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MepiAnyn

H avamapdotaocn 3A avTIKEIPEVWY  €XEl  YiVEl avaTTOOTIACTO MEPOG  TWV
ouyxXpovwy e@apuoywyv Twv [pagikwv o€ YTroloyiotrh, oOTwg e@apupoyég CAD,
avatrTuén 3A traixvidiwy o€ UTToAoYIoTH Kal dnuioupyia Taiviwy. Etriong Ta 3A dedopéva
éxouv vyivelr TTOAU koivd oTto Tedio TG YTmoAoyioTikhg Opaong, YTTOAOYIOTIKAG
ewpeTpiag, Mopiakng BioAoyiag kai latpikAg. H paydaia €€EAIEN oTnv avaTTuén UAIKOU
KAl AOYIOUIKOU OTOV TOMEQ TWV YPA@PIKWY, IDIAITEPA 0TN O1ABE0INOTNTA XaunAoU KOOTOUG
3A capwtwyv, £xel BonBrnoel 1dIaiTepa 0TV avakTnon, dnuioupyia kal diaxeipion 3A
MovTéAwv OivovTag Tnv eukaipia ot pia PeEYAAN Kolvwvia xpnoTwv va PILoouv
epapuoyEg TTou oxetiCovral pe 3A povréda. Ooo o apIBPog Twy 3A povTéAwv cuveyidel
va augaveral 1o TTPORANua TG dnuioupyiag 3A POVTEAWV PETATOTTICETAI OTO TTPORANUA
avalntnong nNoén ummapxoviwyv 3A POVTEAWV. ZUVETTWG, N AVATITUEN ATTOOOTIKWYV
MEBODWYV avalATNoNng gival avaykaia yia Tnv amodoTIKA avakTtnon 3A avTiKEINEVWY aTTo

MEYAAEG BAoeIC DEDOUEVWV.

2¢ auTnv Tnv AiIdakTopik AlaTpIfr] TTapoucIAdeTal Pia avatTapaoTacn Baciouévn
o€ ypaenua Tou 3A aVTIKEIUEVOU PE XPron evOg KAIVOTOUOU aAyopiBuou KaTtaTunong Kai
NG 10€aG Tou [MpaPruaTog 2Xe0IaKWY XapaktnpioTikwy (Attributed Relational Graph). H
TTPOTEIVOUEVN avatmmapdoTacn Paoiopévn o€ ypagnua B¢éter 1N Bdon yia  yia
atmmoteAeopaTiky peBodoAoyia avaktnong 3A apBpwtwyv avTikeiuévwy (3D articulated

objects).
H ocuveio@opd autou Tou AIdakTopIKoU gival dITTTuXN:

H mpwTtn ouvelogopd €ival n KAataokeury evog aAyopiBuou katdtunong tou 3A
QVTIKEINEVOU Baoiopévn oTnv TTpoUTToBeon Ot To 3A avTIKEIUEVO aTTOTEAEITAI ATTO €va
KUpiwg owpa (main body) kal Ta €mMPEPOUS TTPOECEXOVTA TUNuaTta (protrusible parts). O
TTPOTEIVOUEVOG OAYOPIOUOG KATATUNONG OTOXEUEI OTNV KATATUNGON TOU QVTIKEIUEVOU O€
autd Ta TPAMata. Mo va emTeuxBei autdg O OTOXOG, TTPWTA  aviXveluovTal Ta
TTpoeEéxovTa onueia (salient points) Tou avTikeipévou. Autd Ta onueia gival TTpoggExovTa
XOPAKTNPIOTIKA Tou 3A avTiKEIEvou TTou odnyouv Tov aAyOpIBuo KATATUNONG. TNV
OUVEXEIQ, TA TTPOEEEXOVTA QUTA ONPEId CUYKEVTPWVOVTAI O€ OPABES TTOU AVATTOPIOTOUV
Ta KUPIO TTPOEEEXOVTA TUAMATA TOU QVTIKEIMEVOU. TN OUVEXEIA, TO KUPIWG CWHUA TOU
QVTIKEINEVOU TTPOOEYYICETAI XPNOIUOTTOIWVTAG MOVOTIATIa eAaxioTou KOGTOUG (minimum
cost paths) peTagu Twv TTPOELEXOVTWY ONUEiwWV Tou avTikelyEvou. H kupia 10éa Tou
TTPOTEIVOUEVOU OAYOPIOUOU TTPOCEYYIONG TOU KUPIWG CWHPATOG €ival N €TTEKTACN €VOG
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ouvOAou onueiwv Pe augouoa dIATagn wg TTPOG Tn ouvapTnon TTPoetoxns (protrusion
function) péxpl n €mékTAON va KAAUWEl £va OUYKEKPIPEVO TTOCOOTO TWV ONUEIWV TWV
ehayioTwyv povotraTiwy. H TTpoogyyion Tou KUpPiwg CWHATOG €iTE KAAUTITEI HEPOG TWV
TTPOECEXOVTWYV TUNUATWY EITE €ival TTOAU KOVTA OTNV TTEPIOXI TOU OUVOPOU HETAEU TWV
TTPOEEEXOVTWY TUNUATWY KAl TOU KUPIWG OWHATOG. 2TN CUVEXEIQ QVIXVEUETAI TO OUVOPO
KataTunong (partitioning boundary), To otoio €ival To cUvVopo PETALU TOU TTPOELEXOVTOG
TMAMATOG KAl TOU KUPIWG OWHATOG TOU QVTIKEIMEVOU. Otwpeital 6Tl TNV TTEPIOXN TTOU
EOWKAEIETal atmd 1O €mMOUPNTO OUVOPO WETAEU TOU TTPOEEEXOVTOG TUNMATOG KOl TOU
KUPIWG OWMaTOG. ZupBaivel pia ammétoun PETABOAR otov Oyko Tou 3A QVTIKEIYEVOU,
OUVETTWG OTOXOG €ival n avixveuon autig Tng MeETaBoANnG. MNa va emTeuxdei auTo,
KATaoKeualovTal KAEIOTEG OpIaKES KAUTTUAEG (closed boundaries) Trou opidovTal atréd pia
ouvdapTtnon atréoTtaong (distance function) n otroia oxeTiCeTal Ye TOV QVTITIPOCWTTO TNG
ouddag TTOU avaTTapIoTd TO TTpoegéxov TuAMa. H amdéTtoun petaBoAr Ttou dykou
QavIXVEUETaI £CETACOVTAG TIG KAEIOTEG OPIAKEG KAUTTUAEG Kal TIBETAI Gav TTPOCEYYION TOU
OUVOPOU KATATUNONG N KAEIOTH OpIaKA KAUTTUAN OTTOU TTAPATNPEITAI N MEYIOTN JETABOAR
TTepIuETpoU. H  mrpoteivépevn  TTPOCEyyIon  OuvOpou  KATATPNONG  €ival  TTOAU
aTroTeEAECHATIKA BIOTI TA TTEIPAMATIKA atToTEAEOPaTa dEixvouv OTI €ival TTOAU KOvTd OTO
TTPAYMATIKO 0UVOPO KATATUNONG. TEAOG, N TTPOCEYYION TOU GUVOPOU KATATUNONG YiveTal
aKpIBEOTEPN £TOI WOTE va TTEPVAEI ATTO TIG KAUTTUAGTNTEG TOU QVTIKEIMEVOU HE XPAON

EVOG aAyopiBuou eAAXI0TNG TTEPIKOTTNG.

H deutepn ouvelopopd Tou AIdaKTOpPIKOU gival pia peBodoloyia avaktnong 3A
avTIKEINEVWY  TTou  Bacifetal oTnv  avamapdotacn Paoiouyévn o€ ypdenua evog
apBpwToU 3A avTiKEIPEVOU TO OTTOI0 dNUIOUPYEITAl ATTO TOV TTPOTEIVOUEVO QAyOpIBUO
KATATUNONG. 2ZUYKEKPIPEVA, T TPAMATA TTOU £EAYOVTAl ATTO TOV AAYOPIOUO KATATUNONG
TiBevTal oav KOPUPEG TOU YPAPANATOG KAl Ol OKPEG TOU OUVOEOUV OAQ TA TTPOELEXOVTA
TUAMATA PE TO KUPIWG owua Tou apBpwTtou avTikelipévou. O KOPUPES Kal Ol OKPESG TOU
ypa@AuaTog oxetiCovral ye povadiaia (unary) kai duadiké (binary) xapaktnpeIioTiK& TTou
AVOTTAPIOTOUV TA YEWMETPIKA XAPAKTNPIOTIKA TWV TUNPATWY OTTWG £TTIONG KAl TN OXEON
TTOU €X0OUV PETAEU TouG. H avatmapdoTacon Baciopévn oe ypaenua PTTopei va BewpnBei
oav €va Zxeolokd [pagnua XapaktnpioTikwy (Attributed Relational Graph). To
OXEOIOKO YPAPNUA XAPAKTNPIOTIKWY TOU QVTIKEIMEVOU XPNOIMOTTOIEITAlI OTN CUVEXEIQ YIA
ATTOTEAEOHATIKA avaAKTNon 3A apBpwTWV AVTIKEINEVWY. ZUYKEKPIYEVA, TO ZXEOIAKO
Mpaenua XapakTnpIoTIKWVY TOU £EeTAlOPEVOU QVTIKEIMEVOU (query object) TaipidleTal e
Ta 2Zxeolakd Mpagruata XapakTnpIoTIKWY TWV QVTIKEINEVWY OE HIa BACN TTOU TTEPIEXEI

3A apBpwtd avtikeiyeva. To amotéAeopa TnG Oladikaciag avaktnong Eivar pia
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akoAouBia atrd avTikeiyeva amod 1 Paon TTapouola Pe To eEETAlOUEVO aVTIKEINEVO. To
XPNOIMOTIOIOUPEVO KPITHPIO opoIdTNTAG PacileTal o€ pia PETPIKN OPOIOTNTAG TTOU

ovopadetal Earth Mover’s Distance.

H BeATiwpévn ammédoon Tou TTPOTEIVOPEVOU 3A OXNUATOG KATATUNONG KOBWG
emiong kal n TrpoTeivopevn peBodoAoyia avaktnong 3A apBpwTwWV QVTIKEIUEVWY EXEI
emoeIxOei pEow ekTEVOUG aloAdynong oe kabiepwpévn Bdon 3A avTiKEINEVWY OE

avTImrapdBeon e AAAEG ONUAVTIKEG OUYXPOVEG HEBODOAOYIEG.



Abstract

3D object representations have become an integral part of modern computer
graphics applications, such as computer-aided design, game development and film
production. At the same time, 3D data have become very common in domains such as
computer vision, computational geometry, molecular biology and medicine. The rapid
evolution in graphics hardware and software development, in particular the availability of
low cost 3D scanners, has greatly facilitated 3D model acquisition, creation and
manipulation, giving the opportunity to experience applications using 3D models to a
large user community. As the number of 3D models is continuously growing the problem
of creating new 3D models has shifted to the problem of searching for existing 3D
models. Thereupon, the development of efficient search mechanisms is required for the
effective retrieval of 3D objects from large repositories, both of a single class and across

classes.

In this dissertation, a graph-based representation of a 3D object is introduced
using a novel segmentation algorithm and the attributed relational graph concept. The
proposed graph-based representation sets the base for an effective 3D object retrieval

methodology of articulated objects.
The contribution of this dissertation is two-fold.

The first contribution is a 3D mesh segmentation algorithm based on the premise
that a 3D object consists of its main body part and its constituent protrusible parts. The
proposed segmentation algorithm aims to segment the object into these parts. To
achieve this goal, first the salient points of the object are detected. These points are
prominent features of the 3D object that guide the rest of the segmentation. Afterwards,
the salient points are gathered into groups representing the main protrusible parts of the
object. In the sequel, the main body (core) of the object is approximated using the
minimum cost paths between the salient points of the object. The key idea of the
proposed core approximation is to expand a set of vertices in ascending order of
protrusion function value until the expanded set touches a certain percentage of all
elements of the minimum cost paths. The core approximation either covers portions of
the protrusible part areas or is very close to the neighboring areas where the real
boundary between the core component and the protrusible part is situated. Afterwards,
the partitioning boundary is detected, that is the boundary between a protrusible part

and the main body of the mesh. It is considered that in the area enclosed by the desired
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boundary between the protrusible part and the main body, an abrupt change in the
volume of the 3D object should occur, thus, the goal is to detect this change. To
accomplish this, closed boundaries are constructed which are defined by a distance
function associated to a representative of the group which represents the protrusible
part. The abrupt change of volume is detected by examining the closed boundaries
perimeter and setting the closed boundary where the largest change of perimeter
occurs as the partitioning boundary approximation. The proposed partitioning boundary
approximation is very effective since it is shown in the experimental results that it is very
close to the real partitioning boundary. Lastly, the partitioning boundary is refined so

that it passes through the concavities of the object using a minimum cut algorithm.

The second contribution of this dissertation is a 3D object retrieval methodology
that relies upon a graph-based representation of an articulated 3D object produced by
the proposed segmentation scheme. In particular, the parts extracted by the
segmentation algorithm are set as the nodes of the graph structure while its edges
connect all the protrusible parts with the part representing the main body of the
articulated object. The nodes and the edges of the graph structure relate to unary and
binary attributes which represent the geometrical characteristics of the parts as well as
the relationships with each other. This graph-based representation can be viewed as an
Attributed Relational Graph (ARG). The ARG of the object is later used for effective 3D
articulated object retrieval. Specifically, the query’s object ARG is matched with the
ARGs of the objects in a database containing 3D articulated objects. The outcome of
the retrieval process is a sequence of objects from the database similar to the query
object based upon a similarity criterion that relies upon the Earth Mover's Distance

similarity measure.

The improved performance of the proposed 3D mesh segmentation scheme as well as
the proposed object retrieval methodology for 3D articulated objects has been
demonstrated by an extensive evaluation in standard 3D object databases against the

major state-of-the-art methodologies.
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Chapter 1

Introduction

1.1 Scope of Dissertation

In recent years there has been an increasing demand for 3D object recognition
and retrieval.

Recognition of a 3D object is achieved by understanding its structure. According
to the Recognition by Components (RBC) theory of Biederman [Bie87] human
perception understands the structure of the 3D object by breaking it into parts and
assigning to them basic volumetric primitives [Bie87]. Specifically when an image of an
object is painted on the retina, RBC assumes that a representation of the image is
segmented-or parsed-into regions of deep concavity, particularly at cusps where there
are discontinuities in curvature. Each segmented region is then approximated by one of
a possible set of simple components called geons (for “geometricalions”) that can be
modeled by generalized cones.

This process has also been mimicked in Computer Vision in order to understand
and model the structure of the objects so that they can be recognized by a system. The
basic process that is used in object recognition is segmentation, i.e. the process that
breaks the object into meaningful volumetric parts.

In the literature there exist a plethora of surface segmentation algorithms that
partition the mesh in meaningful components. All of these algorithms use different
criteria and methodologies to achieve this goal.

In this dissertation a 3D mesh segmentation algorithm has been developed and
will be presented analytically in the subsequent Chapter 2. This algorithm is based on
the premise that a 3D object consists of its main body and its constituent protrusible
parts.

The scope of the segmentation algorithm is to separate (segment) the object into
the prementioned parts i.e the main body and its protrusible parts. This segmentation

process is initiated with the detection of the so called salient points. These points are
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the prominent features of the 3D object and guide the rest of the segmentation
procedure.

The next step is to bring together into distinctive groups the salient points which
belong to the particular protrusible part connected to the main body.

In the sequel the main body which can be also named as the “core” of the 3D
object will be approximated using the minimum cost path that connect the salient points
of the object. This core approximation either covers portions of the areas of the
protrusible parts or approaches in the best possible way the neighboring areas in which
the real boundaries separate the core and the associated protrusible parts.

In succession the partitioning boundary, i.e the boundary between the main body
and the particular protrusible part of the mesh, is detected. The basis of this detection is
the obvious expected abrupt change of the volume which happens in the area which is
enclosed by the partitioning boundary under investigation. The goal of this process is to
detect this abrupt change of volume. Finally the detected partitioning boundary is further
refined in order to pass through the concavities of the object using a minimum cut
algorithm.

3D object retrieval is the problem where given a 3D query object and a database
consisting of 3D objects similar in shape objects as the query has to be extracted from
the database. This problem has received over the last years significant attention and
various methodologies have been proposed to deal with it. Most of these approaches
are based on global representations of the 3D object, i.e. 2D/3D features are extracted
from the object and are used to globally describe it in a feature space. In this case the
similarity between the query object and the objects of the database is accomplished by
comparing their respected features. The problem with these approaches is that with a
global descriptor similar articulated objects in shape under different poses can be
regarded as non similar in the retrieval process.

In this thesis a different methodology for retrieval is going to be followed that is
based on a graph-based representation and can successfully retrieve articulated
objects. The basis of the whole retrieval process is the construction of a graph based
representation of an articulated 3D object. This graph is obtained using the
segmentation algorithm mentioned already. Specifically the parts that the segmentation
algorithm extracts will be set as the nodes of the graph structure while its edges will
connect all the protrusible parts with the one representing the main body of the
articulated object. Finally unary and binary attributes are assigned representing the

parts geometrical characteristics as well as the relationships existing between the parts.
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This graph based representation is named Afttributed Relational Graph (ARG) and is
going to be used for efficient 3D articulated object retrieval. Specifically the ARG of the
query articulated 3D object will be compared with the ARGs of the 3D articulated
objects being stored in the database. The result of this comparison will be a sequel of
objects taken from the database which are similar to the query object. The retrieval will
be obtained using a graph — matching algorithm concept which is based on the Earth

Movers Distance Similarity Measure.

