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Euxoplotieg

Apykd, BEAm® va guyaplotnom Tov emPAEmovia pov, Avorinpwt) Kadnynm
K. Zotmpn Kovkovda yio v apylkn eumotochvn, TV aneploplotn ehevbepio va
TPOCAPUOCH TO BEUA GTO EVOLAPEPOVTA OV, TNV VAIKT] VTOGTAPLEN OV OV TOPELYE,
TN GNUAVTIKY KaB0ONYNoN Kot TIG EKATOVTASES MPEG CLLNTNCEMY OAL QLT TOL XPOVICL.
Olo avtd ovvéParav oe peydro Pabuod oty oAoKANp®on ¢ Topodoag STpPnic.
Evyapiotd Oepud tov Avaminpotm Kadnyntm k. Oavéon Kilo yia tqv moAdtiun
EUTELPIOL TOV ATOKOUICH OOVAEVOVTOG GE EVPOTAIKA TPOYPAUUATO, Yo TNV EPLoTN

ocvvepyocio Kot yio tn fondeia Tov dmote N YPECTNKAL.

Evyopiotd eniong ta 6vo péEAN TS TPYLEAODS GUUPBOVAEVTIKNG EMLTPOTNG YLl
TNV TN TOV LoV EKovaV va cvppetdoyovv, tv Kadnynpia ka. EAEvn Mrplacodin
Yo 0L E00TOYA GYOAO Kot TIG GVUPOVAEG TG KaBd¢ kot tov Emikovpo Kabnynt «.
HMo Zvpewvakn mov ntav mwhvto duecao mposPaotipog Kot 0etikog yio. omolodnmote
Bépa. Oa Mbeka va guyoapiotnow emiong tovg Avaminpoty Kadnynm k. [Mdvvn
Xopravorovro kot Enikovpo Kadnynm ['opyo Zaipn yio tmv apiotn cvvepyacio oe

Aapopa GTASLN TOV S1O0AKTOPIKOV.

Evyopiotd emiong tovg Koabnynm k. IMro, Ernikovpo Kabnyntm «.
Kappovdaxn kot Kabnynm k. ZovhakéAin yuo v dpeon aviamdKpion Tovg Kol TV

TIUTN TOL LoV Ekavay va, Kpivouv antn T otaTpipn).

Evyapiotd 10 gpyastpio Xwpikng Avaivong, Xvotnudtov ewypopikodv
[TAnpogopidv kor TnAemookdnnong yo ™ @AoEeviar Kot TV APLoTn cLVEPYACIaL.
Oewpd vVTOYPEWON MOV EMiONG VO €LYOPIOTHCHO OAOLG TOL KOONYNTEC TOL
[Ipoypdupatog Metomtuylakdv Zrovdmv tov Tunpatog Fewypapiog yia Tig yvoGELS
OV HOV UETEOMGOV KOl TNV EUUEST] GUUPOAN TOVG GTNV EKTOVNON TNG TTAPOVGOG
dwtppne.

Tig evyapiotieg pov eniong opeiim mpog 1o Tdpvpa Kpatikdv Yrnotpopudmv, Tov
omoiov VINPEA LITOTPOPOG, Y10, TNV OIKOVOULKT) GTNPLEN TOL OV TOPETYE.

Téhog evyapiotd T cHvpoeo g Long pov Nikn Kot TNV 0KoYEVELDL OV Yl

TNV VITOLOVT], TI] GTMOIKOTNTA, T GLVEYT EVOAPPLVOT Kot TNV adIdAETT 6THPIEN OA®V

OVTAOV TOV ETOV.
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Extew|g mepiinyn

Ot aAlayég oty kdAoynm/ypnon yns, tvar éva ToAveninedo QavOUEVO oV
Aappdvetl xyopa og dtdpopes popeéc. O 6pog kdlvyn yng oyxetiletar pe Tov THNO TOV
YOPOKTNPIOTIKOV TOV EUPavVIlOVTOL TAVE® GTNV EMPAVELD TNG VNG EVO 0 OPOC YPNOoN
MG oxetileton pe v avlpdTIVI] EKUETAAAELON KOl TNV OIKOVOLIKT Agltovpyio TV
dpopov TOTEV KdAvVYNC. To pHeYaAdTEPO TOGOGTO TV OAAAY®MV GTHV KAALYN/Xpnom
NS opeiretar og avOpmmoyevy aitio. Ot EMATDOCELS TOV GVYKEVIPOVOLV TO UEYOAVTEPO
KOUUATL TNG €pELVOG, €lval EKEIVEC TOV OPOPOVV TIC AAANAETIOPACELS TOV OALNYDV
oTNV KEALYM/YPNGELS YNG LE BEUEAMDOT YOPAKTNPICTIKE Kot dlEPYAGieg TG YNG OTMC
T0 KAlpa, 0 Plo@uoikdc Kot VOPOLOYIKOG KUKAOG, 1 PLOTOIKIAOTNTO KOl €V TEAEL OL
VANPEGIEC TOV OWKOCLOTNUOTOS. O PNYAVIGUOS TOL LITOKIVEL OVTES TIC OAlaYEG glvan
TOATAOKOG KOl TOALTTOPAYOVTIKOG. Ot mapdryovies Tov GUUBAAAOLY GTIG OAAOYEG TNG
KaALYNC/xpNomg yns, ivar moAvddotatot (mepBariovtikol, KOVOVIKOi, OUKOVOUIKOL,
TOMTIKOT K.0l.) KOt OAANAOETOPOVV pe TAN00G GAA®DV TapayOVTI®V OAAGL Kot HETAED
TOVG.

Yxomog TG daTpPNS etvar va SlEPEVVIGEL VO ATOTLTTMGEL KO VO KOTAVOT|GEL
TO GUGTNUO OAAXYDV KEALYNC/XPNONG YNG OE O1APOPES KAMULOKES ATOKOIKOTOLDOVTOG
TOVG TTOPAYOVTEG TTOV EMOPOVY GE ALTO KO TEAOG VO YPNGLLOTOGEL TV TANPOPOpia
OV TPOKVTTEL Y10 TNV TPOGOUOIWGT LEALOVTIK®V Gevapimv eEEMENS TOV GLGTILOTOG.
H Biproypagio vroypappiler 6Tt moAAEG amdTEPES TPOG VTN TNV KatehBvVeN £youv
opopéva PHeBOOOAOYIKA LELOVEKTALATO TOV LIOVOUEDOLV TNV EYKLPOTNTO KOl TN
YPNOUOTNTO TV amoteAecudTov. o Tapadetypo moAAég peAéteg dev Aapfdvovy
VEOYN TIC TOAAATAEG KMUOKES TOV EUMAEKOVTOL OTIG OAAOYEC KAALYNC/XPNONG YNG,
CLUUTEPTAOUPAVOVTAG OTIS AVOADGELS TOVG LOVO TOPdyovTes oV AEITovpyodV GE pia
povo kAipaxa (.. dtoiknTikn 1 Ayng anopdcemv). Emmiéov, oe moALéC pehéteg, ot
TapeABOVTIKEG aAAAYEG KAALYNG/XPNONGS YNS ovTIHETOTILOVTAL GUYVA GE YOUNAN
avéivon (Bepatikn, YwPKn Kot YpOoviKY)), YEYOVOS TO 0010 DVITOVOUEVEL TN YPNCULOTNTA
TOV OmMOTEAECUATOV. EmmAéov, TOAMEG LEAETEG EMKEVIPMOVOVTAL GE 0L GUYKEKPLUEVT
TAELPE TOL PALVOUEVOL (TT.Y. KOWMVIKOOIKOVOWUIKT) ¥0pig vo Aapfdvovv vroym
GAAOLG  ONUOVTIKOVG TOPAYOVTEG €V 1) TAEWOVOTNTO TOV UEAETOV TOPEXEL
OTOTEAECUOTO LOVTEAOTOINONG OV O0eV VIOKEVTOL GE ovaAivon evancOnoiag. o to

Adyo avtd, 1 dwtpPn avt TEPLYPAPEL £va. OAOKANPpOUEVO peBOdOAOYIKO TAAIGLO TO



omoio pe ypron nedddwv I'ewmAnpopopikng Bo cupfaiel 6TV Katavonot Tov TPOTOL
Aertovpyiog TOL GLOTAUATOS OCAAAY®V KAALYMC/YPNoNg Yne. Avtn n dwrppn
vrootpilet 6Tt Eva oOAoKANPOHEVO peBodoroyikd mhaicto Oa tpémel va oyedlaoTel pe
TETOL0 TPOTO MOTE 1) VoL AAPAVEL VTTOYT TIG TOAAATAES KAILOKES TOV EUTAEKOVTOL GTO
CVOTNUO OAAYDV KAADYNS/XPNONS VNG, 11) VO TapEXEL TANPOPOPIEG GE TOAD LYNAN
Oepotikn avdivorn Aapavovtag voyn Oyl LOVo Yo TIG dAlayES HETAED Katnyopumv
KAALYNG/YPNoNG NG, OAAG Kot LETOPOAEG TNV TUKVOTNTOG TOVG, ii1) VO OVIYVEDEL TIG
aALOYEG KAADYNG/XPAONG YNS OE XPOVIKN OVAADGT OV EMITPEMEL TNV TOVTOTOINGN
dvicwv oAloy®V Kotd TNV mEPI000 HEAETNG, KATL TOL €ivol OmOPOITNTO Yoo TNV
AVTITPOCOTEVTIKOTEPT 0proBéTnon TV cevapiwv, 1v) va Aapfdavel vtoyTn Eva gvpo
QACLO. TOPAYOVTOV OAAAY®V KdAvymc/xpnong yng (meptPailoviikoi, Kowmvikoi,
OIKOVOLKO1, TOMTIKOL K.0L.), V) VO TOPEYEL ATOTEAEGLLOTO TOV VITOKELVTOL GE AVAALGT
gvocOnciogc.

Apywcd, dtepeuvdrtarl o BEATIOTOG cLVOLACLOS HEBOOOAOYLUDY TTOV OITOLTOVVTOUL
v emegepyacio Kot TaEvOUNGT SOPLPOPIKMY EIKOVAV, LLE GKOTO TNV OViYVELOT) Kot
TOGOTIKOTTOINGN aAlaydV. Emmpocheta diepeuvatatl o poOA0G EOIKOV LETPIKMV TOTIOV
OTO YOPUKTNPIGUO TG cVVOeEoNC Kot doung Tov tomtiov. H mpdn mepintmon perléng
aQOPA TNV TPOSTATEVOUEVT TEPLOYN TOV YUNTTOV, ATTIKNG. O1 TEPLOOIKES AAAOYEC TTOV
EhoPav yopa oe pia tepiodo 28 TV yaptoypaenONKay Kot ToGOTIKOTOMONKAV LE
xpnomn pebddwv tmiemiokdnnong, Zvomudtwv ['eoypapikodv ITIAnpoeopiov (EI'TI) kot
UETPIKAOV TOT{OV.

Me Bdom ovt) v O1epedvoT], GTN CLVEXELD, TO KOUUATL TNG TOEVOUNGNG
d0PLPOPIKAV EKOVOV PEATIOVETOL [E TN XPNON KO OTOTEAEGUOTIKNG MUV TOUATNG
pebodoroyiag Katd tn omoio M povtelomoinon AapuPaver vwoOYn TANPOPOPic. TOL
npoépyetal amd NN dwbéoya dedopéva kaAvyng/ypnong yns. H dwdikasio vt
LLELOVEL CTLLOVTIKA TO ¥POVO TTOVL aatTeEiTaL Y1 TNV TAEWVOUN G SOPLPOPIKADV EIKOVAV,
pe vymid mocootd axpipfeag. H peBodoroyia epappoletar oe eBvikn kAipoka, e €va
ovuvoro 27 ewovwv Landsat. Qg avelaptnteg petafantéc 1o meptrappavel cuvorukd 20
eminedo. MOV APOPOVV  €KTOG Oamd TO QAGUOTIKA KovAAl, Kot  O16popoug
TOADQUGUOTIKOVG OEIKTES, YEMUOPPOAOYiD £3A(QOVG Kol AmOCTOCT Omd TO 0O1KO
diktvo.

X1 ovvéyeln, olepevvdrtor pio pebodoroyio m omola emitpénel TV emitevén
ToAD VYNNG Bepatikig avaivong, pe muowtoportn Swdwkacio. H pebodoroyia
neptloppdavel eveoudtoon mAnpogopiog amd MO vIapyovto dedouéva, T OOl
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TPOEPYOVTOL ATtO TOAAATAEG TN YEG Kot €fvor eTepoyev (TOAAATAEG KAMPLOKES avaALOTG,
YOPIKN OlKkptikny kavotnta). H opoyevomoinom tovg €ytve pe tn ypnomn &vog
aAyopiBpov UNYOVIKAG €KHAONoNG Kol TO OMOTEAECHO OLEKPIVE TNV  OOTIKN
KAALYM/xprion YNG o€ mEVTE Katnyopieg avdioya e tnv mokvotnta te. H pebodoroyio
emiong epapudleton o Bvikn KApaKa.

210 endpeVo KePAAoo eEeTALETAL 1) ATOTEAEGLOTIKOTNTO TOV GLVOLOGLOV EVOG
U1 TOPOUETPIKOD HOVIEAOV UNYOVIKNG eKpaOnong pe éva yopikd povtédo Cellular
Automata ce po Tpocéyylon mov cLvovalel Ta. TAgovekTHHATO TG KAOe peBddov.
[Teprypdopetor €vo mapddetypo Kotd 10 omoio ot aAAaYEG KAvymg/ypnong yng
TPOCOLOIOVOVTOL LE PACT) OLPOPETIKE GEVAPLA TAL OTTOL0L AVATOPLGTOVV SLOPOPETIKES
OLKOVOUIKES cLVONKEG Ko emtimeda avamtuéne. H mpocéyyion epaploctnKe o€ TOmTKN
KMpoaka pe meployn perétng ta Meocoysto Attikng. Ot meplodikés aAlayEc mov EAafav
xopa v mepiodo 1985-2015 yaptroypaenOnkav, Tocotikonomdnkayv Kot EETACTNKE
N ovoyétion tovg pe 20 yopikohs mapdyovteg LTOKIVNONG (KOV®VIKO-01KOVOUKOL,
neptparloviikoi, vopobetikol). H ypovikny xotavoun tov oAAay®dv 00NyNnce GTO
OYEOCUO TEGGAP®V CEVAPI®V TO ONOl0L AVATOPIGTOVV  OLPOPETIKES PAGELS
OWOVOUIKNG avantuéng. H yeoypaeikn katavoun tovg 6e cuvovaoud pe tovg 20
TOPAYOVTEG VTOKIVIONG povteAomombnkay Yoo vo TPOKOWYOLV Ol  EMPAVELES
mhavotTog aAhaydv. Me Bdon avtég Tic EMPAVELES, 01 AALXYEC TPOGOUOIDONKAY £mG
10 £10¢ 2045 10 K40 £va amd To TEGoEPA GEVAPLAL.

Téhog, mepryphopeton 1 Onuovpyla  €vOg  OAOKANPOUEVOL  HOVTEAOL
TPOCOUOIMONS TV aALAYDV KdAvymc/xprong yng o€ meprpepelokd eninedo (Attikn),
ocvvdvdlovtog Oieg Tig pebodoroyieg mov cuintOnkav tponyovuévas. O 6TodY0G eivar
N Olepedvnon  EVOAMOKTIKOV  GEVOPI®V OV  OvTIKOTOTTPILOVYV  SLOPOPETIKEG
TPOYUATIKOTNTEG OKOVOULKNG amdO0oNG Kol EVOAAOKTIKEG EMAOYEG Gyedtacuov. H
OAOKANPOUEVT TTPOGEYYIOT TEPIAAUPAVEL, NU-OVTORATY TAEVOUN G KAADYT] ¥PNONG
MG o€ mMOAD LYMAY Oepatikn avdAvor, OKpivovTag GUVOAIKA OKT® KT yopieg
KdAoyng/ypnong yng ot omoieg mepthapPavovv  Tn  SUKPION NG OOTIKNG
KAALYNS/YPNONG YNNG O TECOEPIS Kotnyopieg avdAoyo pe Ty mokvotta s ¢
avelhptnreg petafAntég 1o poviého taSvounong teptiapPavel cuvoikd 20 eminedo
OV QPOPOLY EKTOG OO TO. QPUCHOTIKA KOVAALD, Kol SAPOPOLS TOAVPOGLOTIKOVS
deiktec KaBm¢ Kot T Yewpoporoyia ddpovs. H aviyvevon kot mocotikonoinon twv
Stpovik®Vv aAAay®dVv (1991-2016) 001 yNncE GTNV YEOYPOPIKT KOl XPOVIKN OTOTOITMG

TOVG KOt €V cLveEYElD GTNV GLGYETION TOVG Le 27 TapdyovTeES LITOKIVNOTNG (KOWV®VIKO-
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owovopkoi, meptPariovtikoi, vopobetikol), ol omoiot mpoépyovtol amd TOAALATALS
mmYéG Ko eivon etepoyevels (TOAMATAEG KAMUOKES OVAALONG, YOPIKT OLOKPITIKN
wavotta). H povtelomoinon tg oyéong oAhaymv Kot Topaydviov VTOKivong
odnynoe oty Katackevn 18 dupopetikdv empaveidv mbavotntog arliayov. To
aroteAéopato evoopatodnkav oe éva yopikd poviého Cellular Automata kot ot
aAayég mpocopoldOnkav €mg to étog 2040 pe PBdaon tpia oevdplo Tt omoin
AVOTOPIGTOVV  SLOPOPETIKEG (PAGES OIKOVOKNG ovamtuéng. Télog epoppootnke
avdivon gvaictnociog TOV OTOTEAECUAT®OV OTN YOPIKN OOKPITIKY KAVOTNTO TOV
EICPOMY TOL HOVTEAOVL. XKOMOC 0avTOD TOV EYYXEPNMOTOS MTOV Vo mopoyfodv
amoteAécpato To omoia ivar axpPn aveldptnta amd T yOPIKN SLKPLTIKN KOVOTNTO

TOV EIGPOMYV TOV LOVTEAOV.
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Chapter 1: Introduction

The intensification of research related to land cover and land use changes has
emerged on the global environmental research agenda in the mid-1970s, with the
discovery - realization that processes taking place at the surface of the Earth directly
and indirectly affect the climate and the environment (Sagan et al., 1979). Land cover,
according to Moser (1996), is a term referring to the physical attributes of the Earth’s
surface, including the soil, biomass, crops and human constructions. The term is often
confused with that of land use which, by contrast, according to Mucher et al. (1993), is
used to refer to the human activity that is directly related to the Earth. In other words,
the term land use primarily refers to the purposes for which humans manage land cover
by using its natural resources or impacting its ecological processes that in turn directly
determine the land cover. An important distinction between the concepts of land use
and land cover is the fact that the former focuses on economic activities occurring on a
given surface of the land, while the second does not (Meyer and Turner Il, 1996). Given
that humankind alteration of Earth is substantial and ever growing, any significant
changes in land use affect land cover and vice versa (Vitousek et al. 1997). Through a
complex mechanism, pertaining to complex theory, changes in land cover react locally
on land uses while also contributing to wider processes, such as climate change
(Feddema et al. 2005), desertification (Gibbs and Salmon, 2015) and global
environmental change (Turner 11, 1994). Moreover, land cover changes hold wide-
ranging significance for the structure and function of ecosystems, with equally far-

reaching consequences for humans in every aspect.

Monitoring and understanding the land use/land cover (LULC) dynamics and
the drivers behind it, in all aspects and scales, is therefore essential. The drivers
involved to LULC change are multidimensional, inter-related, interact across different
scales and can be broadly distinguished into bio-physical (eg physical characteristics of
an area) and socio-economic (e.g. demographic, social, economic, political and
institutional factors). For instance, the way the land resources are employed by land
owners, generate immediate consequences on land cover which in turn dictate
consequent adjustments in management strategies. Such adjustments usually have an
influence on the socio-economic conditions that produced the original uses, and in turn

lead to different uses. On the other hand, inversely, changes in the socio-economic
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conditions alone may trigger land use and in turn land cover changes (Lambin and
Meyfroidt, 2010).

The vast majority of land cover changes are human induced. Land cover
changes are considered to be the most ancient influence of humans on the environment
and these changes are substantial and growing (Sagan et al., 1979, Vitousek et al.,
1997). As humanity grows, the technology expands along with the needs to resources
and economic exploitation of the land. This human domination inevitably leads to
Earth’s transformation. This dual role of humanity, which contributes actively to land
changes and at the same experiences the consequences of those changes, emphasizes
the need for a better understanding of this human-environment interaction. Land cover
changes have both desirable and undesirable impacts with a magnitude that varies from

local to global scales.

The impacts that attracted the most attention by the scientific community are
those adapted to the interactions of LULC changes with fundamental features and
processes of the Earth such as climate, biochemical and hydrological cycles,
biodiversity and ecosystem services (Foley et 2005, Vitousek et al., 1997). In particular,
the composition and characteristics of the Earth’s surface have an impact on the climate,
determining the amount of evaporation and infiltration as well as the surface water
runoff and thus the hydrological cycle (Becker and Bugmann, 2001) and the
atmospheric composition (Falkowski et al., 2000). Changes in the hydrological cycle
and the climate, in turn, have an impact on soil quality, leading to land degradation
through soil erosion, which in the long-term triggers desertification (Le Houérou,
2002). The structure and composition of land cover is also directly related to
biodiversity and rapid changes inevitably lead to fragmentation of habitats with
multiple direct effects on species distribution (Tilman et al., 2001). All the above-
mentioned, broad categories of impacts interact and in turn trigger further short-term
and long-term effects. Equally important is the impact of changes in society. Changes
in the climate, the water equilibrium, the quality and hence the productivity of soils, the
biodiversity and the capacity of ecosystems to support human needs, make human
society vulnerable to undesirable impacts which in turn directly threaten and may be
disrupting to the economic and socio-political conditions of society (Foley et 2005,
Schroter et al., 2005).
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This dissertation is an effort to explore part of the complexity that characterizes
the LULC changes system and provide insights into aspects that are commonly
recognized as limitations still to be addressed. The literature stresses that many attempts
toward this direction suffer from certain methodological drawbacks that undermine the
validity of the outcomes and the transferability to other areas of study (see chapter
2;4;5;6;7;8). To name a few of these drawbacks, many studies do not properly address
the multiple scales involved in LULC changes, concerning only factors operating at a
single scale (e.g administration or planning scale). Additionally, in many studies,
historical LULC changes are often addressed in low resolution (both thematic, spatial
and temporal), which provides weak insights in every aspect of the phenomenon.
Moreover, many studies are focused on a narrow perspective (e.g socioeconomic)
disregarding other important factors while the majority of studies provide modeling

results that are not subject to sensitivity analysis.

The overarching aim is to enhance the understanding of how the LULC system
functions by building an integrated methodological framework devised for detecting
historical changes, delineating and quantifying the factors of differing importance that
drive these changes and sketching alternative future LULC trajectories. This
dissertation argues that an integrated methodological framework should be designed in
a way that sufficiently i) takes into account the multiple scales involved in LULC
systems, ii) provides insights into hidden patterns, by taking into account not only the
prominent changes between major LULC categories, but also changes in density, iii)
detects LULC changes in a temporal resolution that enables the identification of uneven
patterns throughout the study period which in turn enables the sound delineation of
scenarios, iv) takes into account socioeconomic, biophysical, legislative and land use
factors spanning a broad spectrum of LULC change driving forces, v) provides results

that are subject to sensitivity analysis and unbiased to the technical details of inputs.

This dissertation will be able to provide answers to the following detailed research

questions:

- How can heterogenous data, derived from various sources and expressed at multiple

scales can be efficiently combined in a LULC modeling framework?
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- How and on what extent do the patterns of outputs change over different scales and

spatial resolutions?

- Which are the spatial determinants to the different types of LULC changes, in a region

that experienced wide transformations?

- How and to what extent the socio-economic circumstances spatially influence the
changes in LULC and how this information can be used to evaluate alternative

pathways and policy options?

The originality of this dissertation lies in the focus to address key existing
methodological shortcomings assembling in a unified framework the following
elements: i) Development of a semi-automated process to achieve exhaustive training
in conjunction with advanced processing while at the same time limiting the costs, both
in terms of time and computational resources. ii) Efficient fusion of qualitative and
quantitative data derived from multiple sources, expressed at various scales and
resolution, allowing the full exploitation of available information. iii) Devise a robust
modeling approach, designed to handle variables of different nature (continuous and
categorical), insensitive to overfitting and collinearity and capable to handle large
datasets without being computationally exhaustive. iv) ldentification of important
linkages and feedbacks between LULC patterns in a structural hierarchical manner
delineating the contribution of various spatial determinants to each LULC change
independently. v) High thematic resolution of analysis considering not only the actual
type of land use but also the density, that is expected to reveal new patterns and different
aspects. vi) Integrated modeling of LULC changes that takes into account the historical
LULC spatial and temporal patterns and simulates alternative trajectories, by a multiple
scales approach. vii) Accurate detection and projection of scattered unplanned
development patches, which is often reported as a challenging task due to randomness
and variation in structure and composition. viii) Coupling of non-parametric machine
learning modeling with spatially explicit and application-oriented scenario-based
simulation integrating the advantages of each approach to a unified ensemble. ix)
Design of a methodological framework to generate results, derived from scenario-based
simulations that are insensitive to bias and uncertainty related to spatial resolution of

inputs and scaling issues.
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The novelty of this dissertation can be summarized in four key aspects.
i) It presents an integrated methodological framework that allows the
efficient fusion of heterogeneous data expressed at multiple scales,
forming a unified approach that allows the efficient detection and
modeling of LULC changes, ii) it presents advances towards the detection
and modelling of urban development in spatially continuous and
discontinuous forms, iii) It introduces a sensitivity analysis for the
identification of changes regardless of the spatial scale involved and
iv) it demonstrates the utility of density based LULC change detection
and modeling. The presented integrated framework is operational, cost effective and

transferable.

The dissertation is structured in five core chapters. Chapter 4 explores the
application of methodologies that employ multi-temporal satellite imagery and geo-
informatics. This chapter describes the pre-processing steps of the satellite data, the
classification and the change detection techniques adopted throughout the dissertation.
Chapter 5 proceeds a step further the classification methodology and describes an
efficient and robust semi-automated methodology for LULC classification using
satellite imagery, and geo-informatics. Chapter 6 focuses on how a very high thematic
resolution can be achieved. It describes a methodological framework for LULC
thematic disaggregation, employing datasets from multiple sources, expressed in
various scales and resolutions. Chapter 7 explores the effectiveness of coupling a non-
parametric machine learning algorithm with a spatially explicit CA model, in an
approach that combines the advantages of each method. It describes a scenario-based
simulation modeling framework that sketches an appraisement of different alternative
pathways related to economic circumstances and development. Finally, chapter 8 looks
at the terrestrial part of Attica region. The aim was to explore, at the regional level,
potential future LULC trajectories under three distinctive scenarios that reflect different
economic performance realities and alternative planning options. To achieve this, an
integrated approach that combined all previously discussed methodologies was
designed. Chapter 9 provides answers to the detailed research questions and stresses
the lessons learned and the concluding remarks of the dissertation.
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Chapter 2: Land use/land cover monitoring and modeling

2.1 Land use/land cover monitoring

Given that a major proportion of the Earth’s land cover is influenced and thus
shaped by human activities and land use (Vitousek et al. 1997), long-term observation
of LULC is essential (Lambin and Meyfroidt, 2011). Traditional field data approaches
face several limitations as they are destined to a local extent. Moreover, they are source
demanding in terms of personnel, equipment and time and also, they are limited by
topographic and climatic conditions and low accessibility to remote areas. Remote
sensing (RS) along with Geographic Information Systems (GIS) can be combined to
successfully provide spatially consistent and detailed LULC information, a prerequisite
in order to monitor the Earth effectively (Coppin et al., 2004; Rozenstein and Karnieli,
2011). An increased number of satellite data (Belward and Skeien, 2014) can facilitate
the growing demand for multi-spectral and multi-temporal information of the Earth’s
surface over a wide range of scales and data types in order to monitor the Earth
effectively (e.g Hansen et al., 2013; Schneider et al., 2009; Zhu and Woodcock, 2013).
However, adopting RS techniques and relying on satellite data involves facing an
imperative trade-off. Very high resolution (VHR) imagery comes with an amount of
costs, a fact that acts as an obstacle in large scale and multi-temporal approaches. On
the other hand, low resolution data are free of charge and, more recently, in abundance.
However, this type of data may be unsuitable to monitor certain phenomena and to

capture patterns that usually occur on a smaller scale, like LULC changes.

With the Landsat program running for almost five decades now, high spatial
resolution satellite images have been widely used for monitoring LULC and its changes
(Hansen and Loveland, 2012). The advantages of using Landsat data are the suitable
spatial resolution for LULC monitoring, the very high temporal resolution due to the
low revisit cycle of the satellite and the high spectral resolution offered. To add on that,
the opening of the Landsat archive readily available for download with no costs, makes
it the only feasible option for studies that span some decades of time and cover large
extents (Wulder et al. 2016).

Recent technological and methodological advancements contributed to the wide

spreading increase of digital spatial databases. Nowadays, various and at multiple
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resolutions LULC datasets exist but with discussed limitations and challenges still to
be addressed (Giri et al., 2013; Herold et al., 2008). On a regional scale, for Europe,
two frequently used databases are the Coordinate Information on the Environment
(CORINE), a pan-European LC map for the years 1990, 2000, 2006 and 2012 provided
by the European Environmental Agency and the Pan-European Land Cover Monitoring
database (Mucher et al., 2001). These two databases suffer from limitations, namely
low spatial resolution and minimum mapping units (MMU), inconsistency from one
country to another, lack of rigorous accuracy assessments and thus reliability (Neumann
etal., 2007; Waser and Schwarz, 2006). The most important limitation, of the available,
both global and regional datasets that is still to be addressed, is the discrepancy between
LC classes, their overarching definitions, their nomenclature and thus the heterogeneity
of information provided. Another serious issue about the CORINE LC database, which
emanates from the fact that is produced by each country separately, is the outdated

available information for some countries like for example Greece.

