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PerÐlhyh

Το θέμα της παρούσας διατριβής είναι η μελέτη των μονότονων και γενικευμένα
μονότονων “δισυναρτήσεων” (bifunctions), και η χρησιμοποίηση αυτής της μελέτης
στη θεωρία των μονότονων και γενικευμένα μονότονων τελεστών σε τοπικά κυρτούς
χώρους (συνήθως, χώρους Banach).
Δοθέντος ενός τοπικά κυρτού χώρου X, με τον όρο “τελεστής” εννούμε μια

πλειότιμη απεικόνιση από το X στον τοπολογικό δυικό του X∗, δηλαδή μια απεικό-
νιση T : X → 2X

∗

, όπου 2X
∗

είναι το δυναμοσύνολο του X∗. Για κάθε x ∈ X,
το T (x) είναι ένα (πιθανώς κενό) υποσύνολο του X∗. ΄Ενας τελεστής T λέγεται
μονότονος, αν για κάθε x, y ∈ X και κάθε x∗ ∈ T (x), y∗ ∈ T (y) ισχύει

〈x∗ − y∗, x− y〉 ≥ 0

όπου με 〈x∗, x〉 συμβολίζεται το x∗(x). Η έννοια του μονότονου τελεστή έχει
βρει εφαρμογές σε πολλούς κλάδους των μαθηματικών, όπως στη μη γραμμική
ανάλυση, στις μερικές διαφορικές εξισώσεις, στη θεωρία διαφορισιμότητας κυρτών
συναρτήσεων κλπ. Ειδικώτερα, οι μονότονοι τελεστές έχουν αποδειχθεί ισχυρό
εργαλείο στη θεωρία ανισώσεων μεταβολών (variational inequalities), οι οποίες
αποτελούν τη βάση πολλών μοντέλων σε φυσικά προβλήματα. ΄Ενας από τους
λόγους είναι ότι η κλάση των μονότονων τελεστών περιλαμβάνει τα υποδιαφορικά
και τους θετικούς γραμμικούς τελεστές, που συχνά απαντώνται σε τέτοια προβλή-
ματα.
Μια άλλη σημαντική έννοια είναι οι μονότονες δισυναρτήσεις (monotone bi-

functions). Αν C ⊆ X, μια απεικόνιση F : C × C → R λέγεται μονότονη
δισυνάρτηση αν για κάθε x, y ∈ C,

F (x, y) + F (y, x) ≤ 0.

Οι μονότονες δισυναρτήσεις σχετίζονται με το λεγόμενο πρόβλημα ισορροπίας,
που συνίσταται στην εύρεση ενός σημείου x0 ∈ C τέτοιου ώστε

∀y ∈ C : F (x0, y) ≥ 0.

Τα προβλήματα ισορροπίας είχαν μελετηθεί στο παρελθόν σε σχέση με τα θεωρήματα
minimax, αλλά ο όρος “πρόβλημα ισορροπίας” χρησιμοποιήθηκε για πρώτη φορά
στο σημαντικό άρθρο των Bloom και Oettli [23]. Στο άρθρο αυτό οι συγγραφείς
έδειξαν ότι πολλά διαφορετικά μεταξύ τους προβλήματα (ανισώσεις μεταβολών,



μαθηματική βελτιστοποίηση, προβλήματα σταθερού σημείου, προβλήματα “σαγ-
ματικού σημείου” (saddle point problems), ισορροπία κατά Nash κλπ) ήταν ειδικές
περιπτώσεις του προβλήματος ισορροπίας. Για το λόγο αυτό, πολλοί ερευνητές
ασχολήθηκαν με προβλήματα ισορροπίας με μονότονες δισυναρτήσεις (βλέπε [7, 8,
22, 21, 64, 54, 71, 69, 75, 77, 78, 86] και τις αναφορές που περιέχονται σ΄ αυτά).
Στην παρούσα διατριβή θα ασχοληθούμε με τις μονότονες δισυναρτήσεις από

άλλη άποψη. Θα επικεντρωθούμε στο συσχετισμό των μονότονων δισυναρτήσεων
με τους μονότονους τελεστές. Σε κάθε δισυνάρτηση F θα αντιστοιχήσουμε ένα
τελεστή AF , και σε κάθε τελεστή T θα αντιστοιχήσουμε μια δισυνάρτηση GT . Μια
δισυνάρτηση F θα λέγεται μεγιστικά μονότονη αν ο τελεστής AF είναι μεγιστικά
μονότονος (βλέπε ορισμό στην παράγραφο 1.3). Κύριος σκοπός μας θα είναι η
μελέτη μερικών ιδιοτήτων των μονότονων δισυναρτήσεων σε σχέση με αντίστοιχες
ιδιότητες των μονότονων τελεστών.
΄Ενα από τα κύρια αποτελέσματα της διατριβής είναι ότι, κάτω από ασθενείς

υποθέσεις, οι μονότονες δισυναρτήσεις είναι τοπικά φραγμένες στο εσωτερικό του
πεδίου ορισμού τους. Ως άμεσο αποτέλεσμα, θα συμπεράνουμε τη γνωστή ιδιότητα
ότι κάθε μονότονος τελεστής T είναι τοπικά φραγμένος στο εσωτερικό του πεδίου
ορισμού του domT = {x ∈ X : T (x) 6= ∅}. Από την άλλη πλευρά, σε αντίθεση
με τους μονότονους τελεστές, οι μονότονες δισυναρτήσεις μπορεί να είναι τοπικά
φραγμένες και στο σύνορο του πεδίου ορισμού τους· μάλιστα θα δείξουμε ότι αυτό
ισχύει πάντοτε όταν το πεδίο ορισμού τους είναι πολυεδρικό.
Επιπλέον θα δείξουμε ότι ένας μονότονος τελεστής T είναι “τοπικά φραγμένος

προς τα μέσα”σε κάθε σημείο x0 ∈ domT , ιδιότητα που ανάγεται στη γνωστή
ιδιότητα του τοπικά φραγμένου όταν το x0 ανήκει στο εσωτερικό του domT .
Οι μονότονοι τελεστές μπορούν να γενικευθούν με πολλούς τρόπους, βλέπε

πχ [63] και [74]. ΄Ενας από αυτούς είναι οι λεγόμενοι σ-μονότονοι τελεστές [71],
που είναι πλειότιμοι τελεστές T : X → 2X

∗

τέτοιοι ώστε για κάθε x, y ∈ domT
και x∗ ∈ T (x), y∗ ∈ T (y),

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)} ‖x− y‖

όπου σ : domT → R+ είναι δοσμένη συνάρτηση. Ο T λέγεται προμονότονος
(pre-monotone) αν είναι σ-μονότονος για κάποια συνάρτηση σ. Η κλάση των
προμονότονων τελεστών περιλαμβάνει πολλούς σημαντικούς τελεστές όπως οι
μονότονοι και οι ε-μονότονοι τελεστές. Στην παρούσα διατριβή θα γενικεύσουμε
μερικά από τα αποτελέσματα της εργασίας των Iusem, Kassay, Sosa [71] σε απειρο-
διάστατους χώρους, και επίσης θα εισάγουμε την έννοια της σ−μονότονης και
προμονότονης δισυνάρτησης. Το κύριο αποτέλεσμα είναι ότι οι προμονότονες δι-
συναρτήσεις είναι τοπικά φραγμένες στο εσωτερικό του πεδίου ορισμού τους, με
αντίστοιχο συμπέρασμα για τους προμονότονους τελεστές. Επίσης γενικεύουμε
ένα σημαντικό θεώρημα του Libor Veselý. Επιπλέον δείχνουμε ότι, δοθέντων δύο
μεγιστικών σ-μονότονων τελεστών S και T , μια αρκετά ασθενής συνθήκη που
αφορά τη σχετική θέση των πεδίων ορισμού τους, συνεπάγεται ότι το άθροισμα
T (x) + S(x) είναι ασθενώς∗ κλειστό για κάθε x ∈ X.
΄Ενα σημαντικό μέρος αυτής της διατριβής αφορά στην εισαγωγή και μελέτη

του “μετασχηματισμού Fitzpatrick” μιας δισυνάρτησης. Κατ΄ αρχάς εισάγουμε



την έννοιας της κανονικής (normal) δισυνάρτησης και ένα καινούργιο ορισμό
μονότονης δισυνάρτησης, που είναι μια μικρή γενίκευση του αντίστοιχου ορισμού
των Bloom και Oettli [23], αλλά που επιτρέπει μια καλύτερη αντιστοίχηση των
μονότονων δισυναρτήσεων και μονότονων τελεστών. ΄Ενα από τα κύρια χαρακ-
τηριστικά του νέου ορισμού είναι ότι ένας τελεστής Τ με ασθενώς∗-κλειστές τιμές
είναι μεγιστικά μονότονος αν και μόνον αν η δισυνάρτηση GT είναι ΒΟ-μεγιστικά
μονότονη (βλέπε ορισμό στο τελευταίο κεφάλαιο). Επιπλέον αποδεικνύουμε ότι ο
μετασχηματισμός Fitzpatrick της GT είναι ακριβώς η συνάρτηση Fitzpatrick του
T . Επιπλέον, αν μια μονότονη δισυνάρτηση F είναι κυρτή και κάτω ημισυνεχής ως
προς τη δεύτερη μεταβλητή της, ο μετασχηματισμός Fitzpatrick μας επιτρέπει να
βγάλουμε συμπεράσματα για τη μεγιστική μονοτονία της.

Παρουσιάζουμε τώρα τα περιεχόμενα των διαφόρων κεφαλαίων της διατριβής.

Το κεφάλαιο 1 περιέχει μερικές βασικές έννοιες και αποτελέσματα από την
κυρτή ανάλυση, τη συναρτησιακή ανά΄λυση, τη θεωρία μονότονων τελεστών και
τη συνάρτηση Fitzpatrick, προκειμένου να γίνει το κείμενο πιο αυτοδύναμο και να
μην ανατρέχει ο αναγνώστης σε άλλες πηγές.
Το κεφάλαιο 2 είναι αφιερωμένο στις μονότονες δισυναρτήσεις. Ορίζουμε τις

μεγιστικά μονότονες δισυναρτήσεις και παρουσιάζουμε μερικές αρχικές έννοιες και
ιδιότητες. Τα κύρια αποτελέσματα του κεφαλαίου είναι το Θεώρημα 2.9 που δίνει
μια ικανή συνθήκη ώστε να ισχύει η ισότητα AGT = T , και το Θεώρημα 2.19
που λέει ότι κάτω από ασθενείς υποθέσεις, μια μονότονη δισυνάρτηση είναι τοπικά
φραγμένη σε κάθε σημείο του εσωτερικού του πεδίου ορισμού της. Με τον τρόπο
αυτό βρίσκουμε μια εύκολη απόδειξη της αντίστοιχης ιδιότητας για μονότονους
τελεστές. Οι προτάσεις 2.32 και 2.33 δείχνουν ότι οι μονότονες δισυναρτήσεις
συμπεριφέρονται καλύτερα από τους αντίστοιχους μονότονους τελεστές, αφού
μπορούν να είναι τοπικά φραγμένες και στο σύνορο του πεδίου ορισμού τους. Ει-
δικώτερα δείχνουμε ότι όταν το πεδίο ορισμού είναι τοπικώς πολυεδρικό υποσύνολο
του Rn, τότε το τοπικό φράξιμο είναι αυτόματο σε όλο το πεδίο ορισμού. Στο τέλος
του κεφαλαίου παρουσιάζουμε μερικά παραδείγματα και αντιπαραδείγματα.
Το κεφάλαιο 3 ασχολείται με τη θεωρία των σ-μονότονων μονότονων τελεστών

και δισυναρτήσεων. Εισάγουμε τις έννοιες των σ-μονότονων τελεστών και δι-
συναρτήσεων σε ένα χώρο Banach, και μελετούμε αρχικά τις στοιχειώδεις ιδιότητές
τους. Επίσης, εισάγουμε και μελετούμε τις κλάσεις των προμονότονων τελεστών
και δισυναρτήσεων. Στην πρόταση 3.7 αποδεικνύουμε ότι αν ο T είναι σ-μονότονος
και η σ άνω ημισυνεχής, τότε ο T έχει ακολουθιακά νορμ×ασθενώς∗ κλειστό
γράφημα. Επιπλέον, το παράδειγμα 3.8 δείχνει ότι η υπόθεση της άνω ημισυνέχειας
της σ δε μπορεί να παραληφθεί. Το κύριο αποτέλεσμα είναι το Θεώρημα 3.17 που
αποδεικνύει ότι, κάτω από κατάλληλες συνθήκες, οι σ-μονότονες δισυναρτήσεις
είναι τοπικά φραγμένες στο εσωτερικό του πεδίου ορισμού τους, πράγμα που
επιτρέπει την απόδειξη της αντίστοιχης ιδιότητας για σ-μονότονους τελεστές. Επι-
πλέον, αποδεικνύουμε μια επέκταση του θεωρήματος του Libor Veselý [92]. Δείχ-
νουμε επίσης ότι, κάτω από μερικές συνθήκες πάνω στο πεδίο ορισμού τους,
το άθροισμα των τιμών δύο μεγιστικών σ-μονότονων τελεστών είναι ασθενώς∗-
κλειστό. Στη συνέχεια αποδεικνύουμε την ύπαρξη λύσης για το πρόβλημα ισορ-



ροπίας που ορίζεται σε ένα κυρτό και κλειστό (μη φραγμένο εν γένει) υποσύνολο
ενός πεπερασμένης διάστασης χώρου. Το κεφάλαιο τελειώνει με τη σύγκριση του
ορισμού του σ-μονότονου τελεστή με άλλους ορισμούς γενικευμένης μονοτονίας
που υπάρχουν στη βιβλιογραφία.
Στα τελευταία χρόνια, ένα από τα ισχυρότερα εργαλεία στη μελέτη των μεγιστι-

κά μονότονων τελεστών αποδείχθηκε ότι είναι η συνάρτηση Fitzpatrick. Χάρις σ΄
αυτήν, πολλά αποτελέσματα της (μερικές φορές ιδιαίτερα δύσκολης) θεωρίας των
μεγιστικά μονότονων τελεστών αποδείχθηκαν ευκολώτερα ή και ισχυροποιήθηκαν,
χρησιμοποιώντας μεθόδους της κυρτής ανάλυσης. Στο κεφάλαιο 4 δείχνουμε τη
στενή σχέση της θεωρίας των μονότονων δισυναρτήσεων με την κυρτή ανάλυση,
ορίζοντας το μετασχηματισμό Fitzpatrick ϕF μιας δισυνάρτησης F : X × X →
R ∪ {+∞,−∞} ως μια συνάρτηση ϕF : X × X∗ → R ∪ {+∞}. ΄Ενα από τα
τα σημαντικότερα αποτελέσματα είναι το Θεώρημα 4.11 που δείχνει ότι δοθείσας
μιας ΒΟ-μεγιστικά μονότονης δισυνάρτησης F , για κάθε (x, x∗) ∈ X ×X∗ ισχύει
ϕF (x, x

∗) ≥ 〈x∗, x〉, ενώ η ισότητα ισχύει αν και μόνον αν x∗ ∈ AF (x). Επιπλέον
στην Πρόταση 4.12 βρίσκουμε μία σχέση μεταξύ του μετασχηματισμού Fitzpatrick
και της συνάρτησης Fitzpatrick. Ορίζουμε επίσης τον άνω μετασχηματισμό Fitz-
patrick ϕF , δείχνουμε δε ότι μαζί με το μετασχηματισμό Fitzpatrick, αποτελούν
ένα ισχυρό εργαλείο. Για παράδειγμα αποδεικνύουμε χρησιμοποιώντας τους ότι
όταν ο χώρος είναι ανακλαστικός (reflexive), τότε για κάθε δισυνάρτηση F που
είναι κυρτή και κάτω ημισυνεχής ως προς τη δεύτερη μεταβλητή, η F είναι μεγισ-
τικά μονότονη αν και μόνο αν είναι ΒΟ-μεγιστικά μονότονη. Στη συνέχεια, θα
βρούμε ένα άνω φράγμα για το μετασχηματισμό Fitzpatrick του αθροίσματος δύο
δισυναρτήσεων, και θα συνάγουμε μια ανισότητα για το μετασχηματισμό Fitz-
patrick που ισχύει όταν η δισυνάρτηση είναι υποαθροιστική (subadditive) ως
προς τη δεύτερη μεταβλητή. Επίσης, αποδεικνύουμε μερικά θεωρήματα ύπαρξης
λύσης ανισώσεων. Κατόπιν παρουσιάζουμε μερικά παραδείγματα υπολογισμού του
μετασχηματισμού Fitzpatrick. Στο τέλος του κεφαλαίου εισάγουμε την έννοια
της n-κυκλικά μονότονης και ΒΟ-μεγιστικής n-κυκλικά μονότονης δισυνάρτησης.
Δείχνουμε τη σχέση που έχουν με τους n-κυκλικά μονότονους τελεστές. Τέλος,
γενικεύουμε μερικά αποτελέσματα της παραγράφου 4.3 στην περίπτωση των κυ-
κλικά μονότονων δισυναρτήσεων.

Τα βασικότερα αποτελέσματα των κεφαλαίων 2, 3 και 4, περιέχονται, αντί-
στοιχα, στις εργασίες [5], [6] και [4]. Για διευκόλυνση του αναγνώστη, στο τέλος
της διατριβής υπάρχει ευρετήριο όρων.



Introduction

Our purpose in this thesis is to study and advance in the research area of
monotone and generalized monotone operators and bifunctions.

A monotone operator is a set-valued map from a Hausdorff locally compact
space X to its topological dual space X∗ such that

〈x∗ − y∗, x− y〉 ≥ 0

for all x, y ∈ X and x∗ ∈ T (x) and y∗ ∈ T (y) where 〈x∗, x〉 = x∗ (x). Note that
when T is single-valued and X = R, then T is nothing else than an increasing
map, and this justifies the name “monotone operator”. The notion of monotone
operator has been found appropriate in various branches of mathematics such
as Operator Theory, Partial Differential Equations, Differentiability Theory of
Convex Functions, Numerical Analysis and has brought a new life to Nonlinear
Functional Analysis and Nonlinear Operator Equations. In particular, mono-
tone operators are a powerful tool to the study of variational inequalities, which
are a very useful instrument for constructing mathematical models for several
physical and engineering problems. This is because the class of monotone op-
erator includes subdifferentials and continuous positive linear operators, which
are usually found in the above mentioned areas.

Generally it is not clear who introduced the notion of monotone operators.
Nevertheless, the popular view is that M. Golomb was the first one who intro-
duced this notion in his paper “Zur Theorie der nichtlinearen Integralgleichun-
gen, Integralgleichungssysteme und allgemeiner Funktionalgleichungen”, Math.
2. 39, 45-75 (1935). For historical discussions and more information we refer to
[84] and [121].

Another important notion is the notion of monotone bifunction. If C ⊆ X,
a function F : C × C → R is called monotone bifunction if for every x, y ∈ C,

F (x, y) + F (y, x) ≤ 0.

Monotone bifunctions are connected to the so-called equilibrium problem,
which consists in finding x0 ∈ C such that

∀y ∈ C : F (x0, y) ≥ 0.

Equilibrium problems are related to the minimax problem and were studied
by various authors in the past, but the term “equilibrium problem” was intro-
duced in the seminal paper by Blum and Oettli [23]. Blum and Oettli have

xi
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shown that many important problems (optimization problems, variational in-
equalities, saddle point problems, fixed point problems, Nash equilibria etc.)
can be seen as a particular cases of the equilibrium problem. All these rea-
sons have convinced many mathematicians, after Blum and Oettli’s highly
influencing paper [23], to start research in this rich and important branch
of mathematics, so equilibrium problems were studied in many papers (see
[7, 8, 22, 21, 64, 54, 71, 69, 75, 77, 78, 86] and the references therein). Recently,
a part of literature has been dedicated to algorithms for finding solutions of
equilibrium problems, for example see [69], [54], [75], and [86]. In this thesis we
will investigate monotone bifunctions from another standpoint. We will focus
on the relation between maximal monotone operators and maximal monotone
bifunctions. To each bifunction F we will correspond an operator AF and for
every operator T will correspond a bifunction GT . A monotone bifunction F
will be called maximal monotone if AF is a maximal monotone operator. We
will study some properties of monotone bifunctions in relation with the corre-
sponding property of monotone operators and vice versa.

One of the main results of this thesis is that under weak assumptions, mono-
tone bifunctions are locally bounded in the interior of the convex hull of their
domain. As an immediate consequence, one can get the corresponding property
for monotone operators. Moreover, in contrast to maximal monotone operators,
monotone bifunctions (maximal or not maximal) can also be locally bounded
at the boundary of their domain.

We also show that each monotone operator is “inward locally bounded” at
every point of the closure of its domain, a property which collapses to ordinary
local boundedness at interior points of the domain. Moreover, we derive some
properties of cyclically monotone bifunctions.

Monotone operators have been generalized in many ways; see [63] and [74].
One of these generalizations is the so-called σ-monotone operator [71]; a multi-
valued operator T from X into X∗ is called σ-monotone if for all x and y in the
domain domT of T , and all x∗ ∈ T (x), y∗ ∈ T (y),

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖

where σ : domT → R+ is a given function. T is called pre-monotone it is σ-
monotone for some σ. Pre-monotone operators include many important classes
of operators such as monotone and ε-monotone operators. In this thesis, we
extend some results of [71] (which are proved in R

n) to Banach spaces and also
introduce the notion of σ-monotone bifunctions. The main result shows that σ-
monotone bifunctions are locally bounded in the interior of their domain, which
implies that local boundedness of pre-monotone operators. We also state and
prove a generalization of the Libor Veselý theorem. Besides, we show that, given
two maximal σ-monotone operators T and S, a weak condition on the mutual
position of their domains implies that T (x) + S (x) is weak∗-closed for every x.

A considerable part of this thesis is devoted to introducing and studying
of the “Fitzpatrick transform of a bifunction” and its properties. In fact, we
introduce the notion of normal bifunction and a new definition of monotone
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bifunctions, which is a slight generalization of the original definition given by
Blum and Oettli, but which is better suited for relating monotone bifunctions
to monotone operators. One of the main features of this new definition is that
an operator with weak∗-closed convex values is maximal monotone if and only
if the corresponding bifunction is BO-maximal monotone. In addition, we show
that the Fitzpatrick transform of a maximal monotone bifunction corresponds
exactly to the Fitzpatrick function of a maximal monotone operator, in case
the bifunction is constructed starting from the operator. Whenever the mono-
tone bifunction is lower semicontinuous and convex with respect to its second
variable, the Fitzpatrick transform permits to obtain results on its maximal
monotonicity.

We now present a brief outline of the thesis. It consists of four chapters.

Chapter 1 contains some basic knowledge from Convex Analysis and Func-
tional Analysis, the theory of monotone operators and the Fitzpatrick function
which allows the study of the proposed material without turning, generally, to
other sources.

Chapter 2 is devoted to monotone bifunctions. We define maximal mono-
tonicity of bifunctions, and we present some preliminary definitions, properties
and results. A part of our results is inspired by some analogous results from
[64]. The main results of this chapter are Theorem 2.9 which provides a suffi-
cient condition under which the equality AGT = T is true, and Theorem 2.19
which states that under very weak assumptions, local boundedness of monotone
bifunctions is automatic at every point of intC. In this way one can obtain an
easy proof of the corresponding property of monotone operators. Propositions
2.32 and 2.33 reveal that monotone bifunctions are in some ways better behaved
that the underlying monotone operators, since they can be locally bounded even
at the boundary of their domain of definition. Besides, we demonstrate that for
locally polyhedral domains C in R

n, an automatic local boundedness of bi-
functions holds on their whole domain of definition. We also assert that each
monotone operator is “inward locally bounded” at every point of the closure of
its domain, a property which collapses to ordinary local boundedness at interior
points of the domain. At the end of the chapter, we present some noteworthy
counterexamples.

Chapter 3 deals with the theory of σ-monotone operators and σ-monotone
bifunctions. We introduce the class of σ-monotone and maximal σ-monotone
operators in a Banach space, and analyze their properties. We also introduce
and study the class of pre-monotone bifunctions which are related to the notion
of pre-monotone operators. Proposition 3.7 shows that if T is σ-monotone and
σ is upper semicontinuous, then grT is sequentially norm×weak∗-closed. More-
over, Example 3.8 shows that upper semicontinuity of σ cannot be omitted from
the statement of Proposition 3.7. The main Theorem 3.17 shows that, under
weak assumptions, σ-monotone bifunctions are locally bounded in the interior of
their domain; this allows us to deduce that pre-monotone operators are locally
bounded in the interior of their domain. In addition, we state and prove a gener-
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alization of the Libor Veselý theorem. We show that also under some conditions
on their domain, the sum of the values of two maximal σ-monotone operator
is weak∗-closed. Afterwards, we confine our attention to finite dimensions and
prove the existence of solutions for an equilibrium problem in a (generally un-
bounded) closed convex subset of an Euclidean space. We conclude this chapter
by comparing some types of generalized monotone operators.

The main tool for linking maximal monotone theory to Convex Analysis,
is the Fitzpatrick function. In Chapter 4 we point out the connection be-
tween bifunctions and Convex Analysis by introducing the notion of Fitzpatrick
transform ϕF of a bifunction F : X × X → R ∪ {+∞,−∞} as a function
ϕF : X×X∗ → R∪{+∞}. One of the main results is Theorem 4.11 which proves
that given a BO-maximal monotone bifunction F , for every (x, x∗) ∈ X×X∗ one
has ϕF (x, x

∗) ≥ 〈x∗, x〉; and equality holds if and only if x∗ ∈ AF (x). Moreover,
in Proposition 4.12 we find a link between the Fitzpatrick transform and the
Fitzpatrick function. In addition, we define the upper Fitzpatrick transform; we
will see that in conjunction with the Fitzpatrick transform, it is very useful in
our analysis. In the sequel, by another main theorem we demonstrate that the
maximality of AF and BO-maximality of F are equivalent whenever the space
is reflexive, and F is lower semicontinuous and convex with respect to its second
variable. Theorem 4.19 characterizes the BO-maximality through some equiv-
alence statements. We find also an upper bound for the Fitzpatrick transform
of a sum and then will deduce an inequality for the Fitzpatrick transform when
the bifunction is subadditive with respect to its second variable. Besides, we
present some existence theorems. Also we collect several examples concerning
the Fitzpatrick transform of bifunctions. Thereafter, we introduce the notion
of n-cyclically monotone and BO-n-cyclically maximal monotone bifunctions.
Also, we will bring forward their relation to n-cyclically monotone operators.
We prove a theorem for BO-n-cyclically maximal monotone bifunctions which
is similar to the corresponding theorem of Fitzpatrick functions. Subsequently,
we generalize some results from Section 4.3 to cyclically monotone bifunctions.

The main results of Chapters 2, 3 and 4 are contained, respectively, in the
papers [5], [6] and [4]. For the convenience of the reader, the thesis is supple-
mented by an index of the main terms.



Chapter 1

Background and

Preliminaries

In the first chapter, we present an overview of some main notions and theorems
from Functional Analysis and Convex Analysis to prepare the background for the
chapters that follow. Also, this chapter provides all basic concepts of monotone
and maximal monotone operators to which we refer in the next chapters.

1.1 Functional Analysis Tools

We start this section by collecting the basic aspects of topological vector spaces
and locally convex spaces.

Let X be a vector space. A function p : X → R+ is called seminorm if it
satisfies:

(i) p (x+ y) ≤ p(x) + p(y) for all x, y ∈ X;
(ii) p (λx) = |λ|p(x) for each x ∈ X and every scalar λ.
Note that from (ii) we conclude that p (0) = 0. Also, a seminorm p that

satisfies p(x) = 0 only if x = 0 is called a norm. Usually a norm is denoted by
‖·‖. A normed space is a pair (X, ‖·‖), where X is a vector space and ‖·‖ is a
norm on X. A Banach space is a normed space which is complete with respect
to the metric defined by the norm.

A topological vector space (TVS, from now on) is a vector space X together
with a topology so that the addition and scalar product maps i.e.,

• the map of X ×X → X defined by (x, y) 7−→ x+ y,

• the map of R×X → X defined by (t, y) 7−→ ty,

are continuous with respect to this topology.
Let us fix some notation. Assume that X is a vector space. Given x, y ∈ X,

[x, y] will be the closed segment

[x, y] = {(1− t)x+ ty : t ∈ [0, 1]} .

1
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Semi-closed and open segments i.e., [x, y[ , ]x, y] and ]x, y[ are defined analo-
gously. If E and F are nonempty subsets of X we define the sum (Minkowski
sum) of E and F by

E + F = {x+ y : x ∈ E, y ∈ F} .

In case if ∅ 6= A ⊂ R, then AE = {αx : α ∈ A, x ∈ E}.
A set ∅ 6= E ⊂ X is convex if [x, y] ⊂ X whenever x, y ∈ E. We set

R+ = [0,+∞). A set ∅ 6= E ⊂ X is affine if (1− t)x+ ty ∈ E for every x, y ∈ E
and each t ∈ R. If E is a subset of X, the convex hull of E, denoted by coE, is
the intersection of all convex sets that contain E. In fact

coE = ∩{C ⊂ X : E ⊂ C and C is convex}

=

{
n∑

i=1

tixi : n ∈ N, ti ∈ R+, xi ∈ E,

n∑

i=1

ti = 1

}
.

Assume that P is a family of seminorms on X. Then one can define a
topology T as follows, G ∈ T if and only if for each x0 ∈ G there are p

1
, ..., pn in

P and ε1, ..., εn > 0 such that ∩n
i=1{x ∈ X : p(x− x0) < ε} ⊂ G.

Definition 1.1 A TVS is called locally convex space (LCS, from now on) if
its topology is defined by a family of seminorms.

1.1.1 Baire Category Theorem

Baire’s theorem was proved in 1899 by René-Louis Baire in his doctoral thesis
(On the Functions of Real Variables) [12]. In late 1920’s, Banach and Steinhaus
introduced Baire’s theorem into Functional Analysis.

Assume that X is a topological space and ∅ 6= D ⊂ X. Then D is dense
in X if clD = X, that is, for every nonempty open subset U of X we have
D ∩ U 6= ∅. A subset F of X is called nowhere dense in X if the closure of F
has empty interior, i.e., int(cl(F )) = ∅. Note that a set F is nowhere dense if
and only if its closure is nowhere dense.

A set E ⊆ X is of the first category in X or “meager” in X if E is a countable
union of nowhere dense subsets of X, i.e., if the complement X\D contains a
countable intersection of open dense subsets of X. Obviously, any countable
union of first category sets is of the first category.

A subset U of X is of the second category in X or “non-meager” in X if U is
not of the first category in X. Equivalently if U ⊂ ∪∞

n=1Fn whenever F1, F2, ...
are closed sets, then intFn 6= ∅ for some n.

A Baire space is a topological space in which nonempty open sets are not
meager. For more information about the Baire spaces see [3], [24], [58], [94],
[102] and [103].

The following theorem characterizes Baire spaces.
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Theorem 1.2 Let X be a topological space. Then the following statements are
equivalent:

(i) X is a Baire space.
(ii) Every countable intersection of open dense sets is also dense.
(iii) If X = ∪∞

n=1Fn and each Fn is closed, then ∪∞
n=1 intFn is dense.

See [3, Theorem 3.46] for a proof.

Theorem 1.3 (Baire category theorem) A complete metrizable space is a
Baire space.

A proof can be found in [101, Theorem 5.6] or [3, Theorem 3.47].