1.2 Innovations of Dissertation

This dissertation is innovative both in the proposed segmentation and retrieval

algorithms. For a survey in mesh segmentation algorithms see [APP+07].

Concerning the proposed segmentation algorithm, although it is aligned with a
general framework introduced by Lin ef. al. [LLLO7], new approaches have been
introduced for the implementation of distinct stages of the framework leading to
improved efficiency and robustness as has been verified by an extensive experimental

evaluation.

The two most significant contributions of the segmentation algorithm is the
approximation of the core of the object and the detection of the partitioning boundaries.
Both of these approaches differ significantly from the approach followed by Lin et. al.
[LLLO7].

The core approximation is based on a new algorithm that expands a set of
vertices starting from the center of the object and the expansion continues until the
expanded set reaches the protrusible parts of the object and in some cases cover a
portion of them. In Lin et. al. a simple thresholding is being used that will be shown to be
inadequate in section 3.1.4. The core approximation is a very crucial part in the whole
segmentation framework since the partitioning boundary detection is heavily based on
its correct approximation. In the experimental results of section 3.2 it will be shown that

the approximation of the core is very robust.

A novel way to trace the partitioning boundaries is also introduced. The novelty is
based on the use of closed boundaries to detect the sudden change of volume which
happens at the area which encloses the partitioning boundary. In the proposed

algorithm this area will be defined with the aid of the core approximation and this area
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will be sweeped by these closed boundaries. The major advantage of this approach
over Lin’s et. al. [LLLO7] approach is that the defined closed boundaries are not
dependant on the resolution of the mesh, are less susceptible to noise and sweep a
small area of the mesh where the true partitioning boundary lies. The segmentation

algorithm was published in [APPS].

Concerning the retrieval part of the dissertation the attributed relational graph
concept has been used in order to describe an object. The innovative part of the
dissertation is the use of the EMD similarity measure based on newly defined ground

distances in order to match the ARGs of two articulated objects.

In the experimental results (section 5.3) the superiority of our retrieval
methodology will be shown against the MPEG7 retrieval methodology which is based
also on a graph representation of the object and the retrieval methodology of Papadakis

et. al. [PPT+08] which is based on a global representation of the object.

The results of the proposed retrieval algorithm were presented in [APP+09,
APP+].

1.3 Dissertation layout

The layout of this dissertation is as follows :

In chapter 2 the state of the art of surface segmentation will be presented where
a wide spectrum of the segmentation algorithms will be categorized according to the
methodology it is used in order to achieve segmentation. In chapter 3 the proposed
segmentation algorithm will be presented and all of its distinct stages will be fully
described. Experimental results will also be presented based on a consistent framework
presented in the literature. In chapter 4 the state of the art in retrieval of articulated
objects will be presented. In chapter 5 the proposed retrieval methodology will be
introduced and also experimental evaluation will be made which shows the highly
efficient performance of the proposed retrieval methodology in retrieving articulated

object. Lastly in Section 6 conclusions will be drawn.
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Chapter 2

State of the art in 3D mesh segmentation

2.1 Introduction

In recent years there has been an increasing demand in Computer Graphics,
Vision, and Multimedia, for efficient manipulation of 3D objects due to their plethora and
easy to be acquired methods (e.g. from laser range scanners). This manipulation may
involve a wide range of computer graphics techniques like retrieval, rendering, texture

mapping, transmission, geometric morphing, collision detection etc.

Usually 3D models are represented by low level structures such as a triangular

mesh of irregular connectivity which makes them hard to be manipulated.

Surface segmentation, a process which segments the mesh into subparts, is very
useful for alleviating this lack of high level representation and provides a base for
surface understanding. It is capable of breaking a specific task into subtasks which can

be more easily manipulated making it a versatile process.

In the literature a plethora of algorithms for surface segmentation has been
presented. Some of these belong to methodologies and/or techniques as for example
“The Region Growing Technique”, "The Watersheds Approach”, “The Reeb Graph
Methods”, “The Skeleton based methods” etc etc. All these are going to be presented
shortly in the next section. The associated algorithms under a specific objective use
various criteria for grouping mesh elements together. Additionally, these criteria may
use various local or global shape features extracted from the mesh and are often valid
under some constraints. This means that segmentation is a heavily specific application.
However there seems to be common constituents in the objectives of many
segmentation algorithms. In the works of Shamir and Agathos, [Sha04, APP+07] based
on the segmentation objective, two types of segmentation algorithms are distinguished.

Specifically:
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e Patch type segmentation, which objective is to segment the mesh into surface
patches. This type of segmentation is useful for parametrization, texture

mapping, remeshing, simplification, etc.

e Part type segmentation, which objective is to segment the mesh into meaningful
to human perception components. This type of segmentation is based on the
theory of cognitive science which describe how humans recognize objects
[HR84, Bie87, HR97, SHO1].

The chapter organization is as follows:
e Section 2.2: Introduction of basic definitions.

e Section 2.3: Presentation of the state of the art in surface segmentation.

2.2 Basic Definitions

A 3D mesh, M, is a discrete approximation of the surface of a 3D object
consisting of a set of Vertices, Edges and Faces. The edges and faces of the mesh are

always incident to the vertices of the mesh. In most of the cases the faces are triangles.
Let S be the set of either the vertices, edges or faces of the mesh.

Segmentation of M is called the partitioning of S into k-disjoint sets, i.e:
k
918":8’ ScS, SnS =9, i,j=1.ki=#]j (2.2.1)

The dual graph of a mesh is the graph for which nodes are the triangular faces
and each node is connected with another if their representative triangles share a
common edge. The triangles, which represent its nodes, will be referred as the dual

triangles, see figure 2.2.1.

Figure 2.2.1. The dual graph a mesh denoted by red lines
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2.3 State of the art in surface segmentation

In the literature there are several algorithms created for surface segmentation.
These algorithms can be grouped into categories according to the method used for

segmentation.

For the shake of clarity, from now on, the parts that the object is segmented into
will be called components or segments. The boundaries where components (segments)

meet will be called partitioning boundaries.

2.3.1 Region Growing

With this technique segmentation regions are generated with the expansion of
seed elements (points, triangles, regions) that belong in a part. This expansion takes
place only if certain criteria hold. These criteria depend on the objectives and

constraints set by the segmentation algorithms.

For example, point X in Figure 2.3.1 expands to its neighbors and adds them to
the part it belongs to if the criteria set hold. Subsequently, this process is repeated by
the expansion of these neighbors and the process ends until no other points can be
added.

Figure 2.3.1. Point Z “grows” adding its neighbors to the part it belongs.

Zhang et. al. [ZPKAO2] label the points according to their Gaussian curvature.
Following the transversality reqularity’ [HR84], by thresholding, they label points of high

negative Gaussian curvature as boundary points.

By selecting randomly seed points among the non boundary points they do

region growing. The growing process does not add points which belong to the boundary

! The transversality regularity states that when two arbitrarily shaped surfaces are made to interpenetrate
they always meet in a contour of concave discontinuity of their tangent planes
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or those that are already added to the region. Every non boundary point that is not
examined by the neighboring scheme creates a new part. The region growing process
ends when all non boundary points have been assigned to a part. Points which belong
on the boundary are added to their closest region. Finally regions consisting of small
number of points are merged to neighboring larger regions and the segmentation

process ends.

One of the disadvantages of their method is that the output is heavily dependent
on the choice of the user defined threshold which determines whether a point will
belong to the boundary. Also not all boundaries can be found by using only the
Gaussian Curvature [HR84]. In addition if the points labeled as boundaries do not form

a closed loop then the algorithm will fail in finding the proper parts of the 3D object.

Zuckerberger et. al. [ZTS02] extract the parts of the object with a flooding on the
dual graph of the mesh. Specifically, their segmentation technique starts from a node
traversing the graph using a Depth First or Breadth First Search. This traversal
incrementally collects faces as long as they form a convex patch. If convexity is violated
then a new patch is created from an unvisited node and the traversal is resumed. The

whole process ends when there are no vertices left unvisited.

The main problem with this approach is oversegmentation which the authors

propose to be dealt by merging smaller regions to larger ones according to their area.

Sapidis and Besl [SB95] following a trial-and-error process perform region
growing in range image data which segment them in N quasi-disjoint regions which can

be approximated by N polynomial functions in a way that:

(i) The distance between a point of the region and its associated polynomial is

smaller that a threshold
(i) The total number of data elements that each region contain is maximized
(i) A C'or C? continuity can be enforced between adjacent polynomials

Region growing starts with a seed region to which a polynomial is fitted. This
region grows according to a distance and orientation criterion and the approximating

polynomial of the expanded region is computed.
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The process continues until there can be no further expansion. If the number of
points that do not belong to a region is significant then the whole process is applied

again beginning with a new seed region.

Sorkine et. al. [SCOGLO02] partition the mesh in order to map (flatten) it into a
region of the 2D plane with bounded distortion. The mesh partitioning is accomplished
by region growing. Specifically, they start from a seed triangle and iteratively attach
adjacent vertices as long as the distortion caused by the flattening of its adjacent
triangles does not exceed a predefined threshold and there is no self-intersection in the
2D plane. If no more vertices can be added a new seed triangle is selected and the
process starts again. The main disadvantage of this method is that the segmentation
may lead to the creation of very small patches in order to avoid self-intersections and

over distortion.

2.3.2 Watersheds

Initially, the watershed transformation was used for 2D/3D image segmentation
(see for example [VS91, Pra98]). Mangan et. al. [MW99] was the first to extend it to 3D
meshes. This method has been named this way because it reminds the way that water
fills a geographic surface. As the water floods its basins there will be points where flood
regions meet. These points are dividing and watersheds are placed at that points so as
to divide the regions, see Figure 2.3.2. Thus watersheds segment the geographic
surface into regions. The flooded basins are called catchment basins and they

represent the parts of the object.

For segmentation purposes the watershed algorithm is not applied on the original
3D Mesh but it is applied on a transformed version based on a function f: ®R*—>% that
guide the watersheds to identify the crest lines of the mesh. There is a one to one

correspondence between the minima of f and the catchment basins.

WATERSHED

(@) (b)

Figure 2.3.2. (a) Initial flooding of the geographic surface, (b) Watershed line emerged at a

certain flooding level
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The majority of the algorithms use curvature as the watershed function: In
[PRFO02] various types of curvature has been used like the Gaussian, the Mean, the

Absolute etc. In [MW99] the square root of the deviation from flatness has been used (D
= Jk? +kZ , k1, ko principal curvatures). In [PKA03, PAKZ03] the normal curvature has

been used.

From the algorithmic point of view the extraction of catchment basins can be achieved

in two ways:

1) Steepest Path Following, where a point on the surface follows its steepest path
and slides to a local minima of . This point and the followed path belong to the

part that the minima of the catchment basin define.

2) Flooding, where beginning from the local minima, points travel towards higher

values of f until they reach local maxima or an already labeled point

One of the main disadvantages of the watershed segmentation is that most of the
times it leads to oversegmentation. One solution to deal with this is by finding the
depths of the basins. Areas of shallow basins are merged with neighboring areas of
deeper basins. Page et. al. [PKAO3, PAKZ03] implemented a scheme that diminishes
the problem of oversegmentation. In this scheme, the basins are filled until a certain
point by thresholding and applying 3D morphological operators [RKS00] on the
minimum curvature. Afterwards the basins continue to be filled with a flooding

watershed algorithm using as function the normal curvature.

Zuckerberger [ZTS02] uses the edges of the triangles to flow to the minimum. By
this method a better segmentation is achieved in some cases where the vertices of the
input mesh might not be dense enough to define the catchement basins. In their case
the dihedral angle of adjacent to the edges triangles is used as a watershed function.
The main disadvantage of this method is that due to the small local support of the

dihedral angle oversegmentation can be very intense.
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2.3.3 Reeb Graph Method

Let £ Mc R® - R, where M is a three dimensional surface. The Reeb graph of

the surface M is the quotient space [AA89] of fin M x R generated using the following

equivalence relation:

f(u,) = f(u,)

(U F(u) ~ Uz f(u,)) & . & (2.3.1)
u,,u, lie in the same connected component of

FF(u,)

If for example fis a height function which returns the z coordinate of a point on a
surface M, then the equivalence classes of the Reeb Graph of a surface M are contours

perpendicular to the height direction, see Figure 2.3.3.

4 Height function f(x, y, z) =z

Figure 2.3.3. A torus object associated with the height function f(x, y, z) = z. The two points u1,
u2 on the mesh belong to the same connected component thus (uq, f(uq)), (up,f(uz)) are

equivalent.

One of the main disadvantages of the height function is that it is not suitable for

3D objects since it is not invariant to transformations such as rotation.

Hilaga et. al. [HSKKO01] first presented a suitable function for 3D meshes which is
pose invariant. This function will be called in this work protrusion function, pf, and

represents the magnitude of a protrusion on the Surface.

This function on a point u on M is defined as:

pfv) =] ,9(v.p)dM (2.3.2)

where g(u, p) the geodesic distance of the surface points u, p.
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As can be observed from equation 2.3.2 the protrusion function on a point of a

surface is the sum of the distances from all of the surface points

Figure 2.3.4. Chromatic representation of the protrusion function pf, red color denotes small
values of pf, blue denote large values of pf and green color denotes values in between, the
Reeb Graph of the object is denoted by white while contours with the same value of pf are
denote in black (taken from [HILAO1])

Large values of pf denote that u belongs on a protrusion while small values

denote that u is near the center of the surface, see Figure 2.3.4.

In order to reduce the computational cost of the calculation of the protrusion
function the mesh is tessellated uniformly into N compact patches [HSKKO01, VC04], see
Figure 2.3.5. These patches have also a representative vertex based on a criterion (eg.
Voronoi centroid, geodesic centroid, etc). Using these patches and vertices the

protrusion function can be approximated as follows:

pf(v) = >_g(vbarea(b,) (2.3.3)

where area(b;) is the area of the patch with representative vertex b;.

Figure 2.3.5. The tessellation of a mesh into uniformly distributed compact patches using
Valette et. al. algorithm [VCO04].
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Antini et. al. [ASBPO05] is quantizing the protrusion function in order to achive
segmentation. For example the quantization (in 7 bins) of the protrusion function of a

human model is illustrated in Figure 2.3.6(a).

(b) (© (d)

Figure 2.3.6. (a) Quantization in 7 levels, (b) The Discrete Reeb Graph which corresponds to

the quantization (c) The parts after the simplification of the Reeb Graph (d) The Simplified
Graph (taken from [ASBPO05])

Based on this quantization a discrete Reeb can be constructed. Each of its nodes
represents a connected component which elements have the same quantized value and
two nodes are connected by an edge if the corresponding components are neighbors,
see Figure 2.3.6(b).

Their segmentation objective is to acquire perceptually meaningful components.
As can be seen from Figure 2.3.6(a) the quantization of the Reeb Graph results to
oversegmentation. Antini et. al. managed to merge regions by simplifying the Reeb
Graph, i.e. Graph nodes are merged together based on their topological and Mean

curvature information, see Figure 2.3.6(c), (d).

While Antini et. al. manage to acquire perceptually meaningful components the
boundaries between regions do not reside at areas of concavities where the human

visual system expect them to be located [HR84].

Valette et. al. [VKS05] constructed a segmentation algorithm that also takes
advantage of the protrusion function. Specifically they introduced the set
C,={peM|pf(p)>x} and examine the way it evolves as x decreases. In this
evolution process Cy starts from just containing points of protrusion (e.g. arms, legs,

etc.) and expands towards the center of the object. They have called this process
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protrusion conquest. In Figure 2.3.7 the result of Valette et. al. protrusion conquest is

illustrated, as can be observed segmentation is not done at the concavities of the mesh.

Figure 2.3.7. Results of Valette et. al. Protrusion conquest, different colors denote different

parts

2.3.4 Model based Methods

Wu et. al. [WL97] use the distribution of electrical charge across the surface in
order to achieve segmentation. Specifically they used the property that the density
charge is very low at areas of deep concavities of the surface and very high at areas of
high convexities of the surface. According to the minima rule [HR84], partitioning

boundaries reside on areas of the mesh where minima in the density charge occur.

Assuming that a triangle has a constant density charge Wu et. al. created a set of

linear equations whose solution provide each triangle’s density charge.

The boundary extraction process of a closed surface starts with a node on the
dual graph of the mesh where there is a deep local minimum in the density charge. The
algorithm proceeds to the neighboring node which has the smallest value in density
charge marking it as visited. This process is then repeated until a closed boundary loop

is generated.

A similar process is followed when the object is constructed from single view data
with the only difference that if a boundary node is reached then a different path from the

initial node has to be followed in order to acquire the whole boundary.
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After the boundaries of the object are found they are extracted from the mesh
dividing it into subparts which can be acquired by applying a floodfill algorithm on the
disconnected subgraphs of the dual graph.

