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Abstract

In this thesis we use a Bayesian nonparametric prior with simple weights, namely the Geometric

Stick–Breaking (GSB) random probability measure to deal with the problem of reconstruction

and prediction of stochastic discretized nonlinear dynamical systems.

In the first half of the thesis we propose a Bayesian nonparametric mixture model for the re-

construction and prediction from observed time series data, of discretized stochastic dynamical

systems, based on Markov Chain Monte Carlo (MCMC) methods. Our approach is nonpara-

metric in the sense that we model the noise component with a highly flexible family of density

functions. While the common assumption is the normality of the noise process, here we model

the noise component as an infinite mixture of Normal kernels with the mixing weights driven

by a random probability measure sampled from a GSB process.

In the second half we present a new approach on the joint estimation of partially exchangeable

observations by constructing pairwise dependence between a finite collection of random density

functions, each of which is modeled as a mixture of GSB processes. This approach is based on

a new random central masses version of the Pairwise Dependent Dirichlet Process prior mixture

model. We show that modelling with Pairwise Dependent Geometric Stick–Breaking Processes

(PDGSBP) is sufficient for estimation and prediction purposes.

We also propose a Bayesian nonparametric mixture model for the full reconstruction of a finite

collection of dynamical equations, given observed dynamically–noisy–corrupted chaotic time

series based on PDGSBP mixture priors. Under the assumption that the each set of dynamical

equations has a deterministic part with known functional form and that the noise processes

are independent and identically distributed from some unknown zero mean process which may

have common characteristics, we jointly estimate the parameters of the dynamical systems and

perform density estimation of noise components. We show that if there is at least one sufficiently

large data set, using borrowing–of–strength prior specifications we are able to reconstruct those

dynamical processes that are responsible for the generation of time series with small sample

sizes which are inadequate for an independent reconstruction.

Our contention is that modeling with GSB random probability measures is sufficient for es-

timation and prediction purposes. The proposed MCMC algorithms are faster and easier to

implement than their Dirichlet process based counterparts. The advantages of the use of such

a simple random probability measure in Bayesian nonparametric inference in terms of suffi-

ciency and time complexity are illustrated in both synthetic and real data sets.
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Περίληψη

Στην παρούσα ∆ιδακτορική ∆ιατριβή προτείνονται µέθοδοι µή παραµετρικής Μπεϋζιανής στατιστι-

κής για την εκτίµηση παραµέτρων στοχαστικών δυναµικών συστηµάτων διακριτού χρόνου κάνοντας

χρήση τυχαίων µέτρων πιθανότητας µε γεωµετρικά ϐάρη–Geometric stick breaking process (GSB).

Στο Κεφάλαιο 1, γίνεται µια εισαγωγή στις ϐασικές έννοιες της µή παραµετρικής Bayesian στα-

τιστικής και τις ϐασικές έννοιες των Στοχαστικών ∆υναµικών Συστηµάτων. Επιπλέον, γίνεται α-

νασκόπηση της ϐιβλιογραφίας που είναι σχετική µε το πρόβληµα της ανακατασκευής δυναµικών

εξισώσεων.

Στο Κεφάλαιο 2, παρουσιάζονται αναλυτικά οι πιο δηµοφιλείς a–priori κατανοµές της µή παρα-

µετρικής στατιστικής κατά Bayes. Συγκεκριµένα, παρουσιάζεται το τυχαίο µέτρο Dirichlet και οι

ιδιότητες του (posterior κατανοµή, posterior κατανοµή πρόβλεψης). ΄Επειτα, γίνεται ανασκόπηση

των δηµοφιλέστερων τρόπων αναπαράστασης του τυχαίου µέτρου Dirichlet. Συγκεκριµένα, παρου-

σιάζονται οι αναπαραστάσεις stick–breaking, generalized Polya urn καθώς και η αναπαράστασή

του ως, κανονικοποιηµένου, εντελώς τυχαίου µέτρου πιθανότητας. Στη συνέχεια, παρουσιάζεται

το τυχαίο µέτρο GSB και αποδεικνύονται ϐασικές ιδιότητες του. Λόγω της διακριτής ϕύσης των

παραπάνω µέτρων, για την µοντελοποίηση απολύτως συνεχών κατανοµών, εισάγονται οι µίξεις τυ-

χαίων µέτρων ως µίξεις πυρήνων παραµετρικής οικογένειας κατανοµών χρησιµοποιώντας ως µέτρα

µίξης διακριτά τυχαία µέτρα Dirichlet ή GSB. ΄Επειτα, παρουσιάζονται τα εξαρτηµένα τυχαία µέτρα

πιθανότητας για την µοντελοποίηση δεδοµένων τα οποία παραβιάζουν τη συνθήκη της ανταλλαξι-

µότητας. Στο κεφάλαιο αυτό, παρουσιάζονται και τα ϐασικά στοιχεία της µεθοδολογίας Markov

Chain Monte Carlo (MCMC), απαραίτητης για posterior συµπερασµατολογία µε τα µοντέλα αυτά.

Συγκεκριµένα παρατίθονται οι µεθοδολογίες δειγµατοληψίας κατά Gibbs και η δειγµατοληψία µε

χρήση ϐοηθητικών µεταβλητών (slice sampling). Με ϐάση αυτές τις δύο µεθόδους, παρουσιάζο-

νται οι MCMC αλγόριθµοι για το πρόβληµα εκτίµησης πυκνότητας χρησιµοποιώντας τυχαία µέτρα

Dirichlet και τυχαία µέτρα GSB.

Στο Κεφάλαιο 3, αρχικά γίνεται ανασκόπηση ενός µή παραµετρικού Bayesian µοντέλου για την

ανακατασκευή δυναµικών εξισώσεων που ϐασίζεται στο τυχαίο µέτρο Dirichlet. ΄Επειτα εισάγε-

ται ένα µοντέλο ανακατασκευής δυναµικών εξισώσεων, από παρατηρηθείσες χαοτικές χρονοσειρές,

που ϐασίζεται στο τυχαίο µέτρο GSB και αναπτύσσεται ένας MCMC αλγόριθµος για posterior συ-

µπερασµατολογία. Η προτεινόµενη µεθοδολογία Geometric stick breaking reconstruction–GSBR

επιτυγχάνει σωστή εκτίµηση των παραµέτρων των δυναµικών εξισώσεων ακόµη και από µικρό α-

ϱιθµό παρατηρήσεων, ακόµη και σε περιπτώσεις που η κατανοµή του ϑορύβου αποκλίνει από την

Κανονική. Η µέθοδος µοντελοποιεί την κατανοµή του ϑορύβου ως µια απειροδιάστατη µίξη κα-

νονικών πυρήνων, όπου εκ των προτέρων, ο αριθµός των συνιστωσών καθώς και οι διακυµάνσεις
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των πυρήνων είναι άγνωστα. Η συµπερασµατολογία γίνεται µε µεθόδους MCMC όπου εκτιµάται ο

αριθµός των συνιστωσών και οι αντίστοιχες διακυµάνσεις τους· δηλαδή εκτιµάται η πυκνότητα της

διαδικασίας του ϑορύβου από τα διαθέσιµα δεδοµένα. Η µεθοδολογία συγκρίνεται µε τη µεθοδο-

λογία που ϐασίζεται στο τυχαίο µέτρο DIrichlet χρησιµοποιώντας χαοτικές χρονοσειρές που έχουν

παραχθεί από πολυωνυµικά δυναµικά συστήµατα. Τέλος, προκύπτει οτι µε την προτεινόµενη µε-

ϑοδολογία, το ηµι–αναλλοίωτο µέτρο του Στοχαστικού ∆υναµικού Συστήµατος προκύπτει ως µια

a–posteriori περιθώρια κατανοµή πρόβλεψης, δηµιουργώντας ϕράγµα στον ορίζοντα πρόβλεψης.

Στο Κεφάλαιο 4, παρουσιάζεται µια νέα µέθοδος για την από κοινού εκτίµηση πυκνότητας µε-

ϱικώς ανταλλάξιµων παρατηρήσεων, εισάγωντας εξάρτηση µεταξύ m τυχαίων πυκνοτήτων κατά

Ϲεύγη, που µοντελοποιούνται σαν µίξεις από τυχαία µέτρα GSB. Οι πυκνότητες ϑεωρείται ότι έ-

χουν κοινά χαρακτηριστικά και ο σκοπός είναι να επιτευχθεί σωστή εκτίµηση ακόµη και για τις

πυκνότητες που υπάρχει µικρός αριθµός διαθέσιµων παρατηρήσεων. Η ιδέα αυτή ϐασίζεται στην

πλήρως στοχαστικοποιηµένη γενίκευση του µοντέλου Pairwise Dependent Dirichlet Prior mixture

model (PDDP). Η ϐασική ιδέα είναι η εξάρτηση αυτή να εισαχθεί µέσω τυχαίων µέτρων, τα ϐάρη

των οποίων είναι αναµενώµενες τιµές των ϐαρών των τυχαίων µέτρων Dirichlet. Η προτεινόµενη

µέθοδος, Pairwise Dependent Geometric Stick Breaking Prior mixture model (PDGSBP) συγκρί-

νεται µε την στοχαστικοποιηµένη έκδοση της PDDP µεθόδου τόσο σε προσοµοιωµένα όσο και σε

πραγµατικά δεδοµένα. Συγκεκριµένα γίνεται σύγκριση των µεθόδων σε δεδοµένα που έχουν πα-

ϱαχθεί από µίξεις κανονικών κατανοµών καθώς και από µίξεις Γάµµα κατανοµών. Η εγκυρότητα

των εκτιµήσεων µετράται µε την Hellinger µετρική. Η µέθοδος επίσης εφαρµόζεται σε πραγµατι-

κά δεδοµένα που αφορούν την εκτίµηση πυκνότητας της κατανοµής των µετρήσεων του ενζύµου

SGOT από τρεις οµάδες ασθενών στις οποίες ο ασθενής είτε Ϲεί χωρίς µεταµόσχευση, είτε έκανε

µεταµόσχευση είτε απεβίωσε χωρίς µεταµόσχευση. Τα αποτελέσµατα στα πειράµατα αυτά δείχνουν

ότι η µοντελοποίηση µε PDGSBP priors είναι επαρκής για εκτίµηση πυκνότητας και πρόβλεψη.

Ο προτεινόµενος αλγόριθµος MCMC για posterior συµπερασµατολογία µε PDGSBP priors είναι

ευκολότερος στην υλοποίηση και ταχύτερος στην εκτέλεση από τον αντίστοιχο MCMC αλγόριθµο

για το PDDP µοντέλο.

Στο Κεφάλαιο 5, αναπτύσσεται αλγόριθµος MCMC ϐασισµένος στα a–priori πολυδιάστατα µέτρα

PDGSBP για το πρόβληµα της από κοινού αναδόµησης των δυναµικών εξισώσεων από παρατηρη-

ϑείσες χρονοσειρές οι οποίες περιέχουν δυναµικό ϑόρυβο, οι οποίες παράγονται από µη–γραµµικές

εξισώσεις διαφορών πρώτης τάξης. Ιδιαίτερη έµφαση δίνεται στην περίπτωση στην οποία υπάρχει

µια χρονοσειρά µικρού µεγέθους όπου είναι αδύνατη η επιτυχής αναδόµηση της δυναµικής της

εξίσωσης, ενώ υπάρχει τουλάχιστον µία χρονοσειρά επαρκούς µεγέθους της οποίας η αναδόµηση

της δυναµικής της εξίσωσης είναι εφικτή. Η προτεινόµενη µεθοδολογία εφαρµόζεται σε προσο-

µοιωµένες χαοτικές χρονοσειρές που παράγονται από πολυωνυµικές απεικονίσεις που περιέχουν

µη–Κανονικό ϑόρυβο. Υπό την υπόθεση ότι οι κατανοµές των διαταραχών έχουν κοινά χαρακτη-

ϱιστικά, χρησιµοποιώντας πληροφοριακές εκ των προτέρων κατανοµές, είναι εφικτή η αναδόµηση

των δυναµικών εξισώσεων που είναι υπεύθυνες για την παραγωγή των δειγµάτων µικρού µεγέθους

µε ποσοστιαία σχετικά σφάλµατα µικρότερα του 1%.

Τέλος, στο Κεφάλαιο 6, γίνεται σύντοµη επισκόπηση της διδακτορικής διατριβής, παρουσιάζονται
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τα συµπεράσµατα και προτείνονται ϑέµατα για µελλοντική έρευνα. Συγκεκριµένα, στο πεδίο έ-

ϱευνας των στοχαστικών δυναµικών συστηµάτων, προτείνεται η κατασκευή ενός µοντέλου για την

ανακατασκευή ενός στοχαστικού δυναµικού συστήµατος χωρίς να υπάρχει κάποια υπόθεση για

τη συναρτησιακή µορφή, ϑέτοντας ως prior στη συναρτησιακή µορφή µια Gaussian διαδικασία

επεκτείνοντας έτσι το GSBR µοντέλο σε ένα πλήρως µη παραµετρικό Bayesian µοντέλο. Επιπλέον

προτείνεται να µελετηθεί η µοντελοποίηση των κατανοµών των ϑορύβων σε ένα state–space µο-

ντέλο µε GSB priors. Στην περιοχή της µή παραµετρικής Μπεϋζιανής στατιστικής προτείνεται η

γενίκευση του PDGSBP µοντέλουν να συµπεριλαµβάνει όλες τις δυνατές αλληλεπιδράσεις µεταξύ

των τυχαίων πυκνοτήτων. Τέλος προτείνεται η κατασκευή ενός µη παραµετρικού prior µε σκοπό

την επίλυση του προβλήµατος ταυτοποίησης κατανοµών ώστε να επιτυγχάνεται ταυτοποίηση των

κοινών χαρακτηριστικών από µία συλλογή τυχαίων πυκνοτήτων.

Ακολούθως παρατίθενται η ϐιβλιογραφία και τρία παραρτήµατα. Το Παράρτηµα Α παρέχει πλη-

ϱοφορίες για την δειγµατοληψία από τις άγνωστες κατανοµές που προκύπτουν στους MCMC αλ-

γορίθµους που παρουσιάζονται στα Κεφάλαια 3 και 5. Στο Παράρτηµα Β αναλύεται η δυνα-

µική συµπεριφορά των πολυωνυµικών απεικονίσεων που χρησιµοποιούνται στα Κεφάλαια 3 και

5. Τέλος, το Παράρτηµα C παρέχει πληροφορίες για την υλοποίηση των αλγορίθµων στη γλώσσα

προγραµµατισµού Julia καθώς και ένα σύνδεσµο (URL) για τη µεταφόρτωση των προγραµµάτων.





xv

Contents

Acknowledgements vii

Abstract ix

Περίληψη xi

List of Figures xix

List of Tables xxiii

List of Abbreviations xxvi

1 Introduction 1

1.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Deterministic dynamical systems . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Chaos in dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Random dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Reconstruction of random dynamical systems . . . . . . . . . . . . . . . . . . . . 12

1.3 Aim and scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Bayesian nonparametric models 17

2.1 Dirichlet Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Properties of DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Representations of a DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Geometric stick breaking process . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Bayesian nonparametric mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Dependent processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Covariate–dependent models . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Distributions over exchangeable measures . . . . . . . . . . . . . . . . . . 28

2.5 Markov Chain Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 The Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Auxiliary variable methods–Slice sampling . . . . . . . . . . . . . . . . . . 34

2.6 MCMC for Bayesian nonparametric mixture models . . . . . . . . . . . . . . . . 35

2.6.1 Slice sampling DPM models . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2 Geometric slice sampling GSBM models . . . . . . . . . . . . . . . . . . . 39

3 Bayesian Nonparametric Reconstruction Models 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



xvi

3.2 Building the inferential models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Dynamical Slice Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Dirichlet process reconstruction model . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Extending the DPR model for prediction . . . . . . . . . . . . . . . . . . . 45

3.3.2 Slice sampler for the rDPR model . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Geometric stick–breaking reconstruction model . . . . . . . . . . . . . . . . . . . 48

3.4.1 Extending the GSBR model for prediction . . . . . . . . . . . . . . . . . . 49

3.4.2 Slice sampler for the GSBR model . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Informative reconstruction and prediction under the f1 dynamic noise . . 56

3.5.3 Noninformative reconstruction and prediction under the f2,l heavy tailed

dynamic noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Pairwise Dependent Random Mixtures 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Randomized pairwise dependent Dirichlet process . . . . . . . . . . . . . . . . . 64

4.2.1 The rPDDP Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Superiority of rPDDP against PDDP . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Pairwise dependent geometric stick–breaking process . . . . . . . . . . . . . . . 72

4.3.1 The PDGSBP covariance and correlation . . . . . . . . . . . . . . . . . . . 75

4.3.2 The PDGSBP Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Time execution efficiency of the PDGSBP model . . . . . . . . . . . . . . . 80

4.4.2 Normal and gamma mixture models that are not well separated . . . . . . 83

4.4.3 Borrowing of strength of the PDGSBP model . . . . . . . . . . . . . . . . . 85

4.4.4 Real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Time–efficiency of the PDGSBP model . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Sampling dji in the rPDDP model . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.2 Sampling dji in the PDGSBP model . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Joint reconstruction of RDS with pairwise dependent GSBR priors 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 The Pairwise Depedent GSBR model . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 The PD-GSBR Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 A joint parametric Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions and future research 115

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



xvii

6.2.1 Random dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Bayesian nonparametrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 124

A Sampling from nonstandard full conditionals 125

A.1 Sampling ϑ, x0 and xn+j , 1 ≤ j ≤ T − 1 . . . . . . . . . . . . . . . . . . . . . . . 125

A.1.1 Sampling the ϑ = (θ)0≤j≤m coefficients . . . . . . . . . . . . . . . . . . . . 125

A.1.2 Sampling the initial condition x0 . . . . . . . . . . . . . . . . . . . . . . . 126

A.1.3 Sampling the first T − 1 future observations . . . . . . . . . . . . . . . . . 127

A.2 Sampling the geometric probability λ . . . . . . . . . . . . . . . . . . . . . . . . . 128

B Invariant set of the map x′ = g̃(ϑ∗, x) 129

C Julia codes 131





xix

List of Figures

1.1 Two orbits x, y (upper panel) generated from the logistic equation for initial con-

ditions x0 = 1 and y0 = 1.001. It is evident that purely deterministic mechanisms

generate time series that will lose predictability soon. In the lower panel are de-

picted the histograms of the two orbits for 100, 000 iterations of the logistic map.

Note how similar these histograms are even though the two orbits are significantly

different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Bifurcation diagram of the logistic map. The red line indicates the control param-

eter ϑ = 1.71 which we have used in our examples by now. For this value of ϑ the

logistic map exhibits chaotic behavior. . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Two orbits x, y generated from the random logistic equation for initial conditions

x0 = 1 and y0 = 1.001 for the value σ = 0.01. presented in the upper panel.

The lower panel depicts the histogram of the quasi–invariant measure based on

100, 000 iterations. Note that the differences are indistinguishable. Comparing the

lower panel with the lower panel of Figure 1.1, we see that the quasi–invariant

distribution is a smoothed–out deformation of the invariant distribution given in

Figure 1.1(c) and (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Random cdf’s resulting from 20 draws from the prior DP(c,H) for c = 0.5, 5, 50, 500,

and H(dx) = N (x | 0, 1)dx. As the parameter c increases the prior concentrates

around the mean H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A draw from a Dirichlet process prior DP(c,H) with c = 10 andH ∼ N (0, 1), using

the stick–breaking representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The bifurcation diagram for the deterministic map xi = g(ϑ∗, xi−1). . . . . . . . . 53

3.2 The orbits of the the deterministic map xi = g(ϑ∗, xi−1), with ϑ∗ = 2.55, start-

ing from x0 = 1 and x0 = −1 are depicted in blue and green respectively. A

dynamically f2,4-perturbed orbit, starting from x0 = 1, is given in red. . . . . . . 53

3.3 Deterministic orbit and f1 and f2,3 data-realizations. . . . . . . . . . . . . . . . . 55

3.4 Ω curves for x
(n)
f1
, x

(n)
f2

for n = 50, . . . , 280. . . . . . . . . . . . . . . . . . . . . . . 56

3.5 KDE’s based on the PPM of the initial condition and the noise density. . . . . . . 57

3.6 Chain ergodic averages for θj , 1 ≤ j ≤ 5. . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 First five and the last five KDE’s of the out–of–sample PPM based on data set x
(200)
f1

under the informative specification PSIRP. . . . . . . . . . . . . . . . . . . . . . 59



xx

3.8 GSBR KDE’s of the PPM sample of the out–of–sample variables {x201, . . . , x205}
and {x216, . . . , x220} based on samples x

(200)
f2,l

: 1 ≤ l ≤ 4} (rows (a) to (d)) under

the noninformative prior specification. KDE of the f2,l quasi-invariant densities

for 1 ≤ l ≤ 4 are superimposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Density estimation with the PDDP model (curves in dashed–black) and the rPDDP

model (solid black curve) for the 5 − 12 mixture based on the samples from the

predictive. The true density has been superimposed in red. . . . . . . . . . . . . 72

4.2 Histograms of data sets coming for the case m = 4. The superimposed KDE’s are

based on the predictive samples obtained from the PDGSBP and the rPDDP models. 81

4.3 Mean execution times for the two models, based on the sparse m-scalable data sets. 82

4.4 Histograms of sparse m-scalable data sets for the case m = 10. The superimposed

KDE’s are based on the predictive samples of the PDGSBP and the rPDDP models. 82

4.5 Density estimations of the 7-mixtures data sets, under the PDGSBP and the rPDDP

models. The true densities have been superimposed in red. . . . . . . . . . . . . 84

4.6 The KDE’s are based on the predictive sample of the PDGSBP model (solid curve

in black) and the predictive sample of the rPDDP model (dashed curve in black). . 85

4.7 Density estimation with the PDGSBP model (curves in black) under the three

different scenarios. The true density has been superimposed in red. . . . . . . . 86

4.8 Histograms of the real data sets with superimposed KDE curves based on the

predictive samples of the PDGSBP and rPDDP models. . . . . . . . . . . . . . . . 88

4.9 Stick-breaking weights for some N∗jl = 20 and the effect of the slice variable. . . . 89

4.10Geometric stick-breaking weights for N∗jl = 20 and the effect of the geometric slice

variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 The f1 noise pair perturbed time series corresponding to the cubic map C1 and the

quadratic map Q1 are given in Figures (a) and (b), respectively. . . . . . . . . . . 102

5.2 Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials

under weak (solid curves in black) and strong (solid curves in red) borrowing.

The averages associated with the cubic map C1 appear in Figures (a)-(f), and the

averages associated with the quadratic map Q1 appear in Figures (g)-(l). . . . . . 103

5.3 Kernel density estimations based on the predictive samples coming from the PD-

GSBR Gibbs sampler. Weak borrowing corresponds to the densities in black, and

strong borrowing to the densities in red. Figures (a), (c) and (e) correspond to the

cubic map C1, and Figures (b), (d) and (f) correspond to the quadratic map Q1. The

noise predictive densities are given in Figures (a) and (b). The initial conditions

predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give

the predictive densities of the first future observation. . . . . . . . . . . . . . . . 104

5.4 The f2 noise pair perturbed time series corresponding to the cubic map C1 and the

quadratic map Q1 are given in Figures (a) and (b), respectively. . . . . . . . . . . 105



xxi

5.5 Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials

under weak (solid curves in black) and strong (solid curves in red) borrowing.

The averages associated with the cubic map C1 appear in Figures (a)-(f), and the

averages associated with the quadratic map Q1 appear in Figures (g)-(l). . . . . . 106

5.6 Kernel density estimations based on the predictive samples coming from the PD-

GSBR Gibbs sampler. Weak borrowing corresponds to the densities in black, and

strong borrowing to the densities in red. Figures (a), (c) and (e) correspond to the

cubic map C1, and Figures (b), (d) and (f) correspond to the quadratic map Q1. The

noise predictive densities are given in Figures (a) and (b). The initial conditions

predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give

the predictive densities of the first future observation. . . . . . . . . . . . . . . . 107

5.7 The f1 noise pair perturbed time series corresponding to the cubic map C1 and the

cubic map C2 are given in Figures (a) and (b), respectively. . . . . . . . . . . . . . 108

5.8 Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials

under weak (solid curves in black) and strong (solid curves in red) borrowing.

The averages associated with the cubic map C1 appear in Figures (a)-(f), and the

averages associated with the cubic map C2 appear in Figures (g)-(l). . . . . . . . . 108

5.9 Kernel density estimations based on the predictive samples coming from the PD-

GSBR Gibbs sampler. Weak borrowing corresponds to the densities in black, and

strong borrowing to the densities in red. Figures (a), (c) and (e) correspond to the

cubic map C1, and Figures (b), (d) and (f) correspond to the cubic map C2. The

noise predictive densities are given in Figures (a) and (b). The initial conditions

predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give

the predictive densities of the first future observation. . . . . . . . . . . . . . . . 109

5.10The gaussian noise perturbed time series corresponding to the quadratic map Q1

and the quadratic map Q2 are given in Figures (a) and (b), respectively. . . . . . 111

5.11Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomi-

als under the independent parametric samplers (solid curves in black) and the

joint parametric sampler (solid curves in red). The averages associated with the

quadratic map Q1 appear in Figures (a)-(f), and the averages associated with the

quadratic map Q2 appear in Figures (g)-(l). . . . . . . . . . . . . . . . . . . . . . 111

5.12Kernel density estimations based on the predictive samples coming from the in-

dependent Gibbs samplers correspond to the densities in black, the joint Gibbs

sampler predictives correspond to the densities in red. Figures (a), (c) and (e)

correspond to the quadratic map Q1, and Figures (b), (d) and (f) correspond to

the quadratic map Q2. The noise predictive densities are given in Figures (a) and

(b). The initial conditions predictive densities are given in Figures (c) and (d). In

Figures (e) and (f) we give the predictive densities of the first future observation. . 112





xxiii

List of Tables

3.1 (ϑ, x0) reconstruction PAREs (T = 0) under the informative prior configuration. 58

3.2 Mean execution times in seconds per 103
iterations for x

(200)
f1

. . . . . . . . . . . . 59

3.3 Simultaneous reconstruction-prediction under the noninformative prior specifica-

tion. The (ϑ, x0) PARE’s are based on the data sets {x(200)
f2,l

: 1 ≤ l ≤ 4} for T = 20.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Simultaneous reconstruction-prediction under the noninformative prior specifi-

cation. The out–of–sample PARE’s are based on data sets {x(200)
f2,l

: 1 ≤ l ≤ 4}
for T = 20. The GSBR-Av and Par-Av columns are the PARE means of the first

five out–of–sample estimations using the GSBR and the parametric Gibbs (Param)

samplers respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Hellinger distance between the true and the estimated densities obtained from the

PDDP (H) and rPDDP (HR) models. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Hellinger distances for the case m = 4. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Mean execution times in seconds per 103
iterations. . . . . . . . . . . . . . . . . 81

4.4 Hellinger distances between true and estimated densities for the case m = 10 of

the sparse scalable data example. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Hellinger distance between the true and the estimated densities. . . . . . . . . . 83

4.6 Hellinger distances for the gamma mixture data model. . . . . . . . . . . . . . . 85

4.7 Hellinger distances between the true and the estimated densities for the three

scenario example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 PAREs of the joint GSBR coefficient estimation based on the pair of time series

(x
(200)
1 , x

(50)
2 ) under the f1 noise pair. The estimation is based on a polynomial

modeling of fifth degree, assuming the weak borrowing PW, and the strong bor-

rowing noninformative prior PSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 PAREs of the joint GSBR coefficient estimation based on the pair of time series

(x
(200)
1 , x

(20)
2 ) under the f2 noise pair. The estimation is based on a polynomial

modeling of fifth degree, assuming weak borrowing and strong borrowing. . . . . 106

5.3 PAREs for the PD-GSBR estimation of the ϑ-coefficients, based on the pair of time

series (x
(200)
1 , x

(30)
2 ), under the identical noise process f22, assuming weak and

strong borrowing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 PAREs for the estimation of the ϑ-coefficients, based on the pair of time series

(x
(200)
1 , x

(30)
2 ), under the the independent and the joint parametric samplers. . . . 112





xxv

List of Abbreviations

Term Description

AnDe Analysis of densities

ApEn Approximate Entropy

AR Auto–Regressive

BNP Baeysian nonparametric

CRM Completely random measure

DDP Dependent Dirichlet Process

DP Dirichlet Process

DPM Dirichlet Process Mixture

DPR Dirichlet Process Reconstruction

ForeCa Forecastable Component Analysis

GP Gaussian Process

GSB Geometric stick–breaking

GSBM Geometric stick–breaking mixture

GSBR Geometric Stick–Breaking Reconstruction

HDP Hierarchical Dirichlet Process

IRP Informative Reconstruction–Prediction

KDE Kernel Density Estimator

MAP Maximum a–posteriori

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MET Mean Execution Time

NRMI Normalized random measure with independent incre-

ments

NRP Noninformative Reconstruction–Prediction

PAR Polynomial Autoregressive Process

Param Parametric Gibbs sampler assuming Gaussian noise

PARE Percentage Absolute Relative Error

PD–GSBR Pairwise Dependent Geometric Stick Breaking Recon-

struction

PDDP Pairwise Dependent Dirichlet Processes

PDGSBP Pairwise Dependent Geometric Stick–Breaking Processes

PPM Posterior Predictive Marginal

rDPR randomized Dirichlet Process Reconstruction model

RDS Random Dynamical System



xxvi

Term Description

rPDDP randomized Pairwise Dependent Dirichlet Processes

SDIC Sensitive Dependence In Initial Conditions

SM Sampling Mean

WOSA Weighted Overlapping Segment Averaging



xxvii

To my parents Yanni and Georgia

and to Katerina.





1

Chapter 1

Introduction

Let X(∞) = (Xi)i≥1 be an infinite sequence of observations defined on a probability space

(Ω,F , P ) and taking values on a measurable space (X,X ), with X a Polish space and X the

Borel σ–algebra of subsets of X. In addition let PX, denote the space of all probability measures

supported on X.

The basic idea of Bayesian inference is that all uncertainty must be expressed in terms of

probability thus any parameter of interest is modeled as a random variable having its own

distribution Π which is called the prior distribution. The Bayesian approach to statistical

analysis can be justified through the concept of exchangeability and de Finetti’s representation

theorem. A sequence of random variables X(n) := (Xi)1≤i≤n is said to be exchangeable if

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n)), (1.1)

for any permutation σ of {1, . . . , n}. Consequently an infinite sequence of random variables

is exchangeable if every finite collection of it is exchangeable. Exchangeabiltty is the basic

modeling assumption in Bayesian inference. Intuitively the concept of exchangeability indicates

that the order that we collect a sample does not affect the joint distribution.

The next theorem is the so called de Finetti’s representation theorem and it states that a

collection of random variables is exchangeable if and only if it is a mixture of sequences of

independent and identically distributed random variables.

Theorem 1.1 (De Finetti (1937)). The sequence X(n) is exchangeable if and only if there exists

a probability measure Π on PX such that, for any n ≥ 1 and A = A1 × · · · ×An × X∞,

P (X(n) ∈ A) =

∫
Q∈PX

P (X(n) ∈ A |Q)Π(dQ) =

∫
Q∈PX

n∏
i=1

Q(Xi ∈ Ai)Π(dQ).

where Ai ∈ X for 1 ≤ i ≤ n and X∞ = X× X× · · · .

The measure Π is called the de Finetti measure and is uniquely determined for a given ex-

changeable sequence. It is the de Finetti measure that takes the rôle of a prior distribution in

Bayesian inference. By virtue of de Finetti’s theorem, the data generating process in a Bayesian
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model is a two–stage process

Xi |Q
iid∼ Q i = 1, . . . , n

Q ∼ Π,

and the objective is to determine the posterior distribution

Π(dQ |X1, . . . , Xn) ∝ L(Q ;X1, . . . , Xn)Π(dQ),

where L(Q ;X1, . . . , Xn) is the likelihood function. The posterior distribution measures the

uncertainty for the random variable of interest after seeing the observations.

Whenever Π is degenerate on a subset of PX that can be indexed by a finite dimensional

parameter θ ∈ Θ ⊂ Rk the Bayesian model is parametric and Π is a prior probability measure

over the parameter space Θ. Instead when we allow inference to be made to infinite dimensional

subspaces of PX, the model is called nonparametric and Π is a random probability measure that

acts as a prior distribution over an infinite dimensional space. Distributions over infinite

dimensional spaces are stochastic processes so the term process will be thrown a lot in the

following when we consider the distribution of a random probability measure.

Nevertheless, restricting inference to parametric models may limit the scope and type of in-

ferences that can be drawn from such models. In this thesis we aim to use and construct

Bayesian nonparametric models for reconstruction and prediction of random dynamical sys-

tems. Bayesian nonparametric models assume the distribution of the observations to be un-

known and assign the prior on the space of probability measures PX which now is the parameter

space. Clearly this space is infinite dimensional and thus the justification as nonparametric

models.

We proceed in this chapter with some fundamentals of the theory of dynamical systems and

explain the need for Bayesian nonparametric modeling of the density of the noise components.

It would be worth noting here that our methods are generally applicable in a time series setting.

While we are interested in nonlinear random dynamical systems, the models in this thesis

can be applied, to a similar manner, in many popular statistical time series models such

as autoregressive processes (AR). The general theory on Bayesian nonparametic models and

computational methods for posterior inference will be discussed thoroughly in Chapter 2.

1.1 Dynamical systems

It is common in science to model a physical process that changes over time. Such a process is

called a dynamical system. Dynamical systems can be classified in two categories namely de-

terministic and stochastic–random dynamical systems. In the case of a deterministic dynamical

system, its controlling mechanism is completely understood, and the states of the system are

described by some mathematical model, involving previous states, completely describing the
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evolution of the system. In contrast, a dynamical system that involves randomness in its mech-

anism is called stochastic. Subsequently, each of the previous classes contains (stochastic)

dynamical systems of discrete time which are usually described by some difference equation,

or of continuous time which are described by some differential equation or by its solution flow.

It is worth noting that one can obtain a discrete time dynamical system by discretizing flows.

In the following subsections we describe dynamical systems, both deterministic and stochastic

evolving in discrete time, in more depth. We do not intend to give an extensive introduction to

the theory of deterministic dynamical systems but only the basic notions that provide the nec-

essary background for the methods developed in the thesis. More details on dynamical systems

can be found in Alligood et al. (1996); Broer & Takens (2010); Chan & Tong (2013) and Galor

(2007).