1.1.2 The Uniform Boundedness Principle

The Banach-Steinhaus theorem is one of the most effective and potent theorems
in Functional Analysis, which states that a set of continuous linear transforma-
tions that is bounded at each point of a Banach space is bounded uniformly on
the unit ball. Roughly speaking, pointwise boundedness implies uniform bound-
edness. For more information and complete descriptions see [94] and [102].

Let X and Y be TVS. Set

L (X,Y ) = {all linear transformations f : X → Y }
and

BL (X,Y ) = {all continuous linear transformations f : X → Y } .

Proposition 1.4 Suppose that X and Y are TVS and f ∈ L (X,Y ). Then f
is continuous on X if (and only if) f is continuous at the origin.

The following definition is taken from [94].

Definition 1.5 Let F ⊂ L (X,Y ) . The set F is called equicontinuous if for
each neighborhood V in Y , there is a neighborhood U in X with f (U) ⊆ V
for all f ∈ F, or equivalently, for each neighborhood V in Y , ∩f∈Ff

−1(V ) is a
neighborhood in X. When X and Y are normed spaces, then F is equicontinuous
if and only if there is a constant α with ||f(x)|| < α||x|| for every f ∈ F.

Assume that Y and Z are normed spaces. For a given f ∈ BL (Y, Z), the
norm of f is defined by

||f || = sup {||f (y) || : ||y|| ≤ 1} = inf {M > 0 : ||f (y) || ≤M ||x||, y ∈ Y } .

When Y is a Banach space and Z is a normed space, then the uniform bound-
edness principle theorem has a simple version as follows.
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Theorem 1.6 (Uniform boundedness principle) Let Y be a Banach space
and Z a normed space. If Γ ⊂ BL (Y, Z) such that for each y in Y ,

sup {||f (y) || : f ∈ Γ} <∞,

then sup {||f || : f ∈ Γ} <∞.

1.1.3 Hahn-Banach Theorem and Separation Theorem

Suppose that X is a vector space over the scalar field F. The elements of
L (X,F) are called the linear forms or linear functionals. Also, L (X,F) is called
the algebraic dual of X. Moreover, when X it a TVS, then BL (X,F) is called
the topological (continuous) dual of X and it depends on the topology. We will
denote the algebraic dual and topological dual of X by X ′and X∗, respectively.
The maximal proper vector subspaces of X are called hyperplanes (through the
origin). By the axiom of choice X∗ is proper subset of X ′. Every hyperplane
H of X can be written as the kernel of a linear form see [43, Proposition 5.1].
Assume that H is a hyperplane and H = ker f . If f ∈ X∗ then H is closed
otherwise f ∈ X ′\X∗ and H is dense in X. In other word, H is closed if and
only if f is continuous, and dense if and only if f is discontinuous.

The Hahn-Banach theorem is one of the important and fundamental theo-
rems in Functional Analysis and states that a continuous linear functional on a
vector subspace of X has a continuous extension to the whole of X. We select
some applications of this theorem, that can be found in any book on Functional
Analysis.

Theorem 1.7 (Interior separating hyperplane theorem) Let X be a TVS
and A,B two disjoint convex subsets. If A is open, then there exist f ∈ X∗ and
α ∈ R such that for all x ∈ A, y ∈ B one has f(x) > α ≥ f(y).

Theorem 1.8 (Strong separating hyperplane theorem) Let X be a LCS
and A,B two disjoint closed convex subsets. If A is compact, then there exist
f ∈ X∗ and α ∈ R such that for all y ∈ B one has minx∈A f(x) > α > f(y).

Corollary 1.9 (Separating points from closed convex sets) Let X be a
LCS and A a closed convex subset. If z /∈ A, then there exist f ∈ X∗ and α ∈ R

such that for all y ∈ B one has f(z) > α > f(y).

From now on, we will usually represent elements of X∗ by starred letters
such as x∗, and the value of x∗ on x ∈ X by 〈x∗, x〉.

1.1.4 Weak and Weak∗-Topologies

Assume that X is a LCS. The weak topology , is the topology defined by the
family of seminorms {px∗ : x∗ ∈ X∗} , where px∗ (x) = |〈x∗, x〉|. We will denote
it by σ (X,X∗) or “w-topology”. Also, the weak∗-topology on X∗, is the topol-
ogy defined by the seminorms {px : x ∈ X} where px (x

∗) = |〈x∗, x〉|. We will
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denote it by σ (X∗, X) or “weak∗-topology”. Thus a subset G of X is weakly
open if and only if for every x0 in G there is an ǫ > 0 and there are x∗1, ..., x

∗
n in

X∗ such that

∩n
i=1 {x ∈ X : |〈x∗i , x− x0〉| < ε} ⊂ G.

We note that a net {xi} in X converges weakly to some point x0 in X if
〈x∗, xi〉 → 〈x∗, x0〉 for each x∗ ∈ X∗. We will denote this by xi ⇀ x0 or

xi
w→ x0. In a similar manner, a net {x∗i } in X∗ is weak∗-convergent to some

point x∗0 in X∗ if 〈x∗i , x〉 → 〈x∗0, x〉 for each x ∈ X. We will denote this by

x∗i ⇁ x∗0 or xi
w∗

→ x∗0.

Proposition 1.10 A convex subset of X is closed if and only if it is weakly
closed.

See [43, Chapter V, Theorem 1.4 and Corollary 1.4] for a proof.
The Alaoglu theorem asserts that the closed unit ball of the dual space of a

normed vector space is compact in the weak∗- topology [2]. This theorem was
extended to separable normed vector spaces by Stefan Banach. Finally, this
theorem was generalized by the Bourbaki group to LCS.

Theorem 1.11 ( Alaoglu theorem ) Suppose that X is a TVS and U is a
neighborhood of 0 in X. If

K = {x∗ ∈ X∗ : |〈x∗, x〉| ≤ 1 ∀x ∈ U} ,

then K is weak∗-compact.

See [102, Theorem 3.15]

1.2 Convex Analysis Tools

The purpose of this section is to outline the basic aspects of the Convex Analysis
in TVS or LCS. We set as usual R = R ∪ {+∞,−∞}.

1.2.1 Lower Semicontinuous and Convex Functions

Assume that X is real vector space and f : X → R is a function. Its domain
(or effective domain) is defined by

dom f = {x ∈ X : f (x) <∞} .

Also, the epigraph of f is defined by

epi f = {(x, r) ∈ X × R : f (x) ≤ r} .
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The function f is called proper if dom f 6= ∅ and f (x) > −∞ for each x ∈ X.
In addition, f is said to be convex when for all x, y ∈ X and for each t ∈ [0, 1],

f ((1− t)x+ ty) ≤ (1− t) f (x) + tf (y) .

We say that f is concave if the function −f is convex and f is affine whenever
it is both convex and concave.

We recall that a function f is called quasi-convex if for each x, y ∈ X and
for every t ∈ [0, 1],

f ((1− t)x+ ty) ≤ max {f (x) , f (y)} .

An alternative way of defining a quasi-convex function f is to require that each
sublevel set Sr (f) = {x ∈ X : f (x) ≤ r} is a convex set.

A function f is called quasi-concave if −f is quasi-convex
The following theorem is known. We refer the reader to [120] for the proof

of all results contained in this and the two subsequent subsections.

Theorem 1.12 Suppose that f : X → R is a function. Then the following
statements are equivalent:

(i) f is convex;
(ii) dom f is convex and

∀x, y ∈ dom f, ∀t ∈]0, 1[: f ((1− t)x+ ty) ≤ (1− t) f (x) + tf (y) ;

(iii) ∀n ∈ N, ∀x1, ..., xn ∈ X, ∀t1, ..., tn ∈]0, 1[, t1 + · · ·+ tn = 1 :

f (t1x1 + · · ·+ tnxn) ≤ t1f (x1) + · · ·+ tnf (xn) ;

(iv) epi f is a convex subset of X × R.

Suppose that X is a Hausdorff LCS, Λ is a set of indices and {fα}α∈Λ

functions on X. The convex hull of {fα}α∈Λ is denoted by

conv {fα}α∈Λ .

It is the convex hull of the pointwise infimum of the collection see [98, page 37].

Theorem 1.13 Suppose that X is a Hausdorff LCS, Λ is a set of indices and
{fα}α∈Λ functions on X. Assume that f is the convex hull of the collection.
Then

f (x) = inf

{∑
α∈Λ

λαfα (xα) :
∑

α∈Λ

λαxα = x

}
.

where the infimum is taken over all representations of x as a convex combination
of elements xα, such that only finitely many coefficients λα are nonzero. (The
formula is also valid if one actually restricts xα to lie in dom fα.)
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According to the definition of convex hull and the above theorem we have
the following fact:

Suppose that X is a Hausdorff LCS and Λ is a set of indices and {fα}α∈Λ

functions onX. The concave hull of {fα}α∈Λ is the concave hull of the pointwise
supremum of the collection. Let f be the concave hull of the collection. Then

f (x) = sup

{∑
α∈Λ

λαfα (xα) :
∑

α∈Λ

λαxα = x

}
. (1.1)

where the supremum is taken over all representations of x as a concave combi-
nation of elements xα, such that only finitely many coefficients λα are nonzero.

Now assume that X is a topological space. A function f : X → R is called
lower semicontinuous (briefly, lsc) at x0 ∈ X if for each ε > 0 there exists a
neighborhood Ux0

of x0 such that f(x) ≥ f(x0) − ε for all x in Ux0
. This can

be expressed as f (x0) ≤ lim infx→x0
f (x) . Also, f is said to be lsc if it is lsc at

each point of dom f . Equivalently, f is lsc if and only if epi f is closed. Note
that f is called upper semicontinuous (shortly, usc) if −f is lsc.

Proposition 1.14 Suppose that X is a Hausdorff LCS, Λ is a set of indices
and {fα}α∈Λ is a collection of convex (lsc) functions on X. Then their pointwise
supremum f = sup {fα : α ∈ Λ} is convex (lsc).

We point out that the investigation of lsc functions is a particular case of
the study of closed convex sets.

Theorem 1.15 Suppose that X is a Hausdorff LCS and f : X → R is a
function. Then the following statements are equivalent:

(i) f is convex and lsc;
(ii) f is convex and weakly lsc;
(ii) epi f is convex and closed;
(v) epi f is convex and weakly closed.

It is well-known that if f is convex on ]a, b[, then it is continuous on ]a, b[
whenever a, b ∈ R. The next propositions concern the extension of this result to
more general spaces.

Proposition 1.16 Let f be a proper, lsc and convex function on a Banach
space. If int(dom f) 6= ∅, then f is continuous on int(dom f).

Proposition 1.17 Suppose that X is a Hausdorff LCS. If the convex function
f : X → R is bounded above on a neighborhood of a point of its domain, then f
is continuous on the interior of its domain. Moreover, if f is not proper then f
is identically −∞ on int(dom f).

A function f : X → R is called closed if it is lsc everywhere, or if its epigraph
is closed.
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Definition 1.18 (Closure of a function) The closure (or lsc hull) of a func-
tion f is the function cl f : X → R defined by

cl f (x) = lim
y→x

inf f (y) or equivalently epi (cl f) = cl(epi f).

The next proposition gives some properties of the cl f (x) .

Proposition 1.19 Suppose that f : X → R is convex. Then
(i) cl f is convex;
(ii) if g : X → R is convex, lsc and g ≤ f , then g ≤ cl f
(iii) cl f does not take the value −∞ if and only if f is bounded from below

by a continuous affine function;
(iv) if there exists x0 ∈ X such that cl f(x0) = −∞ (in particular if f(x0) =

−∞), then cl f(x) = −∞ for every x ∈ domcl f ⊃ dom f .

1.2.2 Convex Functions and Fenchel Conjugate

In this subsection X and Y are Hausdorff LCS and f : X → R is a function.
The Fenchel conjugate of f is the function f∗ : X∗ → R defined by

f∗ (x∗) = sup
x∈X

{〈x∗, x〉 − f (x)} .

Note that if there exists x0 ∈ X so that f (x0) = −∞, then f∗ (x∗) = +∞ for
each x∗ ∈ X∗. Also, f∗ (x∗) = supx∈dom {〈x∗, x〉 − f (x)} whenever f is proper.
Assume that g is defined on the dual spaceX∗, i.e. g : X∗ → R is a function, one
also consider its conjugate g∗ : X → R by g∗ (x) = supx∗∈X∗ {〈x∗, x〉 − g (x∗)}.
One also consider the biconjugate function f∗∗ defined by

f∗∗ (x) = (f∗)∗ (x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗ (x∗)} .

Suppose that f, g : X → R are two functions, the infimal convolution [120,
page 43] of f and g is defined by

(f�g) (x) := inf {f (y) + g (x− y) : y ∈ X} .
The next theorem collects some noteworthy properties of conjugate func-

tions.

Theorem 1.20 Suppose that f, g : X → R, h : X∗ → R and A ∈ BL (X,Y ).
(i) f∗ is convex and weak∗-lsc, h∗ is lsc and convex;
(ii) the Young-Fenchel inequality: for all (x, x∗) ∈ X ×X∗

f (x) + f∗ (x∗) ≥ 〈x∗, x〉 ;
(iii) reverse order ruling:

f ≤ g ⇒ f∗ ≥ g∗;

(iv) f∗ = (cl f)∗ = (cl (co f))∗ and f∗∗ ≤ cl (co f) ≤ cl f ≤ f ;
(v) (Af)

∗
= f∗ ◦A∗;

(vi) (f�g)
∗
= f∗ + g∗.
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The next result is well known.

Proposition 1.21 Suppose that f : X → R is lsc and convex. Then f∗ is also
lsc and convex, and f∗∗ = f .

Let us close this subsection by the fundamental result in duality theory:

Proposition 1.22 Suppose f : X → R is a function such that dom f 6= ∅.
(i) If cl (co f) is proper, then f∗∗ = cl (co f) , otherwise f∗∗ = −∞.
(ii) Assume that f is convex. If f is lsc at x0 ∈ dom f , then f(x0) = f∗∗(x0);

moreover, if f(x0) ∈ R, then f∗∗ = cl f and cl f is proper.

Note that according to the previous proposition we always have f∗ = f∗∗∗.

1.2.3 The Subdifferential

In this subsection X is Hausdorff LCS and f : X → R is a function. If f (x) ∈ R,
then the subdifferential of f at x is the set ∂f (x) of all x∗ ∈ X∗ satisfying

〈x∗, y − x〉 ≤ f (y)− f (x) .

When f (x) /∈ R we define ∂f (x) = ∅. We say that f is subdifferentiable at x
if ∂f (x) 6= ∅. Note that ∂f is a set-valued map from X to X∗. Generally, the
elements of the subdifferential of f at x are called subgradients of f at x.

The following theorem contains some elementary properties of ∂f .

Theorem 1.23 Let f : X → R and x0 ∈ X be such that f(x0) ∈ R. Then:
(i) ∂f (x0) is a weak∗-closed and convex subset (maybe empty) of X∗;
(ii) if ∂f (x) 6= ∅, then cl (co f) (x0) = cl (f) (x0) = f (x0) and

∂(cl (co f) (x0)) = ∂(cl (f) (x0)) = ∂(f (x0));

(iii) if f is proper, dom f is a convex set and f is subdifferentiable at each
x ∈ dom f , then f is convex.

One can easily check that equality in the Young-Fenchel inequality holds if
and only if x∗ ∈ ∂f (x), i.e.,

x∗ ∈ ∂f (x) ⇔ f (x) + f∗ (x∗) = 〈x∗, x〉 .

The following result is due essentially to Ioffe-Tikhomirov and it is a very
important calculus rule for the subdifferential of supremum.

Theorem 1.24 Suppose that (A, T ) is a Hausdorff compact topological space
and fα : X → R is a convex function for every α ∈ A. Consider the function
f := supα∈A fα and F (x) := {α ∈ A : fα (x) = f (x)}. Assume that the map-
ping A ∋ α 7−→ fα(x) ∈ R is usc and x0 ∈ dom f is such that fα is continuous
at x0 for every α ∈ A. Then

∂f (x0) = cl co
(
∪α∈F (x0)∂fα (x0)

)
.
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There are many interesting results and discussions about the different kind
of subdifferentials and abstract subdifferential in [62].

From the definition of subdifferential we conclude that if f, g : X → R are
proper, lsc and convex, then ∂f (x)+ ∂g(x) ⊂ ∂ (f + g) (x). But the converse is
not true in general (even in Banach spaces).

Proposition 1.25 Suppose that Y is a Banach space and f, g : Y → R are
convex and 0 ∈ core(dom f − dom g). Then

∂f + ∂g = ∂ (f + g) .

Proof. See [25, Corollary 2.5].

1.2.4 Tangent and Normal Cones

We begin with some basic definitions and results.
In this subsection X is Hausdorff LCS and K is a nonempty subset of X.

The function ιK : X → R ∪ {+∞} defined by

ιK (x) :=

{
0 if x ∈ K,

+∞ otherwise

is called the indicator function of K.

Definition 1.26 Let C ⊂ X. The support function of the set C is the function
σC : X∗ → R defined by

σC (x∗) = sup
c∈C

〈x∗, c〉

(recall that sup ∅ = −∞).

Evidently if C ⊂ X is nonempty, then σC is lsc and convex and σC (0) = 0.
In fact σC is sublinear (i.e., subadditive and positively homogeneous). Moreover,

σC = (ιC)
∗
.

Note that a nonempty subset C of a real vector space is called a cone if
x ∈ C and λ ≥ 0 imply λx ∈ C.

Definition 1.27 Let X be Hausdorff LCS and K a nonempty subset of X. The
normal cone of K at x ∈ X is the set NK(x) defined by

NK (x) =

{
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ K} if x ∈ K,

∅ otherwise.

This defines a set-value map NK : X → 2X
∗

. The following proposition is
an immediate consequence of the above definition and Theorem 1.23.
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Proposition 1.28 For a nonempty, closed, and convex K ⊂ X, the following
statements hold:

(i) NK = ∂ιK ;
(ii) NK (x) is weak∗-closed and convex subset of X∗ for all x ∈ X;
(iii) NK (x) is a cone for all x ∈ K.

For a nonempty subset K of X, the polar cone of K is the subset
◦
K of X∗

defined by
◦
K = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 ∀x ∈ K} .

The antipolar cone of F ⊂ X∗ is the subset
⋄
F of X defined by

⋄
F = {x ∈ X : 〈x∗, x〉 ≤ 0 ∀x∗ ∈ F} .

Also, the tangent cone is defined as the antipolar cone of the normal cone and
denoted by TK . More precisely, TK : X → 2X is defined by

TK (x) =
⋄
NK (x) = {y ∈ X : 〈x∗, y〉 ≤ 0 ∀x∗ ∈ NK (x)} .

Note that when Y is a reflexive Banach space, we have
◦
K =

⋄
K. In fact,

◦
K ⊂ Y ∗∗ = Y .

In order to introduce a convenient characterization of tangent cone, we as-
sume that Z is normed space and S is a nonempty subset of Z.

Definition 1.29 [72, page 82] (i) Let x̄ ∈ clS be a given element. A vector
h ∈ Z is called a tangent vector to S at x̄ if there are a sequence {xn} in S and
a sequence {λn} of positive real numbers with

lim
n→∞

xn = x̄ and h = lim
n→∞

λn (xn − x̄) .

(ii) The set T (S, x̄) of all tangent vectors to S at x̄ is called sequential
Bouligand tangent cone to S at x̄ or contingent cone to S at x̄.

By the definition of tangent vectors it follows immediately that the contin-
gent cone is in fact a cone.

The Clarke tangent cone to S at x̄ ∈ clS ⊂ Z is defined as the set TCl (x̄, S)
of all vectors h ∈ Z with the following property: for every sequence {xn} in S
with limn→∞ xn = x̄ and every sequence {λn} in R with λn → 0, λn > 0, there
is a sequence {hn} in X with limn→∞ hn = h and xn + λnhn ∈ S for all n ∈ N.

It is evident that the Clarke tangent cone TCl (x̄, S) is always a cone. Note
that If x̄ ∈ S, then the Clarke tangent cone TCl (x̄, S) is contained in the con-
tingent cone T (S, x̄). The Clarke tangent cone TCl (x̄, S) is always a closed
convex cone [42]. Also, If x̄ ∈ S, then the contingent cone is closed and
TCl (x̄, S) ⊂ T (S, x̄) [72, pages 82 and 83].
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Proposition 1.30 Let S be a nonempty subset of a real normed space. If the
set S is starshaped with respect to some x̄ ∈ S, then

T (S, x̄) = cl(coneS\ {x̄}).

Proof. See [72, Chapter 4, page 87].

1.3 Monotone Operators

In this section we will focus on monotone and maximal monotone operators
and we will point out the connection between subdifferentials of lsc and convex
functions and maximal monotone operators. In particular, we are interested
in analyzing when the sum of two maximal monotone operators is maximal
monotone. Also, we will introduce the Fitzpatrick function and we will observe
the connection between maximal monotone operators and convex functions in
reflexive and not necessarily reflexive Banach spaces. The basic tools we will
use are the Fitzpatrick and Penot functions.

1.3.1 Monotone and Maximal Monotone Operators

Let X be Hausdorff LCS. A multivalued operator from X to X∗ is simply a map
T : X → 2X

∗

. The domain, range and graph of T are, respectively, defined by

domT = {x ∈ X : T (x) 6= ∅} , R (T ) = {x∗ ∈ X∗ : ∃x ∈ X;x∗ ∈ T (x)} ,

grT = {(x, x∗) ∈ X ×X∗ : x ∈ domT and x∗ ∈ T (x)} .
For a given operator T, the inverse operator T−1 : X∗ → 2X

∗∗

is defined by
means of its graph:

grT−1 := {(x∗, x) ∈ X∗ ×X∗∗ : (x, x∗) ∈ grT} .
For two multivalued operators T and S we say that S is an extension of T and
write T ⊂ S if grT ⊂ grS.

Definition 1.31 A set M ⊂ X ×X∗ is
(i) monotone if 〈y∗ − x∗, y − x〉 ≥ 0 whenever (x, x∗) ∈M and (y, y∗) ∈M ;
(ii) strictly monotone if 〈y∗ − x∗, y − x〉 > 0 whenever (x, x∗) ∈ M and

(y, y∗) ∈M and x 6= y;
(iii) maximal monotone if it is monotone and it is not properly included in

any other monotone subset of X ×X∗. That is, if M1 is a monotone subset of
X ×X∗ and M ⊂ M1, then M = M1.

We say that an element (x, x∗) ∈ X ×X∗ is monotonically related to M if
〈y∗ − x∗, y − x〉 ≥ 0 for all (y, y∗) ∈M .

In the next definition, we will formulate the definition of monotone operators
in terms of their graphs. We remind first that a finite sequence x1, x2, ..., xn+1

such that xn+1 = x1 is called a cycle.



1.3. MONOTONE OPERATORS 13

Definition 1.32 An operator T : X → 2X
∗

is called
(i) monotone if grT is monotone;
(ii) if grT is maximal monotone;
(iii) cyclically monotone, if for every cycle x1, x2, ..., xn+1 = x1 in X and

each x∗i ∈ T (xi) for i = 1, ..., n,

n∑

i=1

〈x∗i , xi+1 − xi〉 ≤ 0;

(iv) maximal cyclically monotone if it is cyclically monotone and its graph
cannot be enlarged without destroying this property, i.e., whenever T1 is a cycli-
cally monotone map such that T ⊂ T1, then T = T1.

We also say that an operator T is strictly monotone if grT is strictly mono-
tone.

According to the above definitions, if T is maximal monotone and (x, x∗) in
X × X∗ is monotonically related to grT , then x ∈ domT and x∗ ∈ T (x).
By applying the Zorn’s lemma, we can extend every monotone operator T to
a maximal monotone operator T̃ . One can easily check that T is (maximal)
monotone if and only if T−1 is.

An direct consequence of the definition of maximal monotone operators is
the following.

Proposition 1.33 Let Y be a Banach space. If T : Y → 2Y
∗

is maximal
monotone, then T (y) is convex and weak∗-closed.

It is straightforward to see that ∂f is cyclically monotone when f is proper,
lsc and convex. We borrow the following two theorems from [99].

Theorem 1.34 [99, Theorem A] Suppose that Y is a Banach space. Then the
subdifferential of every proper, lsc and convex function is maximal monotone.

Theorem 1.35 [99, Theorem B] Suppose that Y is a Banach space and T :
Y → 2Y

∗

is an operator. In order that there exist a proper, lsc and convex
function f on Y such that T = ∂f , it is necessary and sufficient that T be a
maximal cyclically monotone operator. Moreover, in this case T determines f
uniquely up to an additive constant.

Proposition 1.36 Suppose that X is a Hausdorff LCS, and T : X → 2X
∗

is
cyclically monotone and (x0, x

∗
0) ∈ grT . Define fT : X → R by

fT (x) := sup

(
〈x∗n, x− xn〉+

n−1∑

i=0

〈x∗i , xi+1 − xi〉
)

where the supremum is taken for all families (xi,x
∗
i ) ∈ grT, for n∈ N and i =

1, ..., n. Then fT is proper, lsc and convex, fT (x0) = 0 and T (x) ⊂ ∂ (fT (x))
for each x in X.
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Proof. See [120, Proposition 2.4.3] or [98, Theorem 24.8].

The multifunction J (·) := ∂( 12 ‖·‖
2
) : Y → 2Y

∗

is called the duality mapping
of Y . The following holds

J (x) =
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2

}
.

Note that since ( 12 ‖·‖
2
) is proper, lsc and convex, J is maximal monotone.

When Y is a Hilbert space, then J = I, the identity mapping, and hence is
onto. Also it is well known that J is onto if and only if Y is reflexive (see [40,
Theorem 3.4]).

Minty has proved a noteworthy theorem in [85] for Hilbert spaces, which
states that T is maximal monotone if and only if R(T + J ) = Y ∗. Rockafellar
extended this result to reflexive Banach spaces for which both J and J−1 are
single-valued, in which case ‖·‖2 is differentiable. This result is commonly known
as Rockafellar’s characterization of maximal monotone operators.

We now give the definition of local boundedness and some results on this
notion.

Definition 1.37 Let X be a Hausdorff LCS and T : X → 2X
∗

be an operator,
T is called locally bounded at x0 if there exists a neighborhood U of x0 such
that the set

T (U) = ∪{T (x) : x ∈ U}
is an equicontinuous subset of X∗.

Note that when Y is a Banach space, then the equicontinuous subsets of Y ∗

coincide with bounded subsets. In other words, when Y is a Banach space, then
an operator T is called locally bounded at x0 ∈ Y if there exist ε > 0 and k > 0
such that ‖x∗‖ ≤ k for all x∗ ∈ T (x) and x ∈ B (x0, ε).

Next theorem is due to Rockafellar and states that monotone operators are
locally bounded at each point of the interior of their domain.

Theorem 1.38 [97] Suppose that Y is a Banach space, T : Y → 2Y
∗

is
maximal monotone and that int(co(domT )) is nonempty. Then int(domT ) =
int(co(domT )) (so int(domT ) is convex) and T is locally bounded at each point
of int(domT ). Moreover, cl domT = cl (int(domT )), hence it is also convex.

Assume that X is a Hausdorff LCS. Let T and S be two operators on X and
λ > 0. For x ∈ domT we define (λT ) (x) = λ·T (x) and also, for x ∈ dom(T ∩S)

(T + S) (x) = T (x) + S (x) = {x∗1 + x∗2 : x∗1 ∈ T (x) , x∗2 ∈ S (x)} ,

while if x /∈ dom(T ∩ S), we set (T + S) (x) = ∅. Thus domλT = domT and
dom (T + S) = domT ∩ domS. One can check that if T and S are monotone,
then λT and T + S are also monotone, and λT is maximal monotone whenever
T is.

The next theorem shows that maximal monotone operators are not locally
bounded at any point of the boundary of their domains.
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Theorem 1.39 Suppose that Y is a Banach space and T : Y → 2Y
∗

is maximal
monotone. If int cl domT 6= ∅, then for all z ∈ domT\(int cl domT )

(i) there exists a non-zero z∗ ∈ NdomT (z);
(ii) T (z) +NdomT (z) ⊂ T (z);
(iii) T is not locally bounded at z.

Proof. A proof can be found in [35, Theorem 4.2.10].
Note that Property (ii) above holds for all z ∈ domT , and does not need

the assumption int cl domT 6= ∅.
There is a kind of converse of Theorem 1.38, due to Libor Veselý, that we

now remind. This result is interesting because it does not assume anything
about the nonemptiness of interiors.

Theorem 1.40 (Libor Veselý) Suppose that Y is a Banach space and T : Y
→ 2Y

∗

is maximal monotone. If y ∈ cl domT and T is locally bounded at y,
then y ∈ domT. If in addition cl domT is convex, then y ∈ int(domT ).

Proof. See Phelps [92, Theorem 1.14] .

Proposition 1.41 Let Y be a Banach space and T : Y → Y ∗ a single-valued
monotone operator such that int (co domT ) 6= ∅. If T is maximal, then domT
is open and T is continuous with respect to the norm topology in Y and the
weak∗-topology in Y ∗ at every point of domT .

Proof. See [35, Theorem 4.6.4].
We now mention a few results that concern the sum of monotone operators.

Theorem 1.42 Let Y be a Banach space and let S, T : Y → 2Y
∗

be monotone
operators. Suppose that

0 ∈ core[co domT − co domS].

Then there exist r, c > 0 such that, for each y ∈ domT ∩ domS, t∗ ∈ T (y) and
s∗ ∈ S(y),

max(||t∗||, ||s∗||) ≤ c(r + ||y||)(r + ||t∗ + s∗||).
Proof. A proof can be found in [113] or [25, Theorem 2.11].

We recall that an operator T on a Banach space Y is said to be norm×weak∗-
closed (respectively, sequentially norm×weak∗-closed) if grT is closed (respec-
tively, sequentially closed) in the norm×weak∗-topology of Y × Y ∗. Borwein,
Fitzpatrick and Girgensohn in [29] proved that, in general, grT is only sequen-
tially norm×weak∗-closed, not norm×weak∗-closed.

Proposition 1.43 Let Y be any Banach space and let S, T : Y → 2Y
∗

be maxi-
mal monotone operators. Suppose that

0 ∈ core[co domT − co domS].

For any y ∈ domT ∩ domS, T (y) + S(y) is a weak∗-closed subset of Y ∗.



16 CHAPTER 1. BACKGROUND AND PRELIMINARIES

Proof. See [113].

Proposition 1.44 Suppose that Y is a reflexive Banach space and T is maxi-
mal monotone. Then the mapping T + J is surjective. i.e., R (T + J ) = Y ∗.

Proof. See [104, Theorem 10.7].

Proposition 1.45 Suppose that Y is a reflexive Banach space and T is mono-
tone. If R (T + J ) = Y ∗ and J and J−1 are both single-valued, then T is
maximal monotone.

Proof. See [104, Remark 10.8 and pages 38, 39].
We observed in this section that if T and S are two monotone operators on

X and λ > 0, then λT and T + S are monotone, and λT is maximal mono-
tone whenever T is. However, the sum of two maximal monotone operators is
not maximal monotone in general. So the natural question regarding maximal
monotone operators is, which conditions guarantee that the sum of two of them
remains maximal monotone. These conditions concern the mutual position of
their domains and are called constraint qualifications (CQ, from now on). Here
we list some of these CQ (see also [57] and [118]):

(i) (int domT )∩domS 6= ∅ (The original one due to Rockafellar. See [100]);
(ii) domS − domT is absorbing (due to Attouch, Riahi and Thera. See [9]

and [104]);
(iii) co domS − co domT is a neighborhood of 0 (due to Chu. See [41]);
(iv) domS−domT is surrounding 0 (for the definition of surround point see

[104]);
(v) co domS − co domT is absorbing;
(vi) domχS − domχT is absorbing (for the definition of χT see [104]).
Simons ([104]) proved that, in reflexive Banach spaces, all six (CQ) which

are mentioned above are equivalent.