One of the advantages of this method is that it uses a global characterization of
the surface to find concavities while most other methods use local characterization like
curvature. This makes it less sensitive to noise. Disadvantages of this method is that it

can only trace boundaries surrounded by concavities.

2.3.5 Skeleton based Methods

Li et. al. [LTHO1] did segmentation using the skeleton of the object. The skeleton
of the object is constructed by performing simplification of the surface using the edge
contraction method. The priority for contraction is the length of the edge to be
contracted. Their simplification process leaves edges that do not have incident triangles
unaltered, they call these edges skeletal. At the end of the contraction process only

skeletal edges are left, whose union is the skeleton of the object, see Figure 2.3.8(b).

The parts of the object are extracted by using a plane which sweeps the mesh
along the skeleton edges. The intersection of the plane and the mesh is one or more
polygon contours. The parts are extracted by examining the way that these contours
alter as the sweep plane moves. For this purpose a parametric geometric and
topological function is defined on these contours. Critical points on these functions

signify parititioning boundaries.

(a) (b) (©) (d)
Figure 2.3.8. (a) The polygonal object, (b) The skeleton of the object , (c) Skeleton with virtual
edges, (d) Segmented model (taken from [LI101])
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In order for this sweeping to be successful the skeletal edges are ordered by
joining them with virtual edges, constructing by this way a skeletal tree, see Figure

2.3.8(c). This tree defines a sweeping space ordering for path following.

A disadvantage of this method is that due to the application of smoothing filters
on the parametric functions there can be cases where some features fail to be

extracted.

Reniers and Telea [RTO08] also proposed a skeleton-based method in order to
achieve segmentation. First they defined the skeleton S of a 3D object Q with boundary
(surface) 0Q . The skeleton is defined as those points in Q having at least two boundary
points at minimum distance these points are called feature points. The skeleton consists
of 2D manifolds and 1D curves. From the skeleton they create the curve-skeleton C by
considering the shortest geodesic curves between the feature points of a point p
belonging to S, let this set of geodesic curves for the point p called /(p). By considering
the loops that are created in (p) they determine whether a point belongs to the curve-

skeleton C as follows:
p € C < genus(l(p)) >1 (2.3.4)

The point p is a normal point of C if genus(l'(p))=1 and a junction point if
genus(l(p)) > 2. The set I at the junction points of C splits the object into components.
In their implementation they find the curve-skeleton by voxelizing the 3D object and
approximating the curve-skeleton with voxels proposing a methodology to find the
feature voxels of the voxelized skeleton-curve and the shortest geodesics between

them.
Using the junction points they define a skeleton-to-boundary mapping as follows:

The set I(p) of a point on C divides the objects surface into a set of components

Comp(p) which are ordered in ascending order in terms of their area.

By considering the sets of components at the junctions of the curve-skeleton they
partition the mesh proposing a flat and a hierarchical segmentation algorithm. In their
flat segmentation algorithm they simply label all the components that are generated by

using the set I'(p).

In their hierarchical segmentation algorithm they define a set F which consists of
the union of all the components that the junction points generate and they create a

hierarchical segmentation S from F based on the area of the components size, i.e. they
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extract from F the components in ascending order of area size and accept them as

segments of S if their area are greater than a scale .

In [MDA+08] the Medial surface of the object [SBTZ02] is used for segmentation,
which is an extension of the Medial Axis Transform of an image [SBTZ98]. First the
object is voxelized using a fixed resolution. Afterwards the voxelization is thinned using
the Average Outward Flux (AOF) of the Euclidian distance Transform’s Gradient field on
each voxel x [SBTZ02] defined as:

i(vo (x,).n;) (2.3.5)

i=1

AOF(x) =

3|—\

where n is the number of the neighboring voxels of x and n,is the outward normal from

the voxel x to voxel x;. The value of AOF is approaching a negative value around the
medial surface points and is close to zero elsewhere. Thinning is done by recursively
removing all the voxels that are close to zero and do not affect the topology of the
surface [SBTZ02]. Afterwards they segment the medial surface using [MBA93]. Then
they readjust the resulting segments into larger more meaningful parts. Finally they
segment the boundary voxels of the voxelized mesh according to their proximity with the

voxels of the segmented medial axis.

2.3.6 Clustering Methods

Shlafman et. al. [STK02] use the k-means clustering algorithm in order to achieve

segmentation. Their segmentation scheme clusters triangles and proceeds as follows:
(i) Compute the distances between each triangle pair
(i) Compute the triangle cluster representatives
(iii) Assign all other triangles to their nearest representative

(iv) Update the representatives by minimizing the sum of distances between the

triangles belonging to the cluster and the representative.

Steps (iii) and (iv) are iterated until there is no further update or a predefined number of

iterations is reached. The final computed clusters are the parts of the object.
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The distance function between each pair of adjacent triangles is a weighted sum
of the geodesic distance of the barycenters and the angle between the triangles, i.e for

two triangles F;, Fj:

dist(F;,F;) = o geod _dist(F,,F;)+(1- ) (1- cos?(a)) (2.3.6)

where a is the dihedral angle of F;, Fj. The distance between two faces that are not

adjacent can be computed by finding the shortest path between them.

Katz et. al. [KT03] is using a fuzzy k-means algorithm to segment the object. As
in Shlafman et. al. [STKO02] their algorithm is based on clustering triangles. At each pair

of triangles F;, F; a distance measure is defined as:

d _dist(F,F, dist(a.
Dist(F,F) = 5 I204=INEE) g _ 5 ana disa,) 2.3.7)
avg(geod _dist) avg(ang_dist)

where:
e geod_dist(F;, F;), the geodesic distance between the barycenters of F;, F;

e ang_dist(a;) = n(1-cos(a;)), where n = 1 for concave angles and very small for

convex angles, aj;j the dihedral angle of F;, F;.
e avg(), the average of all the values

They first consider binary clustering, i.e. the classification of the triangles into
two clusters. Each triangle of the mesh will belong to a cluster according to a fuzzy
membership function, which denotes the likelihood of a face to belong in one of the two
clusters. This function is based on the distances of the triangle from the representatives

triangles of each cluster which are iteratively updated by a fuzzy k-means algorithm.

After the convergence of the k-means algorithm by thresholding appropriately the
membership function they simulate hard-clustering, acquiring three groups, i.e. two
groups with triangles belonging to only one cluster (part) and a third fuzzy group which
contain triangles that are not certain to belong in a specific part . See Figure 2.3.9 for a

visualization of this grouping.
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Figure 2.3.9. Katz et. al. fuzzy clustering. Blue and Green denote parts and Red denotes the

fuzzy unclassified region.

In order to classify the members of the fuzzy group to one of the parts of the
object a minimum cut algorithm [CLRSO01] is applied on the dual graph of the mesh
belonging to the fuzzy group. The weight applied on the edges of the graph is small on
concavities and large on convexities. Thus the minimum cut algorithm bisects the fuzzy
group in deep concavities. Triangles from the fuzzy group are assigned to a component

according to which side of cut they belong.

They have created also a hierarchical structure based on this decomposition.
Each node of the hierarchical tree denotes an unsegmented area that is segmented in

two new nodes with their decomposition algorithm. The initial node is the whole object.

They also generalize this binary hierarchical clustering into a k > 2 hierarchical
clustering. The k clusters are computed automatically by an iterative algorithm which

maximizes the minimum distance from already assigned cluster representatives.

Sander et. al. [SWG+03] followed also the k-means idea to do partitioning.
Specifically, they have divided their partitioning technique in two phases, assuming that

an initial estimation of seed triangles is present.

Phase 1: All selected seed triangles grow simultaneously using the Dijkstra
algorithm on the dual graph of the mesh with edge weights that are dependent on the
geodesic distance of the dual triangles and the angle between the average normal of
the already generated part and the triangle added. This phase stops when all triangles

are labeled, belonging to distinct parts of the object.

Phase 2: The seed triangles are refined by starting from the partitioning
boundaries using again the Dijkstra algorithm on the dual graph of the mesh with
weights that depend only on the geodesic distance of the triangles. The last face

reached by the Dijkstra algorithm becomes the new seed.

Processes 1 & 2 are repeated until there can be no additional refinement of the

seed triangles.
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The initial seed triangles are generated incrementally by applying phases 1 and 2
initially for one seed. A new seed is added at the end of process 1, this new seed is the
last assigned to a part during region growing. When the required number of seeds are

generated phases 1 and 2 are repeated until convergence.

Garland et. al. [GWHO01] propose a hierarchical clustering methodology suitable
for applications that require close to planar parts. Specifically they do edge contraction
on the dual graph of the mesh. With each edge contraction on the dual graph a new
node on the hierarchical structure is generated whose children are the nodes incident to
the edge and the two areas that represent the children nodes are grouped into their
parent common cluster. The edge contraction cost is based on a planarity, orientation
bias and shape bias measures. The contraction sequence is settled by a priority queue
which sorts the dual edges of the dual graph according to the contraction cost. The
hierarchical structure leaves are the faces of the mesh and at its higher levels the nodes
represent areas of triangles (parts of the object) which are grouped together by edge

contraction.

Attene et. al. [AFS06] used the same hierarchical clustering to classify the mesh
triangles into a clusters that can be approximated by a plane or sphere or cylinder
primitive. The contraction cost of a dual edge is the minimum of the errors generated
after fitting the plane, sphere and cylinder primitives to the triangles of the merged
regions. The primitive corresponding to the minimum fitting error approximates the

unified cluster.

Gelfand and Guibas [GGO04] base their hierarchical clustering technique on
slippable motions. These are rigid motions which, when applied to the shape, slide their
transformed transformed version against the stationery version without forming any
gaps. This happens when the instantaneous motion at each point is tangent to the mesh
at x. A kinematic surface is a surface which has a slippable motion. A slippable
component is a collection of vertices from the mesh which can be approximated by a
kinematic surface. Their algorithm segments the input surface into a set of slippable
components using a hierarchical clustering technique similar to [GWHO01] on the point

set of the mesh.
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2.3.7 Spectral Analysis

The spectral analysis method uses the eigenvalues of properly defined matrices

based on the connectivity of the graph in order to partition a mesh.
Let G be a connected graph with weights w. Its Laplacian matrix is defined as:
L=D-A,

Wi, if nodes i, j are connected

where A=[a;] = { , and D is a diagonal matrix with

0, otherwise

D=[d,]= > w,

JjeNeighbors(i)

The eigenvector y corresponding to the second largest eigenvalue of the
Laplacian L can be used to partition the graph G into two equal parts. Specifically, this

can be done by thresholding the values of y with their weighted median.

The above partioning algorithm was one of the algorithms used by Karypis et. al.
to achieve a hierarchical partitioning of a Graph into k subsets with approximately equal
number of nodes. A mesh can be seen also as a graph. Its nodes and edges are the

vertices and edges of the mesh respectively.

Karypis et. al. [KK95] algorithm (MeTiS [KK98]) has been used by Karni et. al.
[KARNOO] to partition a mesh. They used this segmentation for compression which was

accomplished by doing spectral analysis on the normalized Laplacian D™'L.

Liu and Zhang [LZ04] used spectral analysis on the dual graph of the mesh. They
define an affinity matrix W with elements 0 < w; <1 denoting the likelihood that faces i, j
can be clustered into the same part. These weights are created using the distance

function of Katz et. al. [KT03] (see section 3.6). They also normalized W to W, = D’

"2WD™2, where D is a diagonal matrix defined as d, = Z w; .
jeNeighbors(i)

Then they constructed a normalized matrix Q using the k largest eigenvectors of
W, and apply the k-Means clustering on the row vectors of Q using the standard
eucledian distance. Each of the above clustered vectors correspond to the faces of the

mesh.
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One of the disadvantages of their clustering method is that they emphasize
mostly in concavity. This means that they segment sometimes shallow concavities

making the quality of segmentation of some areas low.

Zhang and Liu [ZL0O5] use the affinity matrix as in Liu and Zhang [LZ04] to
classify the mesh triangles into two parts using the same methodology as Shi et. al.
[SMOO0] in their Normalized Cut algorithm for image processing. In order to lower the
complexity the affinity matrix is partially defined. Specifically it is constructed from the
distances of two faces (belonging to different parts of the mesh) from all other faces.
The two leading eigenvectors of the affinity matrix are extracted using Nystroms
[FBCMO04] method and are used in a line search algorithm to find the most salient cut
which bipartitions the mesh. Based on the salience theory of Hoffman et. al. [HR97] they

define a measure to repartition the resulting parts in a hierarchical manner.

Liu and Zhang [LZ07] use two kinds of spectral embeddings in order to project
the 3D mesh onto the 2D plane. The first embedding uses the Laplacian matrix and it is
used to enhance the structural characteristics of the mesh (protrusible parts) and the
other embedding uses the minimum curvature information of the vertices and enhances
the geometrical characteristics of the mesh (concavities). When the object is projected
on the 2D plane using these spectral embeddings the outer outline of the projection is
extracted constructing by this way a curve, which they smooth and simplify deriving its
closed polygon approximation. By using convexity measures on this polygon they define
a criterion on whether the mesh that was projected should be further segmented. If the
object should be further segmented they find, using inner distances, two points on the
polygon which belong to two different parts of the object. Using these points they
approximate their corresponding faces on the mesh and apply the segmentation

algorithm followed in Zhang and Liu [ZL05] using these two faces.

2.3.8 Explicit Boundary Extraction Methods

Lee et. al. [LLS+04, LLS+05] concentrated on the explicit extraction of the
segmentation boundary. Specifically, they threshold minimum negative curvatures
using hysteresis thresholding in order to acquire high feature areas. Afterwards they do

thinning on the high feature points extracting their skeleton. By removing the branching
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points of the skeleton graph a set of non-branching feature contours are acquired.

Some of these contours will be selected in order to segment the mesh.

This selection is done by choosing the most central and long boundary contour
using the normalized protrusion function of Hilaga et. al. [HSKKO1]. This contour is then
closed by finding the shortest path on the mesh using as edge cost a weighted

combination of :

¢ A Distance function which is small for points that are far away from the contour.

This function drives the contour on the other side of the mesh

¢ A Normal function which is small for normals that face in opposite directions from

the contour. This function also drives the contour on the other side of the mesh

e A Centricity function which forces the contour to be perpendicular to the medial

axis of the mesh
e A Feature function which drives the contour near feature points
Sometimes the contour can also be closed manually by 2D line drawing on the mesh.

The validity of this contour is checked upon the saliency of the segmented part
[HR97]. Specifically the part segmented by the selected contour has to pass a salience

test based on its relative size, boundary strength and degree of protrusion [HR97].

If the contour pass the salience test then it is further refined using a geometric
snake. Thus a smooth partitioning boundary is extracted. This partitioning boundary

scissor the mesh into two parts. Figure 2.3.10 illustrates their method.

The same process is then repeated on each of the extracted parts in order to acquire

further partitioning.

Minimum curvatures Feature contour extraction Feature contour completion

s ||
e
o

rdd *"'3

Feature
1 contour [
selection

Scissoring result Snake movement

accept | Part salience
test

I

treject

Figure 2.3.10. Lee et. al. Boundary Extraction method (taken from [LEE05])
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One of the main advantages of their method is that it produces smooth and
closed partitioning boundaries accepted also by a salience test. Sometimes though, the
accepted contour may not cut the mesh into meaningful components with a

consequence of the need of a user to cut the mesh manually.

2.3.9 Volumetric Methods

Shapira et. al. [SSCOO05] defined a scalar function on the mesh which they call
the Shape Diameter Function. Specifically its value at a point p on the mesh is equal to
its neighborhood-diameter. The neighborhood-diameter of a point on the mesh is the
average of the distances of a set of rays from the surface cast in opposite directions

from its normal, see Figure 2.3.11. This function is further smoothed by local averaging.

Figure 2.3.11. The normal N of point p and the rays cast from it.

The shape diameter function takes a characteristic value for different parts of the
object and changes smoothly when there is a transition between them. Thus different
parts can be segmented by finding an appropriate separating value which creates an

iso-contour on the surface separating the mesh parts.

Kim et. al. [KYLO5] also created a Volumetric method to partition the object.
Specifically they first did a Voxelization of the object and then they applied the opening
morphological operations using the ball-shaped structuring element. Their aim is to

extract the convex parts of the object.
In order to achieve this they have created a three stage decomposition scheme.

At the first stage they do an initial decomposition of the volumetric object by
applying the opening morphological operation using the ball-shaped structuring

element. Its radius is chosen so that parts with maximum convexity are extracted.

The part that is extracted from the opening operation is called the body class and the

parts that belong on the complement of this operation are called the branch class, see
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Figure 2.3.12. They also apply a post processing scheme in order to discard very small

branch parts and to straighten their boundaries.

Body Class

openina
parts
\ ‘ ) (N

Complement
of opening . Branch Class

L SR N
Figure 2.3.12. Applying the opening morphological operator to the bunny voxelized object
(taken from [KYLO5])

-

At the second stage they apply recursively the same morphological operation on
the already extracted parts using as rule that a part belonging to the branch class
should be further segmented if at least two parts are generated and each of them have

only one adjacent part, see Figure 2.3.13.

)

“ .

