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Abstract

In this thesis we use a Bayesian nonparametric prior with simple weights, namely the Geometric
Stick-Breaking (GSB) random probability measure to deal with the problem of reconstruction

and prediction of stochastic discretized nonlinear dynamical systems.

In the first half of the thesis we propose a Bayesian nonparametric mixture model for the re-
construction and prediction from observed time series data, of discretized stochastic dynamical
systems, based on Markov Chain Monte Carlo (MCMC) methods. Our approach is nonpara-
metric in the sense that we model the noise component with a highly flexible family of density
functions. While the common assumption is the normality of the noise process, here we model
the noise component as an infinite mixture of Normal kernels with the mixing weights driven

by a random probability measure sampled from a GSB process.

In the second half we present a new approach on the joint estimation of partially exchangeable
observations by constructing pairwise dependence between a finite collection of random density
functions, each of which is modeled as a mixture of GSB processes. This approach is based on
a new random central masses version of the Pairwise Dependent Dirichlet Process prior mixture
model. We show that modelling with Pairwise Dependent Geometric Stick-Breaking Processes

(PDGSBBP) is sufficient for estimation and prediction purposes.

We also propose a Bayesian nonparametric mixture model for the full reconstruction of a finite
collection of dynamical equations, given observed dynamically-noisy-corrupted chaotic time
series based on PDGSBP mixture priors. Under the assumption that the each set of dynamical
equations has a deterministic part with known functional form and that the noise processes
are independent and identically distributed from some unknown zero mean process which may
have common characteristics, we jointly estimate the parameters of the dynamical systems and
perform density estimation of noise components. We show that if there is at least one sufficiently
large data set, using borrowing-of-strength prior specifications we are able to reconstruct those
dynamical processes that are responsible for the generation of time series with small sample

sizes which are inadequate for an independent reconstruction.

Our contention is that modeling with GSB random probability measures is sufficient for es-
timation and prediction purposes. The proposed MCMC algorithms are faster and easier to
implement than their Dirichlet process based counterparts. The advantages of the use of such
a simple random probability measure in Bayesian nonparametric inference in terms of suffi-

ciency and time complexity are illustrated in both synthetic and real data sets.
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IIepiAnywn

Ztnv tapouoa Aidaktopikr) AtatpiBr) ripoteivoviatl pEbodot pir) mapaperpikng Mnetdiavrg otatiott-
KIG Yld TNV EKTIPIN 0T MTAPAPETP®V OTOXACTIK®V SUVAIKOV CUCTHAT®OV S1aKP1TOU XPpOVOU KAVOVIAG

Xprjon tuxaiev pétpav mbavotntag pe yeapetpikd Bdpn-Geometric stick breaking process (GSB).

Zto Kegpaldato 1, yiveral pa eloayeyn otlg Baoikég €vvoleg tng Ur napapetpikng Bayesian ota-
TIOTIKIG Kal TG BACIKEG £VVoleg TV LTOXAOTIKGOV AUvapikev Zuotnpatev. ErumAéov, yivetat a-
vaokornorn g PBAoypadiag mou sivatl OXETIKL) Pe T0 IPOBANIA TG AVAKATAOKEUNS SUVAPIKOV

eClOWOERV.

Zto Kegpaldaio 2, mapouoiddoviatl avaAutika ot o dnpogpideig a-priori katavopég g pr napa-
HETPIKNG otationkng Katd Bayes. Xuykekrpipéva, napouotddetatl to tuxaio pérpo Dirichlet xkat ot
16101nteg TOoU (posterior katavor), posterior katavopn npdéBisyng). 'Enetta, yivetal avaokornor)
1OV SNPOPAECTEP®V TPOTIOV avaTiapdotaong Tou tuxaiou pétpou Dirichlet. Zuykekpiiéva, mapou-
owadoviat ot avanapaoctaoelg stick-breaking, generalized Polya urn kabmg kat n avarnapdotaor)
TOU ®G, KAVOVIKOITOUPEVOU, EVIEA®S TUXAIOU pETpou rmbavotntag. Xin oUvEXEld, Tapouaotadetal
10 tuxaio pé€rpo GSB kat anodeikviovial Bacikég 1610tnteg ToU. AdY® g Slakpiing @uUong tov
Maparave PETP®YV, Yl TV HOVIEAOIIOIN o ArtoAUTRG CUVEX®V KATAVOU®V, £10dyovial ot Bigelg tu-
Xai@Vv PETPOV OG PIEEIS ITUPH VOV TTIAPAPETPIKIG OIKOYEVELAS KATAVOHOV XPO10ITOI®VIAS O PETPA
nigng dakpitd uxaia pérpa Dirichlet 1) GSB. 'Enetta, napouoiddoviatl ta eSaptnuéva tuxaia pétpa
mbavotntag yua v poviedornoinon edopévev ta onoia napabialouv ) ouvOnkn g aviaddadi-
potntag. Ito kepddalo autd, mapouoctadovial Kat ta Paocikda otoiyeia g pebododoyiag Markov
Chain Monte Carlo (MCMC), anapaitntng yta posterior cupnepacpatodoyia pe ta poviéda auvtd.
Zuykerpipéva napatiBoviat ot pebBodoroyieg derypatoAnyiag kata Gibbs kat n) detypatoAnyia pe
xpron Bonbnukev petaBAntov (slice sampling). Me Bdon autég tig Vo pebodoug, mapouoialo-
viat ot MCMC aAyopiBpot yia 1o IpoBAnpia eKTiN0ong ITUKVOTTAS XPNOHOMoIWVIaAS Tuyaia petpa
Dirichlet kat tuyaia pétpa GSB.

Zto Kegpaldato 3, apyikd yiveral avaokomnon evog 1 mapapeIplkou Bayesian poviédou yla v
avaxkataokeun] Suvapikov e§lomoewv mou Baoiletal oto tuxaio pérpo Dirichlet. ‘Emerta siodye-
Tat éva PoVIEAO avaKATAOKEUTG SUVARIKOV e§1000E®V, Ao mapatnpnOeioeg XAOTIKEG XPOVOOEIPES,
rou Paoidetat oto tuxaio pérpo GSB kat avartuooestat évag MCMC aAyopiBpog yia posterior ou-
priepacpatodoyia. H mpotewvopevn peBododoyia Geometric stick breaking reconstruction-GSBR
EIMTUYXAVEL OROOTI] EKTIPNOT TOV MIAPAPETPOV TOV SUVARIKOV £§1000E®@V AKOUN KAl Ao HMIKPO a-
P1O0 aPATNPOE®V, AKOUN KAl OE TEPUTIOOELS TIOU 1] KATAVO}L) ToU S0puUBou armokAivel aro tmy
Kavovikr). H pébodog poviedornoiel v katavopr] tou dopuBou wg pa arnelpodidotaty pign ka-

VOVIK®V TTUPTV®V, OTTOU €K TOV MPOTEP®V, 0 APlOPOg TV OUVIOTIOOMOV KAaBKOG Kal ot S1aKUPAvoelg
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TRV IUPHveVv eival ayveoota. H cupniepacpatodoyia yivetat pe peBodoug MCMC orou ektipdratl o
ap1Bp6g T®V CUVIOTOOROV KAl Ol aviiotolxeg Stakupavoelg toug SnAadr) ektupdral 1 mUKvOTIa g
drabikaoiag tou YopuBou amnd ta Siabéopa dedopéva. H pebBoboloyia ouykpivetal pe ) pebodo-
Aoyia mou Baoidetat oto tuxaio pérpo DIrichlet xprnotpornoldviag XaoTtikEG XPOVOOEIPEG TTIOU £X0UV
napayBel anod nmoAvuevupika duvapika cuotrpatd. TEAOG, TPOKUITIEL OTL HE TNV IIPOTEIVOHIEVT] HiE-
So60Aoyia, 10 NEI-avadAoimTto PETPO TOU ZTOXACTIKOU AUVAHIIKOU ZUCTHHATOG IIPOKUITIEL 0§ Hid

a-posteriori ep1Bwpla katavopr| podBAeyng, Snpioupywviag epaypa otov opidovia mpoBAsyng.

Zto Kepdlawo 4, napouoialetal pia véa pébodog yla v aro Kowou eKTIPNon MUKvOtntag He-
PIKGOG aviadAddi®v MapatnpEros®V, £10AyOVIag £§APTNOnN Hetal m TUXdi®V TTUKVOTATOV KAtd
{euyn, mou poviedorolovvial cav pigelg ano tuyaia pérpa GSB. Ot nukvotnteg Sewpeitat ot é-
XOUV KOWVd XOPAKTNPIOTIKA KAl O OKOTIOG €lval va emteuyOel 0motr) EKTIINON AKOPn Katl yia TG
TTUKVOTNTEG TIOU UTIAPXEL MIKPOS aplBpog Siabiomv napatmproenv. H 16éa auvtr) Baoidetal otnv
AN P®S OTOXACTIKOTIOINEVT] YEVIKEUOT] TOU poviedou Pairwise Dependent Dirichlet Prior mixture
model (PDDP). H Baowkr) 16¢a eival i e§aptnon avtr) va sioaxbel péon tuxaiov pépav, ta Bapn
TV OTIOI®V £lval avapevopeveg TIIES TOV Bapmv tov tuxaiov pétpeov Dirichlet. H mpoteivopevn
p€0odog, Pairwise Dependent Geometric Stick Breaking Prior mixture model (PDGSBP) cuykpi-
VETAl HPE TNV oToXaotikomolnpévn €ékdoorn tng PDDP pebobou 1600 o€ pocopolopéva 000 Kat o
npaypatka dedopéva. ZUyKeRpEva yivetal oUyKpion v pefodov oe §edopéva mou €xouv na-
paxOeil ard pifelg kavovikov katavopwv kabog kat arod pigelg 'appa katavopwv. H eykupdtnia
1OV ekupnoeev petpatal pe v Hellinger petpikr). H 1pébobdog emiong epappodetat oe mpaypartt-
Ka 6edopéva mou adopouv TV EKTIPNOT ITUKVOTNTAG TS KATAVOULG TOV HEIPHOE®V TOU evUI0U
SGOT armo 1pelg opadeg acbevav otig oroieg o acBevng eite {el XwWPIS PETAPOOXEUON, €ite EKAVE
petapooyeuon eite aneBinoe Xwpig petapooyxsvorn. Ta amotedéopata ota nepdpara avta deixvouv
ot 1| povtedornoinon pe PDGSBP priors eival emapknig yla eKtipnorn mukvotntag Kat mpoBAsyn.
O mpotewvopevog adyopiBpog MCMC yia posterior cupniepacpatoAoyia pe PDGSBP priors eivat
E€UKOAOTEPOG OTNV UAOTIONON KAl TAXUTEPOG OTNV EKTEAEOT] Ao tov avtiotorxo MCMC alyopiBpo

yla to PDDP povtélo.

Zto Kegpaldato 5, avartuooetat ailyopidpog MCMC Baciopévog ota a-priori moAudidotata pétpa
PDGSBP y1a 1o rpdBAnpa g ard Koivou avadopnong tov Suvapikev e§1000emv and mapatnpn-
Yeloeg xpovooelpeg o1 omoieg mepiexouv Suvapiko Yopubo, o1 ortoieg Tapayovial ano Pr-ypappikeg
eClonoeig dapopav rpatng tadng. Idwaitepn épgaon Sivetal oty Mepinuoon oty Oroia UIAPYEL
H1a Xpovooelpd HiKkpoU peyéboug omou eivat aduvatn n ermrtuyxfg avadopnon g duvapikng g
e€100ONG, £Ve UTIAPXEL TOUAAXIOTOV Pia Xpovooelpd eraproug peyeéboug g oroiag 1 avadopnon
g duvapkrg g ediowong eival epikt). H mpotewvopevn peboboloyia epapudletal o mpoco-
HOIWPEVEG XAOTIKEG XPOVOOELPEG TTOU TTAPAYOVIAL A0 TOAUMVUHIKEG ATTEIKOVIOELG TIOU TIEPIEXOUV
pn-Kavoviko 96puBo. Ymd v urobeon 6Tl 01 KATavopEég TV dlatapayov £€Xouv Kovd XapaKth-
P1OTIKA, XPIOTHOIIOI®VTAS TIANPOPOPIAKES €K TOV MPOTEP®V KATAVOUEG, €lval ePiKTr) 1 avadopnon
TV SUVAPIKOV €§10W0E®V TTOU £ival UTIEUOUVEG Y1d TV MAPAY®YH TV SEIYHATOV MIKPOU peyéboug

He nocootiaia oxetkd opdipata pkpotepa tou 1%.

TéAdog, oto KepdAato 6, yivetat ouvioun smoxonnon g Sidakropikng 6iatpiBrig, apouoiadoviat
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Ta ouprepAacpata Kat npoteivoviatl 9épata yia peAAoviikn €peuva. ZUYKEKPLPEvVA, oto 1edio &-
PEUVAG TOV OTOXAOTIKOV SUVAPIKOV CUCTHAT®V, IIPOTEIVETAL 1] KATAOKEUL £vO§ POVIEAOU yla TV
AVAKATAOKEUL €VOG OTOXAOTIKOU SUVAPIKOU CUOTHIATOS XWPIg va umdpxel Kamnota urnobeon yia
1 oUVapPTNolaKy popdr], 9€toviag wg prior ot cuvaptnolaky popdr pia Gaussian Siadikaoia
enekteivoviag €tot 1o GSBR poviédo o éva mArpeg P mapapetpiko Bayesian poviédo. ErmmAéov
npoteivetal va peAetnOel 1 poviedonoinon v Katavopev tov SopuBwv oe €va state-space po-
viédo pe GSB priors. Zinv meploxr) g P MAPAPETPKhG Meldiavg oTtatioTikAg MPoteivetat 1)
yevikeuon tou PDGSBP poviélouv va ocupriepidapBavet 0Aeg tig Suvatég aAAnAermmbpaocelg petau
IOV TUXaie®v ukvotntov. TEAog mpoteivetal 1) KATAOKEUT] £VOG 11 TTAPAPEIPIKOU Prior pie oKOIo
Vv ermiAuon 10U TPOBARIIATOG TAUTOIOINONG KATAVOU®OV (MOTE VA EMMTUYXAVETAL TAUTOIIOiNoT TV

KOWVQV XUPAKTINPIOTIKGV Ao Hia oUAAoyr] TUXAi®V ITUKVOTHTOV.

AxoloUBwg rapatiBeviat n PiBAoypadia kat tpia apaptipata. To IMapapinpa A rapéxetl mAn-
pogopieg yia v derypatoAnyia amnod 1§ Ayveoteg KATavopEG TIoU TIpoKuUTttouv otoug MCMC aA-
yopiBpoug mou mapouciddovial ota Kepddawa 3 xat 5. Zto Ilapapinpa B avaAvetar n Suva-
HIKI] CUUIEPIPOPA TRV MOAUMVUNIKAV ATIEIKOVIOE®V TI0U Xpnotporotouvial ota Kepddawa 3 kat
5. TéAog, 10 ITapapinua C rapéxel minpodopieg yla v vdornoinon tov adyopibuev ot yAoooa
npoypappatiopou Julia kabwg kat éva ouvdeopo (URL) yia ) petapopt®orn) oV MPOoYyPappATOV.
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Chapter 1

Introduction

Let X(®) = (Xi)i>1 be an infinite sequence of observations defined on a probability space
(Q, F, P) and taking values on a measurable space (X, '), with X a Polish space and X the
Borel o-algebra of subsets of X. In addition let Px, denote the space of all probability measures

supported on X.

The basic idea of Bayesian inference is that all uncertainty must be expressed in terms of
probability thus any parameter of interest is modeled as a random variable having its own
distribution II which is called the prior distribution. The Bayesian approach to statistical

analysis can be justified through the concept of exchangeability and de Finetti’s representation

theorem. A sequence of random variables X (n) .= (Xi)1<i<n is said to be exchangeable if
d
(Xl,...,Xn):(Xg(l),...,XU(n)), (1.1)
for any permutation o of {1,...,n}. Consequently an infinite sequence of random variables

is exchangeable if every finite collection of it is exchangeable. Exchangeabiltty is the basic
modeling assumption in Bayesian inference. Intuitively the concept of exchangeability indicates

that the order that we collect a sample does not affect the joint distribution.

The next theorem is the so called de Finetti’s representation theorem and it states that a
collection of random variables is exchangeable if and only if it is a mixture of sequences of
independent and identically distributed random variables.

Theorem 1.1 (De Finetti (1937)). The sequence X (") is exchangeable if and only if there exists
a probability measure I1 on Px such that, foranyn > 1and A = Ay X -+ X A, x X*°,

n

P(X™ ¢ A|Q)II(dQ) = / [[QXi € 4)11(dQ).

Q€Px ;=1

P(X™ e A) = /

QePx

where A; € X forl1 <i<nandX® =Xx X x---.

The measure II is called the de Finetti measure and is uniquely determined for a given ex-
changeable sequence. It is the de Finetti measure that takes the role of a prior distribution in

Bayesian inference. By virtue of de Finetti’s theorem, the data generating process in a Bayesian
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model is a two-stage process
X |0%8Q i=1,....n
Q~1I,

and the objective is to determine the posterior distribution
H(dQ ‘ X17 vee 7X7L) X ‘C(Q ; X17 v 7X7L)H(d(@)7

where £(Q; X1,...,X,) is the likelihood function. The posterior distribution measures the

uncertainty for the random variable of interest after seeing the observations.

Whenever II is degenerate on a subset of Px that can be indexed by a finite dimensional
parameter 0 € © C R* the Bayesian model is parametric and 1l is a prior probability measure
over the parameter space 0. Instead when we allow inference to be made to infinite dimensional
subspaces of Px, the model is called nonparametric and 1l is a random probability measure that
acts as a prior distribution over an infinite dimensional space. Distributions over infinite
dimensional spaces are stochastic processes so the term process will be thrown a lot in the

following when we consider the distribution of a random probability measure.

Nevertheless, restricting inference to parametric models may limit the scope and type of in-
ferences that can be drawn from such models. In this thesis we aim to use and construct
Bayesian nonparametric models for reconstruction and prediction of random dynamical sys-
tems. Bayesian nonparametric models assume the distribution of the observations to be un-
known and assign the prior on the space of probability measures Px which now is the parameter
space. Clearly this space is infinite dimensional and thus the justification as nonparametric

models.

We proceed in this chapter with some fundamentals of the theory of dynamical systems and
explain the need for Bayesian nonparametric modeling of the density of the noise components.
It would be worth noting here that our methods are generally applicable in a time series setting.
While we are interested in nonlinear random dynamical systems, the models in this thesis
can be applied, to a similar manner, in many popular statistical time series models such
as autoregressive processes (AR). The general theory on Bayesian nonparametic models and

computational methods for posterior inference will be discussed thoroughly in Chapter 2.

1.1 Dynamical systems

It is common in science to model a physical process that changes over time. Such a process is
called a dynamical system. Dynamical systems can be classified in two categories namely de-
terministic and stochastic-random dynamical systems. In the case of a deterministic dynamical
system, its controlling mechanism is completely understood, and the states of the system are

described by some mathematical model, involving previous states, completely describing the
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evolution of the system. In contrast, a dynamical system that involves randomness in its mech-
anism is called stochastic. Subsequently, each of the previous classes contains (stochastic)
dynamical systems of discrete time which are usually described by some difference equation,
or of continuous time which are described by some differential equation or by its solution flow.
It is worth noting that one can obtain a discrete time dynamical system by discretizing flows.
In the following subsections we describe dynamical systems, both deterministic and stochastic
evolving in discrete time, in more depth. We do not intend to give an extensive introduction to
the theory of deterministic dynamical systems but only the basic notions that provide the nec-
essary background for the methods developed in the thesis. More details on dynamical systems
can be found in Alligood et al. (1996); Broer & Takens (2010); Chan & Tong (2013) and Galor
(2007).

1.1.1 Deterministic dynamical systems

A dynamical system in discrete time defined on a state-space X can be described by a difference

equation of the form

=90, 21, T2, .., Ti_q), 12>1, (1.2)
for some initial conditions (xg,Z_1...,ZT_411) € X?, and the function g: X? - X in eq. (1.2) is
continuous in z;_1,...,x;_q parametrized by some vector of control parameters 19 € ©, where

O is the parameter space. For the sake of simplicity, in the following we will assume that the
transition in a state x; depends solely on x;_1. Thus we will consider dynamical systems in the
form

T; = g(z?,a:i_l), 1> 1. (1.3)

The evolution of the system after n iterations can be observed with the form of a time series (™

of length n, where each point x; is the i—fold functional iteration of the initial condition z i.e.

=g (0, 21) = 9g(g(---g(¥,2i1))), forl<i<n. (1.4)
i—t;r;es

Let us summarize the above descriptions with a definition that will be useful for future refer-
ences.

Definition 1.1. A function whose domain space and range space are the same is called a map.
Let x be a point and let g be a map. The orbit of z under g is the set of points Oy4(z) = {g*(z) :

k > 0}. The starting point x for the orbit is called the initial value or initial condition of the orbit.

The system may exhibit chaotic behavior if the function ¢ is nonlinear. This means that if we
observe the system by means of a time series we will see a complex and irregular behavior which
resembles the behavior of a stochastic process. In Figure 1.1 (upper panel) we display two orbits

x,y generated from the chaotic logistic map'®

i =1—92? 4, i=1,...,200,

'We use the representation ¢ = 1 — 922, 9 € [0, 2], in order to be able to identify the coefficients of a polynomial
autoregressive process.
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for ¥ = 1.71 and initial conditions zg, z(, € {1,1.001}. Even though the generating mechanism
is purely deterministic, the two time series have complex behavior and it is evident that it is not
possible to make predictions for the state of the system after a few iterations. This is clear for

1 > 70, where the behavior of the two systems is significantly different.

(a) (b)

e e
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Figure 1.1: Two orbits x, y (upper panel) generated from the logistic equation for initial conditions z¢ = 1
and yp = 1.001. It is evident that purely deterministic mechanisms generate time series that will lose
predictability soon. In the lower panel are depicted the histograms of the two orbits for 100, 000 iterations
of the logistic map. Note how similar these histograms are even though the two orbits are significantly
different.

A dynamical system might evolve under the presence of noise. In particular, there are two types
of noise that a dynamical system may be subjected to; measurement or observational noise
and dynamical or system noise which can be additive or multiplicative. Observational noise
is usually present in laboratory or real world time series data where we have often inaccurate
measurements of the underlying process making the true states of the system unobservable and
does not affect the future evolution of the system. In contrast, dynamical noise is incorporated in
such models as model error and can drastically affect the future evolution of the system. Below

we provide some examples of dynamical systems contaminated by different types of noise.

Example 1.1 (Dynamical system with additive observational noise). When observational noise
is present usually a state-space model is useful for the analysis of the system. If this is the case,

the modeling assumption is that the true states of the system s; are generated by the dynamical
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system g but we observe noise-contaminated quantities r;, 1 <i < n

5i = g(V,5i-1),

T; = 8; + €, 611{1\(}1 (0,02).

Example 1.2 (Dynamical system with additive observational and dynamical noise). An example
of dynamical system that has additive observational and dynamical noise is a nonlinear Gaussian
state-space model which formally is given by

iid
Si = f(% 51’71) + €, €~ (07 03)

=g, 8)+¢€, € ifisl./\/’((),au,%).

Example 1.3 (Dynamical system with multiplicative dynamical and additive observational
noise). A popular state-space model used in time series analysis is the unobserved ARCH (Giak-

oumatos et al., 2005) model which formally is given by

5; = (a+ /8512—1)1/26§

T; = S; + 0¢€;,

where€;, e; i N(0,1). In the unobserved ARCH model we observe a realization of the process z(
and s; is the unobserved ARCH component at time i. Note that the observational noise is additive
while the dynamical noise of the process (s;);>1 is multiplicative. For identifiability reasons, some

constraints must be imposed on the parameters o and 3 but in this point it is irrelevant.

Dynamical systems that are contaminated with dynamical noise result to what is known as
stochastic or random dynamical systems (RDS) (Arnold, 2013; Bhattacharya & Majumdar,
2007; Hatjispyros & Yannacopoulos, 2005; McGoff et al., 2015; Schenk-Hoppe, 1997; Lasota &
Mackey, 1994). In this thesis we will be concerned with random dynamical systems that are
subjected to additive dynamical noise. Before we proceed to the theory of random dynamical
systems, we will provide some elements of chaos theory useful for understanding the material

appearing in subsequent chapters.

1.1.2 Chaos in dynamical systems

We are interested in the analysis of chaotic time series so let us describe here the defining prop-
erties of a time series in order to be chaotic. We will give the properties for the deterministic case
only; we remark that in all cases we study time series that originate under additive i.i.d noise,
when the deterministic part g is in a chaotic state. In order to have chaotic behavior in observed
time series (trajectories) the following three defining properties;boundedness, aperiodicity and
sensitive dependence on initial conditions (SDIC) must exist. The definitions of these notions
are given below.

Definition 1.2. Let g be a map on X. The set B C X is invariant with respect to g whenever
g(¥,B) C B.
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Definition 1.3 (Periodic trajectories). Let g be a map on X. The point p is called periodic point of
period k if gk (p) = p, and k is the smallest such positive integer. In the special case where k = 1
then p is called a fixed point. The orbit with initial point p, consisting of k points is called periodic
orbit period k.

A fixed point p may either attract points that are near it or nearby points may spread far from
the fixed point p under the dynamical system. In the first case the fixed point is called a sinik
while in the second case the fixed point is called repelling or source. The following theorem is
useful to identify the stability of the fixed point i.e. if it is a sink or a source.

Theorem 1.2 (Stability of periodic orbits). Let g : X — X be a map and let {x1,...,x} be a
periodic orbit of length k. Then

1. If|(g%)(21)| < 1, the orbit is a sink (attracting k-cycle).

2. If|(¢*) (z1)| > 1, the orbit is a source (repelling k-cycle).
Definition 1.4 (Asymptotical periodicity). Let g be a map on X and g € C*(X) (the class of
infinitely differentiable with continuous derivative functions). An orbit Og(xl) is called asymp-
totically periodic if it converges to a k-periodic orbit. That is, there exists a periodic orbit
Og4(y1) = {v1,...,yr} such that

o3l o = 4] =0

Definition 1.5 (Aperiodicity). A time series (orbit) generated from a discrete time dynamical
system is said to be aperiodic if it has no periodic points.

Definition 1.6 (Sensitive dependence on initial conditions). Let g be a map on R. A point xg has
sensitive dependence on initial conditions if there exists ¢ > (0 such that any neighborhood N of
xo contains a point x such that |g*(z) — g*(z0)| > € for some nonnegative integer k. The point g

is sometimes called sensitive point.

Intuitively, sensitive dependence on initial conditions, implies that two orbits from the same
system starting from two infinitesimally small different initial conditions will diverge with expo-
nential rate. A quantitative characteristic of a system to determine whether or not the system

has sensitive dependence on initial condition is the Lyapunov exponent.

Suppose ' = = + ¢, then

n—1
19" (@) — " ()| = €|(g") (2)| = € [ ] 19'(¢' ()| = e""e
1=0

n—1

SRR 1/ 1
=L~ nlznéogog l9'(g' (2))].

Definition 1.7. The Lyapunov exponent L is defined by

. 1 / !
L= lim — (logg'(z1) + ... +log|g'(zn)]) , (1.5)
where the derivative is taken with respect to x and x4, ..., x, are successive iterates.

We are now ready to give the definition of a chaotic orbit based on the above definitions.
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Definition 1.8 (Chaotic orbit). Let g be a map on X and let Og(:vl) be a bounded orbit of g. The

orbit is chaotic if
1. The orbit Oy4(z1) is not asymptotical periodic, and
2. The orbit has at least one positive Lyapunov exponent.

Before we proceed to the description of random dynamical systems, it will be helpful for the fol-
lowing to present here some qualitative characteristics of dynamical systems such as attractors,

basin of atttraction and invariant measures.

Attractors and the basin of attraction. In this paragraph we intend to describe some qual-
itative characteristics of discrete time dynamical systems described by a map g : X — X. An
attractor of a dynamical system is a subset of points S C X such that orbits starting from a
variety of initial conditions zg € B C X will fall, and remain into S. The attractor of a dynamical
system can be a single point (e.g. fixed points constitute an attractor), a limit cycle, or more
complicated sets with fractal structure called strange attractors. In contrast if the orbits starting

from the initial condition are falling out of the set S then S is called a repelior.

The set B is called the basin of attraction of the system. The basin of attraction can be a
single subset of X or a union of subsets of X. In the former case the system has only one stable
attractor while in the later, there coexist more than one strange attractors a phenomenon known
as multistability (Kraut et al., 1999). In this thesis we deal with polynomial maps. In terms
of stability we note that quadratic polynomial maps can exhibit for each parameter value one
stable attractor at most. Multistability and coexistence of more than one strange attractors can
be achieved under higher degree polynomials. An example of a dynamical system with stable

attractor is the logistic map defined via
r;=1—17lz2 |, i>1, (1.6)

while a bistable dynamical system is the cubic map

x; = 0.05 4+ 2.532;_1 — 0.9923 |, i>1 (1.7)
for which the dynamical behavior will be extensively described in Chapter 3.
Chaotic attractor. We have given above a brief description of an attractor. It is the set of
points that will be visited from the map. Since we are interested in chaotic orbits, in this
paragraph we provide a formal definition of a chaotic attractor. Intuitevely, a chaotic attractor
is the set of points that will be visited arbitrarily close and infinitely often by a chaotic orbit.
Formally, a chaotic attractor is defined via the forward limit set.

Definition 1.9. Let g be a map and let xy be an initial condition. The forward limit set of the
orbit {g"(xg)} is the set

w(zog) = {z : for all N and ¢ there exists n > N such that |g" (zo) — z| < €}.
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Definition 1.10 (Chaotic attractor). Let {g*(z)} be a chaotic orbit. If z9 € w(xq) then w(xo) is
called a chaotic set. An attractor is a_forward limit set which attracts a set of initial values that
has nonzero measure and is called basin of attraction. A chaotic attractor is a chaotic set that is

also an attractor.

