
Multivariate Analysis Techniques
&

Methods for Missing Data

Master Thesis

Michael Spitieris

University of the Aegean

Department of Mathematics, Division of Statistics & Actuarial-Financial Mathematics



2



Committee:

Spyridon J. Hatjispyros
Dept. of Mathematics, University of the Aegean

Alex Karagrigoriou, Thesis Supervisor
Dept. of Mathematics, University of the Aegean

Stylianos Z. Xanthopoulos
Dept. of Mathematics, University of the Aegean

3



4



5

Acknowledgements

First and foremost, I would like to thank my advisor, Alex Karagrigoriou, for the suggestion of
the topic! Without him this thesis would be impossible. I would like to thank him for his patience
and his guidance. Working with him has been a great opportunity for expanding my knowledge and
learning new things.

Also I would like to thank all the professors who taught me on undergraduate and postgraduate
level.

I owe special thanks to my math school teacher Konstantinos Tsoukalas for the valuable advices
during the school years.

I want to thank my friends Christos Merkatas and Kostas Kaloudis for their valuable advice during
my postgraduate studies.

Finally, words alone cannot express the thanks I owe to my parents Lygeri Pitsiakou and Spiros
Spitieris.



6



7

Abstract

The purpose of this Thesis is to illustrate Multivariate Analysis Techniques, and specifically intelligent
clustering algorithms. We will describe methods for missing data and see how missing values affect
the statistical procedures. At the end of this Thesis we will develop two new imputation methods,
named Partition Means imputation and Partition Regression imputation.

In Chapter 1 we will give the notation of multivariate data, we will describe multivariate distribu-
tions such as multivariate Normal distribution, Wishart distribution and the Hotelling T 2 distribution.

In Chapter 2 we will see three multivariate analysis techniques, Principal Component Analysis
(PCA) which used for dimension reduction, Linear Discriminant Analysis (LDA) that is a supervised
method used for classification and Clustering which belongs to the family of unsupervised methods.

In Chapter 3 we will briefly describe missing data methods. We will describe the mechanisms that
generate missing data, Missing Completely at Random (MCAR), Missing at Random (MAR) and Not
Missing at Random (NMAR). Furthermore we will describe the following methods: Complete case
Analysis, Weighting Procedures, Imputation Methods and Model-Based methods. Specifically we will
focus our interest on the imputation techniques.

In Chapter 4 we will illustrate three intelligent clustering methods which improve the accuracy of
the final partition using external sources of information. These methods modify the K-means in a way
such that the original algorithm accommodates a set of constraints. COP Kmeans accommodates a
set of Hard constraints, SCOP Kmeans accommodates a set of Soft Constraints and KSC algorithm,
a modified Kmeans which can deal with missing data. For the purposes of this Thesis, the code for
the last algorithm has been developed in R.

In Chapter 5 we will develop two new imputation methods. These new approaches divide the data
set into k homogeneous subsets, where each subset is treated as an individual data set. In each subset
we will perform mean imputation and regression imputation.
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Chapter 1

Multivariate Statistical Analysis

Multivariate data consist of observations on several different variables (features) for a number of in-
dividuals or objects. In this chapter we will describe briefly summary statistics of multivariate data,
multivariate distributions (Gaussian, Wishart, Hotelling), we will give the unbiased estimators of mean
and variance and finally we will provide some simple tests of hypotheses.

1.1 Notation

We begin with an example of multivariate data.
Suppose we have observations for 4 students about their height, weight and age. A simple way to
organize these data is in matrix form.

Student Heigh in cm Weight in kg Age

1 167 67 21
2 178 75 22
3 162 52 20
4 190 85 21

Table 1.1: Multivariate example

In this example we have 4 observations (students) with 3 variables (Height,Weight and Age), in total
we have 4× 3 = 12 measurements. In general we denote the number of variables by p and the number
of objects or individuals by n. Thus the data matrix consists of n rows and p columns and each
element xij represents the jth variable of the ith observation (i = 1, . . . , n, j = 1, . . . , p) and will be
denoted by X.

X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp


In this form the data matrix of the example is

X =


167 67 21
178 75 22
162 52 20
190 85 21

 .
17



18 CHAPTER 1. MULTIVARIATE STATISTICAL ANALYSIS

The data matrix can be seen as n row vectors denoted by xT1 to xT . Thus

X =


xT1
xT2
...

xTn

 ,
where xTi denotes the transpose of xi and xTi = (xi1, xi2, . . . , xip) is the ith row of the data matrix.

1.2 Summary Statistics

The Mean Vector

In the univariate case if we have a sample x1, . . . , xn the sample mean is given by

x̄ =
1

n

n∑
j=1

xj .

In the multivariate case the sample mean is the vector

X̄ =


x̄1

x̄2
...

x̄p

 ,
where x̄j = 1

n

∑n
i=1 xij , j = 1, . . . , p is the mean vector of the jth variable (column).

Covariance Matrix

The sample Covariance between variables Xj and Xk is

sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k),

and if j = k then the covariance sjj is the sample variance of the jth variable.
In multivariate data we can define the Covariance Matrix which is a symmetric and positive definite
(p.d.) matrix with diagonal elements the variances of variables and the other elements the covariances
that correspond in each row and column

S =


s11 s12 . . . s1p

s21 s22 . . . s2p
...

...
. . .

...
sp1 sp2 . . . spp

 ,
where s2

j = sjj is the sample variance of the variable Xj .

Correlation Matrix

The Correlation matrix is the matrix that contains as elements the Pearson correlation coefficients for
each pair Xi and Xj of variables. Pearson correlation coefficient measures only the linear correlation.
If we want to measure non linear correlation the Spearman coefficient is suitable for every form of
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monotone correlation. Pearson correlation coefficient can be used only for quantitative data.
The general form of the Correlation Matrix is

R =


1 r12 . . . r1p

r21 1 . . . r2p
...

...
. . .

...
rp1 rp2 . . . 1

 ,
where rij =

sjk
sj ·sk =

sjk√
s2jj

√
s2jj

, j, k = 1, 2, . . . , p and −1 ≤ rij ≤ 1.

1.3 Graphical Representations

1.3.1 Scatter plots

Scatter plots are bivariate or trivariate graphs of plotted points that show the relationship between
two or three data sets. In multivariate data analysis the number of dimensions (variables) is usually
bigger than 3. A simple approach is to draw all the possible scatter plots for all pairs of variables.
As example we will use the banknote data set1.The data set contains six measurements made on 100
genuine and 100 counterfeit old-Swiss 1000–franc bank notes. The variables are

1. Status: the status of the banknote (genuine or counterfeit)

2. Length: Length of bill (mm)

3. Left: Width of left edge (mm)

4. Right: Width of right edge (mm)

5. Bottom: Bottom margin width (mm)

6. Top: Top margin width (mm)

7. Diagonal: Length of diagonal (mm)

Figure 1.1: Scatter plot of banknote data

1Source Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman & Hall,
Tables 1.1 and 1.2, pp. 5-8)
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In Figure 1.1 we see that the variables Left and Right are highly correlated.

1.3.2 Chernoff Faces

Chernoff faces display multivariate data in the shape of human face. The size of the individual parts
(eyes, hair, nose etc) are assigned to certain variables. As example we will use crime data2 The data
set is consisted of 50 observations(states) and 4 variables (murder,assault,UrbaPop and Rape) of US
crime rate by state.

Figure 1.2: Chernoff faces of crime data

Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware

Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas

Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi

Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York

North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina

South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia

Wisconsin Wyoming

where

1. height of face: murder

2. width of face: assault

3. structure of face: UrbanPop

4. height of mouth: Rape

We see that in the states of Florida or North Carolina the criminality is high.

2McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.
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1.3.3 Andrews Curves

Each observation xi = (Xi1, Xi2, . . . , Xid) is an element of Rd. To visualize them Andrews3 defines a
Fourier series

fX(t) = X1/
√

2 +X2 sin t+X3 cos t+X4 sin(2t) +X5 cos(2t) + . . .

and this function is plotted for −π < t < π. Andrews curves that are represented by functions close
together suggest that the corresponding data points will also be close together. As example we will
use the banknote data set, we will choose the observations 91 to 110 (the first 10 are genuine and the
last 10 are counterfeit).

Figure 1.3: Andrews curves of banknote data.

1.4 Multivariate Distributions

One important concept in multivariate analysis is the idea of multivariate probability distributions. In
the univariate case the interest is focused on the distribution of each random variable Xi separately.
This can not be assumed in the multivariate case because of the dependence between them. To
account such dependencies the joint probability density function (pdf) and the joint probability mass
function (pmf) are used in the multivariate case. Consider the case of two random variables X and
Y . Probabilities of events defined in terms of these variables can be obtained by operations involving
the cummulative distribution function (cdf)

F (x, y) = P (X ≤ x, Y ≤ y),

in the case that F (x, y) is absolutely continuous (the partial derivative exists almost everywhere)

f(x, y) =
d2F (x, y)

dxdy
,

and

F (x, y) =

∫ y

−∞

∫ x

−∞
f(u, v)dudv.

3Andrews, D. F. (1972). Plots of high-dimensional data. Biometrics, 125-136.
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The nonnegative function f(x, y) is called joint density of X and Y and the pair (X,Y ) defines a
random point in a plane.
For the case of p random variables, the joint probability function of X1, X2, . . . , Xp is f(x1, x2, . . . , xp).
The following distributions are common in the analysis of multivariate data and denoted by the joint
pdf

• The marginal distribution of the random variable Xi is

f(xi) =

∫
x1

∫
x2

. . .

∫
xi−1

∫
xi+1

. . .

∫
xp

f(x1, . . . , xp)dx1dx2 . . . dxi−1dxi+1 . . . dxp.

Generally the marginal distribution of X1, X2, . . . , Xm, m < p is the joint distribution of them
and is given from

f(x1, x2, . . . , xm) =

∫
xm+1

∫
xm+2

. . .

∫
xp

f(x1, . . . , xp)dxm+1 . . . dxp.

• The conditional probability of the random variables X1, X3 given X2, X4, . . . Xp is defined as

f(x1, x3|x2, x4, . . . , xp) =
f(x1, x2, . . . , xp)

f(x2, x4, . . . , xp)
.

• The expected value of the function g(X1, X2, . . . , Xp) is defined as

E[g(X1, X2, . . . , Xp)] =

∫
x1

. . .

∫
xp

g(X1, X2, . . . , Xp)f(x1, x2, . . . , xp)dx1 . . . dxp

Definition 1.4.1 A Random Vector xT = (X1, X2, . . . , Xp) is a vector where all Xi are random
variables.

Suppose Xp×1 is a random vector

x =

X1
...
Xp


• the expected value of the random variable is

E(x) = µ =

E(X1)
...

E(Xp)

 =

µ1
...
µp


and if Cm×p is a matrix and bp×1 is a vector the expected value of Y = Cx + b is

E(Y ) = CE(x) + b

• the covariance matrix of the random vector x is

Cov(x) =


V ar(X1) Cov(X1, X2) . . . Cov(X1, Xp)

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xp)
...

...
. . .

...
Cov(Xp, X1) Cov(Xp, X2) . . . V ar(Xp)

 .
It is easy to see that the covariance matrix is symmetric(cov(Xi, Xj) = cov(Xj , Xi)), and if
Cm×p is a matrix and bp×1 is a vector the covariance matrix of Y = Cx+ b is

Cov(Y ) = Cov(Cx+b) = CCov(x)CT
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1.5 The Multivariate Normal Distribution

The most important multivariate probability distribution is the multivariate normal. If we write the
p.d.f of univariate normal with mean µ and variance σ2 as

f(x) = {2πσ2}−1/2 exp{−1

2
(x− µ){σ2}−1(x− µ)}

a plausible extension to p variates is

f(x) = |2πΣ|−1/2 exp{−1

2
(x− µ)TΣ−1(x− µ)} (1.1)

where µ is the mean vector of x and Σ is the covariance matrix of x as defined in 1.4.

Definition 1.5.1 The random vector x is said to have a p dimensional normal (or Gaussian) distri-
bution with mean vector µ and covariance matrix Σ if its pdf is given by (1.1). We write x ∼ Np(µ,Σ)

Theorem 1.5.1 Let x ∼ Np(µ,Σ) and ap×1 a constant vector (not random variable) and y = aTx,
then

y ∼ N (aTµ,aTΣa) (1.2)

A useful application of the theorem (1.5.1) is to find the distribution of the sample mean, from a
sample where the values are not independent. Let X1, . . . , Xn be the correlated observations where
the vector

x =
[
X1 X2 . . . Xn

]T ∼ Nn(µ,Σ).

We can define as an×1 the vector

aT =
[

1
n

1
n . . . 1

n

]
consequently

x̄ =

∑n
i=1Xi

n
= aTx ∼ N (aTµ,aTΣa)

where

aTµ =

∑n
i=1 µi
n

and

aTΣa =

∑n
i=1

∑n
j=1Cov(Xi, Xj)

n2
.

Therefore

x̄ ∼ N

(∑n
i=1 µi
n

,

∑n
i=1

∑n
j=1Cov(Xi, Xj)

n2

)
.