Theorem 1.46 Let Y be a reflexive Banach space. Let T be maximal monotone
and let f be closed and convex. Suppose that

0 ∈ core[co domT − co dom(∂f)].

Then
(i) ∂f + T + J is surjective.
(ii) ∂f + T is maximal monotone.
(iii) ∂f is maximal monotone.

Proof. See [25, Theorem 4.2].
An important consequence of preceding theorem is:

Corollary 1.47 The sum of a maximal monotone operator T and a normal
cone NC on a reflexive Banach space, is maximal monotone whenever the trans-
versality condition 0 ∈ core{C − co domT} holds.
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1.3.2 Fitzpatrick Function

The Fitzpatrick function [52], Krauss function [79, 80, 81] and the family of
enlargements by Burachik, Svaiter [38], and Penot function [88] make a bridge
between the results on convex functions and results on maximal monotone op-
erators.
Let us start with the definition of Fitzpatrick function.

Definition 1.48 Let Y be a Banach space and T : Y → 2Y
∗

be a maximal
monotone operator. The Fitzpatrick function associated with T is the function
FT : Y × Y ∗ → R ∪ {+∞} defined by

FT (x, x∗) = sup
(y,y∗)∈grT

(〈x∗, y〉+ 〈y∗, x〉 − 〈y∗, y〉)

.

The Fitzpatrick function is norm×weak∗- lsc and convex on Y × Y ∗. It can
be easily verified that

FT (x, x∗) = sup
(y,y∗)∈grT

〈y∗ − x∗, x− y〉+ 〈x∗, x〉

= 〈x∗, x〉 − inf
(y,y∗)∈grT

〈y∗ − x∗, y − x〉 .

Theorem 1.49 Let Y be a Banach space. For a maximal monotone operator
T : Y → 2Y

∗

one has
FT (x, x∗) ≥ 〈x∗, x〉. (1.2)

with equality if and only if x∗ ∈ T (x). Actually, the equality FT (x, x∗) = 〈x, x∗〉
for all x∗ ∈ T (x), requires only monotonicity, not maximality.

Proof. See [52] or [25, Proposition 2.1].
Let X be a LCS and T any monotone operator on X. A representative

function for T is any function HT : X ×X∗ → R ∪ {+∞} such that

(i) HT is lsc and convex;

(ii) HT (x, x
∗) ≥ 〈x∗, x〉, for all (x, x∗) ∈ X ×X∗;

(iii) HT (x, x
∗) = 〈x∗, x〉, when x∗ ∈ T (x) .

A representative is called exact if HT (x, x
∗) = 〈x∗, x〉 exactly on the grT .

The Penot function [88] is defined on Y × Y ∗ by

PT (x, x∗) = inf

{
N∑
i=1

λi〈x∗i , xi〉 :
N∑
i=1

λi(xi, x
∗
i , 1) = (x, x∗, 1) , x∗i ∈ T (xi) , λi ≥ 0

}

One can easily check that PT is convex and PT (x, x∗) ≥ 〈x∗, x〉, for all x∗ in
T (x) . Moreover, it was shown in [88, 25] P∗

T = FT .
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We can combine the recent result with Theorem 1.20 and Proposition 1.22,
and conclude that

(FT )
∗ = clPT = (PT )

∗∗
.

The theorem we present below can be found in [26] and [88].

Proposition 1.50 Suppose that Y is a Banach space and T is a monotone
operator on Y . Then

(i) Penot’s function PT represents T ;
(ii) if HT represents T , then HT ≤ clPT pointwise;
(iii) if T is maximal monotone and HT represents T , then FT ≤ HT ≤ clPT ;
(iv) FT (x, x∗) ≥ 〈x∗, x〉 if and only if (x, x∗) is monotonically related to

grT ;
(v) Assume that FT represents T . Then FT (x, x∗) = 〈x∗, x〉 if and only if

clPT (x, x∗) = 〈x∗, x〉.

We remark that FT is not necessarily a representative function of T whenever
T is not maximal monotone.

Next two theorems were shown by using the Fitzpatrick function, and gen-
eralize the celebrated Rockafellar sum theorems to general Banach spaces (with
somewhat stronger assumptions). The following theorems are taken from [26]
see also [114].

Theorem 1.51 (Maximality of sums, I). Let T and S be maximal monotone
operators on a Banach space Y . Suppose also that either

(i) int domT ∩ int domS 6= ∅; or
(ii) domT ∩ int domS 6= ∅ while domT ∩ domS is closed and convex; or
(iii) both domT, domS are closed and convex and 0 ∈ core co(domT −

domS).
Then T + S is maximal monotone.

Proof. See [26, Theorem 9].

Theorem 1.52 (Maximality of sums, II). Let T and S be maximal mono-
tone on a Banach space Y . Suppose also that core co domT∩ core co domS 6= ∅.
Then T + S is maximal monotone.

Proof. See [26, Theorem 10 ].



Chapter 2

Bifunctions

In this chapter, which is based on [5], we exhibit some correspondences between
monotone operators and monotone bifunctions. Also, we establish new connec-
tions between maximal monotone operators and maximal monotone bifunctions.
Most notably, we will prove that under weak assumptions, monotone bifunctions
are locally bounded in the interior of the convex hull of their domain. As an
immediate consequence, we get the corresponding property for monotone op-
erators. Moreover, we show that in contrast to maximal monotone operators,
monotone bifunctions (maximal or not maximal) can also be locally bounded
at the boundary of their domain.

This chapter is organized as follows: In the next section, we define maximal
monotonicity of bifunctions, and we present some preliminary definitions, prop-
erties and results. A part of our results is inspired by some analogous results
from [64]. We will show in Section 2 that under very weak assumptions, local
boundedness of monotone bifunctions is automatic at every point of intC. In
this way one can obtain an easy proof of the corresponding property of mono-
tone operators. Moreover, in Section 3 we define and study cyclically monotone
bifunctions. We prove that in any LCS a bifunction F is cyclically monotone,
if and only if there exists a function f : C → R such that F (x, y) ≤ f(y)− f(x)
for all x, y ∈ C. Especially, by assuming that F is maximal monotone and
intC 6= ∅, we get that f is convex on intC and uniquely defined up to a con-
stant. In addition, we will show in Section 4 that monotone bifunctions are in
some ways better behaved that the underlying monotone operators, since they
can be locally bounded even at the boundary of their domain of definition. In
contrast to this, it is known that maximal monotone operators T whose do-
main domT has nonempty interior are never locally bounded at the boundary
of domT . In fact, we will show that in R

n and for locally polyhedral domains
C, an automatic local boundedness of bifunctions holds on the whole domain.
We also show that each monotone operator is “inward locally bounded” at every
point of the closure of its domain, a property which collapses to ordinary local
boundedness at interior points of the domain. In Section 5, we collect some
noteworthy counterexamples.
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2.1 Monotone Bifunctions and Equilibrium Prob-

lems

In this section X is a TVS (unless explicitly stated otherwise) and C is a
nonempty subset of X. By bifunction, in this chapter, we mean any function
F : C × C → R.

Definition 2.1 A bifunction F : C × C → R is called monotone if

F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C.

A direct consequence of the above definition is that F (x, x) ≤ 0 for all x ∈ C.
Also a bifunction F : C × C → R is called strictly monotone if

F (x, y) + F (y, x) < 0 for all x, y ∈ C, x 6= y.

It should be noticed that in many papers, it is supposed that

F (x, x) = 0 for all x ∈ C. (2.1)

Monotone bifunctions were mainly studied in conjunction with the so-called
equilibrium problem: Find x0 ∈ C such that

F (x0, y) ≥ 0 for all y ∈ C.

In this case, such a point x0 ∈ C is called a solution of the equilibrium problem.
The literature on equilibrium problems is quite extensive. Equilibrium problems
were studied in many papers (see [23, 7, 8, 22, 64, 54, 71, 69, 75, 77, 78, 86] and
the references therein), after Blum and Oettli showed in their highly influencing
paper [23] that equilibrium problems include variational inequalities, fixed point
problems, saddle point problems etc. In some of these papers [1, 8, 86] monotone
bifunctions were related to monotone operators (see the next section for details)
and maximal monotonicity of bifunctions was defined and studied. In [64] some
results on maximal monotonicity of bifunctions were deduced assuming that the
bifunction is locally bounded, i.e. its values are bounded from above for all x, y
in a suitable neighborhood of each point of C or intC.

The solution set of an equilibrium problem is the set EP(F ) defined by

EP (F ) = {z ∈ C : F (z, y) ≥ 0 ∀y ∈ C} .
Assume that F : C × C → R is a bifunction. Following [1, 5, 23, 64], the

operator AF : X → 2X
∗

is defined by

AF (x) =

{
{x∗ ∈ X∗ : ∀y ∈ C,F (x, y) ≥ 〈x∗, y − x〉} if x ∈ C,
∅ if x /∈ C.

(2.2)

The following proposition will illustrate this concept further.
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Proposition 2.2 Let F : C × C → R be a monotone bifunction. Then the
following statements are equivalent:

(i) z∗ ∈ AF (x);
(ii) 〈z∗, x〉 = supy∈C (〈z∗, y〉 − F (x, y)).

Proof. (i)=⇒(ii) Suppose that z∗ ∈ AF (x). Then F (x, y) ≥ 〈z∗, y − x〉 for all
y ∈ C. Therefore

〈z∗, x〉 ≥ 〈z∗, y〉 − F (x, y) ∀y ∈ C. (2.3)

By taking the supremum from (2.3) we obtain

〈z∗, x〉 ≥ sup
y∈C

(〈z∗, y〉 − F (x, y)) . (2.4)

Putting y = x in (2.3) and taking in account that F (x, x) ≤ 0, we deduce
F (x, x) = 0. This together with (2.4) imply (ii).

(ii) =⇒ (i) Assume that (ii) holds. Then we have (2.3). This implies that
F (x, y) ≥ 〈z∗, y − x〉 for all y ∈ C. Hence z∗ ∈ AF (x).

The following definition of maximality was used in [64] for reflexive Banach
spaces. Now we redefine it for TVS.

Definition 2.3 A monotone bifunction F is called maximal monotone if AF

is maximal monotone.

The following remark presents some elementary properties of the multifunc-
tion AF .

Remark 2.4 (i) If F is a monotone bifunction, then AF is a monotone operator.
Indeed, assume that x, y ∈ C and x∗ ∈ AF (x) and y∗ ∈ AF (y). Then

F (x, y) ≥ 〈x∗, y − x〉

and
F (y, x) ≥ 〈y∗, x− y〉 .

By adding the two inequalities we obtain

〈y∗ − x∗, y − x〉 ≥ −F (x, y)− F (y, x) ≥ 0.

This means that AF is monotone.
(ii) If F is monotone and x∗ ∈ AF (x), then F (x, x) = 0. From monotonicity

of F we get F (x, x) ≤ 0. On the other hand x∗ ∈ AF (x) which implies that

F (x, x) ≥ 〈x∗, x− x〉 = 0.

Thus F (x, x) = 0.
(iii) For each x ∈ C, AF (x) is convex. Let x∗1, x

∗
2 ∈ AF (x) and λ ∈ [0, 1].

Then for all y ∈ C, we have

〈λx∗1 + (1− λ)x∗2, y − x〉 = λ 〈x∗1, y − x〉+ (1− λ) 〈x∗2, y − x〉 ≤ F (x, y) .
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This implies that λx∗1 + (1− λ)x∗2 ∈ AF (x).
(iv) For each x ∈ C, AF (x) is weak∗-closed. We will show that X∗\AF (x)

is weak∗-open. Assume that y∗ ∈ X∗\AF (x). Then there exists y0 ∈ X with
〈y∗, y0 − x〉 > F (x, y0). Choose t ∈ R such that 〈y∗, y0 − x〉 > t > F (x, y0).
Set U = {x∗ ∈ X∗ : 〈x∗, y0 − x〉 > t}. Then U is a nonempty neighborhood of
y∗ in weak∗- topology, which does not meet AF (x). Therefore, X∗\AF (x) is
weak∗-open.

(v) As it was remarked in [64], if we define an extension F̂ of F on C ×X
by

F̂ (x, y) =

{
F (x, y) if y ∈ C,
+∞ if y ∈ X\C,

then AF (x) = ∂F̂ (x, ·) (x) for all x ∈ C.
(vi) Suppose that F1, F2 : C × C → R are two bifunctions and t, s are

two positive real numbers. Then
(
tAF1 + sAF2

)
(x) ⊂ AtF1+sF2 (x) for each

x ∈ C. If x∗ ∈
(
tAF1 + sAF2

)
(x), then x∗ = x∗1 + x∗2 where x∗1 ∈ tAF1 (x) and

x∗2 ∈ sAF2 (x). Therefore,

tF1 (x, y) ≥ 〈x∗1, y − x〉 ∀y ∈ C

and
sF2 (x, y) ≥ 〈x∗2, y − x〉 ∀y ∈ C.

By adding the above inequalities, we obtain

tF1 (x, y) + sF2 (x, y) ≥ 〈x∗, y − x〉 ∀y ∈ C.

Thus x∗ ∈ AtF1+sF2 (x). We note that tAF1 (x) = AtF1 (x).
(vii) One can easily check that if F1, F2 : C × C → R are two monotone

bifunctions with F1 ≤ F2, then AF1 ⊂ AF2 . In this case, maximality of F1

implies the maximality of F2. �

Definition 2.5 [23] A monotone bifunction F : C × C → R is called BO-
maximal monotone (where BO stands for Blum and Oettli), if for every (x, x∗) ∈
C ×X∗ the following implication holds:

F (y, x)+〈x∗, y − x〉 ≤ 0, ∀y ∈ C =⇒ 〈x∗, y − x〉 ≤ F (x, y), ∀y ∈ C. (2.5)

In the last section of this chapter we provide an example (see Example 2.37),
which shows that the maximality of F is different from BO-maximality even if
it is defined on a closed convex set and grAF 6= ∅. However, maximality of F
implies BO-maximality. This fact is established in the following result.

Proposition 2.6 If F : C × C → R is maximal monotone, then it is BO-
maximal monotone.

Proof. Assume that

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ C. (2.6)
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Then for every y ∈ C and y∗ ∈ AF (y),

〈x∗, x− y〉 ≥ F (y, x) ≥ 〈y∗, x− y〉 .

Thus, 〈x∗ − y∗, x− y〉 ≥ 0 holds for each (y, y∗) ∈ grAF . Since AF is
maximal monotone, x∗ ∈ AF (x). Consequently,

F (x, y) ≥ 〈x∗, y − x〉 , ∀y ∈ C.

Hence, implication (2.5) holds.
The converse is true if X is a reflexive Banach space, C is convex, F (x, ·) is

lsc and convex for all x ∈ C, and property (2.1) holds (see [1, 8]). In the last
chapter (see Theorem 4.16 and its discussion) we will generalize this result.

As we observed in Remark 2.4, to any bifunction F we attached the mono-
tone operator AF . Now, to each operator T : X → 2X

∗

we will attach a
corresponding bifunction. As in [5, 64], we define the bifunction GT : domT ×
domT → R∪{+∞} by

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉.

In the following proposition we collect some useful properties of the bifunction
GT . Most of these properties are known in reflexive Banach spaces [64].

Proposition 2.7 Suppose that X is LCS and T : X → 2X
∗

is monotone. Then
(i) GT is real-valued and monotone;
(ii) GT (x, x) = 0 for each x ∈ domT , i.e., GT fulfils (2.1);
(iii) if T is maximal monotone, then GT is maximal monotone and

AGT = T ;

(iv) assume that T is monotone, has closed convex values, and dom(T ) = X.
If GT is maximal monotone, then T is maximal monotone;

(v) GT (x, ·) is lsc and convex for each x ∈ domT ;
(vi) GT (x, λy + (1− λ)x) = λGT (x, y) for all x, y ∈ domT and each λ in

R+;
(vii) T−1 (0) ⊂EP(GT ).

Proof. (i) Let T be a monotone operator. Then for x, y ∈ domT , x∗ ∈ T (x)
and y∗ ∈ T (y) we have 〈y∗ − x∗, y − x〉 ≥ 0. Thus −〈x∗, y − x〉 ≥ 〈y∗, x − y〉
and so infx∗∈T (x)(−〈x∗, y − x〉) ≥ supy∗∈T (y)〈y∗, x− y〉. Therefore

sup
y∗∈T (y)

〈y∗, x− y〉+ sup
x∗∈T (x)

〈x∗, y − x〉 ≤ 0.

Hence, GT (x, y) + GT (y, x) ≤ 0. This implies that GT (x, y) ∈ R and GT is a
monotone bifunction.

(ii) It is obvious.
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(iii) The proof of this part is based upon the original paper [64]. For any
x ∈ domT, x∗ ∈ T (x) and every y ∈ C from the definition of GT we get
GT (x, y) ≥ 〈x∗, y−x〉. This implies that x∗ ∈ AGT (x) and so T (x) ⊂ AGT (x).
By hypothesis, T is maximal monotone so T = AGT . Now it follows from
Definition 2.3 that GT is maximal.

(iv) The proof of this part is also very close to the proof of Proposition 2.4 in
[64]; we include the proof for the sake of completeness. Since GT is a maximal
monotone bifunction, by definition, AGT is a maximal monotone operator. Now
for every x ∈ X and z∗ ∈ AGT (z) we have

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉 ∀y ∈ X.

The separation theorem (see Chapter 1, Corollary 1.9) implies that z∗ ∈ T (x).
Therefore AGT ⊂ T . Thus AGT = T and so T is maximal because AGT is
maximal.

(v) This is a direct consequence of Proposition 1.14 from Chapter 1.
(vi) We have

GT (x, λy + (1− λ)x) = sup
x∗∈T (x)

〈x∗, λy + (1− λ)x− x〉

= sup
x∗∈T (x)

〈x∗, λ(y − x)〉 = λGT (x, y) .

(vii) The proof is an immediate consequence of the definitions and so it is
omitted.

We also note that for each λ > 0 we have GλT = λGT .
Given an arbitrary monotone bifunction F : C × C → R, one can construct

AF and the monotone bifunction GAF . In this case for all y in C we have

GAF (x, y) = sup
x∗∈AF (x)

〈x∗, y − x〉 ≤ F (x, y) . (2.7)

Note that whenever F is maximal monotone thenGAF is also maximal monotone
and so AF = AG

AF . However, Example 2.5 in [64] shows that correspondence
F → AF is not one-to-one. The next proposition shows that in a special case
we have equality in (2.7).

Proposition 2.8 Let T : X → 2X
∗

be a monotone operator. Set F = GT .
Then GAF = F on domT × domT .

Proof. Let x, y ∈ C := domT . For each x∗ ∈ AGT (x) one has 〈x∗, y − x〉 ≤
GT (x, y) by definition of AGT . Hence,

GAGT (x, y) = sup
x∗∈AGT (x,y)

〈x∗, y − x〉 ≤ GT (x, y).

To show the reverse inequality, take z∗ ∈ T (x). Then for each w ∈ C,

〈z∗, w − x〉 ≤ sup
x∗∈T (x)

〈x∗, w − x〉 = GT (x,w).
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This implies that z∗ ∈ AGT (x), i.e., AGT is an extension of T . Consequently,

GT (x, y) = sup
x∗∈T (x)

〈x∗, w − x〉 ≤ sup
x∗∈AGT (x,y)

〈x∗, y − x〉 = GAGT (x, y).

Thus GAF = F on domT × domT .
In addition, as noted in [64], it is possible to have GT = GS for two monotone

operators T and S, while T 6= S. For instance, if T is maximal monotone and
S is any operator different from T such that cl coS = T , then GS = GT hence
GS is maximal monotone, while S is not.

Thus, to each monotone operator T corresponds a monotone bifunction GT ,
and to each monotone bifunction F corresponds a monotone operator AF . It
is obvious that T ⊆ AGT for each monotone operator T . In general equality
does not hold; however part (iii) of Proposition 2.7 shows that if T is maximal
monotone, then T = AGT and so GT is maximal monotone. More generally,
one has:

Theorem 2.9 Suppose that Y is a Banach space. Let T : Y → 2Y
∗

be mono-
tone with weak∗-closed convex values, and such that cl domT is convex. For any
x ∈ domT , set K(x) = NdomT (x). If T (x) +K(x) ⊆ T (x) for all x ∈ domT ,
then AGT = T .

Proof. It is enough to prove that AGT (x) ⊆ T (x) for all x ∈ Y . Let x ∈ Y and
z∗ ∈ AGT (x). Then

sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉 , ∀y ∈ domT. (2.8)

Assume that z∗ /∈ T (x). Since T (x) is weak∗-closed and convex, by the
separation theorem (see Chapter 1, Corollary 1.9) there exists v ∈ Y such that

sup
x∗∈T (x)

〈x∗, v〉 < 〈z∗, v〉 . (2.9)

For every y∗ ∈ K(x) and every x∗ ∈ T (x) one has by assumption x∗ + ty∗ ∈
T (x) for all t ≥ 0. Hence (2.9) implies

∀t ≥ 0, 〈x∗, v〉+ t 〈y∗, v〉 < 〈z∗, v〉 . (2.10)

It follows that 〈y∗, v〉 ≤ 0. Therefore v is in the polar cone of K(x), which is
equal to the tangent cone TdomT (x) of domT at x. Hence v can be written as
a limit

v = lim
n→∞

yn − x

λn

where yn ∈ domT and λn ց 0. It also follows from (2.10) that 〈x∗, v〉 < 〈z∗, v〉.
Thus for n sufficiently large,

〈x∗, yn − x〉 < 〈z∗, yn − x〉 .

But this contradicts (2.8). Hence z∗ ∈ T (x).
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We remark that in Banach spaces (see Chapter 1, Proposition 1.33 and
Theorem 1.39), whenever T is maximal, its values are weak∗-closed and convex
and T (x) +K(x) ⊆ T (x) for all x ∈ domT . If in addition Y is reflexive, then
cl domT is convex so all assumptions of Theorem 2.9 hold. Another case where
the assumptions obviously hold is provided by the following:

Corollary 2.10 Let Y be a Banach space. Assume that T : Y → 2Y
∗

is
monotone with weak∗-closed, convex values and such that domT = Y . Then
AGT = T .

Corollary 2.10 is true also in LCS. Next proposition extends it to LCS.

Proposition 2.11 Let X be a LCS. Suppose that T : X → 2X
∗

is monotone
with weak∗-closed, convex values and such that domT = X. Then AGT = T .

Proof. Given x ∈ X and z∗ ∈ AGT (x),

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉 ∀y ∈ X.

By hypothesis T (x) is weak∗-closed and convex, so the separation theorem
(see Chapter 1, Corollary 1.9) together with preceding inequality imply that
AGT (x) ⊂ T (x). This enables us to obtain the desired equality.

Corollary 2.12 Let T : X → X∗ be a single-valued monotone operator with
domT = X. Then AGT = T .

Given a monotone operator T , one may define another monotone bifunction
ĜT by the following procedure which is taken from [80] and is reproduced here
for the convenience of the reader. First, define GT : domT × co domT →
R ∪ {+∞} as usual:

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 , x ∈ domT, y ∈ co domT.

Then define ĜT : co domT × co domT → R ∪ {+∞} as follows

ĜT (x, y) = sup{
k∑

i=1

αiGT (xi, y) : x =

k∑

i=1

αixi, xi ∈ domT,

k∑

i=1

αi = 1, αi ≥ 0}.

This is the concave hull of the function GT (·, y) (see formula (1.1) in Chapter
1). Note that ĜT is well-defined, its values cannot be −∞, and ĜT (x, ·) is lsc
and convex as supremum of lsc and convex functions.

Proposition 2.13 ĜT is real-valued, monotone, and such that GT (x, y) ≤
ĜT (x, y) for all (x, y) ∈ domT × co domT .



2.2. LOCAL BOUNDEDNESS OF MONOTONE BIFUNCTIONS 27

Proof. The inequality GT (x, y) ≤ ĜT (x, y) for (x, y) ∈ domT × co domT is
obvious from the definition of ĜT . Since for (x, y) ∈ domT × domT one has
GT (x, y) ≤ −GT (y, x) and −GT (y, ·) is concave, it follows that

∀(x, y) ∈ co domT × domT, ĜT (x, y) ≤ −GT (y, x). (2.11)

Now take the convex envelope with respect to y of both sides of (2.11).
ĜT (x, y) remains unchanged since ĜT (x, ·) is convex, and −GT (y, x) becomes
−ĜT (y, x). It follows that

ĜT (y, x) + ĜT (x, y) ≤ 0, ∀(x, y) ∈ co domT × co domT. (2.12)

Thus, ĜT is monotone. Also, it follows from (2.12) that ĜT is real-valued
since ĜT does not take the value −∞.

Note that ĜT (x, x) ≤ 0 for all x ∈ co domT , while for x ∈ domT one
has ĜT (x, x) = 0 since ĜT (x, x) ≥ GT (x, x). It is not true in general that
ĜT (x, x) = 0 for all x ∈ co domT .

2.2 Local Boundedness of Monotone Bifunctions

The aim of the present section is to study local boundedness of monotone bi-
functions in relation with the corresponding property of monotone operators in
Banach spaces. We will show that under very weak assumptions, local bound-
edness of monotone bifunctions is automatic at every point of intC. In this
way one can obtain an easy proof of the corresponding property of monotone
operators.

Throughout this section, unless otherwise stated, X is a Banach space. We
start off with reproducing the following definition from [64].

Definition 2.14 A bifunction F is called locally bounded at x0 ∈ X if there
exist ǫ > 0 and k ∈ R such that F (x, y) ≤ k for all x and y in C∩B (x0, ǫ). We
call F locally bounded on a set K ⊆ X if it is locally bounded at every x ∈ K.

Local boundedness of operators is defined in Chapter 1, Definition 1.37.

Remark 2.15 (i) If a bifunction (not necessarily monotone) F : C × C → R

is locally bounded at x0 ∈ intC, then AF is locally bounded at x0. Indeed,
assume that ε > 0 and k ∈ R are such that B(x0, ε) ⊆ C and F (x, y) ≤ k for
all x, y ∈ B(x0, ε). Then for every x ∈ B(x0,

ε
2 ), x

∗ ∈ AF (x) and v ∈ B(0, 1),
one has x+ ε

2v ∈ B(x0, ε) and

k ≥ F (x, x+
ε

2
v) ≥ ε

2
〈x∗, v〉 .

Thus ‖x∗‖ ≤ 2k
ε

and AF is locally bounded at x0. The converse is not true
in general (see Example 2.39 in Section5 of this chapter and the subsequent
discussion).
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(ii) Likewise, given an operator T , if GT is locally bounded at x0 ∈ int domT ,
then T is locally bounded at x0. Indeed, AGT is locally bounded at x0 by the
above argument, so T is also locally bounded since T ⊆ AGT . �

Local boundedness of bifunctions is a useful property. We reproduce here
two of the results in [64].

Proposition 2.16 Assume that X is reflexive, C is convex, and F is maximal
monotone, locally bounded on clC, and such that F (x, x) = 0 for all x ∈ C.
Then C ⊆ cl dom(AF ).

Proposition 2.17 Let F be maximal monotone, locally bounded on intC and
such that F (x, x) = 0 for all x ∈ C. If C ⊆ cl dom(AF ), then

intC = int dom(AF ).

Note that in [64] all results are stated for reflexive spaces, but in fact the
proof of Proposition 2.17 does not use reflexivity.

We will show that, under mild assumptions, any monotone bifunction is
locally bounded in the interior of its domain. We will need the following lemma,
which generalizes to quasi-convex functions a well-known property of convex
functions.

Lemma 2.18 Let X be a Banach space and f : X → R ∪ {+∞} be lsc and
quasi-convex. If x0 ∈ int dom f , then f is bounded from above in a neighborhood
of x0.

Proof. Let ε > 0 be such that B(x0, ε) ⊆ dom f . Set Sn = {x ∈ B(x0, ε) :
f(x) ≤ n}. Then Sn are convex and closed and

⋃
n∈N

Sn = B(x0, ε). By Baire’s

theorem, there exists n ∈ N such that intSn 6= ∅. Take any x1 ∈ intSn and
any x2 6= x0 such that x2 ∈ B(x0, ε) and x0 ∈ co{x1, x2}. Choose n1 >
max{n, f(x2)}. Then x1 ∈ intSn1

, x2 ∈ Sn1
hence x0 ∈ intSn1

so f is bounded
by n1 at a neighborhood of x0.

Note that, if in the above lemma f is lsc and convex, then the result is
obvious since f is continuous at every interior point of dom f .

Theorem 2.19 Let X be a Banach space, C ⊆ X a set, and F : C ×C → R a
monotone bifunction such that for every x ∈ C, F (x, ·) is lsc and quasi-convex.
Assume that for some x0 ∈ intC there exists a neighborhood B(x0, ε) ⊆ C such
that for each x ∈ B(x0, ε), F (x, ·) is bounded from below1 on B(x0, ε). Then F
is locally bounded at x0.

Proof. Let ε > 0 be as in the assumption and define g : B(x0, ε) → R ∪ {+∞}
by

g(y) = sup{F (x, y) : x ∈ B(x0, ε)}.
1This bound may depend on x.
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We show that g is real-valued. Given y ∈ B(x0, ε), for each x ∈ B(x0, ε),

F (x, y) ≤ −F (y, x).

By assumption, there exists My such that F (y, x) ≥My for all x ∈ B(x0, ε).
Hence g(y) ≤ −My <∞, i.e., g is real-valued.

Now g is lsc and quasi-convex, and x0 ∈ int dom g. By Lemma 2.18, we
can find ε1 < ε and M ∈ R such that g(y) ≤ M for all y ∈ B(x0, ε1). Then
F (x, y) ≤M for all x, y ∈ B(x0, ε1) so F is locally bounded at x0.

Corollary 2.20 Let X be reflexive and F : C × C → R be monotone and such
that for every x ∈ C, F (x, ·) is lsc and quasi-convex. Then F is locally bounded
on intC.

Proof. Given x0 ∈ intC choose ε > 0 such that B(x0, ε) ⊆ C. Since X
is reflexive Banach space, B(x0, ε) is weakly compact, hence for each y ∈ C,
F (y, ·) has a minimum on B(x0, ε). Consequently, all assumptions of Theorem
2.19 are satisfied.

When F (x, ·) is lsc and convex, reflexivity of X is not necessary:

Corollary 2.21 Let F : C × C → R be monotone and such that for every
x ∈ C, F (x, ·) is lsc and convex. Then F is locally bounded on intC.

Proof. Let x0 ∈ intC. Choose ε > 0 be such that B(x0, ε) ⊆ C. For every
x ∈ B(x0, ε), the subdifferential of ∂F (x, ·) is nonempty at x. For every x∗ in
∂F (x, ·)(x) and y ∈ B(x0, ε) one has

F (x, y)− F (x, x) ≥ 〈x∗, y − x〉 ≥ −‖x∗‖ ‖x− y‖ ≥ −2ε ‖x∗‖ .

Thus F (x, ·) is bounded from below on B(x0, ε). According to the Theorem
2.19, F is locally bounded at x0.

If T : X → 2X
∗

is monotone, then GT is monotone while GT (x, ·) is lsc
and convex. According to the Corollary 2.21 and Remark 2.15, we immediately
obtain:

Corollary 2.22 Let X be a Banach space and T : X → 2X
∗

be monotone.
Then T is locally bounded at every point of int domT .

