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Abstract 
The effluent from a vertically integrated alumina and aluminum production and (since the 

late 2000s) thermal electric power production plant located on Antikyra bay in the Gulf of 

Corinth is being examined. This study processes satellite sea surface temperature and 

chlorophyll-a data and examines the possibility of thermal pollution from the 

aluminum processing plant considering the local geomorphology. The sea surface 

temperatures were derived from 58 Landsat 5 and 7 images from July 2009 until December 

2016. Respectively, the Chl-a concentrations were retrieved using reflectance data of 6 

Landsat OLI images from April 2014 until October 2015 in order to statistically correlate the 

various combinations of Landsat bands with in-situ measurements and to quantify 

algorithms that best describe this relationship and calculate accurately the concentration of 

chlorophyll-a. A polynomial model employing the band ratio B4/B1 was found to be the 

most efficient algorithm for the chlorophyll-a estimation of the Antikyra Bay with a 

maximum correlation coefficient of R2 = 0.99. Based on the correlation coefficients, the most 

sufficient local algorithm was found to be chl-a= 59.423x(b4/b1)2-22.687x(b4/b1)+2.174. The 

results confirmed the suitability of the method for assessing the concentration of 

chlorophyll-a in the Gulf of Corinth with statistically accuracy. Furthermore, the atmosphere 

influences on the sea surface temperature variation were indicated using air-sea heat flux 

data. 

 

Περίληψη 
Η μεταπτυχιακή εργασία εξετάσει την θερμική επιρροή ενός εργοστασίου επεξεργασίας 

αλουμινίου στον κόλπο των Αντικύρων του Κορινθιακού Κόλπου. Συγκεκριμένα αναλύονται 

δορυφορικά δεδομένα επιφανειακής θαλάσσιας θερμοκρασίας και χλωροφύλλης-α με 

λαμβάνοντας υπόψη την τοπική γεωμορφολογία. Τα δεδομένα επιφανειακής θερμοκρασίας 

λήφθηκαν από 58 δορυφορικές εικόνες του αισθητήρα Landsat 5 και 7 για την χρονική 

περίοδο Ιουλίου του 2009 μέχρι Δεκέμβριο του 2016. Αντίστοιχα, τα δεδομένα Chl-a 

ανακτήθηκαν χρησιμοποιώντας τιμές ανακλαστικότητας από 6 δορυφορικές εικόνες του 

αισθητήρα Landsat 8 από τον Απρίλιο του 2014 έως τον Οκτώβριο του 2015, προκειμένου 

να συσχετιστούν στατιστικά οι τιμές ανακλαστικότητας από πολλαπλούς συνδυασμούς 

μπαντών με in-situ μετρήσεις και να αναπτυχθεί τοπικός υψηλής ανάλυσης αλγορίθμος 

εκτίμησης της συγκέντρωσης της χλωροφύλλης-α. Διαπιστώθηκε ότι ο καλύτερος 

συνδυασμός των μπαντών για αυτό το σκοπό αποτελεί η αναλογία των μπαντών Β4/Β1 με 

τον μέγιστο συντελεστή συσχέτισης να ισούται με R2=0.99. Ο αποτελεσματικότερος, 

αντίστοιχα αλγόριθμος βρέθηκε ότι είναι chl-a=59.423x(b4/b1)2-22.687x(b4/b1)+2.174. 

Επιπλέον εξετάστηκαν οι επιδράσεις της ατμόσφαιρας στις διακυμάνσεις της επιφανειακής 

θερμοκρασίας της θάλασσας αναλύοντας δεδομένα ροής θερμότητας από το Εθνικό Κέντρο 

Ατμοσφαιρικής Πρόγνωσης (NCEP) και το Εθνικό Κέντρο Έρευνας της Ατμόσφαιρας (NCAR). 
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1.) Introduction 
Coastal areas are often used as a disposal environment for thermal effluents originating 

from the cooling processes in industry plants. However, the problem of natural water 

bodies’ thermal pollution is usually and unjustifiably neglected. Any change in water 

temperature of the natural water intake, due to human activity is so-called thermal pollution 

(Langfort, 1990; Bilge et al., 2015). Water temperature has a direct or indirect influence on 

aquatic water ecosystems and it plays a critical role affecting the distribution of 

phytoplankton and fish species, stock catch, and diversification of aquaculture, i.e. the 

presence crabs, shrimps, and molluscs in the water body. In fact, the modified water input 

can affect water temperature, and possibly locally modify stratification and dissolved oxygen 

concentration. This may have negative impact on fish and other macroscopic/microscopic 

organisms, and their quantitative and qualitative nature. As a result, these alterations in 

water inflows may negatively affect all the food chain from freshwater to marine 

environment (Poff et al. 1997). Water temperature affects the overall biological and 

chemical composition of a stream (Pluhowski 1970; Paul and Meyer 2001; Poole and Berman 

2001). It influences nutrient cycles and productivity within fluvial systems (Allan and Castillo, 

2007). For that purpose, the impact of thermal pollution due to manmade coastal structures 

is explicitly mentioned in the European Commission’s Marine Strategy Framework Directive 

(2008/56/EC). 

 

Temperature also affects the solubility of gases in water, such as O2, CO2, N2 and CH4. In 

warm waters, respiration and growth rates increase. As growth of bacteria and 

phytoplankton population occurs in a short period, the effect of rising water temperature is 

remarkable and algal blooms could be observed. For this reason, it is important to 

understand how water body temperature is affected by heated wastewater discharge.   

 

It is also noteworthy that planktonic organisms are drawn along with the cooling water into 

the plant cooling circuit, where they are subjected to various physical and chemical stress 

factors. Moreover, organisms in the receiving water body may also be entrained into the 

effluent plume, even if they do not pass through the plant cooling circuit. Apart from 

increased temperature, the discharges often contain chemical stress factors in the form of 

biocides (e.g., chlorine) used for biofouling control (Morgan and Carpenter, 1978). 

Phytoplankton are a very important constituent of the coastal food chain and, therefore, 

qualitative and quantitative changes in the phytoplankton population in the receiving water 

body may have significant implications for the coastal ecosystem. As phytoplankton are 

drawn into the cooling circuit and then discharged back into the sea along with the effluents, 

it is possible that they suffer damages due to temperature and chlorine stress. 

 

Industries like aluminum-processing plants, as well as fossil fuel and nuclear power plants 

use lots of water for cooling purposes and return this water to the environment at a higher 

temperature. These temperature changes may adversely affect aquatic ecosystems 
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especially by contributing to the decline of wildlife populations and habitat destruction. Any 

practice that affects the equilibrium of an aquatic environment may alter the temperature of 

that environment and subsequently cause thermal pollution. There may be some positive 

effects, though, to large-scale thermal pollution, including the extension of fishing seasons 

and rebounding of some wildlife populations.  

 

At present one company in Greece, the “Aluminum of Greece S. A.”, is active in bauxite 

extracting pure alumina (aluminum oxide) and aluminum. Since 2009, the company has 

extended the operation of the facilities to include production of electric energy via fossil fuel 

burning. The occurrence of thermal plumes in the wider coastal area near the power plant 

has been suggested to be connected to the cooling process of the factory.   

 

The horizontal dispersion of thermal plumes is mainly driven by wind-induced currents (He 

et al., 2006; Choi and Wilkin, 2007; Cardoso-Mohedano et al., 2015). Near-shore regions 

close to the emitting source are therefore especially sensitive to thermal pollution since heat 

plumes can be trapped by coastal currents without being dispersed across the water body 

(Raithby et al., 1988; Salgueiro et al., 2015).  

 

Many water management authorities have enforced three kinds of limitations to heat use: (i) 

a maximum temperature of water used for cooling, (ii) a maximum temperature increase in 

the natural waters receiving the thermal effluents, and (iii) a maximum temperature in the 

receiving waters. The latter condition will restrict the suitability of various waters as heat 

recipient under the perspective of climate change, due to the expected increase of water 

temperature as well as changes in discharge/rain patterns.  

 

This work exploits satellite data and air-sea fluxes in order to examine whether the 

aluminum plant effluents the sea temperature and the chlorophyll-a concentration and in 

order to examine the spatiotemporal evolution of these parameters in the Gulf of the 

Corinth. Thus, below, the data and methodology used are presented after the introduction 

section (1) in section (2). The results are presented in section (3) and are summarized and 

discussed in the concluding section (4). 
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1.1.) The study area 
The Gulf of Corinth is a topographically-restricted marine embayment, with an 

approximately 105 longitudinal axis lying in an E-W direction (Fig.1.). The Gulf extends from 

the strait of Rio - Antirrio (to the west), up to the gulf of Alkyonides in the east. The total 

length reaches 130 km, while its width ranges from 5 to 30 km. Its maximum depth is 

measured at ~900 m. From a geological point of view, the Corinthian Gulf is a submarine 

sedimentary basin and is part of the Corinthian tectonic fault. More specifically, it is the 

northernmost and currently the most active part of the moat. With a total area of 

approximately 2400 km² out of a total of 4100 km² occupied by the Corinthian moat, the 

Gulf continues to dilate and plunge.  

