
Gibbs sampling and Reversible jump Markov
Chain Monte Carlo with applications

Despina Skilogianni

Supervisor:
Assistant Prof. Spyridon J. Hatjispyros

Co-Supervisors:
Associate Prof. John Tsimikas
Assistant Prof. Stelios Zimeras

Department of Mathematics
(Track in Statistics and Actuarial - Financial Mathematics)

University of the Aegean
Greece

June 2017

2

Abstract

Markov Chain Monte Carlo (MCMC) methods are widely used in Bayesian statistics, computational
physics, finance, computational biology and computational linguistics to solve numerical problems. These
methods involve performing experiments on a computer as a means of random sampling.

The evolution of MCMC techniques is rapid and there is a growing interest in studying and compre-
hending these techniques, as the development of new methods, concepts and algorithms is constant and
overwhelming.

We focus our interest on some well known MCMC samplers: the Metropolis-Hastings, the Gibbs
sampler and the reversible jump MCMC. We attempt to make estimates as accurate as possible through
the implementation of these samplers.

3

Acknowledgements

The current master’s thesis was developed under the supervision of Mr. S.J. Hatjispyros who I need
to thank for all his help and guidance throughout my postgraduate studies.

Furthermore, I am grateful for my family and friends since their faith and support are enough for me
to accomplish any goal.

To my family, Christos, Vasiliki and Vana.

Contents

Introduction 6

1 Bayesian Inference 9
1.1 Basic Bayesian structure . 9
1.2 Exchangeability . 11
1.3 Advantages of Bayesian Inference . 11

2 Sampling from the Posterior Distribution 13
2.1 Markov Chain Theory essentials . 13
2.2 Reversible Markov Chains . 15
2.3 Monte Carlo Integration . 16
2.4 Markov Chain Monte Carlo . 17

3 The Metropolis-Hastings Algorithm 19
3.1 Joint Updating M-H Algorithm . 20

3.1.1 Sampling from a Beta distribution with MH . 22
3.2 Single-Site Updating M-H Algorithm . 23
3.3 Implementation Issues . 24

3.3.1 Simulation from a Normal distribution with different proposals 28

4 The Gibbs Sampler 35
4.1 Fully Conditional Posterior Distributions . 36

4.1.1 A Zero-Inflated Poisson Model . 38
4.2 A Hierarchical Normal Model . 40

4.2.1 Simulation . 45

5 Reversible Jump MCMC 51
5.1 The Dimension Matching Condition . 52
5.2 Deriving the acceptance probability . 53
5.3 Generating Proposals via an appropriate Mapping . 56
5.4 Model selection with reversible jump MCMC . 57

5.4.1 Poisson vs Negative Binomial . 57
5.4.2 Comparing differences between two treatments . 59

5.5 Model Choice in Regression . 64
5.5.1 Simulation . 67

Bibliography 77

Appendix A Diagnostic Tests 79

Appendix B R code 83

5

6 CONTENTS

Introduction

The purpose of this master’s thesis is to present Bayesian theory as the framework for implementing Monte
Chain Monte Carlo methods. We approach Markov Chain Monte Carlo (MCMC) methods theoretically
and perform simulations of various models by using MCMC samplers. All applications are implemented
in R language and with the use of package coda.

In the first chapter, we present the basic Bayesian structure, we define exchangeability and sequential
analysis. Also, we refer to Bayesian prediction and the pros of Bayesian inference.

In the second chapter, we present necessary elements of Markov chain theory and Monte Carlo inte-
gration. We make spacial reference to reversible Markov chains and the detailed balance condition. This
section is completed with the theory behind MCMC methods.

In the third chapter, we analyse the Metropolis-Hastings (MH) algorithm for both joint and single-site
updating and we present the derivation of the acceptance probability. Furthermore, we investigate the
challenges that arise when implementing MH and provide some techniques for monitoring convergence.
We simulate from a Normal distribution by using three different proposal steps.

In the fourth chapter, we present a special case of the MH algorithm, the Gibbs sampler, and we prove
that all proposed moves are accepted with probability 1. We introduce the fully conditional distributions,
which constitute the most important step for the implementation of this method. We present and simulate
the Normal hierarchical model.

In the fifth and last chapter, we introduce the reversible jump MCMC (rjMCMC) sampler. We derive
the acceptance probability and we prove that it is actually the general case of the MH algorithm. We
present the necessary conditions for the implementation of the sampler. The sampler is used in a regression
model selecting problem.

7

8 CONTENTS

Chapter 1

Bayesian Inference

1.1 Basic Bayesian structure

In frequentist statistics, we draw conclusions about the unknown parameter under study by performing
multiple repetitions of an experiment, assuming that the realizations we produce are statistically indepen-
dent. The unknown parameter is considered constant and the inference is only dependent on the sample,
which practically means that we rely on the likelihood of the data for our inferences. Methodologies like
confidence intervals and hypothesis testing are based on frequentist statistics.

In Bayesian inference, we treat all unknown parameters as random variables and in order to update
the probability of a hypothesis as more information is obtained, we use Bayes’ theorem. All unknown
quantities, namely the unknown parameter and the data before observation, have a probability distri-
bution. For the data, the distribution, given θ, comes from a model that arises from past experience in
handling similar data as well as subjective judgement. The distribution of θ arises as a quantification of
our knowledge and belief. If though, this knowledge and belief are weak, we may fall back on a common
objective distribution.

• x = (x1, . . . , xn): the observed data, where xj ∈ Rm, m ≥ 1.

• θ = (θ1, . . . , θd) ∈ Θ, Θ ⊆ Rd, d ≥ 1: the unknown model parameters

• π(θ): the prior density of θ. The sample x = (x1, . . . , xn) is used for updating π(θ)

• π(xi|θ): the likelihood function of the data

• π(θ|x): the posterior density of θ. Our inferences derive from the posterior distribution. The
transition from π(θ) to π(θ|x) is what we have learnt from the data.

Some descriptive measures associated with the posterior distribution that will prove very useful further
on, are the posterior mean and variance. For a real valued parameter θ:

E(θ|x) =

+∞∫
−∞

θ π(θ|x) dθ

V ar(θ|x) = E{(θ − E(θ|x))2|x} =

+∞∫
−∞

(θ − E(θ|x))2π(θ|x) dθ

9

10 CHAPTER 1. BAYESIAN INFERENCE

By using Baye’s rule, we combine prior knowledge and the data for our estimations. The results are
presented through the posterior distribution.

π(θ|x) =
π(θ, x)

π(x)
=
π(x|θ)π(θ)

π(x)
=

π(x|θ)π(θ)∫
Θ

π(x|θ)π(θ) dθ

θ∝ π(θ, x) = π(x|θ)π(θ)

where π(x) is the mixture of the likelihood and the model for the prior and is known as the prior predictive
distribution. The prior predictive is the distribution of the data x = (x1, . . . , xn) and as its name suggests,
it predicts the distribution of the data according to the probability model that we applied as a prior for θ.
Note that π(x) is also known as normalizing constant of the posterior kernel. The numerator is the joint
density of θ and x and the denominator is the marginal density of x. When the parameter θ is discrete,
the integral in the denominator is replaced by a sum.

Posterior Predictive Distribution
Let us assume that we have observed the data x = (x1, . . . , xn) and also that we know the posterior

distribution of θ|x. If we wish to make a prediction about a new observation xn+1 (which comes right after
x) we need to compute the posterior predictive density π(xn+1|x). If x1, . . . , xn, xn+1 are conditionally
independent given θ such that xi|θ ∼ π(·|θ), then:

π(xn+1|x) =

∫
Θ

π(xn+1, θ|x) dθ =

∫
Θ

π(θ|x)π(xn+1|θ, x) dθ

=

∫
Θ

π(θ|x)π(xn+1|θ) dθ

where, due to x1, . . . , xn, xn+1 independence,

π(xn+1|θ, x) =
π(xn+1, x, θ)

π(x, θ)
=
π(xn+1, x|θ)π(θ)

π(x|θ)π(θ)
=
π(xn+1, x, θ)

π(x, θ)
=
π(xn+1|θ)π(x|θ)

π(x|θ)
= π(xn+1|θ).

E(xn+1|x) = E(E(xn+1|θ)|x) =

∫
X
xn+1π(xn+1|θ)dxn+1 = E(xn+1|θ)

similarly

V ar(xn+1|x) = E(V ar(xn+1|θ)|x) + V ar(E(xn+1|θ)|x)

Suppose that we have computed the posterior distribution π(θ|x1, . . . , xm) for (x1, . . . , xm) obser-
vations and prior on θ, π(θ). Suppose now, that a new set of n − m observations, (xm+1, . . . , xn)
emerges, then we can use the knowledge we have on (x1, . . . , xm) as a prior to compute the posterior
π(θ|x1, . . . , xm, xm+1, . . . , xn). Under the assumption of conditional independence:

π(θ|x1, . . . , xm, xm+1, . . . , xn) ∝ π(θ|x1, . . . , xm)π(xm+1, . . . , xn|θ)

where π(θ|x1, . . . , xm) is the updated prior and π(xm+1, . . . , xn|θ) is the likelihood of the new set of
observations.

1.2. EXCHANGEABILITY 11

1.2 Exchangeability

An exchangeable sequence of random variables is a sequence such that future samples behave like earlier
samples. The idea is that past experience is used as a basis for making predictions about the future.
It is closely related to the use of independent and identically distributed random variables in statistical
models. The concept of exchangeability was introduced by de Finetti. De Finetti’s theorem states that
exchangeable observations are conditionally independent given some latent variable to which a probability
distribution would then be assigned.

An infinite sequence of real random variables {Xi}∞i=1 is infinitely exchangeable, if for each finite
sequence {Xi}ni=1 the joint probability distribution π(x1, . . . , xn) satisfies the following

π(x1, . . . , xn) = π(xp(1), . . . , xp(n))

for all permutations p ∈ Perm{1, 2, . . . , n}.

De Finetti’s Theorem. If an infinite sequence of real random variables {Xi}∞i=1 is infinitely exchange-
able for all n, the joint distribution of X1, . . . , Xn, can be represented as

π(x1, . . . , xn) =

∫
Θ

{
n∏
i=1

πs(xi|θ)

}
π(θ) dθ

1.3 Advantages of Bayesian Inference

The Bayesian approach provides a fairly clear solution to common problems of statistical inference, new
problems of high-dimensional data analysis, as well as complex decision problems of real life. It can
handle presence of prior knowledge or partial prior knowledge. In some cases, a subjective prior can be
used, though in most other cases one can choose an objective prior. Of course, in all cases one would
wish to study the robustness of various aspects of the posterior with respect to modest variation in prior.
However, we still use mostly objective priors, because it is difficult to elicit fully subjective priors in most
problems in practice. If a fully subjective prior is available we would most certainly use it.

The subjective Bayesian approach is free from violation of some principles that are associated with
classical statistics. These negative properties are due to the fact that classical statistics provides either
data dependent measures like P-values which are difficult to interpret or confidence coefficients that are
obtained by integrating over the whole sample space which may not make sense when a particular data
set is under study. The objective Bayesian approach is not completely free from violation of some of these
principles and often has frequentist validation, for example, consider the concept of equal probability
priors.

Finally, basic Bayesian ideas and measures are easy to interpret and therefore easy to communicate.
It might seem however, that in spite of all these advantages, a major growth and spread of the Bayesian
approach has occurred only recently. A really important factor has been the arrival of MCMC (Markov
chain Monte Carlo) methods in a big way and thereafter the advances in computation of posteriors for
high-dimensional spaces and many real-life applications.

12 CHAPTER 1. BAYESIAN INFERENCE

Chapter 2

Sampling from the Posterior
Distribution

Before we analyse Markov chain Monte Carlo methods, some essential definitions are presented, so that
the reader is familiarised with the theoretical background which is needed to comprehend those methods.
Discrete time Markov chains with continuous state spaces are considered here, that is the random variables
are assumed to be distributed continuously.

2.1 Markov Chain Theory essentials

A Markov chain is a sequence of random variables {Xn}n≥1 where the conditional distribution of Xn

given all the previous states Xn−1, Xn−2, . . . , X0 is the same as the conditional distribution of Xn given
only the previous state Xn−1:

P (Xn+1 ∈ A|X0, X1, X2, . . . , Xn) = P (xn+1 ∈ A|Xn).

Assume that X is a d-dimensional stochastic vector with density f on Rd and A ⊂ Rd. Then, if Xn = x
is a given current state, the transition kernel specifies the conditional probability that Xn+1 falls in A

K (x,A) = P (Xn+1 ∈ A|Xn = x)

The chain is stationary or time-homogeneous if the transition kernel does not change over time, so for
all n:

P (Xn+1 ∈ A|Xn = x) = P (X1 ∈ A|X0 = x)

Stationarity: A probability measure π representing a possible equilibrium for the Markov chain is
called a stationary or invariant distribution if

P (Xn+1 ∈ A|Xn = x) =

∫
A

K(x, y)dy

where K(x, y) is the transition kernel associated with the chain. This means that if we are in a state with
distribution π, Xn ∼ π(x) then also the subsequent states will have distribution π, Xn+1 ∼ π(x):

13

14 CHAPTER 2. SAMPLING FROM THE POSTERIOR DISTRIBUTION

P (Xn+1 ∈ A) =

∫
X

P (Xn+1 ∈ A|Xn = x)π(x) dx =

∫
X

∫
A

K(x, y) dy π(x) dx

=

∫
A

∫
X

K(x, y)π(x) dx dy =

∫
A

π(y) dy

⇒ Xn+1 ∼ π(x).

If this is satisfied, the chain will stay within the invariant distribution provided that it enters it at
some point.

Ergodicity: An ergodic Markov chain converges to a unique stationary distribution π, for all legal
initial probability distributions:

P (Xn ∈ A|X0) −→
∫
A

π(x) dx, n→∞.

According to Markov chain theory, the following requirements on the random chain need to be satisfied
in order for the chain to be ergodic, hence having an invariant or stationary distribution π as its limiting
distribution regardless of the starting point.

Irreducibility: A Markov chain is considered irreducible when all its states communicate in a finite
number of transitions. The states of an irreducible chain all have the same period. A condition for
irreducibility is: every state can be accessed from every other state, so that the complete sample space
may be visited by the chain.

Aperiodicity: The period of a state j ∈ S is defined as

d(j) = gcd{n ∈ N : pjj(n) > 0}

• if d(j) > 1⇒ j ∈ X is periodic with period d(j)

• if d(j) = 1⇒ j ∈ X is aperiodic

A Markov chain is aperiodic if all states have period 1. All states of an irreducible Markov chain, have
the same period. A sufficient condition for a state to have period 1 is

P (Xn = j|X0 = j) > 0 and P (Xn+1 = j|X0 = j) > 0

for some n > 0 and some state j = 0, 1, ..., N − 1.

A discrete Markov chain with continuous state space, apart from having the properties of irreducibility
and aperiodicity, must be Harris recurrent in order to ensure convergence to a unique stationary distri-
bution. Harris recurrence is required to avoid the possibility of starting points from which convergence is
not assured.

Recurrency: If the average number of visits to an arbitrary set A is infinite, the chain is said to be
recurrent. Otherwise, if the average number of visits to A is finite, the chain is transient. A chain is said
to be Harris recurrent if the probability of an infinite number of returns to A is 1, and Harris recurrence
ensures that the chain has the same limiting distribution for every starting point.

Assume that τii is the moment of first return at the i - state and is defined as

τii = min{t > 0 : Xt = i|X0 = i}.

State i is recurrent if P (τii <∞) = 1 and positively recurrent if E(τii <∞). Note that an irreducible
Markov chain is positively recurrent if all its states are positively recurrent.

2.2. REVERSIBLE MARKOV CHAINS 15

2.2 Reversible Markov Chains

Consider an ergodic Markov chain with state space S that converges to an invariant distribution π. Let
x ∈ S denote the current state of the system, and let y ∈ S denote the state of the next step. Let p(x, y)
be the probability of a transition from x to y and let p(y, x) denote the probability of a transition in the
opposite direction. A Markov chain is considered reversible if it satisfies the condition:

P{Xn ∈ A,Xn+1 ∈ B} = P{Xn ∈ B,Xn+1 ∈ A}
⇒ π(x) q(x, y) = π(y) q(y, x)

for all x, y ∈ X and A = (x, x + dx], B = (y, y + dy]. This condition is known as the detailed balance
equation. An ergodic chain in equilibrium satisfying this equation and has π as its unique stationary
distribution.

If the transition kernel K(·, ·) of the Markov chain preserves π, that is if Xi ∼ π implies that Xi+1 ∼ π
or if P (Xn+1 ∈ A|Xn = x) =

∫
A

K(x, y)dy the density π is invariant for the Markov chain. Our goal is

to verify that π is the invariant density, which is difficult because we have to integrate with respect to π.
That is why we use MCMC: instead of proving that π is invariant, we simply choose the transition kernel
that best satisfies the reversibility condition with respect to π. Reversibility holds if (Xn, Xn+1) has the
same distribution as the time-reversed subchain (Xn+1, Xn) whenever Xn has density π.

Varying Dimension between States

Reversibility is not always easy to ascertain. Some algorithms, for example reversible jump samplers,
allow the move from s current state to the next state even if the dimensions do not match. The following
example shows a way to obtain an appropriate transition kernel for this case.

Consider computing the transition kernel

P (x,B) = P (Y ∈ B|X = x)

for the vector Y = (Y1, Y2)′ and the scalar variable X. Consider that given X = x, Y is defined by the
deterministic mapping g:

(Y1, Y2) = g(x, U) = (x+ U, x− U)

where U is a random variable with density q on R. Given X = x, Y does not have a density on R2 because
once Y2 is known, the value of Y1 is determined completely. For A ⊂ R and B ⊂ R2:

P (x,B) = P (Y ∈ B|X = x) =

∫
I((x+ U, x− U) ∈ B) q(u) du

and

P (X ∈ A, Y ∈ B) =

∫
A

∫
I((x+ U, x− U) ∈ B) q(u) f(x) du dx

where f is the density of X on R.

16 CHAPTER 2. SAMPLING FROM THE POSTERIOR DISTRIBUTION

2.3 Monte Carlo Integration

Standard Monte Carlo integration is a method used for numerically solving analytically challenging in-
tegrals using random numbers. This method is based on repeated random sampling and is particularly
useful for high-dimensional integrals.

Strong Law of Large Numbers. Let X1, X2, . . . be an infinite sequence of i.i.d. random variables with
expected value E(X1) = E(X2) = . . . = µ. The strong law of large numbers states that the sample
average converges almost surely to the expected value:

Xn =
1

n
(X1 + · · ·+Xn), Xn → µ, n→∞,

that is

P (lim
n→∞

Xn = µ) = 1.

Note that this result holds for µ <∞.
Central Limit Theorem Lindeberg-Levy. Suppose X1, X2, . . . is a sequence of i.i.d. random variables

with E(Xi) = µ and V ar(Xi) = σ2 <∞. Then as n approaches infinity, the random variables
√
n(Sn−µ)

converge in distribution to a normal N(0, σ2):

√
n((

1

n

n∑
i=1

Xi)− µ)
d→ N(0, σ2).

Monte Carlo method. Suppose we want to evaluate an integral of the form

I =

∫
X

h(x) f(x) dx = Ef [h(x)]

where f(x) is a density. This is then recognized as the expected value of h(x) with respect to the density
f(x), as shown above. If it is possible to simulate or generate a number of iid xi ∼ f(x), i = 1, . . . ,m,
then the standard Monte Carlo estimator for the integral I is the empirical average, which converges
towards the integral for m sufficiently high (strong law of large numbers):

hm =
1

m

m∑
i=1

h(xi) −→ I, m→∞

This technique of estimating the integral I using generation of iid random variables xi ∼ f(x) is
referred to as classical Monte Carlo integration. However, the challenge to generate random variables
from f(x) remains, and for some densities direct simulation is difficult. An alternative method to direct
sampling for simulating from the distribution f(x) is Markov Chain Monte Carlo.

Monte Carlo variance. The Monte Carlo estimate converges asymptotically to the true value of
the integral of interest as the number of simulations increases. In order to evaluate the precision of the
Monte Carlo estimate, we will compare the variance of the Monte Carlo estimate to the variance of the
integral function h(x). The variance of the Monte Carlo estimate is

V ar[hm] = V ar[
1

m

m∑
i=1

h(xi)] =
1

m2
V ar[

m∑
i=1

h(xi)] =
1

m
V arf [h(x)]

2.4. MARKOV CHAIN MONTE CARLO 17

where V arf [h(x)] is the variance of the function h(x) with respect to f(x), since x1, . . . , xm are iid samples
from density f(x). Therefore, as m→∞, V arf [h(x)]→ 0. In general, Monte Carlo variance will increase
for dependent samples with a positive correlation structure. If hm is an estimator based on dependent
samples of f(x) the corresponding variance becomes

V ar[hm] =
1

m2
V ar[

m∑
i=1

h(xi)]

=
1

m2
[mV arf [h(x)] +

m∑
i=1

∑
i 6=j

Cov((h(xi), h(xj))]

=
1

m
V arf [h(x)][1 +

1

m

m∑
i=1

∑
i 6=j

Cov((h(xi), h(xj))]

Hence, it can be seen that using dependent samples with a positive correlation structure will result in
increased variance of the Monte Carlo estimate.