Figure 2.3.13. Segmentation of the ears of the bunny object. Three new components are

generated and two of them are adjacent to only one part (taken from [KYL05])

As a final third stage they merge together parts with similar convexities, see

A N
O, ©

% | -~

Figure 2.3.14. Merging parts with similar convexities (taken from [KYLO0S5])
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One advantage of their decomposition scheme is that it can be applied to
practically all of the 3D models due to the voxelization, which treats all objects in the
same manner. A disadvantage of their method is that due to the voxelization resolution
some parts that should not be connected might become connected, thus producing an

erroneous segmentation

2.3.10 Critical Points

Algorithms that follow this method use critical points defined on the mesh to

guide the segmentation process.

Katz et. al. [KLTO5] presented a segmentation method based on critical points
defined on the mesh. They first transform the mesh into a pose invariant representation
using the multi-dimensional scaling method (MDS) [CC94]. Then they find on this
representation critical points. These critical points are local maxima of the protrusion
function (section 2.3.3) that belong on the convex hull of the representation, see Figure
2.3.15(b). Afterwards they create a surrounding sphere of the representation and use it
to mirror its points so that vertices of the core become external points of the sphere, see
Figure 2.3.15(c). The points that belong on the convex hull of this mirroring consist the
central part of the object which they call the core see Figure 2.3.15(d). These points and
their incident triangles are extracted isolating all the critical points (with the exception of

those that are close to each other).

(@) (b) (©) (d)

Figure 2.3.15. (a) The original Model, (b) The pose invariant representation of the model and its
critical points (red colour), (c) Mirroring of the pose invariant representation, (d) The extracted

core of the object (Red color).
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At the end the segmentation is further refined by a graph cut method that cuts on

the concavities of the object similarly to [KT03].

This process is repeated hierarchically to acquire further levels of detail as was done
also in [KTO03].

Zhou et. el. [ZH04] used also critical points in order to achieve segmentation.
These critical points are local extremum and saddle points of a function defined on the
points of the mesh. This function is defined as the geodesic distance of a point from a
reference root point which can be selected either manually or automatically (it is usually

placed at an extremity of the object).

The local extremum points are sorted in descending order according to their
geodesic distance. Afterwards by traversing this ordered list a shortest path graph is
constructed starting from each of the extremums. The construction of this graph stops
when a saddle point or an already labeled point is found and all the unlabeled points of
the graph are labeled with a part label number. At the end only vertices belonging to the
main body will remain unvisited, so a label number is also given at all of these points,

see Figure 2.3.16.

Some disadvantages of their technique are that it only segments manifolds of
genus 0, it is susceptible to noise, since some critical points may be erroneously found

on noisy meshes and the decomposition result depends on the choice of the root vertex.

(b)

(c)
Figure 2.3.16. (a) The mesh to be segmented, (b) The Extremum (red), Saddle (green) points

of the mesh, (c) Labeled segmented parts after the application of their segmentation scheme

(here color is used to denote the labeling).
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Lin et. al. [LLLO7, LLLO4] also use critical points on the mesh. They call them
salient representatives. These representatives are local maximums of the protrusion

function defined on the DCG of the mesh. More formally:

r salient Representative < Yu e Wr, pf(r) > pf(v) (2.3.8)

where W, a geodesic neighborhood of r and pf the protrusion function. Figure 2.3.17(a)

shows these salient representatives on a 3D Mesh.

Each representative create L geodesic zones called locales which have the

following definition:

L*={xe <D(v)< (x+1)e, x {0, ...,L-1} (2.3.9)
where D(u) a modified geodesic distance from u to the salient representative and e the
width of the locale zone, see Figure 2.3.17(b).

Since the locales of various representatives intersect each other a Base K is introduced

to constrain the locales and is defined as :

K={v|VYv €V, pf(v)<thr} (2.3.9)

Wt
M
e o
5N
% R
¥ 7
(@) ()

Figure 2.3.17. (a) The salient representatives of the above mesh colored in pink, (b) The

locales generated by the representative colored in pink

Where pf the protrusion function value of a node in V, and thr, a user defined
threshold, see Figure 2.3.18. Each of these trimmed locales contains the boundary of

the protrusion represented by the salient representative.
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Figure 2.3.18. The red region is the Base and constrain the locales of Figure 2.3.18 and the

output are the locales shown on the right of Figure 2.3

A border function is then defined based on these locales which identifies those
containing the border of the protrusion. After finding these locales the minimum cut
algorithm of Katz et. al. [KT03] is used to separate the protrusion from the rest of the

object.

An advantage of their method is that it can work on noisy meshes also. A

disadvantage of their work is that it uses several parameters that are not fixed.
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Chapter 3

Proposed 3D mesh segmentation algorithm

After a thorough study of the presented methods of Chapter 2 as well as from
experimental results in some of them the critical points methods was adopted in this
work. This choice was made because it was assessed that the results produced with
this method were more meaningful in comparison with the results produced by other
methods. This can be ascribed to the fact that the critical points methods utilize the
human ability to distinguish the main particulars of an object (protrusible parts, critical
and salient points, boundaries etc.) and to introduce this perception suitably into the

algorithm.

Therefore in this dissertation a new segmentation algorithm that belongs into the
critical points methods will be presented. It produces high quality segmentation results

and is very competitive in comparison to state of the art segmentation algorithms.
The contribution of the presented work is twofold :

i. A novel way to trace the partitioning boundaries of the 3D object using closed

boundaries constructed with the aid of a distance function is presented;

ii. A novel algorithm for the core approximation of the 3D object is introduced.

3.1 Proposed Surface Segmentation Methodology

In this section the proposed surface segmentation methodology is going to be
presented. The whole philosophy is based on the premise that the 3D object consists of
a main body and its protrusible parts. For example in Figure 3.1.1 several 3D objects
are partitioned in this manner, all of them consisting of a main body and protrusible

parts.

39



Figure 3.1.1. 3D objects consisting of a main body (coloured in red) and protrusible parts

The proposed segmentation methodology goal is to extract all of these
components. Figure 3.1.2 illustrates the flowchart of the proposed surface

segmentation.

The input that the algorithm accepts is a 3D mesh representing a 3D manifold. In
the discrete case a mesh represents a 3D manifold when each of the edges of a triangle

in the mesh is incident with at most one other triangle. The procedure is as follows:

(i) Initially the salient points of the mesh are extracted; these points

characterize the protrusions of the mesh.

(ii) The salient points are further grouped according to their geodesic
proximity where each cluster represents a main component of the
object and each of them is assigned a unique representative salient

point.

(iif) Next the core (main body) of the mesh is approximated using the
minimum cost paths that the aforementioned representatives create

with each other.
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Input: A 3D mesh

Salient points extractior>

Salient points grouping

Core approximation

ANAWANA

approximation for a
representative salient point

Partitioning boundary
refinement

Partitioning boundary >

AA

Repeat until all representative salient
points have been addressed

(—

Output: Final segmentation

/\
\

Figure 3.1.2. The flowchart of the proposed surface segmentation algorithm
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(iv) In the sequel the boundary between the core and each of the
protrusible parts (Partitioning Boundary) is approximated using closed
boundaries which span the area containing the true partitioning

boundary.

(V) Finally the approximated partitioning boundary is refined using the

minimum cut algorithm of Katz and Tal [KTO3].

All of the above mentioned stages of the proposed segmentation methodology

will be detailed in the following sections.

3.1.1 Salient points extraction

The salient points of the mesh M reside at the tips of the protrusions. In order to
find them the protrusion function pf (see section 2.3.3) will be used. As mentioned in
section 2.3.3 this function receives low values at the center and high values at the
protrusible parts of the 3D object represented by the 3D mesh. Thus, it is natural to

search for the salient points at the local maxima of the protrusion function.

In order to find the local maxima of the protrusion function the local areas in the
mesh should be defined so as to search in them the local maxima of the function.

Specifically for each vertex v € M a neighborhood of vertices N, is considered.
The neighborhood N, can be either:

i. a k-ring neighborhood defined as the set of vertices within k edges away from vertex
v,
ii. a geodesic neighborhood defined as the set of vertices for which the geodesic

distance from vertex v is less than a threshold. This threshold is called the radius of

the geodesic neighborhood

In this work the geodesic neighborhood will be used with radius \/5-1 0-area(M)

as in [LLLO7]. The geodesic neighborhood is computed by using the Dijkstra algorithm.

Formally, a salient point v € M is defined as:
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pf(v) > pf(v,) Vv, eN,
v is a salient point < (3.1.1)
pf(v) >t pf normalized in [0,1]

prot

Definition (3.1.1) ensures that the salient point v will reside at the tip

(pf(v)>pf(v,), Vv eN,) of a protrusion (pf(v)>t,, ). The threshold ¢ is

prot
experimentally defined and will be set to a constant value in the experiments section
(Section 3.2). Figure 3.1.3(a) illustrates the salient points found in several objects using
definition (3.1.1).

3.1.2 Salient points grouping

The proposed mesh segmentation algorithm aims to extract the meaningful parts
of the object. It often happens that the extracted salient points belong to sub-parts of the
objects. For example in Figure 3.1.3(a), there exist salient points that correspond to
fingers in the ‘human' model, as well as ears, horns and nose in the ‘cow' model and
toes, head, nose in the ‘dinopet’ model. Since the proposed algorithm uses the salient
points to extract the protrusions of the object, it is necessary to group them, each one of
the groups representing a single part of the object. Thus, given the example of Figure
3.1.3(a), the salient points in each of the hands of the ‘human' model need to be
gathered in one group in order to represent its arms, the salient points on the head of
the "cow' model should be gathered in one group in order to represent its head and the
salient points on the feet and head of the ‘dinopet’ model should be gathered in groups

in order to represent the objects feet and head respectively.

The salient points that are required to be grouped are those which are close to
each other in terms of geodesic distance In order to achieve this grouping, we use half

of the mean of the geodesic distances between the salient points as a threshold T, and

group the salient points for which the geodesic distance is less than T.
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(b)

Figure 3.1.3. Example of 3D meshes (‘human’, ‘cow’, ‘dinopet’) with their corresponding salient

points at the (a) extraction stage (red dots) and (b) Grouping stage - each color represents a different

group

Formally, let assume that S={s,,i=1...,Ng} be the set of the salient points of

the mesh, then the threshold T is defined as :

Ns—-1 Ng
S,,S,;
220 (3.1.2)
5 Ng(Ns—1)

where N denotes the number of the salient points and g(s;,s;) denotes the geodesic

distance between the salient points s, and s;.

A group C of salient points is defined as:

C={s eS:Vs, eC,g(s,s;) < Ts} (3.1.3)
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The salient point with the highest protrusion value is chosen as a representative

of each group C, i.e. Rep(C) ={s; e C:pf(s,) > pf(s,),Vs, € C}.

The efficiency of the proposed grouping method in representing the main parts of

the ‘human’, ‘cow' and ‘dinopet’ models is shown in Figure 3.1.3(b).

3.1.3 Core approximation

The core approximation is the process where the main body of an object is
approximated. An algorithm which approximates the main body of the object is the one
that can acquire all the elements (vertices or faces) of the mesh (representing the
object) except those that belong to the protrusions of the mesh. These elements should

separate all the protrusions from each other.

In Katz et. al. [KLTO05] this is achieved by spherical mirroring of the pose invariant
representation of the mesh. When they cannot achieve the separation entirely, they

proceed in core extension until all features are separated.

In Lin et. al. [LLLO7] a simple thresholding of the protrusion function is used, i.e.
they define that the core of the mesh are the faces whose value of protrusion function
(defined on the centroids of the faces) is lower than a predefined threshold. However,
this thresholding is not reliable since it might lead to a significant overestimation or
underestimation of the main body. In Figure 3.1.4 Lin et. al. [LLLO7] core approximation
is illustrated on the ‘human’ and ‘cow’ 3D objects. It can be observed that the main

component (core) of the objects is significantly underestimated.

Figure 3.1.4. The core approximation of Lin et. al. on the ‘human and ‘cow’ 3D objects. The
triangles representing the core component are coloured in red
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In the proposed algorithm, the core approximation is addressed by using the

minimum cost paths between the representative salient points. Let us assume that

S- {§.,i=1...,N.} be the set of representative salient points, where N, denotes the
number of clusters found in section 3.1.2 and §, the representative of the i group.
Also, let P = {F’,j,i,j € {1,...,NC}} be the set of all minimum cost paths of the points of S,

where P, denotes the minimum cost path between §,, ;.

The key idea of the proposed core approximation algorithm is to expand a set of
vertices in ascending order of protrusion function value until the expanded set touches a
certain percentage of all elements of P. The motivation of this approach stems from the
fact that the minimum cost paths cover a significant amount of the protrusible parts, thus
by expanding a set of vertices by this way gives a guarantee that it will reach the
protrusible parts and cover also an area inside them. The pseudo-code for the core

approximation algorithm is shown in Table 3.1.1.

First, the vertices of the mesh M are inserted in a priority queue PFHeap; in
which the vertices with the minimum protrusion function inserted first. The vertices of
the core approximation are stored in a list, named CoreList. The algorithm proceeds by
extracting points from the priority queue which incrementally expand CorelList. Every

point extracted is examined whether it belongs in P. A path F; in P remains active if
the ratio of the number of vertices in the path P, which have been visited during

expansion over the total number of vertices is less than t,, where t, has been

experimentally defined. This threshold denotes the aforementioned percentage of the
points of the minimum cost path that the core approximation can touch. Using this
threshold it is expected that the core approximation will cover even slightly the

protrusible parts that are traversed by the minimum cost path traces. A salient point

S, e S remains active if 3P, for some j e {1.,N;}=i:F; active. A vertex v of the Mesh

CanBeAdded in CorelList if the nearest salient point in S is active. StopGrowing

becomes ‘TRUE' when all salient points become non-active.
The proposed core approximation method has two main advantages over [KLTO5]:

i. There is no need to do multidimensional scaling, which is a time consuming

process, in order to extract the core. Instead only the minimum cost paths are
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used in order to check whether the core has expanded sufficiently. This implies

far less complexity;

oo hwN 2

14:

15:

16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:

28:
29:

30:

31:

for all vertices u e M do
insert u into PFHeap with priority pf(u)
end for
StopGrowing = false
while !StopGrowing do
pop a vertex u from PFHeap
if u CanBeAdded then
CorelList.add(u)
end if
forallF, e P do

if P, .active then
if u € F,then
increment P, .counter
P,.counter
/_ >t_then
P, SizeOfPath
P, .active = false

end if
end if
endif
end for

forall s, € S do
if s;.active then
si.active = false
forall s; € §—{§,-} do
if P, .active then

s .active = true
end if
end for
end if
end for

//IStopGrowing becomes true if all si become
non active
end while

Table 3.1.1. The pseudo-code of the proposed core approximation algorithm
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i. We have introduced a percentage of minimum cost path traces that should be
covered for the termination of core expansion. Those traces span the protrusible
parts at most. Thus, the selection of a percentage of the traces provides a high
confidence that the core points will cover areas of the protrusible parts or being
very close to the neighboring areas in which the real boundary is situated.

Several examples are given in the experiments section (section 3.2)

Figure 3.1.5. Examples of core approximation for the 3D objects ‘human’, ‘cow' and ‘dinopet’.

The vertices representing the core are coloured in yellow

Figure 3.1.5 illustrates the proposed core approximation on the ‘human’, ‘cow
and ‘dinopet’ 3D objects. As it can be observed, the algorithm produces consistent
approximation of the core and its boundaries are near the actual boundaries identifying

the initial approximation of the partitioning boundaries.

In general, it can not be guaranteed that the core approximation overlaps exactly
the partitioning boundaries. This happens because the minimum cost paths reside
mostly in the protrusions. Thus, a further step is required that can detect the partitioning

boundaries.

3.1.4 Partitioning Boundary Detection

The partitioning boundary is the boundary between a protrusion and the main
body of the mesh. It is considered that in the area that is enclosed by the desired

boundary between the protrusion and the main body, an abrupt change in the volume of
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the 3D object should occur, see Figure 3.1.6(a). The goal is to detect this abrupt
change. To accomplish this, we construct closed boundaries which span the area
containing the partitioning and are defined by a distance function D associated to a
salient representative of the group which represents the protrusion, see Figure 3.1.6(b).
The abrupt change of volume is detected by examining the closed boundaries

perimeter.

/ \

! ‘Partitioning{ :
| Bounda

Area containingf 4 > '\ N

the Partitioning | Ly
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1
1

y

(@) (b)

Figure 3.1.6. (a) The area containing the Partitioning boundary (coloured in black) separating
the foot of the ‘cow’ 3D object from the main component is coloured in red, (b) The closed

boundaries which span the area where the partitioning boundary lies are shown.

For each representative salient point S, the distance function D is defined for
each vertex v of the mesh as the shortest distance between v and S. The shortest
distance is computed using the Dijkstra algorithm with source § and cost for each edge

(u,v) of the mesh denoted as :

length(u,v) LAes prot(u,v)

cost(u,v)=06
avg_length avg_ prot

(3.1.4)

where prot(u,v) = | pf(u)- pf(v)| and avg_length, avg_prot denote the average values

of the length and protrusion difference of the edges of the mesh, respectively. This

distance function was introduced in [LLLO7]. A proper balance between the two terms of
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equation (3.1.4) creates a closed boundary whose approximating plane is nearly
perpendicular to the principal direction of the corresponding protrusion. In this work, &

is set equal to 0.4.