 

Figure 1.)  Landsat 5 satellite image of (a) Greece and (b) the Gulf of Corinth (ENVI 5.1.) 

1.1.1.) Morphology 
The morphology of the northern margin of the Gulf consists of a wide shelf, in Antikyra Bay, 

which passes through a steeping slope and ends to a deep basin floor at ~900 m water depth 

(Figure 2).  

 
Fig. 2.)  Bathymetric map of the area based on EMODnet bathymetry data,  

identifying the Antikyra bay (ArcGIS 10.2.2.)  

b 
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The submarine bathymetry of the Gulf of Corinth consists of four main physiographic 

provinces: 

 

1) the continental shelf 

2) the continental slope 

3) the continental rise 

4) the abyssal plain  

 

The system is completed by the Delphic Plateau and Alkionides Basin (Heezen et al., 1966). 

More specific, the northern continental shelf area extends into the central part of the Gulf 

into water depths of around 200 m (the shelf break); its width varies greatly at between 700 

m and 12 km (Antikyra Bay) and it is associated with gentle slopes (Figure 3). 

  

In contrast, the southern shelf is narrow (< 1 km) and is relatively steep, with the shelf break 

occurring at a water depth of about 100 m. The northern slope varies at between 3 and 7 km 

in width, whilst the southern slope is much narrower (1.5-2.5 km) and steeper. In the north, 

the continental rise is narrower and steeper than in the south, where the width ranges 

between 1 and 5.5 km. Finally, the abyssal plain occupies the middle part of the central basin 

at water depths about 900 m. 

Figure 3.)  3D Elevation Model of the combined marine and land surface data, presenting the morphology of 

the Gulf of Corinth (GeoMapApp)  

1.1.2.) Oceanographical setting 
Published current data from the Gulf of Corinth are few, so that the understanding of water 

circulation is still incomplete. Strong currents have been measured at the entrance of the 

Gulf of Corinth, over the Rion sill area (~1.0 m s−1) and over the Mornos–Drepano sill, located 

ca. 9 km further to the east (0.6 m s−1) (Lascaratos et al., 1989). Modeling of the marine 

currents in the Gulf of Patras for different boundary conditions suggests that currents at the 

entrance of the Gulf of Corinth are generally controlled by tides, and occasionally by winds 

(Fourniotis and Horsch, 2012). Modeled rising tide-induced currents are unidirectional in 
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winter, but in summer, a cold-water bottom-current flows from the Gulf of Corinth to the 

Gulf of Patras, while a warmer current flows in an upper layer in the opposite direction 

(Fourniotis and Horsch, 2012). In the central gulf near-bed current-meter data and water-

surface temperature analysis suggest that the velocity of the currents is very low (<8 cm s−1, 

Poulos et al., 1996) and that a counterclockwise gyre is centered in this area (Lascaratos et 

al., 1989). The Gulf of Corinth waters show a thermal stratification in summer. The upper 

layer, from 0 to ~100 m exhibits a strong thermal gradient from 21 to 26 °C at the surface to 

~13 °C just below the thermocline, while below 100m, the temperature is uniform at 13 °C. 

In winter, convection homogenizes the temperature profile to around 13 °C (Lascaratos et 

al., 1989; Poulos et al., 1996). 

 

Also, Anderson and Carmack (1973) distinguished two major water masses present within 

the Gulf: a surface layer (0-200 m) wherein temperature and salinity vary seasonally with 

depth; and waters below 200 m, where the temperature and salinity remain almost constant 

with depth. Temperature and salinity within the surface water layer range between 25°C and 

38.55 psu (summer) and 14.3°C and 38.35 psu (winter), respectively. Below 200 m, they 

remain almost constant at 13.3°C and 38.57 psu (summer) and 12.8°C and 38.41 psu 

(winter), respectively. The same investigators identified an intermediate layer with both 

temperature and salinity maximum lying at between 125 m and 175 m within the water 

column. Furthermore, they interpreted the former temperature and salinity maximum as the 

result of advection of Ionian Sea water over the Rion sill. In contrast, the deep water mass 

(below 200 m) is characterized by much lower temperatures and salinities compared with 

the open Ionian Sea; thus, it is formed locally by downward convection of the surficial water 

mass, during winter and early spring (Nielsen, 1912).  Dissolved oxygen concentrations 

fluctuate seasonally, having their higher saturation values between February and August 

(Friligos et al., 1985) and with maximum saturation (>80%) just below the sea surface. 

Furthermore, the water column below 200 m and near the sea bed contains oxygen; this is 

indicative of active renewal processes i.e. overturning of the deep water mass, during 

winter. 

 

The surface water circulation is dominated by the funneling of both wind and water through 

the narrow Rion Straits, where near-surface current velocities can exceed 100 cm/s (Piper et 

al., 1990). More specifically, the wind climate is characterized by the presence of a highly bi-

modal pattern, with E and WSW winds dominating. Lascaratos et al. (1989), utilizing infrared 

satellite imagery, have identified the presence of an anti-clockwise gyre in the surface water 

circulation pattern of the central part of the Gulf, to the south of Antikyra Bay. The same 

investigators have identified also wind-induced summer upwelling along the northern 

shoreline of the Gulf. 

 

According to Poulos et al. (1996) the Gulf of Corinth is a late Quaternary fault controlled 

basin. The deep water (> 900 m) basin is connected with the Gulf of Patras (and open Ionian 
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Sea) through straits incorporating a shallow sill (65 m), at its western end: there is an 8 m 

deep artificially-dredged channel (the Corinth canal) at the southeastern limit. Such 

conditions create a bathymetrically-restricted “fjord-like” marine embayment. The prevailing 

oceanographical setting of such an “isolated” environment is controlled by: (1) local climate; 

(2) freshwater runoff from the surrounding mountains; and (3) the limited exchange of 

waters over the western sill. Conversely, geological characteristics are related to intensive 

tectonic activity, with sedimentation processes controlled mainly by gravity-driven mass 

movements. The dissolved oxygen concentration increases with depth within the bottom 

water mass, indicating its localized formation by downward advection of surface waters. This 

process occurs during winter and early spring, when the surface waters become denser in 

response to a decrease in air temperature. Near-bed water circulation is associated with 

slow-moving currents, with maximum observed speeds of < 8 cm/s at a level of 5 m above 

the sea bed. The current regime is controlled by changes in atmospheric pressure, despite 

the relatively large water depths involved. Opposing flows along the northern and southern 

margins of the Gulf may represent the presence of an anti-clockwise gyre or eddy.  
  

1.1.3.) Biodiverisity 
On the side of Central Greece, the seabed is mainly rocky with clear waters and good 

visibility. This factor has resulted in the development of a rich biodiversity of marine flora 

and hence the development of a rich fauna. On the side of the Peloponnese, the seabed is 

mainly sandy and muddy, resulting mainly in migratory or seasonal fish populations. The two 

main surface streams recorded in the middle of the Corinthian Gulf are related to the 

transfer of planktonic organisms, but also to the presence of species such as tuna, swordfish 

and palamides. Despite its relatively small size, the Corinthian Gulf supports significant 

populations of marine mammals that either cross the sea waters or live permanently in 

them. According to recent research (Archipelagos NGO), the mammal species recorded are: 

Tursiops truncatus, Stenella Coeruleoalba, Delphinus Delphis, Grampus griseus, Balaenoptera 

physalus. At the same time, the shallow, coastal waters of the Corinthian Gulf support a rich 

biodiversity of species of fish, invertebrates and algae (Padina pavonica, Peyssonnelia rubra, 

Corallina elongata, Laurencia obtusa, Jania rubens, Codium bursa, Halophila stipulacea, 

Acetabularia acetabulum, Cystoseira sp.), as well as large areas of protected ecosystems, 

such as Posidonia meadows and coral reefs (Eunicella cavolini, Paramuricea clavata, 

Leptogorgia sarmentosa). 

Due to its rich biodiversity and unique ecosystems and habitats, in the summer of 2016, the 

Corinthian Gulf was nominated by the Hellenic Ministry to be part of the Natura 2000 

network. However, final designation is still pending. The same goes for the rest of the 

marine Natura sites of Greece that were nominated by the same Ministerial Decision. 
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1.1.4.) Meteorological setting 
The climate near the Gulf of Corinth is typical for the Greece climate with mild and rainy 

winters, relatively warm and dry summers and extended periods of sunshine throughout 

most of the year.  

