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Abstract

We study the time fluctuations of Downward Longwave Radiation (DLR) using Multi-Fractal De-
trended Fluctuation Analysis (MF-DFA) in decadal scale. In most stations non-stationary signal is
observed for micro-scales, comparable to those of meteorological processes. DLR presents power law
scaling for time scales of about ten days to five years. These different scaling regions are delimited from
the emergence of a crossover that marks the transition to a positively correlated signal referred to as
long-memory. In several stations presenting the common feature of strong maritime influence, fluctua-
tion function follows 1/f noise in micro-scales. These stations’ fluctuations are most likely affected by
oscillatory trends. This is revealed by examining second order fluctuation function F2(s) and further
confirmation is derived from multifractal analysis where scaling exponents spectrum is corrupted in a
typical way, characteristic of periodicities presence. In west Pacific equatorial stations periodicity seems
to be ENSO, though this cannot be clearly considered a fact. In stations where no obvious oscillatory
trend is observed for F2(s), mean memory is 0.63. Dependence of fluctuations scaling exponents on the
order q approaches the therotical behavior for Gaussian data. Deviations possibly occur due to short
range correlations embedded in the data.



Chapter 1

Introduction

In the ongoing discussion for climate change it is important to recognize the elements that dictate the

variability of physical quantities. Downward Longwave Radiation (DLR) constitutes a climate quantity,

that is characteristic of the processes present in the planet. The time evolution of its fluctuations is related

to the internal variability of the system but it can also have anthropogenic origin. Long-term memory

reffers to power law scaling of the fluctuations in meso and large time scales and has been observed in

several physical records such as temperature[1, 2], stream flows[3, 4] and prehipitation[5, 3, 4]. The study of

the observed fluctuations in a decadal scale is a useful tool for evaluating the predictions about DLR made

by models. If predictions violate the observed correlation properties of the fluctuations their reliability

is questioned. Climate models construction is based on computational methods in order to simulate the

processes occurring in the planet and arising from the interactions among atmosphere, oceans, glaciers, and

Earth’s surface, finally resulting in shaping the climate. Considering that the calculated radiation involves

a diversity of climatic parameters, possible agreement between observations and models predictions acts

as an indirect verification of many natural processes [6, 7, 8, 9, 10, 11]. For this reason, in the present

study, the analysis of time fluctuations of DLR will be attempted, intending the investigation of climate

’memory’ and multifractal characteristics, e.g. the existence of long-range statistical correlations, using

Multi-Fractal Detrended Fluctuation Analysis (MF-DFA) [12].
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Chapter 2

Background

2.1 Multi-Fractal Detrended Fluctuation Analysis (MF-DFA)

Detrended Fluctuation Analysis (DFA) is a technique for analyzing data, that was first proposed by Peng

et al. [13] and has been used in a variety of fields, for the investigation of temporal correlations of data. The

advantage of DFA compared to other methods of characterizing correlation properties, such as Spectral

Analysis, is that it holds for non-stationary timeseries [5, 1] while its computational implementation is

comparatively simple, even for large data sets. Kantelhardt et al. [12] introduced a generalized version of

DFA, the multifractal DFA (MF-DFA) that will be described subsequently.

The method consists of five successive steps.

1. For a compact support, i.e. no zero values included, timeseries of length N , u(i)(i = 1 . . . N), its

mean ū is subtracted, creating a timeseries of anomalies. The profile y(i) is determined as the

cumulative sum of these anomalies:

y(i) =
N∑
i=1

[u(i)− ū] (2.1)

Note that in order to avoid spurious results, it is desirable that the timeseries u(i) be deseasonalized

[4].

2. The timeseries is divided into Ns ≡ int(N/s) non-overlapping segments of length s. In order to

include all data points which maybe were excluded because mod(N/s) 6= 0, the same procedure is

followed starting from the end of the timeseries and proceeding towards the start, thus giving a

total of 2Ns segments. A curve corresponding to l-order polynomial is fitted to each segment n and

the variance of the residuals between y and its l-order fit yn(i), i = 1, . . . , s is determined:

F 2(n, s) =
1

s

s∑
i=1

{y[(n− 1)s+ i]− yn(i)}2 (2.2)

for the first n = 1, . . . , Ns segments, while for the n = Ns + 1, . . . , 2Ns segments:

F 2(n, s) =
1

s

s∑
i=1

{y[N − (n−Ns)s+ i]− yn(i)}2 (2.3)

The order l = 1, 2, . . . of the polynomial used for detrending, eliminates possible trends of order

l − 1 in the timeseries [14] and the indicator for l-order DFA is DFAl. Up to this step MF-DFA is

exactly the same as common DFA.
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3. The mean of all equal-length segments is calculated, resulting in the qth order fluctuation function:

Fq(s) =
{ 1

2Ns

2Ns∑
n=1

[F 2(n, s)]q/2
}1/q

(2.4)

The value of q can be any real number, but for q = 0 the exponent is diverging, and a different

averaging method has to be used [12]. If q = 0, logarithmic averaging is needed:

F0(s) ≡ exp
( 1

4Ns

2Ns∑
n=1

ln[F 2(n, s)]
)

(2.5)

4. This procedure is done for segments s up to N/4, since the mean Fq for larger segments is estimated

from a very small sample size, and the results become evidently uncertain [12]. Common DFA is a

subcase of MF-DFA for q = 2.

