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Abstract

istics and Actuarial-Financial Mathematics of the University of the Aegean,

in the context of the MSc program in Statistics and Data Analysis. Its pur-
pose is to analyze the class of Generalized Linear Mixed Models (GLMMs) and their
implementation in real life problems, through a thorough study on influenza-like ill-
ness (ILI) rate data. More specifically, we focus on a special class of GLMMs, the
class of periodic regression mixed models for modeling the ILI time series data. For
the trend, linear, quadratic, cubic and quartic trends are considered while for the
seasonal component, the most widely used periodicities are implemented, i.e. 12, 6,
and 3 months. The class extends further to include first and second order AR and
MA parts while environmental covariates potentially affecting the output are also
included.

The structure of the thesis consists of four Chapters. In Chapter 1, Generalized
Linear (GLMs) and Generalized Linear Mixed Models are presented along with their
properties. Some of the topics that will be discussed are, logistic regression model,
maximum likelihood estimation and, test of hypotheses.

Chapter 2, constitutes an introduction to univariate time series analysis. Import-
ant terms such as autocorrelation and white noise are defined, as well as the back-
ward shift operator. At the end, various time series models (i.e., AR, (S)ARIMA,
and, Periodic) are presented.

Chapter 3, introduces four basic model selection criteria. Among them are,
the Modified Divergence Information Criterion (M DIC') and R%;,, M(m)» Which are
being used for the selection of the "best overall” model of the application that
follows.

Finally, in Chapter 4, an experimental study is applied on influenza-like illness
(ILI) rate data, collected weekly through the sentinel surveillance system, provided
by the Department of Epidemiological Surveillance and Intervention of the Hellenic
Center for Disease Control and Prevention (H.C.D.C.P.). An exhaustive search
process takes place, in order to provide guidelines for the selection of the optimal
periodic regression mixed model for early and accurate outbreak detection in an
epidemiological surveillance system, as well as for its proper use and implementation.

This thesis is conducted at the Department of Mathematics, Division of Stat-






AfBocTpogt

Topodo Simhwuotiny extovidnxe oto TurAuo Madnuatixaoy, Koatediuvon

Yratotinrc xo Avahoylotixwv-Xenuotoowovouxey Modnuotixoy tou Ilo-

vemotnuiov Aryafou, ota mhalowa Tou Hpoypdupatoc Metamtuytoxey Xmou-

dwv Yrationikn ka1 Avdlvon Aedopévwr. YNxomde tng, €lvor 1 avdALoT TG
xhdong twv Fevixevpevey Fooppxary Muctov Moviehwy xadog xon 1 eQapuoyT| Toug
o€ TEOBAAUATA TNG XOUMUERVOTNTUG, UECW ULoG TAHPOUG UEAETNG TdVL OF BEDOMEVY
velnne (ILI). Xuyxexpiévo, emxevipwvopaote o o ewdif xAdon twv Tevixeu-
uévey Toauuixady Muctdv Movtéhwy, v xAdon TV TEQLOOXOY UXTOY UOVTEAWY
TohvopouNnong Yoo Ty poviehomoinon twv  ILL  ypovoroyixwv dedopévwy. o tnv
Téon YewpolvTal oL yeuuuxo0, TETEAYWVIX0U, XUPLXoU xou 1 Tetdptou Baduol tdoel,
EVE YOl TOV ETOYIXO TORAYOVToL EQUPUOLOVTAL OL TLO EUREMS YPTOULOTIOLOVUEVES TIEQLO-
dueotntee (12, 6 xou 3 unvodv). H xhdon enextelveton mepoutépw HOTE Voo GUUTERIASSEL
TenTou ot deuTépou Baduol AR xaw MA  bpoug eved meprioufdvovTon xou tepLBok-
AovTixéc ouuueTaBANnTéC mou mdavoy v emneedlouy TO UTOTEAECUAL.

H Sour| tne onmiwpotindc anoteheltar and téoocpa Kegpdhawa. Yto Kegpdiowo 1,
rapovatdlovton To N'evixevpéva looupind xon tor Nevixevpéva I'ooppixnd Mixtd Movtéha
woli e Tig WwoTnTéC Toug. Kdmota amd tor éparta mou Yo avoludolv etvat, To AOYIGTING
HOVTEAO TOAVOEOUNOTG, 1) EXTUNGCT UEYIOTNG TIUVOPAVELAS X0t O EAEY YOG UTOVECEMY.

Y10 Kegdhowo 2, yivetan eloaywyn otny LovouetoBAnTY| avdhuor ypeovooetpwy. O-
ciovtan onuavTinég €vvoleg, OTWS AUTH TNG AUTOOUCYETNOMG, Tou Aeuxol Yoplfou
OTWS o ToL TEog To Tow Ttekeath. Téhog, mapoucidlovtar Sidpopa LOVTENX YPOVO-
oeptyy 6mwe T AR, tor (S)ARIMA  xou ta Heptodixd.

Y10 Kegdhowo 3, yivetar 1 mopouciocn tecodpowy Baoadv xpitneiov emAoyig
uovtélou. Metald autedv etvor xou too Modified Divergence Information Criterion
(MDIC) xou R%;LMM(m), ToL OTOLOL YENOLOTIOOVUVTAL OTNY EQUQUOYT| TV DEDOUEVWV
yelmng yio TRV emhoyr) Tou "xaAUTEPOL” HOVTEAOU.

Téhoc, oto Kegpdhoo 4, epapuoletar yor Telpaatind] UEAETN ot Sedouéva yeinng
(ILI rates), mou culkéytnxay efdouadiainwg v nepiodo 2014—2016 péow tou ou-
o ThuaTog topaxoroinong sentinel, ta onola topayweinxay and to Turua Emdnuio-
hoyurc Emtenong xau HapéuBaong tou EXAnvixol Kévtpou Eaéyyou xan Ilpdhndng
Noonudtwv (KE.EA.ILNO). Ipoypotonoteitar pla Aentopepic épeuva, pe oxond tov
TPOGBLOPLOUS TOU XUTAAANAOTEPOU TERLOOXO) ULXTOU HOVTENOU TOAVOEOUNONG YLl TNV
EYXOUET XOU €YXUPT) AVIYVELOT] ETBNUIXGY EEJPOEWY OE €val ETONULONOYIXG UG TN
TopoxohoUINoNg, xS xou TNV XATEAANAY YENOT XoU EQUQUOYT| TOU.






CHAPTER 1

Generalized Linear and Generalized
Linear Mixed Models

In this chapter we will present and discuss the class of Generalized Linear Mod-
els (GLMs), as well as the extended class of Generalized Linear Mixed Models
(GLMMs). GLMs is a covering algorithm allowing for the estimation of a num-
ber of otherwise distinct statistical regression models within a single and unified
framework. First developed by John Nelder and R.W.M. Wedderburn in [75], the
algorithm and the overall GLM methodology has proved to be of substantial value to
statisticians in terms of the scope of models under its domain as well as the number
of accompanying model statistics facilitating an analysis of fit. In the early days
of statistical computing - from 1972 to 1990 - the GLM estimation algorithm also
provided a substantial savings of computing memory and consequently, time com-
pared to what was required using standard maximum likelihood techniques. Prior
to Nelder and Wedderburn’s efforts, GLM models were typically estimated using a
Newton-Raphson type full maximum likelihood method, with the exception of the
Gaussian model. Commonly known as normal or linear regression, the Gaussian
model is usually estimated using a least squares algorithm. GLM, as we shall ob-
serve, is a generalization of ordinary least squares regression, employing a weighted
least squares algorithm that iteratively solves for parameter estimates and standard
errors.

In 1974, Nelder coordinated a project [76] to develop a specialized statistical
application called GLIM, an acronym for Generalized Linear Interactive Modeling.
Sponsored by the Royal Statistical Society and Rothamsted Experimental Station,
which is one of the oldest agricultural research institutions in the world [86], GLIM
provided the means for statisticians to easily estimate GLM models, as well as other
more complicated models which could be constructed using the GLM framework.
GLIM soon became one of the most used statistical applications worldwide, and was
the first major statistical application to fully exploit the PC environment in 1981.
However, it was discontinued in 1994. Presently, nearly all leading general purpose
statistical packages offer GLM modeling capabilities; e.g., SAS, R, Stata, S-Plus,
and SPSS [44].

An extension to the class of GLMs, as aforementioned, are GLMMs. GLMMs are
being used in cases that we want to incorporate random factors in non-linear models.
For example, suppose we wish to study factors affecting cost of hospitalization by
taking a random sample of patient record of 15 teaching hospitals. The cost within a
hospital must be regarded as correlated. They will be similar because of the general
costs of running the hospital, billing practices, costs of nearby, and so on. In such
cases, GLMMSs encounter the complication of exploring the consequences of adding
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random factors to non-linear models and thus they are considered useful.

1.1 Generalized Linear Models (GLMs)

Linear models have been used for the most part in situations where the observa-
tions are continuous. However, there are cases in practice where the observations are
discrete or categorical. For example, consider the random variable X = {outcome
of injured persons}, (see [54]). This is a discrete random variable since it can only
take the values 0 (alive) or 1 (dead). McCullagh and Nelder in [66], proposed an
extension of linear models, called Generalized Linear Models or GLMs. They noted
that the key elements of a classical linear model, are (i) the observations are inde-
pendent, (i7) the mean of the observations is a linear function of some covariates,
and (7i7) the variance of the observation is a constant. The extension to GLM con-
sists of modifications of (iz) and (ii7) above; by (i) the mean is associated with a
linear function of some covariates through a link function; and (iii)" the variance
of the observation is a special function of the mean, that can be transformed and
make the variance stable (econometrics) [47]. See [66] for details. In contrast to
linear models, GLMs include a variety of models with Normal, Binomial, Poisson,
and Multinomial as special cases. Thus, these models are applicable to cases where
the observations may not be continuous.

1.1.1 Structure of a GLM

Constructing a generalized linear model involves three decisions:
1. The distribution of the data.

2. The function of the mean that will be modeled as linear in terms of the predictors
(covariates).

3. The predictors.

1.1.1.1 Distribution of y

Let the vector y = (y1, Y2, ..., yn)’ assumed to be consisted of independent meas-
urements from a distribution with density belonging (or being similar to) the expo-
nential family.

indep.

i o~ fyi(yi),i=1,...,n (1.1)

yivi — b(7i)
(y;) = expy ——5 7, 1.2
fYL(y) p{TQ_C(yi77—) ( )
where the parameter +; depends on the expected value of y;, 7 is a scale parameter,
and b and c are arbitrary functions.

The quantity fy,(y;) is written in what is called canonical form.
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1.1.1.2 Link function

Our intention, is to identify the connection between the parameters of the distri-
bution and various predictors. This can be achieved by modeling a transformation of
the mean, p;, where p; will be some function of ~;, as a linear model in the predictors

E[yz] = M

9(w) = i3, (1.3)

where ¢(-) is a function known as link function (because it links together the mean
of y; and the linear form of predictors), x! is the it row of the model matrix, and 3
is the parameter vector in the linear predictor.

1.1.1.3 Predictors

In practice, one must make decisions as to which predictors to be included in
the right-hand side of (1.3) and in what functional form to be included them. For
example, in [15] the suggested predictor of survival is log nicotine dose as opposed
to nicotine itself.

It is important to notice that the modeling of the mean is the same for both
GLMs and LMMs. For example, the similarity is obvious on issues related in the
representation of predictors and interactions, on when and how to model non-linear
relationships and in the incorporation of random factors (see 1.2).

1.1.1.4 Example (Normal distribution - linear model)

We can write the normal distribution in the form (1.2) by defining

Yi = i
1
b(yi) = -
(%) = 54
% =0’ (1.4)
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1.1.2 Maximum likelihood estimation
1.1.2.1 Likelihood
By (1.2), the log likelihood is given by

=1

=Y [W;b(”] - zn:c(yi,r). (1.5)

1.1.2.2 Useful identities

In this subsection it is useful to recall the following identities:

Ely) = pi = ag(;i), (1.6)

which, using (1.6) gives

T2 T2 0O7;

7

(?Jz’ —Mz‘) . 1 5217(%’)
var = — 5

or

(1.7)
= TZU(M%

where v(u;) = 82;7(;1') , is referred to as the wvariance function since it indicates the
dependence between the variance and the mean of y;.

The above results follow from the expression

0log fv, (:)
E|l———————=| =0 1.8
i 7 (18)
and
1 (i 2] (Y
var | 2108 fri(wi) | _ |97 log f;n(yz) | (1.9)
P i
which require regularity conditions [22].
Using (1.2) and (1.8) we obtain
_ 9b(%i)
E {yﬁ] = 0. (1.10)
T

Also, using (1.2) and (1.9) we obtain
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[ty vy 1 82b(v:)
The following two identities are also useful:

i\ (O _1_ 0*b(7:) _1_ 1
(aﬂz) B (871-) _< 3%'2 ) _U(Mi)7 (112)

and using the chain rule and (1.3),

Opi \ _ Op 8g(ui): dg(i) Oriff _ dg(u;) 1x’- (113
9B 9g(pi)  Op o o OpL; i :

1.1.2.3 Likelihood equations

We can now derive the ML equations for the parameter the case of an one-
dimensional parameter 5. From (1.5) we have

_ v Ob(vi) 0
% Z[ O 85]

LS - w)gs oy (16)

(1.14)

. i O

= ST TP by (112) and (113)
== Z — i) wigp (i)

where w; = [v(p)g5 (1)) 7" and g, as in (1.3)

Equation (1.14) can be written in matrix notation as follows

a1,
B =X WA(y — ), (1.15)

with W = {wl} and A = {gu(ui)} .
dxd dxd
With that said, the ML equations are given by

X'WAy = X'WApu, (1.16)

where W, A and p involve the unknown parameter 5. Due to the fact that the ML
equations in (1.16) are typically non-linear functions of 3, they can not be solved
analytically.
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In order to solve the ML equations and extract the large-sample variance of the
estimator 3 of the parameter (3, it is useful to have the expected value of the second
derivative of the log likelihood:

o2 1 oy OW A
— S XWAL —X’
9305 Waas ™ 93

(y — ), (1.17)

so that

0?1 1, o
_E[aﬁaﬁ/] = S X'WAZL 40

1

— ﬁX’WAA_lX ,(by (1.13)) (1.18)

1
= —QX'WX7
-
where W as above.

1.1.2.4 Large-sample variances

To extract the large-sample variance of the estimator B we first note that

—E[(ﬂ]: E[a 1XWA(y )

0pOT? oT?
- (1.19)
= 3 X' WALy — ul
=0,
so that estimation of 72 does not affect the large-sample variance of B )
The usual large-sample arguments along with (1.18) and (1.19), show that
vars(f) = A (X'W X)L, (1.20)

where vary, represents the limiting or asymptotic variance.

1.1.2.5 Solving the ML equations

Solution of the ML equations given in (1.16), for § is usually performed via a
repeated weighted least squares method known as Fisher scoring. Fisher scoring is
a repeated method for maximizing a likelihood. The form of the method is

9
08 !

B=ptm™

Bt = gim) 4 p(gm)-1 (1.21)
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where (m) indicates the m!" iteration, I(f) is the Fisher’s information matrix and
0 is the entire parameter vector.
With the use of (1.19), (1.18) and (1.15), the equation for /3 is of the form

B = B0V 4 (XYW X) T XW Ay — p), (1.22)
where it is easy to understand that W, A and p are evaluated at 3™,

1.1.3 Tests of hypotheses
1.1.3.1 Likelihood ratio tests

Likelihood ratio tests follow the typical procedure of comparing maximized values
of the log likelihood both under Hy and H;. If the difference is large then Hj is
rejected.

When there are multiple parameters, our interest will most likely concern only
in a subset of them. Thus, let the parameter vector 3 be partitioned into two
components 8 = (01, 0) and suppose interest focuses on 6; while 5 (often called
as nuisance parameter) is left unspecified. Either or both of 8; and 6, could be
vector-valued and, with the condition that the entire parameter vector is of interest,
05 could be null.

