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Abstract

Dynamical Systems Approach in Scalar Field Cosmologies

In this thesis flat Friedmann-Lemâıtre-Robertson-Walker models with

a perfect fluid matter source and a scalar field non-minimally coupled to

matter are considered. In the first part of the thesis we study the case of

double exponential potentials. It is shown that the scalar field almost always

diverges to infinity. We find conditions on the parameter space such that the

model is able to provide an acceptable cosmological history of our Universe,

that is, a transient matter era followed by an accelerating future attractor.

It is found that only a very weak coupling can lead to a viable cosmology.

We study in the Einstein frame, the cosmological viability of the asymptotic

form of a class of f (R) theories predicting acceleration. Double exponential

potentials could take negative values with respect to the parameters. We

prove rigorously that a general class of bounded from above potentials which

fall to minus infinity as the field goes to minus infinity, forces the Hubble

function to diverge to −∞ in a finite time.

In the second part of the thesis, we study more systematically scalar

fields with potentials taking negative values. We prove that the Hubble

function generically diverges to −∞ in a finite time, except in case the

potential exhibits a flat plateau at infinity, tending to zero from below.

We find conditions on the parameter space which may give rise to ever

expanding or collapsing Universes. To illustrate our results we revisit the

double exponential potential.
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Περίληψη

Μέθοδοι Δυναμικών Συστημάτων σε

Σύγχρονα Προβλήματα Μαθηματικής Κοσμολογίας

Στη διατριβή αυτή μελετούμε επίπεδα, ομογενή και ισότροπα Σύμπαντα που

περιέχουν ως ύλη ένα τέλειο ρευστό και ένα βαθμωτό πεδίο συζευγμένο με την

ύλη. Στο πρώτο μέρος μελετούμε την περίπτωση που η συνάρτηση δυναμικού

είναι άθροισμα δύο εκθετικών. Αποδεικνύεται ότι το βαθμωτό πεδίο σχεδόν

πάντα τείνει στο άπειρο. Βρίσκουμε τα διαστήματα των παραμέτρων για τα

οποία το μοντέλο περιγράφει μία κοσμολογικά αποδεκτή ιστορία. Κοσμολογικά

αποδεκτή ιστορία θεωρείται η λύση του δυναμικού συστήματος που περιλαμ-

βάνει μια μεταβατική εποχή δόμησης ύλης η οποία ακολουθείται από μια επι-

ταχυνόμενη εποχή που αντιστοιχεί σε ευσταθή λύση του συστήματος. Απο-

δεικνύεται ότι για να έχουμε βιώσιμη κοσμολογική ιστορία, το πεδίο πρέπει

να είναι πολύ ασθενώς συζευγμένο με την ύλη. Συναρτήσεις με διπλά εκ-

θετικά δυναμικά που παρουσιάζουν ολικό θετικό μέγιστο, τείνουν στο −∞

όταν φ → −∞ και στο 0+
όταν φ → ∞ μπορούν να προκύψουν και ως

ασυμπτωτική μορφή δυναμικών θεωριών f (R) που προβλέπουν επιτάχυνση.

Τέτοια δυναμικά μπορούν να παίρνουν και αρνητικές τιμές.

Στο δεύτερο μέρος αποδεικνύουμε ότι για την γενική κατηγορία αυτών

των δυναμικών, η συνάρτηση Hubble αποκλίνει σε πεπερασμένο χρόνο. Απο-

δεικνύουμε ότι διάφορες ομάδες δυναμικών που παίρνουν αρνητικές τιμές οδη-

γούν σε καταρρέοντα Σύμπαντα, εκτός από κάποια δυναμικά που τείνουν στο

0− καθώς φ→∞.
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Chapter 1

Outline and Conventions

1.1 Introduction and Outline

Cosmology is the study of the origin, the evolution, the structure and the

fate of our Universe. The basis of physical cosmology is the cosmological

principle, an assumption justified by observations, which states that the

Universe, as far as we can detect, is homogeneous and isotropic at suffi-

ciently large scales. This simplifies the study of the large scale structure

and dynamics of the Universe and allows the study of the Universe as an

entity. The cosmological principle implies that there is a universal factor,

the scale factor a, that relates the distance between two objects, e.g. a pair

of galaxy clusters, at any arbitrary time t. The scale factor, a = a(t), is a

dimensionless function of time only, the exact form of which remains one of

the major current problems of cosmology.

Observational data from 1998, [1, 2], indicate that we live in a Universe

that expands with an accelerated expansion rate. The visible Universe con-

sists of stars, galaxies, interstellar and intergalactic gas, mentioned collec-

tively as ordinary matter or just matter. Ordinary matter would rather

cause the Universe to either collapse or to expand with a decelerated rate.

There must be a force that does more than simply counter the mutual
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Chapter 1. Outline and Conventions 2

gravitational attraction of the galaxies and forces them to run away from

each other [3, 4]. A variety of suggestions have been proposed the past two

decades. These proposals can be roughly grouped into two categories [5–8].

First, a “fluid” of unknown nature, the dark energy, is responsible for the

observed accelerating expansion of the Universe. Alternatively a modifica-

tion of General Relativity at cosmological distance scales is required.

The thesis is organised as follows:

For the convenience of the reader, in Chapter 2 we present the basics of

Friedman–Lemâıtre–Robertson–Walker (FLRW) Universes in the context of

scalar field cosmologies. We briefly review the cosmological constant, scalar

fields and modified gravity models.

In Chapter 3 we present the results of our study on scalar fields with a

double exponential potential, V (φ) = V1e
−αφ + V2e

−βφ. We assume FLRW

models with the scalar field non-minimally coupled to a perfect fluid. We

show that the scalar field almost always diverges to infinity. We show that

double exponential potentials arise as an asymptotic form of a class of f(R)

theories predicting acceleration. We define the acceptable cosmological his-

tory of the Universe as a trajectory of the dynamical system that passes

near a point that represents a transient matter epoch and lands on a stable

point that represents the accelerated expansion. We present conditions on

the parameters under which the model provides an acceptable cosmological

history of the Universe. We discuss the role of the coupling constant and

prove that only a vanishing coupling constant can lead to a viable cosmol-

ogy. Double exponential potentials may take negative values, In particular

there is a class of double exponential potentials with potential function that

exhibits a global positive maximum, tends to zero from above as φ→ +∞

and falls to −∞ as φ→ −∞.

In Chapter 4 we complete the analysis, started in Chapter 3, of the

class of potentials taking negative values. We prove rigorously that initially
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expanding Universes, eventually collapse in a finite time. These results

apply to both cases: scalar fields coupled to matter and uncoupled models

studied so far in the literature. We extend our analysis to other forms of

potentials that take negative values. We classify these potentials in five main

classes and we prove that the evolution almost always forces the Hubble

function to diverge to −∞ in a finite time. Only potentials which tend to

zero from below may under certain conditions give rise to ever expanding

cosmologies.

Some useful formulas are presented in the Appendices. In Appendix

A we present general formulas related to conformal transformation used in

theories of gravity. In Appendix B we derive in detail the field equations in

f(R) gravity. In Appendix C we provide terminology and theorems of the

theory of dynamical systems we use in the present study.

1.2 Conventions and notations

In the whole thesis, we choose units in which c = ~ = 8πG = 1, where c is

the speed of light, ~ the reduced Plank’s constant and G the gravitational

constant. Greek indices run from 0 to 3 whereas latin indices run from 1 to

3; we follow the sign conventions, [9]. The Christoffel symbols are defined

as

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) , (1.1)

where ∂µ = ∂/∂xµ. The Riemann tensor is

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (1.2)

and the Ricci tensor is

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓλµλ + ΓλµνΓ

σ
λσ − ΓλµσΓσλν . (1.3)
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The trace of the Ricci tensor is the Ricci scalar

R = Rµ
µ = gµνRµν . (1.4)

The Einstein tensor is defined by

Gµν = Rµν −
1

2
Rgµν . (1.5)

The Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric, takes the

form

ds2 = gµνdx
µdxν = −dt2 + a2

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (1.6)

where we have used pseudo-spherical coordinates (r, θ, φ), a is the scale

factor and k = −1, 0, 1 is the spatial curvature representing an open, flat or

closed Universe respectively.

The Christoffel symbols as well as the components of the Ricci and the

Einstein tensors for the metric 1.6 are given in the Appendix A.



Chapter 2

Introduction to Scalar Field

Cosmologies

In this introductory chapter we briefly review Scalar Field Cosmologies. For

textbooks in Relativity and Cosmology we refer for example to [9–18].

2.1 FLRW Universes and Field Equations

Hilbert derived the Einstein equations in vacuum by varying the so-called

Einstein-Hilbert action with respect to the metric tensor. The Einstein-

Hilbert action is

SEH =
1

2

∫
d4x
√
−gR,

where g is the determinant of the metric tensor gµν . In the presence of

matter, by adding a matter action, SM = SM[gµν ,Ψ], the total action is given

by the Einstein-Hilbert term plus the Langrangian density of the matter,

LM, which contains all matter fields, Ψ, collectively. The total action is

S = SEH + SM =

∫
d4x
√
−g
(

1

2
R + LM

)
.

5



Chapter 2. Introduction to Scalar Field Cosmologies 6

In order to construct a cosmological model compatible to the general belief

of the time, namely that the Universe is static, Einstein introduced the

cosmological constant, Λ

S = SΛ + SM =

∫
d4x
√
−g
(

1

2
(R− 2Λ) + LM

)
.

The Einstein field equations derived from this action are

Rµν −
1

2
Rgµν + Λgµν = Tµν , (2.1)

where the tensor Tµν describes the distribution of energy, momentum and

stresses associated to any force field.

We assume that the matter content of the Universe is described by a

perfect fluid with an energy momentum tensor of the form

Tµν = (ρ+ p)uµuν + pgµν , (2.2)

where uµ denotes the four-velocity of a comoving observer, ρ is the energy

density and p is the pressure in the rest frame of the fluid. Any fluid in

FRLW Universe has to be a perfect fluid since isotropy imposes zero vis-

cosity. Note that both ρ and p do not depend on the spatial coordinates,

but are functions of time t, only. That is, only time-depended mathemat-

ical quantities exist in isotropic and homogeneous Universes. Density and

pressure are linearly related by the equation of state

p = (γ − 1)ρ, (2.3)

where γ is a parameter taking values in the integral [0, 2]. For dust, γ = 1,

for a relativistic fluid, radiation, γ = 4/3 and for the cosmological constant,

γ = 0. In general, the energy density might be the sum of more than one

components, which evolve differently with respect to a. Denoting by ρ and
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p the corresponding sums of density and pressure respectively, we have the

effective equation of state

p = weffρ,

where weff is called the effective equation of state parameter.

The Einstein’s equations (2.1) in the FLRW metric provide the cosmo-

logical equations, as follows. The time-time component, µν = 00, is the

Friedmann equation (see Appendix A),

(
ȧ

a

)2

+
k

a2
=

1

3
ρ+

Λ

3
, (2.4)

and the ii components give the acceleration equation

2
ä

a
= −

(
ȧ

a

)2

− p− k

a2
+ Λ, (2.5)

where an over-dot denotes differentiation with respect to the time t. Us-

ing Eq. (2.4) in Eq. (2.5) to eliminate the term (ȧ/a)2, we derive the

Raychaudhuri equation

ä

a
= −1

6
(ρ+ 3p) +

Λ

3
. (2.6)

When a positive cosmological constant is present, the Universe is accelerated

for

Λ >
1

2
(ρ+ 3p).

When Λ = 0, combining Eqs (2.6) and (2.3), we get

ä

a
= −1 + 3weff

6
ρ. (2.7)

From the above we see that for Λ = 0, the acceleration of the Universe

depends only on the matter constituents, and the Universe is accelerating
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(ä > 0), when 1 + 3weff < 0. Then the condition for acceleration is

weff ≤ −
1

3
. (2.8)

Note that the condition for acceleration implies that the pressure has the

peculiar property p < 0.

From the definition (2.2) and the conservation of the energy momentum

tensor, ∇µT
µν = 0, we get the conservation equation

ρ̇ = −3
ȧ

a
(ρ+ p) . (2.9)

Using (2.3), one obtains

ρ ∼ a−3γ. (2.10)

We define the density parameter Ω, as

Ω =
ρ

ρc

, (2.11)

where ρ is the observed density and ρc is the critical density for which the

spacial geometry of the Universe is Euclidean. The energy density for each

of the different components also denoted by Ωi ≡ ρi/ρc and the curvature

density by Ωk ≡ ρk/ρc, hence the total energy density can be written as

∑
i

Ωi + Ωk = Ω. (2.12)

Consequently, the geometry of the spacetime is spherical if Ω > 1, hyper-

bolic if Ω < 1, and flat if Ω = 1.

Observations [19] indicate that the value of Ω is currently close to 1, i.e.,

we live in a spatially flat Euclidean Universe.

It is straightforward to obtain the function a(t) for the case of γ = 1

with respect to the different values of k, as shown in Fig. 2.1. That is, in
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Figure 2.1: The scale factor in the case of dust.

the case of dust, weff = γ − 1 = 0, the condition for acceleration, (2.8), is

not satisfied. A similar behaviour of the scale factor is true for a Universe

filled with radiation, weff = γ − 1 = 1/3. Therefore a Universe filled with

ordinary matter or radiation cannot be accelerated.

As mentioned in Chapter 1, there are two major approaches to obtain

acceleration: (a) modify the right hand side of Eqs (2.4) and (2.6) (dark

energy [20–23]), (b) modify the left hand side of (2.4) and (2.6) (modified

gravity).

2.1.1 Dark Energy: The cosmological constant

The simplest model of dark energy is provided by the cosmological constant.

From (2.4) and (2.5), we can see the contribution of Λ as a fluid of constant

energy with an equation of state,

pΛ = −ρΛ := −Λ,

i.e.,

wΛ = −1.
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Since ρΛ > 0, the cosmological constant can be thought as a matter com-

ponent with positive constant energy and negative constant pressure. We

define the Hubble function as H := ȧ/a. When the Λ term completely

dominates the evolution of a flat Universe, then from (2.4)

H =

√
Λ

3
,

and by integrating we obtain

a(t) ∼ e
Λ
3
t,

which describes the de Sitter Universe. de Sitter solution although satisfies

the condition of acceleration, ä > 0, can not be used as a realistic model

of our Universe since we have neglected contributions from radiation and

matter completely. However, it can be thought as an approximation of the

evolution of the Universe at late times.

Although simple as an idea, the cosmological constant suffers from some

fundamental problems. We briefly mention the cosmological constant prob-

lem and the coincidence problem. The cosmological constant problem is the

discrepancy of more than 100 orders of magnitude between the small value

of the cosmological constant measured and the theoretical value expected

from quantum field theory. The coincidence problem is that the observed,

extremely small value of the cosmological constant is the exact one needed

in order to have a sufficient matter domination era. A slightly bigger value

of Λ forces a direct transition from radiation to dark matter domination

preventing the formation of matter. For the cosmological constant and

problems regarding it, see [3, 5, 24–27].
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2.1.2 Dark Energy: Quintessence

Another popular candidate of dark energy is scalar fields with positive po-

tentials, [28,29]. Scalar fields have been already used in inflationary models,

in which the scale factor undergoes extremely rapid quasi-exponential ex-

pansion, [30,31]. In the standard inflationary scenario [30–32], the Universe

is dominated by a real scalar field φ, homogeneously distributed in space,

with a potential function V (φ). The field that drives this expansion is the

so called inflaton. The action is described by

S =

∫
d4x
√
−g
(
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

)
+ Sm, (2.13)

where Sm is the action of ordinary matter. Hence the Lagrangian density

of a scalar field is

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) . (2.14)

By varying (2.13) with respect to gµν , we obtain the field equations

Rµν −
1

2
gµνR =

(
T (m)
µν + T (φ)

µν

)
, (2.15)

where

T (φ)
µν := ∂µφ∂νφ− gµν

(
1

2
gρσ∂ρφ∂σφ+ V (φ)

)
, (2.16)

is the energy- momentum tensor of the scalar field. Varying (2.13) with

respect to φ, we obtain the equation of motion of the scalar field

�φ− V ′ (φ) = 0, (2.17)

where the D’Alembertian is defined by � := ∇µ∇µ, ∇µ is the covariant

derivative and V ′ (φ) = ∂V (φ)/∂φ.



Chapter 2. Introduction to Scalar Field Cosmologies 12

In the FLRW metric, the field equations for a flat Universe become

3H2 = ρ+
1

2
φ̇2 + V (φ), (2.18)

2Ḣ + 3H2 = −p− 1

2
φ̇2 + V (φ), (2.19)

while the equation of motion (2.17) takes the form

φ̈+ 3Hφ̇+ V ′(φ) = 0. (2.20)

From (2.18) and (2.19) we can see that the contribution of the scalar field φ

to the energy content of the Universe takes the perfect fluid form, pφ = wφρφ,

with energy density and pressure given by

ρφ =
1

2
φ̇2 + V (φ), (2.21)

pφ =
1

2
φ̇2 − V (φ), (2.22)

respectively. The equation of state of the scalar field is then given by,

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (2.23)

Eq. (2.23) implies that slowly evolving scalar fields, φ̇ → 0, are hardly

distinguished from the cosmological constant. From another point of view,

the cosmological constant can be thought of as a special case of a constant

scalar field. Models based on scalar fields to explain the late time cosmic

acceleration are collectively called quintessence models. For a review see

[33].

