureeeessreeeanssssessssssessssssssssssesssssssessssssssnnses 313
17.4. ADVANCED INTERFACE OPTIONS ..vvuuueeeerrersrsnaeseeeressssnnaeeesssesssssnsesesesssssssnsaesessssssssnsnesesssssssnns 322
17.5. SUMMARY OF EVALUATION SESSION vuuuueeiereruriuieeeeerersrssnieeeeesssssssneeseessssssssnseeeessssssssninesesssens 323
17.6. PROBLEM SOLVING: APPLICATIONS CREATED IN THE EVALUATION WORKSHOP. ..ccvvvveeeieeeeeeeeeeenennnn. 323
17.7. EXAMPLE CONFIGURATIONS SHOWN TO PARTICIPANTS ceettitieiiiiieieieieeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenns 327
17.8. MATERIAL USED FOR EXPERT APPRAISAL (AGENDA, SCENARIOS, SCHEMES)veeeuveeieieenireesireennneennns 328
18. APPENDIX 2 - COGNITIVE DIMENSIONS EVALUATIONccccettuieienierencreencrnncernserenseressesnscsens 332
18.1. ASSESSMENT WITH RESPECT TO COGNITIVE DIMENSIONS ..vuuneeeeeeeriiiiieeeeeeeeersnneeeeeeesessnnnnneesesssenes 332
18.2. CONCLUSIONS «.eevvtutieeeeeeeeetessneeesesesesssssnaeeeessssssanaasesssesssssnnaeeessssssssnnseseesssssssnnaesessssssnsnnnns 337
19. APPENDIX 3: EVALUATION AT CONFERENCES DC-TALES AND BCS-HCl......cccccccetenncrenncrnnnnnes 339
19.1. 1) 23 NS 339
19.2. PARTICIPANTS «.eeeeeeetttieeeeeeeeerttteeeeeeeeeesstaaaeeeeeresassanneeeesessssannnnseeessssrssnnnseessesssssnnnnsesessneres 340
19.3. RESULTS cttuietitee ettt et ettt e ettt e e e et e e eeateeessaneeesaaasesestnseessaneesssnnsesasnneeessnnsesssnnsessnnneessnnneesenen 341
20. APPENDIX 4: THE IDORM USER TEST.....cccctiteietenierencrrnncrenscrnncrenseressersssesasessnsssnssssnsessnsesanes 347

20.1. 1N 2T] 0 T 1] N RN 347

11

20.2. PARTICIPANTS .ciiitieiiirite ettt ettt st e st e s a e s a e e s s b e e e s s b r e e e ssaaeesnaeesssnreeesanns 347
20.3. IVIATERIALS ..ttt ettt st e e s e et et e e e s e ar e e e e e e s s e nnrae e e e s s sennnnee 349
20.4. IMETHOD FOR THE SHORT USABILITY TESTS .euveeuteuteusensessersensensessessesesseesensensensensessessensessesseeneens 350
20.5. OVERNIGHT STAY. 1.itteeiirtieiiirte e sitte st e et a e st e s s b et e s s b e e e snae e s s sab e e e seab e e e ssanaeessnaeesas 352
20.6. RESULTS c ettt ettt e e s a e e e e s e s et et e s s e nnnee 352
20.7. GENERAL COMMENTS REGARDING THE EVALUATIONevueruiereruinuenseenteneesensensessessessessesseeeensensens 360
20.8. CONCLUSIONS OF THE EVALUATION ..evieiiiriiiiiriesiireeessrniesnneesssnesessinneessnnaeesssnasessnnnsessanaeesns 361
20.9. REFERENCES ...ttt iuurteeeirite ittt et e s st e s et e e siae e s st e e s a e s b ae e s sab et e s s baeessbaeeesnaeessnreeesanns 363
20.10. MATERIAL AND QUESTIONNAIRES....cetuuvreeeiureresanreeesnreeesanreesessresesanseeessnneeessnnenessssneessanseess 364
21. APPENDIX 5 = CITATIONS ...ccoiiiiiiiiiiieiiiiniesnesatessssst e s s st e s s sas s s s s sas e s s s sas s s s s ans e sessannasasnn 367

22. APPENDIX 6: AN EXAMPLE EUD SCENARIO IN A UBICOMP HOMEccooiiiiiiiniiiiiiniiiininnnn, 373

12

Table of Figures

Figure 1: The 1999 Philips Project WWICE was an initial investigation into
networked home devices and multimodal interaction. (Image from personal files —
WWICETL Project VIACO0) ...cccveeruieeiieeiieeieeeiieeieeeiieeieeseteeieeseveenreesaveeveesaaeeseessneensaens 35
Figure 2: Ambient Intelligence: WWICE 2 is a project about the Connected Home
that develops applications, user interaction concepts and system architectures
allowing communication, content exchange and sharing experiences. (Philips
RESCATCH WEDSITE) ...eoviieiiieiiieiiecie ettt ettt e e e e e ebe e neeenaaens 36
Figure 3: The Philips Research project WWICE is a coherent home network system
for the convergence of entertainment, communication and information applications.
Multimodal access was provided to various sources throughout the home (modalities
included speech, gesture, RFID-tagged objects, and Graphical User Interfaces).
(Images source from Philips Research website and personal files).........c.ccccceeruenneee 39
Figure 4: The Philips Nebula project was an ‘open’ tool, exploring the waking up
experience through projecting customized images onto the ceiling. It was later
customized for medical examination rooms for children’s MRIs. [Image source:
(GArdien, 2007)] cuveeeeeeieeieeeteeriee et eeteete et e ebeeteeebeebeessaeeteessbeebeeesaeetaeeabeenreennes 43
Figure 5: Design is seen as a mode of thought, while it has been traditionally
associated with expression and production as well. Image source:
http://en.wikipedia.org/wiki/File:Design modes.SVE........ccocveviieriieniieniienieeniieeieens 60
Figure 6: Overview of the Scenario-Based Framework (Image source: Image from
http://1dt.stanford.edu/~gimiller/Scenario-Based/scenariolndex2.htm) 73
Figure 7: The communities using scenarios (above) and the factors that can be used
to categorize scenario design, and typical scenario usage in design (below) (Source:
Go Kentraro, Carroll John, Interactions, November-December 2004, pp45-55).76
Figure 8: Scenario forms vary in breadth of focus and detail, from the broader
scenarios used by strategists, to more narrow scenarios of software engineering.....77
Figure 9: Scenarios provide a common language for design...........ccceeeeriieniennnne 78
Figure 10: According to Carroll [(Carroll, 2003) page 435]: In the task-artifact

cycle, human ideas and activities raise technology requirements and new technology

13

subsequently raises new opportunities for human action. The interrelated flow is
emphasized in the task-artifact cycle above.cooceeiiiiiiiniiiiiie e 79
Figure 11: Familiar artifacts are enhanced with sensing, processing and
COMMUNICAtION CAPADIIILICS. ..vveeeiieiieeiiieiieeieeiteete ettt ettt be e e eaeeaaeeeeeens 88
Figure 12: An artifact can simultaneously participate in different application

clusters; each of those functional clusters can serve a different user or a different

Figure 13: The Siftables platform of small ubiquitous devices manipulated by
ZESTUTES ...vvtieeeeiiiieeeeiitee e ettt e e ettt e e e s ttaeeeesssbeeeeessbeeesannsaeeesansseeeeesnssaaesennseeesannsneeens 100
Figure 14: An image from the Nebula project; the Nebula Alarm Clock projects end
user defined content to the ceiling, as a wake up alarm. (Image from Philips Design
WEDSIER). .ttt ettt e st e et e et eetbee e tbeeenaaeeenbaeeenaae s 101
Figure 15: Left: the Paper Puzzle Editor using paper based identification
technology. Right: the tablet editor and the editor screen. Each component is
represented as a physical puzzle piece; a service is created by connecting pieces in a
left-to-right order. (Source: ACCORD project WebSite).covverveecreeneeerneenreennen. 102
Figure 16: The Gadgetware Architectural Style provides a way for people to
manipulate Ubiquitous Computing Applicationsc..ceceveevuerieneeneniieneenennens 103
Figure 17: The Gadgetware Architectural Style (GAS) is a common referent
between artifact manufacturers, designers, and USETS..........ccceevvveeviierieeniienieeieene, 104
Figure 18: Artifact high level architecture. Source: (Drossos et al, 2007).............. 105
Figure 19: The GAS OS modular architecture according to (Drossos et al, 2007).105
Figure 20: PLANTS explores mixed environments, in which humans, plants and
artifacts are computationally enabled and can act together, in the context of precision
AETICUITUTE. ...vievviiiiiieiieeie ettt et ettt e st e e te e taeesbeessaeesbeesseeenseeseessseenseennseens 106
Figure 21: ASTRA: Awareness communication is transmitted between two
UDIQUILOUS ©NVITONMIMENLS . ..c..teeiiiieiieeieeiieeteeieeeteesiteebeesieeebeesabeebeesneeeseesaeeenseeenne 108
Figure 22: Different artifacts can communicate and synergize with each other153
Figure 23: The Plug-Synapse model: The artifacts’ capabilities (Plugs) can be inter-

associated with invisible links (Synapses) to form ubiquitous computing applications

14

Figure 24: Graphical examples of two applications (that are sets of functional links
between augmented artifacts).occeeoieiiiiiiiiie e 159
Figure 25: People can create certain associations between artifacts. The Editor is a
overview/ control-device used to (re)design applications within a ubiquitous
environment, using artifacts as a starting POINt.ccccveeevveeeriieeeiieeeiieeecieeeeieeenns 162
Figure 26: A vocabulary acts as a common referent between people, objects and
their collections: the artifacts’ capabilities (Plugs) can be associated together via
invisible links (Synapses) in many possible ways. Thus, the adopted style provides
an infrastructure for open applications. An application is formed by a collection of
objects functioning together in this way to serve one specific purpose. 171
Figure 27: Negotiations and data exchange happening between artifacts............... 172
Figure 28: A domestic object can become augmented with computation and
COMMUNICAtION CAPADIIILIES ...eeeevireiiiieiiieeciee ettt tee e e e sre e e e e eeaeesnne e 174
Figure 29: The top surface of the e-Table and the supporting circuitry underneath175

Figure 30: The intelligent dormitory in the University of Essex was used in the e-

Gadgets deployment, so that agents had access to GAS-OS.ccoovvvvievieeieennen. 176
Figure 31: Example of prototype augmented artifacts: the augmented chair, table,
book, lamp, and cube-light.ccociiiiiiiiii e 177
Figure 32: Two implemented versions of the Editor (on PC and PDA).................. 178
Figure 33: Annotated diagrams that were used during the expert evaluation 185
Figure 34 : Use of the PDA based Editor by test subjects.........ccccceeeverirerieennennen. 186

Figure 35: Schematic representation of the connections between appliances, in the
ADOVE SCEIMATIO ...vvieeiiieeiieeeitieeeteeeeteeeeteeeeaeeesseeessseeesaseeessseeesseessseesnsseessseesseeenns 187

Figure 36: Draft design of a Graphical User Interface proposed for the Editor (for

Figure 37: Schematic representation of the Editor layers, in the case of GAS-OS, for
the e-Gadgets research ProJeCt.oceviiririiiriiriiieeeee ettt 200
Figure 38: An example visualization of the Idle/Observation Screen. The overall
OFF switch for each application that is currently running can be seen. The

applications scroll Ieft, N @ 100P. ...ccueieeiiieriieee e 202

15

Figure 39: Visualization of the Idle/Observation Screen. At the lower part the OFF
switches for each individual application can be seen.ccccceeveeeiiieniiiiiienieninn. 205
Figure 40: Use cases as they are identified for the ASTRA repository of Shared
applications. Source: (ASTRA D4, 2009D)ccoovuieriieiiieniieiieeie et 207
Figure 41: Sharing and appropriation of applications, in the case of ASTRA.
(Source: ASTRA D4, 2009). ..coueiiiieeieeiee ettt ettt e 209
Figure 42: An overview of the separate GUI parts, as proposed for the ASTRA

Editing Tools interface; the swap between an observational idle mode and an editing

MOAE 1S NOLEA. ..ottt ettt et s 210
Figure 43: Examples of Tag Cloud Visualisations (source:
http://en.wikipedia.org/wiki/Tag cloud).......cccecoeeriiiiiiniiiiieieeece e 217

Figure 44: Detail of the CollaborationBus Pipeline editor. Source: (Gross and
Marquardt, 2007)eeeeeeeeeieeeeiee et et et e et e e et e e e e e e taeesraeeebaeennreeenn 219
Figure 45: The Pipeline Editor in the CollaborationBus example. and its repository
and pipeline UML class diagram. Source: (Gross & Marquardt, 2007).................. 219
Figure 46: The Pipeline Editor visual scenario, aimed at teenagers. The artifacts are
selected from the above window, and could be alternatively presented based on Tag-
Clouds, or Deep-Zoom visualisations. Source: (Fokidou, Romoudi, and
Mavrommati, 2008)ccc.ueeiiiieiiieeeiie e eeiee st e e e ee et e e s e e e eeeeaeeenraeeeraeeeas 221
Figure 47: An interface using the pipeline model, aimed at young teenagers, using
for artifact selection the characteristic comic-strip style of the artist Keith Haring.
Source: (Fokidou, Romoudi, and Mavrommati, 2008)..........ccccceeveercureercrieenreeennne. 222
Figure 48: Proposed functionality in this GUI scenario includes a chat-space, that
enables synchronous discussion between teenagers, to facilitate collaborative End
USEr DEVEIOPMENLeiiiiiiiieiiieiie ettt et saeeereenee e 223
Figure 49 : Handheld device (storyboard): The editor functions in the GUI of a
handheld device (PDA), which is a specialized extrovert gadget.cccceeueenneee. 224
Figure 50: Handheld device: application creation (storyboard). The GUI corresponds
directly to the connectivities — links (plug-synapse) model, using a simplified form

of ‘line wiring’ connections, but suitable for ‘low-level” applications. 224

16

Figure 51: Handheld device (storyboard): deletion of a connection between artifacts,
and therefore deletion of an application that has only one connection.................... 225
Figure 52: Top: the application here is described visually: “when the book is on the
desk, and the specific chair is near the desk, then turn the light on” (T-plug refers to
the Identity of the artifact). Bottom: the resulting ‘spaghetti’-like visual effect of
many links, based on the direct model visualization.ccceeceeeiieniiiiiieniieienne. 226
Figure 53: The grid view for establishing links between artifacts in the e-Gadgets
PIOJECE CASC. 1.vveeuvieeurieireeteeniteeteeetteeseessteesseessseesseessseasseessseenseessseenseessseenseesssaenseennns 228
Figure 54: Alternative views for rule editing: Text and Pipeline view. In the pipeline
view a number of preset awareness applications can be selected, as well as
applications from the community repository that can be modified. Other parameters
can be added, configured as part of the ubiquitous application.............c..ccceeeuneenee. 233
Figure 55: ASTRA sample screens (drafts): Rule Editing, and Application List ..234
Figure 56: Awareness connections Screens, displaying the shared receiving (left)
and sending (right) side of the application. As well as allowing for publishing and
subscribing awareness applications to communities, the screen also provides a quick
overview of all ASTRA awareness applications shared. A Search function that
directs to the community repository of applications is also available on top.......... 234
Figure 57: Extract from a service that employs the expression editor to let the user
express to somebody that she is in a good mood on weekends with nice weather
(Image is credited to G.Metaxas, Amelie system, Source: ASTRA D4, 2009).236
Figure 58: Example of two heterogeneous ranges combined in a common group
based on their common aspect (Source: G. Metaxas, ASTRA D4, 2009)............... 236
Figure 59 : Chapters of the thesis provided insight for a broader Framework for the
design of Ubiquitous Computing systems that support End User Development.....240
Figure 60: An outline schema of the framework, for the design of end user
development in Ubiquitous NVIFONMENTSccverueerierierienieeeenieenieeeeseeenieeee e 244

Figure 61: ASTRA Component Architecture. Source: (Goumopoulos et al, 2009)

17

Figure 63: Core Architecture Design Activities in the Agile Process (Source
http://www.guidanceshare.com/wiki/Agile Architecture Method Explained)....265
Figure 64: The Agile Process (Source: http://msdn.microsoft.com/en-
us/magazine/dd882523.aSPX)....viiruiiiiieiiieiieeie ettt e 266

18

1. MepiAnyn ota EAANVIK&

1.1. Ofépa tng StatpPig

210 KePAAOO aVTO TEPLYPAPETAL GLUVOTTIKA GTNV EAAMNVIKY YAOOGO TO OEpa Tng
SwTpng Kabdg kot ot gpevvnTikég vobécels kol otoyol. H datppn agopd to
Yvompota Audyvtov Yrmoroyiopov (Ubiquitous Computing Systems - Ubicomp),
Kol Tpombel TV CLUPETOYN] OTNV JSWHOPP®OT] KOl TOV EAEYYXO TOVLG Omd TOLG
TEMKOVG YPNOTEG. AlEpELVOVTIOL OO TNV OKOME TNG OOPUCTIKNG OYEOIOONG
néBodol, HoVTEAD Kot UnyYovicpol OlEmaens, €16t OGTE Ol TEMKOL YPNOTEG VL
AOKTAGOVV éva PEYOADTEPO Pobd TPosPactudTnTOS OTA OKIOKG TEPPAAAOVTAL

OayvTOL LTOAOYICLOY.

O Marc Weiser, mov &ofyaye Tov 0po ‘duayvtoc vmoAoyouods’ (ubiquitous
computing), avoQEPETOL 6TO ‘adpaTO’ TG VIOAOYIOTIKNG oyvog (Weiser, 1994),
OmoVv 1 éueaoct TPEnEL va diveTal oTnV dpactnploTnTa Kot O)l 6To 1010 TO £pYaAEio
(vmoroyiot). H Bemdpnon tov eivar g «o vmoloyiouog omoteiel upio oopotn
TEYVOLOYVIKY faon TV omoia OV TopaTHPODUE, OUMS THY XPHOIUOTOLODUE ofiacTo.
oty didpketa s (ong pogy (Weiser, 1994). AwPréner «uia teyvoioyio toco
oVVOQaATUEVY e THY KoOnuepivy (w1, ET01 MOTE OV UTOPOVIUE VO. THV OLOKPIVOVUEY

(Weiser, 1991). H épevva mov apopd tov Atdyvto YnoAroyiopd e&akorovBel Katd

19

Baon va ompiletar oto Kupiapyo Opapa tov Weiser (Chong et al, 2008), (Bell &
Dourish, 2006), ot (Bell & Dourish, 2006) épwg emonpaivovy o avty n- €pgvva
npénel mAéov va emkevipwbel oto mopdv avti va viobetel €va Opopo Tov
ToapeABOVTOC Yo T HEALOVTIKY| (TTOL TMPA TAEOV EIVOL TOPIVN) TPOYLOTIKOTTO TOL
O1ayVTOL VTOAOYIGHOV. AV Kot 1) TEYVOoAOYia €ivol TAEOV EVPEMC SLOOEOOUEVT] KO
NoN mapovoa (Yo mapdostypo HEco Tov eupéws dradedopévomv RFID tags) kot ot
gPELVNTEG UmopohV TAEOV Vo 0EOMOMGOVY KOADTEPO, OVTA TOL Elval GHUEPO
owBéotpa, givor OOGKOAO VO PAVTOGTOVUE KOL VO OPOUOTIGTOVUE VEEC KATOOGTAGELS
TEPOAV TOV GLVNOEIDOV HOG KO TEVOLLE VO TPOCKOAOVUOOTE GE £va. TOPEABOVTIKO

€E100VIKELUEVO OpaLaL.

O d1byvToc VToAoYIGUAG yperdletarl vo avortuybel pe dabepotikd tpomo, og va
HeYaAO @aopo omd O1apopeTIKA mepBarlova xpnong Tov. O 51dvTog VITOAOYIGHOGC
Tpémel v elvanl og Béon va. TPOGUPUOCTEL GE JOPOPETIKEG KOl UETAPOALOUEVESG
KOTOGTAGELS YPNOMNG, KATACTAGELS oL O pmopovoay va glvat pn mpoPAéyiues and
TOVG GYEO0OTEG KOl TOVG TTPOYPAUUATIOTES. Mia Avom gival va 000gl i duvatotnTa
OTOVG YPNOTEG ®OTE Vva. umopovv vo pvbuicovv, vo TpocapuodcGovY 1 va
KOTOOKELAGOVV €Qapproyég dtdyvtov vroroyopov (Kameas and Mavrommati,
2001), (Newman, 2002), (Rodden and Benford, 2003). H A0om avt €xel apketd
mAeovekTnuato Omwc: (o) m PEATIOT TPOCHPUOYY] TOV EQAPUOYDV SLAYVLTOV
VTOAOYIGHOV OTIC OVAYKES TV XPNoT®V, (B) ot €paproyég aLTEG Vo UTOPOVV Vo
BeAtiowBovv otadlokd, amd TOLG 1010VG TOVG YPNOTES TOVLS, (Y) Ol XPNOTEG Vo
evouvau®mBodV OOTE Vo UTOPOVV VO GYEOIACOVV TIC OIKEG TOVS OAANAETIOPACTIKES
eumepieg yuo to dkd TOVG MEPPAAAOV (HEe ONUIOVPYIKO OVTE Yo KATOVOAMTIKO
tpomo). Ta mpdTa PrpaTo ywoo TNV LVAOTOINGN OVTHG TNG TPOCEYYoNS eivar o
opopHdg €vOG OCLVOAOL evvol®V MG Kown Pdon 1660 Yo TOvg OYESGTES
GUOTNUATOV O1YLTOL VTOAOYICUOD OGO KOl Yo TOVG TEAMKOVS YPNOTEG, KOl M
onuovpyla epyoieiov Kot KOATOAANAG QOUNUEVOV CLGTNUATOV SudYLTOV

VTOAOYIGHOV OV VO, TIC EQAPUOLovV.

20

1.2. YmoOéosig tnG Statpifig

Koplo epevvnriknp vmobeon g moapovoog dwtpiPng elvar mwg mn - mopoyn
dvvotdtTog avamTuéEng epappoymv and tovg Telkovg Xpnoteg oe mepipdiiovta
Augyvtov Ymoloywopov eivar pio amopaitmtn kot €ykvpn mpocéyywon. H
mpocéyyion avtn a&ilel va depevvnbel mepatépm g Eva EexmPLoTd TUAWO TNG
épevvag mave ota IlepiBdiiovra Adyvtov Yroroyiopov. Xty wapovoa dtpipn
OlEPELVAOVTOL GPUIPIKE TOL gVPVTEPE. {NTHUOTO TOV APOPOVV GTNV avATTVEN Omd
TOVG TEAIKOVG YPNOTEG EPAUPUOYADV OAYVTOL VTOAOYIGUOV, TpoTeiveTal Eva
EVVOLOAOYIKO KOl TEYVOAOYIKO HOVIEAO Yoo OvATTLEN omd TEAKOVG YPNOTEG
(vmoomnplopevo amd TIC KATOAANAES OLOKEVLEC emefepyaciog Kol yYpaQukd
nepairovia demapng) kot Befardverol 1 apyikn vwodeon LESW® EQAPUOYNG TOV GE

EPELVNTIKO TPOTATLTIO KOl OELOAOYNGEDV TOV.

H dwtpin éxer o¢ o16)0 vo. mpoteivel TpOTOVG Yo VO OTOKTHGOLY Ol TEALKOL
YPNOTEG €va eMMEOO OLUPAVEINS, KATAVONONG KOl EAEYYOL TNG Agttovpyiog TV
TePPOALOVIOV ddyuTov LVIOAOYloUoD, ota omoid (ouvv - OGO AmOdOTIKA
CUTOULOTOTOMEVE. KoL 0PN Kot va etvor Tor meptBdAlovia avtd. O oyedcprog
ocvotnudtov Atdyvtov Ymoloyiopov Ba mpémel vo amotelel T Pdon wote To
“‘Ymoeaxa eravénuéva’ avtikeipeva 6to tepPEALOV (TOV GLUUETEXOVY GTO GUGTN LA
OlGYVTOV VTOAOYIGHOV) VO EIVOL ETOVOYPTCILOTOIOVUEVA, HE ONUOVPYIKO TPOTO
amd Toug avOpdTovg, Kot Oyt pdvo TposPacipa 6Tovg oxednotés (Mavrommati &

Kameas 2002), (Rodden & Benford 2003), (Rodden et al 2004).

YmoBétovpe g ot epapproyég dtdyvtov voAoyiouol Bo amokToovVY VPV TEDIO
EQUPUOYNG OTO OWKloKO TePPaArov, HOVO gpdcov ot avOpwmor umopodv va
KOTOVONGOLV éva Bactkd chHVOLO EVVOLOV OV OLEMOVV THV TEXVOLOYID TOV VITAPYEL
micw amd 10 mepPdriov mov Covv. ‘Etol pmopodv va avamtdiovv éva aicOnpoa
EUTIOTOCVVNG, PAETOVTOC TG UITOPOLV €V OLVAUEL VO EAEYYOVV TOL GUGTILLATO OV TA.
Kotd ocuvémelo, n mpocéyyion Tov adlopavois «Hodpov KouTioH» Tov KpLPEL TNV
teyvoloyia péca tov, émov ot dvBpwmot dev givan oe Béon vo TopATHPNGOLY TN

doun TOL GLOTNUOTOC, Ogv amoteAel ©TOYO TNG TapPovoos Epevvag. Avtifeta

21

nmpoteivetol pion mpooéyyion pe ‘Ooeoav]’ SGTPOUATOGCT, TOV OTOKOAVTTEL €V

LEPEL KOl EMAEKTIKA TN SOUY] TOV GLUGTILOTOC.

210 mhaiolo g €pevvag awTNG mpoteivetar pio EEXMPLOT GLOKELN EAEYYOVL, M
omoio pesorafel petald ypnotadv Kot TEPPAAALOVTOS S1YLTOL VTOAOYICHOD, KO [LE
v Omow Ol TEMKOL YPNOTEC WTOPOVV VO, EMNPEACOVV TIC AELTOLPYIEC TOL
nepPdArovtog avtov. Ilpoteivetor éva €0ANTTO Kol EMEKTAGLUO LOVTEAO Yol TO
YOPO TOL AtdyvTov YTOAOYIGHOV, TO OTOI0 YEPUPAOVEL TO VONTIKO HOVIEAO TV
xpnotav (mov Ponbd otnv KoTAvVONGN TOVG GLUGTNUOTOG), UE TIC TEXVOAOYIKEG

KOTOOKEVOOTIKEG EVVOLEG TV TEPIPAALOVTOV O16YLTOV VITOAOYIGLLOV.

To povtédho avtd emkvpdveTal Kot dokipdletor péca amd v vIoBEToN Tov o £val
TAOICI0 OPYITEKTOVIKNG LAMKOV-AOYIoUIKOD vy mepiBdAlovia S1dyvTov
vroAoywspov. To apyrtektovikd ovtd miaicto (Kameas, Mavrommati et al, 2003)
nepopPdvel ™ O100KAGIO KOTOOKELVNC TMV ETOVENUEVOV OVTIKEILEVOV, TO
nepPdALov Aertovpyiog TOL GUOGTHUATOS KOl TN XPTOT VITOSOUMY TNG TEXVOAOYIOG

TANPOPOPIOG KOl EMKOVOVINGS.

Yxomdg TG TG épevvag etvar va d1EPELVNCEL KATA OGO M avamtuén and Tovg
TEMKOVG YPNOTEG OmMOTEAEL ML KOTAAANAN TPOCEYYIoN Yo EQOPUOYES GE
neplPdAlovia O1dyLTOL VTOAOYIGHOV. Atgpevvdtor o€ molo Pabud o térola
TPocEyylon eivol KatavonT] GTovS TEMKOVG YpNoTeS, Kabdg Kot og mowo Padud
amoTeEAEl YPAOIULO N OKOUO KOl OTOPOITNTO GLGTOTIKO TNG TEYVOAOYinG dudyvTov
vroAoywopov. H gykvopomnta tg mpocéyyiong avtng aloloysital HEG® SOKIUDV
and teAkovg ypnotec. Ot ideg €vvoleg mov Jdivoviol 6Tovg TEAMKOVS YPNOTES
UTOPOLV VO TOPEYOVIOL KOl GTOVG KOTOGKELOOTES KO TOVG EMOYYEALOTIES
OYEONOTEG EQAPUOYDV, GE £VOL IO AETTOUEPEG EMimedo, kaBmG eniong umopohv Kot
vo. ypNoonomBovy amd €LELEIC PUNYOVIGUOVS OVTOUOTOTTOINGNG (TOL TOLG
TPOGaPUOLOVY Yl TOVG OKOTMOVUG AELTOLPYIOG TOVG OTNV OdLPAVY] TPOCEYYIoN
«black-box» mov vioBetovV). Atvovtor Tapadelypata amd Ypapikés SIETAPES XPNOTN

mov Pacilovtor (o ekevbepo Pabud omddoong) oto poviédo avtd, BOTE Vo

22

uropécet vo ektiunei n evpvtTo 08 GYEON UE TO TESIO EPAPLOYNG TOL LOVTIEAOL.
[MopdAinia mpoteivovtal Asttovpyieg yio v emifieyn kor cOvialn eQoproydVv,
OV APOPOVV TIG GYEOLNOTIKES TPOSOYPOUPES TOV UNYAVICUADV Yo EeY®PLOTES
ovokevég eAéyyov. IpoteiveTon emiong éva yevikotepo mAaiclo, mov mepthapPavet
TI¢ Paocikég évvoleg kot To peBodoroyikd epyaleia, yio Tov 6YeSOGUO GLOTNUATOV
S1dYLTOV VIOAOYIGHOV T OO VO EMTPETOVY T ONULOVPYIL EQUPLOYADV OO TOVG
TeEAKOVG ypNotes. To mhaicto avtd £xel oTOX0 va Tapéyel Eva Koo dabepatikd
TAOIG10 cLvEPYACTOG, KOTAVONOTNG KOl OpoAOYiag HETOED TV E0IKOTHTMOV TOL
EUMAEKOVTAL OTOV GYEOloUO Kol TNV LAOTMOINoM ouotnudtov dldyvtov

VTOAOYIGLLOV.

Ot emi pépovg otdHyot dapopemOnKay ¢ eENG:

e Noa depeuvnbodv 1o emi pépovg (nmuoto mov agopovv v Emkowvovia
AvBpomov Ymoloyloth, o omoio, UmAEKOVIOL otV avamnTuén omd TeAKOVS

YPNOTES EQAPLOYDV GE TEPPAAALOVTA O16YLTOV VITOAOYIGTY).

e Na 60000v KatevBOHvoelg yo TIg KatdAAnieg €vvoleg kot gpyoieion o omoia

£€xovv 6TOHY0 VO E1GAYOVV TOVG TEAIKOVG ¥PNOTES 6TO Aldyvto Y TOAOYIGUO.

e Noa d00&l éva katdAAnio Kot €OANTTO vONTIKO HOVTEAO YloL TNV TEYVOLOYiQ
1ayvTov VITOAOYICHOV, TO 0TOi0 Vo UTOPEL VL AEITOVPYNGEL WG YEPUPO HETAED

NG TEYVOAOYIKNG VITOOOUNG KOl TV OVTIANYEDY TOV TEMK®OV YPNOTOV.

e Noa mpotafovv demap<s Yo Tovg TEAMKOVS YpNoTeS (0TS, Yo Tapdostya, LEGM
oG eEMTEPIKN GLOKELY| EAEYYXOL Kot cOvtaéng epappoyadv ‘Editor’), dote va

&xovv mpdcPaoct HECH AVTOV 6TA TEPPAAAOVTA d16YVLTOV VTOAOYIGLOV.

e No &@aplootel TO TPOTEWOUEVO HOVIEAO, OTO TAOIGIO TOV GYESOCUOV
OLOTNUATOG YAIKOU-AOYIOUIKOV, O©T0 TAGIcl OBEHOTIKNG OHOOIKNG

gpeuvnTIkKNG epyociag. Emi pépovg otdyo amotélece m ewcoywyn pebdowV

23

GYEOICHOV dLAOPAUOTG KOl 1) EVOOUAT®OTN NG OladiKaciag oevapiov oTo
mhaico G Swdwaciag avadmtuéng mov eApUOlETOL OGNV EMOTHUN

VTOAOYIOTMV.

Noa dnpovpynfovv amiéc mpoyuatikés epopuoyés o€ mepPdAiov dudyvtov
VTOAOYIOHOV, O©TO TAMiGl0 Oyt UOVo oG OloBEUaTIKNG EPELVNTIKNG

TPOGEYYIONG, OALL KOl LE TOVG TEAMKOVS YPNOTEGS.

Noa tpotafovv cUVOLAGTIKEG Kot TOAVTPOTKES TPOGEYYIGELS KATAAANAES Yo TNV
dpaotnpronoinon kot enéppacn tov TeAtkod Xpnom oe mepidiiovia d1dyvTov

Ymoroyiopov.

No katoypa@ovv To VITAPYOVIN Kol TO OVOSVOUEVO TOPOOEIYLOTA YPAUPIKMV
dlemapdv mov oyetilovtal [e TNV OpacTNPOMOINGN TV YPNOTOV Kol TNV

eMEPPON TOVG OTIC EQUPLOYEG G TEPPAAAOV dLIYLTOV VITOAOYIOTY].

Méow emavoNmTIK@OV KOKA®V oyedioong Vo MEPOUOTIOTOVUE KOl Vol
avamTOEOVE 10€€G KO TOPAOEIYHATO Y10 EVOALOKTIKES YPOPIKES OIETAPES YLl
TOVG TEMKOVG YPNOTEC, TOL HUTOPOVV VO £YOVV EPOPUOYT] OTO &V AOY®
gpeuvnTikd medilo. Ta moapamdveo pog Ponbodv emiong yw v KoAdTEPN
Katavonon tov tediov (LEG® NG GYEOGTIKTG OLlEPEVVIONG) KOt TNV SlELPLVOT)

mOovov epyoreimv kot pefddmv.

Noa extiunfet 1 gykvpdTTo. TOL TPOTEWOUEVOL HOVIEAOL Kol 1) SLuVATOTNTO.
EPOPLOYNG TOV, £TCL DGTE GTNV CLVEXELD VO UTOPEGEL Vo PeATImBel avTd péow

NG EMOAVUANTTIKN G/ SIOUUOPPMTIKNG d1adIKAGT0G GYedioo.

Na 0600et po gupdtepn ewodva TtV OBeopntikdv Kot peBodoroyikmv
TPOGEYYIGEMV TTOV APOPOVV TNV GYENINGN CLGTNUATOV JLLYVTOL VLITOAOYIGHOV
ta. omoio. vrootnpilovv TN Jdpactnplomoinon kol emEUPOCT TOV TEAMKOV

ypnotov. To mhaiclo avtd ypnotpevetl yoo va vrootnpilel ta endpueva oTdole

24

€peuvag otov YOpo avtd, BEtoviag Kowvég Pdoelg Sobepatikig ovvepyaciog

GTNV £PELVA KOl OVATTTUEN TETOU®Y GLCTNUATMV.

1.3. MesOodoloyia oxedlaoTIKNG EpEVVAG

H mapodoa épguva apopd 10 01ad10 TG dtopudpemong Wedv (concept phase) ot
ddikacio emavainmTikng oyedioong (iterative design process). Xtn @Aacn ovth
avOmTOGOETOL 1 KOTAvONoT Tov Tedlov Kot SlEPELVOVVTIOL EVVOLEG, GYEdDL Kol
YEVIKEC 106€C OV OPOPOVV TN oxedlaon HE GTOXO TNV EVOLVAUW®ON TOV TEAMK®OV

¥PNoTOV o€ mepIPdirovta Abyyvtov Y moAoyiopov.

H depgvvnon avtn yivetar omd v ontikn yovia e dtdpaotiknig oyediaons. H
Sdwkacio ddPACTIKNG oxedlaons, ot OAcn NG OUOPP®ONS TG E0C,
mpaypotevetol Bépata OT®MG A.Y. TPOTEWVOUEVES AelTovpyies, epyadeia, TPOTOVG
oAANAemidopaong, mopodelypoTo OEMOPAOV, VONTIKA HOVTEAQ, YPOOIKEG
avamopooTdoelg KTA. Ta mpotevopeva oyx£oto Kol oevApLo AEITOVPYOHV OC EVOVCUOL
YO TEPALTEP® CTOYAGUO Kol KOTOVONOT T®V CLGTNUATOV Aldyvtov YTOAOYIGHOD
mov vrootpilovy ™V avarTvén omd Tovg TEMKOVS YPNOTES, OAAL Agttovpyolhv
emiong Ko ®g péEGO Yoo TNV AS0AOYNOT TOV TPOTEWVOUEVDV Tpoceyyicewv. Ta
YPOQIKA TEPPAALOVTO SETOPNC TOV TaPOLGLALovVTOoL OV T AVTIUETOTILOVUE MG
TEAKA ATOTEAECLLATO TG EPELVOC, TOPE MG 1OEEC / GEVAPLAL TTOL YPNGULOTOLOVVTOL
Y0 TV EMKOWVMVIO, TOV EUTAOVTICUO TOV 0DV Kot TV euabuven oto Bépata mov
TPAYUATEVETAL 1 €PELVA, TO OMOi0L SELKOADVOLV TNV OVOTPOPOOATNOT TNG

GYEOLNOTIKNG OKEYTG.

Ocov agopd ™ dwdikacia oyxedoopov, o Terry Winograd (otnv ecoywyr tov
(Carroll, 2002)) avagépel TmG: «0 Xyedlaouog VoS KOAOD O100PATTIKOD AOYLOUIKOD
oev ¢elvar ovte emotiuy, ovte tévH. Agv amotelel akouo TOTIKY OlOOIKAOIO,
OYEOIOTUOD UNYOVIKOV, OUMS TOAD TEPLOOOTEPO. EUTAEKOVTIOL OE ODTOV OO THY

Eupoty 0e10tNTO. KO O101GONTIKY 1IKOVOTHTON.

25

H evélxtn mpocéyyion eivor cuvveacuévn pe m owdikacio oyedlacpov (Cross,
2008). Zntobuevo etvor pio €LEMKTN TPOGEYYION, OVAULESH GTNV GYEOLNCTIKN-
SoOnTikn de€1dTTa. KoL OTNV TUTIKN OlOIKAGI0 OXEOOGHOD TV UNYOVIKOV.
AxolovBoOpe Aowdv 10 peBodoroyikd mAoiclo TG XYEOOOTIKNG ZVAAOYIGTIKNG
(Design Rationale) 6mwg meprypaoetal and tov John Carroll (Moran kou Carroll,
1996), (Carroll 2003, pp.432) kot g pebodoroyio tov axorovBovpe tn Lyedioon
Bacwopévn oe Zevdpro (Scenario Based Design) (Carroll 2000), 1 omoio givan pio
gvéhktn péBodog, amevBuvopevn €101KE GTN CYESIOCTIKN OPOCTNPLOTNTA KOl TO

GYEOUG O dLAOPACTC.

H dwpopootikn-cnavoinmniky dwdikacio oyedioong axolovbeitar 6to mpdTo
avtd oT1ad10 oyedioong, ©T0 Omolo €VIAGGETOL M TAPOLGH £PEVLVO: OVTO NG
oyediaong tov apyikodv evvoldv (concept phase). H e£edpeon anoutioewv yiveton
HEGM TNG OLAAOYIOTIKNG OYEOWICHOV Kol HE TNV ovamntuén oevapiov. H
EMOVOANTTIKY Oladikacior oyxedlacpod mepthappdver kbkiovg a&toldoynong. Ztnv
Tapovoo £pguva 1 afloAdYNOY GTOYXEVEL GTO VO TOPEYXEL TOLOTIKEG KATELOVVGELS
otV oyeodlaorn. Xpnowomombnkav dwdpopeg péBodor Yy v deaywyn
aE0A0YNCEMY, CUUTEPIAOUPAVOUEVOV TOV EPOTNUATOAOYI®V, OOKIU®V GE TESIO
EQOPUOYNG, KO UEAETEG EUTMELPOYVOUOVOV. METOED MA@V, £yve €mTLYNG XPNON
tov mAaiciov 'vootikdv Awactdcewv (Cognitive Dimensions Framework), (Green
and Petre. 1996), (Blackwell and Green 2003), amd opddo eumelpoyvoudvov
oYeTk®V pe to Bépa tov Atdyvtov Ymoroyiopov, emPePordvoviag £T161 TS TO
TAOUG10 0VTO pmopel va ypnotpomromel wg péBodog a&loAdynong Yoo GLGTHUATA
Augyvtov Yroloyiopov, ta omoio fpiokovial 610 6TAd0 OOTHIMONG TOV APYIKAOV
evvouwv (Markopoulos et al, 2004) - dnAad” TPW T0. GLGTHLOTO VAOTOMOOVV e
GUYKEKPIUEVO TPOTO EKTEAEOMG, OV OETEL EKTEAEGTIKOVG TEPLOPIGUOVG Oyt UOVO
otV TEPOUTEP® aVATTUEN TOLG, OAAG Kol otV aloAdYNoTN NG OLGLUGTIKNG

€VVOL0LOYIKNG Péiong Tovg.

26

1.4. Epguvntika ATtotTeEAéopaTa

Yy dwrpPn avt) dlEPELVATOL 1| GYESOCTIKT OPUCTIPLOTOINCT] TWV YPNOTMOV GTO.
nepairovia didyvtov vmoloyiopov. Ta amoteAécpato TG mTapoHoag £PEVVOG
GYLPOTOLOVY TNV AmoyT TG N TPOSPAcT) TOV YPNOTAOV HE GTOXO TOV GYEOOGHO
EPOPLOYDV O18YLTOV VITOAOYIGLOV Elvar pia TPOGEYYIoT £YKVPN, 1 OOl TTPETEL VoL
OtepevvnBel meprosoTEPO, Ko vo. vootnpydel amd KOTAAANAQ GULOTHUOTO KOl
TAateopueg Adyvtov Yroroyiopov. [IpowBeital | avtiinyn nwg o oxed10GHOG TOVL
GLOTNUATOG OPEIAEL VO CLUTEPIAAPEL TV TPOCPAGIHOTNTO OO TOVG TEAIKOVLG
YPNOTEG. XTO TAQICIO OVTO TNG OVAYKOIOTNTOG OPUCTNPOTOINCNG TOV YPTOTOV

Otlvetal pia EMCKOTNGON CYETIKMOV gpyoreimv Kot HeBddmV d1adpacnc.

[Tpoteiveton ko a&loroyeitor wg Pacikd epyareio yia TV EVOLVAU®OGT TOV YPNOTOV
éva vonTikd HOVTEAO, TOL TOVTOYPOVO, OTMOTEAEL KOl TEYVOAOYIKO LOVTEAO,
€QOPUOLOVTag GTOV YMPO TOV OGYVT®V GULOTNUATOV VTOAOYICUOD TO HOVIEAO

publish-subscribe.

H épevva ovty ewcdyst o610 oLGTNUO OLYLTOL VTOAOYICHOD YOPIOTEG
TANPOPOPLOKEG EQUPUOYEG Yo TTOWKIAMO pHEcwV (Guokev®mV) mov Ponbovv o
onuovpyio kot dwoyelpton €QOPUOYDOV S1EYVTOL VIOAOYIGHOD OO TOVG TEAIKOVG
ypnotes. [poteivovion KatdAAnAeg Aettovpyleg Yo TIC EPOPUOYES OVTEG KO YIvVETOL
EMOKOMNOT OTIC YPOQIKES OEMOPES OV YPTOUOTOOVY TOPUCTOTIKES KO

GUVTOKTIKEG LEBOSOVS GYESOGLOD EPAPLOYDV.

Téhog, N épevva VTN TPOGIOPILEL COUIPIKA TIG SUGTACELS EVOG EVVOLOALOYIKOD KOl
nefodoA0YIKOV TAAIGIOL Y10l TO GYEOIACUO GLGTNUATMOV SLAYVTOV VITOAOYICUOV, T
omoio. VTooTNPifovV TN SPACTNPLOTOINGT TWV YPNOTAOV KOl THV EVOLVAUWOON TNG
onuovpywodmtog tovg. Eivor avaykaio va vmapéer éva té€to10 mAaicio yw v
oyediaorn cvotnudtev Aldyvtov YTOAOYIGHOD MGTE Vo ¥pNooronfodyv o Kown
Bdomn xoatavomong kot emkovoviag HETOED TMOV SPOPETIKMOV E0TKOTHTMOV TOV
gumAEKovTaL, YOPIC va elval amattoOUeEVO va, Katéyel o Kabe epumiekopevog o Pabog

T1G VTOAOUTEG EOKOTNTEG.

27

Q¢ mapATAEVPO AMOTEAEGUA TNG €pevvag, epoppootnke kot aflohoyndnke to
mhaiclo pe Phon g yvootikés dwotdoelg (Cognitive Dimensions Framework)
(Green and Petre, 1996), ywo Vv 0afloAdyNon TOV GLOTNUATOV SLYLYLTOV
VTOAOYIGHOV. Emikupdoape mmg to TAaiG10 0vTd SiVEL IKAVOTOTIKO OMOTEAECLATO
Kot pmopel va ypnotpomomBel kot yioo v aSloAdYNoN TOV EPELVNTIKAOV
cuoTNUdTeV O18YVTOL VROAOYIGHOD (Kot HAMOTO OO TO TPOWO GTAS0 TG

STOTTOONG TOV EVVOLDV TV EPEVVITIKADV TPOTACEMV).

1.5. MeplAnyPeg kePaiaiwv

Kegdraro 1: Iepiinyn ota EAlnviké
To xepdiaio avtd mepi€yetl TNV TEPIANY” TS OaTPIPG OTNV EAMANVIKT YADGGO.
Kepdararo 2: Ofpa tng gpeuvnTikig owaTpipng

270 KEQAAOLO AVTO AVOQEPETAL 1] 1oTOPia TV OprV Kot Bempnoewv Yo Tov Atdyvto
Ymoloyiopd. Ztnv cuvéyel TEPLYpA@OVTOL 0L EPEVVNTIKES LITOBECELS, TO TTEGIO TNG

£€PELVOG, KOl TOL KUPLOL G UELD TNG.
Kepdharo 3: Epgovntikn mpocéyyion

210 KePAAMo avTtod TEPypapeTol 10 HeBodoAOYIKO TAIGlO LE TO omoio £ywve M
moapovoa Epsuva. AkoAovOnOnke m oOdikacio SdOPOCTIKNG oyxedloong Kot 1
oyedwnoTik] ovAloyiotikn (Design Rationale), pe Paocikr] pébodo m oyedioon
Baciopévn oe cevhpa, Ommg meptypapetal and tov J. Carroll. Ileprypdopovton emiong

01 H€B0J01 IOV EPAPUOCTNKAV KATA TNV aloAdynon.

28

Ke@draro 4: Ao To avTIKEIPEVA TPOS TU EMAVENUEVA TEXVOVPY AT

270 KEPAAOLO OVTO TEPLYPAPETOL 1] GVAAOYIGTIKY KO 1) EMLYEPNUOTOAOYIO VITEP TNG
EVOLVALMONG TNG ONUIOVPYIKOTNTOS TOV TEAMK®OV ¥PNOTAOV HEGH 6T TEPPAALOVTOL
Aldyvtov Ymoroyiopov. H dpactnplomoinon g SNUOvpykdTNTOG TOV TEAKOV
YPNOTAOV OHVOTAL VO, 0ONYNOEL GE OAVOGVOUEVT] AEITOLPYIKOTNTO TMOV CLOTNUATOV
SLIYLTOV VIOAOYIGLOV, OTMG UTOPEL VO TPOKVTTEL Ao TIG EEEOIKEVUEVES OVAYKES

Kot eEmBLpES TOV ATOU®V.

Ke@dlaro 5: Audyvtog vrohoyiopnos Kot TPpoceyyicelg EMAENGNS AVTIKEINEVOV

Edd meprypdopetan n oxetiky] épevva mov €xel yivel amd v TAELPA TG oxediaomg
GLGTNUATOV S1AYVTOL VIOAOYIGLOV (G)edino VAKoV-AoyickoD). [leprypdpovtan
OYETIKA €peLVNTIKA €pya KOL Ol TPOGEYYIoES TOVG, OGOV aPopd EmaVENUEVOL
avtikeipeva kot meptBdAilovta: copmeptAapupdvouy aicOnTpes oTo aVTIKEIEVO Kot
010 TEPPAALOV KOOMG KOl ETIKOWMOVIOKES KOl VITOAOYIOTIKEG SUVATOTNTEG,
YPNOLOTOOVV KATAAANAEG LETAPOPEG 1) LOVTEAN YEPIGUOV TOV EQOPUOYDOV 0T

TOVG TEMKOVG YPNOTEG.

Kegdraro 6: Znmipota emkowvoviag avlp®mov vtoloyieti) oto wepifdiiovra

O13(VTOV VTOAOYIOHOV

To kepdiaio avtd meprypdaest Bépata mov apopovv v Emwowvovia AvOpodrov-
YrnoAoylot], mov mpokOITOLV Omd TS eEeAiEelg otor mepPdriovta AldyvTov
Yroloyiopot. Oépata mov oyetilovial te dpaSTNPLOTOINCT| TOV TEMK®OV YPTOTOV

avaeépovtol and v okomid ¢ Emkowoviog AvBpamov Yroloyiot.
Kepararo 7: AvamtoEn Aoyiopikov amd Tovg TeEMKOVS Y pNotes: Pacikég Evvoreg
10 ke@AAato avtd mapovstdaletal péca amd PPAOYPAPIKY EPELVA Ui ETIGKOTNON

TOV YEVIKOV Bepdtov Kot Bacik®v apy®mv Tov apopodv v Avantuén Aoyiopkol

and Tehkovg Xpnoteg. [apovoidletal o optopog e OepaTikng VTG TEPLOYNGS, TO

29

YOPAKTNPLOTIKA TOV £XOVV 01 YPNOTEG TOV AVATTUGGOVV AOYIGHIKO, Ol £VVOLEG Kol Ot
TpoKANoelg mov ovrtipetonifovv (péoa amd TV YPNOYN ONTIKOV 1 GLVIOKTIKOV

TPOTOV TPOYPOUUOTIGHOD).

Kepdrowo 8: Avamtoin spappoydv amé tehkog ypnotes oto mepifdilov

013V TOV VTOAOYIOHOV

Y10 ke@AAoo avtd emkevip@®vovpe ota Bépata g Avamntuéng amd Telikovg
XpNoteg mMOL APOPOVYV GUYKEKPIUEVOL TNV EPELVNTIKY TEPLOYN TOL AtdyvTov
Ymoloyiopov. Ileprypbpovior ot dvvatdtnteg mov divovtal, ol UNYovicpoi mwov
uropovv vo tovg vmofondncoovv, kabdg ko oyetikég €vvoleg. Ileprypdpovton
OLPOPETIKEG TTPOCEYYIGES TOL pUmopolVv va ypnolwonombodv g mbava

mapadeiypata S1idpaonc.

Kepdrorwo 9: 'Eva mpoteivopevo poviého yio Tov ouvovaopd smavénuéveov

OVTIKEPEVOV

210 KEPAAOLO OVTO TEPLYPAPETOL £Vl LOVTELD OV pmopel v ypnoiporomBel yo
ouvleon AVTIKEIEVOV GE EQaPLOYES, ToL PacileTor oto povtédo Publish-Subscribe,
TPOGOPUOCHUEVO oTO cvotnuote Aldyvtov YmoAoyiopov. To poviédo avdmrtuéng
AOYIGUKOD EMEKTEIVETAL (OOTE VO GUUTEPIAAUPAVEL TV €Vvolo TNG OLVATOTNTOG
dpdong (affordance, 6nmg meprypdopeton and tovg (Gibson, 1977), (Gibson, 1979),
(Norman, 1990), mov ava@épetal oTig WOOTNTEC-1YVN TPOWOEAGHOV Y TN YPT|ON TOV
avTIKEUEVOD). To TpoTeEVOUEVO HOVTEAD €xEL OITAN AETOLPYiaL, G VONTIKO HOVTELO
YL TNV EVIGYLON TOV YPNOTAOV TOV GLGTNUATOS, OAAL KOl MG HOVTEAO avATTLENG

TOV GUOTHLLOTOG, YEQPVPOVOVTOS LE KOO AEEIAOYI0 KOt 0vamopdoTaoT Kol TOVS OLO

YOPOVGE.

30

Kepdararo 10: EQappoyi] Tov povréhov - | TEPITTMOON TOV EPEVVNTIKOV £PYOV e-

Gadgets

Mo perétn mepintoong S €QAPUOYNG TOL TPOTEWVOUEVOL LOVTEAOV,
nmoapovotaletal oe avtd to KeEPAAomo. H pedétn mepintwong agopd v epoppoyn
TOV HOVTEAOL OTO MAOIGLO TNG ONUOVPYING EVOG TEXVOAOYIKOV TANLGIOV, TO 07010

viomomOnke oto gpguvnTikd épyo e-Gadgets.

Kepdrawo 11: A&oidynon g avdmtving omd TEMKOVG YPNOTES EQUPUOYDV

O1aYVTOV VTOLOYLGHOD

Ye aUTO TO KEPAANLO TEPLYPAPOVTOL OOKIUEG OO TEMKOVG YPNOTEC KOOMS Kot
aflohoynoelg amd opddeg ewKov. Toa amotedéopato TV afloAoynoemv
meprypapovtal kot ovagépovior onueio Peitioong. EmPefoardveror mog m
mpocEyylon vo. vwobetovv ta cvothiuate Atbdyvtov YmoAoyiopov pefddovg
OpOoTNPOTOINONG Kol OVATTLUENG OO TEAIKOVUG YPNOTES, &ivow pio €ykvpn
gpeuvnTikny KatevBuvon, mov afiler va depevvnBel meplocdTEPO PEAAOVTIKA.
Awmoto@vovpe oG To mAaiclo yvootikov dwotdoemv (Cognitive Dimensions
framework) (Green and Petre, 1996) umopei vo amotehécel v Pdon agloldoynong
v TePParrovia Atdyvtov YTOAOYIGHOV, IVOVTOS OvVOTPOPOdATNOT Od TO TPMOTA
EPELVNTIKA GTAOWN, TPV oKOpe avomtuyBel 1O TOAVTAOKO GUOTNUO LAKOV-

AOYIOUIKOV.

Kepdharo 12: O Aertovpyieg TG 6VOKEVNG EAEYYOV KO GOVTUENS EQUPUOYDV

210 KEPAAOLO OVTO divovTon apPYIKEG TPOSIOYPAPES Yo Eva UNYOVIGUO emiPAEYNG,
eAEYYOL, KOl OLVTOENG EQAPUOY®V OlYLTOL VTOAOYIGHOV. Tétolov THMOVL
UNYOVIGHOT HIopobV Vo AELTOVPYNCOLV GE EEYMPLOTEG POPNTES GLOKEVEG, TIG
OLOKEVEC eAEyyov kol oOvtaéng eeapuoywv. Emiong meprypdoetor mbovn

AELTOLPYIKY| OOUN, AELTOVPYIEG KO OLVATOTNTES TIG GLGKELTG AVTNG.

31

Kepdarawo 13: I'pagikd mepipairovra mov divovv tnv dvvatotnTe avantodng

EPUPUOYDOV HLAYVTOV VTOAOYIGHOV OTOVS TEAKOVS YPNOTES

e aUTO TO KEQAANLO TOPOLGIALETOL Hio GEPA OO YPOPIKES HEMAPES, TOV UTOPOVV
va xpnoipomoinfodv amd Tovg UNYOVIGHOVS N TIC CVOKEVEG EAEYYOV Kal GUVTAENG

EQUPUOYDV TTOV TEPLYPAYALE GTO TOPATAVE® KEPAANLO.

Kepdrawo 14: Ilpog éva mhaiclo Yoo TOV GYEOLOGUO CLOTNUATOV AGYVTOL

YnoAloyiopov, 700 vToGTNPILOVY TV OPUGTIPLOTOINGT] TOV TEAIKMOV YPIGTAOV

Me 10 KE@PAAOLO AVTO OAOKANPOVETAL 1] EPELVA, GVYKEVTPOVOVTOL KOl OPYOVMDVOVTOL
TO. GLUTEPAGLOTA, KOl OOHOVVIOL GE €vo TAOIGL0 Ol €VVOleg KOl GYEGELS TOL
aPopovV ToV oYeOGUO cuaTrdtev Aldyvtov YToAoyiopov mov vrostnpilovy v
dpactnplonoinomn twv TeEMKdV xpnotdv. H katevbuvon mov mpoteivetal eivat mpog
é€va, eupv TAOIG10, TO OTOI0 YEPLPOVEL TNV TPOCEYYIOT] TOV GYEOICUOD EUTEPIOG
YPNONS, TOL GYEOGHOD VAMKOV-AOYIGHIKOV, Kot Tov Oswpiov uddnong xou
YVoOoTikig yoyoroyiag. H evupvtepn Osopntikn kot pebBodoroyikn mpocéyyion
TOPOLCLALETAL E KOATNYOPLOTOINGT GE EMUEPOVS EVVOleg Kol HEBOSOVE, Ol Omoieg
ovuPdArlovy 61N oyediacT GLOTNUATOV TPOGPAGIUOY aTd TOVG TEAMKOVS XPNOTEG,
Kol €V TEAEL OTNV EVOLVAUMOTN TOV YXPNOTO®V Vo, Opactnplomombodv ota

nepPdArovia S vLToV VTOAOYIGHLOD.

Kepdraro 15: Amoteréopota Kol Zopnepacpata,

Ta GUVOAMKA OTOTEAEGHOTO KOl GUUTEPAGLOTA TOV TPOKVATOVV OO TNV £PELVOL
0TI TOPOVGIALOVTOL GUVOTTIKG GE OVTO TO KEPAANLO, KOONDS Kal KoTeELOOVGELS Yo
HEALOVTIKT] €PELVOL OTOV YMOPO TM®V CLGTNUATOV OlYLTOV VTOAOYIGHOV TOV

EMTPEMOVY GTOVG TEAMKOVG YPNOTEG VO OpacTNPlomomBovv Kot vo avamrtOEoVY

EQUPLOYEG.

32

Avagopéc:

10 TUAUO oUTO CLUYKEVIPAOVOVTOL Ol EPELVNTIKEG ONUOGLEVGELS OV

YPTCLOTOMON KAV KOl OVOPEPOVTAL GTHV TOPOVGA EPYOGIAL.

MMopaptipata:

Empépovg Aemtouépeleg g oxed100TIKNG £PELVOC KOOMG Kol TV 0EIOAOYNCEWMY,

dtvovtat pe TN Hopen GEPAg TopapTUATOV:

HMapaptnpa 1: Avatpo@odotnomn amo £101ko0g

o Tlapaptnpa 2: ASoldynon HES® TOV TANIGIOV YVOOTIKMOV O100TACEDMY

o TMapaptnpa 3: A&oldynon ota cuvédpla DC-Tales kot BCS-HCI

e [Mapaptnpa 4: Aoxiur| oto i-Dorm kot a&loAdynomn amo TeEAKOVG (P1OTES

e [Mapaptnpa S: Etgpoavagpopéc otnyv épguva mov mapovotdletal

o Ilapdptnpa 6: Ilapdderypo ocevapiov Onpovpyiog omd TEAMKOVS YPNOTES

EPOPLOYDV SLIYVLTOV VTOAOYIGHOD.

1.6. XuUvoyn

Y10 ke@dAoo ovtd O00nke plo mEepiAnym TOV KLPOTEPOV onueiwv NG
OUKTOPIKNG aVTNG OTPIPG otV EAANVIKY] YA®ooo. AvaeépOnke to B€ua g
SwTpng, ot epguvnrikéc vmobécelg, ot okomoi Kot ot e€mi PEPOLG GTOYOL NG
é€peuvag, KaBdg Kol To. KUPLOTEPO EPELVNTIKG ATOTEAECLATO, TTOV TPOEKLYOV OO
mv épevva avtn. A&ilel va onueiwdel mmwg amd v Tapovca EPELVA TPOEKLY OV
EPELVNTIKEG ONUOCIEVCES Ol omoieg ypnowomombnkav Kot avaeépdnkav o€
ePLocoTEPES Ao 40 £peuVNTIKES dNUOCIEVCELS AAA®V EPELVNTAOV (ETEPOAVAPOPEC,

OTMOC OVOPEPOVTOL GTO TOPAPTNUA 5).

33

2. Introduction to the subject of the

thesis

2.1. Introduction

In this chapter the research assumptions, aims and objectives of the thesis are
described. The assumption of seamless function of the Ambient Intelligence vision
is questioned. The thesis complements this vision by arguing for user control,
selective transparency and ‘seamfulness'” into the working of the system. It attempts
to provide methods, models and interface mechanisms for people to gain a greater

degree of understanding of, and ease in handling the ubiquitous computing home.

' Seamfulness: ‘exposing the seams’, a guiding design principle that signifies comprehensive inter-
connectedness and coherence. Here it is used to mean providing selective transparency into the
interrelationships and workings of a system.

34

2.2. A history of terms, from Ubiquitous Computing to
Ambient Intelligence

In 1991, Mark Weiser, a research scientist at the Xerox Palo Alto Research Center in
California (PARC), published a paper in Scientific American introducing a new
vision for the future of computing. The article was “The computer for the 21%
Century”, and it described a conception of the next generation of computing systems

and of computing society (Weiser, 1991).

Third generation computing was seen as an integrated system of advanced
computing devices and data communications, available anytime, anywhere and
supported by intelligent interfaces (Weiser 1991). Central to this vision are
pervasive networked computers, of different shapes and sizes, resident in various
settings. To describe these future information systems, Weiser introduced the term
Ubiquitous Computing, in his quote: “Ubiquitous computing names the third wave
in computing, just now beginning. First were mainframes, each shared by lots of
people. Now we are in the personal computing era, person and machine staring
uneasily at each other across the desktop. Next comes ubiquitous computing, or the

age of calm technology, when technology recedes into the background of our lives”.

Two years later, in a follow-up article, Weiser stated that the ubiquitous computing
environment would be one “in which each person is continually interacting with
hundreds of nearby wirelessly connected computers” (Weiser 1993). He explicitly
points out the ‘invisibility’ of computing (Weiser, 1994), since the focus should be
that of the task and not the tool. He views computing as “an invisible foundation
that is quickly forgotten but always with us, and effortlessly used throughout our
lives” (Weiser 1994), and envisions ubiquitous computing technologies that will be
“weaving into the fabric of everyday life until they are indistinguishable from it”
(Weiser, 1991). To signify this, he introduces the term Calm Technology (Weiser
and Brown, 1996), a technology that has the ability to move between the periphery

of our attention and its focus. At the time Weiser wrote these articles, the internet

35

existed and was growing, but was by no means widely used. Nowadays, wired
networks and broadband are an exponential part of the telecommunication
infrastructure, and wireless LAN, Bluetooth, etc. are supported by many information

appliances -with most prominent the mobile phones.

In the decade after Weiser’s first article pioneered the future vision of ICT, several
different ‘flavors’ of the idea were promoted, with slightly different orientations,
signifying different national or corporate research agendas. Although addressing
similar advances in ICT communications and infrastructure, a proliferation of terms
were used, corresponding to different corporate or national foci. IBM, (representing
the US perspective), introduced the term ‘Pervasive Computing’ and focused mainly
on corporate computing systems, while in Europe, Philips, using the term ‘Ambient
Intelligence’, concentrated on home computing and entertainment [the term has been
introduced by Philips’ Head of Research Emile Aarts (Aarts, 2001)]. Philips has
introduced at the time a system that supported ‘smart home’ applications (Figure 1),
(Figure 2), (Figure 3) and enabled personalization for home information and
entertainment applications (Aarts and Marzano, 2003), (Baldus et al, 2000), (Philips

Research website: Ambient Intelligence).

Figure 1: The 1999 Philips Project WWICE was an initial investigation into networked home
devices and multimodal interaction. (Image from personal files —- WWICEI1 project video)

36

Figure 2: Ambient Intelligence: WWICE 2 is a project about the Connected Home that
develops applications, user interaction concepts and system architectures allowing
communication, content exchange and sharing experiences. (Philips Research website)

At the end of the 1990’s, the European Union began promoting similar goals in its
research agenda under the title ‘Ambient Intelligence’ and later ‘Disappearing

Computer’, emphasizing “human-centered” developments in information-

communication technologies. Aarts saw the convergence of the technologies of

37

ubiquitous computing, ubiquitous communication and user interface design (Aarts,
2001). In 2002 the European Union, with its funded IST-Future Emerging
Technologies (FET) research agenda promoted the term ‘Disappearing Computer’
(see: Disappearing Computer initiative). This phrase emphasized the physical as
well as the cognitive disappearance of computing, into artifacts used seamlessly in
the human environment (be it work, home, education, public, mobile, or other).
Sixteen IST research projects were funded by the European Union in the IST FET
Sth framework program’s (FP5) ‘Disappearing Computer’ umbrella structure (see:
the Disappearing Computer website), while two more followed as part of the Future
Emerging Technologies (FET) Open Funding Scheme of FP5, and the ‘Disappearing
Computer II’ Proactive Initiative of the 6th framework (launched in 2004) that
funded one additional Integrated Project (see: IST website: Projects launched by the
Disappearing Computer Proactive Initiatives). Through these initiatives, the
Disappearing Computer initiative gave an initial boost to ubiquitous computing

research within Europe.

A point of departure of European IST research, and of the ‘Disappearing Computer’
(DC) initiative, was the ISTAG report (ISTAG, 2001). This report used four
scenarios to communicate a view of future European research developments in
Information and Communication Technologies, exploring both the social and
technical implications of ambient intelligence, as well as issues of security and trust

(SWAMI final report, 2006).

The term “ubiquitous network society” was used in Japan, to describe concrete
action plans based on the aforementioned vision. The initiative ‘u-Japan Strategy’
has been subsequently introduced [(Murakami, 2003), through (SWAMI D1, 2006)].
The ‘Realizing the Ubiquitous Network Society’ advisory group addressed issues
similar to those of the EU’s ISTAG report and the Disappearing Computer research
initiative program (SWAMI D1, 2006, p.p. 6-10). The final report of the ‘Realizing
the Ubiquitous Network Society’ roundtable discussion was published in 2004 and

38

was publicized on the website of Japan's Ministry of Internal Affairs and

Communications (MPHPT 2004).

