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Abstract

Department of Information and Communication Systems Engineering

School of Engineering

University of the Aegean

Doctor of Philosophy

by Dimitrios C. Papamartzivanos

The contemporary Information and Communications Technology infrastructures have

become undoubtedly the “land of opportunity” for ill-motivated entities, which aim to

threaten the confidentiality, integrity and availability of the underlying systems. The

ever-increasing magnitude and sophistication of cyber attacks leave no room for rest to

the defenders. In this context, the quest for full-fledged and versatile defensive frame-

works and methodologies is of high priority. In this direction, Intrusion Detection and

Response Systems are essential entities in a network topology aiming to safeguard the

protected systems and provide remediation actions against offensive incidents. How-

ever, such mechanisms need to be supported by intelligent methods to sustain a high

operational capability. In this context, this doctoral thesis focuses on advanced machine

learning methods that can deliver beneficial characteristics to intrusion detection and

response systems.

More specifically, this Phd thesis comprises three tightly interrelated axes, namely a) the

provisioning of optimal countermeasures in the context of intrusion response systems, b)

the induction of accurate detection rules to enable misuse network intrusion detection,

and c) the integration of self-adaptation properties to those systems.

In relation to the first axis, this work provides a comprehensive analysis on reactions

frameworks which aim to provide cost-benefit countermeasures against cyber attacks.

Our analysis aims to critically scrutinize the pertinent works in this field, to pinpoint

the Artificial Intelligence methods utilized by them, and to offer an in-depth discussion

and side-by-side comparison among them based on several criteria. Also, an extensive

discussion is offered to highlight on the shortcomings and future research challenges and

directions in this timely field of research.

Driven by the fact that reactive frameworks should be triggered upon accurate pre-

dictions on the nature of offensive incidents, the second axis of the doctoral thesis at

hand focuses on the design and implementation of a rule induction methodology, called

Dendron, for misuse intrusion detection systems. More specifically, our methodology



takes advantage of both Decision Trees and Genetic Algorithms for the sake of evolv-

ing linguistically interpretable and accurate detection rules. Dendron is able to rightly

designate the category where attacks belong to, and achieves superior results over other

legacy techniques under several classification metrics.

Additionally, with the aim of tackling the major limitation of misuse intrusion detection

systems to adapt to new network conditions, the third axis pursues the development

of a self-adaptive methodology, which can revitalize a detection engine through the

automation of its retraining process. Considering the extended size of modern networks

and the complexity of big network traffic data, the adaptation problem exceeds the limits

of human managing capabilities. Thus, through the utilization of deep-learning based

methods, our approach is able to grasp an attack’s nature based on generalized feature

reconstructions stemming directly from the unknown environment and its unlabeled

data. The experimental results reveal that our methodology can breathe new life into

an intrusion detection system, thus outperforming rigid detection approaches.



Greek Abstract

(Εκτεταμένη Περίληψη)

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Διδακτορική διατριβή

του Δημητρίου Χ. Παπαμαρτζιβάνου

Οι σύγχρονες υποδομές τεχνολογίας πληροφοριών και επικοινωνίας έχουν μετατραπεί χωρίς

αμφιβολία σε ένα χώρο ευκαιριών για κακόβουλες οντότητες, οι οποίες απειλούν την εμπι-

στευτικότητα, την ακεραιότητα και διαθεσιμότητα αυτών των συστημάτων. Το συνεχώς

αυξανόμενο μέγεθος και η πολυπλοκότητα των κυβερνοεπιθέσεων δεν αφήνουν περιθώρια

επανάπαυσης στους αμυνόμενους. Σε αυτό το πλαίσιο, η αναζήτηση ολοκληρωμένων και

ευέλικτων αμυντικών μηχανισμών και μεθόδων καθίσταται υψίστης σημασίας. Σε αυτήν την

κατεύθυνση, τα συστήματα ανίχνευσης και αντιμετώπισης εισβολών αποτελούν απαραίτητες

οντότητες σε ένα δίκτυο για την προστασία των συστημάτων και την παροχή ενεργειών απο-

κατάστασης εναντίον των επιθέσεων. Ωστόσο, τέτοιου είδους μηχανισμοί είναι απαραίτητο

να υποστηρίζονται από ευφυείς μεθόδους, για να είναι σε θέση να διατηρούν υψηλή επι-

χειρησιακή ετοιμότητα. Σε αυτό το πλαίσιο, η παρούσα διδακτορική διατριβή εστιάζει σε

προηγμένες μεθόδους μηχανικής μάθησης, οι οποίες μπορούν να προσδώσουν ωφέλιμα χα-

ρακτηριστικά σε συστήματα ανίχνευσης και αντιμετώπισης εισβολών.

Πιο συγκεκριμένα, η παρούσα διατριβή αποτελείται από τρεις άξονες: α) την παροχή

βέλτιστων αντιμέτρων στο πλαίσιο μηχανισμών αντιμετώπισης εισβολών, β) την εξαγω-

γή αξιόπιστων κανόνων ανίχνευσης για συστήματα ανίχνευσης εισβολών κακής χρήσης

(Misuse Detection IDS), και γ) την ενσωμάτωση χαρακτηριστικών αυτοπροσαρμογής σε

αυτά τα συστήματα.

Σχετικά με τον πρώτο άξονα, η παρούσα διατριβή παρέχει μία εκτενή ανάλυση μηχανισμών

αντιμετώπισης εισβολών, οι οποίοι στοχεύουν στην παροχή βέλτιστων αντίμετρων εναντίον

κυβερνοεπιθέσεων. Η ανάλυσή μας στοχεύει να εξετάσει λεπτομερώς και με κριτικό πνεύμα

τις σχετικές δημοσιεύσεις του συγκεκριμένου τομέα, να εντοπίσει τις μεθόδους τεχνίτης

νοημοσύνης που αυτές αξιοποιούν και να προσφέρει μία σε βάθος συζήτηση και αναλυτι-

κή σύγκριση βάσει κριτηρίων. Επιπλέον, επισημαίνονται οι ελλείψεις και οι μελλοντικές

ερευνητικές προκλήσεις του συγκεκριμένου ερευνητικού πεδίου.



Ορμώμενοι από το γεγονός ότι οι μηχανισμοί αντιμετώπισης επιθέσεων θα πρέπει να ενερ-

γοποιούνται βάσει ακριβούς πρόβλεψης της φύσης των επιθέσεων, ο δεύτερος άξονας της

παρούσας διατριβής εστιάζει στο σχεδιασμό και την ανάπτυξη μίας μεθοδολογίας εξαγωγής

κανόνων, με την ονομασία Dendron, για συστήματα ανίχνευσης εισβολών κακής χρήσης.

Συγκεκριμένα, η μεθοδολογία μας εκμεταλλεύεται Δέντρα Απόφασης (Decision Trees) και

Γενετικούς Αλγορίθμους (Genetic Algorithms), με σκοπό την ανάπτυξη μεταφράσιμων και

αξιόπιστων κανόνων ανίχνευσης. Το Dendron είναι ικανό να προσδιορίζει σωστά την κα-

τηγορία στην οποία ανήκουν οι επιθέσεις, ενώ επιτυγχάνει καλύτερη απόδοση, σε σύγκριση

με άλλες κλασικές τεχνικές, στις περισσότερες μετρικές κατηγοριοποίησης.

Επιπρόσθετα, με σκοπό την αντιμετώπιση του σημαντικότερου μειονεκτήματος των συστη-

μάτων ανίχνευσης κακής χρήσης, που είναι η αδυναμία προσαρμογής σε νέες δικτυακές

συνθήκες, ο τρίτος άξονας της διατριβής αποσκοπεί στην ανάπτυξη μίας αυτοπροσαρμο-

ζόμενης μεθοδολογίας, η οποία μπορεί να αναζωογονήσει μία μηχανή ανίχνευσης μέσω της

αυτοματοποίησης του μηχανισμού επανεκπαίδευσής της. Λαμβάνοντας υπόψη την εκτετα-

μένη κλίμακα των σύγχρονων δικτύων και την πολυπλοκότητα των δικτυακών δεδομένων,

το πρόβλημα της προσαρμογής υπερβαίνει κατά πολύ τις δυνατότητες διαχείρισης από έναν

ειδικό ασφάλειας. ΄Ετσι μέσω της αξιοποίησης μεθόδων Βαθιάς Μάθησης (Deep Learning),

η μεθοδολογία μας μπορεί να αντιληφθεί τη φύση μίας επίθεσης βάσει γενικευμένων ανα-

σχηματισμένων χαρακτηριστικών (generalized feature reconstructions) που προέρχονται

απευθείας από το άγνωστο δικτυακό περιβάλλον και τα δικτυακά δεδομένα, από τα οποία

απουσιάζει η κατηγορική ετικέτα κλάσης. Τα πειραματικά αποτελέσματα δείχνουν ότι η με-

θοδολογία μας μπορεί να αναζωογονήσει ένα σύστημα ανίχνευσης εισβολών, και επιπλέον

επιτυγχάνει καλύτερη απόδοση σε σχέση με κλασικές μη-ευέλικτες προσεγγίσεις.
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Chapter 1

Introduction

Intrusion detection systems (IDSs) are considered a mainstay when it comes to the

protection of Information and Communications Technology (ICT) infrastructures. The

concept of monitoring and surveilling computer security threats was set back in 80’s,

when James P. Anderson’s work [1] became a stepping stone for the intrusion detection

research field. Since then, the technological progress has formed a landscape of a densely

interconnected world, which has become the “land of opportunity” for ill-motivated

entities that introduce new security and privacy threats in an everyday basis. In fact,

the everlasting battle between defenders and attackers has taken the form of an “arm

race”, where both sides constantly upgrade their arsenals in order to prevail against each

other. The emergence of new attacks spurs the academia and industry to investigate for

novel methodologies, which are able to closely monitor this race and adapt rapidly to

the changes in the field.

Undoubtedly, IDSs has become an irreplaceable weapon in this battle, as both the

industry and the research community have offered a plethora of tools and methodologies

to oppose to offensive security incidents. IDSs monitor and analyze passively network

and system activities for recognizing attack patterns. In fact, there is a wide spectrum of

IDSs depending on their deployment position in the infrastructure and their operational

profile. Regarding the deployment position, the IDSs can be classified into Host-based

and Network systems. The former approach monitors processes and actions accruing in

a specific host, while the latter is placed to strategic points of a network and monitors all

the traffic exchanged among its nodes. Regarding the operational profile, the IDSs can

1
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be classified into Misuse-based (sometimes also called signature-based) and Anomaly-

based (sometimes also called profile-based) systems. The former class bases the detection

process on previously identified signatures, which can take a form of rules or patterns,

while the latter regulates its detection engine to identify as intrusive incidents those

that exhibit deviations from a predefined normal behavioral profile. Misuse systems are

destined to identify known type of attacks, whereas they are able to keep False Alarm

Rate (FAR) under acceptable levels. Hence, the detection ability of such a system is

directly affected by the freshness of the detection rules it possesses. On the other hand,

anomaly detection systems are able to detect previously unseen attacks, but they usually

suffer from a FAR. This limitation renders such systems an impractical solution for

protecting a large and sensitive infrastructure as the definition of the normal behavior

is normally a demanding task. All the aforementioned approaches bear advantages

and disadvantages and a potential deployment needs to take them into consideration

for building a defense mechanism able to meet the security requirements of the host

infrastructure.

However, the detection of an incident is just a milestone in a multistep process which has

to be triggered for safeguarding an infrastructure. The steps that follow the detection of

an offensive action aim to prevent possible negative consequences and respond promptly

by taking the proper actions. In this direction, Intrusion Prevention Systems (IPS) are

introduced to actively trigger basic remediation actions. In contrast to IDSs, IPSs are

installed inline with the network so that to actively detect and react on the current

traffic. IPS actions include drop, reset or custom-scripted actions and all of that occurs

immediately upon signature match to proactively mitigate the consequences. Thus, a

potentially falsified action can lead to loss of revenue as the IPS might drop legitimate

traffic. Under this prism, it becomes clear that any remediation action, especially if

it is destined to operate with a given automation level, should be based on a detec-

tion mechanism which is able, not only to accurately detect an offensive event, but to

infer the exact category within the incident belongs to and to keep false alarms to rel-

atively low levels. Additionally, as cyber attacks constantly gain in sophistication and

ICT infrastructures become even more complex and dynamic, simplistic IPSs become

inadequate.

Due to the above reasons, there is a constant need to extend security solutions be-

yond legacy surveillance and preventative technologies and to use advanced intelligent
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methods to enable automation across the entire network security architecture. In this

direction, Data Mining, Artificial Intelligence (AI) and Machine Learning (ML) are the

mainstays for developing novel methods, which are able to bring intelligence into legacy

security solutions by leveraging the inherent information of data. The seminar works

of Lee and Stolfo [2],[3] showed the way for designing ML-based detection methods by

utilizing data generated from a data mining approach. Since then, ML-based IDSs are

always within the scope of researchers as they can deduce the detection rules (or pat-

terns) in an automated manner by grasping feature structures in the data. Additionally,

AI-enabled intrusion response systems (IRS) attract the interest of the research commu-

nity for supporting the decision making and providing optimal remediation during an

incident response process.

However, the evolution of ICT systems and the parallel continuous and intensive ad-

vance of attacking techniques fuels the development of defensive systems with the aim

of bringing back the advantage to the defenders’ side. Additionally, the limitations of

the existing detection and response techniques leave room for further research and in-

novation. In fact, current attack detection methodologies lack agility and lead to rather

rigid detection systems. To fill these gaps, this doctoral thesis seeks for new methods

that can address the reported limitations and empower detection systems with agile and

adaptable characteristics. Under this prism, our work:

(a) provides a thorough analysis over cost-benefit reactive methodologies for offering

optimal countermeasures.

(b) utilizes nature-inspired evolutionary techniques to enable objective-driven detec-

tion rules induction.

(c) aims to introduce self-adaptation properties to misuse detection systems through

Deep Learning methodologies.

As further explained in the next section, the PhD thesis at hand aims in introducing

versatile properties to misuse network IDSs through advanced machine learning method-

ologies.
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1.1 Motivation and Objectives

From the conceptualization of the network surveillance systems [1] and the introduction

of data mining techniques to enable ML-based intrusion detection [2] [3] until the present

days, it becomes clear that the battle has become even more intensive, as the diversity

of the contemporary systems creates many opportunities for aggressors. This fact, mo-

tivates us to investigate for new methodologies which can address key limitations in this

field.

Keeping an IDS’s rules database up-to-date is a challenging procedure that requires

system administrators’ engagement. Handling and analyzing a huge volume of network

traffic is an intensive engineering task, which needs to be supported by automated tools

able to grasp the characteristics of the network traffic. Hence, such a tool should not only

aim to distinguish between legitimate and malicious traffic, but also to infer the specific

class of an attack occurring in the target system. We argue that a detection system

which can answer simply the question “Attack or not?” is considered incompetent given

the variety of contemporary cyber attacks. Thus, a modern rule induction methodology

should adopt a multi-classed model to handle the network traffic.

However, such an approach raises challenges mainly due to specific properties of the

network traffic flows. Currently, state-of-the-art approaches neglect minor classes that

indicate a malicious behavior due to their scarcity in the network data. Nevertheless,

such kind of incidents can have major impact on a targeted system. In this context, a

rule induction methodology should be driven by objectives that ensure a high Attack

Detection Rate (ADR) and a low FAR, but additionally high recall and precision scores

in predicting the exact class of an incident. Additionally, the inducted rules need to

be human interpretable in order to help administrators understand the semantics of the

detection process.

Even thought in the related literature exist a great amount of publications, the above-

mentioned qualities cannot be found in a single methodology. Moreover, such properties

are a cardinal concern when a detection process is followed by a responsive procedure

with a certain automation level. The accuracy of the incident inference process can affect

the efficacy of a response mechanism to a great extend, as possibly incorrectly identified
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incidents could lead to inappropriate countermeasures, or even worse, to unnecessary

actions in case of false alarms.

A rule induction methodology can alleviate to a great extend the burden of the admin-

istrators’ shoulders, but is it not a panacea. It can be used to extract detection rules

automatically out of network traffic flows, but security specialists need to put significant

effort to annotate them properly before those are given as input to a supervised machine

learning method. It becomes clear that the retraining of an intrusion detection model

still remains a demanding and rigid procedure and needs to take place anytime a drop

in efficacy appears. Undoubtedly, there are several factors that can affect the efficiency

of an IDS, but most of them pertain to the environmental changes. The latter term

refers to any aspect of a network that can affect the profile of the generated network

traffic. This reality, combined with the lack of adaptable detection engines, forces the

IDS to become quickly outdated and inadequate as it inevitably has to operate in new

and “unknown” or unforeseen environments for which its engine was not trained. In

fact, this is a key limitation in regard to any ML-based IDS and the quest of proper

ways to automatize the retraining process comprises a major research challenge in the

field.

Given the above mentioned observations, the motivation of the PhD thesis at hand is

to investigate for ML methods that can provide agile and versatile characteristics to

network IDSs. In a nutshell, the objectives (and simultaneously the research pillars) of

this PhD thesis are as follows:

Objective 1: We intent to shed light on IRSs systems proposed in the literature so

far and to provide a thorough analysis over the methodologies used to empower cost-

benefit reactive systems for countermeasure provision. Through this analysis we intent

to identify open research challenges in both IDS and IRS ecosystems and provide future

directions.

Objective 2: We aim to deliver a rule induction methodology that can provide highly

accurate detection rules, which can enable the discrimination among distinct classes of

offensive incidents with a high precision. The rules must be human interpretable for

assisting security administrators to comprehend the detection semantics.
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Objective 3: We aim to expand further the second objective and further explore ML

methodologies that can provide self-adaptation and agile properties to misuse network

IDSs, so that to bring intelligence in the retraining process of their engine.

As detailed in the next subsection, the novelties of this work mainly lie in the last two

objectives, while the first one basically explores the related literature for identifying

possible gaps, shortcomings, and research directions.

1.2 Contributions

As already pointed out, the main intention of this PhD work is to investigate and develop

ML approaches that can provide agile and versatile characteristics to network intrusion

detection and response systems. To this end, our work exploits the beneficial character-

istics of nature-inspired evolutionary computation and deep learning for addressing the

limitations identified in the related literature.

Initially, our work provides a comprehensive analysis on reaction frameworks which aim

to provide optimal countermeasure selection against cyber attacks. Currently, even

though there is a plethora of solutions to analyze the security state of a network and to

detect offensive incidents, the decisions during an incident response process are taken by

security experts. To the best of our knowledge, there are no tools that can support the

decision making and provide cost-benefit countermeasures. Instead, this process is un-

dertaken by security experts who use their experience and – hopefully – well documented

incident response policies to base their decisions.

However, as explained also in the previous subsections, any remediation action applied

with a given level of automation has to be based on an accurate prediction in order to

avoid inappropriate countermeasures, or unnecessary actions in case of a false alarm.

In this context and in conjunction with the second objective of this thesis, we provide

a prototype implementation of an evolutionary classifier for detecting network offensive

incidents.

Additionally, our work tackles the major limitation of a misuse network IDS, which is its

inefficiency to adapt to new and “unknown” environments. By utilizing a deep learning

approach, we aim to build and evaluate the first to our knowledge proof of concept for
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self-adaptive misuse network IDSs. That is, our approach aims to address the cardinal

challenge for any IDS designer, namely to bring intelligence and find proper ways to

automatize, at least to a certain degree, the retrain process of the detection engine.

More specifically, the contribution of this PhD thesis with respect to our publications

in scientific journals and patent filings is as follows:

• A thorough analysis of the intrusion reaction frameworks proposed in the litera-

ture 1. The main pillars of this contribution are:

– Provide a detailed overview over the fundamental components utilized by

reaction frameworks.

– Identify primary characteristics of reaction frameworks (and their chief en-

ablers, namely IDS) and provide a side-by-side comparison by highlighting

on the advantages and limitations of the surveyed proposals.

– Identify research challenges and future directions in the cost-benefit intrusion

response and detection research fields.

• The design and implementation of a novel classification algorithm, called Dendron,

to enable misuse network intrusion detection 2. In this context, we:

– Provide a new methodology for detection rules induction through the combi-

nation of Genetic Algorithms and Decision trees.

– Introduce a selection probability function to steer the evolutionary process

towards delivering a multiclassed individual with desirable characteristics.

– Provide a rule induction methodology driven by desirable performance objec-

tives which is able to treat fairly all the network traffic classes.

• Dendron is used to empower a detection rule induction method and system which

led to a Patent filing by NEC Corporation, for reserving the exploitation right of

the invention 3.
1P. Nespoli, D. Papamartzivanos, F. Gómez Mármol, and G. Kambourakis. Optimal counter-

measures selection against cyber attacks: A comprehensive survey on reaction frameworks. IEEE
Communications Surveys Tutorials, 20(2):13611396, Secondquarter 2018. ISSN 1553-877X. doi:
10.1109/COMST.2017.2781126.

2D. Papamartzivanos, F. Gómez Mármol, and G. Kambourakis. Dendron : Genetic trees driven rule
induction for network intrusion detection systems. Future Generation Computer Systems, 79:558 574,
2018. ISSN 0167-739X. doi: 10.1016/j.future.2017.09.056.

3D. Papamartzivanos and F. Gómez Mármol. Intrusion detection and prevention system and method
for generating detection rules and taking countermeasures, September 25 2018. US Patent 10,084,822.
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• The design and implementation of a novel deep learning-based self-adaptive net-

work misuse IDS 4. The contributions of this work are as follows:

– Provide a scalable approach which combines the benefits of Self-Taught Learn-

ing (STL) and MAPE-K methodologies (see section 4.3) to enable IDS self-

adaptation.

– Automatize the retraining process of an IDS by utilizing new data feature

representations through transfer learning from unlabeled data, which stem

from the unknown environment where the IDS operates.

– Evaluate the adaptation and detection ability of the IDS by exposing it to

consecutive and drastic environmental changes.

• The filing of a patent application by NEC Corporation for reserving the exploita-

tion rights of a method and apparatus inspired by our work on self-adaptive in-

trusion detection 5.

4D. Papamartzivanos, F. Gómez Mármol, and G. Kambourakis. Introducing deep learning self-
adaptive misuse network intrusion detection systems. IEEE Access, 7:1354613560, 2019. ISSN 2169-
3536. doi: 10.1109/ACCESS.2019.2893871.

5D. Papamartzivanos, F. Gómez Mármol, G. Kambourakis, and R. Bifulco. Adaptive network intru-
sion detection, November 9 2018. US provisional patent application 62/757,769.
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1.3 Thesis Structure

The next chapter presents the fundamental background of Intrusion Detection, Pre-

vention and Response systems. More specifically, the Chapter 2 comprises two major

sections:

• Section 2.2 elaborates on Machine Learning methodologies and datasets used to

realize intrusion detection systems.

• Section 2.3 provides a survey over reaction frameworks for optimal countermea-

sure provision against cyber attacks. This section aims to provide a side-by-side

comparison of the works presented in the literature, to uncover research challenges

and provide future directions.

Chapter 3 deals with the design and development of Dendron, a novel rule induction

methodology for network intrusion detection. More specifically, this chapter provides a

detailed overview of the evolutionary components utilized to steer the induction process

towards developing detection rules of beneficial characteristics.

Chapter 4 details on the applicability of deep learning techniques for bringing the quality

of self-adaptation to network IDSs. Precisely, this chapter introduces the combination

of Self-Taught Learning and MAPE-K methodologies to provide an holistic approach for

autonomous and self-adaptive intrusion detection.

The last chapter provides a discussion over the results and the contributions of this PhD

thesis. Additionally, it includes potential extensions of the proposed schemes as well as

future research directions.



Chapter 2

Background

This chapter provides an overview of the intrusion detection and response research field,

while it also elaborates on machine learning approaches which have been recruited among

several researches. Initially, the chapter elaborates on fundamental notions of cyber

defense and in Section 2.2 proceeds to the analysis and taxonomy of ML-based intrusion

detection approaches of the field. Section 2.3 provides an extensive analysis of reactive

methodologies which aim to provide optimal countermeasures and responses against

cyber attacks.

2.1 The OODA loop for incident response

As the engagement between attackers and defenders has taken the form of an ever-lasting

battle, several military terms and phrases have been adopted by information security

experts for describing tactics in the cyberspace. Among them, OODA loop, which stands

for Observe, Orient, Decide, and Act, is a principal military strategy used to enhance

the decision making in a battle field. U.S. Air Force Colonel John Boyd conceptualized

the OODA loop [4], and nowadays is a practical analogy adopted in the incident response

tactics for aiding the defense procedures to adapt properly considering the moves of the

attackers.

10
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2.1.1 Observe

This phase consists of information gathering and monitoring actions for collecting as

much information as possible regarding the steps of an adversary and the security state of

the protected system. The detailed and fast discovery of suspicious events can be of great

value for understanding an adversary’s target and aiding in optimal countermeasure

selection in later steps.

Primary source of information in this phase are the Network or Host-based IDSs which

are able to identify patterns of known attacks or traces of anomalous behavior in the

network or on a host respectively. Several IDS solutions exist in the wild and they

offer diverse monitoring capabilities. Among them, Snort [5], Suricata [6] and Zeek [7]

(formerly known as Bro [8]) are the most famous network IDSs, while OSSEC [9] is a

host-based IDS.

Another valuable tool that can offer great visibility in the network traffic is the Netflow

analyzers. Such tools enable visibility in traffic flows and help administrators to take a

deeper look into threats and locate traffic exchanges among assets of high importance.

Tools, such as Ntop [10] and Nfdump [11] with NfSen [12], can offer network traffic

visibility through proper visualization techniques.

Vulnerability scanners, such as OpenVAS [13], Nessus [14] and Nexpose [15], are a

valuable asset for observing the security situation of an infrastructure. This kind of

tools are able to discover and asses existing vulnerabilities on systems, and uncover

weak points that can become points of failure of the entire security architecture.

2.1.2 Orient

This phase require to logically analyze the collected evidences and correlate them with

previously faced incidents, the security experts’ experience and any other source of threat

intelligence. The aim of this phase is to interpret the evidences in order to understand

the attack strategy and evaluate the possible impact on business assets. That said, a

security analyst needs to deploy a defensive strategy based on the available observations

and understand the existing environment state.
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In practice, getting the full picture of the situation during an attack is almost infeasible

due to several reasons, like the attack sophistication or the lack of accurate observations.

That is, the orientation phase is revisited any time additional observations come into

view. In this process, asset inventory tools can provide valuable information about the

current situation of the network and host assets. Such tool can be proved really useful,

especially when the protected infrastructure is a dynamic one, where assets or services

may enter or leave the network any time. Additionally, open threat intelligence databases

offer a wide spectrum of information regarding the latest threats, like malwares, botnets,

blacklisted IPs, and more.

2.1.3 Decide

Given the observations and the outcome of the orientation phase a defender has to decide

about a defensive strategy that can eradicate the threat but can have the minimum neg-

ative implications to the business runtime. This phase can be supported by documented

incident response procedures and the security policy of the organization. However, the

decisions are taken by security experts based on their experience as, to the best of our

knowledge, there are no tools that can support the decision making in this phase.

Hence, the decision making for providing optimal countermeasures against cyber at-

tacks requires significant effort to counterbalance the cost and the benefit of a defensive

strategy, while the whole process takes place under stressful conditions.

2.1.4 Act

In this phase a security expert applies the defensive actions decided in the previous phase.

The aim of this step is to remediate the affected systems and recover any interrupted

business workflow. A security expert or a team must act quickly but considering also the

business cost of any remediation action. That is, the OODA loop may occur repetitively

until an optimal solution is defined.

The remediation and recovery actions usually engage a wide spectrum of tools. Forensic

tools can be used in order to uncover and analyze the facts of an incident and to create a

legal audit trail. System backup and recovery tools can be utilized to revert the affected

systems back to the normal operational state. The final goal of the OODA loop is, not
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only to tackle an incident, but also to gradually increase security awareness through the

analysis of the weak points of the security architecture. At the end of this process, a

security team has the chance to improve the incident response procedures by exploiting

the recent observations, orientation outcomes and decisions.

2.2 Machine Learning-based intrusion detection systems

As described in Chapter 1, the novelties of this PhD thesis mainly fall into the ML-based

intrusion detection field. That is, this section provides an overview of the detection

methodologies, the datasets and the widely used ML methods in the intrusion detection

literature.

Machine Learning is a sub-domain of AI which exploits the inherent information of data

in order to automatically identify patterns and help with decision making. A wide va-

riety of specialized algorithms and techniques synthesize a powerful tool for designing

intelligent predictive systems for a wide spectrum of business tasks. In the case of cy-

bersecurity, and more specifically in network intrusion detection, we use classification

or clustering algorithms to discover anomalies and offensive incidents occurring in a

protected network. The power of ML resides in the ability of ML algorithms to auto-

matically identify patterns based on thousands of features within massive amounts of

network traffic records, which otherwise would require manual mining on behalf of an

expert. The extracted patterns are used to build generalized models, which can pre-

dict automatically the legitimacy of future network traffic instances or determine their

proximity to anomalous or legitimate behaviors. Hence, ML-based IDSs goes beyond

simplistic approaches of setting thresholds and monitoring specific metrics, as they are

destined to scale and adapt to the demanding nature of large network environments.

2.2.1 Detection approaches

IDSs can be classified into three classes, namely misuse, anomaly and specification-based,

according to their operational profile [16]. Table 2.1 summarizes the advantageous and

weak characteristics of the aforementioned systems.
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Misuse detection systems (sometimes also called signature-based) aim to detect signa-

tures of known attacks [3]. Primarily, such systems base the detection process on the

formation of rules or patterns which can match these signatures. The advantage of

misuse detection systems lies on their simplicity and effectiveness when it comes to the

detection of known attacks. Additionally, their functional profile enables the contextual

analysis of an incident on behalf of a security expert, while the detection rules can be

shared across information security communities. In fact, the high detection rates for

known attacks comes along with low False Alarm Rates (FAR), but they miss to detect

new or deviations of known attacks. Consequently, the detection performance of a mis-

use detection system is strictly connected to the freshness of its rule database, which in

practice is a demanding engineering task.

On the other hand, anomaly-based detection systems identify as anomaly any deviation

from a standardized normal behavioral profile [17, 18]. In contrast to misuse detection

systems, these systems are able to detect unforeseen attacks or deviations of known ones,

but they suffer from high a FAR. In fact, this is the main shortcoming of this detection

approach, which lies on the fact that the standardization of a normal operational profile

is an error-prone process. Given that the operational profile of a system can change even

upon routine actions, such as software/OS updates, one could say that anomaly-based

detection systems is an impractical solution for protecting large or dynamic infrastruc-

tures. Additionally, anomaly-based systems provide little insight to the nature of the

offensive event, as the latter is identified as an anomaly. That is, further investigation

is needed to determine the nature of an attack.

In an effort to combine the best of both worlds, there have been reported also solutions

that join the benefits of misuse and anomaly-based systems, known as hybrid detection

systems [19].

Specification-based detection systems are destined to monitor specific functionalities,

system configurations or protocol states of the protected systems [20]. In a sense, they

share the same idea of anomaly-based systems as they aim to identify changes of a stan-

dard norm. Specification-based IDSs are widely used for resource constrained devices,

which present a minimal spectrum of actions or, in case of communication protocol

surveillance, they follow the established protocol standards.
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Misuse detection systems Anomaly-based systems Specification-based systems

Advantages
• High detection rates for known

attacks
• Detection of unforeseen attacks • Sound determination of correct

behavior
• Enable contextual analysis of in-
cidents

• Detection of zero Day attacks • Detection of unexpected states or
actions

• Enable rule sharing among com-
munities

• Suitable for resource constrained
devices

• Low false alarm rates
Shortcomings
• Inability to detect new or devia-
tions of known attacks

• High false alarm rates • System specific implementations

• Hard to keep them up-to-date • Hard to determine the normal
profile

• Unable to detect attacks that
mimic the legitimate behavior

• Unsuitable for complex and dy-
namic systems

Table 2.1: Classification of intrusion detection approaches.

Regarding the deployment position, the IDSs can be classified into Host-based and Net-

work systems. The former approach monitors processes and actions accruing in a specific

host, while the latter is placed to strategic points of a network and monitors all the traffic

exchanged among its nodes.

Since, the contribution of this PhD thesis focuses mainly on the misuse network intrusion

detection approaches, the discussion offered later in this section focuses on the ML

methods and algorithms utilized in this specific class of detection systems.

2.2.2 Datasets for network intrusion detection

This section presents a collection of widely used datasets in the intrusion detection litera-

ture. Our research ideas presented later in Chapters 3 and 4 utilize the KDDCup’99 [21],

NSL-KDD [22] and UNSW-NB15[23] datasets to build our evaluation testbed.

KDDCup’99 This dataset [21] constitutes a standard in machine learning approaches

for building IDS to detect web service abuses. Even though this dataset is rather old

and there have been researches [22] reporting its flaws, it is still considered as standard

and used by recent studies in the field [24]. This is mainly because KDDCup’99 poses

the same challenges with the network traffic and is used as a benchmark for conducting

a valid comparison among the proposed methods in the literature.

The simulated traffic contained in this dataset includes a variety of intrusions (22 distinct

types of attacks - see Table 2.2) under different probability distributions all of them

falling into four major categories:
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Class Attacks of KDDCup’99 Attacks of NSL-KDD

DoS back, land, neptune, pod,
smurf, teardrop

back, neptune, smurf, teardrop, land, pod, apache2,
mailbomb, processtable, udpstorm

PRB ipsweep, nmap, portsweep,
satan

satan, portsweep, ipsweep, nmap, mscan, saint

R2L ftp write, guess passwd,
imap, multihop, phf, spy,
warezclient, warezmaster

ftp write, warezclient, spy, named, warezmas-
ter, multihop, xsnoop, sendmail, snmpguess,
imap, snmpgetattack, worm, ftp write, xlock, phf,
guess passwd

U2R buffer overflow, loadmodule,
perl, rootkit

buffer overflow, httptunnel, loadmodule, perl,
rootkit, xterm, ps, sqlattack

Table 2.2: Attack categories in KDDCup’99 and NSL-KDD

• DoS: Denial of Service.

• PRB: Probing - Surveillance and other means of probing.

• R2L: Remote to Local - Unauthorized access from a remote machine.

• U2R: User to Root - Unauthorized access to local superuser (root) privileges.

The raw traffic data captured during the simulations were transformed into machine

learning labeled instances representing “good” and “bad” connections to the target

system. The initial size of the dataset (approx. 5M instances) renders the set too bulky

for training machine learning algorithms. Thus, the vast majority of researchers make

use of sampling techniques to create a smaller fraction (usually 10%) of the dataset by

keeping its initial properties.

Moreover, KDDCup’99 includes several duplicated network instances, which tend to

bias ML-based predictive models. That is, it is a common strategy in ML-based IDS

research to preprocess the dataset and remove these redundant instances for building

more reliable detection schemes.

NSL-KDD As already mentioned in the previous paragraph, KDDCup’99 has been

criticized for several inherent deficiencies [22]. Those deficiencies motivated the authors

in [22] to release NSL-KDD dataset in 2009 and since then several intrusion detec-

tion researches based their evaluation on it. While NSL-KDD kept the advantageous

and challenging characteristics of KDDCup’99, including the imbalanced number of in-

stances and the variety of classes, its creators made a step forward by eliminating the

documented limitations. More specifically, NSL-KDD is free of redundant records that

bias machine learning techniques to favorable results, while the list of the incorporated
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attacks has been extended as it can be observed from Table 2.2. Notably, the prominent

characteristic of NSL-KDD is that it was compiled towards maximizing the difficulty

level of prediction. To do so, the authors evaluated the initial dataset using several

benchmark classifiers and they annotated each instance with the number of its suc-

cessful predictions only to finally group them into five difficulty levels. Eventually, the

authors compiled a training set comprising from instances among all difficulty levels

but giving higher priority to those of the higher difficulty levels, i.e., those instances

annotated by a lower number of successful predictions.

UNSW-NB15 This data collection was proposed in [23] as a modernized dataset

which reflects the contemporary network traffic characteristics and new low-footprint

attack scenarios. The authors created a testbed for generating both malicious and nor-

mal traffic, which in the first place was captured in pcap files. The attacks launched

during the network experiment acquired from the CVE (Common Vulnerability Ex-

posure) database to ensure the contemporary threat environment. The authors used

Argus [25] and Bro-IDS [8] tools to manipulate the captured network traffic in order

to extract machine learning features and label the instances of the dataset. The au-

thors extracted 49 features in total to reflect the nature of the network traffic, while the

malicious traffic was finally grouped into 9 classes as can be seen in Table 2.3.

Class No. of instances

Normal 2,218,761
DoS 16,353
Reconnaissance 13,987
Fuzzers 24,246
Shellcode 1,511
Exploits 44,525
Generic 215,481
Backdoor 2,329
Analysis 2,677
Worms 174
Total 2,540,044

Table 2.3: UNSW-NB15 dataset instances distribution

ISCX Datasets In an effort to provide contemporary evaluation testbeds for intrusion

detection, the Canadian Institute for Cybersecurity makes available a set of datasets,

which according to the creators are modifiable, extensible, and reproducible [26]. The
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ISCX datasets follow the systematic approach presented in [27], which aims to the cre-

ation of datasets by combining diverse profiles. The profiles contain detailed descriptions

of intrusions and abstract distribution models for applications, protocols, or lower level

network entities. Real traces are analyzed to create profiles for agents that generate

real traffic for HTTP, SMTP, SSH, IMAP, POP3, and FTP. The profiles can be used to

create datasets with desirable characteristics and multi-stage attack scenarios.

AWID The prominence of wireless communication technologies and the absence of

wireless-specific datasets in the intrusion detection field, led the authors in [28] to present

AWID [29]. AWID is a publicly available dataset, which contains real traces of offensive

and normal wireless traffic over the WEP 802.11 standard. The authors emulated a

SOHO infrastructure hosting a number of legitimate clients and a single mobile attacker.

The dataset contains 16 attack classes, which fall into 3 major classes namely, flooding,

impersonation and injection attacks, while the instances comprise 156 features.

2.2.3 Evaluation metrics

There is a wide spectrum of evaluation metrics to quantify the goodness of an ML

approach and uncover its strong and weak aspects. Classification accuracy is a metric

usually used to evaluate the performance of an ML model but, especially in the context

of intrusion detection, more complex metrics are needed for ensuring the robustness of

a detection mechanism. The evaluation metrics given below are designed to measure

the efficacy of an ML-based IDS, which aims to distinctly detect diverse attack classes

(multi-classification approach) rather than simply predict between normal and malicious

events (binary approach).

Accuracy This metric measures the frequency of correct decisions. It is a fraction of

the correct decisions made among all the classes (true positives, or TPi) divided by the

total number of instances in the dataset (N).

Accuracy =

∑|C|
i=1 TPi

N
(2.1)
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Mean F-Measure (MFM) F-Measure is used to measure the balance between the

precision and the recall. In the case of a multi-classed problem, the mean F-Measure is

calculated based on the following formulas:

MeanFMeasure =

∑|C|
i=1 FMeasurei

|C|
(2.2)

FMeasurei =
2 ·Recalli · Precisioni
Recalli + Precisioni

(2.3)

Precisioni =
TPi

TPi + FPi
(2.4)

Recalli =
TPi

TPi + FNi
(2.5)

where:

• FPi, or false positives, represent instances with actual class other than the i-th,

but wrongly predicted to belong in the i-th class.

• FNi, or false negatives, represent instances with i-th being the actual class, but

falsely predicted to belong to another class.

Average Accuracy It is calculated as the average recall among all the classes of the

dataset.

AvgAccuracy =
1

C

|C|∑
i=1

Recalli (2.6)

Attack Accuracy This metric is used to measure the ability of a model to detect

solely the attack classes by not taking into consideration the normal traffic. Index i = 1

stands for the normal traffic class.

AttackAccuracy =
1

C − 1

|C|∑
i=2

Recalli (2.7)
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Attack Detection Rate (ADR) It stands for the accuracy rate for the attack classes.

ADR =

∑|C|
i=2 TPi∑|C|

i=2 TPi + FPi

(2.8)

False Alarm Rate (FAR) This metric focuses on the normal traffic and quantifies

the FNs, that is to say, normal instances misclassified as attacks.

FAR =
FN1

TP1 + FN1
(2.9)

The aforementioned evaluation metric are used to evaluate the performance of the in-

trusion detection methodologies, which are presented later in Chapters 3 and 4.