5. Finally, Fq(s) versus s are plotted on a log-log scale and the existence of scaling is examined for

small and large scales. If the fluctuation function is described by:

Fq(s) ∼ sh(q) (2.6)

then scaling is established, meaning that there is no characteristic time scale for the autocorrelation

of the timeseries. The scaling exponent h(q) is calculated as the slope of the line fitted to the log-log

plot for different values of q.

The value of h(2) defines the type of the self-correlation of the timeseries. If:

• 0 < h(2) < 0.5, then an anti-correlation exists, i.e. small values of the time series tend to be followed

by large values, and vice versa.

• h(2) ≈ 0.5, indicates no correlation is present, i.e. the timeseries is white noise.

• 0.5 < h(2) < 1, a positive correlation is established, i.e. small values of the times series tend to be

followed by small values, while large values tend to be followed by large values.

• h(2) ≈ 1, 1/f noise (flicker or pink noise) is detected.

• h(2) > 1, non-stationary signal.

• h(2) ≈ 1.5, random walk noise (red, Brownian, or brown noise).

If h(q) displays constancy within a certain range of q values, then the timeseries is characterized as

monofractal, else multifractality is assumed and further analysis has to be conducted.

From equation 2.4 one can observe that when q is negative, small fluctuations prevail in the sum

F 2(n, s) and Fq(s) refers to how small fluctuations scale [12]. On the contrary, for positive q values, the

sum F 2(n, s) is dominated by large fluctuations, so Fq(s) describes how large fluctuations scale.

For large segments the fluctuation function Fq(s) is less dependent on q. This can be made clearer

considering that for s = N , Ns = 1 and the sum in Eq. 2.4 is calculated for two identical segments, and

q is canceled off. At this extreme, Fq(s) is totally independent of q. Moreover, for s � N , if q < 0 the

fluctuation function Fq(s) is dominated by small fluctuations and takes smaller values than Fq(s) for large

q. Summarizing, Fq(s � N) for small q tends to be smaller than Fq(s � N) for large q. At the same

time Fq(s ≈ N) is roughly the same for small and large q. Therefore, the slope of the Fq(s) with s, i.e.

the scaling exponent h(q) decreases with increasing q [12].
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2.2 Effects of non-stationarity and trends

Non-stationarity of real data can involve missing values, outliers, trends, and mixed properties of the

data. Trends can be linear, periodic, or power-law. Application of MF-DFA on synthetic data, with

known properties, can provide the comparative background for interpreting the results derived from

real data. Such studies on synthetic data were performed by Chen et al. [15]. First, they generated a

synthetic data set (also referred to as noise), with prescribed long-term memory characteristics. Then,

linear, periodic, and power-law trends were superimposed on the noise. The analysis by means of DFA

showed that a superposition rule can be applied to obtain the fluctuation function:

F 2
nt = F 2

n + F 2
t (2.7)

where Fn, Ft, and Fnt are the fluctuation functions of the noise, trend, and noise with superimposed

trend, respectively.

Linear trends are recognized and their effect can be easily eliminated. They produce a crossover at a

scale that is defined from the competition of Ft and Fn. Before the crossover, the noise dominates and

Fnt ≈ Fn, while after the crossover Fnt ≈ Ft. Orders of DFA higher than the order of the trend, eliminate

the crossover (perfect fit at the detrending procedure of Eq. 2.3) and Fnt scales like Fn.

Sinusoidal trends split Fnt in four regimes by inducing three crossovers (Fig. 2.1). The behavior of

Fnt is again decided by the competition of Fn and Ft. The noise prevails over the trend for s values

much smaller than the trend period, because the sinusoidal trend on this scale can be approximated by

linear segments, which are easily detrended by DFA. For larger s, the sinusoidal signal cannot be de-

trended and the first crossover appears. After this crossover Fnt ≈ Ft. At this region scaling of Ft can

be approximated by a linear trend scaling with adjusted parameters. Sinusoidal fluctuations are limited

by the sine amplitude (As). So a second crossover, at a scale proportional to the period of the trend,

occurs when maximum is reached for Ft. Right before the second crossover starts a transitional behavior

with quadratic shape. This behavior ends with the emergence of a third crossover where Fn prevails again.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

logs

 

Fn
Ft
Fnt

first crossover

second crossover,

period of sin function

third crossover

Figure 2.1: Superposition fluctuation function (Fnt) of sinusoidal

trend (Ft) and correlated noise (Fn)

Chen et al. [16] explored how

correlated and anti-correlated data

are affected by several types of

non-stationarity, such as incomplete

records with stitched segments or

records with added spikes and applied

a superposition rule again (Eq. 2.7).