 

 
Fig.4.) Diagram with the average amount of days (24h) with precipitation during a month for the period 1961–

1990. When precipitation has surpassed 1mm per day it is defined as a day with precipitation.  
(Data Source: World Meteorological Organization (WMO)) 

 

 
Fig.5.) The monthly temperature (red:max, black:average, dotted: minimum) measured in the period 1961–

1999 for the meteorological station in Patras, Greece. (Data Source:WMO) 

 

 

According to Andreadis et al. (2001) from the Hellenic National Meteorological Service, the 

year can be broadly subdivided into two main seasons: The cold and rainy period lasting 

from mid-October until the end of March, and the warm and dry season lasting from April 

until September During the first period the coldest months are January and February, with, a 

mean minimum temperature ranging, on average, between 5 -10 degrees Celsius near the 

coasts and 0 – 5 Celsius over the mainland. The warmest period occurs during the last ten 

days of July and the first ten days of August, when the mean maximum temperature lies 

between 29.0 and 35.0 degrees Celsius.  

https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwimtoynmazWAhXCVhQKHfaIDtQQFggxMAA&url=https%3A%2F%2Fwww.wmo.int%2F&usg=AFQjCNHRM1BoEVnqGuSWm2v4qZ6Cb70Ulg
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1.2.) The vertically-integrated alumina and aluminium production plant 
The aluminum processing plant was established in 1960 as “ALUMINUM OF GREECE S.A.” 

and today is Europe’s most modern vertically integrated alumina and aluminium production 

and trading plant. With an annual output capacity reaching 810,000 tons of alumina, 

165,000 tons of primary-cast aluminum (electrolysis) and 170,000 tons of finished aluminum 

(end-product), ALUMINIUM S.A. is the largest alumina and aluminum producer in SE Europe. 

Its facilities occupy a total area of around 7,000,000 m2 and are located in Agios Nikolaos, on 

the coast of Distomon, Viotia. 

 
 

 

 

 

 

 

 
 
    Fig.6.) Satellite picture of the aluminum plant from Google Earth 

 

 
 

Fig.6.) Satellite picture of the aluminum plant from Google Earth 

 

Furthermore, since 2008, the same premises of the aluminum processing factory in Ag. 

Nikolaos, Viotia are used by the electricity power provider “Protergia”, with the operation of 

a 334 MW High Efficiency Combined Heat and Power (CHP/High Efficiency CHP) plant. Power 

production was enhanced with the initiation of commercial operation of a new 444.48 MW 

Combined Cycle Thermal Power Plant (CCGT) in the same area, in June 2011. 

 

The total volume of water withdrawn required for the Group’s activities in 2015 stood at 

164.8 million m3, down by 0.8% from 2014. This reduction is mainly due to the restriction by 

2 million m3 of the volume of seawater withdrawn for use in the cooling systems of the 

Group’s heavy industry plants.  More specific, regarding the seawater used in the cooling 

systems of the Combined Heat and Power (CH) plant of ALUMINIUM OF GREECE, in addition 

to the strict compliance with the relevant provisions of the laws determining the framework 

for preventing any environmental impact, the company commissions, on an annual basis, an 

authoritative organisation (Hellenic Centre for Marine Research - HCMR) to conduct of a 

research study to monitor the status of living organisms (benthic biocoenoses, with 

emphasis on thermophilic species) on the Antikyra Gulf seabed.  
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Table 1.) Characteristics of the cooling sea water based on the Sustainability Report 2016 of MYTILINEOS Group  

 
 
Table 2.) Evolution of the used cooling water based on the Sustainability Report 2016 of MYTILINEOS Group 

 

1.2.1.) Extraction of alumina from the bauxite 
Pure alumina (aluminum oxide) is extracted from bauxite by the Bayer process. In the Bayer 

process bauxite received from the mines is crushed, usually by a hammer mill to small 

particles and well blended. Lime (CaO) is added to assist in the extraction of alumina, to 

scavenge impurities, and later to enhance clarification. This mixture then flows to agitated 

storage tanks and is metered into high-temperature (~255°C) sodium hydroxide digesters 

(NaOH), where alumina is extracted from the bauxite as sodium aluminate (NaAlO2). Pure 

alumina is then precipitated (by lowering temperature to 50-70°C) from the solution as a 

hydroxide [Al(OH)3), filtered, washed, and then calcined to pure alumina (Al2O3) at 1100–

1200°C. 

 

This procedure leaves behind the impurities as an insoluble residue, mainly consisting of 

hematite (Fe2O3), titania (TiO2), and silica (SiO2). For the production of one tone of alumina 

two tons of bauxite are needed. The “Aluminum of Greece S. A.” produces more than 

750,000 tones alumina yearly. The extraction of alumina from the bauxite is supported from 

two smaller industrial units:  

 

a. The unit producing CaO (needed by the extraction procedure) from limestones coming 

from the geological formations exposed near the industrial field. 

b. A unit producing thermal energy, needed also for the procedure. Using as energy resource 

imported crude oil. 

Category Quantity Destination Quality of water discharges 

From the cooling 
process of the 
combined Heat and 
Power (CHP) plant 

124 044 607 m
3
/year 

Discharge to the 
sea 

pH: 8-8,2 
Temperature: 22,3 ◦C 

Wastewater including 
rainwater 

539 220 m
3
/year 

Discharge to the 
sea 

pH: 7,87 
BOD5: 2,6 mg/L 
COD: <7 mg/L 
Total Solids: 681,67 mg/L 
Total Suspended Solids: <25 mg/L 
Sulphides: <0,05 mg/L 

Surface water (m
3
) 2014 2015 2016 

Volume of seawater used in the cooling systems 

of the Combined Heat and Power (CHP) plant 
161 733 577 159 609 769 124 044 607 
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1.2.3.) Extraction of aluminum metal from the alumina 
Aluminum metal is extracted from the alumina electrolytically by the Hall–Heroult process. 

In this process, the purified alumina is dissolved in an electrolyte consisting mainly of molten 

at ~960°C cryolite (NaF/AlF3). Consumable carbon anodes are employed, producing carbon 

dioxide and carbon monoxide, which escape from the cell while the molten aluminum 

accumulates at the cathodic bottom and is siphoned out periodically. The aluminum 

produced is normally 99.6–99.9% pure. The typical impurities are iron, silicon, titanium, 

vanadium, gallium, and manganese, coming from the anode but also from impurities in the 

alumina. The “Aluminum of Greece S. A. [AtE]” produces approximately 170,000 tones 

aluminum metal yearly. 

 

 

2.) Data and methods 
The methodology for the present work is discussed in two parts: First, the pre-processing 

phase in which all satellite images were calibrated, masked from land and then corrected 

from atmospheric effects. After that, two different methods have been used in order to 

assess the seawater surface temperature (SST) and to evaluate the performance of satellite 

in determining Chl-a concentrations. 

2.1.) Satellite data and sea surface temperature estimation 
All materials with a temperature above 0 K emit radiation, and as described by Wien’s 

Displacement Law, the hotter the object, the shorter the wavelength of its emitted radiation. 

For example, the sun’s temperature is approximately 6000 K, and the sun emits its peak 

radiation in the visible part of the electromagnetic spectrum (0.4–0.8μm) to which the 

human eye is adapted. Remote sensing in the region of visible, near infrared (NIR) and 

midinfrared radiation (<3μm) utilises reflected radiation. In contrast, the earth’s ambient 

temperature is ∼300 K and its peak radiation is emitted at the longer wavelength of 9.7μm. 

Thermal remote sensing captures radiation emitted in these longer wavelengths (3–

1000μm). As thermal infrared (TIR) observations are strongly affected by radiation absorbed 

and emitted from water vapour, TIR applications focus on the 8–14μm region of the 

electromagnetic spectrum where atmospheric interference and contamination by solar 

radiation (in the 3–5μm region) is minimized (Handcock et al., 2012). 

2.1.1.) Landsat satellite sensors 
The Landsat Thematic Mapper (TM) sensor was carried on Landsat 4 and Landsat 5, and its 

images consist of six spectral bands with a spatial resolution of 30 meters for Bands 1-5 and 

7, and one thermal band (Band 6). The approximate scene size is 170 km north-south by 183 

km east-west (Barsi et al., 2014). 
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Table 3.) Characteristics of the Landsat TM sensor systems (USGS) 

Bands Wavelength (μm) Resolution (m) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120* (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.08-2.35 30 
 
 
 

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensor is carried on Landsat 7, and 

images consist of seven spectral bands with a spatial resolution of 30 meters for Bands 1-5, 

and 7. The resolution for Band 8 (panchromatic) is 15 meters. All bands can collect one of 

two gain settings (low or high) for increased radiometric sensitivity and dynamic range, 

while Band 6 collects both low and high gain (Bands 61 and 62, respectively) for all scenes. 

(Barsi et al., 2014). 

 
Table 4.) Characteristics of the Landsat ETM+ sensor systems (USGS) 

Bands Wavelength (μm) Resolution (m) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09-2.35 30 

Band 8 - Panchromatic .52-.90 15 
 

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images consist 

of nine spectral bands with a spatial resolution of 30 meters for Bands 1 to 7 and 9. The ultra 

blue Band 1 is useful for coastal and aerosol studies (Barsi et al., 2014) while Band 9 is used 

usually for cirrus cloud detection. It is important to mention that Thermal bands 10 and 11 

provide more accurate surface temperatures. The approximate scene size is 170 km north-

south by 183 km east-west. 
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Table 5.) Characteristics of the Landsat OLI and TIRS sensor systems (USGS) 

Bands Wavelength (μm) Resolution (m) 

Band 1 - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - Near Infrared (NIR) 0.851 - 0.879 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.566 - 1.651 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

 

2.1.2.) Remote sensing 
Remote Sensing and GIS are powerful tools which provide solutions for water resources 

management problems. Especially, thermal remote sensing is based on recording the 

electromagnetic radiation in the thermal infrared region (TIR) emitted by surface objects as a 

function of their temperature in two windows: 3.5–5 μm and 8.0–14.0 μm. Therefore, 

thermal images can be acquired during both day and night (UNESCO, 2007). Thermal 

infrared remote sensing (TIR) technique is a useful approach to monitor change of water 

temperature (UNESCO, 1982). TIR Bands of Landsat-5 Thematic Mapper (TM), Landsat-7 

Enhanced Thematic Mapper (ETM) has wide range of electromagnetic wavelength band, 

including visible, infrared and thermal bands. Its thermal bands can detect thermal radiation 

released from objects on the earth surface (Xing and Chen, 2006). TIR data can aid 

identifying a severe environmental phenomenon: thermal pollution resulting from power 

planet and industry discharges of water used in cooling processes.  