1.1.1 Deterministic dynamical systems

A dynamical system in discrete time defined on a state–space X can be described by a difference

equation of the form

xi = g(ϑ, xi−1, xi−2, . . . , xi−d), i ≥ 1, (1.2)

for some initial conditions (x0, x−1 . . . , x−d+1) ∈ Xd, and the function g : Xd → X in eq. (1.2) is

continuous in xi−1, . . . , xi−d parametrized by some vector of control parameters ϑ ∈ Θ, where

Θ is the parameter space. For the sake of simplicity, in the following we will assume that the

transition in a state xi depends solely on xi−1. Thus we will consider dynamical systems in the

form

xi = g(ϑ, xi−1), i ≥ 1. (1.3)

The evolution of the system after n iterations can be observed with the form of a time series x(n)

of length n, where each point xi is the i–fold functional iteration of the initial condition x0 i.e.

xi = gi(ϑ, xi−1) := g (g (· · · g (ϑ, xi−1)))︸ ︷︷ ︸
i–times

, for 1 ≤ i ≤ n. (1.4)

Let us summarize the above descriptions with a definition that will be useful for future refer-

ences.

Definition 1.1. A function whose domain space and range space are the same is called a map.

Let x be a point and let g be a map. The orbit of x under g is the set of points Og(x) = {gk(x) :

k ≥ 0}. The starting point x for the orbit is called the initial value or initial condition of the orbit.

The system may exhibit chaotic behavior if the function g is nonlinear. This means that if we

observe the system by means of a time series we will see a complex and irregular behavior which

resembles the behavior of a stochastic process. In Figure 1.1 (upper panel) we display two orbits

x, y generated from the chaotic logistic map
1

xi = 1− ϑx2
i−1, i = 1, . . . , 200,

1
We use the representation x = 1− ϑx2, ϑ ∈ [0, 2], in order to be able to identify the coefficients of a polynomial

autoregressive process.
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for ϑ = 1.71 and initial conditions x0, x
′
0 ∈ {1, 1.001}. Even though the generating mechanism

is purely deterministic, the two time series have complex behavior and it is evident that it is not

possible to make predictions for the state of the system after a few iterations. This is clear for

i ≥ 70, where the behavior of the two systems is significantly different.
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Figure 1.1: Two orbits x, y (upper panel) generated from the logistic equation for initial conditions x0 = 1
and y0 = 1.001. It is evident that purely deterministic mechanisms generate time series that will lose

predictability soon. In the lower panel are depicted the histograms of the two orbits for 100, 000 iterations

of the logistic map. Note how similar these histograms are even though the two orbits are significantly

different.

A dynamical system might evolve under the presence of noise. In particular, there are two types

of noise that a dynamical system may be subjected to; measurement or observational noise

and dynamical or system noise which can be additive or multiplicative. Observational noise

is usually present in laboratory or real world time series data where we have often inaccurate

measurements of the underlying process making the true states of the system unobservable and

does not affect the future evolution of the system. In contrast, dynamical noise is incorporated in

such models as model error and can drastically affect the future evolution of the system. Below

we provide some examples of dynamical systems contaminated by different types of noise.

Example 1.1 (Dynamical system with additive observational noise). When observational noise

is present usually a state–space model is useful for the analysis of the system. If this is the case,

the modeling assumption is that the true states of the system si are generated by the dynamical
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system g but we observe noise–contaminated quantities xi, 1 ≤ i ≤ n

si = g(ϑ, si−1),

xi = si + εi, εi
iid∼ N (0, σ2).

Example 1.2 (Dynamical system with additive observational and dynamical noise). An example

of dynamical system that has additive observational and dynamical noise is a nonlinear Gaussian

state–space model which formally is given by

si = f(ϕ, si−1) + εi, εi
iid∼ N (0, σ2

s)

xi = g(ϑ, si) + ε′i, ε′i
iid∼ N (0, σ2

x).

Example 1.3 (Dynamical system with multiplicative dynamical and additive observational

noise). A popular state–space model used in time series analysis is the unobserved ARCH (Giak-

oumatos et al., 2005) model which formally is given by

si = (α+ βs2
i−1)1/2ε′i

xi = si + σεi,

where εi, ε′i
iid∼ N (0, 1). In the unobserved ARCH model we observe a realization of the process x(n)

and si is the unobserved ARCH component at time i. Note that the observational noise is additive

while the dynamical noise of the process (si)i≥1 is multiplicative. For identifiability reasons, some

constraints must be imposed on the parameters α and β but in this point it is irrelevant.

Dynamical systems that are contaminated with dynamical noise result to what is known as

stochastic or random dynamical systems (RDS) (Arnold, 2013; Bhattacharya & Majumdar,

2007; Hatjispyros & Yannacopoulos, 2005; McGoff et al., 2015; Schenk-Hoppe, 1997; Lasota &

Mackey, 1994). In this thesis we will be concerned with random dynamical systems that are

subjected to additive dynamical noise. Before we proceed to the theory of random dynamical

systems, we will provide some elements of chaos theory useful for understanding the material

appearing in subsequent chapters.

1.1.2 Chaos in dynamical systems

We are interested in the analysis of chaotic time series so let us describe here the defining prop-

erties of a time series in order to be chaotic. We will give the properties for the deterministic case

only; we remark that in all cases we study time series that originate under additive i.i.d noise,

when the deterministic part g is in a chaotic state. In order to have chaotic behavior in observed

time series (trajectories) the following three defining properties;boundedness, aperiodicity and

sensitive dependence on initial conditions (SDIC) must exist. The definitions of these notions

are given below.

Definition 1.2. Let g be a map on X. The set B ⊆ X is invariant with respect to g whenever

g(ϑ,B) ⊆ B.
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Definition 1.3 (Periodic trajectories). Let g be a map on X. The point p is called periodic point of

period k if gk(p) = p, and k is the smallest such positive integer. In the special case where k = 1

then p is called a fixed point. The orbit with initial point p, consisting of k points is called periodic

orbit period k.

A fixed point p may either attract points that are near it or nearby points may spread far from

the fixed point p under the dynamical system. In the first case the fixed point is called a sink

while in the second case the fixed point is called repelling or source. The following theorem is

useful to identify the stability of the fixed point i.e. if it is a sink or a source.

Theorem 1.2 (Stability of periodic orbits). Let g : X → X be a map and let {x1, . . . , xk} be a

periodic orbit of length k. Then

1. If |(gk)′(x1)| < 1, the orbit is a sink (attracting k–cycle).

2. If |(gk)′(x1)| > 1, the orbit is a source (repelling k–cycle).

Definition 1.4 (Asymptotical periodicity). Let g be a map on X and g ∈ C∞(X) (the class of

infinitely differentiable with continuous derivative functions). An orbit Og(x1) is called asymp-

totically periodic if it converges to a k–periodic orbit. That is, there exists a periodic orbit

Og(y1) = {y1, . . . , yk} such that

lim
n→∞

|xn − yn| = 0.

Definition 1.5 (Aperiodicity). A time series (orbit) generated from a discrete time dynamical

system is said to be aperiodic if it has no periodic points.

Definition 1.6 (Sensitive dependence on initial conditions). Let g be a map on R. A point x0 has

sensitive dependence on initial conditions if there exists ε > 0 such that any neighborhood N of

x0 contains a point x such that |gk(x)− gk(x0)| ≥ ε for some nonnegative integer k. The point x0

is sometimes called sensitive point.

Intuitively, sensitive dependence on initial conditions, implies that two orbits from the same

system starting from two infinitesimally small different initial conditions will diverge with expo-

nential rate. A quantitative characteristic of a system to determine whether or not the system

has sensitive dependence on initial condition is the Lyapunov exponent.

Suppose x′ = x+ ε, then

|gn(x′)− gn(x)| ≈ ε|(gn)′(x)| = ε

n−1∏
i=0

|g′(gi(x))| ≈ enLε

⇒ L ≈ lim
n→∞

n−1∑
i=0

log |g′(gi(x))|.

Definition 1.7. The Lyapunov exponent L is defined by

L = lim
n→∞

1

n

(
log |g′(x1)|+ . . .+ log |g′(xn)|

)
, (1.5)

where the derivative is taken with respect to x and x1, . . . , xn are successive iterates.

We are now ready to give the definition of a chaotic orbit based on the above definitions.
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Definition 1.8 (Chaotic orbit). Let g be a map on X and let Og(x1) be a bounded orbit of g. The

orbit is chaotic if

1. The orbit Og(x1) is not asymptotical periodic, and

2. The orbit has at least one positive Lyapunov exponent.

Before we proceed to the description of random dynamical systems, it will be helpful for the fol-

lowing to present here some qualitative characteristics of dynamical systems such as attractors,

basin of atttraction and invariant measures.

Attractors and the basin of attraction. In this paragraph we intend to describe some qual-

itative characteristics of discrete time dynamical systems described by a map g : X → X. An

attractor of a dynamical system is a subset of points S ⊆ X such that orbits starting from a

variety of initial conditions x0 ∈ B ⊆ X will fall, and remain into S. The attractor of a dynamical

system can be a single point (e.g. fixed points constitute an attractor), a limit cycle, or more

complicated sets with fractal structure called strange attractors. In contrast if the orbits starting

from the initial condition are falling out of the set S then S is called a repellor.

The set B is called the basin of attraction of the system. The basin of attraction can be a

single subset of X or a union of subsets of X. In the former case the system has only one stable

attractor while in the later, there coexist more than one strange attractors a phenomenon known

as multistability (Kraut et al., 1999). In this thesis we deal with polynomial maps. In terms

of stability we note that quadratic polynomial maps can exhibit for each parameter value one

stable attractor at most. Multistability and coexistence of more than one strange attractors can

be achieved under higher degree polynomials. An example of a dynamical system with stable

attractor is the logistic map defined via

xi = 1− 1.71x2
i−1, i ≥ 1, (1.6)

while a bistable dynamical system is the cubic map

xi = 0.05 + 2.53xi−1 − 0.99x3
i−1, i ≥ 1 (1.7)

for which the dynamical behavior will be extensively described in Chapter 3.

Chaotic attractor. We have given above a brief description of an attractor. It is the set of

points that will be visited from the map. Since we are interested in chaotic orbits, in this

paragraph we provide a formal definition of a chaotic attractor. Intuitevely, a chaotic attractor

is the set of points that will be visited arbitrarily close and infinitely often by a chaotic orbit.

Formally, a chaotic attractor is defined via the forward limit set.

Definition 1.9. Let g be a map and let x0 be an initial condition. The forward limit set of the

orbit {gn(x0)} is the set

ω(x0) = {x : for all N and ε there exists n > N such that |gn(x0)− x| < ε}.
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Definition 1.10 (Chaotic attractor). Let {gk(x)} be a chaotic orbit. If x0 ∈ ω(x0) then ω(x0) is

called a chaotic set. An attractor is a forward limit set which attracts a set of initial values that

has nonzero measure and is called basin of attraction. A chaotic attractor is a chaotic set that is

also an attractor.

Invariant measures. In the lower panel of Figure 1.1, the histograms of the time series gener-

ated from the logistic map for the corresponding initial conditions x0 based on 100, 000 iterations

of the logistic map are displayed. This histogram represents the frequency with which a region

of the state space X is visited. Even the two time series are completely different, it is obvious

that the general form of the histograms is quite similar, implicating that all orbits generated

from the logistic map have the same marginal distribution. In fact, the frequency that an orbit

visits a specific value can be measured by means of a probability measure which is called the

invariant measure. More formaly, the invariant measure generated from the map g is defined

by

µg(S) = lim
r→0

F (x0, N(r, S)), where F (x0, S) = lim
n→∞

1

n

n∑
i=1

I(gi(ϑ, x0) ∈ S),

and N(r, S) = {x : dist(x, S) ≤ r}. The formation of the invariant measure depicts the fact

that long term predictions in a deterministic dynamical system exhibiting chaos is not possible.

Having at our disposal the invariant measure µg(dx) of the chaotic map xi = g(xi−1), it is

possible to make probabilistic prediction arguments for the long term behavior of the system in

the sense that P (xi ∈ A) = µg(A) for arbitrary large i and for all measurable subsets A of X.

Equivalently one can describe the marginal distribution with a density but this is not always

possible especially for multidimensional dynamical systems. The evolution of the density of a

system forward in time is given from the Frobenius–Perron operator but this goes beyond the

scope of this thesis.

Bifurcation diagram. The dynamical behavior of a dynamical system can be described via a

bifurcation diagram which shows the birth, evolution, and death of attracting sets. Equivalently,

it shows the limiting behavior of orbits for different values of the control parameters ϑ. In

Figure 1.2 we display the bifurcation diagram of the logistic map xi = 1 − ϑxi−1. To construct

such a diagram, we choose an initial point x0 ∈ X and an initial value for ϑ, calculate the orbit

of x0 under the map of interest for a large number of iterations M and discard the first (lets

say) 100 iterates and plot the orbit of length M − 100. Then we increase ϑ and do the same

procedure for a big range of values of ϑ.

For small values of ϑ ranging from 0 to 0.75 all orbits are attracted to a single point indicated

by the x–axis. A period–two orbits arises at the bifurcation point ϑ = 0.75, which in turn leads

to period–four orbits and then more complicated orbits for larger values of ϑ. When the period–

two orbit appears, the fixed point is no longer plotted because it does not attract orbits. This

behavior is called period–doubling route to chaos.
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Figure 1.2: Bifurcation diagram of the logistic map. The red line indicates the control parameter

ϑ = 1.71 which we have used in our examples by now. For this value of ϑ the logistic map exhibits

chaotic behavior.

1.1.3 Random dynamical systems

In section 1.1.1 we saw that a dynamical system generates a sequence x(n)
of observations

according to the map g for fixed values of the control parameters ϑ. However we mentioned that

a dynamical system may be subjected to some source of noise. In this section we will consider

the general case where the map g is perturbed by an ergodic process i.e.

xi = g(ϑ, xi−1, . . . , xi−d) + zi, i = 1, . . . , n (1.8)

where zi is an ergodic process. In this case the move from a state xi−1, to its successor xi

is stochastic and the orbit x(n)
depends on the initial values x0, x−1, . . . , x−d+1, as also the

particular realization of the stochastic process (zi)i≥1. Thus noise in the system may enter in

two ways. Either it disturbes the parameters ϑ, or the deterministic part g by some additive

noise zi. For simplicity we will assume that the transition to xi depends only on the previous

state xi−1. Thus we consider the case

xi = g(ϑ, xi−1) + zi, i ≥ 1. (1.9)

Before we proceed with the definition of random dynamical system let us introduce some def-

initions (Klenke, 2013) from ergodic theory. Intuitively, ergodic theory studies the long term

behavior of a dynamical system. In the following (Ω,F , P ) will be our probability space and

τ : Ω→ Ω will denote a measurable map.
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Definition 1.11 (Invariant events). An event A ∈ F is called invariant if τ−1(A) = A. The

σ–algebra of invariant events

IF = {A ∈ F : τ−1(A) = A},

is called trivial if for all A ∈ IF it is that P (A) ∈ {0, 1}.
Definition 1.12 (Measure–preserving and ergodic dynamical systems). The map τ is measure–

preserving if

P [τ−1(A)] = P (A), for all A ∈ F .

In this case the quadraple (Ω,F , P, τ) is called a measure–preserving dynamical system. If τ is

measure–preserving and IF is P –trivial then (Ω,F , P, τ) is called ergodic.

There is a connection between measure preserving dynamical systems and stationary stochastic

processes. If (Xn)n∈N is a stochastic process on the probability space (XN,X⊗N, P ) and τ is

defined to be the shift operator, that is

τ : Ω→ Ω (ωn)n∈N → (ωn+1)n∈N,

then the process Xn(ω) = X0(τn(ω)) is stationay if and only if (Ω,F , P, τ) is a measure pre-

serving dynamical system. The stochastic process defined as above is ergodic if (Ω,F , P, τ) is

ergodic.

For an ergodic transformation τ we have the following:

Theorem 1.3 (Birkhoff (1931) ergodic theorem). Let X0 ∈ L1(P ) i.e.
∫

Ω |X0(ω)|dP (ω) < +∞. If

τ is ergodic then

lim
n→∞

1

n

n−1∑
k=0

Xk = E[X0], P − a.s.

Random dynamical systems. Having given the above definitions we are ready to define a

random dynamical system. We can reformulate the system defined in eq. (1.9) as

xi = g(ϑ, xi−1) + z(τ iω), i ≥ 1, (1.10)

where z(τ iω) is an ergodic process. A random dynamical system is defined by a measurable

mapping ϕ as

ϕ(ω, x) := g(ϑ, xi−1) + z(ω).

Then ϕ(n, ω, x) := ϕ(τn−1ω) ◦ · · · ◦ ϕ(ω)x = xn(ω) with x0 = x, and for n ≥ 0, i.e. ϕ(n, ω, x)

is the n–th iterate of the map g perturbed by the noise z(τ iω))i≥0. It follows from the general

theory that eq. (1.10) defines a random dynamical system with state space X. More formally we

have the following definition:

Definition 1.13. A random dynamical system is a measurable mapping ϕ : N × Ω × X → X,
(n, ω, x)→ ϕ(n, ω, x) such that for all ω ∈ Ω

1. ϕ(0, ω) = idX and ϕ(m+ n, ω) = ϕ(n, τmω) ◦ ϕ(m,ω) for all n,m ≥ 0.

2. ϕ(n, ω) : X→ X is smooth.
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3. For i.i.d. noise, (ϕ(n, ·, x))n∈N is a Markov process for all x ∈ X. Then ϕ is called Markovian.

In what follows, we will consider only the case of additive dynamical noise in which the random

dynamical system can be described via

xi = g(ϑ, xi−1) + zi, i ≥ 1, (1.11)

where g : Θ × X→ X, with (xi)i≥0 and (zi)i≥1 are real random variables defined over (Ω,F , P ).

That is, for our purposes z(τ iω) = zi, and we assume that the additive perturbations zi are

identically distributed from a zero mean distribution with unknown density f defined over the

real line. Now clearly the dynamical system consists of a deterministic and a random part; that

is the functional form described by the map g and the noise components respectively.

Recall that in the case of a deterministic dynamical system, the dynamics are described by

the functional iterations of the map applied to the initial condition. In the case of RDS since

every state is a random variable, the dynamics are described by the transition probability kernel

Q( · , · ) of the homogeneous Markov chain defined by eq. (1.11). Formally it is that

Q(x,A) = P (xn ∈ A |xn−1 = x).

The system in this case is observed via time series data which we will assume is not contami-

nated with observation noise so we have in our disposal a time series x(n)
generated directly by

the Markovian stochastic process given in eq. (1.11).

Quasi–invariant measures. In analogy with the deterministic systems, in a random dynami-

cal system, there exists an associated quasi–invariant measure µg,z(dx) which is the signature

of the underlying interplay of the chaotic dynamics and dynamical noise perturbations. The

quasi–invariant measure is a smoothed–out deformation of the associated invariant measure

µg(dx) of the deterministic part of the system. In analogy we can make long term proba-

bilistic prediction arguments for random chaotic dynamical systems in the sense that now

P (xi ∈ A) = µg,z(A) for an arbitrary large i and for all measurable subsets A of X. In fact the

deterministic invariant measure is the limit of the invariant measures of a random dynamical

system as in (1.11) with infinitesimal random disturbances i.e. zi → 0.

It is worth noting that the estimation of the quasi–invariant measure is difficult and not a

straight–forward procedure. In Chapter 3 we will show that the associated quasi–invariant

measure of a random dynamical system naturally arises as posterior predictive marginal (PPM)

of the out–of–sample variables forming a prediction barrier. More detailes and an extensive

treatment of quasi invariant measures can be found in Collet et al. (2012).

In Figure 1.3 we plot the time series generated from the random logistic map given by

xi = 1− 1.71x2
i−1 + zi, zi ∼ N (0, σ2) for i = 1, 2, . . . (1.12)
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for twe initial conditions x0 ∈ {1, 1.001} and σ = 0.01. The marginal distributions of the two

orbits are depicted in the lower panel in histogram representation.
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Figure 1.3: Two orbits x, y generated from the random logistic equation for initial conditions x0 = 1
and y0 = 1.001 for the value σ = 0.01. presented in the upper panel. The lower panel depicts the

histogram of the quasi–invariant measure based on 100, 000 iterations. Note that the differences are

indistinguishable. Comparing the lower panel with the lower panel of Figure 1.1, we see that the quasi–

invariant distribution is a smoothed–out deformation of the invariant distribution given in Figure 1.1(c)

and (d).

1.2 Reconstruction of random dynamical systems

Reconstruction of nonlinear dynamical systems which may exhibit chaotic behavior is of great

interest in the communities of mathematics, physics, statistics and signal processing. The pur-

pose of reconstructing the model of the dynamical system from measured time series data is to

estimate the state space parameters of the system comprised of the (vector of) control parame-

ters of the deterministic part and the characteristics of the dynamic noise components. Under

the assumption that the dynamic noise components are independent and identically distributed

from some distribution (typically the Normal distribution) the model becomes Markovian and

the full reconstruction of the system is achieved using some statistical methodology that in-

volves the likelihood function; that is the joint distribution of the observations conditioned on

all the unknown variables.

In the frequentist framework the state space parameters are considered fixed and uknown and

the researcher seeks the value of the parameters that maximize some objective function which

is usually the likelihood function. In contrast in the Bayesian setting all unknown quantities

are treated as random variables and any prior knowledge is incorporated in the model with
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the form of a prior distribution π over the parameters of interest. Combining the available

information given in the prior and the likelihood function, Bayes theorem provides the posterior

density, i.e. the conditional density of the parameters given the data.

Thus, a Bayesian model consists of a likelihood function L(θ ;x1, . . . , xn) =
∏n
i=1 `(xi | θ) for

a sample of size n of observations x(n)
which are considered to be realizations of the random

variables X(n)
taking values on a state space X with density `; and some prior distribution with

density π for the parameters of interest θ ∈ Θ. Bayesian inference is then carried out based on

the posterior distribution given by Bayes’ theorem

π(θ |x1, . . . , xn) =
L(θ ;x1, . . . , xn)π(θ)∫

Θ L(θ ;x1, . . . , xn)π(θ)dθ

θ∝ L(θ ;x1, . . . , xn)π(θ).

An estimate for the parameter of interest is then taken from some statistic, such as the mean,

the mode or the median of a sample taken from the posterior distribution.

Bayesian formulation (Robert, 2007) has been of great use in the general field of noise perturbed

dynamical systems. It was initially demonstrated in this context by Davies (1998), where Markov

Chain Monte Carlo (MCMC) methods were used for nonlinear noise reduction. In Meyer &

Christensen (2000, 2001) MCMC methods were applied for the parameter estimation of state–

space nonlinear models, extending maximum likelihood-based existing methods (McSharry &

Smith, 1999). Later, in Smelyanskiy et al. (2005) a path integral representation was proposed for

the likelihood function, in order to make inference in stochastic nonlinear dynamics, extended

for nonstationary systems in Luchinsky et al. (2008). In Matsumoto et al. (2001) and Nakada

et al. (2005) Bayesian methods were suggested for reconstruction and prediction of nonlinear

dynamical systems. Recently in Molkov et al. (2012), a Bayesian technique was proposed for

the prognosis of the qualitative behavior of random dynamical systems under different forms of

dynamical noise.

The methods introduced from the above researchers rely on the common assumption of the

normality of the noise process. Such an assumption cannot always be justified and can cause

inferential problems when the noise process departs from normality, for example when it pro-

duces outlying errors. Then the estimated variance of the normal errors is artificially enlarged

causing poor inference for the system parameters of interest. For this reason, it is obvious

that more flexible models must be constructed which will lead to accurate estimations even

when the noise process departs from normality. In this thesis we aim to provide a Bayesian

nonparametric formulation for the estimation of the parameters of the dynamical equations in

the signle and multiple time series setting.

1.3 Aim and scope of the thesis

The aim of this thesis is to provide a Bayesian nonparametric framework for the full recon-

struction of random dynamical systems. We start with the problem of reconstruction of a

single dynamical system using Geometric stick breaking (GSB) processes and sequentially we
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construct Dependent Bayesian nonparametric priors to extend the methodology in the context

of multiple time series. The running examples are based on random polynomial maps which

exhibit chaotic behavior. A very similar family of processes which are of great interest in the

communities of statistics and signal processing are the Polynomial Autoregressive Processes

(PAR) (Karakuş et al., 2015). Such a process can be represented in the notation P (p)AR(k).

xn =

k∑
i=1

a
(1)
i xn−i +

k∑
i=1

k∑
j=1

a
(2)
i,j xn−ixn−j + · · ·+

k∑
i1=1

· · ·
k∑

ip=1

a
(p)
i1,...,ip

xn−i1 · · ·xn−ip + εn,

where εn is an excitation sequence. These processes have been used a lot in the context of

time series and signal processing because they are linear in the parameters and thus many

mathematical applications developed for linear models can be employed easily.

In the first half of this thesis, we will take a Bayesian nonparametric approach to reconstruct and

predict random dynamical systems. We relax the common assumption of Normality of the noise

process and we model the dynamical noise using a highly flexible family of density functions,

providing a Bayesian nonparametric formulation (Ferguson, 1973; Fuentes-García et al., 2010).

We are confident that, contrary to the assumption of normality, our Bayesian modeling will

be able to capture the right shape of the true underlying noise density hence leading to an

improved and reliable statistical inference for the system even in cases where the size of the

observed time series is small. Some recent applications of Bayesian nonparametric methods in

nonlinear dynamical systems include Dirichlet Process (DP) based reconstruction (Hatjispyros

et al., 2009) and joint state–measurement noise density estimation with non–Gaussian and

Gaussian observational and dynamical noise components respectively (Jaoua et al., 2013).

The problems and methods discussed so far assume that we are interested in the reconstruction

and prediction of a single time series. In the second half of the thesis we propose a Bayesian

nonparametric mixture model for the joint full reconstruction of a finite collection of dynamical

equations, given observed dynamically–noise–corrupted chaotic time series. The method of

reconstruction is based on the Pairwise Dependent Geometric Stick–Breaking Process (PDGSBP)

mixture priors. Based on the PDGSBP prior we are able to extend the inferential procedure

provided by the GSBR model in a multiple time series setting.

Chapter 2 In the next chapter we provide the necessary background on Bayesian nonparametrics. We

start with the description of the Dirichlet process (DP) and the Geometric stick–breaking process

(GSB) priors which are the two random probability measures used in our methods. Due to their

discrete nature, it is not possible to model densities. To model overcome this obstacle and in

order to model densities, we discuss Bayesian nonparametric mixture models and their use as

a prior on the space of densities. Since a Bayesian nonparametric model is a Bayesian model

with the prior defined on an infinite dimensional space, we review MCMC methods that we will

use in order to perform posterior inference in such models.

Chapter 3 The thesis then proceeds with a review of the Bayesian nonparametric reconstruction model DPR

based on the Dirichlet process DP proposed by Hatjispyros et al. (2009) and then we move to the

Geometric Stick–Breaking reconstruction model (GSBR) introduced in Merkatas et al. (2017). We
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propose a Bayesian nonparametric framework for the estimation and prediction, from observed

time series data, of discretized random dynamical systems. The size of the observed time series

can be small and the additive noise may not be Gaussian distributed. We show that when the

dynamical noise departs from normality, simple parametric MCMC models are inefficient. Our

models, assume an unknown error process in the form of a countable mixture of zero mean

normals, where a-priori the number of the countable normal components and their variances

is unknown. Our method infers the number of unknown components and their variances i.e.

it infers the density of the error process directly from the observed data. We demonstrate

numerically that the associated quasi invariant measure of the system appears naturally as

posterior predictive marginal of the out–of–sample variables forming a prediction barrier.

Chapter 4Here we introduce our second contribution. We present a new approach to the joint estimation

of partially exchangeable observations. This is achieved by constructing a model with pairwise

dependence between random density functions, each of which is modeled as a mixture of GSB

processes. We demonstrate numerically that mixture modeling with Pairwise Dependent Geo-

metric Breaking process (PDGSBP) priors introduced by Hatjispyros et al. (2017a) is sufficient

for prediction and estimation purposes. Moreover the corresponding Gibbs sampler for estima-

tion is faster and easier to implement than the DP counterpart. For a fair comparison between

the proposed PDGSBP model and the PDDP model of Hatjispyros et al. (2011) we adopt syn-

chronized prior specification. To this end we randomize the concentration masses of the PDDP

model leading to a more efficient model which we refer to as randomized Pairwise Dependent

Dirichlet Process prior. We provide a modified MCMC scheme for the update of the individual

concentration masses.

Chapter 5Finally we provide a Bayesian nonparametric model for the joint reconstruction of dynamical

equations from dynamically–noisy–corrupted chaotic time series data. The main idea is to ap-

ply a PDGSBP prior to the space of densities of the additive errors. Under the assumption

that the zero–mean processes responsible for the generation of the time series have common

characteristics, for example they have same tail behavior, it is possible under carefully selected

borrowing–of–strength prior specifications, to reconstruct the dynamical equations of the pro-

cesses responsible for the generation of the time series especially for those systems for which

the corresponding sample size is small; i.e. inefficient for an independent estimation with an

rDPR or GSBR model.
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Chapter 2

Bayesian nonparametric models

In this chapter we review the Bayesian nonparametric (BNP) priors used for the construction

of our models. We start with the definition of the most common BNP prior that is the Dirichlet

process (DP) and its extensions and then we review the Geometric stick breaking (GSB) prior;

a random probability measure with simple weight structure. A class of MCMC algorithms that

update the components of the random probability measures in the inferential procedure is

also presented for these models. For an extensive study of the theory and applications of BNP

models in statistics and machine learning problems we refer to Hjort et al. (2010) and Müller

et al. (2015).

To give an intuition for the need of BNP models consider the problem of density estimation which

is of great importance in Statistics. That is, given a collection of observations (x1, . . . , xn) on

some measurable space (X,X ), where X is a Polish space and X its associated Borel σ–algebra,

we want to estimate their distribution. Formally, we have a collection of random variables

x1, . . . , xn |F
iid∼ F

and the aim is to infer the uknown distribution F.

In the Bayesian approach, one should define a prior over the parameter which is now the

unknown distribution F. This prior is defined over PX, the space of all probability measures

on X which now acts as the parameter space. Such priors are random probability measures

defined on X that is, measurable functions G : Ω×X → PX such that

1. ω 7→ G(ω,A) is a probability measure on (X,X ) for each A ∈ X .

2. A 7→ G(ω,A) is a random variable for each ω ∈ Ω.

Reviewing the Dirichlet distribution will reinforce our intuition and clarify certain types of repre-

sentation and properties of the Dirichlet Process. For this reason the definition of the Dirichlet

distribution is provided.

Definition 2.1 (Dirichlet Distribution). Let Z1, . . . , ZK , be independent G(aj , 1), 1 ≤ j ≤ K,

random variables and let Z = Z1 + · · ·+ ZK . The vector w = (w1, . . . , wK) where

wj =
Zj
Z
,
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has the Dirichlet distribution with parameters α = (α1, . . . , αK) with probability density function

Dirichlet(w |α) :=
Γ(
∑K

j=1 αj)∏K
i=1 Γ(αj)

wα1−1
1 · · ·wαK−1

K I((w1, . . . , wK) ∈ 4K),

with

4K =

{
(w1, . . . , wK) ∈ RK+ :

K∑
i=1

wi = 1

}
.

2.1 Dirichlet Process

The Dirichlet process (Ferguson, 1973) is essentially a distribution over all discrete distribu-

tions. Intutitively this means that if we draw a sample from a DP we get a probability distribution

on X and we write G ∼ DP to denote that G is a sample from a DP.

Definition 2.2 (Dirichlet process). Let c > 0 and H be a probability measure defined on X. We

say G is a draw from a Dirichlet process with concentration parameter c and base distribution H,

or G ∼ DP(c,H), if and only if for each finite measurable partition {A1, . . . , An} of X, the vector

of random probabilities (G(A1), . . . ,G(Ak)) is distributed according to the Dirichlet distribution

with parameters (cH(A1), · · · , cH(Ak)).

From the definition above, it is clear that G is a draw from a DP if all its finite marginal distri-

butions are Dirichlet distributions. Ferguson (1973) has shown that such a construction meets

the conditions of Kolmogorov consistency theorem guaranteeing the existence of the Dirichlet

process on a state space X.

To see the rôle of c and H consider the measurable partition of X = {A,A′}. Then G(A) is

distributed as a Be(cH(A), cH(A′)) random variable so we have that E[G(A)] = H(A). Thus H

is specifying where the mass of G is distributed on average. From the properties of the Beta

distribution we have that Var[G(A)] = (1 + c)−1[H(A)(1−H(A))], so the parameter c controls

the variability around the mean and can be regarded as an inverse variance parameter. So as

c → ∞ the prior is more tightly concentrated around the mean. In Figure 2.1, we represent

the effect of the parameter c on 20 random distributions sampled from a DP prior with mean

distribution a standard normal distribution N (0, 1).

2.1.1 Properties of DP

Conjugacy of Dirichlet process

An attractive property of the DP is its conjugacy meaning that given a sample of observations

drawn from a DP that is x1, . . . , xn |G
iid∼ G, the posterior random measure G |x1, . . . , xn is also

distributed according to a DP. Of course the concentration parameter and the base distribution

of the posterior random measure will be updated in the light of “data”. Now G is itself a random

distribution and thus we can draw samples from G which are regarded as “data”.
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Figure 2.1: Random cdf’s resulting from 20 draws from the prior DP(c,H) for c = 0.5, 5, 50, 500, and

H(dx) = N (x | 0, 1)dx. As the parameter c increases the prior concentrates around the mean H.

So, suppose that we have a sample x1, . . . , xn |G
iid∼ G and G ∼ DP(c,H). Let A1, . . . , Ak be a

finite measurable partition of X and let nj =
∑n

i=1 I(xi ∈ Aj) for j = 1, . . . , k. The likelihood

model for (n1, . . . , nk) is multinomial and from the conjugacy of the finite dimensional Dirichlet

prior to the multinomial likelihood we have that

(G(A1), . . . ,G(Ak)) |x1, . . . , xn ∼ Dirichlet(cH(A1) + n1, . . . , cH(Ak) + nk).