Invariant measures. In the lower panel of Figure 1.1, the histograms of the time series gener-
ated from the logistic map for the corresponding initial conditions zy based on 100, 000 iterations
of the logistic map are displayed. This histogram represents the frequency with which a region
of the state space X is visited. Even the two time series are completely different, it is obvious
that the general form of the histograms is quite similar, implicating that all orbits generated
from the logistic map have the same marginal distribution. In fact, the frequency that an orbit
visits a specific value can be measured by means of a probability measure which is called the
invariant measure. More formaly, the invariant measure generated from the map g is defined
by

g (S) —}g%F(xo, (r,S)), where F(xq, S —nh_{goﬁZI (9,29) € 9),
and N(r,S) = {z : dist(z,S) < r}. The formation of the invariant measure depicts the fact
that long term predictions in a deterministic dynamical system exhibiting chaos is not possible.
Having at our disposal the invariant measure fi4(dz) of the chaotic map z; = g(x;—1), it is
possible to make probabilistic prediction arguments for the long term behavior of the system in

the sense that P(z; € A) = py(A) for arbitrary large ¢ and for all measurable subsets A of X.

Equivalently one can describe the marginal distribution with a density but this is not always
possible especially for multidimensional dynamical systems. The evolution of the density of a
system forward in time is given from the Frobenius-Perron operator but this goes beyond the

scope of this thesis.

Bifurcation diagram. The dynamical behavior of a dynamical system can be described via a
bifurcation diagram which shows the birth, evolution, and death of attracting sets. Equivalently,
it shows the limiting behavior of orbits for different values of the control parameters ¢. In
Figure 1.2 we display the bifurcation diagram of the logistic map z; = 1 — ¥x;_1. To construct
such a diagram, we choose an initial point g € X and an initial value for v, calculate the orbit
of zp under the map of interest for a large number of iterations M and discard the first (lets
say) 100 iterates and plot the orbit of length M — 100. Then we increase ¢ and do the same

procedure for a big range of values of ¢.

For small values of ¢ ranging from 0 to 0.75 all orbits are attracted to a single point indicated
by the x-axis. A period-two orbits arises at the bifurcation point ¥ = 0.75, which in turn leads
to period-four orbits and then more complicated orbits for larger values of ¥). When the period-
two orbit appears, the fixed point is no longer plotted because it does not attract orbits. This

behavior is called period-doubling route to chaos.
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Figure 1.2: Bifurcation diagram of the logistic map. The red line indicates the control parameter
¥ = 1.71 which we have used in our examples by now. For this value of 9 the logistic map exhibits
chaotic behavior.

1.1.3 Random dynamical systems

In section 1.1.1 we saw that a dynamical system generates a sequence (™ of observations
according to the map ¢ for fixed values of the control parameters 1. However we mentioned that
a dynamical system may be subjected to some source of noise. In this section we will consider

the general case where the map g is perturbed by an ergodic process i.e.
;=g mi—1,...,xi—q)+2z, i=1,...,n (1.8)

where z; is an ergodic process. In this case the move from a state x;_1, to its successor z;
is stochastic and the orbit z(™ depends on the initial values zg,r_1,...,Z_g+1, as also the
particular realization of the stochastic process (z;);>1. Thus noise in the system may enter in
two ways. Either it disturbes the parameters ¥, or the deterministic part g by some additive
noise z;. For simplicity we will assume that the transition to x; depends only on the previous

state x;_1. Thus we consider the case
v =g(0, 1) + 2, i>1 (1.9)

Before we proceed with the definition of random dynamical system let us introduce some def-
initions (Klenke, 2013) from ergodic theory. Intuitively, ergodic theory studies the long term
behavior of a dynamical system. In the following (€2, 7, P) will be our probability space and

7 : 2 — Q will denote a measurable map.
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Definition 1.11 (Invariant events). An event A € F is called invariant if 7~ *(A) = A. The

o-algebra of invariant events
Ir={AcF:771(A) = A},

is called trivial if for all A € I itis that P(A) € {0,1}.
Definition 1.12 (Measure-preserving and ergodic dynamical systems). The map 7 is measure-
preserving if

Pl Y(A)] = P(A), forallAc F.

In this case the quadraple (2, F, P, T) is called a measure-preserving dynamical system. If T is

measure-preserving and Zr is P-trivial then (0, F, P, 1) is called ergodic.

There is a connection between measure preserving dynamical systems and stationary stochastic
processes. If (X, )nen is a stochastic process on the probability space (XN, Y®N P) and 7 is
defined to be the shift operator, that is

T: Q= Q (Wn)neN = (Wnt1)neN,

then the process X, (w) = Xo(7"(w)) is stationay if and only if (2, F, P, T) is a measure pre-
serving dynamical system. The stochastic process defined as above is ergodic if (2, F, P, 7) is

ergodic.

For an ergodic transformation 7 we have the following:
Theorem 1.3 (Birkhoff (1931) ergodic theorem). Let X € L*(P) i.e. [, |Xo(w)|dP(w) < +oo. If

T is ergodic then

1 n—1
lim — )" X, =E[Xo], P-a.s.
k=0

n—oo n

Random dynamical systems. Having given the above definitions we are ready to define a

random dynamical system. We can reformulate the system defined in eq. (1.9) as
z; = g9, zi1) + 2(t'w), i>1, (1.10)

where z(Tiw) is an ergodic process. A random dynamical system is defined by a measurable
mapping ¢ as
p(w,z) = g(J, 2im1) + 2(w).

Then ¢(n,w,z) = (1" lw) o o p(w)r = z,(w) with 9 = x, and for n > 0, i.e. p(n,w,x)
is the n-th iterate of the map g perturbed by the noise z(7w));>¢. It follows from the general
theory that eq. (1.10) defines a random dynamical system with state space X. More formally we
have the following definition:

Definition 1.13. A random dynamical system is a measurable mapping ¢ : N x Q x X — X|
(n,w,z) = p(n,w,x) such that for allw € )

1. ¢(0,w) =idx and p(m + n,w) = p(n, 7™w) o p(m,w) for alln,m > 0.

2. p(n,w) : X — X is smooth.
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3. Fori.id. noise, (¢(n, -, x))nen is a Markov process for allz € X. Then g is called Markovian.

In what follows, we will consider only the case of additive dynamical noise in which the random

dynamical system can be described via
zi=g(0,xi—1) + 2z, 121, (1.11)

where g : © x X — X, with (2;);>0 and (z;);>1 are real random variables defined over ({2, F, P).
That is, for our purposes z(7'w) = z;, and we assume that the additive perturbations z; are
identically distributed from a zero mean distribution with unknown density f defined over the
real line. Now clearly the dynamical system consists of a deterministic and a random part; that

is the functional form described by the map g and the noise components respectively.

Recall that in the case of a deterministic dynamical system, the dynamics are described by
the functional iterations of the map applied to the initial condition. In the case of RDS since
every state is a random variable, the dynamics are described by the transition probability kernel

Q(-, -) of the homogeneous Markov chain defined by eq. (1.11). Formally it is that
Q(z,A) = Pz, € Alzp_1 = x).

The system in this case is observed via time series data which we will assume is not contami-
nated with observation noise so we have in our disposal a time series z(™) generated directly by

the Markovian stochastic process given in eq. (1.11).

Quasi-invariant measures. In analogy with the deterministic systems, in a random dynami-
cal system, there exists an associated quasi-invariant measure [i, .(dz) which is the signature
of the underlying interplay of the chaotic dynamics and dynamical noise perturbations. The
quasi-invariant measure is a smoothed-out deformation of the associated invariant measure
tg(dz) of the deterministic part of the system. In analogy we can make long term proba-
bilistic prediction arguments for random chaotic dynamical systems in the sense that now
P(x; € A) = g, (A) for an arbitrary large i and for all measurable subsets A of X. In fact the
deterministic invariant measure is the limit of the invariant measures of a random dynamical

system as in (1.11) with infinitesimal random disturbances i.e. z; — 0.

It is worth noting that the estimation of the quasi-invariant measure is difficult and not a
straight-forward procedure. In Chapter 3 we will show that the associated quasi-invariant
measure of a random dynamical system naturally arises as posterior predictive marginal (PPM)
of the out-of-sample variables forming a prediction barrier. More detailes and an extensive

treatment of quasi invariant measures can be found in Collet et al. (2012).

In Figure 1.3 we plot the time series generated from the random logistic map given by

x;=1—-17122 | 4+ 2z, 2z ~N(0,0%) fori=1,2,... (1.12)
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for twe initial conditions zp € {1,1.001} and o = 0.01. The marginal distributions of the two

orbits are depicted in the lower panel in histogram representation.
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Figure 1.3: Two orbits z,y generated from the random logistic equation for initial conditions z¢p = 1
and yo = 1.001 for the value ¢ = 0.01. presented in the upper panel. The lower panel depicts the
histogram of the quasi-invariant measure based on 100,000 iterations. Note that the differences are
indistinguishable. Comparing the lower panel with the lower panel of Figure 1.1, we see that the quasi-
invariant distribution is a smoothed-out deformation of the invariant distribution given in Figure 1.1(c)
and (d).

1.2 Reconstruction of random dynamical systems

Reconstruction of nonlinear dynamical systems which may exhibit chaotic behavior is of great
interest in the communities of mathematics, physics, statistics and signal processing. The pur-
pose of reconstructing the model of the dynamical system from measured time series data is to
estimate the state space parameters of the system comprised of the (vector of) control parame-
ters of the deterministic part and the characteristics of the dynamic noise components. Under
the assumption that the dynamic noise components are independent and identically distributed
from some distribution (typically the Normal distribution) the model becomes Markovian and
the full reconstruction of the system is achieved using some statistical methodology that in-
volves the likelihood function; that is the joint distribution of the observations conditioned on

all the unknown variables.

In the frequentist framework the state space parameters are considered fixed and uknown and
the researcher seeks the value of the parameters that maximize some objective function which
is usually the likelihood function. In contrast in the Bayesian setting all unknown quantities

are treated as random variables and any prior knowledge is incorporated in the model with
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the form of a prior distribution 7™ over the parameters of interest. Combining the available
information given in the prior and the likelihood function, Bayes theorem provides the posterior

density, i.e. the conditional density of the parameters given the data.

Thus, a Bayesian model consists of a likelihood function £(0;z1,...,2,) = [[i ¢(x;|0) for

a sample of size n of observations (") which are considered to be realizations of the random
variables X (") taking values on a state space X with density /; and some prior distribution with
density 7 for the parameters of interest § € ©. Bayesian inference is then carried out based on

the posterior distribution given by Bayes’ theorem

) = LO;z1,. .. 2,)7(0)
» Tn Jo L0021, ..., 2n)m(0)d0

0
(0| x1,... x L(O;x1,...,2,)7(0).
An estimate for the parameter of interest is then taken from some statistic, such as the mean,

the mode or the median of a sample taken from the posterior distribution.

Bayesian formulation (Robert, 2007) has been of great use in the general field of noise perturbed
dynamical systems. It was initially demonstrated in this context by Davies (1998), where Markov
Chain Monte Carlo (MCMC) methods were used for nonlinear noise reduction. In Meyer &
Christensen (2000, 2001) MCMC methods were applied for the parameter estimation of state-
space nonlinear models, extending maximum likelihood-based existing methods (McSharry &
Smith, 1999). Later, in Smelyanskiy et al. (2005) a path integral representation was proposed for
the likelihood function, in order to make inference in stochastic nonlinear dynamics, extended
for nonstationary systems in Luchinsky et al. (2008). In Matsumoto et al. (2001) and Nakada
et al. (2005) Bayesian methods were suggested for reconstruction and prediction of nonlinear
dynamical systems. Recently in Molkov et al. (2012), a Bayesian technique was proposed for
the prognosis of the qualitative behavior of random dynamical systems under different forms of

dynamical noise.

The methods introduced from the above researchers rely on the common assumption of the
normality of the noise process. Such an assumption cannot always be justified and can cause
inferential problems when the noise process departs from normality, for example when it pro-
duces outlying errors. Then the estimated variance of the normal errors is artificially enlarged
causing poor inference for the system parameters of interest. For this reason, it is obvious
that more flexible models must be constructed which will lead to accurate estimations even
when the noise process departs from normality. In this thesis we aim to provide a Bayesian
nonparametric formulation for the estimation of the parameters of the dynamical equations in

the signle and multiple time series setting.

1.3 Aim and scope of the thesis

The aim of this thesis is to provide a Bayesian nonparametric framework for the full recon-
struction of random dynamical systems. We start with the problem of reconstruction of a

single dynamical system using Geometric stick breaking (GSB) processes and sequentially we
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construct Dependent Bayesian nonparametric priors to extend the methodology in the context
of multiple time series. The running examples are based on random polynomial maps which
exhibit chaotic behavior. A very similar family of processes which are of great interest in the
communities of statistics and signal processing are the Polynomial Autoregressive Processes
(PAR) (Karakus et al., 2015). Such a process can be represented in the notation P(”)AR(k).

k E k k k
1 2 P
T, = § :GE )xn—i 4 E E ag,j)xn—ixn—j 4 E .. g aél,).n,ipxn_il C Tp—i, + €n,
i=1

=1 j=1 i1=1 ip=1

where €, is an excitation sequence. These processes have been used a lot in the context of
time series and signal processing because they are linear in the parameters and thus many

mathematical applications developed for linear models can be employed easily.

In the first half of this thesis, we will take a Bayesian nonparametric approach to reconstruct and
predict random dynamical systems. We relax the common assumption of Normality of the noise
process and we model the dynamical noise using a highly flexible family of density functions,
providing a Bayesian nonparametric formulation (Ferguson, 1973; Fuentes-Garcia et al., 2010).
We are confident that, contrary to the assumption of normality, our Bayesian modeling will
be able to capture the right shape of the true underlying noise density hence leading to an
improved and reliable statistical inference for the system even in cases where the size of the
observed time series is small. Some recent applications of Bayesian nonparametric methods in
nonlinear dynamical systems include Dirichlet Process (DP) based reconstruction (Hatjispyros
et al., 2009) and joint state-measurement noise density estimation with non-Gaussian and

Gaussian observational and dynamical noise components respectively (Jaoua et al., 2013).

The problems and methods discussed so far assume that we are interested in the reconstruction
and prediction of a single time series. In the second half of the thesis we propose a Bayesian
nonparametric mixture model for the joint full reconstruction of a finite collection of dynamical
equations, given observed dynamically-noise-corrupted chaotic time series. The method of
reconstruction is based on the Pairwise Dependent Geometric Stick-Breaking Process (PDGSBP)
mixture priors. Based on the PDGSBP prior we are able to extend the inferential procedure

provided by the GSBR model in a multiple time series setting.

In the next chapter we provide the necessary background on Bayesian nonparametrics. We
start with the description of the Dirichlet process (DP) and the Geometric stick-breaking process
(GSB) priors which are the two random probability measures used in our methods. Due to their
discrete nature, it is not possible to model densities. To model overcome this obstacle and in
order to model densities, we discuss Bayesian nonparametric mixture models and their use as
a prior on the space of densities. Since a Bayesian nonparametric model is a Bayesian model
with the prior defined on an infinite dimensional space, we review MCMC methods that we will

use in order to perform posterior inference in such models.

The thesis then proceeds with a review of the Bayesian nonparametric reconstruction model DPR
based on the Dirichlet process DP proposed by Hatjispyros et al. (2009) and then we move to the
Geometric Stick-Breaking reconstruction model (GSBR) introduced in Merkatas et al. (2017). We
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propose a Bayesian nonparametric framework for the estimation and prediction, from observed
time series data, of discretized random dynamical systems. The size of the observed time series
can be small and the additive noise may not be Gaussian distributed. We show that when the
dynamical noise departs from normality, simple parametric MCMC models are inefficient. Our
models, assume an unknown error process in the form of a countable mixture of zero mean
normals, where a-priori the number of the countable normal components and their variances
is unknown. Our method infers the number of unknown components and their variances i.e.
it infers the density of the error process directly from the observed data. We demonstrate
numerically that the associated quasi invariant measure of the system appears naturally as

posterior predictive marginal of the out-of-sample variables forming a prediction barrier.

Here we introduce our second contribution. We present a new approach to the joint estimation
of partially exchangeable observations. This is achieved by constructing a model with pairwise
dependence between random density functions, each of which is modeled as a mixture of GSB
processes. We demonstrate numerically that mixture modeling with Pairwise Dependent Geo-
metric Breaking process (PDGSBP) priors introduced by Hatjispyros et al. (2017a) is sufficient
for prediction and estimation purposes. Moreover the corresponding Gibbs sampler for estima-
tion is faster and easier to implement than the DP counterpart. For a fair comparison between
the proposed PDGSBP model and the PDDP model of Hatjispyros et al. (2011) we adopt syn-
chronized prior specification. To this end we randomize the concentration masses of the PDDP
model leading to a more efficient model which we refer to as randomized Pairwise Dependent
Dirichlet Process prior. We provide a modified MCMC scheme for the update of the individual

concentration masses.

Finally we provide a Bayesian nonparametric model for the joint reconstruction of dynamical
equations from dynamically-noisy-corrupted chaotic time series data. The main idea is to ap-
ply a PDGSBP prior to the space of densities of the additive errors. Under the assumption
that the zero-mean processes responsible for the generation of the time series have common
characteristics, for example they have same tail behavior, it is possible under carefully selected
borrowing-of-strength prior specifications, to reconstruct the dynamical equations of the pro-
cesses responsible for the generation of the time series especially for those systems for which
the corresponding sample size is small; i.e. inefficient for an independent estimation with an
rDPR or GSBR model.

CHAPTER 4

CHAPTER 5
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Chapter 2

Bayesian nonparametric models

In this chapter we review the Bayesian nonparametric (BNP) priors used for the construction
of our models. We start with the definition of the most common BNP prior that is the Dirichlet
process (DP) and its extensions and then we review the Geometric stick breaking (GSB) prior;
a random probability measure with simple weight structure. A class of MCMC algorithms that
update the components of the random probability measures in the inferential procedure is
also presented for these models. For an extensive study of the theory and applications of BNP
models in statistics and machine learning problems we refer to Hjort et al. (2010) and Mtiller
et al. (2015).

To give an intuition for the need of BNP models consider the problem of density estimation which
is of great importance in Statistics. That is, given a collection of observations (x1,...,Z;,) on
some measurable space (X, X'), where X is a Polish space and &’ its associated Borel o-algebra,
we want to estimate their distribution. Formally, we have a collection of random variables

iid
xl,...,xn\FwF

and the aim is to infer the uknown distribution F.

In the Bayesian approach, one should define a prior over the parameter which is now the
unknown distribution F. This prior is defined over Px, the space of all probability measures
on X which now acts as the parameter space. Such priors are random probability measures
defined on X that is, measurable functions G : ) X X — Px such that

1. w— G(w, A) is a probability measure on (X, X') for each A € X
2. A~ G(w, A) is a random variable for each w € (.

Reviewing the Dirichlet distribution will reinforce our intuition and clarify certain types of repre-
sentation and properties of the Dirichlet Process. For this reason the definition of the Dirichlet
distribution is provided.

Definition 2.1 (Dirichlet Distribution). Let Z1,...,Zk, be independent G(a;,1),1 < j < K,

random variables and let Z = 7y + - - - + Zk . The vector w = (w1, ..., wk) where

9

Z.
wjzfj
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has the Dirichlet distribution with parameters o = (a1, . .., ak ) with probability density function

F(Z]K:I aj) ar—1

Dirichlet(w | a) 1= —5 wit - "w?(KflI((wl, L wg) € AK),
[1i=: T(ay)

with

K
AK: {(wl,,wK)eRwazzl}
=1

2.1 Dirichlet Process

The Dirichlet process (Ferguson, 1973) is essentially a distribution over all discrete distribu-
tions. Intutitively this means that if we draw a sample from a DP we get a probability distribution

on X and we write G ~ DP to denote that G is a sample from a DP.

Definition 2.2 (Dirichlet process). Let ¢ > 0 and H be a probability measure defined on X. We
say G is a draw from a Dirichlet process with concentration parameter ¢ and base distribution H,
or G ~ DP(c, H), if and only if for each finite measurable partition { A1, ..., A,} of X, the vector
of random probabilities (G(A1), ..., G(Ag)) is distributed according to the Dirichlet distribution
with parameters (cH (A1), -- ,cH(Ay)).

From the definition above, it is clear that G is a draw from a DP if all its finite marginal distri-
butions are Dirichlet distributions. Ferguson (1973) has shown that such a construction meets
the conditions of Kolmogorov consistency theorem guaranteeing the existence of the Dirichlet

process on a state space X.

To see the role of ¢ and H consider the measurable partition of X = {A, A’}. Then G(A) is
distributed as a Be(cH (A), cH(A’)) random variable so we have that E[G(A)] = H(A). Thus H
is specifying where the mass of G is distributed on average. From the properties of the Beta
distribution we have that Var[G(A)] = (1 + ¢)"![H(A)(1 — H(A))], so the parameter c controls
the variability around the mean and can be regarded as an inverse variance parameter. So as
¢ — oo the prior is more tightly concentrated around the mean. In Figure 2.1, we represent
the effect of the parameter ¢ on 20 random distributions sampled from a DP prior with mean

distribution a standard normal distribution A (0, 1).

2.1.1 Properties of DP
Conjugacy of Dirichlet process

An attractive property of the DP is its conjugacy meaning that given a sample of observations
drawn from a DP that is z1,...,2, |G i G, the posterior random measure G |z, ..., z, is also
distributed according to a DP. Of course the concentration parameter and the base distribution
of the posterior random measure will be updated in the light of “data”. Now G is itself a random

distribution and thus we can draw samples from G which are regarded as “data”.
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Figure 2.1: Random cdf’s resulting from 20 draws from the prior DP(c, H) for ¢ = 0.5,5, 50, 500, and
H(dz) = M(x|0,1)dz. As the parameter c increases the prior concentrates around the mean H.

So, suppose that we have a sample z1,...,z, |G X G and G ~ DP(c,H). Let Ay,..., A be a
finite measurable partition of X and let n; = > " | Z(x; € A;) for j = 1,..., k. The likelihood
model for (nq,...,n;) is multinomial and from the conjugacy of the finite dimensional Dirichlet

prior to the multinomial likelihood we have that

(G(A1),...,G(Ag)) | z1,. .., 2y ~ Dirichlet(cH (A1) + n1, ...,cH(Ag) + ng).

The above relation holds for every finite measurable partition so we conclude that the posterior
distribution must also be a DP. Manipulating the parameters of the finite dimensional posterior

we can write the posterior of a DP as

¢ no 3 0s
Glz1,...,2p ~DP [ c+n, H + . (2.1)
c+n c+n n

It is clear from the above that the posterior base distribution is a weighted average of the prior

base distribution H and the empirical distribution. We will show below that the posterior base
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distribution is also the predictive distribution for a new sample drawn from the DP.

Predictive distributions

Now consider again a sample z1,...,2z, from a random distribution G which is distributed
according to a DP denoted by G ~ DP(c, H). We are interested in the predictive distribution
for a new observation x,1|1,...,x,. Integrating the random distribution G the predictive

distribution of x,,4; for any A C X is given by
P(anrl € A|$17"'7$n) :/ P(xn+1 € A|G)P(G’xla7xn>d(@
GePx

:/ G(A) P(G|z1,...,2,)dG
GePx

= E[G(A) | z1,. .., 4]

~c —IC— nH(A) + c —t n Z?:ljxi(A) ' 2-2)
Thus with G integrated out the predictive distribution is given by
1 n
a:n+1\x1,...,xn~c+n(cH—F;(L;i). (2.3)

2.1.2 Representations of a DP

Many different representations have been proposed for the DP each of them giving nice prop-
erties useful for the construction of MCMC algorithms. Below we provide the most popular

representations found in the literature.

Stick-breaking represenation

A random probability measure G sampled from a DP admits a stick-breaking representation.
Sethuraman (1994) has shown that if G ~ DP(c¢, H) then

G=> wibs,, (2.4)
k=1

where (2j)r>1 is a sequence of independent and identical distributed random variables with
distribution H and the weights (wy);>1 are stick-breaking, that is for a sequence (z),>1 with

2z ~ Be(1,¢)
k—1

wp =21, W =2Zk H(I—Zk),kZZ (2.5)
=1

The name stick breaking comes from the definition of the weights which can be thought as

the length of a piece of a unit-length stick assigned to the k-th value. From the stick breaking
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represenation it is clear that random probabilitiy measures sampled from a DP are almost surely

discrete.

The Dirichlet process belongs to the general class of stick-breaking priors (Ishwaran & James,
2001) where the Beta random variables are allowed to have different parameters for each k. That
is different stick breaking priors can be obtained for a BNP inference if we let z;, ~ Be(ay, by)

for each k. Although to ensure that the weights will add up to 1 it must be verified that
> a
E log <1 + k) = +o00.
by,
k=1

We will see later that the stick breaking representation is extremely useful for planning Gibbs

samplers imputing the random probability measure in the inferential procedure.

Figure 2.2: A draw from a Dirichlet process prior DP(c, H) with ¢ = 10 and H ~ N(0, 1), using the
stick-breaking representation.

Generalized Pélya urn

Beside the stick breaking representaion, the DP can be represented by a generalized Pélya urn
(Blackwell & MacQueen, 1973). In this representation it becomes clear that the DP exhibits a
clustering property.

Let z1,...,2, |G X G with G ~ DP(c, H). Then the distribution of =41 |z1,...,2, can be

written in terms of successive conditional distributions as

n
c 1

Tntl | L1, ... Ty ~ H + 551

n+’ 9 y4n c+n C‘i‘n.lm

1=

Thus, a new sample will be with probability c¢(c +n)~! a new draw from H or a previously seen
sample z; with probability (n 4 ¢)~!. Due to the discrete nature of this distribution, ties will

occur. If we denote by (Z1,...,Z)) the unique values of (z1,...,2,) and with n;,1 < j < k,
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their corresponding frequencies such that > jj = N, we can write the conditional distribution

as
0z;, with probability nn—;c forj=1,... .k
$n+1|xlw..,$n/w
H,  with probability .
The sequence of (1, .. ., x, ) constructed this way is infinitely exchangeable because (™) | G, n >

1, arei.i.d samples from G and thus by de Finetti’s representation theorem there exists a random
distribution II such that .
P(z1,...,20) = | [[G(z:)T(dG).
Px j=1
The random distribution II of G is shown to be the Dirichlet process (Blackwell & MacQueen,
1973).

It is worth noting that this particular representation of the Dirichlet process is useful in plan-
ning marginal samplers for the DP. These samplers are MCMC algorithms which rely on the
integration of the random distribution G to avoid infinite number of updates. The celebrated
ALcorITHM 8 introduced by Neal (2000) belongs to this class and is used as a reference algorithm

in the class of marginal samplers.

Representation as an NRMI

The DP is in the general class of random probability measures called normalized random mea-
sures with independent increments (NRMI). To define a NRMI the definition of a completely
random measure (CRM) is required (Kingman, 1967). In the following we let (Mx, Mx) denote
the measurable space of all finitely bounded measures on X.

Definition 2.3 (Completely random measure). Let ji be a measurable mapping from (2, F, P)
into (Mx, Mx) such that for any collection A1, ..., A, in X with A; N A; = 0 fori # j, the
collection of random variables [i(A;), ..., i(Ax) are mutually independent. Then [i is called a

completely random measure (CRM).

In the following we will consider CRM’s that can be represented as

i=> Jibs,, (2.6)
k=1

where the jumps (J);>; and the X-valued locations (xj)x>1 are random.

The distribution of [ is characterized from the Lévy-Khintchine representation which states

B [ fxf(:r)ﬁ(dw)] _ exp{_ / - eyf(x)]y(ds,d:r)}.
R+ xX

The measure v is called Lévy intensity and describes the distribution of the random points

(Jk, l“k)kzl as a Poisson random measure with mean v. For our purposes we will assume that
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the measure v factorizes as v(ds, dz) = p(ds)H (dz) implying independence between the random

masses and the random locations. If this is the case, the CRM is called homogeneous.

A normalized random measure with independent increments can be defined through the nor-
malization of a CRM.
Definition 2.4 (Normalized random measure). Let i be a homogeneous CRM with v(ds,dz) =
p(ds)H(dz) and T = [i(X) be the total mass. An almost surely discrete random probability
measure defined via

(0.0
= Z wk‘(sxk ’

=1

M=

N =
where (wy);>1 is a sequence of random probabilities defined by normalizing ( Ji) k>1 with respect
to T is called normalized random measure with independent increments (NRMI).

In order for the normalization to be well defined, it must be ensured that 7' < +oo almost

surely. If the following two conditions for the Lévy measure are satisfied

/w p(ds) = +oo and /R+(1 — e *)p(ds) < +oo.

then 7' < 400 almost surely.

An alternative definition of the DP as a normalized Gamma CRM was introduced in Ferguson
(1973).
Definition 2.5 (Dirichlet Process (Ferguson, 1973)). Let /i, be a Gamma CRM that is a homoge-

neous CRM with Lévy intensity measure
p(ds)H(dz) = cs~te *ds H(dz),

where ¢ > 0 and let T' be its total mass. The random probability measure

is a Dirichlet process with parameter c.

2.2 Geometric stick breaking process

An interesting random probability measure can be obtained from the general class of stick
breaking priors (Ishwaran & James, 2001) by using only one Beta random variable for the
construction of the weights. Recall that a stick breaking prior is a random probability measure

that admits the representation

G = i WEOg,, 5
k=1
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where (2f)k>1 id H and the weights w;, are constructed via a stick breaking process as

k—1

wi =2, wp=z|[[01-2),k>2
I=1

for (zx)k>1 ~ Be(ag, bi).

If we replace the sequence (2 );>1 with a single random variable A ~ Be(a, ¢) and construct the

weights with a geometric structure as

wy, = A1 — A)FL 2.7)
the resulting probability measure
[e.9]
G=X> (1=X"d,, 2.8)
k=1

is known as a geometric stick breaking (GSB) process or geometric weights prior (Fuentes-Garcia
et al., 2010). From now on, we will denote a random probability measure drawn from a GSB

process as G ~ GSB(\, H).