Scalar fields arise naturally in alternative theories of gravity which aim

to extend General Relativity, as for example, higher order gravity theories

[34], scalar-tensor theories with multiple scalar fields [35, 36] and string

cosmologies [37,38].
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2.1.3 Modified gravity dark energy models

The most straightforward generalisation of General Relativity is obtained by

replacing the term R in the action by a smooth, otherwise arbitrary function

f(R). Under certain conditions [39,40], these models may be cosmologically

viable. There is a vast amount of studies in f(R) models in the literature

used for explaining acceleration, see for example [7, 41–44] and references

therein; for discussions and reviews see [45–53].

The action of an f(R) theory is given by

S =

∫
d4x
√
−gf(R) + Sm(gµν ,Ψ),

where Ψ denotes all matter fields collectively. Varying the above action

with respect to the metric tensor, we obtain (see Appendix B)

f ′(R)Rµν −
1

2
gµνf(R) + gµν�f

′(R)−∇µ∇νf
′(R) = T (m)

µν .

The first modified dark energy models proposed in the literature, were

constructed by adding a term 1/R to R in the Einstein–Hilbert action,

[7, 54]. The term 1/R dominates as the Universe expands and produces

acceleration [55]. However these models violate the local gravity constraints

and become nonviable as general gravity theories, [8, 56].

Other modifications of General Relativity are scalar-tensor theories which

include the original Brans-Dicke theory, see for example [57].

2.1.4 Acceleration in the context of General Relativ-

ity

There are also attempts to explain acceleration in the context of General

Relativity. Some authors [58,59] attribute the observed, “apparent” as they

claim, acceleration to the inhomogeneities of the Universe. They claim that
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“the accelerated expansion of the Universe is not an observed phenomenon,

but an element of interpretation of observations, forced upon us by the

FLRW models”, see [60].

The authors of the investigations [61, 62], explored the possibility that

the dark energy needed to accelerate the expansion of the Universe is at-

tributed to the energy of the cosmic fluid internal motions. As the authors

state, “in this framework, the Universe is filled with a perfect fluid, con-

sisting mainly of self-interacting dark matter, the volume elements of which

perform hydrodynamic flows”.

2.2 Scalar-Tensor theories of Gravity

In the inflationary scenarios, there exists a period of slow-roll evolution of a

scalar field, the inflaton, during which, its potential energy drives the Uni-

verse into expansion with an accelerated rate. Quintessential dark energy

models provide the simplest mechanism to obtain accelerated expansion of

the Universe within General Relativity. These models are described by an

ordinary scalar field minimally coupled to gravity. For example in [63–65]

are studied models that contain both a perfect fluid of ordinary matter

and a scalar field with an exponential potential. It is proved that in these

models Ωφ is a constant fraction of the total density Ω, for that reason

they are called “scaling” cosmologies. Inclusion of non-minimal couplings

in scalar field cosmology is important to be considered although it increases

the mathematical difficulty of the analysis, [66,67]. In fact, the introduction

of non-minimal coupling is not a matter of taste [68]. In the string effec-

tive action, the dilaton field is generally coupled to matter in the Einstein

frame [37]. In scalar-tensor theories of gravity [66,67,69], the action in the

Einstein frame takes the form

S =

∫
d4x
√
−g
{
R−

[
(∂φ)2 + 2V (φ)

]
+ 2χ−2Lm (g̃µν ,Ψ)

}
, (2.24)
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with

g̃µν = χ−1gµν ,

where χ = χ (φ) is the coupling function and matter fields are collectively

denoted by Ψ. In particular, as mentioned before, for higher order gravity

theories derived from Lagrangians of the form

f
(
R̃
)

+ 2Lm (g̃µν ,Ψ) , (2.25)

it is well known [34] that under the conformal transformation

gµν = f ′
(
R̃
)
g̃µν ,

the field equations reduce to the Einstein field equations with a scalar field

φ as an additional matter source. The conformal equivalence can be for-

mally obtained by conformally transforming the Lagrangian (2.25) and the

resulting action becomes [70]

S =

∫
d4x
√
−g
{
R−

[
(∂φ)2 + 2V (φ)

]
+ 2e−2

√
2/3φLm

(
e−
√

2/3φgµν ,Ψ
)}

.

Therefore the Lagrangian of HOG theories is a particular case of the general

scalar-tensor Lagrangian with χ (φ) = e
√

2/3φ, in equation (2.24). Non-

minimal coupling occurs also in models of chameleon gravity [71,72]

S =

∫
d4x
√
−g
{
R−

[
(∂φ)2 + 2V (φ)

]
+ 2Lm (g̃µν ,Ψ)

}
,

with

g̃µν = e2βφgµν ,

where β is a coupling constant. The same form of coupling has been pro-

posed in models of the so called coupled quintessence [73]. For more general

couplings see also [74], and [75] for a generalisation involving a scalar field
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coupled both to matter and a vector field. For the consequences of a phan-

tom field minimally coupled to gravity see for example [76].

In general, each component of the total energy momentum tensor may

not be conserved. However, the general interactions between the scalar field

and matter have to satisfy

∇µT (φ)
µν = −Qν , (2.26)

∇µT (m)
µν = Qν , (2.27)

where T
(φ)
µν , T

(m)
µν are the energy momentum tensors of the scalar field φ and

matter respectively. The term Qν , called the interaction term, denotes the

energy momentum exchanged between the two fluids. For Qν = 0, there is

no interaction between the two fluids. The form of Qν is specified by the

physical properties of the fluids and the coupling terms occurring in the

Lagrangians.



Chapter 3

Coupled Dark Energy with

Double Exponential Potentials

In this chapter we study flat FLRW models with a perfect fluid matter

source and a scalar field non-minimally coupled to matter having a double

exponential potential of the form

V (φ) = V1e
−αφ + V2e

−βφ, (3.1)

where α, β are positive constants and V1, V2 are constants of arbitrary sign.

The chapter is organised as follows. In the next section we construct

the dynamical system. In Section 3.2 we show some preliminary results

for non negative potentials satisfying certain assumptions in an initially

expanding Universe, the scalar field almost always diverges as t → ∞. In

Section 3.3 we present the double exponential potential and examine its

different forms regarding the signs of the parameters V1, V2. In Section 3.4

we use expansion-normalised variables to write the system as a polynomial

three-dimensional system. We study the equilibrium points and analyse

their properties. In Section 3.5 we set the conditions on the parameter

space, which allow for an acceptable cosmological history of our Universe: a

17
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transient matter era followed by an accelerating future attractor. In Section

3.6 we examine the asymptotic form of the potential in the Einstein frame

of a popular class of f (R) theories predicting acceleration.

3.1 Constructing the Dynamical System

Ordinary matter is described by a perfect fluid with equation of state

p = (γ − 1)ρ,

where γ is a constant value taking values in the interval (0, 2). Varying the

action (2.24) with respect to the metric, we obtain the field equations

Gµν = T (φ)
µν + T (m)

µν , (3.2)

where T
(φ)
µν is the scalar field energy momentum tensor and T

(m)
µν is the

matter energy momentum tensor. The Bianchi identities imply that the to-

tal energy-momentum tensor is conserved and therefore there is an energy

exchange between the scalar field and ordinary matter. In all the above ex-

amples, the conservation of their sum is provided by the equations (compare

to [73])

∇µT (m)
µν (g,Ψ) = QT (m)∇νφ, ∇µT (φ)

µν (g, φ) = −QT (m)∇νφ,

where Q := d lnχ/dφ, depends in general on φ and T (m) is the trace of the

matter energy-momentum tensor, i.e.,

T (m) = gµνT (m)
µν (g,Ψ) .
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Variation of S with respect to φ yields the equation of motion of the scalar

field

�φ− V ′(φ) = −QT (m). (3.3)

For homogeneous and isotropic flat spacetimes the field equations (3.2)

and (3.3), reduce to the Friedmann equation

3H2 = ρ+
1

2
φ̇2 + V (φ) ; (3.4)

the Raychaudhuri equation

Ḣ = −1

2
φ̇2 − γ

2
ρ; (3.5)

the equation of motion of the scalar field

φ̈+ 3Hφ̇+ V ′ (φ) =
4− 3γ

2
Qρ; (3.6)

and the conservation equation

ρ̇+ 3γρH = −4− 3γ

2
Qρφ̇. (3.7)

Note that the presence of the trace of the energy-momentum tensor

in the right-hand side of equations (3.6) and (3.7), implies that energy

exchange between radiation and the scalar field does not exist. Of course,

interaction between radiation and the scalar field is present during the warm

inflation epoch. However, as stated before, we are interested in the late time

evolution of the Universe, therefore radiation shall be neglected. As can be

seen by the conservation equation, (3.7), the set, ρ > 0, is invariant under

the flow of equations (3.5)-(3.7). Thus if we initially assume that for some

t0, ρ(t0) is nonzero, it shall remain nonzero, ∀t > t0. Furthermore, if ρ(t0) is

initially positive, it remains positive for the rest of the history. This property
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is not satisfied if we assume arbitrary interaction terms, see Ref. [77].

Setting φ̇ = y, we write Eqs. (3.5)–(3.7) as an autonomous dynamical

system

φ̇ = y, (3.8)

ẏ = −3Hy − V ′(φ) +
4− 3γ

2
Qρ, (3.9)

ρ̇ = −ρ
(

3γH +
4− 3γ

2
Qy

)
, (3.10)

Ḣ = −1

2
y2 − γ

2
ρ, (3.11)

subject to the constraint

3H2 =
1

2
y2 + V (φ) + ρ. (3.12)

We recall the remarkable property of the Einstein equations that, if Eq.

(3.12) is satisfied at some initial time, then it is satisfied throughout the

evolution. Also, in most quintessence models, the coupling coefficient Q =

Q(φ), is postulated to be a positive constant, see for example [73].

Before attacking our main problem, some preliminary results are needed.

3.2 Non-negative Potentials

In this section we assume that the potential function of the scalar field is

non-negative with either a minimum Vmin ≥ 0 or bounded from below by a

non-negative value. We will need the following Lemma, proven in [78].

Lemma 1 Suppose a function f ∈ C1, such that f > 0, the integral∫∞
t0
f(t)dt converges and there exists a positive constant k such that |ḟ | < k,

then

lim
t→∞

f(t) = 0.
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3.2.1 Potentials having non-negative minima

In this section we generalise Propositions proven in [78, 79], for our case

where an interaction term between the two matter components is present.

Assumption 1 We assume that V (φ) ∈ C2 is a potential function such

that:

1. V ≥ 0,

2. V (φ) = 0 holds only for φ = 0,

3. If A ⊂ R is such that V is bounded on A, then V ′ is bounded on A.

Theorem 1 Let V (φ) ∈ C2 be a potential function satisfying the Assump-

tion 1. Then

lim
t→∞

ρ = 0 = lim
t→∞

y.

If additionally V ′(φ) > 0 for φ > 0 and V ′(φ) < 0 for φ < 0,

then

lim
t→+∞

φ = +∞, or 0 or −∞.

Proof. From (3.10) it follows that ρ = 0 is an invariant set of the system.

Hence, if initially ρ > 0 , it has to remain positive. Consider a trajectory

with H > 0 at some time t = t0. From (3.11), H(t) is decreasing and

positive, it follows that the limit limt→∞H(t) exists and is a non-negative

number, say H∞. The monotonicity of H also indicates that for all t ≥ t0,

H(t) ≤ H(t0). Then from the constraint (3.12), we deduce that each of the

terms ρ, 1
2
y2, and V is bounded by 3H2(t0). Let A = {φ : V (φ) ≤ 3H2(t0)}.

Then a trajectory passing through any point x0 = (φ, y, ρ,H) with H(t0) >

0, is such that φ stays inside A. From (3.11) we get

1

2

∫ +∞

t0

(
y2 + γρ

)
dt = H (t0)−H∞.
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Therefore ∫ +∞

t0

(
y2(t) + γρ(t)

)
dt < +∞.

We now prove that the derivative with respect to t of the quantity y2(t) +

γρ(t) is bounded. Indeed

d

dt

(
y2 + γρ

)
= −6Hy2 − 2yV ′ (φ)− 3γ2ρH +

4− 3γ

2
Q (2− γ) ρy

≤ −2yV ′ (φ) +
4− 3γ

2
Q (2− γ) ρy.

As we already remarked, y and ρ are bounded; also, by our assumption on

V , V ′ (φ) is bounded. We conclude that the derivative of the function y2+γρ

is bounded from above and therefore, Lemma 1 applies and limt→∞ y (t)2 =

0 and limt→∞ ρ (t) = 0.

If additionally V ′(φ) > 0 for φ > 0 and V ′(φ) < 0 for φ < 0, then if

H∞ = 0, the constraint (3.12) implies that limt→∞ V (φ) = 0, and by our

assumption on the potential limt→∞ φ = 0. Suppose now that H∞ > 0.

From the constraint limt→∞ V (φ(t)) = 3H2
∞. Thus there exists t1 such that

V (φ) > 3
2
H2
∞, for all t > t1. Hence, since V (0) = 0, φ 6= 0, for some t > t1.

So, suppose that φ > 0, for all t > t1. The monotonicity of the potential

V (φ), implies limt→∞ V (φ(t)) = 3H2
∞ ≤ limφ→∞ V (φ).

i. If limt→∞ V (φ(t)) = limφ→∞ V (φ), then limt→∞ φ = +∞.

ii. If limt→∞ V (φ(t)) < limφ→∞ V (φ), then there exists φ̄ ≥ 0 such that

limt→∞ V (φ(t)) = V (φ̄). From the monotonicity of the potential, it

follows limt→∞ φ(t) = φ̄. From Eq. (3.9), we have limt→∞ ẏ = −V ′(φ̄) <

0. Hence, there exists t2 > t1 such that for all t > t2, ẏ < −1
2
V ′(φ̄), i.e.,

y(t)− y(t2) =

∫ t

t2

ẏ(s)ds < −1

2
V ′
(
φ̄
)

(t− t2),

that is as t increases, y takes arbitrary large negative values, which is

contradictory since limt→∞ y = 0.
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Thus, if φ > 0 for all t > t1, then limt→∞ φ =∞. We work similarly for the

case φ < 0 for all t > t1, and we conclude that limt→∞ φ = −∞.

A large class of potentials used in scalar-field cosmological models have

a non negative minimum. Below are some examples occurring in the liter-

ature. Polynomial potentials of the form

V (φ) = m2φ2n, n ∈ N, n ≥ 1,

exponential or logarithmic potentials [80,81]

V (φ) = φne−λ
2φm , n,m ∈ N, n,m ≥ 1, λ ∈ R,

V (φ) = φn ln2m φ, n,m ∈ N, n,m ≥ 1,

double exponential potentials [82]

V (φ) = Ae−λφ +Beκφ, A,B, λ, κ ∈ R+,

or chameleon effective potentials [71].

3.2.2 Decreasing non-negative potentials

In the following we shall consider potentials satisfying the following assump-

tion.

Assumption 2 We assume that V ∈ C2 is such that:

1. V ≥ 0

2. V ′ (φ) < 0.

3. If A ⊆ R is such that V is bounded on A, then V ′ is bounded on A.

The following Theorem generalises Proposition 4 proven in [78].
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Theorem 2 Let V be a potential function satisfying the Assumption 2.

Then

lim
t→+∞

y = 0 = lim
t→+∞

ρ,

and

lim
t→+∞

φ = +∞.

Proof. Since V (φ) ≥ 0, it follows from (3.4) that H is never zero, thus

it cannot change sign. Hence, H is always non-negative if H (t0) > 0.

Furthermore, H is decreasing in view of (3.5), thus H (t) ≤ H (t0), for all

t ≥ t0. We then deduce from (3.4) that each of the terms ρ, 1
2
y2 and V

is bounded by 3H (t0)2. Since H is decreasing, ∃ limt→+∞H = η ≥ 0,

therefore (3.5) implies that

1

2

∫ +∞

t0

(
y2 + γρ

)
dt = H (t0)− η < +∞. (3.13)

From Lemma 1 we know that in general, if f is a non-negative function, the

convergence of
∫∞
t0
f (t) dt does not imply that limt→∞ f (t) = 0, unless the

derivative of f is bounded. In our case and setting λ = (4− 3γ)Q,

d

dt

(
y2 + γρ

)
= −6Hy2 − 2yV ′ (φ)− 3γ2ρH + λ

(
1− γ

2

)
ρy

≤ −2yV ′ (φ) + λ
(

1− γ

2

)
ρy.

As we already remarked, y and ρ are bounded; also, by our assumption on V ,

V ′ (φ) is bounded. We conclude that the derivative of the function y2 + γρ

is bounded from above and therefore, (3.13) implies that limt→∞ y (t)2 =

0 and limt→∞ ρ (t) = 0.

