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Περίληψη 
 

Η αναπαράσταση 3∆ αντικειµένων έχει γίνει αναπόσπαστο µέρος των 

σύγχρονων εφαρµογών των Γραφικών σε Υπολογιστή, όπως εφαρµογές CAD, 

ανάπτυξη 3∆ παιχνιδιών σε υπολογιστή και δηµιουργία ταινιών. Επίσης τα 3∆ δεδοµένα 

έχουν γίνει πολύ κοινά στο πεδίο της Υπολογιστικής Όρασης, Υπολογιστικής 

Γεωµετρίας, Μοριακής Βιολογίας και Ιατρικής. Η ραγδαία εξέλιξη στην ανάπτυξη υλικού 

και λογισµικού στον τοµέα των γραφικών, ιδιαίτερα στη διαθεσιµότητα χαµηλού κόστους 

3∆ σαρωτών, έχει βοηθήσει ιδιαίτερα στην ανάκτηση, δηµιουργία και διαχείριση 3∆ 

µοντέλων δίνοντας την ευκαιρία σε µία µεγάλη κοινωνία χρηστών να βιώσουν 

εφαρµογές που σχετίζονται µε 3∆ µοντέλα. Όσο ο αριθµός των 3∆ µοντέλων συνεχίζει 

να αυξάνεται το πρόβληµα της δηµιουργίας 3∆ µοντέλων µετατοπίζεται στο πρόβληµα 

αναζήτησης ήδη υπαρχόντων 3∆ µοντέλων. Συνεπώς, η ανάπτυξη αποδοτικών 

µεθόδων αναζήτησης είναι αναγκαία για την αποδοτική ανάκτηση 3∆ αντικειµένων από 

µεγάλες βάσεις δεδοµένων. 

Σε αυτήν την ∆ιδακτορική ∆ιατριβή παρουσιάζεται µια αναπαράσταση βασισµένη 

σε γράφηµα του 3∆ αντικειµένου µε χρήση ενός καινοτόµου αλγορίθµου κατάτµησης και 

της ιδέας του Γραφήµατος Σχεσιακών Χαρακτηριστικών (Attributed Relational Graph). Η 

προτεινόµενη αναπαράσταση βασισµένη σε γράφηµα θέτει τη βάση για µία 

αποτελεσµατική µεθοδολογία ανάκτησης 3∆ αρθρωτών αντικειµένων (3D articulated 

objects). 

Η συνεισφορά αυτού του ∆ιδακτορικού είναι δίπτυχη: 

H πρώτη συνεισφορά είναι η κατασκευή ενός αλγορίθµου κατάτµησης του 3∆ 

αντικειµένου βασισµένη στην προϋπόθεση ότι το 3∆ αντικείµενο αποτελείται από ένα 

κυρίως σώµα (main body) και τα επιµέρους προεξέχοντα τµήµατα (protrusible parts). Ο 

προτεινόµενος αλγόριθµος κατάτµησης στοχεύει στην κατάτµηση του αντικειµένου σε 

αυτά τα τµήµατα. Για να επιτευχθεί αυτός ο στόχος, πρώτα ανιχνεύονται τα 

προεξέχοντα σηµεία (salient points) του αντικειµένου. Αυτά τα σηµεία είναι προεξέχοντα 

χαρακτηριστικά του 3∆ αντικειµένου που οδηγούν τον αλγόριθµο κατάτµησης. Στην 

συνέχεια, τα προεξέχοντα αυτά σηµεία συγκεντρώνονται σε οµάδες που αναπαριστούν 

τα κύρια προεξέχοντα τµήµατα του αντικειµένου. Στη συνέχεια, το κυρίως σώµα του 

αντικειµένου προσεγγίζεται χρησιµοποιώντας µονοπάτια ελαχίστου κόστους (minimum 

cost paths) µεταξύ των προεξεχόντων σηµείων του αντικειµένου. Η κύρια ιδέα του 

προτεινόµενου αλγορίθµου προσέγγισης του κυρίως σώµατος είναι η επέκταση ενός 
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συνόλου σηµείων µε αύξουσα διάταξη ως προς τη συνάρτηση προεξοχής (protrusion 

function) µέχρι η επέκταση να καλύψει ένα συγκεκριµένο ποσοστό των σηµείων των 

ελαχίστων µονοπατιών. Η προσέγγιση του κυρίως σώµατος είτε καλύπτει µέρος των 

προεξεχόντων τµηµάτων είτε είναι πολύ κοντά στην περιοχή του συνόρου µεταξύ των 

προεξεχόντων τµηµάτων και του κυρίως σώµατος. Στη συνέχεια ανιχνεύεται το σύνορο 

κατάτµησης (partitioning boundary), το οποίο είναι το σύνορο µεταξύ του προεξέχοντος 

τµήµατος και του κυρίως σώµατος του αντικειµένου. Θεωρείται ότι στην περιοχή που 

εσωκλείεται από το επιθυµητό σύνορο µεταξύ του προεξέχοντος τµήµατος και του 

κυρίως σώµατος. Συµβαίνει µία απότοµη µεταβολή στον όγκο του 3∆ αντικειµένου, 

συνεπώς στόχος είναι η ανίχνευση αυτής της µεταβολής. Για να επιτευχθεί αυτό, 

κατασκευάζονται κλειστές οριακές καµπύλες (closed boundaries) που ορίζονται από µία 

συνάρτηση απόστασης (distance function) η οποία σχετίζεται µε τον αντιπρόσωπο της 

οµάδας που αναπαριστά το προεξέχον τµήµα. Η απότοµη µεταβολή του όγκου 

ανιχνεύεται εξετάζοντας τις κλειστές οριακές καµπύλες και τίθεται σαν προσέγγιση του 

συνόρου κατάτµησης η κλειστή οριακή καµπύλη όπου παρατηρείται η µέγιστη µεταβολή 

περιµέτρου. Η προτεινόµενη προσέγγιση συνόρου κατάτµησης είναι πολύ 

αποτελεσµατική διότι τα πειραµατικά αποτελέσµατα δείχνουν ότι είναι πολύ κοντά στο 

πραγµατικό σύνορο κατάτµησης. Τέλος, η προσέγγιση του συνόρου κατάτµησης γίνεται 

ακριβέστερη έτσι ώστε να περνάει από τις καµπυλότητες του αντικειµένου µε χρήση 

ενός αλγορίθµου ελάχιστης περικοπής. 

Η δεύτερη συνεισφορά του ∆ιδακτορικού είναι µία µεθοδολογία ανάκτησης 3∆ 

αντικειµένων που βασίζεται στην αναπαράσταση βασισµένη σε γράφηµα ενός 

αρθρωτού 3∆ αντικειµένου το οποίο δηµιουργείται από τον προτεινόµενο αλγόριθµο 

κατάτµησης. Συγκεκριµένα, τα τµήµατα που εξάγονται από τον αλγόριθµο κατάτµησης 

τίθενται σαν κορυφές του γραφήµατος και οι ακµές του συνδέουν όλα τα προεξέχοντα 

τµήµατα µε το κυρίως σώµα του αρθρωτού αντικειµένου. Οι κορυφές και οι ακµές του 

γραφήµατος σχετίζονται µε µοναδιαία (unary) και δυαδικά (binary) χαρακτηριστικά που 

αναπαριστούν τα γεωµετρικά χαρακτηριστικά των τµηµάτων όπως επίσης και τη σχέση 

που έχουν µεταξύ τους. Η αναπαράσταση βασισµένη σε γράφηµα µπορεί να θεωρηθεί 

σαν ένα Σχεσιακό Γράφηµα Χαρακτηριστικών (Αttributed Relational Graph). Το 

σχεσιακό γράφηµα χαρακτηριστικών του αντικειµένου χρησιµοποιείται στη συνέχεια για 

αποτελεσµατική ανάκτηση 3∆ αρθρωτών αντικειµένων. Συγκεκριµένα, το Σχεσιακό 

Γράφηµα Χαρακτηριστικών του εξεταζόµενου αντικειµένου (query object) ταιριάζεται µε 

τα Σχεσιακά Γραφήµατα Χαρακτηριστικών των αντικειµένων σε µια βάση που περιέχει 

3∆ αρθρωτά αντικείµενα. Το αποτέλεσµα της διαδικασίας ανάκτησης είναι µία 
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ακολουθία από αντικείµενα από τη βάση παρόµοια µε το εξεταζόµενο αντικείµενο. Το 

χρησιµοποιούµενο κριτήριο οµοιότητας βασίζεται σε µία µετρική οµοιότητας που 

ονοµάζεται Earth Mover’s Distance. 

H βελτιωµένη απόδοση του προτεινόµενου 3∆ σχήµατος κατάτµησης καθώς 

επίσης και η προτεινόµενη µεθοδολογία ανάκτησης 3∆ αρθρωτών αντικειµένων έχει 

επιδειχθεί µέσω εκτενούς αξιολόγησης σε καθιερωµένη βάση 3∆ αντικειµένων σε 

αντιπαράθεση µε άλλες σηµαντικές σύγχρονες µεθοδολογίες. 
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Abstract 
 

3D object representations have become an integral part of modern computer 

graphics applications, such as computer-aided design, game development and film 

production. At the same time, 3D data have become very common in domains such as 

computer vision, computational geometry, molecular biology and medicine. The rapid 

evolution in graphics hardware and software development, in particular the availability of 

low cost 3D scanners, has greatly facilitated 3D model acquisition, creation and 

manipulation, giving the opportunity to experience applications using 3D models to a 

large user community. As the number of 3D models is continuously growing the problem 

of creating new 3D models has shifted to the problem of searching for existing 3D 

models. Thereupon, the development of efficient search mechanisms is required for the 

effective retrieval of 3D objects from large repositories, both of a single class and across 

classes. 

 In this dissertation, a graph-based representation of a 3D object is introduced 

using a novel segmentation algorithm and the attributed relational graph concept. The 

proposed graph-based representation sets the base for an effective 3D object retrieval 

methodology of articulated objects. 

 The contribution of this dissertation is two-fold.  

The first contribution is a 3D mesh segmentation algorithm based on the premise 

that a 3D object consists of its main body part and its constituent protrusible parts. The 

proposed segmentation algorithm aims to segment the object into these parts. To 

achieve this goal, first the salient points of the object are detected. These points are 

prominent features of the 3D object that guide the rest of the segmentation. Afterwards, 

the salient points are gathered into groups representing the main protrusible parts of the 

object. In the sequel, the main body (core) of the object is approximated using the 

minimum cost paths between the salient points of the object. The key idea of the 

proposed core approximation is to expand a set of vertices in ascending order of 

protrusion function value until the expanded set touches a certain percentage of all 

elements of the minimum cost paths. The core approximation either covers portions of 

the protrusible part areas or is very close to the neighboring areas where the real 

boundary between the core component and the protrusible part is situated. Afterwards, 

the partitioning boundary is detected, that is the boundary between a protrusible part 

and the main body of the mesh. It is considered that in the area enclosed by the desired 
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boundary between the protrusible part and the main body, an abrupt change in the 

volume of the 3D object should occur, thus, the goal is to detect this change. To 

accomplish this, closed boundaries are constructed which are defined by a distance 

function associated to a representative of the group which represents the protrusible 

part. The abrupt change of volume is detected by examining the closed boundaries 

perimeter and setting the closed boundary where the largest change of perimeter 

occurs as the partitioning boundary approximation. The proposed partitioning boundary 

approximation is very effective since it is shown in the experimental results that it is very 

close to the real partitioning boundary. Lastly, the partitioning boundary is refined so 

that it passes through the concavities of the object using a minimum cut algorithm.                

    The second contribution of this dissertation is a 3D object retrieval methodology 

that relies upon a graph-based representation of an articulated 3D object produced by 

the proposed segmentation scheme. In particular, the parts extracted by the 

segmentation algorithm are set as the nodes of the graph structure while its edges 

connect all the protrusible parts with the part representing the main body of the 

articulated object. The nodes and the edges of the graph structure relate to unary and 

binary attributes which represent the geometrical characteristics of the parts as well as 

the relationships with each other. This graph-based representation can be viewed as an 

Attributed Relational Graph (ARG). The ARG of the object is later used for effective 3D 

articulated object retrieval. Specifically, the query’s object ARG is matched with the 

ARGs of the objects in a database containing 3D articulated objects. The outcome of 

the retrieval process is a sequence of objects from the database similar to the query 

object based upon a similarity criterion that relies upon the Earth Mover’s Distance 

similarity measure.            

The improved performance of the proposed 3D mesh segmentation scheme as well as 

the proposed object retrieval methodology for 3D articulated objects has been 

demonstrated by an extensive evaluation in standard 3D object databases against the 

major state-of-the-art methodologies. 
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Chapter 1 

 

Introduction 
 

1.1  Scope of Dissertation 
  
 In recent years there has been an increasing demand for 3D object recognition 

and retrieval.  

Recognition of a 3D object is achieved by understanding its structure. According 

to the Recognition by Components (RBC) theory of  Biederman [Bie87] human 

perception understands the structure of the 3D object by breaking it into parts and 

assigning to them basic volumetric primitives [Bie87]. Specifically when an image of an 

object is painted on the retina, RBC assumes that a representation of the image is 

segmented-or parsed-into regions of deep concavity, particularly at cusps where there 

are discontinuities in curvature. Each segmented region is then approximated by one of 

a possible set of simple components called geons (for “geometricalions”) that can be 

modeled by generalized cones.  

This process has also been mimicked in Computer Vision in order to understand 

and model the structure of the objects so that they can be recognized by a system. The 

basic process that is used in object recognition is segmentation, i.e. the process that 

breaks the object into meaningful volumetric parts. 

In the literature there exist a plethora of surface segmentation algorithms that 

partition the mesh in meaningful components. All of these algorithms use different 

criteria and methodologies to achieve this goal.     

 In this dissertation a 3D mesh segmentation algorithm has been developed and 

will be presented analytically in the subsequent Chapter 2. This algorithm is based on 

the premise that a 3D object consists of its main body and its constituent protrusible 

parts. 

     The scope of the segmentation algorithm is to separate (segment) the object into 

the prementioned parts i.e the main body and its protrusible parts. This segmentation 

process is initiated with the detection of the so called salient points. These points are 
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the prominent features of the 3D object and guide the rest of the segmentation 

procedure. 

The next step is to bring together into distinctive groups the salient points which 

belong to the particular protrusible part connected to the main body. 

In the sequel the main body which can be also named as the “core” of the 3D 

object will be approximated using the minimum cost path that connect the salient points 

of the object. This core approximation either covers portions of the areas of the 

protrusible parts or approaches in the best possible way the neighboring areas in which 

the real boundaries separate the core and the associated protrusible parts. 

     In succession the partitioning boundary, i.e  the boundary between the main body 

and the particular protrusible part of the mesh, is detected. The basis of this detection is 

the obvious expected abrupt change of the volume which happens in the area which is 

enclosed by the partitioning boundary under investigation. The goal of this process is to 

detect this abrupt change of volume. Finally the detected partitioning boundary is further 

refined in order to pass through the concavities of the object using a minimum cut 

algorithm.    

 3D object retrieval is the problem where given a 3D query object and a database 

consisting of 3D objects similar in shape objects as the query has to be extracted from 

the database. This problem has received over the last years significant attention and 

various methodologies have been proposed to deal with it. Most of these approaches 

are based on global representations of the 3D object, i.e. 2D/3D features are extracted 

from the object and are used to globally describe it in a feature space. In this case the 

similarity between the query object and the objects of the database is accomplished by 

comparing their respected features. The problem with these approaches is that with a 

global descriptor similar articulated objects in shape under different poses can be 

regarded as non similar in the retrieval process.   

 In this thesis a different methodology for retrieval is going to be followed that is 

based on a graph-based representation and can successfully retrieve articulated 

objects. The basis of the whole retrieval process is the construction of a graph based 

representation of an articulated 3D object. This graph is obtained using the 

segmentation algorithm mentioned already. Specifically the parts that the segmentation 

algorithm extracts will be set as the nodes of the graph structure while its edges will 

connect all the protrusible parts with the one representing the main body of the 

articulated object. Finally unary and binary attributes are assigned representing the 

parts geometrical characteristics as well as the relationships existing between the parts. 
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This graph based representation is named Attributed Relational Graph (ARG) and is 

going to be used for efficient 3D articulated object retrieval. Specifically the ARG of the 

query articulated 3D object will be compared with the ARGs of the 3D articulated 

objects being stored in the database. The result of this comparison will be a sequel of 

objects taken from the database which are similar to the query object. The retrieval will 

be obtained using a graph – matching algorithm concept which is based on the Earth 

Movers Distance Similarity Measure. 

 

1.2  Innovations of Dissertation 
 

This dissertation is innovative both in the proposed segmentation and retrieval 

algorithms. For a survey in mesh segmentation algorithms see [APP+07]. 

 Concerning the proposed segmentation algorithm, although it is aligned with a 

general framework introduced by Lin et. al. [LLL07], new approaches have been 

introduced for the implementation of distinct stages of the framework leading to 

improved efficiency and robustness as has been verified by an extensive experimental 

evaluation. 

 The two most significant contributions of the segmentation algorithm is the 

approximation of the core of the object and the detection of the partitioning boundaries. 

Both of these approaches differ significantly from the approach followed by Lin et. al. 

[LLL07].  

 The core approximation is based on a new algorithm that expands a set of 

vertices starting from the center of the object and the expansion continues until the 

expanded set reaches the protrusible parts of the object and in some cases cover a 

portion of them. In Lin et. al. a simple thresholding is being used that will be shown to be 

inadequate in section 3.1.4. The core approximation is a very crucial part in the whole 

segmentation framework since the partitioning boundary detection is heavily based on 

its correct approximation. In the experimental results of section 3.2 it will be shown that 

the approximation of the core is very robust. 

