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ABSTRACT 

 

A pairing is a function that takes as input two points on an elliptic curve and outputs an 

element of some multiplicative abelian group. The two pairings that are known at 

present are the Weil pairing and the Tate pairing. These pairings have recently found 

numerous applications in the design of cryptosystems. In order to implement such 

protocols, one needs elliptic curves over which the Weil or Tate pairings can be 

efficiently implemented. In particular, elliptic curves with sufficiently small embedding 

degrees are the most proper for such implementations. In this thesis, some well known 

methods for the generation of such elliptic curves are presented, implemented and 

evaluated experimentally.   
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1 INTRODUCTION 

1.1 Scope 

Consider the Diffie-Hellman protocol that can be used to allow two parties A and B to 

establish a shared secret by communicating over a channel that is being monitored by 

an eavesdropper. The Diffie-Hellman protocol can be viewed as a one-round protocol 

because the two exchanged messages needed in order to complete the secret sharing 

are independent of each other. The protocol can easily be extended to three parties 

easily, using a two-round protocol [4]. A natural question to ask is whether there exists a 

three-party one-round key agreement protocol that is secure against eavesdroppers. 

This question remained open until 2000, when Joux [18] devised a surprisingly simple 

protocol that used bilinear pairings[4].  

 

Joux's paper was of great interest to cryptographers, who started investigating further 

applications of pairings.  Pairing-based cryptography is a relatively young area of 

cryptography that revolves around a certain function with special properties. A pairing is 

a function that takes as input two points on an elliptic curve and outputs an element of 

some multiplicative abelian group. Since then, there has been significant activity in the 

design and analysis of cryptographic protocols using pairings. Pairings have been 

accepted as an indispensable tool for the protocol designer. There has also been a 

tremendous amount of work on the realization and efficient implementation of bilinear 

pairings using the Tate pairing on elliptic curves and more general kinds of abelian 

varieties. These pairings have recently found numerous applications in the design of 

cryptosystems, such as identity-based encryption[12,14,17,19,20], identity-based 

signatures, short signatures[15], group signatures[13,16], non-interactive key 

distribution or authentication key agreement[4].  

 

The two pairings that are known at present are the Weil pairing and the Tate pairing. In 

order to implement protocols such as those mentioned, one needs elliptic curves over 

which the Weil or Tate pairings can be efficiently implemented. In particular, elliptic 

curves with sufficiently small embedding degrees such as k=3,4 and 6 are the most 
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proper for such implementations. In this thesis, some well known methods for the 

generation of such elliptic curves will be presented and will be evaluated experimentally.  

 

1.2 Contribution 

Under this Thesis, a primitive software library written in the C Programming language 

was produced. This software library, which builds on work made previously in the field 

of elliptic curves and pairing-based cryptography, aims to provide implementations of 

algorithms that construct elliptic curves of the desired embedding degree. These elliptic 

curves can then be used on the construction of Weil or Tate pairings in order to 

implement pairing-based cryptographic protocols.  

1.3 Structure of this Thesis 

Chapter 2 provides the mathematical basis necessary for the following chapters. In 

particular, introductory information on Elliptic Curves, Scalar Multiplication of a point of 

an Elliptic Curve are covered in sections 2.1 and 2.2.  Section 2.3 refers to Pell’s 

Equation, a specific type of equation that will appear in almost all algorithms covered 

later on. Finally, Section 2.4 provides some introductory material on Pairings, the main 

application field for Elliptic Curves with low embedding degree. 

 

In Chapter 3 the underlying mathematical concept concerning the construction of Elliptic 

Curves with Embedding Degrees k=3,4 and 6 will be presented. Based on this 

background, the corresponding algorithms for the construction of such curves are also 

presented in this chapter. Chapter 4 includes the detailed implementation of the 

algorithms, as well as a presentation of the measurements taken during the execution of 

these algorithms and comparison between the different algorithms. 

 

Finally in Chapter 5 the Conclusions of this Thesis are presented. 
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2 MATHEMATICAL BACKGROUND 

In this chapter the mathematical background needed to construct elliptic curves of 

prescribed embedding degree is set. A short introduction to Elliptic Curves is made, as 

well as detailed explanation of how the scalar multiplication operation is performed on 

Elliptic Curves. The Complex Multiplication method, which can be used to construct 

Elliptic Curves whose order possesses certain properties, is presented next. Pell’s 

equation and the corresponding algorithms that solve it are also presented. This form of 

equation appears in all algorithms that construct Elliptic Curves having small embedding 

degree. Finally, a definition of pairings and details about the Tate and Weil pairings is 

provided.  

2.1 Elliptic Curves 

Elliptic Curves were first introduced to the world of cryptography in 1985, when a public-

key cryptosystem based on Elliptic Curves and the ECDLP problem was proposed 

independently by V. Miller and N. Koblitz. Their attractiveness lies on the fact that there 

does not exist up to now an algorithm for solving the ECDLP problem on a properly 

chosen EC in sub-exponential time. Therefore, similar levels of security to 1024-bit RSA 

are obtained using an ECC key of only 160-bit. An elliptic curve can be defined over 

finite fields. When an Elliptic Curve E is defined over Fp, p>3 and prime, the notation 

E(Fp) is used. In this case the Elliptic Curve is defined by the parameters a,b ∈∈∈∈Fp and 

consists of the points P=(x,y) for x,y ∈Fp that satisfy 

y2 = x3 + ax + b 

together with O (point at infinity). This set of points and a special addition operation 

define an Abelian group, called the EC group. When the Elliptic Curve is defined over 

F2m, E(F2m) is defined by the parameters a,b ∈∈∈∈F2m , b≠0, and consists of the points 

P=(x,y) for x,y ∈F2m that satisfy  

y2 + xy = x3 + ax2 + b 

together with O (point at infinity). The Order of a point of a curve is the smallest positive 

integer r such that r P = O. The Curve Order m is the Number of points in E(Fp) or 

#E(Fp). The Curve Order can be computed and must satisfy certain conditions to avoid 
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known attacks, e.g. by selecting a,b so that the curve order is divisible by large prime. 

The order of a point cannot exceed the order of the elliptic curve[2]. 

 

The expression t = p + 1 − m (which measures the difference between m and p) is 

called the Frobenius trace t. Hasse’s theorem states that |t| ≤ 2√p which gives upper 

and lower bounds for m based on p: 

p + 1 − 2√p ≤ m ≤ p + 1 + 2√p. [2] 

 

The security of elliptic curve cryptosystems is based on the difficulty of solving the 

discrete logarithm problem (DLP) on the EC group. To ensure intractability of solving 

this problem by all known attacks, the group order m should obey the following 

conditions: 

1. m must have a sufficiently large prime factor (larger than 2160). 

2. m must not be equal to p. 

3. For all 1 ≤ k ≤ 20, it should hold that pk ≡ 1 (mod m). 

If the order of an EC group satisfies the above conditions, we call it suitable[2]. 

 

An Elliptic Curve Cryptosystem is defined by its ECC Domain Parameters, which are a  

Septuple T = (q,FR,a,b,G,n,h) 

consisting of a number q specifying a prime power (q=p or q=2m), an indication FR (field 

representation) of the method used for representing field elements∈ Fq, two field 

elements a,b ∈ Fq that specify the equation of the Elliptic Curve E over Fq, a base point 

G=(xG,yG) on E(Fq), a prime n which is the order of G, and an integer h which is the 

cofactor h=#E(Fq) / n. Since the primary security parameter is n, the ECC key length is 

defined to be the key length of n. [1] 

 

The fundamental protocols used in Elliptic Curve Cryptosystems are the Elliptic Curve 

Diffie-Hellman protocol (ECDH) used for key agreement, the Elliptic Curve Digital 

Signature Algorithm (ECDSA) used for digital signatures, and the Elliptic Curve 

Authenticated Encryption Scheme. It is beyond the scope of this thesis to analyze these 

protocols, for which further information is provided in [1].  
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2.2 Scalar Multiplication 

Scalar Multiplication is the central operation used in Elliptic Curve Cryptosystems. In 

order to understand how Scalar Multiplication works, first Point Addition has to be 

presented.  

 

The following figure illustrates point addition; In order to add points P and Q of the 

illustrated Elliptic Curve, we need to calculate the third point of the EC where the line 

defined by points P and Q crosses the Elliptic Curve, say R. The result of Point Addition 

P + Q is the point R’, which is the symmetrical point to R on the X axis.  

 

 

 
 

Figure 1 Elliptic Curve Point Addition 
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Scalar Multiplication is the operation of multiplying an integer number λ to a point P of 

the Elliptic Curve, or in other words the operation of adding a point P to itself λ times. 

The operation Q = λ P can be written as Q = P + P + ….. + P (λ times). In order to 

calculate P + P, the tangent of the Elliptic Curve at point P must be taken and the point 

R at which this tangent crosses the Elliptic Curve again must be calculated. The 

symmetrical point R’ is the result of the addition P + P or 2P. From this point onwards, 

3P, 4P, ….. λP can be calculated as described previously. 

 

The following figure illustrates the Scalar Multiplication Q = λ P: 

 

 

 
 

Figure 2 Elliptic Curve Scalar Multiplication 
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2.3 Complex Multiplication Method 

The Complex Multiplication method is a method used to generate ECs whose order 

possesses certain properties [2]. It is especially useful if a pairing is desired. This 

method takes as input a number representing the order of the finite field on which the 

EC will be defined, and from this number determines the parameter CM Discriminant D. 

The EC is then generated by constructing polynomials based on D and finding their 

roots. 

 

Two types of polynomials can be used, Hilbert Polynomials and Weber Polynomials. 

Hilbert polynomials have large coefficients, but their roots can be used directly to 

construct the EC. They are inappropriate for fast/frequent construction of ECs. The use 

of Hilbert polynomials in the CM method requires high precision in the arithmetic 

operations involved in their construction, resulting in a considerable increase of 

computing resources. This makes them not appropriate for fast and frequent generation 

of ECs. To overcome the shortcomings of Hilbert polynomials, two alternatives have 

been recently proposed: either to compute them off-line and store them for subsequent 

use, or to use Weber polynomials for certain values of D and produce the required 

Hilbert roots from them [2]. Weber polynomials on the contrary, have much smaller 

coefficients, therefore they are easier and faster to construct. However their roots do not 

construct EC directly, but instead their roots have to be transformed to Hilbert roots. The 

Complex Multiplication Method presented in [2] uses Weber polynomials and transforms 

their roots to the corresponding Hilbert polynomial roots.  

 

The Curve Discriminant ∆ and j-invariant can be calculated from a,b. Given j0, two 

Elliptic Curves of j-invariant j0 can be constructed, where the second Elliptic Curve is a 

twist of the first. j0 is a root of the Hilbert polynomial which is constructed from a value D 

calculated from the method. The specific algorithm is analysed extensively in [2] and the 

corresponding functions have been implemented in ECC-LIB and used in the 

implementation of the algorithms that construct Elliptic Curves with prescribed 

embedding degree that are presented in the next chapter.  
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2.4 Pell’s Equation – Generalised Pell Equations 

Pell-type equations arise in most of the algorithms analysed in chapter 3 that follows. A 

Pell equation is an equation of the form 

x2 − Dy2 = 1 

where D, x, y are integers and D is not a square. [5] 

 

We solve such an equation by examining the continued fraction expansion of √D. A 

continued fraction expansion of a real number x is obtained by finding an integer a0 and 

positive integers a1, a2, ... such that 

x = a0 + (1 / (a1 + 1 / (a2 + ...) ) ) 

which we also denote by x = [a0, a1, a2, ...]. This sequence of integers can be found by 

computing the following: 

P0 = 0,  

Q0 = 1 

a0 = √D 

P1 = a0 

Q1 = D − a0
2 

an = (a0+Pn )/ Qn  

Pn = an−1Qn−1 − Pn−1 

Qn = (D−Pn
2) / Qn−1 

 

One can show for some k we must have ak+1 = 2a0, and after this point the an sequence 

begins repeating. That is √D = [a0, a1, ..., ak+1, a1, ..., ak+1, ...]. 

 

The convergents are given by 

p0 = a0, 

 p1 = a0a1 + 1,  

pn = anpn−1 + pn−2 

q0 = 1,  

q1 = a1,  

qn = anqn−1 + qn−2. 

These satisfy 

pn
2 − Dqn

2 = (−1)n+1Qn+1 



MATHEMATICAL BACKGROUND 

  14 

 

It turns out that (x, y) = (pk, qk) is the smallest positive integer equation of the Pell 

equation for odd k, and (x, y) = (p2k+1, q2k+1) is smallest for even k. Denote this minimal 

positive solution by (t, u). Then all positive solutions (x, y) to the Pell equation can be 

found via  

x + y√D = (t + u√D)n 

for all positive integers n. We never need the negative solutions, but these are trivial to 

find from the positive solutions in any event[5]. 

 

The Generalized Pell Equation form  

x2 − Dy2 = N 

(D is not a square, x, y are integers) can be solved by first solving the Pell Equation  

x2 − Dy2 = 1 

when N2 < D. In this case, using the above method, we can compute the convergents 

pn, qn until the minimal positive solution is found. However, while doing so, we check if 

pn
2 − Dqn

2 = N/f2 for some positive integer f. If so, then we append (fpn, fqn) to the list of 

solutions of the generalized Pell equation.  

 

If no such convergents are found by the time we have reached the minimal positive 

solution for the Pell equation, then the generalized Pell equation has no solution. 

Otherwise let (t, u) be the minimal positive solution of the above Pell equation. Then for 

each (r, s) on the list of solutions we have a family of solutions (x, y) given by  

 

(x + y√D) = (r + s√D)(t + u√D)n 

 

(for all positive integers n). These families account for all positive integer solutions to the 

generalized Pell equation. 