2.2.4 Machine learning methods for intrusion detection

This section provides a overview of fundamental machine learning methods, which have

been adopted in the design of network IDSs. Additionally, we refer briefly to related

works of this field.

2.2.4.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs) are a technical equivalent of the neural network of

animals’ brain. ANN structures imitate the connections among the neurons of a brain

to create a network of simple, but highly interconnected processing units, which are

able to compute output values given a set of input values [30]. The information is

traversed through the network via “edges”, which connect the artificial neurons and

help to interact among each other. These connections are regulated by “weights”, which

are being adapted during the learning process. Thus, the weights increase or decrease

the strength of the connections with the aim of identifying patterns in the input data.

ANNs are comprised by several layers of neurons. The first is the input layer, which

receives the input data in the form of numerical vectors. That is, all real-world data

must be translated first into this form. The last layer is the output layer. Between the

aforementioned layers might exist one or more layers, which are called hidden layers. An
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Figure 2.1: Example of an Artificial Neural Network

ANN structure that has more than one hidden layers is called deep neural network [31].

An example of a simple ANN structure is given in Figure 2.1.

There are two types of ANNs based on the way the information flows throughout the

units, namely FeedForward and Feedback. In the former type, the information flow is

unidirectional and passes sequentially from the input layer to the hidden units until

the output, while in the latter, the flow can create cycles/loops. The developments

in the field led to numerous ANN structures for diverse purposes, such as clustering,

classification, regression, reinforcement learning and feature extraction.

The intrusion detection literature has offered a wide spectrum of works which adopt a

ANN structure to enable either misuse or anomaly-based detection of offensive events.

To name a few, the work in [32] combines ANNs with fuzzy clustering to offer a predictive

model called FC-ANN, which performs adequately for low-frequent attacks. By utilizing

the fuzzy clustering technique the authors create smaller datasets of KDDCup’99 [21],

which are fed to different ANNs. Using a “divide and conquer” approach, the authors

advocate that this separation of the dataset helps each ANN to achieve more precise

results for the low-frequent classes of the dataset. The results of the different ANN

are aggregated using a fuzzy meta-learner to deliver a complete prediction model. An

intrusion detection model called MOVCIDS is presented in [33]. This model is able to

visualize the network traffic data through a functional and mobile visualization interface,

which reveals the internal structure of the data. This approach can provide valuable

insights to security administrators. In [34], the authors recruited self-organizing maps for
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data clustering and Multilayer perceptron (MLP) neural networks to deliver an anomaly-

based detection system.

The developments in hardware accelerated machine learning and the remarkable results

of deep learning methods in the field of image and speech recognition, triggered the

interest of cybersecurity reseach community and led to promising intrusion detection

proposals [35, 36, 37, 38, 39]. Note that, one of the major contributions of this doctoral

thesis, namely the introduction of self-adaptive properties for misuse IDS, is based on a

deep learning methodology presented in chapter 4.

2.2.4.2 Decision Trees

Decision Trees (DTs) are a widely used model of supporting decision making in the

context of machine learning. DTs are constructed as graphs, where internal nodes

represent conditions for testing attribute values of instances in a dataset with the aim

of inferring a target value. This value can be either a district value, i.e., the classes of

the instances (Classification tree), or a continues value (Regression tree).

In the case of classification trees, each leaf represents a class that classifies an instance if

its input values satisfy the conditions of the nodes that sequentially construct a path from

the root to the corresponding leaf. This path can be represented as an IF {Conditions}

THEN {Class} rule, as shown below. Thus, the simplicity of the decision rules enables

one to easily understand the conditions and the outcome.

IF
{
Condition1 is V alue1 ∧ · · · ∧ Conditionn is V aluen

}
THEN Class = C

Several classification algorithms have been proposed for building DTs. Amongst them,

C4.5 [40], ID3 [41] and CART [42] are considered as standards in decision making and in

the context of IDS. Such algorithms are used in order to create a DT based on training

instances and then their classification ability is measured during a testing period on

previously unseen data.

On the downside, DTs pose some notable limitations and challenges. DTs algorithms

usually generate complex structured DTs and pruning techniques should be adopted to
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minimize the size of the trees, while discretization techniques have to be applied on con-

tinous dataset features. Moreover, algorithms driven by information gain to construct

a DT are biased toward the major classes of a dataset achieving low classification accu-

racy for those classes represented by a smaller percentage of instances in a dataset [43].

This poses the main challenge in the context of IDS as network traffic data follow this

behavior.

In the context of intrusion detection, several works utilized decision tree structures

usually combined with other methods to improve the detection accuracy. For instance,

the work in [44] presented a light weight IDS based on a wrapper approach and DTs.

The wrapper approach aimed to identify an efficient subset of feature of the dataset

to improve the overall performance of the system. The authors used multiple neural

networks in an assembled fashion in order to pre-process the dataset and derive a new

one. The new dataset was given in C4.5 [40] tree classifier to realize the final detection

model. Additionally, the authors in [45] utilized a genetic algorithm to identify a subset

of features of the KDDCup’99 dataset in order to maximize the performance of a C4.5

classifier.

Note that, one of the major contributions of this doctoral thesis is the realization of a

rule induction methodology, which combines decision trees and genetic algorithms under

a novel setup. More details regarding the methodology and relevant tree-based proposals

can be found in Chapter 3.

2.2.4.3 Ensemble Learning

Ensemble learning is a machine learning methodology which combines multiple algo-

rithms to create a final predictive model having improved performance. This method-

ology adopts a divide and conquer approach, but collectively the final model combines

the observations of the constituent learning algorithms and offers an end-model which

has higher stability and prediction power compared to the constituent ones.

The aforementioned models can be virtually all different from each other. In fact this

strategy can provide better results as it increases the diversity among the learners [46].

However, the size of the ensemble learner, i.e., the number of the internal learners, can

affect significantly the overall prediction accuracy. In fact, defining the optimal number
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of component learners remains an open issue, which is strongly connected to the nature

of a problem and the variance and noise of the data. However, according to [47], having

as many constituent learners as the number of the classes of the dataset leads to a more

accurate end-model.

The most prominent ensemble methods are Bagging and Boosting. Bagging method

(Bootstrap aggregating) deploys a set of similar learners, which are fed with random

dataset samples. Thus, a model is created for each dataset sample and the final result

comes of a voting process, where the votes have equal wights. This approach aids in

reducing the variance error. Random Forest [48] is a notable classification algorithm

which uses the Bagging approach, but additionally selects a random set of the dataset

features for each of the dataset samples.

Boosting is a sequential approach, where each learner aims to revise the mis-

classifications of the previous one. Thus, the first learner is trained on the entire dataset

and each subsequent learner refines the residuals of the one built previously. This tech-

nique is known for decreasing the bias error, but it faces over-fitting issues. The most

common boosting algorithm is Adaboost (Adaptive Boosting) [49].

Overall, the ensemble methods can offer accurate and robust results due to the combi-

nation of multiple prediction models. However, the high accuracy comes at a price, as

the computational complexity of the end model makes it impractical for online appli-

cations. Additionally, the sequential models obfuscate the interpretabilty of the model

and provide less insights to the analysts.

Several works have adopted an ensemble approach in the intrusion detection field. To

name a few, the work in [50] built a wide testbed for evaluating ensemble methods in

the context of intrusion detection. Specifically, the authors compared the performance

of multiple ensemble setups and tested the performance of diverse voting methods to

combine the final result. According to their results an ensemble methods based on k-NN

and SVM over a Particle swarm optimization (PSO) method provides more accurate

results in contrast to the well-known weighted majority algorithm (WMA). Of course,

several works proposed IDSs based on the use of Random Forest, as it has been proved

a very accurate method, but with interpretability issues [51, 52]. However, ensemble

methods are not limited to simple learners combinations as more complex structures can

be designed. This is the case for the work in [53], where the authors utilized Artificial
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Neural Networks (ANNs), Support Vector Machines (SVMs) and Multivariate Adaptive

Regression Splines (MARS) classifiers to provide an end-model with high generalization

performance by using the majority voting approach.

2.2.4.4 Evolutionary Computation

Evolutionary computation [54] is a subfield of AI which is strongly inspired by nature.

Evolutionary algorithms aim to solve optimization problems by imitating the biological

process of evolution based on Darwin’s theory [55]. Genetic Algorithms (GA), Evo-

lutionary Programming (EP) and Genetic Programming (GP) are some of the most

prominent approaches in this filed. These approaches aim to solve optimization prob-

lems through the development of a population of possible solutions (individuals). Thus,

given an initial population, a process of natural selection is applied in order to evolve a

new population, which includes more optimized solutions than the previous one. Even

though the aforementioned approaches have some differences, they share common oper-

ations. That is, in this section we focus on GAs [56], as it is a methodology which is

utilized later in this doctoral thesis.

In the evolutionary process of GAs, the individuals are selected for reproduction in

order to born offsprings for the next generation. Hopefully, the offsprings inherit the

beneficial characteristics of their parents, they develop new ones, and they pass them to

their descendants. This is an iterative process where the fittest individuals have more

chances to survive and pass their characteristics to the next generations.

Each individual has a standard representation of a vector, which contains a set of prop-

erties, called genes. Depending on the problem, the genes can be represented by diverse

data structures, such as real numbers, bit arrays and tree-like structures, i.e., GAs can

have diverse encodings.

The evolutionary process of a GA deploys 5 operations, namely Initialization, Selection,

Crossover, Mutation, and Replacement. Apart from these operations, many other oper-

ations exist depending on the problem domain. However, these five operations can be

found is the vast majority of genetic algorithm implementations.
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Initialization: During the initialization step, a random initial population is created. The

population contains individuals, each of which is a possible solution for the given opti-

mization problem. The initial individuals have low fitness, but beneficial characteristics

will be developed through the evolutionary process.

Selection: During the evolutionary process some of the individuals will be selected for

reproduction in order to create a new generation. Typically, a selection process involves

an evaluation step for measuring the fitness of the individuals using a fitness function.

This function is always problem dependent and aims to quantify the quality of a can-

didate solution. Typically, a selection process gives higher chances to fittest individuals

to be selected as parents.

Crossover : This operation (also known as recombination) aims to exchange a piece of

genetic information between two parents and generate a new offspring. The parents are

derived from the selection process and the crossover operation is applied usually on a

randomly chosen gene of their structure.

Mutation: This operation changes one or more genes of the individual for the sake of

introducing and preserving the diversity in the evolutionary process. The mutation

occurs probabilistically on a randomly chosen gene of the individual. The mutation

prevents the individuals from becoming too similar to each other and thus, adheres new

characteristics in the next generations.

Replacement : After the aforementioned evolutionary steps, the replacement operation

defines which individuals will be moved in the next generation. That is, a selection

process takes place, where the parents and their children are evaluated and the fittest

individuals will be moved to the new generation.

Genetic algorithms is a widely used optimization technique that has various advantages.

A genetic algorithm can provide a set of near-optimal solutions and not just one solution,

while parallel processing can be used in the evolutionary operations. Additionally, the

fitness function can steer the evolutionary process to optimize multi-objective problems.

Last but not least, GAs always converge to a solution in contrast to other optimization

methods. However, GAs pose also shortcomings as they introduce randomness in the

process, while they have the tendency to “stuck” in local optima [57]. In addition, the
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individuals have to be evaluated repeatedly and this can increase the computational

cost.

As described in Chapter 1, one of the contributions of this doctoral thesis is the design

and implementation of an evolutionary methodology in the context of network intrusion

detection, which is described in Chapter 3. The interested reader can refer to Section 3.6,

which provides a discussion of related works that utilize genetic algorithms.

2.2.4.5 Support Vector Machines

Support Vector Machines (SVM) [58] is a widely used machine learning algorithm, which

can achieve high performance results based on a simple concept. The objective of this

algorithm is to find a hyperplane that distinctly classifies the data points of a given

dataset in an N-dimensional space.

In a simple example where a dataset contains two classes, the objective of an SVM

algorithm is to define a plane that has the maximum perpendicular distance (i.e., margin)

between the closest points of both classes. These points are called the support vectors.

The wider is this margin between the hyperplane and the support vectors, the higher is

the generalization ability of the predictive model.

In principle, the discrimination of data points, i.e., the definition of an optimal hyper-

plane, in real data is a difficult task, as those may not be linearly separable. Thus,

transformations are applied to augment the input dimensions of the problem with the

aim of achieving the class separation. These transformations are called kernels. Sev-

eral kernels can be used to transform the input space into higher dimensions, such as a

Polynomial Kernel and a Radial Kernel. This is called the Kernel Trick [59].

An SVM model needs to search for the coefficients of the hyperplane. This is done using

optimization procedures. The most popular method for training an SVM classifier is

the sequential minimal optimization algorithm (SMO) [60].

SVMs are designed to address binary classification problems. However, multi-

classification problems can be solved by breaking down the problem into multiple binary

classification tasks and combining the final result. Common approaches in this context

are the one-versus-all or pairwise classification one-versus-one [61, 62] approaches.
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In the context of intrusion detection, the work in [63] uses an SVM classifier to build

an anomaly IDS. The training process of the classifier is enhanced using Dynamically

Growing Self-Organizing Tree (DGSOT) algorithm for clustering analysis in order to

pinpoint the support vectors. Thus, according to the authors, the SVM training becomes

faster and achieves higher generalization, while it achieves higher scores in detecting

attacks compared to other legacy methods. A similar approach was used also in [64],

where BIRCH hierarchical clustering algorithm was used to create a smaller KDDCup’99

dataset [21] with abstracted data points, which aid the SVM classifier to build a more

accurate model. Four SVMs were trained separately to cover all the major classes of

the dataset. Additionally, the work in [65] presented an IDS which uses an GA-based

optimization methodology to define an optimal feature subset and the kernel parameters

(C, γ) of an SVM classifier. It can be inferred that in the context of intrusion detection,

SVMs can achieve great results but they require demanding preprocessing and parameter

optimization steps due to the complex nature and the high input dimensions of the data.

Additionally, the design of multi-classed detection approaches require the combination

of multiple binary classification tasks.

2.2.4.6 Swarm Intelligence

Swarm Intelligence (SI) is a subfield of artificial intelligence, which focuses on the collec-

tive behavior of distributed, self-organized artificial systems [66]. SI systems are inspired

by nature and involve algorithms imitating the behavior of insects or animals. Typically,

these algorithms involve a population of agents, which interact with their environment

autonomously and in a distributed way, but their actions intend to serve the goals of the

population. In fact, the agents, as individuals, may act with stochasticity, randomness

and messiness as ants, bees and birds do. However, when act in synergy they are able

to converge to a problem solution successfully, and notably, without the presence of any

single authority for instructing the right actions [67].

Among others, Ant Colony Optimization (ACO) [68] and Particle Swarm Optimization

(PSO) [69] are the most well-known classes of SI algorithms, which have contributed in

the intrusion detection field.

ACO is an optimization algorithm inspired by the behavior of an ant colony and it was

firstly introduced by M. Dorigo et al. in [68]. The ants have the ability to locate the
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shortest path from their nest to a food source. Notably, ants have limited vision, while

they lack the ability to talk [67]. Instead, their coordination is based on the sense of

smell and the pheromone exudation. The ants roam in the quest of food. Once an ant

detects a food source, it deposits pheromone on its way back to the nest. Soon, more

ants will carry food to the nest by depositing pheromone. Eventually, the ants converge

to the shortest path, which is the one having the higher concentration of pheromone.

By following these principles, agents roam through the search space of a problem and

once a solution is found, they converge to the optimal one.

ACO has been used in numerous intrusion detection proposals. In [70], a distributed IDS

for wireless networks was proposed. The authors developed a classification rule induction

methodology, called TermID, based on ACO. Their experiments conducted using AWID

wireless dataset [28] with the aim of constructing a list of rules in a distributed manner

via data parallelism to ensure privacy preservation. In the same spirit, the work in

[71] used Ant-Miner [72] to form a new algorithm, called Ant-Classifier, for inducting

prediction rules for misuse detection. The authors introduced a Multiple Ant Colony

Optimization (MACO) methodology to tackle the limitation of Ant-Miner, where the

ants tend to favor one class of a dataset. That is, MACO assigns one colony to each class.

Additionally, ACO-based algorithms have been utilized in feature reduction approaches

[73] or for defining smaller but representative datasets to improve the training process

of IDSs [74].

PSO draws inspiration from the coordinated movement of bird flocks or fish school [75].

PSO is a global optimization algorithm, where particles move through the n-dimensional

search space guided by a fitness criterion. In fact, each particle in the flock represents

a possible solution. The movement of each particle is affected by its local best position

and the best known position of the flock. Thus, every time a better position is found,

it is communicated among all particles so that to improve their movement towards a

global optimum.

PSO offered a variety of intrusion detection solutions. The work presented in [76] pro-

poses a variation of PSO, namely Simplified Swarm Optimization (SSO), for building an

anomaly-based IDS. The authors implement a Weighted Local Search (WLS) strategy,

which improves the position update strategy of each particle an leads to more efficient

detection rules. The authors in [77] proposed an IDS based on a method which combines
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binary particle swarm optimization (BPSO) and support vector machine (SVM). The

BPSO is used to optimize the problem of finding simultaneously the optimum features

and parameters for the SVM. Additionally, the authors in [78] make use of time-varying

chaos particle swarm optimization (CPSO) with the aim of optimizing the parameters

and feature selection of Multiple Criteria Linear Programming (MCLP) and SVM clas-

sifiers. According to the authors, by adopting the time-varying inertia weight factor

(TVIW) and time-varying acceleration coefficients (TVAC) they avoid being stuck to

local optima during the optimization process. Thus, the detection efficiency of the pro-

posed systems surpasses those of legacy PSO and CPSO approaches.

2.3 Intrusion reaction frameworks for optimal counter-

measures provision against cyber attacks

This section details on AI-based IRSs which aim to support the decision making when

ICT infrastructures face offensive incidents. Such systems aim to provide optimal selec-

tions of countermeasures that fit to the nature of ongoing attacks occurring against the

protected infrastructure. Nowadays, there is more than ever a need to reactively coun-

teract intrusive events upon their occurrence in order to dynamically eradicate potential

consequences on the protected systems with the aim of minimizing the security risk and

financial losses. In this section, we will refer to this approach using the term Coun-

termeasure Strategy, explaining our understanding of the problem and underpinning its

major components.

2.3.1 Introduction

Battling against intrusive incidents occurring in a network infrastructure is a challenging

task due to several parameters, including the attacker’s level of expertise, the variety

and sophistication of attacks, the network size and topology, the number and diversity

of zero-day vulnerabilities, the robustness of the deployed IDS, etc. [79, 80, 17, 81].

Security administrators bare the burden of dealing with such demanding tasks, and

most of the time, they have to manually react against intrusions while having security

budget constraints and a strict reaction time frame. Putting it another way, security

administrators often face multi-criteria decision making (MCDM) problems that have to
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be solved in a timely and cost-effective manner [82]. Also, by taking into consideration

other fundamental parameters of the problem, one can safely argue that it is almost

infeasible for a human to appropriately deal with all these requirements. As a result,

efficient fully or semi-automated decision support systems are needed to address the

resource bottleneck by human operators and security officials [83].

Several works in the literature propose cost-benefit quantitative approaches in applying

optimal countermeasure strategies. At a high level, all these contributions share a com-

mon goal; they define an optimal set of countermeasures to counteract cyber attacks.

In this direction, a plethora of methodologies have been introduced by incorporating a

diversity of fundamental notions. More specifically, as detailed in the following sections,

cyber attack modeling methodologies such as Attack Graphs (AGs), Attack Trees (ATs)

[84] and other graphical structures are used to accurately portray the interconnections

and possible dependencies among the various network assets. In particular, ATs aim

to formally represent the security states of a system and to visualize the different ways

in which it can be attacked using a tree structure. On the other hand, AGs combine

information pertaining to network topology and possible vulnerabilities and exploits,

with the aim of providing a visual representation of the attack paths that a potential

aggressor could traverse in an effort to reach a specific network target. Alongside with

these graphical representations, several probabilistic models have been used to describe

the system’s security state transitions, which constitute the actual search space of the

problem. To do so, several optimization algorithms and quantitative risk assessment

methods have been recruited, and combined together, to deliver competent solutions

able to provide optimal sets of countermeasures regarding the system’s security states.

In a nutshell, the works presented in the literature can be divided into two major cate-

gories, namely static and dynamic reaction systems. The former are used to proactively

secure a monitored system, while the latter are destined to operate reactively upon the

occurrence of an attack incident [85].

The numerous solutions and their diverse above-mentioned characteristics spur us on

to provide a comprehensive analysis of the pertinent literature and present the state-of-

the-art frameworks in this ecosystem. Specifically, this chapter focuses on works which

aim to provide countermeasure recommendations as a result of automated processes

driven by quantitative security metrics. By going through the literature, we identified 7

common basic qualitative features (detailed in Subsection 2.3.2.2) and used them as the
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basis for comparing the capabilities of the proposed frameworks. The goal of our analysis

is to identify the pros and cons of proposed solutions and to shed light on the limitations

of this particular field. That is, by breaking down the proposed solutions and comparing

their characteristics, we identified several research challenges that should be taken into

account by researchers intending to contribute in the field. Our analysis emphatically

focuses on the methods and theories applied fundamentally on the background of such

solutions. Moreover, the reviewed works are field-independent as their concepts could

be applied in a wide range of ICT domains

The rest of this chapter is organized as follows. The next Section presents an in-depth

overview of the problem and the qualitative features used to compare the various works

are given in Section 2.3.2. A detailed description, analysis, and comparison among the

works gathered from the literature is included in Section 2.3.3. The last but one Section

provides a discussion on the research challenges in the field and offers pointers to future

research. The last Section concludes by summarizing the most significant findings of our

work.

2.3.2 Problem Statement

As already pointed out, the goal of any reactive system is to assist the security admin-

istrators in the decision making for counteracting possible security incidents. Aiming at

providing a holistic view of the problem, this section elaborates on the core ingredients

of a Countermeasure Strategy, while at the same time underlines the most important

features included in the various surveyed studies.

2.3.2.1 Countermeasure strategy

Current information systems contain a plethora of assets along with the associated se-

curity controls which aim to ensure a specific level of security for each of them. The

volume of information produced by these controls is the baseline that has to be used for

building a robust defense strategy, but at the same time, it represents also a problem

by itself given its huge size.

In this context, security administrators have to face many security issues, including mul-

tistep, new and sophisticated type of attacks (or polymorphic ones [86]), asset exposures,
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Figure 2.2: An abstract view of countermeasure strategy architecture.

distributed and heterogeneous physical network topologies, etc. Moreover, they have to

work within specific budget constraints that may preclude them from implementing all

possible hardening measures or even those that provide remedies to hopefully cover the

great majority of weaknesses. In addition, their decision must consider time limita-

tions, because usually in any reaction strategy the time is of essence. Thus, system

administrators need to find the optimal trade-off between the implementation cost of

a specific countermeasure and the overall security level of the system, also known as

system administrator dilemma [87]. In the context this doctoral thesis, we define the

term countermeasure strategy as follows.

Definition. [Countermeasure Strategy] A generic set of methodologies, procedures,

and processes that aim at reacting to security incidents in a given system and eradicate

them.

As is detailed later in Section 2.3.3, so far, many approaches have been presented in

the literature to address the problem of finding the optimal combination of security and

cost parameters in order to achieve the optimal collection of countermeasures. Based on
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our analysis, Figure 2.2 shows the basic components of a countermeasure strategy. We

define them as follows:

• Monitored system: the physical system to be protected; from this system, core

information is extracted, including network topology and asset configuration.

• Detection tools: collection of tools that send all events happening within the mon-

itored system to the appropriate controls of the countermeasure strategy. Such

events include intrusion alerts, software updates, hardware installations, and so

on. Examples of these tools are IDS, Antiviruses (AVs) and FWs.

• Countermeasure knowledge: initial raw knowledge about the reaction steps which

must be triggered to cope with security issues. As detailed in Sections 2.3.4.2

and 2.3.4.3, this knowledge is acquired from external sources and the security ad-

ministrator, and is typically represented in heterogeneous formats. Few examples

of such ilk of countermeasures are “close TCP/UDP ports”, “redirect incoming

traffic”, “apply a patch”, etc..

• Vulnerability reports: it represents knowledge on the vulnerabilities. The sources of

this information are the expertise of the system administrators, the public available

databases, such as CVE [88], and the open threat sharing networks [89].

• System model : given the information gathered from the monitored system, such

as network topology and configuration, a model which synthesizes these pieces

of data is created to report the core parameters which will be used for further

analysis. This model uses architecture description languages, like ArchiMate [90],

to conceptually model the structure, behavior, and components of the system [91].

• Atomic countermeasure options: given the raw knowledge about the remediation

steps, represented in the countermeasure knowledge, a list of possible counter-

measures is created, trying to combine the above-mentioned remediation steps to

effectively defeat possible attacks.

• Threat model : based on the vulnerability reports and system model, a threat

model is created, which represents possible attack patterns. As detailed in Section

2.3.2.2, AGs and ATs are prominent examples for this model, as they are usually

employed as a formal representation which aims to describe possible attacker’s

actions against the monitored system[84].
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• Select actions: in this component, the selection of the specific countermeasures is

conducted, balancing the existing trade-off between the security level of the system

and the cost of the reaction. Specifically, this component considers not only the

monetary cost of activating the selected actions but also the possible negative

impact due to their enforcement, including the possible availability decrease for one

or more services. Therefore, for a specific attack, a set of possible countermeasures

are analyzed and ranked, trying to maximize their effectiveness and to minimize

their cost.

• Predict rewards: depending on the selections done by the previous component,

a calculation of the produced security and economic benefit is performed and

forwarded to the system administrator.

• Model attacker decisions: based on the choice of the “Select Actions” component,

the threat model is updated, so as to be able to predict similar kind of attacks.

When a countermeasure is selected, the attack patterns are modified reflecting this

choice.

• List of recommended actions/expected reward : based on the selection made by the

decision support system, a list of countermeasures is prepared to be presented to

the system administrator. This report must include the expected revenue derived

from the implementation of the selected countermeasures, such as an improvement

of the overall risk level of the system or an economic reward due to the attack

blocking.

• System operator decision: by getting the previous list and associated data, the

administrator may decide to implement the reaction procedure on the monitored

system, and update the configuration on the previous models (i.e., system and

threat models).

It can be safely argued that the presence of the aforementioned components in the above

abstract strategy is expected to result in more accurate and efficient countermeasures.

This is basically because the different components can offer a modularized but holistic

view of the problem and provide the correct kind and amount of information for aiding

the administrator to decide optimally on an appropriate reaction plan. In this vision of

the countermeasure strategy, the role of security administrators is of major importance.
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This view relies on the fact that the administrator not only has a deep knowledge of

the particular system but also the responsibility and the privileges to take an important

decision. Moreover, the administrators usually manage system hardening procedures

with budget limitations, hence they need to balance the trade-off between impact and

cost of the countermeasure’s enforcement and system security level. This procedure is

twofold; on the one hand, it represents the actions which will be implemented on the

system. On the other, it represents an important feedback for the decision support

system. This learning process for the decision support system is crucial, since this

component has to provide a decision on which action must be implemented on the

system maximizing the reward.

2.3.2.2 Features for comparison of works

So far, numerous works have been proposed in the literature dealing with a countermea-

sure strategy [92, 93]. Most of them share a common ground but also exhibit significantly

different features in terms of the adopted system representation and countermeasure

derivation methodologies. To this end, after analyzing the various works, we have iden-

tified the following 7 features that can be used as a basis for our analysis. Note however

that the scope of countermeasures selection is moderately wide. Hence, it is unlikely to

find solutions that simultaneously address all the posed challenges of the field, while the

process of extracting the necessary information to enable a foolproof comparison proved

to be demanding. The aforementioned challenges led us to conclude to the following

comparison features:

• Attack modeling

• Countermeasures provision

techniques

• Outcomes assessment

• Type of reaction

• Used standards

• Automation level

• Performance

It has to be mention that we treat the aforementioned features as having an equivalent

importance weight. That is, since each work may have different characteristics and it

may have been evaluated in a specific environment, we preferred not to assign diverse

(unequal) importance weights to the identified features, as this could bias unjustifiably
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the provided analysis. To this end, Section 2.3.3.14 offers a comprehensive comparison

of the various works analyzed as part of this survey based on these equivalent features.

A) Attack modeling An attack model is a formal representation aiming to describe

possible attacker’s actions focusing on the vulnerabilities and misconfigurations which

are present within systems [94]. This knowledge about the possible attack steps is es-

sential to counteract malefactors. That is, via these steps it is possible to block the most

probable paths that an attacker can follow, eradicating in this way the intrusion. Next,

we describe the most common modeling techniques, highlighting on their advantages

and drawbacks.

Attack Graph (AG) This technique is widely used in the literature for modeling cy-

ber attacks [95]. Its popularity is due to its ability to synthesize several system-related

aspects to construct a complete representation of the infrastructure intended to be pro-

tected. AGs combine information about the network topology, possible vulnerabilities,

and exploits appearing on the assets of the network, aiming to provide a visual repre-

sentation of attack paths that an attacker could traverse in an effort to reach specific

network targets. In other words, an AG visualizes the vulnerability dependencies in a

network and enumerates its possible states. The states of the network are represented

as nodes in the graph, while the edges represent the interconnections among them. The

edges reveal a cause-consequence relationship between the nodes of the graph. AGs en-

able the defender to identify the weaknesses of a network and/or pinpoint risky paths

on the graph, so that to proceed to the necessary actions removing or remediating nodes

and/or edges that threaten the network assets. Figure 2.3 depicts an AG describing a

possible File Transfer Protocol (FTP) buffer overflow attack carried on asset 1.

This technique poses limitations as well. Discovering all the dependencies in a network

cannot be considered an easy task, thus inefficiencies may appear. Moreover, a known

limitation is the scalability of the graphs [95]. As the size of the network increases, an

AG becomes bulky since the dependencies among the nodes are numerous. As a result,

the defender faces difficulties in understanding and analyzing the graph. Several tools

are available to create AGs such as NetSPA [96] and MulVAL [97].
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Figure 2.3: Attack graph showing ftp buffer overflow attack executed by asset 0 on
asset 1

Bayesian Attack Graph (BAG) [98] can be considered as an extension to legacy AGs.

Specifically, this type of AGs introduces probabilities on the edges for modeling the un-

certainty in the state transitions. In the example depicted in Figure 2.4, the vulnerabil-

ities discovered in a system are marked with likelihood values on the edges, representing

the overall probability for an external attacker to exploit them. Then, the score for the

final goal is computed considering the possible combinations of the previous conditions,

which in the example are presented in disjunction. In this way, BAGs are able to take

into account the likelihood of exploitation for a certain vulnerability with finer gran-

ularity. On the downside, this technique inherits the limitations of AGs, adding also

the computation and assignment of the probabilities as extra parameters, which in turn

augments the overall complexity.

Figure 2.4: Bayesian attack graph showing ftp and ssh buffer overflow attacks with
an OR condition on the target node
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Figure 2.5: Attack tree showing ftp and ssh buffer overflow attacks with an OR
condition on the root node

Attack Tree (AT) ATs introduced in [84] aim to formally represent the security

states of a system and to visualize the different ways in which it can be attacked. The

root of the tree represents the attacker’s ultimate goal, while its leafs correspond to the

entry points for the attacker. The intermediate nodes are the attacker’s sub-goals which

are connected with AND/OR conditions. These conditions create multiple paths that

connect the leafs of the tree with the root. An example of AT is shown in Figure 2.5,

where SSH and FTP buffer overflow attacks are connected with an OR condition on

the root node. In the AT representation, the nodes usually include also values (either

continuous or nominal) to describe the attack paths in a more detailed way. The attack

likelihood, the financial cost of exploitation, time, and the cost of defense resources are

just some examples of node values. Using these values and starting from a leaf node, the

defender is able to sum up the total defense cost up to the root. As with the previous

technique, an AT can become large and complex containing many nodes and numerous

paths between the root and the leaves. Therefore, in large and complex topologies,

where the interconnections of the network assets and the possible vulnerabilities are

numerous, the increased number of security states could result to ATs with hundreds

or thousands of different paths. As a result, the addition of only one security state (i.e.

a new node) results to several new interconnected paths, leading to state explosion in

the search problem. In addition, due to the fact that the root can represent only one

ultimate goal, it is reasonable to say that several trees may be needed in order to create

an holistic security overview of an infrastructure. This can result in a forest of ATs.

Among others, extensions of ATs are Attack Countermeasure Tree (ACT ) [99], Attack

Response Tree (ART ) [100], and Attack Defense Tree (ADT ) [101]. These techniques
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Figure 2.6: Attack Countermeasure Tree illustrating an attack against a BGP router

Figure 2.7: Attack Response Tree showing an attack against a Web Server

enable particular features keeping the same tree representation. In particular, the ACT

formalism uses a non-state-space approach to represent attack, detection, and mitigation

events on the same tree structure. These concepts are depicted in Figure 2.6, where the

possible steps of an attacker to reset a BGP session are represented using ACT formalism.

ARTs use a state-space model (partially observable stochastic game model [102]) to find

the optimal set of countermeasure, including both attacks and responses on the same

tree. In this regard, Figure 2.7 shows an example of ART to visualize a possible attack

against a web service. Lastly, ADT is a node-labeled rooted tree describing the actions

an attacker can take to attack a system and the defenses that a defender can employ

to protect it. Figure 2.8 illustrates an instance of ADT for a possible attack against a

server. Note that the node labeled as “Firewall” represents a defense action against the

attack node “Outsider Attack”.

Service Dependency Graph (SDG) These are dependency graphs which represent

the relationships among multiple services in a system [103]. To exemplify this situation,

Figure 2.9 shows the interdepencies for a web mail service. The relationships are defined

as privileges, which have been granted to the dependent service from the antecedent

one. The dependencies can reveal how a dependent service can be affected in terms of

confidentiality, integrity, and availability, if a related service faces an intrusive incident
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Figure 2.8: Attack Defense Tree

[104]. However, identifying and representing the interdependences of all the services in an

infrastructure can be proved a cumbersome task, which in turn can lead to inefficiencies.

Figure 2.9: Service dependency graph for a mail web service

Markov Decision Process (MDP) This technique provides a mathematical

methodology to model decision making in situations where outcomes are not totally

under the control of the decision maker, since some variables in the process are stochas-

tic [105]. In particular, one can realize a MDP as a discrete time stochastic control

process, where at each time step the decision maker can cherry-pick between a set of

actions for a specific state. A reward is associated with each of these actions. In this

way, the probability of moving to a new state is influenced by the previous state and

by the selected action. In this respect, MDPs are an extension of the Markov chains

[106] by adding to them the concepts of action and reward. In Figure 2.10 an example

of MDP is depicted, in which a system is represented using two states and two possi-

ble actions, together with the associated rewards. However, identifying all the possible

states and actions in a system represents a difficult task mainly due to the complexity

of the modern networks.



Chapter 2. Background 42

Figure 2.10: Markov decision process with two states, two possible actions and asso-
ciated rewards

The Markov models are often used alongside the other three attack modeling techniques

in order to statistically assign probabilities to the paths on the graph. With this prob-

abilistic analysis, the defender can become aware of the most probable paths that an

attacker could follow [107].

Among others, extensions of MDP are Competitive Markov Decision Process (CMDP)

[108] and Partially Observable Markov Decision Process (POMDP) [109], in which

Markov processes are adapted to represent different situations. More specifically, CMDP

is used to model the system states as a stochastic game where the competitors are the

adversary and the defender who both aim to increase their profit. POMDP on the other

hand is applied when the states of the system are not entirely observable.

More specifically, CMDP is used to model the system states as a stochastic game where

the competitors are the adversary and the defender who both aim to increase their

profit. On the other side, POMDP is applied when the states of the system are not

totally observable.

For an easy reference, Table 2.4 summarizes all the analyzed attack modeling techniques,

highlighting on their main advantages and drawbacks. Both main attack models and

their extensions have been summarized. The reader should keep in mind that the ex-

tended representations (i.e., those marked with �) inherit the characteristics of the main

model or try to address the limitations found in the main representations.

B) Countermeasure provision techniques The ultimate goal of the countermea-

sure strategies is to come up with the optimal countermeasure or a set of them depend-

ing on the events occurring in the system and its current security state. To this end, a



Chapter 2. Background 43

Attack Representation Strengths Weaknesses

Attack Graph [95]

3 Holistic view of the system
3 Visual representation of possible attack

paths

7 State explosion for complex network
7 Probabilities and defense points are not

represented

� Bayesian Attack Graph [98]
3 Likelihood on the edges to model uncer-

tainties
7 Extra computation for the probabilities

calculation and assignment

Attack Tree [84]

3 Formal representation of the system
states

3 Visual illustration of possible attacker
paths using AND/OR conditions

3 Absence of defense nodes

7 Numerous paths between leaves and
root

7 Forest of trees to protect a complex sys-
tem

� Attack Countermeasure
Tree [99]

3 Attack, detection, and mitigation events
on the same tree structure

7 Countermeasure nodes cannot be re-
fined over time

� Attack Response Tree [100]
3 State-space model, including attacks

and responses on the tree
7 State explosion due to the use of

POMDP

� Attack Defense Tree [110]

3 Improvements of the tree structure
though defense point and countermea-
sure representation

7 Detection and mitigation points are rep-
resented in an unique node

Service Dependancy Graph
[103]

3 Visual representation of interdependen-
cies between services

3 Quantitative attack impact assessment
using CIA attributes

7 Identification of service dependencies re-
quires huge effort from a security expert

7 Integration with an attacker-centric rep-
resentation is needed to model possible
attack decisions

Markov Decision Process
[105]

3 Representation of decision making pro-
cess

3 Concepts of state, reward, and action

7 State explosion for complex systems
7 Often used alongside with other attack

modeling techniques

� Competitive Markov Deci-
sion Process [108]

3 System states modeled as a stochastic
game between attacker and defender

7 Computation of the attacker and de-
fender steps augments the problem com-
plexity

� Partially Observable
Markov Decision Process
[109]

3 Representation of unobservable system
states

7 Interaction with the environment to
receive information on unobservable
states increases the complexity

Table 2.4: Overview of the presented attack modeling techniques with a focus on
strengths and weaknesses

methodology needs to take into consideration several metrics and balance the trade-off

among them in order to conclude to the optimal solution that achieves the desired level

of asset protection with respect to the protection cost.

A metric can be defined as “the assignment of a value to the characteristics of an object

or event, which, in this manner, can be compared with other objects or events” [111].

Metrics such as the attack cost, defense implementation cost, attack impact, operational

cost, and others are only some examples of factors that can be used for defining the

optimal solution [112].

For finding the optimal solution, some methodologies consider also statistical-based op-

timization techniques for optimizing and calibrating metric functions. In this context,
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both single objective optimization problem (SOOP) and multiple objective optimization

problem (MOOP) [113] have been proposed to support the decision making in identifying

the optimal countermeasures.

In this direction, until now, several methodologies have been recruited. Evolutionary

computing techniques, i.e., Genetic Algorithms (GAs) [57], have been used in construct-

ing solutions using in their fitness functions synthesized metrics for tuning the solution.

Also, Arm Race is a bio-inspired technique which describes the competition between two

different populations (attacker and defender), which compete with each other to defeat

the opponent [114]. The evolution of the competitive populations progresses in paral-

lel. The fitness of the individuals in the one population competes against the fitness of

the individuals evolved in the other. Similar proposals utilize Ant Colony Optimization

(ACO) [68] with graphs with the aim of defining the optimal set of countermeasures

based on the pheromone paths constructed by the ants. Precisely, the ants roam proba-

bilistically on the graph based on the probabilities indicated by two parameters, namely

the attractiveness and trail level of the move. Note that the latter parameter also in-

corporates the cost of the trace. Precisely, the ants roam probabilistically on the graph

based on the probabilities indicated by two parameters, namely the attractiveness and

trail level of the move, where the latter incorporates also the cost of the trace. Tabu

Search [115] has been also used in this field; this technique tries to find an optimal

solution avoiding sticking in local sub-optimal regions.

Generally, when facing an MDP, the Bellman’s optimization method is usually applied in

order to solve it with dynamic programming [116]. Bellman equation solves discrete-time

problems regarding the optimal control theory. This is done by optimizing iteratively

the objective function and keeping track of the changes. However, other researchers

prefer to use heuristic implementations for countermeasure selection’s algorithms which

best fit to their needs.