For positively correlated data with

incomplete records up to 50% DFA

results are little or not affected.

On the contrary, implementation of

DFA on anti-correlated data with this

sort of non-stationarity introduces a

crossover which divides scaling into

two regions, an anti-correlated one before the crossover, followed by uncorrelated behavior after the

crossover. Outliers induce a crossover at small scales. For correlated data, this crossover marks a switch

from uncorrelated to correlated behavior, similar to the original stationary signal. For anti-correlated

data, a crossover also appears at small scales. It splits scaling into an anti-correlated and a white noise

regime. Scaling exponent of the initial signal is similar to the one before the crossover. They also reported

that mixing certain size segments with different local properties, e.g. standard deviations or correlations
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exponents, produces a result that is related in a specific way to the segments size as well as their mixing

ratio.

Ludescher et al. [17] applied MF-DFA to test how long-term correlated and multifractal data records

are affected by the presence of additive white noise, short-term autocorrelated noise, and periodic trends.

Figure 2.2: Corrupted multifractality and crossover genera-

tion from superposed AR1 process with increasing amplitude

(A)(figure from [17])

Adding white noise to monofrac-

tal correlated data does not result in

a spurious multifractality for several

noise amplitudes. However, the ob-

served scaling exponent is affected if

the amplitude of the white noise in-

creases. Multifractality of data is cor-

rupted by imposed white noise. Ini-

tially the moments for q < 0 are

highly underestimated, while at a suf-

ficiently large noise amplitude the

multifractality vanishes and the sig-

nal behaves as white noise. Next, the

addition of short-memory noise de-

scribed by a first order autoregres-

sion (AR1) equation is considered.

For monofractal data AR1 generates

a crossover at a scale comparable to

the decay time of the autocorrela-

tion function. The position of the

crossover increases with decreasing q.

So correct scaling exponents can be

observed for high q values, because

the exponents are estimated at the large s end, which is less probably affected by the crossover for

large q. Adding short AR1 memory to multifractal data results in decreasing multifractality range with

the amplitude of the AR1 process (Fig. 2.2). Finally, investigation of how multifractality is affected by

seasonal trends, reaches the reasonable conclusion that if crossovers due to the seasonal trend appear in

the large s regime, scaling exponents are affected and so does the pattern of multifractal scaling. The

position of the crossovers is comparable to the period of the seasonality as well as on the seasonal trend

amplitude.

2.3 Limitations and drawbacks

In order to check if multifractal scaling is due to a broad probability density function or a result of

long-range correlations (Noah phenomenon versus Joseph phenomenon) shuffling the data is necessary

[12]. Shuffling destroys all possible correlations, so for q = 2 a scaling exponent ∼ 0.5 corresponding

to uncorrelated behavior should be observed. If so, scaling can be attributed to long-range correlations

and memory existence can be established. There are some limitations to the implementation of MF-DFA

regarding long ’memory’, though. These limitations involve how the finite size of the timeseries affects

the conjecture of long memory existence, raising questions e.g. can the observed scaling exponent be

considered a manifestation of true long-range correlation and not a product of an AR process [18]? The

findings of MF-DFA have to be carefully interpreted, with respect to the size of the timeseries compared

to the scales of the natural processes involved, as well as to the data resolution.
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Simoniello et al. [19] and Lanfredi et al. [20] draw the conclusion that scaling establishment through

a simple straight line fit in a log-log plot is insufficient due to the nature of the logarithm. Examining

local slopes systematic deviations from constant behavior raises questions about power-law functional

reliability. This can be regarded as DFA being sensitive but not specific in detecting power-law scaling as

proposed by Maraun et al. [18]. A demonstration of this claim was made by Lanfredi et al. [20], where a

bivariate Markov model was found to cause long-term correlations in a temperature timeseries, including

scale invariance.

Lovejoy et al. [21] argue in a discussion about different multifractal approaches, that MF-DFA is

capable of estimating scaling exponents for q = 2 but question the ability of MF-DFA and other methods

to detect multifractal behavior.

2.4 Application on geophysical records

Weber et al. in 2001 [22] refuted the claim of Koscielny et al. [23] of a universal scaling law for daily

maximum temperature anomalies. Estimated scaling exponents by DFA4 were 0.66 for maximum daily

temperature (Tmax), 0.57 for minimum daily temperature (Tmin) and 0.66 for diurnal temperature range

(DTR) in low elevation stations, 0.55 for Tmax and 0.54 for Tmin for mountain stations, 0.62 for Tmax and

0.71 for DTR in continental stations and 0.66, 0.68 respectively for maritime stations. They also found

that correlations extend to almost three decades or more.