We see that the well-known local boundedness of monotone operators can be
shown very easily through Corollary 2.21 on local boundedness of bifunctions.
In fact, whenever property (2.1) holds, one can also easily show the converse,
i.e., provide a proof of Corollary 2.21 assuming that Corollary 2.22 is known:

Proposition 2.23 Assume that F is monotone, satisfies (2.1) and F (x, ·) is
lsc and convex for each x ∈ C. Then F is locally bounded on intC.
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Proof. Under our assumptions, AF (x) is actually the subdifferential ∂F (x, ·) (x)
of the lsc and convex function F (x, ·) at x. It is known that this is nonempty
for all x ∈ intC. Hence, the monotone operator AF is locally bounded on intC.

For each x0 ∈ intC choose ε > 0 and k ∈ R such that B (x0, ε) ⊆ C and
||y∗|| ≤ k for every y∗ ∈ AF (y), y ∈ B (x0, ε). Then for each x, y ∈ B (x0, ε)
and y∗ ∈ AF (y),

F (x, y) ≤ −F (y, x) ≤ −〈y∗, x− y〉 ≤ ‖y∗‖ ‖x− y‖ ≤ 2εk.

Thus F is locally bounded on intC.

In fact, with the same proof as in the above proposition, we obtain the
slightly more general result, which is a kind of converse of Proposition 2.17:

Proposition 2.24 Assume F is a monotone bifunction and intC = int domAF .
Then F is locally bounded on intC.

Corollary 2.25 Suppose that F : X ×X → R is monotone and domAF = X.
Then F is locally bounded on X.

One can also obtain a well-known generalization of Corollary 2.22 by using
bifunctions.

Lemma 2.26 Suppose that X is a Banach space and T : X → 2X
∗

is mono-
tone. Then

(i) T ⊆ AGT ⊆ AĜT ;

(ii) T = AGT = AĜT , if T is maximal monotone.

Proof. (i) T ⊆ AGT is obvious. Since GT (x, y) ≤ ĜT (x, y) for all (x, y) in

C × coC, we deduce that AGT ⊆ AĜT .

(ii) Obvious consequence of (i).

Proposition 2.27 Suppose that X is a Banach space and T : X → 2X
∗

is
monotone and int(co domT ) 6= ∅. Then T is locally bounded on int(co domT ).

Proof. We know that ĜT is monotone and ĜT (x, ·) is lsc and convex for all x ∈
co domT . Thus by Corollary 2.21, ĜT is locally bounded on int(co domT ). It

follows from Remark 2.15 that AĜT is locally bounded on int(co domT ). Now
Lemma 2.26 implies that T is locally bounded on int(co domT ).

2.3 Cyclically Monotone Bifunctions

In this section we will derive some properties of cyclically monotone bifunctions.
Indeed, we generalize some results of [64] to Hausdorff LCS.
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Definition 2.28 Suppose that X is a vector space and C is a nonempty subset
of X. A bifunction F : C×C → R is called cyclically monotone if for any cycle
x1, x2, ..., xn+1 = x1 in C

F (x1, x2) + F (x2, x3) + · · ·+ F (xn, xn+1) ≤ 0.

The following proposition provides a necessary and sufficient condition for a
bifunction to be cyclically monotone. We follow Hadjisavvas and Khatibzadeh’s
proof for the cyclically monotone bifunctions in reflexive Banach spaces [64],
which we include for the sake of completeness.

Proposition 2.29 Suppose that X is a vector space, C is a nonempty subset
of X and F : C ×C → R is a bifunction. Then F is cyclically monotone if and
only if there exists a function f : C → R such that

F (x, y) ≤ f (y)− f (x) ∀x, y ∈ C. (2.13)

Proof. Assume that there exists a function f : C → R such that (2.13) holds.
Then for every cycle x1, x2, ..., xn+1 = x1 in C we have

F (x1, x2) + F (x2, x3) + · · ·+ F (xn, xn+1) ≤
n∑

i=1

(f (xi+1)− f (xi)) = 0.

This means that F is cyclically monotone.

Conversely, let F be a cyclically monotone bifunction. Choose any x0 ∈ C
and define f on C by

f (x) = sup {F (x0, x1) + F (x1, x2) + · · ·+ F (xn, x)} (2.14)

where the supremum is taken over all families x1, x2, ..., xn in C and n ∈ N.
Since F is cyclically monotone,

F (x0, x1) + F (x1, x2) + · · ·+ F (xn, x) + F (x, x0) ≤ 0.

This implies that F (x0, x1)+F (x1, x2)+ · · ·+F (xn, x) ≤ −F (x, x0). Now by
taking the supremum again over x1, x2, ..., xn ∈ C we get f (x) ≤ −F (x, x0).
Thus f is real-valued and also for any x, y ∈ C and x1, x2, ..., xn ∈ C

F (x0, x1) + F (x1, x2) + · · ·+ F (xn, x) + F (x, y) ≤ f (y) .

Taking the supremum over all families x1, x2, ..., xn in C, the preceding inequal-
ity yields

f (x) + F (x, y) ≤ f (y) .

This means that inequality (2.13) holds.

Whenever F is also maximal monotone, more can be said on f .
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Proposition 2.30 Suppose that X is a Hausdorff LCS and intC 6= ∅ and
F : C × C → R is maximal monotone, cyclically monotone and satisfies (2.1).
Then:

(i) The sets clC and intC are convex, and equalities clC = cl domAF and
intC = int dom(AF ) hold; the function f in relation (2.13) is uniquely defined
up to a constant on intC, and is lsc and convex on intC.

(ii) If in addition F (x, ·) is lsc for every x ∈ C, then f is uniquely defined
up to a constant, and lsc and convex on C.

Proof. The proof we present here is borrowed from [64] and it is a simplification
of the original proof. Although the proof in [64] is for reflexive Banach spaces,
it works for LCS.

(i) Maximal monotonicity of AF is a direct consequence of Definition 2.3.
For any cycle x1, x2, ..., xn+1 = x1 in X and each x∗i ∈ AF (xi) for i = 1, ..., n,
we have

F (xi, xi+1) ≥ 〈x∗i , xi+1 − xi〉 .
By adding the above inequalities for i = 1, ..., n, we obtain

F (x1, x2) + F (x2, x3) + · · ·+ F (xn, xn+1) ≥
n∑

i=1

〈x∗i , xi+1 − xi〉 .

By assumption F is cyclically monotone, hence the left hand right of above
inequality is less than or equal to zero. Thus from the preceding inequality we
get

n∑

i=1

〈x∗i , xi+1 − xi〉 ≤ 0.

This means that AF is cyclically monotone. Now, by Proposition 1.36 from
Chapter 1 for any (x0, x

∗
0) ∈ grAF the function defined as

Φ (x) = sup
(xi,x

∗

i )∈grAF

n∈N,i=1,...,n

(
〈x∗n, x− xn〉+

n−1∑

i=0

〈x∗i , xi+1 − xi〉
)

is proper, lsc and convex, Φ (x0) = 0 and AF (x) ⊂ ∂Φ (x). From the maximality
of AF we conclude that AF = ∂Φ. For each x in C we have

Φ (x) = sup
(xi,x

∗

i )∈grAF

n∈N,i=1,...,n

(
〈x∗n, x− xn〉+

n−1∑

i=0

〈x∗i , xi+1 − xi〉
)

≤ sup
(xi,x

∗

i )∈domF
n∈N,i=1,...,n

(
F (xn, x) +

n−1∑

i=0

F (xi, xi+1)

)
≤ −F (x, x0) ,

since F (x1, x2)+F (x2, x3)+···+F (xn, x)+F (x, x0) ≤ 0 by cyclic monotonicity.
Hence Φ is real-valued on C so that C ⊂ domΦ. It follows that

clC ⊂ cl domΦ = cl dom (∂Φ) = cl domAF ⊂ clC,
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intC ⊂ int domΦ = int dom (∂Φ) = int domAF ⊂ intC.

From the above relations we conclude that clC = cl domAF = cl domΦ and
intC = int domΦ = int domAF . Since Φ is a lsc and convex, domΦ is convex,
so clC = cl domΦ and intC = int domΦ are convex. Now let f : C → R be
any function such that (2.13) holds. Then for every (x, x∗) ∈ grAF and every
y ∈ C, we have

f (y)− f (x) ≥ 〈x∗, y − x〉 .
This means that ∂Φ ⊂ ∂f and by maximal monotonicity of ∂Φ, ∂Φ = ∂f.

For each x, y ∈ intC and t ∈]0, 1[ with z := (1− t)x+ ty ∈ intC, select an
element z∗ ∈ AF (z) . Then we have

f (x)− f (z) ≥ 〈z∗, x− z〉 ,
f (y)− f (z) ≥ 〈z∗, y − z〉 .

Multiplying the first inequality with t and the second one with (1− t), then
adding them, we obtain

f ((1− t)x+ ty) ≤ (1− t) f (x) + tf (y) . (2.15)

Which means that f is convex on intC. Also, f is lsc on intC since ∂f 6= ∅
there. Since ∂Φ = ∂f the functions Φ and f differ by a constant on intC.

(ii) Assume that F is lsc and let f be a function satisfying (2.13). Then for
each y ∈ C, we have

lim inf
y→x

(f (y)− f (x)) ≥ lim inf
y→x

F (x, y) ≥ F (x, x) = 0

thus f is lsc. From part (i) of the proof we know that intC and clC are convex.
Adding a constant if necessary, we may assume that f = Φ on intC. For any
x ∈ C, choose y ∈ intC and a sequence xn = (1− tn)x+ tny, n ∈ N with tn > 0
and tn → 0. Since C ⊂ domΦ and intC = int domΦ we have xn ∈ intC =
int domΦ. Applying (2.15) which is valid whenever (1− t)x + ty ∈ intC and
lower semi-continuity of f we get

lim inf
n→∞

f (xn) ≤ lim inf
n→∞

((1− tn) f (x) + tnf (y)) = f (x) ≤ lim inf
n→∞

f (xn) .

Therefore f (x) = lim infn→∞ f (xn). Applying the same argument for Φ, we
conclude that Φ(x) = lim infn→∞ Φ (xn). Consequently,

f (x) = lim inf
n→∞

f (xn) = lim inf
n→∞

Φ (xn) = Φ(x).

Thus f = Φ on C and this implies that f is convex.
Example 5.3 in [64] shows that a convex function such that (2.13) holds

may not exist, if F (x, ·) is not lsc. In addition, Example 5.4 in [64] shows that
cyclic monotonicity of AFdoes not imply cyclic monotonicity of F , even if F is
monotone, C is a convex subset of R and AF is a subdifferential of a proper, lsc
and convex function.

Proposition 2.24 induces the following result, which does not assume lower
semi-continuity or quasi-convexity.
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Proposition 2.31 Suppose that X is a Banach space, intC 6= ∅ and F : C ×
C → R is maximal monotone, cyclically monotone and satisfies F (x, x) = 0 for
all x ∈ C. Then F is locally bounded on intC.

Proof. Since F is maximal monotone and cyclically monotone, by part (i) of
Proposition 2.30 we have

intC = int domAF .

Now, Proposition 2.24 implies that F is locally bounded on intC.

2.4 Local Boundedness at Arbitrary Points

In Proposition 2.16 one asks for the bifunction to be maximal monotone and
locally bounded on clC. This assumption seems to be in contradiction with the
theory of maximal monotone operators. In fact, if T : X → 2X

∗

is a maximal
monotone operator and int domT 6= ∅, then T is never locally bounded on
elements of the boundary of domT ; see Theorem 1.39. However, this does not
imply that the maximal monotone bifunction GT is also unbounded at x0. In
fact, in R

n we have a result of local boundedness at arbitrary points and in
particular at boundary points, for more general bifunctions.

Let us denote by ||x||∞ the sup norm of x = (x1, x2, ..., xn) ∈ R
n,

||x||∞ = max{|x1|, |x2|, ..., |xn|},

and by B∞(x, ε) the closed ε−ball around x with respect to ‖·‖∞. A set which
is the convex hull of finitely many points is called a polytope. We call a subset
C of Rn locally polyhedral at x0 ∈ C if there exists ε > 0 such that B∞(x, ε)∩C
is a polytope.

In the following proposition we do not assume that F is monotone.

Proposition 2.32 Let C ⊂ R
n be locally polyhedral at x0 ∈ C and F : C × C

→ R be a bifunction. If F (x, ·) is quasi-convex for each x ∈ C, and F (·, y) is
upper semi-continuous (usc) for all y ∈ C, then F is locally bounded at x0.

Proof. Choose ε > 0 such that B∞(x0, ε) ∩ C is a polytope. Then there exist
x1, x2, ..., xk such that

B∞(x0, ε) ∩ C = co{x1, x2, ..., xk}.

Since F (x, ·) is quasi-convex, for all x and y in B∞(x0, ε) ∩ C we have

F (x, y) ≤ max{F (x, x1), F (x, x2), ..., F (x, xk)}.

On the other hand F (·, xi) is usc and B∞(x0, ε) ∩ C is a compact set, thus
F (·, xi) attains its maximum on B∞(x0, ε) ∩ C; that is, there exists Mi such
that

F (x, xi) ≤Mi for i = 1, 2, ..., k and x ∈ B∞(x0, ε) ∩ C.
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Set M = max{M1,M2, ...,Mk}. Then

F (x, y) ≤M for all x, y ∈ B∞(x0, ε) ∩ C.

This means that F is locally bounded at x0.

Proposition 2.33 Let C ⊂ R
n be locally polyhedral at x0 and F : C ×C → R

be a monotone bifunction. If F (x, .) is quasi-convex and lsc for all x ∈ C, then
F is locally bounded at x0.

Proof. Choose ε > 0 such that B∞(x0, ε) ∩ C is a polytope. Since F (x, ·) is
quasi-convex, as the proof of the previous proposition there exist x1, x2, ..., xk ∈
B∞(x0, ε) ∩ C such that for all x, y ∈ B∞(x0, ε) ∩ C we have

F (x, y) ≤ max{F (x, x1), F (x, x2), ..., F (x, xk)}. (2.16)

Since F (x, y) is monotone,

F (x, xi) ≤ −F (xi, x) for i = 1, 2, ..., k. (2.17)

For each i, −F (xi, ·) is usc. Therefore, −F (xi, ·) has a maximum Mi on
B∞(x0, ε) ∩ C. Set M = max{M1,M2, ...,Mk}. Then (2.16) and (2.17) entail

F (x, y) ≤M for all x, y ∈ B∞(x0, ε) ∩ C,

i.e., F is locally bounded at x0.

Thus, if C is a polyhedral set and F satisfies the assumptions of Proposition
2.32 or 2.33, then it is locally bounded on C, not only on intC. However,
the following example shows that this property may fail if C is not locally
polyhedral.

Example 2.34 Set C = {(α, β) ∈ R
2 : α ≥ β4}. Define the function f on R

2

by

f(α, β) =





β2

2α if α ≥ β4, α > 0,
0 if α = β = 0,

+∞ otherwise.

This function is lsc and convex (it is the restriction to C of the function in
[98, page 83]).

Now define the bifunction F : C×C → R by F (x, y) = f(y)−f(x), x, y ∈ C.
This bifunction F has very nice properties: it is cyclically monotone, F (x, ·) is
lsc and convex, F (·, y) is concave and usc, it is defined on a closed convex
set thus it is maximal monotone (see Proposition 3.1 in [64]). Nevertheless, it
is not locally bounded at 0. Indeed, consider the sequences xn = (0, 0) and
yn = ( 1

n4 ,
1
n
). Then F (xn, yn) → +∞, hence every neighborhood of 0 contains

pairs x, y with F (x, y) as large as we wish. N
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Since monotone bifunctions can be locally bounded at the boundary of their
domain, it is interesting to investigate an analogous property for monotone
operators.
Given a subset C ⊆ X, let us denote by inwC(x0) :=

⋃
λ>0

1
λ
(intC − x0) the set

of inward directions of C at x0. Note that if v ∈ inwC(x0) then v is also an
inward direction at all x sufficiently close to x0. Indeed, it is sufficient to take
x ∈ B(x0, ε) where ε > 0 is such that B(x0 + λv, ε) ⊆ C.

Definition 2.35 An operator T : X → 2X
∗

is called inward locally bounded at
x0 ∈ cl domT if for each v ∈ inwC(x0) there exist k > 0 and ε > 0 such that
for all x ∈ B(x0, ε) ∩ C and x∗ ∈ T (x), one has 〈x∗, v〉 ≤ k.

We remark that if T is inward locally bounded at an interior point x0 of
domT , then by the uniform boundedness principle (see Chapter 1, Theorem
1.6) it is locally bounded at x0, since inw domT (x0) = X.

Proposition 2.36 A monotone operator T is inward locally bounded at every
point of cl domT .

Proof. Let x0 ∈ cl domT and v ∈ inw domT (x0) be given. Choose λ > 0
such that x0 + λv ∈ int domT . Since T is locally bounded at x0 + λv, there
exist ε > 0 and k > 0 such that B(x0 + λv, ε) ⊆ domT and ‖y∗‖ ≤ k for
all y∗ ∈ T (y), y ∈ B(x0 + λv, ε). For every x ∈ B(x0, ε) ∩ domT , one has
x+ λv ∈ B(x0 + λv, ε). Thus for every x∗ ∈ T (x) and y∗ ∈ T (x+ λv),

〈x∗, v〉 = 1

λ
〈x∗, x+ λv − x〉 ≤ 1

λ
〈y∗, x+ λv − x〉 ≤ k ‖v‖ .

Thus T is inward locally bounded at x0.
Comparing this last result with Propositions 2.32 and 2.33, we should re-

mark that these propositions imply a somewhat stronger local boundedness than
inward local boundedness. Indeed, if T is monotone and domT is locally polyhe-
dral, then by Proposition 2.33 the bifunction GT is locally bounded everywhere;
thus, 〈x∗, y − x〉 is bounded from above for all x∗ ∈ T (x) where x, y are near a
point x0 of the boundary, even if y − x is “outward” rather than inward. This
is because whenever y − x is outward, its norm is small, so that 〈x∗, y − x〉 is
bounded even if the norm of x∗ is large.

2.5 Counterexamples

We indicate that when F : C × C → R is a bifunction such that

F (x, y) = −F (y, x) ∀x, y ∈ C

then, as one can easily check, the implication (2.5) holds and so F is BO-maximal
monotone.
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The first example of this section shows that it is possible for a bifunction
to be BO-maximal monotone, without being maximal monotone, even if it is
defined on a closed convex set and grAF 6= ∅. In our knowledge, the only
example of a bifunction F published so far [64] which is BO-maximal monotone
but not maximal monotone, is in some sense trivial since grAF = ∅.

Example 2.37 Define the bifunction F : [0, 1]× [0, 1] → R by

F (x, y) =





0 if x, y ∈]0, 1[,
−√

y if x = 0, y ∈ [0, 1],√
x if y = 0, x ∈ [0, 1],√

1− y if x = 1, y ∈ [0, 1],
−
√
1− x if y = 1, x ∈ [0, 1].

Note that F (x, y) is well-defined if both x, y are endpoints of [0, 1]. In addition
F is monotone and is BO-maximal, since F (x, y) = −F (y, x) for all x, y ∈ [0, 1].
Next we will show that F is not maximal monotone. So, we calculate the AF .
Let x ∈ [0, 1] and x∗ ∈ AF (x). We consider the following cases:

Case 1: Assume x ∈]0, 1[, by taking y = 1 we have F (x, 1) ≥ x∗ (1− x) and
so −

√
1− x ≥ x∗ (1− x). From here we obtain x∗ ≤ − 1√

1−x
< 0. However for

y ∈]0, 1[, one can easily get x∗ = 0, a clear contradiction. Therefore, AF (x) = ∅
for x ∈]0, 1[.

Case 2: If x = 0, then F (0, y) ≥ x∗y. From this we obtain x∗ ≤ − 1√
y
for all

y ∈]0, 1] which is impossible. Therefore, AF (0) = ∅.
Case 3: If x = 1, then F (1, y) =

√
1− y ≥ x∗ (y − 1) for all y ∈]0, 1].

Thus x∗ ≥ − 1√
1−y

for all y ∈]0, 1[ and so x∗ ≥ −1. Now if we take y = 0,

we get F (1, 0) = 1 ≥ x∗ (−1). Thus x∗ ≤ −1. Therefore, AF (1) = {−1}.
Consequently,

AF (x) =

{
∅ if x ∈ [0, 1[,
−1 if x = 1,

and grAF = {(1,−1)} .

Obviously AF and so F is not maximal monotone. N

When the assumptions of lower semi-continuity or quasi-convexity do not
hold, then local boundedness may fail (see Theorem 2.19, related corollaries
and Proposition 2.33) as shown by the following examples.

Example 2.38 Let x∗ be a noncontinuous linear functional on X, that is x∗ in
X ′\X∗ and set F (x, y) = 〈x∗, y − x〉. Then F is a monotone (cyclically mono-
tone) bifunction, which is affine (convex) but obviously is not locally bounded
at any x ∈ X. N

Example 2.39 Define F on R×R by F (x, y) = 1
|y| − 1

|x| for x 6= 0 and y 6= 0,

and F (x, 0) = x = −F (0, x) , x ∈ R. Then F is monotone, F (x, ·) is lsc for
every x ∈ R, but F is not locally bounded at 0. In addition, this bifunction is
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a counterexample to the converse of Proposition 2.6 and of Remark 2.15: one
can readily show that F is BO-maximal monotone and that domAF = {0},
with AF (0) = {−1}. It follows that F is not maximal monotone and also AF is
locally bounded at {0} while F is not. N

In contrast to the previous example, if a monotone operator T is locally
bounded at x0 ∈ X, then GT is not only locally bounded but also locally
bounded by an arbitrarily small positive number at x0. Indeed, if ‖x∗‖ ≤ k for
all x ∈ B(x0, ε), x

∗ ∈ T (x), then for all x, y ∈ domT ∩ B(x0, ε) and y
∗ ∈ T (y)

we find
GT (x, y) ≤ −GT (y, x) ≤ −〈y∗, x− y〉 ≤ 2εk.

The next simple example shows that GT is not necessary locally bounded
on the closure of the domain of T .

Example 2.40 Set C = [0, π2 ) and define T : C → R by

T (x) =

{
tan2 x if x ∈]0, π2 [,
(−∞, 0] if x = 0.

Then T is a monotone operator. Now consider the sequences xn = π
2 − 2

n
and

yn = π
2 − 1

n
in C. Then

GT (xn, yn) =
tan2

(
π
2 − 2

n

)

n
→ +∞

when n→ ∞. Thus GT is not locally bounded at π
2 ∈ clC. N

Example 2.41 Define

T (x1, x2) =





(
− 1

2

(
x2

x1

)2
, x2

x1

)
if x1 ≥ x42 and x1 > 0,

(−∞, 0]× {0} if x1 = x2 = 0.

Then T is monotone on C where

C :=
{
(u, v) ∈ R

2|u ≥ v4
}
.

Set x = (x1, x2) and y = (y1, y2) , then

GT (x, y) =





x2y2

x1
− x2

2

2x1

(
1 + y1

x1

)
if x ∈ C − {(0, 0)} and y ∈ C,

y2
2

2y1
if x1 = 0 and y1 6= 0,

0 if y ∈ C and x = (0, 0) .

GT is defined on C but it is not locally bounded on C, because if un =
(

1
n4 ,

1
n2

)

and vn =
(

1
n4 ,

1
n

)
, then

GT (un, vn) = n− 1.

Note that un → (0, 0) and vn → (0, 0) but GT (un, vn) → +∞. N



Chapter 3

σ-Monotone Bifunctions

and Operators

In recent years, operators which have some kind of generalized monotonicity
property have received a lot of attention (see for example [63] and the references
therein). Many papers considering generalized monotonicity were devoted to the
investigation of its relation to generalized convexity; others studied the existence
of solutions of generalized monotone variational inequalities and, in some cases,
derived algorithms for finding such solutions.

Monotone operators are known to have many very interesting properties. For
instance, we have seen that a monotone operator T defined on a Banach space
is locally bounded in the interior of its domain. Furthermore, if T is maximal
monotone and J is the duality map, then T + λJ is surjective for every λ > 0.
So the question naturally arises: are these properties shared by other operators
which satisfy a more relaxed kind of monotonicity?

In a recent paper, Iusem, Kassay and Sosa [71] introduced the class of the
so-called pre-monotone operators. This class includes monotone operators, but
contains many more: for example, if T is monotone and R is globally bounded,
then T + R is pre-monotone. In fact, it includes ε-monotone operators which
are related to the very useful ε-subdifferentials [73, 87]. In [71] it is shown
that, in a finite dimensional space, pre-monotone operators retain the two above
mentioned properties.

The present chapter is based on the original paper [6]. We will show that
most results of [71] remain valid in infinite dimensional Banach spaces. We
also prove that some other properties of monotone operators remain valid in
a much more general context. More precisely, in Section 1 we will introduce
the class of σ-monotone and maximal σ-monotone operators and we will study
their properties. In Section 2, we will introduce the class of pre-monotone
bifunctions which are related to the notion of pre-monotone operator. We will
show that such bifunctions are locally bounded in the interior of their domain
and we will deduce local boundedness of pre-monotone operators. We will also

39
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state and prove a generalization of the Libor Veselý theorem. In Section 3
we will prove that under some (CQ) conditions, the values of the sum of two
maximal σ-monotone operators are weak∗-closed. In Section 4 we will confine
our attention to finite dimensions and prove the existence of solutions for an
equilibrium problem in a (generally unbounded) closed convex subset of an
Euclidean space. This result does not involve any kind of monotonicity. We
will conclude this chapter by comparing some types of generalized monotone
operators.

3.1 σ-Monotone Operators

Most definitions and many of the results of the section are essentially due to
[71], the main difference being that in [71] one considers pre-monotone opera-
tors in R

n, without specifying a given σ. In this section after some preliminary
definitions and results, we show that every maximal σ-monotone operator is
convex-valued and weak∗-closed valued. In addition, if σ is usc, then the op-
erator is sequentially norm×weak∗-closed. Moreover, we provide an example
which shows that upper semicontinuity of σ is a necessary condition. In very
special case, X = R, we establish that if T is pre-monotone and closed, then σT
is continuous.

Definition 3.1 (i) Given an operator T : X → 2X
∗

and a map σ : domT →
R+, T is said to be σ-monotone if for every x, y ∈ domT, x∗ ∈ T (x) and
y∗ ∈ T (y),

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖. (3.1)

(ii) An operator T is called pre-monotone if it is σ-monotone for some
σ : domT → R+.

(iii) A σ-monotone operator T is called maximal σ-monotone, if for every
operator T ′ which is σ′-monotone with grT ⊆ grT ′ and σ′ an extension of σ,
one has T = T ′.

The notion of pre-monotone operators for the finite-dimensional case is intro-
duced in [71]. The same paper also contains examples of maximal σ-monotone
operators (see for instance [71, Proposition 5.8]).

Remark 3.2 (i) It should be noticed that T : X → 2X
∗

is σ-monotone if and
only if

∀x, y ∈ domT, x∗ ∈ T (x) , y∗ ∈ T (y) , 〈x∗−y∗, x−y〉 ≥ −σ(y)‖x−y‖. (3.2)

(ii) If σ(y) = 2ε ≥ 0 for each y ∈ domT , then T is called ε-monotone [87].
Therefore, every monotone and each ε-monotone operator is pre-monotone.

(iii) Definition 3.1 does not allow negative values for σ, since this can only
happen in very special cases. For instance, if T satisfies (3.1) and its domain
contains any line segment [x0, y0] := {(1− t)x0 + ty0 : t ∈ [0, 1]}, then the set of
points x ∈ [x0, y0] where σ(x) < 0 is at most countable. Indeed, if this is not the
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case, then there exists ε > 0 such that σ(x) < −ε for infinitely many x ∈ [x0, y0].
Choose x∗0 ∈ T (x0), y

∗
0 ∈ T (y0). Given n ∈ N, choose xk = x0 + tk(y0 − x0),

k = 1, . . . n − 1, such that 0 < t1 < · · · < tn−1 < 1 and σ(xk) < −ε. Then
choose x∗k ∈ T (xk). Set xn = y0 and x∗n = y∗0 . Relation (3.2) gives for all
k = 0, 1, . . . n− 1:

〈
x∗k+1 − x∗k, xk+1 − xk

〉
≥ ε ‖xk+1 − xk‖ ⇒

〈
x∗k+1 − x∗k, y0 − x0

〉
≥ ε ‖y0 − x0‖ .

Adding these inequalities for k = 0, 1, . . . n− 1 yields

〈y∗0 − x∗0, y0 − x0〉 ≥ nε ‖y0 − x0‖ .

This should hold for each n ∈ N, which is impossible.
(iv) The notion of pre-monotonicity is not suited to linear operators, since

every σ-monotone linear operator T : X → X∗ is in fact monotone. Indeed, in
this case putting y = 0 in (3.2) we find

∀x ∈ X, 〈Tx, x〉 ≥ −σ (0) ||x||. (3.3)

By putting nx instead of x in (3.3) and then using T (nx) = nT (x) one gets
easily

∀x ∈ X, 〈Tx, x〉 ≥ −σ (0)
n

||x||. (3.4)

By taking the limit in inequality (3.4) as n→ ∞ we get 〈Tx, x〉 ≥ 0. Replacing
x by x− y we conclude that

∀x, y ∈ X, 〈Tx− Ty, x− y〉 ≥ 0.

This means that T is monotone.
(v) Every globally bounded operator is pre-monotone. Assume that T is

globally bounded. Then there existsM > 0 such that ‖x∗‖ ≤M for all (x, x∗) in
grT . Now by setting σ(y) = 2M for all y ∈ domT , we infer that T is pre-
monotone. Note that if T and S are σ1-monotone and σ2-monotone respectively,
such that domT ∩domS 6= ∅, then by taking σ = σ1+σ2 on the domT ∩domS
one can get T + S is σ-monotone.

(vi) From (ii) and (v) we deduce that if S is monotone and R is globally
bounded then T = R+ S is pre-monotone.

(vii) A σ-monotone operator is maximal σ-monotone if and only if, for every
operator T ′ which is σ′-monotone with grT ⊆ grT ′ and σ′(x) ≤ σ(x) for all
x ∈ domT , one has T = T ′. �

The following proposition is an easy consequence of Zorn’s lemma, as for
monotone operator.

Proposition 3.3 Every σ-monotone operator has a maximal σ-monotone ex-
tension.
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Note: As it was pointed out in [71, page 817] maximal pre-monotonicity
must refer to a given σ. As in [71], if we define a maximal pre-monotone
operator as a pre-monotone one whose graph is not properly contained in the
graph of another pre-monotone operator, then with this notion, no operator
would be maximal premonotone. For instance, assume that T : X → 2X

∗

is any pre-monotone operator which satisfies (3.1) for a given σ. Now define
Tn : X → 2X

∗

by Tn (x) = T (x) + B (0, n) for n = 1, 2, ... where B (0, n) is the
closure of B (0, n). Then by part (vi) of Remark 3.2, Tn is pre-monotone with
σn = σ + 2n and grTn ⊂ grTn+1 for n ∈ N. Thus grTn is an increasing chain
and ∪∞

n=1 grTn = X×X∗ and the operator with this graph is not pre-monotone.
Thus, with this notion of maximal pre-monotonicity there would be no maximal
pre-monotone operators.

Definition 3.4 Let A be a subset of X. Given a mapping σ : A → R+, two
pairs (x, x∗), (y, y∗) ∈ A×X∗ are σ-monotonically related if

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖.

The proof of the following proposition is obvious.

Proposition 3.5 The σ-monotone operator T : X → 2X
∗

is maximal σ-mono-
tone if and only if, for every point (x0, x

∗
0) ∈ X × X∗ and every extension σ′

of σ to domT ∪ {x0} such that (x0, x
∗
0) is σ′-monotonically related to all pairs

(y, y∗) ∈ grT , we have (x0, x
∗
0) ∈ grT .