C) Outcomes assessment In the context of this chapter, we consider the evaluation

of the surveyed systems with regard to their outcome, that is, providing countermeasures,

as a critical feature in our analysis. To assess the results produced by the analyzed works,

we extract two commonly used characteristics regarding the outcome assessment, namely

testbed and admin’s role.
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Testbed In the context of the reaction strategies, the testing environment plays a

significant role, because it directly refers to the applicability of the proposed solution.

In this survey, we refer to the used testbed, using the terms simulated, emulated, and

real.

Admin’s role As already stated, the role of the system administrator is central to

our vision of automated reaction strategy. Specifically, based on the surveyed works, we

identify two distinct roles for the system administrator:

• Tuning - The administrator is tasked with setting the goals, objectives and metrics,

which are subsequently used by the countermeasure system.

• Feedback - The administrator assesses the outcomes of the countermeasure system,

selects the optimal solution, and provides feedback to it.

According to the literature, both the aforementioned tasks can be benefited from the

use of reinforcement learning [117].

D) Type of reaction Reaction to security incidents can be achieved by following two

main approaches, namely static and dynamic. As static approaches we perceive those

which are capable of acting proactively against security incidents, while as dynamic those

which are able to react upon the occurrence of cyber threats. These methods differ in

the intent, the effort required to implement them, and their outcome from a defender’s

viewpoint.

Static reaction It deals mainly with security risk assessment [118], which represents

the process to identify potential security risks that may reside in an ICT system. It

begins with the identification of the system characteristics, including weaknesses and

exposures, and potential threat sources. The accurate estimation of the amount of risk

per asset in the system is a effortful task, and often this judgment is driven by the

administrator’s subjective belief. This estimation could be useful to locate weak spots

during the system design phase, but also proactively, via the use of penetration testing

tools[119]. The main limitation of this approach is the lack of a dynamic model capable

to follow the flow of events of a potential attacker who could try to exploit system’s
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vulnerabilities. In such a scenario, countermeasures must be taken on-the-fly, in order

to limit if not eradicate the intrusion efficiently.

Dynamic reaction It is concerned with the system response capabilities to a possible

ongoing attack. In this case, a deep knowledge of the system vulnerabilities, together

with the evaluation of attacker’s skills and response time are pivotal factors. Due to

its features, this approach covers the limitation of the static one, making more effective

the countermeasure selection. On the downside, it requires more computational power.

Considering all the parameters which must be taken into account, the task to identify

the optimal set of actions for dynamically blocking an advancing intrusion is hard. The

probability of the attack paths, the countermeasure’s effectiveness as well as their cost

are just few examples of the parameters whose computation has to be done in real-time.

E) Use of standards For conducting a quantitative analysis of the adopted reaction

strategy, one needs to use security metrics, which can measure network security in an

objective and cross-platform manner. In computer and network security, a plethora

of metrics has been proposed, with the goal of capturing different aspects, including

attacks, intruders, network topologies, costs, and vulnerabilities metrics[112].

Nevertheless, to be effective, a metric should belong to a highly shared and used mea-

surement system. The various standards help in addressing this problem. The use of

standards allows the comparison among published works and solutions, giving quanti-

tative and qualitative measurement of their effectiveness. In the context of this survey,

we concentrate on the standards reported in Table 2.5.

CVSS The Common Vulnerability Scoring System (CVSS) is an open framework for

communicating the characteristics and severity of software vulnerabilities[143]. In the

recent years, CVSS has become the de facto standard, adopted from the research com-

munity to measure the effectiveness of the proposed works dealing with vulnerabilities’

impacts and scores [144, 145].

Moreover, great effort has been put to standardize the information flow regarding secu-

rity threats intending to help enterprises worldwide to use common means of fighting

against them. Many of the cited standardization attempts in Table 2.5 are part of the
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Security Content Automation Protocol (SCAP) [146], which is maintened by NIST, and

MITRE corporation [147]. This source database duality sometimes results in redundan-

cies in the standards. For instance, regarding the “cyber threat information sharing and

analysis” category, both TMSAD [135] and TAXII [138] aim to create a trust model to

exchange information in the field of security automation.

F) Automation level As with the previous features, especially for large network

topologies, the great amount of parameters to consider in the process of finding the

optimal set of countermeasures often becomes unmanageable. In addition, the response

time is a crucial factor, therefore it can be said that a certain level of automation is

required in the deployment of a reaction strategy. Until now, several level of automation

(LOA) taxonomies have been presented, dealing with human/machine interaction [148].

In the context of our analysis, we classify them into three levels:

• Manual - The administrator performs the tasks concerning the reaction strategy,

including monitoring the state of the system, selecting the appropriate action to

perform and physically implementing it.

• Semi-Automated - The system generates a ranked list of decision options based on

specific criteria. The system administrator can select one of them, thus giving a

feedback used to calibrate the future system decisions.

• Fully Automated - The system selects the best option to implement and directly

enforces it based on predefined directives given by the administrator.

As observed, the concept of automation is strictly connected to the role of the system

administrator. That is, their participation in the countermeasure strategy is a core

parameter, not only due to their expertise and privileges, which could lead to a better

solution, but also because they have to deal with a specific economic budget.

G) Performance Few will oppose that performance is of great importance in any

countermeasure strategy.. This means that quality metrics [149] must be considered

when a big project has to be developed. In others words, the reaction plan needs

to take into account some inherent limitations of the existing devices in the system.
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For example, in an Internet of Things (IoT) network topology, the various devices are

generally resource-constrained [150].

From the analysis of the surveyed works, we concluded that the performance factors

which strongly influence the implementation of the countermeasure strategy are scala-

bility, time complexity, and response time.

Scalability It is one of the most desirable attributes of a network, system or process.

It refers to the ability of a system to accommodate an increasing number of elements

or nodes, to process growing volumes of work gracefully, and to be susceptible to en-

largement [151]. In Section 2.3.3, we refer to the scalability of the analyzed works as

the property of the proposed solution to preserve a polynomial behavior on the response

when the number of nodes in the system increases. We classify this factor using the

linguistic values in the following set: {Low,Medium,High}.

Time complexity It quantifies the amount of time taken by an algorithm to run as

a function of the length of the string representing the input [152]. In Section 2.3.3, we

refer to this factor as the property of the countermeasure provision solution to preserve

a polynomial behavior when the input (cardinality of the countermeasure set, number

of nodes, etc.) increases. This factor is estimated using the same scale of three values

as that in Scalability.

Response time This third factor can be defined as the elapsed time that a computer

system takes to respond to a given input. In Section 2.3.3, we define this factor as the

ability of the examined solutions to provide a reaction in an acceptable time frame in

the context of dynamic reaction. To estimate response time we rely on the following

scale: {Fast, Average, Slow}.

2.3.3 Survey of works

This Section contains a detailed survey of the current major works on the cyber attack

countermeasure strategies ecosystem. The survey is given in chronological order with

oldest proposals first. For each work, we first provide a succinct description, followed by

a constructive analysis of its features.
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2.3.3.1 Dewri et al. [153]

Descriprion Dewri et al. [153] introduce an evolutionary technique for defining an

optimal defense strategy. They conduct a cost-benefit analysis to determine the optimal

defense strategies that have to be taken against dynamically changing attack endeavors

by maximizing the Return-On-Investment (ROI) index. ATs are chosen as the modeling

technique to describe the dependencies among the security states of the protected system.

The AT induction methodology used here was firstly introduced in [87]. The authors

developed their own solution in which the tree induction process considers as input

an initial vulnerability table, the network topology, and online vulnerability exposure

databases, namely BugTraq [154], CERT/CC [155], and NetCat [156].

Specifically, the first is an electronic mailing list dedicated to issues about computer secu-

rity such as vulnerabilities, vendor security-related announcements, methods of exploita-

tion, and possible remedies [154]. The second is the coordination center of the computer

emergency response team (CERT) for the Software Engineering Institute (SEI), which

researches software bugs that impact software and internet security [155]. The latter is a

computer networking utility for reading from and writing to network connections using

TCP or UDP. It is also used as a vulnerability scanner during penetration testing [156].

The evolutionary process is based on the non-dominated sorting GA NSGA-II [157].

This algorithm is suitable for applying multi-objective optimization, while sustaining

the diversity of the solutions to a high level. The defense and attack strategies are

modeled as binary vectors that represent the leafs of the AT. The binary values for a

defense strategy signify whether a defense measure is enabled on a leaf (value = 1) or

the leaf is unprotected (value = 0). From the adversary’s point of view, if a leaf is chosen

in an attack strategy, then the corresponding value is 1, otherwise 0. The GA generates

defense and attack strategies, while fitness functions are used to infer on the superior

strategies.

To conduct a quantitative assessment of the problem, the authors adopt the Butler’s

multi-attribute risk assessment framework [158, 159]. They introduce several complex

metrics which are based on different types of individual metrics like the installation and

operation cost of a defense (monetary metrics), system downtime (time), law penalty

(severity), and others. In total, authors define the following metrics:
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• Potential Damage of an attribute (P )

• Residual Damage (RD)

• Total Security Control Cost (SCC)

• Damage Inflicted (DI)

• Attack Strategy Cost (ASC)

• Breach Loss (BL)

Using P on an attribute of the tree, an augmented AT is built. More specifically, this

corresponds to a normal AT which also bares the aggregated cost information to every

attribute.

The authors initially define and then evaluate their solution with reference to the fol-

lowing 4 problems: SOOP, MOOP, Multi-objective Robust Optimization problem, and

Attacker-Defender Arms Race problem. For the first problem, they define a weighted

function that minimizes RD and SCC metrics based on the selection of a boolean vector

of possible security controls. For the second problem, the multi-objective strategy aims

to minimize several metrics individually, thus the computed solution is more reliable

considering the correlation of several parameters. For the third problem, the authors

conduct a fault tolerance analysis, where they try to define the most robust defense

solution, that is, a solution that is less sensitive to failures in security controls. This

is achieved by calculating RD and considering potential failures in these controls. The

latter problem differs significantly from the previous ones. Namely, the authors utilize

a competitive co-evolution technique to emulate an “arms race” between the attacker

and the defender. As already pointed out in the previous section, this methodology

incorporates the evolution of two competitive populations in parallel. The fitness of the

individuals in the one population competes against the fitness of the individuals evolved

in the other. This means that the success of a defense strategy implies the defeat of the

attacker and vice versa. The fitness functions are correspondingly based on the Payoff

Functions for the Defender (POD) and the attacker (POA). These functions incorpo-

rate combinations of the above mentioned metrics introduced by the authors to reflect

the benefit of the two competitors. The optimization goal for a defender is to find a

defense strategy that maximizes POD against all possible attacks, whereas the attacker

aims to maximize POA.
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The experimental results for the arms race approach revealed that it was easier for

the attacker to find strategies to bypass the measures of the defender. At the same

time, a low improvement in the attacker’s payoff resulted into a significant drop in the

defender’s payoff. However, it seems that the system finds an equilibrium point after

several generations.

Analysis The authors adopt the AT representation and they also integrate the po-

tential damage metric to build an augmented AT. While this methodology is able to

hierarchically represent possible sub-goals of the attacker and enable a quantitative ap-

proach of the problem, it remains rather complex. Even worse, the complexity of the

proposed solution is increased further as the competitive co-evolutionary process de-

mands the evolution of two antagonistic populations. However, the notion of the “arms

race” introduced by the authors reflects the relationship between the attacker and de-

fender and emulates the dynamic engagement between them. Defining an equilibrium

point is an appropriate technique to achieve the goal of adequately protecting an asset

without over-protecting it. On the downside, the approach of single and multi-objective

optimization seems incapable of providing the optimal hardening solution. This is mainly

due to the difficulty of tuning the weighted fitness function and the extreme values of

RD metric produced, which in turn overprotect the assets. The robust optimization ap-

proach employed by the authors is an interesting notion, while the fault tolerant scheme

they use approaches the problem realistically as it cannot be taken for granted that a

defense is unbreakable.

The quantitative evaluation of the proposed scheme is based on a framework proposed in

[158] and [159], while the metrics introduced by the authors consider monetary, severity,

and time values. This handling is suitable for creating a holistic quantitative evaluation

for a scheme. Even so, the metrics employed are not aligned with globally accepted

standards, as showed in Table 2.5, to enable a quantitative comparison with other solu-

tions.

A limitation of the proposed methodology is that the attacker’s expertise level and the

dynamic nature of the network are not taken into consideration. This however may

have a severe impact on the implementation of any similar system. Under realistic con-

ditions, a decision maker should adapt their action by considering also the abilities of

the adversary, while an accurate representation of the network is vital. The authors’
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proposal is not destined to deliver an automated reaction system but a static tool to

conduct risk assessment for identifying the exploitation possibilities through the evolu-

tionary approach. Besides, in the experimental phase, the authors consider 19 defenses,

whereas the AT has 13 leafs. This is translated into 219 different defense strategies and

213 attacks. It can be inferred that even for a middle-sized network and a considerable

number of countermeasures the search space of the problem is being expanded exponen-

tially. It is noteworthy that the countermeasures proposed are limited to disabling and

patching actions as this is the case for the majority of the documented works. Finally,

the competitive “arms race” approach reflects the relationship between the attacker and

the defender, yet defining the equilibrium point could be a really effortful task if the

model is to be extended to fulfill the requirements of a dynamic response framework.

2.3.3.2 Poolsappasit et al. [98]

Description In this work, the authors propose a security risk assessment methodology

based on BAGs. These can be considered as an extension of AGs as presented in Section

2.3.2.2, adding also a likelihood to the occurring events, which in turn can modify their

state. That is, the main difference of a BAG compared to a classical AG is the existence

of a non-zero probability corresponding to the case that the attacker is not able to take

advantage of the exploit, even if all the preconditions are met. This probability per

network node is represented by a Local Conditional Probability Distribution (LCPD).

In order to compute these probability distributions, the authors use CVSS [143] to

estimate the attack likelihood. Specifically, they calculate this probability using three

base metrics, namely: access vector, access complexity, and authentication instances.

Using the proposed technique, they are able to perform:

• Static Risk Assessment - It identifies system characteristics, potential threat

sources and attacker capabilities, often judged by the system administrator with

the aim of creating the initial probability values.

• Dynamic Risk Assessment - It uses the knowledge about the happened attack

incident to update the probabilities using the bayesian inference technique.

• Risk Mitigation Analysis - It is aimed at countering risks either or both in a

proactive or reactive manner.



Chapter 2. Background 53

Regarding the last point, the authors define a security control as a preventive measure

that minimizes or eliminates the likelihood of an attack; the enforcement of this control

modifies the LCPD of a node, and indirectly influences the unconditional probabilities

of other attributes in the network. Therefore, a security mitigation plan is intended as

a set of security controls, where each of them has a specific cost.

By merging the concepts of LCPD and mitigation plan, the authors define the

Augmented-BAG, which incorporates the security controls with the expected loss/gain

per node. From a system administrator point of view, the derived cost model represents

a hard problem to solve. Toward this direction, the authors present SOOP and MOOP,

with GA as means of resolution [157].

The authors include an evaluation section to assess these choices, showing the feasibility

of the model in a dynamic context as well. In the conducted experiments, the calcu-

lated mitigation plans for the static and dynamic environment present many similarities,

suggesting the application of similar sequence of security controls.

Analysis The authors use BAGs to model attack’s probabilities into the system. By

doing so, they are able to consider also the intrinsic uncertainty of a real attack incident.

Even though this representation can provide a more detailed and realistic view of the

problem, the likelihood assignment and computation are extra parameters that augment

the complexity of the AG. Particularly, the algorithm of generation for the BAGs cannot

go beyond O((A×M)3), where A represents the number of attributes to consider, and

M represents the number of machines in the system. Even if the initial AG generation

is a one-time cost, for a large-scale and power-constraint network this complexity may

be unsustainable. Furthermore, the computation of the marginal probabilities on the

BAG is even more challenging; both for prior and posterior probability, when thinking

of a dynamic scenario, the algorithmic complexity is exponential. It is therefore obvious

that this complexity should be decreased by, say, using a heuristic-based algorithm to

realize a dynamic reaction in an acceptable time.

The authors also demonstrate the methodology of providing countermeasures using the

cost model as a core parameter. Specifically, the problem is focused on the system

administrator’s dilemma [87], which states that the administrator often has to deal

with a limited budget that could preclude them to implement all the possible hardening
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measures. Thus, they demonstrate the need of optimization techniques to provide a

priority ranking of the countermeasures. They claim that by using a greedy selection

or the subjective belief of an expert, the results may be inaccurate. So, to solve this

problem, they propose the use of GAs and demonstrate that this methodology presents

many advantages both for SOOP and MOOP, which do succeed in achieving a more

precise classification of the security controls. One can safely argue that this procedure

is extensible for a bigger set of hardening measures, making the process more realistic

for a real network.

The proposed reaction strategy by the authors is mainly static. For a given network,

they show how it is possible to plan a mitigation strategy for the security incidents

that decreases the overall risk level, taking into account the cost model. They also

test their framework in a dynamic environment, and via the use of two different attack

scenarios, they compute the corresponding reaction plan. It can be said that further

experimentation is needed in this direction, considering as a core parameter also the

time of the reaction, that cannot be easily considered using BAGs.

2.3.3.3 Roy et al. [160]

Description The work in [160] aims to provide a cost-benefit countermeasure system

for dealing with cyber attacks. By capitalizing on their previous work in [99], authors

rely on ACTs with the purpose of providing a scalable solution for the problem at hand.

According to the authors, ACTs perform better than ARTs which use POMDP as a

solution technique. This is because the latter model leads to state-explosion issues. More

specifically, ACTs provide a non-state-space approach, and according to the authors, this

technique is less expensive than state-space driven approaches.

In their model, ACTs are able to represent three types of events as internal nodes in

the structure, namely, atomic attack, detection, and mitigation. The authors build two

example trees to conduct their experiments and to evaluate and compare the performance

of their model against the ART-based solution proposed in [161]. They also suggest two

algorithmic approaches to define the optimal set of countermeasures, namely explicit

enumeration (greedy approach) and branch and bound, and they introduce the following

four objective functions:
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• Selecting the minimum number of countermeasures.

• Selecting countermeasures by minimizing the Security investment Cost.

• Maximization of profit in terms of ROI for a set of countermeasures.

• Multi-objective function for minimizing the probability of attack success and se-

curity investment cost.

The first objective function may not be able to provide an optimal set of countermeasures

for an attack due to limitations, including security budget constrains or lack of counter-

measures for specific attacks. In this case, partial solutions for defending only a critical

part of the infrastructure should be taken. The use of the second objective function can

restrain the countermeasure cost to specific investment cost. According to the authors,

the next two functions pose computational challenges to the proposed framework as

the optimization problem is non-linear. To compress the computational requirements,

the authors use Watters’ transformation [162]. Specifically, this transformation converts

zero-one polynomial formulations to equivalent linear zero-one formulations by simply

adding constraints on the product terms. This downgrades the problem to a linear

integer programming one.

The authors provide experiments to prove the ability of their proposal to converge fast

to an optimal solution. The results show that their framework can yield a solution in 38

seconds for an ACT of 5000 leaf nodes. Specifically, the authors noticed that for large

ACTs, the first objective function tends to apply countermeasures to the higher nodes

of the trees. For the rest of the functions, the countermeasures are applied at the lower

levels as the goal is to minimize the security cost and measures at higher nodes tend

to be more sophisticated. Also, the authors give a comparison between their solution

and the Response and Recovery Engine (RRE) framework proposed in [161] (recall that

the latter uses an ART structure). Their approach resulted to an optimal solution in

approximately 17 seconds, while RRE needed approximately 3 minutes when using the

third objective function.

Analysis The authors make use of an ACT structure to model the system’s atomic

attacks and countermeasure events with the intention of protecting the goal residing in
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the root of the tree. For a small-scale network consisting of 7 hosts (with 12 vulnerabil-

ities each) the proposed solution converge to an optimal solution in a reasonable time

frame. Particularly, the ACT-based method computes an optimal countermeasure set

within 17 seconds ± 2 seconds. The authors technique to cast the optimization prob-

lem to an integer programming one with linear complexity is reflected to the improved

performance of the system. However, even if ACTs perform better than ARTs, it has to

be stated that the testbed used corresponds to a small-scale network topology. Another

potential limitation of this work is the number of ACTs needed to represent the possi-

ble attacker’s goals in the system. As every tree has one root, one can argue that for

protecting multiple assets or properties in the infrastructure there is a need to deploy

several ACTs, thus increasing the computational requirements.

Albeit the authors introduce a multi-objective function, they do not elaborate on the

time needed for their proposal to provide a solution when using it. However, a multi-

objective function is of major importance in a countermeasure system, where the optimal

goal is to define optimal solutions which achieve a balanced trade-off between the several

metrics. In addition, the diverse cost functions used to compose the objective functions

do not follow any specific standard, while the attack cost and attack impact values used

are derived from rather aged works.

The ability of the system to adapt dynamically during an attack incident is question-

able. Specifically, the authors claim that ACT could be transformed in a hierarchical

model that supports Markov chains for modeling sequential attack events. Even so, no

evaluation results are given on this aspect of the problem, and thus the authors’ proposal

can be characterized as static. The administrator’s engagement level is not defined by

the authors, but we can infer that the creation of the ACTs has to be supervised by a

human. This is because a decent knowledge of attack patterns is needed for identifying

the internal nodes, the relationships among them, and finally the objective residing at

the root of the tree.

2.3.3.4 Viduto et al. [163]

Description This work proposes a novel Risk Assessment and Optimization Model

(RAOM) to cope with the problem of security countermeasure selection. Considering

the budget limitations and the high demand in security measures, the authors present a
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model which addresses these issues and at the same time maintains an acceptable level

of performance.

Based on NIST SP800-30 [164], which aims to provide guidance for conducting risk

assessments of federal information systems and organizations, the proposed model of-

fers a quantitative improvement to it mainly for conducting impact analysis and risk

determination. For the first task, the authors calculate the impact of the identified vul-

nerabilities in relation to Confidentiality, Integrity, Availability (CIA) impact, expressed

by CVE [88]. The different combinations of impact levels (Partial, Complete, None) are

grouped into an impact scale with discrete level [10, 50, 100]. For the risk determina-

tion task, the methodology proposes to calculate a Total Initial Risk (TIR), which is

defined as the initial risk in an organization when no security countermeasure has been

applied. During this procedure, an analysis of the system vulnerabilities is conducted

with the purpose of identifying their source and properties. This stage can be executed

in different ways; specifically, using automated vulnerability scanning tools, performing

penetration tests on systems, employing vulnerability modeling techniques, and assess-

ing ICT documentation of a previous risk assessment. The next step in the model is to

perform a threat analysis, because the idea of the authors is that vulnerabilities can only

be translated into risk if there is a threat able to exploit them. To gather information

about threats, they suggest to use historical databases of previous attacks recorded by

the organization, or to use threat modeling techniques, such as AGs or ATs. A matching

between threats and vulnerabilities is conducted to estimate the likelihood of a threat

over a specific vulnerability. Also, in this case, the likelihood can adopt values in the

discrete range [0.1, 0.5, 1], where the values of 0.1, 0.5, 1 correspondingly represents low,

medium, and high likelihood of a specific threat exploiting a certain vulnerability.

Then, the authors propose a list of generic countermeasures, following a classification

similar to NIST report in [165]. In particular, three categories are presented (Tech-

nical, Management, Operational) with four subcategories (Support, Prevent, Detect,

Recovery). The countermeasures are then associated with vulnerabilities. Actually, the

association method between countermeasures and vulnerabilities they follow has been

initially proposed in [166] and later demonstrated in [167], where a matching value is

assigned to each countermeasure. This value is within the discrete range [-1, -0.5, 0, 0.5,

1], where [0.5, 1] represents a partial or total addressing of the vulnerability, 0 means
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no match, and [-1, -0.5] implies that the application of the countermeasure directly or

indirectly creates another vulnerability.

Each of the listed security measures has an associated cost of implementation, namely

purchase cost, operational cost, training cost and manpower. The total cost for the

security controls, together with the total risk level of the system, compose the multi-

objective optimization function, which must be minimized.

To solve this MOOP, the authors develop a Multi-Objective Tabu Search (MOTS) tech-

nique [115], where the objective function is evaluated for different values of the binary

countermeasure vector. Also, an experimental section is given, where the characteristics

of MOTS are compared with the traditional exhaustive search, which can find the exact

set of optimal solutions. In particular, comparisons in terms of speed and quality are

shown.

Analysis In the described work, the authors introduce a model to optimize the se-

lection of the security countermeasures. Given a set of k generic countermeasures, rep-

resented as a single bit in the countermeasure vector, the search space has 2k possible

solutions. Precisely, as the size of the problem increases, that is, the number of the

possible security hardening options becomes considerable, the time required to solve the

problem increases exponentially.

The solution presented by the authors consists of a multi-objective tabu search. This

technique is able to find the Pareto optimal solutions for the problem, avoiding sticking

in a local minimum. Using this methodology, they were able to present a stable pool

of founded solutions after 8000 iterations of the algorithm. In particular, 54 non-

dominated solutions are discovered in 163 seconds. Overall, the authors argue that

in comparison to exhaustive search, which finishes its execution after 2466 seconds,

the tabu search offers superior performance. Another experiment is conducted on the

quality of the solutions. In this regard, the authors show that their algorithm can

reach up to 30% of the optimal solutions, and also the rest differ slightly from the

optimum. From these results, we can infer that MOTS methodology performs better

than exhaustive search, but in our opinion a study should be conducted to compare it

with other multi-objective optimization techniques, so that the eventual advantages are

clearly visible. In this mindset, Saraha et al. [168] argue that a pure tabu search is not
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enough to comprehensively explore the search space, proposing instead a solution which

incorporates also some ilk of GA.

The paper deals mainly with risk assessment, which as we stated in Section 2.3.2.2, repre-

sents the process to identify potential risks that may be involved in an ICT system. Even

though this phase has a crucial role in cyber defense, it represents a preventive action to

defeat eventual cyber crooks, lacking of dynamic capabilities to react against an ongoing

attack. Obviously, an interesting improvement is to try to adapt this methodology for

use in a dynamic environment.

Similar to other surveyed works, the authors neglect attack modeling. They only suggest

threat modeling techniques, such as AGs, to gather information about potential attacks.

Instead, the assignment of the probability of a specific threat acting over vulnerability

is done using logged attack attempts and self-expertise. The value of this likelihood

belongs to a discrete interval composed of three values. However, the effectiveness of this

procedure is debatable, even for a static type of reaction. That is, the use of historical

databases lacks in considering first experienced or zero-day attacks, thus exposing the

system to undue risk. Moreover, the know-how of the security experts is a good source

of knowledge, which has to be used, but relying on human subjective belief may lead to

a number of errors too. In this direction, the use of a decision support system can be

valuable in helping the system administrator in the decision making process, so that a

limitation to these errors can be imposed.

The authors highlight in their work the possibility of matching countermeasures and

vulnerabilities. Note that this idea is not novel in this particular field, but represents

an interesting feature of the model. This correlation considers also the chance that a

countermeasure can indirectly or directly create a new vulnerability. Nonetheless, this

match is effective if a complete knowledge about security controls and vulnerabilities

exists. Gathering these pieces of data is an arduous task, so a broader study should be

conducted in this direction, since such correlation is useful to build a dynamic strategy.

2.3.3.5 Chung et al. [169]

Description In this work, the authors concentrate on the protection of cloud infras-

tructures. In such scenario, there are several peculiarities which need to be considered
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by the security expert: (1) administrators do not have the complete control over virtual

machines (VMs), so they may be unable to patch the system vulnerabilties as in the

case of common data centers; (2) cloud users can install vulnerable software on their

own VMs; (3) the compliance of the SLAs (Service Level Agreements) is a priority, so

the reaction strategy to cyber attacks should be included in the Business Continuity

Plan [170]. Furthermore, an attacker can benefit from these security issues exploiting

vulnerabilities on a much greater number of machines, which can be used as zombies to

carry out a large-scale Distributed Denial-of-Service (DDoS) attack.

To address these problems, the authors propose NICE (Network Intrusion detection and

Countermeasure sElection in virtual network systems), a framework which is able to de-

tect and counteract possible attacks against the cloud infrastructure. Taking advantage

of the SDN network control approach [171], where network functions can be controlled

and programmed through software switches and the OpenFlow protocol [172], the au-

thors deploy NICE with the following constituents:

• NICE-A - A mirroring-based NID agent installed on each cloud server, which filters

and analyzes the incoming traffic.

• VM profiler - It uses the knowledge about services, connections and states to create

an accurate profile of each VM.

• Network Controller - It supports the programmable network capabilities to realize

the virtual network reconfiguration feature based on OpenFlow protocol. This

feature is crucial for the entire framework, because it controls also the traffic flows

within the network clusters.

• Attack Analyzer - It uses a classical AG representation to correlate the alerts

stemming from the agents and select the most appropriate countermeasure.

When a vulnerability is discovered or some VMs are identified as suspicious, several

countermeasures can be triggered to limit attacker’s capabilities. Based on CVSS [143],

CVE [88], and NVD [121], the system is able to calculate the score for each vulnerability

and use them for constructing on the AG. Based on the above metrics and scores,

a virtual-networking-based countermeasure pool is built, where each countermeasure is

presented with (I) cost, defined in a range from 1 to 5, (II) intrusiveness, which represents
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the possible negative impact on the SLAs, (III) condition, which is the requirement

to enable the countermeasure implementation, and (IV) effectiveness, expressed as a

percentage of probability that the state of a specific node can change after the application

of a countermeasure. The optimal countermeasure selection is shown as a MOOP, which

has to minimize both the cost and impact while maximizing the benefit (via the use of

the ROI index [173]).

The authors offer an initial implementation of NICE in a small public cloud environment,

and then they extend their analysis using a bigger private one. They monitor the

introduced overhead and the security performance using a VM Security Index (VSI)

[174].

Analysis NICE is presented as a framework which is capable to cover two different

phases of the network life cycle pertaining to attack incidents, namely detection and

reaction. However, the target of this work is the countermeasure strategy, so our analysis

focuses on the latter.

The idea of developing a countermeasure system in a cloud environment is innovative.

To the best of our knowledge, this is the first attempt to deploy an architecture that is

able to detect and react in a virtual scenario. This feature carries also the disadvantage

that without a solid background of research, this work could not address all the issues

which are present in a real environment. Moreover, the novelty in the usage of cloud

infrastructure makes the attacker modeling still incomplete. That is, it is very difficult

to find a great number of known attacks in the literature, and this makes also the defense

strategy still incomplete.

AG is the selected model to represent the possible attack paths into the cloud system.

It is built based on (1) cloud system information, collected from the controller, (2)

the virtual network topology and configuration information, which include also the raw

traffic data, and (3) vulnerabilities information generated from periodic vulnerability

scanning and via penetration testing using the public available vulnerability databases.

Once a new vulnerability is discovered or a countermeasure is implemented, the graph

is updated. Apart from the scalability problem regarding this attack representation, the

authors make a strong assumption; the hypervisor is secure and free of any vulnerability.

However, the literature is full of documented attacks targeting it [175].
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To select the appropriate countermeasure, the presented algorithm has a complexity of

O(V ×CM), where V is the number of vulnerabilities, and CM represents the cardinality

of the countermeasure set. In this way, the authors claim that they solve a MOOP based

on the ROI index in an effort to avoid a negative impact on the SLAs. A sample of

possible actions is presented with subjective values of intrusiveness and cost. Specifically,

as expected in a cloud environment, these countermeasures pertain to layer-2 and 3 of

the OSI stack of protocols. The exploration of a wide range of possible reaction steps

with different values for the suggested security metrics would greatly benefit this work.

The described system incorporates both static and dynamic reaction. To enable them,

the authors consider both periodic vulnerabilities and agent-based traffic controls. A

dynamic reaction to an attack is presented on a small-scale cloud system, showing that

the countermeasure selection process works well with a limited number of countermea-

sures, and the performance is better in comparison with other proxy-based Network IDS.

However, further work is needed to extend the deployment in a large-scale network. In

such a setting, there is also the option of distributing the computational overhead of the

control center, which naturally represents a single point of failure.

An interesting feature of the authors’ framework is the capability to react in a completely

autonomous way; once an alarm is generated from the alert correlation engine (due to

the exceed of a specific threshold), the system selects a countermeasure from the pool.

From an administrator’s viewpoint, this reduces the human effort, especially in a virtual

environment where many users share the same physical resources. Nevertheless, one can

argue that in particular situations, and for critical resources, the reaction strategy cannot

completely exclude the administrator approval, but it has to consider their expertise in

the decision process.

A notable shortcoming of this work is the handling of zero-day vulnerabilities. The

solution proposed by the authors is a profile database for the VMs, but one can argue

that this is insufficient to solve the problem, and the proposed IDS agent by the authors

(Snort [5]) is a rule-based one, thus incapable of detecting zero-days.
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2.3.3.6 Wang et al. [145]

Description The work in [145] introduces a probabilistic approach for optimal se-

curity hardening. The authors aim to bridge the gap between system vulnerabilities

and organization-level security metrics. To do so, they propose a methodology which

incorporates AGs and Hidden Markov Model (HMM) to describe probabilistically the

interconnections of the numerous security states of a system. Precisely, the authors

extend Multiple Prerequisite (MP) graphs [96] by introducing 3 types of labels to the

observable subjects of the network. The tags Solid, Soft, and Dark are used for marking

the physical assets (e.g. servers), any measurable notion (e.g. network traffic), and the

system vulnerabilities in the system. According to the authors, this approach reduces

the size of the graphs, while important characteristics of the attacks can be identified

which in turn leads to a better estimation regarding the security state of the system.

By taking advantage of the AGs portraying the interconnections in the network, the

authors apply HMM to estimate probabilistically the possible security states of the

system. HMM enables the quantitative analysis of the security hardening problem,

while it can be used to model uncertainties introduced in the process. By employing

HMM the authors can probabilistically predict the system’s state transitions given a set

of network observations. In this way, the defender can be notified about which state the

target of the attacker is going to be, and thus take the appropriate decisions for blocking

potentially harmful transitions.

For conducting a cost-benefit analysis, the authors extend the AG into a directed state

contact one which is able to represent the state transitions [145]. Based on the intercon-

nections of the graphs, the authors use a cost function to quantify the cost induced due

to system transitions. The cost function is a weighted one which considers two individual

costs, namely the attack cost caused by potential vulnerabilities, and the defense cost

derived from hardening measures. Both these costs are modeled using the Butler’s risk

assessment framework [158]. This enables the synthesis of several problem-specific secu-

rity metrics, which can be reviewed and put in practice by the security administrators.

The problem is modeled as an optimization one aiming to minimize the cost function.

In this direction, the authors utilize a heuristic algorithm based on the ACO family

[68]. Precisely, the ants roam probabilistically on the graph based on the probabilities

indicated by the HMM and add pheromone on the edges of the graph. Ant path selection
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decisions are taken by considering two parameters, namely the attractiveness and trail

level of the move, where the latter incorporates also the cost of the trace.

In the conducted experiments, the authors manually construct a directed acyclic graph

(DAG) and determine the HMM elements. They also assign values on the edges consider-

ing NVD-CVSS [143] framework and experts’ knowledge. Throughout the experiments,

the authors tested the ability of their solution to identify the root causes of three differ-

ent attacks, and they demonstrated that their proposal is able to balance the trade-off

between the defense and attack costs and deliver near-optimal solutions.

Analysis As already pointed out, the authors make use of AGs and HMM for repre-

senting the problem and rely on ACO to define optimal hardening solutions. Following

the discussion of Section 2.3.2.2, the AG technique faces scalability problems as the

size of the network increases and the possible interconnections between the different

nodes lead to a system state explosion. On top of AGs, authors utilize HMM to create

a probabilistic mapping between the AG and the various system states, and to model

the uncertainties. As with the majority of works in the literature, the experiments are

based on a rather small network topology with a limited number of system states and

4 types of countermeasures, namely Disconnect, Patch, Disable and Configure. More

specifically, two testbeds have been created having 14 and 18 states, respectively. In this

context, the proposed framework is able to provide a near optimal defense solution in a

reasonable time for both testbeds, respectively 27.23 and 29.11 seconds. However, as the

time complexity of the algorithm is O(M ×N2) (where M represents the network states

and N the number of hosts) it can safely be asserted that the solution is not scalable

for large-sized networks.

The quantitative analysis of the framework is based on the Butler’s framework [158],

very similar to [153]. This framework enables the introduction of several types of security

metrics in order to define complex cost functions. Further, the authors refer to CVSS

[143] for defining security metrics that will allow them to quantify both attack and

defense consequences. As already mentioned, the use of standards, can add value to a

work as it caters for a solution which is aligned with globally accepted and deployed

ICT practices.
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It is to be mentioned that the proposed model is not destined to react dynamically,

but to infer on countermeasures that can achieve the near-optimal trade-off between the

attack and defense costs. That is, authors’ proposal aims to assist the decision maker,

while demanding the active engagement of a security administrator for determining the

assets under protection and tuning the parameters of the framework.

The optimization strategy followed in this work is quite interesting. The authors argue

that it is impractical to exhaustively traverse the search space of the problem to define

the optimal defense strategy. This is why they utilize ACO to pinpoint the root causes

of specific attack scenarios. This approach narrows down the focus of the problem sig-

nificantly and it can be used to identify critical assets in the infrastructure. In addition,

ant colonies are a fast solution that can provide a satisfactory solution quickly [67].

ACO also guarantees that the algorithm always converges to a solution. The aforemen-

tioned ACO qualities could be proved beneficial in dynamically changing graphs, where

new systems states may appear and a defense mechanism should define fresh optimal

solutions in a reasonable time frame.

2.3.3.7 Zonouz and Haghani [176]

Description Zonouz and Haghani [176] introduce a framework called EliMet with the

aim of estimating whether the security requirements in a system are effectively met.

EliMet combines expert knowledge and reinforcement learning to support decision mak-

ing against intrusive incidents. The system is driven by system-specific security measures

to infer and identify risky system states with the purpose of suggesting the administra-

tor appropriate healing actions. The system passively observes administrator’s reactions

against offensive incidents to calculate the aforementioned security measures. According

to the authors, by using these measures, the system not only is able to respond in an

autonomous manner, but also to predict potential security threats that administrators

should take care in advance.

More specifically, the state of the system is modeled as CMDP [108], where the com-

petitors are the adversary and the defender who both aim to increase their profit. For

estimating the system’s states, the proposed model considers the following parameters:

i) the security state space, ii) a set of actions divided into adversarial and response ac-

tions, iii) a security measure function, and iv) a probability of shifting to a new system’s
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state. In addition to these parameters, EliMet models the insufficiency introduced by

potentially false alerts of the IDS. Thus, the belief about every security state is mea-

sured probabilistically based on the previous state of the system combined with the

alerts observed for the current state.

Given the CMDP model, the system identifies the optimal defensive solutions based on

the security measures. EliMet treats the reaction procedure as a maxmin problem and

finds the optimal defence policy by maximizing the security measures through Bellman’s

optimization method [177], known as dynamic programming.

As already pointed out, EliMet passively observes the security expert’s reaction on

intrusive incidents. In parallel with passive observation, the system uses an inverse

reinforcement learning algorithm. The latter incorporates the expert’s response policy

and the CMDP model with the aim of iteratively refining the security measures so

that they converge with the expert knowledge. The proposed algorithm takes also into

consideration the defender’s expertise level in calculating security measures. After a

specified period of time, the system concludes to an optimal policy for the corresponding

CMDP model, which could be used later in an automated response system.

The reinforcement procedure is able to result in efficient policies when it comes to

common incidents that appear frequently in a system’s defense life cycle. However,

for rare system states, where the policy uncertainty is high in terms of Shannon entropy

[178], the system queries the expert for the appropriate action. The incidents which

will be queried to the expert are decided based on two criteria. On the one hand, the

less information the system knows about the rare state the higher the possibility for the

system to generate a query to the expert. On the other, a query for a system’s state

may arise or not, based on the potential return benefit for the defended system. In other

words, the more information gain stems from a state transition the higher the chances

for a query to be generated.

Another feature of EliMet is its ability to perform contingency analysis. The system

imitates the adversary by choosing the actions that increase the offensive benefit, while

at the same time takes the optimal defense actions. In this way, the system identifies

risky states that the administrator should take care of and critical assets which should

be protected more intensively.
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Analysis EliMet is an interesting framework as it combines several techniques to deal

with the problem of providing optimal countermeasures. More specifically, the authors

utilize CMDP graphs to represent the system’s security states. According to their evalu-

ation, the graph creation occurs in a reasonable time frame, that is, 400 milliseconds for

networks with 37 nodes, while the number of possible system states affects the response

time of the system proportionally. CMDP is built based on the topology of the system

and global access control policies, while the system considers IDS alerts as the sole input

events. However, possible critical system states can appear upon system updates or the

emergence of new vulnerabilities. It seems that such information is not taken under

consideration by the authors during the graph creation. In general, the CMDP graph

representation seems promising, but as the authors state, dynamic changes in the system

topology are sure to pose a challenge.