 A novel way to trace the partitioning boundaries is also introduced. The novelty is 

based on the use of closed boundaries to detect the sudden change of volume which 

happens at the area which encloses the partitioning boundary. In the proposed 

algorithm this area will be defined with the aid of the core approximation and this area 
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will be sweeped by these closed boundaries. The major advantage of this approach 

over Lin’s et. al. [LLL07] approach is that the defined closed boundaries are not 

dependant on the resolution of the mesh, are less susceptible to noise and sweep a 

small area of the mesh where the true partitioning boundary lies. The segmentation 

algorithm was published in [APPS]. 

 Concerning the retrieval part of the dissertation the attributed relational graph 

concept has been used in order to describe an object. The innovative part of the 

dissertation is the use of the EMD similarity measure based on newly defined ground 

distances in order to match the ARGs of two articulated objects. 

 In the experimental results (section 5.3) the superiority of our retrieval 

methodology will be shown against the MPEG7 retrieval methodology which is based 

also on a graph representation of the object and the retrieval methodology of Papadakis 

et. al. [PPT+08] which is based on a global representation of the object.  

     The results of the proposed retrieval algorithm were presented in [APP+09, 

APP+]. 

 

1.3 Dissertation layout 
 

 

The layout of this dissertation is as follows : 

In chapter 2 the state of the art of surface segmentation will be presented where 

a wide spectrum of the segmentation algorithms will be categorized according to the 

methodology it is used in order to achieve segmentation. In chapter 3 the proposed 

segmentation algorithm will be presented and all of its distinct stages will be fully 

described. Experimental results will also be presented based on a consistent framework 

presented in the literature. In chapter 4 the state of the art in retrieval of articulated 

objects will be presented.  In chapter 5 the proposed retrieval methodology will be 

introduced and also experimental evaluation will be made which shows the highly 

efficient performance of the proposed retrieval methodology in retrieving articulated 

object. Lastly in Section 6 conclusions will be drawn.   
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Chapter 2  

 

State of the art in 3D mesh segmentation 
 

2.1  Introduction 
 

In recent years there has been an increasing demand in Computer Graphics, 

Vision, and Multimedia, for efficient manipulation of 3D objects due to their plethora and 

easy to be acquired methods (e.g. from laser range scanners). This manipulation may 

involve a wide range of computer graphics techniques like retrieval, rendering, texture 

mapping, transmission, geometric morphing, collision detection etc.  

Usually 3D models are represented by low level structures such as a triangular 

mesh of irregular connectivity which makes them hard to be manipulated.  

Surface segmentation, a process which segments the mesh into subparts, is very 

useful for alleviating this lack of high level representation and provides a base for 

surface understanding. It is capable of breaking a specific task into subtasks which can 

be more easily manipulated making it a versatile process. 

In the literature a plethora of algorithms for surface segmentation has been 

presented. Some of these belong to methodologies and/or techniques as for example 

“The Region Growing Technique”, ”The Watersheds Approach”, “The Reeb Graph 

Methods”, “The Skeleton based methods” etc etc. All these are going to be presented 

shortly in the next section.  The associated algorithms under a specific objective use 

various criteria for grouping mesh elements together. Additionally, these criteria may 

use various local or global shape features extracted from the mesh and are often valid 

under some constraints. This means that segmentation is a heavily specific application. 

However there seems to be common constituents in the objectives of many 

segmentation algorithms. In the works of Shamir and Agathos, [Sha04, APP+07] based 

on the segmentation objective, two types of segmentation algorithms are distinguished. 

Specifically: 
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• Patch type segmentation, which objective is to segment the mesh into surface 

patches. This type of segmentation is useful for parametrization, texture 

mapping, remeshing, simplification, etc. 

• Part type segmentation, which objective is to segment the mesh into meaningful 

to human perception components. This type of segmentation is based on the 

theory of cognitive science which describe how humans recognize objects 

[HR84, Bie87, HR97, SH01]. 

The chapter organization is as follows:  

• Section 2.2: Introduction of basic definitions. 

• Section 2.3: Presentation of the state of the art in surface segmentation. 

 

2.2  Basic Definitions 
 

A 3D mesh, M, is a discrete approximation of the surface of a 3D object 

consisting of a set of Vertices, Edges and Faces. The edges and faces of the mesh are 

always incident to the vertices of the mesh. In most of the cases the faces are triangles.  

Let S be the set of either the vertices, edges or faces of the mesh.   

Segmentation of  M is called the partitioning of S into k-disjoint sets, i.e: 

1
,  ,  ,  , 1... ,

k

i i i ji
S S S S S S i j k i

=
∪ = ⊂ ∩ = ∅ = ≠ j  (2.2.1) 

The dual graph of a mesh is the graph for which nodes are the triangular faces 

and each node is connected with another if their representative triangles share a 

common edge. The triangles, which represent its nodes, will be referred as the dual 

triangles, see figure 2.2.1.  

 
Figure 2.2.1. The dual graph a mesh denoted by red lines 
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2.3 State of the art in surface segmentation 
 

In the literature there are several algorithms created for surface segmentation. 

These algorithms can be grouped into categories according to the method used for 

segmentation.  

      For the shake of clarity, from now on, the parts that the object is segmented into 

will be called components or segments. The boundaries where components (segments) 

meet will be called partitioning boundaries. 

 

2.3.1  Region Growing  

 

With this technique segmentation regions are generated with the expansion of 

seed elements (points, triangles, regions) that belong in a part. This expansion takes 

place only if certain criteria hold. These criteria depend on the objectives and 

constraints set by the segmentation algorithms.  

For example, point Σ in Figure 2.3.1 expands to its neighbors and adds them to 

the part it belongs to if the criteria set hold. Subsequently, this process is repeated by 

the expansion of these neighbors and the process ends until no other points can be 

added. 

 

Σ 

 

 

 

Figure 2.3.1. Point Σ “grows” adding its neighbors to the part it belongs. 

 

Zhang et. al. [ZPKA02] label the points according to their Gaussian curvature. 

Following the transversality regularity1 [HR84], by thresholding, they label points of high 

negative Gaussian curvature as boundary points. 

By selecting randomly seed points among the non boundary points they do 

region growing. The growing process does not add points which belong to the boundary 
                                                 
1 The transversality regularity states that when two arbitrarily shaped surfaces are made to interpenetrate 
they always meet in a contour of concave discontinuity of their tangent planes 
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or those that are already added to the region. Every non boundary point that is not 

examined by the neighboring scheme creates a new part. The region growing process 

ends when all non boundary points have been assigned to a part. Points which belong 

on the boundary are added to their closest region. Finally regions consisting of small 

number of points are merged to neighboring larger regions and the segmentation 

process ends. 

One of the disadvantages of their method is that the output is heavily dependent 

on the choice of the user defined threshold which determines whether a point will 

belong to the boundary. Also not all boundaries can be found by using only the 

Gaussian Curvature [HR84]. In addition if the points labeled as boundaries do not form 

a closed loop then the algorithm will fail in finding the proper parts of the 3D object. 

Ζuckerberger et. al. [ZTS02] extract the parts of the object with a flooding on the 

dual graph of the mesh. Specifically, their segmentation technique starts from a node 

traversing the graph using a Depth First or Breadth First Search. This traversal 

incrementally collects faces as long as they form a convex patch. If convexity is violated 

then a new patch is created from an unvisited node and the traversal is resumed. The 

whole process ends when there are no vertices left unvisited.  

The main problem with this approach is oversegmentation which the authors 

propose to be dealt by merging smaller regions to larger ones according to their area.  

 

Sapidis and Besl [SB95] following a trial-and-error process perform region 

growing in range image data which segment them in N quasi-disjoint regions which can 

be approximated by N polynomial functions in a way that: 

(i) The distance between a point of the region and its associated polynomial is 

smaller that a threshold 

(ii) The total number of data elements that each region contain is maximized 

(iii) A C1 or C2 continuity can be enforced between adjacent polynomials 

Region growing starts with a seed region to which a polynomial is fitted. This 

region grows according to a distance and orientation criterion and the approximating 

polynomial of the expanded region is computed.  
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The process continues until there can be no further expansion. If the number of 

points that do not belong to a region is significant then the whole process is applied 

again beginning with a new seed region. 

Sorkine et. al. [SCOGL02] partition the mesh in order to map (flatten) it into a 

region of the 2D plane with bounded distortion. The mesh partitioning is accomplished 

by region growing. Specifically, they start from a seed triangle and iteratively attach 

adjacent vertices as long as the distortion caused by the flattening of its adjacent 

triangles does not exceed a predefined threshold and there is no self-intersection in the 

2D plane. If no more vertices can be added a new seed triangle is selected and the 

process starts again. The main disadvantage of this method is that the segmentation 

may lead to the creation of very small patches in order to avoid self-intersections and 

over distortion. 

 

2.3.2  Watersheds 

Initially, the watershed transformation was used for 2D/3D image segmentation 

(see for example [VS91, Pra98]). Mangan et. al. [MW99] was the first to extend it to 3D 

meshes. This method has been named this way because it reminds the way that water 

fills a geographic surface. As the water floods its basins there will be points where flood 

regions meet. These points are dividing and watersheds are placed at that points so as 

to divide the regions, see Figure 2.3.2. Thus watersheds segment the geographic 

surface into regions. The flooded basins are

represent the parts of the object. 

For segmentation purposes the watershed

3D Mesh but it is applied on a transformed vers

guide the watersheds to identify the crest lines

correspondence between the minima of f and the

 (a)

 

  

 

 

Figure 2.3.2. (a) Initial flooding of the geographic s

certain flooding level 

 

 

 called catchment basins and they 

 algorithm is not applied on the original 

ion based on a function f : ℜ3→ℜ that 

 of the mesh. There is a one to one 

 catchment basins. 

(b) 

WATERSHED 

urface, (b) Watershed line emerged at a 
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The majority of the algorithms use curvature as the watershed function: In 

[PRF02] various types of curvature has been used like the Gaussian, the Mean, the 

Absolute etc. In [MW99] the square root of the deviation from flatness has been used (D 

= 2
2

2
1 kk + , k1, k2 principal curvatures). In [PKA03, PAKZ03] the normal curvature has 

been used. 

From the algorithmic point of view the extraction of catchment basins can be achieved 

in two ways: 

1) Steepest Path Following, where a point on the surface follows its steepest path 

and  slides to a local minima of f. This point and the followed path belong to the 

part that the minima of the catchment basin define.   

2) Flooding, where beginning from the local minima, points travel towards higher 

values of f until they reach local maxima or an already labeled point 

One of the main disadvantages of the watershed segmentation is that most of the 

times it leads to oversegmentation. One solution to deal with this is by finding the 

depths of the basins. Areas of shallow basins are merged with neighboring areas of 

deeper basins. Page et. al. [PKA03, PAKZ03] implemented a scheme that diminishes 

the problem of oversegmentation. In this scheme, the basins are filled until a certain 

point by thresholding and applying 3D morphological operators [RKS00] on the 

minimum curvature. Afterwards the basins continue to be filled with a flooding 

watershed algorithm using as function the normal curvature. 

Zuckerberger [ZTS02] uses the edges of the triangles to flow to the minimum. By 

this method a better segmentation is achieved in some cases where the vertices of the 

input mesh might not be dense enough to define the catchement basins. In their case 

the dihedral angle of adjacent to the edges triangles is used as a watershed function. 

The main disadvantage of this method is that due to the small local support of the 

dihedral angle oversegmentation can be very intense. 
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2.3.3  Reeb Graph Method 

 

Let f: , where M is a three dimensional surface. The Reeb graph of 

the surface M is the quotient space [AA89] of f in M × ℜ generated using the following 

equivalence relation: 

ℜ→ℜ⊆ 3M
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If for example f is a height function which returns the z coordinate of a point on a 

surface M, then the equivalence classes of the Reeb Graph of a surface M are contours 

perpendicular to the height direction, see Figure 2.3.3.  

 
 
 

u2 

u1 
 f-1f(u1) 

Height function f(x, y, z) =z 

 
 
Figure 2.3.3. A torus object associated with the height function f(x, y, z) = z. The two points u1, 

u2 on the mesh belong to the same connected component thus (u1, f(u1)), (u2,f(u2)) are 

equivalent.  

 One of the main disadvantages of the height function is that it is not suitable for 

3D objects since it is not invariant to transformations such as rotation.  

Hilaga et. al. [HSKK01] first presented a suitable function for 3D meshes which is 

pose invariant. This function will be called in this work protrusion function, pf, and 

represents the magnitude of a protrusion on the Surface. 

This function on a point υ on M is defined as: 

∫ ∈=
Mp

p)dM,()( υυ gpf  (2.3.2) 

 
where g(υ, p) the geodesic distance of the surface points υ, p. 
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As can be observed from equation 2.3.2 the protrusion function on a point of a 

surface is the sum of the distances from all of the surface points 

 

 

 

 

 
 
Figure 2.3.4. Chromatic representation of the protrusion function pf, red color denotes small 

values of pf, blue denote large values of pf and green color denotes values in between, the 

Reeb Graph of the object is denoted by white while contours with the same value of pf are 

denote in black (taken from [HILA01]) 

 

Large values of pf denote that υ belongs on a protrusion while small values 

denote that υ is near the center of the surface, see Figure 2.3.4.   

In order to reduce the computational cost of the calculation of the protrusion 

function the mesh is tessellated uniformly into N compact patches [HSKK01, VC04], see 

Figure 2.3.5. These patches have also a representative vertex based on a criterion (eg. 

Voronoi centroid, geodesic centroid, etc). Using these patches and vertices the 

protrusion function can be approximated as follows:  

)()b,()( i i
i

bareagpf ∑= υυ  (2.3.3)

where area(bi) is the area of the patch with representative vertex bi.     

 

 

 

 

 

Figure 2.3.5. The tesse

Valette et. al. algorithm [V

 

 

llation of a mesh into uniformly distributed compact patches using 

C04]. 
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Αntini et. al. [ASBP05] is quantizing the protrusion function in order to achive 

segmentation. For example the quantization (in 7 bins) of the protrusion function of a 

human model is illustrated in Figure 2.3.6(a). 

 

 

 

 

 

 

 

(a) (b) (c) (d)  

Figure 2.3.6. (a) Quantization in 7 levels, (b) The Discrete Reeb Graph which corresponds to 

the quantization (c) The parts after the simplification of the Reeb Graph (d) The Simplified 

Graph (taken from [ASBP05]) 

Based on this quantization a discrete Reeb can be constructed. Each of its nodes 

represents a connected component which elements have the same quantized value and 

two nodes are connected by an edge if the corresponding components are neighbors, 

see Figure 2.3.6(b).  

Their segmentation objective is to acquire perceptually meaningful components. 

As can be seen from Figure 2.3.6(a) the quantization of the Reeb Graph results to 

oversegmentation. Antini et. al. managed to merge regions by simplifying the Reeb 

Graph, i.e. Graph nodes are merged together based on their topological and Mean 

curvature information, see Figure 2.3.6(c), (d). 

While Antini et. al. manage to acquire perceptually meaningful components the 

boundaries between regions do not reside at areas of concavities where the human 

visual system expect them to be located [HR84]. 
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Valette et. al. [VKS05] constructed a segmentation algorithm that also takes 

advantage of the protrusion function. Specifically they introduced the set 

 and examine the way it evolves as x decreases. In this 

evolution process Cx starts from just containing points of protrusion (e.g. arms, legs, 

etc.) and expands towards the center of the object. They have called this process 

x}p)(|{ ≥Μ∈= pfpCx



protrusion conquest. In Figure 2.3.7 the result of Valette et. al. protrusion conquest is 

illustrated, as can be observed segmentation is not done at the concavities of the mesh. 

 

 

 

    

 

 
 
 
 
 
 
 
 

Figure 2.3.7. Results of Valette et. al. Protrusion conquest, different colors denote different 

parts 

 

2.3.4 Model based Methods  

 

Wu et. al. [WL97] use the distribution of electrical charge across the surface in 

order to achieve segmentation. Specifically they used the property that the density 

charge is very low at areas of deep concavities of the surface and very high at areas of 

high convexities of the surface. According to the minima rule [HR84], partitioning 

boundaries reside on areas of the mesh where minima in the density charge occur.    

Assuming that a triangle has a constant density charge Wu et. al. created a set of 

linear equations whose solution provide each triangle’s density charge. 

The boundary extraction process of a closed surface starts with a node on the 

dual graph of the mesh where there is a deep local minimum in the density charge. The 

algorithm proceeds to the neighboring node which has the smallest value in density 

charge marking it as visited. This process is then repeated until a closed boundary loop 

is generated.  

A similar process is followed when the object is constructed from single view data 

with the only difference that if a boundary node is reached then a different path from the 

initial node has to be followed in order to acquire the whole boundary.    
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After the boundaries of the object are found they are extracted from the mesh 

dividing it into subparts which can be acquired by applying a floodfill algorithm on the 

disconnected subgraphs of the dual graph. 

  One of the advantages of this method is that it uses a global characterization of 

the surface to find concavities while most other methods use local characterization like 

curvature. This makes it less sensitive to noise. Disadvantages of this method is that it 

can only trace boundaries surrounded by concavities.  

 

2.3.5  Skeleton based Methods 

 

Li et. al. [LTH01] did segmentation using the skeleton of the object. The skeleton 

of the object is constructed by performing simplification of the surface using the edge 

contraction method. The priority for contraction is the length of the edge to be 

contracted. Their simplification process leaves edges that do not have incident triangles 

unaltered, they call these edges skeletal. At the end of the contraction process only 

skeletal edges are left, whose union is the skeleton of the object, see Figure 2.3.8(b). 

The parts of the object are extracted by using a plane which sweeps the mesh 

along the skeleton edges. The intersection of the plane and the mesh is one or more 

polygon contours. The parts are extracted by examining the way that these contours 

alter as the sweep plane moves. For this purpose a parametric geometric and 

topological function is defined on these contours. Critical points on these functions 

signify parititioning boundaries.  