The above relation holds for every finite measurable partition so we conclude that the posterior

distribution must also be a DP. Manipulating the parameters of the finite dimensional posterior

we can write the posterior of a DP as

G |x1, . . . , xn ∼ DP

(
c+ n,

c

c+ n
H +

n

c+ n

∑n
i=1 δxi
n

)
. (2.1)

It is clear from the above that the posterior base distribution is a weighted average of the prior

base distribution H and the empirical distribution. We will show below that the posterior base
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distribution is also the predictive distribution for a new sample drawn from the DP.

Predictive distributions

Now consider again a sample x1, . . . , xn from a random distribution G which is distributed

according to a DP denoted by G ∼ DP(c,H). We are interested in the predictive distribution

for a new observation xn+1 |x1, . . . , xn. Integrating the random distribution G the predictive

distribution of xn+1 for any A ⊂ X is given by

P (xn+1 ∈ A |x1, . . . , xn) =

∫
G∈PX

P (xn+1 ∈ A |G)P (G |x1, . . . , xn) dG

=

∫
G∈PX

G(A)P (G |x1, . . . , xn) dG

= E[G(A) |x1, . . . , xn]

=
c

c+ n
H(A) +

n

c+ n

∑n
i=1 δxi(A)

n
. (2.2)

Thus with G integrated out the predictive distribution is given by

xn+1 |x1, . . . , xn ∼
1

c+ n

(
cH +

n∑
i=1

δxi

)
. (2.3)

2.1.2 Representations of a DP

Many different representations have been proposed for the DP each of them giving nice prop-

erties useful for the construction of MCMC algorithms. Below we provide the most popular

representations found in the literature.

Stick–breaking represenation

A random probability measure G sampled from a DP admits a stick–breaking representation.

Sethuraman (1994) has shown that if G ∼ DP(c,H) then

G =

∞∑
k=1

wkδxk , (2.4)

where (xk)k≥1 is a sequence of independent and identical distributed random variables with

distribution H and the weights (wk)k≥1 are stick–breaking, that is for a sequence (zk)k≥1 with

zk ∼ Be(1, c)

w1 = z1, wk = zk

k−1∏
l=1

(1− zk), k ≥ 2 (2.5)

The name stick breaking comes from the definition of the weights which can be thought as

the length of a piece of a unit–length stick assigned to the k–th value. From the stick breaking
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represenation it is clear that random probabilitiy measures sampled from a DP are almost surely

discrete.

The Dirichlet process belongs to the general class of stick–breaking priors (Ishwaran & James,

2001) where the Beta random variables are allowed to have different parameters for each k. That

is different stick breaking priors can be obtained for a BNP inference if we let zk ∼ Be(ak, bk)
for each k. Although to ensure that the weights will add up to 1 it must be verified that

∞∑
k=1

log

(
1 +

ak
bk

)
= +∞.

We will see later that the stick breaking representation is extremely useful for planning Gibbs

samplers imputing the random probability measure in the inferential procedure.

−2 −1 0 1 2

0
2

4
6

8
1
0

Figure 2.2: A draw from a Dirichlet process prior DP(c,H) with c = 10 and H ∼ N (0, 1), using the

stick–breaking representation.

Generalized Pólya urn

Beside the stick breaking representaion, the DP can be represented by a generalized Pólya urn

(Blackwell & MacQueen, 1973). In this representation it becomes clear that the DP exhibits a

clustering property.

Let x1, . . . , xn |G
iid∼ G with G ∼ DP(c,H). Then the distribution of xn+1 |x1, . . . , xn can be

written in terms of successive conditional distributions as

xn+1 |x1, . . . , xn ∼
c

c+ n
H +

1

c+ n

n∑
i=1

δxi .

Thus, a new sample will be with probability c(c+ n)−1
a new draw from H or a previously seen

sample xi with probability (n + c)−1. Due to the discrete nature of this distribution, ties will

occur. If we denote by (x̃1, . . . , x̃k) the unique values of (x1, . . . , xn) and with nj , 1 ≤ j ≤ k,
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their corresponding frequencies such that
∑

j nj = n, we can write the conditional distribution

as

xn+1 |x1, . . . , xn ∼

δx̃j , with probability
nj
n+c for j = 1,. . . ,k.

H, with probability
c

c+n .

The sequence of (x1, . . . , xn) constructed this way is infinitely exchangeable because x(n) |G, n ≥
1, are i.i.d samples from G and thus by de Finetti’s representation theorem there exists a random

distribution Π such that

P (x1, . . . , xn) =

∫
PX

n∏
i=1

G(xi)Π(dG).

The random distribution Π of G is shown to be the Dirichlet process (Blackwell & MacQueen,

1973).

It is worth noting that this particular representation of the Dirichlet process is useful in plan-

ning marginal samplers for the DP. These samplers are MCMC algorithms which rely on the

integration of the random distribution G to avoid infinite number of updates. The celebrated

Algorithm 8 introduced by Neal (2000) belongs to this class and is used as a reference algorithm

in the class of marginal samplers.

Representation as an NRMI

The DP is in the general class of random probability measures called normalized random mea-

sures with independent increments (NRMI). To define a NRMI the definition of a completely

random measure (CRM) is required (Kingman, 1967). In the following we let (MX,MX) denote

the measurable space of all finitely bounded measures on X.
Definition 2.3 (Completely random measure). Let µ̃ be a measurable mapping from (Ω,F , P )

into (MX,MX) such that for any collection A1, . . . , Ak in X with Ai ∩ Aj = ∅ for i 6= j, the

collection of random variables µ̃(Ai), . . . , µ̃(Ak) are mutually independent. Then µ̃ is called a

completely random measure (CRM).

In the following we will consider CRM’s that can be represented as

µ̃ =

∞∑
k=1

J̃kδxk , (2.6)

where the jumps (J̃)k≥1 and the X–valued locations (xk)k≥1 are random.

The distribution of µ̃ is characterized from the Lévy–Khintchine representation which states

E
[
e−

∫
X f(x)µ̃(dx)

]
= exp

{
−
∫
R+×X

[1− e−yf(x)]ν(ds, dx)

}
.

The measure ν is called Lévy intensity and describes the distribution of the random points

(J̃k, xk)k≥1 as a Poisson random measure with mean ν. For our purposes we will assume that
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the measure ν factorizes as ν(ds, dx) = ρ(ds)H(dx) implying independence between the random

masses and the random locations. If this is the case, the CRM is called homogeneous.

A normalized random measure with independent increments can be defined through the nor-

malization of a CRM.

Definition 2.4 (Normalized random measure). Let µ̃ be a homogeneous CRM with ν(ds, dx) =

ρ(ds)H(dx) and T = µ̃(X) be the total mass. An almost surely discrete random probability

measure defined via

µ =
µ̃

T
=

∞∑
k=1

wkδxk ,

where (wk)k≥1 is a sequence of random probabilities defined by normalizing (J̃k)k≥1 with respect

to T, is called normalized random measure with independent increments (NRMI).

In order for the normalization to be well defined, it must be ensured that T < +∞ almost

surely. If the following two conditions for the Lévy measure are satisfied∫
R+

ρ(ds) = +∞ and

∫
R+

(1− e−s)ρ(ds) < +∞.

then T < +∞ almost surely.

An alternative definition of the DP as a normalized Gamma CRM was introduced in Ferguson

(1973).

Definition 2.5 (Dirichlet Process (Ferguson, 1973)). Let µ̃g be a Gamma CRM that is a homoge-

neous CRM with Lévy intensity measure

ρ(ds)H(dx) = c s−1 e−sdsH(dx),

where c > 0 and let T be its total mass. The random probability measure

µ =
µ̃g
T
,

is a Dirichlet process with parameter c.

2.2 Geometric stick breaking process

An interesting random probability measure can be obtained from the general class of stick

breaking priors (Ishwaran & James, 2001) by using only one Beta random variable for the

construction of the weights. Recall that a stick breaking prior is a random probability measure

that admits the representation

G =
∞∑
k=1

wkδxk ,
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where (xk)k≥1
iid∼ H and the weights wk are constructed via a stick breaking process as

w1 = z1, wk = zk

k−1∏
l=1

(1− zl), k ≥ 2,

for (zk)k≥1 ∼ Be(ak, bk).

If we replace the sequence (zk)k≥1 with a single random variable λ ∼ Be(a, c) and construct the

weights with a geometric structure as

wk = λ(1− λ)k−1, (2.7)

the resulting probability measure

G = λ
∞∑
k=1

(1− λ)k−1δxk , (2.8)

is known as a geometric stick breaking (GSB) process or geometric weights prior (Fuentes-García

et al., 2010). From now on, we will denote a random probability measure drawn from a GSB

process as G ∼ GSB(λ,H).

The GSB prior can be seen as a removal of a level of randomness in a nonparametric model

based on the DP by replacing the stick breaking weights with their expectations. The expectated

value of the stick breaking weights of the DP is given by

E[wk] =
1

1 + c

k−1∏
i=1

c

1 + c
=

1

1 + c

(
c

1 + c

)k−1

,

which is a reparametrization of Equation (2.7) with λ = (1 + c)−1.

The advantage of using a GSB as a BNP prior is its reduced variability of the weights thus leading

to improved estimation. Despite the fact that a level of randomness is removed, standard results

of Ongaro & Cattaneo (2004) can be used to prove that a GSB random probability measure still

has full support on the space of discrete probability measures of PX. For the GSB process we

prove the following proposition.

Proposition 2.1. Let G ∼ GSB(λ,H). Then for every A ∈ X we have

1. E[G(A)] = H(A),

2. Var[G(A)] = λ
2−λH(A)(1−H(A)).

Proof. Part 1. From the definition of the GSB random probability measure we have that

G =
∑∞

k=1wkδxk . The expectation of the random variable G(A) is given by

E[G(A)] = E

[ ∞∑
k=1

wkδxk

]
=
∞∑
k=1

wkE[δxk(A)] = H(A).
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Part 2. It is that

Var[G(A)] = E[G2(A)]− E2[G(A)]

= E

 ∞∑
k=1

w2
kδ

2
xk

(A) +
∑
k 6=j

wkwjδxk(A)δxj (A)

− [E ∞∑
k=1

wkδxk(A)

]2

= E
∞∑
k=1

w2
kH(A) +H2(A)E

∑
k 6=j

wkwj −

[
E
∞∑
k=1

wkH(A)

]2

= H(A)E
∞∑
k=1

w2
k +H2(A)E

∑
k 6=j

wkwj −H2(A)

[
E
∞∑
k=1

w2
k

]
H2(A)

− E
∑
k 6=j

wkwjH
2(A),

from which we conclude that Var[G(A)] = H(A)(1−H(A))E
(∑∞

k=1w
2
k

)
. Because wk = λ(1−

λ)k−1
it follows that

Var[G(A)] =
λ

2− λ
H(A)(1−H(A)).

2.3 Bayesian nonparametric mixtures

In the previous sections we have seen that stick breaking random probability measures are

almost surely discrete even when the base distribution H is continuous. This implies that

these BNP priors are not suitable to model densities. An approach for the construction of a

prior process whose realizations are absolutely continuous random distribution functions was

first proposed by Antoniak (1974) and followed by Lo et al. (1984). The main idea of the Dirichlet

Process Mixture (DPM) model is to convolute a kernel of some parametric family with a random

probability measure sampled from a BNP prior.

More formally, consider the parametric family of kernels

Kθ = {K( · | θ) | θ ∈ Θ ⊆ Rk}. (2.9)

A mixture distribution is a convex combination of the members of Kθ with the representation

f(x) =

∞∑
k=1

pkK(x | θk) with

∞∑
k=1

pk = 1. (2.10)

where the sequence pk belongs to the infinite dimensional simplex

4∞ =

{
p1, p2, . . . |

∞∑
k=1

pk = 1

}
. (2.11)
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Any discrete probability measure over the parameter space Θ can be written as

G =

∞∑
k=1

pkδθk . (2.12)

Using measure–theoretic notation, the mixture distribution of eq. (2.10) can be written as

f(x) =

∫
Θ
K(x | θ)G(dθ), (2.13)

where G is called the mixing distribution.

A Bayesian mixture model can be defined if we let the parameters of the mixture distribution that

is, (pk, θk)k≥1 be random. In order to do so, the problem reduces to define a random probability

measure over the measurable space (Θ,B(Θ)). This is the main idea behind the DPM model

proposed by Lo et al. (1984) who considered the distribution of the random distribution G to be

a Dirichlet process. In a hierarchical fashion, the model is represented as

xi | θi
ind∼ K(xi | θi)

θi |G
iid∼ G

G ∼ DP(c,H).

The interesting property of the DPM is that the posterior is also a DPM. More formally we have

the following

Proposition 2.2. If xi | θi
ind∼ f(xi | θi), 1 ≤ i ≤ n and θi

iid∼ G where G ∼ DP(c,H) then

G |x1 . . . , xn ∼
∫

Θ
DP(c∗, H∗)P (dθ |x1, . . . , xn),

with P (θ | · · · ) being the posterior density and c∗, H∗ the posterior concentration and the posterior

base measure given in eq. (2.1).

From the formulation of the Bayesian mixture, it is obvious that the distribution of the mixing

measure can be replaced by any discrete random probability measure resulting the different

Bayesian nonparametric mixtures. In this thesis we will use Bayesian nonparametric mixture

models that use as a prior over the parameters of the mixing distribution a DP or a GSB

process. For completeness we provide the hierarchical representation of a Geometric stick

breaking mixture (GSBM) model below. It is that

xi | θi
ind∼ K(xi | θi)

θi
iid∼ G

G ∼ GSB(λ,H)
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2.4 Dependent processes

In Bayesian nonparametrics, the use of nonparametric priors such as the Dirichlet process

(Ferguson, 1973) is justified by the assumption that the observations are exchangeable. How-

ever exchangeability is not a valid assumption for all kinds of data. For example in time

series data there may be correlation between observations in proximate times resulting in non–

exchangeable data sets.

When the exchangeability assumption fails one needs to use non–exchangeable priors. These

priors are dependent stochastic processes i.e. distributions over a collection of measures in-

dexed by values in some covariate space, such that the marginal distribution is described by a

known nonparametric prior.

Below we will review two types of dependent Bayesian nonparametric priors. At first, we review

covariate dependent priors introduced in MacEachern (1999). These priors include additional

information in a model conditioning on a non–random variable taking values in some covariate

space. Then we focus to dependent processes which are distributions over exchangeable collec-

tions of measures. The construction of nonexchangeable priors is a fresh and very active field of

research especially for the statistics and machine learning communities. In Foti & Williamson

(2015), a survey of the common approaches in the construction of dependent nonparametric

processes is given.

2.4.1 Covariate–dependent models

In many applications there are datasets which may contain temporal, spatial or categorical

information for which we are not interested in making inference. Instead we would like to

condition upon it in order to improve inference. This additional information is introduced in

the model by considering a variable z taking values in some covariate space Z so now the

effect of interest X is a function of z that is X(z). Since X is a function of z this means

that the parameters θ must also be a function of θ(z) of z. The aim now is to construct a

flexible dependent Bayesian nonparametric prior which accounts for the information given by

the covariate z.

Generalizing the stick breaking represenation of the DP, MacEachern (1999) showed that a

dependent Dirichlet process (DDP) can be defined via

Gz( · ) =
∞∑
k=1

wk(z)δθk(z)( · ),

where (wk(z), θk(z)) are stochastic processes indexed in Z. A classical example of the use of

dependent DP’s is the Bayesian nonparametric regression problem where a random probability

measure Gz is constructed for each covariate z. Extensions to dependent DP models can be

found in De Iorio et al. (2004), Griffin & Steel (2006), and Dunson & Park (2008).
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Recently there has been growing interest for the use of simpler random probability measures

which while simpler are yet sufficient for a Bayesian nonparametric density estimation. The

geometric stick breaking (GSB) random probability measure (Fuentes-García et al., 2010) has

been used for density estimation and has been shown to provide an efficient alternative to DP

mixture models. Some recent papers extend this nonparametric prior to a dependent nonpara-

metric prior.

In the construction of covariate dependent processes, GSB processes have been seen to provide

an adequate model to the traditional dependent DP model. For example, for Bayesian regres-

sion, Fuentes-García et al. (2009) propose a covariate dependent process based on random

probability measures drawn from a GSB process. Mena et al. (2011) used GSB random proba-

bility measures in order to construct a purely atomic continuous time measure–valued process,

useful for the analysis of time series data. In this case, the covariate z ≥ 0 denotes the time

that each observation is (discretely) recorded and conditionally on each observation is drawn

from a time–dependent nonparametric mixture model based on GSB processes.

2.4.2 Distributions over exchangeable measures

We have seen before that the assumption of exchangeability may be violated when the data

are observed with covariates. This though, is not the only case where the exchangeability

assumption fails. In real life applications data are often partially exchangeable. For example the

data may consist of independent observations sampled from m populations, or may be sampled

from an experiment conducted in m different geographical places. This means that the joint

law is invariant under permutations within m subgroups of observations (Xj,1, . . . , Xj,nj ), j =

1, . . . ,m, then for all πj ∈ S(nj)

((X1,i1)1≤i1≤n1 , . . . , (Xm,im)1≤im≤nm)
d
= ((X1,π1(i1))1≤i1≤n1 , . . . , (Xm,πm(im))1≤im≤nm) (2.14)

Most of the proposals rely on the notion of partial exchangeability as set forth by De Finetti

(1938) who formalizes the above idea. In simple words, partial exchangeability means that

although not valid across the whole set of observations, exchangeability can hold true within m

different groups of observations.

More formally, in analogy with Theorem 1.1, an infinite X–valued process X
(∞)
j ,1 ≤ j ≤ m,

defined over a probability space (Ω,F , P ), is partially exchangeable as in eq. (2.14) if and only

if there exists a probability distribution Π over PmX , that satisfies

P{Xji ∈ Aji : 1 ≤ j ≤ m, 1 ≤ i ≤ nj}

=

∫
Pm

P{Xji ∈ Aji : 1 ≤ j ≤ m, 1 ≤ i ≤ nj |Q1, . . . ,Qm}Π(dQ1, . . . ,dQm)
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=

∫
Pm

m∏
j=1

P{Xji ∈ Aji : 1 ≤ i ≤ nj |Qj}Π(dQ1, . . . ,dQm)

=

∫
Pm

m∏
j=1

{ nj∏
i=1

Qj(Aji)

}
Π(dQ1, . . . ,dQm).

The de Finetti measure Π represents a prior distribution over partially exchangeable observa-

tions and is the distribution of some vector (Q1, . . . ,Qm) of random probability measures on

X.

We devote the following few paragraphs to describe some common dependent processes which

create distributions over exchangeable collections of measures. A typical scenario in which the

measure Π is employed is with mixture models to generate random densities.

Hierarchical Dirichlet Process

A very popular dependent process with applications in ad–mixture models is the Hierarchical

Dirichlet Process (HDP) proposed by Teh et al. (2006) which induces dependence among a

collection of random probability measures by setting a hierarchical model over the locations of

the random distributions of the groups.

More specifically, in the HDP model a random measure G0 is sampled from a DP(γ,H), and then

for each group of data xj a random measure Gj is sampled from a DP(c,G0). The distributions

Gj can be used as mixing measures to generate the random densities fj for the observations.

Formally the model can be summarized as

xji | θji
ind∼ K( · | θji), θji |Gj

iid∼ Gj

Gj =
∞∑
k=1

wjkδθk
iid∼ DP(c,G0), G0 =

∞∑
k=1

βkδθk ∼ DP(γ,H).

Note that in the HDP model that all the random measures share the same set of “atoms” (loca-

tions). This is because the base measure of the group specific DPs is the random distribution

G0 and thus all Gj have the same support as G0. This way, different observations in the same

group can share the same parameters, but also observations across different groups. Shared

characteristics would correspond to large stick breaking weights.

A closely related approach in the modeling of densities, which are thought to be related, is the

Analysis of Densities (AnDe) model, proposed by Tomlinson & Escobar (1999). The difference is

that in the AnDe model, the “global” distribution G0 is itself a DPM. In this case, since Gj are

independent draws from DP(c,G0) they have no atoms in common. Thus clusters arise within

a group via the discreteness of Gj but atoms in different groups are different and there is no

sharing of clusters between groups.
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Dependence through a shared component

Another way to introduce dependence between a finite collection of probability measures Gj , 1 ≤
j ≤ m is to model each random measure Gj as a convex combination of a common and an index

specific idiosyncratic part. So for 0 < pj < 1 it is that

Gj = pjG0 + (1− pj)G∗j ,

where G0 is the common component of all other measures and G∗j , 1 ≤ j ≤ m are the idiosyn-

cratic parts to each Gj .

This approach has been adopted by Müller et al. (2004); Bulla et al. (2009); Kolossiatis et al.

(2013) under the assumption that G0,G∗j
iid∼ DP (c,H). The resulting Gj measures have been

used in the context of DPM models generating a collection of dependent random densities

fj(x), 1 ≤ j ≤ m given by

fj(x) = pj

∫
Θ
K(x | θ)G0(dθ) + (1− pj)

∫
Θ
K(x | θ)G∗j (dθ).

The generative process of the model can be summarized as

xji | θji
ind∼ K( · | θji), θji |Qj

iid∼ Qj

Qj = pjG0 + (1− pj)G∗j , pj + (1− pj) = 1

G0, G∗j
iid∼ DP(c,H).

A similar approach was taken by Griffin et al. (2013); Lĳoi et al. (2014) who have replaced the

Dirichlet random measures G0,G∗j with a normalized random probability measure based on the

normalized generalized gamma process (NGGP) (Brix, 1999) and σ–stable process (Kingman,

1975) repsectively. The NGGP process is a completely random measure whose Lévy intensity is

given by

νc,σ,ζ(ds, dx) =
cs−1−σ

Γ(1− σ)
e−ζsdsH(dx),

with σ ∈ (0, 1), c > 0 and ζ ≥ 0. The NGGP includes as special case the DP when σ = 0, ζ = 1

and the σ–stable process when ζ = 0.

Pairwise dependent random probability measures

A more general dependence structure between a collection of measure Gj has been proposed

by Hatjispyros et al. (2011). They have modeled the random distributions Qj to be pairwise

dependent that is

Qj =
m∑
l=1

pjlGjl,
m∑
l=1

pjl = 1 a.s.,
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with Gjl = Glj being iid from the DP(c,H). Equivalently the proposed model can be written in

matrix notation form as

Q = (p⊗G)1.

where p = (pjl) is the matrix of random selection probabilities, G = (Gjl) is the symmetric

matrix of the independent Dirichlet measures and p ⊗ G is the Hadamard product of two

matrices defined as (p⊗G)jl = pjlGjl. Letting 1 denote the m× 1 matrix of ones it is that the

jth element of the vector Q is given by Qj defined above.

For the observations, the generative process is summarized

xji | θji
ind∼ K( · | θji), θji |Qj

iid∼ Qj

Qj =
m∑
l=1

pjlGjl,
m∑
l=1

pjl = 1, Gjl = Glj

Gjl
iid∼ DP(c,H).

The same dependence structure was adopted in Hatjispyros et al. (2016) but now the iid DPs

are forced to have the same atoms. The authors showed that adopting common atoms to the

involved Dirichlet processes is sufficient for prediction and density estimation purposes within

the concept of borrowing of strength.

In Chapter 4 we are going to describe a dependent process based on the GSB process. Although

these measures have been used in covariate–dependent models, they haven’t been used for

modeling related density functions when samples from each density function are available.

2.5 Markov Chain Monte Carlo methods

In a Bayesian model the prior is combined with the likelihood i.e. the joint density of the

observations given any parameters and the objective is to determine the posterior distribution,

that is the conditional distribution of parameters given the data. Formally we have the following

Bayesian model

X1, . . . , Xn | θ
iid∼ `(· | θ)

θ ∼ π.

Letting L(θ ;x1, . . . , xn) =
∏n
i=1 `(xi | θ), inference is based on a sample from the posterior

distribution given by

π(θ |x1, . . . , xn) =
L(θ ;x1, . . . , xn)π(θ)∫

Θ L(θ ;x1, . . . , xn)π(θ)dθ
. (2.15)

If the prior and the likelihood do not form a conjugate pair the posterior distribution given

in eq. (2.15) does not have a closed form. This is because the integral that appears in the

denominator is intractable. Although the problem of approximating an integral can be dealt
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with methods from numerical analysis, Monte Carlo (MC) methods are based on properties of

random variables and Laws of Large Numbers providing a solution to the problem of integration.

Monte Carlo (MC) integration. Suppose that we want to evaluate an integral of a function h

of a random variable θ ∈ Θ which we assume it has density π. That is

I(h) =

∫
Θ
h(θ)π(θ)dθ = Eπ[h(θ)]. (2.16)

Monte Carlo (MC) methods assume that we have an i.i.d. sample θ(N) = (θi)1≤i≤N from the

target density π(θ) and that the function h can be evaluated point–wise. The integral is then

approximated from the Monte Carlo estimator defined as

IN (h) =
1

N

N∑
i=1

h(θi), (2.17)

which from the strong LLN converges to the desired integral. That is,

IN (h) =
1

N

N∑
i=1

h(θ(i))
a.s.−→ I =

∫
Θ
h(θ)π(θ)dθ as N →∞. (2.18)

This MC estimator is unbiased, and by the strong Law of Large numbers will a.s. converge to

I(h). If the variance of h(θ) satisfies

σ2
h = Eπ[h2(θ)]− E2

π[h(θ)] = Eπ[h2(θ)]− I2(h) < +∞, (2.19)

the MC estimator IN (h) satisfies the following Central Limit Theorem, yielding convergence in

distribution of the error √
N(IN (h)− I(h))

d→ N (0, σ2
h). (2.20)

In practice however, it is not always possible to generate samples from π so Markov Chain Monte

Carlo (MCMC) methods provide a framework to obtain samples from the desired density. The

basic idea of MCMC methods is to construct a stationary Markov chain (θi)i≥1 with stationary

density which is the desired target density π. Independently of the starting point of the chain,

after a long enough period, in terms of samples, the Markov chain will converge to its stationary

distribution and samples from it can be considered as samples from the target density.

There is an extensive literature in MCMC methods establishing theoretical results and output

diagnostics that is not possible to review it extensively. In the following we will review only the

Gibbs sampler, one of the most common MCMC algorithms which is the main tool for inference

in our models. More details on MCMC methods and theory can be found in Robert (2004);

Brooks et al. (2011); Liang et al. (2011); Besag & Green (1993).
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2.5.1 The Gibbs sampler

The Gibbs sampler is the simpler and most popular MCMC algorithm for Bayesian inference

when it comes to the sampling of multidimensional distributions. It is a special case of the

Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) initially used in sta-

tistical physics. The Gibbs sampler updates each component θj of the vector of variables

θ = (θ1, . . . , θd) using as a proposal distribution the associated full conditional distribution

π(θj | θ−j), where θ−j is the vector of parameters with the j–th component removed. This

makes the acceptance probability at each step equal to 1. In the statistics community, Gibbs

sampling has been used only after the work of Geman & Geman (1984) for analyzing Gibbs

distributions on lattices in the context of image processing.

More clearly, suppose that the unknown parameter is multidimensional θ = (θ1, . . . , θd), so

the target distribution is multivariate. The vector of parameters can be partitioned and written

as θ = (θ1, . . . , θk) where each θj , j = 1, . . . , k may be unidimensional or multidimensional so

that dim(θ1) + · · · dim(θk) = d. Consequently the target density can be written as π(θ1, . . . , θk).

The Gibbs sampler starts from an aribtrary point θ0 = (θ0
1, . . . , θ

0
k) and alternates updating the

comonents of θ by drawing from the relevant conditional distributions π(θj | θ−j), according to

the scheme presented in Algorithm 1 until the number of desired samples N .

Algorithm 1 : Gibbs sampling for multidimensional parameter.

1: procedure Sample θ = (θ1, . . . , θk).

2: Initiliaze the chain θ0 = (θ0
1, . . . , θ

0
k).

3: for i = 1 to N do

4: for j = 1 to k do

5: Sample θij ∼ π(θj | θi1, . . . , θij−1, θ
i−1
j+1, . . . , θ

i−1
k ).

6: end for

7: end for

8: end procedure

In its simplest form, it is assumed that the conditional distributions π(θj | θ−j) are of standard

form. Nevertheless if for some components the conditional distribution is unknown one can

use a Metropolis step to sample from the conditional of the particular component leading to a

Metropolis within Gibbs sampler. For an adaptive rejection Metropolis within Gibbs sampler

we refer to Gilks et al. (1995). Alternatively one can use slice sampling; an auxiliary variable

method to sample the components with nonstandard full conditionals, constructing embedded

Gibbs samplers and thus circumventing the Metropolis step. Auxiliary variable methods will be

analyzed later on in the text.

If some θj , 1 ≤ j ≤ k has dim(θj) ≥ 2 then the elements of θj are sampled simultaneously as

a block. If this is the case the Gibbs sampler is called a blocked Gibbs sampler. Note here that

having blocks in a Gibbs sampler, the Markov chain reaches the stationary distribution faster

but this comes at the expense of sampling from multivariate distributions.
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2.5.2 Auxiliary variable methods–Slice sampling

Whenever π, the target density or the full conditional of θj , in the Gibbs sampler is of a non

standard form, auxiliary variable methods (Damien et al., 1999) can be used to result in a Gibbs

sampler having a set of easily sampled standard full conditionals.

These methods augment the target density with a positive latent variable u constructing the

joint density of u and θ. This way, the marginal density for θ is given by π and the Gibbs sampler

is extended to include an extra full conditional for u.

Suppose that we wish to sample from a density π given by

π(θ) ∝ q(θ)f(θ), (2.21)

where q is a density of known form and f is a non–negative invertible function. With the

introduction of a latent variable u : Ω→ R+, the joint density can be written as

π(θ, u) ∝ q(θ)I(u < f(θ)). (2.22)

Marginalizing u from eq. (2.22) we get π(θ), thus, the augmentation is valid. The full conditional

for u is uniform U(0, f(θ)). The full conditional for θ is now a truncated version of q restricted

to the set

Au = {θ : u < f(θ)}. (2.23)

Below we provide a simple example to sample from a density with gaussian functional form.

Example 2.1. Suppose we want to sample from the density given by π(θ) ∝ exp{− τ
2θ

2}. We will

introduce an auxiliary random variable u such that the joint density is

π(θ, u) ∝ exp{−τ
2
u}I(u > θ2).

Clearly, integrating out u leads to original density π(θ). Now we have that the full condtionals are

given by

π(u | θ) ∝ exp{−τ
2
u}I(u > θ2) (2.24)

π(θ |u) ∝ I(u > θ2). (2.25)

where (2.24) is a truncated exponential density with rate τ/2 over the set (θ2,∞) easily sampled

and (2.25) is a uniform density over the interval (−
√
u,
√
u).

More examples for the usage of this method in fancy densities and applications in Bayesian

hierarchical models can be found in the work of Damien et al. (1999). Some algorithmic im-

provements and convergence results are presented in Mira (1998) and Neal (2003).
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2.6 MCMC for Bayesian nonparametric mixture models

In this section we review MCMC algorithm for posterior inference in Bayesian nonparametric

mixture models. The algorithms are based on slice sampling with auxiliary variables and belong

to the class of conditional samplers. In a conditional sampler, the random probability measure

that acts as a prior on the mixture parameters is imputed in the inferential procedure. Retaining

the random distribution is useful since it removes the dependence between the parameters

which exist in the marginal samplers (Neal, 2000) based on the Pólya–urn scheme.

In what follows we will consider a Bayesian nonparametric mixture model where the prior on

the mixing distribution is either a DP or a GSB process. That is, we have a Bayesian mixture

model

xi | θi
ind∼ K(xi | θi)

θi |G
iid∼ G

G ∼ Π,

where G is a random probability measure whose distribution Π is a DP or a GSB process. The

density for one observation xi reads

f(xi) := f(xi |G) =

∫
Θ
K(xi | θ)G(dθ) =

∞∑
k=1

wkK(xi | θk). (2.26)

Clearly, due to the infinite sum appearing in eq. (2.26) it is impossible to construct a Gibbs

sampler with a finite number of updates. However, with the introduction of auxiliary variables

a Gibbs sampler that needs only a finite number of summands can be devised. The main idea

is to augment the state space of the random densities appearing in eq. (2.26), associating with

each observation a clustering variable di and an almost surely finite random set Ai, the slice

set, such that the conditional distribution of xi given the slice set attains a discrete uniform

distribution

di |Ai ∼ DU(Ai).

The conditional density then becomes f(di = k |Ai) = |Ai|−1I(k ∈ Ai). For the clustering

variables, the marginal distribution is
∑

k≥1wkδk. Conditionally on the slice set Ai the density

of the observations becomes

f(xi |Ai) =
∞∑
k=1

f(xi, di = k |Ai)

=

∞∑
k=1

f(di = k |Ai)f(xi | di = k) =
∑
k∈Ai

1

|Ai|
K(xi | θk). (2.27)

Thus, with the introduction of strategic auxiliary random variables, the infinite sum becomes

an almost surely finite and equally weighted mixture as is shown in eq. (2.27). In the following

we present slice samplers in the case where Π is a DP or a GSB process.
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2.6.1 Slice sampling DPM models

In the DPM model the weights wk of the random distribution G are defined via the stick breaking

representation of Sethuraman (1994). So letting wk as in eq. (2.5) the DPM model in hierarchical

representation is

K(xi | θi)
ind∼ K(xi | θi)

θi |G
iid∼ G

G ∼ DP(c,H),

where G =
∑

k≥1wkδθj . The slice set depends on the sequence of weights w(∞)
through a

(random) slice variable u (Walker, 2007) such that

Ai = {k ∈ N : 0 < ui < wk}.

Conditionally on the slice set Ai it is that

f(di |Ai) = f(di = k |ui) =
I(ui < wk)∑∞
s=1 I(ui < ws)

=
wk U(0, wk)∑∞
s=1ws U(0, ws)

.

Therefore

ui |w ∼
∞∑
k=1

wk U(0, wk) and ui |w, di = k ∼ wk U(0, wk).

From the joint density

f(ui, di = k) = f(di = k)f(ui | di = k) = wk U(ui | 0, wk),

and the fact that f(xi | di = k) = K(xi | θk), the (ui, di)–augmented density is

f(xi, ui, di) = f(di = k)f(ui | di = k)f(xi | di = k)

= wk U(ui | 0, wk)K(xi | θk)

= I(ui < wk)K(xi | θk).