The proof that, limt→+∞ φ = +∞, follows after suitable adaptation of

the arguments used in Proposition 4 in [78], and has been reproduced in

the proof of Theorem 1.

If in addition, limφ→+∞ V (φ) = 0, we conclude that H → 0 as t→∞.
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An important example of decreasing non-negative potential is the expo-

nential potential

V (φ) = V0e
−λφ, λ > 0, (3.14)

which has been widely studied in the literature of scalar-field cosmologies,

due to the variety of alternative theories of gravity with predict exponen-

tial potentials and also to the fact that V ′/V =constant, which allows for

the introduction of expansion-normalised variables [83] during the analysis

of the dynamical system. Exponential potentials have been studied with

dynamical system techniques in the context of inflation long before the dis-

covery of cosmic acceleration [63, 84–87]. Potentials of the form (3.14) fall

in the class of non-negative, decreasing potentials.

3.3 Double Exponential Potentials

The content of this section constitutes the heart of the first part of this

thesis. We study the late time evolution of initially expanding flat FLRW

models, with a scalar field coupled to matter and having a potential of the

form

V (φ) = V1e
−αφ + V2e

−βφ, (3.15)

where α, β are positive constants and V1, V2 are constants of arbitrary sign.

The cases 0 < β < α and 0 < α < β are considered as “twin” cases and not

treated separately since a mere renaming of the parameters yields to the

same conclusions. For 0 < α = β the case reduces to a single exponential

potential, see for example [88]. The case where β < α < 0 is simply a

reverse φ↔ −φ. For the rest of this chapter and without loss of generality,

we assume 0 < α < β. For the general case of (3.15) where the parameters

are of arbitrary sign, see Chapter 4. We also assume that the coupling

coefficient is a constant, of order Q . 1.

Double exponential potential is usually the asymptotic form of other
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potentials. For example in Kaluza-Klein theories with d extra dimensions

reformulated in the Einstein frame, α and β are [66]

α =

√
2d

(d+ 2)
and β =

√
2 (d+ 2)

d
.

The physical reason for the choice (3.15), is that in quintessence models, the

dark energy is the energy of a slowly varying scalar field φ with equation of

state

pφ = wρφ, w ' −1.

In most of the models of dark energy, it is assumed that the cosmological

constant is zero and the potential energy, V (φ) , of the scalar field driving

the present stage of acceleration, slowly decreases and eventually vanishes

as the field approaches the value φ = ∞, [89]. In this case, after a tran-

sient accelerating stage, the speed of expansion of the Universe decreases

and the Universe reaches Minkowski regime. Double exponential potentials

of the form (3.15) were investigated in [90, 91]. Solutions were obtained

in [92–94] with the ansatz φ̇ = λH; see also [95] for more general cou-

plings. A scalar field with a double exponential potential without coupling

to matter was investigated in [96]. For exact solutions of a scalar field

non coupled to dust with single and double exponential potentials see [82].

Quintessence cosmologies of double exponential potentials in the absence

of matter were studied in [97] with the techniques of phase space analysis.

Coupled quintessence field with a double exponential potential and galileon

like correction was considered in [98].

Interaction terms between the two matter components of the form −αρφ̇

as in (3.7) with a simple exponential potential, were firstly considered in [99],

see also [100]. Although there is an energy exchange between the fluid and

the scalar field, it is easy to see that the set, ρ > 0, is invariant under the

flow of (3.5)-(3.7), therefore ρ is nonzero if initially ρ (t0) is nonzero; this
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trivial physical demand is not satisfied if one assumes arbitrary interaction

terms, cf. [77].

The field equations with (3.15) reduce to the Friedmann equation

3H2 = ρ+
1

2
φ̇2 + V1e

−αφ + V2e
−βφ; (3.16)

the Raychadhuri equation

Ḣ = −1

2
φ̇2 − γ

2
ρ; (3.17)

the equation of motion of the scalar field

φ̈+ 3Hφ̇− αV1e
−αφ − βV2e

−βφ =
4− 3γ

2
Qρ; (3.18)

and the conservation equation

ρ̇+ 3γρH = −4− 3γ

2
Qρφ̇. (3.19)

3.3.1 Double exponential potentials with V1, V2 > 0

For potentials (3.15) with V1, V2 > 0, we have already shown in Theorem 2

of Section 3.2, the global result

lim
t→+∞

φ̇ = 0, lim
t→+∞

ρ = 0, and lim
t→+∞

φ = +∞.

If in addition, limφ→+∞ V (φ) = 0, as is the case of the double exponential

potential (3.15) with V1, V2 > 0, then we conclude that

lim
t→∞

H = 0.
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ϕ

V

Figure 3.1: Potentials (3.15) with V1 > 0, V2 > 0.

3.3.2 Double exponential potentials with V1 > 0, V2 < 0

The case V1 > 0, V2 < 0, is more delicate and the asymptotic state depends

on the initial conditions. The dynamical system (3.17)-(3.19) has for V1 >

0, V2 < 0, two finite equilibrium points(
φ = φm, φ̇ = 0, ρ = 0, H = ±

√
Vmax

3

)
,

see Fig. 3.2. They represent de Sitter and anti-de Sitter solutions and

it is easy to see that they are unstable. It is known that for potentials

having a maximum, the field near the top of the potential corresponds to the

tachyonic (unstable) mode with negative mass squared [89, 101–103]. The

other asymptotic states of the system correspond to the points at infinity,

φ→ ±∞.

(i) If initially φ0 > φm, and 3H (t0)2 < Vmax, then from (3.16), V (φ) re-

mains less than Vmax sinceH is decreasing. We conclude that V (φ (t)) <

Vmax for all t ≥ t0, thus φ cannot pass to the left of φm. In the interval

(φm,+∞) the potential satisfies the assumptions of Theorem 2 and

therefore, φ→∞ as t→∞.

(ii) If initially φ0 < φm, and φ̇0 is larger than the critical value φ̇crit > 0,
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ϕ

V

Figure 3.2: Potentials (3.15) with V1 > 0, V2 < 0 have a local maximum at
some φm and diverge to minus infinity as φ→ −∞.

which allows for φ to pass on the right of φm, then the conclusions of

case (i) hold.

(iii) Finally, suppose that initially φ0 < φm, and φ̇0 is less than the critical

value φ̇crit > 0, i.e., −∞ < φ̇0 < φ̇crit. From (3.17), H is monotonically

decreasing and not bounded below from zero, hence eventually H may

change sign. We cannot use the same argument as in Theorem 2

concerning the asymptotic behaviour of φ̇ (t)2 and ρ (t) , since V and

V ′ are not bounded. A heuristic argument is the following. Suppose,

firstly, that limt→+∞H = η, where η is finite. But, an asymptotic

state of the form, p =
(
H = η, ρ = ρ∗, φ̇ = φ̇∗, φ = φ∗

)
, is impossible,

i.e., the point p cannot be an equilibrium point of the dynamical

system (3.17)-(3.19) for φ∗ < φm. Although we cannot exclude periodic

orbits, or strange attractors as ω−limit sets for our system, numerical

experiments suggest that, H diverges to −∞. If this is the case, it

can be shown that H diverges to −∞, in a finite time. Suppose on

the contrary that, limt→+∞H = −∞. Since γ < 2

3H2 =
φ̇2

2
+ ρ+ V (φ) <

φ̇2 + γρ

γ
+ V (φ) = −2Ḣ

γ
+ V (φ),
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hence,

3 < − 2Ḣ

γH2
+
V (φ)

H2
. (3.20)

Taking limits as t→ +∞, and since V (φ) is bounded from above

lim
t→+∞

V (φ)

H2
≤ 0.

Inequality (3.20) implies that

lim
t→+∞

−Ḣ
H2
≥ 3γ/2,

which is impossible, since

− Ḣ

H2
=

d

dt

1

H
and

1

H
→ 0.

In view of (3.17), φ̇2+γρ also diverges to infinity. Again, an asymptotic

state of the form, H = −∞, φ̇2 +γρ =∞ and φ = finite is impossible,

therefore φ diverges to −∞ in a finite time. The above qualitative

arguments for potentials of the form (3.15) with V1 > 0, V2 < 0 ,

establish the following result, which we prove rigorously in Chapter 4:

Theorem 3 Let V be a C1 potential function with the following prop-

erties: 1. V is negative and monotonically increasing for φ < 0, with

limφ→−∞ V (φ) = −∞. 2. V has a global maximum at some φm > 0 .

Suppose that the following initial conditions hold: H (t0) > 0, φ (t0) < φm,

and −∞ < φ̇ (t0) < φ̇crit, where φ̇crit > 0, is the critical value which allows

for φ to pass to the right of φm. Then H and φ diverge to −∞ in a finite

time.

This result generalises previous investigations indicating that negative

potentials may drive a flat initially expanding Universe to recollapse, see

[104–106].
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3.3.3 Double exponential potentials with V1 < 0

Potentials falling into this class are either entirely negative or have a global

negative minimum, see Fig. 3.3. As we show in the next section, these

ϕ

V

(a)

ϕ

V

(b)

Figure 3.3: Left 3.3(a) potentials with V1 < 0, V2 > 0. Right 3.3(b) poten-
tials with V1 < 0, V2 < 0.

are not physically interesting cases. Especially for potentials shown in Fig.

3.3(a), we prove in Chapter 4 that they collapse in finite time except in the

case where special assumptions on the parameters α, β, γ and the coupling

constant Q hold.

3.4 Expansion-Normalised Variables and Crit-

ical Points

There exists a well established mathematical procedure for the investigation

of scalar field cosmologies with exponential potentials in the context of

dynamical systems theory [63, 83]. It consists in the introduction of the so

called, expansion-normalised variables by defining

x =
φ̇√
6H

, y =

√
V1e−αφ

3H2
, z =

√
V2e−βφ

3H2
, Ω =

ρ

3H2
, (3.21)

and a new time variable,

τ = ln a.
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Note that while x and Ω could take only real values, variables y and z may

take both real and pure imaginary values, depending on the sign of V1, V2.

With this choice we avoid to have four different dynamical systems. The

Friedmann equation (3.16) decouples and imposes the phase space

Ω = 1−
(
x2 + y2 + z2

)
, (3.22)

to the state vector (x, y, z,Ω). Since

dt

dτ
=

1

H
,

the evolution equations become

dx

dτ
=
dx

dt

dt

dτ
=

1

H

(
φ̈√
6H
− φ̇Ḣ√

6H2

)

=
−3φ̇√

6H
+
αV1e

−αφ
√

6H2
+
βV1e

−βφ
√

6H2
+

4−3γ
2
Qρ

√
6H2

+
1
2
φ̇3

√
6H3

+
γ
2
φ̇ρ

√
6H3

= −3x+

√
3

2
αy2 +

√
3

2
βz2 +

√
3

2

4− 3γ

2
QΩ + 3x3 +

3γ

2
Ωx, (3.23)

dy

dτ
=
dy

dt

dt

dτ
=

1

H

√
V1

3

(
−αφ̇e

−αφ/2

2H
− e−αφ/2Ḣ

H2

)

=

√
V1e−αφ

3H2

(
−α

2

φ̇

H
− Ḣ

H2

)

=

√
V1e−αφ

3H2

(
−α

2

φ̇

H
+

1

2

φ̇2

H2
+
γ

2

ρ

H2

)

= y

(
−
√

3

2
αx+ 3x2 +

3γ

2
Ω

)
, (3.24)



Chapter 3. Coupled Dark Energy with Double Exponential Potentials33

dz

dτ
=
dz

dt

dt

dτ
=

1

H

√
V2

3

(
−βφ̇e

−βφ/2

2H
− e−βφ/2Ḣ

H2

)

=

√
V2e−βφ

3H2

(
−β

2

φ̇

H
− Ḣ

H2

)

=

√
V2e−βφ

3H2

(
−β

2

φ̇

H
+

1

2

φ̇2

H2
+
γ

2

ρ

H2

)

= z

(
−
√

3

2
βx+ 3x2 +

3γ

2
Ω

)
, (3.25)

and the evolution of the density parameter Ω is

dΩ

dτ
=
dΩ

dt

dt

dτ
=

1

H

(
ρ̇

3H2
− 2ρḢ

3H3

)

=
1

H

(
−3γρ

3H
− 4− 3γ

2
Q
ρφ̇

3H2
+
ρφ̇2

3H3
+
γρ2

3H3

)

=
ρ

3H2

(
−3γ − 4− 3γ

2
Q
φ̇

H
+
φ̇2

H2
+
γρ

H2

)

= Ω

(
−3γ −

√
6

4− 3γ

2
Qx+ 6x2 + 3γΩ

)
. (3.26)

The evolution of the Hubble function is

dH

dτ
=
dH

dt

dt

dτ
=
Ḣ

H

=
1

H

(
−1

2
φ̇2 − γ

2
ρ

)
= −H

(
1

2

φ̇2

H2
+
γ

2

ρ

H2

)

= −H
(

3x2 +
3γ

2
Ω

)
,

which decouples from the rest of the evolution equations. This is one of the

merits of the introduction of the variables (3.21); it allows for the reduction

of the dimension of the dynamical system by one.

Using (3.22) we can eliminate Ω from (3.23)-(3.25) and we end up with
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a three-dimensional dynamical system, (x, y, z),

dx

dτ
=
√

6Q− 3

2

√
3

2
γQ+

(
3γ

2
− 3

)
x+

(
3

2

√
3

2
γ −
√

6

)
Qx2

+

(
3− 3γ

2

)
x3 +

(√
3

2
α−
√

6Q+
3

2

√
3

2
γQ

)
y2

+

(√
3

2
β −
√

6Q+
3

2

√
3

2
γQ

)
z2 − 3

2
γxy2 − 3

2
γxz2,

dy

dτ
=y

(
3γ

2
−
√

3

2
αx+

(
3− 3γ

2

)
x2 − 3γ

2
y2 − 3γ

2
z2

)
, (3.27)

dz

dτ
=z

(
3γ

2
−
√

3

2
βx+

(
3− 3γ

2

)
x2 − 3γ

2
y2 − 3γ

2
z2

)
,

where

x2 + y2 + z2 ≤ 1. (3.28)

The phase space depends significantly on the signs of V1, V2. For V1, V2 > 0,

the phase space (3.28) is the intersection of a closed unit ball in R3 with

the octants y > 0, z > 0. For V1 > 0 and V2 < 0, the phase space is

the intersection of the one sheet hyperboloid x2 + y2 − (Im z)2 = 1 and its

interior with the octants y > 0, z > 0. For V1 < 0 and V2 > 0, the phase

space is the intersection of one sheet hyperboloid x2− (Im y)2 + z2 = 1 and

its interior with the octants y > 0, z > 0 and for V1, V2 < 0 the phase space

is the intersection of the two sheet hyperboloid x2 − (Im y)2 − (Im z)2 = 1

and its exterior with the octants y > 0, z > 0. The resulting dynamical

system depends on four parameters (γ, α, β,Q). Using (3.17), the effective

equation of state parameter

weff = −1− 2Ḣ

3H2
, (3.29)
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is written in terms of the new variables as

weff = −1 +
φ̇2

3H2
+

γρ

3H2

= −1 + 2x2 + γΩ. (3.30)

At an equilibrium point we may integrate Eq. (3.29) to obtain,

H ∼ 2

3(weff + 1)t
, if weff 6= −1,

and

H = constant, if weff = −1.

Integrating again the above equations we find that the scale factor

evolves as

a ∼ t
2

3(weff+1) , if weff 6= −1,

and

a ∼ et, if weff = −1.

For a trajectory to be cosmologically acceptable, it has to pass near a

matter point, slow enough such as to allow the construction of matter, the

matter era, and to land to an accelerated point. A critical point is a good

candidate for a matter point if it

(i) satisfies the matter condition, Ω > 0,

(ii) satisfies the “right”scale factor condition, a ∼ t2/3, (or equivalently, weff

close to zero), and

(iii) represents a transient phase, i.e., in the language of dynamical systems

has to be a saddle point.

On the other hand, an acceptable late attractor has to be

(iv) accelerated, weff < −1/3, and

(v) stable.



Chapter 3. Coupled Dark Energy with Double Exponential Potentials36

We start the study of the system by determining its critical points. We

solve the system of equations dx/dτ = 0, dy/dτ = 0, dz/dτ = 0, determined

by (3.27), and we get 15 critical points listed in Table 3.9 at the end of

the chapter. The eigenvalues are presented in Table 3.10. According to the

definition (3.21), if y, z are real, then y, z ≥ 0 and if they are complex, (pure

imaginary numbers), then Im y, Im z is non negative. This means that the

points C−,D−,D′±, E−,F− and G− are not acceptable. Furthermore, not all

of the remaining points are present in all forms of the potential with respect

to the values of α, β, V1, V2. We will examine the different cases below.

The different forms of the potentials with respect to the different signs

of V1, V2 are shown in Fig. 3.4.