Let us suppose that our hypothesis is of the form Hy : 8; = 0, , where 0, is
a specified value of 6, and let é2,0 be the MLE of 6, under the restriction that
01 - 9170.

The likelihood ratio test statistic is given by

—2log A = —2[l(91,o, éz,o) - l(él, 92)}7 (1.23)

where A is the ratio of the two likelihood functions, and 6, 8, and the large sample
rejection region of the test is to reject Hy in favor of H; when

—2log A > X2, (1.24)

where v is the dimension of 6.

1.1.3.2 Wald tests

Another method of testing is to consider the large-sample normality of the ML
estimator in order to form a test. From standard results

6 ~ AN[0,174(0)], (1.25)

where I(8) is the Fisher information for 8.
Let us partition the Fisher information according to the dimensionality of 8, and 65:
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1(6) = Lﬁ; ﬁ] (1.26)

Then standard matrix algebra for partition matrices [90] and calculations for the
multivariate normal show that large-sample variance of 6, is given by

-1
UCL?"OO(01> = <I11 — I12I2_21I21> N (127)

In order to test Hy : 8, = 01 we make use of the Wald statistic

W = (6, — 61) [var«(0,)] 716, — 01), (1.28)

which, under Hy, has the same large-sample y? distribution with degrees of freedom
equal to the dimension of 6.
More precisely, we reject the Hy : 0, = 0, it

W > Xz,l—om (129)

Likelihood ratio and Wald tests, although are available to test the same hypo-
theses and have the same limiting distribution, they have some differences. For large
samples, and if the deviation from Hj is not too extreme, they will give similar, but
not identical, results [14]. On the other hand they may differ for small samples or
for extreme deviations. Generally, various simulations ( [28]; [66]) have shown that
use of the likelihood ratio test provides a more accurate approximation for small and
moderate-sized samples than the use of the Wald test. Thus, the likelihood ratio
test is to be preferred. However, the Wald test does have a computational advantage
due to the fact that it does not require the calculation of 9A270.

1.1.3.3 Confidence intervals

Both likelihood ratio and Wald tests can be used to build large-sample confid-
ence intervals for 6. For the likelihood ratio test we include in the confidence set
all values 0, such that

—2[l<0170, éQVO) - l(él, ég)} S X121,1—o<’ (130)

In (1.30) é271 represents the MLE of 85 for each value of 8; checked for inclusion in
the set.

For the confidence interval of the Wald test we include in the confidence set all
values of 6, such that

(01— 01)[vare(0:)]71(8: — 61) < \21_,. (1.31)

The computational burden of the likelihood-based confidence interval is larger than
that for the Wald-based interval. Though the small and moderate-sized sample
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performance of the likelihood-based confidence region has typically been found to
be better.

1.1.4 Logistic regression model

The relationships between 7(z) and = are usually nonlinear. A fixed change in
x may have less impact when 7 is near 0 or 1 than when 7 is near the middle of its
range.

In practice, 7(z) often either increases or decreases continuously as z increases.
The S-shaped curves displayed in Fig.(1.1.4) are often realistic shapes for the above
relationship, with  the shape parameter.

B>0
7(X)
0
X
1 B£>0
mx)
0

Figure 1.1.4: Logistic regression functions

The most important mathematical function of this shape is associated with the so
called logistic regression which is given by

(2) exp(a + Bx) ethe
m(x) = =
1+exp(a+ Bz) 1+ exthr’

using the exponential function. The form of the corresponding logistic regression
function is

()
log| ——— | = : 1.32

The logistic regression model (1.32) is a special case of a GLM. The random
component for the outcomes (success, failure) has a binomial distribution. The
link function which is called the logit function of m, and is denoted by "logit(m)”,

is given by log (ﬁ) The ratio ;7 is called the odds ratio, with the numerator
defining the probability of success and the denominator the probability of failure.
Logistic regression models are often called logit models. Since 7 is a probability, it
is restricted to the 0 — 1 range and so the logit can be any real number. The real

numbers are also the potential range for linear predictors (such as a+ Sz) that form
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the systematic component of a GLM, so this model does not have the structural
problem that the linear probability models have.

As for the 8 parameter in equation (1.32), it determines the rate of increase or
decrease of the curve. When g > 0, 7(z) increases as x increases, (Fig.(1.1.4(a))).
Similarly when § < 0, w(x) decreases as z increases, (Fig.(1.1.4(b))). The magnitude
of  determines how fast the curve increases or decreases. As |3| increases, the curve
has a steeper rate of change. In the case that § = 0, the curve flattens to a horizontal
straight line.

Remark: Another property of logistic regression relates to situations in which the
explanatory variable X rather than the response variable Y is random. This occurs
with retrospective sampling designs. Sometimes designs of this type are used because
one of the response categories occurs rarely, and a prospective study might have too
few cases to enable one to estimate effects of predictors well. For a given sample
size, effect estimates have smaller standard errors when the number of outcomes of
the two types are similar than when they are very different. Usually, retrospective
designs are used with biomedical case-control studies. For samples of subjects having
Y =1 (cases) and having Y = 0 (controls), the value of X is observed. Evidence
exists of an association between X and Y if the distribution of X values differs
between cases and controls. For case control studies it is possible to estimate odds
ratios but not other summary measures. Logistic regression parameters refer to odds
and odds ratios. One can fit logistic regression models with data from case control
studies and estimate effects of explanatory variables. The intercept term « in the
model is not meaningful, because it relates to the relative numbers of outcomes
of Y =1and Y = 0. We do not estimate this, because the sample frequencies
for Y = 1 and Y = 0 are fixed by the nature of the case control study. With
case control studies, it is not possible to estimate effects in binary models with link
functions other than the logit. Unlike the odds ratio, the effect for the conditional
distribution of X given Y does not equal that for Y given X. This is the primary
reason why in biosciences, logistic regression surpasses in popularity other models.
Many control studies employ matching. Each case is matched with one or more
control subjects (e.g. age). The model and subsequent analysis should take the
matching into account. For a detailed illustration of logistic regression the reader is
referred to [1].

1.2 Generalized Linear Mixed Models (GLMMs)

1.2.1 Introduction

Generalized Linear Mixed Models (GLMMs) are a powerful class of statistical
models that combine the characteristics of GLMs (Section 1.1) and mixed models
(models that include both fixed and random predictor variables). They handle a
wide range of response distributions, and a wide range of scenarios where observa-
tions have been sampled in some kind of groups rather than completely independ-
ently. Even though they cannot perform satisfyingly under any setting, there are
always situations where for greater flexibility one might choose a custom-built mod-
els. GLMMs are fast, powerful, can be extended to handle additional complexities
such as zero-inflated responses [107], and can often be fitted with of-the-shelf soft-
ware. However, there are a few real downside of GLMMSs that come because of their
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generality [37]: some of the standard recipes for model testing and inference may
not apply. GLMMs are part of the statistical frontier, but not all of answers about
their use and implementation are known.

1.2.2 Structure of the model
1.2.2.1 Conditional distribution of y

To specify the model, we first have to define the conditional distribution of y
given u. The response vector y is usually assumed to consist of conditional inde-
pendent elements, with a distribution for each one with density from (or similar to)
the exponential family:

indep.

yi|u ~ in|u(yi|u)

Yyivi — b(vi)
(i) = S 5. 1.33
fyitu(yilu) 6xp{72__dyu7)} (1.33)
From (1.16) it is known that the conditional mean of y; is related to ; in (1.33) via
the identity p; = %. It is a transformation of this mean that we wish to model

as a linear model in both fixed and random factors:

E[yz|u] = M

9(pi) = i + zju. (1.34)

As in (1.1), g(-) is the link function, x| is the 3" row of the model matrix for the
fixed effects, and f is the fixed effects parameter vector. Furthermore, z., is the it
row of the model matrix for the random effects, and u, the random effects vector.
Note that in the present setting pu; represents the conditional mean of y; given u
and not the unconditional mean. To make the specification complete we assign a
distribution to the random effects:

u ~ fu(u). (1.35)

Taking into consideration the fact that the conditional distribution of y given w is
a notational extension of the generalized linear model presented in (1.1), most of
the expressions and relationships derived there still hold. Consequently, as in (1.7),
we denote the conditional variance of y; given u as 72v(y;) in order to exemplify its
dependence on the conditional mean ;.
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1.2.3 Consequences of having random effects
1.2.3.1 Marginal versus conditional distribution

Based on the conditional distribution and characteristics in (1.33) and (1.34), we
now extract aspects of the marginal distribution of y in order to fully understand
the underlying mechanism of the observed data.

1.2.3.2 Mean of y

The mean of y can be extracted by the standard device of iterated expectation:

Ely)| = E[Elyi|u]]
= E[Mz]

= Elg (i + zju)]. (1.36)

Generally, the above expression cannot be simplified due to the nonlinear function
-1
9 ()
For illustrative purposes consider the log link namely g(u) = log u and g~ (z) =
exp{z}. Then we have

Ely;] = Elexp{z;3 + zju}]
= exp{Ey;] = Eleap{ziS + zyu}]

= exp{x;f} Mu(z:), (1.37)

where M, (z}) is the moment generating function of u evaluated at z..
If we further assume that u; "% N (0,02) and that each row of Z has a single

entry equal to 1 with all the rest being zero, then

0_2
Mu(z:) = exp{ 22},

and

Ely;| = exp{wéﬁ}ewp{%},

or



1.2 Generalized Linear Mixed Models (GLMMs) 13

log Ely;] = .5 + %. (1.38)

IS )

1.2.3.3 Variances

To derive the marginal variance of y we make use of the following formula:
var(y) = var(Elylu]) + Elvar(y|u)]
Thus

var(y;) = var(Elyilu)) + Elvar(ylw)
var(y;) = var(u;) + E[m?v(p;)]

= var(g~' [} + zju] + Elr*v(g ™ [xiB + Zju])]. (1.39)

which is also not possible to be simplified substantially without making specific
assumptions about the form g(-) and/or the conditional distribution of y.

For illustrative purposes we consider again the log link and further assume that
the elements of y, given u, are independent with a Poisson distribution. Hence the
conditional variance of y; given w is 72v(y;) = p;. Using (1.39) we obtain

var(y;) = var(p) + L)
= var(exp{zf + ziu}) + Elexp{x,f + zu}]
= El(exp{2(zif + zju)})] + [E(exp{z;f + zju})]* + Elexp{z;f + zju}] (1.40)

= cap{2i5} (Ma(22:) — [Ma(20)] + exp{—a:5} Ma(21)).

With the addition of the assumption that u; ~ N(0,02) and that each row of Z has
a single entry equal to 1 with all the rest being zero, then

var(y) = eep{228) (cap{207} — cap(0?}) + cap{e|Bleap(7'}

02 2

exp{x,f + ?“}(ea:p{ac;ﬂ} {exp{&j‘} — exp{%}} + 1)
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Bl (eap{) feap 222} — eap T2)] +1). (1.41)

Notice that the term in parentheses in (1.41) is greater than 1 and so the variance
is larger than the mean (overdispersion). Thus, although the conditional distribu-
tion of y; given w is Poisson, the marginal distribution cannot be. In fact, under
these assumptions, it will always be overdispersed compared to the Poisson distri-
bution. In this sense we can think of random effects as a way to model or attribute
overdispersion to a particular source.

1.2.3.4 Covariances and correlations

The use of random effects, introduces a correlation among observations which
have any random effect in common. The same is true for generalized linear mixed
models. Assuming conditional independence of the elements of y and with the use
of the following formula for covariances

cov(y, w) = cov,(Ey|u], E[w|u]) + E,[cov(y, w|u)],

we have

cov(ys, ;) = cov(Elyilul, Ely;lul) + Elcov(ys, y;|u)]
— cov(ju 15) + E[0]

cov(g 'z} + 2zul], g’l[w;ﬂ + 2ju)). (1.42)
In the case of a log link, this can be evaluated as

cov(ys, y;) = cov(exp{x;B + zju}, exp{x)f + 2ju}) + E[cov(y;, y;|u)]
— cap(!f + B} cov(eapl 6}, explZ,5)) (1.43)

= exp{x;f + B} [ Mu(zi + z;) — My(z:) Mu(25))].

Again we make further the same assumptions, namely that u ~ N (0, Io?) and that
each row of Z has a single entry equal to 1 with all the rest being zero. Then

cov(ys, y;) = exp{x;B + x5} {exp{ai}(exp{zgzjoi} — 1)}, (1.44)
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which if 2/z; = 0 (if the two observations do not share a random effect) or zz; = 1
then is equal to zero or positive respectively.

From (1.44) and (1.43), when 2}z, = 1, we can calculate the correlation (after
canceling exp{x;3 + x;3} in the numerator and denominator) as:

6203 _ 603

corr(yi, y;) = —
v %

202 _ ol + e—m;ﬁﬂ-

_ ! (1.45)

V(1 + neB) (1 + neP)

where 7 is given by 50%

30 on’
e 2 —e 2

1.2.4 Maximum likelihood estimation
1.2.4.1 Likelihood

From (1.33), (1.34), and (1.35) it is straightforward to write down the expression
for the likelihood function:

L= [ T] frulile) fir(w)du, (1.46)

where the integration is over the g-dimensional distribution of w.

As an example consider the Poisson distribution for modeling data in correlated
clusters thought to come from a Poisson distribution. An example of such a situ-
ation is described in [32], where the authors consider the analysis of the number
of epileptic seizures in patients on a drug or placebo. In this context, the clusters
would be repeated measurements taken on the same patients. We denote by y;; the

§™ count taken in the ¢ cluster. Hence we create a model as follows:

indep. . . .
yijlu ~" Poisson(pi;); i=1,2,..,m; j=1,2,..n;

Us; l}\/d N(0> 05)7

where a log link and a normal distribution for the random cluster (patient) effects
are used. The normal distribution for the random effects is applicable since the log
link carries the range of the parameter space for p;; into the entire real line. The
random effects u; are shared among observations within the same cluster and hence
those observations are being modeled as correlated.

The log likelihood can be simplified as follows
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n 4oo M uy” e Hij 1 1 2
I=1lo / i e~ 77" du,
& (ll_ll —00 H vij!  V2mo? )

J=1

+0oo / 1 1 2
=y’ X3-) logy!+) 1 / =y et e T3 ;. (148
y X 2 08 Yij Ez og . e:cp{yu j e } 27?0'26 2 wi. ( )

Since (1.48), cannot be simplified further or evaluated in closed form, the same is
true for maximizing values.

In the simplest cases, numerical integration for calculating the likelihood is
straightforward and hence numerical maximization of the likelihood is carried out
without difficulty.

The ML approach works relatively well in simple situations:

1. A single random effect.
2. Two or three nested random effects.

3. Random effects which come in cluster (e.g., longitudinal data with subjects hav-
ing random intercepts and slopes).

For more complicated structures (e.g., crossed random factors) the approach fails.

1.2.4.2 Likelihood equations

-i. For the fixed effects parameters

Although the likelihood equations are numerically complex, one can write them
down in a simpler form. From (1.46)

L=105 | frialylu)fo (w)du = log fy (y). (1.49)

so that

ol _ 0 [ fru(ylu) fowada

a5 o5 fr)
J {%leu(mu)}fU(u)du
B fr(y) ’ (1-50)
since fy(u) does not involve 3. Noting that
gttt = (7o 2,
=SBl ), (151)

op
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we can now rewrite (1.50) as

ot _ f%gmfym(y’u)fU(u)du
Z frw)
D108 fy i
/ og fg|ﬁ (y|u)fU|y(u\y)du. (L52)

Combining (1.15) and (1.52) get

ol
B~ /XlW*(i‘/ — 1) fuly (uly)du

= X'EW|y] — X'E[W™ply], (1.53)

where W* = {[a(@)o(uig,(n))] '}
X
The likelihood equation for [ is therefore given by

X'EW*|y] = X'E[W"puly], (1.54)

which is similar to (1.16), the difference being that W* and W are replaced by
their conditional expected values given y.
In cases like the Poisson example of (1.47), W*=I and the equations simplify to

X'y = X'E[ply]. (1.55)

-ii. For the random effects parameters

We can easily derive a result similar to (1.52) for the ML equations for the para-
meters ¢ in the distribution fy(y):

ol r0dlog fuw
96 = 96 fUIy(u’y>du

. 810g fU(u)
B E[ 99

y] (1.56)

which though cannot be further simplified without providing a specific form of the
random effects distribution.