Results from the advisory groups in Europe, as well as in Japan, were input to
research and technology strategies for beyond 2006, in follow-up research
framework programs for IST. In current research literature, a wide variation on the
above names is used, with differing combinations of the words Intelligence,
Distributed, Disappearing, Ambient, Ubiquitous and Pervasive, combined with the
terms Environment and Computing. Some of the resulting compound terms
employed are: Ambient Intelligence, Ambient Computing, Ubiquitous Computing,
Ambient (Computing) Systems, Distributed Computing, Pervasive Computing,
Ambient Intelligence, Intelligent Environments, Ambient Pervasive Computing, and

Disappearing Computer.

It has to be noted that current Ubiquitous Computing research continues to revolve
around Weiser’s original vision. (Chong et al, 2008), (Bell & Dourish, 2006). As
Bell and Dourish point out (Bell & Dourish, 2006), research should now focus on
the Ubiquitous Computing of the present, rather than clinging to yesterday’s vision
of the then-tomorrow’s ambient world. Ubiquitous technology is already present and
visible, and researchers would do better to observe what is currently available, rather

than sticking to a dominant, yet long past, idealized vision.

Research described here belongs to the area of Ubiquitous and Ambient Computing.
It draws influences from the Philips perspective and by the Disappearing Computer
EU framework where the author was actively involved (specifically the IST-FET
project e-Gadgets). In this thesis we will use the term Ambient Computing, and
Ubiquitous Computing, except where it may, from time to time, be interchanged
with the other related terms mentioned above, where this serves better to clarify the

perspective of the particular section.

39

kitchen

Figure 3: The Philips Research project WWICE is a coherent home network system for the
convergence of entertainment, communication and information applications. Multimodal
access was provided to various sources throughout the home (modalities included speech,
gesture, RFID-tagged objects, and Graphical User Interfaces). (Images source from Philips
Research website and personal files).

40

2.3. Introduction to the subject of the thesis, assumptions
and key issues

Pervasive, ubiquitous computing promises that the environments we live in, where
we engage in everyday activities, will increasingly consist of computationally
augmented artifacts. These artifacts may be information appliances or just ordinary
objects enhanced with computing and communication capabilities. Ubiquitous
computing technology will need to be deployed and used in an immense range of
different contexts, to fit seamlessly into the lifestyle of very different individuals,
and to do so without requiring those individuals to attend to this technology instead
of their own daily pursuits (Weiser, 1993) (Aarts, 2001), (Aarts and Marzano, 2003),
(ISTAG report), (Weiser 1991), (Weiser, 1996).

Ubiquitous computing applications must be able to adapt to varying and changing
situations and configurations, determined by the specifics of the environments in
which they are participating, situations possibly unforeseeable to designers and
developers. One potential solution is to enable users to configure, customize or even
construct their ubiquitous computing applications (Kameas and Mavrommati, 2001),
(Newman, 2002), (Rodden and Benford, 2003). This solution has several benefits:
(a) applications are adapted in the best possible way to users’ own requirements; (b)
applications can be incrementally improved by their very users; (c) users are able to
design their own environments and interactive experiences and shape their own
environment in a proactive and creative way, rather than being mere consumers of

technology.

The first step towards realizing this approach is the design of a set of concepts,
common both to designers and users, and the provision of architectures and tools to
implement them. Additionally researchers should consider common referents - such
as unifying theoretical and methodological frameworks that view the system as a
whole - that abridge the different perspectives involved in the design and

development of ambient computing systems supporting End User Development, and

41

that can provide to all disciplines involved a broader understanding of the elements

that are at play.

The research hypothesis in this thesis is that End User Development is a necessary
and valid approach for Ambient Computing Environments, complementing Ambient
Intelligence automation. It needs to be further explored, on its own merit, as a
separate area of research. For this reason, this thesis explores the various issues
involved in End User Development in the field of ambient computing and proposes
a conceptual model for End Users that acts as both a user and technology model for
the Development of Ambient Computing applications, supported by editing devices
and Graphical User Interfaces. Using these, the research progresses to validate the

aforementioned hypothesis.

Although influenced by Weiser’s vision, it is not assumed in this thesis that the
Ambient Intelligence Environment will ever turn out to be (Bell and Dourish, 2007)
quite as seamless or relaxing as Marc Weiser hoped when comparing it to “a walk in
the woods...” (Weiser, 1991). It is assumed that Ambient Computing will turn out to
be an infrastructure as seamless as electricity or telephony, or even as networking is
currently becoming (with interconnected devices such as mobile phones, computers,
etc). These usually work seamlessly, supporting human activities unobtrusively, but
when they do not, people can access and interrogate them to make the right settings,
plug in the right cables, or run the appropriate applications. One needs also to have
an idea as to how all the parts are connected when the system fails, so as to take the
right remedial action. This thesis sets out to propose ways of gaining a level of
understanding and control in the workings of the future ambient computing
environment, however efficient or intelligently automated this may be, so that it can
indeed be seamlessly integrated into a future form of our everyday activities. Our
observation is that so called intelligence (within intelligent environments) is often
reduced to automation; it is hereby argued to allow for adding human and societal
intelligence as a part of Ambient Intelligent systems, in order to explore emergent

uses and so as to potentially benefit from coupling the system’s intelligence with the

42

human intelligence. The system should therefore be considered in its total form, that
includes people, societies, mental or physical tools, computing systems, agents and

intelligent mechanisms, as parts which evolve in a continuous interplay.

2.4. Scope of research

In a household, a chair is sometimes stepped up on, to reach a high shelf; clothes are
hung from it in the bedroom; it can even become a barrier that prevents a child
falling out of bed. A mug, when chipped or handle-broken, is used as a pencil holder
or a toothbrush holder. Change in use of objects (repurposing) is a normal human
practice. These usage changes derive from the object’s ‘affordances’, the possible or
potential or imaginable uses to which it might be put. Physical affordances stem
from the particular shape, size or material of the object, or characteristics such as
containment, grip, etc. Affordances of appliances refer to the possible services an
appliance can provide: image, print, sound, light, etc. Information Technology-
augmented artifacts should likewise allow for such changes in use. The design of
Ambient Computing Systems should provide the basis for artifacts that are used and
re-purpused creatively by ordinary people, and not only by designers (Mavrommati,

2002), (Rodden & Benford, 2003), (Rodden et al, 2004).

Such artifacts, because of their inherent connectivity, can support additional
‘augmented’ functions, more tailored to their owners’ lifestyle, making user
empowerment an important factor in their sustainable adoption. Returning to the
example of the mug, a technology-augmented mug could be used by its owner for
drinking, but also as part of a larger system of objects assigned to carry out health
monitoring. Or, moved by a new owner to a different environment, the mug could be
part of a different superset of objects, this time fulfilling an application that
facilitates ordinary tasks: when the level of tea drops, it might assign to the kettle the
task of switching itself on, to boil water for more tea. And when, after some time,

the augmented mug changes use again to become a toothbrush-holder, it should be

43

able to evolve its digital function so as to be able to identify toothbrushes that need
to be replaced. This vision of artifact sustainability emphasizes the fact that artifacts,
as manufactured objects, have a different lifespan and use than do classic
information appliances. The latter are normally disposed of altogether after a
relatively short period, having no other use than the functions they initially offer. In
contrast to these information appliances, sustainability of use should be a key aspect

of artifacts as a natural consequence of their physical nature and usage.

Design researchers (among others, Dunn and Raby, Bill Gaver, of the Royal College
of Arts, and Josephine Green of Philips Design) argue that ordinary people are the
ones to add interpretation and meaning to designs, which need to be intentionally
left open for this imagination and experimentation (Dunne and Raby, 2002). People
are the interpreters of the open scenarios of technological objects (Gaver, 2002), and
the designers’ role is allowing these interpretations to occur by providing
intentionally open-ended designs (Green, 2007). Philips has promoted ‘open tools’
as a design strategy (Andrews et al, 2002), in which design shifts away from
delivering a finished product or experience, towards designing an ‘unfinished’ or

‘open’ solution that can be completed and evolved by users.

Figure 4: The Philips Nebula project was an ‘open’ tool, exploring the waking up experience
through projecting customized images onto the ceiling. It was later customized for medical
examination rooms for children’s MRIs. [Image source: (Gardien, 2007)]

For example, Nebula, a Philips Design project presented in 2002 at the Consumer

Electronics Show (CES2002), explores the sensations enabled by omnipresent

44

devices and future technologies which merge into one fluid augmented experience.
Nebula is intended by Philips to be used as an ‘Open Tool’, supporting customized
experiences (Gardien, 2007), (Kyffin and Gardien, 2009) by adapting the
information streams presented. This contributes to the trend of co-designing by end
users (Green, 2007), a concept that includes the idea of customization for different

contexts of use and other markets (Figure 4).

A qualitative difference can be noted between, on the one hand, selecting elements
within an experience predefined by a designer, or customizing the experience for the
particular context and market (as the Nebula project does), and, on the other, ‘Do-It-
Yourself’, allowing total definition of, and therefore control over the overall design
and experience of the application. Although this research deals with the latter, it is
assumed that designers of the future will retain their role of conceiving and creating
meaningful ubiquitous experience applications. A comparison can be made with the
development of personal computers and desk-top publishing, which did not make
graphic designers obsolete. Rather, democratizing these processes and boosting the
quantity of the visual communication material they produced actually increased the

demand for better quality graphics from designers.

It is assumed that ubiquitous computing applications will have a widespread impact
in the domestic environment only if people can understand a basic set of underlying
technology concepts. This understanding is key to developing a feeling of trust, as is
experiencing an ability to control such systems. As a consequence, the ‘black-box’
engineering approach, in which people are not able to observe the structure of the
system, is not adopted in this research, but rather a semi-transparent approach which
partially discloses the system structure. In this approach, a separate control device
within the augmented environment, an Editor, is introduced and validated, making
possible the visualization and total design of Ubiquitous computing applications by
an ordinary user. A model, both scalable and easily comprehensible, is proposed (by
adapting the publish-subscribe model to the context of ubiquitous artifacts) that can

bridge the gap between technological constructs and the ordinary user’s conceptual

45

models. This model is validated and tested via its adoption in a software

architectural framework for Ambient Computing Home Environments (see Chapters

10 and 11).

This architectural framework, the Gadgetware Architectural Style (or GAS) as
presented in (Kameas, Mavrommati, et al, 2003) (Kameas, Mavrommati, et al,
2005), includes the manufacturing process for augmented artifacts, as well as the
ubicomp environment’s Operating System, information communication
infrastructure and other computer science related constructs. In evaluations and end-
user trials the validity of a selectively ‘transparent’ approach into the workings of
the ubiquitous computing system, based on the proposed model, has been assessed.
The same concepts and constructs are provided to end-users and, at a more detailed
level, to manufacturers and professional application developers. They may also be
used by intelligent mechanisms that auto-adapt the environment’s functions in a
black-box approach. Graphical User Interface paradigms based on this model have
been sketched to assess its scope and breadth, while mechanisms and functions for

the Editor have been proposed which highlight what is required of it.

As a result of bibliographical research and concept development, a first organization
of concepts and methodologies towards a broad Framework for the design of
Ubiquitous Systems supporting End User Development (EUD) has been proposed.
The Framework includes both theoretical and methodological constructs, attempting
to address the issues that are involved in the development of ubiquitous computing
systems that support end user development. It also aims to provide common ground
to the multidisciplinary teams involved in ubicomp systems development, in order
for them to understand the broader interplay of elements in an evolving system, and
develop a common understanding so as to work together more efficiently. A key
aspect is the consideration of co-evolution of people, artifacts and tools, and their
social and organizational structures. Last but not least, End User Design is
introduced as a separate set of methodologies in End User Development, to

complement the dominant part of End User Programming.

46

Concepts described in this framework touch upon the three different interconnecting
perspectives of theory, interaction, and system design. Key concepts in theory are
echoed in design concepts, which, in turn, correspond to system design concepts and
constructs. Social and cultural dynamics are addressed here as an inseparable part of
Ubiquitous Systems, with Activity Theory playing a key role as a theoretical

foundation.

2.5. Goals and Objectives

The goal of this research was to explore End User Development as an approach
suitable for ubiquitous computing applications, and to validate to what extent it is an
approach that is understandable by people, and, for that reason, necessary to
ubiquitous computing research developments. The objectives were therefore the

following:

e To investigate the various issues involved in end user development for
ambient computing applications, from the perspective of Human Computer
Interaction (HCI).

e To introduce end user development concepts in ubiquitous computing.

e To provide appropriate conceptual/technology models, that can act as a
bridge between ordinary people’s conceptions of ubiquitous computing and
the actual technology infrastructure.

e To propose high level user-oriented constructs for End User Development
for ubiquitous environments (such as an external editor device, its
functionality, etc).

e To implement the proposed model in technological infrastructure (in Service
Oriented Architectures (SOA) and artifacts). This was achieved in the
context of multidisciplinary team work, in the course of which a sub-
objective was to introduce interaction design methods and integrate scenario
based development to computer science research and development (R&D)

team practice.

47

e To test the potential for application creation by end users and domain
experts.

e To report on existing User Interface paradigms emerging in end user
development in ubiquitous computing environments; to iterate and validate
the above via graphical user interface experiments; to propose combinatory
multimodal approaches suitable for end user development.

e To assess the validity and scope of the proposed model: identify its weak
points, the scope that it can be applied within, and the basis for iterations and
improvement of the model.

e To provide an overview of constructs and related work, both theoretical and
methodological, regarding the domain of ubiquitous systems design
supporting End User Development. This effort towards a broad framework

can further inform research in this domain.

2.6. Positioning and significance of the thesis

End user development can be seen as a controversial approach for Ambient
Intelligent systems. Ambient Intelligence research often assumes agents that make
the system opaque and a wireless distributed system infrastructure that works
perfectly. Intelligence in this case often results in automations of presupposed
functionality. In contrast, agents in this research are treated as a part of the system,
but not the defining factor. This research was among the first published strands of
work (Mavrommati and Kameas, 2002), (Mavrommati and Kameas, 2003), (Kameas
et al 2003), in parallel with the work of Newman (Newman et al, 2002), (Edwards,
Newman et al, 2002), to promote End User Programming in Ubiquitous Computing
as a part of work within EU’s Disappearing Computer framework program. End
User Development in Ambient Intelligent environments remains a rather limited
field to this date, the primary focus being on agents assisting with intelligent
configuration. ~ Small-scale research is facing inherent difficulties
(multidisciplinarity, scope, robustness of systems and communication networks,

etc.).

48

Weiser’s vision (Weiser, 1993) was of a world populated with information devices
and appliances (rather than augmented objects of everyday use), pre-supposing some
sort of display adjusted to the devices and to be used for control and feedback.
Nevertheless, these devices are information appliances rather than everyday objects
which are RFID tagged or ICT enhanced. This has also been the perspective of many
research projects within the Disappearing Computer initiative (see: Disappearing
Computer initiative website). Research reported here rejects the adhering of a screen
or LED lights to artifacts because of the limits this imposes on a scalable and
inclusive approach. In the reported projects that focus on direct manipulation - for
example, the Shiftables (Merrill et al, 2007) - programming is limited to certain
functions pre-determined by application designers. In contrast, this thesis proposes
the use of external devices, Editors, which can always access artifacts and services
in an environment and in that way they can be used for end-user overview, access

and control of all typologies of artifacts and their configurations (applications).

At the starting point of this research it was not conceivable by designers that they
could leave the design of the application experience to end-users. Designers see
themselves as orchestrators of applications, that can be open-ended only in certain
predetermined aspects - such as changing the background of the desktop, or,
analogous to that, at the Philips Nebula project (Gardien, 2007), (Green, 2007),
(Kyffin and Gardien, 2009) where end-users change the image projected on the
ceiling from their alarm clock, but do not conceptualize or create the entire
application. This thesis, while keeping designers and application developers in their
role of defining user-targeted and marketable applications, aims to promote the
‘democratizing’ of design to the people who actually use it, so as to be able to be
creative for their own specific needs, and assumes that emergent function and use of
ubiquitous systems will arise from people’s use in this way. While this research has
been ongoing, there has been a strong and growing trend to social media and open
collaborative standards. There are now an increasing number of commercial
applications and strategy reports promoting user-led innovation, mainly addressing

the internet area - see (Leadbeater, 2008) and (Sharp and Salomon, 2008).

49

It is assumed that future public perception of interconnected artifacts will follow a
trend similar to that which we can observe today in regard to the internet and social
media. The many user-led developments in blogging, tweeting, and social networks
have generated an almost universal awareness of and enthusiasm for the possibilities
of accessing, participating in and innovating with electronic media. An absolute
working assumption of this thesis is that this revolution in consciousness is the base
from which will extend an exactly similar public grasp of the potential of

interconnected artifacts.

2.7. Process and method

Work reported here pertains the concept phase of an Iterative Design process,
regarding End User Development for Ubiquitous computing. The reported work is
an investigation through the perspective of interaction design, of what such tools
could be like, and what elements and functions they might have. The graphical user
interface proposals supporting the End User Development (EUD) concepts act as
prompts for further design and reflection on EUD system functionality and its
comprehensibility by end-users. They are also an essential means of assessing the
validity of EUD approaches for AMI environments. Graphical User Interfaces
should not be seen here as end points of investigation, but more like scenario
sketches, to be used for communication, the generation of ideas, and facilitating

iterative design thinking.

The multitude of concerns leads to endless and sometimes confusing design details
and choices (T. Winograd introduction in (Rosson and Carroll, 2002)). A flexible
approach is inherent in the design process (Cross, 2008). For coping with this the
optimal theoretical framework is Design Rationale, as described by Carroll (Moran
and Carroll, 1996), (Carroll, 2003, p.432) and Scenario Based design methodology
(Carroll, 2000), which is both flexible and specifically oriented to design activity.
As Terry Winograd (introduction (Carroll, 2002)) has recognized regarding the

50

design process: “Designing good interactive software is neither a science not an art.
It is not yet a matter of routine engineering, yet there is far more involved than

native skill and intuition”.

The iterative design process was followed at the concept phase: finding requirements
through scenario-based design and design rationale, using textual as well as
graphical and visual representations. The iterative design process includes
evaluation cycles. Evaluation in the course of this research aimed to provide
qualitative design directions. It was conducted with multiple methods (including
questionnaires, field tests, and expert trials) which will be described in detail in
further chapters. A notable development was the use of the Cognitive Dimensions
framework (Blackwell and Green, 2003), (Green and Petre, 1996) by a group of
subject experts. The Cognitive Dimensions evaluation framework was used
successfully in the context of Ubiquitous Computing Systems design in its concept
phase (see Appendix 2) and was thus validated as an evaluation approach that is

usable in this area (Mavrommati et al, 2004), (Markopoulos et al, 2004).

2.8. Results and Research Contribution

This research has addressed the following:

The research was among the first to introduce End User Development for
ubiquitous computing applications. The research validated End User
Development as being a worthwhile approach for Ambient Environments. In
addition, this research work promoted methods from the field of Human
Computer Interaction and user centered design priorities within the context of

computer science work in ubiquitous computing.

e This research has introduced to both designers and system engineers a new

perspective for user led innovation in ubiquitous computing. This was done

51

by describing a rationale for End User Development (EUD), as a
complementary approach to artificial intelligence, involving keeping people
in a loop of creating their own environments and applications. The proposed
design position statement was an influential starting point (Mavrommati and
Kameas, 2002) for interdisciplinary research, as it argued for providing the
means for people-led innovation within ubiquitous computing technological
research and promoted emerging functionality as a result of ordinary

people’s creativity, alongside designer-led innovation.

e This research integrated design research methods, rationale, and scenario
based design with ubiquitous systems computer science research practice,
within the context of multidisciplinary teamwork (see: (eGadgets project

website), (ASTRA project website)).

e An overview of approaches and issues relating to Human Computer

Interaction for the field of End User Development has been presented.

e The End User Development approach to Ambient Computing environments
was assessed for its validity, through user and expert trials. It proved to be a
worthwhile approach, not alienating users in spite of the programming
concerns introduced to them. It is therefore considered as a worthwhile
approach for ambient environments that is complementary to artificial

intelligence.

This research work proposed and evaluated a model supporting End User

Development in ubiquitous computing.

e This research introduced End User Development concepts and constructs in
the area of Ambient Computing Environments; an existing software model

was adapted (the Publish-Subscribe model), by adding the concept of

52

affordances, so as to act as a conceptual model for people to reason about

augmented artifacts.

e The proposed model was successfully integrated in a Service Oriented
Architecture implementation and the creation of artifacts. The model was
central to the proposal of a technological framework for Ubiquitous
computing, within a multidisciplinary research context (in the e-Gadgets

project case, part of the Disappearing Computer Framework program).

e End User Development, through its case study deployment in the e-Gadgets
project case (via the instantiation of a wire-connections model), was
validated as a useful approach for UbiComp environments and applications,
allowing people to reason about and manipulate their environment. This
approach is seen as complementary to intelligence (and not in conflict with

it).

e Related graphical user interfaces and different interaction mechanisms for

end user development.

The research assessed the Cognitive Dimensions as an evaluation framework

that can be used in the context of validating ubiquitous computing constructs.

e As an additional outcome of the model’s validation, the Cognitive
Dimensions Framework was found to be a valid evaluation framework for

the starting phase of conceptualization of Ubiquitous computing constructs.

53

The research introduced an overview of an Editor, its required functions, and

investigated further possible end user notations and syntax (by outlining

Graphical User Interface modalities).

An interaction approach for an editing device and a set of specifications for it

were proposed.

Several Graphical User interfaces, supporting various graphically based
structures and methods of interaction for Editing devices, were proposed.
Sketching alternative / complementary proposals for Graphical User
Interfaces was a means to expand on our concepts as well as to reason and
expand on the proposed approach. An overview of AMI EUD Interfaces and

alternative abstractions was provided.

This research has defined an initial framework for End User Development in

ubiquitous computing applications.

Following the investigation into several aspects that come into play in End
User Development for Ubiquitous Computing applications, a classification
emerged summing up the related theoretical and methodological constructs.
Towards the end of this research path, an initial definition of a broad
Framework for the design of End User Design in Ambient Computing
supporting End User Development was outlined. In this context, End User
Development is seen as consisting of two distinct but complementary parts:
End User Design and End User Programming. The first, End User Design, is
introduced as an important issue that needs to be addressed separately and on
its own merits. The proposed broad framework combines cognitive theories

and constructs from psychology, design and computer engineering.

54

2.9. Outline and contents of the thesis

The thesis consists of the following chapters.

Chapter 1: Summary in the Greek language

An outline of this thesis in the Greek language is provided in this chapter.

Chapter 2: Subject of the thesis

The first chapter gives an introduction to the thesis subject and an overview of terms
used in the area of Ambient Computing. It describes the research hypothesis, the

research assumptions, and the scope of research described in this thesis.

Chapter 3: Research approach

The methodological framework and approach used in this research is described in
this chapter. Scenario based design process and evaluation methodologies are

outlined.

Chapter 4: From Objects to Artifacts

The third chapter provides the rationale on the grounds of which end user
empowerment needs to be promoted in the area of Ubiquitous Computing
environments, and proposes that end-user creativity and emergence can arise from

niche uses by different people.

Chapter 5: Ubiquitous computing and approaches to augmenting artifacts

Related research work on Ubiquitous Computing systems is described in this

chapter.

55

Chapter 6: HCI issues for Ambient Computing Environments

Issues from the perspective of Human Computer Interaction that are emerging in the
Ubiquitous Computing environment, relating to End User Development, are

presented in this section

Chapter 7: End User Development in software: basic concepts

An overview of generic aspects of End User Programming, for software applications
is outlined in this chapter. The profile of users, issues from Computer Systems
Collaborative Work (CSCW) research, and software programming issues such as

semantics, syntax and visual paradigms are described.

Chapter 8: End user development in ambient computing environments

Issues for End User Development focusing in the area of Ubiquitous Computing
Environments are presented here. Different perspectives and approaches of related
research projects are presented, as a possible toolbox of different interaction and

technology paradigms.

Chapter 9: A proposed model for the recombination of artifacts

The ‘Capabilities and Links’ model, inspired by the Publish-Subscribe paradigm as
applied to ubiquitous computing extended with the notion of affordances, is
presented here. The model aims to bridge ubiquitous technology constructs with the
human perception of artifacts and their use. In terms of End User Development the

model was applied through a wire-connections programming paradigm.

56

Chapter 10: Application of the Capabilities and Links model: the e-Gadgets

case

A case study for the application of the model in a technological framework for

Ubiquitous computing, that promotes End User development, is presented here.

Chapter 11: Validation of end user development and the proposed model,

through deployment in e-Gadgets

End user and expert evaluation trials are described in this chapter. The End User
Development approach for Ambient Computing Environments is validated through
these trials. The Cognitive Dimensions Framework is suggested as a method for
evaluating Ambient Computing systems, providing valuable input for the early

concept development phase in UbiComp research.

Chapter 12: The functions of the Editor

The Editor’s possible editing functionality and its possible modalities and structure

are presented here.

Chapter 13: Graphical User Interfaces: abstractions and syntaxes for End User

Configuration in Aml

This chapter presents different graphical user interface approaches for the
configuration of Ambient Intelligence environments, as well as existing variations

on different syntax and semantics.

Chapter 14: Towards a framework for the design of Ubiquitous Systems

supporting End-User Development

This chapter introduces a broad framework for the design of Ubiquitous Systems

supporting end-user configuration, that bridges the perspectives of cognitive

57

theories, design and computer science. It is to be used for providing common
ground to the different perspectives and disciplines involved in the design and
development of ubiquitous systems. This chapter classifies the related theoretical
and methodological tools and presents an emerging framework whereby End User
Development is seen as a necessary affordance that ubiquitous systems research and

development should seek to provide.

Chapter 15: Conclusions and Outcomes

Research outcomes and conclusions are summarized in this chapter, and future

directions for work are outlined.

References:

The bibliographical references reported to in this thesis are described in this section.

Appendices:

Details of the evaluation sessions and their outcomes is described extensively in the

following appendices as well as other related information on this thesis.

e Appendix 1 - Expert review

e Appendix 2 - Cognitive Dimensions framework
e Appendix 3 - Evaluation at two conferences

e Appendix 4 - the iDorm user test

e Appendix 5 - Citations

e Appendix 6 — Example EUD scenario in Aml

58

3. Research approach

“The basic argument behind scenario-based methods is that descriptions of people
using technology are essential in discussing and analyzing how the technology is (or
could be) used to reshape their activities. A secondary advantage is that scenario
descriptions can be created before a system is built and its impacts felt”. (Excerpt
from ‘Usability Engineering: Scenario-Based Development of Human Computer

Interaction’ by Mary Beth Rosson, John M. Carroll).

3.1. Introduction

The methodology used in the current thesis is described in this chapter. Systematic
bibliographical study and search into the international science index is a
fundamental part of research. In the case of this thesis, bibliographical research was
broad, as it had to cover the different - and often multidisciplinary - areas that are
considered as fundamental aspects of research relating to enhancing people’s
creativity and end user development in ubiquitous computing environments.
Bibliographical research covered areas such as ubiquitous computing research,
human computer interaction issues relating to ubiquitous computing, aspects of end

user development - both for software applications as well as emerging research in

59

ubiquitous applications-, and last but not least, input from theoretical foundations of
cognitive psychology. Bibliographical study lead to the understanding of issues that
served as input to the problem’s analysis phase —these issues are described in the

different chapters of the thesis.

Following the interaction design process, after the extensive bibliographical study
(which corresponds to the analysis and research definition phase), the concept phase
followed. A number of proposals are typically suggested in the design process, as
each proposal addresses different issues of the system, and alternative proposals help
with reasoning the suitability and applicability of the proposed ideas with the
problem issue addressed. The stages of the design process are not independent of
each other, but iterative, as the issues addressed in the first phases may change
according to the ideas that are being developed in subsequent phases. Innovation can
result from the design process occurring from the re-formation of research issues
and research questions, or from the development of alternatives and the selection
and iteration and improvement of those that are more applicable to the problem at

hand (Reeder, 2002).

A major issue with research about people in ubiquitous computing environments is
that the environment cannot be replaced by a ‘problem space’. A problem space
includes only a selection of certain aspects of the world that have been coded.
Interactive exploration includes richer aspects of the world (artifacts and world
properties). Activity theory is an influence on this research in terms of
understanding not only the design process, but also the actions of people in the
ubiquitous computing environment. Cognition is not seen as only an internal mental
performance, but as a result of the mind and the world interacting; pure mental
performance in itself is not adequate (as justified in (Gedenryd, 1998) p215). Design
is used in this thesis as a vehicle for envisioning, thinking about, instantiating and
understanding a possible future environment (see Figure 5). As (Gedenryd, 1998)
states: “Design is not a purely intramental process closely tied to the fundamental

mechanisms of intentionality and planning, but a similarly sophisticated cognitive

60

technology, relying on subtle sophisticated co-evolved artifacts and working

techniques”.

Mode of thought Mode of expression “u:. Mode of production

Design is a plan or Design is also a way of Design is finally a way
framework of linking taking thought systems of making artifacts —
ideas together into a and applying them to limited by the way media

system of meaning. visual equivalents — is strudtured and
It can also be an end usually defined by exploiting its inharent
in itself, an abstraction exploiting a medium's gualibes — by whatis
which generates ideas unique qualites to expeded, or by the
and concepts. maximize meaning. unexpeded.

Figure 5: Design is seen as a mode of thought, while it has been traditionally associated
with expression and production as well. Image source:
http://en.wikipedia.org/wiki/File:Design_modes.svg
Scenarios and UI proposals reported here adopt the role of the means to the design
process, a role that software design methodologies assign to requirement
specifications. (Marc, 1995). Following the iterative design process, the work
reported in this thesis is positioned in the initial stage of design analysis; proposals
are seen as design sketches in order to explore the addressed research area.
Graphical User Interface proposals are used as experiments, helping to get insight
into the issues of end user creativity in ubiquitous computing environments.
Interaction design is used as an analysis aid, aiming to develop ideas for End User
Development in Ubiquitous Environments, which can open the path to more reliable

concepts for the field, or act as a set of paradigms.

According to (Rosson and Carroll, 2002, ppl5): “The design of computing systems

is part of an ongoing cycle in which new technology raises new opportunities for

61

human activity: as people’s tasks change in response to these opportunities, new
needs for technology arise”. They argue that descriptions of people using
technology — in scenario based methods - play an important part in the discussion of
how technology is formed and how people’s activities could be reshaped through it.
Scenario descriptions are made before a system is developed and deployed, giving

us a better understanding of the system and its consequences.

Interface proposals are regarded as scenario sketches, which are an integral part of
design activity. They are experiments that lead our thinking, rather than conclusive
outputs (Gedenryd, 1998, pp129.). A multitude of ideas are sketched, - although
they are at a high level of abstraction and their completion is not pursued - in order
to determine the ones selected for further refinement or presentation. Draft ideas are
enablers that help us recreate a future situation of use. Those few finally selected
help understand aspects of the problem, as they offer starting points of many

possible paths to address it.

3.1. Interaction Design Process

The aim of this research is to facilitate interactions between people and ubiquitous
systems; in doing so, it tries to maintain a high level perspective, with the aim to
provide directions for interaction within the ubiquitous environment rather than
specific solutions. Thus it does not adhere to detailed specific instantiations or
paradigms, but tries to leave intentionally open the specific design implementation
details, and instead, focus on higher level directions and characteristics of the

ubiquitous system, from an interaction design perspective.

“Interaction design is about behavior; it’s the art of facilitating interactions
between humans through and with products and services” (Saffer, 2007, pp4).
Interaction design is considered as an applied art, in the sense that there are no set

methodologies that are proven and that can hold true for all instances; it is

62

contextual and based on a hermeneutic approach, and it is defining ‘on the fly’ the
related approaches and processes that can be used to gather data and draw
conclusions (Rauterberg 2003) (Schon, 1983) (Saffer, 2007). Such approaches may
be borrowed by interaction designers, depending on the context, from different
disciplines and (such as, for example, art and design techniques, ethnography,

cognitive psychology, computer science, human computer interaction).

According to Carroll (Carroll, 2000, pp42), design observes the world in action, in
order to identify certain issues and then propose solutions to these issues. An
interaction design project is not an isolated activity, since there are interrelations and
consequences from the extended use of a design. People’s tasks may change over the
time that the design is used, even in unforeseen and unpredictable ways, which are
sometimes inconsistent with the core functionality that is provided by that designed
system. System design, according to (Saffer, 2007, pp30) can be considered as one
approach to interaction design. A working design representation is tied directly to

human needs and situations of use (Carroll, 2000).

There is a different set of problems that can be addressed by design than the ones
that can be addressed via scientific methods. Design is considered a prescriptive
activity: as Lawson (Lawson 1980, pp.90) stated, designers try to answer questions
like: “What could it be” and “What should it be”. Designers try to define and create
the future; they do not try to predict the future by forming an informed

understanding of the present —as is the case with the descriptive approach of science.

Schon, in (Schon 1983) suggests that design is defined by the designer’s own
experience, that defines which process should be used and what part of knowledge is
required for a given context. During the design process, the designer iteratively
reflects on the problem, provides elements of solutions and evaluates them, then
proceeds to another iterative cycle of re-consideration and action, that is based on

the previous step (this is called by Schon “reflection in action™).

63

There are no optimal design solutions, but only selected design paths that satisfy to a
certain degree the problem constraints, while compromising regarding other aspects.
Lawson (Lawson 1980) has concluded that there is no absolute method of design
that ensures that the designer will find the optimal design solution. Lawson claims
that each design problem has its own unique characteristics that it is not possible to
solve following the same unique methodological steps, but these steps should be
defined per case. It becomes evident that design consists of vaguely defined phases,

-the so called “design process” - that are cross influenced.

“The overall interaction design process does not exist” (Rakers George, 2001,
pp32). Interactive System design is likely to involve not a single process, but several

concurrent processes (Newmann and Lamming, 1995).

In its basic form, the overall process is characterized by three broad generic phases:

thinking, designing, and realizing.

These are not necessarily subsequent to each other, but orchestrated and inter-
associated, with emphasis placed on getting the right information and finding a

solution that appropriately fits (Rakers, 2001).

In providing a little more detail, the iterative process that is followed in Interaction

design, has the following iterative (or sometimes even concurrent) steps:

e Analysis, (gathering data, materials, and inspiration about the problem area
and sometimes organizing them in visual matrices and boards)

e Concept creation: brainstorms and workshops are in this phase, that
generally correspond to the production of many different sketches/scenarios,
done fairly quickly, highlighting different issues and addressing different
aspects

e Concept development: taking elements from the above sketch ‘inspirations’

and detailing them further to design proposals

64

e Evaluation, that happens iteratively in between any of the process phases,
providing input and insight for iteration or development in the next process
steps

e Realization (sometimes followed by deployment and aftercare), that

corresponds to helping the design to be implemented into production.

The above stages act in iterative cycles, without clear border lines between the
phases, (especially more so in the first phases of the design process). In the software
design life cycle, the iterative design process (based on the waterfall model, with

iterative cycles added to it), is corresponds roughly to the above phases.

3.2. Design method

The Human-Computer Interaction (HCI) community has defined techniques for
modeling the interaction between user and system, and has proposed user-oriented
constructs for systems and software development (Espafia et al, 2008). We will
discuss issues from the HCI perspective (specifically from the orientation of
Experience and Interaction Design), rather than from the Software Engineering
perspective, -which has been defining methods to develop software and systems by

specifying data, but not focusing on users and their experience-.

The two most influential paradigms are Positivism and Phenomenology, for
scientific research and design respectively. Positivism for scientific research is a
rational problem solving approach, whereby successful problem solving involves
searching selectively within the possibilities of a problem space, and reducing it to
manageable solutions, by logical consistency and deductive logic, and based on the
underlying idea of an absolute truth. (Rauterberg, 2003). Humanities, on the other
hand, use a hermeneutic approach, grounded on intuition, whereby truth is based on
‘belief”; the most important basis for conclusions is a value system based on an

individual knowledge base. A personal knowledge base (crafts and skills) is

65

exclusively accessible to the designer, sometimes without conscious reflection, often
relying on intuition and experience, - or the so called “reflective practice’ (Schon,
1983). In fact, experience / interaction design activity shares both paradigms, thus
being able on one hand to predict and explain reality, but on the other, to become

part of reality and change it (Rauterberg 2003).

There is no single way to practice design methods. There is an inherent flexibility in
the design approach; it is a combined product of the right use of techniques and
methods as much as of intuition and skill. (T. Winograd introduction in (Rosson and
Carroll, 2002)), (Cross, 2008). Jones (1991) also recognized this by stating:
"Methodology should not be a fixed track to a fixed destination, but a conversation
about everything that could be made to happen. The language of the conversation
must bridge the logical gap between past and future, but in doing so it should not
limit the variety of possible futures that are discussed nor should it force the choice

of a future that is unfree."

In the context of this thesis, design methods are used with the aim of generating
concepts for End User Development in Ambient Intelligence Environments, in order
to provide an initial framework for the field. In interaction design, quick sketches,
scenarios and rapid prototypes are used to help conceptualize the problem domain.
The aim here is to address the analysis phase, via the interaction design process
using scenario based design (including both visual sketches and text based

descriptions).

In order to conceive the future ubiquitous environment, scenarios are created in
verbal and iconic forms, as the most flexible, open and appropriate language for this
discourse. According to John Carroll, in Making Use (Carroll, 2000): “Scenarios of
human-computer interaction help us to understand and to create computer systems
and applications as artifacts of human activity, as things to learn from, as tools to
use in one’s work, as media for interacting with other people. Scenario-based design

offers significant and unique leverage on some of the most characteristic challenges

66

of design work: Scenarios evoke reflection in the content of design work, helping
developers coordinate design action and reflection. Scenarios are at once concrete
and flexible, helping developers manage the fluidity of design situations. Scenarios
afford multiple views of an interaction, diverse kinds and amounts of detailing,
helping developers manage the many consequences entailed by any given design
move. Scenarios can also be abstracted and categorized, helping designers to
recognize, capture, and reuse generalizations, and to address the challenge that
technical knowledge often lags the needs of technical design. Finally, scenarios
promote work-oriented communication among stakeholders, helping to make design
activities more accessible to the great variety of expertise that can contribute to
design, and addressing the challenge that external constraints, designers, and
clients often distract attention from the needs and concerns of the people who will

use the technology.”

3.3. Can there be theory based design?

Herbert Simon — who was among the first to discuss scientific approaches in
interdisciplinary design research - [(Simon, 1969) via (Carroll, 2006)] suggests that
designers should not design with fixed goals [(Simon, 1969) pp162-167], because
design activity is a means to identify further design goals — even goals that may be
inconsistent with the original goals of the design activity. Each situation that design
generates is a starting point for a new design activity, and with this process one
gradually identifies different aspects of the problem space. Design activity is a
problem solving activity, investigating and identifying aspects of the problem space.
Design is therefore, as Gedenryd observes, at the core of human activity; it defines
what humans are. The effort to classify design activity as being (or not) a scientific

activity is therefore irrelevant, as that question is invalid (Gedenryd, 1998).

The design process often uses a hermeneutic approach; the designer is getting

stimuli for inspiration, and starting the process somehow in the middle, assessing

67

and progressing the design as he/she goes along. Interaction and User-interface
design is often considered a craft rather than an engineering discipline, as it is
influenced by social as well as technical considerations, and has elements of fashion,
acceptance, affect, playfulness (Blackwell & Green, 2003). On the other hand,
Interaction design being part of the broader Human Computer Interaction area, it is a
structured, although sometimes understated discipline. As such it uses techniques
and methods that are used in design for thinking about a problem (i.e. quick
prototyping and sketching is characteristic in the design process). These methods are
not put together in a methodology by designers, (since designers are trained in
practical problem solving rather than being fluent and analytic in verbal terms), but
such a methodology is often articulated by system engineers and cognitive scientists,
who, via interdisciplinary research, get an understanding of the design process and
are better in formulating it in more structured argumentation (for example, see the

work of Carroll or Gedenryd).

In Interaction Design, Design Rationale plays a central role in the “middle and
around” process of design. Carroll and Rosson observed in their chapter Design
Rationale as Theory in ((J. Carroll, 2003) pp.432.)) that “the most troubling reaction
to early theory work in HCI was to dismiss theory, science, and even research in
general as not relevant enough to real HCI problems of system development). ... The
touchstone design challenge for HCI in the 1980s was to understand and address
difficulties experienced by new users... (learning, problem solving, and error
management in workplace contexts). But the most articulate theory work of that
period did not address learning, problem solving, or errors, and it had no means of
describing the dynamics of thinking and acting in workplace contexts... The echoes

of this dismissal of theory are evident still in HCI methods, many of which are

grounded in raw experience and convention, not in theories or frameworks”. Carroll

further observes that many issues discussed in the 1980’s debates, about science and
theory in HCI, are fundamental: “What is the proper balance between rigor and
relevance? A model of errorless performance can be more rigorous, but it is also

less relevant to real situations. What are the boundary conditions on applicability

68

for given theories?...What roles can models and theories play in invention,

development, and evaluation of new technology,; can there be theory-based design?

Studies of technology development in other fields suggest that science is more often

the beneficiary than the benefactor of technology.” (Underlining is not in the

original; it signifies the writer’s emphasis).

In this thesis, interaction and user interface design activity is used as a path for
reasoning, proposing and validating the approach for End User Development in
Ubicomp applications and further reflecting on the aspects of it, and the possible

functionality involved.

The further aspects of Design Rationale (and, in particular, Scenario Based
Development) as an methodological framework applicable to interaction design
investigation in AmI-EUD, in accordance with the arguments of John Carroll

(Carroll, 2003) (Carroll, 2000), follow in the next sections.

3.4. On Task Analysis vs Design Rationale

Carroll (Carroll, 2002) argues that the choice of scenario-based design versus
traditional task-analytic methods reflect the differences in the underlying world
views and values of designers and researchers. He points out that task analysis (seen
as structured task decomposition) might be integrated as a part in the emerging

paradigm of scenario-based design.

Traditional task analysis assumes the goal of optimal performance. Carroll states
that overstressing this goal leads to the pursuit of task analysis to a point where
benefits are outweighed by risks. He argues (Carroll, 2002) in favor of ways for task
analyses to be made richer and sketchier, and they are seen from the perspective that
they are no more than tools for inquiry. Carroll argues that designers need

representations of work activity in order to engage with the design problem

69

intimately, to visualize people and their activities. Designers need media and
sketches to generate and explore design proposals, to discuss and refine them

(Gedenryd, 1998). Design representations need to go beyond ‘correct and complete’

description. (Carroll, 2002).

In design activities, designers have to prioritize and choose. Thus the different so
called ‘design methods’ are different to methods such as task analysis because they
pursue different goals. Scenario based design (as articulated in Carroll’s book
“Making Use”) contrasts with traditional task analysis, because the latter assumes
that there is a correct and complete symbolic description of user tasks, and attempts
to capture it (Carroll, 2000), (Carroll, 2002). In traditional task analysis tasks are
seen as hierarchical structures of operations that are systematically decomposed to a
very detailed level. The representation of work activity is the main objective, while
informing the design so as to optimize performance is a side benefit that is not

always achieved.

Scenario-based design on the other hand has a different goal; it tries to facilitate the
emergence of new designs from richer descriptions, participatory methods, and
observation of people’s habits and practices. The emphasis is on making the issues

visible so that meaningful design work can be achieved.

Carroll and Rosson argue for the adoption of Design Rationale as a theoretical
foundation, and scenario based design as a subsequent methodological framework,
because they are stemming directly from the design discipline, but are also
providing a broader scope that can encompass not only design for interaction, but

also more analytical engineering methods (such as traditional task analysis),

(Carroll, 2002).

Carroll points out that we should question implicit assumptions of absolute criteria
when discussing design. The identification of opportunities in a design project — be

they exploration, lucidity, continuity, or respect for nuances- are complex cognitive

70

objectives that cannot be diminished to the optimization of tasks output. Such design
objectives are formed by design interventions; therefore they have to be considered
in the iterative context of design prototyping and refinement (design, deployment,
adoption, redesign). Scenario Based design is seen as an appropriate methodology,
since, “scenario-based design does not merely provide task analysis input to design,

it is design.” (Carroll, 2002)

HCI methods widely incorporate scenario-based design as a standard method.

Scenarios are a pervasive design representation (Carroll, 2002) because:

“(1) Scenarios are concrete in the sense that they are experienced as low-fidelity
simulations of real activity. (2) They are also flexible in the sense that they are
easily created, elaborated, and even discarded. And (3) Scenarios keep design
discussion focused on user activities, more specifically, (4) they keep design
discussion focused on the level of task organization that actors experience in their
basic tasks. ... (5) This makes it easier for all stakeholders in a design, including
end-users, to participate fully, and (6) creates a focal, use-oriented design
representation that can be reused throughout the system development process for
constructing prototypes and mockups, requirements analysis, use cases and software
object models, user interface metaphors, design rationales, usability specifications,
formative and summative evaluation test tasks, task oriented training, help and other

’

documentation, etc.’

Human—computer interaction design gives high priority to innovation, and this is an

increasing trend. The search for innovation involves iterative prototyping from the
start, formative evaluations, rapid development, software tools, interdisciplinary
teams and participatory methods. These are supported by attributes of scenario based
design rather than by traditional task analysis. Moreover the scenarios employed in
software design and development are not as rich as those used for requirements
analysis. Again, in Carroll’s words (Carroll, 2002): “Scenario based design is more

than a matter of task analysis. It involves understanding what people already do,

71

how they do it, how they experience it, how they learn it, how they pass it along to
others. It involves envisioning possibilities that have not yet been dreamt of—new
ways to do familiar things, entirely new things to do. It involves walkthroughs,
design rationale, many varieties of formative and summative usability evaluation,

and installation and maintenance”.

Carroll’s book Making Use addresses the use of scenarios for envisioning future
systems, identifying and analyzing requirements, developing usability rationale, and
designing usability evaluations. It does not present a single, comprehensive scenario
based method, but discusses aspects of scenario based approaches. The collaborative
volume edited by Rosson and Carroll’s on Scenario based methods can be used as a

related framework for HCIL.

3.5. Design Rationale as theoretical foundation

Design rationale is the process of documentation and analysis of specific designs
that are created: (Carroll, 2003, chapter 15). The overall design, its specific features,
technological selections, and hypothesized intended use of these features, are
described. Hypothetical user interaction scenarios are created and observed,
regarding their advantages, tradeoffs, and shortcomings. The taxonomy of features,
tradeoffs, and technology solutions, are described in Design rationale, but it also
provides assumptions for human behavior and explanations of that behaviour. In the
process of interface and interaction design, many of these decisions may happen
internally, in the mind of the designer (those that relate to the minor interaction
elements, such as boxes, and scrollbars, etc.), while the major decisions (regarding

interaction style, technology platform, etc.) are often articulated in reports.

Carroll (Carroll, 2003, chapter 15) mentions that design rationale includes thinking
about design specifics and features and their relationship with user actions and

needs, and the environment and context of use. Often, the design rationale is

72

informal, based in the designer’s intuitive theories of human behavior; sometimes it
may have a more scientific grounding in anthropology, sociology, psychology.
Carroll in his book (Carroll, 2003) considers design rationale as an effective HCI
theoretical framework, as it helps get an insight into new methods of effective
interaction, it can guide the development of tools and environments, and it can
propose new measuring methods for interaction. According to him design rationale
addresses three things: content, applicability and scope. According to him, design
rationale addresses three things, roughly corresponding to the approach’s scientific
foundations: context, based in ecological science; applicability in action science, and
scope in synthetic science. As the system design is being developed, the design
rationale is evaluated and refined (action science). When it is generalized it
contributes to theory building (ecological science). If design rationale is generalized
and justified in established scientific theoretical foundations, it serves as an
integrated framework for understanding and exploring further the problem area

(synthetic science).

As an approach to theory in HCI, design rationale is in the middle, between

approaches that apply theories from outside the HCI domain and approaches that

dismiss theory as irrelevant and restrictive (and therefore value heuristic usability

engineering). Design rationale focuses on describing the domain of application in
terms of design tradeoffs, but it uses theory as necessary to justify those (Carroll,

2003).

Applying Design Rationale: Scenario Based Design method

In this thesis, text Scenarios are used along with Uls and diagrams for investigating
models or possible features, the image or prototype being used in a similar way that
a verbal interaction scenario is used for enabling discussion, in the Scenario Based

design method.

73

ANALYSIS
A&:Eﬁmldnf - Claims about
5 olders, —_— Problem scenarios #——— currant practics
field studies P
DESIGN
Activity scenarios
Metaphors, |Hfﬂm‘| : . .
; " ation Iterative Analysis
information i) o
technology, Hel 4 Design Scenarios 4—p of usability

theory, guidelines claims & redesign

Interaction Design
Scenarios

v

PROTOTYPE & EVALUATION

Summative il H P Formative
B —— Usability specifications P e

evaluation

Figure 6: Overview of the Scenario-Based Framework (Image source: Image from
http://1dt.stanford.edu/~gimiller/Scenario-Based/scenariolndex2.htm)
Different disciplines within HCI approach Scenario Based Development differently,
focusing on different goals of the process. The scenario types they use vary in scope.
Go and Carroll (Go and Carroll, 2004) identify several communities that work with

the Scenario Based Approach (Figure 7):

1- Strategic Planning: using abstracted artifacts and future hypothetical situations,
involving to some degree current technology and trends in the assumptions.

2- Human computer interaction. It adopts work oriented approaches, focusing on
the user and the broader context of user tasks. These approaches typically
involve ‘day in the life’ scenarios of use, involving user tasks, and their degree
of tangibility is much lower than software engineering approaches.

3- Software Engineering: scenarios here are seen from the systems viewpoint,

aiming to identify requirements, or to specify a model of the system. Scenarios

74

used in the analysis and design of software Systems are based on real world
artifacts, they are ‘smaller in scope’ scenarios, typically keystroke-command
level scenarios. Use case models, consisting of actors and use cases, are using

scenarios for the design and development of software systems.

Scenarios can range between several categories: (Go and Carroll 2004, pp.45-55),

such as the following:

e Problem Scenarios tell a story of current practice, because it emphasizes on
describing activities in the problem domain

e Activity scenarios describe concrete ideas about new functionality, new ways
of thinking about users, their needs and how to meet them.

e Information and interaction design scenarios specify task objects and actions
that help users understand and act on the proposed System. The goal is to
specify functions and mechanisms for manipulating the task information and

activities.

A scenario is a description that includes (Go and Carroll, 2004) 1) background
information on a situation and assumptions about the environment of use 2) actors
(people, or other) and 3) their goals, 4) sequences of actions or events. Scenarios are
expressed in various media and forms. They can be text narratives, graphics, images,
storyboards, video mockups, or scripted prototypes. In addition, they may be in
formal, semi-formal, or informal notation. (Ronnald et al, 1996) identify four
dimensions: the form view, the contents view, the purpose view, and the lifecycle

view.

Carroll points out that scenarios are not specifications, nor should they be

considered as specifications. They are fragmented, open ended and focus on selected

instances, they are informal and sketchy; these characteristics contrast with the
formal, specific, and abstract technology descriptions that characterize System

Requirements.

75

In this research we use scenarios from the Interaction Design perspective (as
described at 2 above), using narrative as well as form view (Ronnald et al, 1996) in
an informal manner. The aim is to get insight into the aspects involved in the
ubiquitous system, and the functional and non-functional requirements and broader
context of use that EUD for AMI may entail, and to propose and evaluate possible
models for such systems. In the iterative development process, that is typically
followed in interaction design, our research work is specifically located in in the
‘concept’ and ‘early analysis’ phases, using an iterative cycle of concepts, designs,
prototypes and evaluation, not to propose a conclusive system, but specifically to
provide via experimentation the insights and paradigms needed as input to research
that further proceeds with the design and development of such EUD for AMI

systems.

76

UNCERTAIN GOAL OF SCENARIO- DEVELOPMENT BACKGROUND GOAL
COMMUNITY FACTOR BASED APPROACH PROCESS VIEW POINT OF COMMUNITY
Strategic Planning Environment List “what-if” questions Iterative Organization Plan a course
and their answers Technological changes of actions
Economics

Social, political regulations
Consumer attitudes

Hi Comp Use of syst: Envision user Iterative Human Describe use of
Interaction requirements of (future) Prototyping Usability (future) systems
system use Cognition Design usable
Emotion computer system
Requirements System Acquire user Waterfall System architecture Specify systems
Engineering qui t: requi and Spiral Development process Provide a good
Functionality specify them transition to the
next development
phase
Object-Oriented Objects Identify objects, data Iterative System Design a model
Analysis/ Design Data structures structures and model Incremental Object of world

Class hierarchy class hierarchy

COMMUNITY SCENARIO USAGE

Strategic Planning Envisioning uncertain future environment
Providing communication tool
Organizational learning
Sharing a mental model among stakeholders

Human-Computer Analyzing user tasks

Interaction Envisioning future work
Mock up and prototyping
Evaluating the constructed system
Deriving learning materials
Developing design rationale

Requirements Eliciting user requirements
Engineering Deriving specifications
Analyzing the current system usage
Describing the current system usage
Constructing test cases

Object-Oriented Modeling objects, data structures and class hierarchy
Analysis/ Design Analyzing problem domain
Providing a model of real-world objects

Figure 7: The communities using scenarios (above) and the factors that can be used to
categorize scenario design, and typical scenario usage in design (below) (Source: Go Kentraro,
Carroll John, Interactions, November-December 2004, pp45-55).

77

Strategic Planning
Vision scenarios: “year in the life” examples

Human Computer Interaction
Outline of use scenarios — “Day in the life” focus

Experimentation, Understanding of design
problem space and possible solutions
Developing design rationale, experimenting on
ideas, mock ups and prototypes, providing input
to system requirement.

Requirements Engineering
Requirements elicitation, analyzing system and its
elements, description of system usage,
specifications, prototypical development cases
and test cases

Software
Engineering
Detailed
commands and
system tasks

Figure 8: Scenario forms vary in breadth of focus and detail, from the broader scenarios used
by strategists, to more narrow scenarios of software engineering.

78

SCENARIO
/[')ESCRIPTIONS
VISION statement, Position USABILITY SPECIFICATIONS

statement, Motivation
(i.e. see ISTAG scenarios)

Usability specifications, goals,
environment of use, etc

RATIONALE for the Design:
Description and reasoning of
related issues and
consequences of design

SYSTEM SPECIFICATIONS
Functional specifications and
interface modules specification
(i.e. see Use Cases in UML)

decisions.

COMMUNICATION in EVALUATION

multidisciplinary teams and Formative: evaluated percentage of
stakeholders; support for goals achieved

documentation activities Summative: assessment of progress

regarding initial assumptions and
goals, suggesting improvement and
correction points.

Figure 9: Scenarios provide a common language for design

There is an evolutionary aspect in design as it may introduce new concepts or extend
established ones. Design is a reaction to a perceived problem description. A design
is a response to certain selected concerns (that are prioritized, often informally) and
it often acts as a compromise solution: some elements of the problem situation, after
the design artifact is introduced (design intervention), are made easier, others more
difficult, and still others obsolete and unnecessary. At the same time carrying out
certain tasks creates opportunities for devising new artifacts; the new artifacts that
are introduced eventually alter the original tasks and create new needs and further

design occurrences. This is the task-artifact cycle.

79

Imagining system or problem
space, introducing new
artifacts as solutions to the
assumptions/issues

Assessment of limitations Rationale analyzing how new
and scope; Pros and Cons of proposed features enable
the solution new situations;

consequences of the
decitions, pros and cons.
Specific Scenarios of Use fo:_ﬂ_)

detailed Task Analysis

Figure 10: According to Carroll [(Carroll, 2003) page 435]: In the task-artifact cycle, human
ideas and activities raise technology requirements and new technology subsequently raises new
opportunities for human action. The interrelated flow is emphasized in the task-artifact cycle

3.6.

above.

Evaluation approach

User Centered Design as an approach involves end users to the development of the

system, by iterative cycles of evaluation that feed back into design. Interaction

Design and HCI follow User Centered Design methods, and the Iterative design

process. Four essential activities are identified (ISO13407) in user-centered design

projects:

a)
b)

c)
d)

Requirements gathering (understanding and specifying the context of use)
Requirements specification (specifying the user, the environment of use and
organizational requirements).

Design (producing designs, Uls and prototypes).

Evaluation (carrying out assessment of the proposed designs by end users or

subject experts).

80

The evaluation techniques that are used, sometimes in combination, for requirements

gathering and concept validation in this research are:

e Focus Group Evaluation, because it provides qualitative data, has low
implementation cost, and requires a low sample size of subjects.

e Questionnaires in Focus Group evaluations were based on the Cognitive
Dimensions framework (which will be described in further sections)

e Short usability trials by experts (in the course of conferences) followed by short
questionnaires.

e Usability testing in small end-user groups, followed by interviews. This method
is used for evaluation of concepts, the drawback being that it has a higher

implementation cost

Focus groups are very often used as an input to design concept phases. They
generally produce non-statistical data and are a good means of getting information
about a domain. An experienced (preferably external and neutral) moderator is
needed for the process to be effective, as well as a carefully selected small team of
experts. The process involves encouraging an invited group of people that have
knowledge on the certain area that is being evaluated to share their thoughts,

feelings, attitudes and ideas on a defined topic.

The Cognitive Dimensions (CD) framework was used in this research, (a non-
analytical method used at the early concept phase, aimed at focus groups) as it
provides a set of discussion tools to be used by designers and evaluators of designs,
for qualitative feedback. CD enables the discussion by providing a shared set of
terms. The aim of its use is to improve the quality of discussion, as experts make

sophisticated comments and suggestions about systems.

Usability testing can be used as an input to design or at then more completed stages

of prototypes, or at the end of a project. It is a prominent method to find out what are

the most likely conceptual / usability problems. In usability testing sessions data is

81

collected in order to evaluate a system. People are carefully selected (as
representatives of the targeted profile of end users, and so that they are unbiased,
and neutral to the system under evaluation) and are invited to attend a session in
which they are asked to perform a planned series of tasks. A moderator takes note of
any difficulties they encounter. Users are often asked to follow the think-aloud
protocol which asks them to verbalize what they're doing and why they're doing it.
The evaluator can note their difficulties based on their discussion and also how long
it takes them to complete the given tasks, which is a good measure of efficiency.
Two specialists' are normally required per session - one to moderate, one to note
problems. Some form of design has to be available to test: this can range from paper
to a partly functional prototype. Non-statistical or statistical data can be generated
from that method. In our case we used this method tor gain qualitative feedback,
gathering non-statistical data based on a particular design and using the think aloud
protocol. The evaluation was conducted by an external moderator to ensure

neutrality and was aided by the author.

Interviews are usually employed early in the design process in order to gain a more
detailed understanding of a domain/area of activity or specific requirements. They
usually involve the interviewer speaking directly to the participants (to only one or
two participants usually). A participant's unique point of view can be explored in
detail. Any misunderstandings or clarifications can be identified. The output of an
interview is of a qualitative nature and reports of the interviews are then carefully
analyzed by experienced practitioners, in order to produce valid results. The
experience and skill of the interviewer and analyst is of utmost importance on

applying this method successfully.

Questionnaires are a means of asking users for their responses to a pre-defined set
of questions and are a good way of generating insight or data. Questionnaires are
usually employed when a design team looks for a larger sample size than can be
realistically achieved through direct contact. Questionnaires allow statistical analysis

of results, which can increase a study's credibility through its scientific appearance.

82

This makes it all the more important that the questionnaire is well-designed and it is

of the utmost importance that it asks non-biased questions.

In all the evaluation methods it is best to have evaluators who are neutral to the
proposed design or concepts. In our case the difficulty was that they needed to be
sufficiently informed about the system in order to make useful reports, but not

deeply involved in the design itself.

The exact application of these methods will be further described in subsequent

chapters.

A drawback of evaluation methods is that they can only give generic responses -
some of which may seem profound or trivial- and they do not directly suggest new
features or preferred taxonomies of features or tasks. Evaluation is reactive: it
assesses a system that is proposed and manifested in a given form, but it is not a
design activity. The form of presentation and the usability may themselves get in the
way of assessing the key concepts and features of a conception of a future system.
Nonetheless, evaluation can give valuable general insight into such systems as those
we are investigating, thus guiding the design towards an iterative redesign process
resulting in a new or different proposal which includes (or omits) extra features and

additional system specifications.

Participatory design can be a useful approach when selected participants are able to
conceptualize a technological future. It was not selected as a method because of the
outlook of our research which is this: that people in such environments will evolve
with technology to have very different skills and requirements in 10-15 years than
the current generation does. This is already the case with the digital emancipation of
the web generation: the use of the internet and social/awareness media, as well as a
more general technology generation gap to which we can already bear witness. For

this reason a focus group was a better match to the profile of our research project.

83

4. From objects to artifacts

Parts of the content of this chapter have been published in the journal article:
Personal and Ubiquitous Computing. ACM, Springer-Verlag London Ltd. ISSN:
1617-6909, Volume 7, Numbers 3-4. July 2003. ‘The evolution of objects into
Artifacts’ (pages: 176 — 181). Mavrommati I, Kameas A.

Parts of this chapter were presented by invitation to the Doors of Perception

(Doors7@Flow, 2002), an influential international curated conference.

4.1. Introduction

Objects are enhanced with new digital properties and information-communication
capabilities, gradually becoming computationally augmented artifacts. In this
chapter an approach towards defining artifacts is introduced, and their potential

influence in people’s lifestyle is addressed.

84

Although ubiquitous computing is not a new notion (Weiser, 1993), in the last few
years there has been growing interest in the technological as well as human aspects
of research in the area of the Ubiquitous Computing - in Europe most notably
through two European funded FET initiatives both named: ‘Disappearing Computer’
(Disappearing Computer Initiative website). As a consequence of this type of
research, miniaturized, ‘disappearing’ computers are being embedded into various
kinds of artifacts; thus artifacts become enhanced with new digital properties and

information-communication capabilities.

The perspective assumed in this research pertains ordinary objects of everyday (non-
computing) usage, (such as furniture, utility or decorative objects), that traditionally
had no computing capabilities build into them and are thus not regarded as typical
information appliances. The view presented here on disappearing computer artifacts
stretches to involve interfaces that differ from information appliances with
centralized processing power (such as mobile phones, Personal Digital Assistants
(PDASs) etc). Rather, in these other applications, processing power is distributed: the
function the user aims for when using the artifact is no longer achieved by a single
processing application but by a collection of tangible objects. These enhanced
objects may vary in shape, materials and capabilities, but they are able to
communicate with each other through an invisible network, and share the processing
capabilities they may individually have. Collective functionality emerges within a
group of such artifacts that can work synergistically together in an environment,
through these invisible links. Such artifacts are of a dual nature: a tangible and a
software part, interconnected. In addition to processing, they may also be enhanced

with sensing or actuating capabilities of their own.

We hereafter describe an approach towards defining augmented artifacts (hereon
mentioned as ‘artifacts’), and examine to what extent their advance can affect

people’s existing lifestyle.

85

4.2. Adding Information Technology into objects

The main idea behind the ‘ubiquitous computing’ or ‘ambient computing’ or
‘disappearing computer’ concept is that the computer ‘disappears’ as an object
(Weiser, 1998) and computing services are made available to users throughout their
physical environment (Markopoulos, 2001), be it the office, the home, the street, etc.
More and more applications are designed, realized, and presented in research context
which involve dispersed objects that work together to create a unified experience.
But are there any proposed technologies that support designers and people, which
enable them to create applications for ubiquitous computing, without always have to
start from scratch? Are these technologies flexible enough to allow design with

sustainability of augmented artifacts regarding their use over time?

The view of disappearing computer artifacts stretches to involve objects that may be
varied in shape, materials, capabilities, but are able to communicate with each other
through an invisible network, and share the processing capabilities they may
individually have. The purpose of use is no longer achieved by a single processing
appliance, but by a collection of tangible objects. Collective functionality emerges
within a group of such artifacts that can work together through invisible links. Such
artifacts are augmented with processing and communication abilities and can also
have sensing or actuating capabilities, along with their physical, tangible

characteristics.

Disposable objects (such as shopping bags, milk bottles), items that we surround
ourselves with (such as furniture, decorative items, lights, carpets, pots), or even
architectural elements in buildings or public spaces (floors, walls, rooms, buildings,
squares), can be enhanced with processing capabilities, communication modules and
sensors. This may eventually become a part of the manufacturing procedures.
Processing artifacts will be capable of interlinking with other artifacts in various
possible associations. Several questions arise, assuming that such a world is
possible. First of all, do we need such artifacts? Then, how do they present

themselves? What is the role of people? How can we build such environments

86

without overwhelming people? Research should put a great deal of consideration
into the development of technologies appropriate to enabling people rather than

superseding them.

4.3. People shuffle objects’ usage

People buy objects and make their surroundings from them, arranging them and
rearranging them as fits their needs. Human environments are ‘object-scapes’,
spaces that are constituted from collections of objects, positioned in ways that
facilitate or express the life of their owners”. (Rodden, 2004), (Alexander 1964),
(Alexander 1977).

Artifacts are a subset of information appliances, where the term ‘information
appliance’ is used in the broader sense of the word (Sharpe, 2003). Artifacts are
ordinary objects that are commonly used for routine tasks (objects such as tables,
chairs, cups, shelves, lights, carpets, etc.), and which in the future can be enhanced
with communication, processing and possibly sensing abilities. People buy furniture,
as well as all sorts of other things, but then define their own home environment and
often rearrange the objects over time or change their use. We surround ourselves
with objects, for aesthetic, functional, playful or emotional reasons. We adapt and
change the use of these objects over time. We may rearrange our surrounding

objects at times, when we move into a different environment, or the family’s needs

2 Christopher Alexander (Alexander 1964) discusses a design process where designed items are shaped gradually and
continually over time, so as to fit the evolving and changing context of use; people participate in this ‘unselfconscious design
process’ fluidly recognizing a failure in their settings and taking corrective action to make the form of their surrounding fit

better to their changing situations. Continuous adaptation is seen as piecemeal building (Alexander 1977).

87

are changing (i.e. when a baby is born). Reusability -adopting a new function-, is a
key issue for the sustainability of objects. We should equally be able to sustain and

reuse in different context the augmented objects of the ubiquitous environment too.

A tangible object can have functions, depending on what it can ‘afford’ - from its
tangible shape and capabilities. Although it is mostly used for one purpose at a time,
over time it may change its’ use. A cup with a broken handle, for example, is then
transformed into a toothbrush or pencil holder. People are flexible and inventive
when it comes to using objects to fill their needs. Purposes of use may change over
time, providing the object’s physical properties are not violated, and allow for these
new purposes. The arrangement of objects, their location and clustering with other
objects, make for different purposes of use at any one time. The shape of common
objects has been adapted over an extended period of social history precisely to
enable them to meet different purposes in changing contexts of and based on the

objects’ affordances.

