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ABSTRACT

In this thesis we are interested in the numerical solution of stochastic differ-
ential equations (SDE) with solutions in a certain domain. Our goal is to
construct explicit numerical schemes that preserve that domain, mainly for
cases where the coefficients of the SDEs are non-linear.

It is well known that the forward Euler scheme diverges on super-linear
problems and the tamed Euler method does not necessarily preserve the
structure of the original problem.

We propose a new numerical scheme, using the semi-discrete method,
for various classes of stochastic differential equations. For some super-linear
problems (like the Heston 3/2-model) as well as sub-linear (like the CEV
model), which appear in the field of financial mathematics, we are able to
construct a positivity preserving scheme. Moreover, we apply our method
to problems arising in the field of molecular dynamics, where our structure
preserving scheme is able to approximate effectively some SDEs which appear
after a coarse graining procedure.

We also consider the case of Stochastic Delay Differential Equations (SD-
DEs) with non-negative solutions. Again we aim for explicit numerical
schemes that preserve positivity. We expand the semi-discrete method from
the Stochastic Ordinary Differential Equations (SODE) setting and apply it
to the constant delay case, for which we prove strong convergence (DGBM
model).

Numerical experiments support our theoretical results.
Keywords : Semi-Discrete Method, Super-Linear Drift and Diffusion,

Hölder Continuous, 3/2-Model, Order of Convergence, Explicit Numerical
Scheme, Mean-Reverting CEV Process, Positivity Preserving, Strong Ap-
proximation Error, Stochastic Volatility Model, Stochastic Differential Equa-
tions, Stochastic Delay Differential Equations, Monte Carlo Simulation, Nu-
merical Methods

AMS subject classification 2010: 65C30, 65C20, 60H10, 60H35,
65J15



JEL classification: C15, C63, G13
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Περίληψη

Σε αυτή τη διατριβή αντικείμενο έρευνας είναι η αριθμητική επίλυση στοχαστι-

κών διαφορικών εξισώσεων (ΣΔΕ), οι οποίες έχουν λύση σε ένα συγκεκριμένο

χωρίο. Ο στόχος μας ειναι η κατασκευή άμεσων αριθμητικών σχημάτων τα

οποία διατηρούν αυτό το χωρίο, κυρίως σε περιπτώσεις όπου οι συντελεστές

των ΣΔΕ είναι μη-γραμμικοί.

Είναι γνωστό ότι το με βήμα προς τα εμπρός σχήμα Euler αποκλίνει σε υπερ-
γραμμικά προβλήματα και η ελεγχόμενη μέθοδος Euler δε διατηρεί απαραίτητα
τη δομή του αρχικού προβλήματος.

Προτείνουμε ένα νέο αριθμητικό σχήμα, χρησιμοποιώντας την Ημι-Διακριτή

μέθοδο, για διάφορες κλάσεις στοχαστικών διαφορικών εξισώσεων. Για κάποια

υπεργραμμικά προβλήματα (όπως το Heston 3/2-μοντέλο) καθώς και για υπο-
γραμμικά (όπως το CEV μοντέλο), τα οποία εμφανίζονται στο πεδίο των χρημα-
τοοικονομικών μαθηματικών, κατασκευάζουμε ένα αριθμητικό σχήμα το οποίο

διατηρεί τη θετικότητα. Παραπέρα, εφαρμόζουμε τη μέθοδο μας σε προβλήματα

τα οποία εμφανίζονται στο πεδίο των μοριακών δυναμικών, όπου το προτει-

νόμενο σχήμα το οποίο διατηρεί τη δομή της αρχικής εξίσωσης προσεγγίζει

αποτελεσματικά κάποιες ΣΔΕ οι οποίες προκύπτουν έπειτα από μια διαδικασία

απλοποίησης (coarse graining).
Θεωρούμε επίσης την περίπτωση Στοχαστικών Διαφορικών Εξισώσεων με

Υστέρηση με μη-αρνητικές λύσεις. Ξανά στόχος μας είναι άμεσα αριθμητικά

σχήματα τα οποία διατηρούν τη θετικότητα. Επεκτείνουμε την Ημι-Διακριτή

μέθοδο από το πλαίσιο των Συνήθων ΣΔΕ στην περίπτωση με σταθερή υστέρη-

ση, όπου και αποδεικνύουμε ισχυρή σύγκλιση (μοντέλο DGBM). Αριθμητικά
πειράματα υποστηρίζουν τα θεωρητικά μας αποτελέσματα.

Λέξεις Κλειδιά : Ημι-Διακριτή μέθοδος, Υπερ-γραμμική Τάση και Δι-

άχυση, Hölder Συνεχής, 3/2-Μοντέλο, Τάξη Σύγκλισης, ΄Αμεσο Αριθμητικό
Σχήμα, Διαδικασία CEV με ιδιότητα Επαναφοράς στο Μέσο, Διατήρηση Θετι-
κότητας, Ισχυρό Σφάλμα Εκτίμησης, Στοχαστικό Μοντέλο Μεταβλητότητας,

Στοχαστικές Διαφορικές Εξισώσεις, Στοχαστικές Διαφορικές Εξισώσεις με

Υστέρηση, Προσομοίωση Monte Carlo, Αριθμητικές Μέθοδοι
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The work presented in this thesis is motivated by the following question

How can we efficiently approximate solutions of non-linear
stochastic differential equations?

The way we interpret the word efficiently is not necessarily in a computer-
time consumption approach, i.e. the use of a numerical scheme that con-
verges fast to the exact solution of our original stochastic differential equa-
tion (SDE), but in a qualitative way, in the sense that we aim for a numerical
method that preserves some properties of the solution process of the SDE.
In particular, we are interested in non-linear SDEs (solutions of linear SDEs
or SDEs reducible to linear have an analytical expression, see [KP95, Sec.
4.4]), and in general in SDEs that have no analytical solution, which never-
theless lies in a certain domain. Therefore, our goal is to construct numerical
schemes that preserve the original structure of the SDE at hand, i.e. that lie
in the same domain. The main models that we treat, arise from the field of
financial mathematics and in that setting the goal is to construct positivity
preserving numerical schemes (see Chapters 2, 3 and 4). En plus, we apply
our proposed method to a class of SDEs with solution in the interval [−1, 1]
and appear in molecular dynamics (see Chapter 5). But, why the study of
SDEs is important?
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In the following section, we give a brief discussion about the concept of
SDEs and some properties of their solution processes. Notions of probability
theory and stochastic processes are given in Appendix A.

1.1 SDEs: Origin & properties of their solution.

The study of SDEs has been extensive in the last 40 years. We present briefly
their formulation and existence and uniqueness theorems. More details can
be found in ([Fri75], [Mao97], [Øks03]) and references therein.

A first approach to SDEs is as stochastic analogs of ordinary differential
equations (ODEs), where we allow some randomness in the coefficient of the
ODE. A classic example (see for instance [Mao97, Sec. 2.1]) is the simple
population growth model

𝑑𝑁

𝑑𝑡
= 𝛼(𝑡) ·𝑁(𝑡)

= (𝑟(𝑡) + noise) ·𝑁(𝑡),(1.1.1)

where 𝑁(𝑡) is the size of population at time 𝑡, 𝛼(𝑡) is the relative rate of
growth at time 𝑡, which we assume to be subject to random environmental
effects described by the term ‘noise’. Noise can be represented by a suitable
process (𝒲𝑡) satisfying some properties (independent and stationary incre-
ments with zero mean, cf. [Øks03, Ch. 3]). Writing 𝒲𝑡Δ𝑡 = Δ𝑉𝑡 implies
that the only such process (𝑉𝑡) with continuous paths is the Wiener process
(𝑊𝑡) (see Def. A.3.8). Therefore (1.1.1) becomes the stochastic differential
equation

(1.1.2) 𝑑𝑁(𝑡) = 𝑟(𝑡)𝑁(𝑡)𝑑𝑡+ 𝜎(𝑡)𝑁(𝑡)𝑑𝑊 (𝑡),

with 𝑁(0) the initial size of the population and 𝜎 an appropriate function.
Equation (1.1.2) is in differential form. We prefer to use the stochastic inte-
gral representation of the solution process

(1.1.3) 𝑁𝑡 = 𝑁0 +

∫︁ 𝑡

0

𝑟(𝑠)𝑁𝑠𝑑𝑠+

∫︁ 𝑡

0

𝜎(𝑠)𝑁𝑠𝑑𝑊𝑠,

where 𝑁0 = 𝑁(0) and the last integral is a stochastic integral which we
interpret in the Itô sense and discuss in Appendix A.4. SDE (1.1.3) is linear,
and admits the explicit solution [KP95, Sec. 4.4, p.120]

𝑁𝑡 = 𝑁0 exp

{︂∫︁ 𝑡

0

(𝑟(𝑠)− 1

2
𝜎2(𝑠))𝑑𝑠+

∫︁ 𝑡

0

𝜎(𝑠)𝑑𝑊𝑠

}︂
.
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Another field of application of SDEs is in control theory, forming the
stochastic control theory. Suppose that the fortune (𝐹𝑡) of a person at time
𝑡 is invested in a portion 𝜋𝑡 to a risky investment, say a stock (𝑆𝑡) and the
rest to a safe investment, say a bond (𝐵𝑡) in the following way

𝑑𝑆𝑡 = 𝜇 · 𝑆(𝑡)𝑑𝑡+ 𝜎 · 𝑆(𝑡)𝑑𝑊 (𝑡), 𝜇 > 𝑟, 𝜎 ̸= 0,

𝐹𝑡

𝜋𝑡

33

1−𝜋𝑡

++
𝑑𝐵𝑡 = 𝑟 ·𝐵(𝑡)𝑑𝑡, 𝑟 > 0.

If the person has a utility function 𝑈(𝐹𝑡) describing the way that the
person is satisfied w.r.t. his fortune at time 𝑡, the critical question is about the
choice of the optimal portfolio 𝜋𝑡 ∈ [0, 1] which maximizes the expected utility
function of the person at a future time 𝑇, i.e. what is max0≤𝜋𝑡≤1 E𝑈(𝐹𝑇 )?

Now, assume that the person above at time 𝑡 = 0 has the choice of buying
a unit of the risky asset at terminal time 𝑇 at a fixed price 𝐾. How much
should he be willing to pay? The above right (and not obligation) is called
European Call Option and the answer to the question was given in [BS73]
where the Black-Scholes option price formula was given. Since then, vari-
ous much more complicated options have been considered in mathematical
finance. The theoretical pricing of such options is a non-trivial task in itself.
In practice, strong approximation schemes are of interest in these situations.
Our proposed scheme has that feature, but we postulate the notion of strong
approximation in Definition 1.3.10. We just mention that we require the
realization to be close and not only the probability distribution as happens
with weak approximation schemes, see Definition 1.3.11.

1.2 From Itô process to a general type SDE.

We assume the reader is familiar with some probability essentials and some
basics of stochastic processes. Nevertheless, we give in Appendix A.2 all the
relevant theory. Beginning with a definition of an Itô process and through
the Itô formula, we are able to reach to the SDE which is of our main interest.

Let 𝑇 > 0 and (Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 ,P) be a complete probability space,
meaning that the filtration {ℱ𝑡}0≤𝑡≤𝑇 satisfies the usual conditions, i.e. is
right continuous and ℱ0 includes all P-null sets. Let𝑊𝑡,𝜔 : [0, 𝑇 ]×Ω → R𝑚×1
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be a 𝑚-dimensional Wiener process adapted to the filtration {ℱ𝑡}0≤𝑡≤𝑇 , i.e.
𝑊𝑡 = (𝑊 1

𝑡 , . . . ,𝑊
𝑚
𝑡 )𝑇 where (𝑊 𝑗

𝑡 ), 𝑗 = 1, . . . ,𝑚 are independent Brownian
motions.

First, we need to define an appropriate space of processes1.

Definition 1.2.1 We denote by ℒ𝑝([0, 𝑇 ];R𝑑) the family of all R𝑑-valued
measurable, {ℱ𝑡}-adapted processes 𝜑 = {𝜑(𝑡)}0≤𝑡≤𝑇 such that∫︁ 𝑇

0

|𝜑(𝑠)|𝑝𝑑𝑠 <∞ a.s.

2

Now, we define the Itô process [Mao97, Def. 1.6.3].

Definition 1.2.2 [Itô process] An Itô process is an R𝑑-valued continuous
adapted process which satisfies the stochastic integral equation

(1.2.1) 𝑋𝑡 = 𝑋0 +

∫︁ 𝑡

0

𝑎(𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where the coefficients 𝑎 ∈ ℒ1([0, 𝑇 ];R𝑑) and 𝑏 ∈ ℒ2([0, 𝑇 ];R𝑑×𝑚). The differ-
ential form of (1.2.1) is given by

(1.2.2) 𝑑𝑋𝑡 = 𝑎(𝑡)𝑑𝑡+ 𝑏(𝑡)𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇 ].

2

We use Itô stochastic calculus, i.e. we interpret the stochastic integral of
(1.2.1) in the Itô sense (see Appendix A.4).

Definition 1.2.3 [Itô formula] Let (𝑋𝑡) be a 𝑑-dimensional Itô process with
stochastic differential form (1.2.2). Let 𝑉 ∈ 𝐶1,2([0, 𝑇 ] × R𝑑;R). Then
𝑉 (𝑡,𝑋𝑡) is again an Itô process which satisfies the following SDE

𝑑𝑉 (𝑡,𝑋𝑡)=

[︂
𝜕𝑉

𝜕𝑡
(𝑡,𝑋𝑡) +

𝜕𝑉

𝜕𝑋
(𝑡,𝑋𝑡)𝑎(𝑡) +

1

2
trace

(︂
𝑏𝑇 (𝑡)

𝜕2𝑉

𝜕𝑋2
(𝑡,𝑋𝑡)𝑏(𝑡)

)︂]︂
𝑑𝑡

+
𝜕𝑉

𝜕𝑋
(𝑡,𝑋𝑡)𝑏(𝑡)𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇 ].

2

1 We state the following in R𝑑, even though in the biggest part of this thesis, we treat
scalar SDEs (𝑑 = 1).
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We are now ready to state the type of the SDE which is the main subject
here; it is the one we numerically approximate in a qualitative sense as will
be argued later on.

Consider the following stochastic differential equation (SDE)

(1.2.3) 𝑋𝑡 = 𝑋0 +

∫︁ 𝑡

0

𝑎(𝑠,𝑋𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑠,𝑋𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where the coefficients 𝑎 : [0, 𝑇 ]×R𝑑 → R𝑑 and 𝑏 : [0, 𝑇 ]×R𝑑 → R𝑑×𝑚 are mea-
surable functions and 𝑋0 = (𝑋1

0 , . . . , 𝑋
𝑑
0 )

𝑇 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 .

Definition 1.2.4 We say that SDE (1.2.3) has a unique strong solution if
there is a predictable stochastic process 𝑋 : [0, 𝑇 ]×Ω → R𝑑 such that [Mao97,
Def. 2.2.1],

{𝑎(𝑡,𝑋𝑡)} ∈ ℒ1([0, 𝑇 ];R𝑑), {𝑏(𝑡,𝑋𝑡)} ∈ ℒ2([0, 𝑇 ];R𝑑×𝑚)

and

P
[︂
𝑋𝑡 = 𝑋0 +

∫︁ 𝑡

0

𝑎(𝑠,𝑋𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑠,𝑋𝑠)𝑑𝑊𝑠

]︂
= 1, for every 𝑡 ∈ [0, 𝑇 ].

2

SDE (1.2.3) has non-autonomous coefficients, i.e. 𝑎(𝑡, 𝑥), 𝑏(𝑡, 𝑥) depend ex-
plicitly on 𝑡. The drift coefficient 𝑎 is the infinitesimal mean of the process
𝑋𝑡 and the diffusion coefficient

√
𝑏𝑏𝑇 is the infinitesimal standard deviation

of the process 𝑋𝑡.
The concept of strong solution is that the version of𝑊𝑡 is given in advance

and the solution constructed from it is ℱ𝑡-adapted. If the coefficients 𝑎, 𝑏
are given instead and we search for a pair of processes ((̃︁𝑋𝑡,̃︁𝑊𝑡),ℱ𝑡) on a
probability space (Ω,ℱ ,P) such that (1.2.3) holds then ̃︁𝑋𝑡 is a weak solution.
Heuristically, a strong solution is a functional of the initial condition 𝑋0 and
(𝑊𝑡). A strong solution is also a weak solution, but the converse is not true; a
well-known example is Tanaka’s equation (cf. [Øks03, Example 5.3.2]) which
has the differential form 𝑑𝑋𝑡 = sgn(𝑋𝑡)𝑑𝑊𝑡, 𝑋0 = 0.We shall focus on SDEs
that admit strong solutions, since we are interested in the paths of them and
not only their distribution.

1.2.1 Existence & uniqueness of solutions of (1.2.3).

The existence and uniqueness of solution of (1.2.3) is due to a combination
of the following conditions:
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(𝑎) ||𝑎(𝑡,𝑋1)− 𝑎(𝑡,𝑋2)||22
⋁︀
||𝑏(𝑡,𝑋1)− 𝑏(𝑡,𝑋2)||22 ≤ 𝐶||𝑋1 −𝑋2||22, for all

𝑡 ∈ [0, 𝑇 ] and 𝑋1, 𝑋2 ∈ R𝑑, where 𝐶 > 0, (Globally Lipschitz )

(𝑎*) ||𝑎(𝑡,𝑋1)− 𝑎(𝑡,𝑋2)||22
⋁︀
||𝑏(𝑡,𝑋1)− 𝑏(𝑡,𝑋2)||22 ≤ 𝐶𝑅||𝑋1 −𝑋2||22, for all

𝑡 ∈ [0, 𝑇 ] when the 𝑑-vectors 𝑋1, 𝑋2 are such that ||𝑋1||2 ∨ ||𝑋2||2 ≤
𝑅 for any 𝑅 > 0 where the quantity 𝐶𝑅 depends on 𝑅, (Locally
Lipschitz )

(𝑏) ||𝑎(𝑡,𝑋)||22
⋁︀

||𝑏(𝑡,𝑋)||22 ≤ 𝐶(1 + ||𝑋||22), for all (𝑡,𝑋) ∈ [0, 𝑇 ] × R𝑑,
where the constant 𝐶 > 0, (Linear growth)

(𝑏*) 𝑋𝑇𝑎(𝑡,𝑋) + 𝑝−1
2
||𝑏(𝑡,𝑋)||22 ≤ 𝐶(1 + ||𝑋||22), for all (𝑡,𝑋) ∈ [0, 𝑇 ] ×

R𝑑 and some 𝑝 ≥ 2, where the constant 𝐶 > 0, (Monotone type
condition)

In particular the pairs (𝑎)− (𝑏), (𝑎*)− (𝑏), (𝑎*)− (𝑏*), imply the existence
and uniqueness of the solution [Mao97, Sec. 2.3]. The same conditions hold
in ODEs. The next two examples show that Lipschitz continuity or linear
growth is essential for the existence and uniqueness of the solution.

Example 1.2.5 [Explosion in finite time] The SDE 𝑑𝑥𝑡 = 𝑥2𝑡𝑑𝑡, 𝑥0 = 1 has
solution 𝑥𝑡 =

1
1−𝑡
, 𝑡 ∈ [0, 1). 2

Example 1.2.6 [Not unique solution] The SDE 𝑑𝑥𝑡 = 3𝑥
2/3
𝑡 𝑑𝑡, 𝑥0 = 0 has

solution 𝑥𝑡 = I(𝑎,∞)(𝑡)(𝑡− 𝑎)3, 𝑡 ∈ [0,∞) for every 𝑎. 2

1.2.2 Properties of solutions of (1.2.3).

Condition (𝑏*) implies in the case 𝑥0 ∈ ℒ𝑝(Ω,R𝑑), 𝑝 ≥ 2, the following mo-
ment bounds [Mao97, Th. 2.4.1],

E||𝑋𝑡||𝑝2 ≤ 𝐶𝑇,𝑝(1 + E||𝑋0||𝑝2),

for all 𝑡 ∈ [0, 𝑇 ]. Moreover, if the linear growth condition (𝑏) holds we can
also obtain uniform bounds for E sup0≤𝑡≤𝑇 ||𝑋𝑡||𝑝2 for every 𝑝 ≥ 2 [Mao97,
Th. 2.4.4].
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1.3 Motivation.

SDEs of the form (1.2.3) rarely have explicit solutions, thus numerical ap-
proximations are necessary for simulations of the paths 𝑋𝑡(𝜔), or for approx-
imation of functionals of the form E𝐹 (𝑋), where 𝐹 : 𝒞([0, 𝑇 ],R) → R can
be for example in the area of finance, the discounted payoff of a European
type derivative.

Let us recall a definition from [Sch96] concerning the life time of numerical
solution of SDEs.

Definition 1.3.7 [Life time of numerical solution] Let 𝐷 ⊆ R𝑑 and consider
a process (𝑋𝑡) well-defined

2 on the domain 𝐷, with initial condition 𝑋0 ∈ 𝐷
and such that

P({𝜔 ∈ Ω : 𝑋(𝑡, 𝜔) /∈ 𝐷}) = 0,

for all 𝑡 > 0. A numerical solution (𝑌𝑡𝑛)𝑛∈N has a finite life time, if there
exists a stopping time 𝜏𝑛(𝜔) such that

𝑌𝑛 := 𝑌𝜏𝑛 /∈ 𝐷 a.s.

Otherwise, we say that it has an eternal life time. 2

Equivalently, we say that the numerical integration scheme has an eternal
life time if

(1.3.1) P(𝑌𝑛+1 ∈ 𝐷
⃒⃒
𝑌𝑛 ∈ 𝐷) = 1.

We discretize [0, 𝑇 ] with steps Δ𝑛 := 𝑡𝑛+1 − 𝑡𝑛, for 𝑛 = 0, . . . , 𝑁 − 1,
where 0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑇. Moreover, let Δ𝑊𝑛 := 𝑊𝑡𝑛+1 −𝑊𝑡𝑛 be the
increments of the Brownian motion.

The Euler method, applied to the SDE setting, already appeared in the
50’s through Maruyama [Mar55] and thereafter has been an extensive study
on numerical approximations of solutions of SDEs (we just mention [KN13]
for a recent review on numerical methods for SDEs with applications in
finance and references therein).

The explicit Euler-Maruyama (EM) scheme for SDE (1.2.3) is given by

𝑌 𝐸𝑀
𝑛+1 = 𝑌𝑛 + 𝑎(𝑡𝑛, 𝑌𝑛)Δ𝑛 + 𝑏(𝑡𝑛, 𝑌𝑛)Δ𝑊𝑛,

2 On the complete probability space (Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 ,P) the stochastic process
(𝑋𝑡)0≤𝑡≤𝑇 takes values in 𝐷, i.e. it is a collection of 𝐷-valued r.vs in Ω.
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for 𝑛 = 0, . . . , 𝑁 −1, where 𝑌0 = 𝑋0 and 𝑌𝑛 := 𝑌𝑡𝑛 . It is clear that the Euler-
Maruyama scheme always has a finite life time3, see e.g. [Kah04, Prop. 4.2].
The next example concerns a well-known process and the lack of the EM
method to preserve the domain of its solution.

Example 1.3.8 [CIR] The following linear drift model had been initially
proposed for the dynamics of the inflation rate by Cox, Ingersoll and Ross
[CIR85, (51)] and is thus named CIR. It is used in the field of finance as a
description of the stochastic volatility procedure in the Heston model [Hes93],
but also belongs to the fundamental family of SDEs that approximate Markov
jump processes [EK86]. The CIR model is described by the following SDE,

(1.3.2) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝜅(𝜆− 𝑥𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝜎
√
𝑥𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑥0 is independent of all {𝑊𝑡}𝑡≥0, 𝑥0 > 0 a.s. and the parameters 𝜅, 𝜆, 𝜎
are positive. Parameter 𝜆 is the level of the interest rate 𝑥𝑡 where the drift
is zero, meaning that when 𝑥𝑡 is below 𝜆 the drift is positive, whereas in the
other case it is negative. As 𝜆 grows, the range of the positive drift becomes
wider. Parameter 𝜅 defines the slope of the drift. The condition 𝜅 > 0 is
necessary for the stationarity of the process 𝑥𝑡. (The stationary distribution of
(𝑥𝑡) is gamma with shape parameter 2𝜆𝜅/𝜎2 and scale parameter 𝜎2/(2𝜅). In
particular it holds that E𝑥𝑡 = 𝑥0𝑒

−𝜅𝑡 + 𝜆(1− 𝑒−𝜅𝑡) and 𝑉 𝑎𝑟𝑥𝑡 = 𝑥0𝜎
2(𝑒−𝜅𝑡 −

𝑒−2𝜅𝑡)/𝜅 + 𝜆𝜎2(1 − 𝑒−𝜅𝑡)2/(2𝜅) c.f. [Shr04, Example 4.4.11]). When 𝜅 is
negative, the main term of the slope, −𝜅, is positive and given the diffusion
𝜎
√
𝑥𝑡, the process 𝑥𝑡 blows up. The condition 𝜎2 < 2𝜅𝜆 implied by the

Feller test [Fel51, Case (ii),p.173] is necessary and sufficient for the process
not to reach the boundary zero in finite time. Problem (1.3.2) is meant for
non-negative values, since it represents rates or pricing values. Thus ‘good’
numerical schemes preserve positivity ([AGKR10], [KGR08]). The explicit
Euler scheme has not that property, since its increments are conditional
Gaussian. For example, the transition probability of the Euler scheme in
case of (1.3.2) reads as

𝑝(𝑦|𝑥) = 1√
2𝜋𝜎2𝑥Δ

exp
{︁
− (𝑦 − (𝑥+ 𝜅(𝜆− 𝑥)Δ))2

2𝜎2𝑥Δ

}︁
, 𝑦 ∈ R, 𝑥 > 0,

3 We assume that the coefficients 𝑎(𝑡, 𝑥) and 𝑏(𝑡, 𝑥) are not simultaneously equal to zero
for all (𝑡, 𝑥).
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thus, even in the first step there is an event of negative values with positive
probability. We refer to [KN13], between other papers, that considers Euler
type schemes, modifications of them to overcome the above drawback, and
the importance of positivity. Thus, for the same problem, the truncated Euler
scheme [DD98] has been proposed, as well as a modification of it, [HM05],
where in a step the numerical scheme can leave (0,∞) but is forced to come
back in the next steps. For the aforementioned problem there are methods
of simulation ([BK06], [MG10]). However, if a full sample path of the SDE
has to be simulated or the SDEs under study are a part of a bigger system
of SDEs, then numerical schemes are in general more effective. 2

The next example is one more non-linear in diffusion model.

Example 1.3.9 [CEV] The constant elasticity of the variance model [Cox75]
is used for pricing assets and given by the SDE

(1.3.3) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝜇𝑥𝑠𝑑𝑠+

∫︁ 𝑡

0

𝜎𝑥𝛾𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑥0 is independent of {𝑊𝑡}0≤𝑡≤𝑇 , 𝑥0 > 0 a.s., 𝜇 ∈ R, 𝜎 > 0 and 0 <
𝛾 ≤ 1. SDE (1.3.3) has a unique strong solution if and only if 𝛾 ∈ [1/2, 1]
and takes values in [0,∞). The case 𝛾 = 1/2 corresponds to CIR model
(1.3.2), whereas 𝛾 = 1 corresponds to a Brownian motion, i.e. the famous
Black-Scholes model [BS73]. 2

Therefore, we focus on numerical schemes with eternal life time. In
[Sch96], where the above issue was originally discussed and further extended
to methods of higher order [KS06], the main interest is in the domain 𝐷 =
R+. We study positivity preserving numerical schemes, but also treat other
cases (see Chapter 5).

The second point of interest is in strong approximations (mean-square)
of (1.2.3), in the case of super- or sub-linear drift and diffusion coefficients.
This kind of numerical schemes, whose trajectories (sample paths) are close
to those of (1.2.3) have applications in many areas - we discussed some in
Section 1.1 but the interested reader is referred for instance to [HJ15, Sec. 4]
and references therein - have theoretical interest (they provide fundamental
insight for weak-sense schemes) and generally do not involve simulations over
long-time periods or of a significant number of trajectories. A criterion of
the closeness of the sample paths of (1.2.3) and the approximation process
at final time 𝑇 is the following.

Definition 1.3.10 [Strong Approximation] A time discrete approximation 𝑌
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with maximum step size Δ converges strongly to 𝑋 at time 𝑇 if

(1.3.4) lim
Δ→0

E|𝑌𝑇 −𝑋𝑇 |2 = 0.

2

Sometimes, although not of our interest here, it suffices to have a ‘good’
approximation of the probability distribution of 𝑋𝑇 rather than of its sample
paths. This is stated in the following.

Definition 1.3.11 [Weak Approximation] A time discrete approximation 𝑌
with maximum step size Δ converges in the weak sense to 𝑋 at time 𝑇 w.r.t.
a class 𝒞 of test functions 𝜑 : R𝑑 → R if

lim
Δ→0

|E𝜑(𝑌𝑇 )− E𝜑(𝑋𝑇 )|2 = 0,

for all 𝜑 ∈ 𝒞. 2

The above approximation is much weaker than the one provided by the
strong convergence criterion.

Relation (1.3.4) does not show the rate of convergence.

Definition 1.3.12 [Order of Strong Convergence] A time discrete approxi-
mation 𝑌 with maximum step size Δ converges strongly with order 𝛾 to 𝑋
at time 𝑇 if there is a 𝐶 > 0 and a Δ* > 0 such that

(1.3.5)
√︀
E|𝑌𝑇 −𝑋𝑇 |2 ≤ 𝐶 ·Δ𝛾,

for all Δ ∈ (0,Δ*), where the constant 𝐶 does not depend on Δ. 2

The order of a numerical scheme is usually less than that of the corre-
sponding deterministic one (when 𝑏 = 0) because of the increments of the
Wiener process which are of root mean-square order 1/2, i.e.

√︀
E(Δ𝑊𝑛)2 =

Δ
1/2
𝑛 .
Finally, assume the setting (1.2.3) where there is no time dependence in

the coefficients 𝑎 and 𝑏, and the resulting SDE is scalar and super-linear, i.e.
we consider the following SDE

𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝑎(𝑥𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑥𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑎, 𝑏 : R → R are measurable functions, 𝑥0 is independent of all
{𝑊𝑡}0≤𝑡≤𝑇 and let the constants 𝐶 ≥ 1, 𝛽 > 𝛼 > 1 be such that

(1.3.6) (|𝑎(𝑥)| ∨ |𝑏(𝑥)|) ≥ |𝑥|𝛽

𝐶
and (|𝑎(𝑥)| ∧ |𝑏(𝑥)|) ≤ 𝐶|𝑥|𝛼,
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for all |𝑥| ≥ 𝐶. Then the moments of the EM scheme may explode as shown
in [HJK11, Th. 1], which we state below.

Theorem 1.3.13 [Moment Explosion of EM scheme] Assume the setting
above. Then, there exists a constant 𝑐 ∈ (1,∞) and a sequence of non-empty
events Ω𝑁 ∈ ℱ , 𝑁 ∈ N with P(Ω𝑁) ≥ 𝑐−𝑁𝑐

and |𝑌𝑁(𝜔)| ≥ 2𝛼
𝑁−1

for all
𝜔 ∈ Ω𝑁 and all 𝑁 ∈ N. Furthermore, if E|𝑥𝑇 |𝑝 <∞ for a 𝑝 ∈ [1,∞), then

lim
𝑁→∞

E|𝑥𝑇 − 𝑌 𝐸𝑀
𝑁 |𝑝 = ∞ and lim

𝑁→∞
E|𝑌 𝐸𝑀

𝑁 |𝑝 = ∞.

2

In other words, there exists a sequence of events of at least exponentially
small probability on which the EM approximations grow at least double-
exponentially fast resulting to them being unbounded in the ℒ1-norm. (The
way the EM scheme diverges follows by the inequality E|𝑌 𝐸𝑀

𝑁 | ≥ P(Ω𝑁)|𝑌𝑁 |,
see proof of [HJK11, Th. 1])

A numerical method that does not explode in the super-linear case is the
tamed Euler method, see (2.1.5) suggested in [HJ15, (4)], which is explicit
and strongly convergent. Nevertheless, it does not possess an eternal life
time.

Therefore, we also aim for a numerical scheme that does not explode. In
summary our goal is to construct numerical schemes with eternal life time,
that converge strongly to the exact solution and do not explode.

1.4 Content of thesis.

This section explains how the following chapters fit in the picture drawn in
the previous sections and especially Section 1.3. It is an outline of the content
of this thesis.

Let us rewrite the general SDE (1.2.3) in the one-dimensional case

(1.4.1) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝑎(𝑠, 𝑥𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑠, 𝑥𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑥0 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 and 𝑎, 𝑏 : [0, 𝑇 ] × R → R are
such that (1.4.1) has a unique strong solution. We introduce the auxil-
iary functions 𝑓(𝑠, 𝑟, 𝑥, 𝑦), 𝑔(𝑠, 𝑟, 𝑥, 𝑦) : [0, 𝑇 ]2 × R2 → R with 𝑓(𝑠, 𝑠, 𝑥, 𝑥) =
𝑎(𝑠, 𝑥), 𝑔(𝑠, 𝑠, 𝑥, 𝑥) = 𝑏(𝑠, 𝑥), satisfying some local Lipschitz-type conditions,
see for instance Assumption 2.2.1. Consider also the equidistant partition
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0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑇 with Δ = 𝑇/𝑁. The numerical scheme that we
propose, and call semi-discrete (SD), has the following representation in each
subinterval [𝑡𝑛, 𝑡𝑛+1], see (2.2.1)

(1.4.2) 𝑦𝑡 = 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

𝑓(𝑡𝑛, 𝑠, 𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝑔(𝑡𝑛, 𝑠, 𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑊𝑠.

(All the related work concerning the semi-discrete method can be found in
[Hal12, Hal14, Hal15d, Hal15c, Hal15b, Hal15a, HS16, HS15, Hal16]). The
discretized part of the original SDE is given by the first and third vari-
able of 𝑓, 𝑔. Note, that by fully discretizing the SDE, i.e. by choosing
𝑓(𝑠, 𝑟, 𝑥, 𝑦) = 𝑎(𝑠, 𝑥) and 𝑔(𝑠, 𝑟, 𝑥, 𝑦) = 𝑏(𝑠, 𝑥), we can reproduce the ex-
plicit Euler scheme. Moreover, a main difference of the SD method and all
other numerical methods is that in each subinterval we have to solve a new
SDE, and not an algebraic equation. The natural question that arises is the
following:

How do we choose the auxiliary functions 𝑓 and 𝑔?

The main idea of the SD method is to discretize only partially the original
SDE in such a way that the remaining SDE has an explicit solution. Of course
in this way, we do not produce a unique numerical scheme. Nevertheless we
are able to prove the existence of a numerical scheme that overcomes the
problems mentioned before, and make it specific in different cases separately.
Thus, our method has the following properties:

(𝑃1) Converges strongly (in the mean-square sense) to the exact solution;

(𝑃2) Possesses an eternal life time;

(𝑃3) Does not explode in some non-linear problems;

(𝑃4) Is explicit.

In Chapter 2 we apply the SD method to super-linear problems of the
form (1.3.6). Assuming moment bounds of the original SDE and the SD
approximation we prove the strong convergence of our numerical scheme
(1.4.2) to the true solution of (1.4.1). This is stated in Theorem 2.2.2 where
we show that

(1.4.3) lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 = 0.
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The kind of discretization that we use in the super-linear examples in
Section 2.4 is multiplicative. The new SDE (1.4.2) is linear with exponential
solution in each subinterval. The domain of interest is R+ and in the numer-
ical experiments Section 2.5 we treat the Heston 3/2-model with coefficients
of the form 𝑎(𝑠, 𝑥) = 𝑘1𝑥− 𝑘2𝑥

2 and 𝑏(𝑠, 𝑥) = 𝑘3𝑥
3/2.

Relation (1.4.3) does not reveal the order of convergence. Nevertheless,
since our scheme is first order -we use one stochastic integral in (1.4.2)- we
know beforehand that the best we can expect is a numerical scheme with
order 1, i.e. of the type (1.3.5) with 𝛾 = 1

(E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2)1/2 ≤ 𝐶 ·Δ.

We note that even when coefficients 𝑎 and 𝑏 are ‘good’, the same does not
hold in general for the auxiliary functions 𝑓 and 𝑔 respectively, thus using
standard arguments, we cannot estimate the order of convergence.

In Chapter 3 we study sub-linear models with coefficients of the form
𝑎(𝑠, 𝑥) = 𝑘1 − 𝑘2𝑥 and 𝑏(𝑠, 𝑥) = 𝑘3𝑥

𝑞 with 1/2 < 𝑞 < 1. We know again
that 𝑥𝑡 > 0 a.s. and aim for a scheme that is positivity preserving. Now,
we use an additive discretization and are able to show the order of strong
convergence which under some assumptions on the coefficients 𝑘𝑖 is proved
to be (𝑞 − 1/2)/2, that is (see Theorem 3.2.4)

(E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2)1/2 ≤ 𝐶 ·Δ(𝑞−1/2)/2.

Now, suppose that the initial condition 𝑥0 in (1.4.1) is replaced by a
function 𝜉(𝑡) with 𝑡 ∈ [−𝜏, 0], i.e. we have some additional information on
previous times, where 𝜏 > 0 represents the amount of information available.
This is the simplest case of equations called constant delay differential equa-
tions. We study in Chapter 4 a special model in the above setting called
Delay Geometric Brownian Motion. This model arises in the area of finan-
cial mathematics in evaluating options. We show once more the mean-square
convergence of our scheme to the exact solution of the DGBM model, see
Theorem 4.2.2.

Finally, Chapter 5 is devoted to a class of SDEs with solutions in a domain
other than R+. In particular the class of SDEs that we study admits solutions
that lie in the interval (−1, 1) and the goal is to construct a numerical scheme
that preserves that structure satisfying in the same time properties (𝑃1) −
(𝑃4). This kind of SDEs appear in the field of molecular dynamics and in
particular the so called 3-atom model [LL10, Sec. 4.2].
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2.1 Introduction.

We 1 assume the setting in Section 1.2, with 𝑑 = 𝑚 = 1, i.e. let 𝑇 > 0 and
(Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 ,P) be a complete probability space, let𝑊𝑡,𝜔 : [0, 𝑇 ]×Ω → R

1 This chapter is based on joint work with Nikolaos Halidias, published in Comput.
Methods Appl. Math. (2015), DOI: 10.1515/cmam-2015-0028 [HS16].
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be a one-dimensional Wiener process adapted to the filtration {ℱ𝑡}0≤𝑡≤𝑇 and
consider the following stochastic differential equation (SDE),

(2.1.1) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝑎(𝑠, 𝑥𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑠, 𝑥𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where the coefficients 𝑎, 𝑏 : [0, 𝑇 ]×R → R are measurable functions such that
(2.1.1) has a unique strong solution and 𝑥0 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 .
SDE (2.1.1) has non-autonomous coefficients, i.e. 𝑎(𝑡, 𝑥), 𝑏(𝑡, 𝑥) depend ex-
plicitly on 𝑡.

We are interested in numerical approximations of (2.1.1) and in particular
in mean-square approximations for all the reasons discussed already in the
end of Section 1.2 and in Section 1.3.

We present some models that are super-linear in the drift and diffusion
coefficient:

∙ The 3/2-model [Hes97] or the inverse square root process [AG99], is
used for modeling stochastic volatility and reads,

(2.1.2) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(𝛼𝑥𝑠 − 𝛽𝑥2𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝜎𝑥3/2𝑠 𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑥0 is independent of {𝑊𝑡}0≤𝑡≤𝑇 , 𝑥0 > 0 a.s. and 𝜎 ∈ R. The
conditions 𝛼 > 0 and 𝛽 > 0 are necessary and sufficient for the sta-
tionarity of the process 𝑥𝑡 and such that neither zero nor infinity is
attainable in finite time [AG99, App. A].

∙ Super-linear models are models of the form (2.1.1) where one of the
coefficients 𝑎(·), 𝑏(·) is super-linear, i.e. when we have that

(2.1.3) 𝑎(𝑥) ≥ |𝑥|𝛽

𝐶
, 𝑏(𝑥) ≤ 𝐶|𝑥|𝛼, for every |𝑥| ≥ 𝐶,

or

(2.1.4) 𝑏(𝑥) ≥ |𝑥|𝛽

𝐶
, 𝑎(𝑥) ≤ 𝐶|𝑥|𝛼, for every |𝑥| ≥ 𝐶,

where 𝛽 > 1, 𝛽 > 𝛼 ≥ 0, 𝐶 > 0.
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For the Heston 3/2-model there are methods of exact simulation ([BK06],
[MG10]). However, if a full sample path of the SDE has to be simulated or
the SDEs under study are a part of a bigger system of SDEs, then numerical
schemes are in general more effective.

Problem (2.1.2) is meant for non-negative values. Thus for reasons al-
ready discussed, see Example 1.3.8 where the inverse process of (2.1.2) is
considered, we aim for a positivity preserving scheme, since the explicit EM
scheme does not possess that property.

One more drawback, that appears in case of super-linear problems (2.1.3)
or (2.1.4), like the special case (2.1.2), is that the moments of the scheme
may explode [HJK11, Th. 1]. A method that overcomes this drawback is the
tamed Euler method, [HJ15, (4)]. It reads:

𝑌 𝑁
0 (𝜔) := 𝑥0(𝜔)

and
(2.1.5)

𝑌 𝑁
𝑛+1(𝜔) := 𝑌 𝑁

𝑛 (𝜔) +
𝑇/𝑁 · 𝑎(𝑌 𝑁

𝑛 (𝜔)) + 𝑏(𝑌 𝑁
𝑛 (𝜔))Δ𝑊𝑛(𝜔)

max{1, 𝑇
𝑁
·
⃒⃒
𝑇
𝑁
𝑎(𝑌 𝑁

𝑛 (𝜔)) + 𝑏(𝑌 𝑁
𝑛 (𝜔))Δ𝑊𝑛(𝜔)

⃒⃒
}
,

for every 𝑛 ∈ {0, 1, ..., 𝑁 − 1}, 𝑁 ∈ N and all 𝜔 ∈ Ω where Δ𝑊𝑛(𝜔) :=
𝑊 (𝑛+1)𝑇

𝑁

(𝜔) − 𝑊𝑛𝑇
𝑁
(𝜔). The numerical scheme (2.1.5) is explicit, does not

explode and converges strongly to the exact solution 𝑥𝑡 of SDE (2.1.1), i.e.,

(2.1.6) lim
𝑁→∞

(︂
sup

0≤𝑡≤𝑇
E
⃒⃒⃒
𝑥𝑡 − 𝑌

𝑁

𝑡

⃒⃒⃒𝑞)︂
= 0,

for some 𝑞 > 0, where 𝑌
𝑁

𝑡 := (𝑛+ 1− 𝑡𝑁
𝑇
)𝑌 𝑁

𝑛 + ( 𝑡𝑁
𝑇
− 𝑛)𝑌 𝑁

𝑛+1 are continuous
versions of (2.1.5) through linear interpolation. A balanced type scheme is
also proposed in [TZ13, (3.1)], which reads

(2.1.7) 𝑌 𝑁
𝑛+1(𝜔) := 𝑌 𝑁

𝑛 (𝜔) +
𝑇/𝑁 · 𝑎(𝑌 𝑁

𝑛 (𝜔)) + 𝑏(𝑌 𝑁
𝑛 (𝜔))Δ𝑊𝑛(𝜔)

1 + 𝑇
𝑁
|𝑎(𝑌 𝑁

𝑛 (𝜔))|+ |𝑏(𝑌 𝑁
𝑛 (𝜔))Δ𝑊𝑛(𝜔)|

,

where also the mean-square convergence rate is proved to be 1/2, when the
coefficients grow polynomially at infinity and satisfy a one-sided Lipschitz
condition [TZ13, Prop. 3.3] in the sense

E
⃒⃒⃒
𝑥𝑛 − 𝑌 𝑁

𝑛

⃒⃒⃒2𝑞
≤ 𝐶(1 + E|𝑥0|2𝛾𝑞) ·Δ𝑞,
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where Δ = 𝑇/𝑁, 𝛾 ≥ 1 and 𝐶 does not depend on Δ. The stability properties
of general tamed Euler schemes of the form

(2.1.8) 𝑌 𝑁
𝑛+1(𝜔) := 𝑌 𝑁

𝑛 (𝜔) + 𝑎Δ(𝑌 𝑁
𝑛 (𝜔)) ·Δ+ 𝑏Δ(𝑌 𝑁

𝑛 (𝜔))Δ𝑊𝑛(𝜔),

where 𝑎Δ → 𝑎 and 𝑏Δ → 𝑏 as Δ → 0, are investigated in [Szp13] and a
result of the form (2.1.6) is recovered. Schemes of the form (2.1.8) are also
considered in [Sab15] where for the choice

(2.1.9) 𝑎Δ(𝑡, 𝑦) =
𝑎(𝑡, 𝑦)

1 +
√
Δ|𝑦|𝑙

, 𝑏Δ(𝑡, 𝑦) =
𝑏(𝑡, 𝑦)

1 +
√
Δ|𝑦|𝑙

,

where 𝑙 comes from the polynomial growth of 𝑎, a uniform ℒ𝑝-convergence
result is obtained [Sab15, Th. 3],

E sup
0≤𝑡≤𝑇

|𝑥𝑡 − 𝑌 𝑁
𝑛 (𝑡)|𝑞 ≤ 𝐶 ·Δ𝑞/2,

where 𝐶 is independent of Δ and 𝑞 < 𝑝. In general, all the above balanced
schemes (2.1.5), (2.1.7), (2.1.8) and (2.1.9) that treat no globally Lipschitz
coefficients, as well as the ones suggested in [HJ14] are half-order mean-
square convergent schemes. Still all of them do not preserve positivity. See
also [Zha14] where a first-order mean-square convergent scheme is proposed
which reads

𝑌 𝑁
𝑛+1(𝜔) := 𝑌 𝑁

𝑛 (𝜔) + sin(𝑎(𝑌 𝑁
𝑛 (𝜔)) ·Δ) + sin

(︀
𝑏(𝑌 𝑁

𝑛 (𝜔))Δ𝑊𝑛(𝜔)
)︀
.

For the aforementioned reasons there is an interest in the construction of
suitable numerical schemes. An attempt to this direction has been made by
the first author in [Hal12] and [Hal14] suggesting the semi-discrete method
(where, briefly saying, we discretize a part of the SDE). Using this method
in [Hal12] the author produced a new numerical scheme (but not unique in
this situation) for the first aforementioned problem and proved the strong
convergence of the scheme in mean-square sense. Later on, in [Hal14], the
author generalized the idea of the semi-discrete method and used this gener-
alization to approximate a class of super-linear problems, suggesting a new
numerical scheme that preserves positivity in that case, proving again the
strong convergence in the mean-square sense.

A basic feature of the semi-discrete method is that it is explicit, compared
to other interesting, but implicit methods ([MS13c],[MS13b]), and converges
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strongly in the mean-square sense to the exact solution of the original SDE.
Moreover, the semi-discrete method preserves positivity [Hal12, Sec. 3] and
it does not explode in some super-linear problems [Hal14, Sec. 3].

Here, we generalize further the method to include non-autonomous co-
efficients, 𝑎(𝑡, 𝑥), 𝑏(𝑡, 𝑥) in (2.1.1) and cover cases like that of the Heston
3/2-model. The extension of [Hal14, Th. 1] to time-dependent coefficients is
not so difficult, but in order to deal with super-linear diffusion coefficients,
like for example of the form 𝑏(𝑡, 𝑥) = 𝛽(𝑡) · 𝑥3/2, we have to use auxiliary
functions 𝑔 that satisfy Assumption 2.2.1 below (cf. [Hal14, Ass. A]).

2.2 The setting and the main result.

Assumption 2.2.1 Let 𝑓(𝑠, 𝑟, 𝑥, 𝑦), 𝑔(𝑠, 𝑟, 𝑥, 𝑦) : [0, 𝑇 ]2 × R2 → R be such
that

𝑓(𝑠, 𝑠, 𝑥, 𝑥) = 𝑎(𝑠, 𝑥), 𝑔(𝑠, 𝑠, 𝑥, 𝑥) = 𝑏(𝑠, 𝑥),

where 𝑓, 𝑔 satisfy the following conditions:

|𝑓(𝑠1, 𝑟1, 𝑥1, 𝑦1)− 𝑓(𝑠2, 𝑟2, 𝑥2, 𝑦2)| ≤ 𝐶𝑅

(︁
|𝑠1 − 𝑠2|+ |𝑟1 − 𝑟2|

+|𝑥1 − 𝑥2|+ |𝑦1 − 𝑦2|
)︁

|𝑔(𝑠1, 𝑟1, 𝑥1, 𝑦1)− 𝑔(𝑠2, 𝑟2, 𝑥2, 𝑦2)| ≤ 𝐶𝑅

(︀
|𝑠1 − 𝑠2|+ |𝑟1 − 𝑟2|

+|𝑥1 − 𝑥2|+ |𝑦1 − 𝑦2|+
√︀

|𝑥1 − 𝑥2|
)︀
,

for any 𝑅 > 0 such that |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨ |𝑦2| ≤ 𝑅, where the constant 𝐶𝑅

depends on 𝑅. 2

Given the equidistant partition 0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑇 and Δ = 𝑇/𝑁,
we propose the semi-discrete numerical scheme

(2.2.1) 𝑦𝑡 = 𝑦𝑡𝑛+

∫︁ 𝑡

𝑡𝑛

𝑓(𝑡𝑛, 𝑠, 𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝑔(𝑡𝑛, 𝑠, 𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑊𝑠, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],

where we assume that for every 𝑛 ≤ 𝑁 − 1, (2.2.1) has a unique strong
solution and 𝑦0 = 𝑥0 a.s. In order to compare with the exact solution 𝑥𝑡,
which is a continuous time process, we consider the following interpolation
process of the semi-discrete approximation, in a compact form,

(2.2.2) 𝑦𝑡 = 𝑦0 +

∫︁ 𝑡

0

𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)𝑑𝑊𝑠,
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where 𝑠 = 𝑡𝑛, when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1). The representation (2.2.2) is equivalent to
(2.2.1), since for a 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] we have

𝑦𝑡 = 𝑦0 +

(︂∫︁ 𝑡1

0

+

∫︁ 𝑡2

𝑡1

+ . . .+

∫︁ 𝑡

𝑡𝑛

)︂
𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)𝑑𝑠

+

(︂∫︁ 𝑡1

0

+

∫︁ 𝑡1

0

+ . . .+

∫︁ 𝑡

𝑡𝑛

)︂
𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)𝑑𝑊𝑠

= 𝑦0 +

∫︁ 𝑡1

0

𝑓(𝑡0, 𝑠, 𝑦𝑡0 , 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡1

0

𝑔(𝑡0, 𝑠, 𝑦𝑡0 , 𝑦𝑠)𝑑𝑊𝑠⏟  ⏞  
𝑦𝑡1

+

∫︁ 𝑡2

𝑡1

𝑓(𝑡1, 𝑠, 𝑦𝑡1 , 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡2

𝑡1

𝑔(𝑡1, 𝑠, 𝑦𝑡1 , 𝑦𝑠)𝑑𝑊𝑠 + . . .

= 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

𝑓(𝑡𝑛, 𝑠, 𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝑔(𝑡𝑛, 𝑠, 𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑊𝑠.

The first and third variable in 𝑓, 𝑔 denote the discretized part of the
original SDE. We observe from (2.2.2) that in order to solve for 𝑦𝑡, we have
to solve an SDE and not an algebraic equation, thus in this context, we
cannot reproduce implicit schemes, but we can reproduce the Euler scheme
if we choose 𝑓(𝑠, 𝑟, 𝑥, 𝑦) = 𝑎(𝑠, 𝑥) and 𝑔(𝑠, 𝑟, 𝑥, 𝑦) = 𝑏(𝑠, 𝑥).

The numerical scheme (2.2.2) converges to the true solution 𝑥𝑡 of SDE
(2.1.1) and this is stated in the following, which is our main result.

Theorem 2.2.2 Suppose Assumption 2.2.1 holds and (2.2.1) has a unique
strong solution for every 𝑛 ≤ 𝑁 − 1, where 𝑥0 ∈ ℒ𝑝(Ω,R), 𝑥0 > 0 a.s. Let
also

E( sup
0≤𝑡≤𝑇

|𝑥𝑡|𝑝) ∨ E( sup
0≤𝑡≤𝑇

|𝑦𝑡|𝑝) < 𝐴,

for some 𝑝 > 2 and 𝐴 > 0. Then the semi-discrete numerical scheme (2.2.2)
converges to the true solution of (2.1.1) in the mean-square sense, that is

(2.2.3) lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 = 0.

2

Section 2.3 is devoted to the proof of Theorem 2.2.2. Section 2.4 gives
applications to super-linear drift and diffusion problems with non-negative
solution, one of which includes the Heston 3/2-model. Section 2.5 shows



2.3. Proof of Theorem 2.2.2. 29

experimentally the order of convergence of the SD method applied to the
Heston 3/2-model. The semi-discrete scheme is strongly convergent in the
mean-square sense and preserves positivity of the solution.

2.3 Proof of Theorem 2.2.2.

We denote the indicator function of a set 𝐴 by I𝐴. The constant 𝐶𝑅 may
vary from line to line and it may depend apart from 𝑅 on other quantities,
like time 𝑇 for example, which are all constant, in the sense that we do not
let them grow to infinity.

2.3.1 Error Bound for the Explicit Semi-Discrete Scheme.

Lemma 2.3.3 Let the assumptions of Theorem 2.2.2 hold. Let 𝑅 > 0, and
set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : |𝑦𝑡| > 𝑅 or |𝑦𝑡| > 𝑅}. Then the
following estimate holds

E|𝑦𝑠∧𝜃𝑅 − 𝑦
𝑠∧𝜃𝑅

|2 ≤ 𝐶𝑅Δ,

where 𝐶𝑅 does not depend on Δ, implying sup𝑠∈[𝑡𝑛𝑠 ,𝑡𝑛𝑠+1] E|𝑦𝑠∧𝜃𝑅 − 𝑦
𝑠∧𝜃𝑅

|2 =
𝑂(Δ) as Δ ↓ 0. 2

Proof of Lemma 2.3.3. Let 𝑛𝑠 be an integer such that 𝑠 ∈ [𝑡𝑛𝑠 , 𝑡𝑛𝑠+1). It holds
that

|𝑦𝑠∧𝜃𝑅 − 𝑦
𝑠∧𝜃𝑅

|2 =

⃒⃒⃒⃒
⃒
∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑓(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑢+

∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑔(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑊𝑢

⃒⃒⃒⃒
⃒
2

≤ 2

(︃∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑓(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑢

)︃2

+ 2

(︃∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑔(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑊𝑢

)︃2

≤ 2Δ

∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑓 2(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑢+ 2

(︃∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑔(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑊𝑢

)︃2

≤ 𝐶𝑅Δ
2 + 2

(︃∫︁ 𝑠∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑔(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑊𝑢

)︃2

,

where we have used the Cauchy-Schwarz inequality (B.1.1) and Assumption
2.2.1 for the function 𝑓. (By the fact that we want the problem (2.1.1) to be
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well posed and by the conditions on 𝑓 and 𝑔 we get that 𝑓, 𝑔 are bounded on
bounded intervals.) Taking expectations in the above inequality gives

E|𝑦𝑠∧𝜃𝑅 − 𝑦
𝑠∧𝜃𝑅

|2 ≤ 𝐶𝑅Δ
2 + 8E

∫︁ 𝑡𝑛𝑠+1∧𝜃𝑅

𝑡𝑛𝑠∧𝜃𝑅

𝑔2(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)𝑑𝑢

≤ 𝐶𝑅Δ
2 + 𝐶𝑅Δ,

where in the first step we have used the BDG inequality (B.3.5) on the
diffusion term and in the second step Assumption 2.2.1 for the function 𝑔.
Thus,

lim
Δ↓0

sup𝑠∈[𝑡𝑛𝑠 ,𝑡𝑛𝑠+1] E|𝑦𝑠∧𝜃𝑅 − 𝑦
𝑠∧𝜃𝑅

|2

Δ
≤ 𝐶𝑅,

which justifies the 𝑂(Δ) notation, (see for example [Olv97]).