Fraedrich and Blender [9] estimated the spatial distribution of temperature scaling exponents from

observations. They compared their results with those obtained from models under several assumptions

for present and absent anthropogenic greenhouse effect. Their main conclusion was that temperature

exhibits long memory with h(2) about 0.65 for stations under maritime influence, while is does not for

inner continent regions. The ocean effect on temperature scaling is more pronounced in mid-latitude

maritime regions where almost 1/f noise is observed. In another framework Fraedrich et al. [10] propose

an explanation on the physical mechanism resulting in the observed 1/f temperature spectrum over

Atlantic and Pacific ocean midlatitude regions through a simple two-layer heat diffusion model.

Application of MF-DFA in river runoff and precipitation records [3, 4] suggests a ’non-universal’ scaling

behavior for both runoff and precipitation records. The multifractality for the runoff records is stronger

and can be well described by a simple modified binomial multifractal model where only two parameters

are needed:

h(q) =
1

q
− ln(aq + bq)

q ln 2
(2.8)

The agreement of the results with the fit suggests a ’universal’ multifractal behavior for the runoff records

[3, 4]. Precipitation records are in poor agreement with Eq. 2.8 and another approach is required for their

description. Precipitation seems to have a more ’stochastic’ behavior, so the assumption made for the

runoff is that it is affected by water storage capacity of the basin and other climatic variables. Biswas

et al. [24] used MF-DFA for the multifractal characterization of soil water storage. A long-term field

experiment was conducted to obtain the data. Extreme (dry-wet) cases were selected for the soil water

storage capacity. Analysis showed that multifractal scaling for water soil capacity varies as a result of

the differences in micro climate in periods where storage increases. Heterogeneity is smoothened in the

evapotranspiration periods where more uniform scaling is observed. In this case strong multifractality

can be attributed to different scaling of large and small fluctuations. The need for more monitoring sites

was emphasized for further scaling characterization of recharging periods.
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Data and Methods

3.1 Downward longwave radiation (DLR)

The Earth’s radiation balance is determined by several factors ranging from the top atmosphere to the

Earth’s surface. The amount of energy reaching the top atmosphere includes a fraction that is reflected,

while the remaining is the net incoming radiation. About 40% of the incoming radiation is infrared, 55%

visible and 5% ultraviolet [25]. Once radiation enters the atmosphere it starts to interact with its compo-

nents. The possible interactions are scattering and absorption. The above components are atmospheric

molecules, aerosols and clouds. Absorbed radiation is re-emitted mainly as thermal (infrared, longwave,

LW) radiation. ’Greenhouse’ gases emit thermal while aerosols emit thermal and scatter shortwave [26]

radiation. Earth’s surface upwards radiation flux can be well approximated by a black body emission

with an effective temperature Ts=290 K that takes into account the change of the black body surface

temperature due to greenhouse warming [26]. Integrating Planck’s function over all wavelengths, the flux

density of black body (Stefan-Boltzmann law) is derived:

F = σT 4 (3.1)

where σ is the Stefan-Boltzmann constant, equal to 5.67·10−8 W/m2/deg4.

The estimation of the downwelling LW flux at the surface is less straightforward. The surface receives

thermal radiation from all layers of the atmosphere above it, with each layer having a different temperature

and different emissivity. Layers with larger temperatures and with larger emissivities emit more thermal

radiation. The contribution of each layer to the surface radiation flux depends not only on its emissivity

and temperature, but also on the transmissivity of the layers below it. Let us denote each atmospheric

layer by the optical depth τ ′ between the top of the atmosphere and the layer. Layers with smaller τ ′ are

situated higher than layers with larger τ ′. The maximum τ ′ is τ , which is the optical depth of the whole

atmospheric column. The Planck intensity of thermal radiation from a layer at the τ ′ layer is B(τ ′). With

µ we describe the cosine of the zenith angle, which gives the direction of the radiation. µ=1 means that

the radiation travels straight down, while µ=0 corresponds to horizontal beams. Then, the calculation of

the downwelling LW radiation (DLR) at the surface can be performed by the double integral [25]:

F ↓(τ) =

∫ τ ′=τ

τ ′=0

B(τ ′)

(∫ µ=1

µ=0

e−(τ−τ ′)/µdµ

)
dτ ′ (3.2)

The DLR F ↓ at the surface depends on the vertical profile of temperature in the atmosphere (through

the Planck intensity B of each layer) and on the vertical profile of humidity (through τ ′ at each layer).

Large humidity at a layer, leads to larger τ ′ values and stronger emissivity and absorptivity.