Let us consider the example of a cup. Putting aside attempts to draw conclusions
beyond the object’s physical characteristics, a cup can be categorized as a container
object, and can be used to contain things, whether this is liquid, toothbrushes, sea-
pebbles, pencils, flowers, or alternatively someone can think of different uses for it
such as to trap a spider with it, or to use it as a paperweight. Depending on the
properties of the material it is made of, the capabilities the exact shape offers, as
well as other objects/substances it interrelates with, this container object may be
used to drink from, to pour with, to carry liquid with or to keep things in. The cup is
initially mostly located in the kitchen but can also be mobile within the home, and it
is linked in the context and process of use with the water boiler or coffee machine.
Later on, when its use becomes that of a pencil holder, it becomes more static, on a
desk, and contains a certain set of pencils and pens. Similarly, a chair can be used as

a coat hanger, a seat, a ladder, or a bedside table.

88

A table for example, is a surface raised to an appropriate height, which in some
cultures is used to put things on, which can then be handled while sitting in front of
the table. There are more specialized uses of a table, e.g. a table that is used to
facilitate study is a ‘desk’, a table to eat on is a ‘dining table’; a shorter and smaller
version may be a ‘coffee table’, while there may also be co-existence of the many

purposes of use in one instantiation of a ‘table’.

It is in human nature to convivialize an object and use it in other than predetermined
ways, as long as the physical properties of it allow for that. Although things should
be designed to serve a purpose and serve it well they should also be allowed to
deviate from it when this is required. People may also change objects intentionally,
‘pimping’, ‘hacking’ or ‘cannibalizing’ them to achieve the ‘improper’ repurposing
of objects. Because of the creativity of people and their effort towards the reuse and
sustainability of some objects deviations of use happen unconsidered. If future
objects had not only physical properties, but digital capabilities, (such as sensors,
processing, communication, etc), the supporting technologies should allow for this

normal human behavior to still be able to happen.

Figure 11: Familiar artifacts are enhanced with sensing, processing and communication
capabilities.

The notion of the appliance as defined by Bill Sharpe (Sharpe, 2003) is ‘a device of

specialized and widespread use; a device that does one specific thing to information

89

of a certain type’. Based on this notion, an ‘artifact’, as defined and considered in
this research, can be considered as a subset of appliances. Artifacts originate from
an evolution of common everyday objects, and therefore are in widespread use.
Artifacts’ material shapes coupled with additional digital capabilities enable them to
be used collectively in order to achieve a superset of functions. Therefore artifacts
are capable of doing a range of ‘specific things to information of certain type’.
Artifacts express their capabilities to other objects through their digital aspects;
artifacts can synergize with each other and share their (processing, sensing, actuating
or other) capabilities within a communal pool. The observations regarding the use of
‘normal’ (un-enhanced) objects, mentioned in previous paragraphs, also apply to the
use of Artifacts; in fact variations of use can be taken to a much greater extend

because of the Artifact’s inherent connectivity and collectivity in behavior.

4.4. Towards open, flexible, collaborative systems

The use of material objects does not remain static over time. Neither does the use of
more solid structures, such as buildings and architectural constructions (Rodden,
2004). Human environments are ‘object-scapes’, spaces that are constituted from
collections of objects, positioned in ways that facilitate or express the life of their

OwWners.

People buy objects and make their surroundings from them, arranging them as fits
their needs. They buy furniture, decorative, play or utility artifacts from shops, but
then they take them and make up with them their own home setting as they want;
they rearrange the objects at times, according to necessity or aesthetics (e.g. if they
move into a different situation, or when the family’s needs are changing, e.g. when
there is a new family member). As Tom Rodden has pointed out (Rodden, 2004),
people do that even in the construction of their houses. Houses are perceived as non-
changing, solid architectures; yet, over time, new plumbing is installed, walls are

demolished and new ones are built, kitchens are redone, ironwork is changed, the

90

whole look and feel and functionality of the building may change. All things and
tools people use and maintain over time, they also adapt and change. And we should
remain able to continue doing this deviation and alteration in our forthcoming, ICT

augmented environments.

Observing these natural changes in uses of normal objects it becomes evident that
we should allow for artifacts to be used creatively by people, let alone by designers.
This could prove crucial for the successful adoption of artifacts: because of the
inherent connectivity of artifacts additional ‘connected’ functions can be supported
that are tailored better to their owner’s use (Markopoulos, 2001). Returning to the
example of the augmented cup; it could be used by someone for drinking, as a
primary function, but also as a part of a greater system of objects that is assigned to
do health monitoring of the owners. Alternatively, for someone else it could be part
of a different grouping of objects (figure 12) that facilitates ordinary tasks; e.g. when
the level of tea drops, it may be so assigned for the kettle to switch on to boil water
for more tea. When, over time, the augmented cup purpose is deviated to that of a
pencil-holder that in turn should be able to identify missing pens, or faulty ones, and

play a different role in the everyday life of the household.

other

other
light

study gw
desk
lamp
chair

...other gw...

light-status-bar gw

Figure 12: An artifact can simultaneously participate in different application clusters; each of
those functional clusters can serve a different user or a different goal

91

Several design researchers (among others, Dunn and Raby, Bill Gaver, Philips
Design) have argued that people should be the ones to add interpretation and
meaning to designs that are intentionally left open for imagination and
experimentation (Gaver, 2002). People are the interpreters of open scenarios of
technological objects (Dunne and Raby, 2002), while designers can allow for these
interpretations to occur by providing intentionally open-ended designs (Green, 2007,
pp46-48). From a constructivist engineering perspective, adding to the above
approach, artifacts can be treated as the building blocks that enable and inspire
unique individual applications to be created. Provided that flexible infrastructures
are supported the use of these artifacts, at the same time, on the one hand, niche
applications can be created by and shared between people, while on the other,
experience designers could come up with other types of application, targeting certain
user groups and needs. But before we can get to this point, we need the appropriate
concepts and the enabling tools that end users and designers can use, and these in
turn need to be based on open approaches from the level of the technological

infrastructure.

4.5. Usage and interface issues

Each object in our everyday world has been designed with certain tasks in mind -
and often its design has been developed and adapted over the years to best suit for
these tasks. The ways that we can use an ordinary object (implied by the ‘object’s
affordances’) are a direct consequence of the anticipated uses that object designers
‘shape into’ the object’s physical characteristics. The objects have been designed to
be suitable for certain tasks, but it is also their physical properties that constrain the
tasks people use them for or ‘afford’ their different uses. As everyday objects are
“enhanced” with computing and communication capability, the user will need to
learn the new ways in which they can be used (which can be indicated by designing
new affordances) and the collective tasks they can participate in. This ubiquitous

computing paradigm introduces several challenges for human-computer interaction.

92

Firstly, users will have to update their task models, as they will no longer be
interacting with an ordinary but with a computationally enabled object. Secondly,
people will have to form new conceptual models about the everyday objects they

use, and thus they may change their habits.

As computing becomes embedded in everyday objects, so the Human Computer
Interface is now engaging with the physical world as well as its digital
representations. In such a world, the ‘direct manipulation paradigm’ will have to
include metaphors describing interaction with tangible objects. Unlike some parts of
Weiser’s vision (Weiser, 1993), it may not be appropriate to the nature of many
artifacts to have screens added to them. Such an interface approach applies to the
more specific category of information appliances, and although convenient for
interaction it does not fit the nature of all objects and augmented environments
(therefore new HCI issues occur regarding the loci and nature of feedback). The
design of the object’s form and physical properties affects the interaction with it. In
fact the design of objects, which constitutes their interface, may have to be
reconsidered so that their new capabilities can be promoted to the user (indicated by
appropriate elements for the nature of each object). In this broad picture, information
appliances as we know them are only a subset of these objects. Information
appliances are often screen dominated, but this is not so for artifacts. Most artifacts
cannot have the on-screen (or audio) feedback that is defining interaction with many
information appliances. This will be a challenge for designers. It will require a
broader approach, whereby the tangible interface of the object not only provides for
an optimal user-experience, but is also assuming the role of the interface to a larger
set of interconnected causes and effects, - while not all of the effects that are caused

are visible to the end users.

93

4.6. Meta-issues of use

People can, then, act upon their environments, be they physical or enhanced
ubiquitous computing environments, by setting goals, forming plans and perceiving
results. At the cognitive level, the disappearance of the computer forces people to
form new mental models about those tasks which involve objects and environments
(that now may use hidden ICT capabilities). On the other hand, if the appearance
and function of everyday objects and environments change (or new objects appear
into our everyday life), then people will have to adapt or form new models of tasks

involving these objects (Kameas & Mavrommati, 2001).

Most objects around us have been designed for specific tasks; but this specificity
constrains the ways in which we might use them for. In general, everyday objects
can be used in different ways, providing that their physical properties are not
violated. As everyday objects are ‘enhanced’ with sensing, computing and
communication capabilities, in order to become artifacts, people have to learn the
possible new ways that they can be used (that may have to be indicated by
appropriate new affordances) and the tasks these objects might participate in. People
may initially have to use objects in more complex ways, as they may end up
interacting at the same time with individual objects and with their configured

collections.

Living with and using artifacts, may not seem easy at first, and may require certain
new skills to be developed (including abstractions and models to reason about
them). Nevertheless, it may be the case, as it is for example with writing, that once
the skill - however complex it may be - is acquired, over time, it comes to feel
natural, easy and transparent in use (Sharpe, 2003). The case of writing is highly
relevant: it is a complex skill, it involves understanding the abstraction of sounds
into written symbols, recognizing these symbols, but also reproducing them, without
consciously thinking about the process of doing so. The process of people growing
into the skill-set needed for using artifacts and their associations can be viewed in

the same light as acquiring the mental and kinetic skills for writing, and its relation

94

to oral expression. In contrast, people are acculturated to recognize and to use the
tangible part of the artifact as is, because this knowledge is embedded in their socio-

cultural history.

The introduction of artifacts can be expected to affect people’s everyday lives in
several ways. People will have to change established habits, learn new skills, and
form new mental models for the objects and spaces that surround them. Task models
will need to be updated, as people will start interacting with artifacts (that are
capable of participating in many more new and complex tasks) rather than the
accustomed ones. The conceptual models people have of objects and of computing
will have to evolve in order for them to utilize the new possibilities offered by the

computationally enhanced Artifacts.

There are several issues to be investigated at this level, which can be considered as

the ‘syntactic’ level:

e Which is the set of people’s actions that artifacts should respond to? How will

these be expressed in objects’ capabilities?

e How will people perceive artifacts? What patterns of usage can emerge from

adopting and adapting artefacts usage?

e How can augmented artifacts be designed so as to be introduced to people’s
lifestyles and not to contradict their existing behavior patterns and conceptual

models? Is there a general architecture upon which artifacts could be based?

Possible advantages and benefits

Why should all the trouble be taken, of adopting artifacts, coping with augmented
environments and acquiring new skills? To do it, people have to see clear benefits
from it. At the early stages where the ordinary user is just beginning to understand

how to use and what to do with ubiquitous computing technologies, several

95

applications used as research validation scenarios can be criticized as being
uninteresting, of no apparent value or importance, or understating the potential of
ambient technologies. In contrast, some factors that can be motivating to using

artifacts are the following:

New tasks and new enhanced services become possible.

e Faster services, savings in effort and time in doing complex ordinary tasks, can
be achieved. Everyday life tasks take a lot of effort; this can be seamlessly
facilitated.

e Particular and special needs of targeted groups can be better met. (For example,
fitting the individual needs of young children, the elderly, disabled people, or

other groups where the applications have clear and strong benefits).

e Unpredicted niche applications can be made possible, by empowering end-users

to act according to their needs and wishes.

People can initially ignore the difference between objects and Artifacts. They may
begin using artifacts according to their existing habits, gradually growing into full
use of the added digital capabilities. People may choose to use artifacts after a time
of initial apprenticeship. In this ways, the intrusion of the artifact in existing task

models will be perceived as small.

We must assume that, as it is often the case with fundamental technology advances
(Norman, 1999), once we get more accustomed to the new medium, people will
come up with applications and uses that cannot be presently anticipated. Later
generations of applications will be nothing close to what we can currently capable of

imagining.

96

4.7. Conclusions

Although tangible artifacts should be designed to serve a purpose and serve it well,
they should also be allowed to deviate or evolve away from this purpose when that
is required. People often put an effort into continuing to use objects even after they
become antique or have deteriorated (such sustainability is often achieved by
alteration of use). People can be very creative with the way they use things. So far
this has happened in a rather natural way, as it is in human nature to use things in
other than predetermined ways, as long as the physical properties of objects can
afford this. If future objects are to have not only physical properties, but ICT

capabilities too, their designs should still allow for this normal human behavior.

Artifacts have the potential to gain their own place in our future everyday life.
Designers need to aim for a smooth transition in order for people to adopt artifacts
and embrace their benefits. To be effective in this transition we need to develop or
adapt visions of how (even the more mundane of) tangible objects may evolve in the
future, and what role people may have in this landscape. Such visions will support
people in creating their own ambient experience applications they want, or changing

of the pre-constructed applications they are given.

Research has to consider approaches for augmenting artifacts that are scalable.
Approaches are needed that cover in their conceptual framework a wide range of
objects of different kinds (from a tag to a desk to a house, from service carriers such
as heating, TV, light, audio, to tangible furniture, flowerpots, clothes, carpets, boxes,
etc). We need to consider and develop referents between designers, people and
artifacts, giving bridging technological solutions that allow for reuse and

sustainability.

97

5. Ubiquitous computing and

approaches to augmenting artifacts

5.1. Introduction

One way to explain the method employed in Artifacts’ creation is that artifacts are
created by giving to objects the ability to be associated with each other (having
invisible links to each other, and affect each other’s behavior). This, in turn,
translates to different methods for embedding the hardware, software and design
aspects that are added to objects, so as to include, make visible, manage and utilize
these links. This not only involves solutions for embedding processors, sensors and
communication modules to objects, but also suggests appropriate mental models and
relevant tangible-interaction languages, on how these objects can be used, and well

as redesigning existing objects to indicate their new affordances.

98

Companies such as Philips (Aarts and Marzano, 2001) promote an ambitious vision
for the private domain with In-Home networks and intelligence, while at the same
time simpler scenarios using more established technologies such as RFID (radio
frequency identification) tags are already being implemented for the home, mobile
or public environments. Available early in the time-frame of transition to pervasive
environments, these RFID tags can be attached to objects; they contain radio-
enabled microchips which can be read out wirelessly. Their growing use covers
areas such as supply chain management, and their low cost and widespread
application today indicates that the ambient intelligence environment, despite the

technological challenges still present, is not so far into the future.

The various approaches to augmenting artifacts in UbiComp environments are based
on different underlying system architectures, ranging from distributed computing
and peer to peer systems to centralized systems. Recombinant systems publish-
subscribe methods, direct manipulation and graphical programming methods are
different elements that come into play. Associations between artifacts are achieved
either by following a given tangible interaction language (ie see Shifteo, Accord,
etc), or by use of third intermediate devices that act as editors (see: Speaskeasy, e-
Gadgets). The appropriate appearance, nature and loci of feedback interaction are
interaction issues that most approaches have to address. Various attempts to address
the loci of feedback interaction are noted, either by adding an LCD display onto
artifacts, or by using nearby devices (that can provide audio or visual feedback), or
using separate dedicated devices within the system (such as palmtop computers as

editors).

This chapter presents software and hardware engineering approaches from projects
that deal with the inter-association of artifacts. Platforms such as SMART-ITs,
SIFTABLES, ACCORD, NEBULA, CAMP, e-Gadgets, the TERESA environment,
Plants, ASTRA, SpeaksEasy are outlined, while other related system engineering
approaches (such as TinyOS, Phidgets, Oxygen, etc.) are briefly presented.

99

5.2. Approaches to creating and associating artifacts

SMART-ITs:

In the context of the disappearing computer initiative, the project ‘Smart-Its’
(Holmquist et al, 2001) aims at developing small devices, which, when attached to
objects, enable their association based on the concept of ‘context proximity’. The
collective functionality of such a system is mainly composed of the computational
abilities of the Smart-Its, these work as added tags to the physical shelf of the
participating objects. In this approach action, such as shaking together at the same
time two personal devices, groups the devices together to a certain functional cluster

(SMART-ITS project website).

SIFTABLES:

David Merrill and Pattie Maes have introduced sensor network user interfaces
through the “Siftables” platform (Merrill, 2007), and a tangible interaction language
for it. Here, wireless sensor network technology and methodology is applied in the
area of tangible user interfaces. Applications, such as photo ‘sorting’ or ‘scrabble’
word game, are handled through the Siftables distributed tangible user interface (a
kind of generic square compact tiling). Shiftables themselves (figure 13) are a
collection of small compact tiles (36x36mm) with accelerometer, a color LCD
screen, infrared transceivers, and RF radio, as well as a rechargeable battery. An
interaction language for this platform is introduced, with a library of manipulations
analogous to the point and click or drag and drop, but related to sensor network Uls,
such as shake, group, pile, etc. Visual feedback appears in the LCD screen while
audio feedback can be heard through a nearby computer. The devices are uniform
tiles; therefore it is more a Peer to Peer (P2P) generic platform for games and
specialized applications rather than for generic objects of everyday use. More

information about this platform can be found in (SIFTABLES project website).

100

Figure 13: The Siftables platform of small ubiquitous devices manipulated by gestures

What the Smart-Its and Siftables approach have in common is that they attempt to

introduce conventions and use a tangible interaction language, while no external

editor or Graphical User Interface is used. Rather, they introduce a vocabulary of

gestures and tangible manipulations for associating artifacts, within the context of
given (and not user-configured) ubiquitous applications. Applications are to be used,

but not configured, by end users.

NEBULA:

Nebula (Kyffin and Gardien 2009) is a Philips Design project that explores
experiences enabled by omnipresent devices such as wall-embedded digital
windows, wearable electronics, and flexible displays. These devices are intended to

merge in order to create one fluid augmented experience (Figure 4, Figure 14).

Nebula (Gardien 2007) supports different customized experiences, making it
possible to be used by very different markets and use contexts (ie home experience,
hospital etc.). Customization is achieved by adapting the information streams that
are projected. Allowing the customization of the content stream brings Nebula a step

towards co-designing by end users (Green, 2007).

101

Figure 14: An image from the Nebula project; the Nebula Alarm Clock projects end user
defined content to the ceiling, as a wake up alarm. (Image from Philips Design Website).

ACCORD:

The project ACCORD focuses on a tangible Ul approach. Its focus was in
developing a Tangible Toolbox (based on the metaphor of a tangible puzzle) that
would enable people to easily embed functionality into existing artifacts around the
home (Rodden et al, 2007). ACCCORD has a compositional approach to Home
Environments, based on a component model using the notion of a shadow digital
space that acts as virtual representation of the physical environment (Rodden et al,
2004). The project has developed a tablet editor and a graphical user interface (GUI)
representation of a jigsaw puzzle for it (Figure 15). The ACCORD component
model was evolved with collaborative design methods, in partnership with end
users. The Jigsaw pieces that were used as artifact’s respresentations were readily
understood by users, who could subsequently reason about simple interconnections
of devices and make assemblies of them. The ACCORD toolkit is publicly available
at the (ACCORD project website).

102

Figure 15: Left: the Paper Puzzle Editor using paper based identification technology. Right:
the tablet editor and the editor screen. Each component is represented as a physical puzzle
piece; a service is created by connecting pieces in a left-to-right order. (Source: ACCORD

project website).

TERESA

TERESA (Mori et al 2004), (Paterno et al, 2008) is an environment for authoring
pervasive multimodal user interfaces. It is composed of a set of XML-based
languages (DSL), transformations among such languages, and an authoring tool. It
provides designers with the possibility of designing interfaces for a wide set of
platforms, which support various modalities. TERESA provides application

examples for a number of platforms.

CAMP

CAMP (Truong et al, 2004) is a system that enables end-user programming for
smart home environments based on a magnetic poetry metaphor — a simple interface
for creating applications. CAMP aims to enable users to create applications taking as
a starting point the users’ goals and tasks — rather than the developers' perspective of
devices and their interactions. (Truong et al, 2004) presents a study making use of

automated capture and playback of home activities which examines how users

103

conceptualize applications. The study reveals a breadth of home applications that

people desire.

THE GADGETWARE ARCHITECTURAL STYLE (GAS):

The Gadgetware Architectural Style approach (GAS) views the process where
people configure and use complex collections of interacting artifacts as having much
in common with the process where system builders design software systems out of
components (e-Gadgets project website). The domestic environment in this approach
has a multitude of peer to peer interacting artifacts, from furniture and appliances to
environmental sensors (ie temperature, humidity, light, or sensors in the building
features), which people dynamically associate, aided by the Gadgetware
Architectural Style (Kameas et al, 2003), (Mavrommati et al, 2002), (Kameas et al,
2005) (Figure 16, Figurel7). A style is in a way a dictionary of elements, together

with the syntax which indicated how these elements can be put together.

3~

network

Figure 16: The Gadgetware Architectural Style provides a way for people to manipulate
Ubiquitous Computing Applications

The Gadgetware Architectural Style proposes a Style for Peer to Peer Ubiquitous
computing applications, and as such it proposes the generic concepts and syntax

from which individual instantiations can be generated.

104

gadgetworld_

hw

¢ YAt \\
4 M
. N custom %
& G
/ -
(» style specific
e-gadgets /

:l—”' v
eoc Q| o

sSwW

10101

\
\ /
W A 4
7 44 7
B R
@.z ™~ & g@
S [
M -
S
ALY B
<" 7> manifestation of Gadgetware
Architectural Style
designer people <" added parts

Figure 17: The Gadgetware Architectural Style (GAS) is a common referent between artifact
manufacturers, designers, and users

In the GAS style approach, a vocabulary is developed, so that people can understand
the nature of artifacts and manipulate them as a result (Figure 16, 17). This approach
can scale both ‘upwards’ (towards the assembly of more complex objects, ie from
objects to rooms, up to buildings, cities and so on) and ‘downwards’ (towards the
decomposition of eGadgets into smaller parts, i.e. towards the concept of ‘smart
dust’). Different objects are treated similarly within GAS. These objects are GAS
enabled artifacts, thatmay range from the computationally powerful ones (having
their own processing and communication), to the very minimal (that can be
considered as tagged artifacts (ie with RFID), which may borrow processing and
storage capabilities from servers or other proximate artifacts, for example). The
artifacts and the GAS Operating System Architecture are explained in Figure 18 and
19. An editor is used by end users and designers alike, to create and manipulate the
GAS enabled artifacts and configure their collective behavior. More on this

approach can be found in chapter 10.

105

Computational unit
(PC, PDA, java boards etc.)
Connectivity APT
(Java Sockets)

L)
GAS-08 Middleware 2
7] Networking unit
VO Driver t S (802.11, Bluetooth,
g IrDA, etc.)

Java Platform

HAW interface
(RS232USB, etc.)

Sensors/Actuators
Control circuliry
(FPGA, PIC, eic.)

Figure 18: Artifact high level architecture. Source: (Drossos et al, 2007)

| UbiComp Application |

layer

Application

[FlugfSynapse API |

o,

.
Security Manager || Ontology Manager Other A _?
3 i P ¥
plug=in plug=in plug=ins < =
Q=

| Plug-in manager ‘

r

£

W . o

State Process Manager Property -
. Evaluator s
Variable -
- — W
Manager Communication Module | <

Figure 19: The GAS OS modular architecture according to (Drossos et al, 2007)

PLANTS:

Project PLANTS (PLANTS project website) introduces three-way communication
between plants, people and artifacts, following the Gadgetware Architectural Style
approach. PLANTS project starts from the basis of the e-Gadgets project
(envisioning an environment consisting of people and artifacts and the interactions

between them), and expands this into mixed plant-artifact environments (bio-

106

gadgetworlds), (Figure 20), aiming to optimize the efficiency and productivity of
plant growth. An array of sensors placed among crops detects biological plant
signals and uses them as the basis for precision applications of water, pesticides or

fertilizers.

physical physical-digital

{

< biological-digital s

AT N digiilal
~plants artefacts
bio\oglca_l_’/ N

Figure 20: PLANTS explores mixed environments, in which humans, plants and artifacts are
computationally enabled and can act together, in the context of precision agriculture.

By delivering resources when and where they are needed, the PLANTS system
seeks to minimize their wastage and the environmental and human health damage
their overuse can cause. PLANTS software, ePlantOS, enables plants to
communicate with other components of the PLANTS system by converting their
botanical signals (detected by sensors) to digital signals, and then into actions from
the actuator-artifacts (such as watering). The ePlantOS software system acts as a
‘parallel universe’ in which each physical entity of the crop set-up has a second
‘digital self’. A plant thus becomes an ‘ePlant’ by having an added technological
layer. Pumps, lights etc. are similarly represented as ‘eGadgets’. ePlantOS is a
middleware software layer that manages the network interactions of the system by
linking up all components into a virtual mixed society of plants, people and gadgets
called a ‘bioGadgetWorld’. Decisions (ie whether to irrigate) are based on the

‘ontology’, a directory of rules and definitions about plant parameters and

107

characteristics, the core of which is designed to fit the limited memory capacity of
ePlants and eGadgets. A higher-level ontology elaborates on the core ontology. The
users (crop managers) can build their own bioGadgetWorlds of interacting elements
(using Bio-Gadgetworld Editor) and are able to edit the underlying ontology rules
through the Supervisor Logic and Data Acquisition Tool (SLADA), which is also

intended to be used by crop managers.

ASTRA:

The ASTRA project (ASTRA website) explored the concept of pervasive awareness,
ie where awareness information is automatically generated as a result of
personal/home devices exchanging information about the user and the situation of
use semi-autonomously. The project therefore investigated systems and concepts
that support such pervasive awareness applications. To this end ASTRA defined a
framework for supporting the conception and the design of Pervasive Awareness
systems, specifically those that are intended to support social relationships. These
consist of theories and technological solutions (service oriented architecture, tools
and applications) that support communities to create, adapt and appropriate

Pervasive Awareness applications.

ASTRA envisions pervasive systems that can help fulfill fundamental social needs:
knowledge about each other’s emotional status, health, location, and availability, but
also the exchange of messages can contribute to feelings of connectedness. The
feeling of belonging (labeled by ASTRA as ‘social connectedness’, the term
signifying feelings such as being in touch with others or the level of closeness and

social contact in one's social life) is seen as fundamental to human well-being.

The ASTRA project has created an experimental infrastructure: a service oriented
architecture and tools for enabling communities of end users to create their own
awareness systems and services. ASTRA aimed to support the process of innovation
driven by end-user communities themselves acting as designers of their own

awareness services, coupled with the ubiquitous computing applications as a means

108

of defining the awareness service, or displaying it. Astra couples awareness
applications with ubiquitous input and output on the user’s environment. An
inherent part of ASTRA end user tools is the definition of ubiquitous computing
applications that signify or portray awareness information as well as the fact that

these awareness applications are shared within a social group.

ASTRA produced a computer mediated awareness system, exploring pervasive
awareness and making possible the configuration of awareness applications by end
users (Mavrommati I., Calemis J., 2008), (Figure 21). ASTRA uses a Service
Oriented Architecture (SOA) for service delivery in a dynamic environment.
Graphical User Interfaces aimed at the end users enable the configuration of
“awareness connections” and the definition of pervasive applications, as well as the

overall observation and control of running active configurations.

L

Phone ‘

Figure 21: ASTRA: Awareness communication is transmitted between two ubiquitous
environments

Different variations for end user configuration of a ubiquitous application have to
be noted:, On one hand, projects such as Nebula focus on allowing the
customization of the experience (by selecting different content assets as elements
within a predefined experience) while approaches such as GAS, ACCORD and
ASTRA focus on allowing for the end user design of the total ubiquitous application

and experience.

109

SPEAKSEASY.

Speakseasy is an example of ‘recombinant computing’ - a set of common interaction
patterns that leverage mobile code to allow rich interactions among computational
entities with only limited a priori knowledge of one another (Edwards et al 2002),
(Newman et al 2002). Speakseasy is designed to support ad hoc, end user
configurations of hardware and software, and provides patterns for data exchange,

user control, and contextual awareness.

Speakseasy is used to support ad-hoc spontaneous peer-to-peer collaboration. Peer-
to-peer systems have deficiencies (such as inflexibility in terms of discovery
protocols, network usage, and data transports) that diminish their ability to support
this domain. The Speakeasy framework addresses these issues and supports these
P2P types of applications; a demonstration application, called ‘Casca’, supporting ad
hoc peer-to-peer collaboration by taking advantages of the mechanisms provided by

Speakeasy, was created as a case study.

Distributed computing software technologies

Various software technologies are being employed in the context of distributed
computing research projects. Several of these technologies are considered as paving
the way to the future pervasive computing environments (most prominent examples
are, for example Cloud computing, or the Internet of Things). Such developments

are briefly outlined here:

e RPC: Remote Procedure Call - legacy mechanism for implementing distributed
systems.

e RMI, Java RMI, DCOM (using ORPC wire protocol), CORBA: legacy Object-
Oriented (OO) distributed programming mostly using a client-server model.
When using callback channels (connection from server back to client) these
systems tend to have problems with firewalls and the range of open ports which

limits their applicability.

110

e JINI: Java specific - distributes/leases computational capability to JVM (Java
Virtual Machines) nodes on the network. Designed with hardware-based JVMs
in mind which didn't gain enough traction in the market.

e JavaSpaces: an ecarly cloud computing pioneer, offers publish/subscribe
methods in a resource cloud. This approach is Java specific which lowered its
usage/adoption.

e Web Services based on SOAP (Simple Object Access Protocol) XML based
protocol for invoking services and getting back results. SOAP is an official W3C
standard, advanced but a bit verbose and hard to implement all related protocols
for security, transactions etc. defined by WS-I (WebServices Interoperability
group). For device interactions REST (Representational State Transfer), also
XML-based but simpler, stateless and less verbose, has become a defacto
protocol standard (e.g. used by Microsoft Robotics Studio).

e Semantic Web (dubbed ‘the Internet of Things’ (IoT)) is an effort backed by
W3C consortium which define World Wide Web standards and is spearheaded
by its director Tim Berners-Lee. It is adding semantic metadata in standardized
forms (eg RDF - http://www.w3.0org/RDF) to services, coupled with structured,
Web-based ontologies (eg in OWL or SKOS) which enable richer integration
and interoperability of data among descriptive communities.

e Grid Computing is a combination of computer resources in loosely coupled,
heterogeneous, and geographically dispersed grids, coordinating them to reach a
common computational goal.

e Cloud Computing is a trend in Internet-based computing approaches, whereby
shared virtualized computational and storage resources, software, and
information are provided to computers and other devices on demand, as with the
electricity grid. Such developments are seen as paving the way to future

ubicomp applications.

Other related approaches to distributed computing, pertain to the development of

platforms, such as the following:

111

OXYGEN: A more generic approach has been undertaken by the project “Oxygen”
which enables human-centered computing by providing special computational
devices, handheld devices, dynamic networks and other supporting technologies.

(Oxygen project website)

GAIA (Roman et. al., 2002) provides an infrastructure to spontaneously connect
devices offering or using registered services. Gaia-OS requires a specific system
software infrastructure using CORBA objects, while mobile devices cannot operate

autonomously without the infrastructure;

BASE/PCOM (Becker, 2004), (Weis, 2006) use component-oriented middleware,
supporting heterogeneity and abstraction of services, nevertheless the application
programming interface requires specific programming capabilities by end users. A

tree structure is used here for manipulating the components.

TinyOS is an event driven operating system, designed to provide support for deeply
embedded systems (i.e. sensor networks), which require intensive operations while

they are hampered by hardware resources that remain minimal.

PHIDGETS: Phidgets supports the easy development of physical interfaces through
physical widgets (Phidgets, 2001).

A multitude of commercial solutions exist (eg CORBA, JINI) but are rather

heavyweight for most applications and too complex to be used by ordinary users.

5.3. Conclusions

This chapter has presented related work pertaining to different approaches to
augmenting artifacts in UbiComp environments, allowing for different behaviors, in

recombinant or configurable ubiquitous systems. Two different aspects of end user

112

development of a ubiquitous application have to be noted: on one hand, projects
such as Nebula, or Siftables, focus on allowing the customization of a given
contextual experience (by selecting different content assets as elements within the
experience of a predefined umbrella application). On the other hand, approaches
such as GAS, ACCORD, and ASTRA focus on allowing for the total experience

design of the ubiquitous application by end users.

Among the variety of concepts in the different underlying system architectures, we
note recombinant approaches in peer to peer distributed computing systems as a
software and hardware system design approach being most relevant to Ubicomp
applications accessible by end users. The most prominent themes in related work in
this area is treating artifacts as recombinant computing modules, using for their
communication publish-subscribe methods, allowing in some cases for direct
manipulation or in others using graphical programming methods. Artifact
associations are achieved via given tangible interaction languages, or by use of
Editors as programming overview devices. The nature and loci of feedback are
commonly mentioned as interaction issues that need to be addressed for the context

of each research domain.

113

6. HCI issues for ambient computing

environments

Parts of the contents of this chapter are published in the journal article: eMinds:
International Journal on Human-Computer Interaction (ISSN: 1697-9613), Vol.l,
Issue 3, Dec. 2007. Article with title: End User Development in Aml: a user

centered design overview of issues and concepts. Mavrommati I., Darzentas J.

6.1. Introduction

In an Ambient Intelligence Environment the application and the interface merge into
one entity; the augmented artifacts and spaces become access points to applications
but they also carry the application’s functions. The nature of interaction within the
Aml environment differs to the familiar paradigms of Human Computer Interaction.
We argue for the emergence of a new generation of User Interface Design Tools that

facilitate users to see into and manipulate the behavior of the augmented artifacts

114

and spaces, and through these manipulate the applications of the Ambient
Intelligence Environment. The development of such tools has to face the
technological issues posed by ubiquitous computing, but also the challenges arising
from shifts in human computer interaction within Aml environments. Some of these
issues (relating to the shifts in Human Computer Interaction within Aml
environments), which can affect the design of these tools, are discussed in this

section.

6.2. Concerns about the Ambient Intelligence World

The main focus of ubicomp research is on developing the technology that enables
Ambient Intelligence Environments (ie sensors technology, miniaturization,
processes, networking, middleware, energy provision), only subsequently addressing
the HCI issues within these environments. There are insufficient existing HCI
practices, theories and models regarding HCI for AMI, while User Centered Design

is at its very early stages in this field of research.

AmlI’s theoretical vision tends to present people as passive consumers happily
accepting their increasing dependance on Aml systems. Aml sees people
increasingly and comfortably relying on Aml for a number of activities (for
reminders, surveillance, health monitoring, entertainment, home automation etc)
(Crutzen, 2006). Yet, it remains unclear how such systems are maintained. This
vision, according to Crutzen, does not seem realistic because Ubiquitous Computing

systems cannot be absolutely problem free.

It is not clear whether new technologies will eventually provide a means to escape
gracefully from being always connected (Swami report, 2006), (Markopoulos et al,
2004). Moreover it is questionable how people will accept living and evolving
within Aml technological environments and how this ‘nurture’ will impact human

nature (Swami report, 2006). Social issues relate to how people’s individual as well

115

as collective behavior will evolve by living in Aml environments, where it is clear

they will develop certain expectations, assertions, and habits (Mavrommati et al,

2003d)

A network of interconnected devices has as a consequence that the quantity of
information increases beyond the capabilities of human perception, resulting in
information overload. Increased connectivity also leads to blurring of the physical
borders between people and spaces. Several studies attempt to respond to the need to
understand the broader implications of Aml - such as Digital Territories Study,
(Daskala and Maghiros, 2006), (Daskala and Maghiros, 2007), or Safeguards in the
World of Ambient Intelligence report (SWAMI report, 2006) - but are still at too

early stages to be taken into practice.

Aml system design has to face serious challenges regarding the system’s usage,
concerning how users can control the Aml system (for example with appropriate
means, or aided by intelligent agent interfaces), how they can predict what the
complex networked artifacts will do, and how the whole Aml system in turn will
function appropriately and unobtrusively, providing for qualitative experience and
safeguarding its user’s privacy. HCI issues such as avoiding stress and confusion in
order to achieve actions, avoiding errors, and facilitating recovery from errors, are

important to be addressed.

6.3. Issues Introduced in HCI

New elements that are introduced by the nature of living and interacting within an
ambient intelligent environment lead to new HCI paradigms. Some of the issues that
impact not only Aml HCI research practice (Mavrommati and Darzentas, 2006) but
also End User Development are described in the following sections. These issues

belong into the following generic categories:

116

e Change in Human Computer Interaction models
e A shift in the nature of interaction

e Organizational concerns of users

e Interaction channels

e The scope of intelligence

e Visibility of actions, reversibility of actions, error tolerance

6.4. Change in HCI models

A good case for study in the context of Ubiquitous computing environments is
Norman’s (Norman, 1990) model of interaction which is widely used in HCI: the so
called execution-evaluation cycle. The execution-evaluation cycle splits the
interaction into a sequence of sub-actions, each of them being a result of a specific
user intention. Initially the user forms a goal, and then forms a sequence of
intentions, followed by specific actions. The user then proceeds to execute these
actions, and perceives the state of the system after these actions are performed
(change state, communicated to the user via appropriate feedback). The user then
interprets the new state of the system and finally evaluates the outcome, comparing
it to his/her initial goal (to what extent the goal is achieved). Belloti (Bellotti, 2002)
attempts to re-think Norman’s ‘7 stage’ interaction model, focusing more on
interactions that are most appropriate for Aml environments (assuming the
interactions are not GUI based). Belloti suggests the following five interaction
challenges for Aml researchers, and exposes a number of design challenges that

result, which designers should address:

1. Address - how to direct communication to a system. (Disambiguate signal from
noise; disambiguate intended target system; define how one can avoid

addressing the system accidentally).

117

2. Attention — ensuring that the system is attending (Embody appropriate feedback
so that users are aware of system’s attention; feedback should be of such nature

and loci so that it is directed to user’s attention).

3. Action — defining what can be done with the system [Identify and select a
possible interaction object. Identify and select one action and bind it to the
object(s) and avoid unwanted selection. Handle complex operations (such as

multiple objects and actions, more abstract functions)].

4. Alignment — monitoring systems response. (Make the system state perceivable at
any given moment; direct timely and appropriate feedback; provide feedback on

the system’s response to users).

5. Accident — avoiding errors and misunderstandings, or being able to recover from
them. (Control or cancel system action that is in progress; system intervention in

case of error; disambiguate what can be undone in appropriate time).

Some pitfalls that are applicable for End User Development in Aml which are
identified in the Belloti (Bellotti, 2002) model include: unintended actions, leading
to undesirable results; failure to execute an action; limited operations available;
wasted input effort in a non-attending system; inability to detect mistakes; difficulty
in evaluating a new state; and inability to detect mistakes and to recover the previous
state. The Bellotti framework is not only useful for the design of intelligent
automations in Aml systems, but is also applicable for understanding HCI issues in

the complex, interlinked Ambient Intelligence environment.

6.5. A shift in the nature of interaction

In Ubiquitous Computing environments people do not act on the world, but act with

the world. Thinking, according to Distributed Cognition theory (Lave, 1988), is not

118

just within the head, but in the external relationships with things in the world and
with other people. People, who are in constant dialog with the physical environment,
they use the information and location of artifacts in order to guide their actions (Dix
et al, 2004). Incidental interaction that happens within an Aml environment thus

impacts the system design and has relevance for End User Development.

Interaction in Ambient Intelligence Spaces can range from explicit to implicit
interaction. The user may be unaware where the interaction is taking place (ie via
gestures, sensors, movement detectors, secret cameras) (Dix et al, 2004). Unintended
user actions in the environment may result in unintended control and manipulation
of the application of the direct environment of the user, or of associated
environments in different locations. The implicit nature of this interaction (achieved
in Aml by both sensing and physical action) assumes a seamless human computer
relationship where there may often be no conscious interaction. On the other hand,
since no system is completely error free, issues of the appropriate level of visibility
and transparency of the system are raised. The possibility of facilitating a degree of
transparency (providing upon request some visibility into the workings of the
ubiquitous system) is an element that could be considered for End User Tools. (Dey,
2004), (Mavrommati et al, 2004). Schmidt argues for an Aml interaction model in
which users can always choose between implicit and explicit interfacing: ‘The
human actor should know ... why the system has reacted as it reacted’ (Schmidt,

2005).

We are witnessing a radical shift in the field of HCI: the basic models of interaction

that have proved universal across technologies are questionable for Aml (Dix et al,
2004), (Bellotti, 2002), (Scholtz and Consolvo, 2004). The main drifts from
traditional HCI, as described in (Dix et al, 2004), are:

e The focus becomes that of activities rather than tasks.
e Emphasis is given to the design of continuously available interaction

e There are no starting or ending points for interaction in Aml environments

119

e Interruptions and multiple actions can happen within the environment, that
are not (or are loosely) connected to achieving certain goals. Such
interruptions and multiple actions can be mistaken as options for the system.

e There are many different perspectives in operation within the Aml
environment and therefore the reuse of information for different functions
should be a consideration. This points at the need of, for example,

associative models of information.

6.6. Organizational concerns of users

In an Aml environment there is more than one inhabitant and therefore more than
one user per application. The input in Aml is often distributed, while the user may
not always be aware that his or her action is in fact an interaction within the

UbiComp environment.

Aml systems may be accessed by single users, but also by users who operate in
larger groups (Bellotti, 2002). There can potentially be more than one user of an
Aml application, working on it simultaneously, from the same or remote locations.
The same may also hold as a requirement for Tools aimed at the creation and editing
of Aml applications. It may be in the interest of more than one user to co-edit an
application that involves them, synchronously or asynchronously, but doing this

collaboratively and from different locations than the application environment.

6.7. Different interaction channels

In Aml the direct engagement is with the world itself (Dix et al, 2004). In the real
world the input is physical, yet in the AmI world physical action gets converted to
digital information too, and has consequences as an action of direct manipulation.

Here the physical world becomes the interface of the Aml system, but is more than

120

just interface, as it cannot be separated (mentally or in fact) from the rest of physical

reality.

In Aml the nature of input and output devices is shifted and is very different that in
traditional HCI. Interaction becomes multimodal and ubiquitous: many appliances
and artifacts within an environment can be used and in many different operations, as
well as sensing capabilities of the environment. The same applies to the nature of the
input of the application, that can be similarly diverse; speech, gesture, tangible
interfaces, biometrics, are a few of the interaction methods in play. Complex
command languages could be replaced by certain direct manipulation actions upon
the objects, which make use of multimodal interface combinations to interact with
the system. Among the issues affecting end user development, as identified by

(Bellotti, 2002), are:

e how to identify and select a possible interaction object,

e how to select one action and bind it to the object while avoiding unintended
selection,

e how to handle more abstract functions, and

e how to embody appropriate feedback and direct it to users’ attention

6.8. The role of intelligence

Actors coming into play in an Aml environment can be human, or agent software.
Intelligent agents can be used in ‘programming by demonstration’ techniques, thus
facilitating a set of actions for end user development within the environment.
Proactive agent behavior holds the promise of seamless interaction within the Aml
environment. On the other hand, agent intervention may result in unexpected
behavior of the Aml system that may surprise the user — and such surprise must be

avoided.

121

Visibility of the workings of the agent and the intelligent application and its
rationale should be available upon request, as well as an overwrite function for the
applications or the agents within them (the overall off switch). Appropriate feedback

so that users can be aware of having the systems attention has to be considered.

6.9. Visibility, Reversibility of Actions, Error tolerance

Feedback should be provided for actions upon the physical environment that involve
the Aml application. Syntactic correctness of sequences of actions has to be
constantly and continuously checked in order to appropriately inform users, so as to
avoid errors before they are made. In the CollaborationBus example (Gross &
Marquant, 2007) feasibility checks automatically deactivate inadequate operations.
To be able to undo actions (reversibility of actions) is also very important in the case
of error: a requirement stemming from this is the ability to recover previous state.
Visibility, reversibility, and syntactic correctness of actions can also be dependent
on issues of context awareness and compatibility of platforms. In an Aml
environment many interoperating platforms may come into play, while the locus and
nature of both feedback and of stored actions is distributed. Some actions are upon
the (local or remote but linked) environment and cannot be undone (eg a sound that
has been played, or a heat that has been generated, cannot be “‘undone’). Therefore,
error prevention, tolerance and reversibility all pose interesting and serious system
design challenges (Bellotti, 2002) (Crutzen, 2006), (Mankoff et al, 2000), that are

only beginning to be addressed in current research.

122

6.10. Conclusions

This chapter has outlined issues regarding Human Computer Interaction with
Ubiquitous Computing environments. We note the work of Bellotti (Bellotti, 2002)
as an important outline of the HCI issues that can serve as design challenges for the

building of UbiComp systems and applications.

In ubiquitous environments there is a shift in the nature of interaction, with one or
more users interacting within an environment rather than a single computing device
with defined input and output. Ubiquitous computing environment will eventually
be used by groups of users, simultaneously, from the same or remote locations.
Interaction channels become multimodal and ubiquitous, since users now interact
with the world itself. Identification of interaction objects, avoiding unintended
actions or selections, handling more abstract functions, and the nature and location
of feedback are emergent Human Computer Interaction issues. Since ubiquitous
computing systems are facilitated by intelligent mechanisms there is the danger of
unexpected system behavior, and no visibility on the intelligent decisions that are
being made. Serious HCI challenges are those of visibility, error prevention,
syntactic correctness of actions, error tolerance and reversibility of actions in

ubiquitous computing environments.

Last but not least, in order to understand the nature of interaction in ubiquitous
computing environments, we need to divert from the models that are established in
classic HCI theory, evolve and adapt them (as (Bellotti 2002) did), or adopt new
interaction models that are more appropriate and applicable to these new, more
complex computing environments. Such new models are better founded in Activity
Theory, Distributed Cognition Theory, and Situated Cognition Theory, as reported
in (Dix et al, 2004).

123

7. End User Development in software:

basic concepts

7.1. Introduction

End User Programming (EUP) - or the broader term End User Development (EUD)
- describes the situation where users, who are not primarily software developers,
configure or program their devices or services in order to meet their own needs. This
chapter briefly describes the field of End User Programming, seen here in its more
general form, for software applications of various kinds, a subset of which is the
domain of ubiquitous computing applications. In the following section what is End
User Programming will be outlined and the profile of end users acting as developers
will be described. The main challenges (semantic and syntactic) of programming for

end users will be explained as well as some programming paradigms.

A concise summary of the field, albeit with a primary focus on Awareness Systems,

is provided by P. Markopoulos in ASTRA deliverable D4 (pp.5-14) (available from

124

ASTRA project website). Reference book for the field is “End User Development”
edited by Lieberman, Paterno, and Wulf, (Springer, 2006).

7.2. How is End User Programming defined?

End User Development is defined as “the broader set of activities, techniques,
methods, and tools that allow people (users of software systems), who are acting as
non-professional software developers, at some point to create, modify or extend a
software artifact” (Lieberman et al, 2006) (EUD network website) and (Costabile,
2002). The purpose of this activity is to get the devices to do what people wish them
to do.

This is not the standard model of software development, where professional
programmers or developers create these applications on behalf of business clients,
who then package the ready-to-use applications and retail them to their end users. It
is nevertheless a model that is becoming increasingly popular, from the creation of a
simple webpage (that can be exported by a word editor for example, without any
knowledge of programming skills) to blogging, tweeting, configuration of private
web pages in social networking sites, to the configuring of wikis. To some extent,
programming is been made possible to an increasing number of ordinary people.
Application configuration is available to everybody, and the resulting applications

are more tailored to everyone’s own needs.

End User Development is a term gaining popularity in recent years, preferred to the
term End User Programming as it signifies better the broader scope of activities.
What were previously the concerns of software developers now are handled by
consumers who are non-software-developers. End User Programming issues range
from the design of the application, to creating the code for it, installing it, testing and

debugging it, updating and optimizing it. Examples that aim to make programming

125

easier, such as the filling of forms (often web-based), or using graphical notations,

are exemplary manifestations of End User Development.

7.3. From adaptation to new functionality

The End User Development definition is broad, as it includes all forms of adaptation
and personalization of a software application. Different levels of manipulation of
applications are inherent in this definition. Nevertheless, the core of End User
Development is considered (according to the EUD-net report) to be i) change of
application/interface behaviors, and ii) creation of new functional behaviors.

Associated activities include installation, trouble shooting, debugging, and updating.

End User Customization, meaning the configuration of settings (by selecting
options) in order to customize an application, is considered as one end of the
spectrum of End User Development. End User Customization includes, for example,
actions such as setting a background image in one’s mobile phone or desktop for

example, or setting up style settings on a word processor.

Between these two poles of end user customization and end user programming, there
is a range of activities from setting up a mobile phone or a set top box, to one’s
email, to an Excel project sheet, up to developing one’s own webpage; such

examples are more typical representations of end user programming.

Within the context of End User Development, in the specific domain of Ubiquitous
computing applications, the term ‘End User Design’ is introduced in this thesis as
complementary to ‘End User Programming’. The term primarily signifies the
descriptive design process of conceptualization rather than the more structured
process of programming. It relates to describing scenarios (in text based or visual

form) and experience details, with the user acting from the perspective of an

126

experience designer rather than the software design process and problem solving

implied by the mind-frame of a system engineer.

So, by use of the term ‘End User Design’ we refer to the easier and more frequently
used parts of End User Development (such as customization), the more abstract
descriptions (such as scenarios or narrations) created by end users to describe
applications, and some extra manipulation functions upon artifacts. At the other end
of the spectrum is the development of an application in a programming language by
an enthusiastic amateur programmer. End User Development tasks and approaches
in this research are thus seen as being twofold, End User Programming and End
User Design. The latter will be described in more detail in further chapters (see

chapter 9, chapter 14).

7.4. The profile of End Users — Developers

End users acting as developers can range from enthusiastic amateur programmers to
professionals who are not computer scientists or programmers (who may act in their
professional capacity, as teachers, designers, doctors, etc.), or consumers — not

acting in their capacity as professionals, but as individuals. (Lieberman et al, 2006,

pp7).

With the intergration of computing technology into artifacts of everyday personal
use and the penetration of internet technologies and Semantic Web, the wider public
is becoming increasingly accustomed to computing and fluent in the use of
computing technology. More and more people engage with activities that were
considered to be programming a few years ago. The range of End User Development
skills are gradually shifting, from the simple configuration of forms to more

complex configurations.

127

End User Development activities are defined by moving boundaries and so are end-
users, whose constantly shifting skills and profiles cannot be readily defined. It is
not assumed that programming is a regular activity for people engaging in end user
development. End users acting as developers may not have any formal training in
programming concepts or methods and may not think in programming terms for
problem solving activities. Environments supporting End User Development should
therefore aim to minimize the memory strain required to remember concepts and
structures. End User Development should strive to make it easy for its users to get
accustomed to the programming environment and principles involved, with an easy

and low threshold introduction.

7.5. Visions and contradictions

An application that can be considered an end user development application is in the
shifting zone of skill development; it pushes the boundaries of what programming
tasks are given to end users, which were previously in the domain of professional
software developers. End user programming follows the development of computing,
starting from the single computer access point, and gradually progressing to the

ubiquitous computing environment augmented by sensors and computer networks.

Traditional interaction design principles suggest making invisible to the end users
the internal workings of the system. The so called “black box” approach is about
providing only the required input and output, in the right proportion, without
unnecessary cluttering or confusing user interaction with the details of the internal
workings of the system. End user programming, on the other hand, suggests that
some developer tasks should be handed to end users; the motivation being that the
details of the wishes of each user cannot be known to system developers in advance,
nor all the context of use. The danger in this is that too many functions and extra

features are packed into systems interfaces, resulting in complexity and clutter that

128

can be overwhelming for end users, even where they do wish to engage in redesign

of the system.

Managing complexity is a key issue in End user development. Allowing cascading
views of the internal working of the system (perhaps supported by multiple views)
can help towards decreasing complexity. The vastly increased functionality made
available to end users can be handled by gradually revealing to the users the
functions, when and as they need them while they become more accustomed to
using the system. According to Nardi (Nardi, 1993), end user programming is an
attitude to attempt to simplify things, allow reuse and automation through certain

mechanisms within a system.

The domain of Ambient Intelligence (Aml) (Aarts and Marzano, 2001) that has
emerged over the last decade is an area where end user programming might be valid;
the vast number of applications and services as well as context (social or
technological) cannot be known in advance. The solution of giving to users the
possibility to adapt the functionality of ubiquitous computing environments is
emerging as a possible approach to bridge the gap between developers of the

ubiquitous environment and it’s inhabitants.

The end user development paradigm in the domain of Ambient Intelligent
environments contrasts to the Aml vision advocating cognitive disappearance of the
computer which was presented by Weiser (1991) and the subsequent AMI visions
endorsed by EU IST programmes (DC, ISTAG report). The case here is that end
users are actively engaging with Aml technology, and shaping it, in ways that
cannot be foreseen a priori by developers (Mavrommati et al, 2004). The two
paradigms need to co-exist, focusing on managing different levels of complexity,

according to the activities supported.

129

7.6. Challenges: semantics, syntax, visual paradigms

End user development requires the creation of domain specific abstractions at a
semantic level (Nardi 1993 p.27-42). Nardi argues that people are capable of
learning and using formal languages and systems when these are relevant to their
tasks (eg music scores, gaming notations, etc.). Presentation end user development
concepts to users can be done in many various ways at a syntactic and lexical level,
imposing many design challenges (i.e. design choices can range from visual

manipulation to textual syntax).

Nardi (Nardi 1993) argues that task specific languages have to provide primitives
that are high level (that is, they are not composed from many low level statements),
task specific (allowing application of domain knowledge, and users execute directly
the tasks they want), familiar and accessible (so that learning non-task-specific

concepts is reduced), and have simple and useful controls.

In the case of EUD for Ubicomp, semantics can be provided by the use of the
Connectivities-Links model (Plug-Synapse) - which will be described in further
chapters. This has to be linked with platforms that support it, exchanging
information between artifacts and user-control-related devices. At a syntactic level,
interfaces need to be developed for EUD in Ubiquitous computing environments, to
support users in the visualization, customization, and creation of new applications.
Interfaces can be graphical, natural, programming by example, agent based, or
mixed, but should avoid the difficulties that the conventional programming

languages pose.

An overview of generic guidelines for designing a programming language aimed at
end users is presented by (Reppening and loannidou, 2006). These guidelines are
less applicable to the context of use of Ubiquitous computing nevertheless they

provide useful considerations.

130

Apart from guidelines, there are several visual paradigms that can be used in end
user development interfaces. In form based systems, for example, a rich set of
functionalities is offered through a preset of pull down choices, checkboxes, and text
fields in a form. End users can easily specify the parameters of the system, without
having to understand or use programming language syntax. Forms are characteristic
in many website configurations, (eg e-government, social networks, etc.). Although
the range of applications that can be constructed with forms can be limited, they are
easy to learn and can be used effectively even by novice users. Moreover they
provide a guided structure that the users can easily comprehend, move through and
make corrections to. For web services in particular they are a credible and

standardized solution, which most users are accustomed to.

Visual language challenges of End User Programming

The suitability of a visual language depends on the mapping of the representations to
the concepts related to the domain. It is often claimed that visual languages are
more easy to use for programming. For example (Fernando et al, 2006) used a 3D
graphical interface for the manipulation of audio connectivity between users of a
virtual environment. Nevertheless, more abstract concepts can be better represented

with textual representations (Green and Petre, 1992).

The appropriateness of different interfaces, textual or visual or combinations, needs
to be explored for the domain of ubiquitous computing, in order to achieve a
balanced representation of concepts of that specific domain. Mixed or swapping

views on an interface can be a visually useful for handling multiple representations.

Programming language and syntax challenges for non-professionals:

Programming by end users poses several syntactic and lexical challenges, such as

the following:

e Booleans: Difficulty in the use of Boolean expressions (AND, OR, NOT) as
has been reported by (Greene et al, 1990). This partly owes to the fact that

131

these expressions, when spoken, are colloquially used to mean the opposite
to their programming meaning. In particular the use of NOT is often unclear
to non-programmers (Markopoulos in (ASTRA D4, 2009a)).

e Using formal Syntax is difficult for end users. As a guideline, minimizing
syntax, and try to make syntax errors hard or impossible, is suggested by
(Reppening and Ioannidou, 2006).

e Control structures (i.e. conditionals, loops, etc.) are difficult for end users
acting as programmers to understand and use, and they require certain
background knowledge and training. One suggestion is to closer match
control structures with mental models of iteration by the users (Markopoulos
in (ASTRA D4, 2009a).

e Object oriented programming, object’s attributes, relations and abstractions,
are difficult to comprehend and be used by end users who are non-

programmers (Detienne, 1990a), (Detienne, 1990b).

It has to be noted that, with the introduction of programming skills in the school
education curriculum, in the future we may witness greater affinity of younger users
in particular with some of the syntax of programming languages. End user
development skills are constantly evolving, with end user development being a
shifting area that cannot be defined as a confined skill zone. In the specific case of
End User Development for Ubiquitous computing, that is itself a developing field,
the future profile of end user programmers has to be taken into consideration. It is
assumed that Ubiquitous computing will become mainstream technology in a decade
or more. The skills of the majority of end users will be different than it is now, as it
benefiting hugely from their affinity with computing both outside and as part of their

formal schooling.

Case based programming

Problem solving is seen as a process whereby a new, unseen problem is matched
against the accumulated knowledge in the cases captured in past experiences. In

Case based reasoning (Kaneko and Onisawa, 2005) users have little knowledge of

132

software programming skills, while they can instead interact through linguistic
expressions with the system. Programming in this case involved converting the ideas
as expressed by users into machine language. Gu (Gu2005) has experimented on
Case Based Reasoning based on conversations, in a system that assists users by
having a visual dataflow programming environment for image processing, in order

to retrieve certain modules of image processing functionality.

Case Based Reasoning can be considered a midway solution between programming
by example and other direct manipulation paradigms of end user programming. A
pre-constructed case can match the problem, thus providing an initial solution
(program). An additional benefit is that the cases can be shared between users in a
repository or expert system. The program can then be further adapted to users, by

use of agents or by being deliberately manipulated through user interaction.

7.7. Conclusions

The domain of ubiquitous computing, a relatively new field, is not sufficiently
investigated with regards to appropriate end user development paradigms. This area
is considered a promising ground for end user development (ASTRA project
website). In this domain, two contradictory approaches, that of the ‘black box
approach’, prominent in the vision of Ambient intelligence (the computer working
as an enabler to the background while disappearing from the foreground of people’s
attention) and that of End User Development, (where users can understand and
manipulate the manipulate their environment and shape unforeseen applications in
Aml), need to co-exist. Managing the levels of complexity, and gradually revealing

the system’s functions, are key elements to bridge this gap.

The principles of Human Computer Interaction, arguing for a good conceptual
model and appropriate feedback are valid in the case of all interfaces, including
EUD. The strength of the interfaces themselves, is only loosely coupled with the
quality of their manifestation; the strength of the Graphical User Interface, as

Norman points out (Norman, 2010), has more to do with ease of remembering

133

actions, what actions are possible and how to invoke them. Visibility is a generic
principle of Human Computer interaction, which needs to be taken in consideration

in EUD for Ubiquitous computing environments.

Application development in the case of Ubiquitous computing needs to explore the
use of a small set of primitives, the suitability of different, possibly combined forms
of programming, and possibly combine different notations. Form based systems can
be introduced as an easy way for starting with programming of Ubiquitous
Computing applications, having obvious benefits (since they provide an interaction
style most are already familiar with). Forms also have significant benefits regarding

transporting implementation between different platforms.

Programming-by-example techniques are a field that can be further explored, yet
they are not a satisfactory solution to the issues that non-programmers are
challenged with. Such techniques do not cover the spectrum of applications possible
within a configurable ubiquitous computing environment, while user problems may

occur from low visibility of what the system does.

Last, but not least, Ubiquitous computing research will take time to mature. In the
meanwhile the profile of end user developers is shifting; people’s skills, knowledge
and affinity with technology and with end user development are evolving. The range
and depth of skills typically available to end users acting as developers at the time

Ubiquitous systems reach the market cannot be fully foreseen at the moment.

134

8. End User Development in Ambient

Computing Environments

Parts of the contents of this chapter have been published in the journal article:
eMinds: International Journal on Human-Computer Interaction (ISSN: 1697-9613),
Vol.1, Issue 3, Dec. 2007. Article with tile: End User Development in Aml: a user

centered design overview of issues and concepts. Mavrommati I, Darzentas J.

8.1. Introduction

Continuing from the previous chapter, where end user development for software was
outlined, this chapter gives a summary of concepts, paradigms and mechanisms that
are applicable for End User Development in the specific context of the Ubiquitous
Computing Environment. Automatic interface generation, programming by example,
and abstractions and metaphors, are the elements that are seen as methods applicable

for Ubiquitous Computing.

135

8.2. Rationale: why EUD for AMI applications

In an Ambient Intelligence Environment the application and the interface tend to
merge into one entity, as it is the augmented artifacts/spaces that are the access
points to applications, but may also carry the application functions. As ubiquitous
computing develops, prototyping tools for ubiquitous computing applications will be
in demand, for developers, but also for end users. Such tools will initially be aimed
to application designers so that they can participate in the development of
applications that currently require a high-level of technical expertise (Li & Landay,
2005), (Mavrommati et al, 2004). End User Tools can also be appropriated to
facilitate users reasoning, as well as manipulating the behavior of the Aml
environment, so that they can supervise and eventually create or modify Aml
applications to fit their own idiosyncratic wishes and needs. Emergent functionality
in Aml can be the result of niche implementations, previously unforeseen, created
by end users themselves (Drossos, 2007), (Mavrommati, 2004), (Mavrommati and
Darzentas 2007). This new generation of prototyping tools can help shape the future
of ubiquitous computing and eventually accelerate the development of next

generation ubiquitous applications.

End User tools aimed at inhabitants of Aml environments stem from the perspective
that it does not seem possible in ubiquitous computing environments to cater for all
the potential needs of all categories of users (Mavrommati et al, 2004). (Rodden and
Benford, 2003), (Mugellini 2007) suggest that it seems much more reasonable to
enable people to cater for some of these needs themselves, and empower them - via
provision of appropriate tools - to create ubiquitous applications that fit their own
idiosyncratic needs. End User tools can also act as a selectively-transparent
observation window into the Aml system, helping users to reason about the
workings of the Aml environment. The development of such tools has to face not

only the technological issues that Ubiquitous computing poses but also the

136

challenges that will occur due to the shifts in Human Computer Interaction inherent

in the specific nature of interaction within Aml environments.

8.3. Ambient Intelligence Vision and End Users

The highlight of the Ami vision is that computers will be everywhere, in objects of
various sizes, from keys to cars to buildings. These computers will be invisibly
integrated into everyday life and will be supporting people in their diverse activities.

The main components of this vision are (SWAMI, 2007):

Reliable robust hardware in varied sizes and with long lasting power supplies

(possibly self-managing or energy harvesting).

e VWireless and wired communications between computers, with various

collaborating networks.

o Intuitive interfaces around the environment that are accessed by everybody (eg

multimodal interfaces, various sensors, biometrics).

e Embedded intelligence unobtrusively reasoning about people’s actions so as to
provide them with services when needed or assist in controlling interfaces. From
the system’s perspective, intelligent automation can manage communications

and maintenance (eg self-repairing).

Stemming directly from the Ambient Intelligence vision, the idea of seamless
interoperation and homogeneity is the basis of an idealistic, clean and orderly
UbiComp world. This turns out to be a false assumption (Bell and Dourish, 2007) as
currently the UbiComp world turns out to be a pretty messy one, even in laboratory

situations.

137

The idealistic UbiComp vision implies less direct and less conscious user input than
the current systems. As Crutzen states (Crutzen 2006): “Physical invisibility or
perceptual invisibility mean that one cannot sense the Aml devices anymore; one
cannot sense their presence nor sense their full (inter-)action, but only that part of
interaction output that was intended to change the environment of the individual

user”.

The position proposed to resolve the contradiction between perceptual invisibility
and the need to assist inhabitants in dealing with the messiness of the UbiComp
world, is that the technology should reveal the system in order to motivate users to
relate the possibilities of the technology to their actual needs, dreams and wishes
(Crutzen 2006). As (Petersen, 2004) states “...domestic technologies should be

remarkable rather than unremarkable”.

8.4. Approaches for accessing Ubiquity

There are two approaches regarding the visibility of AMI systems to end users. They

can be seen not necessarily as opposite but rather as complementary:

1. People should not care about what's going on inside computers. Interaction
within AmlI should be seamless. This is generally based on the assumption
that the Aml systems will be robust enough and error free, and intelligent
agents will be based on the appropriate data and make appropriate judgments
to appropriate actions.

2. People should be given a degree of transparency into the workings of the
system. Transparency could be varied, according to the user and the context
of use. (Markopoulos et al, 2004) A recombinant constructivist approach is
often proposed, aimed at end users (Newman, 2002), (Rodden, 2004),
(Mavrommati et al, 2004), (Merrill, 2007). These recombinant models are

promoted with the claim that emerging niche applications can be achieved as

138

a result of people’s inherent creativity and understanding of the application’s
building clocks. From being able to see and handle applications comes the
building of trust and adoption of Aml systems. One can reason and self-

assist with system failures, servicing, or safeguarding privacy.

It is obvious from the above that the human factor is a crucial element in the
construction of an ‘ambient intelligence’ world and needs to be taken into account
early in the research and development process of Aml systems. The success of
ambient intelligence will depend on how individuals perceive Aml environments,
how secure the Aml world is made, and how their individual rights (including
privacy) are protected. If people get to trust the system and the intelligent decisions
made in the background they should be willing to adopt AmlI and appropriate it - via
suitable interfaces. Tools for End Users providing transparency and reasoning into

the workings of AmI may well provide one of the means towards that goal.

8.5. Applications and Interface Paradigms of EUD
approaches in Aml

A number of existing infrastructures — such as Jini, UPnP, and others- address the
configuration of Ubiquitous environments and applications. Nevertheless they are
addressed to the developer rather than the ordinary person living in a ubiquitous
environment. Development Environments for experts include the iQL programming
model (Cohen 2002), a non-procedural language for specifying the behavior of
components in pervasive environments, and Papier-Mache (Klemmens, 2004) that

provides tools for programming tangible user interfaces.

Since 2002 there has been a growing number of efforts towards the creation of Tools
facilitating End User Development of Ubiquitous applications (Newman, 2002),
(Rodden, 2003), (Mavrommati et al, 2004), (Drossos et al 2007), (Gross et al 2007).