In the case of independent and identically distributed random variables Xi, x̄ ∼ N (µ, σ2)

Theorem 1.5.2 Let x ∼ Np(µ,Σ) and y = Ax + c where A is any (q × p) matrix and c (p × 1)
vector, then

y ∼ Nq(Aµ+ c, AΣAT ) (1.3)
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Theorem 1.5.3 Let x with pdf given by the equation (1.1), and

y = Σ−1/2(x− µ) (1.4)

(y is the Mahalanobis Transformation) where Σ−1/2 is the square root of Σ−1. Then yT1 , y
T
2 . . . , y

T
p

are independent N (0, 1) variables.

Theorem 1.5.4 Let x with pdf given by the equation (1.1), then

(x− µ)TΣ−1(x− µ) ∼ χ2
p. (1.5)

Theorem 1.5.5 Let x with pdf given by the equation (1.1), then all linear (non-trivial) combinations
of the elements of x are univariate normal.

Theorem 1.5.6 If x ∼ Np(µ,Σ), then Ax and Bx are independent if and only if AΣBT = 0.

Theorem 1.5.7 Let x ∼ Np(µ,Σ) and xT = (X1, X2, . . . , Xp). Suppose that we want to calculate
the distribution of the first q variables, the vector of X1, . . . , Xq is x = (X1, . . . , Xq) (q < p).If

yq×1 = Aq×pxp×1, where Aq×p = [Iq×q
...0q×(p−q)] then from the theorem (1.5.2) can be derived that

y ∼ Nq(ATµ,ATΣA).

Theorem 1.5.8 Let x ∼ Np(µ,Σ), the conditional distribution of x1 for a given x2 of is

x1|x2 ∼ Nq(µ1 + Σ12Σ−122 (x2 − µ2),Σ11 −Σ12Σ−122 Σ21) (1.6)

where x =

(
x1

x2

)
, q is the dimension of x1 vector,

µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Estimation of Parameters

The unknown parameters of multivariate normal distribution is the mean vector µ (vector (p×1) and
the p× p Covariance matrix Σ. We have to estimate p(p+ 1)/2 parameters for the covariance matrix
(because it is symmetric) and p for the mean vector. The problem of estimation is complicated due
to the number of equations needed (p(p+ 3)/2).
Assume that we have n random p-vectors x1,x2, . . . ,xn, iid (independent and identically distributed)
as multivariate Normal vectors,

xi ∼ Np(µ,Σ), i = 1, 2, . . . , n,

where the parameters µ and Σ are both unknown. Using the method of maximum likelihood (ML)
we derive that

µ̂ = X̄ (1.7)

and

Σ̂ = S, (1.8)

where S is the sample covariance matrix as defined in the Section 1.2. Note here, that the same results
can be derived using the method of moments.
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1.6 Wishart distribution

Let x1,x2, . . . ,xn be independent random (p×1) vectors where xi ∼ Np(µ,Σ), i = 1, 2, . . . , n. We say
that the random and positive definite symmetric (p× p) matrix

W =

n∑
i=1

XiX
T
i , (1.9)

has the Wishart distribution with n degrees of freedom and matrix Σ. If µi = 0 for all i, the Wishart
distribution is termed central, otherwise noncentral. If W has a Wishart density we write

W ∼ Wp(n,Σ). (1.10)

Some interesting points about the Wishart are

• when p = 1, W1(n, σ2) is identical to the σ2χ2
n distribution

Wishart which is denoted by W1(n,Σ,µ) where µ =
∑n

i=1 µi is the noncentrality parameter

• E(W) = nΣ

• The inverse of a matrix W that is distributed as inverse Wishart and is useful in Bayesian
Statistics.

• The Wishart distribution is very important because it is the distribution of the sample covariance
matrix

• if the mean values of vectors xi are not equal to zero, we have the noncentral.

Theorem 1.6.1 Suppose a random sample of independent random vectors x1,x2 . . . ,xn. If xi ∼
N (µi,Σ), then

nS =
n∑
i=1

(xi − x̄)(xi − x̄)T ∼ Wp(n− 1,Σ). (1.11)

Theorem 1.6.2 The sample mean vector x̄ and the sample covariance matrix S are independent.

Properties of the Wishart Distribution

1. Let Wi ∼ Wp(ni,Σ), i = 1, 2, . . . ,m, be independently distributed. Then

p∑
i=1

Wi ∼ Wp(

p∑
i=1

ni,Σ)

.

2. Suppose W ∼ Wp(n,Σ) and A a (q × p) matrix of fixed constants with rank q. Then,

AWAT ∼ Wp(n,AΣAT)

.

3. Suppose M ∼ W(m,Σ) and c is a (p× 1) vector, then

cTMc

σ2
∼ χ2

m

where σ2 = cTΣc.
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1.7 The Hotelling T 2 Distribution

Theorem 1.7.1 Suppose a random vector x and a random matrix W which are distributed as Np(µ,Σ)
and Wp(m,Σ) then the quantity

(x− µ)TM−1(x− µ) ∼ T 2(p,m) (1.12)

This theorem is very important. Indeed, from previous theorems we know that

x̄ ∼ Np(µ,
1

n
Σ)

and

nS =
n∑

i=1

(xi − x̄)(xi − x̄)T ∼ Wp(n− 1,Σ)

so that from the above theorem the following results can be derived

T2 = (n− 1)(x̄− µ)TΣ−1(x̄− µ) ∼ T 2(p,n− 1)

. Some useful properties are

• m−p+1
mp T 2(p,m) ∼ F(p,m− p + 1)

• T 2 is invariant under linear transformations

• T 2 is a generalization of the simple t distribution and if p = 1 then T 2 is t = x̄−µ
σ/
√
n

1.8 Hypothesis Testing

The advantage of multivariate analysis is that we can create test of hypotheses for a variety of variables
simultaneously making use of the information that can be drawn from the covariance. A simple
approach is to create a test of hypothesis for each variable separately, which is inefficient. Suppose
we have 4 variables and the test of hypothesis for each one separately has a level of significance 5%
then the significance level of the multiple test will be 1 − 0.954 which is equal to 19% therefore the
probability of error is very large. An important problem in this simple approach is that we lose the
information that the covariance can give us because for simplicity we have assumed independence.

1.8.1 Testing hypotheses on the multivariate normal vector

Multivariate Test with known Σ

Consider testing a null hypotheses H0 : µ = µ0 against an alternative hypothesis H1 : µ 6= µ0. In
this case the distribution of the likelihood ratio statistic under H0 is:

W = n(x̄− µ0)TΣ−1(x̄− µ0) ∼ χ2
p.

We reject H0 at level α if

W > χ2
p,α
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Multivariate Test with Σ unknown

Consider again testing a null hypotheses H0 : µ = µ0 against an alternative hypothesis H1 : µ 6= µ0.
In this case the statistic that is used is

T2 = n(x̄− µ0)TS−1(x̄− µ0)

which follow a T 2(p, n− 1) distribution. We can use the transformation

F =
n− p
p(n− 1)

T 2 ∼ Fp,n−p

and we reject the H0 at level α if
F > Fp,n−p,α.

Multivariate Test for Equality of Mean Vectors when Σ1 6= Σ2

Consider testing a null hypotheses H0 : µ1 = µ2 against an alternative hypothesis H1 : µ1 6= µ2.
In this case we will consider the modified T 2 Hotelling’s statistic

T 2 = (x̄1 − x̄2)T
{

1

n1
S1 +

1

n2
S2

}−1

(x̄1 − x̄2),

which for large samples is approximately χ2
p distributed. We reject the H0 at level α if

T 2 > χ2
p,α

If the samples are small we can calculate the F transformation

F =
n1 + n2 − p− 1

p(n1 + n2 − 2)
T 2 ·∼ Fp,ν

where ν is given by

1

ν
=

2∑
i=1

1

ni − 1

{
(x̄1 − x̄2)TS−1

T ( 1
ni

Si)S
−1
T (x̄1 − x̄2)

T 2

}2

and

ST =
1

n1
S1 +

1

n2
S2.

We reject H0 at level α if
F > Fp,ν,α.

For further reading please see Seber (1984)

Testing Homogeneity of Covariance Matrices

Suppose that Σi, i = 1, 2, . . . , k is the covariance matrix of the population i. We need to test the
hypotheses
H0 : Σ1 = Σ2 = . . . = Σk against
H1 : at least two are different.
The test statistic is called Box-M and uses the statistic

M = φ
k∑

i=1

[(ni − 1)ln(|S−1i Spooled|)]

where p is the number of variables, Spooled =
∑k

i=1(ni−1)Si

n−k
φ = 1− 2p2+3r−1

6(p+1)(k−1)

∑k
i=1

1
(ni−k)(n−k)

n =
∑k

i=1 ni.
The asymptotic distribution of M under H0 is χ2

p(p+1)(k−1)/2.
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Chapter 2

Multivariate Analysis Techniques

In this chapter we will illustrate three multivariate analysis techniques. The first is Principal Com-
ponents Analysis (PCA) which is used for dimension reduction. The second method is Discriminant
Analysis (DA) that is a supervised method used for classification problems. The third method belongs
to the family of unsupervised methods for clustering of data. Specifically we will illustrate the K–means
and Hierarchical clustering algorithms, both of which belong to the third class.

2.1 Principal Component Analysis

The Principal Components Analysis method is used to create linear combinations of the initial vari-
ables which are uncorrelated and explain the same amount of variation contained in the initial set of
variables. Suppose that we have a random vector x = (X1 X2 . . . Xp) with covariance matrix

Σ =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p

 .

Now consider the linear combinations

Y1 = a11X1 + a12X2 + · · ·+ a1pXp

Y2 = a21X1 + a22X2 + · · ·+ a2pXp
...

Yp = ap1X1 + ap2X2 + · · ·+ appXp.

We can write these equations in matrix form as Y = AX where Y,X are (p × 1) vectors and A the
(p× p) matrix where

A =


a11 a12 . . . a1p

a21 a22 . . . a2p
...

...
. . .

...
ap1 ap2 . . . app

 .

The variance of the principal component Yi is given by the equation

var(Yi) =

p∑
k=1

p∑
l=1

aikailσkl = aTi Σai

29
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where ai =


ai1
ai2
...
aip

 .

The first principal component is the one with the largest variation and we write

var(Y1) =

p∑
k=1

p∑
l=1

a1ka1lσkl = aT1 Σa1

with the constraint that

aT1 a1 =

p∑
j=1

a2
1j = 1

To determine the a1j , j = 1, . . . p we will maximize the function

L(a1) = aT
1 Σa1 − λ(aT

1 a1 − 1),

where λ is the Lagrange multiplier.
Using derivatives to calculate the maximum we have

∂L(a1)

∂a1
= 2(Σ− λI)a1 = 0

consequently the maximum is given by the equation

Σa1 = λa1

which is the equation of eigenvectors of matrix Σ where λ is the eigenvalue. The variance of Y1 will
be equal to λ and since Y1 is reputed to carry the largest variation, λ will be chosen to be the largest
eigenvalue λ1 of Σ. As a result a1 will be the associated eigenvector

Thus if

λ1 > λ2 > . . . > λp−1 > λp,

then the pth principal component Yp will carry variation equal to λp and the vector ap will be the
associated eigenvector.

Therefore

• The greatest eigenvalue and eigenvector correspond to the first principal component Y1, the
second greater eigenvalue corresponds to the second principal component etc.

• The variance of each principal component is equal to the corresponding eigenvalue V ar(Yj) = λj

• The principal components are uncorrelated thus the covariance matrix is a diagonal matrix with
eigenvalues

• The total variance of principal components will be equal to the initial amount of variation

• The quantity
λj∑p
i=1 λi

is the percentage of the total variation that is explained by the principal

component j.

• The quantity
∑k

j=1 λj∑p
i=1 λi

is the percentage of the total variation that is explained by the first k

principal components.
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Note that if the variables are not measured in the same scale it is necessary to normalize the variables,
and we use the correlation matrix instead.

PCA is a useful method

• In linear regression when the covariates are correlated we face the problem of collinearity where
the OLS estimation is inconsistent.

• In graphical representations to multivariate data due to the high dimensionality are often quite
complex. If the first few principal components explain a large part of the total variation we can
achieve a good graphical representation, focusing exclusively on them.

• In data mining where we can compress the information from large data set into a reduced number
of dimensions.

Principal Components Analysis Procedure

Step 1: The first step of the procedure is to check if the variables are correlated from the covariance
matrix. If they are not it is not reasonable to continue the procedure. Variables that are not correlated
with others are not useful to the analysis.
Step 2: If the units of measurement are not the same for all variables we use the correlation matrix.
Step 3: We calculate eigenvalues and eigenvectors of the matrix.
Step 4: Choose the number of components. This can be chosen by Kaiser’s criterion, Scree plot, or
to choose a significance proportion (e.g. 90%) of the total variation to be explained by the principal
components.