The net longwave radiation flux on the surface is derived by the contribution of DLR from the atmo-

7
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sphere and the surface emission. Conservation of energy results in the surface flux equation:

F ↑
net = −F ↓ + εsσT

4
s (3.3)

where εs is a correction factor for Earth’s radiative deviation from black body. This net radiative flux is

the driver of all climatic processes at the surface and its accurate quantification is crucial in modeling and

understanding surface phenomena. Therefore, also DLR F ↓ is a main regulatory component of climate.

3.2 Organology

The Baseline Surface Radiation Network (BSRN) [27] records quality-controlled radiation fluxes at ground

stations in diverse climatic regions, with a temporal resolution in the order of minutes. BSRN stations have

to follow strict specifications for their instruments and methods. The measurement of DLR is performed

with shaded and ventilated unmodified pyrgeometers.

Figure 3.1: World infrared standard group of pyrgeometers

(WISG) at PMOD/WRC

The target for the uncertainty level is

5% or 10 W/m2 [28]. Pyrgeometers

used are Eppley Precision Infrared

Radiometer (PIR), with a transmis-

sion window approximately 3.5–50

µm, Eko MS-201 Precision Pyrgeome-

ter permeable between 3–50 µm, Kipp

and Zonen Delft CG4 Pyrgeometer

with a spectral range 4.5–42 µm. The

main parts of a pyrgeometer are a

thermopile sensitive to a broad spec-

trum, a silicon dome permeable be-

tween ∼ 3–50 µm, a temperature sen-

sor for measuring the body tempera-

ture of the instrument used for calibrations and corrections in the laboratory, and a sun shield to minimize

the impact of instrument heating due to shortwave radiation.

Figure 3.2: Main components of pyrgeometer

3.3 Measurements

Data were downloaded via ftp from the site of the Baseline Surface Radiation Network (BSRN) [28].

Among the many meteorological quantities available, the quantity of interest is DLR (W/m2), available

in one or three minutes resolution. The maximum time period covered is twenty years while stations with

less than ten years coverage were rejected. Twenty-three stations were chosen. The spatial distribution

of the selected stations spreads over almost all latitudes, but is highly focused in mid-latitude regions,
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especially in the northern hemisphere. Over 50% of the stations are continental, either on mountain or

low elevation. Coastal and maritime stations are also included and a variety of geophysical features are

met.

Station Latitude (o) Longtitude (o) Altitude (m) Period (years) Incomplete(%)

asp -23.80 133.80 547 18 12

ber 32.20 -64.70 8 19 7

bil 36.60 -98.00 317 19 10

bon 40.10 -88.30 213 15 2

bos 40.10 -105.20 1689 14 1

bou 40.10 -105.00 1577 19 3

clh 36.90 -75.10 37 13 8

dra 36.60 -116.00 1007 12 2

e13 36.60 -97.50 318 19 12

fpe 48.30 -105.10 634 15 4

gcr 34.30 -89.87 98 15 4

ilo 8.50 4.60 350 13 63

kwa 8.70 167.70 10 18 4

lau -45.00 169.70 350 13 11

man -2.10 147.40 6 16 6

nau -0.50 166.90 7 14 5

pay 46.80 6.90 419 18 2

psu 40.70 -78.00 376 12 2

reg 50.20 -104.70 578 18 3

spo -89.90 -24.80 2800 19 13

syo -69.00 39.60 18 18 3

tam 22.80 5.50 1385 13 1

tat 36.10 140.10 25 17 4

asp

berbil

bon

bos
bou

clh
dra

e13
fpe

gcr

ilo
kwa

lau

man

nau

paypsu
reg

spo

syo

tam

tat

Figure 3.3: World map with the stations included in the analysis
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3.4 Implementation of the method

We applied MF-DFA in the q range of −10 < q < 10. We excluded the case of q=0 since another averaging

procedure is needed and results of MF-DFA are questionable for this case [21]. When data were delivered

in mixed resolutions we used as unit resolution the coarser found. This was done by segmenting all parts

of timeseries with lower resolution to unit resolution segments and average each segment. In order to

ensure that deseasonalization was sufficient, we divided by standard deviation of each unit resolution, of

each hour, of each calendar day over all corresponding values during deseasonalization. The results were

qualitatively unaffected, so we kept the first case to avoid homogenization of small and large fluctuations

[4]. The detrending procedure was performed for up to third order polynomials. If no linear trends were

observed we used the MF-DFA1, so possible crossovers at large scaling regions are not shifted to scales

closer or larger than N/4 [15]. We shuffled the data in order to confirm that MF-DFA results are not due

to a broad probability function and uncorrelated behavior was obtained.