 

When N2 ≥ D there are possibly other fundamental solutions to the generalized Pell 

equation we must add to the list before generating families of solutions. We can use 

brute force to find them if the numbers are small enough. 
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For positive N set  

L1 = 0, L2 = √(N(t − 1)/2D). 

For negative N set  

L1 =√(−N/D), L2 =√(−N(t + 1)/2D). 

For all integers y satisfying L1 ≤ y ≤ L2 check if there exists any integer x such that   

x2 − Dy2 = N. Append any solutions (x, y) to our list. Also append (x,−y) if it does not 

appear in the family of solutions generated by (x, y)[5].  

 

The abovementioned solutions to the Generalised Pell Equation can be implemented in 

the form of the following two algorithms from [8]: 

 

 

 

Algorithm 1: Pell Equation Solver 1 [8] 
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Algorithm 2: Pell Equation Solver 2 [8] 
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2.5 Pairings 

Pairings were introduced in Cryptography by Joux in 2000[18]. Pairings have recently 

found numerous applications in the design of cryptosystems, such as identity-based 

encryption, identity-based signatures, short signatures, non-interactive key distribution 

or authentication key agreement [12,13,14,15,16,17,19,20]. 

.  

Definition: Bilinear Pairing on (G1 , GT) is a map 

e: G1 x G1 � GT 

that satisfies the following conditions: 

 

• (bilinearity) For all R,S,T ∈G1,  

e(R+S, T) = e(R,T) e(S,T) 

and  

e(R, S+T) = e(R,S) e(R,T) 

The  bilinearity property means that DLP in G1 can be reduced to DLP in GT 

 

• (non-degeneracy) e (P,P) ≠ 1 

 

• (computability) e can be efficiently computed 

 

Two forms exist: 

e: G1 x G1 � GT, 

where G1: group of points on a curve, GT: subgroup of multiplicative group of a related 

finite field, and 

e: G1 x G2 � GT 

Further separation[3]: 

• Type 1: G1 = G2 

• Type 2: G1 ≠ G2  but there exists efficiently computable φ: G2 � G1 

• Type 3: G1 ≠ G2  and there does not exist an efficiently computable φ: G2 � G1 
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For example:  

• G1 is subgroup of E(Fq) 

• G2 is subgroup of E(Fqk) 

• GT is subgroup of F*qk 

 

In this example k is the Embedding Degree 

2.5.1 Weil and Tate Pairings 

 

Torsion points: Let K be a finite field of characteristic q, so that K = Fqm, m natural. Let 

E be an EC defined over K, n=#E(K). Suppose P∈E(K) satisfies rP = O, P has order r. 

Then P is called an r-torsion point, the set of r-torsion points in E(K) is E(K)[r] 

 

The Weil pairing is a bilinear map that takes pairs of elements from E[r] and outputs an 

r-th root of unity in Fqk. 

 

The Tate pairing is similar, but only the first input is from E(Fq)[r]. 

 

Roots and poles: When studying the polynomial f(x)/g(x), the roots of f(x) are the 

zeroes and the roots of g(x) are the poles. 

 

Weil Pairing 

 

Let E be an EC containing n points over Fq, G be a cyclic subgroup of E(Fq) of order r, 

with r,q co-prime. Let k be the smallest positive integer so that E(Fqk) contains all of E[r]. 

 

Weil Pairing f: E[r] x E[r] � Fqk  

 

For a pair of points P,Q∈E[r], choose any R,S ∈E[Fqk] such that S≠R, P+R, P+R-Q, R-Q 

 

Let fP be a rational function with divisor (fP)=(P+R)r/(R)r 

Let fQ be a rational function with divisor (fQ)=(Q+S)r/(S)r 
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Define f(P,Q) = (fP(Q+S) / fP(S) ) / (fQ(P+R) / fQ(R) ) 

 

Finding explicit expressions for these functions is infeasible, however Miller’s Algorithm 

evaluates these functions at the required points [4] 

 

Tate Pairing 

 

Let E be an EC containing n points over Fq, G be a cyclic subgroup of E(Fq) of order r, 

with r,q co-prime. Let k be the smallest positive integer so that r | kq - 1 and K= Fqk. 

 

Weil Pairing e: E[r] ∩ E(K) x E(K) / r E(K) � K* / K*r 

 

Let fP be a rational function with divisor (fP)=(P)r 

 

Choose an R ∈ E(K) such that R ≠P, P-Q, O, -Q 

 

Define f(P,Q) = fP(Q+R) / fP(R) 

 

Weil/Tate and bilinear map 

 

Let E be an EC containing n points over Fq, G be a cyclic subgroup of E(Fq) of order r, 

embedding degree k > 1. 

 

By defining G1 = G, G2 = E[r], GT to be the r-th roots of unity in Fqk, the Weil and Tate 

pairings satisfy the definition of a bilinear map given earlier. 

 

If k>1, then both the Tate and Weil pairings may be computed by performing field 

arithmetic in Fqk. 

 

Arbitrary Embedding Degree: Given any positive integer k, we can construct pairings 

with embedding degree k, but the subgroup size r will have far fewer bits than q. 
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3 PRIME ORDER CURVES OF ARBITRARY SMALL EMBEDDING 

DEGREE k 

In this chapter the procedures that need to be followed in order to construct Elliptic 

Curves having arbitrary small Embedding Degree k is given for the cases k=3,k=4 and 

k=6. From the mathematical analysis of these problems, the corresponding algorithm 

that needs to be implemented will emerge. 

The following theorem, proven in [8], can be used as a starting point in our analysis: 

 

Let E/Fq be an ordinary elliptic curve defined over a finite field Fq. Let n = #E(Fq) be a 

prime and k the embedding degree of E. 

(i) Suppose q > 64. Then k = 3 if and only if q = 12 l2 − 1 and t = −1 ± 6l for some l ∈ Z. 

(ii) Suppose q > 36. Then k = 4 if and only if q = l2 + l + 1 and t = −l, l + 1 for some l ∈ Z. 

(iii) Suppose q > 64. Then k = 6 if and only if q = 4l2 + 1 and t = 1 ± 2l for some l ∈ Z. 

 

The prime order ordinary elliptic curves with embedding degree k = 3, 4, and 6 are 

completely classified by this theorem. One way of constructing such an elliptic curve 

E/Fq with trace t is the complex multiplication (CM) method. In this method, given q and 

t one writes the following CM equation: 

4q − t2 = DV 2 

where D is the square free part of 4q −t2. Then any root of the Hilbert class polynomial 

H−D(x) modulo q gives rise to an elliptic curve E/Fq which has #E(Fq) = q + 1 − t. The 

CM method is efficient only for small values of D; in practice, we are restricted to 

D≤1010. In cryptographic applications it is desirable for q and n to be prime and also         

log n ≈ log q ≈ 160 for efficiency and security reasons.  
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3.1 Constructing Elliptic Curves with Embedding Degree k=4, k=6 

Let q and n be prime integers. Let E/Fq be an ordinary elliptic curve with embedding 

degree k = 6, and #E(Fq) = n.  

 

E has an embedding degree k = 6 if and only if q = 4l2 + 1, and t = 1 E 2l for some l ∈ Z. 

Then t = 1 E 2l gives n = q + 1 − t = 4l2 F 2l + 1. 

 
The CM equation can be written as  

4q − t2 = D′V 2 <=> (6l E 1)2 − 3D′V 2 = -8 

The above shows that in order to construct an elliptic curve of prime order with 

embedding degree k = 6 we have to find some special pair of solutions to the following 

Pell equation: 

X2 − DY 2 = -8, D > 0, D ≡ 0 (mod 3) 

 

If (x, y) is a solution to this equation then we have to guarantee that x ≡ −1 (mod 6) or   

x ≡ 1 (mod 6). In the former case, setting l = (x + 1)/6, we must have q = 4l2 + 1 is prime, 

and n = 4l2 − 2l + 1 is prime. In the latter case, setting l = (x − 1)/6, we must have          

q = 4l2 + 1 is prime, and n = 4l2 + 2l + 1 is prime. 

 

Similarly for k=4, E has an embedding degree k = 4 if and only if q = l2 + l + 1, and t = -l, 

l+1 for some l ∈ Z. Then t = -l gives n = q + 1 − t = l2 + 2l + 2 and t = l+1 gives n= l2 + 1. 

For t = -l, the primality of n requires that l ≡ 1 (mod 2). Therefore, we can replace l by    

2l’ - 1. For t = l + 1, we can replace l by 2l’ since n is prime and so l is even. In both 

cases, the CM equation can be written as  

4q − t2 = D′V 2 <=> (6l’ E 1)2 − 3D′V 2 = -8 

 

which is identical to that produced for k=6.  
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The analysis from this point of the section onwards refers to k=6, the small differences 

to construct elliptic curves with k=4 are highlighted at the end of the current section. 

We have shown that constructing E is reduced to finding some suitable solutions to the 

Pell equation 

 

(3.1.1) X2 − DY 2 = −8, D > 0, D ≡ 0 (mod 3), D ≡ 1 (mod 2) 

 

For efficiency reasons it is essential to keep D small. Therefore, the general strategy is 

first fixing a small D and then tracing for suitable solutions to the above equation using 

the algorithms developed previously. In this section we try to find some necessary 

conditions on D, and also analyze the solution classes of the equation above in order to 

gain some efficiency in searching for suitable elliptic curves.  

 

If (x, y) is a minimal solution to X2 − DY 2 = n, and (u, v) is a minimal solution to                

U2 −DV 2 = 1 then all primitive solutions (xj , yj) in the class of (x, y) can be generated as 

follows: 

(3.1.2) xj + yj√D = ±(x + y√D)(u + v√D)j ,where j ∈ Z 

 

Let m be a nonzero integer, and let D be a positive integer such that D is not a perfect 

square and D ≡ 0 (mod 3). Then, the sequence (xj)j∈Z defined as in (3.1.2) and 

belonging to X2 − DY 2 = m is periodic modulo 6 with period at most 2. This is because, 

supposing j ≥ 0, by expanding (3.2) we can write x0 = x, y0 = y, xi+1 = xiu+yivD, and yi+1 = 

xiv+yiu for i ≥ 0. Then, using u2+v2D = 1+2v2D and 2D ≡ 0 (mod 6), we get: 

 

xi = xi−1u + yi−1vD 

= xi−2(u
2 + v2D) + 2yi−2uvD 

≡ xi−2 (mod 6) 

for i ≥ 2. 

 

If an ordinary elliptic curve E over a prime field with embedding degree 6 is constructible 

then (3.1.1) must have only primitive solutions and the value D in (3.1.1) must satisfy    

D ≡ 9 (mod 24). Also, −2 must be a square modulo D. This is because if E with k = 6 is 

constructible then there exists some integer l satisfying 12 l2 ± 4l + 3 = D′V2, or in other 
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words, 4l(3l ± 1) + 3 = D′V2, and so D′V2 ≡ 3 (mod 8). Hence, D′ ≡ 3 (mod 8) proving that 

D ≡ 9 (mod 24) since D = 3D′. Reducing (3.1.1) modulo D proves that −2 must be a 

square modulo D. 

 

Before giving the searching algorithm we shall summarize the above results: 

 

•  D should be fixed such that 0 < D ≤ 1010, D/3 is square free, D ≡ 9 (mod 24), −2 

is a square modulo D. 

• Let (u, v) be a minimal solution to U2 − DV 2 = 1. If there is a solution to 

X2−DY2=−8 then it is enough to find, if exists, only one minimal solution,(x0, y0). 

• Let (xj , yj) = ±(x0, y0)(u, v)j be the set of all solutions in the same class as (x, y).  

It is enough to consider only one of the solutions (xj , yj) and −(xj , yj). 

•  If x0 K ±1 (mod 6) then there do not exist any suitable solutions (xj , yj) for  

j ≡ 0 (mod 2) 

Similarly, if x1 K ±1 (mod 6) then there do not exist any suitable solutions (xj , yj) 

for  
j ≡ 1 (mod 2) 

 
 

Algorithm 3 from [8] can be implemented in order to construct Elliptic Curves with 

Embedding Degree k=6. This algorithm searches through all solutions (xj , yj) satisfying 

(xj + yj√D) = (x + y√D)(u + v√D)j for j ≥ 0. 
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Algorithm3: Construction of Elliptic Curve with embedding degree k=6 

 

Returning to the case k=4, the difference in the algorithm is only for lines 14 and 28. 

These should read q ← l2 + l + 1 and, say for t=l+1, n ← l2 + 1 
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3.2 Constructing Elliptic Curves with Embedding Degree k=3 

The construction of elliptic curves with embedding degree k = 6 and k=4 was analyzed 

previously by discussing the set of solutions to the corresponding Pell equation. In this 

section, a similar analysis is given for embedding degree k = 3. 

 

As mentioned previously, if E is an ordinary elliptic curve defined over a finite field Fq, q 

is prime, and n = #E(Fq) is prime then E has an embedding degree k = 3 if and only if 

q = 12l2 − 1, and t = −1 E 6l for some l ∈ Z 

Note that t = −1 E 6l gives n = q + 1 − t = 12l2 F 6l + 1. The CM equation can be written 

as  

4q − t2 = D′V 2 <=> (6l E 3)2 − 3D′V 2 = 24 

The above shows that in order to construct an elliptic curve of prime order with 

embedding degree k = 3 we have to find some special pair of solutions to the following 

Pell equation: 

X2 − DY 2 = 24, D > 0, D ≡ 0 (mod 3) 

 

If (x, y) is a solution to this equation, we have to guarantee that x ≡ 3 (mod 6) and that 

for l = (x E 3)/6 we must have q = 12l2 − 1 and n = 12 l2 E 6l + 1 are primes. 