2.3.2 Convergence of the Semi-Discrete Scheme in ℒ1.

Proposition 2.3.4 Let the assumptions of Theorem 2.2.2 hold. Let 𝑅 > 0,
and set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : |𝑦𝑡| > 𝑅 or |𝑥𝑡| > 𝑅}. Then
we have

sup
0≤𝑡≤𝑇

E|𝑦𝑡∧𝜃𝑅 − 𝑥𝑡∧𝜃𝑅 | ≤
[︁(︁
𝐶𝑅 +

𝐶𝑅

𝑚𝑒𝑚

)︁√
Δ+

(︁ 𝐶𝑅

𝑚𝑒𝑚
+ 𝐶𝑅

)︁
Δ+

𝐶𝑅

𝑚𝑒𝑚
Δ2

+
𝐶𝑅

𝑚
+ 𝑒𝑚−1

]︁
𝑒𝑎𝑅,𝑚𝑇 ,

for any 𝑚 > 1, where 𝑒𝑚 = 𝑒−𝑚(𝑚+1)/2, 𝑎𝑅,𝑚 := 𝐶𝑅 + 𝐶𝑅

𝑚
and 𝐶𝑅 does not

depend on Δ. It holds that lim𝑚↑∞ 𝑒𝑚 = 0. 2

Proof of Proposition 2.3.4. Given the non-increasing sequence {𝑒𝑚}𝑚∈N with
𝑒𝑚 = 𝑒−𝑚(𝑚+1)/2 and 𝑒0 = 1, we introduce the following sequence of smooth
approximations of |𝑥|, (method of Yamada and Watanabe, [YW71])

𝜑𝑚(𝑥) =

∫︁ |𝑥|

0

𝑑𝑦

∫︁ 𝑦

0

𝜓𝑚(𝑢)𝑑𝑢,

where the existence of the continuous function 𝜓𝑚(𝑢) with 0 ≤ 𝜓𝑚(𝑢) ≤
2/(𝑚𝑢) and support in (𝑒𝑚, 𝑒𝑚−1) is justified by

∫︀ 𝑒𝑚−1

𝑒𝑚
(𝑑𝑢/𝑢) = 𝑚/2. The
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following relations hold for 𝜑𝑚 ∈ 𝒞2(R;R) with 𝜑𝑚(0) = 0,

(𝑃1) |𝑥| − 𝑒𝑚−1 ≤ 𝜑𝑚(𝑥) ≤ |𝑥|,
(𝑃2) |𝜑′

𝑚(𝑥)| ≤ 1, 𝑥 ∈ R,

(𝑃3) |𝜑′′
𝑚(𝑥)| ≤

2

𝑚|𝑥|
, for 𝑒𝑚 < |𝑥| < 𝑒𝑚−1 and |𝜑′′

𝑚(𝑥)| = 0, otherwise.

Denote ℰ𝑡 := 𝑦𝑡 − 𝑥𝑡. We have that

(2.3.1) E|ℰ𝑡∧𝜃𝑅 | ≤ 𝑒𝑚−1 + E𝜑𝑚(ℰ𝑡∧𝜃𝑅).

Applying Itô’s formula to the sequence {𝜑𝑚}𝑚∈N, we get

𝜑𝑚(ℰ𝑡∧𝜃𝑅) =

∫︁ 𝑡∧𝜃𝑅

0

𝜑′
𝑚(ℰ𝑠)(𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑓(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠))𝑑𝑠+𝑀𝑡

+
1

2

∫︁ 𝑡∧𝜃𝑅

0

𝜑′′
𝑚(ℰ𝑠)(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠))

2𝑑𝑠,

where

𝑀𝑡 :=

∫︁ 𝑡∧𝜃𝑅

0

𝜑′
𝑚(ℰ𝑢)(𝑔(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢)− 𝑔(𝑢, 𝑢, 𝑥𝑢, 𝑥𝑢))𝑑𝑊𝑢.

Assumption 2.2.1 for the functions 𝑓, 𝑔 and the properties of 𝜑𝑚, imply

𝜑𝑚(ℰ𝑡∧𝜃𝑅) ≤
∫︁ 𝑡∧𝜃𝑅

0

𝐶𝑅 (|𝑦𝑠 − 𝑥𝑠|+ |ℰ𝑠|+ |𝑠− 𝑠|) 𝑑𝑠+𝑀𝑡

+
1

2

∫︁ 𝑡∧𝜃𝑅

0

2

𝑚|ℰ𝑠|
𝐶𝑅

(︀
|𝑦𝑠 − 𝑥𝑠|2 + |ℰ𝑠|2 + |𝑦𝑠 − 𝑥𝑠|+ |𝑠− 𝑠|2

)︀
𝑑𝑠

≤ 𝐶𝑅

∫︁ 𝑡∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|𝑑𝑠+ 𝐶𝑅

∫︁ 𝑡∧𝜃𝑅

0

|ℰ𝑠|𝑑𝑠+ 𝐶𝑅

∫︁ 𝑡∧𝜃𝑅

0

|𝑠− 𝑠|𝑑𝑠+𝑀𝑡

+
𝐶𝑅

𝑚

∫︁ 𝑡∧𝜃𝑅

0

2|𝑦𝑠 − 𝑦𝑠|2 + 3|ℰ𝑠|2 + |𝑦𝑠 − 𝑥𝑠|+ |𝑠− 𝑠|2

|ℰ𝑠|
𝑑𝑠

≤ (𝐶𝑅 +
𝐶𝑅

𝑚𝑒𝑚
)

∫︁ 𝑡∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|𝑑𝑠+
𝐶𝑅

𝑚𝑒𝑚

∫︁ 𝑡∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠+𝑀𝑡

+(𝐶𝑅 +
𝐶𝑅

𝑚
)

∫︁ 𝑡∧𝜃𝑅

0

|ℰ𝑠|𝑑𝑠+
𝐶𝑅

𝑚

+
𝐶𝑅

𝑚𝑒𝑚

[𝑡/Δ−1]∑︁
𝑘=0

∫︁ 𝑡𝑘+1∧𝜃𝑅

𝑡𝑘

|𝑡𝑘 − 𝑠|2𝑑𝑠+ 𝐶𝑅

[𝑡/Δ−1]∑︁
𝑘=0

∫︁ 𝑡𝑘+1∧𝜃𝑅

𝑡𝑘

|𝑡𝑘 − 𝑠|𝑑𝑠
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or

𝜑𝑚(ℰ𝑡∧𝜃𝑅) ≤ (𝐶𝑅 +
𝐶𝑅

𝑚𝑒𝑚
)

∫︁ 𝑡∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|𝑑𝑠+
𝐶𝑅

𝑚𝑒𝑚

∫︁ 𝑡∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠

+(𝐶𝑅 +
𝐶𝑅

𝑚
)

∫︁ 𝑡∧𝜃𝑅

0

|ℰ𝑠|𝑑𝑠+
𝐶𝑅

𝑚
+

𝐶𝑅

𝑚𝑒𝑚
Δ2 + 𝐶𝑅Δ+𝑀𝑡.

Taking expectations in the above inequality yields

E𝜑𝑚(ℰ𝑡∧𝜃𝑅) ≤ (𝐶𝑅 +
𝐶𝑅

𝑚𝑒𝑚
)

∫︁ 𝑡∧𝜃𝑅

0

E|𝑦𝑠 − 𝑦𝑠|𝑑𝑠+ (𝐶𝑅 +
𝐶𝑅

𝑚
)

∫︁ 𝑡∧𝜃𝑅

0

E|ℰ𝑠|𝑑𝑠

+
𝐶𝑅

𝑚𝑒𝑚

∫︁ 𝑡∧𝜃𝑅

0

E|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠+
𝐶𝑅

𝑚
+

𝐶𝑅

𝑚𝑒𝑚
Δ2 + 𝐶𝑅Δ+ E𝑀𝑡

≤
(︂
𝐶𝑅 +

𝐶𝑅

𝑚𝑒𝑚

)︂√
Δ+

(︂
𝐶𝑅

𝑚𝑒𝑚
+ 𝐶𝑅

)︂
Δ+

𝐶𝑅

𝑚𝑒𝑚
Δ2 +

𝐶𝑅

𝑚

+

(︂
𝐶𝑅 +

𝐶𝑅

𝑚

)︂∫︁ 𝑡∧𝜃𝑅

0

E|ℰ𝑠|𝑑𝑠,

where we have used Lemma 2.3.3 and the fact that E𝑀𝑡 = 0.(Note that the
function ℎ(𝑢) = 𝜑′

𝑚(ℰ𝑢)(𝑔(𝑢̂, 𝑢, 𝑦𝑢̂, 𝑦𝑢) − 𝑔(𝑢, 𝑢, 𝑥𝑢, 𝑥𝑢)) belongs to the space
ℳ2([0, 𝑡 ∧ 𝜃𝑅];R) of real-valued measurable ℱ𝑡-adapted processes such that
E
∫︀ 𝑡∧𝜃𝑅
0

|ℎ(𝑢)|2𝑑𝑢 < ∞. Now [Mao97, Th. 1.5.8] implies E𝑀𝑡 = 0.) Thus
(2.3.1) becomes

E|ℰ𝑡∧𝜃𝑅 | ≤ (𝐶𝑅 +
𝐶𝑅

𝑚𝑒𝑚
)
√
Δ+ (

𝐶𝑅

𝑚𝑒𝑚
+ 𝐶𝑅)Δ +

𝐶𝑅

𝑚𝑒𝑚
Δ2 +

𝐶𝑅

𝑚
+ 𝑒𝑚−1

+

(︂
𝐶𝑅 +

𝐶𝑅

𝑚

)︂∫︁ 𝑡∧𝜃𝑅

0

E|ℰ𝑠|𝑑𝑠

≤
[︂
(𝐶𝑅 +

𝐶𝑅

𝑚𝑒𝑚
)
√
Δ+ (

𝐶𝑅

𝑚𝑒𝑚
+ 𝐶𝑅)Δ +

𝐶𝑅

𝑚𝑒𝑚
Δ2 +

𝐶𝑅

𝑚
+ 𝑒𝑚−1

]︂
𝑒𝑎𝑅,𝑚𝑡,

where in the last step we have used the Gronwall inequality (B.3.6) and
𝑎𝑅,𝑚 = 𝐶𝑅 + 𝐶𝑅

𝑚
. Taking the supremum over all 0 ≤ 𝑡 ≤ 𝑇 implies the

statement of Proposition 2.3.4.



2.3. Proof of Theorem 2.2.2. 33

2.3.3 Convergence of the Semi-Discrete Scheme in ℒ2.

Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : |𝑦𝑡| > 𝑅 or |𝑥𝑡| > 𝑅}, for some
𝑅 > 0 big enough. We have that

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 = E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2I(𝜃𝑅>𝑡) + E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2I(𝜃𝑅≤𝑡)

≤ E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 +
2𝛿

𝑝
E sup

0≤𝑡≤𝑇
|ℰ𝑡|𝑝 +

(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 )

≤ E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 +
2𝑝𝛿

𝑝
E sup

0≤𝑡≤𝑇
(|𝑦𝑡|𝑝 + |𝑥𝑡|𝑝) +

(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 ),

where in the second step we have applied the Young inequality, see (B.1.2),

𝑎𝑏 ≤ 𝛿

𝑟
𝑎𝑟 +

1

𝑞𝛿𝑞/𝑟
𝑏𝑞,

for 𝑎 = sup0≤𝑡≤𝑇 |ℰ𝑡|2, 𝑏 = I(𝜃𝑅≤𝑡), 𝑟 = 𝑝/2, 𝑞 = 𝑝/(𝑝−2) and 𝛿 > 0 and in the
third step we have used the elementary inequality (

∑︀𝑛
𝑖=1 𝑎𝑖)

𝑝 ≤ 𝑛𝑝−1
∑︀𝑛

𝑖=1 𝑎
𝑝
𝑖 ,

with 𝑛 = 2. In other words,

(2.3.2) E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 ≤ E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 +
2𝑝+1𝛿𝐴

𝑝
+

(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 ),

where 𝐴 comes from the moment bound assumption. It holds that

P(𝜃𝑅 ≤ 𝑇 ) ≤ E
(︂
I(𝜃𝑅≤𝑇 )

|𝑦𝜃𝑅 |𝑝

𝑅𝑝

)︂
+ E

(︂
I(𝜃𝑅≤𝑇 )

|𝑥𝜃𝑅 |𝑝

𝑅𝑝

)︂
≤ 1

𝑅𝑝

(︂
E sup

0≤𝑡≤𝑇
|𝑥𝑡|𝑝 + E sup

0≤𝑡≤𝑇
|𝑦𝑡|𝑝

)︂
≤ 2𝐴

𝑅𝑝
,

thus (2.3.2) becomes

(2.3.3) E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 ≤ E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 +
2𝑝+1𝛿𝐴

𝑝
+

2(𝑝− 2)𝐴

𝑝𝛿2/(𝑝−2)𝑅𝑝
.
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We estimate the difference |ℰ𝑡∧𝜃𝑅 |2. It holds that

|ℰ𝑡∧𝜃𝑅 |2 =
⃒⃒⃒ ∫︁ 𝑡∧𝜃𝑅

0

(𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑓(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠)) 𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠))𝑑𝑊𝑠

⃒⃒⃒2
≤ 2𝑇

∫︁ 𝑡∧𝜃𝑅

0

𝐶𝑅

(︀
|𝑦𝑠 − 𝑥𝑠|2 + |𝑦𝑠 − 𝑥𝑠|2 + |𝑠− 𝑠|2

)︀
𝑑𝑠+ 2|𝑀𝑡|2

≤𝐶𝑅

∫︁ 𝑡∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠+ 𝐶𝑅

∫︁ 𝑡∧𝜃𝑅

0

|ℰ𝑠|2𝑑𝑠+ 𝐶𝑅

∫︁ 𝑡∧𝜃𝑅

0

|𝑠− 𝑠|2𝑑𝑠+ 2|𝑀𝑡|2,

where in the second step we have used the Cauchy-Schwarz inequality and
Assumption 2.2.1 for 𝑓 and

𝑀𝑡 :=

∫︁ 𝑡∧𝜃𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠)) 𝑑𝑊𝑠.

Writing once more
∫︀ 𝑡∧𝜃𝑅
0

|𝑠 − 𝑠|2 =
∑︀[𝑡/Δ−1]

𝑘=0

∫︀ 𝑡𝑘+1∧𝜃𝑅
𝑡𝑘

|𝑡𝑘 − 𝑠|2𝑑𝑠, taking the
supremum over all 𝑡 ∈ [0, 𝑇 ] and then expectations we have

E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 ≤ 𝐶𝑅E
(︂∫︁ 𝑇∧𝜃𝑅

0

|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠
)︂
+ 2E sup

0≤𝑡≤𝑇
|𝑀𝑡|2

+𝐶𝑅

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙∧𝜃𝑅 |2𝑑𝑠+ 𝐶𝑅Δ
2

≤ 𝐶𝑅

∫︁ 𝑇∧𝜃𝑅

0

E|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠+ 8E|𝑀𝑇 |2(2.3.4)

+𝐶𝑅

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙∧𝜃𝑅 |2𝑑𝑠+ 𝐶𝑅Δ
2,

where in the last step we have used Hölder’s inequality (B.1.3) and Doob’s
martingale inequality with 𝑝 = 2, since 𝑀𝑡 is an R-valued martingale that
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belongs to ℒ2. It holds that

E|𝑀𝑇 |2 := E
⃒⃒⃒⃒∫︁ 𝑇∧𝜃𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠)) 𝑑𝑊𝑠

⃒⃒⃒⃒2
= E

(︂∫︁ 𝑇∧𝜃𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑥𝑠, 𝑥𝑠))
2 𝑑𝑠

)︂
≤ 𝐶𝑅E

(︂∫︁ 𝑇∧𝜃𝑅

0

(︀
|𝑦𝑠 − 𝑥𝑠|2 + |𝑦𝑠 − 𝑥𝑠|2 + |𝑦𝑠 − 𝑥𝑠|+ |𝑠− 𝑠|2

)︀
𝑑𝑠

)︂
≤ 𝐶𝑅

∫︁ 𝑇∧𝜃𝑅

0

E|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠+ 𝐶𝑅

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙∧𝜃𝑅 |2𝑑𝑠

+𝐶𝑅

∫︁ 𝑇∧𝜃𝑅

0

E|𝑦𝑠 − 𝑥𝑠|𝑑𝑠+ 𝐶𝑅Δ
2,

where we have used Assumption 2.2.1 for 𝑔. Relation (2.3.4) becomes

E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 ≤ 𝐶𝑅

∫︁ 𝑇∧𝜃𝑅

0

E|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠+ 𝐶𝑅

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙∧𝜃𝑅 |2𝑑𝑠

+𝐶𝑅

∫︁ 𝑇∧𝜃𝑅

0

(E|𝑦𝑠 − 𝑦𝑠|+ E|𝑦𝑠 − 𝑥𝑠|) 𝑑𝑠+ 𝐶𝑅Δ
2

≤ 𝐶𝑅

√
Δ+ 𝐶𝑅Δ+ 𝐶𝑅Δ

2 + 𝐶𝑅

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙∧𝜃𝑅 |2𝑑𝑠+ 𝐶𝑅

∫︁ 𝑇∧𝜃𝑅

0

E|ℰ𝑠|𝑑𝑠,

where we have used Lemma 2.3.3 and Jensen’s inequality for the concave
function 𝜑(𝑥) =

√
𝑥. The integrand of the last term is bounded, from Propo-

sition 2.3.4, by

𝐾𝑅,Δ,𝑚(𝑠) :=

[︂
(𝐶𝑅 +

𝐶𝑅

𝑚𝑒𝑚
)(
√
Δ+Δ) +

𝐶𝑅

𝑚𝑒𝑚
Δ2 +

𝐶𝑅

𝑚
+ 𝑒𝑚−1

]︂
𝑒𝑎𝑅,𝑚𝑠,

where 𝑠 ∈ [0, 𝑇 ∧ 𝜃𝑅]. Application of the Gronwall inequality implies

E sup
0≤𝑡≤𝑇

|ℰ𝑡∧𝜃𝑅 |2 ≤
(︁
𝐶𝑅

√
Δ+ 𝐶𝑅Δ+ 𝐶𝑅𝐾𝑅,Δ,𝑚(𝑇 )

)︁
𝑒𝐶𝑅 ≤ 𝐶𝑅,Δ,𝑚.

Note that, given 𝑅 > 0, the quantity 𝐶𝑅,Δ,𝑚 can be arbitrarily small by
choosing big enough 𝑚 and small enough Δ. Relation (2.3.3) becomes,

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 ≤ 𝐶𝑅,Δ,𝑚 +
2𝑝+1𝛿𝐴

𝑝
+

2(𝑝− 2)𝐴

𝑝𝛿2/(𝑝−2)𝑅𝑝

:= 𝐼1 + 𝐼2 + 𝐼3.
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Given any 𝜖 > 0, we may first choose 𝛿 such that 𝐼2 < 𝜖/3, then choose 𝑅
such that 𝐼3 < 𝜖/3, then 𝑚 > 1 and finally Δ such that 𝐼1 < 𝜖/3 concluding
E sup0≤𝑡≤𝑇 |𝑦𝑡 − 𝑥𝑡|2 < 𝜖 as required to verify (2.2.3).

2.4 Super-linear examples.

2.4.1 Example I.

We study the numerical approximation of the following SDE:

(2.4.1) 𝑥𝑡 = 𝑥0+

∫︁ 𝑡

0

(𝑘1(𝑠)𝑥𝑠−𝑘2(𝑠)𝑥2𝑠)𝑑𝑠+
∫︁ 𝑡

0

𝑘3(𝑠)𝑥
3/2
𝑠 𝜑(𝑥𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝜑(·) is a locally Lipschitz and bounded function with locally Lipschitz
constant 𝐶𝜑

𝑅, bounding constant 𝐾𝜑, 𝑥0 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 , 𝑥0 ∈
ℒ4𝑝(Ω,R) for some 2 < 𝑝 and 𝑥0 > 0 a.s., E(𝑥0)−2 < 𝐴, 𝑘1(·), 𝑘2(·), 𝑘3(·) are
positive and bounded functions with 𝑘2,min > 7

2
(𝐾𝜑𝑘3,max)

2. Model (2.4.1)
has super-linear drift and diffusion coefficients.

We propose the following semi-discrete numerical scheme
(2.4.2)

𝑦𝑡 = 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝑘1(𝑠)−𝑘2(𝑠)𝑦𝑡𝑛)𝑦𝑠𝑑𝑠+
∫︁ 𝑡

𝑡𝑛

𝑘3(𝑠)
√
𝑦𝑡𝑛𝜑(𝑦𝑡𝑛)𝑦𝑠𝑑𝑊𝑠, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],

for 𝑛 ≤ 𝑇/Δ and 𝑦0 = 𝑥0 a.s., or in a more compact form,

(2.4.3) 𝑦𝑡 = 𝑦0 +

∫︁ 𝑡

0

(𝑘1(𝑠)− 𝑘2(𝑠)𝑦𝑠)𝑦𝑠𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑠)
√
𝑦𝑠𝜑(𝑦𝑠)𝑦𝑠𝑑𝑊𝑠,

where 𝑠 = 𝑡𝑛, when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1). The linear SDE (2.4.3) has a solution
which, by use of Itô’s formula, has the explicit form
(2.4.4)

𝑦𝑡 = 𝑥0 exp
{︁∫︁ 𝑡

0

(𝑘1(𝑠)−𝑘2(𝑠)𝑦𝑠−𝑘23(𝑠)
𝑦𝑠𝜑

2(𝑦𝑠)

2
)𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑠)
√
𝑦𝑠𝜑(𝑦𝑠)𝑑𝑊𝑠

}︁
,

where 𝑦𝑡 = 𝑦𝑡(𝑡0, 𝑥0).

Proposition 2.4.5 The semi-discrete numerical scheme (2.4.3) converges
to the true solution of (2.4.1) in the mean-square sense, that is

lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 = 0.

2
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Proof of Proposition 2.4.5.

In order to prove the proposition, we need to verify the assumptions of The-
orem 2.2.2. Let

𝑎(𝑠, 𝑥) = 𝑘1(𝑠)𝑥− 𝑘2(𝑠)𝑥
2, 𝑓(𝑠, 𝑟, 𝑥, 𝑦) = (𝑘1(𝑠)− 𝑘2(𝑠)𝑥)𝑦,

𝑏(𝑠, 𝑥) = 𝑘3(𝑠)𝑥
3/2𝜑(𝑥), 𝑔(𝑠, 𝑟, 𝑥, 𝑦) = 𝑘3(𝑠)

√
𝑥𝜑(𝑥)𝑦.

We verify Assumption 2.2.1 for 𝑓. Let 𝑅 > 0 such that |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨
|𝑦2| ∨ |𝑠| ∨ |𝑟| ≤ 𝑅. We have that

|𝑓(𝑠, 𝑟, 𝑥1, 𝑦1)− 𝑓(𝑠, 𝑟, 𝑥2, 𝑦2)| = |(𝑘1(𝑠)(𝑦1 − 𝑦2)− 𝑘2(𝑠)(𝑥1𝑦1 − 𝑥2𝑦2)|
≤ |𝑘1(𝑠)||𝑦1 − 𝑦2|+ |𝑘2(𝑠)|(|𝑥2||𝑦1 − 𝑦2|+ |𝑦1||𝑥1 − 𝑥2|)
≤ (|𝑘1,max|+ |𝑘2,max|𝑅)|𝑦1 − 𝑦2|+ |𝑘2,max|𝑅|𝑥1 − 𝑥2|
≤ 𝐶𝑅 (|𝑥1 − 𝑥2|+ |𝑦1 − 𝑦2|) ,

thus, Assumption 2.2.1 holds for 𝑓 with 𝐶𝑅 := |𝑘1,max|+ |𝑘2,max|𝑅.
We verify Assumption 2.2.1 for 𝑔. Let 𝑅 > 0 such that |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨

|𝑦2| ∨ |𝑠| ∨ |𝑟| ≤ 𝑅. We have that

|𝑔(𝑠, 𝑟, 𝑥1, 𝑦1)− 𝑔(𝑠, 𝑟, 𝑥2, 𝑦2)| = |𝑘3(𝑠)
√
𝑥1𝜑(𝑥1)𝑦1 − 𝑘3(𝑠)

√
𝑥2𝜑(𝑥2)𝑦2|

≤ |𝑘3(𝑠)|
(︁√

𝑥1|𝜑(𝑥1)||𝑦1 − 𝑦2|+ |𝑦2|
⃒⃒√
𝑥1𝜑(𝑥1)−

√
𝑥1𝜑(𝑥2)

+
√
𝑥1𝜑(𝑥2)−

√
𝑥2𝜑(𝑥2)

⃒⃒)︁
≤ |𝑘3,max|

(︁
𝐾𝜑

√
𝑅|𝑦1 − 𝑦2|+𝑅

√
𝑥1|𝜑(𝑥1)− 𝜑(𝑥2)|+𝑅𝐾𝜑|

√
𝑥1 −

√
𝑥2|
)︁

≤ |𝑘3,max|
(︁
𝐾𝜑

√
𝑅|𝑦1 − 𝑦2|+𝑅3/2𝐶𝜑

𝑅|𝑥1 − 𝑥2|+𝑅𝐾𝜑

√︀
|𝑥1 − 𝑥2|

)︁
≤ 𝐶𝑅

(︁
|𝑥1 − 𝑥2|+ |𝑦1 − 𝑦2|+

√︀
|𝑥1 − 𝑥2|

)︁
,

where we have used the fact that the function
√
𝑥 is 1/2-Hölder continuous

and 𝐶𝑅 := |𝑘3,max|
(︁
𝐶𝜑

𝑅𝑅
3/2 ∨𝐾𝜑

√
𝑅 ∨𝐾𝜑𝑅

)︁
. Thus, Assumption 2.2.1 holds

for 𝑔. Lemmata 2.4.7 and 2.4.8 complete the proof.

Moment Bound for Original SDE.

Lemma 2.4.6 [Positivity of (𝑥𝑡)] In the previous setting it holds that 𝑥𝑡 > 0
a.s. 2



38 2. Super-linear stochastic differential equations

Proof of Lemma 2.4.6. Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : 𝑥−1
𝑡 > 𝑅},

for some 𝑅 > 0, with the convention that inf ∅ = ∞. Application of Itô’s
formula on (𝑥𝑡∧𝜃𝑅)

−2 implies,

(𝑥𝑡∧𝜃𝑅)
−2 = (𝑥0)

−2 +

∫︁ 𝑡∧𝜃𝑅

0

(−2)(𝑥𝑠)
−3(𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥

2
𝑠)𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

3(𝑥𝑠)
−4𝑘23(𝑠)𝑥

3
𝑠𝜑

2(𝑥𝑠)𝑑𝑠+

∫︁ 𝑡∧𝜃𝑅

0

(−2)𝑘3(𝑠)(𝑥𝑠)
−3𝑥3/2𝑠 𝜑(𝑥𝑠)𝑑𝑊𝑠

≤ (𝑥0)
−2 +

∫︁ 𝑡∧𝜃𝑅

0

(−2𝑘1(𝑠)𝑥
−2
𝑠 + 2𝑘2(𝑠)𝑥

−1
𝑠 + 3𝑘23(𝑠)𝐾

2
𝜑𝑥

−1
𝑠 )𝑑𝑠

+

∫︁ 𝑡

0

(−2)𝑘3(𝑠)𝑥
−3/2
𝑠 𝜑(𝑥𝑠) I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑊𝑠

≤
∫︁ 𝑡∧𝜃𝑅

0

[−2𝑘1(𝑠)𝑥
−2
𝑠 + (2𝑘2(𝑠) + 3𝑘23(𝑠)𝐾

2
𝜑)
(︀
𝑥−1
𝑠 I(0,1](𝑥𝑠) + 𝑥−1

𝑠 I(1,∞](𝑥𝑠)
)︀
]𝑑𝑠

+(𝑥0)
−2 +𝑀𝑡

≤ (2𝑘2,max + 3𝑘23,max𝐾
2
𝜑)𝑇 +

∫︁ 𝑡

0

(2𝑘2(𝑠) + 3𝑘23(𝑠)𝐾
2
𝜑)𝑥

−2
𝑠 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠

+(𝑥0)
−2 +𝑀𝑡,

where

𝑀𝑡 :=

∫︁ 𝑡

0

(−2)𝑘3(𝑠)𝑥
−3/2
𝑠 𝜑(𝑥𝑠) I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑊𝑠.

Taking expectations in the above inequality and using the fact that E𝑀𝑡 = 0,
we get that

E(𝑥𝑡∧𝜃𝑅)
−2 ≤ E(𝑥0)−2 + 2𝑘2,max𝑇 + 3𝑘23,max𝐾

2
𝜑𝑇 + (2𝑘2,max + 3𝑘23,max𝐾

2
𝜑)

×
∫︁ 𝑡

0

E(𝑥𝑠∧𝜃𝑅)
−2𝑑𝑠

≤
(︀
E(𝑥0)−2 + 2𝑘2,max𝑇 + 3𝑘23,max𝐾

2
𝜑𝑇
)︀
𝑒(2𝑘2,max+3𝑘23,max𝐾

2
𝜑)𝑇 < 𝐶,

where we have used Gronwall’s inequality with 𝐶 independent of 𝑅. (Note
that the function ℎ(𝑢) = (−2)𝑘3(𝑢)𝑥

−3/2
𝑢 𝜑(𝑥𝑢) I(0,𝑡∧𝜃𝑅)(𝑢) belongs to the space

ℳ2([0, 𝑡];R) thus [Mao97, Th. 1.5.8] implies E𝑀𝑡 = 0.) We have that

(𝑥𝑡∧𝜃𝑅)
−2 = (𝑥𝜃𝑅)

−2I(𝜃𝑅≤𝑡) + (𝑥𝑡)
−2I(𝑡<𝜃𝑅) = 𝑅2I(𝜃𝑅≤𝑡) + (𝑥𝑡)

−2I(𝑡<𝜃𝑅),

which implies

E
(︂

1

𝑥2𝑡∧𝜃𝑅

)︂
= 𝑅2P(𝜃𝑅 ≤ 𝑡) + E

(︂
1

𝑥2𝑡
I(𝑡<𝜃𝑅)

)︂
< 𝐶,
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thus

P(𝑥𝑡 ≤ 0) = P
(︁ ∞⋂︁

𝑅=1

{︁
𝑥𝑡 <

1

𝑅

}︁)︁
= lim

𝑅→∞
P
(︁{︁
𝑥𝑡 <

1

𝑅

}︁)︁
≤ lim

𝑅→∞
P(𝜃𝑅 ≤ 𝑡) = 0.

We conclude that 𝑥𝑡 > 0 a.s.

Lemma 2.4.7 In the previous setting it holds that

E( sup
0≤𝑡≤𝑇

(𝑥𝑡)
𝑝) < 𝐴1,

for some 𝐴1 > 0 and any 2 < 𝑝 ≤ 𝑘2,𝑚𝑖𝑛/(𝐾𝜑𝑘3,𝑚𝑎𝑥)
2. 2

Proof of Lemma 2.4.7. In the case all 𝑥 are outside a finite ball of radius
𝑅 > 1, and 𝑠 ∈ [0, 𝑇 ] we have that

𝐽(𝑠, 𝑥) :=
𝑥𝑎(𝑠, 𝑥) + (𝑝− 1)𝑏2(𝑠, 𝑥)/2

1 + 𝑥2

=
𝑥(𝑘1(𝑠)𝑥− 𝑘2(𝑠)𝑥

2) + (𝑝− 1)𝑘23(𝑠)[𝑥
3/2𝜑(𝑥)]2/2

1 + 𝑥2

=
𝑘1(𝑠)𝑥

2 − 𝑘2(𝑠)𝑥
3 + 0.5(𝑝− 1)𝑘23(𝑠)𝑥

3𝜑2(𝑥)

1 + 𝑥2

≤
𝑘1,max𝑥

2 +
(︁
0.5(𝑝− 1)(𝑘3,max𝐾𝜑)

2 − 𝑘2,min

)︁
𝑥3

1 + 𝑥2
≤ 𝑘1,max,

where the last inequality is valid for all 𝑝 such that 𝑝 ≤ 1+2𝑘2,min/(𝐾𝜑𝑘3,max)
2.

Thus 𝐽(𝑠, 𝑥) is bounded for all (𝑠, 𝑥) ∈ [0, 𝑇 ] × R, since when |𝑥| ≤ 𝑅 we
have that 𝐽(𝑠, 𝑥) is finite, say 𝐽(𝑠, 𝑥) ≤ 𝐶. Since 𝐶 is positive, application of
[Mao97, Th. 2.4.1] implies

E(𝑥𝑡)𝑝 ≤ 2(𝑝−2)/2(1 + E(𝑥0)𝑝)𝑒𝐶𝑝𝑡,

for any 2 < 𝑝 ≤ 1+2𝑘2,min/(𝐾𝜑𝑘3,max)
2 and all 𝑡 ∈ [0, 𝑇 ]. Using Itô’s formula

on (𝑥𝑡)
𝑝, with 𝑝 ≤ 𝑘2,min/(𝐾𝜑𝑘3,max)

2 (in order to use Doob’s martingale
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inequality later) we have that

(𝑥𝑡)
𝑝 = (𝑥0)

𝑝 +

∫︁ 𝑡

0

𝑝(𝑥𝑠)
𝑝−1(𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥

2
𝑠)𝑑𝑠

+

∫︁ 𝑡

0

𝑝(𝑝− 1)

2
(𝑥𝑠)

𝑝−2[𝑘3(𝑠)𝑥
3/2
𝑠 𝜑(𝑥𝑠)]

2𝑑𝑠+

∫︁ 𝑡

0

𝑝𝑘3(𝑠)(𝑥𝑠)
𝑝−1𝑥3/2𝑠 𝜑(𝑥𝑠)𝑑𝑊𝑠

≤ (𝑥0)
𝑝 + 𝑝

∫︁ 𝑡

0

[︂
𝑘1(𝑠)(𝑥𝑠)

𝑝 +

(︂
𝑝− 1

2
𝑘23,max𝐾

2
𝜑 − 𝑘2

)︂
(𝑥𝑠)

𝑝+1

]︂
𝑑𝑠+𝑀𝑡

≤ (𝑥0)
𝑝 + 𝑝

∫︁ 𝑡

0

𝑘1(𝑠)(𝑥𝑠)
𝑝𝑑𝑠+𝑀𝑡,

where 𝑀𝑡 =
∫︀ 𝑡

0
𝑝𝑘3(𝑠)𝜑(𝑥𝑠)(𝑥𝑠)

𝑝+1/2𝑑𝑊𝑠. Taking the supremum and then
expectations in the above inequality we get

E( sup
0≤𝑡≤𝑇

(𝑥𝑡)
𝑝) ≤ E(𝑥0)𝑝 + 𝑝𝑘1,maxE

(︂
sup

0≤𝑡≤𝑇

∫︁ 𝑡

0

(𝑥𝑠)
𝑝𝑑𝑠

)︂
+ E sup

0≤𝑡≤𝑇
𝑀𝑡

≤ E(𝑥0)𝑝 + 𝑝𝑘1,max

∫︁ 𝑇

0

E( sup
0≤𝑙≤𝑠

(𝑥𝑙)
𝑝)𝑑𝑠+

√︂
E sup

0≤𝑡≤𝑇
𝑀2

𝑡

≤
(︂
E(𝑥0)𝑝 +

√︁
4E𝑀2

𝑇

)︂
𝑒𝑝𝑘1,max𝑇 := 𝐴1,

where in the last step we have used Doob’s martingale inequality to the dif-
fusion term 𝑀𝑡 and the Gronwall inequality. (Note that the function ℎ(𝑢) =
𝑝𝑘3(𝑢)𝜑(𝑥𝑢)(𝑥𝑢)

𝑝+1/2 belongs to the family ℳ2([0, 𝑇 ];R) thus [Mao97, Th.
1.5.8] implies E𝑀2

𝑡 = E(
∫︀ 𝑡

0
ℎ(𝑢)𝑑𝑊𝑢)

2 = E
∫︀ 𝑡

0
ℎ2(𝑢)𝑑𝑢, i.e. 𝑀𝑡 ∈ ℒ2(Ω;R).)

Moment Bound for Semi-Discrete Approximation.

Lemma 2.4.8 In the previous setting it holds that

E( sup
0≤𝑡≤𝑇

(𝑦𝑡)
𝑝) < 𝐴2,

for some 𝐴2 > 0 and for any 2 < 𝑝 ≤ 1/4 +
𝑘2,𝑚𝑖𝑛

2(𝑘3,𝑚𝑎𝑥𝐾𝜑)2
. 2
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Proof of Lemma 2.4.8. Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : 𝑦𝑡 > 𝑅},
for some 𝑅 > 0, with the convention that inf ∅ = ∞. Application of Itô’s
formula on (𝑦𝑡∧𝜃𝑅)

𝑞, with 𝑞 = 4𝑝 implies,

(𝑦𝑡∧𝜃𝑅)
𝑞 = (𝑦0)

𝑞 +

∫︁ 𝑡∧𝜃𝑅

0

𝑞(𝑦𝑠)
𝑞−1(𝑘1(𝑠)− 𝑘2(𝑠)𝑦𝑠)𝑦𝑠𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑞(𝑞 − 1)

2
(𝑦𝑠)

𝑞−2 [𝑘3(𝑠)
√
𝑦𝑠𝜑(𝑦𝑠)𝑦𝑠]

2 𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑞𝑘3(𝑠)(𝑦𝑠)
𝑞−1√𝑦𝑠𝜑(𝑦𝑠)𝑦𝑠𝑑𝑊𝑠

= (𝑥0)
𝑞 +

∫︁ 𝑡∧𝜃𝑅

0

(︂
𝑞(𝑘1(𝑠)− 𝑘2(𝑠)𝑦𝑠) +

𝑞(𝑞 − 1)𝑘23(𝑠)

2
𝑦𝑠𝜑

2(𝑦𝑠)

)︂
(𝑦𝑠)

𝑞𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑞𝑘3(𝑠)
√
𝑦𝑠𝜑(𝑦𝑠)(𝑦𝑠)

𝑞𝑑𝑊𝑠

≤ (𝑥0)
𝑞 + 𝑞

∫︁ 𝑡

0

[︂
𝑘1(𝑠) +

(︂
𝑞 − 1

2
𝑘23,max𝐾

2
𝜑 − 𝑘2,min

)︂
𝑦𝑠

]︂
(𝑦𝑠)

𝑞 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠

+𝑀𝑡

≤ (𝑥0)
𝑞 + 𝑞

∫︁ 𝑡

0

𝑘1(𝑠)(𝑦𝑠)
𝑞 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠+𝑀𝑡,

where the last inequality is valid for 𝑞 ≤ 1 + 2𝑘2,min/(𝑘3,max𝐾𝜑)
2 and

𝑀𝑡 :=

∫︁ 𝑡∧𝜃𝑅

0

𝑞𝑘3(𝑠)
√
𝑦𝑠𝜑(𝑦𝑠)(𝑦𝑠)

𝑞𝑑𝑊𝑠.

Taking expectations and using that E𝑀𝑡 = 0 we get

E(𝑦𝑡∧𝜃𝑅)
𝑞 ≤ E(𝑥0)𝑞 + 𝑞𝑘1,max

∫︁ 𝑡

0

E(𝑦𝑠∧𝜃𝑅)
𝑞𝑑𝑠.

Application of the Gronwall inequality implies

E(𝑦𝑡∧𝜃𝑅)
𝑞 ≤ E(𝑥0)𝑞𝑒𝑞𝑘1,max𝑇 .

We have that

(𝑦𝑡∧𝜃𝑅)
𝑞 = (𝑦𝜃𝑅)

𝑞I(𝜃𝑅≤𝑡) + (𝑦𝑡)
𝑞I(𝑡<𝜃𝑅) = 𝑅𝑞I(𝜃𝑅≤𝑡) + (𝑦𝑡)

𝑞I(𝑡<𝜃𝑅).
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Thus taking expectations in the above inequality and using the estimated
upper bound for E(𝑦𝑡∧𝜃𝑅)𝑞 we arrive at

E(𝑦𝑡)𝑞I(𝑡<𝜃𝑅) ≤ E(𝑥0)𝑞𝑒𝑞𝑘1,max𝑇

and taking limits in both sides as 𝑅 → ∞ we get that

lim
𝑅→∞

E(𝑦𝑡)𝑞I(𝑡<𝜃𝑅) ≤ E(𝑥0)𝑞𝑒𝑞𝑘1,max𝑇 .

Fix 𝑡. The sequence (𝑦𝑡)𝑞I(𝑡<𝜃𝑅) is non-decreasing in 𝑅 since 𝜃𝑅 is increasing
in 𝑅 and 𝑡 ∧ 𝜃𝑅 → 𝑡 as 𝑅 → ∞ and (𝑦𝑡)

𝑞I(𝑡<𝜃𝑅) → (𝑦𝑡)
𝑞 as 𝑅 → ∞, thus the

monotone convergence theorem implies

E(𝑦𝑡)𝑞 ≤ E(𝑥0)𝑞𝑒𝑞𝑘1,max𝑇 ,

for any 𝑞 ≤ 1 +
2𝑘2,min

(𝑘3,max𝐾𝜑)2
. Following the same lines as in Lemma 2.4.7,

i.e. using again Itô’s formula on (𝑦𝑡)
𝑝, taking the supremum and then using

Doob’s martingale inequality on the diffusion term we obtain the desired
result. Note that in this last step we need 2𝑘2,min > 7(𝑘3,max𝐾𝜑)

2.

Remark 2.4.9

(i) Proposition 2.4.5 implies that our explicit numerical scheme converges
in the mean-square sense. Moreover, by (2.4.4) we get that our numer-
ical scheme preserves positivity, which is a desirable modelling property
([AGKR10], [KGR08]). Example (2.4.1) covers the 3/2-model (2.1.2),
in the case where 𝜑(·), 𝑘1(·), 𝑘2(·), 𝑘3(·) are constant and super-linear
problems both in drift and diffusion.

(ii) Moreover, note that in the analysis that we followed, we did not dis-
cretize the coefficients 𝑘𝑖. In general, by Theorem 2.2.2, we are free to
discretize any of the functions 𝑘𝑖(·), 𝑖 = 1, 2, 3, at any degree. Thus,
we can fully discretize every 𝑘𝑖(·), 𝑖 = 1, 2, 3, meaning that (2.4.2) will
become

𝑦𝑡 = 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝑘1(𝑡𝑛)− 𝑘2(𝑡𝑛)𝑦𝑡𝑛)𝑦𝑠𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝑘3(𝑡𝑛)
√
𝑦𝑡𝑛𝜑(𝑦𝑡𝑛)𝑦𝑠𝑑𝑊𝑠,

for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], or semi-discretize every 𝑘𝑖(·), 𝑖 = 1, 2, 3,

𝑦𝑡 = 𝑦𝑡𝑛+

∫︁ 𝑡

𝑡𝑛

(𝑘1(𝑠, 𝑡𝑛)−𝑘2(𝑠, 𝑡𝑛)𝑦𝑡𝑛)𝑦𝑠𝑑𝑠+
∫︁ 𝑡

𝑡𝑛

𝑘3(𝑠, 𝑡𝑛)
√
𝑦𝑡𝑛𝜑(𝑦𝑡𝑛)𝑦𝑠𝑑𝑊𝑠,
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for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], where 𝑘𝑖(𝑡, 𝑡) = 𝑘𝑖(𝑡), 𝑖 = 1, 2, 3. The only difference in
that situation is that we require 𝑘𝑖(·, ·), 𝑖 = 1, 2, 3 to be locally Lipschitz
in both variables.

(iii) One more point of discussion is the dependence on 𝜔 that we can assume
on the coefficients 𝑘𝑖. Specifically, we consider the more general SDE

𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝑎𝜔(𝑠, 𝑥𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑏𝜔(𝑠, 𝑥𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ].

Then, assuming that it admits a unique strong solution, our method
seems to work. In the example discussed here, an extra condition on
the coefficients 𝑘𝑖 would be of the form

|𝑘𝑖(𝑡, 𝜔)| ≤ 𝐶, 𝑡 ∈ [0, 𝑇 ], 𝜔 ∈ Ω, 𝑖 = 1, 2, 3.

(iv) We illustrate our method in the case 𝜑(𝑥) = sin(𝑥). Then the diffu-
sion term 𝑏(𝑥) takes positive and negative values and thus the method
presented in [NS14] does not work since it requires 𝑏(𝑥) > 0 in order
to use the Lamperti-type transformation; for the same reason the Mil-
stein method [HMS13] fails since [HMS13, Assumption 2.7] is violated.
The only method that we know and can be used for this situation is the
tamed Euler method ([HJK12], [HJ15]) but the drawback is that it does
not preserve positivity.

Below, we compare our scheme, in the case where 𝑘1(·), 𝑘2(·), 𝑘3(·) are
constant, with the tamed Euler method in [HJ15]. Figure 2.1 shows that
for “good” data the two methods are close. Choosing different data, we
see that tamed Euler (2.1.5) takes negative values, even in the first step.
In particular we see, that by altering the parameters we get the results
presented in Table 2.1 and shown in Figure 2.2. Note that if the tamed
Euler takes a negative value, it explodes in the next step because of the
3/2-term, while taking the value zero in a step results in zero terms for
all the following steps.

2

2.4.2 Example II.

Consider the following stochastic differential equation:

(2.4.5) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥
2𝑟−1
𝑠 )𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑠)𝑥
𝑟
𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],
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Set of Parameters Time of first Value of
(𝑥0, 𝑘1, 𝑘2, 𝑘3,Δ, 𝑇 ) negative step step

(1, 1, 1000, 1, 10−3, 1) 1 −0.18
(1, 1000, 1, 1, 10−3, 1) 27 −17.69

Tab. 2.1: Negative values of the tamed Euler scheme (2.1.5) for the Heston 3/2-
model.

where 𝑥0 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 , 𝑥0 ∈ ℒ𝑝(Ω,R) for some 2 < 𝑝 ≤
𝑟−1

4(3−2𝑟)
+ 𝑟−1

2(3−2𝑟)

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
and 𝑥0 > 0 a.s., 𝑘1(·), 𝑘2(·), 𝑘3(·) are positive and

bounded functions with 2𝑘2,min >
25−9𝑟
𝑟−1

𝑘23,max and 1 < 𝑟 < 3/2.

Lemma 2.4.10 [Positivity of (𝑥𝑡)] In the previous setting it holds that 𝑥𝑡 > 0
a.s. 2

Proof of Lemma 2.4.10. The proof follows the same lines as the proof of
Lemma 2.4.6. Nevertheless, we give the details in Appendix C.2.

The following Lemma shows uniform bounds of 𝑝-moments of (𝑥𝑡).

Lemma 2.4.11 In the previous setting it holds that

E( sup
0≤𝑡≤𝑇

(𝑥𝑡)
𝑝) < 𝐴1,

for some 𝐴1 > 0 and any 2 < 𝑝 ≤ 3
2
− 𝑟 +

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
. 2

Proof of Lemma 2.4.11. The proof follows the same lines as the proof of
Lemma 2.4.7. The details are given in Appendix C.3.

Model (2.4.5) has super-linear drift and diffusion coefficients. We study
the numerical approximation of (2.4.5). We propose the following semi-
discrete numerical scheme for the transformed process 𝑧𝑡 = (𝑥𝑡)

2𝑟−2 of (2.4.5),

𝑦𝑡 = 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝐾1(𝑠)−𝐾2(𝑠)𝑦𝑡𝑛)𝑦𝑠𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝐾3(𝑠)
√
𝑦𝑡𝑛𝑦𝑠𝑑𝑊𝑠, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],

for 𝑛 ≤ 𝑇/Δ and 𝑦0 = 𝑥0 a.s., where
(2.4.6)

𝐾1(𝑠) = (2𝑟 − 2)𝑘1(𝑠), 𝐾2(𝑠) = (2𝑟 − 2)𝑘2(𝑠)−
(2𝑟 − 2)(2𝑟 − 3)

2
𝑘23(𝑠),
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Fig. 2.1: Difference between the semi-discrete scheme and the tamed Euler scheme

(2.1.5) for 𝑥0 = 1, 𝑘1 = 1, 𝑘2 = 4, 𝑘3 = 1,Δ = 10−3, 𝑇 = 1.

(2.4.7) 𝐾3(𝑠) = (2𝑟 − 2)𝑘3(𝑠),

or in a more compact form,

(2.4.8) 𝑦𝑡 = 𝑦0 +

∫︁ 𝑡

0

(𝐾1(𝑠)−𝐾2(𝑠)𝑦𝑠)𝑦𝑠𝑑𝑠+

∫︁ 𝑡

0

𝐾3(𝑠)
√
𝑦𝑠𝑦𝑠𝑑𝑊𝑠,

where 𝑠 = 𝑡𝑛, when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1). The linear SDE (2.4.8) has a solution
which, by use of Itô’s formula, has the explicit form

𝑦𝑡 = 𝑥0 exp
{︁∫︁ 𝑡

0

(︁
𝐾1(𝑠)−𝐾2(𝑠)𝑦𝑠 −𝐾2

3(𝑠)
𝑦𝑠
2

)︁
𝑑𝑠+

∫︁ 𝑡

0

𝐾3(𝑠)
√
𝑦𝑠𝑑𝑊𝑠

}︁
,

where 𝑦𝑡 = 𝑦𝑡(𝑡0, 𝑥0).

The transformation of (2.4.5). Application of Itô’s formula to the
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Fig. 2.2: The tamed Euler method (2.1.5) does not preserve positivity, 𝑥0 = 1, 𝑘1 =
1000, 𝑘2 = 4, 𝑘3 = 1,Δ = 10−3, 𝑇 = 1.

function 𝑧(𝑡, 𝑥) = 𝑥2𝑟−2, implies

𝑧𝑡 = 𝑧0 +

∫︁ 𝑡

0

[︀
(2𝑟 − 2)𝑥2𝑟−3

𝑠 (𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥
2𝑟−1
𝑠 )

+
(2𝑟 − 2)(2𝑟 − 3)

2
𝑥2𝑟−4
𝑠 𝑘23(𝑠)𝑥

2𝑟
𝑠

]︀
𝑑𝑠+

∫︁ 𝑡

0

(2𝑟 − 2)𝑘3(𝑠)𝑥
2𝑟−3
𝑠 𝑥𝑟𝑠𝑑𝑊𝑠

= 𝑧0 +

∫︁ 𝑡

0

[︀
𝑘1(𝑠)(2𝑟 − 2)𝑥2𝑟−2

𝑠 − (2𝑟 − 2)𝑘2(𝑠)𝑥
4𝑟−4
𝑠

+
(2𝑟 − 2)(2𝑟 − 3)

2
𝑘23(𝑠)𝑥

4𝑟−4
𝑠

]︀
𝑑𝑠+

∫︁ 𝑡

0

(2𝑟 − 2)𝑘3(𝑠)𝑥
3𝑟−3
𝑠 𝑑𝑊𝑠

= 𝑧0 +

∫︁ 𝑡

0

(𝐾1(𝑠)𝑧𝑠 −𝐾2(𝑠)𝑧
2
𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝐾3(𝑠)𝑧
3/2
𝑠 𝑑𝑊𝑠,

where 𝐾1(·), 𝐾2(·), 𝐾3(·) are given by (2.4.6) and (2.4.7).
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In order to use Proposition 2.4.5 we have to verify that

𝐾1(𝑠) > 0, 𝐾2(𝑠) > 0, 𝐾3(𝑠) > 0, 2𝐾2,min > 7𝐾2
3,max.

Since 1 < 𝑟 < 3/2 we immediately have 𝐾1(𝑠) > 0 and 𝐾3(𝑠) > 0. Moreover

𝐾2(𝑠) = (2𝑟− 2)𝑘2(𝑠)−
(2𝑟 − 2)(2𝑟 − 3)

2
𝑘23(𝑠) >

(2𝑟 − 2)

2
𝑘23,max(4− 2𝑟) > 0,

and is easy to see that

2𝐾2,min > 7𝐾2
3,max.

Proposition 2.4.12 In the previous setting, the following convergence to
the true solution of (2.4.5) in the mean-square sense holds,

(2.4.9) lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦
1

2𝑟−2

𝑡 − 𝑥𝑡|2 = 0.

2

Proof of Proposition 2.4.12.

In order to prove the proposition, we first transform the original SDE (2.4.5)
to an SDE of the type (2.4.1), later on verify the assumptions of Example
I to use Proposition 2.4.5, and in the end make the necessary arrangements
for the approximation of the original SDE.

Convergence Result.

We use the following inequality implied by the mean value theorem

|𝑦
1

2𝑟−2

𝑡 − 𝑥𝑡| = |𝑦
1

2𝑟−2

𝑡 − 𝑧
1

2𝑟−2

𝑡 | ≤ 1

2𝑟 − 2

(︁
|𝑦𝑡|

1
2𝑟−2

−1 + |𝑧𝑡|
1

2𝑟−2
−1
)︁
|𝑧𝑡 − 𝑦𝑡|,

to get

|𝑦
1

2𝑟−2

𝑡 − 𝑥𝑡|2 ≤
2

(2𝑟 − 2)2

(︁
|𝑦𝑡|

3−2𝑟
𝑟−1 + |𝑧𝑡|

3−2𝑟
𝑟−1

)︁
|𝑧𝑡 − 𝑦𝑡|2.

Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : |𝑦𝑡| > 𝑅 or |𝑥𝑡| > 𝑅}, for some
𝑅 > 0 big enough. Taking the supremum and then expectations in the above
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inequality yields,

E sup
0≤𝑡≤𝑇

|𝑦
1

2𝑟−2

𝑡 − 𝑥𝑡|2 ≤ 𝑐𝑟

[︁
E sup

0≤𝑡≤𝑇

(︁
|𝑦𝑡∧𝜃𝑅 |

3−2𝑟
𝑟−1 + |𝑧𝑡∧𝜃𝑅 |

3−2𝑟
𝑟−1

)︁
|𝑧𝑡∧𝜃𝑅 − 𝑦𝑡∧𝜃𝑅 |2

+E sup
0≤𝑡≤𝑇

(︁
|𝑦𝑡|

3−2𝑟
𝑟−1 + |𝑧𝑡|

3−2𝑟
𝑟−1

)︁
|𝑧𝑡 − 𝑦𝑡|2I(𝜃𝑅≤𝑡)

]︁
≤ 𝑐𝑟,𝑅E sup

0≤𝑡≤𝑇
|𝑧𝑡∧𝜃𝑅 − 𝑦𝑡∧𝜃𝑅 |2 + 𝑐𝑟

2𝛿

𝑝
E sup

0≤𝑡≤𝑇

(︁
|𝑦𝑡|

3−2𝑟
𝑟−1 + |𝑧𝑡|

3−2𝑟
𝑟−1

)︁𝑝/2
|𝑧𝑡 − 𝑦𝑡|𝑝

+𝑐𝑟
(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 ),

where in the second step we have applied the Young inequality,

𝑎𝑏 ≤ 𝛿

𝑤
𝑎𝑤 +

1

𝑞𝛿𝑞/𝑤
𝑏𝑞,

for 𝑎 = sup0≤𝑡≤𝑇

(︁
|𝑦𝑡|

3−2𝑟
𝑟−1 + |𝑧𝑡|

3−2𝑟
𝑟−1

)︁
|𝑧𝑡−𝑦𝑡|2, 𝑏 = I(𝜃𝑅≤𝑡), 𝑤 = 𝑝/2, 𝑞 = 𝑝/(𝑝−

2), 𝛿 > 0, and

𝑐𝑟 =
2

(2𝑟 − 2)2
, 𝑐𝑟,𝑅 = 2𝑐𝑟𝑅

3−2𝑟
𝑟−1 .