Additionally, the feasibility of using already available datasets in a range of
research applications and management activities is limited by their low thematic
resolution. Thematic resolution refers to the detail in the definition of LULC categories
and thus it directly determines the amount of geospatial information of hard classified
categorical data. The amount of detail in a LULC map, defines how meaningful and
insightful the map is for a wide range of research questions. Several authors have
explored the effects of thematic resolution in land use modeling (Conway, 2009;
Pontius and Malizia, 2004), land-cover pattern analyses (Buyantuyev and Wu, 2007)
and landscape indices behavior (Bailey et al. 2007), converging that the outcomes are
significantly influenced. Whilst thematic resolution is important to a range of
applications, available regional and global datasets in most cases represent important
LULC categories lumped into one or two broad classes, a fact that is far from reality on
the ground (Potere et al. 2009). Thus, the usage of these data to research efforts that are
centered on areas that faced a multitude of transformations is limited. On the contrary,
depending on the area of study and the dominant transformations occurred in that area,
the discrimination of LULC categories according to their density and continuity is
crucial. For example, in areas that faced various forms of urbanization, taking into

account the changes occurred in not only the extent but also to the density of urban
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areas, will reveal important insights. The same applies to research efforts focusing on

areas with forested land or cropland.

Therefore, to avoid the limitations stressed above, studies tailored to assess the
LULC changes on a specific area and period cannot rely on already existing hard
classified datasets. Temporally consistent and accurate LULC maps need to be
produced to satisfy the growing demand for spatially explicit data. To meet these
requirements a number of researchers focused on introducing increasingly sophisticated
approaches, which are at the same time less source demanding and labor intensive.
Currently, there is a clear trend in the research agenda to develop and suggest automated
(e.g. Chen et al., 2012; Comber et al., 2004; Huth et al., 2012; Radoux et al., 2014;
Yuan et al., 2009) or semi-automated (Jiang et al., 2012; Xian et al., 2009) LULC
classification approaches. A key element to accomplish minimum intervention by the
user is the utilization of existing and readily available LULC data, to train the classifier
(Chen et al., 2012; Jiang et al., 2012; Klein et al., 2012; Radoux et al., 2014; Xian et
al., 2009). Under the assumption that changes usually occur only to a small fraction of
the land, incorporating in the process accurate but outdated information is reasonable

and promising to eliminate remaining gaps in LC mapping.

2.2 Land use/land cover modeling

In recent decades, a wide variety of LULC change models have been developed
to meet the scientific community's need for understanding how LULC evolves and why
(Agarwal et al. 2002, Briassoulis, 2000). Models are widely used to analyze the
complex structure of linkages and feedbacks between drivers of change, determine their
relevance to particular LULC changes and project how much land is used where and
for what purpose, under different predefined attributes and conditions. This type of
information is then adopted in a meaningful way in order to support policy decision
making related to land-use (Mallampalli et al. 2016). However, by definition, models
can not exactly replicate complex interactions and nonlinear relations, but they are
rather, at a fundamental level, a process that provides a platform that when formally
expressed, consists of a tool that allows certain experiments (Brown et al. 2013). When

the system in question is simple, the processes and interactions that characterize it can
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be easily determined and the results are somehow expected, while projections and other
kinds of extrapolations are a simple and straightforward task. But when dealing with
inherently complex systems, as is the case with LULC changes, the models are capable
to represent and exemplify only small fractions of the whole mechanism in order to

highlight important processes.

The major technological breakthrough removed technical barriers and in
conjunction with the rapid methodological advances, facilitated the proliferation of
available LULC models, geographical datasets and software. Contemporary theoretical
approaches and analytical tools are used to describe, interpret and predict, both
qualitatively and quantitatively, the behavior of LULC changes. Nowadays models are
frequently used to answer questions such as which factors contributed to the current
state of land cover, or how much and what are their interdependencies (McBurney,
2012). Apart from the delineation of causes and consequences, the recent
methodological and technological advancements have opened the way to more
articulated models which are capable to answer more complex questions such as what
the possible outcomes would be if alternative pathways were followed, which
alternative outcome is the most desired out of many as well as a diverse range of similar
‘what if” scenarios. Scenario-based analysis is now increasingly being adopted by a
range of disciplines pertaining to LULC change, as fruitful experiments for exploring
the possible future trajectories of the historical and current trends (Murray-Rust et al.
2013). Taking as granted that, in reality, the number of potential futures is infinite
(Greeuw et al., 2000), scenarios are not used to exactly predict the future, but rather to
explore a range of possible futures and to consider a range of alternative pathways. To
do so, the scenario-based analysis fully recognizes the infinity of potential futures and
attempts to focus only to an understandable and manageable set of alternatives, by
delineating plausible, presumably coherent and internally consistent storylines of
different socio-economic development trajectories (Rounsevell and Metzger, 2010).

Modeling LULC have its origins in the family of spatial interaction models but
the conceptualization of the models is built around economics, regional science,
sociological and political economy, and nature-society interaction theories
(Briassoulis, 2008). Precisely, given that land use, in other words the exploitation of
land cover resources is directly related to economic motives and the principal drivers

that drive LULC changes are socioeconomically oriented, the von Thunen's agricultural
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land-rent and Alonso's urban land-rent theories still stand as a cornestone of modeling

applications.

Models designed to analyze LULC dynamics can be divided into various
categories according to their perspective, their domain, the methodological framework
they apply, their spatial or non-spatial nature etc (literature reviews by Agarwal et al.,
2002, Briassoulis 2000, Parker et al. 2003). A simple, non-exhaustive, classification
with regard to their methodological origins would include i) Empirical-statistical
models using multivariate regression and geostatistical analysis (e.g. He and Lo, 2007,
Millington et al., 2007, Poelmans and Van Rompaey, 2010). Models of this type often
suffer from limitations such as sensitivity to outliers, collinearity issues and factors
compatibility (Eastman et al. 2005). ii) Stochastic and optimization models (e.g. Brown
et al. 2002), which are processes that consider one objective or simply convent multiple
objectives into one, and the optimization takes place with the use of weighting methods
(Ma and Zhao, 2017). iii) Dynamic process-based simulation (Veldkamp and Fresco
1996, Verburg et al., 2002) which often involve multiple models subdivided in modules
that capture non-spatial (e.g demand) and spatially explicit (e.g allocation) processes.
iv) Agent-based modeling (e.g. Manson, 2005, Robinson et al. 2012), which capture
decision making processes at the individual, household or neighborhood levels. Agent-
based models can be very complex as part of distributed artificial intelligence method
and when it comes to agent behavior and are often parametrized with qualitative social
survey data and other types of participatory approaches (Zagaria et al. 2017). v) Markov
chains (e.g. Dongjie et al. 2008) which are frequently used to delineate LULC changes
as a transition probability scheme that is statistically estimated based on past transition
proportions between different types of LULC. vi) Cellular automata (CA) (literature
review by Sante et al 2010) which are based on transition rules and neighborhood
interactions between LULC categories. CA are spatially-explicit and application-
oriented and are capable to represent stochastic, non-linear processes in a conceptually
simple way (Batty et al. 1997). The basic principle of CA models is that LULC changes
can be explained by the current state of a cell and its surroundings and the transition
rules that dictate the possible change of a cell, can be expert-based or calculated from
statistical analysis of historical LULC changes (White and Engelen, 2000).

When modeling LULC, the scale spatial resolution and extent of the study area,

are important attributes of all spatially explicit models (Agarwal et al 2002). The term
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scale refers to the spatial, temporal, quantitative, or analytic dimension used by the
modeler to measure and study the processes that are modelled (Gibson et al., 2000).
Scale also involves the terms extent and resolution. Extent refers to the magnitude of a
dimension used in measuring (e.g. study area boundaries on a map) whereas resolution
refers to the precision used in this measurement (e.g. pixel size) (Gibson et al. 2000).
In turn, resolution refers not only to spatial resolution, but also to thematic, which is the
level of precision in LULC categories and to temporal resolution which is used to refer
to the time span and frequency of the analysis. Modelling LULC changes requires a
range of scales to be defined since it is a phenomenon that involves multiple processes
that act over different scales. At each scale different processes have a dominant
influence on the outcome (Meentemeyer, 1989). Approaches that do not implement a
multi-scale approach are prone to aggregation or oversimplification errors and thus fail
to reproduce cross-scale interactions. This is due to the fact that features and processes
that operate at local scales are not always observable when dealing with broader extent
case studies and coarse spatial resolution data (Verburg et al. 2004). On the other hand,
studies that focus solely on the local level often fail to incorporate information about
the general context which can only be derived from coarser spatial resolution data.
Taking as a fact that all models are driven by the data used as inputs, studies focusing
on individual phenomena, considering only a single scale and using data that are only
particularly suitable to their study area, are not always representative, transferable or
reproducible to different scales and are characterized by uncertainty and various critical
assumptions (Kok and Veldkamp 2001, Veldkamp et al., 2001, Verburg et al. 2006).
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Chapter 3: Research methodology

This dissertation seeks to devise an integrated methodological framework for
LULC changes modeling that will be able to sufficiently address all the aforementioned
aims and objectives and provide answers to the research questions. The approach will
demonstrate how to take into account the multiple scales involved in LULC systems,
will detect, map and quantify the LULC historical changes in sufficient spatial,
temporal and thematic resolution, will incorporate in the modeling a broad spectrum of
LULC change driving forces socioeconomic, biophysical, legislative and land use

factors and will present results that are subject to sensitivity analysis.

To meet the aims and objectives and to address the scientific challenges that
emerge, the dissertation is structured into five methodological steps that are
demonstrated in five applications (Table 1).

First, it describes the pre-processing steps of the satellite data, the classification
and the change detection techniques adopted throughout the dissertation. The approach
is demonstrated in Hymettus mountain, Athens. The LULC types are classified and
quantified over a study period of 28 years. Post classification comparisons, in the form
of cross-classification and cross-tabulation are applied to detect, map and quantify the
LULC changes spatio-temporally. Additionally, a set of landscape metrics, suitable to

delineate the structure and composition of the LULC are computed for each year.

Next, the LULC classification proceeds a step further by devising an efficient
and robust semi-automated methodology for LULC classification using satellite
imagery, and geo-informatics. The application is demonstrated at the national scale.
Information extracted as training, from already available land cover datasets, reducing
significantly the time consuming and labor-intensive process of training a classification

model.

Next, the focus was on thematic disaggregation and efficient data fusion in order
to achieve very high thematic resolution. The approach adopted a non-parametric
machine learning modeling framework that allowed the fusion of existing, readily
available and with acceptable accuracies datasets, in order to achieve a very high

thematic resolution in which urban LULC is classified into five categories according to
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continuity and density. This application is also demonstrated at the national scale with

a high degree of automation.

Table 1. Methodological steps and applications of this dissertation.

Theme

Spatial Scale

Model

Techniques

Forests

Local

Regional

National

Chapter 4

Random Forest (RF)
Classification

Change detection

Cross tabulation-
classification

Landscape metrics

LULC

Chapter
5

RF Classification

Semi-automated LULC
classification

Urban

Chapter
6

RF Classification

Semi-automated LULC
classification
Thematic disaggregation
Data fusion

Urban/Acrtificial
non-Urban

Chapter 7

RF Classification / RF
Regression / Cellular
Automata

Change detection

Cross tabulation-
classification

Landscape metrics
Data fusion
Scenario -based simulation

LULC

Chapter 8

RF Classification / RF
Regression / Cellular
Automata

Semi-automated LULC
classification

Thematic disaggregation
Data fusion
Change detection
Cross tabulation-
classification
Landscape metrics
Data fusion
Scenario -based simulation

Multiple resolution
Sensitivity analysis

Next, the effectiveness of coupling a non-parametric machine learning

algorithm with a spatially explicit CA model is explored. A scenario-based simulation

modeling framework is devised in order to sketch an appraisement of different

alternative pathways related to economic circumstances and development. The focus is

on a locality (Messoghia plain, Attica) that experienced vast transformations and looked

at the urban and industrial LULC categories. After detecting and quantifying the
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periodic LULC transitions occurred during 1980-2015, the observed changes were
combined with 20 dynamic, biophysical, socio-economic and legislative factors, to
produce transition potential surfaces. Four scenarios, that reflect four distinct
chronological frames marked with uneven development, different economic

performance realities and land-use planning, were projected until 2045.

Finally, the final application explores at the regional level, potential future
LULC trajectories under three distinctive scenarios that reflect different economic
performance realities and alternative planning options. To achieve this, an integrated
approach that combined all previously discussed methodologies was designed. The
focus is the terrestrial part of Attica region and the study period spanned 25 years (1991-
2016) and LULC is classified into eight categories, achieving very high thematic
resolution. Change detection techniques in the form of cross-classification and cross-
tabulation are used in order to map and quantify the periodic LULC changes occurred.
A total of 18 different possible LULC transitions are identified and combined with 27
different factors derived from multiple sources and represented in different scales, units
and resolutions. Simulation models are calibrated and fine-tuned in order to project the
LULC changes until 2040, under the three scenarios. Finally, the results are subject to
a multi-resolution sensitivity analysis in a process that outputs of each model run are
compared at several spatial resolutions in order to identify areas of future change

disregarding the spatial resolution of inputs.
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Chapter 4: Quantifying spatio-temporal patterns of forest fragmentation

In Hymettus Mountain, Greece
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Abstract

The rapid land use/cover change (LULCC) and landscape fragmentation occurring
around the world is largely attributed to human induced factors. Landscape
fragmentation has become a central issue in landscape ecology and conservation
policies due to its direct influence on biodiversity which consequently endangers the
sustainability of ecological goods and ecosystem services. Thus, fragmentation
monitoring and assessment is a critical issue in land use planning and sustainable
environmental management in order to avoid any irreversible negative consequences.
This research explores the application of methodologies that employ multi-temporal
satellite imagery, combined with geographical information systems and landscape
metrics, to assess forest fragmentation. The objective is to determine spatio temporally
the LULCCs focusing on the woody vegetation in Hymettus Mountain of Greece over
the last decades. The study area, which has been designated as a Natura 2000 site, is
situated near the city of Athens. It faces various perturbations triggered by socio-
economic factors and the absence of an ongoing contextual appraisal for conservation.
To quantify the LULCCs, nine Landsat images spanning 28 years are classified. Post
classification comparison is applied to generate transition maps. Additionally, eight
landscape metrics are calculated. The change detection results identify hot-spots of
forest fragmentation where mitigation measures should be taken, so that further
irreversible alteration of the ecosystem is prevented. The landscape metrics advocate
that, during the last three decades, the woody vegetation has steadily been more
fragmented. The primary direct causes are economic driven intense anthropogenic
activities along with frequent wildland fires whereas the indirect cause is the absence

of a sustainable environmental management and conservation strategy.

Keywords: Forest fragmentation, change detection, Landsat, post classification

comparison, landscape metrics.

35



2.1 Introduction

Socioeconomic development in Greece has considerably been influenced by
land-based economic activities. These are closely related to the structure and function
of landscapes, as long as agriculture, grazing, forest harvesting and mining still
constitute partially income source for its residents (Papanastasis et al., 2008).
Landscape refers to a mosaic of heterogeneous territory composed of sets of interacting
ecosystems (Forman, 1995). It is characterized by dynamics, composition and
configuration that are governed by natural processes and human activities (Forman,
1995). The term composition describes the abundance and variety of different patch
types, while configuration refers to the physical distribution and spatial character of
patches within a landscape mosaic (McGarigal and Marks, 1995).

Over the last century, natural ecosystems in Europe have been substantially
transformed because of socio-economic and political changes (Reger et al., 2007).
These transformations are expected to continue. More specifically the structure of
forested landscapes has changed as a result of natural and anthropogenic disturbances,
ecological succession and degenerative trends (Lambin and Meyfroidt, 2010; Ji et al.,
2006). Human activities have modified the environment to the extent that landscapes
are increasingly becoming dominated by human settlements, artificial cultivation fields
with only scattered fragments of natural ecosystems (Vitousek et al., 1997). Most
natural conservation reserves are progressively being surrounded by intensively
modified environments and in the long-term, are deemed to function as isolated natural
ecosystems (Wolter and White, 2002).

Forest fragmentation is a dynamic process in which contiguous forest tracts are
progressively being sub-divided into smaller, geometrically complex isolated patches
(Gibson et al., 1988). Caused by either natural or anthropogenic agents, forest
fragmentation seriously threatens key features and processes of the earth such as
climate, biophysical and hydrological cycles, biodiversity and ultimately ecosystem
services. More specifically, the composition and characteristics of the earth’s forests,
aggregated at a global scale, affect the climate. First the earth’s forests can impact the
hydrological cycle by determining the amount of evapotranspiration, infiltration and
surface water runoff (Becker and Bugmann, 1999). Second forests affect the
atmospheric composition, by determining the moisture content in lower atmospheric

layers (Chase et al., 1999). Finally, they also determine the emission of greenhouse
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gases functioning as a natural sink (Falkowski et al., 2000; Rockstrom et al., 2009).
Moreover, alterations in the hydrological cycle and climate affect the soil quality, since
the latter is gradually being degraded through erosion that progressively leads towards
desertification (Le Houérou, 2002). The status of forest ecosystems is also directly
related to biodiversity. Rapid changes in health, composition and structure of
ecosystems inevitably lead to fragmentation of habitats with multiple effects such as
species extinction (Gaston, 2005; Schroter et al., 2005; Tilman et al., 2001). Hence,
forests alteration clearly endangers the sustainability of ecological goods and ecosystem
services (Costanza et al., 1997).

To face these issues the European legislation via the Habitats and Birds
Directives ((92/43/EEC and 79/409/EEC respectively) has identified the need to protect
natural ecosystems providing the legal basis to establish the Natura 2000 network. The
overall goal of this network is to implement management plans that will preserve high-
value natural ecosystems, protect the biodiversity and the ecological functions of
natural ecosystems and enhance sustainable management. This network comprises of
approximately 26.000 protected areas (Special Areas of Protection and Special Areas
of Conservation) and covers a total area of about 850.000 km?, more than 20% of total
EU territory (Apostolopoulou and Pantis, 2009; Dimopoulos et al., 2006; Papageorgiou
and Vogiatzakis, 2006; Tsiafouli et al., 2013). The effectiveness of protection strategies
(namely: conservation conventions, protocols and parks) has attracted the interest of
scientists the last decades (e.g. Bruner et al., 2001; Mallinis et al., 2011; Seto and
Fragias, 2007).

Understanding the landscape pattern and quantifying its spatial relationships
and changes through time, is essential for the continuous monitoring and assessment of
ecological processes. Remote sensing (RS) combined with geographic information
systems (GIS) and landscape metrics (LM) can successfully provide spatially consistent
and detailed information about landscape structure, a prerequisite to study ecosystem
services, sustainable resources management and land use planning (Gustafson, 1998;
Riitters et al., 1995; Shi et al., 2011).

Recent developments in the field of satellite RS have increased the use of
spatially explicit landscape analyses. At the same time, numerous landscape indices
have been developed to quantify landscape structure and spatial heterogeneity based on
the composition and configuration of landscapes (Chen, 2002; Coppin et al., 2004;
Cushman et al., 2004; Liu and Zhou, 2005; Seto and Fragias, 2007). Metrics are
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calculated at three different hierarchical levels: landscape, class, and patch. The
landscape level metrics includes all patches within a defined landscape. The class level
metrics represent the spatial distribution and patterns of a land use/cover class, such as
a woodland, and mainly involve differences between classes. Finally, the patch level
metrics are calculated on the individual patches within each class.

The aim of this study is to identify general trends and subtle patterns of forest
extent in Hymettus Mountain, Attica Prefecture, Greece that has been exposed to
persistent anthropogenic activities over the last three decades and is divided into three
main complementary axes: i) Evaluation of the potentials and limits of an integrated
earth observation approach as a valuable tool for monitoring. Furthermore, the
methodology presented in this paper is literally a cost-effective proposal that can be
adopted by land use planners and ministry policy makers, management agencies and
environmental researchers. ii) Exploration of the effectiveness of the protection status
of the area, since it belongs to the Natura 2000 network. iii) Provision of important
feedback and historical evidence associated with the implications of decision-making
being monopolized by economic growth on the one hand and being deprived of
effective conservation measures, on the other hand.

Athens, being the largest conurbation and the densest populated area of Greece,
shows two major contradictions. On the one hand, it concentrates around one third of
the total population of the country, a phenomenon triggered by socio-economic
developmental needs and the comparative advantages of the city to attract investments
and development opportunities (Chorianopoulos et al., 2010). On the other hand, it is
located in a basin where mountains on the three sides and the sea on the other restrict
its growth. As a consequence of those economic and demographic pressures, the region
is facing urban sprawl problems due to the increasing population and the urgent
socioeconomic development that has occurred during the last decades (Weber et al.,
2005). The urban, industrial and construction grid is expanding considerably, along
with the road network and the relative linear residential developments, in order to serve
rapidly growing needs (Chrysoulakis et al., 2013; Nikolakopoulos, et al., 2005). All the
above-mentioned changes have led to major environmental implications (Forman and
Alexander, 1998). The urban expansion, which is in expense of the natural reserves, is
expected to continue as a new road network expansion for the city is scheduled by the

Ministry of the Environment, Spatial Planning and Public Works, (2006).
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It is hypothesized that forest spatial extent, composition and distribution have
been changing since the early 1980s, thus leading to fragmentation, shrinkage and
attrition of forested areas. The focus is mainly on forest fragmentation induced by
human activities, specifically agriculture, unplanned urbanization and industrialization,
heavy exploitation and wildland fires. The spatial extent and distribution of LULCCs
is assessed to acquire information about the dynamics of the area, by identifying
increased fragmentation hot spots.

This paper is organized as follows: First the Hymettus Mountain and the Landsat
imagery used are described. Second, the image preprocessing, the classification,
employing a machine learning methodology and the accuracy assessment are presented.
Following post classification comparisons to assess the periodic LULCC are presented
along with the proportion of each class, revealed by the classification of the imagery.
Next the time series of eight LM calculated to assess the landscape structure changes
are presented. Finally, the results are discussed in detail and the main points are
highlighted.

2.2 Methodology and Data

2.2.1 Study site

Hymettus Mountain is located in the south-central part of Attica Prefecture,
between the Athens conurbation, Penteli Mountain, Messoghia Plain and Saronikos
Gulf. Its north to south length is approximately 20 km and its width ranges from 4 to 6
km. It covers an area of 8820 ha with a maximum altitude of 1025 m. The dominant
habitat classes of the region are coniferous (22%), evergreen broadleaved (33%)
woodland and heaths, shrubs and garrigue (25%) (Georghiou et al., 1995). Hymettus is
protected nationally and internationally. The ecosystem hosts a variety of rare flora
(approximately 40 endemic species) and ecologically essential habitats for breeding,
nesting and wintering grounds of rare bird species, regularly occurring migratory birds,
mammals, and invertebrates. It is part of the Natura 2000 network (code GR 3000006
Hymettus mountain - Kaisariani Aesthetic Forest - Lake Vouliagmeni) as a Special
Protection Area (SPA), Site of Community Importance (SCI) and Area of Conservation
(SAQC).

39



Although sustainable management has been promoted in the area because of its
protected status, the ecosystem has been remarkably degraded during the last decades
(Vlachogiannis et al., 2012; Weber et al., 2005). This is primarily due to rapid
unplanned urban expansion, devastating wildland fires (e.g.1995, 1998 and 2007) that
have frequently occurred in the last decades and intensive anthropogenic activities
(industrial facilities, military installation, power production facilities and quarries). To

fulfill the aims of this study, the wider area is chosen as the study site, in order to include

the pressures on the boundaries (Figure 1).

2o | Q

Prefecture of Attica 0 a

: %

[ Natura 2000 site [GR 300006]

Study Site

Figure 1. The location of the study site in Attica Prefecture, in Central Greece (Landsat TM 6 2011 —
R: band3, G: band2, B: bandl).
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2.2.2 Landsat data

Landsat imagery is used to generate series of land cover data, integrated in a
GIS framework to quantify changes in a spatial and temporal manner. Landsat imagery
is a cost effective, with a high temporal scale, satellite record of the Earth’s surface. In
our research, nine mid-resolution Landsat satellite images (30m) spanning over 28 yrs
(1985-2013) are employed to identify LULCC through time. Phenological variation can
complicate classification consistency among images. During summer, late spring and
early autumn the vegetation is vigorous and is considered the best period to distinguish
among different land cover types (Mas, 1999; Shi et al., 2011). Therefore, ideally, for
multi-temporal change detection of vegetated areas the images should be acquired
during the summer months (June to August). However, additional criteria (e.g how to
avoid the scan line corrector problem of Landsat 7 after 2003, budget limitations and
availability of cloud free data) led to a set of nine Landsat images acquired from May
— August (Table 1).

Table 1. The characteristics of the satellite images that were used as the primary data to corroborate the
change detection analysis.

Date Sensor satelite Resolution (m)  Path/Row
type
19 May 1985 Thematic Mapper (TM) Landsat 5 30 183/34
10 June 1987 Thematic Mapper (TM) Landsat 4 30 183/34
21 June 1991 Thematic Mapper (TM) Landsat 5 30 183/34
6 August 1999 Enhanced Thematic Mapper Plus (ETM+)  Landsat 7 30 183/34
26 July 2001 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/34
26 July 2003 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/34
24 July 2009 Thematic Mapper (TM) Landsat 5 30 183/34
16 August 2011 Thematic Mapper (TM) Landsat 5 30 183/34
19 July 2013 Operational Land Imager (OLI) Landsat 8 30 183/34
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2.2.3 Data pre-processing

The standard image processing techniques of extraction, layer stacking, re-
projection, radiometric enhancement and topographic correction are performed on the
nine Landsat images. First the nine images are referred to a common projection (Greek
Geodetic Reference System, 1987). Second the images have to be atmospherically and
radiometrically calibrated to avoid any discrepancies due to the multi-temporal and
multi-sensor type of analysis (Hall et al., 1991; Lu et al., 2002). Three calibration steps
are applied in the radiometric correction procedure for Landsat imagery. The top-of-
atmosphere (TOA) reflectance is first calculated to correct the reflectance differences
caused by the solar distance and angle (Vermote et al., 1997b). The equations used are:

a) to calculate the at-sensor radiance in W/(m? * sr * pm),

Gain = (Lmax - Lmin) / (DNmax - DNmin) (1)
Bias = Lmin - gain * DNmin (2
Radiance = gain * DN + bias ©)

where, Lmax and Lmin are the calibration constants, DN are the initial digital numbers
of the imagery, while DNmax and DNmin are the highest and the lowest points of the
range of the rescaled radiance in DN (Chander et al., 2009),
b) to calculate the at-sensor reflectance:

Sun radiance = [Esun * sin(e)] / (P1 * d~2) 4

Reflectance = radiance / sun_radiance (5)

where, d is the earth-sun distance in astronomical units, e is the solar elevation angle,
and Esun is the mean solar exoatmospheric irradiance in W/(m? * pm) and
c) to invert the TOA reflectance and obtain surface reflectance, the 6Smodel (Vermote
et al., 1997a) is used. The model performs absolute atmospheric correction, taking into
account the Bi-directional Reflectance Distribution Function (BRDF), and calculating
Rayleigh and aerosol scattering, gaseous absorption and transmission. The minimum
input variables in estimating the atmospheric conditions for every scene are related to
meteorological visibility and aerosol conditions at the date and time of image
acquisition.
After the radiometric calibration and atmospheric correction, the area has to be

topographically corrected because it is mountainous. The first step in correcting the
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topographic effects is to compute the illumination angle, based on the equation (Civco,
1989):

IL = cos(s) * cos(z) + sin(s) * sin(z) * cos (a - 0) (6)
where, s is the terrain slope angle, z is the solar zenith angle, a the solar azimuth angle
and o is the terrain aspect angle.
To compute the slope gradient and aspect for the illumination, a Digital Elevation
Model (DEM) of similar resolution to the Landsat image obtained. The second step to
achieve the removal of topographic shadows is to apply the C-correction method, a
semi empirical approach developed by Teillet et al., (1982). The equation, as described
by Meyer et al., (1993), is:

P = pi (cos(s) + C/ IL + C) )

where Ph is the reflectance of a horizontal surface, pi is the reflectance of an inclined
surface and C is the correction parameter b/m (m = the inclination of the regression line

describing the correlation between the original band (b) and the illumination)

2.2.4 Classification

After the nine Landsat images have been calibrated, the classification into land
use classes is performed implementing the Random Forests (RF) machine learning
algorithm (Breiman, 2001). RF is a tree structured classifier generating a "forest" of
randomized base regression trees. Each random tree in the "forest” is composed of
nodes at different levels: a root node, a set of internal nodes (splits) and a set of terminal
nodes. The root node is formed by all training samples and searches only across a
randomly selected subset of the input variables, in order to determine the best split for
each node. Each individual tree predicts the target response, while the forest predicts
the target as the average of the individual tree predictions. This process is repeated until
the desired number of trees has been built (1000 in this analysis). The various outputs
are combined in a final result, using a majority vote. For a full detailed description of

the RF algorithm, theory and applications, the reader is referred to Breiman (2001).