1.2.5 Marginal versus conditional models

Suppose that we might directly hypothesize a model for the mean of y instead
of starting from the conditional specification as in (1.33), (1.34), and (1.35).
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As an example, suppose y;; is equal to 1 if the 4" child of woman % is born prema-
turely and zero otherwise. In addition, assume that we have a single predictor x;; =
number of drinks of alcohol per day. If the marginal approach is chosen, then the
marginal mean of y;; would be modeled directly by assuming, for instance, a logistic
regression model:

This means that the model would be for logit of the probability of premature birth,
averaged over a population of women. In case the model was for correlated data,
we would not be able to assume that the observations were independent.

On the other hand, the typical conditional approach corresponds to take into
consideration the presence of a random factor for women and specifying a condi-
tional model such as follows

logit(Elyij|u]) = a + Bxi; + u,,

where u; represents the random woman effect. This corresponds to modeling the
conditional probability of a premature birth for each woman [67].

From a probabilistic perspective, the marginal distribution of y can be calcu-
lated from the distribution of w and the conditional distribution of y|u. It is not
possible to recover the marginal of w and the conditional distribution of y|u from
the marginal distribution of y, which appears to favor the conditional specification
of the model.

Note though that, in some cases, the marginal distribution (or perhaps only the
marginal mean) may be adequate for answering questions of interest. For example,
in the alcohol consumption example, a natural question of interest is what is the
reduced rate of the incidence of premature birth if lowering, on average, women’s
alcohol consumption. In such cases, the potentially perplexed problem of specifying
the conditional distribution of y|u and the marginal distribution of u can be avoided.
This can be considered as an advantage of marginal modeling and the basis of the
generalized estimating equations. For more details the interested reader may refer
to [67].

Distinguishing conditional from marginal models is straight forward probabilist-
ically, but in practice it is frequently difficult. For example, a researcher might be
interested in "the influence of alcohol consumption on premature birth”, which would
now specify which type of model to build. According to [67] researchers often thing
about building models in a mechanistic way, which seems more compatible with the
conditional approach. In the premature birth example, a researcher might think
about the influence of alcohol consumption by trying to understand how alcohol
influence individual women’s physiology.

It is important to keep in mind the distinction between conditional and marginal
models. For more details the reader may refer to [67]. Other advantages of the
conditional approach are presented in the following examples:

If two studies are performed in different populations with different variances, then
the marginal models will be different even though the conditional models are the
same. Again for the alcohol consumption example, consider a small preliminary
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study with a homogeneous study population (and hence a small variance for the
subject random effect), a larger scale study with a heterogeneous study population.
Even if the effect on every person in both studies is the same, the marginal models
will differ due to different variances.

1.2.6 Generalized estimating equations

The generalized estimating equations (GEEs) approach begins by assuming in a
marginal generalized linear model for the mean of y as a function of the predictors.
Suppose for instance a logistic regression is hypothesized for the mean of binary data:

logit(Ey]) = X 6.

Under the independence assumption as in [67] of all the elements of y, the ML es-
timating equations for 5 would be,

X'y = X'Ely]. (1.57)

Observe that the above are unbiased estimating equations meaning that the differ-
ence between the right and left hand side is zero, (F(X'y — X’E[y]) = 0). It should
be pointed out that under regularity conditions, solutions to unbiased estimating
equations give consistent estimators [43].

This estimator could be calculated by pretending that all the data were inde-
pendent and conducting a standard logistic regression analysis.

1.2.7 Tests of hypotheses
1.2.7.1 Likelihood ratio tests

As usual the likelihood ratio test for nested models can be performed by compar-
ing —2log A to the appropriate percentile of a chi-square distribution. In the simple
case where we are testing the null hypothesis that a single variance component is
equal to zero, the large sample distribution is a 50/50 mixture of the constant 0 and
a xi distribution. Hence the critical values are given by x7,_,, for an a-level test.

The likelihood ratio test statistic cannot be evaluated analytically since the like-
lihood, in general, cannot, too. On the other hand, It can be calculated only nu-
merically for a given data set.

1.2.7.2 Asymptotic variances

It should be noted that the evaluation of even large-sample variances and stand-
ard errors can be a computational burden. In fact, we must rely on numerical
methods to calculate even the observed Fisher information.

1.2.7.3 Wald tests

For large samples, when construction of the observed or expected information is
possible, Wald test can be formed by utilizing the large-sample normality of estim-
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ators. Thus, we have for an individual parameter:

Bi = Bio
A/ Var s (BZ)

and for a set of linear combinations of the parameters

~ AN(0,1), (1.58)

K'3—K'fy~ AN(0, K'T'K), (1.59)

where I represents the observed (or expected) information.

1.2.7.4 Score tests

Various score tests have also been proposed( [25]; [46]; [58]; [24]) for testing the
presence of a single random effect or multiple random effects. These tests have the
advantage of not requiring the maximum likelihood estimators under the GLMM.
On the other hand they usually have less power than the test based on random
effects models.



CHAPTER 2

Univariate Time Series Analysis

In this chapter univariate time series will be discussed. The main purpose of
times series analysis, is to understand the past and to predict the future. A time
series analysis, quantifies the main features in data and the random variations.
Considering the improvement on computing power, time series methods have been
widely applicable in government, industry, and commerce.

A time series is defined as a set of observation 1, each one being recorded at a
specific time t. In addition, if the set T of times at which observations are made is
a discrete set when observations are made at fixed time intervals, then it is called a
discrete time series. On the other hand, continuous time series are obtained when
observations are recorded continuously over some time interval (e.g., Ty = [0, 1]).

Time series methods are used in everyday operational decisions. For example,
gas suppliers in the United Kingdom have to place orders for gas from the offshore
fields one day ahead of the supply [27]. Then, {y;} is the quantity ordered at time t.
Thus, in the following Sections, some of the most common time series models such as,
AR(p), M A(q), and ARM A(p, q) are presented. At the end of this chapter, periodic
regression models will be discussed, for which the implementation and performance
will be fully examined in Chapter 4 through an experimental study.

2.1 Decomposition of series

2.1.1 Notation

We represent a times series consisting of n values sampled at discrete times
1,2,..,nby{y, : t=1,...n} ={y1,y2,...,yn}- A time series model is a sequence
of random variables and the observed time series is considered as a realization of
the model. We will use the same notation for both, and rely on the context to make
the distinction.

For the sample means of a series of length n the following notation will be used:

_ Zn:1 Y
= == 2.1
y - (2.1)

The ’hat’ notation (), will be used for the representation of a prediction or forecast.
For the series {y; : t = 1,...,n}, a forecast at lead time k is a predicted future
value, and is denoted by Z;4 .
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2.1.2 Models

Many series are mainly dominated by trend and/or seasonal effects. A simple
additive decomposition model is given by

Yy = My + Sp + €, (2.2)

where, at the time t, y; is the observed series, m; is the trend, s; is the seasonal
effect, and ¢, is an error term that generally is a sequence of correlated random
variables with mean zero.

Suppose that the seasonal effect tends to increase as the trend increases, then a
multiplicative model may be more appropriate:

Yp = Mg - St - €4 (2.3)

If the random variable is modeled by a multiplicative function and the variable is
positive, the additive decomposition model given (2.2) can be used for log(y:):

log(y:) = my + s¢ + €. (2.4)

When it comes to the exponential function, some care is required when it is applied
to the predicted mean of log(y;) to obtain a prediction for the mean value y;, as the
effect is usually a biased prediction.

Let us suppose that

e ~ N(0,0?), (2.5)

then the predicted mean value at time ¢ based in (2.4) is given by

Gy = emtstend’ (2.6)

In the case of non-normally distributed and negatively skewed error series, as it
is often the case after taking logarithms, the bias correction function will be an
overcorrection and the implementation of an empirical adjustment is preferable.

2.1.3 Estimating trends and seasonal effects

There are various ways to estimate the trend m; at time . The most relatively
simple procedure, which does not assume any specific form, is to calculate a mov-
ing average centred on y;. Cowpertwait and Metcalfe in [27] describe the moving
average as an average of a specified number of time series values around each value
in the time series, with the exception of the first few and last few terms. Thus,
the length of the moving average is chosen to average out the seasonal effects so
they can be estimated later. In the case of monthly series, assuming that the series
begins at January (¢ = 1) and we average January up to December (¢ = 12), this
average corresponds to a time ¢ = 6.5, between June and July. For the estimation
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of seasonal effects, we need a moving average at integer times. We can achieve so
by averaging the average of January up to December and the average of February
(t = 2) up to January (¢t = 13). This average of two moving averages corresponds to
t = 7, and the process is called centring. Hence the trend at time ¢ can be estimated
by the centred moving average

. SU—6 T Yes + -+ Y1 + Y + Y1 + o+ Yers + 5Yirs
my = : (2.7)
12

where t = 7,...,n — 6. Our goal is to give equal weight to each month with the
coefficients summing up to 1. Thus, the coefficients in (2.7) for each month are 1/12
(or sum to 1/12 in the case of the first and last coefficients). By using the sea-
sonal frequency for the coefficients in the moving average, the procedure generalizes
for any seasonal frequency (e.g., quarterly series), provided the condition that the
coefficients sum to unity still holds.

The estimation of the monthly additive effect (s;) at time ¢ can be obtained by
subtracting my:

§t = Y — T?Lt. (28)

We can obtain a single estimate for each month by averaging these estimates of the
monthly effect of each month.

Let us now consider the case that the time series is a whole number of years. Then
the number of monthly effects averaged for each month is one less than the number
of years of record. In this case, the average value of the twelve monthly additive
components should be close, but not usually exactly equal to, zero. It is usual to
adjust them by subtracting their mean so that they do average to zero. For the
multiplicative monthly effect, the estimation is given by division; e.g., § = i—tt
The adjustment to monthly multiplicative factors is done so that they average to
unity. We can generalize the procedure, by using the same principle, to any seasonal
frequency.

If the seasonal effect is additive, a seasonally adjusted series is given by y; — 5;. On
the other hand, if the seasonal effect is multiplicative, an adjusted series is obtained
from %Z The s; term on both cases of additive and multiplicative seasonal effect,
defines the seasonally adjusted mean for the month corresponding to time t.

2.1.4 Smoothing

Smoothing procedures can use points before and after the time at which the
smoothed estimate is to be calculated. Thus the smoothed series will have some
points missing at the beginning and at the end. An example of smoothing procedure
is the centred moving average presented in Subsection (2.1.3). It is usual, instead of
‘smoothing’ to use the term filtering. Specifically, the term filtering is the process
of obtaining the best estimate of some variable now, given the latest measurement
of it and past measurements. The measurements are subject to random error and
are described as being corrupted by noise. Filtering is an important part of control
algorithms with a variety of applications.
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2.2 Correlation

2.2.1 Expectation and variance

The mean function of a time series model is
u(t) = E(yy), (2.9)

and generally is a function of .

If the mean remains constant over time, u(t) = p Vi, then the time series is
considered to be stationary in the mean. The sample estimate of the population
mean, /i, is the sample mean, ¥:

Z?:l Yt

- (2.10)

g:

The above equation (2.10) relies on an assumption that a sufficiently long time series
characterizes the hypothetical model. Models of this type are known as ergodic. For
more details on ergodic series the reader may refer to [27].

The variance function of a time series model that is stationary in the mean is

o*(t) = E|(y. — n)?]. (2.11)

which takes a different value at every time t. However, it is not possible to estimate
a different variance at each time point from a single time series. Assuming that the
model is stationary in the variance, the constant population variance, o%(t) = o2,

can be estimated from the sample variance:

_ > (Y — 5)2‘

Var(y) 1

(2.12)

It is a common issue sequential observations in a time series analysis to be correlated.
If the correlation is positive, then Var(y) will tend to underestimate the population
variance in a short time series since successive observations tend to be relatively
similar. However, usually this does not present a problem since the biases decrease
sharply as the length n of the series increases.

2.2.2 Autocorrelation

In the study of statistical distributions, the mean and the variance play an im-
portant role since they summarize two key distributional properties, the central
location and the spread. Similarly, in the study of time series models, a key role is
played by second-order properties, which include the mean, variance, and autocor-
relation.

Let us consider a time series model that "weakly stationary”, namely is sta-
tionary in the mean and variance. In addition let us suppose that the variables are
correlated. The model is second-order stationary if the correlation between variables
depends only on the number of time steps separating them. The number of time
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steps between the variables is known as the lag. A correlation of a variable with
itself a different times is known as autocorrelation or serial correlation.
If a time series is second-order stationary, we can define an autocovariance function

(ACVF), v, as a function of the lag k:

W = B[ (g — 1) Wesr — ). (2.13)

Notice that ACV F' does not depend on t because the expectation, is constant, Vt.
The lag k autocorrelation function (ACF), py, is defined by

pr = z’; (2.14)

By definition vy = 0% and thus pg is 1.
The ACV F and ACF can be estimated from a time series by their sample equi-
valents. The sample autocovariance, ¢, is calculated as

= 3 (= ) oers — ) 215

=1
The autocovariance at lag 0, is the sample variance. In addition, a denominator n
is used when calculating ¢, although only n — k terms are used for the estimation.

Adopting this definition constrains all sample autocorrelations to lie between —1
and 1. The sample ACF is defined as

Ck
= —. 2.16
=2 (2.16)

2.3 The correlogram

Correlograms like the one in Figure (2.3) have the following features:

e
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Figure 2.3: Example of Correlogram

e The z-axis gives the lag(k) and the y-axis gives the sample autocorrelation (ry)
at each lag. The unit of lag is the sampling interval, 0.1 second. Correlation
is dimensionless and thus there is no unit for the y-axis.
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o If p. = 0, the sampling distribution of 7, is approximately normal, with a
mean of —% and a variance of % The dotted lines at the correlogram are

drawn at

1.2

n- \n’

with 72” being used as an approximation of zy g5 = 1.96.
In the case that r, falls outside these lines, we have evidence against the null
hypothesis that p, = 0 at the 5% level. However, we should be careful about
interpreting multiple hypothesis test. Firstly, if p, = 0 at all lags k, we expect
5% of the estimates, 7, to fall outside the lines. Secondly, the r; are correlated,
so if one falls outside the lines, the neighbouring ones are more likely to be
statistically significant.

e The lag 0 autocorrelation is always 1 and is shown on the plot. It is included
so that we can compare values of the other autocorrelations relative to the
theoretical maximum of 1. Something like this is considered useful because, if
we have a log time series, small values of r; with no practical consequence may
be statistically significant. However, some understanding is needed to decide
what constitutes a notworthy autocorrelation from a practical perspective. By
squaring the autocorrelation we obtain the percentage of variability explained
by a linear relationship between the variables. For example, a lag 1 autocorrel-
ation of 0.1 implies that a linear dependence of 3; on y;_; would only explain
1% of the variability of y;. Usually we treat a statistically significant result as
important when it has almost no practical consequence.

The correlogram provides graphically an idea about the stationarity of a time
series. Specifically:

o [f the spikes on the correlogram have a slow decrease from lag 1 then the time
series is considered non-stationary.

o [f the spikes on the correlogram have a fast decrease from lag 1 then the time
series is considered stationary.