The full likelihood based on a sample of size n is given by

f(x(n), u(n), d(n) |w(∞), θ(∞)) =

n∏
i=1

I(ui < wdi)K(xi | θdi). (2.28)

The prior distribution on the mixture parameters is the distribution of the random probability

measureG that is Π(w(∞), θ(∞)).Multiplied with the likelihood, the posterior model for inference

is given by

Π(w(∞), θ(∞) |x(n), u(n), d(n)) ∝ Π(w(∞), θ(∞))

n∏
i=1

I(ui < wdi)K(xi | θdi). (2.29)
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Given the auxiliary variables u(n), d(n)
it is possible to construct a Gibbs sampler with finite

number of updates. At each sweep the latent variables (ui, di) will be updated as also the

parameters w(∞), θ(∞)
which are the quantities characterizing the density of interest. The

algorithmic steps of the Gibbs sampler are given below. Having initialized the di’s we sample

the parameters of interest for k = 1, . . . , d∗ where d∗ = maxi{di}.

1. The full conditional distribution of the locations is given by

Π(θk | · · · ) ∝ H(θk)
∏
di=k

K(xi | θk). (2.30)

If there is no di = k the θk ’s are sampled from the prior H.

2. The sampling of the zk ’s and the slice variables ui, 1 ≤ i ≤ n leading to a more efficient

implementation (Kalli et al., 2011) can be done as a block. The full conditional distribution for

the zk ’s is given by

Π(zk | · · · , exclude u) = Be

(
1 +

n∑
i=1

I(di = k), c+

n∑
i=1

I(di > k)

)
. (2.31)

Having sampled the zk ’s the stick breaking weights are constructed via eq. (2.5).

3. Proceed by sampling the {ui} which are uniform on the interval (0, wdi)

Π(ui | · · · ) ∝ I(ui < wdi). (2.32)

4. The sampling of the clustering variables is from the discrete distribution

Π(di | · · · ) ∝ K(xi | θdi)I(ui < wdi). (2.33)

In order to sample the di’s exactly the explicit construnction of the sets Ai = {k ∈ N : 0 < ui <

wk} is required. Let Ni = maxiAi. In order to be sure that we have all the weights and locations

for the algorithm to proceed we have to find for each i the smallest integer N such that

N∑
k=1

wk > 1− ui.

In fact we can be sure that we can sample all the di’s when there is no wk > ui. So if we let

u∗ = mini{ui} we have to compute the smallest integer N∗ such that

N∗∑
k=1

wk > 1− u∗.

The additional weights {wd∗+1, . . . , wN∗} and locations {θd∗+1, . . . , θN∗} are sampled from their

priors that is Be(1, c) and H respectively.
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It is worth noting here that the numberN∗ is a random variable distributed as 1+Poi(−c log u∗)

(Muliere & Tardella, 1998). To see this, note that N∗ is defined as

N∗ = inf{n ∈ N :

n∑
k=1

wk > 1− u∗}

= inf{n ∈ N : 1−
n∑
k=1

wk < u∗}

= inf{n ∈ N :
n∏
k=1

(1− zk) < u∗}.

Since zk ∼ Be(1, c) it follows that 1−zk ∼ Be(c, 1) which implies that − log(1−zk) ∼ E(c) where

E(c) stands for the exponential distribution with rate c. Taking the quantity − log
∏n
k=1(1− zk),

it is that

− log
n∏
k=1

(1− zk) = −
n∑
k=1

log(1− zk),

which is the sum of n exponential random variables with rate c. Thus N∗ − 1 is the number of

events of a Poisson process with mean c arriving at time − log u∗.

5. Having updated the mixture allocation variables we proceed to the sampling of the con-

centration parameter c of the Dirichlet process. Following West (1992), we let κ to denote the

number of unique labels of the clustering variables, that is κ ∈ {1, . . . , n}. Then a sample for c

can be obtained as follows

i. Sample s ∼ Be(n+ 1, c) and then

ii. c | s, κ ∼ ρc G(α+ κ, β − log s) + (1− ρc)G(α+ κ− 1, β − log s),

whith the weights ρc satisfying
ρc

1−ρc = α+κ−1
n(β−log s) .

6. For density estimation purposes we have to sample from the predictive distributions given

by

Π(dxn+1 | · · · ) =

∫
PX

Π(dxn+1 |G)Π(dG |x1, . . . , xn). (2.34)

At each iteration of the Gibbs sampler we have points generated by the posterior random mea-

sure G |x1, . . . , xn. These points are represented, at each iteration, by the posterior weights and

locations (w∗, θ∗). Given those points we have to sample xn+1 from

xn+1 ∼
∞∑
k=1

w∗kK( · | θ∗k). (2.35)

We can estimate the density f by sampling a xn+1 given the current selection of parameters

at each iteration of the Gibbs sampler. We sample the location θ∗n+1 = θ∗k using the weights.

Generating a uniform u over the unit interval we take that θ∗k for which
∑k−1

j=1 wj < u <
∑k

j=1 .

Even though we have not sampled all the weights, if we “run out” of weights we merely take the

θ∗n+1 from the prior. Finally the predictive x value comes from K( · | θ∗n+1).
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2.6.2 Geometric slice sampling GSBM models

The idea behind the definiton of the geometric stick breaking mixture model (Fuentes-García

et al., 2010) which can be represented in a hierarchical fashion as

K(xi | θi)
ind∼ K(xi | θi)

θi |G
iid∼ G

G ∼ GSB(λ,H),

where G =
∑

k≥1wkδθj and wk = λ(1−λ)k−1
i.e. the geometric weights, is to construct a simple

Gibbs sampler such that the slice sets don’t need to have gaps. In contrast they are sequential.

In GSBM mixture models, to overcome the difficulties with the infinite mixture an auxiliary

discrete random variable Ni is introduced for each observation, such that conditionally on Ni

the clustering variable di will be a choice of the geometric slice set

Bi = {1, . . . , Ni}.

The random variable Ni is almost surely finite with distribution fN that possibly depends on

parameters. Then, given Ni the clustering variable attains a discrete uniform distribution over

the elements of Bi

f(di = k |Ni = l) = f(di = k |Bi) =
I(k ∈ Bi)∑∞
s=1 I(s ∈ Bi)

= l−1I(k ≤ l).

The (di, Ni)–augmented density becomes

f(xi, di = k,Ni = l) = fN (Ni = l)f(di = k |Ni = l)f(xi | di = k)

= fN (Ni = l)l−1I(k ≤ l)K(xi | θk). (2.36)

Now it is the weights that depend on the choice of the masses fN . Marginalizing the random

density in eq. (2.36) with respect to (Ni, di), we obtain

f(xi) =

∞∑
k=1

∞∑
l=k

fN (Ni = l)l−1K(xi | θk) =

∞∑
k=1

wkK(xi | θk),

with wk =
∑∞

l=k l
−1fN (Ni = l). It is known (Fuentes-García et al., 2010) that in the particular

case where the masses of Ni’s are coming from the negative binomial distribution

NB(l | 2, λ) = lλ2(1− λ)l−1I(l ≥ 1),

the weights wk for k ≥ 1 have the form:

wk = NB(k | 1, λ) = λ(1− λ)k−1. (2.37)



40 Chapter 2. Bayesian nonparametric models

Thus we recover a geometric stick breaking mixture model meaning that the augmentation is

valid. Substituting in eq. (2.36) fN (Ni = l) = NB(2, λ) the likelihood based on a sample of size

n coming from f is

f(x(n), N (n), d(n)) =

n∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni)K(xi | θdi). (2.38)

Multiplying the likelihood with the prior Π(w(∞), θ(∞)) the posterior distribution is

Π(w(∞), θ(∞), N (n), d(n) |x(n)) ∝ Π(w(∞), θ(∞))
n∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni)K(xi | θdi). (2.39)

Below we provide the Gibbs sampling algorithmic steps for posterior inference. Having initialized

the d(n), N (n)
we sample the parameters of interest for k = 1, . . . , N∗ where N∗ = maxi{Ni}.

1. The full conditional for the geometric probability λ is under the Beta conjugate prior

Π(λ | · · · ) =

{
n∏
i=1

λ2(1− λ)Ni−1

}
λα−1(1− λ)β−1 = Be

(
α+ 2n, β +

n∑
i=1

Ni − n

)
. (2.40)

Having updated λ, we construct the geometric weights wk for 1 ≤ j ≤ N∗ via eq. (2.37).

2. The full conditional distribution of the locations is given by

Π(θk | · · · ) ∝ H(θk)
∏
di=k

K(xi | θk). (2.41)

If there is no di = k the θk ’s are sampled from the prior H.

3. We then sample the infinite mixture allocation variables di for i = 1, . . . , n. It is that

Π(di = k | · · · ) ∝ K(xi | θk)I(k ≤ Ni). (2.42)

4. Next, to construct the sequential slice sets Ai for 1 ≤ i ≤ nT we have to sample Ni from

Π(Ni = l | di = k, · · · ) ∝ (1− p)l I(l ≥ k), (2.43)

which is a truncated geometric distribution over the set {k, k + 1, . . .}.

5. The density estimation step can be done in a similar manner with the estimation step 6. for

the DPM model. We sample xn+1 from eqs. (2.34) and (2.35).

As we will see in Chapter 4 these algorithms can be adopted for posterior inference in the

case of dependent nonparametric priors when DP or GSB measures are used for the modeling

of dependent random density functions. For the HDP and its extension the basic method for

inference relies on the Polya urn representation i.e. marginal samplers but recently, distributed

slice sampling algorithms (Ge et al., 2015) have been also proposed.
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Chapter 3

Bayesian Nonparametric

Reconstruction Models

3.1 Introduction

This chapter is devoted to Bayesian nonparametric models for reconstruction and prediction of

random dynamical systems. In section 3.2 we formulate the model under the assumption that

the noise density is a mixture of a parametric family with mixing measure, a general discrete

random distribution.

In section 3.3 we show how the augmentation of the densities with non–sequential slice sets

enables the Dirichlet Process Reconstruction (DPR) model first introduced in Hatjispyros et al.

(2009). We extend the DPR model to a fully stochastic version namely the randomized Dirichlet

Process Reconstruction (rDPR) model randomizing the concentration parameter of the associ-

ated DP measure. We also propose an antelrnative augmentation scheme for the nonstandard

part, avoiding the representation of normal transition density of the observations as a Gamma

mixture of uniforms.

Augmenting with auxiliary random variables which force the associated slice sets to have no–

gaps, in section 3.4 we introduce the Geometric Stick–Breaking Reconstruction (GSBR) model

proposed in Merkatas et al. (2017). In section 3.5 the perfomance of our GSBR model against

the DPR model in simulated examples in reconstruction and prediction problems of chaotic

time series generated by a cubic map is illustrated. To demonstrate the need for nonparametric

models, we compare the nonparametric models with a simple parametric Gibbs sampler that

assumes Gaussian noise. Finally, the chapter ends with some comments on the methods and

directions for future research.

3.2 Building the inferential models

We consider the following random dynamical model given by

xi = T (ϑ, xi−1, zi) = g(ϑ, xi−1) + zi, i ≥ 1, (3.1)



42 Chapter 3. Bayesian Nonparametric Reconstruction Models

where g : Θ × X → X, for some compact subset X of R, (xi)i≥0 and (zi)i≥1 are real random

variables over some probability space (Ω,F , P ); the set Θ denotes the parameter space and g

is nonlinear, and for simplicity, continuous in xi−1. We assume that the random variables zi

are independent to each other, and independent of the states xi.

In addition we assume that the additive perturbations zi are identically distributed from a zero

mean distribution with unknown density f defined over the real line, so that T : Θ×X×R→ R.

We assume that there is no observational noise, so that we have at our disposal a time series

x(n) = (x1, . . . , xn) generated by the Markovian process defined in eq. (3.1). The time series x(n)

depends solely on the initial distribution of x0, the vector of parameters ϑ, and the particular

realization of the noise process.

We model the errors in recurrence eq. (3.1) as a mixture of normal kernels of the formN (x | 0, τ−1)

with mean zero and precision τ and mixing measure, a general discrete random distribution

G =
∑

j≥1 πj δτj ; then letting τ = (τj)j≥1 and π = (πj)j≥1 we have

fπ,τ (x) =

∫
τ>0
N (x | 0, τ−1)G(dτ) =

∞∑
j=1

πj N (x | 0, τ−1
j ).

For the observations (x(n) |x0) and for 1 ≤ i ≤ n we have the transition kernel

fπ,τ (xi |xi−1, ϑ) =
∞∑
j=1

πj N (xi | g(ϑ, xi−1), τ−1
j ), 1 ≤ i ≤ n, (3.2)

and associated data likelihood

fπ,τ (x1, . . . , xn |x0, ϑ) =
n∏
i=1

∞∑
j=1

πj N (xi | g(ϑ, xi−1), τ−1
j ). (3.3)

As it has been pointed out in Hatjispyros et al. (2009), a straightforward application of Gibbs

sampling ideas, for sampling from the posterior distribution f(ϑ, x0 |x1, . . . , xn), is not possible

due to the following two facts:

1. We have to sample from a mixture with an infinite number of components.

2. Full conditionals are of non-standard form.

For example, after assigning to the initial condition x0 a uniform prior over the compact set X,

the full conditional for x0 reads

fπ,τ (x0 | · · · ) ∝
∞∑
j=1

πj

{
I(x0 ∈ X)N (x1 | g(ϑ, x0), τ−1

j )
}
,

where I(x0 ∈ X) is the indicator function which equals 1 whenever x0 is in the set X and 0

otherwise. Then the full conditional for x0, whenever g is nonlinear in x0, is an infinite mixture

of truncated non-standard densities.
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3.2.1 Dynamical Slice Sets

Due to the infinite mixture appearing in the product of the likelihood in the equation above, we

are not able to construct Gibbs samplers of finite dimensions.

To make the number of variables that we have to sample finite, we use slice sampling techniques

for infinite mixtures. For each observation xi, we introduce the pair (di,Ai). The di are the

clustering variables and indicate the component of the infinite mixture the observation xi came

from. The set Ai is the associated random slice set and is an almost surely finite set of indices.

Notice, that, marginally, di |π ∼
∑

j≥1 πjδj and the variables di have an infinite state space.

Our aim is to have xi | τ,Ai coming from a finite mixture of normal kernels. Letting the random

variable di conditionally on the event {di ∈ Ai} attain a discrete uniform distribution, over Ai;
that is

f(di |Ai) = |Ai|−1I(j ∈ Ai),

we obtain

fτ (xi |Ai) =

∞∑
j=1

f(xi, di = j |Ai)

=
∞∑
j=1

f(di = j |Ai)fτ (xi | di = j) =
∑
j∈Ai

|Ai|−1N (xi | 0, τ−1
j ).

where |Ai| denotes the cardinality of the set Ai. Thus, given the precisions τ and the slice set

Ai, the observation xi comes from an equally weighted almost surely finite mixture of normal

kernels.

Selecting specific forms for the slice sets, we can obtain different reconstruction models. In the

following two sections we select Ai in such way that allows us to recover the DPR and the GSBR

models respectively.

3.3 Dirichlet process reconstruction model

The DPR model is obtained as a special case of the general reconstruction model if we define

the slice sets to be non–sequential. That is, we assign to each observation xi a slice set that

depends on the weights π via a random variable ui such that

fπ(di = j |ui) = f(di = j |Ai) with Ai = {j ∈ N : 0 < ui < πj},

as proposed in the slice sampler for the DPM model by Walker (2007) and

fπ(di = j |ui) =
I(j ∈ Ai)∑∞
s=1 I(s ∈ Ai)

=
I(ui < πj)∑∞
s=1 I(ui < πs)

=
πj U(ui | 0, πj)∑∞
s=1 πs U(ui | 0, πs)

,
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where U(x | a, b) is the uniform density over the interval (a, b). Therefore

ui |π ∼
∞∑
j=1

πj U(0, πj) and ui |π, di = j ∼ U(0, πj),

and from the joint fπ(ui, di = j) = πj U(ui | 0, πj) and the fact that given a particular value for

di we have f(xi | di = j) = N (xi | 0, τ−1
j ) we obtain the augmented random densities

fπ,τ (xi, ui, di = j) = πj U(ui | 0, πj)N (xi | 0, τ−1
j ). (3.4)

From eqs. (3.2) and (3.4) and letting πj = wj , where wj are the weights in the stick breaking

representation of the Dirichlet process, that is w1 = z1 and for j > 1 :

wj = zj
∏
s<j

(1− zs), (3.5)

with zj drawn i.i.d. from the beta distribution Be(1, c) for some c > 0, we have

fw,τ (xi, ui, di = j |xi−1, ϑ) = wj U(ui | 0, wj)N (xi | g(ϑ, xi−1), τ−1
j ). (3.6)

In a hierarchical fashion using the slice variables ui and the stick-breaking representation we

have for i = 1, . . . , n and j ≥ 1:

(xi |xi−1, di = j, θ, τ)
ind∼ N (xi | g(ϑ, xi−1), τ−1

j )

(ui | di = j, w)
ind∼ U(0, wj)

Pr(di = j |w) = wj

wj = zj
∏
s<j(1− zs), zj

iid∼ Be(1, c)

c ∼ G(α, β), τj
iid∼ P0.

Then given ϑ, x0 and c the data likelihood based on a sample of size n is given by

fw,τ (xi, ui, di; 1 ≤ i ≤ n |ϑ, x0, c) ∝
n∏
i=1

I(ui < wdi) τ
1/2
di

× exp
{
−τdi

2
hϑ(xi, xi−1)

}
, (3.7)

where hϑ(xi, xi−1) = (xi − g(ϑ, xi−1))2
.

Note that in eq. (3.7) the problem with the infinite mixture has been eliminated. The DPR model

described here, slightly differs from the model introduced by Hatjispyros et al. (2009). First of

all, we let the concentration parameter to be random in contrast with Hatjispyros et al. (2009).

The second, and more important, modification is that we do not make the same effort with the

nonlinear form of the means of the normal distributions appearing in eq. (3.7).
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In their approach the problem with nonlinear map has been dealt with the introduction of an

auxiliary variable vi for each observation xi for 1 ≤ i ≤ nT defined as

vj | τj
ind∼ G(3/2, τj/2),

xi |xi−1, vi, θ
ind∼ U(g(ϑ, xi−1)−

√
vi, g(ϑ, xi−1) +

√
vi),

they wrote the normal distribution as a gamma mixture of uniforms, resulting to the following

likelihood for the DPR model:

fw,τ (xi, ui, di, vi; 1 ≤ i ≤ n |ϑ, x0, c) ∝
n∏
i=1

I(ui < wdi) τ
3/2
di

× e−
viτdi

2 I(vi > hϑ(xi, xi−1)).

This approach has the advantage that all the distributions, which have to be sampled, are

essentially mixtures of uniforms. This may lead though to bigger execution times if the sample

size of the time series is large because the sampler has to sweep at each iteration over all the

auxiliary variables vi. As we will see later, the problem with nonlinear map can be solved with

embedded Gibbs samplers augmenting the state space with a number of variables equal to

the length of the vector parameter ϑ which usually, in applications, is much smaller than the

sample size.

3.3.1 Extending the DPR model for prediction

In this section we describe how the DPR model can be extended for prediction purposes. In

this case the problem is defined as follows. Given an observed time series x(n) = (x1, . . . , xn),

and a prediction horizon T > n, the aim of prediction is to obtain an estimate of the future

unobserved values (xn+1, . . . , xn+T ).

Letting nT = n + T, we can extend the DPR model for prediction with the introduction of the

random variables (xn+1, . . . , xn+T ), and obtain the likelihood

f(xi, ui, di ; 1 ≤ i ≤ nT |ϑ, x0, c) ∝
nT∏
i=1

I(ui < wdi)τ
1/2
di

× exp
{
−τdi

2
hϑ(xi, xi−1)

}
. (3.8)

In the Bayesian setting, prior distributions for these parameters must be assigned and the

estimators are taken from their posterior distribution. In the next section we describe an

MCMC based algorithm for the randomized DPR model. The corresponding prior distributions

for the future unoberved values will be set constant, that is

π(xn+i) ∝ 1, i = 1, . . . , T.
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3.3.2 Slice sampler for the rDPR model

In this section we describe an MCMC algorithm for estimating the model based on slice sam-

pling. Specifically we are interested in the variables (x0, ϑ) and the future unobserved values

of xn+1, . . . , xn+T . We complete the model by assigning uniform priors on the parameters of

interest.

In particular for the initial condition x0 we assign a uniform prior distribution over the set

X̃ ⊆ R, which represents our prior knowledge for the state space of the dynamical model given

in eq. (3.1). Over the vector control parameters of the system ϑ we assume a uniform prior

over the set Θ̃ of the parameter space Rk. For the Dirichlet random measure P ∼ DP(c, P0),

we assume for the base measure a Gamma distribution, namely P0(dτ) = G(τ | a, b)dτ. Finally,

the concentration parameter c attains a Gamma prior G(α, β), and will be updated with the

standard sampling scheme proposed by West (1992).

After initializing the variables di for i = 1, . . . , nT and the variables c, x0 and ϑ, at each iteration,

we will sample the variables:

(τj), 1 ≤ j ≤ N∗, di, 1 ≤ i ≤ nT ,

and

(ϑ, x0, c, znT+1),

with N = max1≤i≤nT di.

1. At first, given the clustering variables di, i = 1, . . . , nT , we update the stick–breaking weights.

We update the zj–s from

f(zj | · · · ) = Be

(
1 +

nT∑
i=1

I(di = j), c+

nT∑
i=1

I(di > j)

)
, (3.9)

for 1 ≤ j ≤ N. Then the updated weights (wj)j≥1 are constructed via the stick–breaking

representation.

2. Having the updated weights we can proceed to the sampling of the slice variables ui, for

i = 1, . . . , nT which are uniform distributions on the interval (0, wdi), namely

f(ui | · · · ) ∝ I(ui < wdi). (3.10)

3. We then sample the precisions τj for j = 1, . . . , N and N = max1≤i≤nT di. We have that

f(τj | · · · ) = G

(
a+

1

2

nT∑
i=1

I(di = j), b+
1

2

nT∑
i=1

I(di = j)hϑ(xi, xi−1)

)
, (3.11)

If j > N we sample the additional τj ’s from the prior G(a, b). In the next step of the algorithm,

the additional number of weights and precisions is obtained.
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4. The additional number of weights and precision can be found by letting u∗ = min1≤i≤nT {ui}
and find the smallest integer N∗ for which

N∗∑
j=1

wj > 1− u∗. (3.12)

This is necessary in order to sample the mixture allocation variables exactly (See step (4) in

section 2.6.1).

5. We then sample the infinite mixture allocation variables di for i = 1, . . . , nT . It is that

Pr(di = j | · · · ) ∝ τ
1/2
j exp

{
−τj

2
hϑ(xi, xi−1)

}
I(j ∈ Ai). (3.13)

6. Having updated the mixture allocation variables we proceed to the sampling of the con-

centration parameter c of the Dirichlet process. Following West (1992), we let κ to denote the

number of unique labels of the clustering variables, that is κ ∈ {1, . . . , nT }. Then a sample for

c can be obtained as follows

i. Sample s ∼ Be(nT + 1, c) and then

ii. c | s, κ ∼ ρc G(α+ κ, β − log c) + (1− ρc)G(α+ κ− 1, β − log c),

whith the weights ρc satisfying
ρc

1−ρc = α+κ−1
nT (β−log c) .

7. We are now ready to sample zn+1 from the noise predictive f(zn+1 |x1, . . . , xn). At each

iteration of the Gibbs sampler we have updated weights (πj)1≤j≤N∗ and precisions (τj)1≤j≤N∗

and we sample independently ρ ∼ U(0, 1). Then we take the τj with 1 ≤ j ≤ N∗ satisfying

j−1∑
i=0

πi < ρ ≤
j∑
i=0

πi, π0 = 0.

If ρ >
∑N∗

i=0 πi, we sample τj from the prior G(a, b). In any case we sample zn+1 from the normal

kernel N (0, τ−1
j ).

8. The full conditional for x0, will be

f(x0 | · · · ) ∝ I(x0 ∈ X̃) exp
{
−τd1

2
hϑ(x1, x0)

}
. (3.14)

9. For the vector of parameters ϑ, the full conditional becomes

f(ϑ | · · · ) ∝ I(ϑ ∈ Θ̃) exp

{
−1

2

nT∑
i=1

τdihϑ(xi, xi−1)

}
. (3.15)
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10. The full conditional densities for the future unobserved observations, when T ≥ 2 and for

j = 1, . . . , T − 1, are given by

f(xn+j | · · · ) ∝ exp

{
−1

2

[
τdn+jhϑ(xn+j , xn+j−1) + τdn+j+1

hϑ(xn+j+1, xn+j)
]}

. (3.16)

For j = T the full conditional is normal with mean g(ϑ, xn+T−1) and variance τ−1
dn+T

, that is

f(xn+T | · · · ) = N
(
xn+T | g(ϑ, xn+T−1), τ−1

dn+T

)
. (3.17)

3.4 Geometric stick–breaking reconstruction model

The GSBR model is derived from the generic reconstruction model if we use sequential slice

sets of the form Ai = {1, . . . , Ni}, as proposed in Fuentes-García et al. (2010). Then the cluster

allocation variables given the Ni attain a discrete uniform distribution over the elements of Ai,
that is

f(di = j |Ni) = f(di = j |Ai) with Ai = {1, . . . , Ni},

and

f(di = j |Ni = r) =
I(j ∈ Ai)∑∞
s=1 I(s ∈ Ai)

=
1

l
I(j ≤ l),

and Ni is an almost surely finite discrete random variable of mass fN , that possibly depends

on parameters. In this case, from the joint

fπ(di = j,Ni = r) = fN (Ni = r)f(di = j |Ni = r)

= fN (Ni = r) r−1I(j ≤ r) (3.18)

and the fact that f(xi | di = j) = N (xi | 0, τ−1
j ), the (di, Ni) augmented densities become

fτ (xi, Ni = r, di = j) = fN (Ni = r) r−1 I(j ≤ r)N (xi | 0, τ−1
j ). (3.19)

Now it is the weights that depend on the choice of the masses fN . Marginalizing the random

density in eq. (3.19) with respect to (Ni, di), we obtain

fτ (xi) =

∞∑
j=1

πj N (xi | 0, τ−1
j ), with, πj =

∞∑
r=j

r−1fN (Ni = r).

It is known (Fuentes-García et al., 2010) that, in the particular case where the masses of Ni’s

are coming from the negative binomial distribution with state space {1, 2, . . .}, namely

NB(r | 2, λ) = rλ2(1− λ)r−1I(r ≥ 1),

the weights πj for j ≥ 1 have the form:

πj = NB(j | 1, λ) = λ(1− λ)j−1. (3.20)
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Note that the randomness included in the infinite number of weigths in the DPR model is

now replaced by only one random variable λ ∼ Be(a, b). It is the decreasing nature of the

geometric weights that will lead to simpler Gibbs samplers than the associated sampler of the

DP counterpart model described in the previous section. Having the weights ordered, it is not

necessary to perform a complete search in the vector where the weights are stored and thus the

execution time of the GSBR model is, as we will see, smaller.

In order to make the geometric slice sampling steps described in the next section clearer, as

well as the dependencies, we write the model in a hierarchical fashion. Using the slice variables

Ni we have for i = 1, . . . , n and j ≥ 1:

(xi |xi−1, θ, di = j, τ)
ind∼ N (xi | g(ϑ, xi−1), τ−1

j )

(di |Ni = r)
ind∼ DU{1, . . . , r}

πj = NB(j | 1, λ), Ni
iid∼ NB(2, λ)

τj
iid∼ P0,

where DU{1, . . . , r} denotes the discrete uniform mass over the set {1, . . . , r}. Therefore, the

data likelihood based on a sample of size n, given ϑ, x0 and λ is seen to be

fτ (xi, Ni, di; 1 ≤ i ≤ n |ϑ, x0, λ) ∝
n∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni) τ
1/2
di

× exp
{
−τdi

2
hϑ(xi, xi−1)

}
. (3.21)

3.4.1 Extending the GSBR model for prediction

In a similar way, we can extend the GSBR model as we have done with the DPR model. After the

introduction of the additional random variables (xn+1, . . . , xn+T ), the likelihood of the GSBR

model for prediction becomes

f(xi, di, Ni ; 1 ≤ i ≤ nT |ϑ, x0, λ) ∝
nT∏
i=1

λ2(1− λ)Ni−1I(di ≤ Ni) τ
1/2
di

× exp
{
−τdi

2
hϑ(xi, xi−1)

}
. (3.22)

For the associated slice sampler which is now described in section 3.4.2 we set the prior distri-

butions for the future unobserved values to be constant

π(xn+i) ∝ 1, i = 1, . . . , T.

3.4.2 Slice sampler for the GSBR model

In this section, we describe the MCMC algorithm based on slice sampling for inference with the

GSBR model. We set as a base measure of the GSB process P, a Gamma distribution, that
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is P0(dτ) = G(τ | a, b)dτ, and the geometric probability attains a Beta conjugate prior, that is

λ ∼ Be(α, β).

Having completed the model, we are now ready to describe the Gibbs sampler and the full

conditional densities for estimating the GSBR model. After initializing the variables di, Ni for

i = 1, . . . , nT and the variables λ, x0 and ϑ, at each iteration we will sample the variables:

(τj), 1 ≤ j ≤ N∗, (di, Ni), 1 ≤ i ≤ nT ,

and

(ϑ, x0, λ, znT+1),

with N∗ = max1≤i≤nT Ni.

1. The full conditional for the geometric probability λ is under the Beta conjugate prior

f(λ | · · · ) = Be

(
α+ 2nT , β +

nT∑
i=1

Ni − nT

)
, (3.23)

Having updated λ, we construct the geometric weights πj for 1 ≤ j ≤ N∗ via eq. (3.20).

3. We then sample the precisions τj for j = 1, . . . , N∗ and N∗ = max1≤i≤nT Ni. We have that

f(τj | · · · ) = G

(
a+

1

2

nT∑
i=1

I(di = j), b+
1

2

nT∑
i=1

I(di = j)hϑ(xi, xi−1)

)
, (3.24)

where the expression f(τj | · · · ) denotes the density of τj conditional on the rest of the variables.

4. We then sample the infinite mixture allocation variables di for i = 1, . . . , nT . It is that

Pr(di = j |Ni, · · · ) ∝ τ
1/2
j exp

{
−τj

2
hϑ(xi, xi−1)

}
I(j ≤ Ni). (3.25)

5. Next, to construct the sequential slice sets Ai for 1 ≤ i ≤ nT we have to sample Ni from

Pr(Ni = r | di = j, · · · ) ∝ (1− λ)r I(j ≤ r), (3.26)

which is a truncated geometric distribution over the set {j, j + 1, . . .}.

6. In this step sample zn+1 from the noise predictive f(zn+1 |x1, . . . , xn). At each iteration

of the Gibbs sampler, we have updated weights (πj)1≤j≤N∗ and precisions (τj)1≤j≤N∗ and we

sample independently ρ ∼ U(0, 1). Then we take the τj with 1 ≤ j ≤ N∗ satisfying

j−1∑
i=0

πi < ρ ≤
j∑
i=0

πi, π0 = 0.

If ρ >
∑N∗

i=0 πi, we sample τj from the prior G(a, b). In any case we sample zn+1 from the normal

kernel N (0, τ−1
j ).
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7. The full conditional for x0, with a uniform prior over the set X̃ ⊆ R that represents our prior

knowledge for the state space of the dynamical system in eq. (3.1) will be

f(x0 | · · · ) ∝ I(x0 ∈ X̃) exp
{
−τd1

2
hϑ(x1, x0)

}
. (3.27)

8. For the vector of parameters ϑ, and assuming a uniform prior over the subset Θ̃ of the

parameter space Rk, the full conditional becomes

f(ϑ | · · · ) ∝ I(θ ∈ Θ̃) exp

{
−1

2

nT∑
i=1

τdihϑ(xi, xi−1)

}
. (3.28)

9. The full conditional densities for the future unobserved observations, when T ≥ 2 and for

j = 1, . . . , T − 1, are given by

f(xn+j | · · · ) ∝ exp

{
−1

2

[
τdn+jhϑ(xn+j , xn+j−1) + τdn+j+1

hϑ(xn+j+1, xn+j)
]}

. (3.29)

For j = T the full conditional is normal with mean g(ϑ, xn+T−1) and variance τ−1
dn+T

, that is

f(xn+T | · · · ) = N
(
xn+T | g(ϑ, xn+T−1), τ−1

dn+T

)
. (3.30)

Note that, here, we have set a Beta prior over the geometric probability, that is λ ∼ Be(α, β),

leading to a conjugate posterior full conditional for λ.We refer to the above sampler as conjugate

GSBR sampler. In the next section where we attempt to compare the performance of the two

models, it is reasonable to “synchronize” their prior specifications.

For the purposes of prior synchronization we will not use the conjugate GSBR sampler but a

slight modification of it. Instead of setting a Beta prior on the geometric probability, we assign

a transformed gamma prior over the geometric probability λ via λ = (1 + c)−1
. So as a prior

over λ we set

f(λ) = T G(λ |α, β) =
βαeβ

Γ(α)
λ−(α+1)e−β/λ(1− λ)α−1, (3.31)

with λ ∈ (0, 1).

Taking into consideration relation (3.31), the full conditional for the geometric probability λ in

step 1. of the conjugate GSBR sampler is now

f(λ | · · · ) ∝ λ2nT−α−1 (1− λ)LnT e−β/λ I(0 < λ < 1), (3.32)

where LnT = α+
∑nT

i=1Ni − nT − 1.

Details on sampling efficiently, via embedded Gibbs samplers, the nonstandard densities arising

in eqs. (3.14) to (3.17), eqs. (3.27) to (3.30) as well as for the transformed posterior of the

geometric propability λ given in eq. (3.32), are provided in Appendices A.1 and A.2. We thus

circumvent Metropolis–within–Gibbs implementations.
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3.5 Simulation results

Having described the two dynamical reconstruction models, in this section we compare the

performance of the proposed GSBR model using as a benchmark the rDPR model. Our findings

are that the GSBR models are more amenable to dynamical reconstruction purposes; they are

as accurate as the rDPR models, they give smaller execution times and are less complicated

and thus easier to implement.

In all the examples, we also compare the results with the results obtained from a parametric

reconstruction and prediction Gibbs sampler, that is, assuming just Gaussian noise. We refer

to this model as Param in the tables. As a measure for the accuracy, we use the Percentage

Absolute Relative Error (PARE) given by the quantity PARE = 100×|x−x∗|/|x|, where x and x∗

are the true and estimated values of the quantities of interest respectively.