According to the approach by Symeonakis et al., (2007), Principal Components
Analysis (PCA) and Tasseled Cap (TC) transformations are performed in order to
produce an information portfolio for the training required by RF. PCA is computed
separately for the three visible bands (1, 2, and 3) and for the middle infrared bands (5
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and 7). The first Principal Component produced of each run, along with the near infra-
red layer (band 4), which is the least correlated with the other bands, are used. The TC
transformation products, Soil Brightness Index (SBI) and Green Vegetation Index
(GVI) are also merged to the layer stack of the predictor variables, because of their
capacity to separate vegetation from bare features during the classification process
(Symeonakis et al., 2007). Considering that, the training data must represent all classes,
additional criteria have been found after several tests, so as to improve the classification
accuracy results in our case study. The Normalized Differential Vegetation Index
(NDVI) (Tucker, 1979) is added because of its capacity to describe vegetation density
and condition. It has been found that it improves the performance of RF in respect to
the forested areas. Moreover, the slope layer has been found to significantly improve
the accuracy of predictions related to the sparsely vegetation or bare land areas. Finally,
a Euclidean distance to the road network layer of the area, treated under the assumption
that intense human activity (thus artificial land use) involves dense road networks, has
also been found to improve the artificial surfaces class results. A set of randomly
distributed points (n=350) is used to train the algorithm. The values of the eight merged

layers are collected on the location of every point and manipulated as predictor values.

For the accuracy assessment of the classified maps, a new set of points (n=200)
is randomly distributed to the 1991, 2009 and 2013 reference images. The observed
accuracy percentages reach 87% for the 1991, 84% for 2009 and 89% for 2013 scene
(aerial photographs from 1995 and 2008, high resolution satellite imagery from 2013
and coarser resolution land cover maps from 1990 are used to define the reference data).
Since matching reference data are not available for the rest of the produced land cover
maps, a series of Boolean logic and "if-then-else" rules are devised based on possible
transitions (e.g. an 'urban-forest-urban' transition is not possible). In this way, for each
land cover change map, the land cover maps in between are used as control data (e.g.
in 1985-1987-1991 series, the 1987 serves as a 'control’ map so that the changes
occurred between 1985-1991 would be accepted). This approach is inspired by the
research of Symeonakis et al., (2012) who use series of intermediate satellite images
and conditional probability networks to ensure the detection of valid changes. Since
single pixels are often unreliably classified (probably as a result of spectral mixes),
another commonly used step is to eliminate them from the classified images and to

replace their values with the mode of the neighborhood pixels (Symeonakis et al., 2007;
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Weber and Puissant, 2003). The neighborhood is defined with a 3x3 window centered
to the single pixel that is eliminated. The minimum mapping unit is then defined as the

patch area covered by at least 2 pixels.

The final step is the aggregation of the classes with a focus on forest
fragmentation. Initially, seven land use classes were chosen to represent the land cover
of the area. As the research is orientated towards forest fragmentation monitoring,
change detection focuses on the transformation of woody vegetation land cover to
sparsely vegetated area (sva)/bare or artificial land uses (indicating deforestation) and
vice-versa (indicating reforestation). Therefore, the initial classification classes are
aggregated into three in order to better be distinguished from the woody vegetation
(Table 2).

Table 2. Initial land cover types derived from the Random Forests classification and the aggregated
class covers made to improve the assessment of forest fragmentation.

Initial land cover classes Forest change associated classes

Artificial surfaces
Artificial land use
Agricultural areas

Forest-land
Woody vegetation
Shrub maquis and garrigue

Open spaces with little or no vegetation /
Sparsely vegetated areas (sva) / bare
bare rocks

Water bodies N/A (masked out)

2.2.5 Change detection

The aim of the change detection analysis is to obtain spatial and quantitative
information about periodic LULCC from forested (woody vegetation) to sparsely
vegetated/bare areas or artificial land-uses and vice-versa. In this study, post
classification (PC) comparison in the form of cross-classification is employed because
of its advantage to provide quantitative information about changes and more

specifically ‘from-to’ change class information. The pixel by pixel nature of this change
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allows both the areal extent and spatial distribution of land-cover changes to be
quantified (Coppin et al., 2004). PC comparison is conducted for three intervals,
consisting of three consecutive images each (1% 1985-1987-1991, 2" 1999-2001-2003,
3 2009-2011-2013). This is done to highlight the LULCCs that occurred during the
study period, to temporarily allocate the LULCCs and to enable possible associations
with significant events that occurred (e.g. establishment of the new International
Airport, Athens 2004 Olympics, economic crisis). The generated transition maps
quantitatively identify the periodic LULCC that have occurred during the last 28 yrs.

2.2.6 Landscape Metrics

After the remote sensing analysis, the time series LM for each of the maps are
calculated. Selecting metrics for a given study involves a number of considerations.
First many LM are highly correlated, providing redundant information (Riitters et al.,
1995; Cushman et al.,, 2008). Second the objectives of the study, the spatial
characteristics of the system and the ecological processes under investigation determine
which metrics best describe the studied phenomenon (Gustafson, 1998; Herold et al.,
2005). After the aforementioned have been taken into consideration, eight LM (Table
3) at the class level were chosen to examine the spatio-temporal forest changes in the
Hymettus landscape composition and configuration during the last 28 years. Indices of
size, density, shape, isolation, proximity, connectivity and aggregation are implemented
to study forest fragmentation. Patch density (PD), is expected to increase as the forested
area becomes more fragmented whereas edge density (ED) is also expected to increase
depicting the shape complexity and spatial heterogeneity. The largest patch index (LPI)
of woody vegetation is expected to decrease as a result of fragmentation, affecting
directly the habitat quality (especially that of migratory birds). The mean shape index
(MSI) depicts management measures and thus an increase would indicate
mismanagement. The Euclidean area weighted mean nearest neighbor distance (ENN)
and aggregation index (Al) are widely applied to characterize isolation, proximity and
neighborhood of the landscape patches, illustrating effects on habitat quality, species
distribution and landscape stability. The clumpiness index (CL) is a metric of
distribution - isolation of classes and increases as they become more randomly
distributed and fragmented. Finally, the spliting index (SPL) calculates the subdivision

of classes and is expected to increase, while a class becomes more fragmented.
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Complete descriptions and mathematical expressions of these metrics are provided in
McGarigal and Marks, (1995).

Table 3. The Landscape Metrics (LM) computed for this study and their correlation to forest
fragmentation.

Landscape Metrics Abbreviation Description
Patch Density (# of PD Lower density of patches indicates less fragmented classes
patches/100 ha)
Edge Density (m/ha) ED Indicates the shape complexity and spatial heterogeneity of
a class
Largest Patch Index (%) LPI Percentage of total landscape area occupied by the largest-
sized patch. Indicator of dominance
Mean Shape Index MSI Patches are less geometrically complex in managed forests
Mean Euclidean nearest- ENN_MN Quantifies patch isolation and therefore fragmentation of
neighbor distance (m) classes
Aggregation Index (%) Al Measures isolation and compactness. Higher values
indicate lower fragmentation
Clumpiness index CL Lower clumpiness indicates more fragmented classes
Splitting Index SPL Higher rates indicate higher subdivision of classes

2.3 Results and Discussion

2.3.1 Change detection

Figure 2 and the attached table depict the results generated by the classification
of the nine images and the aggregation of the seven initial classes into three. The rates
illustrate the proportion covered by each of the three classes, revealing some trends.
From 1985 to 2001, the woody vegetation area seems to increase approximately by 2.3
% whereas the sva/bare land decreased by approximately 2 %. Following, the woody
vegetation decreases with the total decrease reaching approximately the 6 % in 2013,
which is also the lowest rate observed during the study period. At the same time, the
sva/bare land proportion increases by approximately 4 %. Furthermore, the artificial
land use class, which comprises of the urban areas along with the construction sites, the

road network and the agriculture areas, remains consistently high with only slight
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fLULCtuations throughout the study period. Assuming that urban areas, road networks
and infrastructure sites rarely change, the slight decreases observed are attributed to

changes in the agriculture sector (e.g. land abandonment).
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1985 1987 1991 1999 2001 2003 2009 2011 2013

B Woody Veg.| 35,71% | 34,26% | 35,18% | 34,88% | 38,19% | 35,74% | 36,03% | 35,69% | 32,24%

Sva/Bare 22,75% | 23,24% | 22,94% | 21,65% | 20,80% | 21,36% | 22,06% | 21,18% | 24,07%

W Artificial LU | 41,55% | 42,50% | 41,88% | 43,48% | 41,01% | 42,90% | 41,91% | 43,13% | 43,69%

Figure 2. The summary of the Landsat Area Classification statistics for 1985, 1987, 1991, 1999, 2001,
2003, 2009, 2011 and 2013. The values are relative percentage of the total area (no data pixels were
masked out).

The generated maps from the PC comparison depict nine combinations ‘‘from
—to’’ change information derived for each of the three time intervals 1985-1991, 1999-
2003 and 2009-2012 (Figure 3). For the purpose of the analysis, the first interval can
be linked to the early years before the announcement of the new International airport in
Spata, the second to the pre-Olympic Games of 2004 period where infrastructures
started to take place and the third is linked to the post-Olympic Games of 2004 period

and the economic crisis.
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The main focus is on the “woody vegetation to sva/bare or artificial land use”
transition that describes the decline in forest extent, indicating forest fragmentation.
During the years of the first interval, two core areas, distinguished with red color (Fig
3. la;1b), of “woody vegetation to sva/bare” transition are observed. Noteworthy, both

are located next to urban core areas.

l:l Artificial LU - Sva/Bare
E Artificial LU - Woody Vegetation
- Sva/Bare unchanged
Sva/Bare - Woody Vegetation
E Sva/Bare - Artificial LU
- Woody Vegetation unchanged
D Woody Vegetation - Artificial LU
- Woody Vegetation - Sva/Bare

1985 - 1987 - 1991 ' A 1999 - 2001 - 2003 = W 2009 - 2011 - 2013

Figure 3. The PC comparison depicting in three groups (out of a total of nine Landsat images) the
LULCCs that occurred in Hymettus Mountain Attica Prefecture, Greece during the last 28 years.

These two major areas of deforestation remain sva/bare land during the second
interval. During the third interval, the north patch of deforestation reveals scattered
artificial land use class patches while the south patch expands significantly. Another
interesting part is illustrated in Figure 3 (2) that is related to the “woody vegetation to
artificial land use”, and colored in light green. A core area of this class, located to the
south of the mountain, was converted to artificial land use (agricultural) during the first
interval and remains as is until 2013. Another example of deforestation of this type is
observed during the third interval in the north part (Fig 3. 3). This patch of woody

49




vegetation is the “victim” of the new road network expansion. Several other smaller
patches of the same type behave the same way. Small patches of the “artificial land use
to woody vegetation” class are mostly located in the agricultural area to the left of the
mountain. Finally, what can be inferred from the transition maps is that the “woody
vegetation to sva/bare” along with the “woody vegetation to artificial land use” patches
are increasing during the second and third interval in comparison with the first. This
observed increase along with their disorderly widespread distribution highlight the
consistent and clear evidence of forest fragmentation.

2.3.2 Landscape Metrics

The previous findings also coincide with the results of the eight LM that are
computed for this study and provide an insight into the spatial configuration of the
changing landscape. The PD and ED values (Figure 4a; 4b), of the woody vegetation
class, depict an increasing trend during 1991-2003 that remains high until 2013.
Another interesting trend derived both from the ED and the LPI (Figure 4c) values is
the inversely proportional behavior between the woody vegetation and the artificial land
use classes. This trend reflects the previous remarks that woody vegetation area
progressively became surrounded by artificial land uses and shrunk. FLULCtuations in
the woody vegetation ED, PD, and LPI, rapidly affect the habitat quality, especially for
migratory species by altering their distribution and population density and thus their
diversity. Therefore, if the landscape continues to follow the present trends of
fragmentation, the habitat of certain species of the region will decrease and degrade.

Considering the spatial configuration of the boundaries and therefore the shape
complexity, the MSI values of the woody vegetation class also indicate that the patches
are progressively becoming more geometrically complicated probably because most
changes occur at class boundaries (Figure 4d, also see ED in 4b). As expected the values
behave inversely proportional with the sva/bare class. The area weighted ENN was
preferred to be computed, instead of the mean ENN, so that the inter-patch connectivity
in respect to the size of the patches is indicated. Thus, the ENN values illustrated in
Figure 4e show that the connectivity core and larger areas of woody vegetation class
remain relatively constant. This index provides additional information and highlights
the findings of the PC results, showing that the majority of transitions, in expense of

the woody vegetation coverage, are made at their boundaries. The Al values, (Figure
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4f) suggest that the woody vegetation class successively tend to be more isolated and
less compact, right after 2001, when the highest value is observed. Yet the values of
artificial land use constantly remain high, with just slight fLULCtuations during the
study period. Furthermore, the CL values (Figure 4g), indicate that the distribution of
woody vegetation class increased during the 1985-1987 period and remained high until
1991. Right after 1991, which is the end of the first interval in the transition map, the
values decrease steadily until they finally reach their lowest value in 2013. Another
interesting part is the behavior of the sva/bare and the artificial land use class values
that increase remarkably right after 2001 and 2003, respectively. Finally, the SPL
values (Figure 4h), confirm that woody vegetation areas show a tendency to be
subdivided after 2003, a crucial period for the area, due to pressures in the wider area

that resulted from increased development during this period.
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Figure 4. The time series (1985-2013) of the eight Landscape Metrics (LM) computed for each
aggregated class level, for Hymettus Mountain, Attica Prefecture, Greece. Brief descriptions and full
names of the LM are provided in Table 3.

2.3.3 Natura 2000 sites

In Greece, despite the establishment of many Natura 2000 sites, the
implementation of conservation policy is problematic (Apostolopoulou and Pantis,
2009; Apostolopoulou, et al., 2012; Dimitrakopoulos, et al., 2004; Papageorgiou and
Vogiatzakis, 2006; Tsiafouli et al., 2013). The lack of clear goals and the divergence
between stated and actual goals leads to incorrect interpretations of conservation
objectives and the decisions made to satisfy economic and/or developmental interests
(Apostolopoulou and Pantis, 2009). There are internal contradictions of the institutional
framework due to the fact that the levels of planning between the managing
organizations overlap. There is also no clear differentiation of the responsibilities and
functions among various organizations - such as Ministry of Environment, Energy and
Climate Change, Organization on the Regulatory Planning and Protection of the
Environment of Athens, Local Authorities, Forest Service of Penteli etc. - that manage

in some capacity the area (Papageorgiou and Vogiatzakis, 2006). As a consequence,
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some land-uses may not be compatible based on the current institutional framework
(Tsiafouli et al., 2013) in some cases. As it is understood, Hymettus mountain is no
exception to all aforementioned inconsistencies. To complicate even more the situation,
a very complex ownership in the area, including the church, municipalities, military,
cooperatives and individuals, usually functions as a stumbling block. A major concern
is also the scheduled road network expansion (approximately 83 km) that will intensify

the fragmentation of the forested ecosystem.

Thus, forest fragmentation can be largely attributed to the pursuit of economic
development, such as self-driven land use policies and land tenure arrangements,
demographic pressure and urban sprawl. This arbitrary land use policies are ambivalent
to environmental sustainability and directly lead to mismanagement or passive
management of the forested areas and lack of interest or awareness by the general
public. Finally, the increasing density of the transportation network and high frequency

of forest wildfires inevitably tend to further degrade the remaining natural reserves.

Given the importance of Greek biodiversity and the governmental failure to
confront this neglected conservation policy, strong strategies should be designed, and
decisions should be made. Effective management in the Natura 2000 sites in Greece
has been lagging due to lack of science-based data that leads to incorrect interpretation
of what the desirable state of an ecosystem is (Apostolopoulou and Pantis, 2009).
Sustainable forest management, in any region or country has to rely on science-based
information about the condition of the remaining forests in regard to their ownership,
composition and structure. This type of information can act as a baseline to help
establish efficient policy, by promoting the adaptation of sustainable forest
management, public awareness and science-based decision making. Innovative use of
technologies, such as satellite remote sensing, GIS analysis and landscape metrics, can
facilitate in the spatio-temporal considerations of landscape patterns and processes.
Medium resolution Landsat imagery provide a cost-effective primary data source, to
facilitate the monitoring of such a phenomenon (Loveland and Dwyer, 2012), compared
to high resolution satellite data that are often prohibitive because of their high cost.
Additionally, the cost effectiveness and therefore, the wide applicability can be
enhanced with the utilization of open source GIS software (Steiniger and Hunter, 2013).
A potential limitation that can be encountered, if the presented methodology is adopted,

is the availability of free satellite data, especially for past decades and their relative
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efficient reference data. Nevertheless, additional criteria for the suitability of data
selection (as discussed in 2.2) are also mandatory, a fact that complicates even more

the situation.

2.4 Conclusions

The Hymettus Mountain is an area of great conservation significance, since it is a
biodiversity hotspot near Athens. The PC results suggest that the fragmentation of
woody vegetation of Hymettus Mountain had been increasing during the study period.
The majority of the LULCCs in expense of forests extent occurred in areas where the
forested areas bordering with artificial land uses. A general conclusion drown upon the
transition maps is that the “woody vegetation to sva/bare” along with the “woody
vegetation to artificial land use” patches, increased during the second and third interval
in comparison with the first.

The LM results come also to support these conclusions for our study area. The
woody vegetation class successively tends to be more isolated and less compact,
whereas the artificial land uses are highly aggregated with slight fLULCtuations during
the study period. In particular, woody vegetation areas tend to be subdivided after 2003,
a crucial period for the area, due to pressures that resulted from increased development
during this period.

Changes in the spatial configuration of the boundaries indicated that the woody
vegetation patches are progressively becoming more geometrically complicated. The
examinations of the inter-patch connectivity with respect to the size of the patches have
shown that core and larger areas of woody vegetation class remain relatively constant.
These together with the findings of the shape complexity show that the majority of the
transitions are made at the boundaries of the woody vegetation areas.

The methodology presented here uses these technologies to determine the
variability of forest extent through time in a nationally and internationally protected
area via earth observation accurately and cost-effectively. It can also provide valuable
information about the effectiveness of past activities. Such a cost-effective method
could provide science-based information to the involved parties enhancing the
development of effective and realistic management plans for Natura 2000 sites and thus

promoting the collaboration among various managing organizations.
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Abstract

Information about land cover (LC) and land use is fundamental in various areas of
research regarding the Earth’s surface. However, field campaigns are costly and time
consuming while existing data sets have strong limitations. Classification of LC by
remote sensing, although considered a technically and methodologically challenging
task, can facilitate mapping initiatives at various scales. This study suggests an efficient
and robust methodology of LC classification with minimal user requirements. The
study site is Greece which faces a lack of up to date LC maps at national scale. In this
context we employed Landsat imagery, open source software and the random forest
classification algorithm to produce a high resolution national LC map for 2010. The
algorithm was trained semi-automatically, extracting information from available data
sets. The results are promising, achieving an overall accuracy of 83%. The methodology
presented minimizes many obstacles that lead to data deficiencies and can act as a

baseline for future LC mapping initiatives.

Keywords: Land cover mapping; Greece; Landsat; random forests; semi-automated

classification; open source software
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3.1 Introduction

A vast portion of the Earth’s land cover (LC) is directly influenced and shaped
by human activities through its land use (LU) (Turner, 1994). Hence, long term
observation of LC, at various scales, is essential to understanding Earth surface
processes and the anthropogenic influence on human and natural systems (Turner,
Lambin, and Reenberg, 2007). Research concerning LC has intensified, especially after
discovering the impacts on climate and the environment (Foley et al., 2005). To this
end, accurate and up to date LU and LC spatial information serves as a principal
component in a variety of research, management and planning activities, while for
studies related to global, environmental and/or climate change it is considered a pre-
requisite.

Traditional field campaigns are limited by their local extent and high resource
demand (personnel, cost, time). Recent advances in Remote Sensing (RS) and
Geographic Information Systems (GIS) can successfully provide spatially consistent
multi-spectral and multi-temporal LC information. However, very high resolution
(VHR) imagery is costly particularly for small scale mapping. In this respect, a number
of recent studies conducted virtual “field visits” utilizing VHR imagery provided by
Google Earth or similar engines either for data training or to validate outputs (e.g.
Knorn et al., 2009; Schneider, 2012) with good results.

Currently, various global LC datasets exist, with different spatial resolutions
and each with specific limitations (Giri et al. 2014; Herold et al. 2008). Regarding
Europe, two significant databases exist, the Coordinate Information on the Environment
(CORINE), a pan-European LC map for the years 1990, 2000 and 2006 provided by
the European Environmental Agency (EEA) and the Pan-European Land Cover
Monitoring (PELCOM) database (Mucher et al., 2001). The CORINE database is
available at 100 m spatial resolution with a minimum mapping unit (MMU) of 25 ha
(Bossard et al. 2000), while the PELCOM database was constructed at 1 km spatial
resolution. These two frequently used databases suffer from limitations, to resolution
and MMU, inconsistency from one country to another, lack of rigorous accuracy
assessments and reliability (Neumann et al. 2007). One important limitation, of most
available datasets, still unaddressed, is the discrepancy between LC classes, their

overarching definitions, their nomenclature and thus the heterogeneity of information
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provided. For instance, the CORINE database, although it is established and recognized
as an LC database, strictly represents a mixture of LU and LC classes (Comber et al.
2005). Another serious issue of the CORINE LC database, emanating from the fact that
it is produced by each country separately, is the out dated information available for
some countries. For instance, the latest update of LC information for Greece was for
the year 2000.

To meet the need for consistent and accurate LC maps, increasingly
sophisticated approaches have been introduced that are less source data demanding and
less labour intensive (Symeonakis et al. 2012), showing a trend in developing
automated (e.g. Chen et al. 2012; Radoux et al., 2014) or semi-automated (e.g. Jiang et
al.,, 2012) LC classification methodologies. An effective way to minimize user
intervention is the utilization of existing LC data, to train the classifier (Chen et al.,
2012; Jiang et al., 2012; Radoux et al., 2014). Additionally, cost effective
methodologies utilizing open source software (OSS) (Steiniger and Hunter, 2013) and
freely available satellite data (Wulder et al. 2012) are increasingly being adopted by the

research community.

This study aims to cover the observed gap in LC data for Greece at a national
scale, demonstrating a robust and cost-effective methodology. In this context we
utilized the NASA-USGS Global Land Survey (GLS) Landsat data for 2010 with a
nominal pixel size of 30 m (Gutman et al. 2013). Classification is performed
implementing the Random Forests (RF) machine learning algorithm (Breiman, 2001)
that has proven to perform well with heterogeneous classes (Rodriguez-Galiano et al.
2012). To train the algorithm we used the existing CORINE 2000 dataset of Greece.
Visual inspection of the training samples was conducted utilizing VHR imagery, from
the Google and Bing engines, which are accessible via the OpenLayers plugin for QGIS
(Quantum GIS Development Team, 2013)
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3.2 Materials and Methods

3.2.1 Study Area

Greece is a Mediterranean country, located in the Balkan peninsula (Figure 1),

covering an estimated total area of 131,957 km?, with its coastline stretching for 15,021

km while 20% of that territory is distributed on its approximately - both inhabited and
uninhabited - 3000 islands (Minetos and Polyzos, 2010). According to the 2011 census,

the resident population is approximately 11 million (Hellenic Statistical Authority,

2013).

Dominant vegetation types are broadleaved and coniferous forests,

sclerophyllous maquis and garrigue (Arianoutsou et al., 1997).
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Figure 1. Location of the study site, Greece

The climate is typical Mediterranean, with hot and dry summers and relatively

mild and wet winters. Geomorphologically, two thirds of the Greek territory are

mountainous or hilly and more than 40% of the land exceeds 500 m in altitude (EEA,
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2010) while extensive agricultural plains are primarily located in Thessaly, Central
Macedonia and Thrace regions. Socioeconomic development in Greece has been
depended largely on land-based economic activities, including agriculture, farming,
forest cultivation for timber and mining. These are closely related to the structure and
function of the land's surface constituting a source of income for its residents

(Demoussis, 2003; Papanastasis et al. 2009).

3.2.2 Landsat data

We employed the GLS 2010 Landsat imagery dataset that uses a combination
of Landsat 5 TM and Landsat 7 ETM+ images acquired between 2008 and 2011. The
GLS datasets are created using the Landsat sensor operating at the time, meeting quality
and cloud cover standards and undergoing a level of pre-processing (Gutman et al.,
2013). A total of 27 images (spanning path: 180-186 and row: 31-36) were selected,
achieving full coverage of the country. The successive steps of the procedure in order

to achieve the goals of this research are summarized in Fig. 2.

3.2.2.1 Data pre-processing

Initially, all images were re-projected to the Greek Geodetic Reference System
(GGRS 1987). Data analysis was conducted at the prefecture level using the
“Kapodistrias” administrative division system (NUTS III), which divides Greece into
51 prefectures. To avoid any discrepancies due to the multi-temporal and double-sensor
analysis, all images underwent a series of corrections and calibration (Gounaridis et al.
2014). To radiometrically and atmospherically correct the Landsat images the initial
DN values were converted to top of atmosphere reflectance (TOA). To obtain surface
reflectance and achieve data normalization, we used the 6S model (Vermote et al.
1997). Finally, to correct any topographic effects we applied the C-correction method
(Teillet et al. 1982). The 27 corrected images were clipped into 51 parts according to
every prefecture boundary (Figure 1). In cases where a prefecture was covered by more
than one image, the clipped pieces were mosaiced into one.
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Figure 2. Flowchart of the successive steps followed in the methodology

3.2.2.2 Image classification with Random forests

We implemented the Random Forest (RF) classification algorithm. The
algorithm starts with a random selection of the predictor variables resulting in a

collection of, independent to each other and identically distributed, tree structured
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classifiers. Each individual tree casts a unit vote for the most popular class while the
outputs of classification are determined from the majority of votes for each class
(Breiman, 2001). The nomenclature adopted for this study, is in line with the
CORINE’s classification scheme at Level 2 (Table 1). As mentioned in the
introduction, the CORINE classes do not refer literally to pure LC but rather to a
mixture of LC and LU and thus this applies to our approach as well (referred to as the

LC map hereafter).

Table 1. Classification scheme and the portion occupied by each class. For complete description of the
classes the reader is referred to Bossard et al. (2000).

Class Name % of coverage
1 Urban fabric 1.53%
2 Industrial, commercial and transport units 0.22%
3 Mine, dump and construction sites 0.09%
4 Arable land 18.15%
5 Permanent crops 14.09%
6 Pastures 0.10%
7 Heterogeneous agricultural areas 5.48%
8 Forests 17.03%
9 Scrub and/or herbaceous vegetation associations 41.26%
10 Open spaces with little or no vegetation 1.18%
11 Inland wetlands 0.15%
12 Inland waters 0.72%

3.2.2.3 Sample design for training
Training samples are a crucial part to any classification process and at the same

time the main source of errors (Foody and Arora, 1997). We used the CORINE 2000
dataset, which is a universally adopted nomenclature and the only available dataset at
national scale for Greece. To train the classifier, 500 - 1000 randomly distributed points
(depending on the complexity of the landscape) were applied to each of the 51 scenes,
achieving a balance in the representation of all classes. A 50m buffer was drawn around
all points and these areas were assigned class values from the CORINE 2000 dataset.
Subsequently, we verified the class membership visually by inspecting the points over

VHR images of the area (via the OpenLayers plugin in QGIS). In several cases we had
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to relocate, delete or re-assign values for problematic points. All points close to the
boundaries of the classes were either relocated or eliminated so as to provide a clear
sample. This was an important step in order to avoid misclassified training samples due
to differences in spatial resolution and MMU, between CORINE and Landsat data.
Special attention was given to areas whose classification results were not satisfying,
enhancing the training data with extra points originating from visual interpretation of

the VHR imagery.

3.2.3 Predictor variables

The RF algorithm can handle multiple types of auxiliary data, biophysical and
spectral variables, both continuous and categorical, to improve classification
performance and discrimination between LC classes. In addition to the 6 reflective
Landsat bands (bands 1-5 & 7), we used Principal Components Analysis (PCA)
separately for the three visible bands (1, 2 & 3) and the middle infrared bands (5 & 7).
The first of the principal components produced for each run was used (Gounaridis et
al., 2014; Symeonakis et al. 2007). We also included Landsat’s thermal band (band 6)
since different LC classes have specific temperature ranges (Southworth, 2004). We
used Tasseled Cap (TC) transformations Soil Brightness Index (SBI) and Green
Vegetation Index (GVI) since they are capable of discerning vegetation from bare
features (Kolios and Stylios, 2013). In order to further enhance the representation of
vegetation we extracted the normalized difference vegetation index (NDVI).
Additionally we tested several band ratios that provide unique information and subtle
spectral reflectance differences between surface materials (Southworth, 2004; Weiser
et al. 1986); we used five of them in our model (band 4/band 3; band 7/band 2; band
3/band 2; (band 2-band 6)/(band 2+band 6); TC.GVI/band 6). We also derived auxiliary
variables (elevation and slope) from the Global Land Survey Digital Elevation Model
(GLSDEM) as they helped in discriminating between bare and sparsely vegetated areas.
Assuming that human activity and the artificial environment are connected to the
existence of a road network we derived a distance-from-the road-network layer based
on the Euclidean distance function (Gounaridis et al., 2014). Finally, all predictor

variables were merged into a single layer stack containing 20 layers in total.
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3.2.4 Random forests model implementation

Training and predictor variable data were collated in a database. The values of
the 20 merged layers were sampled on the location of every training point, already
containing LC class values and manipulated as predictor values. The next step included
the classification process, implemented through the use of the RandomForest package
in R (Liaw and Wiener, 2002). RF requires two primary parameters being (i) the
number of predictor variables randomly sampled at each decision tree split and (ii) the
number of classification trees. We used five (5) predictor variables for each tree split
(equal to the square root of the total number of predictor variables) and 1000-2000 trees

for each run.