 

Constructing an elliptic curve E with k = 3 is reduced to finding some suitable solutions 

to the Pell Equation  

 

(3.2.1) X2 − DY2 = 24, D > 0, D ≡ 0 (mod 3) 

 

The analysis of this equation was mostly done by Miyaji, Nakabayashi, and Takano [6]. 

The summary of their results states that if an ordinary elliptic curve E over a prime field 

with embedding degree 3 is constructible, then equation (3.2.1) must have only primitive 

solutions and the value D in (3.2.1) must satisfy D ≡ 57 (mod 72). Moreover, this 
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equation has exactly two classes of solutions and if α = (x, y) is a solution to (3.2.1) then 

α and α′ = (x,−y) represent the two different solution classes. 

 

Now, let (x, y) be a minimal solution to X2 − DY 2 = n, and let (u, v) be a minimal solution 

to U2−DV 2 = 1. Recall that all primitive solutions (xj , yj) in the class of (x, y) can be 

generated as follows: 

xj + yj√D = ± (x + y√D)(u + v√D)j ,where j ∈ Z. 

 

Before giving the searching algorithm we shall summarize the above results: 

 

•  D should be fixed such that 0 < D ≤ 1010, D/3 is square free, D ≡ 57 (mod 72). 

Also, 6 must be a square modulo D. 

 

•  Let (u, v) be a minimal solution to U2 − DV 2 = 1. If there is a solution to 

X2−DY 2 = 24 then it is enough to find, if it exists, only one minimal solution, 

say (x0, y0). 

 

•  Let (xj , yj) = (x0, y0)(u, v)j be the set of all solutions as in the same class as      

(x, y). It is enough to consider only one of the solutions (xj , yj) and −(xj , yj). 

 

• If x0K3(mod6) then there do not exist any suitable solutions (xj, yj) for j≡0 (mod2) 

If x1K3(mod6) then there do not exist any suitable solutions (xj, yj) for j≡1(mod 2). 

 

The following algorithm from [8] can be implemented in order to construct Elliptic Curves 

with Embedding Degree k=3: 
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Algorithm4: Construction of Elliptic Curve with embedding degree k=3 
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3.3  Constructing Elliptic Curves with Trace of Frobenius t=3 

Given the upper bound UP >0 on a prime p, this algorithm outputs a prime-order elliptic 

curve E/Fp with t =3, or fail if such an E/Fp does not exist[6]. 1 . C h o o s e a p o s i t i v e i n t e g e r d s u c h t h a t d ≡ 1 9 ( m o d 2 4 ) .2 . S e t p = d l 2 + d l + ( d + 9 ) / 4 , l > 0 .3 . I f p > U P , t h e n o u t p u t f a i l a n d t e r m i n a t e t h e a l g o r i t h m . O t h e r w i s e g o t o s t e p 4 .4 . I f b o t h p a n d p − 2 a r e p r i m e , t h e n g o t o s t e p 5 .O t h e r w i s e g o t o s t e p 2 a n d t r y t h e n e x t l .5 . C o m p u t e t h e H i l b e r t c l a s s p o l y n o m i a l P d ( x ) .6 . S o l v e a r o o t j 0 o f P d ( x ) ≡ 0 ( m o d p ) .7 . C o n s t r u c t t w o e l l i p t i c c u r v e s E j 0 a n d E ’ j 0 :E j 0 : y 2 = x 3 + a j 0 x + b j 0 , E ’ j 0 : y 2 = x 3 + a j 0 c 2 x + b j 0 c 3 ,w h e r e a j 0 = 3 j 0 / 1 7 2 8 − j 0 ( m o d p ) ,b j 0 = 2 j 0 / 1 7 2 8 − j 0 ( m o d p ) ,a n d c i s a n y q u a d r a t i c n o n - r e s i d u e i n F p .8 . O u t p u t E
∈ { E j 0 , E ’ j 0 } w i t h # E ( F p ) = p − 2 a n d t e r m i n a t e t h e a l g o r i t h m .

Algorithm 5: Construction of Prime Order EC with t=3 
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4 IMPLEMENTATION AND EXPERIMENTAL RESULTS 

All the algorithms that are presented in this chapter have been implemented in C, 

making use of related freely available libraries, and in particular: 

• ECC-LIB, developed by E. Konstantinou et al [9] 

• Ben Lynn’s Pairing-Based Cryptography Library (PBC) [10] 

• The GNU Multiple Precision Arithmetic Library (GNUMP) [11] 

The algorithms have been grouped into one source file, GenEC.c. The main() function 

of this program presents the user a simple menu with the available choices of 

algorithms, as shown in the figure below: 

 

 

Figure 3 Main menu of GenEC application 
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4.1 Libraries used 

4.1.1 The GNU MP Library 

GMP[11] is a free library for arbitrary precision arithmetic, operating on signed integers, 

rational numbers, and floating point numbers. There is no practical limit to the precision 

except the ones implied by the available memory in the machine GMP runs on. The first 

GMP release was made in 1991. It is continually developed and maintained since. It is 

distributed under the GNU GPL, which means that the library is free to use, share, and 

improve, however this licence sets firm restrictions on the use with non-free programs. 

GMP is part of the GNU project. The main target applications for GMP are cryptography 

applications and research, Internet security applications, algebra systems, 

computational algebra research, etc.  

There are several categories of functions in GMP. The most used ones are:  

1. High-level signed integer arithmetic functions (mpz). There are about 140 

arithmetic and logic functions in this category.  

2. High-level rational arithmetic functions (mpq). This category consists of about 35 

functions, but all signed integer arithmetic functions can be used too, by applying 

them to the numerator and denominator separately.  

3. High-level floating-point arithmetic functions (mpf). This is the GMP function 

category to use if the C type `double' doesn't give enough precision for an 

application. There are about 65 functions in this category.  

For the purposes of this thesis, the most widely used functions of the GMP library are 

those of the mpz category. Full description for all these functions is provided on the 

GNU MP manual, which can be obtained from [11]. 
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4.1.2 The PBC Library 

The PBC (Pairing Based-Cryptography) library is a free C library (released also under 

the GNU Public License) based on the GMP library to perform the mathematical 

operations of the underlying pairing-based cryptosystem. The PBC library is a free 

portable C library designed to make it easy to implement pairing-based cryptosystems. 

It provides an abstract interface to a cyclic group with a bilinear pairing, and the 

programmer does not need to worry about, or even know about elliptic curves. It is built 

on top of GMP, using the latter to perform arbitrary precision arithmetic on integers, 

rationals and floats with strong emphasis on portability and speed. 

The PBC library is designed to be the backbone of implementations of pairing-based 

cryptosystems, thus speed and portability are important goals. It provides routines such 

as elliptic curve generation, elliptic curve arithmetic and pairing computation. Thanks to 

the GMP library, despite being written in C, execution times are reasonable. According 

to the author of the library, on a 1GHz Pentium III the execution times are as follows: 

• Fastest pairing: 11ms  

• Short pairing: 31ms  

The PBC library also provides usage examples, such as: 

• Boneh-Franklin identity-based encryption  

• Hess identity-based signatures  

• Joux tripartite Diffie-Hellman  

• Paterson identity-based signatures  

• Yuan-Li identity-based authenticated key agreement  

• Zhang-Kim identity-based blind/ring signatures  

• Zhang-Safavi-Naini-Susilo signatures  

The main author of the PBC library is Ben Lynn, who is still developing and maintaining 

it, though many others have also contributed. 
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For the purposes of this Thesis, the PBC library was used to construct Elliptic Curves 

having Embedding Degree k=6, using a procedure from the PBC library directly to 

accomplish this task. Measurements were taken for this procedure in order to compare 

it to the newly-developed procedures. 

4.1.3 The ECC-LIB Library 

The ECC-LIB library contains an implementation of the Complex Multiplication method, 

which is used to obtain the curve parameters given the value of D. The value of D can 

be obtained in turn given t and q or n and q, which comprise the outputs of the 

described algorithms for generation of elliptic curves having embedding degree k=3, 

k=4 or k=6.  

The final_hilbert procedure generates the Hilbert Class polynomial for a given value of 

D, while the zpoly_print procedure of the ECC-LIB can be used to display the generated 

polynomial on screen. Having generated the polynomial, the procedure myRecurse can 

be used to obtain a root j0 of this polynomial. 

The ECC-LIB also contains procedures that perform Scalar Multiplication on an elliptic 

curve’s point. These procedures were used in the algorithm described previously for 

generating an Elliptic Curve having t=3. In particular, the rand_point procedure was 

used to obtain a random point G of a curve and the procedure point_mult was used to 

perform scalar multiplication on this point. 

It must be noted that the library contains also several other procedures (e.g concerning 

the generation of Weber polynomials) that were not used in the course of this project, 

but could be utilised in future versions of the produced library. 
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4.2 Solving Pell’s Equation 

Algorithm 1 that was presented in chapter 2.5 was implemented as shown below: 
 
//Pell Equation Solver 1, implemented according to K.Karabina thesis 
int PellEquationSolver_1(mpz_t *D,mpz_t *m,mpz_t *solution_x,mpz_t *solution_y){ 
 mpz_t B, preB, prepreB, G, preG, prepreG, P, preP, Q, preQ, A, preA, factor, 
G2_DB2, f; 
 unsigned long i,j; 
 
 mpz_init(B); 
 mpz_init(preB); 
 mpz_init(prepreB); 
 mpz_init(G); 
 mpz_init(preG); 
 mpz_init(prepreG); 
 mpz_init(P); 
 mpz_init(Q); 
 mpz_init(preP); 
 mpz_init(preQ); 
 mpz_init(A); 
 mpz_init(preA); 
 mpz_init(factor); 
 mpz_init(G2_DB2); 
 mpz_init(f); 
 
 printf("\nPell Equation Solver 1 input: D="); 
 mpz_out_str(stdout, 10, *D);  
 printf(", m=");  
 mpz_out_str(stdout, 10, *m);  
 printf("\n");  
 
 //1 
 mpz_set_ui(prepreB,(unsigned)0); 
 mpz_set_ui(prepreG,(unsigned)1); 
 
 //2 
 mpz_set_ui(preP,(unsigned)0); 
 mpz_set_ui(preQ,(unsigned)1); 
 mpz_sqrt(preA,*D); 
 mpz_set_ui(preB,(unsigned)1); 
 mpz_set(preG,preA); 
 
 //3 
 i=0; 
 
 //4 
 do { 
  //5 
  i++; 
 
  //6 
  mpz_mul(P,preA,preQ); 
  mpz_sub(P,P,preP); 
 
  //7 
  mpz_mul(factor,P,P); 
  mpz_sub(Q,*D,factor); 
  mpz_tdiv_q(Q,Q,preQ); 
 
  //8 
  mpz_sqrt(factor,*D); 
  mpz_add(A,factor,P); 
  mpz_tdiv_q(A,A,Q); 
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  //9 
  mpz_mul(B,A,preB); 
  mpz_add(B,B,prepreB); 
 
  //10 
  mpz_mul(G,A,preG); 
  mpz_add(G,G,prepreG); 
 
  //prepare for next round 
  mpz_set(preA,A); 
  mpz_set(preP,P); 
  mpz_set(preQ,Q); 
  mpz_set(prepreB,preB); 
  mpz_set(preB,B); 
  mpz_set(prepreG,preG); 
  mpz_set(preG,G); 
  
 //11 
 } while ( !((mpz_cmp_ui(Q,(unsigned)1)==0)  && (i % 2 == 0))); 
 
 /*Due to memory constraints, proposed algorithm is not easy to implement. 
   Instead, the B and G parameters will be calculated again using the same 
algorithm 
   for this part - same code as above that was used to determine the limit i*/ 
 
 //1 
 mpz_set_ui(prepreB,(unsigned)0); 
 mpz_set_ui(prepreG,(unsigned)1); 
 
 //2 
 mpz_set_ui(preP,(unsigned)0); 
 mpz_set_ui(preQ,(unsigned)1); 
 mpz_sqrt(preA,*D); 
 mpz_set_ui(preB,(unsigned)1); 
 mpz_set(preG,preA); 
 
 for(j=1;j<i;j++){ //j<=i;; 
  
  //6 
  mpz_mul(P,preA,preQ); 
  mpz_sub(P,P,preP); 
 
  //7 
  mpz_mul(factor,P,P); 
  mpz_sub(Q,*D,factor); 
  mpz_tdiv_q(Q,Q,preQ); 
   
  //8 
  mpz_sqrt(factor,*D); 
  mpz_add(A,factor,P); 
  mpz_tdiv_q(A,A,Q); 
 
  //9 
  mpz_mul(B,A,preB); 
  mpz_add(B,B,prepreB); 
 
  //10 
  mpz_mul(G,A,preG); 
  mpz_add(G,G,prepreG); 
 
  //Bj, Gj are now calculated!! We can continue according to the algorithm 
  mpz_mul(factor, B, B); 
  mpz_mul(factor,factor,*D); 
  mpz_mul(G2_DB2, G, G); 
  mpz_sub(G2_DB2, G2_DB2, factor); 
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  //can we find an f!=0 so that G^2 - D*B^2 = m / f^2? 
  // G^2 - D*B^2 = m / f^2 <=> f^2 = m / (G^2 - D*B^2) 
  mpz_tdiv_q(factor, *m, G2_DB2); 
 
  if(mpz_cmp_ui(factor,(unsigned)0) > 0) { 
   //a square root (and possibly an f) exist 
   mpz_sqrt(f,factor); /*if f>0 and m/f^2=G^2-D*B^2, f is found!*/ 
    