3.5.1 Experimental setup

Dynamical behavior of the cubic map: Quadratic polynomial maps, can exhibit for each

parameter value at most one stable attractor. Multistability and coexistence of more than one

strange attractors can be achieved under higher degree polynomial maps (Kraut et al., 1999).

We will generate observations from a cubic random map with a deterministic part given by

g̃(ϑ∗, x) = 0.05 + ϑ∗x− 0.99x3. (3.33)

When ϑ∗ ∈ [ϑ, ϑ ] with ϑ = −0.04 and ϑ = 2.81 the dynamics of g̃, starting from x0 = 1,

are bounded. The map becomes bistable in the regions under the extrema of (3.33) when

ϑ∗ ∈ Θbi = [ϑbi, ϑbi] with ϑbi = 1.27 and ϑbi = 2.54. In the phase space of the map we can

identify two mutually exclusive period-doubling cascades together with two mutually exclusive

basins of attraction. The dynamical behavior of the cubic map in eq. (3.33) can be depicted via

the bifurcation diagram given in Figure 3.1. The two coexisting attracting sets for ϑ∗ ∈ Θbi are

O+
(in blue) and O− (in green).

For values of ϑ∗ slightly larger than 2.54, the set O+
undergoes a sudden change. It becomes

repelling, and all orbits are attracted by the “lower” set O−. The same behavior can be observed

for all ϑ∗ ∈ (2.54, 2.65]. Nevertheless, orbits in the presence of dynamical noise of sufficient

intensity, visit the vicinity of the repelling set O+
, ad infinitum. For values of ϑ∗ greater than

2.65, there is only one stable attractor.
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Figure 3.1: The bifurcation diagram for the deterministic map xi = g(ϑ∗, xi−1).

In Figure 3.2, we set the value of the control parameter to ϑ∗ = 2.55 (the value of the control

parameter we have used in our numerical experiments) and we superimpose two deterministic

and one f2,4-perturbed stochastic orbit. The two deterministic orbits, starting from x0 = 1 and

x0 = −1, are depicted in blue and green respectively, whereas the stochastic, starting from

x0 = 1, in red.
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Figure 3.2: The orbits of the the deterministic map xi = g(ϑ∗, xi−1), with ϑ∗ = 2.55, starting from

x0 = 1 and x0 = −1 are depicted in blue and green respectively. A dynamically f2,4-perturbed orbit,

starting from x0 = 1, is given in red.

Noise processes: We illustrate the GSBR and rDPR models with simulated data sets, consisting

of observations generated from the cubic random recurrence xi = g̃(ϑ∗, xi−1)+zi, for the specific

parameter value ϑ∗ = 2.55 and initial condition x0 = 1. The dynamical noise zi was sampled

from:

1. The equally weighted normal 4-mixture

f1 =

3∑
r=0

1

4
N
(
0, (5r + 1)σ2

)
, σ = 10−2. (3.34)

2. The normal 2-mixtures, which exhibit progressively heavier tails for 1 ≤ l ≤ 4

f2,l =
5 + l

10
N (0, σ2) +

5− l
10
N
(
0, (200σ)2

)
, σ = 10−3. (3.35)
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As a measure of the tail fatness of the density z ∼ f , we use the mean absolute deviation from

the mean normalized by the standard deviation, for a zero mean z it is that TFf = E|z|/
√
E|z|2.

The closer TFf is to 1, the thinner the tails are. It can be verified numerically that

TFf1 > TFf2,1 > · · · > TFf2,4 .

We model the deterministic part g(ϑ, x) of the map in eq. (3.1) with a polynomial in x of degree

m = 5.

Prior specifications: Here we define the synchronized prior specifications of the GSBR and

rDPR Gibbs samplers. We use the following general prior set up:

c ∼ G(α, β), λ ∼ T G(α, β), {τj ∼ G(a, b) : j ≥ 1}

ϑ ∼ U((−M,M)k+1), x0 ∼ U(−M0,M0),

where k is the degree of the modeling polynomial.

A. Noninformative reconstruction and prediction – NRP: In the absence of any prior knowl-

edge, we propose a noninformative prior specification for simultaneous reconstruction and

prediction, namely

PSNRP : α = β ≥ 10−1, a = b ≥ 10−4, M � 1, M0 � 1.

B. Informative reconstruction and prediction – IRP: When a–priori we believe that the dy-

namical noise resembles a finite mixture of zero mean Gaussians with variances that are close

to each other, we set:

PSIRP : α > β ≥ 10−1, a > b ≥ 10−4, M � 1, M0 � 1.

Such prior specifications induce a small average GSB probability λ (and consequently a large

average DP concentration mass c), forcing the Gibbs samplers to activate a large number of

normal kernels. Thus, generating a more detailed Gaussian mixture representation of the

unknown dynamical noise.

Data sets and invariant sets: In Figure 3.3(a), we display the deterministic orbit of length 280

of the deterministic map yi = g̃(ϑ∗, yi−1), with starting point at y0 = 1. We have approximated

the interval X that remains invariant under the action of g̃(ϑ∗, · ) by [−1.8881, 1, 8991] (see Ap-

pendix B), and the associated average characteristic Liapunov exponent by 0.4625. Realizations

of the random recurrence xi = g̃(ϑ∗, xi−1) + zi, x0 = 1 under different types of noise are given

in Figure 3.3(b) and (c) respectively.

Our observations for reconstruction and out–of–sample prediction will be the data sets x
(200)
f1

and {x(200)
f2,l

: 1 ≤ l ≤ 4}. The latter data sets, have been generated in R under the random

number generator seeds RNGf1 = 1 and RNGf2,l:1≤l≤4 = {10, 15, 13, 38}.
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Approximations of the deterministic and noisy invariant measures are given in Figure 3.3(d)-(f).

The deterministic invariant measure µg̃,0(dy) is approximated in Figure 3.3(d). The z-noisy

measures µg̃,z(dx) approximated in Figure 3.3(e) and (f), are quasi-invariant in the sense that

for all measurable subsets B of R it is that µg̃,z(B) = limt→∞ P (xt ∈ B | τX′ > t), where τX′ is a

random time denoting the first time the system enters the trapping set X′ (see Appendix B).
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Figure 3.3: In Figure 3.3(a)-(c) we display the deterministic orbit and f1 and f2,3 data-realizations with

initial condition x0 = 1. In Figure 3.3(d)-(f) we display the deterministic and the f1 and f2,3 quasi-

invariant set approximations respectively.

Complexity measures and prior specifications: The occurrence of an informative structure

in the available data sets may help the practitioner to decide between an informative and a

noninformative prior set up.

Approximate entropy (ApEn) (Borchers, 2015; Pincus, 1991) can be used to assess the com-

plexity of the available set x
(n)
f of observations. Large ApEn values indicate irregular and un-

predictable time series data. Nevertheless, it is known that ApEn values are heavily dependent

on sample size (lower than expected for small sample sizes).

A recently developed complexity measure that is less dependent on the sample size is the

forecastable component analysis Ω (ForeCa) (Goerg, 2013, 2016), which is based on the entropy

of the spectral density of the time series, and is normalized between zero and one. Large Ω

values characterize more predictable time series.

In Figure 3.4, we display the Ω curves as functions of the sample size n, for the time series

x
(n)
f1

and {x(n)
f2,l

: 1 ≤ l ≤ 4}. For the computation of the Ω curves we have used the weighted

overlapping segment averaging (WOSA) method Goerg (2016). The data sets {x(n)
f2,l

: 1 ≤ l ≤ 4}
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have the more informative structure as for n > 80 and 1 ≤ l ≤ 4 it is that

Ω(x
(n)
f2l

) > Ω(x
(n)
f1

).
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Figure 3.4: Here we display the Ω curves relating to the data sets x
(n)
f1

and {x(n)f2,l
: 1 ≤ l ≤ 4} for n

between 50 and 280.

3.5.2 Informative reconstruction and prediction under the f1 dynamic noise

We ran the Param, rDPR and GSBR Gibbs samplers for T = 20 in a synchronized mode, for

5 × 105
iterations and a burn-in period of 10, 000, using data set x

(200)
f1

under the informative

prior specification (IRP) PSIRP with α = 3, β = 0.3, a = 1, b = 10−3
and M = M0 = 10.

We remark that under noninformative prior (NRP) specifications of the form α = β ≤ 0.3, and

a = b ≤ 10−3
, the average number of active normals for both nonparametric samplers is lesser

than four, leading to less accurate estimations. The following provide a summary and some

brief comments.

Initial condition and dynamical noise density estimations: In Figure 3.5(a) we display

kernel density estimations (KDE’s) based on the predictive samples of the marginal posterior

(PPM) for the initial condition x0. The differences between the two predictives coming from the

GSBR and rDPR samplers are indistinguishable.

The three modes of the predictive density of x0 are very close to the three real roots of the

polynomial equation g̃(ϑ∗, x) − g̃(ϑ∗, 1) = 0 which are the preimages of g̃(ϑ∗, 1). Note that for

ϑ ∈ (0.74, 2.97), it is that g̃−1(ϑ, g̃(ϑ, 1)) ∈ {ρ,−1− ρ, 1} with ρ = −(1 +
√

4ϑ/0.99− 3)/2. We

refer to the three preimages of g̃(ϑ, 1) by xL = ρ (left), xM = −1− ρ (middle) and xR = 1 (right).

In Figure 3.5(b), we give superimposed the noise predictives coming from the two models to-

gether with the true density of the noise component given in eq. (3.34). We note how the
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synchronized execution produces almost identical dynamical noise density estimations, which

are very close to the true noise density f1 (solid line in red).
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Figure 3.5: In Figure 3.5(a) we give superimposed the KDE’s based on the posterior marginal predictive

samples of the initial condition variable x0. In Figure 3.5(b) we superimpose the GSBR and the rDPR

noise density estimations together with the true dynamical error density.

In Figure 3.6(a)-(f), we plot the running ergodic averages for the θj variables of the first 80, 000

iterations after burn-in. We observe that the θj chains have converged after the first 10, 000

iterations, and that the chains are mixing well. In Table 3.1 we display the percentage absolute

relative errors (PARE’s) of the synchronized estimations. For each j, we have created K =

47 approximately independent samples of size N = 104
, each sample separated by s = 500

observations

{θ(ir)
j : Mr + 1 ≤ ir ≤Mr +N} with Mk = (r − 1)(N + s),

for r = 1, . . . ,K. Then we created K realizations of the sampling mean (SM) estimator. Finally

we took

θ̂j =
1

K

K∑
r=1

1

N

Mr+N∑
i=Mr+1

θ
(i)
j , 0 ≤ j ≤ 5.
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We estimate x0 by the maximum a–posteriori (MAP) of the x0 predictive sample, by dividing the

interval [−2, 2] into 300 bins. We remark the accuracy and the closeness of the estimated ϑ

values.

0 20000 40000 60000 80000

0
.0

0
0
.0

4
0
.0

8

(a) Running average for θ0

iterations

θ
0

rDPR

GSBR

0 20000 40000 60000 80000

2
.5

0
2
.5

4
2
.5

8

(b) Running average for θ1

iterations
θ

1

rDPR

GSBR

0 20000 40000 60000 80000

−
0
.0

4
0
.0

0
0
.0

4

(c) Running average for θ2

iterations

θ
2

rDPR

GSBR

0 20000 40000 60000 80000

−
1
.0

6
−

1
.0

2
−

0
.9

8
−

0
.9

4

(d) Running average for θ3

iterations

θ
3

rDPR

GSBR

0 20000 40000 60000 80000

−
0
.0

4
0
.0

0
0
.0

4

(e) Running average for θ4

iterations

θ
4

rDPR

GSBR

0 20000 40000 60000 80000

−
0
.0

4
0
.0

0
0
.0

4

(f) Running average for θ5

iterations

θ
5

rDPR

GSBR

Figure 3.6: Chain ergodic averages for the θj variables based on the data set x
(200)
f1

, under prior specifi-

cation PSIR, are superimposed in Figure 3.6.

Table 3.1: (ϑ, x0) reconstruction PAREs (T = 0) under the informative prior configuration.

Model θ0 θ1 θ2 θ3 θ4 θ5 x0

Param. 1.98 0.37 0.03 0.58 0.00 0.04 xM : 3.87

rDPR 0.81 0.29 0.01 0.09 0.04 0.14 xM : 0.80

GSBR 0.19 0.27 0.05 0.04 0.02 0.18 xR : 0.60

Estim. x201 x202 x203 x204 x205 GSBR-Av Par-Av

SM 6.43 7.35 29.70 5.48 13.68 12.53 53.49

MAP 3.84 11.48 19.16 2.15 149.06 37.14 53.25

Out–of–sample posterior predictive marginals and the prediction barrier: In Figure 3.7(a)-

(j) we display the KDEs of the marginal posterior predictive samples of the variables x201, . . . , x205

and x216, . . . , x220 coming from the GSBR (solid red line) and rDPR (dashed black line) super-

imposed. Together, we superimpose the f1 quasi-invariant measure approximation (solid black

line). We note how the synchronized execution produces almost identical posterior predictive

marginals (PPM’s).

As the prediction horizon increases, the PPM densities are starting to resemble to the f1 quasi-

invariant density approximation, which naturally forms a prediction barrier. As such, any

attempt to predict beyond this time horizon will replicate the quasi-invariant measure approxi-

mation. From this point on, we can make only probabilistic prediction arguments for the long

term behavior of the system that involve the quasi-invariant measure i.e. P (xn+i ∈ A) = µg̃,z(A)

for all i ≥ T and for all measurable subsets A of R.
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Figure 3.7: In Figure 3.7(a)-(j) we display superimposed the first five and the last five KDE’s of the

out–of–sample posterior marginal predictive based on data set x
(200)
f1

under the informative specification

PSIRP. Together we superimpose the KDE of the f1 quasi invariant density (solid black line). In all

Figures, the bullet point represents the corresponding true future value.

In Table 3.2, we give the mean computational time per 103
iterations relating to the synchronized

execution of the rDPR and GSBR samplers under prior set up PSIRP for a simple reconstruction

(T = 0) and prediction (T = 20). In both cases, the GSBR sampler has the fastest execution

times. In the last two rows of Table 3.1 we give the PARE’s of the first five GSBR out–of–sample

predictions using the SM and MAP estimators. The last two columns exhibit the mean PARE’s

under a GSBR and a parametric (Param) prediction.

Table 3.2: Mean execution times in seconds per 103 iterations for x
(200)
f1

.

Data set x
(200)
f1

Prior spec. Algorithm T = 0 T = 20

PSIRP rDPR 5.44 11.76

PSIRP GSBR 2.24 8.65

3.5.3 Noninformative reconstruction and prediction under the f2,l heavy tailed

dynamic noise

Here we simultaneously reconstruct and predict using the noninformative prior set up. More

specifically for T = 20 we set α = β = 0.3, a = b = 10−3,M = M0 = 10; we iterated the GSBR

sampler 5× 105
after a burn-in period of 10, 000.
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In Figure 3.8 we display the KDE’s based on the PPM samples of the out–of–sample variables

{x201, . . . , x205} and {x216, . . . , x220} (solid lines in red) under data sets x
(200)
f2,l

: 1 ≤ l ≤ 4} (rows

(a) to (d)). Together we superimpose the KDE of the associated quasi-invariant densities for

1 ≤ l ≤ 4 (solid lines in black).
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Figure 3.8: In Figure 3.8 we display the GSBR KDE’s of the PPM sample of the out–of–sample variables

{x201, . . . , x205} and {x216, . . . , x220}(solid lines in red) based on samples x
(200)
f2,l

: 1 ≤ l ≤ 4} (rows

(a) to (d)) under the noninformative prior specification. Together we superimpose the KDE of the f2,l
quasi-invariant densities for 1 ≤ l ≤ 4 (solid lines in black).

In Tables 3.3 and 3.4 we display a PARE summary of (ϑ, x0) estimations and out-of-sample

prediction respectively, based on data sets {x(200)
f2,l

: 1 ≤ l ≤ 4}.

In Table 3.3 we compare horizontally the PARE results coming from the GSBR and the paramet-

ric sampler (Param); we notice that in all cases, the accuracy of the GSBR model is considerably

higher than its parametric counterpart. In all cases, the parametric algorithm predicts a quintic

polynomial deterministic part. Also, the GSBR model precision improves as the noise model

becomes more heavy tailed.
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Table 3.3: Simultaneous reconstruction-prediction under the noninformative prior specification. The

(ϑ, x0) PARE’s are based on the data sets {x(200)f2,l
: 1 ≤ l ≤ 4} for T = 20.

Noise Model θ0 θ1 θ2 θ3 θ4 θ5 x0

f2,1 Param. 19.95 1.54 4.83 4.39 2.52 1.01 7.27

GSBR 0.51 0.01 0.06 0.02 0.02 0.00 xR : 0.03

f2,2 Param. 2.89 0.94 4.07 2.37 2.07 0.76 7.49

GSBR 0.54 0.05 0.06 0.12 0.03 0.03 xR : 0.03

f2,3 Param. 29.97 0.40 4.97 1.25 1.88 0.41 7.55

GSBR 0.20 0.04 0.04 0.13 0.02 0.04 xR : 0.03

f2,4 Param. 15.57 1.07 1.33 3.71 0.43 1.03 6.40

GSBR 0.10 0.01 0.05 0.03 0.01 0.00 xR : 0.03

In Table 3.4 when we compare the average PARE results coming from the GSBR and the para-

metric sampler (the last two columns) we notice that in all cases for both the SM and the MAP

estimators, the prediction of the GSBR model is considerably better. We also notice, that as

we move to a more heavy tailed noise model, the GSBR prediction gradually improves and the

MAP–GSBR estimator becomes more efficient. This is due to the multimodal nature of the PPM’s

generated by GSBR.

Table 3.4: Simultaneous reconstruction-prediction under the noninformative prior specification. The

out–of–sample PARE’s are based on data sets {x(200)f2,l
: 1 ≤ l ≤ 4} for T = 20. The GSBR-Av and Par-

Av columns are the PARE means of the first five out–of–sample estimations using the GSBR and the

parametric Gibbs (Param) samplers respectively.

Noise Estim. x201 x202 x203 x204 x205 GSBR-Av Par-Av

f2,1 SM 12.50 0.86 12.57 44.04 82.11 30.42 58.72

MAP 12.86 2.10 77.13 25.89 39.99 31.59 69.62

f2,2 SM 0.52 0.70 8.07 167.16 15.17 38.32 65.08

MAP 0.29 1.72 0.50 103.00 20.96 25.29 65.57

f2,3 SM 0.72 7.99 0.01 9.74 49.94 13.68 233.53

MAP 0.14 0.47 2.34 0.39 1.38 0.93 234.80

f2,4 SM 0.24 1.01 2.95 3.79 40.25 9.65 60.69

MAP 0.07 0.86 4.78 0.13 21.00 5.37 109.23

3.6 Conclusions

We have described a Bayesian nonparametric approach for dynamical reconstruction and pre-

diction from observed time series data. The key insight is to use the GSB process, developed by

Fuentes-García et al. (2010), as a prior (over the space of densities) on the noise component.

The GSBR model removes a level from the hierarchy of the rDPR model as it replaces the

weights of the stick breaking representation of the DP with their expected values, leading to a

simpler model with only one infinite dimensional parameter, the locations of the atoms (τj) of
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the random measure. GSB mixture dynamical modeling is as accurate as DP based modeling

but it gives smaller execution times, and is easier to implement.

We have also shown that in a joint prediction of future values of a low dimensional noisy chaotic

time series, the quasi-invariant set appears as a “prediction barrier”. Also, our numerical

experiments indicate that when the sample size of the time series is small, the forecastable

component analysis Ω measure can group the available sets of observations in terms of their

complexity. A larger Ω index suggests a less informative prior set up.
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Chapter 4

Pairwise Dependent Random Mixtures

4.1 Introduction

In this chapter we focus on the construction of Pairwise Dependent Geometric Stick Breaking

Processes (PDGSBP), a dependent Bayesian nonparametric prior for partially exchangeable

observations based on the GSB process (Hatjispyros et al., 2017a).

That is, we are going to model a finite collection of m random distribution functions (Gj)1≤j≤m,

where each Gj is a GSB random probability measure, such that there is a unique common

component for each pair (Gj ,Gj′) with j 6= j′. We are going to use these measures in the context

of GSB mixture models, generating a collection of m GSB pairwise dependent random densities

(fj(x))1≤j≤m. Hence we obtain a set of random densities (f1, . . . , fm), where marginally each

fj is a random density function

fj(x) =

∫
Θ
K(x | θ)Gj(dθ),

thus generalizing the GSB priors to a multivariate setting for partially exchangeable observa-

tions.

In the problem considered here, these random density functions (fj)1≤j≤m are thought to be

related or similar, e.g. pertubations of each other, and so we aim to share information between

groups to improve estimation of each density, especially for those densities fj for which the

corresponding sample size nj is small.

We are going to provide evidence through numerical experiments, that dependent GSB mixture

models provide an efficient alternative to pairwise dependent DP (PDDP) priors; that is making

the weights more exotic does not actually enlarge the support of the prior. At first, we will

randomize the existing PDDP model of Hatjispyros et al. (2011, 2016), by imposing gamma

priors on its concentration masses, and then we will conduct a–priori synchronized density

estimation comparison studies between the randomized PDDP model (rPDDP) and the pairwise

dependent GSB process (PDGSBP) model using synthetic and real data examples.
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4.2 Randomized pairwise dependent Dirichlet process

To introduce pairwise dependence between m random density functions, Hatjispyros et al.

(2011), introduced the following hierarchical model. For the m subgroups of observations

{(xji)1≤i≤nj : 1 ≤ j ≤ m},

xji | θji
ind∼ K( · | θji)

θji |Qj
iid∼ Qj( · )

Qj =
m∑
l=1

pjlPjl,
m∑
l=1

pjl = 1, Pjl = Plj

Pjl
iid∼ DP(c, P0), 1 ≤ j ≤ l ≤ m,

for some kernel densityK( · | · ), concentration parameter c > 0 and parametric central measure

P0 for which E[Pjl(dθ)] = P0(dθ).

So, the random densities fj(x) are dependent mixtures of the dependent random measures Qj

via fj(x |Qj) =
∫

ΘK(x | θ)Qj(dθ), or equivalently, dependent mixtures of the m independent

mixtures gjl(x |Pjl) =
∫

ΘK(x | θ)Pjl(dθ), l = 1, . . . ,m. The density function for an observation

xji then becomes

fj(xji |Qj) := fj(xji) =
m∑
l=1

pjlgjl(xji). (4.1)

The gjl(xji) are random density functions defined by a DPM, that is

gjl(xji) =

∫
Θ
K(xji | θ)P(dθ) =

∞∑
k=1

wjlkK(xji | θjlk), (4.2)

where (wjlk)k≥1 are the stick breaking weights of the stick breaking representation of the Dirich-

let process. Then the random density of the observation xji can be written explicitly as

fj(xji |Pjl, 1 ≤ l ≤ m) =

m∑
l=1

pjl

{ ∞∑
k=1

wjlkK(xji | θjlk)

}
(4.3)

To introduce the rPDDP model, we randomize the PDDP model by sampling the Pjl measures

from the independent Dirichlet processes DP(cjl, P0) and then impose gamma priors on the

concentration masses, i.e. Pjl
ind∼ DP(cjl, P0), cjl

ind∼ G(ajl, bjl), 1 ≤ j ≤ l ≤ m.

According to Hatjispyros et al. (2011, 2016) the augmentation of each fj in eq. (4.1) with positive

auxiliary random variables will make the number of updates of the Gibbs sampler finite almost

surely. To this end we introduce:

1. The DP mixture selection variables δ = (δji); for an observation xji that comes from fj ,

δji selects the DP mixture gjl(x) that the observation came from. In particular we have

that Pr(δji = l) = pjl.
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2. The clustering variables d = (dji); for an observation xji that comes from fj , given δji, dji

allocates the component of the DP mixture gjδji(x) that xji came from.

Finally, we define the stochastic variables u = (uji) for 1 ≤ i ≤ nj and 1 ≤ j ≤ m, associated

with a non–sequential slice set Awjl(uji) = {k ∈ N : 0 < uji < wjlk}.

For the clustering variables we have that

Pr(dji = k) =

m∑
l=1

Pr(dji = k, δji = l) =

m∑
l=1

Pr(δji = l)Pr(dji = k | δji = l) =

m∑
l=1

pjlwjlk.

Conditionally on the event {δji = l} the clustering variables have an infinite state space, that is

(dji | δji = l) ∼
∞∑
k=1

wjlkδk,

from which we deduce that Pr(dji = k | δji = l) = wjlk.

Proposition 4.1. Suppose that the clustering variables (dji) conditionally on the slice variables

uji are having a discrete uniform distribution over the elements of the slice sets Awjl(uji) that is

dji |uji ∼ DU(Awjl(uji)), then

fj(xji, uji) =
m∑
l=1

pjl
∑

k∈Awjl (uji)

K(xji | θjlk). (4.4)

and

fj(xji, uji, dji = k | δji = l) = wjlk U(uji | 0, wjlk)K(xji | θjlk). (4.5)

Proof. Starting from the uji–augmented random densities we have

fj(xji, uji) =

m∑
l=1

fj(xji, uji, δji = l)

=

m∑
l=1

Pr(δji = l) fj(xji, uji | δji = l)

=

m∑
l=1

pjl

∞∑
k=1

fj(xji, uji, dji = k | δji = l)

=

m∑
l=1

pjl

∞∑
k=1

fj(dji = k | δji = l) fj(uji | dji = k, δji = l) fj(xji | dji = k, δji = l)

=

m∑
l=1

pjl

∞∑
k=1

wjlk U(uji | 0, wjlk)K(xji | θjlk)

=

m∑
l=1

∞∑
k=1

I(uji < wjlk)K(xjiθjlk)

=

m∑
l=1

pjl
∑

k∈Awjl (uji)

K(xji | θjlk).
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Augmenting further with variables dji and δji yields

fj(xji, uji, dji = k, δji = l) = pjl wjlk U(uji | 0, wjlk)K(xji | θjlk).

Because Pr(δji = l) = pjl the last equation leads to eq. (4.5) and the desired result follows.

The following result is the main property of the slice variables (uji) that allows us to create

Gibbs samplers with a finite number of updates for the PDDP model. Letting |S| stand for the

cardinality of a set S, we show that

Proposition 4.2. Given the random sets Awjl(uji) the random functions in eq. (4.3) become finite

mixtures of a.s. finite equally weighted mixtures of the K( · | · ) probability kernels, that is

fj(xji |uji) =
m∑
l=1

Wjl
1

|Awjl(uji)|
∑

k∈Awjl (uji)

K(xji | θjlk), (4.6)

with

Wjl =
pjl|Awjl(uji)|∑m
r=1 pjr|Awjr(uji)|

.

Proof. First note that marginally, for the slice variables (uji) it is that

f(uji) =

m∑
l=1

∞∑
k=1

fj(uji, dji = k, δji = l)

=

m∑
l=1

∞∑
k=1

Pr(δji = l)fj(uji | dji = k, δji = l)

=

m∑
l=1

∞∑
k=1

pjl U(uji | 0, wjlk)

=

m∑
l=1

pjlI(uji < wjlk)

=
m∑
l=1

pjl|Awjl(uji)|. (4.7)

Having the marginal of (uji) the conditional density of xji given the slice variable uji is given by

fj(xji |uji) =
fj(xji, uji)

fj(uji)
=

∑m
l=1

∑∞
k=1 fj(xji, uji, dji = k, δji = l)∑m

r=1

∑∞
s=1 fj(uji, dji = s, δji = r)

=

∑m
l=1 pjl

∑∞
k=1 I(uji < wjlk)K(xji | θjlk)∑m

r=1 pjr
∑∞

s=1 I(uji < wjls)

=

∑m
l=1 pjl

∑
k∈Awjl (uji)

K(xji | θjlk)∑m
r=1 pjr|Awjr(uji)|
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Letting

Wjl =
pjl|Awjl(uji)|∑m
r=1 pjr|Awjr(uji)|

,

the proposition follows.

From now on we leave the auxiliary variables unspecified; especially for δji we use the notation

δji = (δ1
ji, . . . , δ

m
ji ) ∈ {e1, . . . , em} with Pr(δji = el) = pjl,

where el denotes the usual basis vector having its only nonzero component equal to 1 at position

l. Hence, for a sample of size n1 from f1, a sample of size n2 from f2, etc., a sample of size nm

from fm we can write the full likelihood as the triple product:

f(x,u,d | δ) =
m∏
j=1

nj∏
i=1

fj
(
xji, uji, dji | δji = (δ1

ji, . . . , δ
m
ji )
)
, (δ1

ji, . . . , δ
m
ji ) ∈ {e1, . . . , em}

=

m∏
j=1

nj∏
i=1

m∏
l=1

{
I(uji < wjldji)K(xji | θjldji)

}δlji . (4.8)

Equivalently using a hierarchical representation it is that

xji, uji | dji, δji, (θjrδji)1≤r≤m, (wjrδji)1≤r≤m
ind∼

m∏
r=1

{
U(uji | 0, wjrdji)K(xji | θjrdji)

}δrji
Pr(dji = k |wji, δji = el) = wjlk, Pr(δji = el) = pjl

wjik = zjlk
∏
s<k

(1− zjls), zjlk
iid∼ Be(1, c), θjik

iid∼ P0, k ∈ N.

4.2.1 The rPDDP Gibbs sampler

In this section, we describe the algorithmic Gibbs sampling steps for estimating the rPDDP

model. The algorithm is an extended version of the algorithm described in Hatjispyros et al.

(2011), including an additional step for the sampling of the m concentration parameters of the

independent DP’s. First, let us complete the model assigning a Dirichlet prior with parameters

(over the selection probabilities pj = (pj1, . . . , pjm) for 1 ≤ j ≤ m, that is

f(pj |aj) ∝
m∏
l=1

p
αjl−1
jl .

Having initialized (dji, δji) for 1 ≤ j ≤ m and for 1 ≤ i ≤ nj we will sample at each iteration of

the Gibbs sampler the following variables

wjlk, θjlk, 1 ≤ j ≤ l ≤ m, 1 ≤ k ≤ N∗,

uji, dji, δji, 1 ≤ j ≤ m, 1 ≤ i ≤ nj ,

pjl, 1 ≤ j ≤ m, 1 ≤ l ≤ m,
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with N∗ is almost surely finite. Later, we will see that the computation of N∗ is a generalization

of the computation of N∗ in the DPM model in many dimensions.

1. The first step is to sample the sequence of the stick–breaking weights and their associated

locations, that is (wjlk, θjlk). Following standard results of Kalli et al. (2011), we will sample

the variables from their conditional, having the slice variables uji, integrated out. Then for

1 ≤ j ≤ m, 1 ≤ i ≤ nj it is that

f(zjjk | · · · ) = Be

(
zjjk | 1 +

nj∑
i=1

I(dji = k, δji = ej), cjj +

nj∑
i=1

I(dji > k, δji = ej)

)
,

while for j 6= l we have that

f(zjlk | · · · ) = Be

(
zjlk | 1 +

nj∑
i=1

I(dji = k, δji = el) +

nl∑
i=1

I(dli = k, δli = ej),

cjl +

nj∑
i=1

I(dji > k, δji = el) +

nl∑
i=1

I(dli > k, δli = ej)

)
.

The zjlk and θjlk will only be sampled for k ≤ d∗ = maxi,j dji. If there are any k > d∗ we sample

them independently from the Be(1, cjl) and take the θjlk independently from p0. Having sampled

the sequence of zjlk we construct the wjlk weights via the stick–breaking formula.

2. For the locations of the random measures for k = 1, . . . , d∗ where d∗ = maxj,i dji, it is that

f(θjlk| · · · ) ∝ f(θjlk)


∏nj
i=1K(xji|θjlk)I(δji=el, dji=k)

∏nl
i=1K(xli|θjlk)I(δli=ej , dli=k) l > j,∏nj

i=1K(xji|θjjk)I(δji=ej , dji=k) l = j.

3. In this step we sample the uji’s. This will enable us to sample the additional number of

weights and locations for k > d∗. From the likelihood, it follows that

f(uji | · · · ) ∝
m∏
i=1

I(uji < wjldji)
δlji .

When the δji is specified, for example if δji = el we have

f(uji | δji = ej , · · · ) = U(uji | 0, wjldji).

4. Here we find the additional number of weights (wjlk), and locations (θjlk), we have to sample

beyond d∗ in order for the chain to proceed. To this end, let Nji be the smallest integer N∗ for

which
N∗∑
k=1

wjlk > 1− u∗jl,
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where for j = l it is that

u∗jj = min
i
{uji}, 1 ≤ j ≤ m,

and for 1 ≤ j ≤ l ≤ m we have

u∗jl = min{min
i
{uji},min

i
{uli}}.

This implies that we must sample (wjlk, θjlk) from the prior for k = d∗ + 1, . . . , N∗, with N∗ =

maxjlNjl.

5. Here we concentrate on the sampling of (dji, δji). By construction, the clustering variables

belong to the union of the slice sets, that is

Pr

{
dji ∈

m⋃
l=1

Awjl(uji) |uji, 1 ≤ i ≤ nj

}
= 1.

Then conditionally on the δji variables it is that

Pr
{
dji ∈ Awjl(uji) | δji = el, uji, 1 ≤ i ≤ nj

}
= 1.

Then it follows that

Pr(dji = k, dji = el | · · · ) ∝ pjlK(xji | θjlk) I(k ∈ Awjl(uji)) I(1 ≤ l ≤ m),

a bivariate discrete distribution. Thus, we sample (dji, δji) as a block.

6. The full conditional for j = 1, . . . ,m for the selection probabilities pj = (pj1, . . . , pjm),

under the Dirichlet prior f(pj |aj) ∝
∏m
l=1 p

ajl−1
jl , with hyperparameter aj = (aj1, . . . , ajm), is

Dirichlet

f(pj | · · · ) ∝
m∏
l=1

p
ajl+

∑nl
i=1 I(δji = el)−1

jl .

7. Here, we describe the associated Gibbs sampling steps for the updates of the concentration

parameters of the independent Dirichlet processes appearing in the random measures Qj . In

our model, the random densities (fj) are represented as finite mixtures of the DP mixtures

gjl(x |Pjl) with Pjl
ind∼ DP(cjl, P0). We let cjl ∼ G(ajl, bjl). Then, following West (1992), we have

the following two special cases:

A. For j = l, the posterior cjj ’s will be affected only by the size of the data set xj and the number

of unique clusters for which δji = ej . Letting

ρjj = #{djj : δji = ej , 1 ≤ i ≤ nj},
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we have

β ∼ Be(cjj + 1, nj)

cjj |β, ρjj ∼ πβ G(ajj + ρjj , bjj − log β) + (1− πβ)G(ajj + ρjj − 1, bjj − log β)

with the weights πβ satisfying
πβ

1−πβ =
ajj+ρjj−1
nj(bjj−log β) .