By using the Central Limit Theorem Lindeberg-Levy, we can show that the distribution of the esti-
mator hm is:

hm − E[hm]√
V ar[hm]

d
≈ N(0, 1)

⇔ N(E[hm], V ar[hm]) = N(Ef [h(x)],
1

m
V arf [h(x)])

⇔ hm
d
≈ N(I,

1

m
V arf [h(x)])

2.4 Markov Chain Monte Carlo

We are going to illustrate an overview of the philosophy of Markov Chain Monte Carlo (MCMC) meth-
ods. The basic idea is to choose the transition kernel that generates the Markov chain with the desired
stationary distribution. The transition kernel which imposes the strongest reversibility condition with
respect to π, is sufficient to guarantee that π is invariant for the Markov chain.

Let X denote a real stochastic vector of unknown parameters or unobservable variables associated with
some model, and assume X has a distribution with density π on Rd. Density π could represent a posterior
density. However, this density is required in order to evaluate necessary expectations with respect to π
and has, in most cases, a complex form that may only be known up to an unknown normalising constant.
Thus, it is not possible to calculate these expectations with numerical integration or analytically and
simulating directly from the posterior density may be challenging. We are going to show further on,
that this problem can be dealt with the construction of a Markov chain whose invariant distribution has
density given by π.

In order to construct the Markov chain {Xn}∞n=1 we must know:

1. The distribution for the initial state X1

2. The transition kernel K(·, ·) of the conditional distribution for Xn+1|Xn

18 CHAPTER 2. SAMPLING FROM THE POSTERIOR DISTRIBUTION

3. If Xn = x is the value of the current state, the probability that Xn+1 is in a set A ⊆ Rd is

K(x,A) = P (Xn+1 ∈ A|Xn = x).

If the generated Markov chain is irreducible with invariant distribution π, it can be used for Monte
Carlo estimation of various expectations E(h(X)) with respect to π. That is, for any function h on Rd
with E(h(X)) <∞

E(h(X)) =

∫
h(x)π(x) dx = lim

N→∞

1

N

N∑
i=1

h(Xi)

Thus, E(h(X)) can be approximated by

E(h(X)) −→ 1

N

N∑
i=1

h(Xi)

the sample average, for some large N. Here h could be the indicator function of a set A ⊆ Rd, so that
E(h(X)) equals the probability

P (X ∈ A) = E(I(X ∈ A)) ≈ 1

N

N∑
i=1

I(Xi ∈ A)

Note that the convergence of the sample average to E(h(X)) for all starting values, requires the
assumption of Harris recurrence. Even though the invariant distribution π is unique given a transition
kernel K, this is not true the other way around. There might be several different transition kernels having
the same invariant distribution, which practically means there are different choices of transition kernels
to choose from corresponding to varying quality and efficiency of the implementation of the method.

In the following sections we will delve into some algorithms that are implemented via the construction
of a Markov chain and Monte Carlo integration. The Metropolis-Hastings algorithm, the Gibbs sampler
and the reversible-jump MCMC are presented. Gibbs sampling is a special case of the Metropolis-
Hastings algorithm. However it can be considered as a general framework for sampling from a large set of
variables, by sampling each variable (or a group of variables) in turn, and can incorporate the Metropolis-
Hastings algorithm to implement one or more sampling steps. Reversible-jump Markov chain Monte Carlo
(rjMCMC) is an extension of the Metropolis-Hastings algorithm that allows simulation of the posterior
distribution on spaces of varying dimension. The proposal and the target distributions have densities on
spaces of different dimensions. Thus, the simulation is possible even if the number of parameters in the
model is unknown.

Chapter 3

The Metropolis-Hastings Algorithm

In the process of constructing a Markov chain, one of our main concerns is to confirm the existence and
uniqueness of an equilibrium distribution for iterations of a given transition kernel. Contrary to that
strategy, MCMC methods suggest the opposite: the equilibrium distribution is known, usually up to a
constant multiple, but the transition kernel is unknown. Thus, the idea underlying these methods is to
generate a Markov chain via iterative Monte Carlo simulation that has the desired posterior distribution
as its stationary distribution, at least in an asymptotic sense.

The objective is to sample from the target distribution, however direct sampling in most cases is
impossible. The initial step of the Metropolis-Hastings algorithm is to produce candidate draws from a
proposal distribution. Under the frame of Markov chain theory, we allow the proposal density to depend
on the current state of the process. These candidate draws are thereafter updated in a way that they
tend to operate (asymptotically) as random observations from the desired invariant or target distribution.
The process by which the Markov chain is generated by the Metropolis-Hastings algorithm at each stage,
consists of two basic steps: the proposal step and the acceptance step. The former is associated with the
proposal distribution and the latter with the acceptance probability.

The success of the method requires a fair acceptance ratio and a proper proposal density choice. These
two features are very important when it comes to the convergence of the chain to its invariant distribution
and will be elaborated further on. The implementation of the Metropolis-Hastings algorithm can be made
in two different ways: one can update all random variables of the model jointly or update the random
variables independently.

The Metropolis sampling algorithm can draw samples from a complex or unnormalized target proba-
bility distributions using a Markov chain. The Metropolis algorithm first proposes a possible new state
X∗ in the Markov chain, based on the previous state Xn, according to the proposal distribution q(x∗|xn).
The algorithm accepts or rejects the proposed state based on the density of the the target distribution
π(·) evaluated at X∗.

One constraint of the Metropolis sampler is that the proposal distribution q(x∗|xn) must be sym-
metric. This constraint originates from the detailed balance condition. However, a symmetric proposal
distribution may be a poor fit for many problems. In order to be able to use an asymmetric proposal
distributions, the Metropolis-Hastings algorithm implements an additional correction factor c, defined
from the proposal distribution as

c =
q(xn|x∗)
q(x∗|xn)

The correction factor ensures that the probability of moving from Xn → Xn+1 is equal to the proba-
bility of moving from Xn+1 → Xn, no matter the proposal distribution.

19

20 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

3.1 Joint Updating M-H Algorithm

Draw N samples using the Metropolis-Hastings algorithm

1. Set n = 0

2. Generate an initial state X0 ∼ π0

3. Repeat until n = N

Set n = n+ 1
Generate a proposal state X∗ from q(x|xn)

Calculate the proposal correction factor c =
q(xn|x∗)
q(x∗|xn)

Calculate the acceptance probability α = min

(
1,
π(x∗)

π(xn)
× c
)

Draw u ∼ U(0, 1)
If u ≤ α accept the proposal state X∗ and set Xn+1 = X∗

Else set Xn = X∗

Deriving the acceptance probability
Let Xn denote the n-th state of the Markov chain X1, X2, ... and let Yn+1 denote the proposal for the

next state of the chain. The random vector (Xn, Yn+1), consisting of the current Markov chain state and
the proposal, has joint density g on R2d given by

g(x, y) = q(x, y)π(x)

where π is the d-dimensional target density and q(x, ·) is the d-dimensional proposal density of Yn+1,
given that Xn = x, x ∈ Rd. The acceptance probability of the simultaneous updating Metropolis-Hastings
algorithm is derived subject to the reversibility condition

P (Xn ∈ A,Xn+1 ∈ B) = P (Xn ∈ B,Xn+1 ∈ A)

for all A,B ⊆ Rd.

P (Xn ∈ A,Xn+1 ∈ B) =

∫
A
P (Xn+1 ∈ B|Xn = x)π(x) dx.

For any B ⊆ Rd define the proposal distribution as

Q(x,B) = P (Yn+1 ∈ B|Xn = x) =

∫
I(y ∈ B) q(x, y) dy

which is the conditional probability that Yn+1 belongs in a set B given that Xn = x.
The conditional probability that Yn+1 belongs in a set B and Yn+1 is accepted, given that Xn = x is

defined as

Qa(x,B) = P (Yn+1 ∈ B and Yn+1 is accepted|Xn = x) =

∫
I(y ∈ B) q(x, y) a(x, y) dy.

The conditional probability of rejecting the proposal given that Xn = x, is defined as

r(x) = P (Yn+1 is rejected|Xn = x)

Then the transition kernel K(x,B) = P (Xn+1 ∈ B|Xn = x) can be written as

3.1. JOINT UPDATING M-H ALGORITHM 21

K(x,B) = Qa(x,B) + r(x) I(x ∈ B)

This expression for the transition kernel, is derived due to the fact that there are two ways in which
Xn+1 ∈ B (law of total probability). Given that the current state of the chain is Xn = x, one generates
a proposal Yn+1 that belongs in B and therefore Qa(x,B) is the probability that this candidate draw is
accepted, so that if Yn+1 = y the chain will move to the new state Xn+1 = y. The other one rejects the
proposal, with probability r(x), so that the chain will not move to a new state, that is Xn+1 = Xn = x
and that x ∈ B. Hence:

P (Xn ∈ A,Xn+1 ∈ B)

=

∫
A
Qa(x,B)π(x) dx+

∫
A
r(x) I(x ∈ B)π(x) dx

=

∫
A
Qa(x,B)π(x) dx+

∫
r(x) I(x ∈ B ∩A)π(x) dx

and by virtue of symmetry

P (Xn ∈ B,Xn+1 ∈ A)

=

∫
B
Qa(x′, A)π(x′) dx′ +

∫
B
r(x′) I(x′ ∈ A)π(x′) dx′

=

∫
B
Qa(x′, A)π(x′) dx′ +

∫
r(x′) I(x′ ∈ B ∩A)π(x′) dx′

The reversibility condition is satisfied if:∫
A
Qa(x,B)π(x) dx =

∫
B
Qa(x′, A)π(x′) dx′

∫
A

∫
I(y ∈ B) q(x, y) a(x, y)π(x) dx dy =

∫
B

∫
I(y′ ∈ A) q(x′, y′) a(x′, y′)π(x′) dx′ dy′

∫ ∫
I(x ∈ A, y ∈ B) q(x, y) a(x, y)π(x) dx dy =

∫ ∫
I(x′ ∈ B, y′ ∈ A) q(x′, y′) a(x′, y′)π(x′) dx′ dy′

In order to write this expression entirely as a function of the same variables we can set y = x′ and
x = y′. This particular change of variables is feasible due to the following procedure: In the move from
Xn = x to Xn+1 = x′, a proposal with realized value y is generated from q(x, ·). If the proposal is
accepted, x′ = y. In the opposite move, from Xn = x′ to Xn+1 = x, a proposal with realized value y′ is
generated from q(x′, ·). If the proposal is accepted, x = y′. Also, by taking into consideration that the
Jacobian of the transformation is 1, the last expression yields the reversibility condition:∫ ∫

I(x ∈ A, y ∈ B) q(x, y) a(x, y)π(x) dx dy

=

∫ ∫
I(y ∈ B, x ∈ A) q(y, x) a(y, x)π(y) dy dx

Equality is satisfied if

q(x, y) a(x, y)π(x) = q(y, x) a(y, x)π(y).

By setting a(y, x) = 1, the acceptance probability that is derived is the largest possible, subject to
the detailed balance equation

α(y, x) = 1⇒ α(x, y) < 1

22 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

α(x, y) =
q(y, x)π(y)

q(x, y)π(x)
< 1

therefore

a(x, y) = min

(
1,
q(y, x)π(y)

q(x, y)π(x)

)
By setting α(x, y) = 1, we get the inverse of that:

a(y, x) = min

(
1,
q(x, y)π(x)

q(y, x)π(y)

)
.

3.1.1 Sampling from a Beta distribution with MH

Assume that we want to sample from a Beta(a,b) distribution by using the MH algorithm. Note that the
support of the target density is [0, 1]. Let z be the current state. We simulate a candidate point z′ from
a normal proposal distribution:

z′|z ∼ N(z, σ2), σ : unknown

Since the proposal distribution is a symmetric normal distribution, for the proposal density q(·) we
get:

q(z′|z) = q(z|z′)

thus, in the acceptance probability ratio, proposals cancel out. The corresponding acceptance probability
a(z, z′) = min{1, A} where

A =
π(z′|x) q(z|z′)
π(z|x) q(z′|z)

=
π(z′|x)

π(z|x)

=

{
z′a−1(1−z′)b−1

za−1(1−z)b−1 , z′ ∈ [0, 1]

0, z′ /∈ [0, 1]

=


(
z′

z

)a−1 (
1−z′
1−z

)b−1
, z′ ∈ [0, 1]

0, z′ /∈ [0, 1]

An alternative way for reducing the proportion of proposed moves that are rejected is to ensure that
the proposed values always lie in the interval [0, 1]. This can be done by specifying another proposal
distribution that takes values inside [0, 1]. Two suitable choices would be:

1. A uniform distribution

z′|z ∼ U(−εz, εz), εz = min{ε, z, 1− z}

which ensures that z′ ∈ [0, 1].

2. A truncated normal distribution

z′|z ∼ TN(z, σ2, 0, 1)

constrained to the interval [0,1].

3.2. SINGLE-SITE UPDATING M-H ALGORITHM 23

Thus the acceptance probability is a(z, z′) = min{1, A} where

A =
π(z′|x) q(z|z′)
π(z|x) q(z′|z)

=

(
z′

z

)a−1(1− z′

1− z

)b−1 q(z|z′)
q(z′|z)

.

The proposal densities do not cancel out in these cases, which typically means that more proposed
states will be accepted for posterior distributions that take values in the constrained interval, like in this
case the beta distribution.

3.2 Single-Site Updating M-H Algorithm

Draw N samples using the Metropolis-Hastings algorithm

1. Set n = 0

2. Generate an initial state X0 ∼ π0

3. Repeat until n = N

Set n = n+ 1
For each dimension i = 1, . . . , d
Generate a proposal state X∗i from q(xi|xi)

Calculate the proposal correction factor c =
q(xi|x∗i)
q(x∗i |xi)

Calculate the acceptance probability α = min

(
1,
π(x∗i , xj)

π(xi, xj)
× c
)

Draw u ∼ U(0, 1)

If u ≤ α accept the proposal state X∗i and set X
(n+1)
i = X∗i

Else set X
(n)
i = X∗i

Note that a sample for the i - th dimension is proposed, then accepted or rejected while all other
dimensions, j 6= i, are held fixed. We then move on to the next dimension i + 1, and repeat the process
while holding all other variables fixed (j 6= i+ 1).

Deriving the acceptance probability
Given that Xn = x, Yn+1 = x except at the i-th component, where xi is replaced by a random variable

Zi generated from a one-dimensional proposal density qi(x, ·), which may or may not depend on x or a
subset of x. Since

Yn+1 ∈ B ⇔ (x1, . . . , xi−1, Zi, xi+1, . . . , xd) ∈ B,

the probability that Yn+1 belongs in B ⊆ Rd, given Xn = x, is given by the proposal distribution

Q(x,B) = P (Yn+1 ∈ B|Xn = x)

=

∫
I((x1, . . . , xi−1, zi, xi+1, . . . , xd) ∈ B) qi(x, zi) dzi

which is a one-dimensional integral. Notice that the target density π is on Rd, while the proposal density
qi(x, ·) is on R.

24 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

Consider the move from a state

x = (x1, . . . , xi−1, xi, xi+1, . . . , xd)

to the state

x′ = (x1, . . . , xi−1, zi, xi+1, . . . , xd).

The probability that Xn+1 belongs in B|Xn = x, is given by

P (Xn+1 ∈ B|Xn = x) = Qa(x,B) + r(x) I(x ∈ B)

=

∫
I(x′ ∈ B) a(x, x′) qi(x, zi) dzi + r(x) I(x ∈ B)

The reversibility condition can be written as:

P (Xn ∈ A,Xn+1 ∈ B) = P (Xn ∈ B,Xn+1 ∈ A)∫
A
Qa(x,B)π(x) dx+

∫
A
r(x) I(x ∈ B)π(x) dx =

∫
B
Qa(x′, A)π(x′) dx′ +

∫
B
r(x′) I(x′ ∈ A)π(x′) dx′∫

A
Qa(x,B)π(x) dx =

∫
B
Qa(x′, A)π(x′) dx′∫

A

∫
I(x′ ∈ B) a(x, x′) qi(x, zi)π(x) dzi dx =

∫
B

∫
I(x ∈ A) a(x′, x) qi(x

′, xi)π(x′) dxi dx
′∫

Rd

∫
R
I(x ∈ A, x′ ∈ B) a(x′, xi) qi(x

′, xi)π(x′) dx′ dxi =

∫
Rd

∫
R
I(x ∈ A, x′ ∈ B) a(x, x′) qi(x, zi)π(x) dzi dx

which are equal if:

qi(x, zi) a(x, x′)π(x) = qi(x
′, xi) a(x′, xi)π(x′).

Setting a(x′, xi) = 1, yields the acceptance probability

a(x, x′) = min

(
1,
qi(x

′, xi)π(x′)

qi(x, zi)π(x)

)
and similarly we get the inverse by setting a(x, x′) = 1:

a(x′, xi) = min

(
1,

qi(x, zi)π(x)

qi(x′, xi)π(x′)

)
.

The arguments above also hold when the updating variable, rather than being a scalar, is a vector
and a subset of x.

3.3 Implementation Issues

Proper Choice of the Proposal Distribution q(·)
For the implementation of the Metropolis-Hastings algorithm, a main issue is to choose a proper

density for the candidate draws. This density is chosen from a family of distributions and requires proper
tuning of the location and scale parameters.

3.3. IMPLEMENTATION ISSUES 25

1. Random walk update. Letting q(x, y) = q(y, x) yields the acceptance rate

a(x, y) = min{1, π(y)

π(x)
}.

The usual definition of random walk for q(x, y) in Rd assumes q(x, y) = q(y − x) or equivalently
that the proposal random variable Yn+1 satisfies

(Yn+1|Xn = x)
d
= x+Wn+1, such that Wn+1

iid∼ fW (·).

Because q(x, y) = q(y, x) we have

fW (y − x) = fW (−(y − x))⇔ fW (w) = fW (−w)⇔W
d
= −W

or in words, that the distribution of W will be symmetric around 0.

While the behaviour of the Markov chain generated by fW (·) and π(·) is less sensitive to the shape
of the distribution of fW (·), it is sensitive to the size of the steps. Usually the equation

(Yn+1|Xn = x)
d
= x+Wn+1

is written in the form

(Yn+1|Xn = x)
d
= x+ hWn+1, h > 0

then the value of h is chosen so that the Markov chain has good convergence properties. As an

example consider the case where Wn+1
iid∼ N(·|0, 1) and h = σ then

(Yn+1|Xn = x)
d
= x+ σN(0, 1)

d
= N(x, σ2)

As a rule of thumb, conventional wisdom is to adjust h empirically so that the acceptance ratio is
in the range 30-50%, with 30-40% tending to work better than 40-50 %. Metropolis random walks
with a smaller acceptance ratio (generally due to a larger value of h) are said to take “fewer but
higher quality steps”.

2. Independence chain. A second family of candidate generating densities, is given by q(x, y) = q2(y),
as it appears in Hastings (1970). In this case, the candidate observation is drawn independently of
the current state of the chain. The acceptance probability can be written as:

a(x, y) = min

{
1,
w(y)

w(x)

}
where w(y) = π(y)/q2(y) is the importance weight function that would be used in importance
sampling given observations generated from q2(·). As in the random walk case, we can let q2 be a
multivariate normal or a multivariate-t density, with the difference that the location parameter as
well as the spread need to be specified.

26 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

3. According to Chib and Greenberg (1994), we can define a candidate-generating density, using the
known form of π(·). Let us assume that if π(t) can be written as π(t) ∝ ψ(t)h(t), where h(t) is a
density of a known distribution that we can sample from, and ψ(t) is uniformly bounded, then as
in the independence chain case, we set q(x, y) = h(y) to draw candidates. Thus the probability of
move requires only the computation of the ψ function and reduces to

a(x, y) = min

{
1,
ψ(y)

ψ(x)

}
.

4. Gibbs sampler. A special case of the single-update MH algorithm arises if we set the proposal
distribution for any parameter to be the conditional posterior distribution of that parameter given
the current value of the others. In this case, the acceptance probability is always exactly 1. This
is known as the Gibbs sampler (Casella and George 1992) and in the next chapter we discuss it
thoroughly.