   //verify f is correct 
   mpz_mul(factor,f,f); 
   mpz_tdiv_q(factor, *m ,factor); 
 
   if (mpz_cmp(factor, G2_DB2)==0) { 
    //f is found! 
    mpz_mul(*solution_x,f,G); 
    mpz_mul(*solution_y,f,B); 
 
    mpz_clear(B); 
    mpz_clear(preB); 
    mpz_clear(prepreB); 
    mpz_clear(G); 
    mpz_init(preG); 
    mpz_init(prepreG); 
    mpz_clear(P); 
    mpz_clear(Q); 
    mpz_clear(preP); 
    mpz_clear(preQ); 
    mpz_clear(A); 
    mpz_clear(preA); 
    mpz_clear(factor); 
    mpz_clear(G2_DB2); 
    mpz_clear(f); 
    
    return EC_SUCCESS; 
   } 
  } 
   
  //prepare for next round 
  mpz_set(preA,A); 
  mpz_set(preP,P); 
  mpz_set(preQ,Q); 
  mpz_set(prepreB,preB); 
  mpz_set(preB,B); 
  mpz_set(prepreG,preG); 
  mpz_set(preG,G); 
 } 
  
 //if we made it here, we were not successful 
 mpz_clear(B); 
 mpz_clear(preB); 
 mpz_clear(prepreB); 
 mpz_clear(G); 
 mpz_init(preG); 
 mpz_init(prepreG); 
 mpz_clear(P); 
 mpz_clear(Q); 
 mpz_clear(preP); 
 mpz_clear(preQ); 
 mpz_clear(A); 
 mpz_clear(preA); 
 mpz_clear(factor); 
 mpz_clear(G2_DB2); 
 mpz_clear(f); 
 
 return EC_FAILURE; 
} 
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Similarly, Algorithm 2 was implemented as shown below:  
 
//Pell Equation Solver 2, implemented according to K.Karabina thesis 
int PellEquationSolver_2(mpz_t *D,mpz_t *m,mpz_t *solution_x,mpz_t *solution_y){ 
 mpz_t u, v, L1, L2, y, x, factor; 
 int res; 
 
 mpz_init(u); 
 mpz_init(v); 
 mpz_init(L1); 
 mpz_init(L2); 
 mpz_init(x); 
 mpz_init(y); 
 mpz_init(factor); 
 
 printf("\nPell Equation Solver 2 input: D="); 
 mpz_out_str(stdout, 10, *D);  
 printf(", m=");  
 mpz_out_str(stdout, 10, *m);  
 printf("\n");  
 
 //1 
 mpz_set_ui(factor,(unsigned)1); 
 res = PellEquationSolver_1(D, &factor, &u, &v); 
  
 if (res==EC_FAILURE) { 
  printf("\nPell Equation Solver 1 returned failure for D="); 
  mpz_out_str(stdout, 10, *D);  
  printf("\n");  
  return EC_FAILURE; 
 } 
 
 //2 
 if (mpz_cmp_ui(*m, (unsigned)0) > 0){ 
  //3 
  mpz_set_ui(L1,(unsigned)0); 
  mpz_sub_ui(L2,u,(unsigned)1); 
  mpz_mul(L2,L2,*m); 
  mpz_mul_ui(factor,*D,(unsigned)2); 
  mpz_tdiv_q(L2,L2,factor); 
  mpz_sqrt(L2,L2); 
 } else { 
  //5 
  mpz_neg(L1,*m); 
  mpz_tdiv_q(L1,L1,*D); 
  mpz_sqrt(L1,L1); 
 
  mpz_neg(L2,*m); 
  mpz_add_ui(factor,v,(unsigned)1); 
  mpz_mul(L2,L2,factor); 
  mpz_mul_ui(factor,*D,(unsigned)2); 
  mpz_tdiv_q(L2,L2,factor); 
  mpz_sqrt(L2,L2); 
 } 
 //7 - cannot be done with for loop due to mpz_t usage  
 mpz_set(y,L1); 
 while(mpz_cmp(L2,y) >= 0) { //while L2 >= y >= L1 
  mpz_mul(factor,y,y); 
  mpz_mul(factor,factor, *D); 
  mpz_add(factor,factor, *m); 
  //now factor = m + d*(y^2) 
 
  //8 
  if (mpz_perfect_square_p(factor) != 0) { 
   mpz_sqrt(x,factor); 
   mpz_set(*solution_x, x); 
   mpz_set(*solution_y, y); 
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   printf("\nPell Equation Solver 2 output: x="); 
   mpz_out_str(stdout, 10, *solution_x);  
   printf(", y=");  
   mpz_out_str(stdout, 10, *solution_y);  
   printf("\n");  
 
   mpz_clear(u); 
   mpz_clear(v); 
   mpz_clear(L1); 
   mpz_clear(L2); 
   mpz_clear(x); 
   mpz_clear(y); 
   mpz_clear(factor); 
   
   return EC_SUCCESS; 
  } 
  //increase y 
  mpz_add_ui(y,y,(unsigned)1); 
 } 
 //if we made it here, we were not successful 
 mpz_clear(u); 
 mpz_clear(v); 
 mpz_clear(L1); 
 mpz_clear(L2); 
 mpz_clear(x); 
 mpz_clear(y); 
 mpz_clear(factor); 
 return EC_FAILURE; 
} 
 

A sample of the execution of the above algorithms is given below. The corresponding 

Pell equation is x2 – 95y2 = 5, and a pair of roots is correctly calculated as (10,1): 

 

Figure 4 Solving Pell's Equation 
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4.3 Constructing Elliptic Curves with Trace of Frobenius t=3 

Algorithm 3 from section 3.1 has been implemented as ConstructPrimeOrderEC. Its 

source code is shown below, the comments in the source code indicate which step of 

the algorithm is performed by each block of code: 

int ConstructPrimeOrderEC (mpz_t UP /*mpz_t* value*/) { 
 /*variable declarations*/ 
 mpz_t d,p,p_minus_2,l,a,b,c,c2,c3,factor; 
 mpz_t G[2]; 
 mpz_t H[2]; 
 long dPnew,i; 
 long root_size = 0; 
 
 mpz_t Pnew[POLY_SIZE]; 
 mpz_t j0[POLY_SIZE]; 
 mpz_t curv1[2]; 
 mpz_t curv2[2]; 
 
 for (i = 0; i < POLY_SIZE; i++) { 
  mpz_init(Pnew[i]); 
    mpz_init(j0[i]); 
 } 
 
 /*mpz_t initializations*/ 
   mpz_init(d); 
   mpz_init(p); 
   mpz_init(p_minus_2); 
   mpz_init(l); 
       mpz_init(factor);/*general purpose variable*/ 
   mpz_init(a); 
   mpz_init(b); 
   mpz_init(c); 
   mpz_init(c2); 
   mpz_init(c3); 
   mpz_init(curv1[0]); 
   mpz_init(curv1[1]); 
   mpz_init(curv2[0]); 
   mpz_init(curv2[1]); 
   mpz_init(G[0]); 
   mpz_init(G[1]); 
   mpz_init(H[0]); 
   mpz_init(H[1]); 
  
 /*Step 1: Generate d */ 
 /*QUESTION: How many bits for d?*/ 
        Generate_19_Mod_24_Number(&d, 160); 
 printf("d returned as number: "); mpz_out_str(stdout, 10, d); printf("\n");  
 
 /*REMOVE THE NEXT TWO LINES TO AVOID D=259*/ 
 mpz_set_ui(d,(unsigned)259);/* d=259, could be 43,67,91,115,...*/ 
 printf("...for faster execution, d="); 
 mpz_out_str(stdout, 10, d); 
 printf (" will be used to execute algorithm steps\n");  
  
 /*start with l=0*/ 
 mpz_set_ui(l,(unsigned)0); 
 do { /*repeat until p,p-2 are prime*/ 
  /*Step 2: Calculate p = d*l*l + d*l + (d+9)/4 */ 
  /*increase l by 1*/ 
  mpz_add_ui(l,l,(unsigned)1); 
  /*printf("l set to: "); mpz_out_str(stdout, 10, l); printf("\n");*/ 
  
  mpz_add_ui(p,d,(unsigned)9);/* p=d+9*/ 
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  mpz_cdiv_q_ui(p,p,(unsigned)4);/* p=(d+9)/4*/ 
  
  /*Find d*l*/ 
  mpz_mul(factor,d,l); 
  mpz_add(p,p,factor);/* p=dl + (d+9)/4*/ 
  
  /*Find d*l*l*/ 
  mpz_mul(factor,factor,l); 
  
  mpz_add(p,p,factor);/* p=d*l*l + dl + (d+9)/4 */ 
  /*printf("p calculated: "); mpz_out_str(stdout, 10, p); printf("\n");*/ 
   
  if (mpz_cmp(p,UP)>0) { /*if p>UP*/ 
   /*clear all mpz_t variables*/ 
   mpz_clear(d); 
   mpz_clear(p); 
   mpz_clear(p_minus_2); 
   mpz_clear(l); 
   mpz_clear(factor); 
   mpz_clear(a); 
   mpz_clear(b); 
   mpz_clear(c); 
   mpz_clear(c2); 
   mpz_clear(c3); 
   mpz_clear(G[0]); 
   mpz_clear(G[1]);  
   mpz_clear(H[0]); 
   mpz_clear(H[1]);  
   mpz_clear(curv1[0]); 
   mpz_clear(curv1[1]); 
   mpz_clear(curv2[0]); 
   mpz_clear(curv2[1]); 
   for (i = 0; i < POLY_SIZE; i++) { 
    mpz_clear(Pnew[i]); 
    mpz_clear(j0[i]); 
   } 
  
   return EC_FAILURE; 
  } 
  
  mpz_sub_ui(p_minus_2,p,(unsigned)2); 
 } while((MillerRabinPrimalityTesting(&p,100) == 0) 
||(MillerRabinPrimalityTesting(&p_minus_2,100) == 0)); 
 
 printf("l set to: "); mpz_out_str(stdout, 10, l); printf("\n"); 
 printf("p   calculated: "); mpz_out_str(stdout, 10, p); printf("\n"); 
 printf("p-2 calculated: "); mpz_out_str(stdout, 10, p_minus_2); printf("\n"); 
  
 /*Step 5: Compute the Hilbert Class Polynomial Pd(x)*/ 
 printf("Calling Hilbert Polynomial calculator function...\n"); 
 final_hilbert(mpz_get_ui(d), Pnew, &dPnew); 
 printf("Dpnew: %d\n",dPnew); 
 printf(" The Hilbert polynomial is:\n"); 
 zpoly_print(dPnew, Pnew);  
 
 /*Step 6: Solve a root j0 of Pd(x)≡0 (mod p)*/ 
 //returns always 0,temporarily j0[0]=1726 
 myRecurse(dPnew, &p, Pnew, j0, &root_size); 
 //Recurse(dPnew, &p, Pnew, j0, &root_size); 
 //mpz_set_ui(j0[0],(unsigned)1726); 
 
 printf("Number of roots returned: %d\n",root_size); 
 for(i=0;i<root_size;i++) { 
  printf("Root j[%d] calculated: ",i); mpz_out_str(stdout, 10, j0[i]); 
printf("\n"); 
 } 
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 printf("Using Root j[0]: "); mpz_out_str(stdout, 10, j0[0]); printf("\n"); 
 
 /*Step 7: Construct two elliptic curves Ej0 and E'j0*/ 
 //calculate 1728-j0 
 mpz_ui_sub(factor, (unsigned)1728, j0[0]); 
 
 //a=3*j0 / factor mod p 
 mpz_mul_ui(a, j0[0],(unsigned)3); 
 mpz_div(a, a, factor); 
 mpz_mod(a, a, p); 
 
 //b=2*j0 / factor mod p 
 mpz_mul_ui(b, j0[0],(unsigned)2); 
 mpz_div(b, b, factor); 
 mpz_mod(b, b, p); 
  
 printf("a calculated: "); mpz_out_str(stdout, 10, a); printf("\n"); 
 printf("b calculated: "); mpz_out_str(stdout, 10, b); printf("\n"); 
 
 /*Calculate a suitable value c*/ 
 /*c must be a quadratic non-residue*/ 
 /*QUESTION: How many bits for c?*/ 
 Generate_Quadratic_Non_Residue_in_Fp(&c, &p, 20); 
 printf("c calculated: "); mpz_out_str(stdout, 10, c); printf("\n"); 
 //calculate a*c^2, store to c2 
 //calculate b*c^3, store to c3 
 mpz_mul(c2,c,c); 
 mpz_mul(c3,c2,c); 
 mpz_mul(c2,c2,a); 
 mpz_mul(c3,c3,b); 
 mpz_mod(c2,c2,p); 
 mpz_mod(c3,c3,p); 
 
 /*Step 8: Output E such that E Z {Ej0, E'j0} with #E(Fp) = p-2 and terminate 
algorithm*/ 
 printf("Constructed two curves:\n"); 
 printf("Ej0: y^2 = x^3 + "); 
 mpz_out_str(stdout, 10, a); 
 printf ("x + "); 
 mpz_out_str(stdout, 10, b); 
 printf("\n");  
 mpz_set(curv1[0],a); 
 mpz_set(curv1[1],b); 
 
 printf("and\n");  
 printf("E'j0: y^2 = x^3 + "); 
 mpz_out_str(stdout, 10, c2); 
 printf ("x + "); 
 mpz_out_str(stdout, 10, c3); 
 printf("\n");  
 mpz_set(curv2[0],c2); 
 mpz_set(curv2[1],c3); 
 
 printf("modulo ");  
 mpz_out_str(stdout, 10, p); 
 printf("\n");  
  