Given an operator T : X → 2X
∗

, we define the function σT : domT →
R+ ∪ {+∞} by

σT (y) = inf{a ∈ R+ : 〈x∗ − y∗, x− y〉 ≥ −a ‖x− y‖ , ∀(x, x∗) ∈ grT, y∗ ∈ T (y)}.

Note that if the operator T is pre-monotone, then

σT = inf{σ : T is σ-monotone}

and thus σT is finite, and T is σT -monotone. Also in this case, it is obvious that

σT (y) = max

{
sup{〈x

∗ − y∗, y − x〉
‖y − x‖ : x ∈ X\{y}, x∗ ∈ T (x), y∗ ∈ T (y)}, 0

}

(3.5)
(see also [71]). The following result is due to [71] but we include a proof for the

convenience of the reader.

Proposition 3.6 Let an operator T be given.
(i) σT is finite and T is σT -monotone, if and only if T is σ-monotone for

some σ.
(ii) σT is finite and T is maximal σT -monotone, if and only if T is maximal

σ-monotone for some σ.
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Proof. We have only to prove that whenever T is maximal σ-monotone for some
σ, then it is maximal σT -monotone. Assume that S : X → 2X

∗

is σ′-monotone
with grT ⊆ grS and σ′ an extension of σT . Since σ′ = σT ≤ σ on domT , by
Remark 3.2 part (vii) we get that S = T . Hence, T is maximal σT -monotone.
This completes the proof.

Proposition 3.7 Every maximal σ-monotone operator T is convex-valued and
weak∗-closed valued. Moreover, if σ is defined and usc at some point x0 in
cl domT , then T is sequentially norm×weak∗-closed at x0.

Proof. Let T : X → 2X
∗

be a maximal σ-monotone operator and (x, x∗1), (x, x
∗
2)

in grT , λ ∈ [0, 1]. Then for each (y, y∗) ∈ grT ,

〈λx∗1 + (1− λ)x∗2 − y∗, x− y〉 = λ〈x∗1 − y∗, x− y〉+ (1− λ)〈x∗2 − y∗, x− y〉
≥ −λmin{σ(x), σ(y)}‖x− y‖
− (1− λ)min{σ(x), σ(y)}‖x− y‖

= −min{σ(x), σ(y)}‖x− y‖.

That is, (x, λx∗1+(1−λ)x∗2) is σ-monotonically related with all (y, y∗) ∈ grT .
Now, it follows from Proposition 3.5 that (x, λx∗1 + (1 − λ)x∗2) ∈ grT which
implies that T (x) is convex.

Assume that x∗ is in the weak∗-closure of T (x). Then there exists a sequence

x∗n in T (x) such that x∗n
w∗

→ x∗. For each (y, y∗) ∈ grT we have

〈x∗n − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖.

Passing to limit when n goes to ∞, the preceding inequality implies that

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖.

Thus (x, x∗) ∈ grT . This means that T (x) is weak∗-closed.
We now show sequential closedness: suppose that (xn, x

∗
n) is a sequence in

grT such that xn → x0 and x∗n
w∗

→ x∗0. It follows from the σ-monotonicity of T
that for each (y, y∗) ∈ grT we have

〈x∗n − y∗, xn − y〉 ≥ −min{σ(xn), σ(y)}‖xn − y‖.

By taking limits in the above inequality and using the upper semicontinuity of
σ at x0 we get

〈x∗0 − y∗, x0 − y〉 ≥ −min{σ(x0), σ(y)}‖x0 − y‖

which implies that (x0, x
∗
0) is σ-monotonically related with all (y, y∗) ∈ grT .

By using Proposition 3.5 we deduce that (x0, x
∗
0) ∈ grT .

We note that, as for monotone operators, in general grT is only sequentially
norm×weak∗-closed, not norm×weak∗-closed [29]. However, we will see in the
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next section that maximal σ-monotone operators are actually usc in the interior
of their domains.

The assumption of upper semicontinuity of σ cannot be omitted from Propo-
sition 3.7, as the following example shows. This is also an example of a pre-
monotone operator which is not ε-monotone. Note that for T : R → R we
have

σT (y) = max

{
sup
x≤y

{T (x)− T (y)} , sup
x≥y

{T (y)− T (x)}
}
. (3.6)

Example 3.8 We define the functions ϕ, σ : R → R by

ϕ(x) =

{
x sin2 x if x ≥ 0,

0 if x < 0,

and
σ(x) = max{ϕ(x),max

z≤x
ϕ(z)− ϕ(x)}.

We show that ϕ is σ-monotone, i.e., for all x, y ∈ R the following inequality
holds:

(ϕ(x)− ϕ(y)) (x− y) ≥ −min{σ(x), σ(y)} |x− y| .
We may assume without loss of generality that x ≤ y, so we have to prove

that ϕ(x)− ϕ(y) ≤ min{σ(x), σ(y)}. Indeed,

ϕ(x)− ϕ(y) ≤ ϕ(x) ≤ σ(x)

and
ϕ(x)− ϕ(y) ≤ max

z≤y
ϕ(z)− ϕ(y) ≤ σ(y)

so ϕ is σ-monotone. Note that ϕ is not ε-monotone since

(ϕ(x)− ϕ(y)) sgn (x− y)

is not bounded from below (take y = 2kπ + π/2, x = 2kπ + π for large k ∈ N).
We now change ϕ and σ at one point: define T, σ1 : R → R by

T (x) =

{
ϕ(x) if x 6= π

2 ,
π
4 if x = π

2 ,
and σ1(x) =

{
σ(x) if x 6= π

2 ,
π
4 if x = π

2 .

One can readily show that T is σ1-monotone.
Now let T̃ be a maximal σ1-monotone extension of T . Its graph is not closed;

indeed (π/2, π/2) belongs to the closure of gr T̃ . However, it does not belong to

gr T̃ since it is not σ1-monotonically related to (π, 0) ∈ gr T̃ : since

σ1(π) = max
z≤π

ϕ(z) ≥ ϕ(π/2) = π/2,

one has

(
π

2
− 0) sgn(

π

2
− π) = −π

2
< −π

4
= −min{σ1(

π

2
), σ1(π)}. N
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Note that in Proposition 3.7 we observed that if T is σ-monotone and σ is
usc, then grT is sequentially norm×weak∗-closed. Moreover, in Example 3.8 it
is shown that upper semicontinuity of σ cannot be omitted from the statement of
Proposition 3.7. Now in the following (in case X = R) we show that closedness
of the graph of a σ-monotone and single-valued operator T implies the continuity
of σT in case T is single-valued.

Lemma 3.9 Assume that T : R → R is σ-monotone. Then T is locally
bounded. Moreover, if grT is closed, then T is continuous.

Proof. First we show that T is locally bounded on R. Assume that a < b.
Note that

σT (y) = max

{
sup
x≤y

{T (x)− T (y)} , sup
x≥y

{T (y)− T (x)}
}
.

Thus σT (b) ≥ supx≤b (T (x)− T (b)) and so T (x) ≤ σT (b) +T (b) for all x ≤ b.
i.e., T is bounded above on (−∞, b]. Likewise, σT (a) ≥ supa≤x (T (a)− T (x)).
Therefore, T (x) ≥ T (a)−σT (a), that is T is bounded below on [a,+∞). Hence
T is bounded on every interval [a, b].

Now assume that grT is closed but it is not continuous. Then there exists a
sequence {xn} in R converging to some x, such that {T (xn)} does not converge
to T (x). Thus there exists ε > 0 such that |T (xn)− T (x)| ≥ ε for infinitely
many n ∈ N. Since T is locally bounded, there would be a subsequence (which
we denote again by {T (xn)} for simplicity) converging to a point a ∈ R such
that |a− T (x)| ≥ ε. This means that (xn, T (xn)) → (x, a) 6= (x, T (x)), thus
contradicting the fact that T is closed.

Proposition 3.10 Suppose that T : R → R is σ-monotone and grT is closed.
Then σT is continuous.

Proof. For the continuity of σT it is enough to show that supx≤y {T (x)− T (y)}
and supx≥y {T (y)− T (x)} are continuous as functions of y. First we show that
supx≤y {T (x)− T (y)} is continuous. By the above lemma T is continuous. So
it is enough we prove that f (y) = supx≤y T (x) is continuous. The continuity of
T implies that T is locally uniformly continuous. Let y0 ∈ R. For a given ε > 0
there exists δ > 0 such that

|T (x)− T (y0)| <
ε

2
∀x ∈ [y0 − δ, y0 + δ]. (3.7)

Set A =
[
y0 − δ

2 , y0 +
δ
2

]
and take y ∈ A. It follows from (3.7) that

∣∣∣∣ sup
x∈A,x≤y

T (x)− sup
x∈A,x≤y0

T (x)

∣∣∣∣ < ε. (3.8)

Note that

f (y) = sup
x≤y

T (x) = max

{
sup

x<y0− δ
2

T (x) , sup
y0− δ

2
≤x≤y

T (x)

}
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and

f (y0) = sup
x≤y0

T (x) = max

{
sup

x<y0− δ
2

T (x) , sup
y0− δ

2
≤x≤y0

T (x)

}

For simplicity in calculations, set

a = sup
x<y0− δ

2

T (x) , b = sup
y0− δ

2
≤x≤y

T (x) and c = sup
y0− δ

2
≤x≤y0

T (x) .

Therefore f (y) = max {a, b} and f (y0) = max {a, c}. Using (3.8) we infer
that |b− c| < ε, i.e.,

−ε+ c < b < ε+ c

which implies

max{c− ε, a} < max{b, a} < max{ε+ c, a}. (3.9)

On the other hand,

−ε+max{c, a} = max{c− ε, a− ε} ≤ max{c− ε, a} (3.10)

and
max{ε+ c, a} ≤ max{ε+ c, a+ ε} = max{c, a}+ ε. (3.11)

Combining (3.9), (3.10) and (3.11) we obtain

−ε+max{c, a} < max{b, a} < max{c, a}+ ε,

so |f(y)− f(y0)| < ε. This means that f is continuous. In a similar manner
one can get supx≥y {T (y)− T (x)} is continuous.

So the question naturally arises: Can we extend the above result to more gen-
eral spaces? For instance, given a pre-monotone operator T with norm×weak∗-
closed graph, is σT usc?

3.2 Local Boundedness and Related Properties

In this section we will point out the connection between locally boundedness of
σ-monotone bifunctions and σ-monotone operators. Also, we will prove a gener-
alization of the Libor Veselý theorem: if T is maximal pre-monotone, cl domT
is convex and T is locally bounded at x0 ∈ cl domT , then x0 is an interior
point of domT . Moreover, we will see some properties of σ-monotone operators
can be more easily investigated through the use of σ-monotone bifunctions that
we now introduce. Let X be a Banach space, C a nonempty subset of X and
σ : C → R+ be a map. A bifunction F : C × C → R will be called σ-monotone
if

∀x, y ∈ C, F (x, y) + F (y, x) ≤ min{σ (x) , σ(y)}‖x− y‖. (3.12)

Equivalently, F is σ-monotone if

∀x, y ∈ C, F (x, y) + F (y, x) ≤ σ(y)‖x− y‖. (3.13)
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This notion is a generalization of the notion of monotone bifunction intro-
duced in Chapter 2, where σ is identically zero.

Given any bifunction F : C×C → R, we define as in Chapter 2 the operator
AF : X → 2X

∗

by

AF (x) =

{
{x∗ ∈ X∗ : ∀y ∈ C,F (x, y) ≥ 〈x∗, y − x〉} if x ∈ C,
∅ if x /∈ C.

Note that in case F (x, x) = 0 for all x ∈ C, one has AF (x) = ∂F (x, ·)(x)
(the subdifferential of the function F (x, ·) at x).

Proposition 3.11 For a σ-monotone bifunction F , AF is σ-monotone.

Proof. Let x∗ ∈ AF (x) and y∗ ∈ AF (y). By the definition of AF ,

F (x, y) ≥ 〈x∗, y − x〉

and
F (y, x) ≥ 〈y∗, x− y〉.

From these inequalities we obtain

〈x∗ − y∗, x− y〉 ≥ −F (x, y)− F (y, x) ≥ −min{σ (x) , σ(y)}‖x− y‖.

This means that AF is σ-monotone.

Definition 3.12 A σ-monotone bifunction F is called maximal σ-monotone if
AF is maximal σ-monotone.

For a given operator T : X → 2X
∗

, as in Chapter 2 we define GT : domT ×
domT → R∪ {+∞} by GT (x, y) = supx∗∈T (x)〈x∗, y− x〉. For each x ∈ domT ,
GT (x, ·) is lsc and convex, and GT (x, x) = 0. The following result shows that
GT is actually real-valued whenever T is σ-monotone, and establishes some
relations between σ-monotonicity of GT and T .

Proposition 3.13 Let T be an operator. Then the following statements are
true.

(i) If T is σ-monotone, then GT is a real-valued, σ-monotone bifunction.
(ii) If T is maximal σ-monotone, then GT is a maximal σ-monotone bifunc-

tion and AGT = T .
(iii) Suppose that T is a σ-monotone operator with weak∗-closed convex val-

ues and domT = X. If GT is maximal σ-monotone, then T is maximal σ-
monotone.

Proof. (i) Let T : X → 2X
∗

be σ-monotone. Given x, y ∈ domT , for every
x∗ ∈ T (x) and y∗ ∈ T (y), we have

〈x∗ − y∗, x− y〉 ≥ −σ(y)‖x− y‖.
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Thus
〈y∗, x− y〉+ 〈x∗, y − x〉 ≤ σ(y)‖x− y‖.

This implies that

sup
y∗∈T (y)

〈y∗, x− y〉+ sup
x∗∈T (x)

〈x∗, y − x〉 ≤ σ(y)‖x− y‖.

Form here we conclude that

∀x, y ∈ domT, GT (x, y) +GT (y, x) ≤ σ(y)‖x− y‖.
Consequently, GT (x, y) ∈ R for all x, y ∈ domT and GT is a σ-monotone
bifunction.

(ii) Let (x, z∗) ∈ grT . For every y ∈ C we have

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉.

This means that z∗ ∈ AGT (x); i.e., T (x) ⊆ AGT (x). It follows from Proposition
3.11 and part (i) that AGT is σ-monotone. Since T is maximal σ-monotone,
we conclude that T = AGT .

(iii) Since GT is maximal σ-monotone by assumption, AGT is maximal σ-
monotone. Let x ∈ X and z∗ ∈ AGT (x). Then

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉.

Now, the separation theorem [see Chapter 1, Corollary 1.9] implies that z∗ ∈
T (x). Thus, grAGT ⊆ grT . This implies that T = AGT and T is maximal
σ-monotone.

Remark 3.14 Given a maximal σ-monotone bifunction F , according to Propo-
sition 3.13, we can construct AF and the σ-monotone bifunction G := GAF . One
has G(x, y) ≤ F (x, y) for all x, y ∈ domAF . It follows from Proposition 3.13
that AF = AG. However (as it was noted in Chapter 2), Example 2.5 of [64] im-
plies that the correspondence F 7→ AF is not one to one, even for the monotone
case σ ≡ 0. �

We now generalize the definition of locally bounded bifunctions (see Defini-
tion 2.14 from Chapter 2).

Definition 3.15 A bifunction F : C × C → R is called:
(i) Locally bounded at (x0, y0) ∈ X ×X if there exist an open neighborhood

V of x0, an open neighborhood W of y0 and M ∈ R such that F (x, y) ≤M for
all (x, y) ∈ (V ×W ) ∩ (C × C).

(ii) Locally bounded on K × L ⊆ X × X, if it is locally bounded at each
(x, y) ∈ K × L.

(iii) Locally bounded at x0 ∈ X if it is locally bounded at (x0, x0), i.e., there
exist an open neighborhood V of x0 and M ∈ R such that F (x, y) ≤ M for all
x,y ∈ V ∩ C.

(iv) Locally bounded on K ⊆ X, if it is locally bounded at each x ∈ K.
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If a bifunction (not necessarily σ-monotone) F : C × C → R is locally
bounded at x0 ∈ intC, then AF is locally bounded at x0 [Chapter 2, Remark
2.15]. Consequently, if T is an operator such that GT is locally bounded at
x0 ∈ int domT , then T is locally bounded at x0 since T (x) ⊆ AGT (x) for all
x ∈ X. As in Chapter 2, this will be the main instrument for showing local
boundedness of operators.

We will show that σ-monotone bifunctions are locally bounded in the interior
of their domain, under mild assumptions. In case X = R

n we can give a
constructive proof.

Proposition 3.16 Let X = R
n and C ⊆ R

n. Assume that F : C × C → R

is σ-monotone and F (x, ·) is lsc and quasi-convex for every x ∈ C. Then F is
locally bounded at every point of intC × intC.

Proof. Let (x0, y0) ∈ intC × intC. Since the space is finite-dimensional,
we can find z1, z2, . . . , zm ∈ C such that V := co{z1, z2, . . . , zm} ⊆ C is a
neighborhood of y0. Let U ⊆ C be a compact neighborhood of x0 in C. Set
Mk = minx∈U F (zk, x); the minimum exists since F (zk, ·) is lsc. For every
x ∈ U , y ∈ V we find, using quasi-convexity of F (x, ·) and σ-monotonicity of F :

F (x, y) ≤ max
1≤k≤m

F (x, zk)

≤ max
1≤k≤m

{σ(zk) ‖x− zk‖ − F (zk, x)}

≤ max
1≤k≤m

σ(zk) sup
z∈U,w∈V

‖z − w‖+ max
1≤k≤m

(−Mk).

Since U and V are both bounded, supz∈U,w∈V ‖z − w‖ is finite. This com-
pletes the proof.

For the general case of a Banach space X, we will apply Lemma 2.18 from
Chapter 2.

Theorem 3.17 Suppose X is a Banach space, C is a subset of X and F :
C ×C → R is a σ-monotone bifunction such that for every x ∈ C, F (x, ·) is lsc
and quasi-convex. Further, suppose that for some x0 ∈ C and y0 ∈ intC there
exists ε > 0 such that B(y0, ε) ⊆ C and for each y ∈ B(y0, ε), F (y, ·) is bounded
from below on B(x0, ε)∩C (note that this bound may depend on y). Then F is
locally bounded at (x0, y0).

Proof. Let ε > 0 be as in the assumption. Define g : B(y0, ε) → R ∪ {+∞} by

g(y) := sup{F (x, y) : x ∈ B(x0, ε) ∩ C}.

For every y ∈ B(y0, ε) and x ∈ B(x0, ε) ∩ C, σ-monotonicity of F implies

F (x, y) ≤ min{σ(x), σ(y)}‖x− y‖ − F (y, x) ≤ σ(y)(ε+ ‖y − x0‖)−My

whereMy is a lower bound of F (y, ·) on B(x0, ε)∩C. Therefore, g is real-valued.
On the other hand, g is lsc and quasi-convex and also y0 ∈ int dom g. By Lemma
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2.18 from Chapter 2, there exists δ < ε and M ∈ R such that g(y) ≤ M for all
y ∈ B(y0, δ). Then by the definition of g we get F (x, y) ≤M for all y ∈ B(y0, δ)
and x ∈ B(x0, δ) ∩ C; i.e., F is locally bounded at (x0, y0).

The condition “F (y, ·) is bounded from below on B(x0, ε)∩C” can be easily
removed by imposing some usual assumptions on the bifunction F or the space
X, as shown in the following two results.

Corollary 3.18 Suppose X is a reflexive Banach space, C is a subset of X and
F : C×C → R is a σ-monotone bifunction such that for every x ∈ C, F (x, ·) is
lsc and quasi-convex. Then F is locally bounded at every point of intC × intC.
If in addition C is weakly closed, then F is locally bounded on C × intC.

Proof. Let x0 ∈ intC. Choose ε > 0 such that B(x0, ε) ⊆ C. By assumption
F (x, ·) is lsc and quasi-convex, so it is weakly lsc. For every y ∈ C, F (y, ·) attains
its minimum on the weakly compact set B(x0, ε) and so F (y, ·) is bounded from
below on B(x0, ε). Therefore, all conditions of Theorem 3.17 are satisfied. Thus
F is locally bounded at every point of intC × intC.

If in addition C is weakly closed, then for any x0 ∈ C and ε > 0, B(x0, ε)∩C
is weakly compact and we can repeat the previous argument.

Corollary 3.19 Suppose X is a Banach space, C is a subset of X and F :
C ×C → R is a σ-monotone bifunction such that for every x ∈ C, F (x, ·) is lsc
and convex. Then F is locally bounded at any point of C × intC.

Proof. Let x0 ∈ C and y0 ∈ intC. Choose ε > 0 such that B(y0, ε) ⊆ C.
For every y ∈ B(y0, ε), the subdifferential of ∂F (y, ·) is nonempty at y. Choose
y∗ ∈ ∂F (y, ·)(y). Then for every x ∈ B(x0, ε) ∩ C one has

F (y, x)− F (y, y) ≥ 〈y∗, x− y〉 ≥ −‖y∗‖ ‖x− y‖ ≥ −‖y∗‖ (ε+ ‖x0 − y‖).

Thus F (y, ·) is bounded from below on B(x0, ε) ∩ C. By Theorem 3.17, F is
locally bounded at (x0, y0).

We immediately obtain a generalization of Proposition 3.5 in [71] to general
Banach spaces:

Corollary 3.20 Suppose that X is a Banach space and T : X → 2X
∗

is a
pre-monotone operator. Then T is locally bounded at every point of int domT .

Proof. Apply Corollary 3.19 to GT .

Corollary 3.21 (Rockafellar) Every set-valued monotone operator T from X
to X∗ is locally bounded on int domT .

For maximal σ-monotone operators, there is a kind of converse to Corollary
3.20, generalizing the Libor Veselý theorem [see Chapter 1 Theorem 1.40]. We
first show:
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Lemma 3.22 If T is maximal σ-monotone, then for all x ∈ domT one has
T (x) +NdomT (x) ⊆ T (x).

Proof. Take w∗ ∈ NdomT (z) and define

T1 (x) =

{
T (x) if x 6= z,

T (x) + R+w
∗ if x = z.

Then T (x) ⊆ T1 (x) for all x ∈ domT . For z∗ ∈ T (z) , y∗ ∈ T (y) and λ > 0,

〈z∗ + λw∗ − y∗, z − y〉 = 〈z∗ − y∗, z − y〉+ λ〈w∗, z − y〉
≥ −min {σ (z) , σ (y)} ||z − y||.

Thus T1 is σ-monotone. By the maximality of T we get T = T1, which completes
the proof.

Theorem 3.23 Suppose that T is maximal σ-monotone, σ is defined and usc
on cl domT . Let x0 ∈ cl domT . If T is locally bounded at x0, then x0 ∈ domT .
If in addition cl domT is convex, then x0 ∈ int domT .

Proof. Since T is locally bounded at x0, there exists a neighborhood U of
x0 such that T (U) is bounded. Choose a sequence {xn} ⊆ (domT ) ∩ U such
that xn → x0 and choose x∗n ∈ T (xn). It follows from Alaoglou’s theorem [see
Chapter 1, Theorem 1.11] that there exist a subnet {(xα, x∗α)} of {(xn, x∗n)}
and x∗0 ∈ X∗ such that x∗α

w∗

→ x∗0. Therefore for all (y, y∗) ∈ grT , by upper
semicontinuity of σ,

〈x∗0 − y∗, x0 − y〉 = lim
α
〈x∗α − y∗, xα − y〉

≥ − lim sup
α

min {σ (xα) , σ (y)} ||xα − y||

≥ −min {σ (x0) , σ (y)} ||x0 − y||.

Thus (x0, x
∗
0) is σ-monotonically related with all (y, y∗) ∈ grT . So x∗0 ∈ T (x0)

and x0 ∈ domT .
Now let cl domT be convex. We will show that U ⊆ int cl domT . Indeed,

if not, then U contains a boundary point of cl domT . By the Bishop-Phelps
theorem (see [91, Chapter 3]) it will also contain a support point of cl domT ,
i.e., there exist z ∈ U ∩ cl domT and 0 6= w∗ ∈ X∗ such that

〈w∗, z〉 = sup{〈w∗, y〉 : y ∈ cl domT}.

We know that T is locally bounded at z, hence z ∈ domT . On the other hand,
w∗ ∈ NdomT (z), thus the cone NdomT (z) is not equal to {0}. Then Lemma 3.22
shows that T (z) cannot be bounded, a contradiction.

Thus U ⊆ int cl domT . Since T is locally bounded on U , we obtain U ⊆
domT , hence x0 ∈ int domT .

We now deduce some properties related to local boundedness.
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Proposition 3.24 Suppose T : X → 2X
∗

is maximal σ-monotone and σ is usc.
Then

(i) The operator T is usc in int domT from the norm topology in X to the
weak∗-topology in X∗;

(ii) If X is finite-dimensional, then for every y ∈ int domT , σT (y) is given
by the following formula:

σT (y) = sup

{ 〈x∗ − y∗, y − x〉
‖y − x‖ : x 6= y, (x, x∗) ∈ grT, y∗ ∈ T (y)

}
. (3.14)

Proof. Fix y ∈ int domT . To show upper semicontinuity at y, it is sufficient
to show that for any net {(yα, y∗α)} in grT such that yα → y in X, there exists
a weak∗-cluster point of {y∗α} in T (y). Since T is locally bounded at y we may
assume that both {yα} and {y∗α} are bounded and, by selecting a subnet if

necessary, y∗α
w∗

→ y∗. Since {y∗α} is bounded, we have

〈y∗α, yα〉 → 〈y∗, y〉 .
As in the proof of Proposition 3.7 we deduce that y∗ ∈ T (y).

To show part (ii), choose any sequence {xn}n∈N ⊆ domT converging to
y with y 6= xn, and let x∗n ∈ T (xn). Then the sequence {x∗n} is bounded. By
selecting a subsequence if necessary, we may again assume that x∗n → z∗ ∈ T (y).
Since

sup

{ 〈x∗ − y∗, y − x〉
‖y − x‖ : x 6= y, (x, x∗) ∈ grT, y∗ ∈ T (y)

}
≥ 〈x∗n − z∗, y − xn〉

‖y − xn‖
≥ −‖x∗n − z∗‖ → 0,

relation (3.14) follows from relation (3.5).
Next we show that under appropriate conditions, a σ-monotone bifunction is

not only locally bounded, but also bounded by a small number in a neighborhood
of any interior point. This is a consequence of the following more general result.

Proposition 3.25 Suppose that F : C × C → R is a σ-monotone bifunction
such that F (x, x) = 0 for all x ∈ C. Assume that F (x, ·) is lsc and convex for
each x ∈ C and σ is usc. If x0 ∈ intC, then there exist an open neighborhood
V of x0 and K ∈ R such that F (y, x) ≤ K ‖x− y‖ for all x ∈ V and y ∈ C.

Proof. From F (x, x) = 0 for all x ∈ C, we infer that AF (x) = ∂F (x, ·)(x).
Since F (x, ·) is lsc and convex, the subdifferential of F (x, ·) at each x ∈ intC
is nonempty-valued. Thus intC ⊆ domAF , so the σ-monotone operator AF is
locally bounded at x0. Therefore, there exist an open neighborhood V1 ⊆ C of
x0 and K1 ∈ R such that ‖x∗‖ ≤ K1 for all x∗ ∈ AF (x), x ∈ V1. Since σ is usc
at x0, it is bounded from above by a number K2 on a neighborhood V2 of x0.
Then for each y ∈ C and x ∈ V := V1 ∩ V2, if we choose x∗ ∈ AF (x) we get

F (y, x) ≤ −F (x, y) + σ(x) ‖y − x‖
≤ − 〈x∗, y − x〉+K2 ‖y − x‖ ≤ (K1 +K2) ‖y − x‖

and the proof of the proposition is complete.
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3.3 Pre-monotonicity and Related Results

In this section we generalized Theorems 1.42 and 1.43 form Chapter 1 to σ-
monotone operators. In addition, we extend Theorem 2.29 from Chapter 2.
Moreover, we introduce the notion of σ-convexity and we investigate some fur-
ther results.

Let the operators T, S : X → 2X
∗

and a map σ : domT ∪ domS → R+ be
given. Then T (respectively S) is σ-monotone with respect to this σ if for every
x, y ∈ domT (respectively x, y ∈ domS), x∗ ∈ T (x) and y ∈ T (y) (respectively
x∗ ∈ S (x) and y∗ ∈ S (y)) relation (3.1) is satisfied. Roughly speaking, when
we consider two operators and say that they are σ-monotone with respect to
the same function σ, we tacitly assume that σ defined on the union of their
domains.

Next theorem is an extension of Theorem 1.42 from Chapter 1 to σ-monotone
operators. The idea of the proof was first used for monotone operators by A.
Verona and M. E. Verona [113] and then by J. M. Borwein [25].

Theorem 3.26 Let X be a Banach space and let S and T : X → 2X
∗

be
σ-monotone operators. Suppose that

0 ∈ core[co domT − co domS]. (CQ)

Then there exist r, c > 0 such that, for any x ∈ domT ∩ domS, t∗ ∈ T (x) and
s∗ ∈ S(x),

max(||t∗||, ||s∗||) ≤ c(r + ||x||)(2r + ||t∗ + s∗||).
Proof. Consider the function

ρ
T
(x) = sup

{ 〈z∗, x− z〉
1 + ||z|| : (z, z∗) ∈ grT

}
.

ρ
T
is lsc and convex as supremum of affine functions. If x ∈ domT, x∗ ∈ T (x)

then for all z ∈ domT and z∗ ∈ T (z) we have

〈z∗, x− z〉
1 + ||z|| =

〈z∗ − x∗, x− z〉
1 + ||z|| +

〈x∗, x− z〉
1 + ||z||

≤ min {σ (x) , σ (z)}
1 + ||z|| ||x− z||+ ||x∗|| ||x− z||

1 + ||z||

≤ (||x∗||+min {σ (x) , σ (z)})
( ||x||
1 + ||z|| +

||z||
1 + ||z||

)

< (||x∗||+ σ (x)) (||x||+ 1)

which shows that ρ
T
(x) < +∞, that is domT ⊂ dom ρ

T
. Since ρ

T
is convex we

conclude that co domT ⊂ dom ρ
T
. Likewise, we get co domS ⊂ dom ρ

S
. Thus

co domT − co domS ⊂ dom ρ
T
− dom ρ

S
(3.15)
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The assumption and (3.15) imply that 0 ∈ core (dom ρ
T
− dom ρs). Therefore

X = ∪∞
n=1n (dom ρ

T
− dom ρS)

= ∪∞
n=1 ∪∞

i=1 n({x : ρ
T
(x) ≤ i, ||x|| ≤ i} − {x : ρS(x) ≤ i, ||x|| ≤ i}).

By the way {x : ρ
T
(x) ≤ i, ||x|| ≤ i} and {x : ρs(x) ≤ i, ||x|| ≤ i} are closed, con-

vex and compact so ({x : ρ
T
(x) ≤ i, ||x|| ≤ i}−{x : ρs(x) ≤ i, ||x|| ≤ i}) is closed

and convex. By the Baire category theorem [see Chapter 1 Corollary 1.3] there
exists j ∈ N such that

int ({x : ρ
T
(x) ≤ j, ||x|| ≤ j} − {x : ρs(x) ≤ j, ||x|| ≤ j}) 6= ∅.