The GSB prior can be seen as a removal of a level of randomness in a nonparametric model
based on the DP by replacing the stick breaking weights with their expectations. The expectated
value of the stick breaking weights of the DP is given by

1 = 1 c \F1
]:E = =
o] 1+c£[11+c 1+c<1+c> ’

which is a reparametrization of Equation (2.7) with A = (1 +¢)~ 1.

The advantage of using a GSB as a BNP prior is its reduced variability of the weights thus leading
to improved estimation. Despite the fact that a level of randomness is removed, standard results
of Ongaro & Cattaneo (2004) can be used to prove that a GSB random probability measure still
has full support on the space of discrete probability measures of Px. For the GSB process we
prove the following proposition.

Proposition 2.1. Let G ~ GSB(\, H). Then for every A € X we have

2. Var[G(A)] = ﬁH(A)(l — H(A)).

Proof. PART 1. From the definition of the GSB random probability measure we have that

G = > "2, w0y, . The expectation of the random variable G(A) is given by

E[G(A)] =E [Z wkéxk] = wiR[dy, (A)] = H(A).
k=1 k=1
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PART 2. It is that

VarG(A)] = E[G(4)] — E[G(A)]
2

=E > wid?, (A) + ) wpw;de, (A)dz;(A)| - [E > wid, (A)
k=1 k#j k=1

2

= EZw,%H(A) + HQ(A)EZwkwj —
k=1 k#j

E) w,H(A)
k=1

= H(AEY w} + H* (AR wyw; — H*(A) |EY wj| H*(A)
k=1 k#j k=1

Py

from which we conclude that Var[G(A4)] = H(A)(1 — H(A))E (332, w}) . Because wy, = A(1 —
A\)F~1 it follows that
Var[G(A)] = 7)\H(A)(1 — H(A)).

2.3 Bayesian nonparametric mixtures

In the previous sections we have seen that stick breaking random probability measures are
almost surely discrete even when the base distribution H is continuous. This implies that
these BNP priors are not suitable to model densities. An approach for the construction of a
prior process whose realizations are absolutely continuous random distribution functions was
first proposed by Antoniak (1974) and followed by Lo et al. (1984). The main idea of the Dirichlet
Process Mixture (DPM) model is to convolute a kernel of some parametric family with a random

probability measure sampled from a BNP prior.

More formally, consider the parametric family of kernels
Ko={K(-0)]0 0O CR. (2.9)
A mixture distribution is a convex combination of the members of Xy with the representation

f(z) = ZpkK(x |0;) with Zpk =1. (2.10)
k=1 k=1

where the sequence pi belongs to the infinite dimensional simplex

Am:{p17p27-"|zpk:1}- (2.11)
k=1
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Any discrete probability measure over the parameter space © can be written as

o0
G= Zpk(sb)k. 2.12)
k=1
Using measure-theoretic notation, the mixture distribution of eq. (2.10) can be written as

f(z) = /@ K(z|0)G(d9), (2.13)

where G is called the mixing distribution.

A Bayesian mixture model can be defined if we let the parameters of the mixture distribution that
is, (pk, Ok )k>1 be random. In order to do so, the problem reduces to define a random probability
measure over the measurable space (0, 3(©)). This is the main idea behind the DPM model
proposed by Lo et al. (1984) who considered the distribution of the random distribution G to be
a Dirichlet process. In a hierarchical fashion, the model is represented as
ind
6;1G X G
G ~ DP(c, H).

The interesting property of the DPM is that the posterior is also a DPM. More formally we have
the following
Proposition 2.2. Ifz; |6; ind f(zi]6;),1 <i<nand?b; G where G ~ DP(c, H) then

Glay...,x, N/DP(C*,H*)P(dG\acl,...,a?n),
©

with P(0| - - - ) being the posterior density and c*, H* the posterior concentration and the posterior

base measure given in eq. (2.1).

From the formulation of the Bayesian mixture, it is obvious that the distribution of the mixing
measure can be replaced by any discrete random probability measure resulting the different
Bayesian nonparametric mixtures. In this thesis we will use Bayesian nonparametric mixture
models that use as a prior over the parameters of the mixing distribution a DP or a GSB
process. For completeness we provide the hierarchical representation of a Geometric stick
breaking mixture (GSBM) model below. It is that

20, ™ K (2;]6;)

0, Y

G ~ GSB(\, H)
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2.4 Dependent processes

In Bayesian nonparametrics, the use of nonparametric priors such as the Dirichlet process
(Ferguson, 1973) is justified by the assumption that the observations are exchangeable. How-
ever exchangeability is not a valid assumption for all kinds of data. For example in time
series data there may be correlation between observations in proximate times resulting in non-

exchangeable data sets.

When the exchangeability assumption fails one needs to use non-exchangeable priors. These
priors are dependent stochastic processes i.e. distributions over a collection of measures in-
dexed by values in some covariate space, such that the marginal distribution is described by a

known nonparametric prior.

Below we will review two types of dependent Bayesian nonparametric priors. At first, we review
covariate dependent priors introduced in MacEachern (1999). These priors include additional
information in a model conditioning on a non-random variable taking values in some covariate
space. Then we focus to dependent processes which are distributions over exchangeable collec-
tions of measures. The construction of nonexchangeable priors is a fresh and very active field of
research especially for the statistics and machine learning communities. In Foti & Williamson
(2015), a survey of the common approaches in the construction of dependent nonparametric

processes is given.

2.4.1 Covariate-dependent models

In many applications there are datasets which may contain temporal, spatial or categorical
information for which we are not interested in making inference. Instead we would like to
condition upon it in order to improve inference. This additional information is introduced in
the model by considering a variable z taking values in some covariate space Z so now the
effect of interest X is a function of z that is X (z). Since X is a function of z this means
that the parameters 6 must also be a function of 6(z) of z. The aim now is to construct a
flexible dependent Bayesian nonparametric prior which accounts for the information given by

the covariate z.

Generalizing the stick breaking represenation of the DP, MacEachern (1999) showed that a
dependent Dirichlet process (DDP) can be defined via

k=1

where (wg(z),0x(z)) are stochastic processes indexed in Z. A classical example of the use of
dependent DP’s is the Bayesian nonparametric regression problem where a random probability
measure G, is constructed for each covariate z. Extensions to dependent DP models can be
found in De Iorio et al. (2004), Griffin & Steel (2006), and Dunson & Park (2008).
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Recently there has been growing interest for the use of simpler random probability measures
which while simpler are yet sufficient for a Bayesian nonparametric density estimation. The
geometric stick breaking (GSB) random probability measure (Fuentes-Garcia et al., 2010) has
been used for density estimation and has been shown to provide an efficient alternative to DP
mixture models. Some recent papers extend this nonparametric prior to a dependent nonpara-

metric prior.

In the construction of covariate dependent processes, GSB processes have been seen to provide
an adequate model to the traditional dependent DP model. For example, for Bayesian regres-
sion, Fuentes-Garcia et al. (2009) propose a covariate dependent process based on random
probability measures drawn from a GSB process. Mena et al. (2011) used GSB random proba-
bility measures in order to construct a purely atomic continuous time measure-valued process,
useful for the analysis of time series data. In this case, the covariate z > 0 denotes the time
that each observation is (discretely) recorded and conditionally on each observation is drawn

from a time-dependent nonparametric mixture model based on GSB processes.

2.4.2 Distributions over exchangeable measures

We have seen before that the assumption of exchangeability may be violated when the data
are observed with covariates. This though, is not the only case where the exchangeability
assumption fails. In real life applications data are often partially exchangeable. For example the
data may consist of independent observations sampled from m populations, or may be sampled
from an experiment conducted in m different geographical places. This means that the joint
law is invariant under permutations within m subgroups of observations (Xj1,..., X j,nj), j =

1,...,m, then for all 7; € S(n;)

d
((Xl,il)lﬁilﬁnu B (Xm,im)lﬁimﬁnm) = ((Xl,m(il))lﬁhﬁnu SRR (Xm,wm(im))lﬁimﬁnm) (2.14)

Most of the proposals rely on the notion of partial exchangeability as set forth by De Finetti
(1938) who formalizes the above idea. In simple words, partial exchangeability means that
although not valid across the whole set of observations, exchangeability can hold true within m

different groups of observations.

More formally, in analogy with Theorem 1.1, an infinite X-valued process X ](OO),l < j < m,
defined over a probability space (€2, F, P), is partially exchangeable as in eq. (2.14) if and only

if there exists a probability distribution II over Pg’, that satisfies

P{X;;€Aji:1<j<m,1<i<n;}

= P{X;;€Aj;:1<j<m,1<i<n;|Qq,...,Qpn}II(dQy,...,dQy)
7)7n
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Z/mHP{XﬁGAﬁi1§i§nj\Qj}H(d@1,--~,de)
j=1

_ /Pm 11 {ﬁ@j(Aji)} 1(dQy, . .., dQy).
=1

m
J=1

The de Finetti measure II represents a prior distribution over partially exchangeable observa-
tions and is the distribution of some vector (Qy,...,Q,,) of random probability measures on
X.

We devote the following few paragraphs to describe some common dependent processes which
create distributions over exchangeable collections of measures. A typical scenario in which the

measure 11 is employed is with mixture models to generate random densities.

Hierarchical Dirichlet Process

A very popular dependent process with applications in ad-mixture models is the Hierarchical
Dirichlet Process (HDP) proposed by Teh et al. (2006) which induces dependence among a
collection of random probability measures by setting a hierarchical model over the locations of

the random distributions of the groups.

More specifically, in the HDP model a random measure G is sampled from a DP(v, H), and then
for each group of data x; a random measure G; is sampled from a DP(c, Go). The distributions
G; can be used as mixing measures to generate the random densities f; for the observations.
Formally the model can be summarized as

ind iid
zji |05i ~ K(-|0ji), 0;i|Gj ~ G;

GJ = ijk(sgk lfl\(‘i DP(C, GO), GO = Z/Bk(s@k ~ DP(77 H)
k=1 k=1

Note that in the HDP model that all the random measures share the same set of “atoms” (loca-
tions). This is because the base measure of the group specific DPs is the random distribution
Go and thus all G; have the same support as Gg. This way, different observations in the same

group can share the same parameters, but also observations across different groups. Shared

characteristics would correspond to large stick breaking weights.

A closely related approach in the modeling of densities, which are thought to be related, is the
Analysis of Densities (AnDe) model, proposed by Tomlinson & Escobar (1999). The difference is
that in the AnDe model, the “global” distribution Gy is itself a DPM. In this case, since G; are
independent draws from DP (¢, Gg) they have no atoms in common. Thus clusters arise within
a group via the discreteness of G; but atoms in different groups are different and there is no

sharing of clusters between groups.
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Dependence through a shared component

Another way to introduce dependence between a finite collection of probability measures G;, 1 <
J < m is to model each random measure G; as a convex combination of a common and an index

specific idiosyncratic part. So for 0 < p; < 1 it is that
Gj = ij() + (1 —pj)G;,

where G is the common component of all other measures and G;f, 1 < 57 < m are the idiosyn-
cratic parts to each G;.

This approach has been adopted by Miiller et al. (2004); Bulla et al. (2009); Kolossiatis et al.
(2013) under the assumption that Gy, G;f X pp (¢, H). The resulting G; measures have been
used in the context of DPM models generating a collection of dependent random densities

f5(x), 1 < j < m given by

fi(x) :pj/gK(x|9)Go(d0)+(1—pj)/®K(x|9)G;f(d0).

The generative process of the model can be summarized as
nd id
wji |00 ~ K (+]050), 05i1Q; ~ Q
Qj =piGo+ (1 —p;)Gj, pj + (1 —p;) =1

Go, G}  DP(c, H).

A similar approach was taken by Griffin et al. (2013); Lijoi et al. (2014) who have replaced the
Dirichlet random measures G, G; with a normalized random probability measure based on the
normalized generalized gamma process (NGGP) (Brix, 1999) and o-stable process (Kingman,
1975) repsectively. The NGGP process is a completely random measure whose Lévy intensity is

given by

CS—I—U
I'(l1-o)
with o € (0,1), ¢ > 0 and ¢ > 0. The NGGP includes as special case the DP when 0 = 0,{ = 1

and the o-stable process when ¢ = 0.

Veoc(ds,dz) = e “*dsH(dz),

Pairwise dependent random probability measures

A more general dependence structure between a collection of measure G; has been proposed
by Hatjispyros et al. (2011). They have modeled the random distributions Q; to be pairwise
dependent that is

m m
Q= piGyu, > pjy=las,
=1 =1
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with Gj; = Gy; being iid from the DP(c, H). Equivalently the proposed model can be written in

matrix notation form as

Q=(poG)1.

where p = (pj;;) is the matrix of random selection probabilities, G = (G;;) is the symmetric
matrix of the independent Dirichlet measures and p ® G is the Hadamard product of two
matrices defined as (p ® G) ji = pjiGj;. Letting 1 denote the m X 1 matrix of ones it is that the
jth element of the vector Q is given by Q; defined above.

For the observations, the generative process is summarized

ind iid
zji |05i ~ K(-|05i), 05| Q; ~ Q,

m m
Q; = ijlGjla ijl =1, Gj = Gy
=1 =1

G;i % DP(c, H).

The same dependence structure was adopted in Hatjispyros et al. (2016) but now the iid DPs
are forced to have the same atoms. The authors showed that adopting common atoms to the
involved Dirichlet processes is sufficient for prediction and density estimation purposes within

the concept of borrowing of strength.

In Chapter 4 we are going to describe a dependent process based on the GSB process. Although
these measures have been used in covariate-dependent models, they haven’t been used for

modeling related density functions when samples from each density function are available.

2.5 Markov Chain Monte Carlo methods

In a Bayesian model the prior is combined with the likelihood i.e. the joint density of the
observations given any parameters and the objective is to determine the posterior distribution,
that is the conditional distribution of parameters given the data. Formally we have the following

Bayesian model

leaXn|91fl\(/i€(|9)
0~ .
Letting £(0;x1,...,2,) = [[ie; ¢(z;]0), inference is based on a sample from the posterior

distribution given by
_ ‘6(073:1771.71)71-(0)
 Jo LB, .. xn)w(0)dO

(0| x1,. .., xy) (2.15)

If the prior and the likelihood do not form a conjugate pair the posterior distribution given
in eq. (2.15) does not have a closed form. This is because the integral that appears in the

denominator is intractable. Although the problem of approximating an integral can be dealt
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with methods from numerical analysis, Monte Carlo (MC) methods are based on properties of

random variables and Laws of Large Numbers providing a solution to the problem of integration.

Monte Carlo (MC) integration. Suppose that we want to evaluate an integral of a function h

of a random variable # € © which we assume it has density 7. That is
I(h) = / h(0)7(0)d0 = B[ (0)]. 2.16)
©

Monte Carlo (MC) methods assume that we have an i.i.d. sample o) = (ei)lgig N from the
target density 7(f) and that the function i can be evaluated point-wise. The integral is then

approximated from the Monte Carlo estimator defined as

In(h) = &Zh(ei), 2.17)

which from the strong LLN converges to the desired integral. That is,
1 N
In(h) = = 3 h(e®) 2% 1 = / h(0)7(6)d0 as N — co. 2.18)
NI ©

This MC estimator is unbiased, and by the strong Law of Large numbers will a.s. converge to
I(h). If the variance of h(f) satisfies

o7 = E-[h?(0)] — E2[h(0)] = E-[h3(0)] — I*(h) < 400, 2.19)

the MC estimator I (h) satisfies the following Central Limit Theorem, yielding convergence in
distribution of the error
VN(In(h) = I(h)) 3 N(0,02). (2.20)

In practice however, it is not always possible to generate samples from 7 so Markov Chain Monte
Carlo (MCMC) methods provide a framework to obtain samples from the desired density. The
basic idea of MCMC methods is to construct a stationary Markov chain (91)121 with stationary
density which is the desired target density 7. Independently of the starting point of the chain,
after a long enough period, in terms of samples, the Markov chain will converge to its stationary

distribution and samples from it can be considered as samples from the target density.

There is an extensive literature in MCMC methods establishing theoretical results and output
diagnostics that is not possible to review it extensively. In the following we will review only the
Gibbs sampler, one of the most common MCMC algorithms which is the main tool for inference
in our models. More details on MCMC methods and theory can be found in Robert (2004);
Brooks et al. (2011); Liang et al. (2011); Besag & Green (1993).
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2.5.1 The Gibbs sampler

The Gibbs sampler is the simpler and most popular MCMC algorithm for Bayesian inference
when it comes to the sampling of multidimensional distributions. It is a special case of the
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) initially used in sta-
tistical physics. The Gibbs sampler updates each component 6; of the vector of variables
0 = (01,...,0;) using as a proposal distribution the associated full conditional distribution
7(0;]6—;), where 0_; is the vector of parameters with the j-th component removed. This
makes the acceptance probability at each step equal to 1. In the statistics community, Gibbs
sampling has been used only after the work of Geman & Geman (1984) for analyzing Gibbs

distributions on lattices in the context of image processing.

More clearly, suppose that the unknown parameter is multidimensional § = (61,...,60;), so
the target distribution is multivariate. The vector of parameters can be partitioned and written
as 6 = (01,...,0;) where each 6;,j = 1,..., k may be unidimensional or multidimensional so
that dim(6;) + - - - dim(f) = d. Consequently the target density can be written as 7(61, ..., 0).
The Gibbs sampler starts from an aribtrary point §° = (9(1), . ,02) and alternates updating the
comonents of # by drawing from the relevant conditional distributions 7 (¢, | #_;), according to

the scheme presented in Algorithm 1 until the number of desired samples N.

Algorithm 1 : GiBBs sampling for multidimensional parameter.

1: procedure SAMPLE 0 = (01,...,0).

2 Initiliaze the chain §° = (69, ...,69).
3 fori =1to N do

4 for j =1tok do

5: Sample 0} ~ m(0; |07, ...,00 1,057,607 ).
6 end for
7 end for
8:

end procedure

In its simplest form, it is assumed that the conditional distributions 7(6; | f_;) are of standard
form. Nevertheless if for some components the conditional distribution is unknown one can
use a Metropolis step to sample from the conditional of the particular component leading to a
Metropolis within Gibbs sampler. For an adaptive rejection Metropolis within Gibbs sampler
we refer to Gilks et al. (1995). Alternatively one can use slice sampling; an auxiliary variable
method to sample the components with nonstandard full conditionals, constructing embedded
Gibbs samplers and thus circumventing the Metropolis step. Auxiliary variable methods will be

analyzed later on in the text.

If some 6;, 1 < j < k has dim(6;) > 2 then the elements of §; are sampled simultaneously as
a block. If this is the case the Gibbs sampler is called a blocked Gibbs sampler. Note here that
having blocks in a Gibbs sampler, the Markov chain reaches the stationary distribution faster

but this comes at the expense of sampling from multivariate distributions.
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2.5.2 Auxiliary variable methods-Slice sampling

Whenever 7, the target density or the full conditional of #;, in the Gibbs sampler is of a non
standard form, auxiliary variable methods (Damien et al., 1999) can be used to result in a Gibbs

sampler having a set of easily sampled standard full conditionals.

These methods augment the target density with a positive latent variable u constructing the
joint density of u and 6. This way, the marginal density for 0 is given by 7 and the Gibbs sampler

is extended to include an extra full conditional for u.

Suppose that we wish to sample from a density 7 given by
m(6) o< q(0)£(9), (2.21)

where ¢ is a density of known form and f is a non-negative invertible function. With the

introduction of a latent variable u : {2 — R, the joint density can be written as

(0, u) x q(0)Z(u < f(6)). (2.22)

Marginalizing u from eq. (2.22) we get (), thus, the augmentation is valid. The full conditional
for w is uniform (0, f(#)). The full conditional for # is now a truncated version of ¢ restricted
to the set

Ay =1{0:u< f(0)}. (2.23)

Below we provide a simple example to sample from a density with gaussian functional form.
Example 2.1. Suppose we want to sample from the density given by m(0) exp{—%HQ}. We will

introduce an auxiliary random variable u such that the joint density is
T 2
(0, u) o exp{—gu}I(u > 607).

Clearly, integrating out u leads to original density 7(). Now we have that the full condtionals are
given by
m(u|f) x exp{—%u}I(u > 0%) (2.24)
(0| u) o< Z(u > 6?). (2.25)
where (2.24) is a truncated exponential density with rate /2 over the set (92, o0) easily sampled
and (2.25) is a uniform density over the interval (—+/u, \/u).

More examples for the usage of this method in fancy densities and applications in Bayesian
hierarchical models can be found in the work of Damien et al. (1999). Some algorithmic im-

provements and convergence results are presented in Mira (1998) and Neal (2003).
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2.6 MCMC for Bayesian nonparametric mixture models

In this section we review MCMC algorithm for posterior inference in Bayesian nonparametric
mixture models. The algorithms are based on slice sampling with auxiliary variables and belong
to the class of conditional samplers. In a conditional sampler, the random probability measure
that acts as a prior on the mixture parameters is imputed in the inferential procedure. Retaining
the random distribution is useful since it removes the dependence between the parameters

which exist in the marginal samplers (Neal, 2000) based on the Pélya-urn scheme.

In what follows we will consider a Bayesian nonparametric mixture model where the prior on
the mixing distribution is either a DP or a GSB process. That is, we have a Bayesian mixture
model

zi]0: K (2] 6;)

0;,1G X G

G ~ 11,

where G is a random probability measure whose distribution II is a DP or a GSB process. The

density for one observation z; reads

k=1

Clearly, due to the infinite sum appearing in eq. (2.26) it is impossible to construct a Gibbs
sampler with a finite number of updates. However, with the introduction of auxiliary variables
a Gibbs sampler that needs only a finite number of summands can be devised. The main idea
is to augment the state space of the random densities appearing in eq. (2.26), associating with
each observation a clustering variable d; and an almost surely finite random set A;, the slice
set, such that the conditional distribution of z; given the slice set attains a discrete uniform

distribution

di | A; ~ DU(A,).

The conditional density then becomes f(d; = k|A;) = |A;|"'Z(k € A;). For the clustering
variables, the marginal distribution is x>1 Wr0g. Conditionally on the slice set A; the density

of the observations becomes

> flwidi = k| A)

1

f(xilAs)

£
Il

o

£ = K| Aa) i di =) = 3 K|, .27

keA, Al

T
I

Thus, with the introduction of strategic auxiliary random variables, the infinite sum becomes
an almost surely finite and equally weighted mixture as is shown in eq. (2.27). In the following

we present slice samplers in the case where II is a DP or a GSB process.
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2.6.1 Slice sampling DPM models

In the DPM model the weights wy, of the random distribution G are defined via the stick breaking
representation of Sethuraman (1994). So letting wy, as in eq. (2.5) the DPM model in hierarchical

representation is

K(x;]6;) ™ K (2:6;)
6;1G X G

G ~ DP(c, H),

where G = >, wkdgj. The slice set depends on the sequence of weights w(>) through a
(random) slice variable u (Walker, 2007) such that

A ={keN:0<u <wg}.

Conditionally on the slice set A; it is that

_ o N T(u; <wg)  wipU(0,wy)
fldi|Ay) = f(di = k|u;) = S T(ur < wy) S ws U0, wy)”

Therefore

o0
w; | w ~ Zwku(O,wk) and u; |w,d; = k ~ wr U0, wy).
k=1

From the joint density
flui,di = k) = f(di = k) f(ui | di = k) = wi U (us |0, wy),
and the fact that f(z; | d; = k) = K(z; | 0y), the (u;, d;)-augmented density is

[y ui,di) = f(di = k) f(ui | di = k) f (i | di = k)
= wp U (u; | 0, w) K (z; | O)
= I(ui < wk)K(xZ ’916)

The full likelihood based on a sample of size n is given by

n
F@™, ™, dm 0> 90y = TT Z(u; < wa,) K (x5 | 04,)- (2.28)
i=1
The prior distribution on the mixture parameters is the distribution of the random probability
measure G that is IT(w(*), #(>)). Multiplied with the likelihood, the posterior model for inference
is given by
n

(w90 | 200w at)y oc (w0 T Z(ws < wa,) K (2: | 6a,). (2.29)
=1



2.6. MCMC for Bayesian nonparametric mixture models 37

Given the auxiliary variables u(™,d(™ it is possible to construct a Gibbs sampler with finite

number of updates. At each sweep the latent variables (u;,d;) will be updated as also the

o)

parameters w(oo), 9() which are the quantities characterizing the density of interest. The

algorithmic steps of the Gibbs sampler are given below. Having initialized the d;’s we sample

the parameters of interest for k = 1, ..., d* where d* = max;{d;}.
1. The full conditional distribution of the locations is given by

(6 | ---) oc H(6k) [] K (xil6k). (2.30)
d;=k

If there is no d; = k the 6;’s are sampled from the prior H.

2. The sampling of the z;’s and the slice variables u;, 1 < ¢ < n leading to a more efficient
implementation (Kalli et al., 2011) can be done as a block. The full conditional distribution for

the z;’s is given by

(2| - -, exclude u) = Be <1 + I(di =k),c+ Y I(di > k)) : 2.31)

i=1 i=1

Having sampled the z;’s the stick breaking weights are constructed via eq. (2.5).
3. Proceed by sampling the {u;} which are uniform on the interval (0, wg;, )

I(ug | -+ ) o< T(u; < wg,). (2.32)

4. The sampling of the clustering variables is from the discrete distribution
H(dl ‘ e ) X K($l | edi)Z(Ui < wdi). (2.33)

In order to sample the d;’s exactly the explicit construnction of the sets A; = {k e N: 0 < u; <
wk} is required. Let N; = max; A;. In order to be sure that we have all the weights and locations

for the algorithm to proceed we have to find for each ¢ the smallest integer N such that

N
Zwk > 1 —u;.
k=1

In fact we can be sure that we can sample all the d;’s when there is no w; > u;. So if we let

u* = min;{u; } we have to compute the smallest integer N* such that

N*
Zwk >1—u".
k=1

The additional weights {wg+41, ..., wy+} and locations {64+ 1,...,0n~} are sampled from their
priors that is Be(1, ¢) and H respectively.



38 Chapter 2. Bayesian nonparametric models

It is worth noting here that the number N* is a random variable distributed as 1+Poi(—clog u*)
(Muliere & Tardella, 1998). To see this, note that N* is defined as

N* :inf{nGN:Zwk >1—u"}
k=1

:inf{nENzl—Zwk<u*}
k=1

n
=inf{n € N: H(l —z1) < u*}.
k=1
Since z;, ~ Be(1, ¢) it follows that 1 — 2z, ~ Be(c, 1) which implies that — log(1—zx) ~ £(c) where
&(c) stands for the exponential distribution with rate ¢. Taking the quantity —log [[_ (1 — z),
it is that

n n
—log [J(1 —2) = =) log(1 — z),
k=1 k=1

which is the sum of n exponential random variables with rate c. Thus N* — 1 is the number of

events of a Poisson process with mean c arriving at time — log u*.

5. Having updated the mixture allocation variables we proceed to the sampling of the con-
centration parameter c of the Dirichlet process. Following West (1992), we let x to denote the
number of unique labels of the clustering variables, that is k € {1,...,n}. Then a sample for ¢

can be obtained as follows
i. Sample s ~ Be(n + 1,¢) and then

ii. ¢|s,k~p.Gla+k,B—logs)+ (1—p.)G(a+r—1,5—logs),

whith the weights p. satisfying 2 e = n(aﬁt’io_gls).

6. For density estimation purposes we have to sample from the predictive distributions given
by
(| o) = / (A1 | G)II(AG |21, ., 20). 2.34)
Px

At each iteration of the Gibbs sampler we have points generated by the posterior random mea-
sure G | x1, ..., x,. These points are represented, at each iteration, by the posterior weights and

locations (w*, 0*). Given those points we have to sample z,,4+1 from

(e e]
Tn1~ > wiK(-|07). (2.35)

k=1
We can estimate the density f by sampling a x,+1 given the current selection of parameters
at each iteration of the Gibbs sampler. We sample the location 0}, ,; = 0] using the weights.
Generating a uniform u over the unit interval we take that 6, for which 25;11 w; <u < Z?Zl .
Even though we have not sampled all the weights, if we “run out” of weights we merely take the

0y, from the prior. Finally the predictive = value comes from K (-|6}_ ;).
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2.6.2 Geometric slice sampling GSBM models

The idea behind the definiton of the geometric stick breaking mixture model (Fuentes-Garcia

et al., 2010) which can be represented in a hierarchical fashion as

K(x:|6;) ™ K(;16;)

9 |GndG

G ~ GSB(\, H),

where G = ), - widp; and wy = A(1— M\)F=1j.e. the geometric weights, is to construct a simple

Gibbs sampler such that the slice sets don’t need to have gaps. In contrast they are sequential.

In GSBM mixture models, to overcome the difficulties with the infinite mixture an auxiliary
discrete random variable V; is introduced for each observation, such that conditionally on NV;

the clustering variable d; will be a choice of the geometric slice set
B, ={1,...,N;}.

The random variable /V; is almost surely finite with distribution fy that possibly depends on
parameters. Then, given V; the clustering variable attains a discrete uniform distribution over

the elements of B;

Z(k € B;)
Yoo Z(s €By)

fldi=k|N; =1)= f(di =k|B;) = =17'Z(k <1).

The (d;, N;)-augmented density becomes

f(l‘i,di:k,Ni:l):fN(Nz l)f(d_k‘N_” (xl‘dlzk)
= fn(N: = DIk < DK (1] 0k)- (2.36)

Now it is the weights that depend on the choice of the masses fy. Marginalizing the random

density in eq. (2.36) with respect to (NN;, d;), we obtain

:iiﬁv N; =D K (2 | 0y) = Zkal“sz

k=1 1=k

with wy, = Y72, 17 fn(N; = 1). It is known (Fuentes-Garcia et al., 2010) that in the particular

case where the masses of /V;’s are coming from the negative binomial distribution
NB(1]2,)) =N (1 - N1z > 1),
the weights wy, for £ > 1 have the form:

wp = NB(k|1,)) = \(1 — \)* L (2.37)
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Thus we recover a geometric stick breaking mixture model meaning that the augmentation is
valid. Substituting in eq. (2.36) fy(N; = 1) = NB(2, \) the likelihood based on a sample of size
n coming from f is
n
Fl@™ N dmy = TTA @ = )N 1Z(d < Ni)K (i | 0a,). (2.38)
i=1
Multiplying the likelihood with the prior H(w(oo), 0 (OO)) the posterior distribution is
n

(w9 N dt) | M) o T(w ), 000 TT A2 (1 = NN I(d; < Ni)K (x| 0g,)- (2.39)

i=1

Below we provide the Gibbs sampling algorithmic steps for posterior inference. Having initialized

the d™, N we sample the parameters of interest for k = 1,..., N* where N* = max;{N;}.

