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Abstract 
Recent advances in ICT are reshaping health systems and introducing new medical 

and care schemes with the development of novel tools that enable remote monitoring 

of patients and management of chronic conditions, timely response in emergency 

situations, and the delivery of healthcare to the patient’s site, while saving time, travel 

and other expenses. With the enormous costs associated with chronic disease 

management and the globally increasing ageing population, Ambient Assisted Living 

(AAL) technologies for unobtrusive monitoring and emergency incident detection 

(e.g. detection of falls), utilizing bio-sensors and devices such as video cameras, have 

started to gain significant attention. 

The main goal of context aware computing is to acquire and utilize information about 

the context of a device to provide services that are appropriate to particular people, 

place, time, events, etc. In the domain of patient remote care, context awareness refers 

to detection of patient status and appropriate adaptation of the medical services 

according to the latter status and environmental conditions. Despite the numerous 

implementations and proposals of telemedicine and e-health platforms found in the 

literature, only a few works include context awareness 

Motivated by this fact, this work proposes and examines the application of innovative 

technologies and methods for the introduction of context awareness and adaptation in 

AAL systems. More specifically, the presented work includes applications for patient 

fall detection utilizing motion, audio, and video data acquisition, scalable 

compression, retrieval and decompression of medical images, as well as presentation 

of patient data, on mobile devices, and management of pervasive healthcare data on 

the Cloud. Moreover, a context-aware framework that is independent of the 

applications used and the underlying network infrastructure is proposed. Issues and 

challenges stemming from the deployment of these technologies are also discussed 

and some possible solutions are proposed. 

 

 

 



Περίληψη 

Τα τελευταία χρόνια, η εξέλιξη του τοµέα των ΤΠΕ έχει αρχίσει να αναδιαµορφώνει 

τα συστήµατα υγείας και να δηµιουργεί νέα µοντέλα παροχής φροντίδας και 

περίθαλψης, βασισµένα σε εργαλεία που επιτρέπουν την παρακολούθηση και 

διαχείριση χρόνιων ασθενών από απόσταση, την έγκαιρη παρέµβαση σε καταστάσεις 

έκτακτης ανάγκης, καθώς και την παροχή φροντίδας στο χώρο του ασθενούς, 

µειώνοντας τις αποστάσεις, τον χρόνο και κατ’ επέκταση το κόστος. Λόγω της 

µεγάλης επιβάρυνσης που προκαλεί η διαχείριση χρόνιων νοσηµάτων στο σύστηµα 

υγείας, αλλά αυξανόµενης γήρανσης του πληθυσµού παγκοσµίως, οι τεχνολογίες για 

την ανεξάρτητη υποβοηθούµενη διαβίωση, οι οποίες επιτρέπουν τη διακριτική 

παρακολούθηση του ασθενή και την αυτόµατη ανίχνευση δυνητικά επικίνδυνων 

καταστάσεων (π.χ. ανίχνευση πτώσεων) µέσω βιοαισθητήρων και συσκευών όπως 

βιντεοκάµερες, έχουν εξελιχθεί σε σηµαντικό πεδίο έρευνας. 

Η επίγνωση πλαισίου (context awareness) στις τεχνολογίες πληροφορικής αφορά τη 

λήψη και αξιοποίηση δεδοµένων µέσω συσκευών, µε στόχο την παροχή υπηρεσιών 

προσαρµοσµένων κατάλληλα για συγκεκριµένο χρήστη, χρόνο, τόπο, κλπ. 

Ειδικότερα, στο πλαίσιο της τηλεφροντίδας ασθενών, επίγνωση πλαισίου σηµαίνει 

ανίχνευση της κατάστασης του ασθενή και κατάλληλη προσαρµογή των υπηρεσιών 

φροντίδας µε βάση αυτή την κατάσταση, αλλά και τις συνθήκες του περιβάλλοντός 

του. Παρά τον µεγάλο αριθµό συστηµάτων τηλεϊατρικής και ηλεκτρονικής υγείας 

που έχουν προταθεί και υλοποιηθεί, ελάχιστα ενσωµατώνουν την έννοια της 

επίγνωσης πλαισίου. 

Η παρούσα διατριβή εξετάζει την εφαρµογή καινοτόµων τεχνολογιών και πρακτικών 

για την ενσωµάτωση της επίγνωσης πλαισίου σε συστήµατα ανεξάρτητης 

υποβοηθούµενης διαβίωσης. Πιο συγκεκριµένα, παρουσιάζονται εφαρµογές για την 

ανίχνευση πτώσεων αξιοποιώντας δεδοµένα κίνησης, εικόνας και ήχου, για την 

συµπίεση ιατρικών εικόνων και την προβολή αυτών και άλλων ιατρικών δεδοµένων 

σε κινητές συσκευές, καθώς και για τη διαχείριση ιατρικών δεδοµένων στο Cloud. 

Επιπλέον, προτείνεται µια context-aware αρχιτεκτονική, ανεξάρτητη από τις 

τεχνολογίες που χρησιµοποιούνται. Τέλος, παρατίθενται κάποια ανοιχτά ζητήµατα 

που προκύπτουν από την εφαρµογή των παραπάνω τεχνολογιών, µαζί µε κάποιες 

πιθανές λύσεις.  
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1. Introduction	

In this era of ubiquitous and mobile computing the vision in biomedical informatics is 

towards achieving two specific goals: the availability of software applications and 

medical information anywhere and anytime and the invisibility of computing [1]. 

Both aforementioned goals lead to the introduction of pervasive computing concepts 

and features in e-health applications. Applications and interfaces that will be able to 

automatically process data provided by medical devices and sensors, exchange 

knowledge and make intelligent decisions in a given context are strongly desirable. 

Natural user interactions with such applications are based on autonomy, avoiding the 

need for the user to control every action, and adaptivity, so that they are 

contextualized and personalized, delivering the right information and decision at the 

right moment [2]. All the above pervasive computing features add value in modern 

pervasive e-healthcare systems. 

It is well known that the proportion of elderly people has kept increasing since the end 

of last century. The European overview report of Ambient Assisted Living (AAL) 

investigated this trend. Studies of EUROSTAT [1] have indicated that: “The share of 

the total European population (EU 15) older than 65 is set to increase from 16.3% in 

2000 to 22% by 2025 and 27.5% by 2050. The share of the population aged over 80 

years (3.6% in 2000) is expected to reach 6% by 2025 and 10% by 2050”. Studies of 

Counsel and Care in the UK have found out that these elderly people would prefer to 

live in their own house rather than in hospitals, thus they need support to remain 

independent at their home [4] . 

In order to maintain their independency, elderly people need support and help. The 

call for medical treatment should be provided from professionals in hospitals and their 

relatives, while friends and neighbors normally provide the call for social activities. 

The situation in real-life is that families and friends are not necessarily located nearby, 

but sometimes live far away. In order to provide help, timely and cost-effectively, 

especially in emergency situations, the best solution seems to resort to help from their 

neighbors. Neighbors are adequate for the task of social activities; they are close to 

the caller and thus their help could be more timely provided. Furthermore, these 

interactions could increase harmony within the community. To avoid or eliminate the 



human factor effect, it is necessary to create a fully integrated automated and 

commercial system, which could acquire the data from sensors, check them in, sort 

them out, and inform the appropriate person (doctor, relatives or neighbor). 

Simultaneously, it should actuate available alarm systems, such as horn or lights. In 

general, Ambient Assisting Living (AAL) would be a system that meets the above 

specifications.  

Providing at home health assistance through pervasive sensor network and other 

technologies remains a big challenge because of the heterogeneity of devices, network 

systems and health policies. Extending this work to providing human support to the 

outdoors, in an urban or other setting, presents even bigger challenges, as the outside 

of the home environment is not predetermined, cannot be controlled or easily 

monitored. The technologies that can help are restricted to monitoring the individual 

through mobile sensors and through public transportation designs that anticipate 

different types of users interacting. These users might need assistance and others 

might not. Any technologies involved must be minimally intrusive to the first group 

and not affect the second group.  

2. Scope	

2.1. Motivation	

A number of telemedicine applications exist nowadays, providing remote medical 

action systems (e.g., remote surgery systems), patient telemonitoring facilities (e.g., 

homecare of chronic disease patients), and transmission of medical content for remote 

assessment [143][146], [152]. Such platforms have been proved significant tools for 

the optimization of patient treatment offering better possibilities for managing chronic 

care, controlling health delivery costs and increasing quality of life and quality of 

health services in underserved populations. Collaborative applications that allow the 

exchange of medical content (e.g., a patient health record) between medical experts 

for educational purposes or for assessment assistance are also considered of great 

significance.  



Due to the remote locations of the involved actuators, a network infrastructure (wired 

and/or wireless) is needed to enable the transmission of the medical data. The 

majority of the latter data is usually medical images and/or medical video related to 

the patient. Thus, telemedicine systems cannot always perform in a successful and 

efficient manner; Issues, like large data volumes (e.g., video sequences or high quality 

medical images), unnecessary data transmission occurrence and limited network 

resources can cause inefficient usage of such systems [148] [155]. In addition, wired 

and/or wireless network infrastructures often fail to deliver the required quality of 

service (e.g., bandwidth requirements, minimum delay and jitter requirements) due to 

network congestion and/or limited network resources.  

Appropriate content coding techniques (e.g., video and image compression) have been 

introduced in order to assess such issues [194], however the latter are highly 

associated to specific content type and cannot be applied in general. Additionally, 

they do not consider the underlying network status for appropriate coding and still 

cannot resolve the case of unnecessary data transmission. Scalable coding and 

context-aware medical networks can overcome the aforementioned issues, through 

performing appropriate content adaptation. 

2.2. Objectives	

Following a thorough study of related state-of-the-art works, the main objectives of 

this PhD thesis are: 

• To describe the design of a non-invasive patient status awareness system that 

may be used for patient activity interpretation and emergency recognition in 

cases like elder falls. 

• To propose innovative methods for transmission and presentation of medical 

images and pervasive health data over mobile devices and address the 

challenges of data management, interoperability, security, privacy and 

ubiquitous access by exploiting the offerings of Cloud Computing. 

• To introduce a Context-Awareness Framework that is adaptive to the patient’s 

status and the underlying network conditions. 



2.3. Roadmap	

The remainder of the dissertation is structured in five chapters, as follows: Chapter 3 

provides a literature review and related works. Chapter 4 examines state-of-the-art in 

patient status recognition and telemedicine services. Chapter 5 presents the work that 

has been carried out. Chapters 6 and 7 contain a discussion of open issues and 

conclusions on the thesis’ concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Related	Work	–	State	of	the	Art	

3.1. Ambient	Assisted	Systems	Overview	

Recent work on the design of digital city frameworks discusses issues such as how to 

create technologically supported environments that provide assistance to the elderly 

or persons in need of public access support. Discussions also center around 

technologies that lead to “intelligent” cities, with a pool of strategies, the ability to 

collect and transform collected information and knowledge into decision making, 

privacy-preserving virtual health clusters, social networks of e-communities, and the 

seamless integration of physical and virtual spaces (cyberphysical systems [1], [6]). 

One type of support is through the use of personal digital assistants (PDAs) to 

monitor patients and test results [8], [9]. Social support projects include projects such 

as in [7]. This European Union-funded project, called PlayMancer, utilizes 3D 

networked games to improve people's health.  

In another project in the UK [219], a sensing system is used to help persons with 

dementia, with monitoring technologies that survey a person's movements, provide 

voice prompts and actively take part in managing appliances. The goal of this system 

is to help people with dementia to live on their own. Extending such a system to an 

urban environment would be extremely challenging.  

At the Heracleia Human Centered Computing Lab, researchers are developing 

monitoring tools that take as input a plethora of heterogeneous data in both discrete 

and continuous format and produce “events” that summarize or evaluate the situation 

about a person living at home. This event-driven environment predicts cases of risk 

that may come up as it learns from the person’s usual behavior. It uses advanced 

computation methods to fuse information and combine it with domain expertise as to 

what is important to look out for. It is an environment that also allows communication 

among different types of sensors in a wireless networking infrastructure [10]. Among 

the tools being developed are SW to have robots assist through voice recognition, 

interfaces that provide customized notices and training, and the ability to detect pain 

or depression from facial expressions. The Heracleia apartment resides within the 

laboratory and includes team projects such as the Smart Drawer RFID project [220], 



designed to track whether the correct medication is taken at the right time, and its 

impact on behavior afterwards. 

Ambient Assisted Living (AAL) technologies aim at enabling independence in the old 

age with the support of advanced technologies. In AAL, accessibility, usability and 

learning play a major role in the emerging digital cities area, to enable citizens with 

specific demands, e.g. handicapped, chronic patients or elderly to live in congenial 

environments for longer [11]. Ambient home care systems (AHCS) are specially 

designed for this purpose; they aim at minimizing the potential risks that living alone 

may suppose for an elder, relying on their capability of gathering user related data, 

inferring information about their activity and state and taking decisions on the user’s 

potential demands. 

In [13], David Hanak et al. describe a mobile Ambient Assisted Living (AAL) 

solution designed to meet the requirements of modern health services in caring for, 

monitoring and motivating the elderly in their own environment. The solution goes 

beyond the function of classical telemonitoring, by delivering integrated functionality 

that includes health management, mental monitoring, mood assessment as well as 

physical and relaxation exercises. In addition, they provide communication and 

delivery services in a location-based manner, using built in GPS, WiFi and 3G mobile 

connectivity. Bluetooth compatible blood pressure and body weight measurement 

devices are complemented with a body-mounted wireless physiological sensor to 

monitor activity, body temperature and stress. Telemetric data is continuously 

recorded on a local host computer while simultaneously being also sent to a central 

database, where a rule-based system or monitoring health personnel may make 

emergency assessment.  

Suzanne Kieffer et al. in [221] present the Keep-In-Touch project, which aims at 

developing an integrated Ambient Assisted Living (AAL) solution, assisting and 

monitoring elderly people in their daily-life activities, supporting personal autonomy 

and well-being and maintaining social cohesion. The focus of this effort is the 

integration of interactive user modeling, the benefit of the combination of user-

centered development method and fast prototyping implementation, in order to 

develop a solution which fits the end-user. The key elements to achieve this goal are 

multimodality, accessibility, adaptability to user profile and changes and usability. 



The final product integrates a set of media and sensors: a touch screen, a microphone, 

and hear phones (media); accelerometers, force sensors, thermometers and radars 

(sensors). Therefore, the end-user interacts with the system thanks to different (input) 

modalities: speech, hand gestures on the touch screen, movements and posture (i.e., 

gait or posture patterns captured by the sensor network). At the same time, the 

information from the system to the end-user is conveyed via different (output) 

modalities: vocal messages, standard graphical display on the screen and alarms. Such 

a system could be multimodal. The OpenInterface Kernel is a component-based 

software platform dedicated to multimodal application rapid prototyping, using 

heterogeneous components [222]. The Kernel is implemented in C++ to optimize 

performance, as well as to benefit from existing C++ bindings available for other 

languages. 

The benefit of the aforementioned approaches is the early attention paid to end-users 

and system usability. Furthermore, the two combinations seem to provide a good 

mean to address challenges such as accessibility, adaptability, and usability. The 

OpenInterface Platform is an adequate solution to support the rapid prototyping of 

multimodal systems. However, as they require a substantial amount of collected data 

during training, communication robustness, further sensors and the availability of 

representative users, effectors and stakeholders may consist an obstacle to its 

implementation.  

A novel approach of an ontology-centered design in order to create an Ambient 

Middleware as a reliable, deterministic and economically scalable component is 

described in [223] by Michael Klein et al. This is developed within the framework of 

the EU-funded project SOPRANO, aiming to assist older Europeans in living a more 

independent life at their homes. The core of the system in each house is the 

SOPRANO Ambient Middleware (SAM), which receives the user commands and 

sensor inputs, enriches them semantically and triggers appropriate reactions via 

actuators in the house. The starting point is the development of a context ontology, 

focusing on the concept of a state. This OWL-Lite ontology is then used as a central 

reference document during the design process, as well as during runtime, to abstract 

from concrete sensor inputs and actuator outputs. Planned are sensors for e.g. smoke, 

temperature, door status, location of the user by Radar or RFID, their health status and 

so on. Planned actuators are speech synthesizers, digital TVs with avatars, device 



regulators (for switching devices on/off or modifying their behavior), emergency calls 

to a central and more. Additionally, the more static context of the house and the user 

shall be taken into consideration when performing concrete actions. One major goal 

of SOPRANO will be to infer high-level context from low-level sensor input, detect 

important context changes (events), determine which rules fire, and break the initiated 

high-level plans down to concrete actions to be executed via service calls.  

 

Figure 3.1.1 Organization of Mutual Assistance Community [12] 

SOPRANO, as an integrating project, builds upon a body of research on the subject of 

smart homes and ambient assisted technologies. Some recent examples in the domain 

are the DAIDALOS project [224] or the AMIGO project [225]. The main difference 

of the SOPRANO approach is that it brings together a service-oriented approach like 

[226] with ontologies on an architectural level. The evaluation of the developed 

concepts of the SOPRANO project is expected.  

In [227], Eric Ras et al. list the current research challenges for telehealth systems 

from an engineering perspective and show how they approach the challenges by 

means of an assisted living laboratory for engineering and evaluation purposes. 

Necessary qualities like availability, robustness, extensibility, safety, security, 

timeliness, adaptivity, natural anticipatory human-computer interaction, resource 

efficiency and heterogeneity are taken into account. The BelAmI Assisted Living 

Laboratory (AL-Lab) is located at the Fraunhofer IESE in Kaiserslautern, Germany 

and consists of a 60m² apartment with living-, sleeping-, bath room, and kitchen. The 

AL-Lab plays a central role in performing research and development in the domain of 



assisted living and telehealth: real-life prototypes, integration of heterogeneous 

technologies, gathering of different data sets at the same time and location, analysis 

and testing of technical solutions, and providing measuring facilities. The 

demonstrator developed in the AL-Lab is called amiCA (ambient intelligent Care and 

Assistance system). The aim of amiCA is to support elderly so that they can live 

longer in a self-determined way in their usual environment.  

Plenty of researchers have dealt with theoretical analysis of Ambient Assisted Living. 

Other researchers have explicated parts of AAL, such as data acquisition or signal 

processing. A number of context-aware services (heart rate monitoring, medication 

prompting, generation of agenda reminders, weather alerts, emergency notifications, 

etc.) for the elder and his caregivers are presented in [228]. They run on the top of an 

Ambient Home Care System (AHCS), which collects data from a network of 

environmental, health and physical sensors. The AHCS follows a layered fusion 

architecture, formed by an in-home developed context acquisition framework and a 

context manager (customized on the Context Toolkit) that holds the inference and 

reasoning functionalities. On the deployed prototype, Ana Hristova et al. [228] 

analyze the suitability of the selected technical approach for ambient assisted living 

applications. Lower levels of context acquisition are performed by an in-home 

developed framework (CASanDRA), which provides us with some reusable 

acquisition services (such as positioning or ambient sensors handling). Upper levels 

of the acquisition procedure are implemented using the Context Toolkit. Widgets and 

aggregators implement the logic needed to build context features. For example, an 

aggregator called BUserPosition implements the fusion algorithms that decide the 

most accurate position estimate from the different CASanDRA location services 

(which are capable of obtaining WiFi, ZigBee and RFID-NFC positioning estimates). 

Apart from that, the Context Toolkit manages the requests for information the 

applications have. It also holds the reasoning procedure that triggers the applications 

and activates the notifications through SMS that are sent to the elder when needed. On 

it, it has been built the application interface for the caregiver. In order the system to 

work properly, the elder must carry a wireless device (in particular a PDA with WiFi 

and Bluetooth connectivity and an NFC SD-slot reader), both to enable the acquisition 

of context data and to communicate with the assisted person. In order to gather 

biometrical data, it is also necessary for the user to have a heart monitor. To enable 



some types of positioning algorithms, carrying a ZigBee sensor (mote) is needed. The 

logic infrastructure is supported by an applications’ container (Apache Tomcat), 

which encapsulates the processing of the data that the widgets deliver to the 

application, and several databases (MySQL) to store the information needed. A 

wireless communication network connected to the wide area network (WAN) is also 

needed. The system is wholly implemented in Java and XML interfaces are used for 

communication. 

A design drawback in the system is the patient’s need of carrying multiple devices 

with him: a heart rate monitor, a PDA or other mobile device with an NFC (RFID) 

reader, a sensor for measuring the signal strength from the other static motes. This is 

not a realistic approach if this system is to be deployed for a testbed with real users. 

Therefore, integrating some of these technologies and minimizing the burden to the 

user of consciously carrying several devices, is something to be further explored. 