The example of CollaborationBus (Gross et al, 2007) uses the concepts of a Pipeline

139

and collaboration sharing. Memodules and Accord projects (Mugellini, 2007).
(Rodden et al, 2004), (Rodden et al, 2007), (Accord project website) propose a
visual editor based on the puzzle metaphor. Many of these approaches (Mavrommati
2004), (Rodden and Benford 2003), (Newman 2002), create an intermediate
component model allowing for the recombination of Aml elements, but also
interfacing to the user with appropriate constructs. The Phidgets toolkit (Greenberg,
2001) facilitates the development of physical user interfaces by providing a range of
sensor and actuator elements. iCAP (Sohn & Dey, 2003) allows users to rapidly
prototype Ubiquitous Computing environments. ACAPpella (Dey, Hamid et al,
CHI2004) supports context aware programming by example. An interface for
creating sensor-based environments and configuring tables is provided by eBlocks
(Cotterell, 2005). Similarly, e-Gadgets (Mavrommati et al, 2004) provides an editing
tool for creating device associations in a home environment — the difference to most
other approaches is that it is aimed specifically at the end users. The jigsaw
(Rodden, 2007) is an editor for getting control over the technological home
environment through assembling pieces of a jigsaw puzzle. Some systems that are
based on mobile devices to control configurations are systems for PDAs and
TabletPCs (Humble, 2003) while other approaches (Mavrommati et al, 2004),
(Drossos et al, 2007a), (Drossos et al, 2007b) try to be device independent by

separating the interface layer from the function mechanisms.

8.6. Broad perspective on Aml development tools

We can consider as overall broad categorization of tools that facilitate the

development of Aml applications the following:

e Mental models (and interfaces supporting them)
e Ontologies

e Application/Software mechanisms

140

Mental Models

People are an intrinsic part of a Disappearing Computer environment as it is their
actions and behavior as well as their needs that define the environment. The human
element can be catalytic for the whole system: one of the things that can create
‘emerging’ and previously unforeseen functionality is the inherent human creativity
and the human capability for problem solving and expression. That, however, relies
on people’s adoption of ubiquitous computing, and in turn the technology’s
understandability and openness for adaptation. Mental models can be considered
End User tools, since they facilitate end users gainging an understanding of the
workings of the Aml system, so that they can reason about the Aml applications.
Such models need to be suitable to act both as high level technology models as well

as people’s conceptual models.

One such example is the adoption and appropriate adaptation of component models
that allows for the recombination of functions (Drossos et al, 2007a), (Drossos et al,
2007b), (Newman et al, 2002). To enable the recombination of elements into new
functions, the basic concepts and elements of a component model need to designed
in a way that they are capable of being easily communicated to people, so that there
is a degree of transparency into the — otherwise invisible - workings of a ubiquitous
environment. This can be done by an appropriately designed conceptual model —
that embodies the basic technology concepts which allow for inter-associations of
artifacts (Mavrommati et al, 2004). An example of a high level programming model
that provides a conceptual abstraction allowing end users to describe Ubiquitous

scenarios is described in (Drossos et al, 2007b).

In fact, such model acts as a high level interface for the user within a ubiquitous
computing environment; it acts as a communication layer which people can
understand, and by having access to it they can manipulate the (otherwise)
‘disappearing computers’ within their environment. The creation of such models as
interfaces, for the broader interaction with ubiquitous computing environments,

often proceeds in parallel with the creation of middleware, that acts as a bridge

141

between core technology layers (such as protocols, communication etc), devices, and

people.

To support such mental models, the glimpse into the ubiquitous system is often
decoded in metaphors. Metaphors stem from already existing (non-ubiquitous)
widely recognizable paradigms that imply interconnectivity. Examples that imply
interconnectivity can be appropriate familiar terms - like the verbal term ‘Plugs’
used in (Drossos et al, 2007), or familiar images, as for example a ‘Puzzle’
(Mugellini, 2007), (Rodden, 2003), (Humble, 2003) - which can be used in the

context of Ubiquitous Computing.

Ontologies

An ontology can provide a common basis for communication and collaboration
between heterogeneous artifacts and Aml environments. The ontology describes the
basic conceptual terms, the semantics of these terms, and defines the relationships
among them. It is therefore fundamental for the creation of ubiquitous applications,
and can be considered a tool, in the broad sense of the term; see: (Christopoulou and

Garofalakis, 2010), (Christopoulou et al, 2005), (Goumopoulos and Kameas, 2009).

Application/Software mechanisms

What is generally understood by the term ‘Editing tools’ is application mechanisms
that support the establishment and management of applications. With a range of
external devices, the ‘Editors’, people can supervise available sources (artifacts,
services, etc) and create associations between them, thus making Aml applications.
These mechanisms’ core structure can be independent of particular modalities
(Mavrommati, 2004) so that various point-application editors can be implemented

with a variety of multimodal interfaces, and in a variety of devices.

8.7.

142

Mechanisms and resources for EUD in AMI

There are three basic questions that we can ask regarding the software mechanisms

for End User Tools for creating Aml applications:

What resources are available as from the environment to the Tools?
What should the Tools do upon the environment?

Which elements that may come into play can be considered for these Tools?

Available as resources from the environment to the Tools are (Olsen, 2005):

Multiple sensor approach

Ambiguity of input

Diversity and distribution of computing platforms
Diversity of contexts of use

Diversity of users

Amount of Data

Interactions available in the environment

The handling of these resources can lead to a number of challenges, the most

prominent of which is context awareness. Such resources can also provide the input

needed for the concept of computing ahead the next likely editing stages, so that

guidance in editing actions is provided by the software tools.

Context-aware applications are one of the most important forms of next generation

interactive systems. As ubiquitous computing develops, prototyping tools for

context-aware applications will be in demand. Such tools can also help produce

more usable context-aware applications in an efficient way (Yang Li, 2005). Context

awareness therefore has to be used by editing tools, as it has to be specified or

configured, so that it can then be used as an element of the Aml applications that are

being created.

143

Decision making is a related aspect according to which the developer or advanced
user may want to dynamically define or change the rules determining an individual
artifact or even an application’s behavior, in a high level manner. Dynamically
defining the parameters for an application is another aspect that can be defined or
altered using tools aimed at developers. As (Drossos, 2007b) reports, a tool
providing a GUI for creating or changing rules can also provide the advantage that
rules can be dynamically altered in a high level manner without disturbing the

operation of the rest of the system.

Assuming substantially more computing power in the application context of
distributed, multimodal sensing and recognition techniques we might want to
consider constantly “computing ahead” — modeling the user’s actions and pre-
computing the results along perhaps the five most likely next inputs - as Scott
Hudson states in (Hudson, 2005). This can be used to provide new kinds of feedback
as well as shortcuts for the user, but can also enable proactive pre-fetching from
other media. According to Hudson, related to the concept of “computing ahead” is
the notion that we should move from the idea of a single state of a system or object
of interest to maintaining multiple alternative states simultaneously. This will be
useful both in interesting new interaction techniques which allow ‘what if’
explorations to happen naturally (SWAMI report) and as basic support for dealing
with ambiguity and asynchrony. Several challenges may arise from this proposed
approach that can lead to sophisticated models of probability - which in turn could
be based on machine learning approaches for adaptation to users and tasks, and
models of ambiguity of inputs - so that it is made easier to deal with (Mankhoff,

2000).

Collaborative sharing of applications can provide the supporting means for
community participation, for adopting, encouraging and supporting the creation of
Aml applications. In the CollaborationBus example (Gross et al, 2007), three types
of sharing of compositions are possible: event sharing allows users to either share

events from their own sensors or processed event data from their filters; actuator

144

sharing allows users to share the control of a personal actuator with other users, so
that other users can send commands and control the system behavior; pipeline
sharing allows sharing of complete compositions with others. Efforts towards
sharing of pervasive awareness applications by communities of end users are also

pursued in the ASTRA project, see (Astra D4, 2009b).

Clearly, not all people will be inclined or able to create or even configure an Aml
application. Enthusiasts and motivated individuals should take the lead in addressing
niche needs ‘bottom up’. More diversity and business opportunities can rise in the

long term from such a shift in perspective.

8.8. Various Concepts for Tools Interfaces

Elements that can be considered for the interfaces of Aml editing tools are:

e Automatic interface generation
e Programming by example techniques
e High level abstractions

e Metaphors

Several concepts are described in the report of the Future of User Interface Design
Tools workshop (Olson, 2005) at CHI2005, which, although more generally aimed,

can provide food for thought in the area of End User Development for Aml.

8.9. Automatic interface generation

Automatic interface generation requires specific information about the user and the
current situation to be incorporated into the design of the user interface. A user

interface could be displayed on whatever device the user has available. Another

145

possibility is that the interface could use familiar elements that the user has
encountered recently, and personalize according to the user’s profile. Model-based
systems attempt to formally describe the tasks, data, and users that an application
will have, and then use these formal models to guide the generation of the user

interface (Nichols, 2005).

Systems can use this input to automatically design the user interface, or to design
assistance to people. When a user requests an interface to control an appliance, the
user’s device downloads a functional model from the appliance and uses that model
to automatically generate an interface. Although there have been successful
developments in limited domains (i.e. remote controls), it is noted that model-based
user interface tools have not become common (Nichols, 2005). Nevertheless,
assuming a manageable scope of foreseen interfaces for tools, we should note that
those model-based techniques may hold potential for the interface instantiations of

Aml tools.

8.10. Programming by example

The ‘programming by example’ techniques and intelligent agents can help users
with routine complex tasks. ‘Programming by example’ is a demonstration approach
that requires an initial time for extended observation of relevant sensor values. In the
latter learning phase, the users specify relevant sensor events so that appropriate
artificial intelligence algorithms can detect patterns in the observed sensor values
and automatically execute desired actuators (Dey, 2004). ‘Programming by
example’ tools hide most specific details of the underlying mechanisms from the
users but this reduces the barrier for nontechnical users to configure ubiquitous
computing environments. Camera-based technology can be considered as providing
visible and accessible sensors within the Aml environment. Camera-based
technology has been introduced to the home due to recent commercial developments

- such as Microsoft’s Kinect sensor, a depth camera combined with spatial audio

146

input to do voice/face recognition and motion capture, originally developed for
Microsoft’s X-Box360 game platform (see KINECT website). Although at the
moment the use of such technology in the home pertains to gaming purposes (having
the limitation of a restricted viewing angle), we can expect that such developments
will make it easier to observe gestures and actions upon an Aml environment, get
people more accustomed to camera sensors, and make programming by example
more prominent. On the other hand there are issues regarding reasoning about the
behavior of the intelligent environment with users requesting more visibility into

which decisions were made and why.

Programming by example techniques cannot remedy all cases of application
configuration. There are situations where there cannot be a task example performed -
because the application splits between different locations, different time periods or
in situations that cannot be replicated (for example, where the application pertains to
many people present, to a certain combination of outside humidity and temperature,
or a specific point in time, where, in fact, the application creator does not actually
need to require the availability of the above in order to configure an application).
Although programming by example provides, at a syntactic level, ease of use for end
user programming of Aml applications in specific cases, it cannot be generalized as
an interaction form in broader aimed end user tools, as more abstract high level
semantic ways of description of applications are needed. Nevertheless, it can prove a
useful complement to the tools’ functions as one of the alternative syntactic methods

available.

The IST-FET project e-Gadgets explored the use of agents to programme the
behavior of an ambient intelligent environment (the ‘i-dorm’) and combined this
approach to an end user programming approach using Graphical User interfaces.
While there is a lot of appeal in the programing by demonstration approach, the
same problem was identified (Markopoulos et al 2003) as had been noted by Myers,
Ko and Burnett (Myers et al, 2006): users need a way to observe what the agent has

learned and reason about the agent’s actions.

147

People need to control the learning of the agent, as well as to be notified when the
system learns. This implies that a combination of two contradictive approaches may
be applicable: allowing for seamless intelligent configurations (in a ‘black-box’
approach), while when aided by intelligent configurations being able to observe this
and allow for a level of transparency into the agent’s learning and reasoning, as well

as intervening and revealing the more detailed workings of the system on demand.

8.11. High level abstractions

In prototyping an Aml application, designers and end users need to explore the large
number of ubiquitous inputs and specify the contexts of use. A design tool can
facilitate this task by providing high level abstractions. In Topiary (Yang et al,
2005) a map abstraction was used to represent spatial relations of entities and thus
allowed designers to capture location contexts of interest by demonstrating
scenarios. In e-Gadgets on the other hand, a high level conceptual model was used to
explain the workings of the system to the users and enable them to make
connections. In this approach more complex artifact behavior can emerge from
interactions among more elementary artifacts. This approach, can scale both
‘upwards’ (towards the assembly of more complex objects, i.e. from objects to
rooms, up to buildings, cities and so on) and ‘downwards’ (towards the

decomposition of given gadgets into smaller parts) (Mavrommati, 2004).

A high-level mechanism to abstract context, that also allows the rapid construction
of ambient computing applications, is presented by (Jacquet et al, 2005); this is
complemented by a clear conceptual model for Aml. A well-defined vocabulary is
used in this model that tries to map the physical and virtual world to elementary
component objects which can be interconnected in order to create Aml applications.
The criticism is (Drossos et al, 2007b) that this architecture seems to limit the
representation of the real world, in all its richness and complexity, to sets of sensors;

that in turn restricts the model’s scope, as well as the autonomy of the components.

148

8.12. Metaphors

Metaphors are a commonly used way to facilitate the use of a tools based on
paradigms that are known and familiar to the user through his or her own (real
world) experience. Various forms of connectible puzzles are metaphors often used in
editor’s user interfaces. A fridge magnet metaphor is used in (Truong et al, 2004)
while a browser approach is used in the Speakeasy system (Newman, 2002) - where
components are connected using a visual editor based on file-system browsers.
Specify the application’s behavior by assembling metaphorical pieces of a jigsaw
puzzle is often used, (Humble, 2003) (Rodden, 2004), (Mugellini, 2007) as it is
immediately intuitive, offering a recognizable analogy for connecting services.
Sensors as well as devices are represented by puzzle piece-shaped icons that the user
‘snaps’ together to build an application. Nevertheless, this metaphor can restrict the
potential for development and richness of programming expression (Rodden 2004
p.74), (Drossos, 2007). The interactions are simplified to sequential execution of
actions and reactions which limits the potential to express many of the user’s ideas,
while the non-existence of emergent properties and the absence of rule based logic,
can result in very simplistic application behavior. Other representations are needed
to give users more control over their application than the metaphor of jigsaw pieces

allows.

The Pipeline metaphor is used by CollaborationBus (Gross,2007), using nested and
parallel pipelines allowing logical (AND, OR, NOT) conditions; in the pipeline
metaphor, sensors are the sources of any event in the pipeline, filters represent single

conditions, and actuators (software or hardware) are at the end side of the pipeline.

149

8.13. Conclusions and challenges

Editing tools are required to manage the ubiquity and understand the logic of the
Aml environments. Several of these tools are addressed more to the developer or the
advanced user rather than an everyday end-user. The purpose of these tools is to
configure certain aspects of the system’s behavior, and implement certain

applications within Aml environments.

Such tools need to allow for utilizing context awareness, but also provide adaptive
interfaces and propose alternative syntactic methods to cater for a variety of user
profiles. The consideration of modalities (augmented reality, gesture, or speech
interfaces for example), poses a number of challenges to the design of editing tools.
Robustness and adaptation to changes, like different environments and
infrastructure, being able to dynamically define the parameters of an application,
providing many perspectives for accessing services, are but a few of the challenges

posed.

Further challenges involve developing techniques for providing support for
debugging and testing the applications build, providing feed forward, as well as
feedback, and allowing for transparency into the workings of the system, as well as
the design and development of the system and its tools so as to prevent errors,
minimize them, tolerate them, and recover from them — all within the ubiquitous

computing infrastructure.

Tools aimed at end users need to be researched on their own merit, as they constitute
a very important part of the Ambient Intelligence vision. The research community
needs to work on defining a roadmap towards appropriate, efficient and effective
mechanisms for the Aml editing tools by end users as well as application designers

and developers.

150

9. A proposed model for the

recombination of artifacts

Parts of the content of this chapter were published in the journal article: Configuring
the e-gadgets. In: Communication of the ACM (CACM), special issue section on
The Disappearing Computer, vol. 48, issue 3 (2005): ACM, pp. 69. Kameas, A,

Mavrommati, I.

Parts of the content of this chapter have been published in the journal article: The
evolution of objects into Artifacts. In: Personal and Ubiquitous Computing. ACM,
Springer-Verlag London Ltd. ISSN: 1617-6909, Volume 7, Numbers 3-4. July 2003.
(pages: 176 — 181). By: Mavrommati I. and Kameas A.D.

151

9.1. Introduction

A model is presented in this chapter that augments physical object of everyday use
into Ubicomp artifacts and that includes in its conception people as a part of the
system. The proposed model bridges software architecture constructs and people’s
conceptual models of ubiquitous computing artifacts, by introducing the concept of

affordances to the Publish-Subscribe model.

A ‘black-box’ engineering approach - whereby people are not able to observe the
structure of the system- is not adopted in this research, but rather a transparent
approach which partially discloses the structure of the system. A model that can act
as a conceptual aid for people to understand the ubiquitous applications, and how to
manipulate them, is an important step towards transparency. In later end-user trials
the validity of a transparent approach for Ubiquitous computing engineering is
assessed. The same concepts and constructs are provided at a more detailed level to
the manufacturers and builders of the applications, and may also be used by
intelligent mechanisms to adapt them in a black-box type approach. The approach
also proposes Editor mechanisms towards the (re)configuration of Ubiquitous

Environments and applications.

9.2. Background summary

As was explained in previous chapters, people are an intrinsic part of a Disappearing
Computer environment, as it is their actions and behavior, their nature and their
needs, that define any living environment. The human element can be catalytic for
the whole system: one of things that can create ‘emerging’ and previously
unforeseen functionality is the inherent human creativity and the human capability
for problem solving and expression. This relies on people’s adoption of ubiquitous
computing technology, and in turn the technology’s understandability and openness

for adaptation. An interaction model for recombinant ubiquitous computing is

152

proposed, whereby people can get a conception of the workings of the system, and
augmented everyday objects can be manipulated by them and combined into

applications.

A number of information appliances and ‘smart’ products from the consumer
electronics and white goods industries are gradually being introduced into
consumers’ homes. Mundane objects of everyday use that are enhanced with
computing and communication capabilities are being developed experimentally
while some are appearing in the market already. Some examples of such processing
and communication enabled products are the Internet fridge, internet microwave
oven, UPnP hi-fi sets and DVD players, sensor enabled toys such as Furby,
Nabaztag and other pet or robotic toys, tagged coffee mugs, digital picture frames,
sensor/internet enabled furniture, to mention but some. It seems that our future
environments will consist of an increasing number of objects, furniture and
appliances that will be enhanced with Information Communication Capabilities,
which will be able to work synergistically with each other (Aarts, Marzano, 2003).
The future home is expected to become populated by distinct devices that are
interconnected via an invisible web of network based services (Aarts, Harwig, etc,
2001), (Harwig and Aarts, 2002). The research challenges relating to creating this
future home environment are not only technological (how do the objects and
appliances share common standards, how they communicate robustly with each
other). Equally important are the challenges that relate to acceptance of this new
metaphor by people and the resulting human behavior (how do people develop an
affinity with these environments; how will the mental models of their environments
be re-shaped; what are the skills they will develop to cope with behavioral

dependencies between objects that are not always visible) (Mavrommati, 2003b).

Several research projects are currently under way aiming to develop the necessary
hardware and software modules that will enable devices to communicate and
collaborate (Disappearing Computer site), (Humble et al 20003), (Newman et al,

2002); thus we can safely assume that future in-home devices will be functionally

153

autonomous but able to synergize with each other (Figure 22), regardless of the

differences in their shape and functionality (Mavrommati, 2003b).

Figure 22: Different artifacts can communicate and synergize with each other

9.3. Assumptions

In order to achieve the aim to facilitating human innovation in a ubiquitous
computing environment the definition and adoption of appropriate models is
necessary. Such models need to be suitable to act both as high level technology

models as well people’s conceptual models for the ubicomp system.

One example is the adoption and appropriate adaptation of component models,
which allows for the recombination of functions. To enable the recombination of
elements into new functions, the basic concepts and elements of the component
model needs to be designed in such a way that they are capable to being easily
communicated to people, so that there is a degree of transparency into the (otherwise
invisible) workings of a ubiquitous environment. This can be done by an
appropriately designed model, which carries along the basic technology concepts
that allow for inter-associations of artifacts, as well as supporting mechanisms and

terms to carry out this manipulation.

154

In fact, such a model acts as a high level interface for the user within a ubiquitous
computing environment; it acts as a communication layer, which people can
understand, and by having access to it they can manipulate the ‘disappearing
computers’ within their environment. The creation of such interfaces, for broader
interaction with ubiquitous computing environments, goes hand in hand with the
creation of middleware, which acts as a bridge between core technology layers (such
as protocols, communication etc), devices and people. To develop such middleware,
human centered notions as well as technology requirements have to be equally
considered from the very start of defining the system’s concepts. (Mavrommati and

Kameas, 2002).

To support such models, metaphors may be used that stem from already existing
(non-ubiquitous) widely recognizable paradigms which imply interconnectivity.
Examples implying interconnectivity can be the appropriate terms used, such as the
verbal term ‘Plugs’ (Kameas et al, 2003) (Kameas and Mavrommati, 2005),
(Mavrommati et al, 2004) or familiar visual metaphors - such as a ‘Puzzle’ (Rodden
et al, 2004), (Accord Project website) - which are used in the context of Ubiquitous
Computing. Interconnectivity is not the only thing in question; what is to be
interconnected is equally important. The nature of services, capabilities, sensor data,
state of the service or application have to be specified, -with people’s understanding
in mind, into the technological constructs, in order be able to clearly communicate to
people. In this research case, focus was on physical objects that have computing and
communicating capabilities not readily perceptible in an ordinary living
environment, and specific consideration was given to the specifics of the nature and
perceived usage of these artifacts. The selection of physical everyday objects, in
turn, adds some new elements to existing ubiquitous computing research (as it is the
‘information appliances’ that are more readily associated with Ubiquitous
computing since the concept’s introduction by Mark Weiser, and later, the ‘Invisible
Computer’ by Don Norman). People use objects (such as surfaces, tables, floors,
lights, cups) in other ways than they handle services or information appliances (such

as TV, printer, computers, stereo sets). Moreover the interface characteristics of

155

ordinary artifacts are different to those of information appliances; the variety in their
nature of use, shapes and sizes, their affordances (implied by their design
characteristics), their potential for different uses (stemming from their physical
shapes, and history) and their interfacing capabilities (often objects are not suited/do
not have visual feedback or screen capabilities to assist with interfacing with them,
as most information appliances have) (Mavrommati and Kameas 2003b). Adopting a
different focus, on augmented ordinary physical objects, adds to existing Ubicomp

research which has a predominant focus on information appliances.

It has to be noted at this point that a human environment populated by augmented
objects poses HCI with several open questions: issues of acceptability, visibility,
reversibility of actions, syntactic correction of actions, intelligence, trust, safety, to
mention some, and last but not least the definition of appropriate HCI theoretical
frameworks for understanding and exploring Ambient Intelligent Environments
(such as (Bellotti 2002), (Scholtz and Consolvo (2004)). These issues have to be
noted as important elements for different research paths in the area of augmenting

human environments and objects.

9.4. Methods proposed

Ubiquitous computing systems are characterized by distributed resources (in the
form of physical artifacts). Recombination of artifacts’ services / capabilities is
considered an appropriate approach that suits the nature of ubiquitous computing
environments (Edwards et al 2002), (Newman et al 2002), (Kameas et al, 2003).
One method of achieving this is the definition of an architectural style (middleware)
that supports the underlying technology as well as human centered notions (Kameas
et al, 2003), (Kameas and Mavrommati, 2005), (Drossos, Mavrommati, Kameas,

2007b) in order to combine the capabilities of artifacts.

156

An architectural style can be characterized as a conceptual and technological
framework for describing and manipulating ubiquitous computing applications
(Figure 16). An Architectural style typically consists of: a vocabulary and layers of
semantic associations between terms, sets of configuration rules, and a technical
infrastructure to support it. Moreover, a style can use terms and concepts that serve
as a common referent between Ubiquitous computing systems, designers, and people
(Figure 17). In order for the architectural style to be enabling to people, it needs to
be supported by tools that are part of the system. Syntactic and interpretation
mechanisms, editing mechanisms, methodologies for artifact creation all have to be
intertwined and integrated into the middleware, as well as into the adopted model

that enables human understanding of the workings of the system.

An Editor (Figure 25) is also added to the picture of the Ubiquitous Environment, as
an external super-control device that is needed to review and associate Artifacts and
their collections (Mavrommati et al, 2004), (Mavrommati and Kameas, 2003). The
Editor can be a software program that is run by an information appliance (for
example, a mobile phone, tablet, or a laptop/PC can be used as editor, with the
implication that the information appliance running the operating system is equally,

by doing so, an artifact within the system).

9.5. Models, Abstractions, Affordances

Augmented artifacts can be associated by people using the straightforward model of
Connectable Capabilities (Plugs) and Links (Synapses) occurring between them
(from now on referred to as the Plug-Synapse model). Capability-Plugs are software
classes that make visible the artifacts’ capabilities to people and to other artifacts.
They can correspond to artifacts affordances relating to the embedded sensors the
artifact may have (eg containment, surface, pressure, temperature etc) or to services
they may provide (eg light, sound, etc). An artifact has physical properties, as a
result of its tangible self, while it offers services, resulting from its digital self.

These connectable ‘capabilities’ (both physical/sensory and digital service) are

157

expressed as ‘Capability-Plugs’ (otherwise called ‘Plugs’). Then, a Link (otherwise
called a ‘Synapse’) is an association between two compatible Plugs (Figure 23).
This is an invisible link (wireless or wired) explicitly created to achieve a particular
working of the two capabilities together. Synapses are formed using an external
overview device, the Editor (Figure 25), making end user programming possible.
The editor is used to review artifacts and their collections and associate them
together (Mavrommati et al, 2004). By using the proposed abstractions of
connectable Capability-Plugs and Links-Synapses, one can combine the augmented
objects and build new types of applications (functional groups of artifacts’
associations) by connecting their connectable capabilities in synaptic associations,

and then describing the properties of these associations.

The term 'affordance’, refers to the opportunities for action provided by a particular
object or environment (Gibson, 1966), (Norman, 1990). The affordances stemming
from the physical characteristics of the object and its perceived use are the
connectivity elements (called ‘Capabilities’, or ‘Plugs’ in the model); they act as an
in-between layer between sensors and connectable usage that people can relate to

and use.

synapse

-

plug J

Figure 23: The Plug-Synapse model: The artifacts’ capabilities (Plugs) can be inter-associated
with invisible links (Synapses) to form ubiquitous computing applications

158

In the proposed model, physical objects can be adapted to be able to act as
components of an augmented Ubiquitous computing environment. Their physical
properties and characteristics can translate into connectivity possibilities
(Mavrommati et al, 2004). Introduction of the idea of affordances (stemming from
objects’ physical disposition, sensors and perceived use) enriched the Plug-Synapse
construct. Such affordances have the potential that they can be used via an ontology,
which provides a second level of semantic interpretation of the physical
characteristics. Thus the system abstractions of Capability (i.e. ‘Plugs’) and the
Ontology relate to the affordances that stem from the physical characteristics and

perceived use of the object.

According to D. Norman (Norman, 1990), affordances “refer to the perceived and
actual properties of the thing, primarily those fundamental properties that determine
just how the thing could possibly be used”. Up to now, the ways that an object could
be used and the tasks it could participate in have usually been determined by these
physical affordances, that are, in turn, determined by its shape, material, and
physical properties. By giving to the physical objects the possibility to act as
components of an augmented environment, and to interconnect (via synaptic links)
to form ubiquitous applications, the objects acquire in fact new affordances, that are
given to them via their digital self. The ways that we can use an ordinary object are a
direct consequence of the anticipated uses that object designers ‘embed’ into the
object’s physical properties. This association is in fact bi-directional: the objects
have been designed to be suitable for certain tasks, but it is also their physical
properties that constrain the tasks people use them for (and therefore define their use

in ubicomp applications too).

Due to their ‘digital self’, artifacts can now publicize their abilities in the digital
space. These include properties (what the object is), capabilities (what the object
knows how to do) and services (what the object can offer to others). At the same
time they acquire extra capabilities which, during the formation of ubicomp

applications, can be combined with capabilities of other augmented objects or

159

adapted to the context of operation. Thus, augmented objects have two new

affordances to their users:

Composability: Artifacts can be used as building blocks of larger and more
complex systems. Composeability is perceived by users through the presentation -
via the object’s digital self, presented in Editors - of the object’s connectable
capabilities, in this way giving users the possibility to achieving connections and
composing applications of two or more objects. In implementation terms this is
achieved via a communication unit that artifacts have, which in turn requires

universal descriptions of tasks and services.

Flexibility: artifacts that have embedded digital storage - or have access to it - can
change the digital services they offer. The tangible object can thus be partially
disassociated from the artifact’s digital services (for example, an object with an
RFID tag can use processing that is located elsewhere). Flexibility is the result of

this disassociation of the software and the digital self of objects.

Figure 24: Graphical examples of two applications (that are sets of functional links between
augmented artifacts).

These new characteristics of augmented objects need to be somehow indicated to
people. A way to do this is via a special purpose software mechanism that can run in

several interface modalities and devices. Such mechanism/tool can be generally

160

referred to as the ‘Editor’ (Figure 25). In addition, according to manufacturers or
designer’s choice this affordance of connectivity can also be indicated by such
elements of the object’s physical design as the material shape, auditory, or haptic, or
else by those visual design elements for control and feedback that present the
object’s digital interface. Such elements depend on the exact nature of the object and
result from its industrial/interaction design (this involves the specific design briefing

and is dependent on the design constraints and the designer’s expertise).

9.6. Concepts, constructs and application

A high level recombinant model (the Capabilities and Links model) was adopted and
adapted (based on the Publish-Subscribe model), and provided an enabling
conceptual abstraction of the Ubicomp system to the Users (Figure 17). It has to be
noted that the e-Gadgets project drew initial inspiration from the e-Slate component
platform for educational applications (e-Slate website), a platform that applied
component architecture to specific educational applications called “microworlds”
(Birbilis et al, 2000), (Roschelle et al, 1999); e-Gadgets has adapted concepts of
component architectures, manipulation and microworlds, for the ubiquitous
computing environment, whereby the components are the tangible artifacts, and they
are selectively composed into ubiquitous applications (‘Gadgetworlds’). A
middleware software layer, (the Gadgetware Architectural Style, or GAS (Kameas et
al, 2003), (Drossos, Mavrommati, Kameas, 2007b), (Drossos et al, 2007) - managing
software resources, implementing the connectable capabilities of objects, supporting
service discovery and management of associations - has enabled artifacts to become
components of Ubiquitous Computing systems. A supporting ontology provided a
common basis for collaboration between heterogeneous artifacts (Christopoulou and
Kameas, 2005), (Christopoulou et al, 2005), (Goumopoulos and Kameas, 2009).
About a dozen, varied ordinary objects were augmented with computing and sensing
capabilities, for demonstration purposes in order to test them with end users. The

objects were varied in size and affordances; they included furniture, room sensors

161

(such as for temperature and humidity), a pressure sensitive carpet, a bed, a desk,
chair, a few books, lamps, music player, a cube lamp (changing colours when
flipping side) and a clock. Editing tools, in the form of an application mechanism
that supports the establishment and management of applications based on this
model, with a core structure that is independent of particular modalities, were
implemented. Editors were implemented with various interfaces (two different
interface versions were built and tested: one running on a PDA and one for the PC).
With the °‘Editors’, people can supervise artifacts and create/edit associations
between them, thus creating/altering ubicomp applications (Mavrommati and
Kameas, 2002), (Mavrommati and Kameas, 2003), (Mavrommati et al, 2004).
Examples of interfaces for working editor prototypes were used to facilitate the end

user evaluation sessions, in the course of the e-Gadgets project (see chapter 11).

9.7. The Editor role and functionality

People can supervise the functional capabilities of devices in the home via other
specialized devices, the Editors. GAS Editors allow users to do this with an
integrated graphical user interface; potentially, Editors may be linked to multimodal
interfaces integrated in the environment, such as speech or gesture input systems.
With Editors it is possible to supervise and interface with the various augmented
artifacts. In this way one can supervise the inter-connectable capabilities of an
appliance (the Capability-Plugs) or be given the possibility to enrich them. Finally,
people can act upon these capabilities by associating them together into matching
pairs that serve specific functions (the Links/Synapses); they can break existing
associations, pause them, or add parameters in the association to influence the
details of the function (Figure 3). The synaptic associations thus created or edited
are not stored locally, (i.e. in an Editor), but in the e-Gadgets project’s case are
stored in the distributed appliances and objects within the home environment. Thus,
in the case of failure or object movement beyond network range, much of the

application functionality can be restored.

162

Editing capabilities can be used by designers to create Ubiquitous Computing
applications without having to start from scratch, as they can reuse existing
component objects. Editors may equally be used by end users to personalize
ubiquitous applications, or for using their own creativity in creating novel
associations for niche or innovative functions. The core editor functionality can also
be accessed directly by intelligent agents that construct and adapt applications by
monitoring user behavior. Potential uses of the editor can include the finding and
customizing collaboratively created applications from communal application pools

(as was explored in the case of the ASTRA project, (see chapters 5 and 13)).

every morning [%

i

fill bath g

P

Figure 25: People can create certain associations between artifacts. The Editor is a overview/
control-device used to (re)design applications within a ubiquitous environment, using artifacts
as a starting point.

For classifying capabilities (plugs), we initially speculate on patterns of usage of
these artifacts by people, and address the issue of how people perceive artifacts. In
this way we indirectly address the issue, which set of peoples’ actions should
artifacts perceive. Capability-Plugs can be classified into higher and lower level
plugs. Lower level plugs represent a single capability (ie a certain kind of sensor),
while a higher-level plug is manifested to the user as a single capability-plug that
represents a higher-level function (and is in fact an organized collection of more
basic plugs). Capability-plugs can be hierarchical, and they can also move from
being a lower level plugs (with a quantitative capability) to higher level plug (with

qualitative, more abstract goals related to human conditions).

163

9.8. Affordances as Connectivity Plugs

A valid and common engineering approach would be to model the ubicomp system
and its subsystems (ubicomp sub-applications) as virtual artifacts, where (sub)
system parameters and trigger conditions (input events) are exposed as input plugs,
and output state, together with outcome events (resulting functionality) are exposed

as output plugs.

While software engineers and programmers would be at ease with such a
conceptualization of a ubicomp application (potentially complex enough to be
comprised of several, even nested, sub-applications) the average end user will have
difficulty to reason about and constructively manipulate a non-tangible entity.
Moreover this type of representation would naturally cause an asymmetry between
the number of objects perceived by the user in their surrounding environment, and
the representations displayed in the context of an editor’s interface, since the editor

would have to display the system and sub-system virtual artifacts as well.

A higher level, but more user friendly approach to system towards system
conceptualization by end users, is suggested, where plugs of sub-systems respective
virtual artifacts are hosted as dynamic plugs at tangible augmented artifacts of the
system. Such plugs are dubbed as ‘dynamic’ since they stay attached to the
respective tangible objects only in the context of their participation in the specific

(sub-) system.

This approach maintains symmetry between the tangible end user environment and
the virtual ubicomp system context, enabling more fluent direct manipulation in
editor interfaces and allowing for natural interaction paradigms such as

programming by example.

164

The proposed dynamic plugs correspond to affordances of the augmented artifacts in

the context of the specific ubicomp application (sub-system / virtual artifact).

Benefits of virtual artifact plugs:

These affordances (that can be considered as ‘hidden affordances® (Gaver, 1991) ,
more on which is explained in chapter 14),signify perceived potential usage of the
artifact in a given situation or environment (context of use). By exposing such
affordances — as designers hint design objects - on reusable artifacts, the end user
applies end user design in practice, allowing for more comprehensive repurposing of

the given artifacts by people interacting in this environment.

This approach also enables the case where an artifact itself carries with it one or
more persisted applications that are portable. Such applications have as only
member this artifact. These applications can extend permanently the respective
artifact by exposing more affordances on it irrespective of the environment of use.
Persistence of the respective logic can be done on the artifact itself, provided enough
internal data storage, or be hosted at a cloud based repository with the artifact

storing a reference ID to those applications in the cloud.

When such artifacts are detached from the context of the ubicomp application they
stop hosting these dynamic plugs and thus they no longer present their respective

affordances, since they can only be perceived in the specific ubicomp environment.

3 Hidden affordances are technology affordances not always directly and immediately perceived
(Gaver, 1991).

165

The aforementioned concepts can be summarized as follows:

1. System as artifact
2. Hosting system virtual artifact plugs onto real world augmented artifacts

3. Affordance is specific subsystem context and dynamic plugs.

To explain the above concept, the following scenario is considered: In an augmented
home, a sofa is alternatively used as a bed for guests. Aided by a camera-based
recognition system that watches how the sofa is being used, a ubicomp application is
defined that exposes the affordance of a bed as virtual plugs on the sofa. If the sofa
is moved to another location, nota accessible by the vision system, the respective
dynamic plugs are automatically removed from the sofa-artifact. So, when the sofa
is being used as a bed, other ubicomp applications can be set up to trigger
appropriate actions (like automatic dimming of the lights, or adjusting the room

temperature).

9.9. Issues

Self-explanatory terminology: The Capabilities-Links model was initially referred
to as the ‘Plug-Synapse’ model, the reasons for this being partly historical, since
initial inspiration was drawn from the e-Slate software architectural platform for
educational purposes (e-Slate website), and then transported to the context of
ambient intelligent environments in the course of the e-Gadgets research project.
Nevertheless the terms Plug and Synapse, applied to augmented tangible objects,
were judged by experts in the course of validation and appraisals (see chapter 1 and
related appendices 1 to 4) as too unclear, and much to be too technical verbal terms.
As a preferred, more suggestive term, instead of ‘Plug’ for the general public (in the
English language) the terms ‘Connectivity’, ‘Capability’ or ‘Connectable
Capability’ have been proposed. Additionally, the more straightforward words

‘Link’ or ‘Association’ are preferred to the term ‘Synapse’. These suggestions were

166

the result of brainstorming on the terminology during an expert workshop. The
model is subsequently better referred to as the Capabilities-Links model.
Nevertheless, the terms Plugs and Synapses gained the inertia of habitual use (in e-
Gadgets project research and publications), and so proved difficult to replace. For
this reason the two pairs of words have been linked to form the new combined terms
Capability-Plugs and Synaptic Links to express the model. These not only avoid
confusion by a complete change of terminology, but are also considered better and

more self-explanatory for addressing end users with, than the initial terms.

People’s expression: In articulating an application, a person will express his or her
own goals and intentions, rather than how the information is organized or presented.

For example:

‘T would like to have music in the house when I come in’.

In contrast, the Capabilities-Links model requires the human goal to be decomposed
into available artifacts and their capabilities, then synthesized to form a collective

artifact behavior:

‘Player>start playing music>when>ID Anna> steps on doormat’.

However adept human beings are at using systems and notations, the above line does
not come instinctively as human thought. Nor it is easy to grasp and configure
applications on paper using this model. However, using multiple representations for
editing, including natural language for expressing intentions, and then defining the
specifics by help of an expert system, could ease this gap between natural expression
of intentions and the application configuration. The model still remains valid as a
way to explain and express the internal workings of the system, and being able to

reason between multiple representations.

Visualizations and representations: the Capabilities-Links model can act as a

background model for people to understand the technology, but may or may not be

167

used as a direct visualization. The ‘Bubbles’ concept (Daskala and Maghiros, 2007)
or Tag Cloud visualizations, may prove to be suitable visualization alternatives. The
Capabilities-Links model can be at their conceptual basis but manipulation can be

done via different visual approaches.

9.10. Conclusions

In this chapter a conceptual model has been presented that can be used to understand
as well as manipulate ubiquitous computing applications. This conceptual model
maps directly on the ‘publish-subscribe’ model: augmented artifacts are seen as
components of the ubiquitous environment. Artifacts (in a component based
approach) can associate with each other, via invisible Links that people create
between them, and specifically between their digitally expressed connectable
capabilities (or Capability Plugs). The digitally expressed capabilities of artifacts are
treated as new artifact affordances. The Capabilities-Links model provides an easy
to explain, understand and retain conceptual schema that can be directly used for the

creation of applications by special purpose devices, called Editors.

168

10

10. Application of the Capabilities and

Links model: the e-Gadgets case

Parts of the content of this chapter were published in the following:

Kameas, A., Mavrommati, 1. (2005). Extrovert Gadgets. Configuring the e-Gadgets,

Communication of the ACM (CACM), vol. 48, no. 3, p.69.

Drossos, N., Mavrommati, 1., Kameas, A. (2007). Towards ubiquitous computing
applications composed from functionally autonomous hybrid artifacts. Disappearing

Computer book (eds: Streitz N. Kameas A. Mavrommati 1.), Springer Verlag, LNCS.

169

10.1. Introduction

The model proposed in previous chapters was applied during the ‘extrovert-Gadgets’
(e-Gadgets) project. The case for its application is described in this chapter. At the
time of preparing this text, several research projects are taking place in the broader
area of ubiquitous computing systems. Most of them focus on specific, mostly
technological parts of the architecture. In the e-Gadgets project the effort was to
provide a vertically integrated system that would offer a complete technological

solution while taking into account the user perspective.

10.2. An infrastructure which supports communication

Artifacts are considered components of the in-home environment, which can be
freely associated in several different ways, thus collectively achieving different
functions within the home (eGadgets project), (Newman, 2002) (Mavrommati and
Kameas, 2002). The functionality of collections of objects can serve different

purposes: pleasure, ludic use, or home automation and task facilitation.

The ability to ‘configure’ and ‘reconfigure’ (Newman, 2002) those in-home devices
stands as a driving concept behind this vision as it allows for end user creativity to
emerge in a ubiquitous environment, where people can create their own niche
applications or adapt their ubiquitous surroundings (Mavrommati and Kameas
2002), (Mavrommati et al, 2003d) (Rodden et al 2003). In order to realize this
possibility, the concepts need to be developed that will serve as a common referent
among people, designers of applications and developers of technology. Based on

these concepts, one has to:

a) Implement a universally applicable model of the communication between

components of the system (that is, services, distinct objects and in-home

b)

170

appliances). Such a model needs to provide a common technology-independent
upper layer (providing the end-user functionality) and a lower layer that can
accommodate existing standards, system architectures (such as UPnP, Jini, etc)

and communication protocols (such as Wi-Fi, Bluetooth etc).

Build mechanisms with which people can be enabled to act upon their
environment, and manipulate the information appliances, augmented artifacts,
and services within it. Such control mechanisms can be associated with existing

appliances or those that are especially built.

Reinforce the willingness and the ability of people to use the in-home
environment by developing appropriate interfaces that provide them with a basic
level of understanding of that environment and the applications running. Such an
environment will consist of tangible or intangible components invisibly
interconnected via local or remote network links. Thus the end user tools must
reveal the internal structure of the environment and applications, present their
current state and content, and explain their functionality and enable (or help)

people to manage the associations between components.

As was explained in the previous chapter, in the proposed mode augmented artifacts

can be associated by people using the straightforward model of connectable

Capabilities (Plugs) and Synaptic Links (the so-called ‘Plugs and Synapses’ model).

An artifact has physical properties as a result of its tangible self, while it offers

services as a result of its digital self. Plugs are software classes expressing the

connectable capabilities of these artifacts. A synaptic link (Synapse) is an

association between two compatible Plugs (Figure 26). This link is explicitly created

by people to achieve a particular synergetic function from the two artifacts, often a

cause-effect type of relationship. Synapses are formed using an external overview

device, the Editor, (a software program that is run by an information appliance).

171

—% & & @ @ : — - .
_/I g / * "
o) "‘*-‘___.-// 4 4 "~

-

Figure 26: A vocabulary acts as a common referent between people, objects and their
collections: the artifacts’ capabilities (Plugs) can be associated together via invisible links
(Synapses) in many possible ways. Thus, the adopted style provides an infrastructure for open
applications. An application is formed by a collection of objects functioning together in this way
to serve one specific purpose.

This recombinant approach has been adopted and exploited further in the extrovert-
Gadgets (e-Gadgets), an EU-IST Future Emerging Technologies (FET) research
project of the Disappearing Computer Initiative, wherein artifacts have been the
building blocks that enable applications to be created by people. In ‘extrovert
Gadgets’ (or e-Gadgets), the term ‘extrovert’ in the project’s name signifies the
negotiation and communication among artifacts. In the context of this project the
function of an application (the project uses the term ‘Gadgetworld’, corresponding
to the term ‘microworld’ used in component software) requires, at the technology
level, intense message exchange between the associated artifacts (called ‘eGadgets’).

P2P, client-server or other network protocols will deal with this traffic, ensuring it

remains outside people’s awareness.

The e-Gadgets project produced several example artifacts (eGadgets) that can be
considered pioneers of augmented objects. The result of linking artifacts together via
invisible links is an application configuration (the project calls it a Gadgetworld)
(Figure 24, 25, 26). It is a distinguishable, specific configuration of associated

artifacts formed purposefully by a designer, a user, or even an intelligent agent.

People need to be aware of the results of the application will produce once it
operates. It is assumed that people will have to learn to create applications, even
debug them, with the help of an overview device, the Editor. Transparency of use

and robustness are key issues. According to the Aml vision, most important is the

172

achievement of ‘seamless integration’ of artifacts. Artifacts are heterogeneous
appliances created by different manufacturers, and compatibility of these produced
objects is better insured by their integration within a single computing architectural

style. As a result of this integration, the artifact becomes aware of its environment.

9

Figure 27: Negotiations and data exchange happening between artifacts

The solution proposed by the e-Gadgets project (Kameas et al, 2003) has been to
enable communication rather than merely exchanging messages. Communication
aims to achieve a shared understanding (Habermas, 1984); it happens so as to make
known an intention or a desire, so that in turn others can respond to the suggestion.
In the e-Gadgets project approach, a Synaptic Link is formed as a result of
negotiation among eGadgets. Negotiations and subsequent data exchange are based
on ontologies possessed by the e-Gadget artifacts; the only intrinsic feature of an
artifact is the ability to engage in structured interaction in this way (Christopoulou

and Kameas, 2003).

The e-Gadgets project has used the abstractions of the Capabilities and Links model
(Plug and Synapse model). It defined the Gadgetware Architectural Style (GAS),
which includes a set of concepts (including the above model) and application rules,
the enabling middleware, a methodology and a set of tools that enable people to
compose distributed applications from the services offered by artifacts and devices.

The Gadgetware Architectural Style (GAS) applies the concepts of component-

173

based software engineering to ubiquitous computing environments, as is extensively

reported in (Drossos et al, 2007a) (Drossos et al, 2007b)

Using the GAS technological framework a control device - as editor - was realized,
via which a user can associate together a number of artifacts in several different
ways. The Editor, by applying the Plug-Synapse model and operating GAS-
Operating System, allows visualization and control in the augmented home
environment. The interoperability between objects is assumed as given, as it can be

realized by existing/proposed infrastructures.

10.3. Enabling artifacts to become components in the home

One assumption underlying GAS system architecture is that appliances and objects
in the home are manufactured to be autonomous and functionally self-contained.
Moreover, they can locally manage their resources (processor, memory,
sensors/actuators etc). GAS provides a compatibility framework, specifically a
layered middleware that enables them to share definitions of services, exchange
data, interpret incoming messages correctly and act accordingly. Thus GAS enables
in-home artifacts and appliances to be used as components of a non-a priori defined
system, and at the same time enables users to play an active role in understanding
and defining the functionality of their ubiquitous environment. GAS provides a
middleware that can directly interface with hardware components and also serves as
a layer on top of existing network protocols or distributed system architectures,

enhancing them with GAS-specific functionality.

The objects in the augmented in-home environment, in line with the proposed
model, can range from simple to complex ones, while sizes can vary extremely. By
associating these artifacts together into collaborating clusters, people can shape their

own environment. This approach supports the development of open systems but can

174

also be used to explain the system to people; the latter is necessary in order for them

to be able to manipulate such environments.

At the conceptual level, GAS includes the Capabilities and Links (Plug-Synapse)
model, which regards each object in an in-home environment as presenting a set of
connectable affordances and offering or requesting a set of services; these abilities,
that can be inter-associated, are visualized via the software construction of
Capability-Plugs. People can associate compatible Capabilities (Plugs) (thus
creating Synaptic Links) and establish a composition of the respective services /

functions (Figure 24, 25).

Figure 28: A domestic object can become augmented with computation and communication
capabilities

10.4. Creating Artifacts

For research purposes a number of domestic objects and furniture were augmented
with computation and communication capabilities and become e-Gadgets (Figure
28, 29, 31). This “GASification process” is a stepwise methodology that ensures that
all the necessary hardware and software modules are installed in the object and

initialized correctly.

175

According to the e-Gadgets approach, in order to make an everyday object into an e-
Gadget, firstly one has to attach to it a set of sensors and actuators. For example, in
order for the e-Table to be able to sense weight, luminosity, temperature and
proximity, it has to be equipped with pressure pads, luminosity sensors and an
infrared sensor. Pressure pads are mounted underneath its top surface, covering all
of it. Luminosity and temperature sensors are evenly distributed on the surface. Four

infrared sensors are placed on the legs of the table and another on its top (figure 29).

Figure 29: The top surface of the e-Table and the supporting circuitry underneath

A great deal of circuitry that connects these sensors with power sources (replaceable
batteries in this case) and with driving hardware modules. The latter are required in
order to collect and filter sensor readings into the GAS-OS middleware, which
currently runs on a Personal Digital Assistant (PDA), an iPaq, attached to the object
(to preserve autonomy of objects, an iPaq per artifact was used, providing the

required processing and communication hardware).

Once the hardware is installed, one has to install GAS-OS in the artifact’s iPaq and
configure it to interface with the hardware. This is achieved via a special software
module, the Gadget-OS, which interfaces with an FPGA that drives the sensors.
When these objects have reached beyond prototype stage, all necessary hardware
(including sensors, processor, wireless module, battery, boards and circuitry) will be
embedded into them during their manufacture; all that will be to download GAS-OS

in them and configure it for the specific object.

176

The latter step includes the definition of the artifact’s Identity and its Capabilities
(Plugs) in a way that will be understandable to other artifacts. This is done by
creating XML-based descriptions of plugs using universally agreed core ontology (a
vocabulary of basic terms) (Christopoulou and Kameas, 2005). The uniqueness of
the ID is achieved with a process similar to the one used for MAC addresses (Ringas
et al, 2002). The above are used by the GAS-OS modules in order to manage Plugs
and Synapses, translate sensor readings into messages, translate incoming messages
into service requests etc. GAS-OS runs in Java, but relies only on features available
in the Java Personal Edition, compatible with the J2ME Personal Profile. This
allows the deployment of a wide range of devices from mobile phones and PDAs to
specialized Java processors. The proliferation of end-systems capable of executing it
makes Java a suitable underlying layer providing a uniform abstraction for the

middleware.

D ' s . -
/‘_g ,fzf i ‘ PEP. _—h NP

|4
g ~wWinipaws

CHMelT &= %‘
- D,

Figure 30: The intelligent dormitory in the University of Essex was used in the e-Gadgets
deployment, so that agents had access to GAS-OS.

177

Figure 31: Example of prototype augmented artifacts: the augmented chair, table,
book, lamp, and cube-light.

10.5. Editing functionality

The Editor is designed to be compatible with the artifacts in the home. It is a piece
of software that can run on top of an existing information appliance (such as a PDA
or PC), while the top software layer utilizes the particular interface resources of the
appliance at which it is residing. It’s core is thus independent from the device it runs
on, allowing for a the implementation of many different interaction modalities.
Within the context of the e-Gadgets project two implementations have been created
using on-screen interfaces, on a handheld computer and a laptop computer, as this
enabled the testing of the Editing concepts in a portable form. The Editor’s high-

level architecture is shown in (Figure 37).

The main role of the Editor is to make visible the available artifacts in one’s
ubiquitous environment, and their existing functional dependencies and to allow the
user to create and edit synaptic associations between appliances and thus create, edit
and debug ubiquitous applications. An association can be established between two
capabilities, when these are available via the digital self of a device. The user has to

indicate which two capability Plugs to associate and link them with each other;

178

therefore a cause-effect relationship is forged between the objects. The Editor uses

the services of GAS-OS to support editing actions.

The Editor identifies the Information Communication Devices in the home
environment. It also sees the capabilities offered by each device that can be inter-
connectable. Such capabilities have a direct relationship with the actuating / sensing
capabilities of the objects and the functions that are intended by the object’s
manufacturers. Nevertheless, some of these capabilities (especially more complex

ones) may not be obvious to people, apart from via the editor.

In addition the Editor identifies the available application configurations, in the form
of current working groups of associated appliances in the home, and displays them
for supervision. The links between the compatible capabilities of appliances are
visualized and can be manipulated through the Editor. In the test bed
implementation this is done by a graphical user interface using an association
matrix, as shown in Figure 36. Associations between certain capabilities of

appliances/objects can be formed thus creating configuration sets for a certain

purpose.

AL

Figure 32: Two implemented versions of the Editor (on PC and PDA).

The identification and selection of capabilities (Plugs) via the editor is a task that
depends on the user expertise. A novice user might not be interested in or

understand more than just the description of the capability; (s)he can then base

179

his/her selection on a natural language description that is proposed in the design of
the Editor. A more advanced/experienced user may prefer to see more of the

technical details in order to make his/her selection of the capability.

Once such a set of Synaptic associations is established, the part of the operating
system that runs on each participating device ensures that it works. The associations
that are activated will operate as long as the user wants them to (until (s)he
deactivates or deletes them) unless there’s technical inability to maintain its

functionality (i.e. one participating object is out of range, non-responsive, e.t.c.) .

10.6. The implemented Editor interfaces

Two versions of the Editor have been created, in order to test the primary editing
functions (Figure 33). One with richer functionality was implemented for a personal
portable computer, having with ‘professional’ designers/developers in mind. The
second and simpler one runs on an iPAQ handheld computer and is intended for the
non-trained end-user. Twelve sample devices have been modified in order to be
compatible so that can be seen and associated together in a number of ways by the
Editor (Figure 29,31). In this implementation the Graphical User Interface (GUI) is
handled at the Interface Layer and all the functions required of the GUI (like
discovery of devices, activation of functional association sets etc.) are mapped to the

actual Operating System functions in the Function Layer via the Intermediate Layer.

The PC visualization of the Editor consists of several screens: One that lists the
devices in the vicinity (the Listing Pane). From the listing pane the user can drag and
drop selected devices into the Editing pane. Upon selection of two devices, an
association matrix that shows both devices capabilities opens up. Tagging a square
on this matrix (Figure 36) associates the two capabilities together (with preset
properties). If the user wants to change the specific details of this association, they

can do so by twiddling with the properties (“mappings”) of each capability in the

180

association. The newly created application then needs to be named and activated.
When this is possible the user can test the association set by using the physical
devices, (in order to ensure that the configuration is working as originally intended);
alternatively (s)he can use the editor and re-establish the association mappings

(properties) or delete the total set of connections.

The PC interface of the Editor (Figure 32, 36) allows several ways of working— the
two most prominent are the ‘clockwise’ operation and the counterclockwise
operation. In the clockwise operation, the user creates a new configuration starting
from the selection of the devices; then (s)he identifies which capabilities (s)he wants
to use and links them in an association and finally specifies the parameters of this
association (its properties). The counterclockwise operation is suggested so that the
formation of the Functional set can be based on a description of the functionality the
user intents. (i.e. Searching for already established Sets (based on similar target
functions) and using a natural language description interface in order to figure out

the devices needed and the synapses required to achieve the requested function).

The layers that are illustrated in the grid-form design of the Editor allow the Editing
task to start from any level: one can search for the capabilities required first and then
deduce the devices, search for devices based on their class, and perform operations

on sets of the devices.

In the working prototype of the Editor the primary functions that enable the creation
of associations were quite robustly implemented (discovery and visualization of
artifacts and their capabilities; creating associations; setting the properties of these
associations; naming and activating a functional set of associations; activating,
deactivating, deleting each association or each set), while the auxiliary natural
dialogue and facilitating operations part have not been implemented. The working
prototype using the screen and Graphical User interface on a PC/laptop, gives the

primary functions using similar panes as the ones suggested in the design phase. It

181

provides in a rather extended way the editing items for supervision and

manipulation.

The working prototype of the Editor on a PDA contains the same primary functions
but in a more condensed way, that guides the user through a stepwise process for
creating a Gadgetworld . This is partly dictated by the small display size. Due to its
stepwise approach and the limit imposed in the amount of presented information and
options at any one time it is easier to use. Consequently the PDA based

implementation was the one used for evaluation purposes (Figure 32 and 33).

10.7. Conclusions

The e-Gadgets project has applied the conceptual model of Capabilities and Links
(initially referred to as Plug-Synapse Model), proposing an architectural style (GAS)
and building a system (middleware, tools and artifacts). Ubiquitous computing
artifacts that follow the proposed architectural style can be reused for several
purposes, in order to build a variety of Ubiquitous computing applications. The
value of this approach is that, via the e-Gadgets tools, artifacts are treated as

reusable components.

The proposed model is easily comprehensible; therefore, by the appropriate use of
tools, the e-Gadgets technology can be usable by designers of Ubiquitous computing
systems, but also by untrained end-users. Subsequently this approach opens
possibilities for emergent uses of ubiquitous artifacts whereby the emergence occurs
from people’s own use. Potentially it can enable the acceptability of Ubicomp
technology into people’s environments, as well as enabling the making of emerging

niche applications.

Communication (hence the term ‘extrovert’ that stands for the ‘extrovert Gadgets’ or

e-Gadgets) is promoted rather than mere message exchange. In the e-Gadgets

182

approach, a Synapse is formed as a result of negotiation among artifacts, which, in

turn, are based on e-Gadgets ontologies.

The deployment of the conceptual model proposed in chapter 9, in the case of the e-
Gadgets project, as part of the system architecture, enabled the assessment of the
model and validation of End User Development within AMI. The evaluation
sessions, based on the deployment of the e-Gadgets project, will be described in

detail in the following chapter.

183

11

11. Validation of end user development
and the proposed model, through

deployment in e-Gadgets

Parts of the content of this chapter were published in the journal article: Personal
and Ubiquitous Computing. ACM, Springer-Verlag London Ltd. ISSN: 1617-4909,
Volume 8, Numbers 3-4. July 2004. ‘An Editing tool that manages the devices

associations’ by I. Mavrommati, A. Kameas, P. Markopoulos. (Pages: 255 — 263).

11.1. Introduction

In this chapter, we describe how End User Development in the area of Ubiquitous
Computing applications has been validated. The proposed model was assessed as an

abstraction that is understandable and usable, especially by young adults. The four

184

different evaluation sessions, their process and outcome are described in detail in the

Appendixes 1 to 4.

The proposed conceptual-technological model for end user development of Ubicomp
environments was evaluated through several user and expert trials. An expert review
workshop and an analysis based on the Cognitive Dimensions framework were
conducted in order to assess the concepts in the preliminary phases of the prototype
implementation. Feedback was also collected using a hands-on Demonstration
(using three artifacts and an editor), and shown in two conferences (British HCI and
DC-Tales), where feedback questionnaires were received. Finally, a short user
evaluation was conducted in a specially constructed student dormitory at the
University of Essex (i-Dorm), using several sensing and actuating components and
artifcts; that room and its components had been equipped to support the proposed
model and were controlled through GAS-OS middleware (Kameas et al, 2003),
(Drossos 2007b). An environment of more than a dozen augmented objects (of
various sizes and types, such as a carpet, lamp, desk, chair, books, bed, music
player, cube, etc) and two implemented instantiations of the Editor (on a PDA and
on a laptop) were used in this evaluation, which aimed to monitor how potential
users grasp the concepts and whether they can create or modify their own
applications, using the concepts of Capabilities and Links (‘Plug- Synapse’) and

editor within a GAS enabled environment.

11.2. An example scenario deployed for evaluation

A fictional scenario that was used to guide implementation of a demonstrator during
the e-Gadgets project, and then for deployment in the i-dorm, is described in this

section.

This example scenario addresses a day in the life of Patricia, a 27-year old single

woman, who lives in a small apartment near the city center and studies Spanish

185

literature at the city’s University. A few days ago she passed by this store, where she
saw an advertisement about ‘extrovert Gadgets’. Pat decided to enter. Half an hour
later she had given herself a very unusual present: several pieces of furniture and
other devices that would turn her apartment into a ubicomp one! The next day, she
was anxiously waiting for the delivery of an e-Desk (it could sense light intensity,
temperature, the weight on it), an e-Chair (it could tell whether someone was sitting
on it), a couple of e-Lamps (she would be able to remotely turn them on and off),
some e-Book tags (they could be attached to a book, tell whether a book is open or
closed and determine the amount of light that falls on the book) and an e-Carpet
(vou just had to step on it). Pat had asked the store employee to pre-configure some
of the e-Gadgets, so that she could create a smart studying corner in her living
room. Her idea was simple (she felt a little silly when she spoke to the employee
about it): when she sat on the chair and drew it near the desk, then opened a book
on the desk, then the study lamp would be switched on automatically. If she closed
the book or stood up, then the light would go off. She hadn’t thought of any use of
the carpet but she liked the colors.

| carPET MP3 PLAYER ‘
T-plug T-plug

| weight volume (higher, lower) ‘
| \mpaﬂ\:&ck (next, previous)
Location A lay / |
Location B stop. A
| Location C / nusic-ge ‘
| | 4
‘ pESk LaMp ~/ ‘
T-plug / X
| on/off / y o %\7
‘ intensty®”/ Musie ?M/LU’ — |V

off overbd
/55 /fz«/

o 0
T-plug s
| onfoff eyl
intensity Now, wha of doing with these eGadgets?

ABCO ~y Cocpett — mm ‘fQ r«mg > er Diepsty (fosh —
U > hx layer \ow e ALSe
Sl KL B > o > e dio

Oweigact o¥ arpet fo sfop Msic

\ (wobodg) ' X)L
£ locodion A og. = Aok il o neded Lo bvp on, J‘W off

rusic raddle ~>floy (& UW‘[AV :

Figure 33: Annotated diagrams that were used during the expert evaluation

The scenario and deployment were used in some of the evaluation sessions. For
research purposes a number of domestic objects and furniture mentioned in this
scenario have been augmented with computation and communication capabilities,

and turned into artifacts (eGadgets), running GAS-OS middleware that uses the

186

proposed Capabilities-Links model, within the scope of the extrovert-Gadgets (e-
Gadgets) research project (chapter 10).

Figure 34 : Use of the PDA based Editor by test subjects.

The behavior requested by Pat requires the following set of Artifacts: e-Desk, e-

Chair, e-Lamp, e-Book. The collective function of this can be described as:

When the particular CHAIR is NEAR the DESK AND ANY BOOK is ON the
DESK, AND SOMEONE is sitting on the CHAIR AND The BOOK is OPEN
THEN TURN the LAMP ON.

In order to achieve the collective functionality required by Pat, the employee in the
store had to create a set of Synapses among e-Gadgets’ Plugs (see Figures: 35, 24,
25). This type of functionality and component structure is created, inspected and
modified through the Editor. For example, Pat can subsequently define the intensity
of the e-Lamp when it’s being automatically switched on; thus the light won’t blind
her. Or, if an intelligent agent is used, it could adjust each time the light intensity
based on the overall amount of light in the room, as it is recorded by luminosity

sensors distributed on objects in the room.

187

DESK LAMP

T-plug T-plug
weight on/off
proximity intensity
study 4, study
location

BOOK CHAIR

T-plug T-plug
open/closed occupancy
luminosity

Figure 35: Schematic representation of the connections between appliances, in the above

scenario
edicing mode =l adi ting moda
(Ve el o ‘
A BERAEREIEE
L.
bl
>
X,
s=Gadgaca * sderlds| e~Gadgeta
ibesr SR
r-lt‘al J "r.-llmp
x - S
e e e s g oo
............................ Fe-desk
. "
[i

Figure 36: Draft design of a Graphical User Interface proposed for the Editor (for PC)

188

11.3. Concept evaluation

A central research question is how acceptable it is for end users to manipulate the
various devices in the home environment. This is linked to the extent to which users
comprehend the concepts underlying the Editor, and their willingness to use it. A

concept evaluation was conducted with the Editor that revolved around two axes:

a. Comprehensibility of the underlying concepts and

b. Willingness to use such technology.

The Editor was evaluated as one part of a broader system and concepts that were
proposed by the e-Gadgets project. The Editor evaluation did not focus on the
specific design details, i.e., the look and feel, of the graphical user interface. Rather
it aimed to assess the role that ‘editing’ can play in the future home environment and

how it the extent to which it is perceived to satisfy user needs fulfill user needs.

Initially an expert appraisal was carried out for evaluating the proposed interaction
concepts and technology, with respect to the end user requirements. The evaluation
was conducted in phases. First an expert review was conducted in the form of a
workshop. Subsequently, the cognitive dimensions framework (Green and Petre,
1996), was applied to assess how well the e-Gadgets concepts support end-users to
compose and personalize their own ubiquitous computing environments. This first
round of evaluation, a first version of the Editor was used, together with paper-mock
ups. The nature of the evaluation was formative, i.e., it aimed to suggest directions
for the next steps of the project, which would ensure that user needs are taken into
account. After a working prototype of the Editor was developed (using a Graphical
User Interface in a PDA), the concepts were tested through a hands on demonstrator
at two events, and a wealth of questionnaires were collected. Last, but not least, a
series of short user test took place in an actual ubiquitous environment (i-dorm)

supported by GAS technology.

189

In total, the following evaluation sessions were conducted, that will be described in

the following sections:

a) An expert appraisal of the concepts,
b) An assessment of concepts using the Cognitive Dimensions framework
¢) Short user tests and questionnaires by conference delegates

d) Short usability tests (7 subjects) in a ubiquitous computing environment

These are reported in their full detail in the corresponding appendixes 1 to 4.

11.4. Expert appraisal

The end-user that would engage in editing applications in ones in-home environment
is considered to be a ‘technophile’ but not a programmer; three experts in User
System Interaction that matched this profile performed a set of evaluation activities
during a workshop evaluation session (the workshop activities and outcomes are
described extensively in (Mavrommati et al 2003d). The basic concepts were
introduced in a short introductory session, in order to familiarize experts. Four
scenarios were discussed that highlighted different usage/interaction design issues.
A small discussion in a focus group format followed each scenario. A problem
solving exercise was set to gauge the extent to which these experts could construct
an in-Home application and further to reflect on what they consider as problems of
doing this. A design draft (paper mock up) of the graphical interface proposal for the
Editor and some video-prototypes presenting different multi-modalities were
demonstrated and expert opinions were solicited. Finally an open-ended discussion

elicited global level feedback for the e-Gadgets project.