2.4 White noise

2.4.1 Definition

A time series {¢; : t = 1,2, ...,n} is discrete white noise if the variables €1, €, ..., €,
are independent and identically distributed with mean equal to zero. This implies
that all the variables have the same variance o and Cor(e;,¢;) = 0 for all i # j. In

case of normality (i.e., ¢ ~ N(0,0?)), the series is called Gaussian white noise, in
which case ¢ ~ WN(0,0?).
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2.5 Random walks

2.5.1 Definition

Let {y:} be a time series. Then {y;} is a random walk if

yt = yt—l + €¢, (217)

where {¢ } is a white noise series. By substituting y;—; = y;—2+€¢;,-1 in Eq.(2.17) and
then for y;_», followed by 1,3 and so on (a process known as ”back substitution”)
we get:

Yy = €t+€t—1 +€t_2+"' . (218)

In practice the series above will not be infinite but will start at some time t = 1.
Hence,

=€ttt (2.19)

2.5.2 The backward shift operator

We define the backward shift operator (also known as lag operator) as

By = y1-1. (2.20)

By repeatedly applying B, it follows that

Bnyt = Yt—n. (221)

Using B, we can rewrite Eq.(2.17) as

Yy =Byt = (1-B)yy=¢ =y, = (1 _B)_let

:>yt:<1+B+B2+"')€t:>yt:€t+€t71+€t72+"'-

2.5.3 Random walk: Second-order properties

The second-order properties of a random walk follow as

w=0
(2.22)

Y (t) = Cov(ys, Yrrk) = to?

The first part of (2.22) is obvious since by (2.19) {y;} is a finite sum of white noise
terms. As for the autocovariance in Eq.(2.22) it can be written as follows:
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t itk
v (t) = Cov (yt, yt+k> = Cov(Zei, Zq) = ZC’OU(Q, €;) = to’.
=1 j=1 i=j
Since the covariance is a function of time, the process is non-stationary. The variance
is to? and thus it increases without limit as ¢ increases. It follows that a random
walk is only suitable for short term predictions.
Using Eq.(2.22) we define the time-varying autocorrelation function for k£ > 0 as

2

pult) = Cov(Ys, Yevk) _ to _ 1
\/Var(yt)Var(yt+k) \/tag(t + k)o? \/1 I %

Notice that for large ¢t with k£ considerably less than ¢, pj is close to 1. Hence, the
correlogram for a random walk is characterized by positive correlations that decay
very slowly down from unity.

(2.23)

2.5.4 The difference operator

We can transform a non-stationary series to a stationary, by differencing its ad-
jacent terms. For example, if the series {y;} is a random walk, it is non-stationary.
However, from Eq.(2.17), the first-order differences of {y;} produce the stationary
white noise series {¢;} given by {y; — y;—1 = &}. Thus, differencing has been proved
to be a useful "filtering” procedure in the study of non-stationary time series. The
difference operator V is defined by

VY =y — Y1 = (1 — By, (2.24)

Higher-order differencing can be expressed as (see [27])

v" = (1— B)". (2.25)

2.6 Autoregressive models (AR)

2.6.1 Definition

The series {y;} is an autoregressive process of order p, abbreviated by AR(p) if

Yo = Q1Yi—1 T QYo + -+ QpYi—p + €, (2.26)

where ¢, is white noise and ay, ..., o, are the model parameters, with o, # 0 for an
order p process. AR(p) can be expressed as a polynomial of order p in terms of the
backward shift operator:

0,(B)y; = (1 —a1B — ayB* — -+ — a, B?)y, = €. (2.27)

2.6.2 Stationary and non-stationary AR processes

The equation 6,(B) = 0 where B is formally treated as a number (real or com-
plex), is called the characteristic equation. The roots of the characteristic equation
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must all exceed unity in absolute value for the process to be stationary.
Using B, a stable AR(1) process (|a] < 1) can be written as
(1 —aB)y = &
= Yy = (1 - O[B>_1€t
= tag 1 +a ot = Zaiet_i. (2.28)
Hence, the mean is given by
p=E(y) = E(Zaiet—z) 204 (€1—;) = 0.
i=0
As for the autocovariance, it is given by
Ve = Cov(yy, Yeyr) = Cov ( Z Oéi€t—i, Z Oéj€t+k—j>
=0 =0
= Z &iajCOU(et,i,er,j)
j=k+i
k
= afo Z a’ = a2)
By (2.14), the autocorrelation function is given by
pr =a* (k>0), (2.29)

where |a| < 1. Thus, the correlogram decays to zero more rapidly for small a.
The following two examples describe the procedure for determining whether an

AR process is stationary or non-stationary:

1. The AR(1) model y; = %yt_l + ¢; is stationary because the root of 1 — %B =0

is B = 2, which is greater than 1.

2. The model y;, = %yt_1 + 2yt 2 + € is non-stationary because one of the roots
is unity. Indeed, since —3(B* + B —2)y, = —1(B — 1)(B + 2)y; = ¢, the
polynomial §(B) = —f(B 1)(B + 2) has roots B = 1,—2. Since there is

2
one unit root, the model is non-stationary.
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2.6.3 Partial autocorrelation

Although the underlying model y; only depends on the previous value y;_1, the
autocorrelations are non-zero for all lags. The partial autocorrelation at lag k is
the correlation that results after removing the effect of any correlations due to the
terms at shorter lags. For example, suppose an AR(1) process, then the partial
autocorrelation of AR(1) will be zero for all lags greater than 1. Generally, the
partial autocorrelation at lag k is the k™ coefficient of a fitted AR(k) model. In
case of an AR(p) process, the coefficients a; will be zero for all k¥ > p. Thus, an
AR(p) process has a correlogram of partial autocorrelations that is zero after lag p.
As seen from above, a plot of the estimated partial autocorrelations can be useful
when determining the order of a suitable AR process for a time series.

2.7 Moving average models (MA)

2.7.1 MA(q) process: Definition and properties

A moving average (MA) process of order ¢ is a linear combination of the cur-
rent white noise term and the ¢ most recent past white noise terms and is defined by

Ye=¢€+ 51+ €1+ + Beerg, (2.30)

where ¢, %" WN(0,02). We can rewrite Eq.(2.30) in terms of the backward shift
operator B as

Yy = (1+ 1B+ 5o B> + -+ + 3,BY)e; = ¢,(B)ey, (2.31)

where ¢, is a polynomial of order ¢q. Because M A processes consist of a finite sum
of stationary white noise terms, they are stationary and hence have a time-variant
mean and autocovariance.

For the derivation of the mean and variance of {y;}, the mean is zero, since is is
a sum of terms that all have a mean of zero, and the variance is o, (1+ 7 +- - -+ 37)
because each of the white noise terms has the same variance and the terms are mu-
tually independent.
The autocorrelation function, for k£ > 0, is given by

1, k=0
9=k 5 5
o= Bl po1 g (2.32)
i=0""1
0, k>gq

where fy is unity.
An M A process is invertible if it can be expressed as a stationary autoregress-
ive process of infinite order without an error term. For example, the M A process
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Yy = (1 — BB)¢;, can be expressed as

e=1=BB) 'y =y + By + Bpa+ -, (2.33)

provided that |3] < 1, which is required for convergence.

2.8 Mixed models: The ARMA process

2.8.1 Definition

In Sec.(2.6) and Sec.(2.7) AR and M A processes, respectively, were discussed.
A useful class of models are obtained when AR and M A terms are added together
in a single expression.

A time series {y;} follows an autoregressive moving average (ARM A) process of
order (p,q), denoted ARMA(p, ¢), when

Y= 11+ lo+ -+ Yy + €+ Brem1 + Pogr_o + -+ Beer—g,  (2.34)

where {¢} is white noise. Once again, we can express Eq.(2.34) in terms of the
backward shift operator as

0p(B)y = ¢q(B)er. (2.35)

After defining the ARM A(p, q) process, the following points should be noted:
a. The process is stationary when the roots of 8 all exceed unity in absolute value.
b. The process is invertible when the roots of ¢ all exceed unity in absolute value.
c. The AR(p) model is the special case of ARM A(p, q), with ¢ = 0.
d. The M A(q) model is the special case of ARM A(p, q), with p = 0.

e. Parameter parsimony. When fitting to data, an ARM A model will often be
more parameter efficient (i.e., require fewer parameters) than a single M A or
AR model.

f. Parameter redundancy. When 6 and ¢ share a common factor, a stationary
model can be simplified.

2.8.2 Second-order properties of an ARMA model

First we express the {y;} in terms of white noise components {¢;} because white
noise terms are independent. Below, we illustrate the procedure for the ARM A(1, 1)
model which is defined by

Yo = ayr—1 + & + Per, (2.36)
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where ¢, "X WN(0,02). In order to express {y;} in terms of white noise compon-
ents, we rearrange Eq.(2.36) as,

y=(1— aB)_l(l + B)e;.

Expanding the right-hand side,

y, = (1+aB+ao*B*+---)(1+ B)g
— (iaiBZ)(l + BB)e;
i=0

= (1 + Z ot Bt Z aiﬁBiH) €t

=0 i=0

o0

=6+ (a+5)> o e (2.37)
=1

With the equation in the form above, the second-order properties follow:

a.
p=Ey)=0
b.
Var(y,) = o2 + o2 (a+ B8)*(1 — a?) ™! (2.38)
c.
Vi = Cov(yy, yesr) = (a+B)a" o2 +(a+p)02a*(1-a*)™", k>0 (2.39)
d.

_ e _ Cov(Ys, Yes) _ o a+p)(1+ap) (2.40)
Yo Var(y) 1+ af + 52 '
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2.8.3 Non-seasonal ARIMA models
2.8.3.1 Integrated model

A series {y,} is integrated of order d, denoted as I(d), if the d"" difference of {1}
is a white noise {¢}; i.e., V¥y; = €. Since V¢ = (1 — B)¢, where B is the backward
shift operator, a series {y;} is integrated of order d if

(1-B)%;, = «. (2.41)

Note that the random walk presented in Sec.(2.5), is a special case of I(1).

2.8.3.2 Definition

A time series {y;} follows an ARIMA(p, d, q) process if the d" difference of the
{y:} series is an ARM A(p, q) process. If y, = (1 — B)%,, then 6,(B)y; = ¢,(B)e;.
To obtain the more concise form for an ARIM A(p,d, q) process, we can substitute
for y; and thus

0,(B)(1 — B)%y; = ¢4(B)ey, (2.42)

where 6, and ¢, are polynomials of orders p and g, respectively. Some examples of

ARIM A models are:

1. ARIMA(1,1,1) : y = ayi—1 + yi—1 + & + Pe1, where o, 3 are model
parameters.

2. ARIMA(0,1,2) : y, = y41 + & + fr&—1 + P264_o, where (1, B2 are model
parameters.

For a more extensive presentation of ARIM A processes, see [27].

2.8.4 Seasonal ARIMA models
2.8.4.1 Definition

A seasonal ARIM A model, ((S)ARIM A), uses differencing at a lag D equal to
the number of seasons (s) to remove additive seasonal effects. The seasonal compon-
ent of the (S)ARIM A model consists of autoregressive and moving average terms
at lag m. In terms of the backward shift operator, (S)ARIM A(p,d,q)(P,D,Q)m
can be expressed as

Op(B™)0,(B)(1— B™)”(1 = B')y, = ®o(B™)¢y(B)er, (2.43)

where ©p,0,, P, ¢, are polynomials of orders P,p,Q and g, respectively. If D =
d = 0 and the roots of the characteristic equation (left-hand side of Eq.(2.43)) all
exceed unity in absolute value, the resulting model would be stationary. In general,
except the case mentioned above, the model is non-stationary. Some examples of

(S)ARIM A models are:
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1. (S)YARIM A(0,0,0)(1,0,0)12 : y; = ay;_12 + €, where « is model para-
meter. Such a model would be suitable for monthly data when only the value
in the month of the previous year influences the current monthly value. The
model is stationary when |o|12 > 1.

2. (S)YARIMA(0,1,0)(0,1,1)4: ¥t = QY1 + Yt—a + € + Py, where o, 3
are model parameters. The model presented in this example, is appropriate if
the seasonal terms contain a stochastic trend.

Differencing at lag m will remove linear trend. Thus, there is a choice whether
or not to include lag 1 differencing. If we include lag 1 differencing, when a linear
trend is appropriate, it will introduce moving average terms into white noise series.
For a more extensive presentation of (S)ARIM A process, once again, we refer to
27].

2.9 Periodic Models

Consider a univariate time series y;, which is observed quarterly for N years,
that is, t = 1,2, ...,n. We assume, without loss of generality, that n = 4N.

2.9.1 Periodic autoregressive models (PAR)
A periodic autoregressive model of order p, (PAR(p)), is defined as

Yt = m + A1(m)Yt—1 +e 4t Ap(m)Yt—p + €, (244)

where p,, is a seasonally-varying intercept term. The ay(p), ..., apum) are autore-
gressive parameters up to order p(m) which may vary with the season m, where
m = 1,2,3,4. In addition, we assume that ¢ W N (0,0%). This assumption
may be relaxed by allowing ¢; to have seasonal variance o2, but this will shall not
be discussed further in this work. Since some of ), i = 1,...,p, can take zero
values, the order p in Eq.(2.44) is the maximum of all p(m), where p(m) denotes the
AR order per season m. Hence, we may also consider the so-called subset periodic
autoregressions, which are investigated in [36].

For a more detailed discussion on PAR models, see [27].

2.9.2 Periodic moving average models (PMA)

Periodic moving average processes are representatives of the class of periodic
models suitable for the description of some seasonal time series and for the con-
struction of multivariate moving average models.

A periodic moving average model of order q, (PM A(q)), for y; can be written as

Yt = Mm + € + ﬁl(m)etfl + e+ Bq(m)etfqu (245)

where (i, is a seasonally-varying intercept term and e, W N (0,02). The Bigm), ---, Bym)
are moving average parameters up to order ¢(m) which may vary with the season
m, where m = 1,2, 3,4. For a theoretical analysis of PM A(q), see [23]
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2.9.3 Periodic autoregressive moving average models (PARMA)

As discussed in [101], many seasonal time series cannot be filtered or standardized
to achieve second-order stationarity. This happens because the correlation structure
of the series depends on the season. For example, consider a river where high
runoff periods occur in the spring and low flows coupled with irrigation diversions
occur in the summer. The stream-flow correlations between spring months may be
different from the correlations between summer months. In such situations, a useful
class of models is that of periodic autoregressive moving average (PARM A) models
( [48]; [80]; [99]; [97]), which are extensions of commonly used ARM A models to
allow parameters that depend on season.

A periodic autoregressive moving average model of order p, ¢, denoted PARM A(p, q),
for y; can be written as

Yt = fm + A1 (m)Yt—1 +- Ap(m)Yt—p + €&+ Bl(m)et—l +- Bq(m)et—qa (246)

where p,, is a seasonally-varying intercept term and ¢, W N (0,02). The a1(m), s Wp(m)
and S1(m), ..., Bq(m) are autoregressive and moving average parameters, respectively,

up to order p(m) and g(m), which may vary with the season m, where m = 1,2, 3, 4.
For a theoretical analysis of PARM A(p, q), see [101].
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CHAPTER 3

Model Selection Criteria

In this chapter, model selection criteria will be presented. Model selection cri-
teria is an important part of any statistical analysis, and plays central role in the
pursuit of the ideal underlying mechanism of the phenomenon under investigation.
In 1951, Kullback and Leibler developed a measure to capture the information that
is lost when approximating reality; that is, the Kullback and Leibler measure is a cri-
terion for a good model that minimizes the loss of information. Twenty years later,
Akaike established a relationship between Kullback-Leibler measure and maximum
likelihood estimation method (AIC). Based on Kullback-Leibler information, several
criteria have been developed. The criteria mentioned in this chapter are the most
common ones when it comes to model selection. Kullback-Leibler Information (K-L),
Akaike Information Criterion (AIC), Bayes Information Criterion (BIC), Modified
Divergence Information Criterion (MDIC), and Coefficient of Determination (R?)
for GLMMs, will be discussed in the following sections.

3.1 Kullback-Leibler Information

3.1.1 Definition and properties

Let x,, = {z1, x9, ..., x, } be a set of n independent observations from an unknown
probability distribution function G(z). Below we refer to the probability distribu-
tion function G(x) that generates data as the true model or the true distribution.
On the other hand, let F'(x) be an arbitrarily specified model. If the probability
distribution functions G(z) and F(x) have density functions g(z) and f(x) respect-
ively, then they are called continuous models (or continuous distribution models).
Their expression as probabilities of events, given a set or a countably infinite set of
discrete points {x1, za, ..., Tk, ...}, is as follows

gi = g(z;) = Pr({w; X(w)=1z;}),

fi=f(x;) = Pr({w; X(w)=2a;}), i=1,2, .., (3.1)

and thus these models are called discrete models (discrete distribution models).