In [229], B. O’Flynn et al. discuss the development, design characterization and test 

of a miniaturised wireless, wearable blood pressure and ECG (electrocardiography) 

monitor developed at the Tyndall National Institute for medical applications. This 

wireless platform is incorporated with the Data Management System (DMS) 

architecture, which aims to optimize accurate data delivery within a Wireless Sensor 

Network (WSN) medical environment. Good data management infrastructures within 

a medical environment help improve productivity levels for medical practitioners, and 

can improve patient diagnosis. The Tyndall25 hardware platform is a 25mm x 25mm 

stackable developmental platform designed to be modular in nature and to be suitable 

for a variety of WSN applications. Layers can be combined in an innovative and 

robust plug and play fashion and include communications (a selection of ISM band 

2.4 GHz transceivers), processing (a low power consumption 8-bit micro-controller 

with 128kB of program memory) and a variety of sensing interconnect, sensor layers 

and power supply layers. This provides application specific solutions for WSN 

systems. An embedded antenna is integrated into the system to enable the 25mm form 

factor. The power layer may include a number of energy supply / harvesting methods 

i.e. vibration, electromagnetic fields, solar cells or piezo-electric power generating 

mechanisms Ambient-intelligence (AmI) systems raise a series of new challenges in 

software and system development: Mobility, adaptability and heterogeneity are new 

concerns that have to be addressed. Many of these concerns are common and 



therefore should be addressed by a common AmI infrastructure instead of each 

individual application. The primary role of the DMS is to provide mobile medical 

practitioners with accurate data delivery within a wireless passive sensor network 

(WPSN). Pervasive medical environments require intelligent management of patient 

data. The software agents work in three logical layers: data collection, data correlation 

and data presentation. Their primary task is to handle and present data in the required 

format while ensuring that all context and situation derived data are taken into 

account. DMS consumes data from a number of input streams (e.g. PDA, patient 

module), and it correlates this data checking certain explicit relationships. Data 

communication is facilitated through agents over a Wi-Fi network. 

Future developments of the DMS architecture will incorporate data consistency 

models to ensure all medical practitioners are viewing up-to-date data sources. 

Techniques for validation of communication and sensor readings techniques need to 

be developed to ensure that relevant and accurate data is transmitted within an 

ambient medical environment. 

A reference architecture for AAL systems and propose of a development toolbox to 

simplify the implementation of such systems using a Model Driven Software 

Development (MDSD) approach is presented in [230] from Werner Kurschl et al. The 

context-processing tier provides persistent storage for context data. Moreover, it 

derives high-level context (situations) from low-level context (raw context data from 

the sensors) using feature extraction, machine learning, and pattern recognition 

algorithms. These high-level context data, if described in terms of an ontology, are the 

foundation for situation awareness. Reasoning on situations permits to assess 

situations and predict future developments (situation evolution).  

In [231], Michalis Anastasopoulos et al. have proposed a reference middleware 

architecture for Ambient Intelligence Applications. A series of services have been 

discussed and a bottom-up approach for the development of such a middleware 

infrastructure, which allows for easy customization to different hardware topologies, 

has been elucidated. Moreover, the tailoring support with respect to the hardware 

nodes available in a given situation has been outlined. The work presented here is 

currently in an initial phase. The next activities planned subsume the proof of concept 

through the prototypical implementation (e.g. with CORBA or OSGi) of the 



middleware platform along with the refrigerator application. The latter is to be 

extended soon with additional use-cases regarding context-sensitivity (e.g. the item 

information service can adapt expiry dates according to the temperature). Apart from 

that the request for adaptability will be investigated by the introduction of a variability 

service, which will supplement the dynamic integration service by managing the 

variability of computing nodes at run-time. Finally, the long-term plans include the 

enrichment of the platform with additional services like security as well as the 

investigation of safety concerns. 

An overview on assisted technology in elderly care is also given in [232]. It addresses 

video-monitoring, remote health monitoring, electronic sensors, and equipment such 

as fall detectors and door monitors. Toshiba has two teams working on "home life 

support robots" designed to aid Japan's aging population [1]. Japan's population 

growth is near zero and its citizens' average age is climbing rapidly. The assumption 

is that by 2050, there will be not enough kids care for their aging relatives.  

The objective of the PHMon (Personal Health Monitoring System with Microsystem 

Sensor Technology) project [233] has been the development of the world's first 

Personal Health Monitoring System, which allows measuring all of a patient's 

relevant vital parameters either continuously or at determined time intervals without 

restricting the patient’s mobility. The system enables the patient to spend much more 

time at home during examination, treatment, and rehabilitation periods compared to 

the ordinary procedures, which leads to an immense cost reduction for in-hospital 

treatments. Starting in 1993, the Technology Initiative for Disabled and Elderly 

People (TIDE) has promoted research and technological development to meet social 

and industrial goals, stimulating a single market in Assisted Technology in Europe, to 

facilitate the socio-economic integration of disabled and elderly people [234]. Within 

the 6th Framework Programme, the EU has funded research and development of 

Ambient Assisted Living (AAL) solutions for the Aging Society [235]. Established in 

2003, the Center for Aging Services Technologies (CAST) [236] has become a 

national coalition of more than 400 technology companies, aging services 

organizations, research universities, and government representatives working together 

under the auspices of the American Association of Homes and Services for the Aging 

(www.aahsa.org).  



Finally, the BelAmI (Bilateral German-Hungarian Collaboration Project on Ambient 

Intelligent Systems) project [230] aims at developing innovative technologies and 

system development methods in the area of Ambient Intelligence. One of the 

addressed application domains is assisted living. In this context, the researchers 

devise integrated methods that can be used to develop assisted living solutions with 

the characteristic requirements, i.e., adaptivity, dependability, interoperability, 

resource efficiency, safety & security, and usability in a goal-oriented way [237]. An 

overview of the aforementioned Ambient Assisted Systems is provided in the 

following Table. 

 

Table 3.1.1 Overview of Ambient Assisted Systems 

Reference Technologies utilized Provided Features 

[1], [6], 

[32] 

Intelligent knowledge 

processing, Knowledge Bases, 

Decision making 

Social networks of e-communities, 

virtual spaces and social support 

enabling communication and 

interaction between the elderly 

[8], [9] Sensors and PDAs Monitoring the physical status of 

patients 

[238] Sensing system (person’s 

movements) 

Help persons with dementia 

[10], [12] Sensor technologies 

(biosignals, voice recognition, 

facial expressions, RFID 

tools) 

Evaluate patient status and state at 

home, provide interfaces for 

interaction, assist medication 

[11] Sensor technologies, Decision 

making 

Ambient Home Care System 

[13] Mobile sensors, mobile 

devices, advanced user 

Health management, mental 

monitoring, mood assessment as well 



interfaces as physical and relaxation exercises 

[221] Media and sensors: a touch 

screen, a microphone, and 

hear phones (media); 

accelerometers, force sensors, 

thermometers and radars 

Monitoring elderly people in their 

daily-life activities, supporting personal 

autonomy and well-being, and 

maintaining social cohesion 

[223] Ontologies and intelligent 

reasoning, sensors detecting 

context changes (light sensors, 

RFID sensors) 

Assist older Europeans in living a more 

independent life at their homes 

[227] Environmental, health and 

physical sensors 

Support elderly that they can live 

longer in a self-determined way in their 

usual environment 

[228] Fusion algorithms, location 

services, wireless devices 

Suite of ambient assisted living 

applications 

[229] Wireless Sensor Networks Development, design characterization 

and test of a miniaturized wireless, 

wearable blood pressure and ECG 

monitor 

[231] CORBA and other middleware 

technologies 

Reference middleware architecture for 

Ambient Intelligence Applications 

[5] Robotic systems Home life support robots 

[233] Mobile sensor Technologies Personal Health Monitoring System, 

which allows measuring all of a 

patient's relevant vital parameters either 

continuously or at determined time 

intervals without restricting the 

patient’s mobility 



[230] Ambient Intelligence 

Technologies 

Develop assisted living solutions with 

the characteristic requirements, i.e., 

adaptivity, dependability, 

interoperability, resource efficiency, 

safety & security, and usability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. A	 Context	 –	 aware	 Architecture	 for	 Patient	 status	
recognition	and	Telemedicine	Services	

Monitoring of patient status involves the acquisition of data related both to user’s 

environment and the physical status: Various monitoring devices collecting visual 

data, motion and sound (e.g., cameras and microphones) or evaluating patient entries 

in specific areas (e.g., infrared and RFID) can be utilized in indoor environments. On 

body sensors like EEG (electroencephalograph), temperature, EEG and motion 

analysis sensors provide an estimation concerning the health state of the individual. 

All acquired data are transmitted to the monitoring unit utilizing wireless technologies 

like WiFi, Bluetooth, ZigBee and 3G. 

 

 

Figure 3.1.1 Basic Architecture for Ambient Assisted Systems 



The monitoring unit in a typical AAL system consists of several processing modules 

(e.g., context awareness, data processing, user modeling and data management 

modules) that generate estimations regarding the patient’s status and content related to 

the latter (e.g., suggestions to the users). Proper interfaces, either web based or 

standalone, enable the remote access to the acquired data and forward patient status 

estimations to caregivers and/or medical personnel. 

4.1. Patient	Data	Acquisition	

4.1.1. Biosignals	

A broad definition of a signal is a ‘measurable indication or representation of an 

actual phenomenon’, which in the field of biosignals, refers to observable facts or 

stimuli of biological systems or life forms. In order to extract and document the 

meaning or the cause of a signal, a physician may utilize simple examination 

procedures, such as measuring the temperature of a human body or have to resort to 

highly specialized and sometimes intrusive equipment, such as an endoscope. 

Following signal acquisition, physicians go on to a second step, that of interpreting its 

meaning, usually after some kind of signal enhancement or ‘pre-processing’, that 

separates the captured information from noise and prepares it for specialized 

processing, classification and decision support algorithms.  

Biosignals require a digitization step in order to be converted into a digital form. This 

process begins with acquiring the raw signal in its analog form, which is then fed into 

an analog-to-digital (A/D) converter. Since computers cannot handle or store 

continuous data, the first step of the conversion procedure is to produce a discrete-

time series from the analog form of the raw signal. This step is known as ‘sampling’ 

and is meant to create a sequence of values sampled from the original analog signals 

at predefined intervals, which can faithfully reconstruct the initial signal waveform. 

The second step of the digitization process is quantization, which works on the 

temporally sampled values of the initial signal and produces a signal, which is both 

temporally and quantitatively discrete; this means that the initial values are converted 

and encoded according to properties such as bit allocation and value range. 

Essentially, quantization maps the sampled signal into a range of values that is both 



compact and efficient for algorithms to work with. The most popular biosignals 

utilized in pervasive health applications [1], [15], [16], [19], [20], [26], [27], [30], 

[31], [37] are summarized in the table below. 

Table 4.1.1 Broadly used biosignals with corresponding metric ranges, number 
of sensors required and information rate 

Biomedical Measurements 

(Broadly Used Biosignals) 

Voltage range 

(V) 

Number of 

sensors  

Information 

rate (b/s) 

ECG 0.5-4 m 5-9 15000 

Heart sound Extremely small 2-4 120000 

Heart rate 0.5-4 m 2 600 

EEG 2-200 µ 20 4200 

EMG 0.1-5 m 2+ 600000 

Respiratory rate Small 1 800 

Temperature of body 0-100 m 1+ 80 

 
In addition to the aforementioned biosignals, patient physiological data (e.g., body 

movement information based on accelerometer values), and context-aware data (e.g., 

location, environment and age group information) have also been used by pervasive 

health applications (1, 17, 15, 16, 18, 21, 22, 23, 29, 31, 33, 38). The utilization of the 

latter information is discussed in the following sections. 

In the context of pervasive healthcare applications, the acquisition of biomedical 

signals is performed through special devices (i.e. sensors) attached on the patient’s 

body (see Figure 4.1.1) or special wearable devices (see Figure. 4.1.2). The 

transmission of the collected signals to the monitoring unit is performed through 

appropriate wireless technologies discussed in Section 2.2. Regarding the contextual 

information, most applications are based on data collected from video cameras, 

microphones, movement and vibration sensors  



 

Figure 4.1.1 Accelerometer, gyroscope, and electromyogram (EMG) sensor for 
stroke patient monitoring [39] 

   

     (a)                                     (b) 

Figure. 4.1.2 Wearable medical sensor devices: (a) A 3-axis accelerometer on a 
wrist device enabling the acquisition of patient movement data [39], (b) A ring 
sensor for monitoring of blood oxygen saturation [28] 

4.1.2. Location	Based	Technologies	

Positioning of individuals provides healthcare applications with the ability to offer 

services like supervision of elderly patients or those with mental illnesses who are 

ambulatory but restricted to a certain area. In addition, assisted care facilities can use 

network sensors and radiofrequency ID badges to alert staff members when patients 

leave a designated safety zone. Network or satellite positioning technology also can 

be used to quickly and accurately locate wireless subscribers in an emergency and 

communicate information about their location. Proximity information services can 

direct mobile users to a nearby healthcare facility. Location-based health information 

services can help find people with matching blood types, organ donors, and so on. A 

more extensive list of location-based health services can be found in [174]. 



Positioning techniques can be implemented in two ways: Self-positioning and remote 

positioning. In the first approach, equipment that the user uses (e.g., a mobile terminal, 

or a tagging device) uses signals, transmitted by the gateways/antennas (which can be 

either terrestrial or satellite) to calculate its own position. More specifically, the 

positioning receiver makes the appropriate signal measurements from geographically 

distributed transmitters and uses these measurements. Technologies that can be used 

are satellite based (e.g., the Global Positioning System (GPS) and assisted-GPS), or 

terrestrial infrastructure-based (e.g., using the cell id of a subscribed mobile terminal). 

The second technique is called remote positioning. In this case the individual can be 

located by measuring the signals traveling to and from a set of receivers. More 

specifically, the receivers, which can be installed at one or more locations, measure a 

signal originating from, or reflecting off, the object to be positioned. These signal 

measurements are used to determine the length and/or direction of the individual radio 

paths, and then the mobile terminal position is computed from geometric 

relationships; basically, a single measurement produces a straight-line locus from the 

remote receiver to the mobile phone. Another Angle of Arrival (AOA) measurement 

will yield a second straight line, the intersection of the two lines giving the position 

fix for this system. Time delay can also be utilized: Since electromagnetic waves 

travel at a constant speed (speed of light) in free space, the distance between two 

points can be easily estimated by measuring the time delay of a radio wave 

transmitted between them. This method is well suited for satellite systems and is used 

universally by them. Popular applications that are based on the latter technique for 

tracking provision are the Ekahau Positioning Engine [171], MS RADAR [172] and 

Nibble [173]. More information regarding positioning techniques and systems can be 

found in [176]. 

4.2. Communication	Technologies	

Regarding communication, there are two main enabling technologies according to 

their topology: on-body (wearable) and off-body networks. Recent technological 

advances have made possible a new generation of small, powerful, mobile computing 

devices. A wearable computer must be small and light enough to fit inside clothing. 

Occasionally, it is attached to a belt or other accessory, or is worn directly like a 



watch or glasses. An important factor in wearable computing systems is how the 

various independent devices interconnect and share data. An off-body network 

connects to other systems that the user does not wear or carry and it is based on a 

Wireless Local Area Network (WLAN) infrastructure, while an on-body or Wireless 

Personal Area Network (WPAN) connects the devices themselves; the computers, 

peripherals, sensors, and other subsystems and runs at ad hoc mode. Table 4.2.1 

presents the characteristics of wireless connectivity and mobile networking 

technologies correspondingly, which are related to off-body and on-body networks. 

WPANs are defined within the IEEE 802.15 standard. The most relevant protocols for 

pervasive e-health systems are Bluetooth and ZigBee (IEEE 802.15.4 standard). 

Bluetooth technology was originally proposed by Ericsson in 1994, as an alternative 

to cables that linked mobile phone accessories. It is a wireless technology that enables 

any electrical device to communicate in the 2.5-GHz ISM (license free) frequency 

band. It allows devices such as mobile phones, headsets, PDAs and portable 

computers to communicate and send data to each other without the need for wires or 

cables to link the devices together. It has been specifically designed as a low-cost, 

low-size, and low-power radio technology, which is particularly suited to the short 

range of a Personal Area Network (PAN). The main features of Bluetooth are: a) 

Real-time data transfer usually possible between 10–15m, b) Support of point-to-point 

wireless connections without cables, as well as point-to-multipoint connections to 

enable ad hoc local wireless networks, c) data speed of 400 kb/s symmetrically or 

700–150 kb/s of data asymmetrically. On the other hand, ZigBee (IEEE 802.15.4 

standard) has been developed as a low data rate solution with multi-month to 

multiyear battery life and very low complexity. It is intended to operate in an 

unlicensed international frequency band. The maximum data rates for each band are 

250, 40, and 20 kbps, respectively. The 2.4 GHz band operates worldwide while the 

sub-1-GHz band operates in North America, Europe, and Australia. 

 

 

 

 



Table 4.2.1 Wireless connection technologies for pervasive health systems 

Technology Data rate Range Frequency  

IEEE 802.11a 54 Mbps 150 m 5 GHz 

IEEE 802.11b 11 Mbps 150 m 2.4 GHz ISM 

Bluetooth (IEEE 802.15.1) 721 Kbps 10 m - 150 m 2.4 GHz ISM 

HiperLAN2 54 Mbps 150 m 5 GHz 

HomeRF (Shared Wireless 

Access Protocol, SWAP) 

1.6 Mbps (10 

Μbps for Ver.2) 

50 m 2.4GHz ISM 

DECT 32 kbps 100 m 1880-1900 MHz 

PWT 32 kbps 100 m 1920-1930 MHz 

IEEE 802.15.3 (high data rate 

wireless personal area 

network) 

11-55 Mbps 1 m - 50 m 2.4GHz ISM 

IEEE 802.16 (Local and 

Metropolitan Area Networks) 

120 Mbps City limits 2-66 GHz 

IEEE 802.15.4 (low data rate 

wireless personal area 

network), ZigBee 

250 kbps, 20 

kbps, 40 kbps 

100 m - 300 m 2.4 GHz ISM, 

868 MHz, 

915MHz ISM 

IrDA 4Mbps (IrDA-

1.1) 

2 m  IR (0.90 micro-

meter) 

 

Pervasive healthcare systems set high demanding requirements regarding energy, size, 

cost, mobility, connectivity and coverage. Varying size and cost constraints directly 

result in corresponding varying limits on the energy available, as well as on 

computing, storage and communication resources. Low power requirements are 



necessary also from safety considerations since such systems run near or inside the 

body.  

Mobility is another major issue for pervasive e-health applications because of the 

nature of users and applications and the easiness of the connectivity to other available 

wireless networks. Both off-body and personal area networks must not have line-of-

sight (LoS) requirements. The various communication modalities can be used in 

different ways to construct an actual communication network. Two common forms 

are infrastructure-based networks and ad hoc networks. Mobile ad hoc networks 

represent complex systems that consist of wireless mobile nodes, which can freely 

and dynamically self-organize into arbitrary and temporary, “ad hoc” network 

topologies, allowing devices to seamlessly inter-network in areas with no pre-existing 

communication infrastructure or centralized administration. The effective range of the 

sensors attached to a sensor node defines the coverage area of a sensor node. With 

sparse coverage, only parts of the area of interest are covered by the sensor nodes. 

With dense coverage, the area of interest is completely (or almost completely) 

covered by sensors. The degree of coverage also influences information processing 

algorithms. High coverage is a key to robust systems and may be exploited to extend 

the network lifetime by switching redundant nodes to power-saving sleep mode. 

4.3. Body	Sensor	&	Body	Area	Networks	

A Body Area Network is formally defined by IEEE 802.15 as, "a communication 

standard optimized for low power devices and operation on, in or around the human 

body (but not limited to humans) to serve a variety of applications including medical, 

consumer electronics / personal entertainment and other". In more common terms, a 

Body Area Network is a system of devices in close proximity to a person’s body that 

cooperate for the benefit of the user. 

Sensors for wellness assessment can be provided in clothing/body preferably with the 

application of power-harvesting technology. Integration of the data collection and 

analysis for manageable reporting will be crucial. Even more life critical than the 

current practice in industrial automation event reporting, efficient false-alarm 

management needs to be provided in order to minimize nuisance reporting. The 

wireless communication protocols discussed in the previous section are very popular 



for Body Sensor Networks. They are low-power optimized protocols for battery-

powered sensor nodes. The appropriate choice depends on the specific application, 

which differs by function, compatibility, and cost. 

Despite the fact that the Wireless Sensor Networks (WSN) technologies have evolved 

for a wide range of medical applications, they do not specifically tackle the challenges 

associated with human body monitoring. The human body consists of a complicated 

internal structure that responds to and interacts with its embodiment. Attaching 

sensors on the skin and/or implanting them into tissues may achieve human body 

monitoring using a network of wireless sensors.  

Body area sensor network (BASN) nodes create an interface to humans, typically 

encapsulating an energy source, one or more sensors, a mixed-signal processor, and a 

communication transceiver. Some nodes also support data storage or feedback control 

to body-based actuators, such as an insulin pump or robotic prosthetic. Although 

BASN and WSN nodes have similar functional architecture, differences in their 

operational characteristics—sensing, signal processing, communication, caching, 

feedback control, and energy harvesting—present unique challenges and opportunities 

for BASN nodes. 