2.1.1 Example of PCA

The Swiss Bank Notes data set1 consists of 200 bank notes (100 genuine and 100 counterfeit) and the
variables are

1Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman & Hall, Tables
1.1 and 1.2, pp. 5-8.
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Figure 2.1: Scatter Plot of Swiss Bank Notes

X1: Length (Length of bill (mm))
X2: Left (Width of left edge (mm))
X3: Right (Width of right edge (mm))
X4: Bottom (Bottom margin width (mm))
X5: Top (Top margin width (mm))
X6: Diagonal (Length of diagonal (mm))

In this data set the variables are on the same scale thus for the principal components procedure we
will use the sample covariance matrix. From the scatter plot it’s easy to see that the variables are
correlated so it is reasonable to use the PCA method for dimension reduction. The eigenvalues are

λ = (2.98530335, 0.93094242, 0.24219664, 0.19368545, 0.08478579, 0.03533710)

and the corresponding eigenvectors are the columns of the matrix

A =



−0.04 0.01 −0.33 0.56 0.75 0.10
0.11 0.07 −0.26 0.46 −0.35 −0.77
0.14 0.07 −0.34 0.42 −0.53 0.63
0.77 −0.56 −0.22 −0.19 0.10 −0.02
0.20 0.66 −0.56 −0.45 0.10 −0.03
−0.58 −0.49 −0.59 −0.26 −0.08 −0.05
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From the matrix A we derive that the first two principal components are

Y1 = −0.04X1 + 0.11X2 + 0.14X3 + 0.77X4 + 0.20X5 − 0.58X6

Y2 = 0.01X1 + 0.07X2 + 0.07X3 − 0.56X4 + 0.66X5 − 0.49X6

which explain 87, 57% of the total variation (Table 2.1) and if we choose three principal components
they will explain 92.98% of the total variation.

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 1.7321 0.9673 0.4934 0.4412 0.2919 0.1885
Proportion of Variance 0.6675 0.2082 0.0542 0.0433 0.0190 0.0079
Cumulative Proportion 0.6675 0.8757 0.9298 0.9731 0.9921 1.0000

Table 2.1: Importance of components

The first principal component is essentially the difference between the Bottom and Diagonal and the
second is the difference between the Top and the sum of Bottom and Diagonal.
There are many methods for choosing the number of principal components, some of them are:

• Choosing the proportion of the total variation that is explained by the first q prin-
cipal components (e.g.80% or 90%)

• Kaiser’s Criterion: Let λ, i = 1, 2, . . . , k be the eigenvalues of the matrix. We choose the
eigenvalues that are greater than λ̄ =

∑k
i=1 λi/k. In this example λ̄ = 0.75 thus we choose 2

components.

• Scree Plot: is a plot where the X axis denotes the number of components and the corresponding
eigenvalues (variances) are represented at the Y-axis. The optimum number of components
happens around the ”elbow”, where the graph becomes flat. If we use the scree plot method,
the number of components will be three (see Figure 2.2)
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Figure 2.2: PCA Scree Plot

The next graph shows which of the initial variables are most correlated with Y1 and Y2

Figure 2.3: Correlation of initial variables

The next figure plots the estimated loadings of the first two principal components using arrows to
indicate their directions.
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Figure 2.4: Biplot of the first two principal components

2.2 Discriminant Analysis

Suppose that we have two populations π1 and π2 with known distributions N (0, 1) and N (1, 2)
respectively, and suppose that we have a new observation x = 2 and we need to classify x to
one of these populations. A simple way to classify x is to calculate the likelihood of observa-
tion x under the two distributions and choose the one with the greater likelihood. By calculating
P (π1|x) = f(2|µ = 0, σ2 = 1) = 0.07635476 and P (π2|x) = f(2|µ = 1, σ2 = 2) = 0.1467627 we classify
the observation to the second population. We can generalize this for more than two populations and
for multivariate vectors x by classifying each observation x to the population for which the value of
P (πi|x) is greatest.
Using the Bayes theorem we derive that

P (π|x) =
P (x|πi)P (πi)

P (x)
=

pif(x|πi)∑k
j=1 pjf(x|πj)

where P (πi) = pi and k is the number of populations.
Let k = 2, then we classify x to population 1 if

p1f(x|π1)

p2f(x|π2)
> 1

and this can be written as

f(x|π1)

f(x|π2)
>
p2

p1
.
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Discriminant Analysis Procedure2

• Step 1: Collect training data
We collect the training data that we actually know to which population each subject belongs

• Step 2 : PriorProbabilities
The prior probability πi represents the expected portion of the community that belongs to
population πi. There are three choices:

1. Arbitrary priors are selected according to the investigators beliefs regarding the relative
population sizes with the constraint that

p̂1 + p̂2 + · · ·+ p̂k = 1

2. Equal priors:

p̂i =
1

k

3. Estimated priors:

p̂i =
ni
N

where ni is the number of observations from population πi in the training data and N is
the total number of observations.

• Step 3: Use Barlett’s test to test the homogenity of the populations
Case 1: If the populations are homogeneous

Σ1 = Σ2 = · · · = Σk = Σ

we use Linear Discriminant analysis.
Case 2: If the populations are heterogeneous

Σi 6= Σj for some i 6= j

We do not discuss testing whether the means of the populations are different. If they are not,
there is no case for DA.

• Step 4: Estimate the parameters of f(X|πi). At this point we shall make the following assump-
tions

1. The data from group i has µi.

2. The data from group i covariance matrix Σ.

3. The subjects are independently sampled.

4. The data are multivariate normal distributed.

• Step 5 Compute discriminant functions.

• Step 6 Use cross validation to estimate misclassification probabilities.

• Step 7 Classify observations with unknown group memberships.

2https://onlinecourses.science.psu.edu/stat505/node/89

https://onlinecourses.science.psu.edu/stat505/node/89


2.2. DISCRIMINANT ANALYSIS 37

2.2.1 Linear Discriminant Analysis

In Linear Discriminant Analysis (LDA) we assume that each population πi distributed according to a
multivariate normal distribution with mean µi and common covariance matrix Σ for all populations.
We classify the observation x to the population with the largest pif(x|pi) where

f(x|πi) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(x− µi)

TΣ−1(x− µi)

]
Equivalently we can use the log transform of pif(x|πi) which is log[pif(x|pi)].
The Linear Score Function is:

sLi (X) = −1

2
µT
i Σ−1µi + µT

i Σ−1x + log pi = di0 +

p∑
j=1

dijxj + log pi

where

di0 = −1

2
µT
i Σ−1µi

dij = jth element of µTi Σ−1

Linear Discriminant Function

dLi (x) = −1

2
µT
i Σ−1µi + µT

i Σ−1x = di0 +

p∑
j=1

dijxj

To calculate µ and Σ we use the estimators x̄ and Sp (pooled covariance matrix) respectively where

Sp =

∑k
i=1(ni − 1)Si∑k
i=1(ni − 1)

to obtain the estimated linear score function:

ŝLi (x) = −1

2
x̄T
i S−1p x̄i + x̄T

i S−1p x + log p̂i = d̂i0 +

p∑
j=1

d̂ijxj + log pi

where

d̂i0 = −1

2
x̄T
i S−1p x̄i

and

d̂ij = jth element of x̄T
i S−1p .

Decision Rule: Classify the sample unit into the population that has the largest estimated linear
score function.

Posterior Probabilities

The posterior probabilities measure the uncertainty regarding the classification of a unit from an
unknown group. The posterior probability that an observation belongs to the population i is

p(πi|x) =
exp ŝLi (x)∑k
i=1 exp ŝLi x
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Estimating Misclassification Probabilities

The uncertainty is a part of any statistical procedure. When we classify observations according to
a decision rule there is always a possibility of misclassification. Below we describe three methods
concerned with the estimation of the misclaffication probability.

Method 1.The confusion table describes how the discriminant function will classify each observation
in the data set. In general, the confusion table takes the form:

Truth 1 2 . . . k Total

1 n11 n12 . . . n1k n1.

2 n21 n22 . . . n2k n2.

3
...

... . . .
...

...
4 nk1 nk2 . . . nkk nk.
Total n.1 n.2 . . . n.k n..

The sum of nij , i 6= j is the number of misclassified observations, so that the misclassification proba-
bilities can be estimated can be obtained by

p̂(i|j) =

∑k
j=1 nji

ni.

where i 6= j and i is the number of column.

Method 2: Set Aside Method
Step 1: Randomly partition the observations into two ”halves”
Step 2: Use one ”half” to obtain the discriminant function.
Step 3: Use the discriminant function from Step 2 to classify all members of the second ”half” of the
data, from which the proportion of misclassified observations can be computed.
Advantage: This method yields unbiased estimates of the misclassification probabilities.
Problem: Does not make optimum use of the data, and so, estimated misclassification probabilities
are not as precise as possible.

Method 3: Cross validation
Step 1: Delete one observation from the data.
Step 2: Use the remaining observations to compute a discriminant function.
Step 3: Use the discriminant function from Step 2 to classify the observation removed in Step 1. Steps
1-3 are repeated for all observations; compute the proportions of observations that are misclassified.

2.2.2 Quadratic Discriminant Analysis

Quadratic Discriminant analysis (QDA) is used for heterogeneous variance-covariance matrices:

Σi 6= Σj for some i 6= j

The quadratic discriminant Score function is

sQi (x) = −1

2
log |Σi| −

1

2
(x− µi)

TΣ−1i (x− µi) + log pi

We use again as in LDA the estimations of the unknown quantities

sQi (x) = −1

2
log |Si| −

1

2
(x− x̄)TS−1i (x− x̄) + log pi
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Some other classification methods are

• Logistic regression

• Support Vector Machines

• Classification Trees

• Random Forest

• Neural Networks

2.2.3 Example of LDA

In this example we will illustrate the LDA method by using the Fisher’s Iris data set3. This dataset
consists of 150 observations(flowers) of three different species (setosa,versicolor,virginica) and four
variables(Sepal Length, Sepal Width, Petal Length, Petal Width). The purpose of Discriminant Anal-
ysis is to create a decision rule for discriminating the species.
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Figure 2.5: Scatter Plot of Iris

3Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II,
179–188.

The data were collected by Anderson, Ed.(1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris
Society, 59, 2–5.
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From Table 2.2 we observe that the means of the species are different thus it is reasonable to use
discriminant analysis for classification.

Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.01 3.43 1.46 0.25
versicolor 5.94 2.77 4.26 1.33
virginica 6.59 2.97 5.55 2.03

Table 2.2: Means of Iris Species

Using equal prior probabilities 1/3 the two Discriminant functions are :

Y1 = 0.83× Sepal.Length + 1.53× Sepal.Width− 2.20× Petal.Length− 2.81× Petal.Width

Y2 = 0.02× Sepal.Length + 2.16× Sepal.Width− 0.93× Petal.Length + 2.84× Petal.Width

In figure 2.6 we can see the data separation that was achieved using the Linear Discriminant Analysis
method. In Figure 2.7 the red symbols are the misclassified for each pair of variables.
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Partition Plot

Figure 2.7: Partition Plots of Iris

The confusion matrix is:

Actual/Predicted setosa versicolor virginica

setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49

total 50 49 51

Table 2.3: Confusion matrix of LDA

Here, we see that 50 of 50 (100%) setosa are expected to be correctly classified, 48 of 50 (96%) of
versicolor were correctly classified and 49 of 50 (98%) of virginica were correctly classified.

2.3 Cluster Analysis

Clustering is an unsupervised method4 of grouping observations, which are represented as vectors, in a
way such that the observations in the same group (cluster) are more ”similar” to each other than those
in other groups. There are many clustering methods (algorithms), a common distinction is among
Hierarchical and Partitional methods. More formally (Wagstaff, 2002) clustering algorithms seek
to an organization P of a data set D that optimizes an objective function f : P → R. We will see
later that these algorithms make use of a distance function d : D ×D → R, to measure the similarity
or dissimilarity of two vectors.

2.3.1 Hierarchical Methods

There are two types of Hierarchical clustering methods, agglomerative and divisive

• Agglomerative algorithms (which are the most common used) start with each observation
forming its own cluster, then clusters are successively merged, until a single cluster remains.

4Unsupervised methods aim to “learn” structures in the data. For example they aim to estimate the density function
of data.
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• Divisive algorithms start with all observations in a single cluster, which is divided to two clusters
and successively each of these clusters is divided in two until each item is its own cluster.

The result of using Hierarchical clustering methods is the dendrogram that shows how the observations
where successively merged or divided. As example we see in Figure 2.8 the dendrogram of iris data
set.
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Figure 2.8: Dendrogram of Iris data set

Generally in clustering we do not have any information about the number of clusters that data can
be divided. An easy way to choose the number of clusters is the dendrogram (e.g. in Figure 2.8 we
can choose 3). To create the dendrogram we use Measures of Association between observations and
Measures of Association between Clusters.

Measures of Association between observations:

• The most commonly used measure of association is the Euclidean distance which for p-
dimensional vectors is defined as

d(Xi,Xj) =

√√√√ p∑
k=1

(Xik −Xjk)2 (2.1)

– The Euclidean distance is sensitive to the measurement units.A solution to this problem is
to normalize the variables.

– Variables with large absolute values can determine the distance between the observations.
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• Minkowski distance is a generalization of the Euclidean distance

d(Xi,Xj) =

[
p∑

k=1

|Xik −Xjk|q
]1/q

(2.2)

• Manhattan distance is defined as

d(Xi,Xj) =

p∑
k=1

|Xik −Xjk| (2.3)

and it used in the case of outliers.