Set Si = ({x : ρ
T
(x) ≤ n, ||x|| ≤ i} − {x : ρs(x) ≤ i, ||x|| ≤ i}). Pick up any

x1 ∈ Sj and x2 ∈ X such that 0 ∈ co {x1,x2}. Choose

r > max {j, ρ
T
(x2), ρs(x2)}

then 0 ∈ intSr. Thus there exist ε > 0 such that

B (0, ε) ⊂ ({x : ρ
T
(x) ≤ r, ||x|| ≤ r} − {x : ρS(x) ≤ r, ||x|| ≤ r}). (3.16)

Let now z ∈ B (0, ε) , x ∈ domT ∩ domS, t∗ ∈ T (x) and s∗ ∈ S(x). Then
z = a− b where ρ

T
(a) ≤ r, ||a|| ≤ r, ρS(b) ≤ r, ||b|| ≤ r. We have

〈t∗, z〉 = 〈t∗, a− x〉+ 〈s∗, b− x〉+ 〈t∗ + s∗, x− b〉
≤ ρ

T
(a) (1 + ||x||) + ρS(b) (1 + ||x||) + ||t∗ + s∗||(||x||+ r)

≤ (r + ||x||) (2r + ||t∗ + s∗||) .

From here it follows that

||t∗|| ≤ (r + ||x||) (2r + ||t∗ + s∗||)
ε

. (3.17)

Likewise

||s∗|| ≤ (r + ||x||) (2r + ||t∗ + s∗||)
ε

. (3.18)

Set c = 1
ε
, now (3.17) and (3.18) imply that desired assertion.

In the following we recall the Krein-Smulian theorem.

Theorem 3.27 (Krein–Šmulian) Let X be a Banach space. A convex set in
X∗ is weak∗-closed if and only if its intersection with B (0, ε) is weak∗-closed
for every ε > 0.

We recall that a set A ⊂ X∗ is bounded weak∗-closed if every bounded and
weak∗-convergent net in A has its limit in A. The Krein–Šmulian theorem
obviously implies the following.

Corollary 3.28 A convex set in X∗ is weak∗-closed if and only if it is bounded
weak∗-closed.
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The following result extends Theorem 1.43 from Chapter 1 to σ-monotone
operators. Our proof is very close to the proof of A. Verona and M. E. Verona
in [113].

Proposition 3.29 Let X be any Banach space and let S, T : X → 2X
∗

be max-
imal σ-monotone operators. Suppose that

0 ∈ core[co domT − co domS].

For any x ∈ domT ∩ domS, T (x) + S(x) is a weak∗-closed subset of X∗.

Proof. Since T and S : X → 2X
∗

are maximal σ-monotone by Proposition
3.7 we infer that T (z) and S (z) are convex. Therefore T (z) + S (z) is also
convex. By Corollary 3.28 it is suffices to prove that T (z) + S (z) is bounded
weak∗-closed, that is, every bounded weak∗-convergent net in T (z) + S (z) has
a limit in T (z) + S (z) .

Let {t∗i } ⊂ T (z) and {s∗i } ⊂ S (z) be nets such that {t∗i + s∗i } is bounded
and weak∗-convergent to z∗. By Theorem 3.26,

max(||t∗i ||, ||s∗i ||) ≤ c(r + ||x||)(2r + ||t∗i + s∗i ||).

Thus the nets {t∗i } and {s∗i } are bounded. So they are relatively weak∗-compact.
By replacing them with subnets we may assume that weak∗-limit t∗i = t and
weak∗-limit s∗i = s. Since T and S are maximal σ-monotone, Proposition 3.7,
T (z) and S (z) are weak∗-closed. Therefore t∗ ∈ T (z) and s∗ ∈ S (z) . Then
z∗ = t∗ + s∗ ∈ T (z) + S (z) .

Assume that F and G : C × C → R are two σ-monotone bifunctions and
α > 0. Then the bifunctions αF and F + G are defined from C × C to R by
(αF ) (x, y) = α · (F (x, y)) and (F +G) (x, y) = F (x, y) +G (x, y) .

Proposition 3.30 Suppose that F and G : C × C → R are two σ-monotone
bifunctions. Then F + G is 2σ-monotone bifunction and αF is ασ-monotone
bifunction. Moreover,

AF (x) +AG (x) ⊂ AF+G (x) ∀x ∈ X. (3.19)

Proof. We have

F (x, y) + F (y, x) ≤ min {σ (x) , σ (y)} ||y − x|| (3.20)

and
G (x, y) +G (y, x) ≤ min {σ (x) , σ (y)} ||y − x||. (3.21)

Adding the inequalities (3.20) and (3.21) we deduce

(F +G) (x, y) + (F +G) (y, x) ≤ 2min {σ (x) , σ (y)} ||y − x||,

that is, F + G is 2σ-monotone. Also it follows from (3.20) that αF is ασ-
monotone.
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Now suppose that x ∈ X. If x ∈ X\C, then the inclusion is trivial. So, let
x ∈ C and x∗ ∈

(
AF +AG

)
(x). Hence, there exist x∗1 ∈ AF (x) and x∗2 ∈ AG (x)

with x∗ = x∗1 + x∗2. Thus

F (x, y) ≥ 〈x∗1, y − x〉 ∀y ∈ C, (3.22)

and

G (x, y) ≥ 〈x∗2, y − x〉 ∀y ∈ C. (3.23)

From (3.22) and (3.23) we obtain

(F +G) (x, y) ≥ 〈x∗1 + x∗2, y − x〉
= 〈x∗, y − x〉 ∀y ∈ C,

i.e., AF (x) +AG (x) ⊂ AF+G (x) for all x ∈ C.
Note: One can easily verify that if F is maximal σ-monotone, then αF

is also maximal ασ-monotone. However, F + G is not necessarily maximal
2σ-monotone when F and G are maximal σ-monotone.

The following example shows that the inclusion in (3.19) can be proper.

Example 3.31 Define F,G : R×R → R by F (x, y) = (y − x)
3
and G (x, y) =

−F (x, y). Then F and G are monotone bifunctions and for each x ∈ R we have
AF (x) = AG (x) = ∅ and AF+G (x) = {0}. N

Definition 3.32 A bifunction F : C × C → R is called cyclically σ-monotone
if for any cycle x1, x2, ..., xn+1 = x1 in C,

n∑

i=1

F (xi, xi+1) ≤
1

2

n∑

i=1

min {σ (xi) , σ (xi+1)} ||xi − xi+1||.

It is easy to check that every cyclically σ-monotone bifunction is a σ-mono-
tone bifunction. Moreover assume that F is σ-monotone (cyclically σ-monotone);
if we define

F1 (x, y) = F (x, y)− 1

2
min {σ (x) , σ (y)} ||x− y||

then F1 is monotone (cyclically monotone) and vice versa.
The following proposition will enable us to obtain the extension of Proposi-

tion 2.29 from Chapter 2.

Proposition 3.33 A bifunction F : C×C → R is cyclically σ-monotone if and
only if there exists a function f : C → R such that

∀x, y ∈ C, F (x, y)− 1

2
min {σ (x) , σ (y)} ||x− y|| ≤ f (y)− f (x) . (3.24)
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Proof. Set

F1 (x, y) = F (x, y)− 1

2
min {σ (x) , σ (y)} ||x− y||.

Then F is cyclically σ-monotone if and only if F1 is cyclically monotone. Thus by
Proposition 2.29, F1 is cyclically monotone if and only if there exists a function
f : C → R such that

F1 (x, y) ≤ f (y)− f (x) ∀x, y ∈ C. (3.25)

Therefore the inequality (3.25) holds if and only if (3.24) holds.
Now we are going to introduce the notion of σ-convexity. First we recall from

[73] that a function f : X → R ∪ {+∞} is ε-convex if it satisfies the following
inequality for every a, b ∈ X, and λ ∈]0, 1[:

f (λa+ (1− λ) b) ≤ λf (a) + (1− λ) f (b) + λ (1− λ) ε||a− b||

Definition 3.34 A function f : X → R ∪ {+∞} is called σ-convex if

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) + λ (1− λ)min {σ (x) , σ (y)} ||x− y||
(3.26)

for all x, y ∈ X, and λ ∈]0, 1[.

For a proper function f : X → R∪{+∞} the Clarke-Rockafellar generalized
directional derivative at x in a direction z ∈ X is defined by

f↑ (x, z) = sup
δ>0

lim sup

(y,α)
f→x,λց0

inf
u∈B(z,δ)

f (y + λu)− α

λ

where (y, α)
f→ x means that y → x, α → f (x) and α ≥ f (y). If f is lsc at x,

the above definition coincides with

f↑ (x, z) = sup
δ>0

lim sup

y
f→x,λց0

inf
u∈B(z,δ)

f (y + λu)− f(y)

λ
.

Here, y
f→ x means that y → x and f (y) → f (x). The Clarke-Rockafellar

subdifferential of f at x ∈ dom f is defined by

∂CRf (x) =
{
x∗ ∈ X∗ : 〈x∗, z〉 ≤ f↑ (x, z) ∀z ∈ X

}
.

Whenever f is locally Lipschitz we have f↑ (x, z) = fo (x, z) , where fo (x, z) is
the Clarke directional derivative at x in a direction z ∈ X which is defined by

fo (x, z) = lim sup
y→x,λց0

f (y + λz)− f(y)

λ
.

Moreover, the Clarke’s subdifferential of f at x ∈ dom f is defined by

∂Cf (x) = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ fo (x, z) ∀z ∈ X} .
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Lemma 3.35 Assume that f : X → R∪{+∞} is lsc and σ-convex. If σ is usc,
then

∂CRf (x) ⊆
{

x∗ ∈ X∗ : 〈x∗, z〉 ≤ f (x+ z)− f (x)
+min {σ (x) , σ (z + x)} ||z|| ∀z ∈ X

}
.

Proof. For each y, u ∈ X, λ ∈]0, 1[ by σ-convexity of f we obtain

f (y + λu) ≤ λf (y + u) + (1− λ) f (y) + λ (1− λ)min {σ (y + u) , σ (y)} ||u||,

that is,

f (y + λu)− f (y)

λ
≤ f (y + u)− f (y) + (1− λ)min {σ (y + u) , σ (y)} ||u||.

Let us fix z and x. Take u = z+x−y in the above inequality, so for an arbitrary
δ > 0 we have

lim sup

y
f→x,λց0

inf
u∈B(z,δ)

f (y + λu)− f (y)

λ

≤ lim sup

y
f→x,λց0

f (y + λ (z + x− y))− f (y)

λ

≤ lim sup

y
f→x,λց0

[f (x+ z)− f (y) + (1− λ)min {σ (x+ z) , σ (y)} ||z + x− y||]

≤ f (x+ z)− f (x) + min {σ (x) , σ (z + x)} ||z||.

Since δ > 0 was arbitrary we get

f↑ (x, z) ≤ f (x+ z)− f (x) + min {σ (x) , σ (z + x)} ||z||.

We are done.
The idea and a proof of the above lemma and the following proposition is

in essence contained in [87], where only ε-convexity and ε-monotonicity were
considered.

Proposition 3.36 Let f : X → R ∪ {+∞} be lsc and σ-convex. If σ is usc,
then ∂CRf is 2σ-monotone.

Proof. Assume that x, y ∈ X, x∗ ∈ ∂CRf (x) and y∗ ∈ ∂CRf (y) . It follows
from Lemma 3.35 that

〈x∗, y − x〉 ≤ f (y)− f (x) + min {σ (x) , σ (y)} ||y − x||

and

〈y∗, x− y〉 ≤ f (x)− f (y) + min {σ (x) , σ (y)} ||y − x||.
By adding these equalities we get ∂CRf is 2σ-monotone.
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3.4 Equilibrium Problem and Pre-monotonicity

For a closed convex subset C of X and w ∈ X, the projection of w onto C is
the set PC(w) = {z ∈ C : ‖w − z‖ ≤ ‖w − x‖ , ∀x ∈ C}. If z ∈ PC(w) then

∃w∗ ∈ J (w − z) : ∀y ∈ C, 〈w∗, y − z〉 ≤ 0. (3.27)

When C is closed and convex and X is reflexive, PC(w) is nonempty. It should
be noted that if X = R

n and we consider the Euclidean norm on R
n, then the

duality map is the identity map and PC(w) is unique provided that C is closed
and convex.

An operator T : X → 2X
∗

is called coercive if

lim
‖x‖→∞

infx∗∈T (x) 〈x∗, x〉
‖x‖ = ∞.

We introduce a weaker notion than coercivity: an operator T will be called
quasi coercive if lim‖x‖→∞ infx∗∈T (x) ‖x∗‖ = ∞, and

lim inf
‖x‖→∞

infx∗∈T (x) 〈x∗, x〉
‖x‖ > −∞.

Clearly, each coercive operator is quasi coercive. The operator T : R2 → R
2

defined by T (a, b) = (−b, a) is quasi coercive without being coercive.
Given a subset C of X and a bifunction F : C × C → R, the equilibrium

problem [8, 23] corresponding to F and C is the following:

find x0 ∈ X such that F (x0, x) ≥ 0, for all x ∈ C. (3.28)

If C ⊆ X is convex, a function g : C → R is called semi-strictly quasiconvex
[63] if for all x, y ∈ C the following implication holds:

g(x) < g(y) ⇒ ∀λ ∈]0, 1[, g(λx+ (1− λ)y) < g(y).

If g is semi-strictly quasiconvex and lsc, then it is quasiconvex. A lsc function
g is semi-strictly quasiconvex if and only if for all x, y ∈ C and λ ∈]0, 1[,

g(λx+ (1− λ)y) ≥ g(x) ⇒ g(λx+ (1− λ)y) ≤ g(y).

Such functions were called pseudoconvex in [71]. We recall the following
theorem, due to Ky Fan.

Theorem 3.37 [50] Let C be a compact convex set in a Hausdorff TVS. If
F : C × C → R is such that for every x ∈ C, F (x, ·) is quasiconvex and for
every y ∈ C, F (·, y) is usc, then there exists x0 ∈ C such that

∀y ∈ C, F (x0, y) ≥ inf
x∈C

F (x, x).
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From now on X = R
n.

The following proposition will permit application of Ky Fan’s theorem to
GT .

Proposition 3.38 Let T : X → 2X
∗

be such that int domT 6= ∅. If T is locally
bounded on int domT and grT is closed, then T is usc on int domT and also
for each y ∈ domT , GT (·, y) is usc on int domT .

Proof. The first part of the proposition is standard, see for instance the proof
of Proposition 3.24(i). For the second part, we note that for each y ∈ domT the
function (x, x∗) → 〈x∗, y − x〉 is continuous, so by the well-known “Berge’s Max-
imum Theorem” (see for instance Proposition I.3.3., page 83 in [67]), GT (·, y)
is usc.

We now present a result for equilibrium problems. Given C ⊆ X and r > 0,
set Cr = {x ∈ C : ‖x‖ ≤ r}.

Proposition 3.39 Suppose that C ⊆ X is closed and convex. Let F : C×C →
R be a bifunction satisfying

(i) F (x, x) = 0 for all x ∈ C;
(ii) F (·, y) is usc for all y ∈ C;
(iii) F (x, ·) is semi-strictly quasiconvex and lsc for all x ∈ C;
(iv) there exists r > 0 such that for each x ∈ C\Cr, there exists y ∈ C with

‖y‖ < ‖x‖ and F (x, y) ≤ 0.
Then the equilibrium problem (3.28) has a solution.

Proof. Choose r > 0 so that condition (iv) holds, and set s = r + 1. Then
Cs is compact. According to Theorem 3.37, there exists x0 ∈ Cs such that
F (x0, x) ≥ 0 for all x ∈ Cs. Then there exists y ∈ C with ‖y‖ < s such
that F (x0, y) ≤ 0; indeed, if ‖x0‖ = s we can apply condition (iv), whereas if
‖x0‖ < s then we can set y = x0 and use condition (i). In both cases we actually
have F (x0, y) = 0 by the definition of x0.

Now for every x ∈ C we can find λ ∈]0, 1[ such that xλ := λy+(1−λ)x ∈ Cs.
Hence F (x0, xλ) ≥ 0. If we assume that F (x0, x) < 0 then F (x0, y) > F (x0, x)
would imply by semi-strict quasiconvexity that F (x0, y) > F (x0, xλ) ≥ 0, a
contradiction. Thus F (x0, x) ≥ 0 for all x ∈ C.

The following surjectivity theorem extends Theorem 4.1 in [71] to quasi-
coercive operators.

Theorem 3.40 Assume that T : X → 2X
∗

is locally bounded, convex-valued,
grT is closed, and that domT = X. If T is quasi-coercive, then T is surjective.

Proof. Given z∗ ∈ X∗, define F : X ×X → R by

F (x, y) = GT (x, y)− 〈z∗, y − x〉

for all x, y ∈ X. By using Proposition 3.38 it is easy to check that F satisfies
(i)-(iii) of Proposition 3.39. We now check the validity of condition (iv).



3.4. EQUILIBRIUM PROBLEM AND PRE-MONOTONICITY 61

Since T is quasi-coercive, we can find r1 > 1 and k ∈ R such that

∀ ‖x‖ ≥ r1, ∀x∗ ∈ T (x) :
〈x∗, x〉
‖x‖ > k, (3.29)

and then r > r1 such that

∀ ‖x‖ ≥ r : inf
x∗∈T (x)

‖x∗‖ > max{0, 3 ‖z∗‖ − 2k}. (3.30)

For each x such that ‖x‖ ≥ r, choose w∗
x ∈ PT (x)(0). We now apply property

(3.27) of the duality map to the set T (x) in the space X∗. According to (3.27),
since w = 0, J = I we have

∀x∗ ∈ T (x), 〈x∗ − w∗
x, w

∗
x〉 ≥ 0. (3.31)

By relation (3.30), w∗
x 6= 0. Set

yx = x

(
1− 1

‖x‖

)
− w∗

x

2 ‖w∗
x‖
.

Since ‖x‖ ≥ r > 1, yx satisfies

‖yx‖ ≤ ‖x‖ − 1 +
1

2
< ‖x‖ .

Note that

yx − x = − x

‖x‖ − w∗
x

2 ‖w∗
x‖
. (3.32)

Using successively relations (3.32), (3.29), (3.31), 〈w∗
x, w

∗
x〉 = ‖w∗

x‖2, relation
(3.30) and w∗

x ∈ PT (x)(0), we deduce

F (x, yx) = sup
x∗∈T (x)

〈x∗, yx − x〉 − 〈z∗, yx − x〉

≤ − inf
x∗∈T (x)

1

‖x‖ 〈x∗, x〉 − 1

2 ‖w∗
x‖

inf
x∗∈T (x)

〈x∗, w∗
x〉 − 〈z∗, yx − x〉

≤ −k − 1

2 ‖w∗
x‖

〈w∗
x, w

∗
x〉+

1

‖x‖ 〈z∗, x〉+ 1

2 ‖w∗
x‖

〈z∗, w∗
x〉

≤ −k − 1

2
‖w∗

x‖+ ‖z∗‖+ 1

2
‖z∗‖

≤ 0.

Therefore, condition (iv) in Proposition 3.39 also holds. Hence there exists
z0 ∈ X such that for all y ∈ X we have

F (z0, y) = sup
y∗∈T (z0)

〈y∗ − z∗, y − z0〉 ≥ 0.

Since T (z0) is closed and bounded, we get T (z0) is compact. On the other hand
〈· − z∗, y − z0〉 is continuous on T (z0), so the supremum is attained at some
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element ϕy. It follows that for all v ∈ X there exists an element v∗ = ϕv+z0 in
T (z0) so that 〈v∗ − z∗, v〉 ≥ 0. This means that z∗ cannot be separated from
the closed convex set T (z0), so z

∗ ∈ T (z0) and T is surjective.

Theorem 3.40 has many applications. As an example, in Theorem 4.2 of [71]
we can replace the identity operator by a more general operator S.

Theorem 3.41 Assume that T : X → 2X
∗

is pre-monotone, convex-valued and
grT is closed, and S : X → 2X

∗

is such that grS closed, convex-valued, locally
bounded and coercive. If domT = domS = X, then T + S is surjective.

Proof. It is clear that T + S is convex valued. Also, by Corollary 3.20 the
operator T is locally bounded, so T + S is locally bounded. We show that
gr(T + S) is closed. Indeed, let {(xi, z∗i )} be a sequence in gr(T + S) such that
xi → x and z∗i → z∗. Let zi = x∗i + y∗i with x∗i ∈ T (xi) and y

∗
i ∈ S(xi). Take a

neighborhood U of x such that S(U) is bounded. There exists some N ∈ N such
that for i > N , xi ∈ U ; then {y∗i } is bounded. Thus, by taking a subsequence
if necessary we can assume that {y∗i } converges to some y∗ ∈ X∗. Then x∗i
converges to x∗ := z∗ − y∗. By closedness of grT and grS, x∗ ∈ T (x) and
y∗ ∈ S(x), i.e., z∗ ∈ (T + S)(x) and gr(T + S) is closed.

Finally we show that T +S is coercive. Choose any x∗0 ∈ T (0). We estimate

inf
z∗∈(T+S)(x)

〈z∗, x〉 ≥ inf
x∗∈T (x)

〈x∗, x〉+ inf
y∗∈S(x)

〈y∗, x〉

≥ inf
x∗∈T (x)

〈x∗ − x∗0, x− 0〉+ 〈x∗0, x〉+ inf
y∗∈S(x)

〈y∗, x〉

≥ −σ(0) ‖x‖ − ‖x∗0‖ ‖x‖+ inf
y∗∈S(x)

〈y∗, x〉 .

Since S is coercive, we infer that T + S is also coercive. By Theorem 3.40,
T + S is surjective.

The preceding theorem, together with Proposition 3.7 imply the following:

Corollary 3.42 Let T be maximal σ-monotone with an usc σ. If domT = X,
then T + λI is surjective for each λ > 0.

Proof. According to Proposition 3.7, T is convex-valued. It is also locally
bounded and usc by Proposition 3.24(i), hence it is closed. Since I is defined
everywhere, it is maximal monotone and in particular grT is closed, convex-
valued and locally bounded. Also, I is obviously coercive. Now Theorem 3.41
yields the result.

3.5 Comparison with other Notions

In this section, we will compare some types of generalized monotone operators.
In the next definition S = {x ∈ X : ‖x‖ = 1} , is the unit sphere of Banach space
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X, and x →e x0 means that x converges to x0 in direction e, i.e., x → x0 and
x−x0

‖x−x0‖ → e. Also, define

U (x0, e, δ) =

{
x ∈ X : x 6= x0, ‖x− x0‖ < δ,

∥∥∥∥
‖x− x0‖
x− x0

− e

∥∥∥∥ < δ

}
.

Definition 3.43 Suppose that T : X → 2X
∗

is an operator. We recall that T
is

(i) ε-monotone in the sense of Luc-Ngai-Thera if for a given ε > 0 and for
every x, y ∈ domT, x∗ ∈ T (x) and y∗ ∈ T (y)

〈y∗ − x∗, y − x〉 ≥ −2ε||y − x||.

(ii) Submonotone at x0 ∈ X in the sense of Aussel-Daniilidis-Thibault if for
every ε > 0 there exists δ > 0 such that

〈y∗ − x∗, y − x〉 ≥ −ε||y − x||.

for all x, y ∈ B (x0, δ) , all x
∗ ∈ T (x) and y∗ ∈ T (y) .

(iii) Submonotone in the sense of Georgiev at x0 ∈ X if

lim inf
x0 6= x→e x0

y ∈ T (x) , y0 ∈ T (x0)

〈x− x0, y − y0〉
‖x− x0‖

≥ 0.

Equivalently, T is submonotone at x0 if and only if

∀e ∈ S, ∀ε > 0 ∃δ > 0 :
〈x− x0, y − y0〉

‖x− x0‖
> −ε

∀x ∈ U (x0, e, δ) , ∀y ∈ T (x) , ∀y0 ∈ T (x0) .

Example 3.44 Define T : R → R by

T (x) =

{
−1 if x ≥ 0,
0 if x < 0.

It is clear that T is pre-monotone with the constant (continuous) map σ (y) ≡ 1.
Thus it is ε-monotone in the sense of Luc-Ngai-Thera. But it is not submonotone
in the sense of Aussel-Daniilidis-Thibault. N

Remark 3.45 Assume that Φ : Rn → R
n is a continuous map. Then Φ is

submonotone in the sense of Aussel-Daniilidis-Thibault. Indeed, for a given
ε > 0 and x0 ∈ R

n there exists by assumption δ > 0 such that for x1, x2 ∈
B (x0, δ/2)

||Φ (x1)− Φ (x2) || < ε.
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Therefore

〈Φ (x2)− Φ (x1) , x1 − x2〉 ≤ ||Φ (x1)− Φ (x2) || ||x1 − x2||
< ε||x1 − x2||.

This implies that

〈Φ (x2)− Φ (x1) , x2 − x1〉 ≥ −ε||x1 − x2||.

Thus Φ is submonotone. �

Note that since the function ϕ which is represented in Example 3.8 is con-
tinuous, the above remark implies that ϕ is submonotone in the sense of Aussel-
Daniilidis-Thibault and we know that it is not ε-monotone in the sense of Luc-
Ngai-Thera.

We now represent an example, that is submonotone in the sense of Georgiev
but it is not pre-monotone.

Example 3.46 Define the function T : R → R by

T (x) =

{
1
x

if x > 0,
0 if x ≤ 0.

Then T is submonotone in the sense of Georgiev [55, Example 1.3]. But it is
not pre-monotone. To show this, suppose that there exists σ : R → R+ such
that T is pre-monotone. Take y = 1 and 0 < x < 1. Then we have

(
1− 1

x

)
(1− x) ≥ −σ (1) (1− x) .

This implies that x ≥ 1
1+σ(1) . If we choose x = 1

2+σ(1) , then we have

1

2 + σ (1)
≥ 1

1 + σ (1)
=⇒ 2 ≤ 1.

This is a contradiction. N



Chapter 4

Fitzpatrick Transform

Most of the results of the Sections 2 and 3 in the present chapter are based on
[4]. In this chapter we will introduce the notion of normal bifunction. Also,
we will present a new definition of monotone bifunctions, which is a slight gen-
eralization of the original definition given by Blum and Oettli, but which is
better suited for relating monotone bifunctions to monotone operators. In this
new definition, we will introduce the Fitzpatrick transform of a BO-maximal
monotone bifunction so as to correspond exactly to the Fitzpatrick function of
a maximal monotone operator in case the bifunction is constructed starting from
the operator. Whenever the monotone bifunction is lower semicontinuous and
convex with respect to its second variable, the Fitzpatrick transform permits to
obtain results on its maximal monotonicity.

We now outline the contents of this chapter. After describing our motivation
in the first section, in the second section we will define normal bifunctions and
their monotonicity and then we will portray their properties. A central result
of this section is that an operator with weak∗-closed convex values is maximal
monotone if and only if the corresponding bifunction is BO-maximal monotone.

In Section 3 we will introduce the notion of Fitzpatrick transformation and
we will derive some consequences of this notion. Indeed, we will prove that
at each point (x, x∗) ∈ X × X∗, the Fitzpatrick transform of a BO-maximal
monotone is greater than or equal to 〈x∗, x〉; and equality holds if and only
if (x, x∗) belong to the graph of corresponding operator, an analogous prop-
erty of the Fitzpatrick function of a maximal monotone operator. Moreover, in
Proposition 4.12 we will find a link between the Fitzpatrick transform and the
Fitzpatrick function. In addition, we will define the upper Fitzpatrick trans-
form and will see that in conjunction with the Fitzpatrick transform, it is very
useful in our analysis. In particular we will prove that the maximality of AF

and BO-maximality of F are equivalent whenever the space is reflexive, and F
is lsc and convex with respect to its second variable. The other theme of Sec-
tion 3 is characterizing the BO-maximality through some equivalent statements
in Theorem 4.19. In Section 4, we make use of the notion of pair and partial
convolutions. We will find an upper bound for the Fitzpatrick transform of a

65
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sum of two monotone operators, and then will deduce an inequality for the Fitz-
patrick transform of a monotone bifunction which is subadditive with respect
to its second variable. The final result of Section 4 will extend the Fitzpatrick
inequality of operators to Fitzpatrick transforms. In Section 5 we will consider
some existence theorems. The proof of these results are based on ideas of Blum
and Oettli in [23]. In fact, we will generalize their theorems to BO-maximality.
In Section 6 we will collect various examples concerning the Fitzpatrick trans-
form of bifunctions. In Section 7 we will introduce the notion of n-cyclically
monotone and BO-n-cyclically maximal monotone bifunctions. Also, we will
bring forward their relation to n-cyclically monotone operators. Afterwards, we
will prove a theorem for BO-n-cyclically maximal monotone bifunctions which
is similar to the corresponding theorem of Fitzpatrick functions. Subsequently,
we will generalize some results from Section 3 to cyclically monotone bifunction.
Finally, we will include some examples in the last section of this chapter.

4.1 Motivation

Given a nonempty subset of a Banach space X, the term “monotone bifunction”
on C is often used (as we did in the previous chapters) for functions F : C×C →
R such that

F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C.

Starting from the paper by Blum and Oettli [23], monotone bifunctions were
studied mainly in view of their application to equilibrium problems. Here, we
will focus our interest on their relation to monotone operators. Let us recall
from previous chapters the basic definitions, in order to understand the need for
some changes to them. Given a multivalued monotone operator T : X → 2X

∗

with domain domT = {x ∈ X : T (x) 6= ∅}, the bifunction GT defined on
domT × domT by

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 (4.1)

is real-valued and monotone (see Chapter 2). On the other hand, given any
monotone bifunction F , the operator defined by

AF (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ F (x, y), ∀y ∈ C}

whenever x ∈ C while AF (x) = ∅ for x /∈ C, is monotone.
A monotone bifunction F : C×C → R is called BO-maximal monotone [23]

if for all x ∈ C and x∗ ∈ X, the following implication holds:

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ C =⇒ 〈x∗, y − x〉 ≤ F (x, y) , ∀y ∈ C.

The bifunction F is called maximal monotone if the operator AF is maximal
monotone. In Chapter 2 we observed that every maximal monotone bifunction
is BO-maximal monotone; the converse is not true in general, but it holds under
some additional assumptions: For instance, if F is BO-maximal monotone, C is
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closed and convex, and F (x, ·) is lsc and convex for every x ∈ C and F (x, x) = 0
for each x ∈ C, then F is maximal monotone [1, 30].

A very powerful tool in the study of maximal monotone operators is the
notion of Fitzpatrick function [52], (see also Chapter 1). Given a monotone
operator T with graph grT = {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)}, its Fitzpatrick
function FT can be written as

FT (x, x
∗) = sup

(y,y∗)∈grT

(〈x∗, y〉+ 〈y∗, x− y〉) .

A lsc and convex function ϕ on X ×X∗ is called a representative function
of a monotone operator T if ϕ(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X × X∗, and
ϕ(x, x∗) = 〈x∗, x〉 for all (x, x∗) ∈ grT . It is known that the Fitzpatrick function
of a maximal monotone operator T is a representative function of T . It has been
shown recently that some important results on maximal monotone operator
theory may be obtained by using methods of convex analysis on representative
functions; see for instance [13, 15, 16, 25, 26, 38, 83, 89] etc.

If we compare the definitions of FT and GT we obtain

FT (x, x
∗) = sup

y∈domT

(〈x∗, y〉+GT (y, x)) .

Note that FT is defined for all x ∈ X (although y needs only to be in
domT ), and that in fact formula (4.1) can be used to define GT on all X ×X.
Obviously, GT (x, y) = −∞ for x /∈ domT . This motivates the definition of
a Fitzpatrick transform for every monotone bifunction, but we need to have
bifunctions defined on X ×X. In fact, such kind of functions were introduced
in [30] for bifunctions F : C ×C → R, where it was shown that one can recover
some nice results and find new ones by using tools of convex analysis. In the
present chapter we will introduce the so-called “normal bifunctions” defined
on X × X and taking on values from R; we will see that the new formulation
includes the previous one and gives simpler, more appealing formulas. Note
that in [8], one considers bifunctions F : X ×X → R and defines monotonicity
with respect to a subset C by F (x, y) ≤ −F (y, x), x, y in C. However, all other
definitions and all results in [8] actually concern the restriction of F on C ×C,
where F is real.