B. For j 6= l, the posterior cjl’s will be affected by the size of the data sets xj and xl and the

cumulative number of unique clusters dji for which δji = el and the unique clusters dli for

which δli = ej . Letting

ρjl = #{dji : δji = el, 1 ≤ i ≤ nj}+ #{dli : δli = ej , 1 ≤ i ≤ nl},

it is that

β ∼ Be(cjl + 1, nj + nl)

cjl |β, ρjl ∼ πβ G(ajl + ρjl, bjl − log β) + (1− πβ)G(ajl + ρjl − 1, bjl − log β),

with the weights πβ satisfying
πβ

1−πβ =
ajl+ρjl−1

(nj+nl)(bjl−log β) .

Due to the fact that ρjl = 0 is always a possibility, so that we impose ajl > 1.

4.2.2 Superiority of rPDDP against PDDP

In this subsection, we demonstrate the superiority of the proposed rPDDP algorithm against

the existent PDDP algorithm on a complex simulated data set. Specifically, we will generate

datasets x1 of sample size n1 = 200 and x2 of sample size n2 = 200 from the mixture densities

given by

f1(x) =
1

5

8∑
k=4

N (−70 + 10(k − 1), 1) =
1

5

∑
k∈B
N (−70 + 10(k − 1), 1)

f2(x) =
1

12

12∑
k=1

N (−70 + 10(k − 1), 1) =
1

12

∑
k∈A
N (−70 + 10(k − 1), 1)

=
5

12

{
1

5

∑
k∈B
N (−70 + 10(k − 1), 1)

}
+

7

12

1

7

∑
k∈A\B

N (−70 + 10(k − 1), 1)

 .

Equivalently in gjl(x) notation, we have

f1(x) = 0 · g11(x) + 1 · g12(x)

f2(x) =
5

12
· g12(x) +

7

12
· g22(x).

Prior specifications. For the comparison we choose normal kernels K(x | θ) = N (x | θ) where

θ = (µ, τ−1) and τ = σ−2
is the precision. The prior over the means and precisions of the PDDP
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and the rPDDP model (P0) is the independent normal-gamma measure, given by

P0(dµ, dτ) = G0(dµ, dτ) = N (µ |µ0, τ
−1
0 )G(τ | ε1, ε2) dµdτ.

Attempting a noninformative prior specification we took µ0 = 0 and τ0 = ε1 = ε2 = 10−3
. For the

concentration masses of the rPDDP model, a–priori, we set cjl ∼ G(ajl, bjl), with ajl = bjl = 0.5.

In Section 4.2.1 we have shown that such prior specifications are valid for ajl > 1. However for

the special case where m = 2 it is allowed to have any ajl > 0 because ρjl 6= 0 always. This is

because ρjl is defined as

ρjl = #{dji : δji = el, 1 ≤ i ≤ nj}+ #{dli : δli = ej , 1 ≤ i ≤ nl},

and now, for 1 ≤ j ≤ l ≤ 2, the events #{dji : δji = el, 1 ≤ i ≤ nj} and #{dli : δli = ej , 1 ≤
i ≤ nl} are complementary. The hyperparameters (αjl) of the Dirichlet priors over the matrix

of the selection probabilities p = (pjl) has been set to αjl = 1.

As a measure of superiority of the proposed methodology, we will measure the similarity between

the true and the estimated probability distributions with the Hellinger distance. For two density

functions f, g the Hellinger distance is defined as

H(f, g) =
1

2

∫
R

(√
f(x)−

√
g(x)

)2
dx.

In this example, H(f, f̂) and HR(f, f̂), will denote the Hellinger distance between the true

density f and the predictive density f̂ of the PDDP and rPDDP algorithms, respectively. The

Gibbs samplers run for 11× 104
iterations leaving the first 104

samples as a burn-in period.

In Figure 4.1, we give the histograms of the data sets generated from f1, f2 which are overladed

with the kernel density estimations (KDE’s) based on the predictive samples coming from the

PDDP (dashed line) and the rPDDP (solid line) models. The differences between the two models

in the quality of the f1 estimation (panel (a)) are nearly indistinguishable. This is due to

the simple form of the mixture f1. However, on the more complicated mixture density f2, the

randomization of the concentration parameters cjl of the independent DPs, provides us with

accurate density estimations (panel (b)). When cjl are kept constant, the PDDP algorithm fails

to capture the modes located at x = −60,−40 and recognizes a single mode in x = −50. The

same holds for the modes located at x = 40, 50. The Hellinger distances between the true and

the estimated densities are given in table 4.1.

Table 4.1: Hellinger distance between the true and the estimated densities obtained from the PDDP (H)

and rPDDP (HR) models.

i H(fi, f̂i) HR(fi, f̂i)

1 0.11 0.11

2 0.27 0.20



72 Chapter 4. Pairwise Dependent Random Mixtures
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Figure 4.1: Density estimation with the PDDP model (curves in dashed–black) and the rPDDP model

(solid black curve) for the 5− 12 mixture based on the samples from the predictive. The true density has

been superimposed in red.

4.3 Pairwise dependent geometric stick–breaking process

In this section, we develop the Pairwise Dependent Geometric Stick Breaking Process prior. In

order to do so, we let the random density functions fj(x) to be generated via

fj(x) := fj(x |Qj) =

m∑
l=1

pjlgjl(x |Gjl), Qj =

m∑
l=1

pjlGjl, 1 ≤ j ≤ m. (4.9)

Now, the gjl(x) := gjl(x |Gjl) =
∫

ΘK(x | θ)Gjl(dθ) random densities are independent mixtures

of GSB processes, satisfying gjl = glj , under the slightly altered definition

Gjl =
∞∑
k=1

wjlkδθjlk with wjlk = λjl(1− λjl)k−1, λjl ∼ h(· | ξjl), θjlk
iid∼ G0. (4.10)

Following a univariate construction of geometric slice sets (Fuentes-García et al., 2010), we

define the stochastic variables N = (Nji) for 1 ≤ i ≤ nj and 1 ≤ j ≤ m, where Nji is an

almost surely finite random variable of mass fN , possibly depending on parameters, associated

with the sequential slice set Sji = {1, . . . , Nji}. Following Hatjispyros et al. (2011, 2016), we

introduce:

1. The GSB mixture selection variables δ = (δji); for an observation xji that comes from fj ,

δji selects the GSB mixture gji(x) that the observation came from.

2. The clustering variables d = (dji); for an observation xji that comes from fj , given δji, dji

allocates the component of the GSB mixture gjδji(x) that xji came from.

Proposition 4.3. Suppose that the clustering variables (dji) conditionally on the slice variables

(Nji) are having the discrete uniform distribution over the sets (Sji) that is dji |Nji ∼ DU(Sji),
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then

fj(xji, Nji = r) =
1

r

m∑
l=1

pjlfN (r |λjl)
r∑

k=1

K(xji | θjlk), (4.11)

and

fj(xji, Nji = r, dji = k | δji = l) =
1

r
fN (r |λjl) I(k ≤ r)K(xji | θjlk). (4.12)

Proof. Starting from the Nji–augmented random densities we have

fj(xji, Nji = r) =

m∑
l=1

fj(xji, Nji = r, δji = l)

=

m∑
l=1

pjl fj(xji, Nji = r | δji = l)

=

m∑
l=1

pjl

∞∑
k=1

fj(xji, Nji = r, dji = k | δji = l)

=

m∑
l=1

pjlfj(Nji = r | δji = l)

×
∞∑
k=1

fj(dji = k |Nji = r)fj(xji | dji = k, δji = l).

Because fj(Nji = r | δji = l) = fN (r |λjl) and fj(xji | dji = k, δji = l) = K(xji | θjlk), the last

equation gives

fj(xji, Nji = r) =
m∑
l=1

pjlfN (r |λjl)
∞∑
k=1

1

r
I(k ≤ r)K(xji | θjlk)

=
1

r

m∑
l=1

pjlfN (r |λjl)
r∑

k=1

K(xji | θjlk).

Augmenting further with the variables dji and δji yields

fj(xji, Nji = r, dji = k, δji = l) =
1

r
pjl fN (r |λjl) I(k ≤ r)K(xji | θjlk).

Because Pr(δji = l) = pjl, the last equation leads to eq. (4.12) and the proposition follows.

The following proposition gives a multivariate analogue of equation (2) in Fuentes-García et al.

(2010):

Proposition 4.4. Given the random set Sji, the random functions in eq. (4.9) become finite

mixtures of a.s. finite equally weighted mixtures of the K( · | · ) probability kernels, that is

fj(xji |Nji = r) =
m∑
l=1

W(r;λjl)
r∑

k=1

1

r
K(xji | θjlk), (4.13)

with

W(r;λjl) =
pjlfN (r |λjl)∑m
l′=1 pjl′fN (r;λjl′)

.
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Proof. Marginalizing the joint of xji and Nji with respect to xji we obtain

fj(Nji = r) =

m∑
l=1

pjlfN (r |λjl).

Then dividing eq. (4.11) with the probability that Nji equals r we obtain eq. (4.13).

We note that the one–dimensional model introduced in Fuentes-García et al. (2010) under our

notation has the representation

fj(xji |Nji = r, δji = l) =
r∑

k=1

1

r
K(xji | θjlk).

Marginalizing eq. (4.12) with respect to (Nji, dji) we obtain

fj(xji | δji = l) =

∞∑
k=1

( ∞∑
r=k

1

r
fN (r |λjl)

)
K(xji|θjlk). (4.14)

The quantity inside the parenthesis on the right-hand side of the previous equation is fj(dji | δji =

l). Following Fuentes-García et al. (2010), we substitute fN (r |λjl) with the negative binomial

distribution NB(r | 2, λjl), i.e.

fN (r |λjl) = rλ2
jl(1− λjl)r−1I(r ≥ 1), (4.15)

then eq. (4.14) becomes

fj(xji | δji = l) =
∞∑
k=1

qjlkK(xji | θjlk) with qjlk = λjl(1− λjl)k−1,

and the fj random densities take the form of a finite mixture of GSB mixtures

fj(xji) =

m∑
l=1

pjl

∞∑
k=1

qjlkK(xji | θjlk).

We denote the set of observations along the m groups as x = (xji) and with xj the set of

observations in the jth group. The three sets of latent variables in the jth group will be

denoted as N j for the slice variables, dj for the clustering variables, and finally δj for the set

of GSB mixture allocation variables. From now on, we are going to leave the auxiliary variables

unspecified; especially for δji we use the notation

δji = (δ1
ji, . . . , δ

m
ji ) ∈ {e1, . . . , em} with Pr(δji = el) = pjl,

where el denotes the usual basis vector having its only nonzero component equal to 1 at position

l. Hence, for a sample of size n1 from f1, a sample of size n2 from f2, etc., a sample of size nm
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from fm we can write the full likelihood as a multiple product:

f(x,N ,d | δ) =
m∏
j=1

f(xj ,N j ,dj | δj)

=
m∏
j=1

nj∏
i=1

I(dji ≤ Nji)
m∏
l=1

{
λ2
jl(1− λjl)Nji−1K(xji | θjldji)

}δlji .
In a hierarchical fashion, using the auxiliary variables, we have for j = 1, . . . ,m and i =

1, . . . , nj ,

xji, Nji | dji, δji, (θjrδji)1≤r≤m, λjδji
ind∼

m∏
r=1

{
λ2
jl(1− λjl)Nji−1K(xji | θjrdji)

}δrji I(Nji ≥ dji)

dji |Nji
ind∼ DU(Sji), Pr(δji = el) = pjl

qjik = λji(1− λji)k−1, θjik
iid∼ P0, k ∈ N.

4.3.1 The PDGSBP covariance and correlation

In this subsection, we find the covariance and the correlation between fj(x) and fi(x). First,

we provide the following lemma.

Lemma 4.1. Let gG(x) =
∫

ΘK(x | θ)G(dθ) be a random density, with G = λ
∑∞

j=1(1− λ)j−1δθj

and θj
iid∼ G0, then

E
{
gG(x)2

}
=

(
1

2− λ

){
λ

∫
Θ
K(x | θ)2G0(dθ) + 2(1− λ)

(∫
Θ
K(x | θ)G0(dθ)

)2
}
.

Proof. Because gG(x) = λ
∑∞

j=1(1− λ)j−1K(x | θj), we have

E
{
gG(x)2

}
= λ2 E


 ∞∑
j=1

(1− λ)j−1K(x | θj)

2
= λ2


∞∑
j=1

(1− λ)2j−2 E
[
K(x | θj)2

]
+ 2

∞∑
k=2

k−1∑
j=1

(1− λ)j+k−2 E[K(x | θj)K(x | θk)]


= λ2


∞∑
j=1

(1− λ)2j−2E
[
K(x | θ)2

]
+ 2

∞∑
k=2

k−1∑
j=1

(1− λ)j+k−2E[K(x | θ)]2


= λ2

{
1

λ(2− λ)
E
[
K(x | θ)2

]
+ 2

1− λ
λ2(2− λ)

E[K(x | θ)]2
}
,

which gives the desired result.
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Proposition 4.5. It is that

Cov(fj(x), fi(x)) = pji pijVar

(∫
Θ
K(x | θ)Gji(dθ)

)
, (4.16)

with

Var

(∫
Θ
K(x | θ)Gji(dθ)

)
=

λji
2− λji

Var(K(x | θ)). (4.17)

Proof. The random densities fi(x) =
∑m

l=1 pil gil(x) and fj(x) =
∑m

l=1 pjl gjl(x) depend to each

other through the random measure Gji, therefore

E[fi(x)fj(x)] = E[E(fi(x)fj(x)|Gji) ] = E{E[fi(x) |Gji]E[fj(x) |Gji] }, (4.18)

and

E[fj(x) |Gji] =
∑
l 6=i

pjl E[gjl(x)] + pjigji(x) = (1− pji)E[K(x | θ)] + pjigji(x)

E[fi(x) |Gji] =
∑
l 6=j

pil E[gil(x)] + pijgji(x) = (1− pij)E[K(x | θ)] + pijgji(x) .

Substituting back to equation (4.18) one obtains

E[fi(x)fj(x)] = (1− pijpji)E[K(x | θ)]2 + pijpji E
[
gji(x)2

]
.

Using lemma 4.1, the last equation becomes

E[fi(x)fj(x)] =
λjipjipij
2− λji

{
E[K(x | θ)2]− E[K(x | θ)]2

}
+ E[K(x | θ)]2,

or that

Cov(fj(x), fi(x)) =
λjipji pij
2− λji

Var(K(x | θ)).

The desired result, comes from the fact that

Var

(∫
Θ
K(x | θ)Gji(dθ)

)
=

{
λji

2− λji
E[K(x | θ)2] +

2(1− λji)
2− λji

E[K(x | θ)]2
}
− E[K(x | θ)]2

=
λji

2− λji
(
E[K(x | θ)2]− E[K(x | θ)]2

)
.

Suppose now that (fDj (x))1≤j≤m and (fGj (x))1≤j≤m, are two collections of m DP and m GSB

pairwise dependent random densities respectively, i.e. fDj (x) =
∑m

l=1 pjlg
D
jl(x) with gDjl(x) =

gjl(x |Pjl), and fGj (x) =
∑m

l=1 pjlg
G
jl(x) with gGjl(x) = gjl(x |Gjl). Then we have the following

proposition:
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Proposition 4.6. For given parameters (λji), (cji), and matrix of selection probabilities (pji) it is

that

1. The PDGSBP and rPDDP correlations are given by

Corr(fGj (x), fGi (x)) =
λjipjipij
2− λji

(
m∑
l=1

m∑
r=1

p2
jlp

2
irλjlλir

(2− λjl)(2− λir)

)−1/2

, (4.19)

and

Corr(fDj (x), fDi (x)) =
pjipij
1 + cji

(
m∑
l=1

m∑
r=1

p2
jlp

2
ir

(1 + cjl)(1 + cir)

)−1/2

. (4.20)

2. When λji = λ and cji = c for all 1 ≤ j ≤ i ≤ m, the expressions for the rPDDP and PDGSBP

correlations simplify to

Corr(fGj (x), fGi (x)) = Corr(fDj (x), fDi (x)) = pjipij

(
m∑
l=1

m∑
r=1

p2
jlp

2
ir

)−1/2

.

Proof. 1. From eq. (4.17) and proposition 4.5, we have that

Var(fGj (x)) = Var

(
m∑
l=1

pjlg
G
jl(x)

)
=

m∑
l=1

p2
jiλji

2− λji
Var(K(x | θ)).

Normalizing the covariance in eq. (4.16) with the associated standard deviations, yields

Corr(fGj (x), fGi (x)) =
λjipjipij
2− λji

(
m∑
l=1

m∑
r=1

p2
jlp

2
irλjlλir

(2− λjl)(2− λir)

)−1/2

. (4.21)

Similarly, from proposition 1 in Hatjispyros et al. (2011), it is that

Var(fDj (x)) =
m∑
l=1

p2
ji

1 + cji
Var(K(x | θ)),

and

Corr(fDj (x), fDi (x)) =
pjipij
1 + cji

(
m∑
l=1

m∑
r=1

p2
jlp

2
ir

(1 + cjl)(1 + cir)

)−1/2

. (4.22)

2. When λji = λ and cji = c for all 1 ≤ j ≤ i ≤ m, from eqs. (4.21) and (4.22), it is clear that

Corr(fGj (x), fGi (x)) = Corr(fDj (x), fDi (x)) = pjipij

(
m∑
l=1

m∑
r=1

p2
jlp

2
ir

)−1/2

.
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It is clear that, irrespective of the model, the random densities fj(x) and fi(x) are positively cor-

related whenever pji = pij = 1. Similarly, the random densities fj(x) and fi(x) are independent

(have no common part) whenever pji = pij = 0. Another, less obvious feature, upon synchro-

nization, is the ability of controlling the correlation among the models. For example, suppose

that for m = 2, the random densities f1(x) and f2(x) are dependent, and that λji = (1 + cji)
−1

;

then consider the expression

D12 := λ2
12 p

2
12 p

2
21

{
Corr(fG1 (x), fG2 (x))−2 − Corr(fD1 (x), fD2 (x))−2

}
.

Since correlations are positive, D12 ≥ 0 whenever Corr(fG1 (x), fG2 (x)) ≤ Corr(fD1 (x), fD2 (x)),

and that D12 < 0 whenever Corr(fG1 (x), fG2 (x)) > Corr(fD1 (x), fD2 (x)). Then, it not difficult to

see that

D12 =
(
p2

12λ12 + r1p
2
11λ11

) (
p2

21λ12 + r2p
2
22λ22

)
−
(
p2

12λ12 + p2
11λ11

) (
p2

21λ12 + p2
22λ22

)
with rk = (2− λ12)/(2− λkk), k = 1, 2. We have the following cases:

1. λ12 > max{λ11, λ22} ⇔ r1 < 1, r2 < 1 ⇔ Corr(fG1 (x), fG2 (x)) > Corr(fD1 (x), fD2 (x)).

2. λ12 < min{λ11, λ22} ⇔ r1 > 1, r2 > 1 ⇔ Corr(fG1 (x), fG2 (x)) < Corr(fD1 (x), fD2 (x)).

3. λ12 = λ11 = λ22 ⇔ r1 = r2 = 1 ⇔ Corr(fG1 (x), fG2 (x)) = Corr(fD1 (x), fD2 (x)).

4.3.2 The PDGSBP Gibbs Sampler

In this section, we are going to describe the PDGSBP Gibbs sampler for estimating the model.

At each iteration we will sample variables,

θjlk, 1 ≤ j ≤ l ≤ m, 1 ≤ k ≤ N∗,

dji, Nji, δji, 1 ≤ j ≤ m, 1 ≤ i ≤ nj ,

pjl, 1 ≤ j ≤ m, 1 ≤ l ≤ m,

with N∗ = maxj,iNji almost surely finite.

1. For the locations of the random measures for k = 1, . . . , d∗ where d∗ = maxj,i dji, it is that

f(θjlk | · · · ) ∝ f(θjlk)


∏nj
i=1K(xji | θjlk)I(δji=el, dji=k)

∏nl
i=1K(xli | θjlk)I(δli=ej , dli=k) l > j,∏nj

i=1K(xji | θjjk)I(δji=ej , dji=k) l = j.

2. Here, we sample the allocation variables dji and the mixture component indicator variables

δji as a block. For j = 1, . . . ,m and i = 1, . . . , nj , we have

Pr(dji = k, δji = el |Nji = r, · · · ) ∝ pjlK(xji | θjlk) I(l ≤ m) I(k ≤ r).
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3. The slice variables Nji have full conditional distributions given by

Pr(Nji = r | δji = el, dji = l, · · · ) ∝ (1− λjl)r I(r ≥ l),

which are truncated geometric distributions over the set {l, l + 1, . . .}.

4. The full conditional, for j = 1, . . . ,m, for the selection probabilities pj = (pj1, . . . , pjm),

under a Dirichlet prior f(pj |aj) ∝
∏m
l=1 p

ajl−1
jl , with hyperparameter aj = (aj1, . . . , ajm), is

Dirichlet

f(pj | · · · ) ∝
m∏
l=1

p
ajl+

∑nl
i=1 I(δji = el)−1

jl .

5. Here, we update the geometric probabilities (λjl) of the GSB measures. For 1 ≤ j ≤ l ≤ m,

it is that

f(λjl | · · · ) ∝ f(λjl)

{∏nj

i=1

{
λ2
jl(1− λjl)Nji−1

}I(δji=el)∏nl
i=1

{
λ2
jl(1− λjl)Nli−1

}I(δli=ej) l > j,∏nj

i=1

{
λ2
jj(1− λjj)Nji−1

}I(δji=ej) l = j.

To complete the model, we assign priors to the geometric probabilities. For a fair comparison

between the two models, we apply λjl = (1 + cjl)
−1

transformed priors. So, by placing gamma

priors cjl ∼ G(ajl, bjl) over the concentration masses cjl of the PDDP model, we have

f(λjl) = T G(λjl | ajl, bjl) ∝ λ
−(ajl+1)
jl e−bjl/λjl(1− λjl)ajl−1 I(0 < λjl < 1). (4.23)

Conditionally on the mixture allocation variable δjl, the geometric probability λjl can be sampled

with the auxiliary variable method described in Appendix A.2

4.4 Experiments

In this section, we illustrate the efficiency of the PDGSBP model. For the choice of a normal

kernel (unless otherwise specified) K(x|θ) = N (x|θ) where θ = (µ, τ−1) and τ = σ−2
is the

precision. The prior over the means and precisions of the PDGSBP (G0) and the rPDDP model

(P0) is the independent normal-gamma measure, given by

P0(dµ, dτ) = G0(dµ, dτ) = N (µ |µ0, τ
−1
0 )G(τ | ε1, ε2) dµdτ.

Attempting a noninformative prior specification (unless otherwise specified), we took µ0 = 0

and τ0 = ε1 = ε2 = 10−3
. For the concentration masses of the rPDDP model, a–priori, we set

cjl ∼ G(ajl, bjl). For an objective evaluation of the execution time, of the two algorithms under

different scenarios, we choose a synchronized prior specification, namely, for the geometric

probabilities, we set λjl ∼ T G(ajl, bjl) – the transformed gamma density given in eq. (4.23). In

section 4.2.1, we have shown that such prior specifications are valid for ajl > 1. In all our

numerical examples, we took ajl = bjl = 1.1. For our numerical experiments (unless otherwise

specified), the hyperparameters (αjl) of the Dirichlet priors over the matrix of the selection

probabilities p = (pjl) has been set to αjl = 1.
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As a measure of accuracy of the proposed methodologies, we measure the similarity between

probability distributions with the Hellinger distance. So for example, HG(f, f̂) and HD(f, f̂),

will denote the Hellinger distance between the true density f and the predictive density f̂ of the

PDGSBP and rPDDP algorithms, respectively. The Gibbs samplers run for 11 × 104
iterations

leaving the first 104
samples as a burn-in period.

4.4.1 Time execution efficiency of the PDGSBP model

Nested normal mixtures with a unimodal common and idiosyncratic part: Here, we choose

to include all pairwise and idiosyncratic dependences in the form of unimodal equally weighted

normal mixture components. The mixture components are well separated with unit variance.

We define each data model Mm = {f (m)
j : 1 ≤ j ≤ m} of dimension m ∈ {2, 3, 4}, based on

a 4 × 10 matrix M = (Mjk), with entries in the set {0, 1}, having at most two ones in each

column and exactly four ones in each row. When there is exactly one entry of one, the column

defines an idiosyncratic part. The appearance of exactly two ones in a column defines a common

component. We let the matrix M given by

M =


1 1 1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 1 1 0

0 1 0 0 0 1 0 1 0 1

1 0 0 0 0 0 1 0 1 1

 ,

and for m ∈ {2, 3, 4}, we define

Mm : f
(m)
j (x) ∝

2(m+1)∑
k=5−m

MjkN (x|10(k − 6), 1), 1 ≤ j ≤ m,

We are taking independently samples of sizes n
(2)
j = 60 from the f

(2)
j ’s, n

(3)
j = 120 from the

f
(3)
j ’s, and, n

(4)
j = 200 from the f

(4)
j ’s. In all cases, the PDGSBP and the rPDDP density

estimations are of the same quality.

In Figure 4.2 (a)–(d), we give the histograms of the data sets for the specific case m = 4, which

are overladed with the kernel density estimations (KDE’s) based on the predictive samples of the

f
(4)
j ’s coming from the PDGSBP (solid line) and the rPDDP (dashed line) models. The differences

between the two models are nearly indistinguishable. The Hellinger distances between the true

and the estimated densities for the case m = 4 is given in table 4.2.

In table 4.3, we summarize the mean execution times (MET’s) per 103
iterations in seconds.

The PDGSBP sampler is about three times faster than the rPDDP sampler. The corresponding

MET ratios for m = 2, 3 and 4 are 2.96, 3.04 and 3.37 respectively. We can see that the PDGSBP

Gibbs sampler gives slightly faster execution times with increasing m. This will become more

clear in our next simulated data example, where the average sample size per mode is being kept

constant.
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Figure 4.2: Histograms of data sets coming for the case m = 4. The superimposed KDE’s are based on

the predictive samples obtained from the PDGSBP and the rPDDP models.

Table 4.2: Hellinger distances for the case m = 4.

i HG(f
(4)
i , f̂

(4)
i ) HD(f

(4)
i , f̂

(4)
i )

1 0.17 0.17

2 0.19 0.18

3 0.22 0.22

4 0.20 0.20

Table 4.3: Mean execution times in seconds per 103 iterations.

m Model Sample size MET

2 PDGSBP n
(2)
j = 60 0.57

rPDDP 1.68

3 PDGSBP n
(3)
j = 120 2.16

rPDDP 6.57

4 PDGSBP n
(4)
j = 200 5.30

rPDDP 17.87

Sparse m–scalable data set models: In this example, we attempt to create m-scalable normal

mixture data sets of the lowest possible sample size. To this respect, we sample independently

m groups of data sets from the densities

f
(m)
j (x) ∝ N (x | (j − 1)ξ, 1) I(1 ≤ j < m) +

m−1∑
k=1

N (x | (k − 1) ξ, 1) I(j = m),

with sample sizes n
(m)
j = n{I(1 ≤ j < m) + (m− 1) I(j = m)}. We have chosen ξ = 10 and an

average sample size per mode of n = 20, for m ∈ {2, . . . , 10}.
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In Figure 4.3, we depict the average execution times as functions of the dimension m. We can

see how fast the two MET-curves diverge with increasing m. In Figure 4.4(a)–(j), for the specific

case m = 10, we give the histograms of the data sets, overladed with the KDE’s based on the

predictive samples of the f
(10)
j ’s coming from the PDGSBP (solid line) and the rPDDP (dashed

line) models. We can see that the PDGSBP and the rPDDP density estimations are of the same

quality.

The Hellinger distances, between the true and the estimated densities for the specific case

m = 10, are given in Table 4.4. The large values of the Hellinger distances HG(f
(10)
10 , f̂

(10)
10 ) ≈

HD(f
(10)
10 , f̂

(10)
10 ) ≈ 0.22, are caused by the enlargement of the variances of the underrepresented

modes due to the small sample size.
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Figure 4.3: Mean execution times for the two models, based on the sparse m-scalable data sets.
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Figure 4.4: Histograms of sparse m-scalable data sets for the case m = 10. The superimposed KDE’s

are based on the predictive samples of the PDGSBP and the rPDDP models.
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Table 4.4: Hellinger distances between true and estimated densities for the case m = 10 of the sparse

scalable data example.

i 1 2 3 4 5 6 7 8 9 10

HG(f
(10)
i , f̂

(10)
i ) 0.08 0.10 0.09 0.14 0.14 0.13 0.14 0.09 0.11 0.22

HD(f
(10)
i , f̂

(10)
i ) 0.09 0.11 0.10 0.15 0.12 0.10 0.14 0.09 0.09 0.22

4.4.2 Normal and gamma mixture models that are not well separated

The normal mixture example: We will first consider a normal model for m = 2, first appeared

in Lĳoi et al. (2014). The data models for f1 and f2 are 7-mixtures. Their common part is a

4-mixture that is weighed differently between the two mixtures. More specifically, we sample

two data sets of sample size n1 = n2 = 200, independently from

(f1, f2) =

(
1

2
g11 +

1

2
g12,

4

7
g21 +

3

7
g22

)
,

with

g11 =
2

7
N (−8, 0.252) +

3

7
N (1, 0.52) +

2

7
N (10, 1)

g12 =
1

7
N (−10, 0.52) +

3

7
N (−3, 0.752) +

1

7
N (3, 0.252) +

2

7
N (7, 0.252)

g21 =
2

8
N (−10, 0.52) +

3

8
N (−3, 0.752) +

2

8
N (3, 0.252) +

1

8
N (7, 0.252)

g22 =
1

3
N (−6, 0.52) +

1

3
N (−1, 0.252) +

1

3
N (5, 0.52).

For this case, a–priori we took (µ0, τ0, ε1, ε2) = (0, 10−3, 1, 10−2). In Figure 4.5(a)–(b), we give

the histograms of the data sets, with the predictive densities of the PDGSBP and rPDDP mod-

els superimposed in black solid and black dashed curves, respectively. We can see that the

PDGSBP and the rPDDP density estimations are of the same quality.

In Table 4.5, we give the Hellinger distance between the true and the estimated densities

Table 4.5: Hellinger distance between the true and the estimated densities.

i HG(fi, f̂i) HD(fi, f̂i)

1 0.19 0.18

2 0.18 0.15
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Figure 4.5: Density estimations of the 7-mixtures data sets, under the PDGSBP and the rPDDP models.

The true densities have been superimposed in red.

The gamma mixture example: In this example we took m = 2. The data models for f1 and f2

are gamma 4-mixtures. The common part is a gamma 2-mixture, weighted identically among

the two mixtures. More specifically, we sample two data sets of sample size n1 = n2 = 160,

independently from

(f1, f2) =

(
2

5
g11 +

3

5
g12,

7

10
g12 +

3

10
g22

)
,

with

g11 =
2

3
G(2, 1.1) +

1

3
G(80, 2)

g12 =
8

14
G(10, 0.9) +

6

14
G(200, 8.1)

g22 =
2

3
G(105, 3) +

1

3
G(500, 10),

Because we want to estimate the density of non negative observations, we find it more appro-

priate to take the kernel to be a log-normal distribution (Hatjispyros et al., 2017b). That is

K(x|θ) = LN (x|θ) with θ = (µ, σ2), is the log-normal density with mean exp(µ + σ2/2). For

this case, a-priori we set

(µ0, τ0, ε1, ε2) = (S̄, 0.5, 2, 0.01), S̄ =
1

n1 + n2

 n1∑
j=1

log x1j +

n2∑
j=1

log x2j

 .

In Figure 4.6(a)–(b), we display the KDE’s based on the predictive samples of the two models.

We can see that the PDGSBP and the rPDDP density estimations are of the same quality. In

Table 4.6 we give the Hellinger distances.
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Figure 4.6: The KDE’s are based on the predictive sample of the PDGSBP model (solid curve in black)

and the predictive sample of the rPDDP model (dashed curve in black).

Table 4.6: Hellinger distances for the gamma mixture data model.

i HG(fi, f̂i) HD(fi, f̂i)

1 0.13 0.11

2 0.19 0.18

Because the common part is equally weighted among f1 and f2, it makes sense to display the

estimations of the selection probability matrices under the two models

EG(p | (xji)) =

(
0.42 0.58

0.64 0.36

)
, ED(p | (xji)) =

(
0.42 0.58

0.69 0.31

)
, ptrue =

(
0.4 0.6

0.7 0.3

)
.

4.4.3 Borrowing of strength of the PDGSBP model

In this example we consider three populations {D(s)
j : j = 1, 2, 3}, under three different sce-

narios s ∈ {1, 2, 3}. The sample sizes are always the same, namely, n1 = 200, n2 = 50 and

n3 = 200 – the second population is sampled only once. The three data sets D
(s)
1 , D

(s)
2 and D

(s)
3 ,

are sampled independently from the normal mixtures

(f
(s)
1 , f

(s)
2 , f

(s)
3 ) =

(
(1− q(s))f + q(s)g1, f, (1− q(s))f + q(s)g2

)
,

where

f =
3

10
N (−10, 1) +

2

10
N (−6, 1) +

2

10
N (6, 1) +

3

10
N (10, 1)

g1 =
1

2
N (−4, 1) +

1

2
N (4, 1)

g2 =
1

2
N (−12, 1) +

1

2
N (12, 1).
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More specifically, the three scenarios are:

1. For s = 1, we set, q(1) = 0. This is the case where the three populations are coming

from the same 4–mixture f . We depict the density estimations under the first scenario in

Figures 7(a)–(c). This is the case where the small data set, benefits the most in terms of

borrowing of strength.

2. For s = 2, we set, q(2) = 1/2. The 2-mixtures g1 and g2 are the the idiosyncratic parts

of the 6-mixtures f
(2)
1 and f

(2)
3 , respectively. The density estimations under the second

scenario are given in Figures 7(d)–(f). In this case, the strength of borrowing between the

small data set and the two large data sets weakens.