Sensors in typical WSNs are numerous, homogeneous, and generally insensitive to 

placement error. BASN sensors, in contrast, are few, heterogeneous, and require 

specific placement. Indeed, ineffective placement or unintended displacement from 

movement can significantly degrade the captured data’s quality. Such requirements 

call for strategies that will minimize and detect placement error, such as better 

packaging combined with on-node signal classification. 

Signal processing is needed to extract valuable information from captured data that 

stems from transient events, such as falls, as well as from trends, such as the onset of 

fever. BASNs may need to concurrently capture, process, and forward information to 

different stakeholders. Time critical information from both events and trends would 

go immediately to emergency services, for example, but information that is not 

sensitive to delays would go to the physician for review later on. BASN nodes must 

however break complex signal-processing tasks into manageable segments to 

minimize algorithmic complexity while meeting real-time deadlines. 



Communication is essential to node coordination. BASNs are unique in that they 

attempt to restrict the communication radius to the body’s periphery. Limiting 

transmission range reduces a node’s power consumption, decreases interference 

among adjacent BASNs, and helps maintain privacy. WSNs typically communicate 

over radiative radiofrequency (RF) channels between 850 MHz and 2.4 GHz. Unlike 

WSNs, wireless BASNs are challenged by the dramatic attenuation of transmitted 

signals resulting from body shadowing—the body’s line-of-sight absorption of RF 

energy, which, coupled with movement, causes significant and highly variable path 

loss 

4.4. Cloud	Computing	services	and	Healthcare	

The realization of pervasive health information management through mobile devices 

introduces several challenges:  

• Data storage and management: Storing such sensitive data raises issues about 

physical storage (e.g., the location of data) and availability; data must always 

be available and accessible from different platforms (devices and operating 

systems) and locations (supporting mobility). Proper management of 

healthcare data also requires maintenance procedures (e.g., backups, etc.). 

Thus, data storage and management requires proper design and utilization of 

several storage and computational resources. 

• Interoperability and availability of heterogeneous resources: Healthcare data 

consists of heterogeneous data (e.g., clinical data, medical images, health 

records, etc.) acquired from and stored into different resources (e.g., electronic 

health record systems, radiology information systems, laboratory information 

systems, etc.). An aggregate access to aforementioned data from mobile 

devices involves the establishment of mechanisms that provide global access 

to the latter resources seamlessly. 

• Security and privacy: Securing healthcare data involves security and 

encryption mechanisms both at the data storage elements and the transmission 

links. Protocols and mechanisms used must be compliant with the majority of 

operating systems and device types. Permission control must be carefully 



designed and deployed for prohibiting unauthorized access to sensitive data 

assuring privacy. 

• Unified and ubiquitous access: Provide users with proper interfaces for 

accessing data from different platforms (e.g., mobile devices, web, etc.) and 

infrastructures (e.g., public or private networks, etc.) using a single entry point. 

One potential solution for addressing all aforementioned issues is the introduction of 

Cloud Computing concept in electronic healthcare systems. Cloud computing has 

been receiving much attention as an alternative to both specialized grids and to 

owning and managing data centers. It represents a new way, in some cases a more 

cost effective way, of delivering enterprise IT. The increasing adoption rate of cloud 

computing is currently driving a significant increase in both the supply and the 

demand side of this new market for IT. Many healthcare providers and insurance 

companies today have adopted some form of electronic medical record systems, 

though most of them store medical records in centralized databases in the form of 

electronic records. Typically, a patient may have many healthcare providers, 

including primary care physicians, specialists, therapists, and other medical 

practitioners. In addition, a patient may use multiple healthcare insurance companies 

for different types of insurances, such as medical, dental, vision, and so forth. 

Currently, each healthcare provider typically uses its private datacenter for Electronic 

Health Records (EHRs). Sharing and process information between healthcare 

practitioners across administrative boundaries is translated to sharing information 

between EHR systems. The interoperation and sharing among different EHRs has 

been extremely slow due to cost and poor usability, which have been cited as the 

biggest obstacles to adoption of electronic health care. 

4.4.1. Health	Cloud	Overview	

Cloud computing provides an attractive IT platform to reduce the cost of EHR 

systems in terms of both ownership and IT maintenance burdens for many medical 

practices and to enable techniques for advance process of their data without the need 

of hosting the processing power. It is widely recognized that cloud computing and 

open standards are important to streamline healthcare whether it is for maintaining 

health records, monitoring of patients, managing diseases and cares more efficiently 



and effectively, or collaboration with peers and analysis of data. The concept of cloud 

computing complies with the emerging trend to move from the economy of ownership 

to the economy of use. The field of pervasive and ubiquitous healthcare services 

requires that resources and information can be available anywhere and anytime, since 

the rapid and safe exchange and disposal of large amounts of information at the point 

of care is needed. 

Enabling the access to healthcare ubiquitously not only will help to improve 

healthcare as the data will always be accessible from anywhere at any time, but also it 

helps reducing the costs drastically. Several studies have demonstrated that the 

limited access to patient-related information during decision-making and the 

ineffective communication among patient care team members are proximal causes of 

medical errors in healthcare [177], [178]. Thus, the pervasive and ubiquitous access to 

healthcare data is considered essential for the proper diagnosis and treatment 

procedure. Cloud Computing is also a model for enabling convenient, on-demand 

network access to a shared group of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction.  

Based on cloud service models, we can divide healthcare cloud systems into three 

layers:  

• Applications in the cloud (Software as a Service – SaaS): This layer 

provides capability for consumers to use the provider’s applications running 

on a cloud infrastructure. For instance, the applications are accessible from 

various client devices through a thin client interface such as Web browser. The 

consumer does not manage or control the underlying cloud infrastructure 

including network, servers, operating systems, storage, or even individual 

application capabilities. In this type of cloud service model, the security and 

privacy protection is provided as an integral part of the SaaS to the healthcare 

consumers. 

• Platforms in the cloud (Platform as a service – PaaS): This layer offers 

capability for consumers to deploy consumer-created or acquired applications 

written using programming languages and tools supported by the cloud 

provider. The consumer does not manage or control the underlying cloud 



infrastructure including network, servers, operating systems, or storage, but 

has control over the deployed applications and possibly application hosting 

environment configurations. In this type of cloud service model, two levels of 

protection for security and privacy are required. At the lower system level, the 

cloud provider may provide basic security mechanisms such as end-to-end 

encryption, authentication, and authorization. At the higher application level, 

the consumers need to define application dependent access control policies, 

authenticity requirements, and so forth. 

• Infrastructure in the cloud (Infrastructure as a Service – IaaS): This type 

of cloud service model provides the capability for consumers to provision 

processing, storage, networks, and other fundamental computing resources, in 

which consumer is able to deploy and run arbitrary software, including 

operating systems and applications. The consumer does not manage or control 

the underlying cloud infrastructure but has control over operating systems, 

storage, deployed applications, and possibly limited control of select 

networking components (e.g., host firewalls). In the Infrastructure cloud 

model, the healthcare application developers hold full responsibility for 

protecting patients’ security and privacy. 

We can also use the cloud deployment models below to give the taxonomy of 

healthcare clouds. 

• Private cloud: The cloud infrastructure is operated solely for a healthcare 

delivery organization. It may be managed by the organization or a third party 

and may exist on or off premise. In this type of cloud deployment model, the 

cloud provider provides the same capability in terms of security and privacy 

protection as those in the Electronic Medical Record (EMR) system running 

by such an organization. 

• Hybrid cloud: The cloud infrastructure is shared by several organizations and 

supports a specific community that has shared concerns (e.g., mission, security 

requirements, policy, and compliance considerations). It is most likely 

managed by the third party or the content organizations and may exist on or 

off premise. 



• Public cloud: The cloud infrastructure is made available to the general public 

or a large industry group and is owned by a cloud service provider. In this 

deployment model, the healthcare application developers and consumers hold 

full responsibility for protecting patients’ security and privacy. 

 

Much of health care is transactional—admitting a patient, encountering a patient at 

the bedside or clinic, ordering a drug, interpreting a report, or handing off a patient. 

Yet transactions are only the operational expression of an understanding of the patient, 

and a set of goals and plans for that patient.  

4.4.2. Cloud	and	Data	Management	Issues	

The expansion of this IaaS market is leading to a rapid increase in the complexity, and 

users have to face when they strive to acquire resources in a cost-effective manner in 

such a market, while still respecting their application-level quality of service (QoS) 

constraints. Continuing standardization efforts in virtualization technology and IaaS 

offerings will further increase the options available to a consumer when acquiring 

resources “in the cloud”. This issue is exacerbated by the fact that consumers often 

also own private IT infrastructure, especially for healthcare organizations where 

security of data is important. Through the creation of hybrid clouds [180], one can use 

this internal infrastructure in tandem with public cloud resources, thereby capitalizing 

on investments made, and catering for specific application requirements in terms of 

data confidentiality, security, performance and latency. 

Due to the current lack of support tools to deal with the inherent complexity of cost-

optimal resource allocation within such a hybrid setting, this process is error-prone 

and time-consuming. In addition, a structured approach is required that caters for 

optimizing such resource allocations in a multi-consumer context. Indeed, the 

addition of volume or reservation-based price reductions in the pricing options of 

public cloud providers allows for the further reduction of costs if an organization 

collectively engages in delivery, contracts for its entire user base. This differs from 

the practice of allowing users to individually acquire resources from cloud providers. 



4.4.3. Data	and	Resources	Management	and	Scaling	

Presuming the existence of large integrated medical of data, another major challenge 

is in managing those data, in an efficient, secure and cost effective way. Some of the 

important dimensions of medical information management include the data semantics 

and annotation. 

Raw data almost never speak for themselves, and their interpretation inevitably relies 

on metadata -annotations to the primary data that provide the necessary context. For 

example, the primary data for the human genome consist of a sequence of some 3 

billion nucleotides. Metadata associated with the primary data help scientists to 

identify significant patterns within those data -a given sequence might be annotated as 

a gene or a regulatory element. Metadata could also be used to trace the provenance 

or lineage of data. For example, the value of certain data in an electronic health record 

could be enhanced if the data included information about the conditions under which 

certain data were obtained (e.g., physician observations of a patient’s description of 

symptoms might be accompanied by video and audio recordings of the session with 

the patient). With metadata, a primary problem is the design and development of tools 

to facilitate machine-readable annotations in large databases. 

4.4.4. Information	 extraction	 from	 large	 amount	 of	

heterogeneous	medical	data.		

New techniques are needed for extracting information such as patient names, doctor 

names, medicine names, and disease names from visual or textual notes, and for 

generating automatic linkages between different relevant entities. Such extraction 

would make it possible to piece together a larger picture automatically while pulling 

information from multiple heterogeneous data and information sources. Extraction of 

data from tables and figures in reports is another example of a useful information 

extraction capability.  

4.4.5. Security	and	Privacy	Issues	

Research on the various security issues concerning healthcare information systems 

has been heated over the last few years. ISO/TS 18308 standard gives the definitions 



of security and privacy issue for EHR [181]. The Working Group 4 of International 

Medical Informatics Association (IMIA) was set up to investigate the issues of data 

protection and security within the healthcare environment. Its work to date has mainly 

concentrated on security in EHR networked systems and common security solutions 

for communicating patient data [182]. The European AIM/SEISMED (Advanced 

Informatics in Medicine/Secure Environment for Information Systems in MEDicine) 

project is initiated to address a wide spectrum of security issues within healthcare and 

provides practical guidelines for secure healthcare establishment [183]-[185]. US 

Health and Human Services (HHS) recently published a report about personal health 

records (PHRs), aiming at developing PHRs and PHR systems to put forward a vision 

that “would create a personal health record that patients, doctors and other health care 

providers could securely access through the Internet no matter where a patient is 

seeking medical care.” 

In healthcare clouds the term “patient-centric” is commonly used, which is a term 

used mostly in community/hybrid healthcare systems. Hybrid healthcare system 

offers an open platform for patient to collect, store, use, and share health information 

in a controlled manner with ubiquitous accessibility. It also offers secure storage and 

management of patients’ EHRs for multiple applications (e. g. disease treatment, lab 

research, insurance, and other social-networking applications). Most of the 

community healthcare cloud service models, such as Microsoft HealthVault and 

Google Health, adopt a centralized architecture with patient-centric views. By patient-

centric, it means that the information stored in the community EHR system is 

imported by patients and only can be made available to a variety of applications under 

the control of patients. 

The common security issues shared by healthcare cloud applications are ownership of 

information, authenticity, authentication, non-repudiation, patient consent and 

authorization, integrity and confidentiality of data. 

• Ownership of information: In general, the owner is defined as the creator of 

the information. Establishing the ownership of the information is necessary for 

protection against unauthorized access or misuse of patient’s medical 

information. The “owner” can refer to the person responsible for the 



information or the organization creating and storing the information. The term 

of “owner” may refer to “creator”, “author” and “manager” of the information. 

• The “Creator” indicates the person generating the data. In healthcare system, 

practitioner or laboratory staff is the creator of medical data about a patient. 

“Author” means the person or entity responsible for the content of the 

information. In healthcare system, author is the creator of the information, be 

it the clinician or the organizations, which the creator belongs to. “Manager” 

is for the person or entity responsible for management, provision and 

protection of information. In patient- controlled healthcare system, manager is 

the patient self. While in decentralized healthcare system, manager may refer 

to a trusted third party, who is authorized by the patient or healthcare 

providers. The ownership of information can be protected through a 

combination of encryption and watermarking techniques. 

• Authenticity and Authentication: Authenticity in general refers to the 

truthfulness of origins, attributions, commitments, and intentions. 

Authentication is the act of establishing or confirming claims made by or 

about the subject are true and authentic. The authentication of information can 

pose special problems, especially man-in-the-middle (MITM) attacks, and is 

often implemented with authenticating identity. Most cryptographic protocols 

include some form of endpoint authentication specifically to prevent MITM 

attacks. For instance, Transport Layer Security (TLS) and its predecessor, 

Secure Sockets Layer (SSL), are cryptographic protocols that provide security 

for communications over networks such as the Internet. TLS and SSL encrypt 

the segments of network connections at the Transport Layer end-to-end. 

Several versions of the protocols are in widespread use in applications like 

web browsing, electronic mail, Internet faxing, instant messaging and voice-

over-IP (VoIP). One can use SSL or TLS to authenticate the server using a 

mutually trusted certification authority. In a healthcare system, both for 

healthcare information offered by providers and identities of consumers 

should be verified at the entry of every access. 

• Non-repudiation: Non-repudiation implies one's intention to fulfill its 

obligations to a contract. It also implies that one party of a transaction cannot 



deny having received a transaction nor can the other party deny having sent a 

transaction. Electronic commerce uses technology such as digital signatures 

and encryption to establish authenticity and non-repudiation. 

• Patient consent and authorization: Patient can allow or deny sharing their 

information with other healthcare practitioners or Care Delivery Organizations 

(CDOs). To implement patient consent in a healthcare system, patient may 

grant rights to users on the basis of a role or attributes held by the respective 

user. 

• Integrity and confidentiality of data: Integrity means preserving the accuracy 

and consistency of data. In the health care system, it refers to the fact that data 

has not been tampered by unauthorized use. The International Organization 

defines confidentiality for Standardization (ISO) in ISO-17799 as "ensuring 

that information is accessible only to those authorized to have access". 

Confidentiality is one of the design goals for many crypto systems and made 

possible in practice by the techniques of modern cryptography. Confidentiality 

can be achieved by access control and encryption techniques in EHR systems. 

• Availability and utility: For any EHR system to serve its purpose, the 

information must be available when it is needed. This means that the 

computing systems used to store and process the EHR data, the security 

controls used to protect it, and the communication channels used to access it 

must be functioning correctly. High availability systems aim to remain 

available at all times, preventing service disruptions due to power outages, 

hardware failures, and system upgrades. Ensuring availability also involves 

preventing denial-of-service attacks, and preserving utility of EHR data. 

Utility here refers to the ability to preserve the usability of EHR data after 

exercising and enforcing security and privacy protection and HIPPA (Health 

Insurance Portability and Accountability Action) compliance. 

• Audit and archiving are two optional security metrics to measure and ensure 

the safety of a healthcare system. Audit means recording user activities of the 

healthcare system in chronological order, such as maintaining a log of every 

access to and modification of data. Auditing capability enables prior states of 



the information to be faithfully reconstructed. Archiving means moving 

healthcare information to off-line storage in a way that ensures the possibility 

of restoring them to on-line storage whenever it is needed without the loss of 

information [186]. 

Regarding patient data safety, the Health Insurance Portability and Accountability 

Action (HIPAA) [179] provides national minimum standards to protect an 

individual’s health information. HIPAA covers protected health information (PHI) 

which is any information regarding an individual’s physical or mental health, the 

provision of healthcare to them, or payment of related services. PHI also includes any 

personally identifiable information, including for example Employer Identification 

Number, social security number, name, address, phone number, medical condition 

when linked to a patient, and some types of billing information. 

HIPAA’s privacy rule regulations include standards regarding the encryption of all 

data in transmission and in storage. The same data encryption mechanisms used in a 

traditional computing environment, such as a local server or a managed hosting server, 

can also be used in virtual computing environments. HIPAA’s security safeguards 

also require in-depth auditing capabilities, data back-up procedures and disaster 

recovery mechanisms.  

4.4.6. Distributed	Processing	of	Pervasive	Healthcare	Data	

The development of pervasive health-care systems is a very promising area for 

commercial organizations active in the health-monitoring domain. The considered 

pervasive infrastructure creates numerous business opportunities for players like 

emergency medical assistance companies, the telecommunication operators, insurance 

companies, etc. Numerous portable devices are available that can detect certain 

medical conditions—pulse rate, blood pressure, breath alcohol level, and so on—from 

a user’s touch. Many such capabilities could be integrated into a handheld wireless 

device that also contains the user’s medical history. All the latter produce a vast 

amount of data that need to be distributary managed and processed within a cloud 

infrastructure. 

The distribution of tasks in a cluster for parallel processing is not a new concept, and 

there are several techniques that use this idea to optimize the processing of 



information. The Map-Reduce paradigm [188], for example, is a framework for 

processing huge datasets of certain kinds of distributable problems using a large 

number of computers (nodes), collectively referred to as a cluster. It consists of an 

initial Map stage, where a master node takes the input, chops it into smaller or sub-

problems, and distributes the parts to worker nodes, which process the information; 

following there is the Reduce stage, where the master node collects the answers to all 

the sub-problems and combines them to produce the job output. The process is 

illustrated in Figure 4.4.1. 

A popular Map-Reduce implementation is Apache’s Hadoop [189], which consists of 

one Job Tracker, to which client applications submit Map-Reduce jobs. The Job 

Tracker pushes work out to available Task Tracker nodes in the cluster, which 

execute the map and reduce tasks. 
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Abstract—Video processing applications are notably data 

intense, time, and resource consuming. Upfront infrastructure 

investment is usually high, specially when dealing with 

applications where time-to- market is a crucial requirement, 

e.g., breaking news and journalism. Such infrastructures are 

often inefficient, because due to demand variations, resources 

may end up idle a good portion of the time. In this paper, we 

propose the Split&Merge architecture for high performance 

video processing, a generalization of the MapReduce paradigm 

that rationalizes the use of resources by exploring on demand 

computing. To illustrate the approach, we discuss an 

implementation of the Split&Merge architecture, that reduces 

video encoding times to fixed duration, independently of the 

input size of the video file, by using dynamic resource 

provisioning in the Cloud. 
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I. INTRODUCTION 

As computer systems evolve, the volume of data to be 
processed increases significantly, either as a consequence of 
the expanding amount of information available, or due to the 
possibility to perform highly complex operations that were 
not feasible in the past. Nevertheless, tasks that depend on 
the manipulation of large amounts of information are still 
performed at large computational cost, i.e., either the 
processing time will be large, or they will require intensive 
use of computer resources. 

In this scenario, the efficient use of available 
computational resources is key, and creates a demand for 
systems that can optimize the use of resources in relation to 
the amount of data to be processed. This problem becomes 
increasingly critical when the volume of information to be 
processed is variable, i.e., there is a seasonal variation of 
demand for processing. Such variable demand can have 
different causes, such as an unanticipated burst of client 
requests, a time-critical simulation, or a high volume of 
simultaneous video uploads, e.g. as a consequence of a 
public contest. In these cases, there are moments when there 
is very low demand and the resources are almost idle while 
at other moments, there is processing demand that exceeds 
the resource capacity, and which may cause undesirable 
delays. 

Moreover, from an economical perspective seasonal 
demands do not justify a massive investment in 
infrastructure, just to provide enough computing power for 
peak situations. In this light, the ability to build adaptive 

systems, capable of using on demand resources provided by 
Cloud Computing [16][17][18], is very interesting.  

The remainder of this paper is structured as follows. In 
the next section we discuss computing on demand and the 
Map-Reduce paradigm, in section 3 we introduce the 
Split&Merge architecture, in section 4 we discuss fault 
tolerance issues and compare between private cluster and 
public cloud implementations of the Split&Merge 
architecture. In section 5 we conclude and discuss further 
work.  