Acceptance Rate
The acceptance probability of a move for the Metropolis-Hastings algorithm is generally defined as

a(x, y) = min

{
1,
q(y, x)π(y)

q(x, y)π(x)

}
, π(x) q(x, y) > 0

and reduces to

a(x, y) = min

{
1,
π(y)

π(x)

}
, π(x) > 0

when symmetrical proposal densities are considered.

Let us assume the initial state of the chain x0 with π(x0) > 0, then for every n, π(xn) > 0 since values
of the proposal Y for which π(y) = 0 lead to a(x, y) = 0, these proposal moves are rejected. Achieving a
fair rate of acceptance is an issue of great importance for the successful implementation of the method.
Parameterization and the proper proposal density choice play a key role. Although we want to achieve a
high acceptance ratio, acceptance rates in the neighbourhood of 1 imply strong similarity between current
and proposed states. This would cause really slow movement of the chain. Note that the only exception
is in the case where the proposal density is the invariant distribution. The opposite scenario is that the
rejection rate can be too high. Here the proposed relocation is too large and the potential move falls
outside the support of the posterior. A high rejection rate practically means that the chain will remain
in the same state for many iterations. In these cases, convergence is not ensured.

Convergence

1. Run length. There are two elements to be considered when determining the simulation length: the
time required for convergence, and the post-convergence sample size required for small Monte Carlo
errors. We want to determine how long it takes for the Markov chain to converge to the target
distribution. In practice, we discard observations from the start of the chain, during the burn-in
period and just use observations from the chain once it has converged. The simplest method to
determine the length of the burn-in period is to look at trace plots. You can often see the individual
parameters converging from their starting position to values based around a constant mean. The
use of trace plots is a fairly efficient method, but it is not robust.

Running several replications from different over-dispersed starting points provides additional reas-
surance when one is trying to check that convergence has been achieved. Basically, if you run the

3.3. IMPLEMENTATION ISSUES 27

chain several times from different starting points and they all give you the same posterior estimates
then this suggests that no major modes have been missed in any one simulation and that each has
probably converged. This approach is formalised in the Brooks-Gelman-Rubin diagnostic (Brooks
and Gelman 1998). There are various implementations of this diagnostic procedure, all based upon
the idea of using an analysis of variance to determine whether or not there are any differences in
estimates from different replications.

2. Monte Carlo error. MCMC integration is a method of estimating statistics of interest. It is a
simulation-based estimation technique and, as such, is subject to what we call Monte Carlo error,
which decreases with increasing sample size. Monte Carlo error essentially measures the variation
you would expect to see in your estimates if you ran multiple replications of your MCMC chain. It
is related to the autocorrelation of your chain, but if the sample size increases by a factor n, then
the Monte Carlo error decreases by a factor

√
n (Ripley 1987).

As we have shown earlier, the ergodic average satisfies the central limit theorem. Suppose we wish
to estimate the posterior mean of a parameter θ. By using Monte Carlo integration we estimate the

posterior mean Eπ(θ|x) by the sample mean θ = 1/n
n∑
i=1

θi, thus

θ ∼ N
(
Eπ(θ|x),

σ2

n

)

and σ/
√
n is the Monte Carlo error we wish to estimate.

3. Pilot tuning. With the exception of the Gibbs update, most MCMC updates require a degree of
so-called pilot tuning in order to ensure adequate convergence and acceptable Monte Carlo errors.
Firstly, the proposal distributions for the parameters in the model are specified. Once the proposal
distribution is defined, pilot tuning typically involves adjusting the relevant proposal variances so
as to obtain MH acceptance probabilities of between 20 and 40% (Gelman et al. 1996). In many
cases this can be automated by running the algorithm for some iterations, calculating the average
acceptance ratio for each parameter during that time and then increasing the corresponding proposal
variance if the acceptance probabilities are too high and decreasing the variances if the probabilities
are too low.

4. Autocorrelation Function. The performance of the chain, in terms of mixing and moving around
the parameter space, is often initially monitored visually with trace plots, or by computing the
mean acceptance rate. However, another useful tool is the autocorrelation function (ACF). This is
simply defined as the correlation between the given parameter value in the Markov chain separated
by k iterations. Ideally, for good mixing chains, there should be a fast decrease in the value of the
autocorrelation function as the lag increases. In an ACF plot, this would be represented by a sharp
gradient at low values of k. This would imply that there is little relationship between values of
the Markov chain within a small number of iterations. Conversely, poorly mixing chains will have
a very shallow gradient in the ACF plot, with high autocorrelation values for even relatively large
values of k.

5. Thinning. In order to make the sampler more efficient computationally and avoid autocorrelations
within the chain, we use only every i - th step of the chain, a process known as thinning. The thinned
values have reduced autocorrelation, but a large number of sampled values is discarded, which, even
if they are highly correlated, still provide information concerning the posterior distribution.

28 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

3.3.1 Simulation from a Normal distribution with different proposals

Suppose that the target distribution that we want to sample from, is the weighted sum of two normal
distributions:

X ∼ pN(µ1, σ1
2) + (1− p)N(µ2, σ2

2)

with probability density function:

f(x) = p
1√

2πσ1
2

exp

{
−(x− µ1)2

2σ1
2

}
+ (1− p) 1√

2πσ2
2

exp

{
−(x− µ2)2

2σ2
2

}
∝ p exp

{
−(x− µ1)2

2σ1
2

}
+ (1− p) exp

{
−(x− µ2)2

2σ2
2

}
Now, let us define a proposal that samples from a normal distribution centred on the current point,

with standard deviation σp:

X∗ ∼ N(x, σ2
p)

and density:

q(x∗) =
1√

2πσp2
exp

{
−(x∗ − x)2

2σp2

}
.

The acceptance probability yields:

A = min{1, a} = min

{
1,
f(x∗)

f(x)

}
.

Notice that there is no proposal density ratio, because the normal distribution is symmetrical.

We set µ1 = −2, σ2
1 = 0.5, µ2 = 1.5, σ2

2 = 1.5 and also set as an initial state X = −10. We perform
the move from the current state X to a proposed state X∗, through three different proposals.

1. (slow step) X∗ ∼ N(x, σ2
p = 0.22)

2. (normal step) X∗ ∼ N(x, σ2
p = 42)

3. (fast step) X∗ ∼ N(x, σ2
p = 302)

The aim is to inspect the best proposal we can use to generate samples that come from the target
density at hand.

We run the Metropolis Hastings algorithm for 100000 iterations. We want to check the chain’s rate
of convergence to the stationary distribution (posterior), as well as how it is mixing and moving around
the parameter space. We do so graphically:

Traceplot: A plot of the iteration number against the value of the draw of the parameter at each
iteration. The traceplot indicates the chain’s mixing.

Histogram: A histogram of the posterior draws.

Running mean: A plot of the iterations against the cumulative sum of the draws up to each iteration.
We can check the convergence of the draws to the ergodic average.

3.3. IMPLEMENTATION ISSUES 29

Figure 3.1: Histogram for each proposal.

The first two histograms seem to approximate the target distribution quite well. However, we should
also check how the chains are mixing.

30 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

Figure 3.2: Traceplot for each proposal.

The traceplot of the first chain indicates worse mixing than that of the second chain. Up until know,
we could say that quite possibly the second proposal is a better fit for our model.

3.3. IMPLEMENTATION ISSUES 31

We can observe the effect of different proposal steps in the autocorrelation among subsequent param-
eters. The autocorrelation function (ACF) plots show the decay in autocorrelation coefficient between
steps of different lags, with the blue lines indicating statistical independence. High autocorrelations within
chains indicate slow mixing and, usually, slow convergence.

Figure 3.3: ACF plot for each proposal.

Chain Lag 0 Lag 1 Lag 5 Lag 10 Lag 50

Slow step Proposal Chain 1.00 0.995 0.978 0.958 0.826
Normal step Proposal Chain 1.00 0.671 0.151 0.031 -0.002

Fast step Proposal Chain 1.00 0.917 0.654 0.438 0.007

The second chain has a faster decaying gradient than the other two chains, which indicates faster
convergence. The other two chains mix worse than the normal step proposal chain.

The effective sample size for an accurate estimate of the posterior means for each chain is:

Chain Effective Sample Size

Slow step Proposal Chain 196
Normal step Proposal Chain 18940

Fast step Proposal Chain 4125

32 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

Values over 4000 are generally acceptable, so we can conclude that the normal step and fast step
chains probably provide a fair estimate of the posterior mean. Nonetheless, the normal step proposal
seems to be more effective.

The acceptance rates for each chain are:

Chain Acceptance Rate

Slow step Proposal Chain 0.94
Normal step Proposal Chain 0.47

Fast step Proposal Chain 0.078

Although we want to achieve a high acceptance ratio, acceptance rates in the neighbourhood of 1
imply strong similarity between current and proposed states. This would cause really slow movement of
the chain. The only exception is if the proposal density is the invariant distribution. On the contrary, a
high rejection rate, indicates that the proposed relocation is too large and the potential move falls outside
the support of the posterior. A high rejection rate practically means that the chain will remain in the
same state for many iterations. In these cases, convergence is not ensured. Eventually, the best proposal
is the normal step proposal in our case.

Now that we have come to a conclusion about the best proposal density choice, we will run some
further diagnostics. First, we compute the empirical means, the standard deviation and the standard
error of the mean, for the posterior mean µ:

Variable Mean SD SE

µ 0.458 2.067 0.007

The running average plot shows fast convergence of the draws to the ergodic average (red line):

Figure 3.4: Running average tranjectory of µ.

3.3. IMPLEMENTATION ISSUES 33

Now, we monitor convergence with the use of some diagnostic tests.

Geweke: The null hypothesis that we test with Geweke diagnostic, is whether the means of two
non-overlapping parts of the MC come from the same distribution.

Heidelberg and Welch: The null hypothesis is that the MC comes from a stationary distribution.

Raferty and Lewis: A run length control diagnostic based on a criterion of accuracy of estimation
of the quantile q. It is intended for use on a short pilot run of a Markov chain. Note that values
of the dependence factor larger than 5 indicate strong autocorrelation which may be due to a poor
choice of starting value, high posterior correlations or ‘stickiness’ of the MCMC algorithm.

Gelman and Rubin: We run m ≥ 2 chains of length 2n from overdispersed starting values. Then, we
discard the first n draws in each chain. We calculate the within-chain and between-chain variance
and the estimated variance of the parameter as a weighted sum of the within-chain and between-chain
variance. Finally, we calculate the potential scale reduction factor (psrf). Note that, necessarily,
prsf ≤ 1 to ensure convergence to the posterior distribution.

Geweke Heidelberg and Welch

Variable Z-score Stationarity test Start P-value Halfwidth Mean Halfwidth test

µ -1.2 X 1 0.684 0.029 0.458 X

As we see in the diagnostic results, the posterior means satisfies the null hypotheses of both tests.

For the quantile q = 0.025, within an accuracy of r+ /− 0.005 with probability s = 0.95, the Raferty
and Lewis diagnostic yields:

Raferty and Lewis

Variable Burn-in Required SS Minimum SS Dependence Factor

µ 12 12837 3746 3.43

Note that high dependence factors (I > 5) are worrisome and may be due to influential starting values,
high correlations between coefficients, or poor mixing.

We run 5 chains with 30000 iterations each, at different (overdispersed) starting values. The results
give us the median potential scale reduction factor and its 97.5% quantile:

1. psrf=1

2. 97.5% quantile=1

34 CHAPTER 3. THE METROPOLIS-HASTINGS ALGORITHM

We can see how the psrf changes through the iterations:

Figure 3.5: The evolution of Gelman and Rubin’s shrink factor as the number of iterations increases.

Chapter 4

The Gibbs Sampler

The Gibbs sampler is an MCMC method used to generate random variables, without necessarily comput-
ing the probability density function. The characteristic of this algorithm, is that it concentrates as much
information as possible from the density of interest. In that way it allows the deconstruction of a complex
problem, into simpler ones. For example, the Gibbs sampler makes it possible to draw from several low-
dimensional distributions instead of drawing from a single high-dimensional distribution. However, there
is a chance that it may take a lot of time for this sequence of low-dimensional distributions to converge
but the Gibbs sampler is designed so that the draws from the conditional distributions approximate the
joint distribution in an appointed time.

Suppose that the distribution of interest is π(x) with x = (x1, x2, ..., xd). The idea is to construct
a Markov chain that converges to the distribution π(x), and has a transition kernel formed by the fully
conditional distributions. In our first encounter with the Gibbs sampler we are going to show that it
actually is a special case of the Metropolis-Hastings algorithm. Let us denote the move from x to x′, with
the proposal being generated from

qi(x, zi) = π(zi|x−i)

where x−i = x, with the i-th component omitted, that is x−i = (x1, . . . , xi−1, xi+1, . . . , xd). In the move
from x′ to x, the proposal is generated from

qi(x
′, xi) = π(xi|x−i).

The conditional densities that appear are known as the fully conditional posterior distributions (FC).
These equal to

π(zi|x−i) =
π(x′)

π(x−i)

and

π(xi|x−i) =
π(x)

π(x−i)
.

Substituting the FCs on the Metropolis-Hastings acceptance probability a(x, x′) yields:

qi(x
′, xi)π(x′)

qi(x, zi)π(x)
=
π(x)π(x′)π(x−i)

π(x)π(x′)π(x−i)
= 1

35

36 CHAPTER 4. THE GIBBS SAMPLER

which shows that if we generate a Metropolis-Hastings proposal from an appropriate fully conditional
distribution, this proposal is accepted with probability 1. This is the scheme known as Gibbs sampling.

The transition kernel of the Gibbs sampler preserves π, which means that the density π is invariant for
the Markov Chain produced. The updating of all elements of x in terms of the transition kernel involves
the product

π(zi|x2, x3, . . . , xd)π(z2|z1, x3, . . . , xd) . . . π(zd|z1, z2, . . . , zd−1)

and according to the equation

∫
Rd
K(x,B)π(x) dx =

∫
B
π(x) dx, by setting d = 3 for simplicity, we get

K(x,B) =

∫
I(z1, z2, z3 ∈ B)π(z1|z1, x3)π(z2|z1, x3)π(z3|z1, z2) dz1 dz2 dz3.

Hence we result in an integral that is 3-dimensional. Integrating over the distribution of x1, x2 and
x3 we get

K(x,B)π(x1, x2, x3) dx1 dx2 dx3 =

=

∫
I(z1, z2, z3 ∈ B)π(z1, z2, z3) dz1 dz2 dz3

= P (X1, X2, X3 ∈ B)

The abovementioned equation is still satisfied if we define the transition kernel with respect to only
one of the elements of x. If we want to update only the first element of x in the 3-dimensional example,
the transition kernel is:

K(x,B) =

∫
I(z1, x2, x3 ∈ B)π(z1|x2, x3) dz1

and ∫
K(x,B)π(x) dx =

∫ ∫
I(z1, x2, x3 ∈ B)π(z1|x2, x3)π(x1, x2, x3) dz1 dx1 dx2 dx3.

Integrating over the distribution of x1 yields∫
I(z1, x2, x3 ∈ B)π(z1, x2, x3) dz1 dx2 dx3 = P (X1, X2, X3 ∈ B).

4.1 Fully Conditional Posterior Distributions

Let (θ1, θ2, ..., θd) denote the vector of parameters and θ−i = (θ1, θ2, ..., θi−1, θi+1, ..., θd) denote the
vector equal to θ with its i-th component θi omitted. Note that θ−i, is of dimension (d− p), d > p, p ≥ 1,
where p is the number of elements in θi. The form of θi can be either scalar, vector or matrix. The fully
conditional posterior distribution of θi is

π (θi | θ−i, y) =
π (θ1, ..., θi−1, θi, θi+1, ..., θd | y)∫
π (θ1, ..., θi−1, θi, θi+1, ..., θd | y) dθi

∝ π (θ1, ..., θi−1, θi, θi+1, ..., θd | y)

4.1. FULLY CONDITIONAL POSTERIOR DISTRIBUTIONS 37

The Gibbs Sampling Algorithm

1. Consider a user-defined vector of starting values

θ(0) =
(
θ

(0)
1 , θ

(0)
2 , ..., θ

(0)
d

)
.

These values should be ’legal’ in the sense that their posterior distribution exists and is greater than

zero, that is π
(
θ

(0)
1 , θ

(0)
2 , ..., θ

(0)
d | y

)
> 0.

2. The Gibbs sampler is the realization of iterating through the loop

draw θ
(1)
1 from π

(
θ1 | θ(0)

2 , ..., θ
(0)
d , y

)
draw θ

(1)
2 from π

(
θ2 | θ(1)

1 , θ
(0)
3 , ..., θ

(0)
d , y

)
draw θ

(1)
3 from π

(
θ3 | θ(1)

1 , θ
(1)
2 , θ

(0)
4 , ..., θ

(0)
d , y

)
...

draw θ
(1)
d from π

(
θd | θ

(1)
1 , ..., θ

(1)
d−1, y

)
draw θ

(2)
1 from π

(
θ1 | θ(1)

2 , ..., θ
(1)
d , y

)
...

and so on.

The idea is to let the sampler iterate through that loop until convergence is reached, which means that

the result of the j-th iteration θ
(j)
i after convergence, is regarded as a draw from its marginal posterior

distribution with density π (θi | y). We should take into consideration, that there is an initial period
during which the samples drawn are highly correlated and dependent on the starting values. This is
known as the burn-in period and its length can be approximately determined by monitoring the rate of
convergence of the Markov chain.

An important conclusion, is the fact that the form of the joint distribution is uniquely shaped by the
form of the fully conditional distributions. The draws from all fully conditional posterior distributions
are the ones that constitute the sample from the joint distribution via the Gibbs sampling algorithm. We
are going to present a proof of that assumption for the two-dimensional case. Consider the density

π (x, y) = π (y | x) π (x) = π (x | y) π (y)

it follows that

π (y) =
π (y | x)

π (x | y)
π (x) ∝ π (y | x)

π (x | y)

hence the normalized marginal density is

π (y) =
π (y | x) /π (x | y)∫
π (y | x) /π (x | y) dy

.

Eventually it yields

π (x, y) =
π (y | x)∫

π (y | x) /π (x | y) dy
.

Assuming of course that the joint distribution of random variables X,Y exists, it follows that it
can be written in terms of the fully conditional posterior distributions. Note that the form of the joint
distribution may be impossible to be expressed analytically.

38 CHAPTER 4. THE GIBBS SAMPLER

4.1.1 A Zero-Inflated Poisson Model

A zero-inflated Poisson model concerns a random event containing excess zero-count data in unit time,
for example, the number of insurance claims within a population for a certain type of risk would be
zero-inflated by those people who have not taken out insurance against the risk and thus are unable to
claim. The zero-inflated Poisson model employs two components that correspond to two zero generating
processes. The first process is governed by a binary distribution that generates structural zeros. The
second process is governed by a Poisson distribution that generates counts, some of which may be zero.

We assume that random observations X1, . . . , Xn are of the form

Xi = Ri Yi, where Yi
iid∼ P (λ), Ri

iid∼ Bernoulli(p), 1 ≤ i ≤ n

and Ri, Yi are independent. Thus, the data X1, . . . , Xn have the following distribution:

xi|r, λ, p ∼ P (λ ri) independently, 1 ≤ i ≤ n

and vector ri = (r1, . . . , rn) has distribution:

ri|p, λ ∼ Bernoulli(p) independently, 1 ≤ i ≤ n.

Given an outcome x = (x1, . . . , xn), the objective is to estimate both λ and p. We assign a-priori
distributions for parameters λ, p:

p ∼ U(0, 1)

λ|p ∼ Ga(a, b)

where a, b are hyperparameters and assumed known. The joint probability density function of all param-
eters and the data x of the hierarchical model is:

π(x, ri, λ, p) = π(x|ri, λ, p)π(ri|p, λ)π(λ|p)π(p)

=

n∏
i=1

e−λri(λri)
xi

xi!
× pri(1− p)1−ri × ba

Γ(a)
λa−1e−bλ × 1

=
baλa−1e−λb

Γ(a)
e−λnrpnr (1− p)n−nrλnx

n∏
i=1

rxii
xi!

where nr =
∑
i
ri, nx =

∑
i
xi. The posterior density of the model is:

π(r, λ, p|x) ∝ π(x, r, λ, p) =
baλa−1e−λb

Γ(a)
e−λnr pnr (1− p)n−nr λnx

n∏
i=1

rxii
xi!

which is the kernel of a nonstandard high-dimenional distribution, very challenging to solve analytically.
We will use the Gibbs sampling algorithm, thus, we need to compute the fully conditionals of the posterior.