Besides its ability to dynamically apply defense policies, another strong aspect of this

proposal is its capacity to perform also static risk assessment for identifying critical

assets proactively. However, both the risk assessment and the security metrics utilized

to quantitatively evaluate the system’s effectiveness do not follow any specific standard.

The authors provide a general purpose framework, yet it is unclear how the security

measures are defined and how complex and multi-objective measures could affect the

overall performance of the framework.

The authors utilize reinforcement learning in an effort to capture and integrate the

experts’ wisdom in their framework. In their experiments, the refined security measures

generated by the reinforcement learning algorithm are compared with the measures

produced by the expert’s actions. According to the produced security measures, the

algorithm seems able to imitate the expert’s actions, but in some cases, the actions

taken by the algorithm overprotect the states of the system. Naturally, the ability of

EliMet to converge with the expert’s action is a positive feature. However in the context

of a dynamic reaction system, if the system fusses over its assets may cause service

disruptions and monetary losses.

Finally, the authors do not provide any information about the set of actions which con-

stitute the defensive policies and the ways the size of this set can affect the performance

of the system. Even though the CMDP seems to be scalable, a possibly hefty set of

defensive actions could increase significantly the response time of the system.
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2.3.3.8 Zonouz et al. [161]

Description The authors in [161] propose an automated system for cost-sensitive in-

trusion response. They model the intrusion response problem as a multi-step, sequential,

hierarchical, non-zero-sum, two-player stochastic game between the adversary and the

defender. The two entities present conflicting interests, and their utmost goal is to in-

crease their benefit by taking sequential actions. The authors utilize ARTs to model

system states which later are transformed automatically into partially observable com-

petitive Markov decision processes (POCMDPs). In fact, they adopt this representation

in order to apply Bellman’s optimization method [177] that will allow them to define an

optimal defense policy based on the state of the system. Bear in mind that this approach

is used by the authors in EliMet framework [176].

Here, authors utilize a game-theoretic approach to model the relationship between the

attacker and the defender. Under this prism, the one entity adapts its behavior accord-

ing to the strategy of the other. The defender is the first who makes a move in the game

and then the attacker responds in a sequential Stackelberg stochastic game [179]. This

sequential behavior continues to an infinite-horizon and every movement leads proba-

bilistically to a new system state. The state transitioning is modeled in POCMDP by

also considering the uncertainty for the exact state of the system caused due to uncer-

tainties derived from the IDS. In this way, POCMDP conceptualizes the system’s states

as belief states instead of exact ones.

The authors proposed a decentralized architecture to implement their mechanism. Their

notion incorporates local engines placed in individual hosts in the network and a global

engine located in the RRE server. The local engines are subscribed to an intrusion

alert database in order to get notified when an intrusive incident relative to their host

appears. Additionally to the IDS alerts, the local engines undertake also the creation of

ARTs for the local host. Hence, the local engines are responsible for modeling the local

system and react against offensive events. Every local engine has at most 3 ARTs where

each one is used to infer on possible violations against the CIA of the host. The root

node of each ART holds an accumulative security estimation value (δ) which is sent to

the global engine of the RRE. This engine is responsible to inspect the security level of

the whole infrastructure.
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The global engine takes as input the network topology, the acknowledged system vul-

nerabilities, and the connectivity matrix and creates a CMDP automatically. The same

engine aims to safeguard the system using global objectives defined by the administra-

tor of the system. For this purpose, the authors utilize a Fuzzy control-based technique

to enable the administrator define Fuzzy rules in the form of IF <premises> THEN

<consequent>, which are then used to infer on the security level of the system. The δ

values derived from the local engines are converted to qualitative values (high, medium,

low) to meet the ones set in the rules by the administrator. Then, a center of gravity

defuzzification method [180] takes place to provide a quantitative score for the security

level.

Analysis The authors introduce several methodologies to deal with the problem of

the dynamic intrusion response. The main contribution of this work is the distributed

nature of the proposed framework. Based on the literature, we can safely extrapolate

that finding the optimal defense solution against an attack is a computationally intensive

task. In this direction, a distributed model to deal with this problem can improve

the scalability and performance of a response system as the computational burden is

relocated to its hosts. On the downside, this approach poses also certain limitations.

The purpose of every host in a system is to deliver one or more services, and thus adding

an additional intensive task could lead to service availability issues. This resolution can

be used in networks where the participating hosts are able to manage this kind of

procedures. However, in environments with limited processing power on the edge nodes

the same approach may be impractical. Furthermore, trust issues emerge in distributed

mechanisms destined to deliver security services. As a result, trust models [181] have to

be used to ensure the legitimacy of the nodes, given that misleading results may occur

due to contributions stemming from compromised nodes. Finally, decisions made in an

automated and autonomous manner to the edges of a network may disrupt its normal

behavior, while at the same time the administrator may have partial observability of the

system state.

The authors use ARTs to represent the security state of the system, but for defining

the optimal defense solution the methodology instructs the transformation of ARTs to

a CMDP. This of course comes at the price of additional overhead. Moreover, authors

do not rely on specific and global accepted metrics to support the optimization process.



Chapter 2. Background 70

Instead, they provide a formula which can feed a cost function to enable a quantitative

analysis. As already pointed out, every local node has 3 ARTs, one per CIA property.

Even though it is essential to quantify the impact on CIA properties, it is debatable

whether or not a defense solution should consider more metrics to provide a complete

quantitative defense analysis.

The local engines are capable of reacting against intrusive incidents automatically. Still,

the system demands the complete engagement of the administrator for defining the

global security objective of the system in terms of Fuzzy rules. According to authors’

evaluation, the system performs well for quite large sized ARTs. However, they do not

elaborate on the number of available countermeasures to cope with every possible state

of the system. In case there is a pool of likely reactions against an incident, this is

translated to an expanded search space and the problem’s complexity could be further

expanded by incorporating multi-objective cost functions in the optimization process.

2.3.3.9 Gonzalez-Granadillo et al [182]

Description This contribution proposes a geometrical model to select the optimal

combination of countermeasures based on the Return-On-Response-Investment (RORI)

index with the aim of counteracting cyber attacks against critical systems.

The authors present their improved version of RORI index, discussed in [183, 184] by

extending the approach proposed initially by Kheir et al. [103]. Specifically, they modify

the initial formula to also include the infrastructure value expressed as Annual Infrastruc-

ture Value (AIV), and to handle the possibility of applying a null set of countermeasures

in specific scenarios.

Also, the authors extend the definition of attack surface of a given system, presented in

[185]. To do so, they present a “volumes” model, which represents systems, attacks and

countermeasures in a three dimensional coordinate system. The dimensions correspond

to the users, communication channels and system resources. Specifically, the volumes

are defined as follows:

• System Volume - It represents the maximal space a given system exposes to users

and attackers.
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• Attack Volume - The portion of the total volume being targeted by a given attack

based on the vulnerabilities it is able to exploit.

• Countermeasure Volume - It represents the percentage of system volume that is

covered and controlled by a given countermeasure.

The three dimensions are defined following the access control methodology [186, 187],

and are identified as the ones which contribute directly to the execution of a given

attack. That is, user account as the subject, resource as the object, and channel as the

way to execute an action. The dimensions are then populated, and by following the

CARVER methodology [188], a weighting factor is assigned to each element represented

in the Cartesian system. In this way, a numerical bijection is created between the real

elements and their representation within the coordinate system.

In this three dimensional system, the represented volumes appear as 3D geometrical

figures (parallelepipeds) within the system volume. Also, the attack and countermea-

sures volumes are calculated and represented considering the used dimensions. For

multiple attacks and countermeasures, a study on the volume union and intersection is

conducted, showing the possible ways to calculate the contribution of both joint and

disjoint volumes.

The main idea of the authors is that by using this graphical representation, it is possible

to determine not only the impact of each attack and countermeasure (or the impact of

a group of them), but also the residual risk (i.e., the volume of the system that is being

attacked but is not covered by any countermeasure) as well as the potential collateral

damage (i.e., the volume of the system that is not being attacked, but is covered by a

countermeasure).

The authors also offer a prototype implementation, in a form of an application, which

generates the above mentioned 3D graphical representation of the system, attacks, and

countermeasures. The same application is able to automatically evaluate, rank and select

the optimal set of countermeasures against complex attacks. The platform is composed

by two modules, namely the Attack volume application, and the RORI application. The

first one is responsible to map the attacks and the countermeasures into the Resource-

Channel-User 3D system by calculating their monetary impacts. The second is in charge

of performing the evaluation of individual and combined countermeasures, taking as
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input all the needed parameters for RORI calculation. If some of them are missing (i.e.,

Annual Loss Expectancy (ALE) or Risk Mitigation (RM)), they will be requested to the

Attack Volume engine, as they depend on the specific attack context.

To demonstrate their solution, the authors offer a case study pertaining to a critical

infrastructure control system. Using this paradigm, they show the selection of combined

countermeasures for a particular attack. To complete this task, the authors follow the

approach presented in [184], which also considers any possible restrictions among the

countermeasures (mutually and partially exclusive, restrictive).

Analysis This proposal builds on previous works by the same authors with the aim of

using the RORI-based countermeasure selection together with an interesting geometri-

cal representation of the involved defensive or offensive quantities. More specifically, in

[183], they highlight two main limitations of the RORI-based model, in particular the

accuracy in the estimation of the different parameters in the formula, and the unconsid-

ered interdependence among the various countermeasures. Actually, the first limitation

derives from the difficulty of getting a real assessment of variable parameters in the

RORI formula. That is, they identify the ALE of an attack and the RM level of a

specific countermeasure as the most challenging, thus requiring a considerable effort. A

great improvement toward this goal is made in [189], where the authors propose statis-

tical methodologies to estimate the above parameters using epistemic uncertainty [190].

The second limitation is only partially addressed in [184], where the authors study the

results of their model applying a combination of two or more countermeasures.

It is to be noted that the authors decide to neglect the attack modeling. This is obvious

because in the presented case study, the process starts with the evidence of an attack in

the system. In this way, they are able to demonstrate the feasibility of their procedure in

a dynamic environment. Nevertheless, even though the detection belongs to a different

phase in the network life cycle, modeling the attacker’s steps aids the reaction phase

as well. This is because the defender is able to predict the attacker’s trajectory in

the system more easily. Overall, attack modeling is essential, because nowadays cyber

attacks are increasingly disruptive, and the reaction time is a decisive factor. Moreover,

the process in charge of generating the system, attack, and countermeasure volumes

adds a further delay. It seems that more experimentation needs to be done to obtain a

better view of the authors’ proposal in terms of performance. Another idea would be to
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consider extending the volume representation with extra dimensions, that is by adding

time as an extra axis.

Recall that for calculating the overall contribution to the volume representation of each

selected category within an axis, the authors follow the CARVER methodology, whose

goal is to measure the priority of each element in a given system. This measurement is

based on 6 factors, namely Criticality, Accessibility, Recuperability, Vulnerability, Effect,

and Recognizability. The proposed methodology assigns a numerical value to each con-

sidered factor on a scale of 1-10 and places them in a decision matrix. The sum of the

values indicate the severity of a given dimension. The CARVER matrix was developed

from US special operation forces, and it can be used both from an offensive or defensive

perspective. Nevertheless, this methodology is not widely adopted by ICT community,

which rather prefer to use other open standards.

In the authors’ model, countermeasures are proposed to be implemented for a short

period, that is, from the moment of the detection of the attack incidents until the system

returns to a safe state. According to the authors, this approach is preferable because it

does not need them to compute long-term investments in the proposed procedure. Due

to the complexity of the search space and the inaccuracy of the results, they discourage

the usage of genetic and heuristic algorithms. However, this option is debatable, because

nature-inspired techniques may be proved particularly effective, especially when the pool

of the available countermeasures becomes large.

In the context of the 3D representation used by the authors, the coverage of a coun-

termeasure is defined as the percentage of system volume it is able to cover. In this

mindset, they are able to calculate the percentage of volume that a countermeasure can

cover for a specific attack. However, in practice, it is not straightforward to establish a

direct mapping between countermeasures and attacks, especially if one considers repre-

senting them in another reference system. In addition, they present this countermeasure

volume coverage as a percentage. In this way, the evaluation of joint or disjoint volumes

is not simple, and it requires a preventive analysis. The negative impact of a combined

solution is not considered as well, while only the cost impact is computed in the model.

Nevertheless, the latter requires more effort, especially for evaluating the impact on the

availability of the service for a combined countermeasure, whose effects are not expected

to be negligible.
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2.3.3.10 Miehling et al. [191]

Description In [191] authors model the defense problem using the notion of POMDP.

Their goal is to provide optimal dynamic defense policies to counteract in-progress cyber

attacks occurring against the protected system. To do so, they utilize BAGs and Moving

Target Defense (MTD) [192] schemes for implementing defense policies able to adapt

to the adversary’s behavior in a dynamic manner. The proposed model is guided by

security metrics that quantify the trade-off among the CIA of the system in an effort to

secure it without interrupting the provided services.

More specifically, the authors utilize BAGs to represent the adversary’s possible move-

ments in the system by also considering probabilities in every step (edge) on the paths

that connect the entering (leaf) nodes toward the root nodes of the graph. The spreading

ability of an attacker depends on the type of the node expressed by AND/OR relations,

the previous state of the attacker, and the exploitation probability of the node. In addi-

tion to these aspects, the authors engage also a factor to emulate the defender’s partial

observability. Under realistic terms, malicious actions may occur in a system without

raising intrusion alerts. This is why the authors introduce the probability of detection

factor in their model as well. This uncertainty about the current state of the system

forms a belief about the present network’s state.

The countermeasure strategy is defined as a set of individual actions where, based on

an incident, an optimal subset of those can be used to counteract an intrusion. Every

defending action directly affects CIA metrics. More specifically, a cost function should

be able to reflect both the negative and the positive impact to the CIA metrics for the

applied actions. To this end, the authors treat the defense problem as an optimization

one where the ultimate goal is to define an optimal defense policy. They take into con-

sideration both the belief for the current system state and the future states to optimize

the cost function through dynamic programming (Bellman’s method [177]).

The evaluation of the proposal has been conducted on a small BAG with 12 attributes

and only one of them as critical (root). The graph has two leafs and two possible coun-

termeasure actions. According to the authors, the possible states of the system is 212. In

order to reduce the search space of the problem, the authors add restrictions by consid-

ering only AND relationships among the attributes and monotonic threat propagation

(i.e., the attacker aims to constantly increase their benefit) and result to a minimized
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problem with 29 states. The POMDP model of the example network was solved in terms

of identifying the optimal solution using a POMDP-solver written in C programming

language. The outcome is a network heat map which represents the critical nodes of the

system. The countermeasure strategy is shown intuitively and can be inferred from the

heat map. The authors suggest the adaptation of those countermeasures that reduce

the exploitation probability of the risky nodes.

Analysis As stated previously, the authors make use of BAGs to model the system’s

security states. Albeit this type of representation is suitable for representing also the

uncertainties which are introduced, the limitation of scalability affects significantly the

efficacy of this solution. Specifically, as shown by the authors’ experiments, the conceiv-

able states of the system combined with the numerous possible countermeasures expand

significantly the search space of the problem. The experiments conducted in a small-

scale scenario and under specific assumptions, aiming to minimize the search space. On

top of that, the example scenario engages only two countermeasures and one root node

in the graph. To this end, one can argue that the complexity of the solution is high and

can be significantly increased if the solution is utilized in a dynamic environment trying

to model the behavior of a moving attacker. However, the employment of the detection

probability as well as the probabilistic contagion spreading model they use emulate the

imperfect environment in which a security expert has to take actions.

The cost function used for quantifying the cost of an attack or the deployment of a

defense action is calculated based on CIA metrics. CIA properties should be in the

core of the countermeasure strategy, but we argue that a framework should include

several types of metrics to achieve a better quantification of the problem. Apart from

that, it seems that the authors do not adopt any globally accepted security automation

standards in their model.

Finally, although the authors claim that their proposal suggests an automated defense

tool, they do not evaluate the performance of their proposal in this direction, while the

countermeasures taken in the conducted experiments aim to block or disable a given

service in the system. These actions, however, can be considered as extreme measures

to deal with an attack. The goal of a countermeasure strategy is to explore optimal

policies to deal with a security incident instead of applying extreme measures.
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2.3.3.11 Shameli-Sendi and Dagenais [104]

Description The work in [104] presents a model able to dynamically evaluate the pos-

itive and negative effects of defense actions on a system under attack. The problem of

providing defense actions which maximize the security performance but simultaneously

minimize the negative effects of the applied measures is treated as a MOOP. The ulti-

mate goal of the framework called ORCEF is to provide optimal defense actions while

simultaneously sustaining the quality of the services provided to the end-users.

Notably, ORCEF utilize AGs and SDGs in an effort to respectively allocate the defense

points in the network and to evaluate the response negative impact. AGs are used to

enable the system to find the attacker’s position and final goals based on a confidence

level, and to define the optimal network points where appropriate defense measures

should be applied. In this way, ORCEF creates a dynamic mapping between the possible

attack paths and the network topology. Further, SDGs are used for the sake of identifying

the interconnections among the provided services. In this way, ORCEF is able to conduct

a quantitative analysis by considering also the service dependencies and the number of

users affected by the malfunctioning services.

ORCEF’s response engine is triggered by IDS alerts and tries to locate the attacker on

the AG. Also, it is aware of a number of parameters, including the network topology, the

number of provided services in the infrastructure, and the population of users. Based on

a pre-defined pool of responses and the aforementioned parameters, ORCEF calculates

the positive and negative aftermath of every response by utilizing the MCDM methods

SAW [193] and WP [194]. To do so, the positive effects take into account the outcomes

on CIA and the performance of the system. The negative corollaries consider the effect

induced on the availability of a service and other dependent on that services, the users’

inaccessibility to services, and the setup cost of a defense. The positive outcomes and

the cost setup of a defense are calculated statically, while the rest of the metrics are

dynamically adjusted during an in-progress attack to the system. The determination

of the static metrics and their importance is done during system bootstrapping, where

the administrators are asked for their opinion. More specifically, ORCEF captures the

security experts’ opinions in the form of linguistic variables by utilizing a Fuzzy model.

Once the positive and negative effects for every response are calculated, a Pareto optimal

set of defenses is generated. The optimal defenses are those which achieve the most
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efficient trade-off between the security level and the negative impacts. Finally, the Pareto

optimal responses are ordered depending on the state of the system. If the attacker is

highly skilled, then the solutions that minimize the damage cost should be selected.

Also, if the resource is of high value, then those countermeasures which minimize the

negative impacts should be selected.

The authors evaluated ORCEF in a topology consisting of 5 sub-networks under two

attack scenarios modeling both an external and internal attacker. The system was able to

react in about 489 milliseconds and 456 milliseconds for the two scenarios, respectively.

Analysis ORCEF is a framework able to respond dynamically on ongoing attacks as it

is capable to allocate the possible attack paths based on IDS alerts and the defense points

of the network. Toward this goal, the proposed framework incorporates both AGs and

SDGs. Although the authors’ approach combines the advantages of the aforementioned

representations to deliver a cost-benefit response framework, it seems that the authors

do not consider the cost of initializing or adapting the graphs. Under this prism, we

consider the protected topology to be static. That is, under realistic conditions a network

topology can dynamically change, say, as new nodes join or leave the network. These

kind of changes should be reflected also in the AG dynamically. Further, the new nodes

may bare vulnerabilities, existing nodes may get vulnerable at any time, new users and

services may be added, and this is why the SDG needs to be updated or recreated from

scratch.

By utilizing the MCDM framework and Pareto optimal methodology, the proposed sys-

tem is able to come up with optimal defense solutions on different defense points in the

attack path of the topology within a short time frame. Still, the authors do not mention

if their evaluation is limited in protecting a single service in the topology. In this case,

the framework should be assessed under a situation where multiple services need to be

protected and several countermeasures must be applied to diverse defensive points. If

so, the complexity of the optimization problem is expected to further augment. Based

on the results, ORCEF seems to perform fast for the given scenario. On the down-

side, the evaluation metrics for quantifying the impact of defense decisions on the target

system do not follow any specific standard. An exception is that ORCEF incorporates

the CVE standard when it comes to the alerts generated by Snort [5]. However, the

authors’ approach to utilize a fuzzy model for capturing the expert’s opinion in the form
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of linguistic variables can improve the system’s experience. Furthermore, the ORCEF

administrators need to pass through a demanding phase of initializing the system as

they have to assign a great amount of linguistic values to the system’s parameters. The

defenses used by the authors are applied on several guarding points according to the

attack path in the topology. This is an interesting approach which minimizes the effort

and the cost as the countermeasures are applied only in the part of interest on the graph.

Finally, as the authors state, ORCEF is not able to generate combinations of defenses

for combating an offensive incident in a more efficient way. This is because ORCEF

concludes only to one single optimal solution.

2.3.3.12 Kotenko et al. [195, 196, 197, 198, 199, 200, 201, 202, 203, 204,

205, 206]

Kotenko et al. [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206] presented a series

of works dealing with countermeasure strategies against cyber attacks. We can categorize

them into 1) those which cope with the countermeasure selection in SIEM systems based

on AGs and SDGs [195, 196, 197, 198, 199], and 2) those which deal with attack modeling

and security evaluation in SIEM systems [200, 201, 202, 203, 204, 205, 206]. Below, we

elaborate on each category.

A) Countermeasure selection in SIEM system

Description The authors define an ontological representation for security

metrics[195], viewed as a core element of a countermeasure decision support module

within a SIEM system. In their vision, the adequacy of the eventual application of a

countermeasure action depends mainly on the speed and the reliability of selection and

calculation of a subset of security metrics. However, in modern networks, this concept

represents a hard task for the security administrator, given the huge amount of data. To

solve this problem, they propose an ontology, which is seen as a flexible tool for describ-

ing objects, classes, relationships and attributes of a domain of arbitrary complexity. In

this way, the ontology is used to select the most fitting countermeasures based on the

calculated values of metrics and rules of logical reasoning. The main classes existing in

the ontology are reactions, which in turn are divided into two subclasses, namely alarms
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and countermeasures, and metrics. The latter class is an abstract superclass from which

several abstract subclasses are generated by applying the relationship is-a:

• Malefactor metrics - They incorporate important parameters regarding the at-

tacker profile, e.g., Attacker Skill Level and Successful Exploitation Probability.

• Topological metrics - They integrate information about the network topology, e.g.,

hosts, applications, and vulnerabilities.

• Attack metrics - They describe the main characteristics of an offensive attempt,

e.g., Attack Impact and Confidence Level.

• System metrics - They consider Attack Surface and overall Security Level.

• Zero-day metrics - They attempt to measure the impact of an eventual zero-day

exploitation in the system, e.g., Probabilistic Vulnerability Measure [207] and k-zero

day safety [79].

• Cost metrics - They take into account Annual Lost Expectancy and the RORI

index [183].

Based on the presented classification, the authors introduce their approach to the coun-

termeasure selection [197, 198], considering the following main requirements: (1) security

metrics, as suggested in the corresponding ontology; (2) AGs, created on the base of

existing vulnerabilities, network configuration and attacker capabilities by following an

attacker-centric model; (3) SDGs, considering information of the interconnections be-

tween network services; (4) application of the SCAP for the specification of input data;

(5) integration within SIEM systems, considered to be in active development in the re-

cent years. In particular, the third requirement is defined by the necessity to consider

possible negative impacts of the countermeasure selection in the objective functions of

the system under protection. Instead, the fourth requirement is connected with the

strong need to automate the security analysis process and reaction in the modern sys-

tems, especially when considering the possibility of reacting dynamically.

The authors also discuss the countermeasure selection technique, distinguishing between

two main modes, namely static and dynamic. The first one is understood as a general

improvement of the security level of the system, taking into account the values of metrics
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previously defined as input data. The latter one is seen as preventive actions for a specific

ongoing attack, taking into account the SIEM events as its main input data. Specifically,

in [199], the authors concentrate on the events level, because it allows considering the

dynamic aspect of the security assessment and countermeasure selection. This level is

based on the incoming security events, stemming from different sensors in the network

and from the SIEM system. The event model connects this information with models

of the previous level (AG, attacker models), mapping the attacker position on the AG

and calculating security metrics that reflect with high accuracy the security state of the

system. Based on these metrics, a list of possible countermeasures is generated. In a

next step, the countermeasures are ranked taking into account the cost, effectiveness,

and collateral damage.

Analysis The described works use both AGs, which allow them to define the possible

steps of an attacker in the system, and SDGs, which consider also the interconnections

between network services. By doing so, the authors are able to obtain the advantages

of both these two attack modeling techniques, thus achieving a more accurate security

evaluation. This includes the mapping of the attacker’s position and their most proba-

ble paths, together with a cost-sensitive analysis, which represents the most important

results. However, the algorithm proposed by the authors to evaluate these graphs based

on the aforementioned metrics is not presented. The authors only describe the method-

ology used to achieve their goals. Yet, without an optimized methodology to analyze

the abovementioned graphs, the caused overhead makes the evaluation unpractical in

case of ongoing attacks which demand a dynamic reaction [95].

To specify a common approach in the development of a countermeasure model, standards

from SCAP are applied. Particularly, authors use the CRE and ERI standards. The

employment of these standards along with CPE for network configuration, and CVE,

CWE, and CVSS for network vulnerabilities, makes the authors’ model interoperable

and quantitatively comparable to others. Nevertheless, the authors assume that the

system has already a pool of countermeasures, which can be selected by applying an

ad-hoc algorithm. The generation of such a pool is made based on the knowledge and

expertise of the system administrators. On the downside, this assumption requires

an initial significant effort from the expert, who has to fill the knowledge database of

countermeasures, followed by a stable phase where the system is capable of reacting
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automatically. Therefore, one could argue that the authors’ proposal lacks of flexibility,

because this database of countermeasures needs to be continuously updated, and the

participation of the administrators, at least in some specific and critical situations, is

unavoidable.

From an attack response viewpoint, the proposed solution supports both static and

dynamic modes. In this respect, it is theoretically able to cover a wide range of assess-

ments regarding the network security level. However, only few examples are presented

by the authors, including some type of attacks on small-scale networks with the use of

generated attack sequences and poor attacker modeling. Nevertheless, a more detailed

experimental section is needed to elaborate on both the input data regarding the at-

tacks and the network topology. Moreover, the authors claim that for a small number

of security events and short attack sequences, the effectiveness of the countermeasure

selection is reduced, but the accuracy and efficiency of the implemented solution satisfy

the initial requirements. Still, the presentation of the results is not sufficient, which

constitutes the authors’ work not directly comparable against others in the same field.

B) Network Attack Modeling and Security Evaluation Framework

Description This series of works by the same authors is different from the previous

one, not only in their scope, but also because it is backed by a great implementation

process. In [200], the authors present an Attack Modeling and Security Evaluation Com-

ponent (AMSEC ), which if deployed in tandem with a SIEM system is capable of (1)

generating ATs and SDGs based on the topological vulnerability analysis along with

zero-day vulnerabilities, (2) applying anytime algorithms to provide a near real-time

attack modeling, (3) analyzing AGs to predict future attacker’s steps, (4) calculating

security metrics that also reflect the response impact, and (5) selecting the optimal

security solution through an interactive decision support process.

The authors’ proof-of-concept implementation supports two main modes, namely design

and exploitation. In the first mode, AMSEC operates offline taking as input a model

of the analyzed system. It then produces a list of weak spots and a set of ATs (one

per attack scenario), which will eventually build the AG. In the latter mode, AMSEC
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operates in real-time or near real-time, so it can adjust existing ATs, succeeding in

predicting attacker’s steps and generating the appropriate countermeasures.

The proposed system is connected to external open databases of vulnerabilities, attacks,

and configurations (NVD [121], CVE [88], CAPEC [131]), and translates the gathered

information into a format recognizable by the AMSEC’s security data repository. The

latter also stores data obtained from network scanning tools and admin’s knowledge.

All the gathered information is used to build and analyze the AGs. The authors present

a prototype which contains three basic components:

• VDBUpdater - It updates the internal database of vulnerabilities using information

obtained from NVD.

• Network Constructor - It aims to create and modify network models.

• Security Level Evaluator - It evaluates the overall security level of the system

starting from the analysis of the AGs and the associated security metrics.

An improvement of the previous model is presented in [203], where the authors present

CAMIAC (Cyber Attack Modeling and Impact Assessment Framework), a framework

which optimizes the AG building and analysis processes with the goal to enable their

usage in near real-time operations.

Kotenko and Chechulin [205] extend their AMSEC prototype, by proposing a novel

approach to construct, modify, and analyze the AG in a faster way, showing that it can

achieve better results if the analyzed network presents a limited number of changes. In

this way, they claim that it is possible to monitor a large-scale network by updating only

the topological changes.

Analysis In the presented works, authors use both AGs and SDGs, as with their pre-

vious series of works described in Section 2.3.3.12. However, in this case, the difficulty

of generating and maintaining these graphs in real-time is demystified. Also, it is made

clear that these representations keep their actuality for a limited period of time, un-

til significant changes in the security policies or in the network topology occur. The

suggested solution for this problem is to use these models constructed in advance, and

updating them with the help of ad-hoc algorithms. By doing so, the computational power
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required for the operations related with the construction and maintenance of the graphs

decreases significantly, thus offering the possibility to represent large-scale networks and

analyze the ongoing events in real-time. As already pointed out, the performance of

the proposed framework in terms of applicability is critical. So, the scalability of the

model should be further demonstrated with data obtained from real networks instead of

simulated ones.

Regarding the type of reaction, the main idea of the authors is equivalent to that dis-

cussed in Section 2.3.3.12. Nevertheless, their proof-of-concept is only partially imple-

mented, thus limiting its capabilities to the detection of the attacker inside the moni-

tored system. Therefore, the prototype shows limited risk analysis capabilities, and only

recommendations are given to counteract security incidents. However, very few would

argue that the framework capabilities of automatically (or semi-automatically) reacting

to malicious activities is a key requirement for any countermeasure strategy.

The authors’ framework works in combination with a Security Data Repository, used to

store information updated from external sources and the results of the security evaluation

of the system. This database makes an extensive use of standards (CPE, CVE, CVSS

and CAPEC), thus providing a standard way to represent and report cybersecurity-

related information. Note however that in the context of these works this information

is mainly used for the attack modeling phase, without giving the proper importance to

the reaction one.

Lastly, an interesting feature is the presence of an Interactive Decision Support Module.

This component interacts with the admins through a graphical user interface (GUI)

to let them select the most appropriate security solutions, and define their preferences

regarding the different types of requirements (risks, costs, benefits). The GUI is also

able to visualize the attacker’s position on the network map and uses different colors to

show different risk levels. Nevertheless, only recommendations are presented, without

any real implementation of the suggested counteractions directly on the various network

assets.
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2.3.3.13 Shameli-Sendi et al. [208]

Description Shameli-Sendi et al [208] propose a novel IRS architecture to select and

deploy the optimal countermeasure in the context of dynamic reaction to cyber threats.

The problem of providing countermeasures which maximize the security performance

and simultaneously minimize the negative effects of the applied measures (i.e. impact

on the system services and cost) is treated as a MOOP.

Particularly, the proposed architecture leverages the capabilities of SDGs and ADTs

in an effort to respectively allocate possible defense nodes and to evaluate the attack

damage cost. SDG are used to identify the interconnections among the services in

the network, so that both the negative impact of attacks and countermeasures can be

quantitatively evaluated based on CIA attributes. Additionally, ADTs are employed to

extract the paths relative to an incoming attack, thus specific countermeasures can be

allocated on defense points to block the intrusion.

When an alert is raised by an IDS, the proposed IRS maps the alert to the ADT. In

this way, attack paths and defense points are identified. Starting from a predefined pool

of countermeasures, the IRS computes which of those can be implemented based on 3

parameters that are evaluated independently, namely security benefit, security impact,

and security cost. Once the Pareto set is generated, SAW method [193] is used to extract

the optimal solution. Moreover, the IRS evaluates the possibility to combine multiple

countermeasures. To do so, the authors propose the vulnerabilities surface coverage,

which represents the vulnerabilities a countermeasure is able to heal. In this way, joint

and disjoint surfaces are computed and, consequently, the countermeasure combination

which covers the maximum number of vulnerabilities is selected. Further, the selected

countermeasure is deployed and its effectiveness is evaluated through a 5 secs window.

Specifically, the reaction is effective if no other attacks are detected in this time frame.

The effectiveness values per countermeasures are afterwards stored in the database.

Lastly, the authors present a detailed experimental section, in which they deploy a

real cloud environment with 6 VMs and 15 vulnerabilities in total. An ad-hoc multi-

step attack scenario is created to exploit the above-mentioned vulnerabilities. During

6 months, the authors generate 5691 attacks, recording the parameters relative to the

countermeasures deployment. In addition, the SAW methodology is compared against

other 2 well-known scoring methods, namely PW and TOPSIS [194]. The authors
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conclude that SAW is more reliable than the other, performing better for their scenario.

Furthermore, a performance analysis is conducted, in which the authors show that the

proposed framework is able to respond in 449 milliseconds for their attack scenario.

Analysis As stated previously, the authors use ADTs and SDGs in an effort to model

possible attack steps within the monitored system and estimate their impact on the

provided services. Although this dual endeavor may result in a more accurate attack

representation, it has to be noticed that the proposed framework performs with one ADT

used to protect a single asset. Notably, in real conditions, the protection of a complex

system will require a forest of ADTs. This increases the complexity of the problem and

the time required to analyze these trees. That is, more research is needed in this direction

to safely argue on the feasibility of the presented approach. Additionally, the difficulty

of generating and maintaining SDGs remains an open challenge, since the authors state

that the importance and dependence between the services is pre-defined by a security

expert. However, identifying and representing the interdependencies of all the services

in a complex infrastructure is a cumbersome task and therefore can lead to inefficiencies.

An interesting feature of this work is the dynamism of the defense strategy. That is,

the ADT is created first based on the SDG, and then updated over time, when services

or vulnerabilities are added or removed. This aspect is surely appreciable, particularly

in the modern systems which are characterized by a strong fluidity in their topology

and configuration. Moreover, the computation of the reaction considers also the already

deployed countermeasures. Still, this feature is not reflected in the experimental section,

in which the authors replicate an ad-hoc attack scenario on a static network. Thus,

more experiments are needed to test this promising capability and to demonstrate its

feasibility.

Notably, the authors define the security performance of a given countermeasure as

the number of vulnerabilities it covers multiplied by the history of its success/failure.

Since multiple countermeasures can be deployed simultaneously to counteract an on-

going attack, a quite extensive study on the joint surfaces is presented. Although this

methodology allows to quantitatively estimate the countermeasures’ performance, it is

not straightforward to define a direct correlation between vulnerabilities and counter-

measures. Actually, this association method has been initially proposed in [166] and

later demonstrated in [167], and overall it is proved to be a complicated task.
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Figure 2.11: A timeline of the surveyed works, highlighting on their novelty and core
characteristics.

The presented testbed includes only 6 VMs connected by 4 virtual switches. One could

argue that such a scenario does not reflect the modern IT infrastructures, where hundreds

of machines are connected for providing services to the end-users. Additionally, the

complexity of the designed framework is reported as O(|CM |2 + (|S| + |W | + |V | +

|CMa|) × |CM |), where |CM | represents the number of possible countermeasures, |S|

is the number of services in the SDG, |W | is the number of time windows used in the

countermeasure goodness evaluation, |V | represents the number of vulnerabilities within

the system, and |CMa| is the number of current deployed countermeasures. It is clear

that the presented framework lacks in scalability, thus it unsuitable in the context of

dynamic reaction for complex networks.

2.3.3.14 Summary and comparison

This Section offers a comprehensive comparison of the various works analyzed as part of

this survey based on the seven features introduced in Section 2.3.2.2. For easy reference,

a summary of features per examined work is included in Table 2.6. In addition, an

overview of the surveyed works with reference to the publication year and their chief
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characteristics is depicted in Figure 2.11. This figure summarizes the evolution of the

surveyed research area, in which several authors contribute diverse reaction frameworks

against cyber attacks. Finally, we elaborate on both the positive and negative aspects

of each work.

Regarding the first feature, namely attack modeling decision, Table 2.6 reveals that all

the works analyzed, except of those presented in [182] [163], make use of a graphical

representation to reflect the dependencies and the interconnections among the possible

assets and properties in the monitored system. The authors in [163] suggest the use of

AGs for modeling the attack space, but eventually they do not integrate such a model

in their solution. Likewise, the work in [182], instead of using an attack representation

model, it focuses on applying countermeasures solely on one specific node representing

an asset in the monitored system. From our analysis, it can be safely deduced that a

representation which is able to formally model the system’s numerous dependencies is

a necessity both for depicting the system, but also for creating the search space of the

problem. In parallel with a formal representation of the system, several probabilistic

schemes are utilized in an effort to model the system’s security states transitioning. In

this direction, the authors adopt BAGs [98] or HMMs [145] to model the uncertainties

which are introduced in the process.

Considering the numerous sources of uncertainty (e.g., IDS false alarms, possible miscon-

figurations, target choices of the attackers, etc.) and possible unpredictable states of the

system (e.g., zero day attacks) the adoption of such a probabilistic approach contributes

toward more realistic solutions that can effectively support the decision maker. However,

all the reviewed works, besides those presented in [195, 196, 197, 198, 199],[208], treat

the attack model representation in a static manner. Under realistic terms, a network’s

parameters (e.g., topology, vulnerabilities, configurations) are in a constant flux and this

inevitably brings changes to the attack modeling representations as new states, nodes,

and transitions occur. This ilk of changes happening in a system should be dynamically

reflected in the modeling process, but unfortunately this feature is almost sure to in-

crease the complexity of the derived models. Interestingly, none of the reviewed works

considers this feature when it comes to the evaluation of the overall complexity of the

framework.

Another important conclusion of our survey is that most of the analyzed works deal with
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the problem of cost-benefit attack counteraction by utilizing optimization techniques.

This kind of solutions aim to define an optimal trade-off mainly between metrics that

reflect the potential attack cost and those that quantify the impact and effectiveness of

applying defense strategies. In this direction, GAs [153] and ACO [145] were utilized by

leveraging single and multi-objective optimization cost functions for providing optimal

sets of countermeasures. The works presented in [161, 176, 191] make use of Bellman’s

optimization on top of MDPs to identify the optimal defense strategies, while integer

optimization and Tabu Seach [115] were respectively used in [160, 163]. In addition,

multicriteria decision-making techniques like SAW, PW and TOPSIS has been recruited

in [208] in the context of MOOP. Yet, the works presented in [195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206], [169], [182] do not fall into this category of solutions,

as the authors propose their own heuristic optimization method to guide their system

to the optimal solution. The works presented in [153] and [161] are of special interest

as their models reflect the dynamic relationship of the attacker and the defender. More

specifically, [153] uses two competitive populations in the context of GAs that imitate

an “arms race” between the two entities with the aim to define equilibrium points, that

is, a set of countermeasures that can stop the attacker from increasing their gain. In the

same direction, the work presented in [161] models the relationship of the attacker and

the defender as a game, where the two players make sequential moves to increase their

benefit. A different approach has been adopted in [104] where MCDM methodologies

were used to infer on a set of possible countermeasures for eliminating the detected

incidents. From this set, a Pareto optimal set is derived on a later step.

Another interesting fact stemming from Table 2.6 is that most of the proposed frame-

works in the literature are destined to dynamically adapt to the events transpiring in the

protected system. As stated in Section 2.3.2, a dynamic approach fits better the needs

of a countermeasure mechanism since the system is able to adapt in real time to ongoing

offensive incidents. However, such a dynamic approach increases the complexity of a

countermeasure mechanism, and if we additionally consider the complexity introduced

by the attack modeling representation, then we can conclude that the performance of the

proposed solutions is questionable. On the other hand, static solutions are designed to

deliver a quantitative risk assessment for the protected system at a given time instance

and to aid security administrators in diagnosing weak points on assets appearing dur-

ing the life cycle of the system. Even though static solutions can be proved a valuable
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asset for identifying weaknesses in a network topology, the lack of adaptability against

unfolding offensive incidents is not suitable to support a reactive countermeasure system.