In the evaluation session a broader set of issues was addressed, relating to a model

of a component based approach for the Ubiquitous computing home. A subset of the

190

evaluation tasks concerned the Editor. Some of the most recurring themes of the

discussion relating specifically to the Editor were:

e Ubiquitous computing technologies embedded in physical objects add hidden

behavior and complexity to them. Problems may arise if this behavior is not

observable and predictable for the user.

e Intelligence causes problems of operability and of unpredictability for users.

It must be used with caution and this should be reflected in the

demonstrations built.

e Constructing and modifying applications in the Ubiquitous home, is a

problem solving activity performed by end-users. As such, it has an

algorithmic nature and thus good programming support should be offered.

11.5. Cognitive Dimensions evaluation

Following the last observation, the expert conducting the evaluation has conducted a
further assessment using the Cognitive Dimensions framework (Green and Petre,
1996), a broad technique for the evaluation of visual notations or interactive devices.
It helps expose trade-offs that are made in the design of such notations with respect
to the ability of humans to translate their intentions to sequences of actions (usually
implemented as programs) and to manage and comprehend the programs they
compose. Broadly, the Capabilites and Links model and the Editor facilitate the
creation of in-home applications that are composed in non-textual manner. Thus,
this theoretically founded technique can be used to provide insight into selecting
between alternative choices with respect to providing tools for applications
construction. Some of the most interesting points resulting from the evaluation with

the cognitive dimensions framework were the following:

e There will always be an initial gap between the users’ intentions and the

resulting functionality of a user composed application. Users will have to

191

bridge this gap based on the experience they develop after a trial-and-error
process. An Editor can shorten this initial gap, by allowing several different
ways of expressing the user’s goals.

Since an object can be part of several in-home applications at the same time,

the effect it has on each is not easy to understand from the physical

appearance. Developments of the Editor will need a way to illustrate to the

user how the specification of the parts influences the dynamic behavior of

the whole application (similar to debuggers in Object Oriented

environments).

Editors should aim to bridge the gap between architectural descriptions of an
application and the user’s own conceptualizations, which might be rule-
based, task oriented, etc. (improving on the Closeness of Mapping
dimension).

To edit in-home applications the Editor requires only a few conventions need
to be learnt by the end user (appropriately low terseness).

The Editor should make observable logical dependencies between seemingly
unrelated physical objects (hidden dependencies). There are side effects in
constructing applications. A state change in one component may have non-
visible implications on the function of another. In the conceptual diagrams
used during the discussion (Figures: 33, 35), dependencies were directly
visible. However, in the graphical user interface mock up shown in the
evaluation, connections and their rules were not shown. Some way of
visualizing and inspecting such connections would be a useful addition.

An object can belong to several applications, the effect it has on each is not
easy to understand from the physical appearance (Role Expressiveness). (A
way to show this is to represent it via the Editor).

The abstraction level is appropriate for the target user audience (Abstraction

Gradient Dimension).

192

11.6. Surveys at two conferences

In the second stage, the working Editor prototype that was developed (using a
Graphical User Interface of a PDA and one on a PC) was presented through two
hands-on demonstrations at two events. One session was during the “TALES of the
Disappearing Computer” event in May 2003 (where 10 completed syrvey
questionnaires were received). The second session was at the British annual
conference on Human Computer Interaction (where 29 completed questionnaires

were received).

The demonstration featured an Editor running on a PDA that supported discovery
and use of another three appropriately converted devices in the room: a Mathmos
tumbler light, an MP3 player and a pressure sensitive floor mat. Conference
delegates were invited to make their own associations by connecting the components
available using the editor. After a short introduction, delegates were able to
compose applications in order to control the music played by positioning themselves
on the floor mat or by flipping the Mathmos tumbler on its’ side (as this lamp

resembled a luminous glass brick).

A wealth of comments was collected in the questionnaires, the most notable of

which, are.

e 13 delegates found that this technology will not be used because it is too
complex;

e 11 noted that is very easy to create and modify applications

e 4 thatit is very easy to learn to do it.

e 5 delegates noted that it would not be easy for users to appreciate the benefits

of this technology.

193

11.7. Short user tests at the i-dorm

The e-Gadgets project evaluation at the iDorm of the University of Essex, took
place, in 2004, in the specially created augmented environment of a student
dormitory that was made to be GAS enabled. The student room was furnished with
several augmented artifacts (ie, desk, book, audio equipment, clock, desk lamp,
chair, etc) as well as compatible room equipment (such as room blinds, temperature,
room light, etc), that were accessible for configuration to seven participants in total
(via two editor interfaces) and was also be able to be controlled by agent software
(that could observe the users actions and use the developed architecture (GAS) to
create applications via the establishment of synaptic links and tweaking their

parameters.

The focus of this evaluation was to provide an account of the problems that users
encounter with these concepts and their current state of realization was attempted, as
well as conducting an overall ‘non acceptance’ test of the concept by checking
whether potential users are not willing or able to understand, make and edit

Gadgetworlds.

The iDorm evaluation tried to provide insight to the e-Gadgets concepts and
technology, by answering, among other, wheather participants could understand the
basic concepts (given only a brief introduction), if they would be able to create
applications by associating together artifacts’ capabilities, if they could predict the
behavior of an application from seeing what it consists of, and wheather they could

be able to slightly modify ubicomp applications.

The study was a combination of conventional short tests, which involved 6
participants (split into three pairs in order to be able to use the ‘think aloud’
protocol) and one single test that took place overnight (with one participant, who
had spent more time and slept overnight in the i-dorm). The short tests aimed to
gauge how potential users grasp the concepts and the overnight test aimed to get a

relatively longer term and more realistic test of e-Gadgets when it is used in anger.

194

One participant stayed overnight after the tests. In the evening he was invited to
play around with the gadgetworld, not as a programmer or an experimenter which
tries to reach boundary conditions, but trying to get it to a state reasonable to live
with (even if that was only for one night). On the day after in the morning his was
asked to state his opinion and was invited to make changes to the Gadgetworld once

morc.

All evaluation participants that had a hands-on experience using this technology
familiarized with the concepts very quickly, within only a few minutes (5-7 min) of
explanation. The editor was used successfully (it was intended as a functional tool,
with a preliminary interface, that aimed to test the research concepts, providing an
appropriate level of robustness). The majority of subjects succeeded in creating
simple applications for themselves (using 2-3 objects with 2-3 connections), using

the editor provided.

Overall, the iDorm test, seems to provide conclusive evidence towards the viability

of the concepts and at least rest the fears of putting too complex tasks on the

shoulders of the end-user. Although the positive findings of the iDorm tests cannot

be generalized for the wider public, due to the limited set of subjects, still, these test
results do show the clear potential of the concepts presented. An interesting and
detailed account of the i-dorm uset test and overnight stay test can be found in

appendix 4.

11.8. Summary of outcomes

Through the various evaluation trials (reported in detail in appendices 1 to 4) it is
indicated that End User Development has validity as an approach for approaching

Ubiquitous Computing Environments.

The proposed Capabilities-Links (Plug-Synapse) conceptual-technological model
was assessed as an easily comprehended abstraction that is usable especially by

younger people. This model is bridging technological and conceptual notions, and

195

can underlie the design and development of middleware software architectures.
When used as a part of a more generic framework for recombinant ubiquitous
computing, it can act as the foundation for the creation of Editing tools and their

interfaces.

In the first evaluations skepticism was noted among HCI experts regarding the
ability of end-users to grasp the concepts we proposed. The short user-tests seem to
rest the fears of an impossible to use complexity. This can hold true especially for

younger users growing up surrounded by technology.

The feedback that relates specifically to the Editing tools can be summarized as

follows:

o The application behavior should not surprise the user, i.e. automation or
adaptation actions should be visible and predictable (or at least justifiable).

e End-users acting as Ubiquitous application developers should be supported
with at least as good tools as programmers have at their disposal, e.g.,
debuggers, object browsers, help, etc.

e Multiple means to define user intentions should be supported by the
graphical interface of the Editor, as the users tasks tend to be comprehended
and expressed in a variety of ways.

e The acceptability of the Gadgetworld concepts, depend on the quality of the

actual tools and their design.

11.9. Conclusions

This research has set out to provide a level of transparency into the Ubiquitous
environment, by giving end-users the ability to construct or modify ubiquitous
computing environments. To do this, concepts of component based software (i.e.

microworlds) were adapted and applied in order to treat physical objects as

196

components of Ubiquitous Computing environments. Though this process, the
application of End User Development into the area of Ubiquitous Computing
applications has been validated, and the proposed conceptual-technological model
was assessed as an abstraction that is understandable and usable, especially by the

younger and more technology adept.

A novelty of the model and Editing approach in the home environment is that
artifacts can be treated as reusable “’components’. The component architecture is
made directly visible and accessible via the Editor. This enables end-users to act as
application developers. This end user programming approach may be especially
suitable for ubiquitous computing applications, as has been indicated in the
evaluation trials reported in this chapter. The possibility to reuse devices for several
purposes - not all accounted for during their design- opens possibilities for emergent

uses of ubiquitous devices, whereby the emergence results from actual use.

An important outcome from the evaluations (Mavrommati et al, 2004), relating to
follow up work on Graphical User Interface visualizations, is that multiple means to
define user intentions should be supported by the Editor, as people conceptualize
their intentions in a variety of ways, which are not necessarily structural abstractions
of the system. End-users programming their environment should be supported with

similar tools as programmers, e.g., debuggers, object browsers, help, etc.

A lot depends on the Editing tools in terms of interface and interaction but also
extensive auxiliary functionality to aid with the editing tasks, which should be

researched in their own merit.

197

12. The functions of the Editor

12.1. Introduction

As explained in the previous chapters, an approach which partially discloses the
structure of a system is adopted in this research and supported by a conceptual-
technological model that assists people to understand the ubiquitous applications,
and how to manipulate them. The approach also assumes Editor Mechanisms
towards the (re)configuration of Ubiquitous Environments and applications, and
graphical User Interfaces that provide different syntax possibilities for End User
Development. The functionality, architecture and modules, which can be considered
for Editors from the perspective of user experience design, are outlined in this

chapter.

12.2. The Editor role

As has been explained in the previous chapters, [eople can supervise the functional

capabilities of devices in the home via special software applications running on

198

specialized devices, the °‘Editors’. Editors provide the possibility for multiple
representations of configuration activities in the form of Graphical User Interfaces
(GUI). Such Editor GUIs can provide for different visualizations and in parallel be
linked to multimodal interfaces - such as speech or gesture input systems. With
Editors it is possible to supervise and interface with the various in-home appliances
and also have an overview of applications of the ubiquitous environment. People can
supervise the inter-connectable capabilities of an augmented artifact; they can act-
upon the augmented artifact’s capabilities by associating them together into
application clusters serving specific functions, they can edit or delete existing
associations, pause them, or add parameters in the associations to influence the
details of it’s function. The associative links created or edited may be stored locally
(in this case, for example, in an Editor accessing the functions of a Central
Processing Unit), while in the case of a distributed system (such as the e-Gadgets
system) they are stored in the distributed appliances and objects within the home
environment, with the advantage of this approach being that in the case of failure or
object movement beyond network range, much of the application functionality can
be restored. A set of associations between artifacts is a ubiquitous computing
application. Such applications can be collaboratively shared between users, by
collaborative mechanisms, or adapted to different user environments assisted by

appropriate ontologies.

The editing capabilities can be used by designers to create ubiquitous computing
applications, without having to start from scratch, as they may reuse existing
component objects. They may be used by end users to personalize ubicomp
applications or being creative in novel associations for niche or innovative functions
(figure 17). The core editor functionality can also be accessed directly by intelligent
agents that construct and adapt applications by monitoring user behavior, (as, for

example, was the case in the e-Gadgets project).

199

12.3. Editor key functions

The main role of the Editor is to provide an interface to the user for handling
artifacts and ubicomp applications and assisting him/her to create and edit synaptic
associations between artifacts. An association can be established between two
capabilities, when these are available via the digital part of a device. The user has to
indicate which artifact capabilities to associate and link them with each other;
therefore a cause-effect relationship between the objects is achieved. The Editor uses
the services of an operating system (OS) to support the editing functions — for
example the GAS-OS or the ASTRA OS in the cases of the e-Gadgets and ASTRA

respective project cases.
In summary the Editor goals are:

1) To indicate/make visible the ubiquity in one’s home environment: artifacts and
their augmented affordances as well as their functional dependencies: the
existing pervasive applications

2) To form new associations between devices, in order to achieve certain functions
or to insert new artifacts in an application, editing their specific rules, etc.

3) To assist with sharing applications, servicing, debugging, etc

12.4. Editor high level architecture

The Editor’s high-level architecture (see figure 37), according to (Mavrommati and

Kameas, 2003) can have three separate interacting layers:

1. The Operating System Layer, which offers to the Editor its communication
capabilities and knowledge of other connectable appliances interfaces,

2. The Editor Manager Layer, which provides abstraction of the interface layer as
well as compatibility with the function layer. It contains all the structures and

functionalities needed by the Editor

200

3. The User Interface Layer that is responsible to provide any interactions with the

end-use as well as any other operations the Editor provides.

INTERFACE PDA PC / Laptop
LAYER interface interface
__________ USER
COMMANDS
INTERMEDIATE Device independent interaction
LAYER interpretation module
CALLSTO
_________ GAS-0S FUNCTIONS
FUNCTION
LAYER GAS-0S

Figure 37: Schematic representation of the Editor layers, in the case of GAS-OS, for the e-
Gadgets research project.
The Editor can identify the augmented artifacts in the vicinity of the home. It also
sees the capabilities offered by each device that can be inter-connectable. Such
capabilities have a direct relationship with the actuating / sensing capabilities of the
objects and the functions that are intended by the appliance manufacturers, as
explained in chapter 9. Nevertheless, some of these capabilities (especially more

complex ones) may not be obvious to people, apart from via the editor.

In addition the Editor identifies the available application configurations, in the form
of current working groups of associated appliances in the home, and displays them
for supervision. The links between the compatible capabilities of appliances are
visualized and can be manipulated through the Editor. Associations between certain
capabilities of appliances/objects can be formed thus creating configuration sets for

a certain purpose (figures 24 and 34).

201

The identification and selection of connectable artifact capabilities via the editor is a
task that depends on the user expertise. A novice user might not be interested in or
understand more than just the description of the capability; he or she can then base
his/her selection on a natural language description that is proposed in the design of
the Editor. A more advanced/experienced user may prefer to see more of the in-

depth details in order to make his/her selection of the capability.

Once such a set of associative Links is established, the part of the operating system
that runs on each participating device ensures that it works. The associations that are
activated will operate as long as the user wants them to (until he or she deactivates
or deletes them) unless there’s technical inability to maintain its functionality (icone

participating object is out of range, non-responsive etc).

12.5. Tasks that can be supported by the Editor

Editor can have modules in order to support the following main tasks:

e Overview of applications and their state
e Creating new ubiquitous applications or editing old ones
e Sharing ubiquitous applications and assisting with collaborative development

e Assisting in augmenting artifacts
In the following sectiona the corresponding sub-tasks of those are outlined:

Overview of applications and their state

1) Provide an overview of the existing ubiquitous application configurations in
one’s environment
a) show an overview list of all ubiquitous applications
b) Indicate which applications are active, running, paused, or only created and

stored -but not activated.

202

¢) Show the stakeholders of each application (when applicable)

d) When possible, visualize hidden dependencies of each application

2) provide overview and control over the state of the ubiquitous environment
a) provide an overall ON / OFF SWITCH for all applications in the
environment

b) provide on/off switch per application

It has to be noted that the overall OFF switch has emerged from evaluation test
sessions as a pressing requirement, that is yet missing from ubiquitous environments
and applications functions (see chapter 11 and Appendix 4), and so, it is addressed

here on its own merit.

editor |

Figure 38: An example visualization of the Idle/Observation Screen. The overall OFF switch for
each application that is currently running can be seen®. The applications scroll left, in a loop.

4 The Idle/Observation screen: a proposed example showing an scrolling overview sequence of ubiquitous applications, as well
as providing access to the Editor, a universal OFF switch, and OFF controls per application. This control and overview screen
is suggested to be visible in the home, through an interactive digital picture frame, or other screen in the house. In the ASTRA
project case, the parties sharing their awareness information via pervasive applications in their environments were also viewed

(via their profile photos), alongside with the application’s name.

203

Creating new ubiquitous applications or editing existing ones

a) Create new applications by establishing new application configurations,
associating links and rules of links, between certain connectivities of artifacts.

b) create more complex applications from the ones created in previous time and
show them as a list

c) edit the parameters between connectivity links (i.e. edit the parameter values,
introduce timers/diary parameters, etc), in existing applications or those that are
being created.

d) delete certain applications

e) delete certain links from existing applications

f) enrich/adapt applications by creation of new associations/ (adding more
connectivity links) in existing applications

g) negotiate with other stakeholders of applications, or adapt dependency aspects

(i.e. privacy settings, etc), when applicable

Sharing ubiquitous applications and assisting with collaborative

development

a) Collaboration: Users can form communities, and share application
configurations, knowledge, tips, or even software that defines the artifacts
connectivities.

b) People can find (ie by keyword search) applications that may fit their needs, and
then adopt them for use in their environment. Ubiquitous applications should be
made to adapt to their environment semi-automatically.

¢) Developer communities can publicize and share different interaction modalities

for the editor.

Assisting in augmenting artifacts

a) Create the code for transforming the associative capabilities of an artifact

b) Port new software constructions (connectivities) into artifacts.

204

c¢) Share the code of artifacts, via a collective repository; find, within a
collaborative shared repository, suitable code for artifacts that can directly be

adopted or adapted.

12.6. The overview / control screen

Applications in ubiquitous computing environment have to face the problem of
visibility. It is not clear to inhabitants of an augmented environment that there are
ubiquitous applications running in the space, nor can they easily know which
applications are currently active. People have to also distinguish between these two
states of applications: the ones that are active in the background (not currently
colleting sensor data), and the ones that are currently being used (running).
Moreover, in the context of the Editor, they have to be able to see an overview of the
status of applications, either being draft (saved applications that are in progress of
development) , or created (finalized but not activated), the ones that are activated

(but can be paused), and the ones that are currently running.

An overview screen is considered a very useful addition to a ubiquitous system, that
shows applications that are active (that is, in the background but not functioning at
the time) or being used (applications that collect data and appropriates responses,

that is currently interacting within the environment and with users).

An overview screen (figure 39) has been proposed in the context of the ASTRA
project (that enables pervasive awareness applications) showing not only the
currently running applications but also the user groups that share awareness
information via each pervasive application. In the ASTRA context of collecting and
presenting awareness information using the ubiquitous home, this control view is an
idle screen that can become interactive when touched. It is intended to be a form of
interactive small frame (like a picture frame), that is always visible in a prominent

location within one’s home environment and running in idle mode showing in a loop

205

the active applications. Via this overview screen, direct control of switching OFF or
ON the applications is provided (pausing the currently used or running ones), as a
response to the feedback reported from users (see appendix 4). In addition, via this
screen, one can directly access more detailed functions of the editor , through a

graphical user interface.

el —
application name

OFE:

blur filtertbd filtertbd filter tbd
- - - -——

Figure 39: Visualization of the Idle/Observation Screen. At the lower part the OFF
switches for each individual application can be seen.

12.7. The role of communities in end user development: the
ASTRA project case

EU IST FET ASTRA (2005-2009) explored the role of communities in End User
Development, for Pervasive Awareness Systems. ASTRA (Astra project website)
aimed at a supporting infrastructure that allows users not only to use services but
also to develop new applications that will support and enhance their social
relationships. Services can be developed by the community that is going to use
them, but might also be provided by external parties, including both other

communities and individuals.

It has to be noted that sharing applications means that someone that has developed

and used an application is making it available to others as well - this not necessarily

206

implies that they use the application together. Moreover sharing can be supported by
the total application rules, but also of subsets of rules from an application. For
example sharing sets of rules that define the triggering of applications, or application
related vocabulary used by a community, can be possible paths that promote the
adoption of configurations. An extensive report, which describes in detail the
different community mechanisms as they are briefly reported in this section, can be

found in (Astra D4, 2009b), authored by M. Divitini.

End user development for ubiquitous computing applications consists of two parts:
a) finding the appropriate application and b) appropriating it for one’s own

environment.

Using a repository for finding applications

Considering EUD and communities, systems have to enable functionality for the
sharing of applications between users, and of other application relevant
communication and information. This can be made possible by agents that actively
help with the process of finding the applications that match certain
criteria/requirements, and by providing means of communication between users, in

order for them to help each other.

e A shared repository of ubiquitous computing applications. This should include
context explanations, which could be collaboratively built (ASTRA D4, 2009b).
In the context of pervasive awareness applications in particular, this could assist
users to understand the behavior of the applications (i.e. why the lamp is turning
green, what exactly is signified, that is then forgotten?)

e For application designers there is a specialized need for shares spaces for
collaborative software development from a software development perspective

(such as sourceforge.net) as well as support for selling ubicomp applications.

207

An overview of repository functionality (ASTRA D4, 2009b) identified for sharing
of applications in ASTRA is the following (figure 40):

e Sharing of applications

e Tagging of applications

e Browsing for applications

e Searching for applications

e Recommendation of applications

e Annotation/Rating of applications

The rules that trigger an application may be intertwined with contextual information
from the environment, that only makes sense when considering the specific context
of the environment (i.e. the specific artifacts present). Appropriation between
different environments is necessary (i.e. automatic, via intelligent systems, or user-
configured). A process of abstraction and revision can protect users (for reasons of
non-disclosing private data and information). A user may be, for example, willing to
share an application but not the specific rules that are associated within his or her

particular instantiation.

ASTRA Repository

Facilitator service
Browse
user
Get Recommendation

Figure 40: Use cases as they are identified for the ASTRA repository of Shared applications.
Source: (ASTRA D4, 2009b)

208

Tagging provides a way of describing items by collaboratively applying tags to
them. Tags can then be used for different categorization of items. In shared

repositories tagging functionality is a primary part of the system.

Searching is a common way to seek applications from a repository that can be
shared. Search types can include search by keywords, by similarity of
environments/artifacts, or by certain criteria (i.e. intrinsic properties of the

application, aspects that are important to the user).

Finding applications to appropriate into one’s environment can also be done by
browsing: browsing by tags that are most related, or by applications that are used by
people that have similar profiles. Recommendation can also assist users;
recommendation can occur when the system can observe the users behavior and can
suggest a list of potentially interesting applications to end users. This can be assisted
by an agent that compares the applications the user has active, with a list of popular
applications in the EUD community (ASTRA D4, 2009b). Recommendations can

also occur from individuals, directed to their common interest groups.

Appropriating shared applications to one’s own environment

When deciding to use an application from a shared repository, one must appropriate
it. By appropriation, a user has to tailor an application to his specific environment,
artifacts within it, and his or her specific wishes and needs. In this process some
artifacts, links or rules, may be omitted or replaced with others in the new
environment. Help of agent systems or expert people, through the community EUD

support tools, may be needed to appropriate the applications (figure 41).

209

Application Xsnaren

Description:
[revised]text

i R2w] -
ASTRA Repository

user A

Application Xa Application Xg user B

Description: Description:
texttexttext [revised]text
D

Figure 41: Sharing and appropriation of applications, in the case of ASTRA. (Source: ASTRA
D4, 2009).

12.8. Interaction Diagrams for editor: the ASTRA case

From an experience design perspective, a sequence of interaction diagrams are
needed in order to sketch out the specifics of the information flow and the GUI
controls. The interaction annotated diagrams take into consideration the interface
elements and use web forms for proposing indicative screen layouts. Subsequent
web implementation for ASTRA project has been based on the proposed interaction
structure, with iterations that were considered necessary by the development team in

order to reach a working version of the implementation.

In the case of the ASTRA pervasive awareness systems, separate groups of
functional elements were defined (that are linked to each other), that loosely
correspond to the different system modules. There are three main clusters of user
actions, proposed in the UI (figures 42, 56). The first part handles Awareness
Connections between users and groups (that is, defining to whom to make one’s
state known to, or whom to accept aware notifications from). The second part is
about creating the Pervasive Applications, this is where the user can associate their
awareness state to a pervasive awareness application and configure it (this involves
the configuration of the ubicomp application that that will define the user’s state to

be communicated, or the configuration of how to visualize the states of connected

210

others in the user’s specific augmented environment; as such it is the part involving
the main functions of end user development for ubicomp applications). The third
part allows the management of Users and Communities, which is about registering
users and allocating user groups, in a manner similar to current awareness systems.
An additional idle mode is suggested (figures 38, 39, 42), to allow not only
observation of currently active ubiquitous awareness application but also provides
the user with direct GUI controls for tweaking specifics (i.e. rules, filters) each

awareness application.

Observation/ldle Mode
Awareness status display (visualization of active apps, “being watched”)
Universal OFF switch
Awareness filters controls (blur, etc)]

EUD mode
(creating, supervising, editing, managing)
Awareness FN Pervasive Users and
Connections Applications Communities
| i

detailed GUIsTlowin progress, detailed GUsflowin progress,
ashanded outin tools workshap ashanded outin toolsworkshop

Figure 42: An overview of the separate GUI parts, as proposed for the ASTRA Editing Tools
interface; the swap between an observational idle mode and an editing mode is noted.

12.9. Conclusions

In this chapter, main functions that are considered as prominent in Editors were

discussed. The following were identified as important issues:

e An overview control observation screen is introduced; it allows observation
of the current running applications, as well providing the overall OFF switch,

or the specific off/on switches per application. Tweaking of properties can be

211

possible here but only through simple gauges, while one can use this idle
mode as an access screen to the ‘mainstream’ editor GUI which contains the
detailed functions of the End User Design and Configuration part.

There is a need to visually identify in the editor interface which applications
are created, which are activated, and which are currently running.

The interface layer needs to be separated from the intermediate device
interaction layer and the function layer of the system (Figure 37). This is
suggested for the better management of the interface in order to provide
different instantiations for different devices, interfaces and modalities.

The addition of modules for community-sharing are proposed as an
important element, assisting in the finding, sharing and porting ubicomp
applications (that can then be adapted to a certain environment).
Appropriation of applications for different ubiquitous environments is a key
issue that remains to be addressed by ubicomp research.

Programming of new ubiquitous applications, by associating artifacts and
creating specific rules, is the most difficult issue for end users in their
function as programmers. Their success in this relies on appropriate visual
syntaxes and Graphical User Interfaces that need to be developed through
iterative design experimentation, in parallel with developments on ubicomp

system architectures.

212

13

13. Graphical User Interfaces:
Abstractions and syntaxes, for End

User Configuration in Aml

13.1. Introduction

Different syntaxes and visualizations that enable end users to design and to program
their ubiquitous computing environment are outlined in this chapter. Cooperating
alternative views of the perspectives of design and programming in order to create
applications, are presented. Information visualization approaches for End User
Programming appear with many different syntax and notations. Several scenario
sketches, in the form of visual explorations used as stimuli for further

considerations, are presented in order to explore possibilities regarding the interface.

213

Some different approaches for End User Development, ranging from the most

prominent syntaxes to the less explored, are the following:

Tree structure of execution flow (Figures 57, 58), with choices in each step:
this is a typical syntax for programming visualization, addressing End User
Programming from a software developer’s perspective. Nevertheless since
this visualization is becoming more common in operating systems, casual

users are not utterly unfamiliar with it.

Pipeline: this is a syntax visualization that assumes the view of a flow,
whereby components are positioned and connected to each other. This view
is familiar to application designers, but is not difficult for end users to grasp
either (examples can be seen in figures: 44, 45, 46, 54). The specific
terminology and complexity in structures that it allows is a defining factor
regarding how proficient with programming end users need to be to

manipulate them.

Puzzle: this is a metaphor commonly used in component based systems. It
primarily relates to end user design aspects, as it provides an existing model
for users to be able to readily use; yet it is exactly there where the problems
begin: it has only one to one associations with other components, and it can
promote a rather simplistic view that prevents from reasoning on more
complex applications. Yet it holds potential when taken as inspiration but
used in a more abstract form (abstracted on a broader model, rather than a
directly applied metaphor that is visually implied), and can be generalized in
the form of a pipeline or a model schema. In ACCORD the Puzzle metaphor
(see Figure 15, Chapter 5) is found as an easy to use interface by naive users
(Rodden et al, 2007), (ACCORD project website). Siftables (Merrill, 2007),
(SIFTABLES project website) seem to resort to the same puzzle metaphor

principle in their proposed tangible proximity based interaction language,

214

whereby puzzles take shape as they are put next to each other, rather than

being predefined and associated (Fig 13, Chapter 5).

Direct association with lines-wiring: this approach involves creating lines
as links between components, in order to define an application (figure 52,
53). This can cause problems to end users, since, however easy it may seem
at first, for two or three artifacts, it is rapidly becoming visually confusing
and the sequence of action, or the timeline of actions, becomes increasingly
more unclear as more artifact-components are introduced, resulting in a

‘spaghetti-like’ view (see figure 52).

Wizard step by step dialogue approach: This is a form of an easy-to-use
dialogue (with step-by-step questions and answers), but on the downside it
takes a long time to complete, and provides no overview of what application
functionality is created - that is especially important when one wants to be
able to re-visit it and change it. This can be used by non experienced users;
nevertheless it can prove very cumbersome and time consuming, and it is
very hard to remember the previous choices and steps to get an overview of
what has been done, unless the visualization offers a more complex

alternative in parallel with the wizard.

The Text-based scenario: This proposal is the most challenging, in terms of
inference involved in it’s implementation, but it also holds more promise for
end users acting as designers. All the previously mentioned approaches have
as a downside that they expect users to rationalize on the applications on the
basis of artifacts and how these are inter-associated with each other.
Although such views are valid to get an overview of how the connections of
the system are made, people do not usually think in these terms. They tend to
think of their own goals they want to accomplish, and not the medium that is
in between. For example: Jenny would express an application in the

following way: “When I wake up, I want to have fresh coffee and music, and

215

have ample daylight”. Decomposing this into reasoning about artifacts and
their connections is not as natural an expression, as it would result in
something like: “When the bed-sensors weight value is 0, then coffee maker
Turn ON, Music player Turn ON”. It should also be noted that the duration
that this (or any other similar) application will run will be endless, causing a
malfunction not obvious at first, that would need some sort of system
assistance, ie via a dialogue, at the configuration stage. The text based
scenario when alternated with one of the application-structure programming
views that were mentioned above (such as the ‘pipeline’, see fig. 54), can act
as a bridge between expressing and understanding/manipulating. It acts as an
End User Design tool, but one that can give input to visualization of
programming interfaces. This approach is the most suitable to promote the

method of scenario based development for End User Design.

e Visualization of a Mental Model can be used as the basis for an interface.
For example the Capabilities and Links model (see chapter 9) can be
visualized in interlinked devices, borrowing elements from the Jigsaw-
puzzle, as well as the Line-wiring associations, that are described above. It
provides clarity to the end users at first use, but it is not suitable for complex
applications involving many artifacts and many connections. Nevertheless it

can perhaps be scaled up in visualizations using the “tag-clouds’

(Lohmann
et al, 2009) —(a clustered layout of tags whereby distance between tags
follows certain semantic relatedness criteria, and related tags are positioned

in close proximity, with the most contextually appropriate ones appearing

> A Tag Cloud is a visual depiction shown as a weighted list in visual design. Tags are usually single
words while the importance of a tag is shown with size or location. The tags are usually hyperlinks
that lead to a collection of items that are associated with a tag.

216

larger in size), and “Level of Detail”® type of visualization approaches. Such
approaches require more extensive visual design experimentation and may
need to be accompanied by an alternative view of a programming syntax

(such as the pipeline or tree diagram visual approaches).

e Form-based system: Most graphical user interfaces for end user
development of ubiquitous systems involve the use of forms. They typically
use mixed interfaces combining pull-down menus, checkboxes, drag and
drop selection mechanisms, and can even provide alternative views to swap
between different syntax. Their advantage is that users are already
accustomed to them from web configurations, and such implementations are

easily ported in a number of devices.

e Advanced interfaces:, Alternative more eclaborate models can also be
explored, with a starting point from the mental model. The bubble metaphor,
for example [see JRC’s Digital Territories report (Daskala & Maghiros,
2007)] can hold potential to be visually explored, combined with
visualizations borrowing elements from Level-of-Detail and Tag Clouds

visualizations, which were mentioned above.

e Programming by example techniques, or tangible interaction languages:

This approach needs to be coupled with a visual representation (ie. Pipeline,

% Level of Detail is a visualization of context presentation that combines smooth zooming (i.e. by use
of pyramidal tiff), and GIS technology (georeference info, see for example the GoogleEarth and
GoogleSky application). An example implementation of Level of Detail visualization is Microsoft’s
Deep Zoom for image viewing applications. Users can pan around and zoom into a large, high
resolution image or a large collection of images, through high quality transitions. Image regions are
downloaded as the user zooms into them, while animations hide any jerkiness in the transition. Items
can be rearranged by using keyword tags where the user zooms towards one single item depiction /
name and a description/view of that item appears in a separate text pane (for a DeepZoom example
see the hard-rock café memorabilia website, http://memorabilia.hardrock.com/).

217

Tree-diagram), so when checking back on the application that is created, one
can see what is achieved, can reason about the configuration and manipulate
it’s specifics parameters. Programming by example techniques can be
applicable for a subset of applications, whereby the artifacts are such that can
be manipulated. However they cannot be used in all application cases, that
can contain, for example, more abstract information, (consider that can be
described as follows: “when it is Christmas day, and the outside temperature
is less than -5, and there are more than 3 people in the house, then play
festive music related to snow”). Not all these conditions can be replicated at

programming time.

:::::

Worggtess R

soice

: buecs har@are

-.,.A_.,-‘V'Sta Intetiae" g g tecf gy
Nabaztag

tui@al landiage seffich
G

fuihy

o 3 i . D
perl pbp I n@ibe il geine

devef@ment ref@ehce fonts @ odbes
xbo

o
p.m&iugramﬂ% 6 foid § & art - v o
Wetisign hot@raphy 18
S| o Phote@r=phy
e blog - animation
3 operigpurce ; 4 *
f GooSync iod— ‘ acce
s t"c‘;’ﬁiifnme o 0 L ‘

photogallery ™
adgets API

cinemaMmovie

Figure 43: Examples of Tag Cloud Visualisations (source:
http://en.wikipedia.org/wiki/Tag_cloud)

In the following sections, visual experiments for graphical user interfaces are

presented, using several of the above notations and syntaxes.

218

13.2. Pipeline style: interface examples and experiments

The pipeline view uses a linear organization of elements, in sequential flow
visualization. It can be easily understood by end users and developers alike,

depending on the technical language and level of detail that is being used.

Visual scenarios were created with the pipeline style in order to explore the design
space considering this visualization as a suitable one for End User Development. It
is also a visualization that can apply to the Capabilities and Links model (referred to
initially as the Plug Synapse model) that has been proposed in previous chapters (see
chapter 9), therefore bridging people’s understanding on the working of the system,

with the manipulation of the components of applications.

Pipeline examples: the case of the CollaborationBus project

A Pipeline view for editing is used in the the CollaborationBus example (see
Figures 44, 45) (Gross and Marquardt, 2007). In the Pipeline model, abstractions of
Sensors, Filters, and Actuations, are selected and sequentially placed after each other
in a row. Many elements can be placed in parallel with each other (see Fig.44), so
that AND functions are achieved. It is noted that, In the CollaborationBus example
(Gross and Marquardt, 2007), the most popular function among users was the
sharing mechanism. Ready-to-use pipeline compositions, found in the shared
repository, can then be used as a template to modify parameters or build new
configurations. A drag and drop mechanism can be a further development on this

interface.

We note that in the CollaborationBus example the components are used in stacks,
with filters added between sensors and actuators. Multiple pipeline rows have the
advantage that they can indicate many connections. Yet, in the specific
implementation, the resulting extended pipeline with the terminology used by the
CollaborationBus project, is considered as extended, complex too technical for the

average end user.

219

b

Figure 44: Detail of the CollaborationBus Pipeline editor. Source: (Gross and Marquardt,
2007)

8 ® D B B N

A @
m_hmmmimmwwumm

ParsanalRapesitary
FpinelineCompgesitions - Vecicr
Fadal]]
|+eiear() L —_—
1
|+getEntriza() : Veetor 1 m::.:::m“
(rserializel} : - 11
I
- Fedited © bool - PipeiineCompanent
SharedRs L aharePrivieges :am .
tsharedRepositoryEntries ; Vector Foobisher s ipelineComponents. ! Uaﬁnmr : o_]
[Hype - string Eﬁ5 o.
lromave(210} 1
()) ; - _thxcfu mm ; L [rcemponenty | N d()
+gatEntries() : Vectar 1 |eavingConguration : vector A -1 fremoveCompanent() 1.4 praddSink)
[reerializai] olear))
[rdaserializa()
sensor Filter Actuator
Sensor 1 Sansor 2 Sensor n Fitter 1 Filter 2 Filter n Actuator 1 Actuator 2 Actuator n

Figure 45: The Pipeline Editor in the CollaborationBus example. and its repository and
pipeline UML class diagram. Source: (Gross & Marquardt, 2007)

220

Pipeline examples: experimentation based on pervasive awareness

application scenaria

Alternative Graphical User interfaces for the creation of Pervasive Awareness
applications, as well as different models and visualizations for Rule Editing, aimed
at different target audiences were explored in GUI design scenarios (Fig. 46, 47, 48).
Pervasive awareness applications are applications that enable friends or family to be
aware of what the other’s situation is, via ubiquitous computing applications in their
environments. Pervasive Awareness applications therefore can involve a part
whereby the ubiquitous computing application, at each node, needs to be configured

by people that wish to share awareness information with others.

The interface proposed in (Fig. 46, 47, 48) is used for configuring a ubiquitous
computing application for awareness communication, and is aimed at young
teenagers, using the characteristic comic-strip style of the artist Keith Haring
(Fokidou et al, 2008). This pipeline view ismore simplified to the one presented in
the CollaborationBus example. In this case all the elements are put in one line (and
not in stacks), with the specific properties being selected from pull-down menus and

connected by Boolean expressions.

The rule editing proposed here is based on a pipeline model: Artifacts, applications
and operators are presented in the form of floating entities on a scrolling window;
they can be drag-and-dropped onto the pipeline on the lower part of the screen,
where they are arranged into rules for pervasive awareness applications. The
specifics of the associations between the selected objects in this pipeline visual
experiment are selected via pull-down menus (AND/OR). The particular
combination is then given a name (in this case, of an awareness application that

signifies awareness information to be shared with friends).

221

AHMIQYPMQ THN EQAPMOTH MOY BHMA2AMNO2 s pyw

EI0Gyw avTikeipeva 1) Bfhwon

Npoadikn n r~
Eigaywy am Aigta

it

or

and

EGapuGdL T guvBrikn

Figure 46: The Pipeline Editor visual scenario, aimed at teenagers. The artifacts are
selected from the above window, and could be alternatively presented based on Tag-Clouds, or
Deep-Zoom visualisations. Source: (Fokidou, Romoudi, and Mavrommati, 2008)

The applications created can be shared with selected friends; upon receiving it they
can associate this awareness ‘message’ to certain actions of the artifacts around
them, thus developing the receiving pervasive awareness application part, in a
similar way. Direct messaging of friends while creating or sharing an application, is

proposed as a part of this End User Tool scenario.

The pipeline concept is easy to grasp; this example can be expanded by including
other application parts in the pipeline itself (by their name), and treat them in the

same way as a part of the total configuration (and not only as output result).

222

AFRBIO

EDEPTUES

Enniza

R
st

EPTANEIR

AMED0UVEN AMETpOVIDY TouBpOpLinY
eiza NARE0

Kubiweg npoopoor

Elooo wg Tuvbideptvog

™ Reoyapsveson mg rmurtmios pos
T Aoy e iusbisi npoapasng
™ Auttponn ioosog

T N ooan
APRto e HUELR
Eperioes o

Tpoadiien tmaghg
Enses Entitpyaia traghc
aypagd emogts:

0N vEa CRIDROYA

RN
e lrm -

esmenf EmER
ettty Angioupyla op6Bag == Lores
Encézpyoaio op6dag
EPTANg Maypagh opddag EPtAng
o RS - P
@ikippiopa enogly = = :
Mpopokj emapin ® Tinke -

pappoyr, eppavi{apevo dvopa
Kal tiKéva

Dvoua kal Epapuov
Opada xai eopiiovh

et

-

Snpioupys o £popyorY

& dngiougya v Egopydy .

AHMIOYPTQ THN EQAPMOTH MOY BHMA 1 ANIO 2 AHMIOYPID THN EGAPMOTH MOY BHMA 2 ATO 2 m,.zv
= eotyw avimelyievo A Sfwon

r—,. Sl
g Bivia TiThe. yoou. QR %

if

and

e Othurt va Suogiurt! 1 sgapyoY, Bara 1-2;

Biker va Bnpogicurel o Tithog g tgappoyhs W

AmoBikeuan 19apuov
Anpooievan
flpoadien aTa ayamnuiva

ox CANCEL

Figure 47: An interface using the pipeline model, aimed at young teenagers, using for
artifact selection the characteristic comic-strip style of the artist Keith Haring. Source:
(Fokidou, Romoudi, and Mavrommati, 2008)

In the artifact selection pane, visualizations can use combinatory approaches,

including, for example, tag-clouds (Fig.46), so that related artifacts appear more

prominent, especially when combined with dynamic zoom to select artifacts from. It

223

can also be combined with a search function, and ‘selection by example’ functions
(by this selecting the artifact in the actual environment is suggested, or even the
artifact function with programming by example techniques). After selection of the
artifact or its property, the pipeline view provides a programming syntax for the
configuration of easy applications. The breaking up of applications into smaller (true
or false) elements adds benefits for checking and reasoning on the sub parts of more
complex applications. Yet, it remains an issue with the pipeline model, the use of
programming language and syntax that can be challenging for non-professionals;

especially the usage of Booleans is not always well understood.

28 vo00 /" E~ @147
| paBipata 11t
L oivepd

football
BEheap

Bnuioupy(s v epapyoyh
1 EAiga gag oréhver v cpapuoyf e

© Gang xer SeyBel T EPOpUOYT gag AmooTohn

faotball

Figure 48: Proposed functionality in this GUI scenario includes a chat-space, that enables
synchronous discussion between teenagers, to facilitate collaborative End User Development

13.3. Graphical Interface Experiments for End User
Programming: the e-Gadgets case

In the case of the e-Gadgets project (e-Gadgets website), implementation
experiments for End User Programming included a graphical user interface using an
association matrix (figure 53). Certain capabilities of appliances/objects could be

associated thus creating groups of configurations for a certain purpose-application.

224

Selection by proximity (see figure 49) is a possibility for selecting artifacts, or
manipulating them via ‘programming by example’ techniques (ie via a camera based
system). Nevertheless a list view is also needed, because some artifacts may be too

small, or not possible to select by proximity (i.e. a temperature sensor, a heating

system, a certain combination of values, etc).

Figure 49 : Handheld device (storyboard): The editor functions in the GUI of a
handheld device (PDA), which is a specialized extrovert gadget.

morning bath

gadgetworld is created sucesfully

Figure 50: Handheld device: application creation (storyboard). The GUI corresponds
directly to the connectivities — links (plug-synapse) model, using a simplified form of ‘line
wiring’ connections, but suitable for ‘low-level’ applications.

225

Diet Gadgetworld Diet Gadgetworld

light u I ght u
what to eat @ what to eat i
—— @ o S Q@
£

/ !’

¢ DELETE SYNAPSE? Diet Gadgetworld

is deconstructed

Figure 51: Handheld device (storyboard): deletion of a connection between artifacts,
and therefore deletion of an application that has only one connection.

Capability-plugs, indicating the affordances of artifacts (see chapter 9), are used in
the visualization of figure 50, 51; even though they are based on sensor readings
they are more complex constructs than plain sensors. These connectable abilities are
created and allocated (ie by artifact manufacturers as factory settings) to each
artifact as set of capability-plugs, that is predefined in their software (as in the e-
Gadgets project assumption), or can be evolved or adapted by users who would be
capable or willing to create and port such software constructs into artifacts, or could

be instantiated using ontology based definitions.

Advantages and disadvantages of the interface

A clear advantage of the graphical user interface representation shown in figure 50 is
that, following the visualization of the plug-synapse mental model for the underlying
technology, it is very easy for novice users to grasp the concepts and use the
interface (as can be seen the evaluation results reported in chapter 11 and appendices
1 — 4). People in the evaluation sessions were able to make simple directional
associations between two artifacts, and thus created simple ubiquitous applications,

getting initialized to the idea of programming their environment.

When two artifacts are associated, a link between them is created, with standard,

automated specific settings on the configuration. Simple commands (IF ... THEN) or

226

Booleans, used in order to modify the preset-values can be added via menus on top

of the association links.

DESK LAMP
T-plug T-plug
weight on/off
proximity intensity
study / study
location

BOOK CHAIR
T-plug T-plug
open/closed occupancy
luminosity

Figure 52: Top: the application here is described visually: “when the book is on the
desk, and the specific chair is near the desk, then turn the light on” (T-plug refers to the
Identity of the artifact). Bottom: the resulting ‘spaghetti’-like visual effect of many links, based
on the direct model visualization.

The disadvantage of this visualization approach is that it enables rather simplistic
configurations. When more than one association is required between artifacts, the
visualization becomes that of link wiring, that is more complex and visually messy
(figure 52), and it is difficult to reason on the cause and effect relationships. (To

solve this, a matrix visualization for associations (figure 53) was proposed, that is

described in the following section)

227

A more important issue is the fact that starting from the level of artifact selection
(and actuator / sensors), for establishing an application, is how most people think of
ubiquitous applications. People tend to express their wishes in terms of functions
they want. i.e. “I want to always have enough light when I am reading”, rather than
“WHEN the book is ON the desk, AND the luminocity of the space is low, THEN
turn the closest available light source ON). Moreover there is an issue with people
reasoning how to cease the running of the application., i.e. once the light is ON in
the above example, one has to set a second application in order to Deactivate the

first one, and there is still the risk of getting in a spurious activation/deactivation

cycle when specifying trigger conditions without enough thought. Also, apart from

the user of artifacts, use of generic conditionals and timers need to be added, that are

also elements that have to be represented as artifacts, although they are more

abstract and generic in nature.

13.4. Other Interface experiments for End User Programming

A grid visualization was also a visual experiment conducted (Mavrommati and
Kameas, 2003a) as a graphical user interface for associating artifacts (see below).
Although this visualization was providing an overview, it is also not a fully scalable
approach: the matrix has a limitation due to the certain amount of lines — even if
scrollable it would have limited visible area; however it could support zooming.
Users can click on the boxes of the meeting points of artifacts rows, in order to
initiate links between them. The grid, and the need for directionality of links, makes
it necessary to list artifacts twice (horizontally and vertically), which can confuse
users and adds unnecessary repetition in the available screen space. This grid
overview can be useful to the more adept application designers, since a larger
amount of links and thus more complex applications can be created. Nevertheless for
novice users it is complex to understand the established application, and therefore is

not considered as valid an approach as the more direct associative one using links

228

wiring, (that is mentioned in the previous section). To indicate directionality of

links, arrows are shown in the intersection cells.

One advantage of the grid (figure 53) is that all connections can be displayed (while
the pipeline model only displays as many rows as connections, at the grid-view all
possibilities are shown). An additional benefit is that it allows easy view of the
events from a device to itself (which is possible in devices that are systems
comprised of subparts, i.e. a stereo system or a video recorder, or an in-house

security system).

conmect
e-Gaggets
IR IR
.k
#:loy
e-lamp
.t
é-bear
»> 1
. —_—
e-book
~+ i
. 4
e-eore
bere appears » description (per case) ¢n what the syrapye can do
in nateral-wser wnderstood terms...

Figure 53: The grid view for establishing links between artifacts in the e-Gadgets project case.

Steps for users to associate artifacts and create Ubicomp applications:

In the above grid interface, users need to proceed by a limited number of actions:

1. Think of application, in terms of artifacts and the relationship between them
2. View existing applications, or View existing artifacts

3. Select artifacts from their environment (or their properties)

229

4. Select and associate artifact capabilities, into pairs, establishing links
5. Add the parameters of the links (‘rule editing’ of the application).
6. After creating all the applications, give a name to the application that is

created and a description so that one can remember it by.

Several problems are expected to occur with testing the applications that has been
created. One of them is that not all conditions may be present at the time of
creation, (for example, there may be daylight and the application may require low
lighting conditions, or it may be summertime, and the application pertains winter
temperatures, or it may be regarding a party situation, while only one person is
present in the space at programming time). Subsequent problems occur with
debugging the application, since usage conditions at debugging time need to be
replicated. Emulators and debugging facilitation mechanisms are needed to solve
this problem. Collaborative development, where one may ask for help from a team

of more advanced programmers, may also provide ways to ease such difficulties.

Another issue is for a user being able to remember over an extended time period,
what the application does, judging by its name. Description and keywords are

therefore considered a useful addition to Editors.

13.5. Form based editors: the ASTRA interface scenarios

The design and scenarios for the ASTRA End User Tools (EUTs) (see ASTRA
Deliverable D4a) are described here as a case study for exploring visualization and
functional possibilities of End User Development Tools. The ASTRA tools concept
use a combination of the Pipeline model and forms that can be alternated in use with
a natural dialogue interface, whereby end users can design application scenarios
(that they can then observe or alternate to the Pipeline view to understand the

interconnections better).

230

Goals and approach

The scenarios of the ASTRA set of tools aimed to exploit the underlying ASTRA
Service Oriented Architecture (SOA), and give users the possibility to take
advantage of predefined services, as well as support the easy creation of applications
by communities and the interaction among these applications. The aim was to
develop a prototype End User Tools Suite that would show user management, rule
editing, and application management in a SOA based implementation, mapped to the
ASTRA connectivity theory and model (Calemis and Mavrommati, 2007),
(Mavrommati and Calemis, 2010). Flexibility in terms of representation was another
objective: being able to run in many devices, but also to support alternative
interfaces (in order to test for example alternative models for rule editing —supported

by appropriate information visualization).

Approach

The ASTRA End User Development Tool (EUT) proposes the use of a web
interface and is based on the ASTRA SOA via the respective Application
Programming Interface (API) (Mavrommati and Calemis, 2010). This API can be
used as a basis to integrate future interface developments. The ASTRA EUT aim to
serve as a basis for integration of other developments, such as alternative interfaces,
adding an ASTRA pervasive application part to other third party awareness
applications and mechanisms for enabling community development. So it aimes to
serve as the basis for enabling community driven breakthrough in end user

development for pervasive awareness applications.

Initial experiments with rule editing implementation, in the ASTRA project case,
progressed with the definition of Scenarios (and subsequent Use Cases based on the
SOA and mapped on the ASTRA Formal Model), through annotated interaction
diagrams, to the design of GUI interfaces supporting the interaction and finally an
implemented version of EUT that was interfacing with the SOA. Still, what is

presented in this section is the concepts from the design phases, and not the ones that

231

were finally developed; this is so as not to limit the ideas into a subset occurring

from the constraints of deployment.

Considerations regarding the Interface

Programming by example was ruled our as a selection for the running version of
EUT, due to the problems and the complexity that it could introduce. While in some
cases (the straightforward cases, where there are fixed sensors, no ambiguity, no
implied inferences, no other programs or intrusions) programming by example can
help, these are also cases that are considered easier to program manually. In the most
complex cases where it would make sense to program by example, then problems
may occur - due to ambiguity of input, ambiguity of intention, what is implicit and
what not. To achieve programming by example in these most complex cases, usage
of historical data and observation over time may be needed. It is noted again here
that not all ubiquitous computing application scenaria can be realized by

programming by example.

More complex forms or interaction paradigms can allow more possibilities for
creating applications, but are harder to use for end users (unless the target group
becomes very specific and therefore more limited in number). For the target group
of elderly for example (that is a key target group to pervasive awareness projects
such as ASTRA) and their families, simplicity in the form of interaction is a key
element, so a step by step wizard can be a suitable interface. There is an obvious
trade-off with simplicity: it limits the scope of possibilities in EUD. The trade-off is
that by simple, easy to use mechanisms, there are fewer possibilities for creating

more complex applications.

Some of the possible Uls that have been ruled out, for the ASTRA project case, after

initial consideration are:

TUIs: Tangible User Interfaces (radio dials, knobs, etc) can often be very target-

group specific. Moreover they may provide limitations regarding the possibility to

232

generalize their functions; they need to have predefined functions, and can be more
appropriate to be used for certain applications as their tangible controls. This is
feasible by associating TUIs (i.e. sliders, buttons, objects) with certain application
functions via the Editor, for manipulating certain aspects of the application, rather
than using them as generic editing mechanisms. Some initial experimentation with
tangible interfaces and video prototypes were conducted at the start of both the
ASTRA and e-Gadgets projects but were not taken as viable solutions on their own.
Designing and developing a tangible interface would take a prohibitive amount of
time compared to a form based/GUI interface and it would divert effort from the
exploration of the appropriate conceptual model for supporting End User
Programming. Furthermore tangible interfaces make distribution and scope for
deployment logistically more complex - especially if the aim is to support the
involvement of communities of users. Distribution and support would be costlier,
less scalable and overall more difficult by tangible Uls than what is currently
possible via the internet. Tangible interfaces are considered as a possible path
addressing the specific target groups that one could explore in the future, but is a

rather limited one in terms of broader scope.

Wizards were initially considered either in spoken or text based system, aimed
especially to the target group of the elderly. Wizards have the risk of increasing the
interaction time and end up tiresome, because of offering the many programming
choices in a step by step way. The steps involved here can be simplified by allowing
selection of choices from an application list, labeling it as required, then followed by

a (semi) automatic appropriation.

Although Forms and Wizards may seem at first glance an approach not as rich for
Ubicomp environments as tangible Uls or direct manipulation, yet, they constitute
approaches more portable to different devices; in addition we consider them as being
more suitable for the average user with some experience in filling of forms or

navigating in simple interactive applications. Moreover forms can be complemented

233

by widgets and query dialogues, as alternative controls, making them more flexible

and broad.

Regarding GUIs for more detailed development of applications, alternative views of
rule editing are considered, such as using the visualization of the pipeline,
connection node diagrams (using tree-structure visualization), etc. Two alternative
views (within the same GUI) for rule editing have been proposed in the design phase
of ASTRA (figure 54). A connection mode, using a combination-view of a pipeline-
tree diagram and an alternative free natural text dialogue, was proposed (but could
not be implemented in the scope of the project). The rule editing is supported by
visual feedback at the lower part of the screen that combines text and tree structure,

and can be manipulated at the nodes.

FEEL NOT WELL FEEL NOT WELL _ _ _

sers via natural dialogue. Ontology

Ye
Is that the only time when you are not feeling well?
No, there are more times

Can you give me another example, for the more times? |

Type free text dialogue here

Text feedback on editing: Cooking HEN MarthaWalk J s

SAVE

CREATE | SAVE

Figure 54: Alternative views for rule editing: Text and Pipeline view. In the pipeline
view a number of preset awareness applications can be selected, as well as applications from the
community repository that can be modified. Other parameters can be added, configured as
part of the ubiquitous application.

In the ASTRA tools, the availability of a list of predefined applications was
proposed, where the novice user will only have to select from the ASTRA awareness
applications menu (from pool of ASTRA applications created by the community)
and also select the person(s) they want to share awareness information with.

Appropriation can then be done automatically in their own environment, informing

234

them on the predetermined specifics of the devices used for capture/actuations.
There are follow up issues raised on being aware of which awareness applications
are accepted and which devices participate in them (i.e. remembering), that need to
be addressed in supporting elements of End User Tools (a proposed design solution
for this is the ‘Idle mode’, (described in chapter 12). Awareness states (ie sleeping,
cooking, location, etc.) are introduced as a way to provide ready-made components

for awareness applications, which can be inferred from separate sub-systems within

;]
o =
B ARy
FEEL NOT WELL
type search keywords
application name date created activity active published
cooking 1 dee 07 o W oves
N MarthaWalk J v
1 Save bridgewish 11 dec.o & o
not well 11 dec 07
BRIDGEWISH BY LILY
BLAHBLAHBLAH DETAILS, click here for the seams and editing
i SodRackion sckiog; S .) BLABLAH BLAH APPLICATIONBLABLAH BLAH APPLICATIONSL
TEST CLEAR UNDO BLABLAH BLAH APPLICATIONSBLABLAH BLAH APPLICATION
SAVE BLABLAH BLAH APPLICATIONSBLABLAH BLAH APPLICATIO

Figure 55: ASTRA sample screens (drafts): Rule Editing, and Application List

~1y
'1ﬂ
~ly
-|’
Iy
~1y

(ol (@ (@[,
- ——
LN NY /NS

type search keywords

SLEEPING

SLEEPING VIVIAN Cooking of Mary

send by: MaryJane send by: MaryJane Cycling with mary

My Location Info to: Family, Erik, Monica, NeighbourFriends to: Family, Erik, Monica, NeighbourFriends Sleping Vivian
description: do not disturb me
when | am resting

description: do not disturb me peaiome
when i am resting Bridga time.

r, FAMILY accepted by 6 Grandma watch
Images from Astrid ‘ 1 FRIENDS s sleeping Trene Cooking
Erik's location now Do not disturb
PUBLISH E_F GRANDCHID! ACCEPT || REJECT Not feel well
' My Location Info

Figure 56: Awareness connections Screens, displaying the shared receiving (left) and
sending (right) side of the application. As well as allowing for publishing and subscribing
awareness applications to communities, the screen also provides a quick overview of all ASTRA
awareness applications shared. A Search function that directs to the community repository of
applications is also available on top.

235

13.6. General programming issues:

Some programming issues (that have been observed in the course of the design work
reported in previous sections) can occur when the status is ‘momentary’ versus
being ‘event based’ (having duration). For example Anne wants to know when John
is back from school; she has set the pervasive awareness system to let her know that
he is back, when someone sits on the sofa - which has embedded sensors (i.e.
pressure sensors on the seat). So it gives the signal that John is back from school
when he sits on the sofa, but without taking into account when that activity should
end in time; i.e. the next day is he still back from school (from the previous day’s
state), or is he not in yet? The system knows that John is back in the house from
school, by checking if he sits on the sofa. Once this is set to TRUE then he is back,
without the possibility to reverse this state. Nevertheless, once he has sat on the sofa,
he is perceived as being in the house and this status is not checked again; thus the
following day, the system perceives him as still being in the house, although he is no

longer sitting on the sofa.

To solve this problem, models are required, that take into consideration the length of
time, status updates and transitions. The status should not be event-based but based
on the transitions that occur. This may be hard for end users to figure when the
applications they designed exhibit erratic behavior (other than the expected

behavior). They need to program into their applications the time when to restart the

application. In this case, the end user programming model should not be based on

the definition of Booleans (event based models), but on state transitions. Events

should be handled by system designers as input/output transitions, involving an

entering state and a closing state, rather than a momentary event occurrence.

236

Let specific entities know that myh’nond vlis |great |when |specific conditions|apply :
alternative1[?]X]|ne¥ alternative. exception *[ZIX] ne¥ exception
When all the following sentenses apply

*+ Calendar claims that , and Clock claims that
\n;y day is Satux:day,cu: Sunday v 4] wy local time is hetween- -and- -I_l

+ Yahoo weather clains that
wy weather is |good,or fairw|, or the temperature is more than 21 " Celcius

o W good J - |
I W fair _ |

[T bad R |

[T terrible

Figure 57: Extract from a service that employs the expression editor to let the user express to
somebody that she is in a good mood on weekends with nice weather (Image is credited to
G.Metaxas, Amelie system, Source: ASTRA D4, 2009).

+ place-market detector claims that , or LLCoold test claims that
uy place iz market ny place i=s .:.ff:i_.:e;I

| - | L - L - || b office
| - . | [T hone J
| - |

Figure 58: Example of two heterogeneous ranges combined in a common group based on their
common aspect (Source: G. Metaxas, ASTRA D4, 2009).

237

13.7. Conclusions

In this chapter interface characteristics for Editors were presented, such are the

following:

The use of web forms or xml constructs is suggested, providing an umbrella
structure that most are adept with, and also providing the possibility of cascading

detail.

The need to have multiple representations for End User Programming is stressed:
natural language dialogue, in parallel with other modalities. Interfaces based on
the pipeline view or the Capabilities and Links (Plug-Synapse) model can be
effective, but also step by step wizards are needed for less computationally adept

audience.

Attention to the language used: it has to be easily understandable, and be based
on simplified concepts of the model of the system, so that the users know what
they are expected to do. The Capabilities and Links (Plug-Synapse) model is
seen as a possible model where system explanation can be based, although it
does not need to be followed in a direct model representation within the
programming interface (nevertheless for easy-to-understand and use systems,

this coupling helps).

238

14. Towards a framework for the
design of Ubiquitous Systems

supporting end-user development

“Generalization is a verbal act of thought and reflects reality in quite another way

than sensation and perception reflect it”. Lev Vygotsky

14.1. Introduction

This chapter outlines theoretical and methodological constructs, towards the
definition of a Framework for the design of Ubiquitous Systems supporting end-user
development. The framework is based on a multi-disciplinary perspective,
attempting to bridge design and system constructs from a User Experience design
perspective, in order to provide common understanding to Ubicomp Development

teams.

239

End User Development in ubiquitous computing environments is an area still in the
early stages of research; design frameworks targeting End User Development in
Ubiquitous Computing systems do not exist. A first structure of concepts and
methodologies, towards what can be a framework that addresses the design of
Ubiquitous computer systems that support End User Development, are reported in
this chapter. The proposal is broad and consists of theories and methodologies for
the design and engineering of Ubicomp systems that support End User
Development; elements of the theories and methodologies will be outlined in the

following sections.

The Broad Framework for the design of Ubicomp Systems supporting End User
Development came as a result of a design rationale process on several sub-issues of
Ubiquitous Computing and End User Development (Mavrommati and Darzentas,
2011). Design Rationale and Scenario Based Design were considered a fit way to
explore the area of ubiquitous computing and end user development because “if
links creative intuition and grounded analysis, and it’s constructive enthusiasm is
best suited for ambiguities of technology” (Carroll, 2000, pp315). Ambiguity and
the open ended nature of scenarios support both creative design and analytical
thinking, with scenarios helping to form a more concrete hypothetical view in the

technological future.

Sub issues addressed include Human Computer Interaction issues, Ubicomp System
Architectures, End User Development and its users; End User Development Tools,
functionality and interfaces. Previous chapters examined those sub-issues, and by
responding to them and questioning solutions, as provided insight that was brought
into the proposal for a broader framework, as well arguments supporting the
necessity of End User Development in Ubicomp systems (Figure 59). An example

scenario of users developing Ubicomp Applications can be found in appendix 6.

What is defining this approach is the attempt to form a broad multidisciplinary

framework. It is broad in that it tries to view the system in its totality, determining

240

all its component parts, from the theoretical foundation, to user experience, to
system design. The broader system (and therefore the framework that explains it) is
considered to be more than the sum of its parts. There are mutual implications in the
relationship of Users, Social structures, and Ubiquitous - End User Development
systems as they function together in an iterative evolutionary cycle. A key aspect is
the potential for emergent behavior, evolution and growth of people, artifacts and
tools, social and organizational structures. Concepts described in this framework are
interacting and interconnecting among the three different perspectives that are
proposed: theory, interaction, and system design. The parts are interconnecting
while key concepts in theory are echoed in design concepts, which, in turn,
correspond to system design concepts and constructs. The social and cultural
dynamics are addressed here as an inseparable part of ubiquitous systems (with

Activity theory playing a key role as a theoretical foundation).

End User Development

(users, community sharing,
Ubiguitous Computing

design and programming)
System Architectures

HCl issues
in Ubicomp
Tools
. \ Socio-Cognitive theories
Functionality Broad Framework for the {bmader context)
Uls for EUD design of Ubicom

systems supporting EUD
Mental Models
[tool for cooperation of the multidisciplinary
development teamj

A
POSITION: EUD should
be a part of Ubicomp

systems.

YES
< Evaluation: users comprehend

Question: is it EUD system, feel in control and can
Argument: overwhelming a valid approach do simple applications.

complexity, unforeseen ——) for Ubicomp?
results of applications

Figure 59 : Chapters of the thesis provided insight for a broader Framework for the design of
Ubiquitous Computing systems that support End User Development.

241

14.2. Related work regarding Ubicomp EUD frameworks

At the moment of writing this chapter, in scientific literature no other frameworks
are mentioned that specifically concern end user development within the context of
Ambient Computing Environments. It has to be noted that there are significant
advances in the more general area of End User Development, that are summed up in
the collective volume: “End User Development” (Springer, 2006), edited by
Lieberman, Paterno and Wulf (Lieberman, Patterno, Wulf, 2006). The work of
Bonnie Nardi (Nardi, 1993): “A small matter of programming” (MIT press, 1993)
has also to be noted as not only influential but still very up to date with current

concerns of End User Development.

In Chapter 18 of the collective volume on End User Development (Lieberman,
Patterno, Wulf, 2006), a semiotic overview for end user development is attempted
by de Sousa and Barbosa (De Souza and Barbosa, 2006.). This work provides an
overview of grammatical structures and syntaxes, and different manipulation

structures based on semiotics.

In Repenning and Ioannidou (Reppening and loannidou, 2006) design guidelines are
discussed for End User Development. They list thirteen generic guidelines,
extrapolated from their experience with AgentSheets simulation authoring
environment (they address errors, syntactic guidelines, incremental development,
among other suggestions). These guidelines focus on virtual worlds and object
programming guidelines, and are not concerned with the challenges of EUD in

ubiquitous computing environments.

The Meta-design is a notable framework for the future of the overall field of End
User Development (Fischer and Giacardi, 2006), (Fischer et al, 2004) outlines the
overall field of End User Development, in many application areas (i.e interactive art,
social creativity, open source, to mention a few areas covered). The authors note that

they believe that End User Development requires a change in mindsets and

242

cultures: people that want to be active contributors and designers, and not just

costumers. (Liebernan, Patterno, Wulf, 2006, pp454).

(Dey et al 2001), for a phD thesis, have proposed a Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications, that is
concerned with Ubiquitous Computing Environments, although it is not addressing
the user as a designer and developer. This framework describes abstractions that

form a conceptual framework for supporting context-aware applications.