We assume that the goodness of the model f(x) is assessed in terms of the
closeness as a probability distribution to the true distribution g(z). Akaike in [5],
proposed as a measure of this closeness the use of the following Kullback-Leibler
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information (K-L):

I(g; f) = Ea[bg{m}], (3.2)

where F¢ represents the expectation with respect to the probability distribution G.
In case of continuous models with densities g(x) and f(z), the K-L information
can be expressed as

Hoir) = [ g {j’%}gmdm (33)

Correspondingly, for discrete models with probabilities given by {g(x;); i = 1,2, ...}
and {f(z;); i =1,2,...}, the K-L information can be written as

£) =3 gl los {jig)) } (3.0

By unifying the continuous and discrete models, we can express the K-L information

as follows:
Ig: /) = /log{ i}dG()

[t log {%}g(m)dm, for a continuous model.

ooy g(z;) 10g{ E‘r% }, for a discrete model.

3.1.2 Properties of K-L information

The K-L information has the following properties:
1. I(g;f) = 0

2. 1(g; f) = 0,<= g(x) = f(2).

In view of these properties, we consider that the smaller the quantity of K-L
information, the closer the model f(x) is to g(z).

For the proof of the above the interested reader may refer to [51].

3.1.3 Maeasures of similarity between distributions

The following quantities have been proposed in addition to K-L information:

’(g: f) = Z‘(}? —1= Z M, (x?) -statistics, ( [82]),

Ix(g; f) :/{ f(z) — g(:v)}zdx, Hellinger distance, ( [42]; [65]),
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Dlas 1) = o4 o). ute) = (1= VP, Divergence, (1303 8.
Lilg: f) = [ lg(x) = f@)dz,  L'norm,

Lilg: f) = [{o(e) = f(@)Ydz,  L*nom,

In the case of D(g; f), letting u(z) = logz produces K-L information I(g; f).
Similarly, letting u(z) = A7*(z* — 1) reduces to the generalized information I)(g; f).
Note that when A\ — 0, I)(g; f) — 1(g; f).

In the following section, we will extend the above concept to parametric models
involving a p-dimensional parameter 6.

3.2 Information Criterion AIC

3.2.1 Log-Likelihood and Expected Log-Likelihood

When we build a model using data, we assume that the data «,, = {x1, s, ..., 2, }
are generated according to the true distribution G(z) or g(z). In order to cap-
ture the structure of the given phenomena, let us assume a parametric model
{f(z|0); 6 € ©® C RP} having a p-dimensional parameter 6, to be estimated via
maximum likelihood. Our intention is the construction of a statistical model f(x|@)
by replacing the unknown parameter 8 by the maximum likelihood estimator 6. Our
purpose is the evaluation of the goodness or badness of the statistical model f (x\@)
that constructed. We now consider the evaluation of a model from the standpoint
of making a prediction. Our task is to evaluate the expected goodness or badness of
the estimated model f(z|0) when it is used to predict the independent future data
Z = z generated from the unknown true distribution ¢g(z). Below we describe the
K-L information in order to measure the closeness of the two distributions:

I{G(z f(210))} = EGllog{fg((ZZyg) H

= Eg|log g(2)| — Ec|log £(216)), (3.6)

where the expectation is taken with respect to the unknown probability distribution
G(z) by fixing 6 = 0(x,,).
In view of the properties of the K-L information, the larger the expected log-
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likelihood

B |log £(716)] /logf 210)dG (=), (3.7)

of the model is, the closer the model is to the true one. Therefore, it is crucial in
order to define the information criterion to obtain a good estimator of the expected
log-likelihood. One such estimator, which is unbiased, is

B |log £(Z16)] /logf 210)dG(2)

= Llog flaiff) (33

in which the unknown probability distribution G contained in the expected log-
likelihood is replaced with an empirical distribution function G. This is the log-
likelihood of the statistical model f(z]|@) or the maximum log-likelihood

0) = log [(x8). (3.9)

At this point it is worth mentioning that the estimator of the expected log-likelihood
Egllog f(Z]0)] is n='1(0) and that the log-likelihood () is an estimator of
nkg(log f(Z]0)].

3.2.2 Necessity of Bias Correction for the Log-Likelihood

Usually it is difficult to precisely capture the true structure of given phenomena
from a limited number of observed data. Hence, we construct various candidate
statistical models based on the observed data at hand and select the model that
most closely approximates the mechanism of the occurrence of the phenomenon un-
der consideration [51] In this subsection we consider the situation in which multiple
models {f;(2|6,); j = 1,2,...,m} exist, and the maximum likelihood estimator ;
has been obtained for the parameter 0, of the model.
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Stochastic structure
generating data

Estimation Estimation

Estimated expected
—————— log-likelihood

Eyllog f(Z]0)]

Estimated model

f(z10)

Figure 3.2.2: Use of data in the estimations of the parameter of a model and of
the expected log-likelihood.

It appears that the goodness of the model specified by 9]-, that is, the goodness
of the maximum likelihood model f;(2]|8;), can be determined by comparing the

A

magnitudes of the maximum log-likelihood 1;(6;). However with this approach the
comparison of the models it is not fair, since the quantity lj(éj), as an estimator
of the expected log-likelihood nEg[log f(Z |9)], contains a bias associated with the
dimension of the parameter vector.

This is a result that may come in contrast to the fact that generally [(0) is a good
estimator of nEg[log f(Z|0)]. However, as is evident from the process by which the
log-likelihood in (3.8) was derived, the log-likelihood was obtained by estimating the
expected log-likelihood by reusing the data x, that were initially used to estimate
the model in place of the future data (Figure 3.2.2). If we make use of the same
data twice for estimating the parameters and for estimating the evaluation measure
(the expected log-likelihood) of the goodness of the fit estimated model, the bias
will rise.

3.2.3 Relationship between log-likelihood and expected log-
likelihood

The figure below (Figure 3.2.3) describes the relationship between the expected
log-likelihood function and the log-likelihood function f(x|¢) with one-dimensional
parameter 6.
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log f(x,|0)

n Egllog f(Z )]

- 0

é(xn) 90

Figure 3.2.3: Log-likelihood and expected log-likelihood.
nn(0) = nEgllog f(Z0)], 1(0) =) _log f(x:|0). (3.10)
i=1

The value of # that maximizes the expected log-likelihood is the true parameter 6.
On the other hand, the maximum likelihood estimator é(a:n) is given as the maxim-
izer of the log-likelihood function 1(6). The goodness of the model f(z|0) defined by
0(x,,) should be evaluated in terms of the expected log-likelihood Eg[log f(Z]0)].
Therefore, the evaluation derives from using the log-likelihood I(f) that can be
calculated from the data. In such a case, as indicated in Figure 3.2.3, the true
criterion should give Eg[log f(Z|0)] < Egllog f(Z]6)] (see [51]). However, in the
log-likelihood, the relationship 1(0) < I(6,) always holds.

The log-likelihood function fluctuates depending on data, and the geometry
between the two functions also varies; however, the above two inequalities always
hold. In case the two functions have the same form, the log-likelihood is actually
interior to the extent that it appears to be better than the true model. The objective
of the bias evaluation is to compensate for this phenomenon of reversal. Therefore,
the prerequisite for a fair comparison of models in evaluations of and correction for
the bias.

Let us assume that n observations x,, generated from the true distribution G(z)
or g(z) are realizations of the random variable X,, = (X1, Xo, ..., X;,)?, and let

18) = 3 log (218(a2)) = log [ |0(,), (3.11)

represent the log-likelihood of the statistical model f(z|@) estimated by the max-
imum likelihood method. The bias of the log-likelihood as an estimator of the
expected log-likelihood given in 3.7 is defined by

b(G) = EG’(wn) log f(Xn|é(XN)) - nEG(Z) [log f(Z‘é(Xn))”? (3'12)

where the expectation EG(%) is taken with respect to the joint distribution IT,_; G(z;) =
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G(xy), of the sample X ,,, and Eg.) is the expectation on the true distribution G(z).
Hence, we can construct the general form of the information criterion (IC) by eval-
uating the bias and correcting for the bias of the log-likelihood as follows:

IC(X,; Q) = —2(log-likelihood of the statistical model — bias estimator)

=—2) log F(X;]0) + 2{estimator for b(G)}. (3.13)
i=1
Depending on the relationship between the true distribution generating the data
and the specified model and on the method employed to construct a statistical
model, the bias b(G) can take various forms.

3.2.4 Derivation of Bias of the Log-Likelihood

The maximum likelihood estimator 8 is given as the p-dimensional parameter 6
that maximizes the log-likelihood function [(0) = >, log f(X;|@) or by solving the
likelihood equation

ole) &

%)
<0 ; 5g 08 f(Xil6) = 0. (3.14)

By taking the expectation, we obtain

Eg(an) [Z log f(X;10)] = nEGZ)[a

5g 108 1(210)]. (3.15)

For a continuous model, if 8 is a solution of the equation

oL log f (216)] /g g loe f(=10)dz = 0, (3.16)

2190

log f(x,|0)

n Eg[log f(Z]0)]

é(xn ) 6

Figure 3.2.4: Decomposition of the bias term.
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it can be shown that the maximum likelihood estimator 6 converges in probability
to 8 when n — +00.
For a discrete model see [51].

We can now evaluate the bias based on the above results:

o8 (X, IB(X,)) = nf [l S(Z10CX,0)] | 317

when the expected log-likelihood is estimated using the log-likelihood of the statist-
ical model. To this end, we first decompose the bias as follows (Figure 3.2.4):

b(G) = Ega,) [log F(Xal8(X ) = nEg(:)| log f<Z|é<Xn>>ﬂ

~ B, [mg F(XalB(X,) — log £(X.]60)

+Ec(z,) | 10g f(Xn|00) — nEg() [108; f(Z\Oo): (3.18)

—_

Bata |1y 108 1(2160)] = 1o 10 5(2100X,)]|

= Dy + Dy + Ds.

We now calculate separately the three expectations Dy, Dy, and Ds.

1. Calculation of D,

The simplest case is the evaluation of D, because it does not contain an estim-
ator. It can be seen that

Dy = Eg(a,) llog F(Xn|65) = nEos) | log f(Z|00)H

Dy = Eq(a,)

z”: log f(Xi|90)1 —nkg [log f(Z|00)}

= 0. (3.19)

This means that in Fig.(3.2.4), although D, varies randomly depending on the data,
its expectation becomes 0.
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2. Calculation of Dj;

First, we write
n(6) = Eo() | log £(Z10)]. (3.20)

By performing a Taylor series expansion of 7(8) around 6, given a solution to (3.16),

we obtain
A L on(0
00) = n(00) + 30— 010)) P10 (3.21)
=1 7
13 hH ) 8277(00)
- _p( _ o
9 Z:ZU;(QZ 0 0)2)( J O)]) (992-(9] + ,

where 8 = (0,,0,,..0,)T and 6, = (6”065, O)T. Due to the fact that 0 is
a solution of (3.16), it holds that

In(6o) 9 .
=D, —1 Z|0 = =12, ...,p 22
891 G(2) [891 og f( | ) 6_g(;| 07 ? y 4y ey D (3 )
Hence, (3.21) can be approximated as
A 1 . N
1(6) = n(6o) — 5(9 —60)"7(80)(8 — 69), (3.23)

where J(6) is the p X p matrix given by

0*log f(Z10) 0*log f(Z]0)
— _F = — 24
J(0) G(z)[ 20007 oo /g(z) 20007 gzgodz, (3.24)
such that the a and the b™ elements are given by
. 9 log f(Z10) d9?log f(Z10)
= —Fo|—————= =— _ dz. 2
Jab = R >[ 90,00, oy J o2 56,00, |,y B

Since Ds is the expectation of 1(8,) —1(8) with respect to G(a,,) we obtain approx-
imately

D3 = Eg(a,) [nEG(z) [108; f(Z|90)} —nEg) [108; f(Zfé)H

A

= 2 Eotan (6 00)77(80)(6 - 60)

N}

= B [tr{ T(60)(8 — 00)(6 — 6,)"}] (3.26)
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_ Ztr{J (80) B | (6~ 00)(6 — 60)' }

By substituting the (asymptotic) variance covariance matrix

A A

Foe[(8 — 00)(6 — 65)7] = *7(80)1(680)J(80) 1, (3.27)

of the maximum likelihood estimator 8 into (3.26), we have

Dy = Ltr{I(6:).1(60) '}, (3.28)

where J(60y) is given in (3.24) and 1(6,) is the p x p matrix given by

dlog f(Z|6) Dlog f(Z|0
I(%):Ea@)[ Ogg(g %) Ogaj;gr | )]
B dlog f(Z|0) Dlog £(Z10)
__/m@ o o7 eﬂfl (3.29)

3. Calculation of D,

If we write 1(0) = log f(X,|0) and apply a Taylor series expansion around the

A

maximum likelihood estimator 8, we obtain

1) = 1(0) + (0 — é)Tag(g) £~ é)TgegZ; O—0)+--- (3.30)

The quantity 0 satisfies the equation %g) = 0 by advantage of the maximum likeli-
hood estimator given as a solution of the likelihood equation % =0.

The quantity below converges in probability to J(6) in (3.24) when n — +o0.

1 82(0) 182log f(X,]0)
- == 7 . (3.31)
n 0000 n 0000

This can be derived from the fact that the maximum likelihood estimator 8 con-

verges to 8y and from:

10%(0,) 1. 8
- S log f(2:|0 J(85),
n8980T n;agaeT ng(:B| )00—> ( 0)

where 0 is the value of the derivative at 8 = 6,

0
Using the results above we can obtain the following approximation for (3.30):

1(80) — 1(8) = == (60— 8)" (8,) (80 — ). (3.32)
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Based on (3.32) and the asymptotic variance covariance matrix (3.27) of the max-
imum likelihood estimator, D; can be calculated approximately as follows:

Dy = Ege,)| log f(Xal8(X 1)) — log f(X|6))]

= B[00~ 0)70,) (0, - 9]

- g Ecan|tr{1(80)(80 — 8)(8, — §)}] (3.33)

_ Ztr{J (80) Ecia,y (6 — 60)(6 — HO)T}}

= Ltr{1(00)7(00) '}

Thus, combining (3.19), (3.28), and (3.33), the bias resulting from the estimation
of the expected log-lkelihood using the log-likelihood of the model is asymptotically
obtained as

b(G) = Dy + Dy + D5
= ;tr{I(GO)J(OO)_l} +0+ ;tr{](eo)J(eo)‘l} (3.34)

1
— Lr{1(60)7(60)7)
where I(60y) and J(6,) are respectively given in (3.29) and (3.24).

3.2.5 Akaike Information Criterion (AIC)

The Akaike Information Criterion is one of the most useful criteria. It has played
a significant role on solving problems in a wide variety of fields as a model selection
criterion for analyzing actual data.

The AIC(p) is defined by

AIC(p) = —2(maximum log-likelihood) + 2(p), (3.35)

where p refers to the dimension of the parameter vector @ contained in the specified

model f(z]0).
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The AIC is an evaluation criterion for the badness of the model. We can estimate
its parameters by the maximum likelihood method and it indicates that the bias of
the log-likelihood approximately becomes the "number of free parameters contained
in the model”. The bias can be derived under the assumption that the true distribu-
tion g(z) is included in the specified parametric model { f(z]|0) 8 € © C RP}, there
exists a By € O such that the equality g(z) = f(z|6,) holds.

At this point we also assume that the parametric model is { f(z|0) @ € © C RF}
and that the true distribution g(z) can be expressed as g(x) = f(x|80,) for properly
specified 8y € ©. Hence the equality 1(8y) = J(6y) holds for the p x p matrix J(6y)
and the p x p matrix 1(6) given in 3.24 and 3.29 respectively. Therefore the bias
of the log-likelihood is asymptotically given by

Eox,y = | > log F(X,10) - nEgq(z) log £(216)

— 1r{1(00)J(80)"} = tr(1,) = p, (3.36)

where I, is the identity matrix of dimension p. Thus, the AIC is given by

AIC(p) = _zfjlog F(X:]0) + 2p, (3.37)

=1

which is the corrected asymptotic bias p of the log-likelihood.