4.1. FULLY CONDITIONAL POSTERIOR DISTRIBUTIONS 39

Full Conditional Distribution of λ

π(λ| . . .) ∝ π(r, λ, p|x)
λ∝ λa−1e−λb e−λnr λnx

∝ λa+nx−1e−λ(b+nr

∝ Ga (a+ nx, b+ nr)

Full Conditional Distribution of p

π(p| . . .) ∝ π(r, λ, p|x)
p
∝ pnr (1− p)n−nr

∝ Be (nr + 1, n− nr + 1)

Full Conditional Distribution of ri, i = 1, . . . , n

π(ri| . . .) ∝ π(r, λ, p|x)
ri∝ e−λnr pnr (1− p)n−nr

n∏
i=1

rxii

(i=k)
∝ e−λrkprk(1− p)n−rkrxkk ∝

prk

eλrk(1− p)rk
rxkk

∝
(
p e−λ

1− p

)rk
rxkk ∝ Bernoulli

(
pe−λ

pe−λ + (1− p)I{xk=0}

)
The full conditional distribution of ri is this Bernoulli, since:

P{rk = 1| . . .} = pe−λ

pe−λ+(1−p)I{xk=0}

P{rk = 0| . . .} =
pe−λ+(1−p)I{xk=0}−pe−λ

pe−λ+(1−p)I{xk=0}

⇒

{
P{rk = 1| . . .} = 1

P{rk = 0| . . .} = 0
, xk 6= 0

⇒

{
P{rk = 1| . . .} = pe−λ

pe−λ+(1−p)
P{rk = 0| . . .} = (1−p)

pe−λ+(1−p)
, xk = 0

• xk = 0:

f(rk| . . .) ∝
(
p e−λ

1− p

)rk
rk
xk

(xk=0)⇒ f(rk|xk = 0, . . .) ∝
(
p e−λ

1− p

)rk

⇒

f (rk = 1|xk = 0, . . .) =
pe−λ
1−p

1+ pe−λ
1−p

= pe−λ

pe−λ+(1−p)

f (rk = 0|xk = 0, . . .) = (1−p)
pe−λ+(1−p)

• xk 6= 0:

xk ∈ {1, 2, . . .}
rk ∈ {0, 1}

rk = 0⇒ f(rk = 0|xk 6= 0, . . .) ∝ 0⇒ f(rk = 1|xk 6= 0, . . .) = 1

Since we computed the full conditionals, we will use these distributions to sample draws by imple-
menting the Gibbs sampler. The chain converges after a burn-in period, and the sample is considered to
be a sample from the posterior distribution.

40 CHAPTER 4. THE GIBBS SAMPLER

4.2 A Hierarchical Normal Model

We assume having m similar processes (production lines) that generate products which share a certain
qualitative characteristic (valve diameter). The i - th process generates ni objects. We set yij to be the
measurement on the i -th group and on the j - th object of the group. We assume that the observations
are normally distributed according to the following model:

yij |µi, τ
iid∼ N(µi, τ

−1), 1 ≤ i ≤ m, 1 ≤ j ≤ ni

We also assume that the mean vector µi = (µ1, . . . , µm) is normally distributed, thus:

µi|µ, ν
iid∼ N(µ, ν−1), 1 ≤ i ≤ m

We consider the parameters τ, µ, ν unknown. We are going to estimate the parameter vector

θ = (((µ1, . . . , µm), τ), (µ, ν)) ∈ Θ = (Rm × R+)× (R× R+)

where (µ1, . . . , µm) is the latent mean vector. Variables (µ1, . . . , µm) and τ are the mixture components
of the hierarchical model. The model illustrated, is a first order hierarchical model.

We assume independent a-priori distributions for variables τ, µ, ν:

τ ∼ Ga(c, d)

µ ∼ N(a, b−1)

ν ∼ Ga(e, f)

where a, b, c, d, e, f are hyperparameters. By setting θ = ((µ1, . . . , µm), τ), θp = (µ, ν) and y = {yij , 1 ≤
i ≤ m, 1 ≤ j ≤ ni} we get:

y|θ ∼ π(·|θ)
θ|θp ∼ π(·|θp)
θp ∼ π(·)

The posterior distribution of the hierarchical model is:

π(θ|y) = π(θ, θp|y)
θ,θp∝ π(θ, θp, y) = π(θ, θp)π(y|θ, θp) = π(θp)π(θ|θp)π(y|θ, θp)

The prior components are given by:

π(θp) = π(µ, ν) = π(µ)π(ν)

π(θ|θp) = π((µ1, . . . , µm), τ |µ, ν)

= π(τ |µ, ν)π(µ1, . . . , µm|τ, µ, ν)

= π(τ)π(µ1, . . . , µm|µ, ν) = π(τ)

m∏
i=1

π(µi|µ, ν)

4.2. A HIERARCHICAL NORMAL MODEL 41

The component of the likelihood is given by:

π(y|θ, θp) = π(y|θ) = π({yij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni}|(µi), τ)

=

m∏
i=1

π({yij , 1 ≤ j ≤ ni}|µi, τ)

=
m∏
i=1

ni∏
j=1

π(yij |µi, τ)

Therefore the posterior distribution yields:

π((µi), τ, µ, ν|(yij)) ∝ π(µ)π(ν)× π(τ)
m∏
i=1

π(µi|µ, ν)×
m∏
m=1

ni∏
j=1

π(yij |µi, τ)

We will calculate some of the quantities that appear in the posterior distribution, so that we can come
to a conclusion on whether the posterior is a known distribution or whether it yields a nonstandard form.

π(yij |µi, τ) = N(yij |µi, τ−1) =

√
τ

2π
exp{−τ

2
(yij − µi)2} ∝ τ1/2 exp{−τ

2
(yij − µi)2}

thus

ni∏
j=1

π(yij |µi, τ) ∝
ni∏
j=1

τ1/2 exp{−τ
2

(yij − µi)2} = τni/2 exp{−τ
2

ni∑
j=1

(yij − µi)2}

We set:

• yi. =
1

ni

ni∑
j=1

yij , the sample mean of the i - th group of observations

• (ni − 1)S2
i =

ni∑
j=1

(yij − yi.)2, the sample variance of the i - th group of observations

ni∑
j=1

(yij − µi)2 =

ni∑
j=1

((yij − yi.)− (µi − yi.))2

=

ni∑
j=1

(yij − yi.)2 − 2

ni∑
j=1

(yij − yi.)(µi − yi.) +

ni∑
j=1

(µi − yi.)2

=

ni∑
j=1

(yij − yi.)2 − 2(µi − yi.)
ni∑
j=1

(yij − yi.) + ni(µi − yi.)2

=

ni∑
j=1

(yij − yi.)2 − 2(µi − yi.)(niyi. − niyi.) + ni(µi − yi.)2

=

ni∑
j=1

(yij − yi.)2 + ni(µi − yi.)2 = (ni − 1)S2
i + ni(µi − yi.)2

Substituting that on
ni∏
j=1

π(yij |µi, τ), yields

42 CHAPTER 4. THE GIBBS SAMPLER

ni∏
j=1

π(yij |µi, τ) ∝ τni/2 exp{−τ
2

[
(ni − 1)S2

i + ni(µi − yi.)2
]
}

By setting n
4
=

m∑
i=1

ni, the likelihood becomes:

π(y|θ) =
m∏
m=1

ni∏
j=1

π(yij |µi, τ)

∝
m∏
m=1

τni/2 exp{−τ
2

[
(ni − 1)S2

i + ni(µi − yi.)2
]
}

= τ
∑
ni/2 exp{−τ

2

m∑
m=1

[
(ni − 1)S2

i + ni(µi − yi.)2
]
}

= τn/2 exp{−τ
2

m∑
m=1

[
(ni − 1)S2

i + ni(µi − yi.)2
]
}

The prior components become:

π(θp) = π(µ)π(ν) = N(µ|a, b−1)×Ga(ν|e, f)

=

√
b

2π
exp{− b

2
(µ− a)2} × fe

Γ(e)
νe−1 exp{−fν}

∝ νe−1 exp{− b
2

(µ− a)2 − fν}

π(θ|θp) = π(τ)

m∏
i=1

π(µi|µ, ν) = Ga(τ |c, d)

m∏
i=1

N(µi|µ, ν−1)

=
de

Γ(d)
τ c−1 exp{−dτ}

m∏
i=1

√
ν

2π
exp{−ν

2
(µi − µ)2}

∝ τ c−1 exp{−dτ}
m∏
i=1

ν1/2 exp{−ν
2

(µi − µ)2}

= τ c−1 νm/2 exp{−dτ − ν

2

m∑
i=1

(µi − µ)2}

By substituting the computed expressions for likelihood and prior components, we get the posterior
distribution of the hierarchical model:

4.2. A HIERARCHICAL NORMAL MODEL 43

π(θ|y) = π((µi), τ, µ, ν|(yij)) ∝ {π(µ)π(ν)}{π(τ)
m∏
i=1

π(µi|µ, ν)}{
m∏
m=1

ni∏
j=1

π(yij |µi, τ)}

∝ νe−1 exp

{
− b

2
(µ− a)2 − fν

}
× τ c−1 νm/2 exp

{
−dτ − ν

2

m∑
i=1

(µi − µ)2

}

× τn/2 exp

{
−τ

2

m∑
m=1

[
(ni − 1)S2

i + ni(µi − yi.)2
]}

= τn/2+c−1 νm/2+e−1

× exp

{
−1

2

[
b(µ− a)2 + 2fν + 2dτ +

m∑
i=1

(ν(µi − µ)2 + τ(ni − 1)S2
i + τni(µi − yi.)2)

]}

which is the kernel of a nonstandard, m + 3, m ≥ 2 dimensional distribution, with support Θ = (Rm ×
R+)× (R× R+).

In order to implement the Gibbs sampler, we need to compute the full conditionals (FCs) of the
posterior distribution. The transition kernel of the Gibbs sampler consists of these FCs. The draws
from all fully conditional posterior distributions are the ones that constitute the sample from the joint
distribution via the Gibbs sampling algorithm. Practically, we will compute the distribution for each of
the parameters (µi), τ, µ, ν, conditional on all the remaining parameters and observations, for instance
the FC of µ is given by π(µ|(µi), τ, ν, (yij)).

Full Conditional Distribution of µ

π(µ| · · ·) ∝ π((µi), τ, µ, ν|(yij))
µ
∝ exp

{
−1

2

[
b(µ− a)2 + ν

m∑
i=1

(µi − µ)2

]}

∝ exp

{
−1

2

[
bµ2 − 2abµ+ ba2 + ν

m∑
i=1

(µ2
i − 2µµi + µ2)

]}

∝ exp

{
−1

2

[
bµ2 − 2abµ+ ba2 + ν(−2µmµ. +mµ2)

]}
∝ exp

{
−1

2

[
(b+ νm)µ2 − 2(ab+mµ.)µ

]}
∝ exp

{
−b+ νm

2

[
µ− (

ab+mµ.
b+ νm

)

]2
}

∝ N
(
µ|ab+mµ.

b+ νm
, (b+ νm)−1

)
, µ. =

1

m

m∑
i=1

µi

Full Conditional Distribution of τ

π(τ | · · ·) ∝ π((µi), τ, µ, ν|(yij))
τ∝ τn/2+c−1 exp

{
−τ

2

[
2d+

m∑
i=1

((ni − 1)S2
i + ni(µi − yi.)2)

]}

∝ Ga

(
τ |n/2 + c, d+

1

2

m∑
i=1

[
(ni − 1)S2

i + ni(µi − yi.)2
])

44 CHAPTER 4. THE GIBBS SAMPLER

Full Conditional Distribution of ν

π(ν| · · ·) ∝ π((µi), τ, µ, ν|(yij))
ν∝ νm/2+e−1 exp

{
−ν

2

[
2f +

m∑
i=1

(µi − µ)2

]}

∝ Ga

(
ν|m/2 + e, f +

1

2

m∑
i=1

(µi − µ)2

)

Full Conditional Distribution of µi, i = 1, . . . ,m

π(µi| · · ·) ∝ π((µi), τ, µ, ν|(yij))
µi∝ exp

{
−1

2

[
ν(µi − µ)2 + τni(mui − yi.)2

]}
∝ exp

{
−1

2

[
µ2
i (ν + τni)− 2µi(τniyi. + νµ)

]}
∝ exp

{
−ν + τni

2

[
(µi − (

τniyi. + νµ

ν + τni
))2

]}
∝ N

(
µi|
τniyi. + νµ

ν + τni
, (ν + τni)

−1

)
, 1 ≤ i ≤ m

So this is a Gibbs sampler in m+ 3 dimensions, which is also the dimension of the Markov chain

G = {(µ(k)
i), τ (k), µ(k), ν(k)}k∈N0

Before Implementing the Gibbs Sampler

1. Initialize hyperparameters (a, b), (c, d), (e, f), by putting to use our a-priori knowledge. If there isn’t
any, we should use a non-informative (flat) prior.

2. Compute the data summaries n, yi., S
2
i for given m,ni, (yij)

3. Initialize the sampler

In order to accomplish step 3, we observe the dependence of the posterior full conditionals on the
parameters.

π(µ| . . .) = π(µ|(µi), ν)

π(τ | . . .) = π(τ |(µi))
π(ν| . . .) = π(ν|(µi), µ)

π(µi| . . .) = π(µi|ν, µ, τ)

The first iteration of the Gibbs sampler will be:

[µ(1)| . . .] ∼ π(·|(µ(0)
i), ν(0))

[τ (1)| . . .] ∼ π(·|(µ(0)
i))

[ν(1)| . . .] ∼ π(·|(µ(0)
i), µ(1))

[µ
(1)
i | . . .] ∼ π(·|ν(1), µ(1), τ (1)), 1 ≤ i ≤ m

which means that we need to set initial values for (µ
(0)
i), ν(0). There are two ways in which we can achieve

that:

4.2. A HIERARCHICAL NORMAL MODEL 45

1. Considering that the hyperparameters are constant, we simulate values from the parameters’ prior
distributions

ν(0) ∼ Ga(·|e, f)

µ(0) ∼ N(·|a, b−1)

[(µ
(0)
i)|µ(0), ν(0)]

iid∼ N(·|µ(0), (ν(0))−1), 1 ≤ i ≤ m

2. Assigning on µ, ν, the values of the prior means

ν(0) = e/f

µ(0) = a

[(µ
(0)
i)|µ(0), ν(0)]

iid∼ N(·|µ(0), (ν(0))−1), 1 ≤ i ≤ m

Running the Gibbs Sampler - Monitor Convergence
Subsequently, we run the sampler for a large number of iterations N , and as a result, we get draws

from the invariant joint posterior distribution. We sample values from the sequence

{(µ(k)
i), τ (k), µ(k), ν(k)}Nk=1

through the recursive type

µ(k) ∼ π(·|(µ(k−1)
i), ν(k−1))

τ (k) ∼ π(·|(µ(k−1)
i))

ν(k) ∼ π(·|(µ(k−1)
i), µ(k))

µ
(k)
i ∼ π(·|ν(k), µ(k), τ (k)), 1 ≤ i ≤ m

In some cases the model is complex enough, to make it hard to decide on the burn in period that is
proper in order to practically obtain a sample of the stationary joint posterior distribution. Most of the
times it is ”safe” to discard one third of the chain points (burn in period), while sometimes it is preferable
to run the sampler multiple times by altering the starting conditions.

4.2.1 Simulation

We simulate data from the normal distribution

yij |µi, τ
iid∼ N(µi, τ

−1), 1 ≤ i ≤ m, 1 ≤ j ≤ ni

for m = 6 and ni = 1000. We want to estimate µ, τ, ν, {µi}6i=1. We run the Gibbs sampler for 25000
iterations and 5000 draws are discarded as burn-in period. For all parameters θ, we gain estimators of
the form

1

N −Nb

N∑
i=Nb+1

θi −→ E[θ|x], namely the ergodic average.

where Nb is the burn-in period. We also compute the standard error of the mean (which captures
simulation error of the mean rather than posterior uncertainty)

SE =
posterior SD√

N −Nb
.

46 CHAPTER 4. THE GIBBS SAMPLER

Variable Mean SD SE

µ 3.5 0.97 0.007
τ 0.96 0.02 0.0001
ν 0.28 0.18 0.001
µ1 0.99 0.03 0.0002
µ2 1.98 0.03 0.0002
µ3 3.02 0.03 0.0002
µ4 4.02 0.03 0.0002
µ5 4.98 0.03 0.0002
µ6 5.99 0.03 0.0002

We check convergence and mixing of the chains graphically:

Figure 4.1: Traceplots

The chains for all variables come of good mixing.

4.2. A HIERARCHICAL NORMAL MODEL 47

Figure 4.2: Histograms

Densities of all variables are well approximated by the posterior draws.

48 CHAPTER 4. THE GIBBS SAMPLER

Figure 4.3: Running average plots

Running averages for all variables indicate satisfactory convergence to the ergodic means (red line).

4.2. A HIERARCHICAL NORMAL MODEL 49

Now, we monitor convergence with the use of some diagnostic tests.

Geweke Heidelberg and Welch

Variable Z-score Stationarity test Start P-value Halfwidth Mean Halfwidth test

µ -0.04 X 1 0.67 0.014 3.5 X
τ -0.56 X 1 0.12 0.001 1 X
ν 0.69 X 1 0.57 0.003 0.3 X
µ1 0.55 X 1 0.98 0.001 1 X
µ2 -2.34 X 2001 0.18 0.001 2 X
µ3 0.03 X 1 0.49 0.001 3 X
µ4 0.22 X 1 0.54 0.001 4 X
µ5 2.25 X 2001 0.11 0.001 5 X
µ6 1.85 X 1 0.36 0.001 6 X

As we see in the diagnostic results, all variables satisfy the null hypotheses of both tests.
For the quantile q = 0.025, within an accuracy of r+ /− 0.005 with probability s = 0.95, the Raferty

and Lewis diagnostic yields:

Raferty and Lewis

Variable Burn-in Required SS Minimum SS Dependence Factor

µ 3 4267 3746 1.14
τ 2 3787 3746 1.01
ν 4 4732 3746 1.26
µ1 2 3787 3746 1.01
µ2 2 3665 3746 0.98
µ3 2 3665 3740 0.99
µ4 2 3665 3635 0.97
µ5 2 3710 3746 0.99
µ6 2 3710 3746 0.99

50 CHAPTER 4. THE GIBBS SAMPLER

Chapter 5

Reversible Jump MCMC

When it comes to implementing MCMC algorithms, we frequently face challenges regarding parameter
inference and model selection. A more general scheme than Metropolis-Hastings introduced by Green
(1995), the reversible jump algorithm, can deal more efficiently with such challenges.

The reversible jump algorithm provides the potentiality to simulate a sample from a posterior distri-
bution on space of varying dimension; consider the case when the number of parameters is not fixed, and
can be treated as a random variable. Reversible jump can also be used when there is a number of com-
peting models that have the same number of parameters. Note however, that in simpler problems other
approaches may be preferable, due to the algorithm’s high computational cost. We are going to present
in detail the derivation of the acceptance probability of the reversible jump algorithm which practically,
is a similar procedure as for the Metropolis-Hastings acceptance probability.

The Stationary Distribution
Assume that (M,Z) represents a state of the Markov chain, containing two components; M ∈

{1, 2, . . . , I} is a model indicator and Z is a real stochastic vector, possibly of varying dimension. The
differentiation between the models may be due to their different parametric form rather than a different
number of parameters. The stochastic vector Z is defined in the set C = ∪Im=1Cm, Cm = Rnm , nm > 1.
Assume now that the joint probability distribution of (M,Z) is π. Given M = m, Z can only take values
in Cm, so that π is specified by the probability pm = P (M = m) and densities f (· |M = m) on Cm, for
m = 1, 2, . . . , I. The joint probability distribution of (M,Z) for Am ⊆ Cm is

P (M = m,Z ∈ Am) = P (M = m) P (Z ∈ Am |M = m)

= pm

∫
Am

f (z |M = m) dz.

A representation of the joint posterior distribution for each state (M,Z), and some given data y
is the following

pm fm = c−1 p̃m h(z|m) l(y|m, z)

pm: the posterior probability of model m
fm: the posterior density of vector Z of parameters associated with model m
c−1: normalizing constant (typically unknown)

c =

I∑
m=1

p̃m

∫
Cm

h(z|m) l(y|m, z) dz

51

52 CHAPTER 5. REVERSIBLE JUMP MCMC

p̃m: the prior probability of model m

h(z|m): the prior density of Z given M = m

l(y|m, z): the likelihood of the data y given (M,Z) = (m, z).