1. The full conditional for the geometric probability A is under the Beta conjugate prior
n n
A ---) = {H)\2(1 - )\)Ni_l} A1 = NP = Be <a +2n,8+ ) Ni— n> . (2.40)
i=1 =1

Having updated A, we construct the geometric weights wy, for 1 < j < N* via eq. (2.37).

2. The full conditional distribution of the locations is given by

(0 | ---) oc H(0k) [] K (2il0r). (2.41)
di=k

If there is no d; = k the 6;’s are sampled from the prior H.

3. We then sample the infinite mixture allocation variables d; for i = 1,...,n. It is that

(d; = k| ) oc K(zi|0x)I(k < N;). 2.42)

4. Next, to construct the sequential slice sets A; for 1 < ¢ < np we have to sample N; from
I(N; =1|di =k, ) o (1-p)Z(l>k), (2.43)
which is a truncated geometric distribution over the set {k,k + 1,...}.

5. The density estimation step can be done in a similar manner with the estimation step 6. for
the DPM model. We sample x,1 from eqs. (2.34) and (2.35).

As we will see in Chapter 4 these algorithms can be adopted for posterior inference in the
case of dependent nonparametric priors when DP or GSB measures are used for the modeling
of dependent random density functions. For the HDP and its extension the basic method for
inference relies on the Polya urn representation i.e. marginal samplers but recently, distributed

slice sampling algorithms (Ge et al., 2015) have been also proposed.
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Chapter 3

Bayesian Nonparametric

Reconstruction Models

3.1 Introduction

This chapter is devoted to Bayesian nonparametric models for reconstruction and prediction of
random dynamical systems. In section 3.2 we formulate the model under the assumption that
the noise density is a mixture of a parametric family with mixing measure, a general discrete

random distribution.

In section 3.3 we show how the augmentation of the densities with non-sequential slice sets
enables the Dirichlet Process Reconstruction (DPR) model first introduced in Hatjispyros et al.
(2009). We extend the DPR model to a fully stochastic version namely the randomized Dirichlet
Process Reconstruction (rDPR) model randomizing the concentration parameter of the associ-
ated DP measure. We also propose an antelrnative augmentation scheme for the nonstandard
part, avoiding the representation of normal transition density of the observations as a Gamma

mixture of uniforms.

Augmenting with auxiliary random variables which force the associated slice sets to have no-
gaps, in section 3.4 we introduce the Geometric Stick-Breaking Reconstruction (GSBR) model
proposed in Merkatas et al. (2017). In section 3.5 the perfomance of our GSBR model against
the DPR model in simulated examples in reconstruction and prediction problems of chaotic
time series generated by a cubic map is illustrated. To demonstrate the need for nonparametric
models, we compare the nonparametric models with a simple parametric Gibbs sampler that
assumes Gaussian noise. Finally, the chapter ends with some comments on the methods and

directions for future research.

3.2 Building the inferential models

We consider the following random dynamical model given by

zy =T, xi1,2) = g(V,xi-1) + 25, @ >1, 3.1)
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where g : © x X — X, for some compact subset X of R, (x;);>0 and (z;);>1 are real random
variables over some probability space (€2, F, P); the set © denotes the parameter space and ¢
is nonlinear, and for simplicity, continuous in z;_;. We assume that the random variables z;

are independent to each other, and independent of the states z;.

In addition we assume that the additive perturbations z; are identically distributed from a zero
mean distribution with unknown density f defined over the real line, sothat T : @ x X xR — R.
We assume that there is no observational noise, so that we have at our disposal a time series
™ = (z1,...,,) generated by the Markovian process defined in eq. (3.1). The time series z(™
depends solely on the initial distribution of z(, the vector of parameters ¢J, and the particular

realization of the noise process.

We model the errors in recurrence eq. (3.1) as a mixture of normal kernels of the form N (z | 0, 77 1)
with mean zero and precision 7 and mixing measure, a general discrete random distribution

G =3 ;51 ™ 0r;: then letting 7 = (7;);>1 and 7 = (7;);>1 we have

[ (@ /Nﬂc\OT Zw] (x]0,7;71).

For the observations (z(") | ) and for 1 < i < n we have the transition kernel
o0
fﬂ',T(xi ‘ .’Ei_l,ﬂ) = Z"Tj xz ‘ g 19 Tq— 1)7 ]—1)’ 1<i<n, (3.2)
and associated data likelihood
frr (@1, 20 | 70,9) HZ% (@i | g(9, zi1), 7). (3.3)

=1 j=1

As it has been pointed out in Hatjispyros et al. (2009), a straightforward application of Gibbs
sampling ideas, for sampling from the posterior distribution f (¢, z¢ | 1, ..., 2,), is not possible

due to the following two facts:
1. We have to sample from a mixture with an infinite number of components.
2. Full conditionals are of non-standard form.

For example, after assigning to the initial condition zy a uniform prior over the compact set X,

the full conditional for z( reads

f7r7' 1’0’ OCZ?TJ { .’L'()EX)N({L‘l‘g(ﬁjxo)’Tj_l)}’

Jj=1

where Z(z¢ € X) is the indicator function which equals 1 whenever zg is in the set X and 0
otherwise. Then the full conditional for xy, whenever g is nonlinear in g, is an infinite mixture

of truncated non-standard densities.
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3.2.1 Dynamical Slice Sets

Due to the infinite mixture appearing in the product of the likelihood in the equation above, we

are not able to construct Gibbs samplers of finite dimensions.

To make the number of variables that we have to sample finite, we use slice sampling techniques
for infinite mixtures. For each observation z;, we introduce the pair (d;, A;). The d; are the
clustering variables and indicate the component of the infinite mixture the observation z; came
from. The set A; is the associated random slice set and is an almost surely finite set of indices.

Notice, that, marginally, d; |7 ~ ) j>1T;0; and the variables d; have an infinite state space.

Our aim is to have z; | 7, A; coming from a finite mixture of normal kernels. Letting the random
variable d; conditionally on the event {d; € A;} attain a discrete uniform distribution, over A;;
that is

Fldi|Ay) = A T'I( € A),

we obtain

fr(zi|Ai) = flxi, di = j|A)

NE

1

<.
Il

I
Nk

Fldi =1 M) fr(i|di = 5) = D> [Adl 7N (] 0,7;7).

1 JEA;

.
Il

where | A;| denotes the cardinality of the set A;. Thus, given the precisions 7 and the slice set
A;, the observation x; comes from an equally weighted almost surely finite mixture of normal

kernels.

Selecting specific forms for the slice sets, we can obtain different reconstruction models. In the
following two sections we select A; in such way that allows us to recover the DPR and the GSBR

models respectively.

3.3 Dirichlet process reconstruction model

The DPR model is obtained as a special case of the general reconstruction model if we define
the slice sets to be non-sequential. That is, we assign to each observation x; a slice set that

depends on the weights 7 via a random variable u; such that
fﬂ(di :j|u1) = f(dZ :j’AZ) with A; = {] eN:O<uy; < 7Tj},

as proposed in the slice sampler for the DPM model by Walker (2007) and

I(jEAZ') - I(u¢<7rj) . ﬂjU(UHO,ﬂ'j)
Y1 I(s € Ay) B Yooy T(ui < ms) a deoy msU(u; | 0,7ms)’

fr(di = jlu;) =
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where U(x | a, b) is the uniform density over the interval (a, b). Therefore
o0
U; | ™~ Zﬂ'jU(O,ﬂ'j) and Usj ‘ 7T,di :j NU(O,ﬂ'j),
j=1

and from the joint fr(u;,d; = j) = m;U(u; | 0,7;) and the fact that given a particular value for

d; we have f(z;|d; = j) = N(z; |0, T;l) we obtain the augmented random densities

fﬂﬂ—(xi,ui,di = j) = 7Tj M(uz | O,7rj)./\/'(a:i ’0,7']-_1). (3.4)

From egs. (3.2) and (3.4) and letting m; = w;, where w; are the weights in the stick breaking

representation of the Dirichlet process, that is wy; = 27 and for j > 1:

wy =z [ (1 = =), (3.5)

s<j

with z; drawn i.i.d. from the beta distribution Be(1, ¢) for some ¢ > 0, we have
fur @iy i, di = j a1, 9) = w; U | 0,w5) N (i | g(9, 231),7;71). (3.6)

In a hierarchical fashion using the slice variables u; and the stick-breaking representation we

have for:=1,...,nand 7 > 1:

(@i i1 di = 3,0,7) % N (@i g(0,251), 777"
. ind
(ui|di = j,w) ~ U0, w;)
Pr(d; = j|w) = w;
iid
wj = zj H8<j(1 —zs), 2; ~ Be(l,c)

c~G(a,B), 4 < p.

Then given 1, zg and ¢ the data likelihood based on a sample of size n is given by

n

Jwr (@i ui, dis 1 <4 <n |9, 0, c¢) HI(Uz < wdi)T;i/Q
=1
Td,
X eXp{—?hqg(in,xi_l)}, (3.7)

where hy(z;, xi_1) = (z; — (9, 25_1))>.

Note that in eq. (3.7) the problem with the infinite mixture has been eliminated. The DPR model
described here, slightly differs from the model introduced by Hatjispyros et al. (2009). First of
all, we let the concentration parameter to be random in contrast with Hatjispyros et al. (2009).
The second, and more important, modification is that we do not make the same effort with the

nonlinear form of the means of the normal distributions appearing in eq. (3.7).
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In their approach the problem with nonlinear map has been dealt with the introduction of an
auxiliary variable v; for each observation x; for 1 <4 < np defined as

ind

vilty '~ G(3/2,7/2),
ind
zi| i, 05,0 N UG, zim1) — Vi, 9(9, zim1) + Vi),
they wrote the normal distribution as a gamma mixture of uniforms, resulting to the following
likelihood for the DPR model:
n
fuwr (@i, ui, diyvi; 1 <i <n|d,z0,c) x HI(Uz‘ < wdi)Ti/Q
i=1

ViTd

X e_TlI(vi > hy(zi, xi—1)).

This approach has the advantage that all the distributions, which have to be sampled, are
essentially mixtures of uniforms. This may lead though to bigger execution times if the sample
size of the time series is large because the sampler has to sweep at each iteration over all the
auxiliary variables v;. As we will see later, the problem with nonlinear map can be solved with
embedded Gibbs samplers augmenting the state space with a number of variables equal to
the length of the vector parameter 9 which usually, in applications, is much smaller than the

sample size.

3.3.1 Extending the DPR model for prediction

In this section we describe how the DPR model can be extended for prediction purposes. In
this case the problem is defined as follows. Given an observed time series () = (x1,...,2n),
and a prediction horizon 7' > n, the aim of prediction is to obtain an estimate of the future

unobserved values (Zy41, .., TpiT)-

Letting ny = n 4+ T, we can extend the DPR model for prediction with the introduction of the

random variables (zy1, ..., Zy4+7), and obtain the likelihood
nr
flxi,ug,di; 1 <i <np|d,z9,c) x HI(W < wazi)Ti,/2
i=1
Td,
X exp{—7h19(xi,xi_1)} . (3.8)

In the Bayesian setting, prior distributions for these parameters must be assigned and the
estimators are taken from their posterior distribution. In the next section we describe an
MCMC based algorithm for the randomized DPR model. The corresponding prior distributions

for the future unoberved values will be set constant, that is

T(Tpti) x 1, i=1,...,T.
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3.3.2 Slice sampler for the rDPR model

In this section we describe an MCMC algorithm for estimating the model based on slice sam-
pling. Specifically we are interested in the variables (x, ") and the future unobserved values
of Tpy1,...,Tnyr. We complete the model by assigning uniform priors on the parameters of

interest.

In particular for the initial condition g we assign a uniform prior distribution over the set
X C R, which represents our prior knowledge for the state space of the dynamical model given
in eq. (3.1). Over the vector control parameters of the system ¥ we assume a uniform prior
over the set © of the parameter space R¥. For the Dirichlet random measure P ~ DP(c, Py),
we assume for the base measure a Gamma distribution, namely Py(d7) = G(7 | a, b)dr. Finally,
the concentration parameter ¢ attains a Gamma prior G(a, 3), and will be updated with the

standard sampling scheme proposed by West (1992).

After initializing the variables d; for 7 = 1, ..., nr and the variables ¢, ¢ and ¥, at each iteration,

we will sample the variables:
(T])71§j§N*a dialgiSnTa

and

(197 Zo, C, ZnT+1)7

with NV = maxi<;<n, d;.

1. At first, given the clustering variables d;, i = 1, ..., ny, we update the stick-breaking weights.
We update the z;-s from

flzi| ) =Be <1+Zz<di=j),c+zz<di>j>>, (3.9)
=1 1=1

for 1 < j < N. Then the updated weights (w;);>1 are constructed via the stick-breaking

representation.

2. Having the updated weights we can proceed to the sampling of the slice variables u;, for

i =1,...,n7p which are uniform distributions on the interval (0, wg, ), namely
flug| --+) o< Z(u; < wg,). (3.10)
3. We then sample the precisions 7; for j = 1,..., N and N = maxi<;<n, d;. We have that

1 nr . 1 nr ‘
fril ) =6 (a+ 2;1@- =), b+ 2;1@ :J)hﬁm,xi_l)) , (3.11)

If j > N we sample the additional 7;’s from the prior G(a, b). In the next step of the algorithm,

the additional number of weights and precisions is obtained.
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4. The additional number of weights and precision can be found by letting ©* = minj<;<p, {u;}
and find the smallest integer N* for which

N*
> wy> 11—t (3.12)
7j=1

This is necessary in order to sample the mixture allocation variables exactly (See step (4) in
section 2.6.1).

5. We then sample the infinite mixture allocation variables d; for i = 1,...,ny. It is that

Pr(d; =j| ) oc 7}/ exp {—%hg(xi,xi_l)}l(j € A)). (3.13)

6. Having updated the mixture allocation variables we proceed to the sampling of the con-
centration parameter c of the Dirichlet process. Following West (1992), we let x to denote the
number of unique labels of the clustering variables, that is x € {1,...,nr}. Then a sample for

c can be obtained as follows
i. Sample s ~ Be(nr + 1, ¢) and then

ii. ¢|s,k~p.Glat+k,B—loge)+ (1 —p.)G(a+r—1,8—loge),

. . . . Pc at+k—1
whith the weights p. satisfying T—pe = nr(A-Togd)"
7. We are now ready to sample z,;; from the noise predictive f(z,+1|x1,...,25). At each

iteration of the Gibbs sampler we have updated weights (7;)1<j<n+ and precisions (7;)1<j<n*

and we sample independently p ~ 1/(0,1). Then we take the 7; with 1 < j < N* satisfying

Jj—1 J
Zﬂi <p§27ri, o = 0.
=0 i=0

Ifp > ZI‘N:*() 7;, we sample 7; from the prior G(a, b). In any case we sample z,; from the normal
kernel N (0, 7']»_1).

8. The full conditional for xg, will be

flao| ) x Z(zo € X) exp {—L;lhg(l‘l,xg)}. (3.14)

9. For the vector of parameters 1, the full conditional becomes

=1

f(ﬁ‘ .. ) X 1(19 € é) exp {—; ZTdihg(xi,wi_l)} . (3.15)
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10. The full conditional densities for the future unobserved observations, when T > 2 and for

j=1,...,T —1, are given by

1
f(@pag] ) oc exp {—2 [Tdss o (Tntgs Tnjo1) + Tdy 2 B (Tpjrns Tnj)] } (3.16)

For j = T the full conditional is normal with mean ¢(¢, x,,47—1) and variance TCZI 1+T, that is

fnsr| ) = N (2osr |90, wnpr 1) 73l ) - (3.17)

3.4 Geometric stick-breaking reconstruction model

The GSBR model is derived from the generic reconstruction model if we use sequential slice
sets of the form A; = {1,..., N;}, as proposed in Fuentes-Garcia et al. (2010). Then the cluster
allocation variables given the N; attain a discrete uniform distribution over the elements of A;,
that is
fldi=37IN;) = f(di = j|A;) with A; ={1,...,N;},

and ]
_ UEA) L),

Yoo I(s € Ay) l

and NV; is an almost surely finite discrete random variable of mass fy, that possibly depends

fldi=j|N;=r)

on parameters. In this case, from the joint

fr(di=j,Ni=r) = fn(Ni=r)f(di=7|N;=7)
= fn(N;=r)r'Z(j <) (3.18)

and the fact that f(z;|d; = j) = N(x; |0, Tj_l), the (d;, V;) augmented densities become
fr(zi, Ni=r.di =) = fn(Ni =r)r Y Z(j < r)N (s ]O,Tj_l). (3.19)

Now it is the weights that depend on the choice of the masses fy. Marginalizing the random

density in eq. (3.19) with respect to (NN;, d;), we obtain

fr(xi) = Zﬁj/\/(ﬂfi ‘ 0,7‘].71), with, mj = Zr_lfN(Ni =r).
J=1 r=j

It is known (Fuentes-Garcia et al., 2010) that, in the particular case where the masses of N;’s

are coming from the negative binomial distribution with state space {1, 2, ...}, namely
NB|2,A) =rX2(1 =N Z(r > 1),
the weights 7; for j > 1 have the form:

;i =NB(G|1,A) = A1 —\)77h (3.20)
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Note that the randomness included in the infinite number of weigths in the DPR model is
now replaced by only one random variable A ~ Be(a,b). It is the decreasing nature of the
geometric weights that will lead to simpler Gibbs samplers than the associated sampler of the
DP counterpart model described in the previous section. Having the weights ordered, it is not
necessary to perform a complete search in the vector where the weights are stored and thus the

execution time of the GSBR model is, as we will see, smaller.

In order to make the geometric slice sampling steps described in the next section clearer, as
well as the dependencies, we write the model in a hierarchical fashion. Using the slice variables

N; we have fort =1,...,nand 5 > 1:

(xi ‘ xi—1797di = j?T) i,rl(/i N(',I;Z ’g(ﬂ’xi_l)”rj_l)

(d; | N; =r) ™ DUf1,....r}

m = NB(|1,\), Ni © NB(2,))

iid
T; ~ P07

where DU{1,...,r} denotes the discrete uniform mass over the set {1,...,r}. Therefore, the

data likelihood based on a sample of size n, given ¥, xg and A is seen to be
n
Frlwi, Niydi 1< i < n| 0,20, 0) oc [JA2(1 = N)N1Z(d; < N) )2
i=1

X exp {_Thﬁ(%’ xz_l)} . (8.21)

3.4.1 Extending the GSBR model for prediction

In a similar way, we can extend the GSBR model as we have done with the DPR model. After the
introduction of the additional random variables (Z;,41,...,Zn+7), the likelihood of the GSBR

model for prediction becomes
nr
flai di, Nis 1 < i <np|9,20,A) o [[A?Q = N)N1Z(d; < Ni)T;i/z
i=1

X exp {—7}1,9(:6,,%_1)} . (3.22)

For the associated slice sampler which is now described in section 3.4.2 we set the prior distri-

butions for the future unobserved values to be constant

m(Xpyi) x1, i=1,...,T.

3.4.2 Slice sampler for the GSBR model

In this section, we describe the MCMC algorithm based on slice sampling for inference with the

GSBR model. We set as a base measure of the GSB process P, a Gamma distribution, that
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is Py(dT) = G(7|a,b)dr, and the geometric probability attains a Beta conjugate prior, that is
A ~ Be(a, ).

Having completed the model, we are now ready to describe the Gibbs sampler and the full
conditional densities for estimating the GSBR model. After initializing the variables d;, IV; for

1 =1,...,np and the variables ), x¢ and 1, at each iteration we will sample the variables:
(15), 1<j < N* (di;Ni), 1 <i<nr,

and

(797 X0, )‘7 ZnT+1)7

with N* = maxi<i<n;, Vi

1. The full conditional for the geometric probability A is under the Beta conjugate prior

nr
f(/\"‘):B€<a+2nT7/B+ZNi_nT>, (3.23)

i=1
Having updated ), we construct the geometric weights 7; for 1 < j < N* via eq. (3.20).

3. We then sample the precisions 7; for j = 1,..., N* and N* = maxi<;<,, N;. We have that

f(7j| .. ) =g <a+ % ZI(dl :j), b+ % zl(dl = ]) hﬁ(l’i,l‘il)> , (3.24)

i=1 i=1

where the expression f(7; |- - -) denotes the density of 7; conditional on the rest of the variables.

4. We then sample the infinite mixture allocation variables d; for ¢ = 1, ..., np. It is that

Pr(d; = j | Ni,---) o 7)/7 exp{—%hg(xi,xi_l)}f(j < N;). (3.25)

5. Next, to construct the sequential slice sets A; for 1 < ¢ < ny we have to sample N; from
Pr(Ni=r|di=j,--+) < (1=A)"Z(j <), (3.26)
which is a truncated geometric distribution over the set {j,7 + 1,...}.

6. In this step sample z,;; from the noise predictive f(z,+1]|21,...,2,). At each iteration
of the Gibbs sampler, we have updated weights (7;)1<;j<xn+ and precisions (7;)1<;j<n+ and we
sample independently p ~ ¢/(0,1). Then we take the 7; with 1 < j < N* satisfying

Jj—1 J
ZWi <P§Z7Ti7 o = 0.
=0 =0

Ifp> E?:O m;, we sample 7; from the prior G(a,b). In any case we sample z,1 from the normal
kernel N(0, Tj_l).
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7. The full conditional for zy, with a uniform prior over the set X C R that represents our prior

knowledge for the state space of the dynamical system in eq. (3.1) will be

flzo| ") o< I(zg € X) exp {*%hﬁ(l‘l,l‘o)}. (3.27)

8. For the vector of parameters ¢, and assuming a uniform prior over the subset O of the

parameter space R, the full conditional becomes

f(ﬂ’ .. ) X I(Q € C:)) exp {—;Zrdihﬁ(xi,xi_l)} . (3.28)

i=1

9. The full conditional densities for the future unobserved observations, when T > 2 and for

j=1,...,T —1, are given by
1
f(@ngjl ) o exp —3 (Tdni 10 @ntgs Tngio1) + Tdpyyr P9 (@ng gt Tnig)] ¢ - (3.29)
For j = T the full conditional is normal with mean ¢(¢, x,,17—1) and variance Td:l 1+T, that is

fngr| ) = N(:cmTlg(ﬂ,meq),T@iT) ~ (3.30)

Note that, here, we have set a Beta prior over the geometric probability, that is A ~ Be(a, f3),
leading to a conjugate posterior full conditional for A\. We refer to the above sampler as conjugate
GSBR sampler. In the next section where we attempt to compare the performance of the two

models, it is reasonable to “synchronize” their prior specifications.

For the purposes of prior synchronization we will not use the conjugate GSBR sampler but a
slight modification of it. Instead of setting a Beta prior on the geometric probability, we assign
a transformed gamma prior over the geometric probability A via A = (1 + c)*l. So as a prior

over \ we set

apf
FN) = TG . §) = Fros A e 1 = x)e .31

with A € (0,1).

Taking into consideration relation (3.31), the full conditional for the geometric probability A in

step 1. of the conjugate GSBR sampler is now
FO o) o X2nr=e=l(1 — \)Enr e BAT(0 < X < 1), (3.32)

where Ly, = o+ > " N; —np — 1.

Details on sampling efficiently, via embedded Gibbs samplers, the nonstandard densities arising
in egs. (3.14) to (3.17), egs. (3.27) to (3.30) as well as for the transformed posterior of the
geometric propability A\ given in eq. (3.32), are provided in Appendices A.1 and A.2. We thus

circumvent Metropolis-within-Gibbs implementations.
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3.5 Simulation results

Having described the two dynamical reconstruction models, in this section we compare the
performance of the proposed GSBR model using as a benchmark the rDPR model. Our findings
are that the GSBR models are more amenable to dynamical reconstruction purposes; they are
as accurate as the rDPR models, they give smaller execution times and are less complicated

and thus easier to implement.

In all the examples, we also compare the results with the results obtained from a parametric
reconstruction and prediction Gibbs sampler, that is, assuming just Gaussian noise. We refer
to this model as Param in the tables. As a measure for the accuracy, we use the Percentage
Absolute Relative Error (PARE) given by the quantity PARE = 100 X |z — x*|/|z|, where z and z*

are the true and estimated values of the quantities of interest respectively.

3.5.1 Experimental setup

Dynamical behavior of the cubic map: Quadratic polynomial maps, can exhibit for each
parameter value at most one stable attractor. Multistability and coexistence of more than one
strange attractors can be achieved under higher degree polynomial maps (Kraut et al., 1999).

We will generate observations from a cubic random map with a deterministic part given by
G(9*,z) = 0.05 4+ 9%z — 0.9923. (3.33)

When 9* € [, 9] with ¥ = —0.04 and ¥ = 2.81 the dynamics of §j, starting from ¢ = 1,
are bounded. The map becomes bistable in the regions under the extrema of (3.33) when
9* € O = [Py, Ipi] with ¥p; = 1.27 and ¥J),; = 2.54. In the phase space of the map we can
identify two mutually exclusive period-doubling cascades together with two mutually exclusive
basins of attraction. The dynamical behavior of the cubic map in eq. (3.33) can be depicted via
the bifurcation diagram given in Figure 3.1. The two coexisting attracting sets for ¥* € Oy; are
OT (in blue) and O~ (in green).

For values of ¥* slightly larger than 2.54, the set O" undergoes a sudden change. It becomes
repelling, and all orbits are attracted by the “lower” set O~ . The same behavior can be observed
for all ¥* € (2.54,2.65]. Nevertheless, orbits in the presence of dynamical noise of sufficient
intensity, visit the vicinity of the repelling set O, ad infinitum. For values of 9* greater than

2.65, there is only one stable attractor.
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1.8 <9<2.8

2

o

Figure 3.1: The bifurcation diagram for the deterministic map z; = g(9*, z;_1).

In Figure 3.2, we set the value of the control parameter to ¥* = 2.55 (the value of the control
parameter we have used in our numerical experiments) and we superimpose two deterministic
and one f>4-perturbed stochastic orbit. The two deterministic orbits, starting from zg = 1 and
zg = —1, are depicted in blue and green respectively, whereas the stochastic, starting from

ro = 1, in red.

1.5

Xt
-15 -05 05
I e

TR i bl

bl \ “ iy ”\ WW”

nLy ||| ! ||||ll)|||' ~lll "“”Il““ll" b I uull'llﬂ'ilml "lm |l']-\w‘hlﬂlv|nh“
I I I I I I

0 200 400 600 800 1000
t

Figure 3.2: The orbits of the the deterministic map z; = g(¢*,x;—1), with 9* = 2.55, starting from
29 = 1 and z¢p = —1 are depicted in blue and green respectively. A dynamically f5 4-perturbed orbit,
starting from z¢ = 1, is given in red.

Noise processes: We illustrate the GSBR and rDPR models with simulated data sets, consisting
of observations generated from the cubic random recurrence x; = §(¢*, x;—1)+z;, for the specific
parameter value ¥* = 2.55 and initial condition zyg = 1. The dynamical noise z; was sampled

from:

1. The equally weighted normal 4-mixture

fi= Z i/\/ (0, (57 +1)0?), o =102 (3.34)

2. The normal 2-mixtures, which exhibit progressively heavier tails for 1 <! <4

Eilf\f(o, o?) + 51—:)[/\/ (0,(2000)%), o =102 (3.35)

f2l— 10
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As a measure of the tail fatness of the density z ~ f, we use the mean absolute deviation from
the mean normalized by the standard deviation, for a zero mean z it is that T'Fy = E|z|//E|z|2.
The closer T'F is to 1, the thinner the tails are. It can be verified numerically that

TFf1 >TFf2,1 > > TFf2y4.

We model the deterministic part g(1J, z) of the map in eq. (3.1) with a polynomial in x of degree

m = 5.

Prior specifications: Here we define the synchronized prior specifications of the GSBR and

rDPR Gibbs samplers. We use the following general prior set up:

CNg(Oé,ﬁ), /\NTg(Oé,B), {T]Ng(a’b) : ]2 1}
Y NU((—M, M)k+1)7 Zo NZ/[(_M(]vMO)a

where £ is the degree of the modeling polynomial.

A. Noninformative reconstruction and prediction — NRP: In the absence of any prior knowl-
edge, we propose a noninformative prior specification for simultaneous reconstruction and

prediction, namely
PSnrp: a=p>10"", a=b>10"" M > 1, My > 1.

B. Informative reconstruction and prediction - IRP: When a-priori we believe that the dy-
namical noise resembles a finite mixture of zero mean Gaussians with variances that are close

to each other, we set:
PSmp:a>B8>10"1 a>b>10"% M > 1, My > 1.

Such prior specifications induce a small average GSB probability A (and consequently a large
average DP concentration mass ¢), forcing the Gibbs samplers to activate a large number of
normal kernels. Thus, generating a more detailed Gaussian mixture representation of the

unknown dynamical noise.

Data sets and invariant sets: In Figure 3.3(a), we display the deterministic orbit of length 280
of the deterministic map y; = §(¢*, y;—1), with starting point at yp = 1. We have approximated
the interval X that remains invariant under the action of g(¢*, - ) by [—1.8881, 1,8991] (see Ap-
pendix B), and the associated average characteristic Liapunov exponent by 0.4625. Realizations
of the random recurrence x; = g(9*, z;—1) + z;, £¢o = 1 under different types of noise are given

in Figure 3.3(b) and (c) respectively.