The AIC does not require any analytical derivation of the bias correction terms
for individual problems and does not depend on the unknown probability distri-
bution G, which removes variations due to the estimation of the bias. Moreover,
Akaike in [5] states that if the true distribution that generated the data exists near
the specified parametric model, the bias associated with the log-likelihood of the
model based on the maximum likelihood method can be approximated by the num-
ber of parameters. These aspects make the AIC a very flexible technique from a
practical point of view and explain is great popularity across scientific disciplines.

Findley and Wei in [34], provided a derivation of AIC and its asymptotic prop-
erties for the case of vector time series regression model (see also [35], [13]). For
more details see [59], [87], [16], [50], [2], [68], [52] and [53].

3.3 Information Criterion BIC

3.3.1 Bayesian Model Evaluation Criterion

3.3.1.1 Definition of BIC

The Bayesian or Schwartz’s information criterion proposed by Schwarz in [89],
is an evaluation criterion for models in terms of their posterior probability (see [6]).
Let My, M,, ..., M, be r candidate models, and assume that each model M; is
characterized by a parametric distribution f;(x|6;) (8; € ©; C R*) and the prior
distribution 7;(8;) of the k;-dimensional parameter vector 8;. Suppose that n obser-
vations &, = {x1, T, ..., T, } are given. Then the marginal distribution or probability
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of @, for the i model M;, is given by
pi(xn) = /fi(mn|0i)7ri(9i)d9i; (3.38)

which represents the the marginal likelihood of the data.
Based on Bayes’ theorem, if P(M;) is the prior probability of the i"™ model, then
the corresponding posterior probability of the ™ model is given by

pi(x,) P(M;)
Y1 pj(@n) P(Mj) ’

P(Mj|z,) = = 1,2, ...r (3.39)

The above probability represents the probability of the data being generated from
the " model when data are observed. Hence, if a model is to be selected from
the class of r models, that will be the one with the largest posterior probability.
Since all models share the same denominator in (3.39), the model that maximizes
the numerator p;(x,)P(M;) must be selected.

In addition, if we assume that the prior probabilities P(M;) are equal in all
models, it follows that the model that maximizes the marginal likelihood p(z,) of
the data must be selected.

The BIC is defined as

—2log ps(x,) = —2log { /fz(mn|02)ﬂ-l(91)d0%}

~ —2log f;(x,]0;) + ki logn, (3.40)

where éz is the maximum likelihood estimator of the k;-dimensional parameter vector
0, of the model f;(z]6;).

Consequently, from the class of r models that are to be evaluated using the maximum
likelihood method, the one that minimizes the value of BIC can be selected as the
optimal for the data.

3.3.1.2 Bayes factors

Consider for comparative purposes, models M; and M,. When the data produce
the posterior probabilities the posterior odds in favor of M; against M, are

P(M|x,)  pi(x,)P(M;)

P(Ms|x,) B pa(x,) P(My) (3.41)

Then the ratio

p1(xn) _ J fi(2,]01)71(0:)d0,
po(xn) [ fo(2n]02)m2(02)d0;

(3.42)

is defined as the Bayes factor.
Model comparisons based on the AIC are asymptotically equivalent to those
based on Bayes factors, [4]. Moreover, Kass and Raftery in [49], commented that
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from a Bayes point of view this is true only if the precision of the prior is comparable
to that of the likelihood, but not in the more usual situation where prior information
is limited relative to the information provided by the data.

For more details on Bayes factors the reader may refer to [49], [77], and [12].

3.3.2 Derivation of the BIC

Let us represent the marginal likelihood of (3.38) as
pl@,) = [ f(@.|6)r(6)db, (3.43)

where 0 is a p-dimensional parameter vector. Therefore, (3.43) can be rewritten as

plwn) = [ epllog f(w.16)}m(0)d6 =

pla,) = / exp{l(0)}7(8)d0, (3.44)
where [(0) is the log-likelihood function (0) = log f(x,|0).

3.3.3 Bayesian information criterion (BIC)

Let f(x,|0) be a statistical model estimated by the maximum likelihood method.
The Bayesian Information Criterion is given by

BIC = —2log f(x,|0) + plogn. (3.45)

The BIC is an evaluation criterion for models estimated by using the maximum like-
lihood method and that the criterion is obtained under the condition that the sample
size n is made large enough. The quantity in (3.45) was obtained by approximating
the marginal likelihood associated with the posterior probability of the model by
Laplace’s method for integrals. For a more detailed discussion on Laplace’s method
for integrals see [51].

3.4 Information Criterion MDIC

The criteria discussed in the previous three sections are the most popular ones
which are based on the log-likelihood function. An alternative class of criteria is
based on measures of divergence or distance. Mantalos et. al in [62], proposed an
improvement on the Divergence Information Criterion (DIC) [63] called the Modified
Divergence Information Criterion (MDIC).

3.4.1 The development of the MDIC Criterion

Basu et al. in [11], proposed the Basu-Harris-Hjort-Jones (BHHJ) measure of
divergence, which is indexed by a positive parameter «, and defined as:
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P, f) = [{#7E) - (14 2)a@ ) + ()g(}d= (346)

(07

This family of measures was proposed by Basu et al. in [11], for the development of
a minimum divergence estimation method for robust parameter estimation.
The index a controls the trade-off between robustness and asymptotic efficiency of
the parameter estimators that are the values of # that minimize the measure over
a parametric space ®. The BHHJ family reduces to the Kullback-Leibler measure
for a | 0 (see [64]) and to the square of the standard L, distance between the
candidate and the true model for a = 1. Mattheou et al. in [63] developed a
new criterion, the Divergence Information Criterion (DIC), by applying the same
methodology mentioned above and using BHHJ measure in place of K-L information
and log-likelihood.

Let us suppose a set of observations {1, s, ..., x,}. Then the DIC is derived by

DIC(p) = n@Q; + (2m) "% (1 + )**2p, (3.47)

where Q3 = [ { 2T (2)dz — (1 + é)% A fg‘(xz)} and 0 is a consistent and asymp-
totically normal estimator of 6.

Although, the DIC criterion in preliminary simulations studies for regression
models [64] showed a very good medium sample size performance for values of «
close to zero, it is not computationally attractive for practitioners, primarily due to
the calculation of the first term ()4, namely, the integral [ fé1+a(z)dz. Moreover, a
simulation study shows that the difference in the calculation of the above integral
for the different candidate models is negligible compared with the difference in the
calculation for the entire quantity ;. Hence, the integral term does not affect the
selected model and therefore the criterion can be properly modified. Thus, Man-
talos et al. in [62], proposed a modified criterion called the Modified Divergence
Information Criterion (MDIC), which is given by

MDIC(p) = n*MQy + (21) 2 (1 + a)**2p, (3.48)

n
Note that a model selection criterion can be considered as an approximately un-

biased estimator of the expected overall discrepancy, a nonnegative quantity that
measures the distance between the true unknown model and a fitted approximating
model.

If we choose the model with the smallest estimator of the expected overall discrep-
ancy, we may end up with a selection with an unnecessarily large order. In that
sense, MDIC is a criterion comparable to AIC since they are both provide unbiased
estimates of the expected overall discrepancy relying on two different measures of
divergence of information, namely BHHJ and K-L.

where MQ; = —[(1 + é)l i[5 (@),

3.4.2 Optimal choice for the index «

For practical purposes we have to decide the optimal choice of the positive index
«. Thus, Mantalos et al. in [62] simulated a 100 observation series for five differ-
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ent models with a € [0.01, 0.5]. In the figure below the power of the selection is
provided according to the specified value of the index «.

Finding The Alfa [a]

Powsr

H H L L H H L . H H "
0.01 0.08 on 4 R=1 a.21 .28 o3 D.36 0.4 Q.45 0.5
AlLfa [al

Figure 3.4.2: Optimal choice of the index . AR(1) —-—, AR(2)—, AR(3)---,
AR(4)- - -, AR(5) -

e AR(1): x; =14 0.65x;_1 + €

e AR(2): x4 =1+ 1521 — 0.5z 2 + €

e AR(3): xy=1+0.2x, 1+ 0.52y 5 — 0.3524_3 + ¢

o AR(4): @ =1+ 0201 + 0.52,2 — 0.352,_5 — 0.222,_4 + &
e AR(5): xy =1+ 0.23x,_1 — 0.222;_3 — 0.45x4_5 + €

Figure 3.4.2 shows that the power increases as the value of « increases for small
lags (models AR(1) and AR(2)). On the other hand, for lags > 3 the power increases
up to a value of a and then decreases. Mantalos et al. in [62], concluded that and
optimal index « value equals 0.25 since it appears to serve a fair balance between
small and large lag models.

For more details on MDIC and the simulations made, see [62].

3.5 Coefficient of determination (R*) for GLMMs

Using both linear (LMs) and generalized linear mixed-effects models (GLMMs)
has become a common trend in social, medical, biological, ecology and evolution
sciences. Information criteria, such as AIC and BIC, are usually employed as model
comparison tools for mixed-effects models. On the other hand, the use of "variance
explained” R? as a relevant summarizing statistic for mixed-effects models, is rare,
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in contrast to LMs and GLMs. Coefficient of determination (R?) is a powerful
statistical tool, which in contrast to AIC, BIC, MDIC etc., provides an absolute
value for the goodness of fit of a model.

One of the main reasons for the under-estimation of R? for mixed-effects models lies
in the fact that R? can be defined in many ways. In addition, most definitions of R?
for mixed-effects have serious theoretical problems (e.g., decreased or negative (R?)
values in larger models). Moreover, their use is constrained by practical difficulties
(e.g. implementation).

Keeping in mind the problems mentioned above, we are going to present a method
for calculating R? for GLMMs as proposed by Nakagawa et al. in [73].

3.5.1 Definitions of R?

A standard (general) linear model (LM) can be written as:

p
Yi = Bo+ Y Brvni + €, (3.49)
h=1

€; ™~ GaUSSian(Oa 062)’

where y; is the ¢ value for the h™ predictor, f, is the intercept, £, is the slope
(regression coefficient) of the h™ predictor, ¢; is the 3" residual value and residual
errors are normally (Gaussian) distributed with a variance of 2. Regression models
of this type are fitted by ordinary least squares (OLS) methods that minimize the
sum of squared distances between observed and fitted responses. The residual sum
of squares appears in the formulation of the empirical definition for the coefficient
of determination R? ( [57]; [33]).

Sy (i — i)
R, =1-—==2 I 3.50
o=l (=5 (3.50)

P
=200+ BnThi,
h=1

where n is the number of observations, ¢ is the mean of the response, ¢; is the ™"
fitted response value, Bo and ﬁh are estimates of 5y and [, respectively, and the
subscript ”O” in R, signifies OLS regression.

An interesting feature to note here, is that the definition of "variance explained” is
rather indirectly composed of 1 minus the ”variance unexplained”. An equivalent
quantity of R% is described as follows:

RO U(l’/’(y,) ) (3 5 )
2
Ry =1- —¢ (3.52)
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where "var(-)” indicates the variance.
The quantity in (3.52) can also be expressed as the ratio between the residual vari-
ance of the model of interest and the residual variance of the null model (also referred
as the empty model or the intercept model [73] described as:
0.

R =1- (3.53)

0
where 0%, is the residual variance of the null model.
Let us consider the case of generalizing the definition of R3 to GLMMs. In such
a case, there are two difficulties to deal with. Firstly, in the case of generalization
to non-linear response variables (i.e. GLMs), it is not straightforward to get an
appropriate estimate of the residual variance. Secondly, for the generalized class of
mixed effects models that consist of error terms at different hierarchical levels, it is
not obvious from the beginning which estimate should be used for the unexplained
variance.
Thus, R? can be defined using the maximum likelihood of the full and null mod-
els [61].

Lo\ "
2 i 0
R2=1 (LB> , (3.54)

where Lg is the likelihood of the data given the fitted model of interest, and L
is the likelihood of the data given the null model, n is the total sample size, the
subscript ”7¢” in Rg, signifies "general” (see [69]). The problem with Rf] is that it
cannot become 1 even if the model of interest fits data perfectly. Nagelkerke in [72]
proposed an adjustment to equation (3.54) to deal with this problem described as

follows:
ll - <£g> ]
RE=+t /7 4 (3.55)

[1 - (Lo)%} 7

where the denominator can be interpreted as the maximum possible value of Rg and
the subscript "G” in R%, signifies "General”. A definition of R? comparable to this
of R is:

| —2log(Lg)

2
B =1 o oa(Ly)

(3.56)

where ”D” signifies "Deviance”.

Note that —2 is left in both denominator and numerator, so that R% can be com-
pared with (3.50). For a linear model, the term ”—2 log-likelihood statistic” (some-
times referred to as deviance) is equal to the residual sum of squares based on OLS
of this model [69]. For other likelihood-based definitions of R?, see [21] and [69)].
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3.5.2 Common problems of generalizing R?

Suppose we have an experimental design for which we repeatedly sample from
the same set of individuals. In the case of generalizing the LM described in (3.49),
we can fit a LMM with one random factor as:

p
Yi; = Bo+ D Bntnig + o + €, (3.57)
h=1

Qo ~ G&USS'&.Gna)a 03)7

€;; ~ Gaussian(0,0?),

where y;; is the i response of the 5% individual, Thij is the i value of the 5 indi-
vidual for the h'" predictor, 3, is the intercept, 8y, is the slope (regression coefficient)
of the h'" predictor, a; is the individual-specific effect from a normal distribution
of individual-specific effects with mean of the zero and variance of 2 (between-
individual variance) and ¢;; is the residual associated with the i value of the 5
individual from a normal distribution of residual with mean of zero and variance of

o? (within-individual variance). As is indicated the previous equation (3.57), LMMs

have by default more than one variance component, (o2 and ¢?) while LMs have
only one (see 3.49).

A common definition of R? for mixed-effects models is based on the reduction
of each variance component when including fixed-effect predictors separately, which
means that there will be a separate R? for each random effect and the residual
variance, respectively ( [85]; [20]). However, Snijders and Bosker in [94], pointed out
that it is not uncommon that some predictors can reduce o2 while at the same time
can increase o2, and vice versa, even though the total sum of variance components
(02 +02) is usually reduced (see [94]). Variance components of this type oftenly can
result in negative R?. This happens due to the fact that o and o2 can be larger
than o2 and o2, respectively.

In this respect, Snijders and Bosker in [94] proposed what they refer to as R? and
R3 for LMMs with one random factor (as in (3.57)) in order to avoid this problem.
Thus, one R? value is calculated for each level of a LMM. R? can be expressed in
two forms described as follows:

R}=1- 3.58
! var(yij) (3.58)
A p A
Uij = Bo + Z BrThij, (3.59)
h=1
2 2
R—1-210% (3.60)
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where R? is the variance explained at the unit of analysis, ;; is the i fitted value
for 7" individual and the other notations are as above.
R3 can be written in a similar manner as:

A

var(y; — Y,
R LAt 1) (3.61)
var(y;)
o’ + o4
RE=1————+Fk (3.62)
0'520 + %
where £k = %, R3 is the variance explained at the individual level, y; is the

=
mean observed value for the j individual, g?j is the fitted value for 5 individual, &
is the harmonic mean of the number of replicates per individuals, m; is the number
of replicates for the " individual, M is the total number of individuals, and the
other notations are as above.

The use of R? and R3 has the advantage of calculating how much variance is
explained at each level of the analysis. However, there are at least three problems
to deal with in this approach:

1. R? and R3 can decrease in larger models.
2. It is not clear how R? and R3 can be extended to more than two levels.

3. It is not clear how R? and R3 can be generalized to GLMMs.

The first problem occurs due to the fact that ¢ + 02 of a model with more

predictors can be larger than that of a model of fewer predictors, and R? and R3
could also take negative values [94]. In other words, the estimate of (62 4+ ¢2) can
be larger than that of (02 + o2).