  

 

 

 

 (a) (c) (d) (b) 
Figure 2.3.8. (a) The polygonal object, (b) The skeleton of the object , (c) Skeleton with virtual 

edges, (d) Segmented model (taken from [LI01]) 
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In order for this sweeping to be successful the skeletal edges are ordered by 

joining them with virtual edges, constructing by this way a skeletal tree, see Figure 

2.3.8(c).  This tree defines a sweeping space ordering for path following. 

A disadvantage of this method is that due to the application of smoothing filters 

on the parametric functions there can be cases where some features fail to be 

extracted. 

Reniers and Telea [RT08] also proposed a skeleton-based method in order to 

achieve segmentation. First they defined the skeleton S of a 3D object Ω with boundary 

(surface) . The skeleton is defined as those points in Ω having at least two boundary 

points at minimum distance these points are called feature points. The skeleton consists 

of 2D manifolds and 1D curves. From the skeleton they create the curve-skeleton C by 

considering the shortest geodesic curves between the feature points of a point p 

belonging to S, let this set of geodesic curves for the point p called Γ(p). By considering 

the loops that are created in Γ(p) they determine whether a point belongs to the curve-

skeleton C as follows: 

∂Ω

genus∈ ⇔ ≥(Γ(p)) 1p C  (2.3.4) 

The point p is a normal point of C if  and a junction point if 

. The set Γ at the junction points of C splits the object into components. 

In their implementation they find the curve-skeleton by voxelizing the 3D object and 

approximating the curve-skeleton with voxels proposing a methodology to find the 

feature voxels of the voxelized skeleton-curve and the shortest geodesics between 

them. 

genus(Γ(p))=1

genus ≥(Γ(p)) 2

Using the junction points they define a skeleton-to-boundary mapping as follows: 

The set Γ(p) of a point on C divides the objects surface into a set of components 

Comp(p) which are ordered in ascending order in terms of their area. 

By considering the sets of components at the junctions of the curve-skeleton they 

partition the mesh proposing a flat and a hierarchical segmentation algorithm. In their 

flat segmentation algorithm they simply label all the components that are generated by 

using the set Γ(p). 

In their hierarchical segmentation algorithm they define a set F which consists of 

the union of all the components that the junction points generate and they create a 

hierarchical segmentation S from F based on the area of the components size, i.e. they 
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extract from F the components in ascending order of area size and accept them as 

segments of S if their area are greater than a scale τ.  

 

In [MDA+08] the Medial surface of the object [SBTZ02] is used for segmentation, 

which is an extension of the Medial Axis Transform of an image [SBTZ98]. First the 

object is voxelized using a fixed resolution. Afterwards the voxelization is thinned using 

the Average Outward Flux (AOF) of the Euclidian distance Transform’s Gradient field on 

each voxel x [SBTZ02] defined as: 

=

= ∇∑
1

1( ) ( ),
n

i
i

AOF x D x
n in  (2.3.5)

where n is the number of the neighboring voxels of x and is the outward normal from 

the voxel x to voxel xi. The value of AOF is approaching a negative value around the 

medial surface points and is close to zero elsewhere. Thinning is done by recursively 

removing all the voxels that are close to zero and do not affect the topology of the 

surface [SBTZ02]. Afterwards they segment the medial surface using [MBA93]. Then 

they readjust the resulting segments into larger more meaningful parts. Finally they 

segment the boundary voxels of the voxelized mesh according to their proximity with the 

voxels of the segmented medial axis. 

in

  

2.3.6  Clustering Methods  

 

Shlafman et. al. [STK02] use the k-means clustering algorithm in order to achieve 

segmentation. Their segmentation scheme clusters triangles and proceeds as follows: 

(i) Compute the distances between each triangle pair 

(ii) Compute the triangle cluster representatives  

(iii) Assign all other triangles to their nearest representative 

(iv) Update the representatives by minimizing the sum of distances between the 

triangles belonging to the cluster and the representative. 

 Steps (iii) and (iv) are iterated until there is no further update or a predefined number of 

iterations is reached. The final computed clusters are the parts of the object.         
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The distance function between each pair of adjacent triangles is a weighted sum 

of the geodesic distance of the barycenters and the angle between the triangles, i.e for 

two triangles Fi, Fj: 

))(cos1( )1(),(_ ),( 2 aFFdistgeodFFdist jiji −−+= δδ  (2.3.6)
 

where α is the dihedral angle of Fi, Fj.  The distance between two faces that are not 

adjacent can be computed by finding the shortest path between them. 

 

Katz et. al.  [KT03] is using a fuzzy k-means algorithm to segment the object. As 

in Shlafman et. al. [STK02] their algorithm is based on clustering triangles. At each pair 

of triangles Fi, Fj  a distance measure is defined as: 

st)avg(ang_di
)ang_dist(a

 )1(
)_(
),(_

 ),( ijδδ −+=
distgeodavg

FFdistgeod
FFDist ji

ji  (2.3.7)

 

where: 

• geod_dist(Fi, Fj), the geodesic distance between the barycenters of Fi, Fj 

• ang_dist(aij) = , where n = 1 for concave angles and very small for 

convex angles, aij the dihedral angle of Fi, Fj. 

))cos(1( ijan −

• avg(), the average of all the values 

They first consider binary clustering, i.e. the classification of the triangles  into 

two clusters. Each triangle of the mesh will belong to a cluster according to a fuzzy 

membership function, which denotes the likelihood of a face to belong in one of the two 

clusters. This function is based on the distances of the triangle from the representatives 

triangles of each cluster which are iteratively updated by a fuzzy k-means algorithm.  

After the convergence of the k-means algorithm by thresholding appropriately the 

membership function they simulate hard-clustering, acquiring three groups, i.e. two 

groups with triangles belonging to only one cluster (part) and a third fuzzy group which 

contain triangles that are not certain to belong in a specific part . See Figure 2.3.9 for a 

visualization of this grouping.  
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Figure 2.3.9. Katz et. al. fuzzy clustering. Blue and Green denote parts and Red denotes the 

fuzzy unclassified region.  

In order to classify the members of the fuzzy group to one of the parts of the 

object a minimum cut algorithm [CLRS01] is applied on the dual graph of the mesh 

belonging to the fuzzy group. The weight applied on the edges of the graph is small on 

concavities and large on convexities. Thus the minimum cut algorithm bisects the fuzzy 

group in deep concavities. Triangles from the fuzzy group are assigned to a component 

according to which side of cut they belong.  

They have created also a hierarchical structure based on this decomposition. 

Each node of the hierarchical tree denotes an unsegmented area that is segmented in 

two new nodes with their decomposition algorithm. The initial node is the whole object.  

They also generalize this binary hierarchical clustering into a k > 2 hierarchical 

clustering. The k clusters are computed automatically by an iterative algorithm which 

maximizes the minimum distance from already assigned cluster representatives.    

Sander et. al. [SWG+03] followed also the k-means idea to do partitioning. 

Specifically, they have divided their partitioning technique in two phases, assuming that 

an initial estimation of seed triangles is present.  

Phase 1: All selected seed triangles grow simultaneously using the Dijkstra 

algorithm on the dual graph of the mesh with edge weights that are dependent on the 

geodesic distance of the dual triangles and the angle between the average normal of 

the already generated part and the triangle added. This phase stops when all triangles 

are labeled, belonging to distinct parts of the object. 

Phase 2: The seed triangles are refined by starting from the partitioning 

boundaries using again the Dijkstra algorithm on the dual graph of the mesh with 

weights that depend only on the geodesic distance of the triangles. The last face 

reached by the Dijkstra algorithm becomes the new seed. 

Processes 1 & 2 are repeated until there can be no additional refinement of the 

seed triangles.   
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The initial seed triangles are generated incrementally by applying phases 1 and 2 

initially for one seed. A new seed is added at the end of process 1, this new seed is the 

last assigned to a part during region growing. When the required number of seeds are 

generated  phases 1 and 2 are repeated until convergence.   

Garland et. al. [GWH01] propose a hierarchical clustering methodology suitable 

for applications that require close to planar parts. Specifically they do edge contraction 

on the dual graph of the mesh. With each edge contraction on the dual graph a new 

node on the hierarchical structure is generated whose children are the nodes incident to 

the edge and the two areas that represent the children nodes are grouped into their 

parent common cluster. The edge contraction cost is based on a planarity, orientation 

bias and shape bias measures. The contraction sequence is settled by a priority queue 

which sorts the dual edges of the dual graph according to the contraction cost. The 

hierarchical structure leaves are the faces of the mesh and at its higher levels the nodes 

represent areas of triangles (parts of the object) which are grouped together by edge 

contraction. 

Attene et. al. [AFS06] used the same hierarchical clustering to classify the mesh 

triangles into a clusters that can be approximated by a plane or sphere or cylinder 

primitive. The contraction cost of a dual edge is the minimum of the errors generated 

after fitting the plane, sphere and cylinder primitives to the triangles of the merged 

regions. The primitive corresponding to the minimum fitting error approximates the 

unified cluster. 

Gelfand and Guibas [GG04] base their hierarchical clustering technique on 

slippable motions. These are rigid motions which, when applied to the shape, slide their 

transformed transformed version against the stationery version without forming any 

gaps. This happens when the instantaneous motion at each point is tangent to the mesh 

at x. A kinematic surface is a surface which has a slippable motion. A slippable 

component is a collection of vertices from the mesh which can be approximated by a 

kinematic surface. Their algorithm segments the input surface into a set of slippable 

components using a hierarchical clustering technique similar to [GWH01] on the point 

set of the mesh.        
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2.3.7  Spectral Analysis 

 

The spectral analysis method uses the eigenvalues of properly defined matrices 

based on the connectivity of the graph in order to partition a mesh. 

   Let G be a connected graph with weights w. Its Laplacian matrix is defined as: 

                                                             L = D – A,                                                

where , and D is a diagonal matrix with 
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ij
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The eigenvector y corresponding to the second largest eigenvalue of the 

Laplacian L can be used to partition the graph G into two equal parts. Specifically, this 

can be done by thresholding the values of y with their weighted median. 

The above partioning algorithm was one of the algorithms used by Karypis et. al. 

to achieve a hierarchical partitioning of a Graph into k subsets with approximately equal 

number of nodes.  A mesh can be seen also as a graph. Its nodes and edges are the 

vertices and edges of the mesh respectively.  

Karypis et. al. [KK95] algorithm (MeTiS [KK98]) has been used by Karni et. al. 

[KARN00] to partition a mesh. They used this segmentation for compression which was 

accomplished by doing spectral analysis on the normalized Laplacian D-1L. 

Liu and Zhang [LZ04] used spectral analysis on the dual graph of the mesh. They 

define an affinity matrix W with elements 0 ≤ wij ≤1 denoting the likelihood that faces i, j 

can be clustered into the same part. These weights are created using the distance 

function of Katz et. al. [KT03] (see section 3.6). They also normalized W to Wn = D-

1/2WD-1/2, where D is a diagonal matrix defined as 
∈

= ∑ii
( )

d ij
j Neighbors i

w .  

Then they constructed a normalized matrix Q using the k largest eigenvectors of  

Wn and apply the k-Means clustering on the row vectors of Q using the standard 

eucledian distance. Each of the above clustered vectors correspond to the faces of the 

mesh. 
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One of the disadvantages of their clustering method is that they emphasize 

mostly in concavity. This means that they segment sometimes shallow concavities 

making the quality of segmentation of some areas low. 

Zhang and Liu [ZL05] use the affinity matrix as in Liu and Zhang [LZ04] to 

classify the mesh triangles into two parts using the same methodology as Shi  et. al. 

[SM00] in their Normalized Cut algorithm for image processing. In order to lower the 

complexity the affinity matrix is partially defined. Specifically it is constructed from the 

distances of two faces (belonging to different parts of the mesh) from all other faces. 

The two leading eigenvectors of the affinity matrix are extracted using Nyströms 

[FBCM04] method and are used in a line search algorithm to find the most salient cut 

which bipartitions the mesh. Based on the salience theory of Hoffman et. al. [HR97] they 

define a measure to repartition the resulting parts in a hierarchical manner. 

 

Liu and Zhang [LZ07] use two kinds of spectral embeddings in order to project 

the 3D mesh onto the 2D plane. The first embedding uses the Laplacian matrix and it is 

used to enhance the structural characteristics of the mesh (protrusible parts) and the 

other embedding uses the minimum curvature information of the vertices and enhances 

the geometrical characteristics of the mesh (concavities). When the object is projected 

on the 2D plane using these spectral embeddings the outer outline of the projection is 

extracted constructing by this way a curve, which they smooth and simplify deriving its 

closed polygon approximation. By using convexity measures on this polygon they define 

a criterion on whether the mesh that was projected should be further segmented. If the 

object should be further segmented they find, using inner distances, two points on the 

polygon which belong to two different parts of the object. Using these points they 

approximate their corresponding faces on the mesh and apply the segmentation 

algorithm followed in Zhang and Liu [ZL05] using these two faces.  

       

2.3.8  Explicit Boundary Extraction  Methods 

 

Lee et. al. [LLS+04, LLS+05] concentrated on the explicit extraction of the 

segmentation boundary.  Specifically, they threshold minimum negative curvatures 

using hysteresis thresholding in order to acquire high feature areas. Afterwards they do 

thinning on the high feature points extracting their skeleton.  By removing the branching 
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points of the skeleton graph a set of non-branching feature contours are acquired. 

Some of these contours will be selected in order to segment the mesh. 

This selection is done by choosing the most central and long boundary contour 

using the normalized protrusion function of Hilaga et. al. [HSKK01]. This contour is then 

closed by finding the shortest path on the mesh using as edge cost a weighted 

combination of : 

• A Distance function which is small for points that are far away from the contour. 

This function drives the contour on the other side of the mesh 

• A Normal function which is small for normals that face in opposite directions from 

the contour. This function also drives the contour on the other side of the mesh 

• A Centricity function which forces the contour to be perpendicular to the medial 

axis of the mesh 

• A Feature function which drives the contour near feature points 

Sometimes the contour can also be closed manually by 2D line drawing on the mesh. 

The validity of this contour is checked upon the saliency of the segmented part 

[HR97]. Specifically the part segmented by the selected contour has to pass a salience 

test based on its relative size, boundary strength and degree of protrusion [HR97]. 

If the contour pass the salience test then it is further refined using a geometric 

snake. Thus a smooth partitioning boundary is extracted. This partitioning boundary 

scissor the mesh into two parts. Figure 2.3.10 illustrates their method.  

The same process is then repeated on each of the extracted parts in order to acquire 

further par tioning. 

 

 

 

 

 

 

 

F

 

ti
igure 2.3.10. Lee et. al. Boundary Extraction method (taken from [LEE05]) 
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One of the main advantages of their method is that it produces smooth and 

closed partitioning boundaries accepted also by a salience test. Sometimes though, the 

accepted contour may not cut the mesh into meaningful components with a 

consequence of the need of a user to cut the mesh manually. 

 

2.3.9  Volumetric Methods 

 

Shapira et. al. [SSCO05] defined a scalar function on the mesh which they call 

the Shape Diameter Function. Specifically its value at a point p on the mesh is equal to 

its neighborhood-diameter. The neighborhood-diameter of a point on the mesh is the 

average of the distances of a set of rays from the surface cast in opposite directions 

from its normal, see Figure 2.3.11. This function is further smoothed by local averaging. 

 

p 

N 

Figure 2.3.11. The normal N of point p and the rays cast from it. 

The shape diameter function takes a characteristic value for different parts of the 

object and changes smoothly when there is a transition between them. Thus different 

parts can be segmented by finding an appropriate separating value which creates an 

iso-contour on the surface separating the mesh parts. 

Kim et. al. [KYL05] also created a Volumetric method to partition the object. 

Specifically they first did a Voxelization of the object and then they applied the opening 

morphological operations using the ball-shaped structuring element. Their aim is to 

extract the convex parts of the object. 

In order to achieve this they have created a three stage decomposition scheme. 

At the first stage they do an initial decomposition of the volumetric object by 

applying the opening morphological operation using the ball-shaped structuring 

element. Its radius is chosen so that parts with maximum convexity are extracted.  

The part that is extracted from the opening operation is called the body class and the 

parts that belong on the complement of this operation are called the branch class, see 
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Figure 2.3.12. They also apply a post processing scheme in order to discard very small 

branch parts and to straighten their boundaries. 

 

 

 

 

 

Figure 2.3.12. Applying the opening morphological operator to the bunny voxelized object 

(taken from [KYL05]) 

 

At the second sta hey apply recursively the same morphological operation on 

the already extracted p  using as rule that a part belonging to the branch class 

should be further segmente

only one adjacent part, see

opening 

Complement 
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parts

Body Class
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One advantage of their decomposition scheme is that it can be applied to 

practically all of the 3D models due to the voxelization, which treats all objects in the 

same manner. A disadvantage of their method is that due to the voxelization resolution 

some parts that should not be connected might become connected, thus producing an 

erroneous segmentation 

 

2.3.10  Critical Points 

 

Algorithms that follow this method use critical points defined on the mesh to 

guide the segmentation process.   

Katz et. al. [KLT05] presented a segmentation method based on critical points 

defined on the mesh. They first transform the mesh into a pose invariant representation 

using the multi-dimensional scaling method (MDS) [CC94]. Then they find on this 

representation critical points. These critical points are local maxima of the protrusion 

function (section 2.3.3) that belong on the convex hull of the representation, see Figure 

2.3.15(b).  Afterwards they create a surrounding sphere of the representation and use it 

to mirror its points so that vertices of the core become external points of the sphere, see 

Figure 2.3.15(c). The points that belong on the convex hull of this mirroring consist the 

central part of the object which they call the core see Figure 2.3.15(d). These points and 

their incident triangles are extracted isolating all the critical points (with the exception of 

those that are close to each other). 