(For all 𝑡 < 𝜃𝑅 it holds that |𝑥𝑡| ≤ 𝑅 or |𝑧𝑡| ≤ 𝑅.) It holds that

P(𝜃𝑅 ≤ 𝑇 ) ≤ E
(︂
I(𝜃𝑅≤𝑇 )

|𝑦𝜃𝑅 |𝑝

𝑅𝑝

)︂
+ E

(︂
I(𝜃𝑅≤𝑇 )

|𝑥𝜃𝑅 |𝑝

𝑅𝑝

)︂
≤ 1

𝑅𝑝

(︂
E sup

0≤𝑡≤𝑇
|𝑦𝑡|𝑝 + E sup

0≤𝑡≤𝑇
|𝑥𝑡|𝑝

)︂
≤ 2𝐴

𝑅𝑝
,

where 𝐴 is the maximum of the bounding moment constants of (𝑦𝑡) and (𝑥𝑡).
Moreover, we have that,

E sup
0≤𝑡≤𝑇

(︁
|𝑦𝑡|

3−2𝑟
𝑟−1 + |𝑧𝑡|

3−2𝑟
𝑟−1

)︁ 𝑝
2|𝑧𝑡 − 𝑦𝑡|𝑝 ≤ 2

3𝑝
2
−2E sup

0≤𝑡≤𝑇
(|𝑦𝑡|

(3−2𝑟)𝑝
2(𝑟−1) + |𝑧𝑡|

(3−2𝑟)𝑝
2(𝑟−1) )

×(|𝑧𝑡|𝑝 + |𝑦𝑡|𝑝)

≤ 2
3𝑝
2
−2E sup

0≤𝑡≤𝑇
(|𝑦𝑡|

(3−2𝑟)𝑝
2(𝑟−1) |𝑧𝑡|𝑝 + |𝑦𝑡|(

3−2𝑟
2(𝑟−1)

+1)𝑝 + |𝑧𝑡|
(3−2𝑟)𝑝
2(𝑟−1) |𝑦𝑡|𝑝 + |𝑧𝑡|(

3−2𝑟
2(𝑟−1)

+1)𝑝)

≤ 2
3𝑝
2
−2E sup

0≤𝑡≤𝑇
(
|𝑦𝑡|

3−2𝑟
𝑟−1

𝑝

2
+

|𝑧𝑡|2𝑝

2
+ |𝑦𝑡|

𝑝
2(𝑟−1) +

|𝑧𝑡|
3−2𝑟
𝑟−1

𝑝

2
+

|𝑦𝑡|2𝑝

2
+ |𝑧𝑡|

𝑝
2(𝑟−1) ),
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where we have used again the Young inequality. When 5
4
< 𝑟 < 3

2
we

have that 3−2𝑟
𝑟−1

< 1
2(𝑟−1)

< 2, thus it suffices to bound the moments of |𝑧𝑡|2𝑝

and |𝑦𝑡|2𝑝. Note that by Lemma 2.4.7 the uniform bound for the moment of
(𝑧𝑡)

2𝑝 holds when 2 < 𝑝 ≤ 𝑘2,𝑚𝑖𝑛

2(𝑘3,𝑚𝑎𝑥)2
and by Lemma 2.4.8 the uniform bound

for the moment of (𝑦𝑡)2𝑝 is valid for any 2 < 𝑝 ≤ 1
8
+

𝑘2,𝑚𝑖𝑛

4(𝑘3,𝑚𝑎𝑥)2
, thus for

2 < 𝑝 ≤ 𝑘2,𝑚𝑖𝑛

2(𝑘3,𝑚𝑎𝑥)2

⋀︀
1
8
+

𝑘2,𝑚𝑖𝑛

4(𝑘3,𝑚𝑎𝑥)2
we get that

E sup
0≤𝑡≤𝑇

(︀
|𝑧𝑡|2𝑝 + |𝑦𝑡|2𝑝

)︀
< 𝐴,

for some 𝐴 > 0. (We also have to ensure that Lemma 2.4.11 holds, thus we
have to choose 𝑝 such that 2 < 𝑝 ≤ 3

2
− 𝑟+ 𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2

⋀︀ 𝑘2,𝑚𝑖𝑛

2(𝑘3,𝑚𝑎𝑥)2

⋀︀
1
8
+

𝑘2,𝑚𝑖𝑛

4(𝑘3,𝑚𝑎𝑥)2

or equivalently we have to choose 𝑝 such that 2 < 𝑝 ≤ 1
8
+

𝑘2,𝑚𝑖𝑛

4(𝑘3,𝑚𝑎𝑥)2
whose

existence is ensured by the condition 2𝑘2,𝑚𝑖𝑛 ≥ 15(𝑘3,𝑚𝑎𝑥)
2.)

In the case 1 < 𝑟 < 5
4
it suffices to bound the moments of |𝑧𝑡|

3−2𝑟
𝑟−1

𝑝 and

|𝑦𝑡|
3−2𝑟
𝑟−1

𝑝. Again by Lemma 2.4.7 the uniform bound for the moment of |𝑧𝑡|
3−2𝑟
𝑟−1

𝑝

holds when 2 < 𝑝 ≤ 𝑟−1
3−2𝑟

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
and by Lemma 2.4.8 the uniform bound for

the moment of |𝑦𝑡|
3−2𝑟
𝑟−1

𝑝 is valid for any 2 < 𝑝 ≤ 𝑟−1
4(3−2𝑟)

+ 𝑟−1
2(3−2𝑟)

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
, thus

for 2 < 𝑝 ≤ 𝑟−1
3−2𝑟

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2

⋀︀
𝑟−1

4(3−2𝑟)
+ 𝑟−1

2(3−2)𝑟

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
we get that

E sup
0≤𝑡≤𝑇

(︁
|𝑧𝑡|

3−2𝑟
𝑟−1

𝑝 + |𝑦𝑡|
3−2𝑟
𝑟−1

𝑝
)︁
< 𝐴,

for some 𝐴 > 0. (We also have to ensure that Lemma 2.4.11 holds, thus we
have to choose 𝑝 such that 2 < 𝑝 ≤ 3

2
− 𝑟+

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2

⋀︀
𝑟−1
3−2𝑟

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2

⋀︀
𝑟−1

4(3−2𝑟)
+

𝑟−1
2(3−2𝑟)

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
or equivalently we have to choose 𝑝 such that 2 < 𝑝 ≤

𝑟−1
4(3−2𝑟)

+ 𝑟−1
2(3−2𝑟)

𝑘2,𝑚𝑖𝑛

(𝑘3,𝑚𝑎𝑥)2
whose existence is ensured by the condition 2𝑘2,𝑚𝑖𝑛 ≥

25−9𝑟
𝑟−1

(𝑘3,𝑚𝑎𝑥)
2.)Thus, by the two preceding parenthetical remarks and the

condition

2𝑘2,𝑚𝑖𝑛 ≥
(︂
25− 9𝑟

𝑟 − 1

⋁︁
15

)︂
(𝑘3,𝑚𝑎𝑥)

2

or equivalently

2𝑘2,𝑚𝑖𝑛 ≥ 25− 9𝑟

𝑟 − 1
(𝑘3,𝑚𝑎𝑥)

2

we get the bound

E sup
0≤𝑡≤𝑇

(︁
|𝑦𝑡|

3−2𝑟
𝑟−1 + |𝑧𝑡|

3−2𝑟
𝑟−1

)︁𝑝/2
|𝑧𝑡 − 𝑦𝑡|𝑝 < 𝐶(𝑝)𝐴,
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where 𝐶(𝑝) is a constant depending on 𝑝. Collecting all the estimates to-
gether, we get

E sup
0≤𝑡≤𝑇

|𝑦
1

2𝑟−2

𝑡 − 𝑥𝑡|2 ≤ 𝑐𝑟,𝑅E sup
0≤𝑡≤𝑇

|𝑧𝑡∧𝜃𝑅 − 𝑦𝑡∧𝜃𝑅 |2 + 𝑐𝑟
𝐶(𝑝)𝐴

𝑝
𝛿

+𝑐𝑟
2(𝑝− 2)𝐴

𝑝

1

𝛿2/(𝑝−2)𝑅𝑝
:= 𝐼1 + 𝐼2 + 𝐼3.

Given any 𝜖 > 0, we may first choose 𝛿 such that 𝐼2 < 𝜖/3, then choose 𝑅
such that 𝐼3 < 𝜖/3, and finally Δ such that 𝐼1 < 𝜖/3, which is justified by

Proposition 2.4.5 to get that E sup0≤𝑡≤𝑇 |𝑦
1

2𝑟−2

𝑡 −𝑥𝑡|2 < 𝜖, as required to verify
(2.4.9).

Remark 2.4.13 Proposition 2.4.12 implies that our explicit numerical scheme
converges in the mean-square sense. Moreover, we get that our numerical
scheme preserves positivity. SDE (2.4.5) covers super-linear problems both
in drift and diffusion. 2

2.4.3 Example III.

Consider the following stochastic differential equation:

(2.4.10) 𝑥𝑡 = 𝑥0+

∫︁ 𝑡

0

(𝑘1(𝑠)𝑥𝑠−𝑘2(𝑠)𝑥𝑞𝑠)𝑑𝑠+
∫︁ 𝑡

0

𝑘3(𝑠)𝑥
𝑟
𝑠𝜑(𝑥𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝜑(·) is a locally Lipschitz and bounded function with locally Lipschitz
constant 𝐶𝜑

𝑅, bounding constant 𝐾𝜑, 𝑥0 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 , 𝑥0 ∈
ℒ𝑝(Ω,R) for every 2 < 𝑝,E| ln𝑥0| < ∞ and 𝑥0 > 0 a.s., 𝑘1(·), 𝑘2(·), 𝑘3(·)
are positive and bounded functions and 𝑞 is odd with 𝑞 > 2𝑟 − 1 where
3/2 < 𝑟 < 2. The above conditions on the parameters imply the uniform
bound of |𝑥𝑡|𝑝 as shown in the following result.

Lemma 2.4.14 [Moment bound for original SDE] In the previous setting it
holds that

E( sup
0≤𝑡≤𝑇

|𝑥𝑡|𝑝) < 𝐴1,

for some 𝐴1 > 0 and every 𝑝 > 2. 2

Proof of Lemma 2.4.14. The proof follows the same lines as the proof of
Lemma 2.4.6. Nevertheless, we present the proof in Appendix C.5.
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Model (2.4.10) has super-linear drift and diffusion coefficients. We study
the numerical approximation of (2.4.10). We propose the following semi-
discrete numerical scheme for (2.4.10)

(2.4.11) 𝑦𝑡 = 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝑘1(𝑠)− 𝑘2(𝑠)𝑦
𝑞−1
𝑡𝑛 )𝑦𝑠𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝑘3(𝑠)𝑦
𝑟−1
𝑡𝑛 𝜑(𝑦𝑡𝑛)𝑦𝑠𝑑𝑊𝑠,

where 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], for 𝑛 ≤ 𝑇/Δ and 𝑦0 = 𝑥0 a.s.; (2.4.11) in more compact
form reads

(2.4.12) 𝑦𝑡 = 𝑦0 +

∫︁ 𝑡

0

(𝑘1(𝑠)− 𝑘2(𝑠)𝑦
𝑞−1
𝑠 )𝑦𝑠𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑠)𝑦
𝑟−1
𝑠 𝜑(𝑦𝑠)𝑦𝑠𝑑𝑊𝑠,

where 𝑠 = 𝑡𝑛, when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1). The linear SDE (2.4.12) has a solution
which, by use of Itô’s formula, has the explicit form [KP95, Ch. 4.4, (4.10)]

𝑦𝑡 = 𝑥0 exp{
∫︁ 𝑡

0

(𝑘1(𝑠)−𝑘2(𝑠)𝑦𝑞−1
𝑠 −𝑘23(𝑠)

𝑦2𝑟−2
𝑠 𝜑2(𝑦𝑠)

2
)𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑠)𝑦
𝑟−1
𝑠 𝜑(𝑦𝑠)𝑑𝑊𝑠},

where 𝑦𝑡 = 𝑦𝑡(𝑡0, 𝑥0).

Proposition 2.4.15 The following convergence to the true solution of (2.4.10)
in the mean-square sense holds,

lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 = 0.

2

Proof of Proposition 2.4.15.

In order to prove the proposition, we just need to verify the assumptions of
Theorem 2.2.2. Let

𝑎(𝑠, 𝑥) = 𝑘1(𝑠)𝑥− 𝑘2(𝑠)𝑥
𝑞, 𝑓(𝑠, 𝑟, 𝑥, 𝑦) = (𝑘1(𝑠)− 𝑘2(𝑠)𝑥

𝑞−1)𝑦

𝑏(𝑠, 𝑥) = 𝑘3(𝑠)𝑥
𝑟𝜑(𝑥), 𝑔(𝑠, 𝑟, 𝑥, 𝑦) = 𝑘3(𝑠)𝑥

𝑟−1𝜑(𝑥)𝑦.

We verify Assumption 2.2.1 for 𝑓. The conditions on the parameters imply
that 𝑞 > 2. Let 𝑅 > 0 such that |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨ |𝑦2| ∨ |𝑠| ∨ |𝑟| ≤ 𝑅. We
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have that

|𝑓(𝑠, 𝑟, 𝑥1, 𝑦1)− 𝑓(𝑠, 𝑟, 𝑥2, 𝑦2)| = |(𝑘1(𝑠)(𝑦1 − 𝑦2)− 𝑘2(𝑠)(𝑥
𝑞−1
1 𝑦1 − 𝑥𝑞−1

2 𝑦2)|
≤ |𝑘1(𝑠)||𝑦1 − 𝑦2|+ |𝑘2,max|(|𝑥2|𝑞−1|𝑦1 − 𝑦2|+ |𝑦1||𝑥𝑞−1

1 − 𝑥𝑞−1
2 |)

≤ (|𝑘1,max|+ |𝑘2,max|𝑅𝑞−1)|𝑦1 − 𝑦2|+ |𝑘2,max|𝑅|𝑥𝑞−1
1 − 𝑥𝑞−1

2 |
≤ (|𝑘1,max|+ |𝑘2,max|𝑅𝑞−1)|𝑦1 − 𝑦2|+ 2|𝑘2,max|(𝑞 − 1)𝑅𝑞−1|𝑥1 − 𝑥2|
≤𝐶𝑅 (|𝑥1 − 𝑥2|+ |𝑦1 − 𝑦2|) ,

where we have applied the mean value theorem for the function 𝑥𝑞−1, thus As-
sumption 2.2.1 holds for 𝑓 with 𝐶𝑅 := (|𝑘1,max|+ |𝑘2,max|𝑅𝑞−1)∨(2|𝑘2,max|(𝑞−
1)𝑅𝑞−1).

We verify Assumption 2.2.1 for 𝑔. Since 1/2 < 𝑟 − 1 < 1 we have that
𝑔1(𝑥) = 𝑥𝑟−1 is locally 1/2-Hölder continuous in 𝑥, i.e.

(2.4.13) |𝑔1(𝑥1)− 𝑔1(𝑥2)| ≤ 𝐶𝑅

√︀
|𝑥1 − 𝑥2|.

Let 𝑅 > 0 such that |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨ |𝑦2| ∨ |𝑠| ∨ |𝑟| ≤ 𝑅. We have that

|𝑔(𝑠, 𝑟, 𝑥1, 𝑦1)− 𝑔(𝑠, 𝑟, 𝑥2, 𝑦2)| =
⃒⃒
𝑘3(𝑠)𝑥

𝑟−1
1 𝜑(𝑥1)𝑦1 − 𝑘3(𝑠)𝑥

𝑟−1
2 𝜑(𝑥2)𝑦2

⃒⃒
≤ |𝑘3,max|

(︀
|𝑥1|𝑟−1|𝜑(𝑥1)||𝑦1 − 𝑦2|+ |𝑦2|

⃒⃒
𝑥𝑟−1
1 𝜑(𝑥1)− 𝑥𝑟−1

1 𝜑(𝑥2)

+𝑥𝑟−1
1 𝜑(𝑥2)− 𝑥𝑟−1

2 𝜑(𝑥2)
⃒⃒)︀

≤ |𝑘3,max|
(︀
𝐾𝜑𝑅

𝑟−1|𝑦1 − 𝑦2|+𝑅|𝑥1|𝑟−1|𝜑(𝑥1)− 𝜑(𝑥2)|+𝑅𝐾𝜑|𝑥𝑟−1
1 − 𝑥𝑟−1

2 |
)︀

≤ |𝑘3,max|
(︁
𝐾𝜑𝑅

𝑟−1|𝑦1 − 𝑦2|+𝑅𝑟𝐶𝜑
𝑅|𝑥1 − 𝑥2|+𝑅𝐾𝜑

√︀
|𝑥1 − 𝑥2|

)︁
≤𝐶𝑅

(︁
|𝑥1 − 𝑥2|+ |𝑦1 − 𝑦2|+

√︀
|𝑥1 − 𝑥2|

)︁
,

where we have used (2.4.13) and 𝐶𝑅 := |𝑘3,max|
(︁
𝐶𝜑

𝑅𝑅
𝑟 ∨𝐾𝜑𝑅

𝑟−1 ∨𝐾𝜑𝑅
)︁
.

Thus, Assumption 2.2.1 holds for 𝑔. Lemmata 2.4.14 and 2.4.17 complete
the proof.

Lemma 2.4.16 [Positivity of (𝑥𝑡)] In the previous setting it holds that 𝑥𝑡 > 0
a.s. 2

Proof of Lemma 2.4.16. One can use again the arguments in Lemma 2.4.6
applying Itô’s formula on (𝑥𝑡)

−2.We present an alternative proof in Appendix
C.4.



2.5. Numerical Experiments. 53

Lemma 2.4.17 [Moment bound for Semi-Discrete approximation] In the
previous setting it holds that

E( sup
0≤𝑡≤𝑇

(𝑦𝑡)
𝑝) < 𝐴2,

for some 𝐴2 > 0 and for every 𝑝 > 2. 2

Proof of Lemma 2.4.17. The lemma is proved in much the same way as
Lemma 2.4.8; see also Appendix C.6.

2.5 Numerical Experiments.

We study the numerical approximation of the following SDE,

(2.5.1) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(𝑘1𝑥𝑠 − 𝑘2𝑥
2
𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑘3𝑥
3/2
𝑠 𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑥0 is independent of all {𝑊𝑡}0≤𝑡≤𝑇 , 𝑥0 ∈ ℒ4𝑝(Ω,R) for some 2 < 𝑝 and
𝑥0 > 0 a.s., E(𝑥0)−2 < 𝐴, 𝑘1, 𝑘2, 𝑘3 are positive constants with 𝑘2 > 7

2
(𝑘3)

2.
Model (2.5.1) has super-linear drift and diffusion coefficients.

In Proposition 2.4.5 we have shown that the semi-discrete numerical
scheme2 (in a more general setting with time-varying coefficients)

(2.5.2) 𝑦𝑆𝐷𝑡 = 𝑦𝑡𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝑘1 − 𝑘2𝑦𝑡𝑛)𝑦𝑠𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

𝑘3
√
𝑦𝑡𝑛𝑦𝑠𝑑𝑊𝑠, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],

for 𝑛 ≤ 𝑇/Δ and 𝑦0 = 𝑥0 a.s., or in a more compact form,

(2.5.3) 𝑦𝑆𝐷𝑡 = 𝑦0 +

∫︁ 𝑡

0

(𝑘1 − 𝑘2𝑦𝑠)𝑦𝑠𝑑𝑠+

∫︁ 𝑡

0

𝑘3
√
𝑦𝑠𝑦𝑠𝑑𝑊𝑠,

where 𝑠 = 𝑡𝑛, when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1), converges to the true solution of (2.5.1) in
the mean-square sense, that is

(2.5.4) lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 − 𝑥𝑡|2 = 0.

Relation (2.5.4) does not show the order of convergence. In the following,
we compute experimentally the order of convergence.

2 The existence and uniqueness of 𝑦𝑆𝐷
𝑡 is shown in Appendix C.1.
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The linear SDE (2.5.3) has a solution which, by use of Itô’s formula, has
the explicit form

(2.5.5) 𝑦𝑆𝐷𝑡 = 𝑥0 exp
{︁∫︁ 𝑡

0

(︁
𝑘1 − 𝑘2𝑦𝑠 − 𝑘23

𝑦𝑠
2

)︁
𝑑𝑠+

∫︁ 𝑡

0

𝑘3
√
𝑦𝑠𝑑𝑊𝑠

}︁
,

where 𝑦𝑡 = 𝑦𝑡(𝑡0, 𝑥0). The semi-discrete scheme preserves positivity, which is
a desirable modeling property.

In order to estimate the endpoint error 𝜖 = E|𝑦𝑇 − 𝑥𝑇 |, where 𝑥𝑇 is the
exact solution of (2.5.1) and 𝑦𝑇 is the semi-discrete approximation (2.5.5),
we follow a standard procedure [KPS03, Sec. 3.3]. We compute 𝑀 batches
of 𝐿 simulation paths. Each batch is estimated by

𝜖𝑗 =
1

𝐿

𝐿∑︁
𝑖=1

|𝑦𝑖,𝑗𝑇 − 𝑥𝑖,𝑗𝑇 |

and the Monte Carlo estimator of the error

𝜖 =
1

𝑀

𝑀∑︁
𝑗=1

𝜖𝑗 =
1

𝑀𝐿

𝑀∑︁
𝑗=1

𝐿∑︁
𝑖=1

|𝑦𝑖,𝑗𝑇 − 𝑥𝑖,𝑗𝑇 |,

requires 𝑀 · 𝐿 Monte Carlo sample paths. When the batch size averages
𝐿 ≥ 15 they can be considered as Gaussian. A 100(1 − 𝛼)% confidence
interval for the error 𝜖 is determined by endpoints of the form

𝜖± 𝑡1−𝛼,𝑀−1 ·

⎯⎸⎸⎷ 1

𝑀(𝑀 − 1)

𝑀∑︁
𝑗=1

(𝜖𝑗 − 𝜖)2.

We simulate 100 · 100 = 10000 paths3. The choice for 𝐿 = 100 is considered
in [KPS03, p.118]. We should not forget to change the student t-test quantile
𝑡1−𝛼,𝑀−1 when we change the number 𝑀 of batches or the significance level
𝛼. Table 2.2 shows values of t-test quantiles for different values of 𝑀 and 𝛼.
In the experiments we consider 98% confidence intervals.

We discretize with a number of steps in power of 2. The iterative SD-
procedure reads

𝑦𝑆𝐷𝑡𝑛+1
= 𝑦𝑡𝑛 exp

{︁(︂
𝑘1 − 𝑘2𝑦𝑡𝑛 − 𝑘23𝑦𝑡𝑛

2

)︂
Δ+ 𝑘3

√
𝑦𝑡𝑛Δ𝑊𝑛

}︁
,

3 We simulate with 3.06GHz Intel Pentium, 1.49GB of RAM in Matlab 𝑅2014𝑏 Software.
The effort made is just for the purpose of the order of convergence and not for the efficiency
of the computer code-time.
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M 10 20 30 40 60 100 200
𝑡0.9,𝑀−1 1.83 1.73 1.70 1.68 1.67 1.66 1.65
𝑡0.95,𝑀−1 2.26 2.09 2.05 2.02 2.00 1.98 1.97
𝑡0.98,𝑀−1 2.82 2.54 2.46 2.43 2.39 2.36 2.35
𝑡0.99,𝑀−1 3.25 2.86 2.76 2.71 2.66 2.63 2.60

Tab. 2.2: t-test quantiles, batches, level of confidence.

for 𝑛 = 0, . . . , 𝑁 − 1, where Δ𝑊𝑛 := 𝑊𝑡𝑛+1 −𝑊𝑡𝑛 are the increments of the
Brownian motion.

We want to compare our results with another method that preserves
positivity. This is an implicit Milstein scheme proposed in [HMS13, Sec.
2.2], which takes the form

𝑦𝐻𝑀𝑆
𝑡𝑛+1

=
1

2(𝑘2 +
3
4
(𝑘3)2)Δ

(︁
− (1− 𝑘1Δ)

+

√︂
(1− 𝑘1Δ)2 + 4(𝑘2 +

3

4
(𝑘3)2)Δ(𝑦𝑡𝑛 + 𝑘3𝑦

3/2
𝑡𝑛 Δ𝑊𝑛 +

3

4
(𝑘3)2𝑦2𝑡𝑛(Δ𝑊𝑛)2)

)︁
.

As a reference solution, we take the value of 𝑦𝐻𝑀𝑆
𝑇 at Δ = 2−14, as in the

numerical experiment in [HMS13, Sec. 4.1], and in the second experiment
𝑦𝑆𝐷𝑇 at Δ = 2−14, since we have shown by (2.5.4) that it strongly converges
to the exact solution. We plot in a log2-log2 scale. The results are presented
in Tables 2.3 and 2.4 and they are also shown in Figure 2.3 for the first
experiment (as the situation is quite similar for the other experiment).

Step Δ 98% SD-Error 98% HMS-Error
2−1 0.01478805± 1.36 · 10−5 0.03968881± 1.38 · 10−5

2−3 0.01461442± 1.43 · 10−5 0.0073555± 1.43 · 10−5

2−5 0.00147411± 1.19 · 10−5 0.00174620± 1.18 · 10−5

2−7 0.0004872± 7.92 · 10−6 0.0005787± 9.96 · 10−6

2−9 0.00044181± 7.35 · 10−6 0.00044875± 8.11 · 10−6

2−11 0.00042386± 7.62 · 10−6 0.00042411± 7.63 · 10−6

2−13 0.0003137± 5.16 · 10−6 0.00031381± 5.15 · 10−6

Tab. 2.3: Error & step size of SD and HMS approximation of (2.5.1) with HMS

exact solution and 32 digits of accuracy.

The following points of discussion are worth mentioning.
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Fig. 2.3: SD and HMS method applied to SDE (2.5.1) with parameters 𝑘1 =
0.1, 𝑘2 = 𝜆

2 (𝑘3)
2, 𝑘3 =

√
0.2, 𝜆 = 700, 𝑥0 = 1, 𝑇 = 1 and 32 digits of

accuracy.
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∙ The SD method and the HMS method are very close, with SD perform-
ing slightly better, except only for the step size Δ = 2−3. The same
situation appears in both cases, i.e. independently of the choice of the
reference solution, which is a positive feature of SD.

∙ A linear regression with the method of least squares fit, in the case one
considers only the first four points with steps Δ = 2−1, 2−3, 2−5, 2−7,
produced values consistent with the strong order of convergence equal
to 1 for both SD and HMS methods, whereas considering all the seven
points, values close to 1/2. Table 2.5 presents the exact values of order
of convergence. We see that the order of convergence of SD for problem
(2.5.1) is at least 1/2.

∙ The confidence intervals are of such an order that indicates that we do
not need to increase the number of batches 𝑀. All the above calcula-
tions are made evaluating with 32 digits.

∙ For small Δ it may happen that the global error will begin to increase
as Δ is further decreased [KPS03, p.97]. This effect is due to the
roundoff error which influences the calculated global error. In practice,
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Step Δ 98% SD-Error 98% HMS-Error
2−1 0.01478262± 1.36 · 10−5 0.03969424± 1.38 · 10−5

2−3 0.01460899± 1.43 · 10−5 0.00736093± 1.43 · 10−5

2−5 0.0014687± 1.18 · 10−5 0.00175161± 1.18 · 10−5

2−7 0.00048522± 7.89 · 10−6 0.00058162± 9.99 · 10−6

2−9 0.00044126± 7.35 · 10−6 0.00044942± 8.15 · 10−6

2−11 0.00042361± 7.62 · 10−6 0.00042413± 7.63 · 10−6

2−13 0.00031367± 5.14 · 10−6 0.00031384± 5.12 · 10−6

Tab. 2.4: Error & step size of SD and HMS approximation of (2.5.1) with SD exact

solution and 32 digits of accuracy.

No Order of SD with HMS ref.sol. Order of HMS with HMS ref.sol.
(with SD ref.sol.) (with SD ref.sol.)

4 0.904 (0.905) 1.019 (1.017)
7 0.511 (0.511) 0.556 (0.556)

Tab. 2.5: Order of convergence of SD and HMS approximation of (2.5.1) with HMS

(SD) exact solution with 32 digits of accuracy.

that implies the existence of a minimum step size Δmin, for each initial
value problem, below which the accuracy of the approximations through
a specific method cannot be improved.

∙ Convergence of a numerical scheme does not alone guarantee its prac-
tical value [KPS03, p.129]. It may be numerical unstable. Moreover,
in practice, the computer time consumed to provide a desired level of
accuracy, is of great importance. As mentioned in Footnote 3, we do
not claim that the SD method performs well in that aspect, because
of the exponential calculations involved. However, it seems that it can
reach accuracy up to four digits, as fast as the HMS method.

∙ We would like to see the impact of the parameter 𝜆. The SD method,
seems to work, with the theoretical proof shown in Section 2.4.1, when
𝜆 is over 7. What happens below that range? The HMS method works
for 𝜆 over 1/2.Moreover, as noted in Remark 2.4.9(iv), our method can
cover more general cases, in contrast to HMS, by introducing the func-
tion 𝜑(·) in the diffusion part, or/and by assuming random coefficients
𝑘1(·), 𝑘2(·), 𝑘3(·).
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In the following, we present the situation when we change the param-
eters of SDE (2.5.1) in such a way that we are closer to the theoretical
acceptable range (by lowering 𝜆 to 70). The error now is bigger and the
rate of convergence drops to a half, for both the SD and HMS method.
To be more precise we present the results in Tables 2.6 and 2.7.

Step Δ 98% SD-Error 98% HMS-Error
2−1 0.10228515± 3.53 · 10−4 0.10105429± 3.51 · 10−4

2−3 0.01790118± 3.38 · 10−4 0.02708432± 3.39 · 10−4

2−5 0.01243608± 2.21 · 10−4 0.01352563± 2.26 · 10−4

2−7 0.01218537± 2.29 · 10−4 0.01229934± 2.31 · 10−4

2−9 0.0122866± 2.19 · 10−4 0.01228005± 2.19 · 10−4

2−11 0.01140109± 2.15 · 10−4 0.01138454± 2.18 · 10−4

2−13 0.00869149± 1.47 · 10−4 0.00868346± 1.49 · 10−4

Tab. 2.6: Error & step size of SD and HMS approximation of (2.5.1) with HMS

exact solution and 32 digits of accuracy when 𝜆 = 70.

No Order of SD Order of HMS
4 0.487 0.506
7 0.214 0.237

Tab. 2.7: Order of convergence of SD and HMS approximation of (2.5.1) with HMS

exact solution and 32 digits of accuracy when 𝜆 = 70.

Finally, we present the case with 𝜆 = 7. The rate of convergence drops
dramatically. To be more precise the order of the SD method becomes
0.03 and the order of HMS 0.034.

∙ Regarding the tamed Euler method, a major drawback is that it does
not preserve positivity. The proposed method SD and the implicit
Milstein scheme HMS behave in a similar way for small values of Δ and
retain this similarity as we lower the parameter 𝜆 close to its critical
value. Nevertheless, the errors grow and the order of convergence drops
as 𝜆 changes and the reason for that behavior is the fact that at the
critical 𝜆 value we have moments explosions of the original process (𝑥𝑡).
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3.1 Introduction.

Consider1 the following stochastic models in Itô form

(3.1.1)

⎧⎨⎩
𝑆𝑡 = 𝑆0 +

∫︀ 𝑡

0
𝜇 · 𝑆𝑢𝑑𝑢+

∫︀ 𝑡

0
(𝑉𝑢)

𝑝 · 𝑆𝑢𝑑𝑊𝑢, 𝑡 ∈ [0, 𝑇 ],

𝑉𝑡 = 𝑉0 +
∫︀ 𝑡

0
(𝑘1 − 𝑘2𝑉𝑠)𝑑𝑠+

∫︀ 𝑡

0
𝑘3(𝑉𝑠)

𝑞𝑑̃︁𝑊𝑠 𝑡 ∈ [0, 𝑇 ],

1 This chapter is based on joint work with Nikolaos Halidias, published in Journal of
Probability and Statistics [HS15].
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where 𝑆𝑡 represents the underlying financially observable variable, 𝑉𝑡 is the
instantaneous volatility when 𝑝 = 1 or the instantaneous variance when 𝑝 =
1/2 and the Wiener processes (𝑊𝑡), (̃︁𝑊𝑡) have correlation 𝜌.

We assume that (𝑉𝑡) is a mean-reverting CEV process of the above form,
with the coefficients 𝑘𝑖 > 0 for 𝑖 = 1, 2, 3 and 𝑞 > 1/2, since the process (𝑉𝑡)
has to be non-negative. To be more precise the above restriction on 𝑞 implies
that (𝑉𝑡) is positive, i.e. 0 is unattainable, as well as non-explosive, i.e. ∞ is
unattainable, as can be verified by the Feller’s classification of boundaries, see
Appendix F.1. (In particular, we get for the dynamics of the mean-reverting
CEV process (𝑉𝑡) of (3.1.1) a boundary behavior which is determined by the
scale function (F.1.2) which reads

𝑠(𝑥) =

∫︁ 𝑥

𝑐

exp

{︂
− 2

∫︁ 𝑦

𝑐

𝑘1 − 𝑘2𝑧

(𝑘3)2𝑧2𝑞
𝑑𝑧

}︂
𝑑𝑦

= 𝐶

∫︁ 𝑥

𝑐

exp

{︂
− 2𝑘1

(𝑘3)2(1− 2𝑞)
𝑦1−2𝑞 +

2𝑘2
(𝑘3)2(2− 2𝑞)

𝑦2−2𝑞

}︂
𝑑𝑦,

for any 𝑥 ∈ 𝐼, where 𝐶 > 0. Let 𝐼 = (0,∞) and take 𝑐 = 1. We compute

𝑠(0+) = −𝐶
∫︁ 1

0

exp
{︀
− 2𝑘1

(𝑘3)2(1− 2𝑞)
𝑦1−2𝑞 +

2𝑘2
(𝑘3)2(2− 2𝑞)

𝑦2−2𝑞
}︀
𝑑𝑦 = −∞,

when 2𝑞 > 1, thus by [KS88, Prop. 5.22c] we have that P(inf0≤𝑡 𝑉𝑡 > 0) = 1.)
The steady-state level of 𝑉𝑡 is2 𝑘1/𝑘2 and the rate of mean-reversion is 𝑘2.

System (3.1.1) for 𝑝 = 𝑞 = 1/2 is the Heston model. When 𝑞 = 1 we
get the Brennan-Schwartz model [BS80, Sec. II] that despite its simple form,
cannot provide analytical expressions for 𝑆𝑡.

Process (𝑉𝑡) for 𝑞 = 1/2, is know as the CIR process, see Example 1.3.8,
has received a lot of attention and we just mention the latest two contri-
butions to the study of such processes (see [Alf13], [Hal15c] and references
therein).

Process (𝑉𝑡) for 1/2 ≤ 𝑞 ≤ 1 has been also considered for the dynamics
of the short-term interest rate [CKLS92, (1)]. The stationary distribution of
the process has also been derived in [AP07, Prop 2.2].

We aim for a positivity preserving scheme for the process (𝑉𝑡). The scheme
that we propose, and denote semi-discrete (SD), preserves the analytical
property of (𝑉𝑡) staying positive. The idea of the semi-discrete method is

2 It holds that E𝑉𝑡 → 𝑘1/𝑘2 as 𝑡 → ∞.
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that we discretize a part of the original SDE and then apply Itô’s formula
(cf. [Hal12] where the method originally appeared and [Hal14], [Hal15d],
[HS16]). The explicit Euler scheme fails to preserve positivity, as well as
the standard Milstein scheme. We intend to apply the semi-discrete method
for the numerical approximation of (𝑉𝑡) in model (3.1.1) with 1/2 < 𝑞 < 1
and compare with other positivity preserving methods such as the balanced
implicit method (BIM) (introduced by [MPS98, (3.2)] with the positivity
preserving property [KS06, Sec. 5] and its stability properties [AK06]; see
also [AK12] for an extended balanced method with better stability behavior)
and the balanced Milstein method (BMM) [KS06, Th. 5.9].3 Finally, we
approximate the stochastic volatility model (3.1.1) with 𝑝 = 1/2. In [KJ06]
a thorough treatment can be found, where also another stochastic volatility
model is suggested.

Section 3.2 provides the setting and the main results, Theorems 3.2.2 and
3.2.4, concerning the ℒ2-convergence of the proposed semi-discrete method
to the true solution of mean-reverting CEV processes of the form of the
stochastic volatility in (3.1.1). The rate of mean-square convergence in The-
orem 3.2.2 is logarithmic and in Theorem 3.2.4 is polynomial with magnitude
1
2
(𝑞− 1

2
). The main ingredient of the approach we adopt, inspired by [Hal15c],

is a change of the initial Brownian motion (𝑊𝑡) to another Brownian motion
(𝑊̂𝑡) justified by Lévy’s martingale characterization of Brownian motion, see
Theorem A.3.9.

Section 3.3 is devoted to the logarithmic rate of convergence of the pro-
posed semi-discrete scheme, while Section 3.4 concerns the proof of the poly-
nomial rate of convergence. In Section 3.5 we briefly discuss the case where
we do not alter the initial Brownian motion (𝑊𝑡). This approach produces
reduced convergence rate. Finally, Section 3.6 presents illustrative figures
where the behavior of the proposed scheme, regarding the order of conver-
gence, is shown and a comparison with BIM and BMM schemes is given.
In Section 3.7 we treat the full model (3.1.1) for a special case. Concluding
remarks are in Section 3.8 and in Appendix D we briefly present numerical
schemes for the integration of the variance-volatility process (𝑉𝑡).

3 We give in Appendix D the form of all the above schemes for the approximation of
(𝑉𝑡).
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3.2 The setting and the main results.

We consider the following SDE

(3.2.1) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(𝑘1 − 𝑘2𝑥𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑥𝑠)
𝑞𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝑘1, 𝑘2, 𝑘3 are positive and 1/2 < 𝑞 < 1. Then, Feller’s test implies that
there is a unique strong solution such that 𝑥𝑡 > 0 a.s. when 𝑥0 > 0 a.s. Let
(3.2.2)

𝑓𝜃(𝑥, 𝑦) = 𝑘1 − 𝑘2(1− 𝜃)𝑥− (𝑘3)
2

4(1 + 𝑘2𝜃Δ)
𝑥2𝑞−1 − 𝑘2𝜃𝑦⏟  ⏞  

𝑓1(𝑥,𝑦)

+
(𝑘3)

2

4(1 + 𝑘2𝜃Δ)
𝑥2𝑞−1⏟  ⏞  

𝑓2(𝑥)

and

(3.2.3) 𝑔(𝑥, 𝑦) = 𝑘3𝑥
𝑞− 1

2
√
𝑦,

where 𝑓(𝑥, 𝑥) = 𝑎(𝑥) = 𝑘1 − 𝑘2𝑥 and 𝑔(𝑥, 𝑥) = 𝑏(𝑥) = 𝑘3𝑥
𝑞.

Let the partition 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 with Δ = 𝑇/𝑁 and consider
the following process

𝑦𝑆𝐷𝑡 (𝑞) = 𝑦𝑡𝑛 + 𝑓1(𝑦𝑡𝑛 , 𝑦𝑡) ·Δ+

∫︁ 𝑡

𝑡𝑛

𝑓2(𝑦𝑡𝑛)𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

sgn(𝑧𝑠)𝑔(𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑊𝑠,

with 𝑦0 = 𝑥0 a.s. or more explicitly

𝑦𝑆𝐷𝑡 (𝑞) = 𝑦𝑡𝑛 +

(︂
𝑘1 − 𝑘2(1− 𝜃)𝑦𝑡𝑛 − (𝑘3)

2

4(1 + 𝑘2𝜃Δ)
(𝑦𝑡𝑛)

2𝑞−1 − 𝑘2𝜃𝑦𝑡

)︂
·Δ

+

∫︁ 𝑡

𝑡𝑛

(𝑘3)
2

4(1 + 𝑘2𝜃Δ)
(𝑦𝑡𝑛)

2𝑞−1𝑑𝑠+ 𝑘3(𝑦𝑡𝑛)
𝑞− 1

2

∫︁ 𝑡

𝑡𝑛

sgn(𝑧𝑠)
√
𝑦𝑠𝑑𝑊𝑠,(3.2.4)

for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1], where 𝜃 ∈ [0, 1] represents the level of implicitness and

(3.2.5) 𝑧𝑡 =
√
𝑦𝑛 +

𝑘3
2(1 + 𝑘2𝜃Δ)

(𝑦𝑡𝑛)
𝑞− 1

2 (𝑊𝑡 −𝑊𝑡𝑛),

with

(3.2.6) 𝑦𝑛 := 𝑦𝑡𝑛

(︂
1− 𝑘2Δ

1 + 𝑘2𝜃Δ

)︂
+

𝑘1Δ

1 + 𝑘2𝜃Δ
− (𝑘3)

2

4(1 + 𝑘2𝜃Δ)2
(𝑦𝑡𝑛)

2𝑞−1Δ.
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Process (3.2.4) is well defined when 𝑦𝑛 ≥ 0 and this is true when

1

(1 + 𝑘2𝜃Δ)
(𝑘3)

2 ≤ 4(𝑘2 ∧ 𝑘1) and Δ(2− 𝜃) ≤ 1

𝑘2
.

Furthermore, (3.2.4) has jumps at nodes 𝑡𝑛. Solving for 𝑦𝑡, we end up with
the following explicit scheme

𝑦𝑆𝐷𝑡 (𝑞) = 𝑦𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝑘3)
2

4(1 + 𝑘2𝜃Δ)2
(𝑦𝑡𝑛)

2𝑞−1𝑑𝑠

+
𝑘3

1 + 𝑘2𝜃Δ
(𝑦𝑡𝑛)

𝑞− 1
2

∫︁ 𝑡

𝑡𝑛

sgn(𝑧𝑠)
√
𝑦𝑠𝑑𝑊𝑠,(3.2.7)

with solution in each step given by [KP95, (4.39), p.123]

𝑦𝑆𝐷𝑡 (𝑞) = (𝑧𝑡)
2,

which has the pleasant feature 𝑦𝑆𝐷𝑡 (𝑞) ≥ 0.
Inspired by [Hal15c] we remove the term sgn(𝑧𝑠) from (3.2.4) by consid-

ering the process ̃︁𝑊𝑡 :=

∫︁ 𝑡

0

sgn(𝑧𝑠)𝑑𝑊𝑠,

which is a martingale with quadratic variation < ̃︁𝑊𝑡,̃︁𝑊𝑡 >= 𝑡 and thus
a standard Brownian motion w.r.t. its own filtration, justified by Lévy’s
theorem. Therefore, the compact form of (3.2.4) becomes

𝑦𝑆𝐷𝑡 = 𝑥0 +

∫︁ 𝑡

0

(𝑘1 − 𝑘2(1− 𝜃)𝑦𝑠 − 𝑘2𝜃𝑦̃︀𝑠) 𝑑𝑠
+

∫︁ 𝑡𝑛+1

𝑡

(︂
𝑘1 − 𝑘2(1− 𝜃)𝑦𝑡𝑛 − (𝑘3)

2

4(1 + 𝑘2𝜃Δ)
(𝑦𝑡𝑛)

2𝑞−1 − 𝑘2𝜃𝑦𝑡

)︂
𝑑𝑠

+𝑘3

∫︁ 𝑡

0

(𝑦𝑠)
𝑞− 1

2
√
𝑦𝑠𝑑̃︁𝑊𝑠,(3.2.8)

for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1] where 𝑠 = 𝑡𝑗, 𝑠 ∈ (𝑡𝑗, 𝑡𝑗+1], 𝑗 = 0, . . . , 𝑛 and

̃︀𝑠 = {︂ 𝑡𝑗+1, for 𝑠 ∈ [𝑡𝑗, 𝑡𝑗+1],
𝑡, for 𝑠 ∈ [𝑡𝑛, 𝑡]

𝑗 = 0, . . . , 𝑛− 1.

Consider also the process

(3.2.9) ̃︀𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(𝑘1 − 𝑘2̃︀𝑥𝑠)𝑑𝑠+ ∫︁ 𝑡

0

𝑘3(̃︀𝑥𝑠)𝑞𝑑̃︁𝑊𝑠, 𝑡 ∈ [0, 𝑇 ].
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The process (𝑥𝑡) of (3.2.1) and the process (̃︀𝑥𝑡) of (3.2.9) have the same
distribution. We show in the following that E sup0≤𝑡≤𝑇 |𝑦𝑆𝐷𝑡 (𝑞) − ̃︀𝑥𝑡|2 →
0 as Δ ↓ 0 thus the same holds for the unique solution of (3.2.1), i.e.
E sup0≤𝑡≤𝑇 |𝑦𝑆𝐷𝑡 (𝑞)−𝑥𝑡|2 → 0 as Δ ↓ 0. To simplify notation we writẽ︁𝑊, (̃︀𝑥𝑡)
as 𝑊, (𝑥𝑡). We end up with the following explicit scheme
(3.2.10)

𝑦𝑆𝐷𝑡 (𝑞) = 𝑦𝑛 +

∫︁ 𝑡

𝑡𝑛

(𝑘3)
2

4(1 + 𝑘2𝜃Δ)2
(𝑦𝑡𝑛)

2𝑞−1𝑑𝑠+
𝑘3

1 + 𝑘2𝜃Δ
(𝑦𝑡𝑛)

𝑞− 1
2

∫︁ 𝑡

𝑡𝑛

√
𝑦𝑠𝑑𝑊𝑠,

where 𝑦𝑛 is as in (3.2.6).

Assumption 3.2.1 Let the parameters 𝑘1, 𝑘2, 𝑘3 be positive such that

1

(1 + 𝑘2𝜃Δ)
(𝑘3)

2 ≤ 4(𝑘2 ∧ 𝑘1)

and consider Δ > 0 such that Δ(2− 𝜃) < 1
𝑘2
, for 𝜃 ∈ [0, 1]. Moreover assume

𝑥0 > 0 a.s. and E(𝑥0)𝑝 < 𝐴 for some 𝑝 ≥ 4. 2

Theorem 3.2.2 [Logarithmic rate of convergence] Let Assumption 3.2.1 hold.
The semi-discrete scheme (3.2.10) converges to the true solution of (3.2.1)
in the mean-square sense with rate given by

(3.2.11) E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 (𝑞)− 𝑥𝑡|2 ≤
𝐶√︀

ln(Δ)−1
,

where 𝐶 is independent of Δ and given by

𝐶 := 32

√︂
6

𝜖
(𝑘3)

4𝑇 2𝑒6𝑇
2(𝑘2)2+𝑘2𝑇 ,

where 0 < 𝜖 < 𝑞 − 1
2
. 2

Assumption 3.2.3 Let Assumption 3.2.1 hold where now 𝑥0 ∈ R and 𝑥0 >
0. 2

Theorem 3.2.4 [Polynomial rate of convergence] Let Assumption 3.2.3 hold.
The semi-discrete scheme (3.2.10) converges to the true solution of (3.2.1)
in the mean-square sense with rate given by,

(3.2.12) E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 (𝑞)− 𝑥𝑡|2 ≤ 𝐶Δ(𝑞− 1
2
),
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where

𝐶 := 16(𝑘3)
2𝑇
√︀
𝐴2(𝑥0 + 𝑘1𝑇 )2

√︁
𝐴4𝑞−2

(︂
2𝑒6(𝑘2)

2𝑇 2

+
𝐶𝐻𝐾

𝜖− 1
(𝑥0)

(1−𝑞)𝜈(𝜆)

)︂
,

𝐶𝐻𝐾 is a constant described in (3.4.7), 𝜆 is an appropriately chosen positive
parameter which satisfies (3.4.8) and always exist, 𝜈(𝜆) := 𝜆

2(1−𝑞)2(𝑘3)2
− 1

and 𝜖 > 1. 2

In the following sections we write for simplicity 𝑦𝑆𝐷𝑡 or 𝑦𝑡 for 𝑦𝑆𝐷𝑡 (𝑞).

3.3 Logarithmic Rate of Convergence.

3.3.1 Moment Bounds.

Lemma 3.3.5 [Moment bound for SD approximation] It holds that

E sup
0≤𝑡≤𝑇

(𝑦𝑡)
𝑝 ≤ 𝐴𝑝E(𝑥0 + 𝑘1𝑇 )

𝑝,

for any 𝑝 > 2, where 𝐴𝑝 := exp
{︁

𝑝(𝑝−1)
2

(𝑘3)
2
(︁

𝑝−1
2𝑝

+ 2𝑝−1

𝑝

)︁
𝑇
}︁
. 2

Proof of Lemma 3.3.5. We first observe that (𝑦𝑡) is bounded in the following
way

0 ≤ 𝑦𝑡 ≤ 𝑥0 +

∫︁ 𝑡

0

𝑘1𝑑𝑠+ 𝑘3

∫︁ 𝑡

0

(𝑦𝑠)
𝑞− 1

2
√
𝑦𝑠𝑑𝑊𝑠

≤ 𝑥0 + 𝑘1𝑇 + 𝑘3

∫︁ 𝑡

0

(𝑦𝑠)
𝑞− 1

2
√
𝑦𝑠𝑑𝑊𝑠 := 𝑢𝑡

a.s., where the lower bound comes from the construction of (𝑦𝑡) and the upper
bound follows from a comparison theorem. We will bound (𝑢𝑡) and therefore
(𝑦𝑡), since 0 ≤ 𝑦𝑡 ≤ 𝑢𝑡 a.s. Set the stopping time 𝜏𝑅 := inf{𝑡 ∈ [0, 𝑇 ] : 𝑢𝑡 >
𝑅}, for 𝑅 > 0 with the convention inf ∅ = ∞. Application of Itô’s formula
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on (𝑢𝑡∧𝜏𝑅)
𝑝 implies

(𝑢𝑡∧𝜏𝑅)
𝑝 = (𝑥0 + 𝑘1𝑇 )

𝑝 +
𝑝(𝑝− 1)

2
(𝑘3)

2

∫︁ 𝑡∧𝜏𝑅

0

(𝑢𝑠)
𝑝−2(𝑦𝑠)

2𝑞−1𝑦𝑠𝑑𝑠

+𝑝𝑘3

∫︁ 𝑡∧𝜏𝑅

0

(𝑢𝑠)
𝑝−1(𝑦𝑠)

𝑞− 1
2
√
𝑦𝑠𝑑𝑊𝑠

≤ (𝑥0 + 𝑘1𝑇 )
𝑝 +

𝑝(𝑝− 1)

2
(𝑘3)

2

∫︁ 𝑡∧𝜏𝑅

0

(𝑢𝑠)
𝑝−1(𝑦𝑠)

2𝑞−1𝑑𝑠+𝑀𝑡

≤ (𝑥0 + 𝑘1𝑇 )
𝑝 +

𝑝(𝑝− 1)

2
(𝑘3)

2

∫︁ 𝑡∧𝜏𝑅

0

(
𝑝− 1

2𝑝
(𝑢𝑠)

𝑝 +
2𝑝−1

𝑝
(𝑦𝑠)

(2𝑞−1)𝑝)𝑑𝑠+𝑀𝑡

≤ (𝑥0 + 𝑘1𝑇 )
𝑝 +

𝑝(𝑝− 1)

2
(𝑘3)

2

(︂
𝑝− 1

2𝑝
+

2𝑝−1

𝑝

)︂∫︁ 𝑡∧𝜏𝑅

0

(𝑢𝑠)
𝑝𝑑𝑠+𝑀𝑡,

where in the second step we have used that 0 ≤ 𝑦𝑡 ≤ 𝑢𝑡, in the third step the
inequality

𝑥𝑝−1𝑦 ≤ 𝜖
𝑝− 1

𝑝
𝑥𝑝 +

1

𝑝𝜖𝑝−1
𝑦𝑝,

valid for 𝑥 ∧ 𝑦 ≥ 0 and 𝑝 > 1 with 𝜖 = 1
2
, in the final step the fact 1

2
< 𝑞 < 1

and

𝑀𝑡 := 𝑝𝑘3

∫︁ 𝑡∧𝜏𝑅

0

(𝑢𝑠)
𝑝−1(𝑦𝑠)

𝑞− 1
2
√
𝑦𝑠𝑑𝑊𝑠.

Taking expectations in the above inequality and using that 𝑀𝑡 is a local
martingale vanishing at 0, we get

E(𝑢𝑡∧𝜏𝑅)
𝑝 ≤ E(𝑥0 + 𝑘1𝑇 )

𝑝 +
𝑝(𝑝− 1)

2
(𝑘3)

2

(︂
𝑝− 1

2𝑝
+

2𝑝−1

𝑝

)︂∫︁ 𝑡

0

E(𝑢𝑠∧𝜏𝑅)
𝑝𝑑𝑠

≤ E(𝑥0 + 𝑘1𝑇 )
𝑝 exp

{︂
𝑝(𝑝− 1)

2
(𝑘3)

2

(︂
𝑝− 1

2𝑝
+

2𝑝−1

𝑝

)︂
𝑇

}︂
≤ 𝐴𝑝E(𝑥0 + 𝑘1𝑇 )

𝑝,

where we have applied the Gronwall inequality (B.3.6).We have that

(𝑦𝑡∧𝜏𝑅)
𝑝 = (𝑦𝜏𝑅)

𝑝I{𝜏𝑅≤𝑡} + (𝑦𝑡)
𝑝I{𝑡<𝜏𝑅} ≥ (𝑦𝑡)

𝑝I{𝑡<𝜏𝑅},

thus taking expectations in the above inequality and using the estimated
upper bound for E(𝑢𝑡∧𝜏𝑅)𝑝 we arrive at

E(𝑦𝑡)𝑝I{𝑡<𝜏𝑅} ≤ E(𝑦𝑡∧𝜏𝑅)
𝑝 ≤ E(𝑢𝑡∧𝜏𝑅)

𝑝 ≤ 𝐴𝑝E(𝑥0 + 𝑘1𝑇 )
𝑝,
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and taking the limit as 𝑅 → ∞, we get

lim
𝑅→∞

E(𝑦𝑡)𝑝I{𝑡<𝜏𝑅} ≤ 𝐴𝑝E(𝑥0 + 𝑘1𝑇 )
𝑝.

Let us fix 𝑡. The sequence of stopping times 𝜏𝑅 is increasing in 𝑅 and 𝑡 ∧
𝜏𝑅 → 𝑡 as 𝑅 → ∞, thus the sequence (𝑦𝑡)𝑝I{𝑡<𝜏𝑅} is non-decreasing in 𝑅 and
(𝑦𝑡)

𝑝I{𝑡<𝜏𝑅} → (𝑦𝑡)
𝑝 as 𝑅 → ∞. Application of the monotone convergence

theorem, see Theorem B.1.1 implies

E(𝑦𝑡)𝑝 ≤ 𝐴𝑝E(𝑥0 + 𝑘1𝑇 )
𝑝,

for any 𝑝 > 2. Using again Itô’s formula on (𝑢𝑡)
𝑝, taking the supremum

and then using Doob’s martingale inequality on the diffusion term we bound
E sup0≤𝑡≤𝑇 (𝑢𝑡)

𝑝 and thus E sup0≤𝑡≤𝑇 (𝑦𝑡)
𝑝.