There are two explanations for the decreasing or/and negative values of R? in a
larger model:

1. Random fluctuation that is most prominent when the sample size is small.

2. Misspecification of the model, when the new predictor is redundant in relation
to one or more predictors.

It is suggested that R? and R3 can be used as a diagnostic measure in model selection.
However, such misspecification is not necessarily the cause of an increase in the
quantity of (02 + 02).

The second problem was addressed by Gelman and Pardoe in [38], which provided
a solution of extending R? and R3 to any arbitrary numbers of levels (or random
factors) in a Bayesian framework. For more information, the interested reader may
refer [38].

The third problem of generalizing R? and R2 is considered as profound, since
the residual variance o2, cannot be easily defined for non-Gaussian responses. For
more details see [73].
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3.5.3 General and simple R? for GLMMs

As aforementioned, the variance explained R is defined using the variance unex-
plained by the model, and (R%) can be redefined more directly in terms of variance
explained as:

S (g —9i)?
R2 — “—, 3.63
0= S =) (3.63)
R, = var(d) (3.64)

var(y;)’

for which the notations are identical with those in (3.50) and (3.52).
This direct formulation, will now be extended to LMMs and GLMMs.

e LMMs

Let us assume a LMM with two random effects, namely v, corresponding
to "groups” (with individuals uniquely assigned to groups), &k = 1,..., K and
aji, corresponding to individuals within each group, j =1, ..., J (with multiple
observations per individual) respectively. Hence, observations (denoted below
by the index ”i”) are clustered in individuals (denoted below by the index ”j”)
and individuals are nested within groups (denoted below by the index "k”),
i=1,.,n,j=1..,J,k=1,..,K, (see [88]).

The model in such case can be written as:

p
Yisk = Bo+ Y Buhiji + V& + i + €, (3.65)
h=1

Ve ~ GCLUSS?:GTL(O, 0'3/)7
ajr ~ Gaussian(0, UZ)?

e ~ Gaussian(0,02),

where y;ji is the i response (observation), ¢ = 1,...,n of the 4™ individual,
j =1,..,J, belonging to the k™ group, k = 1,..., K, Tk is the i value of
the §" individual in the k™ group for the h'" predictor, h =1, ...,p, v is the
group-specific effect from a normal distribution of group-specific effects with
mean of zero and variance of 03, a;i, is the individual-specific effect from a
normal distribution of individual-specific effects with mean of zero and vari-
ance of o2 and € is the residual from a normal distribution of group-specific
effects with mean of zero and variance of o?2.

An R? for LMM given by equation (3.65) can be defined as:
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2
O

?
0F 402 + 02 + 02

(3.66)

R%MM(m) =

where "m” stands for marginal, and

0]% = var( Zp: 6hxhijk), (3.67)

h=1

where O']% is the variance calculated from the fixed effect components of the

LMM [93].

The estimation of UJ% can be derived by predicting fitted values based on the
fixed effects alone followed by calculating the variance of these fitted values.
Note that J]2c should be estimated without degrees-of-freedom correction. An
advantage of the above formulation (3.66) is that it will never be negative.
However, it is possible that R?,, M(m) can decrease by adding predictors, but
this is unlikely since JJ% should always increase when predictors are added to
the model.

GLMDMs

Regrading the case of extending the aforementioned direct formulation to
GLMMs, it has been mentioned that for non-Gaussian responses, it is dif-
ficult to define the residual variance, o2. However, it is possible to define the
residual variance on the latent (or link) scale, although the definition of the
residual variance is specific to the error distribution and the link function used
in the analysis.

In GLMMs, 02 can be expressed with three components (see [74]) :

1. Multiplicative dispersion (w).
2. Additive dispersion (02).

3. Distribution-specific variance (o7).

We can implement GLMMs in two distinct ways, either by multiplicative or
additive dispersion. Dispersion is fitted to account for variance that exceeds
or falls short of the distribution-specific variance (e.g., Binomial or Poisson
distributions). In this thesis, (as in [73]) we consider only additive disper-
sion implementation of GLMMs. Nonetheless, the presented formulas, can be
modified for the use of GLMMs that apply to multiplicative dispersion.

When additive dispersion is used, o2 equals the sum of the additive dispersion
component and the distribution-specific variance (02 + 02), and thus, R? for
GLMDMs can be defined as:

2
9y

3.68
0?—#03—#03—}—03—#03’ ( )

RéLMM(mar) =

where "mar” stands for marginal, is the variance explained on the latent (or
link) scale rather than original scale.
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The quantity in (3.68) can be generalized to multiple levels as follows:
2
95

o} + X 07 +oi4oy

RQG’LMM(maT) = (369)

where u is the number of random factors in GLMMs and o7 is the variance
component of the I random factor. The equation on (3.69) can be modified
so that it can express conditional R2.

R? — [ ==l : 3.70
GLMM() ™ 62 1 S, 0% + 02 + 03 (3.70)

where ”¢” stands for conditional.

Notice that in (3.70), the conditional R?, i.e. RZ /), can be interpreted
as the variance explained by the full model. Both marginal and conditional
RZ%, ,su convey unique and interesting information. Nakagawa et al. in [73],
recommended the use of them for research purposes.

In the case of a Gaussian response and an identity link, the linked scale vari-
ance and the original scale variance are identical and the distribution-specific
variance is zero. Thus, o2 + o3 reduces to o2 in (3.69) and (3.70). For other
GLMMs, the link-scale variance is different from the original scale variance.

The equations in (3.69) and (3.70) can be applied to different GLMMs families,
given the knowledge of a distribution specific variance o2, and a model that
fits additive overdispersion (e.g., [41]). It is worth to be noted that when the
denominators of (3.69) and (3.70) include o3, both types of R%; 15, Will never
become 1 in contrast to traditional R2.

The interested reader may refer to [73] for more details on R? for GLMMs and
related issues.
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CHAPTER 4

An Application on Influenza-Like Illness
Outbreaks

4.1 Materials and Methods

4.1.1 Sentinel Epidemiological Surveillance System

In Greece, since 1999, a sentinel system of epidemiological surveillance is oper-
ating which is based on voluntary participation of physicians, general practitioners
and pediatricians of Primary Health Care (PHC) throughout Greece. The sentinel
systems in PHC are the most important source of PHC epidemiological diseases
data and through reporting processing, analysis, and results/conclusions export pro-
cedures, provide general guidelines for optimal decision making in health services.
Through these systems, the evolution of the frequency of certain diseases is recor-
ded by selected reporting sites and health professionals report cases of the disease
or syndrome under surveillance, based on clinical diagnoses. The sentinel medical
doctors send weekly epidemiological data regarding the number under surveillance,
according to a specified clinical definition. Then, the Hellenic Center for Disease
Control Prevention (HCDCP) estimates the weekly number of syndrome cases per
1000 visits using reporting forms.

During the period 2014 — 2015 there was a reorganization of the Hellenic sentinel
system and several changes in the operating parameters of the system took place. As
a result, the national priorities were posed for the syndromes monitored through the
sentinel system and the system was directed to main syndromes of interest, namely,
influenza-like illness (ILI) and gastroenteritis. The study of the evolution of these
two syndromes is of major public health concern for three key reasons. Firstly, they
belong to the sentinel epidemiological surveillance priorities of the country, secondly
they are monitored traditionally by sentinel systems in the European region, while
they are high in terms of international interest, due to their potential for widespread
transmission (or even potential pandemic risk). Thirdly, the surveillance of ILI
and gastroenteritis through the sentinel system allows studying 1. the existence of
seasonality, 2. the determination of signaled start and end weeks and the intensity of
epidemic waves for ILI, 3. the determination of epidemic outbreaks for gastroenteritis
nationwide [81].

4.1.2 Two Season Influenza Historical Data

As stated above, through the operation of the sentinel system, the evolution
of the frequency of certain diseases is recorded by carefully sampled reporting
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units, based on clinical diagnoses including clinical manifestations compatible with
flu, i.e., ILI. Through the aforementioned reorganization of the sentinel system in
Greece, the system was harmonized with the updated European and international
standards-instructions. As a consequence, recent sentinel surveillance system data
(week40/2014 to date) are not considered comparable to those of the previous years
(past influenza seasons until week39/2014). In this work, we focus on the study
of weekly ILI rate data between September 29, 2014 and October 2, 2016. This
data was used for analysis purposes, in order to determine the past two seasonal
influenza outbreaks (signaled standard end weeks) and establish optimal empirical
epidemic thresholds. Thus, we conducted a retrospective analysis for the period from
2014 to 2016, based on a model fit to two—season historical data (week40/2014 to
week39/2016). The main objectives of this work are:

1. The prediction of the time interval for which an influenza outbreak is expected;
2. The estimation of the duration of the epidemic waves;

3. The early detection of possible epidemics.

4.1.3 Research Methodology

There are two types of analysis for surveillance time series: retrospective and
prospective analysis. The first one, locates and quantifies the impact of past epi-
demics, whereas the second one, is useful when it comes to real time detection of
epidemics. This study focuses on retrospective analysis, epidemic detection and
quantification from time series data. Four steps are necessary to be followed, in the
case of detection of influenza epidemics in time series:

1. Determination of the training period;
2. Purge of the training period;
3. Estimation of the regression equation;

4. Epidemic alert notification.

4.1.3.1 Determination of the Training Period

In general, not all data should be included in the training period even in cases
that long times series are available [91]. Specifically, as discussed by Pelat et al.
in [83], changes in case reporting or/and demographics will likely be present over
long time periods and this fact may affect how well the baseline model fits the
data. odeling of influenza morbidity or/and mortality typically makes use of the
five proceeding years in baseline determination. In our study, we included all data
in the training period, using the whole dataset in the model fitting for retrospective
analysis, (as in [83], [92], [103]). Parpoula et al. in [81], pointed out that including
more past seasons improves the seasonal components estimates, while limiting the
quantity of the data allows capturing recent trends. Pelat et al. in [83] suggested,
that a minimum of one year historical data is required to fit the models. If one wants
to succeed more reliable predictions, then at least two or even three year historical
data is required in order to calculate the baseline level.
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4.1.3.2 Purge of the Training Period

It is very important to fit the model on non-epidemic data, in order to model the
non-epidemic baseline level. For seasonal diseases such as influenza, it is difficult to
find long non-epidemic periods, since epidemics typically occur every year. There
are two choices to make in order to deal with such a problem [83]. The first one
is to identify epidemics, and then exclude the corresponding data from the series.
The second and less common one, requires explicit modeling of the epidemic periods
during the training data. In the second case, an epidemic indicator is required to be
included as a covariate in the model. However, in such a case hidden Markov models
may be appropriate, the consideration of which will be investigated in a future work
(see e.g. [108]).

In the first choice, we must first identify epidemics. Several rules have been
suggested in the literature in this respect, such as excluding the 25% higher values
from the training period [103], removing all data above a given threshold [26] or
excluding whole periods known to be epidemic prone [78]. For more details the
reader may refer to [81] and [83]. In this work, we selected to exclude the 15%
highest observations from the training period (the default value selected by Pelat et
al. in [83]).

4.1.3.3 Estimation of the Regression Equation

Several different formulations could be used for the regression equation, as dis-
cussed in [81] such as linear regression [26], linear regression on the log-transformed
series [18], Poisson regression [96], and Poisson regression allowing for over-dispersion
[102]. In this work, linear regression is applied on the available two season historical
data series (weekly ILI rate data, i.e., week40/2014 to week39/2016). The weekly
estimated ILI rate, is a time series with specific characteristic properties, such as
trend and seasonality. In the regression equation the trend is usually modeled using
a linear term or a polynomial (of 2nd or 3rd degree) [83], while seasonality is usually
modeled using sine and cosine terms with period one year. However, refined models
are found in literature, often with terms of period six months [26], 3 months [45],
and smaller [60].

In this work, we follow an exhaustive search process, based on periodic mixed
regression models discussed in Section 2.9, in order to identify the optimal fit of the
baseline model. Thus, linear, quadratic, cubic and quartic (for comparison purposes)
trends are considered, and regarding the seasonal component, the most widely used
periodicities are implemented, i.e. 12, 6, and 3 months. The terms stated above,
are not the only ones that can be included in the regression equation. Some au-
thors included autoregressive terms in their models ( as done in [104], [79], [106]).
Others incorporated additional variables into the regression equation, such as day of
the week [71], sex and age [19], and environmental factors for example temperature
and humidity [104]. Thus, in this work we make use of the following environmental
factors:

e temperature,

e humidity,

e wind force, and

e wind direction,

because of the interest in the impact of extreme weather on human health that is
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increasing in recent decades. Climate changes and how these affect public health
( [39]; [55]), showed that higher temperatures are likely to increase heat-related
mortality worldwide. In addition, there is evidence that high temperatures are as-
sociated with mortality [9]. The relationship between temperature and mortality
may be confounded by a range of measured or unmeasured confounders. Con-
founding factors are present when a covariate is strongly associated with both the
outcome and exposure of interest, but it is not a result of the exposure and may
distort the association being studied between two other variables. As pointed out
by Touloumi et al. in [98] a fundamental consideration in epidemiological model-
ing, is to properly control for all potential confounders. Such confounders may in-
clude meteorological indicators, such as relative humidity, seasonality and long-term
trends ( [10]; [17]; [31]; [40]; [95]). In addition, Tsangari et al. in [100], concluded
that high temperatures during warm months can result in increased mortality rates.
Since influenza causes an estimated 290, 000 — 650, 000 deaths worldwide [105], it is
considered reasonable to study the effect of environmental factors on influenza-like
illness ( [70], [84]). In this word, additional environmental factors were incorpor-
ated into the regression model such as: minimum-maximum-median-mean temper-
ature (temp), minimum-maximum-median-mean wind direction (wd), minimum-
maximum-median-mean wind force (wf). Moreover, first-second order autoregress-
ive terms and first-second order moving average terms, were also incorporated into
the regression model. Meteorological data were provided by the Hellenic National
Meteorological Service (HNMS).

Thus, the regression equation is defined as follows:

2mt 27t
Y = o + aqt + aot® + ast® + aut! + yicos () + 61500 <>
n n

47t . (A4mt 8t . [ 8mt
+72c0s| — | + d25tn| — | + yzcos| — | + dgsin| —
n n n n

+O1Yi—1 + Payi—2 + € + A€—1 + Aa€io
+(iminwd + (smaxwd + (3medianwd + (ymeanwd
+0minwf 4+ fomaxwf 4+ Asmedianwf + #,meanwf + w;mintemp

+womaxtemp + wsmediantemp + wymeantemp. (4.1)

Then, a thorough comparison was made, among all candidate periodic mixed mod-
els (e.g., PAR(1), PAR(2), PMA(1), PMA(2), PARMA(1,1), PARMA(2,1),
PARMA(1,2), PARMA(2,1)), with respect to the significance of the environ-
mental factors. Note that all regression equations for the observed value y; are
special cases of equation (4.1).

The comparison is described step by step as follows: We start from the simplest
model labeled as PAR(1) by examining the significance of each of the environmental
explanatory variables of the mixed model. If there is at least one significant, then
we keep the model and go on to the next one (e.g. PAR(2)). The procedure goes
on until the significance of the environmental factors for each model is examined.
Finally, the models kept by the process, are being compared with respect to M DIC'.
The model with the lowest M DIC' is being selected. Thus, PARM A(2,1) mixed
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model with minimum temperature as a significant covariate (p — value < .001) was
the model selected.

As a result, the time period and the minimum temperature are the explanatory vari-
ables, the observed time series values (weekly ILI rate) is the dependent variable and

all regression equations for the observed value y; are special cases of the following
PARMA(2,1) mixed model:

n

47t . (4wt 8t 8t
+79c0s| — | + dasin| — | + y3cos| — | + dzsin| —
n n n n

+P1Yi—1 + Payi—2 + € + A16_1 + wimintemp, (4.2)
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n

where ¢, ~ WN(0,0?), n denotes the sample size, and parameter coefficients are
estimated by least squares regression. Selection of the best fitting model, relies on:
e 12 candidate models that combine 4 trends, namely, linear, quadratic, cubic and
quartic, and 3 seasonal periodicities, namely, 12, 6, and 3 months.

e Analysis Of Variance (ANOVA) comparison (significance level « is chosen to be
5%), for nested models.

e Akaike Information Criterion (A/C) or Modified Divergence Information Criterion
(MDIC), for non-nested models (see Sections 3.2 and 3.4).

