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[TeptAngm

To Ypa tne napoloog dateBrc ebvar 1 UEAETH TWV YOVOTOVWV XL YEVIXEUUEVA
povéTovey “Biouvapthoewy” (bifunctions), xa n yenowonoinorn autic Tne werETNC
o Vewplol TV LOVOTOVWY XAl YEVIXEUUEVA LOVOTOVGY TEAECTHY O TOTUXE XUETOVS
ywpoue (ouvidoce, yweouc Banach).

Aodévtog evdg Tomxd xuptol yweou X, Ye Tov 6po “tehecThc” eVVOUUE Uia
TAELOTIUN ameEoVion and To X oTov TomoAoyixd duixd Tou X*, Snhady| pio omelxo-
vion T : X — 2% énou 2% elvan 10 duvogooivoro tou X*. Tio xdde x € X,
o T'(x) elvan éva (mdoavide xevd) unochvolo tou X*. Evoc tehecthic T Méyeton
povotovog, av v xde z,y € X xou xdde x* € T'(x), y* € T(y) wylel

(" —y",x—y) >0

omou ue (z*,z) ouyPorileton to z*(x). H évvolo tou povétovou tekeosth €xel
Bpel e@appoYES o MOAROUC XAGBOUC TV HOUNUOTIXDY, OTWE GTN U1 YROUMIXT
avaAUoT), OTIC UEPIXES Blapopnés eElowoels, oTr Yemplol BlapopLoHLOTNTISC XUPTWY
cuvopTAcEWY XAT. Eldwdtepa, ol povotovol TeAecTtés €youv amodelydel 1oyuvpd
epyokeio otn Yewpla avicdoewy petaBohdvy (variational inequalities), ol onoleg
anoteholV TN Bdorn TOMGY POVTEAWY oE Quoxd mpoPiruata. ‘Evoag amd toug
A6YOUQ Elvan OTL 1) XAAOT]) TWV LOVOTOVWY TEAECTWY TeplAauBdvel Tor uTodlapopLxd
ot Toug YeTIXoUC YpopULXoUS TEAECTES, TTOU GLYVE AAVTOVTOL G TETOLN TROBAY-
porToL.

Mua 8AAn onuoavTxed évvola efvar oL povétovee dlouvapthoele (monotone bi-
functions). Av C C X, wo anewévion F @ C x C — R héyetan povétovn
diouvdptnon av yia xée z,y € C,

F(z,y)+ F(y,z) <0.

Ot yovérovec diouvaptrioeic oyetilovto pe to hAeyouevo mpdfAnua iwwopporiag,
ToL cuviloTaTal GTNY EVEECT eVOG onueiov zo € C' TéTolov WOoTE

Yy € C: F(xg,y) > 0.

Ta mpofifuata looppoTiag elyav pehetniel oto napedddv oe oyéon ue ta Vewphuora
minimax, ahhd 0 6poc “mpdfBinua looppotiac” yenoulonotidnxe yiot TEWT Popd
oto onuavtixd dedpo twv Bloom xou Oettli [23]. X0 dpdpo autd or cuyypapeic
€deiloy 6Tt TOANG BropopeTixnd PeTaEl Toug Eoflhfuata (AVICHOOELS UETUBONGDY,



4

pordnpotie Behtiotonoinor, meofAfuota otodepol onueiov, mpofifuata “coy-
potieol onuelov” (saddle point problems), wopponio xatd Nash xhr) oy eidixée
TEQINTOOELS Tou TpoPAfuatog wopporiog. o To Adyo autd, mohhol epeuvntég
aoyorMdnxay e Tpofhiuata loopporiog pe povétoves diouvapthoels (BAéne [7, 8,
22, 21, 64, 54, 71, 69, 75, 77, 78, 86] %ot Tic avapopéc oL TEPLEYOVTAUL & AUTA).

Yy nopoloa Bt Yo aoyornlolue Ue Tic HovOTOvES BLOLUVIPTAHCELS amtd
GhAn drodn. Oa emxevVTpwVOUUE GTO CUCYETIOUS TWV UOVOTOVKY BICUVAPTHOEWY
HE TOUG HOVOTOVOUS TEAETTES. e xde Blouvdptnon F' do avTioTolyIcouue €vol
teheoth ALY xou oe x&0e tereoth T Yo avtiototyfiooupe pia diouvdptnon Gr. Mo
diouvdptnon F Yo héyeton peylotind povétovn av o teheothc AL elvon peyiotind
povotovoe (BAéne opiopd otny napdypago 1.3). Koploc oxonde pac Yo eivon 1
HEAETY) HEPLXAY LBLOTHTWY TWV YOVOTOVWY BLoLVAPTHoEWY o€ oy€aT Ue avtioTolyeg
WBLOTNTES TV HOVOTOVWY TEAEGTOV.

Eva and 1o xOpta anoteréopota g dlotefnc etvon 6T, xdtw and acievelg
uno¥éoelg, ol HoVOTOVES BLOUVOPTHOELS Vol TOTUXA PEAYUEVES OTO ECWTEPIXO TOU
nedlou oplopol Toug. ¢ dueco anotéiecpa, Vo GUUTEREVOUUE TN YVWOTH WLoTNTa
6Tl xde povotovog tedecthc T  elvon Tomixd QPpaypévos 6To ECWTERIXS TOU Tedlou
opopol tou domT = {x € X : T(z) # 0}. And v d\An mhevpd, oc avtideon
HE TOUC HOVOTOVOUG TEAECTEC, OL LOVOTOVES DICUVOPTHOELS UTopel Vo elvon Tomixd
peayuéveS xou 6To GVopo Tou TEdiou oplool Toug UdAioTa Va del€oupe 6Tt auTd
oy Vel TavToTE 6Ty To TEdio oplool Toug efvor TOALEDELXO.

Emniéov Ga dei€oupe dTL évag povotovoe teheotric T elvon “tomxd gpayuévog
npoc o péoa’ oe xde onuelo xg € dom T, WBLOTNTA TOL AVAYETOL OTN YVWOTH
WBLOTNTA TOV TOTUXA PEayUéVou OTaY To To aviAxel 6To eowTepixd Tou dom 7.

Ot yovétovol tehectéc umopolv va yevixeudolv pe nohholc Tpomoug, Bréne
iy [63] xou [74]. ‘Evoc and avtolc elvon oL Aeyduevol o-govétovol tehectéc [71],
nou elvar mheldtipol teheotéc 1 X — 2X" étoi01 dote v xdde z,y € dom T
xu x* € T(z), y* € T(y),

(2% =y 2z —y) > —min{o(z),0(y)} |z - yll

o6mov o : domT — R, elvan doouévn cuvdptnon. O T Aéyeton mpouovéTovog
(pre-monotone) av eivon o-povétovog yia xdmowr cuvdptnon o. H xhdon twv
TEOUOVOTOVWY TEAECTOV TEpLAoBdvel TOANOUS oNuavTiXols TEAECTEC OTWS oL
LOVOTOVOL X0l Ol E-UoVATOVOL TEAECTES. LNy Tapovoa dlatelBr) Yo yevixeboouue
pepIxd omd tar amoteréopata TG epyaciog Twv Iusem, Kassay, Sosa [71] oe aneipo-
dldoTatoug yweous, ot enione o elodyouvue TNV €vvold TG o —HovOTOVNC ol
TpopovéTovng diouvdptnong. To xlplo amotéheoya elvon 4Tl OL TPOUOVOTOVES Ol
ouvopTAoELC elval TOTUXE PEAYUEVES OTO ECWTEPXO TOU TEDOU 0pLOUOY TOUE, UE
avtioTolyo cupmépacya vl Toug Tpoudovotovous TeAectéc. Erniong yevixebouue
éva onuavtixd Yedpnua tou Libor Vesely. Eminkéov delyvouye 611, Sodévtwv 5o
HEYIOTIXOV 0-HovOTOVWY TeEheoT®dV S xon T, uia apxetd aocvevic cuvdixn mou
apopd TN oyetxh Véon twv medlwy oplopol Toug, cuvendyeton 6Tl To Glpoloua
T(x) + S(z) eivar aodevirc® xhewotd yio xdlde x € X.

‘Eva onuovtind pépoc auvtic tne SlotplPrc agopd otny eloaymyn xou YeAET
Tou “wetacynuationol Fitzpatrick” wag Swouvdptnone. Kot' apyde ewodyouue



™y évvolag Tne xavovixic (normal) Siouvdptnone xou €vo xawvolpylo oploud
HOVOTOVNC BIGUVEETNONG, TTOL Elvol (Lol WXEY YEVIXEUGT) Tou avtloTolyou oploroy
twv Bloom xou Oettli [23], ahh& mou emitpénet pia xohUTepn avTloTolyNon Twv
HOVOTOVLV BIOGUVIPTACEWY Xl LOVOTOVWY TEAEGTWVY. 'Eva and to wlpla yopox-
TNELoTIXE Tou VEou oplouol etvan OTL évag Teheotic T pe aolevig*-xhelotée Tée
elvon YeYIoTXd wovotovog av xaL uévov av 1) dilouvdetnon Gr etvar BO-yeyiotxd
povotovn (Bréne oploud oto tereutalo xe@dhano). Emmiéov anodeixvioupe 6Tt 0
petaoynuatiopog Fitzpatrick te Gr ebvon oxpiBog 1 ouvdptnor Fitzpatrick tou
T. EmnAéov, av yia povotovn dlouvdptnon F elvar xUpTh xou XATte NUIcUVEYNS W¢
Tpo¢ TN delTEEN UETUBANTY NG, 0 peTacynuationog Fitzpatrick pog emtpénet va
Bydhoupe cuUTERGOUATO YIoL TN UEYLOTIXY HovoTOvid TNg.

IMopouscidlouye T To TEQLEYOUEVA TV Blapopwy xe@ohalwv Tng dlatpBhc.

To xepdhao 1 mepiéyel Yepxéc Booixés €VVoleC xal AMOTEAECUATO OO TNV
%xVETH avdhuom, TN cuvapTnolaxy avdAuoT, TN Yewpld LOVOTOVWY TEAECTOV Xou
N ouvdptnom Fitzpatrick, npoxewévou va yivel To xelyevo mo auTodOVaUo o Vo
UMV AVATEEYEL O OVOYVWOTNG OE BARES TTNYEC.

To xedhato 2 elvon agiepwuévo ot povotovee dlouvapthoeic. Opllouye Tic
MEYLOTIXE HOVOTOVES DIOUVOPTHOELS XoUl TAPOUCLALOVUE UEPLXES OPYIXES EVVOLES Kol
wotntee. Ta xbpla amoteréoyata Tou xeqoralou elvar To Oewpnua 2.9 Tou divel
o vl ouvdfxn Gote va oylel 1 wétnta AYT = T, xou 1o Oedpnua 2.19
ToU Aéel OTL x4t and acvevelc unodéoelg, pla LovoTovy SlouvdptnoT vl Tomixd
peayuévn oe xdde onuelo Tou ecwtepod Tou Tedlou oplouol . Me Tov TedTo
oawté Bploxovye pior OXONN anddelln tne avtioTolyng WBLOTNTUS Yot LOVOTOVOUS
teheotéc. Ou mpotdoeic 2.32 xou 2.33 delyvouv &L oL YovOTOVES DBLOLVOPTHCELS
CUUTEPLPEPOVTAL XOADTEPA OO TOUS OVTIOTOLYOUS UOVOTOVOUC TEAEGTES, APOU
umopoLY va elval TOTUXE PEAYUEVES XaL 0TO GUVOEO Tou TEdloL oplopol Toug. Ei-
Buxddtepa delyvoupe 6Tl Tay To TEd(o oplopol elval TOTUIUDS TOAVESPIXG LTOGUVOAO
Tou R™, t61€ 10 TOMXS PEAELUO elvor awToUaTo GE GAO T0 TED(O OplopoU. 3To TENOC
TOU AP0V TOPOUGIALOVUE PEPIXE TOROBELYOTOL ot AV TLITOPODELY LorTaL.

To xepdharo 3 acyoheiton ue 0 Yewpla TwWV T-UOVETOVKDY LOVOTOVKY TEAEGTHOV
%o SloLVoETHoEWY. Eiodyouue Tig €VVOlEC TWV O-HOVOTOVWY TEAEGTWV XOoL Ol
cuvapTAoEWY ot éva ydpo Banach, xou yehetolue opy1xd TIC GTOLYELOBELS LBLOTNTES
touc. Emione, elodyouue xou yeretolye Ti¢ ¥AAOES TV TROUOVOTOVWY TEAECTWYV
%o BloLVAPTACEWY. XNV TeoTacT 3.7 amodelxvioupe 6Tl av o 1" elvon o-povéTovog
oL 1 0 Gve Nuouveyhe, tote o T €yel axohouthoxd vopuXac¥evdc* xheloTtd
yedpnua. Emniéov, 1o napdderypo 3.8 delyvel 6t n unddeon g dve nuouvEKELS
e o de umopel va mapokngiel. To xlplo anotéleopa elvon to Oewpnua 3.17 nou
anodeVUEL OTL, XATW ATO XATIAANAES GUVUNXES, OL T-UOVOTOVES BLOUVAPTHOELS
elvon Tomxd PpayUEVEC OTO E0WTEPIXO TOU TEBIOU OPLOUOU TOUG, TMEAYUS TOU
eMTEETEL TNY anddelEn Tne avtioToryne WLOTNTAC Yot o-ovoTtovoue Teheotéc. Emi-
TAé0V, amodexvioLUE Wio etéxtact) Tou Yewphpotog tou Libor Vesely [92]. Aely-
vouue emlong OTl, Xdtw omd Uepés oLVUXEC Tdvw oto medlo oplopol Toug,
T0 QUPOLoUA TRV TV BUO PEYLOTIXMY T-UOVOTOVRY TEAECTOV elvan ao¥evidc™-
XAEWOTH. 3TN CUVEYELX amodexvioupe TNV Umapn Aong Yo To TedBAnua LWoop-



potiac mou opileton ot Evol xVPTH XaL XAELGTO (U1 PEOYUEVO EV YEVEL) UTOGUVONO
EVOC MEMEPAOUEVNC BLdoTaong Yeou. To xepdlono TEAELOVEL PE TN GUYXELOT| TOU
0pLOUOU TOU T-UOVOTOVOU TEAECTY) UE GANOUC OpLoUolE YEVIXEUREVNS HOVOTOVING
Tou undpyouv otr BiAoypapla.

Yto tedeuTaio ypdvia, Evar amd ToL LoYVEOTERN EYORELN OTN UEAETY TWV YEYLOTL-
%8 LovOTOVWY TEAesTWY amodelyUnxe 6t elvon 1 ouvdptnon Fitzpatrick. Xdpewc o
authv, ToAG anoteréopata e (Hepiée popéc Wiaitepa dhoxohng) Jewploc Twv
HEYLOTXE HOVOTOVWY TEAEGTOV ATODEY UMY EUXOADTERA 1} Xal Lo VEOTOLVXAY,
XENOWOTOLOVTAS PEVHBOUE TNG XUPTAHSC avdhuong. XTo xepdAaio 4 Belyvouue T
oTeVH oyéon TS Vewplog TV HOVOTOVWY BICUVIPTACEWY UE TNV XUETH ovaAUsT),
optlovtag to petaoynuatiowd Fitzpatrick pp pog diouvdptnong F @ X x X —
R U {400, —0} ¢ wo ouvdptnon ¢ : X X X* — RU {+c0}. 'Eva and ta
ToL oNUAVTXOTERA amotehéopota efval To Octpnuo 4.11 mou delyvel dti dodeloug
wae BO-peyiotind povédtovne Siouvdptnone F, v xdde (x, z*) € X x X* 1oybe
op(z,x*) > (x*,2), evd 1 10bTnTa WoyVeL av xou pévov av =¥ € AL (z). Emnhéov
oty Hpdtaon 4.12 Beioxouye pla oyéon petadd tou pyetaoynuatiodol Fitzpatrick
xau e ouvdptnong Fitzpatrick. OplCouye eniong tov dvw yetaoynuatious Fitz-
patrick o, Selyvoupe de 6L pall pe to petaoymuotiopd Fitzpatrick, aroteholy
éva loyvpd epyoaheio. o mopdderypa amodelxvOouUE YENOWOTOLOVTISC TOUS OTL
btav 0 YOpog elvon avoxhaotinde (reflexive), téte yio xdde diouvdptnon F mou
elvon xVPTH xou (AT NUICLYVEYHC WS TPOE TN delTeE UeTABANTY, N F' elvon peyio-
g Hovotovn av xou Wévo av elvon BO-pyeyiotind povotovn. Xtn cuvéyewa, Yo
Bpolue éva dve pedyua yia To yetaoynuatiowd Fitzpatrick tou adpolopatoc 5o
BlouvapTACE®Y, ot ot GUVEYOUPE Wial avloOTNTA Yol TO PeTaoynuatiopsd Fitz-
patrick mou woylel 6tav 1 douvdptnon elvor unoadpootin (subadditive) e
npog TN deltepn petoBAnti. Enlong, amodeixviouue pepixd Yewpruato Umopéng
Aoong aviowoewy. Katomy nagovctdlovye yepixd napadelydota UTOAOYLIGHO) TOU
petacynuatiopol Fitzpatrick. Yto téhog tou xegahaiov ewodyouue TNy évvola
NC N-xLXAXE povdTtovng xar BO-peylotnnc n-xuxhixd povédtovng dlouvdptnong.
Acelyvoupe 0 oxéomn mou €Youv PE TOUS N-XUXAXE povoTtovous teheotéc. Télog,
YEVIXEVOLUE UeEPXd amoTteréouata TN mapaypdpou 4.3 otny meplntworn Ty xu-
HAXA HOVOTOVWY DLOUVAPTACEWY.

Ta Baowdtepa anotehéopota twv xepaioiwy 2, 3 xou 4, nepiéyovtat, avti-
otoya, otic epyaoies [5], [6] xou [4]. Tt dieuxdhuvon Tou avaryvioTy, 0To TEAOS
e datpif3ric umdpyEL EVPETHELO GpwV.



Introduction

Our purpose in this thesis is to study and advance in the research area of
monotone and generalized monotone operators and bifunctions.

A monotone operator is a set-valued map from a Hausdorff locally compact
space X to its topological dual space X* such that

(:C*—y*,:c—y> 20

forall z,y € X and z* € T (x) and y* € T (y) where (z*,z) = 2* (z). Note that
when T is single-valued and X = R, then T is nothing else than an increasing
map, and this justifies the name “monotone operator”. The notion of monotone
operator has been found appropriate in various branches of mathematics such
as Operator Theory, Partial Differential Equations, Differentiability Theory of
Convex Functions, Numerical Analysis and has brought a new life to Nonlinear
Functional Analysis and Nonlinear Operator Equations. In particular, mono-
tone operators are a powerful tool to the study of variational inequalities, which
are a very useful instrument for constructing mathematical models for several
physical and engineering problems. This is because the class of monotone op-
erator includes subdifferentials and continuous positive linear operators, which
are usually found in the above mentioned areas.

Generally it is not clear who introduced the notion of monotone operators.
Nevertheless, the popular view is that M. Golomb was the first one who intro-
duced this notion in his paper “Zur Theorie der nichtlinearen Integralgleichun-
gen, Integralgleichungssysteme und allgemeiner Funktionalgleichungen”, Math.
2. 39, 45-75 (1935). For historical discussions and more information we refer to
[84] and [121].

Another important notion is the notion of monotone bifunction. If C' C X
a function F': C' x C — R is called monotone bifunction if for every z,y € C,

Fz,y) + F(y,z) < 0.

Monotone bifunctions are connected to the so-called equilibrium problem,
which consists in finding x¢ € C such that

Yy € C: F(xo,y) > 0.

Equilibrium problems are related to the minimax problem and were studied
by various authors in the past, but the term “equilibrium problem” was intro-
duced in the seminal paper by Blum and Oettli [23]. Blum and Oettli have

xi



xii INTRODUCTION

shown that many important problems (optimization problems, variational in-
equalities, saddle point problems, fixed point problems, Nash equilibria etc.)
can be seen as a particular cases of the equilibrium problem. All these rea-
sons have convinced many mathematicians, after Blum and Oettli’s highly
influencing paper [23], to start research in this rich and important branch
of mathematics, so equilibrium problems were studied in many papers (see
[7, 8,22, 21, 64, 54, 71, 69, 75, 77, 78, 86] and the references therein). Recently,
a part of literature has been dedicated to algorithms for finding solutions of
equilibrium problems, for example see [69], [54], [75], and [86]. In this thesis we
will investigate monotone bifunctions from another standpoint. We will focus
on the relation between maximal monotone operators and maximal monotone
bifunctions. To each bifunction F we will correspond an operator AF and for
every operator T will correspond a bifunction Gr. A monotone bifunction F
will be called maximal monotone if A¥ is a maximal monotone operator. We
will study some properties of monotone bifunctions in relation with the corre-
sponding property of monotone operators and vice versa.

One of the main results of this thesis is that under weak assumptions, mono-
tone bifunctions are locally bounded in the interior of the convex hull of their
domain. As an immediate consequence, one can get the corresponding property
for monotone operators. Moreover, in contrast to maximal monotone operators,
monotone bifunctions (maximal or not maximal) can also be locally bounded
at the boundary of their domain.

We also show that each monotone operator is “inward locally bounded” at
every point of the closure of its domain, a property which collapses to ordinary
local boundedness at interior points of the domain. Moreover, we derive some
properties of cyclically monotone bifunctions.

Monotone operators have been generalized in many ways; see [63] and [74].
One of these generalizations is the so-called o-monotone operator [71]; a multi-
valued operator T' from X into X* is called o-monotone if for all z and y in the
domain dom T of T, and all 2* € T'(z), y* € T(y),

(z* —y", x —y) > —min{o(z),0(y)}|z -yl

where o : domT — R, is a given function. T is called pre-monotone it is o-
monotone for some o. Pre-monotone operators include many important classes
of operators such as monotone and e-monotone operators. In this thesis, we
extend some results of [71] (which are proved in R™) to Banach spaces and also
introduce the notion of o-monotone bifunctions. The main result shows that o-
monotone bifunctions are locally bounded in the interior of their domain, which
implies that local boundedness of pre-monotone operators. We also state and
prove a generalization of the Libor Vesely theorem. Besides, we show that, given
two maximal o-monotone operators T and S, a weak condition on the mutual
position of their domains implies that 7' (z) + S (z) is weak*-closed for every x.

A considerable part of this thesis is devoted to introducing and studying
of the “Fitzpatrick transform of a bifunction” and its properties. In fact, we
introduce the notion of normal bifunction and a new definition of monotone
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bifunctions, which is a slight generalization of the original definition given by
Blum and Oettli, but which is better suited for relating monotone bifunctions
to monotone operators. One of the main features of this new definition is that
an operator with weak*-closed convex values is maximal monotone if and only
if the corresponding bifunction is BO-maximal monotone. In addition, we show
that the Fitzpatrick transform of a maximal monotone bifunction corresponds
exactly to the Fitzpatrick function of a maximal monotone operator, in case
the bifunction is constructed starting from the operator. Whenever the mono-
tone bifunction is lower semicontinuous and convex with respect to its second
variable, the Fitzpatrick transform permits to obtain results on its maximal
monotonicity.

We now present a brief outline of the thesis. It consists of four chapters.

Chapter 1 contains some basic knowledge from Convex Analysis and Func-
tional Analysis, the theory of monotone operators and the Fitzpatrick function
which allows the study of the proposed material without turning, generally, to
other sources.

Chapter 2 is devoted to monotone bifunctions. We define maximal mono-
tonicity of bifunctions, and we present some preliminary definitions, properties
and results. A part of our results is inspired by some analogous results from
[64]. The main results of this chapter are Theorem 2.9 which provides a suffi-
cient condition under which the equality AT = T is true, and Theorem 2.19
which states that under very weak assumptions, local boundedness of monotone
bifunctions is automatic at every point of int C. In this way one can obtain an
easy proof of the corresponding property of monotone operators. Propositions
2.32 and 2.33 reveal that monotone bifunctions are in some ways better behaved
that the underlying monotone operators, since they can be locally bounded even
at the boundary of their domain of definition. Besides, we demonstrate that for
locally polyhedral domains C' in R™, an automatic local boundedness of bi-
functions holds on their whole domain of definition. We also assert that each
monotone operator is “inward locally bounded” at every point of the closure of
its domain, a property which collapses to ordinary local boundedness at interior
points of the domain. At the end of the chapter, we present some noteworthy
counterexamples.

Chapter 3 deals with the theory of o-monotone operators and o-monotone
bifunctions. We introduce the class of o-monotone and maximal o-monotone
operators in a Banach space, and analyze their properties. We also introduce
and study the class of pre-monotone bifunctions which are related to the notion
of pre-monotone operators. Proposition 3.7 shows that if T is o-monotone and
o is upper semicontinuous, then gr 7 is sequentially norm xweak*-closed. More-
over, Example 3.8 shows that upper semicontinuity of o cannot be omitted from
the statement of Proposition 3.7. The main Theorem 3.17 shows that, under
weak assumptions, o-monotone bifunctions are locally bounded in the interior of
their domain; this allows us to deduce that pre-monotone operators are locally
bounded in the interior of their domain. In addition, we state and prove a gener-
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alization of the Libor Vesely theorem. We show that also under some conditions
on their domain, the sum of the values of two maximal o-monotone operator
is weak*-closed. Afterwards, we confine our attention to finite dimensions and
prove the existence of solutions for an equilibrium problem in a (generally un-
bounded) closed convex subset of an Euclidean space. We conclude this chapter
by comparing some types of generalized monotone operators.

The main tool for linking maximal monotone theory to Convex Analysis,
is the Fitzpatrick function. In Chapter 4 we point out the connection be-
tween bifunctions and Convex Analysis by introducing the notion of Fitzpatrick
transform @p of a bifunction F : X x X — R U {400, —o0} as a function
pr : X xX* - RU{+00}. One of the main results is Theorem 4.11 which proves
that given a BO-maximal monotone bifunction F, for every (z,z*) € X x X* one
has pr(x,2*) > (x*, x); and equality holds if and only if z* € A (z). Moreover,
in Proposition 4.12 we find a link between the Fitzpatrick transform and the
Fitzpatrick function. In addition, we define the upper Fitzpatrick transform; we
will see that in conjunction with the Fitzpatrick transform, it is very useful in
our analysis. In the sequel, by another main theorem we demonstrate that the
maximality of AF and BO-maximality of F are equivalent whenever the space
is reflexive, and F is lower semicontinuous and convex with respect to its second
variable. Theorem 4.19 characterizes the BO-maximality through some equiv-
alence statements. We find also an upper bound for the Fitzpatrick transform
of a sum and then will deduce an inequality for the Fitzpatrick transform when
the bifunction is subadditive with respect to its second variable. Besides, we
present some existence theorems. Also we collect several examples concerning
the Fitzpatrick transform of bifunctions. Thereafter, we introduce the notion
of n-cyclically monotone and BO-n-cyclically maximal monotone bifunctions.
Also, we will bring forward their relation to n-cyclically monotone operators.
We prove a theorem for BO-n-cyclically maximal monotone bifunctions which
is similar to the corresponding theorem of Fitzpatrick functions. Subsequently,
we generalize some results from Section 4.3 to cyclically monotone bifunctions.

The main results of Chapters 2, 3 and 4 are contained, respectively, in the
papers [5], [6] and [4]. For the convenience of the reader, the thesis is supple-
mented by an index of the main terms.



Chapter 1

Background and
Preliminaries

In the first chapter, we present an overview of some main notions and theorems
from Functional Analysis and Convex Analysis to prepare the background for the
chapters that follow. Also, this chapter provides all basic concepts of monotone
and maximal monotone operators to which we refer in the next chapters.

1.1 Functional Analysis Tools

We start this section by collecting the basic aspects of topological vector spaces
and locally convex spaces.

Let X be a vector space. A function p : X — Ry is called seminorm if it
satisfies:

() p(z +y) < p(x) + p(y) for all 2,y € X;

(i) p (Ax) = |A|p(x) for each x € X and every scalar A.