The closed boundaries which are used in the proposed algorithm are constructed
by interpolating on the edges of the mesh the iso-contour generated by setting a

constant value D, on D. The iso-contour C,_ intersects the edge (u,v) of the mesh if

(D(u)-D,)(D, - D(v))>0 and the intersection point is found by linear interpolation and

is defined as v, =(1-A)u+Av, where A:DC_—D(U). Figure 3.1.7 shows the
D(v) - D(u)
interpolation process.
D(u)
Vint | Cp.
D(v)

Figure 3.1.7. Interpolation process

By tracing all the triangles which are incident to all the intersecting edges, a
linear approximation of this iso-contour can be constructed which in most of the cases is
a single closed boundary. In the case that more than one closed boundaries are
generated, we choose the one with the largest perimeter. The perimeter of a closed
boundary is defined as the sum of the length of the edges which are contained in the
closed boundary. In Figure 3.1.8, an illustration of a closed boundary constructed by the

method described above is shown.
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Figure 3.1.8. The closed boundary approximating an iso-contour of the distance function D

As already mentioned in section 3.1.3, the core approximation has its boundaries
near the actual boundaries of the distinct parts of the model. Taking advantage of this

an area containing the partitioning boundary can be created. Specifically, this area is
defined by the arithmetic interval [(1—d,) D qmin:(1+d,) Dgremin ] » Where D ... denotes

the value of the distance function between the nearest point of the core approximation

and the salient representative S, d,, d, denote the extent of the interval (0<d, <1,

d, > 0) and have been defined experimentally, see Figure 3.1.9(a).

(1+d,)D

coremin

coremin

(1-d,)D

(a) (b)

Figure 3.1.9. (a) The area defined by the arithmetic interval [(1—d,;) Dy qmin:(1+ d,) Dgremin ]+ (D)

The closed boundaries sweeping the area of (a), the approximation of the protrusion boundary is

shown in blue
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For the approximation of the partitioning boundary, the area defined by the
aforementioned arithmetic interval is swept by a predefined number /. of closed

(d,+d,)D
/

per

coremin

boundaries in fixed steps equal to e =

, see Figure 3.1.9(b). Sweeping

of the area will be terminated when the change of the perimeter between successive

closed boundaries will be greater than a threshold. Specifically, let per, be the

perimeter of the /" closed boundary. The following ratios are defined:

LU per,., > per,
per;
r = d="100, (3.1.5)
Peh per,., < per,
peri+1

These ratios represent the change of the perimeter between successive closed

boundaries. The algorithm searches for the r, which is the first ratio that is greater than

a threshold r,_, that is defined experimentally and sets the k" closed boundary as the

partitioning boundary. If such a ratio cannot be found, the algorithm finds the maximum

ratio r, and sets the k" closed boundary as the partitioning boundary. In this way,

kmax max
we detect the aforementioned abrupt change in the volume of the object at the

boundary between its main body and the protrusion.

Initially, in the proposed methodology to approximate the partitioning boundary
the simple solution is chosen in order to select the representative of the group, defined
in section 3.1.2, as the source point from which the distance function D is computed.
This choice may lead to the creation of skewed closed boundaries near the real
boundary of the protrusion. This has the consequence that the algorithm may not be
able to trace the real partitioning boundary properly as it will largely deviate from it. See

Figure 3.1.10(b) for a demonstration of this problematic case.
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Figure 3.1.10. (a) The original 3D model ‘ant’, (b) Skewed closed boundary generated by the
salient representative, indicated by an arrow, of the group denoted by the red spheres, (c) The

closed boundary generated by the indicated refined representative

In the sequel, it will be presented how to find a proper refined representative §,

in order to be used instead of the representative of the group. The proper refined
representative should create closed boundaries that are parallel to the protrusion

boundary like the one presented in Figure 3.1.10(c).

In order to find the proper refined representative in a group of salient points we

proceed as follows.

First, we find the vertex s_, of the mesh for which the distance to all of the
salient points in the group is minimal. Then, we find the point c_, of the core
approximation with the minimum geodesic distance from s_,, . The geodesic distance of

s, and c_. is denoted as d_ . Afterwards, the point p,, . is found which is the first

min

point on the minimum cost path from s, to c_.. for which the geodesic distance from

S, is greater than 0.3d_ . Next, the iso-contour C is considered, which is

min Pthres

generated by the protrusion function by setting it to the constant value p, ... The part of

the iso-contour which belongs to the protrusion of the object being examined is close to
the salient points of the group and in most of the cases its best fit approximating plane

is nearly perpendicular to the principal direction of the protrusion. Cpms is approximated
using the same interpolating technique discussed above.

Next it is taken into account only the part of the mesh which contain s_,, and is

n

constrained by Cpm,es for which we compute the protrusion function. The refined
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representative §._ is the point of the constrained mesh with the minimum value of the
protrusion function.
In Figure 3.1.11 the process of finding the refined representative is illustrated.

The salient points that belong to the group representing the head are the red spheres.

The yellow sphere represents s, and the red line approximates the iso-contour C

Pthres

(the red line is generated by the triangles that Cpms intersects). The refined

representative §, is the point of the constrained mesh (coloured in blue) with the

minimum protrusion value and is illustrated by the green sphere.

Figure 3.1.11. Refined representative selection (green
sphere)

3.1.5 Partitioning Boundary refinement

The partitioning boundary detected in section 3.1.4 is an iso-contour generated
by the distance function D approximating the true partitioning boundary. In most of the
cases this approximation is rough meaning that it deviates from the true partitioning
boundary. As mentioned in section 3.1.4 the partitioning boundary is delimited at the
area where there is a sudden change in the volume between the main body and the
protrusion. Also according to Hoffman and Richards theory [HR84] it resides at the
concavities of the object. The partitioning boundary approximation described in section
3.1.4 is not constrained to the concavities where the true partitioning boundary passes,
thus there is a need to refine the partitioning boundary approximation so that it passes

also through the concave regions of the 3D object. In Figure 3.1.12(a) the initial
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boundary approximation, found by applying the methodology of section 3.1.4, is shown.

As it can be observed it does not pass through the concavities of the object as it should.

In order to achieve this, we use the minimum-cut methodology as in Katz and Tal
[KTO3]. Specifically, a flow network graph is constructed using the dual graph of the
mesh. In order to construct the network, three regions should be defined. Specifically,
we define a region A containing the triangles of the protrusible part of the mesh, a
region C containing the partitioning boundary and a region B containing the faces of

the rest of the mesh.

Initial boundary | .
approximation

Concavities Refined Partitioning

Boundary

(a) (b) (c)

Figure 3.1.12. (a) The initial rough partitioning boundary approximation, (b) region A is shown
with blue, region B is shown with green and region C is shown with red, (c) The refined

partitioning boundary

Region C is constructed as follows. First we find the average geodesic distance,
denoted as AvgGeodDist, between the initial boundary approximation extracted in
section 3.1.4 and the refined representative calculated also in the same section. Then,
region C is defined as the triangles of the mesh which vertices geodesic distance from

the refined representative lie all in the interval [0.9-AvgGeodDist, 1.1AvgGeodDist]. This

interval denotes a small area around the estimated partitioning boundary where it is
expected that the true partitioning boundary should reside (red triangles of Figure
3.1.12(b)). Region A is constructed by performing a breadth first search starting from
the refined representative of the protrusion until region C is reached (blue triangles of
Figure 3.1.12(b)).
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Let V., E. be the nodes and edges of the dual graph representing C. Let V.,

be the nodes of the graph which represent the triangles of A that share a common

edge with the triangles of C, and V,; be the nodes of the graph which represent the

triangles of B that share a common edge with the triangles of C.

The flow network graph G = (V, E) is constructed by adding also two more

nodes s, t, and V, E are defined as:

V = VUV, UV uist}

E = EcY(s\V),VVe Ve f(tv), Vv eV fAie, eEieVe,ve{Ve UVl (3.1.6)
A capacity function on E is defined as:
1 if u,v #s,t
c 1y Ang _Dist(e,,) ’ ’
ap(u,v) = avg(Ang _ Dist) (3.1.7)
0 otherwise
Ang _ Dist(a,,)=n(1-cosa,,) (3.1.8)

where ¢, denotes the dihedral angle between the two faces which share the edge
(u,v), and avg(Ang _Dist) is the average angular distance. Note that n=1 for

concave angles and n<<1 for convex angles. Using this capacity function, the
minimum cut algorithm applied on this network creates a partitioning boundary that

passes through the concave regions, see Figure 3.1.12(c).

3.2 Experimental Results

The experimental results which have been made are based on twenty 3D models
segmented with the proposed algorithm which are further compared with the results
produced by three other popular segmentation algorithms, namely Lin et. al. (LIN)
[LLLO7], Valette et. al. (VALETTE) [VKS05] and Kim et. al. (KIM) [KYLOS5]. The results of
LIN algorithm were produced by the original authors, VALETTE was implemented in this
work, while KIM is the original implementation which is used in the MPEG-7
experimentation model. The reason for considering these segmentation algorithms for

comparison purposes is that it is believed that they are representative algorithms
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belonging to different methods, i.e. the critical points, the reeb graph and the volumetric

methods.

In the comparison, the evaluation criteria set in [AKM+06] will be used, namely,
(i) Type of segmentation; (ii) Extracting the “correct” segments; (iii) Boundaries; (iv)
Hierarchical / multi-scale segmentation; (v) Sensitivity to pose; (vi) Asymptotic
complexity; (vii) Control parameters. Furthermore, the behaviour of the proposed
segmentation algorithm will be given in the presence of noise and lastly the core and
partitioning boundary approximations for all of the twenty 3D models will be presented

showing by this way the robustness of the segmentation algorithm.

i) Type of segmentation. All of the algorithms considered are part-based and are
designed to segment the mesh into components that are meaningful in human

perception.

i) Extracting the “correct” segments. In this criterion, the “correct’” segmentation
depends on the application, the viewer's perspective and knowledge of the world
which can only be judged qualitatively by looking at the images of the output of the
segmentation algorithms. The application that will use the proposed mesh
segmentation scheme is 3D model retrieval. Judging from the overall segmentation
results presented in Figure 3.2.1 it can be seen that the proposed approach and LIN
perform best, i.e. both algorithms segment the meshes in a perceptually correct way
and it can be observed that meshes that belong in the same category, for example
all humans, are segmented consistently which is very important in the shape
retrieval context. VALETTE manages to extract also perceptually meaningful results
but as there are many cases where the segmentation among meshes of the same
category are not consistent (eg. models (12)-(13) of Figure 3.2.1 which has a
negative effect in retrieval. KIM manages also to extract perceptually meaningful
components but as in VALETTE there are cases where the segmentation among
meshes of the same category are non-consistent (e.g. models (7)-(8), (9)-(10), (12)-
(13), (14)-(19) of Figure 3.2.1.

i) Boundaries. Here the “correctness” of the boundaries will be judged upon two
geometric properties, (a) the smoothness of the boundary and (b) its location along
concave features. From Figure 3.2.1 it can be seen that the proposed segmentation
algorithm and LIN produce the smoothest results. This is expected because both
algorithms use a minimum cut algorithm based on the concave features of the mesh

in order to refine the boundary. In respect to the location of the boundaries along
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concave features it can be seen that the proposed segmentation algorithm performs
best.

iv) Hierarchical / multi-scale segmentation. Among all tested algorithms only KIM

produces hierarchical results.

v) Sensitivity to pose. Models (15)-(18) of Figure 3.2.1 illustrate the pose sensitivity of

the four algorithms. These models represent the same human in different poses :

running, jumping, sitting and walking. It can be seen that the proposed approach and

LIN algorithms manage to remain invariant throughout all of the pose changes of the

mesh. VALETTE and KIM though show sensitivity to the pose of the object.

vi) Complexity. The proposed algorithm : Let N be the number of points and Ny the

number of salient points of the mesh.

a)

Protrusion function computation : In this work the geodesic distances are
computed using the Dijkstra algorithm. In order for the computation to be more
accurate midpoint subdivision is used in order to increase the resolution of the
mesh. In most of the cases the subdivision is done twice, so the number of points
of the mesh increase at the magnitude of 8N. Lets assume that the number of
compact regions are M. The complexity of the protrusion function calculation is
O(8MN log(N)).

Salient Points Extraction computation. Lets assume that the maximum number of

points in a geodesic neighborhood is N. . then the complexity of the salient

points extraction computation is O(NN_ ., log(N,., ))-Salient Points Grouping. The

max

complexity of the salient point grouping is O(NZ Nlog(N)) .
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3D Model

Proposed algorithm LIN VALETTE KIM
Nr
(20) ‘

Vii.

Figure 3.2.1. Segmentation results

c) The complexity of the core approximation is O(NN2).

d) The complexity of the protrusion boundary detection is O(k/, N + kNlogN +

8kmnlogn), where m is the number of compact regions, n is the number of points
of the part of the mesh where the refined representative is calculated, k are the

number of the representative salient points and /, the number of the closed

boundaries.

. . " . 2
e) The complexity of the protrusion boundary refinement is O(N; log(N,,)) where

N,, is the number of nodes in the network graph.

Overall the algorithm dominant complexity is O(8MN log(N) + NN__ log(N +

max )

8kmnlogn).

LIN : The total complexity of LIN is O(MFlog(F) + F?log(F)), where F the total
number of faces of the Mesh and M the number of compact regions used in the

calculation of the protrusion function.

VALETTE : The total complexity of VALETTE is O(Nlog(N)), where N the total

number of vertices of the mesh.

Control parameters.

The results of the proposed segmentation algorithm in Figure 3.2.1 are obtained by

setting, t ., = 0.45 (the protrusion function is scaled between [0,1]), t, = 0.15, d, =
01,d,=04, 1, =12, r_ = 1.3. All of them remain fixed and user interactivity is
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not required.

In LIN algorithm there exist three parameters that the user has to set manually and
depend on the core approximation and the locales produced by their algorithm.

Namely the parameters that have to be set by the user are (1) the parameter A,

which controls the extent that the locales overlap with the core of the object (2) the

parameters A,, A which control the range of the locales that contain the

protrusion's boundary.
It can be seen that the proposed algorithm performs equally or better than their

results in spite that the parameters remain fixed.

In VALETTE algorithm there exists only one parameter P_._ which we have set after

ratio

experimentation to 15% to all of the objects. We have found that this parameter

value produces the best results in their algorithm.

In KIM algorithm despite that they set the parameters fixed, the output is strongly
dependent of the voxelisation resolution. This means that there is a need for human

inspection to correct the resolution when the output is not satisfactory.

In general, there is not any particular geometrical or topological feature that limits
the functionality of the proposed segmentation methodology for the models used in the
experimentation. However, the success of the proposed segmentation is bound to the
interval [(1—d1) D (1+d,) D For a meaningful segmentation, the

aforementioned interval should produce a region that includes the partitioning boundary.
If this is not the case, there will be a segmentation outcome as in the 3D model of

Figure 3.2.2.
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(a) (b) (c)

Figure 3.2.2. a) The closed boundaries spanning the area [(1 -d,) D 1+d,)D

coremin ? ( coremin] ’

(b) The approximation of the partitioning boundary, (c) Final segmentation

In Table 3.2.1 the time required for segmenting the models in Figure is given in
seconds. The computation time was calculated in a Pentium 4, 3GHz PC with 1.5MB

memory and the segmentation algorithm was implemented in C++.

The proposed segmentation algorithm has been tested also in terms of
robustness with respect to noise, i.e. it produces the same segmentation results with
different levels of noise. A representative example of the proposed mesh segmentation

for different levels of Gaussian noise is shown in Figure 3.2.3.

In Figure 3.2.4 the core and partitioning boundary approximation of the models in
Figure 3.2.1 are shown. It can be observed that the core approximation either cover
portions of the protrusible parts areas or is very close to the neighboring areas where
the real boundary is situated. It can also be observed that the approximation of the
partitioning boundary is also effective since it is very close to the real partitioning
boundary.
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Figure 3.2.3. Segmentation of the ‘camel’ model under different levels of noise (a) SNR = 52dB,

(b) SNR = 50dB}

Mﬁdel Nr. Vertices . Nr. secs
r. Triangles
(1) 8504 17004 60
(2) 3478 6952 35
(3) 12326 24652 68
(4) 6689 13374 31
(5) 9761 19518 60
(6) 7255 14506 38
(7) 9492 18980 45
(8) 4712 9420 55
(9) 7268 14532 35
(10) 11312 22620 61
(11) 3703 7402 44
(12) 7242 14480 34
(13) 6607 13210 29
(14) 11016 22028 59
(15) 5775 11546 52
(16) 5766 11528 72
(17) 5772 11540 54
(18) 5769 11534 55
(19) 9509 19014 55
(20) 6104 12204 24

Table 3.2.1. Computation time for the segmentation of Figure 3.2.1 3D models
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Model Partitioning Model Partitioning
Core Core
Nr. boundaries Nr. boundaries
A A
(1) @ ',‘s ' ﬂ“x
3) (4)
(5) (6)
(7) (8)
9) (10)
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Core Partitioning Model Core Partitioning

Model
NI bound Nr. bound
(13) (14)
(15) (16)
(17) (18)
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Model Partitioning Model Partitioning
Core Core
Nr. boundaries Nr. boundaries
(19) (20)

Figure 3.2.4. Core approximation and partitioning boundaries of the models of Figure 3.2.1

3.3 Conclusions

In this chapter a new 3D mesh segmentation algorithm has been presented. The
algorithm is based on the basic idea that an object can be segmented into its parts if its

main body and salient points are reliably approximated.
The novelty of the approach is twofold:

i. A novel way to trace the partitioning boundaries of the 3D object using closed

boundaries constructed with the aid of a distance function is presented;
ii. A novel algorithm for the core approximation of the 3D object is introduced.