 

 

 

 

 

 
 (d) 

 

(c) (b) (a) 

Figure 2.3.15. (a) The original Model, (b) The pose invariant representation of the model and its 

critical points (red colour), (c) Mirroring of the pose invariant representation, (d) The extracted 

core of the object (Red color).   

 

 35



At the end the segmentation is further refined by a graph cut method that cuts on 

the concavities of the object similarly to [KT03].   

This process is repeated hierarchically to acquire further levels of detail as was done 

also in [KT03]. 

Zhou et. el. [ZH04] used also critical points in order to achieve segmentation. 

These critical points are local extremum and saddle points of a function defined on the 

points of the mesh. This function is defined as the geodesic distance of a point from a 

reference root point which can be selected either manually or automatically (it is usually 

placed at an extremity of the object).  

The local extremum points are sorted in descending order according to their 

geodesic distance. Afterwards by traversing this ordered list a shortest path graph is 

constructed starting from each of the extremums. The construction of this graph stops 

when a saddle point or an already labeled point is found and all the unlabeled points of 

the graph are labeled with a part label number. At the end only vertices belonging to the 

main body will remain unvisited, so a label number is also given at all of these points, 

see Figure 2.3.16. 

Some disadvantages of their technique are that it only segments manifolds of 

genus 0, it is susceptible to noise, since some critical points may be erroneously found 

on noisy meshes and the decomposition result depends on the choice of the root vertex. 

 

(a) 

 

(b) 
 

(c) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3.16. (a) The mesh to be segmented, (b) The Extremum (red), Saddle (green) points 

of the mesh, (c) Labeled segmented parts after the application of their segmentation scheme 

(here color is used to denote the labeling). 
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Lin et. al. [LLL07, LLL04] also use critical points on the mesh. They call them 

salient representatives. These representatives are local maximums of the protrusion 

function defined on the DCG of the mesh. More formally: 

υ⇔ ∀ ∈ >r salient Representative υ , ( ) (Wr pf r pf )  (2.3.8) 

where Wr a geodesic neighborhood of r and pf the protrusion function. Figure 2.3.17(a) 

shows these salient representatives on a 3D Mesh. 

Each representative create L geodesic zones called locales which have the 

following definition: 

υ= ≤ < + ∈{ ( ) (x 1)e, x {0, ...,L-1}xL xe D  (2.3.9)
 

where D(υ) a modified geodesic distance from υ to the salient representative and e the 

width of the locale zone, see Figure 2.3.17(b).  

Since the locales of various representatives intersect each other a Base K is introduced 

to constrain the locales and is defined as : 

υ υ υ= ∀ ∈ ≤{ |   V,  pf( ) }bK thr  (2.3.9)

 

 
(a) (b) 

 

 

 

 

 

 

Figure 2.3.17. (a) The salient representatives of the above mesh colored in pink, (b) The 

locales generated by the representative colored in pink 

 

Where pf the protrusion function value of a node in V, and thrb a user defined 

threshold, see Figure 2.3.18. Each of these trimmed locales contains the boundary of 

the protrusion represented by the salient representative. 
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Figure 2.3.18. The red region is the Base and constrain the locales of Figure 2.3.18 and the 

output are the locales shown on the right of Figure 2.3 

 

A border function is then defined based on these locales which identifies those 

containing the border of the protrusion. After finding these locales the minimum cut 

algorithm of Katz et. al. [KT03] is used to separate the protrusion from the rest of the 

object.  

An advantage of their method is that it can work on noisy meshes also. A 

disadvantage of their work is that it uses several parameters that are not fixed. 
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Chapter 3 

 

Proposed 3D mesh segmentation algorithm 
 

After a thorough study of the presented methods of Chapter 2 as well as from 

experimental results in some of them the critical points methods was adopted in this 

work. This choice was made because it was assessed that the results produced with 

this method were more meaningful in comparison with the results produced by other 

methods. This can be ascribed to the fact that the critical points methods utilize the 

human ability to distinguish the main particulars of an object (protrusible parts, critical 

and salient points, boundaries etc.) and to introduce this perception suitably into the 

algorithm.  

Therefore in this dissertation a new segmentation algorithm that belongs into the 

critical points methods will be presented. It produces high quality segmentation results 

and is very competitive in comparison to state of the art segmentation algorithms. 

The contribution of the presented work is twofold  : 

i. A novel way to trace the partitioning boundaries of the 3D object using closed 

boundaries constructed with the aid of a distance function is presented; 

ii. A novel algorithm for the core approximation of the 3D object is introduced. 

 

3.1  Proposed Surface Segmentation Methodology 
 

In this section the proposed surface segmentation methodology is going to be 

presented. The whole philosophy is based on the premise that the 3D object consists of 

a main body and its protrusible parts. For example in Figure 3.1.1 several 3D objects 

are partitioned in this manner, all of them consisting of a main body and protrusible 

parts. 
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Figure 3.1.1. 3D objects consisting of a main body (coloured in red) and protrusible parts 

 

The proposed segmentation methodology goal is to extract all of these 

components. Figure 3.1.2 illustrates the flowchart of the proposed surface 

segmentation. 

The input that the algorithm accepts is a 3D mesh representing a 3D manifold. In 

the discrete case a mesh represents a 3D manifold when each of the edges of a triangle 

in the mesh is incident with at most one other triangle. The procedure is as follows: 

(i) Initially the salient points of the mesh are extracted;  these points 

characterize the protrusions of the mesh.  

(ii) The salient points are further grouped according to their geodesic 

proximity where each cluster represents a main component of the 

object and each of them is assigned a unique representative salient 

point.  

(iii) Next the core (main body) of the mesh is approximated using the 

minimum cost paths that the aforementioned representatives create 

with each other. 

 

 40



 
 

Input: A  3D mesh 

 
Salient points extraction  

 
Salient points grouping 

Partitioning boundary 
approximation for a 

representative salient point 

 
Partitioning boundary 

refinement 

Repeat until all representative salient 
points have been addressed 

 
Output: Final segmentation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Core approximation 

Figure 3.1.2. The flowchart of the proposed surface 
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(iv) In the sequel the boundary between the core and each of the 

protrusible parts (Partitioning Boundary) is approximated using closed 

boundaries which span the area containing the true partitioning 

boundary.  

(v) Finally the approximated partitioning boundary is refined using the 

minimum cut algorithm of Katz and Tal [KT03].    

 All of the above mentioned stages of the proposed segmentation methodology 

will be detailed in the following sections. 

 

3.1.1  Salient points extraction  

 

The salient points of the mesh M reside at the tips of the protrusions. In order to 

find them the protrusion function pf (see section 2.3.3) will be used. As mentioned in 

section 2.3.3 this function receives low values at the center and high values at the 

protrusible parts of the 3D object represented by the 3D mesh. Thus, it is natural to 

search for the salient points at the local maxima of the protrusion function.  

In order to find the local maxima of the protrusion function the local areas in the 

mesh should be defined so as to search in them the local maxima of the function. 

Specifically for each vertex υ ∈M  a neighborhood of vertices υN  is considered. 

The neighborhood υN  can be either: 

i. a k-ring neighborhood defined as the set of vertices within k edges away from vertex 

υ ; 

ii. a geodesic neighborhood defined as the set of vertices for which the geodesic 

distance from vertex υ  is less than a threshold. This threshold is called the radius of 

the geodesic neighborhood 

In this work the geodesic neighborhood will be used with radius −35·10 · ( )area M  

as in [LLL07]. The geodesic neighborhood is computed by using the Dijkstra algorithm. 

Formally, a salient point υ ∈M  is defined as: 
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υυ υ υ
υ

υ

⎧ > ∀ ∈
⎪⇔ ⎨
⎪ >⎩

( ) ( ) N
is a salient point

( ) normalized in [0,1]

i i

prot

pf pf

pf t pf
 (3.1.1) 

Definition (3.1.1) ensures that the salient point υ  will reside at the tip 

( ( ) ( )ipf pfυ υ> , Ni υυ∀ ∈ ) of a protrusion ( υ >( ) protpf t ). The threshold prott  is 

experimentally defined and will be set to a constant value in the experiments section 

(Section 3.2). Figure 3.1.3(a) illustrates the salient points found in several objects using 

definition (3.1.1).   

3.1.2  Salient points grouping 

The proposed mesh segmentation algorithm aims to extract the meaningful parts 

of the object. It often happens that the extracted salient points belong to sub-parts of the 

objects. For example in Figure 3.1.3(a), there exist salient points that correspond to 

fingers in the ‘human' model, as well as ears, horns and nose in the ‘cow' model and 

toes, head, nose in the ‘dinopet’ model. Since the proposed algorithm uses the salient 

points to extract the protrusions of the object, it is necessary to group them, each one of 

the groups representing a single part of the object. Thus, given the example of Figure 

3.1.3(a), the salient points in each of the hands of the ‘human' model need to be 

gathered in one group in order to represent its arms, the salient points on the head of 

the `cow' model should be gathered in one group in order to represent its head and the 

salient points on the feet and head of the ‘dinopet’ model should be gathered in groups 

in order to represent the objects feet and head respectively. 

The salient points that are required to be grouped are those which are close to 

each other in terms of geodesic distance In order to achieve this grouping, we use half 

of the mean of the geodesic distances between the salient points as a threshold  and 

group the salient points for which the geodesic distance is less than .  

ST

ST
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                                  (a) 

   

(b) 

Figure 3.1.3. Example of 3D meshes (‘human’, ‘cow’, ‘dinopet’) with their corresponding salient 

points at the (a) extraction stage (red dots) and (b) Grouping stage - each color represents a different 

group 

 

Formally, let assume that { }= = …, 1, ,iS s i NS  be the set of the salient points of 

the mesh, then the threshold  is defined as : ST

−

= = +=
−

∑ ∑
1

1 1
( , )

( 1)

S SN N

i j
i j i

S
S S

g s s
T

N N
 (3.1.2) 

where  denotes the number of the salient points and  denotes the geodesic 

distance between the salient points  and 

SN ( , )i jg s s

is js . 

A group C  of salient points is defined as: 

{ }= ∈ ∀ ∈ <: , ( , )i k i jC s S s C g s s TS  (3.1.3)
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The salient point with the highest protrusion value is chosen as a representative 

of each group C , i.e. { }= ∈ > ∀ ∈( ) : ( ) ( ),i i k kRep C s C pf s pf s s C . 

The efficiency of the proposed grouping method in representing the main parts of 

the ‘human', ‘cow' and ‘dinopet’ models is shown in Figure 3.1.3(b).  

 

3.1.3 Core approximation  

 

The core approximation is the process where the main body of an object is 

approximated. An algorithm which approximates the main body of the object is the one 

that can acquire all the elements (vertices or faces) of the mesh (representing the 

object) except those that belong to the protrusions of the mesh. These elements should 

separate all the protrusions from each other. 

In Katz et. al. [KLT05] this is achieved by spherical mirroring of the pose invariant 

representation of the mesh. When they cannot achieve the separation entirely, they 

proceed in core extension until all features are separated.  

In Lin et. al. [LLL07] a simple thresholding of the protrusion function is used, i.e. 

they define that the core of the mesh are the faces whose value of protrusion function 

(defined on the centroids of the faces) is lower than a predefined threshold. However, 

this thresholding is not reliable since it might lead to a significant overestimation or 

underestimation of the main body. In Figure 3.1.4 Lin et. al. [LLL07] core approximation 

is illustrated on the ‘human’ and ‘cow’ 3D objects. It can be observed that the main 

component (core) of the objects is significantly underestimated. 

 
 

Figure 3.1.4. The core approximation of Lin et. al. on the ‘human and ‘cow’ 3D objects. The 
triangles representing the core component are coloured in red 
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       In the proposed algorithm, the core approximation is addressed by using the 

minimum cost paths between the representative salient points. Let us assume that 

{ }= = …ˆ ˆ , 1, ,iS s i NC  be the set of representative salient points, where  denotes the 

number of clusters found in section 3.1.2 and  the representative of the  group. 

Also, let 

CN

ˆis thi

{ }, , {1, , }ij CP P i j N= ∈ …  be the set of all minimum cost paths of the points of , 

where  denotes the minimum cost path between , 

Ŝ

ijP ˆis ˆ js . 

The key idea of the proposed core approximation algorithm is to expand a set of 

vertices in ascending order of protrusion function value until the expanded set touches a 

certain percentage of all elements of . The motivation of this approach stems from the 

fact that the minimum cost paths cover a significant amount of the protrusible parts, thus 

by expanding a set of vertices by this way gives a guarantee that it will reach the 

protrusible parts and cover also an area inside them. The pseudo-code for the core 

approximation algorithm is shown in Table 3.1.1. 

P

First, the vertices of the mesh M are inserted in a priority queue PFHeap; in 

which the vertices with the minimum protrusion function inserted first. The vertices of 

the core approximation are stored in a list, named CoreList. The algorithm proceeds by 

extracting points from the priority queue which incrementally expand CoreList. Every 

point extracted is examined whether it belongs in P . A path  in  remains active if 

the ratio of the number of vertices in the path  which have been visited during 

expansion over the total number of vertices is less than , where  has been 

experimentally defined. This threshold denotes the aforementioned percentage of the 

points of the minimum cost path that the core approximation can touch. Using this 

threshold it is expected that the core approximation will cover even slightly the 

protrusible parts that are traversed by the minimum cost path traces. A salient point 

 remains active if  for some j 

ijP P

ijP

ct ct

ˆˆis S∈ ijP∃ ∈ }{1,., :CN i ijP≠  active. A vertex υ  of the Mesh 

CanBeAdded in CoreList if the nearest salient point in  is active. StopGrowing 

becomes ‘TRUE' when all salient points become non-active.  

Ŝ

The proposed core approximation method has two main advantages over [KLT05]: 

i. There is no need to do multidimensional scaling, which is a time consuming 

process, in order to extract the core. Instead only the minimum cost paths are 
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used in order to check whether the core has expanded sufficiently. This implies 

far less complexity; 
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Table 1. Our core approximation pseudocode 1: for all vertices υ ∈Μ do 
2:  insert υ into PFHeap with priority pf(υ) 
3: end for 
4: StopGrowing = false 
5: while !StopGrowing do 
6:  pop a vertex υ from PFHeap 
7:  if υ CanΒeΑdded then  
8:    CoreList.add(υ) 
9:   end if 
10:   for allP  do ij P∈

11:    if  then .ijP active
12:    if υ ∈ ijP then 
13:     incrementP   .ij counter

14:    if c

.
t

.
ij

ij

P counter
P SizeOfPath

≥  then 

15:      .ijP active false=  
16:      end if 
17:      end if 
18:     endif 
19:   end for 
20:   for all is  ∈ S  do 
21:     if .is a  then ctive
22:      .is active = false 
23:      for all js  ∈ { }iS  do s−

ctive24:       if P a  then .ij

25:      .is active = true 
26:      end if 
27:      end for 
28:      end if 
29:   end for 
30:   //StopGrowing becomes true if all is  become 
   non active  
31:  end while 
e 3.1.1. The pseudo-code of the proposed core approximation algorithm 
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ii. We have introduced a percentage of minimum cost path traces that should be 

covered for the termination of core expansion. Those traces span the protrusible 

parts at most. Thus, the selection of a percentage of the traces provides a high 

confidence that the core points will cover areas of the protrusible parts or being 

very close to the neighboring areas in which the real boundary is situated. 

Several examples are given in the experiments section (section 3.2) 

 

  

Figure 3.1.5. Examples of core approximation for the 3D objects ‘human', ‘cow' and ‘dinopet’. 

The vertices representing the core are coloured in yellow 

 

Figure 3.1.5 illustrates the proposed core approximation on the ‘human’, ‘cow’ 

and ‘dinopet’ 3D objects. As it can be observed, the algorithm produces consistent 

approximation of the core and its boundaries are near the actual boundaries identifying 

the initial approximation of the partitioning boundaries. 

 

In general, it can not be guaranteed that the core approximation overlaps exactly 

the partitioning boundaries. This happens because the minimum cost paths reside 

mostly in the protrusions. Thus, a further step is required that can detect the partitioning 

boundaries. 

 

3.1.4  Partitioning Boundary Detection 

 

The partitioning boundary is the boundary between a protrusion and the main 

body of the mesh. It is considered that in the area that is enclosed by the desired 

boundary between the protrusion and the main body, an abrupt change in the volume of 
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the 3D object should occur, see Figure 3.1.6(a). The goal is to detect this abrupt 

change. To accomplish this, we construct closed boundaries which span the area 

containing the partitioning and are defined by a distance function D associated to a 

salient representative of the group which represents the protrusion, see Figure 3.1.6(b). 

The abrupt change of volume is detected by examining the closed boundaries 

perimeter. 

 
 

(a) (b) 

 

 

 

 

 

 

 

 

 

Figure 3.1.6. (a) The area containing the Partitioning boundary (coloured in black) separating 

the foot of the ‘cow’ 3D object from the main component is coloured in red, (b) The closed 

boundaries which span the area where the partitioning boundary lies are shown. 

For each representative salient point , the distance function D is defined for 

each vertex 

ŝ

υ  of the mesh as the shortest distance between υ  and . The shortest 

distance is computed using the Dijkstra algorithm with source  and cost for each edge 

 of the mesh denoted as :  

ŝ

ŝ

( , )u v

δ δ= + −
length( , ) prot( , )cost( , ) (1 )
avg_ length avg_ prot

u v u vu v  (3.1.4) 

 

where prot ( ,  = )u v −| ( ) ( ) |pf u pf v  and avg_length, avg_prot denote the average values 

of the length and protrusion difference of the edges of the mesh, respectively. This 

distance function was introduced in [LLL07]. A proper balance between the two terms of 
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equation (3.1.4) creates a closed boundary whose approximating plane is nearly 

perpendicular to the principal direction of the corresponding protrusion. In this work, δ  

is set equal to 0.4.  