Note that from (ii) we conclude that p(0) = 0. Also, a seminorm p that
satisfies p(z) = 0 only if z = 0 is called a norm. Usually a norm is denoted by
II-ll. A normed space is a pair (X, |-||), where X is a vector space and ||| is a
norm on X. A Banach space is a normed space which is complete with respect
to the metric defined by the norm.

A topological vector space (TVS, from now on) is a vector space X together
with a topology so that the addition and scalar product maps i.e.,

e the map of X x X — X defined by (z,y) — = + ¥,
e the map of R x X — X defined by (¢,y) — ty,

are continuous with respect to this topology.
Let us fix some notation. Assume that X is a vector space. Given x,y € X,
[, y] will be the closed segment

[z y] ={(1—-t)x+ty:t€[0,1]}.

1
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Semi-closed and open segments i.e., [x,y[ , |x,y] and |z, y[ are defined analo-
gously. If E and F' are nonempty subsets of X we define the sum (Minkowski
sum) of E and F by

E+F={x+y:z€E,yeF}.

In case if ) # A C R, then AE = {ax:a € A,z € E}.

A set 0 # E C X is convex if [z,y] C X whenever z,y € E. We set
R, =[0,+00). Aset ) # F C X is affine if (1 —¢)z+ty € E for every z,y € E
and each t € R. If F is a subset of X, the convex hull of E, denoted by co E, is
the intersection of all convex sets that contain E. In fact

coE=nN{C CX:ECC andC is convex}

n n
= {Ztixi:neN,ti ER+,Z‘1' EE,Zti = 1}.

=1 i=1

Assume that P is a family of seminorms on X. Then one can define a
topology T as follows, G € T if and only if for each ¢ € G there are p,, ..., p, in
P and 1, ...,e, > 0 such that NI {z € X : p(z —x0) <e} C G.

Definition 1.1 A TVS is called locally convex space (LCS, from now on) if
its topology is defined by a family of seminorms.

1.1.1 Baire Category Theorem

Baire’s theorem was proved in 1899 by René-Louis Baire in his doctoral thesis
(On the Functions of Real Variables) [12]. In late 1920’s, Banach and Steinhaus
introduced Baire’s theorem into Functional Analysis.

Assume that X is a topological space and # # D C X. Then D is dense
in X if clD = X, that is, for every nonempty open subset U of X we have
DNU # 0. A subset F of X is called nowhere dense in X if the closure of F'
has empty interior, i.e., int(cl(F)) = 0. Note that a set F' is nowhere dense if
and only if its closure is nowhere dense.

A set B C X is of the first category in X or “meager” in X if E is a countable
union of nowhere dense subsets of X, i.e., if the complement X\ D contains a
countable intersection of open dense subsets of X. Obviously, any countable
union of first category sets is of the first category.

A subset U of X is of the second category in X or “non-meager” in X if U is
not of the first category in X. Equivalently if U C U2 F,, whenever Fi, Fs, ...
are closed sets, then int F,, # () for some n.

A Baire space is a topological space in which nonempty open sets are not
meager. For more information about the Baire spaces see [3], [24], [58], [94],
[102] and [103].

The following theorem characterizes Baire spaces.
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Theorem 1.2 Let X be a topological space. Then the following statements are
equivalent:

(i) X is a Baire space.

(ii) Every countable intersection of open dense sets is also dense.

(1i7) If X = U221 F,, and each F, is closed, then U2, int F, is dense.

See [3, Theorem 3.46] for a proof.

Theorem 1.3 (Baire category theorem) A complete metrizable space is a
Baire space.

A proof can be found in [101, Theorem 5.6] or [3, Theorem 3.47].

1.1.2 The Uniform Boundedness Principle

The Banach-Steinhaus theorem is one of the most effective and potent theorems
in Functional Analysis, which states that a set of continuous linear transforma-
tions that is bounded at each point of a Banach space is bounded uniformly on
the unit ball. Roughly speaking, pointwise boundedness implies uniform bound-
edness. For more information and complete descriptions see [94] and [102].

Let X and Y be TVS. Set

L (X,Y) = {all linear transformations f : X — Y}

and

BL (X,Y) = {all continuous linear transformations f : X — Y} .

Proposition 1.4 Suppose that X and Y are TVS and f € L(X,Y). Then f
is continuous on X if (and only if) f is continuous at the origin.

The following definition is taken from [94].

Definition 1.5 Let § C L(X,Y). The set § is called equicontinuous if for
each neighborhood V in Y, there is a neighborhood U in X with f(U) C V
for all f € §, or equivalently, for each neighborhood V in'Y, Nsezf~H(V) is a
neighborhood in X. When X andY are normed spaces, then § is equicontinuous
if and only if there is a constant o with || f(x)|| < af|z|| for every f € F.

Assume that Y and Z are normed spaces. For a given f € BL(Y, Z), the
norm of f is defined by

A= sup {If W) I] = Mlyll <1} = inf {M >0 [[f (y) [| < M||z||,y € Y}

When Y is a Banach space and Z is a normed space, then the uniform bound-
edness principle theorem has a simple version as follows.
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Theorem 1.6 (Uniform boundedness principle) Let Y be a Banach space
and Z a normed space. If T' C BL(Y,Z) such that for each y inY,

sup{||f ()| : f €T} < oo,

then sup {||f]| : f € T} < c0.

1.1.3 Hahn-Banach Theorem and Separation Theorem

Suppose that X is a vector space over the scalar field F. The elements of
L (X,F) are called the linear forms or linear functionals. Also, £ (X, F) is called
the algebraic dual of X. Moreover, when X it a TVS, then BL (X, F) is called
the topological (continuous) dual of X and it depends on the topology. We will
denote the algebraic dual and topological dual of X by X’and X*, respectively.
The maximal proper vector subspaces of X are called hyperplanes (through the
origin). By the axiom of choice X* is proper subset of X’. Every hyperplane
H of X can be written as the kernel of a linear form see [43, Proposition 5.1].
Assume that H is a hyperplane and H = ker f. If f € X* then H is closed
otherwise f € X'\ X* and H is dense in X. In other word, H is closed if and
only if f is continuous, and dense if and only if f is discontinuous.

The Hahn-Banach theorem is one of the important and fundamental theo-
rems in Functional Analysis and states that a continuous linear functional on a
vector subspace of X has a continuous extension to the whole of X. We select
some applications of this theorem, that can be found in any book on Functional
Analysis.

Theorem 1.7 (Interior separating hyperplane theorem) Let X be a TVS
and A, B two disjoint convex subsets. If A is open, then there exist f € X* and
a € R such that for all x € A, y € B one has f(z) > a > f(y).

Theorem 1.8 (Strong separating hyperplane theorem) Let X be a LCS
and A, B two disjoint closed convex subsets. If A is compact, then there exist
f € X* and a € R such that for all y € B one has minge 4 f(z) > a > f(y).

Corollary 1.9 (Separating points from closed convex sets) Let X be a
LCS and A a closed convex subset. If z ¢ A, then there exist f € X* and o € R
such that for all y € B one has f(z) > a > f(y).

From now on, we will usually represent elements of X* by starred letters
such as z*, and the value of z* on « € X by (z*, z).

1.1.4 Weak and Weak*-Topologies

Assume that X is a LCS. The weak topology, is the topology defined by the
family of seminorms {py« : * € X*}, where p,« (x) = [(z*, z)|. We will denote
it by o (X, X*) or “w-topology”. Also, the weak*-topology on X*, is the topol-
ogy defined by the seminorms {p, : x € X} where p, (z*) = [(z*,z)|. We will
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denote it by o (X*, X) or “weak*-topology”. Thus a subset G of X is weakly
open if and only if for every xo in G there is an € > 0 and there are z7, ...,z in
X* such that

N {z e X |(z],x —x0)| <e} CG.

We note that a net {z;} in X converges weakly to some point zo in X if
(x*,m;) — (x*,x0) for each z* € X*. We will denote this by z; — x¢ or
r; = 2. In a similar manner, a net {x}} in X* is weak*-convergent to some
point xf in X* if (xf,x) — (zf,z) for each z € X. We will denote this by

*
* * Lw *
Ty — Tj or mm; — Xy

Proposition 1.10 A convex subset of X is closed if and only if it is weakly
closed.

See [43, Chapter V, Theorem 1.4 and Corollary 1.4] for a proof.

The Alaoglu theorem asserts that the closed unit ball of the dual space of a
normed vector space is compact in the weak*- topology [2]. This theorem was
extended to separable normed vector spaces by Stefan Banach. Finally, this
theorem was generalized by the Bourbaki group to LCS.

Theorem 1.11 ( Alaoglu theorem ) Suppose that X is a TVS and U is a
neighborhood of 0 in X. If

K={z"eX":|(z"2)| <1 VreU},
then K 1is weak*-compact.

See [102, Theorem 3.15]

1.2 Convex Analysis Tools

The purpose of this section is to outline the basic aspects of the Convex Analysis
in TVS or LCS. We set as usual R = R U {400, —o0}.

1.2.1 Lower Semicontinuous and Convex Functions

Assume that X is real vector space and f : X — R is a function. Its domain
(or effective domain) is defined by

domf={zreX:f(r)<oo}.

Also, the epigraph of f is defined by

epif ={(z,r) e X xR: f(z) <r}.
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The function f is called proper if dom f # () and f (x) > —oo for each z € X.
In addition, f is said to be convex when for all 2,y € X and for each t € [0, 1],

FA=t)e+ty) <1 —t) f(2) +f(y).

We say that f is concave if the function — f is convex and f is affine whenever
it is both convex and concave.

We recall that a function f is called quasi-convex if for each z,y € X and
for every ¢ € [0,1],

f(A—=t)z+ty) <max{f(z),f(y)}.

An alternative way of defining a quasi-convex function f is to require that each
sublevel set S, (f) ={x € X : f(x) <r} is a convex set.

A function f is called quasi-concave if —f is quasi-convex

The following theorem is known. We refer the reader to [120] for the proof
of all results contained in this and the two subsequent subsections.

Theorem 1.12 Suppose that f : X — R is a function. Then the following
statements are equivalent:

(i) f is convex;

(i) dom f is convexr and

Va,y € dom f, Vit €]0, 1] f(A—-t)z+ty) <(1—1t)f(z)+1f(y);
(111) Vn €N, Vaq,..,x, € X, Vii,..,t, €0,1, t1+---+t, =1:
Pty 4ot tawn) S tf (o) 4+t f (@)
(iv) epi f is a conver subset of X x R.

Suppose that X is a Hausdorff LCS, A is a set of indices and {f,}
functions on X. The convex hull of {fo},cx is denoted by

acA

conv {fuuca -

It is the convex hull of the pointwise infimum of the collection see [98, page 37].

Theorem 1.13 Suppose that X is a Hausdorff LCS, A is a set of indices and
{fataen functions on X. Assume that f is the convex hull of the collection.

Then
f (z) = inf {Z Aafo(Ta) D] Aata = z} .

where the infimum is taken over all representations of x as a convex combination
of elements x, such that only finitely many coefficients A, are nonzero. (The
formula is also valid if one actually restricts x, to lie in dom f,.)

acA
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According to the definition of convex hull and the above theorem we have
the following fact:

Suppose that X is a Hausdorff LCS and A is a set of indices and {fa},cp
functions on X. The concave hull of { fo} ¢, is the concave hull of the pointwise
supremum of the collection. Let f be the concave hull of the collection. Then

f(x) = Sup{z

where the supremum is taken over all representations of x as a concave combi-
nation of elements x,, such that only finitely many coefficients A\, are nonzero.

Now assume that X is a topological space. A function f : X — R is called
lower semicontinuous (briefly, 1sc) at xg € X if for each € > 0 there exists a
neighborhood U, of xy such that f(x) > f(z¢) — € for all z in U,,. This can
be expressed as f (z9) < liminf,_,,, f (x). Also, f is said to be Isc if it is Isc at
each point of dom f. Equivalently, f is Isc if and only if epi f is closed. Note
that f is called upper semicontinuous (shortly, usc) if —f is lsc.

EA)\afa (o) ZQEA)\OJQ = x} . (1.1)

@

Proposition 1.14 Suppose that X is a Hausdorff LCS, A is a set of indices
and { fa}qep 18 a collection of convex (Isc) functions on X. Then their pointwise
supremum f =sup{fq : @ € A} is convex (Isc).

We point out that the investigation of Isc functions is a particular case of
the study of closed convex sets.

Theorem 1.15 Suppose that X is a Hausdorff LCS and f : X — R is a
function. Then the following statements are equivalent:

(i) f is convex and lsc;

(ii) f is convex and weakly lsc;

(#) epi f is convex and closed;

(v) epi f is conver and weakly closed.

It is well-known that if f is convex on ]a, b[, then it is continuous on |a, b|
whenever a,b € R. The next propositions concern the extension of this result to
more general spaces.

Proposition 1.16 Let f be a proper, lsc and conver function on a Banach
space. If int(dom f) # 0, then f is continuous on int(dom f).

Proposition 1.17 Suppose that X is a Hausdorff LCS. If the convex function
f: X = R is bounded above on a neighborhood of a point of its domain, then f
s continuous on the interior of its domain. Moreover, if f is not proper then f
is identically —oo on int(dom f).

A function f : X — Ris called closed if it is Isc everywhere, or if its epigraph
is closed.
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Definition 1.18 (Closure of a function) The closure (or lsc hull) of a func-
tion f is the function cl f : X — R defined by

cf(x)= li_I>n inf f (y) or equivalently epi(cl f) = cl(epi f).
y—x
The next proposition gives some properties of the cl f (z) .

Proposition 1.19 Suppose that f : X — R is convex. Then

(i) cl f is convex;

(i) if g: X — R is convex, Isc and g < f, then g < cl f

(i4i) cl f does not take the value —oo if and only if f is bounded from below
by a continuous affine function;

(iv) if there exists xo € X such that cl f(xg) = —oo (in particular if f(xo) =
—00), then cl f(x) = —oco for every € domel f D dom f.

1.2.2 Convex Functions and Fenchel Conjugate

In this subsection X and Y are Hausdorff LCS and f : X — R is a function.
The Fenchel conjugate of f is the function f*: X* — R defined by

[T (@) = sup {(z", ) — f ()}
reX

Note that if there exists g € X so that f (zg) = —o0, then f* (x*) = 400 for
each z* € X*. Also, f* (z*) = sup,eqom 1(z*, ) — f (x)} whenever f is proper.
Assume that g is defined on the dual space X*, i.e. g : X* — R is a function, one
also consider its conjugate ¢g* : X — R by ¢* (z) = sup,.cy- {{z*,z) — g (z*)}.
One also consider the biconjugate function f** defined by

F @) = () @) = s ({2 - £ ().

Suppose that f,g: X — R are two functions, the infimal convolution [120,
page 43] of f and g is defined by

(fOg) (z) :==inf {f (y) + g (z —y) : y € X}.
The next theorem collects some noteworthy properties of conjugate func-

tions.

Theorem 1.20 Suppose that f,g: X - R, h: X* - R and A € BL(X,Y).
(i) [* is conver and weak*-lsc, h* is lsc and convex;
(ii) the Young-Fenchel inequality: for all (z,z*) € X x X*

f)+ (7)) = (2", 2);
(i) reverse order ruling:
f<g=[">g%

(iv) f* = (cl f)* = (cl(co f))* and f** <cl(cof) <clf < f;
(v) (Af)" = f*o A*;
(vi) (fOg)" = f*+g*.
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The next result is well known.

Proposition 1.21 Suppose that f : X — R is Isc and convex. Then f* is also
lsc and conver, and f** = f.

Let us close this subsection by the fundamental result in duality theory:

Proposition 1.22 Suppose f : X — R is a function such that dom f # 0.

(i) If cl (co f) is proper, then f** = cl(co f), otherwise f** = —oco.

(ii) Assume that f is convex. If f is lsc at zg € dom f, then f(xg) = f**(x0);
moreover, if f(xg) € R, then f** =clf and cl f is proper.

Note that according to the previous proposition we always have f* = f***.

1.2.3 The Subdifferential

In this subsection X is Hausdorff LCS and f : X — R is a function. If f (z) € R,
then the subdifferential of f at x is the set df (x) of all z* € X* satisfying

(5 y—x) < f(y)— f(x).

When f(z) ¢ R we define 9f () = ). We say that f is subdifferentiable at z
if Of (x) # 0. Note that df is a set-valued map from X to X*. Generally, the
elements of the subdifferential of f at x are called subgradients of f at x.

The following theorem contains some elementary properties of df.

Theorem 1.23 Let f: X — R and xo € X be such that f(xzo) € R. Then:
(i) Of (zo) is a weak*-closed and convex subset (maybe empty) of X*;

(it) if Of (x) # 0, then cl(co f) (z0) = cl(f) (zo) = f (xo) and
d(cl(co f) (z0)) = O(cl(f) (o)) = O(f (w0));

(#3) if f is proper, dom f is a convex set and f is subdifferentiable at each
x € dom f, then f is conver.

One can easily check that equality in the Young-Fenchel inequality holds if
and only if 2* € 9f (x), i.e.,

at € Of (x) & f(x) + [ (27) = (2%, x) .

The following result is due essentially to Ioffe-Tikhomirov and it is a very
important calculus rule for the subdifferential of supremum.

Theorem 1.24 Suppose that (A,T) is a Hausdorff compact topological space
and fo : X — R is a convex function for every a € A. Consider the function
[ i=sup,cna fo and F(z) := {a € A: fo (x) = f(x)}. Assume that the map-

ping A> ar— fo(x) € R is usc and xo € dom f is such that f, is continuous
at xg for every a € A. Then

Of (xo) =clco (Uaep(mo)afa (xo)) .
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There are many interesting results and discussions about the different kind
of subdifferentials and abstract subdifferential in [62].

From the definition of subdifferential we conclude that if f,g : X — R are
proper, lIsc and convex, then df (z) +dg(x) C 0 (f + g) (x). But the converse is
not true in general (even in Banach spaces).

Proposition 1.25 Suppose that Y is a Banach space and f,g : Y — R are
convex and 0 € core(dom f —domg). Then

Of +09=0(f+9).

Proof. See [25, Corollary 2.5]. m

1.2.4 Tangent and Normal Cones

We begin with some basic definitions and results.
In this subsection X is Hausdorff LCS and K is a nonempty subset of X.
The function tx : X — RU {+oo} defined by

0 ifrx e K,
+o0o  otherwise

i (2) = {

is called the indicator function of K.

Definition 1.26 Let C' C X. The support function of the set C' is the function
oc : X* — R defined by

oc (%) = sup (a7, ¢)
ceC

(recall that sup ) = —oc0).

Evidently if C C X is nonempty, then o¢ is Isc and convex and o¢ (0) = 0.
In fact o¢ is sublinear (i.e., subadditive and positively homogeneous). Moreover,

oc = (Lc)* .

Note that a nonempty subset C' of a real vector space is called a cone if
x € Cand A > 0 imply \z € C.

Definition 1.27 Let X be Hausdorff LCS and K a nonempty subset of X. The
normal cone of K at x € X is the set Nk (x) defined by

Nk (z) = {r* e X*: (z*,y—2z) <0 Vye K} ifzekK,

K B U otherwise.
This defines a set-value map Nx : X — 2X". The following proposition is

an immediate consequence of the above definition and Theorem 1.23.
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Proposition 1.28 For a nonempty, closed, and convex K C X, the following
statements hold:

(Z) NK = aLK;

(i) Nk (x) is weak*-closed and conver subset of X* for allz € X ;

(iti) Nk (x) is a cone for all x € K.

For a nonempty subset K of X, the polar cone of K is the subset K of X*
defined by

K={z"eX": (2",2) <0 VzeK}.
<&
The antipolar cone of F C X* is the subset F' of X defined by

i
F={zeX:(z"2)<0 Vz*eF}.

Also, the tangent cone is defined as the antipolar cone of the normal cone and
denoted by Tk . More precisely, Tx : X — 2% is defined by

<

Tk () = Ng () ={ye X : (z%,y) <0 Vz* € Nk (x)}.

o <&
Note that when Y is a reflexive Banach space, we have K = K. In fact,
[e]
Kcy==Y.
In order to introduce a convenient characterization of tangent cone, we as-
sume that Z is normed space and S is a nonempty subset of Z.

Definition 1.29 [72, page 82] (i) Let T € clS be a given element. A wvector
h € Z is called a tangent vector to S at T if there are a sequence {x,} in S and
a sequence {\,} of positive real numbers with

lm z, =7 and h= lim A\, (x, — ).
n— 00 n—00

(ii) The set T(S,Z) of all tangent vectors to S at T is called sequential
Bouligand tangent cone to S at T or contingent cone to S at Z.

By the definition of tangent vectors it follows immediately that the contin-
gent cone is in fact a cone.

The Clarke tangent cone to S at T € ¢l S C Z is defined as the set T¢; (Z,.5)
of all vectors h € Z with the following property: for every sequence {z,} in S
with lim,_, . z, = Z and every sequence {\,} in R with A, — 0, A,, > 0, there
is a sequence {h,} in X with lim,_, h, = h and 2, + A\ hy, € S for all n € N.

It is evident that the Clarke tangent cone T¢y (Z,.5) is always a cone. Note
that If £ € S, then the Clarke tangent cone T¢; (Z,S) is contained in the con-
tingent cone T'(S,Z). The Clarke tangent cone T¢; (Z,S) is always a closed
convex cone [42]. Also, If Z € S, then the contingent cone is closed and
Tei (2,5) C T(S,T) [72, pages 82 and 83].
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Proposition 1.30 Let S be a nonempty subset of a real normed space. If the
set S is starshaped with respect to some T € S, then

T(S,z) = cl(cone S\ {Z}).

Proof. See [72, Chapter 4, page 87]. m

1.3 Monotone Operators

In this section we will focus on monotone and maximal monotone operators
and we will point out the connection between subdifferentials of Isc and convex
functions and maximal monotone operators. In particular, we are interested
in analyzing when the sum of two maximal monotone operators is maximal
monotone. Also, we will introduce the Fitzpatrick function and we will observe
the connection between maximal monotone operators and convex functions in
reflexive and not necessarily reflexive Banach spaces. The basic tools we will
use are the Fitzpatrick and Penot functions.

1.3.1 Monotone and Maximal Monotone Operators

Let X be Hausdorff LCS. A multivalued operator from X to X* is simply a map
T : X — 2X". The domain, range and graph of T are, respectively, defined by

domT={zeX :T(x)#0}, R(T)={z*e€ X" :Ix e X;2" €T (x)},

grT ={(z,2") €e X x X*:z € domT and z* € T (x)}.

For a given operator T, the inverse operator T : X* — 2X is defined by
means of its graph:

grT = {(2%,2) € X* x X**: (x,2%) € gr T'}.

For two multivalued operators T" and S we say that S is an extension of T and
write T'C S if gr'T C gr S.

Definition 1.31 A set M C X x X* is
(i) monotone if (y* — z*,y — x) > 0 whenever (x,z*) € M and (y,y*) € M;
(#) strictly monotone if (y* —z*,y —x) > 0 whenever (r,z*) € M and
(y,y*) € M and x # y;
(#i) maximal monotone if it is monotone and it is not properly included in

any other monotone subset of X x X*. That is, if My is a monotone subset of
X x X* and M C My, then M = M.

We say that an element (x,z*) € X x X* is monotonically related to M if
(y* —x*,y —x) >0 for all (y,y*) € M.

In the next definition, we will formulate the definition of monotone operators
in terms of their graphs. We remind first that a finite sequence z1, 22, ..., Tp41
such that x,,+1 = x1 is called a cycle.
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Definition 1.32 An operator T : X — 2% is called

(i) monotone if gr T is monotone;

(i) if gr T is mazimal monotone;

(i4i) cyclically monotone, if for every cycle x1,x2,...,xn+1 = x1 tn X and
each zf € T (x;) fori=1,...,n,

n
D (@f i — ) <0;

i=1

(iv) maximal cyclically monotone if it is cyclically monotone and its graph
cannot be enlarged without destroying this property, i.e., whenever Ty is a cycli-
cally monotone map such that T C Ty, then T =T}.

We also say that an operator T is strictly monotone if grT is strictly mono-
tone.

According to the above definitions, if T is maximal monotone and (x, z*) in
X x X* is monotonically related to grT, then € dom7 and z* € T (x).
By applying the Zorn’s lemma, we can extend every monotone operator T to
a maximal monotone operator T. One can easily check that 7' is (maximal)
monotone if and only if T~ is.

An direct consequence of the definition of maximal monotone operators is
the following.

Proposition 1.33 Let Y be a Banach space. If T : Y — 2¥" is mazimal
monotone, then T(y) is convex and weak*-closed.

It is straightforward to see that Jf is cyclically monotone when f is proper,
Isc and convex. We borrow the following two theorems from [99].

Theorem 1.34 [99, Theorem A] Suppose that Y is a Banach space. Then the
subdifferential of every proper, lsc and convex function is maximal monotone.

Theorem 1.35 [99, Theorem B] Suppose that Y is a Banach space and T :
Y — 2Y7 is an operator. In order that there exist a proper, lsc and convex
function f on'Y such that T = Of, it is necessary and sufficient that T be a
mazximal cyclically monotone operator. Moreover, in this case T determines f
uniquely up to an additive constant.

Proposition 1.36 Suppose that X is a Hausdorff LCS, and T' : X — 2X7 s
cyclically monotone and (xo,x§) € grT. Define fr : X - R by

n—1
fr (x) :=sup ((mfl,x — )+ Z (x}, 41 — xl>>

=0

where the supremum is taken for all families (x; x7) € grT, for ne N and i =

1,...,n. Then fr is proper, lsc and convex, fr (zo) =0 and T (z) C 0 (fr (x))
for each x in X.
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Proof. See [120, Proposition 2.4.3] or [98, Theorem 24.8]. =
The multifunction J (-) := 0(% 1) : ¥ — 27 is called the duality mapping
of Y. The following holds

J(@)={a" e X" (2",2) = |lo|* = ]a"|I*}

Note that since (3 ||II) is proper, lsc and convex, J is maximal monotone.
When Y is a Hilbert space, then J = I, the identity mapping, and hence is
onto. Also it is well known that J is onto if and only if V" is reflexive (see [40,
Theorem 3.4]).

Minty has proved a noteworthy theorem in [85] for Hilbert spaces, which
states that T is maximal monotone if and only if R(T + J) = Y*. Rockafellar
extended this result to reflexive Banach spaces for which both J and J —1are
single-valued, in which case ||| is differentiable. This result is commonly known
as Rockafellar’s characterization of maximal monotone operators.

We now give the definition of local boundedness and some results on this
notion.

Definition 1.37 Let X be a Hausdorff LCS and T : X — 2X" be an operator,
T s called locally bounded at xg if there exists a neighborhood U of zy such
that the set

TWU)=U{T (x):x €U}

s an equicontinuous subset of X*.

Note that when Y is a Banach space, then the equicontinuous subsets of Y*
coincide with bounded subsets. In other words, when Y is a Banach space, then
an operator 7' is called locally bounded at g € Y if there exist € > 0 and k£ > 0
such that ||z*|| < k for all z* € T'(z) and x € B (zo,€).

Next theorem is due to Rockafellar and states that monotone operators are
locally bounded at each point of the interior of their domain.

Theorem 1.38 [97] Suppose that Y is a Banach space, T : Y — 2Y s
mazximal monotone and that int(co(domT)) is nonempty. Then int(domT) =
int(co(domT)) (so int(domT) is convez) and T is locally bounded at each point
of int(domT'). Moreover, cldomT = cl (int(domT)), hence it is also conve.

Assume that X is a Hausdorff LCS. Let T and S be two operators on X and
A > 0. For x € dom T we define (AT) () = A-T (x) and also, for x € dom(T'N.S)

T+9(x)=T(x)+S(x)={z7+a5: 27 €T (x),25 €S (x)},

while if z ¢ dom(T N S), we set (T'+ S) (x) = @. Thus dom AT = dom T and
dom (T'+ S) = domT Ndom S. One can check that if 7" and S are monotone,
then AT and T+ S are also monotone, and AT is maximal monotone whenever
T is.