• Canberra Metric is defined as

d(Xi,Xj) =

p∑
k=1

|Xik −Xjk|
Xik +Xjk

(2.4)

• Czekanowski Coefficient is defined as

d(Xi,Xj) = 1−
2
∑p

k=1 min(Xik, Xjk)∑p
k=1(Xik +Xjk)

(2.5)

In general we can create measures of association which must satisfy the following properties5:

1. Symmetry
d(Xi,Xj) = d(Xj,Xi)

2. Positivity
d(Xi,Xj) > 0 if Xi 6= Xj

3. Identity
d(Xi,Xj) = 0 if Xi = Xj

4. Triangle inequality
d(Xi,Xk) ≤ d(Xi,Xj) + d(Xj,Xk)

Measures of Association between Clusters or Linkage Methods6:

• Single Linkage: Is the distance between the closest members of two clusters

d12 = min
i,j

d(Xi,Yj) (2.6)

5https://onlinecourses.science.psu.edu/stat505/node/140
6https://onlinecourses.science.psu.edu/stat505/node/143

https://onlinecourses.science.psu.edu/stat505/node/140
https://onlinecourses.science.psu.edu/stat505/node/143
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• Complete Linkage: Is the distance between the members that are furthest apart (most dis-
similar)

d12 = max
i,j

d(Xi,Yj) (2.7)

• Average Linkage: This method involves looking at the distances between all pairs and averages
all of these distances. This is also called UPGMA - Unweighted Pair Group Mean Averaging

d12 =
1

kl

k∑
i=1

l∑
j=1

d(Xi,Yj), (2.8)

where k is the number of observations in cluster 1 and l is the number of observations in cluster
2.

• Centroid Method: This involves finding the mean vector location for each of the clusters and
taking the distance between these two centroids.

d12 = d(x̄, ȳ) (2.9)

• Ward’s Method: This method does not directly define a measure of distance between two
points or clusters. It is rather an ANOVA based approach. At each stage, those two clusters
merge, which provides the smallest increase in the combined error sum of squares from one-way
univariate ANOVAs that can be done for each variable with groups defined by the clusters at
that stage of the process.

2.3.2 Partitioning Algorithms

Partitioning algorithms are algorithms that divide the hyperplane in such a way that every observation
belongs to one cluster. In partitioning clustering algorithms the number of clusters is considered to
be known. The most common used partitioning algorithm is the K-means Algorithm, an iterative
procedure that begins with K initial centroids (usually randomly selected) and assigns each observa-
tion to the cluster where the observation has the minimum distance from its centroid. This procedure
is repeated until convergence (the centroids can not change). K-means is a method that minimizes
within-cluster variation.



2.3. CLUSTER ANALYSIS 45

The name K-means for this algorithm was first used by James MacQueen in 1967, though the
idea existed already. The algorithm was first proposed by Stuart Lloyd in 1957 and E.W. Forgy who
essentially have published the same method.
We will give the K-means algorithm that was found by James MacQueen7

General form of K-means Algorithm

1. Choose K initial centroids

2. Assign each observation to the cluster with the minimum distance from its center

3. Re–calculate the centroids of the new clusters

4. If the centroids do not change, stop the procedure, else go back to step 2

In step 1 the K initial centroids are randomly chosen (from the data) and at the assignment step (step
2) we use the Euclidean distance (formula (2.1)). Care though must be taken if the measurement
units of the variables are not the same. If this is the case, we have to normalize them and then start
the procedure.

Algorithm 1 K-means MacQueen (1967)

1: Randomly initialize K cluster centrers µ1,µ2 . . . ,µk

2: Assignment Step
3: for i← 1 to n do
4: assign Xi to cluster k where minimizes the objective function

‖Xi − µk‖ =
√∑p

j=1(Xji − µk)2

5: end for

6: Updating Centroids Step
7: for i← 1 to K do
8: calculate µk = mean of observations assigned to cluster k
9: end for

10: Iterate between Steps (1) and (2) until convergence
11: return partition {C1, . . . , Ck}

Now we will illustrate an example of K-means algorithm on the iris dataset which consists of 150 obser-
vations, using only the variables Petal Length and Petal Width, in order to have better visualization
of how the species setosa is well separated from the versicolor and virginica species.

7MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings
of 5th Berkeley Symposium on Mathematical Statistics and Probability. 1. University of California Press. pp. 281–297.
MR 0214227. Zbl 0214.46201. Retrieved 2009-04-07.
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Figure 2.9: K-means Algorithm Procedure
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(a) Iteration Number = 1
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(b) Iteration Number = 2
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(c) Iteration Number = 3
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(d) Iteration Number = 4
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(e) Iteration Number = 5

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

(f) Iteration Number = 6
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(g) Iteration Number = 7
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(h) Iteration Number = 8
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(i) Iteration Number = 9
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(j) Iteration Number = 10

K-means is a fast algorithm that can deal with large data sets in contrast with Hierarchical methods.
The final partition obtained from K-means is strongly dependent to the initial selection of the centroids,
thus we have to run K-means several times to obtain a good partition of the data set. Another weakness
of K-means is that we have to choose the number of clusters in advance. It is not always clear how to
choose K, although as we will see below there have been proposed some empirical methods to obtain
a good estimation of K.

Choosing the Optimal Number of K

The most common issue in partitioning algorithms is choosing the optimal number of clusters. A
popular approach is to look the dendrogram but this approach is subjective and it is necessary to run
an hierarchical method first. There is a variety of methods for choosing the number of clusters in
partitioning algorithms. The most popular among these are the elbow method, the silhouette method
and the gap statistic method.

Elbow method (Scree plot): generally the basic idea of K-means algorithm, is to minimize the total
within cluster variation, or total within cluster sum of square (total WSS). The total WSS is plotted
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as a function of the number of clusters. The elbow method suggests to choose the value of K such
that the addition of another cluster does not improve further the total WSS. Sometimes the Elbow
method is ambiguous and then we have to choose an other method.

Silhouette Analysis8,9: The silhouette Analysis measures how similar an object is to the cluster
that is assigned to compared to other clusters. The Silhouette plot displays how close each point
in one cluster is to points in neighboring clusters. The silhouette width Si for each observation i is
calculated as follows:

1. For each observation i, calculate the average dissimilarity ai between i and all other points of
the cluster which i belongs.

2. For all other clusters C, to which i does not belong, calculate the average dissimilarity d(i, C)
of i to all observations of C. The smallest of these d(i, C) is defined as bi = minC d(i, c). The
value of bi is the dissimilarity between i and its closest cluster.

3. The silhouette width of observation i is given by the formula:

Si = (bi − ai)/max(ai, bi)

Observations with a large Si(almost 1) are well clustered, observations with a small Si lies between
two clusters and observations with negative Si are probably placed in the wrong cluster.

Gap statistic10,11: Gap statistic compares the pooled within cluster variation for different values of
K with their expected values under null reference distribution of the data.

Gapn(k) = E∗n[log(Wk)]− log(Wk)

where Wk = 1
2nr

Dr and Dr =
∑

i,i′∈Cr

∑
j(xij −xi′j) and E∗n is the expectation under a sample of size

n from the reference distribution.
The estimated k̂ will be the value which maximizes Gapn(k), after taking the sampling distribution into
account. This means that the clustering structure is far away from the random uniform distribution
of points. The algorithm can be summarized in the following steps

1. Cluster the data for k = 1, . . . , kmax and compute the total within cluster variation Wk.

2. Generate U reference data sets with a uniform distribution. Cluster each data set for all the
number of clusters k = 1, . . . , kmax and compute the total within cluster variation Wuk.

3. The E∗n[log(Wk)] is 1
B

∑U
u=1 log(W ∗ku). Compute Gapk and the standard deviation of the statis-

tics.

4. Choose the k̂ as the smallest value of k such the gap statistic is one standard deviation of the
gap at K + 1:

Gap(k) ≥ Gap(k+1) − sdk+1.

8 Kassambara, A. (2017). Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning (Vol. 1).
STHDA.

9 Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal
of computational and applied mathematics, 20, 53-65.

10Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423.

11Kassambara, A. (2017). Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning (Vol. 1). STHDA.
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2.3.3 Example of K-means

In this example we will illustrate the K-means algorithm in the iris dataset. We will not use the
information of the (three) species but we will try to extract this information by clustering the data
set and finding the optimum number of clusters by using the methods described above.
The data set is in this form

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.10 3.50 1.40 0.20
2 4.90 3.00 1.40 0.20
3 4.70 3.20 1.30 0.20
4 4.60 3.10 1.50 0.20

Table 2.4: Iris data set without labels

We run the K-means algorithm for k = 1, 2 . . . , 10 and from the Elbow method we can choose k=3.

Figure 2.10: Elbow Method

0

200

400

600

1 2 3 4 5 6 7 8 9 10
Number of clusters k

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

Elbow method

Optimal number of clusters

We run the K-means algorithm 25 times with k = 3, in order to find the partition with the lowest
within cluster variation. The three clusters consisted of 50, 38 and 62 observations respectively. The
corresponding cluster means are given in Table 2.5.

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.01 3.43 1.46 0.25
2 6.85 3.07 5.74 2.07
3 5.90 2.75 4.39 1.43

Table 2.5: Means of Clusters
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As we can see from the confusion matrix given in Table 2.6 below, the setosa species belongs to the
first cluster the versicolor belongs to the second cluster and the virginica to the third cluster.

setosa versicolor virginica

1 50 0 0
2 0 2 36
3 0 48 14

Table 2.6: Confusion matrix of Clustering

The algorithm wrongly classified two observations to versicolor and fourteen to virginica. In chapter
4 we will illustrate clustering algorithms using background knowledge that can increase clustering
accuracy.

The visualization of the clusters is not so easy due to the high number of the dimensions (variables).
In section 2.1 we discussed how we can reduce the dimension of a data set by keeping a high proportion
of the explained variance. In Figure 2.11 we plot the clusters as obtained by the K-means using the
first two principal components
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2.3.4 Assumptions of K-means

12 K-means considers two assumptions:

1. The clusters are spherical

2. The clusters are of similar size

Now imagine a data set that clusters can clearly be identified but K-means cannot correctly identify
them. As an example we will create a dataset consisting of two non centric circles depicted in Figure
2.12.
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Figure 2.12: Data set of two non centric circles

It’s easy to see that there are two clusters in the data set. We run k-means for k = 2 and the
clustering isn’t good.

12https://www.r-bloggers.com/exploring-assumptions-of-k-means-clustering-using-r/

https://www.r-bloggers.com/exploring-assumptions-of-k-means-clustering-using-r/
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Figure 2.13: Inaccurate clustering

Maybe if use another clustering method (e.g. EM algorithm) the problem will be solved. A simple
way to make K-means accurate in this example is to transform our data into polar coordinates and
plot them.
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Figure 2.14: Transformed data
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Now it is easier for the k-means to separate the data set in two clusters
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Figure 2.15: Clustering of transformed data

Now using the inverse transformation we can see how the initial data set is partitioned in two
clusters
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Figure 2.16: Clustering of spherical data set
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Chapter 3

Missing Data

Missing data is a common problem that almost every statistician has to deal with. The two most
common approaches is either to omit the observations with missing data or to replace them with
estimated values. There are a lot of missing data methods, though their usefulness depends on the
mechanisms that generate the missingness. This is a prerequisite chapter for the following two, thus
we will not fully describe missing data methods, though we will only cover the necessary methods for
quantitative variables. We will describe some of the simplest (historical) imputation methods such as
mean imputation and two algorithmic methods, namely imputation using kNN (k Nearest Neighbors)
and miss Forest (missing Forest).

Notation

Xcom: the set of observations that are complete (without missing values) for all the variables.
Xmis: the set of observations with missing values .
xcomi : the i observation, where the indicator com shows that are complete for all the variables .
xmisi : the i observation, where the indicator mis shows that is missing.
V com
j : the j variable, where the indicator com shows that all elements are recorded.

V mis
j : the j variable, where the indicator mis shows that some elements are missing.
xcomij : the ij element of X, where the indicator com shows that xij is present.

xmisij : the ij element of X, where the indicator mis shows that xij is missing.

3.1 Mechanisms that generate missing data

As we have described in Chapter 1 multivariate data sets can be represented by rectangular matrices,
with the rows representing the observations and the columns representing the variables. The data
matrix is denoted by X, where each element of X is usually a real number, xij ∈ R and denotes the
values of the jth variable within ith observation. A common problem is that for systematic or non
systematic reasons some of the elements xij are not observed. These elements are called missing values
or missing data. For the data set X with missing values we define the missing data indicator matrix
M = (mij), where mij = 1 if the element xij is missing and mij = 0 if xij is present:

mij =

{
1, if xij is missing

0, if xij present.
(3.1)

The matrix M defines the pattern of missing data.

Table 3.1 is an example of a data set with missing values. The elements that are missing are
x1 3, x5 3 and x6 3 from the Variable 3 and x1 4, x3 4, x4 4, x6 4 and x10 4 from the Variable 4.

55
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Variable 1 Variable 2 Variable 3 Variable 4

1 5.10 3.50 · ·
2 4.90 3.00 1.40 0.20
3 4.70 3.20 1.30 ·
4 4.60 3.10 1.50 ·
5 7.00 3.20 · 1.40
6 6.40 3.20 · ·
7 6.90 3.10 4.90 1.50
8 6.30 3.30 6.00 2.50
9 5.80 2.70 5.10 1.90

10 7.10 3.00 5.90 ·

Table 3.1: Data set with missing values

The corresponding indicator missing data matrix is

M =



0 0 1 1
0 0 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


.