 /*for which of the two is it that (p-2)*G = O ?*/ 
 //First try Ej0, resulting point is H 
 printf("Ej0: scalar multiplication of random G by p-2 results in:\n"); 
 rand_point(curv1,&p,G); 
 point_mult(curv1,G,&p_minus_2,H,&p); 
 print_point(H); 
 
 //Then try E'j0, resulting point is H 
 printf("E'j0: scalar multiplication of random G by p-2 results in:\n"); 
 rand_point(curv2,&p,G); 
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 point_mult(curv2,G,&p_minus_2,H,&p); 
 print_point(H); 
 
 printf("The correct curve is the one that results in point O\n"); 
 
 /*clear all mpz_t variables*/ 
   mpz_clear(d); 
   mpz_clear(p); 
   mpz_clear(p_minus_2); 
   mpz_clear(l); 
        mpz_clear(factor); 
   mpz_clear(a); 
   mpz_clear(b); 
   mpz_clear(c); 
 mpz_clear(c2); 
 mpz_clear(c3); 
 mpz_clear(G[0]); 
 mpz_clear(G[1]);  
 mpz_clear(H[0]); 
 mpz_clear(H[1]);  
 for (i = 0; i < POLY_SIZE; i++) { 
  mpz_clear(Pnew[i]); 
  mpz_clear(j0[i]); 
 } 
 mpz_clear(curv1[0]); 
 mpz_clear(curv1[1]); 
 mpz_clear(curv2[0]); 
 mpz_clear(curv2[1]); 
 
 printf("SUCCESS!\n");  
 return EC_SUCCESS; 
} 
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4.4 Constructing Elliptic Curves with Embedding Degree k=3 

The corresponding source code for Algorithm 4 is shown below: 

//Construction of k=3 curves, implemented according to K.Karabina thesis 
void Construct_k3_curve (long N) {  
 
 mpz_t 
D_mpz,i_mpz,factor,square,x0,y0,x1,y1,x,y,xx,yy,pre_x,pre_xx,u,v,exp_high,exp_low; 
 mpz_t l1,l2,q1,q2,n1,n2,limit; 
 long D,i,comp_low,comp_high;  
 int D_mod_72_is_57,D_third_square_free, six_is_square_mod_D; 
 int res;  
 
 void clear_mpz(){ 
  mpz_clear(D_mpz); 
  mpz_clear(i_mpz); 
  mpz_clear(factor); 
  mpz_clear(square); 
  mpz_clear(x0); 
  mpz_clear(y0); 
  mpz_clear(x1); 
  mpz_clear(y1); 
  mpz_clear(x); 
  mpz_clear(y); 
  mpz_clear(xx); 
  mpz_clear(yy); 
  mpz_clear(pre_x); 
  mpz_clear(pre_xx); 
  mpz_clear(u); 
  mpz_clear(v); 
  mpz_clear(l1); 
  mpz_clear(l2); 
  mpz_clear(q1); 
  mpz_clear(q2); 
  mpz_clear(n1); 
  mpz_clear(n2); 
  mpz_clear(exp_high); 
  mpz_clear(exp_low); 
  mpz_clear(limit); 
 } 
  
 //start of procedure 
 mpz_init(D_mpz); 
 mpz_init(i_mpz); 
 mpz_init(factor); 
 mpz_init(square); 
 mpz_init(x0); 
 mpz_init(y0); 
 mpz_init(x1); 
 mpz_init(y1); 
 mpz_init(x); 
 mpz_init(y); 
 mpz_init(xx); 
 mpz_init(yy); 
 mpz_init(pre_x); 
 mpz_init(pre_xx); 
 mpz_init(u); 
 mpz_init(v); 
 mpz_init(l1); 
 mpz_init(l2); 
 mpz_init(q1); 
 mpz_init(q2); 
 mpz_init(n1); 
 mpz_init(n2); 
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 mpz_init(exp_high); 
 mpz_init(exp_low); 
 mpz_init(limit); 
 
 printf("Construction of EC with k=3, q and n are %d-bit primes...\n",(N+1)/2); 
 mpz_ui_pow_ui(limit,(unsigned)2,(unsigned)((N+1)/2)); //limit = 2^(N/2) 
 printf("The limit for %d bits is: ",(N+1)/2); mpz_out_str(stdout, 10, limit); 
printf("\n");  
 
 for(D=1;D<z;D++) { 
  /*if (D % 1000==0) { 
   printf(".");  
  }*/ 
   
  mpz_set_ui(D_mpz,(unsigned)D); 
  mpz_set_ui(factor,(unsigned)(D/3)); 
   
  D_mod_72_is_57 = (D % 72 == 57); 
 
  //D is not good if it is divisible by 3  

AND the quotient is a perfect square 
D_third_square_free = (D%3!=0) || 
((D%3==0)&&(mpz_perfect_square_p(factor)==0)); 

 
  //6 must be a square mod D (there exists a number x for which x^2=6mod D) 
  six_is_square_mod_D = 0; 
  for(i=1;i<D;i++) { 
   mpz_set_ui(i_mpz,(unsigned)i); 
   mpz_powm_ui(square,i_mpz,(unsigned)2,D_mpz); //square=i^2 mod D 
   if (mpz_cmp_ui(square,(unsigned)6)==0) { 
    //printf("6 is %d^2 mod %d\n",i,D); 
    six_is_square_mod_D = 1; 
   } 
  } 
    
  mpz_set_ui(factor,(unsigned)D); 
  if (D_mod_72_is_57 && D_third_square_free &&  
      six_is_square_mod_D && (mpz_perfect_square_p(factor)==0)){ 
   //printf("Found a D:%d\n",D); 
 
   //2 
   mpz_set_ui(factor,(unsigned)24); 
   if (D > 576) { 
    //3 
    res = PellEquationSolver_1(&D_mpz, &factor, &x0, &y0); 
    if (res = EC_FAILURE) { 
     printf("\n D>576: Pell_1 failed\n"); 
     clear_mpz();  
     return; 
    }/* else { 
     printf("\nPell_1 succeded\n"); 
     printf("x0 returned as number: "); 

 mpz_out_str(stdout, 10, x0); printf("\n");  
     printf("y0 returned as number: ");  

mpz_out_str(stdout, 10, y0); printf("\n");  
      
    }*/ 
   } else { 
    //5 
    res = PellEquationSolver_2(&D_mpz, &factor, &x0, &y0); 
    if (res = EC_FAILURE) { 
     printf("\n D<576: Pell_2 failed\n"); 
     clear_mpz();  
     return; 
    } /*else { 
     printf("\nPell_2 succeded\n"); 
     printf("x0 returned as number: ");  
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mpz_out_str(stdout, 10, x0); printf("\n");  
     printf("y0 returned as number: ");  

mpz_out_str(stdout, 10, y0); printf("\n");  
      
    }*/ 
   } 
 
   //7 
   mpz_set_ui(factor,(unsigned)1); 
   res = PellEquationSolver_1(&D_mpz, &factor, &u, &v); 
   if (res = EC_FAILURE) { 
    printf("\n u,v: Pell_1 failed\n"); 
    clear_mpz();  
    return; 
   } /*else { 
    printf("\nPell_1 succeded\n"); 
    printf("u returned as number: ");  

mpz_out_str(stdout, 10, u); printf("\n");  
    printf("v returned as number: ");  

mpz_out_str(stdout, 10, v); printf("\n");  
   }*/ 
 
   //8 
   mpz_mul(factor,x0,u); 
   mpz_mul(x1,y0,v); 
   mpz_mul(x1,x1,D_mpz); 
   mpz_add(x1,x1,factor); 
 
   mpz_mul(factor,x0,v); 
   mpz_mul(y1,y0,u); 
   mpz_add(y1,y1,factor); 
 
   //9 
   mpz_set(x,x0); 
   mpz_set(y,y0); 
   mpz_set(xx,x1); 
   mpz_set(yy,y1); 
    
   //10 
   mpz_mod_ui(factor,x0,(unsigned)6); 
 
   if(mpz_cmp_ui(factor,(unsigned)3)==0){ 
    mpz_abs(factor,x); 
    while(mpz_cmp(limit,factor) >= 0) { 
     //12 
     //l1=(x-3)/6 
     mpz_sub_ui(l1,x,(unsigned)3); 
     mpz_tdiv_q_ui(l1,l1,(unsigned)6); 
     //l2=(x+3)/6 
     mpz_add_ui(l2,x,(unsigned)3); 
     mpz_tdiv_q_ui(l2,l2,(unsigned)6); 
 
     //13 
     comp_low=(N-5)/8; //-5 to round down 
     comp_high=(N-2)/2; //-2 to round up 
     //comp_low < log2 l1 is the same as saying  

2^comp_low is less than l1 
       
   mpz_ui_pow_ui(exp_low,(unsigned)2,(unsigned)comp_low); 
       
   mpz_ui_pow_ui(exp_high,(unsigned)2,(unsigned)comp_high); 
      
     if((mpz_cmp(exp_low,l1) <= 0) &&  

(mpz_cmp(l2,exp_high) < 0)) { 
      //14 
 
      mpz_pow_ui(q1,l1,(unsigned)2); 
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      mpz_mul_ui(q1,q1,(unsigned)12); 
      mpz_sub_ui(q1,q1,(unsigned)1); 
 
      mpz_pow_ui(n1,l1,(unsigned)2); 
      mpz_mul_ui(n1,n1,(unsigned)12); 
      mpz_add_ui(n1,n1,(unsigned)1); 
      mpz_mul_ui(factor,l1,(unsigned)6); 
      mpz_sub(n1,n1,factor); 
 
      mpz_pow_ui(q2,l2,(unsigned)2); 
      mpz_mul_ui(q2,q2,(unsigned)12); 
      mpz_sub_ui(q2,q2,(unsigned)1); 
 
      mpz_pow_ui(n2,l2,(unsigned)2); 
      mpz_mul_ui(n2,n2,(unsigned)12); 
      mpz_add_ui(n2,n2,(unsigned)1); 
      mpz_mul_ui(factor,l2,(unsigned)6); 
      mpz_add(n2,n2,factor); 
 
      if( MillerRabinPrimalityTesting (&q1,20) 
       && MillerRabinPrimalityTesting (&n1,20)) { 
       printf("\nSuccess!\n"); 
       printf("k : 3\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n1);  
printf("\n");  

       printf("q : ");  
mpz_out_str(stdout, 10, q1); 
printf("\n");  

       mpz_powm_ui(factor,q1,(unsigned)3,n1); 
       printf("q^3 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
 
      if( MillerRabinPrimalityTesting (&q2,20) 
       && MillerRabinPrimalityTesting (&n2,20)) { 
       printf("\nSuccess!\n"); 
       printf("k : 3\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n2);  
       printf("\n");  
       printf("q : ");  

mpz_out_str(stdout, 10, q2);  
       printf("\n");  
       mpz_powm_ui(factor,q2,(unsigned)3,n2); 
       printf("q^3 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
     } 
     //22 
     mpz_set(pre_x,x); 
     //23-24 
     mpz_pow_ui(factor,u,(unsigned)2); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_sub_ui(factor,factor,(unsigned)1); 
 
     mpz_mul(x,x,factor); 
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     mpz_mul(y,y,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul_ui(factor,factor,(unsigned)D); 
     mpz_mul(factor,factor,y); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(x,x,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul(factor,factor,pre_x); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(y,y,factor); 
    } 
   } 
 
   //27 
   mpz_mod_ui(factor,x1,(unsigned)6); 
   if(mpz_cmp_ui(factor,(unsigned)3)==0){ 
    mpz_abs(factor,xx); 
    while(mpz_cmp(limit,factor) >= 0) { 
     //29 
     //l1=(x'-3)/6 
     mpz_sub_ui(l1,xx,(unsigned)3); 
     mpz_tdiv_q_ui(l1,l1,(unsigned)6); 
     //l2=(x'+3)/6 
     mpz_add_ui(l2,xx,(unsigned)3); 
     mpz_tdiv_q_ui(l2,l2,(unsigned)6); 
 
     //30 
     comp_low=(N-5)/8; //-5 to round down msg:was /2 
     comp_high=(N-2)/2; //-2 to round up 
     //comp_low < log2 l1 is the same as saying  

2^comp_low is less than l1 
    
 mpz_ui_pow_ui(exp_low,(unsigned)2,(unsigned)comp_low); 
    
 mpz_ui_pow_ui(exp_high,(unsigned)2,(unsigned)comp_high); 
 
     if((mpz_cmp(exp_low,l1) <= 0) &&  

(mpz_cmp(l2,exp_high) < 0)) { 
      
      //31 
      mpz_pow_ui(q1,l1,(unsigned)2); 
      mpz_mul_ui(q1,q1,(unsigned)12); 
      mpz_sub_ui(q1,q1,(unsigned)1); 
 
      mpz_pow_ui(n1,l1,(unsigned)2); 
      mpz_mul_ui(n1,n1,(unsigned)12); 
      mpz_add_ui(n1,n1,(unsigned)1); 
      mpz_mul_ui(factor,l1,(unsigned)6); 
      mpz_sub(n1,n1,factor); 
 
      mpz_pow_ui(q2,l2,(unsigned)2); 
      mpz_mul_ui(q2,q2,(unsigned)12); 
      mpz_sub_ui(q2,q2,(unsigned)1); 
 
      mpz_pow_ui(n2,l2,(unsigned)2); 
      mpz_mul_ui(n2,n2,(unsigned)12); 
      mpz_add_ui(n2,n2,(unsigned)1); 
      mpz_mul_ui(factor,l2,(unsigned)6); 
      mpz_add(n2,n2,factor); 
 