The next theorem shows that maximal monotone operators are not locally
bounded at any point of the boundary of their domains.
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Theorem 1.39 Suppose thatY is a Banach space and T : Y — 2¥ is mazimal
monotone. If intcldom T # 0, then for all z € dom T\ (int cldom T')

(i) there exists a non-zero z* € NaomT (2);

(1) T (2) + Naomr (2) C T (2);

(iii) T is not locally bounded at z.

Proof. A proof can be found in [35, Theorem 4.2.10]. m

Note that Property (ii) above holds for all z € dom T, and does not need
the assumption int cldomT' # .

There is a kind of converse of Theorem 1.38, due to Libor Vesely, that we
now remind. This result is interesting because it does not assume anything
about the nonemptiness of interiors.

Theorem 1.40 (Libor Vesely) Suppose that Y is a Banach space and T :'Y
— 2Y7 is maximal monotone. If y € cldomT and T is locally bounded at vy,
then y € domT. If in addition cldom T is convex, then y € int(domT).

Proof. See Phelps [92, Theorem 1.14] . m

Proposition 1.41 Let Y be a Banach space and T : Y — Y™ a single-valued
monotone operator such that int (codomT) # Q. If T is mazimal, then dom T
is open and T is continuous with respect to the morm topology in Y and the
weak™ -topology in Y* at every point of domT.

Proof. See [35, Theorem 4.6.4]. m
We now mention a few results that concern the sum of monotone operators.

Theorem 1.42 Let Y be a Banach space and let S,T:Y — 2¥ be monotone
operators. Suppose that

0 € core[codom T — codom S].

Then there exist r,c > 0 such that, for each y € domT Ndom S, t* € T(y) and
s* e S(y),

max([[*]], [[s™(]) < e(r + [lyl[)(r + [[£7 + s7]]).

Proof. A proof can be found in [113] or [25, Theorem 2.11]. m

We recall that an operator T on a Banach space Y is said to be norm x weak*-
closed (respectively, sequentially normxweak*-closed) if gr T is closed (respec-
tively, sequentially closed) in the normxweak*-topology of Y x Y*. Borwein,
Fitzpatrick and Girgensohn in [29] proved that, in general, gr T is only sequen-
tially norm xweak*-closed, not norm xweak*-closed.

Proposition 1.43 Let Y be any Banach space and let S, T :Y — 2¥ be mai-
mal monotone operators. Suppose that

0 € core[codom T — codom S].

For any y € domT Ndom S, T(y) + S(y) is a weak*-closed subset of Y*.
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Proof. See [113]. =

Proposition 1.44 Suppose that Y is a reflexive Banach space and T is mazi-
mal monotone. Then the mapping T + J is surjective. i.e., R(T+J)=Y"*.

Proof. See [104, Theorem 10.7]. m

Proposition 1.45 Suppose that' Y is a reflexive Banach space and T is mono-
tone. If R(T+J) = Y* and J and J~1 are both single-valued, then T is
maximal monotone.

Proof. See [104, Remark 10.8 and pages 38, 39]. m

We observed in this section that if 7" and S are two monotone operators on
X and A > 0, then AT and T + S are monotone, and AT is maximal mono-
tone whenever T' is. However, the sum of two maximal monotone operators is
not maximal monotone in general. So the natural question regarding maximal
monotone operators is, which conditions guarantee that the sum of two of them
remains maximal monotone. These conditions concern the mutual position of
their domains and are called constraint qualifications (CQ, from now on). Here
we list some of these CQ (see also [57] and [118]):

(i) (int domT') Ndom S # () (The original one due to Rockafellar. See [100]);

(ii) dom S — dom T is absorbing (due to Attouch, Riahi and Thera. See [9]
and [104));

(iii) codom S — codom T is a neighborhood of 0 (due to Chu. See [41]);

(iv) dom S —dom T is surrounding 0 (for the definition of surround point see
[104));

(v) codom S — codom T is absorbing;

(vi) dom xg — dom xr is absorbing (for the definition of xr see [104]).

Simons ([104]) proved that, in reflexive Banach spaces, all six (CQ) which
are mentioned above are equivalent.

Theorem 1.46 LetY be a reflexive Banach space. Let T be maximal monotone
and let f be closed and convex. Suppose that

0 € core[codom T — codom(9f)].

Then
(i) Of + T + J is surjective.
(i) Of + T is mazimal monotone.
(#ii) Of is maximal monotone.

Proof. See [25, Theorem 4.2]. m
An important consequence of preceding theorem is:

Corollary 1.47 The sum of a mazimal monotone operator T and a normal
cone N¢ on a reflexive Banach space, is mazimal monotone whenever the trans-
versality condition 0 € core{C' — codom T} holds.



1.3. MONOTONE OPERATORS 17

1.3.2 Fitzpatrick Function

The Fitzpatrick function [52], Krauss function [79, 80, 81] and the family of
enlargements by Burachik, Svaiter [38], and Penot function [88] make a bridge
between the results on convex functions and results on maximal monotone op-
erators.

Let us start with the definition of Fitzpatrick function.

Definition 1.48 Let Y be a Banach space and T :' Y — 2Y " be a mazimal
monotone operator. The Fitzpatrick function associated with T is the function
Fr:Y xY* - RU{+o0} defined by

Fr(z,z") = sup (=% y) + (" 2) — (¥ )
(y,y*)€gr T

The Fitzpatrick function is normxweak*- Isc and convex on Y x Y*. It can
be easily verified that

Fr(z,z*)= sup (y*"—z%,z—vy)+ (% x)
(y,y*)€gr T

={(x*,x) — inf ety —ax).

(", @) (%y*)eng(y y—x)

Theorem 1.49 Let Y be a Banach space. For a mazimal monotone operator
T:Y —2Y one has
Fr(z,z%) > (z*, ). (1.2)

with equality if and only if * € T(x). Actually, the equality Fr (x,z*) = (x,z*)
for all z* € T'(x), requires only monotonicity, not mazimality.

Proof. See [52] or [25, Proposition 2.1]. =
Let X be a LCS and T any monotone operator on X. A representative
function for T is any function Hp : X x X* — R U {400} such that

(i) Hr is Isc and convex;
(il) Hr(z,z*) > (z*,x), for all (z,2*) € X x X*;
(iii) Hr(x,z*) = (z*,x), when z* € T (x).

A representative is called ezact if Hr(x,2*) = (z*,x) exactly on the grT.
The Penot function [88] is defined on ¥ x Y* by

N N
Pr (z,z*) = inf { Sl xS (a2l 1) = (z,2%,1) ,2f € T (x), N > 0}
i=1 i=1

One can easily check that Pr is convex and Pr (x,2*) > (a*, z), for all 2* in
T () . Moreover, it was shown in [88, 25] Py = Fr .
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We can combine the recent result with Theorem 1.20 and Proposition 1.22,
and conclude that

(.FT)* = Cl PT = (PT)** .

The theorem we present below can be found in [26] and [88].

Proposition 1.50 Suppose that Y is a Banach space and T is a monotone
operator on Y. Then

(i) Penot’s function Pr represents T';

(i) if Hr represents T, then Hr < clPr pointwise;

(iii) if T is mazximal monotone and Hr represents T, then Fpr < Hr < clPr;

(iv) Fr(x,z*) > (z*,x) if and only if (z,z*) is monotonically related to
grT;

(v) Assume that Fr represents T. Then Fr (x,x*) = (z*, ) if and only if
cPr(z,z*) = (x*, ).

We remark that Fr is not necessarily a representative function of T' whenever
T is not maximal monotone.

Next two theorems were shown by using the Fitzpatrick function, and gen-
eralize the celebrated Rockafellar sum theorems to general Banach spaces (with
somewhat stronger assumptions). The following theorems are taken from [26]
see also [114].

Theorem 1.51 (Maximality of sums, I). Let T and S be mazimal monotone
operators on a Banach space Y. Suppose also that either

(i) int dom 7' N int dom S # @; or
(ii) dom T Nint dom S # @ while dom T'N dom S is closed and convex; or
(iii) both dom7T,dom S are closed and convex and 0 € coreco(domT —
dom S).
Then T' 4 S is maximal monotone.
Proof. See [26, Theorem 9]. m

Theorem 1.52 (Maximality of sums, II). Let T and S be maximal mono-
tone on a Banach space Y. Suppose also that core codom TN core codom S # ().
Then T 4+ S is mazimal monotone.

Proof. See [26, Theorem 10]. m



Chapter 2

Bifunctions

In this chapter, which is based on [5], we exhibit some correspondences between
monotone operators and monotone bifunctions. Also, we establish new connec-
tions between maximal monotone operators and maximal monotone bifunctions.
Most notably, we will prove that under weak assumptions, monotone bifunctions
are locally bounded in the interior of the convex hull of their domain. As an
immediate consequence, we get the corresponding property for monotone op-
erators. Moreover, we show that in contrast to maximal monotone operators,
monotone bifunctions (maximal or not maximal) can also be locally bounded
at the boundary of their domain.

This chapter is organized as follows: In the next section, we define maximal
monotonicity of bifunctions, and we present some preliminary definitions, prop-
erties and results. A part of our results is inspired by some analogous results
from [64]. We will show in Section 2 that under very weak assumptions, local
boundedness of monotone bifunctions is automatic at every point of int C. In
this way one can obtain an easy proof of the corresponding property of mono-
tone operators. Moreover, in Section 3 we define and study cyclically monotone
bifunctions. We prove that in any LCS a bifunction F' is cyclically monotone,
if and only if there exists a function f : C'— R such that F(x,y) < f(y) — f(x)
for all z,y € C. Especially, by assuming that F' is maximal monotone and
int C # (), we get that f is convex on int C' and uniquely defined up to a con-
stant. In addition, we will show in Section 4 that monotone bifunctions are in
some ways better behaved that the underlying monotone operators, since they
can be locally bounded even at the boundary of their domain of definition. In
contrast to this, it is known that maximal monotone operators T" whose do-
main dom 7" has nonempty interior are never locally bounded at the boundary
of domT'. In fact, we will show that in R™ and for locally polyhedral domains
C, an automatic local boundedness of bifunctions holds on the whole domain.
We also show that each monotone operator is “inward locally bounded” at every
point of the closure of its domain, a property which collapses to ordinary local
boundedness at interior points of the domain. In Section 5, we collect some
noteworthy counterexamples.

19
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2.1 Monotone Bifunctions and Equilibrium Prob-
lems

In this section X is a TVS (unless explicitly stated otherwise) and C is a
nonempty subset of X. By bifunction, in this chapter, we mean any function
F:CxC—=R.

Definition 2.1 A bifunction F : C x C' — R is called monotone if
F(z,y)+ F (y,x) <0 forallz,y € C.

A direct consequence of the above definition is that F' (z,x) < 0forallz € C.
Also a bifunction F': C' x C' — R is called strictly monotone if

F(z,y)+ F(y,z) <0 forall z,y € C, x #y.
It should be noticed that in many papers, it is supposed that
F(x,z)=0 forallxeC. (2.1)

Monotone bifunctions were mainly studied in conjunction with the so-called
equilibrium problem: Find zg € C' such that

F (zg,y) >0 forallyeC.

In this case, such a point x¢ € C' is called a solution of the equilibrium problem.
The literature on equilibrium problems is quite extensive. Equilibrium problems
were studied in many papers (see [23, 7, 8, 22, 64, 54, 71, 69, 75, 77, 78, 86] and
the references therein), after Blum and Oettli showed in their highly influencing
paper [23] that equilibrium problems include variational inequalities, fixed point
problems, saddle point problems etc. In some of these papers [1, 8, 86] monotone
bifunctions were related to monotone operators (see the next section for details)
and maximal monotonicity of bifunctions was defined and studied. In [64] some
results on maximal monotonicity of bifunctions were deduced assuming that the
bifunction is locally bounded, i.e. its values are bounded from above for all z,y
in a suitable neighborhood of each point of C or int C.
The solution set of an equilibrium problem is the set EP(F') defined by

EP(F)={z€C:F(z,y)>0 VYyeC}.

Assume that F : C x C — R is a bifunction. Following [1, 5, 23, 64], the
operator AF : X — 2% is defined by

AP (2) { {z* e X*:Vye C,F(x,y) > (z*,y—z)} ifzeC, (2.2)

S0 if x ¢ C.

The following proposition will illustrate this concept further.
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Proposition 2.2 Let F' : C x C — R be a monotone bifunction. Then the
following statements are equivalent:

(i) 2 € A¥(x);

(i) (2%, ) = supyec ({27, y) — F (z,y)).
Proof. (i)==(ii) Suppose that z* € A¥(z). Then F (z,y) > (*,y — ) for all
y € C. Therefore

(5 ) > (N y) = Fry) Vel (2.3)
By taking the supremum from (2.3) we obtain

(", 2) > Zlelg(<2*7y> - F(z,y)). (2.4)

Putting y = z in (2.3) and taking in account that F (z,z) < 0, we deduce
F (z,z) = 0. This together with (2.4) imply (ii).

(ii) = (i) Assume that (ii) holds. Then we have (2.3). This implies that
F(x,y) > (2*,y — ) for all y € C. Hence z* € A" (z). m

The following definition of maximality was used in [64] for reflexive Banach
spaces. Now we redefine it for TVS.

Definition 2.3 A monotone bifunction F is called maximal monotone if A
is mazximal monotone.

The following remark presents some elementary properties of the multifunc-
tion AL
Remark 2.4 (i) If F is a monotone bifunction, then A% is a monotone operator.
Indeed, assume that z,y € C and z* € A" (z) and y* € A" (y). Then
F(aj?y) 2 <‘T*ay - .’17>

and
F(y,z) 2 "z —y).
By adding the two inequalities we obtain

(y* —a*,y—x) > —F (z,y) — F(y,2) > 0.

This means that A% is monotone.
(ii) If F' is monotone and x* € AF (), then F (z,z) = 0. From monotonicity
of F we get F (x,z) < 0. On the other hand z* € AF (z) which implies that

F(z,z) > (", —x) =0.

Thus F (z,z) = 0.
(iii) For each x € C, AF (x) is convex. Let x}, 25 € AF (x) and X € [0,1].
Then for all y € C| we have

A7+ (1 =Naz3,y—z) =A@,y —z) + (1 = N) (25, y —7) < F (2,y).
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This implies that Az} + (1 — ) 25 € AF (2).

(iv) For each x € C, AF (z) is weak*-closed. We will show that X*\ A (z)
is weak*-open. Assume that y* € X*\ A (x). Then there exists yo € X with
(y*,y0 —x) > F (x,yp). Choose t € R such that {(y*,yo—xz) >t > F (z,y0).
Set U = {z* € X*: (z*,yo — x) > t}. Then U is a nonempty neighborhood of
y* in weak*- topology, which does not meet A (z). Therefore, X*\AF () is
weak*-open.

(v) As it was remarked in [64], if we define an extension E of F on C x X
by

A [ F(x,y) ifyeC,
F(axy)-{ +oo ifye X\C,

then AF (z) = OF (z,-) () for all z € C.

(vi) Suppose that Fj,Fy : C x C — R are two bifunctions and ¢, s are
two positive real numbers. Then (tA™ + sAF2) (z) C A2 () for each
z e C. If a* € (tA™ + sA™) (z), then 2* = z} + x} where 2} € tA™ () and
xh € sA™ (z). Therefore,

tF (x,y) > (], y—z) Vyel

and
sFy (z,y) > (x5,y —x) VyeC.

By adding the above inequalities, we obtain
thy (z,y) + sk (z,y) =2 (a%,y —z) VyeC.

Thus z* € A5 (1), We note that tAf (z) = AU (2).

(vii) One can easily check that if Fy,Fs : C x C — R are two monotone
bifunctions with F; < F,, then A C Af2. In this case, maximality of F}
implies the maximality of F5. ¢

Definition 2.5 [23/ A monotone bifunction F : C x C — R is called BO-
maximal monotone (where BO stands for Blum and Oettli), if for every (x,x*) €
C x X* the following implication holds:

F(y,z)+(z*,y —x) <0, VyeC = (z*,y—x) < F(x,y), YyeCl. (2.5)

In the last section of this chapter we provide an example (see Example 2.37),
which shows that the maximality of F' is different from BO-maximality even if
it is defined on a closed convex set and gr A" # (). However, maximality of F
implies BO-maximality. This fact is established in the following result.

Proposition 2.6 If FF : C x C — R is maximal monotone, then it is BO-
mazximal monotone.

Proof. Assume that

F(y,z)+ (z*,y —z) <0, VyeC. (2.6)
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Then for every y € C and y* € A (y),

(%2 —y) > Fy,z) > (y", 2 —y).

Thus, (z* —y*, 2z —y) > 0 holds for each (y,y*) € grAF. Since AT is
maximal monotone, z* € A (z). Consequently,

F(ac,y)E(x*,y—x}, vyec

Hence, implication (2.5) holds. m

The converse is true if X is a reflexive Banach space, C' is convex, F'(z,-) is
Isc and convex for all z € C, and property (2.1) holds (see [1, 8]). In the last
chapter (see Theorem 4.16 and its discussion) we will generalize this result.

As we observed in Remark 2.4, to any bifunction F' we attached the mono-
tone operator AF. Now, to each operator T : X — 2% we will attach a
corresponding bifunction. As in [5, 64], we define the bifunction Gr : dom T x
domT — RU{+o0} by

Gr(z,y) = sup (z,y—x).
z*e€T(z)

In the following proposition we collect some useful properties of the bifunction
Gr. Most of these properties are known in reflexive Banach spaces [64].

Proposition 2.7 Suppose that X is LCS and T : X — 2% is monotone. Then

(i) G is real-valued and monotone;

(#i) Gr (x,2) =0 for each x € domT, i.e., Gr fulfils (2.1);

(i) if T is maximal monotone, then Gr is maximal monotone and

AGT =T

(iv) assume that T is monotone, has closed convex values, and dom(T') = X.
If Gr is mazimal monotone, then T is maximal monotone;

(v) Gr (z,-) is lsc and convex for each x € dom T

(vi) Gr (z, Ay + (1 = N x) = A\Gr (z,y) for all x,y € domT and each X\ in
RJH'

(vii) T~ (0) CEP(G7).

Proof. (i) Let T be a monotone operator. Then for z,y € dom7T, z* € T (z)
and y* € T (y) we have (y* — z*,y —x) > 0. Thus —(a*,y — z) > (y*,x — y)
and 8o inf - cp(z) (—(*,y — @) > sup,eq,) (y*, = — y). Therefore

sup (y*,x —y)+ sup (z%,y—x) <O0.
y* €T (y) z*€T(z)

Hence, G7 (z,y) + G (y,z) < 0. This implies that Gr (z,y) € R and Gr is a
monotone bifunction.
(ii) It is obvious.
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(iii) The proof of this part is based upon the original paper [64]. For any
x € domT,z* € T (x) and every y € C from the definition of Gr we get
Gr (7,y) > (z*,y—x). This implies that z* € AT (z) and so T () C A7 (z).
By hypothesis, 7' is maximal monotone so T = A%T. Now it follows from
Definition 2.3 that G is maximal.

(iv) The proof of this part is also very close to the proof of Proposition 2.4 in
[64]; we include the proof for the sake of completeness. Since G is a maximal
monotone bifunction, by definition, A®7 is a maximal monotone operator. Now
for every z € X and z* € AT (z) we have

Gr(z,y)= sup (z",y—x)>("y—z) WyelX.
z*e€T(x)

The separation theorem (see Chapter 1, Corollary 1.9) implies that z* € T (x).
Therefore AT C T. Thus AT = T and so T is maximal because A®T is
maximal.

(v) This is a direct consequence of Proposition 1.14 from Chapter 1.

(vi) We have

Gr(z, y+(1—=XNz)= sup (&, \y+(1-Nz—=zx)
z*eT (x)

= sup (2", A(y —z)) = AGr(2,¥).
x*€T(x)

(vii) The proof is an immediate consequence of the definitions and so it is
omitted. m

We also note that for each A > 0 we have Gyr = AGr.

Given an arbitrary monotone bifunction F': C' x C' — R, one can construct
AT and the monotone bifunction G 4. In this case for all y in C we have

Gar (JL‘,y) = Sup <‘T*7y - £E> < F(*T"y) (27)

z*€AF (z)

Note that whenever F'is maximal monotone then G 4 is also maximal monotone
and so A = A%ar. However, Example 2.5 in [64] shows that correspondence
F — AT is not one-to-one. The next proposition shows that in a special case
we have equality in (2.7).

Proposition 2.8 Let T : X — 2X° be a monotone operator. Set F = Grp.
Then Gar = F on domT x domT.

Proof. Let x,y € C := domT. For each z* € AST(z) one has (z*,y — x) <
Gr(z,y) by definition of A“7. Hence,

Gaer(z,y)= sup  (z",y—2) < Gr(z,y).
2*€ACT (z,y)

To show the reverse inequality, take z* € T'(z). Then for each w € C,

<Z*,’w7$> < sup <1'*,U)*£L'>:GT(1’,U}).
x*€T(x)
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This implies that z* € A7 (z), i.e., A®7 is an extension of T. Consequently,

Gr(z,y)= sup (z",w—x)< sup (2%,y—x) = Gaor(2,Y).
z €T () z*€ACT (z,y)

Thus Ggor = F ondomT x dom7. m

In addition, as noted in [64], it is possible to have G = G g for two monotone
operators T and S, while T" # S. For instance, if T is maximal monotone and
S is any operator different from T such that clcoS = T, then Gg = G hence
G5 is maximal monotone, while S is not.

Thus, to each monotone operator 71" corresponds a monotone bifunction G,
and to each monotone bifunction F' corresponds a monotone operator AF. It
is obvious that T C A®T for each monotone operator 7. In general equality
does not hold; however part (iii) of Proposition 2.7 shows that if T is maximal
monotone, then T = A%7T and so Gp is maximal monotone. More generally,
one has:

Theorem 2.9 Suppose that Y is a Banach space. Let T : Y — 2Y be mono-
tone with weak*-closed convex values, and such that cldom T is convex. For any
x € domT, set K(z) = Ngomr(z). If T(z) + K(z) C T(z) for all z € domT,
then AGT =T.

Proof. It is enough to prove that A9 (z) C T'(z) for all z € Y. Let 2 € Y and
z* € A9T(x). Then

sup (z*,y—=z)>(z",y—=z), VyecdomT. (2.8)
z*eT (x)

Assume that z* ¢ T'(x). Since T'(z) is weak*-closed and convex, by the
separation theorem (see Chapter 1, Corollary 1.9) there exists v € Y such that

sup (z*,v) < (z",v). (2.9)
x*e€T(x)

For every y* € K(z) and every z* € T'(z) one has by assumption z* + ty* €
T(x) for all t > 0. Hence (2.9) implies

YVt >0, (x%,v)+ty",v) < (z"0v). (2.10)

It follows that (y*,v) < 0. Therefore v is in the polar cone of K (z), which is
equal to the tangent cone Tyom 7 (z) of domT at x. Hence v can be written as
a limit

Yn — T

where y, € domT and A, N\ 0. It also follows from (2.10) that (z*,v) < (z*,v).
Thus for n sufficiently large,

v = lim
n— o0

<x*7yn - .%'> < <Z*7yn - {,C> .

But this contradicts (2.8). Hence z* € T(z). m
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We remark that in Banach spaces (see Chapter 1, Proposition 1.33 and
Theorem 1.39), whenever T' is maximal, its values are weak*-closed and convex
and T(z) + K(z) C T(z) for all z € domT. If in addition Y is reflexive, then
cldom T is convex so all assumptions of Theorem 2.9 hold. Another case where
the assumptions obviously hold is provided by the following:

Corollary 2.10 Let Y be a Banach space. Assume that T :'Y — 2¥7 is
monotone with weak*-closed, convex values and such that domT =Y. Then
ACGT =T,

Corollary 2.10 is true also in LCS. Next proposition extends it to LCS.

Proposition 2.11 Let X be a LCS. Suppose that T : X — 2X is monotone
with weak*-closed, convez values and such that domT = X. Then AST =T.

Proof. Given z € X and z* € A®7 (z),

Gr(z,y)= sup (z",y—x)>(z"y—z) VyeX.
z*eT(x)

By hypothesis T (z) is weak*-closed and convex, so the separation theorem
(see Chapter 1, Corollary 1.9) together with preceding inequality imply that
ACT (z) C T (x). This enables us to obtain the desired equality. m

Corollary 2.12 Let T : X — X* be a single-valued monotone operator with
domT = X. Then AT =T.

Given a monotone operator 7', one may define another monotone bifunction
Gr by the following procedure which is taken from [80] and is reproduced here
for the convenience of the reader. First, define Gy : domT x codomT —
R U {400} as usual:

Gr(z,y)= sup (z*,y—=z), z€domT,y€ codomT.
z*eT(x)

Then define G : codomT x codomT — R U {+00} as follows

k k k
GT(x,y) = sup{z o;Gr(zi,y) o = Zaixi7xi € domT,Zai =1,a; > 0}.

i=1 i=1 i=1

This is the concave hull of the function G (-, y) (see formula (1.1) in Chapter
1). Note that G is well-defined, its values cannot be —oo, and Gr(z,-) is Isc
and convex as supremum of Isc and convex functions.

Proposition 2.13 Gr is real-valued, monotone, and such that Gr(x,y) <
Gr(x,y) for all (z,y) € domT x codomT.
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Proof. The inequality Gr(z,y) < GT(x,y) for (z,y) € domT x codomT is

obvious from the definition of Gp. Since for (z,y) € domT x domT one has
Gr(z,y) < —=Gr(y,z) and —Gr(y, ) is concave, it follows that

V(z,y) € codomT x domT, Gp(z,y) < —Gr(y,z). (2.11)

_ Now take the convex envelope with respect to y of both sides of (2.11).
Gr(z,y) remains unchanged since Gr(z,-) is convex, and —G7(y, r) becomes
—Gr(y,z). It follows that

Gr(y,z) + Gr(z,y) <0, Y(z,y) € codomT x codomT. (2.12)

Thus, G7 is monotone. Also, it follows from (2.12) that Gy is real-valued
since G‘T does not take the value —co. m

Note that G’T(x,m) < 0 for all z € codomT, while for x € domT one
has Gr(z,z) = 0 since Gp(z,x) > Gp(z,z). It is not true in general that
Gr(z,2) =0 for all z € codom T

2.2 Local Boundedness of Monotone Bifunctions

The aim of the present section is to study local boundedness of monotone bi-
functions in relation with the corresponding property of monotone operators in
Banach spaces. We will show that under very weak assumptions, local bound-
edness of monotone bifunctions is automatic at every point of int C. In this
way one can obtain an easy proof of the corresponding property of monotone
operators.

Throughout this section, unless otherwise stated, X is a Banach space. We
start off with reproducing the following definition from [64].

Definition 2.14 A bifunction F is called locally bounded at xo € X if there
exist e > 0 and k € R such that F (z,y) < k for all z andy in CNB (xg,€). We
call F locally bounded on a set K C X if it is locally bounded at every x € K.

Local boundedness of operators is defined in Chapter 1, Definition 1.37.

Remark 2.15 (i) If a bifunction (not necessarily monotone) F : C x C — R
is locally bounded at xy € int C, then A” is locally bounded at zy. Indeed,
assume that € > 0 and k € R are such that B(xg,e) C C and F(z,y) < k for
all z,y € B(wg,e). Then for every z € B(wo, 5), 2* € A" (x) and v € B(0,1),
one has x + Sv € B(zo,¢) and

k> F(m,x—i—gv) > %(m*,v).
Thus [|z*] < % and A is locally bounded at x¢. The converse is not true
in general (see Example 2.39 in Sectionb of this chapter and the subsequent
discussion).