3. For s = 3 we set q(3) = 1. In this case the three populations have no common parts. The

density estimations are given in Figure 4.7(g)–(i). This is the worst case scenario, where

there is no borrowing of strength between the small and the two large data sets.
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Figure 4.7: Density estimation with the PDGSBP model (curves in black) under the three different

scenarios. The true density has been superimposed in red.

The Hellinger distances between the true and the estimated densities, for the three scenarios,

are given in Table 4.7. In the second column of Table 4.7, we can see how the Hellinger distance

of the estimation f̂
(s)
2 and the true density f

(s)
2 increases as the borrowing of strength weakens,

it is that HG(f
(1)
2 , f̂

(1)
2 ) < HG(f

(2)
2 , f̂

(2)
2 ) < HG(f

(3)
2 , f̂

(3)
2 ).
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Table 4.7: Hellinger distances between the true and the estimated densities for the three scenario

example.

s HG(f
(s)
1 , f̂

(s)
1 ) HG(f

(s)
2 , f̂

(s)
2 ) HG(f

(s)
3 , f̂

(s)
3 )

1 0.14 0.19 0.13

2 0.15 0.22 0.15

3 0.12 0.26 0.12

4.4.4 Real data example

The data set is to be found at http://lib.stat.cmu.edu/datasets/pbcseq and involves

data from 310 individuals. We take the observation as SGOT (serum glutamic-oxaloacetic

transaminase) level, just prior to liver transplant or death or the last observation recorded,

under three conditions on the individual

1. The individual is dead without transplantation.

2. The individual had a transplant.

3. The individual is alive without transplantation.

We normalize the means of all three data sets to zero. Since it is reasonable to assume the

densities for the observations are similar for the three categories (especially for the last two), we

adopt the models proposed in this paper with m = 3. The number of transplanted individuals

is small (sample size of 28) so it is reasonable to borrow strength for this density from the

other two. In this example, we set the hyperparameters of the Dirichlet priors for the selection

probabilities to

αjl =

10, if j = l = 1 or j = l = 3

1, otherwise.

1. In Figure 4.8(a)–(c), we provide histograms of the real data sets and superimpose the

KDE’s based on the predictive samples of the PDGSBP and rPDDP samplers. The two

models give nearly identical density estimations.

2. The estimated a–posteriori selection probabilities are given below

EG(p | (xji)) =

0.61 0.23 0.16

0.34 0.10 0.56

0.08 0.12 0.80

 , ED(p | (xji)) =

0.67 0.16 0.17

0.29 0.15 0.56

0.10 0.12 0.78

 .

By comparing the second rows of the selection matrices, we conclude that the the strength of

borrowing is slightly larger in the case of PDGSBP model .

http://lib.stat.cmu.edu/datasets/pbcseq


88 Chapter 4. Pairwise Dependent Random Mixtures

(a) n1=143

−300 −200 −100 0 100 200 300

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

PDGSBP
rPDDP

(b) n2=28

−300 −200 −100 0 100 200 300

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

PDGSBP
rPDDP

(c) n3=139

−300 −200 −100 0 100 200 300

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

PDGSBP
rPDDP

Figure 4.8: Histograms of the real data sets with superimposed KDE curves based on the predictive

samples of the PDGSBP and rPDDP models.

4.5 Time–efficiency of the PDGSBP model

In the previous section, we have seen that, there are great differences in the mean execution

time of the two methods with the PDGSBP model being faster than the rPDDP. This is due to the

ordered nature of the geometric stick breaking weights. Having the weights ordered will lead

(in most cases) in faster sampling times from the joint distribution of the clustering variables

dji. In the following sections, we analyze the computational complexity of the two models when

it comes to the sampling of dji.

4.5.1 Sampling dji in the rPDDP model

The state space of the variable (dji, δji) conditionally on the slice variable uji is (dji, δji)(Ω) =

∪ml=1

(
Awjl(uji)× {el}

)
, where Awjl(uji) = {r ∈ N : uji < wjlr} is the a.s. finite slice set

corresponding to the observation xji (Walker, 2007).

At each iteration of the Gibbs sampler, we have m(m + 1)/2 vectors of stick-breaking weights

wjl, each of length N∗jl; where N∗jl ∼ 1 + Poisson(−cjl log u∗jl) with cjl being the concentration

parameter of the Dirichlet process Pjl and u∗jl being the minimum of the slice variables in

densities fj and fl.

In Algorithm 2, the procedure for the blocked sampling of the clustering and mixture indicator

variables is presented. To give an intuition about how the slice sets are created we provide an

illustration of the effect of the slice variable uji in Figure 4.9.
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Algorithm 2 : rPDDP

1: procedure Sample (dji, δji)

2: for random densities fj , j = 1 to m do

3: for each data point xji ∈ fj i = 1 to nj do

4: for each mixture component K(xji|θjl), l = 1 to m do

5: Construct slice sets Awjl(uji)

6: end for

7: Sample (dji = k, δji = r| · · · ) ∝ K(xji|θjrk) I
(
(k, r) ∈ ∪ml=1

(
Awjl(uji)× {el}

))
8: end for

9: end for

10: end procedure
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Figure 4.9: Stick-breaking weights for some N∗jl = 20. The red dashed line represents the slice variable

uji = 0.05. The algorithm must check all the N∗jl values to accept those that they satisfy uji < wjlk.

After a complete search, the slice set is Awjl
(uji) = {1, 2, 3, 5, 7, 8}.

Since the weights forming the stick-breaking representation are not in an ordered form, the

construction of the slice sets in step 5 of Algorithm 2 requires a complete search in the array

where the weights are stored. This operation is done in O(N∗jl) time. For the sampling of

the dji and δji variables in step 6, the choice of their value is an element from the union

∪ml=1

(
Awjl(uji)× {el}

)
. This means, that the rPDDP algorithm, must create for each j, m slice

sets which require N∗jl comparisons each. The worst case scenario is that the sampled (dji, δji)

will be the last element of ∪ml=1

(
Awjl(uji)× {el}

)
. Thus, the DP based procedure of sampling
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(dji, δji) is of order

O

(
m2njN

∗
jl

m∑
l=1

|Awjl(uji)|

)
= O

(
N∗jl

m∑
l=1

|Awjl(uji)|

)
.

4.5.2 Sampling dji in the PDGSBP model

The state space of the variable (dji, δji) conditionally on the slice variable Nji is (dji, δji)(Ω) =

∪ml=1 (Sji × {el}) . In the GSB case, the slice variable has a different rôle. It indicates at which

random point the search for the appropriate dji will stop. In Figure 4.10, we illustrate this

argument. In Algorithm 3, the worst case scenario is that the sampled (dji, δji) will be the last

element of ∪ml=1 (Sji × {el}). Thus, the GSB based procedure of sampling (dji, δji) is of order

O
(
m2njNjl

)
= O (Njl) .
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Figure 4.10: Geometric stick-breaking weights for N∗jl = 20. The red dashed line represents the slice

variable Nji = 6. The slice set is simply Sji = {1, 2, 3, 4, 5, 6}.
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Algorithm 3 : PDGSBP

1: procedure Sample (dji, δji)

2: for random densities fj , j = 1 to m do

3: for each data point xji ∈ fj i = 1 to nj do

4: for each mixture component K(xji|θjl), l = 1 to m do

5: Sample (dji = k, δji = r| · · · ) ∝ K(xji|θjrk) I(k ≤ Nji) I(r ≤ m)

6: end for

7: end for

8: end for

9: end procedure

4.6 Conclusions

We have generalized the GSB process to a multidimensional dependent stochastic process

which can be used as a Bayesian nonparametric prior for density estimation in the case of

partially exchangeable data sets. The resulting Gibbs sampler is as accurate as its DP based

counterpart, yet faster and far less complicated in terms of computational complexity and ease

of implentation. The main reason for this is that the GSB sampled value of the allocation

variable dji will be a choice from the sequential slice set Sji = {1, . . . , Nji}. Thus, there is no

need to search the arrays of the weights (see Section 4.5).

Also, for an objective comparison of the execution times of the two models, we have run the

two samples in an a–priori synchronized mode. This, involves the placing of G(ajl, bjl) priors

over the DP cjl concentration masses, leading to a more efficient version of the PDDP model

introduced in Hatjispyros et al. (2011, 2016).

Finally, we have shown that when the PDGSBP and rPDDP models are synchronized, i.e. their

parameters satisfy λji = (1 + cji)
−1, the correlation between the models can be controlled by

imposing further restrictions among the λji parameters.
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Chapter 5

Joint reconstruction of RDS with

pairwise dependent GSBR priors

5.1 Introduction

A number of approaches for modeling time series in a Bayesian nonparametric context have

been proposed in the literature. For example, an infinite mixture of time series models has been

proposed in Rodriguez & Ter Horst (2008). A Markov–switching finite mixture of independent

DPM’s has been proposed by Taddy & Kottas (2009). Recenlty, Jensen & Maheu (2010) and

Griffin (2010) considered DPM for stochastic volatility models in discrete and continuous time

respectively. An approach for continuous time series modeling based on time dependent GSB

process mixtures can be found in Mena et al. (2011).

Recently there has been a growing research interest for Bayesian nonparametric modeling in the

context of multiple time series. In a recent work of Fox et al. (2009) a Bayesian nonparametric

model based on the Beta process was introduced In order to model dynamical behavior shared

among a number of time series. They represented the behavioral set with an attribute list

encoded by an n × k binary matrix, with n the number of time series and k the number of

features. Their approach allowed for potentially an infinite number of behaviors k. This was an

improvement of a similar approach of a previous work of Fox et al. (2008) where the time series

shared exactly the same set of behaviors.

In Nieto-Barajas & Quintana (2016) a Bayesian nonparametric dynamic autoregressive model

for the analysis of multiple time series was introduced. They considered an autoregressive

model of order p for each of the time series in the collection, and a Bayesian nonparametric

prior based on dependent Polya trees. The dependent prior, with its median fixed at zero, was

used for the modeling of the errors. Such models rely on the concept of partial exchangeability

meaning that the order that the samples have been collected, over groups, does not affect their

distribution.

In Chapter 3 we have dealt with the problem of reconstruction of the dynamical equation con-

sisting the deterministic part of a stochastic dynamical system, and modeling the density of the

noise process with a GSB mixture process. In this chapter we wish to generalize the so called
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GSBR model in a multivariate setting in order to reconstruct jointly a finite collection of dynami-

cal equations. We propose a Bayesian nonparametric mixture model for the joint reconstruction

of m dynamical equations, given m observed dynamically–noise–corrupted chaotic time series.

The method of reconstruction is based on the Pairwise Dependent Geometric Stick Breaking

Processes (PDGSBP) mixture priors (Hatjispyros et al., 2017a) already described in Chapter 4.

We assume that the dynamical equations have deterministic parts gj belong to known families

of functions; for example they can be polynomial or (and) rational functions. A–priori we assume

that we have the knowledge that the noise processes have common characteristics, for example

they could reveal a similar tail behavior or (and) have common variances, or simply they come

from the same noise process which is (perhaps) non Gaussian. Our contention is that when-

ever there is at least one sufficiently large data set, using informative borrowing–of–strength

prior specifications we will be able to reconstruct the dynamical processes for which we have

insufficient information, namely, their sample sizes are inadequate for an independent GSBR

reconstruction and prediction.

This Chapter is organized as follows. In section 5.2, we derive the Pairwise Dependent Geometric

Stick Breaking Reconstruction (PD–GSBR) model, a Bayesian nonparametric mixture model for

the reconstruction and prediction of multiple dynamical equations from observed time series

data, by applying a PDGSBP mixture prior. In section 5.3, the associated MCMC algorithm

is presented. In section 5.4, we resort to simulation. We apply the PD–GSBR model on the

reconstruction and prediction of random polynomial maps of arbitrary degree that are dynami-

cally perturbed by noise processes which are (perhaps) non Gaussian. Finally, conclusions and

some directions for future research are discussed.

5.2 The Pairwise Depedent GSBR model

We will consider initially, the general case of a finite collection of m dynamic nonlinear models.

Letting xj,i:lj := (xj,i−1, · · · , xj,i−lj ) we have

xji = gj(ϑj , xj,i:lj ) + zji, 1 ≤ j ≤ m, 1 ≤ i ≤ nj , (5.1)

where gj : Θj × Xljj → Xj for some compact subsets Xj of R, and Θj ⊆ Rqj . lj is the lag of the

j-th dynamical model and gj is a nonlinear map continuous in the variable xj,i:lj , with additive

errors zji
iid∼ fj for 1 ≤ i ≤ nj , for all 1 ≤ j ≤ m with fj some unknown symmetric zero mean

density with support over R. Additionally, we assume that there is no observational noise so

that we have at our disposal m groups of observations x
(nj)
j := (xj1, . . . , xj,nj ), 1 ≤ j ≤ m,

associated with the unknown initial conditions {xj,1:lj : 1 ≤ j ≤ m}.

We wish to estimate the control parameters ϑj the intial condition xj,1:lj and the distribution of

the dynamical error processes fj , for all j = 1, ...,m.

The zji are independent and identically distributed random variables with density function fj for

which we do not assume that they belong to a particular parametric family of densities. Instead

we take fj to be nonparametric densities based on the PDGSBP mixture model (Hatjispyros
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et al., 2017a). The PDGSBP mixture implies the following hierarchical model for the errors. For

1 ≤ j ≤ m and 1 ≤ i ≤ nj

zji | τji
ind∼ N (0, τ−1

ji )

τji |Qj
iid∼ Qj

Qj =
m∑
l=1

pjlGjl,
m∑
l=1

pjl = 1, Gjl = Glj

Gjl
ind∼ GSB(λjl, G0), 1 ≤ j ≤ l ≤ m

λjl
ind∼ Be(αjl, βjl),

and G0 is the parametric base measure of the GSB process with E[Gjl(A)] = G0(A). Here the

measure G0 is assumed to have density g0 which we will take to be G(a, b), a gamma density

with mean a/b.

While our method can be used to reconstruct dynamical systems where each state xji depends

on the previous lj states xj,i−1, . . . , xj,i−lj , for simplicity and ease of illustration we focus on the

case lj = 1. In this case, the dynamical system has a Markovian dependence structure and can

be written as

xji = gj(ϑj , xj,i−1) + zji, j = 1, . . . ,m, i = 1, . . . , nj . (5.2)

The hierarchical model for the observations xj1, . . . , xjnj conditional on the unknown initial

condition xj0 for 1 ≤ j ≤ m becomes

xji |xj,i−1, ϑj , τji
ind∼ N (gj(ϑ, xj,i−1) | 0, τ−1

ji )

τji |Qj
iid∼ Qj

Qj =
m∑
l=1

pjlGjl,
m∑
l=1

pjl = 1, Gjl = Glj

Gjl
ind∼ GSB(λjl, G0), 1 ≤ j ≤ l ≤ m

λjl
ind∼ Be(αjl, βjl).

Using the fact that

Gjl =

∞∑
k=1

wjlkδτjlk with wjlk = λjl(1− λjl)k−1, λjl ∼ Be(αjl, βjl), τjlk
iid∼ G(a, b), (5.3)

the transition density of the i–th observation in the j–th group can be written as a random finite

mixture of random infinite mixtures of normal kernels, that is

fj(xji |xj,i−1, ϑj , (τjl)l≥1) =
m∑
l=1

pjl

{ ∞∑
k=1

wjlkN (xji | gj(ϑj , xj,i−1), τ−1
jlk )

}
, (5.4)

The density shown in eq. (5.4) is of a nonstandard form. We will deal with the nonlinear maps
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gj , appearing in the means of the normal kernels, with the introduction of auxiliary variables

in a similar fashion as in Chapter 3. We will apply the same density augmentations as in

Chapter 4. That is, we define the stochastic variables N = (Nji) for 1 ≤ i ≤ nj and 1 ≤ j ≤ m,

where Nji is an almost surely finite random variable following the specific negative binomial

distribution N b(Nji | 2, λjl) = Njiλ
2
jl(1− λjl)Nji−1. Consequently we introduce

1. The GSB mixture selection variables δ = (δji); for an observation xji that comes from fj ,

δji selects the GSB mixture gji(x) that the observation came from. It is that Pr{δji = l} =

pjl.

2. The clustering variables d = (dji); for an observation xji that comes from fj , given δji, dji

allocates the component of the GSB mixture gjδji(x) that xji came from. Given Nji the

variables dji have a discrete uniform distribution over the integers {1, . . . , Nji}.

Augmenting the random densities given in (5.4) with Nji we have that

fj(xji, Nji = r) =
m∑
l=1

fj(xji, Nji = r, δji = l)

=
m∑
l=1

pjl

∞∑
k=1

fj(xji, Nji = r, dji = k | δji = l)

=
m∑
l=1

pjl

∞∑
k=1

N b(Nji = r | 2, λjl)DU(k | 1, . . . , r)N (xji | gj(ϑj , xj,i−1), τ−1
k )

=
1

r

m∑
l=1

pjl

r∑
k=1

N b(Nji = r | 2, λjl)N (xji | gj(ϑj , xj,i−1), τ−1
k ),

leading to the dji, Nji augmented density:

fj(xji, Nji = r, dji = k | δji = l) = λ2
jl (1− λjl)k−1N (xji | gj(ϑj , xj,i−1), τ−1

k ). (5.5)

We denote the set of observations along the m groups as x = {xji : 1 ≤ j ≤ m, 1 ≤ i ≤ nj} and

with xj = {xji : 1 ≤ i ≤ nj} the set of observations in the j–th group. The three sets of latent

variables in the jth group will be denoted as N j = {Nji : 1 ≤ i ≤ nj} for the slice variables,

dj = {dji : 1 ≤ i ≤ nj} for the clustering variables, and finally δj = {δji : 1 ≤ i ≤ nj} for the set

of GSB mixture allocation variables. From now on, we are going to leave the auxiliary variables

unspecified; especially for δji we use the notation

δji = (δ1
ji, . . . , δ

m
ji ) ∈ {e1, . . . , em} with Pr(δji = el) = pjl,

where el denotes the usual basis vector having its only nonzero component equal to 1 at position

l. Hence, for a sample of size n1 from f1, a sample of size n2 from f2, etc., a sample of size nm
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from fm we can write the full likelihood as a multiple product:

f(x,N ,d | δ) =
m∏
j=1

f(xj ,N j ,dj | δj)

=
m∏
j=1

nj∏
i=1

I(dji ≤ Nji)
m∏
l=1

{
λ2
jl(1− λjl)Nji−1N (xji | gj(ϑj , xj,i−1), τjldji)

}δlji .
In a hierarchical fashion, using the auxiliary variables, we have for j = 1, . . . ,m and i =

1, . . . , nj ,

xji, Nji | dji, δji, (τjrδji)1≤r≤m, λjδji
ind∼

m∏
r=1

{
λ2
jr(1− λjr)Nji−1N (xji | gj(ϑj , xj,i−1), τjrdji)

}δrji
× I(Nji ≥ dji)

dji |Nji
ind∼ DU({1, . . . , Nji}), Pr(δji = el) = pjl

wjik = λji(1− λji)k−1, τjik
iid∼ P0, k ∈ N,

5.3 The PD-GSBR Gibbs sampler

In this section, we are going to describe the PD-GSBR Gibbs sampler. At each iteration we will

sample the variables,

τjlk, 1 ≤ j ≤ l ≤ m, 1 ≤ k ≤ N∗,

dji, Nji, δji, 1 ≤ j ≤ m, 1 ≤ i ≤ nj ,

pjl, 1 ≤ j ≤ m, 1 ≤ l ≤ m,

ϑj , xj0, 1 ≤ j ≤ m

with N∗ = maxj,iNji almost surely finite.

1. For the precisions of the random measures for k = 1, . . . , N∗ where N∗ = maxj,iNji, it is

that for l > j

f(τjlk | · · · ) ∝ g0(τjlk)

nj∏
i=1

N (xji | gj(ϑj , xj,i−1), τ−1
jlk )I(δji=el, dji=k)

×
nl∏
i=1

N (xji | gj(ϑj , xj,i−1), τ−1
jlk )I(δli=ej , dli=k).

For l = j, it is that

f(τjjk | · · · ) ∝ g0(τjjk)

nj∏
i=1

N (xji | gj(ϑj , xj,i−1), τ−1
jjk)

I(δji=ej , dji=k).
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2. Here, we sample the allocation variables dji and the mixture component indicator variables

δji as a block. For j = 1, . . . ,m and i = 1, . . . , nj , we have

Pr(dji = k, δji = el |Nji = r, · · · ) ∝ pjlN (xji | gj(ϑjlk, xj,i−1), τ−1
jlk ) I(l ≤ m) I(k ≤ r).

3. The geometric slice variables Nji have full conditional distributions given by

Pr(Nji = r | δji = el, dji = l, · · · ) ∝ (1− λjl)r I(l ≤ r),

which are truncated geometric distributions over the set {l, l + 1, . . .}.

4. The full conditional, for j = 1, . . . ,m, for the selection probabilities pj = (pj1, . . . , pjm),

under a Dirichlet prior f(pj |aj) ∝
∏m
l=1 p

ajl−1
jl , with hyperparameter aj = (aj1, . . . , ajm), is a

Dirichlet distribution. Namely, for j = 1, . . . ,m we have

f(pj | · · · ) ∝
m∏
l=1

p
ajl+

∑nl
i=1 I(δji = el)−1

jl .

5. The full conditionals for the geometric probabilities λjl under beta conjugate prior Be(ajl, bjl)
are Beta distributions. Letting

Sjl =

nj∑
i=1

I(δji = el) and S′jl =

nj∑
i=1

I(δji = el)(Nji − 1),

for l = j it is that

f(λjj | · · · ) = Be(λjl | ajj + 2Sjj , bjj + S′jj),

also, for l 6= j we have

f(λjl | · · · ) = Be(λjl | ajl + 2(Sjl + Slj), bjl + S′jl + S′lj).

6. For the vectors of parameters ϑj , 1 ≤ j ≤ m, and assuming a uniform prior over the subset

Θ̃j of the parameter space Rk, the full conditional becomes

f(ϑj | · · · ) ∝ I(ϑj ∈ Θ̃j) exp

{
−1

2

nj∑
i=1

τjldjihϑj (xji, xj,i−1)

}
, (5.6)

where hϑj (xji, xj,i−1) := (xji − gj(ϑj , xj,i−1))2.

7. The full conditional for xj0, with a uniform prior over the sets X̃j ⊆ R that represents our

prior knowledge for the state space of the dynamical systems in relation (5.1) will be

f(xj0 | · · · ) ∝ I(xj0 ∈ X̃) exp
{
−
τjld1

2
hϑj (xj1, xj0)

}
. (5.7)
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8. The full conditionals for sampling the next T future unobserved observations for k =

1, . . . , T − 1 are given by

f(xj,nj+k | · · · ) ∝ exp

{
−1

2

[
τdj,nj+khϑj (xnj+k, xnj+k−1) + τdj,nj+k+1

hϑj (xnj+k+1, xnj+k)
]}
(5.8)

For k = T, the full conditional is normal with mean gj(ϑj , xj,nj+T−1) and variance τ−1
jδj,nj+T dj,nj+T

,

that is

fj(xj,nj+T | · · · ) = N
(
xj,nj+T | gj(ϑj , xj,nj+T−1), τ−1

jδj,nj+T dj,nj+T

)
. (5.9)

For simplicity, in our numerical experiments, we will sample only the first future unobserved

observation xj,nj+1.

Conditionally on the mixture allocation variable δji, we can sample from eq. (5.6) through

eq. (5.9) with the auxuliary variables method as described in Appendix A.1.

5.4 Numerical illustrations

In this section, we will demonstrate the efficiency of the proposed PD–GSBR model for synthetic

time series, for the case m = 2 and l1 = l2 = 1. The deterministic parts of the dynamical

systems for the data simulation, are given by polynomial autoregressive processes. We will use

the following chaotic dynamical systems xi = Cr(xi−1), and xi = Qr(xi−1), for r = 1, 2, with

Cr(x) = 0.05 + crxi−1 − 0.99x3
i−1 with c1 = 2.55 and c2 = 2.65 (5.10)

Qr(x) = 1− qrx2
i−1 with q1 = 1.71 and q2 = 1.85. (5.11)

The dynamical systems in (5.10) and (5.11) are chaotic. Moreover, both cubic maps C1 and

C2, when perturbed by dynamical noise of sufficient intensity, they follow a scenario of noise

induced jumps as seen in Chapter 3. The values q1 and q2 belong to the Pomeau-Manneville

chaotic band (Pomeau & Manneville, 1980).

We will illustrate different scenarios for which the PD–GSBR reconstruction and prediction,

is beneficial to one of the time series, for which an independent GSBR reconstruction and

prediction, is problematic due to its small sample size. We will specify the sample sizes of the

time series in each example separately.

Some non-Gaussian dynamical noise processes: In the sequel, we will illustrate the PD-GSBR

sampler, with Gaussian and non-Gaussian noise processes. As non-Gaussian noise processes,

we will use the E1 and E2 pairs of mixtures of normals densities given by

f1 =

(
f11 =

1

4
N (0, 10−6) +

3

4
f12, f12 =

6

10
N (0, σ2

1) +
4

10
N
(
0, (10σ1)2

))
, (5.12)
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with σ2
1 = 3× 10−3

, and

f2 =

(
f21 =

3

4
N (0, 10−7) +

1

4
f22, f22 =

9

10
N (0, σ2

2) +
1

10
N
(
0, (200σ2)2

))
, (5.13)

with σ2
2 = 10−6

. Both pairs of noise processes are exhibiting a heavier tail behavior than the

standard normal, approximately we have

TFf1 = (0.505, 0.576), TFf2 = (0.138, 0.264).

We remark that the tail fatness of the standard normal is

√
2/π ≈ 0.798, and that the more the

TF index gets closer to zero, the heavier the tails are.

For the reconstruction of the deterministic parts given in (5.10) and (5.11), as model polynomi-

als, in all our illustrations, we have used the quintic polynomials

gj(ϑj , x) =
5∑
r=0

ϑjrx
r, j = 1, 2.

Prior specifications: We first define the prior distributions for all PD-GSBR Gibbs sampler

variables, except the selection probabilities. In all our numerical experiments, we will use the

following noninformative prior set up:

λjl ∼ Be(1, 1) ≡ U(0, 1), {τjlk ∼ G(10−3, 10−3) : k ≥ 1}, 1 ≤ j ≤ l ≤ 2

ϑj ∼ U((−10, 10)6), xj0 ∼ U(−10, 10), j = 1, 2.

Because the borrowing of information between the two dynamic models, can be quantified by

the posterior mean of the selection probabilities

E(pj1|x(n1)
1 , x

(n2)
2 ), j = 1, 2,

the prior distribution over the selection probabilities (pji), plays a decisive role on the strength

of borrowing of information between the two dynamic models. In the sequel we will make use

of the following borrowing of strength configurations:

1. To force a weak borrowing scenario, we impose a-priori

PW : p11 ∼ Be(10, 1), p21 ∼ Be(1, 10),

and the prior mean matrix of the selection probabilities becomes

E{(pji)} =

(
10/11 1/11

1/11 10/11

)
.

2. Suppose now that n1 is considerably greater than n2. When a–priori we believe that there

is some kind of similarity between the components of the noise process pairs, we increase
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the prior probability of selection of the common part of the large data set dynamical

system, and we use noninformative a–priori probabilities of selection over the small data

set, that is

PSN : p11 ∼ Be(1, 10), p21 ∼ Be(1, 1).

We call such an a–priori configuration a strong noninformative borrowing scenario. Then,

the prior mean matrix of the selection probabilities takes the form

E{(pji)} =

(
1/11 10/11

1/2 1/2

)
,

meaning that the common component, associated with the large sample size (first row of

the matrix), becomes very influential. On the other hand, the uniform prior, points to the

times series with the small sample size.

3. When our prior beliefs advocate that the components of the noise process pairs are about

the same, for a strong informative common noise borrowing of strength scenario, we set

PSI : p11 ∼ Be(1, 10), p21 ∼ Be(10, 1).

Now, it is that

E{(pji)} =

(
1/11 10/11

10/11 1/11

)
,

and the main dynamic noise contribution comes from the common noise component

between the two time series.

We remark that for m = 2 it is that pj2 = 1 − pj1 for j = 1, 2, and, p ∼ Be(a, b) if and only if

1− p ∼ Be(b, a).

In the sequel, with

(g1 + η, g2 + ξ)→ (x
(n1)
1 , x

(n2)
2 ),

we denote the fact that the pair of synthetic time series (x
(n1)
1 , x

(n2)
2 ) of respective sample sizes

n1 and n2, have been simulated via a pair of dynamical systems having deterministic parts g1

and g2, perturbed dynamically by the noise process pair f = (η, ξ).

In all our numerical experiments, as a starting point we have chosen x10 = x20 = 1, and we

have ran the PD-GSBR Gibbs sampler for N = 60, 000 iterations, after a burn-in period of

20, 000 iterations.

A. Borrowing from a cubic to a quadratic map under the f1 noise pair: In our first numerical

example, we make use of the configuration

(C1 + f11,Q1 + f12)→ (x
(200)
1 , x

(50)
2 ).

We will attempt to demonstrate numerically, that it is possible, the borrowing of information

from the estimated noise process f̂11, based on the time series x
(200)
1 perturbing the cubic map,
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to improve the overall estimation process that is based on the shorter times series x
(50)
2 . This

shorter time series, has been produced by the quadratic map, perturbed by the noise process

f12 which is the non-Gaussian mixture component of the actual process f11.

In Figure 5.1(a) we can see the trace of the stochastic trajectory x
(200)
1 . The time series experi-

ences noise induced jumps from the interval I1 = [−1.60,−0.10) (containing the chaotic attrac-

tor) to the interval I2 = [−0.10, 1.67] (containing the chaotic repellor). The second dynamical

system has the deterministic invariant set X = [−1.11, 1.11], that is Q1(X) ⊂ X. Nevertheless,

under the dynamical noise perturbation f12, the quadratic trajectory escapes its invariant set

after the first 46 iterations. In fact, it can be verified that for x /∈ X, Qn1 (x) → −∞ as n → ∞.

This situation is depicted in Figure 5.1(b).
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Figure 5.1: The f1 noise pair perturbed time series corresponding to the cubic map C1 and the quadratic

map Q1 are given in Figures (a) and (b), respectively.

The ergodic means, coming from the PD-GSBR sampler, for the coefficients of the deterministic

parts, based on the x
(200)
1 and the x

(50)
2 time series, under the weak borrowing prior specification

PW (black solid curves) and the strong borrowing noninformative prior specification PSN (red

solid curves), are given in Figure 5.2(a)-(f), and Figure 5.2(g)-(l), respectively. It can be seen that

for the large data set, x
(200)
1 , the running averages based on the predictive samples {ϑ̂k1i : 1 ≤

k ≤ N, 0 ≤ i ≤ 5}, after burn-in, and under the PW prior, are converging fast to the true values

of the ϑ1-coefficients (represented by the dotted horizontal lines). In parallel, the estimation

of the coefficients of the small data set (the ergodic averages in black in Figure 5.2(g)-(l)), is

problematic. It leads to a biased estimation of the ϑ2-coefficients.

In Table 5.1, we provide the Percentage Absolute Relative Errors (PAREs), of the the joint

(x
(200)
1 , x

(50)
2 )-coefficient estimation, with respect to the true values.

1. In the first two lines of Table 5.1, we can see the effect of the PW prior. The estimation

associated with x
(200)
1 is very accurate, and enables the identification of the respective

C1 dynamical system responsible for the observed time series. Nevertheless, the part of

the joint estimation based on the time series x
(50)
2 exhibits large errors, hindering the

identification of the second dynamical system.

2. In the last two lines of Table 5.1, we present the effect of borrowing on the estimation of

the coefficients via the PSN prior. Strong borrowing reduces the average PARE associated
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Figure 5.2: Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials under weak

(solid curves in black) and strong (solid curves in red) borrowing. The averages associated with the

cubic map C1 appear in Figures (a)-(f), and the averages associated with the quadratic map Q1 appear in

Figures (g)-(l).

with the short time series from 2.67% to a mere 0.37% enabling the identification of the

deterministic part Q1.

Table 5.1: PAREs of the joint GSBR coefficient estimation based on the pair of time series (x
(200)
1 , x

(50)
2 )

under the f1 noise pair. The estimation is based on a polynomial modeling of fifth degree, assuming the

weak borrowing PW, and the strong borrowing noninformative prior PSN.

Prior Time series ϑj0 ϑj1 ϑj2 ϑj3 ϑj4 ϑj5 ϑ̄

PW x
(200)
1 0.44 0.09 0.04 0.40 0.02 0.14 0.19

x
(50)
2 0.55 1.57 2.39 6.44 1.81 3.24 2.67

PSN x
(200)
1 0.50 0.11 0.06 0.50 0.03 0.17 0.23

x
(50)
2 0.23 0.25 0.48 0.57 0.01 0.42 0.37

In Figure 5.3(a)-(b) we present the marginal noise densities (f̂21, f̂12), of the joint estimation,

under the PW and PSN priors, in black and red, respectively. For the choice of PW and PSN

priors, the posterior mean matrices of the selection probabilities are given by

EW{(pji)|x(200)
1 , x

(50)
2 } =

(
0.724 0.276

0.142 0.858

)
, ESN{(pji)|x(200)

1 , x
(50)
2 } =

(
0.230 0.770

0.927 0.073

)
,

respectively. We can see that in the case of the short time series, under the weak borrowing

prior, when sampling from the noise component, the samples come from the common compo-

nent only 14.2% of the times. Under the strong borrowing prior, sampling from the common

component increases to 92.7%. The predictive density of the marginal posterior pair of initial

conditions (x10, x20) is depicted in Figure 5.3(c)-(d). We can see that the estimation is nearly
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identical under the two prior configurations. In Figure 5.3(e)-(f), we exhibit the predictive den-

sity of the marginal posterior pair (x1,201, x2,51) for one future observation for each time series.