 
 
      if( MillerRabinPrimalityTesting (&q1,20) 
       && MillerRabinPrimalityTesting (&n1,20)) { 
       printf("\nSuccess!\n"); 
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       printf("k : 3\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n1);  
printf("\n");  

       printf("q : ");  
mpz_out_str(stdout, 10, q1);  
printf("\n");  

       mpz_powm_ui(factor,q1,(unsigned)3,n1); 
       printf("q^3 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
 
      if( MillerRabinPrimalityTesting (&q2,20) 
       && MillerRabinPrimalityTesting (&n2,20)) { 
       printf("\nSuccess!\n"); 
       printf("k : 3\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n2);  
       printf("\n");  
       printf("q : ");  

mpz_out_str(stdout, 10, q2);  
       printf("\n");  
       mpz_powm_ui(factor,q2,(unsigned)3,n2); 
       printf("q^3 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
     } 
 
     //39 
     mpz_set(pre_xx,xx); 
     //40-41 
     mpz_pow_ui(factor,u,(unsigned)2); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_sub_ui(factor,factor,(unsigned)1); 
 
     mpz_mul(xx,xx,factor); 
     mpz_mul(yy,yy,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul_ui(factor,factor,(unsigned)D); 
     mpz_mul(factor,factor,yy); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(xx,xx,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul(factor,factor,pre_xx); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(yy,yy,factor); 
    } 
   } 
  } 
 } 
  
 printf("\nNo suitable EC with k=3 found, try increasing the value of z...\n"); 
 clear_mpz();  
} 
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Example of the execution of the specific algorithm is illustrated below:  

 

 

Figure 5 Construction of Elliptic Curve with Embedding Degree k=3 
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4.5 Constructing Elliptic Curves with Embedding Degree k=4 

The corresponding source code for Algorithm 4 is shown below: 

void Construct_k4_curve (long N) {  
 
 mpz_t D_mpz,i_mpz,factor,square,x0,y0,x1,y1,x,y, 

xx,yy,pre_x,pre_xx,u,v,exp_high,exp_low; 
 mpz_t l1,q1,n1,limit; 
 long D,i,comp_low,comp_high;  
 int D_mod_24_is_9,D_third_square_free, minus_two_is_square_mod_D; 
 int res;  
 
 void clear_mpz(){ 
  mpz_clear(D_mpz); 
  mpz_clear(i_mpz); 
  mpz_clear(factor); 
  mpz_clear(square); 
  mpz_clear(x0); 
  mpz_clear(y0); 
  mpz_clear(x1); 
  mpz_clear(y1); 
  mpz_clear(x); 
  mpz_clear(y); 
  mpz_clear(xx); 
  mpz_clear(yy); 
  mpz_clear(pre_x); 
  mpz_clear(pre_xx); 
  mpz_clear(u); 
  mpz_clear(v); 
  mpz_clear(l1); 
  mpz_clear(q1); 
  mpz_clear(n1); 
  mpz_clear(exp_high); 
  mpz_clear(exp_low); 
  mpz_clear(limit); 
 } 
  
 //start of procedure 
 mpz_init(D_mpz); 
 mpz_init(i_mpz); 
 mpz_init(factor); 
 mpz_init(square); 
 mpz_init(x0); 
 mpz_init(y0); 
 mpz_init(x1); 
 mpz_init(y1); 
 mpz_init(x); 
 mpz_init(y); 
 mpz_init(xx); 
 mpz_init(yy); 
 mpz_init(pre_x); 
 mpz_init(pre_xx); 
 mpz_init(u); 
 mpz_init(v); 
 mpz_init(l1); 
 mpz_init(q1); 
 mpz_init(n1); 
 mpz_init(exp_high); 
 mpz_init(exp_low); 
 mpz_init(limit); 
 
 printf("Construction of EC with k=4, q and n are %d-bit primes...\n",(N+1)/2); 
 mpz_ui_pow_ui(limit,(unsigned)2,(unsigned)((N+1)/2)); //limit = 2^(N/2) 
 printf("The limit for %d bits is: ",(N+1)/2); mpz_out_str(stdout, 10, limit);  
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printf("\n");  
 
 for(D=1;D<z;D++) { 
  /*if (D % 1000==0) { 
   printf(".");  
  }*/ 
   
  mpz_set_ui(D_mpz,(unsigned)D); 
  mpz_set_ui(factor,(unsigned)(D/3)); 
   
  D_mod_24_is_9 = (D % 24 == 9); 
  //D is not good if it is divisible by 3  

AND the quotient is a perfect square 
  D_third_square_free = (D%3!=0) ||  

((D%3==0)&&(mpz_perfect_square_p(factor)==0)); 
 
  //6 must be a square mod D (there exists a number x for which x^2=6 modD) 
  minus_two_is_square_mod_D = 0; 
  for(i=1;i<D;i++) { 
   mpz_set_ui(i_mpz,(unsigned)i); 
   mpz_powm_ui(square,i_mpz,(unsigned)2,D_mpz); //square=i^2 mod D 
   if (mpz_cmp_ui(square,(unsigned)(D-2))==0) { 
    //printf("-2 is %d^2 mod %d\n",i,D); 
    minus_two_is_square_mod_D = 1; 
   } 
  } 
    
  mpz_set_ui(factor,(unsigned)D); 
  if (D_mod_24_is_9 && D_third_square_free  
   && minus_two_is_square_mod_D && (mpz_perfect_square_p(factor)==0)){ 
   //printf("Found a D:%d\n",D); 
 
   //2 
   mpz_set_si(factor,(signed)(-8)); 
   if (D > 64) { 
    //3 
    res = PellEquationSolver_1(&D_mpz, &factor, &x0, &y0); 
    if (res = EC_FAILURE) { 
     printf("\n D>64: Pell_1 failed\n"); 
     clear_mpz();  
     return; 
    }/* else { 
     printf("\nPell_1 succeded\n"); 
     printf("x0 returned as number: ");  

mpz_out_str(stdout, 10, x0); printf("\n");  
     printf("y0 returned as number: ");  

mpz_out_str(stdout, 10, y0); printf("\n");  
    }*/ 
   } else { 
    //5 
    res = PellEquationSolver_2(&D_mpz, &factor, &x0, &y0); 
    if (res = EC_FAILURE) { 
     printf("\n D<=64: Pell_2 failed\n"); 
     clear_mpz();  
     return; 
    }/* else { 
     printf("\nPell_2 succeded\n"); 
     printf("x0 returned as number: ");  

mpz_out_str(stdout, 10, x0); printf("\n");  
     printf("y0 returned as number: ");  

mpz_out_str(stdout, 10, y0); printf("\n");  
    }*/ 
   } 
 
   //7 
   mpz_set_ui(factor,(unsigned)1); 
   res = PellEquationSolver_1(&D_mpz, &factor, &u, &v); 
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   if (res = EC_FAILURE) { 
    printf("\n u,v: Pell_1 failed\n"); 
    clear_mpz();  
    return; 
   }/* else { 
    printf("\nPell_1 succeded\n"); 
    printf("u returned as number: ");  

mpz_out_str(stdout, 10, u); printf("\n");  
    printf("v returned as number: ");  

mpz_out_str(stdout, 10, v); printf("\n");  
   }*/ 
 
   //8 
   mpz_mul(factor,x0,u); 
   mpz_mul(x1,y0,v); 
   mpz_mul(x1,x1,D_mpz); 
   mpz_add(x1,x1,factor); 
 
   mpz_mul(factor,x0,v); 
   mpz_mul(y1,y0,u); 
   mpz_add(y1,y1,factor); 
 
   //9 
   mpz_set(x,x0); 
   mpz_set(y,y0); 
   mpz_set(xx,x1); 
   mpz_set(yy,y1); 
    
   //10 
   mpz_mod_ui(factor,x0,(unsigned)6); 
   if(mpz_cmp_ui(factor,(unsigned)1)==0){ 
    mpz_abs(factor,x); 
    while(mpz_cmp(limit,factor) >= 0) { 
     //12 
     //l1=(x-1)/6 
     mpz_sub_ui(l1,x,(unsigned)1); 
     mpz_tdiv_q_ui(l1,l1,(unsigned)6); 
 
     //13 
     comp_low=(N-3)/8; //-3 to round down 
     comp_high=(N-1)/2; //-1 to round up 
     //comp_low < log2 l1 is the same as saying  

2^comp_low is less than l1 
      
   mpz_ui_pow_ui(exp_low,(unsigned)2,(unsigned)comp_low); 
     
   mpz_ui_pow_ui(exp_high,(unsigned)2,(unsigned)comp_high); 
      
     if((mpz_cmp(exp_low,l1) <= 0) &&  

(mpz_cmp(l1,exp_high) < 0)) { 
      //14 
      mpz_pow_ui(q1,l1,(unsigned)2); 
      mpz_add(q1,q1,l1); 
      mpz_add_ui(q1,q1,(unsigned)1); 
 
      mpz_pow_ui(n1,l1,(unsigned)2); 
      mpz_add_ui(n1,n1,(unsigned)1); 
       
      if( MillerRabinPrimalityTesting (&q1,20) 
       && MillerRabinPrimalityTesting (&n1,20)) { 
       printf("\nSuccess!\n"); 
 
       printf("k : 4\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n1);  
printf("\n");  
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       printf("q : ");  
mpz_out_str(stdout, 10, q1);  
printf("\n");  

       mpz_powm_ui(factor,q1,(unsigned)4,n1); 
       printf("q^4 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
     } 
     //19 
     mpz_set(pre_x,x); 
     //20-21 
     mpz_pow_ui(factor,u,(unsigned)2); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_sub_ui(factor,factor,(unsigned)1); 
 
     mpz_mul(x,x,factor); 
     mpz_mul(y,y,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul_ui(factor,factor,(unsigned)D); 
     mpz_mul(factor,factor,y); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(x,x,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul(factor,factor,pre_x); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(y,y,factor); 
    } 
   } 
 
   //24 
   mpz_mod_ui(factor,x1,(unsigned)6); 
   if(mpz_cmp_ui(factor,(unsigned)1)==0){ 
    mpz_abs(factor,xx); 
    while(mpz_cmp(limit,factor) >= 0) { 
     //26 
     //l1=(x'-1)/6 
     mpz_sub_ui(l1,xx,(unsigned)1); 
     mpz_tdiv_q_ui(l1,l1,(unsigned)6); 
 
     //13 
     comp_low=(N-3)/8; //-3 to round down 
     comp_high=(N-1)/2; //-1 to round up 
     //comp_low < log2 l1 is the same as saying 2 

^comp_low is less than l1 
     
    mpz_ui_pow_ui(exp_low,(unsigned)2,(unsigned)comp_low); 
     
    mpz_ui_pow_ui(exp_high,(unsigned)2,(unsigned)comp_high); 
      
     if((mpz_cmp(exp_low,l1) <= 0) &&  

(mpz_cmp(l1,exp_high) < 0)) { 
      //28 
      mpz_pow_ui(q1,l1,(unsigned)2); 
      mpz_add(q1,q1,l1); 
      mpz_add_ui(q1,q1,(unsigned)1); 
 
      mpz_pow_ui(n1,l1,(unsigned)2); 
      mpz_add_ui(n1,n1,(unsigned)1); 
       
      if( MillerRabinPrimalityTesting (&q1,20) 
       && MillerRabinPrimalityTesting (&n1,20)) { 
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       printf("\nSuccess!\n"); 
 
       printf("k : 4\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n1);  
printf("\n");  

       printf("q : ");  
mpz_out_str(stdout, 10, q1);  
printf("\n");  

       mpz_powm_ui(factor,q1,(unsigned)4,n1); 
       printf("q^4 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
 
     } 
     //33 
     mpz_set(pre_xx,xx); 
     //34-35 
     mpz_pow_ui(factor,u,(unsigned)2); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_sub_ui(factor,factor,(unsigned)1); 
 
     mpz_mul(xx,xx,factor); 
     mpz_mul(yy,yy,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul_ui(factor,factor,(unsigned)D); 
     mpz_mul(factor,factor,yy); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(xx,xx,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul(factor,factor,pre_xx); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(yy,yy,factor); 
    } 
   } 
  } 
 } 
  
 printf("\nNo suitable EC with k=4 found, try increasing the value of z...\n"); 
 clear_mpz();  
} 
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Example of the execution of the specific algorithm is illustrated below:  

 

 

Figure 6 Construction of Elliptic Curve with Embedding Degree k=4 
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4.6 Constructing Elliptic Curves with Embedding Degree k=6 

An algorithm for construction of Elliptic Curves with Embedding Degree k=6 has been 

implemented in the past in the PBC library[10]. This existing implementation has been 

utilized by the current thesis’ implementation part for the taking of measurements that 

are used in the following chapter for performance analysis and comparison. The 

corresponding procedure from the PBC Library is called find_mnt_6_curve, and the 

corresponding source code that prepares its input and calls the specific procedure is 

shown below: 

void Construct_k6_curve_Lynn () {  
 darray_t L; 
 d_param_t param; 
 cm_info_ptr cm; 
 int D = 9563; 
  
 printf("Using procedure find_mnt6_curve by Ben Lynn\n"); 
 printf("for measurement and comparison purposes.\n"); 
 
 darray_init(L); 
 
 printf("Using D = %d\n", D); 
  
 find_mnt6_curve(L, D, 500); 
  
 if (!L->count) { 
  fprintf(stderr, "No suitable curves for this D\n"); 
  return; 
 } 
 
 cm = darray_at(L, 0); 
 d_param_init(param); 
  
 fprintf(stderr, "gendparam: computing Hilbert polynomial  

and finding roots...\n"); 
 d_param_from_cm(param, cm); 
 fprintf(stderr, "gendparam: bits in q = %zu\n",  

mpz_sizeinbase(cm->q, 2)); 
 d_param_out_str(stdout, param); 
 
 while (darray_count(L)) { 
  cm = darray_at(L, 0); 
  darray_remove_index(L, 0); 
  cm_info_clear(cm); 
 } 
 darray_clear(L); 
} 