The proposed algorithm is capable of segmenting a 3D object into perceptually
meaningful parts and is pose invariant. From the experimental results presented it has
been shown that it can successfully segment a wide range of 3D objects. Also it has
been shown that the partitioning boundary detection and core approximation stage is

very robust.

The evaluation of the proposed algorithm is addressed in a consistent framework
wherein a comparison with the state of the art is performed. In this comparison it has
been shown that in terms of extraction of the “correct” segments, boundary quality, and
sensitivity to pose the proposed and Lin et. al. segmentation methodologies produce the

best results, though the proposed algorithm is more robust since it does not rely on any
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user defined parameters. Also the quality of the core approximation is superior to the

one produced by Lin et. al.

The proposed algorithm is capable of producing compatible segmentations, for
instance the human objects are always segmented into the head, body, arms and legs,
thus it can be successfully applied to applications that require consistent segmentations

like 3D shape retrieval based on graph based representations.
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Chapter 4

State of the art in retrieval of 3D articulated objects

4.1 Introduction

In this introduction the problem of 3D obiject retrieval will be stated as well as its

extension for 3D articulated object retrieval which is the main topic of this chapter.

4.1.1 The 3D object retrieval problem

Recent advances in 3D object acquisition in digital form have created a plethora
of 3D objects ready to be processed from various graphics applications. The wide
availability and continuous increase of bandwidth of the Internet is making possible to
share these objects with a consequence of the construction of databases containing
them. The continuous increase of the size of these databases have made necessary the
construction of efficient retrieval algorithms which make possible the retrieval of 3D

objects from these databases similar to a query 3D object.

The similarity between the query object and an object in the database is
measured by a distance measure, let it be called d, which is defined by the specific
retrieval algorithm. In order to compute the distance measure the 3D object is described
by a representation. The retrieval algorithms developed distinct themselves according to
the descriptors they use in order to represent the 3D object's shape/structure and the

distance measure used to judge the similarity of two objects.

Formally, given a query 3D object, Q, and a database, D, consisting of a set of

3D objects, O={M,}, i =1...,n, the retrieval result from the database is defined as the

following sequence:
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Retrieval(QD) = {d(QM, ),....d(@QM, )} (3.1.1)

where r, €{1....,n} and d(QM,) < d(Q,Mrj),i <j.

The 3D objects of the database D are grouped into classes where each class
contains the objects which share a common shape or structure. It is also assumed that
the query object belongs to one of the classes of D. The efficiency of the retrieval
algorithm depends on whether the first elements of the sequence Retrieval(Q, D) belong

to the same class that the query object belongs.

4.1.2 Graph-based Retrieval of articulated objects

Human perception recognizes a 3D object by first describing it in terms of its
components that are attributed with geometrical characteristics and relational
connections with each other. This description is referred to as the structural description
of the object [Bie87]. 3D object recognition is achieved by comparing the query object
structural description with the structural descriptions of already classified objects and

the object is classified to the class of the best match.

This recognition process can be naturally adopted for 3D object retrieval.
Meaningful components according to human perception can be extracted using a
segmentation algorithm. The structural description of the object is created by using the
Attributed Relational Graph (ARG) concept. Specifically the components extracted by
the segmentation algorithm are represented as the nodes of a graph and the
relationship of the components with each other are represented as the edges of the
graph. To each node unary attributes are assigned which describe the geometric
characteristics of the component it represents and to each edge binary attributes are

assigned which describe the relationship of the components that the edge connects.

Eventually, the problem of matching a query 3D object with the 3D objects stored
in the Database in the retrieval process is transformed into the problem of matching
their corresponding ARGs [KPYLO04, TZ06].

This graph-based retrieval methodology is very useful for the retrieval of 3D
articulated objects. An object is considered articulated if it consists of parts that can

make the 3D object take different poses; these parts will be called in this context
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articulated parts. For example an object representing a human body is considered
articulated since it consists of parts (legs, arms, head) than can make the object take
different poses (standing, walking, sitting, etc.). Most of the retrieval algorithms which
are based on a global descriptor of the object fail to consistently compensate for the
intra-class variability of articulated objects. This occurs because it is not evident how a
global descriptor will become invariant to the different poses an articulated object can
undertake. On the other hand a graph-based retrieval algorithm can describe an object
in terms of its articulated parts thus becoming invariant to the different poses it

undertakes.

4.2 State of the art in 3D object retrieval

From the variety of work that deal with 3D object retrieval two main categories

can be distinguished :

i. Methods with global shape representations. These representations describe

the objects global shape in order to measure the similarity between them

ii. Methods with graph-based shape representations. These representations use

the structural description of the objects to measure their similarity.

In sections 4.2.1 and 4.2.2 representative works belonging to these two categories will
be described. Emphasis has been given to those that can efficiently retrieve articulated

objects.

4.2.1 Methods with global shape representations

These methods can be further classified according to the spatial dimensionality

of the information used for retrieval, i.e. 2D, 3D and their combination.

Methods that use 2D information for retrieval use descriptors that are generated

from image-projections that may be contours, silhouettes, depth buffers, etc.

Chen et. al. [CTSOO03] describe the 3D object by projecting it to the 2D plane
under different viewpoints taken by placing cameras at the vertices of a dodecahedron
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surrounding the 3D object. This projection results in the acquirement of ten silhouettes

of the object, see figure 4.2.1.

e w W
FTHY

Figure 4.2.1. Ten silhouettes of a ‘chair model derived from its projection to the 2D plane with

viewpoints taken from the vertices of a dodecahedron surrounding the 3D object.

These ten silhouettes describe the 3D object and they call this descriptor
lightfield descriptor. The descriptor is comprised of region based (Zernike moments)
coefficients and contour shape (Fourier) coefficients derived from each of the

silhouettes.

In order to accomplish retrieval the lightfield descriptor of the query model is
compared with the lightfield descriptors of the models stored in the database. Rotation
invariance between the two models that are compared each time is achieved by rotating
the cameras (60 possible rotations) on the vertices of the dodecahedron surrounding
one of the 3D models. This results in the acquirement of 60 different lighfield descriptors
for one of the models all of which need to be compared with the lightfield descriptor of
the other model and acquire the minimum value of this comparison as the similarity

measure.

Specifically let {I,};°, the 10 silhouettes acquired from the first model and

{1}, the 10 silhouettes of the second model that need to be compared, i = {1...60}.

The similarity of these two models is given by the following equation:

60 10

D=min d(ly,) (4.2.1)
T k=

where d is the Ly norm between the coefficients of the two silhouettes /,,,1,,, .
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An advantage of their retrieval methodology is that they can achieve rotation
invariance. The main disadvantages of their algorithm is that the time complexity for

retrieval is too high and to handle efficiently articulated objects.

Ohbuchi et. al. [OOFBO08] created the bag-of-features SIFT algorithm. In their
work the 3D model is projected to the 2D plane under different viewpoints taken at the
vertices of a icosahedron deriving by this way 42 range images of the object. To each of
the images local features are extracted using the Scale Invariance Feature Transform
(SIFT) algorithm. From all of the objects in the database and all images derived by their
projection they create a visual codebook of all the calculated features using the k-
means algorithm. The visual words of the codebook are the centroids of the clusters
created by the k-means algorithm. The descriptor of an object is obtained by quantizing
all the features calculated from all of its image projections using the visual codebook. In
this way the descriptor of an object is a vector containing all the frequencies of the
visual words. Retrieval is achieved by computing the Kullback-Leibler divergence

between the descriptors of the object.

An advantage of their retrieval methodology is that it can handle efficiently
articulated objects. One of the main disadvantages in their methodology is that in order

to construct the visual codebook training needs to be applied.

Vranic [Vra04] proposed a shape descriptor that is constructed by calculating the
Fourier coefficients on the depth buffers derived by projecting the object on the four
sides of the cube which surrounds the 3D object. Similarity between the query’s object
and each of the object stored in the database is judged by comparing their

corresponding descriptor Fourier coefficients.

A disadvantage of his retrieval methodology is that it can not deal with articulated

objects efficiently.

Methods that use 3D information derive their descriptors from the geometry of the 3D

object.

Jain and Zhang [JZ07] constructed an eigenvalue descriptor (EVD). Specifically
they do spectral analysis on the 3D object. Their spectral analysis method is based on
the affinity matrix A of the object the elements of which are exponentials of the geodesic
distances between 20 sample vertices of the mesh. The descriptor of the object is the

eigenvalues of the affinity matrix. In the retrieval process the query’s object eigenvalues
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are compared against the eigenvalues of each of the model stored in the database. Due
to the nature of the geodesic distance being invariant to bending their descriptor is very

suitable for articulated objects.

An advantage of their algorithm is that due to the pose invariance nature of the

geodesic distance their retrieval methodology can handle efficiently articulated objects.

Gal et. al. [GSCOO07] created a pose oblivious global shape descriptor. For their
descriptor they use the Shape Diameter Function (SDF) of Shapira et. al. [SSCO05]
(see section 2.3.9) and the protrusion function (PF) (see section 2.3.3). In order to make
SDF scale invariant the values of the shape diameter function are first divided by the
maximum diameter of all values of SDF. Then they weight each of the values according
to each influence area (e.g. the areas of the triangles surrounding it divided by the
whole boundary area). Using the weighted values of SDF a histogram is constructed
quantizing SDF in 64 bins. The values of the PF are divided with its maximum value and

a histogram is created quantizing PF in 32 bins.

The histogram of the SDF provides a pose oblivious description of the object,
while the histogram of the PF provides a pose oblivious measurement of the spatial
distribution of the values of the function. Thus combining both of these two histograms
their properties are also combined, i.e. a 2D rectangular histogram is constructed by
both of these histograms with values ranging from [0,0] to [1,1] becoming their

descriptor.

In Figure 4.2.2 the 2D histograms of the 3D object ‘cat’ under different poses is
illustrated. The values are illustrated with colours ranging from blue(low values) to (red
values). It can be observed that the descriptors remain consistent despite that the object

takes different poses, thus their descriptor is quite suitable for articulated objects.

T g ¢ g |

Figure 4.2.2. Shapira et. al. shape oblivious 2D histograms.

For retrieval purposes the matching between two objects is accomplished by the

comparison of their respective descriptors using various metrics like Ly, L, by unfolding

the 64x32 matrix into a vector, the Minkowski L, norms, the y°measure and the earth
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movers distance and correlation coefficient. Among all of these measures the 42

measure and correlation coefficient performed best.

An advantage of their retrieval scheme is that due to the pose invariance nature
of the shape diameter and protrusion function their descriptor is also pose invariant this

means that they can handle efficiently articulated objects.

Ben-chen and Gotsman [BCGO08] base their descriptor on the uniformization
theorem. The uniformization theorem states that any 2-manifold surface can be
conformally mapped to a surface with the same topology having constant Gaussian
curvature. This mapping can be achieved by defining a positive scalar function on the
surface which locally changes the surface metric in order to achieve constant Gaussian

curvature.

In the discrete case where a mesh represents a 2-manifold, the conformal factor
¢ is defined on the vertices and its value is derived from the following sparse set of

linear equations:
Lp=KT-K°™ (4.2.2)

where L is the discrete Laplace-Beltrami with contagent weights [HPWO06], K° is the
Gaussian curvature on the vertices of the mesh and K' is the target Gaussian
curvature. The values of the conformal factor on two different models are represented
with different colors in Figure 4.2.3. It can be observed that ¢ remains consisted inspite
of the different poses that the two models undertakes. This is justified because the
conformal factor is based on the Gaussian curvature of the mesh which is invariant to
the quasi-isometric transformations that articulated bodies undertake. Also ¢ is capable

of identifying the protrusible parts of the objects.
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Figure 4.2.3. Visualization of the conformal factor on two ‘dancer’ and ‘hands’ models

The conformal factor is then transformed into a histogram quantizing its values
into 200 bins becoming the descriptor of the object. Retrieval is achieved by comparing
the query’s descriptor with the descriptors of the objects stored in the database. The

comparison is done using the Ly norm.

An advantage of their retrieval scheme is that their descriptor is pose invariant,

thus they can handle articulated objects.

Papadakis et. al. [PPPTO7] created also a global representation of the object.
First they align the object using principal component analysis based on the centroid of
the object (CPCA) and on the normals of the object (NPCA). After alignment, the
model’s surface is represented by a set of spherical functions. A spherical function
describes a bounded area of the model, defined by a lower and an upper radius which
delimit a spherical shell. This shell is the volume in which the underlying surface of the
model is represented by the equivalent spherical function points. In the sequel, they
expand the spherical functions to their spherical harmonic representation. Retrieval is
achieved by comparing the spherical harmonic coefficients of two objects using the L,

norm.

The advantages of their retrieval methodology are : (i) they can achieve a highly

accurate alignment of the object for retrieval purposes, (ii) their spherical harmonic
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descriptor is very rich in information thus they manage to achieve high quality retrieval
results. A disadvantage of their methodology is that they cannot handle efficiently

articulated objects.

4.2.3 Methods using a graph-based representation

In the second category of retrieval methods a descriptor is constructed based on
the structural description of the object which in most of the cases is represented by a

graph structure.

Hilaga et. al. [HSKKO01] quantized the protrusion function (see section 2.3.3)
defined on the mesh using different levels of quantization creating by this way a
multiresolution reeb graph structure. Figure 4.2.4 shows an example of a multi-

resolution reeb graph structure on a mesh at different levels of hierarchy.

Retrieval is achieved by matching the multi-resolution reeb graph structures of

two objects starting from the coarsest level of hierarchy and reaching to the finer level.

An advantage of their retrieval methodology is that they can deal with articulated
objects due to the pose invariant nature of the protrusion function. A disadvantage of

their methodology is that the matching scheme depends only on topological attributes.

Figure 4.2.4. Hilaga et. al. multiresolution reeb graph structure
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Tung and Schmitt [TS05] enhanced the retrieval performance of [HSKKO01] by
augmenting the multi-resolution reeb graph structure with geometrical and visual

information.

Biasotti ef. al. [BMSF06] constructed a descriptor based also on Reeb graph
theory. In their approach they generalize the definition of the Reeb graph to a surface S
by defining a finite set of contour levels C(S). These contours subdivide S into a set of
regions bordered by the elements of C(S). The functions used for the construction of the
contour levels are the distance from the center of mass and the protrusion function. To
each region a node is associated. If two regions share a contour the associated nodes
to them are linked with an edge. Thus a graph structure of the object is constructed
which is called Extended Reeb Graph (ERG). The edges of the (ERG) are also oriented
according to the monotonicity of the function f used to construct the contour levels, thus
the ERG is transformed to a directed and acyclic graph. As a further step the ERG is
further simplified by collapsing all nodes whose number of incoming and outgoing edges
is one. After this process the ERG consists of nodes representing the regions where the
topology of the contour levels varies and the associated connecting edges. In Figure
4.2.5 the process of the construction of the ERG is illustrated using as function f the

distance of the center of mass.

Figure 4.2.5. (a) Chromatic representation of f, (b) The nodes of the ERG, (c) The edges of the
ERG, (d) The final ERG after simplification and edge orientation

The descriptor of the object is the ERG to which nodes the value of f and
geometrical attributes corresponding to the region represented by the node has been

given.

In the retrieval process matching between two objects is obtained by matching
the directed attributed graphs (ERGs) corresponding to the two objects structural

representations. This matching is based on the notion of error tolerant common sub-
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graph isomorphism. Specifically the matching process between the two ERGs is
achieved by constructing their most suitable common subgraph; the wider the common
subgraph is, the more the two ERGs are similar. The output of the matching process
should be the largest maximal common sub-graph that minimizes the geometric and the
structural differences of the two objects. These differences express the similarity of the
two objects. An advantage of their retrieval methodology is that it is suitable for

articulated object retrieval.

Cornea et. al. [CDS+05] use the skeleton of the objects in order to achieve
retrieval. The skeleton of the object is extracted using its volumetric representation.
Specifically they use a generalized potential field generated by charges placed on the
surface of the model. The generalized potential at a point of the object, due to a nearby
point charge, is defined as a repulsive force, pushing the point away from the charge
with a strength that is inversely proportional to the distance between the point and the
charge. This potential field creates a vector field from which they extract the skeleton of
the object. Retrieval is achieved by matching the skeleton of the query object with the
skeletons of the objects stored in the database using the extended EMD similarity
measure [RTGO0O].

While their method is suitable for the retrieval of articulated objects, due to
geometrical or topological noise the skeletons of the objects of the same class might not

be compatible reducing by this way the retrieval accuracy.

Sundar et. al. [SSGDO03] use also the skeleton of the objects for retrieval
purposes. The skeleton of the object is extracted from its volumetric representation.
First a volumetric thinning is applied to the voxels of the object. Specifically a distance
transform DT is defined for each of the voxels of the object which is the radius of the
sphere centered at the voxel and is tangential to the boundary of the object. Based on

the DT a thinness parameter TP for each voxel p is defined as :

26

DT.
B DT _ 21 a (4.2.3)
P26

where g, is one of the 26 neighbours of p.