In summary of future perspectives for EUD, Klann, Paterno and Wulf note (Klann
et al, 2006, pp479) that the architectural challenges for EUD enabled systems
becomes apparent in the vision of Ubiquitous computing, whereby an array of
distributed interconnected devices is supposed to provide a consistent and context
sensitive service to end users. The context of use is the combination of users’
profile, (interests, tasks, and background knowledge), the environment, and the
available augmented devices. They note that “while adaptivity can carry a long way,
user driven adaptability remains crucial so that users can finetune the system to

their goals and work practices. These adaptation activities also enhance the users’

competence and support their understanding of the system”. In attempting a

roadmap of research, (Klann et al, 2006) note that representational forms and
interfaces for end user development environments need to be researched on their
own merit, particularly regarding creating and evaluating domain specific and
graphical (2D and 3D) formats. Collaborative aspects of EUD are also mentioned as

a key element.

The adopted supporting technological framework and infrastructure for Ubiquitous
recombinant systems that can support end user configuration, within the proposed
framework, is based on the constructs described in detail in (Drossos et al, 2007)
(Goumopoulos et al, 2009). This is a Framework for the Software and Hardware
Systems Design, referred to as the Gadgetware Architectural Style, -used for the

design and development of ubiquitous recombinant systems-, and it is is subsequent

243

work stemming from the e-Gadgets’ project, (e-Gadgets project website),
(Mavrommati and Kameas, 2003b), (Kameas and Mavrommati, 2005), (Drossos,
Mavrommati, Kameas, 2007). This methodological framework addresses the
hardware and software system design for recombinant computing systems that can
also support end user configuration; this framework focuses on the hardware and
software system, without assuming the perspective of user experience design, or

addressing the broader theoretical foundations.

Current EUD frameworks are either generic umbrella frameworks of all the
application domains of EUD, or concentrate in virtual and software environments.
End User development needs to have a focus in the application domain (Klann et al,
2006); ubiquitous computing is such a domain whereby research needs to provide
approaches with practical relevance for this specific domain. A first structure for
treatment of underlying theories, as well as experience design and system design
concepts and methodologies, towards a framework for the total design of Ubiquitous

computer systems that support End User Development is presented in Figure 60.

7 The e-Gadgets project has drawn inspiration from the e-Slate component platform for educational applications (e-Slate
website), applying concepts from microworld component architecture (Birbilis et al, 2000) to the world of tangible artifacts.

-~

LUS|UELIEL LO|IE|PaRY
[BRON
SSAUIEMY

(LUNNUPUED KOG S, ~ X0 HI8|H)
P Aouasedsie) aapaies

SUOILEN
Bunips s

SIIBJEUE O]

244

Ajevcgoung (suopeoydde
7 Guog J0 uopRUdoKcde:) i wmm_z_mu_?_._
! el |
{@ouepuadapu| Jnuewes S|00]
‘anuapuadsp Esiyd ", Buueys Ayumuiuon
‘BauspustapUl omEy) (puezz ([ersia ¢ B samoaR
S|aAa" UODRNSTY 1ALy 3|22 — suopduosag {SBEUERIOYY i
J d'emeu) TpnoD e uojpasyddy -
“aupadd pud) (s / sagimoauUUDD) (uosqe) Aopmyadsd
rd ™ Bunpg SUCEIUESRIOE [ENSLA, {suonexdde [exifofong
{sesdeufs By o} sU — washs a8y Jo) A28 pUB Suuun 7 e
's3nd ‘UaneULCSURS ofjejuasasdal S[ED fjBs Slapoly LRy ||E Jo AnaEladEA) _ ul payeiai
'R 'ERLLSYDR A peseg-jseUos AyparE, L drgaa
|eunun) ‘sanedoly PUE MOy EIED Joj
‘sunipsadiien 'Spep ™ s3] (& {uonauny _” o E”m_ah“,a
suoniLyaq siseq G.__um 58I | | pue seppaeuuny PUE 33[IANaULO0D J40MO) T i Tk e et SRR
5 7y i SE saUBpIOLY lenon e
\.\.|/I_ .M o L i R U
(AnpgeBueys ‘Aygesodiuon _ | .
AL LS PR ICELINg uoubon paEmig faoay) Ky . m.u_.mmﬁ_n_u
: [FEES] BB
=o_:mu~“_ﬂm_”a““_:mmv (Euusauibua) {++ LONEZUMS1D |EfuaLadyy 1ElEngsuon
\ ! EupuwesBosd Jesn-puz ‘uogsueyeudiwoa) uBiseq Jesn-pu3 #
BRAT] ..\
waudoaaa g ubisag =
a|ify payiin faoayy (TP
SoMIaN JOfoY { ‘swoejaue e o8 ubisap paseq @
i OlELEIg Bumus A=
— i
(asempueny asemjog) Hmcu_ﬁu__ﬂ”ﬁmwﬁ_ug&_ﬂm ”.ﬂwm?t”w“_mﬂaumu UO[ES|EIONEY E__.,_.% e {sLpymny - Bogp) & ucw__m..m cu.ow 58 g hwﬂhﬂco:
ANINWLOTIATA an3 w.a.m._.w__._.a_.._w 1eRos iy uBor) paynguzsg i2UcTEd L] 1 i
¥ N2IS3a NALS/S
7’ suoljeal|ddy
-S}IEjaUY-135] sbuiup jo 1ouauj NDIE30 DHNINWYHDOHd
19 NOLLNIOAZ-0D H3M JLLNYINIDS HASN AnNa Wasn ana
safolopouiom SUCHEPUNC) [EJRJ0BUL

juowdojosaq Josn-pul Bupoeddn: swasls Bugndwon snopnbign
10 ufijsag ay 10) Yomawel peoug

Figure 60: An outline schema of the framework, for the design of end user

development in Ubiquitous environments

245

14.3. Theoretical Foundations

Concepts are things; they are evolving artifacts of the mind. Concepts evolve, “new
concepts originate as a blending of older ones, giving rise to new emergent

properties” (Fauconnier and Turner 2002) via (Imaz and Benyon 2007).

For reasons of clarification, the theoretical foundations for Ubiquitous Computing
that support End User Devepoment tasks, are classified under four broad categories,
that correspond to the relating concepts that are described in the Methodologies
section (Mavrommati and Darzentas, 2011). These categories are: End User Design,
End User Programming (both these form the bi-polar End User Development
methodologies), the Semantic Web (that loosely corresponds to the System Design
methodologies), and the Co-evolution of Users, Artifacts, and Applications (that
relates to the evolution of the total system, and the perspective that is assumed in

this research).

14.4. Foundations of End User Programming

Contructionism

Constructionism (Papert 1986) is an educational theory based on is the idea that
people learn effectively through making things. It was inspired by Jean Piaget and
his experiential learning ideas. Constructionism argues that learning happens more
effectively when people are active in making tangible objects in the real world (these

ideas connect to experiential learning).

Constructionism, according to Seymour Papert (Papert 1986) is combining the

following: "From constructivist theories of psychology we take a view of learning as

a_reconstruction rather than as a transmission of knowledge. Then we extend the

idea of manipulative materials to the idea that learning is most effective when part

of an activity the learner experiences as constructing a meaningful product.”

246

Construvist learning, (based on the ideas of Piaget) is inspired by constructivist
theory according to which people construct mental models to understand the world
around them. Piaget's theory of constructivist learning has had an impact in
educational teaching methods and learning theories. According to him, children go
through four development stages which are predetermined and in accordance with
their age. Children are creating and updating their mental models by gradually
moving towards higher level concepts while they grow through each phase. The
mental development of children would have to be at the proper stage in order to to
assimilate certain concepts. As a consequence of Piaget theory, the teacher’s role is
that of a guide to the child’s own discovery of the world - rather than being the

source and transmitter of knowledge.

Constructivism is a theory that stems from Piaget's work of cognitive development.
Constructivism as a philosophy (not as a specific pedagogy) claims that people
generate knowledge and meaning from their experiences, through assimilation,
accommodation, and correction. Human cognitive development is a continually
adaptive process (Piaget, 1968). Knowledge is considered as the outcome of
experience that is depending on the experience of others and on prior knowledge.
Since it is our thought that conceives the only reality known to us, each new
conception of the world builds on our prior-constructed realities that we take for
granted. The theory of development stages became also known as constructivism, as
Piaget believed that children need to construct an understanding of the world for
themselves. Piaget's theory addressed the active agency in children’s learning, rather
than the passive receiving of knowledge. (In the contrasting theory of behaviourism
learning, on the other hand, children are considered as passive recipients, receiving

influences from their environment which shape their behavior).

The soviet scholar Vygotsky, at an earlier time, has come to the same conclusions as
Piaget regarding the constructive nature of development, yet his work remained
unknown to the west until after 1970’s, (after Piaget’s influential work had been

published). Vygotsky's contributions are described in his books: Mind in Society

247

(1930, republished in 1978) and Thought and Language (1934, republished in 1986).
Piaget only became aware of Vygotsky’s theories after the latter had died, and
acknowledged Vygotky (Piaget, 1962) for having anticipated much earlier many of

the important discoveries of development psychology, that are credited to Piaget.

Social Constructivism

Social constructivism refers to the individual making meaning of knowledge within
a social context (Vygotsky, 1978). Social constructivists suggest that it is through
the social process that reality takes on meaning and that our lives are formed and
reformed through the dialectical process of socialization (Berger and Luckmann,
1966). People’s understanding of science follows a similar dialectic. The artifacts
that people invent are continually shaped in order to be adapted to the continually

evolving context of the human life and environment.

People and artifacts are interdependently shaped: People are shaped by their
interactions with artifacts, tools and machines (of physical or conceptual nature) and
at the same time artifacts and tools evolve and change in response to the use that is

made of them by communities of humans.

The theory of Social Constuctivism, applies the general ideas of constructivism into
social settings. According to social constructivism, social groups create knowledge
for one another and share it, sharing artifacts and meanings, subsequently creating a
culture by collaboratively sharing constructs and artifacts. At the same time,
immersion in a culture of shared meanings, concepts, artifacts, and tools, pertains to
learning, on many levels, on how to be a part of this cultural group. Origins of these
notions are also attributed to Lev Vygotsky. Social constructivism, in effect, extends
constructivism theory by introducing the role of other actors and culture in human

development.

248

14.5. Theoretical Foundations of End User Design

Design Rationale

Carroll has extensively argued (Carroll and Rosson, 2003), (Carroll, 2002), (Carroll,
2000) for considering design rationale as theory, and provided a related framework.
Carroll argues for the value of capturing design rationale for understanding system

design.

Design Rationale is the reasoning that leads to design decisions. Documenting
design rationale is important for understanding the context behind design decisions
and validating design decisions. It helps those who are trying to interpret ambiguous
design decisions or examples that don’t fall clearly within a design principle, and to
avoid going back and changing design decisions without knowing the original
reasons in the first place. A design rationale can be an important tool in arriving at
the initial design decision in the first place. Rationale should give advantages and
disadvantages of a choice and include rejected alternatives (so that those alternatives

don’t keep popping up for reconsideration).

Design Rationale in the context of this framework is considered as a foundation that
can be applied not only to the design of systems (by teams of engineers and
experience design specialists), but can also be used also as a methodological
foundation for end users to act as designers of their own applications. Scenario
Based Design methods can provide insight and inspiration for mechanisms
supporting scenario based development as a means for end users to conceptualize
and express applications ideas. Design Rationale is a theory based on the ecological
approach of Gibson (Carroll and Rosson, 2003, pp.440), (which serves as a
theoretical foundation to the social constructivism approach as well, influenced

equally by Activity Theory and Ecological Psychology).

249

14.6. Theoretical Foundations relating to SemanticWeb

Distributed Cognition - DCog

Distributed cognition is a framework that involves the coordination between
individuals, artifacts and the environment , that was developed by Edwin Hutchins
(Hutchins 1995), (Rogers, 1997). According to DCog human cognition is distributed
in the environment, by placing reminders, knowledge and facts onto objects and
tools (internalised or externalised) within the surrounding environment that can be
readily accessed so that this knowledge is retrieved. It emphasizes the social aspects

of cognition, taking its influences by activity theory and the work of Vygotski.

According to (Hollan, Hutchins, and Kirsh, 2000), “distributed cognition views a
system as a set of representations, and models the interchange of information
between these representations. These representations can be either in the mental
space of the participants or external representations available in the environment”.
Cognitive processes are distributed between different members of a social group and
artifacts (internal or external). Cognition involves the coordination between the
artifacts, processes and people, and have a causal relationship through time, with

earlier events impact and transform events that come later in time.

Activity theory: a broad philosophical framework

Activity theory is a broader philosophical framework that has influenced education,
organizational design, and interaction design. It emphasizes on social factors as
shapers of interaction between agents and their environments. It originated in the
1920’s from the work of Russian psychologist Lev Vygotsky, and his students and
followers (his students’ Leontiev and Luria role was crucial in transmitting his
theory, while more recently researchers such as Nardi, Bannon, Bodker, Norman,
and Carroll have applied this theory in their research in collaborative systems and
interaction design research). According to Activity theory, consciousness is shaped
by practice (Bonnie Nardi website). Human beings mediate their activity by

artifacts; language and symbol systems were also considered by Vygotzky as tools

250

for developing the human condition. “Consciousness is produced in the enactment of
activity with other people and things — and is not confined inside the mental

processes of the brain alone” (Bonnie Nardi website).

Human activities are driven by certain needs where people wish to achieve a certain
purpose. This activity is usually mediated by one or more instruments or tools (the

concept of mediation is central to the whole theory). (Bannon and Bodker, 1991)

Activity Theory consists of a set of basic principles which constitute a general
conceptual system which can be used as a foundation for more specific theories
(Kaptelinin and Nardi, 1997), [(Liam Bannon 1997), Activity Theory, tutorial
available online)]. As Liam Bannon (Bannon 1997) explains “the basic principles of
Activity Theory include object-orientedness, the dual concepts of
internalization/externalization, tool mediation, hierarchical structure of activity, and
continuous development. The principle of object-orientedness states that human
beings live in a reality which is objective in a broad sense; the things which
constitute this reality have not only the properties which are considered objective

according to natural sciences but socially/culturally defined properties as well.”

Activity Theory, as Bannon explains, separates internal from external activities.
Mental processes are internal activities. Transformations between these two kinds of
activities are mutual and are intertwined, in such a way that activities cannot be
understood when analyzed in isolation, (separating the internal from the external
ones). It is the general context of activity (consisting of both external and internal
components) that determines the cycle of transformation of external activities to

internal (Bannon 1997).

Tool mediation is a central concept in Activity Theory. As explained in (Bannon
1997), (Kaptelinin and Nardi 1997) tools shape the way human beings interact with
reality. Bannon (Bannon, 1997), states that “according to the internalization /

externalization principle, shaping external activities ultimately results in shaping

251

internal ones. Tools reflect the experiences of other people who have tried to solve
similar problems earlier and invented or adapted and modified the tool in order to
make it more efficient. This social accumulative experience is accumulated in the
properties of tools (structure, shape, material, etc) and in the knowledge of how the
tool is used. Tools are created and transformed during the development of the
activity itself and are carriers of a particular culture - the historical remnants from
that development. The use of tools is a means for the accumulation and transmission
of social knowledge. It influences the nature, not only of external behavior, but also
of the mental functioning of individuals”. As noted by Bannon and Bodker, (Bannon
and Bodker 1991): “Artifacts are there for us when we are introduced into a certain
activity, but they are also a product of our activity, and as such they are constantly
changed through the activity. This ‘mediation’ is essential in the ways in which we

can understand artifacts through activity theory”.

Vygotsky developed the theoretical foundation of language development - (his
theories serve as a much broader foundation); it proceeded and anticipated Piaget's
psychology; nevertheless his works were published after his death in 1934 but were
then suppressed and only reached the West after 1958 (Lev Vygotsky Archive and
biography, available online at http://www.marxists.org/archive/vygotsky/).
Vygotsky referred critically to the early works of Piaget, (in Vygotski’s book
Thought and Language, written originally in 1934 (Vygotski 1962). Piaget has
discovered Vygotski’s work 25 years later, and recognized his contribution. (Piaget,
1962), Vygotski described the development of logical thinking and language in early
age and of conceptual thinking later, in the course of children’s interactions with
adults and the world around them. He suggested knowledge is acquired from one’s
life experiences, through active contact with socially transmitted knowledge of
adults in their environment. More recently, linguists and educationalists influenced
by Piaget's Psychology have acknowledged Vygotsky's work, since it provides a
broader theoretical understanding of the relationships that influence cognitive
development. People must ‘negotiate’ with the children who have an active role in

the learning process. Vygotsky’s concept of a ‘Zone of Proximal Development’

252

(Vygotsky 1978) addresses an all-round development of conceptual ability, whereby

tuition and leadership is able to facilitate intellectual and social development.

Vygotsky’s theory can be used as a conceptual framework addressing how human
thinking could advance further via the use of (computer) tools. Vygotsky’s theory,
having human activity in its focus, has gained an international and multidisciplinary
importance, and is especially influential in understanding Human Computer
Interaction and Interaction Design (Kaptelinin and Nardi, 2006), (Aboulafia et all
1995) and in the areas of computer mediated communication and computer
supported collaborative environments. Amont the HCI researchers influenced in
their approach by Vygotski’s Activity theory are Nardi (Nardi, 1996a) and (Nardi,
1996b), Kaptelinin, (Kaptelinin, 1996) (Kaptelinin and Nardi, 2006), Bodker
(Bodker, 2000), (Bodker, 1991), Norman (in The Psychology of Everyday Things
(Norman, 1988), and Cognitive Artifacts (Norman, 1991), (Norman, 1993)), Carroll
(Scenario-Based design (Carroll, 2000), and Designing Interaction, (Carroll, 1991)),
and Hutchins (distributed Cognition (Hutchins, 1995)), among others.

14.7. Co-evolution of Users, Artifacts, and Applications

Situtated Cognition and Gibson’s Ecological psychology

The cognition approach typically approaches the perception and motor systems as
input and output of humans. Embodied cognition on the other hand, considers the
mind and body as a single entity, the two parts interacting with each other
continually and ‘on the fly’(Niedenthal, 2007). Knowledge happens via the body
interacting with the world (Winkielman et al, 2009). This was founded in research
that shows that movements of the hands or arms relate to human evaluation of
concepts or words (Markman, & Brendl, 2005). Facial expressions have been shown

to influence judgments (Mondillon et al, 2007).

253

In the Situated cognition approach knowledge is determined by both the agent and
the context. “Knowing is inseparable from doing” (Brown et al, 1989); (Greeno,
1989) while “knowledge is situated in activity bound to social, cultural and physical

contexts” (Greeno & Moore, 1993).

Gibson views on visual perception have influenced Situated Cognition Theory
(Greeno, 1994). To Gibson, visual perception is not solely about input from the eyes
providing the brain with symbolic representations, but more about people perceiving
certain elements, by selectively viewing from a huge amount of information and
identifying certain elements of the environment, that change or remain stable. Such
perceptions of the environment, geared by people’s intentions and evolving through
time, co-determine the possibilities for use of the environment or the artifact. This

process of perception evolves in time.

Ecological psychology: Situated cognition is influenced from the ecological
psychology of the perception-action cycle (Gibson, 1986). Key principle of
Ecological perspective, adopted by the Situated Cognition approach, is the notion of
Affordances (Gibson, 1977). He defined the term as properties that present
possibilities for action that are directly perceptible by people to act upon (Gibson
1979/1986). Gibson focused on the affordances of physical objects and suggested
that affordances were directly perceived instead of mediated by mental
representations such as mental models. Affordances are seen by Gibson as
“preconditions for activity”, not determining behavior per se, but increasing the

chances of certain actions to happen.

Objects can ‘afford’ certain types of actions to be done with them, as a result of their
physical shape, their material, and the cues and cultural knowledge of usage.
Affordance, a popular design conceptual construct, was originally introduced by
Gibson (Gibson, 1977), describes the relationship between objects and tasks that
can be performed with them. Don Norman (Norman, 1990) further elaborated on

the concept of affordances by introducing perceived affordacnces, in parallel with

254

the actual properties of the object. To Norman, affordances stem from properties and
signify how the thing can possibly be used. Technology “hidden affordances” by
Bill Gaver (Gaver, 1991), was the further elaboration of the concept, signifying
functions of interactive systems that are not always directly and immediately
perceived. Gaver has addressed technology affordances (apparent as well as hidden)
in the context of interactive systems design, considering them as ‘properties of the

world defined with respect to people’s interactions with it”.

Subsequent to affordances the term effectivities has been introduced by Gibson,
signifying the abilities of the person itself that determine what he/she could do, and
the interaction taking place as a result. It is effectivities and affordances together,
working simultaneously, that determine action and perception (Gibson 1979/1986;
Greeno, 1994). Which affordances are picked up and used, is determined by the
person interacting within the environment, and perceiving it based on his/her

effectivities.

Based on Gibson’s work, Donald Norman (Norman, 1988) developed a follow up
theory of ‘perceived affordances’, which emphasizes “the agent's perception of an

object's utility as opposed to focusing on the object itself™.

Subversive Rationalization, introduced by Andrew Feenberg (Feenberg 1992),
describes the constructivist nature of technology. Subversive Rationalisation
suggests that technologies evolve and change through being adopted, used over
time, and adapted by people. Technology transformation is seen as an eventual result
that is guided by social, democratic and human values. So, technology is shaped as a
result of adaptation to the cultural logic of the people who use it (and is not solely
defined by the technology designers). This view seems to have similarities to the

perspective of Lev Vigotsky that was described earlier.

255

Actor — Network Theory

Actor-network theory is a ‘material-semiotic’ method, in that it maps material
(between things) and semiotic (between concepts) relations. It is assumed that many
relations are of dual nature, both material and semiotic. Actor-network theory tries
to explain how material-semiotic networks come together to act as a whole, looking
at explicit strategies for relating different elements together into a network so that
they form an apparently coherent whole (for example an establishment that consists
of networked operations between its agents and artifacts, can act as a system itself,
such as for example a store or a bank). Actor-networks existence is seen as
constantly in the re-making and thus their nature is transient. It has a constructivist
approach in that it avoids essentialist explanations of events (e.g. explaining a

successful event by saying it is ‘true’ and the others are’false’).

14.8. Methodologies for EUD enabling design and
implementation

Methodologies for the end users to be able to configure ubiquitous computing

systems are separated in two parts:

1. Methods, guidelines, tools and interface elements that enable End User
Development

2. Methods that enable the system mechanisms that support the End User
Development (such as the selection of a specific Architectural Style, and the
related principles and mechanisms, ontologies, and system schemas that it

uses).

256

14.9. End User Development

End User development is defined as having two distinctive parts in this framework:

e End User Design: this very important part of end user development signifies
access, control, and the ability of customization of ubiquitous applications. It

draws its influence from the experience and interaction design perspective.

e End User Programming: this part of end user development is closer to the
system design for software systems perspective of EUD. Possibilities are
provided to completely alter applications or create new ones, by giving end

users syntactic tools (such as a rules editor).

End User Design

In the context of End User Development in Ubiquitous computing applications, we
introduce the term End User Design. End User Design is one side of the spectrum
of End User Development for Ubiquitous computing environments while the other

side of the spectrum is End User Programming.

This term is used in order to refer to a significant step beyond the classic End User
Customization, whereby User becomes a Designer, envisioning, planning, designing
and adapting his/her own ambient experience, facilitated by shared application
galleries empowered by shared knowledge. End User Design includes overview of
active and running applications, manipulation functions such as the on/off switch
(universal and per application), the customization and adaptation of given
applications. It also includes the configuration of settings (by selecting options) in
order to customize a given ubicomp application. This can be the most frequently
used part, the easier to comprehend and manipulate by end users, and is defining the
surface elements of the manifestation of the application rather than its core

functionality. This concept also involves tools and mechanisms that support

257

collaborative sharing for applications that can be semi-automatically adapted to

another environment.

Multimodal interfaces can act complementarily in systems that support End User
Design. Text based scenarios and techniques from Scenario based development can

help with application descriptions by end users.

A cascading degree of complexity, from the interfaces of the end user design

functions, to more detailed end user programming (e.g. rules editing), is suggested.

Mental tools for reasoning on the End User Design of ubiquitous applications can be
provided (i.e. by visual representations or promoting mental models of the system
that correspond to the functional models). Such mental constructs assist users in
gaining an understanding of the configurable components of the system, and the way
they can be associated; it is an enabler to reason and assign functionality. Where
mental models are not in place, easy and self explanatory interfaces are needed;
nevertheless due to the complexity involved in end user development, and the
subsequent difficulty to cater for all necessary functions with easy to use interfaces,
we stress the need for straightforward and robust mental models which are very

useful in the early days of this domain.

End User Programming

A cascading view of editing complexity can start from the overview and ON/OFF
functions of End User Design and range to the manipulation of the specific
connection rules and programming syntax. Multiple visuals for syntax methods can
be tested for rule editing (i.e. Pipeline view, bubbles view, tree structure, grid).
Provision of syntax can be coupled by automation or semi automation techniques for

rule editing.

258

14.10. System Design and development

The architectural framework for the system design of Gadgetware Architectural
Style is addressing the ubiquitous computing hardware and software required. This
technological framework is described by Goumopoulos in (Drossos et al, 2007) and
extended in (Goumopoulos et al, 2009) to include sharing of awareness information
in pervasive computing systems. This technological supporting framework is one
that can allow for the end users to act as designers and developers, and as such is
adopted as a concrete methodological framework regarding the Software and
Hardware System Design. Key elements from the Gadgetware Architectural Style
Feamework, that are adopted as related methodologies for system design, are

outlined in the following sections.

Basic Principles

(Drossos et al, 2007) describes a conceptual framework for the system architecture
of ubiquitous computing systems that can be accessible to end users, The underlying

principles, relating to artifacts, according to (Drossos et al, 2007), are:

o Self-representation: the artifact’s physical properties (that are closely
associated with the artifact itself) are available through digital
representations.

e Functional autonomy: artifacts function independently —without pre-
requiring other artifacts in order to function.

e Composeability: artifacts can be used as building blocks of larger and more
complex systems.

e Changeability: artifacts that have access to digital storage can change the

digital services they offer (and thus change themselves).

The ways that an object can be used is usually determined by its affordances and
effectivities that stem from certain aspects of its characteristics (physical or digital).

Affordances describe the perceived and actual properties of an artifact, that

259

determine how the user will handle it and the tasks that (s)he will perform with it.
Artifacts get augmented by producing descriptions of their properties, abilities and
services in the digital space, and by participating in broader group-compositions,
they can enhance their functionality —they can be adaptive and context aware, or
provide augmented or alternative functionality. Methods for collections of artifacts

should be in place so that they can be configured to synergize in their functions.

Basic Definitions

The basic definitions as reported in the Gadgetware Architectural Style conceptual
framework (Drossos et al, 2007) pertaining the Software and Hardware Ubiquitous

system design are:

Artifacts: Tangible objects which can express their properties digitally are called
artifacts. Artifacts can be augmented with sensors, actuators, processing,
networking, etc., or a computational device that already has embedded some of the
required hardware components. Software applications running on computational
devices are also considered to be artifacts. Artifacts can be simple or composite,
from a single sensor to an augmented building or furniture, clothes, central heating,

a software digital clock, a software music player, etc.

Properties: Properties are representations of the physical characteristics,
capabilities, and services provided by artifacts. Some properties are artifact-specific
(such as the physical characteristics), while others may be not (i.e. services).
Properties can be modeled as functions (either evaluating an artifact’s state variable
into a single value or triggering a reaction, to an actuator artifact). Emergent
properties are those that result from artifact’s compositions. All properties of an
artifact are encapsulated in a property-schema which can be send on request to other

artifacts, or tools (e.g., during an artifact discovery).

Plugs: Plugs are the digital constructs representing artifact properties. Plugs in

(Drossos 2007) approach are defined by their direction and data type. Plugs are

260

distinguished into output (O) plugs or input (I) plugs and Input/Output (I/O) Plugs.
Plugs in this approach have a certain data type, that can be semantically primitive
(e.g., integer, boolean, etc., relating to the syntactic level of programming), or
semantically rich (e.g., image, sound, etc. —in general services that can be used as
output content that can be streamed from actuator devices). Plugs are the constructs
that make visible the artifacts’ properties, capabilities, and services to people,
agents, and other artifacts. (Expert review suggested that the name Plugs would be
better replaced with the term “Capabilities” for the better explanation of the model

to people).

Synapses: these are associations between two compatible plugs. When a property of
a source artifact changes (a state transition of the source artifact causing change of
value), the new value is propagated through the synapse to the target artifact,
resulting in state transition to the target artifact(s). Synapses relate the functional
schemas between artifacts, enabling the functional / context changes. (Expert review
suggested that the term “Synapses” is unknown to many, and would be better

replaced with the term “Links” for the better explanation of the model).

Artifact compositions: A collection of two or more artifacts properties that can be
combined (composed) for a meaningful purpose. Ubiquitous computing applications
can usually be handled as service compositions. The act of composing artifacts into

certain applications can be assisted by end-user tools.

Functional schemas: An artifact is modeled in terms of a functional schema.
Functions in a functional schema can be as simple or complex according to what is
required to define the property. Functional schemas can cover from Sensor readings
to rule-based formulas (with multiple properties), to first-order logic (quantifying

over sets of artifacts and properties).

261

State: The concept of state is useful for reasoning about how things may change
(there is no hidden internal state). The values for all property functions of an artifact

at a given time are the state of the artifact.

Transformation: a transition from one state to another. Transformations are the
results of internal events (such as the change in the state of a sensor) or they may
result from changes in the artifact’s functional context, happening via the synapses

of the artifact.

Abstraction Levels

The model adopted here, is as proposed in (Drossos et al, 2007). Three abstraction

levels are foreseen in this model:

e Network independence: the Plug/Synapse model is independent of the
underlying protocols, needed for example to route messages or to discover
resources in realization of an application.

e Physical independence: the services offered by an artifact are decoupled
from the artifact itself (and thus are independent and can evolve, whereas its
physical characteristics cannot be altered). Thus the creation of artifact
compositions does not always require the continuous presence of an artifact.

o Semantic independence: the description of applications (compositions of
artifacts) is based on the types of the plugs that are associated, but it is

independent of how the plugs are realized within the artifacts.

Awareness model

For the context of Ubiquitous Systems that enable the peripheral awareness between
individuals, the framework presented in (Goumopoulos et al, 2009) is adopted. The
supporting technological framework in this approach views context from a user-
centered perspective, giving emphasis to the presentation of information in
unobtrusive ways, within pervasive awareness systems. Information presentation can

move between the center and the periphery of people’s attention. (Goumopoulos et

262

al, 2009) classify awareness according to the awareness situation of a user or a

community is as follows:

e activity awareness, revealing what one or more community members are
doing;

e presence awareness, representing the knowledge of who is around in a
community;

e group awareness, representing the knowledge of activity and presence
awareness of a community;

e situated awareness, representing contextual awareness;

e social awareness, referring to the information that a person maintains about

others in a social context.

For any of the above categories an awareness system may handle, it needs to tackle
the questions of what users should be made aware of and how they should be made

aware of it.

Context
Manager l|

Awareness Application Awareness Manager
E anager
LFLF MNimbusApplication Reasoning /
[Semvice Proxy inference
g] Manager
GASOS FocusApplication
Rules engine

Connected to c " {] g
other CMs ioblodlod f 5
manager Persistency
Manager

Ontology manager

User Manager

Identity & User Profile End-user tools
Privacy Manager

Figure 61: ASTRA Component Architecture. Source: (Goumopoulos et al, 2009)

263

Awareness Mediation Mechanism

(Goumopoulos et al, 2009) propose that an awareness management process be
responsible to control and manage incoming and/or outgoing awareness information.
Being able to control incoming awareness information of others implies the user is
able to define the acceptable level of awareness detail to be presented or captured, in
order to prevent disturbance. Controlling outgoing awareness information implies
one is able to control privacy issues. Information can be filtered by introducing
rules/triggers and constraints that can be configured by the user via a defined

vocabulary (e.g. an Ontology) and the services of end-user tools.

Awareness information may be mediated in various ways, as (Goumopoulos et al,
2009) describes (see Figure 61, 62). Information can be explicitly generated by the
user or collected by sensors, so that the user gets up to date information; this is
achieved via Synchronous Awareness. Synchronous Awareness can be delivered via
a server-push mechanism (i.e. transmitting notification services). Notification
services realize the information distribution within the awareness manager.
Asynchronous information on the other hand provides information about stored
events (i.e. history of use or log files). Asynchronous communication relies on a

client-pull mechanism, (i.e. the client retrieving the information when needed).

A model providing a loosely coupled form of interaction, as is required for dynamic
awareness systems, is the publish/subscribe model, that is used by the ASTRA
approach, as described in (Goumopoulos et al 2009). The publish/subscribe model is
the foundation of the abstraction used in the Gadgetware Architectural Style: the
Plug Synapse model (Kameas and Mavrommati 2005), (Drossos et al, 2007), (see
Figures: 18 and 19).

264

|

N TN TN TN 7 / ~,
Context/data } "
acquisition
~ 7 .
Ontoiogy
Context abstraction and (Awarberlless
: . vocabulary
Logg|;|r;g (A\.«;_areness — Properties,
nformation) UserData,
PlaceData,
~ Rules,
Policies,
Distribution 1 |dentity,
N eic.)

Presentation .

JLILJLIL —

Actuators, de\nces applnances soﬂ systems, GUIs, etc

Figure 62: The Awareness Management Process. Source: (Goumopoulos et al, 2009)

System Design and Development Process:

The Agile process for system development is a process characterized by adaptive,
incremental, iterative development, where cross functional self-organized teams
work through system requirements and solutions. Agile development methods
emphasize the importance of teamwork and face to face collaboration for
development, with the participation of all stakeholders, and adaptability of the
process throughout the project’s span (by tasks broken into small increments and
minimal, short term planning). Written documentation is minimized, due to
emphasis on face to face communication in small teams (5-10 people), while

working software is considered as the measure of progress.

Systems design and architecture emerge in increasing detail, as the team works
through and through the design, in iterative development cycles (Figure 64),

gradually focusing from the broader framework to the more specific and detailed

265

aspects of the system. The Agile Process steps to System Design (see Figure 63)

broadly are:

1. Identification of System and Architecture Objectives (in each project phase).

2. Key Scenarios are defined, and used as a way to focus in priority issues

when going

through development

architectures at the end of each phase.

3. Overview of application:

and evaluate

the

Understanding deployment,

implemented

(such as the

architecture’s styles and technologies involved), so that the foreseen

application types can operate.

4. lIdentify key issues (Hot Spots) based on quality attributes and the

architecture framework (so as to prevent shortcomings of the design of the

application).

5. Create possible system architecture solutions, which are then evaluated

against the key scenarios, hot spots, and deployment constraints.

Objectives

1. Identify Architecture

<1

2. Key
Scenarios

5. Candidate
Solutions

4. Key Hot
Spots

MBIAIBAQ
uoneoddy ‘¢

Figure 63: Core Architecture Design Activities in the Agile Process (Source
http://www.guidanceshare.com/wiki/Agile Architecture Method Explained)

266

The Agile Manifesto (Agile Aliance, 2001) puts mode value on (1) individuals and
interactions over processes and tools, (2) working software over comprehensive
documentation (3) customer collaboration over contract negotiation and (4)
responding to change over following a plan. Designs stemming from the Agile
Process (Figure 64) are therefore emergant and not defined up front, while Agile
developers ‘learn by building’. In this aspect, the User Experience (UX) design
process resembles that of an Agile iteration (Kreitzberg and Little, 2009): UX design
(following the Iterative Design Process) is built intrinsically on of building a Ul
prototype, testing it with users and learning from user reactions, in iterative cycles
between design, prototyping and evaluation, similar to the Agile Process whereby
Design and Development proceed as an intertwined spiral (Figure 64) in line with
four Agile values presented in the Agile Manifesto. [More details on the Agile
process and its relationship with User Centered Design (UCD), can be found in the
articles of (Shore and Warden, 2007), (McInerney and Maurer, 2005), (Cohen et al,
2004), (Hudson, 2003), (Hwong et al, 2004), (Detweiler, 2007), and (Blomkvist, S.
2005)]. Due to this existing relationship between the Iterative Design Process and
Agile process, Agile is adopted in this framework as a process bridging the
disciplines of Experience Design and System Development, a process that can be
used by multidisciplinary teams in order to design and develop ubiquitous

computing systems.

Code Code
Iteration 1 Iteration 3

Iteration 0

Design Design Design
Iteration 1 Iteration 2 Iteration 3

Figure 64: The Agile Process (Source: http://msdn.microsoft.com/en-
us/magazine/dd882523.aspx)

267

14.11. Open Issues

An issue that is not extensively discussed in the course of this thesis, is that of
injecting (uploading) new functionality to artifacts. Nevertheless it is noted in the
framework as a necessary concern that needs to be addressed. In low level artifacts,
such as sensors, connectivities can be their mere output readings. Adding higher
level ‘Connectivities’ that relate to the artifacts affordances or observed usage can
be assisted by intelligent systems and ontologies. Software developers should also
be able to port new connectivities in artifacts, automatically (in the form of software

upgrades), or created intentionally and injected into artifacts.

Appropriation of ubiquitous applications into different environments, and debugging
of applications are two very important issues for End User Development in the
domain of ubiquitous computing. Appropriation may be assisted by ontologies, and
tweaked by end user decisions and debugging mechanisms. How to know of errors
and avoid them, recovery and debugging are very important issues that are not easily
addressed in ubiquitous applications. Multiple representations in a step by step
design-creation-explanation approach can help with reasoning about possible errors.
But it is not easy to test the applications given that the conditions that apply for their
triggering are not easy to reproduce. Many actions in the real world cannot be un-
done or pre-simulated. Simulations and debugging tools are an open area that can
be investigated in detail, addressed to the specifics of this domain. Aspects of error
tolerance and handling errors in ubiquitous application creation is an open

experience design issue that in time has to also be investigated in its own merit.

14.12. Framework Walkthrough

The value of the proposed framework is in that it provides a unified view that can be
accessed from the various teams and disciplines involved in the creation of

ubiquitous systems. The goal of the framework walkthrough is to assess the

268

usefulness of the framework in providing a unified overview to the different
disciplines involved. It aims to assess to what extent bridges are provided between
such disciplines, for understanding the total aspects of the system and for having
common concepts and vocabulary to cooperate and collaboratively design such

systems, without having to get into the details of each other discipline.

The theories and concepts that are collected together under the framework umbrella
stem from experience of working within multidisciplinary teams with different
focus, in the course of research projects ranging from the Networked Home, to
Ubiquitous Computing (UbiComp) and Ambient Intelligence (Aml) environments.
Philips Design, with a focus on User Experience, and Computer Technology
Institute, with a core focus in engineering, are two examples of such different
institutional perspectives, both working towards the conceptualization and creation
of ubiquitous systems, while the Products and Systems Design Engineering
Department of the University of the Aegean typically covers the middle ground

between the two perspectives.

A “walkthrough” is a heuristic usability inspection method that is used to validate
and identify potential issues of usability, applied often in the context of software
application development. It typically starts with a task analysis that specifies the
sequences of steps or actions required in order to accomplish a task, and how the

system corresponds to these actions.

In the case of the proposed framework, the task to be accomplished is building
Ubiquitous Computing systems that support End User Development, by cooperating
multidisciplinary teams. The walkthrough is a step by step approach, asking
questions at each step, in order to report on potential input; in this case it is used as a
means to provide a better understanding of how all the parts of the framework come

together towards the better cooperation of multidisciplinary teams.

269

A Cognitive Walkthrough is a short usability method particularly useful to look at
flow. A streamlined version of a walkthrough has been applied, in order to better
explain how the proposed framework is to be used. Questions of the streamlined
cognitive walkthrough method (Spencer, 2000) were adapted so that they relate not
to applications but to the broader context of the framework — being more generic,

rather than targeted to a specific application and action sequence.

The Streamlined Cognitive Walkthrough was developed by Rick Spencer (Spencer,
2000), proposing four questions to evaluate each step. Before the walkthrough one
needs to clarify on the definitions of: (a) the users, (b) sample tasks, (c) action
sequence to complete the tasks, and (d) description of the systems usage and
response. These input questions to the walkthrough were adapted to fit the context
of the framework, rather than that of software applications (that it was initially
aimed at). In the case of the framework, providing these walkthrough definitions

helps to describe more coherently the framework itself.

The definition of “Sample Tasks for evaluation” (that are applicable to applications)
was thus altered to “Sample Thematic Areas” (indicating the range of areas and
corresponding needs that are being targeted by such systems). Process of using the
system (Action sequence), being a question typically relating to software
applications, was replaced by Process of using (applying) the framework.
Description of the implementation of the interface was no longer valid in this
broader context, and was therefore replaced by checking the steps of the process, as
these relate to certain parts of the framework. The questions, as they were adapted so

that they relate to the broader context of the framework, are the following:

a) What are the thematic areas targeted by Ubiquitous Computing systems that
support End User Development?
b) Who is the framework addressed to? (identification of users of the

framework)

270

¢) Process of using the framework (replacing the question on the action
sequence -that related mostly to software applications)
d) Description of task sequences during the design & development process, as

related to framework distinct parts.

The responses to questions of the streamlined walkthrough, as discussed by two

subject experts, provide a better understanding of the framework itself:

a) What are the thematic areas targeted by Ubiquitous Computing systems that

support End User Development?

The thematic areas that are being addressed based on the needs identified in various

real-world research and development scenarios are:

Ambient Assisted Living (AAL), (i.e. see AAL website)
Home Automation and Context Awareness

Pervasive Awareness (i.e. see ASTRA project website), and

v bdh =

Ludic and playful leisure use (i.e. see (Divitini and Mavrommati, 2008),

(Gaver, 2002))

b) Who is the framework addressed to?

The Framework is addressed to the different disciplines that collaboratively create
Ubiquitous Computing systems and applications. The framework is to be used by
System Developers, Engineers, User Experience (UX) Designers, User Interface
(UD) and Interaction Designers, and Experts from Human Sciences (Psychology,
Sociology). The Framework aims to bridge gaps in the communication between
these disciplines, that collaboratively (but not always smoothly) are involved into
the creation of ubiquitous computing systems. It provides a unified overview, rather

than disconnected views and frameworks separate for each discipline.

271

¢) Process of using the framework

A unified Agile process for system design and development (see previous section) is
proposed, characterized by multidisciplinary face to face cooperation, and
incremental, iterative development, with progress achieved through working system
versions. Design and System Development progress are intertwined, while work
proceeds in a stepwise approach, with each phase planned and recited anew, from

the broader framework layout towards increasing implementation detail.

d) Description of task sequences during the design & development process, as

related to framework distinct parts

There are two major tasks identified: User Experience Design (in its broad sense)
and System Development. The respective framework elements for enabling End
User Development get cross fertilized with elements of UbiComp System Design
and Development (as previously described in the Framework), as the system
development process proceeds (through the Agile development method steps). In the
first phases of conceptualization via the Agile process, the process takes input from
the theoretical foundations, that abridge understanding of the long term implications
of the system, the end user experience design aspects and the system design and
development aspects of it. As the phases get into more detail, elements of the
relevant methodologies (i.e. Design Rationale, System Design and Development
Methodologies —such as the Gadgetware Architectural Style Framework-, etc) are

used and worked into further detail into system deployment as a functional

prototype.

The Streamlined Cognitive Walkthrough method then proposes discussing two
questions: (1) “is there a plausible story that the system designers and developers
(i.e. the framework users) will know what to do at each step?” and (2) “if the
designer/developer does the right thing, is there a plausible story that they will know
that they did the right thing?”. In the walkthrough that took place with two experts

272

broadly discussing the use the frameowork; a gap was noted regarding the process of
using the framework; concequently the Agile process was added, as a necessary
process describing the steps of how to use to the framework. Via the Agile process
designers/developers know when and how to apply parts of the framework, at each
Agile process step. They know if they made the right thing by marking stepwise

progress in the form working prototypes so that they know if they were successful.

14.13. Conclusions

In this chapter we described concepts, methodologies and their relationships towards
a framework for Ubiquitous Systems that can support End User Development. We
suggest for research to consider End User Development as an affordance of
ubiquitous computing systems, in the sense that Ubicomp systems can provide the
principle elements that enable people to perceive and handle ubiquitous applications.
Affordances provide the implied use, -(affordances being the relationship that
develops between objects and the tasks that can be performed with them (Gibson
1977))- which may or may not be realized, nevertheless the elements that can afford

and effect it should be present in the ubiquitous system.

The perspective that should be adopted in ubiquitous systems is that of co-evolution
and co-development between artifacts, applications, together with related EUD tools
and people. End User Tools, structures and mechanisms provided are mediators for
this development. EUD affordances in Ubiquitous Systems can be effected by
relevant systems design that has included EUD elements and mental models for the
user —which should be available to people even when the system is relying on agents

and automations for realizing its ubiquitous functionality.

It is important to consider the system with a number of co-dependencies that it
involves, from the different perspectives involved. An important split is to

distinguish between end user design (the more creative ‘designerly’ aspects of

273

humans, but also the ones that are based on more intuition and direct physical
involvement, by subsequent observation and manipulation), and end user
programming, (that pertains the more systematic, analytical and syntactic mental
tasks, which are facilitated by different abstractions and syntaxes, as seen fit per case
of different users). The full functionality that is possible from the part of End User
Programming may not be used by all users, or for complex applications cases, due to
the cognitive load and the programming complexity involved. Nevertheless the
possibility should be there, present and accessible to end users, whose culture and

knowledge will co-evolve with ubiquitous systems.

Expansion on this framework and the concepts that it provides, and investigation
into the issues that still remain open can provide valuable insight and guidance to the
total design of Ubiquitous Computing Systems of the future, used by people and

augmented human environments.

The perspective to be adopted in ubiquitous systems is that of co-evolution and co-
development between people, EUD tools, and Systems —primarily drawing from
Activity theory and Ecological Psychology. The ubiquitous system, its’ End user
tools, and people’s perspectives on them, are developing together and are cross-
influenced in an iterative cycle, in the context of socio-cultural developments. The
Conceptual and methodological Framework developed in this direction should
therefore be broader and multidisciplinary in its scope. This Framework addresses
the relationships between three broader perspectives, those of a) understanding
human cognition, b) defining a wider spectrum of interaction-concepts and methods
for people to access the EUD ubiquitous system and c¢) understanding the system
design of the ubiquitous system and how it can be constructed. It can be used by
ubiquitous computing researchers as an umbrella framework, that can serve as the
basis of integration of more detailed sub-frameworks (theoretical and
methodological) from each of the three perspectives, while items that remain open

can be addressed and outcomes of future research can be added.

274

15. Conclusions and Outcomes

15.1. Overview of Conclusions

Research presented in this thesis has made some headway in the effort to empower
people to actively shape Ambient Computing environments. It has demonstrated the
feasibility of letting end-users shape their ubicomp environments. Experience from
system implementation case studies, as well as evaluation of expert and end-user
trials (see chapter 11 and appendices 1 to 4), all suggest that an architectural model,
where users act as composers of predefined components, is a worthwhile approach
that can be further explored, and can act complementarily to artificial system

intelligence.

Evaluation results show that people understand the split in the dual nature of
artifacts: their tangible and sensory characteristics and their connectable software
counterparts. Conceptual models and alternative information visualizations are
needed to support people in creating their own applications. Such visualization
methods should combine different syntax styles that act complementarily to each
other, thus allowing people (including non-computer experts) to use different ways

to describe to the system what they want to achieve. More intuitive/natural ways to

275

express user wishes should be provided in parallel with more formal structures that

enable more detailed descriptions and advanced control.

For the creation of successful ubiquitous computing systems, that is both scalable
and robust as well as user friendly, the cooperation of different disciplines is
required, including User Experience Design and Cognitive Psychology. The overall
User Experience is a key issue to the success and adoption of ubiquitous systems
because it is the basis for their acceptance and trust, since these systems are involved
in more aspects of the users life, are used over extended time, and have
consequences on privacy and control, since the users are handing over part of their

autonomy to the system.

From experiences gathered by working within teams in this research area, for EU
basic research projects, we note a communication gap between the different
disciplines involved (be them engineers, designers, psychologists, human sciences
experts, domain experts, stakeholders) — an observation not new to HCI, since it
resonates to the development of most user-centered systems. In the development of
such systems the perspective of Computer Engineering is dominant, as it is system
engineers that have to make decisions and build the system, without being able to
integrate successfully input from other disciplines - such dialogue or input often
being inappropriately communicated or having different priorities. Many important
elements and crucial nuances to the user experience are thus ‘lost in translation’.
Building systems this way often results in over-engineering, adding unnecessary
complexity, and increasing the mental load of users. Typically, End User
Development is being treated - perhaps due to the computer science inertia - as a
programming activity done by end users; in order to balance this approach, the
perspective of End User Design is introduced as its “softer” counterpart. End User
Programming and End User Design are envisioned as two different but
complementary perspectives and approaches of End User Development, with the

former being functionality oriented and the latter focusing on user experience

276

For the disciplines involved to be able to work together, better processes and
methodologies are needed, targeting specific research and development areas (such
as for example pervasive awareness, ambient assisted living, leisure and ludic use,
home automation and monitoring, resources optimization, applications for
enhancing the life of people with special abilities, etc). The framework proposed in
chapter 14 can be seen as an abridging tool, providing a conceptual basis and
theoretical foundation, as common ground for the communication and cooperation

between the disciplines involved in user-focused ubiquitous computing research.

15.2. Achievements of the reported research

Research reported in this thesis has achieved the following

e End User Development as being a combination of End User Design and End
User Programming in the context of Ubiquitous Computing environments has
been introduced (chapters 7, 13, 14). This research questioned the assumption of
embedded artificial intelligence and automation, and promoted end-user
empowerment and understanding as a means to ensure adoption, adaptation and
emergent functionality (stemming from the creativity of end users themselves) in
ubiquitous computing systems (see chapter 4). From the outset of research in
2002, the engineering approach of creating ubiquitous computing artifacts by
attaching screens or feedback LED lights to them was questioned. A more
flexible and inclusive model of augmented artifacts was proposed instead, based
on affordances, that is, more suited to the tangible physical nature of the
particular artifact [(Mavrommati and Kameas, 2002), (Mavrommati and Kameas,
2003b), (Mavrommati et al, 2004) (Kameas and Mavrommati, 2005), (Kameas,
Mavrommati et al, 2005)]. This research position was among the very first to
promote End User Development for Ubiquitous Computing applications

[(Mavrommati and Kameas, 2002), (Edwards, Newman et al, 2002), (Newman

277

et al, 2002), (Humble et al, 2003), (Mavrommati and Kameas, 2003b) (Rodden
et al, 2004), (Kameas, Mavrommati et al, 2003)].

The Capabilities and Links model has been proposed (chapter 9) that bridges the
gap between people’s perception of artifacts and the actual manufacturing and
software engineering constructs of those artifacts. The Capabilities and Links
model expanded on publish-subscribe concepts and semantics, introducing the
use of affordances to ubiquitous computing systems (at a higher conceptual level

than the usual treatment of services, sensors and actuators).

The Capabilities and Links model was used in the context of EU funded IST
Future Emerging Technologies (FET) research projects, validating it in terms of
technological appropriateness and scalability (chapter 10) (Kameas and

Mavrommati, 2005), (Drossos, Mavrommati, Kameas, 2007).

The proposed Capabilities and Links model was evaluated in expert and user
trials (see Appendices 1 to 4), using case study implementations at FET projects,
as a means for assessing the comprehensibility and applicability of End User
Development in Ubiquitous Computing (Chapter 11). End User Development
was validated as a worthwhile approach for Ambient Computing (Mavrommati,
et al 2003c), (Mavrommati et al, 2004), (Markopoulos et al 2004). It is an
approach that complements Ambient Intelligence —the two approaches not being

mutually exclusive, but acting complementarily.

The Cognitive Dimensions framework (see Appendix 4 and Chapter 11) has
been trialed and proved [(Mavrommati et al, 2003d), (Mavrommati et al, 2004),
(Markopoulos et al, 2004)] to be an appropriate tool for assessing Ambient

Computing concepts in the early stages of their development.

An overview control interface, running on a separate device called an “Editor”,

was adopted (see chapter 12) as the most appropriate approach for assisting End

278

User Development. This permits better overview of applications lists and nodes,
and higher level programming by allowing more complex syntax. A separate
interface, rather than either embedded interfaces in the artifacts themselves
(some of which may be too small or too remote to access) and programming-by-
example techniques, offers the advantages of a broader approach, one that can
cater for the different granularity of artifacts. Moreover, it can be combined with
other tools, such as community-sharing tools or awareness application
mechanisms. Lastly, it allows the easier distribution of the Editor’s functionality
and upgrades. Functionality of the Editor was outlined and possible interaction

modules were proposed in Chapter 12.

Graphical User Interfaces were explored, using various programming syntaxes.
These were seen as scenarios in visual form that help further to explore End User
Development (EUD) parameters in the context of the editor. Internet-based
editor GUIs were proposed as most likely to be the most widespread and
commonly used, promoting End User Design as well as End User Programming
functionality. Concretely exemplified versions of possible Graphical User
Interfaces were sketched out (see chapter 13), showing different semantics and

modalities for interaction with the Editor.

Existing User Interface paradigms and semantic representations for End User
Development in the context of Ubiquitous Computing were described (from

various well known project examples) (see chapters 5, 8, 13).

A broad Framework for the design of Ubiquitous Computing Systems supporting
End User Development has been outlined. It maps theoretical, methodological,
and engineering concepts, from the disciplines of Cognitive Science, Interaction
Design, and Computer Engineering. This broad perspective will be beneficial to
the cross-disciplinary research community working on ubiquitous systems, as it
provides a deeper and broader understanding of theory and issues concerning

End User Development (chapter 14).

279

e End User Design has been introduced, which, together with End User
Programming, enables end-users to imagine, rationalize, create and manipulate
ubiquitous applications. The former corresponds to being able to conceptualize
and describe application ideas or to apply basic control and customization over
existing applications and the related User Experience (specify parameters, such
as “look and feel”), while the latter corresponds to the realization of advanced
customization of the specifics of the applications, in their detailed structure and
elements, using more advanced programming constructs. These two different but
complementary parts make up the different aspects of End User Development in

Ubiquitous Computing environments (see chapter 14).

It should be noted that the research reported here has had an influence in design and
development of Ambient Systems. Overview (Mavrommati and Darzentas, 2007),
and perspectives on End User Tools for Ambient Computing Environments has been
recognized internationally (see citations in appendix 5, and invited speech in Doors
of Perception 7 (Mavrommati 2002) — an internationally acclaimed curated design

conference).

Work in the area of Ambient Systems is by definition multidisciplinary and has to
happen in teams with mixed backgrounds, due to the complexity of research issues
involved. The (broad) disciplines involved in interactive and ubiquitous systems are
Human Sciences, Design, and Computer Engineering. Underlying assumptions and
goals differ greatly between teams from these synergizing fields (Mackay, 2003).
For this reason, Interaction Design techniques, approaches and perspectives were
introduced into a Computer Engineering team’s culture, most notably the extended
use of the scenario-based development method, ‘Design Rationale’, as well as the
‘Iterative Design process’ that includes system design evaluation feedback cycles.
Specifically regarding this research, introducing a consideration of the notion of
“Affordances” and encouraging an abstract and simplified formulation of the
“Capabilities and Links” model has influenced the development of middleware for

Ambient Systems in a strongly multidisciplinary manner [(Kameas et al, 2003),

280

(Kameas et al, 2005) and also see related citations in appendix 5], and supported
putting people at the center of System Architecture developments instead of down at
the receiving end. This collaboration and cross-fertilization between the perspectives
of People-Centered design and Computer Systems design was an achievement in the
first part of this research route. This work has subsequently informed and influenced
the development of middleware for Aml (within the context of EU funded e-Gadgets
project as well as internationally). This was recognized by a number of cross-
references to the outcome research publications that were produced from this

synergy (Appendix 5).

15.3. Directions for future research

It has to be noted that the User Experience Design (UXD) perspective to this day
fails to be integrated successfully within technology teams. Experience Design is
seldom even introduced into technology-development teams, and is even more
rarely integrated, because of cultural and methodological differences. As a
consequence, the Computer Science perspective continues to lead System Design
and often defines, from that perspective, the Human Computer Interaction (HCI)
experience. A prevailing focus on functionality and performance is thereby
maintained, since Systems Design is often failing to pose questions regarding the
vision and the original assumptions of the system, and it often does not address the
system’s all-round requirements (including additional / non-functional requirements)
and eventually the target user needs and other stakeholders’ investment in the
project. Even when minimally integrated, Experience Design questions existing
assumptions regarding a system’s requirements, provides a view from different
perspectives, and gives a broader, richer view of the system and its requirements
(often from the perspectives of different disciplines that come into play). Experience
Design enhances the output of System Design process when combined with
processes that bring users and system stakeholders into continuous dialogue with the

system design development team (such as the Agile Process).

281

Interaction/Experience Design Research for End User Development in the area of
Ubiquitous Computing systems can further explore, evaluate and analyze a set of
paradigm syntaxes and different interface instantiations that can be used for End

User Programming.

Human Computer Interaction research needs to further explore error prevention and
error handling (including fault tolerance) in the context of End User Development in
Ubiquitous Computing applications. Cases of application creation by use of Editor
Interfaces need to be studied in order to explore what is missing and what can go
wrong in the process of programming in the context of an augmented environment.
Special effort will be required to categorize types of errors, their causes and to what
these causes may relate (that is, an error may relate to what the interface affords,
what the system allows, or the causal effect on the augmented environment). More
systematic effort towards error tolerance, error handling, and preventing errors is

needed in ubiquitous computing systems research.

In the context of End User Development in Ubiquitous Computing, the proposed
broad Ubicomp Framework provides bridges between a number of theories and
perspectives, from Cognitive Science to Design to Systems Engineering. This
Framework opens up a wide area for future research; it provides a broad
multidisciplinary view to researchers for understanding End User Development in
Ubiquitous Computing, and could be further explored (ie with a systemic approach),
in order to produce a holistic framework for Ubiquitous Systems that allow for End

User Development.

282

16.References

Aarts, E., Harwig, H., M. Schuurmans (2001). Ambient Intelligence, in: J.
Denning (ed.) The Invisible Future, McGraw Hill, New York, pp. 235-250.

Aarts, E., Marzano S. (eds.) (2003). The New Everyday: Visions of Ambient
Intelligence, 010 Publishing, Rotterdam, The Netherlands.

Aboulafia, A., Gould, E., Spyrou, T. (1995) Activity theory vs cognitive
science in the study of human-computer interaction. Proceedings of the IRIS
(Information Systems Research Seminar in Scandinavia) conference, Gjern,

Denmark.

Agile Alliance (2001). Manifesto for Agile Software Development.
Technical Report by Agile Alliance, http://www.agilealliance.org

Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University
Press, Cambridge.

Alexander, C., Ishikawa, S., Silverstein, M. (1977). A Pattern Language:

Towns, Buildings, Construction. Oxford University Press, New York.

Andrews, A., Bueno, M., Cass, J.(2002). Open Tools Definitions, Internal

Paper, Philips Design, www.design.philips.com

Baldus, H., Baumeister, M., Eggenhuissen, H., Montvay, A., Stut, W. (2000).
WWICE: an architecture for in-home digital networks. In Proc. SPIE Vol.
3969, p. 196-203, Multimedia Computing and Networking 2000, Klara
Nabhrstedt, Wu-chi Feng, Eds.

10.

11.

12.

13.

14.

15.

16.

283

Bannon, L. (1997). Activity theory. [Tutorial available Online]. Available at:
http://www.irit.ft/ ACTIVITES/GRIC/cotcos/pjs/Theoretical Approaches/Act
vity/ActivitypaperBannon.htm

Bannon, L., Badker, S. (1991). Beyond the Interface: Encountering Artifacts
in Use Book Chapter in J.M. Carroll (Ed.) Designing Interaction: Psychology
at the Human-Computer Interface, New York, Cambridge University Press,

pp. 227-253.

Barkhuus, L., Vallgérda, A. (2003). Smart Home in Your Pocket. In: Adjunct
Proceedings of UbiComp 2003, pp. 165-166

Becker C., Handte M., Schiele G., Rothermel K. (2004). “PCOM-A
Component System for Pervasive Computing,” in Proceedings of the 2nd
International Conference on Pervasive Computing and Communications,

Orlando, Florida.

Bell, G., Dourish P. (2007). “Yesterday’s Tomorrows: notes on ubiquitous
computing’s dominant vision. Pervasive Ubiquitous Computing (11), pp.

133-143.

Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E., Henderson, A., Lopes,
C. (2002). Making Sense of Sensing Systems: Five Questions for Designers
and Researchers. In: Proceedings of the Conference on Human Factors and

Computing Systems (2002) pp. 415-422.

Berger, P.L., Luckmann, T. (1966). The social construction of reality: A

treatise in the sociology of knowledge - New York.

Birbilis, G., Koutlis, M., Kyrimis, K., Tsironis, G., Vasiliou, G. (2000). “E-

Slate: A software architectural style for end-user programming”, presented at

17.

18.

19.

20.

21.

22.

23.

284

the 22nd International Conference on Software Engineering (ICSE 2000),

Limerick, Ireland.

Blackwell, A., Green, T. (2003). Notational Systems-the cognitive
dimensions of notations framework. In HCI models, theories and

frameworks, ed: J. Carroll, pp. 103-132.

Blomkvist, S. (2005). Towards a Model for Bridging Agile Development and
User-Centered Design. Published as a book chapter: Seffah, A., Gulliksen, J.,
and Desmarais, M., (eds.). Human-Centered Software Engineering —
Integrating Usability in The Development Process. Springer, Dordrecht, The
Netherlands, 217-243.

Bodker, S. (1991). Through the Interface: a Human Activity Approach to

User Interface Design. L. Erlbaum Associates Inc.

Badker, S. (2000). Scenarios in user-centred design—setting the stage for
reflection and action in: Interacting with Computers. Volume 13, Issue 1, pp.

61-75.

Brown, J. S., Collins, A., Duguid, P. (1989). Situated Cognition and the
Culture of Learning. Educational Researcher, January 1989, vol. 18, no. 1,

pp. 32-42.

Calemis, J., Mavrommati, 1. (2007). Preliminary requirements and approach
for Tools that configure pervasive awareness applications: the ASTRA case.

Poster in: HCI International 2007, Beijing, China.

Carroll, J. (2000). Making Use: Scenario based design of Human Computer

Interactions MIT press.

24.

25.

26.

27.

28.

29.

30.

31.

32.

285

Carroll, J., Rosson, M.B. (2003). Design Rationale as Theory” in HCI
Models, Theories, and Frameworks: Toward a Multidisciplinary Science
(Interactive Technologies), Eds: John M. Carroll, published by Morgan
Kaufmann, pp. 432.

Carroll, J.M. (2000). Five reasons for scenario-based design, in: Interacting

with Computers, Elsevier, Volume 13, Issue 1, pp. 43-60.

Carroll, J.M. (2002). Making use is more than a matter of task analysis, in:

Interacting with computers, vol. 14,— Elsevier, pp. 619-627.

Carroll, J.M. (2006). Dimensions of Participation in Simon's Design. In:

Design Issues, Spring, Vol. 22, No. 2, MIT Press, Pages 3-18.

Carroll, J.M. ed. (2003). HCI Models, Theories, and Frameworks: Toward a

Multidisciplinary Science (Interactive Technologies), Morgan Kaufmann.

Carroll, J.M., ed. (1991). Designing interaction: Psychology at the human-

computer interface, Cambridge University Press, New York.

Chong J., See, S., Leng-Hiang Seah, L., Ling Koh, S., Theng, Y., Duh, H.
(2008). in: Chapterl: Ubiquitous Computing History, developments and
scenarios in: book TBA ICI Global.

Christopoulou, E., Garofalakis, J. (2010). Enabling the User to Setup
Ubiquitous Computing Applications Based on Intelligent Context, cisis,
pp.-87-92, 2010 International Conference on Complex, Intelligent and

Software Intensive Systems.

Christopoulou, E., Goumopoulos, Ch., Kameas, A. (2005). An ontology-
based context management and reasoning process for ubicomp applications.

In sOc-EUSAI '05: Proceedings of the 2005 joint conference on Smart

33.

34.

35.

36.

37.

38.

39.

286

Objects and Ambient Intelligence, pp. 265-270, New York, NY, USA,.
ACM.

Christopoulou, E., Kameas A. (2003). GAS-Ontology: Conceptualizing
Gadgetware Architectural Style TALES of the Disappearing Computer, CTI

Press / Ellinika Grammata.

Christopoulou, E., Kameas, A. (2005). Gas ontology: an ontology
forcollaboration among ubiquitous computing devices. Int. J. Hum.-Comput.

Stud., 62(5):664-685.

Cohen David, Lindvall Mikael, Costa Patricia (2004) An introduction to

agile methods Advances in Computers - AC , vol. 62, pp. 2-67.

Cohen, N.H., Lei, H., Castro, P., Davis, J.S., Purakayastha, A. (2002).
Composing Pervasive Data Using iQL. In Proc. Fourth Workshop on Mobile
Computing Systems and Applications - WMCSA 2002. pp. 94-104.

Costabile, M.F., Ed. (2002). D4.1 Evaluation report from EUDnet, REF IST
2001037470, available from EUD-Net Network of Excellence website.
http://giove.isti.cnr.it/projects/ EUD-NET/deliverables.htm (last accessed
June 2010)

Cotterell, S., Vahid, F. (2005). A Logic Block Enabling Logic Configuration
by Non-Experts in Sensor Networks. In Extended Abstracts of the

Conference on Human Factors in Computing Systems, CHI 2005. pp.1925-
1928

Crabtree, A., Rodden, T., Hemmings, T., Benford, S. (2003). Finding a place
UbiComp in the home. In: Proceedings of the 5th International Conference

Ubiquitous Computing, Seattle. Berlin, Heidelberg: Springer, pp. 208-226.

40.

41.

42.

43.

44.

45.

46.

287

Cross, N. (2008). Engineering Design Methods: Strategies for Product
Design, Willey publishers.

Crutzen, C.K.M. (2006). 'Ambient intelligence between heaven and hell; A
transformative critical room?', in: Information society technology from a
gender perspective - Epistemology, construction and empowerment,
VSVerlag, series ‘Interdisciplinary gender research’, edited by the Centre for
feminist Studies of the University of Bremen and the Centre of Womens and

Gender Studies of the University of Oldenburg.

Daskala, B., Maghiros, 1. (2006). Digital Territories. Proceedings of the 2nd
IET International Conference on Intelligent Environments (IE06), Athens,

Greece. Published by IET pp. 221 — 226, volume 2.