Some missing data methods can be applied in every missing data pattern but others can be used
only in specific missing data patterns. For further reading see Little & Rubin (2002, Chapter 1).

The most crucial question when we deal with missing data is if they occur randomly or in a sys-
tematic way. The important role of the mechanism that generates missing data was introduced in
the theory of Rubin (1976), where the indicators of missing values are treated as random variables,
thus we assign them a distribution. Following Little & Rubin (2002) the missing data mechanism is
characterized by the conditional distribution of M given the data set X, f(M |X,φ), where φ are the
unknown parameters of the distribution. The types of missing data are missing completely at random
(MCAR), missing at random (MAR) and missing not at random (NMAR).

• MCAR Values in a data set are Missing Completely at Random if the reason(s) that
missing values are generated does not depend on any of the values of the elements on the data
X missing or observed. We write that

f(M |X,φ) = f(M |φ) ∀X,φ. (3.2)

Note that in the case of MCAR the full observed values are in effect a random sample of the
data set.

• MAR Values in a data set are Missing at Random if they are not missing completely random,
though their missingness is related only with the observed values (Xcom) and not with the missing
(Xmis), we write that

f(M |X,φ) = f(M |Xcom, φ) ∀Xmis, φ. (3.3)
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• NMAR Values in a data set are Not Missing at Random if the distribution of M is related
with values in Xmis.

Suppose that we have a data set of n observations where k observations are present and the rest n−k
are missing. A simple approach is to use only the observed data, thus we decrease the sample size
from n to k. Suppose now we want to estimate the mean of the population using the observed subset
of the data and our data are normally distributed. If the data are MCAR we can estimate the mean
of data using the sample mean of the observed data, but if the data are NMAR the estimation will be
biased. For example in Figure 3.1 if the missing values are all the values from 0 to 2 along x-axis, the
distribution will not be symmetric anymore and the estimation will be biased downward.
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Figure 3.1: Univariate normal distribution

In the case of MCAR the probability that xi, ∀xi is missing is equal to Pr(mi = 1|xi, φ) = 0.5, ∀xi
and in the case of NMAR the probability of xi is equal to Pr(mi = 1|xi, φ) > 0.5, if xi > 0 and
Pr(mi = 1|xi, φ) < 0.5 if xi < 0.

3.2 Methods for Missing Data

Following Little & Rubin (2002) missing data methods can be divided in the next four categories:

1. Complete case Analysis. In complete case analysis we use only the observations that are
recorded for all the variables. This is a simple approach and sometimes is useful when a small
amount of data is missing, though the analysis in usually inefficient and can lead in serious
biases. Suppose we have the data set that described by the Table 3.1, the complete cases are
only 4 (40%) of the data, thus we lose valuable information.
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2. Weighting Procedures. Suppose that we want to estimate the mean of a population and
we have a univariate sample of this population. Each observation i has been selected with
probability πi. The population mean can be estimated by the Horvitz-Thomson1 estimator

µ̂ =

∑ xi
πi∑ 1
πi

. (3.4)

In the case of missing values equation 3.4 can be written in the following form

µ̃ =

∑ xi
πip̂i∑ 1
πip̂i

, (3.5)

where p̂i is an estimation of the probability of response for observation i.

3. Imputation Methods. Imputation methods fill in the missing data by estimated values. The
most common used imputation methods are hot deck imputations where the missing values are
replaced by recorded values in the data set. Mean imputation is the easiest approach where
each missing value is replaced by the mean of the observed values for each variable. Regression
imputation, where missing values are replaced by predicted values from a regression model. Other
approaches are model-based imputation methods and multiple imputation methods where we
impute the missing data set m times, where imputed values are drawn for a distribution, then
we analyze each of the m completed data sets and at the end we integrate the analysis results
into one final result.

4. Model-Based Methods. These methods define a model for the non missing data where the
parameters of the model are estimated by e.g. the maximum likelihood. The analysis of the
data is based on the likelihood of this model.

3.3 Imputation Methods

3.3.1 Hot Deck Imputation

In hot deck imputation we replace the missing values with values from ”similar” presented observations.
For example following Enders (2010) consider a population survey that some of the respondents refuse
to disclose their income. The hot deck imputation method classifies the respondents into categories
based on demographic characteristics such as gender and age. Then the missing values are replaced
with random recorded draws from the income distribution of the observations that are classified in
the same category.

3.3.2 Cold Deck Imputation

In cold deck imputation we replace missing values with items from an external source, e.g. following
a previous example, values from previous population surveys or in a longitudinal setting the last
recorded value.

3.3.3 Mean Imputation

Suppose we have the data set of Table 3.1, where variables 3 and 4 have missing values. In mean
imputation we calculate the sample mean of each variable (V̄i) with missing values using only the
recorded elements (Xcom) and then we replace the missing values with the corresponding V̄i value.

1Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe.
Journal of the American statistical Association, 47(260), 663-685.
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For example in the Table the missing values in Variable 3 will be replaced by the value 4.35 and in
variable 4 by the value 1.5. The problem with mean imputation is that decreases the variance of
the data, the covariances and consequently the correlations. To fix this problem we can add to each
imputed value an error term drawn randomly from a distribution with mean 0 and variance equal to
the variance of the observed values, for example an error term ei that e ∼ N(0, varcom).

3.3.4 Regression Imputation

In regression imputation (sometimes referred as conditional mean imputation) the missing values are
estimated from a regression equation. The basic idea is to use the information of the complete cases
to estimate the missing values. We estimate a regression model only for the complete cases and then
we use the regression equation to predict the missing values. Specifically we estimate a model for the
complete cases given by the following equation:

yi = β0 + β1x1i + β2x2i + . . .+ βpxpi + εi, (3.6)

and if case k is missing, is replaced by the following value:

ŷk = β̂0 + β̂1x1k + β̂2x2k + . . .+ β̂pxpk. (3.7)

3.3.5 Stochastic Regression Imputation

Stochastic Regression imputation uses regression equations to estimate missing values by adding a
residual term. This residual term ε∗k can be a random draw of sample residuals from the complete
cases. Like simple regression imputation we estimate a model given by the equation (3.6) and the
missing case k is replaced by the following value:

ŷk = β̂0 + β̂1x1k + β̂2x2k + . . .+ β̂pxpk + ε∗k. (3.8)

3.3.6 Predictive Mean Matching

In predictive mean matching we use the complete data to fit a regression equation and we predict
the element k as before. The next step is to find for this variable the closest recorded value to the
predicted value of k element and use it to replace the missing value. For example if in Table 3.1 the
predicted value for the missing element x3 1 is 4.7 we replace this element with the value 4.9.

Note that for the last three methods all x′s for the estimated equations must present. In the case
that some of the x′s do not present we can use Chain Equations. The idea of chain equations is to
impute first the variable with the smallest amount of missing values using an regression model that
is estimated from the existing complete cases. Then the imputed data are treated as complete data
in order to impute the variable with the smallest amount of missing values as before. We repeat this
procedure sequentially until all the variables are imputed.

All methods that described until now provide easy solutions for the user but they all seem to
be inaccurate, except from the idea of chain equations that can be considered as an algorithmic
procedure. The following two algorithmic multivariate procedures are referred as two of the most
accurate imputation methods.

3.3.7 Imputation using kNN Algorithm

K Nearest Neighbors (kNN) is a multivariate non parametric method that can be used for both clas-
sification and regression. The idea of this method is to identify the k closest observations to the new
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(input) observation using a distance measure (e.g. Euclidean distance in case of continuous variables)
and classify the new observation to the majority. In kNN regression the algorithm returns the mean
vector of the k nearest observations. The values of the nearest neighbors can also be weighted by e.g.
a value inversely to the distance of each observation, wi = 1

disti
for each neighbor i.

The idea of KNNimpute algorithm2 is to find the k most ”similar” non missing observations,
xcomi ∈ Xcom, i = 1, . . . , k, to each missing observation, xmisj ∈ Xmis, and then impute each missing

element (xmisij ) by a weighted average of the k corresponding elements of Xcom. The KNNimpute
algorithm uses the non missing observations, xcomi ∈ Xcom, to identify the nearest neighbors, only for
the recorded variables for each xmisj ∈ Xmis separately. Suppose that we want to impute the missing
values for the Table 3.1 with k = 2 (using the 2 nearest neighbors), we will use the observations 2,
7, 8 and 9 (x2,x7,x8 and x9) to find them, due to the fact that they are non missing. For example
if we want to impute the missing element xmis5,3 we will use the observations x2,x7,x8 and x9 for the
variables V1, V2 and V4 that are non missing for this observation.

Algorithm 2 KNNimpute

1: For all xmisj ∈ Xmis. Compute the Euclidean distance between xmisj and all the xcomi ∈ Xcom,

using only the variables that are not missing for xmisj .

2: Impute the missing values of each xmisj by the weighted average of the k closest corresponding
elements.

Note that the weighted average is given by the equation

xmisij =

∑K
k=1wkxkj∑K
k=1wk

, (3.9)

where wk = 1
dist(xmis

j ,xk)
, computed only for the non missing variables, and k = 1, . . . ,K

Choice of k

For the choice3 of k Hastie et al. (1999) suggest a simulation on the Xobs set. We use the full
observed data by creating the same missing pattern (same proportion of missing observations and
same proportion of missing elements), then we run the algorithm for several k and choose the one
with the minimum error (difference between real and imputed values).

3.3.8 Imputation using Random Forest

Random Forest4 like kNN is one of the most accurate (non parametric) multivariate methods that
can be used for either classification and regression. As we have mentioned in the introduction of this
Chapter we will describe methods only for continuous variables, thus we will use Random Forests only
for regression.

2Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., ... & Altman, R. B. (2001). Missing
value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520-525.

3Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., & Botstein, D. (1999). Imputing missing data for
gene expression arrays.

4Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
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Regression Trees

Following James et al. (2014)5 Regression Trees6 divide the prediction space (V1, V2, . . . , Vp) into J
high-dimensional rectangles where are denoted as regions R1, . . . , RJ . The prediction ŷi for every
observation xi that xi ∈ Rj is the mean of the values in Rj .

Bagging

Instead of having a single regression we can take repeated bootstrap7, 8 samples of the data set. The
idea is to generate N bootstrapped data sets (from the initial data set) to create N regression trees.
For every regression tree we get a prediction at a point x as before, we denote this prediction as f̂n(x)
for each tree n = 1, . . . , N. The the prediction of the point x is the average of all these predictions
and is denoted as

f̂bagging =
1

N

N∑
n=1

f̂n(x). (3.10)

Bagging9 is a method that improves the accuracy of the simple regression tree.

Random Forests

The idea of Random Forests is the same as Bagging but now the trees will be a little more uncorrelated.
We build again a number of regression trees but now for a random selection of m, m < n predictors
(variables). Generally the number of predictors is approximately

√
p where p is the number of variables.

This method improves a little more the accuracy of bagging.

Miss Forest

Miss Forest10 (miss is referred to missing values) is a non parametric imputation method that can
be used either for continuous and categorical variables. The idea is to fit a random forest for the
observed values and then make predictions for the missing values. More specifically the first step is to
fill in the missing values with the mean of the corresponding variable (mean imputation), then we fit
a random forest for the fully observed values (Xobs) and we predict the missing values by this model.
We first impute the variables with the smaller amount of missing values and in each step the data
matrix is updated. When all variables are imputed we have the imputed matrix for the first iteration
of the algorithm and we denote it as Ximp

new. This imputation procedure is repeated until the stopping
criterion is met. The stopping criterion is met when the difference between the new imputed data and
the previous imputed data increase for the first time, where is defined as

∆N =

∑
j∈N (Ximp

new −Ximp
old )2∑

j∈N (Ximp
new)2

. (3.11)

More details are given to the algorithm below.

5James, G., Witten, D., & Hastie, T. (2014). An Introduction to Statistical Learning: With Applications in R.
6Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
7is a method for sampling with replacement where the samples are the same size with the initial
8Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.
9Breiman, L. ”Bagging predictors.” Machine learning 24.2 (1996): 123-140.

10Stekhoven, D. J., & Bühlmann, P. (2011). MissForest—non-parametric missing value imputation for mixed-type
data. Bioinformatics, 28(1), 112-118.
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Algorithm 3 miss Forest

1: Fill in the missing values with the mean of the corresponding variable
2: Sort the indices of the variables in increasing amount of missing values

and store them in a vector k
3: While not γ (the stopping criterion)
4: for s in k
5: Store previously imputed matrix to Ximp

old

6: Fit a random forest for the values in Y obs ∼ Xobs

7: Predict the values the values in Y mis using Xmis

8: Update the imputed matrix Ximp
old , using the predicted Y mis

9: end for
10: Update γ
11: end while
12: return the imputed matrix Ximp

Note that in miss Forest there is no parameter that need to be specified compared to kNN impu-
tation algorithm.

