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Εκτενής περίληψη 

 

Οι αλλαγές στην κάλυψη/χρήση γης, είναι ένα πολυεπίπεδο φαινόμενο που 

λαμβάνει χώρα σε διάφορες μορφές. Ο όρος κάλυψη γης σχετίζεται µε τον τύπο των 

χαρακτηριστικών που εμφανίζονται πάνω στην επιφάνεια της γης ενώ ο όρος χρήση 

γης σχετίζεται µε την ανθρώπινη εκμετάλλευση και την οικονομική λειτουργία των 

διαφόρων τύπων κάλυψης. Το μεγαλύτερο ποσοστό των αλλαγών στην κάλυψη/χρήση 

γης οφείλεται σε ανθρωπογενή αίτια. Οι επιπτώσεις που συγκεντρώνουν το μεγαλύτερο 

κομμάτι της έρευνας, είναι εκείνες που αφορούν τις αλληλεπιδράσεις των αλλαγών 

στην κάλυψη/χρήσεις γης με θεμελιώδη χαρακτηριστικά και διεργασίες της γης όπως 

το κλίμα, ο βιοφυσικός και υδρολογικός κύκλος, η βιοποικιλότητα και εν τέλει οι 

υπηρεσίες του οικοσυστήματος. Ο μηχανισμός που υποκινεί αυτές τις αλλαγές είναι 

πολύπλοκος και πολυπαραγοντικός. Οι παράγοντες που συμβάλλουν στις αλλαγές της 

κάλυψης/χρήσης γης, είναι πολυδιάστατοι (περιβαλλοντικοί, κοινωνικοί, οικονομικοί, 

πολιτικοί κ.α.) και αλληλοεπιδρούν με πλήθος άλλων παραγόντων αλλά και μεταξύ 

τους. 

Σκοπός της διατριβής είναι να διερευνήσει να αποτυπώσει και να κατανοήσει 

το σύστημα αλλαγών κάλυψης/χρήσης γης σε  διάφορες κλίμακες αποκωδικοποιώντας 

τους παράγοντες που επιδρούν σε αυτό και τέλος να χρησιμοποιήσει την πληροφορία 

που προκύπτει για την προσομοίωση μελλοντικών σεναρίων εξέλιξης του συστήματος. 

Η βιβλιογραφία υπογραμμίζει ότι πολλές απόπειρες προς αυτή την κατεύθυνση έχουν 

ορισμένα μεθοδολογικά μειονεκτήματα που υπονομεύουν την εγκυρότητα και τη 

χρησιμότητα των αποτελεσμάτων. Για παράδειγμα πολλές μελέτες δεν λαμβάνουν 

υπόψη τις πολλαπλές κλίμακες που εμπλέκονται στις αλλαγές κάλυψης/χρήσης γης, 

συμπεριλαμβάνοντας στις αναλύσεις τους μόνο παράγοντες που λειτουργούν σε μία 

μόνο κλίμακα (π.χ. διοικητική ή λήψης αποφάσεων). Επιπλέον, σε πολλές μελέτες, οι 

παρελθοντικές αλλαγές κάλυψης/χρήσης γης αντιμετωπίζονται συχνά σε χαμηλή 

ανάλυση (θεματική, χωρική και χρονική), γεγονός το οποίο υπονομεύει τη χρησιμότητα 

των αποτελεσμάτων. Επιπλέον, πολλές μελέτες επικεντρώνονται σε μια συγκεκριμένη 

πλευρά του φαινομένου (π.χ. κοινωνικοοικονομική) χωρίς να λαμβάνουν υπόψη 

άλλους σημαντικούς παράγοντες ενώ η πλειονότητα των μελετών παρέχει 

αποτελέσματα μοντελοποίησης που δεν υπόκεινται σε ανάλυση ευαισθησίας. Για το 

λόγο αυτό, η διατριβή αυτή περιγράφει ένα ολοκληρωμένο μεθοδολογικό πλαίσιο το 
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οποίο με χρήση μεθόδων Γεωπληροφορικής θα συμβάλει στην κατανόηση του τρόπου 

λειτουργίας του συστήματος αλλαγών κάλυψης/χρήσης γης. Αυτή η διατριβή 

υποστηρίζει ότι ένα ολοκληρωμένο μεθοδολογικό πλαίσιο θα πρέπει να σχεδιαστεί με 

τέτοιο τρόπο ώστε i) να λαμβάνει υπόψη τις πολλαπλές κλίμακες που εμπλέκονται στο 

σύστημα αλλαγών κάλυψης/χρήσης γης, ii) να παρέχει πληροφορίες σε πολύ υψηλή 

θεματική ανάλυση λαμβάνοντας υπόψη όχι μόνο για τις αλλαγές μεταξύ κατηγοριών 

κάλυψης/χρήσης γης, αλλά και μεταβολές στην πυκνότητας τους, iii) να ανιχνεύει τις 

αλλαγές κάλυψης/χρήσης γης σε χρονική ανάλυση που επιτρέπει την ταυτοποίηση 

άνισων αλλαγών κατά την περίοδο μελέτης, κάτι που είναι απαραίτητο για την 

αντιπροσωπευτικότερη οριοθέτηση των σεναρίων, iv) να λαμβάνει υπόψη ένα ευρύ 

φάσμα παραγόντων αλλαγών κάλυψης/χρήσης γης (περιβαλλοντικοί, κοινωνικοί, 

οικονομικοί, πολιτικοί κ.α.), ν) να παρέχει αποτελέσματα που υπόκεινται σε ανάλυση 

ευαισθησίας.  

Αρχικά, διερευνάται ο βέλτιστος συνδυασμός μεθοδολογιών που απαιτούνται 

για επεξεργασία και ταξινόμηση δορυφορικών εικόνων, με σκοπό την ανίχνευση και 

ποσοτικοποίηση αλλαγών. Επιπρόσθετα διερευνάται ο ρόλος ειδικών μετρικών τοπίου 

στο χαρακτηρισμό της σύνθεσης και δομής του τοπίου. Η πρώτη περίπτωση μελέτης 

αφορά την προστατευόμενη περιοχή του Υμηττού, Αττικής. Οι περιοδικές αλλαγές που 

έλαβαν χώρα σε μια περίοδο 28 ετών χαρτογραφήθηκαν και ποσοτικοποιήθηκαν με 

χρήση μεθόδων τηλεπισκόπησης, Συστημάτων Γεωγραφικών Πληροφοριών (ΣΓΠ) και 

μετρικών τοπίου.  

Με βάση αυτή την διερεύνηση, στη συνέχεια, το κομμάτι της ταξινόμησης 

δορυφορικών εικόνων βελτιώνεται με τη χρήση μια αποτελεσματικής ημιαυτόματης 

μεθοδολογίας κατά τη οποία η μοντελοποίηση λαμβάνει υπόψη πληροφορία που 

προέρχεται από ήδη διαθέσιμα δεδομένα κάλυψης/χρήσης γης. Η διαδικασία αυτή 

μειώνει σημαντικά το χρόνο που απαιτείται για την ταξινόμηση δορυφορικών εικόνων, 

με υψηλά ποσοστά ακρίβειας. Η μεθοδολογία εφαρμόζεται σε εθνική κλίμακα, σε ένα 

σύνολο 27 εικόνων Landsat. Ως ανεξάρτητες μεταβλητές το περιλαμβάνει συνολικά 20 

επίπεδα που αφορούν εκτός από τα φασματικά κανάλια, και διάφορους 

πολυφασματικούς δείκτες, γεωμορφολογία εδάφους και απόσταση από το οδικό 

δίκτυο.  

Στη συνέχεια, διερευνάται μια μεθοδολογία η οποία επιτρέπει την επίτευξη 

πολύ υψηλής θεματικής ανάλυσης, με ημιαυτόματη διαδικασία. Η μεθοδολογία 

περιλαμβάνει ενσωμάτωση πληροφορίας από ήδη υπάρχοντα δεδομένα, τα οποία 
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προέρχονται από πολλαπλές πηγές και είναι ετερογενή (πολλαπλές κλίμακες ανάλυσης, 

χωρική διακριτική ικανότητα). Η ομογενοποίηση τους έγινε με τη χρήση ενός 

αλγορίθμου μηχανικής εκμάθησης και το αποτέλεσμα διέκρινε την αστική 

κάλυψη/χρήση γης σε πέντε κατηγορίες ανάλογα με την πυκνότητα της. Η μεθοδολογία 

επίσης εφαρμόζεται σε εθνική κλίμακα.  

Στο επόμενο κεφάλαιο εξετάζεται η αποτελεσματικότητα του συνδυασμού ενός 

μη παραμετρικού μοντέλου μηχανικής εκμάθησης με ένα χωρικό μοντέλο Cellular 

Automata σε μια προσέγγιση που συνδυάζει τα πλεονεκτήματα της κάθε μεθόδου. 

Περιγράφεται ένα παράδειγμα κατά το οποίο οι αλλαγές κάλυψης/χρήσης γης 

προσομοιώνονται με βάση διαφορετικά σενάρια τα οποία αναπαριστούν διαφορετικές 

οικονομικές συνθήκες και επίπεδα ανάπτυξης. Η προσέγγιση εφαρμόστηκε σε τοπική 

κλίμακα με περιοχή μελέτης τα Μεσόγεια Αττικής. Οι περιοδικές αλλαγές που έλαβαν 

χώρα την περίοδο 1985-2015 χαρτογραφήθηκαν, ποσοτικοποιήθηκαν και εξετάστηκε 

η συσχέτιση τους με 20 χωρικούς παράγοντες υποκίνησης (κοινωνικο-οικονομικοί, 

περιβαλλοντικοί, νομοθετικοί). Η χρονική κατανομή των αλλαγών οδήγησε στο 

σχεδιασμό τεσσάρων σεναρίων τα οποία αναπαριστούν διαφορετικές φάσεις 

οικονομικής ανάπτυξης. Η γεωγραφική κατανομή τους σε συνδυασμό με τους 20 

παράγοντες υποκίνησης μοντελοποιήθηκαν για να προκύψουν οι επιφάνειες 

πιθανότητας αλλαγών. Με βάση αυτές τις επιφάνειες, οι αλλαγές προσομοιώθηκαν έως 

το έτος 2045 για κάθε ένα από τα τέσσερα σενάρια.  