 The closed boundaries which are used in the proposed algorithm are constructed 

by interpolating on the edges of the mesh the iso-contour generated by setting a 

constant value  on . The iso-contour  intersects the edge cD D DcC υ( , )u  of the mesh if 

υ− −( ( ) )( ( )) 0c cD u D D D >  and the intersection point is found by linear interpolation and 

is defined as υ λ λυ= − +(1 )int u , where λ
υ
−

=
−

( )
( ) ( )

cD D u
D D u

. Figure 3.1.7 shows the 

interpolation process. 

Figure 3.1.7. Interpolation process 

 

           By tracing all the triangles which are incident to all the intersecting edges, a 

linear approximation of this iso-contour can be constructed which in most of the cases is 

a single closed boundary. In the case that more than one closed boundaries are 

generated, we choose the one with the largest perimeter. The perimeter of a closed 

boundary is defined as the sum of the length of the edges which are contained in the 

closed boundary. In Figure 3.1.8, an illustration of a closed boundary constructed by the 

method described above is shown. 
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Figure 3.1.8. The closed boundary approximating an iso-contour of the distance function D

 As already mentioned in section 3.1.3, the core approximation has its boundaries 

near the actual boundaries of the distinct parts of the model. Taking advantage of this 

an area containing the partitioning boundary can be created. Specifically, this area is 

defined by the arithmetic interval [ ]− +1 coremin 2 coremin(1 d ) D ,(1 d ) D , where  denotes 

the value of the distance function between the nearest point of the core approximation 

and the salient representative , ,  denote the extent of the interval (

coreminD

ŝ 1d 2d < <10 d 1

0

, 

) and have been defined experimentally, see Figure 3.1.9(a). >2d

  

(a) (b) 

Figure 3.1.9. (a) The area defined by the arithmetic interval [ ]− +1 coremin 2 coremin(1 d ) D ,(1 d ) D , (b) 

The closed boundaries sweeping the area of (a), the approximation of the protrusion boundary is 

shown in blue 
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            For the approximation of the partitioning boundary, the area defined by the 

aforementioned arithmetic interval is swept by a predefined number perl  of closed 

boundaries in fixed steps equal to  ( )+
= 1 2 coremid d D

per

e
l

n , see Figure 3.1.9(b). Sweeping 

of the area will be terminated when the change of the perimeter between successive 

closed boundaries will be greater than a threshold. Specifically, let iper  be the 

perimeter of the  closed boundary. The following ratios are defined: thi

+
+

+
+

⎧ >⎪
⎪⎪= =⎨
⎪
⎪ ≤
⎪⎩

1
1

1
1

if 

, 1, ,

if 

i
i i

i

i p

i
i i

i

per per per
per

r i
per per per

per

… erl  (3.1.5)

 

 These ratios represent the change of the perimeter between successive closed 

boundaries. The algorithm searches for the  which is the first ratio that is greater than 

a threshold  that is defined experimentally and sets the  closed boundary as the 

partitioning boundary. If such a ratio cannot be found, the algorithm finds the maximum 

ratio  and sets the  closed boundary as the partitioning boundary. In this way, 

we detect the aforementioned abrupt change in the volume of the object at the 

boundary between its main body and the protrusion. 

kr

maxr thk

k maxr th
maxk

Initially, in the proposed methodology to approximate the partitioning boundary 

the simple solution is chosen in order to select the representative of the group, defined 

in section 3.1.2, as the source point from which the distance function  is computed. 

This choice may lead to the creation of skewed closed boundaries near the real 

boundary of the protrusion. This has the consequence that the algorithm may not be 

able to trace the real partitioning boundary properly as it will largely deviate from it. See 

Figure 3.1.10(b) for a demonstration of this problematic case. 

D
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(a) (b) (c) 

Figure 3.1.10. (a) The original 3D model ‘ant’, (b) Skewed closed boundary generated by the 

salient representative, indicated by an arrow, of the group denoted by the red spheres, (c) The 

closed boundary generated by the indicated refined representative 

 In the sequel, it will be presented how to find a proper refined representative  

in order to be used instead of the representative of the group. The proper refined 

representative should create closed boundaries that are parallel to the protrusion 

boundary like the one presented in Figure 3.1.10(c). 

ˆrs

 In order to find the proper refined representative in a group of salient points we 

proceed as follows. 

 First, we find the vertex  of the mesh for which the distance to all of the 

salient points in the group is minimal. Then, we find the point  of the core 

approximation with the minimum geodesic distance from . The geodesic distance of 

 and  is denoted as . Afterwards, the point  is found which is the first 

point on the minimum cost path from  to  for which the geodesic distance from 

 is greater than . Next, the iso-contour  is considered, which is 

generated by the protrusion function by setting it to the constant value . The part of 

the iso-contour which belongs to the protrusion of the object being examined is close to 

the salient points of the group and in most of the cases its best fit approximating plane 

is nearly perpendicular to the principal direction of the protrusion. is approximated 

using the same interpolating technique discussed above.  

mins

minc

mins

mins minc mind thresp

mins minc

mins min0.3d
threspC

thresp

threspC

 Next it is taken into account only the part of the mesh which contain  and is 

constrained by  for which we compute the protrusion function. The refined 

mins

threspC
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representative  is the point of the constrained mesh with the minimum value of the 

protrusion function. 

ˆrs

 In Figure 3.1.11 the process of finding the refined representative is illustrated. 

The salient points that belong to the group representing the head are the red spheres. 

The yellow sphere represents  and the red line approximates the iso-contour  

(the red line is generated by the triangles that  intersects). The refined 

representative  is the point of the constrained mesh (coloured in blue) with the 

minimum protrusion value and is illustrated by the green sphere. 

mins
threspC

threspC

ˆrs

 

Figure 3.1.11. Refined representative selection (green 

sphere) 

 

3.1.5  Partitioning Boundary refinement 

 

The partitioning boundary detected in section 3.1.4 is an iso-contour generated 

by the distance function  approximating the true partitioning boundary. In most of the 

cases this approximation is rough meaning that it deviates from the true partitioning 

boundary. As mentioned in section 3.1.4 the partitioning boundary is delimited at the 

area where there is a sudden change in the volume between the main body and the 

protrusion. Also according to Hoffman and Richards theory [HR84] it resides at the 

concavities of the object. The partitioning boundary approximation described in  section 

3.1.4 is not constrained to the concavities where the true partitioning boundary passes, 

thus there is a need to refine the partitioning boundary approximation so that it passes 

also through the concave regions of the 3D object. In Figure 3.1.12(a) the initial 

D
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boundary approximation, found by applying the methodology of section 3.1.4, is shown. 

As it can be observed it does not pass through the concavities of the object as it should. 

In order to achieve this, we use the minimum-cut methodology as in Katz and Tal 

[KT03]. Specifically,  a flow network graph is constructed using the dual graph of the 

mesh. In order to construct the network, three regions should be defined. Specifically, 

we define a region A  containing the triangles of the protrusible part of the mesh, a 

region  containing the partitioning boundary and a region  containing the faces of 

the rest of the mesh. 

C B

  

(a) (b) (c) 

Figure 3.1.12. (a) The initial rough partitioning boundary approximation, (b) region  is shown 

with blue, region B  is shown with green and region C  is shown with red, (c) The refined 

partitioning boundary 

A

 

Region  is constructed as follows. First we find the average geodesic distance, 

denoted as AvgGeodDist, between the initial boundary approximation extracted in 

section 3.1.4 and the refined representative calculated also in the same section. Then, 

region  is defined as the triangles of the mesh which vertices geodesic distance from 

the refined representative lie all in the interval [ . This 

interval denotes a small area around the estimated partitioning boundary where it is 

expected that the true partitioning boundary should reside (red triangles of Figure 

3.1.12(b)). Region 

C

C
0.9·AvgGeodDist,1.1·AvgGeodDist]

A  is constructed by performing a breadth first search starting from 

the refined representative of the protrusion until region  is reached (blue triangles of 

Figure 3.1.12(b)).  

C
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Let ,   be the nodes and edges of the dual graph representing C . Let  

be the nodes of the graph which represent the triangles of 

VC EC VCA

A  that share a common 

edge with the triangles of , and  be the nodes of the graph which represent the 

triangles of  that share a common edge with the triangles of C . 

C VCB

B

The flow network graph  G = (V, E) is constructed by adding also two more 

nodes s, t, and V, E are defined as: 

{ } { } {
∪ ∪ ∪
∪ ∀ ∈ ∪ ∀ ∈ ∪ ∈ ∈ ∪

=
= ∈

V V V V {s,t}
E E (s, ), V (t, ), V E: V , {V V }

 

uvv v v v e u v
C CA CB

C CA CB C CA }CB
 (3.1.6) 

 A capacity function on E is defined as: 

α
⎧

∞

≠⎪⎪ += ⎨
⎪
⎪⎩

1 if , s,t_ ( )1Cap( , ) avg( _ )
otherwise

uv
u vAng Dist

u v Ang Dist  (3.1.7) 

α = −_ ( ) (1 cos )uv uvAng Dist n a  (3.1.8)

where αuv  denotes the dihedral angle between the two faces which share the edge 

, and av( , )u v g( _ )Ang Dist   is the average angular distance. Note that = 1n  for 

concave angles and  for convex angles. Using this capacity function, the 

minimum cut algorithm applied on this network creates a partitioning boundary that 

passes through the concave regions, see Figure 3.1.12(c). 

<< 1n

 

3.2  Experimental Results 
 

The experimental results which have been made are based on twenty 3D models 

segmented with the proposed algorithm which are further compared with the results 

produced by three other popular segmentation algorithms, namely Lin et. al. (LIN) 

[LLL07], Valette et. al. (VALETTE) [VKS05] and Kim et. al. (KIM) [KYL05]. The results of 

LIN algorithm were produced by the original authors, VALETTE was implemented in this 

work, while KIM is the original implementation which is used in the MPEG-7 

experimentation model. The reason for considering these segmentation algorithms for 

comparison purposes is that it is believed that they are representative algorithms 
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belonging to different methods, i.e. the critical points, the reeb graph and the volumetric 

methods.      

 In the comparison, the evaluation criteria set in [AKM+06] will be used, namely, 

(i) Type of segmentation; (ii) Extracting the “correct” segments; (iii) Boundaries; (iv) 

Hierarchical / multi-scale segmentation; (v) Sensitivity to pose; (vi) Asymptotic 

complexity; (vii) Control parameters. Furthermore, the behaviour of the proposed 

segmentation algorithm will be given in the presence of noise and lastly the core and 

partitioning boundary approximations for all of the twenty 3D models will be presented 

showing by this way the robustness of the segmentation algorithm. 

i) Type of segmentation. All of the algorithms considered are part-based and are 

designed to segment the mesh into components that are meaningful in human 

perception. 

ii) Extracting the “correct” segments. In this criterion, the “correct” segmentation 

depends on the application, the viewer's perspective and knowledge of the world 

which can only be judged qualitatively by looking at the images of the output of the 

segmentation algorithms. The application that will use the proposed mesh 

segmentation scheme is 3D model retrieval. Judging from the overall segmentation 

results presented in Figure 3.2.1 it can be seen that the proposed approach and LIN 

perform best, i.e. both algorithms segment the meshes in a perceptually correct way 

and it can be observed that meshes that belong in the same category, for example 

all humans, are segmented consistently which is very important in the shape 

retrieval context. VALETTE manages to extract also perceptually meaningful results 

but as there are many cases where the segmentation among meshes of the same 

category are not consistent  (eg. models (12)-(13) of Figure 3.2.1 which has a 

negative effect in retrieval. KIM manages also to extract perceptually meaningful 

components but as in VALETTE there are cases where the segmentation among 

meshes of the same category are non-consistent (e.g. models (7)-(8), (9)-(10), (12)-

(13), (14)-(19) of Figure 3.2.1. 

iii) Boundaries. Here the “correctness” of the boundaries will be judged upon two 

geometric properties, (a) the smoothness of the boundary and (b) its location along 

concave features. From Figure 3.2.1 it can be seen that the proposed segmentation 

algorithm and LIN produce the smoothest results. This is expected because both 

algorithms use a minimum cut algorithm based on the concave features of the mesh 

in order to refine the boundary. In respect to the location of the boundaries along 
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concave features it can be seen that the proposed segmentation algorithm performs 

best. 

iv) Hierarchical / multi-scale segmentation. Among all tested algorithms only KIM 

produces hierarchical results. 

v) Sensitivity to pose. Models (15)-(18) of Figure 3.2.1 illustrate the pose sensitivity of 

the four algorithms. These models represent the same human in different poses : 

running, jumping, sitting and walking. It can be seen that the proposed approach and 

LIN algorithms manage to remain invariant throughout all of the pose changes of the 

mesh. VALETTE and KIM though show sensitivity to the pose of the object. 

vi) Complexity. The proposed algorithm : Let N be the number of points and  the 

number of salient points of the mesh. 

SN

 

a) Protrusion function computation : In this work the geodesic distances are 

computed using the Dijkstra algorithm. In order for the computation to be more 

accurate midpoint subdivision is used in order to increase the resolution of the 

mesh. In most of the cases the subdivision is done twice, so the number of points 

of the mesh increase at the magnitude of 8N. Lets assume that the number of 

compact regions are M. The complexity of the protrusion function calculation is 

O(8MN log(N)). 

b) Salient Points Extraction computation. Lets assume that the maximum number of 

points in a geodesic neighborhood is  then the complexity of the salient 

points extraction computation is O(N log( )).Salient Points Grouping. The 

complexity of the salient point grouping is O(  Nlog(N)) . 

maxN

maxN maxN

2
SN
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3D Model 

Nr 
Proposed algorithm LIN VALETTE KIM 

(1) 

   

(2) 

   

(3) 

    

(4) 

  

(5) 
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3D Model 

Nr 
Proposed algorithm LIN VALETTE KIM 

(6) 

 

(7) 

   

(8) 

  

(9) 

  
 

(10) 

 

 

 

      (11) 
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3D Model 

Nr 
Proposed algorithm LIN VALETTE KIM 

(12) 

    

(13) 

    

(14) 

    

(15) 
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3D Model 

Nr 

 

Proposed algorithm 

 

LIN 

 

VALETTE 

 

KIM 

(16) 

   

(17) 

    

(18) 

    

(19) 
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3D Model 

Nr 

 

Proposed algorithm 

 

LIN 

 

VALETTE 

 

KIM 

(20) 

   

Figure 3.2.1. Segmentation results 

 

c) The complexity of the core approximation is O(N ). 2
SN

d) The complexity of the protrusion boundary detection is O(k Nperl  + kNlogN + 

8kmnlogn), where m is the number of compact regions, n is the number of points 

of the part of the mesh where the refined representative is calculated, k are the 

number of the representative salient points and perl  the number of the closed 

boundaries.  

e) The complexity of the protrusion boundary refinement is O( log( ) where 

 is the number of nodes in the network graph. 

2
ngN ngN )

ngN

Overall the algorithm dominant complexity is O(8MN log(N) + N log( ) + 

8kmnlogn). 

maxN maxN

LIN : The total complexity of LIN is O(MFlog(F) + log(F)), where F the total 

number of faces of the Mesh and M the number of compact regions used in the 

calculation of the protrusion function. 

2F

VALETTE : The total complexity of VALETTE is O(Nlog(N)), where N the total 

number of vertices of the mesh. 

vii. Control parameters.           

The results of the proposed segmentation algorithm in Figure 3.2.1 are obtained by 

setting,  = 0.45 (the protrusion function is scaled between [0,1]),  = 0.15,  = 

0.1,  = 0.4, 

prott ct 1d

2d perl  = 12,  = 1.3. All of them remain fixed and user interactivity is maxr
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not required.  

 

In LIN algorithm there exist three parameters that the user has to set manually and 

depend on the core approximation and the locales produced by their algorithm. 

Namely the parameters that have to be set by the user are (1) the parameter β∆  

which controls the extent that the locales overlap with the core of the object (2) the 

parameters ,  which control the range of the locales that contain the 

protrusion's boundary.          

It can be seen that the proposed algorithm performs equally or better than their 

results in spite that the parameters remain fixed.     

   

In VALETTE algorithm there exists only one parameter  which we have set after 

experimentation to 15% to all of the objects. We have found that this parameter 

value produces the best results in their algorithm.      

 

In KIM algorithm despite that they set the parameters fixed, the output is strongly 

dependent of the voxelisation resolution. This means that there is a need for human 

inspection to correct the resolution when the output is not satisfactory. 

+∆ −∆

ratioP

 

In general, there is not any particular geometrical or topological feature that limits 

the functionality of the proposed segmentation methodology for the models used in the 

experimentation. However, the success of the proposed segmentation is bound to the 

interval ,[ − 1(1 d ) coreminD + 2(1 d ) ]coreminD . For a meaningful segmentation, the 

aforementioned interval should produce a region that includes the partitioning boundary. 

If this is not the case, there will be a segmentation outcome as in the 3D model of 

Figure 3.2.2. 
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(a) (b) (c) 

Figure 3.2.2. a) The closed boundaries spanning the area [ − 1(1 d )  ,coreminD + 2(1 d ) ]coreminD , 

(b) The approximation of the partitioning boundary, (c) Final segmentation 

 

In Table 3.2.1 the time required for segmenting the models in Figure is given in 

seconds. The computation time was calculated in a Pentium 4, 3GHz PC with 1.5MB 

memory and the segmentation algorithm was implemented in C++. 

The proposed segmentation algorithm has been tested also in terms of 

robustness with respect to noise, i.e. it produces the same segmentation results with 

different levels of noise. A representative example of the proposed mesh segmentation 

for different levels of Gaussian noise is shown in Figure 3.2.3. 