II. BACKGROUND AND PROBLEM STATEMENT 

The distribution of tasks in a cluster for parallel 
processing is not a new concept, and there are several 
techniques that use this idea to optimize the processing of 
information. The Map-Reduce paradigm [2], for example, is 
a framework for processing huge datasets of certain kinds of 
distributable problems using a large number of computers 
(nodes), collectively referred to as a cluster. It consists of an 
initial Map stage, where a master node takes the input, chops 
it into smaller or sub-problems, and distributes the parts to 
worker nodes, which process the information; following 
there is the Reduce stage, where the master node collects the 
answers to all the sub-problems and combines them to 
produce the job output. The process is illustrated in Figure 1.  

A popular Map-Reduce implementation is Apache’s 
Hadoop [3], which consists of one Job Tracker, to which 
client applications submit Map-Reduce jobs. The Job 
Tracker pushes work out to available Task Tracker nodes in 
the cluster, which execute the map and reduce tasks. 

 

  
Figure 1.  Map Reduce architecture [4] 
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Figure 4.4.1 Map Reduce Architecture 

However, despite being a very appealing and efficient technique for processing large 

volumes of data, there are a number of challenges associated with the deployment of 

Map-Reduce architectures. One of them is the required infrastructure. To make the 



process truly effective, one needs several machines acting as nodes, which often 

requires a large upfront investment in infrastructure.  

This point is extremely critical in situations where the processing demand is seasonal. 

In addition, fault tolerance issues and the need of a shared file system to support 

mappers and reducers make the deployment of a Map-Reduce architecture complex 

and costly. 

In cases where there is a seasonal computation demand, the use of public Clouds, for 

information processing and storage, is emerging as an interesting alternative. The 

Hardware as a Service (HaaS) [191] paradigm relieves the burden of making huge 

investments in infrastructure, and at the same time supports on-the-fly resizing of 

resources, and adaptation to current needs. 

With a public Cloud, one can quickly make provision for the resources required to 

perform a particular task, and pay only for the computational resources effectively 

used. This is good solution, not only because it deploys faster, as opposed to having to 

order and install physical hardware, but it also optimizes overall costs, as resources 

can be released immediately after the task is completed. 

One of the largest providers in the public Cloud is Amazon Web Services (AWS), 

with its Elastic Compute Cloud (EC2) [190] and Simple Storage Service (S3) [192] 

services. Amazon EC2 is a web service interface that provides resizable computing 

capacity in the cloud, allowing a complete control of computing resources and 

reducing the time required to obtain and boot new server instances. This feature is of 

particular interest because it allows applications to quickly scale up and down their 

processing and storage resources as computing requirements change. Amazon S3 

provides a simple web services interface that can be used to store and retrieve data on 

the web, and provides a scalable data storage infrastructure. 

In the specific case of applications requiring parallel processing using Map-Reduce 

architecture, one may also use the Elastic Map Reduce, which implements a hosted 

Hadoop framework running on the infrastructure of Amazon EC2 and Amazon S3. 

The Map-Reduce architecture is an interesting approach, once it is versatile enough to 

be deployed in both environments. However, the Map Reduce architecture isn’t 

generic enough to be used in all classes of problems that deal with large amounts of 



data to be processed, once there are some issues that are not addressed efficiently, 

such as the use of different Reduce algorithms for some specific pieces of information, 

or the chunk ordering before the Reduce step.  

A good example where Map-Reduce could be generalized is the compression of high 

definition video files and especially for medical video, which requires intensive 

information processing. In this compression process, streams of audio and video are 

processed with different algorithms, and there is a great correlation between 

subsequent video frames, especially when there is temporal compression. The order in 

which pieces of audio and video are recombined after having been processed must 

also be taken into account so as to avoid that significant distortions are incorporated 

in the output. Moreover, issues such as fault tolerance, security and scalability need to 

be thoroughly considered, so that the proposed architecture becomes robust enough to 

meet the requirements of different video compression applications.  

4.4.7. Distributed	Video	Processing	

Video compression refers to reducing the quantity of data used to represent digital 

video images, and is a combination of spatial image compression and temporal 

motion compensation. Video applications require some form of data compression to 

facilitate storage and transmission. Digital video compression is one of the main 

issues in digital video encoding, enabling efficient distribution and interchange of 

visual information. 

The process of high quality video encoding and analysis is usually very costly to the 

encoder, which, and require a lot of production time. When we consider situations 

where there are large content volumes, this is even more critical, since a single video 

may require the server’s processing power for long time periods. Moreover, there are 

cases where the speed of publication is a critical point. Journalism and breaking news 

are typical applications in which the time-to- market the video is very short, so that 

every second spent in video encoding may represent a loss of audience. 

We note that the higher the quality, i.e., the bitrate of the video output, the lower the 

speed of encoding. In order to speed up encoding times, there are basically two 

solutions. The first one is to augment the investment in encoding hardware 



infrastructure, to be used in full capacity only at peak times. The downside is that the 

infrastructure will be idled the remaining of the time.  

The second solution is to try and optimize the use of available resources. The ideal 

scenario is to optimize resources by distributing the tasks among them evenly. In the 

specific case of video encoding, the intuitive solution is to break a video into several 

pieces and distribute the encoding of each piece among several servers in a cluster. 

The challenge of this approach is to split, as well as merge video fragments without 

loss in synchronization. 

4.4.8. Dynamic	 Resource	 Allocation	 in	 Distributed	

Environments	for	Medical	Data	

In a data center, the primary goal of a dynamic autonomous resource management 

process is to avoid wasting resources as a result of under-utilization. Such a process 

should also aim to avoid high response times as a result of over-utilization, which 

may result in violation of the service level agreements (SLA) between the clients and 

the provider. Furthermore, it needs to be carried out continuously due to the time 

variant nature of the workloads of application environments.  

At a high level, this process can be decomposed into two separate, and inter-

dependent phases: 

1. The first phase consists of defining a mapping between the application’s 

service level and resource level requirements. Resource level requirements are 

generally derived from SLAs based on certain parameters such as response 

time, throughput, etc.; whereas, resource level requirements are often outlined 

as CPU usage, memory, bandwidth, etc. As the workload of an application 

changes in time, this mapping is used to determine the amount of resources 

that should be assigned to each component— encapsulated in virtual machines 

(VMs)—in order to satisfy the terms outlined in the SLA. This phase also 

requires performance modeling and demand forecasting for applications. The 

accuracy of the output from this first phase has direct effects on the accuracy 

of the configuration produced in the second phase. 



2. The second phase involves the computation and application of a new 

configuration by distributing the resources in a data center among the VMs 

that represent application environments. The configuration is computed based 

on the output of the mappings produced in the first phase. Maintaining this 

configuration is a resource allocation problem and is generally defined as a 

Knapsack Problem or as a specific variant of it, namely Vector Bin Packing 

Problem, both of which are known to be NP- Hard. This phase consists of 

selecting a suitable configuration from a solution space with respect to a set of 

criteria. The criteria are used to define the quality of the solution in terms of 

certain requirements such as satisfying SLAs, overall data center utilization, 

and the overhead of applying an alternative configuration. The methods to be 

adopted in this phase need to be flexible so that the providers can easily 

redefine the configuration goals by adding new criteria or tuning the 

importance assigned to them. 

3. In the second phase, certain constraints and limitations need to be taken into 

consideration.  

Two of these are the time-spent during the selection of a new configuration, and the 

feasibility of it. Due to the time variance in workloads, a new configuration must be 

computed in a reasonable amount of time so that it is not stale under the current 

conditions. The selected configuration must also be feasible in terms of the number 

migrations necessary. The number of migrations that can be performed in a data 

center still has limits with the current technologies. 

 

 

 

 

 



5. Context	 Aware	 Telemedicine	 Applications	 and	

Intelligent	 Management,	 Mining	 and	 Pattern	

Recognition	of	Medical	Data	

5.1. Patient	fall	detection	

Telemonitoring the physical status and health of humans or patients at home, is an 

interesting solution compared to hospitalization in healthcare facility institutions since 

it offers a medical surveillance in a familiar atmosphere for the patient and can reduce 

the costs of medical treatment [47]-[51]. Within the same context, the monitoring of 

human physiological data, in both normal and abnormal situations of activity, is vital 

for the purpose of emergency event detection, especially in the case of patients 

suffering from chronic diseases or elderly people living on their own. Special interest 

is paid in the detection of the severity of the case that can indicate injury level and 

assistance request type. Several techniques have been proposed for identifying such 

distress situations using either motion, audio or video data from the monitored subject 

and the surrounding environment. The great challenge in such personal health systems 

is to provide less invasive monitoring technologies, increase mobility and at the same 

time achieve high accuracy rates in patient status interpretation [52].  

The presented work introduces a solution to the problem of less invasive patient 

monitoring, describing the design and an initial implementation of a patient status 

awareness system that may be used for human or patient activity interpretation and 

emergency recognition in cases like elder falls and patient collapses. The proposed 

system utilizes motion information, audio and video data, which are captured from 

both the patient area and the surrounding environment. Visual information and audio 

from the monitored site are acquired using overhead cameras and microphone arrays 

respectively, while motion data and patient-generated audio sounds are collected 

through appropriate body-sensors on the patient. Appropriate tracking techniques are 

applied to the visual perceptual component enabling the trajectory tracking of the 

subjects and proper audio data processing and sound directionality analysis in 

conjunction to motion information and subject’s visual location can verify fall and 

indicate an emergency event. Post fall visual and motion behavior of the subject 



indicates the severity of the fall (e.g., if patient remains unconscious or patient 

recovers and stands up). The severity analysis is performed through an ontological 

representation of the patient’s context awareness, rules-based evaluation and activity 

classification. A number of advanced classification techniques have been evaluated 

for this purpose and the performance of the classifiers has been assessed in terms of 

accuracy and efficiency. The innovation of the presented system against existing 

works resides in four key elements: The utilization of three separate information 

channels (motion, audio and visual data) for patient status interpretation, the 

information fusion and streaming capabilities of the latter data, the ontology and 

rules-based evaluation for proper characterization of incidents and finally the context 

awareness concept which is newly introduced in such systems. 

Although the concept of patient activity recognition with focus on fall detection is 

relatively new, there already exists significant related research work, which may be 

retrieved from the literature [51]-[60]. Information regarding the human movement 

and activity in assisted environments is frequently acquired through visual tracking of 

the subject’s or patient’s position. In [56] overhead tracking through cameras provides 

the movement trajectory of the patient and gives information about user activity on 

predetermined monitored areas. Unusual inactivity (e.g., continuous tracking of the 

patient on the floor) is interpreted as a fall. Similarly, in [59] omni-camera images are 

used in order to determine the horizontal placement of the patient’s silhouettes on the 

floor (case of fall). Success rate for fall detection is declared at 81% for the latter 

work. A different approach for collecting patient activity information is the use of 

sensors that integrate devices like accelerometers, gyroscopes and contact sensors. 

The latter approach depends less on issues like patient physiology (e.g., body type and 

height) and environmental information (e.g., topology of monitored site) and can be 

used for a variety of techniques enabling user activity recognition [51], [54], [58]. 

Regarding fall detection, authors in [53], [57] and [60] use accelerometers, 

gyroscopes and tilt sensors for movement tracking. Collected data from the 

accelerometers (i.e., usually rotation angle or acceleration in the X, Y and Z axis) is 

used in order to verify the placement of the patient and time occupation in rooms and 

detect abrupt movement that could be associated with fall. Detection is performed 

using predefined thresholds [51], [54], [55], [57] and association between current 

position, movement and acceleration [53], [60]. In previous works [64], [65], we have 



presented a patient fall detection system based on such body sensors that utilized 

advanced classification techniques and Kalman filtering for producing more accurate 

results.  

Sound processing has been also utilized for fall detection. Most of the related work 

focuses on collecting and analyzing sound data captured from the patient’s close 

environment. In [70]-[72] authors present a sound analysis system enabling the 

detection of special sounds and their association with events related to specific 

activities or situations where first aid is needed (e.g., falls, glass breaking, call for 

help, etc.). The sound event detection is based on feature extraction through Discrete 

Wavelet Transformation (DWT) whereas classification to predefined events or vocal 

expressions is performed through a Gaussian Mixture Model (GMM) technique. In 

[73], Mel Frequency Cepstral Coefficients (MFCC) are used in order to detect a 

variety of sound signatures of both distressful and normal events. The examined 

sounds are categorized into classes according to their corresponding average 

magnitude levels that emerge from the application of Fourier Transform on the sound 

signal. Cepstral coefficients are used as features fed into a GMM model for proper 

classification. Accuracy of proper classification achieves 91.58% according to the 

authors. The aforementioned methods are based on acquisition and processing of 

sound data that originates from user’s monitored environment. In [65] and [81] we 

have proposed a different method for detecting patient distress situations utilizing 

sounds captured by microphones attached on body sensors and spectrogram analysis 

sound processing. This technique has provided satisfying accuracy in detecting body 

fall sounds and distress speech expressions, while it was proved more tolerant to 

background noise and sounds not originating from the patient.  

The presented work integrates user movement information and sound using wireless 

sensors, visual tracking of the patient and sound source localization using microphone 

arrays aiming at more accurate activity recognition systems. The proposed system is 

based on previous works by the authors in the context of movement characterization 

utilizing motion and sound and visual data individually [64], [65], [81], [82], and it is 

enhanced through semantic representation of the user’s status and context awareness, 

while rules-based evaluation can provide an estimation of the severity of the incident 

(e.g., patient has recovered from fall, or patient is inactive, etc.). To our best 

knowledge there is no relative work in the literature that combines both visual, sound 



and motion sensor information and uses semantics for improving human safety 

through incidents detection in assisted living environments. 

5.1.1. System	Architecture	

The presented system follows the architecture illustrated in Figure 5.1.1. Camera 

devices and microphone arrays are installed at the patient’s site. Special sensor nodes 

with networking capabilities are required for collecting and transmitting related 

activity data (i.e. accelerometer and sound data). These sensors can be attached on 

several locations on the subject’s body. A monitoring node is required for collecting 

the aforementioned data and performing required processing in order to enable an 

estimation of the human status. Recorded video frames provide feed to the video 

tracker that tracks the movement of the patient’s body and generates body shape 

features (i.e. coordinates of a bounding box containing the subject’s body). Recorded 

sounds are utilized in order to detect emergency events like distress speech 

expressions or body fall sounds. Sound source localization provided by the 

microphone arrays can also be applied and facilitate the status awareness; background 

noise can be easily filtered through sound source redundancy, Additionally, in the 

cases where the patient is the sound source, the localization of the latter in 

conjunction with visual trajectory information can provide more robust estimation of 

the actual incident and avoid false alarms generated by other sound sources.  

The data are properly transformed in a suitable format for the classifier and the 

classification phase begins. Based on a predefined classification model (i.e. train 

model), the patient status is detected (i.e. emergency status when an emergency event 

is detected, normal status otherwise). 

Apart from the indication of an emergency incident (e.g., a patient fall), an estimation 

of the severity of the incident can be provided based on the patient’s behavior after 

the fall as recorded visually; visual inactivity or soft activity combined with distress 

sounds originating from patient’s location suggest that patient has not lost 

consciousness and is trying to recover from the fall. In case no visual or sound 

activity is recorded after fall estimation, higher severity of the incident might be 

estimated. In order to provide a more accurate estimation a semantic model of the 

patient’s status and context is built and proper rules evaluation follows. 



 

Figure 5.1.1 Proposed system architecture illustrating basic modules: motion, 
sound, visual perceptual components and respective equipment and the 
monitoring node 

Based on emergency event detection, the treatment personnel at a remote or local site 

can be alerted. In conjunction to the incident type and severity estimation, 

corresponding video frames and audio samples from the patient and the monitored 

environment can be transmitted, facilitating the diagnosis process. Methods for 

analyzing visual, motion and audio data that allow human body trajectory analysis, 

sound source localization and incident detection are described in following Sections.  

5.1.2. Motion	and	Sound	Data	Acquisition		

Sensor data acquisition may be accomplished through wireless on-body (wearable) 

networks. On body networks or WPANs are defined within the IEEE 802.15 standard. 

The most prominent protocols for pervasive systems such as the proposed system are 

Bluetooth and ZigBee (IEEE 802.15.4 standard). The ZigBee has been developed as a 

low data rate solution with multi-month to multiyear battery life and very low 

complexity. It is intended to operate in an unlicensed international frequency band. 

The maximum data rates for each band are 250, 40, and 20 kbps, respectively. Two 

types of sensor nodes have been used in the implementation of the proposed system; 

A SARD ZigBee node [85] and a Sentilla Perk [84] sensor (see Figure 5.1.2). Both of 

them contain a 2.4 GHz wireless data transceiver RF reference design with printed 

circuit antenna, which provides the necessary hardware required for a complete 



wireless node using IEEE 802.15.4 (ZigBee) [17] packet structure. The first one 

includes an RS232 port for interface with a personal computer, whereas the second 

one uses a USB port interface instead. Both of them feature debug modules for in-

circuit hardware debug, switches and LEDs for control and monitoring, a low-power, 

low-voltage MCU (MicroController Unit) with 60KB of on-chip Flash which allows 

the user flexibility in establishing wireless data networks. 3D Accelerometers for 

measuring acceleration at X, Y and Z axis have been attached on the nodes (SARD 

node contains two accelerometers and Perk node one respectively). A separate 

SensiNode [86] board has been also attached containing a microphone and additional 

sensors like illumination and temperature sensors. The Perk nodes are provided in a 

plastic robust small-sized enclosure (6x3x1.5cm) making them more suitable for 

placing on patient’s body and tolerating falls. 

  

A B 

Figure 5.1.2 A) The SARD ZigBee node. The node acts as both receiver and 
transmitter. The RS232 interface provides connectivity with the monitoring 
device (e.g., a PDA) when the node is used as receiver. Two 3D accelerometers 
and one microphone module are attached on the node B) The Sentilla Perk node 
containing one 3D accelerometer that can be attached on user and send motion 
data through the ZigBee wireless protocol. The plastic enclosure can protect the 
node from falls and makes it more suitable for carrying it on patient’s body 

More than one sensor nodes can be placed on patient’s body. Preferable positions are 

close to user’s chest and user’s belt or lower at user’s foot. The latter positions have 

proven based on conducted experiments to be more appropriate for distinguishing 

rapid acceleration on one of the three axes that is generated during a fall. Appropriate 

J2ME [83] and C code is developed and deployed on the nodes for reading the 

accelerometer values and transmitting them wirelessly to the monitoring unit. At the 

latter a Java application built using the Sentilla Integrated Development Environment 



(IDE) [84] receives the movement data and performs further processing as described 

in the following sections. The X, Y and Z acceleration values from both sensors are 

interlaced. In order to improve the accuracy of the latter decision, Kalman filtering 

[22, 23] has been applied on the sequence of the movement type association of each 

acceleration data set, according to the following algorithm. The measurement noise 

and acceleration noise factors have been set to 10 and 0.5 respectively based on 

conducted experiments. The noise has been considered white and therefore a known 

covariance matrix has been used. 

 

Start Kalman filter algorithm 

 

Step 1:  

Read acceleration value Xn from sensor 

Step 2: 

Calculate the noise covariance Nq and the Measurement error 

covariance R based on the MeasurementNoise factor and 

AccelerationNoise factor. 

 

Nq = AccelerationNoise ^2 * [0.1^4/4 0.1^3/2; 0.1^3/2 0.1^2] 

R = measnoise^2 

 

For the previous 10 acceleration values Xi, i€[n-10, n-1]: 

 Calculate the noise: 

 Noise = AccelerationNoise * Xi* [(0.1^2/2); 0.1] 

 Calculate the measurement with the estimated noise: 

 Meas = measnoise * Xi 

 z = Xi + MeasurementNoise; 

     Calculate the Innovation: 

    I = z - c * xhat; 

     Calculate the covariance of Innovation: 

    s = Xi * P * Xi' + R; 

     Calculate  the Gain matrix: 

     K = a * P * Xi' * inv(s); 

 Calculate  the estimate for the next acceleration value: 

     Xest = a * Xest + K * I; 

end 

 

GoTo Step 1 

  

End algorithm 

 



Each filtered acceleration value (Xest, Yest and Zest respectively) are used as inputs 

to the classification process. 

5.1.3. Human	Body	Visual	Tracking	

The goal of the body video tracker is in brief the provision across time the frame 

regions occupied by human bodies. The tracker is built around a dynamic foreground 

segmentation algorithm [62] that utilizes adaptive background modeling. This is 

based on Stauffer’s algorithm [63] to provide the foreground pixels. Stauffer’s 

algorithm models the different colors every pixel can receive in a video sequence by 

Gaussian Mixture Models (GMM). One GMM corresponds to every pixel at given 

coordinates across time. As a result, a map can be built in which every pixel is 

represented by the weight of the Gaussian from its GMM that best describes its 

current color. This is the Pixel Persistence Map (PPM): Regions of the map with large 

values correspond to pixels that have colors that appear there for a long time, hence 

they belong to background. On the contrary, regions with small values correspond to 

pixels that have colors that appear there for a short time, hence they are foreground. 