Τέλος, περιγράφεται η δημιουργία ενός ολοκληρωμένου μοντέλου 

προσομοίωσης των αλλαγών κάλυψης/χρήσης γης σε περιφερειακό επίπεδο (Αττική), 

συνδυάζοντας όλες τις μεθοδολογίες που συζητήθηκαν προηγουμένως. Ο στόχος είναι 

η διερεύνηση εναλλακτικών σεναρίων που αντικατοπτρίζουν διαφορετικές 

πραγματικότητες οικονομικής απόδοσης και εναλλακτικές επιλογές σχεδιασμού. Η 

ολοκληρωμένη προσέγγιση περιλαμβάνει, ημι-αυτόματη ταξινόμηση κάλυψη χρήσης 

γης σε πολύ υψηλή θεματική ανάλυση, διακρίνοντας συνολικά οκτώ κατηγορίες 

κάλυψης/χρήσης γης οι οποίες περιλαμβάνουν τη διάκριση της αστικής 

κάλυψης/χρήσης γης σε τέσσερις κατηγορίες ανάλογα με την πυκνότητα της. Ως 

ανεξάρτητες μεταβλητές το μοντέλο ταξινόμησης περιλαμβάνει συνολικά 20 επίπεδα 

που αφορούν εκτός από τα φασματικά κανάλια, και διάφορους πολυφασματικούς 

δείκτες καθώς και τη γεωμορφολογία εδάφους. Η ανίχνευση και ποσοτικοποίηση των 

διαχρονικών αλλαγών (1991-2016) οδήγησε στην γεωγραφική και χρονική αποτύπωση 

τους και εν συνεχεία στην συσχέτισή τους με 27 παράγοντες υποκίνησης (κοινωνικο-
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οικονομικοί, περιβαλλοντικοί, νομοθετικοί), οι οποίοι προέρχονται από πολλαπλές 

πηγές και είναι ετερογενείς (πολλαπλές κλίμακες ανάλυσης, χωρική διακριτική 

ικανότητα). Η μοντελοποίηση της σχέσης αλλαγών και παραγόντων υποκίνησης 

οδήγησε στην κατασκευή 18 διαφορετικών επιφανειών πιθανότητας αλλαγών. Τα 

αποτελέσματα ενσωματώθηκαν σε ένα χωρικό μοντέλο Cellular Automata και οι 

αλλαγές προσομοιώθηκαν έως το έτος 2040 με βάση τρία σενάρια τα οποία 

αναπαριστούν διαφορετικές φάσεις οικονομικής ανάπτυξης. Τέλος εφαρμόστηκε 

ανάλυση ευαισθησίας των αποτελεσμάτων στη χωρική διακριτική ικανότητα των 

εισροών του μοντέλου. Σκοπός αυτού του εγχειρήματος ήταν να παραχθούν 

αποτελέσματα τα οποία είναι ακριβή ανεξάρτητα από τη χωρική διακριτική ικανότητα 

των εισροών του μοντέλου.  
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Chapter 1: Introduction 
 

The intensification of research related to land cover and land use changes has 

emerged on the global environmental research agenda in the mid-1970s, with the 

discovery - realization that processes taking place at the surface of the Earth directly 

and indirectly affect the climate and the environment (Sagan et al., 1979). Land cover, 

according to Moser (1996), is a term referring to the physical attributes of the Earth’s 

surface, including the soil, biomass, crops and human constructions. The term is often 

confused with that of land use which, by contrast, according to Mucher et al. (1993), is 

used to refer to the human activity that is directly related to the Earth. In other words, 

the term land use primarily refers to the purposes for which humans manage land cover 

by using its natural resources or impacting its ecological processes that in turn directly 

determine the land cover. An important distinction between the concepts of land use 

and land cover is the fact that the former focuses on economic activities occurring on a 

given surface of the land, while the second does not (Meyer and Turner II, 1996). Given 

that humankind alteration of Earth is substantial and ever growing, any significant 

changes in land use affect land cover and vice versa (Vitousek et al. 1997). Through a 

complex mechanism, pertaining to complex theory, changes in land cover react locally 

on land uses while also contributing to wider processes, such as climate change 

(Feddema et al. 2005), desertification (Gibbs and Salmon, 2015) and global 

environmental change (Turner II, 1994). Moreover, land cover changes hold wide-

ranging significance for the structure and function of ecosystems, with equally far-

reaching consequences for humans in every aspect.  

Monitoring and understanding the land use/land cover (LULC) dynamics and 

the drivers behind it, in all aspects and scales, is therefore essential. The drivers 

involved to LULC change are multidimensional, inter-related, interact across different 

scales and can be broadly distinguished into bio-physical (eg physical characteristics of 

an area) and socio-economic (e.g. demographic, social, economic, political and 

institutional factors). For instance, the way the land resources are employed by land 

owners, generate immediate consequences on land cover which in turn dictate 

consequent adjustments in management strategies. Such adjustments usually have an 

influence on the socio-economic conditions that produced the original uses, and in turn 

lead to different uses. On the other hand, inversely, changes in the socio-economic 
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conditions alone may trigger land use and in turn land cover changes (Lambin and 

Meyfroidt, 2010). 

The vast majority of land cover changes are human induced. Land cover 

changes are considered to be the most ancient influence of humans on the environment 

and these changes are substantial and growing (Sagan et al., 1979, Vitousek et al., 

1997). As humanity grows, the technology expands along with the needs to resources 

and economic exploitation of the land. This human domination inevitably leads to 

Earth’s transformation. This dual role of humanity, which contributes actively to land 

changes and at the same experiences the consequences of those changes, emphasizes 

the need for a better understanding of this human-environment interaction. Land cover 

changes have both desirable and undesirable impacts with a magnitude that varies from 

local to global scales.  

The impacts that attracted the most attention by the scientific community are 

those adapted to the interactions of LULC changes with fundamental features and 

processes of the Earth such as climate, biochemical and hydrological cycles, 

biodiversity and ecosystem services (Foley et 2005, Vitousek et al., 1997). In particular, 

the composition and characteristics of the Earth’s surface have an impact on the climate, 

determining the amount of evaporation and infiltration as well as the surface water 

runoff and thus the hydrological cycle (Becker and Bugmann, 2001) and the 

atmospheric composition (Falkowski et al., 2000). Changes in the hydrological cycle 

and the climate, in turn, have an impact on soil quality, leading to land degradation 

through soil erosion, which in the long-term triggers desertification (Le Houérou, 

2002). The structure and composition of land cover is also directly related to 

biodiversity and rapid changes inevitably lead to fragmentation of habitats with 

multiple direct effects on species distribution (Tilman et al., 2001). All the above-

mentioned, broad categories of impacts interact and in turn trigger further short-term 

and long-term effects. Equally important is the impact of changes in society. Changes 

in the climate, the water equilibrium, the quality and hence the productivity of soils, the 

biodiversity and the capacity of ecosystems to support human needs, make human 

society vulnerable to undesirable impacts which in turn directly threaten and may be 

disrupting to the economic and socio-political conditions of society (Foley et 2005, 

Schroter et al., 2005). 
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This dissertation is an effort to explore part of the complexity that characterizes 

the LULC changes system and provide insights into aspects that are commonly 

recognized as limitations still to be addressed. The literature stresses that many attempts 

toward this direction suffer from certain methodological drawbacks that undermine the 

validity of the outcomes and the transferability to other areas of study (see chapter 

2;4;5;6;7;8). To name a few of these drawbacks, many studies do not properly address 

the multiple scales involved in LULC changes, concerning only factors operating at a 

single scale (e.g administration or planning scale). Additionally, in many studies, 

historical LULC changes are often addressed in low resolution (both thematic, spatial 

and temporal), which provides weak insights in every aspect of the phenomenon. 

Moreover, many studies are focused on a narrow perspective (e.g socioeconomic) 

disregarding other important factors while the majority of studies provide modeling 

results that are not subject to sensitivity analysis. 

The overarching aim is to enhance the understanding of how the LULC system 

functions by building an integrated methodological framework devised for detecting 

historical changes, delineating and quantifying the factors of differing importance that 

drive these changes and sketching alternative future LULC trajectories. This 

dissertation argues that an integrated methodological framework should be designed in 

a way that sufficiently i) takes into account the multiple scales involved in LULC 

systems, ii) provides insights into hidden patterns, by taking into account not only the 

prominent changes between major LULC categories, but also changes in density, iii) 

detects LULC changes in a temporal resolution that enables the identification of uneven 

patterns throughout the study period which in turn enables the sound delineation of 

scenarios, iv) takes into account socioeconomic, biophysical, legislative and land use 

factors spanning a broad spectrum of LULC change driving forces, v) provides results 

that are subject to sensitivity analysis and unbiased to the technical details of inputs.  

This dissertation will be able to provide answers to the following detailed research 

questions:  

-  How can heterogenous data, derived from various sources and expressed at multiple 

scales can be efficiently combined in a LULC modeling framework? 
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- How and on what extent do the patterns of outputs change over different scales and 

spatial resolutions?  

- Which are the spatial determinants to the different types of LULC changes, in a region 

that experienced wide transformations?  

- How and to what extent the socio-economic circumstances spatially influence the 

changes in LULC and how this information can be used to evaluate alternative 

pathways and policy options?  

 

The originality of this dissertation lies in the focus to address key existing 

methodological shortcomings assembling in a unified framework the following 

elements: i) Development of a semi-automated process to achieve exhaustive training 

in conjunction with advanced processing while at the same time limiting the costs, both 

in terms of time and computational resources. ii) Efficient fusion of qualitative and 

quantitative data derived from multiple sources, expressed at various scales and 

resolution, allowing the full exploitation of available information. iii) Devise a robust 

modeling approach, designed to handle variables of different nature (continuous and 

categorical), insensitive to overfitting and collinearity and capable to handle large 

datasets without being computationally exhaustive. iv) Identification of important 

linkages and feedbacks between LULC patterns in a structural hierarchical manner 

delineating the contribution of various spatial determinants to each LULC change 

independently. v) High thematic resolution of analysis considering not only the actual 

type of land use but also the density, that is expected to reveal new patterns and different 

aspects. vi) Integrated modeling of LULC changes that takes into account the historical 

LULC spatial and temporal patterns and simulates alternative trajectories, by a multiple 

scales approach. vii) Accurate detection and projection of scattered unplanned 

development patches, which is often reported as a challenging task due to randomness 

and variation in structure and composition. viii) Coupling of non-parametric machine 

learning modeling with spatially explicit and application-oriented scenario-based 

simulation integrating the advantages of each approach to a unified ensemble. ix) 

Design of a methodological framework to generate results, derived from scenario-based 

simulations that are insensitive to bias and uncertainty related to spatial resolution of 

inputs and scaling issues.  
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The novelty of this dissertation can be summarized in four key aspects. 

i) It presents an integrated methodological framework that allows the 

efficient fusion of heterogeneous data expressed at multiple scales, 

forming a unified approach that allows the efficient detection and 

modeling of LULC changes, ii) it presents advances towards the detection 

and modelling of urban development in spatially continuous and 

discontinuous forms, iii) It introduces a sensitivity analysis for the 

identification of changes regardless of the spatial scale involved and 

iv) it demonstrates the utility of density based LULC change detection 

and modeling. The presented integrated framework is operational, cost effective and 

transferable. 