Daskala, B., Maghiros, 1. (2007). Digital Territories: Towards the protection
of public and private spaces in a digital and Ambient Intelligence
environment. EUR 22765 EN
http://www jrc.es/publications/pub.cfm?id=1474 (last accessed March 2010)

Détienne, F. (1990). Difficulties in designing with an object-oriented
language: An empirical study. In Proceedings of the IFIP Tcl3 Third
interational Conference on Human-Computer interaction (August 27 - 31,
1990). D. Diaper, D. J. Gilmore, G. Cockton,, B. Shackel, Eds. North-
Holland Publishing Co., Amsterdam, The Netherlands, pp. 971-976.

Détienne, F. (1990). Expert Programming Knowledge: a Schema-Based
Approach Published in J-M Hoc, T.R.G. Green, R. samurcay, & D. Gilmore
(Eds) : Psychology of Programming. Academic Press, People and Computer
Series, pp. 205-222.

Détienne, F. (1990). Program understanding and knowledge organization: the

influence of acquired schemata. In Cognitive Ergonomics: Understanding,

47.

48.

49.

50.

51.

52.

53.

288

Learning and Designing Human-Computer interaction, P. Falzon, Ed.
Academic Press Series In Computers And People. Academic Press

Professional, San Diego, CA, 245-256.

Detweiler, M. (2007). Managing UCD within Agile Projects. ACM
Interactions May-June 2007, 40 — 42.

Dey, A.K. (2005). End-User Programming: Empowering Individuals to Take
Control of their Environments, in Proceedings of the CHI 2005 workshop on

the Future of User Interface Design Tools.

Dey, A.K., Hamid, R., Beckmann, C., Li, 1., Hsu, D. (2004). a CAPpella:
Programming by Demonstration of Context-Aware Applications. In:
Proceedings of ACM Conference on Human Factors in Computing Systems

(CHI 2004). ACM Press, New York pp. 33-40.

Dey, A.K., Salber, D., Abowd, G.D. (2001). A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications. In Special issue on context-aware computing in the Human-

Computer Interaction (HCI) Journal, Volume 16 (2-4), pp. 97-166.

Divitini, M. & Mavrommati, I. (2008) Pervasive Awareness Applications:
Aesthetics and Ludic Aspects, 3rd ACM International Conference on Digital
Interactive Media in Entertainment and Arts DIMEA 2008 ACM Press,
Athens, Greece, 2008, pp. 499-500.

Dix, A., Finlay, J.,, Abowd, G., Beale, R. (2004) Human Computer

Interaction, 3rd edition, Pearson / Prentice Hall publications.

Drossos, N., Goumopoulos, C., Kameas, A. (2007a). “A Conceptual Model
and the Supporting Middleware for Composing Ubiquitous Computing
Applications”. Journal of Ubiquitous Computing and Intelligence (JUCI),

54.

55.

56.

57.

58.

59.

60.

289

special issue on Ubiquitous Intelligence in Real Worlds, vol 1, pp. 1-13,

American Scientific Publishers.

Drossos, N., Mavrommati, I., Kameas, A. (2007b). Towards ubiquitous
computing applications composed from functionally autonomous hybrid
artifacts. In the Disappearing Computer book (eds: Streitz N. Kameas A.
Mavrommati I.), Springer Verlag, LNCS.

Dunn, T., Raby, F. (2002) Design Noir: The secret life of electronic objects,
ed. August/Birkha.

Edwards, W..K, Newman, M.W., Sedivy J., Izadi S. (2002). Challenge:
recombinant computing and the speakeasy approach, Proceedings of the 8th

annual international conference on Mobile computing and networking,

September 23-28, Atlanta, Georgia, USA.

Engestrom, Y. (1987). Learning by expanding: An activity-theoretical approach to
developmental research. Helsinki, Orienta-Konsultit. Available at

http://communication.ucsd.edu/MCA/Paper/Engestrom/expanding/toc.htm

Espana, S., Pederiva 1., Panach J.I. (2008). Integrating Model-Based And Task-
Based Approaches To User Interface Generation in Book: Computer-Aided Design
Of User Interfaces V, pp253-260, eds: Gaélle Calvary, Costin Pribeanu,
Giuseppe Santucci, Jean Vanderdonckt, Springer, Netherlands.

Fauconnier G., Turner M. (2002). the Way we Think: Conceptual blending
and the Mind’s hidden complexities. New York: Basic books.

Feenberg, A. (1992). 'Subversive rationalization: Technology, power, and

democracy', Inquiry, 35: 3, pp. 301-322.

61.

62.

63.

64.

65.

66.

67.

68.

290

Fernando, O.N.M, Adachi, K., Duminduwardena, U., Kawaguchi, M.,
Cohen, M. (2006). Audio narrowcasting for multipresent avatars on
workstations and mobile phones, in IEICE Trans. Inf. & Syst.Vol. E 8§9-D,
NO.1 January 2006, 73-87.

Fischer, G., Giaccardi, E. (2006). Meta-design: A Framework for the Future
of End-User Development. In: End User Development, edited by

Henry Lieberman, Fabio Paterno, Volker Wulf. Springer Netherlands, pp
427-457.

Fischer, Giaccardi, Ye, Sitcliffe, Mehandjiev (2004). Meta-Design a
manifesto for end user development, Communications for the ACM, 2004,

vol.47, no.9.

Fokidou, T. Romoudi E., Mavrommati, I. (2008). Designing GUI for the
User Configuration of Pervasive Awareness Applications, T.. TADIS

International Conference on Cognition and Exploratory Learning in Digital

Age (CELDA 2008), Freiburg.

Gardien, P. (2007). Breathing Life into delicate ideas. white paper at
http://www.design.philips.com/ (last accessed Jan 2010).

Gaver, W. (1991). Technology affordances. In Proceedings of CHI 1991,
ACM Press: New York, 79 — 84.

Gaver, W. (2002). Designing for Homo Ludens. i3 magazine issue 12, June 2002

Gedenryd, H. (1998). How designers work, phD thesis, online at

http://www.lucs.lu.se/henrik.gedenryd/HowDesignersWork/ (last accessed March
2010).

69.

70.

71.

72.

73.

74.

75.

76.

291

Gibson, J. (1986). The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, Inc. (originally published in New York: Houghton
Mifflin, 1979).

Gibson, J.J. (1977). The Theory of Affordances (pp. 67-82). In R. Shaw & J.
Bransford (Eds.). Perceiving, Acting, and Knowing: Toward an Ecological
Psychology. Eds. Robert Shaw, John Bransford, ISBN 0-470-99014-7.
Hillsdale, NJ: Lawrence Erlbaum .

Go, K., Carroll, J. (2004). The blind men and the elephant: views of
scenario-based system design. ACM Interactions, Vol.11, Issue 6, pp. 45-55.

Goumopoulos, C., Kameas, A. (2009). Ambient ecologies in smart homes,
in: The Computer Journal, Oxford University Press, vol. 52, no. 8, pp. 922-
937; doi: 10.1093/comjnl/bxn042.

Goumopoulos, C., Kameas, A., Berg, E., Calemis, 1. (2009). A Service-
Oriented Platform for Pervasive Awareness Systems, Proc. of the
International Conference on Advanced Information Networking and
Applications Workshops, IEEE CS CPS, ISBN 978-0-7695-3639-2, DOI
10.1109/WAINA.2009.197, pp.470-475, 26-29 May, Bradford UK.

Graves, Petersen Marianne (2004). ‘Remarkable Computing - the Challenge
of Designing for the Home’, CHI 2004, Vienna, Austria, pp. 1445-1448

Green, J. (2007). Democratizing the future, towards a new era of creativity
and growth, 2007 Philips report, pp. 46-48, accessed Jan.2010 from
www.design.philips.com/.../democratizing-the-future-14324.pdf

Green, T. R.G., Petre, M. (1992). When Visual Programs are Harder to Read
than Textual Programs. In G. C. van der Veer, M. J. Tauber, S. Bagnarola, &

M. Antavolits (Eds.), Human- Computer Interaction: Tasks and Organisation,

77.

78.

79.

80.

81.

82.

83.

84.

292

Proceedings of ECCE-6 (6th European Conference on Cognitive

Ergonomics)

Green,T.R.G., Petre, M. (1996). Usability analysis of visual programming
environments: a cognitive dimensions framework. Journal of Visual

Languages and Computing. J. Visual Languages and Computing, 7, 131-174

Greenberg, S., Fitchett, C. (2001). Phidgets: Easy Development of Physical
Interfaces Through Physical Widgets. In Proc. ACM Symposium on User
Interface Software and Technology, UIST 2001, pp. 209-218.

Greene, S. L., Devlin, S. J., Cannata, P. E., Gomez, L. M. (1990). No IFs,
ANDs, or ORs: A Study of Database Querying. International Journal of
Man-Machine Studies, 32(3), 303-326.

Greeno, J. G., Moore, J. L. (1993). Situativity and symbols: Response to

Vera and Simon. Cognitive Science, 17, 49-60.

Greeno, J.G. (1989). A Perspective on Thinking, American Psychologist.

Greeno, J.G. (1994). Gibson's affordances Psychological Review, voll01,
no2, pp336-342, Elsevier.

Gross, T. Marquardt, N. (2007). CollaborationBus: An Editor for the Easy
Configuration of Ubiquitous Computing Environments. In Parallel,
Distributed and Network-Based Processing, 2007. PDP '07. 15th
EUROMICRO International Conference on Digital Object Identifier:
10.1109/PDP.2007.29, pp. 307-314.

Gu, M., Aamodt A. (2005). A Knowledge-Intensive Method for

Conversational CBR in Case-Based Reasoning Research and Development,

85.

86.

87.

88.

89.

90.

91.

293

Springer LNCS, ,Proceedings of the 6th International Conference on Case-

Based Reasoning, ICCBR 2005, Chicago, IL, USA, pp. 296-311..

Habermas, Jurgen (1984). The theory of communicative action I and II

(trans. T. McCarthy).

Hague, R., Robinson, P., Blackwell, A. (2003). Towards Ubiquitous End-
User Programming. In: Adjunct Proceedings of UbiComp 2003, pp. 169-170.

Harwig, Rick, Emile Aarts (2002). Ambient Intelligence: Invisible
Electronics Emerging, Proceedings of the 2002 International Interconnect

Technology Conference, San Francisco.

Hollan, J., Hutchins, E., Kirsh, D. (2000). Distributed cognition: toward a
new foundation for human-computer interaction research. ACM Trans.
Comput.-Hum. Interact. 7, 2, 174-196. DOI=
http://doi.acm.org/10.1145/353485.353487

Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen,
H.W. (2001). Smart-Its friends: a technique for users to easily establish
connections between smart artifacts. Proceedings of UBICOMP 2001, pp.
116-122.

Hudson, S. (2005). “Leveraging 1,000 and 10,000-Fold Increases:
Considering the Implications of Moore’s law on Future UI Tools Research”.
Proceedings of the CHI 2005 workshop on the Future of User Interface
Design Tools.

Hudson, W. (2003). Adopting User-Centered Design within an Agile
Process: A Conversation. Cutter IT Journal, (16), 10 available from

http://www.suntagm.co.uk/design/articles/ucdxp03.pdf

92.

93.

94.

95.

96.

97.

98.

99.

100.

294

Humble, J., Crabtree, A., Hemmings, T., Akesson, K., Koleva, B., Rodden,
T., Hansson, P. (2003). Playing with the Bits, User-Configuration of
Ubiquitous Domestic Environments. In: Proceedings of UBICOMP 2003.
Springer-Verlag, Berlin Heidelberg New York, pp. 256-263.

Hutchins, E. (1995). Cognition in the Wild, MIT Press. ISBN 0-262-58146-9.

Hutchins, E., Hollan, J., Norman, D. (1986). Direct Manipulation interfaces.
In User Centered System Design, Norman D, Draper S. (ed). Lawrence

Erlbaum Associates, Hilsdale, NJ pp. 87-124.

Hwong, B., Laurance, D., Rudorfer, A., and Schweizer, A. (2004). User-
Centered Design and Agile Software Development Processes. Siemens
Corporate Research available from

http://www.scr.siemens.com/en/pdf/se_pdf/rudorfer-1.pdf.

Imaz M., Benyon D. (2007). Designing with blends, conceptual foundation

of human computer interaction and software engineering, MIT press, preface.

IST website: Projects launched by the Disappearing Computer Proactive
Initiative. http://cordis.europa.eu/ist/fet/dc-sy.htm#dc2fp6 (last accessed Jan
2010).

ISTAG Scenarios for Ambient Intelligence in 2010. Final report. (2001). K.

Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten & J-C. Burgelman, (Eds).
IPTS-Seville. fip:/ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf

(last accessed January 2010).

Jacquet, C., Bourda, Y., Bellik, Y. (2005). An Architecture for Ambient

Computing, The IEE International Workshop on Intelligent Environments.

Jones, J.C. (1991). Designing Designing (London: Architecture Design and
Technology Press).

101.

102.

103.

104.

105.

106.

107.

295

Kameas, A. Mavrommati, I. Markopoulos, P. (2005). Computing in
tangible: using artifacts as components of Ambient Intelligent Environments”
In: Riva, G./Vatalaro, F./Davide, F./Alcafiiz, M. (eds) Ambient Intelligence.
IOS Press , chapter 7, p.121-141

Kameas, A., Bellis, S., Mavrommati 1., Delanay, K., Colley, M., Pounds-
Cornish, A. (2003). An Architecture that Treats Everyday Objects as
Communicating Tangible Components. in IEEE international conference on
Pervasive Computing and Communications, (PERCOM2003), Texas. Proc.
PerCom03, IEEE, Forth Worth.

Kameas, A., Mavrommati, I. (2001). Interacting with ubiquitous computing
applications: issues and methodology. Proceedings Panhellenic Conference

on Computer Human Interaction (PCCHI) 2001, Greece.

Kameas, A., Mavrommati, [. (2005). Configuring the e-gadgets,
Communications of the ACM (CACM), special issue section on The
Disappearing Computer, vol. 48, issue 3: ACM, pp. 69.

Kaneko, N., Onisawa, T. (2005) An Experimental Study on Computer
Programming with Linguistic Expressions. In Knowledge-Based Intelligent
Information and Engineering Systems (Proceedings of KES - Lecture Notes

in Computer Science), vol. 3684, Vol. 1: Springer, pp. 911-917.

Kaptelinin, V. (1996). Activity Theory: Implications for human-computer
interaction. In B. Nardi, (ed), Context and Consciousness: Activity theory
and human-computer interaction. Cambridge, MA: MIT Press. Excerpt
online at:

http://www.quasar.ualberta.ca/edpy597mappin/readings/m15_kaptelin.htm

Kaptelinin, V. (1996). Computer-Mediated Activity: Functional Organs in

Social and Development Contexts. Context and Consciousness: Activity

108.

109.

110.

I11.

112.

113.

114.

296

Theory and Human-Computer Interaction. ed B. A. Nardi. Cambridge, MA,
MIT Press, pp. 45-68.

Kaptelinin, V., Nardi, B. (1997). Activity theory: basic concepts and
applications in CHI '97 extended abstracts on Human factors in computing

systems: looking to the future, Tutorials, pp. 158—159.

Kaptelinin, V., Nardi, B. (2006). Acting with Technology: Activity Theory
and Interaction Design. Cambridge, MIT Press.

Klann, M., Paterno, F., Wulf, W. (2006): Future perspectives in EUD, in
Lieberman, H., Paterno, F., Klann, M., Wulf, W. (eds): End User
Development, Springer Netherlands, pp. 475-486.

Klemmer, S.R., Li, J., Lin, J., Landay, J.A. (2004). Papier-Maché: Toolkit
Support for Tangible Input. In: Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI 2004). ACM Press, New York, pp. 399-
406.

Kreitzberg, C.B., Little (2009), A. Usability in Practice: Agile Ux
Development in MSDN magazine, issue of June 2009. Available from

http://msdn.microsoft.com/en-us/magazine/dd882523.aspx

Kuutti, K. (1996). Activity Theory as a Potential Framework for Human-
Computer Interaction Research. Context and Consciousness: Activity Theory
and Human-Computer Interaction. B. A. Nardi. Cambridge, MA, The MIT
Press, pp. 17-44.

Kyffin, S., Gardien, P. (2009). Navigating the innovation matrix: An
approach to design-led innovation. International Journal of Design, 3(1), 57-

69.

115.

116.

117.

118.

119.

120.

121.

122.

123.

297

Lave J. (1988). Cognition in practice: mind, mathematics, and culture in

everyday life. Cambridge University press, Cambridge.

Lawson, B (1980). How Designers Think. Architectural Press, London.

Leadbeater, C. (2008). We-think: Mass innovation, not mass production.

Published by Gardner books.

Li, Y., Hong, J.I., Landay, J.A. (2004). Topiary: A Tool for Prototyping
Location-Enhanced Applications. UIST 2004, CHI Letters, 6(2), pp. 217-
226.

Li, Y., Landay, J.A. (2005). Rapid prototyping tools for context aware
applications. In Proceedings of the CHI 2005 workshop on the Future of

User Interface Design Tools.

Lieberman, H., Paterno, F., Klann, M., Wulf, W. (2006). End User
Development: an emerging paradigm. In: End User Development, edited by

H. Lieberman, F. Paterno, V. Wulf. Springer Netherlands, pp. 1-8.

Lieberman, H., Paterno, F., Klann, M., Wulf, W., Eds., (2006). End User

Development, Springer Netherlands.

Lohmann, S., Ziegler, J., Tetzlaff, L. (2009) Comparison of Tag Cloud
Layouts: Task-Related Performance and Visual Exploration, T. Gross et al.

(Eds.): INTERACT 2009, Part I, LNCS 5726, pp. 392-404.

Mackay, W. (2003). Educating multidisciplinary teams. In: Design Education
at the age of the Disappearing Computer, Section editors I. Mavrommati, J.
Darzentas), to be found in: Tales of the Disappearing Computer (volume

editors: Kameas A., Streitz N. Greek Letters, pp. 105-117.

124.

125.

126.

127.

128.

129.

130.

298

Mankoff, J, Hudson, S., Abowd, G. (2000). Providing integrated toolkit-level
support for ambiguity in recognition-based interfaces. Proceedings of the

SIGCHI conference on Human factors in computing systems, pp.368-375.

Marc, Rl (1995). Scenarios as engines of design. In Carroll, J. M., ed..
Scenario Based Design: Envisioning work and technology in system

development. New York: John Wiley and Sons, Inc..

Markman, A.B., Brendl, C.M. (2005). Constraining theories of embodied

cognition. Psychological Science, pss.sagepub.com

Markopoulos, P. et al. (2001). Interaction design for home information

appliances. PC-CHI 2001, Patras, Greece.

Markopoulos, P., Mavrommati, I[., Kameas, A. (2004). End-User
Configuration of Ambient Intelligence Environments: Feasibility from a User
Perspective. EUSAI, European Symposium on Ambient Intelligence,
Eindhoven, published in: Ambient Intelligence ISBN 3-540-23721-6
Springer Lecture Notes on Computer Science (LNCS3295), pp. 243-254.

Mavrommati I., Kameas A., Markopoulos, P. (2004). ‘An Editing tool that
manages the devices associations’. Personal and Ubiquitous Computing.
ACM, Springer-Verlag London Ltd. ISSN: 1617-4909, Volume 8, Numbers
3-4.pp. 255-263.

Mavrommati, ., Calemis, J. (2010). ASTRA awareness connectivity
platform based on service oriented concepts. in: Gerhéduser, H.; Hupp, J.;
Efstratiou, C.; Heppner, J. (Eds.) Constructing Ambient Intelligence - Aml
2008 Workshops, Nuremberg, Germany, Revised Papers, Communications
in Computer and Information Science, Vol. 32, ISBN: 978-3-642-10606-4,
pp.70-74.

131.

132.

133.

134.

135.

136.

137.

138.

299

Mavrommati, I., Darzentas, J. (2006). An overview of Aml from a User

Centered Design perspective, IET Proceedings of IE06, Athens.

Mavrommati, 1., Darzentas, J. (2007). End User Development in Aml: a user
centered design overview of issues and concepts. eMinds: International

Journal on Human-Computer Interaction (ISSN: 1697-9613), Vol.1, Issue 3.

Mavrommati I., DarzentasJ. (2011) Towards pervasive systems that can
support end user development. Hybrid City Symposium, Athens, 4-5 March
2011.

Mavrommati, 1., Kameas, A. (2002). e-Gadgets case description. Doors of

Perception7 @flow, Amsterdam. http://flow.doorsofperception.com

Mavrommati, I., Kameas, A. (2003a). End-user programming tools in
ubiquitous computing applications. In Proceedings of the 10th International
Conference on Human - Computer Interaction, (HCI International), Krete,

Greece. (2003a).

Mavrommati, I., Kameas, A. (2003b). The evolution of objects into Artifacts:
will it be mostly harmless? Personal and Ubiquitous Computing (PUC),
Volume 7, Issue 3-4, pp. 176-181.

Mavrommati, [., Markopoulos, P., Calemis, J., Kameas, A. (2003c).
Experiencing Extrovert Gadgets. Johnson, H., Gray, P. and O’Neil, E. (Eds)
Proceedings of HCI 2003, Research Press International, Volume 2, pp. 179-
182.

Mavrommati, I., Markopoulos, P., Kameas, A. (2003d). Visibility and
accessibility of a component-based approach for Ubiquitous Computing

applications: the e-Gadgets case. In Proceedings of the 10th International

139.

140.

141.

142.

143.

144.

145.

300

Conference on Human - Computer Interaction, (HCI International), Krete,

QGreece.

Mclnerney, P., and Maurer, F. (2005). UCD in agile projects: Dream team or
odd couple?. ACM Interactions, 12(6), 19 - 23.

Merrill D., Kalanithi, J., Maes, P. (2007). Siftables: Towards Sensor Network
User Interfaces. In the Proceedings of the First International Conference on

Tangible and Embedded Interaction (TEI'07), Baton Rouge, Louisiana, USA.

Ministry of Public Management Home Affairs Posts and
Telecommunications of Japan, Economic Research Office, General Policy
Division, Tokyo (2004). MPHPT, Information and Communications in
Japan: Building a Ubiquitous Network Society that Spreads Throughout the
World, White Paper. Available from
http://www.johotsusintokei.soumu.go.jp/whitepaper/eng/ WP2004/2004-

index.html

Moggridge, B. (2007). Designing Interactions, MIT press

Mondillon, L., Niedenthalb, P.M., Gila, S., Droit-Voleta, S. (2007). Imitation
of in-group versus out-group members' facial expressions of anger: A test

with a time perception task, Social Neuroscience, Volume 2, Issue 3 & 4, pp.

223-237.

Moran, Carroll (1996). Design Rationale, Concepts, techniques and Use

Mori, G., Paterno, F., Santoro, C. (2004). Design and development of multi-
device user interfaces through multiple logical descriptions, IEEE
Transactions on Software Engineering, IEEE Press, August, Vol. 30, No. &,
pp-507-520.

146.

147.

148.

149.

150.

151.

152.

153.

301

Mugellini, E., Rubegni, E., Gerardi, S., Khaled, O.A. (2007). Using personal
objects as tangible interfaces for memory recollection and sharing. In
Proceedings of the Ist international Conference on Tangible and Embedded
interaction (Baton Rouge, Louisiana, February 15 - 17, 2007). TEI '07. ACM
Press, New York, NY, pp. 231-238.

Murakami, T. (2003). Establishing the Ubiquitous Network Environment in
Japan: From e-Japan to U-Japan. NRI Paper 66. Tokyo: Nomura Research
Institute.

http://www.nri.co.jp/english/opinion/papers/2003/pdf/np200366.pdf.

Myers, B.A., Ko, A.J., Burnett, M.M (2006). Invited research overview: end-
user programming, CHI '06 extended abstracts on Human factors in

computing systems, Montréal, Québec, Canada.

Nardi, B. (1993). A Small Matter of Programming: Perspectives on End User
Computing, Cambridge, MIT Press.

Nardi, B. (1996). Studying context: a comparison of activity theory, situated
action models, and distributed cognition. In Context and Consciousness:
Activity theory and Human-Computer interaction, B. A. Nardi, Ed.
Massachusetts Institute of Technology, Cambridge, MA, pp. 69-102.

Nardi, B., ed. (1996). Context and Consciousness: Activity theory and

human-computer interaction. Cambridge, MA, MIT Press.

Nardi, B.. website, http://www.artifex.org/~bonnie/#prl

Newman, M., Sedivy, J., Neuwirth, C.M., Edwards, W.K., Hong, J.,I., Izadi,
S., Marcelo, K., Smith, T.F. (2002). Designing for serendipity: supporting
end-user configuration of ubiquitous computing environments (ACM

SIGCHI DIS2002), London, England. NY: ACM, pp. 147-156.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

302

Newmann, W.M., Lamming, M.G. (1995). Interactive System Design,
Addison Wesley.

Nichols J., Faulring A. (2005). Automatic Interface Generation and Future
User Interface Tools: in Proceedings of the CHI 2005 workshop on the

Future of User Interface Design Tools.

Niedenthal, P. M. (2007) Embodying emotion. Science 316:1002—-05.

Norman D.A. (1988). The Psychology of Everyday Things, New York, Basic
books.

Norman D.A. (1990). The design of everyday things, Doubleday, N.Y.

Norman D.A. (1999). The Invisible Computer. MIT Press.

Norman, D. (1993). Things that make us smart: Defending human attributes
in the age of the machine. Reading, MA: Addison-Wesley.

Norman, D.A. (1991). Cognitive artifacts. In: J.M. Carroll, Editor, Designing
interaction: Psychology at the human-computer interface, Cambridge

University Press, New York.

Norman, Don (2010). Natural User Interfaces Are Not Natural. ACM

Interactions magazine, XVIL3. Article also donwloadable from:

http://jnd.org/dn.mss/natural_user_interfaces_are_not_natural.html

Olsen, D, Klemmer, S. (2005). Proceedings of the CHI 2005 workshop on

the Future of User Interface Design Tools.

Papert, S. (1986). Constructionism: A New Opportunity for Elementary

Science Education. A proposal to the National Science Foundation.

165.

166.

167.

168.

169.

170.

171.

172.

303

Paterno, F., Santoro C., Mantyjarvi J., Mori G., Sansone S., Moruzzi G.
(2008). Authoring pervasive multimodal user interfaces. In: International

Journal of Web Engineering and Technology, [IWET 2008.

Piaget, J. (1962). Comments on Vygotsky’s critical remarks concerning The
Language and Thought of the Child, and Judgment and Reasoning in the
Child, by Jean Piaget, MIT press, available online from:

http://www.marxists.org/archive/vygotsky/works/comment/piaget.htm

Piaget, J., Duckworth, E. (1968). On the development of memory and
identity - Clark University Press.

Punie, Y. (2005). The future of Ambient Intelligence in Europe: The need for
more Everyday Life. In: Communications and Strategies 57, pp. 141-165.

Rakers, G. (2001). “Interacting Design Process. In: User Interface Design for

Epectronic Appliances, Baumann K., Thomas B. (Eds), Taylor and Francis,

pp. 32.

Rauterberg, M. (2003). Human Computer Interaction Research: a paradigm
clash?. In: Design Education at the age of the Disappearing Computer,
Section editors I. Mavrommati, J. Darzentas), to be found in: Tales of the
Disappearing Computer (volume editors: Kameas A., Streitz N. Greek

Letters, pp. 157-164.

Reeder, K. (2002). Primary Techniques for Concept generation in the
product development process. In proceedings of the IDSA National Design

Education Conference, San Jose, CA, p.p. 285-290

Repenning, A., Ioannidou, A. (2006). What makes End-User Development
Tick? 13 design guidelines. End-User Development. H. Lieberman, F.
Paterno, V. Wulf. Springer pp.51-86.

173.

174.

175.

176.

177.

178.

179.

304

Ringas, D., et al (2002). An Architecture that Supports P2P Networking
among Ubiquitous Computing Devices. 2nd IEEE international conference

on Peer to Peer Computing, (P2P 2002), Linkoping, Sweden.

Rodden, T, Crabtree, A., Hemmings, T., Koleva, B., Humble, J., Akesson, K-
P., Hansson, P. (2004). Between the dazzle of a new building and its eventual
corpse: assembling the ubiquitous home. Proceedings of the 2004 ACM
Symposium on Designing Interactive Systems, Cambridge, Massachusetts:

ACM Press.

Rodden, T. Crabtree, A., Hemmings, T., Koleva, B., Humble, J., Akesson,
K., Hansson, P. (2007). “Assembling connected cooperative residential
domains”, The Disappearing Computer: Interaction Design, System
Infrastructures and Applications for Smart Environments (eds. Streitz, N.,

Kameas, A., Mavrommati, .), pp. 120-142, Heidelberg: Springer.

Rodden, T., Benford, S. (2003). The evolution of buildings and implications
for the design of ubiquitous domestic environments. In: Proceedings of the

CHI 2003 conference on human factors in computing, Florida, USA.

Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble, J., Akesson,
K-P., Hansson, P. (2004). “Configuring the ubiquitous home”, Proceedings
of the 6th International Conference on Designing Cooperative Systems, May

11th-14th, French Riviera: IOS Press.

Rogers, Y. (1997). A brief introduction to distributed cognition. Available:

http://www.cogs.susx.ac.uk/users/yvon-ner/dcog.html.

Rolland, C., Achour, C. B., Cauvet, C., Ralyte, J., Sutcliffe, A., Maiden, N.
A. M., Jarke, M., Haumer, P., Pohl, K., Dubois, E., Heymans, P. (1996). A
proposal for a scenario classification framework. Requirements Engineering

3(1), pp. 23-47.

180.

181.

182.

183.

184.

185.

186.

187.

188.

305

Roman, M., Cerqueira, C.K.H.R., et al. (2002). “Gaia: A middleware
infrastructure to enable active spaces,” IEEE Pervasive Computing, pp. 74—

83.

Roschelle, J., Koutlis, M., Reppening A. (1999). “Developing Educational
Software Components”, IEEE Computer, September 1999 Special Issue on
Web based learning and collaboration, pp. 2-10.

Rosson, M.B., Carroll, J.M. (2002). Usability Engineering; scenario based

design of human computer interactions, Morgan Kaufmann.

Saffer, D. (2007). Designing for Interaction: Creating Smart Applications
and Clever Devices. New Riders, AIGE design press.

Schmidt, A. (2005). Interactive Context-Aware Systems Interacting with
Ambient Intelligence.In: Riva, G./Vatalaro, F./Davide, F./Alcaniz, M. (eds)
Ambient Intelligence. IOS Press part 3, chapter 9, p.159-178.

Schneider, J.G., Nierstrasz, O. (199). Components, scripts and glue, in
Software architectures — advances and applications (J. Hall, P. Hall — eds),

Springer-Verlag, pp. 13-25.

Scholtz, J., Consolvo, S. (2004). Towards a discipline for evaluating
ubiquitous computing applications. INTEL white paper, IRS-TR-04-004.
http://www.intel-research.net/Publications/Seattle/022520041200 232.pdf

Schon, D.A. (1983). the reflective practicioner: how professionals think in

action. New York, Basic Books.

Sharp, D., Salomon, M. (2008). User Led Innovation: a New Framework for
Co-creating Business and Social Value. Published by CRC & Swinburne
University of Technology.

189.

190.

191.

192.

193.

194.

195.

196.

306

Sharpe, B. (2003). Information Appliances, an introduction. Downloadable

white paper, http://www.appliancestudio.com

Shore, James and Warden Shane (2007): The art of Agile Development.
O’Reilly Editions.

Simon, H. (1969). The Sciences of the Artificial, MIT press.

Sohn, T., Dey, A.K. (2003). iCAP: An Informal Tool for Interactive
Prototyping of Context- Aware Applications. In: Extended Abstracts of
ACM Conference on Human Factors in Computing Systems (CHI 2003).
ACM Press, New York, pp. 974-975.

Souza de, C.S., Barbosa, S.D.J. (2006). A semiotic framing for end-user
development. In End-User Development. H. Lieberman et al., Eds. Kluwer,

Dordrecht, the Netherlands, pp. 401-426.

Spencer R., “The streamlined cognitive walkthrough method,” Proceedings
of the Conference of Computer Human Interaction, (CHI 2000), ACM Press,
Hague Netherlands, April 2000, pp 353-359.

Streitz, N., Kameas, A., Mavrommati, 1., eds. (2007). The Disappearing
Computer: Interaction Design, System Infrastructures and Applications for

Smart Environments. Heidelberg, Springer.

SWAMI D1: Safeguards in a World of Ambient Intelligence (SWAMI)
(2006). IST Deliverable D1: the brave new world of ambient intelligence: A
state of the art review. Friedewald M. Vildjiounaite E., Wright D. (Ed).

Accessed September 2007 from http://swami.jrc.es

197.

198.

199.

200.

201.

202.

203.

204.

307

SWAMI final report: Safeguards in a World of Ambient Intelligence: Final
report (SWAMI) (2006). Wright David. (Ed). Commissioned by Joint
Research Center (JRC). Accessed September 2007 from http://swami.jrc.es

Terry M., Mynatt E., Nakakoji K., Yamamoto Y. (2004). “Variation in
element and action: supporting simultaneous development of alternative
solutions”, Proceedings of the 2004 conference on Human factors in

computing systems, pp. 711-718.

Truong, K.N., Huang, E.M., Abowd, G.D. (2004). “CAMP: A Magnetic
Poetry Interface for End-User Programming of Capture Applications for the
Home.”, Proceedings of Ubicomp 2004, pp. 143-160.

Vygotsky, L. (1896-1934), archive, available online at

http://www.marxists.org/archive/vygotsky/

Vygotsky, L. (1934). Piaget's Theory of Child Language and Thought
(chapter 2), in: Thought and Language. Edited and translated by Eugenia
Hanfmann and Gertrude Vakar; Publisher: The M.LT. Press, 1962;
(originally written in 1934). Available online from:

http://www.marxists.org/archive/vygotsky/works/words/index.htm

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher
Psychological Processes. Cambridge,MA, Harvard University Press.

Weis, T., Handte, M., Knoll, M., Becker, C. (2006). “Customizable Per-
vasive Applications”. International Conference on Pervasive Computing and

Communications (PERCOM), Pisa

Weiser, M. (1991). The Computer for the Twenty-First Century. Scientific
American, pp. 94-10.

205.

206.

207.

208.

308

Weiser, M. (1993). Some Computer Science Issues in Ubiquitous

Computing. Communications of the ACM, (CACM) 36(7), pp. 75-84.

Weiser, M. (1994). The world is not a desktop. Interactions, pp. 7-8.

Weiser, M., Seely Brown, J. (1996). Designing Calm Technology.
PowerGrid Journal, v 1.01. (Also appeared as Chaper 6 - The Coming Age of
Calm Technogy in the book Beyond Calculation - The Next Fifty Years of
Computing by Peter J. Denning and Robert M. Metcalfe, Copernicus/An
Imprint of Springer-Verlag).

Winkielman, P., Niedenthal, P.M., Oberman, L.M. (2009). Embodied
Perspective on Emotion-Cognition Interactions. In Mirror Neuron Systems.
Contemporary Neuroscience, 4, pp. 1-23, DOIL: 10.1007/978-1-59745-479-
7 11

309

PROJECT WEBSITES AND SOURCES:

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

Accord project website: http://www.sics.se/accord/

Ambient Assisted Living (AAL) joined programme website: http://www.aal-

europe.eu/

Ambient Intelligence, Philips Research Password
Issue 13, Oct. 2002, (last accessed Jan 2010 from

http://www.research.philips.com/newscenter/pictures/password 13.html

ASTRA Deliverable D4 (2009a), sections 3,4,5, (Markopoulos P. |,
Mavrommati I.) available from ASTRA project website: http://www.astra-

project.net/ , pp.5-65

ASTRA Deliverable D4 (2009b), Section 9 “Communities and End User
Development: The ASTRA repository and application manager” (Divitini
M.), available from ASTRA project website: http://www.astra-project.net/ ,
p-p-91-111.

ASTRA project website: http://www.astra-project.net/

e-Gadgets project website: http://www.extrovert-gadgets.net

e-Slate website: http://e-slate.cti.gr/

EUD-Net Network of Excellence website. http://giove.cnuce.cnr.it/eud-

net.htm

KINECT website: www.kinect.com .

Oxygen project website: http://oxygen.lcs.mit.edu/

220.

221.

222.

223.

224.

225.

226.

310

OXYGEN project website: http://www.oxygen.lcs.mit.edu/

Philips Research website: http://www.research.philips.com (pictures of

Ambient Intelligence projects at:

http://www.research.philips.com/newscenter/pictures/systsoft-ambintel.html

PLANTS project website http://daisy.cti.gr/plants/

SIFTABLES website: http://sifteo.com

SIFTABLES website: http://sifteo.com/

SMART-ITS website: http://www.smart-its.org/

The Disappearing Computer (DC) initiative: http:/www.disappearing-

computer.net/

311

17.Appendix 1 - Expert review

17.1. Introduction

This report describes the early evaluation of e-Gadgets from the perspective of an
end-user. It details the process and results for the evaluation meeting held at the
Technical University of Eindhoven during the first project year, and, in the next
appendix (appendix 2) a review of the concepts discussed using the Cognitive
Dimensions framework of (Green and Petre, 1996). The aim of the meeting has been
to evaluate the e-Gadgets concepts and the proposed interaction concepts with
respect to end-users. In general we are interested in the perceived usefulness and

ease of use of the technologies envisaged, but more particularly focus on two issues:

e Are the targeted users likely to comprehend and use the e-Gadgets (G) and
GadgetWorlds (GW)?

e Are the targeted users likely to be willing to use them?

e The workshop tried to address these questions systematically, eventually

collecting recommendations for the project.
In the following sections we describe:

e The process followed in the evaluation meeting.
e The comments collected during the evaluation meeting.

e The conclusions drawn for the project.

17.2. Method

At the time of the evaluation, most technology was still under development and too
immature to withstand a test with users. Nevertheless, it was felt that issues of
usability and perceived usefulness, needed to be considered at this stage of the

project, in order to enable e-Gadgets to realize the ambition of end-users architecting

312

their Gadgetworlds. Consequently, 3 experts in user system interaction were invited

for a structured workshop to evaluate related user issues. The experts were:

e M.Bekker (MB), TU/e, Assistant Professor and experienced researcher in user
system interaction, with expertise in participatory design and designing for
children.

e C.Huijnen (CH), TU/e expert in user centered design with a background in
Cognitive Psychology.

e A.Gritsenko (AG), TU/e expert in user centered design with a background in

Industrial Design.

All are familiar and friendly to technology but not computer programmers. This
also fits the profile that we had in mind for the end-user of e-Gadgets for this
evaluation (technophile but not programmer). Further participants to this meeting

WEre:

e Panos Markopoulos (PM), facilitated the process and at times when appropriate
also acted as an expert evaluator.
e Irene Mavrommati (IM) acted as a facilitator and presented the concepts of the

project to the participants.

The agenda of the meeting is added as an appendix. The intention was that first the
concept would be presented in an abstract form by IM. A first round of comments
was collected to warm up the discussion, let experts familiarize with the concept and

focus on the usage aspects.

A collection of four scenarios was then discussed that highlighted different usage
issues. A small discussion followed each scenario, that had elements of a focus
group (trying to get all participants vocal, not aiming for consensus, trying to get at
gut reactions for the concepts proposed, helping participants build on each other’s

ideas).

313

A problem solving exercise was given to see the extent to which these experts could
build their GadgetWorld (GW) and further, when they did so, to reflect on what they

consider as problems for the end-user (based on this first hand experience).

Finally, the current interface for the GW editor and video-prototypes created by IM,
for Tangible Interfaces for constructing GWs were shown. Opinions were solicited
from all experts. In the following section we discuss the various points raised by the

experts as they occurred in sequence (as opposed to thematic units).

The meeting ended with a round the table request for global level feedback for the

project.

A note has to be made for the role of the evaluation. First the evaluation did not aim

to assess the concepts or products of e-Gadgets so far. It deliberately focused

discussion on problem areas and on hypothetical scenarios that exposed the pitfalls

users might confront through the technological vision of e-Gadgets. The aim of the

evaluation was formative, i.e., it aimed to provide a direction for the next steps of
the project, that will ensure user needs are taken into account. As a formative
evaluation, it did not focus on detailed interaction (look and feel), as the relevant
end-user interfaces, have not yet been developed. Rather we focused on the

concepts and on the role the e-Gadgets technology can play in fulfilling user needs.

17.3. Comments (feedback) from experts

Reactions to basic concept: A general problem for ubiquitous computing
environments is the visibility of their boundaries. It makes sense if these boundaries
coincide with physical boundaries, e.g., of a room. When we draw GWs as
connected graphs of digital artifacts, and we draw boundaries around groups of
gadgets forming a GW, we are drawing a boundary that is invisible to the end-user.

This nesting of GWs is necessary for scaling them up, but needs to be made visible

to the end-user.

314

In the drawings of GWs, synapses are associated with different meanings. There is a
tension here, between needing a simple uniform mechanism for connecting e-
Gadgets, and the different meanings such synapses will have for the end user. A
first reaction to the notion of synapses, is that they should not be loaded with

semantics, as users might interpret these inconsistently. The notion of a synapse

should thus be of a single type, (eg, as entering a plug into a socket), at least for the

‘naive’ end user.

It important for the user to be able to check whether a synapse works. This is one of

the many examples of observability that need to be engineered into the gadgetworld

editors. There is an important trade-off: you need the system to be observable to

repair, to understand, but you don’t want the work that comes with it.

The semantics of synapses were not clear to the experts from the first introduction.
Several possibilities can be envisaged: e.g., control flow, data flow, stimulus-
response, bi-directional constraints between values, etc. Depending on the choice
made here, there will be different abilities of the user to predict what the outcome of
a synapse will be. Consider for example, trying to predict the execution of a
program from its control-flow specification or to predict the output value of an
electronic circuit, from its input signal. There is a clear gap between a static
structure and its runtime behaviour and restraint has to be applied in e-Gadgets
concerning the ability of users to construct GWs and predict the behaviour of these

worlds. Simple, non-complex and hierarchical structures of GWs should be

preferred. More complex structures are anticipated to be beyond the capabilities of

the average target user.

The role of intelligence was discussed a lot by experts. In this first stage, two
common caveats of adaptive systems were noted: knowing and controlling when the
system is learning, e.g., if the system is your room how do you stop the adaptation of
it, and how do you cope with multiple users? These issues are not specific to

gadgetworlds.

315

Regarding how users will perceive GWs and e-Gadgets, a fear was voiced as to
whether augmenting every-day objects with computing capabilities will be a shock
to users or not. An alternative suggested, was that a complete new breed of objects,
clearly distinguishable should constitute gadgetworlds. At this stage though, how
users will accept the computational enhancement of every day-objects cannot be

conjectured without some long-term user trial.

Discussion on Scenaria

The scenaria are included at the end of this section. Comments are listed per
scenario. We do not duplicate issues arising in later scenarios when they have been

addressed in earlier ones.

Scenario 1

The experts in the meeting recognized the gadgetworld construction or modification
as a programming activity. Some were skeptical about the end-user acceptance for
programming activities. However, other researchers, (eg, Newman et al 2002)
consider end-user programming as a crucial element for the advent of a ubiquitous
computing environment. In the following, we shall not adopt the skeptical view
about end-user acceptance of end-user programming, but shall focus on the potential

hurdles that users have to overcome for GW construction.

The end-user programming is by its nature a secondary task (Card Moran and

Newell, 1980). Therefore the effort required for GW construction should be

commensurate with the value and complexity of the primary task. Thus, a large GW

construction effort will only be justified if the value or the complexity of the primary
task is large. Constructing a GW to support a simpler task, e.g., switching on the
light as you enter a room, should be straightforward to support. Even though the
product that will be delivered to end-users was not in the scope of this evaluation,
we note some remarks made that concern the deployment and marketing of

gadgetworlds (and not the concepts of concern to this research project). E.g.,

316

A GW should work out of the box — no set up or programming should be
needed.

Decoration is above functionality in the home. People will want to choose on
the basis of aesthetics or extend their furniture with e-Gadget capabilities.
Providing energy to all of these devices may be problematic (a maintenance
headache and an environmental threat).

It should be possible to add personalisation to the capabilities that come out of
the box.

Finally, the search for gadgets or gadgetworld configurations (e.g. search on the

internet) should be flexible. Search mechanisms should support both strategies:

starting from both what you have (gadgets) and from the function you want to do

(task).

Scenario 2

The second scenario gave rise to discussions about adaptivity. Some possible needs

for the user were discussed:

It should be possible to override system adaptation and automation. This
touches upon a central problem for ubiquitous computing research, i.e., the
ability to control an augmented environment that adapts to the user and is
designed for invisibility.

Adapting to conflicting needs of multiple users is seen as a major challenge,
probably a major research issues on its own right.

Auto-configuration helps in this scenario, but in general, users would like to veto
or control when a new item is added to the GW. When will this stop? E.g., who
asked it to connect to the GW of the next house, or of the bedroom, etc. The user

must stay in control of system behaviour.

A challenge in designing GWs is deciding what user habits are relevant to watch.

It seems that this must be included in the ‘programming’ tasks for end-users.

317

Scenario 3

This scenario took the discussion beyond the first time user. The following

requirements were conjectured:

1. Complexity of context sensing should be allowed to grow as the user gets more
experienced with e-Gadgets.

2. Debugging/test mode facility necessary. Just like programmers need it, the users

will need it to, since you ask them to construct a type of program. For example,
the users will need to verify that the light switches on when it gets dark without
waiting for the sun to set.

3. How do you tell instances of the same e-Gadget (e.g., many lights, many chairs,
cups). The interaction with GWs has to be based on some sort of deixis (e.g.,

“this gadget””’) or reference (e.g., gadget XXXX at YYYY).

4. A dependency to physical spaces was noted. The description of gadgets and
their links on the one hand is facilitated by reference to the physical world, e.g.,
the light by the desk, but needs to be orthogonal to that, e.g., consider what

happens when you rearrange the furniture.

Scenario 4

Scenario 4 was deliberately constructed to expose the feasibility of writing short
scripts for gadget worlds. This is not an impossible feature; indeed a large number
of people are accustomed to writing such scripts for their professional activities.
However, the implicit application context for gadgetworlds has been non-
professional activities, where we can expect reticence by users to act as

programmers.

The following recommendations can be drawn from the discussing.

e Harder programming tasks should be supported by the system, e.g., by wizards

or templates.

318

Plugs are architectural abstractions, but the users start from task related
abstractions. Wizards are a way to bridge the gap unless we expect some serious

programming effort by the users.

Problem solving exercise

In this part of the meeting IM presented GWs of increasing complexity (see

appendix 3), to show a diagrammatic way of modelling them and to convey how

different behaviours are achieved through different GWs. CH, AG, MB and PM

made their own examples based on the floor-mat e-Gadget collection. Their

solutions are included in appendix 4.

Problems identified are:

1.

Arrows indicate directed-ness, and connections seem to imply stimulus-response
pairs. This is intuitive, but the synapse concept was introduced as undirectional.
If there is direction in the synapse, what should the mental model of the user be?

Should it be a flow of information, control, etc? The project must commit to one

meaning for a synapse, the desired mental model for it and choose graphical

representations accordingly.

During problem solving, it was not clear to the participants whether concepts
should be operationalised as plugs or as synapses. For example, why is a study a
plug in figure x of appendix 1 and not a synapse. Why is the plug a combination
of basic functions?

If the software creates new higher level plugs, what guarantees do you have that
the user will understand them as fitting their mental model of the GW? The user

sees and understands behaviour, not the GW structure. Templates can be

provided to support the mapping between tasks of the user and the GW

structures that will support them.

It was found confusing that sensors were attached to everyday objects. E.g., if
you want to know the light intensity this shouldn’t be a plug of the book e-

Gadget, but from a light intensity object. Sensing objects can be 1% class

319

objects, as opposed to attributes of an augment object, like a book. Decisions

like these are very hard for the end-user. Professional programmers know from
experience or rely on patterns or styles to make these decisions. GAS should
make explicit and communicate through the design of the GW editor how the
user can best map concepts from their world to the GW.

5. People are an important component in describing context and activity. They are
completely missing from the GW. Currently, their effect on e-gadgets describes
parts of their activity indirectly. Rather, a GW should include re-usable

abstractions of people that the user can utilise directly in the GWSs they architect.

For example, if you have an abstraction “Small group of people”, this could
provide plugs to different kinds of sensors that would detect its existence and its
activities. This construction could be supported directly in the GW editor rather
than be left upon the user, or be implicit in the connections made between e-

Gadgets.

Agent Based Behavior

As a follow up to the problem solving, IM presented a scenario where an agent adds

an object after watching the behavior of the user. The reactions were:

1. Which is the most “important” lamp? The one on the table or the one on the
floor? It seems that you control through the one you made first. This
brings up an important issue in the design of GAS: is history important, are
GWs associative? The experts did not provide any direction to this decision.

2. The experts treated the autonomy of the system in making reconfigurations
with scepticism. They pointed out common caveats with adaptive systems:
how does a user know what changes are happening? Are the decisions made
by the system meaningful to the user? How can the user observe the status

of the system at any moment?

These are difficult and very broad research questions. The experts thought that a

tool for inspecting and monitoring GWs, are a necessary addition.

320

GUI Interface

A screen mock-up of a GW editor was shown to participants (see figure 1), and it

was explained to them how GWs could be created or modified with it.

Discussion with the experts, focused on the bridge between the on-line information
that is mostly context independent, and the real GW that is installed and affects your

own living environment. The following recommendations were made:

1. From an abstract description it is hard to know what a GW will do. A test mode
is needed where the installed behaviour is simulated, before it is actually
installed. A potential solution would be a virtual room to simulate the operation
ofa GW.

2. Users will need to store, retrieve and redeploy end-user programs made for GWs
was identified. For example, you could travel taking preferred °; light settings’

with you.

321

3. The graphical interface (figure 1) seems to differ significantly from the
conceptual diagrams, used in the problem solving. The graphical interface does

not show the connections shown on the conceptual diagrams.

i i Fals many
aditing mode prets many
—
e-cup .e-toy e-cup e-chair e-pot e-bookl = COMFORTABLE STUDY
r
DETAILED DESCRIPTION FOR UNDERSTANDING
WHAY THE SELECTED WITH THE ARROWS
GW ACTUALLY DOES.
FPOSSIBLE DESCRIPTIVE TEXT OF EACH PLUG
THE DESCRIBED FUNCTION -FOUND ON
THE CGADGETS WEB DATABANK- FITS THE
S i e R i . SELECTED GADGETS. 31 1T 15 ACCEPTABLE
» bt . o " B iT CAN BE ACTEVATED

Oagent on

describe here w hat the GW doaes:

find similar GWs in the wab |

= | Clear ta erate néw GW 1

Favourite list: ramember this l

2-Gadgacs St ine it GadgaeWorlds
?‘ e-cup class“ bedside light . i (O)COMFORTABLE STUDY active(play/pausebuttontoggle)
*\e-toy tv-light (O)SLEEPING PEACE active-
} e-lamp corridor :::ll::“c.l‘lzé.d‘" (O)NICE WAKE UP active
1 e-chair desk light Erilap () HOLIDAY GADGETWORLD paused
¥ e-pot room light :p::., () PARTY GADGETWOORLD paused
* e-book monitor light e () AMBIENT LIGHT paused
'* e-desk mob.phone light 4 ... PERSONAL MEMORIES stored for later
e-pda pda light ... LENDING ITEMS stored for later
1' e-carpet ... SHOPPING AID stored for later

Figure 1. The screen design for the graphical GW editor, that was shown during the evaluation meeting.
Figure x. The screen design for the graphical GW editor, that was shown during the evaluation meeting. The user
can browse e-Gadgets through (bottom left), or complete gadgetworlds (bottom right). A search facility is foreseen
(top right), where the user enters task related information. Once a gadgetworld or a gadget has been selected, a
matrix including gadgets and their attributes is presented at the top left window.

322

17.4. Advanced interface options

IM presented video prototypes of a magic wand interface, a PDA interface, and one

with tangible representations of plugs.

The reactions of the experts were positive for the overall concepts. Concerns
expressed were about detailed design issues not shown on the video prototypes: e.g.,
the want helps only select e-Gadgets, but the problem of specifying desirable

behavior has not been solved.

In some cases, a more text based and programmer oriented interface can be more

understandable than a gesture based interface.

Global comments

At the end of the meeting a round-table was done, where general remarks were

collected. The experts expressed the following opinions:

AG- Extending traditional objects with a digital self is confusing.

The comments of CH and MB concerned mostly the perceived usefulness of GWs.
Contrasting the light scenario with Norman’s thinking about every day things
(DOET), she commented on how ordinary things cause hassle, e.g., opening doors.
E-gadgets should have a value proposition for solving some of these problems
instead of complicating them. E-gadgets would benefit by trying to address some of
these daily hassles.

AG focused on how much behaviour of the e-Gadgets remains invisible to the user
and on the breaking of expectations one has from every day objects. This hidden
complexity can be positive as long as the user does not have to repair the system
behaviour. In other cases, more observabilty of e-Gadget behaviour has to be

ensured.

323

17.5. Summary of evaluation session

There were many comments raised and there is little objective means of prioritising
them. Perhaps the remaining impressions of issues that recur throughout the

evaluation discussion recorded above are the following:

1. Ubiquitous computing technologies embedded in physical objects effectively
add hidden behavior and complexity to them. Problems may arise if this
behavior is not observable, inspectable and predictable for the user.

2. The example applications chosen to demonstrate the project concepts are almost
as important as the concepts themselves, to ensure higher perceived usefulness.

3. Intelligence causes problems of observability and of unpredictability for users. It
must be used with caution and this should be reflected in the demonstrations
built.

4. Constructing and modifying GadgetWorlds is a problem solving activity
performed by end-users. As such, it has an algorithmic nature and thus good
programming support should be offered, (e.g. Inspectors, debugging, search
mechanisms, unambiguous syntax), rather than hiding the complexity of the
activity.

5. Some clarity about the meaning of a synapse is needed. It was felt that a simple
directed relation, e.g., event broadcast and event listening would be a useful
convention. Currently, a synapse could be interpreted in many inconsistent

ways.
Related material used for the session is shown in the following sections

17.6. Problem solving: Applications created in the evaluation
workshop.

The figures below show how experts connected their own gadgetworlds. Broadly

speaking, they expressed themselves in these diagrams, though not in a consistent

324

manner. This shows that without tool support to suggest well-formedness of the

configurations diagrammatic constructs may be used arbitrarily by users.

make your own Gadgetworld

CARPET MP3 PLAYER Foee
| L—;’I;ﬁ c sk |‘ oed e
—=~_ ———=> volume (higher, lo docs
| \meact -8 track (next, prevlo‘:nvs.e)r) ‘ i
ocation A ~ play / pause {Z’SQ) H| -
Location B/ ~—__, Stop ‘ e
Location C .’f =3 music-gender l_’ Jo
| puret
wdbcodle
bl ey
| onforf e
intensity 3
- o plipert
FLOOR P m‘.k?@
T-plug M&h\s
| o l sfuations
intensity Now, what can we think of doing with these eGadgets? ‘ heerarc!
R-dirend
plugs

B0~y corpel — F weight & wore —p tower nterzsity [—f{os —
valiaes kol 3 player i ALS
Acor Lakhgaw%s:e e el e
¥ locodiors A og 2 ek dolnp oY naaded. | Goee ayp o,
rusic Maddie —>flo.ﬂ

Gadgetworld 1. A carpet that plays disco for heavy footsteps.

This expert found it difficult to articulate the exact task she wanted with the

constructs in hand. It was further confusing for her that she had to describe

architectural configurations, while she was thinking of defining behavioral

abstractions (Sequence of steps). It would be useful to provide libraries of re-usable

templates that encapsulate behavioral abstractions. Then users could re-use and

modify these ready-made configurations.

325

“Po Y \/\-’C&\k N\%\/\gk\ rulen

/&'ZS(U\V\AW o \(\/vvk\\ﬁ
Acnp

e
Y 4\
WO
MP3 PLAYER)b:)bqf P
T-plug T-plug : Y o
weight —\‘\volume (higher, lower) / QH%V
impact | track (next, previous) (

‘ Location A \—bplay / pause
l Location B Q stop_ p
Location C music-gender s —

it ”
‘/\)\I\L\k‘D o\‘ Mk

DESK LAMP 4T ol mm\w&\\\

anl’gjf? SRaa(oS Qeoat el ack
e
intensity % coapls 3 ace fle kuau\l <

[CVR (VNS CV\“@C& ’WQ_LL\(\\\\%%\

\ FLOOR LAMP YW Lin '\mj NSl

T-plug X
on/off
intensity &

www.extrovert-gadgets.net 11 September 2002

Now, what can we think of doing with these eGadgets?

expert appraisal

Gadgetworld 2. A carpet that sets music and lighting for romantic situations or decides it is
study time.

This expert commented on the gap between concepts that are meaningful for the
system (E.g., the definition of locations A,B,C) and how the user identifies concepts
meaningful to them (e.g., how does the user understand the concept of a location in
the carpet, is it in the centre or periphery, is in left or right). In other words the
mapping of concepts from the mental model to the system model is a programming
activity (e.g., defining the borders of locations A,B, and C) that is not per se
supported by the e-Gadgets architecture and remains an open issue in terms of end-

user programming of a GW.

326

make your own Gadgetworld

CARPET MP3 PLAYER
T-plug T-plug

weight volume (higher, lower)
impaa\hgack (next, previous)
Location A lay / pause

Location B
Location C

DESK LAMP
T-plug

on/off

intensity

FLOOR LA

T-plug

on/off 4 Now, what can we think of doing with these eGadgets?
intensity

11 September 2002

"K i CW/%+ILV&(@P musiC .
(A2)IW off
(& lawps

www.extrovert-gadgets.net

OWU%/W

Gadgetworld 3. A carpet that turns off the music if you are not on it.

This expert commented on the need to model people inside the programmatic
environment. The example shows how ordinary objects are enhanced with sensing
capabilities, and therefore become elements in expressing a program. However, it
seems that situations we would wish to program for are more directly expressed in
terms of the people inside them, rather than in terms of what the sensors sense. In

conclusion_if we want people to program their own living environment as a GW,

then we have to provide re-usable ready made abstractions to represent the system’s

model of the people inside the environment.

327

17.7. Example configurations shown to participants

A series of gadgetworld architectures were shown diagrammatically to participants
by IM. These had increasing difficulty, and introduced increasingly higher level
constructs, e.g., a synapse, creating a new plug, creating a new object. We show
here two of these configurations. Gadgetworld 1 shows a simple set of plugs and
some associated rules, for controlling a light depending on whether a person sits on

a desk, or has a book open or places an object of some weight on the desk.

Gadgetworld 2, shown below, is an example of introducing a plug, to model

architecturally an abstract concept ‘study’ which is meaningful for the user.

Gadgetworld 1: Diagrammatic representation of a gadgetworld that controls light

intensity

DESK LAMP

T-plug T-plug

welg_ht_ » on/off
proximity intensity
BOOK CHAIR
T-plug T-plug
open/closed occupancy
luminosity

...and is that what we really want?
Rules:
when something (WEIGHT) is on the DESK, then turn LAMP ON
When the BOOK is OPEN, then turn LAMP ON
When someone is sitting on the CHAIR, then turn LAMP ON
Adjust LAMP INTENSITY according to the level of light on the
BOOK (LUMINOCITY).

Gadgetworld 1: Representation of a gadgetworld that controls light intensity

328

Tplug T
gt o
proximity intensity

T-pug
operydosed

lurrincsity

Advanced Rules:

The state of STUDY plug (DESK) functions with rue:

If (WBGHT >0 and FROXIMTY >=2) then STLDY =1
The state of STUDY plug (LIGHT) fundtions with the rue:
If (STUDY=1) then (TURNLAVP QN

description:

When samething is NEAR the DESK AND something is ON the DESK
AND SOVEONE is sitting ON the CHAIR AND The BOOK is OPEN
THEN ADJUST INTENSITY AGOORDING TO LUMINOATY

Gadgetworld 2: Introducing a plug to represent the more complex concept of a study.

17.8. Material Used for Expert Appraisal (agenda, scenarios,

schemes)

Agenda for evaluation meeting:

IPO 1.24, room 1.18, 9:00

Opening

. Confidentiality agreement

3. Introduction to e-Gadgets concepts (Irene)
Round table with initial reaction.

N —

Panos minutes dialogue.

4. Scenarios presentation and claims analysis
Panos presents scenarios

329

Participants write on post-it notes, any of the following:

e Problems relating to using e-Gadgets
e Issues relevant for user acceptance
e Trade-offs, e.g., feature causes desirable consequences but also undesirable consequences

Irene collects notes on flipchart. Panos summarises on paper

5. Problem solving exercise. Modify your gadget world.
Irene sets exercise that participants solve. Again comments are invited and inventoried. Panos keeps notes.

6. Irene presents the scenario for agents for configuring gadgetworlds.
Comments and suggestions offered. Panos collects them.

7. Participants point out situations and concerns not covered in scenarios.
Panos keeps minutes notes.

8. Irene shows programmer’s GW editor and ideas for the user’s editor.
Participants & Panos note comments down on post-its. Irene collects notes and collects comments.

9. If time permits, the role of intelligence will be discussed.
End.

Scenarios Used are mentioned below:

Joe Bloggs + no script

Joe is an English literature student and an early adopter of new technologies. He’s recently purchased, the desk-
lighting package from the local e-Gadgets supplier. This includes an e-Gadget cushion for his seat, an e-Gadget
lamp and an e-Gadget desk mat. Joe wonders what the cushion does. He sits on it and notices that a small LET
indicator lights up. He guesses it is supposed to sense if he is seated or not. After putting them in place, he gets

to the e-Gadgets product site and uses the search facility. He enters the following description:

“Adjust the light on my desk when I study”

The search facility identifies a few packages that he can download. He inspects them on his e-Gadget editor.
One of them includes a collection of items he has purchased. He downloads it and activates it by pressing the

activate button.

In the beginning nothing happens. He opens the book and puts it on his desk hoping for the light to go on.
Nothing happens though. He looks at his gadgetworld editor, selects the gadgetworld and from the context-
menu selects the option ‘show me yourself’. A soft glow illuminates the rim of each object included in the

package. He decides to sit on the chair with the cushion on. At that moment, the light goes on, because the logic

330

implemented by the gadgetworld he has downloaded is that the light will switch on, when it is dark, the book is

open and someone sits on the cushion.

Joe checks again on his gadgetworld editor and re-reads the description of the selected gadgetworld. He now

notices better the role the cushion was supposed to play.

Joe Bloggs + Agents

Joe, a 21-year-old Law student lives in a student dormitory, in the University campus. He is familiar with PC

use, (he uses it mostly for text editing and web searching), but by no means a programming expert.

Joe has recently created his Study Gagetworld, with a new “extrovert-Gadgets” system that he recently bought,
and he has been using for a week. He has installed the Study GadgetWorld as he downloaded it from the e-
Gadgets web site. This turns on the light automatically, when he is studying on his desk, since the desk light
switch is at the back of the shelves and it is often a hustle to find it and switch it on. This has been a busy week
for him, as he had to put long hours studying for his exams. Now, a week later, he notices that now the eGadgets
related to his study have more plugs available. Moreover now the automated behavior is working better than a
week ago, with the light intensity dimming to provide him enough light, without him needing to regulate it so

often as in the first few days. Now, at night, the light adapts to the distance that the book is from the light source.

A few days later, he gets a new floor lamp in his room. It is also GAS-enabled. He puts it in the side of the room,
between the bed and his study chair. A few times at first of times he prefers to turn it on as well, as he studies.
Then one Saturday evening, his desk lamp bursts. He is happy that he has his floor lamp, until he would manage
to go and buy another halogen-bulb at the shops. When he sits on his desk later on in the same desk to study, he
is happy to find out that the floor lamp turns on, providing enough light to replace his broken desk lamp. It saves
him having to stand up again and search the floor a few meters away from desk to find the switch, and he hasn’t

even needed to connect the floor lamp to the rest of his extrovert things!

Stella sets the rules

Stella has set up the study gadget world to light up her desk when she studies. The Gadgetworld she got ready
made from the web. In the beginning she enjoyed the fact that the light would switch on automatically, and she
does not have to reach for the switch when she needed light. However, she now has to switch off the light for
every time she sits on the desk, even if it is not a book on the desk but a beer-glass. Sometimes she likes reading
by her window, so she drags the chair there. However, the e-Gadget world she has is amazingly unperceptive,

and keeps lighting the desk-lamp.

Stella is no wimp for technical stuff. She gets her e-Gadgetworld editor and tries to see how she can fix it. She
adds a new plug “STUDY” for the desk and the lamp. For this plug she enters a rule: if there is weight on it, if
the book is open and if the chair is near, then STUDY is set to TRUE. For the Lamp gadget, she selects the
on/off plug and she adds the rule if STUDY = TRUE, the lamp is turned on. Things improve immediately. She

tests by moving the chair at different locations and it still works. That evening, her neighbour comes in and sits

331

on the chair by the desk. The book is still open. Then Stella sits on her bed. They both prepare to drink some
beer, when the desk lamp lights up.

Stella adds a clock

Stella has now gotten accustomed to her gadgetworld. She has started to depend on it, even anticipating the
moment that the lights will go on or off. She goes out to buy some new gadgets. As she is a bit tired of studying
long hours, and finds it hard to wake up in the morning, she decides to create another function, connecting her

alarm clock to the light.

She goes to the local e-Gadget supplier and buys an e-Gadget enabled alarm. She inserts the alarm in the
gadgetworld by using the editor. She drags the alarm description to the window with the other gadgets. The
alarm has several plugs. She wants to tie the ALARM plug with the lamp. She decides for a real shake-up in the
morning, so she adds a plug to the lamp, which is the ‘FLASH’ plug. For this she has to write a small

programme segment:

“While (FLASH == 1) then repeat (Lamp.onOff)”

With this new plug in place, she only has to connect Clock. ALARM to Lamp.FLASH.

So now, when her alarm clock rings, her desk light flashes. So the next morning it really isn’t pleasant but the

flashing of the lamp wakes her up.

332

18. Appendix 2 - Cognitive Dimensions

Evaluation

18.1. Assessment with respect to Cognitive Dimensions

Cognitive Dimensions (Green and Petre 1996) is a broad-brush technique for the
evaluation of visual notations or interactive devices. It helps expose trade-offs that
are made in the design of such notations with respect to the ability of humans to
translate their intentions to programs and to manage and comprehend the programs
they compose. As GWs are essentially programs that are composed in non-textual
manner, it is helpful to consider this theoretically based technique to discuss some of

the potential choices for e-Gadgets.

Below, we examine each of the 13 cognitive dimensions identified by Green, and

discuss some of the choices that the e-Gadgets project can make.