The differences on the estimation of the density of the future observation of the first dynamical

system, under the two priors PW and PSN, are nearly indistinguishable. Nevertheless, the joint

estimation of the density of the future observation of the second dynamical system under the

strong borrowing prior makes a huge difference. The PSN prior enables an accurate prediction

of the future value x2,51 that lies outside the invariant set X. The associated 95% highest

posterior density intervals (HPDIs) under the weak and the strong borrowing priors, are given

by

HPDI(x2,51;PW) = [−6.112,−4.429] and HPDI(x2,51;PSN) = [−7.067,−5.481],

respectively. We remark that the true future value of the quadratic trajectory is at about

x∗2,51 = −5.969 (blue vertical dotted line in Figure 5.3(f)), outside the invariant set X.
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Figure 5.3: Kernel density estimations based on the predictive samples coming from the PD-GSBR Gibbs

sampler. Weak borrowing corresponds to the densities in black, and strong borrowing to the densities in

red. Figures (a), (c) and (e) correspond to the cubic map C1, and Figures (b), (d) and (f) correspond to the

quadratic map Q1. The noise predictive densities are given in Figures (a) and (b). The initial conditions

predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give the predictive densities

of the first future observation.

B. Borrowing from a cubic to a quadratic map under the f2 noise pair: In our second

numerical example, we use the configuration

(C1 + f21,Q1 + f22)→ (x
(200)
1 , x

(20)
2 ).
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In this case the time series generated from the quadratic map is much shorter. At the same

time the noise process pair f2 has heavier tails and larger mixture variances than those of the

f1 pair. In this numerical example, we will show that when serious mixing issues occur, the

situation can be corrected by applying a joint prior that induces strong borrowing.

In Figure 5.4(a) we give the trace of the stochastic trajectory x
(200)
1 of length 200, experiencing

noise induced jumps due to the dynamic perturbations of the noise process f21. In Figure 5.4(b)

we display the quadratic trajectory x
(20)
1 which is perturbed by the noise process f22.
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Figure 5.4: The f2 noise pair perturbed time series corresponding to the cubic map C1 and the quadratic

map Q1 are given in Figures (a) and (b), respectively.

The ergodic means of the ϑ-coefficients, coming from the PD-GSBR sampler, under the weak

borrowing prior specification PW (black solid curves) and the strong borrowing noninformative

prior specification PSN (red solid curves), are given in Figure 5.5(a)-(f), and Figure 5.5(g)-(l),

respectively. For the large data set, the running averages based of the predictive samples

under both prior configurations, are converging fast to the true values. On the other hand, the

estimation of the coefficients associated with the small data set, under the joint weak borrowing

prior PW is very problematic. For example, the chains for the variables ϑ21, ϑ22, ϑ24 and ϑ25,

are kept stuck to certain regions of the state space for a large number of iterations of the Gibbs

sampler. The situation can be corrected by the introduction of strong borrowing via the PSN

prior. The convergence of the ergodic means to the true values under the PSN prior are given

in Figure 5.5(g)-(l) (solid curves in red).

In the first two lines of Table 5.2, we can see the effect of the weak borrowing of strength prior

PW. The estimation of the coefficients of the first dynamical system is very accurate, enabling

the identification of the cubic map. The part of the joint estimation based on the short time

series exhibits large errors, hindering identification. In the last two lines of Table 5.2, we present

the effect of the strong borrowing prior. Borrowing gives the part of the estimation associated

with the short time series nice mixing properties, and it reduces the average PARE from 7.51%

to a mere 0.26%, thus, enabling the identification of the quadratic map.

In Figure 5.6(a)-(b) we present the predictive posterior marginal noise density pair (f̂21, f̂22),

under the PW and PSN priors, in black and red solid curves, respectively. The posterior mean
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Figure 5.5: Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials under weak

(solid curves in black) and strong (solid curves in red) borrowing. The averages associated with the

cubic map C1 appear in Figures (a)-(f), and the averages associated with the quadratic map Q1 appear in

Figures (g)-(l).

Table 5.2: PAREs of the joint GSBR coefficient estimation based on the pair of time series (x
(200)
1 , x

(20)
2 )

under the f2 noise pair. The estimation is based on a polynomial modeling of fifth degree, assuming

weak borrowing and strong borrowing.

Prior Time series ϑj0 ϑj1 ϑj2 ϑj3 ϑj4 ϑj5 ϑ̄

PW x
(200)
1 0.18 0.15 0.03 0.20 0.01 0.02 0.10

x
(20)
2 0.37 1.35 4.95 0.22 22.31 15.87 7.51

PSN x
(200)
1 0.00 0.29 0.02 0.46 0.01 0.06 0.14

x
(20)
2 0.02 0.02 0.08 0.67 0.05 0.73 0.26

matrices of the selection probabilities under the PW and PSN priors, are

EW{(pji)|x(200)
1 , x

(20)
2 } =

(
0.995 0.005

0.033 0.967

)
, ESN{(pji)|x(200)

1 , x
(20)
2 } =

(
0.005 0.995

0.956 0.044

)
,

respectively. Under the weak borrowing prior, the joint estimation is nearly independent, as

the off-diagonal elements of the first matrix are close to zero. We remark here, that the strong

borrowing prior is very efficient as 95.6% of the noise samples are coming from the common

component. The predictive density of the marginal posterior pair of initial conditions (x10, x20)

is depicted in Figure 5.6(c)-(d). More specifically, in Figure 5.6(d) we can see that the estima-

tion part corresponding to the short time series under the strong prior configuration is more

accurate. In Figure 5.6(e)-(f), we exhibit the predictive density of the marginal posterior pair

(x1,201, x2,21) for one future observation. The posterior mean estimations for the cubic dynami-

cal system, under the weak and strong borrowing priors are of the same quality, yet, the joint

estimation associated with the quadratic map, under the strong borrowing prior, shrinks the

length of the corresponding 95%-HPDI by a factor of 0.13, namely

HPDI(x2,21;PW) = [0.426, 0.554] and HPDI(x2,21;PSN) = [0.485, 0.502].
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Figure 5.6: Kernel density estimations based on the predictive samples coming from the PD-GSBR Gibbs

sampler. Weak borrowing corresponds to the densities in black, and strong borrowing to the densities in

red. Figures (a), (c) and (e) correspond to the cubic map C1, and Figures (b), (d) and (f) correspond to the

quadratic map Q1. The noise predictive densities are given in Figures (a) and (b). The initial conditions

predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give the predictive densities

of the first future observation.

C. Borrowing between cubic maps perturbed by an identical noise process: In our third

numerical example, we have generated a pair of time series via the configuration

(C1 + f22, C2 + f22)→ (x
(200)
1 , x

(30)
2 ).

In this example, both cubic maps are perturbed dynamically by the noise process f22 given in

(5.13). Both dynamical trajectories experience noise induced jumps. The traces of the two time

series x
(200)
1 and x

(30)
2 are given in Figure 5.7(a) and Figure 5.7(b) respectively. Here we will

demonstrate numerically, that strong informative borrowing of strength between the estimated

noise processes via the joint prior PSI, accelerates the slow convergence of the ergodic averages

corresponding to the short time series.

The ergodic averages for the ϑ-coefficients, coming from the PD-GSBR sampler, under the weak

borrowing prior specification PW (black solid curves) and the strong borrowing noninformative

prior specification PSI (red solid curves), are given in Figure 5.8(a)-(f), and Figure 5.8(g)-(l),

respectively. The averages associated with the large data set, are converging fast irrespectively

of the joint prior configuration, yet, convergence associated with the short time series, under

weak borrowing is very slow. For example, the chains for the variables ϑ24 and ϑ25 and especially

the chain for the variable ϑ22, have a very slow convergence. This situation can be corrected

by the introduction of the strong borrowing prior PSI. The improved convergence of the ergodic

means to the true values, are depicted in Figure 5.8(g)-(l) (solid curves in red).
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Figure 5.7: The f1 noise pair perturbed time series corresponding to the cubic map C1 and the cubic

map C2 are given in Figures (a) and (b), respectively.
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Figure 5.8: Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials under weak

(solid curves in black) and strong (solid curves in red) borrowing. The averages associated with the cubic

map C1 appear in Figures (a)-(f), and the averages associated with the cubic map C2 appear in Figures

(g)-(l).

In the first two lines of Table 5.3, we can see the effect of weak borrowing of strength. The

estimation for the coefficients of the first cubic map C1 is very accurate, attaining an average

PARE of 0.08%, thus, enabling the identification of the map. The part of the joint estimation

based on the short time series exhibits larger errors, hindering identification. In the last two

lines of Table 5.3, we present the effect of the strong informative borrowing prior. Borrowing

accelerates the part of the estimation associated with the short time series, and it reduces the

average PARE from 1.14% to a mere 0.10%, thus, enabling the identification of the second cubic

map.

In Figure 5.9(a)-(b) we present the predictive posterior marginal noise density pairs under under

weak and strong borrowing prior specifications, in black and red solid curves, respectively. The

posterior mean matrices of the selection probabilities, are

EW{(pji)|x(200)
1 , x

(30)
2 } =

(
0.879 0.121

0.100 0.900

)
, ESI{(pji)|x(200)

1 , x
(30)
2 } =

(
0.005 0.995

0.976 0.024

)
,
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Table 5.3: PAREs for the PD-GSBR estimation of the ϑ-coefficients, based on the pair of time series

(x
(200)
1 , x

(30)
2 ), under the identical noise process f22, assuming weak and strong borrowing.

Prior Time series ϑj0 ϑj1 ϑj2 ϑj3 ϑj4 ϑj5 ϑ̄

PW x
(200)
1 0.36 0.01 0.06 0.00 0.02 0.00 0.08

x
(30)
2 1.16 0.19 2.36 1.70 0.78 0.66 1.14

PSI x
(200)
1 0.60 0.02 0.50 0.34 0.21 0.16 0.31

x
(30)
2 0.31 0.03 0.09 0.04 0.04 0.09 0.10

In the case of the short time series, under weak borrowing, when sampling from the noise

component, the samples come from the common component only 10% of the times. Under

strong borrowing, sampling from the common component increases to 97.6%.
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Figure 5.9: Kernel density estimations based on the predictive samples coming from the PD-GSBR Gibbs

sampler. Weak borrowing corresponds to the densities in black, and strong borrowing to the densities

in red. Figures (a), (c) and (e) correspond to the cubic map C1, and Figures (b), (d) and (f) correspond to

the cubic map C2. The noise predictive densities are given in Figures (a) and (b). The initial conditions

predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give the predictive densities

of the first future observation.

The predictive density of the marginal posterior pair of initial conditions (x10, x20) is depicted

in Figure 5.9(c)-(d). More specifically, in Figure 5.9(d) we can see that the predictive density

associated with the short time series under weak borrowing, exhibits two more spurious modes

at about 0.74 and 1.18 (solid black curve). The spurious modes disappear after the introduction

of strong borrowing (solid red curve). In Figure 5.9(e)-(f), we exhibit the predictive density of the

marginal posterior pair (x1,201, x2,31). The posterior mean estimations for the cubic dynamical

systems, under the weak and strong borrowing priors are of the same quality, yet, under strong

borrowing the predictive density associated with the short time series cubic map, exhibits a
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95%-HPDI shrinkage factor of 0.45, namely

HPDI(x2,31;PW) = [−1.622,−1.566] and HPDI(x2,31;PSI) = [−1.607,−1.582].

5.5 A joint parametric Gibbs sampler

When there is evidence that the noise components are coming from the same gaussian dis-

tribution, i.e. zji
iid∼ N (0, τ−1), where τ is the unknown precision of the normal component,

borrowing of strength between the observed time series, can be achieved by a joint parametric

Gibbs sampler that assumes only gaussian noise.

If this is the case, the following parametric hierarchical model for the time series observations

{x(nj)
j : j = 1, . . . ,m}, conditional on the unknown initial conditions {xj,1:lj : j = 1, . . . ,m} is

sufficient for reconstruction and prediction, namely

xji|xj,i:lj , τ, ϑj
ind∼ N (gj(ϑj , xj,i:lj ), τ

−1), i = 1, . . . , nj , j = 1, . . . ,m

τ ∼ G(a, b).

The likelihood based on a sample of size n1 from the system g1, n2 from g2 etc., nm from gm, is

proportional to

m∏
j=1

nj∏
i=1

τ1/2 exp
{
−τ

2
(xji − gj(ϑj , xj,i:lj ))

2
}
.

To complete the model, and attempting a noninformative prior specification, we assign the

translation invariant priors f(xj,1:ll) ∝ 1 and f(ϑj) ∝ 1 to the initial conditions and the model

coefficients, respectively, and a scale invariant prior f(τ) ∝ τ−1
to the precision variable. Then

the posterior distribution for τ , ϑ = (ϑ1, . . . , ϑm) and xj,1:lj , attains the representation

f(τ, ϑ, xj,1:lj |x
(n1)
1 , . . . , x(nm)

m ) ∝
m∏
j=1

nj∏
i=1

τ1/2 exp
{
−τ

2
(xji − gj(ϑj , xj,i:lj ))

2
}
.

The full conditional distributions can be derived in a similar way as in Section 5.3. More

specifically, the full conditional for the common precision term λ, is given by

(τ | · · · ) ∼ G

1

2

m∑
j=1

nj ,
1

2

m∑
j=1

nj∑
i=1

(xji − gj(ϑj , xj,i:lj ))
2

 .

We remark the double sum appearing in the rate parameter of the full conditional of τ . This is

how borrowing of strength is realized in a parametric setting.

Parametric borrowing between quadratic maps: To illustrate the joint parametric Gibbs

sampler, for the specific case m = 2 and l1 = l2 = 1, we use a pair of time series realized via
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the configuration

(Q1 +N (0, σ2),Q2 +N (0, σ2))→ (x
(200)
1 , x

(30)
2 ), σ2 = 10−6.

The time series x
(200)
1 and x

(30)
2 are presented in Figure 5.10(a) and (b), respectively.
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Figure 5.10: The gaussian noise perturbed time series corresponding to the quadratic map Q1 and the

quadratic map Q2 are given in Figures (a) and (b), respectively.

The ergodic averages for the ϑ1 and ϑ2 coefficient vectors, coming from independent parametric

Gibbs samplers and the joint parametric Gibbs sampler, are given in Figure 5.11. The averages

associated with the large data set, are converging fast irrespectively of the parametric sampler,

yet, convergence associated with the short time series, under the independent sampler exhibits

mixing issues. This becomes apparent from the chains of the variables ϑ2 in Figure 5.11(i)

through (l) (solid curves in black). This situation is corrected by the introduction of the joint

parametric sampler. The improved convergence of the ergodic means to the true values, are

depicted in Figure 5.11(g) through 11(l) (solid curves in red).
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Figure 5.11: Ergodic averages for the (ϑ1, ϑ2) pair of coefficients of the modeling polynomials under the

independent parametric samplers (solid curves in black) and the joint parametric sampler (solid curves

in red). The averages associated with the quadratic map Q1 appear in Figures (a)-(f), and the averages

associated with the quadratic map Q2 appear in Figures (g)-(l).
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In the first two lines of Table 5.4, we can see the effect reconstructing the coefficients of the

quadratic dynamical systems with the independent parametric samplers. The reconstruction of

the first quadratic map Q1 is very accurate, with an average PARE of 0.05%, thus, enabling the

identification of the map. The independent estimation based on the short time series exhibits

larger errors, hindering identification. In the last two lines of Table 5.4, we present the effect

of reconstruction under the joint parametric sampler. The average PARE associated with the

large time series decreases even further to 0.03%. At the same time it eliminates the mixing

issues associated with the short time series, and it reduces the average PARE from 1.96% to a

mere 0.36%, thus, enabling the identification of the second quadratic map.

Table 5.4: PAREs for the estimation of the ϑ-coefficients, based on the pair of time series (x
(200)
1 , x

(30)
2 ),

under the the independent and the joint parametric samplers.

Par. Sampler Time series ϑj0 ϑj1 ϑj2 ϑj3 ϑj4 ϑj5 ϑ̄

Independent x
(200)
1 0.02 0.09 0.08 0.04 0.02 0.04 0.05

x
(30)
2 0.09 0.50 0.98 3.08 3.05 4.08 1.96

Joint x
(200)
1 0.01 0.04 0.01 0.01 0.07 0.03 0.03

x
(30)
2 0.01 0.10 0.01 0.75 0.41 0.89 0.36
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Figure 5.12: Kernel density estimations based on the predictive samples coming from the independent

Gibbs samplers correspond to the densities in black, the joint Gibbs sampler predictives correspond to

the densities in red. Figures (a), (c) and (e) correspond to the quadratic map Q1, and Figures (b), (d) and

(f) correspond to the quadratic map Q2. The noise predictive densities are given in Figures (a) and (b).

The initial conditions predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give

the predictive densities of the first future observation.

In Figure 5.12(a)-(b) we present the normal noise densities based on the estimated precision
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τ under the independent parametric samplers (solid black curves) and the joint parametric

sampler (solid red curves). The predictive density of the posterior pair of initial conditions

(x10, x20) under the independent and joint estimations are depicted in Figure 5.12(c)-(d). In

Figure 5.12(e)-(f), we display the predictive densities of the marginal posterior pair (x1,201, x2,31)

coming from the independent and joint estimations. The posterior mean estimations for the

second quadratic map, are of of about the same quality, yet, the joint sampler shrinks the

length of the corresponding 95%-HPDI by a factor of 0.29, namely

HPDI(x2,31; Indep.) = [−0.605,−0.591] and HPDI(x2,31; Joint) = [−0.600,−0.596].

5.6 Conclusions

We have proposed a new Bayesian nonparametric model for the pairwise reconstruction of the

dynamical equations based on observed dynamically noise perturbed chaotic time series data.

The PD-GSBR model is based on the multivariate nonparametric prior model PDGSBP, here

applied to the additive error processes of the dynamical equations. Experiments on simulated

pairs of data sets are indicating that when the densities of the noise processes have common

characteristics, we are able, by imposing certain informative prior specifications over the selec-

tion probabilities of the PD-GSBR model, to recover the dynamical equation corresponding to

the short time series for which an independent identification is not possible.

Although in principle the model can estimate simultaneously more than two dynamical equa-

tions, in more than two dimensions, borrowing of strength coming from the prevalent data set

tends to be more weak. This is because borrowing works as a two sided interplay between the

short and the prevalent time series, also, in more than two dimensions, there will be borrowing

between the short time series, thus, corrupting the overall effect of strength borrowing from the

large data set.

We have also introduced a joint parametric Gibbs sampler. In this case the dynamical noise

is assumed to be normal, coming approximately from the same noise source. In this case the

borrowing of strength, between the pairs of data sets, comes from the full conditional of the

common precision.
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Chapter 6

Conclusions and future research

6.1 Conclusions

In this thesis, firstly we have developed a Bayesian nonparametric model based on the Geometric

stick breaking process (Fuentes-García et al., 2010) for the reconstruction and prediction of

random dynamical systems, dropping the assumption of Gaussian noise. We have shown that

as the dynamical noise departs from normality, simple MCMC models are inefficient. Modeling

the error process as an infinite mixture of zero mean normals, our proposed GSBR model is able

to infer the number of unknown components and their variances, that is infers the density of

the error process directly from observed data. We have shown through numerical examples that

the associated quasi–invariant measure of the random dynamical system appears naturally as

posterior predictive marginal of the out–of–sample variables forming a prediction barrier.

Next, we have constructed pairwise dependent random probability measures based on GSB

process namely the PDGSBP prior to use them in mixture modeling to generate random densities

which are thought to be related. That is, we have modeled the random densities to be generated

via

fj(x) = fj(x |Qj) =

∞∑
l=1

pjlgjl(x |Gjl), Qj =

m∑
l=1

pjlGjl, 1 ≤ j ≤ m,

where m is the number of different populations and Gjl = Glj are independent GSB processes.

The gjl(x |Gjl) =
∫

ΘK(x | θ)Gjl(dθ) random densities are independent mixtures of GSB pro-

cesses. The aim is to share information among groups and improve estimation of each density

especially for those whose the corresponding size is small.

Based on the PDGSBP prior we extended the GSBR model to PDGSBP reconstruction model, a

Bayesian nonparametric mixture model for the joint full reconstruction of a finite collection of

dynamical equations, given observed dynamically–noisy–corrupted chaotic time series. We have

shown numerically that whenever there is at least on sufficiently large data set, using carefully

selected informative borrowing–of–strength prior specifications we are able to reconstruct those

dynamical processes that are responsible for the generation of time series with small samples

sizes; namely sample sizes that are inadequete for an independent reconstruction, i.e. with

GSBR model.
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In all of the problems described in this thesis, we have shown that the GSB random probability

measures are sufficient for estimation and prediction purposes; that is, making the weights

more exotic does not actually enlarge the support of the nonparametric prior. Moreover, the

corresponding Gibbs samplers for estimation with GSB random probability measures are faster

and easier to implement than the Dirichlet process counterparts.

6.2 Directions for future research

Because of the interdisciplinary profile of the research presented in this thesis, a number of

interesting research paths appeared during the development of our methods which we believe

should be explored in the near future. Below we provide some of the research paths in the field

of random dynamical systems as also in the field of Bayesian nonparametric inference.

6.2.1 Random dynamical systems

Modeling dynamical systems with Gaussian processes

Most of the methods that aim for the reconstruction of dynamical equations assume some

known functional form for the deterministic part of the random dynamical system. It would

worth to extend the GSBR model by assigning a prior over the space of functions, i.e. a Gaussian

Process (GP) (Rasmussen & Williams, 2006) prior for the deterministic part extending the GSBR

model to a full Bayesian nonparametric model.

Extension of the GSBR model to a state space model

When the available data are contaminated with dynamical and observational noise, the GSBR

model could be extended to a q–lagged state space model as

Xi = %(ϑ,Xi−1, . . . , Xi−q) + Zi, i ≥ q

Yi = h(ϕ,Xi) +Wi,

for some function h. Here the assumption is that noisy measurements of the output occur at

all times, making the sequence X(n)
unobservable. The set of observations in this case is the

Y (n)
time series, which can be modeled via a GSB random measure PY . Then the latent X(n)

series can be modeled with a second independent GSB random measure PX , such that the

random variables [Xi |Xi−1, . . . , Xi−q, ϑ,PX ] and [Yi |Xi, ϕ,PY ] are independent. In this case

we have to estimate the initial condition (X0, . . . , Xq−1, Y0), the parameter (ϑ, ϕ), the density of

the noise component (Zi,Wi) as well as the hidden orbit {Xi : i = q, . . . , n}.
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6.2.2 Bayesian nonparametrics

Generalization of the PDGSBP model to include all possible interactions

An interesting research path would be the generalization of the pairwise dependent Qj measures

involved in the PDGSBP, to include all possible interactions, in the sence that

Qj( · ) = pj Gj( · ) +
m∑
l=2

∑
η ∈Cj,l,m

pj,η Gη(j)( · ) with pj +
m∑
l=2

∑
η ∈Cj,l,m

pj,η = 1,

where the Gj and the Gη(j) ’s are independent GSB processes, Cj,l,m = {(k1, . . . , kl−1) : 1 ≤ k1 <

· · · < kl−1 ≤ m, kr 6= j, 1 ≤ r ≤ m − 1} and η(j) is the ordered vector of the elements of the

vector η and {j}. Now the fj densities will be a mixture of 2m−1
GSB mixtures, and the total

number of the independent GSB processes needed to model (f1, . . . , fm) will be 2m − 1.

Due to the exponential growth of the random measures in need as m gets large it would be

interesting to develop parallel MCMC algorithms for the GSB process as also for its multivariate

extensions.

Identification of common and idiosyncratic parts in dependent mixture models.

Due to identifiability issues it is not possible to perform density estimation for the random

densities gjl, that is, the common and idiosyncrating parts composing the random densities fj

of the PDGSBP model. It would worth to extend a univariate mixture model proposed by Mena &

Walker (2015) in the multivariate case. Perhaps, generalizing this prior in the multivariate case

will sovle the identifiability issues arising when one tries to estimate the idiosyncratic as also

the common parts of the mixture densities. This generalization may lead to accurate estimation

of the common and idiosyncratic parts of the random densities as also accurate estimation for

their number of active clusters.
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Appendix A

Sampling from nonstandard full

conditionals

A.1 Sampling ϑ, x0 and xn+j, 1 ≤ j ≤ T − 1

Here we adapt our calculations for the specific case where the deterministic part is a polynomial

of degree m, namely g(θ, x) =
∑m

k=0 θk x
k
.

A.1.1 Sampling the ϑ = (θ)0≤j≤m coefficients

From eqs. (3.15) and (3.28) and for j = 1, . . . ,m it is that

f(θj | · · · ) ∝ I(θ ∈ Θ̃j) exp

{
−1

2

n∑
i=1

λdihθ(xi, xi−1)

}
, (A.1)

where Θ̃j is the j–th projection interval of the set Θ̃. Letting ξji := xi−
∑m

k=0
k 6=j

θk x
k
i−1, we obtain

the full conditional for θj , which is a normal truncated over the set Θ̃j given by

f(θj | · · · ) ∝ I(θ ∈ Θ̃j)N (θj |µj , τ−1
j ) (A.2)

with

µj := τ−1
j

n∑
i=1

λdiξjix
j
i−1, τj :=

n∑
i=1

λdix
2j
i−1.

To sample from this density, a-priori we set θj ∈ Θ̃j := (θ−j , θ
+
j ) and we augment the θj full

conditionals by the auxiliary variables θ′j (Damien et al., 1999) such that jointly

f(θj , θ
′
j | · · · ) ∝ U(θj |θ−j , θ

+
j ) I

(
θ′j > (θj − µj)2

)
e−τjθ

′
j/2. (A.3)

Then we have the following Lemma:

Lemma A.1. The augmentation of the full conditionals of θj for j = 1, . . . ,m with the positive

random variables θ′j such that they jointly satisfy (A.3), leads to the following embedded Gibbs
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sampling scheme:

f(θ′j |θj , · · · ) ∝ E(θ′j |τj/2) I(θ′j > (θj − µj)2)

f(θj |θ′j , · · · ) = U(θj |αj , βj), αj := max{θ−j , µj − θ
′1/2
j }, βj := min{θ+

j , µj + θ
′1/2
j }.

where E(θ′j |τj/2) denotes the exponential density with rate τj/2.

Proof. These are the full conditionals of the bivariate density given in Equation (A.3).

A.1.2 Sampling the initial condition x0

Similarly, to sample from the full conditional of x0 in eqs. (3.14) and (3.27), we introduce the

variable x′0 such that

f(x0, x
′
0| · · · ) ∝ I(x0 ∈ X̃) I

(
x′0 > hθ(x1, x0)

)
e−λd1x

′
0/2.

Clearly, the full conditional of x′0 is an exponential of rate λd1/2, truncated over the interval

(hθ(x1, x0),∞). The new full conditional for x0 is a mixture of at most m uniforms given by

f(x0|x′0, · · · ) ∝ I(x0 ∈ X̃) I(x0 ∈ Rg), Rg := {x : x 0 < g(θ, x) < x0}, (A.4)

where x 0 := x1 − x′1/20 and x0 := x1 + x
′1/2
0 . The set Rg can be represented as the union of

intervals, with boundaries defined by the real roots of the two polynomial equations

q(x0) := g(θ, x0)− x 0 = 0, q(x0) := g(θ, x0)− x0 = 0. (A.5)

More specifically, we are going to show that there is r ≤ m such that

Rg =∪ri=1(ρ2i−1, ρ2i), (A.6)

with {ρ1, . . . , ρ2r} the ordered set of the real roots of the two polynomial equations in (A.5). In

the sequel we make use of the following notation

{q < 0} := {x0 ∈ R : q(x0) < 0},

{q > 0} := {x0 ∈ R : q(x0) > 0}.

First we will consider the two even degree cases. When the leading coefficient is positive, the

equation q = 0 has at least two real roots. If there are more than two real roots, their number

will be a multiple of two. On the other hand, when q = 0 has real solutions their number will

be even. Then for s′ ≥ 1 and t′ ≥ 0 it is that

{q < 0} = (ρ1, ρ2) ∪ · · · ∪ (ρ2s′−1, ρ2s′) (A.7)

{q > 0} = (−∞, ρ
1
) ∪ · · · ∪ (ρ

2t′
,∞). (A.8)
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When t′ ≥ 1 it is that ρ1 < ρ
1
< ρ

2t′
< ρ2s′ . Therefore r = 2(s′ + t′) and the intersection of the

two sets {q < 0} and {q > 0} is of the form (A.6). When the leading coefficient is negative the

result is similar with the right hand sides of equations (A.7) and (A.8) interchanged.

When the degree is odd and the leading coefficient is positive, both equations q = 0 and q = 0

have at least one real solution ρ1 and ρ
1

respectively, with ρ
1
< ρ1. If some of the two equations

have more than one real solution, the number of the additional roots will be a multiple of two.

So for s′ ≥ 0 and t′ ≥ 0 it is that

{q < 0} = (−∞, ρ1) ∪ (ρ2, ρ3) ∪ · · · ∪ (ρ2s′ , ρ2s′+1) (A.9)

{q > 0} = (ρ
1
, ρ

2
) ∪ · · · ∪ (ρ

2t′−1
, ρ

2t′
) ∪ (ρ

2t′+1
,∞). (A.10)

For s′ ≥ 1 and t′ ≥ 1 we have ρ
1
< ρ1 < ρ

2t′+1
< ρ2s′+1, and r = 2(s′ + t′ + 1) which shows

that the intersection of the two sets {q < 0} and {q > 0} is of the form (A.6). When the leading

coefficient is negative the result is similar with the right hand sides of the equations (A.9) and

(A.10) interchanged.

So we have proved the following lemma:

Lemma A.2. The augmentation of the full conditional of x0 with the positive random variable x′0
leads to the following embedded Gibbs sampling scheme:

f(x′0|x0, · · · ) ∝ E(x′0|λd1/2) I(x′0 > hθ(x1, x0))

f(x0|x′0, · · · ) ∝ I(x0 ∈ X̃) I
(
x0 ∈ ∪ri=1(ρ2i−1, ρ2i)

)
,

for some r ≤ m, with {ρ1, . . . , ρ2r} being the ordered set of the real roots of the two polynomial

equations in (A.5).

A.1.3 Sampling the first T − 1 future observations

The full conditionals xn+j for 1 ≤ j ≤ T − 1 in eqs. (3.16) and (3.29) given in the main text

are nonstandard densities. We augment the conditional of xn+j with the pair of variables

(x′n+j , x
′′
n+j) such that jointly

f(xn+j , x
′
n+j , x

′′
n+j | · · · ) ∝ e

− 1
2
λdn+jx

′
n+j I(x′n+j > hθ(xn+j , xn+j−1))

× e−
1
2
λdn+j+1

x′′n+j I(x′′n+j > hθ(xn+j+1, xn+j)).

The full conditionals of x′n+j and x′′n+j are truncated exponentials with rates λdn+j/2 and

λdn+j+1
/2 over the intervals (hθ(xn+j , xn+j−1),∞) and (hθ(xn+j+1, xn+j),∞) respectively.

The full conditional of xn+j is of the form (A.4) with the set X̃ replaced by the set (x−n+j , x
+
n+j)

with x±n+j := g(θ, xn+j−1)±x′1/2n+j , and the setRg replaced by the set {x : xn+j < g(θ, x) < xn+j}
with xn+j := xn+j+1 − x′′1/2n+j and xn+j := xn+j+1 + x

′′1/2
n+j .
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A.2 Sampling the geometric probability λ

To sample from the density ineq. (3.32) in the main text we include the pair of positive auxiliary

random variables p1 and p2 such that

f(λ, λ1, λ2 | · · · ) ∝ λ2nT−α−1I(λ1 < (1− λ)LnT )I(λ2 < e−β/λ),

with λ ∈ (0, 1). The full conditionals for λ1 and λ2 are uniforms

f(λ1 | · · · ) = U(λ1| 0, (1− λ)LnT ), f(λ2 | · · · ) = U(λ2| 0, e−β/λ).

The new full conditional for λ becomes

f(λ |λ1, λ2, · · · ) ∝ λ2nT−α−1

 I
(
− β

log λ2
< λ < 1− λ1/LnT

1

)
LnT ≥ 0

I
(

max
{
− β

log λ2
, 1− λ1/LnT

1

}
< λ < 1

)
LnT < 0.

We can sample from this density using the inverse cumulative distibution function technique.
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Invariant set of the map x′ = g̃(ϑ∗, x)

For ϑ = ϑ∗ = 2.55 we let

g̃(x) ≡ g̃(ϑ∗, x) = 0.05 + 2.55x− 0.99x3,

and we define g̃(n)
to be the n-fold composition of g̃ with itself. We let R(2)

to be the set of real

roots of the polynomial equation g̃(2)(x) = x, with x = minR(2)
, x = maxR(2)

and X = [x, x ].

We denote the complement of X by X′ = X′− ∪ X′+, where X′− = (−∞, x ) and X′+ = (x,∞). We

will prove the following lemma:

Lemma B.1. Let g̃ be the polynomial given in eq. (3.33), then for all x ∈ X′, it is that

lim inf
n→∞

g̃(n)(x) = −∞ and lim sup
n→∞

g̃(n)(x) =∞.

Proof. It is not difficult to verify geometrically the following facts:

1. g̃(x ) = x, g̃(x ) = x.

2. x ≤ x ≤ x ⇔ x ≤ g̃(x) ≤ x.

3. g̃(x) > x, g̃(2)(x) < x, ∀x ∈ X′−.

4. g̃(x) < x, g̃(2)(x) > x, ∀x ∈ X′+.

5. The restrictions of g̃ and g̃(2)
to X′, are decreasing and increasing functions respectively.

Then for all x ∈ X′− we have the set of inequalities

g̃(2n+1)(x) < g̃(2n−1)(x) < · · · < g̃(x) < x.

Suppose that limn→∞ g̃
(2n+1)(x) = x∗ then limn→∞ g̃

(2n+3)(x) = g̃(2)(x∗) = x∗, meaning that

x∗ ∈ R(2)
which is a contradiction. Therefore limn→∞ g̃

(2n+1)(x) = −∞, for all x ∈ X′−.

Similarly for all x ∈ X′+ we have the set of inequalities

g̃(2n)(x) > g̃(2n−2)(x) > · · · > g̃(2)(x) > x,

from which limn→∞ g̃
(2n)(x) =∞, for all x ∈ X′+.
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Appendix C

Julia codes

The algorithms for all the models constructed in this thesis, that is the GSBR, the PDGSBP

(as well as their Dirichlet process counterparts rDPR,rPDDP), and the PDGSBP reconstruction

model have been developed in the Julia language (Bezanson et al., 2012).

The associated software is available and can be downloaded from the URL:

Link to thesis codes

or available upon request via e–mail:

cmerkatas@aegean.gr or merxri@gmail.com.

https://www.dropbox.com/sh/kpx0ua5wak4b982/AADoKqYk35YDxt0g4RdAnWAUa?dl=0
cmerkatas@aegean.gr
merxri@gmail.com
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