ϕ

V

(a)

ϕ

V

(b)

ϕ

V

(c)

ϕ

V

(d)

Figure 3.4: Potentials with 0 < α < β. (a) V1, V2 > 0, (b) V1 > 0, V2 < 0,
(c) V1 < 0, V2 > 0, (d) V1, V2 < 0

Below we list all the physically acceptable equilibria. In the next section,

we resume the cosmologically interesting cases.

A± Following the usual terminology (see for example [104]), points A±
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correspond to kinetic-dominated solutions and exist for any potential

(3.15). The eigenvalues are

3−
√

3

2
α, 3−

√
3

2
β, 3(2− γ)−

√
6

4− 3γ

2
Q,

and

3 +

√
3

2
α, 3 +

√
3

2
β, 3(2− γ) +

√
6

4− 3γ

2
Q,

for A+ and A− respectively. Hence, point A− is always unstable and

point A+ is stable only for

α >
√

6, Q >
√

6
2− γ
4− 3γ

and γ <
4

3
,

but unstable otherwise. The effective equation of state is weff = 1 and

the density parameter Ω = 0. Hence these points, although exist for

all forms of the potential as shown in Fig. 3.4, cannot be used neither

as matter points nor as accelerated attractors.

B This is a fluid-kinetic scaling solution. It exists for all different signs

of V1, V2. The eigenvalues are

(4− 3γ)2Q2 − 2α (4− 3γ)Q+ 6γ (2− γ)

4 (2− γ)
,

(4− 3γ)2Q2 − 2β (4− 3γ)Q+ 6γ (2− γ)

4 (2− γ)
,

(4− 3γ)2Q2 − 6 (2− γ)2

4 (2− γ)
.

Point B enters the phase space when

Q ≤
√

6
2− γ
|4− 3γ|

, (3.31)

for γ 6= 4/3 and lies always in the phase space for γ = 4/3, irrespec-

tively of the nature of the potential. For γ < 4/3, condition (3.31) is



Chapter 3. Coupled Dark Energy with Double Exponential Potentials38

always satisfied for sufficiently small values of Q, e.g., Q . 1. Matter

point conditions (i), (ii) and (iii) are satisfied whenever

Q =

√
6 (2− γ) (1− γ)

4− 3γ
, γ ≤ 1, α <

√
3

2

√
2− γ
1− γ

. (3.32)

On the other hand, point B may be an accelerated attractor if (iv)

and (v) hold, provided that (3.31) is satisfied. The condition for ac-

celeration (iv) gives

Q <

√
2 (2− γ) (2− 3γ)

4− 3γ
, (3.33)

with γ < 2/3. Assuming (3.33), the stability condition, (v), gives

(4− 3γ)2Q2 − 2α (4− 3γ)Q+ 6γ (2− γ) < 0.

C+ This is a kinetic-potential scaling solution and exists in potentials

with V1 > 0 for α <
√

6 and in potentials with V1 < 0 for α >
√

6. It

cannot be used as a matter point since Ω = 0. Point C+ is accelerated

for α <
√

2. The eigenvalues are

α2 − 6

2
,
α (α− β)

2
,

2α2 − 6γ − α (4− 3γ)Q

2
.

Thus, it is stable and accelerated whenever

(4− 3γ)Q >
2 (α2 − 3γ)

α
and α <

√
2. (3.34)

Hence, it is a good candidate as an accelerated late attractor only in

potentials with V1 > 0.

D+ This is a potential solution and exist only in potentials with V1 >
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0, V2 < 0. The eigenvalues are

−3 +
√

9 + 12αβ

2
,
−3−

√
9 + 12αβ

2
, −3γ,

therefore, this point is unstable and represents de Sitter solutions.

E+ Point E+ is a fluid-kinetic-potential scaling solution (see also Ref. [104]

for the uncoupled case). It enters the phase space when

Q ≤ 2

α

α2 − 3γ

4− 3γ
, α ≥

√
3γ, for γ <

4

3
,

Q ≥ 2

α

α2 − 3γ

4− 3γ
, for γ >

4

3
,

α ≥
√

3γ, for γ =
4

3
.

The eigenvalues are

3 (α− β) γ

2α− (4− 3γ)Q
,

σ ±
√
σ2 − 4δ

2 (2α− (4− 3γ)Q)2 ,

where

σ =3 (2α− (4− 3γ)Q) ((4− 3γ)Q− α (2− γ)) ,

δ =
3

2
(2α− (4− 3γ)Q)2 (2α2 − 6γ − α (4− 3γ)Q

)
(
(4− 3γ)2Q2 − 2α (4− 3γ)Q+ 6γ (2− γ)

)
Point E+ may be used for the matter epoch if it satisfies conditions

(i), (ii) and (iii). For γ < 4/3, (i) is satisfied for

Q <
2

α

α2 − 3γ

4− 3γ
, α >

√
3γ. (3.35)

Under the assumption (3.35), the scale factor condition, (ii), is satis-
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fied for

Q = 2α
1− γ
4− 3γ

, γ ≤ 1, α >
√

3 (3.36)

and using the value of Q given in (3.36), condition (iii) is satisfied for

α >

√
3

2

√
2− γ
1− γ

. (3.37)

For γ > 4/3, whenever the scale factor evolves as t2/3, point E+ is

stable and therefore, does not represent transient solutions. For γ =

4/3, E+ represents radiation solutions and the scale factor evolves as

t1/2. Hence, E+ is a good candidate for the matter era if it satisfies

γ ≤ 1, Q = 2α
1− γ
4− 3γ

, α >

√
3

2

√
2− γ
1− γ

. (3.38)

In that case, point E+ exists only for potentials with V1 < 0. Hence,

when E+ is used as a matter point, point C+ cannot be used as the

accelerated attractor. Only point B is left as a candidate for the

accelerated era, but B does not satisfy conditions (iv) and (v), as

long as the parameters γ, Q and α take values in the ranges defined

by (3.38). Therefore, point E+ cannot describe the transient matter

phase.

In order for E± to be used for the accelerated epoch it has to satisfy

conditions (iv) and (v). For γ ≥ 2/3, when the point enters the phase

space, it is either unstable or non accelerated. For γ < 2/3, it satisfies

condition (iv) for

Q <
2− 3γ

4− 3γ
α, (3.39)
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and it is stable, (v), when

α <
√

6γ (2− γ), (3.40)

and when

Q <
α−

√
α2 − 6γ (2− γ)

4− 3γ
or Q >

α +
√
α2 − 6γ (2− γ)

4− 3γ
(3.41)

otherwise. Whenever E+ is an accelerated attractor, the only remain-

ing candidate for the matter epoch is point B, but B does not satisfy

the conditions (i), (ii) and (iii) for the range of the parameters (3.39)-

(3.41).

F+, G+ Since 0 < α < β, then y → 0 means z → 0. Therefore, in the case

of 0 < α < β, these points are not acceptable. Points F+ and G+

substitute points C+ and E+ respectively, in the “twin” case where

0 < β < α.

3.5 Cosmologically acceptable solutions

In this section, we discuss only these equilibria which allow for a viable

cosmological history of the Universe. In Table 3.1 are shown the equilibria

for V1 > 0 and

α <
√

2, γ ≤ 1, (4− 3γ)Q ∈
(

max

{
0, 2

α2 − 3γ

α

}
,
√

6 (2− γ)

)
.

The two critical points A± correspond to kinetic dominated solutions which

are unstable and are only expected to be relevant at early times. Point B

represents a type of scaling solution, i.e., the kinetic energy density of the

scalar field remains proportional to that of the perfect fluid. Point C+ is
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Table 3.1: Equilibrium Points for viable cosmology

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 Unstable t1/3

B
(

(4−3γ)Q√
6(2−γ)

, 0, 0
)

1− (4−3γ)2Q2

6(2−γ)2 Saddle t4(2−γ)/(6γ(2−γ)+(4−3γ)2Q2)

C+

(
α√
6
,
√

1− α2

6
, 0

)
0 Stable t2/α

2

D+

(
0,
√

β
β−α ,

√
α

α−β

)
0 Saddle et

accelerated only in potentials with V1 > 0. It corresponds to scalar field

dominated solutions which exist for sufficiently flat potentials, α <
√

6.

These are the same conclusions as in [79] for an exponential potential and

Q =
√

2/3, and also in [63], [104] and [96] and in the case of a scalar field non

coupled to matter, although the ranges of the parameters (α, γ) are different.

Point D+ exists only in models with V1 > 0, V2 < 0. It corresponds to

the unstable state
(
φ = φm, φ̇ = 0, ρ = 0, H =

√
Vmax/3

)
and represents de

Sitter solutions.

A successful cosmological model should comprise an accelerating solution

as a future attractor. It is evident that point C+, could satisfy the condition

for acceleration, weff < −1/3, provided that α <
√

2, compare with the

conclusions in [63]. From now on we assume this range for the parameter

α. Moreover, the equilibrium C+, is stable for all physically interesting

values of γ. For a cosmological theory to be acceptable, it has to possess a

matter dominated epoch followed by a late time accelerated attractor. The

saddle character of point B, implies that it represents a transient phase and

therefore, it is a good candidate for a matter point, provided that Ω is close

to one. This happens only for very small values of the coupling parameter

Q and for γ close to one. Another way to see this, is the following. During

the matter era, the scale factor has to expand approximately as a ∼ t2/3.

The scale factor near B evolves as a ∼ t
2

3(weff+1) , therefore, weff , has to be

close to zero. As seen in Table 3.1, a (t) at B, evolves as t2/3 when Q takes
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the values

Q =

√
6 (2− γ) (1− γ)

(4− 3γ)
, γ ≤ 1. (3.42)

Therefore, the realistic value γ = 1, corresponding to dust, is incompatible

to scalar field coupled to matter, i.e., the coupling parameter Q must be

zero, see also [107]. On the other hand, (3.6) and (3.7) imply that for

γ = 4/3, the value of Q is undetermined. Below we summarize our results

for the particular values γ = 1, 4/3, 2/3.

A. Dust (γ = 1). The critical points of our system are those of Table

3.1 for α <
√

2, β > α, Q = 0. Note that the future attractor C+ has

non phantom acceleration for every value of α in the interval (0,
√

2). A

cosmologically acceptable trajectory should pass near B and finally land on

point C+, depending on the initial conditions. Note that A±, B and C+ lie

on the invariant plane z = 0 and under our assumption on α, point C+ exists

only in potentials with V1 > 0. We consider the projection of the system

(3.27) on the invariant set z = 0. The phase portrait is shown in Fig. 3.5

and is the same in both cases where the phase space is the intersection of

the octants y > 0, z > 0 with a sphere (V2 > 0), or with an one sheet

hyperboloid (V2 < 0). The 3-D phase portrait is depicted in Figs 3.6. For

the case of dust and α = 1, β = 2, Q = 0, see Tables 3.2, 3.3.

Figure 3.5: Phase portrait of the projected three-dimensional system on the
invariant set z = 0, for the case of dust, with α = 1, β = 2, Q = 0.
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Table 3.2: Case of dust and V1 > 0, V2 > 0, Q = 0, α = 1, β = 2.

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 sources t1/3

B (0, 0, 0) 1 saddle t2/3

C+

(√
1
6
,
√

5
6
, 0
)

0 sink t2

Table 3.3: Case of dust and V1 > 0, V2 < 0, Q = 0, α = 1, β = 2.

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 sources t1/3

B (0, 0, 0) 1 saddle t2/3

C+

(√
1
6
,
√

5
6
, 0
)

0 sink t2

D+ (0,
√

2, i) 0 saddle et

B. Radiation (γ = 4/3). The case of γ = 4/3 corresponds to radiation,

and therefore there is no matter point with a scale factor a ∼ t2/3. Instead,

point B, which coincides with the origin (0, 0, 0), now represents the well-

known radiation dominated solution, a ∼ t1/2, as a transient phase. C+ is

a future attractor for α <
√

2. For the case of radiation and α = 1, β = 2,

see Tables 3.4, 3.5.

Table 3.4: Case of radiation and V1 > 0, V2 > 0, α = 1, β = 2.

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 sources t1/3

B (0, 0, 0) 1 saddle t1/2

C+

(√
1
6
,
√

5
6
, 0
)

0 sink t2

C. The value γ = 2/3 corresponds to ordinary matter marginally sat-

isfying the strong energy condition. Eq. (3.42) implies Q =
√

2/3. An

acceptable trajectory exists for α <
√

2. For these values of α and Q,

points A± are always unstable. Point B ≡ (1/2, 0, 0), corresponds to the
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Table 3.5: Case of radiation and V1 > 0, V2 < 0, α = 1, β = 2.

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 sources t1/3

B (0, 0, 0) 1 saddle t1/2

C+

(√
1
6
,
√

5
6
, 0
)

0 sink t2

D+ (0,
√

2, i) 0 saddle et

transient matter era, with Ω = 3/4. The accelerated point C+ is a future

attractor. For the case of ordinary matter and α = 1, β = 2, see Tables 3.6,

3.7.

Table 3.6: Case where γ = 2/3 and V1 > 0, V2 > 0, Q =
√

2/3, α = 1, β =
2.

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 sources t1/3

B
(

1
2
, 0, 0

)
3
4

saddle t2/3

C+

(√
1
6
,
√

5
6
, 0
)

0 sink t2

Table 3.7: Case where γ = 2/3 and V1 > 0, V2 < 0, Q =
√

2/3, α = 1, β =
2.

Label (x, y, z) Ω Stability a(t)

A± (±1, 0, 0) 0 sources t1/3

B
(

1
2
, 0, 0

)
3
4

saddle t2/3

C+

(√
1
6
,
√

5
6
, 0
)

0 sink t2

D+ (0,
√

2, i) 0 saddle et
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(a) (b)

Figure 3.6: Phase plots indicating cosmologically viable trajectories, with
0 < α < β. (a) V1, V2 > 0, (b) V1 > 0, V2 < 0

3.6 Asymptotic form of some f (R) theories

predicting acceleration

A large class of dynamical dark energy models, [48, 108–111], is based on

the large-distance modification of gravity. We consider higher order gravity

theories in vacuum derived from Lagrangians of the form

L = f(R)
√
−g, (3.43)

in the Einstein frame. The corresponding potential (see Appendix B) is

given by

V (φ) =
1

2(f ′)2
(Rf ′ − f) .

Conformal transformation yields the field equations in the Einstein frame

G̃µν = Tµν(g̃, φ) + T̃µν(g̃,Ψ). (3.44)

Models of the form

f(R) = R− µ2(n+1)

Rn
,
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where µ > 0, n > 1, were proposed to explain the late-time cosmic acceler-

ation in the context of f (R) gravity theories, [7,54]. The obvious idea is the

introduction of modifications to the Einstein-Hilbert Lagrangian which be-

come important at low curvatures. For these models the potential functions

in the Einstein frame have the form

Vn(φ) =
µ2(n+ 1)n1/(n+1)(e

√
2/3φ − 1)n/(n+1)

2ne2
√

2/3φ
. (3.45)

These functions are defined only for φ ≥ 0, and their behaviour is similar

to that indicated in Figure 3.2, i.e., they have a local maximum at some

φm depending on n, and for large φ they approach zero exponentially. As

n→∞ the potentials (3.45) approach the function

V (φ) =
µ2

2

(
e−
√

2/3φ − e−2
√

2/3φ
)
, (3.46)

corresponding to the asymptotic form of these theories, [7]. Thus, (3.46) is

a particular case of the double exponential (3.15), with

β = 2α = 2

√
2

3
, V1 = −V2 =

µ2

2
> 0,

cf. Figure 3.2.

Note that for large φ, V in (3.46) behaves similarly to Vn in (3.45). In

contrast to the family (3.45), V in (3.46) has the nice property that it is

defined for all φ ∈ R.

For the viable conditions of the asymptotic form of the potentials (3.45),

the constraint (3.28) implies that the phase space is the set

x2 + y2 − (Im z)2 ≤ 1.

There are up to five critical points for that system, depending on the value

of γ. Point C+ is a future attractor and has non phantom acceleration with
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Table 3.8: Equilibrium points for potentials (3.46)

Label (x, y, z) Ω Existence Stability a(t)

A± (±1, 0, 0) 0 always unstable t1/3

B
(

4−3γ
3(2−γ)

, 0, 0
)

4(5−3γ)

9(2−γ)2 γ ≤ 5/3 saddle t3(2−γ)/(8−3γ)

C+

(
1
3
, 2
√

2
3
, 0
)

0 always stable t3

D+ (0,
√

2, i) 0 always saddle et

weff = −7/9. However, in the case of dust, γ = 1, the scale factor at matter

point B evolves as a ∼ t3/5, rather than the usual a ∼ t2/3. The scale factor

evolves “correctly” only for γ = 2/3. The absence of the standard matter

epoch is associated with the fact that matter is strongly coupled to gravity.

This result is in agreement with the general conclusions in [39,40,112], that

these f (R) dark energy models are not cosmologically viable. In Table 3.6

we summarise the properties of the equilibria.