Our observations for reconstruction and out-of-sample prediction will be the data sets as%oo)
and {xzolo) : 1 <1 < 4}. The latter data sets, have been generated in R under the random

number generator seeds RNGy, = 1 and RNGy, ;:1<i<4 = {10, 15,13, 38}.
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Approximations of the deterministic and noisy invariant measures are given in Figure 3.3(d)-(f).
The deterministic invariant measure p50(dy) is approximated in Figure 3.3(d). The z-noisy
measures ,ug’z(dx) approximated in Figure 3.3(e) and (f), are quasi-invariant in the sense that
for all measurable subsets B of R it is that p5 .(B) = lim;_,o, P(z; € B |7/ > t), where 7 is a

random time denoting the first time the system enters the trapping set X’ (see Appendix B).

(a) Deterministic time series (b) f; —noisy time series (c) fa3 —noisy time series
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Figure 3.3: In Figure 3.3(a)-(c) we display the deterministic orbit and f; and f5 35 data-realizations with
initial condition g = 1. In Figure 3.3(d)-(f) we display the deterministic and the f; and f>3 quasi-
invariant set approximations respectively.

Complexity measures and prior specifications: The occurrence of an informative structure
in the available data sets may help the practitioner to decide between an informative and a

noninformative prior set up.

Approximate entropy (ApEn) (Borchers, 2015; Pincus, 1991) can be used to assess the com-
plexity of the available set xgcn) of observations. Large ApEn values indicate irregular and un-
predictable time series data. Nevertheless, it is known that ApEn values are heavily dependent

on sample size (lower than expected for small sample sizes).

A recently developed complexity measure that is less dependent on the sample size is the
forecastable component analysis () (ForeCa) (Goerg, 2013, 2016), which is based on the entropy
of the spectral density of the time series, and is normalized between zero and one. Large (2

values characterize more predictable time series.

In Figure 3.4, we display the () curves as functions of the sample size n, for the time series

acgff) and {:vgfz)l 1 <1< 4}. For the computation of the {2 curves we have used the weighted

overlapping segment averaging (WOSA) method Goerg (2016). The data sets {x;z)l 1 <1 <4}
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have the more informative structure as for n > 80 and 1 <[ < 4 it is that
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Figure 3.4: Here we display the ) curves relating to the data sets ajgff) and {mgcz)l 1 <1< 4} forn
between 50 and 280. ’

3.5.2 Informative reconstruction and prediction under the f; dynamic noise

We ran the Param, rDPR and GSBR Gibbs samplers for 7' = 20 in a synchronized mode, for
5 x 10° iterations and a burn-in period of 10,000, using data set 335200) under the informative

prior specification (IRP) PSirp witha =3, 3=0.3,a=1, b= 1073 and M = M, = 10.

We remark that under noninformative prior (NRP) specifications of the form o = 5 < 0.3, and
a=b<1073, the average number of active normals for both nonparametric samplers is lesser
than four, leading to less accurate estimations. The following provide a summary and some

brief comments.

Initial condition and dynamical noise density estimations: In Figure 3.5(a) we display
kernel density estimations (KDE’s) based on the predictive samples of the marginal posterior
(PPM) for the initial condition zy. The differences between the two predictives coming from the

GSBR and rDPR samplers are indistinguishable.

The three modes of the predictive density of ¢ are very close to the three real roots of the
polynomial equation §(9*,z) — g(9¥*,1) = 0 which are the preimages of §(9*,1). Note that for
¥ € (0.74,2.97), it is that g=1(9, (9, 1)) € {p,—1 — p, 1} with p = —(1 + /49/0.99 — 3)/2. We
refer to the three preimages of §(¢, 1) by x, = p (left), z; = —1 — p (middle) and xg = 1 (right).

In Figure 3.5(b), we give superimposed the noise predictives coming from the two models to-

gether with the true density of the noise component given in eq. (3.34). We note how the
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synchronized execution produces almost identical dynamical noise density estimations, which

are very close to the true noise density fi (solid line in red).

(a) xo GSBR and rDPR predictives (b) f{ GSBR and rDPR predictives
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Figure 3.5: In Figure 3.5(a) we give superimposed the KDE’s based on the posterior marginal predictive
samples of the initial condition variable xy. In Figure 3.5(b) we superimpose the GSBR and the rDPR
noise density estimations together with the true dynamical error density.

In Figure 3.6(a)-(f), we plot the running ergodic averages for the ; variables of the first 80, 000
iterations after burn-in. We observe that the 6; chains have converged after the first 10,000
iterations, and that the chains are mixing well. In Table 3.1 we display the percentage absolute
relative errors (PARE’s) of the synchronized estimations. For each j, we have created K =

47 approximately independent samples of size N = 10%, each sample separated by s = 500

observations
{0 M, +1<i, <M, + N} with My=(r—1)(N +s),
forr =1,..., K. Then we created K realizations of the sampling mean (SM) estimator. Finally
we took
1 Ko MeAN .
A i )
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We estimate g by the maximum a-posteriori (MAP) of the x( predictive sample, by dividing the

interval [—2,2] into 300 bins. We remark the accuracy and the closeness of the estimated ¢

values.
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Table 3.1: (U, z() reconstruction PAREs (T' = 0) under the informative prior configuration.

Model 6 01 0 03 04 05 o
Param. 198 0.37 0.03 0.58 0.00 0.04 M :3.87
rDPR 0.81 029 0.01 0.09 0.04 0.14 M :0.80
GSBR 0.19 0.27 0.05 0.04 0.02 0.18 IR :0.60
Estim. x201 202 T203  T204 205 GSBR-Av Par-Av
SM 6.43 7.35 29.70 5.48 13.68 12.53 53.49
MAP 3.84 11.48 19.16 2.15 149.06 37.14 53.25

Out-of-sample posterior predictive marginals and the prediction barrier: In Figure 3.7(a)-
(j) we display the KDEs of the marginal posterior predictive samples of the variables xog1, . . . , 205
and %216, - .., T220 coming from the GSBR (solid red line) and rDPR (dashed black line) super-
imposed. Together, we superimpose the f; quasi-invariant measure approximation (solid black
line). We note how the synchronized execution produces almost identical posterior predictive

marginals (PPM’s).

As the prediction horizon increases, the PPM densities are starting to resemble to the f; quasi-
invariant density approximation, which naturally forms a prediction barrier. As such, any
attempt to predict beyond this time horizon will replicate the quasi-invariant measure approxi-
mation. From this point on, we can make only probabilistic prediction arguments for the long
term behavior of the system that involve the quasi-invariant measurei.e. P(x,4; € A) = pg.(A)

for all 7 > T and for all measurable subsets A of R.
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Figure 3.7: In Figure 3.7(a)-(j) we display superimposed the first five and the last five KDE’s of the
(200)

out-of-sample posterior marginal predictive based on data set z; ~ under the informative specification
PSirp. Together we superimpose the KDE of the f; quasi invariant density (solid black line). In all
Figures, the bullet point represents the corresponding true future value.

In Table 3.2, we give the mean computational time per 10? iterations relating to the synchronized
execution of the rDPR and GSBR samplers under prior set up PSirp for a simple reconstruction
(I' = 0) and prediction (T" = 20). In both cases, the GSBR sampler has the fastest execution
times. In the last two rows of Table 3.1 we give the PARE’s of the first five GSBR out-of-sample
predictions using the SM and MAP estimators. The last two columns exhibit the mean PARE’s

under a GSBR and a parametric (Param) prediction.

Table 3.2: Mean execution times in seconds per 10? iterations for xﬁoo).
Data set x%oo)
Prior spec. Algorithm T =0 T =20
PS1rp rDPR 5.44 11.76
PSirp GSBR 2.24 8.65

3.5.3 Noninformative reconstruction and prediction under the f,; heavy tailed
dynamic noise

Here we simultaneously reconstruct and predict using the noninformative prior set up. More
specifically for T = 20 we set « = 3 = 0.3,a = b = 1073, M = M, = 10; we iterated the GSBR
sampler 5 x 10° after a burn-in period of 10, 000.
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In Figure 3.8 we display the KDE’s based on the PPM samples of the out-of-sample variables
{201, ..., 2205} and {216, . .., 220} (solid lines in red) under data sets x;zolo) :1 <1 <4} (rows
(@) to (d)). Together we superimpose the KDE of the associated quasi-invariant densities for

1 <[ < 4 (solid lines in black).
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Figure 3.8: In Figure 3.8 we display the GSBR KDE'’s of the PPM sample of the out-of-sample variables

{201, .., %205} and {x216, ..., 2220 }(solid lines in red) based on samples x;zolo) : 1 <1 <4} (rows

(a) to (d)) under the noninformative prior specification. Together we superimpose the KDE of the f;
quasi-invariant densities for 1 <[ < 4 (solid lines in black).

In Tables 3.3 and 3.4 we display a PARE summary of (¢, z() estimations and out-of-sample
prediction respectively, based on data sets {x;iolo) 11 <1< 4}

In Table 3.3 we compare horizontally the PARE results coming from the GSBR and the paramet-
ric sampler (Param); we notice that in all cases, the accuracy of the GSBR model is considerably
higher than its parametric counterpart. In all cases, the parametric algorithm predicts a quintic
polynomial deterministic part. Also, the GSBR model precision improves as the noise model

becomes more heavy tailed.
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Table 3.3: Simultaneous reconstruction-prediction under the noninformative prior specification. The

(9, x9) PARE’s are based on the data sets {xg)lo) :1 <1 <4} for T = 20.

Noise Model 0o 01 02 03 04 05 o
fo1 Param. | 19.95 1.54 4.83 4.39 2.52 1.01 7.27
GSBR | 0.51 0.01 0.06 0.02 0.02 0.00 | zg :0.03
f2o  Param. | 2.89 094 4.07 237 207 0.76 7.49
GSBR | 0.54 0.05 0.06 0.12 0.03 0.03 | zgy :0.03
f23  Param. | 29.97 0.40 4.97 1.25 1.88 0.41 7.55
GSBR | 0.20 0.04 0.04 0.13 0.02 0.04 | zy :0.03
f2s  Param. | 1557 1.07 1.33 3.71 043 1.03 6.40
GSBR | 0.10 0.01 0.05 0.03 0.01 0.00 | zg :0.03

In Table 3.4 when we compare the average PARE results coming from the GSBR and the para-
metric sampler (the last two columns) we notice that in all cases for both the SM and the MAP
estimators, the prediction of the GSBR model is considerably better. We also notice, that as
we move to a more heavy tailed noise model, the GSBR prediction gradually improves and the
MAP-GSBR estimator becomes more efficient. This is due to the multimodal nature of the PPM’s
generated by GSBR.

Table 3.4: Simultaneous reconstruction-prediction under the noninformative prior specification. The
out-of-sample PARE’s are based on data sets {x(figo) :1 <1 <4} for T =20. The GSBR-Av and Par-
Av columns are the PARE means of the first five out-of-sample estimations using the GSBR and the
parametric Gibbs (Param) samplers respectively.

Noise Estim. To01  T202 203 2204 To05 || GSBR-Av | Par-Av
J2q SM 12.50 0.86 12.57 44.04 82.11 30.42 58.72
MAP 12.86 2.10 77.13 25.89 39.99 31.59 69.62
J2.2 SM 0.52 0.70 8.07 167.16 15.17 38.32 65.08
MAP 0.29 1.72 0.50 103.00 20.96 25.29 65.57
J2.3 SM 0.72 7.99 0.01 9.74 49.94 13.68 233.53
MAP 0.14 047 2.34 0.39 1.38 0.93 234.80
Jou SM 0.24 1.01 2.95 3.79 40.25 9.65 60.69
MAP 0.07 0.86 4.78 0.13 21.00 5.37 109.23

3.6 Conclusions

We have described a Bayesian nonparametric approach for dynamical reconstruction and pre-
diction from observed time series data. The key insight is to use the GSB process, developed by

Fuentes-Garcia et al. (2010), as a prior (over the space of densities) on the noise component.

The GSBR model removes a level from the hierarchy of the rDPR model as it replaces the
weights of the stick breaking representation of the DP with their expected values, leading to a

simpler model with only one infinite dimensional parameter, the locations of the atoms (7;) of
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the random measure. GSB mixture dynamical modeling is as accurate as DP based modeling

but it gives smaller execution times, and is easier to implement.

We have also shown that in a joint prediction of future values of a low dimensional noisy chaotic
time series, the quasi-invariant set appears as a “prediction barrier”. Also, our numerical
experiments indicate that when the sample size of the time series is small, the forecastable
component analysis () measure can group the available sets of observations in terms of their

complexity. A larger €2 index suggests a less informative prior set up.
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Chapter 4

Pairwise Dependent Random Mixtures

4.1 Introduction

In this chapter we focus on the construction of Pairwise Dependent Geometric Stick Breaking
Processes (PDGSBP), a dependent Bayesian nonparametric prior for partially exchangeable

observations based on the GSB process (Hatjispyros et al., 2017a).

That is, we are going to model a finite collection of m random distribution functions (G;)1<j<m.
where each G; is a GSB random probability measure, such that there is a unique common
component for each pair (G;, Gj/) with j # j'. We are going to use these measures in the context
of GSB mixture models, generating a collection of m GSB pairwise dependent random densities
(fj(z))1<j<m. Hence we obtain a set of random densities (fi,..., fn,), where marginally each

fj is a random density function

fj(x):/GK(:cW)Gj(dH),

thus generalizing the GSB priors to a multivariate setting for partially exchangeable observa-

tions.

In the problem considered here, these random density functions (f;)i<j<m are thought to be
related or similar, e.g. pertubations of each other, and so we aim to share information between
groups to improve estimation of each density, especially for those densities f; for which the

corresponding sample size n; is small.

We are going to provide evidence through numerical experiments, that dependent GSB mixture
models provide an efficient alternative to pairwise dependent DP (PDDP) priors; that is making
the weights more exotic does not actually enlarge the support of the prior. At first, we will
randomize the existing PDDP model of Hatjispyros et al. (2011, 2016), by imposing gamma
priors on its concentration masses, and then we will conduct a-priori synchronized density
estimation comparison studies between the randomized PDDP model (rPDDP) and the pairwise

dependent GSB process (PDGSBP) model using synthetic and real data examples.
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4.2 Randomized pairwise dependent Dirichlet process

To introduce pairwise dependence between m random density functions, Hatjispyros et al.
(2011), introduced the following hierarchical model. For the m subgroups of observations
{(zji)i<i<n; : 1 < j <m},

ind

zji |05 ~ K(-]0j)
11d

05: | Q; ~ Q;(-)

Q; = ijz]P’jz, ijz =1, Pj =Py
=1 =1

Py % DP(c,Ry), 1<j<l<m,
for some kernel density K (- |- ), concentration parameter ¢ > 0 and parametric central measure
Py for which E[P;;(d6)] = Py(d6).

So, the random densities fj( ) are dependent mixtures of the dependent random measures Qj;
via f;(z|Q;) = [o K(x0) QJ (df), or equivalently, dependent mixtures of the m independent
mixtures g;;(z |Pj) = [o K(2z]6)Pj(df), I = 1,...,m. The density function for an observation

xj; then becomes

Fi(wgi | Qg) = f(j0) ijlgjl i) (4.1)

The gj;(;;) are random density functions defined by a DPM, that is

g]l JI]Z / K xﬂ|9) d9 Zw]le xﬂ "%lk) (4.2)
k=1

where (wji;)>1 are the stick breaking weights of the stick breaking representation of the Dirich-

let process. Then the random density of the observation xj; can be written explicitly as
m o
fi(xji [P, 1 <1 <m) = ijl {Z wjie K (55 | 9jlk)} (4.3)
=1 k=1

To introduce the rPDDP model, we randomize the PDDP model by sampling the P;; measures
from the independent D1r1chlet processes DP(ch7 Po) and then impose gamma priors on the

concentration masses, i.e. Pj; ind DP(cji, Po), cji kS Q(aﬂ, bj), 1<j<l<m.

According to Hatjispyros et al. (2011, 2016) the augmentation of each f; in eq. (4.1) with positive
auxiliary random variables will make the number of updates of the Gibbs sampler finite almost

surely. To this end we introduce:

1. The DP mixture selection variables § = (dj;): for an observation xj; that comes from f;,
d;; selects the DP mixture g;;(x) that the observation came from. In particular we have
that Pr(éji =)= Djl-
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2. The clustering variables d = (d;;); for an observation xj; that comes from f;, given 6;;, d;;

allocates the component of the DP mixture g;s,, () that zj; came from.

Finally, we define the stochastic variables u = (uﬂ) for1 <:<mnjand1 < j < m, associated

with a non-sequential slice set Ay, (uji) = {k € N: 0 < uj < wj}.
For the clustering variables we have that
m m m
Pr(dji = k) = ZPI‘(dﬁ = k,(Sji = l) = ZPI‘((S]‘Z' = l)PI‘(de' =k | 5]‘1' = l) = ijlelk'
=1 =1 =1

Conditionally on the event {d;; = [} the clustering variables have an infinite state space, that is
o
(dji | 855 = 1) ~ Y wjird,
k=1

from which we deduce that Pr(d;; = k|d;; = 1) = wj.
Proposition 4.1. Suppose that the clustering variables (d;;) conditionally on the slice variables

uj; are having a discrete uniform distribution over the elements of the slice sets ij ; (uﬂ) that is
dji | wji ~ DU(Aw; (uji)), then

fj(xjhuji)zzpjl Z K (i | Ojik)- (4.4)
=1 keijl(uji)

and
Fi(@jis ujiy djs = k[ 650 = 1) = wjn U(ugi | 0, wii) K (i | Ok )- (4.5)

Proof. Starting from the u;;-augmented random densities we have

fi(@ji, ug) = fil@ji, ugi, 050 = 1)

1M

I
NE

Pr(0j; = 1) fi(wji, uji | 05 = 1)

N
Il
—

I
Fgg
1

fi(@jis wjis dji = k| 05i = 1)

N
i
L
T
I

I
Pjs
1

fidji = k| 851 = 1) fj(uji | dji = k, 650 = 1) f(wji | dji =k, 050 = 1)

Il
—
o
Il

1

[
Dgs
1

wigk U (uji | 0, wik) K (2 | Ojik)

N
Il
—
a
I
—

I
WE
hE
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Il
-
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Augmenting further with variables d;; and ¢d;; yields
Fi(@jis wjis dji = k, 65 = 1) = pju wjik U (ugi | 0, wir) K (i | Ojur)-
Because Pr(d;; = I) = p;; the last equation leads to eq. (4.5) and the desired result follows. [

The following result is the main property of the slice variables (uj;) that allows us to create
Gibbs samplers with a finite number of updates for the PDDP model. Letting |S| stand for the
cardinality of a set S, we show that

Proposition 4.2. Given the random sets A, (uj;) the random functions in eq. (4.3) become finite

mixtures of a.s. finite equally weighted mixtures of the K ( - | - ) probability kernels, that is

x]l | uﬂ Z le |A ( )| Z K($]'i ‘ ejlk)v (4.6)
Wit k€ Aw;, (1))

with

Pt Awyy (uji)|

2t Pl Awy, (uge) |

Wi =

Proof. First note that marginally, for the slice variables (uj;) it is that

NE
Nk

flugi) = fi(ujis dji =k, 650 = 1)

-
Il
—
e
Il
—

Pr(ji = 1) fj(uji | dji = k, 85 = 1)

[
NE
NE

-
Il
—
e
Il
—_

I
WE
WE

PpitU(uji | 0, wj)

-
Il
—
£
Il
—

I
NE

pitZ(uji < wiik)

N
I
—

I
NE

Pjtl Aw,, (wji)|- 4.7)

T
I

Having the marginal of (u;;) the conditional density of xj; given the slice variable u;; is given by

filwjisuge) D0 D ke fi(@gi wyis dji = k, 05 = 1)
£ (uji) Yoty 20ty fiugiydji = 5,85 =)

fi(@jilugi) =

_ 2 Pt 2oy T(uji < wjin) K (i | )
>ty Pir 2ogey T(ugi < wiis)

> 1% Pt ZkeAwﬂ(uﬂ) K (xji | Ojur)
2 ort Pjr[Auy;, (uji)]
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Letting
il Aw, (i)
>ty Dirl Ay, (wji)]

the proposition follows. O

Wy =

From now on we leave the auxiliary variables unspecified; especially for J;; we use the notation

53‘1‘ = ((5]1“ ey ]z) € {el, e ,em} with PI‘((SjZ‘ =¢) = Pji,

where €; denotes the usual basis vector having its only nonzero component equal to 1 at position
[. Hence, for a sample of size n; from f7, a sample of size ny from fo, etc., a sample of size n,,

from f,, we can write the full likelihood as the triple product:

m Ny

f(a:,u,d\é):HHfj (xji,uji,dji\dji:(ﬂ,...,dﬁ)), ((5]1“..., ]1)6{61,..., m}
j=1li=1

m Nj m

= [T TIIT{Z(wi < wia,,) K (s | szd,-i)}éé" : (4.8)

j=li=11=1
Equivalently using a hierarchical representation it is that

ind
iy Wi | djiy 6ji (Ors; ) 1<r<ms (Wirs, ) 1<r<m ™

[T {0 uji 10, wjra,) K (i | 000}

Pr(djl- =k | ’U)ji, (5]‘1' = el) = wjlk, PI‘(5 i = el) = pjl
id id
Wiik = Zjlk H Zjls Zjlk S Be(l C) Qﬂk x Py, kEeN.

s<k

4.2.1 The rPDDP Gibbs sampler

In this section, we describe the algorithmic Gibbs sampling steps for estimating the rPDDP
model. The algorithm is an extended version of the algorithm described in Hatjispyros et al.
(2011), including an additional step for the sampling of the m concentration parameters of the
independent DP’s. First, let us complete the model assigning a Dirichlet prior with parameters

(over the selection probabilities p; = (Pj1,---,pjm) for 1 < j < m, that is

1
f(pjlaj) x Hpa” :

Having initialized (dj;,d;;) for 1 < j < m and for 1 < ¢ < n; we will sample at each iteration of

the Gibbs sampler the following variables

wjik, O, 1<j<1<m,1<k< N,
uj’i’djiv(sji? 1<5;j<m,1 §i§n]~,

Dji, 1§J§m71§l§m7
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with N* is almost surely finite. Later, we will see that the computation of N* is a generalization

of the computation of N* in the DPM model in many dimensions.

1. The first step is to sample the sequence of the stick-breaking weights and their associated
locations, that is (wjlk, Hﬂk). Following standard results of Kalli et al. (2011), we will sample
the variables from their conditional, having the slice variables u;, integrated out. Then for
1<7<m,1<i<n;itis that

5 j
f(zjjk | --+) = Be (ijk |1+ T(dji = k. 650 = ), ¢35+ »_ T(dji > k, 655 = ej)) ,

i=1 =1

while for j # [ we have that

g ny
f(zjw| -+ ) = Be (Zjlk: |14+ T(dji =k, 65 =€) + Y _ I(dy = k, 0 = e;),

=1 i=1
nj n
cji+ ZI(dji > k‘,(SjZ' = el) + Zz(dli >k, 0 = ej))-
=1 i=1

The zj;;, and 0, will only be sampled for £ < d* = max; ; d;;. If there are any k > d* we sample
them independently from the Be(1, cjl) and take the 6;;;, independently from pg. Having sampled

the sequence of z;;;, we construct the wj;; weights via the stick-breaking formula.

2. For the locations of the random measures for k = 1,...,d" where d* = max;; dj;, it is that

SOl - +) o< f (k) [T K (a0 ) FOse=0 G=P T K (a0 ) FOu=00 =81 >,
’ ’ 1.7 K (20, FCsi=ei dii=F) L=

3. In this step we sample the u;;’s. This will enable us to sample the additional number of
weights and locations for k£ > d*. From the likelihood, it follows that
i 1
&t
Flugi| ---) oc [ Z(wsi < wjia,,) .

i=1

When the Jj; is specified, for example if §;; = €; we have

f(ujl | 591 =€, ) :u(uﬂ | 07wjldjz')'

4. Here we find the additional number of weights (w;;), and locations (1), we have to sample
beyond d* in order for the chain to proceed. To this end, let IVj; be the smallest integer N* for
which

N*
Z’wjlk >1-— u;fl,
k=1
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where for j = [ it is that

and for 1 < 57 <[ < m we have

u;-l = min{miin{uji}, miin{uli}}.
This implies that we must sample (wji, 8;;;) from the prior for k = d* +1,..., N*, with N* =
max,j le.

5. Here we concentrate on the sampling of (d;;,d;;). By construction, the clustering variables

belong to the union of the slice sets, that is
m
Pr {dji € U ijz(uji) |uji, 1 <0 < nj} =1
=1

Then conditionally on the J;; variables it is that
Pr{dj; € Ay, (uji) |65 = e, uji, 1 <i<nj} =1
Then it follows that
Pr(dji =k, dji = e | -+ +) oc pju K(@ji | Ojik) T(k € Awy,(uze)) Z(1 <1< m),
a bivariate discrete distribution. Thus, we sample (d;;, 0;;) as a block.

6. The full conditional for j = 1,...,m for the selection probabilities p; = (Pj1, - Djm)s
under the Dirichlet prior f(p;|a;) o< [];2, pjflil, with hyperparameter a; = (a;1,. .., @jm), is
Dirichlet

m
1+ I(6ji =er)—1
f(Pj"")O(Hp?fl = .
=1

7. Here, we describe the associated Gibbs sampling steps for the updates of the concentration
parameters of the independent Dirichlet processes appearing in the random measures Q;. In
our model, the random densities (f;) are represented as finite mixtures of the DP mixtures
gji(z | P;;) with Py nd DP(cji, Py). We let ¢j; ~ G(aji, bj;). Then, following West (1992), we have

the following two special cases:

A. For j = [, the posterior c;;’s will be affected only by the size of the data set ; and the number

of unique clusters for which §;; = e;. Letting
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we have

B~ Be(cjj + 1,n;)
cij | By pij ~ w3 G(ags + pjj, bjz —log B) + (1 —ms) G(aj; + pj; — 1,bj5 — log )

ajitpii—1

with the weights g satisfying 133% = (b, —log )"
VAN

B. For j # I, the posterior c;;’s will be affected by the size of the data sets x; and x; and the
cumulative number of unique clusters d;; for which ¢;; = e; and the unique clusters dj; for
which J;; = e;. Letting

pit = #{dji : 65 = e;,1 < i <y}t +#{dy : o = e5,1 <i <my},
it is that

B~ Be(cji +1,n; +ny)
cit| By pji ~ mG(aj + pji, b —log B) + (1 — mg) G(aj + pji — 1,bj — log ),

ajitpji—1
nj+n;)(bj—log B)

with the weights 74 satisfying ;= =1

Due to the fact that p;; = 0 is always a possibility, so that we impose a;j; > 1.

4.2.2 Superiority of rPDDP against PDDP

In this subsection, we demonstrate the superiority of the proposed rPDDP algorithm against
the existent PDDP algorithm on a complex simulated data set. Specifically, we will generate
datasets r; of sample size n; = 200 and x> of sample size ny = 200 from the mixture densities

given by

8
filz) = ;éN(—70+ 100k —1),1) = ;ém_?M 100k - 1),1)
12

folz) = 1—12 ;N(—m +10(k —1),1) = % > N(=70+10(k —1),1)

keA

o )1 7 )1
:12{5];9N(_70+10(k—1),1)}+12 = > N(=T0+10(k = 1),1)

keA\B

Equivalently in g;;(x) notation, we have

fi(x)=0-gn(z)+1-gia(2)
fa(z)

7
=15 g12(7) + — - g22(T).

12

Prior specifications. For the comparison we choose normal kernels K (x| 0) = N (z |6) where

0 = (u, T_l) and 7 = 02 is the precision. The prior over the means and precisions of the PDDP
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and the rPDDP model (F) is the independent normal-gamma measure, given by
Py(dp,dr) = Go(dp,dr) = N(u| po, 75 1) G(7 | e1, €2) dpdr.

Attempting a noninformative prior specification we took 119 = 0 and 1) = €; = €3 = 1073, For the

concentration masses of the rPDDP model, a-priori, we set ¢j; ~ g(aﬂ, bjl), with aj; = by = 0.5.

In Section 4.2.1 we have shown that such prior specifications are valid for a;; > 1. However for
the special case where m = 2 it is allowed to have any a;; > 0 because p;; # 0 always. This is

because pj; is defined as
pjt = F#{dj; : 05 = e, 1 <0 <y} 4+ #{dy - 0 = 5,1 <0 <y},

and now, for 1 < j <1 < 2, the events #{d;; : 6;; = e;,1 < i < n;} and #{dj; : 6, = ej,1 <
i < n;} are complementary. The hyperparameters (o;;) of the Dirichlet priors over the matrix

of the selection probabilities p = (p;;) has been set to a;;; = 1.

As a measure of superiority of the proposed methodology, we will measure the similarity between
the true and the estimated probability distributions with the Hellinger distance. For two density

functions f, g the Hellinger distance is defined as
1 2
w9 =5 [ (VI ~ Vo) aa.

In this example, H(f, f) and Hz(f, f). will denote the Hellinger distance between the true
density f and the predictive density f of the PDDP and rPDDP algorithms, respectively. The

Gibbs samplers run for 11 x 10* iterations leaving the first 10* samples as a burn-in period.

In Figure 4.1, we give the histograms of the data sets generated from fi, f> which are overladed
with the kernel density estimations (KDE’s) based on the predictive samples coming from the
PDDP (dashed line) and the rPDDP (solid line) models. The differences between the two models
in the quality of the f; estimation (panel (a)) are nearly indistinguishable. This is due to
the simple form of the mixture f;. However, on the more complicated mixture density f, the
randomization of the concentration parameters cj; of the independent DPs, provides us with
accurate density estimations (panel (b)). When c¢;; are kept constant, the PDDP algorithm fails
to capture the modes located at z = —60, —40 and recognizes a single mode in z = —50. The
same holds for the modes located at x = 40, 50. The Hellinger distances between the true and

the estimated densities are given in table 4.1.

Table 4.1: Hellinger distance between the true and the estimated densities obtained from the PDDP (H)
and rPDDP (H5) models.

i H(fifi) Hr(fi, f)
1 0.11 0.11
2 0.27 0.20
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Figure 4.1: Density estimation with the PDDP model (curves in dashed-black) and the rPDDP model
(solid black curve) for the 5 — 12 mixture based on the samples from the predictive. The true density has
been superimposed in red.