28 CHAPTER 2. BIFUNCTIONS

(ii) Likewise, given an operator T', if G is locally bounded at g € int dom T,
then T is locally bounded at zo. Indeed, A®T is locally bounded at zq by the
above argument, so T is also locally bounded since T' C A®T. ¢

Local boundedness of bifunctions is a useful property. We reproduce here
two of the results in [64].

Proposition 2.16 Assume that X is reflexive, C is convex, and F is maximal
monotone, locally bounded on clC, and such that F(xz,x) = 0 for all x € C.
Then C C cldom(AT).

Proposition 2.17 Let F' be mazimal monotone, locally bounded on int C' and
such that F(x,z) =0 for all z € C. If C C cldom(A"), then

int C' = int dom(A”).

Note that in [64] all results are stated for reflexive spaces, but in fact the
proof of Proposition 2.17 does not use reflexivity.

We will show that, under mild assumptions, any monotone bifunction is
locally bounded in the interior of its domain. We will need the following lemma,
which generalizes to quasi-convex functions a well-known property of convex
functions.

Lemma 2.18 Let X be a Banach space and f : X — RU {400} be lsc and
quasi-conver. If xog € int dom f, then f is bounded from above in a neighborhood
of xg.

Proof. Let € > 0 be such that B(xg,e) C dom f. Set S, = {z € B(xo,e¢) :

f(z) < n}. Then S, are convex and closed and |J S, = B(zo,¢). By Baire’s
neN
theorem, there exists n € N such that int S, # (). Take any z; € int.S,, and

any xo # x¢ such that 2o € B(zp,¢) and zg € co{zy,x2}. Choose n; >
max{n, f(z2)}. Then z1 € int Sy,, z2 € Sy, hence z( € int Sy, so f is bounded
by ni; at a neighborhood of zg. ®

Note that, if in the above lemma f is Isc and convex, then the result is
obvious since f is continuous at every interior point of dom f.

Theorem 2.19 Let X be a Banach space, C C X a set, and F:CxC - R a
monotone bifunction such that for every x € C, F(x,-) is lsc and quasi-convet.
Assume that for some xg € int C' there exists a neighborhood B(xg,¢) C C such
that for each x € B(xg,¢), F(z,-) is bounded from below' on B(xg,e). Then F
18 locally bounded at xg.

Proof. Let ¢ > 0 be as in the assumption and define g : B(zg,&) — RU {+00}
by
g(y) =sup{F(x,y) : © € B(xp,€)}.

IThis bound may depend on z.
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We show that g is real-valued. Given y € B(zg,¢), for each x € B(zo,¢),
F($7y) < _F(y,l')

By assumption, there exists M, such that F(y,z) > M, for all z € B(zo,¢).
Hence g(y) < —M,, < o0, i.e., g is real-valued.

Now g is Isc and quasi-convex, and zg € intdomg. By Lemma 2.18, we
can find e; < £ and M € R such that g(y) < M for all y € B(xg,e1). Then
F(z,y) < M for all x,y € B(xg,e1) so F is locally bounded at xo. m

Corollary 2.20 Let X be reflexive and F : C x C — R be monotone and such
that for every x € C, F(x,-) is lsc and quasi-convex. Then F is locally bounded
on int C'.

Proof. Given zy € intC choose ¢ > 0 such that B(zg,e) € C. Since X
is reflexive Banach space, B(xg,¢) is weakly compact, hence for each y € C,
F(y,-) has a minimum on B(x, ). Consequently, all assumptions of Theorem
2.19 are satisfied. m

When F(z,-) is Isc and convex, reflexivity of X is not necessary:

Corollary 2.21 Let F : C x C — R be monotone and such that for every
x € C, F(x,-) is lsc and convex. Then F is locally bounded on int C'.

Proof. Let zy € int C. Choose € > 0 be such that B(zg,e) C C. For every
x € B(xg,¢), the subdifferential of OF(x,-) is nonempty at x. For every x* in
OF (z,-)(x) and y € B(zg,¢) one has

F(z,y) — Fz,2) > («",y —x) = = |l2"[| |z —y[| = =2 []2"] .

Thus F(z,-) is bounded from below on B(xg,e). According to the Theorem
2.19, F is locally bounded at xp. ®m

If T : X — 2% is monotone, then G is monotone while Gz (z,-) is Isc
and convex. According to the Corollary 2.21 and Remark 2.15, we immediately
obtain:

Corollary 2.22 Let X be a Banach space and T : X — 2% be monotone.
Then T is locally bounded at every point of int domT'.

We see that the well-known local boundedness of monotone operators can be
shown very easily through Corollary 2.21 on local boundedness of bifunctions.
In fact, whenever property (2.1) holds, one can also easily show the converse,
i.e., provide a proof of Corollary 2.21 assuming that Corollary 2.22 is known:

Proposition 2.23 Assume that F is monotone, satisfies (2.1) and F (z,-) is
lsc and convex for each x € C. Then F is locally bounded on int C.
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Proof. Under our assumptions, A (z) is actually the subdifferential OF (z, -) ()
of the lsc and convex function F(z,-) at z. It is known that this is nonempty
for all € int C. Hence, the monotone operator A¥ is locally bounded on int C.

For each zp € int C choose ¢ > 0 and k € R such that B (zg,e) C C and
lly*|| < k for every y* € A¥ (y), y € B(xo,¢). Then for each x,y € B (x,¢)
and y* € AT (y),

F(ry) < -Fy,z) < =z —y) < |yl -yl < 2ek.

Thus F is locally bounded on int C. m
In fact, with the same proof as in the above proposition, we obtain the
slightly more general result, which is a kind of converse of Proposition 2.17:

Proposition 2.24 Assume F is a monotone bifunction and int C' = int dom A
Then F is locally bounded on int C.

Corollary 2.25 Suppose that F : X x X — R is monotone and dom AF = X.
Then F' is locally bounded on X.

One can also obtain a well-known generalization of Corollary 2.22 by using
bifunctions.

Lemma 2.26 Suppose that X is a Banach space and T : X — 2% is mono-
tone. Then )
(i) T C AST C ACT;

(ii)) T = A%T = ACT if T is mazimal monotone.

Proof. (i) T C AST is obvious. Since Gr(zx,y) < Gr(z,y) for all (z,y) in
C x coC, we deduce that AST C ACT,
(ii) Obvious consequence of (i). m

Proposition 2.27 Suppose that X is a Banach space and T : X — 2% s
monotone and int(codomT) # (). Then T is locally bounded on int(codomT').

Proof. We know that GT is monotone and GT(x, -) is Isc and convex for all z €
codomT. Thus by Corollary 2.21, G is locally bounded on int(codomT). It

follows from Remark 2.15 that A7 is locally bounded on int(codom 7). Now
Lemma 2.26 implies that T is locally bounded on int(codomT). m
2.3 Cyclically Monotone Bifunctions

In this section we will derive some properties of cyclically monotone bifunctions.
Indeed, we generalize some results of [64] to Hausdorff LCS.
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Definition 2.28 Suppose that X is a vector space and C' is a nonempty subset
of X. A bifunction F : C x C' — R is called cyclically monotone if for any cycle
X1, L2y ey Tyl =21 0 C

F(:cl,:cg) + F (IQ,IE;}) + -+ F(xn,an) S 0.

The following proposition provides a necessary and sufficient condition for a
bifunction to be cyclically monotone. We follow Hadjisavvas and Khatibzadeh’s
proof for the cyclically monotone bifunctions in reflexive Banach spaces [64],
which we include for the sake of completeness.

Proposition 2.29 Suppose that X is a vector space, C' is a nonempty subset
of X and F : C x C — R is a bifunction. Then F is cyclically monotone if and
only if there exists a function f: C — R such that

Fz,y) <fly)—f(z) Voyel (2.13)

Proof. Assume that there exists a function f : C' — R such that (2.13) holds.
Then for every cycle x1,z2, ..., Ty41 = 21 in C we have

F(x1,29) + F (x2,23) + -+ F (2, Znt1) < Z (f (xig1) = f(z5)) = 0.

This means that F' is cyclically monotone.

Conversely, let F' be a cyclically monotone bifunction. Choose any ¢ € C
and define f on C by

f (%) =sup {F (zo,71) + F (v1,22) + - + F (z,7)} (2.14)

where the supremum is taken over all families x1, x5, ...,z, in C and n € N.
Since F' is cyclically monotone,

F(zg,21) + F (v1,22) + -+ + F(2n,2) + F (2,20) <0

This implies that F' (zg,z1) + F (z1,22) + -+ F (zp,2) < —F (x,20). Now by
taking the supremum again over z1, o, ...,z, € C we get f(z) < —F (z,xz0).
Thus f is real-valued and also for any =,y € C and z1,x9,...,x, € C

F(xg, 1) + F (v1,22) + -+ + F (2, 2) + F(z,y) < f(y).

Taking the supremum over all families x1, xa, ..., x,, in C, the preceding inequal-
ity yields

fx)+F(z,y) < f(y).

This means that inequality (2.13) holds. m
Whenever F' is also maximal monotone, more can be said on f.
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Proposition 2.30 Suppose that X is a Hausdorff LCS and intC # 0 and
F : C x C — R is mazimal monotone, cyclically monotone and satisfies (2.1).
Then:

(i) The sets c1C and int C' are conver, and equalities c1C = cldom AT and
int C' = int dom(AF) hold; the function f in relation (2.13) is uniquely defined
up to a constant on int C, and is lsc and convexr on int C.

(i) If in addition F(x,-) is lsc for every x € C, then f is uniquely defined
up to a constant, and Isc and convex on C.

Proof. The proof we present here is borrowed from [64] and it is a simplification
of the original proof. Although the proof in [64] is for reflexive Banach spaces,
it works for LCS.

(i) Maximal monotonicity of AF is a direct consequence of Definition 2.3.
For any cycle z1, T2, ..., 7,1 = 21 in X and each zf € A (z;) fori = 1,...,n,
we have

F(zi,2ip1) > (2], Tip1 — 24) -

By adding the above inequalities for i = 1, ..., n, we obtain

F(z1,22) + F(x2,23) + -+ F (x, Tpy1) > Z (], wip1 — x4) -
i=1

By assumption F' is cyclically monotone, hence the left hand right of above
inequality is less than or equal to zero. Thus from the preceding inequality we
get

n

Z (x}, zip1 —xi) <0.

i=1
This means that A" is cyclically monotone. Now, by Proposition 1.36 from
Chapter 1 for any (z¢, ) € gr AT the function defined as

n—1
D (z) = sup (), ¢ —an) + Z (xf, wip1 — x4)
(wi,x})egr AT i=0
nENyi=1,...,n

is proper, lIsc and convex, ® (z9) = 0 and A (z) C 9 (x). From the maximality
of AF we conclude that A" = 9®. For each z in C' we have

n—1
P (z) = sup (Ty, T — ) + Z (o], w401 — 24)
(zi,x])Egr AF i=0
neN;i=1,....n

n—1
< sup <F (T, ) + Z F(xi,xi_i'_l)) < —F (z,z0),

=0

since F' (z1, x2)+F (x2, x3)+ -+ F (n, )+ F (z,29) < 0 by cyclic monotonicity.
Hence @ is real-valued on C so that C' C dom ®. It follows that

clC C cldom ® = cldom (9®) = cldom A" c clC,
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int C' C int dom ® = int dom (9®) = int dom A" C int C.

From the above relations we conclude that c1C' = cldom A¥ = cldom ® and
int C' = int dom ® = int dom A¥. Since ® is a Isc and convex, dom ® is convex,
so clC = cldom ® and int C' = int dom ® are convex. Now let f : C — R be
any function such that (2.13) holds. Then for every (z,z*) € gr A" and every
y € C, we have
fly) = f @)=y —a).

This means that & C df and by maximal monotonicity of 0®, 0® = df.

For each z,y € int C' and ¢ €]0,1[ with z := (1 — t) z + ty € int C, select an
element 2* € AT (z). Then we have

f@)=f(2) 2 (% e —2),

fw) —fz)=2Ey—2).
Multiplying the first inequality with ¢ and the second one with (1 —t), then
adding them, we obtain

F(A=tz+ty) <A1 —1)f(x)+tf(y). (2.15)

Which means that f is convex on int C. Also, f is Isc on int C since df # ()
there. Since 0® = Jf the functions ® and f differ by a constant on int C.

(ii) Assume that F is lsc and let f be a function satisfying (2.13). Then for
each y € C, we have

lim inf (f (y) — f(x)) > lim inf F (x,y) > F (z,2) =0

thus f is Isc. From part (i) of the proof we know that int C and ¢l C' are convex.
Adding a constant if necessary, we may assume that f = ® on int C'. For any
x € C, choose y € int C and a sequence x, = (1 — t,,) x+t,y,n € N with ¢, > 0
and t,, — 0. Since C' C dom® and int C = intdom ® we have z,, € intC =
int dom ®. Applying (2.15) which is valid whenever (1 —t)z + ty € int C' and
lower semi-continuity of f we get

lim inf f(zn) <lim inf ((1—1,)f(2) +taf(y) = f(2) <lim inf f(z,).

Therefore f (x) = liminf, o f (z,). Applying the same argument for ®, we
conclude that ®(x) = liminf, . P (x,). Consequently,

f(z) =lim nlilfc;of (zn) = lim nlilfc;ocb (zn) = ().

Thus f = ® on C and this implies that f is convex. =

Example 5.3 in [64] shows that a convex function such that (2.13) holds
may not exist, if F(z,-) is not lsc. In addition, Example 5.4 in [64] shows that
cyclic monotonicity of A¥does not imply cyclic monotonicity of F, even if F is
monotone, C is a convex subset of R and A”" is a subdifferential of a proper, lsc
and convex function.

Proposition 2.24 induces the following result, which does not assume lower
semi-continuity or quasi-convexity.
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Proposition 2.31 Suppose that X is a Banach space, int C # () and F : C x
C — R is mazimal monotone, cyclically monotone and satisfies F(x,2) =0 for
all x € C. Then F is locally bounded on int C.

Proof. Since F' is maximal monotone and cyclically monotone, by part (i) of
Proposition 2.30 we have
int C' = int dom A”".

Now, Proposition 2.24 implies that F' is locally bounded on int C'. =

2.4 Local Boundedness at Arbitrary Points

In Proposition 2.16 one asks for the bifunction to be maximal monotone and
locally bounded on cl C. This assumption seems to be in contradiction with the
theory of maximal monotone operators. In fact, if 7 : X — 2% is a maximal
monotone operator and intdomT # (), then T is never locally bounded on
elements of the boundary of dom T’; see Theorem 1.39. However, this does not
imply that the maximal monotone bifunction Gr is also unbounded at xq. In
fact, in R™ we have a result of local boundedness at arbitrary points and in
particular at boundary points, for more general bifunctions.
Let us denote by ||z||, the sup norm of x = (x1, 2, ...,2,) € R,

|2]| oo = max{|z1], |22, ..., |Znl},

and by Bo(,¢) the closed e—ball around z with respect to ||| . A set which
is the convex hull of finitely many points is called a polytope. We call a subset
C of R™ locally polyhedral at xo € C if there exists ¢ > 0 such that By (z,¢)NC
is a polytope.

In the following proposition we do not assume that F' is monotone.

Proposition 2.32 Let C C R"™ be locally polyhedral at o € C and F : C x C
— R be a bifunction. If F (x,-) is quasi-convex for each x € C, and F (-,y) is
upper semi-continuous (usc) for all y € C, then F is locally bounded at x.

Proof. Choose ¢ > 0 such that B, (zg,e) N C is a polytope. Then there exist
1, T3, ..., T} such that

Boo(0,8) NC = co{x1,Ta, ..., T} }
Since F (x,-) is quasi-convex, for all z and y in Bu(z9,€) N C we have
F(z,y) <max{F(z,x1), F(x,x2),..., F(x,x)}.

On the other hand F (-, ;) is usc and Boo(z9,€) N C is a compact set, thus
F (-, ;) attains its maximum on B (7o,€) N C; that is, there exists M; such
that

F(z,7;) < M; fori=1,2,...,k and € Boo(z0,6) N C.
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Set M = max{M;, Ms, ..., My}. Then
F(x,y) < M for all x,y € Boo(z0,¢) N C.

This means that F' is locally bounded at zo. =

Proposition 2.33 Let C' C R" be locally polyhedral at xo and F : C x C' = R
be a monotone bifunction. If F (x,.) is quasi-convex and lsc for all x € C, then
F' is locally bounded at x.

Proof. Choose € > 0 such that B (z0,¢) N C is a polytope. Since F (z,-) is
quasi-convex, as the proof of the previous proposition there exist 1, z2, ..., zx €
Boo(z0,€) N C such that for all z,y € Boo(zg,€) N C we have

F (z,y) < max{F(z,x1), F(z,x2), ..., F(z,x)}. (2.16)
Since F (x,y) is monotone,
F(z,z;) < —F (z;,2) fori=1,2,.. k. (2.17)

_ For each i, —F'(z;,-) is usc. Therefore, —F'(z;,-) has a maximum M; on
Boo(29,e) NC. Set M = max{M;, Ms, ..., M} }. Then (2.16) and (2.17) entail

F(x,y) <M for all z,y € Boo(z0,) N C,

i.e., F' is locally bounded at zo. =

Thus, if C'is a polyhedral set and F satisfies the assumptions of Proposition
2.32 or 2.33, then it is locally bounded on C, not only on int C. However,
the following example shows that this property may fail if C' is not locally
polyhedral.

Example 2.34 Set C = {(a, ) € R? : a > *}. Define the function f on R?

by
% if a>B%a >0,
f(avﬁ): 0 lf()[:ﬁ:(),

+00 otherwise.

This function is lsc and convex (it is the restriction to C' of the function in
[98, page 83)]).

Now define the bifunction F': CxC — R by F(z,y) = f(y)— f(z), z,y € C.
This bifunction F has very nice properties: it is cyclically monotone, F(z,-) is
Isc and convex, F(-,y) is concave and usc, it is defined on a closed convex
set thus it is maximal monotone (see Proposition 3.1 in [64]). Nevertheless, it
is not locally bounded at 0. Indeed, consider the sequences z,, = (0,0) and
Yn = (21, %). Then F(zy,y,) — +00, hence every neighborhood of 0 contains

n4 9’
pairs z, y with F(x,y) as large as we wish. A
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Since monotone bifunctions can be locally bounded at the boundary of their
domain, it is interesting to investigate an analogous property for monotone
operators.

Given a subset C' C X, let us denote by inw C(zg) := |J ;(int C' — z¢) the set
A>0

of inward directions of C at zy. Note that if v € inw C(z¢) then v is also an

inward direction at all x sufficiently close to xy. Indeed, it is sufficient to take

x € B(zg,€) where € > 0 is such that B(xg + Av,e) C C.

Definition 2.35 An operator T : X — 2% s called inward locally bounded at
xo € cldomT if for each v € inw C(x) there exist k > 0 and € > 0 such that
for all x € B(xg,e) NC and x* € T(x), one has (z*,v) < k.

We remark that if T is inward locally bounded at an interior point zy of
dom T, then by the uniform boundedness principle (see Chapter 1, Theorem
1.6) it is locally bounded at g, since inw dom T'(xg) = X.

Proposition 2.36 A monotone operator T is inward locally bounded at every
point of cldom T'.

Proof. Let zp € cldomT and v € inwdomT'(zg) be given. Choose A > 0
such that zg + Av € intdomT. Since T is locally bounded at xg + Av, there
exist € > 0 and k& > 0 such that B(xzg + Av,e) € domT and |y*|| < k for
all y* € T(y), y € B(xg + Av,e). For every x € B(xg,e) NdomT, one has
x + A € B(xg + Av,e). Thus for every 2* € T'(z) and y* € T(x + Av),

(x*,v) = % (" x4+ —x) < % (Y x4+ M —x) < klv].

Thus T is inward locally bounded at zy. =

Comparing this last result with Propositions 2.32 and 2.33, we should re-
mark that these propositions imply a somewhat stronger local boundedness than
inward local boundedness. Indeed, if T' is monotone and dom T is locally polyhe-
dral, then by Proposition 2.33 the bifunction G is locally bounded everywhere;
thus, (x*,y — x) is bounded from above for all * € T(x) where x,y are near a
point zg of the boundary, even if y — x is “outward” rather than inward. This
is because whenever y — x is outward, its norm is small, so that (z*,y — x) is
bounded even if the norm of z* is large.

2.5 Counterexamples
We indicate that when F': C x C — R is a bifunction such that

F(.’ﬂ,y):—F(y,l') Vx,yeC’

then, as one can easily check, the implication (2.5) holds and so F' is BO-maximal
monotone.
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The first example of this section shows that it is possible for a bifunction
to be BO-maximal monotone, without being maximal monotone, even if it is
defined on a closed convex set and gr A" # (). In our knowledge, the only
example of a bifunction F' published so far [64] which is BO-maximal monotone
but not maximal monotone, is in some sense trivial since gr A¥ = ().

Example 2.37 Define the bifunction F : [0,1] x [0,1] — R by

0 if z,y€]0,1],
—viif z=0,y€0,1],
F(I,y): \/5 if yZO,IG[O,l],
VIi-y if z=1y€]01],
—/1—-z if y=12¢€]0,1].

Note that F (z,y) is well-defined if both z,y are endpoints of [0, 1]. In addition
F is monotone and is BO-maximal, since F (z,y) = —F (y,z) for all z,y € [0, 1].
Next we will show that F' is not maximal monotone. So, we calculate the A,
Let z € [0,1] and z* € AF(z). We consider the following cases:

Case 1: Assume z €]0, 1], by taking y = 1 we have F (z,1) > z* (1 — z) and
so —v1—z > 2* (1 — z). From here we obtain z* < — \/11771 < 0. However for
y €]0, 1[, one can easily get 2* = 0, a clear contradiction. Therefore, A" (z) = ()
for x €]0, 1].

Case 2: If z = 0, then F (0,y) > z*y. From this we obtain z* < —ﬁ for all
y €]0,1] which is impossible. Therefore, A (0) = (.

Case 3: If z = 1, then F(l,y) = /1—y > z*(y—1) for all y €]0,1].
Thus x* > —ﬁ for all y €]0,1[ and so z* > —1. Now if we take y = 0,
we get F'(1,0) = 1 > 2*(=1). Thus z* < —1. Therefore, A" (1) = {-1}.
Consequently,

AP (2) :{ 0 ififxff’;[’ and gr AF = {(1,-1)}.

Obviously A¥ and so F is not maximal monotone. A

When the assumptions of lower semi-continuity or quasi-convexity do not
hold, then local boundedness may fail (see Theorem 2.19, related corollaries
and Proposition 2.33) as shown by the following examples.

Example 2.38 Let z* be a noncontinuous linear functional on X, that is * in
X'\X* and set F (x,y) = (z*,y — z). Then F is a monotone (cyclically mono-
tone) bifunction, which is affine (convex) but obviously is not locally bounded
at any r € X. A

Example 2.39 Define F on R x R by F (z,y) = ﬁ for x # 0 and y # 0,

=
and F (2,0) =z = —F(0,z), € R. Then F is monotone, F (z,-) is Isc for

every x € R, but F is not locally bounded at 0. In addition, this bifunction is
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a counterexample to the converse of Proposition 2.6 and of Remark 2.15: one
can readily show that F' is BO-maximal monotone and that dom A" = {0},
with A (0) = {—1}. It follows that F is not maximal monotone and also A is
locally bounded at {0} while F' is not. A

In contrast to the previous example, if a monotone operator T is locally
bounded at zg € X, then Gr is not only locally bounded but also locally
bounded by an arbitrarily small positive number at xy. Indeed, if ||z*| < k for
all x € B(xg,¢), * € T(z), then for all z,y € domT N B(xg,¢) and y* € T(y)
we find

Gr(z,y) < =Gr(y,z) < — (", z —y) < 2k.

The next simple example shows that G is not necessary locally bounded
on the closure of the domain of T.

Example 2.40 Set C = [0, ) and define T': C'— R by

_f tan’z if x€]0,5]
T(x)_{ (-00,0] if z=0.

Then T is a monotone operator. Now consider the sequences x,, = 5 —
yn:g—%inc. Then

2 and
n

tan? (£ — 2
Gr (xmyn) = M — 400

when n — oo. Thus Gt is not locally bounded at F € clC. A

Example 2.41 Define

T (21, 32) = f% (%)2,% if x1 >3 and x>0,
(—00,0] x {0} if zy=29=0.
Then T is monotone on C' where
C = {(u,v) €R*ju>v'}.
Set x = (z1,22) and y = (y1,y2) , then

i 2 (14 8) if 5eC—{(0,0)} andy€C,

x1 2xq
Gr (v,y) = % if 1 =0andy; #0,
0 if yeCandz=(0,0).

G is defined on C but it is not locally bounded on C, because if u,, = (%7 #)
and v, = (%, %) , then
Gt (Up,vn) =n—1.

Note that u, — (0,0) and v, — (0,0) but G (un,v,) — +o0. A



Chapter 3

oc-Monotone Bifunctions
and Operators

In recent years, operators which have some kind of generalized monotonicity
property have received a lot of attention (see for example [63] and the references
therein). Many papers considering generalized monotonicity were devoted to the
investigation of its relation to generalized convexity; others studied the existence
of solutions of generalized monotone variational inequalities and, in some cases,
derived algorithms for finding such solutions.

Monotone operators are known to have many very interesting properties. For
instance, we have seen that a monotone operator 1" defined on a Banach space
is locally bounded in the interior of its domain. Furthermore, if T is maximal
monotone and J is the duality map, then T'+ A\J is surjective for every A > 0.
So the question naturally arises: are these properties shared by other operators
which satisfy a more relaxed kind of monotonicity?

In a recent paper, Iusem, Kassay and Sosa [71] introduced the class of the
so-called pre-monotone operators. This class includes monotone operators, but
contains many more: for example, if T is monotone and R is globally bounded,
then T+ R is pre-monotone. In fact, it includes e-monotone operators which
are related to the very useful e-subdifferentials [73, 87]. In [71] it is shown
that, in a finite dimensional space, pre-monotone operators retain the two above
mentioned properties.

The present chapter is based on the original paper [6]. We will show that
most results of [71] remain valid in infinite dimensional Banach spaces. We
also prove that some other properties of monotone operators remain valid in
a much more general context. More precisely, in Section 1 we will introduce
the class of o-monotone and maximal o-monotone operators and we will study
their properties. In Section 2, we will introduce the class of pre-monotone
bifunctions which are related to the notion of pre-monotone operator. We will
show that such bifunctions are locally bounded in the interior of their domain
and we will deduce local boundedness of pre-monotone operators. We will also

39
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state and prove a generalization of the Libor Vesely theorem. In Section 3
we will prove that under some (CQ) conditions, the values of the sum of two
maximal o-monotone operators are weak*-closed. In Section 4 we will confine
our attention to finite dimensions and prove the existence of solutions for an
equilibrium problem in a (generally unbounded) closed convex subset of an
Euclidean space. This result does not involve any kind of monotonicity. We
will conclude this chapter by comparing some types of generalized monotone
operators.

3.1 o-Monotone Operators

Most definitions and many of the results of the section are essentially due to
[71], the main difference being that in [71] one considers pre-monotone opera-
tors in R"™, without specifying a given o. In this section after some preliminary
definitions and results, we show that every maximal o-monotone operator is
convex-valued and weak*-closed valued. In addition, if ¢ is usc, then the op-
erator is sequentially normxweak*-closed. Moreover, we provide an example
which shows that upper semicontinuity of o is a necessary condition. In very
special case, X = R, we establish that if T" is pre-monotone and closed, then o
is continuous.

Definition 3.1 (i) Given an operator T : X — 2% and a map o : domT —
Ry, T is said to be o-monotone if for every xz,y € domT, z* € T (z) and
y €T (y),

(z* =y, —y) 2 —min{o(z),0(y)}z —yl|. (3.1)

(i) An operator T is called pre-monotone if it is o-monotone for some
o:domT — R,.

(iii) A o-monotone operator T is called maximal o-monotone, if for every
operator T' which is o'-monotone with grT C grT’ and o’ an extension of o,
one has T =T".