3.2.5 Classification post processing

All classification outputs, originally at the prefecture level were mosaiced into
a single LC layer. In order to further improve the final product, we removed isolated
patches (smaller than 0.1 ha) which are often unreliably classified, usually due to a mix
up of spectral values. We replaced the values of isolated pixels with the mode of their
neighborhood pixels, defined by a 3x3 window centered on the pixel to be eliminated
(Gounaridis et al., 2014). Lastly, we calculated the percentage of coverage occupied by
each of the 12 classes and incorporated our findings in Table 1.

3.2.6 Accuracy Assessment

To evaluate the results, we assessed the accuracy using a randomly distributed
sample of 10599 -independent to the original training- points employing VHR imagery
(via the OpenLayers plugin in QGIS) in order to visually interpret and label them
according to the adopted nomenclature. Accuracy was assessed by generating a
confusion matrix that compared the visually interpreted samples with the final map.
Additionally, we computed both the overall accuracy of the map and the errors of

commission and omission for each category.
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3.3 Results and Discussion

3.3.1 RF performance

Results obtained from this study demonstrate that RF discriminated 12 classes
relatively well (Figure 3). The performance of the RF classifier was influenced by the
computational demands and the depiction of a landscape's composition heterogeneity
at medium scales (e.g. as for Landsat's). Performing all the analysis on a single PC, lead
us to divide the study area into smaller parts due to the computational demands of the
algorithm. This in turn, increased the workload as we needed to calibrate the model
separately for each part of the study area. With regard to landscape composition
heterogeneity, even though Landsat’s 30 m spatial resolution is acceptable for LC
characterization, when working with more semantically complex and with less
pronounced differences in spectral reflectance classes, a higher spatial resolution is
likely required. Nevertheless, our study shows that Landsat’s resolution achieved
satisfactory results for the production of a medium scale classification of 12 classes for

Greece.

RF performance, as expected for all machine learning family algorithms,
significantly depends on the predictor variables and training data quality. Extracting
information from a known dataset instead of independently classifying the remotely
acquired images is good, especially when dealing with a large extent, with respect to
workload and required sources. Under the assumption that under normal circumstances
changes only occur to a small proportion of land and especially at the edges, utilizing
unchanged areas as a training source is reasonable (Chen et al., 2012; Jiang et al., 2012;
Radoux et al., 2014; Xian et al., 2009). However, susceptibility to errors exists due to
the complexity of CORINE class definitions, with some of them unsuitable for
algorithmic classification and certainly due to incompatibility concerning different
scales between the image to be classified and the reference data (in our case CORINE
data with a MMU of 25 ha were used to train Landsat data with spatial resolution of 30

m).

3.3.2 Accuracy assessment
Results were satisfactory, with an overall accuracy (percent correctly classified)
of 83% (table 1). Of the 1773 (out of 10599) validation points assigned as misclassified,
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Classified

940 (53%) could be considered minor misclassifications (confusion between certain
classes due to visual or spectral similarities). Most “disagreements” were discovered in
“Heterogeneous agricultural areas”, “Permanent crops”, “Scrub and/or herbaceous
vegetation associations” and “Forests”. These classes are spectrally heterogeneous due
to different cropping systems and cycles in the region, resulting in confusion between
the spectral signatures (or sometimes an interpreter’s mislabeling). If classes were
aggregated (e.g. to adopt the level 1 scheme of CORINE) the overall accuracy would
significantly increase. Using the current validation data, an accuracy assessment at level

1 yields an approximate overall accuracy of 91% (table 2).

Table 2. Error matrix. The reference corresponds to validation points visually interpreted utilizing

VHR imagery
Reference
1 2 3 4 5 6 7 8 9 10 11 12 Total grOrZ”rmiSSiO”
1 256 28 1 8 1 6 4 1 1 1 307 16.6%
2 6 46 8 1 2 63 27.0%
3 2 43 1 2 1 1 50 10.0%
4 22 31 30 1711 31 4 34 4 39 7 47 27 1987  13.9%
5 1 2 20 381 1 26 1 22 1 455 16.3%
6 3 15 1 2 21 14.3%
7 45 19 8 147 183 4 707 18 134 5 4 1274 445%
8 1 5 3 16 1692 103 4 8 1832 7.6%
9 27 8 27 23 83 4 148 165 3567 8 3 6 4069  12.3%
10 3 2 11 2 49 9% 1 2 166 38.6%
1 1 4 50 6 61 20.0%
12 52 262 314 16.6%
Total 360 138 130 1924 682 29 940 1880 3921 112 164 319 10599
Omission

error

28.1%  66.7%  66.9% 11.1%  441%  483%  24.8% 10.0%  9.0% 143% 68.9%  17.6%

Overal Acuuracy : 83%

Note: The reference corresponds to validation points visually interpreted utilizing VHR imagery.

Classes

Level 1:

Artificial surfaces

1: Urban fabric

2: Industrial, commercial and transport units

3: Mine,

dump and construction sites
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Level 1: Agricultural areas

4: Arable land

5: Permanent crops

6: Pastures

7: Heterogeneous agricultural areas

Level 1: Forests and semi natural areas
8: Forests

9: Scrub and/or herbaceous vegetation associations
10: Open spaces with little or no vegetation
Level 1: Wetlands

11: Inland wetlands

Level 1: Water bodies

12: Inland waters

3.4 Conclusions

This study demonstrated an efficient and cost-effective approach to produce an
LC map, in order to fill the observed gap in up to date LU and LC data at the national
scale for Greece (Figure 3). The high cost of VHR imagery acquisition, the need for
time consuming and labor-intensive field surveys, inconsistency and incomparability
of the existing databases and the need for exhaustive and advanced methodologies in
order to train classification algorithms, prevents many researchers from producing LC
and LU maps. The presented sequences of methodologies minimize many of these
obstacles that in turn have led to data deficiencies especially for large extents. The
approach presented can act as a baseline to continuously monitor LC and to assist

ongoing and upcoming LC mapping initiatives.

73



References

Arianoutsou, M., Delipetrou, P., Dimopoulos, P., Economidou, E., Karagiannakidou,
V., Kostantinidis, P. et al. (1997). Habitat Types Present in Greece. In Dafis, et
al. (Ed.), The Greek “Habitat” Project NATURA 2000: An overview (pp. 402-
434). The Goulandris Natural History Museum — Greek Biotope/Wetland
Centre.

Bossard, M., Feranec, J., & Otahel, J. (2000). CORINE land cover technical guide —
Addendum 2000. Technical report, 40. European Environment Agency.
Copenhagen.

Breiman, L. (2001). Random forests. Mach Learn, 40, 5-32.

Chen, X., Chen, J., Shi, Y., & Yamaguchi, Y. (2012). An automated approach for
updating land cover maps based on integrated change detection and
classification methods. ISPRS J Photogramm, 71, 86-95.

Comber, AJ., Fisher, P.F. & Wadsworth, R.A. (2005). What is land cover?. Environ
Plan B 32, 199-209.

Demoussis, M. (2003) Transformations of the CAP and the Need for Reorganizing
Agricultural Policy in Greece. In C. Kasimis and G. Stathakis (Eds.), The
Reform of the CAP and Rural Development in Southern Europe (pp.173-186).
Aldershot, Ashgate.

EEA, 2010. The European environment — state and outlook 2010: synthesis. European
Environment Agency, Copenhagen.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, ... Snyder,
P.K. (2005). Global consequences of land use. Science, 309, 570-574.

Foody, G., & Arora, M. (1997). An evaluation of some factors affecting the accuracy
of classification by an artificial neural network. Int J Remote Sens, 18, 799-810.

Giri, C., Pengra, B., Long, J., & Loveland, T.R. (2013). Next generation of global land
cover characterization, mapping, and monitoring. Int J Appl Earth Obj, 25, 30—
37.

Gounaridis, D., Zaimes, N.G., & Koukoulas, S. (2014). Quantifying spatio-temporal
patterns of forest fragmentation in Hymettus Mountain, Greece. Comput
Environ Urban, 46, 35-44.

74



Gutman, G., Huang, C., Chander, G., Noojipady, P., & Masek, J.G. (2013). Assessment
of the NASA-USGS Global Land Survey (GLS) datasets. Remote Sens Environ,
134, 249-265.

Hellenic Statistical Authority (2013). Announcement of the demographic and social
characteristics of the Resident Population of Greece according to the 2011
Population - Housing Census.

Herold, M., Mayaux, P., Woodcock, C.E., Baccini, A., & Schmullius, C. (2008). Some
challenges in global land cover mapping: An assessment of agreement and
accuracy in existing 1 km datasets. Remote Sens Environ, 112, 2538-2556.

Jiang, D., Huang, Y., Zhuang, D., Zhu, Y., Xu, X., & Ren, H. (2012). A Simple Semi-
Automatic Approach for Land Cover Classification from Multispectral Remote
Sensing Imagery. PLoS ONE, 7, e45889.

Knorn, J., Rabe, A., Radeloff, V.C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009).
Land cover mapping of large areas using chain classification of neighboring
Landsat satellite images. Remote Sens Environ, 113, 957-964.

Knudby, A., Mtwana Nordlund, L., Palmqvist, G., Wikstrom, K., Koliji, A., Lindborg,
R., & Gullstrom, M. (2014). Using multiple Landsat scenes in an ensemble
classifier reduces classification error in a stable nearshore environment. Int J
Appl Earth Obj, 28, 90-101.

Kolios, S. & Stylios, C.D. (2013). Identification of land cover/land use changes in the
greater area of the Preveza peninsula in Greece using Landsat satellite data. Appl
Geogr, 40, 150-160.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R
News, 2, 18-22.

Minetos, D., & Polyzos, S. (2010). Deforestation processes in Greece: A spatial
analysis by using an ordinal regression model. Forest Policy Econ, 12, 457—
472.

Mucher, C.A., Champeaux, J.L., Steinnocher, K.T., Griguolo, S., Wester, K., Heunks,
C. etal. (2001). Development of a consistent methodology to derive land cover
information on a European scale from remote sensing for environmental
monitoring; the PELCOM report. Alterra-rapport 18 178/CGl-report 6, Alterra,
Wageningen, the Netherlands.

75



Neumann, K., Herold, M., Hartley, A., & Schmullius, C. (2007). Comparative
assessment of CORINE2000 and GLC2000: Spatial analysis of land cover data
for Europe. Int J Appl Earth Obj, 9, 425-437.

Papanastasis, P.V., Mantzanas, K., Dini-Papanastasi O., & Ispikoudis, 1. (2009).
Traditional Agroforestry Systems and Their Evolution in Greece. In A.
Rigueiro-Rodriguez, J. McAdam, & M.R. Mosquera-Losada (Eds.),
Agroforestry in Europe Current Status and Future Prospects (pp. 89-109).
Springer.

Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C., & Defourny,
P. (2014). Automated Training Sample Extraction for Global Land Cover
Mapping. Remote Sens, 6, 3965-3987.

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez,
J.P. (2012). An assessment of the effectiveness of a random forest classifier for
land-cover classification. ISPRS J. Photogramm, 67, 93-104.

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using
dense time stacks of Landsat satellite data and a data mining approach. Remote
Sens Environ, 124, 689-704.

Southworth, J. (2004). An assessment of Landsat TM band 6 thermal data for analyzing
land cover in tropical dry forest regions. Int. J. Remote Sens, 25, 689—-706.

Steiniger, S., & Hunter, J.S.A. (2013). The 2012 free and open source GIS software
map — A guide to facilitate research, development, and adoption. Comput
Environ Urban, 39, 136-150.

Symeonakis, E., Calvo-Cases, A., & Arnau-Rosalen, E. (2007). Land use change and
land degradation in southeastern Mediterranean Spain. Environ Manage, 40,
80-94.

Symeonakis, E., Caccetta, P., Koukoulas, S., Furby, S. & Karathanasis, N. (2012).
Multi-temporal land cover classification and change analysis with Conditional
Probability Networks: the case of Lesvos Island (Greece). Int. J. Remote Sens
33(13), 4075-4093.

Teillet, P.M., Guindon, B., & Goodenough, D.G. (1982). On the slope-aspect correction
of multispectral scanner data. Can. J. Remote Sens, 8(2), 84-106.

Turner 11, B.L. (1994). Local faces, global flows: the role of land use and land cover in

global environmental change. Land Degrad Rehabil, 5, 71-78.

76



Turner 11, B.L., Lambin, E.F., & Reenberg, A. (2007). The emergence of land change
science for global environmental change and sustainability. Proc Natl Acad Sci,
104, 20666—20671.

Vermote, E., Tanré, D., Deuzé, J.L., Herman, M., & Morcrette, J.J. (1997) Second
Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide
Version 2.

Weiser, R.L., Asrar, G., Miller, G.P., & Kanemasu, E.T. (1986). Assessing grassland
biophysical characteristics from spectral measurements. Remote Sens Environ,
20, 141-152.

Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., & Woodcock, C.E. (2012).
Opening the archive: How free data has enabled the science and monitoring
promise of Landsat. Remote Sens Environ, 122, 2-10.

77



Chapter 6: Urban land cover thematic disaggregation, employing datasets

from multiple sources and Random Forests modeling

Authors: Dimitrios Gounaridis, Sotirios Koukoulas
Journal: International Journal of Applied Earth Observation and Geoinformation 51,
(2016), 1-10.

Abstract

Urban land cover mapping has lately attracted a vast amount of attention as it closely
relates to a broad scope of scientific and management applications. Late methodological
and technological advancements facilitate the development of datasets with improved
accuracy. However, thematic resolution of urban land cover has received much less
attention so far, a fact that hampers the produced datasets utility. This paper seeks to
provide insights towards the improvement of thematic resolution of urban landcover
classification. We integrate existing, readily available and with acceptable accuracies
datasets from multiple sources, with remote sensing techniques. The study site is
Greece and the urban land cover is classified nationwide into five classes, using the
Random Forests algorithm. Results allowed us to quantify, for the first time with a good
accuracy, the proportion that is occupied by each different urban landcover class. The
total area covered by urban land cover is 2280 km2(1.76% of total terrestrial area), the
dominant class is discontinuous dense urban fabric (50.71% of urban land cover) and
the least occurring class is discontinuous very low density urban fabric (2.06% of urban
land cover).

Keywords: Urban land cover, Thematic disaggregation, Urban atlas, Landsat, Random

Forests.
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4.1 Introduction

Urban areas determine, both positively and negatively, several functions of the
Earth system, from local to global scales (DeFries et al. 2010; Folke et al. 1997).
Accurate information about urban land cover (ULC) is critical to a wide range of social,
economic, and environmental research questions not only for descriptive but also for
analytical and predictive modeling purposes. Thus, reliable spatial information about
ULC composition and configuration serves as a principal component in a variety of
scientific activities, across several disciplines, while for studies related to global,
environmental and/or climate change it is considered a pre-requisite (Grimm et al. 2008;
Mills, 2007).

In pursuit of spatial information about land cover (LC), traditional field data
approaches face certain drawbacks as they are limited to a local extent due to their
prohibitively expensive nature in means of time, costs and personnel. Technological
and methodological advances in remote sensing (RS) and geographic information
systems (GIS) successfully provide spatially consistent LC information. Nowadays, an
increased number of satellite sensors has been launched and facilitate the growing
demand for multi-spectral and multi-temporal information of the Earth’s surface over a

wide range of scales and data types (Belward and Skeien, 2014).

A number of studies have generated several datasets regarding ULC, or LC in
general. The majority of them consider studies at the scale of individual cities,
analyzing changes and patterns over multiple years or exploiting spatial information
and structure on a single date (Yu et al. 2014). On a global scale, more than ten datasets
have been produced with spatial resolutions ranging from approximately 10km to 30m
(Chen et al. 2014; Potere et al. 2009). The limitations and drawbacks of these global
datasets have been discussed in detail by several researchers (Congalton et al. 2014;
Giri et al. 2013; Potere et al. 2009). The predominant conclusion stressed by these

studies is that the most prominent drawback is the variability in ULC definition.

On a regional scale, for Europe, the CORINE land cover (CLC) is the most
frequently used dataset with a hierarchical classification scheme comprising of 44
classes (at level 3) and a minimum mapping unit of 25 ha. The urban category denoted

as ‘urban fabric’ is divided in two classes (continuous and discontinuous). Recently,
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the Copernicus land monitoring service has released the Urban Atlas (UA) database. It
consists of LC maps for 305 European large urban zones with more than 100.000
inhabitants for the reference year 2006 (European Commission, 2011). It has been
derived by very high-resolution satellite data (spatial resolution between 2.5 and 5 m)
and has a significantly lower minimum mapping unit of 0.25 ha, compared to CLC. The
thematic resolution of UA, regarding ULC is also much more detailed than CLC -
although it has limited geographic coverage- dividing the urban class into five classes
differentiated by their degree of imperviousness.

Despite the unquestionable value of the datasets produced so far, their application
to a range of research applications and management activities is inefficient. The reason
is their resolution, both spatial and thematic, a constraint in cases when these data are
to be used in studies that finer scale of analysis is mandatory (e.g. urban planning) or
in studies that require sufficient thematic ULC detail (e.g. population density mapping).
As far as spatial resolution is concerned, the previous efforts mainly employed coarse
resolution satellite data for feasibility reasons (data availability, technical innovation,
human and financial resources). However, ULC delineation employing coarse
resolution primary data is not a simple task. On the one hand, ULC class has a limited
areal extent in comparison with other classes, while on the other hand, it is a class with
extreme variability in terms of spectral and textural characteristics. Thus, data derived
by coarse spatial resolution are due to the mixed pixel effect, especially for the ULC
class, where small area urban areas are often completely omitted, spatial details are
lacking and the edges are erroneously presented (Potere et al. 2009; Schneider et al.
2010). Thematic resolution refers to the number of classes and the detail in their
definition that determines the amount of geospatial information of hard classified
categorical data. The more detail in a land user/cover map, the more meaningful and
insightful the map is for a wide range of research questions. Several authors have
explored the effects of thematic resolution in land use modeling (Conway, 2009;
Pontius and Malizia, 2004), land-cover pattern analyses (Buyantuyev and Wu, 2007)
and landscape indices behavior (Bailey et al. 2007), converging that the outcomes are
significantly influenced. Whilst thematic resolution is important to a range of
applications, available regional and global datasets in most cases represent ULC
lumped into one or two broad classes, a fact that is far from reality on the ground, given

the heterogeneity of urban areas across space (Potere et al. 2009).
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In this paper we successfully disaggregate ULC patterns into five categories
achieving nationwide coverage (for Greece). Additionally, we demonstrate a sequence
of steps towards the improvement of existing shortcomings and scarcity of high quality
data related to ULC. Our main focus was to achieve the highest possible thematic
resolution without compromising accuracy. To this end, we employ the Random
Forests (RF) machine learning algorithm (Breiman, 2001) that is proven to perform
well in the face of heterogeneous classes. Our model is trained intensively by the
polygon centroids of the UA dataset -available for nine cities- to finally ‘predict’ ULC
for the rest of the geographic coverage of Greece. Road density, population, LC and

spectral indices derived by Landsat satellite, serve as predictor variables.

The rest of the paper is structured as follows: We first present the study site, Greece,
along with information about morphology, recent population dynamics and some causal
factors that contributed to the existing ULC scenery. Next, we present an overview and
the data used as both response and predictor variables to train our models, along with
the data pre-processing steps. Then, the RF classifier application and the accuracy
assessment process are described in detail. In the next section, we present the obtained
results and we discuss the model performance. Finally, in the last section we discuss

the conclusions drown and we highlight some key points.

4.2 Material and methods

4.2.1 Study site

Greece is a Mediterranean country of Southeast Europe situated between latitudes
34° and 42° N, and longitudes 19° and 30° E (Figure 1) and is populated by
approximately 11 million inhabitants. Two-thirds of the inhabitants live in urban areas,
while the remaining one-third are rural inhabitants (Hellenic Statistical Authority,
2013). Almost two thirds of the Greek territory are mountainous, with Mount Olympus
being the highest at 2.917m (European Environment Agency, 2010). Extensive
agricultural plains are primarily located in Thessaly, Central Macedonia and Thrace

regions, constituting key economic sources.
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Figure 1. Study site Greece, divided into nine areas containing one UA city each

Greece has a long history of land use, ranging from prehistoric to present times
constituting a country of people with strong dependency on the land. The last decades
of the 20" century the economic potential of urban centers motivated a constant societal
demand to capture new economic opportunities, a fact that consequently triggered a
shift of rural population (Kasimis et al. 2003). In turn, rural land abandonment
progressively led to marginalization of remote areas especially in the uplands
(MacDonald et al., 2000) while leading to agricultural and farming intensification at
the lowlands (Beopoulos and Skuras, 1997). Significant expansion of the tourism sector
as well as a trend in second homes gave a boost in growth dynamics of the built

environment, especially in the coastal zones. At the same time, the aforementioned
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developments are perceived as both consequences and driving forces of public works
and transport infrastructures expansion. Thus, the demographic dynamics and the major
socio-economic changes that have taken place progressively brought radical changes in
Greek landscapes (Zomeni et al. 2008).

Statistics clearly advocate all the aforementioned. According to the latest census of
2011, the Greek ULC scenery consists of 13220 settlements, 746 (5.6 %) of which are
uninhabited, 6897 (52.2 %) have less than 100 residents and 8806 (66.6 %) have less
than 200 inhabitants. At the same time, according to the 2011 census, Attica prefecture
is inhabited by 3.827.624 residents (35% of total population) and the prefecture of
Thessaloniki by 1.880.058 residents (17% of total population).

4.2.2 Overview

The RF algorithm is a robust non-parametric machine learning algorithm (Breiman,
2001) that has been widely used for LC classification. Initially, the algorithm uses a
randomly selected part of training observations (response variable) as well as a sample
of predictor variables, resulting in a number of independent to each other classification
trees. This process is repeated several hundreds of times, thus forming a 'forest' of
classifiers. Each tree contributes with a single vote to the assignment of the most
frequent class. The final outputs of classification are determined from the majority of
votes for each class (Breiman, 2001). The main advantages of adopting RF in our task
are: i) the independency of each classification tree, on the one hand, and the randomness
of variable selection, on the other, reduce the problem of overfitting and at the same
time make the models insensitive to noise and outliers (Breiman, 2001; Chan and
Paelinckx, 2008). ii) The algorithm can efficiently handle predictor variables, with
different nature (both continuous and categorical) and from multiple sources
(Gounaridis et al. 2014; Gounaridis et al. 2015) which is the case for our approach. iii)
The first two advantages of RF contribute to good performance in the classification of
heterogeneous landscapes (Rodriguez-Galiano et al. 2012a; Timm and McGarigal,
2012) such as ULC. iv) RF can handle large datasets and thousands of input variables
being computationally faster than other classifiers (Rodriguez-Galiano et al. 2012b) and

thus can efficiently handle broad scale tasks. v) The importance of each input variable
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is quantified allowing for several tests to determine whether a variable will be included

in the model or not.

Discrimination and classification of ULC with the use of remote sensing techniques
is not a simple task due to the complex nature of this LC category. Built-up environment
is commonly characterized by heterogeneous patterns and a variety of mixed land uses.
Residential buildings, transportation networks, industrial and commercial
infrastructures, open spaces and vegetated patches co-exist in a ULC patch and are often
composed by a wide range of surface types, materials and thus, spectral responses. A
number of authors attempted to delineate built-up areas and at the same time deal with
the challenge of the mixed pixel problem. The majority of studies exploit full spectral
information combined with texture information (Lu and Weng, 2005), spectral indices
(Xu, 2007), spectral unmixing techniques (Wu, 2004) and Nighttime Lights (Elvidge et
al. 2007). Lately, the use of auxiliary non-spectral variables has been found to improve
the classification accuracy of certain LC classes (Rodriguez-Galiano and Chica-Olmo,
2012). Additionally, methodological advancements of algorithms that can usefully
handle different type of data, such as RF, increase the inclusion of more and more

morphological and socioeconomic variables to serve as proxies to ULC classification.

4.2.3 Data processing

4.2.3.1 Response variable

To train the RF algorithm we extracted the polygon centroids of the UA dataset. By
using the centroids instead of another sampling strategy, we ensured taking clear
samples of each category avoiding at the same time any sampling near boundaries of
adjacent categories that would lead to discrepancies. The major advantages of using the
UA dataset as training for our models was that i) it has the highest thematic resolution
available, distinguishing ULC into five categories. ii) Despite its limited geographic
coverage, it is derived from high resolution imagery and providing thousands of
accurate samples and thus consisting a valuable source for extensive training for our
task. iii) Itis free and readily available. For Greece nine cities in total have been mapped
so far (Figure 1). The UA data were re-projected to the Greek Geodetic Reference
System (GGRS 1987) and reclassified into six final classes. Table 1 presents the

training used for each of the nine regions of this study.
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Table 1. Number of UA polygon centroids used to train the RF algorithm for each of the nine areas

depicted in Figure 1.

1* 2* 3* 4* 5* 6* Total

Kavala 774 352 126 49 8 1151 2460
Thessaloniki 7313 3925 962 111 43 8963 21317
loannina 1731 1584 740 372 56 6308 10791
Larisa 2827 1909 535 130 78 5502 10981
Volos 2065 655 155 110 71 2001 5057
Athens 28562 19638 11260 7428 1329 30847 99064
Patra 1311 1430 855 458 21 2754 6829
Kalamata 685 425 398 461 240 1703 3912
Iraklio 1160 593 506 405 102 1858 4624

1*. Continuous urban fabric

2*. Discontinuous dense urban fabric

3*. Discontinuous medium density urban fabric

4*, Discontinuous low density urban fabric

5*. Discontinuous very low density urban fabric

6*. Other use

4.2.3.2 Predictor variables

Several datasets can be used as predictor variables for ULC classification. RF

algorithm offers the flexibility that data of different nature and value scaling can be

incorporated in the model. After several tests (not presented here) we concluded to a

set of predictor variables that best facilitate the discrimination of ULC classes, while

taking into account two criteria: 1) Simplicity of the model and feasibility in terms of

computational cost and 2) availability of data to enhance reproducibility of our

approach to other regions.

Assuming that human activity and artificial environment are connected with the

existence of roads, one of the most prominent proxies of ULC is the road network
(Gounaridis et al. 2014; Gounaridis et al. 2015; Hawbaker et al. 2004). Another useful
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proxy with apparent interrelation with ULC is population density (Mesev, 1998).
Additionally, the last few decades there have been efforts towards the impervious
surface mapping with the use of remote sensing (Sutton et al. 2009). Inclusion of
impervious surface information can serve as a base and enhances the accuracy of ULC

mapping (Lu and Weng, 2006).
4.2.4 Data processing

Spectral indices: To retrieve spectral information, for our case study, we employed the

Global Land Survey (GLS) 2010 Landsat imagery dataset that uses a combination of
Landsat 5 TM and Landsat 7 ETM+ images acquired between 2008-2011 (Gutman et
al., 2013). A total of 27 GLS images (spanning path: 180-186 and row: 31-36) were
selected and processed, achieving full coverage of the country. To avoid any
discrepancies due to the multi-temporal and double-sensor type of analysis all images
underwent a series of corrections and calibration. To radiometrically and
atmospherically correct the Landsat images, first we converted the DN numbers into
top of atmosphere reflectance and second to obtain surface reflectance and achieve data
normalization, we applied the 6S model (Vermote et al. 1997). Finally, to correct for
topographic effects, we applied the C-correction method (Teillet et al. 1982). The
corrected bands of the 27 Landsat images were processed in order to calculate two
spectral indices, the normalized difference built-up index (NDBI) (Zha et al. 2003) and
the enhanced built-up and bareness index (EBBI) (As-Syakur et al. 2012). NDBI has
the capacity to help classification models in distinguishing built-up areas and barren
land as it involves spectral information of near and middle infrared wavelengths which
are sensitive to the spectral response of these classes. EBBI both involves near and
middle infrared wavelengths spectral information and incorporates the thermal band of
Landsat as well. This was reported that it enhances the distinction between built-up
areas and barren land classes, thus achieving better results compared to other similar
spectral indices (As-Syakur et al. 2012).

Population: The latest national population census data of 2011 (Hellenic Statistical
Authority, 2013) were acquired and geo-coded in point vector format. Next, the point
data were spatially aggregated in administrative polygons and finally converted into
raster format. We did not use the raster of population density surface available by the
European Environment Agency (EEA), as it is outdated and of coarser resolution
(Gallego, 2010).
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Road network: Spatial representation of the national road network was acquired from
the OpenStreetMap (OSM) project. The OSM project is one of the most established
sources of voluntarily derived, free access and up to date datasets (Ramm et al. 2011).
The degree of completeness specifically of the road network is high especially for the
cities, and the data coverage is expected to be improved in the coming years (Jokar
Arsanjani et al. 2013). The data were re-projected onto the Greek Geodetic Reference
System (GGRS 1987). Roads are constructed for a variety of purposes and thus
different types of roads may not indicate ULC, a fact that might diminish the model’s
performance. To this end, the lines assigned as “residential road” and “living street”
class were extracted. Finally, a raster density map was generated using a moving
Gaussian kernel density function with equal split and a bandwidth of 200m (Okabe et
al. 2009).

Land cover: We used a newly produced land cover dataset for Greece for the year 2010
(Gounaridis et al. 2015). This dataset was derived by the 2010 Landsat GLS imagery
and the RF algorithm. The algorithm was trained semi-automatically, extracting
information from the CORINE 2000 LC dataset. The overall accuracy is 83%. The
nomenclature adopted was similar to CORINE at hierarchical level 2, thus ULC is
represented in one single class.

Soil sealing: We acquired the sealed land dataset produced as part of the Global
Monitoring for Environment and Security (GMES) Fast Track Service on Land
Monitoring in 20062008 and disseminated by EEA in 2009. This dataset, available in
20m spatial resolution, refers to the degree of soil sealing (continuously ranging from
0% to 100%) for 2006, with classification accuracy higher than 85% per hectare
(European Environment Agency 2011). From this dataset, our case study area, Greece,
was extracted and the resulting raster map was re-sampled to 30m and re-projected on
the GGRS 1987 system.