4.3 Pairwise dependent geometric stick-breaking process

In this section, we develop the Pairwise Dependent Geometric Stick Breaking Process prior. In

order to do so, we let the random density functions f;(x) to be generated via

m m
fi(@) o= fi(@1 Q) = pagin(x|Gy), Q= puGyu, 1<j<m. (4.9)
=1 =1
Now, the g;i(z) := gj(z|Gj;) = [o K(x]6)Gj;(df) random densities are independent mixtures

of GSB processes, satisfying g;; = ¢;;, under the slightly altered definition

0o
Gji =Y wikdo,, with wik = Au(L— A\ L A~ h(-|€a). O = Go. (4.10)

k=1
Following a univariate construction of geometric slice sets (Fuentes-Garcia et al., 2010), we
define the stochastic variables N = (Nji) for1 <i <mnjand 1 < j < m, where Nj; is an
almost surely finite random variable of mass f, possibly depending on parameters, associated
with the sequential slice set S;; = {1,..., Nj;}. Following Hatjispyros et al. (2011, 2016), we

introduce:

1. The GSB mixture selection variables § = (§;;); for an observation xj; that comes from f;,

d;; selects the GSB mixture gji(:c) that the observation came from.

2. The clustering variables d = (dji); for an observation z;; that comes from fj, given 5ji, dj;

allocates the component of the GSB mixture g;s,, () that z;; came from.

Proposition 4.3. Suppose that the clustering variables (dji) conditionally on the slice variables
(Nji) are having the discrete uniform distribution over the sets (Sj;) that is dj; | Nj; ~ DU(S;;).



4.3. Pairwise dependent geometric stick-breaking process 73

then
1 m IS
fi(xji, Nji = 7) = . D NI XD Y K (il Oju), (4.11)
=1 k=1
and )
fj(.’L’ji, Nji =, dji =k ‘ (Sji = l) = ;fN(Y’ | )\jl)I(k} < 7’) K(a:ji | lek). (4.12)

Proof. Starting from the /V;;-augmented random densities we have
m
fi(@ji, Nji =) = ij(szasz‘ =7,05; =1)
=1
m
=Y pj filwji, Nji = |85 = 1)
=1

=> pu > filwji, Ny =r,dji = k|65 =1)
=1 k=1

X Y fildji = k| Nji = r) fi(wji | dji = k, 650 = 1).

Because fj(Nji =7 ’ 5ji = l) = fN(T' ‘ )\jl) and fj(l‘ji ’ dji = k,(Sji = l) = K({L‘ji ‘ Gﬂk), the last

equation gives

1
JI(k < K (25 | 6j1k)

M8

filwji, Nji =) = pufn(r| Ain)
=1

]
Sl
-

1 m
== D> pitfN (I X)) K (i | Ok,
=1 k=1

Augmenting further with the variables d;; and ¢;; yields
1
fi(xji, Njy =r,dj; =k, 65 =1) = - Pit In(r ) Z(k < ) K (@i | Ojk)-
Because Pr(d;; = 1) = pji, the last equation leads to eq. (4.12) and the proposition follows. [

The following proposition gives a multivariate analogue of equation (2) in Fuentes-Garcia et al.
(2010):
Proposition 4.4. Given the random set S;;, the random functions in eq. (4.9) become finite

mixtures of a.s. finite equally weighted mixtures of the K ( - | - ) probability kernels, that is

m T 1
Filasi | Nji =7) =Y _W(rs\) Y LT (4.13)
=1 k=1

with

i fn(r| A1)
W(ri 1) = =m .
(s Ast) doveq piv fn (s Ajir)
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Proof. Marginalizing the joint of xj; and IN;; with respect to zj; we obtain
m
Fi(Nji =7) = pufn(r|An).
=1

Then dividing eq. (4.11) with the probability that /V;; equals r we obtain eq. (4.13). d

We note that the one-dimensional model introduced in Fuentes-Garcia et al. (2010) under our

notation has the representation
1
filwji| Nji =850 =1) = »_~
k=1

K (zji | 051).

Marginalizing eq. (4.12) with respect to (Nj;, d;;) we obtain
f ({L'ﬂ ’5 i = l Z (Z fN 7“ ’ )\]l > (a:jilé?ﬂk). (4.14)
k=1

The quantity inside the parenthesis on the right-hand side of the previous equation is f;(d;; | §;; =
[). Following Fuentes-Garcia et al. (2010), we substitute fy (7| ;) with the negative binomial
distribution N'B(r |2, Aj;), i.e.

v\ = m?lu —\)" (> 1), (4.15)

then eq. (4.14) becomes

Filwsi 650 = 1) = qiueK (i | 0%) with g = Aju(1 = X)),
=1

and the f; random densities take the form of a finite mixture of GSB mixtures

33]2 Zp]l Z QJle Zj4 | aglk)
=1

We denote the set of observations along the m groups as * = (xj;) and with x; the set of
observations in the jth group. The three sets of latent variables in the jth group will be
denoted as IN; for the slice variables, d; for the clustering variables, and finally §; for the set
of GSB mixture allocation variables. From now on, we are going to leave the auxiliary variables
unspecified; especially for ¢;; we use the notation

5ji = (531“ e, ]l) € {el, e ,em} with PI‘((SJ'Z‘ =¢) = Djl,

where €; denotes the usual basis vector having its only nonzero component equal to 1 at position

[. Hence, for a sample of size n; from f7, a sample of size ny from fo, etc., a sample of size n,,
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from f,, we can write the full likelihood as a multiple product:

f@,N,d|8) =[] f(z;, N, d;|6))

j=1
m My 5t
_HHI de<N_]l H{)‘]l 1_ K($ji|0jldji)} .

Jj=1l:i=1
In a hierarchical fashion, using the auxiliary variables, we have for j = 1,...,mandi =
1, <y Ny,

d 8.
251, Nji | dji, i, (Ons, ) 1<r<ms Aoy, ™ H (M UK (i | Ojray,) } T TN > dyi)

ind
dji | Nji ~ Du(sﬂ) Pr(5 i=e) = Pji

_ iid
Gik = Nji(1 = Xj)"™1, 0 ~ Py, k€N

4.3.1 The PDGSBP covariance and correlation

In this subsection, we find the covariance and the correlation between f;(x) and f;(x). First,

we provide the following lemma.

Lemma 4.1. Let gg(z) = [ K(x|0)G(df) be a random density, with G = > (1= A7~
and Hj id Gy, then

E {g5(2)’} = <2_1A> {A/@K<m|9)2c;o(d9) +2(1- ) </@ K(:v]&)Go(dQ))Q}.

Proof. Because gg(7) = A 22, (1 - N/ 1K (2] 6;), we have

2
E{ge(@)’} = NEq (D (1 - N "K(z]0)
j=1
0o oo k—1
23N (1= NI 2R [K (2|62 4230 Y (1= AW E[K (2] 6,) K (2| 61))
j=1 k=2 j=1
oo k—1
Z NYTPE [K(2]6)?] +2 > ) (1= A E[K (2] 6)]?
j=1 k=2 j=1

= \? {)\@1_/\)1}3 [K(0)%] +2 Ale(Q__AA)E[K(w | 9>]2} )

which gives the desired result. O
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Proposition 4.5. It is that

Cov(fj(x), fi(x)) = pjipijVar ( /@ K(:U\G)Gji(dG)), 4.16)

with Var (/wa) ]Z(d€)> QiA Var(K(z|0)). 4.17)

Proof. The random densities f;(z) = >/ pi gu(z) and f;j(z) = >, pji gji(x) depend to each

other through the random measure G;, therefore

E[fi(x) fj(x)] = E[E(fi(2)f;(2)|Gji) | = E{E[fi(z) | G| E[f;(x) [ Gji] }, (4.18)

and

2)|Gjil =Y piuElgju(x)] + pjigsi(x) = (1 — pji) E[K (2] 0)] + pjigsi()
1#1

)| Gyl = > puElga(x)] + pijgii(x) = (1 — pig) B[K (2| 0)] + pijgji(z) -
l#j

Substituting back to equation (4.18) one obtains

E(fi(x)f;(x)] = (1 — pijpji) BIK (2 |0)]* + pijpji E [g56()?] -

Using lemma 4.1, the last equation becomes
AjiDjiDij
Efi(a)fs (o)) = 225 (B[R (2] 0)%] — EK (] 6))°} + E[K (2 | 0)],
Y
or that
_ Ajilji Pij
Cov(fj(x), fix)) = ﬁVar(K(x 16)).
7
The desired result, comes from the fact that

y [ i sl o2& =X oz (e 02
o ([ K@l006400)) = { 525 BIK (] 07] + F =2 Bl 0|0 |~ BIK (] 0)

]

=3 _}ﬁ (E[K (] 6)*] = E[K (z|60)]) .

O

Suppose now that (ij($))1§j§m and (f]g(x))lgjgm, are two collections of m DP and m GSB
pairwise dependent random densities respectively, i.e. f]D (x) = >, pjlgﬁ(x) with gﬁ(az) =
gji(x |Pjy), and f]g(aﬁ) =>" pﬂgjgl(x) with g]gl(a:) = g;ji(x|Gj;). Then we have the following

proposition:
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Proposition 4.6. For given parameters (\j;), (¢;;), and matrix of selection probabilities (pj;) it is
that

1. The PDGSBP and rPDDP correlations are given by

U SN V- V) VAN S
C 9(x), f9(z)) = ~JPIPij g 7T , 4.19
om(f§ (@), £9(2)) = J " (ZZ@_ A.><2-Air>> -

and

(1+ le)(l + Cir

m m 2 .2 —-1/2
Corr(fP(z), fP(x)) = 2220 (ZZ e )> . 420

2. When \j; = Aand cj; = c foralll < j <1 < m, the expressions for the rPDDP and PDGSBP

correlations simplify to

m m _1/2
Corr(f§ (x), f{ (z)) = Corr(f](z), f7(x)) = pjipij (ZZpilp%r) :

=1 r=1

Proof. 1. From eq. (4.17) and proposition 4.5, we have that

Var(f{ (x)) = Var (ZW%%(@) => 22?]_1 ;j,
=1 v

=1

Var(K (x| 0)).

Normalizing the covariance in eq. (4.16) with the associated standard deviations, yields

DjiPij [N~ e pzp M o
r
Cong7 0. 200 = Y220 (3537 M )
=1 r=1 o
Similarly, from proposition 1 in Hatjispyros et al. (2011), it is that
m 2
D —
Var(fP ) = 3 7 Var K 0),
and
pipii [ P22 12
Corr(fP(z), fP(z)) = =21 Jo T . 4.22

2. When \j; = Aand ¢j; = cforall 1 < j <7 < m, from egs. (4.21) and (4.22), it is clear that

m m —-1/2
Core(£9(a), £9(2)  Core(f2(2), 12(a) = by <zzp31pfr) |

=1 r=1
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It is clear that, irrespective of the model, the random densities f;(z) and f;(«) are positively cor-
related whenever pj; = p;; = 1. Similarly, the random densities f;(z) and f;(z) are independent
(have no common part) whenever p;; = p;; = 0. Another, less obvious feature, upon synchro-
nization, is the ability of controlling the correlation among the models. For example, suppose
that for m = 2, the random densities f;(z) and f2(x) are dependent, and that \j; = (1 +¢;;) ™!

then consider the expression

Dyy := Ay ply p3y {Corr(ff (z), f5 (z)) "2 — Corr(fP(z), 3 (z)) 2} .

Since correlations are positive, Dia > 0 whenever Corr(f(z), fJ(x)) < Corr(fP(x), fP(z)),
and that Dy < 0 whenever Corr(f(z), f§ (x)) > Corr(fP(z), fP(x)). Then, it not difficult to
see that

Dia = (pishiz + 11pTi A1) (P31 212 + raphadaz) — (PTaAiz + piiA1n) (P51 12 + phadaz)

with 7, = (2 — A12)/(2 — Agx), k = 1,2. We have the following cases:
1. A2 > max{\1,\2} © ri<lire<l & Corr(ff(x),fg(a:)) > Corr(fP(z), fP(x)).
2. A2 <min{A\1, A0} & 1 >1Lre>1< Corr(flg(:z), f2g(:n)) < Corr(fP(z), fP(x)).

S. M= M1i=Adp & rm=r=1<%< Corr(flg(x), fg(x)) = Corr(fiD(x),fZD(x)).

4.3.2 The PDGSBP Gibbs Sampler

In this section, we are going to describe the PDGSBP Gibbs sampler for estimating the model.

At each iteration we will sample variables,

Ok, 1 <j<I1<m,1<k<N*,
dji, Nji, 05i, 1 < j <m, 1<i<n;,

i, 1 <j<m,1 <1 <m,
with N* = max;; IVj; almost surely finite.
1. For the locations of the random measures for k = 1,...,d* where d* = max; ; dj;, it is that

172, K (i | ) POt di=h) [T K (ay; | 0j)F =0 di=k) 1 > j,

Ok | --+) o< f(Ojux) _
! TN T, K (251 ] 050 Csi=e> dii=h) 1=

2. Here, we sample the allocation variables d;; and the mixture component indicator variables

dj; asablock. For j =1,...,mandi=1,...,n;, we have

Pr(dﬂ' = k‘,(Sji =€ | Nji =T, ) X ple(le' | lek)z(l < m)I(k: < T‘).
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3. The slice variables Nj; have full conditional distributions given by
Pr(Nji =r[d0j =e;dji=1,---) o< (1= X)) Z(r > 1),
which are truncated geometric distributions over the set {/,{ +1,...}.

4. The full conditional, for j = 1,...,m, for the selection probabilities p; = (Pj1, - Djm)s
(ljl—l

under a Dirichlet prior f(p;|a;) o [[2; p;

;i . with hyperparameter a; = (a;1,...,a;m). is
Dirichlet

m
1+, Z(8j =e)—1
foj|--+) o [ o5 == :
=1

5. Here, we update the geometric probabilities (\;;) of the GSB measures. For 1 < j <[ < m,
it is that

f(Ajl|"-)O<f(Ajl){

H;’Zl {)‘?l(l _ )\jl)Nji—l}I(éji:el) H:il {)‘?l(l _ )\jl)N“’_l}I(sli:ej) > j,
T2, {750 - )\jj)N”_l}I(éji:ej) =3

To complete the model, we assign priors to the geometric probabilities. For a fair comparison
between the two models, we apply \;; = (1+ cﬂ)*1 transformed priors. So, by placing gamma

priors cj; ~ Q(aﬂ, bﬂ) over the concentration masses c;; of the PDDP model, we have

FO) =TGNt | aji,bji) o< )\j_l(ajl-‘rl)efbjl//\jl(]_ _ )\jl)ajlfl T(0 < Ay < 1). (4.23)

Conditionally on the mixture allocation variable d;;, the geometric probability A;; can be sampled

with the auxiliary variable method described in Appendix A.2

4.4 Experiments

In this section, we illustrate the efficiency of the PDGSBP model. For the choice of a normal
kernel (unless otherwise specified) K (z|0) = N (z|0) where § = (u,77!) and 7 = 072 is the
precision. The prior over the means and precisions of the PDGSBP (G() and the rPDDP model

(Fp) is the independent normal-gamma measure, given by
Po(dp, dr) = Go(dp, d7) = N(p|po, 79 ") G(7 | €1, €2) dpdr.

Attempting a noninformative prior specification (unless otherwise specified), we took pg = 0
and 7) = €] = €3 = 1073, For the concentration masses of the rPDDP model, a-priori, we set
c¢ji ~ G(aji,bj). For an objective evaluation of the execution time, of the two algorithms under
different scenarios, we choose a synchronized prior specification, namely, for the geometric
probabilities, we set \j; ~ TG(aji, b;) - the transformed gamma density given in eq. (4.23). In
section 4.2.1, we have shown that such prior specifications are valid for a;; > 1. In all our
numerical examples, we took a;; = b;; = 1.1. For our numerical experiments (unless otherwise
specified), the hyperparameters (aﬂ) of the Dirichlet priors over the matrix of the selection

probabilities p = (p;;) has been set to a;; = 1.



80 Chapter 4. Pairwise Dependent Random Mixtures

As a measure of accuracy of the proposed methodologies, we measure the similarity between
probability distributions with the Hellinger distance. So for example, Hg(f, f ) and Hp(f, f )
will denote the Hellinger distance between the true density f and the predictive density f of the
PDGSBP and rPDDP algorithms, respectively. The Gibbs samplers run for 11 x 10? iterations

leaving the first 10* samples as a burn-in period.

4.4.1 Time execution efficiency of the PDGSBP model

Nested normal mixtures with a unimodal common and idiosyncratic part: Here, we choose
to include all pairwise and idiosyncratic dependences in the form of unimodal equally weighted
normal mixture components. The mixture components are well separated with unit variance.
We define each data model M,, = {f](m) : 1 < j < m} of dimension m € {2,3,4}, based on
a 4 x 10 matrix M = (M), with entries in the set {0, 1}, having at most two ones in each
column and exactly four ones in each row. When there is exactly one entry of one, the column
defines an idiosyncratic part. The appearance of exactly two ones in a column defines a common

component. We let the matrix M given by

11 11000O0O0°O0
M- 0010100110 ’
0100010101
1000001011
and for m € {2,3,4}, we define
m+1
M s S (@) oc Y My N(2[10(k — 6),1), 1< j < m,
k=5—m
We are taking independently samples of sizes n§2) = 60 from the f]@)’s, n§3) = 120 from the

f](?’)’s, and, n§4) = 200 from the f](4) ’s. In all cases, the PDGSBP and the rPDDP density

estimations are of the same quality.

In Figure 4.2 (a)-(d), we give the histograms of the data sets for the specific case m = 4, which
are overladed with the kernel density estimations (KDE’s) based on the predictive samples of the
f ](4) ’s coming from the PDGSBP (solid line) and the rPDDP (dashed line) models. The differences
between the two models are nearly indistinguishable. The Hellinger distances between the true

and the estimated densities for the case m = 4 is given in table 4.2.

In table 4.3, we summarize the mean execution times (MET’s) per 103 iterations in seconds.
The PDGSBP sampler is about three times faster than the rPDDP sampler. The corresponding
MET ratios for m = 2,3 and 4 are 2.96, 3.04 and 3.37 respectively. We can see that the PDGSBP
Gibbs sampler gives slightly faster execution times with increasing m. This will become more
clear in our next simulated data example, where the average sample size per mode is being kept

constant.
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Figure 4.2: Histograms of data sets coming for the case m = 4. The superimposed KDE’s are based on
the predictive samples obtained from the PDGSBP and the rPDDP models.

Table 4.2: Hellinger distances for the case m = 4.

i Hg(fi(4), ]Ei(4)) HD(fiM), fi(4))

1 0.17 0.17
2 0.19 0.18
3 0.22 0.22
4 0.20 0.20

Table 4.3: Mean execution times in seconds per 10 iterations.

m  Model Sample size = MET

2 PDGSBP n|’ =60 0.57
rPDDP 1.68
3 PDGSBP n|) =120  2.16
rPDDP 6.57
4 PDGSBP n\’=200  5.30
rPDDP 17.87

Sparse m-scalable data set models: In this example, we attempt to create m-scalable normal
mixture data sets of the lowest possible sample size. To this respect, we sample independently

m groups of data sets from the densities

m—1
F@) x M@ |G- DEDTA<j<m)+ S Na| (k—1)&1)Z( = m),
k=1

with sample sizes ngm) =n{Z(1 <j<m)+ (m—1)Z(j =m)}. We have chosen { = 10 and an

average sample size per mode of n = 20, for m € {2,...,10}.
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In Figure 4.3, we depict the average execution times as functions of the dimension m. We can
see how fast the two MET-curves diverge with increasing m. In Figure 4.4(a)-(j), for the specific
case m = 10, we give the histograms of the data sets, overladed with the KDE’s based on the
predictive samples of the f](m) ’s coming from the PDGSBP (solid line) and the rPDDP (dashed
line) models. We can see that the PDGSBP and the rPDDP density estimations are of the same
quality.

The Hellinger distances, between the true and the estimated densities for the specific case
m = 10, are given in Table 4.4. The large values of the Hellinger distances Hg( fl((l)o), fl((l)o)) ~
’Hp(fl((l)o)7 Al%o)) ~ (.22, are caused by the enlargement of the variances of the underrepresented

modes due to the small sample size.

Mean execution times per 1,000 iterations

80 T T T T T T T T T
PDGSBP P
. — — 1PDDP /
ooy 2
3 /
[}
= 40 - /4 8
S Ve
= -¢
g 20 i -
1] 9’ -
—
0 _e—

Dimension m

Figure 4.3: Mean execution times for the two models, based on the sparse m-scalable data sets.
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Figure 4.4: Histograms of sparse m-scalable data sets for the case m = 10. The superimposed KDE’s
are based on the predictive samples of the PDGSBP and the rPDDP models.
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Table 4.4: Hellinger distances between true and estimated densities for the case m = 10 of the sparse
scalable data example.

7 1 2 3 4 ) 6 7 8 9 10

Ho(f1, 779 008 010 009 014 014 013 0.14 009 0.1 0.22
Hp(f20, 719 009 011 010 015 012 0.10 0.14 009 0.09 0.22

4.4.2 Normal and gamma mixture models that are not well separated

The normal mixture example: We will first consider a normal model for m = 2, first appeared
in Lijoi et al. (2014). The data models for f; and fs are 7-mixtures. Their common part is a
4-mixture that is weighed differently between the two mixtures. More specifically, we sample

two data sets of sample size n; = ne = 200, independently from

1 1 4 3
(fi, f2) = <2 g1 + 3912, 7 921 + 7922) ,

with
2 o 3 o 2
g1 = ?N(—8,0.25 )+ §N(1,0.5 )+ ?N(lo, 1)
g2 = %N(—10,0.52) + %N(—& 0.75%) + %N(?,, 0.25%) + %N(?, 0.25%)
go1 = %/\/(—10,0.52) + %\/(—3, 0.75%) + gN(s, 0.25%) + %N(?, 0.25%)

1 1 1
g2 = §N(—6, 0.52) + gN(—1,0.252) + g/\/(5,0.52).
For this case, a-priori we took (ug, 70, €1, €2) = (0,1073,1,1072). In Figure 4.5(a)-(b), we give
the histograms of the data sets, with the predictive densities of the PDGSBP and rPDDP mod-

els superimposed in black solid and black dashed curves, respectively. We can see that the

PDGSBP and the rPDDP density estimations are of the same quality.
In Table 4.5, we give the Hellinger distance between the true and the estimated densities

Table 4.5: Hellinger distance between the true and the estimated densities.

i Ho(fis f) Holfi, i)
1 0.19 0.18
2 0.18 0.15
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() ny=200 (b) np=200
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Figure 4.5: Density estimations of the 7-mixtures data sets, under the PDGSBP and the rPDDP models.
The true densities have been superimposed in red.

The gamma mixture example: In this example we took m = 2. The data models for f; and fo
are gamma 4-mixtures. The common part is a gamma 2-mixture, weighted identically among
the two mixtures. More specifically, we sample two data sets of sample size n1 = ny = 160,

independently from

2 3 7 3
(fi, f2) = <5911 + 59127 Egu + 10922) ,

with

2 1
g1 = 59(27 L1) + 59(80, 2)

8 6
= —-G(10,0.9) + —G(200,8.1
g12 = 779(10,0.9) + --6(200,8.1)

2 1
g2 = 5G(105,3) + 5G(500, 10),

Because we want to estimate the density of non negative observations, we find it more appro-
priate to take the kernel to be a log-normal distribution (Hatjispyros et al., 2017b). That is
K(x|0) = LN (x|0) with § = (u,02), is the log-normal density with mean exp(u + 02/2). For

this case, a-priori we set

- - 1 ny na
(to, 10, €1,€2) = (S5,0.5,2,0.01), S=—— Zlogmlj + Zlogmgj
ny+ng |\ 4 .
Jj=1 j=1
In Figure 4.6(a)-(b), we display the KDE’s based on the predictive samples of the two models.
We can see that the PDGSBP and the rPDDP density estimations are of the same quality. In

Table 4.6 we give the Hellinger distances.
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Figure 4.6: The KDE’s are based on the predictive sample of the PDGSBP model (solid curve in black)
and the predictive sample of the rPDDP model (dashed curve in black).

Table 4.6: Hellinger distances for the gamma mixture data model.

i Hg(fi, fi) Ho(fi, fi)
1 0.13 0.11
2 0.19 0.18

Because the common part is equally weighted among f; and fs, it makes sense to display the

estimations of the selection probability matrices under the two models

0.42 0.58 0.42 0.58 0.4 0.6
E Tji)) = , E Tji)) = ) rue — .
g(pl (i) (0.64 0.36) o(p (i) (0.69 0.31) be (0.7 0.3>

4.4.3 Borrowing of strength of the PDGSBP model

)

In this example we consider three populations {DJ(-S : 7 = 1,2,3}, under three different sce-
narios s € {1,2,3}. The sample sizes are always the same, namely, n; = 200, ns = 50 and
n3 = 200 - the second population is sampled only once. The three data sets Dgs), Dgs) and D:(,)S),

are sampled independently from the normal mixtures

(P& 190 1y = ((1 — N f+dWDg1, f, 1—g“)f+ q(s)gz> :

where

3 2 2 3
fr=1gN(=10,1) + SN (=6, 1) + N6, 1) + 15N (10, 1)

g1= GN(—4,1)+ LN, 1)

g2 = %N(—u, 1)+ %N(12, 1).
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More specifically, the three scenarios are:

1. For s = 1, we set, q(l) = 0. This is the case where the three populations are coming
from the same 4-mixture f. We depict the density estimations under the first scenario in
Figures 7(a)-(c). This is the case where the small data set, benefits the most in terms of

borrowing of strength.

2. For s = 2, we set, q(2) = 1/2. The 2-mixtures g; and g, are the the idiosyncratic parts
of the 6-mixtures fl(z) and féz), respectively. The density estimations under the second
scenario are given in Figures 7(d)-(f). In this case, the strength of borrowing between the

small data set and the two large data sets weakens.

3. For s = 3 we set q(3) = 1. In this case the three populations have no common parts. The
density estimations are given in Figure 4.7(g)-(i). This is the worst case scenario, where

there is no borrowing of strength between the small and the two large data sets.

(@) £ - n,=200 (0) 1" - np=50 (©) £ - ng=200
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Figure 4.7: Density estimation with the PDGSBP model (curves in black) under the three different
scenarios. The true density has been superimposed in red.

The Hellinger distances between the true and the estimated densities, for the three scenarios,
are given in Table 4.7. In the second column of Table 4.7, we can see how the Hellinger distance
of the estimation fQ(s) and the true density fQ(S) increases as the borrowing of strength weakens,

it is that Hg(f", i) < Ha (12, 12 < Ha (157, F¥).
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Table 4.7: Hellinger distances between the true and the estimated densities for the three scenario
example.

s Ho(FE L F) He(f7, 1) Ho(1S), F§)

1 0.14 0.19 0.13
2 0.15 0.22 0.15
3 0.12 0.26 0.12

4.4.4 Real data example

The data set is to be found at http://1lib.stat.cmu.edu/datasets/pbcseqand involves
data from 310 individuals. We take the observation as SGOT (serum glutamic-oxaloacetic
transaminase) level, just prior to liver transplant or death or the last observation recorded,

under three conditions on the individual
1. The individual is dead without transplantation.
2. The individual had a transplant.
3. The individual is alive without transplantation.

We normalize the means of all three data sets to zero. Since it is reasonable to assume the
densities for the observations are similar for the three categories (especially for the last two), we
adopt the models proposed in this paper with m = 3. The number of transplanted individuals
is small (sample size of 28) so it is reasonable to borrow strength for this density from the
other two. In this example, we set the hyperparameters of the Dirichlet priors for the selection
probabilities to
10, ifj=l=1lorj=101=3
oy =
1, otherwise.
1. In Figure 4.8(a)-(c), we provide histograms of the real data sets and superimpose the
KDE'’s based on the predictive samples of the PDGSBP and rPDDP samplers. The two

models give nearly identical density estimations.

2. The estimated a-posteriori selection probabilities are given below

0.61 0.23 0.16 0.67 0.16 0.17
Eg(p| (1) = (034 010 056 |, Ep(p|(zj))=1029 015 0.56
0.08 0.12 0.80 0.10 0.12 0.78

By comparing the second rows of the selection matrices, we conclude that the the strength of

borrowing is slightly larger in the case of PDGSBP model .


http://lib.stat.cmu.edu/datasets/pbcseq
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Figure 4.8: Histograms of the real data sets with superimposed KDE curves based on the predictive
samples of the PDGSBP and rPDDP models.

4.5 Time-efficiency of the PDGSBP model

In the previous section, we have seen that, there are great differences in the mean execution
time of the two methods with the PDGSBP model being faster than the rPDDP. This is due to the
ordered nature of the geometric stick breaking weights. Having the weights ordered will lead
(in most cases) in faster sampling times from the joint distribution of the clustering variables
d;;. In the following sections, we analyze the computational complexity of the two models when

it comes to the sampling of d;.

4.5.1 Sampling d;; in the rPDDP model

The state space of the variable (dj;, d;;) conditionally on the slice variable uj; is (d;;, 05;)(2) =
Uy (Aw,, (uji) % {er}), where Ay, (uji) = {r € N : uj; < wj,} is the a.s. finite slice set

corresponding to the observation x;; (Walker, 2007).

At each iteration of the Gibbs sampler, we have m(m + 1)/2 vectors of stick-breaking weights
wj;, each of length IV ]* ; where N jfkl ~ 1 + Poisson(—c;; log u}kl) with ¢;; being the concentration
parameter of the Dirichlet process P;; and u;.l being the minimum of the slice variables in

densities f; and f;.