The notion of pre-monotone operators for the finite-dimensional case is intro-
duced in [71]. The same paper also contains examples of maximal o-monotone
operators (see for instance [71, Proposition 5.8]).

Remark 3.2 (i) It should be noticed that 7' : X — 2% is g-monotone if and
only if

Ve,y € domT, z* € T'(x), y* € T (y), (z"—y*, x—y) > —o(y)|lz—yl. (3.2)

(ii) If o(y) = 2e > 0 for each y € dom T, then T is called e-monotone [87].
Therefore, every monotone and each e-monotone operator is pre-monotone.

(iii) Definition 3.1 does not allow negative values for o, since this can only
happen in very special cases. For instance, if T satisfies (3.1) and its domain
contains any line segment [xg, yo] := {(1 —t)xo +tyo : ¢t € [0, 1]}, then the set of
points © € [xg, yo] where o(z) < 0 is at most countable. Indeed, if this is not the
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case, then there exists € > 0 such that o(z) < —e for infinitely many = € [z, yo|.
Choose zf € T(x0), y§ € T(yo). Given n € N, choose xy, = x¢ + tx(yo — o),
k=1,...n—1,such that 0 < ¢t; < --- < t,—1 < 1 and o(xp) < —e. Then
choose x} € T(xy). Set z, = yo and z} = yj. Relation (3.2) gives for all
k=0,1,...n—1:

(T — Ty T — T 2 € ||Thg1 — il =

<371t+1 — Ty Yo — £U0> > e llyo — o] -
Adding these inequalities for k = 0,1,...n — 1 yields

(Yo — 20, Yo — o) = ne [lyo — o -
This should hold for each n € N, which is impossible.
(iv) The notion of pre-monotonicity is not suited to linear operators, since
every o-monotone linear operator 7' : X — X* is in fact monotone. Indeed, in
this case putting y = 0 in (3.2) we find

Ve e X, (Tz,x)>—0c(0)]lz||- (3.3)

By putting nz instead of z in (3.3) and then using T (nz) = nT (x) one gets
easily

Vre X, (Tz,z)> —JTO)HIH. (3.4)

By taking the limit in inequality (3.4) as n — oo we get (Tx,z) > 0. Replacing
z by x — y we conclude that

Ve,ye X, (Tz—Ty,x—y)>0.

This means that T' is monotone.

(v) Every globally bounded operator is pre-monotone. Assume that T is
globally bounded. Then there exists M > 0 such that ||z*| < M for all (z, z*) in
grT. Now by setting o(y) = 2M for all y € dom T, we infer that T is pre-
monotone. Note that if 7" and S are o;-monotone and oo-monotone respectively,
such that dom T'Ndom S # (), then by taking o = o1 + 05 on the dom T Ndom S
one can get T+ S is o-monotone.

(vi) From (ii) and (v) we deduce that if S is monotone and R is globally
bounded then T'= R + S is pre-monotone.

(vii) A o-monotone operator is maximal o-monotone if and only if, for every
operator 77 which is ¢’-monotone with grT C gr7” and o'(z) < o(z) for all
x € domT, one has T = T". ¢

The following proposition is an easy consequence of Zorn’s lemma, as for
monotone operator.

Proposition 3.3 Every o-monotone operator has a maximal c-monotone ex-
tension.
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Note: As it was pointed out in [71, page 817] maximal pre-monotonicity
must refer to a given o. As in [71], if we define a maximal pre-monotone
operator as a pre-monotone one whose graph is not properly contained in the
graph of another pre-monotone operator, then with this notion, no operator
would be maximal premonotone. For instance, assume that 7 : X — 2%
is any pre-monotone operator which satisfies (3.1) for a given 0. Now define
T, : X = 2% by T, (z) =T (x) + B(0,n) for n = 1,2, ... where B (0,n) is the
closure of B (0,n). Then by part (vi) of Remark 3.2, T,, is pre-monotone with
on =0+ 2n and grT, C gr7T,41 for n € N. Thus gr7,, is an increasing chain
and U2, grT,, = X x X* and the operator with this graph is not pre-monotone.
Thus, with this notion of maximal pre-monotonicity there would be no maximal
pre-monotone operators.

Definition 3.4 Let A be a subset of X. Given a mapping o : A — R4, two
pairs (z,z*), (y,y*) € A x X* are o-monotonically related if
(z* —y" z —y) > —min{o(z), o(y) |z -yl
The proof of the following proposition is obvious.
Proposition 3.5 The o-monotone operator T : X — 2% is mazimal o-mono-
tone if and only if, for every point (zo,x5) € X x X* and every extension o’

of o to domT U {xo} such that (xg,x) is o’ -monotonically related to all pairs
(y,y*) € gr T, we have (xg,zf) € grT.

Given an operator T : X — 2% | we define the function o7 : dom7T —
R4 U {+o0} by
or(y) =inf{a e Ry : (2" —y*w —y) = —alz —yl|,V(z,2") € gr T, y" € T(y)}.
Note that if the operator T is pre-monotone, then
or =inf{o : T is o-monotone}

and thus o7 is finite, and T is op-monotone. Also in this case, it is obvious that

W X € X\{y},(E* c T(w),y* c T(y)},O}
(3.5)

(see also [71]). The following result is due to [71] but we include a proof for the

or(y) = max {Sup{

convenience of the reader.

Proposition 3.6 Let an operator T be given.

(i) or is finite and T is op-monotone, if and only if T is o-monotone for
some o.

(i) or is finite and T is mazimal op-monotone, if and only if T is maximal
o-monotone for some o.
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Proof. We have only to prove that whenever T' is maximal o-monotone for some
o, then it is maximal op-monotone. Assume that S : X — 2X" is ¢/-monotone
with grT C gr S and ¢’ an extension of op. Since ¢/ = o7 < o on dom T, by
Remark 3.2 part (vii) we get that S = T. Hence, T is maximal op-monotone.
This completes the proof. m

Proposition 3.7 Every mazimal o-monotone operator T is convex-valued and
weak* -closed valued. Moreover, if o is defined and usc at some point xo in
cldom T, then T is sequentially normx weak*-closed at x.

Proof. Let T : X — 2% be a maximal o-monotone operator and (z, z*), (z, z3)
in grT, A € [0,1]. Then for each (y,y*) € gr T,

A+ (1 =Nz =y e —y) = Mat —y o -y + (1 - A)(ez -y 2 —y)
> —Amin{o(z),0(y)}z -y
— (1= A)min{o(z),o(y) }Hz -yl
= —min{o(z), o (y)} |z -yl
That is, (x, Az 4+ (1—A)x3) is o-monotonically related with all (y, y*) € gr T'.
Now, it follows from Proposition 3.5 that (z, Az} + (1 — X)xb) € grT which

implies that T'(x) is convex.
Assume that z* is in the weak*-closure of T' (x). Then there exists a sequence

¥ in T (x) such that a7 S 2*. For each (y,y*) € gr T we have

(x;, —y*x —y) > —min{o(z),0(y)}z - yl|.

Passing to limit when n goes to oo, the preceding inequality implies that

(z" —y"w —y) > —min{o(z), o(y) |z - yl|

Thus (x,2*) € gr T. This means that T'(z) is weak*-closed.

We now show sequential closedness: suppose that (z,,

) is a sequence in

grT such that z,, = zo and % xg. It follows from the o-monotonicity of T’
that for each (y,y*) € grT we have

(x;, —y" an —y) > —min{o(za), 0 (y) }zn — yll

By taking limits in the above inequality and using the upper semicontinuity of
o at xg we get

(x5 —y" 20 —y) > —min{o(zo),a(y)}Hzo — Yyl

which implies that (zo,{) is o-monotonically related with all (y,y*) € grT.
By using Proposition 3.5 we deduce that (zg,zf) € grT. m

We note that, as for monotone operators, in general gr 7" is only sequentially
normx weak*-closed, not normxweak*-closed [29]. However, we will see in the
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next section that maximal o-monotone operators are actually usc in the interior
of their domains.

The assumption of upper semicontinuity of o cannot be omitted from Propo-
sition 3.7, as the following example shows. This is also an example of a pre-
monotone operator which is not e-monotone. Note that for T': R — R we
have

or(y) = max {Sup {T(z) -T(y)} -Sup {T(y) - T(Jﬁ)}} : (3.6)

<y
Example 3.8 We define the functions ¢,0 : R — R by

() = rsin?z if x>0,
)= 0 if x<0,

and
o(x) = max{p(e), max p(2) — (o)}

We show that ¢ is o-monotone, i.e., for all z,y € R the following inequality
holds:

(p(z) =) (z —y) =2 —min{o(z), o (y)} |z —yl.
We may assume without loss of generality that x < y, so we have to prove
that p(z) — ¢(y) < min{o(z),o(y)}. Indeed,

p(x) —o(y) < p(z) < o(x)
and

o(r) —p(y) < glgg@(Z) —p(y) <o(y)

so ( is o-monotone. Note that ¢ is not e-monotone since

(p(z) = »(y)) sgn (z — y)

is not bounded from below (take y = 2km + 7/2, x = 2km + 7 for large k € N).
We now change ¢ and o at one point: define T, 07 : R — R by

T(z) { o(z) %f xf? and o1 () { o(x) %f x # 3

One can readily show that T" is o;-monotone.

Now let T" be a maximal o1-monotone extension of T'. Its graph is not closed;
indeed (7/2,7/2) belongs to the closure of grT. However, it does not belong to
grf since it is not o1-monotonically related to (m,0) € gr T: since

o1(m) = maxp(2) > p(r/2) = 7/2,

z<m
one has

(g —0) sgn(g ) = —g < —% = —min{al(g),al(ﬁ)}. A
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Note that in Proposition 3.7 we observed that if T is o-monotone and o is
usc, then gr T is sequentially norm xweak*-closed. Moreover, in Example 3.8 it
is shown that upper semicontinuity of o cannot be omitted from the statement of
Proposition 3.7. Now in the following (in case X = R) we show that closedness
of the graph of a o-monotone and single-valued operator 7" implies the continuity
of or in case T is single-valued.

Lemma 3.9 Assume that T : R — R is o-monotone. Then T is locally
bounded. Moreover, if gr'T' is closed, then T is continuous.

Proof. First we show that T is locally bounded on R. Assume that a < b.
Note that

7o) = max {sup (T(@) = T(0)} sup (T(0) - T} |
<y T2y

Thus o7 (b) > sup,«, (T (z) =T (b)) and so T (z) < o (b) + T (b) for all z < b.

i.e., T is bounded above on (—o0,b]. Likewise, o (a) > sup,<, (T (a) — T (z)).

Therefore, T (x) > T (a) —or (a), that is T is bounded below on [a, +00). Hence

T is bounded on every interval [a, b].

Now assume that gr T is closed but it is not continuous. Then there exists a
sequence {x,} in R converging to some z, such that {T(z,)} does not converge
to T'(z). Thus there exists ¢ > 0 such that |T'(z,) — T'(x)| > ¢ for infinitely
many n € N. Since T is locally bounded, there would be a subsequence (which
we denote again by {T'(x,)} for simplicity) converging to a point a € R such
that |a — T'(z)| > e. This means that (x,,T(z,)) — (z,a) # (z,T(z)), thus
contradicting the fact that T is closed. m

Proposition 3.10 Suppose that T : R — R is o-monotone and gr'T is closed.
Then o is continuous.

Proof. For the continuity of or it is enough to show that sup, <, {T'(z) — T'(y)}
and sup,~, {T'(y) — T(x)} are continuous as functions of y. First we show that
sup,<, {T'(z) — T'(y)} is continuous. By the above lemma 7" is continuous. So
it is enough we prove that f (y) = sup,<, T(x) is continuous. The continuity of
T implies that T is locally uniformly continuous. Let yy € R. For a given £ > 0
there exists § > 0 such that

€
T (2) =T (yo)l < 5V & [yo — 3,50 +9]. (3.7)
Set A= [yo — 3,50 + £] and take y € A. It follows from (3.7) that

sup T (z)— sup T(z)|<e. (3.8)

z€A,z<y z€A,z<yo

Note that

fly)=supT (x) = max{ sup T(x), sup T (x)}

<y z<yo—% yo—3$<a<y
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and

f(yo) = sup T (z) = max { sup T (xz), sup T(a:)}

z<yo z<yo—3% yo—35 <z<yo

For simplicity in calculations, set

a= sup T(x), b= sup T(x) and c¢= sup T (z).
z<yo—3 yo— S <z<y yo— 5 <z<yo

Therefore f(y) = max{a,b} and f(yo) = max{a,c}. Using (3.8) we infer
that|b — ¢ <&, i.e.,
—e+c<b<e+c

which implies
max{c — ¢,a} < max{b,a} < max{e + ¢, a}. (3.9)
On the other hand,
—& + max{c,a} = max{c—e,a — ¢} < max{c—e¢,a} (3.10)

and
max{e + ¢,a} < max{e + ¢,a + ¢} = max{c,a} +e. (3.11)

Combining (3.9), (3.10) and (3.11) we obtain
—e 4+ max{c,a} < max{b,a} < max{c,a} + ¢,

so |f(y) — f(yo)| < e. This means that f is continuous. In a similar manner
one can get sup, >, {7'(y) — T'(z)} is continuous. m

So the question naturally arises: Can we extend the above result to more gen-
eral spaces? For instance, given a pre-monotone operator 7' with norm x weak*-
closed graph, is o usc?

3.2 Local Boundedness and Related Properties

In this section we will point out the connection between locally boundedness of
o-monotone bifunctions and o-monotone operators. Also, we will prove a gener-
alization of the Libor Vesely theorem: if 7" is maximal pre-monotone, cldom T'
is convex and T is locally bounded at zg € cldomT, then xy is an interior
point of domT'. Moreover, we will see some properties of o-monotone operators
can be more easily investigated through the use of o-monotone bifunctions that
we now introduce. Let X be a Banach space, C' a nonempty subset of X and
0 :C — R, be amap. A bifunction F': C x C — R will be called o-monotone
if

Vo,y e C, F(z,y)+ F (y,x) < min{o (z),0(y)}Hz — v (3.12)

Equivalently, F' is o-monotone if

Va,y € O, F(x,y)+ F(y,z) <oy)llz—yl- (3.13)
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This notion is a generalization of the notion of monotone bifunction intro-
duced in Chapter 2, where o is identically zero.

Given any bifunction F': C x C' — R, we define as in Chapter 2 the operator
AP X 52X by

APy = [ 7 EX W ECF (wy) 2 oy~ o)} fzeC,
0 ifx ¢ C.

Note that in case F(z,z) = 0 for all x € C, one has AF(z) = 0F(z,-)(z)
(the subdifferential of the function F'(z,-) at x).

Proposition 3.11 For a o-monotone bifunction F, AF is o-monotone.

Proof. Let x* € A¥(x) and y* € A (y). By the definition of A,
F((E,y) > <x*ay - £L’>

and

From these inequalities we obtain
(" —y" e —y) 2 —F(z,y) = F (y,2) 2 —min{o (z),0(y) }z — y||.

This means that A is o-monotone. =

Definition 3.12 A o-monotone bifunction F' is called maximal o-monotone if
AF s mazimal o-monotone.

For a given operator T : X — 2% as in Chapter 2 we define G : dom T x
domT — RU{+o00} by Gt (%,y) = Sup,« () (v*,y — x). For each z € dom T,
Gr(z,-) is Isc and convex, and Gr(x,z) = 0. The following result shows that
Gr is actually real-valued whenever T is o-monotone, and establishes some
relations between o-monotonicity of G and T

Proposition 3.13 Let T be an operator. Then the following statements are
true.

(i) If T is o-monotone, then Gr is a real-valued, o-monotone bifunction.

(i1) If T is mazimal o-monotone, then G is a mazimal o-monotone bifunc-
tion and AST =T.

(iii) Suppose that T is a o-monotone operator with weak®-closed convex val-
ues and domT = X. If Gr is mazximal o-monotone, then T is mazximal o-
monotone.

Proof. (i) Let T : X — 2% be o-monotone. Given z,y € domT, for every
z* € T(x) and y* € T(y), we have

(@" —y"w—y) > —o(y)le—yl.
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Thus
Wz —y)+ (2" y—a) <olyllz—yl.
This implies that

sup (y*,z —y)+ sup (z%,y—x) <o(y)lz -yl
y* €T (y) o* €T (x)

Form here we conclude that

Va,y € domT, Gr(z,y)+Gr(y,x) <o(y)|lz -yl

Consequently, Gr (z,y) € R for all z,y € domT and Gr is a o-monotone
bifunction.
(ii) Let (z,2*) € grT. For every y € C we have
GT(:C,Z/>: sup <x*ay71‘> Z <Z*7y71'>
z*€T(x)
This means that z* € AT (2); i.e., T(z) € AT (z). It follows from Proposition
3.11 and part (i) that A97T is o-monotone. Since T is maximal o-monotone,
we conclude that T = A®T,
(iii) Since G is maximal o-monotone by assumption, AT is maximal o-
monotone. Let 2 € X and z* € A97 (z). Then
Gr(z,y) = suwp (¢%y—12)> (=5 — 2.
x*€T(x)
Now, the separation theorem [see Chapter 1, Corollary 1.9] implies that z* €
T (z). Thus, gr A7 C grT. This implies that T = AT and T is maximal
o-monotone. M

Remark 3.14 Given a maximal o-monotone bifunction F', according to Propo-
sition 3.13, we can construct A" and the o-monotone bifunction G := G 4r. One
has G(z,y) < F(x,y) for all 2,y € dom A, Tt follows from Proposition 3.13
that A" = A%, However (as it was noted in Chapter 2), Example 2.5 of [64] im-
plies that the correspondence F — A¥ is not one to one, even for the monotone
case 0 = 0. ¢

We now generalize the definition of locally bounded bifunctions (see Defini-
tion 2.14 from Chapter 2).

Definition 3.15 A bifunction F : C x C — R is called:

(i) Locally bounded at (xg,y0) € X x X if there exist an open neighborhood
V' of xg, an open neighborhood W of yo and M € R such that F(x,y) < M for
all (z,y) € (VxW)N(C xC).

(i) Locally bounded on K x L C X x X, if it is locally bounded at each
(r,y) € K x L.

(iii) Locally bounded at zg € X if it is locally bounded at (xq, zo), i.e., there
exist an open neighborhood V' of xo and M € R such that F(z,y) < M for all
z,y e VndC.

(iv) Locally bounded on K C X, if it is locally bounded at each x € K.
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If a bifunction (not necessarily o-monotone) F' : C' x C — R is locally
bounded at zg € int C, then A is locally bounded at zo [Chapter 2, Remark
2.15]. Consequently, if T is an operator such that Gr is locally bounded at
7o € intdom T, then T is locally bounded at zq since T(x) C A%T(x) for all
z € X. As in Chapter 2, this will be the main instrument for showing local
boundedness of operators.

We will show that o-monotone bifunctions are locally bounded in the interior
of their domain, under mild assumptions. In case X = R™ we can give a
constructive proof.

Proposition 3.16 Let X = R™ and C C R™. Assume that F : C x C' — R
is o-monotone and F(z,-) is lsc and quasi-convez for every x € C. Then F is
locally bounded at every point of int C' x int C.

Proof. Let (zg,y0) € intC x int C. Since the space is finite-dimensional,

we can find z1,29,...,2, € C such that V := co{z1,22,...,2m} C C is a
neighborhood of yy. Let U C C be a compact neighborhood of zg in C. Set
My = mingey F(2g,x); the minimum exists since F(zg,-) is lsc. For every

x € U,y €V we find, using quasi-convexity of F(x,-) and o-monotonicity of F:
F(z,y) < max F(x,z
( ’y)_lgkgm ( ’ k)

< — _
< max {o(a) 2 - 2l ~ F (a1,2))

< - —My).
_lgcfgxma(zk)zezgfev\lz wllﬂgggm( k)

Since U and V are both bounded, sup, ¢ ey ||z — wl| is finite. This com-
pletes the proof. =

For the general case of a Banach space X, we will apply Lemma 2.18 from
Chapter 2.

Theorem 3.17 Suppose X is a Banach space, C is a subset of X and F :
C x C = R is a o-monotone bifunction such that for every x € C, F(x,-) is lsc
and quasi-convex. Further, suppose that for some xq € C' and yg € int C' there
exists € > 0 such that B(yo,e) C C and for each y € B(yo,¢€), F(y,-) is bounded
from below on B(xg,e) NC (note that this bound may depend on y). Then F is
locally bounded at (o, yo)-

Proof. Let € > 0 be as in the assumption. Define g : B(yo,¢) = RU {400} by
g(y) :=sup{F(z,y) : ¢ € B(xg,e) N C}.
For every y € B(yo,¢) and x € B(xg,¢) N C, o-monotonicity of F' implies
F(z,y) < min{o(z), o (y)}|z -yl = Fy,z) < oy)(e + [ly — zoll) — M,

where M, is a lower bound of F(y, -) on B(z,c)NC. Therefore, g is real-valued.
On the other hand, g is Isc and quasi-convex and also yy € int dom g. By Lemma
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2.18 from Chapter 2, there exists 0 < £ and M € R such that g(y) < M for all
y € B(yo,0). Then by the definition of g we get F(x,y) < M for all y € B(yo, J)
and © € B(xg,d) NC; i.e., F is locally bounded at (zg,yo). ®

The condition “F(y, -) is bounded from below on B(zg,c) NC” can be easily
removed by imposing some usual assumptions on the bifunction F' or the space
X, as shown in the following two results.

Corollary 3.18 Suppose X is a reflexive Banach space, C is a subset of X and
F:CxC — R is a c-monotone bifunction such that for every x € C, F(x,-) is
Isc and quasi-conver. Then F is locally bounded at every point of int C' X int C.
If in addition C is weakly closed, then F is locally bounded on C' x int C.

Proof. Let ¢ € int C. Choose ¢ > 0 such that B(xg,e) C C. By assumption
F(x,-) is Isc and quasi-convex, so it is weakly Isc. For every y € C, F(y, -) attains
its minimum on the weakly compact set B(zg,¢) and so F(y, -) is bounded from
below on B(xg, ). Therefore, all conditions of Theorem 3.17 are satisfied. Thus
F is locally bounded at every point of int C' x int C'.

If in addition C is weakly closed, then for any 2y € C and € > 0, B(xg,&)NC
is weakly compact and we can repeat the previous argument. m

Corollary 3.19 Suppose X is a Banach space, C is a subset of X and F :
C x C = R is a o-monotone bifunction such that for every x € C, F(x,-) is lsc
and convezx. Then F is locally bounded at any point of C' x int C.

Proof. Let g € C and yg € int C. Choose € > 0 such that B(yg,e) C C.
For every y € B(yo, €), the subdifferential of OF (y, -) is nonempty at y. Choose
y* € OF (y,)(y). Then for every x € B(xg,&) N C one has

Fly,z) = Fly,y) =2 (e —y) = =y lz =yl = = [ly"[ (¢ + [lzo =yl

Thus F(y,-) is bounded from below on B(zg,c) N C. By Theorem 3.17, F is
locally bounded at (zg,yo). ®

We immediately obtain a generalization of Proposition 3.5 in [71] to general
Banach spaces:

Corollary 3.20 Suppose that X is a Banach space and T : X — 2X" is a
pre-monotone operator. Then T is locally bounded at every point of int dom T'.

Proof. Apply Corollary 3.19 to Gr. =

Corollary 3.21 (Rockafellar) FEuvery set-valued monotone operator T from X
to X* is locally bounded on intdomT'.

For maximal o-monotone operators, there is a kind of converse to Corollary
3.20, generalizing the Libor Vesely theorem [see Chapter 1 Theorem 1.40]. We
first show:
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Lemma 3.22 If T is mazimal o-monotone, then for all x € domT one has
T (2) + Ngomr () C T (2).

Proof. Take w* € Ngomr (2) and define

_ T (x) if v # 2,
Ty (=) _{ T(z)+Ryw* ifz=z

Then T (z) C T (x) for all € domT. For z* € T'(2), y* € T (y) and A > 0,

("M =y z—y) ="~y 2 —y) + Mw 2 —y)
> —min{o(z),0(y)} Iz —yll.

Thus T is o-monotone. By the maximality of T' we get T' = T3, which completes
the proof. m

Theorem 3.23 Suppose that T is mazimal o-monotone, o is defined and usc
on cldomT. Let xg € cldomT'. If T is locally bounded at xg, then o € domT.
If in addition cldomT is convex, then zy € intdom 7.

Proof. Since T is locally bounded at xq, there exists a neighborhood U of
xo such that T'(U) is bounded. Choose a sequence {z,} C (domT)NU such
that ©, — x¢ and choose =}, € T (z,,). It follows from Alaoglou’s theorem [see
Chapter 1, Theorem 1.11] that there exist a subnet {(x4,z%)} of {(zn,2%)}

[e3

and zf € X* such that z, v xg. Therefore for all (y,y*) € grT, by upper
semicontinuity of o,

(x0 —y" w0 —y) = lim{zg, —y*, 20 —y)

v

— limasup min{o (z4),0 (¥} ||za — yl|
> —min{o (z9),0 ()} |[zo — yll-

Thus (9, z§) is o-monotonically related with all (y,y*) € grT. So z§ € T (x0)
and xg € domT.

Now let cldom T be convex. We will show that U C intcldomT. Indeed,
if not, then U contains a boundary point of cldom 7. By the Bishop-Phelps
theorem (see [91, Chapter 3]) it will also contain a support point of cldom T,
i.e., there exist z € U NcldomT and 0 # w* € X* such that

(w*, z) = sup{{w*,y) : y € cldom T'}.

We know that T is locally bounded at z, hence z € domT. On the other hand,
w* € Ngom7(2), thus the cone Ngom 7(2) is not equal to {0}. Then Lemma 3.22
shows that T'(z) cannot be bounded, a contradiction.

Thus U C intcldomT. Since T is locally bounded on U, we obtain U C
dom T, hence xy € intdom7T. m

We now deduce some properties related to local boundedness.
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Proposition 3.24 Suppose T : X — 25 is mazimal o-monotone and o is usc.
Then

(i) The operator T is usc in intdomT from the norm topology in X to the
weak* -topology in X*;

(ii) If X is finite-dimensional, then for every y € intdom T, or(y) is given
by the following formula:

x* — y*’ y—x * *
oT(y)Zsup{W:x#y,(x,x )eegrT,y GT(?J)}- (3.14)
Proof. Fix y € intdom 7. To show upper semicontinuity at y, it is sufficient
to show that for any net {(ya,y%)} in gr 7" such that y, — y in X, there exists
a weak*-cluster point of {y’} in T'(y). Since T is locally bounded at y we may
assume that both {y,} and {y*} are bounded and, by selecting a subnet if

necessary, y* — y*. Since {y}} is bounded, we have

(Yor Ya) = YY) -

As in the proof of Proposition 3.7 we deduce that y* € T'(y).

To show part (ii), choose any sequence {z,}nen C domT converging to
y with y # x,, and let 2} € T'(z,). Then the sequence {z}} is bounded. By
selecting a subsequence if necessary, we may again assume that z;, — z* € T'(y).
Since

SUP{W X # Y, ({E,I*) € ngvy* € T(y)}

<z; — 2"y — xn>
ly — @l
=l = 2" =0,

Y]

v

relation (3.14) follows from relation (3.5). m

Next we show that under appropriate conditions, a o-monotone bifunction is
not only locally bounded, but also bounded by a small number in a neighborhood
of any interior point. This is a consequence of the following more general result.

Proposition 3.25 Suppose that F : C x C — R is a o-monotone bifunction
such that F(x,xz) =0 for all x € C. Assume that F(x,-) is lsc and convex for
each x € C and o is usc. If vy € int C, then there exist an open neighborhood

V of g and K € R such that F(y,z) < K ||z — y|| for allz € V and y € C.