The Proposal Density

In the Metropolis-Hastings scheme depending on whether the parameter updating is simultaneous or
single-site, there are two different kinds of proposal densities generated. In the first case, the candidate
point Yn+1 for the new state Xn+1 is generated from the d-dimensional proposal density q(x, ·). In the
second case, the candidate point Yn+1 = (x1, x2, . . . , xi−1, Zi, xi+1, . . . , xd) is generated by drawing the
random variable Zi from the one-dimensional proposal density qi(x, ·).

In the reversible jump scheme, each Xi = (Mi, Zi) represents a state of the chain. Assume that the
Markov chain is currently on the state Xn = (m, z) and a move to the state Xn+1 = (m′, z′) is considered
next. Below we present the procedure of generating a proposal state for the chain’s next move.

Let Yn+1 =
(
Y ind
n+1, Y

par
n+1

)
, where ind, par represent the proposal for the model indicator Mn+1 and for

the vector Zn+1 respectively, be the proposal state for Xn+1.

Jumps using the rjMCMC algorithm

1. Set the proposal Y ind
n+1 = m′ with probability pmm′ (this probability is user-defined, and satisfies the

condition

(
I∑

m′=1

pmm′ = 1

)
)

2. The proposal Y par
n+1 is generated in Cm′ given that Y ind

n+1 = m′, then Y par
n+1 = z′ = g1mm′ (z, U), where

g1mm′ is a deterministic mapping applied to the previous value z and to a random component U

3. Draw U ∼ qmm′ (z, ·)

4. The proposal Yn+1 is accepted with probability αmm′
(
z, Y par

n+1

)
= αmm′ (z, g1mm′ (z, U)) = αmm′ (z, z

′)

5.1 The Dimension Matching Condition

In the context of reversible jump, since the Markov chain is allowed to move between spaces of varying
dimension, it must be ensured that the current state and the proposed state have matching dimensions
for the jump to make sense.

Consider a move from the state (m, z) to the state (m′, z′) and back, that is the opposite move from
the state (m′, z′) to the state (m, z)

(m, z) 7−→ (m′, z′) = (m′, g1mm′(z, u))
(m′, z′) 7−→ (m, z) = (m, g1m′m(z′, u′))

where m,m′ ∈ {1, 2, . . . , I} , z ∈ Am ⊆ Cm = Rnm , z′ ∈ Bm′ ⊆ Cm′ = Rnm′ and u ∈ Rnmm′ , u′ ∈ Rnm′m .
Vectors (z, u) and (z′, u′) must be of equal dimension. The dimension matching condition is:

nm + nmm′ = nm′ + nm′m.

5.2. DERIVING THE ACCEPTANCE PROBABILITY 53

Mapping Properties
To construct the proposal parameter vector Y par

n+1, we need to apply a mapping to the vector (z, u). This
mapping can be either deterministic or in some cases we prefer the identity mapping. Recall that in the
single-site updating Metropolis-Hastings scheme, the candidate point Yn+1 = (x1, x2, . . . , xi−1, Zi, xi+1, . . . , xd)
is generated by drawing the random variable Zi from the one-dimensional proposal density qi(x, ·), which
with some abuse of notation, can be written

Yn+1 = g (x1, x2, . . . , xi−1, Zi, xi+1, . . . , xd)

where the function g is the identity mapping.

A deterministic mapping gmm′ should satisfy the following properties

1. gmm′ is differentiable

2. gmm′ is one-to-one with gm′m

3. The one-to-one mapping exists only if the dimension matching condition holds.

Given that a deterministic mapping has the properties mentioned above, the following transformations
are feasible

(z′, u′) = gmm′(z, u) = (g1mm′(z, u), g2mm′(z, u))

(z, u) = g−1
mm′(z

′, u′) = gm′m(z′, u′) =
(
g1m′m(z′, u′), g2m′m(z′, u′)

)
.

5.2 Deriving the acceptance probability

Suppose that Xn = (Mn, Zn,) ∼ π. The reversibility condition is

P
(
Mn = m,Zn ∈ Am,Mn+1 = m′, Zn+1 ∈ Bm′

)
= P

(
Mn = m′, Zn ∈ Bm′ ,Mn+1 = m,Zn+1 ∈ Am

)
where m,m′ ∈ {1, 2, . . . , I} , Am ⊆ Cm and Bm′ ⊆ Cm′ .

P
(
Mn = m,Zn ∈ Am,Mn+1 = m′, Zn+1 ∈ Bm′

)
=

∫
Am

P
(
Mn+1 = m′, Zn+1 ∈ Bm′ | Xn = (m, z)

)
pm fm(z) dz.

The transition kernel is P (Mn+1 = m′, Zn+1 ∈ Bm′ |Xn = (m, z)).

Given that the current state of the Markov chain is Xn = (m, z), the probability of generating and
accepting the proposal Yn+1 =

(
Y ind
n+1, Y

par
n+1

)
=
(
m′, Y par

n+1 ∈ Bm′
)

is:

Qamm′ (z,Bm′) = P
(
Y ind
n+1 = m′, Y par

n+1 ∈ Bm′ and Yn+1 is accepted|Xn = (m, z)
)

and the probability of rejecting the proposal is

rm(z) = P (Yn+1 is rejected | Xn = (m, z)).

54 CHAPTER 5. REVERSIBLE JUMP MCMC

Thus

P
(
Mn+1 = m′, Zn+1 ∈ Bm′ | Xn = (m, z)

)
= Qamm′ (z,Bm′) + rm(z) I

(
m = m′, z ∈ Bm′

)

which by substituting, yields:

P
(
Mn = m,Zn ∈ Am,Mn+1 = m′, Zn+1 ∈ Bm′

)
= pm

∫
Am

Qamm′ (z,Bm′) fm(z) dz + pm

∫
Am

rm(z) I
(
m = m′, z ∈ Bm′

)
fm(z) dz

= pm

∫
Am

Qamm′ (z,Bm′) fm(z) dz + pm

∫
rm(z) I

(
m = m′, z ∈ Am ∩Bm′

)
fm(z) dz

and by symmetry

P
(
Mn = m′, Zn ∈ Bm′ ,Mn+1 = m,Zn+1 ∈ Am

)
= p′m

∫
Bm′

Qam′m
(
z′, Am

)
f ′m(z′) dz′ + p′m

∫
r′m(z′) I

(
m = m′, z′ ∈ Bm′ ∩Am

)
fm, (z

′) dz′.

The second terms are equal ∀m. More specifically

. if m = m′ the chain does not move to a new state, therefore it stays within the same model and
both expressions are identical

. if m 6= m′ the indicator function is zero, which means that the second integrals are zero.

A sufficient condition for reversibility to hold

pm

∫
Am

Qamm′ (z,Bm′) fm(z) dz = pm′

∫
Bm′

Qam′m
(
z′, Am

)
fm′(z

′) dz′.

for all m,m′.

We described the procedure of generating a proposal and the probability of accepting that proposal.
Taking that into account, and given that the current state of the Markov chain is Xn = (m, z), the joint
probability of generating and accepting the proposal Yn+1 =

(
Y ind
n+1, Y

par
n+1

)
=
(
m′, Y par

n+1 ∈ Bm′
)

now takes
the form

Qamm′ (z,Bm′) = pmm′

∫
I(z′ ∈ Bm′)αmm′(z, z′) qmm′(z, u) du.

Therefore the reversibility condition yields

pm

∫
Am

Qamm′ (z,Bm′) fm(z) dz = p′m

∫
Bm′

Qam′m
(
z′, Am

)
fm′(z

′) dz′

5.2. DERIVING THE ACCEPTANCE PROBABILITY 55

for all m,m′.

pm

∫ ∫
I(z ∈ Am, z′ ∈ Bm′) pmm′ αmm′(z, z′) qmm′(z, u) fm(z) dz du

= pm′

∫ ∫
I(z′ ∈ Bm′ , z ∈ Am) pm′m αm′m(z′, z) qm′m(z′, u′) fm′(z

′) dz′ du′.

In order to ensure that reversibility holds, we need to examine the conditions under which these are
equal. For that matter, we need to write the abovementioned equations as functions of the same variables.

dz′ du′ = |det
(
g′mm′(z, u)

)
|dz du

where |det
(
g′mm′(z, u)

)
| is the absolute value of the Jacobian of the transformation and

g′mm′(z, u) =
∂gmm′(z, u)

∂(z, u)
=

[
∂g1mm′ (z,u)

∂z
∂g2mm′ (z,u)

∂z
∂g1mm′ (z,u)

∂u
∂g2mm′ (z,u)

∂u

]

P
(
Mn = m′, Zn ∈ Bm′ ,Mn+1 = m,Zn+1 ∈ Am

)
=

∫ ∫
I(z′ ∈ Bm′ , z ∈ Am) pm′m αm′m(z′, z) qm′m(z′, u′) pm′ fm′(z

′) |det
(
g′mm′(z, u)

)
|dz du.

Equality is satisfied if

pmm′ αmm′(z, z
′) qmm′(z, u) pm fm(z)

= pm′m αm′m(z′, z) qm′m(z′, u′) pm′ fm′(z
′) |det

(
g′mm′(z, u)

)
|.

By setting αm′m(z′, z) = 1, the acceptance probability that is derived is the largest possible, subject
to the detailed balance condition

αm′m(z′, z) = 1⇒ αmm′(z, z
′) < 1

αmm′(z, z
′) =

pm′m qm′m(z′, u′) pm′ fm′(z
′)

pmm′ qmm′(z, u) pm fm(z)

∣∣∣∣det
∂gmm′(z, u)

∂(z, u)

∣∣∣∣ < 1

therefore

αmm′(z, z
′) = min

(
1,
pm′m qm′m(z′, u′) pm′ fm′(z

′)

pmm′ qmm′(z, u) pm fm(z)

∣∣∣∣det
∂gmm′(z, u)

∂(z, u)

∣∣∣∣)
By setting αmm′(z, z

′) = 1, we get the inverse:

αm′m(z′, z) = min

(
1,

pmm′ qmm′(z, u) pm fm(z)

pm′m qm′m(z′, u′) pm′ fm′(z′)

∣∣∣∣det
∂gmm′(z, u)

∂(z, u)

∣∣∣∣−1
)

.

Note that generally pmm′ qmm′(z, u) pm fm(z) > 0 but pmm′ qmm′(z, u) pm fm(z) = 0 only if pm fm(z) =
0 in the initial state (m, z) of the Markov chain.

56 CHAPTER 5. REVERSIBLE JUMP MCMC

5.3 Generating Proposals via an appropriate Mapping

Assume we use a deterministic proposal for a move from the state Xn to the state Xn+1 and a stochastic
proposal for a move in the opposite direction. Let Yn+1 = (m′, g1mm′(z)), then the dimension matching
condition equals

nm = nm′ + nm′m

since there is no random component generated in the move from m to m′, which means that the move
is deterministic and nmm′ = 0. The move in the opposite direction however is stochastic, and requires
generating a random variable U ′. Therefore:

(z′, u′) = gmm′(z) = (g1mm′(z), g2mm′(z))

(z) = g−1
mm′(z

′, u′) = gm′m(z′, u′) = g1m′m(z′, u′).

Let us assume the case where we use a deterministic proposal for a move from the state Xn to the
state Xn+1 and a stochastic proposal for a move in the opposite direction. Let Yn+1 = (m′, g1mm′(z)),
then the dimension matching condition equals

nm = nm′ + nm′m

since there is no random component generated in the move from m to m′, which means that the move
is deterministic and nmm′ = 0. The move in the opposite direction however is stochastic, and requires
generating a random variable U ′. Therefore:

(z′, u′) = gmm′(z) = (g1mm′(z), g2mm′(z))

(z) = g−1
mm′(z

′, u′) = gm′m(z′, u′) = g1m′m(z′, u′).

Then the proposal acceptance probability takes the form:

Qamm′ (z,Bm′) = pmm′ I(g1mm′(z) ∈ Bm′)αmm′(z, g1mm′(z)) = pmm′ I(z′ ∈ Bm′)αmm′(z, z′)

and

pm

∫
Am

Qamm′ (z,Bm′) fm(z) dz =

∫
I(z ∈ Am, z′ ∈ Bm′) pmm′ αmm′(z, z′) pm fm(z) dz.

dz′ du′ = |det
(
g′mm′(z)

)
|dz, where g′mm′(z) =

∂gmm′(z)

∂z

Consequently, the detailed balance equation takes the form:∫
I(z ∈ Am, z′ ∈ Bm′) pmm′ αmm′(z, z′) pm fm(z) dz

=

∫
I(z′ ∈ Bm′ , z ∈ Am) pm′m αm′m(z′, z) qm′m(z′, u′) pm′fm′(z

′) |det
(
g′mm′(z)

)
|dz, where u′ =

g2mm′(z).

The acceptance probability now yields:

αmm′(z, z
′) = min

(
1,
pm′m qm′m(z′, u′) pm′ fm′(z

′)

pmm′ pm fm(z)

∣∣det
(
g′mm′(z)

)∣∣).

5.4. MODEL SELECTION WITH REVERSIBLE JUMP MCMC 57

Identity Mapping (FF Strategy)
Assume that g1mm′(z, U) is the identity mapping, and by setting U = Z ′ we get

Y par
n+1 = Z ′.

Variable Z ′ is generated from the proposal density qmm′(z, ·), on Rnm′ and may depend on the value
z of the current state of the Markov chain. The probability of accepting the proposal becomes:

Qamm′ (z,Bm′) = pmm′

∫
I(z′ ∈ Bm′)αmm′(z, z′) qmm′(z, z′) dz′.

This strategy is known as FF strategy, and yields the acceptance probability:

αmm′(z, z
′) = min

(
1,
pm′m qm′m(z′, z) pm′ fm′(z

′)

pmm′ qmm′(z, z′) pm fm(z)

)
.

Notice that there is no Jacobian term, due to the use of the identity mapping. Also, qm′m is a density
on Rnm .

The acceptance rate of the FF strategy, is quite similar to the acceptance rate of the Metropolis-
Hastings scheme with an extra term, pm′m/pmm′ . Another difference between them, is that the proposal
densities q(x, y) and q(y, x) are both densities on Rd, where d is the dimension of X,Y . By inspection of
the reversible jump with proposals generated via the identity mapping scheme, its relationship with the
MH algorithm is more obvious. The FF strategy provides a better understanding of the way rjMCMC
generalizes the MH scheme.

5.4 Model selection with reversible jump MCMC

5.4.1 Poisson vs Negative Binomial

When modelling count data that are characterized by overdispersion, often arises the issue of which
distribution will have a better fit on the data: Poisson or negative binomial distribution? We use the
reversible jump scheme to decide on which is the best fitting model.

Let Y = (y1, . . . , yn) be a vector of observations. Suppose that data Y is distributed independently
and identically under a Poisson model with parameter λ > 0:

yi
iid∼ P (λ), λ > 0

or alternatively distributed under a negative binomial model with parameters λ > 0, κ > 0:

yi
iid∼ NB(λ, κ), λ > 0, κ > 0

The likelihood for the Poisson data is:

P (yi|λ) =

n∏
i=1

λyi

yi!
exp(−λ)

whereas the likelihood for the negative binomial data is:

P (yi|λ, κ) =
n∏
i=1

λyi

yi!

Γ(1/κ+ yi)

Γ(1/κ)(κ+ λ)yi
(1 + κλ)−1/κ

58 CHAPTER 5. REVERSIBLE JUMP MCMC

We assume that θ1 = λ is the state in which data belong to the first model (Poisson, k = 1) and
θ2 = (θ2,1, θ2,2) = (λ, κ) is the state in which the data belong to the second model (negative binomial,
k = 2). We set the following prior probabilities on the models, assuming there is an equal probability of
choosing either model:

p(k = 1) = p(k = 2) =
1

2

and for θ1, θ2,1, θ2,2 we set as priors

θ1, θ2,1 ∼ G (aλ, bλ)

θ2,2 ∼ G (aκ, bκ)

For k = 1, the posterior distribution for the first model is:

π(k = 1, θ1|Y) ∝ 1

2
p(θ1|k = 1) p(Y |θ1) ∝ 1

2
G(θ1|aλ, bλ)P (Y |λ)

∝ 1

2

baλλ
Γ(aλ)

θaλ−1
1 e−bλθ1

n∏
i=1

λyi

yi!
e−λ

∝ θaλ−1
1 e−bλθ1 λnȳ e−λ ∝ θ

(aλ+nȳ)−1
1 e−θ1(bλ+1)

∝ G (aλ + nȳ, bλ + 1)

where nȳ =
∑
yi.

For k = 2, the posterior distribution for the second model is:

π(k = 2, θ2|Y) ∝ 1

2
p(θ2,1, θ2,2|k = 2) p(Y |θ2,1, θ2,2) ∝ 1

2
G(θ2,1|aλ, bλ)G(θ2,2|aκ, bκ)P (Y |λ, κ)

∝ 1

2

baλλ
Γ(aλ)

θaλ−1
2,1 e−bλθ2,1

1

2

baκκ
Γ(aκ)

θaκ−1
2,2 e−bκθ2,2

n∏
i=1

λyi

yi!

Γ(1/κ+ yi)

Γ(1/κ)(κ+ λ)yi
(1 + κλ)−1/κ

∝ θaλ−1
2,1 θaκ−1

2,2 e−(bλθ2,1+−bκθ2,2) (1 + κλ)−n/κλnȳ
n∏
i=1

Γ(1/κ+ yi)

Γ(1/κ)

Consider the move from model 1 to model 2. Let x = (1, θ) be the current state of the chain. Since
there is no equivalent to the parameter κ in model 1, we generate a random variable u,

u ∼ N(0, σ2), σ fixed.

Let x′ = (2, θ′), and

θ′ = (θ′1, θ
′
2) = h12(θ, u) = (θ, µ exp(u)), µ fixed.

We compute the Jacobian of the transformation |det (h12(θ, u)) |:

h12(θ, u) =
∂h12(θ, u)

∂(θ, u)
=

[
∂θ′1
∂θ1

∂θ′1
∂u

∂θ′2
∂θ1

∂θ′2
∂u

]
=

[
1 0
0 µ exp(u)

]
= µ exp(u)

Consider now the reverse move, from model 2 to model 1. This move does not require generating a
random variable u′. We set:

5.4. MODEL SELECTION WITH REVERSIBLE JUMP MCMC 59

(θ, u) = h′21(θ′) = (θ′1, log(θ′2/µ))

We compute the Jacobian of the transformation |det (h′21(θ′)) |:

h′21(θ′1, θ
′
2) =

∂h′21(θ′1, θ
′
2)

∂(θ′1, θ
′
2)

=

[
∂θ
∂θ′1

∂θ
∂θ′2

∂u
∂θ′1

∂u
∂θ′2

]
=

[
1 0
0 1

θ′2

]
=

1

θ′2

Now we can compute the acceptance probability for the move from model 1 to model 2, A1,2 =
min{1, a12} where

a12 =
p(k = 2)π(k = 2, θ2|Y)

p(k = 1)π(k = 1, θ1|Y) q(u)
× |J |

a12 =
θaλ−1

1 e−bλθ1 λnȳ e−λ ∝ θ1aλ + nȳ − 1 e−θ1(bλ+1)

θaλ−1
2,1 θaκ−1

2,2 e−(bλθ2,1+−bκθ2,2) (1 + κλ)−n/κλnȳ
n∏
i=1

Γ(1/κ+yi)
Γ(1/κ)

{
1√

2πσ2
exp

[
−u2

2σ2

]}−1

× µ exp(u)

and the acceptance probability for the reverse move, A2,1 = min{1, a21} where

a21 =
p(k = 1)π(k = 1, θ1|Y) q′(θ′2)

p(k = 2)π(k = 2, θ2|Y)
× |J |

a21 =

θaλ−1
2,1 θaκ−1

2,2 e−(bλθ2,1+−bκθ2,2) (1 + κλ)−n/κλnȳ
n∏
i=1

Γ(1/κ+yi)
Γ(1/κ)

θaλ−1
1 e−bλθ1 λnȳ e−λ ∝ θ1aλ + nȳ − 1 e−θ1(bλ+1)

1√
2πσ2

exp

[
−(log(θ′2/µ))2

2σ2

]
× 1

θ′2

5.4.2 Comparing differences between two treatments

Consider that data are identically and independently distributed according to model 1:(
yj |M = 1, t, σ2

) iid∼ N(t, σ2), 1 ≤ j ≤ 2n

or alternatively according to model 2:{(
y1i|M = 2, t1, σ

2
) iid∼ N(t1, σ

2), 1 ≤ i ≤ n(
y2i|M = 2, t2, σ

2
) iid∼ N(t2, σ

2), 1 ≤ i ≤ n

The problem is discriminating between these two models and for that matter we will use the reversible
jump MCMC. It is convenient to introduce the stochastic variable T :

T = tI(M = 1) + (t1, t2)I(M = 2)

The target distribution takes the form:

f(M = i, T, σ2|y) =
f(M = i, T, σ2, y)

f(y)
∝ f(M = i, T, σ2) f(y|M = i, T, σ2)

∝ f(M = i) f(T, σ2|M = i) f(y|M = i, T, σ2)

where f(M = i) f(T, σ2|M = i) is the prior distribution and f(y|M = i, T, σ2) is the likelihood of the
data.