The dissertation is structured in five core chapters. Chapter 4 explores the 

application of methodologies that employ multi-temporal satellite imagery and geo-

informatics. This chapter describes the pre-processing steps of the satellite data, the 

classification and the change detection techniques adopted throughout the dissertation. 

Chapter 5 proceeds a step further the classification methodology and describes an 

efficient and robust semi-automated methodology for LULC classification using 

satellite imagery, and geo-informatics. Chapter 6 focuses on how a very high thematic 

resolution can be achieved. It describes a methodological framework for LULC 

thematic disaggregation, employing datasets from multiple sources, expressed in 

various scales and resolutions. Chapter 7 explores the effectiveness of coupling a non-

parametric machine learning algorithm with a spatially explicit CA model, in an 

approach that combines the advantages of each method. It describes a scenario-based 

simulation modeling framework that sketches an appraisement of different alternative 

pathways related to economic circumstances and development. Finally, chapter 8 looks 

at the terrestrial part of Attica region. The aim was to explore, at the regional level, 

potential future LULC trajectories under three distinctive scenarios that reflect different 

economic performance realities and alternative planning options. To achieve this, an 

integrated approach that combined all previously discussed methodologies was 

designed. Chapter 9 provides answers to the detailed research questions and stresses 

the lessons learned and the concluding remarks of the dissertation.  
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Chapter 2: Land use/land cover monitoring and modeling 
 

2.1 Land use/land cover monitoring 

 

Given that a major proportion of the Earth’s land cover is influenced and thus 

shaped by human activities and land use (Vitousek et al. 1997), long-term observation 

of LULC is essential (Lambin and Meyfroidt, 2011). Traditional field data approaches 

face several limitations as they are destined to a local extent. Moreover, they are source 

demanding in terms of personnel, equipment and time and also, they are limited by 

topographic and climatic conditions and low accessibility to remote areas. Remote 

sensing (RS) along with Geographic Information Systems (GIS) can be combined to 

successfully provide spatially consistent and detailed LULC information, a prerequisite 

in order to monitor the Earth effectively (Coppin et al., 2004; Rozenstein and Karnieli, 

2011). An increased number of satellite data (Belward and Skøien, 2014) can facilitate 

the growing demand for multi-spectral and multi-temporal information of the Earth’s 

surface over a wide range of scales and data types in order to monitor the Earth 

effectively (e.g Hansen et al., 2013; Schneider et al., 2009; Zhu and Woodcock, 2013). 

However, adopting RS techniques and relying on satellite data involves facing an 

imperative trade-off. Very high resolution (VHR) imagery comes with an amount of 

costs, a fact that acts as an obstacle in large scale and multi-temporal approaches. On 

the other hand, low resolution data are free of charge and, more recently, in abundance. 

However, this type of data may be unsuitable to monitor certain phenomena and to 

capture patterns that usually occur on a smaller scale, like LULC changes.  

With the Landsat program running for almost five decades now, high spatial 

resolution satellite images have been widely used for monitoring LULC and its changes 

(Hansen and Loveland, 2012). The advantages of using Landsat data are the suitable 

spatial resolution for LULC monitoring, the very high temporal resolution due to the 

low revisit cycle of the satellite and the high spectral resolution offered. To add on that, 

the opening of the Landsat archive readily available for download with no costs, makes 

it the only feasible option for studies that span some decades of time and cover large 

extents (Wulder et al. 2016). 

Recent technological and methodological advancements contributed to the wide 

spreading increase of digital spatial databases. Nowadays, various and at multiple 
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resolutions LULC datasets exist but with discussed limitations and challenges still to 

be addressed (Giri et al., 2013; Herold et al., 2008). On a regional scale, for Europe, 

two frequently used databases are the Coordinate Information on the Environment 

(CORINE), a pan-European LC map for the years 1990, 2000, 2006 and 2012 provided 

by the European Environmental Agency and the Pan-European Land Cover Monitoring 

database (Mucher et al., 2001). These two databases suffer from limitations, namely 

low spatial resolution and minimum mapping units (MMU), inconsistency from one 

country to another, lack of rigorous accuracy assessments and thus reliability (Neumann 

et al., 2007; Waser and Schwarz, 2006). The most important limitation, of the available, 

both global and regional datasets that is still to be addressed, is the discrepancy between 

LC classes, their overarching definitions, their nomenclature and thus the heterogeneity 

of information provided. Another serious issue about the CORINE LC database, which 

emanates from the fact that is produced by each country separately, is the outdated 

available information for some countries like for example Greece.  

Additionally, the feasibility of using already available datasets in a range of 

research applications and management activities is limited by their low thematic 

resolution. Thematic resolution refers to the detail in the definition of LULC categories 

and thus it directly determines the amount of geospatial information of hard classified 

categorical data. The amount of detail in a LULC map, defines how meaningful and 

insightful the map is for a wide range of research questions. Several authors have 

explored the effects of thematic resolution in land use modeling (Conway, 2009; 

Pontius and Malizia, 2004), land-cover pattern analyses (Buyantuyev and Wu, 2007) 

and landscape indices behavior (Bailey et al. 2007), converging that the outcomes are 

significantly influenced. Whilst thematic resolution is important to a range of 

applications, available regional and global datasets in most cases represent important 

LULC categories lumped into one or two broad classes, a fact that is far from reality on 

the ground (Potere et al. 2009). Thus, the usage of these data to research efforts that are 

centered on areas that faced a multitude of transformations is limited. On the contrary, 

depending on the area of study and the dominant transformations occurred in that area, 

the discrimination of LULC categories according to their density and continuity is 

crucial. For example, in areas that faced various forms of urbanization, taking into 

account the changes occurred in not only the extent but also to the density of urban 
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areas, will reveal important insights. The same applies to research efforts focusing on 

areas with forested land or cropland.  

Therefore, to avoid the limitations stressed above, studies tailored to assess the 

LULC changes on a specific area and period cannot rely on already existing hard 

classified datasets. Temporally consistent and accurate LULC maps need to be 

produced to satisfy the growing demand for spatially explicit data. To meet these 

requirements a number of researchers focused on introducing increasingly sophisticated 

approaches, which are at the same time less source demanding and labor intensive. 

Currently, there is a clear trend in the research agenda to develop and suggest automated 

(e.g. Chen et al., 2012; Comber et al., 2004; Huth et al., 2012; Radoux et al., 2014; 

Yuan et al., 2009) or semi-automated (Jiang et al., 2012; Xian et al., 2009) LULC 

classification approaches. A key element to accomplish minimum intervention by the 

user is the utilization of existing and readily available LULC data, to train the classifier 

(Chen et al., 2012; Jiang et al., 2012; Klein et al., 2012; Radoux et al., 2014; Xian et 

al., 2009). Under the assumption that changes usually occur only to a small fraction of 

the land, incorporating in the process accurate but outdated information is reasonable 

and promising to eliminate remaining gaps in LC mapping. 

 

2.2 Land use/land cover modeling 

 

In recent decades, a wide variety of LULC change models have been developed 

to meet the scientific community's need for understanding how LULC evolves and why 

(Agarwal et al. 2002, Briassoulis, 2000). Models are widely used to analyze the 

complex structure of linkages and feedbacks between drivers of change, determine their 

relevance to particular LULC changes and project how much land is used where and 

for what purpose, under different predefined attributes and conditions. This type of 

information is then adopted in a meaningful way in order to support policy decision 

making related to land-use (Mallampalli et al. 2016). However, by definition, models 

can not exactly replicate complex interactions and nonlinear relations, but they are 

rather, at a fundamental level, a process that provides a platform that when formally 

expressed, consists of a tool that allows certain experiments (Brown et al. 2013). When 

the system in question is simple, the processes and interactions that characterize it can 
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be easily determined and the results are somehow expected, while projections and other 

kinds of extrapolations are a simple and straightforward task. But when dealing with 

inherently complex systems, as is the case with LULC changes, the models are capable 

to represent and exemplify only small fractions of the whole mechanism in order to 

highlight important processes.  

The major technological breakthrough removed technical barriers and in 

conjunction with the rapid methodological advances, facilitated the proliferation of 

available LULC models, geographical datasets and software. Contemporary theoretical 

approaches and analytical tools are used to describe, interpret and predict, both 

qualitatively and quantitatively, the behavior of LULC changes. Nowadays models are 

frequently used to answer questions such as which factors contributed to the current 

state of land cover, or how much and what are their interdependencies (McBurney, 

2012). Apart from the delineation of causes and consequences, the recent 

methodological and technological advancements have opened the way to more 

articulated models which are capable to answer more complex questions such as what 

the possible outcomes would be if alternative pathways were followed, which 

alternative outcome is the most desired out of many as well as a diverse range of similar 

‘what if’ scenarios. Scenario-based analysis is now increasingly being adopted by a 

range of disciplines pertaining to LULC change, as fruitful experiments for exploring 

the possible future trajectories of the historical and current trends (Murray-Rust et al. 

2013). Taking as granted that, in reality, the number of potential futures is infinite 

(Greeuw et al., 2000), scenarios are not used to exactly predict the future, but rather to 

explore a range of possible futures and to consider a range of alternative pathways. To 

do so, the scenario-based analysis fully recognizes the infinity of potential futures and 

attempts to focus only to an understandable and manageable set of alternatives, by 

delineating plausible, presumably coherent and internally consistent storylines of 

different socio-economic development trajectories (Rounsevell and Metzger, 2010). 

Modeling LULC have its origins in the family of spatial interaction models but 

the conceptualization of the models is built around economics, regional science, 

sociological and political economy, and nature–society interaction theories 

(Briassoulis, 2008). Precisely, given that land use, in other words the exploitation of 

land cover resources is directly related to economic motives and the principal drivers 

that drive LULC changes are socioeconomically oriented, the von Thunen's agricultural 
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land-rent and Alonso's urban land-rent theories still stand as a cornestone of modeling 

applications.  