In Figure 3.2.4 the core and partitioning boundary approximation of the models in 

Figure 3.2.1 are shown. It can be observed that the core approximation either cover 

portions of the protrusible parts areas or is very close to the neighboring areas where 

the real boundary is situated. It can also be observed that the approximation of the 

partitioning boundary is also effective since it is very close to the real partitioning 

boundary. 
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(a) (b) 

Figure 3.2.3. Segmentation of the ‘camel’ model under different levels of noise (a) SNR = 52dB, 

(b) SNR = 50dB} 

 

Model 
Nr. Nr. Vertices Nr. 

Triangles secs 

(1) 8504 17004 60 
(2) 3478 6952 35 
(3) 12326 24652 68 
(4) 6689 13374 31 
(5) 9761 19518 60 
(6) 7255 14506 38 
(7) 9492 18980 45 
(8) 4712 9420 55 
(9) 7268 14532 35 

(10) 11312 22620 61 
(11) 3703 7402 44 
(12) 7242 14480 34 
(13) 6607 13210 29 
(14) 11016 22028 59 
(15) 5775 11546 52 
(16) 5766 11528 72 
(17) 5772 11540 54 
(18) 5769 11534 55 
(19) 9509 19014 55 
(20) 6104 12204 24 

Table 3.2.1. Computation time for the segmentation of Figure 3.2.1 3D models 
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Model 

Nr. 
Core 

Partitioning 

boundaries 

Model 

Nr. 
Core 

Partitioning 

boundaries 

(1) 

  

(2) 

  

(3) 

  

(4) 

  

(5) 

  

(6) 

  

(7) 

  

(8) 

 

(9) 

  

(10) 
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Nr. 

Core Partitioning 

boundaries 

Model 

Nr. 

Core Partitioning 

boundaries 

(11) 

 

(12) 

  

(13) 

  

(14) 

  

(15) 

  

(16) 

  

(17) 

  

(18) 
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Model 

Nr. 
Core 

Partitioning 

boundaries 

Model 

Nr. 
Core 

Partitioning 

boundaries 

(19) 

  

(20) 

  

Figure 3.2.4. Core approximation and partitioning boundaries of the models of Figure 3.2.1 

 

3.3  Conclusions 
 

 In this chapter a new 3D mesh segmentation algorithm has been presented. The 

algorithm is based on the basic idea that an object can be segmented into its parts if its 

main body and salient points are reliably approximated. 

The novelty of the approach is twofold: 

i. A novel way to trace the partitioning boundaries of the 3D object using closed 

boundaries constructed with the aid of a distance function is presented; 

ii. A novel algorithm for the core approximation of the 3D object is introduced. 

The proposed algorithm is capable of segmenting a 3D object into perceptually 

meaningful parts and is pose invariant. From the experimental results presented it has 

been shown that it can successfully segment a wide range of 3D objects. Also it has 

been shown that the partitioning boundary detection and core approximation stage is 

very robust. 

The evaluation of the proposed algorithm is addressed in a consistent framework 

wherein a comparison with the state of the art is performed. In this comparison it has 

been shown that in terms of extraction of the “correct” segments, boundary quality, and 

sensitivity to pose the proposed and Lin et. al. segmentation methodologies produce the 

best results, though the proposed algorithm is more robust since it does not rely on any 
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user defined parameters. Also the quality of the core approximation is superior to the 

one produced by Lin et. al.  

The proposed algorithm is capable of producing compatible segmentations, for 

instance the human objects are always segmented into the head, body, arms and legs, 

thus it can be successfully applied to applications that require consistent segmentations 

like 3D shape retrieval based on graph based representations.  
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Chapter 4  

 

State of the art in retrieval of 3D articulated objects 
 

 

4.1  Introduction 
 

 In this introduction the problem of 3D object retrieval will be stated as well as its 

extension for 3D articulated object retrieval which is the main topic of this chapter.   

 

4.1.1  The 3D object retrieval problem  

 

Recent advances in 3D object acquisition in digital form have created a plethora 

of 3D objects ready to be processed from various graphics applications. The wide 

availability and continuous increase of bandwidth of the Internet is making possible to 

share these objects with a consequence of the construction of databases containing 

them. The continuous increase of the size of these databases have made necessary the 

construction of efficient retrieval algorithms which make possible the retrieval of 3D 

objects from these databases similar to a query 3D object.  

The similarity between the query object and an object in the database is 

measured by a distance measure, let it be called d , which is defined by the specific 

retrieval algorithm. In order to compute the distance measure the 3D object is described 

by a representation. The retrieval algorithms developed distinct themselves according to 

the descriptors they use in order to represent the 3D object's shape/structure and the 

distance measure used to judge the similarity of two objects. 

Formally, given a query 3D object, Q, and a database, D, consisting of a set of 

3D objects, { }iO M= , , the retrieval result from the database is defined as the 

following sequence:  

1, ,i = … n
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{ }
1

Retrieval(Q,D) ( , ), , ( , )
nr rd Q M d Q M= …  (3.1.1)

where  and . {1, , }ir n∈ … ( , ) ( , ),
i jr rd Q M d Q M i j< <

The 3D objects of the database D are grouped into classes where each class 

contains the objects which share a common shape or structure. It is also assumed that 

the query object belongs to one of the classes of D. The efficiency of the retrieval 

algorithm depends on whether the first elements of the sequence Retrieval(Q, D) belong 

to the same class that the query object belongs.  

 

4.1.2  Graph-based Retrieval of articulated objects  

 

 Human perception recognizes a 3D object by first describing it in terms of its 

components that are attributed with geometrical characteristics and relational 

connections with each other. This description is referred to as the structural description 

of the object [Bie87]. 3D object recognition is achieved by comparing the query object 

structural description with the structural descriptions of already classified objects and 

the object is classified to the class of the best match.  

This recognition process can be naturally adopted for 3D object retrieval. 

Meaningful components according to human perception can be extracted using a 

segmentation algorithm. The structural description of the object is created by using the 

Attributed Relational Graph (ARG) concept. Specifically the components extracted by 

the segmentation algorithm are represented as the nodes of a graph and the 

relationship of the components with each other are represented as the edges of the 

graph. To each node unary attributes are assigned which describe the geometric 

characteristics of the component it represents and to each edge binary attributes are 

assigned which describe the relationship of the components that the edge connects.  

Eventually, the problem of matching a query 3D object with the 3D objects stored 

in the Database in the retrieval process is transformed into the problem of matching 

their corresponding ARGs [KPYL04, TZ06].           

This graph-based retrieval methodology is very useful for the retrieval of 3D 

articulated objects. An object is considered articulated if it consists of parts that can 

make the 3D object take different poses; these parts will be called in this context 
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articulated parts. For example an object representing a human body is considered 

articulated since it consists of parts (legs, arms, head) than can make the object take 

different poses (standing, walking, sitting, etc.). Most of the retrieval algorithms which 

are based on a global descriptor of the object fail to consistently compensate for the 

intra-class variability of articulated objects. This occurs because it is not evident how a 

global descriptor will become invariant to the different poses an articulated object can 

undertake. On the other hand a graph-based retrieval algorithm can describe an object 

in terms of its articulated parts thus becoming invariant to the different poses it 

undertakes. 

 

4.2  State of the art in 3D object retrieval 
 

From the variety of work that deal with 3D object retrieval two main categories 

can be distinguished : 

i. Methods with global shape representations. These representations describe 

the objects global shape in order to measure the similarity between them 

ii. Methods with graph-based shape representations. These representations use 

the structural description of the objects to measure their similarity. 

In sections 4.2.1 and 4.2.2 representative works belonging to these two categories will 

be described. Emphasis has been given to those that can efficiently retrieve articulated 

objects.   

 

4.2.1 Methods with global shape representations 

 

 These methods can be further classified according to the spatial dimensionality 

of the information used for retrieval, i.e. 2D, 3D and their combination. 

Methods that use 2D information for retrieval use descriptors that are generated 

from image-projections that may be contours, silhouettes, depth buffers, etc. 

 Chen et. al. [CTSO03] describe the 3D object by projecting it to the 2D plane 

under different viewpoints taken by placing cameras at the vertices of a dodecahedron 
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surrounding the 3D object. This projection results in the acquirement of ten silhouettes 

of the object, see figure 4.2.1. 

Figure 4.2.1. Ten silhouettes of a ‘chair’ model derived from its projection to the 2D plane with 

viewpoints  taken from the vertices of a dodecahedron surrounding the 3D object. 

    These ten silhouettes describe the 3D object and they call this descriptor 

lightfield descriptor. The descriptor is comprised of region based (Zernike moments) 

coefficients and contour shape (Fourier) coefficients derived from each of the 

silhouettes.       

In order to accomplish retrieval the lightfield descriptor of the query model is 

compared with the lightfield descriptors of the models stored in the database. Rotation 

invariance between the two models that are compared each time is achieved by rotating 

the cameras (60 possible rotations) on the vertices of the dodecahedron surrounding 

one of the 3D models. This results in the acquirement of 60 different lighfield descriptors 

for one of the models all of which need to be compared with the lightfield descriptor of 

the other model and acquire the minimum value of this comparison as the similarity 

measure. 

Specifically let  the 10 silhouettes acquired from the first model and 

 the 10 silhouettes of the second model that need to be compared, i = {1…60}. 

The similarity of these two models is given by the following equation: 

=
10

1{ }k kI 1

1

I

=
10

2{ }ki kI

=
=

= ∑
1060

1 21 1
min ( , )k kii k

D d I  (4.2.1)

where d is the L1 norm between the coefficients of the two silhouettes . 1 2,k kiI I
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 An advantage of their retrieval methodology is that they can achieve rotation 

invariance. The main disadvantages of their algorithm is that the time complexity for 

retrieval is too high and to handle efficiently articulated objects. 

Ohbuchi et. al. [OOFB08] created the bag-of-features SIFT algorithm. In their 

work the 3D model is projected to the 2D plane under different viewpoints taken at the 

vertices of a icosahedron deriving by this way 42 range images of the object. To each of 

the images local features are extracted using the Scale Invariance Feature Transform 

(SIFT) algorithm. From all of the objects in the database and all images derived by their 

projection they create a visual codebook of all the calculated features using the k-

means algorithm. The visual words of the codebook are the centroids of the clusters 

created by the k-means algorithm. The descriptor of an object is obtained by quantizing 

all the features calculated from all of its image projections using the visual codebook. In 

this way the descriptor of an object is a vector containing all the frequencies of the 

visual words. Retrieval is achieved by computing the Kullback-Leibler divergence 

between the descriptors of the object. 

An advantage of their retrieval methodology is that it can handle efficiently 

articulated objects. One of the main disadvantages in their methodology is that in order 

to construct the visual codebook training needs to be applied. 

Vranic [Vra04] proposed a shape descriptor that is constructed by calculating the 

Fourier coefficients on the depth buffers derived by projecting the object on the four 

sides of the cube which surrounds the 3D object. Similarity between the query’s object 

and each of the object stored in the database is judged by comparing their 

corresponding descriptor Fourier coefficients. 

A disadvantage of his retrieval methodology is that it can not deal with articulated 

objects efficiently. 

 

Methods that use 3D information derive their descriptors from the geometry of the 3D 

object.  

Jain and Zhang [JZ07] constructed an eigenvalue descriptor (EVD). Specifically 

they do spectral analysis on the 3D object. Their spectral analysis method is based on 

the affinity matrix A of the object the elements of which are exponentials of the geodesic 

distances between 20 sample vertices of the mesh. The descriptor of the object is the 

eigenvalues of the affinity matrix. In the retrieval process the query’s object eigenvalues 
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are compared against the eigenvalues of each of the model stored in the database. Due 

to the nature of the geodesic distance being invariant to bending their descriptor is very 

suitable for articulated objects.  

 An advantage of their algorithm is that due to the pose invariance nature of the 

geodesic distance their retrieval methodology can handle efficiently articulated objects. 

  Gal et. al. [GSCO07] created a pose oblivious global shape descriptor. For their 

descriptor they use the Shape Diameter Function (SDF) of  Shapira et. al. [SSCO05] 

(see section 2.3.9) and the protrusion function (PF) (see section 2.3.3). In order to make 

SDF scale invariant the values of the shape diameter function are first divided by the 

maximum diameter of all values of SDF. Then they weight each of the values according 

to each influence area (e.g. the areas of the triangles surrounding it divided by the 

whole boundary area). Using the weighted values of SDF a histogram is constructed 

quantizing SDF in 64 bins. The values of the PF are divided with its maximum value and 

a histogram is created quantizing PF in 32 bins.  

The histogram of the SDF provides a pose oblivious description of the object, 

while the histogram of the PF provides a pose oblivious measurement of the spatial 

distribution of the values of the function. Thus combining both of these two histograms 

their properties are also combined, i.e. a 2D rectangular histogram is constructed by 

both of these histograms with values ranging from [0,0] to [1,1] becoming their 

descriptor. 

 In Figure 4.2.2 the 2D histograms of the 3D object ‘cat’ under different poses is 

illustrated. The values are illustrated with colours ranging from blue(low values) to (red 

values). It can be observed that the descriptors remain consistent despite that the object 

takes different poses, thus their descriptor is quite suitable for articulated objects.  

 

Figure 4.2.2. Shapira et. al. shape oblivious 2D histograms. 

           For retrieval purposes the matching between two objects is accomplished by the 

comparison of their respective descriptors using various metrics like L1, L2 by unfolding 

the 64x32 matrix into a vector, the Minkowski Ln norms, the 2χ measure and the earth 
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movers distance and correlation coefficient. Among all of these measures the 2χ  

measure and correlation coefficient performed best. 

 An advantage of their retrieval scheme is that due to the pose invariance nature 

of the shape diameter and protrusion function their descriptor is also pose invariant this 

means that they can handle efficiently articulated objects. 

  Ben-chen and Gotsman [BCG08] base their descriptor on the uniformization 

theorem. The uniformization theorem states that any 2-manifold surface can be 

conformally mapped to a surface with the same topology having constant Gaussian 

curvature. This mapping can be achieved by defining a positive scalar function on the 

surface which locally changes the surface metric in order to achieve constant Gaussian 

curvature.  

 In the discrete case where a mesh represents a 2-manifold, the conformal factor 

φ is defined on the vertices and its value is derived from the following sparse set of 

linear equations: 

Τ origφ=Κ -ΚL  (4.2.2) 

where L is the discrete Laplace-Beltrami with contagent weights [HPW06], Korig is the 

Gaussian curvature on the vertices of the mesh and KT is the target Gaussian 

curvature. The values of the conformal factor on two different models are represented 

with different colors in Figure 4.2.3. It can be observed that φ remains consisted inspite 

of the different poses that the two models undertakes. This is justified because the 

conformal factor is based on the Gaussian curvature of the mesh which is invariant to 

the quasi-isometric transformations that articulated bodies undertake. Also φ is capable 

of identifying the protrusible parts of the objects. 
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Figure 4.2.3. Visualization of the conformal factor on two ‘dancer’ and ‘hands’ models 

 

The conformal factor is then transformed into a histogram quantizing its values 

into 200 bins becoming the descriptor of the object. Retrieval is achieved by comparing 

the query’s descriptor with the descriptors of the objects stored in the database. The 

comparison is done using the L1 norm.  

 An advantage of their retrieval scheme is that their descriptor is pose invariant, 

thus they can handle articulated objects. 

 Papadakis et. al. [PPPT07] created also a global representation of the object. 

First they align the object using principal component analysis based on the centroid of 

the object (CPCA) and on the normals of the object (NPCA). After alignment, the 

model’s surface is represented by a set of spherical functions. A spherical function 

describes a bounded area of the model, defined by a lower and an upper radius which 

delimit a spherical shell. This shell is the volume in which the underlying surface of the 

model is represented by the equivalent spherical function points. In the sequel, they 

expand the spherical functions to their spherical harmonic representation. Retrieval is 

achieved by comparing the spherical harmonic coefficients of two objects using the L1 

norm.  

The advantages of their retrieval methodology are : (i) they can achieve a highly 

accurate alignment of the object for retrieval purposes, (ii) their spherical harmonic 
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descriptor is very rich in information thus they manage to achieve high quality retrieval 

results. A disadvantage of their methodology is that they cannot handle efficiently 

articulated objects. 

    

4.2.3  Methods using a graph-based representation 

 

In the second category of retrieval methods a descriptor is constructed based on 

the structural description of the object which in most of the cases is represented by a 

graph structure. 

Hilaga et. al. [HSKK01] quantized the protrusion function (see section 2.3.3) 

defined on the mesh using different levels of quantization creating by this way a 

multiresolution reeb graph structure. Figure 4.2.4 shows an example of a multi-

resolution reeb graph structure on a mesh at different levels of hierarchy. 

Retrieval is achieved by matching the multi-resolution reeb graph structures of 

two objects starting from the coarsest level of hierarchy and reaching to the finer level.  

An advantage of their retrieval methodology is that they can deal with articulated 

objects due to the pose invariant nature of the protrusion function. A disadvantage of 

their methodology is that the matching scheme depends only on topological attributes. 

 

Figure 4.2.4. Hilaga et. al. multiresolution reeb graph structure 
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Tung and Schmitt [TS05] enhanced the retrieval performance of [HSKK01] by 

augmenting the multi-resolution reeb graph structure with geometrical and visual 

information.  

 Biasotti et. al. [BMSF06] constructed a descriptor based also on Reeb graph 

theory. In their approach they generalize the definition of the Reeb graph to a surface S 

by defining a finite set of contour levels C(S). These contours subdivide S into a set of 

regions bordered by the elements of C(S). The functions used for the construction of the 

contour levels are the distance from the center of mass and the protrusion function. To 

each region a node is associated. If two regions share a contour the associated nodes 

to them are linked with an edge. Thus a graph structure of the object is constructed 

which is called Extended Reeb Graph (ERG). The edges of the (ERG) are also oriented 

according to the monotonicity of the function f used to construct the contour levels, thus 

the ERG is transformed to a directed and acyclic graph. As a further step the ERG is 

further simplified by collapsing all nodes whose number of incoming and outgoing edges 

is one. After this process the ERG consists of nodes representing the regions where the 

topology of the contour levels varies and the associated connecting edges. In Figure 

4.2.5 the process of the construction of the ERG is illustrated using as function f the 

distance of the center of mass.  