In our analysis, we have distinguished the type of reaction (dynamic/static) from the

automation level which actually reflects the administrators’ engagement level in the re-

action process. As it can be observed from Table 2.6, only the works in [145] and [153]

require the manual engagement of the administrator, while the rest of them provide a

higher level of automation. The majority of the latter belong to the semi-automated

category, where the administrators supervise the countermeasure system and the en-

forcement of any defensive policy requires their approval before applied on the protected

system. Still, the works in [191, 169], [208] proposed a fully-automated system, in which

the defense mechanisms react in an autonomous manner requiring minor intervention

by the administrators. More specifically, the administrators assign predefined directives

that have to be followed by the countermeasure system. The proposed system in [208] can

be characterised as fully-automated, but the administrator has to identify the services’

dependencies and maintain the SDG of the system. Overall, although fully-automated

solutions can respond immediately against ongoing attacks, the applied decisions may

differ from a security expert’s perspective, resulting to unwanted after-effects like the

over or under-protection of network assets.

All the analyzed works adopt assessment methodologies to provide a quantitative anal-

ysis of the defense strategy they propose, but as we can observe from Table 2.6, this is

being done mainly without adopting any security standards. A model which is able to

quantify the trade-off between the attack versus defense cost in applying countermeasure

policies is a vital feature for the countermeasure strategy. In this direction, as discussed

in Section 2.3.2.2, several methodologies that engage and combine diverse types of met-

rics have been proposed. However, it is notable that even though those methodologies

can provide a quantitative security assessment, half of the surveyed works do not adopt

any globally accepted standard. We argue that a countermeasure strategy should adopt

the use of standards, so that security administrators can perceive in an accurate and

foolproof way the security state of the system at any time. In addition, the adoption of

standards ensures interoperability and enables a countermeasure mechanism to operate

across diverse systems. As it can be observed in Table 2.6, CVSS [143] is the most

prominent standard used for describing the threats in a system. Even though, CRE

[132] and CAPEC [131] are scarce among the used standards, we argue that they can
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not only significantly contribute in the automation of countermeasure solutions, but also

improve the accuracy in predicting the security state of a system.

It is important to analyze the way the various works evaluate the effectiveness of their

proposal and specifically the ways a security administrator (who relies on a counter-

measure system) can assess the outcome of the provided defensive actions. To do so, we

included in Table 2.6 the scale and the type of the environments used in the evaluation of

the examined frameworks. We also report on the role of the administrator to reflect the

way they interact with the system. As it can be observed from the table, 10 out of a total

of 14 works ([153], [98], [160], [169], [145], [161], [182], [191], [195, 196, 197, 198, 199],

[208]) rely on a rather small-scale environment to evaluate their solution, while 3 others

([163], [176], [104]) employed a medium-scale one. The sole work that considers a large-

scale testbed is that in [200, 201, 202, 203, 204, 205, 206]. It is also notable that only

the works in [169] and [208] utilized a real environment instead of a simulation. The role

of the administrator in most of the surveyed works is to tune the system, while only in

[176] this entity is in charge to respond by giving feedback. Also, the exact role of the

administrator was not appreciable in contributions [182, 169, 153], and [191].

Continuing on the performance criterion, the works presented in [176] and [153] are

of special interest because of the methods used to ensure the optimality of the result.

Precisely, the authors in [176] adopt a reinforcement learning approach, where the ad-

ministrator is able to give a feedback to the system and boost the learning process to

more accurate results. On the other hand, the framework proposed in [153] ensures the

effectiveness of the defense policy as it tests the latter against several attack strategies

based on the “arms race” method. The goal is to define a policy that will impede the

attacker from penetrating further into the protected system. In the works presented in

[161, 145],[200, 201, 202, 203, 204, 205, 206],[195, 196, 197, 198, 199], [98], [104], [160],

[163] the administrator tunes the process of providing optimal countermeasures by set-

ting objectives to the system. In [208] on the other hand, the administrator needs to

update the dependences among the system’s services. These objectives are represented

in an abstract way, either by specific trade-offs in system’s metrics or IF-THEN rules,

which are used to infer on the security level of the system.

Finally, it is of significant importance to elaborate on the performance of the proposed

frameworks in terms of scalability, time complexity, and response time.
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Scalability As observed from Table 2.6, the majority of the reported works are char-

acterized by a low scalability due to the inability of the attack modeling representations

to scale. This feature seems to be a substantial limitation in the field. As already men-

tioned, this shortcoming becomes a major one if we consider that none of the reported

works but those in [195, 196, 197, 198, 199], [208], consider dynamic changes in the net-

work parameters. Moreover, even though the authors in [195, 196, 197, 198, 199],[208]

consider a dynamically changing environment, this is not advocated by their experi-

ments, as no change occurs in the employed topologies. However, according to their

authors, the works presented in [169, 161, 176] have a high scalability. In fact, this is

why the solutions in [161, 176] incorporate distributed architectures which disseminate

the computational task to the edge nodes instead of dealing with the problem solely in a

central point. Also, it can be said that the work in [176] presents a high scalability as it

incorporates CMDP to the attack modeling phase. Although this approach looks potent,

the level of information about the security state of the system, which can be reflected

by the CMDP representation, is debatable. In addition, as with the vast majority of

the surveyed works, this solution is tested in a small-scale simulated environment and

therefore its overall complexity in a real environment might be considerably higher.

Time Complexity Regarding the complexity sub-criterion, half of the reported so-

lutions present a high complexity, while the rest can be classified into low or medium

regarding the same metric. Unfortunately, the fact that the vast majority of the pro-

posals were tested under simulated and small-scale environments raises questions about

their performance in a real networking environment. In addition, another parameter

that can augment the overall complexity is the number of countermeasure actions that

can be applied in each particular case. In fact, the reviewed works engage only a small

fraction of the possible countermeasures. The existence of several possible countermea-

sures for every possible security state of the system can lead to a search space explosion

and challenge the optimization algorithms. On the contrary, the works proposed in

[169, 161] adopt a different approach, as they model the system in a distributed manner,

so that the computational cost is not undertaken solely by a specific machine. However,

these solutions introduce other limitations inherited from the distributed environments,

including trust issues and the lack of accurate insight of the system’s state at a central

node in the architecture.
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Response time It is obvious from Table 2.6 that it was practically infeasible to extract

the response time for all the surveyed works. This is because 6 of them ([153], [98],

[169], [182], [191], [195, 196, 197, 198, 199]) do not provide details about the response

time of the framework they propose when activating the appropriate countermeasures.

This is actually a controversial discovery as the effectiveness of a response system is also

determined by its ability to react within a reasonable time frame. Especially for dynamic

proposals, which have to respond instantly against ongoing incidents, this metric is of

high significance. To sum up, only the works in [104, 176],[208] were classified as fast-

performing solutions, while 3 presented average response time ([160], [163], [161]) and 2

seem to be slower regarding this metric ([145], [200, 201, 202, 203, 204, 205, 206]). At

this point, we have to note that during the evaluation none of the works considered the

time needed to create the attack modeling representation, while the small-size simulated

environments cannot guarantee the preciseness in response time estimation.

All in all, it can be safely summarized that virtually all the so far proposed solutions in

the field of countermeasures elicitation suffer from scalability issues due to the bulky at-

tack modeling representations, the numerous possible countermeasures, and the dynamic

nature of the monitored systems.
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Category Acronym Name Description

Vulnerability
manage-
ment

CVE [88]
Common Vulnerabilities and
Exposures

Provides a reference method for publicly known vulnerabilities
and exposures. It is available in several format, such as CVRF,
XML and HTML.

CVRF [120]
Common Vulnerability Re-
port Format

XML-based language that enables different stakeholders
across different organizations to share critical security-related
information in a single format.

NVD [121]
National Vulnerability
Database

U.S. government repository of standards based vulnerability
management data represented using SCAP. It can be accessed
using JSON, XML or RSS feeds.

OVAL [122]
Open Vulnerability and As-
sessment Language

XML-based Information security community effort to stan-
dardize how to assess and report upon the machine state of a
computer system.

Configuration
manage-
ment

CCE [123]
Common Configuration Enu-
meration

Provides unique identifiers to system configuration issues for
facilitating fast and accurate correlation of configuration data
across multiple info sources. It is available in XML and Excel
format.

CCSS [124]
Common Configuration
Scoring System

Set of measures of the severity of the software security config-
uration issues.

Asset
management

CPE [125]
Common Platform Enumer-
ation

Standardized XML-based method for describing and identi-
fying class of application, operating systems, and hardware
devices present in enterprise’s computing assets.

ASR [126] Asset Summary Report
XSD data model to express the transport format of summary
information about one or more set of assets.

Software
assurance

CWE [127]
Common Weakness Enumer-
ation

Provides a common language to discuss, find and deal with the
causes of software security vulnerabilities as they are found in
code, design or system architecture. It is available in several
format, including CSV, XML and HTML.

CWSS [128]
Common Weakness Scoring
System

Provides a mechanism for prioritizing software weakness in a
consistent, flexible and collaborative manner.

CMSS [129]
Common Misuse Scoring
System

Set of measures of the severity of software feature misuse (trust
assumptions made when designing software features abused to
violate security).

CWRAF
[130]

Common Weakness Risk
Analysis Framework

Part of the Common Weakness Enumeration (CWE) project.
It provides a graphical framework for scoring software weak-
nesses.

Attack
taxonomy

CAPEC
[131]

Common Attack Pattern
Enumeration and Classifica-
tion

Offers a publicly available catalog of common attack patterns
classified in an intuitive manner. It can be acquired in XML
and CSV format.

Remediation
informa-
tion

CRE [132]
Common Remediation Enu-
meration

Suite of XML-based remediation specifications that enables
automation and enhanced correlation of remediation activi-
ties.

ERI [133]
Extended Remediation Infor-
mation

XML dictionary with additional data about each CRE, includ-
ing references to CPE, CVE, and CCE.

Intrusion
detection

IDMEF
[134]

Intrusion Detection Message
Exchange Format

Using XML schema, it defines data formats and exchange pro-
cedures for sharing information of interest to IDS/IPS and to
the management systems that may need to interact with them.

Cyber
threat
information
sharing and
analysis

TMSAD
[135]

Trust Model for Security Au-
tomation Data

Common trust model that can be applied to XML specification
within security automation domain.

OpenIOC
[136]

Open Indicator Of Compro-
mise

An extensible XML schema that allows the description of the
technical characteristics that identify a known threat, an at-
tacker’s methodology, or other evidence of compromisation.

STIX [137]
Structured Threat Informa-
tion eXpression

Collaborative community-driven effort to define and develop
a language to represent structured threat information. It is
based on XML schemes.

TAXII [138]
Trusted Automated eX-
change of Indicator Informa-
tion

Open transport mechanism that standardizes the automated
exchange of cyber threat information.

CybOX
[139]

Cyber Observable eXpression

Standardized XML-based language for encoding and com-
municating high-fidelity information about cyber observables,
that are noticeable events or properties in the operational cy-
ber realm.

Security
benchmark

XCCDF
[140]

eXtensible Configuration
Checklist Description For-
mat

XML-based specification language to write security checklists,
benchmarks and related documents.

Incident
manage-
ment

IODEF
[141]

Incident Object Description
Exchange Format

Defines a data representation that provides a framework for
sharing information commonly exchanged by Computer Se-
curity Incident Response Teams (CSIRTs) about computer
security incidents.

Malware
manage-
ment

MAEC [142]
Malware Attribute Enumera-
tion and Characterization

Standardized language for encoding and communicating high-
fidelity information about malware based upon attributes such
as behaviors, artifacts, and attack patterns. It is available in
XSD and HTML format.

Table 2.5: Standardization attempts for security automation
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Features for countermeasures strategy solutions

Surveyed Works Attack modeling
Countermeasures

provision techniques
Outcomes assessment

Type of
reac-
tion

Used
standards

Automation
level

Performance

Scalability
Complexity

Response

(2012) Dewri et
al.[153], Section 2.3.3.1

• Augmented Attack Trees

• Genetic Algorithm for single
& multi-objective optimiza-
tion

• Attacker-Defender “Arms
Race”

• Test bed: Small scale simu-
lation

• Admin’s role: N/A
Static No Manual Low High N/A

(2012) Poolsappasit et
al. [98], Section 2.3.3.2

• Bayesian Attack Graphs
• Genetic algorithm for single

& multi-objective optimiza-
tion

• Test bed: Small scale simu-
lation

• Admin’s role: Tuning
Static CVSS

Semi-
automated

Low High N/A

(2012) Roy et al. [160],
Section 2.3.3.3

• Attack Countermeasure
Trees

• Branch & Bound integer op-
timization algorithm

• Test bed: Small scale simu-
lation

• Admin’s role: Tuning
Static No

Semi-
automated

Med Low Avg

(2012) Viduto et
al. [163], Section 2.3.3.4

• No attack modeling. An at-
tack model could be applied

• Multi-objective tabu search
• Test bed: Medium scale

simulation
• Admin’s role: Tuning

Static CVE
Semi-

automated
N/A Low Avg

(2013) Chung et
al. [169], Section 2.3.3.5

• Attack Graphs
• Heuristic optimization

method

• Test bed: Small scale real
virtual network

• Admin’s role: N/A
Both

CVSS, CVE
NVD

Fully-
automated

High Low N/A

(2013) Wang et
al.[145], Section 2.3.3.6

• Attack Graphs
• Hidden Markov Model

• Ant Colony Optimization
• Test bed: Small scale simu-

lation
• Admin’s role: Tuning

Static NVD, CVSS Manual Med Med Slow

(2013) Zonouz et al.
[176], Section 2.3.3.7

• Network connectivity ma-
trix

• Competitive Markov deci-
sion process

• Bellman’s optimization
method

• Test bed: Medium scale
simulation

• Admin’s role: Feedback
Both No

Semi-
automated

High Med Fast

(2014) Zonouz et al
[161], Section 2.3.3.8

• Attack Response Trees
• Partially observable Markov

decision Process
• Game theory two- player

Stackelberg stochastic game

• Bellman’s optimization
method

• Test bed: Small scale simu-
lation

• Admin’s role: Tuning
Dynamic No

Semi-
automated

High N/A Avg

(2015) Granadillo et
al. [182], Section 2.3.3.9

• No attack modeling. Static
allocation of attacker using
network evidence

• Heuristic RORI-based opti-
mization method

• Test bed: Small scale simu-
lation

• Admin’s role: N/A
Dynamic No

Semi-
automated

Low High N/A

(2015) Miehling et
al.[191],

Section 2.3.3.10

• Partially observable Markov
decision Process

• Bayesian Attack Graphs

• Bellman’s optimization
method

• Test bed: Small scale simu-
lation

• Admin’s role: N/A
Dynamic No

Fully-
automated

Low High N/A

(2015) Shameli-Sendi et
al. [104],

Section 2.3.3.11

• Attack Graphs
• Service Dependency Graphs

• Simple Additive Weighting
and Weighted Product
MCDM

• Pareto optimality

• Test bed: Medium scale
simulation

• Admin’s role: Tuning
Dynamic CVE

Semi-
automated

Low Low Fast

(2013-2016) Kotenko
coutermeasure selection

in SIEM
[195, 196, 197, 198, 199],

Section 2.3.3.12

• Attack Graphs
• Service Dependency Graphs

• Heuristic optimization
method

• Test bed: Small scale simu-
lation

• Admin’s role: Tuning
Both

SCAP : CRE,
ERI, CVE,

CVSS, CWE,
CPE

Semi-
automated

Low High N/A

(2012-2014) Kotenko
attack modeling

[200, 201, 202, 203,
204, 205, 206],
Section 2.3.3.12

• Attack Graphs
• Service Dependency Graphs

• Heuristic optimization
method

• Test bed: Large scale simu-
lation

• Admin’s role: Tuning
Both

CPE, CVE,
CVSS, CAPEC

Semi-
automated

Low High Slow

(2016) Shameli-Sendi et
al. [208],

Section 2.3.3.13

• Attack Defense Trees
• Service Dependency Graphs

• Simple Additive Weighting
• Pareto optimality

• Test bed: Small scale real
virtual network

• Admin’s role: Tuning
Dynamic CVE

Fully-
automated

Low Medium Fast

Table 2.6: Side-by-side comparison of the surveyed works based on the features presented in Section 2.3.2.2
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2.3.4 Research Challenges and Future Directions

This Section builds on top of the previous one by detailing on the challenges in the area

of countermeasure strategies against cyber attacks. The discussion revolves around 6

factors that, according to the conducted survey, seem to be the most prominent in the

development of solutions in this particular area.

2.3.4.1 Scalability

As it is shown in Table 2.6, one of the main limitations of the analyzed works is the

poor scalability of the proposed solutions. Only a few of them propose an approach

which is scalable, in the sense that complexity does not increase exponentially with the

number of parameters included in the attack model. In fact, this characteristic is clearly

reflected in the pilot implementations of the described works; one can easily notice that

there is a lack in including an experimental section which assesses the feasibility of the

solution on a large-scale environment in terms of number of hosts and interconnections.

It is therefore clear that the presented implementations can be seen only as prototypes

and they cannot reliably reflect the size and complexity of real-life networks.

We identify the attack modeling as the main cause of this deficiency. That is, most of

the reported works use AGs and ATs as the referring model for exploring possible paths,

which may be selected by an attacker. As stated in Section 2.3.2.2, these representations

are widely used by the research community to model the attacker’s steps, because they

are able to reveal the cause-consequence relationship among the represented nodes of

the graph, taking into account some elemental parameters of the network, including its

topology, connections, vulnerabilities, and so forth. The described features are really

useful in case of multi-step attacks, where the ability of predicting the attacker’s pathway

has a key role. However, the size of these representations becomes quickly unmanageable

as the size of the network grows and the interconnections among the nodes become

denser. Moreover, alongside with the graphical representation of the attacker’s steps, a

computation of the paths’ probability must be executed. However, this task increases

the overall complexity of the attack modeling.

Some methodologies, like that in [95], do attempt to reduce this limitation. One obvious

improvement can be achieved by building the graphs off-line, and then update them
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when the input parameters change. In this way, the graphs do not have to be generated

continuously, and the saved resources can be allocated for the analysis phase [98]. How-

ever, this process does not consider that, especially for dynamic environments, there is

a high probability that the input used to build the graph (i.e., network topology, asset

vulnerabilities, and others) may frequently change over time. In this case, the graph

generation cannot be considered as a one-time cost. That is, a dynamic procedure is

needed to update this representation by adding or removing nodes without regenerating

the graph from scratch.

Another possible amelioration in the analysis of the graphs is the usage of special al-

gorithms which are able to decrease the analysis complexity and calculate the path

probabilities faster [209, 210]. The contribution of these algorithms lies mainly in a

reduction of the search time in graphs, thus it can be safely argued that the application

of these methodologies is suitable for this kind of problems. Given the evidence of an

intrusion on a graph node, all the connected paths must be extracted. Besides this, the

probabilities assignment on the paths has to be computed in an efficient way, so as to

make the graph computation affordable for dynamic scenarios.

Perhaps, this inherent scalability issue can be solved if looking at it from a broader

perspective, that is, by focusing on all the development stages of the reaction system:

• At the design stage, the system should be arranged as a distributed architecture,

which scales better for complex networks.

• At the implementation stage, more efficient analysis algorithms should be used for

the purpose of calculating faster the likelihoods and the possible connections of

the attacker paths, and predicting their next steps.

2.3.4.2 Countermeasure knowledge

Another shortcoming that emerged during this study is the lack regarding the coun-

termeasure knowledge. Each one of the surveyed works presents only a limited set of

countermeasures, which is used to counteract specific attacks reported to the monitored

system. In this way, the selection process loses a great part of its importance and ef-

fectiveness, because the usage of an optimization technique on a limited search space is

not advantageous, but rather it increases the algorithmic complexity.
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In our opinion, a comprehensive pool of countermeasures is a sine qua non for any

reactive system. This pool must contain atomic actions (or a combination of them)

which can be undertaken to block and eradicate possible attacks. By doing so, the

number of possible choices for the defender to react will be considerable, giving them

two main advantages: (a) the possibility to defeat more potential intrusions, and (b)

the potential to select the most appropriate countermeasure (or a set of them), which

satisfies the required trade-off between cost, impact, and effectiveness of the hardening

measures. Moreover, with a large pool of countermeasures, the use of an optimization

algorithm is sure to offer its own advantages, giving its ability to react based on a

combination of countermeasures.

Nevertheless, there is a need for reliable sources of information to build this knowledge.

One possible solution is to use security administrators’ expertise. As already pointed

out, we do consider the important role that security administrators should play in this

strategy. These people have certain budget constraints, so the selection of countermea-

sures cannot exclude their analysis and approval. Moreover, the task to define and

control the trade-off between effectiveness and cost of the countermeasures is assigned

to them, as they represent in this vision a central point in which the flow of knowledge

must pass through. Having in mind these considerations, a security expert should not be

the only source of knowledge; rather, they should directly act only in critical situations,

and provide feedback to the countermeasure selection process.

As described in Section 2.3.2.2, another possible way to tackle this problem is to use

open standard platforms. The CVE database [88], for example, presents a list of known

vulnerabilities which have been discovered in computer systems during the recent years.

The format of a CVE entry provides a reference field, which normally provides a link

to an HTML page describing the problem and, in most cases, possible workarounds.

Following this methodology, a translator, say, in the form of a software gateway can

be used for acquiring knowledge in text format and transform it into another that is

understandable by the underlying machines [211]. Extending this concept to more vul-

nerability platforms of this kind, one can anticipate the acquisition of a nearly exhaustive

knowledge of countermeasure solutions to perform an accurate and successful reaction.



Chapter 2. Background 98

2.3.4.3 Standard representation

Another deficiency which arose during the study of the various works consists in the

absence of a standard representation for the countermeasures. This issue is directly

linked with the previous one, meaning that with the presence of a common and shared

reaction intelligence, a standard format which represents the counteractions will be

greatly appreciated.

Following the same reasoning exposed for the countermeasure knowledge, we consider a

standard countermeasures representation as a key feature in this context, as it can enable

essential information sharing among the different actors, thus leading to an increase in

the effectiveness of the implemented actions in the mid or long-run.

It is true that so far some attempts have been done towards this direction. An example

is the Common Remediation Enumeration (CRE) [132], which is a component of the

SCAP [146]. A CRE entry is a set of properties that describe a specific remediation

instance, including a single configuration setting change, the application of a patch,

installation/de-installation of software, a system reboot, and many others. Specifically,

a CRE entry has the following parameters:

• A CRE-ID, a textual identifier which can be used to uniquely name a single reme-

diation instance.

• A textual, human-understandable description of the entry detailing the method

and the effect of the remediation instance;

• An optional list of parameters applicable to the entry with specific constraints.

• The platform on which the entry is valid, expressed as a Common Platform Enu-

meration Applicability Language expression. The latter defines a standardized way

to describe IT platforms by forming complex logical expressions out of individual

CPE names and references [212].

• Supporting references and metadata related to the CRE entry.

A first draft of the CRE was given in 2011, but it was discontinued as of March 2016

for reasons not publicly known. Obviously, more research is needed to better appreciate
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the helpfulness of this representation, and to find ways in which it can be exploited for

maximizing its benefits.

2.3.4.4 Correlation between countermeasures and attacks

Once a comprehensive pool of countermeasures has been created, a thorough study on

the correlation between atomic reaction steps and attacks is also needed. This is another

arduous aspect regarding the countermeasure strategy, especially when considering the

great mass and the complexity of possible attacks. Until now, a handful of attempts

have been conducted to solve this issue in [163, 167], but all of them require a great

effort from the security expert. This is because this kind of solutions rely on administra-

tor’s knowledge about each threat. Hence, a systematic methodology is needed toward

intertwining the available attack set with the appropriate countermeasures.

The first action to achieve such a correlation is to study per given countermeasure

the number (or category) of attacks it can cover. For example, let us consider the

countermeasure “block a certain range of IP addresses”. This can be easily done by

adding a specific access control list in the FW. Also, such a rule is able to defeat different

categories of attacks, including probing, DoS and bruteforce, among others.

Then, an analysis needs to be conducted on the effect of the combined countermeasures

against a specific attack. This requirement is needed for complex attacks, when applying

a single countermeasure may be not enough, or when a combination of security measures

is preferred because their execution is more effective or more convenient as the case may

be. For instance, suppose that an information leakage is detected in a specific machine in

the network. The first action which should be undertaken is to remove all the privileges

assigned to that machine in order to block the malicious activity. However, this may

be not enough to stop the intrusion; the machine should be also isolated by blocking its

network connections.

Once the one-to-many relationships between countermeasures and attacks have been

constructed, the logical sequel is to build a many-to-many relationship between them.

This interlinking should consider also the context in which the countermeasures are

applied. This means that a specific reaction can be useful in a specific context, but

ineffective or useless if it is applied in another scenario.
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2.3.4.5 Metrics and scoring system

As discussed in Section 2.3.2.2, the use of metrics is needed to quantitatively analyze

the experimental results provided by each of the surveyed works, where applicable. So

far, in the literature, a plethora of security metrics has been proposed, with the aim of

capturing different aspects of the problem, including attacks, networks topologies, cost

and vulnerabilities metrics [112]. Nevertheless, from our study, we realized that there

is a prominent lack of specific and commonly used measurement systems for reliable

countermeasure assessment. While the application of a specific countermeasure is for

blocking an attack, it may also involve side effects, which should be considered and

quantified for optimizing the whole process.

As already pointed out in Section 2.3.2.2, currently a scoring system for the vulner-

abilities has been developed by the Forum of Incident Response and Security Teams

(FIRST) [143].

In this mindset, the creation of a countermeasure scoring system is highly desirable. An

important aspect to consider in this regard is the possibility of adapting the counter-

measure score depending on temporal and environmental aspects, as CVSS does for the

vulnerabilities. That is, as a vulnerability evolves during time and changes its impact

depending on the system where it is applied, also a countermeasure should be considered

as an evolving entity which, depending on the above factors, updates its score.

From the survey of works conducted in the context of this chapter, a countermeasure

scoring system should consider the following parameters:

• Effectiveness of the solution. It is expressed as a percentage of coverage or a

probability of success.

• Scope of the reaction. It is expressed as the ability of impacting other components

in the system, which could be directly or indirectly affected by its enforcement.

• Maturity of the solution. It reflects the elapsed time from which the solution has

been deemed as functional.

• Impact on the system. It is expressed as a function of availability, confidentiality

and integrity impact of the countermeasure on the ICT system.
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• Implementation cost. It is part of the direct costs of the countermeasure, regarding

its activation in the system.

• Maintenance cost. It represents the economic cost to sustain the implementation

of a countermeasure for long-term reactions; it is calculated only for the long-term

countermeasures.

• Indirect cost. It reflects the collateral economic damage caused by a countermea-

sure, as the effect of the countermeasure on a legitimate user of the system, the

deactivation cost for a particular invasive remediation, and so forth.

Considering the possible adjustments using temporal and environmental aspects, the

score assigned to a given countermeasure can be considered as adaptable, solving in

this way also the lack of adaptability existing in the analyzed works. Once a suitable

measurement system has been developed, a testing phase to judge upon its capabities

is desiderable. In this mindset, the construction of a full-fledged benchmark dataset

containing both single and multi-step attacks based on real network data would be a

great pointer for future research in this field. The proposal of Shiravi et al. [27] can be

of great help in this direction as it introduces a set of guidelines on how to build valid

datasets, which can be followed to create new ones.

2.3.4.6 Mitigating zero-day attacks

A last research challenge extracted from the survey contucted in Section 2.3.3 is the

mitigation of zero-day attacks. The dissection of the works reveals a notable shortcoming

of the literature, as the vast majority of the proposed countermeasure provision solutions

neglect any kind of reaction against unknown offensive incidents. Even though the

authors in [176, 153, 196, 200, 203] elaborate on the problem of responding upon zero-

day attacks, their implementations and the experimental testbeds advocate that they

cannot be considered as concrete solutions. Without doubt, detecting attacks derived

from zero-day vulnerabilities is a challenging task. One could say that counteracting such

attacks is even more challenging. In fact, until a fix is published to patch the zero-day

vulnerability, the corresponding systems remain unprotected. This gives additional value

to a countermeasure system which is able to provide cost-benefit mitigation strategies,

and to a comprehensive static countermeasure planning.
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The inefficiency of the current proposals stems mainly from the fact that the attack

modelling representations are capable of representing specifically defined states of the

system, thus omitting attack paths that could appear under zero-day vulnerabilities.

POMDP and HMM representations have been used in [191, 79] respectively to quantify

uncertainties concerning the attacker’s position or their chosen attack path, but not to

model the potential existence of unknown system’s security states. To this end, such

models could be proved beneficial in conjunction with zero-day vulnerability metrics

[207, 79] and security automation standards such as CWE[127]. Additionally, an ap-

proach of generating AGs by taking into account zero-day vulnerabilities [200] sounds

very promising for building countermeasure systems in this direction. Without doubt,

the effectiveness and responsiveness of such a system constitute an additional research

challenge.

2.3.5 Conclusions

The convergence of network technologies around IP and the openness to the Internet

and IoT, present major challenges from a security viewpoint. Today, more than ever,

organizations are facing a plethora of highly diversified cyber attacks, which tend to be

more ingenious and decisive. In this highly offensive and dynamic terrain, the need for

full-blown, fine-grained, and possibly automated reaction strategies in terms of optimal

countermeasure selection is highly demanded and urgently needed. In fact, this necessity

is observed in the recent literature of ICT security by a number of works published

in well-respected journals and conferences during the last 5 years. In this context,

this chapter offers a comprehensive study of these works, fulfilling the following three

goals. First, it extracts common criteria that can be used as a basis for comparing the

various existing (and future) works in this evolving field. Second, it delves into each

of the studied works, and through a critical discussion, pinpoints its advantages and

disadvantages. This, in synergy with the identified criteria, leads to a comprehensive

side-by-side comparison of the included works and helps the reader to obtain a holistic

view of this particular field. Last, it elaborates on the future research directions and

challenges in this topic, which can be used as a reference to anyone interested in grasping

the diverse facets of this area of research.



Chapter 3

Dendron: Genetic trees driven

rule induction for network

intrusion detection systems

The previous chapter provided an overview of the intrusion detection and response realm

by presenting and analyzing a range of proposed systems and methodologies. Naturally,

in order to properly respond and prevent the negative consequences of a cyber attack,

it is a primary premise to detect it first. In fact, any responsive mechanism destined

to provide cost-benefit countermeasures should be triggered upon a correctly identified

incident. In this regard, a high False Alarm Rate (FAR) of a detection system could

lead to an outburst of unnecessary responses, which in turn would affect the availability

of services and introduce additional workload to the administrators. Additionally, it

is of major importance to detect the exact type (class) of an attack, as an optimal

response should be tailored to the nature of an attack and different types of attacks

require different counteraction strategies.

To this end, it becomes obvious that the effectiveness of a responsive system is strongly

connected to the performance of the detection engine. Hence, a detection system, which

is in synergy with a responsive system, should be capable to keep the FAR to acceptable

levels and accurately designate the class where cyber attacks belong to. In this direction,

misuse (also known as signature-based) IDSs seems to be a more appropriate solution

in contrast to anomaly IDSs, as the latter are known for producing high FARs and they
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solely distinguish between legitimate and anomalous behavior instead of defining the

exact attack class. Misuse IDSs are equipped with a set of rules which are posed against

network traffic with the aim of matching attack descriptions, i.e., signatures of attack

vectors. On the other hand, while these systems are able to detect known attacks, they

miss to identify novel attacks or variations of known ones. Thus, the detection ability

of a misuse detection system is directly affected by the freshness of the detection rules

it possesses.

In view of the above, this chapter presents Dendron, a rule induction methodology based

on a hybrid approach of Genetic Algorithms (GAs) and Decision Trees (DTs). Dendron

aims to evolve DTs through an evolutionary process and result to a set of rules for

building a misuse IDS, which is able to detect multiple attack classes and keep FARs to

acceptable levels.

3.1 Introduction

Keeping a detection rules database up-to-date is a challenging task that involves system

administrators’ supervision. Considering the huge traffic volume passing through central

network nodes like an IDS, one easily concludes that the rule generation process is

necessary to be supported by automated tools able not only to distinguish between

legitimate and malicious traffic, but also to infer the specific class of an attack occurring

in the target system. Moreover, the set of the detection rules should enable the system

to identify attacks with high Attack Detection Rate (ADR) while keeping the FAR low.

Generally, false alarms are a cardinal concern in the field, especially when an IDS is

involved in collaborative infrastructures [70], [213] and reputation systems [214], [215].

However, there is always a trade-off between FAR and ADR.

Analyzing network traffic in the context of IDS and Machine Learning is proven to be a

challenging task mainly because of specific properties of the network traffic flows. Under

realistic terms, a network is flooded with normal traffic flows and only a smaller fraction

of the traffic may indicate malicious behavior. Currently, state-of-the-art approaches

are able to generate rules for detecting popular classes of attacks but largely neglect the

minority attack classes. Even if these types of attacks are less common, their impact on
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the targeted system may be destructive. For instance, attacks such as remote vulnerabil-

ity exploitation or privilege escalation could lead to a system being compromised by an

evildoer or confidential information being leaked, causing financial losses and harming

the trustworthiness of the organization. Moreover, a network analysis process focuses

on several features that have to be taken into consideration for distinguishing legitimate

from malicious traffic.

Overall, the aforementioned data properties combined with the numerous attack types

pose a significant challenge for Machine Learning solutions as they expand the search

space of the problem and lead to computational intensive procedures. In addition, the

imbalanced data hinders the detection accuracy at a great extent. In short, misuse IDSs

deal with datasets characterized by:

• Being multi-classed (diverse types of attacks).

• Being multi-featured (several network traffic attributes).

• Being highly un-balanced (many instances of normal network traffic, but very few

instances of rare attacks).

In this context, we propose Dendron, a novel misuse detection system able to accurately

detect both popular and rare types of attacks. Our solution utilizes Decisions Trees

(DTs) blended with evolutionary techniques in order to generate detection rules under

two main premises. On the one hand, the rules must enable the IDS to take accurate

decisions concerning all types of attacks, even the most scarce ones. On the other,

emphasis is put on the readability of the rules, that is the generated rules should be lin-

guistically interpretable for human comprehension in order to add value to the system

administration task. More specifically, DTs ensure the interpretability of the rules, as

the transformation of a DT into classification rules is straightforward. However, DTs

are known to significantly neglect the minor classes in a dataset [43], while the size of

the tree and the discretization of continuous features poses a challenge. Therefore, Den-

dron takes into consideration a feature reduction strategy to minimize the length of the

detection rules, while the equal-frequency discretization [216] technique is adopted to

handle the continuous features of the dataset. Moreover, our approach utilizes Genetic

Algorithms (GA) which is a well-known optimization solution to increase the classifica-

tion accuracy of classification models by gradually evolving populations of Individuals
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based on procedures inspired by natural evolution. By the term Individuals we refer to

DTs which are gradually evolved through the evolutionary process aiming to generate

an accurate and unbiased decision tree able to detect both popular and rare intrusive

events.

In short, the contributions of the work presented in this chapter are as follows:

• We propose a new methodology that combines the benefits of DTs and GA with

the aim of providing linguistically interpretable and accurate intrusion detection

rules. Our method is able to deal with imbalanced datasets and generate intrusion

detection rules enabling an IDS to identify both popular and rare types of attacks.

• In the context of GA, we provide a weighted selection probability function for

evolving balanced DTs which are not biased toward neglecting those classes rep-

resented by a smaller percentage of instances (records) in the dataset.

• Our approach is compared against other state-of-the-art and legacy machine learn-

ing proposals in an extensive testbed comprising of three intrusion detection

datasets, namely: KDDCup’99 [21], NSL-KDD [22] and UNSW-NB15 [23].

• Our proposal is evaluated and compared against others using six distinct classifi-

cation metrics. The results show that the proposed solution surpasses equivalent

methods in terms of Mean F-Measure (MFM), Average Accuracy (AvgAcc) and

Attack Accuracy (AttAcc) classification metrics, while keeping false alarms at ac-

ceptable levels.

The rest of this chapter is organized as follows: The next section presents background

information concerning the methodology of DTs in the context of GA. The proposed

methodology is given in Section 3.3, while in Section 3.4 we provide the evaluation results

and the complexity analysis of our proposal. Section 3.5 provides a discussion on the

findings. Section 3.6 reviews the related work in the field. The last section concludes

and provides pointers to future research.

3.2 Preliminaries

As already pointed out, our methodology is based on a combination of DTs with GA

in favor of finding the optimal solution for generating intrusion detection rules. By
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Figure 3.1: Structure and properties of a DT

doing so, we meet two main qualities in the field, namely: i) the interpretability of the

detection rules to augment human comprehension, and ii) the generation of accurate

detection rules.

3.2.1 Decision Trees

DTs are a well-known classification model for supporting decision making in the context

of machine learning. An example of a DT is given in Figure 3.1, while the interested

reader can refer to section 2.2.4 for more details on DTs.

DTs present several advantages: Transforming a DT into decision rules is straightfor-

ward; as shown below, every branch leading from the root of the tree to a leaf, can be

represented as an IF {Conditions} THEN {Class} rule, where the IF clause contains

the conjunction of the conditions (derived from the nodes) and the outcome is the class

of the leaf. The IF part of the rule is also known as antecedent and it is expressed as a

sequence of tuples <feature,operator,value>, while the prediction part of the rule is also

known as consequent.

IF
{
f1 is V1 ∧ · · · ∧ fn is Vn

}
THEN Class = C

The simplicity of the decision rules enables one to easily understand the conditions

and the outcome. Thus, the premise of human-understandable rules is met. However,
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DT algorithms which are driven by information gain significantly neglect those classes

represented by a smaller percentage of instances in a dataset [43].

3.2.2 Genetic Algorithms

Evolutionary computation [57] is based on algorithms imitating the evolutionary princi-

ples introduced by Darwin’s theory. The most prevalent type of evolutionary algorithms

is the GAs [217] which are based on the concept of population evolution. GAs are gen-

erally composed by the following fundamental steps: (i) Initial population creation, (ii)

Individuals selection, (iii) Individuals crossover, (iv) Individuals mutation, (v) Popula-

tion replacement. These sequential steps are repeated until a termination condition is

met. The aim of the evolutionary steps is to explore the search space of the problem

and come up with the best solution among the feasible ones. The “best” solution is the

one with the highest fitness value, which is calculated by a fitness function. The latter

is any metric, in the context of a problem, that can be used to evaluate the candidate

solutions, i.e., the individuals of the particular population. GAs are a well-known op-

timization technique for improving the performance of classification models. For more

details about GAs, please refer to Section 2.2.4.

3.2.3 Combining Decision Trees and Genetic Algorithms

In the context of our research, we take advantage of GAs to evolve populations of DTs.

Thus, a DT in our approach is considered as an individual in the population which is

being evolved through the GA. In the rest of this chapter, the reader should consider the

individuals as DTs and vise versa. Decision nodes are considered as genes of individuals.

The crossover and mutation operations are applied between two selected individuals,

upon a specifically selected gene, with the aim of generating new individuals hopefully

“superior” than their ancestors. In the context of our work, any legacy classification

metric could be used as a fitness function to measure the classification ability of a

multi-classed DT. The evolutionary process evolves individuals toward maximizing their

fitness. In this way, our approach of DTs and GAs leads to a set of accurate DTs where

the final model is the most accurate among them. More details about the fitness metrics

are given in Section 2.2.2, while our approach is explained in Section 3.3.
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Parameter Description

D Dataset
P, |P| Population, Size of Population
|F| Number of features
N Number of iterations

P ′,
∣∣P ′
∣∣ Temporary population, Size of temporary population

λ Number of Individuals per class
µ Mean value of Gaussian Distribution
σ Standard Deviation of Gaussian Distribution

parenti i-th Selected Parent
childi i-th Crossovered Child
child′i i-th Mutated Child
I Individual

Î Best Individual

N̂ I New Best Individual
C Number of classes in the dataset

C̃ Missing classes in the best individual
|L| Total number of leaves in the individual
|Lj | Number of j-th’s class leaves in the individual

|Lm| Total number of leaves of the missing classes
α, β, γ Alpha, Beta and Gamma weights
pi Percentage of instances of the i-th class in the dataset
SPi Selection probability of i-th individual
depth Depth indexing to the node for crossover and mutation
branchi i-th branch of an Individual of a specific node
ϕi i-th splitting point of a branch
ιi The information gain value for the i-th splitting point
ϕ Optimal splitting point
P ′′ Next Population
θ Number of extra individuals to be added

Table 3.1: Pseudocode parameters.