Models designed to analyze LULC dynamics can be divided into various 

categories according to their perspective, their domain, the methodological framework 

they apply, their spatial or non-spatial nature etc (literature reviews by Agarwal et al., 

2002, Briassoulis 2000, Parker et al. 2003). A simple, non-exhaustive, classification 

with regard to their methodological origins would include i) Empirical–statistical 

models using multivariate regression and geostatistical analysis (e.g. He and Lo, 2007, 

Millington et al., 2007, Poelmans and Van Rompaey, 2010). Models of this type often 

suffer from limitations such as sensitivity to outliers, collinearity issues and factors 

compatibility (Eastman et al. 2005). ii) Stochastic and optimization models (e.g. Brown 

et al. 2002), which are processes that consider one objective or simply convent multiple 

objectives into one, and the optimization takes place with the use of weighting methods 

(Ma and Zhao, 2017). iii) Dynamic process-based simulation (Veldkamp and Fresco 

1996, Verburg et al., 2002) which often involve multiple models subdivided in modules 

that capture non-spatial (e.g demand) and spatially explicit (e.g allocation) processes.  

iv) Agent-based modeling (e.g. Manson, 2005, Robinson et al. 2012), which capture 

decision making processes at the individual, household or neighborhood levels. Agent-

based models can be very complex as part of distributed artificial intelligence method 

and when it comes to agent behavior and are often parametrized with qualitative social 

survey data and other types of participatory approaches (Zagaria et al. 2017). v) Markov 

chains (e.g. Dongjie et al. 2008) which are frequently used to delineate LULC changes 

as a transition probability scheme that is statistically estimated based on past transition 

proportions between different types of LULC. vi) Cellular automata (CA) (literature 

review by Sante et al 2010) which are based on transition rules and neighborhood 

interactions between LULC categories. CA are spatially-explicit and application-

oriented and are capable to represent stochastic, non-linear processes in a conceptually 

simple way (Batty et al. 1997). The basic principle of CA models is that LULC changes 

can be explained by the current state of a cell and its surroundings and the transition 

rules that dictate the possible change of a cell, can be expert-based or calculated from 

statistical analysis of historical LULC changes (White and Engelen, 2000).  

When modeling LULC, the scale spatial resolution and extent of the study area, 

are important attributes of all spatially explicit models (Agarwal et al 2002). The term 
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scale refers to the spatial, temporal, quantitative, or analytic dimension used by the 

modeler to measure and study the processes that are modelled (Gibson et al., 2000). 

Scale also involves the terms extent and resolution. Extent refers to the magnitude of a 

dimension used in measuring (e.g. study area boundaries on a map) whereas resolution 

refers to the precision used in this measurement (e.g. pixel size) (Gibson et al. 2000). 

In turn, resolution refers not only to spatial resolution, but also to thematic, which is the 

level of precision in LULC categories and to temporal resolution which is used to refer 

to the time span and frequency of the analysis. Modelling LULC changes requires a 

range of scales to be defined since it is a phenomenon that involves multiple processes 

that act over different scales. At each scale different processes have a dominant 

influence on the outcome (Meentemeyer, 1989). Approaches that do not implement a 

multi-scale approach are prone to aggregation or oversimplification errors and thus fail 

to reproduce cross-scale interactions. This is due to the fact that features and processes 

that operate at local scales are not always observable when dealing with broader extent 

case studies and coarse spatial resolution data (Verburg et al. 2004). On the other hand, 

studies that focus solely on the local level often fail to incorporate information about 

the general context which can only be derived from coarser spatial resolution data. 

Taking as a fact that all models are driven by the data used as inputs, studies focusing 

on individual phenomena, considering only a single scale and using data that are only 

particularly suitable to their study area, are not always representative, transferable or 

reproducible to different scales and are characterized by uncertainty and various critical 

assumptions (Kok and Veldkamp 2001, Veldkamp et al., 2001, Verburg et al. 2006).  

 

References 

Agarwal, C, Green, G M, Grove, J M, Evans, T P, Schweik, C M. (2002). A review and 

assessment of land-use change models: dynamics of space, time, and human 

choice. General Technical Report NE-297, Department of Agriculture, Forest 

Service, Northeastern Research Station, Newtown Square, PA.  

Bailey, D., Herzog, F., Augenstein, I., Aviron, S., Billeter, R., Szerencsits, E. and 

Baudry, J. (2007). Thematic resolution matters: indicators of landscape pattern 

for European agro-ecosystems. Ecological Indicators 7, 692–709.  



26 
 

Batty, M., Couclelis, H., & Eichen, M. (1997). Urban systems as cellular automata. 

Environment and Planning B, 24(2), 159–164. 

Belward, A.S. and Skøien, J.O. (2014). Who launched what, when and why; trends in 

global land-cover observation capacity from civilian earth observation. ISPRS 

Journal of Photogrammetry and Remote Sensing 103, 115-128.  

Briassoulis, H. (2000). Analysis of Land Use Change: Theoretical and Modeling 

Approaches. In the Web Book of Regional Science (Loveridge S. Ed.), West 

Virginia University, Morgantown. 

Briassoulis, H. (2008). Land-use policy and planning, theorizing, and modeling: lost in 

translation, found in complexity? Environment and Planning B: Planning and 

Design, 35(1), 16–33.  

Brown, D.G., Goovaerts, P., Bumlckl, A. and Li, M-Y. (2002). Stochastic Simulation 

of Land-Cover Change Using Geostatistics and Generalized Additive Models. 

Photogrammetric Engineering & Remote Sensing, 68(10), 1051-1061. 

Brown, D.G., Verburg, P.H., Pontius Jr, R.G. and Lange, M.D. (2013). Opportunities 

to improve impact, integration, and evaluation of land change models. Current 

Opinion in Environmental Sustainability, 5, 452–457.  

Buyantuyev, A. and Wu, J. (2007). Effects of thematic resolution on landscape pattern 

analysis. Landscape Ecology 22, 7–13. 

Chen, X., Chen, J., Shi, Y. and Yamaguchi, Y. (2012). An automated approach for 

updating land cover maps based on integrated change detection and 

classification methods. ISPRS Journal of Photogrammetry and Remote Sensing 

71, 86–95. 

Comber, A.J., Law, A.N.R. and Lishman, J.R. (2004). Application of knowledge for 

automated land cover change monitoring. International Journal of Remote 

Sensing 25, 3177–3192. 

Conway, T.M. (2009). The impact of class resolution in land use change models. 

Computers Environment and Urban Systems 33, 269–277. 



27 
 

Coppin, P., Jonckheere, I., Nackaerts, K. and Muys, B. (2004). Digital change detection 

methods in ecosystem monitoring: a review. International Journal of Remote 

Sensing, 25, 1565 – 1596. 

Dongjie, G., Weijun, G., Kazuyuki, W. and Hidetoshi, F. (2008). Land use change of 

Kitakyushu based on landscape ecology and Markov model. Journal of 

Geographical Science, 18, 455–468. 

Eastman, J.R., Solorzano, L.A., and van Fossen, M.E. (2005). Transition potential 

modeling for land-cover change. In GIS, Spatial Analysis, and Modeling; 

Maguire, D.J., Batty, M., Goodchild, M.F., Eds.; ESRI Press: California, UK, 

357–385. 

Gibson, C.C., Ostrom, E. and Ahn, T.K. (2000). The concept of scale and the human 

dimensions of global change: a survey. Ecological Economics, 32, 217–239.  

Giri, C., Pengra, B., Long, J. and Loveland, T. R. (2013). Next generation of global 

land cover characterization, mapping, and monitoring. International Journal of 

Applied Earth Observation and Geoinformation 25, 30–37. 

Greeuw, S., van Asselt, M., Grosskurth, J., Storms, C., Klomp, N., Rothman, D., 

Rotmans, J., Agency, E.E. (2000). Cloudy Crystal Balls: An Assessment of 

Recent European and Global Scenario Studies and Models: Experts’ Corner 

Report. Office for Official Publications of the European Communities. 

Hansen, M.C. and Loveland, T.R. (2012). A review of large area monitoring of land 

cover change using Landsat data. Remote Sensing of Environment 122, 66–74. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, 

A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., 

Egorov, A., Chini, L., Justice, C.O. and Townshend, J.R.G. (2013). High-

Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 

850–853. 

He, Z. and Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. 

Computers Environment and Urban Systems, 31 (6), 667-688. 

Herold, M., Mayaux, P., Woodcock, C.E., Baccini, A. and Schmullius, C. (2008). Some 

challenges in global land cover mapping: An assessment of agreement and 



28 
 

accuracy in existing 1 km datasets. Remote Sensing of Environment 112, 2538–

2556. 

Huth, J., Kuenzer, C., Wehrmann, T., Gebhardt, S., Quoc Tuan, V. and Dech, S. (2012). 

Land Cover and Land Use Classification with TWOPAC: towards Automated 

Processing for Pixel- and Object-Based Image Classification. Remote Sensing 

4, 2530-2553. 

Jiang, D., Huang, Y., Zhuang, D., Zhu, Y., Xu, X. and Ren, H. (2012). A Simple Semi-

Automatic Approach for Land Cover Classification from Multispectral Remote 

Sensing Imagery. PLoS ONE 7(9), e45889. 

Klein, I., Gessner, U. & Kuenzer, C. (2012). Regional land cover mapping and change 

detection in Central Asia using MODIS time-series. Applied Geography 35(1-

2), 219–234.  

Kok, K. and Veldkamp, A. (2001). Evaluating impact of spatial scales on land use 

pattern analysis in Central America. Agriculture. Ecosystems and Environment, 

85, 205–221. 

Lambin, E.F. and Meyfroidt, P. (2011). Global land use change, economic 

globalization, and the looming scarcity. Proceedings of the National Academy 

of Sciences of the United States of America 108 (9), 3465–3472. 

Ma, X. and Zhao, X. (2017). Land Use Allocation Based on a Multi-Objective Artificial 

Immune Optimization Model: An Application in Anlu County, China. 

Sustainability, 7, 15632-15651.  

Mallampalli, V.R., Mavrommati, G., Thompson, J., Duveneck, M., Meyer, S., 

Ligmann-Zielinska, A., Gottschalk Druschke, C., Hychka, K., Kenney, M.A., 

Kok, K. and Borsuk, M.E. (2016). Methods for translating narrative scenarios 

into quantitative assessments of land use change. Environmental Modelling & 

Software, 82, 7-20.  

Manson S.M. (2005) Agent-based modeling and genetic programming for modeling 

land change in the Southern Yucatan Peninsular Region of Mexico. Agriculture, 

Ecosystems and Environment, 111, 47–62. 



29 
 

McBurney, P. (2012). What Are Models for? 9th European Workshop on Multi-Agent 

Systems. In: Cossentino M. et al. (Eds) LNAI 7541. Springer, Maastricht, The 

Netherlands, 175–188. 