 

Figure 4.2.5. (a) Chromatic representation of f, (b) The nodes of the ERG, (c) The edges of the 

ERG, (d) The final ERG after simplification and edge orientation   

The descriptor of the object is the ERG to which nodes the value of f and 

geometrical attributes corresponding to the region represented by the node has been 

given.   

In the retrieval process matching between two objects is obtained by matching 

the directed attributed graphs (ERGs) corresponding to the two objects structural 

representations. This matching is based on the notion of error tolerant common sub-
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graph isomorphism. Specifically the matching process between the two ERGs is 

achieved by constructing their most suitable common subgraph; the wider the common 

subgraph is, the more the two ERGs are similar. The output of the matching process 

should be the largest maximal common sub-graph that minimizes the geometric and the 

structural differences of the two objects. These differences express the similarity of the 

two objects. An advantage of their retrieval methodology is that it is suitable for 

articulated object retrieval. 

 Cornea et. al. [CDS+05] use the skeleton of the objects in order to achieve 

retrieval. The skeleton of the object is extracted using its volumetric representation. 

Specifically they use a generalized potential field generated by charges placed on the 

surface of the model. The generalized potential at a point of the object, due to a nearby 

point charge, is defined as a repulsive force, pushing the point away from the charge 

with a strength that is inversely proportional to the distance between the point and the 

charge. This potential field creates a vector field from which they extract the skeleton of 

the object. Retrieval is achieved by matching the skeleton of the query object with the 

skeletons of the objects stored in the database using the extended EMD similarity 

measure [RTG00].    

 While their method is suitable for the retrieval of articulated objects, due to 

geometrical or topological noise the skeletons of the objects of the same class might not 

be compatible reducing by this way the retrieval accuracy.    

Sundar et. al. [SSGD03] use also the skeleton of the objects for retrieval 

purposes.  The skeleton of the object is extracted from its volumetric representation. 

First a volumetric thinning is applied to the voxels of the object. Specifically a distance 

transform DT is defined for each of the voxels of the object which is the radius of the 

sphere centered at the voxel and is tangential to the boundary of the object. Based on 

the DT a thinness parameter TP for each voxel p is defined as : 

26

1

26

qi
i

p

DT
TP DT == −

∑
 (4.2.3) 

where is one of the 26 neighbours of p. iq

In order to thin the voxels of the object the TP is computed for every voxel and 

the values of TP are sorted in decreasing order. For a desired number of voxels, n, at 

some level of description, they extract the first n voxels from the sorted list. 
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After the thinning process clustering of the thinned voxels is performed in order to 

lessen the effects of perturbations on the surface and to reduce the number of nodes 

necessary for skeletal graph construction.  

Afterwards the generation of the skeleton is created by applying on the thinned 

and clustered set of voxels the minimum span tree algorithm. The edges of the 

constructed graph are then directed from the voxel with the higher distance transform to 

the one with smaller distance transform creating by this way a directed acyclic graph 

(DAG) and the nodes of the graph (except from the leaf nodes) are attributed with a 

topological signature vector based on the eigenvalue decomposition of the sub-graphs 

that each of the nodes of the DAG contains.  

Retrieval is achieved by matching the DAGs using a recursive, depth first 

formulation of bipartite graph matching. This matching process can be considered as a 

coarse to fine strategy, in which matching at higher levels of the tree is used to 

constrain matching at lower levels.         

An advantage of their method is that it can handle articulated objects. A 

disadvantage is that due to geometrical and topological noise the skeletons of the 

objects of the same class might not have the same structure, thus the retrieval accuracy 

will be reduced.  

Tal and Zuckerberger [TZ06] constructed also a graph-based representation of 

the object. First the object is decomposed into a small number of meaningful 

components using a segmentation algorithm based on the watershed theory (see 

section 2.3.2 and [ZTS02]). Second its attributed relational graph is constructed (ARG) 

based on the decomposition of the object by their segmentation algorithm, i.e. a node of 

the graph corresponds to a component of the object and an edge connects two nodes if 

their corresponding components have at least one triangle sharing a common edge. To 

the nodes of the ARG unary attributes are given which is the classification of the 

corresponding component to a basic shape : a spherical surface, a cylindrical surface, a 

cone surface or a planar surface. Each edge of the ARG is given a binary attribute 

which is the relative in size surface area of the corresponding components that the edge 

is incident to (i.e., greater, smaller, equal). 

Retrieval is achieved by matching the query’s ARG with the ARGs of the object 

stored in the database. This involves the comparison between two graphs. In their work 

they use the error-correcting sub-graph isomorphism in order to compare the two 

graphs.               
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The advantages of their methodology are: (i) they can handle articulated objects, 

(ii) normalization is not required, since their representation is a graph and invariant to 

non-rigid transformations, (iii) it can tolerate geometrical noise, like small features.  

The main disadvantage of their methodology is that the complexity of the retrieval 

of an object is very high due to the use of error-correcting sub-graph isomorphisms 

whose complexity is known to be very high.       

Mademlis et. al. [MDA+08] constructed a graph-based representation retrieval 

algorithm based on their segmentation algorithm, see Section 2.3.5 using 

Superquadrics and their 3D Distance Fields Descriptor. This descriptor is constructed 

by placing a surrounding ellipsoid on the object and then sampling it using θ, φ 

spherical coordinates. For every sample (θi, φi) the distance dij from the surface of the 

ellipsoid to the surface of the object is computed and then the two dimensional Fourier 

transform of the distance matrix is calculated forming the 3D Distance Field Descriptor. 

Their graph structure is based on the attributed graph concept where each object is 

represented by an attributed graph G = {V, E, A, B} where A is the edge adjacency 

matrix and B is a vector of attributes given on the nodes of the graph consisting of 

superellipsoid and Distance Field Descriptor elements. Retrieval is achieved by 

matching the graph of two objects using van Wyk attributed graph matching algorithm 

[vW03].       

Kim et. al. [KPYL04] constructed a Perceptual 3D Shape Descriptor of the object. 

Their descriptor is an ARG whose nodes represent the meaningful parts of the object 

partitioned by Kim et. al. [KYL05] segmentation algorithm (see section 2.3.9). An edge 

connects two nodes of the ARG when the parts represented by the nodes have incident 

voxels. To the nodes of the ARG unary attributes are given describing the parts 

geometrical characteristics. To the edges of the ARG binary attributes are given 

describing the parts relationship.  

Retrieval is achieved by matching two ARGs with a nested EMD-based point 

matching algorithm. Specifically their matching process consists of an inner step and 

outer step. In the inner step the edges of each of the nodes of the ARGs creates a 

relational vector space. This space is an orthogonal coordinate system where the node 

of the ARG under consideration is at the center of the coordinate system and the nodes 

which are incident to this node are placed into the orthogonal coordinate system based 

on their binary attributes. The two coordinate systems created by the nodes of the two 
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ARGs are matched with each other with an EMD-based algorithm achieving to compute 

the difference of the binary attributes Dbinary between them, see Figure 4.2.6. 

 

Figure 4.2.6. The inner step of Kim et. al. [KIM04] matching algorithm 

           

In the outer step the points of the two ARGs are matched with each other using 

the EMD similarity measure using as ground distances the unary attribute differences 

and  the binary differences computed from the inner step.  

 The advantages of their methodology are that their descriptor is invariant to non-

rigid transformations due to its graph-based representation and it can tolerate 

geometrical noise. As it will also be shown in the experimental section (section 5.3) a 

disadvantage of their method is that it cannot handle efficiently articulated objects.    
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Chapter 5  

 

Proposed 3D retrieval algorithm 
  

In this chapter a graph-based retrieval algorithm for articulated objects will be 

presented. The segmentation algorithm which will be used in order to build the graph 

structure is the proposed algorithm described in Chapter 3. In this context the 

protrusible parts that the segmentation algorithm extracts are the articulated parts of the 

articulated object. 

The graph matching algorithm which will be used is based on the Earth Movers 

Distance (EMD) similarity measure utilizing a newly introduced ground distance 

assignment. Specifically the graph matching process will be transformed into a 

signature matching process where matching will be achieved based on the ground 

distances defined by the unary and binary attributes of the ARG. 

As will be shown from the experimental results the proposed methodology is very 

efficient in retrieving articulated objects showing that the combination of the proposed 

segmentation algorithm with the proposed retrieval methodology can achieve high 

quality retrieval.   

The chapter organization is as follows:  

• Section 5.1: Presentation of the Earth Movers Distance Similarity 

measure. 

• Section 5.2:  Presentation of the proposed retrieval methodology. 

• Section 5.3:  Presentation of experimental results. 

• Section 5.4:  Conclusions. 

5.1  Earth Movers Distance Similarity Measure 
 

In this section the Earth Movers Distance similarity measure will be detailed since 

it will be used by the proposed matching algorithm in order to express the similarity 

between two ARGs. 
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The EMD is based on the transportation problem which was first introduced into 

computer vision by Peleg et. al. [PWH89] to measure the distance between two gray-

scale images. The EMD was later used by Rubner et. al. [RTG00] for image retrieval 

purposes in order to compare two signatures in color or texture space.   

In general the EMD measure is used to efficiently express the similarity of two 

signatures belonging to two different distributions in a feature space [RTG00]. The two 

signatures V, U consist of two sets of nodes { } =1

n
i i
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m

j j
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need to be transferred to the holes that the other set of weights create in the feature 

space. Each unit of earth is transferred from pile i  to hole j  with cost  which is 

called ground distance and the total amount of earth that is transferred from pile  to 
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j  is denoted as , that is called the flow of weight. The EMD measures the 

minimum amount of work required to transfer the piles of earth to the holes. Computing 

the EMD is based on a solution to the well-known transportation problem and it is 

solved with a linear programming optimization approach that finds the optimal flow of 
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The optimal cost of the optimization process is the EMD and expresses the 

degree of similarity between the two signatures. It is defined as follows : 
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5.2 Proposed retrieval methodology for articulated objects 
 

Figure 5.2.1. (a) The 3D object segmented into its meaningful components, (b) The ARG of the 

object 

 

The proposed retrieval methodology uses a graph-based representation of the 

object. Specifically the object is first segmented into its meaningful components using 

the proposed segmentation algorithm described in chapter 3. Then from the 

components of the object a graph representation, ARG, will be constructed. Retrieval is 

achieved by matching the ARG of the query object with the ARGs of the objects stored 

in the database using the EMD similarity measure. See also Figure 5.2.1 for an 

illustration of the retrieval process. 

In the next sections the steps of the retrieval process will be fully described as 

follows: 
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• Section 5.2.1. Construction of the ARG of the query object. 

• Section 5.2.2.  Matching methodology between two ARGs 

 

5.2.1 Construction of the ARG of the 3D object 

 

 The proposed segmentation algorithm of chapter 3 is capable to segment an 

object into its core (main body) and its protrusible parts. Taking advantage of this 

segmentation a simple ARG can be constructed, its nodes are the segmented 

components and each of the nodes representing an articulated part is connected with 

the node representing the core of the object forming by this way the edges of the ARG. 

Unary and binary attributes will be assigned to the nodes and edges of the ARG 

respectively. 

In Figure 5.2.2 a segmented ‘Human’ object by the proposed segmentation 

algorithm and its corresponding graph structure is shown.  

 

Figure 5.2.2. Segmented ‘Human’ object and its corresponding graph structure 

 

5.2.2  A methodology for Matching two ARGs 

 

 As mentioned in section 5.2 retrieval is achieved by matching the ARG of the 

query object with the ARGs of the objects stored in the database. This process involves 

matching between two graph structures. In this work the problem of matching two graph 

structures is transformed into a signature matching process using the EMD similarity 
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measure to express the similarity of the two graph structures. Specifically the signatures 

consist of the nodes of the ARGs to which appropriate weights will be given. The ground 

distances which express the similarity between two nodes of the two signatures will be 

defined by the unary and binary attributes assigned to the nodes and edges of the two 

ARGs. In this way we distinct our matching methodology from Kim et. al. [KIM04] (see 

section 4.2.3) since we treat both unary and binary attributes in a single EMD 

calculation step without using any relational vector space. 

 Formally, Let ,  be the attributed relational graphs 

that need to be matched, where 
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 so as to attain a uniform distribution. As already 

mentioned, it is assumed that the nodes ,  represent the core component of the two 1v 1v̂

objects, respectively. These nodes are considered as fixed and are always matched in 

the matching algorithm. Also additional n m−  nodes are inserted in  which are called 

delete nodes. The reason for doing this is to penalize the n

Ĝ

m−  nodes of G  that are not 

mapped to any of the nodes of  from within the EMD-based matching process. By this 

way partial graph matching is taken into account. Unary attributes 
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j m= +
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assigned to the delete nodes that correspond to components with no information. 

Weights also equal to 1
n

 are assigned to the delete nodes. All other nodes representing 

the articulated parts of the objects are considered as normal.         

 As mentioned earlier the matching process between two ARGs can be 

transformed into a signature matching problem using the EMD similarity measure. For 

example given two ARGs, the one consisting of 5 nodes and the other consisting of 3 

nodes, the matching process is as shown in Figure 5.2.3. 
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Figure 5.2.3. Matching process between two ARGs 

     

 From the definition of the EMD (5.1.3) it can be observed that the ground 

distances are the definitive terms while computing the EMD, thus the whole matching 

process is based on their proper definition because they indicate how the nodes are 

matched. In the case of matching two ARGs the ground distances depend upon the 

unary and binary attributes of the ARGs since these attributes should define how the 

matching between the nodes of the graphs should be done. Also there is a need to 

inflict a constraint in the definition of the ground distances in order for the fixed nodes to 

always be matched, restraining them to match with any other node, see Figure 5.2.3. 

The ground distances are defined as follows: 
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where, 
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As can be observed in equation (5.2.1) the case of the mismatch of a normal 

node with a delete node is penalized more than in the cases when the fixed nodes and 

the normal nodes are mismatched. This is done in order to avoid the matching of normal 

nodes that hold significant information with the delete nodes that hold no information. In 

Figure 5.2.4 the plots of the ground distances illustrate their different value assignment.  

  

(a) (b) 

Figure 5.2.4. The ground distances plots of (a) the normal and fixed node matching, (b) the 

delete node matching 

It can also be observed in equation (5.2.2) that the binary attributes are 

considered only in the normal node matching since only then the relation they have with 

the fixed node (core) need to be exploited. When the fixed nodes are matched only the 

unary attributes are considered since the core relation with the other nodes is already 

considered when the normal nodes are matched. Note also that with the selected 

ground distances the fixed nodes are always going to be matched. 

The unary attributes that need to be defined for the nodes of the ARG should 

carry the geometric properties of the component they represent. The binary attributes 

should carry the relationship that the neighbouring components have. 

In this work the following unary and binary attributes are used: 
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i. The unary and binary attributes of Kim et. al. [KPYL04]. The purpose of this 

assignment is to compare the proposed matching methodology with that used in 

[KPYL04] in order to show the efficiency of the segmentation and matching 

algorithms in the experimental results (see section 5.3). 

ii. Unary attributes defined by Papadakis et. al. [PPPT07] descriptor. Their 

descriptor consist of spherical harmonic coefficients derived from the object’s 

component after pose normalization. The spherical harmonics provide a 

description of the component’s geometry in the frequency domain. 

Considering Kim et. al. [KPYL04] attribute assignment, the unary attributes that 

are assigned to the nodes of the ARG representing the object components are the 

relative size ( ) of the component, the convexity ( ) of the component and the 

eccentricities ( , ) of the ellipsoid approximating the component. The relative size of 

the component is approximated by its area, the convexity is approximated by first 

voxelizing the component and then dividing the number of voxels of the component by 

the number of voxels of its convex hull and the eccentricities are approximated by the 

variances of the component mesh points along the axes created by principal component 

analysis.  The binary attributes that are assigned to the edges of the ARG are the 

distance ( l ) of the centroids of the components connected by an edge of the graph and 

the angles ( , ) that the two most significant principal axes of the connected 

components create with each other. All of the attributes are normalized in the interval [0, 

1].  

rs c

1e 2e

1a 2a

By this way, the vector  is assigned to the normal and fixed nodes and 

the vector  is assigned to the edges of the graphs. All delete nodes are assigned 

the vector [ . In equation (5.2.2), the norm 

1 2[ , , , ]rs c e e

1 2[ , , ]l a a

0,1,1,1] ⋅  denotes the  norm of the attribute 

vectors. 

2L

Considering Papadakis et. al. [PPPT07] attribute assignment, we set to the 

normal and fixed nodes the spherical harmonic descriptor vector of the parts they 

represent. The descriptor consists of two sets of coefficients corresponding to two 

aligned versions of the model using two methodologies based on principal component 

analysis, namely CPCA and NPCA. CPCA aligns the component according to the 

surface area distribution and NPCA aligns the component according to the surface 

orientation distribution. To the delete nodes the vector with zero entries is assigned 

whose dimension is the same as their descriptor. Please note that in this case only 
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unary attributes are assigned, thus in equation (5.2.2) there exist no binary term and the 

norm ⋅  denotes the  norm of the spherical harmonic vector coefficients. 1L

Based on the aforementioned ground distance assignment and ARG definition 

the EMD measure is computed between the two ARGs which gives the degree of 

similarity between the two objects that need to be matched. In order to compute the 

EMD the implementation of Rubner et. al. [RTG00] is used. 