The deficiency of Stauffer’s algorithm is related to foreground objects that stop 

moving. In its original implementation, targets/objects that stop moving are learnt into 

the background. To avoid this in our system, the learning rates of the adaptation that 

increase the weights of Gaussians are not constant, neither across space, nor across 

time. Instead, they are spatiotemporally controlled by the states of Kalman filters [61] 

(see Figure 5.1.3-1). Every foreground area corresponds to a target being tracked by a 

Kalman filter. The foreground pixels are combined into body evidence blobs, used for 

the measurement update stage of the Kalman filters. The states are used to obtain the 

position, size and mobility of each target, the latter being a combination of translation 

and size change. This information is fed back to the adaptive background modelling 

module to adapt the learning rate in the vicinity of each target: frame regions that at a 

specific time have a slow-moving target have smaller learning rates. The block 

diagram of the introduced body tracker is shown in Figure 5.1.3-A. Using the 

feedback configuration of the tracker, the learning of the slow moving foreground 

objects into the background is slowed down long enough for the intended application, 

i.e. tracking people moving indoors and possibly falling down. The tracker results, as 

produced by the visual feed of an overhead camera are illustrated in Figure 5.1.3-B. 



Tracking through overhead cameras has been selected due to the fact that it provides a 

better visual representation of the monitored area and allows the tracker to gain a 

better estimation of the body shape when subject moves, falls and lies still after fall. 

The presented tracker detects and tracks a rectangular blob around the detection of the 

moving body within the frames and reports the upper left corner coordinates and 

respective width and height of the blob. As indicated in Figure 5.1.3-B, the size of the 

blob changes during the fall and after it. 

  

A 

 

    B 

Figure 5.1.3 A) Block diagram of the body video tracker. Kalman filters 
spatiotemporally adapt the learning rates of the adaptive background algorithm, 
effectively avoiding learning of immobile foreground objects into the 



background B) Visualization of video tracking performance. The tracker detects 
the movement of the body and correlates it with the movement of a rectangular 
blob within the visual domain. Upper left X, Y coordinates and respective width 
and height of the blob are reported for each visual frame. Frame A corresponds 
to normal walking, Frame B to captured movement during fall and Frame C 
illustrates detection of body in horizontal position after fall 

5.1.4. Sound	Processing	and	Event	Detection	

The detection of emergency events is also facilitated through appropriate sound 

processing of surrounding audio captured by the microphone arrays and patient 

sounds acquired by the body sensors. Microphone arrays are mostly utilized for sound 

source localization whereas sounds captured from on-body microphones provide 

important features that can be properly classified and lead to event detection. 

An important aspect of the proposed system is the sound source localization that can 

lead to an estimation of the position of the individual in the event of an emergency. 

Localization can be performed using the estimation of the Direction of Arrival (DOA) 

of an acoustic source using Time Delay Estimation (TDE). Typically, the problem is 

addressed using microphone arrays that collect data in frames so that the current 

estimate can be provided. The most popular approaches rely on defining the relative 

delay between a pair of microphones by means of comparing function that returns a 

peak at the correct DOA of the source. Common methods for TDE are the 

Generalized Cross-Correlation (GCC) [67] and Blind Source Separation (BSS) [68]. 

The proposed system utilizes sound source localization using an implementation 

similar to BSS provided by [69]. 

Assuming the existence of two microphones, a single source would lead to the 

following discrete signal recorded at the ith microphone 

€ 

i ∈ [1,2] 

€ 

xi(k) = s(k − Τi)  (1) 

where Ti denotes the time in samples that it takes for the source signal to reach the ith 

microphone.  

For the case of two microphones (see Figure 5.1.4 A) Direction of Arrival θ (DOA) 

estimation using microphone arrays and Time Delay Estimation (TDE) B) Estimation 

of patient location using sound source localization) and considering that T1=0, the 



delay at i2 is the relative T=t2 between the two recorded signals. The corresponding 

DOA θ in degrees is defined with respect to the broadside of the array that is 

connected with T in the following way: 

€ 

θ = arcsin TC
fs d[ ]  (2) 

where fs is the sampling frequency of the recording system and c the speed of sound. 

More details of the sound localization implementation can be found in [69]. 
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Figure 5.1.4 A) Direction of Arrival θ (DOA) estimation using microphone 
arrays and Time Delay Estimation (TDE) B) Estimation of patient location using 
sound source localization 

The correlation of the sound source location and patient’s body location is performed 

as follows: Consider two microphone arrays being attached on the walls of a 

monitored area as show in Figure 5.1.4-B. The arrays can cover a direction of arrival 

Θ = 1800. The area has been divided into four quadrants. When a sound is captured 

each microphone array gives an estimation of the angle of arrival θ1 and θ2. Based on 

their values, the quadrant that contains the sound source can be easily determined. 

The presence of the patient within the latter can be then verified by the visual tracker 

as well. The deployment of a larger number of microphones per array and the 

introduction of arrays within the monitored array can increase the sound source 

localization accuracy by also allowing the utilization of more advanced techniques 

like angle tranquilization. The latter can be translated into the following algorithm: 

 

 



Start Angle of Arrival Algorithm 

 

T1,2 = timestamp of signal recorded at the microphones 

for all microphones in the array: 

Calculate the average time delay T as: 

T = abs(T2-T1+T3-T2+T3-T1) 

Calculate the angle of arrival as: 

Θa = arcsin [(T * C)/ 22100] (C equals to the speed of light) 

end 

if(Θ1 > 900 && Θ2 > 90) 

 Quadrant = A; 

else if (Θ1 > 900 && Θ2 < 90) 

 Quadrant = B; 

else if (Θ1 < 900 && Θ2 < 90) 

 Quadrant = C; 

else if (Θ1 < 900 && Θ2 > 90) 

 Quadrant = D; 

end 

 

End Algorithm 

 

If the quadrant indicated area contains the subject’s body as indicated by the visual 

tracker, a binary feature with the value of 1 is used. Otherwise the feature has the 

value of zero. 

5.1.4.1. Sound	Feature	Extraction	

In this research work we have used spectrogram analysis, based on short-time-Fourier 

Transform (STFT) for the detection of sounds features characterizing the fall of the 

human body or the vocal stress in speech expressions indicating distress events. Given 

a signal x(t) and its Fourier Transform X(τ, ω) the STFT is defined as: 

STFT{ ()}  ( , ) ( ) ( ) jx X x t t e dtωτ ω ω τ
∞

−

−∞

≡ = −∫
  (3)  

The spectrogram is respectively given by the magnitude of the STFT of one function: 

2spectrogram( , ) STFT( , )t tω ω=   (4) 

In the most usual format of a spectrogram, the horizontal axis represents time, the 

vertical axis is frequency, and the intensity of each point in the image represents 

amplitude of a particular frequency at a particular time. Based on conducted 



experiments the relative amplitude of a signal and the peak frequency at a given time 

can give a successful indication of a patient fall sound as captured by the microphone 

arrays; Body falls generate low frequency sounds with high amplitude. Using a 

threshold of >90% for relative signal amplitude and <200 Hz for peak frequency, the 

differentiation of a fall sound against other sounds is possible. More precisely, over a 

series of 20 sound samples containing both body fall sounds and background noise 

(e.g., radio, object falls, etc.) the detection of the fall was possible for 80% of them 

[81]. Different types of floor (i.e. wood, cement and flooring tile) were also used. 

Neither the different floor types used, nor the various background noises seem to have 

influenced the performance of the system. The presented method has low 

computational complexity and can be easily integrated on sensor devices for real time 

sound processing. The same analysis has been applied on vocal sounds in an effort to 

detect distress expressions. 
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Figure 5.1.5 Illustration of spectrogram analysis on A) distress speech 
expression, B) Sound generated by patient body fall 

The latter can be translated into the following algorithm for calculating the Average 

Sound Peak Frequency and Average Signal Relative Amplitude features: 

 

 

 

 

 



Start Sound Feature Extraction Algorithm 

 

Xs[] Five second segment of recorded data 

 

for i=0 to all the number of recorded segments: 

 Calculate STFT for the given Xs[i]; 

 Calculate spectrogram for STFT[i]; 

 for: all the signal segments: 

  Find maximum signal amplitude, Amax 

  Find coherent signal amplitude, Ac, where Ac>0.9*Amx 

  for: all the Ac: 

   if Fpeak of Ac < 200 Hz 

   Use Fpeak and Ac for classification 

  end 

 end 

 

end 

 

End Algorithm 

 

The following section provides more information on how motion, visual and audio 

data can be collected in order to achieve the optimum motion analysis and fall 

detection. 

5.1.5. Experimental	Protocol	Details	

In order to combine the aforementioned information channels and detect emergency 

fall incidents, an experimental protocol has been defined. The protocol describes 

issues like the movement types that can be analyzed, the suggested placement of the 

sensors for optimum results, and technical details like sampling rates and testbed 

setup. Three different combinations of movement types have been considered for 

assessment; a) simple walk, b) simple walk and fall, c) simple walk and run. The 

sensors have been placed on subject’s chest and belt (using special straps glued on 

sensors) in order to provide better estimation of the body movement and placement 

with respect to the ground. Each experiment containing one of the aforementioned 

movement types has an average duration of 120 seconds. Each individual performs at 

least two experiments including all three movement types. The sampling frequency 

(i.e. the rate sensors are collecting and transmitting data) is 20 Hz for movement data 

and 22.1 KHz for audio data (default sampling rate of the microphone sensor). The 



frequency of falls in the second type of experiments is 2 or 3 falls per recording. The 

volunteers - subjects are directed to perform all movement types as realistically as 

possible, behaving like in real life (i.e., adding random stopping intervals in 

movement and changing acceleration at will). More specifically for the fall trials, the 

individuals are advised to initially walk within the experiment area (a flat room of 40 

square meters with obstacles like furniture) and then perform falls simulating events 

like stumbling on furniture or falling down because of loss of consciousness (e.g., in 

case of a heart attack). Each combined movement type experiment (i.e. simple walk 

and run or simple walk and fall) can be considered to contain about 80% of its 

recording time of walking and the rest for running or falling). Post fall behaviors are 

also simulated by standing still (unconscious state), moving (trying to recover from 

fall) and getting up (recovering from fall). An overhead camera is capturing visual 

frames and two microphone arrays are capturing sounds (see Figure 5.1.1 for testbed 

setup). Recorded data are segmented into time segments of 5 seconds. Each segment 

is processed and the generated sound data and body motion features are utilized for 

creating classification models. Classification of all incoming data is performed every 

5 seconds to maintain time granularity. All incoming data are time-stamped and 

buffered until the classification process. Sound features consist of average peak 

frequency and average relative amplitude for the specific time segment as calculated 

using spectrogram analysis. Respectively, body motion features are the standard 

deviation of the blob size generated by the visual tracker (see Figure 5.1.3-2) and the 

average movement speed of the tracked body over captured frames. Finally, a binary 

feature (true/false) is used in order to indicate whether a detected sound has occurred 

within close proximity of the patient or not. Table 5.1.1 summarizes all the 

aforementioned features utilized for performing the experiments. The correlation of 

the motion and sound data with the patient body trajectory data can provide much 

more accurate results as presented in the following section. 

 

 

 



Table 5.1.1 Description of Utilized Motion, Sound and Visual Features 

Features Short Description 

Motion Features   

 X, Y, Z acceleration 

values 

X, Y and Z acceleration values in [-1, 

1] as obtained from on-body sensors. 

Sound Features   

 Sound Proximity Binary feature indicating whether a 

captured sound has been recorded in 

close proximity to the patient body. 

This information is generated by 

sound source localization and visual 

information (see Section 3.4.1) 

 Average Peak Frequency Numerical featured calculated using 

STFT transform on acquired sound 

signal (see Section 3.4.2) 

 Average Signal Relative 

Amplitude 

Numerical featured calculated using 

STFT transform on acquired sound 

signal (see Section 3.4.2) 

Visual Features   

 Visual Blob size The standard deviation of the blob 

(i.e. rectangular area containing 

subject’s body) size as indicated by 

the visual tracker (see Section 3.3) 

 Average Movement 

speed 

The average movement speed of the 

tracked body over captured frames 



5.1.6. Severity	 Estimation	 through	 Semantic	 representation	
and	Rule-based	evaluation	

In order to semantically represent an emergency incident as indicated by the motion, 

sound and visual perceptual components, the ontology illustrated in Figure 5.1.6 has 

been developed. An emergency incident can be characterized by its severity (e.g., 

high or low) based on fall estimation and more precisely if high or low visual and 

motion activity is identified after the fall, respectively. The patient movement ability 

level can also provide important information regarding the patient’s ability to recover 

from falls and finally the correlation of the sound source and the patient’s location is 

also very important. 

 

Figure 5.1.6 Semantic representation of the ontology modeling an emergency 
incident based on fall estimation, patient and location parameters 

The ontological model has been developed within the Protégé [88] semantic 

framework using the Ontology Web Language (OWL). The main advantages of the 

semantic representation of the incident in the context of the patient status can be 

summarized into the following: 

• Flexibility to modify and extend the contextual scheme by adding more 

classes. In case the parameters that define the context of the patient (e.g.., 

status, environment, location, etc.) need to be modified, the ontological model 

can be altered without invoking modifications to the implementation modules 

or the architecture of the platform. 

• Using advanced semantic rule evaluation techniques content adaptation 

decisions can be made according to a plethora of contextual parameters. The 



rules can be updated and extended without any need for system platform 

software modifications.  

• Additionally, ontologies are explicit because define the concepts, properties, 

relationships, functions, axioms and constraints that compose the contextual 

model. They are formal because they are machine readable and interpreted.  

The creation of semantic rules required the description of the latter through abstract 

semantic languages like the Semantic Web Rule Language (SWRL) [89]. Within this 

context, the SWRL Factory [88] mechanism and an integrated Jess rule engine [90] 

using the Protégé tool have been utilized. Jess provides both an interactive command 

line interface and a Java-based application programming interface (API) to its rule 

engine. This engine can be embedded in Java applications and provides a flexible 

two-way run-time communication between Jess rules and Java. The Jess system 

consists of a rule base, a fact base, and an execution engine.  

Two indicative samples of SWRL rules follow that can be used within the presented 

framework in order to facilitate the decision on the emergency incident estimation: 

 

Patient(?x)^Location(?y)^hasFallEstimation(?x,?y, ?FallEstimation)^ 

hasVisualActivity(?x,?VisualActivity)^hasMotionActivity(?x,?MotionAc

tivity)^ Location(?Proximity)^ 

swrlb:equals(?FallEstimation,?true)^swrlb:equals(?Proximity,?High) 

^swrlb:equals(?VisualActivity,?High)^swrlb:equals(?MotionActivity,?H

igh)   

->DefineIncidentSeverity(?Severity,”LOW”) 

 

Patient(?x)^Location(?y)^hasFallEstimation(?x,?y, ?FallEstimation)^ 

hasVisualActivity(?x,?VisualActivity)^hasMotionActivity(?x,?MotionAc

tivity)^ Location(?Proximity)^ 

swrlb:equals(?FallEstimation,?true)^swrlb:equals(?Proximity,?High) 

^swrlb:equals(?VisualActivity,?Low)^swrlb:equals(?MotionActivity,?Hi

gh)   

->DefineIncidentSeverity(?Severity,”HIGH”) 

 

Both rules examine the correlation of patient’s location to the sound source, the fall 

estimation and post-fall visual and motion activity. In the both cases, a fall has been 

detected and the body fall sound and/or other distress sounds have been captured in 



close proximity of the patient. In first case there is high visual and motion activity 

indicating thus that the patient has probably recovered from fall, whereas in the 

second case low visual but high motion activity indicates that the patient is still on the 

floor trying to recover from fall. Thus the first incident is characterized of low 

severity and the second of high severity respectively. The first rule can also be 

modified to the following one, in order to avoid any false positives generated by the 

characterization of motion or sound data; in case an estimation of fall is generated but 

is followed by high visual and motion activity and the movement speed of the body’s 

visual trajectory is above a predefined threshold then the subject has not fallen but 

moves rather fast: 

 

Patient(?x)^Location(?y)^hasFallEstimation(?x,?y, ?FallEstimation)^ 

hasVisualActivity(?x,?VisualActivity)^hasMotionActivity(?x,?MotionAc

tivity)^ Location(?Proximity)^ TrajectorySpeed(?Speed)^ 

swrlb:equals(?FallEstimation,?true)^swrlb:equals(?Proximity,?High) 

^swrlb:equals(?VisualActivity,?High)^swrlb:equals(?MotionActivity,?H

igh) ^swrlb:equals(?speed,?High)   

->DefineIncidentSeverity(?Severity,”VERY LOW”) 

5.1.7. Results	and	Experimental	Evaluation	

This section presents the results and experimental evaluation of the proposed system. 

The incorporated algorithms and tools for classifying the motion, audio and visual 

perceptual components acquired by the methodology described above are discussed in 

the following subsections. The evaluation of the system involves the assessment of 

the system’s accuracy in properly characterizing falls as well as the user-based 

evaluation in terms of acceptance and effectiveness and technical acceptability. 

Several advanced classification techniques have been utilized in order to build proper 

models for proper activity and status recognition. The selection of the specific 

algorithms was based on their utilization in related work for fall detection. The 

features used for classification are summarised in Table 5.1.1. The examined 

algorithms were: Bayes Networks, Naïve Bayes, Naïve Bayes Multinomial, Support 

Vector Machines (SVM), Logistic regression, Multilayer perceptron, Nearest 



Neighbour and K-Nearest Neighbour, Neural Networks, PART, NBTree, and 

SimpleCart. In addition, the following meta-classifiers have also been used: 

AdaBoost [74] : Class for boosting a nominal class classifier using the Adaboost M1 

method. Often dramatically improves performance, but sometimes overfits. 

Classification via regression [75]: Class for doing classification using regression 

methods. Class is binarized and one regression model is built for each class value. 

CVparameterSelection [76]: Class for performing parameter selection by cross-

validation for any classifier. 

RandomSubSpace [77]: This method constructs a decision tree based classifier that 

maintains highest accuracy on training data and improves on generalization accuracy 

as it grows in complexity. The classifier consists of multiple trees constructed 

systematically by pseudo randomly selecting subsets of components of the feature 

vector, that is, trees constructed in randomly chosen subspaces. 

NestedDichotomies [78]: A meta classifier for handling multi-class datasets with 2-

class classifiers by building a random class-balanced tree structure. 

Dagging [79]: This metaclassifier creates a number of disjoint, stratified folds out of 

the data and feeds each chunk of data to a copy of the supplied base classifier. 

Predictions are made via majority vote, since all generated base classifiers are put into 

the Vote meta classifier. This metaclassifier is useful for base classifiers that are 

quadratic or worse in time behavior, regarding number of instances in the training 

data. Usually in this case, Support Vector Machines are used as base classifiers. 

ThresholdSelector [66]: A metaclassifier that selecting a mid-point threshold on the 

probability output by a Classifier. The midpoint threshold is set so that a given 

performance measure is optimized. Currently this is the F-measure. Performance is 

measured either on the training data, a hold-out set or using cross-validation. In 

addition, the probabilities returned by the base learner can have their range expanded 

so that the output probabilities will reside between 0 and 1 (this is useful if the 

scheme normally produces probabilities in a very narrow range). 

The evaluation of the proposed system has been performed based on the experimental 

protocol and testbed setup as described in previous sections. Two male volunteers of 



average height and weight at the ages of 28 and 35 wearing the sensors devices 

performed combinations of movement types. Twelve recordings in total have been 

utilized (each individual performing two experiments of three different motion 

combination types), that have provided 1440 seconds of recorded data (motion, sound 

and visual data). The latter have been segmented into 5 second time frames (for sound 

processing) and annotated. The procedure involves the evaluation of classifiers, 

effectiveness of features and information fusion, where the efficiency of the proposed 

classification model is calculated using a predefined procedure. The dominant method 

presented in literature, mainly used in situations where the total amount of data is 

limited, in order to provide a sufficient amount of data for training and separately 

testing the developed model, is N-fold cross validation [99]. The most widely applied 

value for parameter N is 10, which is the value we selected for our experiments in 

order to verify each model’s accuracy and performance: The 1440 seconds of 

recorded data were segmented into 5 second time frames resulted into 288 

experimental time frames. 260 randomly selected time frames were used as a training 

data set whereas the remaining 28 frames were used for testing. The latter process has 

been repeated 10 times and the total error rate has been calculated from the average of 

each individual test error rate. The evaluation has been divided into two parts; initially 

the characterization of motion using acceleration and sound data from the on-body 

sensors has been validated. Finally, the visual channel information has been added 

and the rules-based evaluation provides the essential fusion for complete fall incidents 

detection.  