4.2.5 Variables exploratory analyses

We concluded in a set of predictor variables that best describe ULC. Figure 2
illustrates the interrelationships between the predictors and response variable for the
five ULC classes, excluding “other use” (Table 1). The values of EBBI and NDBI are
within a certain range for all road density and soil sealing values, where negative values

correspond to non-built-up areas. The population values coincide with almost all values
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of sealed land. Unsurprisingly, higher population values coincide with high values of
the soil sealing layer, while smaller values (including classes of lower ULC densities)
can be encountered in less sealed areas. The values of road density behave similarly.
Areas with all values of road density coincide with higher amounts of soil sealing, while
there is a small portion of areas with less dense road network that can be encountered
in less sealed land. All predictor values, except the LC 2010 dataset, follow a
reasonable route across different ULC densities. Soil sealing, road density, EBBI and
NDBI seem to decrease accordingly as ULC density also decreases, while population
has, as expected, higher values for continuous and discontinuous dense urban fabric.
All five categories of ULC though coincide with all LC 2010 categories, where they
should be expected to coincide with only urban values. The fact that ULC values
coincide with non-urban categories indicates that LC_2010 dataset underestimates the
ULC extent.

4.2.6 Model implementation

Figure 3 summarizes the sequence of procedures followed for our analyses.
Initially, Greece was split into nine, relatively equal parts, each one containing an UA
city (Figure 1). All data were masked into these nine parts, trained and run individually.
This step allowed the process to be held, otherwise the computational demand at a
national scale of analysis would be prohibitively high. The values of each predictor
variable layer were collected on the location of the UA centroid, already containing LC
class values (Table 1) and used as predictor values. Next, the classification was
implemented through the use of randomForest package (Liaw and Wiener, 2002) in R
open-source statistical software. For classification, RF requires two primary
parameters: (i) the number of predictor variables randomly sampled at each decision
tree split and (ii) the number of decision trees. We used the value of three (3) predictor
variables for each tree split (equal to the square root of the total number of predictor
variables). We did not apply any optimization method, as it increases the computational
sources demand. The number of decision trees was set to 5000 for each run since it was
found that the higher the number, the more the classification error converges
(Rodriguez-Galiano et al., 2012a).
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Figure 2. Inter-relationship between predictor and response variables to be used in RF models. The
values consist a 10% random sample of the dataset used to train the model of Athens. The 6" category
(other use - please see table 1) was excluded.
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4.2.7 Accuracy assessment

We assessed the classification’s accuracy at two levels, both for positional errors and
thematically. Initially, we used the geo-coded data of the population census, in point
vector format. Given the small portion of ULC compared to other LC classes, a random
distribution of points to our map would result in weak assessment of the ULC classes
accuracy. By using geo-coded points, this weakness was diminished as this dataset
actually represents all settlements of Greece for the year 2011, recorded via in situ
survey. Moreover, we included a validation dataset consisting of a set of points that
were photo-interpreted using very high-resolution imagery (Gounaridis et al. 2015). To
assess the accuracy for the thematic categorization, we re-classified the soil sealing
layer according to Lu and Weng (2006). The re-classified soil sealing values along with
the values of the resulting map were collected at the settlements location. Results were
tabulated, generating an error matrix that allowed the computation of overall accuracy

and the errors of commission and omission for each class.

4.3 Results and discussion

Table 2 shows that results were mainly satisfactory with an overall accuracy of
81.8 %. We also estimated omission and commission errors at the class level. Some
errors were from the confusion between adjacent classes, which is a frequently
encountered issue in classification. The major disagreement appears between the
“Discontinuous very low density urban fabric” with “Discontinuous low density urban
fabric” and “Other use”. These two classes represent very sparse built-up urban fabric
with less than 10 % and 10 - 30 % sealed land respectively. They consist of
heterogeneous areas encompassing irregularly, incompact and scattered settlements
with significant differences from adjacent LC classes (e.g. agricultural fields, forests).
Especially in the “Discontinuous very low density urban fabric” the asphalt road
network is often absent. Thus, in many cases the adjacent LC dominates the spectral
response of the area leading to ‘weak’ evidences of their built-up patches existence. In
other words, the mixed pixel effect is particularly noticeable in such heterogeneous
landscapes.
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Table 2. Error matrix
Resulting map

Reference 1* 2* 3* 4* 5% 6* Total Omission Error (%)
1* 980 314 71 34 19 83 1501 34,7
2% 224 1765 102 33 11 29 2164 18,4
3* 38 55 707 46 19 49 914 22,6
4* 42 23 69 394 22 90 640 38,4
5% 14 26 22 47 65 53 227 65,2
6* 51 95 42 41 54 4249 4532 6,7
Total 1349 2278 1013 595 190 4553 9978
Comission Error (%) 27,3 22,5 30,2 33,7 65,7 6,6
Overal accuracy 81,8%

1*. Continuous urban fabric

2*. Discontinuous dense urban fabric

3*. Discontinuous medium density urban fabric
4*, Discontinuous low density urban fabric

5*. Discontinuous very low density urban fabric

6*. Other use

A sound way to overcome these shortcomings would be the utilization of very high
resolution (both spatial and spectral) imagery. The nature and the extent of our analyses
ruled out this option. Medium to high spatial resolution data and Landsat imagery for
spectral derivatives were the only viable way. RF model’s performance, as expected for
all machine learning algorithms, was found to be highly dependent on the predictor
variables and training data quality. All included predictor variables were datasets of
acceptable accuracies, as discussed in the “2.3.2 Predictor variables” section. The UA
centroids, used as training, were also of acceptable accuracy and quantity (165,035 in
total). One important part regarding quantity is the relatively equal representation of
classes that in our case, was an unreached goal. Nevertheless, the nine cities that have
already been mapped by UA had inequalities in size and composition resulting in
unequal representation of classes (Table 1).

However, the distinction of ULC classes and our primary objective to achieve high
thematic resolution has been met. Our models performed well in cases were previous

efforts failed due to spectral and textural confusion of similar but different adjacent LC
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classes. All six variables included in our models contributed more or less to obtain
satisfactory results. Figure 5 illustrates the variables ordered top-to-bottom as most to
least important. The mean decrease in accuracy is a score calculated during the out of
bag error calculation phase and it informs about how much the accuracy decreases if a
variable would be permuted or in other words excluded from the model. Therefore, the
larger the value of mean decrease, the higher the importance of a variable is. The mean
decrease in Gini coefficient is a score informing about each variable’s contribution to
the impurity of the resulting random forest. Variables with a high value in the decrease
Gini score, have nodes with high purity and thus contributes to the model’s
homogeneity. In all cases, the road density had the most important role in the models
while the population and the EBBI were the second most important variables. The order
of importance for both scores varied slightly between the models of the nine sub-

regions.
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Figure 4. Representative examples of results and predictor variables. 1a;2a;3a: Google earth imagery
with the red line representing the residential road network. 1b;2b;3b: Degree of soil sealing. 1c;2c;3c:
EBBI. 1d;2d;3d: LC 2010 dataset. 1e;2e;3e: Resulting map.

Figure 4 illustrates three representative examples of RF good performance and
highlights how the combination of predictor variables used allowed the adequate
discrimination of ULC. The first example depicts the city of Karditsa, which lies in the
plain of Thessaly. The city is surrounded by a highway, industrial facilities, agricultural
fields and smaller ULC patches dispersed in the peri-urban zone (Figure 1a). The soil
sealing layer (Figure 1b), as expected, has higher values of imperviousness in the

highway than in many ULC areas, while the 2010 LC dataset considers all bult-up areas
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as ULC (Figure 1d). EBBI index alone (Figure 1c) fails to delineate ULC as the area is
surrounded by agricultural fields in the dry season, where soil dominates and spectral
responses are confusing.

However, our model achieved an adequate discrimination of the classes (Figure 1e).
The second example depicts a settlement of the prefecture of Fthiotida in central
Greece. This landscape is a typical example of very low density built-up area,
surrounded by forests, schrublands and tree crops (Figure 2a). The mixed pixel effect
is particularly evident here, as it can be seen by the soil sealing values (Figure 2Db).
Following, the 2010 LC dataset partially underestimates the ULC extent (Figure 2d)
while EBBI (Figure 2c) is prone to the mixed pixel problem, underestimating, in most
parts, the actual ULC area and in other parts overestimating due to confusion with
barren land (left part of Figure 2c). As seen in Figure 2e, our model classifies accurately
this landscape. The third example depicts the city of lerapetra, located in the southeast
of Crete. The economy of lerapetra relies mainly on farming and agriculture. Thus, the
area next to the city is occupied by agricultural fields, pastures and farms (Figure 3a).
The landscape is dominated by numerous greenhouses and tin roofed farm
establishments. As a result, the impervious surfaces expand extensively outside of the
city (Figure 3b). At the same time, EBBI successfully distinguishes the greenhouses
from ULC materials but failes to distinguish ULC from bare rocks (Figure 3c). Finally,
2010 LC dataset (Figure 3d) delineates rather well the area, with minor overestimation
of ULC. Results show (Figure 3e) that our model confuses neither greenhouse material
nor bare rock with ULC.
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Figure 5. Importance of variables used for the nine RF models.

Results allowed us to quantify, with a certainty, the total area occupied by each ULC

class (Table 3). ULC occupies an area of approximately 2280 km?2 which is

approximately 1.8 % of the total terrestrial area (including the inland water). Dominant

ULC type is discontinuous dense urban fabric, whereas the least occurring is

discontinuous very low density urban fabric with 50.71 % and 20.06 % respectively.

These numbers provide an insight into the ULC scenery of Greece and can be attributed
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to the developmental and demographic shifts that took place during the last decades of

the 20™ century.

Table 3. Quantification of the area occupied by each ULC class.

Urban land cover class Area (km?) Perceqtage of total Percentage of
terrestrial land cover  urban land cover
(%) (%)

Continuous urban fabric 456,66 0,35 20,03
Discontinuous dense urban fabric 1155,92 0,89 50,71
Discontinuous medium density urban fabric 391,53 0,30 17,18
Discontinuous low density urban fabric 228,39 0,18 10,02
Discontinuous very low density urban fabric 46,93 0,04 2,06

Other use 127,792,48 98,25

Total 130,071,91 100,00 100

4.4 Conclusions

The objectives of this paper were to investigate if we can effectively fuse existing
datasets and remote sensing techniques in order to classify ULC into five classes and
finally to accurately quantify the area occupied by each class. To do so, we integrate
data of soil sealing, population, road network density, LC and two spectral indices for
built-up area delineation. We demonstrate that data from multiple sources, meeting
certain criteria (e.g. costs, quality, computational feasibility), can be combined in a
modeling framework and provide satisfactory results and high thematic resolution.
Considering the general characteristics of the described approach, we expect that the
present paper will contribute to the generation of improved ULC mapping, which was
also one of our goals. The modeling framework discussed here is suitable for a wide
range of applications and can act as a baseline in planning, steering and monitoring of

LC and its associated changes.
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Abstract

Simulation modeling along with scenario analysis is a useful tool for urban planning,
by providing an appraisement of different alternatives and tradeoffs and thus
contributing to improved decision making. The objective of this study is to explore
potential future urban dynamics in the Messoghia plain, (peri-urban Athens, Greece)
under four scenarios that reflect future growth traits in the area related to different
economic performance realities and alternative policies. Messoghia, a predominantly
rural area, experienced significant and unregulated urban growth, during the past
decades, due to the construction of the international airport in the area, the significant
allocation of funds triggered by 2004 Olympics and the absence of planning controls.
However, the late economic circumstances significantly affected the growth trends in
the area. First, the paper looks at the periodic changes occurred during the past three
decades (1980-2015) employing remote sensing techniques and Landsat data. The
observed changes are then combined with 20 dynamic, biophysical, socio-economic
and legislative factors, to produce transition potential maps using the Random Forests
algorithm. Scenarios are projected until 2045 by implementing a spatially explicit
Cellular Automata model. Under an economically optimistic scenario which means
high or medium development circumstances, and given the absence of an adequate
controlling mechanism, the artificial surfaces are expected to nearly double in size, by
2045. In case of a continuation of economic scarcity which can be translated in low or
very low development, the artificial surfaces are expected to increase by 9% or 6%

respectively, by 2045.

Keywords: Urban growth, Random forests, Cellular automata, Simulation,

Development scenarios, Land use planning
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5.1 Introduction

Changes in land cover and land use are among the most important human made
alterations on earth, reflecting a wide range of interactions between society and the
environment (Turner Il, Lambin & Reenberg, 2007). The rapid transformation of land
into artificial surfaces, has rightfully attracted the attention of scholars, planners and
policy makers, concerned with the negative environmental implications it entails
(Johnson, 2001). Research on the environmental impact of unregulated urban expansion
centres on a number of issues, ranging from soil sealing, ecosystem fragmentation and
the increased consumption of rural and natural land (Hasse & Lathrop, 2003; Jongman,
2002; Milesi, 2003), to broader concerns regarding the demotion of “urban

sustainability” goals (Wilson & Chakraborty, 2013).

In view of these consequences, emphasis in the literature is placed on the capacity
of land-use planning to influence the form, degree and direction of urban growth
tendencies. Key in the fruitfulness of such efforts - aptly termed “smart growth” policy
initiatives (EEA, 2006) - is the availability of two distinct types of information. First,
an appraisal of urban growth trends, encompassing the pivotal factors that influence
urban expansion. Second, an estimation of the impact of particular spatial planning
choices on future land cover patterns (Xiang & Clarke, 2003). In the absence of such
insights, spatial planning is insufficiently informed to adequately intervene and regulate
urban growth pressures, risking the emergence of sprawl type phenomena

(Chorianopoulos, Pagonis, Koukoulas & Drymoniti, 2010).

Spatially explicit modeling, constitutes a useful tool for conducting computational
experiments that quantify the importance of various driving forces of change,
contributing to an enhanced understanding of such a complex phenomenon (Veldkamp
& Lambin, 2001). Modeling of growth dynamics is meaningful when adopting a two-
phase approach. To start with, the history of the place explored has to be
comprehensively looked at, part of an attempt to identify the key socio-spatial variables
influencing the traits and direction of urban growth. Subsequently, by quantifying the
driving forces of local change, a model can be build, capable of predicting possible

future growth trajectories in the area under certain scenarios.

Scenario-based analysis has emerged in order to explore variations for a limited,

but consistent, set of model parameters, delineating feasible future development trends
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under a set of pre-defined conditions (Feng & Liu, 2016; Murray-Rust, Rieser,
Robinson, Milicic & Rounsevell, 2013). The key step in such an attempt is the creation
of the so-called transition potential maps, an exercise that draws from an area’s
recorded trends and performances, to indicate the degree of potential change in the
future. This process is based on the change detection outputs of the historical land cover
and the quantification of the ways in which the respective driving forces contributed to
such changes (Kolb, Mas & Galicia, 2013).

While, by definition, models cannot replicate complex interactions and nonlinear
socio-economic relations, spatial simulation approaches are increasingly being adopted
and used. Advancements in geo-informatics as well as in computer capacity triggered
the proliferation of modeling techniques (Berling-Wolff & Wu, 2004), the availability
of geographic datasets and the methodological achievements in data processing and
change detection (Tewkesbury, Comber, Tate, Lamb, & Fisher, 2015). Various
approaches have been adopted to model the dynamics of the built-up environment and
to explore future scenarios, using regression modeling (Feng, Liu, Chen, & Liu, 2016,
Poelmans & Van Rompaey, 2010), agent based modeling (Batty, Xie, & Zhao, 2007),
markov chains (Ku, 2016), system dynamics (He, Okada, Zhang, Shia, & Zhang, 2006;
Zheng et al. 2012), and cellular automata (CA) (Lagarias, 2012; Vliet, White, &
Dragicevic, 2009).

Accounting for the increased interest in CA applications (Sante et al. 2010), the
literature stresses the capacity of the respective approach to represent stochastic, non-
linear processes in a conceptually simple way (Batty et al, 1997). Additionally, CA are
spatially-explicit and application-oriented and therefore fully consistent with
Geographic Information Systems (GIS) and remote sensing (Feng, 2017, Liu & Feng,
2016; Feng, Yang, Hong, & Cui, 2016). Another important advantage of the CA
approach is their incorporation in a plethora of modeling frameworks and platforms
(Aburas, Ho, Ramli & Ash’aari, 2016). Examples include, among others, SLEUTH
(Clarke, Gaydos, & Hoppen ,1997), Environment Explorer (Engelen, White, & de Nijs,
2003), the MOLAND (Lavalle et al., 2004), IDRISI’s CA. MARKOV (Paegelow &
Camacho Olmedo, 2005), iCity (Stevens, Dragicevic, & Rothley, 2007) and Dinamica
EGO (Soares-Filho, Pennachin, & Cerqueria, 2002). However, some of these
frameworks and platforms are restricted to certain methodologies, steady schemes and

fixed parameters. Instead, Dinamica EGO is a flexible open platform where modelers
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are able to elaborate and to extend the methodological procedures according to their
specific needs. Recently, Mas et al. (2014) in a comparative assessment of four
modeling frameworks, outlined two key advantages of Dinamica EGO that are crucial
for simulating growth dynamics (section 2.2.6).

In this paper we employ and elaborate this particular methodology to explore a
challenging example of a dynamically growing peri-urban area. The case in point is the
Messoghia plain in Athens, Greece. Since the early 1980s and for the following two
decades, Athenian urban growth was channeled towards Messoghia, initiating a rural
to urban transformation process with marked environmental implications. During this
time, land use planning controls were not in place, as unregulated built-up expansion
was approached as a shortcut to economic growth (Chorianopoulos et al., 2014).
Environmental deterioration, however, triggered a belated planning response (2003),
aiming to curb emergent sprawling tendencies. Built-up expansion has also been
affected by the insolvency crisis the country is facing since 2010. The Messoghia plain,
therefore, is an area that faces strong development pressures that have only been
temporarily weakened as a result of extreme economic circumstances. In fact, the area’s
strong development potential is underscored and encouraged in the city’s revised
Master Plan (2014), shaping a pro-growth policy trajectory for the forthcoming decade
(GGN, 2014).

In this paper we argue that estimating the future growth traits in the area in light of
different economic performance realities and land-use planning contexts and choices,
is a prerequisite in any attempt to address the undesirable consequences of unregulated
urban expansion. From this perspective, we attempt to delineate the future growth
dynamics in Messoghia under four different economic and spatial policy scenarios and
to illustrate accordingly the respective the urban scenery in the medium (10 years) and
the long (30 years) term.  With regard to key concepts of reference, urban land is
defined in respect to all human-constructed elements, such as continuous or
discontinuous residential areas (hereafter called urban fabric) and industrial,
commercial, infrastructure and transport units (hereafter called artificial non-urban

areas).

The paper is organized in four parts. In the first part, we look at the case study area,

contextualizing the research exercise. In the second part, we outline the research
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methodology followed for imagery processing, classification and change detection
along with the 20 factors description and processing, including the calculation of the
Leap-frog development index. Accordingly, we present the sequence of methodologies
for the transition potential modeling, the scenarios development, the model calibration
and the projection of results to the future. In the third part of the paper, we illustrate and
discuss in detail the results obtained. In the concluding section, we revisit the area’s
prospective futures, highlighting the relevance or our approach to the quest for effective
planning responses and sustainable urban development trajectories.

5.2 Material and Methods

5.2.1 Study site

The Messoghia plain is located eastwards of the Athens conurbation (Figure 1).
Until the early 1980s the area retained at large a rural character, escaping the rapid
urbanization wave that transformed Athens in the postwar years. The main reason for
this particularity is the Hymettus Mountain, a physical barrier separating the plain from
the city that obstructed accessibility and delayed the development of an adequate
transportation network. Since the mid-1980s, however, the area displayed notable urban
expansion signs, associated in the literature with the sprawling tendencies of Athens; a
congested city with rapidly deteriorating environmental conditions (Leontidou, et al.,
2007). In the succeeding decades, change in Messoghia was swift and multifaceted, a
turn of events bringing to the foreground the fundamental antagonism between
economic growth preoccupations and regulated urban expansion goals. The key
developments that altered the area’s features are hereafter discussed and categorized

for methodological purposes in four distinct chronological frames of reference.

e 1985-1995: In the mid-1980s, and in light of urban expansion tendencies noted
in the region, the planning authorities decided to intervene. The introduction of
the Master Plan of Athens (1985) was expected to guide urban growth in the
region via the launch of detailed land-use plans. In the case of Messoghia, the
Master Plan was geared towards the protection of the area’s rural character.
This, however, did not happen. In a parallel trajectory, the decision to relocate

the Athens international airport in Messoghia was taken, cancelling de facto the
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respective Master Plan directions. Consequently, the implementation of the
spatial planning framework for Messoghia was indefinitely postponed, enabling
the unobstructed continuation of the sprawling tendencies noted in the area.

1995-2006: In the mid-1990s, the national authorities put Athens forward as a
candidate city for hosting the 2004 Olympic Games. The bid was successful
(1997), and a number of large scale physical infrastructure projects were
expeditiously initiated in Messoghia, including Olympics’ related venues
(Equestrian Centre, Shooting Centre) and transportation networks of
metropolitan importance (ring road, suburban railway). Investment in
transportation infrastructure, in particular, enhanced Messoghia’s accessibility,
triggering a population influx and a concurrent increase in urban land-uses. The
inflexible deadline of the 2004 Olympics resulted in the prioritization of
development planning goals over the spatial planning ones (Souliotis, 2013).
The land-use zoning scheme that was supposed to guide growth in Messoghia,
for instance, was put into force as late as in 2003. In the intervening period, rural

to urban transformation in the region proceeded apace.

2006-2010: The post-Olympics era is characterized by the relative soundness of
the economy, displaying annual growth rates that exceeded, on average, three
per cent of the GDP (Bank of Greece, 2014). Alongside, the long-awaited land-
use planning scheme for Messoghia was finally in place. This period of stability,
however, was cut short by the impact of the global financial crisis (2008) on the
state of public finances.

2010-2015: In the wake of the global financial crisis, the general government
deficit and the public debt stretched respectively to 15.4 and 126.8 percent of
Gross Domestic Product (GDP). As the state practically lost access to the
international financial markets, and in order to avoid a solvency crisis, the
government agreed a series of loans with the European Commission, the
European Central Bank and the IMF. The loans were conditional upon Greece
implementing an adjustment programme including, amongst others, the
introduction of steep austerity measures and the privatization of state owned
assets (Eurogroup, 2015). As a result, between 2008 and 2015 the economy lost
a cumulative 27 percent of its GDP (Bank of Greece, 2016). The relevance of

these developments for Messoghia are twofold. Fist, by reason of the economic
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depression, transactions in the real estate market in the region fell by 78 percent,
grinding the built-up expansion trend to a halt (Municipality of Athens, 2014).
Second, the ownership and, hence, the fate of key state owned real estate
properties in Messoghia (land and structures) was transferred to a privatization
fund, the sales of which aim to reduce the government’s debt burden. The future
usage of these sites in not regulated by the area’s planning framework, arresting
in practice the effectiveness of the respective land use planning scheme (Pagonis
& Chorianopoulos, 2015).

Greece

o BN BN

Figure 1. Location of the Messoghia plain (background from Landsat 8 OLI, 6 May 2015, path/row:
183/34, Bands: 4;3;2).

These four chronological frames marked with uneven development, different
economic performance realities and land-use planning, will consist our basis for the
scenario analysis in our attempt to explore potential future growth dynamics in

Messoghia.
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5.2.2 Approach

5.2.2.1 Images pre-processing and classification

We employed seven Landsat images (Table 1) spanning 30 years (1985-2015).
Four images (1990; 2000; 2006 and 2010) were part of the Global Land Survey (GLS)
datasets which are a collection of images that meet high quality and minimum cloud
cover standards (Gutman, Huang, Chander, Noojipady, & Masek, 2013). The rest of
the images (1985; 1995 and 2015) also meet the quality standards and had no cloudiness
in the study area. Ideally all images should be acquired the same month and preferably
during summer where phenological variations are less evident. However due to
availability of images that meet certain standards, and the scope of the study (artificial

surfaces) we use images acquired from May to August.

To avoid any discrepancies due to the multi-temporal and double-sensor type of
analysis, and to compute spectral indices (Song, Woodcock, Seto, Pax Lenney &
Macomber, 2001), all images underwent radiometric and atmospheric correction. We
first converted the DN numbers into top of atmosphere reflectance using the dark-object
subtraction method introduced by Chavez (1988). To obtain surface reflectance and
achieve data normalization, we applied the 6S model introduced by Vermote, Tanr¢,
Deuzé, Herman, & Morcrette (1997).

Table 1. Characteristics of the Landsat satellite images

Date Satelite Sensor Path Row Resolution
19/5/1985 Landsat 5 Thematic Mapper (TM) 183 34 30
14/8/1990 Landsat 5 Thematic Mapper (TM) 182 34 30
11/7/1995 Landsat 5 Thematic Mapper (TM) 182 34 30
30/6/2000 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 34 30
30/5/2006 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 34 30
12/8/2010 Landsat 5 Thematic Mapper (TM) 183 34 30
6/5/2015 Landsat 8 Operational Land Imager (OLI) 183 34 30

We classified all images into three categories, implementing the RF classification

algorithm through the RandomForest package available in R (Liaw & Wiener, 2002).
The three categories were i) urban fabric, ii) artificial non-urban and iii) Other land
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cover/uses (cultivated land, vegetation, bare land). To train the model, a set of randomly
distributed points (n = 650) was plotted against the Landsat images and very high-
resolution images available via Google Earth. Category values assigned by visual
interpretation. All points close to the boundaries of adjacent categories were relocated,
ensuring that clear samples of each category were taken and thus eliminating any source
of confusion to the model. As predictor variables, besides the 6 reflective Landsat bands
(bands 1-5 & 7 for Landsat 5 TM and Landsat 7 ETM+, bands 2-7 for Landsat 8 OLI),
we used the first layer produced by principal components analysis (PCA) separately for
the three visible bands (1, 2 and 3) and the infrared bands (5 and 7), as it appears to
increase classification accuracy (Gounaridis, Zaimes & Koukoulas, 2014; Gounaridis,
Apostolou & Koukoulas, 2015). In addition, we included the normalized difference
built-up index (NDBI) (Zha, Gao, & Ni, 2003) and the enhanced built-up and bareness
index (EBBI) (As-Syakur, Adnyana, Arthana, & Nuarsa, 2012).

Since RF requires two primary parameters to be specified by the user being (i) the
number of predictor variables randomly sampled at each decision tree split and (ii) the
number of classification trees to be built, we used three (3) predictor variables for each
tree split, which is equal to the square root of the total number of predictor variables
and 500 trees for each run. Last, to sidestep the so called ‘salt n pepper effect’ we
removed the isolated patches (area less than 0.1 ha), by replacing their category value
with the mode of their neighborhood pixels, defined by a 3x3 window (Gounaridis et
al., 2014; 2015).

To assess the accuracy of each classified map, a group of 200 to 350 random points
were distributed and values assigned via visual interpretation. Overall accuracy for all
images ranged from 90% to 93%, while the two categories of focus had omission and

commission errors that ranged from 88% to 93% (Table 2).

Table 2. Error matrix - Resulting map per year against reference samples (20% of initial samples).

Resulting maps

Reference

1985 1990 1995 2000 2006 2010 2015
1 2 3 OE(%)| 1 2 3 OE%)| 1 2 3 OFE%)| 1 2 3 OFE(%)| 1 2 3 OFE(%)| 1 2 3 OE(%)| 1 2 3 OF(%
177 2 5 917|7% 2 7 84|77 2 3 9397 2 6 908[8 1 5 95|88 4 4 917|104 3 6 920
2 3 53 3°88 |1 57 7 87| 2 4 5 85| 2 7 8 85| 7 7 2 89| 5 8 3 99| 5 8 3 909
r
3 5 4 9 99| 1 6 106 938 | 2 4 113 950 | 2 3 12 957 | 3 6 117 99| 3 3 10 952 | 2 5 121 945
LA | LA LA LA LA LA LA LA LA LA LA LA LA LA
C.E'90,6'89,8'91,8 97,4 '87,7'88,3 95,1 '90,0 93,4 95,2 '93,9'88,9 89,6 91,1 94,4 91,7 '92,0'94,5 93,7 90,9 93,1

0.A90,9 90,9 93,1 92,1 92,0 92,9 92,7
O.E: Omission Error; C.E: Commission Error; O.A: Overall Accuracy
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Figure 2. Resulting maps after classifying the nine Landsat images.
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5.2.2.2 Predictor variables

Given that human decisions and actions drive the growth dynamics, we aimed at
incorporating, in the model, factors and processes that explain peoples’ choices about
residential and infrastructure location. Social shifts, economic motives, inherent quality
and attractiveness of a given place, the effects of neighboring areas and proximity to
basic needs were assumed to play a key role. Taking into account previous efforts and
data availability and accessibility we concluded to a suite of 20 predictor variables
(Table 3). We hypothesized that these biophysical, socioeconomic, legislative and land
use factors can spherically explain the changes occurred during the last decades in

Messoghia.

Territorial variables such as elevation, slope and aspect influence the quality of a
certain location. Proximity to the sea as well as to areas of high nature value are also an
adding value in pursuit of a better quality of life and aesthetics for both primary or
second-homes (Leontidou et al. 2007). City center of Athens as well as of nearest towns
consist important poles for markets, services and jobs (Aburas et al. 2016). Distance to
transportation is strongly related to urban dynamics, both acting as a cause and a
consequence of urban expansion, while access to health provision centers is considered
a prerequisite for many people. Demography and socio-economic variables such as
changes in population density, employment and unemployment rates reflect the shifts
in population dynamics and the labour market that shape the socio-economic profile of
the area. Regarding land use, livestock, agriculture and building rates delineate the
socio-economic restructuring occurred during the last decades. Additionally, business
activity in Messoghia, in the last 25 years was recorded by the respective local champers
of the area (Chorianopoulos, Tsilimigkas, Koukoulas & Balatsos, 2014). Details of all
enterprises established throughout this period were obtained by the Athens Chamber of

Commerce and Industry and geocoded using BatchGeo (https://www.batchgeo.com/).