3.4 Experimental Results

For the experimental results we use the Iris data set11 (consists of 150 observations and 4 variables),
which is a data set without missing values. We created randomly increasing proportion of missing
values for one and two variables. We will compare four imputation methods, Mean imputation,
Regression imputation, kNN imputation and miss Forest using the mean absolute error (MAE). Mean
absolute error measures the average distance between the estimated values ŷi (imputed values) and
the original values yi, thus will be used to evaluate the accuracy of the imputation method and is
given from the following equation:

MAE =

∑n
i=1 |ŷi − yi|

n
. (3.12)

Following the notation of this chapter (3.12) can be written in the following form

MAE =

∑n
i=1 |x̂ij − xij |

n
, for one missing variable V mis

j

and in the case of more than one missing variables we write

MAE =

∑
j

∑n
i=1 |x̂ij − xij |
n

, for all indices j where are V mis
j .

11Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II,
179–188.

The data were collected by Anderson, E (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris
Society, 59, 2–5.
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Figure 3.2: Imputation methods comparison for one missing variable
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Figure 3.3: Densities of the imputed data
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We created increasingly proportions of missing values for the variable Petal Width. In Figure 3.2 we
see that the simplest imputation method, Mean imputation, has the lowest accuracy of all imputation
methods. The other three imputation methods are very accurate with very low MAE values, further-
more miss Forest seems to be the most accurate. Note that the proportion of missing values (x-lab)
is referred to the overall proportion (whole data set) and not to the missing variable. A better visual
representation can give us the Figure 3.3 where depicts the density of the original data compared with
the densities of the imputed data for each method separately.
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Figure 3.4: Missingness Pattern

Figure 3.3 is referred to 30% proportion of missing values for the variable Petal Width or 8.3%
overall. The missingness pattern is given by Figure 3.4 where the values are MCAR due to the fact
that they created randomly.

Two Missing Variables

As before we create randomly increasing proportions of missing values for two missing variables, Sepal
Length and Petal Length.



3.4. EXPERIMENTAL RESULTS 65

0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Proportion of missing values

M
A

E
 (

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
)

Regression
Mean
kNN
missForest

Figure 3.5: Imputation methods comparison for two missing variables
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Figure 3.6: Missingness Pattern of two missing variables
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The mean imputation is again by far the least accurate method and the miss Forest the most accurate
with little difference from the kNN’s imputation MAE. Regression imputation does not work well with
more than one variables missing due to the fact that the regression model looses valuable information
(uses only two of the variables to create the regression equation). Note that sequential regression
imputation can perform better in cases of more than one variables are missing.

Figures 3.7 and 3.8 depict the densities of the original and imputed data for the corresponding
missing variables. The proportion of the missing data is 12.5% and the missingness pattern is given
by the Figure 3.6.

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Mean imputation Density

Sepal Length
 

 

Actual
Mean impuation

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

Regression imputation Density

Sepal Length
 

 

Actual
Regression impuation

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

kNN imputation Density

Sepal Length
 

 

Actual
kNN impuation

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

missForest imputation Density

Sepal Length
 

 

Actual
missForest impuation

Figure 3.7: Densities for the variable Sepal Length of the imputed data
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Figure 3.8: Densities for the variable Petal Length of the imputed data

In the this section we show that the most accurate methods are multivariate algorithmic procedures.
In Chapter 5 we will illustrate a new (algorithmic) imputation method that uses the KSC algorithm,
a clustering method that can deal with missing values, which will be described in Chapter 4. This
new method improves the traditional methods, Mean imputation and Regression imputation.



68 CHAPTER 3. MISSING DATA



Chapter 4

Intelligent Clustering

In this chapter we will illustrate three clustering algorithms that can improve the accuracy of the final
Partition. The first two are modified K-means algorithms which can incorporate background knowledge
from the data set expressed as constraints. The third algorithm again a modified K-means that can
deal with missing values, without using imputation or marginalization though using the information
that can be derived from the features (variables).

4.1 Incorporating Background Knowledge

The common distinction between supervised and unsupervised learning is that supervised algorithms
recognize the information of the individual data labels. However there are a lot of forms that knowledge
can take. In this type of clustering algorithms we would like to incorporate any form of information as
a set of constraints. Suppose that we have an extended form of the data set that described in Chapter
(1.1).

Student Heigh in cm Weight in kg Age Sport Gender

Olivia 174 67 16 Basketball F
Tom 178 75 17 Football M
Helen 162 52 17 Volleyball F
George 190 85 19 Football M
· · · · · · · · · · · · · · ·

Table 4.1: Multivariate example extended

Each Student (observation) is described by a variety of features (variables), including Heigh in
cm, Weight in kg, Age, Sport and Gender (F means female and M male). When we use clustering
algorithms to derive knowledge from the data it is not possible to use all these variables. Consider
that Olivia and George are siblings and must be in the same cluster. We cannot use a variable to
capture that fact, because this requires a way to express the information of the relationship between
the two observations (students).

In this chapter we will illustrate clustering algorithms where the knowledge can be expressed as
a set of instance level constraints. We will introduce two forms of instance level constraints, Hard
constraints and Soft constraints. Hard constraints are restrictions incorporated to the algorithm that
must be satisfied in the final partition of the algorithm. Soft constraints are preferences (weights)
about the final partition of the algorithm and they offer additional flexibility to the algorithm by
modifying the objective function.

69
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4.1.1 Constraints

The K-means algorithm is a clustering algorithm that minimizes the variance (objective function) of
the final partition. When we modify K-means by incorporating a set of hard constraints that must be
satisfied, we impose an additional requirement that the algorithm return partitions that fully satisfy
the constraints. We use two types of constraints:

• A must link constraint specifies that two observations di and dj must appear in the same output
cluster. That is class(di) = class(dj), where class(d) is the cluster that contains d. We will
indicate that di must-link to dj using the notation di =m dj . A set of must-link constraints
defines an equivalence relation over D ×D where D is the data set.

• A cannot-link constraint specifies that two observations must not be placed in the same cluster.
A partition that satisfies a cannot-link constraint must have class(di) 6= class(dj), and we will
indicate that di cannot-link to dj with di 6=c dj . The relation defined by a set of cannot-link
constraints in symmetric but not transitive.

∀i, j, k : given produce

di =m dj dj =m dk di =m dk
di =m dj dj 6=c dk di 6=c dk
di 6=c dj dj =m dk di 6=c dk

Table 4.2: Hard constraints closure

If di 6=c dj and dj 6=c dk we cannot say anything about the relationship between di and dj ,
since cannot link relation is not transitive. Computing the closure in this way allows us to extend
the cannot-link relation from each item to its equivalence class. In addition, any inconsistencies or
conflicts between the constraints will be detected at this point.

Partial Labelled Data

Observation Sepal Length Sepal Width Petal Length Petal Width Species (Labels)

1 5.10 3.50 1.40 0.20 setosa
2 4.90 3.00 1.40 0.20
3 4.70 3.20 1.30 0.20 setosa
4 4.60 3.10 1.50 0.20
...

...
...

...
...

51 7.00 3.20 4.70 1.40 versicolor
52 6.40 3.20 4.50 1.50 versicolor
53 6.90 3.10 4.90 1.50
54 5.50 2.30 4.00 1.30 versicolor
...

...
...

...
...

147 6.30 2.50 5.00 1.90
148 6.50 3.00 5.20 2.00
149 6.20 3.40 5.40 2.30
150 5.90 3.00 5.10 1.80 virginica

Table 4.3: Partially labelled iris data

In huge data sets we often face the problem of partially labelled data sets. Ordinary clustering
algorithms do not make use of the additional information that the labels can give us, though they
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just discard them. This valuable source of information must be incorporated to the output partition.
Suppose that the Iris data set that consists of 150 observations and three species (setosa, virginica and
versicolor) is partially labelled with only 70 labels be known. The usual K-means algorithm will not use
the information that the labels can give us and the output partition can be summarized in Table (2.6).

Basu et al.1(2002) suggested a Semi-supervised Clustering by Seeding. This clustering method
uses the labelled data to select the initial centroids of the k-means algorithm. For each group of
observations with the same label it calculates the mean and uses it as the initial cluster centroid. This
is some kind of constraint that affects the final output (partition) of the algorithm. The approach of
the constraint clustering algorithms that we will introduce in this chapter is to create pairwise relations
between the known labels. For example if the iris data set was given from the partial labelled table
3.2 we know observations 1 and 3 must be in the same cluster, 51, 52 and 54 must be also in the same
cluster but not in the cluster where are located the observations 1 and 2 and observation 150 cannot
be in the same cluster with any of the observations 1, 3, 51, 52, 54. The transitive relation is created
by the fact that if observations 1 and 2 must be together and 51 cannot be in the same cluster with
observation 2, then 2 cannot be in the same cluster with 1. Formally we write that

(d1, d3) ∈ Con= & (d1, d51) ∈ Con6=.

Now suppose that we have the iris partial labelled data of Table 3.2 and the information that
the data can be partitioned in three groups. Due to the fact that some labels are known, when we
take the final partition of the clustering algorithm in each cluster we have representatives of each label
(species), then the problem is a semi-supervised problem where we can classify each observation to the
corresponding label (species) by labelling the whole cluster by a representative labelled observation.
For example if the observations 1, 3 and 4 where in the same cluster at the final partition of the
algorithm, then the observation 4 will be classified as setosa.

4.2 COP-KMEANS Algorithm

The COP-KMEANS2 algorithm is a modified K-means designed to accommodate a set of constraints
(must-link and cannot link). As described in Chapter 2.3.2 K-means begins with k initial (randomly
selected) centroids and assigns the observation di to the cluster C that will minimize the total variance,
then finds the mean of each cluster an iterates between these two steps until the centroids cannot
change.

Incorporating must-link constraints. The must-link constraint is an indicator that two items
must be placed in the same cluster. The modification for incorporating must-link constraints is a pre
processing step where each group of observations that must be linked together is represented by a
single observation, the mean of them. Now the reduced data set can be partitioned using the K-means
algorithm. All observations that are represented by the mean of group will be placed in the cluster
that hosts the representative of them (i.e. their mean). For example in table 3, 2 observations 1 and
3 are represented by the mean(d1, d3) = (d1 + d3)/2.

Incorporating cannot-link constraints. In the constraint K-means algorithm the cannot link
constraints indicate that two observations can not be in the same cluster. Therefore the modification
is to prune a list of possible host clusters to eliminate any solution that would violate a constraint.

1Basu, S., Banerjee, A., & Mooney, R. (2002). Semi-supervised clustering by seeding. In In Proceedings of 19th
International Conference on Machine Learning (ICML-2002.

2Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001, June). Constrained k-means clustering with background
knowledge. In ICML (Vol. 1, pp. 577-584).
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Algorithm 4 COP-KMEANS

1: Identify each group of items that must be linked together. Replace each group with a single item
that is the mean of items in the group. Update Con6= to be consistent with the reduced data.

2: Randomly initialize k cluster centrers (from the reduced data) µ1, µ2 . . . , µk

3: For each observation d in D, assign it to the cluster that will minimize the total variance, such
that violate-constraints(d,D,Con6=) is false. If no such cluster exists, halt(return{})

4: Update each cluster centroid µi by averaging all of the points dj ∈ Ci that have been assigned to
it.

5: Iterate between Steps (3) and (4) until convergence

6: return partition {C1, . . . , Ck}

violate-constraints(data point d, cluster C, cannot-link constraints Con6=)
1: For each (d, d6=)∈ Con6=: If d6= ∈ C, return true.

2: Otherwise return false.

Any inconsistencies between the constraints should be identified in step 1 of the algorithm. For
example if di =m dj and dj 6=c dk then di =m dk is an inconsistent constraint and must return a
warning to the user. Furthermore the cannot link constraints can give better initial centroids to the
algorithm which gives a faster convergence and a final partition with less total variation.

4.2.1 Evaluation of Clustering Accuracy

Rand index
In the following experimental results the clustering accuracy will be evaluated by the Rand index3

which is a metric that calculates the agreement between two partitions P1 and P2. The partition P1

will be the final partition of the clustering method and P2 the known partition of the labelled data set.
Let D = {d1, d2, . . . , dn} be the data set, P1 = {P1,1, P1,2, . . . , P1,k} and P2 = {P2,1, P2,2, . . . , P2,k},
where Pi,j , i = 1, 2 j = 1, 2, . . . , k is the cluster j(subset) of the partition i, ∪kj=1P1,j = ∪kj=1P2,j = D

and ∩kj=1P1,j = ∅ = ∩kj=1P2,j . For every pair of observations di, dj there are four possible outcomes:

1. the pair di, dj is in the same subset in P1 and in P2, the number of all these pairs is denoted by
a

2. the pair di, dj is in different subset in P1 and in P2, the number of all these pairs is denoted by
b

3. the pair di, dj is in the same subset in P1 but in different subset in P2, the number of all these
pairs is denoted by c

4. the pair di, dj is in different subset in P1 but in the same subset in P2, the number of all these
pairs is denoted by d.

The number of all possible pairs is
(
n
2

)
. Then the total agreement between P1 and P2 can be

calculated by the following equation:

Rand(P1, P2) =
a+ b(
n
2

)
.

(4.1)

3Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
association, 66(336), 846-850.



4.2. COP-KMEANS ALGORITHM 73

Adjusted Rand index
Let D = {d1, d2, . . . , dn} be the data set, P1 = {P1,1, P1,2, . . . , P1,k} and P2 = {P2,1, P2,2, . . . , P2,k},
where Pi,j , i = 1, 2 j = 1, 2, . . . , k., The four possible outcomes that we discussed in the Rand index
can be summarized in a contingency table in the following form:

H
HHH

HHP1

P2 P2,1 P2,2 . . . P2,k Sums

P2,1 n11 n12 . . . n1k n1.