Lemma 3.3.6 [Error bound for SD scheme] Let 𝑛𝑠 be an integer such that
𝑠 ∈ [𝑡𝑛𝑠 , 𝑡𝑛𝑠+1]. Then

E|𝑦𝑠 − 𝑦𝑠|𝑝 ≤ 𝐴𝑝Δ
𝑝/2, E|𝑦𝑠 − 𝑦̃︀𝑠|𝑝 < ̃︀𝐴𝑝Δ

𝑝/2,

for any 𝑝 > 0, where the positive quantities 𝐴𝑝, ̃︀𝐴𝑝 do not depend on Δ. 2

Proof of Lemma 3.3.6. First we take a 𝑝 ≥ 2. It holds that
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|𝑦𝑠 − 𝑦𝑠|𝑝 =
⃒⃒⃒ ∫︁ 𝑠

𝑡𝑛𝑠

(︀
𝑘1 − 𝑘2(1− 𝜃)𝑦𝑢̂ − 𝑘2𝜃𝑦̃︀𝑢)︀𝑑𝑢+ ∫︁ 𝑡𝑛𝑠+1

𝑡𝑛𝑠

𝑘2𝜃𝑦𝑠𝑑𝑢

−
∫︁ 𝑡𝑛𝑠+1

𝑠

𝑘2𝜃𝑦𝑠𝑑𝑢+

∫︁ 𝑡𝑛𝑠

𝑠

(︂
𝑘1 − 𝑘2(1− 𝜃)𝑦𝑡𝑛𝑠

−
(𝑘3)

2(𝑦𝑡𝑛𝑠
)2𝑞−1

4(1 + 𝑘2𝜃Δ)

)︂
𝑑𝑢

+𝑘3

∫︁ 𝑠

𝑡𝑛𝑠

(𝑦𝑢̂)
𝑞− 1

2
√
𝑦𝑢𝑑𝑊𝑢

⃒⃒⃒𝑝
≤ 5𝑝−1

(︁⃒⃒ ∫︁ 𝑠

𝑡𝑛𝑠

(𝑘1 − 𝑘2(1− 𝜃)𝑦𝑢̂ − 𝑘2𝜃𝑦̃︀𝑢) 𝑑𝑢⃒⃒𝑝 + (𝑘2)
𝑝𝜃𝑝(𝑦𝑠)

𝑝(𝑡𝑛𝑠+1 − 𝑡𝑛𝑠)
𝑝

+(𝑘2)
𝑝𝜃𝑝(𝑦𝑠)

𝑝(𝑡𝑛𝑠+1 − 𝑠)𝑝 +

⃒⃒⃒⃒∫︁ 𝑡𝑛𝑠

𝑠

(𝑘1 − 𝑘2(1− 𝜃)𝑦𝑡𝑛𝑠
−

(𝑘3)
2(𝑦𝑡𝑛𝑠

)2𝑞−1

4(1 + 𝑘2𝜃Δ)
)𝑑𝑢

⃒⃒⃒⃒𝑝
+(𝑘3)

𝑝|
∫︁ 𝑠

𝑡𝑛𝑠

(𝑦𝑢̂)
𝑞− 1

2
√
𝑦𝑢𝑑𝑊𝑢|𝑝

)︁
≤ 5𝑝−1

(︁
|𝑡𝑛𝑠 − 𝑠|𝑝−1

∫︁ 𝑠

𝑡𝑛𝑠

|𝑘1 − 𝑘2(1− 𝜃)𝑦𝑢̂ − 𝑘2𝜃𝑦̃︀𝑢|𝑝 𝑑𝑢
+(𝑘2)

𝑝𝜃𝑝 ((𝑦𝑠)
𝑝 + (𝑦𝑠)

𝑝)Δ𝑝 +

⃒⃒⃒⃒
𝑘1 − 𝑘2(1− 𝜃)𝑦𝑡𝑛𝑠

−
(𝑘3)

2(𝑦𝑡𝑛𝑠
)2𝑞−1

4(1 + 𝑘2𝜃Δ)

⃒⃒⃒⃒𝑝
Δ𝑝

+(𝑘3)
𝑝|
∫︁ 𝑠

𝑡𝑛𝑠

(𝑦𝑢̂)
𝑞− 1

2
√
𝑦𝑢𝑑𝑊𝑢|𝑝

)︁
,

where we have used the Cauchy-Schwarz inequality. Taking expectations in
the above inequality and using Lemma 3.3.5 and the BDG inequality (B.3.5)
on the diffusion term we conclude

(3.3.1) E|𝑦𝑠 − 𝑦𝑠|𝑝 ≤ 𝐴𝑝Δ
𝑝/2,

where the positive quantity 𝐴𝑝 except on 𝑝, depends also on the parameters
𝑘1, 𝑘2, 𝑘3, 𝜃, 𝑞, but not on Δ. Now, for 0 < 𝑝 < 2 we get

E|𝑦𝑠 − 𝑦𝑠|𝑝 ≤
(︀
E|𝑦𝑠 − 𝑦𝑠|2

)︀𝑝/2 ≤ 𝐴𝑝Δ
𝑝/2,

where we have used Jensen’s inequality for the concave function 𝜑(𝑥) = 𝑥𝑝/2.
Following the same lines, we can show that

E|𝑦𝑠 − 𝑦̃︀𝑠|𝑝 ≤ ̃︀𝐴𝑝Δ
𝑝/2,

for any 0 < 𝑝, where the positive quantity ̃︀𝐴𝑝 except on 𝑝, depends also on
the parameters 𝑘1, 𝑘2, 𝑘3, 𝜃, 𝑞, but not on Δ.
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For the rest of this section we rewrite again the compact form of (3.2.8)
in the following way

(3.3.2) 𝑦𝑆𝐷𝑡 = 𝑥0 +

∫︁ 𝑡

0

𝑓𝜃(𝑦𝑠, 𝑦̃︀𝑠)𝑑𝑠+
∫︁ 𝑡

0

𝑔(𝑦𝑠, 𝑦𝑠)𝑑𝑊𝑠⏟  ⏞  
ℎ𝑡

+

∫︁ 𝑡𝑛+1

𝑡

𝑓1(𝑦𝑡𝑛 , 𝑦𝑡)𝑑𝑠,

where 𝑓𝜃(·, ·) is given by (3.2.2) and the auxiliary process (ℎ𝑡) is close to (𝑦𝑡)
as shown in the next result.

Lemma 3.3.7 [Moment bounds involving the auxiliary process] For any 𝑠 ∈
[0, 𝑇 ] it holds that

(3.3.3) E|ℎ𝑠 − 𝑦𝑠|𝑝 ≤ 𝐶𝑝Δ
𝑝, E|ℎ𝑠|𝑝 ≤ 𝐶ℎ,

and for 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1] we have that

E|ℎ𝑠 − 𝑦𝑠|𝑝 ≤ 𝐶𝑝Δ
𝑝/2, E|ℎ𝑠 − 𝑦̃︀𝑠|𝑝 ≤ ̃︀𝐶𝑝Δ

𝑝/2,

for any 𝑝 > 0, where the positive quantities 𝐶𝑝, 𝐶𝑝, ̃︀𝐶𝑝, 𝐶ℎ do not depend on
Δ. 2

Proof of Lemma 3.3.7. We have that

|ℎ𝑠 − 𝑦𝑠|𝑝 =
⃒⃒⃒⃒∫︁ 𝑡𝑛+1

𝑠

𝑓1(𝑦𝑡𝑛 , 𝑦𝑠)𝑑𝑢

⃒⃒⃒⃒𝑝
≤ |𝑡𝑛+1 − 𝑠|𝑝|𝑓1(𝑦𝑡𝑛 , 𝑦𝑠)|𝑝,

for any 𝑝 > 0, where we have used (3.3.2). Using Lemma 3.3.5 we get the
left part of (3.3.3). Now for 𝑝 ≥ 2 and noting that

E|ℎ𝑠|𝑝 ≤ 2𝑝−1E|ℎ𝑠 − 𝑦𝑠|𝑝 + 2𝑝−1E|𝑦𝑠|𝑝

≤ 2𝑝−1𝐶𝑝Δ
𝑝 + 2𝑝−1𝐴𝑝E(𝑥0 + 𝑘1𝑇 )

𝑝 ≤ 𝐶ℎ,

we get the right part of (3.3.3), where we have used Lemma 3.3.5. The case
0 < 𝑝 < 2 follows by Jensen’s inequality as in Lemma 3.3.6.

Furthermore, for 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1] and 𝑝 > 2 we derive that

E|ℎ𝑠 − 𝑦𝑠|𝑝 ≤ 2𝑝−1E|ℎ𝑠 − 𝑦𝑠|𝑝 + 2𝑝−1E|𝑦𝑠 − 𝑦𝑠|𝑝

≤ 2𝑝−1𝐶𝑝Δ
𝑝 + 2𝑝−1𝐴𝑝Δ

𝑝/2 ≤ 𝐶𝑝Δ
𝑝/2

where we have used (3.3.1) and in the same manner

E|ℎ𝑠 − 𝑦̃︀𝑠|𝑝 ≤ 2𝑝−1𝐶𝑝Δ
𝑝 + 2𝑝−1 ̃︀𝐴𝑝Δ

𝑝/2 ≤ ̃︀𝐶𝑝Δ
𝑝/2.

The case 0 < 𝑝 < 2 follows by Jensen’s inequality.
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3.3.2 Convergence of the auxiliary process (ℎ𝑡) to (𝑥𝑡) in ℒ1.

We will use the representation (3.3.2) and write

ℎ𝑡 − 𝑥𝑡 =

∫︁ 𝑡

0

(𝑓𝜃(𝑦𝑠, 𝑦̃︀𝑠)− 𝑓𝜃(𝑥𝑠, 𝑥𝑠)) 𝑑𝑠+

∫︁ 𝑡

0

(𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)) 𝑑𝑊𝑠.

Proposition 3.3.8 Let Assumption 3.2.1 hold. Then we have

(3.3.4) sup
0≤𝑡≤𝑇

E|ℎ𝑡 − 𝑥𝑡| ≤

(︃
𝐽3

Δ𝑞− 1
2

𝑚𝑒𝑚
+ 2(𝑘3)

2𝑇
1

𝑚

)︃
𝑒𝑘2𝑇 ,

for any 𝑚 > 1, where 𝑒𝑚 = 𝑒−𝑚(𝑚+1)/2 and

𝐽3 := 2(𝑘3)
2𝑇
√︀
𝐴2E(𝑥0 + 𝑘1𝑇 )2

√︁
𝐴4𝑞−2.

2

Proof of Proposition 3.3.8. We use the method of Yamada and Watanabe
[YW71] as in the proof of Proposition 2.3.4. We have that

(3.3.5) E|ℎ𝑡 − 𝑥𝑡| ≤ 𝑒𝑚−1 + E𝜑𝑚(ℎ𝑡 − 𝑥𝑡),

where 𝜑𝑚 is the sequence of approximations of |𝑥|. Moreover we find that

𝑓𝜃(𝑦𝑠, 𝑦̃︀𝑠)− 𝑓𝜃(𝑥𝑠, 𝑥𝑠) = (𝑘1 − 𝑘2(1− 𝜃)𝑦𝑠 − 𝑘2𝜃𝑦̃︀𝑠)− (𝑘1 − 𝑘2𝑥𝑠)

= −𝑘2(1− 𝜃)(𝑦𝑠 − 𝑥𝑠)− 𝑘2𝜃(𝑦̃︀𝑠 − 𝑥𝑠)

= 𝑘2(1− 𝜃)(ℎ𝑠 − 𝑦𝑠) + 𝑘2𝜃(ℎ𝑠 − 𝑦̃︀𝑠)− 𝑘2(ℎ𝑠 − 𝑥𝑠)(3.3.6)

and

|𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)|2 = |𝑘3(𝑦𝑠)𝑞−
1
2
√
𝑦𝑠 − 𝑘3(𝑥𝑠)

𝑞|2

≤ (𝑘3)
2
(︁√

𝑦𝑠

(︁
(𝑦𝑠)

𝑞− 1
2 − (𝑦𝑠)

𝑞− 1
2

)︁
+ ((𝑦𝑠)

𝑞 − (𝑥𝑠)
𝑞)
)︁2

≤ 2(𝑘3)
2

(︂
𝑦𝑠

(︁
(𝑦𝑠)

𝑞− 1
2 − (𝑦𝑠)

𝑞− 1
2

)︁2
+ ((𝑦𝑠)

𝑞 − (𝑥𝑠)
𝑞)2
)︂

≤ 2(𝑘3)
2
(︁
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1 + (

√︀
|𝑦𝑠 − 𝑥𝑠|)2

)︁
≤ 2(𝑘3)

2
(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1 + |ℎ𝑠 − 𝑦𝑠|+ |ℎ𝑠 − 𝑥𝑠|

)︀
,(3.3.7)
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where we have used properties of Hölder continuous functions and namely
the fact that 𝑥𝑞 is 𝑞-Hölder continuous for 𝑞 ≤ 1, i.e. |𝑥𝑞−𝑦𝑞| ≤ |𝑥−𝑦|𝑞, and
that 𝑥𝑞 is 1/2-Hölder continuous since 𝑞 > 1/2. Application of Itô’s formula
to the sequence {𝜑𝑚}𝑚∈N, implies

𝜑𝑚(ℎ𝑡 − 𝑥𝑡) =

∫︁ 𝑡

0

𝜑′
𝑚(ℎ𝑠 − 𝑥𝑠)(𝑓𝜃(𝑦𝑠, 𝑦̃︀𝑠)− 𝑓𝜃(𝑥𝑠, 𝑥𝑠))𝑑𝑠+𝑀𝑡

+
1

2

∫︁ 𝑡

0

𝜑′′
𝑚(ℎ𝑠 − 𝑥𝑠)(𝑔(𝑦𝑠, 𝑦̃︀𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠))

2𝑑𝑠

≤
∫︁ 𝑡

0

(𝑘2(1− 𝜃)|ℎ𝑠 − 𝑦𝑠|+ 𝑘2𝜃|ℎ𝑠 − 𝑦̃︀𝑠|+ 𝑘2|ℎ𝑠 − 𝑥𝑠|) 𝑑𝑠+𝑀𝑡

+

∫︁ 𝑡

0

2(𝑘3)
2

𝑚|ℎ𝑠 − 𝑥𝑠|
(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1 + |ℎ𝑠 − 𝑦𝑠|+ |ℎ𝑠 − 𝑥𝑠|

)︀
𝑑𝑠

≤ 𝑘2(1− 𝜃)

∫︁ 𝑡

0

|ℎ𝑠 − 𝑦𝑠|𝑑𝑠+ 𝑘2𝜃

∫︁ 𝑡

0

|ℎ𝑠 − 𝑦̃︀𝑠|𝑑𝑠+ 2(𝑘3)
2

𝑚𝑒𝑚

∫︁ 𝑡

0

|ℎ𝑠 − 𝑦𝑠|𝑑𝑠

+𝑘2

∫︁ 𝑡

0

|ℎ𝑠 − 𝑥𝑠|𝑑𝑠+𝑀𝑡 +
2(𝑘3)

2

𝑚𝑒𝑚

∫︁ 𝑡

0

𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1𝑑𝑠+
2(𝑘3)

2𝑇

𝑚
,

where in the second step we have used (3.3.6) and (3.3.7) and the properties
of 𝜑𝑚 and

𝑀𝑡 :=

∫︁ 𝑡

0

𝜑′
𝑚(ℎ𝑢 − 𝑥𝑢)(𝑔(𝑦𝑢̂, 𝑦̃︀𝑢)− 𝑔(𝑥𝑢, 𝑥𝑢))𝑑𝑊𝑢.
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Taking expectations in the above inequality yields

E𝜑𝑚(ℎ𝑡 − 𝑥𝑡) ≤ 𝑘2(1− 𝜃)

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑦𝑠|𝑑𝑠+ 𝑘2𝜃

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑦̃︀𝑠|𝑑𝑠
+
2(𝑘3)

2

𝑚𝑒𝑚

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑦𝑠|𝑑𝑠+
2(𝑘3)

2

𝑚𝑒𝑚

∫︁ 𝑡

0

E𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1𝑑𝑠+
2(𝑘3)

2𝑇

𝑚

+𝑘2

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑥𝑠|𝑑𝑠

≤ 𝑘2(1− 𝜃)𝑇𝐶1

√
Δ+ 𝑘2𝜃𝑇 ̃︀𝐶1

√
Δ+

2(𝑘3)
2𝑇𝐶1

𝑚𝑒𝑚
Δ+ 𝑘2

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑥𝑠|𝑑𝑠

+
2(𝑘3)

2

𝑚𝑒𝑚

∫︁ 𝑡

0

√︀
E(𝑦𝑠)2

√︀
E|𝑦𝑠 − 𝑦𝑠|4𝑞−2𝑑𝑠+

2(𝑘3)
2𝑇

𝑚

≤ 𝑘2𝑇 ((1− 𝜃)𝐶1 + 𝜃 ̃︀𝐶1)
√
Δ+

2(𝑘3)
2𝑇𝐶1

𝑚𝑒𝑚
Δ+ 𝑘2

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑥𝑠|𝑑𝑠

+
2(𝑘3)

2𝑇

𝑚𝑒𝑚

√︀
𝐴2E(𝑥0 + 𝑘1𝑇 )2

√︁
𝐴4𝑞−2Δ

𝑞− 1
2 +

2(𝑘3)
2𝑇

𝑚
,

where we have used Lemma 3.3.7 in the second step and Hölder’s inequal-
ity, Lemmata 3.3.5 and 3.3.6 in the third step and the fact that E𝑀𝑡 = 0
(The function 𝑑(𝑢) = 𝜑′

𝑚(ℎ𝑢 − 𝑥𝑢)(𝑔(𝑦𝑢̂, 𝑦̃︀𝑢) − 𝑔(𝑥𝑢, 𝑥𝑢)) belongs to the
space ℳ2([0, 𝑡];R) of real-valued measurable ℱ𝑡-adapted processes such that
E
∫︀ 𝑡

0
|𝑑(𝑢)|2𝑑𝑢 <∞; thus [Mao97, Th. 1.5.8] implies E𝑀𝑡 = 0.) Thus (3.3.5)

becomes

E|ℎ𝑡 − 𝑥𝑡| ≤ 𝑒𝑚−1 + 𝐽1
√
Δ+ 2(𝑘3)

2𝑇𝐶1
Δ

𝑚𝑒𝑚
+ 𝐽3

Δ𝑞− 1
2

𝑚𝑒𝑚
+ 2(𝑘3)

2𝑇
1

𝑚

+𝑘2

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑥𝑠|𝑑𝑠

≤ 𝐽3
Δ𝑞− 1

2

𝑚𝑒𝑚
+ 2(𝑘3)

2𝑇
1

𝑚
+ 𝑘2

∫︁ 𝑡

0

E|ℎ𝑠 − 𝑥𝑠|𝑑𝑠

≤

(︃
𝐽3

Δ𝑞− 1
2

𝑚𝑒𝑚
+ 2(𝑘3)

2𝑇
1

𝑚

)︃
𝑒𝑘2𝑡,

where in the second step we have used the asymptotic relations, Δ𝜅 =
𝑜(Δ𝑞− 1

2 ) as Δ ↓ 0 for any 𝜅 ≥ 1/2, 𝑒𝑚−1 = 𝑜( 1
𝑚
) as 𝑚 → ∞,

√
Δ = 𝑜( Δ𝜅

𝑚𝑒𝑚
)

for any 𝜅 ≤ 1 as 𝑚 → ∞, in the last step we have used the Gronwall
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inequality and 𝐽3 is as defined in Proposition 3.3.8 while

𝐽1 := 𝑘2𝑇 ((1− 𝜃)𝐶1 + 𝜃 ̃︀𝐶1).

Taking the supremum over all 0 ≤ 𝑡 ≤ 𝑇 gives (3.3.4).

3.3.3 Convergence of the auxiliary process (ℎ𝑡) to (𝑥𝑡) in ℒ2.

Proposition 3.3.9 Let Assumption 3.2.1 hold. Then we have

(3.3.8) E sup
0≤𝑡≤𝑇

|ℎ𝑡 − 𝑥𝑡|2 ≤
𝐶𝜖√︀

ln(Δ)−1
,

where 𝐶𝜖 is independent of Δ and given by 𝐶𝜖 := 32
√︁

3
2𝜖
(𝑘3)

4𝑇 2𝑒6𝑇
2(𝑘2)2+𝑘2𝑇 ,

where 0 < 𝜖 < 𝑞 − 1
2
. 2

Proof of Proposition 3.3.9. We estimate the difference |ℰ𝑡|2 := |ℎ𝑡 − 𝑥𝑡|2. It
holds that

|ℰ𝑡|2 =
⃒⃒ ∫︁ 𝑡

0

(𝑓𝜃(𝑦𝑠, 𝑦̃︀𝑠)− 𝑓𝜃(𝑥𝑠, 𝑥𝑠)) 𝑑𝑠+

∫︁ 𝑡

0

(𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)) 𝑑𝑊𝑠

⃒⃒2
≤ 2𝑇

∫︁ 𝑡

0

(𝑘2(1− 𝜃)|ℎ𝑠 − 𝑦𝑠|+ 𝑘2𝜃|ℎ𝑠 − 𝑦̃︀𝑠|+ 𝑘2|ℰ𝑠|)2 𝑑𝑠+ 2|𝑀𝑡|2

≤ 6𝑇 (𝑘2)
2(1− 𝜃)2

∫︁ 𝑡

0

|ℎ𝑠 − 𝑦𝑠|2𝑑𝑠+ 6𝑇 (𝑘2)
2𝜃2
∫︁ 𝑡

0

|ℎ𝑠 − 𝑦̃︀𝑠|2𝑑𝑠
+6𝑇 (𝑘2)

2

∫︁ 𝑡

0

|ℰ𝑠|2𝑑𝑠+ 2|𝑀𝑡|2,

where in the second step we have used the Cauchy-Schwarz inequality and
(3.3.6) and

𝑀𝑡 :=

∫︁ 𝑡

0

(𝑔(𝑦𝑢̂, 𝑦̃︀𝑢)− 𝑔(𝑥𝑢, 𝑥𝑢))𝑑𝑊𝑢.

Taking the supremum over all 𝑡 ∈ [0, 𝑇 ] and then expectations we have
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E sup
0≤𝑡≤𝑇

|ℰ𝑡|2≤ 6𝑇 (𝑘2)
2(1− 𝜃)2

∫︁ 𝑇

0

E|ℎ𝑠 − 𝑦𝑠|2𝑑𝑠+ 6𝑇 (𝑘2)
2𝜃2
∫︁ 𝑇

0

E|ℎ𝑠 − 𝑦̃︀𝑠|2𝑑𝑠
+6𝑇 (𝑘2)

2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2𝑑𝑠+ 2E sup
0≤𝑡≤𝑇

|𝑀𝑡|2

≤ 6𝑇 2(𝑘2)
2((1− 𝜃)2𝐴2 + 𝜃2 ̃︀𝐴2)Δ + 6𝑇 (𝑘2)

2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2𝑑𝑠(3.3.9)

+8E|𝑀𝑇 |2,

where in the second step we have used Lemma 3.3.6 and Doob’s martingale
inequality with 𝑝 = 2, since 𝑀𝑡 is an R-valued martingale that belongs to
ℒ2. We find that

E|𝑀𝑇 |2 = E
⃒⃒⃒⃒∫︁ 𝑇

0

|𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)|𝑑𝑊𝑠

⃒⃒⃒⃒2
= E

∫︁ 𝑇

0

|𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)|2𝑑𝑠

≤ 2(𝑘3)
2E
(︂∫︁ 𝑇

0

(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1 + |ℎ𝑠 − 𝑦𝑠|+ |ℎ𝑠 − 𝑥𝑠|

)︀
𝑑𝑠

)︂
≤ 2(𝑘3)

2

∫︁ 𝑇

0

E
(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1

)︀
𝑑𝑠+ 2(𝑘3)

2

∫︁ 𝑇

0

E|ℎ𝑠 − 𝑦𝑠|𝑑𝑠

+2(𝑘3)
2

∫︁ 𝑇

0

E|ℰ𝑠|𝑑𝑠,

where we have used (3.3.7). Now, Lemmata 3.3.5, 3.3.6 and 3.3.7 imply

E|𝑀𝑇 |2 ≤ 𝐽6
√
Δ2𝑞−1 + 2(𝑘3)

2𝑇𝐶1Δ+ 2(𝑘3)
2

∫︁ 𝑇

0

E|ℰ𝑠|𝑑𝑠

≤ 𝐽6Δ
𝑞− 1

2 + 2(𝑘3)
2

∫︁ 𝑇

0

E|ℰ𝑠|𝑑𝑠,

where we have used the asymptotic relations, Δ𝑙 = 𝑜(Δ𝑞− 1
2 ) for all 𝑙 ≥ 1

2
as

Δ ↓ 0 and the quantity 𝐽6 is given by 𝐽6 := 2(𝑘3)
2𝑇
√︀
𝐴2E(𝑥0 + 𝑘1𝑇 )2

√︁
𝐴4𝑞−2.
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Relation (3.3.9) becomes

E sup
0≤𝑡≤𝑇

|ℰ𝑡|2 ≤ 8𝐽6Δ
𝑞− 1

2 + 𝐽5Δ+ 6𝑇 (𝑘2)
2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2𝑑𝑠

+16(𝑘3)
2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|𝑑𝑠

≤ 8𝐽6Δ
𝑞− 1

2 + 16(𝑘3)
2𝑇

(︃
𝐽3

Δ𝑞− 1
2

𝑚𝑒𝑚
+ 3(𝑘3)

2𝑇
1

𝑚

)︃
𝑒𝑘2𝑇

+6𝑇 (𝑘2)
2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2𝑑𝑠

≤ 16(𝑘3)
2𝑇𝐽3𝑒

𝑘2𝑇+6𝑇 2(𝑘2)2
Δ𝑞− 1

2

𝑚𝑒𝑚
+ 32(𝑘3)

4𝑇 2𝑒𝑘2𝑇+6𝑇 2(𝑘2)2
1

𝑚
,

where we have used Proposition 3.3.8 in the second step with the sequence 𝑒𝑚
as defined there, the Gronwall inequality in the last step and the asymptotic
relation Δ𝜅 = 𝑜( Δ𝜅

𝑚𝑒𝑚
) as 𝑚 → ∞, for any 𝜅 > 0 and 𝐽5 is independent of Δ

and given by 𝐽5 := 6𝑇 2(𝑘2)
2((1− 𝜃)2𝐴2 + 𝜃2 ̃︀𝐴2).

We take 𝑚 =
√
lnΔ−𝜆, with 𝜆 > 0 to be specified soon and note that

𝑒
√
lnΔ−𝜆

= 𝑜(Δ−𝜆) as Δ ↓ 0, since 𝑒
√
ln𝑛 = 𝑜(𝑛) as 𝑛→ ∞. Moreover we have

that

Δ𝑞− 1
2

𝑒𝑚
=

Δ𝑞− 1
2

𝑒−
𝑚2

2

𝑒
𝑚
2 =

Δ𝑞− 1
2

𝑒−
lnΔ−𝜆

2

𝑒
1
2

√
lnΔ−𝜆

= Δ𝑞− 1
2
− 3𝜆

2
𝑒

1
2

√
lnΔ−𝜆

Δ−𝜆
.

Now, since 𝑞 > 1
2
there is an 𝜖 > 0 small enough such that 𝑞− 1

2
− 𝜖 > 0. We

take 𝜆 = 2𝜖
3
and conclude that

Δ𝑞− 1
2

𝑒𝑚
= Δ𝑞− 1

2
−𝜖 𝑒

1
2

√
lnΔ− 2𝜖

3

Δ− 2𝜖
3

→ 0,

as Δ → 0 which in turn implies the asymptotic relation Δ𝑞− 1
2

𝑚𝑒𝑚
= 𝑜( 1

𝑚
) as

𝑚→ ∞, with the logarithmic rate stated before. We finally arrive at

E sup
0≤𝑡≤𝑇

|ℰ𝑡|2 ≤ 32(𝑘3)
4𝑇 2𝑒𝑘2𝑇+6𝑇 2(𝑘2)2

1√︀
lnΔ− 2𝜖

3

,

by taking 0 < 𝜖 < 𝑞 − 1
2
, which implies (3.3.8).
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3.3.4 Proof of Theorem 3.2.2.

In order to finish the proof of Theorem 3.2.2 we just use the triangle inequal-
ity, Lemma 3.3.7 and Proposition 3.3.9 to get

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 ≤ 2E sup
0≤𝑡≤𝑇

|ℎ𝑡 − 𝑦𝑡|2 + 2E sup
0≤𝑡≤𝑇

|ℰ𝑡|2

≤ 2𝐶2Δ
2 + 2

𝐶𝜖√
lnΔ−1

≤ 𝐶√
lnΔ−1

,

where 𝐶 = 𝐶(𝑘2, 𝑘3, 𝜖, 𝑇 ), is given in the statement of Theorem 3.2.2.

3.4 Polynomial Rate of Convergence.

We work with the stochastic time change inspired by [Ber04]. We define the
process

𝛾(𝑡) :=

∫︁ 𝑡

0

128(𝑘3)
2𝑞2

[(𝑦𝑠)1−𝑞 + (𝑥𝑠)1−𝑞]2
𝑑𝑠

and the stopping time

𝜏𝑙 := inf{𝑠 ∈ [0, 𝑇 ] : 6𝑇 (𝑘2)
2𝑠+ 𝛾(𝑠) ≥ 𝑙}.

The process 𝛾(𝑡) is well defined since 𝑥𝑡 > 0 a.s. and 𝑦𝑡 ≥ 0 (see Section 3.2).
The difference |ℰ𝑡|2 := |ℎ𝑡−𝑥𝑡|2 is estimated as in Section 3.3 and we get,

as in (3.3.9), that

(3.4.1) E sup
0≤𝑡≤𝜏

|ℰ𝑡|2 ≤ 𝐽5Δ+ 6𝑇 (𝑘2)
2

∫︁ 𝜏

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2𝑑𝑠+ 8E|𝑀𝜏 |2,

where 𝜏 a stopping time and 𝐽5 independent of Δ is as in proof of Proposition
3.3.9. The main difference here will be the estimation of the last term in
(3.4.1). The approach in Section 3.3 resulted in the ℒ1 estimation E|ℰ𝑡|
where we used the Yamada-Watanabe approach. Now, we use the Berkaoui
approach. Relation (3.3.7) becomes

|𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)|2 ≤ 2(𝑘3)
2
(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1 + |(𝑦𝑠)𝑞 − (𝑥𝑠)

𝑞|2
)︀

≤ 2(𝑘3)
2
(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1

)︀
+ |(𝑦𝑠)𝑞 − (𝑥𝑠)

𝑞|2
(︀
(𝑦𝑠)

1−𝑞 + (𝑥𝑠)
1−𝑞
)︀2 (𝛾𝑠)′

64𝑞2

≤ 2(𝑘3)
2
(︀
𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1

)︀
+

1

8

(︀
|ℎ𝑠 − 𝑦𝑠|2 + |ℰ𝑠|2

)︀
(𝛾𝑠)

′,
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where we have used the inequality

|𝑎𝑞 − 𝑏𝑞|(𝑎1−𝑞 + 𝑏1−𝑞) ≤ 2𝑞|𝑎− 𝑏|,

valid for all 𝑎 ≥ 0, 𝑏 ≥ 0 and 1
2
≤ 𝑞 ≤ 1. Consequently, we get the upper

bound

E|𝑀𝜏 |2 := E
⃒⃒⃒⃒∫︁ 𝜏

0

|𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)|𝑑𝑊𝑠

⃒⃒⃒⃒2
≤ 𝐽6Δ

𝑞− 1
2 +

1

8

∫︁ 𝜏

0

E|ℎ𝑠 − 𝑦𝑠|2(𝛾𝑠)′𝑑𝑠+
1

8

∫︁ 𝜏

0

E|ℰ𝑠|2(𝛾𝑠)′𝑑𝑠

≤ 𝐽6Δ
𝑞− 1

2 +
1

8

∫︁ 𝜏

0

√︀
E|ℎ𝑠 − 𝑦𝑠|4

√︀
E((𝛾𝑠)′)2𝑑𝑠+

1

8

∫︁ 𝜏

0

E|ℰ𝑠|2(𝛾𝑠)′𝑑𝑠,

where we used Hölder’s inequality; 𝐽6 independent of Δ is as in the proof of
Proposition 3.3.9. Relation (3.4.1) becomes

E sup
0≤𝑡≤𝜏

|ℰ𝑡|2 ≤ 8𝐽6Δ
𝑞− 1

2 + 6𝑇 (𝑘2)
2

∫︁ 𝜏

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2𝑑𝑠

+

∫︁ 𝜏

0

√︀
E|ℎ𝑠 − 𝑦𝑠|4

√︀
E((𝛾𝑠)′)2𝑑𝑠+

∫︁ 𝜏

0

E|ℰ𝑠|2(𝛾𝑠)′𝑑𝑠

≤ 8𝐽6Δ
𝑞− 1

2 +
√︀
𝐶4Δ

2

∫︁ 𝜏

0

√︃
E
(︂

128(𝑘3)2𝑞2

[(𝑦𝑠)1−𝑞 + (𝑥𝑠)1−𝑞]2

)︂2

𝑑𝑠

+

∫︁ 𝜏

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2(6𝑇 (𝑘2)2𝑠+ 𝛾𝑠)
′𝑑𝑠

≤ 8𝐽6Δ
𝑞− 1

2 +
√︀
𝐶4128(𝑘3)

2𝑞2Δ2

∫︁ 𝜏

0

√︃
E
(︂

1

(𝑥𝑠)2−2𝑞

)︂
𝑑𝑠

+

∫︁ 𝜏

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2(6𝑇 (𝑘2)2𝑠+ 𝛾𝑠)
′𝑑𝑠,

where we have used Lemma 3.3.7 in the second step. At this point we want
to estimate the inverse moments of (𝑥𝑡) and to do so we consider the trans-
formation 𝑣 = 𝑥2−2𝑞 and apply Itô’s formula to get

𝑣𝑡 = 𝑣0 +

∫︁ 𝑡

0

((1− 2𝑞)(1− 𝑞)(𝑘3)
2⏟  ⏞  

𝐾0

+2(1− 𝑞)𝑘1⏟  ⏞  
𝐾1

(𝑣𝑠)
1−2𝑞
2−2𝑞 − 2(1− 𝑞)𝑘2⏟  ⏞  

𝐾2

𝑣𝑠)𝑑𝑠

+

∫︁ 𝑡

0

2𝑘3(1− 𝑞)⏟  ⏞  
𝐾3

√
𝑣𝑠𝑑𝑊𝑠,
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for 𝑡 ∈ [0, 𝑇 ], where 𝑣0 = (𝑥0)
2−2𝑞 > 0. Denote the drift coefficient of the

process (𝑣𝑡) by 𝑎(𝑣𝑡) and consider the function

𝛼(𝑣) := 𝑎(𝑣)− 𝜆+𝐾2𝑣 +
(2𝑞 − 1)(𝜆+𝐾0)

1
2𝑞−1

(𝑘1)
2−2𝑞
2𝑞−1⏟  ⏞  

𝜂(𝜆)

𝑣,

where 𝜆 ≥ 0. Some elementary calculations show that this function attains

its minimum at 𝑣*:=
(︁
𝑘1(2𝑞−1)

𝜂(𝜆)

)︁2−2𝑞

and 𝛼(𝑣*) = 0, thus

𝑎(𝑣) ≥ 𝜆− (𝐾2 + 𝜂(𝜆)) 𝑣.

Consider the process (𝜁𝑡(𝜆)) defined through

(3.4.2) 𝜁𝑡(𝜆) = 𝜁0 +

∫︁ 𝑡

0

(𝜆− (𝐾2 + 𝜂(𝜆)) 𝜁𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝐾3

√︀
𝜁𝑠𝑑𝑊𝑠,

for 𝑡 ∈ [0, 𝑇 ] with 𝜁0(𝜆) = 𝑣0. Process (3.4.2) is a square root diffusion process
and when 2𝜆

(𝐾3)2
− 1 ≥ 0 or

(3.4.3) 𝜆 ≥ 2(1− 𝑞)2(𝑘3)
2,

the process is a CIR process which remains positive if 𝜁0(𝜆) > 0. By a com-
parison theorem [KS88, Prop. 5.2.18] we obtain that 𝑣𝑡 ≥ 𝜁𝑡(𝜆) > 0 a.s. or
(𝑣𝑡)

−1 ≤ (𝜁𝑡(𝜆))
−1 a.s. or equivalently (𝑥𝑡)

2𝑞−2 ≤ (𝜁𝑡(𝜆))
−1 a.s. The inverse

moment bounds of (𝜁𝑡(𝜆)) follow by [DNS11, (3.1)]

sup
𝑡∈[0,𝑇 ]

E(𝜁𝑡(𝜆))𝑝 <∞, for 𝑝 > −2
𝜆

𝐾2
3

by choosing big enough 𝜆 and particularly such that (3.4.3) holds strictly.
Therefore,

(3.4.4) E sup
0≤𝑡≤𝜏

|ℰ𝑡|2 ≤ 8𝐽6Δ
𝑞− 1

2 +

∫︁ 𝜏

0

E sup
0≤𝑙≤𝑠

|ℰ𝑙|2(6𝑇 (𝑘2)2𝑠+ 𝛾𝑠)
′𝑑𝑠.

Relation (3.4.4) for 𝜏 = 𝜏𝑙 implies

E sup
0≤𝑡≤𝜏𝑙

(ℰ𝑡)2 ≤ 8𝐽6Δ
𝑞− 1

2 +

∫︁ 𝜏𝑙

0

E sup
0≤𝑙≤𝑠

(ℰ𝑙)2(6𝑇 (𝑘2)2𝑠+ 𝛾𝑠)
′𝑑𝑠

≤ 8𝐽6Δ
𝑞− 1

2 +

∫︁ 𝑙

0

E sup
0≤𝑗≤𝑢

(ℰ𝜏𝑗)2𝑑𝑢

≤ 8𝐽6𝑒
𝑙Δ𝑞− 1

2 ,(3.4.5)
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where in the last step we have used Gronwall’s inequality. Using again rela-
tion (3.4.4) for 𝜏 = 𝑇 and under the change of variables 𝑢 = 6𝑇 (𝑘2)

2𝑠 + 𝛾𝑠
we get

E sup
0≤𝑡≤𝑇

(ℰ𝑡)2 ≤ 8𝐽6Δ
𝑞− 1

2 +

∫︁ 6(𝑘2)2𝑇 2+𝛾𝑇

0

E sup
0≤𝑗≤𝑢

(ℰ𝜏𝑗)2𝑑𝑢

≤ 8𝐽6Δ
𝑞− 1

2 +

∫︁ ∞

0

E
(︂

sup
0≤𝑗≤𝑢

(I{6(𝑘2)2𝑇 2+𝛾𝑇≥𝑢}ℰ𝜏𝑗)2
)︂
𝑑𝑢

≤ 8𝐽6Δ
𝑞− 1

2 +

∫︁ 6(𝑘2)2𝑇 2

0

E sup
0≤𝑗≤𝑢

(ℰ𝜏𝑗)2𝑑𝑢

+

∫︁ ∞

6(𝑘2)2𝑇 2

P(6(𝑘2)2𝑇 2 + 𝛾𝑇 ≥ 𝑢)E
(︂

sup
0≤𝑗≤𝑢

(ℰ𝜏𝑗)2
⃒⃒
{6(𝑘2)2𝑇 2 + 𝛾𝑇 ≥ 𝑢}

)︂
𝑑𝑢

≤ 8𝐽6Δ
𝑞− 1

2 + 8𝐽6𝑒
6(𝑘2)2𝑇 2

Δ𝑞− 1
2 +

∫︁ ∞

0

P(𝛾𝑇 ≥ 𝑢)E sup
0≤𝑗≤𝑢

(ℰ𝜏𝑗)2𝑑𝑢

≤ 16𝐽6𝑒
6(𝑘2)2𝑇 2

Δ𝑞− 1
2 + 8𝐽6Δ

𝑞− 1
2

∫︁ ∞

0

P(𝛾𝑇 ≥ 𝑢)𝑒𝑢𝑑𝑢,

where in the last steps we have used (3.4.5). We proceed by showing that
𝑢→ P(𝛾𝑇 ≥ 𝑢)𝑒𝑢 ∈ ℒ1(R+). Markov’s inequality implies

P(𝛾𝑇 ≥ 𝑢) ≤ 𝑒−𝜖𝑢E(𝑒𝜖𝛾𝑇 ),

for any 𝜖 > 0. The following bound holds

𝛾𝑇 =

∫︁ 𝑇

0

128(𝑘3)
2𝑞2

[(𝑦𝑠)1−𝑞 + (𝑥𝑠)1−𝑞]2
𝑑𝑠 ≤ 128(𝑘3)

2𝑞2
∫︁ 𝑇

0

(𝑥𝑠)
2𝑞−2𝑑𝑠,

thus

(3.4.6) E(𝑒𝜖𝛾𝑇 ) ≤ E
(︁
𝑒𝜖128(𝑘3)

2𝑞2
∫︀ 𝑇
0 (𝑥𝑠)2𝑞−2𝑑𝑠

)︁
,

where −1 < 2𝑞−2 < 0. It remains to bound the exponential inverse moments
of (𝑥𝑡) defined through the stochastic integral equation (3.2.1). Exponential
inverse moments for the CIR process are known [HK08, Th. 3.1] and are
given by

(3.4.7) E𝑒𝛿
∫︀ 𝑡
0 (𝜁𝑠(𝜆))

−1𝑑𝑠 ≤ 𝐶𝐻𝐾(𝜁0)
− 1

2
(𝜈(𝜆)−

√︁
𝜈(𝜆)2+8 𝛿

(𝐾3)
2 ),
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for 0 ≤ 𝛿 ≤
(︁

2𝜆
𝐾2

3
− 1
)︁2

𝐾2
3

8
=: 𝜈(𝜆)2

𝐾2
3

8
, where the positive constant 𝐶𝐻𝐾 is

explicitly given in [HK08, (10)] depends on the parameters 𝑘2, 𝑘3, 𝑇, 𝑞, but is
independent of 𝜁0. Thus the other condition that we require for parameter 𝜆
is

(3.4.8) 𝜆 ≥ 2(1− 𝑞)
√
2𝛿(𝑘3) + 2(1− 𝑞)2(𝑘3)

2.

When (3.4.8) is satisfied then (3.4.3) is satisfied too; thus there is actually
no restriction on the coefficient 𝛿 in (3.4.7) since we can always choose ap-
propriately a 𝜆 such that (3.4.8) holds. Relation (3.4.6) becomes

(3.4.9) E(𝑒𝜖𝛾𝑇 ) ≤ E
(︁
𝑒𝜖128(𝑘3)

2𝑞2
∫︀ 𝑇
0 (𝑣𝑠)−1𝑑𝑠

)︁
≤ E

(︁
𝑒𝜖128(𝑘3)

2𝑞2
∫︀ 𝑇
0 (𝜁𝑠(𝜆))−1𝑑𝑠

)︁
.

We therefore require that

(3.4.10) 128(𝑘3)
2𝑞2𝜖 ≤ (𝜈(𝜆))2

𝐾2
3

8

and can always find a 𝜖 > 1, such the above relation holds by choosing
appropriately 𝜆 as discussed before. Relation (3.4.9) becomes

E(𝑒𝜖𝛾𝑇 ) ≤ 𝐶𝐻𝐾(𝜁0)
− 𝜈(𝜆)

2 ,

and therefore
P(𝛾𝑇 ≥ 𝑢) ≤ 𝐶𝐻𝐾(𝑥0)

(1−𝑞)𝜈(𝜆)𝑒−𝜖𝑢,

where 𝜆 is chosen such that (3.4.10) holds with 𝜖 > 1. We conclude

E sup
0≤𝑡≤𝑇

(ℰ𝑡)2 ≤ 16𝐽6𝑒
6(𝑘2)2𝑇 2

Δ𝑞− 1
2 + 8𝐽6𝐶𝐻𝐾(𝑥0)

(1−𝑞)𝜈(𝜆)Δ𝑞− 1
2

∫︁ ∞

0

𝑒(1−𝜖)𝑢𝑑𝑢

≤ 𝐶 ·Δ𝑞− 1
2 ,

by choosing 𝜖 > 1, where 𝐶 = 𝐶(𝑘1, 𝑘2, 𝑘3, 𝑇, 𝑞, 𝜖) := 8𝐽6(2𝑒
6(𝑘2)2𝑇 2

+ 𝐶𝐻𝐾

𝜖−1
(𝑥0)

(1−𝑞)𝜈(𝜆)),

is as given in statement of Theorem 3.2.4.

3.5 Alternative approach with reduced rate of convergence.

In this section we briefly discuss the case where instead of (3.2.8) we use
directly (3.2.4). Then, Lemmata 3.3.5, 3.3.6 and 3.3.7 still hold, i.e. the
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moment bounds and error bounds of (𝑦𝑆𝐷𝑡 ), as well as the moment bounds
involving the auxiliary process (ℎ𝑡) are true. The proof of the convergence
results follow the same lines as in Sections 3.3 and Section 3.4. The error
ℰ𝑡 := ℎ𝑡 − 𝑥𝑡 now reads

ℎ𝑡−𝑥𝑡 =
∫︁ 𝑡

0

(𝑓𝜃(𝑦𝑠, 𝑦̃︀𝑠)− 𝑓𝜃(𝑥𝑠, 𝑥𝑠)) 𝑑𝑠+

∫︁ 𝑡

0

sgn(𝑧𝑠) (𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)) 𝑑𝑊𝑠.

The main difference is in the estimation (3.3.7) that now becomes

|sgn(𝑧𝑠)𝑔(𝑦𝑠, 𝑦𝑠)− 𝑔(𝑥𝑠, 𝑥𝑠)|2 ≤ 3(𝑘3)
2

(︂
(𝑦𝑠)

2𝑞−1𝑦𝑠(sgn(𝑧𝑠)− 1)2

+𝑦𝑠|𝑦𝑠 − 𝑦𝑠|2𝑞−1 + |ℎ𝑠 − 𝑦𝑠|+ |ℎ𝑠 − 𝑥𝑠|
)︂
.

The first term on the right-hand side of the above inequality containing the
sgn(𝑧𝑠) will contribute in a negative way to the rate of convergence. We
do not give all the details, but just mention that in order to bound the
expectation of that term, which can be done in the following way,

E(𝑦𝑠)2𝑞−1𝑦𝑠|sgn(𝑧𝑠)− 1|2 = E
(︀
4(𝑦𝑡𝑛)

2𝑞−1𝑦𝑠I{𝑧𝑠≤0}
)︀

≤ 4E
⃒⃒
(𝑦𝑡𝑛)

2𝑞−1𝑦𝑠 − (𝑦𝑡𝑛)
2𝑞
⃒⃒

+4E
(︀
(𝑦𝑡𝑛)

2𝑞I{𝑧𝑠≤0}I{𝑦𝑡𝑛≤Δ1−2𝜉}
)︀
+ 4E

(︀
(𝑦𝑡𝑛)

2𝑞I{𝑧𝑠≤0}I{𝑦𝑡𝑛>Δ1−2𝜉}
)︀

≤ 4E
⃒⃒
(𝑦𝑡𝑛)

2𝑞−1(𝑦𝑠 − 𝑦𝑡𝑛)
⃒⃒
+ 4Δ2𝑞−4𝑞𝜉

+4
√︀
E(𝑦𝑡𝑛)4𝑞

√︀
P ({𝑧𝑠 ≤ 0} ∩ {𝑦𝑡𝑛 > Δ1−2𝜉}),

we need to estimate the probability of 𝑧𝑡 being negative when at the same
time 𝑦𝑡𝑛 > Δ1−2𝜉, for 0 < 𝜉 < 1

2
.

Lemma 3.5.10 For every 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] it holds

(3.5.1) P
(︀
{𝑧𝑡 ≤ 0} ∩ {𝑦𝑡𝑛 > Δ1−2𝜉}

)︀
≤ 𝐶𝑘2,𝑘3,𝜃,Δ

√
Δ,

where 𝐶𝑘2,𝑘3,𝜃,Δ := 𝑘3√
1−𝑘2(2−𝜃)Δ

and Δ(2 − 𝜃) < 1
𝑘2

and (𝑘3)2

(1+𝑘2𝜃Δ)
≤ 4𝑘2.

Relation (3.5.1) implies that P
(︀
{𝑧𝑡 ≤ 0} ∩ {𝑦𝑡𝑛 > Δ1−2𝜉}

)︀
= 𝑂(

√
Δ), as Δ ↓

0. 2
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Proof of Lemma 3.5.10. By the definition (3.2.5) of (𝑧𝑡) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] and
for 0 < 𝜉 < 1

2
, we have for the following event 𝐴 := {𝑧𝑡 ≤ 0}∩ {𝑦𝑡𝑛 > Δ1−2𝜉}

that

𝐴 =

{︂
(𝑦𝑡𝑛)

𝑞− 1
2 (𝑊𝑡 −𝑊𝑡𝑛) ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3

√
𝑦𝑛

}︂
∩ {𝑦𝑡𝑛 > Δ1−2𝜉}

⊆ 𝐴1 ∪ 𝐴2,(3.5.2)

where

𝐴1 :=

{︂
𝑊𝑡 −𝑊𝑡𝑛 ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3

√
𝑦𝑛(𝑦𝑡𝑛)

−𝑞+ 1
2

}︂
∩ {𝑦𝑡𝑛 ≥ 1},

and

𝐴2 :=

{︂
𝑊𝑡 −𝑊𝑡𝑛 ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3

√
𝑦𝑛(𝑦𝑡𝑛)

−𝑞+ 1
2

}︂
∩ {1 > 𝑦𝑡𝑛 > Δ1−2𝜉}.

The following inclusion relations hold for the event 𝐴1,

𝐴1 ⊆ {Δ𝑊𝑛 ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3(𝑦𝑡𝑛)
𝑞− 1

2

√︃
𝑦𝑡𝑛
(︀
1− 𝑘2Δ

1 + 𝑘2𝜃Δ

)︀
− (𝑘3)2Δ(𝑦𝑡𝑛)

2𝑞−1

4(1 + 𝑘2𝜃Δ)2
}

∩{𝑦𝑡𝑛 ≥ 1}

⊆

{︃
Δ𝑊𝑛 ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3

√︃
1− 𝑘2(2− 𝜃)Δ

1 + 𝑘2𝜃Δ
− (𝑘3)2Δ

4(1 + 𝑘2𝜃Δ)2

}︃

⊆

{︃
Δ𝑊𝑛√
𝑡− 𝑡𝑛

≤ − 2

𝑘3

√︀
(1− 𝑘2(2− 𝜃)Δ)(1 + 𝑘2𝜃Δ)√

𝑡− 𝑡𝑛

}︃

when Δ(2−𝜃) < 1
𝑘2

and (𝑘3)2

(1+𝑘2𝜃Δ)
≤ 4𝑘2, where Δ𝑊𝑛 := 𝑊𝑡−𝑊𝑡𝑛 .We obtain

(3.5.3)

P(𝐺 ≤ −𝛽) =
∫︁ −𝛽

−∞

1√
2𝜋
𝑒−𝑢2/2𝑑𝑢 ≤

∫︁ −𝛽

−∞
𝑒−𝑢2/2𝑑𝑢 =

∫︁ ∞

𝛽

𝑒−𝑢2/2𝑑𝑢 ≤ 𝑒−(𝛽)2/2

𝛽
,

for every standard normal random variable 𝐺, where in the last step we have
used [KS88, (9.20), p.112] valid for 𝛽 > 0. Using the fact that Δ𝑊𝑛√

𝑡−𝑡𝑛
is a

standard normal r.v. and ignoring the exponential term in (3.5.3), since its
exponent is negative, we get that

(3.5.4) P(𝐴1) ≤
𝑘3

2
√︀
(1− 𝑘2(2− 𝜃)Δ)

√
𝑡− 𝑡𝑛 ≤ 𝐶𝑘2,𝑘3,𝜃,Δ

√
Δ.
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The following inclusion relations hold for the event 𝐴2,

𝐴2

⊆

{︃
Δ𝑊𝑛 ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3(𝑦𝑡𝑛)
𝑞− 1

2

√︃
𝑦𝑡𝑛

1− 𝑘2(1− 𝜃)Δ

1 + 𝑘2𝜃Δ
+

𝑘1Δ

1 + 𝑘2𝜃Δ
− (𝑘3)2Δ(𝑦𝑡𝑛)

2𝑞−1

4(1 + 𝑘2𝜃Δ)2

}︃
∩{1 > 𝑦𝑡𝑛 > Δ1−2𝜉}

⊆

{︃
Δ𝑊𝑛 ≤ −2(1 + 𝑘2𝜃Δ)

𝑘3

√︃
Δ1−2𝜉

1− 𝑘2(1− 𝜃)Δ

1 + 𝑘2𝜃Δ
+ (𝑘1 −

(𝑘3)2

4(1 + 𝑘2𝜃Δ)
)

Δ

1 + 𝑘2𝜃Δ

}︃

⊆

{︃
Δ𝑊𝑛√
𝑡− 𝑡𝑛

≤ − 2

𝑘3

√︀
(1− 𝑘2(1− 𝜃)Δ)(1 + 𝑘2𝜃Δ)√

𝑡− 𝑡𝑛
Δ

1
2
−𝜉

}︃

when Δ(1− 𝜃) < 1
𝑘2

and (𝑘3)2

(1+𝑘2𝜃Δ)
≤ 4𝑘1. Using again (3.5.3) we have that

P(𝐴2) ≤ 𝑘3

2
√︀

(1− 𝑘2(1− 𝜃)Δ)

√
𝑡− 𝑡𝑛Δ

𝜉− 1
2 𝑒

− 2
(𝑘3)

2
(1−𝑘2(1−𝜃)Δ)(1+𝑘2𝜃Δ)√

𝑡−𝑡𝑛
Δ1−2𝜉

≤ 𝑘3

2
√︀

(1− 𝑘2(1− 𝜃)Δ)
Δ𝜉𝑒

− 2
(𝑘3)

2 (1−𝑘2(1−𝜃)Δ)(1+𝑘2𝜃Δ)Δ−2𝜉

.(3.5.5)

Taking probabilities in the inclusion relation (3.5.2) and using (3.5.4) and
(3.5.5) we get

P(𝐴) ≤ P(𝐴1) + P(𝐴2)

≤ 𝐶𝑘2,𝑘3,𝜃,Δ

√
Δ+

𝑘3

2
√︀

(1− 𝑘2(1− 𝜃)Δ)
Δ𝜉𝑒

− 2
(𝑘3)

2 (1−𝑘2(1−𝜃)Δ)(1+𝑘2𝜃Δ)Δ−2𝜉

≤ 𝐶𝑘2,𝑘3,𝜃,Δ

√
Δ,

sinceΔ𝜉𝑒−Δ−2𝜉
= 𝑜(

√
Δ) asΔ ↓ 0. Finally, note that 𝐶𝑘2,𝑘3,𝜃,Δ = 𝑘3√

1−𝑘2(2−𝜃)Δ
→

𝑘3 as Δ ↓ 0 which justifies the 𝑂(
√
Δ) notation.