Finally, the Urban Development Control Areas zoning scheme is the only available

planning mechanism for regulating the urban expansion (Chorianopoulos et al. 2010).

Variables available at the prefecture level were not included, since the
municipalities in Greece are responsible for local land management and thus
representing a meaningful spatial unit for this type of analysis (Salvati, Mavrakis, Serra
& CarLULCci, 2015). All census data were then collated in a GIS environment at the
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Table 3. List of predictors used in the transition potential modeling process.

municipality level while all distances computed using the Euclidean distance function.

All variables were converted to raster format and resampled at 30m spatial resolution.

Acronym Variable Discription Source - Time
interval
Territorial variables
DEM Elevation Elevation inm GLSDEM! )
SL Slope Slope in degrees GLSDEM )
AS Aspect Aspect in degrees GLSDEM “)
DS Distance from the sea Euclidean distance from the shoreline in m O]
Socio-economic variables
DATH Distance from Athens Euclidean distance frorlr% the centre of Athens in OSM? o
Euclidean distance from the center of the nearest
DT Distance from nearest town town (Markopoulo, Paiania, Koropi, Keratea, OSM ()
Artemida) inm
DAIR Distance from airport Euclidean distance from the airport in m OSM ()
DPH Distance from public health Euclidean dlstar)ce from public hos_pnals and OSM )
other public health care units in m
DPT Distance from public transport Euclidean distance from public '_traqsport stops OSM )
(bus, metro, suburban train) in m
DR Distance from road network Euclidean distance from road network in m OSM “)
POP Demographics Changes in population density at the ELSTAT®  1991-2011
municipality level
Difference between: Total number of employed
EMP Employment rate persons per total population at the municipality ELSTAT 1991-2001
level
Difference between: Total number of
UNEMP Unemployment rate unemployed persons per total population at the ELSTAT 1991-2001
municipality level
Legislative
UDCA UDCA 70nes Urban Developmer_lt Control Areas (UDCAS) 2003
zoning scheme
Land use
DGU Distance from green urban Euclidean distance from green urban patches in UA 2006
areas m
Difference between: Total number of animals
LIV Livestock rate (cuttle, pigs, goats, poultry, rabbits) per ELSTAT 1991-2000
municipality total area
AGR Agriculture rate Difference between: Total area devoted for ELSTAT  1991-2000
agriculture per municipality total area
BU Built-up rate Cumulative total lju_mb(_er of new houses built per ELSTAT 2000-2008
municipality total area
. Cumulative total number of new enterprises 5 )
ENT Enterprises rate registered to ACCI per municipality total area ACCl 1985-2010
DN Distance from nature Euclidean distance from forested patches, areas OSM )

of high nature value and protected areas in m

1 Global Land Survey Digital Elevation Model (GLSDEM) http://glcf.umd.edu/data/glsdem/
2 OpenStreetMap https://www.openstreetmap.org/

3 Hellenic Statistical Authority http://www.statistics.qr/
4 Urban Atlas provided by European Environmental Agency http://www.eea.europa.eu/data-and-

maps/data/urban-atlas

5 Athens Chamber of Commerce and Industry http://www.acci.gr/acci/Home/tabid/28/language/el-

GR/Default.aspx
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4.2.3 Leap-frog development index

Based on the 1985 and 2010 land cover maps, we calculated the Leap-frog
development index, originally proposed by Xu et al. (2007). The index is calculated by
dividing the length of the common boundaries of newly developed artificial patches (in
our case patches appeared in 2010) with already existing artificial patches (1985) with
the perimeter of the newly developed patches. When the result is more than 0.5 the
growth type is identified as infilling, when the result is less than 0.5 it is identified as
edge growth while when the result is 0, which mean that there is not shared boundary,

the growth is identified as Leap-frog development.

Initially, both land cover maps converted to vector format. Artificial areas of
1985 along with artificial areas of 2010 were moved in a new vector layer after being
assigned a different value. Subsequently, common boundaries length and perimeter
were calculated using GIS functions. The index was then calculated and the file

converted to a raster format at 30m spatial resolution.

4.2.4 Transition potential modeling

Probability maps in Dinamica EGO, are usually computed using the weights of
evidence method which is based on the Bayes theorem of conditional probability
(Bonham-Carter, 1994). In this method, it is necessary to select independent
explanatory variables in order to avoid collinearity issues, and this could be considered
a limitation. Another possible limitation of this method is that continuous variables have

to be transformed into categorical.

Recently, Kamusoko & Gamba, (2015) combined CA with the Random Forest
(RF) algorithm for simulating urban growth. To test the effectiveness of their approach,
they compared the performance of RF, support vector machines and logistic regression
for producing transition potential maps. The RF model outperformed the two others.
The only drawback reported is that in general all models failed to detect the so-called

leap-frog development.

RF is a robust, non-parametric machine learning algorithm introduced by

Breiman (2001) and has certain advantages when coping with complex systems such as
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built-up growth dynamics: i) RF can efficiently handle both categorical and continuous
variables facilitating the incorporation of any type of inputs in terms of data type and
scaling of values. Thus, data from multiple sources like remote sensing or census can
be incorporated in the model (Gounaridis et al. 2015; Gounaridis & Koukoulas, 2016).
ii) RF is insensitive to overfitting, to collinearity issues as well as to noise and outliers
(Chan and Paelinckx, 2008). iii) Normal distribution of inputs is not a prerequisite. iv)
The algorithm performs well when coping with non-linear relationships between
response and predictor variables (Kamusoko & Gamba, 2015). v) The importance of
each predictor variable is computed using several metrics, allowing the user to
determine whether a variable will be incorporated in the model or not (Gounaridis &
Koukoulas, 2016).

All predictors were included in a single stack and served as independent
variables. To overcome the limitation of failure in detecting leap-frog development,
which is widely evident in Messoghia (Chorianopoulos et al. 2010), we incorporated in
the model the Leap-frog development index. The initial maps resulted from
classification had 3 categories, urban fabric, artificial non-urban and other (Figure 2).
To train the model, we used 2500 randomly placed points. Values assigned as to
indicate change (from Other to Artificial) and no change. The regression version of RF
(Breiman, 2001) was then implemented in R using the RandomForest package (Liaw
& Wiener, 2002). To fine tune the RF, we used five (5) predictor variables (equal to the
square root of the total number of predictor variables) for each tree split and 700 trees

for each run.

5.2.5 Scenarios

Our aim was to project future changes under four scenarios sketching out
different economic development policies and options. Thus, our scenarios are based on
the observed historical trends during the last three decades. Looking at the resulting
land cover maps, it is evident that the built-up dynamics in (Messoghia were
dramatically uneven, reflecting different phases of economic development (Figure 3).
Thus, we delineated four scenarios of projected residential development, distinguished

by different levels of development. The scenarios include:
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Medium development reflects the period 1985-1995 and High development
reflects the period 1995-2006. In these scenarios (Messoghia are re-brought to the fore
and into the development path, experiencing an exponential rise in economic sectors
and industries following the trends observed during the past decades. Planning and
spatial policies contribute towards this direction, allocating funds into the area and
promoting the socio-economic restructuring. Consequently, infrastructure, firm
headquarters, enterprises and shopping centers colonize the area, leading to an
economic polarization and economic functions re-concentration. Extensive
regeneration of the waterfront also takes place, channeling changes in real estate
dynamics towards tourism-specialized settlements and second homes. Last but not
least, a steady population increase as a result of Athenian de-concentration, rural
depopulation and external migration because of the job opportunities and better quality

of life, increases the housing demand and in turn the housing construction.

The Low development scenario reflects the period 2006-2010 while the Very
low development reflects the period 2010-2015 and keeps the development pace very
low as a consequence of economic scarcity and lack of investments. The economic
functions as well as the population flows remain stable following a low to very low
pace. An amount of already built residences, intended to meet the needs for both second
or primary housing, remain uninhabited (unsold or unfinished) while many already
constructed industrial and commercial facilities remain unexploited. At the same time
the demand, shaped by economic scarcity and population low rates, is lower than the
already built and available buildings leading to a low to very low building rate in the

area.

In these scenarios, we assume that profound social and political changes will
not occur, accessibility in the area will remain stable and new roads and railway links
will not be constructed. As far as land use regulations and legislative frameworks are
concerned, we assume that especially in the first two scenarios, will continue to be loose

in the face of development potential.

116



14
+4.56 % +7.28 % +1.94 % +1.14 %
/
i /
10
xX
€ s
7]
o
S
[ ]
Q.
6
4
2
0
1985 1990 1995 2000 2006 2010 2015
‘— Urban fabric 1,76 4,45 5,77 7,65 10,81 12,46 13,06
‘ Artificial non urban 0,19 0,56 0,74 2,69 2,98 3,27 3,81

Figure 3. Summary of statistics based on the nine classified maps and relative percentages of artificial
areas. The observed trends reflect four different levels of development during the last 30 years in
Messoghia.

5.2.6 Model calibration and simulation

We used the Dinamica EGO platform in order to develop a CA model able to
simulate the changes occurred in Messoghia. We opted to use this platform because of
certain advantages: Firstly, Dinamica EGO incorporates two complimentary, but
distinct, allocation functions, i) the Patcher, which generates new patches based on a
seeding mechanism and ii) the Expander, which expands previously formed patches.
Additionally, the user is able to manually set parameters like patch size variance,
isometry of transitions and mean patch size. These advantages of the platform allow the
user to directly intervene and calibrate the model in a way that complies with the reality
of a specific area. Secondly, Dinamica EGO allows multi-resolution accuracy

assessment employing a fuzzy similarity index (Hagen, 2003). By employing this
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methodology, accuracy of simulated versus observed patterns is not restricted to a strict

cell by cell overlay but gradually considers the cells in the neighborhood.

To calibrate the model and evaluate the goodness of fit, a comparison of
simulated maps with a reference/observed maps is the most efficient way. Therefore,
we trained the model based on the 1985-2010 period, simulated these changes up to
2015 and compared the simulated result with the 2015 classified land cover map. To do
so, we calculated the annual rates of change between 1985 and 2010 using the transition
matrix function (Soares-Filho et al. 2002). Next, we adjusted the mean and the variance
of new patch sizes and the patch isometry in order to replicate the actual conditions of
the area in terms of structure and composition. In general, an increased patch size results
in less-fragmented landscapes, while the patch size variance denotes the diversity of
newly developed patches. Isometry usually varies from 0 to 2 and thus, the greater the
isometry the more isometric (equal) the newly developed patches. We calibrated the
CA model by computing the mean patch size and mean patch variance of the input land
cover map (2010) and adjusted the isometry through trial and error. We set the model
to run at a 5-year time step from 1985 to 2015. To evaluate the model’s performance,
we compared the simulated land cover map of 2015 to the observed land cove map of
2015 using the fuzzy similarity index at multiple resolutions. Finally, taking 2015 as
the initial year and 2045 as the final year, we simulated the land-use changes for

Messoghia in a 5-year time step under the four scenarios

5.3 Results and discussion

5.3.1 Historical land cover change

Results generated by the classification of the nine Landsat images and the
subsequent aggregation of classes are depicted in Figure 2. During the 80s the built-up
scenery of Messoghia was characterized by small towns (Paiania, Spata, Markopoulo,
Kalivia and Koropi) and a few sea-side resorts while during the 90s and before the
airport, the Olympic venues and the transport infrastructure as well as the effects of a
loose regulatory framework are evident. Especially in the north-western (Palini) and
south-western (Vari) parts of the area, which are closer to Athens urban conurbation,

changes in the form of sprawl can be observed. At the same time the small towns show
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a tendency to infill and expand while the sea-side residences (Porto rafti and Artemida)
start to increase. These trajectories during the 90s are attributed to the gains in
population of the area, as a result of the decentralization trends of the Athenians seeking
better quality of life and the waves of internal rural-urban immigrants. The figures after
2000, clearly portray the effects of the Olympics-related large-scale projects and the
infrastructural investments in Messoghia. Especially the effects of the airport and the
road expansion are more than evident. All types of sprawl (namely suburban growth,
leap-frog development, strip development and scattered development), in both urban
fabric and artificial non-urban classes, can be observed in the area after 2000.
Quantification of the results (Figure 3) reveals that the period between 1985 and 1995
reflects the first boost in terms of development while the next decade 1995-2006 is the
peak. After 2006 the development trends remain positive but obviously start to decline
reflecting the post-Olympic era with the dramatic decrease of investments and the

deterioration of economy.

5.3.2. Model calibration and performance

Using the fuzzy similarity index, we evaluated the model’s performance over a
range of resolutions. We found a spatial fit of 82.72 % within a 1x1 window size radius

which improved to 91.72 % when widened to a 15x15 window size (Figure 4).

Figure 5 shows the result after comparing the observed and simulated land cover
maps of 2015. The model was relatively accurate at predicting the allocation of urban
fabric and artificial non-urban surfaces both in the form of suburban growth, strip
development and scattered development. The good performance suggests that the suite
of 20 predictor variables explains the observed historical changes efficiently while the
RF algorithm performed well with an adequate fit. Most importantly, the model
achieved to predict accurately the leap-frog development and this is mainly attributed
to the incorporation of the Leap-frog development index and the extensive training of
the RF model.
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Figure 4. Results of multi-resolution spatial evaluation of model fitting using the fuzzy similarity
index.
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Figure 5. a) Transition potential surface obtained through the RF modeling with 20 predictors. b)
Result of cross classification between the simulated vs the observed map of 2015.
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5.3.3 Simulations

In this last substantive section, we demonstrate the simulated results on how
Messoghia will look in the future under four scenarios related to different levels of
economic development and policies. Figure 6 illustrates a prediction of the built-up
expansion, over a 30-year period, generated by the CA model while Figure 7 illustrates
the quantification of results in a 5-year timestep. The black line indicates a ten-year
projection in respect of the stated life span of the Athens Master Plan, expected to be
revised in 2025 (Hellenic Parliament, 2014: 5).

Scenario 1: Medium development Scenario 2: High development

— : o ; - Urban fabric
Scenario 4: Very low development |:| Artificial non urban
ST TG " []other

Scenario 3: Low developme

Figure 6. Artificial areas extent, simulated for 2045, under the four different development level
scenarios.

Under the medium and high development scenarios the artificial surfaces expand

predominantly along the transportation links. Pre-existing urban and industrial clusters
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infill, expand and finally appear connected especially along the nodal points where the
radial roads inter-connect the small towns (Paiania, Spata, Markopoulo, Kalivia and
Koropi) and Athens. The waterfront also acts as a remarkable core of agglomeration.
Seashore existing towns obviously expand and become densely infilled, servicing
second or permanent housing demands and tourism related activities. Leap-frog
development has also increased sharply around junctions of infilled areas and main
roads, mostly in areas previously occupied by agriculture, indicating that the
development pressures and the assumed permissive planning scheme allowed the high

consumption of land at the expense of other less profitable land uses.
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Figure 7. Rates of artificial areas simulated for 2045 in a 5 year step, under the four different
development level scenarios.
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The artificial surfaces are expected to increase considerably under the medium and
high development scenarios (Figure 7) and with a pace of development equivalent to
that of 1985-1995 and 1995-2006 periods. Under the high development scenario, the
artificial surfaces are expected to occupy almost half of the total surface of the study
area by 2045 while for both development scenarios the artificial surfaces are expected
to nearly double in size (16.87% in 2015).

Under the low and very low scenarios, expansion of artificial surfaces is also
observed but in a lower extent, less dispersed and with a considerably lower magnitude.
Again, the changes observed are mostly around the road network and the waterfront.
Already existing patches of artificial surfaces appear infilled rather than expanded while
leap-frog development is also evident throughout the area. Notably, the leap-frog
development can be observed mostly around areas characterized by favorable
conditions such as proximity to the town centers (Paiania, Spata, Markopoulo, Kalivia
and Koropi), proximity to Athens (around the motorway Vari-Koropi in the south-west
part and around Pallini in the north west part) and proximity to the sea (seashore towns
of Artemida and Markopoulo). Results indicate that these areas are the most likely to
become urban in the future. The pace of development of the low and very low scenarios,
follows equivalent trends of the 2006-2010 and 2010-2015 periods respectively and the
total area occupied by artificial surfaces is expected to be 28.88 % for the low

development scenario and 25.02 % for the very low scenario.

5.4 Conclusions

We explored potential future growth dynamics in the Messoghia plain under
certain scenarios that reflect different economic development trajectories and policy
options. Methodologically, coupling of CA and RF proved to be a sound way to
overcome certain limitations reported in previous efforts. On the one hand,
implementing the RF algorithm in order to generate transition potential surfaces
allowed us to incorporate in the model spatial determinants of different nature in terms
of scale and origin, sidestepping collinearity and distribution issues. The suite of 20
predictors proved to describe well the complicated issue of built-up expansion in
Messoghia plain, while the incorporation of the Leap-frog index boosted the
performance of the models in the face of sprawl detection and, in turn, prediction. On
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the other hand, implementing CA modeling through the Dinamica EGO framework
proved fully compatible with transition potential generated in a different environment
and provided certain advantages. The two complimentary sub-models Patcher and
Expander are fully operational with the built-up growth dynamics concept allowing the
user to intervene efficiently and calibrate models according to case specific needs by
taking into account actual parameters of the study area. Thus, coupling these two
frameworks reduces several limitations that are commonly encountered. An important
limitation in our case, one that is also commonly encountered by researchers, is data

scarcity in terms of both spatial, thematic and temporal resolution.

Regarding Messoghia, the area maintained a predominantly rural character up
until the early 80s, due to cumbersome accessibility and limited attraction of
investments. The construction of the international airport in the area and the significant
allocation of funds set off by 2004 Olympics, did transform the region. The pace of
transformation, however, declined considerably during the last decade as a result of
insolvency and the subsequent sovereign debt crisis. In light of this inopportune
economic reality, Messoghia escaped the exhaustive consequences of unordered urban
expansion, retaining noteworthy reserves of agricultural and natural land. The four
simulation models illustrate how Messoghia would feature in the future under a set of
different circumstances. The simulation of the pre-Olympics period, based on a sound
economic growth record and the absence of an overarching spatial planning framework,
is expected to yield an unprecedented development of artificial surfaces, at the expense
of agricultural and natural land. Although this is a promising scenario with respect to
economic growth in the short-term, it also carries significant negative environmental
externalities (such as pollution, congestion, and sub-optimal land allocation), capable
of undermining the very economic prospects of the area in the medium term (Cervero,
2001).

Of course, scenario modeling is meaningful when dealing with plausible and
realistic projections, based on present data and trends. In that sense, the low and very
low development scenarios are deemed as the ones that are closer to the current course
of events. However, as economic development goals are taking precedence over
virtually all other spatial planning priorities, the medium and high development
scenarios cannot be dismissed as implausible. In this case, results generated from the

model stress out the major impact of artificial areas expansion on natural resources,
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agriculture and environmental quality indicators. From this spectrum, the presence of a
spatial planning tool that is capable to capture and quantify the potential consequences
of prospective spatial planning strategies is key in invigorating the opposite to
sustainable development socio-political responses.

In short, simulation modeling is a tool that contributes to the endeavor of
researchers and planners to approach and apprehend a broader spectrum of growth
issues. By incorporating social, economic and political aspects into the analysis, it
brings to surface conflicts and synergies in land use allocation and planning. In this
light, it provides a sound framework for a richer spatial analysis, also facilitating well-

informed decision-making processes.
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Chapter 8: Multi-scale modelling of land use/land cover (LULC) change
with Geoinformatics and scenario-based simulations: The case of Attica

region.

Abstract

The objective of this final chapter is to explore potential future land use/cover (LULC)
dynamics in the terrestrial Attica region, under three scenarios that reflect future growth
traits in the area related to different economic performance realities and alternative land
use planning options. Attica experienced significant and, in places, unregulated urban
growth, during the past decades, due to the absence of planning controls and the
substantial increase of demand, as a consequence of migration and a boost in second
homes, especially in the coastal zones. First, this chapter looks at the periodic LULC
changes occurred during a period of 25 years (1991-2016) employing remote sensing
techniques and Landsat satellite data. The observed changes are then related with 27
dynamic, biophysical, socio-economic and territorial factors, to generate transition
potential maps implementing Random Forests (RF) regression modeling. Scenarios are
projected until 2040 by implementing a spatially explicit Cellular Automata (CA)
model. Finally, the resulting maps, are subject to a multiple resolution sensitivity
analysis. Change detection reveal that the vast majority of the built-up land expansion
took place at the expense of natural areas and croplands and during the last decades
Attica region experienced remarkable land transformations. However, the late
economic circumstances significantly affected the growth trends. Under an
economically optimistic scenario which means high development, and assuming the
absence of an adequate controlling mechanism, the built-up surfaces are expected to
increase by almost 24%, by 2040, and consequently the natural areas and croplands are
expected to decrease significantly. In case the economic scarcity persists, which can be
translated in low development, the artificial surfaces are expected to slightly increase

by approximately 7.5%, by 2040.
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6.1 Introduction

In this last chapter the area of focus is the terrestrial part of Attica region which
serves as a perfect example, that paradigmatically mirrors the rapid socio-economic
transformations, the demographic dynamics and the population redistribution (mostly
in the form of rural depopulation) occurred in Greece during the last decades. The
region includes Athens, the capital of Greece, which has been the central pole of job
opportunities and economic prosperity, and according to the late census (2010) is
inhabited almost 4 million residents which accounts for the 35% of the total population.
During the recent decades, the population influx triggered a persistent increase in
housing demand and supply (Mantouvalou et al, 1995). In turn, concurrent socio-
economic transformations triggered the redistribution of middle-class Athenian
residents, seeking better quality of life, in areas outside the compact Athenian center,
within a commuting distance from their jobs (Leontidou et al. 2007). At the same time,
the socio-economic conditions favored a persistent amenity-driven second homes trend
along the sea coast (Arapoglou and Sayas, 2009). As a consequence, to all the
aforementioned, the landscape of the area, especially the peri-urban Athens, has
changed substantially over the years. The whole structure of unplanned development
was encouraged, or even forced, by the total absence of actual, on the ground, regulation
mechanism and the weak land use planning (Pagonis, 2013). In fact, urban planning of
the area was legally established since decades ago, but in the actual mechanisms that
shape urban development on the ground, are not evident. On the contrary, development
was permitted at any environmental, functional or operative cost. Moreover, after
successfully attracting national and foreign funds and in the face of hosting the Olympic
games of 2004, the demand for construction sites to accommodate commercial,
industrial, transportation and recreational activities further increased the built-up
transformation of the urban periphery (Chorianopoulos et al. 2010). However, after the
phase of progressive economic growth the area has been exposed to the negative
consequences of the sovereign crisis and the economic recession, attributed to the
global financial crisis, that in turn had a drastic influence on the development rates and
significantly altered the housing and construction industries (Gounaridis et al.2018).
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Topographically, Athens also constitutes an interesting case for study since it is
characterized by undulated morphology (Figure 1). The geomorphological features of
the region dictate the land availability and determine the accessibility and the optimal
conditions for construction of built-up land. The plain of Athens is surrounded by large
mountains (Aegaleo, Parnitha, Penteli and Hymettus), and this acts as a constraint, that
separates Athens from the proximate flat districts (Thriasio, Messoghia, Marathonas),

making them the only available areas to host residential and industrial settlements.

Pateras

Penteli

Figure 1. Topography of Attica region.
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The aim of this chapter is to explore potential future LULC dynamics in the
terrestrial Attica region, under three scenarios that reflect different economic
performance realities and alternative planning options. To achieve this, it was deemed
critical to implement an integrated methodological framework that combines the
advantages of methodologies discussed is the previous chapters. The central premise
was to simulate all categories of LULC changes (a total of 18 different possible LULC
transitions identified) at the regional level, to evaluate the effects of different proximate
and underlying causes (chapter 4 - Gounaridis et al. 2018). Since the area experienced
vast land transformations during the recent decades, which are mostly related to built-
up categories, a scientific objective of this approach was to achieve a very high thematic
resolution in these categories, following the methodological framework described in
chapter 3 (Gounaridis and Koukoulas, 2016). The non-artificial land categories were
efficiently discriminated following the approach presented in chapter 2 (Gounaridis et
al. 2016). Change detection techniques in the form of cross-classification and cross-
tabulation were applied in order to map and quantify the periodic LULC changes
occurred during the study period, following the methodology presented in chapter 1
(Gounaridis et al. 2014). Attempting to geographically associate the driving forces with
the observed historical LULC changes, a suite of 27 different factors derived from
multiple different sources and expressed in different scales, units and resolutions was
incorporated in the modeling framework. The effective fusion of these data was
achieved implementing the Random Forests (RF) algorithm following a similar
approach to chapter 4 (Gounaridis et al. 2018). The models generated the transition
probability surfaces that served as a basis to simulate the observed LULC changes and
project future changes under different scenarios (chapter 4 - Gounaridis et al. 2018).
Three different scenarios were composed that fully reflect the phases of uneven
development observed in the area. To calibrate and fine tune the simulation models,
landscape metrics were computed and introduced to the models (chapter 1 - Gounaridis
et al. 2014). Finally, the results were subject to a multi-resolution sensitivity analysis
in order to be more robust and unaffected by the technical details of inputs and the bias
they entail. In this process the outputs generated by each model run were compared at
several spatial resolutions in order to identify areas of future LULC change regardless
the spatial resolution of the inputs. The results are expected to shed light in different

economic performance realities and land-use planning contexts and choices while the
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whole attempt will quantify the importance of various driving forces of change,

contributing to an enhanced understanding of such a complex phenomenon.

6.2 Material and methods

6.2.1 Images pre-processing and classification

Since the Attica region is fully covered by two consecutive images (path: 183,
row: 033 - 034), 10 Landsat images (Table 1) spanning 25 years (1991-2016) were
chosen to achieve full geographical coverage. The acquired images meet certain quality
standards, namely no cloudiness in the study area, acquisition during summer months
to avoid phenological variations and absence of the scan line corrector problem of
Landsat 7 after 2003.

Table 1. The characteristics of the satellite images that were used as the primary data to corroborate the
change detection analysis.

Date Sensor Satelite type Resolution (m) Path/Row
17/9/1991 Thematic Mapper (TM) Landsat 4 30 183/034
29/6/1991 Thematic Mapper (TM) Landsat 4 30 183/033
22/8/1999  Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/034
22/8/1999  Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/033
12/10/2003 Thematic Mapper (TM) Landsat 5 30 183/034
12/10/2003 Thematic Mapper (TM) Landsat 5 30 183/033
12/8/2010 Thematic Mapper (TM) Landsat 5 30 183/034
12/8/2010 Thematic Mapper (TM) Landsat 5 30 183/033
29/9/2016 Operational Land Imager (OLI) Landsat 8 30 183/034
29/9/2016 Operational Land Imager (OLI) Landsat 8 30 183/033

To avoid any discrepancies due to the multi-temporal and multi-sensor type of
analysis and to efficiently compute spectral indices, all images underwent radiometric
as well as atmospheric correction following the methods described in Chapters 1 and 2.
Topographic correction was also important in order to minimize the topographical
effects due to the mountainous nature of the study area. The methodology followed for
this step is also described in Chapters 1 and 2. Next, the two consecutive calibrated
images per year were mosaiced ending up with five images spanning 25 years (1991,
1999, 2003, 2010, 2016).

136



All images were classified into eight LULC categories, implementing the RF
classification algorithm through the RandomForest package available in R (Liaw &
Wiener, 2002). Since the objective was to obtain LULC information with the best
possible thematic resolution, especially for the urban land types, the LULC categories
were i) continuous urban fabric, ii) discontinuous dense urban fabric, iii) discontinuous
medium density urban fabric, iv) discontinuous low density urban fabric, v) industrial,
commercial and transport units, vi) arable land and permanent crops, vii) forests, scrubs
and other natural areas and viii) other (includes open spaces bare, mines and inland

water bodies).