We assume that the probability of choosing either of the models is equal:

60 CHAPTER 5. REVERSIBLE JUMP MCMC

P (M = 1) = P (M = 2) =
1

2
.

We set prior distributions for model parameters:

t ∼ N(µ0, σ
2
0)

t1 ∼ N(µ1, σ
2
1)

t2 ∼ N(µ2, σ
2
2)

σ2 ∼ IG(a0, b0)

The posterior distribution for model 1 is:

f(M = 1, T, σ2|y) ∝ f(M = 1) f(t, σ2) f(y1, . . . , y2n|M = 1, t, σ2)

∝ f(M = 1) f(t) f(σ2)
2n∏
j=1

f(yj |M = 1, t, σ2)

∝ f(M = 1)N(t|µ0, σ
2
0) IG(σ2|a0, b0)

2n∏
j=1

N(yi|t, σ2)

∝ 1

2

1√
2πσ2

0

e
− (t−µ0)

2

2σ20
ba00

Γ(a0)
(σ2)−a0−1e−b0/σ

2 ×
2n∏
j=1

1√
2πσ2

e−
(yj−t)

2

2σ2

∝ 1

σ2(n+a0+1)
exp

− 1

2σ2σ2
0

σ2(t− µ0)2 + 2σ2
0b0 + σ2

0

2n∑
j=1

(yj − t)2


The posterior distribution for model 2 is:

f(M = 2, T, σ2|y) ∝ f(M = 2) f(t1, t2, σ
2) f(y1j |M = 2, t1, σ

2) f(y2j |M = 2, t2, σ
2)

∝ f(M = 2) f(t1) f(t2) f(σ2)

n∏
j=1

f(y1j |M = 2, t1, σ
2)

n∏
j=1

f(y2j |M = 2, t2, σ
2)

∝ f(M = 2)N(t1|µ1, σ
2
1)N(t2|µ2, σ

2
2) IG(σ2|a0, b0)

n∏
j=1

N(y1j |t1, σ2)

n∏
j=1

N(y2j |t2, σ2)

∝ 1

2

1√
2πσ2

1

e
− (t1−µ1)

2

2σ21
1√

2πσ2
2

e
− (t2−µ2)

2

2σ22
ba00

Γ(a0)
(σ2)−a0−1e−b0/σ

2

×
n∏
j=1

1√
2πσ2

e−
(y1j−t1)

2

2σ2 ×
n∏
j=1

1√
2πσ2

e−
(y2j−t2)

2

2σ2

∝ 1

σ2(n+a0+1)
exp

{
− 1

2σ2σ2
1σ

2
2

[
σ2

2σ
2(t1 − µ1)2 + σ2

1σ
2(t2 − µ2)2 + 2σ2

1σ
2
2b0
]}

× exp

− 1

2σ2

σ2
1σ

2
2

n∑
j=1

(y1j − t1)2 + σ2
1σ

2
2

n∑
j=1

(y2j − t2)2



5.4. MODEL SELECTION WITH REVERSIBLE JUMP MCMC 61

Stochastic proposals in both directions

Let the current state of the chain be (m, z) and a move to state (m′, z′) is proposed with probability
pmm′ . This probability is user defined subject to pmm′ + pm′m = 1.

(m = 1, z = (t, σ2))↔ (m = 2, z′ = (t1, t2, σ
2)).

Due to the dimension matching condition

nm + nmm′ = nm′ + nm′m ⇔ 2 + nmm′ = 3 + nm′m

we need to generate two stochastic variables in the move from m to m′ and one stochastic variable in the
move from m′ to m in order to have stochastic proposals in both directions.

nm = 2 : associated with t, σ2

nmm′ : associated with u = (v1, v2)

nm′ : associated with t1, t2, σ
2

nm′m : associated with u′ = v

The stochastic variable u′ = v is generated through the proposal q(z, ·)

q(z, v) = q(v|t, σ2) = N(v|t, σ2)

and u = (v1, v2) is generated through the proposal q(z′, ·)

q(z′, v1, v2) = q(v1, v2|t1, t2, σ2) = N(v1|t1, σ2)N(v2|t2, σ2) = N2

((
v1

v2

)
|
(
t1
t2

)
,

(
σ2 0
0 σ2

))
The deterministic mapping in this case, yields the transformation:

(z′, u′) = (t1, t2, σ
2, v) = g12(t, σ2, (v1, v2)) = (g1(12)(z, u), g2(12)(z, u))

where

g12


t
σ2

v1

v2

 =


t1
t2
σ2

v

 =


1 0 1 0
1 0 0 1
0 1 0 0
0 0 1/2 1/2



t
σ2

v1

v2

 =


t+ v1

t+ v2

σ2

v1+v2
2


thus

(z′, u′) = (t1, t2, σ
2, v) = (g1(12)(z, u), g2(12)(z, u)) = ((t+ v1, t+ v2, σ

2), (
v1 + v2

2
)).

The absolute value of the Jacobian of the transformation for the move from m to m′ is:

| det Jac(T)| =
∣∣∣∣det

(
∂g12(z, u)

∂(z, u)

)∣∣∣∣ =

∣∣∣∣∣det

(
∂(t+ v1, t+ v2, σ

2, v1+v2
2)

∂(t, σ2, v1, v2)

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣det


1 1 0 0
0 0 1 0
1 0 0 1/2
0 1 0 1/2


∣∣∣∣∣∣∣∣ = 1

and for the reverse move is:

62 CHAPTER 5. REVERSIBLE JUMP MCMC

|det Jac(T−1)| = |det Jac(T)|−1 = 1.

The acceptance probability from m to m′ is A12 = min{1, a12} where

a12(z, z′) = a12((t, σ2), (t1, t2, σ
2)) =

p21 q(z, v) c−1 f(M = 2, T, σ2|y)

p12 q(z′, v1, v2) c−1 f(M = 1, T, σ2|y)
× |J |

=
p21N(v|t, σ2) exp

{
− 1

2σ2σ2
1σ

2
2

[
σ2

2σ
2(t1 − µ1)2 + σ2

1σ
2(t2 − µ2)2 + 2σ2

1σ
2
2b0
]}

p12N(v1|t1, σ2)N(v2|t2, σ2) exp

{
− 1

2σ2σ2
0

(
σ2(t− µ0)2 + 2σ2

0b0 + σ2
0

2n∑
j=1

(yj − t)2

)}

× exp

− 1

2σ2

σ2
1σ

2
2

n∑
j=1

(y1j − t1)2 + σ2
1σ

2
2

n∑
j=1

(y2j − t2)2


=
p21 exp

{
− 1

2σ2σ2
1σ

2
2

[
σ2

2σ
2(t1 − µ1)2 + σ2

1σ
2(t2 − µ2)2 + 2σ2

1σ
2
2b0
]}

p12 exp

{
− 1

2σ2σ2
0

(
σ2(t− µ0)2 + 2σ2

0b0 + σ2
0

2n∑
j=1

(yj − t)2

)}

×
√

2πσ2 exp{(v − t)2/2σ2}
exp{((v1 − t1)2 + (v2 − t2)2)/2σ2}

× exp

− 1

2σ2

σ2
1σ

2
2

n∑
j=1

(y1j − t1)2 + σ2
1σ

2
2

n∑
j=1

(y2j − t2)2


and the acceptance probability for the reverse move, A21 = min{1, a21} is the inverse of A12

a21(z′, z) = a12(z, z′)
−1

Stochastic proposal in one direction - Deterministic in the other
Let us consider the move from m = 1 to m′ = 2. The dimension matching condition now is

nm + nmm′ = nm′ ⇔ 2 + nmm′ = 3

thus, it is required to generate one stochastic variable in the move from m to m′

nm = 2 : associated with t, σ2

nmm′ = 1 : associated with u

nm′ = 3 : associated with t1, t2, σ
2

The stochastic variable u is generated through the proposal q(z, ·)

q(z, u) = q(u|t, σ2) = N(u|t, σ2)

The mapping in this case is:

z′ = (t1, t2, σ
2) = g12(z, u) = g1(12)

g12

 t
u
σ2

 =

 t1t2
σ2

 =

1 1 0
1 −1 0
0 0 1

 t
u
σ2

 =

t+ u
t− u
σ2



5.4. MODEL SELECTION WITH REVERSIBLE JUMP MCMC 63

thus

z′ = (t1, t2, σ
2) = g12(z, u) = (t+ u, t− u, σ2)

The absolute value of the Jacobian of the transformation for the move from m to m′ is:

|det Jac(T)| =
∣∣∣∣det

(
∂g12(z, u)

∂(z, u)

)∣∣∣∣ =

∣∣∣∣det

(
∂(t+ u, t− u, σ2)

∂(t, σ2, u)

)∣∣∣∣ =

∣∣∣∣∣∣det

1 1 0
0 0 1
1 −1 0

∣∣∣∣∣∣ = 2.

The acceptance probability from m to m′ is A12 = min{1, a12} where

a12(z, z′) = a12((t, σ2), (t1, t2, σ
2)) =

p21 c
−1 f(M = 2, T, σ2|y)

p12 q(z, u) c−1 f(M = 1, T, σ2|y)
× |J |

=
p21 exp

{
− 1

2σ2σ2
1σ

2
2

[
σ2

2σ
2(t1 − µ1)2 + σ2

1σ
2(t2 − µ2)2 + 2σ2

1σ
2
2b0
]}

p12 exp

{
− 1

2σ2σ2
0

(
σ2(t− µ0)2 + 2σ2

0b0 + σ2
0

2n∑
j=1

(yj − t)2

)}

× 2
√

2πσ2

exp{(u− t)2/2σ2}
× exp

− 1

2σ2

σ2
1σ

2
2

n∑
j=1

(y1j − t1)2 + σ2
1σ

2
2

n∑
j=1

(y2j − t2)2


Now the move from m′ = 2 to m = 1 is deterministic. The mapping in this case is:

g21

 t1t2
σ2

 =

 t
u
σ2

 =

1/2 1/2 0
1/2 −1/2 0
0 0 1

 t1t2
σ2

 =

1
2(t1 + t2)
1
2(t1 − t2)

σ2


The absolute value of the Jacobian of the transformation for the move from m′ to m is:

|det Jac(T)| =
∣∣∣∣det

(
∂g21(z)

∂(z)

)∣∣∣∣ =

∣∣∣∣∣det

(
∂(1

2(t1 + t2), σ2, 1
2(t1 − t2)

∂(t1, t2, σ2)

)∣∣∣∣∣ =

∣∣∣∣∣∣det

1/2 0 1/2
1/2 0 −1/2
0 1 0

∣∣∣∣∣∣ =
1

2

which is the inverse as expected. Furthermore, the acceptance probability fromm′ tom, A21 = min{1, a21}
is equal to the inverse of A12 = min{1, a12}:

a21(z′, z) =
p12 q(z, u) c−1 f(M = 1, T, σ2|y)

p21 c−1 f(M = 2, T, σ2|y)
× 1

2

Deterministic proposals in both directions - FF strategy
We assume that σ2 is fixed, since it is common in both models. Let (m = 1, z = t) and (m = 2, z′ =

(t1, t2)). Consider the move from m to m′.

We use as a proposal for the move from m to m′ the density q12(·):

64 CHAPTER 5. REVERSIBLE JUMP MCMC

q(t1, t2) = N2

((
t
t

)
,

(
σ2 0
0 σ2

))

and for the move from m′ to m the density q21(·):

q(t) = N

(
t1 + t2

2
, σ2

)
.

The acceptance probability now is A12 = min{1, a12}, where

a12(z, z′) =
p21 q(t) c

−1 f(M = 2, T, σ2|y)

p12 q(t1, t2) c−1 f(M = 1, T, σ2|y)

and the acceptance probability of the reverse move, A21 = min{1, a21} is the inverse of that.

5.5 Model Choice in Regression

Let us consider the independent random variables {Zi} expressed in the form

Zi =
m−1∑
k=0

βk ai
k + εi, εi ∼ N (0, 1), i = 1, · · · , N = 101

thus

zi ∼ N

(
m−1∑
k=0

βk ai
k, 1

)
.

Parameters a1, . . . , aN are known, while parameters m ∈ {1, 2, 3, 4} (model indicator) and β(m) =
(β0, . . . , βm−1) (regression coefficients) are unknown. Note that the data z = (z1, . . . , zN), for ai = i−1

20 ,
i = 1, . . . , 101 and m = 4 are constructed as follows:

A =


a0

1 a1
1 a2

1 a3
1

a0
2 a1

2 a2
2 a3

2
...

...
. . .

...
a0
i a1

i a2
i a3

i


thus

z = (z1, . . . , z101) =


a0

1 a1
1 a2

1 a3
1

a0
2 a1

2 a2
2 a3

2
...

...
. . .

...
a0

101 a1
101 a2

101 a3
101



β0

β1

β2

β3

+


ε1
ε2
...

ε101


The likelihood of the data is:

f
(
z|β(m),m

)
=

N∏
i=1

N

(
zi|

m−1∑
k=0

βk ai
k, 1

)
∝ exp

−1

2

N∑
i=1

(
zi −

m−1∑
k=0

βk αi
k

)2


5.5. MODEL CHOICE IN REGRESSION 65

Suppose that the current state of the chain is (m,x = β(m)) and we propose a move to a next state
(m′, y = β(m′)).

Assigning uniform priors for both m and β, yields the posterior density

f
(
β(m),m|z

)
∝ f(m) f(β(m)|m) f

(
z|β(m),m

)
∝ f

(
z|β(m),m

)
∝ exp

−1

2

N∑
i=1

(
zi −

m−1∑
k=0

βk αi
k

)2


A move is proposed from the density:

q(m′, y|x) = q(m′|x) q(y|x,m′)

where typically

q(m′|x) = q(m′|m), m = dim(x).

We generate m′ and y from the proposals:

m′ ∼ DU(1, . . . ,m)

y ∼ Nm(0, I)

which means that q depends on the current dimension only. Note that the proposal from qmm′ is a density
on Rm′ and qm′m is a density on Rm.

The acceptance probability for the move from model m to model m′ is A = min{1, amm′}, where

amm′ =
f(β(m′),m′|z) q(m|m′) q(β(m)|β(m′),m)

f
(
β(m),m|z

)
q(m′|m) q(β(m′)|β(m),m′)

=

exp

−1
2

N∑
i=1

(
zi −

m′−1∑
k=0

βk αi
k

)2
× (2π)−m/2 exp

{
−0.5

m−1∑
k=0

(β
(m)
k

2
)

}
×m′

exp

(
−1

2

N∑
i=1

(
zi −

m−1∑
k=0

βk αik
)2
)
× (2π)−m′/2 exp

{
−0.5

m′−1∑
k=0

(β
(m′)
k

2
)

}
×m

For the move from m′ to m, the acceptance ratio is the inverse of that.

For the same move from (m,x = β(m)) to (m′, y = β∗(m
′)), consider using stochastic proposals:

• For m′ ≤ m the dimension matching condition is:

nm = nm′ + nm′m, m = m′ + (m−m′)

We generate m′, y and u from the proposals:

m′ ∼ DU(1, . . . ,m)

y ∼ Nm(0, I)

u ∼ Nm′(0, I)

The mapping is:

66 CHAPTER 5. REVERSIBLE JUMP MCMC(
β∗(m

′), u(m−m′)
)

= gmm′(β
(m)) =

(
g1mm′(β

(m)), g2mm′(β
(m))

)
where β(m) =

(
β(m′), β(m−m′)

)
,

gmm′

[
β(m′)

β(m−m′)

]
=

[
β∗(m

′)

u(m−m′)

]
=

[
1 1
0 1

] [
β(m′)

β(m−m′)

]
=

[
β(m′) + β(m−m′)

β(m−m′)

]
thus (

β∗(m
′), u(m−m′)

)
=
(
β(m′) + β(m−m′), β(m−m′)

)
The absolute value of the Jacobian of the transformation for the move from m to m′ is:

| det Jac(T)| =

∣∣∣∣∣det

(
∂gmm′(β

(m′), β(m−m′))

∂(β(m′), β(m−m′))

)∣∣∣∣∣ =

∣∣∣∣∣det

(
∂(β(m′) + β(m−m′), β(m−m′))

∂(β(m′), β(m−m′))

)∣∣∣∣∣ =

∣∣∣∣det

[
1 0
1 1

]∣∣∣∣ = 1.

The acceptance probability for the move from m to m′ is Amm′ = min{1, amm′}, where:

amm′ =
f(β(m′),m′|z) q(m|m′) q(β(m)|β(m′),m)× q(u)

f
(
β(m),m|z

)
q(m′|m) q(β(m′)|β(m),m′)

× |J |

=

exp

−1
2

N∑
i=1

(
zi −

m′−1∑
k=0

βk αi
k

)2
× (2π)−m/2 exp

{
−0.5

m−1∑
k=0

(β
(m)
k

2
)

}
× exp

{
−0.5

m′−1∑
k=0

u2

}
×m′

exp

(
−1

2

N∑
i=1

(
zi −

m−1∑
k=0

βk αik
)2
)
× (2π)−m′ exp

{
−0.5

m′−1∑
k=0

(β
(m′)
k

2
)

}
×m

and for the move from m′ to m it is the inverse of that.

• For m′ > m the dimension matching condition is:

nm + nmm′ = n′m, m′ = m+ (m′ −m)

We generate m′, y and v from the proposals:

m′ ∼ DU(1, . . . ,m)

y ∼ Nm(0, I)

v ∼ Nm′(0, I)

The mapping is:

β∗(m
′) = gmm′(β

(m), v) =
(
g1mm′(β

(m), v), g2mm′(β
(m), v)

)

5.5. MODEL CHOICE IN REGRESSION 67

gmm′

[
β(m)

v(m′−m)

]
=

[
β∗(m)

β∗(m
′−m)

]
=

[
1 1
0 1

] [
β(m)

v(m′−m)

]
=

[
β(m) + v(m′−m)

v(m′−m)

]
thus

β∗(m
′) =

(
(β(m) + v(m′−m)), v(m′−m)

)
The absolute value of the Jacobian of the transformation for the move from m to m′ is:

|det Jac(T)| =

∣∣∣∣∣det

(
∂gmm′(β

(m), v(m′−m))

∂(β(m), v(m′−m))

)∣∣∣∣∣ =

∣∣∣∣∣det

(
∂(β(m) + v(m′−m), v(m′−m))

∂(β(m), v(m′−m))

)∣∣∣∣∣ =

∣∣∣∣det

[
1 0
1 1

]∣∣∣∣ = 1.

The acceptance probability for the move from m to m′ is Amm′ = min{1, amm′}, where:

amm′ =
f(β(m′),m′|z) q(m|m′) q(β(m)|β(m′),m)

f
(
β(m),m|z

)
q(m′|m) q(β(m′)|β(m),m′)× q(v)

× |J |

=

exp

−1
2

N∑
i=1

(
zi −

m′−1∑
k=0

βk αi
k

)2
× (2π)−m exp

{
−0.5

m−1∑
k=0

(β
(m)
k

2
)

}
×m′

exp

(
−1

2

N∑
i=1

(
zi −

m−1∑
k=0

βk αik
)2
)
× (2π)−m′/2 exp

{
−0.5

m′−1∑
k=0

(β
(m′)
k

2
)

}
× exp

{
−0.5

m−1∑
k=0

v2

}
×m

and for the move from m′ to m it is the inverse of that.