In order to thin the voxels of the object the TP is computed for every voxel and
the values of TP are sorted in decreasing order. For a desired number of voxels, n, at

some level of description, they extract the first n voxels from the sorted list.
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After the thinning process clustering of the thinned voxels is performed in order to
lessen the effects of perturbations on the surface and to reduce the number of nodes

necessary for skeletal graph construction.

Afterwards the generation of the skeleton is created by applying on the thinned
and clustered set of voxels the minimum span tree algorithm. The edges of the
constructed graph are then directed from the voxel with the higher distance transform to
the one with smaller distance transform creating by this way a directed acyclic graph
(DAG) and the nodes of the graph (except from the leaf nodes) are attributed with a
topological signature vector based on the eigenvalue decomposition of the sub-graphs

that each of the nodes of the DAG contains.

Retrieval is achieved by matching the DAGs using a recursive, depth first
formulation of bipartite graph matching. This matching process can be considered as a
coarse to fine strategy, in which matching at higher levels of the tree is used to

constrain matching at lower levels.

An advantage of their method is that it can handle articulated objects. A
disadvantage is that due to geometrical and topological noise the skeletons of the
objects of the same class might not have the same structure, thus the retrieval accuracy

will be reduced.

Tal and Zuckerberger [TZ06] constructed also a graph-based representation of
the object. First the object is decomposed into a small number of meaningful
components using a segmentation algorithm based on the watershed theory (see
section 2.3.2 and [ZTS02]). Second its attributed relational graph is constructed (ARG)
based on the decomposition of the object by their segmentation algorithm, i.e. a node of
the graph corresponds to a component of the object and an edge connects two nodes if
their corresponding components have at least one triangle sharing a common edge. To
the nodes of the ARG unary attributes are given which is the classification of the
corresponding component to a basic shape : a spherical surface, a cylindrical surface, a
cone surface or a planar surface. Each edge of the ARG is given a binary attribute
which is the relative in size surface area of the corresponding components that the edge

is incident to (i.e., greater, smaller, equal).

Retrieval is achieved by matching the query’s ARG with the ARGs of the object
stored in the database. This involves the comparison between two graphs. In their work
they use the error-correcting sub-graph isomorphism in order to compare the two
graphs.
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The advantages of their methodology are: (i) they can handle articulated objects,
(i) normalization is not required, since their representation is a graph and invariant to

non-rigid transformations, (iii) it can tolerate geometrical noise, like small features.

The main disadvantage of their methodology is that the complexity of the retrieval
of an object is very high due to the use of error-correcting sub-graph isomorphisms

whose complexity is known to be very high.

Mademlis et. al. [MDA+08] constructed a graph-based representation retrieval
algorithm based on their segmentation algorithm, see Section 2.3.5 using
Superquadrics and their 3D Distance Fields Descriptor. This descriptor is constructed
by placing a surrounding ellipsoid on the object and then sampling it using 6, ¢
spherical coordinates. For every sample (6;, ¢;) the distance d; from the surface of the
ellipsoid to the surface of the object is computed and then the two dimensional Fourier
transform of the distance matrix is calculated forming the 3D Distance Field Descriptor.
Their graph structure is based on the attributed graph concept where each object is
represented by an attributed graph G = {V, E, A, B} where A is the edge adjacency
matrix and B is a vector of attributes given on the nodes of the graph consisting of
superellipsoid and Distance Field Descriptor elements. Retrieval is achieved by
matching the graph of two objects using van Wyk attributed graph matching algorithm
[VWO03].

Kim et. al. [KPYLO04] constructed a Perceptual 3D Shape Descriptor of the object.
Their descriptor is an ARG whose nodes represent the meaningful parts of the object
partitioned by Kim et. al. [KYL0O5] segmentation algorithm (see section 2.3.9). An edge
connects two nodes of the ARG when the parts represented by the nodes have incident
voxels. To the nodes of the ARG unary attributes are given describing the parts
geometrical characteristics. To the edges of the ARG binary attributes are given

describing the parts relationship.

Retrieval is achieved by matching two ARGs with a nested EMD-based point
matching algorithm. Specifically their matching process consists of an inner step and
outer step. In the inner step the edges of each of the nodes of the ARGs creates a
relational vector space. This space is an orthogonal coordinate system where the node
of the ARG under consideration is at the center of the coordinate system and the nodes
which are incident to this node are placed into the orthogonal coordinate system based

on their binary attributes. The two coordinate systems created by the nodes of the two
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ARGs are matched with each other with an EMD-based algorithm achieving to compute

the difference of the binary attributes Dyinary between them, see Figure 4.2.6.

Figure 4.2.6. The inner step of Kim et. al. [KIM04] matching algorithm

In the outer step the points of the two ARGs are matched with each other using
the EMD similarity measure using as ground distances the unary attribute differences

and the binary differences computed from the inner step.

The advantages of their methodology are that their descriptor is invariant to non-
rigid transformations due to its graph-based representation and it can tolerate
geometrical noise. As it will also be shown in the experimental section (section 5.3) a

disadvantage of their method is that it cannot handle efficiently articulated objects.
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Chapter 5

Proposed 3D retrieval algorithm

In this chapter a graph-based retrieval algorithm for articulated objects will be
presented. The segmentation algorithm which will be used in order to build the graph
structure is the proposed algorithm described in Chapter 3. In this context the
protrusible parts that the segmentation algorithm extracts are the articulated parts of the

articulated object.

The graph matching algorithm which will be used is based on the Earth Movers
Distance (EMD) similarity measure utilizing a newly introduced ground distance
assignment. Specifically the graph matching process will be transformed into a
signature matching process where matching will be achieved based on the ground

distances defined by the unary and binary attributes of the ARG.

As will be shown from the experimental results the proposed methodology is very
efficient in retrieving articulated objects showing that the combination of the proposed
segmentation algorithm with the proposed retrieval methodology can achieve high

quality retrieval.
The chapter organization is as follows:

e Section 5.1: Presentation of the Earth Movers Distance Similarity

measure.
e Section 5.2: Presentation of the proposed retrieval methodology.
e Section 5.3: Presentation of experimental results.

e Section 5.4: Conclusions.

5.1 Earth Movers Distance Similarity Measure

In this section the Earth Movers Distance similarity measure will be detailed since
it will be used by the proposed matching algorithm in order to express the similarity

between two ARGs.
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The EMD is based on the transportation problem which was first introduced into
computer vision by Peleg et. al. [PWH89] to measure the distance between two gray-
scale images. The EMD was later used by Rubner et. al. [RTGO0O0] for image retrieval

purposes in order to compare two signatures in color or texture space.

In general the EMD measure is used to efficiently express the similarity of two

signatures belonging to two different distributions in a feature space [RTGO00]. The two

signatures V, U consist of two sets of nodes {v,.};, {uj}:; of size n and m,

u

correspondingly and to each of the set of nodes weights {W;/};, {w!

m .
| are assigned,
1) j=1

respectively.

Intuitively, the set of weights {W}’}; can be considered as piles of earth that

need to be transferred to the holes that the other set of weights create in the feature
space. Each unit of earth is transferred from pile /i to hole j with cost d(v;,u;) which is
called ground distance and the total amount of earth that is transferred from pile /i to
hole j is denoted as '/, that is called the flow of weight. The EMD measures the

minimum amount of work required to transfer the piles of earth to the holes. Computing
the EMD is based on a solution to the well-known transportation problem and it is

solved with a linear programming optimization approach that finds the optimal flow of

weight F = f; | between the two distributions that minimizes the following cost term:

WORK(V,UF)= 3> (v, u ) (5.1.1)

i=1 j=1

subject to the following constraints:

D > 0 1<i<n, 1<j<m

if(""') < w 1<i<n

J=1

> oD < wy 1<j<m (5.1.2)

i=1 j=1

m . n m
DAL min[ W,V,ijfj
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The optimal cost of the optimization process is the EMD and expresses the

degree of similarity between the two signatures. It is defined as follows :

if"’”d(v,,uj)
j
if(u)

i=1 j=1

EMD = -

n
=1

(5.1.3)

=1
n

5.2 Proposed retrieval methodology for articulated objects

Graph-based representation
\J.'" .
J/g Segmentation

Meaningful Components ARG
(a) (b)

Graph

Representation

3D Object Matching

Query 3D Object: Q
ry ject: ARG » D(ARG® ARGP®) = EM D(ARG®, ARGPE)

Database 3D Obiject: ARGPB

Figure 5.2.1. (a) The 3D object segmented into its meaningful components, (b) The ARG of the

object

The proposed retrieval methodology uses a graph-based representation of the
object. Specifically the object is first segmented into its meaningful components using
the proposed segmentation algorithm described in chapter 3. Then from the
components of the object a graph representation, ARG, will be constructed. Retrieval is
achieved by matching the ARG of the query object with the ARGs of the objects stored
in the database using the EMD similarity measure. See also Figure 5.2.1 for an

illustration of the retrieval process.

In the next sections the steps of the retrieval process will be fully described as

follows:
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e Section 5.2.1. Construction of the ARG of the query object.

e Section 5.2.2. Matching methodology between two ARGs

5.2.1 Construction of the ARG of the 3D object

The proposed segmentation algorithm of chapter 3 is capable to segment an
object into its core (main body) and its protrusible parts. Taking advantage of this
segmentation a simple ARG can be constructed, its nodes are the segmented
components and each of the nodes representing an articulated part is connected with
the node representing the core of the object forming by this way the edges of the ARG.
Unary and binary attributes will be assigned to the nodes and edges of the ARG

respectively.

In Figure 5.2.2 a segmented ‘Human’ object by the proposed segmentation

algorithm and its corresponding graph structure is shown.

Head

Core (Main Body)

Leg Leg

Figure 5.2.2. Segmented ‘Human’ object and its corresponding graph structure

5.2.2 A methodology for Matching two ARGs

As mentioned in section 5.2 retrieval is achieved by matching the ARG of the
query object with the ARGs of the objects stored in the database. This process involves
matching between two graph structures. In this work the problem of matching two graph

structures is transformed into a signature matching process using the EMD similarity
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measure to express the similarity of the two graph structures. Specifically the signatures
consist of the nodes of the ARGs to which appropriate weights will be given. The ground
distances which express the similarity between two nodes of the two signatures will be
defined by the unary and binary attributes assigned to the nodes and edges of the two
ARGs. In this way we distinct our matching methodology from Kim et. al. [KIM04] (see
section 4.2.3) since we treat both unary and binary attributes in a single EMD

calculation step without using any relational vector space.
Formally, Let G=(V,E,U,B), G= (v éﬂé) be the attributed relational graphs

that need to be matched, where V ={v } } _, are the nodes (v,, v, represent

the core component of the two objects, respectively), E={r,}", I:L={f1j};":2 are the

m

edges, U={u} , ﬁz{ﬁj} are the unary attributes of the nodes and B=1{b,} ,

J=1

B = {Bj}m are the binary attributes of the edges of the two graphs, respectively. It is

j=2

u

also assumed that n > m. Weights {W;’};, {Wj }L are assigned to the nodes of the

graphs and each of them is equal to 1 so as to attain a uniform distribution. As already
n
mentioned, it is assumed that the nodes v,, v, represent the core component of the two

objects, respectively. These nodes are considered as fixed and are always matched in
the matching algorithm. Also additional n—m nodes are inserted in G which are called
delete nodes. The reason for doing this is to penalize the n—m nodes of G that are not

mapped to any of the nodes of G from within the EMD-based matching process. By this

n

way partial graph matching is taken into account. Unary attributes Uy :{ﬁdj} are

J=m+1

assigned to the delete nodes that correspond to components with no information.
Weights also equal to % are assigned to the delete nodes. All other nodes representing

the articulated parts of the objects are considered as normal.

As mentioned earlier the matching process between two ARGs can be
transformed into a signature matching problem using the EMD similarity measure. For
example given two ARGs, the one consisting of 5 nodes and the other consisting of 3

nodes, the matching process is as shown in Figure 5.2.3.

89



(v1, 3) (61,8)
Fixed( )=—————»(Fixed

Signature

o
)

ARG

Signature
O———%N <

Weight Holes

Figure 5.2.3. Matching process between two ARGs
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From the definition of the EMD (5.1.3) it can be observed that the ground

distances are the definitive terms while computing the EMD, thus the whole matching

process is based on their proper definition because they indicate how the nodes are

matched. In the case of matching two ARGs the ground distances depend upon the

unary and binary attributes of the ARGs since these attributes should define how the

matching between the nodes of the graphs should be done. Also there is a need to

inflict a constraint in the definition of the ground distances in order for the fixed nodes to

always be matched, restraining them to match with any other node, see Figure 5.2.3.

The ground distances are defined as follows:

where,

Dnormal(vi’vj)
1 + Dnormal(vi’vj)

if v,,v, normal

Dﬁxed (Vi";j)
1 + Dﬁxed(vi’vj)

if v,,v, fixed
d(v,v,) =

Ddelete(viivj) LV normal,
01 + Ddelete(viivj) Vj delete

o0 otherwise

(5.2.1)
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~ 2 ~ 112
Dnormal(viivj) = \/u,- —uj| + Hb’ -b;
A~ ~ 2
Dpea(Vinv;) = y/|u; —u; (5.2.2)
- 2
Dde/ete(vi’vj) = u; —udj_

As can be observed in equation (5.2.1) the case of the mismatch of a normal
node with a delete node is penalized more than in the cases when the fixed nodes and
the normal nodes are mismatched. This is done in order to avoid the matching of normal
nodes that hold significant information with the delete nodes that hold no information. In
Figure 5.2.4 the plots of the ground distances illustrate their different value assignment.

g g

45}

D 05 D

delete|

() 1 2 3 s 5 6 7 B 9 10 0 1 2 3 4 5 5 7 8 9 10

Figure 5.2.4. The ground distances plots of (a) the normal and fixed node matching, (b) the

delete node matching

It can also be observed in equation (5.2.2) that the binary attributes are
considered only in the normal node matching since only then the relation they have with
the fixed node (core) need to be exploited. When the fixed nodes are matched only the
unary attributes are considered since the core relation with the other nodes is already
considered when the normal nodes are matched. Note also that with the selected

ground distances the fixed nodes are always going to be matched.

The unary attributes that need to be defined for the nodes of the ARG should
carry the geometric properties of the component they represent. The binary attributes

should carry the relationship that the neighbouring components have.

In this work the following unary and binary attributes are used:
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i.  The unary and binary attributes of Kim et. al. [KPYL04]. The purpose of this
assignment is to compare the proposed matching methodology with that used in
[KPYLO4] in order to show the efficiency of the segmentation and matching

algorithms in the experimental results (see section 5.3).

i. Unary attributes defined by Papadakis et. al. [PPPT07] descriptor. Their
descriptor consist of spherical harmonic coefficients derived from the object’s
component after pose normalization. The spherical harmonics provide a

description of the component’s geometry in the frequency domain.

Considering Kim et. al. [KPYL04] attribute assignment, the unary attributes that
are assigned to the nodes of the ARG representing the object components are the
relative size (rs) of the component, the convexity (c¢) of the component and the

eccentricities (e, ,e,) of the ellipsoid approximating the component. The relative size of

the component is approximated by its area, the convexity is approximated by first
voxelizing the component and then dividing the number of voxels of the component by
the number of voxels of its convex hull and the eccentricities are approximated by the
variances of the component mesh points along the axes created by principal component
analysis. The binary attributes that are assigned to the edges of the ARG are the
distance (/) of the centroids of the components connected by an edge of the graph and

the angles (a,,a,) that the two most significant principal axes of the connected

components create with each other. All of the attributes are normalized in the interval [O,
1].

By this way, the vector [rs,c,e,,e,] is assigned to the normal and fixed nodes and
the vector [/,a,,a,] is assigned to the edges of the graphs. All delete nodes are assigned
the vector [0,1,1,1]. In equation (5.2.2), the norm || denotes the L, norm of the attribute

vectors.

Considering Papadakis et. al. [PPPTO7] attribute assignment, we set to the
normal and fixed nodes the spherical harmonic descriptor vector of the parts they
represent. The descriptor consists of two sets of coefficients corresponding to two
aligned versions of the model using two methodologies based on principal component
analysis, namely CPCA and NPCA. CPCA aligns the component according to the
surface area distribution and NPCA aligns the component according to the surface
orientation distribution. To the delete nodes the vector with zero entries is assigned

whose dimension is the same as their descriptor. Please note that in this case only
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unary attributes are assigned, thus in equation (5.2.2) there exist no binary term and the

norm |{ denotes the L, norm of the spherical harmonic vector coefficients.

Based on the aforementioned ground distance assignment and ARG definition
the EMD measure is computed between the two ARGs which gives the degree of
similarity between the two objects that need to be matched. In order to compute the
EMD the implementation of Rubner et. al. [RTGO0O0] is used.