3.7 Conclusion

In this chapter we have focused on a general treatment of scalar fields with

a double exponential potential non-minimally coupled to a perfect fluid. A

full analysis of the equilibrium points of the resulted dynamical system is

quite complicated, yet it revealed that the model predicts a late accelerated

phase of the Universe for a wide range of the parameters, α, β, γ and Q.

Moreover, there exists transient solutions representing a matter era, pre-

ceding the accelerating attractor. However, in most cases the scale factor

near these transient phases evolves as a (t) ∼ tq(Q), where the exponent q is

in general different from the usual 2/3. The “wrong” matter epoch is asso-

ciated with the fact that for values of Q of order unity, matter is strongly

coupled to gravity. A coupling constant of order unity means that matter

feels an additional scalar force as strong as gravity itself, cf. [39]. Assuming
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that ordinary matter satisfies plausible energy conditions, i.e., γ & 1, the

coupling constant, Q, has to be very small; more precisely, q (Q) → 2/3,

only for Q→ 0. Therefore, only a very weak coupling of the scalar field to

ordinary matter can lead to acceptable cosmological histories of the Uni-

verse. This surprising result, indicates that cosmological evolution imposes

strict constraints on the choice of the correct Lagrangian of a gravity theory.

In this study we restricted ourselves to constant couplings; had we let Q to

be a function of φ obeying a proper evolution equation, the dimension of

the dynamical system would have increased by one. In that case, it would

be very interesting to see if the dynamics leads to a very tiny value of Q

at late times. Such a result could lead to a generalisation of the attractor

mechanism of scalar-tensor theories towards General Relativity, found by

Damour and Nordtvedt in the case of a massless scalar field [113,114].
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Chapter 4

Negative Potentials

Although scalar fields having non-negative potentials in FLRW models have

been studied by several authors, there is a small number of papers with

mathematically rigorous results [78,79,115–123]. On the other hand, up to

our knowledge, there is no rigorous mathematical treatment of cosmological

models with negative potentials apart from [124,125].

As we shall see, almost always initially expanding Universes recollapse.

The physical reason to understand why the Universe eventually collapses

when V < 0, is that in the Friedmann equation,

3H2 = ρtotal,

the positive energy density of ordinary matter, as well as the positive kinetic

energy density of the scalar field, decreases in an expanding Universe. At

some moment, the total energy density ρtotal, including the negative contri-

bution V (φ) < 0, vanishes. Once it happens, the Universe, stops expanding

and enters the stage of irreversible collapse [89].

In this chapter the investigation of scalar fields is extended to models

with negative potentials. It is shown rigorously that almost always initially

expanding Universes eventually collapse, independently of the particular

functional form of the potential. Collapsing models were built using homo-

51
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geneous scalar field solutions in [115, 121, 123, 126, 127]. The case where a

scalar field is coupled to a perfect fluid was studied in [122,128]. The chapter

is organized as follows. In the next section we classify negative potentials

studied in the literature into five general classes. We analyse all possible

limit sets of the dynamical system and prove a number of propositions that

lead to the proof of our main result, that the Hubble function almost always

diverges to −∞ in a finite time. In Section 4.2 we consider the remaining

forms of the double exponential potentials as an example to our results.

4.1 Potentials taking negative values

There are several reasons to study cosmology with negative potentials,

see for example [105]. First of all, cosmology with negative potentials

is related to the cosmological constant problem. The simplest potential

used in inflationary cosmology has the form of a quadratic polynomial,

V (φ) = α2φ2, [129]. Adding a small positive constant of order of magnitude

in Planck units 10−120, does not change any features of inflation and can

be used to describe the current observed acceleration of the Universe. As

stated in [105], surprisingly enough, the same conclusion does not hold if

we add a negative constant instead. After a long period of inflation the

Universe with V0 < 0 does not behave like anti-de Sitter space as expected,

but it collapses, [101,102,130].

A second reason to study cosmology with negative potentials is that

potentials with a global positive value of maximum and unbounded from

below, under certain conditions are able to describe the present stage of in-

flation, [101,102]. These include cosmological models in N = 2, 4, 8 gauged

supergravity [101, 131], as well as double exponential potentials studied by

several authors [82, 90–98, 132]; double exponential potentials with non-

minimal coupling were studied in [133]. The physical interest of these po-

tentials is described in [89], where it is shown that if initially the field φ0 is
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near the value corresponding to the maximum of the potential, it takes time

t ∼ 0.7H−1
0 lnφ−1

0 , until the field rolls down from φ0 to the region where

V (φ) becomes negative and the Universe collapses. This time is comparable

to the age of our Universe, H−1
0 , and therefore it is possible that the present

Universe is into an accelerated phase, yet it will collapse in about 18 billion

years. For detailed cosmological implications see [89,102,103].

Other reasons include the relation between cosmology with negative po-

tentials to the cyclic Universe scenario.

We classify potentials taking negative values into the following five fam-

ilies.

A. Potentials having a global positive maximum, limφ→∞ V (φ) = 0, and

are free to fall to−∞ as φ→ −∞. An example is the double exponential

potential

V (φ) = V1e
−αφ + V2e

−βφ, V1, α, β > 0, V2 < 0,

considered in Chapter 3, see Fig. 4.1

ϕ

V

Figure 4.1: Potential falling into Class A

B. Potentials having a global positive maximum and limφ→±∞ V (φ) = −∞.
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Near the maximum, say at φ = 0, they can be represented as

V (φ) = V0 −
m2

2
φ2,

cf. [105]. An example is the potential

V (φ) = V0

(
2− cosh

(√
2φ
))

, V0 > 0,

considered in [89]. Potentials of this class appear in cosmological models

in N = 2, 4, 8 gauged supergravity [101, 131]. For detailed cosmological

implications see [89, 102,103], see for example Fig. 4.2

ϕ

V

Figure 4.2: Potential falling into Class B

C. Potentials having a negative minimum. Two important examples include

the ekpyrotic potentials and those used in models of cyclic Universes,

see for example Fig. 4.3; for reviews see Refs. [134], [135,136].

D. Bounded from below potentials with no minimum, Fig. 4.4. As an

example, we mention the potentials

V (φ) = V0e
−λφ − C, V0, C, λ > 0,

which were considered in the context of supersymmetry theories, see for
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ϕ

V

Figure 4.3: Potential falling into Class C

example Ref. [89].

ϕ

V

Figure 4.4: Potential falling into Class D

E. Potentials with V (φ) decreasing from +∞ to −∞, for example

V (φ) = W0 − V0 sinh (λφ) , λ, V0 > 0,

see Fig. 4.5, (see [106] where an exact solution was obtained in the

absence of matter).

Up to now we have considered only constant coupling coefficients. In

this chapter we consider more general couplings by assuming the coupling
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ϕ

V

Figure 4.5: Potential falling into Class E

coefficient Q to be a positive and bounded function of class C1 such that,

Q± := lim
φ→±∞

Q(φ) > 0. (4.1)

4.1.1 Potentials falling into Class A

In this section we prove the Theorem 3 stated in the previous chapter. Our

system is again (3.8)–(3.11) with Q = Q(φ) satisfying (4.1). We suppose

that a potential V (φ) satisfies the following assumption.

Assumption 3 We assume that V (φ) ∈ C2 is such that

1. limφ→−∞ V (φ) = −∞ and limφ→+∞ V (φ) = 0.

2. The potential has a unique critical point φm > 0, with V (φm) > 0,

i.e., in view of (1), the φm has to be a global maximum. Moreover φm

is non degenerate, i.e., V ′′(φm) < 0.

3. There exist λ > 0 and M < 0 such that

V ′(φ) ≤ −λV (φ), for all φ < M. (4.2)
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Motivation for the Assumption 3 comes from the double exponential

potential of Chapter 3

V (φ) = V1e
−αφ + V2e

βφ, 0 < α < β, V1 > 0, V2 < 0,

see Fig. 3.2. In particular, condition (4.2) establish a bound for the growth

of |V (φ)| to infinity, that must be at most exponential.

We will also assume that the function Q(φ), is bounded for all φ ∈ R;

in particular, we suppose the existence of a constant A such as

|4−3γ
2
Q(φ)| ≤ A. (4.3)

The dynamical system (3.8)–(3.11) has only two finite equilibrium points,

(
φ = φm, φ̇ = 0, ρ = 0, H = ±

√
Vmax/3

)
.

They represent de Sitter and anti-de Sitter solutions and it is easy to see

that are unstable. It is known that for potentials with a maximum, the field

near the top of the potential corresponds to the tachyonic (unstable) mode

with negative mass squared [101, 131]. The other asymptotic states of the

system correspond to the points at infinity, φ→ ±∞.

As stated in Chapter 3, it can be seen that if initially φ (0) ≡ φ0 < φm,

then there is a critical value φ̇crit > 0, which allows for φ to pass on the

right of φm. More precisely, in the case of zero coupling, Q = 0, it is easy

to show that there exists a critical value of φ̇, say φ̇crit, such that if φ0 < φm

and φ̇ (0) < φ̇crit, then φ (t) remains less than φm for all t ≥ 0. The

argument is similar to the mechanical analogue of the motion of a particle

in the potential V (φ), according to Eq. (3.6). In the case of non-minimal

coupling, the energy density of the scalar field is not necessarily decreasing,

because there is an energy exchange between the scalar field and the fluid.
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An estimation of the maximum allowable value of φ̇0 can be obtained from

(3.4), supposing that initially 3H2(t0) ≤ V (φm) = Vmax. Indeed, since by

Eq. (3.5) H is decreasing

ρ (t) +
1

2
φ̇ (t)2 + V (φ (t)) ≤ Vmax, for all t ≥ 0, (4.4)

which implies that V (φ (t)) ≤ Vmax for all t ≥ 0, and therefore φ (t) < φm for

all t ≥ 0. Moreover, inequality (4.4) and initial condition on H(t) establish

a maximum allowable value of φ̇crit,

φ̇crit ≤
√

2Vmax.

Therefore if 0 < H(t0) ≤
√
Vmax/3, then φ(t) never crosses the maximum

of V (φ) throughout the evolution.

The following results are crucial for our study.

Lemma 2 Let γ(t) = (φ(t), y(t), ρ(t), H(t)) be a bounded solution such that

ρ(t0) > 0. Then γ(t) ∈ W s(q), where W s(q) is the stable manifold of an

equilibrium point q and q± =

(
φm, 0, 0,±

√
V (φm)

3

)
are the equilibria of the

system.

Proof. Let I = [t0, tm), where tm is the supremum of the maximal right

extension of γ, and Ω(t) = {γ(t) : t ∈ I} ∪ L+(γ), where L+(γ) is the

positive limit set of γ. Equation (3.11) implies that Ḣ ≤ 0 on Ω. Let

E = {x ∈ Ω : Ḣ = 0} = {x ∈ Ω : y = ρ = 0}, and let η(t) be a solution to

the system such that η(t0) ∈ E and η(t) ∈ E, for all t ≥ t0. It follows that

y(t) = ρ(t) = 0, for all t ≥ t0 and, from Eq. (3.8), φ(t) = φ0 constant for all

t ≥ t0. From Eq. (3.9) we have that V ′(φ0) = 0 and then φ0 = φm. Since

Ḣ = 0, H(t) is constant and from Eq. (3.12) it must be H = ±
√

V (φm)
3

.

Therefore E = {q±}, i.e. is made by the two equilibria of the system.

LaSalle invariance principle (see Appendix C) and monotonicity of H(t)
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ensure that γ(t) converges to either q+ or q−, and then it belongs to the

stable manifold of one of the two equilibria.

Remark 1 As a consequence of the above fact, we can show that future

bounded trajectories of the system (3.8)–(3.12) with ρ(t0) > 0 are non

generic. Indeed, let us first observe that, using Eq. (3.12), we can rewrite

Eq. (3.11) as follows

Ḣ = −3H2 +
(

1− γ

2

)
ρ+ V (φ). (4.5)

Then, let us consider the equivalent system (3.8)–(3.10) with Eq. (4.5), and

study the Jacobi matrix computed at the equilibria q±. Since φm is a non

degenerate critical point for V (φ), we obtain that the stable manifold of q+

is 3–dimensional and the stable manifold of q− is 1–dimensional. In the

latter case the result straightly follows from the previous proposition. Also

for the equilibrium q+, the result follows, taking some more care due to the

fact that, actually, Eq. (3.12) selects a 3–dimensional submanifold of initial

data, which anyway can be easily checked to be transversal to W+(q+) at

q+.

By the above result one can expect in principle that solutions of the

system (3.8)–(3.12) are generically, i.e., up to a zero–measured set of initial

data, unbounded, and our aim is now to study their qualitative behaviour.

The following result will provide sufficient conditions for a future singularity.

Lemma 3 Let γ(t) be a solution to the system (3.8)–(3.12). If there exists

t1 ≥ t0 and V̄ ∈ R such that, for all t ≥ t1, V (φ(t)) ≤ V̄ , and either (i)

V̄ < 0, or (ii) H(t1) < −
√

V̄
3

, then H(t) negatively diverges in a finite time,

i.e. the property

∃t∗ > 0 such that lim
t→t−∗

H(t) = −∞.
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holds.

Proof. To show the above, we use Eq. (3.11) and recalling that 0 ≤ γ ≤ 2,

we have for t ≥ t1

Ḣ ≤ γ

2

(
−3H2 + V̄

)
. (4.6)

Therefore, considering the Cauchy problem

Ż(t) =
γ

2

(
−3Z(t)2 + V̄

)
, Z(t1) = H(t1),

its solution Z(t) is easily seen to diverge to −∞ in a finite time. The result

follows from comparison theorems in ODE theory.

We now prove the Theorem 3 conjectured in Chapter 3.

Theorem 4 Let γ(t) = (φ(t), y(t), ρ(t), H(t)) a solution to the system (3.8)–

(3.12) such that φ(t0) < φm, ρ(t0) > 0, H(t0) > 0, and y(t0) < φ̇crit, where

φ̇crit is the critical value that allows for φ to pass to the right of φm. Then

H(t) generically negatively diverges in a finite time:

∃t∗ > 0 such that lim
t→t−∗

H(t) = −∞. (4.7)

Proof. According to Remark 1 bounded trajectories of the system (3.8)–

(3.12) are non generic, we can only consider unbounded solutions without

losing genericity. Then at least one of the components of γ(t) is unbounded.

If H(t) is unbounded, then since by Eq. (3.11), H(t) is decreasing, then it

must be negatively unbounded, and then Lemma 3 immediately gives the

result, recalling that V (φ) is bounded from above. For the rest of the proof

we will argue by contradiction, and show that H(t) must be necessarily

unbounded.

So, suppose by contradiction that H(t) is bounded. Then, assuming for

sake of simplicity that t0 = 0, Eq. (3.11) implies that there exists a constant
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K > 0 such that |H(t)| < K, and also

∫ t

0

1

2
y2(s) ds < K,

∫ t

0

ρ(s) ds < K, for all t ≥ 0. (4.8)

Moreover, since

3H2 − V (φ) =
1

2
y2 + ρ,

and the solution must be unbounded, then either y2 or ρ (or both) are

unbounded (otherwise, V (φ) would be bounded that implies that φ is pos-

itively unbounded, which is excluded since φ(t) < φm) and then from Eq.

(3.12) also V (φ) is negatively unbounded.

Suppose that y2 is bounded and ρ is unbounded. If ρ diverges to ∞

then by Eq. (3.12) also V (φ) diverges (to −∞). Therefore, hypotheses

from Lemma 3 are satisfied which would imply that H(t) is unbounded,

contradiction. Then ρ cannot diverge to ∞, and as a consequence there

exists an increasing sequence {tn} such that ρ(t2n)→ +∞ and ρ(t2n−1) < ρ̄

for some fixed ρ̄. Moreover,

ρ(t2n)− ρ(t2n−1) =

∫ t2n

t2n−1

ρ̇(t) dt =

∫ t2n

t2n−1

−ρ(t)(3γH(t) +
4− 3γ

2
Qy(t)) dt,

and boundedness of both y and H implies the existence of some positive

constant C such that

ρ(t2n)− ρ(t2n−1) ≤ C

∫ t2n

t2n−1

ρ(t) dt ≤ C K,

that is a contradiction because the left hand side diverges. Then y2 must

necessarily be unbounded, and let us now show that even in this case we

get a contradiction. To begin, observe that Eq. (3.12) implies

1
2
y2 = 3H2 − ρ− V (φ) ≤ −V (φ) + 3K2, (4.9)
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where we have also used |H(t)| < K, for all t ≥ 0. Let tn an increasing

sequence such that y2(tn)→ +∞. Then φ(tn) < M eventually, whereM has

been defined in Eq. (4.2) (otherwise V (φ(tn)) would be bounded and then,

from Eq. (4.9), y2(tn) would be). Now, if φ(t) < M is eventually satisfied

for all t sufficiently large (not only on the tn’s, namely) then V (φ(t)) <

V (M) < 0 eventually, and therefore the hypotheses in Lemma 3 would be

satisfied, that would mean that H(t) is unbounded. If, on the other side,

there exists an increasing sequence sn such that sn < tn < sn+1, φ(sn) = M

and φ(t) < M in (sn, tn), then it must be, by Eq. (4.9),

1

2
y2(sn) ≤ −V (M) + 3K2,

and therefore, using also the growth Assumption 3 made on V and Eqs.