Applying Lemma 3.5.10 we obtain for 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1] that

E(𝑦𝑠)2𝑞−1𝑦𝑠|sgn(𝑧𝑠)− 1|2 ≤ 4
√︀

E(𝑦𝑡𝑛)4𝑞−2
√︀

E|𝑦𝑠 − 𝑦𝑡𝑛|2 + 4Δ2𝑞−4𝑞𝜉

+4
√︀
E(𝑦𝑡𝑛)4𝑞

√︁
𝐶𝑘2,𝑘3,𝜃,Δ

√
Δ

≤ 4
√︁
𝐴4𝑞−2E(𝑥0 + 𝑘1𝑇 )4𝑞−2

√︁
𝐴2

√
Δ+ 4Δ2𝑞−4𝑞𝜉

+4
√︁
𝐴4𝑞E(𝑥0 + 𝑘1𝑇 )4𝑞

√︀
𝐶𝑘2,𝑘3,𝜃,ΔΔ

1
4 ,
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where we have used Lemmata 3.3.6 and 3.3.5 in the final step. For 𝜉 = 1
2
− 1

16𝑞

we get the estimate
(3.5.6)

E(𝑦𝑠)2𝑞−1𝑦𝑠|sgn(𝑧𝑠)− 1|2 ≤ 4

(︂√︁
𝐴4𝑞E(𝑥0 + 𝑘1𝑇 )4𝑞𝐶𝑘2,𝑘3,𝜃,Δ ∨ 1

)︂
Δ

1
4 ,

which in turn implies

(3.5.7) sup
0≤𝑡≤𝑇

E|ℰ𝑡| ≤

(︃
𝐽2

Δ
1
4

𝑚𝑒𝑚
+ 𝐽*

3

Δ𝑞− 1
2

𝑚𝑒𝑚
+ 3(𝑘3)

2𝑇
1

𝑚

)︃
𝑒𝑘2𝑇 ,

𝐽2 := 12(𝑘3)
2𝑇 (
√︁
𝐴4𝑞E(𝑥0 + 𝑘1𝑇 )4𝑞𝐶𝑘2,𝑘3,𝜃,Δ ∨ 1)

and 𝐽*
3 := (3/2)𝐽3. We use the process 𝛾(𝑡) := (192/128)𝛾(𝑡) and following

the same lines as in Section 3.4 we conclude

E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 (𝑞)− 𝑥𝑡|2 ≤ 𝐶Δ(𝑞− 1
2
)∧ 1

4 ,

where

𝐶 := 8(𝐽2 ∨ 𝐽*
3 )

(︂
2𝑒6(𝑘2)

2𝑇 2

+
𝐶𝐻𝐾

𝜖− 1
(𝑥0)

(1−𝑞)𝜈(𝜆)

)︂
.

3.6 Numerical Experiments.

We discretize the interval [0, 𝑇 ] with a number of steps in power of 2. The
semi-discrete (SD) scheme is given by

𝑦𝑆𝐷𝑡𝑛+1
=

(︂√︃
𝑦𝑡𝑛

(︂
1− 𝑘2Δ

1 + 𝑘2𝜃Δ

)︂
+

𝑘1Δ

1 + 𝑘2𝜃Δ
− (𝑘3)2Δ

4(1 + 𝑘2𝜃Δ)2
(𝑦𝑡𝑛)

2𝑞−1

+
𝑘3

2(1 + 𝑘2𝜃Δ)
(𝑦𝑡𝑛)

𝑞− 1
2Δ𝑊𝑛

)︂2

,(3.6.1)

for 𝑛 = 0, . . . , 𝑁 − 1, where Δ𝑊𝑛 := 𝑊𝑡𝑛+1 − 𝑊𝑡𝑛 are the increments of
the Brownian motion which are Gaussian random variables with Δ𝑊𝑛 ∼
𝒩 (0,Δ).

The ALF (Alfonsi) scheme [Alf13, Sec. 3] is an implicit scheme which
requires solving the non-linear equation
(3.6.2)

𝑌𝑛+1 = 𝑦𝑡𝑛+(1−𝑞)(𝑘1(𝑌𝑛+1)
−𝑞
1−𝑞 −𝑘2𝑌𝑛+1−

𝑞(𝑘3)
2

2
(𝑌𝑛+1)

−1)Δ+𝑘3(1−𝑞)Δ𝑊𝑛,
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and then computing 𝑦𝐴𝐿𝐹
𝑡𝑛+1

= (𝑌𝑛+1)
1

1−𝑞 . The estimation of 𝑌𝑛+1 in (3.6.2) can
be done for example with Newton’s method, but requires a small enough Δ.4

We also consider a scheme recently proposed in [Hal15c] using again the SD
method, but in a different way,
(3.6.3)

𝑦𝐻𝐴𝐿
𝑡𝑛+1

(𝑞) =
⃒⃒⃒
(𝑦𝑡𝑛(1− 𝑘2Δ)+ 𝑘1Δ− 𝑞(𝑘3)

2Δ

2
(𝑦𝑡𝑛)

2𝑞−1)1−𝑞 + 𝑘3(1− 𝑞)Δ𝑊𝑛

⃒⃒⃒ 1
1−𝑞
,

for 𝑛 = 0, . . . , 𝑁 − 1. Note the similarity in the expressions of (3.6.3) and
the SD scheme (3.6.1) proposed here. This is not strange, because they both
rely in the same way of splitting the drift coefficient. In particular, in the
explicit HAL scheme, the following process is considered

(3.6.4) 𝑦𝐻𝐴𝐿
𝑡 (𝑞) = 𝑦𝑡𝑛 + ̃︀𝑓1(𝑦𝑡𝑛) ·Δ+

∫︁ 𝑡

𝑡𝑛

̃︀𝑓2(𝑦𝑠)𝑑𝑠+ ∫︁ 𝑡

𝑡𝑛

sgn(𝑧𝑠)̃︀𝑔(𝑦𝑠)𝑑𝑊𝑠,

for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1] with 𝑦0 = 𝑥0 a.s. where now

𝑓(𝑥) = 𝑘1 − 𝑘2𝑥−
𝑞(𝑘3)

2

2
𝑥2𝑞−1⏟  ⏞  ̃︀𝑓1(𝑥)

+
𝑞(𝑘3)

2

2
𝑥2𝑞−1⏟  ⏞  ̃︀𝑓2(𝑥)

. ̃︀𝑔(𝑥) = 𝑘3𝑥
𝑞

and

𝑧𝑡 =

(︂
𝑦𝑡𝑛(1− 𝑘2Δ) + 𝑘1Δ− 𝑞(𝑘3)

2Δ

2
(𝑦𝑡𝑛)

2𝑞−1

)︂1−𝑞

+ 𝑘3(1− 𝑞)(𝑊𝑡 −𝑊𝑡𝑛).

A comparison with (3.2.2) and (3.2.3) shows that ̃︀𝑓2(𝑥) = 2𝑞𝑓2(𝑥) and ̃︀𝑔(𝑥) =
𝑔(𝑥, 𝑥), for 𝜃 = 0. We write (3.6.4) again as

𝑦𝐻𝐴𝐿
𝑡 (𝑞) = 𝑦𝑡𝑛 +

(︂
𝑘1 − 𝑘2𝑦𝑡𝑛 − 𝑞(𝑘3)

2

2
(𝑦𝑡𝑛)

2𝑞−1

)︂
Δ+

∫︁ 𝑡

𝑡𝑛

𝑞(𝑘3)
2

2
(𝑦𝑠)

2𝑞−1𝑑𝑠

+𝑘3

∫︁ 𝑡

𝑡𝑛

sgn(𝑧𝑠)(𝑦𝑠)
𝑞𝑑𝑊𝑠(3.6.5)

and the process (3.6.5) is well defined when

(3.6.6) (𝑘3)
2 ≤ 2

𝑞
𝑘1 and Δ ≤ 2

2𝑘2 + 𝑞(𝑘3)2
.

4 In the CIR case, i.e. when 𝑞 = 1/2 (3.6.2) simplifies to a solution of a quadratic
equation.
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The reader can compare again with (3.2.4) for 𝜃 = 0. Solving for 𝑦𝑡, we end

up with 𝑦𝐻𝐴𝐿
𝑡 (𝑞) = |𝑧𝑡|

1
1−𝑞 . The main result in [Hal15c] is

E|𝑦𝐻𝐴𝐿
𝑡 − 𝑥𝑡|2 ≤ 𝐶 ·Δ2𝑞(𝑞− 1

2
),

when (3.6.6) holds, implying a rate of convergence at least 𝑞(𝑞 − 1
2
) which is

bigger than the rate of convergence of the SD scheme proposed here which
is at least 1

2
(𝑞 − 1

2
) (see Th. 3.2.4).

We also consider two more linear-implicit schemes that were stated in
the introduction and discussed in Appendix D. Namely, we compare with
the balanced implicit method (BIM) with appropriate weight functions to
guarantee positivity ([KS06, Th. 5.9]), which reads

𝑦𝐵𝐼𝑀
𝑡𝑛+1

(𝑞) =
𝑦𝑡𝑛 + 𝑘1Δ+ 𝑘3(𝑦𝑡𝑛)

𝑞(Δ𝑊𝑛 + |Δ𝑊𝑛|)
1 + 𝑘2Δ+ 𝑘3(𝑦𝑡𝑛)

𝑞−1|Δ𝑊𝑛|
,

and the balanced Milstein method (BMM) with the suggested weight func-
tions [KS06, Th. 5.9] that is given by

(3.6.7)

𝑦𝐵𝑀𝑀
𝑡𝑛+1

(𝑞) =
𝑦𝑡𝑛 + (𝑘1 + (Θ− 1)𝑘2𝑦𝑡𝑛)Δ + 𝑘3(𝑦𝑡𝑛)

𝑞Δ𝑊𝑛 +
𝑞(𝑘3)2

2
(𝑦𝑡𝑛)

2𝑞−1(Δ𝑊𝑛)
2

1 + Θ𝑘2Δ+ 𝑞(𝑘3)2

2
|𝑦𝑡𝑛|2𝑞−2Δ

.

We take the relaxation parameter Θ to be 1/2 as recommended in [KS06,
(5.10)].

We aim to show experimentally the order of convergence for the above
positivity preserving methods for the estimation of the true solution of the
CEV model (3.2.1), i.e. the semi-discrete methods SD (3.6.1) and the HAL
scheme (3.6.3), as well as the implicit ALF scheme (3.6.2) and the linear-
implicit schemes BIM and BMM. The choice of the parameters is the same
as in [KJ06, Fig. 6] with 𝑘3 = 0.4. In particular (𝑥0, 𝑘1, 𝑘2, 𝑘3, 𝑞, 𝑇 ) =
( 1
16
, 1
16
, 1, 0.4, 3

4
, 1).

Furthermore, we would also like to reveal the dependence of the order of
the semi-discrete methods on 𝑞, i.e. we want to verify our theoretical results
and in particular the order shown in Theorem 3.2.4. We take the level of
implicitness of SD method (3.6.1) to be 𝜃 = 1, i.e. we consider the fully
implicit scheme. We also discuss about the fully explicit scheme, that is,
when 𝜃 = 0, but also an intermediate scheme 𝜃 = 1/2, in Section 3.7.

We want to estimate the endpoint ℒ2-norm 𝜖 =
√︀

E|𝑦(Δ)(𝑇 )− 𝑥𝑇 |2, of
the difference between the numerical scheme evaluated at step size Δ and
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the exact solution of (3.2.1). For that purpose, we compute 𝑀 batches of 𝐿
simulation paths, where each batch is estimated by 𝜖𝑗 = 1

𝐿

∑︀𝐿
𝑖=1 |𝑦

(Δ)
𝑖,𝑗 (𝑇 ) −

𝑦
(𝑟𝑒𝑓)
𝑖,𝑗 (𝑇 )|2 and the Monte Carlo estimator of the error is

𝜖 =

⎯⎸⎸⎷ 1

𝑀𝐿

𝑀∑︁
𝑗=1

𝐿∑︁
𝑖=1

|𝑦(Δ)
𝑖,𝑗 (𝑇 )− 𝑦

(𝑟𝑒𝑓)
𝑖,𝑗 (𝑇 )|2,

and requires 𝑀 · 𝐿 Monte Carlo sample paths. The reference solution is
evaluated at step size 2−14 of the numerical scheme. For the SD case, we have
shown in Theorems 3.2.2 and 3.2.4 that it strongly converges to the exact
solution. We simulate 100·100 = 10000 paths, where the choice for 𝐿 = 100 is
as in [KPS03, p.118]. The choice of the number of trajectories 𝑀 ·𝐿 = 104 is
also considered in [TZ13, Sec. 5] where a fundamental mean-square theorem
is proved for SDEs with super-linear growing coefficients satisfying a one-
side Lipschitz condition, but unfortunately it is not positivity preserving. Of
course, the number of Monte Carlo paths has to be sufficiently large, so as
not to significantly hinder the mean-square errors.

We plot in a log2-log2 scale and error bars represent 98%-confidence inter-
vals. The results are shown in Table 3.1 and Figure 3.1. Table 3.1 does not
present the computed Monte Carlo errors with 98%-confidence, since they
were at least 9 times smaller that the mean-square errors.

Step Δ SD(𝜃 = 1) HAL ALF BIM BMM

2−5 0.0352 0.0357 0.0443 0.0333 0.0358
2−7 0.0351 0.035 0.0445 0.0335 0.0357
2−9 0.0346 0.0351 0.0203 0.033 0.0352
2−11 0.0332 0.0337 0.0195 0.0317 0.0337
2−13 0.0251 0.025 0.0146 0.025 0.0253

Tab. 3.1: Error and step size of fully implicit SD, HAL,ALF, BIM and BMM

scheme for (3.2.1) with (𝑥0, 𝑘1, 𝑘2, 𝑘3, 𝑞, 𝑇 ) = ( 1
16 ,

1
16 , 1, 0.4,

3
4 , 1).

In Table 3.3 we present the computational times,5 of fully implicit SD,
HAL, ALF, BIM and BMM, for the same problem. Figure 3.2 shows the

5 We simulate with 3.06GHz Intel Pentium, 1.49GB of RAM in Matlab 𝑅2014𝑏 Software.
The random number generator is Mersenne Twister. The evaluated times do not include
the random number generation time, since all the methods we compare, involve the same
amount of random numbers.
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Fig. 3.1: Convergence of fully implicit SD, HAL, ALF, BIM and BMM schemes

applied to SDE (3.2.1) with parameters 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 =

0.4, 𝑞 = 3/4 and 𝑇 = 1.
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Step Δ SD(𝜃 = 1)-Rate HAL-Rate ALF-Rate BIM-Rate BMM-Rate

2−7 0.002 0.013 −0.003 −0.006 0.002
2−9 0.107 −0.002 0.568 0.012 0.011
2−11 0.029 0.029 0.026 0.028 0.031
2−13 0.203 0.216 0.21 0.172 0.208

Tab. 3.2: Experimental rates of fully implicit SD, HAL,ALF, BIM and BMM

scheme for (3.2.1) with (𝑥0, 𝑘1, 𝑘2, 𝑘3, 𝑞, 𝑇 ) = ( 1
16 ,

1
16 , 1, 0.4,

3
4 , 1).

relation between the error and computer time consumption. As one can see
from Table 3.3 the CPU times for ALF are at least 1000 times bigger than
the other schemes, thus we choose in Figure 3.2 to restrict our attention to
the rest of the methods.

We show, in Table 3.4, the ℒ2-distance between our proposed method
and the other methods for the numerical approximation of (3.2.1). We work
as before and estimate the distance

(3.6.8) 𝑑(𝐺,𝐻) =

⎯⎸⎸⎷ 1

𝑀𝐿

𝑀∑︁
𝑗=1

𝐿∑︁
𝑖=1

|𝑦(Δ,𝐺)
𝑖,𝑗 (𝑇 )− 𝑦

(Δ,𝐻)
𝑖,𝑗 (𝑇 )|2,
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Step Δ Implicit SD HAL ALF BIM BMM

2−5 0.0000130 0.0000164 0.0221883 0.0000174 0.0000196
2−7 0.0000422 0.0000558 0.0841705 0.0000584 0.0000657
2−9 0.0001586 0.0002137 0.2453943 0.0002207 0.0002482
2−11 0.0006243 0.0008437 0.9768619 0.0008703 0.0009795
2−13 0.0024975 0.0033977 3.9096332 0.0034785 0.0039143

Tab. 3.3: Average computational time (in seconds) for a path, for different dis-

cretizations, for all considered positivity preserving methods for the

mean-reverting CEV process (3.2.1) with 𝑞 = 3/4.

between method 𝐺 and𝐻, by considering sufficient smallΔ, and in particular
for Δ = 10−2, 10−3, 10−4.

Step Δ d(SD,HAL) d(SD,ALF) d(SD,BIM) d(SD,BMM)

10−2 0.0005727 0.0716140 0.0038373 0.0005312
10−3 0.0001577 0.0286630 0.0013460 0.0001564
10−4 0.0000498 0.0283117 0.0004448 0.0000498

Tab. 3.4: The ℒ2-distance between all the considered numerical schemes applied to

SDE (3.2.1) with parameter set 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑞 = 3/4

and 𝑇 = 1.

Finally, we examine the behavior of all the methods for a value of the
parameter 𝑞 close to 1/2. The results are shown in Table 3.5.

Step Δ SD(𝜃 = 1) Rate HAL Rate BIM Rate BMM Rate

2−10 0.05913 − 0.05967 − 0.05582 − 0.05966 −
2−11 0.05818 0.023 0.05867 0.024 0.05503 0.021 0.05867 0.024
2−12 0.05458 0.092 0.05499 0.094 0.0518 0.088 0.05499 0.096
2−13 0.04407 0.309 0.04429 0.312 0.04244 0.287 0.04429 0.312

Tab. 3.5: Error and step size of fully implicit SD, HAL, BIM and BMM scheme for

(3.2.1) with (𝑥0, 𝑘1, 𝑘2, 𝑘3, 𝑞, 𝑇 ) = ( 1
16 ,

1
16 , 1, 0.4, 0.55, 1).

The following points of discussion are worth mentioning.

∙ The performance of all methods, as shown in Table 3.1 and Figure
3.1, implies, in terms of error estimates, that the implicit ALF scheme
performs better, for values of discretization steps Δ ≤ 2−9. All the
other methods, i.e. the semi-discrete SD and HAL, the BIM and BMM
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Fig. 3.2: Strong convergence error of the mean-reverting CEV process (3.2.1)

as a function of CPU time (in sec) using positivity preserving schemes

SD,HAL, ALF, BIM and BMM with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑞 =

3/4, 𝑇 = 1 and 32 digits of accuracy.
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have a similar behavior for all values of Δ w.r.t. error estimation as
Figure 3.1 shows. The similarity of SD, HAL, BIM and BMM is also
indicated in Table 3.4, where we see how close they are w.r.t. the ℒ2-
norm. Nevertheless, Table 3.4 also shows that in order to get an accu
racy to at least two decimal digits, which in practice may be adequate
concerning that we want for example to evaluate an option and thus
our results are in euros, we are free to use any of the above available
methods. We may then choose the fastest one, as will be discussed
later on.

∙ The experimental strong order of convergence of implicit SD for prob-
lem (3.2.1) is 1/5 (at least 1/2(𝑞 − 1/2) = 1/8 as shown theoretically
and presented in Table 3.1). We also see that all methods converge
with similar orders and the theoretically rate 1 of the ALF method
[Alf13] does not hold for these values of Δ. Thus, again we see that
the rate in practical situations does not necessarily matter, if one has
to consider very small values of Δ to achieve it. Moreover, we present
in Table 3.6 the performance of the explicit SD method and see that it
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is very close to the implicit, which is of course natural to happen.

Step Δ 98%-SD-Error(𝜃 = 0) Rate

2−7 0.0344244 −
2−9 0.0342415 0.0038
2−11 0.0331273 0.0239
2−13 0.0250195 0.2025

Tab. 3.6: The performance of fully explicit SD scheme (3.6.1) applied to SDE

(3.2.1) with parameter set (𝑥0, 𝑘1, 𝑘2, 𝑘3, 𝑞, 𝑇 ) = ( 1
16 ,

1
16 , 1, 0.4,

3
4 , 1)

∙ Table 3.5 concerns the case where the parameter 𝑞 is 0.55. We do not
present the ALF method since it required smaller values of Δ. All the
methods again behave quite the same, with the BIM performing better
w.r.t. error estimation.

∙ In practice, the computer time consumed to provide a desired level of
accuracy, is of great importance. Especially, in financial applications,
a scheme is considered better when except of its accuracy, it is imple-
mented faster. As mentioned before, the SD method as well as the
HAL method performs well in that aspect, compared to the implicit
ALF method, which requires the estimation of a root of a non-linear
equation in each step and is therefore time consuming. This is pre-
sented in Table 3.3 and Figure 3.2 which illustrates the advantage of
the semi-discrete method SD, performing slightly better than HAL and
BMM, better than BIM, and of course a lot better compared with ALF
(over 1000 times quicker to achieve an accuracy of almost two deci-
mal digits.) Moreover, the explicit SD, performs slightly better in that
aspect, as shown in Table 3.7.

∙ A negative step of a numerical method appears when the computer-
generated random variable exceeds a certain threshold, which tends to
increase as the step size Δ decreases. Thus, the undesirable effect of
negative values that are produced by some numerical schemes (such as
the explicit Euler (EM) and standard Milsten (M)), tends to disappear,
since after a certain small step size, the threshold exceeds the maximum
standard normal random number attainable by the computer system.
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Step Δ Time/Path(in sec): Fully Explicit SD (Implicit)
2−5 0.000013 (0.000013)
2−7 0.0000411 (0.0000422)
2−9 0.0001545 (0.0001586)
2−11 0.0006048 (0.0006243)
2−13 0.0024319 (0.0024975)

Tab. 3.7: Average computational time for a path (in seconds) for fully explicit SD

method for 𝑞 = 3/4.

3.7 Approximation of Stochastic Model (3.1.1).

So far we have focused on the process (𝑉𝑡), which is one part of the two-
dimensional system (3.1.1). Nevertheless, it can be treated independently,
since the only way that it interacts with the process (𝑆𝑡) is through the
correlation 𝜌 of the Wiener processes. First we apply Itô’s formula on ln(𝑆𝑡)
to get,

(3.7.1) ln𝑆𝑡 = ln𝑆0 +

∫︁ 𝑡

0

𝜇𝑑𝑢− 1

2

∫︁ 𝑡

0

(𝑉𝑢)
2𝑝𝑑𝑢+

∫︁ 𝑡

0

(𝑉𝑢)
𝑝𝑑𝑊𝑢, 𝑡 ∈ [0, 𝑇 ].

Then, we consider two different schemes for the integration of (3.7.1).6

The first is the EM scheme which reads

(3.7.2) ln𝑆𝐸𝑀
𝑡𝑛+1

= ln𝑆𝑡𝑛 + 𝜇Δ− 1

2
(𝑉𝑡𝑛)

2𝑝Δ+ (𝑉𝑡𝑛)
𝑝Δ𝑊𝑛,

has strong convergence order 1/2 and is easy to implement. The second
scheme, which is based on an interpolation of the drift term and an interpo-
lation of the diffusion term, considering decorrelation of the diffusion term,
including a higher order Milstein term [KJ06, Sec. 4.2], is denoted IJK and
is given by [KJ06, (137)]

6 The reason for not considering other schemes such as the two-dimensional Milstein
is that they generally are time consuming, since they involve additional random number
generation for the approximation of double Wiener integrals.



3.7. Approximation of Stochastic Model (3.1.1). 93

ln𝑆𝐼𝐽𝐾
𝑡𝑛+1

= ln𝑆𝑡𝑛 + 𝜇Δ− 1

4

(︀
(𝑉𝑡𝑛)

2𝑝 + (𝑉𝑡𝑛+1)
2𝑝
)︀
Δ+ 𝜌(𝑉𝑡𝑛)

𝑝Δ̃︁𝑊𝑛

+
1

2
((𝑉𝑡𝑛)

𝑝 + (𝑉𝑡𝑛+1)
𝑝)(Δ𝑊𝑛 − 𝜌Δ̃︁𝑊𝑛)(3.7.3)

+
1

2
𝜌𝑝𝑘3(𝑉𝑡𝑛)

𝑞+𝑝−1((Δ̃︁𝑊𝑛)
2 −Δ).

We therefore consider the EM scheme (3.7.2) combined with SD (3.6.1),
the IJK scheme (3.7.3) combined with SD (3.6.1) and compare with the case
where the stochastic variance (𝑝 = 1

2
) is integrated with BMM scheme (3.6.7),

for three different correlation parameters, 𝜌 = 0, 𝜌 = −0.4 and 𝜌 = −0.8 with
𝑆0 = 100, 𝜇 = 0.05, as in [KJ06, Sec. 5]. We present in Tables 3.8, 3.9 and
3.10 and Figures 3.3, 3.4 and 3.5, the errors, in the sense of distance (3.6.8),
for all the above considered ways of numerical integration of process (𝑆𝑡), for
different step sizes, as well as the average computational time (in seconds)
consumed for each discretization.

Step Δ EM&SD(𝜃 = 0.5) IJK&SD(𝜃 = 0.5) EM&BMM(Θ = 0.5) IJK& BMM(Θ = 0.5)
2−5 26.901 (0.0000261) 26.901 (0.0000159) 26.891 (0.00002) 26.890 (0.0000294)
2−7 27.288 (0.0000919) 27.288 (0.0000492) 27.277 (0.0000676) 27.277 (0.0001043)
2−9 27.298 (0.0003595) 27.297 (0.0001843) 27.289 (0.0002610) 27.288 (0.0004081)
2−11 25.057 (0.0014255) 25.058 (0.0007309) 25.051 (0.0010309) 25.051 (0.0016191)
2−13 19.441 (0.0057322) 19.441 (0.0028928) 19.442 (0.0041177) 19.442 (0.0064721)

Tab. 3.8: 98%-Error, step size and average computational time of numerical inte-

gration of process (𝑆𝑡) using log-Euler or IJK method with SD or BMM

scheme for (3.1.1) with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑆0 = 100, 𝜇 =

0.05, 𝑞 = 3/4, 𝑇 = 1 and correlation 𝜌 = 0.

Step Δ EM&SD(𝜃 = 0.5) IJK&SD(𝜃 = 0.5) EM&BMM(Θ = 0.5) IJK& BMM(Θ = 0.5)
2−5 26.382 (0.0000266) 26.331 (0.0000161) 26.372 (0.0000202) 26.324 (0.00003)
2−7 26.448 (0.0000951) 26.396 (0.000005) 26.439 (0.0000691) 26.389 (0.0001081)
2−9 25.951 (0.0003631) 25.909 (0.000184) 25.944 (0.0002606) 25.904 (0.0004131)
2−11 24.540 (0.0014506) 24.494 (0.0007355) 24.531 (0.0010378) 24.486 (0.0016495)
2−13 18.738 (0.0060748) 18.749 (0.0030185) 18.735 (0.0042868) 18.747 (0.0068395)

Tab. 3.9: 98%-Error, step size and average computational time of numerical inte-

gration of process (𝑆𝑡) using log-Euler or IJK method with SD or BMM

scheme for (3.1.1) with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑆0 = 100, 𝜇 =

0.05, 𝑞 = 3/4, 𝑇 = 1 and correlation 𝜌 = −0.4
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Fig. 3.3: Strong convergence error of the financial underlying process (𝑆𝑡), as a
function of CPU time (in sec) using log-Euler or IJK method with SD

or BMM scheme for (3.1.1) with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑆0 =

100, 𝜇 = 0.05, 𝑞 = 3/4, 𝑇 = 1 and correlation 𝜌 = 0.
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Figures 3.3, 3.4 and 3.5 indicate that in all cases the favorable choice is
to integrate (𝑆𝑡) using IJK method combined with the SD scheme for (𝑉𝑡) in
model (3.1.1). The IJK-SD approximation of system (3.1.1) seems to be the
better one, w.r.t. CPU time, for every correlation coefficient considered.

3.8 Conclusion.

In this chapter, we exploit further the semi-discrete method (SD), origi-
nally appeared in [Hal12], to numerically approximate stochastic processes
that appear in financial mathematics and are meant to be non-negative. In
[HS16] we examined the Heston 3/2-model, that is a mean-reverting pro-
cess with super-linear diffusion, described by a SDE of the form (3.2.1) with
𝑞 = 3/2. Now, we deal with SDEs with sub-linear diffusion coefficients of
the type (𝑥𝑡)𝑞 with 1/2 < 𝑞 < 1. These kinds of SDEs, called mean-reverting
CEV processes, appear in stochastic models, where they represent the instan-
taneous volatility-variance of an underlying financially observable variable.
We prove theoretically the strong convergence of our proposed SD scheme,
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Fig. 3.4: Strong convergence error of the financial underlying process (𝑆𝑡), as a
function of CPU time (in sec) using log-Euler or IJK method with SD

or BMM scheme for (3.1.1) with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑆0 =

100, 𝜇 = 0.05, 𝑞 = 3/4, 𝑇 = 1 and correlation 𝜌 = −0.4.
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revealing the order of convergence. The resulting polynomial rate is shown
in Theorem 3.2.2.We present a comparative study between various positivity
preserving schemes and the SD method seems to be the best w.r.t. CPU
time consumption. The advantage of the SD method here is that although
implicit, has an explicit formula and thus requires fewer arithmetic opera-
tions and consequently less computational time. Moreover, our method can
cover cases where (3.2.1) has time varying coefficients, i.e. 𝑘1(𝑡), 𝑘2(𝑡), 𝑘3(𝑡).

We also treat the two-dimensional stochastic volatility model (3.1.1). In
order to do that, we actually integrate the process ln(𝑆𝑡) which satisfies
a SDE of the form (3.7.1) and in the end transform back for (𝑆𝑡). We only
consider two different schemes for the integration of ln(𝑆𝑡), namely the Euler-
Maruyama (EM) scheme, which is easy to implement and the IJK scheme
[KJ06, (137)] which is shown to be the most efficient method, robust and
simple as EM [KJ06]. We do not apply other two-dimensional schemes, such
as for example the Milstein scheme, since they are in general time consuming,
as they involve approximations of double Wiener integrals which require ad-
ditional random number generation. We therefore combine the EM scheme
with SD ((3.7.2) & (3.6.1)), the IJK scheme with SD ((3.7.3) & (3.6.1))
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Step Δ EM&SD(𝜃 = 0.5) IJK&SD(𝜃 = 0.5) EM&BMM(Θ = 0.5) IJK& BMM(Θ = 0.5)
2−5 25.552 (0.0000263) 25.455 (0.0000159) 25.541 (0.0000199) 25.449 (0.0000296)
2−7 25.670 (0.0000932) 25.569 (0.0000494) 25.659 (0.0000678) 25.564 (0.0001059)
2−9 25.217 (0.0003622) 25.137 (0.0001835) 25.208 (0.0002595) 25.132 (0.0004111)
2−11 23.743 (0.0014407) 23.711 (0.0007306) 23.734 (0.0010307) 23.707 (0.0016376)
2−13 18.082 (0.005871) 18.316 (0.0029312) 18.078 (0.0041637) 18.312 (0.0066239)

Tab. 3.10: 98%-Error, step size and average computational time of numerical inte-

gration of process (𝑆𝑡) using log-Euler or IJK method with SD or BMM

scheme for (3.1.1) with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑆0 = 100, 𝜇 =

0.05, 𝑞 = 3/4, 𝑇 = 1 and correlation 𝜌 = −0.8.

and compare with the case where the stochastic variance (𝑝 = 1
2
) is inte-

grated with BMM scheme (3.6.7), for three different correlation parameters,
𝜌 = 0, 𝜌 = −0.4 and 𝜌 = −0.8 with 𝑆0 = 100, 𝜇 = 0.05, as in [KJ06, Sec. 5].
The combination IJK with SD seems to be the most favorable w.r.t. CPU
time, for all the cases.
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Fig. 3.5: Strong convergence error of the financial underlying process (𝑆𝑡), as a
function of CPU time (in sec) using log-Euler or IJK method with SD

or BMM scheme for (3.1.1) with 𝑥0 = 𝑘1 = 1
16 , 𝑘2 = 1, 𝑘3 = 0.4, 𝑆0 =

100, 𝜇 = 0.05, 𝑞 = 3/4, 𝑇 = 1 and correlation 𝜌 = −0.8.
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4.1 Introduction.

We 1 assume the setting in Section 1.2, with 𝑑 = 𝑚 = 1, i.e. let 𝑇 > 0
and (Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 ,P) be a complete probability space and let 𝑊𝑡,𝜔 :
[0, 𝑇 ] × Ω → R be a one-dimensional Wiener process adapted to the filtra-
tion {ℱ𝑡}0≤𝑡≤𝑇 . Consider the following stochastic delay differential equation
(SDDE),

(4.1.1) 𝑥𝑡 =

⎧⎨⎩ 𝜉0 +
∫︀ 𝑡

0
𝑎(𝑥𝑠−𝜏 )𝑥𝑠𝑑𝑠+

∫︀ 𝑡

0
𝑏(𝑥𝑠−𝜏 )𝑥𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],

where the coefficients 𝑎, 𝑏 ∈ 𝒞(R+,R+),
2 the function 𝜉 ∈ 𝒞([−𝜏, 0], (0,∞))

and 𝜏 > 0 is a positive constant which represents the delay.

1 This chapter is based on unpublished work.
2 𝒞(𝐴,𝐵) the space of continuous functions 𝜑 : 𝐴 → 𝐵 with norm ‖𝜑‖ = sup𝑢∈𝐴 𝜑(𝑢).
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SDDE (4.1.1) is called Delay Geometric Brownian Motion (DGBM), as
in [MS13a], and is used in financial modeling. In that setting 𝑏(·) is called
the volatility function and 𝜉(·) represents the initial data.

Consider the transformation 𝑧(𝑥, 𝑡) = ln(𝑒−𝑟𝑡𝑥) = −𝑟𝑡+ln 𝑥, 𝑡 ≥ 0, where
𝑟 > 0.3 Then Itô’s formula implies

𝑧𝑡 = 𝑧0 +

∫︁ 𝑡

0

[︂
−𝑟 + 1

𝑥𝑠
𝑎(𝑥𝑠−𝜏 )𝑥𝑠 +

1

2
(− 1

𝑥2𝑠
)𝑏2(𝑥𝑠−𝜏 )𝑥

2
𝑠

]︂
𝑑𝑠+

∫︁ 𝑡

0

1

𝑥𝑠
𝑏(𝑥𝑠−𝜏 )𝑥𝑠𝑑𝑊𝑠

= ln 𝜉0 +

∫︁ 𝑡

0

(︂
−𝑟 + 𝑎(𝑥𝑠−𝜏 )−

1

2
𝑏2(𝑥𝑠−𝜏 )

)︂
𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑥𝑠−𝜏 )𝑑𝑊𝑠.

Therefore we introduce the function

𝜃(𝑥) =
1

2
𝑏(𝑥) +

−𝑟 + 𝑎(𝑥)− 1
2
𝑏2(𝑥)

𝑏(𝑥)
=
𝑎(𝑥)− 𝑟

𝑏(𝑥)
,

which satisfies the Novikov4 condition and the equivalent martingale measurẽ︀P5 with Radon-Nikodym derivative w.r.t. P, restricted to the maturity-time
𝜎-algebra, given by

𝑑̃︀P
𝑑P

⃒⃒⃒
ℱ𝑇

= exp

{︂
−1

2

∫︁ 𝑇

0

𝜃2(𝑥𝑠)𝑑𝑠−
∫︁ 𝑇

0

𝜃(𝑥𝑠)𝑑𝑊𝑠

}︂
.

Under the above Girsanov transformation of measure [KS88, Sec. 3.5] we
have

(4.1.2) 𝑥𝑡 =

⎧⎨⎩ 𝜉0 +
∫︀ 𝑡

0
𝑟𝑥𝑠𝑑𝑠+

∫︀ 𝑡

0
𝑏(𝑥𝑠−𝜏 )𝑥𝑠𝑑̃︁𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],

where ̃︁𝑊𝑡 := 𝑊𝑡 +
∫︀ 𝑡

0
𝜃(𝑥𝑠)𝑑𝑠 lives in the space (Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 , ̃︀P).

SDDE (4.1.2) which describes the DGBM (4.1.1) has a unique global
positive solution [MS13a, Th. 2.1] which can be computed, conditionally

3 𝑧𝑡 = ln(𝑒−𝑟𝑡𝑥𝑡) represents the log-price of the discounted asset and 𝑟 the risk-free
interest rate.

4 An Itô integrable function 𝜃(𝑡, 𝜔) : [0,∞) × Ω → R, i.e. an ℱ𝑡-adapted

measurable function with E
(︁∫︀ 𝑇

0
𝜃2(𝑠, 𝜔)𝑑𝑠

)︁
< ∞, satisfies the Novikov condition if

E
(︁
exp{

∫︀ 𝑇

0
𝜃2(𝑠, 𝜔)𝑑𝑠}

)︁
< ∞.

5 ̃︀P is the risk-neutral measure.
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on time-lagged information, but its unconditional distribution is not known
when 𝑡 > 𝜏. Thus, numerical approximations of (4.1.2) are necessary for
simulations of the paths 𝑥𝑡(𝜔), as well as for approximation of functionals of
the form E𝐹 (𝑥), where 𝐹 : 𝒞([0, 𝑇 ],R) → R can be the expected payoff of
an option. To simplify notation, in the following, we write (𝑊𝑡) for (̃︁𝑊𝑡).

4.2 The setting and the main result.

Assumption 4.2.1 Let the following conditions hold:

(i) 𝑏(·) is bounded, i.e. there is a 𝐶𝑏 > 0 such that 𝑏(𝑥) ≤ 𝐶𝑏 for every
𝑥 ≥ 0;

(ii) 𝑏(·) is locally Lipschitz, that is

|𝑏(𝑥)− 𝑏(𝑦)| ≤ 𝐶𝑏
𝑅|𝑥− 𝑦|,

for any 𝑅 > 0 such that |𝑥| ∨ |𝑦| ≤ 𝑅, where the constant 𝐶𝑏
𝑅 depends

on 𝑅;

(iii) 𝜉(·) is Hölder continuous with order 𝛾, where 0 < 𝛾 ≤ 1/2, that is

sup
−𝜏<𝑢<𝑣≤0

|𝜉(𝑣)− 𝜉(𝑢)|
(𝑣 − 𝑢)𝛾

:= 𝐶𝜉 <∞.

2

Let the observation time 𝑇 be a multiple of 𝜏, i.e. 𝑇 = 𝑁0𝜏, where 𝑁0 ∈ N.
We discretize the interval [−𝜏, 𝑇 ] with equidistant steps of size Δ = 𝜏/𝑙 for
𝑙 ∈ {2, 3, . . .} and 𝑡𝑛 = 𝑛Δ = 𝑛𝜏/𝑙, where 𝑛 = −𝑙,−𝑙 + 1, . . . , 𝑁, i.e.

𝑡−𝑙 = −𝜏 < 𝑡−𝑙+1 < . . . < 𝑡0 = 0 < . . . < 𝑡𝑁 = 𝑇,

with 𝑁 = 𝑙 ·𝑁0. Thus, 0 < Δ < 1.
The interpolation process of the Euler-Maruyama (EM) approximation

proposed in [MS13a, Th. 6.2] reads

𝑦𝐸𝑀
𝑡 =

{︂
𝑦𝑡𝑛 +

∫︀ 𝑡

𝑡𝑛
𝑟𝑦𝑡𝑛𝑑𝑠+

∫︀ 𝑡

𝑡𝑛
𝑏(𝑦𝑡𝑛−𝜏 )𝑦𝑡𝑛𝑑𝑊𝑠, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],
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Under Assumption 4.2.1 it holds [MS13a, Th. 6.2]

lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝐸𝑀
𝑡 − 𝑥𝑡|2 = 0.

A drawback of the above scheme is that there is a positive probability of
taking negative values.

We propose the following semi-discrete numerical scheme

(4.2.1) 𝑦𝑆𝐷𝑡 =

{︂
𝑦𝑡𝑛 +

∫︀ 𝑡

𝑡𝑛
𝑟𝑦𝑠𝑑𝑠+

∫︀ 𝑡

𝑡𝑛
𝑏(𝑦𝑡𝑛−𝜏 )𝑦𝑠𝑑𝑊𝑠, 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],

or in compact form

(4.2.2) 𝑦𝑆𝐷𝑡 =

{︂
𝜉0 +

∫︀ 𝑡

0
𝑟𝑦𝑠𝑑𝑠+

∫︀ 𝑡

0
𝑏(𝑦𝑠−𝜏 )𝑦𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],

where 𝑠 = 𝑡𝑛, when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1). Thus, we discretize only the diffusion term
of the SDDE (4.1.2), and to be more precise the volatility function 𝑏(·). We
observe from (4.2.1) that in order to solve for 𝑦𝑡, we have to solve at each
step an SDDE and not an algebraic equation. Note that we can reproduce
the EM scheme if we fully discretize the drift and diffusion term of (4.1.2).

The linear SDDE (4.2.2) has an explicit solution

𝑦𝑆𝐷𝑡 =

{︃
𝜉0 exp

{︁∫︀ 𝑡

0
(𝑟 − 𝑏2(𝑦𝑠−𝜏 )/2) 𝑑𝑠+

∫︀ 𝑡

0
𝑏(𝑦𝑠−𝜏 )𝑑𝑊𝑠

}︁
, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0].

The numerical scheme (4.2.2) converges to the true solution 𝑥𝑡 of SDDE
(4.1.2) and this is stated in the following, which is our main result.

Theorem 4.2.2 Suppose Assumption 4.2.1 holds. Then the semi-discrete
numerical scheme (4.2.2) converges to the true solution of (4.1.2) in the
mean-square sense, that is

(4.2.3) lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 − 𝑥𝑡|2 = 0.

2

Section 4.3 concerns the proof of Theorem 4.2.2, which shows the strong
convergence of the SD method.

Remark 4.2.3 In Assumption 4.2.1(iii), we have assumed that 0 < 𝛾 ≤ 1/2.
This is in accordance with the setting of [MS13a, Th. 6.2]. 2
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4.3 Strong Convergence of the SD scheme.

We denote the indicator function of a set 𝐴 by I𝐴. First we state moment
bounds of the solution of the original process (𝑥𝑡) of (4.1.2) and then prove
moment bounds of the semi-discrete approximation (𝑦𝑆𝐷𝑡 ) given by (4.2.2).
Later on, we provide an auxiliary result, that holds between the step process
(𝑦𝑆𝐷

𝑡
) and its continuous time approximation (𝑦𝑆𝐷𝑡 ) until the time of explosion

𝜃𝑅. The process (𝑦𝑆𝐷𝑡 ) may also appear as (𝑦𝑡).

4.3.1 Moment Bounds for original process and Semi-Discrete
approximation.

Lemma 4.3.4 [Moment bound of (𝑥𝑡)] Let Assumption 4.2.1(i). The follow-
ing bound is true

E( sup
0≤𝑡≤𝑇

(𝑥𝑡)
𝑝) < 𝐶𝑥(𝑝),

for some 𝐶𝑥(𝑝) > 0 and any 𝑝 ≥ 1 where

𝐶𝑥(𝑝) = 3 · 2𝑝/2−1(1 + ‖𝜉‖𝑝) exp{𝑝(2𝑟 ∨ 𝐶𝑏 + (33𝑝− 1)𝑟2 ∨ 𝐶2
𝑏 )𝑇},

or

𝐶𝑥(𝑝) = 𝜉𝑝(0)

(︂
2 +

9𝑝2𝐶2
𝑏

𝑝(𝑟 + 0.5(𝑝− 1)𝐶2
𝑏 )

)︂
exp{𝑝(𝑟 + 0.5(𝑝− 1)𝐶2

𝑏 )𝑇}.

2

Proof of Lemma 4.3.4. The first bound is given in [Mao97, Th. 5.4.1] and
the sharper is as stated in [MS13a, Th. 2.4].

Lemma 4.3.5 Let Assumptions 4.2.1(i) and 4.2.1(iii) hold. The following
bound is true

E( sup
−𝜏≤𝑡≤𝑇

(𝑦𝑆𝐷𝑡 )𝑝) < 𝐶𝑦(𝑝),

for some 𝐶𝑦(𝑝) > 0 and any 𝑝 > 2. 2
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Proof of Lemma 4.3.5. Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : 𝑦𝑡 > 𝑅},
for some 𝑅 > ‖𝜉‖ > 0, with the convention that inf ∅ = ∞. Application of
Itô’s formula on (𝑦𝑡∧𝜃𝑅)

𝑝, implies,

(𝑦𝑡∧𝜃𝑅)
𝑝 = (𝜉0)

𝑝 +

∫︁ 𝑡∧𝜃𝑅

0

𝑝(𝑦𝑠)
𝑝−1𝑟𝑦𝑠𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑝(𝑝− 1)

2
(𝑦𝑠)

𝑝−2 [𝑏(𝑦𝑠−𝜏 )𝑦𝑠]
2 𝑑𝑠+

∫︁ 𝑡∧𝜃𝑅

0

𝑝(𝑦𝑠)
𝑝−1𝑏(𝑦𝑠−𝜏 )𝑦𝑠𝑑𝑊𝑠

= (𝜉0)
𝑝 +

∫︁ 𝑡∧𝜃𝑅

0

(𝑝𝑟 +
𝑝(𝑝− 1)

2
𝑏2(𝑦𝑠−𝜏 ))(𝑦𝑠)

𝑝𝑑𝑠+

∫︁ 𝑡∧𝜃𝑅

0

𝑝𝑏(𝑦𝑠−𝜏 )(𝑦𝑠)
𝑝𝑑𝑊𝑠

≤ (𝜉0)
𝑝 +

(︂
𝑝𝑟 +

𝑝(𝑝− 1)

2
𝐶2

𝑏

)︂∫︁ 𝑡

0

(𝑦𝑠)
𝑝I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠+𝑀𝑡,

where the last inequality is valid for any 𝑝 > 2 and

𝑀𝑡 :=

∫︁ 𝑡∧𝜃𝑅

0

𝑝𝑏(𝑦𝑠−𝜏 )(𝑦𝑠)
𝑝𝑑𝑊𝑠.

Taking expectations and using that E𝑀𝑡 = 0 we get

E(𝑦𝑡∧𝜃𝑅)
𝑝 ≤ E(𝜉0)𝑝 +

(︂
𝑝𝑟 +

𝑝(𝑝− 1)

2
𝐶2

𝑏

)︂∫︁ 𝑡

0

E(𝑦𝑠∧𝜃𝑅)
𝑝𝑑𝑠

≤ E(𝜉0)𝑝𝑒(𝑝𝑟+
𝑝(𝑝−1)

2
𝐶2

𝑏 )𝑡,

where we have applied the Gronwall inequality. We have that

(𝑦𝑡∧𝜃𝑅)
𝑝 = (𝑦𝜃𝑅)

𝑝I(𝜃𝑅≤𝑡) + (𝑦𝑡)
𝑝I(𝑡<𝜃𝑅) = 𝑅𝑝I(𝜃𝑅≤𝑡) + (𝑦𝑡)

𝑝I(𝑡<𝜃𝑅),

thus taking expectations in the above inequality and using the estimated
upper bound for E(𝑦𝑡∧𝜃𝑅)𝑞 we arrive at

E(𝑦𝑡)𝑝I(𝑡<𝜃𝑅) ≤ E(𝜉0)𝑝𝑒(𝑝𝑟+
𝑝(𝑝−1)

2
𝐶2

𝑏 )𝑡,

and taking limits in both sides as 𝑅 → ∞ we get that

lim
𝑅→∞

E(𝑦𝑡)𝑝I(𝑡<𝜃𝑅) ≤ E(𝜉0)𝑝𝑒(𝑝𝑟+
𝑝(𝑝−1)

2
𝐶2

𝑏 )𝑡.
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Fix 𝑡. The sequence (𝑦𝑡)𝑝I(𝑡<𝜃𝑅) is non-decreasing in 𝑅 since 𝜃𝑅 is increasing
in 𝑅 and 𝑡 ∧ 𝜃𝑅 → 𝑡 as 𝑅 → ∞ and (𝑦𝑡)

𝑝I(𝑡<𝜃𝑅) → (𝑦𝑡)
𝑝 as 𝑅 → ∞, thus the

monotone convergence theorem, Theorem B.1.1, implies

E(𝑦𝑡)𝑝 ≤ E(𝜉0)𝑝𝑒(𝑝𝑟+
𝑝(𝑝−1)

2
𝐶2

𝑏 )𝑡,

for any 𝑝 > 2. Thus for any 𝑡1 ∈ [0, 𝑇 ], we have

sup
0≤𝑡≤𝑡1

E(𝑦𝑡)𝑝 ≤ E(𝜉0)𝑝𝑒(𝑝𝑟+
𝑝(𝑝−1)

2
𝐶2

𝑏 )𝑡1 ,

which implies

sup
−𝜏≤𝑡≤𝑡1

E(𝑦𝑡)𝑝 = sup
−𝜏≤𝑡≤0

E|𝜉𝑡|𝑝
⋁︁

sup
0≤𝑡≤𝑡1

E(𝑦𝑡)𝑝

≤ ‖𝜉‖𝑝E(𝜉0)𝑝𝑒(𝑝𝑟+
𝑝(𝑝−1)

2
𝐶2

𝑏 )𝑡1 .

Using again Itô’s formula on (𝑦𝑡)
𝑝, taking the supremum and then expecta-

tions we have that

E( sup
0≤𝑡≤𝑇

(𝑦𝑡)
𝑝) ≤ E(𝜉0)𝑝 +

(︂
𝑝𝑟 +

𝑝(𝑝− 1)

2
𝐶2

𝑏

)︂
E
(︂

sup
0≤𝑡≤𝑇

∫︁ 𝑡

0

(𝑦𝑠)
𝑝𝑑𝑠

)︂
+E sup

0≤𝑡≤𝑇
𝑀𝑡

≤ E(𝜉0)𝑝 +
(︂
𝑝𝑟 +

𝑝(𝑝− 1)

2
𝐶2

𝑏

)︂∫︁ 𝑇

0

E( sup
0≤𝑙≤𝑠

(𝑦𝑙)
𝑝)𝑑𝑠+

√︂
E sup

0≤𝑡≤𝑇
𝑀2

𝑡

≤
(︂
E(𝜉0)𝑝 +

√︁
4E𝑀2

𝑇

)︂
𝑒(𝑝𝑟+

𝑝(𝑝−1)
2

𝐶2
𝑏 )𝑇 ,

where in the last step we have used Doob’s martingale inequality to the
diffusion term 𝑀𝑡

6 and Gronwall’s inequality. Thus

E( sup
−𝜏≤𝑡≤𝑇

(𝑦𝑆𝐷𝑡 )𝑝) ≤
(︂
E(𝜉0)𝑝 +

√︁
4E𝑀2

𝑇

)︂
𝑒(𝑝𝑟+

𝑝(𝑝−1)
2

𝐶2
𝑏 )𝑇
⋁︁

‖𝜉‖𝑝 := 𝐶𝑦(𝑝).

6 The function ℎ(𝑢) = 𝑝𝑏(𝑦𝑢̂−𝜏 )(𝑦𝑢)
𝑝 belongs to the family ℳ2([0, 𝑇 ];R) thus [Mao97,

Th. 1.5.8] implies E𝑀2
𝑡 = E(

∫︀ 𝑡

0
ℎ(𝑢)𝑑𝑊𝑢)

2 = E
∫︀ 𝑡

0
ℎ2(𝑢)𝑑𝑢, i.e. 𝑀𝑡 ∈ ℒ2(Ω;R).
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4.3.2 Error Bound for the explicit Semi-Discrete scheme.

Lemma 4.3.6 Let Assumption 4.2.1(i) hold and 0 < |𝜉‖ <∞. The follow-
ing estimate holds

E|𝑦𝑆𝐷𝑠 − 𝑦𝑆𝐷̂︀𝑠 |𝑝 ≤ 𝐶𝑝Δ
𝑝/2,

where 𝐶𝑝 does not depend on Δ, implying sup𝑠∈[𝑡𝑛𝑠 ,𝑡𝑛𝑠+1] E|𝑦
𝑆𝐷
𝑠 − 𝑦𝑆𝐷̂︀𝑠 |𝑝 =

𝑂(Δ𝑝/2) as Δ ↓ 0. 2

Proof of Lemma 4.3.6. First, we fix a 𝑝 ≥ 2. Let the integer 𝑛𝑠 be such that
𝑠 ∈ [𝑡𝑛𝑠 , 𝑡𝑛𝑠+1). It holds that

|𝑦𝑠 − 𝑦̂︀𝑠|𝑝 =
⃒⃒⃒⃒∫︁ 𝑠

𝑡𝑛𝑠

𝑟𝑦𝑢𝑑𝑢+

∫︁ 𝑠

𝑡𝑛𝑠

𝑏(𝑦𝑢̂−𝜏 )𝑦𝑢𝑑𝑊𝑢

⃒⃒⃒⃒𝑝
≤ 2𝑝−1

⃒⃒⃒⃒∫︁ 𝑠

𝑡𝑛𝑠

𝑟𝑦𝑢𝑑𝑢

⃒⃒⃒⃒𝑝
+ 2𝑝−1

⃒⃒⃒⃒∫︁ 𝑠

𝑡𝑛𝑠

𝑏(𝑦𝑢̂−𝜏 )𝑦𝑢𝑑𝑊𝑢

⃒⃒⃒⃒𝑝
≤ 2𝑝−1(𝑠− 𝑡𝑛𝑠)

𝑝−1𝑟𝑝
∫︁ 𝑠

𝑡𝑛𝑠

(𝑦𝑢)
𝑝𝑑𝑢+ 2𝑝−1

⃒⃒⃒⃒∫︁ 𝑠

𝑡𝑛𝑠

𝑏(𝑦𝑢̂−𝜏 )𝑦𝑢𝑑𝑊𝑢

⃒⃒⃒⃒𝑝
,

where we have used the Cauchy-Schwarz inequality. Taking expectations in
the above inequality gives

E|𝑦𝑠 − 𝑦̂︀𝑠|𝑝 ≤ 2𝑝−1Δ𝑝−1𝑟𝑝
∫︁ 𝑠

𝑡𝑛𝑠

E(𝑦𝑢)𝑝𝑑𝑢

+2𝑝−1

(︂
𝑝𝑝+1

2(𝑝− 1)𝑝−1

)︂𝑝/2

⏟  ⏞  
𝐶*

𝑝

E
⃒⃒⃒⃒∫︁ 𝑡𝑛𝑠+1

𝑡𝑛𝑠

𝑏2(𝑦𝑢̂−𝜏 )(𝑦𝑢)
2𝑑𝑢

⃒⃒⃒⃒𝑝/2

≤ 2𝑝−1𝑟𝑝𝐶𝑦(𝑝)Δ
𝑝 + 2𝑝−1𝐶*

𝑝Δ
𝑝−2
2 (𝐶𝑏)

𝑝E
∫︁ 𝑡𝑛𝑠+1

𝑡𝑛𝑠

|𝑦𝑢|𝑝𝑑𝑢

≤ 2𝑝−1𝑟𝑝𝐶𝑦(𝑝)Δ
𝑝 + 2𝑝−1𝐶*

𝑝𝐶𝑦(𝑝)Δ
𝑝/2

≤ 𝐶Δ𝑝 + 𝐶Δ𝑝/2,

where we have used twice Hölder’s inequality and the BDG inequality (B.3.5)
on the diffusion term, Assumption 4.2.1(i) and the moment bounds of (𝑦𝑡)𝑝

which are valid for any 2 ≤ 𝑝 by Lemma 4.3.5. Thus,

lim
Δ↓0

sup𝑠∈[𝑡𝑛𝑠 ,𝑡𝑛𝑠+1] E|𝑦𝑠 − 𝑦̂︀𝑠|𝑝
Δ𝑝/2

≤ 𝐶𝑝,
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which justifies the 𝑂(Δ𝑝/2) notation. Now for 0 < 𝑝 < 2 we have that

E|𝑦𝑠 − 𝑦̂︀𝑠|𝑝 ≤ (︀E|𝑦𝑠 − 𝑦̂︀𝑠|2)︀𝑝/2 ≤ 𝐶𝑝Δ
𝑝/2,

where we have used Jensen’s inequality for the concave function 𝜑(𝑥) =
𝑥𝑝/2.