Abstraction Gradient

Abstraction gradient discusses the minimum and maximum levels of abstraction
supported by the notation. A programming language can be abstraction hating,
tolerant, loving or hungry, depending on the degree to which the programmer needs

to define their own abstractions.

End-users adapt easier to abstraction hating or tolerant environments (e.g., menu
based systems, scripting languages). Abstraction hungry environments, e.g.,

Smalltalk, Java, require considerable expertise.

At this point several possibilities seem to be open for e-Gadgets. The conceptual

333

diagrams and the problem solving activity seemed to suggest an abstraction loving,

or abstraction hungry environment difficult for end-users.

The graphical user interface appeared more like a browser of components that is
abstraction tolerant. It seems that for non-sophisticated programmers, a graphical
user interface, like the one shown in the evaluation session, would be the most
appropriate. However, as was discussed in the review meeting, this should be

enhanced with programming aids for the end-user-programmer.

Closeness of Mapping

Closeness of mapping refers to the tricks that the programmer has to learn, e.g., how
to write a loop in a declarative language like Prolog, or how to create a list in a
language like C, etc. The mapping is needed to translate concepts from the intended

task domain to that of the programming environment.

E-gadgets support an architectural abstraction. Users might conceptualise their tasks
in a variety of ways, stimulus-desired response, rules, sequences, and constraints
between entities. In this way there will always be a gap. A graphical editor can
bridge this gap, by allowing several different ways of expressing the user’s goals.
For example, the graphical editor discussed in the evaluation meeting supports the
user describing their task in natural language. More ways of expressing the desired
criteria for a configuration would do a great deal in minimising the mapping

distance, and thus requiring less programming skills by the end-user.

Consistency

When some language has been learnt, how much more can be inferred? This is not
clear at this stage of the project. Internal consistency is of course an important
requirement (similar things done in similar ways), but external consistency with the
expectations of users from the real life artifacts seems also to be an issue for e-
Gadgets. However, the latter concerns the design of individual e-Gadgets, rather

than the essential concepts that the project investigates and the nature of GAS.

334

Diffuseness / Terseness

A notation is terse, if it has many symbols that need to be learnt. At this stage e-
Gadget appears to be diffuse, i.e., it has few conventions that need to be learnt.

These concern e-gadgets, plugs and synapses (a very economic collection).

Error-proneness

Does the notation avoid careless mistakes? Without the concrete syntax for the
notation, we cannot assess along this dimension. Care should be taken, in the way
that detailed behaviours are described (as for example the rules used in the
conceptual diagrams, or the comments that are presented in the browser to describe

system behaviour).

Hard Mental Operations

This dimension concerns the extent to which the user needs auxiliary representations
to support his thinking of what is happening or will happen, e.g., representing the
logic on paper for writing a conditional. As far as simple synapses are concerned,
“e-Gadgets” does not seem to impose too hard operations upon the user. However,
it is unclear yet, how rules will be associated with synapses or how users will cope
with complicated nested structures. This is an area where user testing would show

which are acceptable levels of complexity for the structure of GWs.

Hidden Dependencies

Hidden dependencies concern the well-known effect to programmers of side effects.
A change in one component has implications on the function of another, which are

not visible in the system.

In the diagrams used for the discussion at a conceptual level, dependencies are
directly visible. As e-Gadgets are modular and independent software entities, there
are no other dependencies than the ones shown. However, in the graphical user

interface, shown to the experts in the evaluation connections are not shown and their

335

rules are not shown. Some way of visualising and inspecting such connections

needs to be added to the graphical user interface.

Premature Commitment

This dimension refers to the extent where the user is forced to make a decision,
before relevant information is available. E.g., Pascal, where procedure declarations
have to be written as placeholders, to render syntactically correct procedure calls. As
a conceptual architecture E-Gadgets does not require premature commitment,
though the extent to which this will be true in the eventual implementation is an

issue for the future.

Progressive Evaluation

Can a partially complete program be executed to obtain feedback? This issue has
not been addressed yet in e-Gadgets: How will the environment behave with

incomplete configurations?

Role expressiveness

This dimension relates to the extent to which users can discern the relation between
parts of the program and the whole. Object oriented languages present considerable
difficulties to the user, as the structure of the whole is not the static class and object
structure, but is effected at run time. On the contrary sequential programs, e.g., in
Fortran or C, would show much better a link between static structure and the
dynamic behavior. E-Gadgets is closer as a concept to object oriented languages.
Future developments of the editor will need a way to illustrate to the user how the
specification of the parts influences the dynamic behaviour of the GW (similar to

debuggers in OO environments).

Secondary notation

Secondary notation concerns habits of programmers like naming conventions,
indentation, that help the reader comprehend the structure of the program written. It

seems premature to discuss this dimension with respect to the E-Gadgets project.

336

Viscosity: resistance to change

Viscosity concerns the resistance to change: the cost of making small changes.

There are a couple of nuanced variations on this theme:

Repetition viscosity: a single goal-related operation on the information structure

(one change 'in the head') requires an undue number of individual actions,

Knock-on viscosity: one change 'in the head' entails further actions to restore

consistency.

Viscosity has a clear trade-off with abstraction gradient. The more that abstraction
is afforded by a language the smallest the viscosity. Further it relates to the mapping
of concepts from the users intentions to those supported by the computational

environment.

“E-Gadgets” has a medium to high level of abstraction; so small knock on viscosity

should be expected. (A positive issue).

However, this depends upon the closeness of the mapping. The closer the mapping,
the smallest the repetition viscosity we should expect. E.g., if there is a task
template describing a particular behaviout that the user wants to modify, then the
user can access and modify that directly, rather than all the individual objects
involved. Thus, low repetition viscosity requires a very mature development of the

graphical interface that is probably not feasible in the context of a research project.

Visibility and juxtaposability

This concerns the extent to which it is possible to view concurrently and compare
two different parts of the system influencing each other. It used to be that
programmers printed their code to be able to do this. This issue has not yet been
addressed by the e-Gadgets project, and does not appear to be so important for the

validation of the concept itself.

337

Summary of views about the CD evaluation

E-Gadgets is on the right track with respect to the choice of abstraction levels. A
considerable challenge for the usability by end-user is the need to minimize the
mapping distance, which requires several different strategies to be combined, e.g.,
searching for GWs by task, by gadgets, defining constraints in respective

behaviours.

Many other dimensions discussed above, concern more mature products and should

not concern the research team.

18.2. Conclusions

The feedback to the project is captured as the following 4 tentative design

principles:

e The Gadgetworld behavior should not surprise the user, i.e. automation or
adaptation actions should be predictable (or at least justifiable).

e Simple tasks should remain simple even in an intelligent Gadgetworld.
Intelligence should be applied to simplify complex tasks.

e End-users should be supported with at least as good tools as programmers have
at their disposal, e.g., debuggers, object browsers, help, etc.

e Multiple means to define user intentions should be supported by the graphical
editor, as the users tasks tend to be comprehended and expressed in a variety of

ways.

These are recommendations for the future developments of the e-Gadgets concept.
Currently “e-Gadgets” seems to be pitching at a level appropriate for end-users, but
much depend on the quality of the tool support provided to them. At the following
stages of the project, it remains to be verified through end-user testing of working
prototypes, whether users are capable of forming GWs that will support their

intentions.

338

References

Green,T.R.G., Petre, M. (1996). Usability analysis of visual programming
environments: a cognitive dimensions framework. Journal of Visual Languages and

Computing. J. Visual Languages and Computing, 7, 131-174.

339

19.Appendix 3: Evaluation at
conferences DC-Tales and BCS-HCI

During the 2™ year of the Gadgets project’s technology produced results sufficiently
robust, so as to enable a hands-on demonstration at conferences. The project
exhibited a hands-on demonstrator at the two conferences in 2003: DC-Tales, and
BSC-HCI 2003 (Mavrommati et al, 2003¢). This annex is part of the e-Gadgets
project evaluation report, authored by Markopoulos and Mavrommati, in 2005 (see

e-Gadgets project website).

19.1. Set-Up

A proof of concept demonstrator (Figure 1 in Appendix 3), has been created and was
shown at the two events by the e-Gadget project members. The demonstration

scenario below illustrates the steps for setting up a GadgetWorld.

First, the GadgetWorld editor, which is also an eGadget, is initiated. This editor
runs on an iPAQ computer. Through wireless communication and by use of the
GAS-OS middleware, the editor finds other eGadgets in the network vicinity and

displays their names on the screen.
In this demonstration the Gadgetworld editor finds:

e A MATHMOS lamp converted to an eGadget (MATHMOS lamps resemble
luminous bricks that illuminate in different colours depending on which side
they are standing).

e An MP3 player, which for the purposes of the demonstration will be the
WinAmp running on a laptop.

e An eCarpet, which is a small mat equipped with a pressure sensitive grid.

340

All the above objects have been made GAS compatible. Their digital part offers
their capabilities through their plugs, that are listed on the editor display as a drop
down list associated with each eGadget. In the demonstration these plugs were
possible to link to each other and synapses were created so that several functions

were demonstrated step by step. The demonstration showed the following:

e On the GadgetWorld editor the plugs offered by the eGadgets were shown. The
MATHMOS eGadget had only one plug, the ‘side’ plug, which ‘knew’ on which
side the lamp has been placed. The mp3 player has several plugs associated with
it, i.e.: a pause, play, track number and music gender plugs.

e Through the GadgetWorld editor we create a “synapse” between the carpet and
the MP3 player and between the MATHMOS and the MP3 player.

e We turn the MATHMOS on its side and, according to the user has set-up, it will
play a different type of music (classic, rock, etc), or play/pause, stop, etc.

e Stepping at different areas of the mat causes the MP3 player to play, pause, the

volume to change, etc according to what the user has set it up to do.

At both conferences a questionnaire form was used to collect expert opinions of the
delegates regarding the concepts presented. Figure 2 of this Appendix includes the
questionnaire items which were specifically chosen to target the concepts from an
end-user perspective rather from a technological perspective and which were written

in such a way as to invite delegates to be as critical as possible.

19.2. Participants

The Disappearing Computer Tales event (held in June 2003, Santorini, Greece,) was
attended by delegates who are expert in various disciplines relating to the study of
Ambient Intelligence (e.g., computer scientists, industrial designers, human-
computer interaction experts). These are representatives of universities and
industries working on research. The stand of the e-Gadgets project was visited by

30 delegates approximately. Ten (10) completed forms were received.

341

The British HCI (BSC-HCI) conference is a specialized event, the delegates
(approximately 200) are experts in human computer interaction from both industry
and academia. BSC-HCI 2003 included mostly researchers and fewer practitioners.
The stand of the e-Gadgets project was visited by many delegates (approximately

50-70), of whom 29 completed the questionnaires.

Figure 1. The set-up of the e-Gadgets hands-on demonstrator shown in exhibitions (here in
IST2003)

19.3. Results

In this section we combine answers from both events. Contrived answers are
omitted, such as when delegates report as a nice thing about the eGadgets demo that
the people giving it are kind or when they say “no bad things”, as a response to the
request to name a “bad thing about the demo”. We omit answers we did not
understand or are equivalent to “no comment”. We also omit answers that do not
help evaluate the concepts directly, but rather refer to the way the demonstration was
delivered (E.g., “did not see the value of the carpet”). However, it is not always easy
to make this distinction, as we believe most delegates describe the impression they
got from the particular demonstration set up and sometimes found it difficult to refer

directly to the concepts shown.

Remarks by users are rephrased to be understood out of context. The number

indicated in parentheses after each comment describes how many delegates made a

342

particular remark. Comments have been regrouped, e.g., when a “bad thing” (answer

to the last question) describes a possible obstacle to adoption, we cluster it with

similar answers to the first question.

It has to be noted that we specifically invited negative comments in order to spot

weak points (see the questionnaire, figure 2 of this appendix). The critical answers

should be taken for what they are: attitudes of experts towards a particular concept,

rather than experimentally validated truths. For each collection of remarks we add

our own conclusions.

Possible obstacles to the end user adoption of e-Gadgets technology:

Fear of technology, users may be reluctant to change their current ways of doing
things (2).

If it is not your own gadgetworld it is difficult to know what is happening.

The concept is too not accessible (too futuristic, threatening and complex) (2)
Complexity of setting up a system may prohibit users (13).

Users would prefer to interact with objects directly rather than as a group.
Gadgetworlds need only be configured rarely, so users will not be willing to
learn to use a purpose specific system (2)

People may find it difficult to guess what is possible and what benefits can be obtained (5).
Gadgetworlds cause too much unintended invocation of functionality.

A PDA is not a good device to run an interface on (5)

The concept refers to the structure of the system rather than the tasks of the user.
People may prefer to have things ready rather than do it themselves.

Cost can be too high (2)

Privacy and security fears.

Level of abstraction of synapses too low.

People will try it out of curiosity but will only make simple gadgetworlds.

343

This collection of comments can be expected particularly from experts in human
computer interaction. Some delegates found that the operation would be too
complex. Others (see below) found it very easy and simple. Clearly this is a
judgement call and one that depends on the targeted user group. An empirical

evaluation can settle this division of opinion.

The PDA was not welcomed as an interface in it’s current form, but again this is
something that empirical testing should resolve. PDA users might be less reticent

about using them than those who do not. However, the e-Gadgets concepts are not

tied to the PDA itself, but to the concept of editing tools with modalities.

The fact that something futuristic is considered threatening can be assumed to
portray an attitude towards technology that may or may not align with the eventual
end users’ attitude. Clearly, we expect early adopters of such technologies to be

technophiles and technologically versed (e.g., using mobile phones, PDA’s, or PCs).

The remarks about lack of task orientation, people preferring ready-made solutions
and understanding someone else’s gadgetworld are serious research and interaction
design challenges that call for empirical testing and further work to improve the

deployment of e-Gadgets concepts.

Possible obstacles to professional designers adopting eGadgets technology

e eGadgets help create only boring “serious” scenarios.

e Designers may find eGadgets useful for professional applications.

e Safety critical side effects.

e The designers would rather design themselves rather than let the users design.
e Designers would need a different interface than the PDA (2).

e Inappropriate editor to enable design (2)

The fact that automation scenarios demonstrated were considered boring by one

person, does not to our view reflect on the underlying concepts, the same as

344

programming languages may be used to create boring or exiting effects. The issue

of side effects is important and is one that needs to be studied in follow up research

for providing interaction and technological solutions.

Obstacles and motives for end user acceptance of agent technology

e End-user must be able to control the agent (7).

e Resistance to agent as a ‘big brother’ monitoring user (2)

e Benefits must be very clear and compelling for agents to be adopted (2)

e May help overcome handicaps of people.

e Will make operation of the system easier (2).

e Adoption of the agent is an issue of getting accustomed to it (2)

o . .“Agents don’t work” “Al doesn’t work™...(sic)

e Agents should recommend rather than take action.

e Agents will be acceptable provided they make correct inferences (4).

e Agents can correct omissions by users.

e Agents would work better if they could perceive users’emotions.

e People’s behaviour may be irregular and therefore difficult to support with
agents (2)

e Learning from people requires their identification, without any explicit action by
the user. (This person assumed this is not possible).

e Agents are a good idea because they introduce adaptivity

e Agents can provide explanations.

The comments above show a lot of skepticism about agent technology and in some
cases outright dismissal of a whole research field. This is we believe caused by
flaws in currently deployed user adaptive systems (in one case a delegate described
his/her annoyance from MS Word). We agree with the judgment that end-user
control is important but is one that can be designed into the operation of the agent.
Demonstrating the usefulness of the agent is also critical when we consider either

the positive or the critical suggestions above.

345

Positive impressions

e FEasy to create/modify gadgetworlds (11)
e Easy to learn, simple (4)

¢ Enjoyable, relaxing demo.

e The demo worked (5)

o Flexibility of gadgetworlds.

e Departs from windows style interaction.

Clearly some delegates were more convinced about the others about the ease of use
and ease of learning of the system. We expect such divisions to exist also among
the general population of intended users. The flexibility of Gadgetwolds, a major
benefit of this technology, was remarked only by one delegate. This is perhaps due
to the limited number of eGadgets shown during the two conferences (figure 1),
which does not portray well the potential combinations of functionalities that a user

can achieve.

Points for improvement

e Scaling up the number of eGadgets and synapses is an important future
challenge (covers both technical and user interaction perspective) (2)

e Could be faster.

e Interface to editor was poor (4).

e Pen input was annoying.

Most answers to this question have been merged with the first question (obstacles
and motivations for adoption). We note that indeed improving the underlying
technology in efficiency and speed would be a reasonable next step after the first

concept demonstrators have been built.

346

Questionnaire for expert feedback at DC-Tales and HCI

Flease help us evaluate the e-Gadgets demo
We would like you to focus on e concepss put forward with this gemo [rgfher tham the rowgh shate
of the technciogy we present) ond gre ud your own apinion for the fems et

Tre non-irained persons will ot use reagy Godgenwonds or madify Tnem 1o sult tneir nesds
DECOUIE....

Tne designer wil not find eGadgeTs (the objects, the conceps and ™e editors) an opprophate
frarmawark for Cordifuching ...

neligent ogent could be moaifying Godgehvonds to suit cur pattem of use
WO Tris e WeICOMEa DY LI OF NOTT PIeaie Wggest your neotans why

What was a nice thing aoout The ermo you SaWw:

What wids Q bad r'1in-;| QDOUR Thie demo yiou JOW

Figure 2: The above image shows the questionnaire used for feedback from conference
participants.

347

20. Appendix 4: the iDorm user test

20.1. Introduction

With the iDorm evaluation (2004) we have not attempted an acceptance or rejection
test of the concepts of the e-Gadgets project, rather, an account of the problems that
users encounter with these concepts and their current state of realisation. However,
we did try to test for an overall ‘non acceptance’ of the concept and to test whether

potential users are not willing or able to understand make and edit Gadgetworlds.
The iDorm evaluation tried to answer the following questions:

e Can they understand the basic concepts with only a brief introduction.

e Can participants predict the behaviour of a gadgetworld from its architecture?
e Can they modify an existing gadgetworld to do something slightly different?
e (an they create the synapses to make a behaviour they wish?

e Do they feel restricted by the editor in making the behaviours they want?

e Do the feel this gadgetworld making is something they would not want to do?

The study was a combination of conventional short tests and a single test that took
place overnight. The short tests aimed to gauge how potential users grasp the
concepts and the overnight test aimed to get a relatively longer term and more

realistic test of e-Gadgets when it is used in anger.

20.2. Participants

3 pairs of participants were recruited for the short test locally at the University of
Essex. We had asked for technology-friendly (‘technophile’) participants, with
some familiarity with computers; we invited diversity of subjects, e.g., subjects from

all walks of life, e.g., students, librarians, shop assistants, as long as they would be

348

familiar with computing technology (at least users of PCs). It was required that

participants would not be involved with the project itself.

On the day one non-computer science participant did not turn up and was replaced
by a computer science PhD student, generally familiar with the concepts of Agents

and Intelligence.

From the pre-test questionnaire it comes out that only one participant was over 35
years of age. Two were younger than 25 and the rest were between 26-35y.0. All
participants except one were frequent users of personal computers, e-mail, SMS and
mobile phones. This one participant was not a mobile phone user. They were a
rather biased sample as they all hold a university degree and with the exception of

two they were knowledgeable in computer science.

Participants worked in pairs during the short tests as will be explained below. A
single participant stayed overnight: we had requested someone who would be pretty
comfortable with computing to increase the chances of him having a comfortable
stay (it was thought that someone with less chances of programming their own

gadgetworld would probably have a less comfortable night).

Figure 1. The experimenter instructs one of the two participants how to execute the
first scenario. Then she takes over to explain it to the second participant. The second
participant looks over the situation.

349

20.3. Materials

The following e-Gadgets were made available for the user test:

[

Occupancy. A gadget that senses if the room is occupied (true) or not (false).
LightLevel. A gadget that measures the ambient light in the room.

Chair. A gadget that senses if someone is sitting on it (true) or not (false)
Bed. A gadget that senses if someone is on the bed (true) or not (false).
Temperature. A gadget that senses the room temperature.

RoomLights. A gadget that lets you switch room-lights on and off.
DeskLight. A gadget that lets you switch desk light on or off.

BedLight. A gadget that lets you switch bed-light on or off.

o ® N Nk wD

Blinds. This gadget tells you fully if blinds are fully open or fully shut
(openclose = true if the blinds are shut) . This gadget also tells you which angle
do the blind blades have, which can be in positions —0,1,2,3.4.

10. MP3Player. A gadget that plays music. It lets you start = or stop the music, set
the volume and choose a genre of music.

11. Clock. A software gadget that tells the time or raises an alarm.

A list of the above e-Gadgets was given to participants plus a brief explanation of
their nature. As the system was unstable on the day of the testing the Blinds and the
BedLight eGadgets were not operational. This instability was due to our decision to
include in the test very recently integrated agent functionality which meant that, due
to insufficient prior testing of the latest version within the iDorm environment, in
some cases some e-Gadgets would fail unpredictably. As some of the eGadgets
would sometimes not work as expected (for example, the function to discover
eGadgets would not find all the present ones, due to a bug related to network
timing), we adapted the tasks given to participants on the fly. All substitutions
though preserved the level of complexity and tried to gauge the extent to which

users would understand concepts and gain control of the editor.

350

Participants were given the list of tasks that is shown in ‘Material and
Questionnaires’ section, at the end of this appendix. Participants were given the
Gadgetworld editor running on an iPaQ. A pre-task questionnaire was given to
participants to fill in after basic introductions. A post-session questionnaire was
given to them at the end of the session. Both questionnaires can be found at the end

of this appendix, (Material and Questionnaires section).

20.4. Method for the short usability tests

The evaluation technique will be a combination of co-discovery learning (Van Kemp
and van Gelderen, 1996) and peer tutoring (Ho¥ysniemi et al 2003) with post-task

interviews. The process followed was as follows:

e The experimenters introduced the subjects to the experiment, explained the set-up and
the nature of their involvement and obtained informed consent for video-taping.

e Participants filled-in the pre-session questionnaire.

e The experimenters provided a brief oral explanation plus a minimal
demonstration of the system, performing experimental task 0.

e One of the two participants would take control of the editor and was given
advice how to operate it (see Figure 2). After the experimental task 1 was
completed in this way, this participant explained the operation to the other
participant who performed tasks 2-5 for the experiment. The table below shows

how tasks were given to the participant pair:

Scenario Participation structure
0 Experimenter shows
1 Experimenter instructs participant 1
Participant 2 watches
2 Participant 1 instructs participant 2
3 Participant 2 operates, participant 1 discusses and observes
4 Participant 1 operates, participant 2 discusses and observers

continue alternating observer and performer in this manner

Table 1: the sequence of tasks given to each pair of participants.

351

¢ A mini-structured interview was conducted at the end of the session on the basis
of the questionnaire (see ‘post session interview’ at the end of this appendix).
We asked participants to fill-in the questionnaire after our discussion. We
decided to include a discussion before letting them fill-in the questionnaire in
order to make sure questions were understood and to encourage them to bring
out opinions in the open (the discussion was a facilitated as a mini-focus group).
We asked them to record answers to the questions for efficiency (two users at a
time) and so that they would use the opportunity to formulate their thoughts
more succinctly and clearly than during the discussion (Figure 2).

e After the test participants were thanked and paid their appreciation.

Figure 2. Snapshots from the short evaluations. In all cases, one test participant is being
instructed by the other test participant.

352

20.5. Overnight stay.

One participant stayed overnight after the tests. In the evening he was invited to
play around with the gadgetworld, not as a programmer or an experimenter which
tries to reach boundary conditions, but trying to get it to a state reasonable to live
with (even if that was only for one night). On the day after in the morning we asked

him his opinion and invited him to make changes to the Gadgetworld once more.
Experimenters had an open discussion with him trying to establish the following:
Whether he felt comfortable now with the e-Gadgets concepts?

Whether he felt comfortable with the e-Gadgets editor?
Is there some way in which the editor is restrictive?
Is there some way that the editor is unclear?

Whether he felt he could predict how things would go with the agent?

A

Whether he felt confused or surprised at any times because of the system

behaviour?

6. Whether he was worried that an agent is adapting to your actions and taking
initiative?

7. Whether he saw any potential problems with such an agent in his house in a few

years time?

8. Then the participant was paid and thanked.

20.6. Results

For the first group of subjects the e-Gadgets technology worked well. But the
function gradually deteriorated with time. Group2 could see only a few eGadgets
while the blinds did not work. Group3 experienced major problems with e-Gadgets
technology not working; mostly they were not able to see the gadgets and to activate

the synapses.

353

The results of the evaluation were two-fold. On the one hand the short evaluation
went very smoothly, with users easily accomplishing their tasks and grasping the
underlying concepts, despite the occasional failing of the technology. On the other
hand the overnight stay, where the iDorm was controlled by the agent showed that
the technology is not yet robust enough for such a test. The user did not manage to

control the system and had an unpleasant night in the iDorm.

Some general impressions of the experimenter are recorded below:

Subjects 1 and 2 were very enthusiastic. As they were working in the same
laboratory they did have an expressly positive attitude towards the project. They did
tune into the whole concept extremely fast and were very happy when things worked
as they planned. Their facial expression and their words portrayed sincere
enthusiasm. Their interest in computer science, potentially coloured their views. On
the same token, their comments portrayed a good insight into some of the pitfalls of
this technology. (e.g. vulnerability to hacker attacks, need for manual override, etc.).

Subject] would like more variety in control (more attributes in the synapses).

Subject 3 was a technical person, while subject 4 a law student. Both succeeded in
their tasks and made all the gadgetworlds required. They seemed to enjoy the
experience. Like subjects 1 and 2, they commented on the limited feedback given:
i.e. it was difficult during the tasks to tell the state of the gadgetworld construction
and the necessary follow up states. Subjects 3 and 4 commented that it seemed very
logical and clear to distinguish 3 levels of components (gadgets, synapses and
attributes). They kept noticing and being puzzled by message ‘offline’, which was
not self-explanatory. Both subjects liked the idea of “messing about with their

furniture”.

Subjects 6 studies international relations and subject 5 (a substitute for a participant
who did not turn up) was a computer scientist just becoming member of the Essex

research team (but not related to the e-Gadgets project). They had a good positive

354

attitude. They got to try out the agent, but were unfortunate in that their most
complex gadgetworld creation did not work (the system became unstable). 4

critical observation here is that as soon as the agent was part of the system, it was

not necessary any more for the end-user to think of what is an object and what is a

synapse. They simply have to enact the behaviours they want and the agent would

create the synapses for them.: this seems to address the requirement for a task

oriented language to communicate with the system and to simplify the whole

ontology. However subject 5 was worried about how much control should the agent
have: “I don’t really know how much control over it and if I cannot control it I
would be afraid to use it. If I don’t understand it I cannot control nor understand
what it is doing”. For this subject the problem of the agent learning was not the
major problem: it is how much has the agent learned at any moment that was not

clear and worrying. Subject 6 would like an on-off switch for the whole

gadgetworld. These subjects found the terminology used unnecessarily complex.

In light of our earlier hesitance as to whether the whole concept would be
understandable and comprehensible to the test users, the most compelling comments
came from subjects 5 and 6, who said “it is very logical, one thing leads to another”,

and “we do it with our mobile phones today”. The younger generation are much

more adept with handheld technology than earlier generations and much more

capable at handling an amount of technology that seems daunting at first sight.

What was difficult for these subjects was to know what the ‘boundaries’of the
system were: there was nothing visible to show where the gadgetworld begins or

ends.

Subject 7, who stayed overnight is a computer science post-graduate student. He
had worked in the idorm in the summer, for devices such as blinds and MP3 player
(but not on the e-Gadgets project). He experienced the 1 hour session (same as the
other subjects) and could evaluate e-Gadgets concepts and technology then.
Overnight the network failed and he could not experience much of the system

anymore. The system got back to functioning overnight and as it did the lights

355

switched on (including the ceiling spot lights above the bed) so he woke up. He

could not manually switch the lights off, so he had to cover his eyes with the pillow

to sleep. He was happy that the blinds could manually close. He felt a manual

override is needed for all devices. In the morning he attempted to work with the

agent that had in the meantime been restored. He seems a calm and well-tempered

character who took this technical failure very well.

He pointed out several usability bugs that are listed below:

A gadgetworld becomes activated but when it is recalled you cannot see an
overview of it.

When you pause or stop the gadgetworld, it still continues to do the last thing it
was doing, and then you need to manually override it (i.e. switch the light off,
the MP3 player off, etc).

It was frustrating: trying to get the system work, while there were no error
messages at all, no feedback on what was going wrong. As he did not know what
was wrong he had to restart each time.

Had to restart it over and over again, and played a bit with the system before the
demonstrator went down.

Frustrating that there was no explanation of what has happened, once you
completed an action; also frustrating that there was no help to guide the user
through.

The interface should use tangible interaction and multi-modality.

The editor is a quick and easy way of setting things. Focus of editor seems
limited (only 4-5 devices). How to select and reselect a gadget is not clear.
When the subject got back after dinner out, he attempted to set up a gadgetworld
in the idorm; due to a network problem he could not go ahead with that. When
he attempted to set up a gadgetworld, there was no feedback, e.g. as to whether
an action had been successfully achieved. As he put it “Information coming up
is not relating to the action you did, so you cannot pin it (=failure) down to what

you have done”.

356

e Interaction with the agent was confusing. When the agent was activated it was
not clear which device has dominance/precedence?

e Confusing pop up boxes for activating agent separately. If you activate agent
control in one, it should also appear in the other.

e Overnight he had to turn off the PC because of the noise. System is not
dependable due to network being undependable.

e The agent can see only one synapse. A second synapse would not work with the
agent between two objects. A synapse between the chair and Mp3 player was
working adaptively (with the agent), but only the on/off off the player could get
influenced by the on/off chair. When volume or gender was affected, the
subjects felt this should adapt too, but it did not (as the agent was not based on a
preexisting synapse between gender and on/off chair, -but was working only
between on/off Mp3player and on/off chair).

e Programming is oozing through the interface: The possible values for music
gender should not be 1, 2, 3, 4, but certain types (i.e., rock, classic, Irish folk,
jazz, greek folk, drum’n’base, etc).

e No connections can be made sometimes

e The list of eGadgets was constantly changing in the Editor. Sometimes there are
no egadgets at all, or just one or two, then after refreshing it can see almost all of
them.

e Lights could not work, and could not get connected (synapse was not

established).

We examine the findings in more detail in the next paragraphs, by examining each

question of the post-task interview.

Did you like using the system?

To the question of whether they enjoyed using the system, 4 participants selected the
answer ‘“very much”, two the answer “so and so”, while the person staying overnight

commented that he didn’t manage to use the system. We note that this is consistent

357

with our impression of them. Participants were boyant and exited when trying
things out and were cheering when they achieved what they set out to do. We also

note that they succeeded in their tasks with an ease that surprised us as well.

What did you like about the system?

To this question participants reported that they liked the simplicity of the interface,
the ability to connect and control devices, the context awareness supported by the
sensors. One participants found it a bit like a game and suggested that “only
imagination puts a limit to its possibilities”. One person anticipated gains in

efficiency, i.e., not wasting time with controlling the environment or the music.

What did you not like about the system?

The overnight user was the most critical (understandably). The reliability of the
system was the major flaw: “Once the network went down, I was powerless to
control some devices manually”. Clearly this is a reflection of the experimental
nature of the demonstrator but also a useful reminder: when people live with
technology, there will not always be a technical support at hand to repair problems.
A graceful degradation of performance, similar to safety critical systems becomes an

important requirement.

The short term users were more puzzled about the observability of the system and
the interface: It is not clear what is possible, what is the range of possibilities for the
user at any moment. The delay between doing something and observing the result
was also found too much. One person did not enjoy the PDA interface for the
gadgetworld editor. We note that there was a running version of the editor on the
fridge display, but we avoided using it because it was slightly more complex in its
operation than the iPaQ model. One usability problem spotted on the editor was the
need to always select a synapse before activating it. Participants expected a default

selection to have taken place.

358

Do you feel you understand how objects are interconnected?

All but one participant said they did. The one who didn’t still enjoyed using the
system and was very effective in achieving her tasks. One person felt that she
needed more practice to grasp the concept. We note that she was one of the least

positive users about the whole experience.

Do you feel you can achieve the functionality you want with such connections?

One person noted that little information is available to the user as to whether a
synapse has been created effectively. Three users expressed the need to control

more aspects of the behaviour of the eGadgets than those already implemented.

Was the system adapting or changing its behaviours in ways that surprised

you?

This question was relevant to only the last 2 participants of the short tests and the
overnight participant who all tried using the agent. At the short test, they got the
general idea and seemed to understand how it worked. During the longer test (the
overnight stay), the agent appeared inconsistent and unpredictable to the subject.
We consider this a natural outcome of the fact that the agent was still too fresh out

of development and needs more refinement to improve its robustness.

Controlling everyday objects.

All but one user felt they would use such a system to control their every day devices.
The one who didn’t finds it too complex a way of doing things and is worried about
potential costs. She also would like a larger touch screen interface (she didn’t know
it already exists). The reasons for using it were efficiency (doing things easier) and

the potential cost savings from automation (thinking of domotica equipment).

359

Controlling everyday objects with the agent.

This question also was answered only by the 3 subjects who experienced the agent.
Despite the ‘teething problems’of this technology that they experienced they were

all affirmative in their answers.

General comments and suggestions.

Technology should not take over. Fewer steps should be needed for setting up a

synapse and perhaps some hints should be offered on the way. One user seemed to

suggest the need for a ‘wizard’ type interface for setting up connections. One

(computer savvy) participant spotted the potential problems of network security,

which are beyond the focus of this study.

Not enough explanation is available for deactivating a gadgetworld once it is

activated. The terminology on the user interface seems too technical. A visual

representation for synapses was also requested.

Some subjects expressed an appreciation for having degrees of transparency into the
workings of the Ubiquitous computing system. When the users architect their
gadgetworld they get to know it's structure, so we are talking about a transparent
approach (a ‘white box’ as opposed to a ‘black box’). When the users train an agent
without knowing the architecture, then we have a black box approach. In this project

the two ideas have co-existed, with users gradually getting to know more and more

about the white box, (in the form of the system architecture). For this to happen, the

agents have to be easier and more robust than the white box solution, so that the
beginner-level users can start with an agent. (Subjects 5 and 6 seem to point to that
direction). Agents can return for the very advanced users when more complex
patterns of behavior need to be defined, that are too detailed to describe in
architectural terms: in such cases, rules have to be associated with synapses, which

means that the simplicity experienced by the users will be lost.

360

Overall the impression by the users was very positive with some obvious
shortcomings noted. However, we note that the sample of users was not
representative of the user population we had aimed for: people trained in computer
science have an extreme talent for comprehending and manipulating abstractions.
So while it is encouraging that these participants did so well, we cannot expect that
for the majority of people similar results will hold. It has to be noted though, that
even for two of the participants who were not computer scientists, the test went quite

well, which is a very encouraging result.

20.7. General comments regarding the evaluation

On retrospect the evaluation could have been better organised. The selection of the
subjects should have been a bit broader and the experiment should have limited its
scope to parts of the project that were more robust. We decided to take the risk and
user test a piece of software of which the version on test was released a day before
the test, so that it integrated the agent functionality; nevertheless this version was not
sufficiently tested on site to foresee possible problems during the test sessions.
Nevertheless, if we had taken the step to freeze it, as initially planned, the version
for the user-test would not have included the agent, and although there might have
been fewer problems, that were judged as shortcoming of the evaluation in the

1iDorm.

The verbal protocol (peer tutoring) did not work as intended. The small screen of
the 1PaQ did not allow the experimenter to know what was going on unless he would
come very close to the subjects (in which case he could easily be influencing their
performance). In this way, most of the time a post-task interview was conducted
instead of the peer tutoring protocol. Also, subjects tended to point too much on the

screen which made it difficult to get a clear record of the verbalisation itself.

361

Subjects 3 and 4 were very quiet during the evaluation; subject 6 was very vocal and

very capable of carrying out her tasks.

20.8. Conclusions of the evaluation

We entered this evaluation very aware that the technology under test was not very
mature and robust and that much development work needs to be done before
eGadgets concepts would be possible to convey to end-users. The remarks by
experts in the DC Tales event and the HCI conference seem to raise many of the
possible objections to and limitations of such technology. Especially important was
the skeptisicm towards agent technology. The opinions of experts regarding the
understandability of e-Gadget concepts, the ease of use and learnability of the
system were almost perfectly divided among the experts and in many ways seemed

to come from a pre-disposition to this technology.

The iDorm test, seems to provide conclusive evidence towards the viability of the
concept and at least rest the fears of putting too complex tasks on the shoulders of
the end-user. The system was clearly understandable and users could do their tasks

despite some technical failures of the system.

While the iDorm evaluation seems to be a clear success for the project, there are
some limitations: the set of users examined is rather small and homogeneous. This
clearly prevents us from generalizing our positive findings for the general public,

but shows the clear potential of the concepts presented.

Some clear pointers for future research seem to emerge from this evaluation:

e Agents can potentially simplify the construction of gadgetworlds (by eliminating
the need for the user to understand the ontology of e-Gadgets). It seems that
agents are a complementary modality approach to making end-users into
gadgetworld architects. It is likely that different types of users will enjoy

constructing and others might enjoy training an agent. Some important and large

362

research questions remain. Designing interaction with the agent to foster trust
and to enable manual override is as important as the agent working robustly and
correctly.

The user interface in the current implementation of the gadgetworld editor on the
iPaQ needs to be iteratively designed to eliminate the usability faults.

As soon as users get a few gadgets with a few attributes, they want more gadgets
and to control as many facets of their behaviour as possible. It is not clear what
the technical and usability ramifications of such a scaled up use of e-Gadgets
will be, but it seems to be what the users want.

Users need to be able to choose how much transparency of the system they want
to have. Being able to understand, in a first level, how the Ubiquitous computing
environment worked was appreciated. The study seems to point to a direction of
adopting varied levels of transparency, (rather than a black box approach).
When the users create their gadgetworld they get to know it's structure, so a
transparent approach (white-box) is adopted by the project (as opposed to a
‘black box’). Agents are needed for two very different groups: a) to help novice
users to initially familiarize themselves with the system b) for the very advanced
users when more complex patterns of behavior need to be defined, that are too
detailed to describe in architectural terms.

The users should enabled to choose how much active an agent should be in
designing their environment. It can be argued that after they are socialized to
accept the agent (accepting it as trustworthy), they would see the advantages of
training the agent instead of programming. An exploration of this design space
should be the topic of further research, e.g., providing solutions for the user to
control the gradual engagement of an agent; also understanding the segmentation
of the target user population with respect to their readiness to design and to train
agents. For the latter part, broader and longer term user studies are needed
where a larger set of e-Gadgets is available and different ways of interacting
with agents are supported.

The iDorm evaluation addressed only end-users and not professional designers.

Clearly an interface for professional use was beyond the scope of the current

363

project, but seems a necessary component towards their eventual deployment.
The assertions made by delegates at the two conferences where e-Gadgets has

been demonstrated remain to be tested in an empirical evaluation study.

20.9. References

Kemp, J. A. M. and van Gelderen, T. (1996). Co-discovery exploration: an informal
method for iterative design of consumer products, in Usability Evaluation in
Industry (Eds, Jordan, P. W., Thomas, B., Weerdmeester, B. A. and McClelland, I.)
Taylor and Francis, London, p139 - 146.

Hoysniemi, J., Himéldinen, P., and Turkki, L. (2003). Using Peer Tutoring in
Evaluating the Usability of a Physically Interactive Computer Game with Children.
Interacting with Computers, Vol. 15/2, May 2003: Special Issue: on Interaction
design and children. pp. 203-225.

364

20.10. Material and Questionnaires

List of scenarios for the iDorm user test

The scenarios wsed in the evaluation test were adapted on the day. o make use of eGadgets that we knew
were working robustly at the time (rather than the complete kst of eGadgets mentioned in the report)

Scenario 0: musical alarm

a Descover gadgets

[Create synapses between =Clock and eMP3PEyer
3 Check how it works

d Retal the system

Scenario 1: Chair light
Make the desklamp switch on if somecne is sitting on the char
Drag eChair and eDeskLamp to the drawing area
Select the two eGadgets 3o that they are hilied
Press the “set synapses” on the synapss info box
Select a ol of this table for the synapse you want to make
Chick on “plus sign” at the info box to expand synapse descripton
i&das}nmmmw%ﬂm‘
a row
Use pull down menus to fix the mapping, so that the ight will go on when the chair senses someons
sifting on i
L Do the same for switching the light off when getting up from the chair
1 Rasel the sysiem

FE s pap TR

Scenario 2: musical room
Use the eDecipancy gadget and the eMPIP ayer gadge! 1o make the muse star playing when the moom is
oczupied and stop when & s emply.

Scenario 3: Study

3 Drag the Bed and the Chair gadpets inside the drawing area.

b Let sitting on the bed set the genre of music for the MP3Player to 1

[Let sittng on the char set the genre of music for the MPIPlayer to 4

Tip: From the info box. you can select 3 synapse and ciick on “Synapse properties™. You can use Add Row i
see the details of a synapse and use the pull down menus to make the mappings you want.

Scenario 4: Study

a Create synapses between the eDeskLamp and the eChair

b Activate an agent by selecting "Active Agent” from the menu bar of the eChar

[-3 Click at "Device Info” and "Rulebase” within the Agents” Display Pane! and start the agent by clicking
2z the green play bution

d Yeu should be abie to see the eDeskLamp and the eChair in the Tisplay-Dewices” pane!

S 'Zit on the eChair and switch on the eDeskLamp

f Now stand up and switch off the eDesklLamp

1 When you sit down again you should see that the agent has leamt your actons and switches on the
h

aumaticaly _
Repeat and change your actions as you wish and ses if the agent has learmnt your preferences.
Scenario 5: Leisure

!
)

N
b mmmaumhysmng “Active Agent” from the menu bar of the eBed

Click at “Device Infio” and “Rulsbase” within the Agents’ Display Panel and start the agent by clicking
the green play button

You should be able to 5ee the in the “Display-Devices” panel

Sit on the #Chair and swatch on the & Lamp

MNow stand up and switch off the eDeskLamp

Zit on the =8ed anc switch on the eBedLamp and actvate the eMP2Player

Mow stand up and switch off the eBedLamp and the &MP3Player

When you sit down again on the eChar you sheuld see that the agent has learnt your actions and
tches on the eDeskLamp autom:

The agent should have leamt alsc that as soon as you it on the eBed, it should swich on the

P Y T -
sCLams and eNF ey

Repeat and changed your actions as you wish and see if the agent has learnt your preferences
Scenario 6: Overnight

Create synapees between the

eDesklamp and #Chair

#Bed and eDeskLamp

eBed and eBedLight

eBed and eMP3Player

=Sed and eBlind

Activate an agent by selectng "Actve Agent” from the menu bar of the eBed

Click at “Device Info” and *Fulebase” within the Agents’ Display Panel and start the agent by clicking
at the green play bution

‘You should be able to see the eGadgess in the “Display-Devices™ panel

it on the eCharr and switch on the eDesklLamp

Mow =tand up and switch off the eDesklamp

Sit on the &Sed and switch on the eSedLamp and activate the eliP3Fiayer and ciose the eBiind
Mow stand up and switch off the eBedlamp and the sMP3Flayer and open the eBlind

m, When you sit down again on the eChair you sheuld see that the agent has learnt your actions and
m:d'nesmmeeDg automaticaly

n The agent should have learnt alsc that as soon as you sit on the eBed. it should switch on the
eBedLamp and eMP3Flayer and close the eBlind

o Repeat and changed your actions as you wish and see if the agent has leamt your preferences

g e seann

=l
3

Fom o opp o ow

-

-

365

Pre session questionnaire

1. What & your age”
0 1825

0 26-35

0 35 and oider

Z Do you uss freguently any of the followng (oross more than one if appropriaie)
O Computer

Q E-mail

() Mobile Phone [GEM)

O SMS servioe (Short Message Servce)

2 Do you use frequently any of the followng (cross more than one if appropriate)
0 Computer

i} E-mail

O Mobile Phone (GSM)

0 SMS senvice (Short Message Senvice)

4. What i your highest acadmic degres?
0O high school
QO other (please describe)

3, How do vou deseribe vour expertise wath computer progranumning”
0 None or too hrle

() Undersiand the concepts

() Enoededgeabls buf rusty

i} Flusnt

366

Post-Session Structured Interview

1. Dhd you ke usng the system?
O Not at all o A& e 0 Spand So 0 Very Much 0 Extremehy

2 What did you like about the sysiem?

3 What did you not Bee about the system?

4. Do you fesl you understand the editor and how o make synapses well now T

£ Dnd you fee! restricted by the edtor at any point?

£ Was the system adapting or changing its behavicurs in ways thai surprsed you?

7. ¥ every day objects were controdiable in this way, would you see yourse® amanging their behawiours wth
the schems shown o you (Using an edtor, Synapses, eio. |

0 Yes 0 No

Flease say why

If ewery day obeects were controllable in this way, would you S22 yoursef amanging ther behawours with the
hefp of the agent?

0 Yes 0 No

Flaase say why

£ How would the adaptation need o be improved to suit your preferences?

367

21. Appendix 5 - Citations

Papers from the research work are shown below, in text boxes, while their corresponding

cross references are listed below them.

1. Mavrommati, |., Darzentas, J. (2007). End User Tools for Ambient Intelligence
Environments: an overview. In Human-Computer Interaction, Part Il (HCII 2007), LNCS
4551, pp. 864-872, Springer. Available at:
http://www.springerlink.com/content/tr246k7 111204 1mh/fulltext.pdf

1.1.

1.2

Davidyuk, O., Georgantas, N., Issarny, V., Riekki, J. (2010). MEDUSA:
Middleware for End-User Composition of Ubiquitous Applications,
Mastrogiovanni, F., Chong, N.Y. (Eds.), Handbook of Research on Ambient
Intelligence and Smart Environments: Trends and Perspectives, |Gl Global.
Available at: http://www.mediateam.oulu.fi/publications/pdf/1288.pdf

Davidyuk, O., Sanchez Milara, |., Riekki, J. (2010). CADEAU: Supporting
Autonomic and User-Controlled Application Composition in Ubiquitous
Environments, Pervasive Computing and Communications Design and
Deployment: Technologies, Trends, and Applications, IGI Global (Ed.). At:
http://hal.inria.fr/docs/00/50/91/08/PDF/davidyuk et al cadeau chapter 2010.pdf

2. Kameas, A., Mavrommati, I. (2005). Extrovert Gadgets. Configuring the e-Gadgets,
Communication of the ACM (CACM), special issue section on "The Disappearing
Computer", ACM, vol. 48, no. 3, p.69.

2.1.

2.2

2.3.

2.4.

Hyeonsang, E. Topics in Distributed Systems - Information Protection & Use and
Performance Engineering, Department of Computer Science & Engineering,
Seoul National University.

Obrenovic, Z., Nack, F.M., Hardman, L. (2007). Information Systems Designing
interactive ambient multimedia applications: requirements and implementation
challenges, Centrum voor Wiskundeen Informatica , Report INS-E0703.

Caire, P. (2007). Conviviality for Ambient Intelligence, In: Olivier, P., Kray, C.
(eds.) Proceedings of Artificial Societies for Ambient Intelligence, Artificial
Intelligence and Simulation of Behaviour (AISB 2007), pp. 14-19. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.4987 &rep=rep1&ty

pe=pdf

Caire, P., van der Torre, L. (2009). Convivial Ambient Technologies:
Requirements, Ontology and Design, The Computer Journal Advance Access,
Oxford University Press, British Computer Society. Available at:
http://icr.uni.lu/pubs/cai09c.pdf

2.5.

368

Urmetzer, F., Hoyer, V., Rivera, I., Aschenbrenner, N., Lizcano, D. (2010). State
of the art in gadgets, semantics, visual design, SWS and Catalogs, Deliverable
D2.1.2, FAST (FAST AND ADVANCED STORYBOARD TOOLS), FP7-ICT-2007-
1-216048, http://fast.morfeo-project.eu. Available at: http://files.morfeo-
project.org/fast/public/M24/D2.1.2_StateOfTheArt v1.pdf

Kameas, A., Mavrommati, |., Markopoulos, P. (2005). Ambient Intelligence: the
evolution of technology, communication and cognition towards the future of human-
computer interaction. 10S Press, 2005 Riva, G., Vatalaro, F., Davide, F. and Alcaniz,
M.: (Eds). Emerging Communication series. 10S press. (Mavrommati, I. - chapter 10,
titted “Computing in tangible: using artifacts as components of Ambient Intelligent
Environments”).

3.1

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

Azodolmolky, S., Dimakis, N., Mylonakis, V., Souretis, G. (2005). Middleware for
In-door Ambient Intelligence: The PolyOmaton System, Proc. of 2nd NGNM
workshop, Networking.

Brey, P. (2005). Freedom and Privacy in Ambient Intelligence, Journal of Ethics
and Information Technology, vol. 7, no. 3, Springer, pp. 157-166.

Kovacs, K., Kopacsi, S. (2006). Some aspects of ambient intelligence, Acta
Polytechnica Hungarica, Budapest, Hungary, 3(1), pp. 35-60.

Arroyo, R.F., Garrido, J.L., Gea, M., Haya, P.A. (2006). A Design Model Applied
to Development of Aml Systems, International Conference on Ubiquitous
Computing ICUCO06.

Miao, Z., Yuan B., Yu M. (2006). A Pervasive Multimodal Tele-Home Healthcare
System, Journal of Universal Computer Science, vol. 12, no. 1, pp. 99-114.

Correal, R., Jarddén, A., Martinez, S., Cabas, R., Giménez, A., Balaguer, C.
(2006). Human-Robot Coexistence in Robot-Aided Apartment, 23rd International
Symposium on Automation and Robotics in Construction (ISARC 2006), Tokyo,
Japan.

Cepa, V. (2005). Product-Line Development for Mobile Device Applications with
Attribute Supported Containers, Dissertation, Fachbereich Informatik, Technische
Universitaet Darmstadt.

Crutzen, C.K.M. (2005). Intelligent Ambience between Heaven and Hell: A
Salvation?, Journal of Information Communication and Ethics in Society, vol. 3,
no. 4, Troubadour Publishing, Great Britain, ISSN 1477-669X, pp. 219-232.

Mavrommati, |., Kameas, A., Markopoulos, P. (2004). An Editing Tool That Manages
Device Associations in an in-Home Environment, Personal and Ubiquitous Computing
8, p.p.255-263, Springer.

4.1.

Gross, T., Marquardt, N. (2007). CollaborationBus: An Editor for the Easy
Configuration of Ubiquitous Computing Environments, pdp, pp. 307-314, 15th
Euromicro International Conference on Parallel, Distributed and Network-Based

369

Processing (PDP'07). Available at: http://www.nicolaimargquardt.com/research-
documents/CollaborationBus TechnicalReport.pdf

4.2. Mugellini, E., Rubegni, E., Gerardi, S., Khaled, O.A. (2007). Using personal
objects as tangible interfaces for memory recollection and sharing, Proceedings
of the 1" international conference on Tangible and embedded interaction, Baton
Rouge, Louisiana.

4.3. Balka, E., Wagner, |., Jensen, C.B. (2005). Reconfiguring critical computing in an
era of configurability, Proceedings of the 4th decennial conference on Critical
computing: between sense and sensibility, Aarhus, Denmark. Available at:
http://www.informatik.uni-trier.de/~ley/db/conf/critical/critical2005.html

4.4. Goumopoulos, C., Christopoulou, E., Drossos, N. (2004). The PLANTS System:
Enabling Mixed Societies of Communicating Plants and Artifacts, in P.
Markopoulos et al. (Eds.), EUSAI 2004, LNCS 3295, Springer-Verlag, pp. 184—
195.

4.5. Schirmer, M., Gross, T. (2008). CollaborationBus Aqua: Finden und Bearbeiten
ubiquitdrer Umgebungskonfigurationen, Fakultat Medien, Bauhaus-Universitat
Weimar, Mensch & Computer 2008.

Markopoulos, P., Mavrommati, |., Kameas, A. (2004). End-User Configuration of
Ambient Intelligence Environments: Feasibility from a User Perspective, EUSAI,
European Symposium on Ambient Intelligence, Eindhoven, published in: Ambient
Intelligence, ISBN 3-540-23721-6, Springer Lecture Notes on Computer Science
(LNCS3295), pp. 243-254.

5.1. Mosveen, C.H., Brustad, A. (2005). UbiCollab: Evaluation and requirements re-
engineering, TDT4735 Systemutvikling, fordypning.

5.2. Coutaz, J. (2007). Meta-User Interfaces for Ambient Spaces, in book: Task
Models and Diagrams for Users Interface Design, Lecture Notes in Computer
Sciences (LNCS), Springer, Vol. 4385/2007, pp. 1-15.

5.3. Roudaut, A., Coutaz, J. (2006). Méta-IHM ou comment contréler I'espace
interactif ambient, Proc. Ubimob06.

Mavrommati, |., Kameas A. (2003). The evolution of objects into Hyper-objects, will it be
mostly harmless?, Personal and Ubiquitous Computing ACM, Springer-Verlag, vol. 7, 3-
4, pp. 176-181.

6.1. Ogata, Y. (2004). Building Highly Interoperable Home-Computing Middleware
Based on REST Architectural Style, Master’s thesis, Waseda University.

6.2. Atia, A., Takahashi, S., Tanaka, J. Smart Gesture Sticker: Smart Hand Gestures
Profiles for Daily Objects Interaction. tsukuba.ac.jp - iplab.cs.tsukuba.ac.jp

370

7. Kameas, A., Bellis, S., Mavrommati, |., Delanay, D., Colley, M., Pounds Cornish, A.
(2003). An Architecture that Treats Everyday Objects as Communicating Tangible
Components, |EEE international conference on Pervasive Computing and
Communications (PERCOM2003), Texas, Forth Worth.

7.1

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

Pellegrino, P., Bonino, D., Corno, F. (2006). Domotic house gateway,
Proceedings of the 2006 ACM symposium on Applied computing, Dijon, France.

Mottola, L., Murphy, A.L., Picco, G.P. (2006). Pervasive games in a mote-
enabled virtual world using tuple space middleware, Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for games, Singapore.

Goumopoulos, C., Christopoulou, E., Drossos, N. (2004). The PLANTS System:
Enabling Mixed Societies of Communicating Plants and Artifacts, in P.
Markopoulos et al. (Eds.), EUSAI 2004, LNCS 3295, Springer-Verlag, pp. 184—
195.

Liu, R, Yang, H., Wang, Y., Pan, W. (2004). An evolutionary system
development approach in a pervasive computing environment, 2004 |EEE
International Conference on Cyberworlds.

Ambient Intelligence: Second European Symposium, EUSAI 2004, Eindhoven,
Netherlands. Panos Markopoulos Berry Eggen Emile Aarts James L. Growley
(Eds.) Ambient Intelligence. Lecture Notes in Computer Science 3295.

Gritti, M., Broxvall, M., Saffiotti, A. (2007). Reactive self-configuration of an
ecology of robots, ICRA-07 Workshop on Network Robot Systems, IEEE
International Conference on Robotics and Automation, Rome, Italy.

Roj, M. (2005). Smart Artifacts as a Key Component of Pervasive Games.
Proceedings of the 2nd International Workshop on Pervasive Games (PerGames
2005).

Ronai, M.A., Fodor, K., Biczok, G., Turanyi, Z., Valko, A. (2005). MAIPAN:
middleware for application interconnection in personal area networks, 2nd
International Conference on Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous 2005), ISBN 0-7695-2375-7.

Landini, E. (2004). Un sistema di comunicazione wireless per lintegrazione di
robot di servizio in architetture domotiche, Thesis, University of Parma.

Zimmer, T.H. (2007). Verbesserung der Kontexterkennung in Ubiquitédren
Informationsumgebungen, PhD Dissertation, Institut fir Betriebssysteme und
Rechnerverbund, TU Braunschweig.

371

8. Mavrommati, |., Kameas, A. (2003). End user programming tools in ubiquitous
computing applications, In Stephanidis C. (Ed.), Proceedings of 10th International
Conference on Human-Computer Interaction (pp. 864-872). London, UK: Lawrence
Erlbaum Associates.

8.1. Rullo, A., Marti, P., Gronvall, E., Pollini, A. (2006). End-user composition and re-
use of technologies in the Neonatal Intensive Care Unit, Proceedings of the
Pervasive Healthcare.

8.2. Pollini, A., Gronvall, E., Marti, P., Rullo, A. Constructing assemblies in the health
care domain: two case studies, hcilab.uniud.it

8.3. Davidyuk, O., Georgantas, N., Issarny, V., Riekki, J. (2010). MEDUSA:
Middleware for End-User Composition of Ubiquitous Applications,
Mastrogiovanni, F., Chong, N.Y. (Eds.), Handbook of Research on Ambient
Intelligence and Smart Environments: Trends and Perspectives, 1GI Global.
Available at: http://www.mediateam.oulu.fi/publications/pdf/1288.pdf

9. Mavrommati, |. (2002). E-Gadgets case description. Doors of Perception 7 @ flow,
Amsterdam.

9.1. Crutzen, C.K.M. (2006). Invisibility and the Meaning of Ambient Intelligence,
International Review of Information Ethics (IRIE), ISSN 1614-1687.

9.2. Crutzen, C.K.M. (2005). Intelligent Ambience between Heaven and Hell: A
Salvation?, Journal of Information Communication and Ethics in Society, vol. 3,
no. 4, Troubadour Publishing, Great Britain, ISSN 1477-669X, pp. 219-232.

9.3. Crutzen, C.K.M., Hein, H.W. (2007). Dekonstruktion und Konstruktion: Beitrédge
zu einer Theorie der Informatik.

10. Kameas, A., Mavrommati, I., Ringas, D., Wason, P. (2002). eComP: an Architecture that

Supports P2P Networking Among Ubiquitous Computing Devices, 2nd IEEE
international conference on Peer to Peer Computing (P2P 2002), Linkoping, Sweden.

10.1. Kurmanowytsch, R. (2004). Omnix: An Open Peer-to-Peer Middleware
Framework. Engineering Topology- and Device-Independent Peer-to-Peer
Systems, Ph.D. Thesis, Faculty of Informatics, Technical University Wien.
Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.378&rep=rep1&type

=pdf

10.2. Gross, T., Paul-Stueve, T., Palakarska, T. (2007). SensBution: A Rule-Based
Peer-to-Peer Approach for Sensor-Based Infrastructures, 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMICRO
2007), pp- 333-340. Available at:
http://www.computer.org/portal/web/csdl/doi/10.1109/EUROMICRO.2007.54

372

11. Mavrommati, |., Kameas, A (2007). Crisis rooms are ambient intelligence digital
territories - Universal Access in Human-Computer, — Springer
11.1. Etude de comportements coopératifs pour l'intelligence ambiante: application a la
gestion de crises. S Suils... - 2009 —e-archivo.uc3m.es
12. Calemis, |., Mavrommati I. (2009). Preliminary requirements and approach for Tools that
configure pervasive awareness applications: the ASTRA case
12.1. Domingo, DR., Divitini, M. Development and integration of an awareness
applications manager into ASTRA from perseum.com
13. Overall contribution to related research (in contributing to Digital Territories study, in

assisting multidisciplinary design research, in the e-Gadgets research, and in
considering the End User as part of the system) has been also respectively
acknowledged by:

13.1. Daskala, B., Maghiros, I. (2007). Digital Territories, towards the protection of
public and private space in a digital and Ambient Intelligence Environment, JRC,
no: EUR 22765 EN.

13.2. Wendy Mackay: The Interactive Thread: Exploring Methods for Multi-disciplinary
Design Designing Interactive Systems - DIS 2004 , pp. 103-112, 2004
(acknowledgments).

13.3. Hagras H., Callaghan V., Clarke G., Colley M., et al. (2002). Chapter 2,
Incremental Synchronous Learning for Embedded Agents Operating in
Ubiquitous Computing Environments. In Soft Computing Agents, Ed. V. Loia, I0S
Press.

13.4. Demazeau, Y. (2003). Créativitt¢ Emergente Centrée Ultilisateur (keynote),
11éme Journées Francophones sur les Systemes Multi-Agents, pp. 31-36,
Hermés, Hammamet.

13.5. Several media programmes and interviews (such as TVs NET 14/10/2003, ET1
2/2004, Euronews 29/10/2003, and newspaper articles Ta Nea, e-Typos, etc)

373

22. Appendix 6: an example EUD

scenario in a ubicomp home

A scenario on how Ubicomp Systems that support EUD could be used by End Users,
to create several applications for their environment.

Let's assume the following example scenario, of end user development of an application
within the ubiquitous home.

Helen is the 82 y.o., the grandmother of Dimitris and Alex. She likes to live independently,
but is often thinking she would like to have someone checking on her in case she has any
age related trouble at home. In order to maintain her independent living she has decided to
get some sensors and artifacts in her house, thus making it a ubiquitous one). In order to
create some applications that she wanted she has asked the help of her grandson Dimitris,
a 15 year old who has grown up into a computerized environment and is an enthusiastic
early adopter of technology developments.

Dimitris has grown up with computers; he had a computer since he was 5 years old, and he
learned how to type, browse, and use the mouse at the same time (if not a bit earlier) that
he learned to write. Dimitris has started learning some programming skills when he was 7,
initially setting up his accounts in social systems chat with his friends and playing FARM-
VILLE (his favorite social network game). Programming was a part of the school curricula
when Dimitris was growing up, so he developed an affinity with computers and
programming, not as a professional programmer, but as a keen side interest that helped him
to get by in his assignments and past time hobbies, as many other kids of his age.

Helen wants not to be disturbed by the telephone ringing at inappropriate times, but on the
other hand she is concerned that not answering the phone may cause concern on her
family, regarding her well-being. She expresses her wish to Dimitris, who in turn explains
the basic functionality to his grandmother, using the Capabilities and Links model to make
her understand the underlying principles. They then decide that they should set up the
following applications for her:

e She wants the telephone to go on the answering machine when she has her friends
over for the occasional card-playing night and when she is asleep or having a bath.

¢ She wants her telephone ringer to go louder when she is in the veranda, in the kitchen,
or watching TV, so that she could hear it better. Her hearing has deteriorated and
especially when there are other sounds (like the TV or Cooking) she sometimes does
not notice the ringing.

e She wants to share information about her location and movement in the house, with her
daughter and her son, so that they know that she is well and they are not worried when
they call her and she does not respond.

Dimitris checks that her phone is an augmented artifact that can offer its services through a
ubiquitous system, and then places some extra sensors (wireless pressure sensor mats and
movement sensors) under the sofa’s cushions and the veranda-mat and a couple of
movement sensors in the bathroom and kitchen.

374

He then downloads on his portable laptop the Ubicomp editor, to set up the application. He
first assigns the sensors to the respective rooms and furniture (so that he can handle them
as artifacts), then puts in some keywords and free text describing the application, and
presses “search similar” in order to find if other similar applications have been created, so
that he does not start from scratch. The search points out at a similar application that exists
for checking out someone’s location in the house, although it needs to be adapted for the
specifics of grandma’s home.

Dimitris connects certain groups of sensors to the telephone, and then goes on to select the
specifics of this application. He sets a group of sensors (from the chairs of the dining table,
the bed, and the bath), so that when they sense presence (pressure or movement), then,
this is connected to the telephone and affects the ringing volume. When there is pressure /
movement on these sensors and in parallel the phone receives an incoming phone, then (he
goes on selecting from a pull down menu from the telephone properties the ringer), the
answerphone picks up, and the ringer does not ring. Nevertheless he makes the addition of
a small lamp, that in this case turns on instead of the ringer, so that his grandmother has in
the periphery of her attention a visual signal that the phone is ringing when they are playing
a card game.

He goes on to make the second setting that his grandma asked for, and copies the same
configuration to start from. He changes the sensor inputs to that of the sofa, the kitchen and
the veranda, and changes the telephone response to being increasingly louder than normal.
He keeps the lighting of the lamp and sets it to turn on an off, as he considers that this
would be more useful for his Grandmother to notice when she is in the kitchen or watching
TV.

When Dimitris has finished setting up these two applications for his grandma’s telephone,
he goes on to test them. He asks his grandma to go to several places in the house, while he
calls her land-line with his mobile phone. He notes a couple of glitches and corrects them:
more than one chairs should be occupied, when they are playing bridge. There is a more
serious glitch at the functionality of the TV watching part : When his grandma has left the
sofa, the system indicates that the sofa is still occupied...the system takes input to start the
application when a location is identified, but does not have input when to stop the
application. He continually swaps editing views between the tree-line and pipeline editing
view and the natural-text entry that makes questions and suggestions, in order to figure out
what is best to do. He introduces sensor checks over 30 seconds, to be able to end that part
of the application. The bath and kitchen sensors are newer and let the system know on the
change of their state, in order to reconfigure the applications reaction.

Dimitris has corrected the glitches and is happy to receive a cup of hot chocolate from his
Grandother, along with some pocket money as a gift of appreciation for his help. As he
moves about in the house, the telephone rings; but the ring tone is going on and off
randomly, and the lights are flashing, because now two people are in the house: he is in the
veranda, while his grandma is on the sofa....he makes a point to himself to add some
identification sensors and correct this in the future.

On the plasma TV he ports an ‘idle mode’ of the editor. He now can see a scrolling view of
all the applications that he just made. He turns the last application OFF, while the other two
are ON. Dimitris explains the overview control as seen on the TV plasma screen to his
grandmother, so that she can turn the applications on and off if she wants - and hopes that
she does not forget how to do this by next week.

For setting up the last application, Dimitris decides to use the application that is being
shared on the community applications site. He re-configures it automatically, to take input
from the sensors on his Grandma house, and he responds to a few system questions

375

regarding dubious points on where the sensors are. He asks his sister Alex to link up and
check from their house if the movement in the house is spotted correctly. He gives in very
strict rights, to his mother and uncle only so that they can use a text based interface in the
idle mode of their mobile phone, that points at the grandma’s location in the house (it
displays messages such as “bed”, “bath”, “kitchen”, “veranda”). He thinks to himself that this
is a very useful application, but could do with a better interface for visualizing the
information, and makes a point to make this at home and also add it to the communal

repository of applications.

Dimitris thinks that he could install the same application to his girlfriends house, so that he
can see when she is alone at home to call her or call by; but he is deterred by the fact that
the idle screen of the system shows all the currently running applications, so it will be
noticed by her parents and they may end up in trouble. Perhaps good old Tweet messaging
may be better for their frequent status updates after all!

It is already dark when Dimitris leaves Helen’s house; but before he leaves, he makes sure
that Helen grants him remote control over her ubicomp system, so that he can service it
remotely and cater for any bugs that he may not have foreseen, that, he is sure will occur in
the next few weeks use.

376

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