(3.12) and (4.8),

|y(tn)| ≤|y(sn)|+
∣∣∣∣∫ tn

sn

ẏ(t) dt

∣∣∣∣
≤
√

2(−V (M) + 3K2) + 3

∫ tn

sn

|H(t)y(t)| dt

+

∫ tn

sn

V ′(φ(t)) dt+ A

∫ tn

sn

ρ(t) dt

≤
√

2(−V (M) + 3K2) +
3

2

∫ tn

sn

H2(t) dt

+
3

2

∫ tn

sn

y2(t) dt+ λ

∫ tn

sn

(−V (φ(t))) dt+ AK

≤
√

2(−V (M) + 3K2) +
1

2

∫ tn

sn

3H2(t) dt

+ λ

∫ tn

sn

(−V (φ(t))) dt+ (3 + A)K

≤
√

2(−V (M) + 3K2) + (3 + A)K + (1 + λ)

∫ tn

sn

(
3H2(t)− V (φ(t))

)
dt

=
√

2(−V (M) + 3K2) + (3 + A)K + (1 + λ)

∫ tn

sn

(
1

2
y2(t) + ρ(t)

)
dt

≤
√

2 (−V (M) + 3K2) +K (A+ 5 + 2λ) ,
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that is a contradiction since |y(tn)| positively diverges. This means that

H(t) cannot be bounded and therefore the result follows, as said in the very

first part of this argument, from Lemma 3.

4.1.2 Potentials falling into Class B

Potentials falling into class B allow for a similar treatment as potentials

of class A. In fact potentials of class B do not have the complication of

potentials in class A, since they diverge to −∞ on both directions. Hence,

in this section we assume that V (φ) is a potential satisfying the following

assumption.

Assumption 4 Let V (φ) ∈ C2 such that

1. limφ→±∞ V (φ) = −∞,

2. V has a unique nondegenerate critical point (that has to be, in view

of (1), the global maximum),

3. There exist λ > 0 and M > 0 such that, |V ′(φ)| ≤ −λV (φ), for all

φ : |φ| > M .

Theorem 5 Let V (φ) ∈ C2 satisfying the Assumption (4). Then H(t)

generically negatively diverges in a finite time, i.e. the property

∃t∗ > 0 such that lim
t→t−∗

H(t) = −∞,

holds.

Proof. The argument follows the same line of the proof used for left un-

bounded potentials of class A. In the present case, potentials of class B do

not have the complication of potentials B, diverging to −∞ on both di-

rections, and therefore, regardless of the behaviour of the scalar field, and

recalling Lemma 2, it can be proved with exactly the same argument that,
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the solution recollapses almost always and the Hubble function negatively

diverges in a finite time.

4.1.3 Potentials falling into Classes C-E

In the following we incorporate cases C–E into a large class of potentials

V (φ) ∈ C2 satisfying some further assumptions.

Assumption 5 We assume that V (φ) ∈ C2 is such that

1. limφ→−∞ V (φ) = +∞,

2. There exists a unique φ0 ∈ R : V (φ0) = 0. Moreover, V is strictly

decreasing for all φ ≤ φ0,

3. limφ→∞
V ′(φ)
V (φ)

= −α ∈ R, and limφ→−∞
V ′(φ)
V (φ)

= −β ∈ R

4. limφ→+∞ V (φ) = V∞ ≤ 0 (possibly V∞ = −∞).

5. There exists a C2–diffeomorphism, f : (−∞, φ0]→ [0, s0), such that

(a) The limit limφ→−∞ f
′(φ), exists and is equal to zero,

(b) limφ→−∞ f(φ) = 0,

(c) limφ→−∞

[
1

f ′(φ)

(
V
′′

(φ)
V (φ)

−
(
V ′(φ)
V (φ)

)2
)]

= 0,

(d) limφ→−∞
f ′′(φ)
f ′(φ)

∈ R .

6. If V∞ = 0, then there exists a φM > 0, such that V is strictly in-

creasing for φ ≥ φM . Moreover, we make a similar hypothesis to (5)

above for φ → +∞, assuming the existence of a C2–diffeomorphism,

g(φ) : [φM ,+∞)→ (0, s0] such that requests (5a)–(5d) hold for g(φ),

as φ→ +∞.

Assumptions (5)–(6) are required for situations where the scalar field

possibly diverges. In those cases, the above diffeomorphisms are needed to
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bring a neighbourhood of infinity to a neighbourhood of the origin, [115,122].

It is easy to verify that cases C, D and E of negative potentials mentioned

in the Introduction satisfy Assumption 5. In the next section we will ex-

amine the possible ω−limit sets of the system, essentially depending on the

asymptotic behavior of the scalar field φ(t). We will see that, except one

case described in Proposition 4, solutions to (3.8)–(3.12) always recollapse

to a singularity in a finite amount of time. For what follows in this section

we suppose that V (φ) satisfies the Assumption 5. We also define I to be the

maximal interval of definition of a solution to the system (3.8)–(3.12) and

φ∞ := lim
t→sup I

φ(t),

if it exists.

We are going to examine different situations depending on φ∞.

Case φ∞ = −∞

We firstly analyse the case E when the scalar field negatively diverges in

such a way that V (φ(t)) → +∞, see for example [106]. Note that we do

not need to assume an a priori estimate on α, β.

Proposition 1 If φ∞ = −∞ then the property

∃t∗ > 0 : lim
t→t−∗

H(t) = −∞, (4.10)

generically holds.

Proof. Since V (φ(t)) → +∞, then H2(t) → +∞. Eq. (3.10) implies that

ρ = 0 is an invariant set. Then it follows that ρ > 0, if it was initially

positive. Then, from Eq.(3.11), H(t) is decreasing. Therefore we conclude

that H (t) negatively diverges. It is left to prove that this happens in a

finite amount of time. Without loss of genericity suppose H(0) < 0. We
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divide both sides of the constraint (3.12) by H2,

1

2

( y
H

)2

+
V

H2
+

ρ

H2
= 3. (4.11)

Similarly to the previous chapter, we introduce expansion-normalised vari-

ables,

φ, x =
1

H
, w =

y

H
, z =

√
ρ

H
, (4.12)

and a new time coordinate τ , defined by

τ = − ln a. (4.13)

Substituting to the constraint (4.11), we get,

V (φ)x2 +
1

2
w2 + z2 = 3. (4.14)

By differentiating with respect to the new time variable τ , we obtain,

dφ

dτ
=
dφ

dt

dt

dτ
= − 1

H
φ̇ = −w, (4.15)

dx

dτ
=
dx

dt

dt

dτ
= − Ḣ

H2

(
− 1

H

)
= − 1

H

(
1

2

y2

H2
+
γ

2

ρ

H2

)
= −x

(
1

2
w2 +

γ

2
z2

)
, (4.16)

dw

dτ
=
dw

dt

dt

dτ

= − 1

H

(
−3y − V ′(φ)

H
+

4− 3γ

2
Q
ρ

H
+

1

2

y3

H2
+
γ

2

ρy

H2

)
= 3w +

V ′(φ)

V (φ)
V (φ)x2 − 4− 3γ

2
Qz2 − 1

2
w3 − γ

2
z2w, (4.17)
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dz

dτ
=
dz

dt

dt

dτ
= − 1

H

(
ρ̇

2H
√
ρ
−
√
ρḢ

H2

)

= − 1

H

(
−√ρ

(
3γH + 4−3γ

2
Qy
)

2H
−
√
ρḢ

H2

)

= −
√
ρ

2H

(
−3γ − 4− 3γ

2
Q
y

H
+
y2

H2
+ γ

ρ

H2

)
= −1

2
z

(
−3γ − 4− 3γ

2
Qw + w2 + γz2

)
, (4.18)

where we remind that an overdot denotes differentiation with respect to time

t. We use the constraint (4.14), to eliminate x(τ) from the system (4.15)–

(4.18), thus we come to the following system for the triple (φ(τ), w(τ), z(τ)):

dφ

dτ
= −w, (4.19)

dw

dτ
= −

(
1

2
w2 − 3

)(
w +

V ′(φ)

V (φ)

)
− z2

(
γ

2
w +

4− 3γ

2
Q+

V ′(φ)

V (φ)

)
,

(4.20)

dz

dτ
= −1

2
z

(
w2 − 4− 3γ

2
Qw + γ(z2 − 3)

)
. (4.21)

We recall that our assumption is, φ∞ = −∞, hence we are interested in

the dynamics near the critical point “at infinity”, φ→ −∞. Therefore, we

introduce the variable s = f(φ), where f is defined in Assumption 5 and its

derivative with respect to time τ , is

ds

dτ
=
df

dφ

dφ

dt

dt

dτ
= − 1

H
f ′(φ)φ̇ = − y

H
f ′
(
f−1 (s)

)
= −wf ′

(
f−1 (s)

)
. (4.22)

In this way we obtain a system in the variables (w(τ), z(τ), s(τ)), ruled by

equations (4.20), (4.21) and (4.22).
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Since V (φ(t)) is eventually positive, the system (4.20)–(4.22) is subject

to the constraint,
1

2
w2 + z2 < 3. (4.23)

We consider critical points of (4.20)–(4.22) such that s = 0, which are

candidates to be ω–limit points for the solutions we are interested in. There

are up to seven critical points which are further restricted to critical points

with w ≥ 0, since we expect both y and H to be eventually negative and

z ≤ 0. We are left with four admissible critical points and their (w, z)–

coordinates are then,

A =
(√

6, 0
)
,

B = (β, 0),

C =

24−3γ
2
Q−

2− γ
,−

√
−2
(

4−3γ
2
Q−
)2

+ 3(2− γ)2

2− γ

 ,

D =

− 3γ
4−3γ

2
Q− − β

,

√
3(−3γ − 4−3γ

2
Q−β + β2)

4−3γ
2
Q− − β

 .

It is easy to check that all these points, except possibly B, do not coincide

with the origin (0, 0). In the particular case when λ = 0, then B = (0, 0),

but the eigenvalues of the linearised system associated with this critical

point are {0, 3, 3
2
γ} and so this point is definitely an unstable equilibrium.

The generical situation therefore is that there exists a δ > 0 : 1
2
w2+z2 ≥

δ eventually. Then, recalling (3.11),

1

H(t)
− 1

H(t0)
=

∫ t

t0

− Ḣ(σ)

H(σ)2
dσ =

∫ t

t0

1

2
(w2 + γz2) dσ ≥ δ(t− t0).

Since H(t0) < 0, we conclude that H(t) diverges in a finite amount of time.

Remark 2 The same dynamics described in the above proposition applies



Chapter 4. Negative Potentials 69

to the more general case lim inft→sup I V (φ(t)) = −∞. Indeed, this situation

implies again that H(t)→ −∞, and in the above proposition we have proved

that the dynamics near the point “at infinity” φ→ −∞, give necessarily rise

to solutions that completely recollapse in a finite time.

Case φ∞ ∈ R.

We briefly examine what happens if the scalar field converges to a positive

value.

Proposition 2 If φ∞ ∈ R then the property

∃t∗ > 0 : lim
t→t−∗

H(t) = −∞, (4.24)

generically holds.

Proof. If φ∞ ∈ R then φ(t) is bounded. Then, if H(t) was bounded too, by

(3.12) also y(t), ρ(t) would be bounded so the solution would be bounded

which by Remark 1 is a non generic situation. Then H(t) is unbounded

and since it is decreasing by (3.11), it must diverge to −∞. At this point,

Lemma 3 applies to give the result.

Case φ∞ = +∞

In this situation we must split the argument into two subcases, depending

on the value of V∞. We start by considering shortly the case when this limit

value is strictly negative (case E), possibly −∞ (case A).

Proposition 3 If V∞ < 0 and φ∞ = +∞ then the property

∃t∗ > 0 : lim
t→t−∗

H(t) = −∞, (4.25)

generically holds.
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Proof. If φ∞ = +∞ then, since V∞ < 0, there exists a V̄ < 0, such as,

V (φ(t)) ≤ V̄ < 0 eventually and then Lemma 3 applies to give the result.

A more subtle case happens when V∞ = 0, as is the case of the ekpyrotic

potentials. In this situation the critical point “at infinity” corresponding to

φ→ +∞ must be studied carefully, since it may give rise to ever expanding

cosmologies. Before we state the precise theorem, the following preliminary

result is needed.

Lemma 4 If V∞ = 0 and φ∞ = +∞, then H∞ = limt→sup IH(t) ≤ 0.

Proof. Suppose by contradiction, that H∞ > 0. Then,

1

2
y2 + ρ→ 3H2

∞

and therefore

sup I ∈ R,

otherwise it would be

H(t)−H(0) = −1

2

∫ t

t0

(
y(s)2 + γρ(s)

)
ds→ −∞,

as t→∞, a contradiction. Using the Cauchy-Schwarz inequality we obtain,

(φ(t)− φ(t0))2 =

(∫ t

t0

φ̇(s) ds

)2

=

(∫ t

t0

y(s) ds

)2

=

(∫ t

t0

1 · y(s) ds

)2

≤
(∫ t

t0

12(s) ds

)(∫ t

t0

y2(s) ds

)
≤ (t− t0)

∫ t

t0

y2(s) ds ≤ (t− t0)

∫ t

t0

−2Ḣ(s) ds

= 2(t− t0) (H(t0)−H(t)) ,
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that converges to the finite value 2(sup I− t0)(H(t0)−H∞) ∈ R, hence φ(t)

is bounded, which is a contradiction. Therefore, H∞ ≤ 0.

Proposition 4 Suppose that φ∞ = +∞ and V∞ = 0. If

0 < γ <
4

3
, 0 < Q+ <

√
6

2− γ
4− 3γ

, α >
4− 3γ

2
Q+ +

3(2− γ)γ

(4− 3γ)Q+

(4.26)

does not hold, then the property

∃t∗ > 0 : lim
t→t−∗

H(t) = −∞, (4.27)

generically holds. Otherwise, i.e. if (4.26) holds, either ∃t∗ > 0 : limt→t−∗ H(t) =

−∞, generically holds or the solution expands forever, with φ(t)→ +∞ and

y(t), ρ(t) and H(t) infinitesimal as t→ +∞.

Proof. By Lemma 4, H∞ ≤ 0. If H∞ is strictly negative then the results

follows from Lemma 3. Suppose now it is zero; this means that the solution

expands forever and a normalised variables scheme can be used to study the

critical point “at infinity”. We use variables (φ, x, w, z) as in Proposition

1, which are functions of a new time τ coordinate defined by dτ/dt = H.

Note that unlike the case treated in Proposition 1, now H > 0. We use

the function g, defined in Assumption 5 and the same arguments as in the

proof of Proposition 1, that is,

φ, x =
1

H
, w =

y

H
, z =

√
ρ

H
,

are the expansion-normalised variables, and the constraint in the new vari-

ables is,

V (φ)x2 +
1

2
w2 + z2 = 3.
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Differentiation with respect to the new time variable τ , yields,

dw

dτ
=

(
1

2
w2 − 3

)(
w +

V ′(g−1(s))

V (g−1(s))

)
+ z2

(
γ

2
w +

4− 3γ

2
Q+

V ′(g−1(s))

V (g−1(s))

)
,

(4.28)

dz

dτ
=

1

2
z

[
w2 − 4− 3γ

2
Qw + γ(z2 − 3)

]
, (4.29)

ds

dτ
= wg′(g−1(s)), (4.30)

where we used the constraint, to eliminate x(τ) from the system. Note that

Q is a function depending on φ, or equivalently, Q(φ) = Q (g−1(s)).

We are interested in solutions such that s → 0 and 1
2
w2 + z2 > 3, with

w, z ≥ 0 eventually. Therefore, the (w, z)–coordinates of the critical points

that are admissible candidates to be ω–limit points are,

A =
(√

6, 0
)
,

B = (α, 0),

C =

24−3γ
2
Q+

2− γ
,

√
−2
(

4−3γ
2
Q+

)2
+ 3(2− γ)2

2− γ

 ,

D =

− 3γ
4−3γ

2
Q+ − α

,−

√
3(−3γ − 4−3γ

2
Q+α + α2)

4−3γ
2
Q+ − α

 .

The analysis of these critical points reveals that the only sink can be C,

and this happens precisely when (4.26) holds. In this case, we obtain ever

expanding solutions such that H∞ = 0, and consequently, both y and ρ tend

to zero; since the solution is defined for τ → +∞, and recalling that t is

an increasing function of τ , we get sup I = +∞, i.e. also the corresponding

solution to (3.8)–(3.12) is defined for t→ +∞.