4.3.3 Convergence of the Semi-Discrete scheme in ℒ2.

Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : |𝑦𝑡| > 𝑅 or |𝑥𝑡| > 𝑅}, for some
𝑅 > 0 big enough. We have that

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 = E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2I(𝜃𝑅>𝑡) + E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2I(𝜃𝑅≤𝑡)

≤ E sup
0≤𝑡≤𝑇

|𝑦𝑡∧𝜃𝑅 − 𝑥𝑡∧𝜃𝑅 |2 +
2𝛿

𝑝
E sup

0≤𝑡≤𝑇
|𝑦𝑡 − 𝑥𝑡|𝑝

+
(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 ),

where we have applied the Young inequality,

𝑎𝑏 ≤ 𝛿

𝑟
𝑎𝑟 +

1

𝑞𝛿𝑞/𝑟
𝑏𝑞,

for 𝑎 = sup0≤𝑡≤𝑇 |𝑦𝑡 − 𝑥𝑡|2, 𝑏 = I(𝜃𝑅≤𝑡), 𝑟 = 𝑝/2, 𝑞 = 𝑝/(𝑝− 2) and 𝛿 > 0, or

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 ≤ E sup
0≤𝑡≤𝑇

|𝑦𝑡∧𝜃𝑅 − 𝑥𝑡∧𝜃𝑅 |2 +
2𝑝𝛿

𝑝
E sup

0≤𝑡≤𝑇
(|𝑦𝑡|𝑝 + |𝑥𝑡|𝑝)

+
(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 )

≤ E sup
0≤𝑡≤𝑇

|𝑦𝑡∧𝜃𝑅 − 𝑥𝑡∧𝜃𝑅 |2

+
2𝑝𝛿(𝐶𝑦(𝑝) + 𝐶𝑥(𝑝))

𝑝
+

(𝑝− 2)

𝑝𝛿2/(𝑝−2)
P(𝜃𝑅 ≤ 𝑇 ),(4.3.1)

where we have used the elementary inequality (
∑︀𝑛

𝑖=1 𝑎𝑖)
𝑝 ≤ 𝑛𝑝−1

∑︀𝑛
𝑖=1 𝑎

𝑝
𝑖 ,

with 𝑛 = 2, and 𝐶𝑥(𝑝), 𝐶𝑦(𝑝) stand for the moment bounds of (𝑥𝑡), (𝑦𝑆𝐷𝑡 )
given in Lemmata 4.3.4 and 4.3.5. It holds that

P(𝜃𝑅 ≤ 𝑇 ) ≤ E
(︂
I(𝜃𝑅≤𝑇 )

|𝑦𝜃𝑅 |𝑝

𝑅𝑝

)︂
+ E

(︂
I(𝜃𝑅≤𝑇 )

|𝑥𝜃𝑅 |𝑝

𝑅𝑝

)︂
≤ 1

𝑅𝑝

(︂
E sup

0≤𝑡≤𝑇
|𝑥𝑡|𝑝 + E sup

0≤𝑡≤𝑇
|𝑦𝑡|𝑝

)︂
≤ 𝐶𝑥(𝑝) ∨ 𝐶𝑦(𝑝)

𝑅𝑝
,
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thus (4.3.1) becomes

E sup
0≤𝑡≤𝑇

|𝑦𝑡 − 𝑥𝑡|2 ≤ E sup
0≤𝑡≤𝑇

|𝑦𝑡∧𝜃𝑅 − 𝑥𝑡∧𝜃𝑅 |2

+
2𝑝𝛿𝐶𝑥(𝑝) ∨ 𝐶𝑦(𝑝)

𝑝
+

2(𝑝− 2)𝐶𝑥(𝑝) ∨ 𝐶𝑦(𝑝)

𝑝𝛿2/(𝑝−2)𝑅𝑝
.(4.3.2)

We estimate the difference (𝑒𝑡∧𝜃𝑅)
2 := |𝑦𝑡∧𝜃𝑅 − 𝑥𝑡∧𝜃𝑅 |2. It holds that

(𝑒𝑡∧𝜃𝑅)
2 =

⃒⃒⃒⃒∫︁ 𝑡∧𝜃𝑅

0

(𝑟𝑦𝑠 − 𝑟𝑥𝑠)𝑑𝑠+

∫︁ 𝑡∧𝜃𝑅

0

(𝑏(𝑦𝑠−𝜏 )𝑦𝑠 − 𝑏(𝑥𝑠−𝜏 )𝑥𝑠) 𝑑𝑊𝑠

⃒⃒⃒⃒2
≤ 2𝑇

∫︁ 𝑡∧𝜃𝑅

0

𝑟2|𝑦𝑠 − 𝑥𝑠|2𝑑𝑠+ 2

⃒⃒⃒⃒∫︁ 𝑡∧𝜃𝑅

0

(𝑏(𝑦𝑠−𝜏 )𝑦𝑠 − 𝑏(𝑥𝑠−𝜏 )𝑥𝑠) 𝑑𝑊𝑠

⃒⃒⃒⃒2
≤ 2𝑟2𝑇

∫︁ 𝑡∧𝜃𝑅

0

(𝑒𝑠)
2𝑑𝑠+ 2|𝑀𝑡|2,

where in the second step we have used the Cauchy-Schwarz inequality and

𝑀𝑡 :=

∫︁ 𝑡∧𝜃𝑅

0

(𝑏(𝑦𝑠−𝜏 )𝑦𝑠 − 𝑏(𝑥𝑠−𝜏 )𝑥𝑠) 𝑑𝑊𝑠.

Taking the supremum over all 𝑡 ∈ [0, 𝑇 ] and then expectations we have

E sup
0≤𝑡≤𝑇

(𝑒𝑡∧𝜃𝑅)
2 ≤ 2𝑟2𝑇

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

(𝑒𝑙∧𝜃𝑅)
2𝑑𝑠+ 2E sup

0≤𝑡≤𝑇
|𝑀𝑡|2

≤ 2𝑟2𝑇

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

(𝑒𝑙∧𝜃𝑅)
2𝑑𝑠+ 8E|𝑀𝑇 |2,(4.3.3)

where in the last step we have used Hölder’s inequality and Doob’s martingale
inequality with 𝑝 = 2, since 𝑀𝑡 is an R-valued martingale that belongs to
ℒ2. It holds that

E|𝑀𝑇 |2 := E
⃒⃒⃒⃒∫︁ 𝑇∧𝜃𝑅

0

(𝑏(𝑦𝑠−𝜏 )𝑦𝑠 − 𝑏(𝑥𝑠−𝜏 )𝑥𝑠) 𝑑𝑊𝑠

⃒⃒⃒⃒2
= E

(︂∫︁ 𝑇∧𝜃𝑅

0

(𝑏(𝑦𝑠−𝜏 )𝑦𝑠 − 𝑏(𝑥𝑠−𝜏 )𝑥𝑠)
2 𝑑𝑠

)︂
≤ E

(︂∫︁ 𝑇∧𝜃𝑅

0

(︀
2|𝑏(𝑦𝑠−𝜏 )|2|𝑦𝑠 − 𝑥𝑠|2 + 2|𝑥𝑠|2|𝑏(𝑦𝑠−𝜏 )− 𝑏(𝑥𝑠−𝜏 )|2

)︀
𝑑𝑠

)︂
≤ 2𝐶2

𝑏

∫︁ 𝑇∧𝜃𝑅

0

E sup
0≤𝑙≤𝑠

|𝑒𝑙∧𝜃𝑅 |2𝑑𝑠+ 2(𝐶𝑏
𝑅)

2E
(︂∫︁ 𝑇∧𝜃𝑅

0

(𝑥𝑠)
2|𝑦𝑠−𝜏 − 𝑥𝑠−𝜏 |2𝑑𝑠

)︂
,
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where we have used Assumption 4.2.1(ii) and 𝐶𝑏
𝑅 is the local Lipschitz con-

stant of 𝑏 or

E|𝑀𝑇 |2 ≤ 2𝐶2
𝑏

∫︁ 𝑇∧𝜃𝑅

0

E sup
0≤𝑙≤𝑠

(𝑒𝑙∧𝜃𝑅)
2𝑑𝑠

+4(𝐶𝑏
𝑅)

2

∫︁ 𝑇∧𝜃𝑅

0

√︀
E(𝑥𝑠)4

√︀
E|𝑦𝑠−𝜏 − 𝑦𝑠−𝜏 |4𝑑𝑠

+4(𝐶𝑏
𝑅)

2E
(︂∫︁ 𝑇∧𝜃𝑅

0

(𝑥𝑠)
2|𝑦𝑠−𝜏 − 𝑥𝑠−𝜏 |2𝑑𝑠

)︂
,(4.3.4)

The second integral of (4.3.4) is estimated by the following

∫︁ 𝑇∧𝜃𝑅

0

√︀
E(𝑥𝑠)4

√︀
E|𝑦𝑠−𝜏 − 𝑦𝑠−𝜏 |4𝑑𝑠 ≤

√︀
𝐶𝑥(4)

∫︁ 𝑇

0

√︀
E|𝑦𝑠∧𝜃𝑅−𝜏 − 𝑦𝑠∧𝜃𝑅−𝜏 |4𝑑𝑠

≤
√︀
𝐶𝑥(4)

∫︁ 𝑇

0

√︁
E|𝑦(𝑠−𝜏)∧𝜃𝑅 − 𝑦(𝑠−𝜏)∧𝜃𝑅 |4𝑑𝑠

≤
√︀
𝐶𝑥(4)(

∫︁ 𝜏

0

√︀
|𝜉(𝑠− 𝜏)− 𝜉(𝑠− 𝜏)|4𝑑𝑠+

∫︁ 𝑇

𝜏

√︁
E|𝑦(𝑠−𝜏)∧𝜃𝑅 − 𝑦(𝑠−𝜏)∧𝜃𝑅 |4𝑑𝑠)

≤
√︀
𝐶𝑥(4)𝜏 sup

−𝜏<𝑠<𝑠≤0
|𝜉(𝑠)− 𝜉(𝑠)|2 +

√︀
𝐶𝑥(4)

∫︁ 𝑇−𝜏

0

√︀
E|𝑦𝑠∧𝜃𝑅 − 𝑦𝑠∧𝜃𝑅 |4𝑑𝑠

≤𝜏
√︀
𝐶𝑥(4)(𝐶𝜉)

2𝛾Δ2𝛾 +
√︀
𝐶𝑥(4)

√︀
𝐶4𝑇Δ,

where in the last step we have used Assumption 4.2.1(iii) and Lemma 4.3.6,
𝐶𝑥(4) as in Lemma 4.3.4, 𝐶𝜉 is the Hölder constant of 𝜉 and 𝐶4 is as in
Lemma 4.3.6. The last integral of (4.3.4) is estimated by the following

E
∫︁ 𝑇∧𝜃𝑅

0

(𝑥𝑠)
2|𝑦𝑠−𝜏 − 𝑥𝑠−𝜏 |2𝑑𝑠 ≤ E

∫︁ 𝑇∧𝜃𝑅−𝜏

−𝜏

(𝑥𝑠)
2|𝑦𝑠 − 𝑥𝑠|2𝑑𝑠

≤ E
∫︁ 0

−𝜏

(𝑥𝑠)
2(𝑒𝑠)

2𝑑𝑠+ E
∫︁ 𝑇∧𝜃𝑅−𝜏

0

(𝑥𝑠)
2(𝑒𝑠)

2𝑑𝑠

≤ sup
−𝜏<𝑠<𝑠≤0

|𝜉(𝑠)− 𝜉(𝑠)|2E
∫︁ 0

−𝜏

(𝑥𝑠)
2𝑑𝑠+𝑅2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

(𝑒𝑙∧𝜃𝑅)
2𝑑𝑠

≤ 𝜏(𝐶𝜉)
2𝛾𝐶𝑥(2)Δ

2𝛾 +𝑅2

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

(𝑒𝑙∧𝜃𝑅)
2𝑑𝑠,
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where in the last step we have used Assumption 4.2.1(iii), 𝐶𝑥(2) is as in
Lemma 4.3.4 and 𝐶𝜉 is the Hölder constant of 𝜉. Relation (4.3.3) becomes

E sup
0≤𝑡≤𝑇

(𝑒𝑡∧𝜃𝑅)
2 ≤ 32

√︀
𝐶𝑥(4)

√︀
𝐶4𝑇𝐶

2
𝑏 (𝐶

𝑏
𝑅)

2Δ

+64𝜏𝐶2
𝑏 (𝐶

𝑏
𝑅)

2(𝐶𝜉)
2𝛾(
√︀
𝐶𝑥(4) ∨ 𝐶𝑥(2))Δ

2𝛾

+(2𝑟2𝑇 + 16𝐶2
𝑏 + 32𝑅2(𝐶𝑏

𝑅)
2)

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

|𝑦𝑙∧𝜃𝑅 − 𝑥𝑙∧𝜃𝑅 |2𝑑𝑠

≤ ̃︀𝐶3(𝐶
𝑏
𝑅)

2Δ2𝛾 + ( ̃︀𝐶4 + 32𝑅2(𝐶𝑏
𝑅)

2)

∫︁ 𝑇

0

E sup
0≤𝑙≤𝑠

(𝑒𝑙∧𝜃𝑅)
2𝑑𝑠,

where the constants ̃︀𝐶3 and ̃︀𝐶4 are given by

̃︀𝐶3 := 64𝜏𝐶2
𝑏 (𝐶𝜉)

2𝛾(
√︀
𝐶𝑥(4) ∨ 𝐶𝑥(2)), ̃︀𝐶4 := 2𝑟2𝑇 + 16𝐶2

𝑏 .

Application of the Gronwall inequality implies

E sup
0≤𝑡≤𝑇

(𝑒𝑡∧𝜃𝑅)
2 ≤ ̃︀𝐶3(𝐶

𝑏
𝑅)

2Δ2𝛾𝑒(
̃︁𝐶4+32𝑅2(𝐶𝑏

𝑅)2)𝑇 .

Relation (4.3.2) becomes,

E sup
0≤𝑡≤𝑇

(𝑒𝑡)
2 ≤ ̃︀𝐶3(𝐶

𝑏
𝑅)

2Δ2𝛾𝑒(
̃︀𝐶4+32𝑅2(𝐶𝑏

𝑅)2)𝑇 +
2𝑝𝛿𝐶𝑥(𝑝) ∨ 𝐶𝑦(𝑝)

𝑝

+
2(𝑝− 2)𝐶𝑥(𝑝) ∨ 𝐶𝑦(𝑝)

𝑝𝛿2/(𝑝−2)𝑅𝑝
:= 𝐼1 + 𝐼2 + 𝐼3.

Given any 𝜖 > 0, we may first choose 𝛿 such that 𝐼2 < 𝜖/3, then choose 𝑅 such
that 𝐼3 < 𝜖/3, and finally Δ such that 𝐼1 < 𝜖/3 concluding E sup0≤𝑡≤𝑇 (𝑒𝑡)

2 <
𝜖 as required to verify (4.2.3).

4.4 Comments and future work.

∙ Assumption 4.2.1(i), for the boundedness of the volatility function 𝑏(·)
does not seem unrealistic as shown in [BBF02, (7)], [CLV99] where the
‘local’ volatility function is approximated with splines and [DFW98,
(6)-(9)], where the Deterministic Volatility Function (DVF) hypotheses



4.4. Comments and future work. 111

is made and the following four models are compared

(Model 0) 𝑏(𝑡, 𝑥) = 0.01
⋁︀
𝑎0

(Model 1) 𝑏(𝑡, 𝑥) = 0.01
⋁︀
(𝑎0 + 𝑎1𝑥+ 𝑎2𝑥

2)
(Model 2) 𝑏(𝑡, 𝑥) = 0.01

⋁︀
(𝑎0 + 𝑎1𝑥+ 𝑎2𝑥

2 + 𝑎3𝑡+ 𝑎5𝑥𝑡)
(Model 3) 𝑏(𝑡, 𝑥) = 0.01

⋁︀
(𝑎0 + 𝑎1𝑥+ 𝑎2𝑥

2 + 𝑎3𝑡+ 𝑎4𝑡
2 + 𝑎5𝑥𝑡)

Model 0 is the Black-Scholes case. The rest of the models are in
quadratic form and vary only with the index level (Model 1), or de-
pend also on time. Time variation seems important and specifically
the cross-product term 𝑥𝑡 provides better explanatory power [DFW98,
p. 2072].

The above-mentioned (DVF) approach is a simple way to explain the
volatility ‘smile’ preserving the arbitrage argument. Between other
attempts in that direction, are the stochastic volatility models of Hull-
White [HW87], where the price of a call option on a security (with price
𝑆𝑡) is derived⎧⎨⎩

𝑆𝑡 = 𝑆0 +
∫︀ 𝑡

0
𝑎(𝑠, 𝑆𝑢, 𝑏𝑢)𝑆𝑢𝑑𝑢+

∫︀ 𝑡

0
𝑏𝑢𝑆𝑢𝑑𝑊𝑢, 𝑡 ∈ [0, 𝑇 ],

𝑉𝑡 = 𝑉0 +
∫︀ 𝑡

0
𝜇(𝑢, 𝑉𝑢)𝑉𝑢𝑑𝑢+

∫︀ 𝑡

0
𝜉(𝑢, 𝑉𝑢)𝑉𝑢𝑑̃︁𝑊𝑢 𝑡 ∈ [0, 𝑇 ],

where 𝑉𝑡 = (𝑏𝑡)
2 is the instantaneous variance and the Wiener processes

𝑊𝑡,̃︁𝑊𝑡 have correlation 𝜌, and Heston model [Hes93, (1)-(2)]⎧⎨⎩
𝑆𝑡 = 𝑆0 +

∫︀ 𝑡

0
𝑎 · 𝑆𝑢𝑑𝑢+

∫︀ 𝑡

0
𝑏𝑢𝑆𝑢𝑑𝑊𝑢, 𝑡 ∈ [0, 𝑇 ],

𝑏𝑡 = 𝑏0 −
∫︀ 𝑡

0
𝜇𝑏𝑢𝑑𝑢+

∫︀ 𝑡

0
𝜉𝑑̃︁𝑊𝑢 𝑡 ∈ [0, 𝑇 ],

where the Wiener processes𝑊𝑡,̃︁𝑊𝑡 have correlation 𝜌. Thus, the volatil-
ity process 𝑏𝑡 follows an Ornstein-Uhlenbeck process and Itô’s lemma
shows that the instantaneous variance 𝑉𝑡 = (𝑏𝑡)

2 satisfies the following
square-root process

𝑉𝑡 = 𝑉0 +

∫︁ 𝑡

0

(𝜉2 − 2𝜇𝑉𝑠)𝑑𝑠+

∫︁ 𝑡

0

2𝜉
√︀
𝑉𝑠𝑑̃︁𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

which has been studied lately in [Hal15d].
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∙ In [MS13a], where the DGBM model was proposed, the delay effect on
various options is studied, as in European options and barrier options.
In particularly under Assumption 4.2.1(ii), it is shown that it is robust,
in the sense that if we consider another time lag ̃︀𝜏 and the corresponding
SDDE

̃︀𝑥𝑡 =
⎧⎨⎩ 𝜉0 +

∫︀ 𝑡

0
𝑟̃︀𝑥𝑠𝑑𝑠+ ∫︀ 𝑡

0
𝑏(̃︀𝑥𝑠−̃︀𝜏 )̃︀𝑥𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−̃︀𝜏 , 0],
then for the price of a European call option 𝐶𝜏 := 𝑒−𝑟𝑇E(𝑥𝑇 − 𝐾)+,
with exercise price 𝐾 and expiry date 𝑇, or for an up-and-out call
option 𝐵𝜏 := 𝑒−𝑟𝑇E(𝑥𝑇 −𝐾)+I{0≤𝑥𝑡≤𝐵, 0≤𝑡≤𝑇} with given barrier 𝐵, the
following continuity property holds

lim
𝜏−̃︀𝜏→0

|𝐶𝜏 − 𝐶̃︀𝜏 | = 0, lim
𝜏−̃︀𝜏→0

|𝐵𝜏 −𝐵̃︀𝜏 | = 0.

Assuming thus that the evolution of the asset price is described by
the DGBM model, which has the above robust property and having
established the strong convergence of SD method in Theorem 4.2.2 ,
we can now use our positivity preserving numerical scheme to evaluate
the expected payoff of the above-mentioned options. In that way the
European call option and the barrier option can be approximated by

(4.4.1) ̃︀𝐶𝜏 := 𝑒−𝑟𝑇E(𝑦𝑇 −𝐾)+

and

(4.4.2) ̃︀𝐵𝜏 := 𝑒−𝑟𝑇E(𝑦𝑇 −𝐾)+I{0≤𝑦𝑡≤𝐵, 0≤𝑡≤𝑇}

accordingly, where 𝑦𝑡 is given by (4.2.2). In particular, the following
result holds.

Proposition 4.4.7 In the framework of the DGBM model, and under
Assumption 4.2.1, the following approximations are true

(4.4.3) lim
Δ→0

|𝐶𝜏 − ̃︀𝐶𝜏 | = 0, lim
Δ→0

|𝐵𝜏 − ̃︀𝐵𝜏 | = 0,

where 𝑦𝑡 is the SD method proposed in (4.2.2) and 𝐶𝜏 , 𝐵𝜏 are the ex-
pected payoffs of the European call option and up-and-out call option
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given as the proposed approximations (4.4.1) and (4.4.2) but with the
process (𝑥𝑡) in place of (𝑦𝑡). 2

For sake of completeness we highlight the proof in Appendix E, where
we follow the ideas of [HM05].

∙ We may consider a variable interest rate, i.e. the transformation

𝑧(𝑥, 𝑡) = ln(𝑒−
∫︀ 𝑡
0 𝑟(𝑠)𝑑𝑠𝑥) = −

∫︁ 𝑡

0

𝑟(𝑠)𝑑𝑠+ ln𝑥, 𝑡 ≥ 0.

and/or a variable delay setting, i.e. the SDDE

𝑥𝑡 =

⎧⎨⎩ 𝜉0 +
∫︀ 𝑡

0
𝑎(𝑥𝛿1(𝑠))𝑥𝑠𝑑𝑠+

∫︀ 𝑡

0
𝑏(𝑥𝛿2(𝑠))𝑥𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝐿, 0],

where 𝛿1(·), 𝛿2(·) are ℱ0-measurable functions with 𝛿𝑖(𝑡) ≤ 𝑛𝜏, when
𝑡 ∈ [𝑛𝜏 ∧ 𝑇, (𝑛+ 1)𝜏 ∧ 𝑇 ), for 𝑛 ∈ N ∪ {0}, and 𝜏 ∈ (0, 𝑇 ], 𝑖 = 1, 2 and
𝐿 > 0 represents the level of past data available on 𝜉. The case 𝛿𝑖(𝑡) =
𝑡 − 𝜏, describes constant delay models whereas the case 𝛿𝑖(𝑡) =

⌊︀
𝑡
𝜏

⌋︀
𝜏,

variable step-function delay models [AHMP07, Model (22)].

∙ We may consider the Kuchler-Platen setting, i.e. the SDDE

𝑥𝑡 =

⎧⎨⎩ 𝜉0 +
∫︀ 𝑡

0
𝑎(𝑠, 𝑥𝑠, 𝑥𝑠−𝜏 )𝑑𝑠+

∫︀ 𝑡

0
𝑏(𝑠, 𝑥𝑠, 𝑥𝑠−𝜏 )𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],

as was introduced in [KP00].

∙ We can also work on other SDDEs with non-negative solution as
(4.4.4)

𝑥𝑡 =

{︂
𝜉0 +

∫︀ 𝑡

0

(︀
𝑎(𝑥𝑠)

𝛽 + 𝑏(𝑥𝑠−𝜏 )
𝛽
)︀
𝑑𝑠+

∫︀ 𝑡

0
𝜎(𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

𝜉(𝑡), 𝑡 ∈ [−𝜏, 0],

where 𝜉 ∈ (𝒞[−𝜏, 0],R). Problem (4.4.4) has solution with 𝑥𝑡 ≥ 0 a.s
when 𝑎 > |𝑏| ≥ 0, 𝜎 ∈ (𝒞[0,∞),R) and 𝛽 > 1 is a quotient of odd
integers.
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5.1 Introduction.

We 1 assume the setting in Section 1.2, with 𝑑 = 𝑚 = 1, i.e. let 𝑇 >
0 and (Ω,ℱ , {ℱ𝑡}0≤𝑡≤𝑇 ,P) be a complete probability space and let 𝑊𝑡,𝜔 :
[0, 𝑇 ]×Ω → R be a one-dimensional Wiener process adapted to the filtration
{ℱ𝑡}0≤𝑡≤𝑇 .We are interested in the numerical approximation of the following
scalar stochastic differential equation (SDE),

(5.1.1) 𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(︂
𝜑(𝑥𝑠)

√︀
1− 𝑥2𝑠 −

𝑐2

2
𝑥𝑠

)︂
𝑑𝑠+ 𝑐

∫︁ 𝑡

0

√︀
1− 𝑥2𝑠𝑑𝑊𝑠,

where 𝑐 > 0 is a positive constant and 𝜑(·) is a bounded and Lipschitz
continuous function with bounding constant 𝐾𝜑 and Lipschitz constant 𝐿𝜑.
A boundary classification result, see Appendix F.1, implies that −1 < 𝑥𝑡 < 1

1 This chapter is based on joint (unpublished) work with Mark Peletier and Upanshu
Sharma during my Erasmus visit at the Department of Mathematics and Computer Sci-
ence, Technische Universiteit Eindhoven. I would like to thank Erasmus for the financial
support.
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a.s. when 𝑥0 ∈ (−1, 1).We therefore aim for a numerical scheme which apart
from strongly converging to the true solution of (5.1.1), produces values in
the same domain, i.e. (−1, 1). In other words, we are interested in numerical
schemes that have an eternal life time, see Definition 1.3.7 and the equivalent
statement (1.3.1), which we repeat here:

Definition 5.1.1 [Eternal Life time of numerical solution] Let 𝐷 ⊆ R𝑑 and
consider a process (𝑋𝑡) well defined on the domain 𝐷, with initial condition
𝑋0 ∈ 𝐷 and such that

P({𝜔 ∈ Ω : 𝑋(𝑡, 𝜔) ∈ 𝐷}) = 1,

for all 𝑡 > 0. A numerical solution (𝑌𝑡𝑛)𝑛∈N has an eternal life time if

P(𝑌𝑛+1 ∈ 𝐷
⃒⃒
𝑌𝑛 ∈ 𝐷) = 1.

2

In [Sch96] the main interest is in the domain 𝐷 = R+. Moreover, it is
clear that the Euler-Maruyama scheme has always a finite life time, see e.g.
[Kah04, Prop. 4.2].

The proposed SD iterative scheme for the numerical approximation of
(5.1.1) reads

(5.1.2) 𝑦𝑆𝐷𝑡𝑛+1
= cos

(︂
−𝑐Δ𝑊𝑛 + arccos(𝑦𝑡𝑛 + 𝜑(𝑦𝑡𝑛)

√︁
1− 𝑦2𝑡𝑛 ·Δ)

)︂
,

where Δ𝑊𝑛 := 𝑊𝑡𝑛+1 −𝑊𝑡𝑛 , are the increments of the Wiener process and
the discretization step Δ is such that (5.1.2) is well-defined. By construction,
the SD scheme (5.1.2) possesses an eternal life time.

An attempt in that direction, i.e. in constructing explicit numerical
schemes with an eternal life time, has been made in [Hal14]. The domain of
the original SDE is R+ and for a class of super-linear problems, a positivity
preserving scheme is suggested that is strongly convergent in the mean-square
sense. In Chapter 2 another class of one-dimensional SDEs with non-negative
solutions is treated, which covers cases like that of the Heston 3/2-model, a
popular model in the field of financial mathematics which is also super-linear.
The case of sub-linearities covered in Chapter 3 is also treated in [Hal15d]
and [HS15] where the domain is still R+.

The purpose of this chapter is to generalize further the method to pre-
serve the structure of the original SDE. In the previous chapters, the sug-
gested schemes preserve positivity; all the quantities appearing belong to
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the field of finance and are meant to be non-negative. The application that
motivated us now, comes from physics, and it is a model about the evolu-
tion of the trigonometric function cosine of an angle between 3 atoms of the
form (5.1.1). We are able in that case to preserve the domain of the original
process, by applying appropriately the SD method: we use an additive semi-
discretization of the drift coefficient. The SD method is problem dependent,
so there is not a unique way to treat all models.

The semi-discrete method was originally proposed in [Hal12]. Briefly
saying, a part of the SDE is discretized in a certain way such that the resulting
SDE to be solved has an analytical solution (see details in Section 5.2). This
is also a special feature of the method, since in the derivation of it, instead
of an algebraic equation a new SDE has to be solved. The SD method can
also reproduce the Euler scheme.

In Section 5.2 we provide the setting and the main goal which concerns
the mean-square convergence of the proposed structure-preserving SD scheme
(5.1.2) for the approximation of a modification of (5.1.1) with dynamics de-
scribed by ̂︁𝑊 (see (5.2.5)). We chose the dynamics (5.1.1), because that
naturally arose from our application, which was the main motivation for us.
Therefore, Section 5.3 is devoted to the description of the particular form
of SDE that we study, and which was implied by a specific model, from the
field of molecular dynamics, called a 3-atom model [LL10, Sec. 4.2].

In Section 5.4 some results are stated and proved concerning the proposed
method. Finally, in Section 5.5 we make some numerical experiments.

5.2 The setting and the main goal.

Consider the partition 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 with uniform discretiza-
tion step Δ = 𝑇/𝑁 and the following process
(5.2.1)

𝑦𝑆𝐷𝑡 = 𝑦𝑡𝑛+

∫︁ 𝑡𝑛+1

𝑡𝑛

𝜑(𝑦𝑡𝑛)
√︁

1− 𝑦2𝑡𝑛𝑑𝑠+

∫︁ 𝑡

𝑡𝑛

−𝑐2

2
𝑦𝑠𝑑𝑠+𝑐

∫︁ 𝑡

𝑡𝑛

√︀
1− 𝑦2𝑠 sgn(𝑧𝑠)𝑑𝑊𝑠,

for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1], with 𝑦0 = 𝑥0 a.s. and

(5.2.2) 𝑧𝑡 = sin

(︂
−𝑐Δ𝑊 𝑡

𝑛 + arccos

(︂
𝑦𝑡𝑛 + 𝜑(𝑦𝑡𝑛)

√︁
1− 𝑦2𝑡𝑛 ·Δ

)︂)︂
,
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where Δ𝑊 𝑡
𝑛 := 𝑊𝑡 − 𝑊𝑡𝑛 . Process (5.2.1) has jumps at nodes 𝑡𝑛 and the

solution in each step is given by, see Appendix F.2,
(5.2.3)

𝑦𝑆𝐷𝑡 = cos

(︂
−𝑐Δ𝑊 𝑡

𝑛 + arccos(𝑦𝑡𝑛 + 𝜑(𝑦𝑡𝑛)
√︁
1− 𝑦2𝑡𝑛 ·Δ)

)︂
, 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1],

which has the pleasant feature that 𝑦𝑆𝐷𝑡 ∈ [−1, 1]. Process (5.2.3) is well
defined when

(5.2.4)

⃒⃒⃒⃒
𝑦𝑡𝑛 + 𝜑(𝑦𝑡𝑛)

√︁
1− 𝑦2𝑡𝑛 ·Δ

⃒⃒⃒⃒
≤ 1.

Therefore, we assume the following condition for the well-posedness of the
SD scheme (5.2.3).

Assumption 5.2.2 Let the discretization step Δ be such that (5.2.4) holds.
2

Remark 5.2.3 Note that in general the discretization step Δ satisfying (5.2.4)
is a r.v. depending on 𝜔. The 𝜔-dependence is inherited through the incre-
ments Δ𝑊𝑛(𝜔) which in turn affect the sequence (𝑦𝑡𝑛)𝑛∈N. Nevertheless, in
the application considered in Section 5.5, the step Δ is not a r.v. but a fixed
sufficiently small number. 2

Now, we work as in Section 3.2, i.e. we consider the process

(5.2.5) ̂︁𝑊𝑡 :=

∫︁ 𝑡

0

sgn(𝑧𝑠)𝑑𝑊𝑠,

which is a martingale with quadratic variation < ̂︁𝑊𝑡,̂︁𝑊𝑡 >= 𝑡 and thus
a standard Brownian motion w.r.t. its own filtration, justified by Lévy’s
theorem (see Theorem A.3.9) and consequently (5.2.1) becomes

(5.2.6) 𝑦𝑆𝐷𝑡 = 𝑦𝑡𝑛 +𝜑(𝑦𝑡𝑛)
√︁

1− 𝑦2𝑡𝑛 ·Δ+

∫︁ 𝑡

𝑡𝑛

(−𝑐
2

2
)𝑦𝑠𝑑𝑠+ 𝑐

∫︁ 𝑡

𝑡𝑛

√︀
1− 𝑦2𝑠𝑑

̂︁𝑊𝑠,

Moreover, consider

(5.2.7) ̂︀𝑥𝑡 = 𝑥0 +

∫︁ 𝑡

0

(︂
𝜑(̂︀𝑥𝑠)√︀1− ̂︀𝑥2𝑠 − 𝑐2

2
̂︀𝑥𝑠)︂ 𝑑𝑠+ 𝑐

∫︁ 𝑡

0

√︀
1− ̂︀𝑥2𝑠𝑑̂︁𝑊𝑠.
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The process (𝑥𝑡) of (5.1.1) and the process (̂︀𝑥𝑡) of (5.2.7) have the same
distribution. Our main goal is to deduce an estimate of the form

lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 − ̂︀𝑥𝑡|2 = 0.

We are not able to achieve that result and restrict ourselves to a numerical
application of the method. To simplify notation we write ̂︁𝑊, (̂︀𝑥𝑡) as 𝑊, (𝑥𝑡).
Theorem 5.2.4 [Polynomial rate of convergence] Let Assumption 5.2.2 hold.
Then, the semi-discrete scheme (5.2.3) converges in the mean-square sense
to the true solution of (5.2.7), that is

lim
Δ→0

E sup
0≤𝑡≤𝑇

|𝑦𝑆𝐷𝑡 − 𝑥𝑡|2 = 0

2

Remark 5.2.5 The main convergence result given in Theorem 5.2.4 is still
true in the case where 𝜑(·) is 𝛾-Hölder continuous function with Hölder expo-
nent 1/2 ≤ 𝛾 ≤ 1 and Hölder constant 𝐿𝜑. (The case 𝛾 = 1 corresponds to the
Lipschitz continuous case treated here.) The main difference now is that we
first need an ℒ1-estimate. This can be done following the Yamada-Watanabe
approach as in Section 2.3.2 or Section 3.3.2. 2

5.3 Transformation of the 3-atom model.

In this section we give the details of the 3-atom model from [LL10, Sec. 4.2].
Consider 3 atoms in R2, whose positions are given by 𝐴 = (𝑎1, 𝑎2), 𝐵 =
(𝑏1, 𝑏2), 𝐶 = (𝑐1, 𝑐2). We define 𝑋0 = (𝑎2 − 𝑏2), 𝑋

1 = (𝑎1 − 𝑏1), 𝑋
2 =

(𝑐1 − 𝑏1), 𝑋
3 = (𝑐2 − 𝑏2). The state space of the dynamics is R4 ∋ 𝑋𝑇 =

(𝑋0, 𝑋1, 𝑋2, 𝑋3). The full dynamics is described by the following SDE,

𝑑𝑋𝑡 = −∇𝑉 𝜀(𝑋𝑡)𝑑𝑡+

√︂
2

𝛽
𝑑𝑊𝑡,

in differential form,2 where the potential 𝑉 𝜀 : R4 → R depends on 𝜀 > 0,
the initial condition 𝑋𝑡=0 = 𝑋0 is independent of 𝜀 and 𝑊𝑡 denotes a 4-d

2 These dynamics are called overdamped Langevin.
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Brownian motion. The potential 𝑉 𝜀 is explicitly given by

𝑉 𝜀(𝑋) =
1

2𝜀
(|
√︀

(𝑋0)2 + (𝑋1)2 − 𝑙𝑒𝑞⏟  ⏞  
𝑞𝐴𝐵

|2 + |
√︀

(𝑋2)2 + (𝑋3)2 − 𝑙𝑒𝑞⏟  ⏞  
𝑞𝐵𝐶

|2)

+𝒲(𝜃𝐴𝐵𝐶(𝑋)),

where 𝑙𝑒𝑞 is a given equilibrium distance and 𝜃𝐴𝐵𝐶 is the angle given by the
relation

𝜃𝐴𝐵𝐶(𝑋) = arccos

(︃
𝑋1𝑋2 +𝑋0𝑋3√︀

(𝑋0)2 + (𝑋1)2
√︀
(𝑋2)2 + (𝑋3)2

)︃
.

Further the function𝒲 : R → R, which is in this case a three-body potential,
is a double-well potential given by

𝒲 ∘ 𝜃 = 𝑘𝜃
2

(︀
(𝜃 − 𝜃𝑚)

2 − 𝛿𝜃2
)︀2
,

where the wells of 𝒲 are located at 𝜃 = 𝜃𝑚 ± 𝛿𝜃. Note that ∇𝑉 𝜀 : R4 → R4

is explicitly given by 1
𝜀
𝑞𝐴𝐵∇𝑞𝐴𝐵 + 1

𝜀
𝑞𝐵𝐶∇𝑞𝐵𝐶 +∇𝒲 ∘ 𝜃 =

∇𝑉 𝜀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝜀

(︁√︀
(𝑋0)2 + (𝑋1)2 − 𝑙𝑒𝑞

)︁ 𝑋0√︀
(𝑋0)2 + (𝑋1)2

+
𝜕𝒲
𝜕𝑋0

1

𝜀

(︁√︀
(𝑋0)2 + (𝑋1)2 − 𝑙𝑒𝑞

)︁ 𝑋1√︀
(𝑋0)2 + (𝑋1)2

+
𝜕𝒲
𝜕𝑋1

1

𝜀

(︁√︀
(𝑋2)2 + (𝑋3)2 − 𝑙𝑒𝑞

)︁ 𝑋2√︀
(𝑋2)2 + (𝑋3)2

+
𝜕𝒲
𝜕𝑋2

1

𝜀

(︁√︀
(𝑋2)2 + (𝑋3)2 − 𝑙𝑒𝑞

)︁ 𝑋3√︀
(𝑋2)2 + (𝑋3)2

+
𝜕𝒲
𝜕𝑋3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As suggested in [LL10, Sec. 4.2], we simplify the computations by making
the system invariant under rigid body motion, which can be accomplished
by setting 𝐵 = (𝑏1, 𝑏2) to (0, 0) and 𝐴 · 𝑒𝑦 = 𝑎2 to 0 which implies 𝑋0 = 0.

Thus, simplifying according to the suggestion above, we consider R3 ∋
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𝑋𝑇 = (𝑋1, 𝑋2, 𝑋3) where now ∇𝑉 𝜀 : R3 → R3 is given by

∇𝑉 𝜀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝜀

(︂
|𝑋1| − 𝑙𝑒𝑞

|𝑋1|

)︂
𝑋1 +

𝜕𝒲
𝜕𝑋1

1

𝜀

(︃√︀
(𝑋2)2 + (𝑋3)2 − 𝑙𝑒𝑞√︀

(𝑋2)2 + (𝑋3)2

)︃
𝑋2 +

𝜕𝒲
𝜕𝑋2

1

𝜀

(︃√︀
(𝑋2)2 + (𝑋3)2 − 𝑙𝑒𝑞√︀

(𝑋2)2 + (𝑋3)2

)︃
𝑋3 +

𝜕𝒲
𝜕𝑋3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

and

𝜃𝐴𝐵𝐶 = arccos

(︃
𝑋1𝑋2

|𝑋1|
√︀
(𝑋2)2 + (𝑋3)2

)︃
.

Below is a plot of the original configuration of the 3-atom model.

𝜃0
𝐴(𝑋1

0 , 0)𝐵

𝐶(𝑋2
0 , 𝑋

3
0 )

Moreover 𝜕𝜃
𝜕𝑋1 = 0, thus the corresponding SDE for 𝑋1 can be solved

independently (numerically or analytically if we know that 𝑋1 > 0 a.s. or
𝑋1 < 0 a.s.) and has the stochastic integral representation

(5.3.1) 𝑋1
𝑡 = 𝑋1

0 +

∫︁ 𝑡

0

1

𝜀

(︂
𝑙𝑒𝑞 − |𝑋1

𝑠 |
|𝑋1

𝑠 |

)︂
𝑋1

𝑠𝑑𝑠+

√︂
2

𝛽
𝑊 1

𝑡 ,
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where 𝑋1
0 = 𝑎1. For the other two components we can write

𝑋2
𝑡 = 𝑋2

0 +

∫︁ 𝑡

0

1

𝜀

𝑙𝑒𝑞 −
√︀

(𝑋2
𝑠 )

2 + (𝑋3
𝑠 )

2√︀
(𝑋2

𝑠 )
2 + (𝑋3

𝑠 )
2

𝑋2
𝑠𝑑𝑠(5.3.2)

+

∫︁ 𝑡

0

𝑓(𝜃)
𝑋1

𝑠

|𝑋1
𝑠 |
𝑋3

𝑠

|𝑋3
𝑠 |

𝑋3
𝑠

(𝑋2
𝑠 )

2 + (𝑋3
𝑠 )

2
𝑑𝑠+

√︂
2

𝛽
𝑊 2

𝑡

𝑋3
𝑡 = 𝑋3

0 +

∫︁ 𝑡

0

1

𝜀

𝑙𝑒𝑞 −
√︀

(𝑋2
𝑠 )

2 + (𝑋3
𝑠 )

2√︀
(𝑋2

𝑠 )
2 + (𝑋3

𝑠 )
2

𝑋3
𝑠𝑑𝑠(5.3.3)

−
∫︁ 𝑡

0

𝑓(𝜃)
𝑋1

𝑠

|𝑋1
𝑠 |
𝑋3

𝑠

|𝑋3
𝑠 |

𝑋2
𝑠

(𝑋2
𝑠 )

2 + (𝑋3
𝑠 )

2
𝑑𝑠+

√︂
2

𝛽
𝑊 3

𝑡 ,

where the third-order polynomial 𝑓 = 𝒲 ′ is given by

𝑓(𝜃) = 2𝑘𝜃 · 𝜃3 − 6𝑘𝜃𝜃𝑚 · 𝜃2 + 𝑘𝜃(4𝜃
2
𝑚 + 2̃︀𝜃) · 𝜃 − 2𝑘𝜃𝜃𝑚̃︀𝜃, ̃︀𝜃 = 2𝜃𝑚𝜃0 − 𝜃20.

5.3.1 Scalar-valued coarse-graining map.

We consider the transformation 𝜉(𝑋𝑡) = cos 𝜃𝑡, that is 𝜉(𝑋) = sgn(𝑋1)𝑋2[(𝑋2)2+
(𝑋3)2]−1/2. Itô’s formula implies
(5.3.4)

𝜉(𝑋𝑡) = 𝜉(𝑋0)+

∫︁ 𝑡

0

(︂
−(∇𝜉)(∇𝑉 𝜖)(𝑋𝑠) +

1

𝛽
Δ𝜉(𝑋𝑠)

)︂
𝑑𝑠+

√︂
2

𝛽

∫︁ 𝑡

0

|∇𝜉(𝑋𝑠)|𝑑̃︁𝑊𝑠,

where

(5.3.5) ̃︁𝑊𝑡 =

∫︁ 𝑡

0

∇𝜉
|∇𝜉|

(𝑋𝑠)𝑑𝑊𝑠,

is a scalar Brownian motion. We have that

|∇𝜉(𝑋)|2 =

(︂
𝜕𝜉

𝜕𝑋1

)︂2

+

(︂
𝜕𝜉

𝜕𝑋2

)︂2

+

(︂
𝜕𝜉

𝜕𝑋3

)︂2

= 0 +

(︃
𝑋1

|𝑋1|

(︃
1√︀

(𝑋2)2 + (𝑋3)2
− (𝑋2)2

((𝑋2)2 + (𝑋3)2)3/2

)︃)︃2

+

(︂
− 𝑋1

|𝑋1|
𝑋2𝑋3

((𝑋2)2 + (𝑋3)2)3/2

)︂2

=
(𝑋3)2

((𝑋2)2 + (𝑋3)2)2
,
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Moreover, 𝜕2 cos 𝜃
𝜕(𝑋1)2

= 0,

𝜕2 cos 𝜃

𝜕(𝑋2)2
=

𝜕

𝜕𝑋2

(︃
𝑋1

|𝑋1|
1√︀

(𝑋2)2 + (𝑋3)2
(𝑋3)2

(𝑋2)2 + (𝑋3)2

)︃
= −3sgn(𝑋1)𝑋2(𝑋3)2

(︀
(𝑋2)2 + (𝑋3)2

)︀−5/2

and

𝜕2 cos 𝜃

𝜕(𝑋3)2
=

𝜕

𝜕𝑋3

(︃
− 𝑋1

|𝑋1|
1√︀

(𝑋2)2 + (𝑋3)2
𝑋2𝑋3

(𝑋2)2 + (𝑋3)2

)︃
= −sgn(𝑋1)𝑋2[

(︀
(𝑋2)2 + (𝑋3)2

)︀−3/2 − 3(𝑋3)2
(︀
(𝑋2)2 + (𝑋3)2

)︀−5/2
]

= −sgn(𝑋1)𝑋2
(︀
(𝑋2)2 + (𝑋3)2

)︀−5/2 (︀
(𝑋2)2 − 2(𝑋3)2

)︀
,

so that

Δ𝜉(𝑋) = − sgn(𝑋1)𝑋2

((𝑋2)2 + (𝑋3)2)3/2
= − 𝜉(𝑋)

(𝑋2)2 + (𝑋3)2
= −𝜉(𝑋)|∇𝜉(𝑋)|

|𝑋3|
.

Furthermore,

(∇𝜉)∇(𝒲 ∘ 𝜃) = 𝑓(𝜃)

(︂
𝜕 cos 𝜃

𝜕𝑋2
· 𝜕𝜃

𝜕𝑋2
+
𝜕 cos 𝜃

𝜕𝑋3
· 𝜕𝜃

𝜕𝑋3

)︂
= 𝑓(𝜃)

(︂
− sgn(𝑋1)(𝑋3)2

((𝑋2)2 + (𝑋3)2)3/2
· sgn(𝑋

1)sgn(𝑋3)𝑋3

(𝑋2)2 + (𝑋3)2

− sgn(𝑋1)𝑋2𝑋3

((𝑋2)2 + (𝑋3)2)3/2
· sgn(𝑋

1)sgn(𝑋3)𝑋2

(𝑋2)2 + (𝑋3)2

)︂
= 𝑓(𝜃)

sgn(𝑋3)

((𝑋2)2 + (𝑋3)2)5/2
(︀
−(𝑋3)3 − (𝑋2)2𝑋3

)︀
= −𝑓(𝜃) |𝑋3|

((𝑋2)2 + (𝑋3)2)3/2
= −𝑓(arccos 𝜉(𝑋))

𝜉(𝑋)|∇𝜉(𝑋)|
𝑋2

.
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Finally,

−(∇𝜉)(∇𝑉 𝜀)(𝑋) =
1

𝜀

𝜕 cos 𝜃

𝜕𝑋2
·

(︃
𝑙𝑒𝑞 −

√︀
(𝑋2)2 + (𝑋3)2√︀

(𝑋2)2 + (𝑋3)2

)︃
𝑋2

+
1

𝜀

𝜕 cos 𝜃

𝜕𝑋3
·

(︃
𝑙𝑒𝑞 −

√︀
(𝑋2)2 + (𝑋3)2√︀

(𝑋2)2 + (𝑋3)2

)︃
𝑋3 − (∇𝜉)∇𝒲(𝜃)

=
1

𝜀

𝑙𝑒𝑞 −
√︀

(𝑋2)2 + (𝑋3)2√︀
(𝑋2)2 + (𝑋3)2

(︂
sgn(𝑋1)(𝑋3)2

((𝑋2)2 + (𝑋3)2)3/2
𝑋2 − sgn(𝑋1)𝑋2𝑋3

((𝑋2)2 + (𝑋3)2)3/2
𝑋3

)︂
+𝑓(arccos 𝜉(𝑋))

𝜉(𝑋)|∇𝜉(𝑋)|
𝑋2

= 𝑓(arccos 𝜉(𝑋))
𝜉(𝑋)|∇𝜉(𝑋)|

𝑋2
.

The choice for the reaction coordinate 𝜉 is such that it is orthogonal to
the stiff terms of potential energy 𝑞𝐴𝐵 and 𝑞𝐵𝐶 since (∇𝜉)(∇𝑞𝐴𝐵) = 0 =
(∇𝜉)(∇𝑞𝐵𝐶).

The corresponding SDE for 𝜉𝑡 = cos 𝜃𝑡 becomes
(5.3.6)

𝜉𝑡 = 𝜉0+

∫︁ 𝑡

0

𝑓(arccos 𝜉𝑠)
𝜉𝑠|∇𝜉(𝑋𝑠)|

𝑋2
𝑠

− 1

𝛽

𝜉𝑠|∇𝜉(𝑋𝑠)|
|𝑋3

𝑠 |⏟  ⏞  
𝑎(𝜉𝑠,𝑋𝑠)

𝑑𝑠+

√︂
2

𝛽

∫︁ 𝑡

0

|∇𝜉(𝑋𝑠)|⏟  ⏞  
𝑏(𝜉𝑠,𝑋𝑠)

𝑑̃︁𝑊𝑠.

SDE (5.3.6) is not closed. Gyöngy [Gyö86, (1.3)] suggested the following
closing procedure

̃︀𝜉𝑡 = 𝜉0 +

∫︁ 𝑡

0

E
(︁
𝑎(𝜉𝑠, 𝑋𝑠)|𝜉𝑠 = ̃︀𝜉𝑠)︁⏟  ⏞  ̃︀𝑎(𝑠,̃︀𝜉𝑠)

𝑑𝑠+

√︂
2

𝛽

∫︁ 𝑡

0

√︂
E
(︁
𝑏2(𝜉𝑠, 𝑋𝑠)|𝜉𝑠 = ̃︀𝜉𝑠)︁⏟  ⏞  ̃︀𝑏(𝑠,̃︀𝜉𝑠)

𝑑̃︁𝑊𝑠,

where now the drift and diffusion coefficients are non-autonomous, i.e. they
depend explicitly on time. A way to get an autonomous equation again is
proposed in [LL10, (23)] where the authors consider
(5.3.7)

𝜉𝑡 = 𝜉0 +

∫︁ 𝑡

0

E𝜇

(︀
𝑎(𝜉,𝑋)|𝜉 = 𝜉𝑠

)︀⏟  ⏞  
𝑎(𝜉𝑠)

𝑑𝑠+

√︂
2

𝛽

∫︁ 𝑡

0

√︁
E𝜇

(︀
𝑏2(𝜉,𝑋)|𝜉 = 𝜉𝑠

)︀⏟  ⏞  
𝑏(𝜉𝑠)

𝑑̃︁𝑊𝑠,



5.3. Transformation of the 3-atom model. 125

where now the expectation is w.r.t. the measure 𝜇𝑧 given by
(5.3.8)

𝑑𝜇𝑧 =

(︂∫︁
{𝑋∈R3:𝜉(𝑋)=𝑧}

𝑒−𝛽𝑉 𝜀(𝑋)|∇𝜉(𝑋)|−1𝑑𝜎𝑧

)︂−1

⏟  ⏞  
𝐶𝑧

𝑒−𝛽𝑉 𝜀(𝑋)|∇𝜉(𝑋)|−1𝑑𝜎𝑧

and 𝜎𝑧 is the Hausdorff measure on the submanifold Σ𝑧 = {𝑋 ∈ R3 : 𝜉(𝑋) =
𝑧} of R3, induced by the Hausdorff measure in the ambient Euclidean space
R3 ⊃ Σ𝑧. The first factor in (5.3.8) is a normalizing constant, depending on
𝑧.

The expressions for the expectations of the above coefficients w.r.t. the
measure 𝜇𝑧 read

E𝜇 (𝑎(𝜉,𝑋)|𝜉 = 𝑧) =

∫︁
Σ𝑧

|∇𝜉(𝑋)|
(︂
𝑓(arccos 𝑧)

𝑧

𝑋2
− 1

𝛽

𝑧

|𝑋3|

)︂
𝑑𝜇𝑧

= 𝐶𝑧

(︂
𝑓(arccos 𝑧)𝑧

∫︁
Σ𝑧

1

𝑋2
𝑒−𝛽𝑉 𝜀(𝑋)𝑑𝜎𝑧 −

1

𝛽
𝑧

∫︁
Σ𝑧

1

|𝑋3|
𝑒−𝛽𝑉 𝜀(𝑋)𝑑𝜎𝑧

)︂
= 𝐶𝑧𝑓(arccos 𝑧)𝑧

∫︁
Σ𝑧

1

𝑋2
𝑒−𝛽[

𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧

−𝐶𝑧

𝛽
𝑧

∫︁
Σ𝑧

1

|𝑋3|
𝑒−𝛽[

𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧,

and for the diffusion coefficient it holds that

E𝜇

(︀
𝑏2(𝜉,𝑋)|𝜉 = 𝑧

)︀
=

∫︁
Σ𝑧

|∇𝜉(𝑋)|2𝑑𝜇𝑧

= 𝐶𝑧

∫︁
Σ𝑧

|𝑋3|
(𝑋2)2 + (𝑋3)2

𝑒−𝛽[
𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧,

where Σ𝑧 = {𝑋 ∈ R3 : 𝜉(𝑋) = 𝑧} = {𝑋 ∈ R3 : sgn(𝑋1)𝑋2√
(𝑋2)2+(𝑋3)2

= 𝑧} and

𝐶𝑧 =

∫︁
Σ𝑧

(𝑋2)2 + (𝑋3)2

|𝑋3|
𝑒−𝛽[

𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧.

We decompose Σ𝑧 = Σ+
𝑧 ∪ Σ−

𝑧 where Σ±
𝑧 = {(𝑗, 𝑘) ∈ R2 : 𝑗 = ±𝑧

√︀
𝑗2 + 𝑘2}

and (𝑋1, 𝑋2, 𝑋3) = (𝑥, 𝑗, 𝑘). Therefore we have that,∫︁
Σ𝑧

1

𝑋2
𝑒−𝛽[

𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧 = 2

∫︁
𝑥>0

𝑒−
𝛽
2𝜀

(𝑥−𝑙𝑒𝑞)2𝑑𝑥

∫︁
Σ+

𝑧

1

𝑗
𝑒−

𝛽
2𝜀

(
√

𝑗2+𝑘2−𝑙𝑒𝑞)2𝑑𝜎+
𝑧 ,
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and analogously get that∫︁
Σ𝑧

(𝑋2)2 + (𝑋3)2

|𝑋3|
𝑒−𝛽[

𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧 = 2

∫︁
𝑥>0

𝑒−
𝛽
2𝜀

(𝑥−𝑙𝑒𝑞)2𝑑𝑥

×
∫︁
Σ+

𝑧

𝑗2 + 𝑘2

|𝑘|
𝑒−

𝛽
2𝜀

(
√

𝑗2+𝑘2−𝑙𝑒𝑞)2𝑑𝜎+
𝑧 .