5.3 Experimental Results

For the experiments made in this work, the McGill 3D object database of
articulated objects is used [mcg]. The specific database contains ten classes of 255
articulated objects, namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’,
‘Octopuses’, ‘Pliers’, ‘Snakes’, ‘Spiders’ and ‘Teddy-bears’ each one of them containing
approximately twenty to thirty models, see Figure 3.3.1. The objects in this database
were transformed from their voxelized form to closed manifolds. For each of the objects
this was achieved by first triangulating the sides of the voxels which belong to the
exterior of the object disregarding all other sides, thus creating by this way a 3D mesh.
Afterwards Laplacian smoothing was applied to the mesh, in the sequel the triangles
and vertices which prevented the mesh from being a manifold were removed. Lastly the
holes which were created by the latter removal were closed using a hole filling

algorithm, thus creating by this way a closed manifold.

e

‘Ants’ ‘Crabs’ ‘Spectacles’ ‘Hands’ ‘Humans’

‘Octopuses’ ‘Pliers’ ‘Snakes’ ‘Spiders’ ‘Teddy-bears’

Figure 3.3.1. The ten classes of the McGill Database of articulated objects
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The experiments made in this work have the following goals:

e First, the superior performance of our retrieval methodology will be shown in

comparison with two other state of the art retrieval methodologies, namely Kim
et. al. [KPYLO4] (which has become one of the standards 3D object retrieval
methodologies in MPEG7) and Papadakis et. al. [PPT+08].

e Second, the proposed retrieval methodology will be used in order to refine

Papadakis et. al. [PPT+08] retrieval results. This will be achieved by applying for
each object of the database the retrieval process of Papadakis et. al. [PPT+08].
The output of the retrieval is a sequence of 255 distance measures in ascending
order indexed with the object that each measure corresponds to. The first 75
objects of this output will be further matched with the proposed matching
algorithm against the query object providing a new distance measure sequence
which will be shown that it refines the sequence of the initial 150 distance

measures (the rest of the distance measures are left unaltered).

e Lastly, the superiority of the proposed segmentation algorithm in terms of

retrieval will be shown against the segmentation algorithm used for retrieval in
Kim et. al. [KPYLO4]. This is going to be achieved by accommodating the ARG
created by the proposed segmentation algorithm using Kim et. al. [KPYLO04]
attributes to the MPEG?7 retrieval process.

In the sequel, the following abbreviations will be used:

The graph-based retrieval methodology that uses the proposed segmentation
and matching algorithm using Papadakis et. al. [PPPTO07] attributes is denoted as
EMD-PPPT

The graph-based retrieval methodology that uses the proposed segmentation
and matching algorithm using Kim et. al. [KPYL04] attributes is denoted as EMD-
MPEG7

The graph-based retrieval methodology that uses the proposed segmentation
algorithm and the graph matching of Kim et. al. [KPYL04] is denoted as SMPEG7

The graph-based retrieval methodology that uses the segmentation and
matching of Kim et. al. [KPYLO4] is denoted as MPEG7

The retrieval methodology of Papadakis et. al. [PPT+08] that uses a global shape
representation is denoted as Hybrid
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The retrieval methodology of Papadakis et. al. [PPT+08] refined by the proposed
retrieval methodology using Kim et. al. [KPYLO04] attributes is denoted as H-EMD-
KIM-R

The retrieval methodology of Papadakis et. al. [PPT+08] refined by the proposed
retrieval methodology using Papadakis et. al. [PPPTO7] attributes is denoted as
H-EMD-PPPT-R

The evaluation of the retrieval results of the aforementioned retrieval

methodologies is based upon the Precision Recall (PR) diagrams, where higher

Precision values indicate better performance and on the following quantification

measures:

Nearest Neighbour (NN): The percentage of queries where the closest match

belongs to the query’s class.

First Tier (FT): The recall for the (k-1) closest matches, where k is the cardinality

of the query’s class.

Second Tier (ST): The recall for the 2(k-1) closest matches, where k is the

cardinality of the query’s class.

Discounted Cumulative Gain (DCG): A statistic that weights correct results near
the front of the list more than correct results later in the ranked list under the

assumption that a user is less likely to consider elements near the end of the list.

The above measures range from 0% to 100% and higher values indicate better

performance.
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Figure 5.3.2. PR plot of the examined retrieval methodologies

In Figure 5.3.2 the Precision Recall diagram for the whole database is shown. It
is obvious that the EMD-PPPT methodology has the best performance. Specifically if

40% and 60% recall levels are considered Table 5.3.1 is obtained.

RETRIEVAL RECALL LEVELS
ALGORITHMS 40% 60%
EMD-PPPT 0.88 0.83
EMD-MPEG7? 0.84 0.77
SMPEG7 0.84 0.76
Hybrid 0.71 0.59
H-EMD-KIM-R 0.86 0.76
H-EMD-PPPT-R | 0.89 0.80
MPEG7 0.61 0.48

Table 5.3.1. Precision performance values for the recall levels 40% and 60%

Based on the precision performance values of Table 5.3.1 the following can be

observed:
i.  The best precision results are those of EMD-PPPT

i. EMD-MPEG?7 is the second in precision performance value
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iii. H-EMD-KIM-R and H-EMD-PPPT-R compared to Hybrid has been improved by

20% and 24% approximately respectively in the precision performance value

iv. SMPEGTY retrieval curve is better than the MPEG?7 retrieval curve by an average

increase in the precision recall level of the order of 33%

Based on the above statements it can be safely implied that the spherical-harmonics
attributes set on the components of the object can describe the structure of the
articulated objects very efficiently providing high quality retrieval results. Also the EMD-
PPPT retrieval curve is about 5% higher than the EMD-MPEG7 which means that the
spherical-harmonics attributes can describe better a component than the attributes set
by Kim et. al. [KPYLO4]. It can also be observed that after refining the retrieval result of
the Hybrid algorithm the performance of H-EMD-KIM-R, and H-EMD-PPPT-R is
significantly better than the Hybrid performance and comparable to the SMPEG7
retrieval curve. This means that the proposed retrieval methodology is capable to assist
the Hybrid retrieval methodology to achieve high quality retrieval results. The better
performance of SMPEG7 over MPEG7 means that the proposed segmentation
algorithm is performing better than Kim et. al. [KPYL04] segmentation algorithm for

retrieval purposes in this database.

Precision
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Figure 5.3.3. Precision Recall diagrams of the McGill database classes

In Figure 5.3.3 the Precision Recall diagrams for each one of the classes of the
database is shown. Again it can be observed that EMD-PPPT retrieval methodology
performs best in the majority of the classes. Especially In the ‘Humans’, ‘Crabs’,
‘Hands’, ‘Spiders’, ‘Pliers’ classes very high PR curves are achieved (especially in the
‘Pliers’ class where the perfect performance is attained). The inferior performance in the
‘snakes’ class is justified by the poor segmentation achieved in this particular class

because of the lack of protrusions.

In Table 5.3.2 the corresponding scores for each of the retrieval methodologies
for each class of the database as well as the average scores for the complete McGill
database are shown. As can be observed the EMD-PPPT methodology performs better
in total and in most of the classes of the database. Also it can be noticed the significant
gain in score of the H-EMD-KIM-R and H-EMD-PPPT-R retrieval methodology over the
Hybrid retrieval methodology.

In Figure 5.3.4 retrieval results are shown for a ‘hands’ and ‘humans’, objects
respectively using the EMD-PPPT and MPEG7 retrieval methodologies. It can be
observed that the proposed EMD-PPPT retrieval results are significant better than
MPEG?7.

Class Method NN(%) FT(%) ST(%) DCG(%)

Complete EMD-PPPT 97.6 74.1 91.1 93.3

McGill DB EMD-MPEG7 93.3 69.2 88.9 90.8
SMPEG7 91.8 65.2 78.3 89.1
Hybrid 92.5 55.7 69.8 85.0
H-EMD-KIM-R 94.1 70.7 82.9 90.2
H-EMD-PPPT-R 97.3 69.9 75.8 90.5
MPEG7 97.3 475 63.2 79.2
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Ants EMD-PPPT 96.7 54.9 79.7 88.4
EMD-MPEG7 96.7 58.5 79.9 87.5
SMPEG7 80.0 57.1 75.6 86.7
Hybrid 100 73.6 89.2 94.8
H-EMD-KIM-R 96.7 63.4 83.2 88.9
H-EMD-PPPT-R 96.7 58.3 81.5 89.2
MPEG7 90.0 62.1 75.5 87.1
Crabs EMD-PPPT 100 98.2 99.8 99.9
EMD-MPEG7 100 89.8 98.2 99.2
SMPEG7 100 72.9 90.3 95.9
Hybrid 100 55.2 71.8 88.7
H-EMD-KIM-R 100 87.5 92.9 98.0
H-EMD-PPPT-R 100 92.6 94.3 98.6
MPEG7 90.0 45.9 65.5 82.2
Spectacles EMD-PPPT 100 70.3 99.8 94.0
EMD-MPEG7 96.0 63.7 94.3 89.2
SMPEG7 96.0 55.8 63.7 82.7
Hybrid 96.0 53.5 63.3 85.9
H-EMD-KIM-R 96.0 74.0 80.0 90.5
H-EMD-PPPT-R 96.0 73.8 80.0 91.5
MPEG7 84.0 37.8 50.8 73.6
Hands EMD-PPPT 95.0 83.9 88.9 95.2
EMD-MPEG7 95.0 79.7 88.2 93.4
SMPEG7 95.0 78.7 87.9 93.0
Hybrid 90.0 43.4 57.6 77.8
H-EMD-KIM-R 95.0 77.4 83.7 92.3
H-EMD-PPPT-R 95.0 79.7 83.9 94.0
MPEG7 60.0 30.0 41.3 63.1
Humans EMD-PPPT 96.6 93.5 96.4 98.1
EMD-MPEG7 96.6 86.8 99.3 97.4
SMPEG7 96.6 84.5 98.0 97.3
Hybrid 100 47.0 63.8 83.1
H-EMD-KIM-R 96.6 79.6 85.2 94.3
H-EMD-PPPT-R 96.6 82.0 84.7 94.6
MPEG7 79.3 40.5 59.1 77.9
Octopuses EMD-PPPT 88.0 58.8 81.8 88.1
EMD-MPEG7 80.0 45.2 73.2 79.1
SMPEG7 84.0 42.0 63.0 80.5
Hybrid 56.0 29.5 45.0 68.9
H-EMD-KIM-R 76.0 45.7 71.2 78.1
H-EMD-PPPT-R 88.0 57.8 80.3 87.0
MPEG7 72.0 46.8 76.2 77.8
Pliers EMD-PPPT 100 100 100 100
EMD-MPEG7 100 85.5 100 98.6
SMPEG7 100 86.1 95.5 97.8
Hybrid 100 71.6 87.9 94.6
H-EMD-KIM-R 100 92.4 99.7 99.0
H-EMD-PPPT-R 100 99.7 99.7 99.9
MPEG7 95.0 65.5 77.9 89.5
Snakes EMD-PPPT 100 43.2 95.2 84.7
EMD-MPEG7 80.0 46.2 85.8 83.4
SMPEG7 80.0 44.2 48.0 76.6
Hybrid 80.0 23.7 28.7 62.4
H-EMD-KIM-R 88.0 42.3 47.3 75.7
H-EMD-PPPT-R 96.0 43.7 47.3 75.4
MPEG7 76.0 36.8 40.7 69.3
Spiders EMD-PPPT 100 87.2 100 98.4
EMD-MPEG7 100 85.7 97.3 97.5
SMPEG7 96.8 74.8 86.6 93.9
Hybrid 100 71.5 91.0 93.7
H-EMD-KIM-R 100 85.7 96.9 97.6
H-EMD-PPPT-R 100 87.3 99.0 98.3
MPEG7 90.3 37.3 61.8 77.8
Teddy-bears EMD-PPPT 100 45.3 63.2 83.9
EMD-MPEG7 85.0 42.6 66.3 78.8
SMPEG7 90.0 55.8 70.8 84.6
Hybrid 100 90.3 98.4 99.1
H-EMD-KIM-R 90.0 54.7 87.4 85.5
H-EMD-PPPT-R 100 52.6 87.4 89.1
MPEG7 100 79.2 84.5 93.4

Table 5.3.2. Quantitative measure scores of the examined retrieval methodologies
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5.4 Conclusions

In this chapter a 3D object retrieval methodology for articulated objects was
presented that is dependant on a graph-based representation of the object. The graph-
based representation of the object is constructed by first segmenting the object into its
meaningful components and then, using these components, a graph structure of the
object is constructed assigning to the nodes and edges proper unary and binary
attributes thus constructing an ARG structure. Matching between two ARGs is achieved
by a signature matching algorithm using the EMD similarity measure based on newly
defined ground distances which are relied on the unary and binary attributes given to
the ARGs.

The proposed methodology is very efficient in retrieving articulated objects and
was shown to perform significantly better in our extensive evaluation against the
compared state of the art retrieval algorithms in the McGill Database of articulated
objects. Specifically if 40% and 60% recall levels are considered in the PR diagram for

the whole database the following remarks can be stated:
i.  The best precision results are those of EMD-PPPT
i. EMD-MPEG?7 is the second in precision performance level

ii.  H-EMD-KIM-R, H-EMD-PPPT-R compared to Hybrid has been improved by 20%
and 24% approximately.

iv. SMPEGT?7 retrieval curve is better than the MPEGY retrieval curve by an average

increase in the precision recall level of the order of 33%

Also it has been shown that in the quantitative evaluation measures like NN, FT, ST,
DCG the proposed retrieval methodology using Papadakis et. al. [PPPTO07] spherical
harmonic descriptors (EMD-PPPT) performs best in average for the whole database
and it performs better in most of the individual classes of the database. The worst
performance, as expected, was attained at the ‘snakes’ class where the segmentation
algorithm fail to correctly segment the members of the class due to their lack of

protrusible parts.
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Chapter 6

Conclusions

In this dissertation a new 3D object retrieval methodology has been presented
based on a new 3D mesh segmentation algorithm and a graph-based representation

which is very suitable for retrieval of articulated objects.

In chapter 3 a new mesh segmentation algorithm has been presented. The
proposed segmentation algorithm is part-based and partitions the 3D object into its
meaningful components. After an extensive experimental evaluation against other state
of the art segmentation algorithms, based on established criteria, the proposed
segmentation methodology was proven to produce the best results. Also the different
stages that the algorithm follows in order to achieve segmentation were shown to be
very stable when applied in a plethora of 3D objects without any user intervention. The
different threshold values set in the different stages of the algorithm were proven to be

correct after a systematic and statistical experimentation.

In chapter 5 a new 3D obiject retrieval algorithm suitable for articulated objects
was presented. The methodology is based on a graph-based representation of the
object. Specifically the ARG of the 3D object was constructed based on the
segmentation algorithm presented in chapter 3. Retrieval was achieved by matching the
ARG representing the query’s object with the ARGs representing the objects stored in
the database. Matching between two ARGs was accomplished by transforming the
graph matching problem into a signature matching problem using the EMD similarity
measure based on newly defined ground distances measures. The proposed retrieval
algorithm was extensively evaluated using the McGill Database of articulated objects.
Different attribute assignments were used for the description of the ARG of the object
and the significant superiority of the proposed retrieval methodology against state of the

art retrieval methodologies using a plethora of evaluation criteria was established.

Future work involves the extension of the proposed segmentation algorithm in
order to do hierarchical segmentation. For example in the segmentation of a mesh

representing a human 3D object the first stage of the segmentation hierarchy would be
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its partitioning into the main body arms, legs and head. In the next stages of the

hierarchy the arm could be further segmented into its hand, fingers, etc.

At the end of this process we must point out the following:

All “key steps” at the particular phases of the process are optimized in one
way or the other in the existing algorithm. The only exception to this rule is
the selection we have made regarding the width,
[(1 -d,)D (1+d,)D , we have adopted in the section relevant to

coremin ? coremin]
the partitioning boundary detection, in Chapter 3. Specifically based on a
large number of experiments during which we have incrementally changed
the specified width it was realized that the set values d = 0.1, d, = 0.4
were the best. In other words an experimental optimization was adopted at

this specific point.

Next to be mentioned is that global optimization process (iteration or trial

and error process) is not recommended for the following reasoning:

(i) Firstly because we have obtained the best possible results under

the given conditions and existing state of the art and,

(ii) Secondly, because in an attempt we have made we realized that
possible areas of improvement offer small if not trivial interest. For
example, in the salient points extraction process if we increase their
number in order to improve the ARGs even if some improvement
can be obtained it will be counterbalanced by the increase of noise
levels; also there is not any significant margin for the improvement
of the unary attributes; concerning the binary attributes which
express the geometrical features between the parts (main and
protrusibles) we expect that it is possible to obtain better results the

importance of which must be investigated in a future work.

Therefore the conclusion which can be made regarding the achievement
of the best possible retrieval results for the case of the articulated objects
is twofold. Specifically, the first is to extend the segmentation algorithm in
order to make it hierarchical; the graph-based representation of the object
can be also extended into a tree structure, thus the problem of matching
two ARGs can be transformed into the problem of matching trees. The

second is to include in the database a well selected number of classes
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covering a wide area of existing articulated objects. It is possible to
combine these two efforts in order to obtain the best possible cost effective
solution to specific demands. There exist also a case in which the
improved binary attributes can be applied introducing for example mobility
features between the particular parts by the assignment of corresponding
degrees of freedom (from one, i.e only one movement to six, i.e three
rectilinear and three rotational movements). It is, obviously our intention to
extent, if possible, the application of a successful retrieval process into the
field of mechanical motion which is governed by geometric requirements of
the motion, by dynamic requirements of the forces and by constitutive
relations for the deformable parts/elements and velocity-momentum
relations for the masses [CKKPBG68].
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