Based on the number of sequential occurrence of a specific movement type, decision 

regarding a patient fall is taken. In order to improve the accuracy of the latter decision, 

Kalman filtering [22, 23] has been applied on the sequence of the movement type 

association of each acceleration data set. Figure 5.1.7 represents the classification 

results and the significance of Kalman filtering from the conducted experiments 

(utilizing only motion and sound data) using the trained SVM model. Light colored 

lines represent original results whereas dark colored lines results after applying 

Kalman filtering. The improvement in classification accuracy by utilizing both motion 

and sound features is also visible in Figure 5.1.8 by the corresponding receiver 

operating characteristic (ROC) curves. Before applying Kalman filtering the false 

positives for the case of falls were 60% of the total classified instances and after 



applying Kalman filtering were minimized to 33% respectively. For annotation 

purposes, the three movement types were associated with three integers; 1 for walk, 2 

for run and 3 for fall respectively. Actual run and fall events are also annotated on the 

diagrams. For each experiment two different diagrams were generated; one 

illustrating classification results based exclusively on acceleration data and one 

illustrating classification based on both acceleration and sound data. As it is indicated, 

Kalman filtering improves the overall detection by smoothing the sequential 

occurrences of run or fall events respectively. In addition, the use of sound as 

additional classification feature has increased the accuracy of fall detections by 

minimizing the false ones in cases of simple walk and of walk and run. A threshold t 

=10 has been selected for determining the occurrence of a fall or run event from the 

total sequence of classified movement types (i.e. if sequential occurrence of fall 

movement types > 10 then a fall is detected). Using the aforementioned classification 

and the latter threshold value, fall events were successfully detected in all cases, 

whereas run events were successfully detected at 96.72%. 

In addition, the classification results utilizing the algorithms described in Section 5.1 

and the combination of motion, visual and audio perceptual components and 

information fusion using semantic rules evaluation are presented in Table 5.1.2. A 

number of statistical analysis performance metrics have been used: the accuracy, the 

kappa statistic [80] (which measures the agreement between two raters, who each 

classify N items into C mutually exclusive categories), and the root mean square error 

of the latter. 

Table 5.1.2 Evaluation results for the different classification algorithms used on 
motion, sound and visual perceptual components 

Classification 

Algorithm 

Algorithm 

Parameters 

Correctly 

Classified 

Instances 

(%) 

Kappa 

statistic 

Root mean 

squared 

error 

Sensitivity/ 

Specificity 

(%) 

BayesNet Simple 

Estimator, 

A: 0.5, 

search 

97.54 0.9392 0.1169 97/93 



algorithm: 

hill 

climbing 

NaiveBayes No input 96.49 0.8923 0.1337 96/88 

Logistic Ridge value 

in log-

likelihood: 

1.0E-8 

95.32 0.7389 0.2251 95/91 

MultiLayerPer

ceptron 

Learning 

rate: 0.3, 

learning 

time: 500 

validation 

threshold: 

20, num of 

epochs: 500 

98.58 0.9478 0.0984 98/93 

SVM Kernel: 

RBF, 

C:1024, g : 

0.125 

100 1 0.0181 100/100 

IB1 (Nearest 

Neighbor) 

No input 93.33 0.5547 0.2734 93/88 

IBK (K 

Nearest) 

KNN:1, 

Search 

Algorithm: 

LinearNNS

earch [66], 

Euclidean 

distance 

94.53 0.6547 0.2724 94/90 



NNge No Input 94.66 0.7094 0.231 94/92 

PART Confidence 

Factor: 

0.25, 

99.29 0.9674 0.0851 99/96 

NBTree No input 100 1 0.0219 100/100 

SimpleCart heuristic: 

true, 

numFold 

Pruning: 5 

98.85 0.9361 0.1193 98/95 

AdaBoost Number of 

Iterations: 

10, Weight 

Threshold: 

100 

100 1 0.0211 100/100 

Classification

ViaRegression 

Classifier 

M5P, 

minNumIns

tances: 4 

97.58 0.9347 0.1562 97/93 

CVParameterS

election 

Classifier: 

O-R [66] 

88.17 0.2365 0.3343 88/80 

RandomSubSp

ace 

Classifier: 

REP-Tree 

[66] 

99.87 0.9044 0.1238 99/90 

NestedDichoto

mies 

Classifier: 

J48 [66], 

confidence 

factor: 0.25 

98.56 0.9391 0.1222 98/96 

Dagging Classifier: 

Support 

86.8 0.1895 0.3054 86/72 



Vector, 

Kernel type: 

PolyKernel 

ThresholdSele

ctor 

No Input 93.01 0.6958 0.228 93/87 

 

Additional evaluation metrics apart from accuracy are essential, since the latter is not 

sufficient itself for comparing the performance of different classifiers. For instance, 

lower kappa statistic (0.8923) and higher RMS error (0.1337) in NaiveBayes than in 

BayesNET (0.9392 and 0.1169 respectively) suggests that BayesNET performs quite 

better than NaiveBayes, though the accuracy metric does not indicate such difference 

directly (96.49 versus 97.54 respectively). BayesNET is also expected to perform 

better when including motion data, since NaiveBayes is based on the inherent 

assumption that features are conditionally independent and modelled by a normal 

distribution, which has been proved to be invalid when dealing with accelerometer 

data according to L. Bao et. al [97], [98]. 
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Figure 5.1.7 Classification results from the conducted experiments using the 
trained SVM model. Light colored lines represent original results whereas dark 
colored lines results after applying Kalman filtering. Diagrams on the left 
present accuracy results based on movement data whereas diagrams on the right 
present accuracy results utilizing both motion and sound data. 

As indicated by the evaluation results, the majority of the algorithms achieve high 

accuracy results. All fall incidents were successfully indicated in the case of SVM and 

AdaBoost meta-classifier, whereas related works in fall detection achieve up to 81% 

for visual information classification [59], and 91,58% for audio features classification 

[73]. The base classifier used with AdaBoost is the DecisionStump tree classifier, 

which performs regression based on mean-squared error. For SVM, the radial basis 

function kernel type has been used. The utilization of all the acquired perceptual 

components also improves the overall performance of the system since fall 

determination accuracy is over 90 % for the majority of classifiers with an average 

false positive range of 16.67% (in conjunction to 33% of false positive rate when 

using motion and sound data only). The utilization of rules-based evaluation (see 

Section 4) can potentially minimize false positives to zero.  

 

(a) 



 

(b) 

Figure 5.1.8 ROC curves of SVM Classifier performance in fall detection using: 
a) Motion data individually. Area under curve: 0.655, b) Motion and Sound data. 
Area under curve: 0.885 

5.1.8. System	User-based	Evaluation	

The system in addition to his correctness on the detection of specific human activities 

was evaluated in terms of usability, user friendliness and reliability. According to 

literature review several factors can be utilized in order to evaluate patient-related 

applications. The most common way of measuring the aforementioned factors is the 

Mean Opinion Score (MOS). In a subjective test, a number of people rate their quality 

of experience on a scale of 1 (bad) to 5 (excellent). The average of the scores is called 

a MOS. The resulting MOS depends on the range of experiences that were exposed to 

the group and to the type of experience being rated. Based on the evaluation 

performed by [87], four criteria of human factors evaluation are utilized: (A) technical 

acceptability, (B) operational effectiveness, (C) clinical appropriateness and (D) 

equipment selection. Technical acceptability refers to issues like sensor 

communication, battery life, etc., operational effectiveness refers to system 

effectiveness (i.e. detection correctness), clinical appropriateness refers to usability as 

accepted by the treatment personnel, and equipment selection to issues like sensor 

wear-ability and convenience as judged by the patients. 

In this context a survey has been performed asking users and treatment personnel to 

evaluate the developed platform using the aforementioned method. A total number of 

10 individuals acting as patients (i.e. wearing the sensors) and 10 experts in medical 

treatment have used the system and completed the survey. The corresponding results 

are presented inTable 5.1.3. Both patients and personnel were asked to evaluate all 



four criteria, since all four of them can affect either the acceptability or the usability 

of the system. The performance of the system in fall detection has not been evaluated 

in the particular survey. 

Table 5.1.3 Mean Opinion Score (MOS) for (A) technical acceptability, (B) 
operational effectiveness, (C) clinical appropriateness and (D) equipment 
selection as indicated by the conducted survey between patients and medical 
personnel that evaluated the presented platform 

 A B C D 

Patient 4.8 5.0 5.0 4.2 

Personnel 4.2 4.6 5.0 4.8 

 

As indicated by the survey, the system has met great acceptability in the context of 

effectiveness (criteria B) and usability (criteria C). Technical acceptability has 

achieved some lower score due to the fact that users expected higher communication 

range between the sensors and the monitoring unit and better battery life. Patients also 

noted that sensors could be more light and comfortable (criteria D). Future evolution 

of sensor technologies will address such issues improving communication, energy 

consumption and wearability. 

5.2. Region	 of	 Interest	 image	 coding	 and	 transmission	 over	

mobile	devices	and	heterogeneous	networks	

Various types of mobile devices (e.g., Pocket PCs, PDAs, etc.) support applications 

used by medical personnel for retrieving and examining patient data [45]-[46]. Most 

of these applications deal with medical images, such as CT (Computed Tomography) 

scans, CR (Computed Radiography) scans, and MR (Magnetic Resonance) images, 

stored in Picture Archiving and Communication Systems (PACS) and/or Hospital 

Information Systems (HIS). The visual quality of the medical images/scans is 

required to be high, in order to ensure correct and efficient assessment resulting in 

correct diagnosis. In this context, a mobile device has to handle medical images of 

significant sizes, while also taking into account its own limitations concerning 



memory and processing resources. For reducing the size of medical images, the 

Discrete Wavelet Transform has been widely used in various applications for medical 

image manipulation. Indicative examples include wavelets - based applications for 

medical images compression [100]-[101], for MR and ultrasound images denoising 

[102]-[103], and for medical images features’ extraction [104]-[105]. 

A plethora of medical image file viewers can be found in international literature (for a 

collection of them see [106]). Most of them include functionalities that allow image 

and header information extraction (in case of DICOM compliant images), as well as 

partial image manipulation. The Digital Imaging and Communications in Medicine 

(DICOM) standard launched by the National Electrical Manufacturers Association 

(NEMA) facilitates the distribution and viewing of medical images. DICOM defines a 

special file format that contains a header (that stores information about the patient’s 

name, the type of image, image dimensions, etc.), and the rest image data. Figure 

5.2.1 shows a DICOM compliant image file representation including the header 

section. 

 

Figure 5.2.1 DICOM compliant image file format representation 

Commercial versions of medical image file viewers appropriate for mobile devices 

are ‘RemotEye’ [107] ‘DicomViewer’ [108], and ‘ReviewMD PDA’ [109]. Most of 

the above applications do not provide any means of scalability in image compression 

and/or Region of Interest (ROI) encoding/decoding. Furthermore, the current medical 

image viewers do not take into consideration the special requirements and needs of a 

heterogeneous radio access environments composing of different radio access 

technologies (e.g., GPRS/UMTS, WLAN and DVB-H).  



In the above context, this work presents a medical application, which enables scalable 

compression, retrieval and decompression of medical images on mobile devices, 

enhanced with ROI coding for advanced image examination of specific areas within 

the image. The proposed application can be used for accessing medical images at a 

health care center, where the electronic medical record system resides, at a medical 

treatment/care center established at a sports facilities center, at a treatment center on 

an island, on an urban area, or even remotely on patient’s site, and in an ambulance. 

An inherent feature of the proposed application is its support for mobility making this 

suitable for heterogeneous radio access network infrastructures. Such a setting where 

the proposed application can be adopted is depicted in Figure 5.2.2, where several 

treatment site locations are interconnected. 

 

Figure 5.2.2 A heterogeneous radio setting suitable for the proposed application 

5.2.1. Overview	 of	 ROI	 coding	 scalable	 techniques	 applied	 on	
medical	images	

The JPEG2000 Imaging Standard [110] has been tested in previous published works 

on medical images [111]. The standard uses the general-scaling method, which scales 

(shifts) coefficients so that the bits associated with the ROI are placed in higher bit-

planes than the bits associated with the background. Then, during the embedded 

coding process, the most significant ROI bit-planes are placed in the bit-stream before 

any background bit-planes of the image. The scaling value is computed using the 



MAXSHIFT method, also defined within the JPEG2000 standard. In this method the 

scaling value is computed in such a way that it makes possible to have arbitrary 

shaped ROIs without the need for transmitting shape information to the decoder. The 

mapping of the ROI from the spatial domain to the wavelet domain is dependent on 

the used wavelet filters and it is simplified for rectangular and circular regions. The 

encoder scans the quantized coefficients and chooses a scaling value S such that the 

minimum coefficient belonging to the ROI is larger than the maximum coefficient of 

the background (non-ROI area).  

A major drawback however of the JPEG 2000 standard is the fact that it does not 

support lossy-to-lossless ROI compression. In [112], a lossy-to-lossless ROI 

compression scheme based on Set Partitioning In Hierarchical Trees (SPIHT) [113] 

and Embedded Block Coding with Optimized Truncation (EBCOT) [114] is proposed. 

The input images are segmented into the object of interest and background and a 

chain code-based shape coding scheme [115] is used to code the ROI’s shape 

information. Then, the critically sampled shape-adaptive integer wavelet transforms 

[116] are performed on the object and background image separately to facilitate lossy-

to-lossless coding. Two alternative ROI wavelet-based coding methods with 

application to digital mammography are proposed by Penedo et al. in [118]. In both 

methods, after breast region segmentation, the Region-Based Discrete Wavelet 

Transform (RBDWT) [117] is applied. Then in the first method an Object-Based 

extension of the Set Partitioning In Hierarchical Trees (OB-SPIHT) [113] coding 

algorithm is used, while the second method uses an Object- Based extension of the 

Set Partitioned Embedded bloCK (OB-SPECK) [119] coding algorithm. Using 

RBDWT it is possible to efficiently perform wavelet sub-band decomposition of an 

arbitrary shape region, while maintaining the same number of wavelet coefficients. 

Both OB-SPIHT and OB-SPECK algorithms are embedded techniques, i.e. the coding 

method produces an embedded bit-stream which can be truncated at any point (in the 

context of bit-plane level), equivalent to stopping the compression process at a desired 

quality. The wavelet coefficients that have larger magnitude are those with larger 

information content. In a comparison, with full-image compression methods as 

SPIHT and JPEG2000, OB-SPIHT and OB-SPECK exhibited much higher quality in 

the breast region at the same compression factor [118]. A different approach is 

presented in [120], where the Embedded Zerotree Wavelets (EZW) coding technique 



is adopted for ROI coding in Progressive Image Transmission (PIT). The method uses 

sub-band decomposition and image wavelet transform to reduce the correlation in the 

sub-images at different resolutions, thus the whole frequency band of the original 

image is divided into different sub-bands at different resolution. The EZW algorithm 

is applied to the resulting wavelet coefficients to refine and encode the most 

significant ones. Compression scalability is also supported in HS-SPIHT (Highly 

Scalable SPIHT) [121], where SPIHT is enhanced to support spatial scalability 

providing a bitstream that can be easily adapted (reordered) to given bandwidth and 

resolution requirements by a simple transcoder. Another approach using wavelet 

localization for ROI specific scalable compression is presented in [122]. The wavelet 

coefficients at each level are correlated to weighting factors allowing scalability based 

on the received Peak Signal to Noise Ratio (PSNR). Apart from compression 

scalability for the whole image or a specific ROI, additional rate scalability can be 

introduced during network transmission of the image. The latter technique however 

applies mostly on cases of video transmission [123], [124]. 

5.2.2. The	 proposed	method	 for	 ROI	 coding	 of	 medical	 image	
data	

The proposed application adopts the Distortion Limited Wavelet Image Codec 

(DLWIC) algorithm [125]. In DLWIC, the image to be compressed is firstly 

converted to the wavelet domain using the orthonormal Daubechies wavelet transform 

[126]. The transformed data is then coded by bit-levels and the output is coded using 

QM-coder [127], an advanced binary arithmetic coder. The algorithm processes the 

bits of the wavelet transformed image data in decreasing order concerning their 

significance in terms of Mean Square Error (MSE). This produces a progressive 

output stream enabling the algorithm to be stopped at any phase of the coding. The 

already coded output can be used to construct an approximation of the original image.  

The above feature is useful when a user browses medical images using slow 

bandwidth connections, where the image can be viewed immediately after only few 

bits have been received; the subsequent bits then make it more accurate. DLWIC uses 

the progressivism by stopping the coding when the quality of the reconstruction 

exceeds a threshold given as an input parameter to the algorithm. The presented 



approach solves the problem of Distortion Limiting (DL) allowing the user to specify 

the MSE of the decompressed image. Furthermore, this technique is designed to be as 

simple as possible consuming less amount of memory in the compression-

decompression procedure, being thus suitable for usage on mobile devices. 

 

Figure 5.2.3 RMS error for different medical images according to quality factor 

Figure 5.2.3 depicts the Root Mean Square (RMS) error results concerning the 

application of DLWIC algorithm for both lossless (quality factor equal to one) and 

lossy compression (quality factor smaller than one) for CR (Computed Radiography), 

CT (Computed Tomography) and MR (Magnetic Resonance) medical images of sizes 

262Kb, 525 Kb and 1Mb respectively. The medical image data sets used in this study 

were collected at Sotiria General Hospital of Athens, Greece. The data set included 

117 CT scans, 90 CR and 112 MR images in the upper chest (thorax) and the 

abdominal area. The numerical data presented in the paper are average values from 

experiments executed on images from the specific data set. A second study has been 

also conducted using the Structural SIMilarity (SSIM) index found in [128] as an 

image quality indicator of the compressed images. The specific metric provides a 

mean of quantifying the perceptual similarity between two images. Perceptual image 

quality methods are traditionally based on the error difference between a distorted 

image and a reference image, and attempt to quantify the error by incorporating a 

variety of known properties of the human visual system. In the case of SSIM index, 

the structural information in an image is considered as an attribute for reflecting the 

structure of objects, independent of the average luminance and contrast, and the thus 

image quality is assessed based on the degradation of the structural information. A 

brief literature review [140]-[142] has shown clear advantages of the SSIM index 

against traditional RMS and peak signal to noise ratio (PSNR) metrics and a high 



adoption by researchers in the field of image and video processing. Average SSIM 

index values for different compression factors are presented in Table 5.2.1. 

Table 5.2.1 Structural SIMilarity (SSIM) quality index for three different image 
types using different compression factors. The SSIM index provides an 
indication of perceptual image similarity between original and compressed 
images. 

 Average SSIM index (%) 

Compression Factor 0.1 0.3 0.5 0.7 

 

Image Type 

MR 88.3975 96.0845 97.3111 99.0466 

CT 81.2853 91.1986 94.2828 97.6702 

CR 90.2179 94.5156 96.0221 96.8969 

 

As derived by the similarity comparison experiments using SSIM, the quality 

degradation even in high compression ratios is not major (i.e. 88.4% and 99.04% for 

compression factors 0.1 and 0.7 respectively, in case of the MR image data set). This 

fact proves the efficiency of the proposed algorithm.  

At this point it should be noted that concerning lossy compression, DLWIC performs 

better in case of medical images of large sizes; Lossy compression is performed by 

multiplexing a small number of wavelet coefficients (consisting the base layer and a 

few of additional layers for enhancement). Thus, a large number of layers are 

discarded, resulting in statistically higher compression results concerning the file size. 

However, lossy medical image compression is considered to be unacceptable for 

performing diagnosis in most of imaging applications, due to quality degradation. 

Therefore, in order to improve the diagnostic value of lossy compressed images, the 

ROI coding concept is introduced in the proposed application to improve the quality 

in specific regions of interest only by applying lossless or low compression in these 

regions, maintaining the high compression in none interest regions of the image. The 

wavelet based ROI coding algorithm implemented in the proposed application is 

depicted in Fig. 4 (block diagram). A dyadic decomposition is used that repeatedly 

divides the lower sub-band into 4 sub-bands. Let D denote the number of 



decomposition level, then the number of sub-bands M equals to 4+3(D-1). Assuming 

that the ROI shape is given by the client as a binary mask form on the source image, 

the wavelet coefficients on the ROI and on the Region of None Interest (RONI) are 

quantized with different step sizes. For this purpose, a corresponding binary mask is 

obtained, called WT mask, on the transform domain. The whole coding procedure can 

be summarized in the following steps: 

- The ROI mask is set on the source image. 

- The mask and the requested image are transferred to the application server. 

- The corresponding WT mask B is obtained. 

- The DWT coefficients are calculated. 

- Bit allocations for the ROI and RONI areas are obtained. 

- The DWT coefficients are quantized with the bit allocation from the previous 

step for each sub-band of each region. 

- The resulting quantized coefficients are encoded. 

- The WT mask B is encoded. 

The entropy coded coefficient and WT mask are multiplexed in order to create the bit 

stream. 

 

Figure 5.2.4 ROI coding system 

The decoding process follows the reverse order at the client side. The major 

advantage of the proposed ROI coding method is that it produces a progressive output 

stream; thus the ROI is decoded progressively at the receiver. The user has the 

capability to stop the transmission at any phase of the coding, while the already 



transmitted output can be used to construct an approximation of the original image. 