It holds that∫︀
Σ𝑧

1
𝑋2 𝑒

−𝛽[
𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧∫︀

Σ𝑧

(𝑋2)2+(𝑋3)2

|𝑋3| 𝑒−𝛽[
𝑞2
𝐴𝐵

(𝑋)

2𝜀
+

𝑞2
𝐵𝐶

(𝑋)

2𝜀
]𝑑𝜎𝑧

=

∫︀
Σ+

𝑧

1
𝑗
𝑒−

𝛽
2𝜀

(
√

𝑗2+𝑘2−𝑙𝑒𝑞)2𝑑𝜎+
𝑧∫︀

Σ+
𝑧

𝑗2+𝑘2

|𝑘| 𝑒−
𝛽
2𝜀

(
√

𝑗2+𝑘2−𝑙𝑒𝑞)2𝑑𝜎+
𝑧

=

∫︀∞
0

1
𝑟𝑧
𝑒−

𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑟𝑑𝑟∫︀∞
0

𝑟2

𝑟
√
1−𝑧2

𝑒−
𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑟𝑑𝑟

=

√
1− 𝑧2

𝑧

𝐽0
𝐽2
,

where we made the transformation (𝑗, 𝑘) = (𝑟 cos𝜑, 𝑟 sin𝜑) and

𝐽𝑛 :=

∫︁ ∞

0

𝑟𝑛𝑒−
𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑑𝑟.

Moreover,∫︀
Σ𝑧

1
|𝑋3|𝑒

−𝛽[
𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧∫︀

Σ𝑧

(𝑋2)2+(𝑋3)2

|𝑋3| 𝑒−𝛽[
𝑞2
𝐴𝐵

(𝑋)

2𝜀
+

𝑞2
𝐵𝐶

(𝑋)

2𝜀
]𝑑𝜎𝑧

=

∫︀∞
0

1
𝑟
√
1−𝑧2

𝑒−
𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑟𝑑𝑟∫︀∞
0

𝑟2

𝑟
√
1−𝑧2

𝑒−
𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑟𝑑𝑟

=
𝐽0
𝐽2
,

which implies

𝑎(𝑧) =
𝐽0
𝐽2
𝑓(arccos 𝑧)𝑧

√
1− 𝑧2

𝑧
− 𝐽0
𝐽2

1

𝛽
𝑧 = 𝐶𝑓(arccos 𝑧)

√
1− 𝑧2 − 𝐶

𝛽
𝑧,

with 𝐶 = 𝐽0/𝐽2. Furthermore,∫︁
Σ𝑧

|∇𝜉(𝑋)|2𝑑𝜇𝑧 =

∫︀
Σ𝑧

|𝑋3|
(𝑋2)2+(𝑋3)2

𝑒−𝛽[
𝑞2𝐴𝐵(𝑋)

2𝜀
+

𝑞2𝐵𝐶 (𝑋)

2𝜀
]𝑑𝜎𝑧∫︀

Σ𝑧

(𝑋2)2+(𝑋3)2

|𝑋3| 𝑒−𝛽[
𝑞2
𝐴𝐵

(𝑋)

2𝜀
+

𝑞2
𝐵𝐶

(𝑋)

2𝜀
]𝑑𝜎𝑧

=

∫︀∞
0

𝑟
√
1−𝑧2

𝑟2
𝑒−

𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑟𝑑𝑟∫︀∞
0

𝑟2

𝑟
√
1−𝑧2

𝑒−
𝛽
2𝜀

(𝑟−𝑙𝑒𝑞)2𝑟𝑑𝑟
= (1− 𝑧2)

𝐽0
𝐽2
,
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which implies 𝑏(𝑧) =
√︁
𝐶(1− 𝑧2). The effective dynamics (5.3.7) now read

(5.3.9)

𝜉𝑡 = 𝜉0 + 𝐶

∫︁ 𝑡

0

(︂
𝑓(arccos 𝜉𝑠)

√︁
1− 𝜉

2

𝑠 −
1

𝛽
𝜉𝑠

)︂
𝑑𝑠+

√︃
2𝐶

𝛽

∫︁ 𝑡

0

√︁
1− 𝜉

2

𝑠𝑑̃︁𝑊𝑠.

SDE (5.3.9) is of the form of (5.1.1) with 𝑐 =
√︀

2𝐶𝛽−1 and 𝜑(𝑥) =
𝑓(arccos𝑥).

5.4 Local error of the SD method.

In this Section we provide uniform moment bounds for the original SDE and
the SD scheme as well as the local error of the proposed scheme. We remind
here that for notational reasons the processes (𝑊𝑡, 𝑥𝑡) stand for (̂︁𝑊𝑡, ̂︀𝑥𝑡).
Lemma 5.4.6 [Moment bounds for original problem and SD approximation]
Let Assumption 5.2.2 hold. Then

E sup
0≤𝑡≤𝑇

|𝑥𝑡|𝑝
⋁︁

E sup
0≤𝑡≤𝑇

|𝑦𝑡|𝑝 ≤ 1,

for any 𝑝 > 0. 2

Proof of Lemma 5.4.6. The result is trivial since we already know that (𝑥𝑡)
satisfying (5.2.7) has the property 𝑥𝑡 ∈ 𝐷 when 𝑥0 ∈ 𝐷,𝐷 = (−1, 1), by
Appendix F.1 and regarding the bounds for the SD approximation (5.2.1), it
is clear, by its form (5.2.3), that they are valid.

For the rest of this section we write (5.2.1) in a compact form, introducing
an auxiliary process (ℎ𝑡) as
(5.4.1)

𝑦𝑆𝐷𝑡 = 𝑥0 +

∫︁ 𝑡

0

Φ(𝑦𝑠, 𝑦𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑔(𝑦𝑠)𝑑𝑊𝑠⏟  ⏞  
ℎ𝑡

+

∫︁ 𝑡𝑛+1

𝑡

𝜑(𝑦𝑡𝑛)
√︁

1− 𝑦2𝑡𝑛𝑑𝑠

where 𝑠 = 𝑡𝑛 when 𝑠 ∈ [𝑡𝑛, 𝑡𝑛+1) and Φ(𝑎, 𝑏) = 𝜑(𝑎)
√
1− 𝑎2 − 𝑐2𝑏/2 and

𝑔(𝑎) = 𝑐
√
1− 𝑎2.

By the above representation, the form of the discretization becomes ap-
parent. We only discretized the drift coefficient of (5.2.7) in an additive way,
so that the remaining part −(𝑐2/2)𝑦𝑡𝑑𝑡 combined with the diffusion part
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𝑔(𝑦𝑡)𝑑𝑊𝑡 produces the analytic solution (5.2.3). The next result concerns
the local error of the proposed scheme.

Lemma 5.4.7 [Error bound for SD scheme] Let Assumption 5.2.2 hold and
𝑛𝑠 be an integer such that 𝑠 ∈ [𝑡𝑛𝑠 , 𝑡𝑛𝑠+1]. There is a 𝐾𝑝 > 0, which does not
depend on Δ, such that

E|𝑦𝑠 − 𝑦𝑠|𝑝 ≤ 𝐾𝑝Δ
𝑝/2,

for any 𝑝 > 0. and for any 𝑠 ≥ 0. 2

Proof of Lemma 5.4.7. First we take a 𝑝 ≥ 2. Representation (5.2.1) yields

|𝑦𝑠 − 𝑦𝑠|𝑝 =
⃒⃒⃒ ∫︁ 𝑡𝑛𝑠+1

𝑡𝑛𝑠

𝜑(𝑦𝑢̂)
√︁
1− 𝑦2𝑢̂𝑑𝑢+

∫︁ 𝑠

𝑡𝑛𝑠

−𝑐2

2
𝑦𝑢𝑑𝑢+ 𝑐

∫︁ 𝑠

𝑡𝑛𝑠

√︀
1− 𝑦2𝑢𝑑𝑊𝑢

⃒⃒⃒𝑝
≤ 3𝑝−1

(︃⃒⃒⃒⃒
⃒
∫︁ 𝑡𝑛𝑠+1

𝑡𝑛𝑠

𝜑(𝑦𝑡𝑛𝑠
)
√︁

1− 𝑦2𝑡𝑛𝑠
𝑑𝑢

⃒⃒⃒⃒
⃒
𝑝

+

⃒⃒⃒⃒
⃒
∫︁ 𝑠

𝑡𝑛𝑠

𝑐2

2
𝑦𝑢𝑑𝑢

⃒⃒⃒⃒
⃒
𝑝

+

⃒⃒⃒⃒
⃒
∫︁ 𝑠

𝑡𝑛𝑠

𝑐
√︀
1− 𝑦2𝑢𝑑𝑊𝑢

⃒⃒⃒⃒
⃒
𝑝)︃

≤ 3𝑝−1|𝐾𝜑|𝑝|
√︁

1− 𝑦2𝑡𝑛𝑠
|𝑝Δ𝑝 + 3𝑝−1 𝑐

2𝑝

2𝑝

∫︁ 𝑠

𝑡𝑛𝑠

|𝑦𝑢|𝑝𝑑𝑢+ 3𝑝−1|𝑐|𝑝
⃒⃒⃒⃒
⃒
∫︁ 𝑠

𝑡𝑛𝑠

√︀
1− 𝑦2𝑢𝑑𝑊𝑢

⃒⃒⃒⃒
⃒
𝑝

where we have used the Cauchy-Schwarz inequality and 𝐾𝜑 = sup |𝜑|. Taking
expectations in the above inequality and using Lemma 5.4.6 and the BDG
inequality (B.3.5) on the diffusion term we conclude, as in the proof of Lemma
4.3.6,

E|𝑦𝑠 − 𝑦𝑠|𝑝 ≤ 𝐾𝑝Δ
𝑝/2,

where the positive quantity 𝐾𝑝 depends on 𝑝 and on the parameters 𝑐,𝐾𝜑

but not on Δ. The case 0 < 𝑝 < 2 follows by Jensen’s inequality since

E|𝑦𝑠 − 𝑦𝑠|𝑝 ≤
(︀
E|𝑦𝑠 − 𝑦𝑠|2

)︀𝑝/2 ≤ 𝐾𝑝Δ
𝑝/2.

Remark 5.4.8 Note that Lemmata 5.4.6 and 5.4.7 are valid when 𝜑(·) is
only bounded; we do not need to assume anything more for 𝜑(·), i.e. Lipschitz
continuity. 2
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5.5 Numerical Experiments.

Let 𝑎0, 𝑎1, 𝑎2 be such that 𝑓(𝑧) = 𝑧3 + 𝑎2𝑧
2 + 𝑎1𝑧 + 𝑎0 where 𝑓(·) is the

derivative of the potential 𝒲 in Section 5.3. The continuous form of the SD
scheme (5.2.3) now reads

𝑦𝑆𝐷𝑡 = cos

(︂
−𝑐Δ̃︁𝑊 𝑡

𝑛 + arccos(𝑦𝑡𝑛 + 𝐶𝑓(arccos 𝑦𝑡𝑛)
√︁

1− 𝑦2𝑡𝑛 ·Δ)

)︂
,

where Δ̃︁𝑊 𝑡
𝑛 = ̃︁𝑊𝑡 −̃︁𝑊𝑡𝑛 and is well defined when

|𝑦𝑡𝑛 + 𝐶𝑓(arccos 𝑦𝑡𝑛)
√︁

1− 𝑦2𝑡𝑛 ·Δ| ≤ 1.

We first prove a lemma which concerns the well-posedness of our proposed
scheme in that case, i.e. we want to examine when Assumption 5.2.2 holds.

Lemma 5.5.9 The SD scheme (5.2.3) is well defined for all Δ such that

𝐶Δ <
2
√
2 + 𝜋 − 2√

2𝜋(𝜋2 + 2𝑎1)

⋀︁ 4 + 𝜋2

−(4𝑎2 + 𝑎0)𝜋2 − 4𝑎0

⋀︁ 1

𝜋(𝜋2 + 𝑎1)

⋀︁ 1

−𝑎2𝜋2 − 𝑎0
.

2

Proof of Lemma 5.5.9. We have to show that (5.2.4) holds for appropriate
Δ > 0 and all 𝑦 ∈ [−1, 1]. If 𝑦 = −1 or 𝑦 = 1 then (5.2.4) holds trivially for
all Δ > 0. We therefore examine the cases −1 < 𝑦 ≤ 0 and 0 ≤ 𝑦 < 1. Also,
note that 𝑎2 < 0 when 𝜃𝑚 > 0, that 𝑎1 > 0, 𝑎0 < 0 when 𝜃0(2− 𝜃0

𝜃𝑚
) > 0 and

𝐶 > 0. We will use the following inequality [Zhu09, Th. 5],

3(2
√
1− 𝑦)𝑝

(2
√
2)𝑝 + (

√
1 + 𝑦)𝑝

< (arccos 𝑦)𝑝 <
(2𝜋

√
1− 𝑦)𝑝

(2
√
2)𝑝 + (𝜋𝑝 − 2𝑝)(

√
1 + 𝑦)𝑝

,

valid for any 0 < 𝑦 < 1 and 𝑝 ≥ 1. The above relation and the property
arccos(−𝑦) = 𝜋 − arccos(𝑦) imply[︂

𝜋 − 2𝜋
√
1 + 𝑦

((2
√
2)𝑝 + (𝜋𝑝 − 2𝑝)(

√
1− 𝑦)𝑝)1/𝑝

]︂𝑝
< (arccos 𝑦)𝑝

and

(arccos 𝑦)𝑝 <

[︂
𝜋 − 31/𝑝(2

√
1 + 𝑦)

((2
√
2)𝑝 + (

√
1− 𝑦)𝑝)1/𝑝

]︂𝑝
,
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for any −1 < 𝑦 < 0 and 𝑝 ≥ 1.
Case 0 ≤ 𝑦 < 1: Then

𝑦 + 𝐶𝑓(arccos 𝑦)
√︀

1− 𝑦2Δ ≤ 𝑦 + 𝐶((arccos 𝑦)3 + 𝑎1 arccos 𝑦)
√︀

1− 𝑦2Δ

≤ 𝑦 + 𝐶(
8𝜋3(

√
1− 𝑦)3

16
√
2 + (𝜋3 − 8)(

√
1 + 𝑦)3

+ 𝑎1
2𝜋

√
1− 𝑦

2
√
2 + (𝜋 − 2)

√
1 + 𝑦

)
√︀
1− 𝑦2Δ

≤ 𝑦 + 𝐶(
8𝜋3(1− 𝑦)2

16
√
2 + (𝜋3 − 8)(

√
1 + 𝑦)3

+ 𝑎1
2𝜋(1− 𝑦)

2
√
2 + (𝜋 − 2)

√
1 + 𝑦

)
√︀
1 + 𝑦Δ

≤ 𝑦 + (1− 𝑦)𝐶

√
2𝜋(𝜋2 + 2𝑎1)

2
√
2 + 𝜋 − 2

Δ ≤ 1,

when 𝐶Δ ≤ 2
√
2+𝜋−2√

2𝜋(𝜋2+2𝑎1)
. Moreover,

𝑦 + 𝐶𝑓(arccos 𝑦)
√︀

1− 𝑦2Δ ≥ 𝑦 + 𝐶(𝑎2(arccos 𝑦)
2 + 𝑎0)

√︀
1− 𝑦2Δ

≥ 𝑦 + 𝐶

(︂
𝑎2

4𝜋2(1− 𝑦)

8 + (𝜋2 − 4)(1 + 𝑦)
+ 𝑎0

)︂
Δ

≥ 𝑦
(︀
1− 2𝐶𝑎2Δ

)︀
+ 𝐶

(︂
𝑎2

4𝜋2

4 + 𝜋2
+ 𝑎0

)︂
Δ

≥ 𝐶
(4𝑎2 + 𝑎0)𝜋

2 + 4𝑎0
4 + 𝜋2

Δ ≥ −1,

when 𝐶Δ ≤ 4+𝜋2

−(4𝑎2+𝑎0)𝜋2−4𝑎0
.

Case −1 < 𝑦 < 0: It holds

𝑦 + 𝐶𝑓(arccos 𝑦)
√︀

1− 𝑦2Δ ≤ 𝑦 + 𝐶((arccos 𝑦)3 + 𝑎1 arccos 𝑦)
√︀

1− 𝑦2Δ

≤ 𝑦 + 𝐶

(︃
(𝜋 − 31/32

√
1 + 𝑦(︀

16
√
2 + (

√
1− 𝑦)3

)︀1/3 )3 + 𝑎1(𝜋 − 6
√
1 + 𝑦

2
√
2 +

√
1− 𝑦

)

)︃
Δ

≤ 𝐶
(︀
𝜋3 + 𝑎1𝜋

)︀
Δ ≤ 1,

when 𝐶Δ ≤ 1
𝜋3+𝑎1𝜋

. Finally

𝑦 + 𝐶𝑓(arccos 𝑦)
√︀

1− 𝑦2Δ ≥ 𝑦 + 𝐶(𝑎2(arccos 𝑦)
2 + 𝑎0)

√︀
1− 𝑦2Δ

≥ 𝑦 + 𝐶

⎛⎝𝑎2(︃𝜋 − 2
√
3
√
1 + 𝑦√

9− 𝑦

)︃2

+ 𝑎0

⎞⎠ (1 + 𝑦)Δ

≥ 𝑦 + 𝐶
(︀
𝑎2𝜋

2 + 𝑎0
)︀
(1 + 𝑦)Δ ≥ −1,
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when 𝐶Δ ≤ −1
𝑎2𝜋2+𝑎0

.

Lemma 5.5.9 suggests the following assumption for the SD scheme to be
well-posed.

Assumption 5.5.10 Let the discretization step Δ be such that

𝐶Δ <
2
√
2 + 𝜋 − 2√

2𝜋(𝜋2 + 2𝑎1)

⋀︁ 4 + 𝜋2

−(4𝑎2 + 𝑎0)𝜋2 − 4𝑎0

⋀︁ 1

𝜋(𝜋2 + 𝑎1)

⋀︁ 1

−𝑎2𝜋2 − 𝑎0
.

2

The SD iterative scheme for the numerical approximation of (5.3.9) reads

𝑦𝑆𝐷𝑡𝑛+1
= cos

(︂
−𝑐Δ̃︁𝑊𝑛 + arccos(𝑦𝑡𝑛 + 𝐶𝑓(arccos 𝑦𝑡𝑛)

√︁
1− 𝑦2𝑡𝑛Δ)

)︂
,

where Δ̃︁𝑊𝑛 := ̃︁𝑊𝑡𝑛+1 −̃︁𝑊𝑡𝑛 , are the increments of the Wiener process.
We consider the configuration as in [LL10, Sec. 5.6], i.e.

𝒲(𝜃) =
𝑘𝜃
2
(𝜃 − 𝜃0)

2, 𝑘𝜃 = 208, 𝑙𝑒𝑞 = 1, 𝛽 = 1, 𝜖 = 10−3,

where we now take the initial angle 𝜃0 = 3. Then 𝑓(𝜃) = 𝒲 ′(𝜃) = 𝑘𝜃𝜃−𝑘𝜃𝜃0.
The effective dynamics are
(5.5.1)

𝜉𝑡 = 𝜉0+𝐶

∫︁ 𝑡

0

(︂
𝑘𝜃(arccos(𝜉𝑠)− 𝜃0)

√︁
1− 𝜉

2

𝑠 − 𝜉𝑠

)︂
𝑑𝑠+

√︀
2𝐶

∫︁ 𝑡

0

√︁
1− 𝜉

2

𝑠𝑑
̃︁𝑊𝑠,

where 𝐶 = 0.999. We want to compare our proposed SD scheme
(5.5.2)

𝑦𝑆𝐷𝑡𝑛+1
= cos

(︁
−
√︀
2𝐶Δ̃︁𝑊𝑛 + arccos(𝑦𝑛 + 𝐶𝑘𝜃(arccos(𝑦𝑛)− 𝜃0)

√︀
1− 𝑦2𝑛Δ)

)︁
,

with the EM scheme which reads
(5.5.3)

𝑦𝐸𝑀
𝑛+1 = 𝑦𝑛 + 𝐶

(︁
𝑘𝜃(arccos(𝑦𝑛)− 𝜃0)

√︀
1− 𝑦2𝑛 − 𝑦𝑛

)︁
·Δ+

√︀
2𝐶
√︀

1− 𝑦2𝑛Δ̃︁𝑊𝑛,

where Δ̃︁𝑊𝑛 = sgn(𝑋1)√
(𝑋2)2+(𝑋3)2

𝑋3(sgn(𝑋3)Δ𝑊 2
𝑛 −𝑋2)Δ𝑊 3

𝑛 and 𝑦𝑛 = 𝑦𝑡𝑛 .
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According to the notation introduced in the beginning of the section,
we have that 𝑎2 = 0, 𝑎1 = 𝑘𝜃 and 𝑎0 = −𝑘𝜃𝜃0. Note, that according to
Assumption 5.5.10, the SD scheme (5.5.2) is well-posed for all Δ such that

Δ <
1

𝐶

[︃
2
√
2 + 𝜋 − 2√

2𝜋(𝜋2 + 2𝑘𝜃)

⋀︁ 1

𝑘𝜃𝜃0

⋀︁ 1

𝜋(𝜋2 + 𝑘𝜃)

]︃
.

Since the EM scheme has a finite life time, in order to be well posed, we
examine the following modification of (5.5.3)

𝑦+𝐸𝑀
𝑡𝑛+1

= 𝑦𝑡𝑛 + 𝐶

(︂
𝑘𝜃(arccos(𝑦𝑡𝑛)− 𝜃0)

√︁
(1− 𝑦2𝑡𝑛)

+ − 𝑦𝑡𝑛

)︂
·Δ

+
√︀

2𝐶
√︁
(1− 𝑦2𝑡𝑛)

+Δ̃︁𝑊𝑛.(5.5.4)

Below, we make a simple numerical experiment to compare the EM
scheme (5.5.4) with the proposed SD (5.5.2). For the implementation of
the SD method, we have to assume that Δ < 0.0021

⋀︀
0.0016

⋀︀
0.00146,

thus the step Δ = 10−3 is sufficient. Figure 5.1 shows that EM produces
values outside the interval [−1, 1], even when the time 𝑇 = 1, where SD by
its construction does not exhibit that behavior.

Therefore, in order to make a comparative result of SD scheme with EM,
we have to consider the following modification of the EM scheme, a stopped
EM scheme (sEM), which is structure preserving,

(5.5.5) 𝑦𝑠𝐸𝑀
𝑡𝑛+1

=

⎧⎨⎩
−1, 𝑦+𝐸𝑀

𝑡𝑛+1
< −1,

1, 𝑦+𝐸𝑀
𝑡𝑛+1

> 1,

𝑦+𝐸𝑀
𝑡𝑛+1

, otherwise.

If at some time 𝑡𝑘, the EM scheme drops below 1, that is 𝑦+𝐸𝑀
𝑡𝑘

< −1, then
the stopped EM scheme 𝑦𝑠𝐸𝑀

𝑡𝑘
= −1 and in the next step we have

𝑦𝑠𝐸𝑀
𝑡𝑘+1

= 𝑦𝑠𝐸𝑀
𝑡𝑘

(1− 𝐶Δ) = −1 + 𝐶Δ ≤ 1,

for Δ ≤ 2/𝐶. Moreover, for the case where EM exceeds the upper boundary
1 at time 𝑡𝑘,

𝑦𝑠𝐸𝑀
𝑡𝑘+1

= 𝑦𝑠𝐸𝑀
𝑡𝑘

(1− 𝐶Δ) = 1− 𝐶Δ ≥ −1,

for Δ ≤ 2/𝐶. Thus, the stopped EM scheme (5.5.5) is well defined for Δ ≤
2/𝐶.
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Fig. 5.1: Comparison of a path of (𝑦+𝐸𝑀
𝑡 ) and (𝑦𝑆𝐷𝑡 ) at step Δ = 10−3, with

𝜃0 = 3. Euler method produces values outside the interval [−1, 1].
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We aim to show experimentally the order of convergence of structure pre-
serving methods for the estimation of the true solution of (5.5.1). Therefore,
we consider the semi-discrete method (5.5.2). We want to verify our theoreti-
cal results and in particular the order shown in Theorem 5.2.4. Moreover, we
would like to compare SD with the EM modification (5.5.4), even though it
is not structure preserving,and with the stopped EM scheme (5.5.5) in terms
of error estimation and computer time consumption.

We estimate the endpoint ℒ2-norm 𝜖 =
√︁

E|𝑦(Δ)(𝑇 )− 𝜉𝑇 |2, of the differ-
ence between the numerical scheme evaluated at step size Δ and the exact
solution of (5.5.1). For that purpose, we compute𝑀 batches of 𝐿 simulation
paths, where each batch is estimated by 𝜖𝑗 = 1

𝐿

∑︀𝐿
𝑖=1 |𝑦

(Δ)
𝑖,𝑗 (𝑇 ) − 𝑦

(𝑟𝑒𝑓)
𝑖,𝑗 (𝑇 )|2

and the Monte Carlo estimator of the error is

(5.5.6) 𝜖 =

⎯⎸⎸⎷ 1

𝑀𝐿

𝑀∑︁
𝑗=1

𝐿∑︁
𝑖=1

|𝑦(Δ)
𝑖,𝑗 (𝑇 )− 𝑦

(𝑟𝑒𝑓)
𝑖,𝑗 (𝑇 )|2,

and requires 𝑀 · 𝐿 Monte Carlo sample paths. The reference solution is
evaluated at step size 2−14 of the numerical scheme. For the proposed SD
scheme, we have shown in Theorems 5.2.4 that it strongly converges to the
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exact solution, so we take that as a reference solution. We simulate 100·100 =
104 paths, where the choice for 𝐿 = 100 is as in [KPS03, p.118]. Of course,
the number of Monte Carlo paths has to be sufficiently large, so as not to
significantly hinder the mean-square errors.

We plot in a log2-log2 scale and error bars represent 98%-confidence inter-
vals. The results are shown in Table 5.1 and Figure 5.2. Table 5.1 does not
present the computed Monte Carlo errors with 98% confidence, since they
were at least 10 times smaller that the mean-square errors.

Fig. 5.2: Convergence of SD, +EM and sEM applied to SDE (5.5.1) with param-

eters (𝜃0, 𝑘𝜃, 𝐶, 𝑇 ) = (3, 208, 0.999, 1) with 32 digits of accuracy.
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Ref. slopes 1/7,1/3

Step Δ SD-Error Rate +EM-Error Rate sEM-Error Rate
2−10 0.010459 − 0.010333 − 0.010654 −
2−11 0.010263 0.0273 0.010042 0.0412 0.009945 0.0994
2−12 0.009470 0.116 0.009333 0.1056 0.009269 0.1016
2−13 0.007674 0.3034 0.007645 0.2878 0.007637 0.2794

Tab. 5.1: Error and step size of SD, +EM and sEM scheme for (5.5.1) with

(𝜃0, 𝑘𝜃, 𝐶, 𝑇 ) = (3, 208, 0.999, 1) and 32 digits of accuracy.

In Table 5.2 we present the computational times,3 of the explicit numerical

3 We simulate with 3.06GHz Intel Pentium, 1.49GB of RAM in Matlab 𝑅2014𝑏 Software.
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schemes SD, the modification of EM and the stopped sEM scheme for the
same problem.

Step Δ SD +EM sEM
2−10 0.000715 0.001917 0.000565
2−11 0.001398 0.003602 0.001088
2−12 0.002768 0.007231 0.002191
2−13 0.005385 0.014094 0.004183

Tab. 5.2: Average computational time for a path (in seconds) for the selected

schemes.

In Figure 5.3 we illustrate a path of the solution cos(𝜃𝐴𝐵𝐶(𝑋𝑡)) where
𝑋𝑡 solves the 3-dimensional system approximated by Euler-Maruyama(EM)
method with discretization step Δ = 10−3 and the effective dynamics (5.5.1)
computed again with SD scheme (5.5.2) and EM scheme (5.5.3), taking into
account the path of 𝑊𝑡 considered for the solution process 𝑋𝑡.

Fig. 5.3: A sample path of the transformation 𝜉𝑡 = cos(𝜃𝐴𝐵𝐶(𝑋𝑡)) of the solution
process and the effective dynamics 𝑦𝑆𝐷𝑡 , 𝑦+𝐸𝑀

𝑡 , at step Δ = 10−3.
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As we saw before in Figure 5.1, EM produced negative values, even for
time horizon 𝑇 = 1, so by increasing the integration time 𝑇, to 20 in this

The random number generator is Mersenne Twister.
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case, results in an increase of the probability of such events. In particular,
Figure 5.3 shows this oscillatory behavior.

We prefer not to compare with implicit methods, if any, which are struc-
ture preserving, since in principle they require more computational time.
Nevertheless, we present one such method. The balanced Milstein method
(BMM), proposed in [KS06], is given by the following linear implicit relation

𝑦𝐵𝑀𝑀
𝑡𝑛+1

= 𝑦𝑡𝑛 + 𝐶

(︂
𝑘𝜃(arccos(𝑦𝑡𝑛)− 𝜃0)

√︁
1− 𝑦2𝑡𝑛 − 𝑦𝑡𝑛

)︂
Δ

+
√︀
2𝐶
√︁

1− 𝑦2𝑡𝑛Δ
̃︁𝑊𝑛 − 𝐶𝑦𝑡𝑛

(︁
(Δ̃︁𝑊𝑛)

2 −Δ
)︁

+
(︁
𝑑0(𝑦𝑡𝑛)Δ𝑛 + 𝑑1(𝑦𝑡𝑛)((Δ̃︁𝑊𝑛)

2 −Δ)
)︁
(𝑦𝑡𝑛 − 𝑦𝑡𝑛+1),

for 𝑛 = 0, . . . , 𝑁 − 1 where 𝑑0 and 𝑑1 are appropriate weight functions.
Rearranging leads to

(1 + 𝑑0(𝑦𝑥)Δ𝑛 + 𝑑1(𝑦𝑥)((Δ̃︁𝑊𝑛)
2 −Δ))𝑦𝐵𝑀𝑀

𝑡𝑛+1
= 𝑥

+(𝐶𝑘𝜃(arccos(𝑥)− 𝜃0)
√
1− 𝑥2 + (𝑑0(𝑥)− 𝑑1(𝑥))𝑥)Δ + 𝑔(Δ̃︁𝑊𝑛),

where 𝑥 = 𝑦𝑡𝑛 and 𝑔(𝑧) =
√
2𝐶

√
1− 𝑥2 · 𝑧 + (𝑑1(𝑥) − 𝐶)𝑥 · 𝑧2. The BMM

scheme is able to preserve positivity for suitable 𝑑0 and 𝑑1 but it is not clear
if there are functions 𝑑0 and 𝑑1 such that starting with an 𝑥 ∈ (−1, 1) we
have that 𝑦𝐵𝑀𝑀

𝑡𝑛+1
∈ [−1, 1] too.

Moreover, there exist other interesting balanced schemes (tamed schemes),
of the form [Sab15]

𝑦𝑇𝐴𝑀𝐸𝐷
𝑡𝑛+1

= 𝑥+

(︀
𝐶𝑘𝜃(arccos(𝑥)− 𝜃0)

√
1− 𝑥2 − 𝑥

)︀
Δ+

√
2𝐶

√
1− 𝑥2Δ̃︁𝑊𝑛

1 +
⃒⃒
𝐶𝑘𝜃(arccos(𝑥)− 𝜃0)

√
1− 𝑥2 − 𝑥

⃒⃒
Δ𝛽 + 2𝐶(1− 𝑥2)Δ𝛽

or [Zha14]

𝑦𝑆𝐼𝑁𝑡𝑛+1
= 𝑥+sin[(𝐶𝑘𝜃(arccos(𝑥)−𝜃0)

√
1− 𝑥2−𝑥)Δ]+sin[

√︀
2𝐶

√
1− 𝑥2Δ̃︁𝑊𝑛],

but still not clear, whether they possess eternal lifetime or not.
Therefore, we choose the best candidate of the numerical methods pre-

sented above and estimate the error produced by the coarse graining pro-
cedure. In order to approximate the Coarse Graining Error (CGE), we use
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again the same Monte Carlo procedure, where now (5.5.6) reads

𝐶𝐺𝐸 =

⎯⎸⎸⎷ 1

𝑀𝐿

𝑀∑︁
𝑗=1

𝐿∑︁
𝑖=1

|𝑦(Δ)
𝑖,𝑗 (𝑇 )− ̂cos(𝜃(𝑇 ))|2,

and consider again 𝑀𝐿 = 104 Monte Carlo sample paths. Here ĉos(𝜃𝑡) is an
approximation of the cosine of the angle

cos 𝜃𝐴𝐵𝐶(𝑡) =
𝑋1

𝑡𝑋
2
𝑡

|𝑋1
𝑡 |
√︀
(𝑋2

𝑡 )
2 + (𝑋3

𝑡 )
2
.

We use the EM scheme for the approximation of the 3-dimensional 𝑋𝑇 =
(𝑋1, 𝑋2, 𝑋3). In particular, we can implement, as discussed earlier in Section
5.3, any numerical scheme for the scalar SDE (5.3.1), which refers to the
evolution of the first coordinate 𝑋1, and then approximate independently the
system (𝑋2, 𝑋3). We choose the EM scheme, since it is easy to implement.
It reads

𝑒𝑚𝑌
1
𝑡𝑛+1

= 𝑌 1
𝑡𝑛

(︂
1 +

1

𝜀

(︂
𝑙𝑒𝑞 − |𝑌 1

𝑡𝑛|
|𝑌 1

𝑡𝑛|

)︂
𝑌 1
𝑡𝑛Δ

)︂
+

√︂
2

𝛽
Δ𝑊 1

𝑛 ,

𝑒𝑚𝑌
2
𝑡𝑛+1

= 𝑌 2
𝑡𝑛

[︂
1 +

(︂
1

𝜀

𝑙𝑒𝑞 −
√︀

(𝑌 2
𝑡𝑛)

2 + (𝑌 3
𝑡𝑛)

2√︀
(𝑌 2

𝑡𝑛)
2 + (𝑌 3

𝑡𝑛)
2

𝑌 2
𝑡𝑛

+𝑓(𝜃)
𝑌 1
𝑡𝑛

|𝑌 1
𝑡𝑛|

𝑌 3
𝑡𝑛

|𝑌 3
𝑡𝑛|

𝑌 3
𝑡𝑛

(𝑌 2
𝑡𝑛)

2 + (𝑌 3
𝑡𝑛)

2

)︂
Δ

]︂
+

√︂
2

𝛽
Δ𝑊 2

𝑛 ,

𝑒𝑚𝑌
3
𝑡𝑛+1

= 𝑌 3
𝑡𝑛

[︂
1 +

(︂
1

𝜀

𝑙𝑒𝑞 −
√︀

(𝑌 2
𝑡𝑛)

2 + (𝑌 3
𝑡𝑛)

2√︀
(𝑌 2

𝑡𝑛)
2 + (𝑌 3

𝑡𝑛)
2

𝑌 3
𝑡𝑛

+𝑓(𝜃)
𝑌 1
𝑡𝑛

|𝑌 1
𝑡𝑛|

𝑌 3
𝑡𝑛

|𝑌 3
𝑡𝑛|

𝑌 2
𝑡𝑛

(𝑌 2
𝑡𝑛)

2 + (𝑌 3
𝑡𝑛)

2

)︂
Δ

]︂
+

√︂
2

𝛽
Δ𝑊 3

𝑛 ,

where Δ𝑊 𝑖
𝑛 := 𝑊 𝑖

𝑡𝑛+1
− 𝑊 𝑖

𝑡𝑛 are the increments of the Brownian motions
(𝑊 𝑖

𝑡 ), 𝑖 = 1..3.
Finally, to get an impression of the difference in computer time consump-

tion, between numerically solving the original system (5.3.1) − (5.3.3) and
the effective dynamics (5.5.1) using SD ( or sEM ) we present Table 5.4. We
also include the times for the new Wiener process (5.3.5).
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Step Δ CGE Error using SD Rate
2−10 0.010611 −
2−11 0.010268 0.0474
2−12 0.009499 0.1123
2−13 0.007671 0.3083

Tab. 5.3: Coarse-graining error estimates using EM for the original system (5.3.1)-

(5.3.3) of 𝑋 and the SD scheme (5.5.2) for the evolution of the effective

dynamics (5.5.1) with 32 digits of accuracy.

Step Δ ̂cos(𝜃(𝑇 )) SD + (New Wiener Process)
2−10 0.041374 0.000715 + 0.000298
2−11 0.076626 0.001398 + 0.000583
2−12 0.147262 0.002768 + 0.001141
2−13 0.284851 0.005385 + 0.002200

Tab. 5.4: Average computational time for a path (in seconds) for the original sys-

tem (5.3.1)-(5.3.3) of 𝑋 and the SD scheme (5.5.2) for the evolution of

the effective dynamics (5.5.1) with 32 digits of accuracy.

5.6 Conclusion.

In this note, we propose a new explicit numerical scheme for a class of scalar
SDEs that appear in the field of molecular dynamics, after a coarse-graining
procedure. The qualitative feature of the scheme is its ability to preserve the
domain of the original scalar SDE, which in the specific case studied here,
is 𝐷 = [−1, 1]. In other words, our scheme possesses an eternal life time.
Unfortunately, we are not able to prove strong convergence of the proposed
scheme and we restrict ourselves with an application in the numerical ex-
periment Section. Our first goal is to prove a convergence result of the SD
scheme.

In previous works concerning the SD method, we have mainly focused
on SDEs with non-negative solutions which appear in the field of financial
mathematics. We want to exploit further the main idea of the SD method,
to be able first to retain some features, as the structure preserving property,
but in the same time approximate efficiently the SDE at hand and within
reasonable time limits.

The semi-discrete method is problem dependent and at least to us, there
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is no unified way of applying it. Therefore, we treat each problem separately.
The following figure is representative of the general situation we want to
handle.

𝑋𝑡⏟ ⏞ 
𝐹𝑢𝑙𝑙 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 (5.3.1)−(5.3.3)

−→ 𝜉(𝑋𝑡)⏟  ⏞  
𝑃𝑢𝑠ℎ−𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 (5.3.4)

−→ 𝜉𝑡⏟ ⏞ 
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 (5.3.7)

Here, we mainly dealt with the efficient numerical approximation of the ef-
fective dynamics (𝜉𝑡) and then estimated the coarse-graining error (CGE) be-
tween 𝜉(𝑋𝑡) and (𝜉𝑡), by computing the error E sup{0≤𝑡≤𝑇} |𝜉(𝑋̂𝑡)−𝜉𝑡|2, where
for the approximation of the 3-dimensional (𝑋̂𝑡) we used the EM scheme and
for the approximation of the effective dynamics the SD scheme. Moreover,
we did that for a particular choice of (𝜉) = cos(𝜃𝐴𝐵𝐶). We would like to
answer the following questions:

Question 1 : Can we generalize these ideas (estimates) for a general scalar
transformation 𝜉(𝑋) for the same problem?

Question 2 : Can we generalize these ideas (estimates) for a vector-valued
coarse-graining map 𝜉(𝑋), by considering for example a 4-atom model?

Furthermore, we used the EM scheme for the numerical approximation
of (𝑋𝑡) in order to get an estimate for 𝜉(𝑋). Thus,

Question 3 : Can we also improve the estimation of the full dynamics
(𝑋𝑡) using another scheme, which may preserve qualitative features, of the
problem, when the EM fails to do so?
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We briefly review the basic notations of probability theory and stochastic
processes in order to define the Brownian motion and henceforth the stochas-
tic integral. For more details we refer to [Mao97, Ch. 1], [Øks03, Ch. 2,3,4],
[Fri75, Ch. 1,3,4], [KS88], [JP03] and references therein.

A.1 From a measurable space to a complete probability space.

Let Ω ̸= ∅ be the set of all possible outcomes (events) of trials of our math-
ematical model. We are interested in a group of such events, i.e. a family of
subsets of Ω, which we denote by ℱ and call a 𝜎-algebra.

Definition A.1.1 [𝜎-algebra] A family ℱ of subsets of Ω is called a 𝜎-field
or a 𝜎-algebra if

∙ ∅ ∈ ℱ , where ∅ is the empty set;

∙ 𝐴 ∈ ℱ implies 𝐴𝐶 ∈ ℱ , where 𝐴𝐶 = Ω ∖ 𝐴 is the complement of 𝐴;

∙ 𝐴1, 𝐴2, . . . ∈ ℱ , implies ∪∞
𝑖=1𝐴𝑖 ∈ ℱ .

2

We call the pair (Ω,ℱ) a measurable space and all elements of ℱ are
called ℱ -measurable sets. For a family 𝒞 of subsets of Ω there exists the
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smallest 𝜎-algebra containing 𝒞, which we denote by 𝜎(𝒞) and call the 𝜎-
algebra generated by 𝒞. In the case Ω = R𝑑 and 𝒞 is the family of all open
sets in R𝑑, the generated 𝜎-algebra by 𝒞, denoted by ℬ𝑑 = 𝜎(𝒞), is called
Borel 𝜎-algebra and its elements Borel sets.

A function 𝑋 : Ω → R𝑑 is said to be ℱ -measurable if all 𝑋𝑖, 𝑖 = 1, . . . , 𝑑
are ℱ -measurable (random variables), i.e. if for every 𝑖 it holds:

{𝜔 : 𝑋𝑖(𝜔) ≤ 𝑎} ∈ ℱ for every 𝑎 ∈ R.

Now we are ready to equip our measurable space with a probability mea-
sure.

Definition A.1.2 [Probability measure] A function P : ℱ → [0, 1] is called
a probability measure on the measurable space (Ω,ℱ) if

∙ P(Ω) = 1;

∙ It holds P(∪∞
𝑖=1𝐴𝑖) =

∑︀∞
𝑖=1 P(𝐴𝑖) for any sequence (𝐴𝑖)𝑖≥1 ⊂ ℱ of

disjoint sets, i.e. such that 𝐴𝑖 ∩ 𝐴𝑗 = ∅, 𝑖 ̸= 𝑗. (Countable Additivity)

2

The triple (Ω,ℱ ,P) is called a probability space. Let

ℱ := {𝐴 ⊂ Ω : ∃𝐿,𝑈 ∈ ℱ such that 𝐿 ⊂ 𝐴 ⊂ 𝑈 with P(𝐿) = P(𝑈)}.

Then ℱ is a 𝜎-algebra called the completion of ℱ . The probability space
(Ω,ℱ ,P) is called complete if ℱ = ℱ .

Finally we introduce the notion of filtration.

Definition A.1.3 [Filtration] A collection {ℱ𝑡}𝑡≥0 of increasing 𝜎-algebras
of ℱ , i.e. such that ℱ𝑠 ⊂ ℱ𝑡 for all 0 ≤ 𝑠 < 𝑡 < ∞ is called a filtration. It
is right continuous if ℱ𝑡 = ℱ𝑡+ := ∩𝑠>𝑡ℱ𝑠 for all 𝑡 ≥ 0. 2

Heuristically, the filtration tells us about future time information, that is
when we are at time 𝑡 we know for every set in ℱ𝑡 whether 𝜔 belongs to that
set.

When the probability (Ω,ℱ ,P) is complete, we say that the filtration
{ℱ𝑡}𝑡≥0 satisfies the usual conditions if it is right continuous and includes all
P-null sets.



A.2. About Stochastic Processes. 145

A.2 About Stochastic Processes.

We always work with a complete probability space equipped with a fil-
tration {ℱ𝑡}𝑡≥0 satisfying the usual conditions, i.e. with the quadraple
(Ω,ℱ , {ℱ𝑡}𝑡≥0,P) which is also called a stochastic basis. Actually, in the
main corpse of this thesis we consider the filtration {ℱ𝑡}0≤𝑡≤𝑇 for 𝑇 > 0.

Definition A.2.4 [Stochastic Process] A collection of R𝑑-valued random vari-
ables {𝑋𝑡}𝑡∈𝐼 is called a stochastic process with index set 𝐼 and state space
R𝑑. 2

The index set we consider here is 𝐼 = [0, 𝑇 ] for 𝑇 > 0 or in general 𝐼 =
R+ = [0,∞). For each fixed 𝑡 ∈ 𝐼 we have that 𝑋𝑡(𝜔) : Ω → R𝑑 is a random
variable whereas for each fixed 𝜔 ∈ Ω the function 𝑋𝑡(𝜔) : 𝐼 → R𝑑 is called
a sample path of the process.

In the following, we introduce various stochastic processes.
The R𝑑-valued process {𝑋𝑡}𝑡≥0 is called:

∙ Continuous (resp. right continuous, left continuous) if for almost all
𝜔 ∈ Ω the function 𝑋𝑡(𝜔) is continuous (resp. right continuous, left
continuous) on 𝑡 ≥ 0;

∙ Càdlàg (continue à droite limite à gauche) if it right continuous and
for almost all 𝜔 ∈ Ω the left limit lim𝑠↑𝑡𝑋𝑠(𝜔) exists and is finite for
all 𝑡 > 0;

∙ Integrable if 𝑋𝑡 is an integrable r.v. for every 𝑡 ≥ 0;

∙ ℱ𝑡-adapted if 𝑋𝑡 is ℱ𝑡-measurable for every 𝑡 ≥ 0;

∙ Measurable if regarded as a function of two variables, that is 𝑋(𝑡, 𝜔) :
R+ × Ω → R𝑑 is ℬ(R+)×ℱ -measurable;

∙ Progressive if for every 𝑇 ≥ 0 it holds that 𝑋(𝑡, 𝜔) : [0, 𝑇 ]×Ω → R𝑑 is
ℬ([0, 𝑇 ])×ℱ𝑇 -measurable;

∙ Optional (resp. Predictable) if it is 𝒪-(resp. 𝒫-)measurable, where
𝒪(resp. 𝒫) denotes the smallest 𝜎-algebra on R+×Ω w.r.t. which every
càdlàg adapted process (resp. left-continuous process) is a measurable
function of (𝑡, 𝑤).
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A random variable 𝜏 : Ω → [0,∞] is called a stopping time if {𝜔 : 𝜏(𝜔) ≤
𝑡} ∈ ℱ𝑡 for every 𝑡 ≥ 0. We present a result concerning stopping times (see
e.g. [Mao97, Th. 1.3.2]).

Theorem A.2.5 [First Exit Time] Let 𝐷 ⊂ R𝑑 be an open set and define

𝜏 := inf{𝑡 ≥ 0 : 𝑋𝑡 /∈ 𝐷},

with the convention inf ∅ = ∞. Then 𝜏 is a stopping time called the first exit
time from 𝐷. 2

Two important classes of adapted integrable stochastic processes are mar-
tingales and Markov processes. The process {𝑀𝑡}𝑡≥0 is called a martingale
(w.r.t. ℱ𝑡) if

(A.2.1) E(𝑀𝑡|ℱ𝑠) =𝑀𝑠 a.s. for all 0 ≤ 𝑠 < 𝑡 <∞

and {𝑀𝑡}𝑡≥0 is called a Markov process whenever for given Borel measurable
function 𝑓(·) it holds

E(𝑓(𝑀𝑡)|ℱ𝑠) = E(𝑓(𝑀𝑡)|𝑀𝑠) a.s. for all 0 ≤ 𝑠 < 𝑡 <∞.

If we replace the equality sign in (A.2.1) with ≤ we have a supermartingale,
whereas the sign ≥ corresponds to a submartingale. A process that is either
supermartingale or submartingale is called semimartingale.

Relation (A.2.1) suggests that by considering 𝑠 as the current time, then
the expected value of the process in a future time 𝑡 conditional to the current
information, is equal to the current value. This is a picture of a fair game
where we can not lose or win in average. This property is used in the modeling
of no-arbitrage in financial mathematics. We refer to [Man09] for a note
about the origin of the word martingale.

Finally we introduce the notion of quadratic variation and quadratic co-
variation.

Definition A.2.6 [Quadratic Variation] The quadratic variation of a stochas-
tic process 𝑋𝑡 with continuous sample paths 𝑡→ 𝑋𝑡(𝜔) is defined as the limit

⟨𝑋⟩𝑇 = lim
𝑛→∞

∞∑︁
𝑖=1

(︁
𝑋𝑇𝑛

𝑖
(𝜔)−𝑋𝑇𝑛

𝑖−1
(𝜔)
)︁2
.

2
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Intuitively, the above limit can be written as a ‘second order’ integral

⟨𝑋⟩𝑇 = “

∫︁ 𝑇

0

(𝑑𝑋𝑠(𝜔))
2 ”,

or in a differential form

𝑑 ⟨𝑋⟩𝑡 = “𝑑𝑋𝑡(𝜔)𝑑𝑋𝑡(𝜔)”.

A stochastic process whose trajectories 𝑡 → 𝑋𝑡(𝜔) are differentiable for al-
most all 𝜔, satisfies ⟨𝑋⟩𝑡 = 0. In the case 𝑋 is a deterministic process 𝑡→ 𝑡,
such that 𝑑𝑋𝑡 = 𝑑𝑡, we get the classic differential calculus result

𝑑𝑡𝑑𝑡 = 0.

Definition A.2.7 [Quadratic Covariation] The quadratic covariation of the
stochastic processes 𝑋𝑡 and 𝑌𝑡 with continuous sample paths is defined as the
limit

⟨𝑋,𝑍⟩𝑇 = lim
𝑛→∞

∞∑︁
𝑖=1

(︁
𝑋𝑇𝑛

𝑖
(𝜔)−𝑋𝑇𝑛

𝑖−1
(𝜔)
)︁(︁

𝑍𝑇𝑛
𝑖
(𝜔)− 𝑍𝑇𝑛

𝑖−1
(𝜔)
)︁
.

2

As before, we can intuitively write it as a ‘second order’ integral or in differ-
ential form

⟨𝑋,𝑍⟩𝑇 = “

∫︁ 𝑇

0

𝑑𝑋𝑠(𝜔)𝑑𝑍𝑠(𝜔)”, or 𝑑 ⟨𝑋,𝑍⟩𝑡 = “𝑑𝑋𝑡(𝜔)𝑑𝑍𝑡(𝜔)”.

A.3 The Wiener Process.

The general type SDE (1.2.3) which we rewrite in differential form, high-
lighting the dependence on 𝜔,

(A.3.2) 𝑑𝑋𝑡(𝜔) = 𝑎(𝑡,𝑋𝑡(𝜔))𝑑𝑡+ 𝑏(𝑡,𝑋𝑡(𝜔))𝑑𝑊𝑡(𝜔),

is defined through the increments 𝑑𝑊𝑡(𝜔) of a process with continuous trajec-
tories. This is the Wiener process1 one of the two most important stochastic
processes in the field of probability.2

1 Also known as Brownian Motion. We shall adopt the name Wiener.
2 The other stochastic process is the Poisson process, see e.g. [Bil86, Sec. 23].
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The Wiener process has independent and Gaussian increments. This is
rigorously stated in the following.

Definition A.3.8 [Wiener Process] Let (Ω,ℱ , {ℱ𝑡}𝑡≥0,P) be a stochastic ba-
sis and {𝑊𝑡}𝑡≥0 be a real-valued continuous ℱ𝑡-adapted process. We call
{𝑊𝑡}𝑡≥0 a one-dimensional Wiener process if it has the following properties

∙ 𝑊0 = 0 a.s.;

∙ 𝑊𝑡(𝜔)−𝑊𝑠(𝜔) is independent of ℱ𝑠;

∙ 𝑊𝑡(𝜔)−𝑊𝑠(𝜔) ∼ 𝑁(0, 𝑡−𝑠), (Gaussian increments),

for all 0 ≤ 𝑠 < 𝑡 <∞. A 𝑚-dimensional process {𝑊𝑡}𝑡≥0 = (𝑊 1
𝑡 , . . . ,𝑊

𝑚
𝑡 )𝑡≥0

is called a 𝑚-dimensional Wiener process if each {𝑊 𝑖
𝑡 } is a one-dimensional

Wiener process and {𝑊 1
𝑡 }, . . . , {𝑊𝑚

𝑡 } are independent. 2

As a consequence the Wiener process {𝑊𝑡}𝑡≥0 satisfies the following:

∙ 𝑊𝑢(𝜔)−𝑊𝑡(𝜔) is independent of 𝑊𝑡(𝜔)−𝑊𝑠(𝜔), (independent incre-
ments),

∙ 𝑊𝑡+ℎ(𝜔)−𝑊𝑠+ℎ(𝜔) ∼ 𝑊𝑡(𝜔)−𝑊𝑠(𝜔), (stationary increments),

for all 0 ≤ 𝑠 < 𝑡 < 𝑢 <∞ and ℎ > 0.
It can be shown that the Wiener process is a continuous square-integrable

martingale with quadratic variation ⟨𝑊 ⟩𝑡 = 𝑡, for every 𝑡 ≥ 0 which can also
be written, in a more ‘relaxed’ way as

𝑑𝑊𝑡(𝜔)𝑑𝑊𝑡(𝜔) = 𝑑𝑡.

The above result is due to the fact that the Wiener process moves that fast,
so that the second order terms can not be regarded as negligible. On the
contrary, a process with differentiable trajectories can not move that fast,
and therefore second order terms do not contribute.

Moreover, we have that ⟨𝑊, 𝑡⟩𝑡 = 0, for every 𝑡 ≥ 0 which can be rewritten
‘informally’ as

𝑑𝑊𝑡(𝜔)𝑑𝑡 = 0.

The trajectories of the Wiener process are almost nowhere differentiable.
In particular, they are of unbounded variation and consequently the deriva-
tive 𝑊̇𝑡(𝜔) = 𝑑𝑊𝑡(𝜔)/𝑑𝑡 does not exist (see [Bre68].)
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The 𝑚-dimensional Wiener process {𝑊𝑡}𝑡≥0 = (𝑊 1
𝑡 , . . . ,𝑊

𝑚
𝑡 )𝑡≥0 is a 𝑚-

dimensional continuous martingale with joint quadratic variation given by
⟨𝑊 𝑖,𝑊 𝑗⟩𝑡 = 𝛿𝑖𝑗𝑡 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚, where 𝛿𝑖𝑗 is the Dirac delta function, i.e.

𝛿𝑖𝑗 =

{︃
1, when 𝑖 = 𝑗,

0, otherwise.

The above property characterizes the Wiener process among continuous
martingales as shown by Lévy’s characterization theorem of Brownian mo-
tion, [KS88, Th. 3.16, p.157].

Theorem A.3.9 [Lévy] Let 𝑀𝑡 be a 𝑚-dimensional process, which is a mar-
tingale w.r.t. the filtration {ℱ𝑡}𝑡≥0, with continuous paths, 𝑀0 = 0 a.s. and
⟨𝑀 𝑖,𝑀 𝑗⟩𝑡 = 𝛿𝑖𝑗𝑡 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Then 𝑀𝑡 is a 𝑚-dimensional Wiener
process w.r.t. {ℱ𝑡}. 2

A.4 Itô Integral.

The integral representation of (A.3.2) is

(A.4.3) 𝑋𝑡(𝜔) = 𝑋0(𝜔) +

∫︁ 𝑡

0

𝑎(𝑠,𝑋𝑠(𝜔))𝑑𝑠+

∫︁ 𝑡

0

𝑏(𝑠,𝑋𝑠(𝜔))𝑑𝑊𝑠(𝜔).

Now we have to define the stochastic integral
∫︀ 𝑡

0
𝑏(𝑠,𝑋𝑠(𝜔))𝑑𝑊𝑠(𝜔). This

integral can not be defined in the ordinary way as a Stieltjes integral for
every path, since the variation of the paths is unbounded. However, under
‘reasonable’ assumptions ([Øks03, Ch. 3]), we can define the integral for a
large class of stochastic processes, in a Stieltjes way, where now the integral
depends on the intermediate points of the partitions used in the correspond-
ing limit. In particular, we consider the interval [0, 𝑇 ], and the following
partition which depends on an integer 𝑛,

𝑇 𝑛
𝑖 = min

𝑖=0,1,...,∞

{︁
𝑇,

𝑖

2𝑛

}︁
.

Note that 𝑇 𝑛
𝑖 = 𝑇 for every 𝑖 > 2𝑛𝑇. The bigger the 𝑛 the better discrete

approximation of the continuous interval [0, 𝑇 ].