The LULC categories distinguished by devising a semi-automated sampling
extraction based on a context that combined the no-change areas, prior knowledge and
spectral controlling. More specifically, starting with 2010 and 2016, an extensive
sampling was designed based on visual interpretation of very high spatial resolution
data from Google Earth and on existing available reference LULC data. Particularly,
the datasets created by Gounaridis and Koukoulas (2016) as described in chapter 3 and
by Gounaridis et al. (2016) as described in chapter 2, were used as reference data for
the semi-automated sampling extraction. For the non-artificial LULC types of
croplands, natural areas and other, additional samples from the Urban Atlas and Corine
datasets were also assembled to strengthen the training. Last but not least, a quality
control mechanism based on the spectral signatures of the samples to remove outliers
from the analysis was applied (Radoux et al. 2014) (Figure 2). For the 1991, 1999 and
2003 images, a backwards automated training strategy was adopted. Given that changes
usually occur on a fraction of the total area, the use of the unchanged areas as training
samples for the desired past date is reasonable (Chen et al. 2012; Kim et al. 2014). No-
change areas were identified via visual interpretation of very high spatial resolution
data from Google Earth. These no-change areas were then used to semi-automatically
generate training samples as input for the subsequent classification of each year. Special
attention was payed to avoid taking points close to the boundaries of adjacent LULC
categories, ensuring that clear samples of each category were taken and thus eliminating
any source of confusion to the model. 70% of the samples were used to train the RF
algorithm while the other 30% were kept independently for the accuracy assessment of
the results (Table 2).
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Figure 2. Example of spectral controlling (TM image 2010 — Red; Green; Blue; IR bands. i) Continuous urban fabric, ii) Discontinuous dense urban fabric, iii) Discontinuous
medium density urban fabric, iv) Discontinuous low density urban fabric).
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Table 2. Training and validation samples used for classification
Training
1991 1999 2003 2010 2016

Continuous urban fabric 1798 2321 2622 4095 5707

Discontinuous dense urban fabric 969 1401 1808 2329 3159
Discontinuous medium density urban fabric 1021 1286 1446 1888 2617
Discontinuous low density urban fabric 502 895 1175 2331 3221
Industrial, commercial and transport units 473 685 991 1245 1717

Arable land and permanent crops 2009 2119 2409 2009 2776
Forests, Scrubs and other natural areas 1449 1463 1559 1568 1974

Other (open spaces, bare land, mine, inland water) 453 460 475 525 574
Total 8674 10630 12485 15990 21745
Validation

3637 4319 5419 6919 9399

Since RF has proven efficient with large data handling, provides reduced likelihood
of over-fitting and is suitable for multi-source inputs (Gounaridis et al. 2014;
Gounaridis and Koukoulas 2016, Gounaridis et al 2016, Gounaridis et al. 2018), the
classification models involved 20 variables in total. Besides the 6 reflective Landsat
bands (bands 1-5 & 7 for Landsat 5 TM and Landsat 7 ETM+, bands 2-7 for Landsat
8 OLI), the thermal band was also used as it provenly helps in the classification process
(Rodriguez-Galiano and Chica-Olmo, 2012). In addition, the first layer produced by
principal components analysis (PCA) separately for the three visible bands (1, 2 and 3)
and the infrared bands (5 and 7), was also incorporated as it appears to increase
classification accuracy (Gounaridis et al. 2014; Gounaridis et al. 2016). In addition,
following the approach by Gounaridis and Koukoulas, (2016), the normalized
difference built-up index (NDBI) and the enhanced built-up and bareness index (EBBI)
were also computed and incorporated in order to enhance the urban LULC types
discrimination. The Enhanced Vegetation Index (EVI), the Normalized Difference
Moisture Index (NDMI), the Normalized Difference Bareness Index (NDBal) and the
Normalized Differential Vegetation Index (NDVI) were also included because of their
capacity to separate vegetation from bare features during the classification process. The
three widely used Tasseled Cap (TC) transformations namely, Soil Brightness Index
(SBI), Green Vegetation Index (GVI) and Moisture Content of Soil/Vegetation
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(Wetness) were also computed and incorporated (Gounaridis et al. 2014; Gounaridis et
al. 2016). Finally, auxiliary variables (elevation and slope) acquired from the Global
Land Survey Digital Elevation Model (GLSDEM) were also included.

To set up the models, RF requires two primary parameters to be specified by the
user: the number of predictor variables randomly sampled at each decision tree split
and the number of classification trees to be built. Four (4) predictor variables were
chosen for each tree split, which is equal to the square root of the total number of
predictor variables and 500 trees for each run. The variables’ importance for each
classification run is illustrated in Figure 3. The elevation and slope always rank among
the top, showing the major influence these attributes have on different types of LULC.

The inclusion of the thermal band had also an influence in most of the models.

To sidestep the so called ‘salt n pepper effect” of the resulting maps, all isolated
patches (defined as area less than 0.1 ha), were removed by replacing their category
value with the mode of their neighborhood pixels, defined by a 3x3 window
(Gounaridis et al. 2014; Gounaridis and Koukoulas 2016, Gounaridis et al 2016,
Gounaridis et al. 2018). Results were plotted against the 30% of the initial samples and
validated using the cross-tabulation approach.

6.2.2 Leap-frog development index

To enhance the accuracy of the model, and to ensure the accurate detection and
representation of scattered development, the Leap-frog development index, originally
proposed by Xu et al. (2007) was calculated and included in the modeling scheme. The
index applies to artificial LULC types and has been proved to effectively delineate any
type of scattered development, classifying the historical changes according to sharing
boundaries properties (Gounaridis et al. 2018). Based on the 1991 and 2016 maps, the
index was calculated following the methodology described in chapter.
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Figure 3. Predictor variables’ importance for each classification model
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6.2.3 Transition potential modeling
6.2.3.1 Predictor variables

This section introduces the suite of predictors used to model the transition
probabilities. Taking into account previous efforts, data availability and accessibility, a
suite of 27 variables was concluded to best represent the LULC change phenomenon
occurred throughout Attica region during the period of focus (1991-2016). Since the
changes related to artificial surfaces were dominant in Attica, the majority of the chosen
variables represent factors and processes that explain peoples' choices about residential
and infrastructure location. Social shifts, economic motives, inherent quality and
attractiveness of a given place, the effects of neighboring areas and proximity to basic
needs and amenities were assumed to play a key role (Table 3). It was hypothesized
that these biophysical, socioeconomic, territorial and land use factors can spherically
explain the changes occurred during the last decades in Attica region (Gounaridis et al.
2018). Similarly to chapter 4, the variables used are of different nature (both categorical
and continuous), derived from multiple sources, with different scales and resolutions.
Many of these variables act as proxies to other non-measurable factors. It is worth
noting that, variables available at the prefecture or regional level were not included,
since the municipalities in Greece are responsible for local land management and thus
representing a meaningful spatial unit for this type of analysis (Salvati, et al. 2015;
Panori et al. 2016; Gounaridis et al. 2018). After processing, all no-spatial data were
then collated in a GIS environment at the municipality level while all distances were
computed using the Euclidean distance function. The last step was to convert all
variables to raster format after resampling them at 30 m spatial resolution to match the

resolution of the classification products.
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Table 3. List of predictors used in the transition potential modeling process.

Acronym Variable Discription Source . Time
interval
Territorial variables
DEM Elevation Elevation in m GLSDEM? (-)
SL Slope Slope in degrees GLSDEM (-)
AS Aspect Aspect in degrees GLSDEM (-)
cal Climate Quality Climate quality index EEAP 1961-1990
VIEW Viewshed Visibility from re5|den-t|al areas at the parcel level GLSDEM and Urban Atlasc ‘)
(centroids from UA).
DB Distance from beaches Euclidean distance from b_eaches signed with a Ministry of Enwr;)nment & 2010
blue flagin m Energy
DS Distance from the sea Euclidean distance from the shoreline in m (-)
Socio-economic variables
Distance from Education Euclidean distance from public education centers Ministry of Education &
DEDU o 2010
centers (all levels) OSM
Distance from public . . . Society of Informationf &
DPH health centers Euclidean distance from public health centers OSM (-)
bT Distance from nearest Euclidean distance from the center of the nearest OSM ‘)
town town in m
Distance from public . . . - Society of Information &
DPB buildings Euclidean distance from public buildings OSM
DPH Distance from public Euclidean distar?ce from public h.os;.oitals and other OSM ‘)
health public health care unitsin m
DPT Distance from public Euclidean distance from public tran§pqrt stops 0SM & opendata ‘)
transport (bus, metro, tram, suburban train) in m
DRN Distance from road Euclidean distance from road network in m OSM (-)
network
POP Demographics Changes in populatlonIZSZflty at the municipality ELSTATE 1991-2011
EMP Employment rate Total number of employed persons per total ELSTAT 1991-2011
population at the municipality level
Total f I |
UNEMP Unemployment rate otal number of unemployed persons per tota ELSTAT 1991-2011
population at the municipality level
L |
LvI an:ﬂ;g:ap)g(i:;ues Landscape values quantified using Instagram data van Zanten et al. (2016)" 2004-2015
LVF Landscape values Flickr Landscape values quantified using Flickr data van Zanten et al. (2016) 2004-2015
L |
LVP andscape vz.a ues Landscape values quantified using Panoramio data van Zanten et al. (2016) 2004-2015
Panoramio
Land use
DGU Distance from green Euclidean distancc'e from green .urban patches Urban Atlas 2006
urban areas (centroids from UA) in m
SSM Soil Sealing rate Average soil sealing per municipality EEA 2006-2012
MTC Tree cover Average tree cover ?a.nopy percentage per USGS' 2010
municipality
BU Built-up rate Cumulative total numbfer' of .new houses built per ELSTAT 1997-2016
municipality
ENTH HeatMap of Enterprizes HeatMap of new enterprises registered to ACCI ACCP 1991-2016
ENT Enterprises count Cumulat.lve total number of ”e‘“f e;nte.trprlses ACCI 1991-2016
registered to ACCI per municipality
Distance from natural Euclidean distance from forested patches, areas of Ministry of Environment &
DN P ’ Energy & OSM & Natura (-)

reserves

high nature value and protected areas in m
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2Global Land Survey Digital Elevation Model (GLSDEM) http://glcf.umd.edu/data/glsdem/

b European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/climate-quality-
index-map

¢ European Environmental Agency. Urban Atlas. GMES/Copernicus land monitoring services.
https://www.eea.europa.eu/data-and-maps/data/urban-atlas

4 Ministry of Environment & Energy. http://geodata.gov.gr/dataset/poioteta-udaton-akton-kolumbeses-
2013

¢ Open Street Map. https://www.openstreetmap.org

fSociety of Information. http://geodata.gov.gr/dataset/demosia-kteria

9Hellenic statistical authority. http://www.statistics.gr/

hvan Zanten et al. (2016). PNAS. http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-of-
landscape-values-using-social-media-data

"USGS. Global Tree Canopy Cover.
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php

I Athens chamber of commerce and industry http://www.acci.gr/acci/catalogue/search.jsp?context=201

6.2.3.2 Random Forests regression models

Following the approach adopted by Gounaridis et al. (2018), the transition
probability surfaces were generated by employing the regression type of the RF
algorithm. All predictor variables, including the calculated Leap-frog index, were
combined in a single stack and served as independent variables for the model. The
initial maps resulted from classification had eight categories, as depicted in Figure 8.
The possible transitions identified were 18 (Table 4), under three assumptions: it is
impossible a) the urban fabric to convert to any other land type as well as to decrease
in density, b) the industrial, commercial and transport units to convert to any other land
type and c) the “other” category that includes inland waters, bare land and mines to
interact with other classes. To train each of the 18 models, 5000 randomly placed points
were dispersed throughout the extent of the study area. Values assigned in binary scale
to indicate change (from category A to category B) and no change. The regression
version of RF was then implemented in R using the RandomForest package (Liaw &
Wiener, 2002). To fine tune the RF, five (5) predictor variables (equal to the square
root of the total number of predictor variables) were used for each tree split and 700
trees for each run. The modeling process generated 18 transition probability surfaces,
each one of them indicating the degree of potential change in the future per transition.
The performance of the models was assessed using the Areas Under Curve (AUC)
metric, derived from the Receiver Operating Characteristic (ROC) curve (Figure 13).
The importance of each predictor variable was computed using the Mean Decrease
Accuracy (%IncMSE) and the Mean Decrease Gini (IncNodePurity) metrics (Figure 17
and 18).
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Table 4. Transition probabilities of the eight LULC categories.

From

To

Discontinuous dense urban fabric
Discontinuous medium density urban fabric
Discontinuous medium density urban fabric
Discontinuous low density urban fabric
Discontinuous low density urban fabric
Discontinuous low density urban fabric
Arable land and permanent crops

Arable land and permanent crops

Arable land and permanent crops

Arable land and permanent crops

Arable land and permanent crops

Arable land and permanent crops

Forests, Scrubs and other natural areas
Forests, Scrubs and other natural areas
Forests, Scrubs and other natural areas
Forests, Scrubs and other natural areas
Forests, Scrubs and other natural areas

Forests, Scrubs and other natural areas

6.2.4 Scenarios

Continuous urban fabric

Continuous urban fabric

Discontinuous dense urban fabric
Continuous urban fabric

Discontinuous dense urban fabric
Discontinuous medium density urban fabric
Continuous urban fabric

Discontinuous dense urban fabric
Discontinuous medium density urban fabric
Discontinuous low density urban fabric
Industrial, commercial and transport units
Forests, Scrubs and other natural areas
Continuous urban fabric

Discontinuous dense urban fabric
Discontinuous medium density urban fabric
Discontinuous low density urban fabric
Industrial, commercial and transport units

Arable land and permanent crops

The overarching aim was to design scenarios that reflect different economic

performance realities and planning options. The scenarios were based on the observed

historical trends during the 25 years period of focus. After mapping (Figure 8) and

quantifying (Figure 4) the historical trends, it is evident that the LULC change

dynamics in Attica region were notably uneven, a fact that clearly reflects different

phases of economic development and performance.
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Figure 4. Summary of statistics based on the classified maps and relative percentages of artificial
areas. Three different trends reflect three different levels of development during the last 25 years.

Thus, similarly to the idea behind the approach presented in chapter 4, three
scenarios, namely “medium development”, “high development” and “low
development”, were composed in order to reflect the uneven historical trends occurred

in Attica region:

Medium development reflects the period 1991-1999 where the outskirts of Athens

conurbation, especially the uplands and Messoghia plain are re-brought to the fore and
into the development path. The Athens conurbation experiences a steady population
increase as a result of rural depopulation and external migration because of the
economic potential, the job opportunities and the social amenities that Athens has to
offer. This constant societal demand to capture new economic opportunities and the
centralization tendency triggered another tendency where Athenians, seeking a better
quality of life, moved to the outskirts of Athens to areas with less urban density.

Consequently, an increase in the housing demand and in turn the housing construction
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led to a boost in urban growth at the expense of other less profitable land uses and

progressively brought radical changes in the peri-urban landscape.

High development reflects the period 1999-2010 where the Attica region experiences

exponential rise and permissive urban policies following the trends observed during the
pre-olympic and meta-olympic period when the fiscal crisis was still less evident.
During this time, the steady population increase along with the housing demand
culminates while extensive regeneration of the waterfront also takes place, channeling
changes in real estate dynamics towards tourism-specialized settlements and second
homes. Planning and spatial policies contribute towards this direction, allocating funds
and promoting the socio-economic restructuring. Specifically, investment in
transportation infrastructure, enhances the accessibility to both three sides of Athenian
growth (Northern outskirts- Maranthon, Oropos, Messoghia and Thriasio plains),
triggering a population influx and a concurrent increase in housing construction.
Consequently, infrastructure, firm headquarters, enterprises and shopping centers
colonize these areas, leading to an economic polarization and economic functions re-
concentration. Last but not least, during this time, land use planning controls are not in
place, as unregulated built-up expansion is approached as a shortcut to economic
growth.

Low development scenario reflects the period 2010-2016 and keeps the development

pace very low as a consequence of economic scarcity and lack of investments. The
economic functions as well as the population flows remain stable following a low pace.
An amount of already built residences, intended to meet the needs for both second or
primary housing, remain uninhabited (unsold or unfinished) while many already
constructed industrial and commercial facilities remain unexploited. At the same time
the demand, shaped by economic scarcity and population low rates, is lower than the
already built and available buildings leading to a low to very low building rate in the
area. All three scenarios were composed under the assumptions that profound social
and political changes will not occur, as well as any other extreme events and
accessibility in the area will remain stable. As far as land use regulations and legislative
frameworks are concerned, it is assumed that especially in the medium and high

development scenarios, will continue to be loose in the face of development potential.
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6.2.5 Model calibration

The CA model designed and implemented in Dinamica EGO platform following
a similar methodology to chapter 4. A crucial step, prior to the prediction phase is the
model’s calibration. To calibrate the model and evaluate the goodness of fit, a
comparison of simulated maps with a reference/observed maps is the most efficient way
(Gounaridis et al. 2018). Any CA modeling framework involves four components: the
probability maps, the historical LULC maps, the transition rules and the neighborhood

characteristics that define the parameters of the simulation.

In this case, initially the model was set to train based on the 1991-2010 period,
and the observed changes were used to predict the landscape structure and composition
on 2016. To do so, the annual rates of change per LULC category between 1991 and
2010 were calculated employing the transition matrix function. Next, the
parameterization set up required the computation of two landscape metrics, the mean
and the variance of patch size and the patch isometry in order to replicate the actual
conditions of the area in terms of structure and composition. In general, an increased
patch size results in less-fragmented landscapes, while the patch size variance denotes
the diversity of newly developed patches. Isometry usually varies from 0 to 2 and thus,
the greater the isometry the more isometric (equal) the newly developed patches. The
first metric was computed for the input LULC map (2010) while the latter was adjusted
through the trial and error process. Last, the 18 transition probabilities were stacked and
consisted the cell allocation target area where cells with the highest likelihood values
are supposed to change first. The model was then set to run and predict 2016. To
evaluate the model's performance, the simulated LULC map of 2016 was compared
with the observed LULC map of 2016 (resulted from classification) using the fuzzy
similarity index at multiple resolutions (Gounaridis et al. 2018, Hagen, 2003).

6.2.6 Scenarios simulation

After calibration, the projection of LULC changes under the three scenarios
implemented taking 2016 as the initial year and 2040 as the final year, in a 5-year time
step. The parameters used to calibrate the model were kept constant and only the
quantity of LULC transitions per scenario were changed. A transition matrix was
constructed for each epoch (1991-1999; 1999-2010; 2010-2016), to reveal the quantity
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of each possible transition per scenario (Table 5). Ideally, the predictor variables (Table
4) and in turn the transition probabilities surfaces would also change per scenario, to
better reflect the socio-economic conditions of each epoch, but in this case this option
was impossible due to data unavailability and temporal mismatch.

Table 5. Transition probabilities allocated per scenario. The numbers indicate transition rates per year

in hectares.
From To Medium High Low
development | development development
Discontinuous dense urban fabric Continuous urban fabric 0,319 0,392 0,051
Discontinuous medium density Continuous urban fabric
urban fabric 0,029 0,040 0,005
ELZZT:;EL:EUS medium density Discontinuous dense urban fabric 0,356 0,384 0,070
Discontinuous low density urban Continuous urban fabric
fabric 0,001 0,004 0,001
fDallzﬁ)cntmuous low density urban Discontinuous dense urban fabric 0,044 0,049 0,008
Discontinuous low density urban Discontinuous medium density
fabric urban fabric 0,383 0,436 0,022
Arable land and permanent crops Continuous urban fabric 0,001 0,002 0,000
Arable land and permanent crops Discontinuous dense urban fabric 0,010 0,019 0,001
Discontinuous medium density
Arable land and permanent crops urban fabric 0,026 0,043 0,005
Discontinuous low density urban
Arable land and permanent crops fabric 0,049 0,174 0,055
Arable land and permanent crops Industrial commerual and
transport units 0,018 0,045 0,014
Arable land and permanent crops Forests Scrubs and other natural
areas 0,090 0,099 0,083
Forests Scrubs and other natural Continuous urban fabric
areas 0,000 0,000 0,000
Forests Scrubs and other natural Discontinuous dense urban fabric
areas 0,001 0,002 0,000
Forests Scrubs and other natural Discontinuous medium density
areas urban fabric 0,002 0,004 0,001
Forests Scrubs and other natural Discontinuous low density urban
areas fabric 0,007 0,029 0,002
Forests Scrubs and other natural Industrial commercial and
areas transport units 0,001 0,002 0,001
Forests Scrubs and other natural Arable land and permanent crops
areas 0,060 0,064 0,056
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6.2.7 Multi-resolution sensitivity analysis

After completing the simulation process per scenario at 30m spatial resolution,
a sensitivity analysis conducted following an approach with multiple resolutions. The
central premise behind this step was that the spatial resolution of the models’ inputs can
have important and substantial effects on the output, and thus potentially this parameter
can limit or even enhance the ability of a model to project future scenarios of LULC
change. Sensitivity analysis is a process that examines the variation in model outputs
in response to variation in a set of model parameters, in this case the spatial resolution
of input data. It was hypothesized that when all other parameters of the model are held
constant and only spatial resolution of inputs changes, the quantities, the spatial

allocation and thus the spatial patterns of outputs can differ.

Pach size std

W pixel size 500 ™ pixel size 250 ™ pixel size 100 m pixel size 30

Other (open spaces, bare land, mine, inland water) | 31°85
Forests, Scrubs and other natural areas | 1935,39 ) !
Arable land and permanentcrops g ccagy
Industrial, commercial and transport units | 59,31
Discontinuous low density urban fabric | g1 11
Discontinuous medium density urban fa bric | EE 38
Discontinuous dense urban fabric I g1 7t
|

Continuous urban fabric .- a1

Figure 5. Variation of Patch Size Std landscape metric used to feed each calibration model, according
to spatial resolution
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Thus, the overarching aim of this step was to compare the outputs of models at
the native resolution (30m) and at several coarser resolutions (100m, 250m, 500m) and
identify areas of change that are common regardless the spatial resolution of the inputs.
To do so, the outputs of the initial LULC classifications were resampled to 100, 250
and 500 meters respectively and change detection was performed for each case. Next,
the transition probabilities were re-constructed through RF regression after resampling
all predictors for each case. The calibration followed the same steps as aforementioned.
The landscape metrics along with the transition quantities were re-calculated and
introduced to the models for each case (Figures 5 & 6). After calibration, each scenario
was simulated based on the transitions observed throughout each of the three epochs.
Finally, all maps generated from each run were overlapped using a cross classification

technique, in order to produce the final map per scenario.

Mean patch size

W pixel size 500 @ pixel size 250 @ pixel size 100 @ pixel size 30

Other (open spaces, bare land, mine, inland water)
Forests, Scrubs and other natural areas

Arable land and permanent crops

Industrial, commercial and transport wunits
Discontinuous low density urban fabric
Discontinuows medium density urban fabric
Discontinuous dense urban fabric

Continuwous urban fabric

Figure 6. Variation of Mean Patch Size landscape metric used to feed each calibration model,
according to spatial resolution
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6.3 Results and discussion

6.3.1 Historical land use/cover change

The classification of the five mosaiced Landsat images reveal the LULC
changes occurred in Attica region during a 25 years period. Overall accuracy for all
images ranged from 90.5% to 93.5%. (Table 6). Results are depicted in Figure 8. Apart
from mapping, the resulting maps were also quantified in order to have a quantitative
insight on the transitions occurred. In conjunction with Figure 4 which depicts the
increase in the built-up land categories, Figure 7 provides a quantified picture of the

LULC changes observed in Attica region.

N Continuous urban fabric

N Discortinucus dense urban fabric

B Discortinuous medium density urban
fabric
Discontinuous low dersity urban
fabric

B Industrial, commerdal and transport
units

B Arable land and permanent crops

B Forests, Scrubs and other ratural
areas
Other {open spaces, bare bnd, mine,
inland water)

2010 2016

1991 1999 2003
Figure 7. Summary of statistics based on the five classified maps and relative percentages of LULC
categories.
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Figure 8: Results of the LULC classification
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Table 6. Error matrix - Resulting map per year against reference samples. O.E: Omission Error; C.E: Commission Error; O.A: Overall Accuracy. 1: Continuous urban fabric.
2: Discontinuous dense urban fabric. 3: Discontinuous medium density urban fabric. 4: Discontinuous low density urban fabric. 5: Industrial commercial and transport units.
6: Arable land and permanent crops. 7: Forests Scrubs and other natural areas. 8: Other (open spaces, bare land, mine, inland water)

Reference

1991 1999
Result Result
1 2 3 4 5 6 7 8 O.E 1 2 3 4 5 6 7 8
1 681 11 3 9 97% 1012 28 6 8
2 14 631 28 12 2 2 2 91% 58 1174 22 18 2 6 14
3 31 51 1710 58 4 6 6 4 91% 32 67 1833 15 15 6 3 11
4 8 20 104 1288 12 20 10 8 88% 28 90 1426 36 24 12 4
5 10 15 10 515 15 5 10 89% 25 20 15 5 859 15 10
6 12 13 40 148 24 6576 168 28 94% 6 46 48 196 26 4946 120 26
7 8 6 42 11 109 2337 11 93% 21 63 22 16 188 2427 19
8 1 7 10 16 11 258 85% 10 24 14 28 14 456
CE 91% 85% 90% 83% 86% 98% 92% 80% 89% 85% 88% 84% 87% 95% 94% 84%
O.A 92,2% 90,5%
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Reference

Reference

2003 2010

Result Result

1 2 3 4 5 6 7 8 O.E 1 2 3 4 5 6 7 8 O.E
1 1323 42 10 19 1 95% 1838 51 21 14 1 95%
2 56 1658 52 4 20 8 6 4  92% 72 2241 42 10 36 4 8 12 92%
3 30 35 2276 30 38 3 12 16 93% 21 46 2299 63 31 15 21 9 92%
4 48 86 2682 56 64 24 12 90% 48 91 3246 76 42 40 10 91%
5 25 20 15 20 1165 30 10 10 90% 33 20 40 21 1798 25 7 92%
6 32 46 228 38 4128 60 16 91% 6 18 162 54 4091 64 12 93%
7 7 21 61 21 224 2860 24 89% 14 48 28 207 3528 14 92%
8 8 6 14 20 19 443 87% 8 16 11 14 20 490 88%
CE 92% 90% 91% 88% 85% 92% 96% 84% 94%  92% 92% 91% 88% 93% 96% 88%
O.A 90,7% 92,3%

2016

Result

1 2 3 4 5 6 7 8 O.E
1 2683 59 19 24 2 2 96%
2 80 3252 76 18 42 22 10 8 93%
3 24 61 2964 101 35 17 36 20 91%
4 4 32 92 5446 78 112 44 1 94%
5 55 30 30 30 2325 105 17 90%
6 6 12 36 30 4866 66 26 97%
7 14 35 28 182 4823 22 94%
8 16 16 34 24 616 87%

CE 94% 94% 93% 96% 90% 91% 96% 87%
O.A 93,5%
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The most significant changes are the urban and industrial expansion which
started to be evident since 1999 and culminated in 2010. Especially the discontinuous
low density urban fabric started to increase rapidly by 2003, reaching 7% (from 2.5%
in 1991) and this trend continued until 2016, reaching 12%. The continuous as well as
the discontinuous dense urban fabric, almost doubled throughout the study period,
reaching 5.5% and 4.8% respectively in 2016, while in 1991 they were about 2.6% and
2.3% respectively. These trends clearly reflect the previously discussed
decentralization of Athenians to areas with less density. It is worth noting that after
2010 the development trends remain positive but start to decline as a consequence of
the dramatic decrease of investments and the overall economic deterioration of the
demand and supply equilibrium. All the aforementioned development trajectories took
place at the expense of agricultural areas which were about 40% in 1991 and declined
to 23.5% in 2016.
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Figure 9. Urban trajectories observed between 1991-2016 (includes all urban fabric categories).
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The forests and natural areas category remained relatively stable, decreasing
only by 3% in 25 years. To even better highlight the observed trajectories of the most
prominent changes, a suite of maps portraying each major LULC change was created.
Figure 9 depicts the urban expansion as well as the increase in density occurred during
the last 25 years in Attica region. As can be seen, urban sprawl is obvious mostly in the
northern and eastern parts of Attica, while in the west, it is less but still evident. The
majority of sprawl occurred in the waterfront, especially in the Messoghia, in
Marathonas, in Oropos and in the south east of Athens. The northern suburbs of Athens
also experienced an amount of expansion, but the most dominant type of change in this
area was the infill that consequently led to significant increase in density. Also notable
is the pattern of uneven development between the three different periods. The majority
of LULC changes took place during the 1999-2010 period in all types of urban
categories while the period 2010-2016 demonstrates the less changes. Regarding the
types of sprawl, all types (namely suburban growth, leap-frog development, strip
development and scattered development), can be observed in the area, a fact that can
be attributed to a loose regulatory framework and to the absence of a planning scheme.

Figure 10 depicts the expansion of industrial, commercial and transport units,
occurred the last 25 years in Attica region. Thriassian plain, located in the west of
Athens as well as Messoghia plain located to the east, experienced the largest amount
of this type of LULC change. During the period 1991-1999, Thriassian plain faced a
notable industrial expansion while during 1999-2010 period the constraction of the new
international airport in Messoghia, dominates. These two areas facilitated the expansion
and were targeted due to two main advantages. First, they were both interlinked with
Athens both in terms of easy access from and to Athens and as a pole of working hands.
Additionally, they had morphological features suitable for construction activities, with
available land and very low land costs. However, these two areas have different
attributes. Thriassian plain, is mainly occupied by industrial facilities such as oil
refineries, steel mills, military bases and centers of transshipment. Messoghia plain, on
the other hand, is occupied by commercial clusters surrounding the newly development
transport units and by large physical infrastructure facilities such as the Olympics

related venues and the new international airport.

Urban and industrial expansion occurred the last 25 years in Attika region,

mostly affected the agricultural land leading to a considerable amount to be consumed
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over built-up land categories. Figure 11 depicts the aggregated loss of agricultural land
over the past 25 years. As can be seen, almost all the surrounding areas of the greater
Athens, experienced severe agricultural land loss. In an analogous fashion with the
urban and industrial expansion (Figures 9 & 10), the agricultural land loss is more than

evident in the Thriassian plain, west Attica, Oropos, Marathonas, Messoghia plain and

southeast of Athens. The vast majority of this loss occurred during the period 1991-
2010.
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Figure 10. Industrial expansion observed between 1991-2016.
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This is primarily due to the socio-economic and political changes occurred in
each of these localities, encouraging population shifts that in turn affected the housing
(both residential and second home) demand as well as the demand for construction sites
and thus leading to different land uses competing for the available land. Urban
development commonly associates with an increase in the market value of nearby lands
uses and this why usually, residential, industry and commercial uses tend to dominate
over less profitable lands in the bid for space. Consequently, owners of proximate
agricultural lands may welcome nearby urban development, considering it as a way to
expand the value of their properties. Moreover, land owners of Attica, were encouraged
by the weak regulation mechanism. The only available land for development at low
costs, in the case of Attica, was agricultural land and in conjunction with the loose
regulatory mechanisms, land owners switched their land use into more profitable

pathways.