If the solution does not start into the basin of attraction of C, it is

unbounded, thus, 1
2
w2 +z2 → +∞. Suppose by contradiction that they also

correspond to ever expanding cosmologies with H∞ = 0. Then sup I = +∞.
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Set

x̃ =

√
|V |
H

,

and observe that

dx̃

dτ
=

1

2
x̃

(
V ′(g−1(s))

V (g−1(s))
w + w2 + γz2

)
≈ 1

2
x̃(w2 + γz2),

where the symbol ≈ is used to denote the dominant terms. Now,

x̃2 =
1

2
w2 + z2 − 3 ≈ 1

2
w2 + z2 ≈ K(w2 + γz2),

for some constant K > 0, so dx̃/dτ ≈ Ax̃3 for some A > 0, which implies

x̃(τ) ≈ (a− bτ)−1/2 for suitable a, b > 0.

Then,
1

2
(w2 + γz2) ≈ dx̃

dτ

1

x̃
≈ b

2
(a− bτ)−1,

hence,
dH

dτ
= −H 1

2
(w2 + γz2) ≈ −H(τ)

b

2
(a− bτ)−1,

from which H(τ) ≈ H0

√
a− bτ . This implies that

t =

∫ τ

τ0

1

H(σ)
dσ ≈

∫ τ

τ0

1

H0

√
a− bσ

dσ,

which converges as τ → a/b. This means that sup I ∈ R, that is a contra-

diction. Therefore, H(t) < 0 eventually. Since V (φ(t)) < 0 eventually, the

conclusion follows from Lemma 3.

To illustrate the situation depicted in Proposition 4, let us consider

as an example the double exponential potential (3.15), where we choose

α = 4, β = 5 and V2 = −V1 = 1. For the case of dust, γ = 1, and a constant

coupling Q = 1, both expansion and recollapse may take place, depending

on the initial conditions.
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With initial conditions for instance, H(0) = 1, φ(0) = 2 and y(0) = −1

(the initial value ρ(0) is not arbitrary, but is determined by the constraint

(3.16)), the scalar field positively diverges in an infinite time and the Hubble

function remains always positive, tending asymptotically to zero; therefore

the Universe expands forever.

Simply changing the initial conditions, for instance y(0) = −2, then the

scalar positively diverges again, but now in a finite amount of time. Indeed,

H(t) changes sign and once it becomes negative, the solution is forced to

recollapse and develop a singularity.

Case φ∞ does not exist

In this subsection we study the case when φ(t) neither converges nor di-

verges.

Proposition 5 If φ∞ does not exist, then the property

∃t∗ > 0 : lim
t→t−∗

H(t) = −∞,

generically holds.

Proof. First we claim that

H∞ = lim
t→sup I

H(t) = −∞, (4.31)

generically holds, by considering the following subcases.

1. Suppose lim inft→sup I V (φ(t)) ≥ 0. If by contradiction, H(t) was

bounded, then from (3.12) we could conclude that y(t), ρ(t) were

bounded too. Then, for the solution to be generic (recall again Lemma

2), φ(t) should be unbounded. But since V (φ(t)) must be eventu-

ally non negative, this would imply that lim supt→sup I V (φ(t)) = +∞.

Then a sequence tn → sup I exists, such that H(tn)2 → +∞, which
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means that H(tn) → −∞, which is a contradiction. Thus, H(t) can-

not be bounded and therefore (4.31) must hold.

2. Suppose lim inft→sup I V (φ(t)) < 0. In this case there exist sequences

{tn}, {sn}, such that

tn, sn → sup I, tn < sn < tn+1,

with V (φ (tn)), V (φ (sn)) < 0 and φ(t) lies between φ (tn) and φ (sn),

∀t ∈ [tn, sn]. Using Cauchy-Schwarz inequality as in the proof of

Lemma 4 we get

(φ (tn)−φ (sn))2 ≤ (sn−tn)

∫ sn

tn

−2Ḣ(s) ds = 2(sn−tn)(H(tn)−H(sn)),

and therefore

sn − tn ≥
(φ (tn)− φ (sn))2

2(H(tn)−H(sn))
. (4.32)

Now, if by contradiction H∞ ∈ R then (4.32) would imply that sn −

tn → +∞ and as a consequence sup I = +∞. Moreover comparison

theorems in ODE would say that H(t) ≤ z(t) in [tn, sn], where z(t)

solves the Cauchy problem

ż(t) =
γ

2
(−3z(t)2 + V̄ ), z(tn) = H(tn),

and V̄ is a (negative) constant such that V (φ) < V̄ , for every φ be-

tween φt and φs. Now, observe that the solution z(t) to the Cauchy

problem above negatively diverges for some tn + δn, where δn is uni-

formly bounded with respect to n, whereas sn − tn → +∞, and this

is a contradiction. Hence H∞ = −∞, i.e. (4.31) holds.

In both cases (2a) and (2b) we have shown that (4.31) holds. Let us

prove that this happens in a finite amount of time. If lim inft→sup I φ(t) ∈ R



Chapter 4. Negative Potentials 76

then there exists a V̄ ∈ R, such that V (φ(t)) ≤ V̄ eventually, and the result

follows from Lemma 3.

If lim inft→sup I φ(t) = −∞, i.e., lim supt→sup I V (φ(t)) = +∞, then we

can consider the same system in normalised variables used in case (1c)

before, see Remark 2 after Proposition 1.

The results proved in this section may be collected in the following main

theorem.

Theorem 6 Let V (φ) satisfy Assumption 5. Then, if either V∞ < 0, or

condition,

0 < γ <
4

3
, 0 < Q+ <

√
6

2− γ
4− 3γ

, α >
4− 3γ

2
Q+ +

3(2− γ)γ

(4− 3γ)Q+

(4.33)

does not hold, then a solution to (3.8)–(3.12), up to a zero–measured set of

initial data, recollapses to a singularity in a finite amount of time, i.e.,

∃t∗ > 0 : lim
t→t−∗

H(t) = −∞. (4.34)

Otherwise, if V∞ = 0 and (4.33) does hold, a solution to (3.8)–(3.12) either

generically recollapses to a singularity in a finite time or expands forever,

with φ(t)→ +∞ and y(t), ρ(t) and H(t) infinitesimal as t→ +∞.

4.2 The Double Exponential Potential revis-

ited

To illustrate the results depicted in this chapter, we consider the general

form of the potential

V (φ) = V1e
−αφ + V2e

−βφ,

where α, β, V1, V2 are nonzero real constants of arbitrary sign.
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Without loss of generality, we assume α 6= β. For α = β the case reduces

to a single exponential potential. Different assumptions on the parameters

α, β, V1, V2, yield to different forms of the potentials, as shown in Table 4.1.

The cases 0 < α < β and 0 < β < α have already been analysed in Chapter

3.

Potentials shown in Fig. 4.6(a), where α < 0 < β and V1, V2 > 0,

have a strictly positive minimum, say Vmin, and the de Sitter solution with

H =
√
Vmin/3, is the future attractor for the system, [79]. This follows

directly either from the original equations (3.17)-(3.19), or from the system

(3.27) written in the new variables. Moreover, it is easy to see that a matter

era represented by a saddle equilibrium B, precedes the final accelerated

epoch. Potentials in Fig. 4.6(b) belong to the Class E for the “twin” cases

β < 0 < α, α < 0 < β, potentials in Fig. 4.6(c) also belong to the Class E,

while potentials in Fig. 4.6(d) have a strictly negative maximum, therefore

this is not a physically interesting case.

The case β < 0 < α is a mere renaming of the parameters and some

equilibria and yields to the same conclusions. The different forms of the

potentials with respect to the different signs of V1, V2 are shown in Fig. 4.6.

4.3 Conclusion

In this chapter we completed the analysis of the main classes of negative

potentials encountered in the literature. We proved that a solution to (3.8)–

(3.12) generically recollapses in a finite time, that is

∃t∗ > 0 such that lim
t→t−∗

H(t) = −∞.

We have investigated the qualitative behaviour of the Hubble function, ex-

amining all possible cases for the asymptotic behaviour of the scalar field.
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Table 4.1: Forms of the potentials V (φ) = V1e
−αφ + V2e

−βφ.

Parameters V1, V2 0 < α < β β < α < 0

V1, V2 > 0 ϕ

V

ϕ

V

V1 > 0, V2 < 0

ϕ

V

ϕ

V

V1 < 0, V2 > 0

ϕ

V

ϕ

V

V1, V2 < 0

ϕ

V

ϕ

V

Parameters V1, V2 α < 0 < β β < 0 < α

V1, V2 > 0 ϕ

V

ϕ

V

V1 > 0, V2 < 0

ϕ

V

ϕ

V

V1 < 0, V2 > 0

ϕ

V

ϕ

V

V1, V2 < 0

ϕ

V

ϕ

V
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ϕ

V

(a)

ϕ

V

(b)

ϕ

V

(c)

ϕ

V

(d)

Figure 4.6: Potentials with α < 0 < β. (a) V1, V2 > 0, (b) V1 > 0, V2 < 0,
(c) V1 < 0, V2 > 0, (d) V1, V2 < 0

We have found that the recollapse and the formation of a future singularity

always take place in a generic way, i.e. stable with respect to perturbations

of the initial data of the system. Moreover, recollapse is the only generical

situation allowed, except in case the potential goes to zero from below as

φ → +∞ and (4.33) holds; in this case there also exists generical choices

of initial data that do not lead to recollapse, producing an ever–expanding

cosmology where the scalar field positively diverges. Our conclusions are

valid for scalar fields coupled to matter, as well as for uncoupled models

studied so far in the literature.

Cosmology with negative potentials is the basis of the cyclic Universes in

the context of the ekpyrotic scenario. Our results may be helpful in building

solid models of cyclic cosmologies and therefore avoid the fragility of this

scenario with respect to the unknown physics at the singularity.



Chapter 5

Conclusions and Future Work

In this thesis we have focused on a general treatment of a scalar field with

a potential function, non-minimally coupled to matter.

In Chapter 3, we treated the case where the potential is the sum of two

exponentials. This form arises as the asymptotic form of other potentials.

It is therefore of great interest to see if these models are cosmologically vi-

able. To study the system we have used the expansion-normalised variables

techniques. The analysis of the critical points of the dynamical system was

complicated, it revealed though that the model predicts a late accelerated

phase of the Universe for a wide range of the parameters, α, β, γ and Q.

We found that there is a solution of the resulted dynamical system which

may represent a viable cosmological history. In fact, there exists a saddle

matter point with the appropriate time dependence of scale factor, which

allows for the construction of matter, followed by a stable accelerated point.

However, in most cases the scale factor near transient matter points evolves

as a (t) ∼ tq(Q), where the exponent q is in general different from the usual

2/3. This “wrong” matter epoch is associated with the strong coupling of

order Q ∼ 1; in this case it was found that the coupling constant has to be

almost to zero. This result, indicates that cosmological evolution imposes

strict constraints on the choice of the correct Lagrangian of a gravity theory.

80
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In Chapter 3 we assumed a constant coupling Q. It would be interesting

to study the case where Q depends on φ and see if the coupling constant

has to vanish for an acceptable cosmological history. Such a result could

lead to a generalisation of the attractor mechanism of scalar-tensor theories

towards General Relativity.

In Chapter 4, we treated rigorously potentials that take negative val-

ues. We provided a list that includes the main classes of negative potentials

encountered in the literature. We proved that in most cases, initially ex-

panding Universes collapse in a finite time. Our results may be helpful in

building mathematical rigorous models in the cyclic scenario. It would be

interesting to extend our study on negative potentials beyond the case of

flat Universes.

Another path of future research consists of the study of theories of grav-

ity that include many coupled scalar fields with arbitrary couplings to the

curvature. They belong to a large class of theories based on the concept

of wave maps. Preliminary results indicate that under certain conditions

the action is conformally equivalent to General Relativity with a minimally

coupled scalar field.



Appendix A

Conformal Transformations

Conformal transformation techniques are used widely in theories of gravity

[10,66,67,137]. Conformal transformations are obtained by multiplying the

metric by a non-vanishing spacetime-depended function ω,

g̃µν = ω2gµν . (A.1)

A conformal transformation (A.1) keeps the sign of the line element and

the angle between two vectors unchanged. The original spacetime is the

so-called Jordan frame, while the conformal spacetime is called the Einstein

frame. The following transformation formulas hold:

g̃µν =ω−2gµν , g̃ = ω2ng,

R̃µν =Rµν −
[
(n− 2) δαµδ

β
ν + gµνg

αβ
]
ω−1 (∇α∇βω)

+
[
2 (n− 2) δαµδ

β
ν − (n− 3) gµνg

αβ
]
ω−2 (∇αω∇βω) ,

R̃ =ω−2R− 2 (n− 1) gαβω−3 (∇α∇βω)

− (n− 1) (n− 4) gαβω−4 (∇αω) (∇βω) ,

�̃φ =ω−2�φ+ (n− 2) gαβω−3 (∇αω) (∇βφ) .

If gµν in (A.1) is the FLRW metric, the corresponding non vanishing

82
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Christoffel symbols are

Γ̃0
00 =

ω̇

ω
,

Γ̃0
11 =

(
ω̇

ω
+
ȧ

a

)
a2, Γ̃0

22 =

(
ω̇

ω
+
ȧ

a

)
a2r2, Γ̃0

33 =

(
ω̇

ω
+
ȧ

a

)
a2r2 sin2 θ,

Γ̃1
01 =

ω̇

ω
+
ȧ

a
, Γ̃1

22 = −r, Γ̃1
33 = −r sin2 θ,

Γ̃2
02 =

ω̇

ω
+
ȧ

a
, Γ̃2

12 =
1

r
, Γ̃2

33 = − sin θ cos θ,

Γ̃3
03 =

ω̇

ω
+
ȧ

a
, Γ̃3

13 =
1

r
, Γ̃3

23 = cot θ.

We also compute

∇αω = ∂αω = ω̇δ0
α := ωα,

∇α∇βω = ∇αωβ = ∂αωβ − Γλαβωλ

= δ0
αδ

0
βω̈ − Γλαβδ

0
λω̇ = δ0

αδ
0
βω̈ − Γ0

αβω̇,

hence,

∇0∇0ω = ω̈,

∇i∇iω = −Γ0
iiω̇ =


−aȧω̇, if i = 1,

−aȧr2ω̇, if i = 2,

−aȧr2 sin2 θω̇, if i = 3.
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The R̃µν are given by

R̃00 = −3
ä

a
− 3

ω̈

ω
− 3

ω̇

ω

ȧ

a
+ 3

ω̇2

ω2
,

R̃11 = a2

(
ä

a
+ 2

ȧ2

a2
+
ω̈

ω
+ 5

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
,

R̃22 = a2r2

(
ä

a
+ 2

ȧ2

a2
+
ω̈

ω
+ 5

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
,

R̃33 = a2r2 sin2 θ

(
ä

a
+ 2

ȧ2

a2
+
ω̈

ω
+ 5

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
.

The Ricci scalar is given by

R̃ =
6

ω2

(
ä

a
+
ȧ2

a2
+
ω̈

ω
+ 3

ω̇

ω

ȧ

a

)
.

The components of the Einstein tensor G̃µν = R̃µν − 1
2
R̃g̃µν , are

G̃00 = 3

(
ȧ

a
+
ω̇

ω

)2

,

G̃11 = a2

(
−2

ä

a
− ȧ2

a2
− 2

ω̈

ω
− 4

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
,

G̃22 = a2r2

(
−2

ä

a
− ȧ2

a2
− 2

ω̈

ω
− 4

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
,

G̃33 = a2r2 sin2 θ

(
−2

ä

a
− ȧ2

a2
− 2

ω̈

ω
− 4

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
,

where the ii components have the same time-dependence for i = 1, 2, 3,

gii

(
−2

ä

a
− ȧ2

a2
− 2

ω̈

ω
− 4

ω̇

ω

ȧ

a
+
ω̇2

ω2

)
,

as expected due to isotropy.

Finally, the D’ Alembertian is,

�̃φ = − 1

ω2

(
φ̈+ 3Hφ̇+ 2

ω̇

ω
φ̇

)
.
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For ω = 1, we obtain the usual formulas for the Ricci and the Einstein

tensors for homogeneous and isotropic spacetimes.



Appendix B

Field Equations of f (R)

Theories and Conformal

Equivalence

B.1 Derivation of the Field Equations

The action of an f(R) theory is given by

S =

∫
d4x

1

2

√
−gf(R) + Sm(gµν ,Ψ),

where Ψ denotes all matter fields collectively.

By definition of the metric tensor gµν , it holds

gµνg
νρ = δρµ, (B.1)

where δρµ is the Kronecker delta. From (B.1)

(δgµν) g
νρ + (δgνρ) gµν = δ(δρµ) = 0,
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since δρµ is constant. Contracting by gρσ, we get

(δgµν) δ
ν
σ + (δgνρ) gµνgρσ = 0,

and by renaming some of the indices

δgµν = −gµρgνσδgρσ.

For a metric tensor gµν also holds,

gµνg
µν = n, (B.2)

where n is the dimension of the Riemannian space. Since n is a constant,

varying (B.2), we get

gµνδg
µν = −gµνδgµν .