500 1000 1500 2000

time (3 x minute)

 

Means
Raw data

Figure 3.4: Comparison of raw data and mean values used for deseasonalization for five days period

500 1000 1500 2000

time (3 x minute)

 

Deseasonilized

Figure 3.5: Deseasonalized data for five days period

3.5 Objectives of the study

In the present study correlation properties of DLR are examined by means of MF-DFA. Power law

scaling of DLR second order fluctuations is investigated and possible general fluctuation function pattern
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is searched. Varying scaling behavior in different scales can indicate the presence of physical processes

affecting fluctuations. This can lead to the detection of locally set climate memory . Multi-fractal analysis

is conducted in order to further resolve fluctuations behavior. Uncertainty over the observed features of

the fluctuation function can be reduced and most robust results can be obtained. Moreover, undetected

by second order fluctuations analysis, elements that affect fluctuations are possible to emerge through

analyzing scaling exponents spectrum over all orders of fluctuations.
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Results

4.1 Crossovers

No significant difference was observed by using DFA(1-3). Fluctuations magnitude is reduced with in-

creasing the order l of the polynomial fit. This is an expected behavior since increasing the order of fit

results in a fit with smaller residuals. The pattern of scaling remains unchanged for the different orders

l, though. A typical fluctuation behavior starts with a large slope, corresponding to a non-stationary

signal, up to time scale of about ten days. At this point a crossover occurs and for larger s a smaller

slope is observed, with values between 0.5 and 1, corresponding to positive correlations. A shift of the

crossover to larger s with increasing DFA order is noticed. The crossover existence could be attributed

to AR correlations embedded in the signal, caused by meteorological processes with short-term memory.

It this were true, the decay time of the AR process would be comparable to s at the observed crossover.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

spo

logs

 

FA1
FA2
FA3

Figure 4.1: Comparison of different DFA orders for the South Pole station

An attempt to systematically detect the crossover was made. Based on the general pattern observed,

we adopted a modified version of the empirical equation proposed by Cermak et al. [29] for trend-change

point detection:

S =
min(p(tl), p(tr))

|sl(tl)− sl(tr)| · e(tl+r)
(4.1)

where S is the change point score. First, the data are fitted by a third order polynomial and at each

point the trend to its left (subscript l) and its right (subscript r) is examined. p is the probability of a

trend being insignificant, sl its slope, e the trend fitting error, tl, tr, tl+r the trends to left, right and

12
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DFA1, h1(2) = 0.67± 0.01

DFA2, h2(2) = 0.67± 0.01

DFA3, h3(2) = 0.67± 0.01

Figure 4.2: Comparison of different DFA orders for Lauder (New Zealand) station

combined subseries at the point being tested, respectively. The whole procedure is performed for a fixed

width moving box, centered at the tested point. The point with the lowest score is the trend change

point. Note that the intention is to minimize the numerator, while the denominator is maximized.

The main difference with our case is that we focus on a detection of the transition from a positive

trend to another positive trend with smaller slope, which is not the case for Cermak et al. Therefore, we

calculate for a fixed box size (box) the Euclidean distance between each consecutive point up to the center

of the box(center), sum the resulting values and normalize by the number of points used (distbefore):

distbefore =
1

(box− 1)/2

center∑
i=center−(box−1)/2

√
(log10Fi − log10Fi−1)2 + (log10si − log10si−1)2 (4.2)

The same procedure is repeated starting from the box center to the end, N , of the series(distafter):

distafter =
1

N − center

N∑
i=center

√
(log10Fi − log10Fi−1)2 + (log10si − log10si−1)2 (4.3)

Then we fit a line to the box values and estimate the fit standard error (e). Finally, for all points

included in the box, the sum of consecutive points euclidean distances is calculated (distbox):

distbox =

center+(box−1)/2∑
i=center−(box−1)/2

√
(log10Fi − log10Fi−1)2 + (log10si − log10si−1)2 (4.4)

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Position of the crossover

crossover

Figure 4.3: S statistic for a window of 19 values of F (s)

The combination of the above statis-

tics in a way that the numerator is

minimized while the denominator is

maximized for a moving box results

in the empirical equation:

S =
distbefore · dist7after

distbox · e
(4.5)

which seems to successfully locate the

crossover at the box center, when S

is minimized in a certain point win-
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dow, if the general pattern is nearly

followed. The above equation overweights the points after the box center. This is done in order to em-

phasize that a good linear fit at large s is desirable, since the scaling factor h is calculated from this

region.