Meentemeyer, V. (1989). Geographical perspectives of space, time, and scale. 

Landscape Ecology, 3, 163–173. 

Millington J.D. (2005) Wildfire risk mapping: considering environmental change in 

space and time. Journal of Mediterranean Ecology, 6, 33–42. 

Mucher, C.A., Champeaux, J.L., Steinnocher, K.T., Griguolo, S., Wester, K., Heunks, 

C., Winiwater, W., Kressler, F.P., Goutorbe, J.P., ten Brink, B., van Katwijk, 

V.F., Furberg, O., Perdigao, V. and Nieuwenhuis, G.J.A. (2001). Development 

of a consistent methodology to derive land cover information on a European 

scale from remote sensing for environmental monitoring; the PELCOM report. 

Alterra-rapport 18 178/CGI-report 6, Alterra, Wageningen, the Netherlands. 

Murray-Rust, D., Rieser, V., Robinson, D.T., Milicic, V. and Rounsevell, M. (2013). 

Agent-based modelling of land use dynamics and residential quality of life for 

future scenarios. Environmental Modelling & Software, 46, 75-89.  

Neumann, K., Herold, M., Hartley, A. and Schmullius, C. (2007). Comparative 

assessment of CORINE2000 and GLC2000: Spatial analysis of land cover data 

for Europe. International Journal of Applied Earth Observation and 

Geoinformation 9, 425–437. 

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J. and Deadman, P. (2003) 

Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: 

A Review. Annals of the Association of American Geographers, 93(2), 314–

337. 

Poelmans, L. and Van Rompaey, A. (2010). Complexity and performance of urban 

expansion models. Computer Environment and Urban Systems, 34, 17–27. 

Pontius Jr., R.G. and Malizia, N.R. (2004). Effect of category aggregation on map 

comparison. In: Engenhofer, M.J., Freska, C., Miller, H.J. (Eds.), GIScience 

2004. Springer, New York, pp. 251–268. 



30 
 

Potere, D., Schneider, A., Angel, S. and Civco, D.L. (2009). Mapping urban areas on a 

global scale: which of the eight maps now available is more accurate? 

International Journal of Remote Sensing 30, 6531–6558.  

Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C. and 

Defourny, P. (2014). Automated Training Sample Extraction for Global Land 

Cover Mapping. Remote Sensing 6, 3965-3987. 

Robinson D.T., Murray-Rust D., Rieser V., Milicic V. and Rounsevell M. (2012) 

Modelling the impacts of land system dynamics on human well-being: Using an 

agent-based approach to cope with data limitations in Koper, Slovenia. 

Computers, Environment and Urban Systems, 36, 164–176. 

Rozenstein, O. and Karnieli, A. (2011). Comparison of methods for land-use 

classification incorporating remote sensing and GIS inputs. Applied Geography 

31, 533–544.  

Rounsevell, M., Metzger, M., 2010. Developing qualitative scenarios and storylines. 

Wiley Interdisciplinary Reviews: Climate Change 1(4), 606-619. 

Sante, I., Garcia, A. M., Miranda, D. and Crecente, R. (2010). Cellular automata models 

for the simulation of real-world urban processes: A review and analysis. 

Landscape and Urban Planning, 96(2), 108–122. 

Schneider, A., Friedl, M. A. and Potere, D. (2009). A new map of global urban extent 

from MODIS satellite data. Environmental Research Letters 4 article 044003. 

Veldkamp A. and Fresco L.O. (1996) CLUE: a conceptual model to study the 

Conversion of Land Use and its Effects. Ecological Modelling, 85, 253–270. 

Veldkamp, A., Verburg, P.H., Kok, K., de Koning, G.H.J., Priess, J. and Bergsma, A.R. 

(2001). The need for scale sensitive approaches in spatially explicit land use 

change modeling. Environmental Modeling and Assessment, 6, 111–121. 

Verburg P.H., Soepboer W., Limpiada R., Espaldon M.O., Sharifa M. and Veldkamp 

A. (2002) Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S 

Model. Environmental Management, 30, 391–405. 

Verburg, P.H., Schot, P.P., Dijst, M.J. and Veldkamp, A. (2004). Land use change 

modelling: current practice and research priorities. GeoJournal, 61, 309–324.  



31 
 

Verburg, P.H., Schulp, C.J.E., Witte, N. and Veldkamp, A. (2006). Downscaling of 

land use change scenarios to assess the dynamics of European landscapes. 

Agriculture, Ecosystems and Environment, 116, 39–56. 

Vitousek, P.M., Mooney, H.A., Lubchenco, J. and Melillo, J.M. (1997) Human 

domination of Earth’s ecosystems. Science 277, 494–499.  

Waser, L.T. and Schwarz, M. (2006). Comparison of large-area land cover products 

with national forest inventories and CORINE land cover in the European Alps. 

International Journal of Applied Earth Observation and Geoinformation 8, 

196–207. 

White, R. and Engelen, G. (2000). High-resolution integrated modelling of the spatial 

dynamics of urban and regional systems. Computers, Environment and Urban 

Systems, 24(5), 383–400.  

Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R. and Woodcock, C.E. (2012). 

Opening the archive: How free data has enabled the science and monitoring 

promise of Landsat. Remote Sensing of Environment 122, 2–10. 

Xian, G., Collin, H. and Fry, J. (2009). Updating the 2001 National Land Cover 

Database land cover classification to 2006 by using Landsat imagery change 

detection methods. Remote Sensing of Environment 113 (6), 1133–1147. 

Yuan, H., Van Der Wiele, C.F., & Khorram, S. (2009). An Automated Artificial Neural 

Network System for Land Use/Land Cover Classification from Landsat TM 

Imagery. Remote Sensing 1, 243-265. 

Zagaria, C., Schulp, C.J.E., Kizos, T., Gounaridis, D. and Verburg, P.H. (2017). 

Cultural landscapes and behavioral transformations: An agent-based model for 

the simulation and discussion of alternative landscape futures in East Lesvos, 

Greece.  Land Use Policy, 65, 26–44.  

Zhu, Z. and Woodcock, C.E. (2013). Continuous change detection and classification of 

land cover using all available Landsat data. Remote Sensing of Environment 

144, 152–171. 

 

 



32 
 

Chapter 3: Research methodology 
 

This dissertation seeks to devise an integrated methodological framework for 

LULC changes modeling that will be able to sufficiently address all the aforementioned 

aims and objectives and provide answers to the research questions. The approach will 

demonstrate how to take into account the multiple scales involved in LULC systems, 

will detect, map and quantify the LULC historical changes in sufficient spatial, 

temporal and thematic resolution, will incorporate in the modeling a broad spectrum of 

LULC change driving forces socioeconomic, biophysical, legislative and land use 

factors and will present results that are subject to sensitivity analysis.  

To meet the aims and objectives and to address the scientific challenges that 

emerge, the dissertation is structured into five methodological steps that are 

demonstrated in five applications (Table 1).  

First, it describes the pre-processing steps of the satellite data, the classification 

and the change detection techniques adopted throughout the dissertation. The approach 

is demonstrated in Hymettus mountain, Athens. The LULC types are classified and 

quantified over a study period of 28 years. Post classification comparisons, in the form 

of cross-classification and cross-tabulation are applied to detect, map and quantify the 

LULC changes spatio-temporally. Additionally, a set of landscape metrics, suitable to 

delineate the structure and composition of the LULC are computed for each year.  

Next, the LULC classification proceeds a step further by devising an efficient 

and robust semi-automated methodology for LULC classification using satellite 

imagery, and geo-informatics. The application is demonstrated at the national scale. 

Information extracted as training, from already available land cover datasets, reducing 

significantly the time consuming and labor-intensive process of training a classification 

model.  

Next, the focus was on thematic disaggregation and efficient data fusion in order 

to achieve very high thematic resolution. The approach adopted a non-parametric 

machine learning modeling framework that allowed the fusion of existing, readily 

available and with acceptable accuracies datasets, in order to achieve a very high 

thematic resolution in which urban LULC is classified into five categories according to 
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continuity and density. This application is also demonstrated at the national scale with 

a high degree of automation.  

 

Table 1. Methodological steps and applications of this dissertation.  

 

Theme Spatial Scale Model Techniques  
 Local  Regional  National    

Forests Chapter 4 - - 
Random Forest (RF) 

Classification 

Change detection 

Cross tabulation-

classification 

Landscape metrics 

LULC - - 
Chapter 

5 
RF Classification 

Semi-automated LULC 

classification 

Urban - - 
Chapter 

6 
RF Classification 

Semi-automated LULC 

classification  

Thematic disaggregation 

Data fusion  

Urban/Artificial 

non-Urban 
Chapter 7 - - 

RF Classification / RF 

Regression / Cellular 

Automata 

Change detection 

Cross tabulation-

classification 

Landscape metrics 

Data fusion  

Scenario -based simulation 

LULC - Chapter 8 - 

RF Classification / RF 

Regression / Cellular 

Automata 

Semi-automated LULC 

classification 

Thematic disaggregation 

Data fusion  

Change detection 

Cross tabulation-

classification 

Landscape metrics 

Data fusion  

Scenario -based simulation 

 

Multiple resolution 

Sensitivity analysis 

 

Next, the effectiveness of coupling a non-parametric machine learning 

algorithm with a spatially explicit CA model is explored. A scenario-based simulation 

modeling framework is devised in order to sketch an appraisement of different 

alternative pathways related to economic circumstances and development. The focus is 

on a locality (Messoghia plain, Attica) that experienced vast transformations and looked 

at the urban and industrial LULC categories. After detecting and quantifying the 
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periodic LULC transitions occurred during 1980–2015, the observed changes were 

combined with 20 dynamic, biophysical, socio-economic and legislative factors, to 

produce transition potential surfaces. Four scenarios, that reflect four distinct 

chronological frames marked with uneven development, different economic 

performance realities and land-use planning, were projected until 2045.  

Finally, the final application explores at the regional level, potential future 

LULC trajectories under three distinctive scenarios that reflect different economic 

performance realities and alternative planning options. To achieve this, an integrated 

approach that combined all previously discussed methodologies was designed. The 

focus is the terrestrial part of Attica region and the study period spanned 25 years (1991-

2016) and LULC is classified into eight categories, achieving very high thematic 

resolution. Change detection techniques in the form of cross-classification and cross-

tabulation are used in order to map and quantify the periodic LULC changes occurred. 