5.5.1 Simulation

For initial values β = (1, 0.3, 0.15, 0.005), m ∈ {1, 2, 3, 4}, we run the reversible jump sampler for 1000000
iterations:

β(m) estimates:
Note: For the stochastic proposals, we run the sampler for two cases:

1.

zi ∼ N

(
m−1∑
k=0

βk ai
k, 1

)
y ∼ Nm(0, I)

u ∼ Nm′(0, I)

v ∼ Nm′(0, I)

2.

zi ∼ N

(
m−1∑
k=0

βk ai
k, σz

)
y ∼ Nm(0, I ∗ σy)
u ∼ Nm′(0, I ∗ σu)

v ∼ Nm′(0, I ∗ σv)

68 CHAPTER 5. REVERSIBLE JUMP MCMC

Beta FF strategy Stochastic σz = σy = σu = σv = 1 Stochastic σz = σu = σv = 0.25, σy = 0.35

β(1) 0.047 0.94 2.62
β(2) (0.38, 1.159) (0.41, 1.14) (0.38, 1.15)
β(3) (1.07, 0.318, 0.17) (1.07, 0.34, 0.16) (1.001, 0.39, 0.154)
β(4) (1.07, 0.016, 0.34, -0.023) (1.3, -0.039, 0.37, -0.03) (0.87, 0.44, 0.17, -0.005)

m estimates (model selecting):

Model probability FF strategy Stochastic σz = σy = σu = σv = 1 Stochastic σz = σu = σv = 0.25, σy = 0.35

p(m=1) 0.00001 0.00001 0.00001
p(m=2) 0.029 0.211 0.354
p(m=3) 0.814 0.773 0.419
p(m=4) 0.157 0.014 0.227

In all three cases, model m = 3, β(m=3) is selected. We set as a thinning interval, thin = 50 and
we obtain the following running average plots and histograms. Convergence to the estimated values for
β(m=3) is fulfilled. Furthermore, convergence of the model selection probabilities is also fulfilled.

5.5. MODEL CHOICE IN REGRESSION 69

Figure 5.1: FF strategy: β0
(3)

Figure 5.2: FF strategy: β1
(3)

70 CHAPTER 5. REVERSIBLE JUMP MCMC

Figure 5.3: FF strategy: β2
(3)

Figure 5.4: FF strategy: Probabilities of selecting each model

5.5. MODEL CHOICE IN REGRESSION 71

Figure 5.5: Stochastic σz = σy = σu = σv = 1: β0
(3)

Figure 5.6: Stochastic σz = σy = σu = σv = 1: β1
(3)

72 CHAPTER 5. REVERSIBLE JUMP MCMC

Figure 5.7: Stochastic σz = σy = σu = σv = 1: β2
(3)

Figure 5.8: Stochastic σz = σy = σu = σv = 1: Probabilities of selecting each model

5.5. MODEL CHOICE IN REGRESSION 73

Figure 5.9: Stochastic σz = σu = σv = 0.25, σy = 0.35: β0
(3)

Figure 5.10: Stochastic σz = σu = σv = 0.25, σy = 0.35: β1
(3)

74 CHAPTER 5. REVERSIBLE JUMP MCMC

Figure 5.11: Stochastic σz = σu = σv = 0.25, σy = 0.35: β2
(3)

Figure 5.12: Stochastic σz = σu = σv = 0.25, σy = 0.35: Probabilities of selecting each model

We notice that by decreasing the proposal variance (third case), the probabilities of selecting a model
converge faster.

5.5. MODEL CHOICE IN REGRESSION 75

We run some further diagnostics for model 3. We get some idea on the computational efficiency of
each method:

Method Iterations SS of the chain Thinning interval

FF strategy 814051 16282 50
Stochastic σz = σy = σu = σv = 1 774101 15483 50

Stochastic σz = σu = σv = 0.25, σy = 0.35 417401 8349 50

The performance of each method for model 3, can be monitored with some further diagnostic tests.

Heidelberg and Welch
FF strategy Stationarity test Start (iter) P-value Halfwidth Mean Halfwidth test

β0
(3) X 1 0.6 0.01 1.07 X

β1
(3) X 1 0.7 0.01 0.32 X

β2
(3) X 1 0.18 0.003 0.16 X

σz = σy = σu = σv = 1 Stationarity test Start (iter) P-value Halfwidth Mean Halfwidth test

β0
(3) X 1550 0.6 0.03 1.08 X

β1
(3) X 1 0.4 0.01 0.33 X

β2
(3) X 1 0.6 0.003 0.16 X

σz = σu = σv = 0.25, σy = 0.35 Stationarity test Start (iter) P-value Halfwidth Mean Halfwidth test

β0
(3) X 3341 0.18 0.014 1.01 X

β1
(3) X 3341 0.21 0.013 0.38 X

β2
(3) X 3341 0.23 0.003 0.16 X

As we see in the diagnostic results, all methods satisfy the null hypotheses of both tests.
For the quantile q = 0.025, within an accuracy of r+ /− 0.005 with probability s = 0.95, the Raferty

and Lewis diagnostic yields:

Raferty and Lewis

FF strategy Burn-in Required SS Minimum SS Dependence Factor

β0
(3) 69300 38745200 3746 10300

β1
(3) 69300 38745200 3746 10300

β2
(3) 68300 74546350 3746 19900

σz = σy = σu = σv = 1 Burn-in Required SS Minimum SS Dependence Factor

β0
(3) 65900 36843350 3746 9840

β1
(3) 64950 70886850 3746 18900

β2
(3) 65900 36843350 3746 9840

σz = σu = σv = 0.25, σy = 0.35 Burn-in Required SS Minimum SS Dependence Factor

β0
(3) 13950 12276200 3746 3280

β1
(3) 17400 18936500 3746 5060

β2
(3) 17500 14477550 3746 3860

It is clear that the chains ’suffer’ from high autocorrelations, which is confirmed by the ACF plots.
The required sample size needed to achieve low correlations between draws and/or independence from
the influence of starting values is enormous and computationally costly.

76 CHAPTER 5. REVERSIBLE JUMP MCMC

Figure 5.13: ACF plots for FF strategy.

Figure 5.14: ACF plots for σz = σy = σu = σv = 1.

Figure 5.15: ACF plots for σz = σu = σv = 0.25, σy = 0.35.

Bibliography

[1] Spyridon J. Hatjispyros, Notes on RJMCMC-University of the Aegean

[2] David I. Hastie, Peter J. Green, Model Choice using Reversible Jump Markov Chain Monte Carlo-
Imperial College London, University of Bristol (May 11, 2011)

[3] Daniel Sorensen, Daniel Gianola, Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics-
Springer

[4] Spyridon J. Hatjispyros, Notes on Bayesian Statistics (Greek)-University of the Aegean

[5] Patrick Lam, Convergence Diagnostics-Harvard University

[6] Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev, Handbook of Monte Carlo Methods-Wiley

[7] Siddhartha Chib, Edward Greenberg, Understanding the Metropolis-Hastings Algorithm-The Ameri-
can Statistician, Vol.49, No.4., pp. 327-335 (Nov., 1995)

[8] Jayanta K. Ghosh, Mohan Delampady, Tapas Samanta, An Introduction to Bayesian Analysis Theory
and Methods-Springer

[9] Spyridon J. Hatjispyros, Notes on Computational Bayesian Statistics (Greek)-University of the Aegean

[10] Erik Vanem, Bayesian Hierarchical Space–Time Models with Application to Significant Wave Height-
Springer

[11] S. Richardson,P.J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of
Components-R. Statist. Soc. B59, No.4, pp. 731-792 (1997)

[12] Mary Kathryn Cowles, Bradley P. Carlin, Markov Chain Monte Carlo Convergence Diagnostics: A
Comparative Review-Harvard School of Public Health, University of Minnesota

[13] Panagiotis Papastamoulis, George Iliopoulos, Computational Statistics and Data Analysis 53 900-911
(2009)

[14] package coda, r-project
https://cran.r-project.org/web/packages/coda/index.html

77

78 BIBLIOGRAPHY

Appendix A

Diagnostic Tests

Gelman and Rubin

Gelman and Rubin (1992) propose a general approach to monitoring convergence of MCMC output in
which m > 1 parallel chains are run with starting values that are overdispersed relative to the posterior
distribution. Convergence is diagnosed when the chains have ‘forgotten’ their initial values, and the
output from all chains is indistinguishable. The diagnostic is applied to a single variable from the chain.
It is based a comparison of within-chain and between-chain variances, and is similar to a classical analysis
of variance. There are two ways to estimate the variance of the stationary distribution: the mean of the
empirical variance within each chain, W , and the empirical variance from all chains combined, which can
be expressed as

σ̂2 =
(n− 1)W

n
+
B

n

where n is the number of iterations and B/n is the empirical between-chain variance.

If the chains have converged, then both estimates are unbiased. Otherwise the first method will
underestimate the variance, since the individual chains have not had time to range all over the stationary
distribution, and the second method will overestimate the variance, since the starting points were chosen
to be overdispersed.

The convergence diagnostic is based on the assumption that the target distribution is normal. A
Bayesian credible interval can be constructed using a t-distribution with mean

µ̂ = Sample mean of all chains combined

and variance

V̂ = σ̂2 +
B

mn

and degrees of freedom estimated by the method of moments

d =
2 V̂ 2

V ar(V̂)

Use of the t-distribution accounts for the fact that the mean and variance of the posterior distribution
are estimated.

The convergence diagnostic itself is

79

80 APPENDIX A. DIAGNOSTIC TESTS

R =

√
(d+ 3)V̂

(d+ 2)W

Values substantially above 1 indicate lack of convergence. If the chains have not converged, Bayesian
credible intervals based on the t-distribution are too wide, and have the potential to shrink by this factor
if the MCMC run is continued.

Geweke

Geweke (1992) proposed a convergence diagnostic for Markov chains based on a test for equality of the
means of the first and last part of a Markov chain (by default the first 10% and the last 50%).

If the samples are drawn from the stationary distribution of the chain, the two means are equal and
Geweke’s statistic has an asymptotically standard normal distribution. The test statistic is a standard Z-
score: the difference between the two sample means divided by its estimated standard error. The standard
error is estimated from the spectral density at zero and so takes into account any autocorrelation. The Z-

score is calculated under the assumption that the two parts of the chain are asymptotically independent,
which requires that the sum of the fraction to use from the beginning of the chain and fraction to use
from the end of the chain be strictly less than 1.

Heidelberg and Welch

The convergence test uses the Cramer-von-Mises statistic to test the null hypothesis that the sampled
values come from a stationary distribution. The test is successively applied, firstly to the whole chain,
then after discarding the first 10%, 20%,. . . of the chain until either the null hypothesis is accepted, or
50% of the chain has been discarded. The latter outcome constitutes ‘failure’ of the stationarity test and
indicates that a longer MCMC run is needed. If the stationarity test is passed, the number of iterations
to keep and the number to discard are reported.

The half-width test calculates a 95% confidence interval for the mean, using the portion of the chain
which passed the stationarity test. Half the width of this interval is compared with the estimate of the
mean. If the ratio between the half-width and the mean is lower than some ε (target value for ratio of
halfwidth to sample mean), the halfwidth test is passed. Otherwise the length of the sample is deemed
not long enough to estimate the mean with sufficient accuracy.

If the half-width test fails then the run should be extended. In order to avoid problems caused by
sequential testing, the test should not be repeated too frequently. Heidelberger and Welch (1981) suggest
increasing the run length by a factor I > 1.5, each time, so that estimate has the same, reasonably large,
proportion of new data.

Raferty and Lewis

The estimated sample size for variable U is based on the process

Zt = d(Ut ≤ u)

where d is the indicator function and u is the qth quantile of U . The process Zt is derived from the
Markov chain data by marginalization and truncation, but is not itself a Markov chain. However, Zt may
behave as a Markov chain if it is sufficiently thinned out. The diagnostic calculates the smallest value of
thinning interval k which makes the thinned chain Zt

k behave as a Markov chain. The required sample

81

size is calculated from this thinned sequence. Since some data is ‘thrown away’ the sample size estimates
are conservative.

The criterion for the number of ‘burn in’ iterations m to be discarded, is that the conditional distri-
bution of Zm

k given Z0 should be within the precision required for estimate of time to convergence of the
equilibrium distribution of the chain Zt

k.

82 APPENDIX A. DIAGNOSTIC TESTS

Appendix B

R code

Simulation from a Normal distribution with different proposals

set . seed (1)
p <− 0 .3
mu <− c(−2 , 1 . 5)
sd <− c (1/2 , 1 . 5)

f <− function (x) {
return (p ∗ dnorm(x , mu[1] , sd [1]) + (1−p) ∗ dnorm(x , mu[2] , sd [2]))

}

proposa l <− function (x) {
return (rnorm(1 , x , 4))

}

step <− function (x , f , p roposa l) {
xp <− proposa l (x)
alpha <− min(1 , f (xp) / f (x))
i f (runif (1) < alpha)

x <− xp
x

}

run <− function (x , f , proposa l , ns teps) {
r e s <− matrix (data=NA, nrow=nsteps , ncol=length (x))
for (i in seq (1 : ns teps))

r e s [i ,] <− x <− step (x , f , p roposa l)
drop (r e s)

}

r e s <− run (−10 , f , proposal , 100000)
r e s . f a s t <− run (−10 , f , function (x) rnorm(1 , x , 30) , 100000)
r e s . s low <− run (−10 , f , function (x) rnorm(1 , x , 0 . 2) , 100000)

#d i a gno s t i c s
l ibrary (coda)

83

84 APPENDIX B. R CODE

r e s . draws <− mcmc(r e s)
r e s . draws . f a s t <− mcmc(r e s . f a s t)
r e s . draws . s low <− mcmc(r e s . s low)

summary(r e s . draws)

v1 <− c (0∗10ˆ4 , 2∗10ˆ4 , 4∗10ˆ4 , 6∗10ˆ4 , 8∗10ˆ4 , 10ˆ5)
v2 <− c (’ 0 ’ , ’ 20000 ’ , ’ 40000 ’ , ’ 60000 ’ , ’ 80000 ’ , ’ 100000 ’)

plot (cumsum(r e s)/ 1 : length (r e s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=”” , xaxt=’n ’)
axis (1 , at=v1 , labels=v2)
abline (c (0 . 457775 , 0) , col=’ red ’)

e f f e c t i v e S i z e (r e s . draws)
e f f e c t i v e S i z e (r e s . draws . f a s t)
e f f e c t i v e S i z e (r e s . draws . s low)

autocor r . diag (r e s . draws)
autocor r . diag (r e s . draws . f a s t)
autocor r . diag (r e s . draws . s low)

layout (matrix (c (1 , 2 , 3) , 1 , 3 , byrow = TRUE))
ac f (r e s . draws . slow , main=’ slow ’)
a c f (r e s . draws , main=’ normal ’)
a c f (r e s . draws . f a s t , main=’ f a s t ’)

layout (matrix (c (1 , 2 , 3) , 3 , 1 , byrow = TRUE))
t r a c e p l o t (r e s . draws . slow , xaxt=’n ’ , y lab = ’ slow ’)
axis (1 , at=v1 , labels=v2)
t r a c e p l o t (r e s . draws , xaxt=’n ’ , y lab = ’ normal ’)
axis (1 , at=v1 , labels=v2)
t r a c e p l o t (r e s . draws . f a s t , xaxt=’n ’ , y lab = ’ f a s t ’)
axis (1 , at=v1 , labels=v2)

layout (matrix (c (1 , 2 , 3) , 1 , 3 , byrow = TRUE))
hist (r e s . draws . slow , prob=T, breaks =100 , main = ’ slow ’)
l ines (density (r e s . s low) , col=’ red ’ , lwd=2)
hist (r e s . draws , prob=T, breaks =100 , main = ’ normal ’)
l ines (density (r e s) , col=’ red ’ , lwd=2)
hist (r e s . draws . f a s t , prob=T, breaks =100 , main = ’ f a s t ’)
l ines (density (r e s . f a s t) , col=’ red ’ , lwd=2)

#accept−r e j e c t ra t e
r e j e c t i o n R a t e (r e s . draws)
acceptance . r a t e <− 1 − r e j e c t i o n R a t e (r e s . draws)

85

acceptance . r a t e

r e j e c t i o n R a t e (r e s . draws . f a s t)
acceptance . r a t e <− 1 − r e j e c t i o n R a t e (r e s . draws . f a s t)
acceptance . r a t e

r e j e c t i o n R a t e (r e s . draws . s low)
acceptance . r a t e <− 1 − r e j e c t i o n R a t e (r e s . draws . s low)
acceptance . r a t e

geweke . diag (r e s . draws)
r a f t e r y . diag (r e s . draws , q = 0.025 , r = 0 .005 , s = 0 . 9 5)
h e i d e l . diag (r e s . draws)

r e s1 <− run (−9 , f , proposa l , 30000)
r e s2 <− run (−7 , f , proposa l , 30000)
r e s3 <− run (−4 , f , proposa l , 30000)
r e s4 <− run (10 , f , proposa l , 30000)
r e s5 <− run (16 , f , proposa l , 30000)

r e s . draws1 <− mcmc(r e s1)
r e s . draws2 <− mcmc(r e s2)
r e s . draws3 <− mcmc(r e s3)
r e s . draws4 <− mcmc(r e s4)
r e s . draws5 <− mcmc(r e s5)

r e s . l i s t <− mcmc. l i s t (l i s t (r e s . draws1 , r e s . draws2 , r e s . draws3 , r e s . draws4 ,
r e s . draws5))
gelman . diag (r e s . l i s t)
gelman . plot (r e s . l i s t)

86 APPENDIX B. R CODE

Simulation from a Normal Hierarchical model

l ibrary (coda)

#data
set . seed (1)
tau <− 1 ; mui <− c (1 , 2 , 3 , 4 , 5 , 6) ; mu <− 3 . 5 ; v <− 1
a <− 0 . 5 ; b <− 0 . 0 0 1 ; c <− 0 . 0 0 1 ; d <− 0 . 0 0 1 ; e <− 0 . 0 0 1 ; f <− 0 .001
m <− 6 ; n i <− 1000

y1 <− matrix (rnorm(n=ni , mean=mui [1] , sd=1/sqrt (tau)) , nrow=1)
y2 <− matrix (rnorm(n=ni , mean=mui [2] , sd=1/sqrt (tau)) , nrow=1)
y3 <− matrix (rnorm(n=ni , mean=mui [3] , sd=1/sqrt (tau)) , nrow=1)
y4 <− matrix (rnorm(n=ni , mean=mui [4] , sd=1/sqrt (tau)) , nrow=1)
y5 <− matrix (rnorm(n=ni , mean=mui [5] , sd=1/sqrt (tau)) , nrow=1)
y6 <− matrix (rnorm(n=ni , mean=mui [6] , sd=1/sqrt (tau)) , nrow=1)
y <− rbind (y1 , y2 , y3 , y4 , y5 , y6)

ydot <− . rowMeans (y , m, n i)
ysq <− (y−ydot)ˆ2
ysqr <− . rowSums(ysq , m, n i)

n<−0
for (i in 1 :m){

n <− n+ni
} ; n

mu update <− function (mui , v){
return (rnorm(n=1, mean=(a∗b+m∗mean(mui)∗v)/ (b+m∗v) , sd=1/sqrt ((b+v∗m))))

}

tau update <− function (mui){
return (rgamma(n=1, shape=c+n/2 , scale=1/ (d+0.5∗sum(ysqr+ni∗ (mui−ydot) ˆ 2))))

}

v update <− function (mui , mu){
return (rgamma(n=1, shape=e+m/2 , scale=1/ (f +0.5∗sum((mui−mu) ˆ 2))))

}

mui update <− function (v , tau , mu){
return (rnorm(n=m, mean=(v∗mu+ni∗tau∗ydot)/ (v+ni∗tau) , sd=1/sqrt (v+ni∗tau)))

}

g ibbs sampler <− function (N=100000 , burnin =25000 , v i n i t i a l=v i n i t i a l ,
mui i n i t i a l=mui i n i t i a l){

87

mu MC <− c () ; tau MC <− c () ; v MC <− c ()
mui MC1 <− c () ; mui MC2 <− c () ; mui MC3 <− c () ; mui MC4 <− c () ; mui MC5 <− c () ;

mui MC6 <− c ()

mui k <− mui i n i t i a l
v k <− v i n i t i a l

for (i in 1 :N){
mu k <− mu update (mui=mui k , v=v k)
tau k <− tau update (mui=mui k)
v k <− v update (mui=mui k , mu=mu k)
mui k <− mui update (v=v k , tau=tau k , mu=mu k)

i f (i>burnin){
mu MC[(i−burnin)] <− mu k
tau MC[(i−burnin)] <− tau k
v MC[(i−burnin)] <− v k
mui MC1[(i−burnin)] <− mui k [1]
mui MC2[(i−burnin)] <− mui k [2]
mui MC3[(i−burnin)] <− mui k [3]
mui MC4[(i−burnin)] <− mui k [4]
mui MC5[(i−burnin)] <− mui k [5]
mui MC6[(i−burnin)] <− mui k [6]