4.2 Periodic trends

Beyond the general scaling pattern described in the previous section, certain stations demonstrate differing

scaling properties. The stations are Kwajalein, Nauru, and Bermuda and their scaling is presented in

Figs. 4.4, 4.5, and 4.6, respectively. At least two crossovers are observed for each station, in different

but comparable time scales between stations. Initially, the scaling narrowly follows 1/f noise. The

first crossover occurs in scales comparable to those referred for the typical scaling pattern of the station

majority, e.g. about ten days, but here it is less pronounced. A transitional scaling regime is located around

the crossover followed by positively correlated scaling. The second crossover, also not very prominent, is

observed at scales from about six months (for equatorial maritime stations in the western Pacific) to four

years (for the mid-latitude station in the Bermudas). Flicker like (1/f) noise follows, but for equatorial

stations there is considerable scatter at these large s and this creates difficulties in drawing any definite

conclusion. However, this behavior is compatible with the presence of a strong signal with periodicity of

a few years.

1 2 3 4 5 6

kwa

logs

6 months

50 days

0.68

1/f noise

6 days

4.5 years

Figure 4.4: Fluctuation function for Kwajalein station
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∼ 1/fnoise

1 day

12 days

6 months

3 years

0.81

Figure 4.5: Fluctuation function for Nauru Island station
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∼ 1/f noise
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0.65

Figure 4.6: Fluctuation function for Bermudas station

In an attempt to decompose the obtained signal for the equatorial stations we considered the influence

of the El Niño Southern Oscillation (ENSO). The ENSO is a quasiperiodic climate pattern with a period

of about five years, affecting the tropical western Pacific area. We examine the effect of a sinusoidal ENSO

signal on DLR with a locally determined amplitude. Determining the amplitude is difficult due to the

ENSO spatial variability, but a reasonable estimation is ∼10 W/m2, according to Pavlakis et al. [30] for

the Nino-3.4 region and bordering areas. We used the superposition rule, Eq. 2.7, for correlated noise Fn

and sinusoidal trend Ft, with five years period T and adjusted amplitude A. Fn was estimated as:

Fn(s) = b1 · sh (4.6)

where b1 is an adjustable parameter for the magnitude of the noise and h is the scaling exponent.

Ft was approximated by a linear trend up to the scale of the sine period [15] and afterwards was

considered constant:

Ft(s) = b2 ·
A

T
· sa, s ≤ T (4.7)

Ft(s) =
1

2
√
2π

A · T, s > T (4.8)

where b2 is an adjustable parameter for the magnitude of trends fluctuations and a is the trend’s slope.

The superposition rule does not quite reproduce the observed scaling behavior at scales where Fnt is

determined by Ft. This is more pronounced for Kwajalein station (Fig. 4.7), while for Nauru Island station

(Fig. 4.8) a better fit is obtained. Different tuning for Kwajalein produces slightly better agreement, but

A has to be very small, down to just 2 W/m2.

However, some qualitative properties seem to be well detected. For example, the point where Fnt

starts to deviate from Fn is in agreement with observed F values. Possible reasons for the discrepancy

are imperfect deseasonalization, poor model tuning, and the finite size of the timeseries. Seasonality can

never be completely removed, especially if strong interannual oscillation is involved. Fig. 4.9 for Momote

station indicates where Fnt is considerably larger than the sine amplitude, that a remaining annual cycle

can disturb fluctuations at the ’asymptotic’ region. Also, due to the limitation of the records length, the

last values of F can be somewhat scattered. Finally model assumption was that Ft scales according to

equations 4.7, 4.8. This does not hold for small regimes, spread around the crossovers, where a quadratic

behavior is expected [15].
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Figure 4.7: Observed, superpositioned and component fluctuations functions for Kwajalein station. A is
assumed 8 W/m2
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Figure 4.8: Observed, superpositioned and component fluctuations functions for Nauru Island station. A
is assumed 12 W/m2
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Figure 4.9: Observed, superpositioned and component fluctuations functions for Momote station. A is
assumed 15 W/m2
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4.3 Long memory
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Figure 4.10: Crossovers and estimated scaling exponents h(2)

In Section 4.1 the crossover position was determined in order to provide a good estimation of the scaling

exponent h(2) for large time scales s. So called long climate ’memory’ for DLR is expected to be consistent

with air surface temperature findings [22, 9, 10, 31, 2], since temperature is highly correlated with DLR

according to Eqs. 3.1, 3.2, and 3.3.

In Fig. 4.10, observed memory is shown for stations following the general pattern described in Sec-

tion 4.1. Note that station Ilorin was excluded from the analysis since 66% of the measurements were

missing and spurious results could be obtained [16]. Overall memory for stations where no imposed peri-

odic trends are inspected is shown in Fig. 4.11. Mean value of scaling exponent in asymptotic regions is

0.63. This is in good agreement with mean memory estimation (≈ 0.65) for temperature by models and

observations.