 

This study used for the temperature estimation the thermal infrared (TIR) remote sensing, 

from the satellite images of Landsat Thematic Mapper (TM) scenes   from   Landsat   5,   and   

the   Landsat   Enhanced Thematic   Mapper   (ETM+)   of   Landsat 7.   The   data   were 

acquired for all available TM images with less than 20% cloud cover from 1960 to 2011 and 

for one ETM+ images per month until 10.12.2016.  
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Fig.7.) Major steps of the temperature estimation based on Landsat data 

 

2.1.3.) Preprocessing 

The raw digital numbers of a Landsat image are not only dependent on the reflectance 

characteristics of the specific scene, but also contain noise and digital number value offsets 

that are a result of the viewing geometry of the satellite, the angle of the sun’s incoming 

radiation, atmospheric depth due to viewing angle, and the design characteristics of the 

sensor. For this reason, the data must first be converted to radiance, which removes the 

voltage bias and gains from the satellite sensor. The radiance values are then further 

converted to at-satellite reflectance. This conversion accounts for the varying sun angle due 

to differences in latitude, season, and time of day, and the variation in the distance between 

the Earth and Sun. The objective of atmospheric correction is to retrieve the actual “clear 

sky” surface reflectance from remotely sensed imagery by removing the specific weather 

related atmospheric noise from a specific scene. Atmospheric correction has been shown to 

significantly improve the accuracy of image classification in some instances, but decrease the 

accuracy in other instances (Loveland and Dwyer, 2012) 

 

In this study, 58 Landsat L1T images were used as they are more precisely registered than 

the Level 1 Systematic (corrected) (L1G) images. These images includes radiometric, 

geometric, and precision correction, and uses a DEM to correct parallax error due to local 

topographic relief (Markham and Helder, 2012).  

 

In order to decrease the image processing time, the whole image scenes were detruncated, 

and the image part covering the study area was extracted (region of interest, ROI). The 

water-land boundary was identified by the band-5 images, as water has strong absorption at 

SWIR band. The counts of band 6 data were transferred to radiance (Wm-2nm-1Sr-1) value by 

http://onlinelibrary.wiley.com/doi/10.1002/rse2.24/full#rse224-bib-0039
http://onlinelibrary.wiley.com/doi/10.1002/rse2.24/full#rse224-bib-0041
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ENVI5.1 software, and then the radiance data were used for calculation of water surface 

temperature. 

 

 

 
Fig. 8.) Processing steps from right to left: region of interest--> land mask--> band 6 radiance with mask 

 

2.1.4.) Converting radiance into Sea Surface Temperature 
The first step of the algorithm is retrieving the top of atmospheric (TOA) spectral radiance 

(  ) (Barsi et al., 2014): 

                                                        =    ∗  cal +    −                                                              (1) 
 

ML : the band-specific multiplicative rescaling factor 

 cal : the Band 6 image 

  : the band-specific additive rescaling factor 

  : the correction for Band 6 

 

After the digital numbers (DN) are converted to reflection, the TIRS band data should be 

converted from spectral radiance to brightness temperature (BT) using the thermal 

constants provided in the metadata file. The following equation (Xu and Chan, 2004) is used 

in the tool’s algorithm to convert reflectance to temperature:  

 

                                              BT =  2 ln [( 1/  ) + 1] − 273.15                                                   (2) 

 

where  1 and  2 stand for the band-specific thermal conversion constants from the 

metadata. For obtaining the results in Celsius, the radiant temperature is revised by adding 

the absolute zero (approx. −273.15∘ C). 

 

Furthermore the emissivity has to be corrected since the LSE is a proportionality factor that 

scales blackbody radiance (Planck’s law) to predict emitted radiance, and it is the efficiency 

of transmitting thermal energy across the surface into the atmosphere.  

                                                   

                                                           =  V  V +     (1− V) +                                                          (3) 
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where  V and    are the vegetation and soil emissivities, respectively, and  λ represents the 

surface roughness ( λ = 0 for homogenous and flat surfaces) taken as a constant value of 

0.005. The condition can be represented with the following formula and the emissivity 

constant values: 

 

  

                                   ελ                                                                                                                                                                                                (4) 

 

 

 

                           NDVI = NIR (band 5) −   (band 4) /NIR (band 5) +   (band 4)               (5) 

 

NIR: the near-infrared band 

 : the red band. 

 

The last step of retrieving the SST or the emissivity-corrected surface temperature SST is 

computed based on the methodology of Stathopoulou and Cartalis (2007): 

 

                                                  SST = BT/ {1 + [( BT/ )ln   ]}                                                   (6) 

 

 : the wavelength of emitted radiance 

  : the emissivity  

 

                                                               =ℎ     = 1.438 × 10−2 m K                                                (7) 

      : the Boltzmann constant (1.38 × 10−23 J/K) 

ℎ: Planck’s constant (6.626 × 10−34 J s) 

 : the velocity of light (2.998 × 108 m/s) 

2.1.5.) Statistical Analysis  
In order to investigate if the aluminum plant significantly affects the sea surface 

temperature of Antikyra Bay, we compared the SST fields of the Bay with the SST fields of 

the neighbouring Itea bay of very similar morphological and hydrographic characteristics. 

Assumming the Itea Bay being the “model”, or “estimated” condition, and the Antikyra Bay 

being the “observed” or “measured”, comparison between the area of Antikyra Bay and the 

neighbour bay, named Itea Bay, was performed using the following statistic metrics: the root 

mean squared error (RMSE), t-test, mean absolute percentage error (MAPE), mean 

normalized bias (MNB) and determination coefficient (R2): 

 

                                      RMSE= 
 

 
     

         −   
          

  
                                                (12) 
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                                                 MAPE=
   

  
            

         

  
            

   

 
                                                    (13) 

 

                                                bias=
 

 
 (  

         −   
         ) 

                                                 (14) 

 

                                           NSE=1-
    

           
          

 
  

   

 (   
                

            
   ) 

                                               (15) 

 

Furthermore, in order to quantify the degree of correspondence between the two time 

series, a Taylor diagram has been used. This summarizing performance diagram, based on 

the methodology of Taylor (2001), assesses the similarity of the data values with the relation 

of three statistics: the Pearson correlation coefficient, the root-mean-square error (RMSE) 

error, and the standard deviation. Mathematically, the three statistics displayed on a Taylor 

diagram are related by the following formula: 

 

                                                              E’2=2  
 + 2  

 − 2                                                         (16) 
 

ρ: the correlation coefficient between the two time series 

E′: the centered RMS difference between the fields 

σr , σt: the variances of the reference and test fields, respectively. 

2.2.) Satellite data and chlorophyll-a concentration estimation 
Chlorophyll-a (Chl-a) concentration can be used as a direct indicator of the ecological state 

of a water body. For example, an algal bloom can degrade water quality in rivers, lakes, and 

reservoirs, and Chl-a concentration has been shown useful as an indicator for measuring the 

abundance and variety of phytoplankton and/or the algal biomass (Boyer et al., 2009). Since 

the 1990s, the development of satellite technology, greater understanding of the spectral 

signature of water quality parameters, and the development of mathematical models have 

led to semi-empirical methods becoming the principal means with which to monitor water 

quality remotely. Studies on water environmental protection and the monitoring of water 

quality have become increasingly important because of the severe environmental problems 

affecting surface water (Wang et al., 2015). Point-to-surface and static-to-dynamic 

monitoring of water quality are required urgently. However, it is difficult to perform long-

term monitoring over large areas. Research based on remote sensing techniques and the 

spectral characteristics of water is extremely valuable for large-scale monitoring of water 

quality, especially when traditional water sampling analysis methods are restricted by 

factors such as labor and material costs, and climatological and hydrological conditions. 