A total of 18 different possible LULC transitions are identified and combined with 27 

different factors derived from multiple sources and represented in different scales, units 

and resolutions. Simulation models are calibrated and fine-tuned in order to project the 

LULC changes until 2040, under the three scenarios. Finally, the results are subject to 

a multi-resolution sensitivity analysis in a process that outputs of each model run are 

compared at several spatial resolutions in order to identify areas of future change 

disregarding the spatial resolution of inputs.  
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Abstract 

 

The rapid land use/cover change (LULCC) and landscape fragmentation occurring 

around the world is largely attributed to human induced factors. Landscape 

fragmentation has become a central issue in landscape ecology and conservation 

policies due to its direct influence on biodiversity which consequently endangers the 

sustainability of ecological goods and ecosystem services. Thus, fragmentation 

monitoring and assessment is a critical issue in land use planning and sustainable 

environmental management in order to avoid any irreversible negative consequences. 

This research explores the application of methodologies that employ multi-temporal 

satellite imagery, combined with geographical information systems and landscape 

metrics, to assess forest fragmentation. The objective is to determine spatio temporally 

the LULCCs focusing on the woody vegetation in Hymettus Mountain of Greece over 

the last decades. The study area, which has been designated as a Natura 2000 site, is 

situated near the city of Athens. It faces various perturbations triggered by socio-

economic factors and the absence of an ongoing contextual appraisal for conservation. 

To quantify the LULCCs, nine Landsat images spanning 28 years are classified. Post 

classification comparison is applied to generate transition maps. Additionally, eight 

landscape metrics are calculated. The change detection results identify hot-spots of 

forest fragmentation where mitigation measures should be taken, so that further 

irreversible alteration of the ecosystem is prevented. The landscape metrics advocate 

that, during the last three decades, the woody vegetation has steadily been more 

fragmented. The primary direct causes are economic driven intense anthropogenic 

activities along with frequent wildland fires whereas the indirect cause is the absence 

of a sustainable environmental management and conservation strategy. 

 

Keywords: Forest fragmentation, change detection, Landsat, post classification 

comparison, landscape metrics. 
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2.1 Introduction 

 

Socioeconomic development in Greece has considerably been influenced by 

land-based economic activities. These are closely related to the structure and function 

of landscapes, as long as agriculture, grazing, forest harvesting and mining still 

constitute partially income source for its residents (Papanastasis et al., 2008). 

Landscape refers to a mosaic of heterogeneous territory composed of sets of interacting 

ecosystems (Forman, 1995). It is characterized by dynamics, composition and 

configuration that are governed by natural processes and human activities (Forman, 

1995). The term composition describes the abundance and variety of different patch 

types, while configuration refers to the physical distribution and spatial character of 

patches within a landscape mosaic (McGarigal and Marks, 1995). 

Over the last century, natural ecosystems in Europe have been substantially 

transformed because of socio-economic and political changes (Reger et al., 2007). 

These transformations are expected to continue. More specifically the structure of 

forested landscapes has changed as a result of natural and anthropogenic disturbances, 

ecological succession and degenerative trends (Lambin and Meyfroidt, 2010; Ji et al., 

2006). Human activities have modified the environment to the extent that landscapes 

are increasingly becoming dominated by human settlements, artificial cultivation fields 

with only scattered fragments of natural ecosystems (Vitousek et al., 1997). Most 

natural conservation reserves are progressively being surrounded by intensively 

modified environments and in the long-term, are deemed to function as isolated natural 

ecosystems (Wolter and White, 2002). 

Forest fragmentation is a dynamic process in which contiguous forest tracts are 

progressively being sub-divided into smaller, geometrically complex isolated patches 

(Gibson et al., 1988). Caused by either natural or anthropogenic agents, forest 

fragmentation seriously threatens key features and processes of the earth such as 

climate, biophysical and hydrological cycles, biodiversity and ultimately ecosystem 

services. More specifically, the composition and characteristics of the earth’s forests, 

aggregated at a global scale, affect the climate. First the earth’s forests can impact the 

hydrological cycle by determining the amount of evapotranspiration, infiltration and 

surface water runoff (Becker and Bugmann, 1999). Second forests affect the 

atmospheric composition, by determining the moisture content in lower atmospheric 

layers (Chase et al., 1999). Finally, they also determine the emission of greenhouse 
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gases functioning as a natural sink (Falkowski et al., 2000; Rockstrom et al., 2009). 

Moreover, alterations in the hydrological cycle and climate affect the soil quality, since 

the latter is gradually being degraded through erosion that progressively leads towards 

desertification (Le Houérou, 2002). The status of forest ecosystems is also directly 

related to biodiversity. Rapid changes in health, composition and structure of 

ecosystems inevitably lead to fragmentation of habitats with multiple effects such as 

species extinction (Gaston, 2005; Schroter et al., 2005; Tilman et al., 2001). Hence, 

forests alteration clearly endangers the sustainability of ecological goods and ecosystem 

services (Costanza et al., 1997). 

To face these issues the European legislation via the Habitats and Birds 

Directives ((92/43/EEC and 79/409/EEC respectively) has identified the need to protect 

natural ecosystems providing the legal basis to establish the Natura 2000 network. The 

overall goal of this network is to implement management plans that will preserve high-

value natural ecosystems, protect the biodiversity and the ecological functions of 

natural ecosystems and enhance sustainable management. This network comprises of 

approximately 26.000 protected areas (Special Areas of Protection and Special Areas 

of Conservation) and covers a total area of about 850.000 km2, more than 20% of total 

EU territory (Apostolopoulou and Pantis, 2009; Dimopoulos et al., 2006; Papageorgiou 

and Vogiatzakis, 2006; Tsiafouli et al., 2013). The effectiveness of protection strategies 

(namely: conservation conventions, protocols and parks) has attracted the interest of 

scientists the last decades (e.g. Bruner et al., 2001; Mallinis et al., 2011; Seto and 

Fragias, 2007). 

Understanding the landscape pattern and quantifying its spatial relationships 

and changes through time, is essential for the continuous monitoring and assessment of 

ecological processes. Remote sensing (RS) combined with geographic information 

systems (GIS) and landscape metrics (LM) can successfully provide spatially consistent 

and detailed information about landscape structure, a prerequisite to study ecosystem 

services, sustainable resources management and land use planning (Gustafson, 1998; 

Riitters et al., 1995; Shi et al., 2011). 

Recent developments in the field of satellite RS have increased the use of 

spatially explicit landscape analyses.  At the same time, numerous landscape indices 

have been developed to quantify landscape structure and spatial heterogeneity based on 

the composition and configuration of landscapes (Chen, 2002; Coppin et al., 2004; 

Cushman et al., 2004; Liu and Zhou, 2005; Seto and Fragias, 2007). Metrics are 



38 
 

calculated at three different hierarchical levels: landscape, class, and patch. The 

landscape level metrics includes all patches within a defined landscape. The class level 

metrics represent the spatial distribution and patterns of a land use/cover class, such as 

a woodland, and mainly involve differences between classes. Finally, the patch level 

metrics are calculated on the individual patches within each class. 

The aim of this study is to identify general trends and subtle patterns of forest 

extent in Hymettus Mountain, Attica Prefecture, Greece that has been exposed to 

persistent anthropogenic activities over the last three decades and is divided into three 

main complementary axes: i) Evaluation of the potentials and limits of an integrated 

earth observation approach as a valuable tool for monitoring. Furthermore, the 

methodology presented in this paper is literally a cost-effective proposal that can be 

adopted by land use planners and ministry policy makers, management agencies and 

environmental researchers. ii) Exploration of the effectiveness of the protection status 

of the area, since it belongs to the Natura 2000 network. iii) Provision of important 

feedback and historical evidence associated with the implications of decision-making 

being monopolized by economic growth on the one hand and being deprived of 

effective conservation measures, on the other hand. 

Athens, being the largest conurbation and the densest populated area of Greece, 

shows two major contradictions. On the one hand, it concentrates around one third of 

the total population of the country, a phenomenon triggered by socio-economic 

developmental needs and the comparative advantages of the city to attract investments 

and development opportunities (Chorianopoulos et al., 2010). On the other hand, it is 

located in a basin where mountains on the three sides and the sea on the other restrict 

its growth. As a consequence of those economic and demographic pressures, the region 

is facing urban sprawl problems due to the increasing population and the urgent 

socioeconomic development that has occurred during the last decades (Weber et al., 

2005). The urban, industrial and construction grid is expanding considerably, along 

with the road network and the relative linear residential developments, in order to serve 

rapidly growing needs (Chrysoulakis et al., 2013; Nikolakopoulos, et al., 2005). All the 

above-mentioned changes have led to major environmental implications (Forman and 

Alexander, 1998). The urban expansion, which is in expense of the natural reserves, is 

expected to continue as a new road network expansion for the city is scheduled by the 

Ministry of the Environment, Spatial Planning and Public Works, (2006). 
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It is hypothesized that forest spatial extent, composition and distribution have 

been changing since the early 1980s, thus leading to fragmentation, shrinkage and 

attrition of forested areas. The focus is mainly on forest fragmentation induced by 

human activities, specifically agriculture, unplanned urbanization and industrialization, 

heavy exploitation and wildland fires. The spatial extent and distribution of LULCCs 

is assessed to acquire information about the dynamics of the area, by identifying 

increased fragmentation hot spots. 

This paper is organized as follows: First the Hymettus Mountain and the Landsat 

imagery used are described. Second, the image preprocessing, the classification, 

employing a machine learning methodology and the accuracy assessment are presented. 

Following post classification comparisons to assess the periodic LULCC are presented 

along with the proportion of each class, revealed by the classification of the imagery. 

Next the time series of eight LM calculated to assess the landscape structure changes 

are presented. Finally, the results are discussed in detail and the main points are 

highlighted. 

 

2.2 Methodology and Data  

 

2.2.1 Study site 

 

Hymettus Mountain is located in the south-central part of Attica Prefecture, 

between the Athens conurbation, Penteli Mountain, Messoghia Plain and Saronikos 

Gulf. Its north to south length is approximately 20 km and its width ranges from 4 to 6 

km. It covers an area of 8820 ha with a maximum altitude of 1025 m. The dominant 

habitat classes of the region are coniferous (22%), evergreen broadleaved (33%) 

woodland and heaths, shrubs and garrigue (25%) (Georghiou et al., 1995). Hymettus is 

protected nationally and internationally. The ecosystem hosts a variety of rare flora 

(approximately 40 endemic species) and ecologically essential habitats for breeding, 

nesting and wintering grounds of rare bird species, regularly occurring migratory birds, 

mammals, and invertebrates. It is part of the Natura 2000 network (code GR 3000006 

Hymettus mountain - Kaisariani Aesthetic Forest - Lake Vouliagmeni) as a Special 

Protection Area (SPA), Site of Community Importance (SCI) and Area of Conservation 

(SAC). 
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Although sustainable management has been promoted in the area because of its 

protected status, the ecosystem has been remarkably degraded during the last decades 

(Vlachogiannis et al., 2012; Weber et al., 2005). This is primarily due to rapid 

unplanned urban expansion, devastating wildland fires (e.g.1995, 1998 and 2007) that 

have frequently occurred in the last decades and intensive anthropogenic activities 

(industrial facilities, military installation, power production facilities and quarries). To 

fulfill the aims of this study, the wider area is chosen as the study site, in order to include 

the pressures on the boundaries (Figure 1). 