Finally, Figure 12 depicts the changes related to the forests and natural areas
land. As revealed also from the quantitative information (Figure 7), the forests and
natural areas had a relatively slight decrease. Changes are located mostly in the urban
periphery especially in the boundaries of already established urban agglomerations, in
the northern part of Athens. Also, notable losses can be seen in the northern suburbs of
Athens, in the boundaries of Hymettus mountain and in cape of Sounio. Most of these
changes are associated with urban sprawl tendencies as well as forest fires which are
frequent in the region and often accused of being human-intended due to land

speculation.
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Figure 11. Agriculture loss observed between 1991-2016.
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Figure 12. Forests and natural areas loss observed between 1991-2016.

6.3.2 Transition probability modeling performance

The transition probability surfaces were constructed using the RF modeling
framework. The performance of the models was assessed using the Areas Under Curve
(Figure 13). As can be seen, the algorithm efficiently handled 27 heterogenous factors
derived from multiple sources and expressed in different scales, units and resolutions.
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Figure 13. Performance of the transition probability modeling based on Relative operating
characteristic curves (ROC) and area under curves (AUC) (LULC types are aggregated for

demonstration purpose.
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6.3.3 Model calibration and performance

One common way to assess the level of model calibration and performance is
to compare the simulated map for a given year versus the observed map which is often
derived from classification of satellite data. Figure 14 depicts the resulting map of 2016
after calibration versus the reality (observed map of 2016). A visual comparison of
these maps shows the relatively high similarity. This suggests that the RF-CA model
was relatively accurate at allocating the LULC patterns of change in the study area.

A 2016

Il Continuous urban fabric

[ Discontinuous dense urban fabric

I Discontinuous medium density urban fabric

] Discontinuous low density urban fabric

[ 1ndustrial, commerdial and transport units

[J Arable land and permanent crops

B Forests, Scrubs and other natural areas

] oOther (open spaces, bare land, mine, inland water)

0 10 20 km
[ —]

Figure 14. The simulated map of 2016 versus the observed of 2016 (reality).

Figure 15 illustrates the fuzzy similarity index computed based on the overlay
of the two maps. The fuzzy similarity index evaluates the model’s performance over a
range of resolutions. The accuracy assessment yielded a spatial fit of 85.18% within the
1x1 window size radius which improved to 95.08 % when widened to a 15x15 window
size. Again, the high scores in performance suggests that the suite of 27 predictor
variables were used efficiently and the RF algorithm performed well with an adequate
fit.
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Figure 15. Multi-resolution evaluation of model fitting using the fuzzy similarity index.

Figure 16 depicts the components of agreement and disagreement between the
simulated versus the observed maps. This type of accuracy assessment reveals
information about the (i) observed change simulated correctly as change (hits), (ii)
observed persistence (that is, LULC remained unchanged) simulated correctly as
persistence (null successes), (iii) observed change simulated incorrectly as persistence
(misses), and (iv) observed persistence simulated incorrectly as change (false alarms).
Most importantly, the model predicted accurately the leap-frog development and this
proves the added value of the Leap-frog development index and the extensive training
of the RF model.
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Figure 16. Result of cross classification between the simulated vs the observed map of 2016.

6.3.4 Factors contribution to land use/cover changes

The process of model calibration involved a critical step for the transition
probabilities surfaces construction. In the form of spatial variables, 27 factors (Table 4)
that were able to serve as proxies that describe the historical LULC patters were
incorporated into a RF regression model. The variables spanned a range of different
aspects, assumed to geographically explain the phenomenon and can be broadly
categorized into territorial, socio-economic and land use factors. Given that the majority
of transformations experienced in the case study, were related to urban and industrial
categories, the list of variables was formed with an aim to incorporate in the model,
spatial determinants that reflect that peoples’ choices about residential and
infrastructure location. For instance, territorial variables such as elevation, slope and
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aspect influence the inherent quality of a certain location and define the land suitability
for built-up expansion. Proximity to the sea, to blue flagged beaches as well as to areas
of high nature value or urban green are also an adding value in pursuit of a better quality
of life and aesthetics for both primary or second-homes. Proximity to the city center of
Athens or to nearest towns, to public transport, and the road density are proxies that
reflect the commuting distance to work while distance to education, health, public
buildings and enterprises density serving as proxies to amenities. Demographic and
socio-economic proxies such as changes in population density, employment and
unemployment rates provide insights on the shifts in the socio-economic profile of the

area (per municipality).

This suite of geographical data was derived from multiple different sources and
represented in different scales, units and resolutions. The modeling scheme employing
the RF regression, efficiently (Figure 13) handled the fusion of these data in order to
produce the transition probabilities surfaces and to quantify each variable’s contribution
to the outcomes (Figures 17 & 18). Certain advantages for adopting the RF algorithm
for data fusion (also demonstrated in chapters 1,2,3 & 4) were notable in this case. First,
RF efficiently handled different types of data expressed in both categorical and
continuous variables facilitating the incorporation of any type of inputs. Second, RF
proved insensitive to overfitting and collinearity of inputs was not an issue. Third,
normal distribution of inputs was not a prerequisite and the algorithm performed well
when coping with non-linear relationships between response and predictor variables.
Fourth, RF offers meaningful metrics about the importance of each predictor variable.
To quantify the actual importance and contribution for each of the 27 predictor
variables, two metrics, the Mean Decrease Accuracy (%IncMSE) and the Mean

Decrease Gini (IncNodePurity) were computed.

166



The mean decrease in Gini coefficient informs about each variable’s
contribution to the impurity of the resulting random forest model. Variables with a high
value in the decrease of Gini score, tend to have nodes with high purity which is a
measure of model’s homogeneity. As can be seen in Figure 17, road density, enterprises
density and elevation contributed the most for changes related to dense urban fabric,
while the same variables along with the distance to shoreline and education centers are
the most related to discontinuous dense and medium density urban fabric. For the
discontinuous low density urban fabric, which is a category broadly related to second
homes, distance to shoreline, to blue flag beaches, elevation, road density and

enterprises density were the most influential variables.

Viewshed

Unemployment_Rate

Soil_Sealing Mean n Mean Decrease Gini (IncNodePurity)

Social_Media_Panoramio

Social_Media_Instagram
Social_Media_Flickr
Slope

Road_Density
Population_Change

Percent_Tree Cover
Fair_Market_value

Enterprizes_Rate

N Continuous urban fabric

M Discontinuous dense urban fabric

Enterprizes_Density Discontinuous medium density urban fabric

Employment_Rate Discontinuous low density urban fabric

Elevation . . .
W Industrial, commercial and transport units

. M Arable land and permanent crops

M Forests, Scrubs and other natural areas

Distance_Urban_Green
Distance_Shoreline
Distance_Public_Transport
Distance_Public_Health
Distance_Public_Buildings
Distance Prefecture_center
Distance_Mat_Reserves

Distance_Education

Distance_Beach
Climate_Quality_Index
Building_Activity

Aspect [T

=]
(=]
=1
=1

I
=1
=]
e
=1
=1
m
=]
=1

1000 1200

Figure 17. Mean Decrease Gini (IncNodePurity) as assigned by the RF regression algorithm
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The mean decrease in accuracy is a score that informs about how much the
accuracy decreases if a variable would be excluded from the model. Therefore, the
larger the value of mean decrease, the higher the importance of a variable is. As shown
in Figure 18, road density, distance to natural reserves, to prefecture center and to
shoreling, as well as slope and elevation were the most influential variables for changes
related to dense urban fabric. The same variables along with the distance to beaches, to
urban green areas and to public buildings were the most influential to changes related
to discontinuous dense and medium density urban fabric. For the discontinuous low
density urban fabric, the elevation slope, road density along with the distance to urban
green, to shoreline, to natural reserves and to prefecture center contributed the most into

the spatial changes description.
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Figure 18. Mean Decrease Accuracy (%IncMSE) as assigned by the RF regression algorithm
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6.3.5 Multi-resolution sensitivity analysis

The simulation models implemented in order to explore alternative trajectories
of LULC changes that will occur in Attica region by 2040, under the three scenarios.
To gain in robustness of predictions and to obtain unbiased results in regard to the
spatial resolution of inputs, the modeling process was subject to a multiple resolution
sensitivity analysis. To do so, besides the nominal resolution of 30m, the whole process
was repeated resampling all inputs, required for the CA modeling, at 100m, 250m and
500m. It is worth noting that all models were identical in terms of inputs and
parameters. Transition probabilities were re-modeled and the landscape metrics were
re-calculated and re-introduced to the model for each case. The outputs of each model,
implemented in different resolutions, were overlapped and cross classified in order to
produce the final map for each of the three scenarios. Figures 19-21 depict the results
for the medium, high and low development scenarios respectively. As can be observed,
the models yield similar patterns for each scenario but as the resolution increases, the
patterns tend to become more aggregated and smaller patches of change tend to be lost.
This provides evidence that the technical characteristics and quality of inputs have
substantial impact to the outputs of a model and thus to the observed patterns and to the
conclusions drawn. Even if a model is rigorously calibrated the predictability will
decrease analogously to the spatial resolution, and the patterns revealed in the results
will become less informative. Figure 22 illustrates the correlation between transition
probabilities for continuous urban fabric per different spatial resolution. It is another
evident of the influence the spatial resolution has on various consecutive steps of the
modeling process. The values were collected at the location of 1000 random samples,
dispersed across the transition probability surface generated at 30m, 100m, 250m and
500m. Gradually as the pixel size increases, the correlation between the transition
probability surfaces tend to decrease. The higher correlation value can be observed
between the 30m and 100m pixel size while the 500m is the least correlated with the

rest.
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Figure 19. Resulting map of “medium development” scenario at various spatial resolutions
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Figure 20. Resulting map of “high development” scenario at various spatial resolutions
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Figure 21. Resulting map of “low development” scenario at various spatial resolutions
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Figure 22. Pearson correlation between transition probabilities for continuous urban fabric category.
The values derived from 1000 random samples, dispersed across the study area
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6.3.5 Final results

After the multiple resolution sensitivity analysis, the final maps illustrate the
LULC synthesis and configuration of Attica region in 2040. Figures 23-25 depict the
land use/cover changes projection under the three scenarios and Figure 26 provides a

quantified insight to the final results.
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Figure 23. LULC spatial configuration simulated for 2045, under the Medium development scenario.
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Scenario 2: High development
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Figure 24. LULC spatial configuration simulated for 2045, under the High development scenario.
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Scenario 3: Low development
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Figure 25. LULC spatial configuration simulated for 2045, under the Low development scenario.
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Under the medium development scenario and with a pace of development
equivalent to that of 1991-1999, the artificial surfaces are expected to expand
predominantly at the expense of other less profitable land uses. Urban areas are
expected to reach 41%, of which 17% will be discontinuous low density urban fabric.
Industrial areas are expected to occupy almost 8% of the total area. At the same time
agricultural areas are expected to decline from 23.5% in 2016 to 10% in 2040. Most
changes will occur along the waterfront and to the urban periphery of Athens,
particularly at the Messoghia, Thriassian, Marathonas, Oropos and Sounio areas.
Additionally, in these areas, pre-existing urban and industrial clusters portray a
tendency to infill, to become denser and to expand considerably, ending up almost
connected with the Athens urban fringe, especially the northern suburbs. The waterfront
especially in Messoghia, Marathonas, Oropos and Sounio, is also expected to exhibit
remarkable changes as the existing towns obviously tend to expand and become densely
infilled while the shoreline almost will almost convert to a large and solid low density
urban patch. Leap-frog development is also expected to increase sharply around
junctions of infilled areas, main roads and already established urban patches.

Under the high development scenario, where the pace of development reflects
the period between 1999 and 2010, the artificial surfaces are expected to increase
remarkably and occupy more than half of the total surface of Attica region (56.7%).
The urban use, is expected to occupy an area of almost 48% in 2040 which can be
translated to a 21% increase while at the same time the agricultural areas are expected
to decrease by 18%, occupying only 5.2% of the total area (Figure 24). Discontinuous
low density urban fabric will reach a high peak of almost 21% of the total area, while
continuous dense and discontinuous high density urban fabric are expected to reach 9%
and 10% respectively. All these accelerated landscape transformations are expected to
occur throughout Attica region leading to a mosaic of mixed land uses of which the
settlements dominate. Again, most changes are observed along the waterfront and to
the surroundings of Athens, particularly at the Northern suburbs of Athens, Messoghia,
Thriassian, Marathonas, Oropos and Sounio areas. Pre-existing urban and industrial
clusters will infill, become denser and expand considerably. The urban fringe of Athens
will be channeled to all directions and is expected to completely connect with the
waterfront existing patches (Marathonas, Messoghia, Sounio, Thriassian, west Attica)

and the northern suburbs up to Oropos area forming a large and solid urban patch with
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low, and at places, medium density. The effect of proximity to the shoreline as well as
the amenity driven residential tendency is especially pronounced in the outer city due
to the residential preferences. In the western part of Attica, the Thriassian plain is
expected to experience a considerable increase in industrial development and a notable
increase in medium density urban use. Last but not least, the density of urban areas will

increase sharply, especially in the northern and eastern suburbs of Athens.

Under the low development scenario, an increase of approximately 6% in the
area occupied by artificial surfaces is also expected but with considerably lower
magnitude, in terms of landscape structure and composition, compared to the previous
scenarios. For instance, the discontinuous low density urban fabric is expected to
occupy 15% of the total area, which is only a 3% increase from 2016. Continuous dense
and discontinuous high density urban fabric are expected to reach 6.5% and 5%
respectively. Following the pace of the “recession period” between 2010 and 2016,
expansion is observed throughout the study area but in lower extent and in a more
compact form. The expected changes will mostly occur around the road network and
the waterfront (particularly to areas of the eastern and northern parts of Attica). Already
existing patches of urban areas appear infilled rather than expanded while leapf-rog
development is also expected mostly around areas characterized by favorable
conditions such as proximity to Athens as well as to the town centers and around the
motorways connecting Athens to the periphery. Regarding the urban density, slight

changes are expected in the northern suburbs of Athens.

6.4 Conclusions

Methodologically, the semi-automated sampling used for classifying the LULC
categories proved efficient and reduced significantly the limitations regarding the
resources consumption. The spectral controlling approach also played an important role
in building robust and accurate models for each year as well as to the uncompromised
backwards automated training strategy. For the modeling part, in accordance with the
approach described in chapter 4, coupling of CA and RF proved to be a sound way to
combine the advantages of each approach. Implementing the RF algorithm for
transition potential modeling, allows the efficient fusion of qualitative and quantitative

data derived from multiple sources, with different nature in terms of scale and origin,
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overcoming the collinearity and distribution issues. The predictors incorporated in the
models proved capable to spatially determine the phenomenon while the incorporation
of the Leap-frog index, at the regional level this time, assisted the models in the face of
sprawl detection and, in turn, prediction. In this approach, a total of 18 distinct
transitions were identified and equal transition probability surfaces were generated.
Their combination in a CA modeling environment seemed challenging and required
intense training and calibration through trial and error. Currently, most models can only
simulate limited possible transitions due to complexity in definitions, attributes and
transition rules. But in reality, even to a locality, different LULC dynamics occur
simultaneously and affect each other. Thus, a comprehensive outlook of these processes
is much more effective in order to determine realistically the future trajectories. The
interactions and competition among different type of LULC was explored by using a
simple yet effective competition mechanism, in which the combined probabilities are
manipulated as a single layer stack containing all the probability surfaces. Each layer
represents one single possible transition while each cell contains values denoting the
dominant LULC type and the likelihood to retain the current land type or transform to
another type. The reproduction of LULC patterns and the calibration procedure, as a
whole, improved considerably with the inclusion of landscape metrics, that fed the two
complimentary sub-models Patcher and Expander, by taking into account actual
parameters of the study area. The adoption of the fuzzy similarity index at multiple
resolutions for assessing the models’ spatial fit was another advantage of the approach
as it performs comparisons of simulated versus observed data within a neighborhood
context and not in a strict per pixel context. Finally, the approach presented in this
chapter provided results that are insensitive to spatial resolution bias, after
implementing the multiple resolution sensitivity analysis. Since the modeling
approaches generate outputs that are more or less driven by the parameters and
characteristics of input data, the results obtained by this approach and the patterns
demonstrated, are consistent to all pixel sizes and thus insensitive to the effect of pixel

size.

This chapter demonstrated an integrated approach to explore potential future
LULC dynamics in the Attica region under three scenarios that reflect different
economic performances and policy options. The third scenario which is linked to low

development can be translated to the so-called business as usual scenario where the
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current economic functions continue relatively unchanged and the financial crisis
persists and keeps the building demand and supply at low levels. Results obtained from
the medium and high development scenarios, can be translated in various ways. Apart
from the straightforward research question of how LULC of Attica will be structured
and composed under potential economic development rates, it can also be translated to
how Attica would look like in case the economic crisis would be sidestepped. Another
important aspect could be in regard to the absence of a regulation mechanism and the
permissive and weak overarching spatial planning framework. The results obtained can
be valuable in gaining insights and visualizing the outcomes of economic development
goals that take precedence over virtually all other spatial planning priorities. They can
be informative about the significant negative environmental and cultural externalities,
carried by each alternative economic performance reality and land-use planning context
and choice. The results stress that the negative consequences can undermine the very
economic prospects and the sustainability of the area. The various ways the results can
be interpreted, makes the scope of the findings to become wider and forms a broader
foundation for debate. In the absence of intervention and adequate regulation, the first
two scenarios demonstrate continued expansion of urbanization-driven development
that is expected to compete with, and likely consume, a large amount of areas occupied
by agricultural land uses and natural areas, throughout the region. The magnitude and
distribution of development, demonstrated in both scenarios, can diminish the
ecological and cultural equilibrium of the region, and this finding underscores a

significant tradeoff.
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Chapter 9: Conclusions

This dissertation aimed to explore part of the complexity that characterizes the
LULC changes system and accomplished to meet the primary objectives and the
scientific challenges that emerged during the process. A range of state of the art
methodologies that lie in the Geoinformatics, satellite remote sensing and spatial
modeling disciplines were assembled in order to build an integrated methodological
framework for detecting historical changes, delineating and quantifying the factors and

sub-factors that drive these changes and sketching alternative future LULC trajectories.

The integrated methodological framework was devised in order to sufficiently
i) take into account the multiple scales involved in LULC systems, ii) provide insights
into hidden patterns, by taking into account not only the prominent changes between
major LULC categories, but also changes in density, iii) detect LULC changes in a
temporal resolution that enables the identification of uneven patterns throughout the
study period which in turn enables the sound delineation of scenarios, iv) take into
account socioeconomic, biophysical, legislative and land use factors spanning a broad
spectrum of LULC change driving forces and finally to v) provide results that are

subject to sensitivity analysis and unbiased to the technical details of inputs.

To answer the research question of how can heterogenous data, be
efficently combined in a LULC modeling framework, it is demonstrated in
two case studies by incorporating in the modeling framework data derived
from multiple sources, expressed at various scales and resolution. Given that, the data
used as input in any model, affect the outcomes, the validity, usefulness and the
accuracy of the model, studies that utilize only data that concern a single scale or spatial
resolution, fail to account for a wide range of information and their transferability is
limited. Data expressed at coarse scales might hold information and patterns that are
invincible at more detailed scales and vice versa. Furthermore, factors that determine a
LULC change, might operate at a distance from the area of focus. Thus, when dealing
with a system that involves multiple nonlinear relationships and various proximate and
underlying factors, it is necessary to consider all available information. This
dissertation exploited all possible resources and efficiently fused and integrated the
available multi-scale and multi-resolution data. ii) The models’ calibration was based

on a fuzzy similarity index that considers the similarities of neighborhood in a growing
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moving window and not a strict cell by cell comparison. To overcome the fact that the
spatial resolution of inputs plays a major role to the outcomes of models, a multiple
resolution sensitivity analysis was also applied. iii), The simulation results were subject
to a multiple resolution sensitivity analysis. Under the assumption that the spatial
resolution of the models’ inputs can have important effects on the output, this parameter
is central to the ability of a model to project future scenarios of LULC change. Thus, it
was hypothesized that when the spatial resolution of inputs changes while all other
parameters of the model are held constant the quantities, the spatial allocation and the
spatial patterns of outputs can differ. The results after this step identify areas of future
LULC change disregarding the spatial resolution of inputs and are unaffected by the
bias they entail. iv) Finally, this dissertation included a modeling case study at the local
scale (Messoghia plain) and one at the regional scale (Attica region). After detecting
and quantifying the historical LULC changes, it was noted that the results were uneven.
For instance, Messoghia (which are located inside the wider Attica region) experienced
four distinct periods of development, while for Attica region, the periods of
development were three. This fact underscores the aforementioned that different scales
of analysis reveal different patterns and that the results obtained from a scale specific

case study are not representative for the wider context.

Regarding the spatial determinants to the different types of LULC changes, the
dissertation incorporated a total of 27 variables into the modeling process. By
implementing 18 different models representing every possible LULC transition, the
contribution of each factor was quantified using two meaningful metrics. After applying
all these models, four clear messages emerge: First, the results demonstrate that
depending on the LULC type, different factors are dominant in spatial determination of
changes. Especially the interrelations of urban related categories, can be clearly
distinguished according to density which translates in different residential use (eg
second homes). In densely built urban areas, spatial determinants such as road density,
enterprises density, amenities (health, education) and accessibility to the municipality
center were the most dominant. In urban areas with less density, distance to shoreline,
to blue flagged beaches were among the most important. The results converge with the
literature about those factors, especially with studies that looked at the coastal zone of
Mediterranean countries. Second, many of these factors that deemed as “drivers of

change”, can be actually “driven by” the changes. In other words, it is hard to interpret
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whether these factors are causes or consequences of urban growth. As an example, the
road or the enterprises densities that rank among the top correlations, might actually
just follow the patterns of settlements. Third, some factors that rank among the top
determinants for a type of LULC change, may have a strong positive or negative
correlation coefficient with the phenomenon. For instance, the slope and elevation
variables, rank high in the urban categories and this is mostly due to the geomorphology
of Attica region, where a large amount of settlements is concentrated into plains.
Finally, it is important to be noted that all these patterns and numbers are case specific
and the conclusions drawn from the quantitative insights are not necessarily fully
transferable to other regions. Even if Attica region can be aptly categorized into groups
like coastal areas, Mediterranean cities or regions containing a big metropolitan area,
and apparently share some common attributes or patterns. This is mostly due to
specificities apparent only in the region, for example the physical constraints related to
geomorphology, might be less pronounced in other areas. Another aspect would be the
peoples’ choices for residency, or the presence or absence of a regulation mechanism

which, more or less, shapes the urban patterns in other countries.

Regarding how the socio-economic circumstances relate to the changes in
LULC, this dissertation included two approaches that clearly advocate their importance.
The economy dictates the development trends and in turn forms the demand and supply
chain. In particular the built-up expansion rates are highly correlated with the level of
economic development as demonstrated by the LULC change detection performed in
two cases spanning a three decades period. The spatio-temporal dynamics that Attica
region experienced, revealed uneven development trends that fully reflect the
conditions of each epoch. Higher development rates were evident in conjunction with
significant fund allocation, competitiveness and economic soundness and at the same
time the built-up land expanded remarkably. During economic depression times,
transactions in the real estate market followed the opposite way. It should be stressed
though that all the historical LULC changes were driven by the development as well as
by the absence of a regulation mechanism. Observing these uneven historical trends,
served as a basis to sketch distinct and alternative scenarios and project the observed
trends to future decades exploring plausible alternative pathways.

Several other conclusions can be drawn from this dissertation and should be noted:

186



Earth observation coupled with Geoinformatics is a sound way to provide a
wide range of spatio-temporal information accurately and cost-effectively. Landsat
imagery are particularly suitable for applications related to detecting historical LULC
changes, since the satellite was launched in the early 1970s and constitutes the longest
record of the Earth's surface. The long archives are readily available for download with
no costs, and this makes it the only feasible option for studies that span some decades
of time. It is obvious that for studies that require large extents. The only compromise
a researcher has to make, is the spatial resolution since Landsat data come with a
nominal pixel size of 30m. Satellite sensors record the emitted energy of objects and
each satellite image is therefore a file of spectral signatures, translated by users as
information about the objects and each pixel represents the spectral characteristics of
all objects found in a 900 m? area. Apparently, this translates to much loss of
information and might be crucial to the results. However, the ratio price/spatial
resolution/size is almost inversely proportional and for this reason, it is necessary to be
taken into account that the level of detail, the available budget and the purpose of study
are complementary. For example, for detecting historical LULC changes over Attica
region, instead of using more than 10 Landsat images at 30 m spatial resolution, would
engage considerably more images if very high spatial resolution was deemed important.
Apart from the high costs, the sizes of files and thus the time and computational costs
for all processes would proliferate. Thus, given that the analysis was operated at the

regional level and not on the block, such amount of information was not imperative.

The semi-automated techniques demonstrated, are proven a sound way to
overcome the need of exhaustive methodologies in order to train classification
algorithms, which, in fact, prevent many researchers from producing LULC data in high
temporal resolution. Given that changes usually occur in a small fraction of land and
especially at the edges, extracting information as training from already available
datasets, utilizing unchanged areas as a training source, can be reasonable. For doing
S0, the potential error that will likely propagate undermining the whole process would
be due to incompatibility and unsuitability between datasets and scales. To overcome
this obstacle, relocation and elimination of points close to the boundaries between
adjacent categories is the only option. The semi-automated techniques demonstrated,
are fully transferable and can act as a baseline for continuous monitoring of LULC.

Also, additional conclusions, regarding the classification process, emerged throughout
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this dissertation. The amount of training samples, was crucial for accurate
classifications and also the whole process benefits from samples that are proportional
to the occurrence of each LULC category. Generally, it was found that classification
accuracy will increase with larger training data but sample distribution with a good

range of intra-class variability to be represented, is of equal importance.

The RF algorithm for classification and later for regression analysis was proven
to be robust and advantages of using it are stressed in all chapters. Especially the
variable importance functions were efficient as they report on not only the influence of
each predictor separately, but also their multivariate interactions. The algorithm
successfully handled the fusion of multiple and heterogenous data allowing the
accomplishment of very high thematic resolution disaggregating the urban-related
LULC categories. The discrimination of LULC categories according to their density
and continuity was an important step, because the detection and quantification of such
changes and their projection provided unique insights into the whole process of LULC
system. In case this step was avoided, and a more conventional and straightforward
nomenclature of categories, was adopted, the majority of changes would have been
ignored (e.g the changes in density observed in the northern suburbs of Athens where

the extent remained relatively constant while the density increased dramatically).

The good performance of the models designed for Messoghia and for Attica
suggests that the predictors incorporated were capable to spatially determine historical
LULC changes for each case. But an important challenge was the accurate identification
of scattered unplanned development patches, the so-called leap-frog development. In
both models, the incorporation of the Leap-frog index boosted the performance of the
RF algorithm facilitating an adequate fit in the face of sprawl detection. This task was
previously reported by several researchers as difficult to detect and predict since this
type of sprawl forms patches that vary in shape, structure, composition and place of

occurrence.

The attempt to couple CA and RF was a sound way to overcome certain
limitations in an approach that combines the advantages of each method. On the one
hand, the RF algorithm provided a robust modeling option to generate accurate
transition potential surfaces, by fusing heterogenous data without overfitting and
collinearity issues, while on the other hand CA modeling proved fully compatible with
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transition probability surfaces produced by the RF models. Additionally, the two
separate sub-models Patcher and Expander allowed the efficient calibration of the
models according to case specific needs by taking into account actual parameters of the
study area. Thus, coupling these two frameworks is fully operational and reduces
several limitations that are commonly reported in the literature. In fact, recent
comparative approaches stress that the combination of RF and CA, outperforms other

methods.

As for Attica region and the wide transformations evident throughout the
previous decades, it should be noted that scenarios reveal plausible outcomes that
reflect the envisioned and encouraged economic re-growth. The economic goals set by
the policy makers, appear capable of taking precedence over virtually all other spatial
planning priorities undermining the enforcement of actual regulation, once more.
Therefore, the scenarios presented in this dissertation can not be dismissed as
implausible, not even the most optimistic in terms of economic growth. Results
generated from the models stress out the major impact that would arise from unplanned
artificial areas expansion. From this spectrum, the presence of a spatial planning
scheme that is visually and quantitatively informed about the potential consequences is
a key step towards finding the optimal balance between development and sustainability.
A regulatory mechanism should be operational and unobtrusive, reducing the negative
consequences of development without hindering growth, by shifting the distribution of

new development to locations that are more ecologically suitable.

Projecting LULC patterns is a useful experiment for evaluating the causes and
identifying the impact of these changes. The scenario-based simulations are a useful
way to sketch out how the LULC patterns evolve under different pathways with a level
of plausibility. Embedded in every analysis engaging scenarios, there will always be a
level of potential uncertainties originated from the general nature relating to the
socioeconomic predictions that drive the scenarios, the inability to foresee any
unexpected circumstances and integrate any emerging discontinuities or the data used
for the models. Especially when dealing with complex systems such as LULC changes,
those assumptions are unavoidable. Combining an empirical analysis and sketching
different scenarios attributes and conditions that deviate from historic trends in LULC
changes, is a way to minimize the uncertainty. Another important aspect is the careful

observation of these trends, identifying any uneven patterns throughout the study
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period, that should be taken into account in the design process. Finally, a central point
of the LULC system science that should be noted is that the LULC system as a whole
requires scientific advances by bringing together diverse disciplines to co-design
integrated approaches and jointly work towards such a multi-disciplinary scientific
problem. This is why this dissertation avoided to explicitly deal with subjects pertaining
to different disciplines, like policy making, spatial planning, environmental
management or socio-economics and human geography and is rather centered to the
perspective of how geo-informatics can advance the methodological framework in
various ways and how the wide array of methodologies it entails, can be assembled in

an integrated multidisciplinary approach.
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