 

The following figure illustrates a typical execution of this procedure, in this case for 

D=9563: 
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Figure 7 Construction of Elliptic Curve with embedding degree k=6 (PBC) 
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Further to Ben Lynn’s algorithm, algorithm 3 of Chapter 3 has been implemented for 

k=6. The corresponding source code for this algorithm is: 

void Construct_k6_curve (long N) {  
 
 mpz_t D_mpz,i_mpz,factor,square,x0,y0,x1,y1,x,y,xx,yy, 

pre_x,pre_xx,u,v,exp_high,exp_low; 
 mpz_t l1,q1,n1,limit; 
 long D,i,comp_low,comp_high;  
 int D_mod_24_is_9,D_third_square_free, minus_two_is_square_mod_D; 
 int res;  
 
 void clear_mpz(){ 
  mpz_clear(D_mpz); 
  mpz_clear(i_mpz); 
  mpz_clear(factor); 
  mpz_clear(square); 
  mpz_clear(x0); 
  mpz_clear(y0); 
  mpz_clear(x1); 
  mpz_clear(y1); 
  mpz_clear(x); 
  mpz_clear(y); 
  mpz_clear(xx); 
  mpz_clear(yy); 
  mpz_clear(pre_x); 
  mpz_clear(pre_xx); 
  mpz_clear(u); 
  mpz_clear(v); 
  mpz_clear(l1); 
  mpz_clear(q1); 
  mpz_clear(n1); 
  mpz_clear(exp_high); 
  mpz_clear(exp_low); 
  mpz_clear(limit); 
 } 
  
 //start of procedure 
 mpz_init(D_mpz); 
 mpz_init(i_mpz); 
 mpz_init(factor); 
 mpz_init(square); 
 mpz_init(x0); 
 mpz_init(y0); 
 mpz_init(x1); 
 mpz_init(y1); 
 mpz_init(x); 
 mpz_init(y); 
 mpz_init(xx); 
 mpz_init(yy); 
 mpz_init(pre_x); 
 mpz_init(pre_xx); 
 mpz_init(u); 
 mpz_init(v); 
 mpz_init(l1); 
 mpz_init(q1); 
 mpz_init(n1); 
 mpz_init(exp_high); 
 mpz_init(exp_low); 
 mpz_init(limit); 
 
 printf("Construction of EC with k=6, q and n are %d-bit primes...\n",(N+1)/2); 
 mpz_ui_pow_ui(limit,(unsigned)2,(unsigned)((N+1)/2)); //limit = 2^(N/2) 
 printf("The limit for %d bytes is: ",(N+1)/2); mpz_out_str(stdout, 10, limit);  

printf("\n");  
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 for(D=1;D<z;D++) { 
  /*if (D % 1000==0) { 
   printf(".");  
  }*/ 
   
  mpz_set_ui(D_mpz,(unsigned)D); 
  mpz_set_ui(factor,(unsigned)(D/3)); 
   
  D_mod_24_is_9 = (D % 24 == 9); 
  //D is not good if it is divisible by 3  

AND the quotient is a perfect square 
  D_third_square_free = (D%3!=0) ||  

((D%3==0)&&(mpz_perfect_square_p(factor)==0)); 
 
  //6 must be a square mod D (there exists a number x for which x^2=6 modD) 
  minus_two_is_square_mod_D = 0; 
  for(i=1;i<D;i++) { 
   mpz_set_ui(i_mpz,(unsigned)i); 
   mpz_powm_ui(square,i_mpz,(unsigned)2,D_mpz); //square=i^2 mod D 
   if (mpz_cmp_ui(square,(unsigned)(D-2))==0) { 
    //printf("-2 is %d^2 mod %d\n",i,D); 
    minus_two_is_square_mod_D = 1; 
   } 
  } 
    
  mpz_set_ui(factor,(unsigned)D); 
  if (D_mod_24_is_9 && D_third_square_free  
   && minus_two_is_square_mod_D && (mpz_perfect_square_p(factor)==0)){ 
   //printf("Found a D:%d\n",D); 
 
   //2 
   mpz_set_si(factor,(signed)(-8)); 
   if (D > 64) { 
    //3 
    res = PellEquationSolver_1(&D_mpz, &factor, &x0, &y0); 
    if (res = EC_FAILURE) { 
     printf("\n D>64: Pell_1 failed\n"); 
     clear_mpz();  
     return; 
    }/* else { 
     printf("\nPell_1 succeded\n"); 
     printf("x0 returned as number: ");  

mpz_out_str(stdout, 10, x0); printf("\n");  
     printf("y0 returned as number: ");  

mpz_out_str(stdout, 10, y0); printf("\n");  
    }*/ 
   } else { 
    //5 
    res = PellEquationSolver_2(&D_mpz, &factor, &x0, &y0); 
    if (res = EC_FAILURE) { 
     printf("\n D<=64: Pell_2 failed\n"); 
     clear_mpz();  
     return; 
    }/* else { 
     printf("\nPell_2 succeded\n"); 
     printf("x0 returned as number: ");  

mpz_out_str(stdout, 10, x0); printf("\n");  
     printf("y0 returned as number: ");  

mpz_out_str(stdout, 10, y0); printf("\n");  
    }*/ 
   } 
 
   //7 
   mpz_set_ui(factor,(unsigned)1); 
   res = PellEquationSolver_1(&D_mpz, &factor, &u, &v); 
   if (res = EC_FAILURE) { 
    printf("\n u,v: Pell_1 failed\n"); 
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    clear_mpz();  
    return; 
   }/* else { 
    printf("\nPell_1 succeded\n"); 
    printf("u returned as number: ");  

mpz_out_str(stdout, 10, u); printf("\n");  
    printf("v returned as number: ");  

mpz_out_str(stdout, 10, v); printf("\n");  
   }*/ 
 
   //8 
   mpz_mul(factor,x0,u); 
   mpz_mul(x1,y0,v); 
   mpz_mul(x1,x1,D_mpz); 
   mpz_add(x1,x1,factor); 
 
   mpz_mul(factor,x0,v); 
   mpz_mul(y1,y0,u); 
   mpz_add(y1,y1,factor); 
 
   //9 
   mpz_set(x,x0); 
   mpz_set(y,y0); 
   mpz_set(xx,x1); 
   mpz_set(yy,y1); 
    
   //10 
   mpz_mod_ui(factor,x0,(unsigned)6); 
   if(mpz_cmp_ui(factor,(unsigned)1)==0){ 
    mpz_abs(factor,x); 
    while(mpz_cmp(limit,factor) >= 0) { 
     //12 
     //l1=(x-1)/6 
     mpz_sub_ui(l1,x,(unsigned)1); 
     mpz_tdiv_q_ui(l1,l1,(unsigned)6); 
 
     //13 
     comp_low=(N-3)/8; //-3 to round down 
     comp_high=(N-1)/2; //-1 to round up 
     //comp_low < log2 l1 is the same as saying  

2^comp_low is less than l1 
       
    mpz_ui_pow_ui(exp_low,(unsigned)2,(unsigned)comp_low); 
     
    mpz_ui_pow_ui(exp_high,(unsigned)2,(unsigned)comp_high); 
      
     if((mpz_cmp(exp_low,l1) <= 0) &&  

(mpz_cmp(l1,exp_high) < 0)) { 
 
      //14 
      mpz_pow_ui(q1,l1,(unsigned)2); 
      mpz_mul_ui(q1,q1,(unsigned)4); 
      mpz_add_ui(q1,q1,(unsigned)1); 
 
      mpz_mul_ui(factor,l1,(unsigned)2); 
      mpz_sub(n1,q1,factor); 
 
      if( MillerRabinPrimalityTesting (&q1,20) 
       && MillerRabinPrimalityTesting (&n1,20)) { 
       printf("\nSuccess!\n"); 
 
       printf("k : 6\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n1);  
printf("\n");  

       printf("q : ");  
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mpz_out_str(stdout, 10, q1); 
printf("\n");  

       mpz_powm_ui(factor,q1,(unsigned)6,n1); 
       printf("q^6 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
     } 
     //19 
     mpz_set(pre_x,x); 
     //20-21 
     mpz_pow_ui(factor,u,(unsigned)2); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_sub_ui(factor,factor,(unsigned)1); 
 
     mpz_mul(x,x,factor); 
     mpz_mul(y,y,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul_ui(factor,factor,(unsigned)D); 
     mpz_mul(factor,factor,y); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(x,x,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul(factor,factor,pre_x); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(y,y,factor); 
    } 
   } 
 
   //24 
   mpz_mod_ui(factor,x1,(unsigned)6); 
   if(mpz_cmp_ui(factor,(unsigned)1)==0){ 
    mpz_abs(factor,xx); 
    while(mpz_cmp(limit,factor) >= 0) { 
     //26 
     //l1=(x'-1)/6 
     mpz_sub_ui(l1,xx,(unsigned)1); 
     mpz_tdiv_q_ui(l1,l1,(unsigned)6); 
 
     //27 
     comp_low=(N-3)/8; //-3 to round down 
     comp_high=(N-1)/2; //-1 to round up 
     //comp_low < log2 l1 is the same as saying  

2^comp_low is less than l1 
     
    mpz_ui_pow_ui(exp_low,(unsigned)2,(unsigned)comp_low); 
     
    mpz_ui_pow_ui(exp_high,(unsigned)2,(unsigned)comp_high); 
      
     if((mpz_cmp(exp_low,l1) <= 0) &&  

(mpz_cmp(l1,exp_high) < 0)) { 
      //28 
      mpz_pow_ui(q1,l1,(unsigned)2); 
      mpz_mul_ui(q1,q1,(unsigned)4); 
      mpz_add_ui(q1,q1,(unsigned)1); 
 
      mpz_mul_ui(factor,l1,(unsigned)2); 
      mpz_sub(n1,q1,factor); 
       
      if( MillerRabinPrimalityTesting (&q1,20) 
       && MillerRabinPrimalityTesting (&n1,20)) { 
       printf("\nSuccess!\n"); 
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       printf("k : 6\n"); 
       printf("D : %d\n",D); 
       printf("n : ");  

mpz_out_str(stdout, 10, n1);  
printf("\n");  

       printf("q : ");  
mpz_out_str(stdout, 10, q1);  
printf("\n");  

       mpz_powm_ui(factor,q1,(unsigned)6,n1); 
       printf("q^6 mod n="); 
       mpz_out_str(stdout, 10, factor);  
       printf("\n");  
 
       clear_mpz(); 
       return; 
      } 
 
     } 
     //33 
     mpz_set(pre_xx,xx); 
     //34-35 
     mpz_pow_ui(factor,u,(unsigned)2); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_sub_ui(factor,factor,(unsigned)1); 
 
     mpz_mul(xx,xx,factor); 
     mpz_mul(yy,yy,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul_ui(factor,factor,(unsigned)D); 
     mpz_mul(factor,factor,yy); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(xx,xx,factor); 
 
     mpz_mul(factor,u,v); 
     mpz_mul(factor,factor,pre_xx); 
     mpz_mul_ui(factor,factor,(unsigned)2); 
     mpz_add(yy,yy,factor); 
    } 
   } 
  } 
 } 
  
 printf("\nNo suitable EC with k=6 found, try increasing the value of z...\n"); 
 clear_mpz();  
} 
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Example of the execution of the specific algorithm is illustrated below:  

 

 

Figure 8 Construction of Elliptic Curve with Embedding Degree k=6 
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4.7 Experimental Results 

The algorithms implemented were executed in order to evaluate their operation and 

performance. The execution platform for these algorithms was a PC based on the AMD 

Athlon-64 2800+ processor, having 512 MB RAM and running Ubuntu Linux 7.10, as 

seen by the System Information window displayed below.   

 

 

Figure 9 Test-system configuration 

 

 

For the execution of the algorithms, a test procedure was created. This procedure 

executes the algorithms described in the previous sections for generating prime order 

elliptic curves having embedding degrees of 3,4, and 6, for input values ranging from 10 

to 120 (which results in q,n being approximately from 5 to 60 bits in length). The source 

code for this test procedure is given below: 
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static void ExperimentalProcedure(){ 
 struct timeb {  
  time_t time; 
  unsigned short millitm; 
  short timezone; 
  short dstflag; 
 } t1,t2; 
 
 long N; 
 int start = 10; 
 int limit = 120; 
 int step = 10; 
 
 for(N=10;N<=limit;N+=step) { 
  (void) ftime(&t1); 
 
  Construct_k3_curve(N); 
 
  (void) ftime(&t2); 
    
  if ( ((int)t2.time-t1.time) == 0 ) { 
   printf("Execution time %d milliseconds\n",  

(int)t2.millitm-t1.millitm); 
  } else { 
   printf("Execution time %d seconds, %d milliseconds\n", 
    (int)t2.time-t1.time, (int)t2.millitm-t1.millitm); 
  } 
 } 
 
 for(N=10;N<=limit;N+=step) { 
  (void) ftime(&t1); 
 
  Construct_k4_curve(N); 
 
  (void) ftime(&t2); 
    
  if ( ((int)t2.time-t1.time) == 0 ) { 
   printf("Execution time %d milliseconds\n",  

(int)t2.millitm-t1.millitm); 
  } else { 
   printf("Execution time %d seconds, %d milliseconds\n", 
    (int)t2.time-t1.time, (int)t2.millitm-t1.millitm); 
  } 
 } 
 
 for(N=10;N<=limit;N+=step) { 
  (void) ftime(&t1); 
 
  Construct_k6_curve(N); 
 
  (void) ftime(&t2); 
    
  if ( ((int)t2.time-t1.time) == 0 ) { 
   printf("Execution time %d milliseconds\n",  

(int)t2.millitm-t1.millitm); 
  } else { 
   printf("Execution time %d seconds, %d milliseconds\n", 
    (int)t2.time-t1.time, (int)t2.millitm-t1.millitm); 
  } 
 } 
} 
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The total execution time for this procedure was 8443 seconds (or 2:20:43), during which 

processor occupancy was constantly held at 99-100%, as seen from the System 

Monitor screenshot below: 

 

Figure 10 CPU and Memory usage during experimental procedure 

 

During its execution, the execution time for each elliptic curve construction was 

measured, as well as the value of D reached before the procedure could successfully 
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generate a curve of the desired embedding degree and bit lengths. The value z, that 

defines the maximum value of D, was set to 10^6 or 100.000. The suggested value from 

[8] was 10^10, however this yields excessively large execution times and was not 

preferred. 