 

 

 

Figure 1. The location of the study site in Attica Prefecture, in Central Greece (Landsat TM 6 2011 – 

R: band3, G: band2, B: band1). 
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2.2.2 Landsat data  

 

Landsat imagery is used to generate series of land cover data, integrated in a 

GIS framework to quantify changes in a spatial and temporal manner. Landsat imagery 

is a cost effective, with a high temporal scale, satellite record of the Earth’s surface. In 

our research, nine mid-resolution Landsat satellite images (30m) spanning over 28 yrs 

(1985-2013) are employed to identify LULCC through time. Phenological variation can 

complicate classification consistency among images. During summer, late spring and 

early autumn the vegetation is vigorous and is considered the best period to distinguish 

among different land cover types (Mas, 1999; Shi et al., 2011). Therefore, ideally, for 

multi-temporal change detection of vegetated areas the images should be acquired 

during the summer months (June to August). However, additional criteria (e.g how to 

avoid the scan line corrector problem of Landsat 7 after 2003, budget limitations and 

availability of cloud free data) led to a set of nine Landsat images acquired from May 

– August (Table 1). 

 

Table 1. The characteristics of the satellite images that were used as the primary data to corroborate the 

change detection analysis. 

  
Date Sensor  

Satelite 

type 
Resolution (m) Path/Row 

1 19 May 1985 Thematic Mapper (TM) Landsat 5 30 183/34 

2 10 June 1987 Thematic Mapper (TM) Landsat 4 30 183/34 

3 21 June 1991 Thematic Mapper (TM) Landsat 5 30 183/34 

4 6 August 1999 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/34 

5 26 July 2001 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/34 

6 26 July 2003 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/34 

7 24 July 2009 Thematic Mapper (TM) Landsat 5 30 183/34 

8 16 August 2011 Thematic Mapper (TM) Landsat 5 30 183/34 

9 19 July 2013  Operational Land Imager (OLI) Landsat 8 30 183/34 
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2.2.3 Data pre-processing 

 

The standard image processing techniques of extraction, layer stacking, re-

projection, radiometric enhancement and topographic correction are performed on the 

nine Landsat images. First the nine images are referred to a common projection (Greek 

Geodetic Reference System, 1987). Second the images have to be atmospherically and 

radiometrically calibrated to avoid any discrepancies due to the multi-temporal and 

multi-sensor type of analysis (Hall et al., 1991; Lu et al., 2002). Three calibration steps 

are applied in the radiometric correction procedure for Landsat imagery. The top-of-

atmosphere (TOA) reflectance is first calculated to correct the reflectance differences 

caused by the solar distance and angle (Vermote et al., 1997b). The equations used are: 

a) to calculate the at-sensor radiance in W/(m² * sr * µm),  

Gain = (Lmax - Lmin) / (DNmax - DNmin)  

Bias = Lmin - gain * DNmin 

Radiance = gain * DN + bias 

where, Lmax and Lmin are the calibration constants, DN are the initial digital numbers 

of the imagery, while DNmax and DNmin are the highest and the lowest points of the 

range of the rescaled radiance in DN (Chander et al., 2009), 

b) to calculate the at-sensor reflectance: 

Sun radiance = [Esun * sin(e)] / (PI * d^2)  

Reflectance = radiance / sun_radiance 

where, d is the earth-sun distance in astronomical units, e is the solar elevation angle, 

and Esun is the mean solar exoatmospheric irradiance in W/(m² * µm) and  

c) to invert the TOA reflectance and obtain surface reflectance, the 6Smodel (Vermote 

et al., 1997a) is used. The model performs absolute atmospheric correction, taking into 

account the Bi-directional Reflectance Distribution Function (BRDF), and calculating 

Rayleigh and aerosol scattering, gaseous absorption and transmission. The minimum 

input variables in estimating the atmospheric conditions for every scene are related to 

meteorological visibility and aerosol conditions at the date and time of image 

acquisition.  

After the radiometric calibration and atmospheric correction, the area has to be 

topographically corrected because it is mountainous. The first step in correcting the 

(1) 

(2) 

(3) 

(4) 

(5) 
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topographic effects is to compute the illumination angle, based on the equation (Civco, 

1989): 

IL = cos(s) * cos(z) + sin(s) * sin(z) * cos (a - o) 

where, s is the terrain slope angle, z is the solar zenith angle, a the solar azimuth angle 

and o is the terrain aspect angle. 

To compute the slope gradient and aspect for the illumination, a Digital Elevation 

Model (DEM) of similar resolution to the Landsat image obtained. The second step to 

achieve the removal of topographic shadows is to apply the C-correction method, a 

semi empirical approach developed by Teillet et al., (1982). The equation, as described 

by Meyer et al., (1993), is: 

Ρh = ρi (cos(s) + C / IL + C) 

where Ρh is the reflectance of a horizontal surface, ρi is the reflectance of an inclined 

surface and C is the correction parameter b/m (m = the inclination of the regression line 

describing the correlation between the original band (b) and the illumination) 

 

2.2.4 Classification  

 

After the nine Landsat images have been calibrated, the classification into land 

use classes is performed implementing the Random Forests (RF) machine learning 

algorithm (Breiman, 2001). RF is a tree structured classifier generating a "forest" of 

randomized base regression trees. Each random tree in the "forest" is composed of 

nodes at different levels: a root node, a set of internal nodes (splits) and a set of terminal 

nodes. The root node is formed by all training samples and searches only across a 

randomly selected subset of the input variables, in order to determine the best split for 

each node. Each individual tree predicts the target response, while the forest predicts 

the target as the average of the individual tree predictions. This process is repeated until 

the desired number of trees has been built (1000 in this analysis). The various outputs 

are combined in a final result, using a majority vote. For a full detailed description of 

the RF algorithm, theory and applications, the reader is referred to Breiman (2001). 

According to the approach by Symeonakis et al., (2007), Principal Components 

Analysis (PCA) and Tasseled Cap (TC) transformations are performed in order to 

produce an information portfolio for the training required by RF. PCA is computed 

separately for the three visible bands (1, 2, and 3) and for the middle infrared bands (5 

(6) 

(7) 
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and 7). The first Principal Component produced of each run, along with the near infra-

red layer (band 4), which is the least correlated with the other bands, are used. The TC 

transformation products, Soil Brightness Index (SBI) and Green Vegetation Index 

(GVI) are also merged to the layer stack of the predictor variables, because of their 

capacity to separate vegetation from bare features during the classification process 

(Symeonakis et al., 2007). Considering that, the training data must represent all classes, 

additional criteria have been found after several tests, so as to improve the classification 

accuracy results in our case study. The Normalized Differential Vegetation Index 

(NDVI) (Tucker, 1979) is added because of its capacity to describe vegetation density 

and condition. It has been found that it improves the performance of RF in respect to 

the forested areas. Moreover, the slope layer has been found to significantly improve 

the accuracy of predictions related to the sparsely vegetation or bare land areas. Finally, 

a Euclidean distance to the road network layer of the area, treated under the assumption 

that intense human activity (thus artificial land use) involves dense road networks, has 

also been found to improve the artificial surfaces class results. A set of randomly 

distributed points (n=350) is used to train the algorithm. The values of the eight merged 

layers are collected on the location of every point and manipulated as predictor values.  

For the accuracy assessment of the classified maps, a new set of points (n=200) 

is randomly distributed to the 1991, 2009 and 2013 reference images. The observed 

accuracy percentages reach 87% for the 1991, 84% for 2009 and 89% for 2013 scene 

(aerial photographs from 1995 and 2008, high resolution satellite imagery from 2013 

and coarser resolution land cover maps from 1990 are used to define the reference data). 

Since matching reference data are not available for the rest of the produced land cover 

maps, a series of Boolean logic and "if-then-else" rules are devised based on possible 

transitions (e.g. an 'urban-forest-urban' transition is not possible). In this way, for each 

land cover change map, the land cover maps in between are used as control data (e.g. 

in 1985-1987-1991 series, the 1987 serves as a 'control' map so that the changes 

occurred between 1985-1991 would be accepted). This approach is inspired by the 

research of Symeonakis et al., (2012) who use series of intermediate satellite images 

and conditional probability networks to ensure the detection of valid changes. Since 

single pixels are often unreliably classified (probably as a result of spectral mixes), 

another commonly used step is to eliminate them from the classified images and to 

replace their values with the mode of the neighborhood pixels (Symeonakis et al., 2007; 
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Weber and Puissant, 2003). The neighborhood is defined with a 3x3 window centered 

to the single pixel that is eliminated. The minimum mapping unit is then defined as the 

patch area covered by at least 2 pixels. 

The final step is the aggregation of the classes with a focus on forest 

fragmentation. Initially, seven land use classes were chosen to represent the land cover 

of the area.  As the research is orientated towards forest fragmentation monitoring, 

change detection focuses on the transformation of woody vegetation land cover to 

sparsely vegetated area (sva)/bare or artificial land uses (indicating deforestation) and 

vice-versa (indicating reforestation). Therefore, the initial classification classes are 

aggregated into three in order to better be distinguished from the woody vegetation 

(Table 2). 

 

Table 2. Initial land cover types derived from the Random Forests classification and the aggregated 

class covers made to improve the assessment of forest fragmentation.  