Due to the limited number of stations and their uneven geographical distribution a reliable latitude

and/or altitude dependence of memory cannot be examined. This is clear in figures 4.12, 4.13 where

the stations sample is unequally distributed and possible h(2) altitude-latitude correlation cannot be

investigated.
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Figure 4.11: Estimated h(2) exponents, except for stations with periodic trend inspection
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Figure 4.12: Estimated h(2) exponents versus altitude
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Figure 4.13: Estimated h(2) exponents versus latitude

4.4 Multifractal characterization

Examining the whole spectrum of moments of the fluctuation function Fq(s) can provide better under-

standing of the results obtained in Sections 4.2, 4.3. Also the characterization of data as monofractal or

multifractal can provide information on different scaling properties of small and large fluctuations.
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Scaling exponents are calculated for s >25 days. This threshold is used since scaling of F2(s) is

established in such scales for stations following the observed scaling pattern.

In Fig 4.14, 4.15, 4.16, 4.17 the h(q) dependence on q is shown. h(q) values are increasing monotonically

with decreasing q. This is an expected behavior for multifractal data. However, error bounds do not follow

the prospective [17] course. For positive q values, the error bounds are expected to be small and relatively

consistent, while for negative q should be much larger. Also, the observed increase of h(q) with decreasing

q, though present, seems to deviate from the theoretical [17] pattern for Gaussian data. This can be due

to short range correlations, which induce a crossover discussed in Section 4.1, and disturb multifractality

in a way that is shown in Fig 2.2.
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Figure 4.14: Fluctuations functions and scaling exponents spectrum of Bondville station
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Figure 4.15: Fluctuations functions and scaling exponents spectrum of Regina station
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Figure 4.16: Fluctuations functions and scaling exponents spectrum of Tamanrasset station
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Figure 4.17: Fluctuations functions and scaling exponents spectrum of Goodwin Creek station

The existence of periodic trends in certain stations, examined in section 4.2, is confirmed by looking

all moments of Fq(s). In Fig 4.18, 4.19, 4.20, 4.21 multifractality is corrupted in a certain way. A peak

of h(q) appears, or tends to appear, for q around zero. This is consistent with Ludescher et al. [17]

findings on how periodicities affect multifractal scaling. Different extent of multifractality corruption can

be explained by varying amplitude and period of the trend, as well as by combined corruption from short

range correlations.
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Figure 4.18: Multifractal spectrum of Kwajalein station
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Figure 4.19: Multifractal spectrum of Nauru Island station
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Figure 4.20: Multifractal spectrum of Momote station
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Figure 4.21: Multifractal spectrum of Bermuda station

Corrupted multifractality is also observed in other stations. In Fig. 4.22 the h(q) spectrum for Lauder

station, situated at new Zealand, suggests the presence of an oscillatory trend, mainly affecting small

fluctuations (e.g. negative q values). This can be attributed to a weakened ENSO effect at the region

affecting small fluctuations.
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Figure 4.22: Multifractal spectrum of Lauder station



Chapter 5

Conclusions

Summarizing the results of the previous chapter we conclude that fluctuation function F2(s) of DLR scales

like a power law with a typical pattern. This pattern involves 1/f noise up to a scale of about ten days,

where a crossover occurs, followed by positive correlations. A systematic attempt to locate the crossover

resulted in the empirical formula given by Eq. 4.5.

In cases where the general pattern was not observed, oscillatory trends seem to influence the fluctuation

function Fq(s). In micro-scales 1/f noise is observed. For the case of the equatorial , under maritime

influence, stations in western Pacific the possible impact in Fq(s) by ENSO was examined. The attempt

to decompose the observed signal of F2(s) as a superposition of noise and oscillatory fluctuations did

not quite reproduce the original signal. However some qualitative features regarding the starting point

where superposed signal is dominated by oscillatory fluctuations are common in both synthetic and

observed signal. This of course holds only for stations where the relative magnitudes of F2(s)n and F2(s)t

are comparable in a certain s region. In addition, concerning the western Pacific equatorial stations,

examining the spectrum of scaling exponents derived from all moments of fluctuations Fq(s) indicates

similar multifractality corruption due to periodic trends. This was observed in all stations at the broader

west Pacific region, regardless of whether it was apparent during second moment fluctuations(F2(s))

analysis. The combination of above findings strongly indicates that ENSO has a prominent effect in the

fluctuations of DLR at the west Pacific area.

The estimated mean memory for stations where no periodicities are present is 0.63. This is consis-

tent with the estimated mean memory of temperature, confirming the theoretically expected correlation

between the two quantities. The spatial distribution of scaling exponents could not be examined due to

limitations from geographic distribution and number of stations. Examining more representative stations

is necessary for the extraction of possible correlations results among DLR scaling and altitude, latitude

and maritime influence.

Multifractal analysis for stations whose F2(s) fluctuations follow the ’general’ pattern, without any

apparent periodicities, revealed that DLR presents multifractal scaling that seems to approximate the ex-

pected pattern for Gaussian multifractal data. Deviations from the theoretical pattern could be attributed

to short-range correlations embedded in the data.
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