 

5.3 Experimental Results 
 

 For the experiments made in this work, the McGill 3D object database of 

articulated objects is used [mcg]. The specific database contains ten classes of 255 

articulated objects, namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’, 

‘Octopuses’, ‘Pliers’, ‘Snakes’, ‘Spiders’ and ‘Teddy-bears’ each one of them containing 

approximately twenty to thirty models, see Figure 3.3.1. The objects in this database 

were transformed from their voxelized form to closed manifolds. For each of the objects 

this was achieved by first triangulating the sides of the voxels which belong to the 

exterior of the object disregarding all other sides, thus creating by this way a 3D mesh. 

Afterwards Laplacian smoothing was applied to the mesh, in the sequel the triangles 

and vertices which prevented the mesh from being a manifold were removed. Lastly the 

holes which were created by the latter removal were closed using a hole filling 

algorithm, thus creating by this way a closed manifold. 

    
 

‘Ants’ ‘Crabs’ ‘Spectacles’ ‘Hands’ ‘Humans’ 

 
    

‘Octopuses’ ‘Pliers’ ‘Snakes’ ‘Spiders’ ‘Teddy-bears’ 

Figure 3.3.1. The ten classes of the McGill Database of articulated objects 
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The experiments made in this work have the following goals: 

• First, the superior performance of our retrieval methodology will be shown in 

comparison with two other state of the art retrieval methodologies, namely Kim 

et. al. [KPYL04] (which has become one of the standards 3D object retrieval 

methodologies in MPEG7) and Papadakis et. al. [PPT+08]. 

• Second, the proposed retrieval methodology will be used in order to refine 

Papadakis et. al. [PPT+08] retrieval results. This will be achieved by applying for 

each object of the database the retrieval process of Papadakis et. al. [PPT+08]. 

The output of the retrieval is a sequence of 255 distance measures in ascending 

order indexed with the object that each measure corresponds to. The first 75 

objects of this output will be further matched with the proposed matching 

algorithm against the query object providing a new distance measure sequence 

which will be shown that it refines the sequence of the initial 150 distance 

measures (the rest of the distance measures are left unaltered).  

• Lastly, the superiority of the proposed segmentation algorithm in terms of 

retrieval will be shown against the segmentation algorithm used for retrieval in 

Kim et. al. [KPYL04]. This is going to be achieved by accommodating the ARG 

created by the proposed segmentation algorithm using Kim et. al. [KPYL04] 

attributes to the MPEG7 retrieval process. 

In the sequel, the following abbreviations will be used: 

• The graph-based retrieval methodology that uses the proposed segmentation 

and matching algorithm using Papadakis et. al. [PPPT07] attributes is denoted as 

EMD-PPPT 

• The graph-based retrieval methodology that uses the proposed segmentation 

and matching algorithm using Kim et. al. [KPYL04] attributes is denoted as EMD-
MPEG7 

• The graph-based retrieval methodology that uses the proposed segmentation 

algorithm and the graph matching of Kim et. al. [KPYL04] is denoted as SMPEG7 

• The graph-based retrieval methodology that uses the segmentation and 

matching of Kim et. al. [KPYL04] is denoted as MPEG7 

• The retrieval methodology of Papadakis et. al. [PPT+08] that uses a global shape 

representation is denoted as Hybrid 
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• The retrieval methodology of Papadakis et. al. [PPT+08] refined by the proposed 

retrieval methodology using Kim et. al. [KPYL04] attributes is denoted as H-EMD-
KIM-R 

• The retrieval methodology of Papadakis et. al. [PPT+08] refined by the proposed 

retrieval methodology using Papadakis et. al. [PPPT07] attributes is denoted as 

H-EMD-PPPT-R 

 

The evaluation of the retrieval results of the aforementioned retrieval 

methodologies is based upon the Precision Recall (PR) diagrams, where higher 

Precision values indicate better performance and on the following quantification 

measures: 

• Nearest Neighbour (NN): The percentage of queries where the closest match 

belongs to the query’s class. 

• First Tier (FT): The recall for the (k-1) closest matches, where k is the cardinality 

of the query’s class. 

• Second Tier (ST): The recall for the 2(k-1) closest matches, where k is the 

cardinality of the query’s class. 

• Discounted Cumulative Gain (DCG): A statistic that weights correct results near 

the front of the list more than correct results later in the ranked list under the 

assumption that a user is less likely to consider elements near the end of the list. 

The above measures range from 0% to 100% and higher values indicate better 

performance. 
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Figure 5.3.2. PR plot of the examined retrieval methodologies 

 

 In Figure 5.3.2 the Precision Recall diagram for the whole database is shown. It 

is obvious that the EMD-PPPT methodology has the best performance. Specifically if 

40% and 60% recall levels are considered Table 5.3.1 is obtained. 

RECALL LEVELS RETRIEVAL  
ALGORITHMS 40% 60% 
EMD-PPPT 0.88 0.83 
EMD-MPEG7 0.84 0.77 
SMPEG7 0.84 0.76 
Hybrid 0.71 0.59 
H-EMD-KIM-R 0.86 0.76 
H-EMD-PPPT-R 0.89 0.80 
MPEG7 0.61 0.48 

Table 5.3.1. Precision performance values for the recall levels 40% and 60% 

Based on the precision performance values of Table 5.3.1 the following can be 

observed: 

i. The best precision results are those of EMD-PPPT 

ii. EMD-MPEG7 is the second in precision performance value 
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iii. H-EMD-KIM-R and H-EMD-PPPT-R compared to Hybrid has been improved by 

20% and 24% approximately respectively in the precision performance value   

iv. SMPEG7 retrieval curve is better than the MPEG7 retrieval curve by an average 

increase in the precision recall level of the order of 33% 

Based on the above statements it can be safely implied that the spherical-harmonics 

attributes set on the components of the object can describe the structure of the 

articulated objects very efficiently providing high quality retrieval results. Also the EMD-

PPPT retrieval curve is about 5% higher than the EMD-MPEG7 which means that the 

spherical-harmonics attributes can describe better a component than the attributes set 

by Kim et. al. [KPYL04]. It can also be observed that after refining the retrieval result of 

the Hybrid algorithm the performance of H-EMD-KIM-R, and H-EMD-PPPT-R is 

significantly better than the Hybrid performance and comparable to the SMPEG7 

retrieval curve. This means that the proposed retrieval methodology is capable to assist 

the Hybrid retrieval methodology to achieve high quality retrieval results. The better 

performance of SMPEG7 over MPEG7 means that the proposed segmentation 

algorithm is performing better than Kim et. al. [KPYL04] segmentation algorithm for 

retrieval purposes in this database. 
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Figure 5.3.3. Precision Recall diagrams of the McGill database classes 

In Figure 5.3.3 the Precision Recall diagrams for each one of the classes of the 

database is shown. Again it can be observed that EMD-PPPT retrieval methodology 

performs best in the majority of the classes. Especially In the ‘Humans’, ‘Crabs’, 

‘Hands’, ‘Spiders’, ‘Pliers’ classes very high PR curves are achieved (especially in the 

‘Pliers’ class where the perfect performance is attained). The inferior performance in the 

‘snakes’ class is justified by the poor segmentation achieved in this particular class 

because of the lack of protrusions.    

In Table 5.3.2 the corresponding scores for each of the retrieval methodologies 

for each class of the database as well as the average scores for the complete McGill 

database are shown. As can be observed the EMD-PPPT methodology performs better 

in total and in most of the classes of the database. Also it can be noticed the significant 

gain in score of the H-EMD-KIM-R and H-EMD-PPPT-R retrieval methodology over the 

Hybrid retrieval methodology. 

In Figure 5.3.4 retrieval results are shown for a ‘hands’ and ‘humans’, objects 

respectively using the EMD-PPPT and MPEG7 retrieval methodologies. It can be 

observed that the proposed EMD-PPPT retrieval results are significant better than 

MPEG7.  

Class Method NN(%) FT(%) ST(%) DCG(%) 
Complete  
McGill DB 

EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

97.6 
93.3 
91.8 
92.5 
94.1 
97.3        
97.3 

74.1 
69.2 
65.2 
55.7 
70.7 
69.9 
47.5 

91.1 
88.9 
78.3 
69.8 
82.9 
75.8 
63.2 

93.3 
90.8 
89.1 
85.0 
90.2 
90.5 
79.2 
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Ants EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

96.7 
96.7 
80.0 
100 
96.7 
96.7         
90.0 

54.9 
58.5 
57.1 
73.6 
63.4 
58.3         
62.1 

79.7 
79.9 
75.6 
89.2 
83.2 
81.5         
75.5 

88.4 
87.5 
86.7 
94.8 
88.9 
89.2 
87.1 

Crabs EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

100 
100 
100 
100 
100 
100         
90.0 

98.2 
89.8 
72.9 
55.2 
87.5 
92.6         
45.9 

99.8 
98.2 
90.3 
71.8 
92.9 
94.3         
65.5 

99.9 
99.2 
95.9 
88.7 
98.0 
98.6 
82.2 

Spectacles EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

100 
96.0 
96.0 
96.0 
96.0 
96.0         
84.0 

70.3 
63.7 
55.8 
53.5 
74.0 
73.8         
37.8 

99.8 
94.3 
63.7 
63.3 
80.0 
80.0         
50.8 

94.0 
89.2 
82.7 
85.9 
90.5 
91.5 
73.6 

Hands EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

95.0 
95.0 
95.0 
90.0 
95.0 
95.0         
60.0 

83.9 
79.7 
78.7 
43.4 
77.4 
79.7         
30.0 

88.9 
88.2 
87.9 
57.6 
83.7 
83.9         
41.3 

95.2 
93.4 
93.0 
77.8 
92.3 
94.0 
63.1 

Humans EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

96.6 
96.6 
96.6 
100 
96.6 
96.6         
79.3 

93.5 
86.8 
84.5 
47.0 
79.6 
82.0         
40.5 

96.4 
99.3 
98.0 
63.8 
85.2 
84.7         
59.1 

98.1 
97.4 
97.3 
83.1 
94.3 
94.6 
77.9 

Octopuses EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

88.0 
80.0 
84.0 
56.0 
76.0 
88.0         
72.0 

58.8 
45.2 
42.0 
29.5 
45.7 
57.8         
46.8 

81.8 
73.2 
63.0 
45.0 
71.2 
80.3         
76.2 

88.1 
79.1 
80.5 
68.9 
78.1 
87.0 
77.8 

Pliers EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

100 
100 
100 
100 
100 
100         
95.0 

100 
85.5 
86.1 
71.6 
92.4 
99.7         
65.5 

100 
100 
95.5 
87.9 
99.7 
99.7         
77.9 

100 
98.6 
97.8 
94.6 
99.0 
99.9 
89.5 

Snakes EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

100 
80.0 
80.0 
80.0 
88.0 
96.0         
76.0 

43.2 
46.2 
44.2 
23.7 
42.3 
43.7         
36.8 

95.2 
85.8 
48.0 
28.7 
47.3 
47.3         
40.7 

84.7 
83.4 
76.6 
62.4 
75.7 
75.4 
69.3 

Spiders EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

100 
100 
96.8 
100 
100 
100         
90.3 

87.2 
85.7 
74.8 
71.5 
85.7 
87.3         
37.3 

100 
97.3 
86.6 
91.0 
96.9 
99.0         
61.8 

98.4 
97.5 
93.9 
93.7 
97.6 
98.3 
77.8 

Teddy-bears EMD-PPPT 
EMD-MPEG7 
SMPEG7 
Hybrid 
H-EMD-KIM-R 
H-EMD-PPPT-R 
MPEG7 

100 
85.0 
90.0 
100 
90.0 
100         
100 

45.3 
42.6 
55.8 
90.3 
54.7 
52.6         
79.2 

63.2 
66.3 
70.8 
98.4 
87.4 
87.4         
84.5 

83.9 
78.8 
84.6 
99.1 
85.5 
89.1 
93.4 

Table 5.3.2. Quantitative measure scores of the examined retrieval methodologies 
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EMD-PPPT, ‘Hands’ query MPEG7, ‘Hands’ query 

    

 

    

    

 

 
 

  

    

 

  
 

 

    

 

    

    

 

    

EMD-PPPT, ‘Humans’ query MPEG7, ‘Humans’ query 
Figure 5.3.4. Retrieval results for a ‘hands’ and ‘humans’ query object. The query object is on 

the top left side and the ranking order goes from left to right. 
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5.4  Conclusions 
 

 In this chapter a 3D object retrieval methodology for articulated objects was 

presented that is dependant on a graph-based representation of the object. The graph-

based representation of the object is constructed by first segmenting the object into its 

meaningful components and then, using these components, a graph structure of the 

object is constructed assigning to the nodes and edges proper unary and binary 

attributes thus constructing an ARG structure. Matching between two ARGs is achieved 

by a signature matching algorithm using the EMD similarity measure based on newly 

defined ground distances which are relied on the unary and binary attributes given to 

the ARGs. 

 The proposed methodology is very efficient in retrieving articulated objects and 

was shown to perform significantly better in our extensive evaluation against the 

compared state of the art retrieval algorithms in the McGill Database of articulated 

objects. Specifically if 40% and 60% recall levels are considered in the PR diagram for 

the whole database the following remarks can be stated: 

i. The best precision results are those of EMD-PPPT 

ii. EMD-MPEG7 is the second in precision performance level 

iii. H-EMD-KIM-R, H-EMD-PPPT-R compared to Hybrid has been improved by 20% 

and 24% approximately.    

iv. SMPEG7 retrieval curve is better than the MPEG7 retrieval curve by an average 

increase in the precision recall level of the order of 33% 

Also it has been shown that in the quantitative evaluation measures like NN, FT, ST, 

DCG  the proposed retrieval methodology using Papadakis et. al. [PPPT07] spherical 

harmonic descriptors (EMD-PPPT) performs best in average for the whole database 

and it performs better in most of the individual classes of the database. The worst 

performance, as expected, was attained at the ‘snakes’ class where the segmentation 

algorithm fail to correctly segment the members of the class due to their lack of 

protrusible parts. 
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Chapter 6 

 

Conclusions 
 

In this dissertation a new 3D object retrieval methodology has been presented 

based on a new 3D mesh segmentation algorithm and a graph-based representation 

which is very suitable for retrieval of articulated objects. 

In chapter 3 a new mesh segmentation algorithm has been presented. The 

proposed segmentation algorithm is part-based and partitions the 3D object into its 

meaningful components. After an extensive experimental evaluation against other state 

of the art segmentation algorithms, based on established criteria, the proposed 

segmentation methodology was proven to produce the best results. Also the different 

stages that the algorithm follows in order to achieve segmentation were shown to be 

very stable when applied in a plethora of 3D objects without any user intervention. The 

different threshold values set in the different stages of the algorithm were proven to be 

correct after a systematic and statistical experimentation.   

In chapter 5 a new 3D object retrieval algorithm suitable for articulated objects 

was presented. The methodology is based on a graph-based representation of the 

object. Specifically the ARG of the 3D object was constructed based on the 

segmentation algorithm presented in chapter 3. Retrieval was achieved by matching the 

ARG representing the query’s object with the ARGs representing the objects stored in 

the database. Matching between two ARGs was accomplished by transforming the 

graph matching problem into a signature matching problem using the EMD similarity 

measure based on newly defined ground distances measures. The proposed retrieval 

algorithm was extensively evaluated using the McGill Database of articulated objects. 

Different attribute assignments were used for the description of the ARG of the object 

and the significant superiority of the proposed retrieval methodology against state of the 

art retrieval methodologies using a plethora of evaluation criteria was established. 

     Future work involves the extension of the proposed segmentation algorithm in 

order to do hierarchical segmentation. For example in the segmentation of a mesh 

representing a human 3D object the first stage of the segmentation hierarchy would be 

 103



its partitioning into the main body arms, legs and head. In the next stages of the 

hierarchy the arm could be further segmented into its hand, fingers, etc. 

Αt the end of this process we must point out the following: 

• All “key steps” at the particular phases of the process are optimized in one 

way or the other in the existing algorithm. The only exception to this rule is 

the selection we have made regarding the width, 

[ − 1(1 d ) coreminD , + 2(1 d ) ]coreminD , we have adopted in the section relevant to 

the partitioning boundary detection, in Chapter 3. Specifically based on a 

large number of experiments during which we have incrementally changed 

the specified width it was realized that the set values d1 = 0.1, d2 = 0.4 

were the best. In other words an experimental optimization was adopted at 

this specific point. 

• Next to be mentioned is that global optimization process (iteration or trial 

and error process) is not recommended for the following reasoning: 

(i) Firstly because we have obtained the best possible results under 

the given conditions and existing state of the art and,  

(ii) Secondly, because in an attempt we have made we realized that 

possible areas of improvement offer small if not trivial interest. For 

example, in the salient points extraction process if we increase their 

number in order to improve the ARGs even if some improvement 

can be obtained it will be counterbalanced by the increase of noise 

levels; also there is not any significant margin for the improvement 

of the unary attributes; concerning the binary attributes which 

express the geometrical features between the parts (main and 

protrusibles) we expect that it is possible to obtain better results the 

importance of which must be investigated in a future work. 

• Therefore the conclusion which can be made regarding the achievement 

of the best possible retrieval results for the case of the articulated objects 

is twofold. Specifically, the first is to extend the segmentation algorithm in 

order to make it hierarchical; the graph-based representation of the object 

can be also extended into a tree structure, thus the problem of matching 

two ARGs can be transformed into the problem of matching trees. The 

second is to include in the database a well selected number of classes 
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covering a wide area of existing articulated objects. It is possible to 

combine these two efforts in order to obtain the best possible cost effective 

solution to specific demands.  There exist also a case in which the 

improved binary attributes can be applied introducing for example mobility 

features between the particular parts by the assignment of corresponding 

degrees of freedom (from one, i.e only one movement to six, i.e three 

rectilinear and three rotational movements). It is, obviously our intention to 

extent, if possible, the application of a successful retrieval process into the 

field of mechanical motion which is governed by geometric requirements of 

the motion, by dynamic requirements of the forces and by constitutive 

relations for the deformable parts/elements and velocity-momentum 

relations for the masses [CKKPB68].           
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