Inversion of water quality parameters using remote sensing technology can improve the 

monitoring of surface water quality and derive dynamic water quality information in real-

time. Thus, this technique represents an important complement to regular water quality 

monitoring, and it can provide a robust scientific basis for governmental decision-making in 
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relation to the ecological economic zone. Chl-a concentration has been used as an important 

index to reflect water quality conditions (Le et al., 2013). Accurate information on the 

spatiotemporal variation of Chl-a concentration can contribute to improved understanding 

of water quality status and assist water-resource management. Traditional methods used to 

monitor Chl-a concentration, e.g., spectrophotometry, have many limitations: high cost, 

complex method of operation, restriction of observations to specific regions and specific 

times, and long monitoring periods. The lack of in situ real-time monitoring data on the 

quality and optical properties of inland water bodies renders it difficult to determine the 

spatiotemporal variation of Chl-a concentration. Satellite remote sensing technology has 

shown great potential in providing spatial distribution patterns of Chl-a (Sun et al., 2014). 

The application of such technology can be cost effective, shorten the period of observation, 

and increase the temporal frequency of sampling. Furthermore, in conjunction with an 

accurate and efficient inversion model, the technology can realize real-time, synchronous, 

large-area, and continuous monitoring of Chl-a concentration in a target area (Pan et al., 

2012). Thus, remote sensing techniques are able to overcome the shortcomings of 

traditional observational methods. In particular, improvements of the geometry and the 

spectral resolution associated with remote sensing technology have presented new 

possibilities for the evaluation of water resources via the monitoring of Chl-a concentration. 

 

Numerous studies suggest that chlorophyll-a in waters can be measured using Landsat 

imagery (Keiner and Yan, 1998; Giardino, 2001; Zhang et al., 2002; Erkkilä and Kalliola, 2004; 

Hellweger, 2004; Sudheer et al., 2006, Kabbara et al., 2008; Kulkarni, 2011; Nazeer and 

Ncichol, 2016). Han and Jordan (2005) discovered strong correlation between the ratio of 

Band1/Band3 and in situ chlorophyll-a concentration in the Pensacola Bay on the Gulf of 

Mexico. Kabbara et al. (2008) reported that there were significant correlations (R2 = 0.719 - 

0.7234) between the surface chlorophyll-a concentrations and spectral indices based on the 

combination of blue/green or blue/red band. Lim et al. (2009) revealed the correlation 

coefficient of 0.8259 between the predicted and the measured chlorophyll-a values. Kulkarni 

(2011) stated that chlorophyll-a could be retrieved using models based on the red or green 

band and the model with the green band value showed the highest correlation (R2=0.864) 

with chlorophyll-a content in waters. Torbick et al. (2013) concluded that there was a strong 

correlation (R2=0.65-0.81) between band ratio radiance and water quality indicators 

including Sechhi depth (SD), chlorophyll-a, green biovolume, total phosphorus (TP), and total 

nitrogen (TN). The correlation coefficient of green and blue ratio and chlorophyll-a (0.89) 

was obtained by Nazeer and Nichol (2016). These results suggested that chlorophyll-a in 

waters can be effectively retrieved from the Landsat imagery using appropriate algorithms. 

 

2.2.1.) Preprocessing 
For the part of the chlorophyll-a concentration modeling Landsat OLI and TIRS images from 

Landsat 8 were used. The data were acquired for images with less than 20% cloud cover for 
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the dates with available in-situ chlorophyll-a data from April 2014 to October 2015. The only 

bands imported into ENVI were band 1 (coastal blue band), band 2 (blue band), band 3 

(green band), band 4 (red band) and band 5 (near infra-red band). The preprocessing part for 

the Landsat 8 images was based on the Spectral Radiance Scaling Method as shown below.  

 

As outlined in the online Landsat User's Guide Chapter 11 there is a standard procedure to 

convert Landsat radiance values into reflectance (at satellite) values. To do this a simple 

formula can be used: 

                                                               Rsesnor = 
 ∗ ∗  

     ∗    ( )
                                                             (17) 

  

π =3.14159  

ESUNi: the mean solar exoatmospheric irradiance of each band 

z: the solar zenith angle (zenith angle = 90 – solar elevation angle) from the header file 

 d: the earth-sun distance, by the follow equation (Eva and Lambin, 1998): 

  

                              d = (1-0.01672*cos(radians(0.9856*(Julian Day-4))))                          (18) 

 

 

L: the spectral radiance at the sensor’s aperture (W/(m2*ster*μm) by the equation: 

 

   L = ((Lma λ - Lminλ)/(Qcalma -Qcalmin)) * (Qcal-Qcalmin) + Lminλ     (19)  

  

Qcal: the quantized calibrated pixel value (DN) 

  Lminλ: the spectral radiance that is scaled to Qcalmin (W/(m2*ster*μm) 

  Lmaxλ: the spectral radiance that is scaled to Qcalmax (W/(m2*ster*μm) 

  Qcalmin: the minimum quantized calibrated pixel value (DN) 

 Qcalmax: the maximum quantized calibrated pixel value (DN) 

 

After the atmospheric correction, band ratios for different band combinations such as b2/b1 

were calculated for five bands from band 1 to band 5 using ENVI for each Landsat OLI image. 

Two Middle infrared bands (OLI6 and OLI7) were not included in the computation and later 

analysis due to their lower sensitivity to chlorophyll-a concentration in water. After the 

necessary analysis the landsat data were correlated with in situ measurements of 

chlorophyll-a values in certain sampling stations. Several models were used to examine 

these relationships which included linear, exponential, and log transformations.  

 

http://landsathandbook.gsfc.nasa.gov/handbook.html
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Fig.9.) Preprocessing workflow: Radiometric and atmospheric correction, land masking 

2.2.1.) Model selection 
The Landsat data, after their calibration, atmospheric correction, and transformation, were 

correlated with in situ measurements of chlorophyll-a values in certain sampling stations. 

Chlorophyll-a samples have been collected by the Hellenic Centre for Marine Research at 4 

different stations, in Antikyra Bay from April 2014 until October 2015. Satellite images of 

Landsat 8 of the same area and the same dates were used in order to statistically correlate 

the in-situ measurements with various combinations of Landsat bands in order to quantify 

algorithms that best describe this relationship and calculate accurately the concentration of 

chlorophyll-a. The algorithms were applied to other satellite images of different dates but 

with available in-situ chl-a data, in order to validate the results. Satellite derived chlorophyll-

a values were compared to in-situ chlorophyll-a values originated from other past scientific 

studies. The initial results confirmed the suitability of the method for assessing the 

concentration of chlorophyll-a in the Gulf of Corinth with relative accuracy when no field 

data are available.  

 

The selection of the best applicable model was based on the value of the correlation of 

determination between the reflectance and the values of chlorophyll-a. The best predictive 

model (developed based on field sampling of 5 September 2013 and 6 and 7 November 2013 

and satellite images of 5/9/2013 and 7/11/2013 were applied to the Landsat imageries of 

26/4/2014, 24/10/2014, 3/12/2014, 16/4/2015, and 6/10/2015 in order to assess and 

validate its efficiency by comparing them with the in situ measurements from the specific 

study area and for the same dates. 

2.2.2.) Model Validation 
The algorithms performance was evaluated using the following statistic metrics: normalized 

root mean squared error (NRMSE), the root mean squared error (RMSE), mean absolute 

percentage error (MAPE), bias, mean normalized bias (MNB) and determination coefficient 

(R2): 

                                                    NRMSE= 
    

(    
             

        )
                                                       (20) 

 

                                       RMSE= 
 

 
     

         −   
          

  
                                                (21) 

 

                                                 MAPE=
   

  
            

         

  
            

   

 
                                                    (22) 

 

                                                bias=
 

 
 (  

         −   
         ) 

                                                 (23) 

Raw image Calibrated Land Masked 
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                                                    (24) 

 

In addition, a Taylor diagram (Taylor, 2001) was used, since they provide a way of graphically 

summarizing how closely a pattern matches observations, as mentioned in (2.1.5.). The 

similarity between the two datasets is quantified in terms of their correlation, their centered 

root-mean-square difference and the amplitude of their variations (represented by their 

standard deviations). 

 

2.3.) Chlorophyll-a  in-situ concentrations 
Data for this study were obtained from the National Monitoring Project of Greece, assigned 

to the Hellenic Centre for Marine Research by the Hellenic Ministry of Environment, Energy 

and Climate Change, Special Secretary of Water and was kindly provided by Dr. 

Asimakopoulou from the Hellenic Centre for Marine Research. The data set used originated 

from sampling of 4 stations (table 6) of the national monitoring network designed for the 

implementation of the WFD in the coastal waters. This first sampling cruise of the monitor-

ing network, during which the data presented were collected, was conducted in 5/9/2013, 

7/11/2013, 26/4/2014, 24/10/2014, 3/12/2014, 16/4/2015, 6/10/2015 in 4 stations by the 

R/V PHILIA of HCMR ownership. 

 
Table 6.) Sampling stations with coordinates 

Station Latitude Longitude 

Α1 38ο22,550 22ο40,673 

Α2 38ο20,831 22ο40,624 

Α3 38ο21,128 22ο40,814 

Α4 38ο20,666 22ο41,138 
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Fig.10.) In-situ concentrations of the sampling stations in Antikyra Bay 

 

The biomass of the phytoplankton (as chlorophyll-a) constitutes an important ecological 

quality descriptor for the coastal environment. The phytoplankton biomass is most 

frequently measured as the concentration of chlorophyll-a at discrete depths in the euphotic 

portion of the water column and is measured in the seawater samples collected also for the 

physicochemical parameters from the discrete standard depths of 2m, 10m, 20m, 50m and 

the bottom layer.  