For the determinant of the above metric, g := detgµν , we apply the Jacobi’s

formula g = trace (ln gµν) . Therefore, varying the above identity, we get

1

detgµν
δ(detgµν) = trace((gµν)

−1δ(gµν)),

that is,
1

g
δg = gµνδgµν ,

or

δg = −ggµνδgµν .
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Now varying the square root of the determinant, g, we have

δ (
√
g) =

1

2
√
g
δg

= − 1

2
√
g
ggµνδg

µν

= −1

2

√
ggµνδg

µν ,

and

δ
(√
−g
)

= −1

2

√
−ggµνδgµν . (B.3)

We now compute the variation of the Ricci scalar.

δR =δ(gµνRµν)

=Rµνδg
µν + gµνδRµν

=Rµνδg
µν + gµνδRσ

µσν

=Rµνδg
µν

+ gµν
(
∂σδΓ

σ
νµ − ∂νδΓσσµ + δΓσσλΓ

λ
νµ + ΓσσλδΓ

λ
νµ − δΓσνλΓλσµ − ΓσνλδΓ

λ
σµ

)
=Rµνδg

µν + gµν
(
∇σ(δΓσνµ)−∇ν(δΓ

σ
σµ)
)

=Rµνδg
µν +∇ρ(g

µνδΓρνµ − gµρδΓσσµ).

For the second term and using Stoke’s theorem, we have

∫
d4x
√
−ggµν∇ρ(g

µνδΓρνµ − gµρδΓσσµ) = 0,

thus

δR = Rµνδg
µν .
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Varying the action with respect to the metric tensor, we get

0 =δS = δ (SHOG + SM)

=

∫
d4x

[
1

2
δ
(√
−gf(R)

)
+ δ

(√
−gLM

)]
=

∫
d4x

[
1

2

(
δf(R)

√
−g + f(R)δ

√
−g
)

+ δ
(√
−gLM

)]
=

∫
d4x

[
1

2

(
f ′(R)δR

√
−g − 1

2

√
−ggµνδgµνf(R)

)
+ δ

(√
−gLM

)]
=

∫
d4x

1

2

√
−g
[
f ′(R) (Rµνδg

µν + gµν�δg
µν −∇µ∇νδg

µν)− 1

2
gµνδg

µνf(R)

]
+

∫
d4xδ

(√
−gLM

)
=

∫
d4x
√
−gδgµν 1

2

(
f ′(R)Rµν −

1

2
gµνf(R) + (gµν�−∇µ∇ν) f

′(R) + 2
δ(
√
−gLM)√
−gδgµν

)

Since the variation δgµν is arbitrary, we have

f ′(R)Rµν −
1

2
gµνf(R) + (gµν�−∇µ∇ν) f

′(R) + 2
δ(
√
−gLM)√
−gδgµν

= 0

that is,

f ′(R)Rµν −
1

2
gµνf(R) + (gµν�−∇µ∇ν) f

′(R) = −2
δ(
√
−gLM)√
−gδgµν

. (B.4)

We define the right hand side of (B.4) as the energy-momentum tensor,

Tµν ,

Tµν := −2
1√
−g

δ (
√
−gLM)

δgµν
.

The tensor Tµν describes the distribution of energy, momentum and stress

associated to any force field. Using the above results into (B.4), we derive

the Einstein field equations

f ′(R)Rµν −
1

2
gµνf(R) + (gµν�−∇µ∇ν) f

′(R) = Tµν . (B.5)
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B.2 Conformal Equivalence of f (R) Theories

It was proved in [34,138] that under the conformal transformation,

g̃µν = f ′(R)gµν ,

the field equations, under the assumption, f ′(R) > 0, reduce to the Einstein

field equations with a scalar field as a matter source

G̃µν = Tµν(g̃, φ),

where the energy momentum tensor is

Tµν(g̃, φ) = ∂µφ∂νφ−
1

2
g̃µν
(
(∂φ)2 − 2V (φ)

)
,

and

φ =

√
3

2
ln f ′(R). (B.6)

Under our assumption on f ′(R), Eq. (B.6) can be solved for R, to obtain a

function R(φ). The corresponding potential is given by

V (φ) =
1

2(f ′)2
(Rf ′ − f) .

In case of matter fields, the tensor T
(m)
µν is conserved,

∇µT (m)
µν =− 1

2
∇νf(R) +∇µ(Rµνf

′(R)) +∇µ(gµν�−∇µ∇ν)f
′(R)

=− 1

2
∇νRf

′(R) +∇µRµνf
′(R) +Rµν∇µf ′(R)−Rµν∇µf ′(R)

=− 1

2
∇νRf

′(R) +∇µRµνf
′(R)

=− 1

2
∇νRf

′(R) +
1

2
∇νRf

′(R) = 0,
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and the Einstein tensor Gµν is also conserved,

∇µGµν = 0.

One can define an effective energy momentum tensor T
(eff)
µν as

T (eff)
µν :=

1

2
(f(R)−R)gµν + (1− f ′(R))Rµν − (gµν�−∇µ∇ν)f

′(R),

which is also conserved since

0 = ∇µGµν = ∇µ(T (eff)
µν + T (m)

µν ).



Appendix C

A glossary to Dynamical

Systems

For the convenience of the reader we present some definitions and theorems

of the theory of the dynamical systems we have used in this thesis. Standard

textbooks in Dynamical Systems are [83,139–144].

C.1 Dynamical systems, trajectories and crit-

ical points

A dynamical system is described by a system of n ordinary differential equa-

tions of the form
dx

dt
≡ ẋ = f (x) , (C.1)

where x = x (t) ∈ Rn, is a vector-valued function of the independent vari-

able t ∈ I ⊆ R, f is at least of class C1 and is defined on an open subset E

of Rn, i.e., f : E → Rn defines a vector field. The set E of the dependent

variables of (C.1) is called the phase space of (C.1). If an initial condition

x(t0) = x0 ∈ E, (C.2)

92
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is given, then the system of the form

ẋ = f (x) ,

x (t0) = x0, (C.3)

is called an initial value problem. A solution or trajectory of (C.3) starting

at x0, is a function φ : I → Rn, satisfying (C.1) for all t ∈ R, i.e.,

φ̇(t,x0) = f(φ(t,x0)), ∀t ∈ I. (C.4)

The phase portrait of a dynamical system is the set of all solutions of the

system. Without loss of generality, solutions based on time t0 can always be

translated to t0 = 0, due to vector field’s invariance to translations in time.

The following theorem is of great importance in the theory of dynamical

systems, [139].

Theorem 7 (The fundamental existence-uniqueness theorem) Suppose

that f ∈ C1 (E) where E is an open subset of Rn containing x0. Then there

exists an ε > 0 such that the initial value problem

ẋ = f(x),

x(0) = x0, (C.5)

has a unique solution x (t) on the interval [−ε, ε].

The fundamental existence-uniqueness theorem ensures that the trajectories

of the system (C.1) do not cross. Furthermore, it is shown that the solution

can be extended on a maximal interval of existence, Imax. In fact, the

following theorem is proved.

Theorem 8 Under the hypotheses of Theorem 7, then for each point x0 ∈

E, there is a maximal open interval Imax on which the initial value problem

(C.5) has a unique solution.
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The image of the solution on Rn is called the orbit of the system that passes

through x0. Systems of the form (C.1) are called autonomous because the

vector field f depends only on the variable x, that is, does not contain time

explicitly. The flow φt, generated by the vector field f , is a smooth function

φt : E → Rn,

x 7→ φt(x) ≡ φ(x, t), (C.6)

satisfying,

φ̇t(x, t0) = f (φt(x, t0)) , ∀x0 ∈ E and t0 ∈ I. (C.7)

C.2 Linearization

A starting point to study the dynamical system (C.1), is to determine the

critical points of (C.1) and the behaviour of the system near those points.

A critical point (or equilibrium point or fixed point) of (C.1) is a point x0

such that

f (x0) = 0. (C.8)

By Taylor’s theorem,

f(x) = f(x0) +Df(x0)(x− x0) +O(|x− x0|)2, (C.9)

where

Df(x0) =

(
∂fi
∂xj

)
x=x0

is the Jacobi matrix and O(|x−x0|)2 stands for higher order terms. By the

definition of the critical point, f(x0) = 0, thus a good first approximation

to the nonlinear vector field f near x0 is the linear function Df(x0)(x−x0),

and the local behaviour of the original system (C.1) near x0 is qualitatively
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determined by the behaviour of the linear system

ẋ = Df(x0)(x− x0). (C.10)

A critical point x0 is said to be hyperbolic if none of the eigenvalues ofDf(x0)

have zero real part, otherwise it is called non-hyperbolic. If a critical point is

non-hyperbolic, linear stability techniques cannot be applied. For simplicity

we assume the critical point has been translated to the origin, i.e., x0 = 0

and A := Df(0).

Theorem 9 (The Hartman–Grobman Theorem) Let f ∈ C1 in an

open E ⊂ Rn containing the origin, φt be the flow of the dynamical sys-

tem (C.1) and 0 is a hyperbolic critical point of the (C.1). Then there

exists a homeomorphism h of an open set U containing the origin onto an

open set V containing the origin such that for each x0 ∈ U , there exists an

open interval I0 ⊂ R containing zero such that for all x0 ∈ U and t ∈ I0

h ◦ φt(x) = eAth(x), (C.11)

i.e., h maps trajectories of (C.1) near the critical point onto trajectories of

(C.10) near the critical point and preserves the parametrization by time.

The Hartman–Grobman Theorem is very important since it states that

under certain assumptions on the matrix A, we can analyse the local be-

haviour of the nonlinear system (C.1) near its critical points by studying

the corresponding linear system (C.12). Therefore, the analysis of the local

behaviour of a nonlinear system (C.1) near a critical point x0 is reduced to

the analysis of the equivalent linear system

ẋ = Ax. (C.12)
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The eigenvalues of the Jacobi matrix computed at the critical point de-

termines the stability of the point in question, provided the eigenvalues

have non zero real part. Two autonomous dynamical systems are said to

be topologically equivalent or to have the same qualitative structure in a

neighbourhood of a critical point if there is a homeomorphism h mapping

an open set U containing the critical point onto an open set V containing

the critical point which maps trajectories of the first dynamical system in

U onto trajectories of the second dynamical system in V , preserving their

orientation by time.

A critical point x0 is said to be stable if a solution of (C.1) near x0

remains close to x0 for all time. A critical point that is not stable is said to

be unstable. More precisely a critical point x0 of the system (C.1) is said to

be Lyapunov stable if for every ε > 0 there exists a δ > 0 such that, for any

solution of (C.1) starting at y0, i.e. y(t0) = y0, with |x0 − y0| < δ, then

|x0−yt| < ε, for t > t0. If a critical point x0 is stable and in addition there

exists a δ > 0 such that |x − x0| < δ, implies limt→∞ φt(x) = x0, then x0

is called asymptotically stable critical point. A classification regarding the

stability of critical points is given in the following definition.

Definition 1 Assuming a linear system (C.12), then the equilibrium point

x0, is said to be:

• Sink, if all of the eigenvalues of the matrix Df(x0) have negative real

part.

• Source, if all of the eigenvalues of the matrix Df(x0) have positive real

part.

• Saddle, if it is a hyperbolic critical point and the matrix Df(x0) has at

least one eigenvalue with negative real part and at least one eigenvalue

with positive real part.



Appendix C. A glossary to Dynamical Systems 97

In 2-dimensions the following theorem determines the stability of a crit-

ical point of the linear system (C.10) and subsequently of its topologically

equivalent nonlinear system, [139].

Theorem 10 Let δ = detA and τ = trDf(x0) the determinant and trace

of the matrix A of the linear system ẋ = Ax respectively.

• If δ < 0 then (C.10) has a saddle at the origin.

• If δ > 0 and τ 2 − 4δ ≥ 0 then (C.10) has a stable node at the origin

if τ < 0 or an unstable node at the origin if τ > 0.

• If δ > 0 and τ 2 − 4δ < 0 then (C.10) has a stable focus at the origin

if τ < 0 or an unstable focus at the origin if τ > 0.

• If δ > 0 and τ = 0 then (C.10) has a center at the origin.

Definition 2 The stable subspace Es, the center subspace Ec, and the un-

stable subspace Eu are the subspaces of Rn, spanned by the real and imagi-

nary parts of the generalised eigenvectors wi of the real matrix Df(x0) cor-

responding to the eigenvalues λi = ai + bi, with negative, zero and positive

real parts respectively.

Theorem 11 (The Stable Manifold Theorem) Let f ∈ C1 be a func-

tion defined on an open subset E ⊂ Rn, 0 ∈ E, and φt be the flow of (C.1).

Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real

part and n − k eigenvalues with positive real parts. Then there exists a k-

dimensional differentiable manifold S tangent to the stable subspace Es of

the linear system (C.10) at 0 such that ∀t ≥ 0, φt(S) ⊂ S and ∀x0 ∈ S

lim
t→∞

φt(x0) = 0;

there exists an n − k-dimensional differentiable manifold U tangent to the

unstable subspace Eu of the linear system (C.10) at 0 such that ∀t ≤
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0, φt(U) ⊂ U and ∀x0 ∈ U

lim
t→−∞

φt(x0) = 0;

Definition 3 Let φt be the flow of the nonlinear system (C.1). The stable

manifold of (C.1) at x0 is defined as

W s(x0) =
⋃
t≤0

φt(S),

and the unstable manifold as

W u(x0) =
⋃
t≥0

φt(S).

C.3 Asymptotic Behaviour

A set S is said to be invariant under the flow φt if φt(S) ⊂ S for all t ∈ R.

A set S is said to be positively invariant under the flow φt if φt(S) ⊂ S for

all t ≥ 0. A point x0 is called an ω limit point, ω(x), of x ∈ Rn, if there

exists a sequence {ti}, ti →∞ as i→∞, such that

φ(ti,x)→ x0.

Similarly, a point x0 is called an α limit point, ω(x), of x ∈ Rn, if there

exists a sequence {ti}, ti → −∞, such that

φ(ti,x)→ x0.

The set of all ω limit points of a flow is called the ω limit set, and the set of

all α limit points of a flow is called the α limit set. It is proved [141] that

ω limit points (similar for α limit points, for the reversed flow), have the

following properties:
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(i) ω(p) 6= ∅,

(ii) ω(p) is closed,

(iii) ω(p) is invariant under the flow,

(iv) ω(p) is connected,

where p ∈M,M is a positively invariant set for this flow. An attracting set

A, is a closed invariant subset of Rn for which there is some neighbourhood

U of A such that for all t ≥ 0

φ(t, U) ⊂ U and
⋂
t>0

φ(t, U) = A.

The open set U is referred to as a trapping region, and the union
⋃
t≤0 φ(t, U)

is referred to as the basin of attraction of an attracting set A. A closed

invariant set A is called an attractor if, for any two open sets U, V ⊂ A, for

all t ∈ R

φ(t, U) ∩ V ∈ R− {0}.

Finally, we state the following very useful Theorem, see for example [141].

Theorem 12 (LaSalle Invariance Principle) Let M be a trapping re-

gion, V (x) a Liapunov function onM and M the union set of all trajectories

that start in the set E := {x ∈ M| V̇ (x) = 0} and remain in the set E for

all t > 0. Then, for all x ∈M, φt(x)→M as t→∞.
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I. Olasagasti (1999) Scalar field cosmologies with barotropic matter:

models of Bianchi class B Classical and Quantum Gravity 16 4035.

[66] Y. Fuji and K. Maeda (2003) The Scalar-Tensor Theory of Gravitation

Cambridge University Press.

[67] V. Faraoni (2004) Cosmology in Scalar-Tensor Gravity Springer.

[68] V. Faraoni (2000) Inflation and quintessence with nonminimal coupling

Physical Review D 62 023504.

[69] G. Leon, P. Silveira and C. R. Fadragas (2010) Phase-space of flat

Friedmann-Robertson-Walker models with both a scalar field coupled to

matter and radiation arXiv:1009.0689.

[70] R. Bean, D. Bernat, L. Pogosian, A. Silvestri and M. Trodden (2007)

Dynamics of linear perturbations in f (R) gravity Physical Review D

75 064020.

[71] J. Khoury and A. Weltman (2004) Chameleon cosmology Physical Re-

view D 69 044026.

[72] T. P. Waterhouse (2006) An introduction to chameleon gravity arXiv:

astro-ph/0611816.

[73] L. Amendola (2000) Coupled quintessence Physical Review D 62

043511.



BIBLIOGRAPHY 107

[74] A. Pourtsidou, C. Skordis and E. J. Copeland (2013) Models of dark

matter coupled to dark energy Physical Review D 88 083505.

[75] M. Thorsrud, D. F. Mota and S. Hervik (2012) Cosmology of a scalar

field coupled to matter and an isotropy-violating Maxwell field Journal

of High Energy Physics 10 1.

[76] M. R. Setare and E. C. Vagenas (2010) Non-minimal coupling of the

phantom field and cosmic acceleration Astrophysics and Space Science

330 145.

[77] J. Miritzis (2013) Energy exchange in Weyl geometry arXiv:1301.5402.

[78] J. Miritzis (2003) Scalar-field cosmologies with an arbitrary potential

Classical and Quantum Gravity 20 2981.
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