In Algorithm 2, the procedure for the blocked sampling of the clustering and mixture indicator
variables is presented. To give an intuition about how the slice sets are created we provide an

illustration of the effect of the slice variable u;; in Figure 4.9.
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Algorithm 2 : rPDDP

: procedure SAMPLE (d, ;)

—

for random densities f;, j =1tom do
for each data point z;; € f; i = 1ton; do
for each mixture component K (x|6;), | =1tom do

Construct slice sets Ay, (u;i)

2

3

4

5

6: end for

7 Sample (dji = k,(Sji = T‘| e ) X K(xjiyeka)I ((k}, T) S U;il (ijl(uji) X {el}))
8 end for

9 end for

10: end procedure
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Figure 4.9: Stick-breaking weights for some N, = 20. The red dashed line represents the slice variable
uj; = 0.05. The algorithm must check all the /N}; values to accept those that they satisfy u;; < wj.
After a complete search, the slice set is A, (uj;) = {1,2,3,5,7,8}.

Since the weights forming the stick-breaking representation are not in an ordered form, the
construction of the slice sets in step 5 of Algorithm 2 requires a complete search in the array
where the weights are stored. This operation is done in O(N ]’-"l) time. For the sampling of
the d;; and d;; variables in step 6, the choice of their value is an element from the union

i1 (Aw, (uji) x {e;}) . This means, that the rPDDP algorithm, must create for each j, m slice
sets which require N ;‘l comparisons each. The worst case scenario is that the sampled (dj;, 6;;)

will be the last element of U], (ijz (uj;) % {€;}). Thus, the DP based procedure of sampling
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(dji, ;) is of order

O (anjN;l Z |ijl(uji)‘> - O (N]*l Z ’ijl(uji)’> .
=1

=1
4.5.2 Sampling d;;, in the PDGSBP model

The state space of the variable (dj;, d;;) conditionally on the slice variable Nj; is (dj;, 65;)(Q) =
U™, (Sji < {er}) . In the GSB case, the slice variable has a different role. It indicates at which
random point the search for the appropriate d;; will stop. In Figure 4.10, we illustrate this
argument. In Algorithm 3, the worst case scenario is that the sampled (d;;, d;;) will be the last
element of U" | (Sj; x {e;}). Thus, the GSB based procedure of sampling (dj;,d;;) is of order
O (m*n;Nj)) = O (Ny) .

0.3 T T T T T T T T T

01 | ®

0.05 - -

0 TT??QQOmmmmmﬁJ

0 2 4 6 8 10 12 14 16 18 20

Figure 4.10: Geometric stick-breaking weights for NV, ]fk = 20. The red dashed line represents the slice
variable N;; = 6. The slice set is simply S;; = {1,2,3,4,5,6}.
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Algorithm 3 : PDGSBP

1: procedure SAMPLE (d;;, ;)

2 for random densities f;, j =1tom do

3 for each data point z;; € f; i = 1ton; do

4 for each mixture component K (x|6;), | =1tom do

5 Sample (dj; = k, 65 =r|---) < K(x;;|0;rk) Z(k < Nji) Z(r < m)
6: end for

7 end for

8 end for

9:

end procedure

4.6 Conclusions

We have generalized the GSB process to a multidimensional dependent stochastic process
which can be used as a Bayesian nonparametric prior for density estimation in the case of
partially exchangeable data sets. The resulting Gibbs sampler is as accurate as its DP based
counterpart, yet faster and far less complicated in terms of computational complexity and ease
of implentation. The main reason for this is that the GSB sampled value of the allocation
variable d;; will be a choice from the sequential slice set S;; = {1,..., Nji}. Thus, there is no

need to search the arrays of the weights (see Section 4.5).

Also, for an objective comparison of the execution times of the two models, we have run the
two samples in an a-priori synchronized mode. This, involves the placing of g(aﬂ, bﬂ) priors
over the DP ¢j; concentration masses, leading to a more efficient version of the PDDP model
introduced in Hatjispyros et al. (2011, 2016).

Finally, we have shown that when the PDGSBP and rPDDP models are synchronized, i.e. their
parameters satisfy \j; = (1 + cjz-)*l7 the correlation between the models can be controlled by

imposing further restrictions among the \j; parameters.
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Chapter 5

Joint reconstruction of RDS with

pairwise dependent GSBR priors

5.1 Introduction

A number of approaches for modeling time series in a Bayesian nonparametric context have
been proposed in the literature. For example, an infinite mixture of time series models has been
proposed in Rodriguez & Ter Horst (2008). A Markov-switching finite mixture of independent
DPM’s has been proposed by Taddy & Kottas (2009). Recenlty, Jensen & Maheu (2010) and
Griffin (2010) considered DPM for stochastic volatility models in discrete and continuous time
respectively. An approach for continuous time series modeling based on time dependent GSB

process mixtures can be found in Mena et al. (2011).

Recently there has been a growing research interest for Bayesian nonparametric modeling in the
context of multiple time series. In a recent work of Fox et al. (2009) a Bayesian nonparametric
model based on the Beta process was introduced In order to model dynamical behavior shared
among a number of time series. They represented the behavioral set with an attribute list
encoded by an n x k binary matrix, with n the number of time series and k£ the number of
features. Their approach allowed for potentially an infinite number of behaviors k. This was an
improvement of a similar approach of a previous work of Fox et al. (2008) where the time series

shared exactly the same set of behaviors.

In Nieto-Barajas & Quintana (2016) a Bayesian nonparametric dynamic autoregressive model
for the analysis of multiple time series was introduced. They considered an autoregressive
model of order p for each of the time series in the collection, and a Bayesian nonparametric
prior based on dependent Polya trees. The dependent prior, with its median fixed at zero, was
used for the modeling of the errors. Such models rely on the concept of partial exchangeability
meaning that the order that the samples have been collected, over groups, does not affect their

distribution.

In Chapter 3 we have dealt with the problem of reconstruction of the dynamical equation con-
sisting the deterministic part of a stochastic dynamical system, and modeling the density of the

noise process with a GSB mixture process. In this chapter we wish to generalize the so called
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GSBR model in a multivariate setting in order to reconstruct jointly a finite collection of dynami-
cal equations. We propose a Bayesian nonparametric mixture model for the joint reconstruction
of m dynamical equations, given m observed dynamically-noise-corrupted chaotic time series.
The method of reconstruction is based on the Pairwise Dependent Geometric Stick Breaking
Processes (PDGSBP) mixture priors (Hatjispyros et al., 2017a) already described in Chapter 4.
We assume that the dynamical equations have deterministic parts g; belong to known families
of functions; for example they can be polynomial or (and) rational functions. A-priori we assume
that we have the knowledge that the noise processes have common characteristics, for example
they could reveal a similar tail behavior or (and) have common variances, or simply they come
from the same noise process which is (perhaps) non Gaussian. Our contention is that when-
ever there is at least one sufficiently large data set, using informative borrowing-of-strength
prior specifications we will be able to reconstruct the dynamical processes for which we have
insufficient information, namely, their sample sizes are inadequate for an independent GSBR

reconstruction and prediction.

This Chapter is organized as follows. In section 5.2, we derive the Pairwise Dependent Geometric
Stick Breaking Reconstruction (PD-GSBR) model, a Bayesian nonparametric mixture model for
the reconstruction and prediction of multiple dynamical equations from observed time series
data, by applying a PDGSBP mixture prior. In section 5.3, the associated MCMC algorithm
is presented. In section 5.4, we resort to simulation. We apply the PD-GSBR model on the
reconstruction and prediction of random polynomial maps of arbitrary degree that are dynami-
cally perturbed by noise processes which are (perhaps) non Gaussian. Finally, conclusions and

some directions for future research are discussed.

5.2 The Pairwise Depedent GSBR model

We will consider initially, the general case of a finite collection of m dynamic nonlinear models.

Letting ., = (251, ,%;;-1,) We have
v = g5, wj50,) + 2zji, 1<j<m, 1<i<mny (5.1)

where g; : ©; X X? — X for some compact subsets X; of R, and ©; C R%. [; is the lag of the

J-th dynamical model and g; is a nonlinear map continuous in the variable z;;,, with additive

errors 2j; id fjfor1 <i <mnj, forall 1l <j < m with f; some unknown symmetric zero mean

density with support over R. Additionally, we assume that there is no observational noise so
(nj) .

that we have at our disposal m groups of observations z; ** := (1, .., xj,nj), 1 <35 < m,

associated with the unknown initial conditions {1, : 1 < j < m}.
We wish to estimate the control parameters 1J; the intial condition Tj 1, and the distribution of

the dynamical error processes f;, for all j = 1,...,m.

The zj; are independent and identically distributed random variables with density function f; for
which we do not assume that they belong to a particular parametric family of densities. Instead

we take f; to be nonparametric densities based on the PDGSBP mixture model (Hatjispyros
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et al., 2017a). The PDGSBP mixture implies the following hierarchical model for the errors. For
1<j<mandl<i<n,;

ind _
zji | i ~ N(0,7;;")
iid

75i | Qj ~ Q;

m m
Qj = Zlesz, ijz =1, Gj; = Gy
=1 =1

Gji ™ GSB(\;1,Go), 1<j<l<m

ind
Nji ~ Be(ai, Bji),

and Gy is the parametric base measure of the GSB process with E[Gj;(A)] = Go(A). Here the
measure G is assumed to have density gy which we will take to be G(a,b), a gamma density

with mean a/b.

While our method can be used to reconstruct dynamical systems where each state x;; depends
on the previous /; states z;;_1,..., Tji-l;s for simplicity and ease of illustration we focus on the
case [; = 1. In this case, the dynamical system has a Markovian dependence structure and can
be written as

xji:gj(ﬁj,xj’i_l)—i—zﬂ, Jj=1....m, i1=1,...,n;. (5.2)

The hierarchical model for the observations z;i, ..., %y, conditional on the unknown initial

condition z ;o for 1 < j < m becomes

ind _
zji | xji1,05, 150~ N(gi(9,z5i-1)0,75;1)
"
7i | Q5 ~ Q

@] = ijlGjh ijl = ]., G]l = Gl]
=1 =1
Gj ™ GSB(\j1,Go), 1< j<l<m

ind
Aji ~ Be(ajy, Bji)-

Using the fact that

> . _ iid
Gy = Zwﬂk%lk with wie = (1 — M)t N~ Be(ai, Bit), i ~ G(a,b), (5.3)
k=1

the transition density of the i-th observation in the j-th group can be written as a random finite

mixture of random infinite mixtures of normal kernels, that is

=1 k=1

Filwjil @1, 95, (i=1) = Y pi {Z wjkN (@i | g5 (95, xj,i-1), Tﬁé)} : (5.4)

The density shown in eq. (5.4) is of a nonstandard form. We will deal with the nonlinear maps
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gj, appearing in the means of the normal kernels, with the introduction of auxiliary variables
in a similar fashion as in Chapter 3. We will apply the same density augmentations as in
Chapter 4. That is, we define the stochastic variables N = (Nji) forl<i<mnjand1<j <m,
where Nj; is an almost surely finite random variable following the specific negative binomial
distribution N'b(Nj; |2, \j;) = Nji)\?l(l — Aj1)Nii=L. Consequently we introduce
1. The GSB mixture selection variables § = (§;;); for an observation xj; that comes from f;,
J;i selects the GSB mixture g;;(x) that the observation came from. It is that Pr{¢;; = [} =
pji-
2. The clustering variables d = (d;;); for an observation z;; that comes from f;, given d;, d;;

allocates the component of the GSB mixture g;s.,(7) that z;; came from. Given Nj; the

variables dj; have a discrete uniform distribution over the integers {1, ..., N;;}.

Augmenting the random densities given in (5.4) with /V;; we have that
m
fi(zji, Nji =r) = ij(ﬂﬁji,Nji =705 =1)
=1

= > i Y filwi, Nji =r,dji = k|65 =1)
=1 k=1

= ijl ZN()(N]Z =T ’ Q,Ajl)DU(k | 1, Ce. ,T)N(xji |gj(19j,xj7i_1),7'k_1)
=1 k=1

1 m T B
= ;ijzZNb(Nji = 7|2, 0N (@i | g5 (95, 255-1), 7 1),
k=1

=1

leading to the d;;, N;; augmented density:
Filwsi, Nji = v, dji = k|85 = 1) = X3 (1= X)) MW (@i | 950, wj,-1), 73, 1) (5.5)

We denote the set of observations along the m groups as = {zj; : 1 <j <m,1 <i <n;} and
with x; = {z;; : 1 < i < n;} the set of observations in the j-th group. The three sets of latent
variables in the jth group will be denoted as N; = {N;; : 1 < i < n;} for the slice variables,
d; = {d;; : 1 <i < n;} for the clustering variables, and finally ; = {6;; : 1 <1i < n;} for the set
of GSB mixture allocation variables. From now on, we are going to leave the auxiliary variables
unspecified; especially for §;; we use the notation
5]’1’ = (631“ e ,(5;?) S {el, e ,em} Wlth PI"(CSJ‘Z' = el) = pjla

where e; denotes the usual basis vector having its only nonzero component equal to 1 at position

[. Hence, for a sample of size ny from f7, a sample of size ny from fo, etc., a sample of size n,,
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from f,, we can write the full likelihood as a multiple product:

3

j=1
m My 5t
= H (dj’L < sz H {)‘]l 1 - )‘ )Nﬂ 1N(xji | gj(ﬁja :Cj,i—l)7 ledji)} .
Jj=1l:i=1 =1
In a hierarchical fashion, using the auxiliary variables, we have for 7 = 1,...,mand: =
1, <y Ny,
d o
x]z; ji ‘ de 6]17 (Tjr6]1)1<7‘<m7 7055 l’ri’ H {)\ — A5 1N(xji ‘ gj(ﬂjv 1’]‘,1’—1)7 Tdeji)} ’
X I(Nji > dﬂ)
d
dji | Nji ™ DU({1,..., Nji}), Pr(8;i =e)) = pji

_ id
Wik = )\ji(l — )\ji)k 1, Tjik 1"1\/ Py, k€N,

5.3 The PD-GSBR Gibbs sampler

In this section, we are going to describe the PD-GSBR Gibbs sampler. At each iteration we will

sample the variables,

Tig, 1 <j<1<m, 1 <k < N7,
dji, Nji, 00,1 < j <m, 1 <i<n,j,
pi,1 <j<m,1<1<m,

Vj,zj0,1 <j<m
with N* = max;; IVj; almost surely finite.

1. For the precisions of the random measures for £ = 1,..., N* where N* = max;; Nj;, it is

that for [ > j

n;
Fjue] ) o< golmjue) [ TN (i | 9595, aj.6-1), 750 ) HOi =00 4i=H)

i=1

ny
X HN(%'JZ lgi (¥, 25i-1), _lkl)I(dhieJ’dh 2

i=1

For [ = j, it is that
j

F(Tjk ] - -+) o< go(Tjk HN xji | 95(05, 25i-1), ”k)I(é”feJ’d“fk)
=1
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2. Here, we sample the allocation variables d;; and the mixture component indicator variables

dj; asablock. For j =1,...,mandi=1,...,n;, we have

Pr(dji = k,0ji = e | Nji = r,---) o< pju N (wji | g5 (O wji1), 7)) T < m) Tk < 7).

3. The geometric slice variables N;; have full conditional distributions given by
PI"(N]'Z' =T | 5ji = el,dji = l, s ) XX (1 — )\jl)rI(l < 7"),
which are truncated geometric distributions over the set {l/,{ +1,...}.

4. The full conditional, for j = 1,...,m, for the selection probabilities p; = (Pj1y - Djm)s
under a Dirichlet prior f(p;|a;) o Hﬁlp?l”*l, with hyperparameter a; = (a;1,...,a;m). is a

Dirichlet distribution. Namely, for 7 = 1,...,m we have

x H a]l+zl 1 jz—el)fl

5. The full conditionals for the geometric probabilities ) ;; under beta conjugate prior Be(ajl, bjl)

are Beta distributions. Letting

nj L]
i=1 i=1
for [ = j it is that
f()\jj ‘ .. ) = Be()\jl ‘ aj; + QSjj, bjj + S}j),

also, for [ # j we have

FOGi|--+) = Be(Nji laji + 2(Sj1 + Si5), bjs + S5 + Si;)-

. For the vectors of parameters 9J;, 1 < j < m, and assuming a uniform prior over the subset

6
(:)j of the parameter space R*, the full conditional becomes

f(ﬂj‘ ) X I(ﬁj @ )exp{_Zledﬂhﬁ (x_]lax_]l 1)} (5.6)
=1

where hy, (i, 2j-1) = (xji — g (95, 25-1))*

7. The full conditional for z 9, with a uniform prior over the sets Xj C R that represents our

prior knowledge for the state space of the dynamical systems in relation (5.1) will be

f@jol ) o< Z(xj0 € X) exp {—Tj;dl he, (%’h%’@} : (5.7)
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8. The full conditionals for sampling the next 71" future unobserved observations for k =

1,...,T — 1 are given by

1
f(xjmj—i-k | -++) o< exp {_2 [de,nj+k hﬁj (xnj-l-kv xnj-&-k’—l) + Tdjn;+k+1 hﬁj (xnj-l—k-&-lv :L'nj-&-k’)}
(5.8)

For k = T, the full conditional is normal with mean g; (Q9j, Zjn, +7—1) and variance 7; Syt 7y 41
that is

-1
fi(@jmpyr | ---) = N (xjv”j“‘T 19505, Tjm;+1-1); Tjéj,nj+de,nj+T> ' (5.9

For simplicity, in our numerical experiments, we will sample only the first future unobserved

observation Z; p;+1.

Conditionally on the mixture allocation variable J;;, we can sample from eq. (5.6) through

eq. (5.9) with the auxuliary variables method as described in Appendix A.1.

5.4 Numerical illustrations

In this section, we will demonstrate the efficiency of the proposed PD-GSBR model for synthetic
time series, for the case m = 2 and [y = [ = 1. The deterministic parts of the dynamical
systems for the data simulation, are given by polynomial autoregressive processes. We will use

the following chaotic dynamical systems z; = C,(z;—1), and x; = Q,(z;_1), for r = 1,2, with

Cr(x) = 0.05 + cpzi—1 — 0.9927 | with ¢; = 2.55 and ¢ = 2.65 (5.10)
Q,(z) =1— g.a? | with ¢t = 1.71 and ¢ = 1.85. (5.11)

The dynamical systems in (5.10) and (5.11) are chaotic. Moreover, both cubic maps C; and
Cy, when perturbed by dynamical noise of sufficient intensity, they follow a scenario of noise
induced jumps as seen in Chapter 3. The values ¢; and g2 belong to the Pomeau-Manneville
chaotic band (Pomeau & Manneville, 1980).

We will illustrate different scenarios for which the PD-GSBR reconstruction and prediction,
is beneficial to one of the time series, for which an independent GSBR reconstruction and
prediction, is problematic due to its small sample size. We will specify the sample sizes of the

time series in each example separately.

Some non-Gaussian dynamical noise processes: In the sequel, we will illustrate the PD-GSBR
sampler, with Gaussian and non-Gaussian noise processes. As non-Gaussian noise processes,

we will use the £ and & pairs of mixtures of normals densities given by

1 3 6 4
h= <f11 = ZN(O’ 10_6) + 1f12, fi2 = EN(O,U%) + EN (0, (10 01)2)> , (5.12)
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with 02 = 3 x 1073, and

3 1 9 1
fo= <f21 = ZN(O’ 1077) + me, fo2 = E/\/(o,ag) + EN (0, (200 02)2)> ) (5.13)

with a% = 1075, Both pairs of noise processes are exhibiting a heavier tail behavior than the

standard normal, approximately we have
TFy, = (0.505,0.576), TF, = (0.138,0.264).

We remark that the tail fatness of the standard normal is 1/2/7 &~ 0.798, and that the more the

TF index gets closer to zero, the heavier the tails are.

For the reconstruction of the deterministic parts given in (5.10) and (5.11), as model polynomi-

als, in all our illustrations, we have used the quintic polynomials

5
gj(ﬁj,x) = Zﬁjrlj, j = 1,2.
r=0

Prior specifications: We first define the prior distributions for all PD-GSBR Gibbs sampler
variables, except the selection probabilities. In all our numerical experiments, we will use the

following noninformative prior set up:

Nt~ Be(1,1) =U(0,1), {rj~G(1072107%):k>1}, 1<j<1<2
¥j ~U((—10,10)5), zj0 ~U(-10,10), j = 1,2.

Because the borrowing of information between the two dynamic models, can be quantified by

the posterior mean of the selection probabilities
E(pjl ’$§'ﬂ1)’ :Egn2))a ] = 1a 2a

the prior distribution over the selection probabilities (p;;), plays a decisive role on the strength
of borrowing of information between the two dynamic models. In the sequel we will make use

of the following borrowing of strength configurations:

1. To force a wealk borrowing scenario, we impose a-priori
PW oo P11~ 66(10, 1), P21 ~ Be(l, 10),
and the prior mean matrix of the selection probabilities becomes

E{(p1)} = (10/ v “) .

1/11  10/11

2. Suppose now that n; is considerably greater than ny. When a-priori we believe that there

is some kind of similarity between the components of the noise process pairs, we increase
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the prior probability of selection of the common part of the large data set dynamical
system, and we use noninformative a-priori probabilities of selection over the small data
set, that is

Psn 0 p11 ~ Be(1,10), pa ~ Be(1,1).

We call such an a-priori configuration a strong noninformative borrowing scenario. Then,

the prior mean matrix of the selection probabilities takes the form

1/11 10/11
E{(pji)} = :
1/2 1/2
meaning that the common component, associated with the large sample size (first row of
the matrix), becomes very influential. On the other hand, the uniform prior, points to the

times series with the small sample size.

3. When our prior beliefs advocate that the components of the noise process pairs are about

the same, for a strong informative common noise borrowing of strength scenario, we set
PSI P11~ Be(l, 10), P21 ~ 86(10, 1).

Now, it is that
1/11 10/11
E{(pﬂ)} = ( ) )

10/11  1/11

and the main dynamic noise contribution comes from the common noise component

between the two time series.

We remark that for m = 2 it is that pjo = 1 — pj; for j = 1,2, and, p ~ Be(a,b) if and only if
1—p~ Be(b,a).
In the sequel, with

(g1 + .92 +€) = (2", 24",

(n1) , (n2)

we denote the fact that the pair of synthetic time series (z] ', x5 ~') of respective sample sizes
n1 and ng, have been simulated via a pair of dynamical systems having deterministic parts g;

and gy, perturbed dynamically by the noise process pair f = (7,§).

In all our numerical experiments, as a starting point we have chosen z19p = x20 = 1, and we
have ran the PD-GSBR Gibbs sampler for N = 60,000 iterations, after a burn-in period of
20, 000 iterations.

A. Borrowing from a cubic to a quadratic map under the f; noise pair: In our first numerical

example, we make use of the configuration
200) (50
(Cl+f11791+f12)—>(1'§ ),l‘g ).

We will attempt to demonstrate numerically, that it is possible, the borrowing of information

from the estimated noise process fu, based on the time series $§200) perturbing the cubic map,
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to improve the overall estimation process that is based on the shorter times series :10550). This
shorter time series, has been produced by the quadratic map, perturbed by the noise process
f12 which is the non-Gaussian mixture component of the actual process fi;.

In Figure 5.1(a) we can see the trace of the stochastic trajectory xg200)' The time series experi-

ences noise induced jumps from the interval /; = [—1.60, —0.10) (containing the chaotic attrac-
tor) to the interval I = [—0.10,1.67] (containing the chaotic repellor). The second dynamical
system has the deterministic invariant set X = [—1.11, 1.11], that is Q;(X) C X. Nevertheless,
under the dynamical noise perturbation fi2, the quadratic trajectory escapes its invariant set
after the first 46 iterations. In fact, it can be verified that for z ¢ X, Q}(z) — —oco as n — oo.

This situation is depicted in Figure 5.1(b).

(@) x\™ _ n,=200 (b) x™ — np=50
[ -
~ o
o - T
- | o
I |
¥ A ?
I I I I I I I I I I I
0 50 100 150 200 0 10 20 30 40 50

Figure 5.1: The f; noise pair perturbed time series corresponding to the cubic map C; and the quadratic
map Q; are given in Figures (a) and (b), respectively.

The ergodic means, coming from the PD-GSBR sampler, for the coefficients of the deterministic
parts, based on the xgzoo) and the xé‘:’o) time series, under the weak borrowing prior specification
Pw (black solid curves) and the strong borrowing noninformative prior specification Pgy (red
solid curves), are given in Figure 5.2(a)-(f), and Figure 5.2(g)-(1), respectively. It can be seen that
for the large data set, x§200), the running averages based on the predictive samples {19’1“2 1<
k < N,0 < i <5}, after burn-in, and under the Py prior, are converging fast to the true values
of the ¥;-coefficients (represented by the dotted horizontal lines). In parallel, the estimation
of the coefficients of the small data set (the ergodic averages in black in Figure 5.2(g)-(1)), is

problematic. It leads to a biased estimation of the 15-coefficients.

In Table 5.1, we provide the Percentage Absolute Relative Errors (PAREs), of the the joint

(mggoo), xé‘:’o))—coefﬁcient estimation, with respect to the true values.

1. In the first two lines of Table 5.1, we can see the effect of the Py prior. The estimation
associated with x§200) is very accurate, and enables the identification of the respective
C; dynamical system responsible for the observed time series. Nevertheless, the part of
the joint estimation based on the time series xé‘w) exhibits large errors, hindering the

identification of the second dynamical system.

2. In the last two lines of Table 5.1, we present the effect of borrowing on the estimation of

the coefficients via the Pgn prior. Strong borrowing reduces the average PARE associated
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Figure 5.2: Ergodic averages for the (¢, 4s) pair of coefficients of the modeling polynomials under weak
(solid curves in black) and strong (solid curves in red) borrowing. The averages associated with the
cubic map C; appear in Figures (a)-(f), and the averages associated with the quadratic map Q; appear in
Figures (g)-(1).

with the short time series from 2.67% to a mere 0.37% enabling the identification of the

deterministic part Q.

Table 5.1: PARESs of the joint GSBR coefficient estimation based on the pair of time series (xgzoo)’ xé“r’o))
under the f; noise pair. The estimation is based on a polynomial modeling of fifth degree, assuming the

weak borrowing Py, and the strong borrowing noninformative prior Pgn.

Prior Time series ﬁjO 19j1 19]'2 ’19j3 Q9j4 19]'5 9

Pw 220 044 009 004 040 002 0.14 0.19
200 0.55 157 239 644 181 324 267

Pex 229 050 011 0.06 050 0.03 0.17 0.23
250 023 025 048 057 001 042 0.37

In Figure 5.3(a)-(b) we present the marginal noise densities ( fgl, f12), of the joint estimation,
under the Pw and Pgn priors, in black and red, respectively. For the choice of Pyw and Pgn

priors, the posterior mean matrices of the selection probabilities are given by

(200) _(50) 0.724 0.276 (200) _(50) 0.230 0.770
E i)z xy = , E i)l T Ty Ty = ’

respectively. We can see that in the case of the short time series, under the weak borrowing
prior, when sampling from the noise component, the samples come from the common compo-
nent only 14.2% of the times. Under the strong borrowing prior, sampling from the common
component increases to 92.7%. The predictive density of the marginal posterior pair of initial

conditions (z19, z20) is depicted in Figure 5.3(c)-(d). We can see that the estimation is nearly
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identical under the two prior configurations. In Figure 5.3(e)-(f), we exhibit the predictive den-
sity of the marginal posterior pair (x; 201, Z251) for one future observation for each time series.
The differences on the estimation of the density of the future observation of the first dynamical
system, under the two priors Pyw and Psn, are nearly indistinguishable. Nevertheless, the joint
estimation of the density of the future observation of the second dynamical system under the
strong borrowing prior makes a huge difference. The Pgy prior enables an accurate prediction
of the future value x3 51 that lies outside the invariant set X. The associated 95% highest
posterior density intervals (HPDIs) under the weak and the strong borrowing priors, are given
by
HPDI(x251; Pw) = [—6.112, —4.429] and HPDI(x251; Psn) = [—7.067, —5.481],

respectively. We remark that the true future value of the quadratic trajectory is at about
ac;m = —5.969 (blue vertical dotted line in Figure 5.3(f)), outside the invariant set X.

(a) f11—noise (b) f1o—noise
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Figure 5.3: Kernel density estimations based on the predictive samples coming from the PD-GSBR Gibbs
sampler. Weak borrowing corresponds to the densities in black, and strong borrowing to the densities in
red. Figures (a), (c) and (e) correspond to the cubic map C;, and Figures (b), (d) and (f) correspond to the
quadratic map Q7. The noise predictive densities are given in Figures (a) and (b). The initial conditions
predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give the predictive densities
of the first future observation.

B. Borrowing from a cubic to a quadratic map under the f; noise pair: In our second

numerical example, we use the configuration

(Cl + f217 Ql + f22) — ($§200)’ :EgQO)).
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In this case the time series generated from the quadratic map is much shorter. At the same
time the noise process pair f; has heavier tails and larger mixture variances than those of the
f1 pair. In this numerical example, we will show that when serious mixing issues occur, the
situation can be corrected by applying a joint prior that induces strong borrowing.

In Figure 5.4(a) we give the trace of the stochastic trajectory x?oo) of length 200, experiencing

noise induced jumps due to the dynamic perturbations of the noise process fo;. In Figure 5.4(b)

we display the quadratic trajectory x§20) which is perturbed by the noise process fao.

(@) x\™ _ n,=200 (b) x™ — np=20

1.0

0.5

0.0

-1.0

T T T T 1 T T T T 1
0 50 100 150 200 0 5 10 15 20

Figure 5.4: The f> noise pair perturbed time series corresponding to the cubic map C; and the quadratic
map Q; are given in Figures (a) and (b), respectively.

The ergodic means of the ¥-coefficients, coming from the PD-GSBR sampler, under the weak
borrowing prior specification Py (black solid curves) and the strong borrowing noninformative
prior specification Pgy (red solid curves), are given in Figure 5.5(a)-(f), and Figure 5.5(g)-(1),
respectively. For the large data set, the running averages based of the predictive samples
under both prior configurations, are converging fast to the true values. On the other hand, the
estimation of the coefficients associated with the small data set, under the joint weak borrowing
prior Py is very problematic. For example, the chains for the variables 21, 22, 924 and 925,
are kept stuck to certain regions of the state space for a large number of iterations of the Gibbs
sampler. The situation can be corrected by the introduction of strong borrowing via the Py
prior. The convergence of the ergodic means to the true values under the Pgy prior are given

in Figure 5.5(g)-(1) (solid curves in red).