Proof. From F(z,x) = 0 for all € C, we infer that A (z) = OF(z,-)(z).
Since F(z,-) is Isc and convex, the subdifferential of F(z,-) at each z € intC
is nonempty-valued. Thus int C C dom AF', so the o-monotone operator AF" is
locally bounded at xy. Therefore, there exist an open neighborhood V3 C C of
zg and K; € R such that ||z*|| < K; for all 2* € AF(z), x € V4. Since o is usc
at xg, it is bounded from above by a number K5 on a neighborhood V5 of zg.
Then for each y € C and x € V := V; N Va, if we choose z* € A (z) we get

Fly,z) < =F(z,y) + o(z) ly — z|
< =@ty —2) + Koy —of| < (Ko + Ky) [ly — 2|

and the proof of the proposition is complete. m



3.3. PRE-MONOTONICITY AND RELATED RESULTS 53

3.3 Pre-monotonicity and Related Results

In this section we generalized Theorems 1.42 and 1.43 form Chapter 1 to o-
monotone operators. In addition, we extend Theorem 2.29 from Chapter 2.
Moreover, we introduce the notion of o-convexity and we investigate some fur-
ther results.

Let the operators T, S : X — 2% and a map o : dom7 Udom S — R, be
given. Then T (respectively S) is o-monotone with respect to this o if for every
x,y € dom T (respectively z,y € dom S), 2* € T (x) and y € T (y) (respectively
x* € S(x) and y* € S (y)) relation (3.1) is satisfied. Roughly speaking, when
we consider two operators and say that they are o-monotone with respect to
the same function o, we tacitly assume that ¢ defined on the union of their
domains.

Next theorem is an extension of Theorem 1.42 from Chapter 1 to o-monotone
operators. The idea of the proof was first used for monotone operators by A.
Verona and M. E. Verona [113] and then by J. M. Borwein [25].

Theorem 3.26 Let X be a Banach space and let S and T : X — 2% be
o-monotone operators. Suppose that

0 € core[codom T — codom S]. (CQ)

Then there exist r,c > 0 such that, for any x € domT Ndom S, t* € T(z) and
s* e S(x),

max(|[t*][, [|s"[]) < e(r + [|2|[)(2r + [|t" + ™).
Proof. Consider the function

(z*,x — 2)

) = su

2 (z,2%) € ng} .

pr is 1sc and convex as supremum of affine functions. If € dom T, z* € T ()
then for all z € domT and z* € T (z) we have

(z5x—2) (zF—a*x—2) (z5x—2)

= +
ENE] EE] N E]
min {0 (¢), 0 ()} aillz =zl
< B2 e = 2l1 + [l 1o
e e

IN

(a4 min o () o 61 (2l 12
< (1"l + 0 @) (lal] + 1)

which shows that p,. (z) < +o0, that is dom T C dom p,.. Since p,. is convex we
conclude that codomT C dom p,.. Likewise, we get codom S C dom p,. Thus

codomT — codom S C dom p,, — dom p, (3.15)
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The assumption and (3.15) imply that 0 € core (dom p,. — dom p;). Therefore
X =Uy2 yn(dom p, — dom pg)
= Unly U2y n({z : pr () <y [ < i} — {2 ps(z) <, [z < d}).

By the way {z : p,.(x) <4, ||z|| < i} and {z : ps(z) <4, ||z|| < i} are closed, con-
vex and compact so ({z : p,.(x) <4, ||z|| < i}—{x: ps(x) <4, ||z]| < i})is closed
and convex. By the Baire category theorem [see Chapter 1 Corollary 1.3] there
exists 7 € N such that

int ({z : p,.(2) < i [|z]] < j} = {22 ps(@) <G [[2l] < 53) # 0.
Set S = ({2 py (2) <, loll <} — {w po(w) <, llall < 3}). Pick up any
z1 € S; and x2 € X such that 0 € co{z1,22}. Choose
r > max {Jv Pr ($2),ps($2)}

then 0 € int S,.. Thus there exist € > 0 such that
B(0,e) € ({z:pr(x) <zl < v} —{z:ps(z) < flzf[ <)) (3.16)

Let now z € B(0,¢), € domT Ndom S, t* € T(x) and s* € S(x). Then
z=a—bwhere p,.(a) <r, |la|]| <r, psb) <7, ||b]] <r. We have

tz)y=(t"a—x)+(s"b—z)+ (t*" + s, 2 —b)
< prla) (X +|lz]]) + ps(0) (L + [lz]]) + [[t* + s™[[([|2]] +7)
< (r+lzf]) 2r + 27 + 7))
From here it follows that

2 t* *
e < CHIED e 471D 517)

Likewise ) " .
o < Ol £l 9

Set ¢ = 1, now (3.17) and (3.18) imply that desired assertion. m
In the following we recall the Krein-Smulian theorem.

Theorem 3.27 (Krein—-Smulian) Let X be a Banach space. A convex set in
X* is weak*-closed if and only if its intersection with B (0,¢) is weak*-closed
for every e > 0.

We recall that a set A C X* is bounded weak™-closed if every bounded and
weak*-convergent net in A has its limit in A. The Krein—-Smulian theorem
obviously implies the following.

Corollary 3.28 A convez set in X* is weak™-closed if and only if it is bounded
weak*-closed.
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The following result extends Theorem 1.43 from Chapter 1 to o-monotone
operators. Our proof is very close to the proof of A. Verona and M. E. Verona
in [113)].

Proposition 3.29 Let X be any Banach space and let S, T : X — 2% be maa-
imal o-monotone operators. Suppose that

0 € core[codom T — codom S].

For any © € domT Ndom S, T'(x) + S(x) is a weak*-closed subset of X*.

Proof. Since T and S : X — 2% are maximal o-monotone by Proposition
3.7 we infer that T'(z) and S (z) are convex. Therefore T (z) + S (z) is also
convex. By Corollary 3.28 it is suffices to prove that T (z) + S (z) is bounded
weak*-closed, that is, every bounded weak*-convergent net in T (z) 4+ S (z) has
a limit in T (2) + S (2) .

Let {tI} C T (z) and {sf} C S(z) be nets such that {t} + sf} is bounded
and weak*-convergent to z*. By Theorem 3.26,

max(|[£7]], [ 1) < e(r + [le|)(2r + [[7 + s71])-

Thus the nets {t } and {s}} are bounded. So they are relatively weak*-compact.
By replacing them with subnets we may assume that weak*-limit ¢; = ¢ and
weak”*-limit s7 = s. Since 1" and S are maximal o-monotone, Proposition 3.7,
T (z) and S (z) are weak*-closed. Therefore t* € T (z) and s* € S(z). Then
Zr=tr+s"e€T(2)+S5(z). m

Assume that F' and G : C' x C' — R are two og-monotone bifunctions and
a > 0. Then the bifunctions aF and F 4 G are defined from C' x C to R by
(aF) (2,5) = - (F (z,y)) and (F + G) (z,y) = F (z,y) + G (z,1) .

Proposition 3.30 Suppose that F' and G : C x C — R are two o-monotone
bifunctions. Then F 4+ G is 20-monotone bifunction and oF is ao-monotone
bifunction. Moreover,

AP (2) + A9 (2) c AF*C (2) Va e X. (3.19)
Proof. We have
F(z,y)+ F(y,z) <min{o (z),0 (y)}ly — zl| (3.20)
and
G (z,y) + G (y,2) <min{o (z),0(y)}[ly — 2|l (3.21)

Adding the inequalities (3.20) and (3.21) we deduce
(F+G)(z,y) + (F+G) (y,2) < 2min{o (z),0 ()} |ly — =],

that is, F + G is 20-monotone. Also it follows from (3.20) that aF is ao-
monotone.
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Now suppose that € X. If z € X\C, then the inclusion is trivial. So, let
z € Candz* € (A" + A%) (z). Hence, there exist #] € A (z) and 3 € A (z)
with «* = 27 + x5. Thus

F (;v,y) > <x)1kﬂ Yy— 1‘) Vy € Cv (322)

and
G (z,y) > (23,y —z) VyeC. (3.23)

From (3.22) and (3.23) we obtain

(F+G)(z,y) > (2] + 25,y — x)
=(z*y—x) VyeC,

ie., AF (z) + A% () Cc AT+C (z) forallz € C. m

Note: One can easily verify that if F' is maximal o-monotone, then aF
is also maximal ao-monotone. However, F' 4+ G is not necessarily maximal
20-monotone when F' and G are maximal o-monotone.

The following example shows that the inclusion in (3.19) can be proper.

Example 3.31 Define F,G:R xR — R by F (z,y) = (y — z)° and G (z,y) =
—F (z,y). Then F and G are monotone bifunctions and for each € R we have
AF (z) = A% (z) = ) and AF+C (2) = {0}. A

Definition 3.32 A bifunction F': C x C — R is called cyclically o-monotone
if for any cycle x1,x9,...,Tn+1 = 21 0 C,

n

I~ .
D F(wiwig) < §;mln {o(@i), o (@iv1)} |wi — iga]]-

i=1

It is easy to check that every cyclically o-monotone bifunction is a o-mono-
tone bifunction. Moreover assume that F' is o-monotone (cyclically o-monotone);
if we define

1 .
Fi(z,y) = F(2,y) — g min{o (z),0 (y)} ||lz - yl|
then F is monotone (cyclically monotone) and vice versa.

The following proposition will enable us to obtain the extension of Proposi-
tion 2.29 from Chapter 2.

Proposition 3.33 A bifunction F : C x C — R is cyclically o-monotone if and
only if there exists a function f: C — R such that

Vey€C, Flay) - smin{o(@),0 @)}l -yl < f)-f @), (321)
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Proof. Set
Fi (,9) = F (2,) — 5 win{o (2) 0 )} |2 — yll

Then F is cyclically o-monotone if and only if F} is cyclically monotone. Thus by
Proposition 2.29, Fj is cyclically monotone if and only if there exists a function
f:C — R such that

Fi(zy) < f(y)—f(z) Vzyel. (3.25)

Therefore the inequality (3.25) holds if and only if (3.24) holds. m

Now we are going to introduce the notion of o-convexity. First we recall from
[73] that a function f : X — RU {400} is e-convex if it satisfies the following
inequality for every a,b € X, and X €]0,1]:

fQa+ 1 =X0b) <Af(a)+ (1 =X f(b)+A(1L—A)ella— bl
Definition 3.34 A function f: X — RU {400} is called o-convex if

fQz+ 1 =Ny) <Af(@)+ (1 =A) f(y) + AL = A)min{o (z),0(y)} Hl&?)_2y6|)|
for all z,y € X, and X €]0,1]. '

For a proper function f : X — RU{+oco} the Clarke-Rockafellar generalized
directional derivative at x in a direction z € X is defined by

) —
T (z,2) =sup limsup inf f(y—i——/\u)a
R N u€B(z,6)

where (y, «) 4y & means that y— x,a — f(z)and o > f(y). If fislsc at z,
the above definition coincides with

) —
f1(x,2) =sup limsup inf [y + ) f(y)
050, 4 Ao “EEED A

Here, y 4y & means that y—x and f(y) — f(z). The Clarke-Rockafellar
subdifferential of f at x € dom f is defined by

OFf(x)={a" e X*: (z%,2) < fT(z,2) VzeX}.

Whenever f is locally Lipschitz we have f' (z,2) = f° (x,2), where f° (z,z) is
the Clarke directional derivative at x in a direction z € X which is defined by

£ (2, 2) = limsup Fly+Ar2) — fly)
y—z,AN\0 A

Moreover, the Clarke’s subdifferential of f at z € dom f is defined by
O f (x) ={a* € X*: (x*,2) < f°(x,2) Vze X}.
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Lemma 3.35 Assume that f : X — RU{+o0} is lsc and o-convez. If o is usc,
then

CR rre X (zt ) < fx+z2)— f(x)
g f(x)g{ +min{o (2),0 (2 +2)} ||2]] vZex}'

Proof. For each y,u € X, A €]0, 1] by o-convexity of f we obtain
fly+ru) <Afly+uw)+ Q=N f)+A2A =N min{o(y+u),o)}|ull,
that is,

fly+2u) - f(y)
)

<fly+uw)—f)+0=Nmin{o(y+u),oy)}lull

Let us fix z and x. Take u = z+x —y in the above inequality, so for an arbitrary
4 > 0 we have

fly+ ) —f(y)

limsup inf

yi):v,)\\() u€B(z,0) A
< Timsup fly+Az+2—y) - f(y)
; )
Y=z, AN\0
< Timsup [f (2 +2) — f (5) + (1= Nymin{o (2 +2), 0 ()}H]2 + 2 — ]
yh e, AN0

<f(r+2z)— f(z)+min{o(z),c(z+x)}|?z
Since § > 0 was arbitrary we get
[T (@,2) < fx+2) = f (@) +min{o (2),0 (2 + 2)} |||

We are done. m

The idea and a proof of the above lemma and the following proposition is
in essence contained in [87], where only e-convexity and e-monotonicity were
considered.

Proposition 3.36 Let f : X — RU {+o0} be lsc and o-convex. If o is usc,
then OB f is 20-monotone.

Proof. Assume that z,y € X, * € 9°Ff () and y* € 9°Ff (y). It follows
from Lemma 3.35 that

(% y —x) < f(y) — [ (2) + min{o (2), 0 (y)} ||y — =]

and
"z —y) < f(2) = f(y)+min{o(2),0 @)} |ly — ||

By adding these equalities we get 9“f f is 20-monotone. m
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3.4 Equilibrium Problem and Pre-monotonicity

For a closed convex subset C of X and w € X, the projection of w onto C' is
the set Po(w) ={z € C: |jw—z| < |jw—z||,Vz € C}. If 2 € Po(w) then

e J(w—2z2):Vye O, (w'y—z) <O0. (3.27)
When C is closed and convex and X is reflexive, Po(w) is nonempty. It should
be noted that if X = R™ and we consider the Euclidean norm on R"”, then the
duality map is the identity map and Po(w) is unique provided that C' is closed
and convex.
An operator T : X — 2% is called coercive if

lim infac*ET(m) <$*, £U> - .
]| —o0 (B

We introduce a weaker notion than coercivity: an operator T' will be called
quasi coercive if im |, o0 infy» cp(a) |27 = 00, and

inf .« ¥, T
lim inf —= 6T(z)< ) > —00.
llz]l—o0 ]

Clearly, each coercive operator is quasi coercive. The operator T : R? — R2
defined by T'(a,b) = (—b,a) is quasi coercive without being coercive.

Given a subset C' of X and a bifunction F' : C' x C — R, the equilibrium
problem [8, 23] corresponding to F' and C' is the following;:

find zp € X such that F(xzg,z) >0, for all z € C. (3.28)

If C C X is convex, a function g : C' — R is called semi-strictly quasiconvex
[63] if for all z,y € C' the following implication holds:

g(x) <gly) = VA€, 1, gz + (1-Ny) <g(y).

If g is semi-strictly quasiconvex and Isc, then it is quasiconvex. A lsc function
g is semi-strictly quasiconvex if and only if for all z,y € C and A €]0, 1],

gz + (1= Ny) > g(x) = gz + (1 = N)y) < g(y).

Such functions were called pseudoconver in [71]. We recall the following
theorem, due to Ky Fan.

Theorem 3.37 [50] Let C' be a compact convex set in a Hausdorff TVS. If
F :C xC — R is such that for every x € C, F(z,-) is quasiconvex and for
every y € C, F(-,y) is usc, then there exists xg € C' such that

Vye C, F(xg,y) > 11€1£F(x,x)



60 CHAPTER 3. 0-MONOTONE BIFUNCTIONS AND OPERATORS

From now on X = R".
The following proposition will permit application of Ky Fan’s theorem to

Gr.

Proposition 3.38 Let T : X — 2% be such that intdomT # 0. If T is locally
bounded on intdomT and grT is closed, then T is usc on intdomT and also
for each y € domT, Gr(-,y) is usc on intdomT.

Proof. The first part of the proposition is standard, see for instance the proof
of Proposition 3.24(i). For the second part, we note that for each y € dom T the
function (x,2*) — (z*,y — x) is continuous, so by the well-known “Berge’s Max-
imum Theorem” (see for instance Proposition 1.3.3., page 83 in [67]), Gr(-,y)
isusc. m

We now present a result for equilibrium problems. Given C C X and r > 0,
set Cr ={z e C:|z|| <r}

Proposition 3.39 Suppose that C C X is closed and convex. Let F : C x C' —
R be a bifunction satisfying

(i) F (z,x) =0 forallxzeC;

(i) F(-,y) is usc for all y € C;

(iii) F(x,-) is semi-strictly quasiconvexr and lsc for all x € C;

(iv) there exists r > 0 such that for each x € C\C,, there exists y € C with
lyll < llzl) and F(z,y) < 0.
Then the equilibrium problem (3.28) has a solution.

Proof. Choose r > 0 so that condition (iv) holds, and set s = r + 1. Then
Cs is compact. According to Theorem 3.37, there exists zg € Cs such that
F(zg,z) > 0 for all x € Cs. Then there exists y € C with |ly|| < s such
that F(zg,y) < 0; indeed, if ||zg|| = s we can apply condition (iv), whereas if
lzo|| < s then we can set y = x¢ and use condition (i). In both cases we actually
have F(zg,y) = 0 by the definition of xg.

Now for every & € C we can find A €]0, 1] such that x) := Ay+(1—N)z € C,.
Hence F(xg,x)) > 0. If we assume that F(xzg,z) < 0 then F(xq,y) > F(xg,x
would imply by semi-strict quasiconvexity that F(zg,y) > F(zo,zx) > 0, a
contradiction. Thus F'(zg,x) >0forallz € C. m

The following surjectivity theorem extends Theorem 4.1 in [71] to quasi-
coercive operators.

Theorem 3.40 Assume that T : X — 2% is locally bounded, convez-valued,
grT is closed, and that domT = X. If T is quasi-coercive, then T is surjective.

Proof. Given z* € X*, define F: X x X — R by
F(z,y) = Gr(z,y) = (z",y — z)

for all x,y € X. By using Proposition 3.38 it is easy to check that F' satisfies
(i)-(iii) of Proposition 3.39. We now check the validity of condition (iv).
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Since T is quasi-coercive, we can find r; > 1 and k € R such that

(2%, )

Vx| > 7, V2 € T(x) : T >k, (3.29)
T
and then r > r; such that
Vx| >r: ir%f( : lz*]| > max{0,3]z*| — 2k}. (3.30)
z*ecT (x

For each x such that ||z| > r, choose w} € Pp(;(0). We now apply property
(3.27) of the duality map to the set T'(x) in the space X*. According to (3.27),
since w = 0, J = I we have

Ve* e T(x), (z* —w),wy) >0. (3.31)

By relation (3.30), w} # 0. Set

(= ) -2t
Yz =2 T Nan ) *||
‘ Izl 2[lwsl

Since ||z|| > r > 1, y, satisfies

1
lyell < llell =1+ 5 < l=]].

Note that .
x w
Yo —T=—1—p — s (3.32)
[zl 2wzl
Using successively relations (3.32), (3.29), (3.31), (w*,w*) = |w*||?, relation
(3.30) and w}; € Pr(;)(0), we deduce

F(xaym): sup <x*aym7$>7<2*7yzf‘x>

z* €T (x)
<— inf — (a" x)— inf (2% w})— (2" Y. —
e €T (x) ||zl < ) 2 [Jwi]| m*ET(m)< )= )
1 1
< =k — o (g, w) + 7 (2 2) + 5 (2, wp)
2wzl V" ] 2 [Jwy| ¢

1 1
< —k = il + 127+ 5 1]

<0.

Therefore, condition (iv) in Proposition 3.39 also holds. Hence there exists
zp € X such that for all y € X we have

F(z()uy): sup <y*_Z*7y_ZO> ZO
y*€T(z0)

Since T (zp) is closed and bounded, we get T'(zp) is compact. On the other hand
(- — 2%,y — zg) is continuous on T'(zp), so the supremum is attained at some
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element ¢,,. It follows that for all v € X there exists an element v* = @45, in
T(z0) so that (v* — z*,v) > 0. This means that z* cannot be separated from
the closed convex set T'(zp), so z* € T'(z0) and T is surjective. ®

Theorem 3.40 has many applications. As an example, in Theorem 4.2 of [71]
we can replace the identity operator by a more general operator S.

Theorem 3.41 Assume that T : X — 2X is pre-monotone, convez-valued and
grT is closed, and S : X — 2% is such that gr S closed, convez-valued, locally
bounded and coercive. If domT = dom S = X, then T + S is surjective.

Proof. It is clear that 7'+ S is convex valued. Also, by Corollary 3.20 the
operator T is locally bounded, so T + S is locally bounded. We show that
gr(T + S) is closed. Indeed, let {(x;,2})} be a sequence in gr(T + S) such that
z; — x and 27 — 2*. Let z; = o +y} with 2} € T(z;) and y} € S(z;). Take a
neighborhood U of z such that S(U) is bounded. There exists some N € N such
that for ¢ > N, z; € U; then {y}} is bounded. Thus, by taking a subsequence
if necessary we can assume that {y} converges to some y* € X*. Then z}
converges to x* := z* — y*. By closedness of grT and grS, z* € T(z) and

y* € S(x), ie., z* € (T + S)(x) and gr(T + 5) is closed.
Finally we show that T+ S is coercive. Choose any z{ € T'(0). We estimate

inf (z*,z) > inf (2% z)+ inf (y*, z)

z*€(T+S)(x) z* €T (x) y*eS(z)
> . f * *7 —-0 *7 . f *7
> it ( —afe—0)+ @)+ il ()
= —o(0) ] = [lzgll =]l + inf (y*, z).
y*€S(z)

Since S is coercive, we infer that T 4 S is also coercive. By Theorem 3.40,
T + S is surjective. m
The preceding theorem, together with Proposition 3.7 imply the following:

Corollary 3.42 Let T be mazimal o-monotone with an usc o. If domT = X,
then T + M is surjective for each A > 0.

Proof. According to Proposition 3.7, T is convex-valued. It is also locally
bounded and usc by Proposition 3.24(i), hence it is closed. Since I is defined
everywhere, it is maximal monotone and in particular gr7 is closed, convex-
valued and locally bounded. Also, I is obviously coercive. Now Theorem 3.41
yields the result. m

3.5 Comparison with other Notions

In this section, we will compare some types of generalized monotone operators.
In the next definition S = {z € X : ||z|| = 1}, is the unit sphere of Banach space
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X, and x —. zo means that x converges to x( in direction e, i.e., x — x¢ and
=20 — e. Also, define

lz—ol|

U (z9,e,0) = {xEX:a:7éx0,||xxo <5,‘

o = o] H § 5}_
Xr — X

Definition 3.43 Suppose that T : X — 2X" is an operator. We recall that T
18

(i) e-monotone in the sense of Luc-Ngai-Thera if for a given ¢ > 0 and for
every x,y € domT, x* € T (z) and y* € T (y)

(y* —a*,y —x) > =2lly — zl|.

(#) Submonotone at g € X in the sense of Aussel-Daniilidis- Thibault if for
every € > 0 there exists 6 > 0 such that

(" —a*y —x) > —¢lly — ]

for all z,y € B(x0,9), allz* € T (z) and y* € T (y) .
(i4i) Submonotone in the sense of Georgiev at xy € X if

xo ;éx—>e xo HJ?—J,‘()H
yeT (x),yo €T (x0)

> 0.

Equivalently, T is submonotone at xq if and only if

VeeS, Ve>0 35> 0. ETTOY Vo)
llz — ol

Ve e U (xg,e,0), YyeT(x), VyoeT (x0).
Example 3.44 Define T: R — R by

~1 if x>0,
T("”)_{ 0 if z<0.

It is clear that T is pre-monotone with the constant (continuous) map o (y) = 1.
Thus it is e-monotone in the sense of Luc-Ngai-Thera. But it is not submonotone
in the sense of Aussel-Daniilidis-Thibault. A

Remark 3.45 Assume that ® : R® — R" is a continuous map. Then ® is
submonotone in the sense of Aussel-Daniilidis-Thibault. Indeed, for a given
€ > 0 and g € R” there exists by assumption § > 0 such that for x1, 29 €
B (20,0/2)

1@ (21) — @ (z2) [| <&
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Therefore

(@ (22) = @ (21), @1 — 32) < |[® (1) = P (22) || [[w1 — 2|
< ellxy — zall.

This implies that

(@ (22) — @ (21), 22 — 1) > —¢l[r1 — 22]|.

Thus ® is submonotone. ¢

Note that since the function ¢ which is represented in Example 3.8 is con-
tinuous, the above remark implies that ¢ is submonotone in the sense of Aussel-
Daniilidis-Thibault and we know that it is not e-monotone in the sense of Luc-
Ngai-Thera.

We now represent an example, that is submonotone in the sense of Georgiev
but it is not pre-monotone.

Example 3.46 Define the function 7: R — R by

T(I){ 0 if z<o0.

Then T is submonotone in the sense of Georgiev [55, Example 1.3]. But it is
not pre-monotone. To show this, suppose that there exists ¢ : R — R, such
that T is pre-monotone. Take y =1 and 0 < x < 1. Then we have

<11> 1-2)>—-0(1)(1—2).

X

This implies that z > —% If we choose = =

o then we have

1
2+0(1)

1 S 1
240(1) " 140(1)

= 2< 1.

This is a contradiction. A



Chapter 4

Fitzpatrick Transform

Most of the results of the Sections 2 and 3 in the present chapter are based on
[4]. In this chapter we will introduce the notion of normal bifunction. Also,
we will present a new definition of monotone bifunctions, which is a slight gen-
eralization of the original definition given by Blum and Oettli, but which is
better suited for relating monotone bifunctions to monotone operators. In this
new definition, we will introduce the Fitzpatrick transform of a BO-maximal
monotone bifunction so as to correspond exactly to the Fitzpatrick function of
a maximal monotone operator in case the bifunction is constructed starting from
the operator. Whenever the monotone bifunction is lower semicontinuous and
convex with respect to its second variable, the Fitzpatrick transform permits to
obtain results on its maximal monotonicity.

We now outline the contents of this chapter. After describing our motivation
in the first section, in the second section we will define normal bifunctions and
their monotonicity and then we will portray their properties. A central result
of this section is that an operator with weak*-closed convex values is maximal
monotone if and only if the corresponding bifunction is BO-maximal monotone.

In Section 3 we will introduce the notion of Fitzpatrick transformation and
we will derive some consequences of this notion. Indeed, we will prove that
at each point (x,2*) € X x X*, the Fitzpatrick transform of a BO-maximal
monotone is greater than or equal to (z*,z); and equality holds if and only
if (z,z*) belong to the graph of corresponding operator, an analogous prop-
erty of the Fitzpatrick function of a maximal monotone operator. Moreover, in
Proposition 4.12 we will find a link between the Fitzpatrick transform and the
Fitzpatrick function. In addition, we will define the upper Fitzpatrick trans-
form and will see that in conjunction with the Fitzpatrick transform, it is very
useful in our analysis. In particular we will prove that the maximality of A%
and BO-maximality of F' are equivalent whenever the space is reflexive, and F
is Isc and convex with respect to its second variable. The other theme of Sec-
tion 3 is characterizing the BO-maximality through some equivalent statements
in Theorem 4.19. In Section 4, we make use of the notion of pair and partial
convolutions. We will find an upper bound for the Fitzpatrick transform of a

65
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sum of two monotone operators, and then will deduce an inequality for the Fitz-
patrick transform of a monotone bifunction which is subadditive with respect
to its second variable. The final result of Section 4 will extend the Fitzpatrick
inequality of operators to Fitzpatrick transforms. In Section 5 we will consider
some existence theorems. The proof of these results are based on ideas of Blum
and Oettli in [23]. In fact, we will generalize their theorems to BO-maximality.
In Section 6 we will collect various examples concerning the Fitzpatrick trans-
form of bifunctions. In Section 7 we will introduce the notion of n-cyclically
monotone and BO-n-cyclically maximal monotone bifunctions. Also, we will
bring forward their relation to n-cyclically monotone operators. Afterwards, we
will prove a theorem for BO-n-cyclically maximal monotone bifunctions which
is similar to the corresponding theorem of Fitzpatrick functions. Subsequently,
we will generalize some results from Section 3 to cyclically monotone bifunction.
Finally, we will include some examples in the last section of this chapter.