Definition A.4.10 We denote by ℳ2([0, 𝑇 ];R) the family of all real-valued
measurable, {ℱ𝑡}-adapted processes 𝜑 = {𝜑(𝑡)}0≤𝑡≤𝑇 such that

||𝜑||20,𝑇 = E
∫︁ 𝑇

0

|𝜑𝑠(𝜔)|2𝑑𝑠 <∞.
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We say that 𝜑 and 𝜑 are equivalent if ||𝜑− 𝜑||20,𝑇 = 0. 2

For 𝜑 ∈ ℳ2([0, 𝑇 ];R) we define the integral as,

𝐼(𝑇 ) :=

∫︁ 𝑇

0

𝜑𝑠(𝜔)𝑑𝑊𝑠(𝜔) = lim
𝑛→∞

∞∑︁
𝑖=0

𝜑𝑡𝑛𝑖
(𝜔)
[︁
𝑊 𝑛

𝑇𝑖+1
(𝜔)−𝑊 𝑛

𝑇𝑖
(𝜔)
]︁
,

where 𝑡𝑛𝑖 is an intermediate point of [𝑇 𝑛
𝑖 , 𝑇

𝑛
𝑖+1). The choice 𝑡

𝑛
𝑖 := 𝑇 𝑛

𝑖 , i.e. the
left endpoint of the above interval, corresponds to the Itô integral, whereas
considering the midpoint 𝑡𝑛𝑖 := (𝑇 𝑛

𝑖 + 𝑇 𝑛
𝑖+1)/2, defines the Stratonovich inte-

gral.
The Itô integral has interesting probabilistic properties - it is a martingale

- but in the calculus it defines the classic chain rule is not valid. On the other
hand, the Stratonovich integral, even though with less probabilistic interest,
retains the chain rule and is preferred as regards the properties of the paths.

We present a classic example of a stochastic integral calculated in the Itô
and Stratonovich sense∫︁ 𝑡

0

𝑊𝑠(𝜔)𝑑𝑊𝑠(𝜔) =

{︃
𝑊 2

𝑡 (𝜔)

2
− 𝑡

2
Itô,

𝑊 2
𝑡 (𝜔)

2
Stratonovich.

Usually the sign “ ∘ ” is used in the Stratonovich case to distinguish between
the two integrals

∫︀ 𝑡

0
𝑊𝑠(𝜔) ∘ 𝑑𝑊𝑠(𝜔). It is also possible to transform a SDE

written in Itô form to one in Stratonovich form and conversely [Øks03, Ch.
3]

𝑑𝑋𝑡(𝜔) = 𝑎(𝑡,𝑋𝑡(𝜔))𝑑𝑡+ 𝑏(𝑡,𝑋𝑡(𝜔)) ∘ 𝑑𝑊𝑡(𝜔)

= 𝑎̂(𝑡,𝑋𝑡(𝜔))𝑑𝑡+ 𝑏(𝑡,𝑋𝑡(𝜔))𝑑𝑊𝑡(𝜔),

where

𝑎̂(𝑡, 𝑥) = 𝑎(𝑡, 𝑥) +
1

2
𝑏(𝑡, 𝑥)

𝜕𝑏

𝜕𝑥
(𝑡, 𝑥).

In the case where 𝑏(𝑡, 𝑥) = 𝑏(𝑡) the drift coefficients of the corresponding Itô
and Stratonovich SDEs are the same.

In general, stochastic integrals are defined in a Lebesgue way instead of
a Riemann-Stieltjes way. We define the stochastic integral first for simple
processes and then take the ‘limit’. Finally we can extend the definition to
the multi-dimensional case. For a detailed study of stochastic integration
and its connection with SDEs we refer to [Øks03] and [RW87].

We collect some properties of the Itô integral 𝐼(𝑡) :=
∫︀ 𝑡

0
𝜑𝑠(𝜔)𝑑𝑊𝑠(𝜔) :
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∙ It is continuous as a function of 𝑡;

∙ It is ℱ𝑡-adapted;

∙ It is linear and additive;

∙ It is martingale with E(𝐼(𝑡)|ℱ0) = 0;

∙ E(𝐼2(𝑡)|ℱ0) =
∫︀ 𝑡

0
E(𝜑2

𝑠(𝜔)|ℱ0)𝑑𝑠 (Itô isometry)
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In this section we collect some inequalities frequently used throughout
this thesis as well as some theorems mainly from the field of probability and
stochastic processes.

B.1 Probability Related Results.

First, we present the Cauchy-Schwarz inequality (see [HLP52, Th. 181])

(B.1.1)

(︂∫︁
𝑋𝑌 𝑑𝑠

)︂2

≤
(︂∫︁

𝑋2𝑑𝑠

)︂(︂∫︁
𝑌 2𝑑𝑠

)︂
,

where we have suppressed the limits of integration and the Young inequality
(see [HLP52, Th. 61])

(B.1.2) 𝑎𝑏 ≤ 𝑎𝑟

𝑟
+
𝑏𝑞

𝑞
,

for non-negative 𝑎, 𝑏 and conjugate exponents 𝑟, 𝑞.
In the following, we present Hölder’s inequality (see [HLP52, Th. 189])

and a simple application of it:
For 𝑋 ∈ ℒ𝑝, 𝑌 ∈ ℒ𝑞 and 𝑟, 𝑝, 𝑞 such that 1/𝑝 + 1/𝑞 = 1/𝑟 with 0 < 𝑞 <

∞, 0 < 𝑟 ≤ 𝑝 it holds that

(B.1.3) ‖𝑋 · 𝑌 ‖𝑝ℒ𝑟(Ω;R) ≤ ‖𝑋‖𝑝ℒ𝑝(Ω;R)‖𝑌 ‖𝑝ℒ𝑞(Ω;R).

For 𝑟 = 1 and 𝑝 > 1 inequality (B.1.3) becomes

|E(𝑋𝑇 · 𝑌 )| ≤ (E|𝑋|𝑝)1/𝑝(E|𝑌 |𝑞)1/𝑞
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and for 𝑌 ≡ 1 (B.1.3) implies

(E|𝑋|𝑟)1/𝑟 ≤ (E|𝑋|𝑝)1/𝑝.

Now, we state two integration convergence theorems, see e.g. [Mao97,
Th. 1.2.2 & 1.2.3].

Theorem B.1.1 [Monotone Convergence] For an increasing sequence {𝑋𝑛}
of non-negative random variables it holds

lim
𝑛→∞

E𝑋𝑛 = E( lim
𝑛→∞

𝑋𝑛).

2

Theorem B.1.2 [Dominated Convergence] Let {𝑋𝑛} ∈ ℒ𝑝(Ω,R𝑑) and 𝑌 ∈
ℒ𝑝(Ω,R) for some 𝑝 ≥ 1 such that |𝑋𝑛| ≤ 𝑌 a.s. and let {𝑋𝑛} converge in
probability to 𝑋, i.e. for every 𝜖 > 0,P(𝜔 : |𝑋𝑛(𝜔) − 𝑋(𝜔)| > 𝜖) → 0 as
𝑛→ ∞. Then

∙ 𝑋 ∈ ℒ𝑝(Ω;R𝑑);

∙ {𝑋𝑛} converges to 𝑋 in ℒ𝑝, i.e. E|𝑋𝑛 −𝑋|𝑝 → 0 as 𝑛→ ∞;

∙ lim𝑛→∞ E𝑋𝑛 = E𝑋.

2

B.2 Stochastic Processes Related Results.

The following inequality is an application of the well-known Doob inequality,
see e.g. [KS88, Th. 1.3.8].

Theorem B.2.3 [Doob’s Martingale Inequality] Let {𝑀𝑡}𝑡≥0 be a martingale
such that 𝑀𝑡 ∈ ℒ𝑝(Ω,R𝑑) for some 𝑝 > 1. Then

(B.2.4) E sup
0≤𝑡≤𝑇

|𝑀𝑡|𝑝 ≤
(︂

𝑝

𝑝− 1

)︂𝑝

E|𝑀𝑇 |𝑝,

for 𝑇 > 0. 2
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B.3 Moment-Integral Inequalities.

The next result is known as Burkholder-Davis-Gundy inequality, see e.g.
[Mao97, Th. 1.7.3], [KS88, Th. 3.28].

Theorem B.3.4 [BDG Inequality] Let 𝜑 ∈ ℒ2(R+;R𝑑×𝑚). Then for every
𝑝 > 0 there exist positive constants 𝑐𝑝, 𝐶𝑝 such that

(B.3.5) 𝑐𝑝E
⃒⃒⃒⃒∫︁ 𝑇

0

𝜑2
𝑠𝑑𝑠

⃒⃒⃒⃒𝑝/2
≤ E sup

0≤𝑡≤𝑇

⃒⃒⃒⃒∫︁ 𝑡

0

𝜑𝑠𝑑𝑊𝑠

⃒⃒⃒⃒𝑝
≤ 𝐶𝑝E

⃒⃒⃒⃒∫︁ 𝑇

0

𝜑2
𝑠𝑑𝑠

⃒⃒⃒⃒𝑝/2
,

for 𝑇 ≥ 0. 2

The universal constants 𝑐𝑝, 𝐶𝑝 may be chosen in the way shown in Table B.1.

Values of 𝑝 𝑐𝑝 𝐶𝑝

(0, 2) (𝑝/2)𝑝 (32/𝑝)𝑝/2

2 1 4
(2,∞) (2𝑝)−𝑝/2 [𝑝𝑝+1/2(𝑝− 1)𝑝−1]𝑝/2

Tab. B.1: Universal constants in the BDG inequality.

The following integral inequality has been used in theory of ODEs and
SDEs for the proof of existence, uniqueness, boundness and comparison re-
sults between other applications. It is also important in this thesis. It goes
back to 1919, see [Gro19, (7)].

Theorem B.3.5 [Gronwall’s Inequality] Let 𝑢(·) be a Borel measurable bounded
non-negative function on [0, 𝑇 ], where 𝑇 > 0 and let 𝑣(·) be a nonnegative
integrable function on [0, 𝑇 ]. If

𝑢(𝑡) ≤ 𝑐+

∫︁ 𝑡

0

𝑣(𝑠)𝑢(𝑠)𝑑𝑠,

for every 0 ≤ 𝑡 ≤ 𝑇 where 𝑐 ≥ 0, then

(B.3.6) 𝑢(𝑡) ≤ 𝑐 exp

{︂∫︁ 𝑡

0

𝑣(𝑠)𝑑𝑠

}︂
.

2
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C.1 Existence and Uniqueness of 𝑦𝑆𝐷𝑡 for the Heston 3/2-model.

C.1.1 Uniqueness of solution of 𝑦𝑆𝐷𝑡 .

Let 𝑦𝑡, 𝑦𝑡 be two solutions of SDE (2.5.3) with same initial condition, i.e.
with 𝑦0 = 𝑦0. By Lemma 2.4.8 they both belong to the space ℳ2([0, 𝑇 ];R)
of measurable ℱ𝑡-adapted processes 𝑧 such that

E
∫︁ 𝑇

0

|𝑧𝑠|2𝑑𝑠 <∞.

Set the stopping times 𝜃𝑖𝑅 = inf{𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖] : |𝑦𝑡| > 𝑅} and 𝜃𝑖𝑅 = inf{𝑡 ∈
[𝑡𝑖−1, 𝑡𝑖] : |𝑦𝑡| > 𝑅} for some 𝑅 > 0 big enough and consider the stopping
times 𝜏 𝑖𝑅 = 𝜃𝑖𝑅∧ 𝜃𝑖𝑅, for 𝑖 = 1, ..., 𝑁. Take 𝑡 ∈ [0, 𝑡1] and 𝑒𝑡∧𝜏1𝑅 := 𝑦𝑡∧𝜏1𝑅 −𝑦𝑡∧𝜏1𝑅 .
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It holds that

|𝑒𝑡∧𝜏1𝑅 |
2 =

⃒⃒ ∫︁ 𝑡∧𝜏1𝑅

0

(𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)) 𝑑𝑠

+

∫︁ 𝑡∧𝜏1𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)) 𝑑𝑊𝑠

⃒⃒2
≤ 2𝑡1

∫︁ 𝑡∧𝜏1𝑅

0

⃒⃒⃒
𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑓(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)

⃒⃒⃒2
𝑑𝑠+ 2|𝑀𝑡|2

≤ 6𝑡1𝐶
2
𝑅

∫︁ 𝑡∧𝜏1𝑅

0

(︀
|𝑦𝑠 − 𝑦𝑠|2 + |𝑦𝑠 − 𝑦𝑠|2 + |𝑦𝑠 − 𝑦𝑠|

)︀
𝑑𝑠+ 2|𝑀𝑡|2

≤ 6𝑡1𝐶
2
𝑅

∫︁ 𝑡

0

|𝑒𝑠∧𝜏1𝑅 |
2𝑑𝑠+ 2|𝑀𝑡|2,

where in the second step we have used the Cauchy-Schwarz inequality, in the
third step the elementary inequality (

∑︀3
𝑖=1 𝑎𝑖)

2 ≤ 3
∑︀3

𝑖=1 𝑎
2
𝑖 , for appropriate

𝑎𝑖 and Assumption 2.2.1 for 𝑓, in the last step the fact that 𝑠 = 0, when
𝑠 ∈ [0, 𝑡1], and the equality in the initial conditions 𝑦0 = 𝑦0. Furthermore,

𝑀𝑡 :=

∫︁ 𝑡∧𝜏1𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)) 𝑑𝑊𝑠.

Taking the supremum over all 𝑡 ∈ [0, 𝑡1] and then expectations we have

E sup
0≤𝑡≤𝑡1

|𝑒𝑡∧𝜏1𝑅 |
2 ≤ 6𝑡1𝐶

2
𝑅E sup

0≤𝑡≤𝑡1

(︃∫︁ 𝑡∧𝜏1𝑅

0

|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠

)︃
+ 2E sup

0≤𝑡≤𝑡1

|𝑀𝑡|2

≤ 6𝑡1𝐶
2
𝑅

∫︁ 𝑡1

0

E sup
0≤𝑙≤𝑠

|𝑒𝑙∧𝜏1𝑅 |
2𝑑𝑠+ 2E|𝑀𝑡1|2,(C.1.1)
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where we have used Doob’s maximal inequality with 𝑝 = 2, since 𝑀𝑡 is an
R-valued martingale that belongs to ℒ2. Moreover, we have that

E|𝑀𝑡1|2 := E

⃒⃒⃒⃒
⃒
∫︁ 𝑡1∧𝜏1𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)) 𝑑𝑊𝑠

⃒⃒⃒⃒
⃒
2

= E

(︃∫︁ 𝑡1∧𝜏1𝑅

0

(𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠)− 𝑔(𝑠, 𝑠, 𝑦𝑠, 𝑦𝑠))
2 𝑑𝑠

)︃

≤ 3𝐶2
𝑅E

(︃∫︁ 𝑡1∧𝜏1𝑅

0

(︀
|𝑦0 − 𝑦0|2 + |𝑦𝑠 − 𝑦𝑠|2 + |𝑦0 − 𝑦0|

)︀
𝑑𝑠

)︃

≤ 3𝐶2
𝑅

∫︁ 𝑡1∧𝜏1𝑅

0

E|𝑦𝑠 − 𝑦𝑠|2𝑑𝑠 ≤ 3𝐶2
𝑅

∫︁ 𝑡1

0

E sup
0≤𝑙≤𝑠

|𝑒𝑙∧𝜏1𝑅 |
2𝑑𝑠,

where we have used Assumption 2.2.1 for 𝑔. Thus relation (C.1.1) becomes

E sup
0≤𝑡≤𝑡1

|𝑒𝑡∧𝜏1𝑅 |
2 ≤ (6𝑡1𝐶

2
𝑅 + 3𝐶2

𝑅)

∫︁ 𝑡1

0

E sup
0≤𝑙≤𝑠

|𝑒𝑙∧𝜏1𝑅 |
2𝑑𝑠,

which by use of Gronwall’s inequality gives

E sup
0≤𝑡≤𝑡1

|𝑒𝑡∧𝜏1𝑅 |
2 = 0.

Following the same arguments we can show that

E sup
0≤𝑡≤𝑡1

|𝑒𝑡∧𝜏 𝑖𝑅 |
2 = 0,

for every integer 1 ≤ 𝑖 ≤ 𝑁.1 Thus, if we drop the index 𝑖 from the stopping
times with the meaning that 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : |𝑦𝑡| > 𝑅} and 𝜃𝑅 = inf{𝑡 ∈
[0, 𝑇 ] : |𝑦𝑡| > 𝑅} for some 𝑅 > 0 big enough and consider the stopping time
𝜏𝑅 = 𝜃𝑅 ∧ 𝜃𝑅, we have that

E sup
0≤𝑡≤𝑇

|𝑒𝑡∧𝜏𝑅 |2 ≤
𝑁∑︁
𝑖=1

E sup
𝑡𝑖−1≤𝑡≤𝑡𝑖

|𝑒𝑡∧𝜏 𝑖𝑅 |
2 = 0.

Hence, 𝑦𝑡 = 𝑦𝑡 for all 0 ≤ 𝑡 ≤ 𝑇 a.s. which proves that the solution of SDE
(2.5.3), and in general of SDE (2.2.1) when it exists, is unique.

1 For 𝑖 = 2 just use the same ideas as for 𝑖 = 1 and the other cases follow exactly the
same way using in every step the result of the previous step.
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C.1.2 Existence of solution of 𝑦𝑆𝐷𝑡 .

We will show the existence of the solution of SDE (2.5.2) for 𝑛 = 0 and the
same procedure can be followed to show the existence of the solution of SDE
(2.5.2) for every integer 𝑛 = 1, .., 𝑁 − 1, i.e. the existence of the solution of
SDE (2.5.3). Application of Itô’s formula to ln 𝑦𝑡, for 0 ≤ 𝑡 ≤ 𝑡1 implies

ln 𝑦𝑡 = ln 𝑦0 +

∫︁ 𝑡

0

1

𝑦𝑠
(𝑘1(𝑠)− 𝑘2(𝑠)𝑦0)𝑦𝑠𝑑𝑠+

1

2

∫︁ 𝑡

0

(︂
− 1

𝑦2𝑠

)︂
𝑘23(𝑠)𝑦0𝑦

2
𝑠𝑑𝑠

+

∫︁ 𝑡

0

1

𝑦𝑠
𝑘3(𝑠)𝑦0𝑦𝑠𝑑𝑊𝑠

= ln 𝑦0 +

∫︁ 𝑡

0

(︂
𝑘1(𝑠)− 𝑘2(𝑠)𝑦0 −

𝑘23(𝑠)

2

√
𝑦0

)︂
𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑠)
√
𝑦0𝑑𝑊𝑠.

Now take the exponential of both sides of (2.4.4) with 𝑠 = 0 in the case
0 ≤ 𝑡 ≤ 𝑡1 to verify that (2.5.5) is indeed a solution of SDE (2.5.2) for 𝑛 = 0.

C.2 Proof of Lemma 2.4.10.

Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : 𝑥−1
𝑡 > 𝑅}, for some 𝑅 > 0, with

the convention that inf ∅ = ∞. Application of Itô’s formula on (𝑥𝑡∧𝜃𝑅)
−2

implies,

(𝑥𝑡∧𝜃𝑅)
−2 = (𝑥0)

−2 +

∫︁ 𝑡∧𝜃𝑅

0

(−2)𝑥−3
𝑠 (𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥

2𝑟−1
𝑠 )𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

(−2)(−3)

2
(𝑥𝑠)

−4𝑘23(𝑠)𝑥
2𝑟
𝑠 𝑑𝑠+

∫︁ 𝑡∧𝜃𝑅

0

(−2)𝑘3(𝑠)(𝑥𝑠)
−3𝑥𝑟𝑠𝑑𝑊𝑠

= (𝑥0)
−2 +

∫︁ 𝑡∧𝜃𝑅

0

(−2)𝑘1(𝑠)𝑥
−2
𝑠 + 2𝑘2(𝑠)𝑥

2𝑟−4
𝑠 + 3𝑘23(𝑠)𝑥

2𝑟−4
𝑠 )𝑑𝑠

+

∫︁ 𝑡

0

(−2)𝑘3(𝑠)𝑥
𝑟−3
𝑠 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑊𝑠

=

∫︁ 𝑡∧𝜃𝑅

0

(︀
−2𝑘1(𝑠)𝑥

−2
𝑠 + (2𝑘2(𝑠) + 3𝑘23(𝑠))

(︀
𝑥2𝑟−4
𝑠 I(0,1](𝑥𝑠) + 𝑥2𝑟−4

𝑠 I(1,∞](𝑥𝑠)
)︀)︀
𝑑𝑠

+(𝑥0)
−2 +𝑀𝑡

≤ (𝑥0)
−2 + (2𝑘2,max + 3𝑘23,max)𝑇 +

∫︁ 𝑡

0

(2𝑘2(𝑠) + 3𝑘23(𝑠))𝑥
−2
𝑠 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠+𝑀𝑡,
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where

𝑀𝑡 :=

∫︁ 𝑡

0

(−2)𝑘3(𝑠)𝑥
𝑟−3
𝑠 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑊𝑠.

Taking expectations in the above inequality and using the fact that E𝑀𝑡 = 0,2

we get that

E(𝑥𝑡∧𝜃𝑅)
−2 ≤ E(𝑥0)−2 + (2𝑘2,max + 3𝑘23,max)𝑇 + (2𝑘2,max + 3𝑘23,max)

∫︁ 𝑡

0

E(𝑥𝑠∧𝜃𝑅)
−2𝑑𝑠

≤
(︀
E(𝑥0)−2 + 2𝑘2,max𝑇 + 3𝑘23,max𝑇

)︀
𝑒(2𝑘2+3𝑘23)𝑇 < 𝐶,

where we have used Gronwall’s inequality with 𝐶 independent of 𝑅.We have
that

(C.2.2) (𝑥𝑡∧𝜃𝑅)
−2 = (𝑥𝜃𝑅)

−2I(𝜃𝑅≤𝑡)+(𝑥𝑡)
−2I(𝑡<𝜃𝑅) = 𝑅2I(𝜃𝑅≤𝑡)+(𝑥𝑡)

−2I(𝑡<𝜃𝑅).

By relation (C.2.2) we have that,

E
(︂

1

𝑥2𝑡∧𝜃𝑅

)︂
= 𝑅2P(𝜃𝑅 ≤ 𝑡) + E

(︂
1

𝑥2𝑡
I(𝑡<𝜃𝑅)

)︂
< 𝐶,

thus

P(𝑥𝑡 ≤ 0) = P

(︃
∞⋂︁

𝑅=1

{︁
𝑥𝑡 <

1

𝑅

}︁)︃
= lim

𝑅→∞
P
(︂{︁

𝑥𝑡 <
1

𝑅

}︁)︂
≤ lim

𝑅→∞
P(𝜃𝑅 ≤ 𝑡) = 0.

We conclude that 𝑥𝑡 > 0 a.s.

C.3 Proof of Lemma 2.4.11.

We work as in the proof of Lemma 2.4.7. In particular, we first get the bound

𝐽(𝑠, 𝑥) ≤
𝑘1,max𝑥

2 +
(︁
0.5(𝑝− 1)(𝑘3,max)

2 − 𝑘2,min

)︁
𝑥2𝑟

1 + 𝑥2
≤ 𝑘1,max,

valid for all 𝑝 such that 𝑝 ≤ 1 + 2𝑘2,min/(𝑘3,max)
2, where 𝐽(𝑠, 𝑥) is as in the

proof of Lemma 2.4.7, which in turn implies,

E(𝑥𝑡)𝑝 ≤ 2(𝑝−2)/2(1 + E(𝑥0)𝑝)𝑒𝐶𝑝𝑡,

2 The function ℎ(𝑢) = (−2)𝑘3(𝑢)𝑥
𝑟−3
𝑢 I(0,𝑡∧𝜃𝑅)(𝑢) belongs to the spaceℳ2([0, 𝑡];R) thus

[Mao97, Th. 1.5.8] implies E𝑀𝑡 = 0.
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for any 2 < 𝑝 ≤ 1+2𝑘2,min/(𝑘3,max)
2 and all 𝑡 ∈ [0, 𝑇 ]. Using Itô’s formula on

(𝑥𝑡)
𝑝, with 𝑝 ≤ 3

2
− 𝑟+

𝑘2,min

(𝑘3,max)2
(in order to use Doob’s martingale inequality

later) we have that

(𝑥𝑡)
𝑝 ≤ (𝑥0)

𝑝 + 𝑝

∫︁ 𝑡

0

[︂
𝑘1(𝑠)(𝑥𝑠)

𝑝 +

(︂
𝑝− 1

2
𝑘23,max𝐾

2
𝜑 − 𝑘2

)︂
(𝑥𝑠)

𝑝+2𝑟−2

]︂
𝑑𝑠+𝑀𝑡

≤ (𝑥0)
𝑝 + 𝑝

∫︁ 𝑡

0

𝑘1(𝑠)(𝑥𝑠)
𝑝𝑑𝑠+𝑀𝑡,

where 𝑀𝑡 =
∫︀ 𝑡

0
𝑝𝑘3(𝑠)(𝑥𝑠)

𝑝+2𝑟−1𝑑𝑊𝑠. Taking the supremum and then expec-
tations in the above inequality we get

E( sup
0≤𝑡≤𝑇

(𝑥𝑡)
𝑝) ≤

(︂
E(𝑥0)𝑝 +

√︁
4E𝑀2

𝑇

)︂
𝑒𝑝𝑘1,max𝑇 := 𝐴1,

where in the last step we have used Doob’s martingale inequality to the
diffusion term 𝑀𝑡

3 and Gronwall’s inequality.

C.4 Proof of Lemma 2.4.16.

Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : 𝑥−1
𝑡 > 𝑅}, for some 𝑅 > 0,

with the convention that inf ∅ = ∞. Application of Itô’s formula on ln𝑥𝑡∧𝜃𝑅
implies,

ln𝑥𝑡∧𝜃𝑅 = ln 𝑥0 +

∫︁ 𝑡∧𝜃𝑅

0

1

𝑥𝑠
(𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥

𝑞
𝑠)𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

(︂
− 1

𝑥2𝑠

)︂
𝑘23(𝑠)𝑥

2𝑟
𝑠 𝜑

2(𝑥𝑠)𝑑𝑠+

∫︁ 𝑡∧𝜃𝑅

0

1

𝑥𝑠
𝑘3(𝑠)𝑥

𝑟
𝑠𝜑(𝑥𝑠)𝑑𝑊𝑠

= ln 𝑥0 +

∫︁ 𝑡∧𝜃𝑅

0

(︀
𝑘1(𝑠)− 𝑘2(𝑠)𝑥

𝑞−1
𝑠 − 𝑘23(𝑠)𝑥

2𝑟−2
𝑠 𝜑2(𝑥𝑠)

)︀
𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑘3(𝑠)𝑥
𝑟−1
𝑠 𝜑(𝑥𝑠)𝑑𝑊𝑠.

3 The function ℎ(𝑢) = 𝑝𝑘3(𝑢)𝜑(𝑥𝑢)(𝑥𝑢)
𝑝+2𝑟−1 belongs to the family ℳ2([0, 𝑇 ];R) thus

[Mao97, Th. 1.5.8] implies E𝑀2
𝑡 = E(

∫︀ 𝑡

0
ℎ(𝑢)𝑑𝑊𝑢)

2 = E
∫︀ 𝑡

0
ℎ2(𝑢)𝑑𝑢, i.e. 𝑀𝑡 ∈ ℒ2(Ω;R).
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Taking absolute values in the above equality, then expectations, and using
Jensen’s inequality and then Itô’s isometry on the diffusion term 𝑀𝑡, we get

E| ln𝑥𝑡∧𝜃𝑅 | ≤ E| ln𝑥0|+ 𝑇 (|𝑘1,max|+ |𝑘2,max|E sup
0≤𝑡≤𝑇

|𝑥𝑡|𝑞−1

+|𝑘3,max|2𝐾2
𝜑E sup

0≤𝑡≤𝑇
|𝑥𝑡|2𝑟−2) + E|𝑀𝑡|

≤ E| ln𝑥0|+ (|𝑘1,max|+ (|𝑘2,max|+ |𝑘3,max|2)𝐴1 + |𝑘3,max|2𝐾2
𝜑)𝑇

+
√︁
4E𝑀2

𝑇 < 𝐶,

where 𝐴1 is as in Lemma 2.4.14 and 𝑀𝑡 :=
∫︀ 𝑡

0
𝑘3(𝑠)𝑥

𝑟−1
𝑠 𝜑(𝑥𝑠) I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑊𝑠.

Now, we proceed as in Lemmata 2.4.6 and 2.4.10, to get P(𝜃𝑅 ≤ 𝑡) ↓ 0 as
𝑅 → ∞ and then conclude that P(𝑥𝑡 ≤ 0) ≤ 0, i.e. 𝑥𝑡 > 0 a.s.

C.5 Proof of Lemma 2.4.14.

In the case all 𝑥 are outside a finite ball of radius 𝑅 > 1, and 𝑠 ∈ [0, 𝑇 ] we
have that

𝐽(𝑠, 𝑥) =
𝑥(𝑘1(𝑠)𝑥− 𝑘2(𝑠)𝑥

𝑞) + (𝑝− 1)𝑘23(𝑠)[𝑥
𝑟𝜑(𝑥)]2/2

1 + 𝑥2

=
𝑘1(𝑠)𝑥

2 − 𝑘2(𝑠)𝑥
𝑞+1 + 0.5(𝑝− 1)𝑘23(𝑠)𝑥

2𝑟𝜑2(𝑥)

1 + 𝑥2
≤ 𝑘1,max,

where the the last inequality is valid for all 𝑝 > 2 and we have used 𝑞+1 > 2𝑟
and that 𝑞 is odd. Thus 𝐽(𝑠, 𝑥) is bounded for all (𝑠, 𝑥) ∈ [0, 𝑇 ] × R, since
when |𝑥| ≤ 𝑅 we have that 𝐽(𝑠, 𝑥) is finite, say 𝐽(𝑠, 𝑥) ≤ 𝐶. Application of
[Mao97, Th. 2.4.1] implies

E|𝑥𝑡|𝑝 ≤ 2(𝑝−2)/2(1 + E|𝑥0|𝑝)𝑒𝐶𝑝𝑡,
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for any 2 < 𝑝 and all 𝑡 ∈ [0, 𝑇 ]. Using Itô’s formula on |𝑥𝑡|𝑝, we have that

|𝑥𝑡|𝑝 = |𝑥0|𝑝 +
∫︁ 𝑡

0

𝑝

2

(︀
|𝑥𝑠|𝑝−2 + (𝑝− 2)|𝑥𝑠|𝑝−4𝑥2𝑠

)︀
[𝑘3(𝑠)𝑥

𝑟
𝑠𝜑(𝑥𝑠)]

2𝑑𝑠

+

∫︁ 𝑡

0

𝑝|𝑥𝑠|𝑝−2𝑥𝑠(𝑘1(𝑠)𝑥𝑠 − 𝑘2(𝑠)𝑥
𝑞
𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑝𝑘3(𝑠)|𝑥𝑠|𝑝−2𝑥𝑠𝑥
𝑟
𝑠𝜑(𝑥𝑠)𝑑𝑊𝑠

≤ |𝑥0|𝑝 + 𝑝

∫︁ 𝑡

0

[︂
𝑘1(𝑠)− 𝑘2(𝑠)(𝑥𝑠)

𝑞−1 +
𝑝− 1

2
𝑘23(𝑠)𝐾

2
𝜑(𝑥𝑠)

2𝑟−2

]︂
|𝑥𝑠|𝑝𝑑𝑠

+

∫︁ 𝑡

0

𝑝𝑘3(𝑠)𝜑(𝑥𝑠)|𝑥𝑠|𝑝(𝑥𝑠)𝑟−1𝑑𝑊𝑠⏟  ⏞  
𝑀𝑡

≤ |𝑥0|𝑝 + 𝐶

∫︁ 𝑡

0

|𝑥𝑠|𝑝𝑑𝑠+𝑀𝑡,

where we have used that 0 < 2𝑟 − 2 < 𝑞 − 1 and 𝑞 is odd. Taking the
supremum and then expectations in the above inequality we get

E( sup
0≤𝑡≤𝑇

|𝑥𝑡|𝑝) ≤ E|𝑥0|𝑝 + 𝐶E
(︂

sup
0≤𝑡≤𝑇

∫︁ 𝑡

0

|𝑥𝑠|𝑝𝑑𝑠
)︂
+ E sup

0≤𝑡≤𝑇
𝑀𝑡

≤ E|𝑥0|𝑝 + 𝐶

∫︁ 𝑡

0

E( sup
0≤𝑙≤𝑠

|𝑥𝑙|𝑝)𝑑𝑠+
√︂

E sup
0≤𝑡≤𝑇

𝑀2
𝑡

≤
(︂
E|𝑥0|𝑝 +

√︁
4E𝑀2

𝑇

)︂
𝑒𝐶𝑇 := 𝐴1,

where in the last step we have used Doob’s martingale inequality to the
diffusion term 𝑀𝑡

4 and the Gronwall inequality.

C.6 Proof of Lemma 2.4.17.

Set the stopping time 𝜃𝑅 = inf{𝑡 ∈ [0, 𝑇 ] : 𝑦𝑡 > 𝑅}, for some 𝑅 > 0, with the
convention that inf ∅ = ∞. Application of Itô’s formula on (𝑦𝑡∧𝜃𝑅)

𝑝, implies,

4 The function ℎ(𝑢) = 𝑝𝑘3(𝑢)𝜑(𝑥𝑢)|𝑥𝑢|𝑝𝑥𝑟−1
𝑠 belongs to the family ℳ2([0, 𝑇 ];R) thus

[Mao97, Th. 1.5.8] implies E𝑀2
𝑡 = E(

∫︀ 𝑡

0
ℎ(𝑢)𝑑𝑊𝑢)

2 = E
∫︀ 𝑡

0
ℎ2(𝑢)𝑑𝑢, i.e. 𝑀𝑡 ∈ ℒ2(Ω;R).
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(𝑦𝑡∧𝜃𝑅)
𝑝 = (𝑦0)

𝑝 +

∫︁ 𝑡∧𝜃𝑅

0

𝑝𝑘3(𝑠)(𝑦𝑠)
𝑝−1𝑦𝑟−1

𝑠 𝜑(𝑦𝑠)𝑦𝑠𝑑𝑊𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑝(𝑦𝑠)
𝑝−1(𝑘1(𝑠)− 𝑘2(𝑠)𝑦

𝑞−1
𝑠 )𝑦𝑠 +

𝑝(𝑝− 1)

2
(𝑦𝑠)

𝑝−2
[︀
𝑘3(𝑠)𝑦

𝑟−1
𝑠 𝜑(𝑦𝑠)𝑦𝑠

]︀2
𝑑𝑠

= (𝑥0)
𝑝 +

∫︁ 𝑡∧𝜃𝑅

0

(︂
𝑝(𝑘1(𝑠)− 𝑘2(𝑠)𝑦

𝑞−1
𝑠 ) +

𝑝(𝑝− 1)𝑘23(𝑠)

2
𝑦2𝑟−2
𝑠 𝜑2(𝑦𝑠)

)︂
(𝑦𝑠)

𝑝𝑑𝑠

+

∫︁ 𝑡∧𝜃𝑅

0

𝑝𝑘3(𝑠)𝑦
𝑟−1
𝑠 𝜑(𝑦𝑠)(𝑦𝑠)

𝑝𝑑𝑊𝑠

≤
∫︁ 𝑡

0

[︂
−𝑘2(𝑠)(𝑦𝑠)𝑞−1 +

𝑝− 1

2
𝑘23,max𝐾

2
𝜑𝑦

2𝑟−2
𝑠 + 𝑘1,max

]︂
(𝑦𝑠)

𝑝 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠

+(𝑥0)
𝑝 +𝑀𝑡

≤ (𝑥0)
𝑝 + 𝐶

∫︁ 𝑡

0

(𝑦𝑠)
𝑝 I(0,𝑡∧𝜃𝑅)(𝑠)𝑑𝑠+𝑀𝑡,

where we have used that 𝑞−1 > 2𝑟−2 > 1, the last inequality is valid for 𝑝 >
2, the constant 𝐶 is independent of𝑅 and𝑀𝑡 :=

∫︀ 𝑡∧𝜃𝑅
0

𝑝𝑘3(𝑠)𝑦
𝑟−1
𝑠 𝜑(𝑦𝑠)(𝑦𝑠)

𝑝𝑑𝑊𝑠.
Taking expectations and using that E𝑀𝑡 = 0 we get

E(𝑦𝑡∧𝜃𝑅)
𝑝 ≤ E(𝑥0)𝑝 + 𝐶

∫︁ 𝑡

0

E(𝑦𝑠∧𝜃𝑅)
𝑝𝑑𝑠

≤ E(𝑥0)𝑝𝑒𝐶𝑇 ,

where in the second step we have applied Gronwall’s inequality. We have
that

(𝑦𝑡∧𝜃𝑅)
𝑝 = (𝑦𝜃𝑅)

𝑝I(𝜃𝑅≤𝑡) + (𝑦𝑡)
𝑝I(𝑡<𝜃𝑅) = 𝑅𝑝I(𝜃𝑅≤𝑡) + (𝑦𝑡)

𝑝I(𝑡<𝜃𝑅),

thus taking expectations in the above inequality and using the estimated
upper bound for E(𝑦𝑡∧𝜃𝑅)𝑝 we arrive at

E(𝑦𝑡)𝑝I(𝑡<𝜃𝑅) ≤ E(𝑥0)𝑝𝑒𝐶𝑇

and taking limits in both sides as 𝑅 → ∞ we get that

lim
𝑅→∞

E(𝑦𝑡)𝑝I(𝑡<𝜃𝑅) ≤ E(𝑥0)𝑝𝑒𝐶𝑇 .

Fix 𝑡. The sequence (𝑦𝑡)𝑝I(𝑡<𝜃𝑅) is non-decreasing in 𝑅 since 𝜃𝑅 is increasing
in 𝑅 and 𝑡 ∧ 𝜃𝑅 → 𝑡 as 𝑅 → ∞ and (𝑦𝑡)

𝑝I(𝑡<𝜃𝑅) → (𝑦𝑡)
𝑝 as 𝑅 → ∞, thus the

monotone convergence theorem [Mao97, Th. 1.2.2] implies

E(𝑦𝑡)𝑝 ≤ E(𝑥0)𝑝𝑒𝐶𝑇 ,
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for any 2 < 𝑝. Following the same lines as in Lemma 2.4.14, i.e. using
again Itô’s formula on (𝑦𝑡)

𝑝, taking the supremum and then using Doob’s
martingale inequality on the diffusion term we obtain the desired result.
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We consider a partition of the time interval [0, 𝑇 ] with 0 = 𝑡0 < 𝑡1 <
... < 𝑡𝑁 = 𝑇 and discretization steps Δ𝑛 := 𝑡𝑛+1 − 𝑡𝑛 for 𝑛 = 0, . . . , 𝑁 − 1.
Moreover, we denote by Δ𝑊𝑛 := 𝑊𝑡𝑛+1−𝑊𝑡𝑛 the increments of the Brownian
motion. We show in the following subsections some numerical schemes for
the approximation of

𝑉𝑡 = 𝑉0 +

∫︁ 𝑡

0

(𝑘1 − 𝑘2𝑉𝑠)𝑑𝑠+

∫︁ 𝑡

0

𝑘3(𝑉𝑠)
𝑞𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ]

and make some brief comments on them. We also denote 𝑉𝑛 := 𝑉𝑡𝑛 .

D.1 Standard Euler-Maruyama scheme.

The explicit Euler-Maruyama (EM) scheme for the process (𝑉𝑡) is given by

(D.1.1) 𝑉 𝐸𝑀
𝑛+1 = 𝑉𝑛 + (𝑘1 − 𝑘2𝑉𝑛)Δ𝑛 + 𝑘3(𝑉𝑛)

𝑞Δ𝑊𝑛,

for 𝑛 = 0, . . . , 𝑁 − 1. Clearly P(𝑉𝑛+1 < 0|𝑉𝑛 > 0) > 0, thus the EM scheme
can produce negative values with positive probability, or in the notion of
[Sch96] we say that (D.1.1) has a finite life time.

Standard Milstein scheme.

The standard one dimensional Milstein (M) scheme contains some extra
terms derived by Itô-Taylor expansion [KP95, Sec. 5], and applied to (𝑉𝑡)
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reads

𝑉 𝑀
𝑛+1 = 𝑉𝑛+(𝑘1−𝑘2𝑉𝑛)Δ𝑛+𝑘3(𝑉𝑛)

𝑞Δ𝑊𝑛+
1

2
(𝑘3)

2𝑞(𝑉𝑛)
2𝑞−1

(︀
(Δ𝑊𝑛)

2 −Δ𝑛

)︀
,

for 𝑛 = 0, . . . , 𝑁 − 1 where we have retained terms of order (Δ𝑛). Again (M)
scheme has a finite life time.

D.2 Balanced Implicit Method.

The balanced implicit method (BIM) [MPS98, (3.2)] was the first attempt
to treat the problem of invariance-preserving of specific domains of the un-
derlying process and reads

𝑉 𝐵𝐼𝑀
𝑛+1 = 𝑉𝑛 + (𝑘1 − 𝑘2𝑉𝑛)Δ𝑛 + 𝑘3(𝑉𝑛)

𝑞Δ𝑊𝑛

+
(︀
𝑐0(𝑉𝑛)Δ𝑛 + 𝑐1(𝑉𝑛)|Δ𝑊𝑛|

)︀
(𝑉𝑛 − 𝑉𝑛+1),

for 𝑛 = 0, . . . , 𝑁 − 1, where 𝑐0 and 𝑐1 are appropriate weight functions. The
choice 𝑐0(𝑥) = 𝑘2 and 𝑐1(𝑥) = 𝑘3𝑥

𝑞−1 preserves positivity [KS06, Sec. 5].
Rearranging the above equation, we get the expression

𝑉 𝐵𝐼𝑀
𝑛+1 =

𝑉𝑛 + 𝑘1Δ𝑛 + 𝑘3(𝑉𝑛)
𝑞(Δ𝑊𝑛 + |Δ𝑊𝑛|)

1 + 𝑘2Δ𝑛 + 𝑘3(𝑉𝑛)𝑞−1|Δ𝑊𝑛|
.

D.3 Balanced Milstein Method.

The balanced Milstein method (BMM), was proposed in [KS06], for an im-
provement of the BIM in the stability behavior as well as in the rate of
convergence. It is given by the following linear implicit relation

𝑉 𝐵𝑀𝑀
𝑛+1 = 𝑉𝑛 + (𝑘1 − 𝑘2𝑉𝑛)Δ𝑛 + 𝑘3(𝑉𝑛)

𝑞Δ𝑊𝑛

+
1

2
(𝑘3)

2𝑞(𝑉𝑛)
2𝑞−1

(︀
(Δ𝑊𝑛)

2 −Δ𝑛

)︀
+
(︀
𝑑0(𝑉𝑛)Δ𝑛 + 𝑑1(𝑉𝑛)((Δ𝑊𝑛)

2 −Δ𝑛)
)︀
(𝑉𝑛 − 𝑉𝑛+1),

for 𝑛 = 0, . . . , 𝑁 − 1, where 𝑑0 and 𝑑1 are appropriate weight functions.
The choice 𝑑0(𝑥) = Θ𝑘2 +

1
2
(𝑘3)

2𝑞|𝑥|2𝑞−2, where Θ ∈ [0, 1] and 𝑑1(𝑥) = 0
implies an eternal life time for the scheme [KS06, Th. 5.9], in the sense that
P(𝑉𝑛+1 > 0|𝑉𝑛 > 0) = 1. The step sizes Δ𝑛 have to be such that Δ𝑛 <

2𝑞−1
2𝑞𝑘2(1−Θ)

. The relaxation parameter resembles to the implicitness parameter
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(𝜃 in our notation). For Θ = 1 there is no restriction in the step size, but it is
recommended when possible [KS06, Rem. 5.10] to takeΘ = 1/2. Rearranging
with the above specifications leads to

𝑉 𝐵𝑀𝑀
𝑛+1 =

𝑉𝑛 + (𝑘1 − (1−Θ)𝑘2𝑉𝑛)Δ𝑛 + 𝑘3(𝑉𝑛)
𝑞Δ𝑊𝑛 +

1
2
(𝑘3)

2𝑞(𝑉𝑛)
2𝑞−1(Δ𝑊𝑛)

2

1 + Θ𝑘2Δ𝑛 +
1
2
(𝑘3)2𝑞|𝑉𝑛|2𝑞−2Δ𝑛

.

Finally, the proposed semi-discrete (SD) scheme reads

𝑉 𝑆𝐷
𝑛+1 =

(︁√︃
𝑉𝑛

(︂
1− 𝑘2Δ

1 + 𝑘2𝜃Δ

)︂
+

𝑘1Δ

1 + 𝑘2𝜃Δ
− (𝑘3)2Δ

4(1 + 𝑘2𝜃Δ)2
(𝑉𝑛)2𝑞−1

+
𝑘3

2(1 + 𝑘2𝜃Δ)
(𝑉𝑛)

𝑞− 1
2Δ𝑊𝑛

)︁2
.

Increasing the time horizon 𝑇 results in an increase of the percentage of
negative paths of EM and M. On the other hand BIM, BMM and of course SD
are not affected by that, since they preserve their positivity on any interval
[0, 𝑇 ].
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E.1 Proof of Proposition 4.4.7.

For the first relation of (4.4.3) we have that

|𝐶𝜏 − ̃︀𝐶𝜏 | = 𝑒−𝑟𝑇 |E(𝑥𝑇 −𝐾)+ − E(𝑦𝑇 −𝐾)+|
≤ E

⃒⃒
(𝑥𝑇 −𝐾)+ − (𝑦𝑇 −𝐾)+

⃒⃒
≤ E|𝑥𝑇 − 𝑦𝑇 |
≤

√︀
E|𝑥𝑇 − 𝑦𝑇 |2 → 0 as Δ ↓ 0,(E.1.1)

by Theorem 4.2.2.
The other relations require a little more care. We will only sketch the

proof as one can follow [HM05, Th. 5.1], where the result is in the setting
of SODEs, nevertheless the main idea works also here. Therefore, setting
𝐴 := {0 ≤ 𝑥𝑡 ≤ 𝐵, 0 ≤ 𝑡 ≤ 𝑇} and ̃︀𝐴 := {0 ≤ 𝑦𝑡 ≤ 𝐵, 0 ≤ 𝑡 ≤ 𝑇}, we have
that,

|𝐵𝜏 − ̃︀𝐵𝜏 | ≤ 𝑒−𝑟𝑇E
⃒⃒
(𝑥𝑇 −𝐾)+I𝐴 − (𝑦𝑇 −𝐾)+I ̃︀𝐴⃒⃒

≤ E
(︀⃒⃒
(𝑥𝑇 −𝐾)+ − (𝑦𝑇 −𝐾)+

⃒⃒
I𝐴∩ ̃︀𝐴)︀+ E

(︀
(𝑥𝑇 −𝐾)+I𝐴∩ ̃︀𝐴𝑐

)︀
+E

(︀
(𝑦𝑇 −𝐾)+I𝐴𝑐∩ ̃︀𝐴)︀

≤ E
(︀
|𝑥𝑇 − 𝑦𝑇 |I𝐴∩ ̃︀𝐴)︀+ (𝐵 −𝐾)

(︁
P(𝐴 ∩ ̃︀𝐴𝑐) + P(𝐴𝑐 ∩ ̃︀𝐴))︁

≤
√︀

E|𝑥𝑇 − 𝑦𝑇 |2 + (𝐵 −𝐾)
(︁
P(𝐴 ∩ ̃︀𝐴𝑐) + P(𝐴𝑐 ∩ ̃︀𝐴))︁ ,(E.1.2)

where 𝑀 𝑐 denotes the complement of a set 𝑀. The estimation of the above
probabilities boils down to the estimation1 of E sup0≤𝑡≤𝑇 |𝑦𝑡 − 𝑥𝑡|2. Thus,

1 Details can be found in the proof of [HM05, Th. 5.1].
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using Theorem 4.2.2 one can show the second relation of (4.4.3).
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F.1 Boundary classification of one-dimensional
time-homogeneous SDEs.

Let us now recall some results [KS88, Sec. 5.5] concerning the boundary
behavior of SDEs of the form,

(F.1.1) 𝑑𝑋𝑡 = 𝑎(𝑋𝑡)𝑑𝑡+ 𝑏(𝑋𝑡)𝑑𝑊𝑡.

Let 𝐼 = (𝑙, 𝑟) be an interval with −∞ ≤ 𝑙 < 𝑟 ≤ ∞ and define the exit time
from 𝐼 to be

𝑆 := inf{𝑡 ≥ 0 : 𝑋𝑡 /∈ (𝑙, 𝑟)}.
Let also the coefficients of (F.1.1) satisfy the following conditions

𝑏2(𝑥) > 0, ∀𝑥 ∈ 𝐼, (Non Degeneracy), (ND),

∀𝑥 ∈ 𝐼, ∃𝜖 > 0 :

∫︁ 𝑥+𝜖

𝑥−𝜖

1 + |𝑎(𝑦)|
𝑏2(𝑦)

𝑑𝑦 <∞, (Local Integrability), (LI).

Then for 𝑐 ∈ 𝐼, we can define the scale function

(F.1.2) 𝑠(𝑥) :=

∫︁ 𝑥

𝑐

𝑒
−2

∫︀ 𝑦
𝑐

𝑎(𝑧)

𝑏2(𝑧)
𝑑𝑧
𝑑𝑦,

whose behavior at the endpoints of 𝐼 determines the boundary behavior
of (𝑋𝑡) [KS88, Prop. 5.22]. In particular, we get for the transformation
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𝜉(𝑋) = cos 𝜃 in Section 5.3.1, that the effective dynamics (5.3.9) have a
boundary behavior which is determined by the scale function

𝑠(𝑥) =

∫︁ 𝑥

𝑐

exp
{︀
2𝐶

∫︁ 𝑦

𝑐

−
𝑓(arccos 𝑧)

√
1− 𝑧2 + 1

𝛽
𝑧

2(1− 𝑧2)𝐶𝛽−1
𝑑𝑧
}︀
𝑑𝑦

=

∫︁ 𝑥

𝑐

exp
{︀∫︁ 𝑦

𝑐

−𝛽𝑓(arccos 𝑧)√
1− 𝑧2

+
𝑧

1− 𝑧2
𝑑𝑧
}︀
𝑑𝑦

=

∫︁ 𝑥

𝑐

exp
{︀∫︁ 𝑦

𝑐

− 𝛽𝑓(arccos 𝑧)√︀
(1− 𝑧)(1 + 𝑧)

+
1

2

1

1− 𝑧
− 1

2

1

1 + 𝑧
𝑑𝑧
}︀
𝑑𝑦,

for any 𝑥 ∈ 𝐼. Let 𝐼 = (−1, 1) and take 𝑐 = 0. We compute

𝑠(1−) =

∫︁ 1

0

1√︀
(1− 𝑦)(1 + 𝑦)

exp
{︀∫︁ 𝑦

0

− 𝛽𝑓(arccos 𝑧)√︀
(1− 𝑧)(1 + 𝑧)

𝑑𝑧
}︀
𝑑𝑦 = ∞,

and

𝑠((−1)+) = −
∫︁ 0

−1

1√︀
(1− 𝑦)(1 + 𝑦)

exp
{︀∫︁ 𝑦

0

− 𝛽𝑓(arccos 𝑧)√︀
(1− 𝑧)(1 + 𝑧)

𝑑𝑧
}︀
𝑑𝑦

= −∞,

thus by [KS88, Prop. 5.22a] we have that P(𝑆 = ∞) = 1 that is P(−1 <
𝜉𝑡 < 1) = 1.

F.2 Solution process of stochastic integral equation (5.2.1).

We will show that the process (5.2.3) for 𝑛 = 0, is the solution of the stochas-
tic integral equation (5.2.1) for 𝑛 = 0, that is

(F.2.1) 𝑦𝑆𝐷𝑡 = cos (−𝑐𝑊𝑡 + arccos(𝑌0)) ,

satisfies

𝑦𝑆𝐷𝑡 = 𝑌0 +

∫︁ 𝑡

0

(−𝑐
2

2
)𝑦𝑠𝑑𝑠+ 𝑐

∫︁ 𝑡

0

√︀
1− 𝑦2𝑠𝑑

̂︁𝑊𝑠,

for 𝑡 ∈ (0, 𝑡1], with

𝑌0 := |𝑥0 + 𝜑(𝑥0)
√︁

1− 𝑥20 ·Δ| ≤ 1.
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Relations (5.2.5) and (5.2.2) yield

𝑑̂︁𝑊𝑡 := sgn(𝑧𝑡)𝑑𝑊𝑡,

where
𝑧𝑡 = sin (−𝑐Δ𝑊 + arccos(𝑌0)) .

The cases for 𝑛 = 1, . . . , 𝑁 − 1 follow with the appropriate modifications.
We can write the increment of the Wiener process as

𝑑𝑊𝑡 = 0 · 𝑑𝑡+ 1 · 𝑑𝑊𝑡,

and view (F.2.1) as a function of 𝑊𝑡, i.e. 𝑦 = 𝑉 (𝑊 ) with

𝑑𝑦

𝑑𝑊
= − sin (−𝑐𝑊 + arccos(𝑌0)) · (−𝑐)

= 𝑐
√︀

1− 𝑦2sgn

(︂
sin (−𝑐𝑊 + arccos(𝑌0))

)︂
,

and

𝑑2𝑦

𝑑𝑊 2
= −𝑐2 cos (−𝑐𝑊 + arccos(𝑌0))

= −𝑐2𝑦.

Application of Itô’s formula implies

𝑑𝑦𝑡 =
1

2
𝑉

′′
(𝑊𝑡)𝑑𝑡+ 𝑉

′
(𝑊𝑡)𝑑𝑊𝑡

= −𝑐
2

2
𝑦𝑡𝑑𝑡+ 𝑐

√︀
1− 𝑦2𝑡 𝑑̂︁𝑊𝑡.
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SUMMARY OF NOTATION & ABBREVIATION

Ω State Space

R+ [0,∞)
I𝐴 Indicator of set 𝐴
{ℱ𝑡}𝑡≥0 Filtration

P Probability Measure on the measurable space (Ω,ℱ)
𝑊 (𝑡, 𝜔) or 𝑊𝑡(𝜔) or 𝑊𝑡 Wiener Process

ℒ𝑝([0, 𝑇 ];R𝑑) Family of all R𝑑-valued measurable, {ℱ𝑡}-adapted processes

𝜑 = {𝜑(𝑡)}0≤𝑡≤𝑇 such that
∫︀ 𝑇
0 |𝜑(𝑠)|𝑝𝑑𝑠 < ∞ a.s.

ℳ𝑝([0, 𝑇 ];R𝑑) Family of all processes 𝜑 ∈ ℒ𝑝([0, 𝑇 ];R𝑑) such that

E
∫︀ 𝑇
0 |𝜑(𝑠)|𝑝𝑑𝑠 < ∞

𝒞𝑙(𝐴;𝐵) Family of all continuous functions from 𝐴 to 𝐵 with

continuous derivatives up to order 𝑙
𝒢𝑎,𝑏 Generator corresponding to a SDE with drift coeffiicient 𝑎

and diffusion coefficient 𝑏.
𝐺𝑏 Noise operator corresponding to a SDE with diffusion

coefficient 𝑏.
𝑎𝑇 , 𝐴𝑇 Transpose of vector 𝑎 and matrix 𝐴
𝑥 ∨ 𝑦 The maximum of 𝑥, 𝑦

a.s. almost surely

cf. conferre≡compare
e.g. exempli gratia≡for example
i.e. id est≡that is
r.v. random variable

w.r.t. with respect to

Ch. Chapter

Def. Definition

Fig. Figure

Prop. Proposition

Rem. Remark

Sec. Section

Th. Theorem
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