3.3 Proposed Methodology

The proposed methodology involves specific GA steps to enhance the classification ability

of the end model. More specifically, the GA is applied on a population of DTs aiming to

traverse the search space of the problem by expanding them. The goal is to explore the

possible efficient paths, which will subsequently form the final detection rules. Every

step introduces heuristic methods in order to overcome challenges which are mainly

posed by the nature of the problem. An overview of the proposed methodology is given

in Algorithm 1, while the reader can refer to the pseudocodes that describe low-level

operations. Also, to ease the reader in the understanding of the text and algorithms, all

the associated parameters (terms) are included in Table 3.1 along with the recommended

symbols.
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Algorithm 1: Evolutionary Algorithm and Decision Trees.

Data: N , λ, D, σ
Result: Classification Model

1 |F| ← GetNumOfFeatures(D);
2 {p1, . . . , p|C|}← GetClassPercentages(D);
3 P ← CreateInitPopulation(λ);

4 Î ← Evaluate(P);
5 µ ← 0;
6 for i← 1 to N do
7 P ′ ← null;

8 {SP1, SP2 . . . , SP|P|}←ComputeSelectionProbability(P, Î, {p1, . . . , p|C|});

9 while
∣∣P ′
∣∣ < |P| do

10 {parent1, parent2} ← SelectParents(P, {SP1, SP2 . . . , SP|P|});
11 depth ← SelectDepth(µ, σ, |F|);
12 {child1, child2} ← Crossover({parent1, parent2}, depth);
13 {child′1, child′2} ← Mutate({child1, child2}, depth);

14 P ′ ← P ′ ⋃{{child′1, child′2}};
15 µ ← (µ +1) mod |F|;
16 end
17 P ← Replace(P, P ′);

18 N̂ I ← Evaluate(P);

19 if GetFitness(N̂ I) > GetFitness(Î) then

20 Î ← N̂I;
21 end

22 end

23 return Î;

3.3.1 Initial Population Creation

The first step is to create an initial population of individuals (alg:1, line:3). Recall that

the term Individual stands for a DT in the population. The initial population consists of

DTs with minimum classification capabilities as they are only able to classify instances

of one class and their node’s conditions are always true. Exemplary DTs having these

properties are depicted in Figure 3.2, where one can easily observe that the trees are

not branched at all. Instead, if any dataset instance is submitted to a tree of this kind,

then all its attributes will satisfy the corresponding condition of the node and as a result

the classification outcome will be the class represented in that leaf. The DTs will be

gradually evolved through the crossover and mutation processes described in Sections

3.3.4 and 3.3.5, respectively. The size of the initial population (|P|) is an adjustable

parameter based on the number of the traffic classes |C|, as indicated by the dataset, and
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Figure 3.2: Initial population creation: The initial individuals are not branched at
all. Their nodes are prioritized based on their information gain.

Function 1: CreateInitPopulation(λ, D)

Data: λ, D
Result: P

1 prioritizedFeatures ← CalculateInformationGain(D);
2 P ← null;
3 for class ∈ C do
4 for j ← 1 to λ do
5 decisionTree ← GenerateDecisionTree(class, prioritizedFeatures);

6 P ← P
⋃{

decisionTree
}

;

7 end

8 end
9 return P;

the desired number of individuals per class (λ), as indicated by equation (3.1).

|P| = |C| · λ (3.1)

The sequence of the nodes of the DTs is a vital aspect for the classification accuracy of

the individuals. In this direction, the prioritization of the decision nodes is driven by

the information gain for every node, given the input dataset (func:1). The information

gain metric is used to evaluate the worth of an attribute with respect to the class in the

dataset. We evaluated the worth of the attributes by utilizing the InfoGainAttributeEval

class as used by the WEKA Data Mining software [218]. In this way, the individuals are

constructed by placing the more significant decision nodes closer to the root of the tree.

It must be noted that the sequence of nodes of each tree in the population is the same.

The aforementioned procedure is intuitively represented in Figure 3.2.
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Once the initial population is created, it is given as an input to the genetic evolutionary

process for maximizing the classification accuracy of the individuals.

3.3.2 Parents Selection

The GA involves a selection process (func:6) aiming to gradually create a new population,

possibly better than the previous one. To do so, the selection process is driven by a

probabilistic method to come up with two individuals, the parents {parent1, parent2},

who will be crossovered and mutated in subsequent steps in order to construct two new

individuals (alg:1, line:10).

The probabilistic method for calculating the selection probability for each of the indi-

viduals Ii in the population is given by formula 3.2, while a pseudocode implementation

is given in function 5.

F (Ii) = α · g1(Ii) + β · g2(Ii) + γ · g3(Ii) (3.2)

where:

• g1(Ii) ∈ [0, 1] is the actual fitness function for the i-th individual.

• g2(Ii) ∈ [0, 1] is the class-based selection function for the i-th individual.

• g3(Ii) ∈ [0, 1] is the missing classes function of the best individual.

• α, β, γ ∈ [0, 1] are the weights of g1, g2 and g3 respectively (where α+β+ γ = 1).

Fitness function The fitness function g1 stands for the classification metric chosen to

measure the classification ability of the individual (func: 2). Several legacy classification

Function 2: g1=GetFitness(I, D)

Data: I
Result: Fitness Metric

1 confusionMatrix ← GenerateConfusionMatrix(I, D);

2 fitness ←



Accuracy(confusionMatrix);
AverageAccuracy(confusionMatrix);
MeanF-Measure(confusionMatrix);
AttackAccuracy(confusionMatrix);
AttackDetectionRate(confusionMatrix);
FalseAlarmRate(confusionMatrix);

3 return fitness;
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metrics could be used as a fitness function. More details on this process are given in

Section 3.4, while Section 2.2.3 provides the definitions of the classification metrics.

Class-based Selection function The Class-based Selection function g2(Ii) aims to

instruct the system toward maximizing the selection probability of those individuals

containing more leaves of the minority classes for the given dataset (func:3). This

function is represented by the following formula:

g2(Ii) =

|C|∑
j=1

(
(1− pj)

|Lj |
|L|

)
, (3.3)

where:

• |C|: the number of classes in the dataset.

• pj : the percentage of instances of the j-th’s class in the dataset.

• |Lj |: the number of j-th’s class leaves in the individual Ii.

• |L|: the total number of leaves in Ii.

Missing Classes function The missing classes function g3 aims to instruct the system

toward maximizing the selection probability of those individuals containing leaves for

classes missing from the best individual (func:4).

g3(Ii) =

∑m
j=1(|Lj |)
|L|

, (3.4)

where:

• m: the number of missing classes in the best individual.

The proposed probabilistic method F (Ii) is weighted by three attributes α, β and γ,

applied to g1, g2 and g3, respectively, in order to adjust the final result of the system

accordingly.

The α and β weights are adjusted during the initialization of evolutionary process, while

γ weight has a non-zero value if and only if there are missing classes at the leaves of
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Function 3: g2=ClassSizeBasedSelection(I, {p1, . . . , p|C|})
Data: I, {p1, . . . , p|C|}
Result: Class size-based selection probability

1 selectionProbability ← 0;
2 for class ∈ C do
3 |Lclass| ← GetNumberOfLeavesForClass(class, I);
4 |L| ← GetTotalLeaves(I);

5 selectionProbability← selectionProbability +

(
(1− pclass)

|Lclass|
|L|

)
;

6 end
7 return selectionProbability;

Function 4: g3=MissingClassesFunction(I, Î)

Data: I, Î
Result: Selection probability based on missing classes in the best individual

1 C̃ ← GetMissingClasses
(
{ Î }

)
;

2 for class ∈ C̃ do
3 |Lclass| ← GetNumberOfLeavesForClass(class, I);
4 |Lm| ←|Lm| + |Lclass|;
5 end
6 |L| ← GetTotalLeaves(I);

7 selectionProbability← |Lm||L| ;

8 return selectionProbability;

the best individual. If the best individual is “normal”, in the sense that all the classes

indicated in the dataset are present in its leaves, then γ is equal to 0. Therefore, in this

case, missing classes function g3 is not applied in F (Ii). The formula for γ calculation

is given in eq. (3.5).

γ = 1− m

|C|
(α+ β), (3.5)

The α and β weights are complementary (α + β = 1) and gradually change during the

evolution of the population (func:5, line:1). A possible initial configuration could be an

assignment of a high value to β at the initiation of the algorithm (e.g., α = 0.2 and β =

0.8) in order to augment the selection probability F (Ii) of individuals containing more

leaves of the minority classes. Then weight α is being gradually increased, while β is

being decreased until finally reaching α = 1 and β = 0. During this gradual alteration
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Function 5: ComputeSelectionProbability(P,Î, {p1, . . . , p|C|})

Data: P,Î, {p1, . . . , p|C|}
Result: Selection Probability for each individual

1 {α, β, γ}← CalculateWeights();
2 for I ∈ P do
3 x ← α· GetFitness(I);
4 y ← β· ClassSizeBasedSelection(I, {p1, . . . , p|C|});

5 z ← γ· MissingClassesFunction(I, Î);
6 SPI ← x + y + z ;

7 end
8 return {SP1, SP2 . . . , SP|P|};

of α and β, γ calculation formula (3.5) is applied if and only if there are missing classes

in the best individual.

From formula (3.5) it can be inferred that γ gets specific values based on the total

number of classes in the dataset |C| and the missing classes in the best individual m.

When γ 6= 0, α and β have to be normalized in order to satisfy the rule (α+β+ γ) = 1.

Hence, if γ 6= 0, the normalized values of α and β are calculated as follows:

α′ = α · m
|C|

(3.6)

β′ = β · m
|C|

(3.7)

Discussion The configuration described above is a key concept of the proposed

methodology. According to the literature [43], classifiers tend to neglect the minor

classes of a dataset, achieving lower accuracy contrary to the major ones. To counter-

act this phenomenon, we introduce the selection function F (Ii) ∈ [0, 1] in combination

with α, β and γ weights. This approach leads the selection function toward selecting

parents who are able not only to classify accurately, but also to take into consideration

the minor classes of the dataset by increasing the selection probability with respect to

the inverse percentage of the instances of a class (parameter (1 − pj) in eq.(3.3)). The

aforementioned trend can be also weighted accordingly using α and β weights. On the

other hand, γ weight is introduced in order to ensure that all the classes indicated by

the dataset are present in the best individual. As stated in Section 3.3.1, the initial

DTs are single-class only. The final classification model should be able to infer on traf-

fic instances of all classes, thus via the evolutionary approach our methodology has to
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Function 6: SelectParents(P, {SP1, SP2 . . . , SP|P|})
Data: P, {SP1, SP2 . . . , SP|P|}
Result: {parent1, parent2}

1 {parent1, parent2} ← RouletteWheelSelection(P,{SP1, SP2 . . . , SP|P|});
2 return {parent1, parent2};

ensure the presence of all classes in the best individual. This is why γ weight is applied

with g3(Ii) in equation (3.2). Moreover, in order to select the two parents which will be

crossovered and mutated, we utilize the Roulette Wheel [219] selection technique (func:6,

line:1). This technique is known for giving higher chances to the candidate individuals

with higher selection probability to be selected. However, at the same time, it does not

completely neglect those with lower selection probability.

3.3.3 Depth Selection

This step is a preparatory process for the crossover and mutation operations. The depth

selection (alg:1, line:11) utilizes a Gaussian distribution (func: 7) with µ (mean) varying

from 0 to the maximum depth of DTs (which is equal to the total number of features in

the dataset |F|). More specifically, µ is gradually increased by 1 every time 2 parents are

selected. In this way, every next selected parents are crossovered and mutated potentially

to a lower node. Figure 3.3 depicts the gradually moving distribution. When µ reaches

its maximum value is then reinitialized to 0. In this way, the parents will start again

being crossovered and mutated in higher levels, and so forth. The standard deviation σ

can be adjusted accordingly.

We should keep in mind that the problem of generating detection rules is a search

problem with a quite large search space. This is why the problem of learning an optimal

DT is known to be NP-complete [220]. The goal of Depth Selection approach is to

Function 7: SelectDepth(µ, σ, |F|)
Data: µ, σ, |F|
Result: depth

1 depth ← -1;
2 do
3 depth ← GaussianGenerator(µ,σ);
4 while (depth < 0) ∨ (depth > |F|);
5 return depth;
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Figure 3.3: Gradually moving Gaussian distribution.

gradually create highly branched individuals on multiple levels (nodes) and explore the

search space of the problem in a more efficient way.

3.3.4 Parents Crossover

The crossover process (func:8) is applied to the individuals and more specifically to the

two parents {parent1, parent2} who were selected from the selection step described in

Section 3.3.2. The evolutionary strategy synthesizes individual’s characteristics by swap-

ping randomly chosen branches between the selected individuals with the aim of con-

structing individuals of high variance. The swapping process is intuitively represented

in Figure 3.4, where the dashed branches are swapped resulting into two new individ-

uals {child1, child2}. This synthesis occurs based on a specific probability (Crossover

probability) and to a specific depth among the nodes of DTs. The depth (the node) on

which the swapping is applied is indicated by the depth selection process described in

Section 3.3.3.

Function 8: Crossover({parent1, parent2}, depth)

Data: {parent1, parent2}, depth
Result: {child1, child2}

1 branch1 ← SelectBranchRandomly(parent1,depth);
2 branch2 ← SelectBranchRandomly(parent2,depth);
3 {child1, child2} ← SwapBranches({parent1, parent2}, branch1, branch2);
4 return {child1, child2};
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Figure 3.4: Crossover operation: Swapping branches between two individuals
(parent1,2) to a specific node, results to two new individuals (child1,2), as described in

Algorithm 1.

The crossover process creates populations with a high variation contributing in this way

to the problem of exploring the search space more efficiently.

3.3.5 Parents Mutation

The mutation process (func:9) is applied on the crossovered individuals {child1, child2}

in terms of splitting decision nodes on specific predefined splitting points. The mutation

process is depicted in Figure 3.5. Actually, this operation is responsible for expanding the

DTs by generating new branches for the tree nodes. In this way, new paths connecting

the root with the leaves are created. This affects the trees in two ways: on the one hand,

the generation of a branch contributes to the exploration of the search space and, on

the other, it creates a new set of rules.

Function 9: Mutate({child1, child2}, depth)

Data: {child1, child2}, depth
Result: {child′1, child′2}

1 for I ∈ {child1, child2} do
2 {branch1, . . . , branchn} ← GetBranches(I, depth);
3 {ϕ1, . . . , ϕn} ← GetSplittingPoints({branch1, . . . , branchn});
4 if {ϕ1, . . . , ϕn} 6= Ø then
5 {ι1, . . . , ιn} ← ComputeInfoGain({ϕ1, . . . , ϕn});
6 ϕ ← GetBestSplittingPoint({ϕ1, . . . , ϕn}, {ι1, . . . , ιn});
7 mutatedIndividual ← SplitBranchAtPoint(I, ϕ);

8 end
9 {child′1, child′2} ← {child′1, child′2}

⋃
{mutatedIndividual};

10 end
11 return {child′1, child′2};
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Figure 3.5: Mutation operation: Creating a new branch to the individual on a specific
node for the value that achieves the highest information gain ([V3] in this example).

A feature in the dataset represented by a node can be either continuous or discrete.

The splitting values of a discrete attribute are straighforward but for the continuous

attributes a discretization technique is needed in order to define specific splitting points

in the continuous interval. Among several methodologies proposed in the literature

[221][222] we adopted the equal-frequency discretization [216]. This approach decides

upon the splitting values so that each resulting interval contains approximately the same

number of instances. We adopt this approach mainly because the generated splitting

values are less that those derived from the approaches proposed in [221] and [222],

minimizing this way significantly the search space.

For example, if equal-frequency discretization is used to discretize the continuous at-

tribute src bytes from KDDCup’99 [21], the derived split intervals are the following:

• src bytes: [0,40571] → [0,1], (1, 202], (202, 249], (249, 330], (330, 40571]

If the value 249 is chosen to split the node then two new branches will emerge:

• src bytes: [0, 249] → [0,1], (1, 202], (202, 249]

• src bytes: (249, 40571] → (249, 330], (330, 40571]

The first derived branch can be split further on 1 and 202, while the second branch could

be further split only on 330.

One the other hand, the discrete features are split in a more simple way. In this case,

we adopted a “Pull-Left” [223] approach where a new branch is generated by isolating
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the value that achieves the maximum information gain. For example, if we assume that

the service feature (from KDDCup’99 [21]) has 4 distinct values, then as shown below,

there are 4 different splitting possibilities.

• service: {http, smtp, pop3, ftp}

– {http}, {smtp, pop3, ftp}

– {smtp}, {http, pop3, ftp}

– {pop3}, {http, smtp, ftp}

– {ftp}, {http, smtp, pop3}

Every splitting decision (both for discrete and discretized continuous features) is taken

based on the information gain produced on every possible splitting point for the selected

decision node. The splitting point that produces the highest information gain is the

one where a new branch is generated (func:9 lines:3-7). If a node cannot be further

split or its splitting point does not produce any information gain, based on the given

dataset, then the mutation operation is not applied. As in the crossover process, parents

mutation occurs based on a specific probability (mutation probability) and the depth

selection process (Section 3.3.3) indicates the depth of the node intended to be split. The

mutation process leads to individuals who are as compact as possible as their expansion

is guided by the information gain. In practical terms, this is translated into a relatively

small set of detection rules.

The mutated individuals {child′1, child′2} will be added to a temporary population. The

Selection, Crossover and Mutation operations are repeated (alg:1, lines:7-14) until the

size of this temporary population reaches the size of the initial one. When this condition

is met, the population replacement operation is initiated.

3.3.6 Population Replacement

The replacement operation (func:10) is responsible for choosing the most suitable in-

dividuals between the initial and the temporary population in order to form the next

population, which will be used again as input to the evolutionary process. In this pro-

cess, we evaluate the classification accuracy of the individuals one-by-one and those with

the highest fitness are finally moved to the next population (func:10, lines:1-9). It has
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Function 10: Replace(P, P ′, θ)
Data: P, P ′

Result: P ′′

1 for i← 1 to |P| do
2 if ( GetFitness(Pi) > GetFitness(P ′

i) ) then
3 I ← Pi

4 else
5 I ← P ′

i

6 end
7 P ′′ ← P ′′⋃{I};
8 end
9 missingClasses ←GetMissingClasses(P ′′);

10 while missingClasses 6= Ø do
11 I ← FindIndividual(P, missingClasses);
12 for j ← 1 to θ do
13 P ′′ ← P ′′⋃ {I};
14 end
15 missingClasses ← GetMissingClasses(P ′′)

16 end
17 return P ′′;

to be mentioned that the individuals in every population are ordered in a descending

order based on their Fitness. The fitness function could be any classification metric from

those referred in Section 2.2.3. During the replacement process, several measures have

to be taken for ensuring the “normality” of the next population. A “normal” population

requires all the classes indicated by the dataset to be present in the leaves of the indi-

viduals. That is, if a class is missing from a population, then all the next generations

will miss this class, resulting to an undesirable outcome. In this direction, we check for

potentially missing classes in the population and if there are any, then we proceed to

the addition of extra individuals from the previous population containing the missing

classes in their leaves (func:10, lines:10-17). We add several instances of the same indi-

vidual in the next population in order to maximize the probability to be selected as a

parent later in the execution. This is depicted in Figure 3.6 in an intuitive manner. The

number of individuals added to the next population is given by parameter θ adjusted

proportionally to the total size of the population.

The operations described above are repeated until a specific condition is met. This

condition could be a specific number of iterations of the GA, a specific score of a classi-

fication metric, or even a time lapse. During this repetitive process, the accuracy of the

individuals is gradually increased, whereas the individuals are getting branched. The

ultimate goal is to conclude to an end model able to classify all possible types of attacks
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Figure 3.6: Population replacement: The new population must be “normal” in the
sense that all the classes indicated by the dataset must be present in the leaves of the

population.

with the highest possible accuracy.

3.3.7 Population Evaluation

The evaluation process is to decide upon the best DT of a population (func:11). In order

to nominate the best individual, the evaluation process can be based on several legacy

classification metrics. The evaluation metric is essential because it is used as the actual

fitness function in the GA. In this direction, the evolutionary process is guided toward

maximizing the chosen metric.

The definition of aspirant classification metrics for a multi-classed approach was given

in Section 2.2.3.

Function 11: Evaluate(P)

Data: P
Result: Î

1 bestFitness ← -1;

2 Î ← null;
3 for I ∈ P do
4 fitness ← GetFitness(I);
5 if ( fitness > bestFitness ) then
6 bestFitness ← fitness;

7 Î ← I;

8 end

9 end

10 return Î;
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3.3.8 Feature Selection

In practical terms, feature selection is considered a necessity when dealing with multi-

dimensional machine learning problems. According to [224], a feature reduction strategy

can improve the prediction performance while providing faster and more cost-effective

models. In the context of the current work, the adoption of a feature reduction strategy

is translated into shorter in length detection rules improving the human-readability of

the rules. As described in Sections 3.3.3 and 3.3.5, the complexity of the Individuals is

intensively increased since the possible paths, i.e., detection rules, among the nodes and

the corresponding splitting points, are numerous.

In an effort to minimize the complexity of our model and contribute to the overall

accuracy, we concluded to 21 features out of the 41 of the KDDCup’99 [21] and NSL-

KDD [22]. Precisely, we selected the final subset of the features based on an empiri-

cally study of our model and our knowledge on the domain of the problem. Since we

aim to balance the accuracy between the major and the minor classes of the dataset,

we chose features that can represent U2R (user-to-root) and R2L (remote-to-local) at-

tacks like root shell, num root, num shells, num compromised. But of course, we chose

also representative features for the PRB (probing) and DoS (denial of service) attacks

like dst host same srv rate and wrong fragment respectively. Regarding the UNSW-

NB15 [23] dataset, we took advantage of the Wrapper technique [225], which recursively

evaluates diverse feature combinations to define an efficient subset. This method pro-

vided us with the features presented in Table 3.3 for the given dataset.

The value of the selected features per dataset will be evaluated based on their information

gain in order to prioritize the nodes of the DTs as stated in Section 3.3.1. Tables 3.2

and 3.3 summarize the selected subsets of features for KDDCup’99, NSL-KDD and

UNSW-NB15 datasets, respectively. The features are presented prioritized based on

their information gain in a descending order. For more details about the various features,

the interested reader could refer to the dataset’s corresponding publication. Notably, the

authors in [224] provide a checklist with steps that could be taken to solve the feature

selection problem. Domain knowledge is suggested as a main strategy for constructing

efficient sets of features. However, we envision to add an embedded feature selection

technique as an extension to our algorithm in a future work.
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# Feature Type

1 service discrete
2 flag discrete
3 src bytes continuous
4 count continuous
5 dst host same srv rate continuous
6 dst host serror rate continuous
7 dst host srv serror rate continuous
8 logged in discrete
9 dst host rerror rate continuous
10 duration continuous
11 protocol type discrete
12 hot continuous
13 num compromised continuous
14 wrong fragment continuous
15 root shell discrete
16 num file creations continuous
17 num root continuous
18 num access files continuous
19 num failed logins continuous
20 num shells continuous
21 su attempted discrete

Table 3.2: Selected features for KD-
DCup’99 and NSL-KDD

# Feature Type

1 ct state ttl continuous
2 sttl continuous
3 dttl continuous
4 dload continuous
5 ct srv dst continuous
6 service discrete
7 proto discrete
8 dmean continuous
9 dbytes continuous
10 state discrete
11 dpkts continuous
12 ct srv src continuous
13 ct dst sport ltm continuous
14 sjit continuous
15 dloss continuous
16 sbytes continuous
17 smean continuous
18 ct src dport ltm continuous
19 ct dst src ltm continuous
20 dwin continuous
21 response body len continuous
22 ct flw http mthd continuous
23 trans depth continuous

Table 3.3: Selected features
for UNSW-NB15

3.4 Evaluation

In this section, we evaluate Dendron using the three aforementioned intrusion detection

datasets. The performance of Dendron is also compared against other state-of-the-art

and legacy machine learning algorithms under several classification metrics.

3.4.1 KDDCup’99 Dataset

For evaluating Dendron using the KDDCup’99, we adopted a set of preprocessing steps

which are broadly used in the literature. We sampled the dataset to generate a smaller

one, while keeping its initial properties. Moreover, we removed all duplicates from

the partial dataset. Table 3.4 gives a detailed overview of the instances included in

the training and testing sets we used throughout our experiments. The training set

contains 10% of the instances of every category except for the U2R class where 50% of

the instances were taken into account. The reader can refer to Section 2.2.2 or to the

original publication of the dataset [21] for more details.
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Class
KDDCup’99 NSL-KDD

Training Testing Training Testing

Normal 8,783 79,049 6,735 60,608
DoS 5,457 49,115 4,600 41,327
PRB 213 1,918 1,164 10,483
R2L 100 899 109 886
U2R 26 26 26 26

Total 14,579 131,007 12,634 131,330

Table 3.4: Training and testing set instances for KDDCup’99 and NSL-KDD datasets

3.4.2 NSL-KDD Dataset

For evaluating Dendron using the NSL-KDD dataset, we followed the same strategy fol-

lowed also for KDDCup’99, as we sampled randomly the NSL-KDD to create a training

set consisting of the 10% of the initial instances, while the rest 90% was used in the

testing phase. The training set contains 10% of the instances of every category except

for the U2R class, where 50% of the instances were taken into account. Table 3.4 gives a

detailed overview of the instances included in the training and testing sets used through-

out our experiments. The reader can refer to Section 2.2.2 or to the original publication

of the dataset [22] for more details.

3.4.3 UNSW-NB15 dataset

As it was also the case for the KDDCup’99 and the NSL-KDD datasets, we randomly

sampled the UNSW-NB15 dataset to create two subsets for training and testing pur-

poses. The training set consists of approximately the 10% of the instances while the

rest 90% was used to build the testing set. This percentage segmentation is applied

for each of the 9 classes of the dataset except for the “Worms” class, where 50% of the

instances were taken into account. Since we approach the problem of intrusion detection

as a multi-classification problem and not as a binary one (i.e. Normal/Anomaly), we

excluded the feature that annotates each instance as Normal or Anomaly, but we keep

only the actual class of the instances. However, after removing also the “id” feature,

which is used to assign a unique number to each instance, we found out that there were

duplicated instances in the dataset. By following sound practices as documented in the

literature [22], we removed the duplicated records concluding to the training and testing

sets, which are detailed in Table 3.5
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Class Training Set Testing Set

Normal 3,420 30,786
DoS 172 1,546
Reconnaissance 270 2,433
Fuzzers 485 4,353
Shellcode 40 338
Exploits 760 6,849
Generic 366 3,291
Backdoor 40 306
Analysis 45 401
Worms 22 22
Total 5,620 50,325

Table 3.5: Training and testing set instances for UNSW-NB15 dataset

3.4.4 Testbed parameters and results

As described in the previous sections, apart from the fact that GAs introduce randomness

in the process, our approach brings in several parameters which can affect the results.

These two factors render the evaluation of the model hard in the sense that our solution

is not deterministic. Therefore, for a specific input, the model will not create the same

exact output. Regardless of the variance of the results among the different runs, the

best solution is the one which ultimately will be chosen to generate the detection rules.

Table 3.6 contains the parameters and the values used for the evaluation of the model

for each dataset. We chose to evaluate our model using Mean F-Measure (MFM) as

the fitness metric. Our goal is to maximize this average metric to ensure that Dendron

treats the several classes of the dataset equally. In the context of multi-classification

problems, MFM is destined to measure the equilibrium between Recall and Precision

Symbol Parameters KDDCup’99 NSL-KDD UNSW-NB15

|C| Number of Classes 5 5 10
|F| Number of Features 21 21 23
σ Standard deviation 3 3 3

Crossover probability 0.95 0.95 0.95
Mutation probability 1.0 1.0 1.0

λ Individuals per class 15 10 5
N Iterations 1400 2400 7000
β Beta weight 40 40 70

Num. of discretized
bins

6 6 5

θ Additional individuals 20% 20% 20%
Selection method Roulette

Wheel
Roulette
Wheel

Roulette
Wheel

Table 3.6: Values of evaluation parameters per dataset
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metrics across all the classes of the dataset. The Recall and Precision metrics take

into account the FNs and the FPs of a class respectively. Thus, MFM is an aspirant

metric to sustain the balance between detection rates and false alarms. Moreover, we

extensively compare the performance of Dendron against “rule of thumb” algorithms

under the metrics presented in Section 2.2.3. Precisely, in the case of KDDCup’99 [21],

we compare our results against those presented in [24], and more specificaly against the

FARCHD-OVO and C4.5 [40] algorithms.

In the experiments conducted, we used 1400, 2400 and 7000 iterations (i.e., population

generations) for KDDCup’99, NSL-KDD and UNSW-NB15, respectively. One could say

that the number of generations is quite high, but this is justified by the fact that MFM

is a complex metric. As MFM tries to keep the balance between Recall and Precision,

several populations need to be evolved in order to achieve a stable model. In the case of

UNSW-NB15, the number of generations is far greater than those of the other datasets.

This is because UNSW-NB15 is a more complex dataset since it contains 10 traffic

classes instead of the 5 included in the others. It is also noteworthy that the mutation

probability is set to 1. This means that a selected individual is always mutated as the

branch expansion decision is based on the information gain. As stated in Section 3.3.5, if

the split of a branch produces information gain, then it will be split. If not, the mutation

operation is not applied.

In order to minimize the search space of the problem and keep the complexity under

an acceptable threshold, we made use of 21 features of the KDDCup’99 [21] and NSL-

KDD [22], while 23 features were used for UNSW-NB15 [23]. The number of the split

intervals for the continuous features was set to 6 for KDDCup’99 and NSL-KDD (i.e.,

5 splitting values), while 5 intervals were used for UNSW-NB15. By augmenting the

number of the splitting points the search space increases exponentially, but it is not to

be taken for granted that this action maximizes the purity at the leaves of the trees.

In addition, the standard deviation σ of the Gaussian distribution was set equal to

3 in order to imitate a “top-down” branch expansion approach. Precisely, an σ = 3

generates a quite narrow distribution bell that can support the “top-down” approach,

while sustaining at the same time the randomness of the GA. The λ parameter is of great

importance for the final size of the population. Even though the initial DTs are single-

class only, during the evolutionary process the trees become multi-classed and each one

becomes a candidate for the best solution. In principle, the bigger the population, the
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higher the diversity and complexity of the produced solutions. Given that Gaussian

distribution is quite narrow (σ = 3), a potentially big population cannot guarantee a

higher population diversity since it is almost sure that there will be similarly branched

individuals. That is, λ = 15, 10 and 5 were chosen to generate populations of 75, 50

and 50 individuals for the three datasets respectively.

The results are summarized in Tables 3.7 - 3.14. More specifically, for each dataset,

we provide the confusion matrix derived from the testing process of Dendron and a

table which accumulates the performance of the selected algorithms in terms of several

detection metrics.

3.4.5 Analysis

From the evaluation results we can safely argue that our approach is able to create

accurate and balanced intrusion detection rules for supporting a misuse detection system.

MFM is proven to be a proper fitness metric, as Dendron achieves high performance

for each of the three investigated datasets. More specifically, Dendron surpasses its

competitors in 3 classification metrics when it comes to KDDCup’99 and UNSW-NB15

datasets, while for NSL-KDD our approach achieves higher performance over 2 metrics.

Generally, Dendron seems to favourably achieve high performance for MFM, AvgAcc

and AttAcc metrics, while for the rest of them scores comparable results. Notably,

Dendron outperforms representative algorithms derived from the Bayesian, SVM, Neural

Networks and Decision Tree families. Among those algorithms, C4.5 is proved to be the

most competitive one.

KDDCup’99 Dendron scores 85.77% of MFM, 89.85% of AvgAcc and 87.50% of

AttAcc, while the FAR of 0.75% can be considered as a directly comparable percentage

with those reported in the literature. When comparing the results against FARCHD-

OVO, we can state that Dendron surpasses the latter under four classification metrics.

Besides the superiority in the MFM, AvgAcc and AttAcc metrics, our approach achieves

additionally a higher ADR of 98.24%. On the downside, Dendron lacks slightly when it

comes to Acc and FAR. It is noteworthy that for this purpose FARCHD-OVO utilises

the One-Vs-One pairwise learning scheme [62] to deal with the multi-classed data traffic.

Dendron on the other hand achieves the same goal without such a need. Moreover,
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Normal DoS PRB U2R R2L Recall (%)

Normal 78,459 211 162 12 205 99.25
DoS 350 48,590 175 0 0 98.93
PRB 66 208 1,640 4 0 85.51
U2R 3 3 0 20 0 76.92
R2L 86 11 3 2 797 88.65
Precision (%) 99.36 99.12 82.83 52.63 79.54

Table 3.7: Confusion Matrix of testing process for KDDCup’99

Method Acc MFM AvgAcc AttAcc ADR FAR

Dendron 98.85 85.77 89.85 87.50 98.24 0.75
FARCHD-OVO 99.00 84.12 89.32 86.70 97.77 0.19
C4.5 99.59 81.81 87.79 84.79 99.29 0.20
Naive Bayes 88.55 52.95 69.29 65.31 93.61 9.87
SMO (SVM) 98.13 76.91 71.76 64.89 96.42 0.46
MultilayerPerceptron 98.90 85.59 85.13 81.50 97.74 0.20
ID3 98.50 83.42 84.22 80.47 97.66 0.49

Table 3.8: Metrics summary and comparison for KDDCup’99 (%)

Dendron leapfrogs C4.5 in terms of MFM, AvgAcc and AttAcc. This is reflected by an

increment of approximately 4% in MFM, 2% in AvgAcc, and 3% in AttAcc. However,

C4.5 performs slightly better than Dendron in terms of FAR and non-average metrics

Acc and ADR. That is because C4.5 falls into the category of algorithms which perform

better for the major classes of the dataset, while it neglects the minor classes [43].

Consequently, the high values of Acc and ADR are due to the high number of TPs

for the major classes of the dataset. Opposite to this tendency, Dendron achieves high

detection accuracy for all the classes of the dataset and this is reflected by the increased

values of the average metrics of MFM, AvgAcc and AttAcc.

NSL-KDD When it comes to NSL-KDD, Dendron outperforms all algorithms under

the AvgAcc and AttAcc metrics, while for the rest of the metrics C4.5 outperforms

all the compared algorithms (see Table 3.10). NSL-KDD proves its increased difficulty

level as all algorithms, apart from SMO, score lower ADR and higher FAR compared to

KDDCup’99. However, Dendron ranked second for the Acc, MFM and ADR metrics.

Additionally, as it can be observed from Table 3.9, the recall performance for the minor

classes of the dataset, namely U2R and R2L, remains as high (76.92% and 83.75%,

respectively) as it was also the case for KDDCup’99. This fact, advocates the ability
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Normal DoS PRB U2R R2L Recall (%)

Normal 59,954 95 238 15 306 98.92
DoS 827 39,650 850 0 0 95.94
PRB 180 100 10,186 6 11 97.17
U2R 6 0 0 20 0 76.92
R2L 124 7 1 12 742 83.75
Precision (%) 98.14 99.49 90.34 37.74 70.07

Table 3.9: Confusion Matrix of testing process for NSL-KDD

Method Acc MFM AvgAcc AttAcc ADR FAR

Dendron 97.55 83.35 90.54 88.44 95.97 1.08
C4.5 99.36 86.57 88.09 85.23 99.19 0.26
Naive Bayes 68.30 44.77 61.56 62.54 80.55 29.79
SMO (SVM) 96.14 66.18 64.60 56.07 93.12 0.68
MultilayerPerceptron 97.41 65.96 66.46 58.29 95.42 0.47
ID3 96.32 69.34 66.36 58.20 93.69 0.54

Table 3.10: Metrics summary and comparison for NSL-KDD (%)

of Dendron to treat fairly the minor classes of the dataset regardless of the increased

difficulty level of NSL-KDD.

UNSW-NB15 As explained in Section 3.4.3, this dataset is quite different from the

previous two. Since UNSW-NB15 is a more recent creation, it reflects a more contem-

porary and complex threat environment. The increased number of attack classes and

its highly imbalanced records (Table 3.5) pose a significant challenge to every machine

learning approach. As observed from Table 3.12, the performance metrics of every classi-

fier lack significantly from those achieved using the other datasets. However, under equal

terms, Dendron leapfrogs the other algorithms under the MFM, AvgAcc and AttAcc

metrics. Once again, C4.5 is our main competitor as Dendron lacks slightly in Acc and

FAR metrics, while the difference in ADR is approximately 4% in favour of C4.5. It can

be inferred that the scarce data pertaining to the minor classes of the dataset (Worms,

Backdoor, Analysis, Shellcode), affect negatively the performance of the all algorithms.

Nevertheless, Dendron is the one achieving the highest values under the mean average

metrics (MFM, AvgAcc and AttAcc), and therefore it can be asserted that our approach

is able to provide balanced and accurate detection rules.

The high value of MFM indicates that Dendron is able to keep the balance between

FPs and FNs across all the classes. This is mainly due to the more balanced values
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Normal Backdoor Analysis Fuzzers Shellcode Recon. Exploits DoS Worms Generic Recall (%)

Normal 29,982 1 0 313 63 125 257 43 1 1 97.39
Backdoor 25 206 0 7 0 9 28 29 1 1 67.32
Analysis 32 149 82 7 0 0 7 124 0 0 20.45
Fuzzers 999 247 5 2,804 31 66 62 135 0 4 64.42
Shellcode 23 0 0 44 123 116 30 2 0 0 36.39
Reconnaissance 148 63 0 280 261 1,121 375 167 16 2 46.07
Exploits 361 255 26 233 127 225 5,220 303 66 33 76.22
DoS 270 242 6 57 72 66 599 221 4 9 14.29
Worms 0 0 0 2 4 2 8 0 4 2 18.18
Generic 109 2 1 46 83 34 263 67 8 2,678 81.37
Precision (%) 93.84 17.68 68.33 73.93 16.10 63.55 76.22 20.26 4.00 98.10

Table 3.11: Confusion Matrix of testing process for UNSW-NB15

Method Acc MFM AvgAcc AttAcc ADR FAR

Dendron 84.33 48.81 52.21 47.19 63.76 2.61
C4.5 85.15 48.79 49.33 44.14 67.88 2.54
Naive Bayes 48.45 25.55 39.20 37.82 43.42 42.48
SMO (SVM) 74.47 28.41 26.63 18.52 34.77 0.25
MultilayerPerceptron 73.89 26.61 27.91 20.57 42.25 4.56
ID3 76.31 30.49 29.19 21.36 40.46 0.27

Table 3.12: Metrics summary and comparison for UNSW-NB15 (%)

between Recall and Precision in our model and the ability of our algorithm to treat

all the classes of the dataset under equal terms. This is advocated by the high Recall

and Precision, and of course the TPs achieved for the minor classes, while only a small

fraction of intrusive instances go unreported. The higher classification metrics indicate

that the proposed method can be considered as a robust solution for detecting intrusive

incidents, while at the same time enables the distinguishability among the several attack

classes in a more accurate way.

3.4.6 Complexity Analysis of Dendron

The computational complexity of Dendron is the combined complexity of its compo-

nents. In this direction, we use the Big-O notation in order to give a perception of

our algorithm’s behaviour upon the size of input parameters, as it is independent from

the implementation’s and enviroment’s details. Since Dendron emerges DTs through an

evolutionary process, its complexity derives from the constituent tasks of the GA and

the cost of evaluating the individuals. In the context of our work, where individuals are

actually DTs, the evaluation cost is that of assessing the classification ability of a DT

for a given dataset. The cost of classifying one instance using a DT of height |F| is in the

worst case O(|F|) [226]. That is, evaluating a dataset of size |D| takes O(|D||F|). In our
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analysis, we focus on the evolutionary process that takes place between lines 6 to 22 in

Algorithm 1. Also, we do not consider one-time cost functions and pre-processing steps,

since their complexity is always overshadowed by the more complex tasks according to

the Big-O notation.

More specifically, the combined complexity derives for the following tasks: (i) Compu-

tation of selection probabilities, (ii) Parent selection, (iii) Crossover, (iv) Mutate, (v)

Replace, and (vi) Evaluate. Table 3.13 gives a summary of the complexity of each

process.