4.1 Motivation

Given a nonempty subset of a Banach space X, the term “monotone bifunction”
on C is often used (as we did in the previous chapters) for functions F' : CxC —
R such that

F(z,y)+ F(y,z) <0, Va,yeC.

Starting from the paper by Blum and Oettli [23], monotone bifunctions were
studied mainly in view of their application to equilibrium problems. Here, we
will focus our interest on their relation to monotone operators. Let us recall
from previous chapters the basic definitions, in order to understand the need for
some changes to them. Given a multivalued monotone operator T : X — 2%~
with domain dom7T = {z € X : T(z) # 0}, the bifunction Gr defined on
domT x domT by

Gr(z,y) = sup (a*,y—2) (4.1)
z* €T (z)
is real-valued and monotone (see Chapter 2). On the other hand, given any
monotone bifunction F', the operator defined by

Af(z) ={z* € X*: (@*,y —2) < F(z,y), VyeC}

whenever 2 € C while A" () = 0 for x ¢ C, is monotone.
A monotone bifunction F': C' x C' — R is called BO-maximal monotone [23]
if for all z € C and z* € X, the following implication holds:

Fy,z)+ (" y—2) <0, VWWeC= (2",y—z)<F(z,y), VyeC.

The bifunction F is called maximal monotone if the operator AF is maximal
monotone. In Chapter 2 we observed that every maximal monotone bifunction
is BO-maximal monotone; the converse is not true in general, but it holds under
some additional assumptions: For instance, if F' is BO-maximal monotone, C is
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closed and convex, and F'(z, -) is Isc and convex for every z € C and F (z,z) =0
for each = € C, then F is maximal monotone [1, 30].

A very powerful tool in the study of maximal monotone operators is the
notion of Fitzpatrick function [52], (see also Chapter 1). Given a monotone
operator T with graph gr7' = {(z,2*) € X x X* : 2* € T(x)}, its Fitzpatrick
function Fr can be written as

Fr(z,z")= sup ((z%9) + ¥ 2 —y).
(y,y*)€gr T

A lsc and convex function ¢ on X x X* is called a representative function
of a monotone operator T if ¢(x,2*) > (z*,z) for all (z,2*) € X x X*, and
o(x,z*) = (z*, ) for all (z,z*) € grT. It is known that the Fitzpatrick function
of a maximal monotone operator 7' is a representative function of T'. It has been
shown recently that some important results on maximal monotone operator
theory may be obtained by using methods of convex analysis on representative
functions; see for instance [13, 15, 16, 25, 26, 38, 83, 89] etc.

If we compare the definitions of Fp and G we obtain

fT(ZL'71‘*) = Sup (<$*7y>+GT(y>x)>
yedom T

Note that Fr is defined for all x € X (although y needs only to be in
domT'), and that in fact formula (4.1) can be used to define G on all X x X.
Obviously, Gr(z,y) = —oo for x ¢ domT. This motivates the definition of
a Fitzpatrick transform for every monotone bifunction, but we need to have
bifunctions defined on X x X. In fact, such kind of functions were introduced
in [30] for bifunctions F': C'x C' — R, where it was shown that one can recover
some nice results and find new ones by using tools of convex analysis. In the
present chapter we will introduce the so-called “normal bifunctions” defined
on X x X and taking on values from R; we will see that the new formulation
includes the previous one and gives simpler, more appealing formulas. Note
that in [8], one considers bifunctions F : X x X — R and defines monotonicity
with respect to a subset C' by F(x,y) < —F(y,x), z,y in C. However, all other
definitions and all results in [8] actually concern the restriction of F' on C x C,
where F' is real.

4.2 BO-Monotone Bifunctions

In what follows, X will be a LCS unless otherwise stated.

Definition 4.1 A function F : X x X — R is called normal bifunction if there
exists a nonempty subset C' of X such that

F(z,y)= - iff x¢C.

C will be called the domain of F. In what follows, it will be denoted by dom F'.
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Note that in this definition we do not impose the assumption F' (z,z) = 0
for all x € dom F. -
According to Definition 4.1, F: X x X — R is a normal bifunction if and only
if we have that
{z € X : Jy € X such that F (z,y) > —oco}
={zreX:VyeX, F(z,y)>—-oo}#0.

In this case C coincides with the sets from above.

Definition 4.2 A normal bifunction F : X x X — R is called monotone if
F(xay) S*F(y,l’), VI,yEX. (42)

Remark 4.3 Let F : X x X — R be a monotone bifunction. If x and y are
both in dom F, then F (y,z) > —oo and so —F (y, z) < 400, thus

—00 < F(z,y) < +o0.

In a similar manner we get F (y,z) € R. Hence we see that a normal bifunction
is monotone if and only if

F(z,y)+ F(y,x) <0, Vz,y € domF,
see also [8]. Therefore for all « in dom F', we have F (z,z) < 0. ¢

For any operator T : X — 2% one can define a normal bifunction G with
domain dom G = dom T by the formula

Gr(z,y)= sup (z",y—x), Vo,yeX.
z* €T (x)

Then Gr (z,z) = 0 for all  in dom 7. Moreover G (z, ) is Isc and convex
for all z in domT'.
Let F: X x X — R be a normal bifunction. Define the operator A" by

AT (@) = {a" : (a",y —a) < F(v,y), VyeX}. (4.3)

One can easily check that dom A¥ C dom F; also, whenever F' is monotone,
AT is also monotone and one has F(z,z) = 0 for all z € dom AF.

Remark 4.4 So far, papers in the literature consider a bifunction to be defined
on C' x C, where C is a subset of X, and defined A by requiring (4.3) to hold
for x,y € C. This is a particular case of what we are considering here. Indeed,
for any F : C x C — R one can define a normal bifunction F : X x X — R
which extends F' on the whole space, by setting

N F(z,y) fxeCandyeC,
F(z,y) = +oo ifzeCandy¢C,
—00 if x ¢ C.



4.2. BO-MONOTONE BIFUNCTIONS 69

Then A satisfies

P [ {z* (@t y—2) < F(z,y), YyeC} ifzeC,
A (””)_{ 0 if v ¢ O,

i.e., it is the operator A¥ considered in previous papers and Chapter 2. ¢

In the same spirit, we redefine the notion of BO-maximality.

Definition 4.5 (i) A monotone bifunction F is called BO-maximal monotone
if for all (x,2*) € X x X*,

F(y,x)+<:c*,yfx>§0, VyGX:><x*,y—x>§F(x,y), Vng
(4.4)
(ii) A monotone bifunction F is called maximal if AT is maximal monotone.

Note that F' is BO-maximal monotone if and only if

Fy,z)+ (z*, y—2) <0,Vy e dom F = (z*,y —x) < F (x,y),Yy € X.
(4.5)

Remark 4.6 The right-hand side of (4.4) says that 2* € dom AY; thus, if F
is BO-maximal monotone and F (y,z) 4+ (z*, y — ) < 0 holds for some z € X
and for every y € dom F', then z € dom F' and F(z,z) = 0. ¢

In view of Remark 4.4, the definition of BO-maximal monotonicity consid-
ered in previous papers and Chapter 2 where F' is defined on C x C and the
right-hand side of (4.5) is required to hold only for y € C, is again a particular
case of the definition considered here.

Given an operator T', we denote by clcoT" the operator whose value at each
x € X is weak*-clco(T'(x)). Then Gr = Gelcor-

Theorem 4.7 Let T : X — 2% be an operator. Then clcoT is mazimal
monotone if and only if Gp is BO-mazimal monotone.

Proof. Let clcoT be maximal monotone. Since G = G¢jco W€ may suppose
without loss of generality that T is maximal monotone. Now assume that 7' is
maximal monotone and for some (z,2*) € X x X*,

GT(yvx)+<x*7y_I>§07 VyEX

Then

sup (y*,z—y)+ (2", y—2) <0, VyedomT.
y*€T(y)

Thus for all (y,y*) € gr T,

<y*—l‘*,y—l‘> >0
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On the other hand T' is maximal monotone, therefore (z,z*) € grT. This
implies that for every y € X,
(", y —x) < sup (2,y—x)=GCGr(z,y).
z* €T (x)
Thus Gt is BO-maximal.
Conversely, suppose that G = G o7 18 BO-maximal monotone. Then, for
all z,y € dom T, z* € clcoT (z) and y* € clco T (y),

<y* - x*vy - (E> > _<Gclco (m,y) + Gelcor (y7$)) > 0.

It follows that clcoT is monotone. To show that it is maximal monotone, let
(z,2*) € X x X* be such that (y* —a*,y —a) > 0 for all (y,y*) € grelcoT.
Then (z*,y —z) + (y*,x —y) < 0 for all (y,y*) € grclcoT. By taking the
supremum over y* € T(y) we get Gr (y,z) + (z*,y — x) < 0 for all y € X. Since
Gr = GeleoT is BO-maximal, we deduce
(@"y—2) <Gr(z,y) < sup (M y—z), VyeX. (4.6)
z*€clcoT(x)

Since clcoT (z) is weak*-closed and convex, (4.6) together with the separa-
tion theorem imply that z* € clcoT (x). m

In particular, if T is an operator with weak*-closed convex values, then T is
maximal monotone if and only if the monotone bifunction G “created” by T'
is BO-maximal monotone.

One the other hand, every monotone bifunction F' gives rise to a monotone
operator A¥. Exactly as in Chapter 2, Proposition 2.6 one can show:

Proposition 4.8 Let F' be a monotone bifunction. If A is mazimal monotone,
then F is BO-maximal monotone.

We end this section with the following result.

Proposition 4.9 Suppose that T : X — 2% is monotone and domT = X.
Then AST =clcoT.

Proof. For each x € X and 2* € AT (z) since Gr = GecoT We get

GclcoT(xay): sup <x*,y—x> 2 <Z*,y—l‘> Vy € X.
z* €T (x)

On the other hand clcoT () is weak*-closed and convex, so the separation
theorem implies that z* € clcoT (x). Thus A9T C clcoT.

Conversely, assume that z* € clcoT (). Since G = Geco T We deduce that
for each y € X

<Z*»y—$> < sup <x*7y_x>:GclcoT((E7y):GT (xvy)
z*EclcoT(x)

This means that clcoT (z) C A9T (). Thus clcoT C A9T. m

Note that the above proposition implies that if 7 : X — 2%X" is monotone

with weak*-closed convex values and dom T = X, then A9” = T'. In particular
if T' is single-valued with dom T = X, then A7 =T.
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4.3 Fitzpatrick Transform of Bifunctions

Definition 4.10 Suppose that F : X x X — R is a normal bifunction. Define
its Fitzpatrick transform pp : X x X* = RU {400} by

ep(z,2*) =sup ((z*,y) + F(y,x)), V(r,z")eX x X"
yeX

Whenever F (y,-) is Isc and convex for all y € dom F', then ¢p is also lsc
and convex.

For every BO-maximal monotone bifunction we have the following theorem,
which is similar to a corresponding theorem for the Fitzpatrick function of a
maximal monotone operator; in case F'(x,-) is lsc and convex, the theorem says
that o is a representative function for the operator AF.

Theorem 4.11 Assume that F is a BO-mazximal monotone bifunction. For
each (z,xz*) € X x X* one has (z*,z) < pp(x,x*). Fquality holds if and only
if z* € AF(z).

Proof. Suppose that for some (x,2*) € X x X* one has

op(z,a*) < (z", x). (4.7)

Then sup,¢ x ((z*,y) + F(y,z)) < (z*,z), thus
F(y,z)+ (", y—z) <0, VyeX.
By assumption F' is BO-maximal, therefore
(" y—x) < F(x,y), VyeX.
By Remark 4.6, this implies that « € dom F' and F' (z,z) = 0, thus

pr(z,27) = sup (=% y) + Fly, ) = (&, 2) + F(z,2) = (2%, 2) . (4.8)

Now from (4.7) and (4.8) we get pp(z,2*) = (z*,z). So the strict inequality
pr(r,z*) < (z*,z) is not possible, thus for all (z,z*) € X x X* we have
<.Z’*,l‘> < @F(va*) .

In order to show the second assertion, let (z*,z) = pp(z,2*). We already
showed that this implies (z*,y —x) < F (z,y) for all y € X which means that
vt € AF (z).

Conversely, assume that x* € A (z); then (z*,y —x) < F(x,y) for all
y € X. By monotonicity of F' we obtain (x*,y —x) < —F (y,z) for all y € X.
This implies that (z*, y)+F(y,z) < (z*,z) for all y € X. From here we conclude
that pp(z,2*) < (z*,z). By the first part of the proof, pp(z,z*) = (z*,z). =

The Fitzpatrick transform of a normal bifunction and the Fitzpatrick func-
tion of an operator are related via the following proposition.
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Proposition 4.12 Let T' be an operator. Then pg, = Fr, where Fr is the
Fitzpatrick function of T.

Proof. For each (z,2*) € X x X*,

Gy (x,2") = sup ((z*,y) + Gr(y,z)) = sup <<x*,y> + sup (y',z— y>>

yeX yeX y*€T(y)
= sup  ((=% )+ ¥ 2) — (YY) = Fr(v,27).
(y,y*)€gr T

This proves the desired statement. m

In the following proposition we will show that when the variables of a bi-
function F' are separated by a function f on a set C, then the subdifferential
of f is equal to AF, the Fitzpatrick transform is nothing else than the sum of
f and its conjugate. In addition, the Fitzpatrick transform of G 4+ is equal to
the Fitzpatrick function of the subdifferential of f.

Proposition 4.13 Let f: X — RU{+oo} be a function with dom f = C =
{r e X: f(x) <oo}#0D. Suppose that F: X x X — R is defined by

—00 otherwise.

F(:z;,y):{ fly)—f) if reCyelX,

Then
(i) AF = of.
(ii) or(,a%) = f (2) + [*(2").
(i) Ye , r (z,2%) = Fof (z,2%).

Proof. (i) It is clear that for = ¢ C, A (x) = ) = 3f(z). For z € C we have
y) 2 (2t y—x) Vye X}
Y

> (x
) = (et y—x) VyeClh
fy)—f(z)= {@"y—2) Vyel}=0f(z).

T
€T

(ii) By our assumptions, we have

or(z,2") = sup (=", y) + F(y,x))

= sup ((z",y) — f (y) + [ ()

yeC

fle)+ sup (@) = F(y) = [ (@) + [ (7).
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(iii) By part (i) we have G4r (z,y) = Goys (x,y) and so

(IDGAF (.’E,.’L'*) = sup ((cr:*,y> + Gaf (y,l‘))

yeX

= sup ((x*,w + sup (y", @ — y>>
yex y*cof

= sup ((x*,y>+<y*,x—y>)
(y,y*)€Egrof

= For (x,27).

We are done. m

Note that in the above proposition if f is Isc and convex then Af" is maximal
monotone.

In a similar way as in [30], given a monotone bifunction F' we define on
X x X* the upper Fitzpatrick transform of of F by

Fle,2*) = sup((z*,y) — F(z,y)), Y(z,z*)e X x X*.
yeX

14

Remark 4.14 It is easy to show that F' is BO-maximal monotone if and only
if for all (z,2*) € X x X*, the following equivalence holds:

(x*,x) > op(z,2%) <= (z*,z) > oF (x,2%). (4.9)
In fact, given that o < ¢, (4.9) is equivalent to
(2*,2) > pp(z,a7) = (2%,2) > ¢ (2,27
or, successively,

(z",x) > sup ((z",y) + F(y,z)) = (2", z) > sup((z",y) — F(z,y))
yeX yeX
(" y—z) + F(y,2) <0, Vy € X = (z",y —x) < F(x,y), YyeX.

The last line means that F' is BO-maximal monotone. Note that whenever
F' is BO-maximal monotone Theorem 4.11 implies

<$*,J3> < wF(xam*) < QOF(J},],‘*),
so (4.9) can be rewritten as
(%, 2y =" (z,2") = (2", 2) = pp(x,z¥). (4.10)

Note also that
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These equalities hold for each (x,2*) € X x X*. In case z ¢ dom F' then both
sides of the first equality are equal to +o0o. Also,

(") @ 2)= sup  {{y*2)+ (@) — " (y.y")}
(y,y*)EX X X*

= sup  {(y",z) + (", y) — (F(y,")" (v*)}
(y,y*)EXXX*

= sup{(z",y) + (F(y,)" (2)}
yeX

and

(pr)" (2% )= sup  {{y" @) +(2",9) —¢r(y,y")}
(y,y*)EX X X *

= sup {<y*,(E> + <x*ay> - (_F(7y))* (y*)}

(y,y*)eXxX*

=sup{{y*,z) + (=F(-,y))"™ (x)}.
yeX

In the special case where F(z,-) is lsc and convex for all z € dom F, then
(F(y,-))™ = F(y,-) for every y € X, so ((pF)* (z*,x) = pp(z,x*). ¢

The following theorem, stated for the reflexive case for simplicity, shows that
the arguments of [30] can be used in our framework to obtain the following
result. As in [30] we will use the following theorem from [89].

Theorem 4.15 Let X be a reflexive Banach space. If h : X x X* = R is a
proper, lsc and convex function such that h(x,z*) > (x*,x) and h*(z*,z) >
(x*,x), then the operator with graph {(x,x*) : h(x,z*) = (z*,z)} is maximal
monotone.

Theorem 4.16 Let X be a reflexive Banach space. Assume that F is a BO-
mazximal monotone bifunction and F(x,-) is lsc and convex for each x € dom F'.
Then AT is mazimal monotone.

Proof. The assumption that F'(z,-) is Isc and convex implies that

(¥7)" (a*,2) = op(z,2%).
Since pr < pf" and pp is Isc and convex, we deduce that

@ (2,27) 2 cleop” (@, 27) 2 pp(w,27) (4.11)
= (¢")" (@, 2) = (deop™) (@*,2).

By Theorem 4.11 we know that ¢z (x,2*) > (x*, z) with equality if and only
if z* € AF(z). This shows in particular that all functions appearing in (4.11)
are proper, since ¢ = +oo implies (ch)* = —oo which is impossible. By
Remark 4.14, o (z,2*) = (2*,z) if and only if 2* € AF(z). Combining with
(4.11) we obtain that clco o (z,2*) > (z*, x) and (clcogoF)* (x*,z) > (z*, ),
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with equality if and only if 2* € A¥(x). Theorem 4.15 now implies that AF is
maximal monotone. m

Note that it is not necessary to have F(z,2) = 0 for all z € dom F or to
have a closed and convex dom F'. Of course, in the case F(z,y) = +oo when z €
dom F' and y ¢ dom F' that was considered in previous papers, the assumption
on F(z,-) implies that dom F' is convex. However, it does not imply that dom F'
is closed, or that F(z,z) = 0 for  in dom F. Consequently, Theorem 4.16
generalizes the corresponding results in [1, 30, 64].

We will need the following result, which is a simple adaptation of Proposition
4.1 of [64] to our framework. Note that in [64] all bifunctions were supposed to
satisfy F(x,z) = 0, x € dom F', but this property was actually not needed in
Proposition 4.1 that we use.

Proposition 4.17 Let X be a reflexive Banach space and F be a mazimal
monotone bifunction. Assume that for every x € dom F' and any converging
sequence {x,} C dom F, the sequence {F(x,x,)} is bounded from below'. Then
dom F C cldom A¥. In particular, cldom F' is convez.

Proof. Define the monotone bifunction F; by

Fi(a,y) = F(z,y) if z¢domF oryedomkF,
nWHY) = +oo if z€domF and y ¢ dom F.

Then AF(x) C Af1(x) for all z € X and by maximality of F, A¥ = A,
We apply Proposition 4.1 of [64] and get the result. m
A trivial consequence is the following corollary.

Corollary 4.18 Assume that X is reflexive Banach space, F' is mazximal and
F(x,-) is lsc for every x € dom F. Then dom F C cldom AF".

Using the above, we now show that whenever F(z, ) is Isc and convex for all
z € dom F', BO-maximal monotonicity is equivalent to a more general statement
than (4.5).

Theorem 4.19 Let X be a reflexive Banach space. Assume that F(x,-) is lsc
and convez for every x € dom F. Then the following statements are equivalent:
(i) F is BO-mazimal monotone.
(ii) For each given T € X and for every lsc and convex function v with
¥ (T) =0 and int(dom ) Ndom F # 0, the following implication holds:

F(yaf)ﬁl/f(y), VyEdOHlF E
¥ € O(T): 0 < F(Z,y) + ",y —7), VyeX.

(iti) For each given T € X and for every lsc and convex function v with
¥ () =0 and int(dom ) Ndom F # 0, the following implication holds:

F(y,z)<v(y), VYyedomF = 0< F(Z,y)+¢(y), VyeX.

IThe bound may depend on x.
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Proof. Implications (ii)=-(iii) and (iii)=(i) are obvious, so we prove only im-
plication (i)=-(ii). Let T € X and ¢ (Z) = 0. Suppose that

F(y,Z)<¢(y) YyedomkF . (4.12)

By Theorem 4.16 the operator A is maximal monotone. By assumption,
int(dom) Ndom F # (. Since int(domt) = int(domdy) and dom F C
cldom A by Corollary 4.18, we infer that int(dom dvy) N dom AF # ). It
follows from the well-known theorem of Rockafellar (see [100, Theorem 1]) that
AF 4+ 0¢ is maximal monotone.

For every y € (domdy N dom AF) and every yi € AF(y) and y5 € 9y(y),
relation (4.12) implies

W, T—y) <F(y,7) <Py =¢y) — @) < —(y5,T—y)
(yi +y3,y—7) > 0. (4.13)

Relation (4.13) can be written as
(y" =0,y —7) >0, Y(y,y") €gr (A" +0v).

Hence 0 € (A" + 0¢)(Z), i.e., there exists * € 9¢(T) such that —a* € AF (7).
This means that
(-a"y—-7) < F@y), WeX
i.e., (ii) holds. m
This result was proved by other methods in [23], assuming in addition that v

is continuously Gateaux differentiable, dom F' is convex and contained in dom 1),
and F(z,y) = +oo for x € dom F, y ¢ dom F'.

4.4 Fitzpatrick Transform of Sum

In this section we will redefine pair and partial convolutions and then we will
establish various kinds of inequalities.

Fitzpatrick in [52, Problem 5.4] proposed a question for characterization of
Fr,+15- This problem is still open. Penot and Zalinescu in [89, page 15] and also
Bauschke, McLaren and Sendov in [16, Proposition 4.2] have found an upper
bound for Fr, 47, where T7 and T, are maximal monotone.

Definition 4.20 Assume that f,g : X XY — RU {+oo} are two functions.
Then the pair convolution of f, g is defined by

fOg(z,y) == inf{f(x1,y1) + 9(x2,y2) : 1 + T2 =z, y1 + Y2 = y}.
As in [89] and [98], the partial convolutions of f and g are defined by

fOhg (z,y) = inf {f (z1,y) + g (22,9) : 71,22 € X and 21 + 22 = 7},



4.4. FITZPATRICK TRANSFORM OF SUM 7

and

fO2g (z,y) = inf {f (x, 1) + 9 (x,92) : y1,y2 €Y and y1 + y2 = y} .

In the next proposition we will find an upper bound for ¢r 1 r,.

Proposition 4.21 Let Fy,F; : X x X — R be monotone bifunctions such that
dom F; = dom F5. Then

Or+r < o Uopr,.

Proof. Assume that (z,2*) € X x X* and set * = 27 +25. Thenforally € X
we have

(% y) + (F1 + F2) (y,2) = ((21,9) + F1 (y,2)) + ((23,9) + F2 (y,2))

< sup ((z1,y) + Fi (y, @) + sup ((23,y) + F2 (y,2))
yeX yeX

A

=¢r (z,2]) + ¢, (7,23) .
By taking the supremum over all y € X we conclude that
PFI+F, ({E,I*) < 3 ({E,IT) +T R (‘T)l;) :

Now by taking infimum over all ] + z5 = z* we get

PF1+F, (:E,LU*) < 50F1|:|290F2 (:v,ac*)

We are done. ®m

Remark 4.22 Assume that 71,75 : X — 2% are two monotone operators
such that dom Ty Ndom Ty # (). Then Gr,+1, < Gr, + Gr,. In fact,

Gr41, (2,y) = sup (%, y —z)
x* G(Tl +T2)(I)

* *
= sup (2] + 23,y — )
21 €T (x),x5€T (x),o*=x] +x}

< sup (af,y—x)+ sup (w5,y—7)
xyeT(x) x3€T>(x)

:GTI (xay)+GT2 ((E,y) .

An immediate consequence of the Proposition 4.21 is the following corollary
(see also [16, Proposition 4.2]).

Corollary 4.23 Let Ty, T : X — 2% be two monotone operators such that
dom G, = dom Gr,. Then

FTl—‘rTg S lemQFTQ-
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Proof. By the above remark Gr, 47, < Gr, + G, This implies that

PGr,+1y < PGr, +Gry -

Now by Applying Proposition 4.12 and Proposition 4.21 we get the desired
inequality. m

Note that this inequality can be strict. See Example 1 in [89]. However in
[16] there are some examples where was shown that the equality can become
true. In Proposition 4.25, we will show that equality holds for a special type of
bifunctions. First we prove a lemma.

Lemma 4.24 Let f,g : X — R U {+oo} be two functions such that C =
dom f =domg. Define F: X x X — R by

_ f(y)fg(x) Zf xEC,yGX,
Flz.y) = { —00 otherwise.
Then F is a normal bifunction and pr (x,2*) = f(x) + g* ().

Proof. The normality of F is obvious. Given (z,z*) € X x X*,

or (x,27) = sup {(z",y) + F' (y,2)}

yeX
= jgg{<x*7y> +f(@) -9}
= f(x) +sup{(z",y) —g(y)} = f(z) +g" (z¥).

yel

This proves the lemma. =
We note that in the above lemma if f = g, then F' is monotone. Moreover,
if f is Isc and convex, then df is maximal monotone and ¢¢ . = Foy.

Proposition 4.25 Let F; : X x X — R for i = 1,2 be normal bifunctions
defined by

' [ fily)—gi(z) if zeCyelX,
Fi(2,y) = { —00 otherwise.

where fi,g; : X — RU {400} and C = dom f; = domg; for i = 1,2. Then
PFi+F, = <)0F1|:,2§02'

Proof. For every (z,y) € X x X, we have

(it f) ) —(91+92)(z) if zeCyeX,

(I + F2) (z,y) = { —00 otherwise.

Then for each (x,2*) € X x X*, using (g1 + ¢2)" (z*) = (g;70g3) (z*) (see
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Theorem 1.20) and Lemma 4.24 we have

orar (T,27) = (fi + f2) (2) + (91 + g2)" (z¥)
= (fi + f2) (z) + (¢70g53) (=)
= (f1 + f2) (z) + inf {g] (27) + ¢
=inf {f1 (¥) + g1 (z]) + f2 (z) +
=inf{pp (z,27) + ¢p, (z,23) 1 @
= or,Oagpa (z,27).

5 (23) 2™ =] + a5}
ék( 5):x" =] + a5}
=] + x5}

This proves the desired statement. m
Let F : X x X — R be a bifunction. We say that F is subadditive with
respect to the second variable if

F(z,y+2) < F(x,y) + F(z,2) Voy,zeX.

In the next proposition we derive an inequality for the Fitzpatrick transform of
such a bifunction.

Proposition 4.26 Suppose that F : X x X — R is a monotone bifunction
which is subadditive with respect to its second variable. Then

or < erlpp.

Proof. For all x = 21 + 22,2 € X and =z} + 25 = ¥ € X*, by using our
assumptions, we have

(] + a5, 2) + F (2,21 +22) < (x7,2) + F(2,21) + (25, 2) + F (2, 22)

sup ((21,2) + F (2, 21)) + sup (23, 2) + F (2, 22))
zeX zeX

= ¢YF (111,1"{) +F (372737;) .