P2,2 n21 n22 . . . n2k n2.
...

...
...

. . .
...

...
P2,k nk1 nk2 . . . nkk nk.

Sums n.1 n.2 . . . n.k

where nij is the number of observations d ∈ D that appear in both subsets P1,i and P2,j , we write
that nij = |Xi ∩Xj | and we denote as T the total agreement between the partitions P1 and P2 The
Adjusted Rand index4 is given by the following equation:

Adj.Rand index =
Index− Expected Index

Maximum Index− Expected Index
(4.2)

or

Adj.Rand index =

∑
i,j

(nij

2

)
−
∑

i

(
ni.
2

)∑
j

(n.j

2

)
/
(
n
2

)
1
2 [
∑

i

(
ni.
2

)
+
∑

j

(n.j

2

)
]−
∑

i

(
ni.
2

)∑
j

(n.j

2

)
/
(
n
2

) . (4.3)

The values of Rand index are between 0 and 1 and the values of Adjusted Rand index can be nega-
tive.Values close to 1 shows that the accuracy of the final partition is high.

4.2.2 Experimental Results of COP-KMEANS

For this example we will use the iris data set which consist of 150 observations (iris plants) and de-
scribed by four variables. There are three distinct classes, iris virginica, iris setosa and iris versicolor.
In our experiments the accuracy of the final partition has climbed from 88% to 93.3%, where we in-
corporated 205 constraints. Furthermore we will see the confusion matrices for a variety of constraints.

Incorporating fourteen constraints, we see in Table 3.3 that the algorithm wrongly classified four
observations to versicolor and fifteen to virginica. The overall accuracy is 88%.

setosa versicolor virginica

1 50 0 0
2 0 46 14
3 0 4 36

Table 4.4: Confusion matrix of iris with 14 constraints

Incorporating forty two constraints, we see in the Table 3.4 that the algorithm wrongly classified
five observations to versicolor and ten to virginica and the overall accuracy is 90%.

Incorporating forty four constraints, we see in the Table 3.5 that the algorithm wrongly classified
four observations to versicolor and seven to virginica and the overall accuracy is 91.3%.

Incorporating 205 constraints, we see in the Table 3.6 that the algorithm wrongly classified seven
observations to versicolor and 3 to virginica and the overall accuracy has climbed to 93.3%.

4Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.



74 CHAPTER 4. INTELLIGENT CLUSTERING

setosa versicolor virginica

1 0 45 10
2 50 0 0
3 0 5 40

Table 4.5: Confusion matrix of iris with 42 constraints

setosa versicolor virginica

1 0 44 7
2 0 6 43
3 50 0 0

Table 4.6: Confusion matrix of iris with 44 constraints

Generally it is easy to see that the relation between the accuracy of the final partition and the
number of constraints is not linear as you can see in the figure. Furthermore the accuracy of clustering
does not always depend on the number of the constraints but in the accuracy of them.
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Figure 4.1: Accuracy of COP-KMEANS

Wagstaff et. al (2002) has conducted experiments in many UCI repository data sets and has shown
that clustering accuracy steadily increases with the incorporation of constraints.
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setosa versicolor virginica

1 0 7 47
2 50 0 0
3 0 43 3

Table 4.7: Confusion matrix of iris with 205 constraints

4.3 Soft Constrained Version of COP-KMEANS

In Section 3.2 we described COP-KMEANS, a modified k-means algorithm that accommodates a set
of hard constraints (must-link and cannot-link). SCOP-KMEANS5 like COP-KMEANS is a modified
k-means that incorporates a set of soft constraints.

4.3.1 Soft Constraints

In Section 3.1.1 we defined two kinds of hard constraints. Generally we can describe the cannot-link
relation between two observations with the number −1, the must-link relation with the number 1
and if no information is given between two observations with the number 0. For soft constraints we
augment each relationship (between two observations) with a strength factor s, that indicates how
reliable the constraint and is denoted as (〈di, dj , s〉). The value of factor s ranges from −1 to 1,
where values close to 1 indicate a preference towards being grouped together and values close to −1
indicate preference against being grouped together. The constraint 〈di, dj , 1〉 is equivalent to must-link
constraint, 〈di, dj ,−1〉 is equivalent to cannot-link constraint and the constraint 〈di, dj , 0〉 is a ”don’t
care statement”. In chapter 3.1.1 we defined the hard constraints closure as:

∀i, j, k : given produce

di =m dj dj =m dk di =m dk
di =m dj dj 6=c dk di 6=c dk
di 6=c dj dj =m dk di 6=c dk

To extend this di =m dj dj 6=c dk produce di 6=c dk relation for soft constraints we write that
〈di, dj , s1〉 〈di, dj ,−s2〉 produce 〈di, dj ,−min(s1, s2)〉. The soft constraints closure is defined by the
table below:

∀i, j, k : given produce

〈di, dj , s1〉 〈dj , dk, s2〉 〈di, dk,min(s1, s2)〉
〈di, dj , s1〉 〈dj , dk,−s2〉 〈di, dk,−min(s1, s2)〉
〈di, dj ,−s1〉 〈dj , dk, s2〉 〈di, dk,−min(s1, s2)〉

Table 4.8: Soft constraints closure

and when 〈di, dj ,−s1〉, 〈dj , dk,−s2〉 we cannot say anything about the relation between di and dj .
Soft constraints is incorporated to the k-means algorithm by modifying its objective function with
real-valued penalty for violating constraints. We define CV as the maximum strength of the violated
constraints, if any. The SCOP-KMEANS objective function combine variance (k-means objective
function) with CV in the following way:

f(C1 . . . Ck) =
var

1− CV
(4.4)

where var is the variance and CV is an estimation of the proportion of the maximum strength con-
straints that are violated, weighted by their strength.

5Wagstaff, K. L., & Cardie, C. (2002). Intelligent clustering with instance-level constraints. USA: Cornell University.
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Algorithm 5 SCOP-KMEANS

1: Randomly initialize k cluster centroids µ1,µ2 . . . ,µk

2: Assign each observation d ∈ D to the cluster Cj which will minimize the objective function

f(C1 . . . Ck) =
var

1− CV

where var is the variance of the partition and CV is the value of constraint violation which
calculates from CV := constViol(d,C1 . . . Ck, P ref)

3: Update each cluster centroid µi by averaging all of the points dj ∈ Ci that have been assigned to
it.

4: Iterate between Steps (2) and (3) until convergence6

5: return partition {C1, . . . , Ck}

constViol(data point d,partition C1 . . . Ck,preferences Pref)

1: Let CVmax := 0, nConst := 0, nV iol := 0

2: For each 〈d, d′, s〉 ∈ Pref :
If |s| > CVmax,

If s > 0 and d.class 6= d′.class, then CVmax := s and nConst := nV iol := 1.
Else if s < 0 and d.class = d′.class, then CVmax := s and nConst := nV iol := 1.

Else if |s| := CVmax,
Increment nConst by 1.
If s > 0 and d.class 6= d′.class, then increment nV iol by 1.
Else if s < 0 and d.class = d′.class, then increment nV iol by 1.

3: Return CVmax ∗ nV iol
nConst .

4.4 Clustering with Missing Values

Missing values occur for a variety of reasons specifically in large data sets. The most common ap-
proaches of dealing with missing values is marginalization and imputation. Imputation methods fill
in the missing values with estimated values, where the most common among them is the mean impu-
tation. In marginalization we omit the variables with missing values or we discard the observations
that contain missing values. Both approaches are limited to what they can achieve due to the fact
that we loose valuable information. In this section we will illustrate a clustering method that can deal
with missing values without using imputation or marginalization. In contrast this method uses the
information that missing variables (variables with missing values) can give us.

4.4.1 KSC Algorithm

KSC7 (K-means Soft Constraints) algorithm is a modified k-means algorithm that designed to accom-
modate a set of soft constraints (as described in section 3.3), where can handle missing values. In
this method we will use the variables with missing values to create soft constraints. We divide the
set of variables into Vo, the set of observed variables and Vm the set of variables with missing values,

7Wagstaff, K. (2004). Clustering with missing values: No imputation required. Classification, Clustering, and Data
Mining Applications, 649-658.
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also referred to as the set of constraining features. In this algorithm we perceive Vm only as a source
of additional knowledge. As described in Chapter 3.3.1 a soft constraint between two observations
is given as a triple: 〈di, dj , s〉. We create a constraint 〈di, dj , s〉 between the observations di, dj with
values from Vm, where s is the negative Euclidean distance

s = −
√∑
v∈Vm

(di.v − dj .v)2. (4.5)

We do not create constraints with observations that have missing values. The value of s is negative
due to the fact that it shows the degree that two observations di, dj should be separated. The modified
objective function of KSC is

f := (1− w)
V ar

V armax
+ w

CVd
CVmax

, (4.6)

V ar =
∑

d∈D dist(d, µi)
2 where V armax is the total variance of the dataset (or the variance obtained

by assigning all items in the same cluster) and it used to normalize the variance of the partition. CV
is the sum of the squared strengths of violated constraints in the set of Soft Constraints (SC). CVmax

is the sum of all squared constraints, which normalizes the quantity CV and w is a weighting factor
that their values range from 0 to 1.

Algorithm 6 KSC (K-means Soft Constraints)

1: Randomly initialize k cluster centroids µ1,µ2 . . . ,µk.

2: For each observation d in D, assign it to the cluster that will minimize function

f := (1− w)
dist(d,µi)

2

V armax
+ w

CVd
CVmax

where CVd is the sum of squared violated constraints in Soft Constraints set that involve d.

3: Update each cluster centroid µi by averaging all of the points dj ∈ Ci that have been assigned to
it.

4: Iterate between Steps (2) and (3) until convergence.

5: return partition {C1, . . . , Ck}.

4.4.2 Experimental Results

Iris data set8 consists of 150 observations and 4 variables in 3 distinct classes (Species). We will create
randomly missing values to the variables Sepal Length and Petal Length.

8Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II,
179–188.

The data were collected by Anderson, Ed.(1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris
Society, 59, 2–5.
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Sepal.Length Sepal.Width Petal.Length Petal.Width

1 · 3.50 1.40 0.20
2 4.90 3.00 1.40 0.20
3 · 3.20 1.30 0.20
4 4.60 3.10 · 0.20
5 5.00 3.60 · 0.20
...

...
...

...
...

Table 4.9: Iris data set with missing values

The most common approaches while clustering with missing values is to fill in the missing values
by using an imputation method or to use only the variables that do not contain missing values
(marginalization method). We will create randomly increasing fractions of missing values and we will
compare the clustering accuracy of these methods with KSC algorithm.
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Figure 4.2: Comparison of KSC with imputation methods for two out of four missing variables

We run KSC-algorithm with w = 0.5 (proportional to the number of variables with missing values)
and K-means algorithm (for imputed and marginalized data) for six different proportions of missing
values in the data set. The accuracy of clustering while using the most common (simple) imputation
methods, mean imputation and probabilistic imputation, is very low (about 60%) when only the 0.05%
of the values is missing, and decreases rapidly while the proportion of the missing values is increasing.
Variables marginalization method is the easiest approach (we discard variables with missing values),
though it does not work well (accuracy about 55%) due to the fact that we loose valuable information.
Missing Forest and k Nearest Neighbors are proposed as two of the most accurate imputation methods,
though their accuracy depends on the number of missing values. In all proportions of missing values
KSC-algorithm’s accuracy is greater (about 85%) than the other methods and as we can see in figure
3.2 does not fall as the number of missing values increases.
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4.4.3 Choice of w (weight)

Following Wagstaff et al. (2004) there is no general rule for selecting the best w value, though it can
be estimated by clustering with several different values for w on a small labeled subset of the data.
The general idea is to choose a weight proportional to the number of variables with missing values,
though if we know that one or more variables contribute more to separation of the final partition, they
should be given a larger weight.

We run KSC algorithm for all the possible combinations of two missing variables (variables with
missing values), and for 99 different w (weight) values from 0.01 to 0.99. Values close to 0 give more
weight to the non missing variables and values close to 1 give more weight to the missing variables.
According to Figure 4.3, approximately in all the cases a weight equal to the proportion of the number
(w = 0.5) of missing variables achieves a very accurate clustering outcome.

Figure 4.3: Weights comparison for two missing variables

In the diagonal of the matrix plot (Figure 4.4) we see the densities of species for each variable. We
can derive that the greatest separation among species is achieved by the variable Petal Length, the
second greatest separation is achieved by the variable Petal Width, the variable Sepal Length does not
give us a very good separation and the variable Sepal width does not separate the species at all.

We run again KSC algorithm for 99 different w (weight) values from 0.01 to 0.99, but now for
only one missing variable. In the case of two missing variables a weight proportional to the number
of the missing variables can be a good choice. Now in the case of one missing variable the value of w
depends on the separation ability of the missing variable.
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Figure 4.4: Iris summary matrix plot

As we mentioned before the variable Sepal Width does not separate the species at all. As we can
see in Figure 4.5 the clustering accuracy is approximately the same with values of w from 0.01 to 0.6.
When the missing variable is the Petal Length its easy to see that the clustering accuracy is very low.
This happens because the variable Petal Length gives the greatest separation among the species, and
if is missing we loose valuable information about the separation. In Figure 3.5 we can see that a value
of w between 0.7 and 0.9 can increase the clustering accuracy.