Function 5 is the heart of the methodology discussed in Section 3.3.2 and invokes func-

tions 2, 3, 4 sequentially for each DT in the population. The cost of function 2, is

O(1) since the fitness of each individual is calculated once when the whole population is

evaluated (alg:1, line:18) and it is stored as an individual’s property. Function 3 needs

O(|C|) to enumerate the number of leaves of each class in a DT and return the selection

probability. Finally, function 4 needs O(|C|) to compute the selection probability based

on the missing classes of the best individual. Since the aforementioned functions are

invoked |P| times, the total complexity is O(|P||C|)).

The complexity of the parent selection process (func:6) is that of the Roulette Wheel

Selection [219] technique which is O(|P|). The crossover process (func:8) incorporates

three functions of constant execution time, resulting in complexity of O(1). The same

applies also for the case of depth selection function where a Gaussian random number

generator is triggered.

The mutation process (func:9) includes several steps for defining the best splitting point

of a DT node. For each available splitting point |ϕ| of a selected node, the mutation

process needs to calculate the Information Gain produced per splitting decision. To do

so, it is necessary first to locate the subset of instances that satisfy the nodes’ conditions,

that is, the path which leads to the selected node. Therefore, the worst case implies

a splitting decision to be taken at the very last node of the DT (i.e. |F|) and the

corresponding subset of instances that reach that node to be the whole dataset (i.e.

|D|). Hence, this subset allocation has a complexity of O(|F||D|). Then, the entropy

of this subset is computed with complexity of O(|D| + |C|). This subset induction and

its entropy calculation are needed for calculating the Information Gain of each of the

|ϕ| splitting points. For one splitting decision, it is required to (i) identify which of
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the instances of the subset falls into each of the two newly derived branches (O(|D|),

and (ii) calculate their entropy (O(2(|D|+|C|)). The combined complexity of these two

tasks is O(|D| + 2(|D| +|C|)) which is reduced to O(|D| +|C|). Eventually, the splitting

procedure itself takes place for creating the child nodes below the newly derived branch.

Since we assumed that the worst case is to have a splitting decision at the last node

of the DT, the complexity is that of just adding the leaf, which is O(1). To sum up,

the total complexity of mutating two DTs at a time at a branch of |ϕ| possible splitting

points is: 2
[
O(|F||D|) + O(|D| + |C|) + |ϕ|

[
O(|D| + |C|)] + O(1)

]
, which is reduced to

O(|F||D|+|ϕ| (|D|+|C|)).

After creating a new population, the replacement method (func:10) occurs to choose

among the individuals that will move on to the next one. At first, in order to synthesize

the next population P ′′ a for loop of O(|P|) takes place by choosing individuals from the

previous and temporary populations. Since the next population needs to be complete,

we need to check for potential absence of a class. This is done in O(P) as the population

is examined sequentially. In the worst case, the population will be missing C − 1 classes,

leading the function to seek for appropriate DTs in the previous population, add them θ

times in the next population, and check again for the population’s completeness. That

is, the summed up complexity is O(|P|) +O(|P|) +|C − 1|
[
O(|P|+ θ +

∣∣P ′′∣∣)]. This can

be reduced to O(|C − 1|
∣∣P ′′∣∣), since θ < |P| ≤

∣∣P ′′∣∣, and θ is expressed as a percentage of

|P|.

The last step before the evolutionary process proceeds to a new generation is the eval-

uation of the whole population (func: 11) and the allocation of the best individual Î.

The former entails a total complexity of O(|P||F||D|), while the latter costs O(1).

All in all, the overall complexity is derived by taking into account (i) all the above

mentioned procedures, and (ii) the number of generations N , and the while loop which

is executed for |P| /2. This results to a total complexity of N
[
O(|P||C|) + |P|2

[
O(|P|) +

O(1) +O(1) +O(|F||D|+|ϕ| (|D|+|C|))
]

+O(|C − 1|
∣∣P ′′∣∣) +O(|P||F||D|) +O(1)

]
, which

is reduced to O(N
[∣∣P2

∣∣+|P||D| (|F|+|ϕ|) +|C − 1|
∣∣P ′′∣∣ ]).

As it was expected, the overall complexity of the algorithm is affected by the size of

the population, the size of the dataset, the height of the decision trees, and finally the

number of splitting points of the features. The only factor that has a squared complexity
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Process Complexity

Computation of selec-
tion probability

O(|P||C|))

Parent selection O(|P|)
Depth selection O(1)
Crossover O(1)
Mutate O(|F||D|+|ϕ| (|D|+|C|))
Replace O(|C − 1|

∣∣P ′′
∣∣)

Evaluate O(|P||F||D|)
Allocate best individual O(1)

Total O(N
[∣∣P2

∣∣+|P||D| (|F|+|ϕ|) +|C − 1|
∣∣P ′′

∣∣ ])
Table 3.13: Summary of complexity

is the size of the population. However, this fact cannot affect the overall performance

to a great extend since the size is a parameter usually bounded in a low range.

3.5 Discussion

The methodology described and evaluated in the previous sections combines the bene-

fits of DTs and GAs to produce linguistically interpretable and accurate detection rules,

able to infer on multiple attack types. This approach makes the output, that is, the

detection rules, human comprehensive, alleviating in this way the burden of the system

administrators in understanding the network traffic and the attacks themselves. More-

over, the use of heuristics in the evolutionary process enables Dendron to deal with

the challenges posed by the nature of the network traffic data. More specifically, the

selection probability function in combination with the α, β and γ weights, balances the

trend of machine learning algorithms to be biased toward the major classes of attacks

contained in the dataset. This phenomenon is also partially addressed by the average

classification metric of MFM used as the fitness function. By selecting to maximize

this average metric, Dendron evolves the DTs with the aim of increasing the detection

ratio considering all the attack classes in the dataset. This is confirmed by the provided

results (Table 3.14) under the evaluation of Dendron using three intrusion detection

datasets. Our proposal, outperformed its competitors over the average metrics MFM,

AvgAcc and AttAcc, while it achieved also high ADR and kept the FAR under an ac-

ceptable threshold. However, the reader would notice that Dendron falls slightly short

in the accuracy metric, especially when compared with C4.5. We argue that such a
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Dataset Acc MFM AvgAcc AttAcc ADR FAR

KDDCup’99 98.85 85.77 89.85 87.50 98.24 0.75
NSL-KDD 97.55 83.35 90.54 88.44 95.97 1.08
UNSW-NB15 84.33 48.81 52.21 47.19 63.76 2.61

Table 3.14: Dendron metrics summary for all datasets (%)

behavior is normal, because as already pointed out, Dendron focuses on treating all the

classes of the dataset under equal terms. This means that for algorithms like Dendron

the mean average metrics become significantly more important than the accuracy one.

Putting it another way, a high accuracy in the context of multi-classification problems

with imbalanced datasets derives from an algorithm’s tendency to decide in favor of the

major classes of the dataset, while neglecting the minor ones.

Moreover, the use of DTs produces a straightforward output, that is decision rules which

could be used in real-life IDS. In practice, this feature can be proved a strong advantage

as the other solutions reviewed in Section 3.6 are based on multilayered approaches

or Fuzzy association rule-based methods requiring additional data transformations or

pre-processing steps to infer on detection rules. On the bright side, Dendron can be

implemented in a straightforward way on the provided dataset. Furthermore, in our

experiments, we used 10% of the dataset to train our model and the rest 90% for the

evaluation. Given the small size of the training data, we argue that our concept of

evolving several learning models, namely DTs, in a population multiplies the possibilities

to construct an end-model that fits better on the data, even if those are scarce.

Conversely, the evolution of several individuals increases the complexity of Dendron.

That is, the optimal balance between the size of the population and the produced results

must be determined given an acceptable complexity level. In any case, the termination

condition could be adjusted to a desirable outcome. As already pointed out, GAs explore

the search space of a problem randomly and this renders our solution non deterministic

in the sense that for the same input data the model will not create the exact same

set of detection rules. Even though the DTs are generated randomly, the outcome of

Dendron is a DT representing a static set of detection rules, which are as accurate as the

tree’s performance metrics. In any case (and this applies to every method), the search

space of a network traffic analysis problem can be huge and this indicates that several
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experiments should be conducted over the same input to finally select the more accurate

set of detection rules.

3.6 Related work

Network intrusion detection utilizing metaheuristic optimization algorithms is a field

that constantly attracts the research community’s attention, thus the plurality of the

solutions that have been proposed is rather high [67]. Therefore, in the context of this

section, we only consider related work that falls under the umbrella of misuse detection,

utilizes DTs or GA, and additionally focuses on detecting intrusive events of minor-

ity classes. We classify the documented works in three major categories based on the

methodology they utilise.

3.6.1 On Decision Trees

The work in [227] introduces two hybrid classifiers, namely hybrid decision tree (DT)

and hybrid näıve Bayes (NB). The first one implements a näıve classifier to remove

troublesome instances in the dataset which could overfit the classifier. After removing

those instances, a DT algorithm driven by information gain is used to classify the free-

of-noise dataset. On the other hand, the hybrid NB classifier is used to find an optimal

subset of attributes of the dataset. The authors report average sensitivity (recall) of

81.9% and 82.6% of precision for the hybrid DT classifier and 82.3% and 83.6% for the

Hybrid NB respectively.

The authors in [44] propose an IDS based on Neurotrees and GAs for feature reduction.

Precisely, chromosomes are formed as binary strings {0, 1} of the length of 41 features

of KDDCup’99 dataset. The fitness function of the GA is based on the Sensitivity and

Specificity metrics of the neurotree. The authors conclude to 16 features to support

their classifier but they miss to successfully classify 6 minority attack classes out of 23.

In [228] a two-layer IDS is proposed. At the first layer, a coarse-grained IDS is applied

for detecting attacks based on 5 features, whereas at the second layer a fine-grained IDS

is used based on 20 features having the highest information gain. The authors suggest

the use of Very Fast Decision Tree (VFDT) to improve the performance of their system.
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These trees are gradually expanded in a top-down approach by replacing leaves with

decision nodes. The proposed system was not able to detect U2R and R2L attacks but

the use of VFDT improved the training time.

3.6.2 On Genetic Algorithms

The work in [229] proposes a combination of neuro-fuzzy classifiers and GAs. Specifically,

the ANFIS classifier is used for generating fuzzy rules per traffic class, while a Mamdani

fuzzy inference system with defuzzification strategy infers upon intrusive and normal

events. Then, a GA is used to optimize the solution by having as genes parameters of

Membership Functions used in the fuzzy decision engine. Even though the proposed

algorithm is able to infer accurately on normal, probing, and DoS traffic, the detection

rate for the minority classes is rather low.

The authors in [230] apply a Pareto-based evolutionary algorithm within the detection

engine of Snort IDS with the aim to optimize the rule generation process. The GA evolves

a population of individuals where each one is composed of a certain number of signatures

(rules). They evaluate their proposal under two optimization modes. First, a single

objective weighted function is used to minimize the FPs and FNs, while in the second

mode, a Pareto-optimization approach is used to optimize two different fitness functions.

The authors assess their proposal under different inputs arriving to the conclusion that

the higher the population size, the better the quality of the solutions.

In [231] a combination of a SVM model and kernel principal component analysis (KPCA)

with GAs is proposed. The SVM is used as a multilayered classifier to infer on attacks,

while KPCA is used to select a subset of features. GAs serve as an optimization scheme

for the system’s parameters. More specifically, the authors formed 5 different training

and testing sub-datasets by using sampling methods. Overall, even if the authors apply

several normalization and feature reduction techniques to the dataset, the results for

detecting rare types of attacks are unsatisfactory.

The authors in [24] propose a misuse detection approach based on genetic Fuzzy Systems

and pairwise learning. They take advantage of the One-Vs-One technique to build binary

classifiers. During classification, an instance is submitted to all the classifiers and the

prediction level is a combination of the overall classification. Although their approach is
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quite accurate, it is based on significantly complex classification techniques, hence the

generated results may not be straightforwardly exploited without utilizing de-fuzzing

steps. Their solution utilizes GAs in the context of fuzzy systems to form a classifier

considering only a subset of the search space. Even though the theoretical background

of this work significantly differs from ours, as explained in Section 3.3, we use it in order

to compare our system as being a recent work that achieves remarkably high detection

rates.

3.6.3 On other machine learning techniques

The study in [232] proposes a layered approach for intrusion detection. The authors

make use of Conditional Random Fields (CRFs) aiming to distinguish better the over-

lapping features in a dataset. One classification model is created for each of the 4 major

attack classes of the KDDCup’99 dataset and trained individually. Therefore, each

layer does not contain knowledge of other layers. For each layer, the authors conduct

feature reduction and try to identify relations among features to improve accuracy. They

achieved 29.6% and 86.3% detection accuracy for R2L and U2R attacks, respectively.

The authors in [64] propose a hierarchical SVM-based IDS. They utilize BIRCH, a clus-

tering algorithm, to pre-process KDDCup’99 dataset in order to minimize the training

instances before they are fed to a SVM classifier. BIRCH produces 5 datasets which

correspond to the major traffic classes of the dataset. These datasets are used to train 4

SVM classifiers separately which, finally, are combined to form the eventual model. Also,

the authors apply a simple strategy to identify the useful features per traffic class. The

proposed model performs well for DoS and Probe attacks, but it achieves low detection

rate for the minority classes.

The work in [32] capitilizes on a combination of Artificial Neural Networks (ANNs) and

fuzzy clustering. More specifically, the proposed model is divided into three steps: i)

Fuzzy clustering for generating training subsets, ii) Training different ANNs, and iii)

Aggregation and combination of the results of the different ANNs. The authors report

a 58.57% and 76.92% recall for R2L and U2L attacks, respectively.

In the context of big data analytics, the authors in [233] designed a defense mechanism

able to receive security analysts’ feedback. The proposed system tries to address three
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main challenges: i) Lack of labeled data, ii) Constantly evolving attacks, and iii) Lim-

ited investigative time and budget. The authors utilize a system for transforming raw

traffic data into labeled data combined with both supervised and unsupervised machine

learning techniques. Supervised solutions like the one we propose could be applied un-

der this concept. Also, the work in [233] focuses on outlier detection for rare incidents.

According to the authors’ evaluation, the proposed system is able to act against unseen

attacks, while the time interval between attack detection and prevention is reduced.

Their system produces threefold detection ratio, while minimizes the FPs by 5 times.

3.6.4 Discussion

Based on the literature review given above, it can be argued that the vast majority of

the works use GAs with the aim of coming up with a subset of features which could

increase the classification accuracy. Opposite to that observation, in our solution, we

take advantage of GAs for evolving DTs with the purpose of exploring the search space

of the problem. Also, to the best of our knownlegde, we are the first to use this concept

in the context of IDS. So far, throughout the literature, only the work presented in

[230] shares a common ground with our methodology. More specifically, the authors

use Snort rules as individuals of string representations, while we use DTs, which are

expanded through the crossover and mutation operations. Another noticeable difference

with [230] is the selected fitness functions that guide the solution. That is, we utilize

metrics which apply in the context of multi-classifiaction problems, as shown in Section

2.2.3, whereas [230] employs a Pareto-optimization approach in the fitness function.

Another observation is that nearly all the works use KDDCup’99 [21] dataset as the

basic benchmark for assessing the proposed systems under a limited number of metrics.

Contrary to this, our work employs an extensive testbed, which engages two more chal-

lenging and far more recent datasets (NSL-KDD[22] and UNSW-NB15[23]), while the

performance of Dendron is evaluated using a plethora of metrics.

In addition, the great mass of the proposed solutions do not meet the quality of rules

interpretability, as they apply several data transformations to serve the requirements

of the selected classifiers. It is also worth of noting that in an effort to deal with the

imbalanced network datasets, several works use multilayered approaches for detecting

attack types individually at each layer or by combining several trained models in a
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merging phase. On the bright side, our solution is single-layered and produces one

end-model (a DT) that represents the whole set of the generated rules. Finally, one

could say that the problem of detecting rare intrusive events remains largely an open

issue. Namely, some solutions are not able to detect this kind of incidents while others

do, but still the detection accuracy they present is not adequate. To cope with this

shortcoming, the work at hand has put considerable effort into fine-tuning the algorithm

and developing accurate individuals that are able to equally identify both common and

rare intrusive incidents.

3.7 Conclusions and future work

In this chapter, we presented Dendron, a novel methodology for evolving DT classifiers

using GA with the aim of generating detection rules in the context of misuse detection

systems. Our proposal delivers linguistically interpretable rules in an effort to increase

the benefit of security administrators and to ease their tasks. To this end, our method-

ology deals with the several challenges posed by the nature of the network traffic and

balances the trend of machine learning algorithms to largely neglect the minority at-

tack classes. The weighted selection probability function in the evolutionary process in

combination with the MFM fitness metric lead Dendron to outperform legacy and state-

of-the-art solutions in the field. Dendron achieves increased attack detection accuracy,

while keeping the balance of Recall and Precision metrics among all the classes of the

dataset, even for the minor ones. The proposed scheme was evaluated using three intru-

sion detection datasets, namely KDDCup’99 [21], NSL-KDD [22] and UNSW-NB15 [23]

and scored superior results for the average metrics MFM, AvgAcc, and AttAcc. Es-

pecially for the minor classes, that pose a significant challenge to intrusion detection

solutions, Dendron reached high detection accuracy with respect to their size.



Chapter 4

Introducing Deep Learning

Self-Adaptive Misuse Network

Intrusion Detection Systems

In chapter 3 we presented Dendron, a misuse detection system based on an evolution-

ary methodology that enables effective detection rules induction given a dataset. Even

though such a mechanism can be of major importance in the process of updating the

detection engine of an IDS, still, its adaptation remains a highly demanding engineering

task for the administrators. Machine learning models need to be re-evaluated periodi-

cally. That is, an ML-based IDS is not “set it and forget it”, as models are only as good

as the data they analyze. Robust protection requires frequent, rigorous re-training of

the model by providing data with high fidelity to the real world [234].

In this direction, this chapter details on a self-adaptive methodology, which introduces

intelligence in the retraining process of a misuse IDS with the aim of alleviating the IDS

administrators from adapting the detection engine upon the occurrence of an efficiency

drop. In fact, the presented methodology, as pointed out in Section 1.1, aims to address

the main limitation of misuse IDS, which is the lack of agility in adapting to new and

“unknown” network states.

141
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4.1 Introduction

Undoubtedly, as has been widely reported in the literature, misuse IDSs lack the ability

of identifying new attack patterns or deviations from known ones, and their performance

depends on the freshness of the signatures database. Hence, the IDSs administrator

needs to put significant effort to keep the misuse detection model up to date. If we

additionally consider the fact that the protected environment is a dynamic ecosystem

where new devices and/or services may appear or leave the network at any moment (e.g.,

the Internet of Things (IoT)), it becomes clear that the adaptability issue becomes a

burden on administrators’ shoulders. This burden becomes even heavier as the growth of

communication networks pushes IDSs into the big data era, where the increased volume

of the transmitted data surpasses the limits of human processing capabilities.

In view of the above, adaptive IDSs are becoming an active research field as new re-

searches [235, 236] aim to address the inherent limitations of legacy intrusion detection

systems. So far, interesting artificial intelligence-based methods that bear the feature of

adaptability have been reported as promising approaches. To name a few, Learning Clas-

sifier Systems (LCS) [237], Artificial Immune Systems [238] and Swarm Intelligence [67]

combine adaptation and evolution aspects. However, this research topic has still many

challenges to face as systems and attacking tactics become more sophisticated.

Keeping any type of IDS up-to-date is a demanding task for several reasons where most

of them pertain to the environmental changes. The latter term refers to any aspect of

a network that can change and consequently affect the profile of the generated network

traffic. In practice, the addition (or disengagement) of a device in a network can affect

different network aspects, including the topology, the running services, the open ports,

the communication protocols and/or applications, the network traffic load, and others.

In turn, these environmental changes affect fundamental security features such as the

vulnerabilities appearing in the network, which can generate multiple penetration paths

for the attackers. Considering a more dynamic network like an IoT environment, an Ad

Hoc network, or even a corporate network with a Bring your own device (BYOD) policy

applied, one can understand that the attack surface of the network can be increased

unexpectedly. It is plausible that, say, the newly introduced device might be already

infected by a malware and act as a stepping stone for an attacker to conquer more assets

within the network. Yet, new devices are not the only enemies of an IDS in a network,
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as also already installed devices will eventually proceed with software/OS updates or

new software installations that again will bring in alterations in the environment.

Overall, the above mentioned changes are routine actions that constantly appear in every

common network, rather than unusual events. Actually, virtually all sort of modifications

can significantly affect the performance of an IDS which is placed to protect an ever-

changing infrastructure. This reality, combined with the lack of adaptable detection

engines, forces the IDS to become quickly outdated and inadequate as it inevitably has

to operate in new and “unknown” or unforeseen environments for which its engine was

not trained. Thus, security administrators undertake the task of constantly retraining

the IDS by considering all the new environmental changes to regain the reliability and

the performance of the detection system. All in all, the cardinal challenge for any IDS

designer, namely find proper ways to automatize at least to a certain degree the retrain

process, remains largely unsolved.

To this end, this chapter presents a novel adaptive methodology which can significantly

boost the performance of a misuse IDS when it is dragged into new, previously un-

seen environmental states. This novel solution brings in intelligence in the detection

engine update process with the aim of extending its lifetime and sustain the detection

ratio above considerably higher levels than it would reach without such intelligence. At

least, in network setup transition periods, this ability gives the necessary time to the

administrators to smoothly retrofit the IDS to fully meet the new environmental condi-

tions. To do so, we take advantage of the benefits of the Self-Taught Learning (STL)

methodology [239], for enabling Transfer Learning from unlabeled data for the sake of

assisting the IDS when dealing with unknown environments. Our evaluation proves that

the qualities of the STL methodology can fit well in the particular problem and address

the challenges raised in the field of adaptive IDSs. Our adaptive methodology is also

supported by the MAPE-K model [240] for delivering a self-adaptive IDS that follows

the sound practices of autonomic computing.

In short, the contributions of the work presented in this chapter are as follows:

• We propose a novel methodology for designing a scalable, self-adaptive and au-

tonomous misuse intrusion detection systems based on advanced artificial intelli-

gence (AI) techniques.



Chapter 4. Introducing Deep Learning Self-Adaptive Misuse Network Intrusion
Detection Systems 144

• We take advantage of deep learning methodologies to identify new data feature

representations that stem from the unknown environment where the IDS operates.

These new representations are used to retrain the IDS in an automated way so as

to adapt to the new environment.

• We integrate our proposal in the context of MAPE-K methodology that draws the

frame for autonomous and self-adaptive systems.

• We extensively evaluate our system over several metrics and diverse environmental

states to deliver a proof of concept, which is supported by experimental results

and demonstrates its potentiality for further extension.

The rest of this chapter is organized as follows. The next section includes all the neces-

sary information to introduce the reader in our methodology. In Section 4.3 we present

our methodology and elaborate on its beneficial characteristics, while in Section 4.4 we

provide the evaluation results. Section 4.5 provides a discussion on the key findings.

Section 4.6 reviews the related works in the field. The last achieved section concludes

and provides pointers to future research.

4.2 Preliminaries

Our work recruits two different concepts to provide a holistic framework for self-adaptive

and autonomous misuse detection systems. Before introducing the reader to our idea, we

first provide an overview of the basic concepts related to our methodology. That is, the

following subsections elaborate on the MAPE-K [240] and Self-Taught Learning [239]

methodologies.

4.2.1 MAPE-K Control Loop

MAPE-K control loop is a reference model in autonomic computing firstly introduced by

IBM [240]. Since then, MAPE-K is used to set the principles for self-adaptive systems

and significant effort has been put to standardize and formalize the methodology [241,

242]. MAPE-K is a control loop comprised of five activities, namely, Monitor, Analyze,

Plan, and Execute over a Knowledge base, as can be seen in Figure 4.1. As further

explained in subsection 4.3.2, these activities provide a general framework for developing
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Figure 4.1: MAPE-K methodology sets the principles for an adaptive and autonomous
IDS.

self-adaptive systems which are able to sense changing events from their environment.

This is done via the use of specialized Sensors, and eventually harmonize their behavior

by taking actions through Actuators.

More specifically, the Monitor senses the environment and collects data/events of interest

where their presence indicates the need of system adaptation. The collected data/events

are gathered in the Knowledge database for later reference. Next, the Analyzer under-

takes the task of processing the collected events to identify patterns of failure or critical

events and act upon by initiating a proper adaptation strategy. The Plan activity or-

chestrates the decision making and determines the changes which should be taken for

keeping the system aligned with its objectives. Finally, the Executor instructs the ap-

propriate alterations to the system through the Actuators. The control loop described

above is initiated whenever the system identifies the need to adapt its behavior to the

underlying environment and always aims to meet the objectives which - in principle -

are set by the administrator.

Every single activity in the MAPE-K control loop can contain other autonomic elements

that can be used to fulfill sub-objectives of the main activities. These elements can

interact among each other by exchanging signals and messages. Overall, the system

and its sub-components are coordinated with the aim of providing a fault tolerant self-

adaptive system, which is driven by pre-determined objectives.
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4.2.2 Self-Taught Learning

Self-Taught Learning (STL) is a machine learning framework which is able to exploit

unlabeled data with the purpose of improving a supervised classification problem [239].

The motivation of the authors in [239] derives from the fact that labeled data are an

“expensive” source of information, as it requires a significant investigation budget to

acquire and update them. The question posed was whether unlabeled data could be

used to improve a given classification task.

In the STL concept, one is provided with both labeled and unlabeled data. The labeled

data are used as the initial training set of m samples for a given classification task

T = {(x(1)
l , y(1)), (x

(2)
l , y(2)), ...., (x

(m)
l , y(m))}, where x

(i)
l ∈ Rn is the i-th sample with

n features, y(i) ∈ {1, ..., C} is the class label, and the l symbol stands for “labeled”.

On the other hand, the set of k unlabeled samples U = {x(1)
u , x

(2)
u , ...x

(k)
u } ∈ Rn, where

x
(i)
u ∈ Rn is the i-th unlabeled sample with n features, and u stands for “unlabeled”. U

is given as input to a sparse coding algorithm to learn a higher level structure of those

data. This structure is then used as a basis to transform the initial labeled dataset T

and obtain a new training set T̂ = {(a(1)
l , y(1)), (a

(2)
l , y(2)), ...., (a

(m)
l , y(m))}, where a

(i)
l

represents the i-th new training example. In consequence, the new training dataset T̂

can be used to train a supervised learning algorithm.

More specifically, sparse coding is a type of unsupervised methods that aims to recon-

struct input data as accurately as possible and express them as linear combinations of a

basis vector b. The basis vector b enables to accurately capture the inherent information

of the input and identify strong patterns in it. Additionally, sparse coding regulates the

sparsity of the data by using coefficients (or activations) ai and encourages most of the

coefficients to be zero. In fact, this is an optimization problem that aims to reconstruct

the input data by minimizing the reconstruction error, and at the same time to max-

imize the sparsity of the output. Given the bases b and the training set T , the STL

algorithm transforms the inputs x
(i)
l to sparse non-linear combinations of the basis b to

form a new, but more informative, training set T̂ .

The interested reader can refer to [239] for more details regarding the STL method. In

the following section, we further elaborate on the beneficial features of the STL and

explain how these features in conjunction with MAPE-K control loop can deliver a

holistic methodology for building a misuse adaptive IDS.
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4.3 Proposed Methodology

This section details on our methodology for adaptive misuse IDSs. With reference

to Section 4.1, we first define the term “environmental state” and elaborate on the

challenges that IDSs face whenever a change appears in the underlying network topology.

Next, we combine the two methodologies described in subsections 4.2.1 and 4.2.2 for the

purpose of presenting our full-fledged approach along with its advantages.

4.3.1 Environmental States and Network flows

Undoubtedly, computer networks are highly volatile environments, which can be char-

acterized as a mosaic of diverse interconnected devices usually from different vendors.

On top of that, one needs to consider that modern networks like IoT networks, Wireless

Sensor Networks (WSN), VANETs, and others come with such an extended size, dynam-

ics and complexity that far exceed the limits of human managing capabilities. Similarly,

IDSs which aim to protect such dynamic networks are unable to automatically adapt

to the changes occurring to their environment and their adjustment requires significant

human effort. In fact, there are several reasons that can lead a network to a new state,

and therefore lower the efficiency of the deployed IDS.

At any given time, a new device can join a network. This is the most common situation,

especially in wireless networks, but this event alone can lead to a set of subsequent events

that can bring instability. That is, the newcomer may be a host of new services, ports,

applications, communication protocols, communication patterns, network workload, and

even new vulnerabilities. In the worst case scenario, the new device may be also infected

by some ilk of malware that can attempt to exploit other network assets to penetrate

the network. A join operation is not the only reason for facing network state changes.

The already existing network assets can modify their operational profile as they can be

subjected to OS/application upgrades and new application installations. These modi-

fications, apart from introducing changes in the network state, can sometimes increase

the attack surface of the network as they can bring in new and zero-day vulnerabilities.

The aforementioned changes, even when occurring individually, can significantly affect

the decision engine of an IDS and produce a high level of false alarms. Even worse, if
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the IDS is not retrained to deal with these changes it can become the single point of

failure of the infrastructure’s security planning.

In the context of our work, we perceive any of the above mentioned events to lead the net-

work into a new state, and thus affect the IDS’s operational environment. Such changes

also affect the network’s behavioral profile, which in turn is reflected in the network

flows. According to RFC 2722 [243], a network flow can be seen as an artificial logical

equivalent to a call or connection, which has as attribute values aggregated quantities

which reflect the events that take place during this connection. These attribute values

can bear valuable information regarding numerous aspects of the network’s behavior

ranging from the topology to the workload and the active services. Thus, network flows

are a rich source of information that can improve the network security visibility as they

can be leveraged by security analysts to identify and assess hostile actions, new attacks,

and the network’s security state in general. As a result, when a network is overwhelmed

by unknown and previously unseen network flows, an IDS which has been trained to

defend a network based on a static training set needs to be retrained in order to sustain

a credible security level. This however implies the need of a demanding process on behalf

of the security analyst to identify and label manually new network instances for creating

a new dataset that can be used to retrain the IDS. Considering that most of the network

changes are common actions that can happen regularly, it becomes clear that there is a

need for methods capable of automating the retraining process.

To this end, our methodology aims to offer an automated way to keep the detection ratio

of a misuse IDS to acceptable levels regardless of the environmental changes that may

indicate the presence of previously unknown attacks. In a nutshell, our methodology can

empower autonomous and self-adaptive misuse IDSs by enabling them to adapt to their

environment and significantly contribute in keeping a high or at least acceptable security

level. This quality also significantly alleviates security experts from the demanding task

of retraining the IDS.

4.3.2 Blending MAPE-K and Self-Taught Learning

As described in Section 4.2, MAKE-K is a reference model to build autonomous and

self-adaptive systems. This subsection details on the ways the benefits of MAPE-K and
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Figure 4.2: Architectural overview of the proposed system.

STL can co-work toward coping with the challenges of this particular field and building

a solid basis for misuse adaptive IDSs.

As observed from Figure 4.1, MAPE-K comprises 5 activities that operate over a Domain

Specific System (DSS) and a Context. In our case, the DSS is the IDS per se, while the

Context can be adjusted to any given type of network where there is a need of an

adaptive IDS. Figure 4.2 depicts the proposed system and details on its components,

which are described next.

4.3.2.1 Monitor

This activity undertakes the task of coordinating the sensors for acquiring the basic

knowledge that will reveal the need of triggering the adaptive control loop. Network

mappers can be used as the basic sensors for network inventory. Such entities are

able to determine a gamut of network characteristics, including its topology, the avail-

able hosts, the running services, open ports, the operating systems, and even potential

vulnerabilities. By collecting such information, the Monitor is able to determine any

alteration event that requires an IDS adaptation. The monitoring activity is able to

grasp the environmental changes in collaboration with the Knowledge activity, which

serves as a repository for reference purposes. The Monitor can schedule the network

mapping process to occur periodically according to the characteristics of the network.
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In parallel, another sensor type which is controlled by the Monitor is the Network

Sniffers. The latter are used to capture the network traffic. This traffic is used as

the basis to extract in a later stage the network flows which have to pass through the

detection engine of the IDS. Additionally, the network traffic is stored in the Knowledge

component to serve the purpose of adaptivity as it is described further down in the

Plan/Execute activities.

4.3.2.2 Analyze

After collecting the necessary data, the Analyzer performs the transformation of the raw

network traffic into network flows. By using the stored traffic of the knowledge com-

ponent, the Analyzer utilizes network audit tools such as Argus [25] and CICFlowMe-

ter [244] in order to generate the network flows. These tools are able to analyze large

amounts of network traffic even in an in-line manner and process them accordingly to

generate highly informative network flows with various features. These features com-

prise the machine learning features of the network traffic instances, which are fed into

the IDS engine for detection purposes. Note that these flows constitute the unlabeled

dataset, which on the one hand are given into the supervised model of the IDS to detect

potential attacks, while on the other are used as the unlabeled data fed to the STL to

fuel the adaptive process. This implies that during the IDS operation, the adaptive pro-

cess is simultaneously executed with the aim of coming up with a new detection model

that will replace the existing one.

4.3.2.3 Plan

The planning activity undertakes the key process of leveraging the unlabeled data for

initiating the machine learning adaptive process. Until that point, the Monitor and

the Analyzer identified environmental changes in the network, while the Knowledge

component consolidated the network flows, which were generated by the time that the

change(s) occurred. This moment is the beginning of a crucial time interval when the

IDS may face unknown network traffic instances that can undermine its performance.

In this direction, the Plan activity aims to cope with this ambiguity by utilizing un-

supervised feature learning techniques. In the context of our work, we utilize a Sparse

autoencoder as the unsupervised learning algorithm to learn new informative and sparse
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representations of the unlabeled data, and thus benefit the supervised task of the misuse

IDS.

Sparse autoencoder An autoencoder is a neural network that applies backpropa-

gation [245] and aims to reconstruct a given input to an output that approximately

resembles to the initial input. That is, the neural network attempts to learn a function

hW,b(x) ≈ x, where the W, b vectors denote the Weights and Biases among the layers and

their units of the neural network. This process can be driven also by other objectives

apart from minimizing solely the reconstruction error. As already pointed out, in our

work we utilize a Sparse autoencoder in order to learn sparse representations of the input

data. In practice, the backpropagation process is driven by the following cost function.

J(W, b) =
1

k

k∑
i=1

(
1

2
‖x(i)

u − x̂(i)
u ‖22

)

+
λ

2

2∑
L=1

sL∑
i=1

sL+1∑
j=1

(
W

(L)
ji

)2

+ β

s2∑
j=1

KL(ρ‖ρ̂j)

(4.1)

where:

• x(i)
u ∈ Rn is the i-th input unlabeled example.

• x̂(i)
u ∈ Rn is the i-th output given the i-th input example.

• k is the number of the examples in the unlabeled training set.

• λ is the weight decay parameter.

• L index denotes the number of a layer.

• sL is the number of nodes in the L-th layer.

• β is the weight of the sparsity penalty.

• ‖x(i)
u − x̂(i)

u ‖22 is the squared L2 norm.

Through backpropagation the Sparse autoencoder aims to minimize equation (4.1). As

can be seen, the equation consists of three terms (one per line). The first term represents

the average accumulated squared error among the input and the reconstructed output.
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That is, the network tries to reconstruct the output and achieve high similarity with

the input. Note that, x̂
(i)
u ∈ Rn is a vector of n features, i.e., x̂

(i)
u = {x̂(i)

u1 , x̂
(i)
u2 , . . . , x̂

(i)
un}.

Thus, each x̂
(i)
up = hW,b(x

(i)
up) = f

(∑s2
j=1W

(2)
pj a

(2)
j + b

(2)
p

)
, p = 1, . . . , n and a

(2)
j are the ac-

tivations of the hidden units (2nd layer). The sigmoid function f(z) =
1

1 + exp(−z)
has

been chosen as the activation function for the neurons. This activation function gives

values between 0 and 1, while it regulates the weights of the network to change gradually

and output better results. Additionally, the sigmoid function introduces non-linearity

into the model, thus aiding in capturing non-linear combinations of the input data. The

second line refers to the weight decay term that tries to decrease the magnitude of the

weights (W
(L)
ji ) among the nodes of the layers, while λ controls the importance of the

weight decay term. The last term is a function that applies the sparsity penalty, where

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1− ρ
1− ρ̂j

is the Kullback-Leibler (KL) divergence that

can determine the difference between two distributions having ρ and ρ̂j mean values re-

spectively. That is, ρ defines a desired level of sparsity, while ρ̂j is the average activation

of the j-th hidden unit. The magnitude of the sparsity penalty is regulated by the β

weight.

Feedforward autoencoder The training process of the Sparse autoencoder will de-

fine the Weights and Biases vectors (W, b) = (W (1), b(1), W (2), b(2)). Next, these vectors

can be used in a Feedforward manner over a new input for finding a new and more

informative structure of this input. In other words, the knowledge acquired from the

unlabeled data U that fed into the Sparse autoencoder can now be exploited for restruc-

turing another dataset. This reconstruction is driven by a new representation which is

learned out from unlabeled data, i.e., data that stem from an unknown environment.

Following this principle, our methodology can generate a new representation of the

labeled dataset T = {(x(1)
l , y(1)), (x

(2)
l , y(2)), ...., (x

(m)
l , y(m))}, that was initially used

to train the IDS. Note that, x
(i)
l ∈ Rn is a vector of n features, i.e., x

(i)
l =

{x(i)
l1
, x

(i)
l2
, . . . , x

(i)
ln
}. The new representation is a new labeled training set T̂ that has

as features the activations of the hidden units. That is, given T as the new input in a

Feedforward autoencoder, we can calculate the new activation vectors using the Weights

and Biases of the first layer W (1), b(1) by applying the activation function. As a result,

the system produces a new dataset T̂ = {(a(1)
l , y(1)), (a

(2)
l , y(2)), ...., (a

(m)
l , y(m))}, where
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a
(i)
l represents the i-th new training example. Thus, each a

(i)
l example is a vector of s2

activations, a
(i)
l = {a(i)

l1
, a

(i)
l2
, ...., a

(i)
lS2
}, and each activation is given as follows:

a
(i)
lp

= f
( s1∑
j=1

W
(1)
pj x

(i)
lj

+ b(1)
p

)
, p = 1, . . . , s2 (4.2)

Finally, the new training dataset T̂ can be used to train a supervised learning algorithm.

Note that, the acquisition of T̂ can occur virtually indefinitely as long as the planning

activity is fed with new unlabeled network traffic.

The reader may notice that the Feedforward autoencoder adds an extra layer of data

transformation. That is, any instance which will be subjected into the supervised learn-

ing algorithm for detection purposes needs to pass first through the Feedforward au-

toencoder to acquire the same transformation properties.

4.3.2.4 Execute

The outcome of the planning activity is a Feedforward autoencoder which is used for

reconstructing the initial labeled dataset T and acquire T̂ . Hence, the execution activity

undertakes the training of a supervised model based on the new dataset T̂ . This step

does not impose any constrains regarding the supervised algorithm that can be used

to empower the detection model. In our case, we make use of Softmax Regression to

deliver a multi-classification detection module. After training the new model, the old

one, which due to the environmental changes had started facing efficiency problems, can

be replaced through the actuators.

4.3.2.5 Knowledge

During the adaptive control loop, the Knowledge component is accountable for storing

purposes. In fact, Knowledge is a repository that supports the adaptive functions and

helps exchanging the inputs and outputs of each activity among them. More specifically,

the repository stores the sniffed network traffic during the monitoring phase. Upon the

adaptation signal of the network mapper, these captures will become the input of the

network audit tool for generating the network flows. Additionally, the repository holds
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the initial labeled dataset T , which is used as a basis every time the adaptive control

loop is triggered.

4.3.3 Discussion

Figure 4.2 provides a high-level view of the proposed system by highlighting the building

blocks of the MAPE-K adaptive control loop. Additionally, in the figure, we can observe

the interconnections among the diverse components and follow the flow of the system’s

actions. As already pointed out at the beginning of this subsection, the combination of

MAPE-K and STL serves as the basis for building adaptive and autonomic misuse IDSs.

That is, while MAPE-K provides the essential principles to realise such an IDS, STL

contributes several features that cover the missing parts of the misuse IDS adaptation

puzzle.