The latter process is described step by step as follows: The process starts com-

paring, by ANOV A, the simplest model labeled as M11 with a linear trend and
12—month seasonal periodicity, and defined as

MI11: y,=ap+ a1t+’ylcos(2 t) + 513m(2 t) + 01y

+Poyi—2 + € + Ai€g—1 + wimintemp, (4.3)

with the two models within which it is nested, labeled as M 12 (linear trend and 12—
and 6—month seasonal periodicities) and M21 (quadratic trend and 12— month sea-
sonal periodicity), which are defined as

M12: y=ap+ait + 71005’(2 t) + 518271(2 t) + ’)/2608<4 t) + (5gszn<4;rt)

FO1Ys—1 + Po2Yi—o + € + A\1€,_1 + wimintemp, (4.4)

and
M21: y, = og+oqt+ast? +71005<2 )+6152n(2ﬂt)+72008(4 )+525m<4;rt)

8t 8t
+73003( ) + 533m( ) + O1yi—1 + Goyr—2 + € + A1€,_1 + wimintemp.  (4.5)

In the case that none of the alternative models (M12 and M21) is significantly
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better than the initial one (M11), the process retains M11 and terminates. If one
of the two alternative models is better than the initial one (p — values < 0.05), the
algorithmic process keeps it and goes on. If both alternative models are better than
the initial one, the algorithmic process keeps the one with the lowest AIC or M DIC
and goes on. The procedure is repeated until finding the "best overall” model over
the twelve considered models (combining the four choices for the trend and the three
choices for the periodicity).

4.1.3.4 Epidemic Alert Notification

As the model is fitted to the observations, one could make use of the standard
deviation of the residuals (y; — ¢;) in order to estimate the variation around the
model fit. In this way, if we assume that the baseline model holds in the future,
it is possible to obtain forecast intervals for future observations [83]. The epidemic
thresholds which signal an unexpected change are typically obtained by taking an
upper percentile for the prediction distribution (assumed to me normal), usually
the upper 95 percentile [26], or upper 90 percentile [92]. Increasing the value
of the upper percentile, will lead to less observations outside the thresholds and
more specific detection. On the other hand, decreasing this value will increase the
sensitivity and timeliness of the alerts. In this study, we will obtain the epidemic
threshold by taking the upper 95" percentile of the prediction distribution. In
addition, we then make use of the following rule "a series of observations fall above
the epidemic threshold” in order to define when epidemic alerts are produced. The
latter step is important since in this way we avoid making alerts for isolated data
points. Thus, a minimum duration above the epidemic threshold is required. The
final rule was set to be "a series of observations fall above the epidemic threshold
during 2 weeks” (see [83], [103]). The beginning of the epidemic is signaled the first
time the series exceeds the threshold, and the end the first time the series returns
below the threshold.

4.2 Experimental Study

As in [81], we conducted a retrospective analysis; the whole time series, i.e.,
week40/2014 to week39/2016, was therefore included in the training period. Then,
we chose to exclude the top 15% observations from the training period (89 kept
values from the total of 105). Based on ANOV A comparison, AIC' and MDIC
criteria, the model selected was M 11 with:

e linear trend,

e annual periodic term (one year harmonics),

e first and second order autoregressive terms,

e first order moving average term, and

e minimum temperature.

In addition, the forecast interval was set to be 95%, that is the upper limit of the
prediction interval which is used as a threshold to detect epidemics. The alert rule,
was chosen to be "an epidemic is declared when 2 weekly successive observations are
above the estimated threshold”.
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The mathematical form of model M 11 is described as follows:

Y = Qo + ot + 71005(2:7) + §1sin(2n7rt) + O1Y1—1

+Poyi_o + € + A\€i—1 + wimintemp. (4.6)

Table 4.1 presents the estimated parameters, the standard errors (sd), the statistic
values (t-value) and the associated p-values of the selected model. The twelve peri-
odic regression mixed models are described in Table 4.2, in which the components
included in each model are indicated by "*”, along with M DIC and RZ, M(m) Val-
ues of each model. The model finally kept M11 is in bold italics. Figures 4.1 and
4.2 illustrate the model selection pathway, using AIC and M DIC' criterion, respect-
ively. In addition, Figure 4.3 illustrates the plots of the time series, the predicted
baseline as well as the threshold. In Figure 4.3, the epidemics detected by the selec-
ted model (M11) appear in light red. The predicted baseline and threshold values
at each date in

Table 4.1: Selected Model M11 Output

Parameter | Estimate | sd | t-value | p-value
Qg 10.468 | 2.128 | 4.920 | < .001
o -0.075 | 0.027 | -2.789 0.007
" -10.315 | 1.444 | -7.144 | < .001
01 12.726 | 2.144 | 5.937 | < .001
01 0.811 | 0.114 | 7.098 | < .001
02 -0.234 | 0.090 | -2.613 0.011
A1 0.261 | 0.135 | -2.613 0.058
w1 0.729 | 0.172 | 4.247 | < .001

the dataset are presented in Table 4.3. Also, in Table 4.3 the epidemics appear
in bold. Finally, Table 4.4 presents the dates and the results of the retrospective
evaluation of the excess influenza morbidity in Greece for 2014 — 2016 along with
excess percentages, using the M11 periodic regression mixed model. The excess
morbidity is defined as the cumulative difference between observations and baseline
over the entire epidemic period. Excess percentages were calculated as the observed
size divided by the sum of expected values throughout each epidemic.
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Table 4.2: Models Selected Through the Algorithm Pathway

Te p? ARMA LV® 1C4 R?
Me 1t T 21281 8 yI'T6md9 [ 3m | AR(1) | AR(2) [ MA(1) | MT® | AIC | MDIC | R%,,, M (mar)
VT T F * * * * * | 409.31 | 8.32 0.927
Nio | * * * * * * * | 406.96 | 22.98 0.934
NoT T F [ F * * * * * | 410.72 | 13.68 0.938
Nog E [ F * * * * * * | 408.49 | 30.25 0.934
M23 | * | * * * * * * * * 408.17 | 50.29 0.937
M31 * * * * * * * * 403.82 21.75 0.938
M32 | * | * * * * * * * * 402.83 34.30 0.941
N33 [ F ¥ [ * * * * * * * | 401.04 | 57.51 0.937
M4l * | * * * * * * * 405.56 31.53 0.946
Ma2 * * * * * * * * * * 403.90 46.56 0.942
Maz | F | F [ F [ ® [ = * * * * * * | 402.48 | 73.05 0.946

@ ”T” denotes trend,
b 7P” denotes periodicity;
¢ 7LV” denotes latent variable;

4 7IC” denotes information criterion;

¢ "M” denotes model;

£y denotes year;
g ”m” denotes months;

b MT” denotes minimum temperature.
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M11 (AIC=409.31)
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M23 (AIC=408.17) M32 (AIC=402.82) M41 (AIC=405.56)

p=0.007

M33 (AIC=401.04) M42 (AIC=403.90)

p=0511 p=0121

M43 (AIC=402.48)

Figure 4.1: Model selection pathway (ANOVA & AIC)

M11 (MDIC=8.32)
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p=0.007 P =0.10

M33 (MDIC=57.51) M42 (MDIC=46.56)

p=0511 p=0.121

M43 (MDIC=73.05)

Figure 4.2: Model selection pathway (ANOVA & MDIC)
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Table 4.3: Model Results: Predicted Baseline and Epidemic Threshold values
Week Date ¢ PB® | TH® || Week Date ¢ PB® | TH®
201440 | 2014-09-29 21.50 30.00 201441 | 2014-10-06 24.20 32.70
201442 | 2014-10-13 27.00 35.50 201443 | 2014-10-20 29.30 37.80
201444 | 2014-10-27 23.60 32.10 201445 | 2014-11-03 30.20 38.70
201446 | 2014-11-10 29.40 37.90 201447 | 2014-11-17 30.70 39.20
201448 | 2014-11-24 32.00 40.40 201449 | 2014-12-01 33.80 42.30
201450 | 2014-12-08 32.30 40.80 201451 | 2014-12-15 33.40 41.90
201452 | 2014-12-22 56.60 65.10 || 201501 | 2014-12-29 | 51.90 | 60.40
201502 | 2015-01-05 | 52.60 | 61.10 | 201503 | 2015-01-12 | 103.00 | 111.00
201504 | 2015-01-19 | 92.90 | 101.00 || 201505 | 2015-01-26 | 99.50 | 108.00
201506 | 2015-02-02 | 66.40 | 74.90 || 201507 | 2015-02-09 | 70.00 | 78.50
201508 | 2015-02-16 | 100.00 | 109.00 || 201509 | 2015-02-23 | 68.00 | 76.50
201510 | 2015-03-02 | 78.20 | 86.70 | 201511 | 2015-03-09 | 62.30 | 70.80
201512 | 2015-03-16 | 46.50 | 55.00 201513 | 2015-03-23 44.60 53.10
201514 | 2015-03-30 31.70 40.20 201515 | 2015-04-06 35.60 44.10
201516 | 2015-04-13 25.60 34.10 201517 | 2015-04-20 17.30 25.70
201518 | 2015-04-27 17.02 25.60 201519 | 2015-05-04 17.10 25.60
201520 | 2015-05-11 11.40 19.90 201521 | 2015-05-18 9.88 18.40
201522 | 2015-05-25 3.06 11.50 201523 | 2015-06-01 0.00 6.32
201524 | 2015-06-08 0.68 9.17 201525 | 2015-06-15 3.15 11.60
201526 | 2015-06-22 0.00 7.92 201527 | 2015-06-29 0.08 8.56
201528 | 2015-07-06 2.55 11.00 201529 | 2015-07-13 0.82 9.31
201530 | 2015-07-20 3.14 11.60 201531 | 2015-07-27 3.20 11.70
201532 | 2015-08-03 0.00 8.33 201533 | 2015-08-10 1.20 9.68
201534 | 2015-08-17 0.00 8.19 201535 | 2015-08-24 1.18 9.67
201536 | 2015-08-31 0.00 8.13 201537 | 2015-09-07 1.89 10.40
201538 | 2015-09-14 3.35 11.80 201539 | 2015-09-21 0.95 9.44
201540 | 2015-09-28 7.63 16.10 201541 | 2015-10-05 11.80 20.20
201542 | 2015-10-12 14.90 23.40 201543 | 2015-10-19 17.70 26.20
201544 | 2015-10-26 13.10 21.60 201545 | 2015-11-02 15.20 23.70
201546 | 2015-11-09 15.60 24.10 201547 | 2015-11-16 19.60 28.10
201548 | 2015-11-23 22.90 31.40 201549 | 2015-11-30 21.90 30.40
201550 | 2015-12-07 21.20 29.70 201551 | 2015-12-14 25.30 33.80
201552 | 2015-12-21 28.90 37.40 201553 | 2015-12-28 39.30 47.80
201601 | 2016-01-04 47.30 55.80 201602 | 2016-01-11 57.50 66.00
201603 | 2016-01-18 58.80 67.30 201604 | 2016-01-25 89.70 98.20
201605 | 2016-02-01 | 71.80 | 80.30 || 201606 | 2016-02-08 | 56.40 | 64.90
201607 | 2016-02-15 | 56.00 | 64.50 || 201608 | 2016-02-22 | 40.90 | 49.40
201609 | 2016-02-29 29.90 38.40 201610 | 2016-03-07 39.50 47.90
201611 | 2016-03-14 36.70 45.20 201612 | 2016-03-21 28.10 36.60
201613 | 2016-03-28 27.60 36.10 201614 | 2016-04-04 24.40 32.90
201615 | 2016-04-11 19.70 28.20 201616 | 2016-04-18 15.00 23.50
201617 | 2016-04-25 11.40 19.90 201618 | 2016-05-02 7.35 15.80

@ Date denotes the week start date;

P PB denotes the predicted baseline;
¢ TH denotes the threshold.
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Table 4.4: Retrospective Evaluation of the Excess Influenza Morbidity in Greece 2014-
2016

SW ¢ | EW ¢ | Excess cases | Expected cases | Cases | Excess percentage
201501 | 201512 260 891 1151 29%
201605 | 201608 91 225 316 40%

@ SW and EW denote the signaled start and end weeks for epidemics, respectively.
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150
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Figure 4.3: Detected epidemics in Greece 2014 — 2016

4.3 Conclusions

Based on Table 4.2 the selected periodic regression mixed model is M11 which
is described as follows:

Y = o + aqt + 71003(2:5) + 5lsin<2n7rt> + O1y1

+¢2yt72 + € + )\161‘/,1 + wlmintemp. (47)

However, in Fig.4.1 and Fig.4.2 the algorithm could have proceeded and stopped
at M12, since the p — value is close to @ = 5% (0.067). Thus, one could make
a comparison between models M11 and M12, in order to select the "best overall”
model.

The periodic mixed model M11, was selected based on the algorithm described
in Subsection 4.1.3. It is worth to be noted that the exclusive use of AIC and
RZ. v M(mar)y the "best overall” models would be M21 and M33, respectively. In Table
4.5 a comparison of the aforementioned models is presented, in order to evaluate the
accuracy of models M11, M12, M21, M33, M43!. Comparing the models, we observe
that model M21 is not considered acceptable, since its results are never the best for none
of the accuracy measures examined. The results for models M11, M12, and M33, are very
close, except the measures of MPE and MAPE for which M11 clearly outperforms. Thus,
M11 is the "best overall”? model. It is also very important to notice the values of M DIC
and AIC of the models which are in full support of the above results. Indeed, M DIC), is
clearly in favor of model M11 (smallest M DIC value). As for AIC we observe that M11
is not the best, but the gain by choosing alternative models like M12, M33 or M43 is not

M43 is the ”full model”, and thus it is considered useful to be compared with the rest.
2Even if model M33 was better, we would choose again M11, since it has the advantage of less
explanatory variables, with a R2G LM M(mar) VETY close to the one of M43.
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Table 4.5: Results of Common Accuracy Measures

Model ME RMSE MAE MPE MAPE MASE
MI11 | -2.359224e-16 | 4.298974 | 3.040053 | 0.2782516 | 48.19166 | 0.230213
M12 | 2.179757e-16 | 4.10272 | 2.857186 | -23.29906 | 75.60382 | 0.2163651
M21 | 4.937659e-17 | 4.280225 | 2.9915 7.396555 | 50.17105 | 0.2265362
M33 7.6736e-17 | 3.703522 2.757 -69.34156 | 127.622 | 0.2087783
M43 | 9.953614e-17 | 3.68828 | 2.783278 | -69.73654 | 132.0232 | 0.2107683

significant enough to balance the complexity associated with such models. The values of
MDIC, tend to get bigger as more explanatory variables are included to the model. In
fact, the penalty given to the models by M DIC, is much bigger than the one given by
AIC. Thus, the addition of explanatory variables, makes M DIC' stricter than AIC and
nearly the exact opposite of RQGLMM(mm).

Conclusively, in this study, we conducted a retrospective analysis for the estimation
of the influenza-like syndrome morbidity burden in Greece for the period 2014 — 2016
(week40/2014 to week39/2016). Also, we made use of periodic regression mixed models in
order to estimate the baseline level for the time series, associated with a prediction interval.
Finally, as seen in Fig.(4.2) the model selected (e.g., M11), via an exhaustive search
process (see Subsection 4.1.3), succeeded in detecting as epidemic the period between the
two peaks of the epidemic wave for the period of 2014 — 2015. The interconnection of
statistical research with Health professional’s structures is considered very useful, since it
can serve, as pointed out by the present work, critical needs of Public Health. The very
early and accurate detection of an outbreak or an epidemic activity, can help and benefit
to the very early taking of the appropriate measures, in order to protect the population
at risk.
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