The specific feature is especially desired for browsing medical images in low 

bandwidth mobile networks. In comparison to the JPEG2000 standard the proposed 

scheme is preferable since it supports lossy-to-lossless ROI compression. When 

compared to the rest of the methods discussed in previous section the proposed 

method has superior characteristics in terms of complexity and simple implementation, 

enabling this way its application in portable and mobile devices with limited 

computing power. The mobile computing paradigm is quickly entering the electronic 

healthcare sector since it supports the moving and commuting physician; therefore, 

technical solutions aligned with this concept are extremely desirable. 

5.2.3. Implementation	Details	

As depicted in Figure 5.2.5, the proposed medical application follows a three-tier 

architecture, consisting of the client part, the DICOM Server and the Electronic 

Medical Record System - Remote Database Management System (EMR-RDBMS). 

Client requires a Java enabled web - browser and communicates using HyperText 

Transfer Protocol (HTTP) and Remote Method Invocation (RMI) protocols with the 

server. The transactions between the server and the database are performed through 

Java Database Connectivity (JDBC) [132]. Generally, client’s operations may be 

divided into two categories according to whether they are performed locally or 

through the server. Image manipulation (e.g., brightness, contrast, negative 

adjustment, drawing annotations, etc.) are handled by appropriate Java applets at the 

client’s side. User authentication, image and header retrieval, as well as compression 

and encryption are performed through the server. 

 

Figure 5.2.5 Three-tier architecture of the proposed medical application 



The proposed medical application supports lossless and lossy image compression 

through scalable wavelet-based transforms with ROI support that provides the user 

the ability to select desired regions on the compressed DICOM image. The medical 

personnel using the application can draw annotations on the images and store them 

through the DICOM header as comments. The DICOM header can be extracted and 

presented separately. Furthermore, it can be parsed into XML (Extensible Markup 

Language) format providing in this way interoperability with other medical file 

standards (e.g., HL7 [131]). Concerning security features, the proposed application 

supports user authentication through credentials (i.e. username and password) and 

data encryption using a symmetric key of 128 bits length. Additionally, various 

helping image manipulation functions (such as brightness and contrast adjustment) 

accompany the basic image retrieval feature of the discussed application. 

Figure 5.2.6 presents the sequence of messages exchanged between the client and 

server entities. The messages can be grouped according to their functions into four 

categories: User authentication, DICOM image retrieval, ROI coding and XML 

parsing. Most of the messages concern, either Remote Method Invocation (RMI) 

lookup calls for initializing communication, or procedure calls for data exchange. The 

procedure calls differ according to the action triggered by user. Between server and 

EMR-RDBMS appropriate message queries are exchanged.  



 

Figure 5.2.6 Sequence of exchanged messages 

Closing this section, Figure 5.2.7 depicts three screenshots from the proposed medical 

application in use. The first screenshot refers to a Tablet PC, the second one to a PDA, 

and the last one illustrates basic functions of compressed medical image retrieval and 

ROI coding.  

 



   
(a) (b) (c) 

Figure 5.2.7 Application screenshots: (a) for a Tablet PC, (b) for a PDA, (c) for 
ROI support on lossy compressed image 

5.3. 	Data	 collection	 in	 ambulatory	 cases	 utilizing	 Context	

Awareness	

Remote patient care and telemedicine platforms have been proved during the last 

years significant tools for the optimization of patient treatment in isolated areas [143]-

[154]. Transport, accommodation and medical personnel-related costs are reduced, 

and a full time 24 hours per day, 7 days per week patient status monitoring is 

provided [149], [150]. Health monitoring may be delivered not only in a hospital 

environment but at home as well, through the establishment of modern patient 

telemonitoring systems. The reasons are better possibilities for managing chronic care, 

controlling health delivery costs, increasing quality of life and quality of health 

services and distinct possibility of predicting and thus avoiding serious complications. 

In addition, remote telemedicine systems can address healthcare issues (both 

treatment of urgent incidents and managing chronic care) on remote isolated areas 

(e.g., small islands of north Aegean region) saving precious time during patient 

transmission to medical facilities on adjacent regions and improving the quality of life 

in such areas. 

Methods of treating and monitoring patients remotely include the use of bio-sensors, 

additional monitoring devices (e.g., video cameras) and patient-physician interaction 

applications (e.g., video conference, prescription management, etc.). Due to the 

remote locations of the involved actuators, a network infrastructure (wired and/or 

wireless) is needed in order to enable the transmission of the medical information. 

Telemedicine systems cannot however always perform in a successful and efficient 

manner; Issues, like large data volumes (e.g., video sequences), unnecessary data 



transmission occurrence and limited network resources can cause inefficient usage of 

such systems [155], [148]. In addition, wired and/or wireless network infrastructures 

often fail to deliver the required quality of service (e.g., bandwidth requirements, 

minimum delay and jitter requirements) due to network congestion and/or limited 

network resources. Context-aware medical networks can overcome the 

aforementioned issues, through performing appropriate content adaptation. This work 

presents an improved patient state and network aware telecare and telemonitoring 

platform. The used framework allows medical data transmission only when 

determined necessary encodes the transmitted data properly according to the network 

availability and quality, and to the patient status. The specific framework’s 

architecture is open and does not depend on the monitoring applications used, the 

underlying networks or any other issues regarding the telemedicine system used. A 

prototype evaluation platform has been developed based on the aforementioned 

framework. The proposed system comprises a combination of portable and/or fixed 

equipment which allow for the acquisition and transmission of diagnostically critical 

biosignals of the patient, such as various-lead ECG, Blood Pressure, Oxygen 

Saturation, Body Temperature, along with acquisition and transmission of still images 

of the patient (upon which annotations can be made) and/or real-time audio-visual 

communication between the involved parties. The high mobility of the monitoring 

side of the platform favors its establishment on isolated areas (e.g., small islands) 

lacking patient care facilities, whereas its distributed architecture allows the remote 

collaboration of medical experts and physicians enhancing thus the resolution of 

medical incidents. 

Despite the numerous implementations and proposals of telemedicine and e-health 

platforms found in the literature (an indicative reference collection can be found in 

[143]-[154]), only a few works include context awareness. The main goal of context 

aware computing is to acquire and utilize information about the context of a device to 

provide services that are appropriate to particular people, place, time, events, etc. 

[161]. According to the latter, the work presented in [159] describes a context-aware 

mobile system for inter-hospital communication taking into account patient’s and 

physician’s physical location for instant and efficient messaging regarding medical 

events. J. Bardram presents in [160] additional use cases of context-awareness within 

treatment centers and provides design principles of such systems. The project 



‘AWARENESS’ (presented in [163]) provides a more general framework for 

enhanced telemedicine and telediagnosis services depending on the patient status and 

location. 

The presented telemedicine context aware framework is based on the active services 

concept presented in [162]. Active services can dynamically adapt themselves to 

various underlying networking environment conditions, according to the instruction 

of appropriate networking entities (i.e. a Network Broker) and the requirements posed 

by the end user. The Network Broker is a special software agent, which monitors 

network resources and activities. Its intelligence enables it to take decisions regarding 

services and network usage leading this way to optimum network utilization. Given a 

specific conventional service, the corresponding active service constitutes the 

outcome of the application to the conventional service. Taking into account that the 

particular format of the services functions depends on the underlying networking 

environment, an active service can have various instances according to the 

particularities of the defined functions. 

In our case, the active services consist of the patient monitoring tools that can 

dynamically adapt the coding of the generated data (in terms of rate, compression 

and/or encryption used) to both underlying network conditions and the patient status 

itself. A more detailed description of the discussed context-aware medical platform is 

provided in the following section. 

5.3.1. The	Context-Awareness	Framework	

The architecture of the proposed context-aware medical networking framework is 

illustrated in Figure 5.3.1. 

 



Figure 5.3.1 The context-aware medical networking framework architecture 

The major modules consisting the proposed framework are; a) the network monitoring 

module that determines the current network interface used and the corresponding 

status, b) the patient status monitoring module that collects patient data and 

determines the patient status, c) the data coding module which is responsible for 

properly coding (compressing, encrypting, etc.) the transmitted patient data, according 

to instructions given by d) the medical broker (i.e. usually a repository containing 

predefined or dynamically defined threshold values for determining patient and 

network status). The patient state can be determined through a number of health 

sensors (i.e. heart rate and body temperature sensors) and corresponding vital signals. 

Defined threshold values in the latter signals determine the case of an immediate data 

transmission (alarm event) to the monitoring unit. Depending on network availability 

and quality, periodical transmission of the patient data is performed for evaluation by 

physicians. According to the network interface used, appropriate coding (e.g. video 

compression, data encryption, etc.) is applied on the transmitted medical data, 

avoiding thus possible transmission delays and optimizing the whole telediagnosis 

procedure.  

The framework’s architecture is open and does not depend on the monitoring 

applications used, the underlying networks or any other issues regarding the 

telemedicine system used. For this purpose, Web Services [164], [165] have been 

used as a communication mechanism between the major framework components and 

the external patient monitoring applications used. The message exchange has been 

implemented through SOAP (Simple Object Access Protocol) [158], a simple yet very 

effective and flexible XML-based communication mechanism. The latter involves the 

session initialization (which more precisely includes user authentication and service 

discovery) and the exchange of status and control messages. The status messages 

include information regarding the patient data as generated from the monitoring 

sensors and the underlying network status and quality, whereas the control messages 

contain instructions regarding the proper coding of the transmitted data. It should be 

noted that the involved modules for the aforementioned communication (see Figure 

5.3.1) can all reside at the patient’s site, or alternatively the Medical Broker can reside 

at the remote treatment site for the direct collection of medical data and the reactive 

instruction’s provision. 



 

 

(a) 

 

(b) 

Figure 5.3.2 (a) Message Exchange between the framework’s modules (b) Sample 
SOAP message indicating an urgent event and corresponding information 
regarding the network and patient status 

Figure 5.3.2 illustrates the aforementioned message exchange between the 

framework’s components and presents a sample SOAP message indicating an urgent 

event and describing corresponding information regarding the network and the patient 

status. 



5.3.2. Platform	Architecture	and	Communication	Issues	

The platform’s telemedicine architecture abandons the client-server architecture 

which the majority of telemonitoring systems nowadays adopt, and introduces the 

notion of nodes. Thus, there are 3 main participating nodes in each session, which can 

increment during the session (see Figure 5.3.3). The “Transmission” node is 

responsible for the acquisition of data from the medical devices, their local display, 

and triggers the request for the initialization of a medical monitoring session, in order 

to transmit the data to specialized medical personnel. In our prototype evaluation 

platform, the latter node consists of customized medical suitcase carrying a mobile 

biosignal monitoring device (capable of monitoring ECG, Blood Pressure, Oxygen 

Saturation, and Body Temperature) and a PDA device for collecting and transmitting 

the medical data. The PDA is also capable of transmitting audio and video streams 

and thus contains the context-awareness modules for monitoring the patient and 

network status and proper coding of data (see Figure 5.3.1). A photograph of the 

aforementioned medical suitcase is provided in Figure 5.3.3). Its high mobility makes 

it ideal for usage on isolated areas like small islands and on mobile treatment means 

like ambulances, ships, etc. The “Monitoring” node is responsible for the reception of 

the “Transmission” node request for monitoring, for the collection of the transmitted 

data and for the provision of tele-consultation and tele-diagnosis. Last but certainly 

not least, the “Administrator” node, is responsible for the monitoring of all nodes, and 

for the dispatching of monitoring requests from “Transmission” nodes to 

“Monitoring” nodes. One of the main innovations of the platform is that a 

“Monitoring” node can make an invitation to another “Monitoring” node, to acquire 

what is called a “second expert opinion”, and thus the dynamic network that had been 

created amongst the three nodes is enhanced with peer to peer communication. 

 



 

Figure 5.3.3 Telemedicine Platform Architecture and Communication 
Illustration 

The proposed platform allows data transmission through various fixed (PSTN, ISDN, 

xDSL, LAN) and wireless (GSM, GPRS, 3G, Wi-Fi) telecommunication technologies 

and utilizes IP technology for the secure and transparent communication between the 

involved equipment. Depending on the underlying network infrastructure and its 

quality, proper data coding in terms of compression, encryption and transmission 

mode is selected in conjunction to the monitored patient status. 

Furthermore, the proposed platform allows for the interconnection and 

communication with HISs. In order to achieve this, the HL7 (Health Level-7) 

standard protocol has been utilized. Thus, original messages are transformed into HL7 

messages, which are sent to the HIS, while the reverse procedure is followed in the 

case a request is made from the HIS.  



5.4. Presentation	of	patient	data	on	mobile	devices	

5.4.1. The	@HealthCloud	Application	

This section discusses the main features of the @HealthCloud application and 

presents implementation details. The prevalent functionality of the application is to 

provide medical experts and patients with a mobile user interface for managing 

healthcare information. The latter interprets into storing, querying and retrieving 

medical images (e.g., CT scans, MRIs, US etc.), patient health records and patient-

related medical data (e.g., biosignals). The data may reside at a distributed Cloud 

Storage facility, initially uploaded/stored by medical personnel through a HIS. In 

order to be interoperable with a variety of Cloud Computing infrastructures, the 

communication and data exchange has to be performed through non-proprietary, open 

and interoperable communication standards. 

   

(a)                                             (b) 

   

(c)                                             (d) 



    

(e)                                             (f) 

Figure 5.4.1 Screenshots of the @HealthCloud mobile application: a) Displaying 
a patient health record, b) illustration of DICOM header extraction, c) 
JPEG2000 progressive decoding of a CT scan at first resolution level (out of 
five), d) final output of JPEG2000 progressive decoding of a CT scan, e) The 
main application interface displaying available files on the Cloud and available 
operations, f) illustration of the uploading procedure of a file into the Cloud 

@HealthCloud utilizing Web Services connectivity and Android OS supports the 

following functionality: 

- Seamless connection to Cloud Computing storage utilizing Web Services and 

the REST API [239]: The main application allows users to retrieve, modify 

and upload medical content (medical images, patient health records and 

biosignals). The content resides remotely into the distributed storage elements 

but access is presented to the user as the resources are located locally in the 

device (see Figure 5.4.1-e). 

- Patient Health Record Management: Information regarding patient’s status, 

related biosignals and image content can be displayed and managed through 

the application’s interface (see Figure 5.4.1-a). 

- DICOM image viewing support: The DICOM [240] medical image protocol is 

supported. Medical images are decoded and displayed on the device among 

with the information stored into the file’s header (see Figure 5.4.1-b). 

- JPEG2000 viewing support: JPEG2000 [110] standard has already been 

widely used for the coding of medical images. It supports lossy and lossless 

compression, progressing coding and Region of Interest (ROI) coding [241]. 



The progressive coding allows the user to decode large image files at different 

resolution levels according to available network bandwidth optimizing this 

way network resources and allowing image acquisition even in cases network 

availability is limited (see examples in Figure 5.4.1-c and Figure 5.4.1-d). The 

code for performing wavelet decoding on mobile devices in [194] has been 

modified to support the JPEG2000 standard on the Android platform. 

- Image annotation support: User can annotate medical images using the 

multitouch functions of the Android OS. The annotation information is stored 

separately and retrieved automatically every time the image is retrieved. 

- Proper user authentication and data encryption: User is authenticated at the 

Cloud Computing Service with SHA-1 [242] hashing for message 

authentication and SSL [243] for encrypted data communication. 

The main components of a Cloud Computing Service usually are [40] the platform 

front-end interface that communicates directly with users and allows the management 

of the storage content. The interface can be a web client or a standalone application. 

The Cloud Storage Facilities manages the physical infrastructure (e.g., storage 

elements) utilized for managing data and is also responsible for performing 

maintaining operations (e.g., backing up data, etc.) The Cloud Platform interface is 

also connected to the Cloud Service module, which is responsible for accepting and 

queuing user requests. Finally, the Cloud Infrastructure module manages user account, 

accessibility and billing issues. 

 

Figure 5.4.2 Illustration of the proposed system architecture 



Previous work by authors [194] has demonstrated the applicability of mobile devices 

into retrieving medical image data from remote repositories wirelessly utilizing 

proper content coding (i.e., wavelet compression with region of interest support). The 

mobile application used has been initially developed using Java for mobile devices 

(J2ME [244]) and communication for data exchange was performed using Remote 

Method Invocation (RMI [245]). This work has been now extended to include the 

functionality of communicating with Cloud Computing platforms and support 

communication through Web Services. In this context, @HealthCloud has been 

developed based on Google’s Android mobile Operating System (OS) [246] using the 

appropriate software development kit (SDK). Android is a mobile operating system 

running on the Linux kernel. Several mobile device vendors already support it. The 

platform is adaptable to larger and traditional smartphone layouts and supports a 

variety of connectivity technologies (GSM/EDGE, CDMA, EV-DO, UMTS, 

Bluetooth, and Wi-Fi). It supports a great variety of audio, video and still image 

format, making it suitable for displaying medical content. Finally, it supports native 

multi-touch technology, which allows better manipulation of medical images and 

generally increases the application’s usability.  

The Cloud Service client running on Android OS consists of several modules. The 

Patient Health Record application acquires and displays patient records stored into the 

cloud. The Medical Imaging module is responsible for displaying medical images on 

the device. It decodes images in DICOM format displaying both image and heard 

information data. When JEPG2000 compression is used, the appropriate sub-module 

decodes the image.  

The communication with the Cloud is performed through an implementation of Web 

Services REST API that is supported natively by Android. Web Services are 

emerging as a promising technology to build distributed applications and is suitable 

for creating Cloud Computing client applications. It is an implementation of Service 

Oriented Architecture that supports the concept of loosely-coupled, open-standard, 

language - and platform-independent systems. Web services provide several 

technological and business benefits, a few of which include application and data 

integration, versatility, code re-use and cost savings. The inherent interoperability that 

comes with using vendor, platform, and language independent XML technologies and 

the ubiquitous HTTP as a transport mean that any application can communicate with 



any other application using Web services.  Web services are also versatile by design. 

They can be accessed through Web-based client interfaces, other applications 

including mobile ones and other Web services. 

Data in Cloud are seamlessly stored and presented to the user as if they reside locally. 

This means that the Cloud repository is presented as a virtual folder and does not 

provide the features of a database scheme. In order to provide the user with data 

querying functionality, medical records and related data (images and biosignals) are 

stored into a SQLite [247] file. SQLite is the database platform supported by Android. 

The file resides into a specific location at the Cloud and is retrieved on the device 

every time user needs to query data. The query is performed locally and the actual 

location of the data in the cloud is revealed to the applications. The database file is 

updated and uploaded into the Cloud every time user modifies data, respectively. 

5.4.2. Utilizing	Amazon	S3	Cloud	Computing	Service	

For the realization of the mobile pervasive healthcare information management 

system the Amazon Simple Storage Service (S3) has been utilized. The main reason 

for selecting the specific Cloud Computing platform is that it is a commercial service 

well established and used successfully in several applications [248]. It provides users 

with several interoperable web interfaces for managing data (SaaS model) and 

developers with the ability to create their own applications for accessing the latter 

(PaaS model) and is suitable for managing healthcare information.  

5.4.3. Security	Issues	and	HIPAA	compliance	

The Amazon S3 Service as a part of AWS provides a reliable, scalable, and 

inexpensive computing platform “in the cloud” that can be used to facilitate 

healthcare customers’ HIPAA compliant applications [249]. HIPAA’s privacy rule 

regulations include standards regarding the encryption of all protected health 

information (PHI) in transmission and in storage. The same data encryption 

mechanisms used in a traditional computing environment, such as a local server or a 

managed hosting server, can also be used in a virtual computing environment, such as 

Amazon S3. Using Amazon Web Services (AWS), customer’s system administrators 

can utilize token or key-based authentication to access their virtual servers. Amazon 



EC2 creates a 2048 bit RSA key pair, with private and public keys and a unique 

identifier for each key pair to help facilitate secure access. 

Using Amazon S3, access can be easily controlled down to the object level. The 

system administrator maintains full control over who has access to the data at all 

times and the default setting only permits authenticated access to the creator. Read, 

write and delete permissions are controlled by an Access Control List (ACL) 

associated with each object. 

HIPAA’s security safeguards also require in-depth auditing capabilities, data back-up 

procedures and disaster recovery mechanisms. AWS services contain many features 

that help customers address these requirements. Amazon S3 provides a highly 

available solution for data storage and automated back-ups. By simply loading a file 

or image into Amazon S3, multiple redundant copies are automatically created and 

stored in separate data centers. These files can be accessed at any time, from 

anywhere (based on permissions) and are stored until intentionally deleted by the 

customer’s system administrator. Using Amazon S3, customer’s data is replicated and 

automatically stored in separate data centers to ensure reliable data storage with a 

service level of 99.9% availability and no single points of failure [249]. 