 

2.4.) NCEP/NCAR Air-Sea flux data 

Air-sea flux data have been derived from the National Center for Atmospheric Prediction 

(NCEP) and the National Center for Atmospheric Research (NCAR) daily reanalysis 

(http://www.esrl.noaa.gov/psd/) and were used to examine time-series of air-sea fluxes and 

heat loss using Matlab R2013a. The data assimilation system uses a 3D-variational analysis 

scheme, with 28 sigma levels in the vertical and a triangular truncation of 62 waves which 

corresponds to a horizontal resolution of approximately 200 km (Kalnay et. al, 1996).  

 

In order to analyze how the atmosphere influences the SST variation, the correlation of the 

net air-sea heat flux and the different radiations and heat losses with sea surface 

temperature were estimated. 

 

According to Rahul and Gnanaseelan (2013) the net heat flux into the ocean is a sum of 

different heat exchange processes at ocean surface, which includes heating due to short-

wave radiation (SW), outgoing long-wave radiation (LW), sensible heat flux (SH), and latent 

heat flux (LH): 

                                                    Qnet = SW – LW –SH –LH                                                    (25) 

 

It is noteworthy that the first component (SW) is the contributor to the heat gain of ocean, 

and all the other processes lead to heat loss, except for SH, which depends on air–sea 

temperature difference. The latent heat loss, the heat required for the evaporation of 

surface water, is the major contributor to oceanic heat loss, followed by radiative cooling 

due to net outgoing long-wave radiation. The SH contribution to the net heat flux into the 

ocean is relatively small. The latent heat loss is dependent on three factors, namely, SST, air 

humidity, and surface winds. The radiative cooling is a function of SST, and the incoming 

long-wave radiation depends upon many factors such as atmospheric temperature, water 

vapor, and greenhouse gas concentrations.  

2.4.1.) Atmosphere influences assessment  
In order to analyze the atmosphere influences for the sea surface temperature (SST) 

variation, the Frankignoul method have been used (Frakignoul et al., 1998). This method is 

http://www.esrl.noaa.gov/psd/
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based on the fact that the surface heat flux contributes to generate SST anomalies but it also 

affect their evolution after they have been generated, thereby acting as a feedback. As 

showed by Frakignoul et al. (1998) the surface heat flux anomalies can be decomposed as: 

 

                                                              Qsurf(τ) = q(τ)-α*SST                                                          (26) 

 

q: independent of the SST anomalies 

-α*SST: the Qsurf induced by the SST anomalies 

 

 From equation (26), the cross-covariance between Qsurf and SST can be computed by: 

                                    CovQsurf/SST(τ) = Covq/SST(τ) - α CovSST/SST(τ)                                          (27) 

 

Since Covq/SST (τ) vanishes at large negative lag (τ>1 month) the feedback of the surface heat 

flux can be estimated using the cross-covariance between SST and Qsurf, divided by the 

autocovariance of the SST: 

                                                    α=−
         (  )     ( )]

       (  )     ( )]
                                                              (28) 

 

 

 

 

 

 

 

 

 

 

3.) Results 
The remote sensing based analysis described in section (2) led to three main results:  

a) the monitoring of the temporal evolution of the sea surface temperature in Antikyra Bay 

and Itea Bay, which made it possible to estimate the thermal effluent of the aluminum plant 

in Antikyra Bay. 

b) the development of a local high resolution analysis chlorophyll-a concentration 

monitoring algorithm for the Gulf of Corinth.  

c) the assessment of the atmosphere influences on the sea surface temperature variation  
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3.1.) Sea surface temperature  
After the preprocessing and the necessary analysis, time series for temperature data in the 

area of the Aluminum plant in Antikyra Bay and for a control area in the Itea Bay (Figure 11.) 

were compared (Figure 12.). 

 

 
Figure 11.) Landsat 7 image indentifying the (red) study area and the (white) control area 

 

 

For this two areas temperature time series from late 2009 up to early 2017 were extracted 

in order to compare them and to indentify whether the hot cooling water from the 

aluminum plant, which where establish in 2010, does have impact on the local area or not. 

From the graph below although it seems that the two areas doesn’t differ much. In order to 

investigate this further statistical analysis are presented in (3.1.1.). 
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Figure 12.) Time series of sea surface temperature for the area of Antikyra Bay (dotted line) and the control 
area of Itea Bay (points) based on Landsat 5 (TM) and Landsat 7 (ETM+) imagery 

 

Also, it can be seen that the Sea Surface Temperature in the area of the aluminum plant 

doesn’t differ much from the control dataset of Itea bay. Furthermore, at least the optical 

analysis didn’t reveal any thermal plume in the area of the aluminum plant. In order to 

compare the two time series further, statistical indexes have been used and are presented 

below in section 3.1.2.).  

3.1.1.) Seasonal sea surface temperature variation 
The seasonal SST values, estimated by averaging the three successive months associated 

with the four seasons in oceanography, i.e., January-February-March for winter, April-May-

June for spring, July-August-September for summer and October-November-December for 

autumn, seemed to show an annual pattern with a normal shape during the year. The 

maximum temperature was found during summer 2014 (29.70 °C) and the minimum (16.38 

°C) in winter 2011.  
Table 7.) Mean seasonal sea surface temperature for 2010-2016 

Season 2010 2011 2012 2013 2014 2015 2016 Mean 

Winter 18.026 16.934 19.021 17.563 17.824 17.901 18.423 17.956 

Spring 21.584 no data 20.809 19.843 20.354 21.325 20.023 20.656 

Summer 25.407 24.975 24.714 25.123 26.465 24.237 25.209 25.161 

Autumn 21.743 20.988 21.924 21.221 20.853 19.022 21.589 21.048 

 

The time series analysis revealed the presence of a strong seasonal signal characterized by 

two main seasonal extremes, winter and summer (Fig.13.). The transition between the 

winter and the summer occurs usually rapidly in May and October.  
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Fig.13.) Seasonly mean images of SST distribution for 2010-2016 (°C). The mean SST values were estimated by 
averaging the images of Landsat satellite images at 30m resolution 

3.1.2.) Statistical Analysis 
The statistical indices based on the equations (12) – (16) for the dataset of the sea surface 

temperature of Antikyra Bay and Itea Bay revealed strong correlation and statistically 

important similarity. Therefore it can be assumed that there is no detectable temperature 

increase in the area of the aluminum plant. Some possible explanations are discussed in the 

followed section (4).  

 

 

Fig.14.) Scatter plot of the compared SST datasets indicating their relation and determination coefficient (R
2
) 
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Below are presented the statistic metrics mentioned in the methodology based on the 

equations (20)-(24) and their normalized indexes: root mean squared distance (RMSD), 

normalized root mean squared error (NRMSE), mean absolute percentage error (MAPE), 

PBIAS, NSE, mNSE, RSR correlation coefficient (Correl) and determination coefficient (R2): 
 

Table 8.) Statistical indices of the two temperature datasets 
 

 
 

 

 

 

 

 

Furthermore, a Taylor diagram is shown below for more descriptive presentation of the statistic 

analysis: 

 

Fig.15.) Taylor diagram displaying the statistical comparison with sea surface temperature in Itea Bay 
(control:green dot) and Antikyra Bay (red dot) 

 

As it can be seen in the Taylor diagram three statistics are plotted: the Pearson correlation 

coefficient (gauging similarity in pattern between the simulated and observed fields) is 

related to the azimuthal angle (blue contours); the centered RMS distance in the simulated 

Statistic index Value Goodness of fit 

RMSD 0.17 Perfect=0 

NRMSE 0.04 Perfect=0 

MAPE 0.02 Perfect=0 

PBIAS 1.04 <25% 

NSE 0.98 >0.5 

mNSE 0.91 >0.5 

RSR 0.13 <0.70 

Correl 0.98 Exact=1 

R2 0.99 Exact=1 
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field is proportional to the distance from the point on the x-axis identified as “observed” 

(green contours); and the standard deviation of the simulated pattern is proportional to the 

radial distance from the origin (black contours). It is evident from this diagram that the 

Pearson correlation coefficient is about 0.98, the RMSD error is about 0.17 and the standard 

deviation is about 0.14 °C.  

3.2.) Chlorophyll-a concentration 
In this study, the coefficient of determination (R2) among in-situ Chl-a concentrations and 

reflectance values from 51 different empirical models based on single bands, band ratios, 

and logarithmically transformed bands of Landsat images has been tested. Scatter diagrams 

showed that several logarithmic and some linear models can describe the concentration of 

chlorophyll-a in Antikyra Bay. The 15 best linear models with the higher values of regression 

coefficient resulted from the satellite image of 5 September 2013 and were applied to 

images of 7 November  2013, 26 April  2014, 24 October  2014, 3 December 2014, 16 April 

2015 and 6 October 2015 in order to determine which one is the most appropriate for 

assessing chlorophyll-a concentration in the bay.  