4.7.1 Measurements 

For each case k=3, k=4 and k=6, the execution time, value of D reached and the 

outcome of the algorithms (values q,n) are presented in the tables below. For all cases 

the criterion 

qk mod n = 1 

was fulfilled by the produced results. 

 

The results for k=3 are shown below: 

 

 

Table 1 Summary of results for k=3 

 

N 
Approx. 

Bits 
Execution 
Time(sec) D n q 

q^3 mod 
n (t/D)*1000 

10 5 0,001 57 7 11 1 0,01754386 
20 10 0,003 129 919 971 1 0,02325581 
30 15 0,003 129 919 971 1 0,02325581 
40 20 0,045 489 1527247 1529387 1 0,09202454 
50 25 0,045 489 1527247 1529387 1 0,09202454 
60 30 0,045 489 1527247 1529387 1 0,09202454 
70 35 0,042 489 1527247 1529387 1 0,08588957 
80 40 19,635 11217 78566419 78581771 1 1,75046804 
90 45 19,896 11217 78566419 78581771 1 1,77373629 

100 50 21,996 11217 78566419 78581771 1 1,96095213 
110 55 56,753 19281 972702127 972648107 1 2,94346766 
120 60 194,643 35913 142810066595527 142810045896971 1 5,41984797 
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The results for k=4 are shown below: 

 

N 
Approx. 

Bits 
Execution 
Time(sec) D N q 

q^4 
mod 

n (t/D)*1000 
10 5 0,002 57 2 3 1 0,03508772 
20 10 0,131 873 2917 2971 1 0,15005727 
30 15 0,127 873 2917 2971 1 0,14547537 
40 20 0,121 873 2917 2971 1 0,13860252 
50 25 0,121 873 2917 2971 1 0,13860252 
60 30 1106,744 85497 20153446237311557 20153446379274391 1 12,9448285 
70 35 376,873 50241 251985827927610001 251985828429591901 1 7,50130372 
80 40 1093,548 85569 20153446237311557 20153446379274391 1 12,7797216 
90 45 1090,946 85497 20153446237311557 20153446379274391 1 12,7600501 

100 50 1092,796 85497 20153446237311557 20153446379274391 1 12,7816882 
110 55 376,827 50241 251985827927610001 251985828429591901 1 7,50038813 
120 60 1091,798 85497 20153446237311557 20153446379274391 1 12,7700153 

 

Table 2 Summary of results for k=4 

 

 

The results for k=6 are shown below: 

 

 

Table 3 Summary of results for k=6 

 

N 
Approx. 

Bits 
Execution 
Time(sec) D N q 

q^6 mod 
n (t/D)*1000 

10 5 1523,234 >100000 N/A N/A N/A N/A 
20 10 298,813 44241 43891 44101 1 6,7542099 
30 15 6,398 6441 1321351 1322501 1 0,99332402 
40 20 6,358 6441 1321351 1322501 1 0,9871138 
50 25 8,283 7353 2038822732003 2038824159877 1 1,12647899 
60 30 8,426 7353 2038822732003 2038824159877 1 1,14592683 
70 35 8,357 7353 2038822732003 2038824159877 1 1,13654291 
80 40 6,424 6441 1321351 1322501 1 0,99736066 
90 45 8,401 7353 2038822732003 2038824159877 1 1,14252686 

100 50 8,368 7353 2038822732003 2038824159877 1 1,1380389 
110 55 8,285 7353 2038822732003 2038824159877 1 1,12675099 

120 60 8,283 7353 2038822732003 2038824159877 1 1,12647899 
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It is notable that, although the algorithm for constructing prime order elliptic curves 

having embedding degree k=4 and k=6 are almost identical (the only difference being 

the equations that determine the values of q and n in relation to l in every step), the 

results produced differ very much in terms of execution time and reached value of D in 

each case. It must be noted at this point that Ben Lynn’s function for generation of 

elliptic curve having k=6 had execution time of 437 milliseconds (see figure 5, section 

4.3) but accomplished this by starting from a predefined value of D that successfully 

generated such a curve. Additionally, Lynn’s implementation does not impose a strict 

rule on having a prime order curve, meaning that the order could be also a composite 

made of a large prime and a much smaller coefficient, which of course results in a much 

slower construction of the elliptic curve in our implementation due to the fact that too 

many curves are rejected because q and n must both be prime. 

4.7.2 Curve-generating value of D 

The following table summarises the values of D that generated the curve in each round 

of the experimental procedure, for embedding degrees k=3,4 and 6 and input values N 

ranging from 10 to 120.  

 

 

N D (k=3) D (k=4) D (k=6) 
10 57 57 N/A 
20 129 873 44241 
30 129 873 6441 
40 489 873 6441 
50 489 873 7353 
60 489 85497 7353 
70 489 50241 7353 
80 11217 85569 6441 
90 11217 85497 7353 

100 11217 85497 7353 
110 19281 50241 7353 
120 35913 85497 7353 

 

Table 4 Value of D reached by the algorithms 

 

 



IMPLEMENTATION AND EXPERIMENTAL RESULTS 

  69 

4.7.3 D and Time 

By comparison of tables 1,2,3 it is obvious that as the value of D increases, the 

execution time of the algorithm will also increase.  

  k=3 k=4 k=6 

N 
Approx. 

Bits 
Execution 

Time D 
Execution 

Time D 
Execution 

Time D 
10 5 0,001 57 0,002 57 1523,234 >100000 
20 10 0,003 129 0,131 873 298,813 44241 
30 15 0,003 129 0,127 873 6,398 6441 
40 20 0,045 489 0,121 873 6,358 6441 
50 25 0,045 489 0,121 873 8,283 7353 
60 30 0,045 489 1106,744 85497 8,426 7353 
70 35 0,042 489 376,873 50241 8,357 7353 
80 40 19,635 11217 1093,548 85569 6,424 6441 
90 45 19,896 11217 1090,946 85497 8,401 7353 

100 50 21,996 11217 1092,796 85497 8,368 7353 
110 55 56,753 19281 376,827 50241 8,285 7353 

120 60 194,643 35913 1091,798 85497 8,283 7353 

Table 5 Relation between D and Execution Time 

 

It must be noted that the relationship between execution time and value of D reached is 

not linear; higher values of D are more time-consuming, leading to overall higher ration 

of t/D. The following table clearly illustrates this.  

N 
t/D 
k=3 

t/D 
k=4 

t/D 
k=6 

10 0,01754386 0,03508772 N/A 
20 0,02325581 0,15005727 6,754209896 
30 0,02325581 0,14547537 0,993324018 
40 0,09202454 0,13860252 0,987113802 
50 0,09202454 0,13860252 1,126478988 
60 0,09202454 12,9448285 1,145926833 
70 0,08588957 7,50130372 1,136542908 
80 1,75046804 12,7797216 0,997360658 
90 1,77373629 12,7600501 1,142526860 

100 1,96095213 12,7816882 1,138038896 
110 2,94346766 7,50038813 1,126750986 

120 5,41984797 12,7700153 1,126478988 

Table 6 t over D for k=3,4 and 6 

The corresponding t/D columns have all been multiplied by a factor of 1000, as most of 

the time t is less than D and the results were <1. The following figure is a graphical 

representation of Table 5, followed by the graph of figure 6.
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Figure 11 Maximum value of D for each Embedding Degree 
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Figure 12 Execution time for each curve construction 
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5 CONCLUSIONS 

This thesis dealt with the presentation, implementation and experimental evaluation of 

some well known methods for the generation of elliptic curves having arbitrary small 

embedding degree, and in particular embedding degree k=3, 4 or 6.  

 

As a result, a primitive software library written in the C Programming language was 

produced. This software library contains procedures that solve Pell’s Equation as well 

as procedures that produce prime-order elliptic curves of embedding degree k=3,4 or 6 

with prescribed bit lengths for the parameters. These elliptic curves can then be used on 

the construction of Weil or Tate pairings in order to implement pairing-based 

cryptographic protocols.  

 

The experimental evaluation of the library proved that it produces accurate results. Even 

without any performance optimizations in the implementation, most curves were 

constructed within a few seconds. For some cases where a high value of D was 

required, the construction requires a few minutes.  

 

Concerning further work that could be undertaken in this area, it is possible to 

implement several optimizations in order to improve the performance of the algorithms 

of this library for larger values of D. For example, it is possible to implement all possible 

equations used for the calculation of l,q,n rather than only one of the equations available 

as was done here. This will inevitably result in more complicated source code, but will 

also increase the possibility of producing a prime order elliptic curve in each potential 

value of D calculated.  

 

The library could be further enhanced by providing procedures for the creation of prime 

order elliptic curves having other embedding degrees, such as k=8 or k=12. In any 

case, since it is based on the GNU MP library that is distributed under the GNU licence, 

the limitations imposed by this licence must be taken into consideration concerning the 

library’s use. 



REFERENCES 

  73 

6 REFERENCES 

 [1] J. Lopez, R. Dahab, "An Overview of Elliptic Curve Cryptography", Technical Report IC-00-

10, 2000. 

[2] E. Konstantinou, Y. Stamatiou, C. Zaroliagis, "Efficient generation of secure elliptic curves ", 

Springer-Verlag, 2006. 

[3] S. Galbraith, K. Paterson, N. Smart, "Pairings for Cryptographers", 2005. 

[4] A. Menezes, "An Introduction to Pairing-Based Cryptography", Mathematics Subject 

Classification – Primary 94A60, 1991. 

[5] B. Lynn, "On the Implementation of Pairing-Based Cryptosystems ", PhD Thesis, Stanford 

University, 2007. 

[6] A. Miyaji, M. Nakabayashi, S. Takano, "New Explicit Conditions of Elliptic Curve Traces for 

FR-Reduction", IEICE Transactions on Fundamentals E84-A(5) (2001), pp. 1234--1243. 

[7] P. S. L. M. Barreto, B. Lynn, M. Scott, "Constructing Elliptic Curves with Prescribed 

Embedding Degrees," Security in Communication Networks -- SCN'2002, LNCS 2576, Springer-

Verlag (2003), pp. 257--267. 

[8] K. Karabina, "On Prime Order Elliptic Curves with Embedding Degrees 3,4 and 6”, MSc 

Thesis, University of Waterloo-Canada, 2006. 

[9] E. Konstantinou, Y. Stamatiou, C. Zaroliagis, ”ECC-LIB, A Library for Elliptic Curve 

Cryptography”, http://www.ceid.upatras.gr/faculty/zaro/software/ecc-lib/,  accessed on 

September 2007. 

[10] B. Lynn et al, “Pairing Based Cryptography Library”, http://crypto.stanford.edu/pbc/, 

accessed on September 2007. 

[11] T. Granlund et al, "GNU MP Bignum Library”, http://gmplib.org/, accessed on September 

2007. 



REFERENCES 

  74 

[12] D. Boneh and X. Boyen, “Efficient selective-ID secure identity-based encryption 

without random oracles”, In Advances in Cryptology - Eurocrypt 2004, Springer- 

Verlag LNCS 3027, 223–238, 2004. 

[13] D. Boneh, X. Boyen and H. Shacham, “Short group signatures”, In Advances in 

Cryptology – CRYPTO 2004, Springer-Verlag LNCS 3152, 41–55, 2004. 

[14] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, In 

Advances in Cryptology–CRYPTO 2001, Springer-Verlag LNCS 2139, 213–229, 2001. 

[15] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”, In 

Advances in Cryptology – ASIACRYPT 2001, Springer-Verlag LNCS 2248, 514–532, 

2001. 

[16] D. Boneh and H. Shacham, “Group signatures with verifier-local revocation”, In ACM 

CCS 2004, 168-177, ACM Press, 2004. 

[17] L. Chen and Z. Cheng, “Security proof of Sakai-Kasahara’s identity-based encryption 

Scheme”, In Proceedings of Cryptography and Coding 2005, Springer-Verlag LNCS 

3796, 442–459, 2005. 

[18] A. Joux, “A one round protocol for tripartite Diffie–Hellman”, In Algorithmic Number 

Theory Symposium – ANTS IV, Springer-Verlag LNCS 1838, 385–394, 2000. 

[19] R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing”, In 

The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan, 

January 2000. 

[20] R. Sakai and M. Kasahara, “ID based cryptosystems with pairing on elliptic curve”, 

Cryptology ePrint Archive, Report 2003/054. 2003. 