In the first two lines of Table 5.2, we can see the effect of the weak borrowing of strength prior
Pw. The estimation of the coefficients of the first dynamical system is very accurate, enabling
the identification of the cubic map. The part of the joint estimation based on the short time
series exhibits large errors, hindering identification. In the last two lines of Table 5.2, we present
the effect of the strong borrowing prior. Borrowing gives the part of the estimation associated
with the short time series nice mixing properties, and it reduces the average PARE from 7.51%

to a mere 0.26%, thus, enabling the identification of the quadratic map.

In Figure 5.6(a)-(b) we present the predictive posterior marginal noise density pair ( fgl, fgg),

under the Py and Pgn priors, in black and red solid curves, respectively. The posterior mean
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Figure 5.5: Ergodic averages for the (¢, ¥5) pair of coefficients of the modeling polynomials under weak
(solid curves in black) and strong (solid curves in red) borrowing. The averages associated with the
cubic map C; appear in Figures (a)-(f), and the averages associated with the quadratic map Q; appear in
Figures (g)-(1).

Table 5.2: PARESs of the joint GSBR coefficient estimation based on the pair of time series (xgzoo)’ xém))
under the f; noise pair. The estimation is based on a polynomial modeling of fifth degree, assuming
weak borrowing and strong borrowing.

Prior Time series vj0 ¥;1 Y52 ;3 Va4 Vjs5 9
Pw 229 018 015 003 020 001 002 0.10

220 0.37 1.35 4.95 022 2231 1587 7.51
P 229000 029 002 046 001 006 0.14

20 0.02 0.02 008 067 0.05 073 0.26

matrices of the selection probabilities under the Py and Pgy priors, are

0.995 0.005 0.005 0.995
o 2200 20y _ E 2200 20y _ 7
w275 22 = | 0ss 0,067 ) ESNI@ T T = 0 0ne 0 oa

respectively. Under the weak borrowing prior, the joint estimation is nearly independent, as
the off-diagonal elements of the first matrix are close to zero. We remark here, that the strong
borrowing prior is very efficient as 95.6% of the noise samples are coming from the common
component. The predictive density of the marginal posterior pair of initial conditions (x10, Z29)
is depicted in Figure 5.6(c)-(d). More specifically, in Figure 5.6(d) we can see that the estima-
tion part corresponding to the short time series under the strong prior configuration is more
accurate. In Figure 5.6(e)-(f), we exhibit the predictive density of the marginal posterior pair
(1’17201, 1'2’21) for one future observation. The posterior mean estimations for the cubic dynami-
cal system, under the weak and strong borrowing priors are of the same quality, yet, the joint
estimation associated with the quadratic map, under the strong borrowing prior, shrinks the

length of the corresponding 95%-HPDI by a factor of 0.13, namely

HPDI<x2721;’Pw) = [0.426,0.554] and HPDI(ZCQ’Ql; PSN) = [0.485, 0.502].
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Figure 5.6: Kernel density estimations based on the predictive samples coming from the PD-GSBR Gibbs
sampler. Weak borrowing corresponds to the densities in black, and strong borrowing to the densities in
red. Figures (a), (c) and (e) correspond to the cubic map C;, and Figures (b), (d) and (f) correspond to the
quadratic map Q7. The noise predictive densities are given in Figures (a) and (b). The initial conditions
predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give the predictive densities
of the first future observation.

C. Borrowing between cubic maps perturbed by an identical noise process: In our third

numerical example, we have generated a pair of time series via the configuration

(Ct+ f22,Ca + f2) = (@, 28).
In this example, both cubic maps are perturbed dynamically by the noise process f25 given in
(5.13). Both dynamical trajectories experience noise induced jumps. The traces of the two time
series :1:(1200) and xggo) are given in Figure 5.7(a) and Figure 5.7(b) respectively. Here we will
demonstrate numerically, that strong informative borrowing of strength between the estimated
noise processes via the joint prior Psy, accelerates the slow convergence of the ergodic averages

corresponding to the short time series.

The ergodic averages for the ¥-coefficients, coming from the PD-GSBR sampler, under the weak
borrowing prior specification Py (black solid curves) and the strong borrowing noninformative
prior specification Pgr (red solid curves), are given in Figure 5.8(a)-(f), and Figure 5.8(g)-(1),
respectively. The averages associated with the large data set, are converging fast irrespectively
of the joint prior configuration, yet, convergence associated with the short time series, under
weak borrowing is very slow. For example, the chains for the variables 124 and 925 and especially
the chain for the variable 52, have a very slow convergence. This situation can be corrected
by the introduction of the strong borrowing prior Ps;. The improved convergence of the ergodic

means to the true values, are depicted in Figure 5.8(g)-(l) (solid curves in red).



108 Chapter 5. Joint reconstruction of RDS with pairwise dependent GSBR priors

(@) x\™ _ n,=200 () x™ — np=30

-2

T T T T 1 T T T T T T 1
0 50 100 150 200 0 5 10 15 20 25 30

Figure 5.7: The f; noise pair perturbed time series corresponding to the cubic map C; and the cubic
map C, are given in Figures (a) and (b), respectively.
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Figure 5.8: Ergodic averages for the (1, 12) pair of coefficients of the modeling polynomials under weak
(solid curves in black) and strong (solid curves in red) borrowing. The averages associated with the cubic
map C; appear in Figures (a)-(f), and the averages associated with the cubic map C; appear in Figures

(@-O.

In the first two lines of Table 5.3, we can see the effect of weak borrowing of strength. The
estimation for the coefficients of the first cubic map C; is very accurate, attaining an average
PARE of 0.08%, thus, enabling the identification of the map. The part of the joint estimation
based on the short time series exhibits larger errors, hindering identification. In the last two
lines of Table 5.3, we present the effect of the strong informative borrowing prior. Borrowing
accelerates the part of the estimation associated with the short time series, and it reduces the
average PARE from 1.14% to a mere 0.10%, thus, enabling the identification of the second cubic

map.

In Figure 5.9(a)-(b) we present the predictive posterior marginal noise density pairs under under
weak and strong borrowing prior specifications, in black and red solid curves, respectively. The

posterior mean matrices of the selection probabilities, are

0.879 0.121 0.005 0.995
E - 1’(200),LE(30) _ ,]E B CL'(200),.’E(30) _ 7
wils) 27522 = 100 0.000 ) ESH@ T a3 = om0 0
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Table 5.3: PAREs for the PD-GSBR estimation of the 1-coefficients, based on the pair of time series

(x(1200), 1(230)), under the identical noise process f25, assuming weak and strong borrowing.

Prior Time series vj0 ;1 Y52 U3 Y Uy 9
(200)

Pw  al 0.36 0.01 0.06 000 002 0.00 0.08
2530 116 0.19 236 1.70 078 0.66 1.14
Par 22 060 002 050 034 021 0.16 0.31
230 0.31 0.03 0.09 0.04 004 0.09 0.10

In the case of the short time series, under weak borrowing, when sampling from the noise
component, the samples come from the common component only 10% of the times. Under

strong borrowing, sampling from the common component increases to 97.6%.
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Figure 5.9: Kernel density estimations based on the predictive samples coming from the PD-GSBR Gibbs
sampler. Weak borrowing corresponds to the densities in black, and strong borrowing to the densities
in red. Figures (a), (c) and (e) correspond to the cubic map C;, and Figures (b), (d) and (f) correspond to
the cubic map C;. The noise predictive densities are given in Figures (a) and (b). The initial conditions
predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give the predictive densities
of the first future observation.

The predictive density of the marginal posterior pair of initial conditions (x19, z29) is depicted
in Figure 5.9(c)-(d). More specifically, in Figure 5.9(d) we can see that the predictive density
associated with the short time series under weak borrowing, exhibits two more spurious modes
at about 0.74 and 1.18 (solid black curve). The spurious modes disappear after the introduction
of strong borrowing (solid red curve). In Figure 5.9(e)-(f), we exhibit the predictive density of the
marginal posterior pair (:nl,g(n, x2731). The posterior mean estimations for the cubic dynamical
systems, under the weak and strong borrowing priors are of the same quality, yet, under strong

borrowing the predictive density associated with the short time series cubic map, exhibits a
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95%-HPDI shrinkage factor of 0.45, namely

HPDI(ZL‘Q’gl; Pw) = [—1.622, —1.566] and HPDI(I‘2731;'PSI) = [—1.607, —1.582].

5.5 A joint parametric Gibbs sampler

When there is evidence that the noise components are coming from the same gaussian dis-
d

tribution, i.e. zj; ~ N (0,771), where 7 is the unknown precision of the normal component,

borrowing of strength between the observed time series, can be achieved by a joint parametric

Gibbs sampler that assumes only gaussian noise.

If this is the case, the following parametric hierarchical model for the time series observations
{ (ns) :j =1,...,m}, conditional on the unknown initial conditions {z; 14, : j = 1,...,m} is

suﬂiment for reconstruction and prediction, namely

ind
jil iy, T 05~

T~ G(a,b).

N(gj(ﬂﬁxj,iilj)?’r_l)v t=1,... y Tjs Jj=1...,m

The likelihood based on a sample of size n; from the system ¢;, no from gs etc., n,, from g,,, is

proportional to
m Ny

TT LT exp { o i — 05,100,007}

Jj=1li=1

To complete the model, and attempting a noninformative prior specification, we assign the
translation invariant priors f(z;1.,) o< 1 and f(?J;) o 1 to the initial conditions and the model

coefficients, respectively, and a scale invariant prior f(7) 771 to the precision variable. Then

the posterior distribution for 7, ¥ = (¢, ...,%,,) and z,1.;., attains the representation
p ’ ’ VIR p
m Ty -
m 1/2 2
f(7719,56j,1:lj|$§n1)7 Calm)) o H HT /2 exp {*5(%‘1’ — 95 (05, 2544,)) } :
j=1i=1

The full conditional distributions can be derived in a similar way as in Section 5.3. More

specifically, the full conditional for the common precision term J, is given by

m Ny

(7_|)Ng %Znﬁ sz]l 9gj 19]’3331[))
j=1

7j=11i=1

We remark the double sum appearing in the rate parameter of the full conditional of 7. This is

how borrowing of strength is realized in a parametric setting.

Parametric borrowing between quadratic maps: To illustrate the joint parametric Gibbs

sampler, for the specific case m = 2 and [; = ls = 1, we use a pair of time series realized via
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the configuration
(Q1+N(0,0%), Q2+ N (0,0%)) = (2", 25™), o” = 107"

The time series x§200) and :cg?’o) are presented in Figure 5.10(a) and (b), respectively.

(@) x\™ _ n,=200 (b) & — n,=30
< ] e ]
w o
o o
o o
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n n
o o
[] |
< <
T I I I I I ‘T I I I I I I I
0 50 100 150 200 0 5 10 15 20 25 30

Figure 5.10: The gaussian noise perturbed time series corresponding to the quadratic map Q; and the
quadratic map Qs are given in Figures (a) and (b), respectively.

The ergodic averages for the 91 and - coefficient vectors, coming from independent parametric
Gibbs samplers and the joint parametric Gibbs sampler, are given in Figure 5.11. The averages
associated with the large data set, are converging fast irrespectively of the parametric sampler,
yet, convergence associated with the short time series, under the independent sampler exhibits
mixing issues. This becomes apparent from the chains of the variables 5 in Figure 5.11(i)
through (1) (solid curves in black). This situation is corrected by the introduction of the joint
parametric sampler. The improved convergence of the ergodic means to the true values, are

depicted in Figure 5.11(g) through 11(l) (solid curves in red).
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Figure 5.11: Ergodic averages for the (1)1, 12) pair of coefficients of the modeling polynomials under the
independent parametric samplers (solid curves in black) and the joint parametric sampler (solid curves
in red). The averages associated with the quadratic map Q; appear in Figures (a)-(f), and the averages
associated with the quadratic map Qs appear in Figures (g)-(1).
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In the first two lines of Table 5.4, we can see the effect reconstructing the coefficients of the
quadratic dynamical systems with the independent parametric samplers. The reconstruction of
the first quadratic map Q; is very accurate, with an average PARE of 0.05%, thus, enabling the
identification of the map. The independent estimation based on the short time series exhibits
larger errors, hindering identification. In the last two lines of Table 5.4, we present the effect
of reconstruction under the joint parametric sampler. The average PARE associated with the
large time series decreases even further to 0.03%. At the same time it eliminates the mixing
issues associated with the short time series, and it reduces the average PARE from 1.96% to a

mere 0.36%, thus, enabling the identification of the second quadratic map.

Table 5.4: PAREs for the estimation of the v-coefficients, based on the pair of time series (ngOO), x(230)),

under the the independent and the joint parametric samplers.

Par. Sampler Time series 79]'0 19j1 19j2 ’l9j3 19j4 19j5 9
Independent 2™ 0.02 0.09 0.08 0.04 002 004 0.05
2529009 050 098 3.08 3.05 4.08 1.96
Joint 229 001 004 001 001 007 003 0.03
229001 010 001 075 041 089 0.36
Q;—noise predictive (b) Qo—noise predictive
‘8_ - — Indep. 8 - — Indep.
| — Joint | — Joint
O_—true 8_—true
e 7 T T T T T e T T T T T
010  -0.05 0.00 0.05 0.10 010  -005 0.00 0.0 0.10
() x4 o—predictive (d) x,0—predictive
o : — Indep. © : — Indep.
o | — Joint o | — Joint
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Figure 5.12: Kernel density estimations based on the predictive samples coming from the independent
Gibbs samplers correspond to the densities in black, the joint Gibbs sampler predictives correspond to
the densities in red. Figures (a), (c) and (e) correspond to the quadratic map Q1, and Figures (b), (d) and
(f) correspond to the quadratic map Q,. The noise predictive densities are given in Figures (a) and (b).
The initial conditions predictive densities are given in Figures (c) and (d). In Figures (e) and (f) we give
the predictive densities of the first future observation.

In Figure 5.12(a)-(b) we present the normal noise densities based on the estimated precision
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7 under the independent parametric samplers (solid black curves) and the joint parametric
sampler (solid red curves). The predictive density of the posterior pair of initial conditions
(;Ulo, :vgo) under the independent and joint estimations are depicted in Figure 5.12(c)-(d). In
Figure 5.12(e)-(f), we display the predictive densities of the marginal posterior pair (:c1,201, x2731)
coming from the independent and joint estimations. The posterior mean estimations for the
second quadratic map, are of of about the same quality, yet, the joint sampler shrinks the
length of the corresponding 95%-HPDI by a factor of 0.29, namely

HPDI(z3 31; Indep.) = [-0.605, —0.591] and HPDI(x2 31; Joint) = [—0.600, —0.596].

5.6 Conclusions

We have proposed a new Bayesian nonparametric model for the pairwise reconstruction of the
dynamical equations based on observed dynamically noise perturbed chaotic time series data.
The PD-GSBR model is based on the multivariate nonparametric prior model PDGSBP, here
applied to the additive error processes of the dynamical equations. Experiments on simulated
pairs of data sets are indicating that when the densities of the noise processes have common
characteristics, we are able, by imposing certain informative prior specifications over the selec-
tion probabilities of the PD-GSBR model, to recover the dynamical equation corresponding to

the short time series for which an independent identification is not possible.

Although in principle the model can estimate simultaneously more than two dynamical equa-
tions, in more than two dimensions, borrowing of strength coming from the prevalent data set
tends to be more weak. This is because borrowing works as a two sided interplay between the
short and the prevalent time series, also, in more than two dimensions, there will be borrowing
between the short time series, thus, corrupting the overall effect of strength borrowing from the

large data set.

We have also introduced a joint parametric Gibbs sampler. In this case the dynamical noise
is assumed to be normal, coming approximately from the same noise source. In this case the
borrowing of strength, between the pairs of data sets, comes from the full conditional of the

common precision.
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Chapter 6

Conclusions and future research

6.1 Conclusions

In this thesis, firstly we have developed a Bayesian nonparametric model based on the Geometric
stick breaking process (Fuentes-Garcia et al., 2010) for the reconstruction and prediction of
random dynamical systems, dropping the assumption of Gaussian noise. We have shown that
as the dynamical noise departs from normality, simple MCMC models are inefficient. Modeling
the error process as an infinite mixture of zero mean normals, our proposed GSBR model is able
to infer the number of unknown components and their variances, that is infers the density of
the error process directly from observed data. We have shown through numerical examples that
the associated quasi-invariant measure of the random dynamical system appears naturally as

posterior predictive marginal of the out-of-sample variables forming a prediction barrier.

Next, we have constructed pairwise dependent random probability measures based on GSB
process namely the PDGSBP prior to use them in mixture modeling to generate random densities
which are thought to be related. That is, we have modeled the random densities to be generated
via o m
fi(@) = fi(@ Q) =Y pugu(e|Gy), Q= puGu, 1<j<m,

=1 =1
where m is the number of different populations and G j; = G;; are independent GSB processes.
The gji(z|Gj) = [o K(2]0)Gj(df) random densities are independent mixtures of GSB pro-
cesses. The aim is to share information among groups and improve estimation of each density

especially for those whose the corresponding size is small.

Based on the PDGSBP prior we extended the GSBR model to PDGSBP reconstruction model, a
Bayesian nonparametric mixture model for the joint full reconstruction of a finite collection of
dynamical equations, given observed dynamically-noisy-corrupted chaotic time series. We have
shown numerically that whenever there is at least on sufliciently large data set, using carefully
selected informative borrowing-of-strength prior specifications we are able to reconstruct those
dynamical processes that are responsible for the generation of time series with small samples
sizes; namely sample sizes that are inadequete for an independent reconstruction, i.e. with
GSBR model.
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In all of the problems described in this thesis, we have shown that the GSB random probability
measures are sufficient for estimation and prediction purposes; that is, making the weights
more exotic does not actually enlarge the support of the nonparametric prior. Moreover, the
corresponding Gibbs samplers for estimation with GSB random probability measures are faster

and easier to implement than the Dirichlet process counterparts.

6.2 Directions for future research

Because of the interdisciplinary profile of the research presented in this thesis, a number of
interesting research paths appeared during the development of our methods which we believe
should be explored in the near future. Below we provide some of the research paths in the field

of random dynamical systems as also in the field of Bayesian nonparametric inference.

6.2.1 Random dynamical systems
Modeling dynamical systems with Gaussian processes

Most of the methods that aim for the reconstruction of dynamical equations assume some
known functional form for the deterministic part of the random dynamical system. It would
worth to extend the GSBR model by assigning a prior over the space of functions, i.e. a Gaussian
Process (GP) (Rasmussen & Williams, 2006) prior for the deterministic part extending the GSBR

model to a full Bayesian nonparametric model.

Extension of the GSBR model to a state space model

When the available data are contaminated with dynamical and observational noise, the GSBR

model could be extended to a g-lagged state space model as

Xi=000,Xi1,...,Xiq) +Zi, i>q

for some function k. Here the assumption is that noisy measurements of the output occur at
all times, making the sequence X (") unobservable. The set of observations in this case is the
Y (™) time series, which can be modeled via a GSB random measure Py . Then the latent X (n)
series can be modeled with a second independent GSB random measure Px, such that the
random variables [X; | X;_1,...,X;—¢,¥,Px] and [Y; | X;, ¢, Py]| are independent. In this case
we have to estimate the initial condition (Xo, ..., X,_1,Yp), the parameter (1, ¢), the density of
the noise component (Z;, W;) as well as the hidden orbit {X; : i = ¢,...,n}.
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6.2.2 Bayesian nonparametrics
Generalization of the PDGSBP model to include all possible interactions

An interesting research path would be the generalization of the pairwise dependent (Q; measures

involved in the PDGSBP, to include all possible interactions, in the sence that

Q) =piGi( )+ Y. D> pinGpy (+) with pi+> > pig=1,

=2 T]ECj,l'm =2 7]€ijl_’m

where the G; and the Gn(j)’s are independent GSB processes, Cj ., = {(k1,..., k1) : 1 <k <
o< ko <myky £ 5,1 <r <m-—1} and 7¢j) is the ordered vector of the elements of the
vector 77 and {j}. Now the f; densities will be a mixture of 2m~1 GSB mixtures, and the total
number of the independent GSB processes needed to model (f1, ..., f) will be 2 — 1.

Due to the exponential growth of the random measures in need as m gets large it would be
interesting to develop parallel MCMC algorithms for the GSB process as also for its multivariate

extensions.

Identification of common and idiosyncratic parts in dependent mixture models.

Due to identifiability issues it is not possible to perform density estimation for the random
densities g;;, that is, the common and idiosyncrating parts composing the random densities f;
of the PDGSBP model. It would worth to extend a univariate mixture model proposed by Mena &
Walker (2015) in the multivariate case. Perhaps, generalizing this prior in the multivariate case
will sovle the identifiability issues arising when one tries to estimate the idiosyncratic as also
the common parts of the mixture densities. This generalization may lead to accurate estimation
of the common and idiosyncratic parts of the random densities as also accurate estimation for

their number of active clusters.
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Appendix A

Sampling from nonstandard full

conditionals

A.1 Sampling V., zpand z,,;,1 <j <T —1

Here we adapt our calculations for the specific case where the deterministic part is a polynomial

of degree m, namely g(0,z) = Y ", 0r o~

A.1.1 Sampling the ¥ = (0)(<;<,, coefficients

From eqgs. (3.15) and (3.28) and for 5 = 1,...,m it is that
1 n
f(6;]--) o< Z(8 € ©;) exp {2 > )\dihg(:ci,xil)} , (A.1)
i=1
where éj is the j-th projection interval of the set . Letting &j; = 2 — Y 0 0k xf_l, we obtain
k#j

the full conditional for 6;, which is a normal truncated over the set e ; given by

F(O5]---) o< Z(0 € ©5)N (0], 757 (A.2)
with
n n
B 4 o
Hj =T ! Z )\digji'rgfh Tj = Z )‘di‘rizl‘
i=1 i=1
To sample from this density, a-priori we set 0; € C:)j = (9]»_, 0;“) and we augment the ¢; full

conditionals by the auxiliary variables 0;- (Damien et al., 1999) such that jointly

165,631 +) < U6;167,67) T (8] > (0 — 1y)*) 7", (a3
Then we have the following Lemma:

Lemma A.1. The augmentation of the full conditionals of ¢; for j = 1,..., m with the positive
random variables 9} such that they jointly satisfy (A.3), leads to the following embedded Gibbs
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sampling scheme:

f(9§‘|9ja c) 5(0;@/2)1(9; > (0; — ,Uj)Q)
F(05105,---) = U(05]a, Bj), aj :=max{}, pi; — 9;1/2}7 Bj = min{0], u; + 0;1/2}'

where £(0}|7;/2) denotes the exponential density with rate 7; /2.

Proof. These are the full conditionals of the bivariate density given in Equation (A.3). O

A.1.2 Sampling the initial condition z,

Similarly, to sample from the full conditional of z( in eqgs. (3.14) and (3.27), we introduce the

variable x, such that
f(azo,xf)] ) ox I(xg € X)I(:pg > hg(xl,:co)) e Md1%0/2

Clearly, the full conditional of x, is an exponential of rate A4, /2, truncated over the interval

(hg(z1,20),00). The new full conditional for x( is a mixture of at most m uniforms given by

fwolxh, ) ox Z(xg € X) I(x0 € Ry), Ry :={x:24 < g(0,7) <Tp}, (A.4)

1/2

/ /2
where z 4 := 11 — /

and Ty := z1 + x,’". The set R, can be represented as the union of

intervals, with boundaries defined by the real roots of the two polynomial equations

q(xo) :=g(0,x0) —29 =0, q(x0) := g(0,z0) —ZTo = 0. (A.5)

More specifically, we are going to show that there is » < m such that
Ry = U1 (p2i-1,p2), (A.6)

with {p1,..., p2,} the ordered set of the real roots of the two polynomial equations in (A.5). In

the sequel we make use of the following notation

{§<0}:={ZL’0€R:
{g>0} ={zpeR:

q(xo) < 0},

q(xo) > 0}.

First we will consider the two even degree cases. When the leading coefficient is positive, the
equation ¢ = 0 has at least two real roots. If there are more than two real roots, their number
will be a multiple of two. On the other hand, when ¢ = 0 has real solutions their number will
be even. Then for s’ > 1 and ¢’ > 0 it is that

{7 <0} = (p1,P2) U+ U (Pag—15 Pas) (A.7)
{g>0} = (—00,p )U---U(p,,: ). (A.8)
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When ' > 1itis that p; < p, < p,, < Pyy. Therefore r = 2(s’ + ') and the intersection of the
two sets {g < 0} and {g > 0} is of the form (A.6). When the leading coefficient is negative the

result is similar with the right hand sides of equations (A.7) and (A.8) interchanged.

When the degree is odd and the leading coefficient is positive, both equations ¢ = 0 and ¢ = 0
have at least one real solution p; and p respectively, with p, < p;. If some of the two equations
have more than one real solution, the number of the additional roots will be a multiple of two.
So for ' > 0 and ¢ > 0 it is that

{7 <0} = (=00,p1) U (P2, 03) U+ - - U (D257, Pogr11) (A.9)
{a>0}=(pp) U U(pyy 1:P0) U Py 1:00). (A.10)

For ' > 1and t' > 1 we have p, <Py < p,, .| < Pagy1. and r = 2(s’ +t' + 1) which shows
that the intersection of the two sets {g < 0} and {g > 0} is of the form (A.6). When the leading
coefficient is negative the result is similar with the right hand sides of the equations (A.9) and
(A.10) interchanged.

So we have proved the following lemma:
Lemma A.2. The augmentation of the full conditional of xy with the positive random variable 1:’0

leads to the following embedded Gibbs sampling scheme:

flaplzo,---) o E(xp|Aay /2) Tz > he(w1, x0))
Flxolzh, ) o I(zo € X)I (w0 € Ui—y (p2i-1,p21)) ,

Jor some r < m, with {p1, ..., par} being the ordered set of the real roots of the two polynomial

equations in (A.5).

A.1.3 Sampling the first 7' — 1 future observations

The full conditionals x,; for 1 < 57 < T — 1 in egs. (3.16) and (3.29) given in the main text
are nonstandard densities. We augment the conditional of x,; with the pair of variables
(T94j» Tn;) such that jointly

_ 1y .
f(xn"l‘]?x;’b-‘rj’x’lfé-‘rj’ .. ) x e 2 dn+]xn+ﬂ I(x;/_"_] > h9($n+],xn+j_1))

1 1/
**)\d . x . !
% e 2Mntj+1%nt] Zﬁ(xnﬂ > ho(Tntjt1; Tntj))-

The full conditionals of z/, +; and zl +j

Adp;41/2 over the intervals (hg(Tn+j, Tntj—1),00) and (hg(Tn+tj+1,Tnj), 00) respectively.

are truncated exponentials with rates \g,, /2 and

The full conditional of z,,; is of the form (A.4) with the set X replaced by the set (x,, 40 x:{ +j)

with xfﬂ = g(6, :rn+j_1)i:r/1/2 and the set R, replaced by the set {z : z,,,; < g(0,7) < Tpy;}

n+j°
. /2 — 1"1/2
with ., ;1= Tpyjp1 — 2,5 and Tpyj o= Tpyjpn + 2,05
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A.2 Sampling the geometric probability \

To sample from the density ineq. (3.32) in the main text we include the pair of positive auxiliary

random variables p; and ps such that
FOMAL A2 ] -+ ) o AT TN < (1= M) Enr)Z(\y < e P/,
with A € (0,1). The full conditionals for A\; and A\ are uniforms
fOul ) =UMN]0, (1= N)Fr), fAa] o) =U2|0,e77).
The new full conditional for A becomes

“Tog A2

T(—pls <r<1-2"7) Li >0
I(max{—log%,l—)\i/L"T}<)\<l> L, < 0.

FO AL Ag,---) oc AZnr—ol

We can sample from this density using the inverse cumulative distibution function technique.
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Appendix B
Invariant set of the map 7' = §(v*, z)

For ¢ = ¢* = 2.55 we let
g(x) = g(v*, z) = 0.05 + 2.552 — 0.9923,

and we define g<"> to be the n-fold composition of g with itself. We let R to be the set of real
roots of the polynomial equation § (z) = z, with z = min R?, 7 = maxR® and X = [z, 7].
We denote the complement of X by X' = X’ UX/_, where X’ = (—o0,2) and X/, = (T, 00). We
will prove the following lemma:

Lemma B.1. Let § be the polynomial given in eq. (3.33), then for all v € X/, it is that

lim inf § (2) = —o00 and lim sup 3™ (z) = cc.
n—oo n—00

Proof. It is not difficult to verify geometrically the following facts:

=
N~—
Il
5
N}
S
S~—
Il
[

1. g

2. 2 <2<T &z <gx)<m.

3. g(z) >z, §¥(@) <z VeeX..

4. §(z) <z, §P(x) >z Ve X,.

5. The restrictions of g and §(2) to X/, are decreasing and increasing functions respectively.
Then for all z € X’ we have the set of inequalities

g (@) < g V(@) < - < gla) <z

Suppose that lim, ., §*" TV (z) = z* then lim,_,+ §?"*3)(z) = §®(2*) = z*, meaning that
z* € R which is a contradiction. Therefore lim, o0 §(2”+1)(x) = —oo0, for all z € X_.
Similarly for all € X/, we have the set of inequalities

g (@) > g (@) > - > P (@) > 7,

from which lim,,_, o §(2) (x) = o0, forall z € X/, . O
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Appendix C

Julia codes

The algorithms for all the models constructed in this thesis, that is the GSBR, the PDGSBP
(as well as their Dirichlet process counterparts rDPR,rPDDP), and the PDGSBP reconstruction

model have been developed in the Julia language (Bezanson et al., 2012).

The associated software is available and can be downloaded from the URL:
Link to thesis codes

or available upon request via e-mail:

cmerkatas@aegean.gr or merxri@gmail.com.


https://www.dropbox.com/sh/kpx0ua5wak4b982/AADoKqYk35YDxt0g4RdAnWAUa?dl=0
cmerkatas@aegean.gr
merxri@gmail.com
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