}

}

mu MC.m <− sum(mu MC)/ (N−burnin)
tau MC.m <− sum(tau MC)/ (N−burnin)
v MC.m <− sum(v MC)/ (N−burnin)
mui MC1.m <− sum(mui MC1)/ (N−burnin)
mui MC2.m <− sum(mui MC2)/ (N−burnin)
mui MC3.m <− sum(mui MC3)/ (N−burnin)
mui MC4.m <− sum(mui MC4)/ (N−burnin)
mui MC5.m <− sum(mui MC5)/ (N−burnin)
mui MC6.m <− sum(mui MC6)/ (N−burnin)

e rgod i c . means <− c (mu MC.m, tau MC.m, v MC.m, mui MC1.m, mui MC2.m, mui MC3.m,
mui MC4.m, mui MC5.m, mui MC6.m)

parameters <− c (mu MC, tau MC, v MC, mui MC1, mui MC2, mui MC3, mui MC4, mui MC5,
mui MC6)

return (l i s t (parameters , e r god i c . means))
}

p o s t e r i o r <− g ibbs sampler (N=25000 , burnin =5000 ,
v i n i t i a l =1, mui i n i t i a l=c (0 . 8 , 1 . 3 , 2 . 5 , 3 . 4 , 4 . 3 , 5 . 7))
p o s t e r i o r

88 APPENDIX B. R CODE

v1 <− p o s t e r i o r [[1]]
v2 <− p o s t e r i o r [[2]]

mus <− v1 [(1 : 2 0 0 0 0)]
taus <− v1 [(2 0 0 0 1 : 4 0 0 0 0)]
vs <− v1 [(4 0 0 0 1 : 6 0 0 0 0)]
mui1s <− v1 [(6 0 0 0 1 : 8 0 0 0 0)]
mui2s <− v1 [(8 0 0 0 1 : 1 0 0 0 0 0)]
mui3s <− v1 [(1 0 0 0 0 1 : 1 2 0 0 0 0)]
mui4s <− v1 [(1 2 0 0 0 1 : 1 4 0 0 0 0)]
mui5s <− v1 [(1 4 0 0 0 1 : 1 6 0 0 0 0)]
mui6s <− v1 [(1 6 0 0 0 1 : 1 8 0 0 0 0)]

mus . draws <− mcmc(mus)
summary(mus . draws)
geweke . diag (mus . draws)
h e i d e l . diag (mus . draws)

taus . draws <− mcmc(taus)
summary(taus . draws)
geweke . diag (taus . draws)
h e i d e l . diag (taus . draws)

vs . draws <− mcmc(vs)
summary(vs . draws)
geweke . diag (vs . draws)
h e i d e l . diag (vs . draws)

mui1s . draws <− mcmc(mui1s)
summary(mui1s . draws)
geweke . diag (mui1s . draws)
h e i d e l . diag (mui1s . draws)

mui2s . draws <− mcmc(mui2s)
summary(mui2s . draws)
geweke . diag (mui2s . draws)
h e i d e l . diag (mui2s . draws)

mui3s . draws <− mcmc(mui3s)
summary(mui3s . draws)
geweke . diag (mui3s . draws)
h e i d e l . diag (mui3s . draws)

mui4s . draws <− mcmc(mui4s)
summary(mui4s . draws)
geweke . diag (mui4s . draws)
h e i d e l . diag (mui4s . draws)

89

mui5s . draws <− mcmc(mui5s)
summary(mui5s . draws)
geweke . diag (mui5s . draws)
h e i d e l . diag (mui5s . draws)

mui6s . draws <− mcmc(mui6s)
summary(mui6s . draws)
geweke . diag (mui6s . draws)
h e i d e l . diag (mui6s . draws)

layout (matrix (c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) , 3 , 3 , byrow = TRUE))
hist (mus , prob=T, breaks =70, xlab=””)
l ines (density (mus) , col=’ red ’ , lwd=2)
hist (taus , prob=T, breaks =70, xlab=””)
l ines (density (taus) , col=’ red ’ , lwd=2)
hist (vs , prob=T, breaks =70, xlab=””)
l ines (density (vs) , col=’ red ’ , lwd=2)
hist (mui1s , prob=T, breaks =70, xlab=””)
l ines (density (mui1s) , col=’ red ’ , lwd=2)
hist (mui2s , prob=T, breaks =70, xlab=””)
l ines (density (mui2s) , col=’ red ’ , lwd=2)
hist (mui3s , prob=T, breaks =70, xlab=””)
l ines (density (mui3s) , col=’ red ’ , lwd=2)
hist (mui4s , prob=T, breaks =70, xlab=””)
l ines (density (mui4s) , col=’ red ’ , lwd=2)
hist (mui5s , prob=T, breaks =70, xlab=””)
l ines (density (mui5s) , col=’ red ’ , lwd=2)
hist (mui6s , prob=T, breaks =70, xlab=””)
l ines (density (mui6s) , col=’ red ’ , lwd=2)

layout (matrix (c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) , 3 , 3 , byrow = TRUE))
plot (cumsum(mus)/ 1 : length (mus) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [1] , 0) , col=’ red ’)
plot (cumsum(taus)/ 1 : length (taus) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [2] , 0) , col=’ red ’)
plot (cumsum(vs)/ 1 : length (vs) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [3] , 0) , col=’ red ’)
plot (cumsum(mui1s)/ 1 : length (mui1s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [4] , 0) , col=’ red ’)
plot (cumsum(mui2s)/ 1 : length (mui2s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [5] , 0) , col=’ red ’)
plot (cumsum(mui3s)/ 1 : length (mui3s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [6] , 0) , col=’ red ’)
plot (cumsum(mui4s)/ 1 : length (mui4s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [7] , 0) , col=’ red ’)
plot (cumsum(mui5s)/ 1 : length (mui5s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [8] , 0) , col=’ red ’)
plot (cumsum(mui6s)/ 1 : length (mui6s) , type = ’ l ’ , x lab=” I t e r a t i o n ” , ylab=””)
abline (c (v2 [9] , 0) , col=’ red ’)

90 APPENDIX B. R CODE

layout (matrix (c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) , 3 , 3 , byrow = TRUE))
t r a c e p l o t (mus . draws , ylab=””)
t r a c e p l o t (taus . draws , ylab=””)
t r a c e p l o t (vs . draws , ylab=””)
t r a c e p l o t (mui1s . draws , ylab=””)
t r a c e p l o t (mui2s . draws , ylab=””)
t r a c e p l o t (mui3s . draws , ylab=””)
t r a c e p l o t (mui4s . draws , ylab=””)
t r a c e p l o t (mui5s . draws , ylab=””)
t r a c e p l o t (mui6s . draws , ylab=””)

91

Model choice in regression - FF strategy

norm vec <− function (x) sqrt (sum(x ˆ2))

f <− function (b , z ,A){
i f (! i s . matrix (A)) stop (”A must be a matrix ”)
return (exp(−0.5∗norm vec (z−A[, c (1 : length (b))]%∗%b) ˆ 2))

}

g <− function (u){
exp(−0.5∗norm vec (u)ˆ2)/(2∗pi)ˆ (length (u)/2)

}

myregress ion <− function (T=1000000 , myseed=1){
set . seed (myseed)
a <− seq (from=0, to =5, by=1/20)
b <− matrix (c (1 , 0 . 3 , 0 . 15 , 0 . 0 0 5) , ncol=1)
A <− matrix (c (a ˆ0 , a ˆ1 , a ˆ2 , a ˆ3) , nrow=length (a))
no i s e <− matrix (rnorm(101) , ncol=1)
z <− A %∗% b + no i s e

m <− 1
x <− matrix (rnorm(m) , ncol=1)

data <− matrix (rep (0 , T) , ncol=1)

beta0 <− matrix (c (0) , ncol=1)
beta1 <− matrix (c (0 , 0) , ncol=1)
beta2 <− matrix (c (0 , 0 , 0) , ncol=1)
beta3 <− matrix (c (0 , 0 , 0 , 0) , ncol=1)

for (i in 1 :T){
n <− cei l ing (4∗runif (1))
y <− matrix (rnorm(n) , ncol=1)
i f (runif (1) < min(f (y , z ,A)/ f (x , z ,A)∗g (x)/g (y)∗n/m, 1)) {

x <− y ; m <− n
}
data [i] <− m
i f (m==1){

beta0 <− beta0 + x
} else i f (m==2){

beta1 <− beta1 + x
} else i f (m==3){

beta2 <− beta2 + x
} else i f (m==4){

beta3 <− beta3 + x
}

92 APPENDIX B. R CODE

}

beta0 <− beta0/length (data [data==1])
beta1 <− beta1/length (data [data==2])
beta2 <− beta2/length (data [data==3])
beta3 <− beta3/length (data [data==4])

beta <− c (beta0 , beta1 , beta2 , beta3)

p1 <− length (data [data==1])/T
p2 <− length (data [data==2])/T
p3 <− length (data [data==3])/T
p4 <− length (data [data==4])/T

p <− c (p1 , p2 , p3 , p4)

return (l i s t (beta , p))
}

K <− myregress ion (T=1000000 , myseed=1)

myregress ion <− function (T=1000000 , myseed=1){
set . seed (myseed)
a <− seq (from=0, to =5, by=1/20)
b <− matrix (c (1 , 0 . 3 , 0 . 15 , 0 . 0 0 5) , ncol=1)
A <− matrix (c (a ˆ0 , a ˆ1 , a ˆ2 , a ˆ3) , nrow=length (a))
no i s e <− matrix (rnorm(101) , ncol=1)
z <− A %∗% b + no i s e

m <− 1
x <− matrix (rnorm(m) , ncol=1)

data <− matrix (rep (0 , T) , ncol=1)

beta0 <− matrix (c (0) , ncol=1)
beta1 <− matrix (c (0 , 0) , ncol=1)
beta2 <− matrix (c (0 , 0 , 0) , ncol=1)
beta3 <− matrix (c (0 , 0 , 0 , 0) , ncol=1)

beta20 <− c () ; beta21 <− c () ; beta22 <− c ()
for (i in 1 :T){

n <− cei l ing (4∗runif (1))
y <− matrix (rnorm(n) , ncol=1)
i f (runif (1) < min(f (y , z ,A)/ f (x , z ,A)∗g (x)/g (y)∗n/m, 1)) {

x <− y ; m <− n
}
data [i] <− m
i f (m==1){

beta0 <− beta0 + x
} else i f (m==2){

93

beta1 <− beta1 + x
} else i f (m==3){

beta2 <− beta2 + x
} else i f (m==4){

beta3 <− beta3 + x
}

i f (i%%50==0 && m==3){
s0 <− beta2 [1] /length (data [data==3])
beta20 <− c (beta20 , s0)

}

i f (i%%50==0 && m==3){
s1 <− beta2 [2] /length (data [data==3])
beta21 <− c (beta21 , s1)

}

i f (i%%50==0 && m==3){
s2 <− beta2 [3] /length (data [data==3])
beta22 <− c (beta22 , s2)

}

}
return (l i s t (beta20 , beta21 , beta22))

}

M <− myregress ion (T=1000000 , myseed=1)

beta20s <− M[[1]]
beta21s <− M[[2]]
beta22s <− M[[3]]

layout (matrix (c (1 , 2) , 1 , 2 , byrow = TRUE))
hist (beta20s , prob=T, breaks =100 , xlab=” beta20 ”)
l ines (density (beta20s) , col=’ red ’ , lwd=2)
plot (beta20s , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=” beta20 ”)
abline (1 .06972376 ,0 , col=’ red ’)

layout (matrix (c (1 , 2) , 1 , 2 , byrow = TRUE))
hist (beta21s , prob=T, breaks =100 , xlab=” beta21 ”)
l ines (density (beta21s) , col=’ red ’ , lwd=2)
plot (beta21s , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=” beta21 ”)
abline (0 .31733055 ,0 , col=’ red ’)

layout (matrix (c (1 , 2) , 1 , 2 , byrow = TRUE))
hist (beta22s , prob=T, breaks =100 , xlab=” beta22 ”)
l ines (density (beta22s) , col=’ red ’ , lwd=2)
plot (beta22s , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=” beta22 ”)
abline (0 .16497739 ,0 , col=’ red ’)

94 APPENDIX B. R CODE

l ibrary (coda)
beta20s . draws <− mcmc(beta20s , th in =50)
beta21s . draws <− mcmc(beta21s , th in =50)
beta22s . draws <− mcmc(beta22s , th in =50)

h e i d e l . diag (beta20s . draws)
r a f t e r y . diag (beta20s . draws , q = 0.025 , r = 0 .005 , s = 0 . 9 5)

summary(beta21s . draws)
h e i d e l . diag (beta21s . draws)
r a f t e r y . diag (beta21s . draws , q = 0.025 , r = 0 .005 , s = 0 . 9 5)

summary(beta22s . draws)
h e i d e l . diag (beta22s . draws)
r a f t e r y . diag (beta22s . draws , q = 0.025 , r = 0 .005 , s = 0 . 9 5)

layout (matrix (c (1 , 2 , 3) , 1 , 3 , byrow=TRUE))
ac f (beta20s)
a c f (beta21s)
a c f (beta22s)

myregress ion <− function (T=1000000 , myseed=1){
set . seed (myseed)
a <− seq (from=0, to =5, by=1/20)
b <− matrix (c (1 , 0 . 3 , 0 . 15 , 0 . 0 0 5) , ncol=1)
A <− matrix (c (a ˆ0 , a ˆ1 , a ˆ2 , a ˆ3) , nrow=length (a))
no i s e <− matrix (rnorm(101) , ncol=1)
z <− A %∗% b + no i s e

m <− 1
x <− matrix (rnorm(m) , ncol=1)

data <− matrix (rep (0 , T) , ncol=1)

beta0 <− matrix (c (0) , ncol=1)
beta1 <− matrix (c (0 , 0) , ncol=1)
beta2 <− matrix (c (0 , 0 , 0) , ncol=1)
beta3 <− matrix (c (0 , 0 , 0 , 0) , ncol=1)

ravp1 <− c () ; ravp2 <− c () ; ravp3 <− c () ; ravp4 <− c ()
for (i in 1 :T){

n <− cei l ing (4∗runif (1))
y <− matrix (rnorm(n) , ncol=1)
i f (runif (1) < min(f (y , z ,A)/ f (x , z ,A)∗g (x)/g (y)∗n/m, 1)) {

x <− y ; m <− n
}
data [i] <− m
i f (m==1){

beta0 <− beta0 + x

95

} else i f (m==2){
beta1 <− beta1 + x

} else i f (m==3){
beta2 <− beta2 + x

} else i f (m==4){
beta3 <− beta3 + x

}

i f (i%%50==0){
cp1 <− length (data [data==1])/ i
ravp1 <− c (ravp1 , cp1)

}

i f (i%%50==0){
cp2 <− length (data [data==2])/ i
ravp2 <− c (ravp2 , cp2)

}

i f (i%%50==0){
cp3 <− length (data [data==3])/ i
ravp3 <− c (ravp3 , cp3)

}

i f (i%%50==0){
cp4 <− length (data [data==4])/ i
ravp4 <− c (ravp4 , cp4)

}

}

return (l i s t (ravp1 , ravp2 , ravp3 , ravp4))
}

L <− myregress ion (T=1000000 , myseed=1)

ravp1 <− L [[1]]
ravp2 <− L [[2]]
ravp3 <− L [[3]]
ravp4 <− L [[4]]

layout (matrix (c (1 , 2 , 3 , 4) , 2 ,2 , byrow=TRUE))
plot (ravp1 , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=”p1”)
abline (0 . 000004 ,0 , col=’ red ’)

plot (ravp2 , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=”p2”)
abline (0 . 029043 ,0 , col=’ red ’)

plot (ravp3 , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=”p3”)
abline (0 . 814028 ,0 , col=’ red ’)

96 APPENDIX B. R CODE

plot (ravp4 , type=’ l ’ , pch=” . ” , xlab=”n” , ylab=”p4”)
abline (0 . 156925 ,0 , col=’ red ’)

97

Model choice in regression - Stochastic proposals

norm vec <− function (x) sqrt (sum(x ˆ2))

r e g r e s s i o n <− function (T=1000000 , myseed=1, sigma0 =0.2 , sigmap =0.3 , s igmar =0.2) {

set . seed (myseed)
a <− seq (from=0, to =5, by=1/20)
bor <− matrix (c (1 , 0 . 3 , 0 . 15 , 0 . 0 0 5) , ncol=1)
A <− matrix (c (a ˆ0 , a ˆ1 , a ˆ2 , a ˆ3) , nrow=length (a))
no i s e <− matrix (rnorm(101 ,0 , sigma0) , ncol=1)
z <− A %∗% bor + no i s e

n0 <− cei l ing (4∗runif (1))
b <− matrix (rnorm(n0 , 0 , sigmap) , ncol=1)

data <− matrix (rep (0 , T) , ncol=1)

beta0 <− matrix (c (0) , ncol=1)
beta1 <− matrix (c (0 , 0) , ncol=1)
beta2 <− matrix (c (0 , 0 , 0) , ncol=1)
beta3 <− matrix (c (0 , 0 , 0 , 0) , ncol=1)

for (i in 1 :T) {
n <− cei l ing (4∗runif (1))
i f (n<n0) {

u1 <− matrix (rnorm(n , 0 , sigma0) , ncol = 1)
b1 <− matrix (b [c (1 : length (u1)) ,] , ncol = 1)
b2 <− matrix (b [seq (length (u1)+1 ,n0 , 1)] , ncol = 1)
bstar <− b1+u1
u <− matrix (c (u1 , b2) , ncol = 1)
g1 <− exp(−1/(2∗sigmar ˆ2)∗norm vec (u1)ˆ2)/(2∗pi∗sigmar ˆ2)ˆ(n/2)
g2 <− exp(−1/(2∗sigmar ˆ2)∗norm vec (u)ˆ2)/(2∗pi∗sigmar ˆ2)ˆ(n0/2)

}
else i f (n>n0){

u <− matrix (rnorm(n , 0 , sigma0) , ncol = 1)
u1 <− matrix (u [c (1 : n0) ,] , ncol = 1)
u2 <− matrix (u [seq (n0+1,n , 1)] , ncol = 1)
bn <− matrix (c (b , rep (0 , length (u2))) , ncol = 1)
bstar <− bn+u
g1 <− exp(−1/(2∗sigmar ˆ2)∗norm vec (u)ˆ2)/(2∗pi∗sigmar ˆ2)ˆ(n/2)
g2 <− exp(−1/(2∗sigmar ˆ2)∗norm vec (u1)ˆ2)/(2∗pi∗sigmar ˆ2)ˆ(n0/2)

}
else i f (n==n0){

u1 <− matrix (rnorm(n , 0 , sigma0) , ncol = 1)
b1 <− matrix (b [c (1 : length (u1)) ,] , ncol = 1)
bstar <− b1+u1
g1 <− exp(−1/(2∗sigmar ˆ2)∗norm vec (u1)ˆ2)/(2∗pi∗sigmar ˆ2)ˆ(n/2)

98 APPENDIX B. R CODE

g2 <− exp(−1/(2∗sigmar ˆ2)∗norm vec (u1)ˆ2)/(2∗pi∗sigmar ˆ2)ˆ(n0/2)
}

e1 <− norm vec (z−A[, c (1 : length (bs ta r))]%∗%bstar)ˆ2
e2 <− norm vec (z−A[, c (1 : length (b))]%∗%b)ˆ2
z1 <− norm vec (bs ta r)ˆ2
z2 <− norm vec (b)ˆ2
f1 <− (2∗pi∗sigmap ˆ2)ˆ ((n0−n)/2)
f2 <− (2∗pi∗sigma0 ˆ2)ˆ ((n0−n)/2)

accr <− (exp((−1/2∗sigma0 ˆ2)∗ (e1−e2))∗exp((−1/2∗sigmap ˆ2)∗ (z1−z2))∗ f 1∗ f 2∗g2)/g1

i f (runif (1) < min(accr , 1)) {
b <− bstar ; n0 <− n

}

data [i] <− n0
i f (n0==1){

beta0 <− beta0 + b
} else i f (n0==2){

beta1 <− beta1 + b
} else i f (n0==3){

beta2 <− beta2 + b
} else i f (n0==4){

beta3 <− beta3 + b
}

}

beta0 <− beta0/length (data [data==1])
beta1 <− beta1/length (data [data==2])
beta2 <− beta2/length (data [data==3])
beta3 <− beta3/length (data [data==4])

beta <− c (beta0 , beta1 , beta2 , beta3)

p1 <− length (data [data==1])/T
p2 <− length (data [data==2])/T
p3 <− length (data [data==3])/T
p4 <− length (data [data==4])/T

p <− c (p1 , p2 , p3 , p4)

return (l i s t (beta , p))
}

s t o c h a s t i c <− r e g r e s s i o n (T=1000000 , myseed=1, sigma0=1, sigmap=1, sigmar=1)