• STL is destined to utilize unlabeled data with the aim of improving a supervised

learning task. This feature fits directly in the nature of the problem. Once a

misuse IDS is powered, it faces unlabeled network instances and tries to classify

them. Inevitably, due to environmental changes, the statically trained IDS will face

efficiency issues. Nevertheless, since STL is able to capture informative structures

from unlabeled data, the ambiguity of the new environment is exploited to generate

new knowledge. This, in turn, will reinforce the misuse IDS by generating a new

representation of the initial dataset.

• STL cannot be seen as an unsupervised feature learning or a semi-supervised

technique, but as a more powerful setup. This is because the unlabeled data

xu can: 1) be of any class and not necessarily coincide with the classes of the

labeled data xl, and 2) be drawn from a different distribution from the labeled

data xl. Crucially, these are two essential qualities that advocate the suitability

of STL as in practice, in an unknown environment, an IDS will face both known

and unknown attacks, which both stem from different distributions. Thus, our

methodology guarantees the adaptability and autonomy of the misuse IDS.

• When put in the frame of MAPE-K, the characteristics of STL can significantly

alleviate the burden of retraining the IDS every time a change appears in its

environment. For the retraining process, one needs also to consider the significant
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effort required to assign labels by hand to Big Data such as network data. That

is, if the IDS is trained with a basic labeled dataset, the proposed methodology

can significantly extend its autonomy. Though, a reasonable requirement is that

the basic labeled dataset needs to be representative enough and this requirement

is delegated to the administrator. It is to be stated that we do not claim that

our approach eliminates completely the need for human intervention, but it can

significantly diminish it.

• STL is able to handle big data in a scalable manner. In fact, the more unlabeled

data are given as input to the autoencoder, the more informative will be the new

representation.

• STL can significantly uncover strong structures in the data, especially when the

data features are statistically correlated.

Overall, the aforementioned characteristics of the combination of STL and MAPE-K

address to a great extent the major limitation of misuse IDSs, namely their inability to

deal with unknown situations. Considering the fact that misuse IDS are widely used

over anomaly detection IDSs, our approach becomes even more impactful.

4.4 Evaluation

In this section we evaluate our novel methodology. More specifically, in order to highlight

the advantages of our proposal and to make it comparable to other approaches, we

present our results under a variety of legacy classification metrics, as those are defined

in Section 2.2.3. Additionally, we detail on the used dataset and the setup of our

evaluation experiments.

4.4.1 KDDCup’99 and NSL-KDD Datasets

We evaluate our methodology using KDDCup’99 [21] and NSL-KDD [22] well-known

benchmarks datasets. Note that, this work does not aim to evaluate a detection algo-

rithm per se. Instead, we aim to prove that our methodology is able to exploit unknown

network flows to boost the detection efficiency in ambiguous environments. This means
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Class KDDCup’99 and NSL-KDD subclasses and the number of instances #Instances

Normal Normal traffic is not divided into sub-classes 936,152

DoS back (2,633), neptune (297,085), smurf (6,688), teardrop (1,828),
land (46), pod (448), apache2 (1,531), mailbomb (601), processtable
(1,429), udpstorm (4)

312,293

PRB satan (10,226), portsweep (6,787), ipsweep (7,411), nmap (3,200),
mscan (2,044), saint (683)

30,351

R2L ftp write (22), warezclient (1,783), spy (4), named (34), warez-
master (1,986), multihop (50), xsnoop (8), sendmail (29), sn-
mpguess (690), imap (25), snmpgetattack (357), worm (4),
xlock (18), phf (12), guess passwd (2,639)

7,661

U2R buffer overflow (102), httptunnel (278), loadmodule (22), perl (10),
rootkit (46), xterm (26), ps (31), sqlattack (4)

519

Total 40 subclasses 1,286,976

Table 4.1: Normal and attack classes in KDDCup’99 and NSL-KDD.

that the inherent limitations of KDDCup are orthogonal to our testbed. The reader can

refer to Section 2.2.2 or to the original publications of the datasets for more details.

Precisely, in the context of this work, we merged all the datasets provided by KDDCup’99

and NSL-KDD for creating a single voluminous dataset that bears as many network

traffic instances and as many attack classes as possible. Table 4.1 presents the instances

of the used dataset. In total, the compiled dataset has of proximately 1.3 million network

instances and comprises 40 classes (1 normal + 39 attacks), which come under different

probability distributions and fall into the following 5 major categories:

• Normal: Normal traffic instances.

• DoS: Denial of Service.

• PRB: Probing - Surveillance and other means of probing.

• R2L: Remote to Local - Unauthorized access from a remote machine.

• U2R: User to Root - Unauthorized access to local superuser (root) privileges.

We removed all duplicates from the merged dataset to avoid any bias to the classification

end-model. KDDcup dataset has some beneficial characteristics. To begin with, its

variety in attack classes seems ideal for evaluating our methodology. Its 39 attack classes

can be used to emulate a realistic and challenging testbed, where an IDS has to face

unknown traffic instances every time an environmental change occurs. Additionally,

the fact that the attack instances are drawn from different probability distributions

directly challenges the STL method. Recall that according to its properties, STL is

destined to handle efficiently large amounts of unlabeled data with that exact property.
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Moreover, KDDCup dataset has an imbalanced number of instances among its classes

and this feature reflects a realistic network condition. Finally, the KDDCup dataset

created over a network experiment that lasted for 9 weeks and the final result was

a dataset of approximately 7 million network instances with duplicates. Our compiled

dataset consists of 1.3 million instances without duplicates. This implies that our dataset

corresponds to a data collection period of at least 12 days. Hence, apart from the

beneficial characteristics mentioned above, the compiled dataset comprises a realistic

collection of network traffic that spans adequately over time and it is thus suitable for

evaluating an adaptive mechanism.

4.4.2 Testbed and parameters

To emulate an ever-changing environment for the adaptive IDS, we came up with the

following strategy. To emulate the initial state of the IDS, we train the IDS using Softmax

Regression with an initial dataset T , which consists of a fraction of 10% of normal traffic

and a randomly chosen subset of attack traffic. This attack-focused subset consists of 3,

3, 3 and 4 attacks subclasses of the major classes DoS, PRB, U2R, and R2L respectively.

As it is the case with any legacy machine learning-based IDS, we cross-evaluate the IDS

for achieving a robust end-model of more than 99% prediction accuracy. In a legacy

situation, this end-model would be the one to defend any future environmental state

of the network. Consequently, for emulating a new environmental state, we randomly

select another piece of the dataset U which consists of 10% of normal traffic and 5, 5, 5, 8

attacks subclasses of the major classes DoS, PRB, U2R and R2L, respectively. U might

or might not contain the classes or the instances gathered in T . Hence, depending on

the divergence between T and U the new environment can be slightly or very different

from the initial one. That is, it is expected to witness a low or even high drop of

the IDS efficiency respectively. However, according to the proposed methodology, the

adaptive IDS is able to exploit the U in order to obtain a better representation of

the new environment by transforming the initial dataset T , and thus resisting to this

efficiency drop. Note that U is in practice an unlabeled set of instances which is fed to

the detection engine for prediction. Naturally this applies also in our case, but we are

beforehand aware of the hidden classes of the instances for being able to measure the

efficiency of the adaptive IDS contrary to the static one. If we denote the performance

of the IDS in the initial phase, in the new but static phase, and after the adaptation as
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Figure 4.3: In the initial network state, a statically trained IDS can achieve an
acceptable performance Pinit (Left). In new network states, the adaptive IDS has
the ability to sustain an acceptable performance in contrast to the statically trained
IDS. The goal of our methodology is to improve the efficiency of the IDS so that

Padapt > Pstatic (Right).

Pinit, Pstatic, Padapt respectively, the goal of our methodology is to improve the efficiency

of the IDS so that Padapt > Pstatic. The evaluation strategy described in this section is

presented intuitively in Figure 4.3.

As described in Section 4.3, the Planning activity is based on the Sparse autoencoder for

identifying the new structure out of the unlabeled data. The autoencoder has to be tuned

beforehand by the security administrator. This process requires an initial tuning period

on behalf of the administrator that relies basically on the nature of the network and

the utilized data features. In our case, we selected the testbed’s parameters (Table 4.2)

based on an empirical study and our knowledge on the domain of the problems.

Parameter Value

Sparse autoencoder
• Number of hidden neurons 30
• Number of optimization iterations 500
• λ 0.0008
• ρ 0.06
• β 3
Softmax Regression
• Weight decay parameter 0.0001
• Number of optimization iterations 100

Table 4.2: Parameters’ setup.
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4.4.3 Results

This subsection elaborates on the results and compares the performance of the adaptive

IDS against the static approach, based on the metrics presented in Section 2.2.3. In

total, we subjected the IDS to 100 environmental changes, i.e., 100 diversely compiled

datasets, blended with diverse attacks of each major class of the compiled KDDCup

dataset. Figures 4.4 to 4.8 provide a graphical representation of the recorded metrics

over the 100 environmental states.

As can be seen in Figure 4.4, our adaptive approach surpasses the static one in most of

the environmental states. More specifically, in 84% of the states the adaptive approach

achieved a higher accuracy score compared to the static one. The average accuracy of the

static approach is 59.71%, while the adaptive’s one is 77.99%. This means that in average

our approach performs better by 18.28% over the 100 unknown states. Additionally,

the standard deviation is 30.79% and 18.78% for the static and the adaptive approaches

respectively. This fact quantifies what intuitively can be observed from Figure 4.4, where

the adaptive curve witnesses less and smaller efficiency drops over the vast majority of the

states. It is important to note that the maximum positive accuracy difference between

the two approaches is 56.92% (state #8), while the maximum negative difference is -1.6%

(state #36). In fact, as can be seen in Figure 4.4, in critical cases where the IDS accuracy

drops significantly due to a state’s high deviation with respect to the initial training set

(T ), the adaptive methodology demonstrates a significantly higher contribution that

can sustain the IDS to acceptable detection levels. In total, 38% of the states present

higher accuracy difference than the standard deviation (18.77%), and for these states,

the average accuracy is increased by almost 48%. Hence, we can safely argue that the

adaptive approach can significantly contribute to the overall security level in sudden

network environmental changes (including attack incidents), while in cases where the

IDS accuracy drops to some extent, the adaptive approach achieves almost the same

performance as the static one. More precisely, for those 46 states where the accuracy

difference per state is positive and less than the standard deviation, the average accuracy

of the adaptive approach is greater than the static one by 0.51%. However, only for the

16 out of 100 states where the static approach performs better than the adaptive one, the

average performance is 0.57% in favour of the static approach. All in all, the adaptive

approach greatly outperforms the static one especially when it comes to critical states.
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Figure 4.4: Deviation of IDS accuracy over 100 consecutive environmental states.
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Figure 4.5: Deviation of IDS Attack Detection Ratio (ADR) over 100 consecutive environmental states.
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Figure 4.5 presents the ADR performance over the 100 environmental states. Recall

from Section 2.2.3 that ADR measures the accuracy in detecting exclusively attacks

instances, and thus reveals the performance in offensive incident detection. Overall, the

adaptive approach scores an average ADR of 60.34% and outweighs the static one by

23.8%, as the latter scores an average ADR of 36.54%. The standard deviations are

28.34% and 19.69% for the static and the adaptive approach respectively. In total, the

adaptive approach is proved better for the 86% of the states and, notably, the maximum

ADR increment is 73.37% (state #8), while the maximum deficient percentage is -5.67%

(state #36). As in the case of the accuracy metric, ADR achieves high scores for those

states where the static approach witnesses significant performance drops. For those 38

critical states, where the ADR difference between the two approaches is greater than the

standard deviation (19.69%), the average increment in the adaptive approach is 60.83%.

Additionally, 48 states present an ADR difference smaller than the standard deviation,

but again the adaptive approach performs better by 1.84% on average. Finally, only

in 14 states the static approach performed better by 2.14% on average. Since ADR is

considered a cardinal metric to measure the performance of an IDS, our results suggest

that our adaptive method can significantly contribute in sustaining the detection ability

of an IDS to high levels. The value of our novel proposal lies in the fact that it can

breathe new life into the IDS in critical/sudden situations and increase ADR by up to

73.37%. In principle, in critical situations where the IDS performance drops significantly

there is an urgent need for human intervention. Namely, in these cases, ADR can drop to

such deficient levels that most of the attacks occurring in the network can go completely

unnoticed. Hence, instead of triggering a process of manually retraining the IDS, our

solution provides a self-adaptive and autonomous way to keep the IDS’s operational

ability to high levels.

Furthermore, Figure 4.6 gives an overview of the average accuracy (recall) per class

included in the dataset. For each class, we offer a side-by-side comparison of the per-

formance of the static versus the adaptive method. In the figure, the accuracy for the

Normal class is almost identical for the two methods. In fact, there is a tiny difference

of 0.2% in favor of the static approach. Given that this accuracy is the average of the

recall over 100 states, this difference is characterized as minor. On the bright side, the

difference concerning the accuracy of the DoS attack class is significant. More specif-

ically, the adaptive method achieves an average accuracy of 39.67% in contrast to the
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Figure 4.6: Accuracy (Recall) of all classes over the 100 states.

static one that achieves 13.94%. This difference of 25.73% on an average metric is note-

worthy. The maximum difference of DoS accuracy recorded among all the 100 states is

80.34% and is perceived in state #8. Actually, in that state, the static IDS witnessed

a critical situation as the accuracy in DoS detection was only 0.52% due to the high

deviation induced by the new environment. On the other hand, the adaptive approach

was able to acquire the necessary knowledge for the unknown network traffic and boost

the accuracy metric to 80.87%. Additionally, regarding PRB attack detection accuracy,

once again the adaptive approach achieves an average score of 89.57% against the static

one, which scored 87.76%. Regarding the attack classes of U2R and R2L, both methods

were incapable of detecting any attack vector of those classes. The reason behind this

fact is that the aforementioned classes have a small number of instances. Recall from

subsection 4.4.2 that any new environmental state stems from a sampling technique.

Apparently, the small numbers of instances of those normal/attack classes and the sam-

pling technique to simulate the new environment do not provide adequate instances to

build a solid ground truth for the classifier. Overall, the adaptive approach is capable

of keeping a stable accuracy on identifying the normal traffic, while its attack detection

performance is originated primarily from the DoS attack accuracy and secondarily from

the PRB attacks detection accuracy.

The overall performance of the adaptive and the static methods is illustrated in Fig-

ure 4.7. The dominance of the adaptive method is verified by all the metrics. Apart

from the accuracy and the ADR metrics analyzed above in detail, also the rest of met-

rics prove the superiority of our methodology. The difference of 4.78% in the MFM

metric reveals that the adaptive approach is able to keep the balance between Recall

and Precision among all the dataset classes to a greater extent. Note that the MFM
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Figure 4.7: Performance comparison over all average metrics.
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Figure 4.8: Side-by-side Boxplots of metrics for both methods.

metric, as defined in Section 2.2.3, is the unweighted average of recall and precision.

That is, the unweighted MFM constitutes a more strict metric to evaluate our method,

as it treats all classes equally independently of the classes’ size. This means that the

adaptive method is not only able to provide better attack detection rates, but it is also

capable of identifying with higher precision the correct class where the attack instances

belong to. Finally, the small deficiency (0.2%) reported in the accuracy metric of the

Normal class for the adaptive approach is reflected in the slightly increased FAR of 0.4%

in contrast to the 0.2% achieved by the static approach.

Additionally, in order to better understand the distributional characteristics of our re-

sults over the chosen metrics for the two methods, Figure 4.8 provides a side-by-side

comparison of the boxplots of the metrics. Note that the FAR metric is absent since its

deviation is minor. In fact, Figure 4.8 puts in a nutshell the behavior of the two methods
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as it was already portrayed in Figure 4.4 and Figure 4.5. The dominance of the adaptive

approach becomes clear as in all boxes the medians are comparatively higher than those

in the static approach. Especially for the boxes representing the Accuracy and ADR

metrics, we can notice a significant difference. Regarding the static method, the long

size of the second quartile, both for the Accuracy and the ADR, reveals the inefficiency

of this method to sustain an acceptable detection level for the IDS in critical situations.

This is not the case for the adaptive method, as the concise inter-quartile reveals an

overall high stability in both metrics. Additionally, it can be observed that the box

of the Accuracy metric of the adaptive approach is slightly higher for the observations

above the median (third quartile). Regarding the box of the ADR metric, the adaptive

approach achieves significantly higher scores as it is noteworthy that its third quartile

starts at that point where the third quartile of the static approach ends. This proves the

higher robustness of the adaptive method in detecting offensive incidents in previously

unseen environments. Regarding the Attack Accuracy, Average accuracy, and the MFM

metrics, once again the boxplots reveal the benefits of the adaptive approach. Note that

the aforementioned metrics are average metrics, and thus it is normal to present a lower

deviation in contrast to the Accuracy and the ADR metrics. It is noteworthy that the

concise size of the MFM boxplot demonstrates the ability of the adaptive approach to

keep the balance between the recall and precision over all the classes and across all the

environmental states.

4.4.4 Time performance analysis

Since our proposal aims to provide an autonomous method for IDS self-adaptation it is

critical to analyse the time performance and scalability of its core components. More

specifically, the Sparse autoencoder (SAE) and the FeedForward autoencoder (FFAE)

of the planning activity are those components that enable the IDS to adapt to a new

environmental state. Hence, we measured the time performance of the autoencoders

using an incrementing size of dataset instances to evaluate also their scalability. As can

can be seen in Figure 4.9, we fed the autoencoders with dataset pieces ranging from

10k to 500k instances having a pivot step of 10k instances. Figure 4.9 reveals that the

SAE behaves linearly, while the FFAE (both in the training and testing phase) needs

less that 1 sec to obtain the transformation of the whole dataset. The SAE training

phase needed 2.977 secs, i.e., ∼49.5 min. given a dataset of 500k instances. The linear
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Figure 4.9: Time performance analysis for autoencoders.

performance behavior of the SAE advocates the ability of our approach to scale in

big data network environments. From our analysis, one could say that the adaptation

cycle can occur virtually indefinitely, while the extra transformation layer added by the

FFAE is negligible. Our python implementation was executed on a server empowered

with an Intel Xeon E5-2630 v4 @ 2.20GHz CPU. For measuring the time performance,

we exclusively utilized only one thread of the CPU. Naturally, the training time could

be significantly reduced with the use of GPU accelerators.

4.5 Discussion

The novel methodology described and evaluated in this chapter combines the benefits

of STL [239] and MAPE-K [240] to deliver a holistic deep learning-based methodology

toward self-adaptive and autonomous misuse IDSs. Our solution addresses the challenges

of this particular field to a great extent and, to the best of our knowledge, it is the first

one to evaluate an IDS under consecutive environmental changes. That is, we prove its

ability not only to adapt to new and unknown environments, but to achieve significantly

higher scores contrary to a static approach. In fact, as detailed in section 4.4.2, the

compiled dataset which consists of 39 attack classes along with the strategy of simulating

new environmental states out of it, reflects with high consistency a realistic situation.

The robustness and agility of the proposed methodology is advocated by its superiority

over a wide range of legacy classification metrics and over 100 different environmental

states. It is worth mentioning that across the vast majority of states our novel approach

was able to deliver a significantly higher detection ratio surpassing the static IDS by
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up to 73.37%. In few states we achieved better but comparable results with the static

approach, while only in a handful of states the static approach proved better for a small

percentage (2.14% on average). In a nutshell, the acquired results demonstrate that the

proposed methodology can revitalize a misuse IDS and boost its ADR by up to 73.37%

in critical situations.

Additionally, our simulation posit practical challenges to our methodology. In realistic

occasions, an IDS will have to deal with unknown attacks of any class, where their

features might be drawn of different probability distributions. Our sampling approach

tries to imitate such a challenge and stresses our method over consecutive environment

changes. However, this challenge is compensated inherently by the STL properties.

Moreover, our evaluation is given in the context of a multi-classification instead of a

binary one (Attack/Normal). This provides deeper insights about the performance of

the presented approach. Namely, it is important for an IDS solution, not only to be able

to detect an attack, but also to designate the class where the attack belongs to in order

to aid well-defined counteraction plans [246].

Our proposal comes to deal with a well-known disadvantage of misuse IDSs, namely their

stiffness to adapt upon changes. Note that we do not claim that our proposal is able to

identify new attack classes, but it is indeed able to grasp an attack’s nature based on

generalized features reconstructions stemming directly from the unknown environment

and its unlabeled data. Crucially, this reconstruction is a product of a scalable method

which is able to handle big network data. We prove that given an initial labeled training

set that serves as a basis, the proposed solution is able to revitalize the efficiency of the

IDS without the constant need to refresh it, and then retrain the IDS. The transformation

of the initial training set – based on the knowledge acquired directly from the current

state of the network – provides a high lever of automation in the retraining process.

That is, the presented methodology addresses the inherent limitation of misuse IDSs to

adapt to new environments, while it significantly alleviates the burden of administrators

of constantly refreshing its training set.
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4.6 Related work

Machine learning IDSs is a research topic that attracted the attention of the research

community for decades. In the recent years, several neural networks-based solutions

arose and offered promising solutions. This section offers an overview of deep and shallow

learning methods, while it also elaborates on whether they bear any adaptable features.

This section also refers to methodologies that aim to provide a level of automation in

the IDS adaptation and discusses our contributions over them.

4.6.1 Neural Networks-based approaches

The work in [36] introduces a deep learning solution for NIDSs. The authors utilize the

self-taught learning methodology exclusively as an unsupervised feature learning method

for supporting a statically trained IDS. Instead, our solution provides a more powerful

setup of the STL in conjunction with MAPE-K methodology to deliver a deep learning

methodology for adaptive IDSs. In fact, contrary to [36], we pass the IDS through

environmental changes to prove that our approach is able to generate knowledge out of

unknown environments.

The authors in [247] propose an IDS algorithm based on Spectral Clustering (SC) [248]

and Deep Neural Networks (DNN) [31]. Through SC the proposed method is able to

identify cluster centers that divide a raw dataset into data clusters with similar features.

Those data clusters are fed as training data into DNN’s of multiple layers. The algorithm

trains as many DNN’s as the clusters identified by the SC and aggregates the final result

in an ensembled way. However, the proposed deep learning approach does not provide

any kind of adaptiveness to the system.

In the context of MAPE-K control loop, the authors in [236] proposed an adaptive IDS

in terms of network environmental changes. By exploiting the MAPE-K model, the

authors were able to perceive the environment changes and plan appropriate update

actions in the Snort IDS detection rules. The authors in [236] utilize MAPE-K model

for regulating the adaptive process. However, our approach goes beyond that point and

exploits MAPE-K model to build a deep learning misuse IDSs in the adaptive frame.
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The authors in [37] use deep learning techniques to detect network anomalies in 5G

networks. The authors utilize DNN and Long Short-Term Memory (LSTM) Recurrent

Networks to empower the anomaly detection. Their proposal takes self-adaptation ac-

tions with respect to the network load requirements by applying management policies.

Nevertheless, the adaptation policies are applied to the network load management rather

the detection framework per se.

The work in [249] proposes a deep learning method for detecting DoS attacks based

on Restricted Boltzmann Machine (RBM). Specifically, the authors used a Gaus-

sian–Bernoulli RBM with 7 hidden layers with 100 neurons each. Through the afore-

mentioned setup the proposed method learns a reduced set of new features of the NSL-

KDDTrain+ 20Percent dataset [22] (train: 25,194 instances, test: 4,508 instances). Ac-

cording to the authors, the Gaussian—Bernoulli RBM is able to outperform the deep

learning approach of Bernoulli-Bernoulli RBM and Deep Belief Network, and the legacy

machine learning methods of SVM (radial basis), SVM (epsilon-SVR), and decision tree.

Even though the proposed method learns new features representation out of unlabeled

data, it is not exposed to unknown data for supporting an adaptable approach.

The authors in [250] designed an IDS model by stacking dilated convolutional autoen-

coders (DCAEs) for learning features representations from unlabeled data. In their

experiments, the authors tested the generalization ability of their detection model by

testing it with previously unknown attacks. Even though the authors pose their trained

model against new attacks, they do not proceed to any automated retraining method.

Rather they aim to exclusively test the generalization ability of the learned features

employed to statically train the IDS. Additionally, the authors approach the problem

as a binary one (normal/attack), while in our classification case we deliver a multi-

classification method.

The authors in [38] propose a new type of autoencoder namely non-symmetric deep

autoencoder (NDAE) and they utilized it in a classification model using stacked NDAEs.

According to the authors, the NDAE engaged only an encoding phase for reducing the

complexity of the network with minor effect on the accuracy of the model. At the end

of the stacked NDAE, the authors attach Random Forest algorithm that undertakes the

classification task based on the features learned from the NDAEs. The proposed setup



Chapter 4. Introducing Deep Learning Self-Adaptive Misuse Network Intrusion
Detection Systems 169

achieves high accuracy rates, but the author’s methodology does not bear adaptability

characteristics.

4.6.2 Adaptive methodologies in IDS realm

Although the IDS research on IDS has offered an large amount of works [251, 70, 24, 252]

the vast majority of them focus on providing highly accurate end-models with minor false

alarm rates. Thus, the adaptability property remains an open issue and it is a well-known

drawback, especially for the misuse IDS domain. Still, there are methodologies that,

according to the literature [235], could provide the necessary foundations to adaptive

IDSs. Among them, Learning Classifier Systems (LCS) [237], Artificial Immune Systems

(AIS) [238], Swarm intelligence [67], Evolutionary computing [253] and Reinforcement

learning [254]. There is no doubt that all of these approaches can offer their principles to

build adaptive systems for practical problems. However, the intrusion detection problem

has some inherent characteristics that one has to take into consideration when aiming

to build a self-adaptive and autonomous IDS. That is, a self-adaptive and autonomous

approach implies the complete disengagement of the human factor or at least a minimal

interaction in the form of a supervision.

The self-adaptation property implies that an IDS should be able to adapt itself to the

needs of a new environment even without the need of feedback from the administra-

tors. This means that the adaptation process of an IDS cannot be based on labeled

data because labeling network data of a new environment is a demanding engineering

task. That is, approaches that base their adaptation on labeled data can be considered

adaptive, but not self-adaptive. As a result, to support self-adaptation in the context

of intrusion detection, we need to invest on methods that can exploit unlabeled data to

improve the detection performance.

Additionally, in an on-line machine learning problem, where new instances need to be

classified instantly and accurately, there is a need of approaches that can adapt to

new environments also in a realtime fashion. This entails that solutions that rely their

adaptation on a trial-and-error approach as those based on reinforcement learning, seem

to be impractical for this nature of problems. In fact, an IDS cannot learn in the same

way that, say, a robot does. For example, if a robot encounters an obstacle then it learns

out of this incident and proceeds to an adaptation of its objectives. Unfortunately, in
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the intrusion detection context, the only entity that can identify a mis-classification

(i.e., an obstacle) is the administrator who notices an ongoing attack. An IDS is not in

position to know if a new instance is misclassified or not. In other words, the IDS cannot

see the “obstacles”, but the “obstacles” are in practice attacks that go unreported or

normal instances which are detected as attacks and increase the false alarm rate. In this

sense, we need to invest on methods that can learn from the unknown environment in

an autonomous way.

To this end, our proposal tries to address the aforementioned challenges. The combi-

nation of Self-taught learning [239] and MAPE-K [240] brings together the benefits of

transfer learning from unlabeled data and places this ability in the frame of autonomic

computing. That is, our self-adaptive and autonomous method enables an IDS to extract

new features out of the unlabeled and unknown traffic of a new environment and exploit

them for retraining in an autonomous way its detection engine. Furthermore, our solu-

tion enables the IDS to adapt according to the dynamics of the new environment even

if this is overwhelmed by previously unseen traffic. Given an initial training set, a new

features construction is learned using a neural networks-based sparse autoencoder, and

via a feed-forward autoencoder the initial training set is updated to meet the challenges

of the new environment.

4.7 Conclusions

This chapter focused on a novel methodology that advances the state-of-the-art in the

literature of misuse IDS. The highlight of the presented scheme is that it can practically

render any misuse IDS autonomous, i.e., self-adaptive to the ever-lasting changes made in

its network environment. This means that in such frequently occurring (and sometimes

sudden) transition periods, the IDS is able to maintain an at least acceptable attack

detection rate, which otherwise is fated to drop abruptly, rendering the IDS useless.

This quality is also a great relief to the security administrators who after a network

environment change are granted enough time to possibly update the IDS’s detection

model. The proposed methodology uniquely blends the MAPE-K reference model and a

deep-learning technique called self-taught learning to enable an IDS to identify previously

unseen attacks via reconstructions made on unlabeled data. The linear performance

behavior for acquiring the aforementioned reconstructions, renders our proposal suitable
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for contemporary big data network environments. The effectiveness of our proposal

is demonstrated through extensive experimentation considering several metrics and a

plethora of attacks included in widely used datasets.



Chapter 5

Conclusions and Future

Directions

5.1 Conclusions

In an era when ICT infrastructures gain in size and complexity at a fast pace, their

protection exceeds the limits of human processing capabilities. Hence, it is crucial to in-

vestigate for methods which not only achieve high detection efficacy, but they are able to

support the decision making in critical situations. In this direction, such methods should

bring intelligence in the security mechanisms, enable automation and self-adaptation for

alleviating the security administrators. Reaching to the end of this doctoral thesis, it

becomes clear that intrusion detection and reaction remains a highly active research area

as the battle between aggressors and defenders has taken the form of an “arm-race”.

Through our research, we investigate the current state-of-the-art on cost-benefit intru-

sion response methodologies for providing optimal security countermeasures, while we

also introduce novel methodologies for enabling versatile intrusion detection.

More specifically, as described in chapter 2, intrusion response systems is a research field

which encompasses several research challenges. Through an extensive analysis, we reveal

a gamut of open research challenges and we provide future directions and best practices

for building reactive and remediative mechanisms that can support security administra-

tors during critical conditions. However, as described in chapter 3, an optimal incident

response strategy should be triggered upon a correctly identified and classified incident.

172
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Objective Chapter Contribution Publication Patents

Obj. 1 2 A detailed overview of fundamental characteristics of
reaction frameworks.

[246]

Obj. 1 2 A comprehensive survey and side-by-side comparison
on reaction frameworks for optimal countermeasure se-
lection.

[246]

Obj. 2 3 Design and implementation of an evolutionary classi-
fier called Dendron.

[251]

Obj. 2 3 A method and systems for generating detection rules
and taking countermeasures.

[252]

Obj. 3 4 Introducing Deep Learning Self-Adaptive Misuse Net-
work Intrusion Detection Systems.

[255] [256]

Table 5.1: Overall PhD Thesis Contribution.

That said, this doctoral thesis introduces two novel methodologies for improving the

state-of-the-art in network intrusion detection. Chapter 3 proposes Dendron, a method-

ology for evolving detection rules, which can detect both popular and rare intrusive

incidents utilizing evolutionary computing techniques. Additionally, the methodology

presented in chapter 4 is destined to tackle the main limitation of misuse detection

systems, which is the lack of agility in adapting to new and “unknown” environments.

This chapter summarizes the contribution of this doctoral thesis and provides research

directions for future work.

5.2 Thesis Contributions

In accordance to the objectives presented in chapter 1, this doctoral thesis aims to shed

light to the state-of-the-art methodologies which aim to provide optimal and cost-benefit

counteraction of cyber attacks in the context of intrusion response systems. Additionally,

it focuses on the deployment of advanced machine learning techniques to tackle known

limitations of the intrusion detection literature. A side-by-side comparison of the thesis

objectives and our contributions in terms of publications in peer-reviewed venues and

patents/patent applications is given in Table 5.1.

Initially, our research concentrated on the analysis of IRSs, which aim to provide optimal

countermeasures against cyber attacks in a reactive manner. In fact, there are several

solutions to enable the observability and monitoring networks for identifying misuse or

anomalous incidents, as well as asset inventory tools to draw the security landscape

of a network. Even though those tools can shape a generic picture of a security state

of an infrastructure, the decision making for applying recovery actions upon incidents

remains an open issue and the community still lacks proper tools. This shortcoming
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motivated us to shed light on today’s research solutions which aim to provide optimal

countermeasures in a cost-benefit manner. In this direction, and in accordance to the first

objective of this thesis, chapter 2 and [246] provided an extensive analysis of reactive

methodologies resulting the following research challenges, which remain widely open

among the reviewed solution.

• Lack of scalable solutions.

• Limited countermeasure knowledge.

• Correspondence between counter-

measures and attacks.

• Lack of standard representation.

• Metrics and scoring system.

• Mitigating Zero-Day attacks.

Given the aforementioned challenges, our work advocates that the automation of decision

making for incident response has still many steps to take for reaching the point of

providing complete counteraction tools that can assist the security administrators to

their duties. Until then, administrators will act based on their knowledge and experience

and by following hopefully documented security policies.

Based on the analysis provided in chapter 2 and [246], it becomes clear that any re-

sponse strategy must be triggered upon a correctly identified incident, otherwise an

automated responsive mechanism could trigger unnecessary remediation actions, which

could disrupt the well-adjusted operational state of a system. In this direction, this doc-

toral thesis developed a methodology which enables a signature-based IDS to accurately

identify the class within an incident belongs to. By utilizing this methodology, an IDS

is in position to identify accurately both popular and rare incidents, as the latter are

significantly neglected by related works. Our work blended the beneficial characteristics

of Decision Trees and Genetic algorithms for evolving a population of Decision Trees

with the purpose of acquiring an accurate multi-classed end-model able to keep the

balance among all the network traffic classes. This feature is achieved via a weighted

selection probability function, which guides the evolutionary process to come up with an

individual, which is not biased towards neglecting those classes represented by a smaller

percentage of instances in a dataset. According to the evaluation results presented in

chapter 3 and [251], our approach was able to surpass well-known algorithms in terms of

key performance metrics over 3 distinct benchmark datasets, namely KDDCup’99 [21],

NSL-KDD [22] and UNSW-NB15 [23].
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The aforementioned novelties were published in [251], while a Patent was filed by

NEC Corporation for reserving the exploitation rights of a corresponding system and

method [252]. Summarizing the above, on can understand that the contribution of our

work in [251] is twofold. On the one hand, the multi-classification approach of the

problem and the intention to designate an incident to a specific class are aligned to the

requirements of incident response mechanism, since an optimal countermeasure must be

tailored to the particular characteristics of a threat. On the other, the rule induction

method aims to assist the security administrator in understanding the network traffic

and the attacks themselves, as the rules derived out of a decision tree can be interpreted

by a human.

Even though a methodology for detection rules induction can be proved beneficial and

alleviates the burden of security administrators, the major limitation of misuse detection

systems remains. These systems are rather static and demand a rather huge engineering

task to update the detection system. In principle, an ML-based IDS needs to be re-

evaluated periodically, as it cannot be “set it and forget it”. Robust intrusion detection

requires frequent, rigorous re-training of the model by providing data with high fidelity

to the real world [234]. In this direction and in accordance to the third objective of this

doctoral thesis, the work presented in chapter 4 and published in [255], came to tackle the

lack of agility of misuse IDSs. By blending the beneficial characteristics of Self-Taught

Learning [239] and MAPE-K [240] methodologies, we built a novel self-adaptive misuse

IDS, which is able to exploit the inherent uncertainty of the network environment to

revitalize its detection engine and keep it up-to-date. By adopting state-of-the-art deep

learning methodologies, the proposed system is able to grasp an attack’s nature based on

generalized feature reconstructions stemming directly from the unknown environment

and its unlabeled data. We argue that our approach is a perfect fit to the nature of the

problem, as it can exploit unlabeled data drawn of any distribution and of any class.

These beneficial characteristics advocate the suitability of this methodology in practice.

In addition to the above-mentioned contributions, our methodology is suitable for Big

Data environments, as it presents a linear performance. Our evaluation results support

the ability of our proposal to adapt to new network environmental states, achieving

attack detection scores which surpass a static detection approach by up to 73.37%. We

argue that our research sets new standards in the field of adaptive detection systems,
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as the automation of the retraining process can significantly eliminate the human inter-

vention. The aforementioned novelties were published in [255], while a Patent was filed

by NEC Corporation for reserving the exploitation rights of a corresponding system and

method [256].

5.3 Future Research Directions

This Phd thesis has mainly contributed to the field of network IDSs by introducing

versatile methodologies with an eye towards addressing key limitations in this field of

research. Additionally, a significant step was taken in the direction of IRSs, by reporting

and decomposing the reactive methodologies, which have been proposed in the litera-

ture so far, through an extensive analysis. Undoubtedly, the quest for novel defense and

response mechanisms must be the bastion for the future battles. It becomes clear that

several steps have to be taken for introducing more versatile detection and reaction tech-

niques that can bring the advantage to the defensive side. To this end, this subsection

elaborates on possible research directions.

• Self-adaptation and autonomicity - In a digital world which is constantly expand-

ing, Research & Development programs aim to foster innovation on AI-assisted

autonomous and adaptive systems for cyberdefense [257]. Our work presented

in [255] and our invention in [256] are aligned to this direction and aim to make

the difference against rigid detection systems. An in depth analysis of aspirant

AI-driven schemes and systems adaptation methodologies that can convey those

qualities to detection and reaction systems can be beneficial for the research com-

munity and foster innovation in this particular field.

• Deep learning approaches - Deep learning techniques have witnessed special recog-

nition the last few years mainly in the field of image recognition. The hardware

solutions, such as GPU accelerators, gave a boost to the field. The investigation

of deep neural network approaches can still benefit the efficacy of detection and

reaction systems, while further research must be conducted regarding the inter-

pretation of their behavior in the context of network intrusion detection.

• Big Data and parallelization techniques - As ICT infrastructures gain in size and

complexity, modern networks present high capacity for supporting highly active
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environments. Hence, a detection methodology needs to be scalable for handling

large volumes of data in a timely manner. However, evolutionary algorithms takes

a considerable amount of time for training and delivering an end-model. That

said, it would be worthwhile to investigate the performance of such methods in

conjunction with parallelization techniques and GPU accelerators.

• Designing cost-benefit reaction systems - Given the analysis conducted in this doc-

toral thesis regarding the intrusion reaction mechanisms, a potential future direc-

tion is the design of a cost-benefit reaction mechanism. By taking into consid-

eration the research challenges of the field, it is worth to investigate for scalable

methodologies which are driven by widely adopted security scoring systems and

threat intelligence. Such methods can be proved a great defense asset to sup-

port decision making. In fact, Security Orchestration, Automation and Response

(SOAR) solutions promise to go beyond what is possible in today’s Security infor-

mation and event management (SIEM) platforms [258].

• Joined deployment of detection and reaction system - A reactive system is triggered

upon the detection of an offensive incident. This chain of events needs to be

investigated in tandem as the former can significantly affect the efficacy of the

latter. Hence, a future work could illuminate the challenges and best practices for

fine-tuning AI-based detection and reaction mechanisms, which work in synergy.

• Building new challenging datasets - It has been widely reported in the literature

that the community lacks of contemporary datasets that reflect the modern net-

work conditions and attack characteristics. Hence, an aspirant future direction

is to design multidisciplinary datasets that combine characteristics from various

realms like IoT devices and smart devices, and investigate for unified and interop-

erable detection solutions.

• Wireless IDS idiosyncrasies - Network traffic from wireless and mobile devices

has already exceeded that produced by wired devices. This calls for IDS/IPS/IRS

that are specially designed to cope with the distributed and heterogeneous idiosyn-

crasies of the wireless terrain, not to mention the absence of rigid access control,

the highly dynamic network conditions, and the still limited bandwidth that also

apply to these networks. So far, only a handful of approaches touched upon this
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challenge [70], and thus it would be interesting to see if advanced methodolo-

gies like Dendron [251] and our self-adaptive detection methodology [255] can be

equally effective if deployed in distributed wireless terrains comprised by picocells

and femtocells, including current 4G and imminent 5G networks.
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Anomaly-based network intrusion detection: Techniques, systems and challenges.

Computers & Security, 28(1-2):18 – 28, 2009. ISSN 0167-4048. doi: http:

//dx.doi.org/10.1016/j.cose.2008.08.003.

[18] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly detection:

Methods, systems and tools. IEEE Communications Surveys Tutorials, 16(1):303–

336, First 2014. ISSN 1553-877X. doi: 10.1109/SURV.2013.052213.00046.

[19] A. L. Buczak and E. Guven. A survey of data mining and machine learning

methods for cyber security intrusion detection. IEEE Communications Surveys

Tutorials, 18(2):1153–1176, Secondquarter 2016. ISSN 1553-877X. doi: 10.1109/

COMST.2015.2494502.

[20] Prem Uppuluri and R. Sekar. Experiences with specification-based intrusion de-
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