5.4.4. @HealthCloud	in	Practice:	Initial	Evaluation		

In order to prove the system’s usability, some initial experiments evaluating the 

system’s performance have been conducted. Experiments concern the time needed to 

transmit data to the Amazon S3 Cloud storage service. Due to the fact that textual 

data like a patient’s health record or a biosignal sequence do not consist of large data 

files and do not require high bandwidth, the presented results involve the transmission 

of medical images. The @HealthCloud application as presented in previous sections 

has been used on a HTC G1 [250] mobile phone running Android OS version 1.6. A 

number of medical images of different modalities (MR, CT, PET, OT and Ultrasound) 

and different file sizes have been used. The transmission times are displayed in Table 

I. As indicated, two different wireless network infrastructure types have been utilized; 

a WLAN and a commercial 3G Network. 



Table 5.4.1 Transmission time of medical images using Amazon S3 Cloud 
Service and different network types 

Image Type (encoding) File Size (MB) Time (sec) 

3G Network WLAN 

Network 

OT (24-bit JPEG2000 

Lossless Color) 

6.8 42.532 7.894 

CT (Uncompressed) 0.528 4.023 2.382 

CT (JPEG2000) 0.102 1.223 0.892 

MR (JPEG Lossless) 0.721 9.738 3.894 

PET (JPEG2000 Lossy) 0.037 0.923 0.793 

Ultrasound (sequence of 10 

images, JPEG2000 

Lossless) 

0.487 3.892 3.251 

     

The performance of both WLAN and 3G networks can be easily biased by traffic and 

other network conditions, since commercial networks have been utilized in both cases. 

Also, the response time of the Amazon S3 Cloud service can play an important role 

on the total transmission time. However, the acquired results can be considered as 

indicative since the experiments reflect a real case scenario where the specific service 

and commercial wireless networks are utilized in order to transmit medical data. In 

addition, the time needed to decode and present the specific images used in the 

experiments has been measured. For the HTC G1 mobile phone used, the time needed 

by @HealthCloud to display uncompressed CT images at a resolution of 512x512 

pixels was 0.52 sec, compressed CT images with JPEG2000 coding at a resolution of 

512x512 pixels was 4.53 sec. The time needed to decode OT images compressed with 

JPEG2000 at resolution of 3072x2048 was 21 sec. and 7.5 sec. for a sequence of 10 

ultrasound images of 600x430 pixels. 



5.5. Managing	wearable	sensor	data	on	the	Cloud	

The proper delivery of healthcare services among with patient monitoring are 

considered key issues for improving the quality of life and ensuring efficient health 

and social care. Mobile pervasive healthcare technologies can support a wide range of 

applications and services, including mobile telemedicine, patient monitoring, 

location-based medical services, emergency response and management, personalized 

monitoring and pervasive access to healthcare information, providing great benefits to 

both patients and medical personnel [194]. The realization, however, of health 

information management through mobile devices introduces several challenges, like 

data storage and management (e.g., physical storage issues, availability and 

maintenance), interoperability and availability of heterogeneous resources, security 

and privacy (e.g., permission control, data anonymity, etc.), unified and ubiquitous 

access. One potential solution for addressing all aforementioned issues is the 

introduction of Cloud Computing concept in electronic healthcare systems. Cloud 

Computing provides the facility to access shared resources and common infrastructure 

in a ubiquitous and pervasive manner, offering services on-demand, over the network, 

to perform operations that meet changing needs in electronic healthcare application. 

In this context, a distributed platform based on Cloud Computing for management of 

pervasive healthcare data has been developed. The platform contains the appropriate 

mechanisms for collecting sensor data. It is based on Cumulocity, a horizontal 

Machine-to-Machine (M2M) Cloud Solution platform provided by Nokia Siemens 

Networks (NSN). It contains a comprehensive set of tools for managing meters and 

sensors, collecting and validating data and providing it to enterprises back-office 

applications. A use case regarding the collection and management of pervasive 

motion data for fall detection is demonstrated.  

5.5.1. The	Cumulocity	Cloud	Computing	Platform	

Cumulocity is a horizontal Machine-to-Machine (M2M) Cloud Solution platform 

provided by Nokia Siemens Networks (NSN). It contains a comprehensive set of tools 

for managing meters and sensors, collecting and validating data and providing it to 

enterprise back-office applications.  In addition to this, Cumulocity contains the best-

of-breed tools for building sensor-based and M2M applications. The platform is used 



both for integrating sensors and meters into enterprises back-office business processes, 

as well as a stand-alone environment for designing and running a number of 

innovative M2M. The primary benefit of this integration is increased visibility into 

the real assets of enterprises and thus improved performance of business processes as 

well cost saving. 

A Cumulocity based solution consists of three layers: Connected meters and sensors, 

the Cumulocity M2M management platform, and the integrated vertical applications 

and enterprise processes. Any meter or sensor can be integrated to Cumulocity 

platform through its open smart device integration API. The platform itself consists of 

device and sensor management functionalities like data collection and validation, 

fulfillment, monitoring, performance management, configuration management, 

inventory, identity service, tenant management and open northbound interfaces for 

application integration. Users can manage and monitor all of these components and 

features through the embedded management dashboard. 

Cumulocity has mainly three different exposure Application Programming Interfaces 

(APIs): Functional REST, batch data and near-real time publish/subscribe. The first 

one is RESTful exposure API for northbound applications to use its functionalities. 

The batch interface is used for exporting large datasets. It is used for example in 

billing integration, where meter readings are transferred to a billing system.  The 

Event API is a Publish/Subscribe interface that allows for receiving event information 

from a device or set of devices in near real time. This allows for the creation of 

independent event driven applications. Through the latter APIs, the interconnection 

and interoperability with pervasive healthcare applications is direct and straight-

forward. The sensors can be connected directly through their wireless interfaces to the 

platform and use simple REST calls for sending and retrieving data. Alternatively, 

appropriate s/w gateways with similar functionalities can be developed for the sensors 

that cannot connect directly to Cumulocity. Regarding the caregivers, treatment 

experts and monitoring personnel, appropriate web applications will be developed 

giving them access to collected data and events.  

The following section presents the proposed architecture for utilizing the Cumulocity 

Cloud platform as a means for distributed management of pervasive healthcare data. 



5.5.2. The	 Proposed	 Architecture	 utilizing	 the	 Cumulocity	
Cloud	Computing	Platform	

Figure 5.5.1 presents an illustration of the proposed architecture for managing 

pervasive healthcare data over the Cumulocity Cloud platform. A variety of pervasive 

sensors can be utilized for monitoring the patient status and context. The latter can be 

wearable and textile sensors that monitor vital biosignals and patient motion and 

generate alerts in cases of stroke or fall detection. Contextual sensors like overhead 

cameras and microphone arrays can provide more information about the patient 

condition, context and location and assist with the better assessment of an emergency 

situation. All sensors are equipped with appropriate networking interfaces (e.g., WiFi, 

Bluetooth or ZigBee) for communicating directly with the Cloud platform or through 

intermediate nodes, e.g., like a smartphone. Software interfaces are developed that 

can act as the intermediate nodes for forwarding the data to the Cloud using REST 

web service calls. Web applications have been developed that are also hosted by 

Cumulocity and visualize the data to the caregivers providing them the ability to 

retrieve information anywhere and anytime. Mobile applications can also be 

developed especially for alert management, in cases of fall event detections (utilizing 

the Event API).  

An example of a REST web service call for storing a sensor value to the Cloud is the 

of the following form:  

https://cumulocity.ip.adress: port/webapplication/storevalue?=sensorvalue&key=xxx 

‘Sensorvalue’ represents the reading from the sensor and ‘key’ is a secret key for 

authenticating the sensor to the system. Sensors that communicate directly with the 

Cloud can make the Web Service call which can also very easily be embedded to the 

intermediate nodes and/or mobile applications. 

The communication between the sensors or the intermediate nodes and the Cloud is 

performed over the SSL protocol providing the essential encryption of the data over 

transmission. The Cumulocity platform, built on top of the Amazon AWS, and is 

HIPAA compliant. The latter means that all appropriate security techniques and 

technologies have been adopted in order to store data safely and at the same time 

maintain the appropriate data anonymity. 



 

Figure 5.5.1 The proposed architecture for managing pervasive healthcare data 
in the Cloud 

5.5.3. Managing	Fall	Detection	Data	 through	Cumulocity	Cloud	
Platform	

A use case of management of pervasive healthcare data through Cumulocity platform 

is presented here. Fall-related injuries are among the most common, morbid, and 

expensive health conditions involving older adults [193]–[205]. Falls account for 10% 

of emergency department visits and 6% of hospitalizations among persons over the 

age of 65 years and are major determinants of functional decline, nursing-home 

placement, and restricted activity [206]-[209]. The most common and way to monitor 

patients for fall detection and emergency management is through wearable motion 

sensors – accelerometers.  



In previous works [213]–[217], several sensors have been used for collecting motion 

data. The Arduino microcontroller [210] equipped with 3-axis accelerometer and tilt 

sensor has also been utilized. Arduino is an open-source electronics prototyping 

platform based on flexible, easy-to-use hardware and software. It supports a variety of 

extensions (shields) that provide additional functionality (e.g., collecting motion data) 

and networking capabilities (ZigBee, Bluetooth, WiFi, 3G/UMTS, etc.). It exists in 

various forms with different sizes. It also exists as wearable solution (LilyPad 

Arduino [211]) that can be sewn to fabric and similarly mounted power supplies, 

sensors and actuators with conductive thread. 

    

Figure 5.5.2 Arduino sensor board equipped with WiFi module, accelerometer 
and tilt sensor the LilyPad Arduino sewed on cloth along with accelerometer 
textile sensors 

 

Figure 5.5.3 Screenshot of the web-based application hosted on Cumulocity for 
monitoring the output of sensors 

By using the appropriate network interface (e.g., WiFi and/or 3G/UMTS), Arduino 

can collect and transmit motion data wirelessly in both indoor and outdoor 

environments maximizing this way the availability of the platform. Additionally, the 

recently introduced Google’s Android Open Accessory Development Kit (ADK) 

[212] provides an implementation of Android USB accessories that are based on 



the Arduino open source electronics prototyping platform. This means that the 

Arduino can be easily interfaced with android-enabled mobile phones, providing 

better means of data communication between the sensors and the cloud platform 

especially in cases where user is located outdoors. 

Arduino with the appropriate libraries can make directly calls to the REST API of 

Cumulocity. An appropriate web-based application has been developed on the 

platform (see Figure 5.5.3) that receives and displays the sensor data. Through the 

same REST API, external applications like in [214] can retrieve data for further 

analysis and fall detection. 

During the initial experimentation with the system, a drop packet rate of 20-30% has 

been detected. This fact is either due to the Arduino low resources for high rate 

sampling of sensors and transmitting the data at the same time, or due to network 

congestion because of the repetitive REST calls at such a high sampling rate (i.e. 10 

acceleration samples per second). In order to address this issue, a memory buffer has 

been introduced on the Arduino side that collects motion data during a 10 second time 

frame and then transmits the latter to the Cloud. This way the drop rate has been 

minimized between 2-5%, which is quite acceptable for the application. 

 

 

 

 

 

 

 



6. Discussion	

6.1. Remaining	 Issues	 and	 Challenges	 for	 Intelligent	

Telemedicine	Applications	

The deployment of all the aforementioned technologies and methods in AAL systems 

introduces several issues and challenges. Most important of them concern 

interoperability and communication issues between the different systems, security and 

privacy issues, usability and acceptance from both the patients and the caregivers. In 

this section we attempt to discuss the most important of these issues and we provide 

our thoughts and estimations for the near future. 

6.1.1. Interoperability	and	collaboration		

The integration of AAL systems depends significantly on the ability to build, maintain 

and augment interoperable systems: different software and hardware components and 

systems that are required to interact to achieve the user’s overall goals. Most 

important interoperability issues concern: 

Service and device integration: Pervasive systems often contain devices, which must 

operate in very different environments and connect together in different ways, e.g., 

over ad-hoc wireless connections to a variety of systems. Thus, communication of 

sensor devices from different vendors require common protocols for data exchange or 

appropriate gateways for interconnection. Assisted technologies require access to 

additional information regarding the patient and his/her environment. Such 

information (e.g., user profiles, medical records, etc.) is stored in various repositories 

requiring thus common ways of information annotation, interpretation and access. In 

addition to the latter information access requirements, proper interpretation of user’s 

contextual information is required, meaning that common ways of annotating 

collected data are required (e.g., through semantic languages, ontologies, etc.) [167]. 

Potential solutions that address the aforementioned issues, such as pervasive web 

services for either developing proper middleware software solutions or providing 

interoperable interfaces have been proposed [166]. 



6.1.2. Usability	and	User	Acceptance	

In order to prepare the elderly population to live longer and more independent lives 

with the help of information technology, the notion of pervasive health systems must 

be introduced into their lives. Awareness and acceptance can be fostered and 

increased by education and example. Industry must be cognizant of the fact that 

awareness training must go hand-in-hand with good design and that knowledge of the 

end users is as important as functionality, since without the end user’s cooperation, 

functionality will be ineffective. Usability of AAL systems and platforms can require 

that: 

 

• The design needs to be adapted to the end user’s physical impairments. 

• The interfaces must offer a relative degree of familiarity to overcome any 

reservations felt by the end user. 

• The benefit of using monitoring and/or assisted devices must be appreciable, 

and the balance between intuitive use and practicable teaching methods, 

addressing the learning needs of this age group, must be established [168]. 

User acceptance is the outcome of proper design and implementation considering 

always the usability requirements. However, the opinion of both patients, especially 

in the case of the elderly, and caregivers should always be evaluated through 

appropriate experiments during the initial deployment of prototype systems [169], 

[170]. 

6.1.3. Security	and	Privacy	

There are potential ways of information leaking [166] under many circumstances even 

when data have been de-identified and encrypted [168] during transmission. For 

example, because of the continuity of motion data, locations of a single user (or 

object) can be tracked using various algorithms. If sensors periodically report his/her 

location data to the server, then when the frequency of reporting is high enough and 

the density of users is low enough, a tracking algorithm can accurately estimate the 

trajectory of a single user. Furthermore, if a user's trajectory goes through sensitive or 



identifiable places, a user might see this as private information and these places may 

also provide connections to the user's identity. For another example, equipped with 

some devices, an attacker can determine the source location(s) originating messages 

by analyzing the traffic patterns even if the communications are all encrypted. Since it 

is then possible for them to interfere with the phenomena being sensed or even mount 

physical attacks on the monitored objects, the exposure of the source location 

information can be quite dangerous. 

6.1.4. Mining	of	Streaming	Data	and	Intelligent	Agents	

The enormous amount of streaming data produced by AAL systems will drive efforts 

to inductively manipulate, interpret and discover ‘useful’ knowledge from the 

collected data. As already mentioned in the enabling technologies section, the 

classification and activity recognition tasks of AAL is considered quite important and 

research work in this field is anticipated. Due to the existence of multiple 

heterogeneous data sources, advanced Data Mining and Fusion Techniques are 

necessary. Multi Agent-Based Data Mining Info-Structure (ADMI), responsible for 

the generation of data-mediated decision-support and strategic services have been 

proposed in this context. The latter takes advantage of a multi-agent architecture, 

which features the amalgamation of various types of intelligent agents. 

Intelligent agents can be viewed as autonomous software (or hardware) constructs that 

are proactively involved in achieving a predetermined task and at the same time 

reacting to its environment. According to [175], agents are capable of: 

• performing tasks (on behalf of users or other agents). 

• interacting with users to receive instructions and give responses. 

• operating autonomously without direct intervention by users, including 

monitoring the environment and acting upon the environment to bring about 

changes. 

• showing intelligence – to interpret monitored events and make appropriate 

decisions. 



Agents can be proactive, in terms of being able to exhibit goal-directed behavior, 

reactive; being able to respond to changes of the environment, including detecting and 

communicating to other agents, autonomous; making decisions and controlling their 

actions independent of others. Intelligent agents can be also considered as social 

entities where they can communicate with other agents using an agent-communication 

language in the process of carrying out their tasks. Software agents can also be used 

in order to perform distributed analysis of vital data and alarm indication to 

previously-selected physicians and family members. Agents may also assist patients 

or treatment experts to perform basic tasks like meal preparation and medication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Conclusions	

The costs of health care impose an enormous burden on the economy. The latest 

projections from the Centers for Medicare & Medicaid Services show that annual 

health-care expenditures are expected to reach $3.1 trillion by 2012, growing at an 

average annual rate of 7.3% during the forecast period or 17.7% of gross domestic 

product, up from 14.1% today [92]. Recent advances in communication and 

information technologies have impulsed the development of novel tools that enable 

remote management and monitoring of chronic disease, emergency conditions, and 

the delivery of health care on patient’s site, saving time, travel and other expenses. 

Health monitoring in home environments can be accomplished by establishing 

ambulatory monitors that utilize wearable sensors and devices that record 

physiological signals, sensors embedded in the home environment to collect 

behavioural and physiological data or a combination of the latter. Studies for such 

non-invasive monitoring technologies have shown good acceptance rates by patients, 

presenting overall a positive impact on their perceived quality of life, as well as 

reducing hospitalization costs [93].  

In this work, an emergency fall incident detection platform has been presented that 

combines motion, visual and audio information. It is a combined effort and 

elaboration of previous works of the authors [64], [65], [81], [82] assessing the latter 

perceptual components for motion characterization. Patient falls, especially in the 

case of elderly, are a great cause of injuries and happen both in home and hospital 

environments with great frequencies: a few thousands of incidents have been reported 

in the USA annually [94], [95]. In the presented system overhead cameras can track 

patient body movement whereas microphone arrays record emergency sounds. 

Motion data and patient-generated audio sounds are collected through body-sensors 

on the patient. Audio data processing and sound directionality analysis in conjunction 

to motion information and subject’s visual location can verify fall and indicate an 

emergency event. Post fall visual and motion behavior of the subject indicates the 

severity of the fall based on semantic incident representation and rule-based 

evaluation. Proper rules among with information from all three channels can be used 

to minimize any false positives that can be generated by motion or audio 

characterization. Classification results among with user-based evaluation have shown 



promising results for the systems accuracy and acceptability in the context of 

incidents detection in assisted living environments. The system can also operate and 

provide estimations by utilizing the acquired data and contextual information 

individually. Even in cases where visual information is not available, the previously 

recorded information (e.g., the motion trajectory of the patient going to the bathroom) 

in conjunction to context modelling through the ontology and rules evaluation (e.g., 

being in bath for several hours) could be used for estimating a distress situation (e.g., 

patient being unconscious in the bath). 

All fall events have been simulated by volunteers, trying to be as much realistic as 

possible, under normal indoor lighting conditions, normal background noise and 

relative distance to sensor receivers. Simulated falls can affect the overall system 

evaluation and performance, however actual evaluation of the platform in a real 

environment by patients (e.g., the elderly) introduces the problem of collecting real 

falls and related incidents in a reasonable time frame. The evaluation results presented 

in the manuscript have been acquired using a relatively small number of subjects, 

however initial results especially those concerning the characterization of falls against 

other movement types (i.e., walking and running) are very promising, especially when 

compared against results in related work (e.g., 81% fall detection in [59] using 

cameras, and 91.58% in [73] using sound information). The low false positive rates 

achieved (average false positive rate 16.67% when all perceptual components are 

utilized) are also very competitive against the values reported by related works in 

literature. The improvement in performance has been achieved when adding sound 

features to accelerometer data and when adding visual features to the latter as well. 

Resolving any potential redundant features issues has not been therefore considered. 

Furthermore, the total number of features used for classification for all perceptual 

components is eight (8) and thus no complexity or time training issues have been 

raised. 

A limitation of the platform may be considered the equipment that needs to be 

installed within the monitored area (microphones and overhead cameras) and the 

sensors worn by patients. Despite the acceptability the system has met as discussed in 

section 5.3, the body sensor networks are still considered as invasive technology and 

require special treatment by users (e.g., proper body placement, battery replacement, 

etc.). Future evolution of sensor technologies will address such issues improving 



communication, energy consumption and wearability, by consisting of more 

lightweight and less invasive sensors. Significant research effort is expected to be 

consumed in this field in the near future [96].  

Extended clinical evaluations of fall detection systems, like the one presented in this 

work with more potential users and care experts, collecting real falls and related 

incidents in a reasonable time frame, and conforming to strict protocols for clinical 

evaluation, remain now to persuade industrial healthcare partners to invest in such 

technologies and produce corresponding commercial products. These studies of 

patient and elder outcomes require large numbers of participants and significant 

budgets, which are not always easy to find and escape the capabilities scope of 

scientific research.  

The presented platform may also be extended to facilitate the monitoring of patient’s 

behavior. Motion and sound data analysis can be utilized to recognize unexpected 

patterns in the behavior of patients diagnosed with cognitive impairments (e.g., 

dementia). Proper modification of the train model and semantic representation of the 

patient’s context can help the assessment of the phenomenon progress and detect 

related incidents like amnesia attacks. The on-body wireless nodes can be enhanced 

with biosignal sensors (e.g., ECG, glucose and temperature sensors) and provide a 

more complete assessment of the patient’s status. Finally, methods like in [91] can be 

incorporated to prevent injury and improve human safety in cases of patient fall.  
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