3.2.1.) Correlations between spectral index and in situ concentration 
Correlations between spectral index and in-situ chlorophyll-a concentration are summarized 

in the graph below. This diagram shows that OLI bands and spectral indices displayed 

differential sensitivity to chlorophyll-a.  

 

 
Fig.16.) Correlation coefficients between spectral index and chlorophyll-a concentration for 9 September 2013 

 

In September 5th 2013, there was a significant correlation between reflectance value and in-

situ chlorophyll-a concentration for all OLI bands from band 1 to 5. Band 3 (Green) and 4 

(Red) were more sensitive than band 1 (Coastal aerosol), 2 (Blue) and 5 (Near Infrared). 
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There was a significant correlation between spectral indices including b3/b1, b3/b2, b4/b1, 

and b4/b2 and in-situ chlorophyll-a concentration; the spectral ratio index b4 (Red) /b1 

(Coastal Blue) had the highest correlation with in-situ chlorophyll-a. The rest of the spectral 

indices did not show sensitivity to chlorophyll-a concentration.  

 

Two scatter plot with high correlation (Fig.17.) and low correlation (Fig.18.) are shown below 

in order to emphasize the importance of the right band selection for the algorithm 

development.  

 

 
Fig.17.) Scatter plot for the spectral index of band 4 and the chlorophyll-a concentration indicating  

their correlation ad coefficient of determination 

 

 
Fig.18.) Scatter plot for the spectral index of band 4 and the chlorophyll-a concentration indicating 

 their correlation ad coefficient of determination 

 

Watanabe et al. (2015) found that NIR-Red, NIR-Green and NIR-Blue ratios had an R2 greater 

than 0.70 with in-situ chlorophyll-a concentration. This study results showed even higher 

coefficients of determination for the first 4 bands and their combinations. The high 

sensitivity in Red and Green may be due the fact there is negative reflectivity of chlorophyll-
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a in the visible band, especially for red (Rundquist et al. 1996, Pepe et al. 2001). All tested 

band combinations with high determination coefficients are listed in the followed table:  

 
Table 9.) Correlation between reflectance value and in-situ chlorophyll-a 
 concentration for all OLI bands from band 1 to 5 and their combinations 

Band Ratio Correlation Band Ratio Correlation 

b1 0.084400043924 log(b1) 0.084815994724 

b2 0.587141107298 log(b2) 0.587286306878 

b3 0.969111363148 log(b3) 0.967191235223 

b4 0.997062594825 log(b4) 0.996110776669 

b5 0.994746740706 log(b5) 0.994890154521 

b1/b2 -0.728383949891 log(b1/b2) -0.729081257744 

b1/b3 -0.978014741257 log(b1/b3) -0.979485502941 

b1/b4 -0.997468885337 log(b1/b4) -0.998160101376 

b1/b5 -0.993591037476 log(b1/b5) -0.993882858079 

b2/b1 0.729820183143 log(b2/b1) 0.729123257179 

b2/b3 -0.994667875825 log(b2/b3) -0.995100459963 

b2/b4 -0.998206844073 log(b2/b4) -0.998493332941 

b2/b5 -0.992619134684 log(b2/b5) -0.992781312663 

b3/b1 0.980889309620 log(b3/b1) 0.979484254823 

b3/b2 0.995505822942 log(b3/b2) 0.995098514587 

b3/b4 -0.992790944552 log(b3/b4) -0.993236652633 

b3/b5 -0.989878421945 log(b3/b5) -0.990226455572 

b4/b1 0.998704431936 log(b4/b1) 0.998160925593 

b4/b2 0.998687169961 log(b4/b2) 0.998493062971 

b4/b3 0.993626643456 log(b4/b3) 0.993235300287 

b4/b5 -0.975828331574 log(b4/b5) -0.978116191567 

b5/b1 0.993823241212 log(b5/b1) 0.993883444286 

b5/b2 0.992702037031 log(b5/b2) 0.992781039066 

b5/b3 0.990413893126 log(b5/b3) 0.990227084150 

b5/b4 0.980067837927 log(b5/b4) 0.978115436103 

 
Table 10.) The 5 best  band ratio correlations 

 

Band Ratio Correlation 

b4/b1 0.998704432 

b4/b2 0.998687170 

log(b4/b2) 0.998493063 

log(b4/b1) 0.998160926 

b4 0.997062595 
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The 10 best linear and polynomial equations with the highest values of regression coefficient 

resulted from the satellite image of 5 September 2013 and were applied to images of 7 

November 2013, 26 April 2014, 24 October 2014, 3 December 2014, 16 April 2015 and 6 

October 2015 in order to determine which one is the most appropriate for assessing 

chlorophyll-a concentration in Antikyra Bay and the further area of Gulf of Corinth. The 5 

most precise regression models and the algorithm which was used to convert reflectance 

values to Chl-a concentration (μg/L), are shown below: 
 

 

Fig.19.) Scatter plot for very precise regression models and their coefficient of determination 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.20.) Scatter plot for the most precise regression model  
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Based on the correlation coefficients above, the most sufficient local algorithm seems to be: 

 

                                                chl-a (μg/L)= 59.423x2-22.687x+2.174                                   (29) 

x=Band(4/1) 

 

Even though a limited number of sampling stations were available, equation (29) presented 

satisfying results for the modeled chlorophyll-a concentrations as shown below in the 

following tables: 

 
Table 11.) In situ and the satellite-derived Chl-a measurements of each station for the first 3 dates 

 
05.09.2013 Landsat 8 08.11.2013 Landsat 8 26.04.2014 Landsat 8 

Stations Chl-a (μg/l) Algorithm Chla (μg/l) Algorithm Chla (μg/l) Algorithm 

A1 0.401 0.400829 0.162 0.0864 0.073 0.0841 

A2 0.132 0.136003 0.134 0.0701 0.091 0.0941 

A3 0.176 0.177148 0.179 0.0796 0.087 0.0896 

A4 0.145 0.140767 0.178 0.0875 0.029 0.0228 

 
Table 12.) In situ and the satellite-derived Chl-a measurements of each station for the next 4 dates 

 24.10.2014 L 8 03.12.2014 L 8 16.4.2015 L 8 6.10.2015 L 8 

Stations Chla (μg/l) Alg. Chla (μg/l) Alg. Chla (μg/l) Alg. Chla (μg/l) Alg. 

A1 0.135 0.1381 0.257 0.2993 1.053 0.5200 0.395 0.3579 

A2 0.098 0.1035 0.177 0.1488 0.479 0.3966 0.186 0.2076 

A3 0.110 0.0999 0.168 0.1522 0.309 0.2841 0.176 0.1723 

A4 0.147 0.1987 0.139 0.1455 0.234 0.1681 0.212 0.2007 

 

 

The most stations presented values close to sampling ones. Hence, chlorophyll-a 

concentration maps were created according to equation (29) for each satellite image.  
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Fig.21.) Modeled chlorophyll-a concentrations based on the developed local algorithm for the available dates 

with in-situ measurements 

 

The use of Landsat TM and ETM+ data for mapping Chl-a concentrations seems to be 

efficient with the application of an local algorithm. In order to examine the performance of 

the algorithm for operational monitoring, statistical comparison methods were used and are 

presented in (3.2.2.).  

3.2.2.) Model Validation  
A key criterion for selecting the best equation was originally the value of the coefficient of 

determination as resulted by the regression analysis between sampling values of 

chlorophyll-a concentration and the estimated digital numbers of the transformed satellite 

images at the available sampling stations. Furthermore, the algorithms performance was 

evaluated using the statistic metrics mentioned in (2.2.2.) based on the equations (20)-(24) 

and their normalized indexes: root mean squared error (RMSE), normalized root mean 

squared error (NRMSE), mean absolute percentage error (MAPE), PBIAS, NSE, mNSE, RSR 

correlation coefficient (Correl) and determination coefficient (R2): 
 

Table 13.) Statistic index values for the model simulation 

 

 

 

 

05.09.2013 

 

 

 

08.11.2013 

 

 

 

26.04.2014 

 

 

 

24.10.2014 

 

 

 

04.12.2014 

 

 

 

16.04.2015 

 

 

 

06.10.2015 

 

 

 

Statistic index Value Goodness of fit Statistic index Value Goodness of fit 

RMSE 0.11 Perfect=0 PBIAS 16.49 <25% 

NRMSE 0.10 Perfect=0 NSE 0.67 >0.5 

MAPE 0.17 Perfect=0 mNSE 0.60 >0.5 

Correl 0.88 Exact=1 RSR 0.57 <0.70 
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In general, model simulation can be judged as satisfactory if NSE > 0.50 and RSR < 0.70, and 

if PBIAS <25% based on Moriasi et al. (2007). In addition a Taylor diagram has been used in 

order to summarize the relative skill with which the model simulates the pattern of the 

chlorophyll-a concentration.  