4.2 BO-Monotone Bifunctions

In what follows, X will be a LCS unless otherwise stated.

Definition 4.1 A function F : X ×X → R is called normal bifunction if there
exists a nonempty subset C of X such that

F (x, y) = −∞ iff x /∈ C.

C will be called the domain of F . In what follows, it will be denoted by domF .
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Note that in this definition we do not impose the assumption F (x, x) = 0
for all x ∈ domF .
According to Definition 4.1, F : X ×X → R is a normal bifunction if and only
if we have that

{x ∈ X : ∃y ∈ X such that F (x, y) > −∞}
= {x ∈ X : ∀y ∈ X, F (x, y) > −∞} 6= ∅.

In this case C coincides with the sets from above.

Definition 4.2 A normal bifunction F : X ×X → R is called monotone if

F (x, y) ≤ −F (y, x) , ∀x, y ∈ X. (4.2)

Remark 4.3 Let F : X × X → R be a monotone bifunction. If x and y are
both in domF , then F (y, x) > −∞ and so −F (y, x) < +∞, thus

−∞ < F (x, y) < +∞.

In a similar manner we get F (y, x) ∈ R. Hence we see that a normal bifunction
is monotone if and only if

F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ domF,

see also [8]. Therefore for all x in domF , we have F (x, x) ≤ 0. �

For any operator T : X → 2X
∗

one can define a normal bifunction GT with
domain domGT = domT by the formula

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 , ∀x, y ∈ X.

Then GT (x, x) = 0 for all x in domT . Moreover GT (x, ·) is lsc and convex
for all x in domT .

Let F : X ×X → R be a normal bifunction. Define the operator AF by

AF (x) = {x∗ : 〈x∗, y − x〉 ≤ F (x, y) , ∀y ∈ X} . (4.3)

One can easily check that dom AF ⊆ domF ; also, whenever F is monotone,
AF is also monotone and one has F (x, x) = 0 for all x ∈ dom AF .

Remark 4.4 So far, papers in the literature consider a bifunction to be defined
on C ×C, where C is a subset of X, and defined AF by requiring (4.3) to hold
for x, y ∈ C. This is a particular case of what we are considering here. Indeed,
for any F : C × C → R one can define a normal bifunction F̃ : X × X → R

which extends F on the whole space, by setting

F̃ (x, y) =





F (x, y) if x ∈ C and y ∈ C,
+∞ if x ∈ C and y /∈ C,
−∞ if x /∈ C.
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Then AF̃ satisfies

AF̃ (x) =

{
{x∗ : 〈x∗, y − x〉 ≤ F (x, y) , ∀y ∈ C} if x ∈ C,

∅ if x /∈ C,

i.e., it is the operator AF considered in previous papers and Chapter 2. �

In the same spirit, we redefine the notion of BO-maximality.

Definition 4.5 (i) A monotone bifunction F is called BO-maximal monotone
if for all (x, x∗) ∈ X ×X∗,

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ X =⇒ 〈x∗, y − x〉 ≤ F (x, y) , ∀y ∈ X.
(4.4)

(ii) A monotone bifunction F is called maximal if AF is maximal monotone.

Note that F is BO-maximal monotone if and only if

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ domF =⇒ 〈x∗, y − x〉 ≤ F (x, y) , ∀y ∈ X.
(4.5)

Remark 4.6 The right-hand side of (4.4) says that x∗ ∈ domAF ; thus, if F
is BO-maximal monotone and F (y, x) + 〈x∗, y − x〉 ≤ 0 holds for some x ∈ X
and for every y ∈ domF , then x ∈ domF and F (x, x) = 0. �

In view of Remark 4.4, the definition of BO-maximal monotonicity consid-
ered in previous papers and Chapter 2 where F is defined on C × C and the
right-hand side of (4.5) is required to hold only for y ∈ C, is again a particular
case of the definition considered here.

Given an operator T , we denote by cl coT the operator whose value at each
x ∈ X is weak∗-cl co(T (x)). Then GT = Gcl coT .

Theorem 4.7 Let T : X → 2X
∗

be an operator. Then cl coT is maximal
monotone if and only if GT is BO-maximal monotone.

Proof. Let cl coT be maximal monotone. Since GT = Gcl coT we may suppose
without loss of generality that T is maximal monotone. Now assume that T is
maximal monotone and for some (x, x∗) ∈ X ×X∗,

GT (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ X.

Then
sup

y∗∈T (y)

〈y∗, x− y〉+ 〈x∗, y − x〉 ≤ 0, ∀y ∈ domT.

Thus for all (y, y∗) ∈ grT ,

〈y∗ − x∗, y − x〉 ≥ 0.



70 CHAPTER 4. FITZPATRICK TRANSFORM

On the other hand T is maximal monotone, therefore (x, x∗) ∈ grT . This
implies that for every y ∈ X,

〈x∗, y − x〉 ≤ sup
z∗∈T (x)

〈z∗, y − x〉 = GT (x, y) .

Thus GT is BO-maximal.
Conversely, suppose that GT = Gcl coT is BO-maximal monotone. Then, for

all x, y ∈ domT, x∗ ∈ cl coT (x) and y∗ ∈ cl coT (y),

〈y∗ − x∗, y − x〉 ≥ −(Gcl co (x, y) +Gcl coT (y, x)) ≥ 0.

It follows that cl coT is monotone. To show that it is maximal monotone, let
(x, x∗) ∈ X × X∗ be such that 〈y∗ − x∗, y − x〉 ≥ 0 for all (y, y∗) ∈ gr cl coT.
Then 〈x∗, y − x〉 + 〈y∗, x − y〉 ≤ 0 for all (y, y∗) ∈ gr cl coT. By taking the
supremum over y∗ ∈ T (y) we get GT (y, x)+ 〈x∗, y − x〉 ≤ 0 for all y ∈ X. Since
GT = Gcl coT is BO-maximal, we deduce

〈x∗, y − x〉 ≤ GT (x, y) ≤ sup
z∗∈cl coT (x)

〈z∗, y − x〉 , ∀y ∈ X. (4.6)

Since cl coT (x) is weak∗-closed and convex, (4.6) together with the separa-
tion theorem imply that x∗ ∈ cl coT (x).

In particular, if T is an operator with weak∗-closed convex values, then T is
maximal monotone if and only if the monotone bifunction GT “created” by T
is BO-maximal monotone.

One the other hand, every monotone bifunction F gives rise to a monotone
operator AF . Exactly as in Chapter 2, Proposition 2.6 one can show:

Proposition 4.8 Let F be a monotone bifunction. If AF is maximal monotone,
then F is BO-maximal monotone.

We end this section with the following result.

Proposition 4.9 Suppose that T : X → 2X
∗

is monotone and domT = X.
Then AGT = cl coT .

Proof. For each x ∈ X and z∗ ∈ AGT (x) since GT = Gcl coT we get

Gcl coT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉 ∀y ∈ X.

On the other hand cl coT (x) is weak∗-closed and convex, so the separation
theorem implies that z∗ ∈ cl coT (x). Thus AGT ⊂ cl coT .

Conversely, assume that z∗ ∈ cl coT (x). Since GT = Gcl coT we deduce that
for each y ∈ X

〈z∗, y − x〉 ≤ sup
x∗∈cl coT (x)

〈x∗, y − x〉 = Gcl coT (x, y) = GT (x, y) .

This means that cl coT (x) ⊂ AGT (x). Thus cl coT ⊂ AGT .
Note that the above proposition implies that if T : X → 2X

∗

is monotone
with weak∗-closed convex values and domT = X, then AGT = T . In particular
if T is single-valued with domT = X, then AGT = T .
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4.3 Fitzpatrick Transform of Bifunctions

Definition 4.10 Suppose that F : X ×X → R is a normal bifunction. Define
its Fitzpatrick transform ϕF : X ×X∗ → R ∪ {+∞} by

ϕF (x, x
∗) = sup

y∈X

(〈x∗, y〉+ F (y, x)) , ∀(x, x∗) ∈ X ×X∗.

Whenever F (y, ·) is lsc and convex for all y ∈ domF , then ϕF is also lsc
and convex.

For every BO-maximal monotone bifunction we have the following theorem,
which is similar to a corresponding theorem for the Fitzpatrick function of a
maximal monotone operator; in case F (x, ·) is lsc and convex, the theorem says
that ϕF is a representative function for the operator AF .

Theorem 4.11 Assume that F is a BO-maximal monotone bifunction. For
each (x, x∗) ∈ X ×X∗ one has 〈x∗, x〉 ≤ ϕF (x, x

∗). Equality holds if and only
if x∗ ∈ AF (x).

Proof. Suppose that for some (x, x∗) ∈ X ×X∗ one has

ϕF (x, x
∗) ≤ 〈x∗, x〉 . (4.7)

Then supy∈X (〈x∗, y〉+ F (y, x)) ≤ 〈x∗, x〉, thus

F (y, x) + 〈x∗, y − x〉 ≤ 0, ∀y ∈ X.

By assumption F is BO-maximal, therefore

〈x∗, y − x〉 ≤ F (x, y) , ∀y ∈ X.

By Remark 4.6, this implies that x ∈ domF and F (x, x) = 0, thus

ϕF (x, x
∗) = sup

y∈X

(〈x∗, y〉+ F (y, x)) ≥ 〈x∗, x〉+ F (x, x) = 〈x∗, x〉 . (4.8)

Now from (4.7) and (4.8) we get ϕF (x, x
∗) = 〈x∗, x〉. So the strict inequality

ϕF (x, x
∗) < 〈x∗, x〉 is not possible, thus for all (x, x∗) ∈ X × X∗ we have

〈x∗, x〉 ≤ ϕF (x, x
∗) .

In order to show the second assertion, let 〈x∗, x〉 = ϕF (x, x
∗). We already

showed that this implies 〈x∗, y − x〉 ≤ F (x, y) for all y ∈ X which means that
x∗ ∈ AF (x).

Conversely, assume that x∗ ∈ AF (x); then 〈x∗, y − x〉 ≤ F (x, y) for all
y ∈ X. By monotonicity of F we obtain 〈x∗, y − x〉 ≤ −F (y, x) for all y ∈ X.
This implies that 〈x∗, y〉+F (y, x) ≤ 〈x∗, x〉 for all y ∈ X. From here we conclude
that ϕF (x, x

∗) ≤ 〈x∗, x〉. By the first part of the proof, ϕF (x, x
∗) = 〈x∗, x〉.

The Fitzpatrick transform of a normal bifunction and the Fitzpatrick func-
tion of an operator are related via the following proposition.
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Proposition 4.12 Let T be an operator. Then ϕGT
= FT , where FT is the

Fitzpatrick function of T .

Proof. For each (x, x∗) ∈ X ×X∗,

ϕGT
(x, x∗) = sup

y∈X

(〈x∗, y〉+GT (y, x)) = sup
y∈X

(
〈x∗, y〉+ sup

y∗∈T (y)

〈y∗, x− y〉
)

= sup
(y,y∗)∈grT

(〈x∗, y〉+ 〈y∗, x〉 − 〈y∗, y〉) = FT (x, x∗) .

This proves the desired statement.

In the following proposition we will show that when the variables of a bi-
function F are separated by a function f on a set C, then the subdifferential
of f is equal to AF , the Fitzpatrick transform is nothing else than the sum of
f and its conjugate. In addition, the Fitzpatrick transform of GAF is equal to
the Fitzpatrick function of the subdifferential of f .

Proposition 4.13 Let f : X → R ∪ {+∞} be a function with dom f = C =
{x ∈ X : f (x) <∞} 6= ∅. Suppose that F : X ×X → R is defined by

F (x, y) =

{
f (y)− f (x) if x ∈ C, y ∈ X,

−∞ otherwise.

Then

(i) AF = ∂f .

(ii) ϕF (x, x
∗) = f (x) + f∗(x∗).

(iii) ϕ
G

AF
(x, x∗) = F∂f (x, x

∗) .

Proof. (i) It is clear that for x /∈ C, AF (x) = ∅ = ∂f(x). For x ∈ C we have

AF (x) = {x∗ ∈ X : F (x, y) ≥ 〈x∗, y − x〉 ∀y ∈ X}
= {x∗ ∈ X : F (x, y) ≥ 〈x∗, y − x〉 ∀y ∈ C}
= {x∗ ∈ X : f (y)− f (x) ≥ 〈x∗, y − x〉 ∀y ∈ C} = ∂f (x) .

(ii) By our assumptions, we have

ϕF (x, x
∗) = sup

y∈X

(〈x∗, y〉+ F (y, x))

= sup
y∈C

(〈x∗, y〉 − f (y) + f (x))

= f (x) + sup
y∈C

(〈x∗, y〉 − f (y)) = f (x) + f∗ (x∗) .
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(iii) By part (i) we have GAF (x, y) = G∂f (x, y) and so

ϕG
AF

(x, x∗) = sup
y∈X

(〈x∗, y〉+G∂f (y, x))

= sup
y∈X

(
〈x∗, y〉+ sup

y∗∈∂f

〈y∗, x− y〉
)

= sup
(y,y∗)∈gr ∂f

(〈x∗, y〉+ 〈y∗, x− y〉)

= F∂f (x, x
∗) .

We are done.
Note that in the above proposition if f is lsc and convex then AF is maximal

monotone.
In a similar way as in [30], given a monotone bifunction F we define on

X ×X∗ the upper Fitzpatrick transform ϕF of F by

ϕF (x, x∗) = sup
y∈X

(〈x∗, y〉 − F (x, y)), ∀(x, x∗) ∈ X ×X∗.

Remark 4.14 It is easy to show that F is BO-maximal monotone if and only
if for all (x, x∗) ∈ X ×X∗, the following equivalence holds:

〈x∗, x〉 ≥ ϕF (x, x
∗) ⇐⇒ 〈x∗, x〉 ≥ ϕF (x, x∗). (4.9)

In fact, given that ϕF ≤ ϕF , (4.9) is equivalent to

〈x∗, x〉 ≥ ϕF (x, x
∗) =⇒ 〈x∗, x〉 ≥ ϕF (x, x∗)

or, successively,

〈x∗, x〉 ≥ sup
y∈X

(〈x∗, y〉+ F (y, x)) ⇒ 〈x∗, x〉 ≥ sup
y∈X

(〈x∗, y〉 − F (x, y))

〈x∗, y − x〉+ F (y, x) ≤ 0, ∀y ∈ X ⇒ 〈x∗, y − x〉 ≤ F (x, y), ∀y ∈ X.

The last line means that F is BO-maximal monotone. Note that whenever
F is BO-maximal monotone Theorem 4.11 implies

〈x∗, x〉 ≤ ϕF (x, x
∗) ≤ ϕF (x, x∗),

so (4.9) can be rewritten as

〈x∗, x〉 = ϕF (x, x∗) ⇐⇒ 〈x∗, x〉 = ϕF (x, x
∗). (4.10)

Note also that

ϕF (x, x∗) = (F (x, ·))∗ (x∗)
ϕF (x, x

∗) = (−F (·, x))∗(x∗)
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These equalities hold for each (x, x∗) ∈ X ×X∗. In case x /∈ domF then both
sides of the first equality are equal to +∞. Also,

(
ϕF
)∗

(x∗, x) = sup
(y,y∗)∈X×X∗

{〈y∗, x〉+ 〈x∗, y〉 − ϕF (y, y∗)}

= sup
(y,y∗)∈X×X∗

{〈y∗, x〉+ 〈x∗, y〉 − (F (y, ·))∗ (y∗)}

= sup
y∈X

{〈x∗, y〉+ (F (y, ·))∗∗ (x)}

and

(ϕF )
∗
(x∗, x) = sup

(y,y∗)∈X×X∗

{〈y∗, x〉+ 〈x∗, y〉 − ϕF (y, y
∗)}

= sup
(y,y∗)∈X×X∗

{〈y∗, x〉+ 〈x∗, y〉 − (−F (·, y))∗ (y∗)}

= sup
y∈X

{〈y∗, x〉+ (−F (·, y))∗∗ (x)}.

In the special case where F (x, ·) is lsc and convex for all x ∈ domF , then
(F (y, ·))∗∗ = F (y, ·) for every y ∈ X, so

(
ϕF
)∗

(x∗, x) = ϕF (x, x
∗). �

The following theorem, stated for the reflexive case for simplicity, shows that
the arguments of [30] can be used in our framework to obtain the following
result. As in [30] we will use the following theorem from [89].

Theorem 4.15 Let X be a reflexive Banach space. If h : X × X∗ → R is a
proper, lsc and convex function such that h(x, x∗) ≥ 〈x∗, x〉 and h∗(x∗, x) ≥
〈x∗, x〉, then the operator with graph {(x, x∗) : h(x, x∗) = 〈x∗, x〉} is maximal
monotone.

Theorem 4.16 Let X be a reflexive Banach space. Assume that F is a BO-
maximal monotone bifunction and F (x, ·) is lsc and convex for each x ∈ domF .
Then AF is maximal monotone.

Proof. The assumption that F (x, ·) is lsc and convex implies that

(
ϕF
)∗

(x∗, x) = ϕF (x, x
∗).

Since ϕF ≤ ϕF and ϕF is lsc and convex, we deduce that

ϕF (x, x∗) ≥ cl coϕF (x, x∗) ≥ ϕF (x, x
∗) (4.11)

=
(
ϕF
)∗

(x∗, x) =
(
cl coϕF

)∗
(x∗, x).

By Theorem 4.11 we know that ϕF (x, x
∗) ≥ 〈x∗, x〉 with equality if and only

if x∗ ∈ AF (x). This shows in particular that all functions appearing in (4.11)
are proper, since ϕF ≡ +∞ implies

(
ϕF
)∗ ≡ −∞ which is impossible. By

Remark 4.14, ϕF (x, x∗) = 〈x∗, x〉 if and only if x∗ ∈ AF (x). Combining with
(4.11) we obtain that cl coϕF (x, x∗) ≥ 〈x∗, x〉 and

(
cl coϕF

)∗
(x∗, x) ≥ 〈x∗, x〉,
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with equality if and only if x∗ ∈ AF (x). Theorem 4.15 now implies that AF is
maximal monotone.

Note that it is not necessary to have F (x, x) = 0 for all x ∈ domF or to
have a closed and convex domF . Of course, in the case F (x, y) = +∞ when x ∈
domF and y /∈ domF that was considered in previous papers, the assumption
on F (x, ·) implies that domF is convex. However, it does not imply that domF
is closed, or that F (x, x) = 0 for x in domF . Consequently, Theorem 4.16
generalizes the corresponding results in [1, 30, 64].

We will need the following result, which is a simple adaptation of Proposition
4.1 of [64] to our framework. Note that in [64] all bifunctions were supposed to
satisfy F (x, x) = 0, x ∈ domF , but this property was actually not needed in
Proposition 4.1 that we use.

Proposition 4.17 Let X be a reflexive Banach space and F be a maximal
monotone bifunction. Assume that for every x ∈ domF and any converging
sequence {xn} ⊆ domF , the sequence {F (x, xn)} is bounded from below1. Then
domF ⊆ cl domAF . In particular, cl domF is convex.

Proof. Define the monotone bifunction F1 by

F1(x, y) =

{
F (x, y) if x /∈ domF or y ∈ domF,
+∞ if x ∈ domF and y /∈ domF.

Then AF (x) ⊆ AF1(x) for all x ∈ X and by maximality of F , AF = AF1 .
We apply Proposition 4.1 of [64] and get the result.

A trivial consequence is the following corollary.

Corollary 4.18 Assume that X is reflexive Banach space, F is maximal and
F (x, ·) is lsc for every x ∈ domF . Then domF ⊆ cl domAF .

Using the above, we now show that whenever F (x, ·) is lsc and convex for all
x ∈ domF , BO-maximal monotonicity is equivalent to a more general statement
than (4.5).

Theorem 4.19 Let X be a reflexive Banach space. Assume that F (x, ·) is lsc
and convex for every x ∈ domF . Then the following statements are equivalent:

(i) F is BO-maximal monotone.
(ii) For each given x ∈ X and for every lsc and convex function ψ with

ψ (x) = 0 and int(domψ) ∩ domF 6= ∅, the following implication holds:

F (y, x) ≤ ψ (y) , ∀y ∈ domF =⇒
∃x∗ ∈ ∂ψ(x) : 0 ≤ F (x, y) + 〈x∗, y − x〉 , ∀y ∈ X .

(iii) For each given x ∈ X and for every lsc and convex function ψ with
ψ (x) = 0 and int(domψ) ∩ domF 6= ∅, the following implication holds:

F (y, x) ≤ ψ (y) , ∀y ∈ domF =⇒ 0 ≤ F (x, y) + ψ (y) , ∀y ∈ X .

1The bound may depend on x.
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Proof. Implications (ii)⇒(iii) and (iii)⇒(i) are obvious, so we prove only im-
plication (i)⇒(ii). Let x ∈ X and ψ (x) = 0. Suppose that

F (y, x) ≤ ψ (y) ∀y ∈ domF . (4.12)

By Theorem 4.16 the operator AF is maximal monotone. By assumption,
int(domψ) ∩ domF 6= ∅. Since int(domψ) = int(dom ∂ψ) and domF ⊆
cl domAF by Corollary 4.18, we infer that int(dom ∂ψ) ∩ domAF 6= ∅. It
follows from the well-known theorem of Rockafellar (see [100, Theorem 1]) that
AF + ∂ψ is maximal monotone.

For every y ∈ (dom ∂ψ ∩ domAF ) and every y∗1 ∈ AF (y) and y∗2 ∈ ∂ψ(y),
relation (4.12) implies

〈y∗1 , x− y〉 ≤ F (y, x) ≤ ψ (y) = ψ (y)− ψ(x) ≤ −〈y∗2 , x− y〉

so
〈y∗1 + y∗2 , y − x〉 ≥ 0. (4.13)

Relation (4.13) can be written as

〈y∗ − 0, y − x〉 ≥ 0, ∀(y, y∗) ∈ gr
(
AF + ∂ψ

)
.

Hence 0 ∈ (AF + ∂ψ)(x), i.e., there exists x∗ ∈ ∂ψ(x) such that −x∗ ∈ AF (x).
This means that

〈−x∗, y − x〉 ≤ F (x, y), ∀y ∈ X

i.e., (ii) holds.
This result was proved by other methods in [23], assuming in addition that ψ

is continuously Gâteaux differentiable, domF is convex and contained in domψ,
and F (x, y) = +∞ for x ∈ domF , y /∈ domF .

4.4 Fitzpatrick Transform of Sum

In this section we will redefine pair and partial convolutions and then we will
establish various kinds of inequalities.

Fitzpatrick in [52, Problem 5.4] proposed a question for characterization of
FT1+T2

. This problem is still open. Penot and Zalinescu in [89, page 15] and also
Bauschke, McLaren and Sendov in [16, Proposition 4.2] have found an upper
bound for FT1+T2

where T1 and T2 are maximal monotone.

Definition 4.20 Assume that f, g : X × Y → R ∪ {+∞} are two functions.
Then the pair convolution of f, g is defined by

f�g(x, y) := inf{f(x1, y1) + g(x2, y2) : x1 + x2 = x, y1 + y2 = y}.

As in [89] and [98], the partial convolutions of f and g are defined by

f�1g (x, y) = inf {f (x1, y) + g (x2, y) : x1, x2 ∈ X and x1 + x2 = x} ,
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and

f�2g (x, y) = inf {f (x, y1) + g (x, y2) : y1, y2 ∈ Y and y1 + y2 = y} .

In the next proposition we will find an upper bound for ϕF1+F2
.

Proposition 4.21 Let F1, F2 : X ×X → R be monotone bifunctions such that
domF1 = domF2. Then

ϕF1+F2
≤ ϕF1

�2ϕF2
.

Proof. Assume that (x, x∗) ∈ X×X∗ and set x∗ = x∗1+x
∗
2. Then for all y ∈ X

we have

〈x∗, y〉+ (F1 + F2) (y, x) = (〈x∗1, y〉+ F1 (y, x)) + (〈x∗2, y〉+ F2 (y, x))

≤ sup
y∈X

(〈x∗1, y〉+ F1 (y, x)) + sup
y∈X

(〈x∗2, y〉+ F2 (y, x))

= ϕF1
(x, x∗1) + ϕF2

(x, x∗2) .

By taking the supremum over all y ∈ X we conclude that

ϕF1+F2
(x, x∗) ≤ ϕF1

(x, x∗1) + ϕF2
(x, x∗2) .

Now by taking infimum over all x∗1 + x∗2 = x∗ we get

ϕF1+F2
(x, x∗) ≤ ϕF1

�2ϕF2
(x, x∗) .

We are done.

Remark 4.22 Assume that T1, T2 : X → 2X
∗

are two monotone operators
such that domT1 ∩ domT2 6= ∅. Then GT1+T2

≤ GT1
+GT2

. In fact,

GT1+T2
(x, y) = sup

x∗∈(T1+T2)(x)

〈x∗, y − x〉

= sup
x∗

1∈T (x),x∗

2∈T (x),x∗=x∗

1+x∗

2

〈x∗1 + x∗2, y − x〉

≤ sup
x∗

1∈T1(x)

〈x∗1, y − x〉+ sup
x∗

2∈T2(x)

〈x∗2, y − x〉

= GT1
(x, y) +GT2

(x, y) . �

An immediate consequence of the Proposition 4.21 is the following corollary
(see also [16, Proposition 4.2]).

Corollary 4.23 Let T1, T2 : X → 2X
∗

be two monotone operators such that
domGT1

= domGT2
. Then

FT1+T2
≤ FT1

�2FT2
.
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Proof. By the above remark GT1+T2
≤ GT1

+GT2
This implies that

ϕGT1+T2
≤ ϕGT1

+GT2
.

Now by Applying Proposition 4.12 and Proposition 4.21 we get the desired
inequality.

Note that this inequality can be strict. See Example 1 in [89]. However in
[16] there are some examples where was shown that the equality can become
true. In Proposition 4.25, we will show that equality holds for a special type of
bifunctions. First we prove a lemma.

Lemma 4.24 Let f, g : X → R ∪ {+∞} be two functions such that C =
dom f = dom g. Define F : X ×X → R by

F (x, y) =

{
f (y)− g (x) if x ∈ C, y ∈ X,

−∞ otherwise.

Then F is a normal bifunction and ϕF (x, x∗) = f (x) + g∗ (x∗).

Proof. The normality of F is obvious. Given (x, x∗) ∈ X ×X∗,

ϕF (x, x∗) = sup
y∈X

{〈x∗, y〉+ F (y, x)}

= sup
y∈C

{〈x∗, y〉+ f (x)− g (y)}

= f (x) + sup
y∈C

{〈x∗, y〉 − g (y)} = f (x) + g∗ (x∗) .

This proves the lemma.

We note that in the above lemma if f = g, then F is monotone. Moreover,
if f is lsc and convex, then ∂f is maximal monotone and ϕG

AF
= F∂f .

Proposition 4.25 Let Fi : X × X → R for i = 1, 2 be normal bifunctions
defined by

Fi (x, y) =

{
fi (y)− gi (x) if x ∈ C, y ∈ X,

−∞ otherwise.

where fi, gi : X → R ∪ {+∞} and C = dom fi = dom gi for i = 1, 2. Then
ϕF1+F2

= ϕF1
�2ϕ2.

Proof. For every (x, y) ∈ X ×X, we have

(F1 + F2) (x, y) =

{
(f1 + f2) (y)− (g1 + g2) (x) if x ∈ C, y ∈ X,

−∞ otherwise.

Then for each (x, x∗) ∈ X × X∗, using (g1 + g2)
∗
(x∗) = (g∗1�g

∗
2) (x

∗) (see



4.4. FITZPATRICK TRANSFORM OF SUM 79

Theorem 1.20) and Lemma 4.24 we have

ϕF1+F2
(x, x∗) = (f1 + f2) (x) + (g1 + g2)

∗
(x∗)

= (f1 + f2) (x) + (g∗1�g
∗
2) (x

∗)

= (f1 + f2) (x) + inf {g∗1 (x∗1) + g∗2 (x
∗
2) : x

∗ = x∗1 + x∗2}
= inf {f1 (x) + g∗1 (x

∗
1) + f2 (x) + g∗2 (x

∗
2) : x

∗ = x∗1 + x∗2}
= inf {ϕF1

(x, x∗1) + ϕF2
(x, x∗2) : x

∗ = x∗1 + x∗2}
= ϕF1

�2ϕ2 (x, x
∗) .

This proves the desired statement.

Let F : X × X → R be a bifunction. We say that F is subadditive with
respect to the second variable if

F (x, y + z) ≤ F (x, y) + F (x, z) ∀x, y, z ∈ X.

In the next proposition we derive an inequality for the Fitzpatrick transform of
such a bifunction.

Proposition 4.26 Suppose that F : X × X → R is a monotone bifunction
which is subadditive with respect to its second variable. Then

ϕF ≤ ϕF�ϕF .

Proof. For all x = x1 + x2, z ∈ X and x∗1 + x∗2 = x∗ ∈ X∗, by using our
assumptions, we have

〈x∗1 + x∗2, z〉+ F (z, x1 + x2) ≤ 〈x∗1, z〉+ F (z, x1) + 〈x∗2, z〉+ F (z, x2)

≤ sup
z∈X

(〈x∗1, z〉+ F (z, x1)) + sup
z∈X

(〈x∗2, z〉+ F (z, x2))

= ϕF (x1, x
∗
1) + ϕF (x2, x

∗
2) .

By taking the supremum over all z ∈ X we get

ϕF (x, x∗) = ϕF (x1 + x2, x
∗
1 + x∗2) ≤ ϕF (x1, x

∗
1) + ϕF (x2, x

∗
2) (4.14)

Now from the definition of the pair convolution and (4.14) we conclude that the
desired inequality.

Fitzpatrick inequality of Fitzpatrick transform:

Let F1 and F2 be any two BO-maximal monotone bifunctions. Then for each
pair (x, x∗) ∈ X×X∗ we have ϕF1

(x, x∗) ≥ 〈x∗, x〉 and ϕF2
(x,−x∗) ≥ 〈−x∗, x〉,

thus

ϕF1
(x, x∗) + ϕF2

(x,−x∗) ≥ 0.

This inequality corresponds to the well-known Fitzpatrick inequality [25,
Section 4.1].
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4.5 Existence Results

The ideas, and most of the results of this section, originated in a paper of
Blum and Oettli [23] for BO-maximality. We will extend their results to BO-
maximality in our framework, i.e., for normal bifunctions defined on X × X.
Our results generalize the results of Blum and Oettli.

Theorem 4.27 Assume that X is reflexive and F is BO-maximal monotone,
domF is closed and convex, and for each x ∈ domF , F (x, x) = 0 and F (x, ·)
is lsc and convex. Let H : X×X → R be a function such that H (·, y) is weakly
usc for each y ∈ domF . Assume that for every x ∈ domF , H (x, x) = 0 and
H (x, ·) is lsc and convex. Furthermore, assume that for some a ∈ domF the
following implication holds

‖x‖ → +∞, x ∈ domF =⇒ −F (a, x) +H (x, a) → −∞.