<
<

By taking the supremum over all z € X we get
$r (x,x*) = ¥F (1'1 + :L'an}'l< + LL';) < ¢F (mlvx#{) + oF (CEQ,.’t;) (414)

Now from the definition of the pair convolution and (4.14) we conclude that the
desired inequality. m

Fitzpatrick inequality of Fitzpatrick transform:

Let Fy and F5 be any two BO-maximal monotone bifunctions. Then for each
pair (z,2*) € X x X* we have pp, (z,z*) > (z*,z) and pp, (x, —2*) > (—a*, ),
thus

PFy (JC, x*) + PR ('T7 _I*) > 0.

This inequality corresponds to the well-known Fitzpatrick inequality [25,
Section 4.1].
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4.5 Existence Results

The ideas, and most of the results of this section, originated in a paper of
Blum and Oettli [23] for BO-maximality. We will extend their results to BO-
maximality in our framework, i.e., for normal bifunctions defined on X x X.
Our results generalize the results of Blum and Oettli.

Theorem 4.27 Assume that X is reflexive and F is BO-maximal monotone,
dom F' is closed and convez, and for each x € dom F', F (z,z) =0 and F (z,-)
is lsc and convex. Let H : X x X — R be a function such that H (-,y) is weakly
usc for each y € dom F. Assume that for every x € domF, H (z,x) = 0 and
H (x,-) is lsc and convex. Furthermore, assume that for some a € dom F' the
following implication holds

lz]]| = 400, z€domF = —F(a,z)+ H (x,a) = —0.
Then there exists T € dom F' such that
F(y,z) < H(Z,y) YyecdomF (4.15)

and
0<F(zy) +H(@y VyeX (4.16)

Proof. Let us equip X with the weak topology and let g (z,y) = F (z,y),
h(xz,y) = H (x,y) and K = dom F. Observe that all assumptions of Theorem
1A in [23] are satisfied. By the proof of this theorem there exists Z € dom F such
that inequality (4.15) holds. If we set ¥(y) = H(Z,y) and apply Proposition
4.19, then we conclude that inequality (4.16) also holds. m

Proposition 4.28 Let X be a reflexive Banach space and F be a BO-maximal
monotone bifunction. Assume that dom F' is a nonempty closed convex subset
of X and F (x,2) =0 for all x € dom F, F (x,-) is lsc and convex for each x
in dom F'. Then for every x* € X* there exists T € dom F' such that

1 1 X _
F(y,7) < §||y||2 - §||f\|2 —(z"y—7) VyedomF. (4.17)

and ) )
0< F @)+l — P~ (*y—7) WeX. (418

Proof. Set H (z,y) = i|ly||> — 3||z[|> — (z*,y —x). Then H satisfies all
assumptions of Theorem 4.27, since — ||-||* is weakly usc. Now if we choose any
a € dom F, then F(a,-) is lsc and convex, thus it is minorized by a continuous
affine function. It follows that there exist z* € X* and k € R such that

F(a,z) > (z*,z) + k.
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Then we see that
1 1
~F(a,2)+ H (z,0) < —k — (=%,2) + g llall* = Sllall> ~ (20— 2)

From here we conclude that —F (a,z) + H (z,a) — —o0 as ||z|| = +o00. The
result follows from Theorem 4.27. m

Proposition 4.29 Suppose that X is a reflexive Banach space and F is BO-
mazimal monotone. Assume that dom F' is closed and convez, and F (x,2) =0
for all x € dom F. If F(x,-) is lsc and convex for each x € dom F, then for
every x* € X* there exist T € dom F' and T° € JT such that

0<F(T,y)+ T —2",y—T) VyelX. (4.19)
If in addition X is strictly convex, then T is uniquely determined.

Proof. For a given z* € X* by Proposition 4.28 there exists T € dom F' such
that

_ 1 1 _ " _
0< F(@y)+5lll* = SlIFll* — (@7 y —7) vyeX.

Since T € dom F' if y € dom F' then by Remark 4.3, F'(y,T) € R. From the
monotonicity of F' we get

_ 1. X _
F(y,7) < Hy||2—§\|$||2—(367y—x> vy e X. (4.20)

| =

Setting ¥(y) = %||y|[> — 3||z|[* — (z*,y — x) we note that OY(Z) = Jz — z*.
Applying Theorem 4.19 we deduce the existence of T¥ € JZ such that (4.19)
holds.

Now assume that X is strictly convex. If T is not unique, then there exists
Ty € dom F, T1 # T and T} € JT; such that 0 < F (Z1,y) + (T} — 2%,y — T1)
for all y € X. From this inequality and (4.19) we obtain

0 < F(Z1,%) + (T} — 2", T —T1)
0< F(Z,71)+(T" —2%,7 — 7).
By adding these inequalities and using monotonicity of F' we get
(T} —T,T—71) > 0.

However, since X is strictly convex, [J is strictly monotone, so we arrived to a
contradiction. m

Corollary 4.30 Suppose that X is a reflexive, smooth and strictly convexr Ba-
nach space and F : X x X — R is BO-mazimal monotone. Assume that dom F'
is a nonempty closed convex subset of X and F (xz,x) = 0, for all x in dom F.
Furthermore, let F (x,-) be lsc and convex for all x € dom F. Then for every
z € X and X > 0 there exists a unique ) € dom F' such that

1
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Proof. Fix z in X. For a given A > 0, F and AF have the same properties.
Thus for Jz € X* there exists a unique x) € dom F' such that

0 <AF (zx,y) +(JTox — T2,y — ) Yye X,

We are done. m

Let F satisfy the assumptions of the above corollary. The single-valued
operator RY : X — dom F defined by RY (z) = x) generalizes the notion of of
a monotone bifunction defined on a subset C of X [64, 86], to normal bifunctions.

4.6 Illustrations and Examples
We will see several examples in this section. Throughout this section we set
00— 00 = —00 + 00 = —0Q.

One can easily check that for each A > 0 and every normal bifunction F' we
have

oar (T, 2") = App <a:, I)\) .

Example 4.31 Let f,g : X — R be two functions such that X = dom f =
domg and f(x) > 0 for all z € X. Define F': X x X — R by

F(z,y)=—f(y)g(z).

Then F' is a normal bifunction and

or (z,2") = sup {(z",y) + F (y, )}
yeX

=sup {(z*,y) — f(2) g (y)}

yeX

o {(FG) w0 (75) -

In the following we provide an example which shows that ¢p differs from p¢ , .
even if F' is maximal and dom F' = X.

Example 4.32 Let X be a Banach space and F (z,y) = 3 [|y| 2 -1 |z]|*. Then

dom F = X and F is monotone. Proposition 4.13 implies AY (z) = J (). Since

J is maximal monotone operator we conclude that F' is maximal monotone and
* 1 2 1],.%(|2

so pp(z,2*) = 5 ||lz||” + 5 [|=*||". Furthermore,

G r (27) = Fy (w,a%) < 7 (]| + ||2*]))° (4.21)

|

1 2 1 * ]2 *
< Sl + 5 oI = oz, 2°).
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The first inequality in (4.21) is a consequence of Proposition 4.1 in [33]. Note
that when X is a real Hilbert space, Example 3.10 in [16] implies that

w1 112
Po . (@@ )ZZH»’UJFJU . A

Example 4.33 Let X be a real Hilbert space and C'is a closed convex subset
of X. Define F: X x X —» R by F(z,y) = tc (y) — tc (x) where 1¢ is the
indicator function of C'. Then by Proposition 4.13

or(z,2%) = 1o (2) + 15 (2*) and AY () = O () = Ne (x) .
Now if z,y € C, then Gn, (2,y) = Supgrene(x) (27 y — ) = 0 and so

('OGAF (;C,:L‘*) = sup ((m*,y> + GNc(wa))
yeC

= sup (z",y) = oc(z¥) = 15 (2¥).
yel
If x ¢ C, then Po (x) € C. Take y = x — Po () € No (Po(x))\ {0}. Then

Gne (z,y) = sup (z%,y—Pc(x)) > sup (y,\y) = +oo.

z*€Nc () A6[0100)
Therefore
o | oocl@) it zeC,
SDGAF<1.’$){ +oo if z¢C
= 1o () + 1o (7).
Note that this example also shows that ¢ = Po p A

Example 4.34 Assume that X is a real Hilbert space and f (z) = ||z||. Define
F:XxX —=Rby F(x,y) = |yl — ||=], then f* (z*) = LBo- ) that is, f*is
the indicator function of the closed unit ball in X*. Now Example 3.3 in [16]

and Proposition 4.13 imply that

o o _ [l i et <1,
op(z,a*) = PG, (z,2%) = [|z| + Blo1) = +00 otherwise.

We observe that also in this example pp = Po p A

Example 4.35 Let X = R and define f: X — R U {400} by

400 if x <0,
f(z)= 0 if z=0,
zln(z) —x if x>0.
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Note that f* (z*) = exp(2*). Now define FF : X x X — R by F(z,y) =
f (y) — f (z). Then by Proposition 4.13, or(z,2*) = f () + f* («*). From this
and Example 3.6 in [16] we obtain

400 if <0,
o exp (z* — 1) if =0,

Y6 ar (%) = * 1—a* 1 :
zx* +x (W (ze ")+W—2 if x=>0.

Here, W : [0, +00) — [0, +00) is the Lambert function i.e., the function W1 :
[0, +00) — [0, +00) is defined by W1 (z) = xexp (). A

Note that generally g, < ¢r for each monotone bifunction F, because
for each z* € AY (x) we have (z*,y — x) < F (x,y) and so

Gur (z,y) = sup (z%y—a) < F(z,y).
z*€AF (z)

Now by the definition of Fitzpatrick transform, g . (z,2%) < ¢r (z,27).
Next example shows that the inequality ¢ . < ¢F can be strict even if X is
finite dimensional, dom F' = X, F' is continuous and maximal monotone.

Example 4.36 Define F': RxR — R by F(z,y) = %yz — %x2. In this case we
have Af(z) = {x},

Gar(z,y)= sup {(z"y—2)}=2(y— ),

z*€AF (z)
and by Proposition 4.13
1 1
or(z,a") = 5:52 + i(x*)?
Also
oG, (x,2") =sup{z"y + G (y,v)}
yeR
* 2 1 * 2
=sup {z*y +yz —y’} = Z(aﬁ —x)°.
y€eR
Thus the inequality ¢¢ . < ¢F can be strict. A

4.7 n-Cyclically Monotone Bifunctions

Forn = 2,3, ... an operator T : X — 2% is n-cyclically monotone [13, Definition
1.1] if for each cycle 1, 2, ..., Ty, Tpt1 = x1 and every 7 € T (x;), 1 =1,2,...,n

ot

(], Tip1 —xi) <0.

=1
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Also T is called cyclically monotone (see also Chapter 1) if for every n € {2,3, ...}
and each cycle x1, T2, ..., Tn, Tni1 = 21 so that f € T (x;),i=1,2,...,n

-

(7, Tip1 —xi) <0.

i=1

Every cyclically monotone and each 2-cyclically monotone operator is monotone.

An operator T is called mazimal n-cyclically monotone (maximal cyclically
monotone) if it has no n-cyclically monotone (cyclically monotone) extension
other than itself, i.e., whenever T} : X — 2% is a n-cyclically monotone (cycli-
cally monotone) map such for all x € X, T (z) C T} (), then Ty =T

Notation 4.37 In this section we set 00 — 00 = —00 + 00 = —00.

We reproduce the following definition from [13].

Definition 4.38 Let T : X — 2X" be an operator and n € {2,3,...}. For
n =2, define Fro: X x X* - RU {+o0} by

Frop(z,z*) = sup  ((2],7) + (2", 1) — (2], 21)) -
(317II)Eng

Now suppose that n € {3,4,...}. Then the Fitzpatrick function of T" of order n,
is the function Fr, : X x X* = R defined by

n—2
Frn(x,2*) =sup (Z (@}, mip1 — ) +(@h_, @ — 1) + (a7, xl>> (4.22)

i=1
where the supremum is taken over all families (x1,27), (22,23) ... (mn,l, xfhl)
mgrT.
The Fitzpatrick function of T of infinite order is defined by

Froo= sup Frp.
ne{2,3,...}

We note that the Fitzpatrick function of T of order n is equal to

supd (", 2) + (S (et 2ot — 23) + (€ 1s = Ent) + (@01 ) ) b
(o )}

i=1
(4.23)

Again the supremum is taken over all families (z1,27), (z2,23) , ..., (Tn—1,2}_1)
ingrT.

Note that for n € {2,3, ...}, being the supremum of affine functions, Fr , is
Isc and convex. Also Fr 2 is nothing else than the Fitzpatrick function.

Assume that F : X x X — R is a monotone bifunction. For n = 2,3, ... we
say that F' is n-cyclically monotone if for every zi,xo,...,x, € X

n

Y F(xi,xzip1) <0
1=1
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where x, 41 = 2.

We remind that F' is cyclically monotone (see also Chapter 2), if it is n-
cyclically monotone for every n € N.

Assume that F : X x X — R is a monotone bifunction. If n = 2, we set

pro (r,27) = sup (F(z1,7) + (2", 21)) = ¢r (v, 27)
r1€X

the original definition of Fitzpatrick transform (see Section 3, Definition 4.10).
Let now n € {3,4,...}. We define the Fitzpatrick transform of F of order n by

ern@a) = s |(EF @)+ F o) + @)

L1, Tp—1€X i=1
Equivalently, the Fitzpatrick transform of F' of order n is equal to

n—

sup  [(z*,z) + (

Tl Tp—1€X

2
F(.’I;i7x7;+1)) + F(xp_1,z)+ (", 21 — z))].
1

1=

The Fitzpatrick transform of infinite order is defined by

PFoc = SUPD  QFn.
ne{2,3,...}

It should be noticed that if F' (x,-) is Isc and convex, then for each n € {2,3, ...},

YFn s also Isc and convex. Moreover ¢p ., is lsc and convex if F' (x,-) is Isc
and convex.

We mention that (¢r,), n € {2,3,...} is a sequence of increasing functions
and that ¢r, — @F. pointwise.

The Fitzpatrick transform of order m of a monotone bifunction and the
Fitzpatrick function of order n of an operator are related via the following
proposition.

Proposition 4.39 Suppose that T is an operator. Then for all n € {2,3,...}
Gr,, = Frn.

Proof. For each (z,2*) € X x X* and for every n € {3,4,...}, we have

n—2
0Gyr,, (x,2%) = sup (Z Gr ($i7$z‘+1)> + Gr (Tp-1,7) + (2, 21)

T1,..,0p—1€X \i=1

n—2

= sup [(Z sup (x:,$i+1—$i>>

L1, Tp—1€X =1 I:ET(IJ

+ sup <a::ib_1,x - :17"_1> + (z*, x1)]
@y, €T (wn-1)

=Frpn(z,27).
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Thus we observe that the ¢, ., is the Fitzpatrick function of order n € {3,4, ...}.
In particular, if n = 2 then Proposition 4.12 implies that ¢q, , (z,2*) =
Fr (z,z*), i.e., par,, is the Fitzpatrick function. m

Note that from the above proposition we conclude that g, . = Frcc-

Definition 4.40 A n-cyclically monotone bifunction F : X x X — R is called
BO-n-cyclically maximal monotone if for every (x,z*) € X x X* the following
implication holds:

n—2
(Z F (x%xi-i-l)) + F('In—hx) + <$*7I1 - I> < 0 v'r175627 cy Tp—1 € X
=1

= (",21 —z) < F(z,21) Vi € X.

Theorem 4.41 Assume that F is a BO-n-cyclically mazimal monotone. Then
forn e {2,3,...}

(1) (x*,z) < ppn (z,z*) for all (x,2*) € X x X*;

(ii) (x*,x) = opn (z,2%) if and only if z* € AF ().

Proof. For every n € {2,3,4,...} we have pr, (z,2*) > ¢r2 (z,z*), so (i) is
an obvious consequence of Theorem 4.11.
To show (ii), we remark first that if (z*,z) = pp, (z, "), then

(2%, 2) < pro (2,27) < ppp (2, 27) = (27, 7)

so again by Theorem 4.11 we deduce z* € A ().
Conversely, suppose that z* € Af (z). Then (z*,2q —z) < F (z,7) for
every x1 in X and so

—F (z,21) + {z%,21) < (z",2). (4.24)

By hypothesis F' is n-cyclically monotone. Thus for all z1,...,z,_1 € X

(REQF (l’i7l'i+1)) + F(xp—1,2) + F (z,21) <0. (4.25)

i=1

The following inequality can be read off from (4.24) and (4.25)

1=

(an (mi,mm)) FF (2n1, @) + (2, 21) < (z*, ).

Now by taking the supremum over all zq,xs,...,z,—1 in X it follows that
Yrn (z,2*) < (¥, ). From this and part (i) we obtain ¢p,, (z,2*) = (z*, z).
[

Remark 4.42 (i) If T : X — 2% is a monotone operator, then T is n-cyclically
monotone operator if and only if G is n-cyclically monotone bifunction. Indeed,
for a given cycle x1, xs, ..., T, we have

o

(2, wig1 —25) <0 Vol € T (z;)

=1
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if and only if

n

>, sup (¥, Tip1—xi) <0
i=1xreT(x;)

n
which is equivalent to > Gr (z;, 2;41) < 0.
i=1
(ii) If T is maximal n-cyclically monotone, then G is BO-n-cyclically maa-
imal monotone. Assume that (zg,x3) € X x X* and

n—2
(Z Gr (%xiﬂ)) + Gr (-1, T0) + (25,71 — 70) <0
i=1

K2

for all z1,xa,...,2,—1 € X. Then for each z} € T (z;),i =1,2,...,n—1 we have

n—2
<Z (T} Tit1 — $i>> + (a1, 0 — Tn_1) + (5,21 — 20) <0 (4.26)

i=1

for all z1, 2, ...,7,—1 € X. Now define grT =grTU {((zo, )} According to
relation (4.26), T' is n-cyclically monotone and gr’l’ C gr 7. By assumption 7' is
mazximal n-cyclically monotone, so grT = grT. Therefore (xq, ) € gr T, thus

(g, w1 —x0) < sup  (z", 21 — xo) = Gr (0, 21) -
z* €T (z0)

This means that Gr is BO-maximal monotone. ¢

In the following proposition we will find a recursion formula for the Fitz-
patrick transform of order n. Bauschke, Borwein, and Wang in [18, Theorem
6.5 | proved this formula for single valued monotone operators. Here we gener-
alize it to monotone bifunctions.

Proposition 4.43 Assume that F : X x X — R is a monotone bifunction and
n€{2,3,...}. Then

Prnt1 (T, 2") = sup {opn (y,2") + F(y,2)} V(z,z")e X x X" (4.27)
ye

Proof. Given (z,z*) € X x X*. By the definition of Fitzpatrick transform of
order n + 1 we have

pranlea) = s ((SP@n) 4 F o) + o)

L1y T €X i=1

—sup{ sup KnjF(xi,le))+F(J:n_1,xn)+<x*,x1>}

Ty X1, Tp_1€X i=

+ F (2, 2)}
= sup {QOF,n (xnvx*) + F (xnwr)} :

Tn

This proves (4.27). ®
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Corollary 4.44 Assume that T : X — 2% is monotone and n € {2,3,...}.
Then

Frn+1 (x,2") = sug {Frn(y,z*)+Gr (y,2)} V(r,z")eX x X"
ye

Proof. Apply Propositions 4.43 and 4.39. m

Example 4.45 (Rotations) According to Example 4.6 in [13], let X = R?
and n € {2,3,...} . Define R,, by

cos (m/n) —sin(mw/n)

Bn =1 Gn(r/n) cos(r/n)

Then R, is maximal monotone and n-cyclically monotone, but it is not (n 4+ 1)—
cyclically monotone; see also [10]. The above remark implies that Gg,, is BO-n-
cyclically maximal monotone bifunction, nevertheless it is not (n + 1)-cyclically
monotone bifunction. A

Example 4.46 Define T : R? — R? by
T (a,b) = (b, —a).
Then 7T is maximal monotone and so
Gr ((a,b),(¢,d)) = bc — ad

is BO-maximal monotone bifunction. However, it is not 3-cyclically monotone

bifunction; for instance, if we consider the cycle 1 = (0,1),z9 = (@, —%)

and r3 = (—ﬁ —l>, then

27 2

3
Gr (.1‘1,.132) + Gr ($2,$3) + Gr (xg,xl) = 3%

Similarly, if we define (see also [62]) 7' : R* — R? by T'(a,b) = (£ +b, % —a),
then T is strictly monotone, maximal monotone and
1
Gr ((a,b),(c,d)) = (bc — ad) — I (a® +b* — ac — bd)
is strictly monotone, BO-maximal monotone bifunction. However,

3 3
Gr (z1,22) + Gr (22, 23) + G (23, 21) = <\2[ — 8) > 0.

Therefore it is not a 3-cyclically monotone bifunction. A

Proposition 4.47 Suppose that F' is BO-n-cyclically maximal monotone. Then
for each n € {2,3,...}
@*F’n(x*,x) > Far (z,2%).
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Proof. For a given (z,z*) € X x X*, by using Theorem 4.41, we have
era(zt,x) = sup  {{(="2),(y,9")) — ern(y,y7)}
(y,y*)eEXXX*
> sup {{2" ) +(z,y") — (y,y")} = Far (z,27).

(y,y*)€gr AF

This proves the desired inequality. =
It should be noted that if A is maximal monotone, then from the above
proposition we infer that

Prn(e™, ) > (@7, z).

Proposition 4.48 Assume that F : X x X — R is a cyclically monotone
bifunction such that F(x,-) is lsc and convex for every x € dom F. Then there
exists a proper, lsc and convez function f such that

If in addition F is BO-mazimal monotone, then f is unique up to a constant
and A¥ = 0f. In particular, AY is maximal cyclically monotone.

Proof. The proof follows similar steps as in Proposition 2.29, but here F'
may take the values +00, so some extra care is necessary, taking into account
Notation 4.37. As in Proposition 2.29, choose zg € dom F' and define f : X —
R U {+o0} by

f(SU) = Sup{F(anxl) + F(xlva) + -+ F(xn—laxn)

+F(zy,z): x1,29,... 27 € X}.

Note that the above supremum can be equivalently taken over 1, 2, ...z, €
dom F', and f is Isc and convex as supremum of Isc convex functions.
Let x1,xa,... 2y, 2 € X. Since F is cyclically monotone,

F(xo,xz1) + Fa1,22) + -+ F(Xp-1,2n) + F(zn,2) + F(z,20) <0
which implies
F(xg,21) + F(a1,22) + -+ F(Xp_1,2,) + F(zn,2) < —F(z, ).

By taking the supremum over zi,zs,...z, € domF we obtain f(z) <
—F(z,z9) for all z € X. In particular, f(zg) < —F(z9,29) < 400; since
also f(z) > F(xg,z) > —oo for all x € X, f is proper.

For every z,y € X and z1,22,...2, € dom F we have by the definition of

f:

F(zo,21) + F(x1,22) 4+ + F(@n_1,%y) + F(zn,z) + F(z,y) < f(y).
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Taking the supremum over all x1,zs,...x, € X we deduce

f(@)+ F(z,y) < f(y)

that is, inequality (4.28) holds.
Now assume that F' is also BO-maximal monotone. Let (z,z*) € grof.
Then for all y € X,

Fy,z)+ (" y —z) < f(z) = fly) + (&7, y —2) < 0.
Using that F' is BO-maximal monotone we obtain
<£B*7y - {E> < F((E,y)

This implies that * € Af(x). Since df is maximal monotone, we deduce
that f = A" and AF is maximal monotone.
Now assume that g is another Isc and convex function such that

F(z,y) < g(y) —g(z), Vz,yeX.

For every (z,7*) € grdf = gr A and y € X we obtain

(%, y —x) < F(x,y) < g(y) — g().

It follows that df C g, thus 0f = dg. This implies that g differs from f by
a constant [98]. m
The following results are to be compared with Proposition 4.13.

Lemma 4.49 Let F be a BO-mazimal monotone bifunction. If there exists
some proper, lsc and convex function f such that for all (x,z*) € X x X*:
op(z,z*) < f(x) + f*(z*), then Of = A so that f is uniquely determined up
to a constant.

Proof. Let z* € 0f(x); then (z*,z) = f(z) + f*(z*), so (z*,x) > op(z,z*).
By Theorem 4.11, this implies that 2* € Af(x). Thus, 9f(z) C AF(z). By
maximal monotonicity of df, we obtain that 0f = A¥. m

Proposition 4.50 Suppose that F' is a cyclically monotone bifunction such that
F(x,-) is lsc and convex for every x € dom F'. Then there exists a proper, lsc
and convex function f such that

Orn (z,2") < fx)+ f*(z") V(z,z")e X x X", Vn e {3,4,..}

and
Oroo (,2*) < f(x)+ f*(2%) V(r,2*) e X x X*.

Furthermore, if F' is BO-maximal monotone, then f is unique up to a constant.



92 CHAPTER 4. FITZPATRICK TRANSFORM

Proof. By Proposition 4.48 there exist a proper, Isc and convex function f such
that

F(z,y) < fy)—f(x) Va,yeX.

Hence for each n € {3,4,...} we have

(’fZZF (xi,ml)) P (@ra) + @t ) < £ (@) — F (0) + (@ an)

=1

By taking the supremum over i, ...,z,_1, for each n € {3,4,...} we get

Prn (T, 27) < Sup (f (x) = f(21) + (2", 1))

= [ @)+ sup ((z%,21) — f (21)) = f () + /" (z7).

r1E€X

Now by taking supremum over n, we obtain

Proo (€, 27) < f(2) + f* (7).

The uniqueness of f up to constant is an immediate consequence of the above
lemma and the fact that or < pp, < Proc. B

Proposition 4.51 Let f : X — RU{+o0} be a proper, Isc and convex function
with dom f = {zx € X : f (z) < o0}. Define F: X x X - R by

Fz,y)=f(y) - f(z).

Then F is cyclically monotone and for each n € {2,3,...} and every (z,z*) in
X x X*,
Prn (T,27) = Proo (x,27) = f () + f* (27) .

That is, the sequence {@pn} is a constant sequence. Moreover, for each n €

(2,3,..}

@GAF’ = faf,n-

n

Proof. For the proof of first assertion we will apply the recursion formula in
Proposition 4.43 and induction on n.

The base case n = 2 is proved in Proposition 4.13.

Induction step: Suppose the result is true for n = k. This says:

org(z,2)=f(x)+ f*(z*) V(r,z")eX x X"

We need to prove is the result for n = k + 1. By Proposition 4.43 for all (z, z*)
in X x X* we have

OF k1 (T,27) = sup {erk (y,2") + F(y,2)}
ye

= sup {err(y,2") + F(y,7)}
yedom f
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Thus

erir (z,27) = sup {(f(y) + " (@) + (f (=) = f(¥)}

yedom f
=f(@)+ [ (7).
Also by taking the supremum over n, from the definition we deduce that
Proo (T,27) = f(x) + f* (7).

The proof of second statement is also by induction.

Base case: Consider the case n = 2. This case, also is proved in Proposition
4.13.

Induction step: Suppose the result is true for n = k. In other words, we have

CG,r, (@,2%) = Fopp (z,x").

Again by using Propositions 4.43, 4.13, and Corollary 4.44 we have

26 4r py (@:0%) = 500 {06, (0.2°) + Gog (v.2)}
ye
= sup {Fork (y,7") + Gos (y, )}
yeX
= Fofk+1 (v,77).

We are done. m
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duality mapping, 14
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Fitzpatrick inequality, 79
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hyperplane, 4
indicator function, 10
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Isc function, 7
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norm, 1
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pair convolution, 76
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Penot function, 17

polar cone, 11
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pre-monotone operator, 40
projection, 59

proper function, 6

quasi coercive operator, 59
quasi-concave function, 6
quasi-convex function, 6

representative function, 17
resolvent of a bifunction, 82
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subdifferential, 9

subgradients, 9

submonotone operator, 63
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tangent vector, 11
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usc function, 7
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