 
Fig.22.) Taylor diagram displaying the statistical comparison with observations of in-situ chlorophyll-a 

concentrations in Antikyra Bay 

 

The position of the red dot on the plot quantifies how closely the model's simulated 

concentration pattern matches the observations. Its pattern correlation with observations is 

about 0.91. The centered root-mean-square (RMS) difference between the simulated and 

observed patterns is proportional to the distance to the point on the x-axis identified as 

"observed." The green contours indicate the RMS values and it can be seen that in the case 

of the used algorithm the centered RMS error is about 0.32 μg/L. The standard deviation of 

the simulated pattern is proportional to the radial distance from the origin. 

 

 In general, it seems that all used statistic indexes indicate a successful simulation. In 

addition, as it can be seen in the graph below, it seems that one in-situ concentration is 

much higher than the majority of the samplings. This high concentration doesn’t exist in the 

simulated dataset. This fact may indicate some unusual event like e.q., some phytoplankton 

plume on the specific date (16.04.2014) and time, since the satellite data was received at a 

different time (09:10 am) on which the concentration may have not yet increased this much.  
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Fig.22.) Scatter plot of the modeled and in-situ chlorophyll-a concentrations indicating  

the unusual high in-situ concentration 

3.3.) Heat Flux 
In the graph below (Fig.23.) air-sea flux data from the National Centers for Atmospheric 

Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) are 

represented. These time series were used to estimate the net air to sea heat flux in the 

region of Antikyra bay during the years 1960 (when the aluminum plant was established) 

and 2017.  

 
Fig. 23.) Seasonal evolution of air-sea flux data from the National Centers for Atmospheric Prediction (NCEP) 
and the National Center for Atmospheric Research (NCAR). Positive values represent upward heat flux (heat 

loss by the sea), except in the case of solar radiation. 
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The flux data represents the net of the incoming solar radiation, back radiation, latent and 

sensible heat loss: 

 
Figure 24.) Temporal evolution of net heat flux from the sea surface in the atmosphere.  

Here, positive values indicate heat gain by the sea. 

 

 

Furthermore, in order to compare the single heat fluxes with the estimated results of the sea 

surface temperature and chlorophyll-a concentration, the fluxes were estimated again for 

the last 20 years.  

Fig. 25.) Temporal evolution of all heat flux data for the last twenty years 
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Fig. 26.) Temporal evolution of net heat flux from the sea surface for the last twenty years 

3.4.1.) Heat flux influences on sea surface temperature 
In order to analyze how the atmosphere influences the SST variation, the comparison of the 

net air-sea heat flux and the different radiations and heat losses with sea surface 

temperature are presented in the graphs below.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 27.) Comparison graph of net heat flux and sea surface temperature 
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Also, the comparison of the components of heating due to short-wave radiation, outgoing 

long-wave radiation, sensible heat flux, and latent heat flux and the sea surface temperature 

are shown below: 

 

 
Fig. 28.) Comparison graph of all heat flux components and sea surface temperature 

 

Figure 27 indicated that the sea surface temperature and the net heat flux vary similarly. For 

better investigation of the atmospheric influences on the SST variation the results of the 

application of Frankignouls’ method based on the equations (26)-(28) are shown below. 

 

The feedback of the surface heat flux (α) is estimated for each three consecutive monthly 

periods. For each season the factor α (W/m2/°C) is estimated using consecutive three 

months of daily data of the net heat flux (Qsurf) and the sea surface temperature (SST) time 

series. 
Table 14.) Estimated heat flux feedback over the gulf of Corinth 

 

 

 

Feedback factor Winter (JFM) Spring (AMJ) Summer (JAS) Autumn (OND) 

α -2.2 4.3 1.7 -2.4 



Naomi Krauzig, 2017 University of the Aegean, Department of Marine Sciences 

 

Page 45  Spatiotemporal temperature and chlorophyll-a mapping and modeling in the Gulf of Corinth using Landsat satellite imagery 
 

The negative factor α for the winter season indicates a positive surface heat flux feedback 

(equation 26). During this period, the ocean responses to the cooling by releasing heat to the 

atmosphere. In spring, from April to June, the factor α remains high and positive and the 

feedback is negative which indicates that the ocean probably storages energy. During 

summer factor α is low, the atmosphere has less influence on the SST anomalies. 
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4.) Conclusion and Discussion 
In this study the sea surface temperature estimation, based on thermal infrared (TIR) remote 

sensing from satellite images of Landsat Thematic Mapper (TM) and Landsat Enhanced 

Thematic   Mapper   (ETM+) revealed satisfying results. This fact enabled the investigation of 

a potential thermal pollution due to an aluminum plant in Antikyra Bay in the Gulf of 

Corinth. The results indicated with statistical significance that no thermal effluent of the cool 

hot cooling water from the aluminum plant were detectable. This could be explained by the 

presence of a wastewater treatment system in the area of Agios Nikolaos. The processed 

cold freshwater from the treatment system and the warm cooling water from the aluminum 

plant reduce the impact of each other in the area of Antikyra Bay based on the results of the 

National Monitoring Project of Greece from the Hellenic Centre for Marine Research. 

Furthermore, the sea surface temperature estimation enabled the seasonal surface 

temperature variation mapping which revealed a strong seasonal signal.  

In addition, a local algorithm for estimating Chlorophyll-a concentration based on high 

analysis Landsat 8 data was developed for the area of the Gulf of Corinth. This method was 

based on band rationing and regression modeling, established from in-situ measurements 

and satellite images. Chlorophyll-a samples which have been collected by the Hellenic 

Centre for Marine Research at 4 different stations, in Antikyra Bay from April 2014 until 

October 2015 and satellite images of Landsat 8 of the same area were used in order to 

statistically correlate the in-situ measurements with various combinations of Landsat bands 

in order to quantify algorithms that best describe this relationship and calculate accurately 

the concentration of chlorophyll-a. Several models were used to examine these relationships 

which included linear, exponential and log transformations. The combination of band 4 and 

band 1 showed the most significant ratio in estimating chlorophyll-a with a maximum 

correlation coefficient of R2 = 0.99. Based on the correlation coefficients, the most sufficient 

local algorithm was found to be chl-a= 59.423(band4/1)2-22.687(band4/1)+2.174. Even 

though a limited number of sampling stations were available, the selected equation 

presented strongly satisfying results. The algorithm was applied to other satellite images of 

different dates but with available in-situ chl-a data, in order to validate the results. Satellite 

derived chlorophyll-a values were compared to in-situ chlorophyll-a values originated from 

other past scientific studies. The initial results confirmed the suitability of the method for 

assessing the concentration of chlorophyll-a in the Gulf of Corinth with relative accuracy 

when no field data are available.  

 

The last section indicates the atmosphere influences on the sea surface temperature 

variation based on the analyzed heat fluxes. It is known that the warming of water is induced 

by solar heating. The fact that the shortwave radiation flux (SH) increases from March to 

May and achieves its maximum in May-June indicates that the increase of the sea surface 

temperature during the same period is strongly related. However, wind speed decreases and 

shows a minimum in May based on the local meteorological data (WMO). This indicates that 

during a low wind period, solar heating probably induces a rise in air and sea surface 
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temperature and the thermal system can’t be described so easily. Furthermore, these results 

are based on satellite data of the surface water, and in-situ measurements in the water 

column waters are required for a better understanding of the mechanisms that govern the 

thermal structures in this area. 

 

5.) Data Resources 
Bathymetry data 

The bathymetry data have been derived from the European Marine Observation and Data 

Network (EMODnet) Bathymetry portal (http://www.emodnet-bathymetry.eu.) and it have 

been analyzed and presented with the GeoMapApp which is available in the through the 

visualization software suite from the Marine Geoscience Data System  

(www.geomapapp.org/html/help/exportSD.html). 

 

Air-sea flux data 

Air-sea flux data have been derived from the National Center for Atmospheric Prediction 

(NCEP) and the National Center for Atmospheric Research (NCAR) daily reanalysis 

(http://www.esrl.noaa.gov/psd/) and were used to examine time-series of air-sea fluxes and 

heat loss using Matlab R2013a. The data assimilation system uses a 3D-variational analysis 

scheme, with 28 sigma levels in the vertical and a triangular truncation of 62 waves which 

corresponds to a horizontal resolution of approximately 200 km Kalnay et. al, 1996). A 

forecast from the NCEP global spectral model was used as the first-guess fields for this 

reanalysis.  

 

Satellite data  

In this study satellite images of Landsat Thematic Mapper (TM) from Landsat 5, Landsat   

Enhanced Thematic Mapper (ETM+) from Landsat 7, and Landsat Operational Land Imager 

(OLI) and Thermal Infrared Sensor (TIRS) of Landsat 8 were used. The data were acquired for 

all available images with less than 20% cloud cover from 10.2009 until 12.2016 from the 

United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/).  

 

Chlorophyll-a field data  

The chlorophyll-a concentrations for 4 different stations and for 6 different dates (from April 2014 to 

October 2015) in the area of Antikyra Bay were provided by Prof. Asimakopoulou from the Hellenic 

Center for Marine Research (H.C.M.R) (http://www.hcmr.gr/en/).  

 

 

 

 

http://www.emodnet-bathymetry.eu/
http://www.geomapapp.org/html/help/exportSD.html
http://www.esrl.noaa.gov/psd/
https://earthexplorer.usgs.gov/
http://www.hcmr.gr/en/
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