Figure 4.5: Weights comparison for one missing variable



Chapter 5

Partition Imputations

The main purpose of this work is to describe multivariate analysis techniques and specifically clustering
methods. In Chapter 2 we have fully described K-means, the most popular clustering method. In
Chapter 3 we briefly described missing data methods and specifically imputation methods. In Chapter
4 we described 3 intelligent clustering methods, COP-Kmeans, SCOP-Kmeans and KSC (Kmeans Soft
Constraints) algorithm, where COP-Kmeans is a modified Kmeans that incorporates external sources
of information as a set of hard constraints in order to improve the accuracy of the final partition.
SCOP-Kmeans like COP-Kmeans is a modified Kmeans that incorporates a set of Soft constrains, and
KSC is an algorithm that has a build in routine which uses the missing values as an external source
of information, and improves the accuracy of the final partition compared with the traditional missing
data methods (imputation, variables or observation marginalization). In this Chapter we will illustrate
a new imputation method that was developed for the purposes of this thesis. This method is somehow a
combination of KSC algorithm and two of the most traditional imputation methods, Mean imputation
and Regression imputation.

5.1 APPROACH

Let Xn×p be a rectangular n × p data matrix where n denotes the number of observations and p
denotes the number of variables. We assume that some elements xij of the the matrix are missing and
denoted as xmisij ,i = 1, . . . , n, j = 1, . . . , p, and at least one variable is complete for all elements. We

denote the completely observed variable by V com
j and if some elements are missing, V mis

j . Furthermore
if the observation xi is complete for all variables is denoted by xcomi and if some of them are missing
is denoted by xmisi . The set of complete observations is denoted by Xcom and the set of missing
observations is denoted by Xmis.
Clustering algorithms try to divide the data set into k groups in such way that observations in the
same group are more ”similar”. Our approach is to divide the data set D into k homogeneous non
overlapping subsets D1, . . . , Dk, Di ∩ Dj = ∅, ∪ki=1Di = D, and for each subset Di, i = 1, . . . , k use
Mean imputation or Regression imputation and then we place the imputed values back to their initial
positions in the data matrix. This partition of the data set can be achieved by the KSC algorithm
(Wagstaff et al. 2004), which is a modified Kmeans that uses the missing values as an external source
of information, without using imputation or marginalization (variables or observations), for more
details see Section 4.4. The first method is called Partition Mean imputation and the second Partition
Regression imputation.

81
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5.2 Partition Mean imputation

In Partition Mean imputation we divide the subset as described before and in Di for each variable
with missing values we calculate the average of the recorded elements and we replace the missing
elements with this value. As described in Section 2.3.2 the accuracy of the Kmeans algorithm depends
on the choice of the initial centroids, that is usually random. In order to find the best partition we
run Kmeans (usually) 20 times and we choose the partition with the smallest total within cluster
variation, that is usually the most appeared. In KSC algorithm the objective function is modified,
thus we choose the partition with the smallest total within cluster objective function value.

The first step to the algorithmic procedure of Partition Mean imputation is to run KSC 20-100
times with w proportional to the number of missing variables to find the best partition. Then each
Di is treated as an individual data set, and for i = 1, . . . , k we perform simple mean imputation. We
identify the variables with missing values V mis

j in each Di, if they are any, we calculate the average

of the observed values µmisj =
∑

i x
com
ij /(number of complete i) for the recorded i′s and we replace the

missing elements with these values. The last step is to place the imputed values back to their initial
positions on the data matrix.

Algorithm 7 Partition Mean imputation

1: Require: Xn×p a data set matrix with at least one completed variable V com
j

2: Run KSC-algorithm 20 times and identify the best partition {D1, D2, . . . , Dk}
3: for i← 1 to k do
4: Store the initial data matrix Xn×p positions for each missing element in Di

5: Perform simple mean imputation in Di

6: end for
7: Place the imputed data to their initial position in data matrix Xn×p
8: return the imputed data matrix Ximp

n×p

As discussed in Chapter 3 the problem with simple mean imputation is that reduces the variance of
the imputed variable and consequently the covariance. When we impute each subset Di with different
values this problem is fixed. Furthermore if we want to create more ”realistic” imputed values we
can add an error term randomly drawn from a distribution with mean 0 and variance equal to the
variance of the recorded values of the corresponding variable in Di, for example an error term e where
e ∼ N (0, V arVmis

j
).

5.2.1 Experimental Results of Partition Mean imputation

For the experimental results we created various data sets consisted of three 3-dimensional normal
distributions in the form of the Figure 5.1. We compare our method with two of the most accurate
imputation methods that we have discussed in Chapter 3, namely kNNimpute and missForest, for four
different numbers of observations. For evaluation method we use the mean absolute error (MAE).
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Figure 5.1: Experimental Data sets 3D scatter plot
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Figure 5.2: Comparison of Partition Mean imputation with kNNimpute and missForest

The data sets in Figure 5.2 have all 10% missing values only for one variable. In almost all cases
Partition Mean imputation is the most accurate method. Furthermore we see that as the number
of observations increases the accuracy of our method in comparison with the other two methods,
increases too.

A common problem while clustering is that in many cases the optimal number of clusters is
unknown. There are many methods for choosing the optimal k, though they are not always reliable.
In Section 2.3.2 we have described three of the most popular, namely Elbow method, Silhouette
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Analysis and Gap statistic. In order to adopt them we can use a simple imputation method to the
initial data set. We found that the number of clusters is not an important issue for our method. We
selected one from the data sets that compared in Figure 5.2 and we run the algorithm for various k’s.
The results are depicted in Figure 5.3.
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Figure 5.3: Robust to the choice of k

Note that for all values of k that are greater than the real number of clusters (3 clusters), this
method performs better, except for the value 2. In the experiments we found that all the values greater
than or equal to the real cluster number good choices.

5.3 Partition Regression imputation

Linear Regression imputation is one of the most popular methods with many variations. The classic
form of this method is to estimate a Linear Regression model over the complete observations Xcom

and then predict the missing values Xmis with the estimated model, though imputing values drawn
from a linear equation can increase the covariance of the data. In order to resolve this issue we can use
stochastic regression imputation, which adds a error term drawn randomly from a normal distribution
with mean 0 and variance equal to the residuals variance of the estimated model. A more sophisticated
version of a Linear Regression imputation is to use chained equations.

Chained equation process1

1. The procedure begins with a simple imputation for every missing value in the data set. For each
missing variable V mis

j we replace the missing elements with random draws from the observed
values. For each replaced value we store the position.

2. The observed values from the missing variable V mis
j are regressed on the other variables in the

imputed model.

3. The missing values of the missing variable V mis
j are replaced with predictions from the estimated

regression model.

1Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: what is
it and how does it work?. International journal of methods in psychiatric research, 20(1), 40-49.
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4. Steps 2 and 3 are repeated for each missing variable V mis
j . The completion of this process for

all missing variables consists an iteration. The iterations of this process are usually 5-10, with
the imputations being updated at each cycle.

Suppose now that we have the two dimensional data set depicted in Figure 5.4. If we use Linear
Regression imputation we see that the predictions will be far away from the real values. Our approach
divides this data set into k data sets (here k = 3) and estimates the missing values with k different
Linear Regressions. As we can see in Figure 5.5 we can divide the data set into 3 non overlapping
data sets and estimate three different Linear Regression models. It’s easy to see that this approach
increases the accuracy of the Linear Regression imputation method.
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Figure 5.4: Whole data set Linear Regression
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Figure 5.5: Subsets Linear Regression

This partition of the data set D into three non overlapping subsets D1, D2 and D3 can be achieved
by the KSC algorithm. The partition Regression imputation divides the data set D into k non
overlapping subsetsD1, D2, . . . Dk, each subsetDi is treated as an individual data set where the missing
values are imputed by a Linear Regression model, and specifically the chained equation approach of
this method. The imputed values are placed back to their initial positions in the data matrix. This
algorithmic procedure is described below.
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Algorithm 8 Partition Regression imputation

1: Require: Xn×p a data set matrix with at least one completed variable V com
j

2: Run KSC-algorithm 20 times and identify the best partition {D1, D2, . . . , Dk}
3: for i← 1 to k do
4: Store the initial data matrix Xn×p positions for each missing element in Di

5: Perform chained equation Linear Regression imputation in Di

6: end for
7: Place the imputed data to their initial position in data matrix Xn×p
8: return the imputed data matrix Ximp

n×p

Note that when we divide the data set into k parts we estimate k different linear regression
equations, this approach can fix the problem of high correlated data. Furthermore we can add an
error term as described above.

The significance of the Chained equation process is depicted in Figure 5.6
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Figure 5.6: Missingness Pattern of two missing variables

Suppose that we have the missing pattern of the Figure 5.6. We see that the missing proportion
observations is almost 80% of the data set. Simple Regression imputation uses only values from
Xcom, thus we will loose valuable information and consequently the Linear Regression model will be
unreliable.
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5.3.1 Experimental Results of Partition Regression imputation

For the experimental results we use the Iris data set2 (consists of 150 observations and 4 variables).
We created randomly increasing proportion of missing values for every set of two out of four variables
involved. We compare Partition Regression imputation with kNN imputation and miss Forest using
as evaluation method the mean absolute error (MAE). For the KSC algorithm we used a k = 3 and
w = 0.5 (equal to the proportion of missing variables).
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Figure 5.7: Comparison of Partition Regression imputation with kNNimpute and missForest for two
missing variables

In Figure 5.7 we compare Partition Regression imputation method with impute kNN and miss
Forest using as evaluation criterion the Mean Absolute Error. In the fist plot of the Figure where the
missing variables are Petal Length and Petal Width we see that for all proportions of missing values
our method is the most accurate. Furthermore for the other three plots in almost all the cases the
MAE of our method is smaller and consequently the accuracy is greater.

In Figures 5.8 and 5.9 we see the densities of the original (blue) and the imputed data (red) for 10%
proportion of missing values when both of the variables Petal Length and Petal Width are missing.

2Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II,
179–188.

The data were collected by Anderson, E. (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris
Society, 59, 2–5.
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Figure 5.8: Densities of the imputed data for the variable Petal Length
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Figure 5.9: Densities of the imputed data for the variable Petal Width

5.4 Discussion

A question concerning the above methods is which method is the most accurate. We propose Parti-
tion Mean imputation in the case of clusters with smaller amount of data and Partition Regression
imputation in the case of clusters with larger amount of data. For example suppose that we have a
cluster with only 5 observations with missing values. It is not plausible to estimate with sufficient
accuracy a linear regression model with such a small amount of data with missing values. On the
other hand the idea of using the mean is closely related to the idea of imputekNN. Furthermore we
choose to compare our methods with imputekNN and miss Forest due to the fact that all approaches
to the problem of missing values are somewhat similar. The imputekNN method creates a region
of the k closest neighbors of each missing observation and impute to each missing value a weighted
mean of them. Random Forest estimates the mean of high dimensional rectangulars of 100 different
regression trees and then impute the average of all these regions where the missing observation falls
in. In Partition Mean imputation we create regions of observations (clusters) and we impute the mean
for each missing variable, and in Partition Regression imputation in order to increase the accuracy,
we use linear regression imputation.
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Future Work

For future work we propose the use of more imputation methods for each Di of the final partition of
the KSC algorithm, such as predictive mean matching and the creation of an evaluation criterion for
choosing the most accurate method.
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[11] Kαρλής ∆ηµήτρης. Πoλυµεταβλητ ή Στατιστική Aνάλυση. 2005.
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[16] Wolfgang Härdle and Léopold Simar. Applied multivariate statistical analysis. Springer Science
& Business Media, 2007.

91



92 BIBLIOGRAPHY

[17] Trevor Hastie, Robert Tibshirani, Gavin Sherlock, Michael Eisen, Patrick Brown, and David
Botstein. Imputing missing data for gene expression arrays, 1999.

[18] Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American statistical Association, 47(260):663–685, 1952.

[19] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2(1):193–
218, 1985.

[20] Alan Julian Izenman. Modern multivariate statistical techniques, volume 1. Springer, 2008.

[21] Gareth James, Daniela Witten, and Trevor Hastie. An introduction to statistical learning: With
applications in r., 2014.

[22] Alboukadel Kassambara. Practical Guide to Cluster Analysis in R: Unsupervised Machine Learn-
ing, volume 1. STHDA, 2017.

[23] RJ Little. A and Rubin, DB (1987) Statistical Analysis with Missing Data. 85.

[24] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley &
Sons, 2002.

[25] James MacQueen et al. Some methods for classification and analysis of multivariate observations,
volume 1. 1967.

[26] Kantilal V Mardia, John T Kent, and John M Bibby. Multivariate analysis (probability and
mathematical statistics). Academic Press London, 1980.

[27] Geert Molenberghs, Garrett Fitzmaurice, Michael G Kenward, Anastasios Tsiatis, and Geert
Verbeke. Handbook of missing data methodology. CRC Press, 2014.

[28] William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 66(336):846–850, 1971.

[29] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[30] Donald B Rubin. Multiple imputation for nonresponse in surveys, volume 81. John Wiley &
Sons, 2004.
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