Then there exists x ∈ domF such that

F (y, x) ≤ H (x, y) ∀y ∈ domF (4.15)

and

0 ≤ F (x, y) +H (x, y) ∀y ∈ X. (4.16)

Proof. Let us equip X with the weak topology and let g (x, y) = F (x, y),
h (x, y) = H (x, y) and K = domF . Observe that all assumptions of Theorem
1A in [23] are satisfied. By the proof of this theorem there exists x ∈ domF such
that inequality (4.15) holds. If we set ψ(y) = H(x, y) and apply Proposition
4.19, then we conclude that inequality (4.16) also holds.

Proposition 4.28 Let X be a reflexive Banach space and F be a BO-maximal
monotone bifunction. Assume that domF is a nonempty closed convex subset
of X and F (x, x) = 0 for all x ∈ domF , F (x, ·) is lsc and convex for each x
in domF . Then for every x∗ ∈ X∗ there exists x ∈ domF such that

F (y, x) ≤ 1

2
||y||2 − 1

2
||x||2 − 〈x∗, y − x〉 ∀y ∈ domF. (4.17)

and

0 ≤ F (x, y) +
1

2
||y||2 − 1

2
||x||2 − 〈x∗, y − x〉 ∀y ∈ X. (4.18)

Proof. Set H (x, y) = 1
2 ||y||2 − 1

2 ||x||2 − 〈x∗, y − x〉. Then H satisfies all

assumptions of Theorem 4.27, since −‖·‖2 is weakly usc. Now if we choose any
a ∈ domF , then F (a, ·) is lsc and convex, thus it is minorized by a continuous
affine function. It follows that there exist z∗ ∈ X∗ and k ∈ R such that

F (a, x) ≥ 〈z∗, x〉+ k.
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Then we see that

−F (a, x) +H (x, a) ≤ −k − 〈z∗, x〉+ 1

2
||a||2 − 1

2
||x||2 − 〈x∗, a− x〉

From here we conclude that −F (a, x) + H (x, a) → −∞ as ‖x‖ → +∞. The
result follows from Theorem 4.27.

Proposition 4.29 Suppose that X is a reflexive Banach space and F is BO-
maximal monotone. Assume that domF is closed and convex, and F (x, x) = 0
for all x ∈ domF . If F (x, ·) is lsc and convex for each x ∈ domF , then for
every x∗ ∈ X∗ there exist x ∈ domF and x∗ ∈ J x such that

0 ≤ F (x, y) + 〈x∗ − x∗, y − x〉 ∀y ∈ X. (4.19)

If in addition X is strictly convex, then x is uniquely determined.

Proof. For a given x∗ ∈ X∗ by Proposition 4.28 there exists x ∈ domF such
that

0 ≤ F (x, y) +
1

2
||y||2 − 1

2
||x||2 − 〈x∗, y − x〉 ∀y ∈ X.

Since x ∈ domF if y ∈ domF then by Remark 4.3, F (y, x) ∈ R. From the
monotonicity of F we get

F (y, x) ≤ 1

2
||y||2 − 1

2
||x||2 − 〈x∗, y − x〉 ∀y ∈ X. (4.20)

Setting ψ(y) = 1
2 ||y||2 − 1

2 ||x||2 − 〈x∗, y − x〉 we note that ∂ψ(x) = J x − x∗.
Applying Theorem 4.19 we deduce the existence of x∗ ∈ J x such that (4.19)
holds.

Now assume that X is strictly convex. If x is not unique, then there exists
x1 ∈ domF , x1 6= x and x∗1 ∈ J x1 such that 0 ≤ F (x1, y) + 〈x∗1 − x∗, y − x1〉
for all y ∈ X. From this inequality and (4.19) we obtain

0 ≤ F (x1, x) + 〈x∗1 − x∗, x− x1〉
0 ≤ F (x, x1) + 〈x∗ − x∗, x1 − x〉.

By adding these inequalities and using monotonicity of F we get

〈x∗1 − x∗, x− x1〉 ≥ 0.

However, since X is strictly convex, J is strictly monotone, so we arrived to a
contradiction.

Corollary 4.30 Suppose that X is a reflexive, smooth and strictly convex Ba-
nach space and F : X ×X → R is BO-maximal monotone. Assume that domF
is a nonempty closed convex subset of X and F (x, x) = 0, for all x in domF.
Furthermore, let F (x, ·) be lsc and convex for all x ∈ domF . Then for every
x ∈ X and λ > 0 there exists a unique xλ ∈ domF such that

0 ≤ F (xλ, y) +
1

λ
〈J xλ − J x, y − xλ〉 ∀y ∈ X.
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Proof. Fix x in X. For a given λ > 0, F and λF have the same properties.
Thus for J x ∈ X∗ there exists a unique xλ ∈ domF such that

0 ≤ λF (xλ, y) + 〈J xλ − J x, y − xλ〉 ∀y ∈ X.

We are done.
Let F satisfy the assumptions of the above corollary. The single-valued

operator RF
λ : X → domF defined by RF

λ (x) = xλ generalizes the notion of of
a monotone bifunction defined on a subset C ofX [64, 86], to normal bifunctions.

4.6 Illustrations and Examples

We will see several examples in this section. Throughout this section we set

∞−∞ = −∞+∞ = −∞.

One can easily check that for each λ > 0 and every normal bifunction F we
have

ϕλF (x, x∗) = λϕF

(
x,
x∗

λ

)
.

Example 4.31 Let f, g : X → R be two functions such that X = dom f =
dom g and f (x) > 0 for all x ∈ X. Define F : X ×X → R by

F (x, y) = −f (y) g (x) .

Then F is a normal bifunction and

ϕF (x, x∗) = sup
y∈X

{〈x∗, y〉+ F (y, x)}

= sup
y∈X

{〈x∗, y〉 − f (x) g (y)}

= f (x) sup
y∈X

{〈
x∗

f (x)
, y

〉
− g (y)

}
= f (x) g∗

(
x∗

f (x)

)
. N

In the following we provide an example which shows that ϕF differs from ϕG
AF

even if F is maximal and domF = X.

Example 4.32 Let X be a Banach space and F (x, y) = 1
2 ‖y‖

2− 1
2 ‖x‖

2
. Then

domF = X and F is monotone. Proposition 4.13 implies AF (x) = J (x). Since
J is maximal monotone operator we conclude that F is maximal monotone and
so ϕF (x, x

∗) = 1
2 ‖x‖

2
+ 1

2 ‖x∗‖
2
. Furthermore,

ϕG
AF

(x, x∗) = FJ (x, x∗) ≤ 1

4
(‖x||+ ||x∗‖)2 (4.21)

≤ 1

2
‖x‖2 + 1

2
‖x∗‖2 = ϕF (x, x

∗).
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The first inequality in (4.21) is a consequence of Proposition 4.1 in [33]. Note
that when X is a real Hilbert space, Example 3.10 in [16] implies that

ϕ
G

AF
(x, x∗) =

1

4
‖x+ x∗‖2 . N

Example 4.33 Let X be a real Hilbert space and C is a closed convex subset
of X. Define F : X × X → R by F (x, y) = ιC (y) − ιC (x) where ιC is the
indicator function of C. Then by Proposition 4.13

ϕF (x, x
∗) = ιC (x) + ι∗C (x∗) and AF (x) = ∂ιC (x) = NC (x) .

Now if x, y ∈ C, then GNC
(x, y) = supx∗∈NC(x) 〈x∗, y − x〉 = 0 and so

ϕ
G

AF
(x, x∗) = sup

y∈C

(〈x∗, y〉+GNC
(y, x))

= sup
y∈C

〈x∗, y〉 = σC(x
∗) = ι∗C (x∗) .

If x /∈ C, then PC (x) ∈ C. Take y = x− PC (x) ∈ NC (PC(x)) \ {0}. Then

GNC
(x, y) = sup

x∗∈NC(x)

〈x∗, y − PC (x)〉 ≥ sup
λ∈[0,∞)

〈y, λy〉 = +∞.

Therefore

ϕ
G

AF
(x, x∗) =

{
σC(x

∗) if x ∈ C,
+∞ if x /∈ C

= ιC (x) + ι∗C (x∗) .

Note that this example also shows that ϕF = ϕ
G

AF
. N

Example 4.34 Assume that X is a real Hilbert space and f (x) = ‖x‖. Define
F : X ×X → R by F (x, y) = ‖y‖ − ‖x‖, then f∗ (x∗) = ι

B(0∗,1)
, that is, f∗ is

the indicator function of the closed unit ball in X∗. Now Example 3.3 in [16]
and Proposition 4.13 imply that

ϕF (x, x
∗) = ϕG

AF
(x, x∗) = ‖x‖+ ι

B(0∗,1)
=

{
‖x‖ if ‖x∗‖ ≤ 1,
+∞ otherwise.

We observe that also in this example ϕF = ϕ
G

AF
. N

Example 4.35 Let X = R and define f : X → R ∪ {+∞} by

f (x) =





+∞ if x < 0,
0 if x = 0,

x ln(x)− x if x > 0.
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Note that f∗ (x∗) = exp (x∗). Now define F : X × X → R by F (x, y) =
f (y)− f (x). Then by Proposition 4.13, ϕF (x, x

∗) = f (x) + f∗ (x∗). From this
and Example 3.6 in [16] we obtain

ϕ
G

AF
(x, x∗) =





+∞ if x < 0,
exp (x∗ − 1) if x = 0,

xx∗ + x

(
W
(
xe1−x∗)

+ 1

W(xe1−x∗)
− 2

)
if x > 0.

Here, W : [0,+∞) → [0,+∞) is the Lambert function i.e., the function W−1 :
[0,+∞) → [0,+∞) is defined by W−1 (x) = x exp (x). N

Note that generally ϕG
AF

≤ ϕF for each monotone bifunction F , because

for each x∗ ∈ AF (x) we have 〈x∗, y − x〉 ≤ F (x, y) and so

GAF (x, y) = sup
x∗∈AF (x)

〈x∗, y − x〉 ≤ F (x, y) .

Now by the definition of Fitzpatrick transform, ϕG
AF

(x, x∗) ≤ ϕF (x, x∗).
Next example shows that the inequality ϕG

AF
≤ ϕF can be strict even if X is

finite dimensional, domF = X, F is continuous and maximal monotone.

Example 4.36 Define F : R×R → R by F (x, y) = 1
2y

2 − 1
2x

2. In this case we
have AF (x) = {x},

GAF (x, y) = sup
x∗∈AF (x)

{ 〈x∗, y − x〉} = x(y − x),

and by Proposition 4.13

ϕF (x, x
∗) =

1

2
x2 +

1

2
(x∗)2.

Also

ϕG
AF

(x, x∗) = sup
y∈R

{x∗y +G (y, x)}

= sup
y∈R

{
x∗y + yx− y2

}
=

1

4
(x∗ − x)

2
.

Thus the inequality ϕG
AF

≤ ϕF can be strict. N

4.7 n-Cyclically Monotone Bifunctions

For n = 2, 3, ... an operator T : X → 2X
∗

is n-cyclically monotone [13, Definition
1.1] if for each cycle x1, x2, ..., xn, xn+1 = x1 and every x∗i ∈ T (xi), i = 1, 2, ..., n

n∑
i=1

〈x∗i , xi+1 − xi〉 ≤ 0.
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Also T is called cyclically monotone (see also Chapter 1) if for every n ∈ {2, 3, ...}
and each cycle x1, x2, ..., xn, xn+1 = x1 so that x∗i ∈ T (xi), i = 1, 2, ..., n

n∑
i=1

〈x∗i , xi+1 − xi〉 ≤ 0.

Every cyclically monotone and each 2-cyclically monotone operator is monotone.
An operator T is called maximal n-cyclically monotone (maximal cyclically

monotone) if it has no n-cyclically monotone (cyclically monotone) extension
other than itself, i.e., whenever T1 : X → 2X

∗

is a n-cyclically monotone (cycli-
cally monotone) map such for all x ∈ X, T (x) ⊂ T1 (x), then T1 = T .

Notation 4.37 In this section we set ∞−∞ = −∞+∞ = −∞.

We reproduce the following definition from [13].

Definition 4.38 Let T : X → 2X
∗

be an operator and n ∈ {2, 3, ...}. For
n = 2, define FT,2 : X ×X∗ → R ∪ {+∞} by

FT,2 (x, x
∗) = sup

(x1,x
∗

1)∈grT

(〈x∗1, x〉+ 〈x∗, x1〉 − 〈x∗1, x1〉) .

Now suppose that n ∈ {3, 4, ...}. Then the Fitzpatrick function of T of order n,
is the function FT,n : X ×X∗ → R defined by

FT,n (x, x
∗) = sup

(
n−2∑
i=1

〈x∗i , xi+1 − xi〉+
〈
x∗n−1, x− xn−1

〉
+ 〈x∗, x1〉

)
(4.22)

where the supremum is taken over all families (x1, x
∗
1) , (x2, x

∗
2) , ...,

(
xn−1, x

∗
n−1

)

in grT .
The Fitzpatrick function of T of infinite order is defined by

FT,∞ = sup
n∈{2,3,...}

FT,n.

We note that the Fitzpatrick function of T of order n is equal to

sup

{
〈x∗, x〉+

(
n−2∑
i=1

〈x∗i , xi+1 − xi〉+
〈
x∗n−1, x− xn−1

〉
+ 〈x∗, x1 − x〉

)}
.

(4.23)
Again the supremum is taken over all families (x1, x

∗
1) , (x2, x

∗
2) , ...,

(
xn−1, x

∗
n−1

)

in grT .
Note that for n ∈ {2, 3, ...}, being the supremum of affine functions, FT,n is

lsc and convex. Also FT,2 is nothing else than the Fitzpatrick function.
Assume that F : X ×X → R is a monotone bifunction. For n = 2, 3, ... we

say that F is n-cyclically monotone if for every x1, x2, ..., xn ∈ X

n∑
i=1

F (xi, xi+1) ≤ 0
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where xn+1 = x1.
We remind that F is cyclically monotone (see also Chapter 2), if it is n-

cyclically monotone for every n ∈ N.
Assume that F : X ×X → R is a monotone bifunction. If n = 2, we set

ϕF,2 (x, x
∗) = sup

x1∈X

(F (x1, x) + 〈x∗, x1〉) = ϕF (x, x∗)

the original definition of Fitzpatrick transform (see Section 3, Definition 4.10).
Let now n ∈ {3, 4, ...}. We define the Fitzpatrick transform of F of order n by

ϕF,n (x, x
∗) = sup

x1,...,xn−1∈X

[(
n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, x) + 〈x∗, x1〉

]
.

Equivalently, the Fitzpatrick transform of F of order n is equal to

sup
x1,...,xn−1∈X

[〈x∗, x〉+
(

n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, x) + 〈x∗, x1 − x〉].

The Fitzpatrick transform of infinite order is defined by

ϕF,∞ = sup
n∈{2,3,...}

ϕF,n.

It should be noticed that if F (x, ·) is lsc and convex, then for each n ∈ {2, 3, ...},
ϕF,n is also lsc and convex. Moreover ϕF,∞ is lsc and convex if F (x, ·) is lsc
and convex.

We mention that (ϕF,n), n ∈ {2, 3, ...} is a sequence of increasing functions
and that ϕF,n → ϕF,∞ pointwise.

The Fitzpatrick transform of order n of a monotone bifunction and the
Fitzpatrick function of order n of an operator are related via the following
proposition.

Proposition 4.39 Suppose that T is an operator. Then for all n ∈ {2, 3, ...}
ϕGT ,n = FT,n.

Proof. For each (x, x∗) ∈ X ×X∗ and for every n ∈ {3, 4, ...}, we have

ϕGT ,n (x, x∗) = sup
x1,...,xn−1∈X

(
n−2∑
i=1

GT (xi, xi+1)

)
+GT (xn−1, x) + 〈x∗, x1〉

= sup
x1,...,xn−1∈X

[

(
n−2∑
i=1

sup
x∗

i ∈T (xi)

〈x∗i , xi+1 − xi〉
)

+ sup
x∗

n−1
∈T (xn−1)

〈
x∗n−1, x− xn−1

〉
+ 〈x∗, x1〉]

= FT,n (x, x
∗) .



4.7. N-CYCLICALLY MONOTONE BIFUNCTIONS 87

Thus we observe that the ϕGT ,n is the Fitzpatrick function of order n ∈ {3, 4, ...}.
In particular, if n = 2 then Proposition 4.12 implies that ϕGT ,2 (x, x

∗) =
FT (x, x∗), i.e., ϕGT ,2 is the Fitzpatrick function.

Note that from the above proposition we conclude that ϕGT ,∞ = FT,∞.

Definition 4.40 A n-cyclically monotone bifunction F : X ×X → R is called
BO-n-cyclically maximal monotone if for every (x, x∗) ∈ X ×X∗ the following
implication holds:
(

n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, x) + 〈x∗, x1 − x〉 ≤ 0 ∀x1, x2, ..., xn−1 ∈ X

=⇒ 〈x∗, x1 − x〉 ≤ F (x, x1) ∀x1 ∈ X.

Theorem 4.41 Assume that F is a BO-n-cyclically maximal monotone. Then
for n ∈ {2, 3, ...}

(i) 〈x∗, x〉 ≤ ϕF,n (x, x
∗) for all (x, x∗) ∈ X ×X∗;

(ii) 〈x∗, x〉 = ϕF,n (x, x
∗) if and only if x∗ ∈ AF (x).

Proof. For every n ∈ {2, 3, 4, ...} we have ϕF,n (x, x
∗) ≥ ϕF,2 (x, x

∗), so (i) is
an obvious consequence of Theorem 4.11.

To show (ii), we remark first that if 〈x∗, x〉 = ϕF,n (x, x
∗), then

〈x∗, x〉 ≤ ϕF,2 (x, x
∗) ≤ ϕF,n (x, x

∗) = 〈x∗, x〉

so again by Theorem 4.11 we deduce x∗ ∈ AF (x).
Conversely, suppose that x∗ ∈ AF (x). Then 〈x∗, x1 − x〉 ≤ F (x, x1) for

every x1 in X and so

−F (x, x1) + 〈x∗, x1〉 ≤ 〈x∗, x〉 . (4.24)

By hypothesis F is n-cyclically monotone. Thus for all x1, ..., xn−1 ∈ X
(

n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, x) + F (x, x1) ≤ 0. (4.25)

The following inequality can be read off from (4.24) and (4.25)
(

n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, x) + 〈x∗, x1〉 ≤ 〈x∗, x〉 .

Now by taking the supremum over all x1, x2, ..., xn−1 in X it follows that
ϕF,n (x, x

∗) ≤ 〈x∗, x〉. From this and part (i) we obtain ϕF,n (x, x
∗) = 〈x∗, x〉.

Remark 4.42 (i) If T : X → 2X
∗

is a monotone operator, then T is n-cyclically
monotone operator if and only ifGT is n-cyclically monotone bifunction. Indeed,
for a given cycle x1, x2, ..., xn we have

n∑
i=1

〈x∗i , xi+1 − xi〉 ≤ 0 ∀x∗i ∈ T (xi)
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if and only if
n∑

i=1

sup
x∗

i ∈T (xi)

〈x∗i , xi+1 − xi〉 ≤ 0

which is equivalent to
n∑

i=1

GT (xi, xi+1) ≤ 0.

(ii) If T is maximal n-cyclically monotone, then GT is BO-n-cyclically max-
imal monotone. Assume that (x0, x

∗
0) ∈ X ×X∗ and

(
n−2∑
i=1

GT (xi, xi+1)

)
+GT (xn−1, x0) + 〈x∗0, x1 − x0〉 ≤ 0

for all x1, x2, ..., xn−1 ∈ X. Then for each x∗i ∈ T (xi) , i = 1, 2, ..., n− 1 we have

(
n−2∑
i=1

〈x∗i , xi+1 − xi〉
)
+
〈
x∗n−1, x0 − xn−1

〉
+ 〈x∗0, x1 − x0〉 ≤ 0 (4.26)

for all x1, x2, ..., xn−1 ∈ X. Now define gr T̂ = grT ∪ {((x0, x∗0))}. According to
relation (4.26), T̂ is n-cyclically monotone and grT ⊂ gr T̂ . By assumption T is
maximal n-cyclically monotone, so gr T̂ = grT . Therefore (x0, x

∗
0) ∈ grT , thus

〈x∗0, x1 − x0〉 ≤ sup
x∗∈T (x0)

〈x∗, x1 − x0〉 = GT (x0, x1) .

This means that GT is BO-maximal monotone. �

In the following proposition we will find a recursion formula for the Fitz-
patrick transform of order n. Bauschke, Borwein, and Wang in [18, Theorem
6.5 ] proved this formula for single valued monotone operators. Here we gener-
alize it to monotone bifunctions.

Proposition 4.43 Assume that F : X ×X → R is a monotone bifunction and
n ∈ {2, 3, ...}. Then

ϕF,n+1 (x, x
∗) = sup

y∈X

{ϕF,n (y, x
∗) + F (y, x)} ∀ (x, x∗) ∈ X ×X∗. (4.27)

Proof. Given (x, x∗) ∈ X ×X∗. By the definition of Fitzpatrick transform of
order n+ 1 we have

ϕF,n+1 (x, x
∗) = sup

x1,...,xn∈X

[(
n−1∑
i=1

F (xi, xi+1)

)
+ F (xn, x) + 〈x∗, x1〉

]

= sup
xn

{ sup
x1,...,xn−1∈X

[(
n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, xn) + 〈x∗, x1〉

]

+ F (xn, x)}
= sup

xn

{ϕF,n (xn, x
∗) + F (xn, x)} .

This proves (4.27).
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Corollary 4.44 Assume that T : X → 2X
∗

is monotone and n ∈ {2, 3, ...}.
Then

FT,n+1 (x, x
∗) = sup

y∈X

{FT,n (y, x
∗) +GT (y, x)} ∀ (x, x∗) ∈ X ×X∗.

Proof. Apply Propositions 4.43 and 4.39.

Example 4.45 (Rotations) According to Example 4.6 in [13], let X = R
2

and n ∈ {2, 3, ...} . Define Rn by

Rn =

[
cos (π/n) − sin (π/n)
sin (π/n) cos (π/n)

]
.

Then Rn is maximal monotone and n-cyclically monotone, but it is not (n+ 1)–
cyclically monotone; see also [10]. The above remark implies that GRn

is BO-n-
cyclically maximal monotone bifunction, nevertheless it is not (n+ 1)-cyclically
monotone bifunction. N

Example 4.46 Define T : R2 → R
2 by

T (a, b) = (b,−a) .

Then T is maximal monotone and so

GT ((a, b) , (c, d)) = bc− ad

is BO-maximal monotone bifunction. However, it is not 3-cyclically monotone

bifunction; for instance, if we consider the cycle x1 = (0, 1) , x2 =
(√

3
2 ,− 1

2

)

and x3 =
(
−

√
3
2 ,− 1

2

)
, then

GT (x1, x2) +GT (x2, x3) +GT (x3, x1) = 3

√
3

2
.

Similarly, if we define (see also [62]) T : R2 → R
2 by T (a, b) =

(
a
4. + b, b4 − a

)
,

then T is strictly monotone, maximal monotone and

GT ((a, b) , (c, d)) = (bc− ad)− 1

4

(
a2 + b2 − ac− bd

)

is strictly monotone, BO-maximal monotone bifunction. However,

GT (x1, x2) +GT (x2, x3) +GT (x3, x1) =

(√
3

2
− 3

8

)
> 0.

Therefore it is not a 3-cyclically monotone bifunction. N

Proposition 4.47 Suppose that F is BO-n-cyclically maximal monotone. Then
for each n ∈ {2, 3, ...}

ϕ∗
F,n(x

∗, x) ≥ FAF (x, x∗) .
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Proof. For a given (x, x∗) ∈ X ×X∗, by using Theorem 4.41, we have

ϕ∗
F,n(x

∗, x) = sup
(y,y∗)∈X×X∗

{〈(x∗, x), (y, y∗)〉 − ϕF,n(y, y
∗)}

≥ sup
(y,y∗)∈grAF

{〈x∗, y〉+ 〈x, y∗〉 − 〈y, y∗〉} = FAF (x, x∗) .

This proves the desired inequality.
It should be noted that if AF is maximal monotone, then from the above

proposition we infer that

ϕ∗
F,n(x

∗, x) ≥ 〈x∗, x〉 .

Proposition 4.48 Assume that F : X × X → R is a cyclically monotone
bifunction such that F (x, ·) is lsc and convex for every x ∈ domF . Then there
exists a proper, lsc and convex function f such that

F (x, y) ≤ f(y)− f(x), ∀x, y ∈ X. (4.28)

If in addition F is BO-maximal monotone, then f is unique up to a constant
and AF = ∂f . In particular, AF is maximal cyclically monotone.

Proof. The proof follows similar steps as in Proposition 2.29, but here F
may take the values ±∞, so some extra care is necessary, taking into account
Notation 4.37. As in Proposition 2.29, choose x0 ∈ domF and define f : X →
R ∪ {+∞} by

f(x) = sup{F (x0, x1) + F (x1, x2) + · · ·+ F (xn−1, xn)

+F (xn, x) : x1, x2, . . . xn ∈ X}.
Note that the above supremum can be equivalently taken over x1, x2, . . . xn ∈

domF , and f is lsc and convex as supremum of lsc convex functions.
Let x1, x2, . . . xn, x ∈ X. Since F is cyclically monotone,

F (x0, x1) + F (x1, x2) + · · ·+ F (xn−1, xn) + F (xn, x) + F (x, x0) ≤ 0

which implies

F (x0, x1) + F (x1, x2) + · · ·+ F (xn−1, xn) + F (xn, x) ≤ −F (x, x0).

By taking the supremum over x1, x2, . . . xn ∈ domF we obtain f(x) ≤
−F (x, x0) for all x ∈ X. In particular, f(x0) ≤ −F (x0, x0) < +∞; since
also f(x) ≥ F (x0, x) > −∞ for all x ∈ X, f is proper.

For every x, y ∈ X and x1, x2, . . . xn ∈ domF we have by the definition of
f :

F (x0, x1) + F (x1, x2) + · · ·+ F (xn−1, xn) + F (xn, x) + F (x, y) ≤ f(y).
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Taking the supremum over all x1, x2, . . . xn ∈ X we deduce

f(x) + F (x, y) ≤ f(y)

that is, inequality (4.28) holds.
Now assume that F is also BO-maximal monotone. Let (x, x∗) ∈ gr ∂f .

Then for all y ∈ X,

F (y, x) + 〈x∗, y − x〉 ≤ f(x)− f(y) + 〈x∗, y − x〉 ≤ 0.

Using that F is BO-maximal monotone we obtain

〈x∗, y − x〉 ≤ F (x, y).

This implies that x∗ ∈ AF (x). Since ∂f is maximal monotone, we deduce
that ∂f = AF and AF is maximal monotone.

Now assume that g is another lsc and convex function such that

F (x, y) ≤ g(y)− g(x), ∀x, y ∈ X.

For every (x, x∗) ∈ gr ∂f = grAF and y ∈ X we obtain

〈x∗, y − x〉 ≤ F (x, y) ≤ g(y)− g(x).

It follows that ∂f ⊆ ∂g, thus ∂f = ∂g. This implies that g differs from f by
a constant [98].

The following results are to be compared with Proposition 4.13.

Lemma 4.49 Let F be a BO-maximal monotone bifunction. If there exists
some proper, lsc and convex function f such that for all (x, x∗) ∈ X × X∗:
ϕF (x, x

∗) ≤ f(x) + f∗(x∗), then ∂f = AF so that f is uniquely determined up
to a constant.

Proof. Let x∗ ∈ ∂f(x); then 〈x∗, x〉 = f(x) + f∗(x∗), so 〈x∗, x〉 ≥ ϕF (x, x
∗).

By Theorem 4.11, this implies that x∗ ∈ AF (x). Thus, ∂f(x) ⊆ AF (x). By
maximal monotonicity of ∂f , we obtain that ∂f = AF .

Proposition 4.50 Suppose that F is a cyclically monotone bifunction such that
F (x, ·) is lsc and convex for every x ∈ domF . Then there exists a proper, lsc
and convex function f such that

ϕF,n (x, x
∗) ≤ f (x) + f∗ (x∗) ∀ (x, x∗) ∈ X ×X∗, ∀n ∈ {3, 4, ...}

and

ϕF,∞ (x, x∗) ≤ f (x) + f∗ (x∗) ∀ (x, x∗) ∈ X ×X∗.

Furthermore, if F is BO-maximal monotone, then f is unique up to a constant.



92 CHAPTER 4. FITZPATRICK TRANSFORM

Proof. By Proposition 4.48 there exist a proper, lsc and convex function f such
that

F (x, y) ≤ f (y)− f (x) ∀x, y ∈ X.

Hence for each n ∈ {3, 4, ...} we have

(
n−2∑
i=1

F (xi, xi+1)

)
+ F (xn−1, x) + 〈x∗, x1〉 ≤ f (x)− f (x1) + 〈x∗, x1〉 .

By taking the supremum over x1, ..., xn−1, for each n ∈ {3, 4, ...} we get

ϕF,n (x, x
∗) ≤ sup

x1∈X

(f (x)− f (x1) + 〈x∗, x1〉)

= f (x) + sup
x1∈X

(〈x∗, x1〉 − f (x1)) = f (x) + f∗ (x∗) .

Now by taking supremum over n, we obtain

ϕF,∞ (x, x∗) ≤ f (x) + f∗ (x∗) .

The uniqueness of f up to constant is an immediate consequence of the above
lemma and the fact that ϕF ≤ ϕF,n ≤ ϕF,∞.

Proposition 4.51 Let f : X → R∪{+∞} be a proper, lsc and convex function
with dom f = {x ∈ X : f (x) <∞}. Define F : X ×X → R by

F (x, y) = f (y)− f (x) .

Then F is cyclically monotone and for each n ∈ {2, 3, ...} and every (x, x∗) in
X ×X∗,

ϕF,n (x, x
∗) = ϕF,∞ (x, x∗) = f (x) + f∗ (x∗) .

That is, the sequence {ϕF,n} is a constant sequence. Moreover, for each n ∈
{2, 3, ...}

ϕG
AF ,n

= F∂f,n.

Proof. For the proof of first assertion we will apply the recursion formula in
Proposition 4.43 and induction on n.
The base case n = 2 is proved in Proposition 4.13.
Induction step: Suppose the result is true for n = k. This says:

ϕF,k (x, x
∗) = f (x) + f∗ (x∗) ∀ (x, x∗) ∈ X ×X∗.

We need to prove is the result for n = k+ 1. By Proposition 4.43 for all (x, x∗)
in X ×X∗ we have

ϕF,k+1 (x, x
∗) = sup

y∈X

{ϕF,k (y, x
∗) + F (y, x)}

= sup
y∈dom f

{ϕF,k (y, x
∗) + F (y, x)}



4.7. N-CYCLICALLY MONOTONE BIFUNCTIONS 93

Thus

ϕF,k+1 (x, x
∗) = sup

y∈dom f

{(f (y) + f∗ (x∗)) + (f (x)− f (y))}

= f (x) + f∗ (x∗) .

Also by taking the supremum over n, from the definition we deduce that

ϕF,∞ (x, x∗) = f (x) + f∗ (x∗) .

The proof of second statement is also by induction.
Base case: Consider the case n = 2. This case, also is proved in Proposition
4.13.
Induction step: Suppose the result is true for n = k. In other words, we have

ϕG
AF ,k

(x, x∗) = F∂f,k (x, x
∗) .

Again by using Propositions 4.43, 4.13, and Corollary 4.44 we have

ϕG
AF ,k+1

(x, x∗) = sup
y∈X

{
ϕG

AF ,k
(y, x∗) +G∂f (y, x)

}

= sup
y∈X

{F∂f,k (y, x
∗) +G∂f (y, x)}

= F∂f,k+1 (x, x
∗) .

We are done.
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