 

Initial land cover classes Forest change associated classes 

Artificial surfaces 
Artificial land use 

Agricultural areas 

Forest-land 
Woody vegetation 

Shrub maquis and garrigue 

Open spaces with little or no vegetation / 
Sparsely vegetated areas (sva) / bare 

bare rocks 

Water bodies N/A (masked out) 

 

 2.2.5 Change detection 

 

The aim of the change detection analysis is to obtain spatial and quantitative 

information about periodic LULCC from forested (woody vegetation) to sparsely 

vegetated/bare areas or artificial land-uses and vice-versa. In this study, post 

classification (PC) comparison in the form of cross-classification is employed because 

of its advantage to provide quantitative information about changes and more 

specifically ‘from-to’ change class information. The pixel by pixel nature of this change 
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allows both the areal extent and spatial distribution of land-cover changes to be 

quantified (Coppin et al., 2004). PC comparison is conducted for three intervals, 

consisting of three consecutive images each (1st 1985-1987-1991, 2nd 1999-2001-2003, 

3rd 2009-2011-2013). This is done to highlight the LULCCs that occurred during the 

study period, to temporarily allocate the LULCCs and to enable possible associations 

with significant events that occurred (e.g. establishment of the new International 

Airport, Athens 2004 Olympics, economic crisis). The generated transition maps 

quantitatively identify the periodic LULCC that have occurred during the last 28 yrs. 

 

 2.2.6 Landscape Metrics 

 

After the remote sensing analysis, the time series LM for each of the maps are 

calculated. Selecting metrics for a given study involves a number of considerations. 

First many LM are highly correlated, providing redundant information (Riitters et al., 

1995; Cushman et al., 2008). Second the objectives of the study, the spatial 

characteristics of the system and the ecological processes under investigation determine 

which metrics best describe the studied phenomenon (Gustafson, 1998; Herold et al., 

2005). After the aforementioned have been taken into consideration, eight LM (Table 

3) at the class level were chosen to examine the spatio-temporal forest changes in the 

Hymettus landscape composition and configuration during the last 28 years. Indices of 

size, density, shape, isolation, proximity, connectivity and aggregation are implemented 

to study forest fragmentation. Patch density (PD), is expected to increase as the forested 

area becomes more fragmented whereas edge density (ED) is also expected to increase 

depicting the shape complexity and spatial heterogeneity. The largest patch index (LPI) 

of woody vegetation is expected to decrease as a result of fragmentation, affecting 

directly the habitat quality (especially that of migratory birds). The mean shape index 

(MSI) depicts management measures and thus an increase would indicate 

mismanagement. The Euclidean area weighted mean nearest neighbor distance (ENN) 

and aggregation index (AI) are widely applied to characterize isolation, proximity and 

neighborhood of the landscape patches, illustrating effects on habitat quality, species 

distribution and landscape stability. The clumpiness index (CL) is a metric of 

distribution - isolation of classes and increases as they become more randomly 

distributed and fragmented. Finally, the spliting index (SPL) calculates the subdivision 

of classes and is expected to increase, while a class becomes more fragmented. 
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Complete descriptions and mathematical expressions of these metrics are provided in 

McGarigal and Marks, (1995). 

 

Table 3. The Landscape Metrics (LM) computed for this study and their correlation to forest 

fragmentation.  

  Landscape Metrics  Abbreviation Description 

  Patch Density (# of 

patches/100 ha) 

PD Lower density of patches indicates less fragmented classes 

  Edge Density (m/ha) ED Indicates the shape complexity and spatial heterogeneity of 

a class 

  Largest Patch Index (%) LPI Percentage of total landscape area occupied by the largest-

sized patch. Indicator of dominance 

  Mean Shape Index MSI Patches are less geometrically complex in managed forests 

  Mean Euclidean nearest-

neighbor distance (m) 

ENN_MN Quantifies patch isolation and therefore fragmentation of 

classes 

  Aggregation Index (%) AI Measures isolation and compactness. Higher values 

indicate lower fragmentation 

  Clumpiness index CL Lower clumpiness indicates more fragmented classes 

  Splitting Index SPL Higher rates indicate higher subdivision of classes  

 

2.3 Results and Discussion 

 

2.3.1 Change detection 

 

Figure 2 and the attached table depict the results generated by the classification 

of the nine images and the aggregation of the seven initial classes into three. The rates 

illustrate the proportion covered by each of the three classes, revealing some trends. 

From 1985 to 2001, the woody vegetation area seems to increase approximately by 2.3 

% whereas the sva/bare land decreased by approximately 2 %. Following, the woody 

vegetation decreases with the total decrease reaching approximately the 6 % in 2013, 

which is also the lowest rate observed during the study period. At the same time, the 

sva/bare land proportion increases by approximately 4 %. Furthermore, the artificial 

land use class, which comprises of the urban areas along with the construction sites, the 

road network and the agriculture areas, remains consistently high with only slight 
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fLULCtuations throughout the study period. Assuming that urban areas, road networks 

and infrastructure sites rarely change, the slight decreases observed are attributed to 

changes in the agriculture sector (e.g. land abandonment).    

 

Figure 2. The summary of the Landsat Area Classification statistics for 1985, 1987, 1991, 1999, 2001, 

2003, 2009, 2011 and 2013. The values are relative percentage of the total area (no data pixels were 

masked out). 

 

The generated maps from the PC comparison depict nine combinations ‘‘from 

– to’’ change information derived for each of the three time intervals 1985-1991, 1999-

2003 and 2009-2012 (Figure 3). For the purpose of the analysis, the first interval can 

be linked to the early years before the announcement of the new International airport in 

Spata, the second to the pre-Olympic Games of 2004 period where infrastructures 

started to take place and the third is linked to the post-Olympic Games of 2004 period 

and the economic crisis. 

 

 

1985 1987 1991 1999 2001 2003 2009 2011 2013

Woody Veg. 35,71% 34,26% 35,18% 34,88% 38,19% 35,74% 36,03% 35,69% 32,24%

Sva/Bare 22,75% 23,24% 22,94% 21,65% 20,80% 21,36% 22,06% 21,18% 24,07%

Artificial LU 41,55% 42,50% 41,88% 43,48% 41,01% 42,90% 41,91% 43,13% 43,69%
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The main focus is on the “woody vegetation to sva/bare or artificial land use” 

transition that describes the decline in forest extent, indicating forest fragmentation. 

During the years of the first interval, two core areas, distinguished with red color (Fig 

3. 1a;1b), of “woody vegetation to sva/bare” transition are observed. Noteworthy, both 

are located next to urban core areas.  

 

Figure 3. The PC comparison depicting in three groups (out of a total of nine Landsat images) the 

LULCCs that occurred in Hymettus Mountain Attica Prefecture, Greece during the last 28 years. 

 

These two major areas of deforestation remain sva/bare land during the second 

interval. During the third interval, the north patch of deforestation reveals scattered 

artificial land use class patches while the south patch expands significantly. Another 

interesting part is illustrated in Figure 3 (2) that is related to the “woody vegetation to 

artificial land use”, and colored in light green. A core area of this class, located to the 

south of the mountain, was converted to artificial land use (agricultural) during the first 

interval and remains as is until 2013. Another example of deforestation of this type is 

observed during the third interval in the north part (Fig 3. 3). This patch of woody 
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vegetation is the “victim” of the new road network expansion. Several other smaller 

patches of the same type behave the same way. Small patches of the “artificial land use 

to woody vegetation” class are mostly located in the agricultural area to the left of the 

mountain. Finally, what can be inferred from the transition maps is that the “woody 

vegetation to sva/bare” along with the “woody vegetation to artificial land use” patches 

are increasing during the second and third interval in comparison with the first. This 

observed increase along with their disorderly widespread distribution highlight the 

consistent and clear evidence of forest fragmentation. 

 

2.3.2 Landscape Metrics  

 

The previous findings also coincide with the results of the eight LM that are 

computed for this study and provide an insight into the spatial configuration of the 

changing landscape. The PD and ED values (Figure 4a; 4b), of the woody vegetation 

class, depict an increasing trend during 1991-2003 that remains high until 2013. 

Another interesting trend derived both from the ED and the LPI (Figure 4c) values is 

the inversely proportional behavior between the woody vegetation and the artificial land 

use classes. This trend reflects the previous remarks that woody vegetation area 

progressively became surrounded by artificial land uses and shrunk. FLULCtuations in 

the woody vegetation ED, PD, and LPI, rapidly affect the habitat quality, especially for 

migratory species by altering their distribution and population density and thus their 

diversity. Therefore, if the landscape continues to follow the present trends of 

fragmentation, the habitat of certain species of the region will decrease and degrade. 

Considering the spatial configuration of the boundaries and therefore the shape 

complexity, the MSI values of the woody vegetation class also indicate that the patches 

are progressively becoming more geometrically complicated probably because most 

changes occur at class boundaries (Figure 4d, also see ED in 4b). As expected the values 

behave inversely proportional with the sva/bare class. The area weighted ENN was 

preferred to be computed, instead of the mean ENN, so that the inter-patch connectivity 

in respect to the size of the patches is indicated. Thus, the ENN values illustrated in 

Figure 4e show that the connectivity core and larger areas of woody vegetation class 

remain relatively constant. This index provides additional information and highlights 

the findings of the PC results, showing that the majority of transitions, in expense of 

the woody vegetation coverage, are made at their boundaries. The AI values, (Figure 
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4f) suggest that the woody vegetation class successively tend to be more isolated and 

less compact, right after 2001, when the highest value is observed. Yet the values of 

artificial land use constantly remain high, with just slight fLULCtuations during the 

study period. Furthermore, the CL values (Figure 4g), indicate that the distribution of 

woody vegetation class increased during the 1985-1987 period and remained high until 

1991. Right after 1991, which is the end of the first interval in the transition map, the 

values decrease steadily until they finally reach their lowest value in 2013. Another 

interesting part is the behavior of the sva/bare and the artificial land use class values 

that increase remarkably right after 2001 and 2003, respectively. Finally, the SPL 

values (Figure 4h), confirm that woody vegetation areas show a tendency to be 

subdivided after 2003, a crucial period for the area, due to pressures in the wider area 

that resulted from increased development during this period. 
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Figure 4. The time series (1985–2013) of the eight Landscape Metrics (LM) computed for each 

aggregated class level, for Hymettus Mountain, Attica Prefecture, Greece. Brief descriptions and full 

names of the LM are provided in Table 3. 

 

2.3.3 Natura 2000 sites 

 

In Greece, despite the establishment of many Natura 2000 sites, the 

implementation of conservation policy is problematic (Apostolopoulou and Pantis, 

2009; Apostolopoulou, et al., 2012; Dimitrakopoulos, et al., 2004; Papageorgiou and 

Vogiatzakis, 2006; Tsiafouli et al., 2013). The lack of clear goals and the divergence 

between stated and actual goals leads to incorrect interpretations of conservation 

objectives and the decisions made to satisfy economic and/or developmental interests 

(Apostolopoulou and Pantis, 2009). There are internal contradictions of the institutional 

framework due to the fact that the levels of planning between the managing 

organizations overlap. There is also no clear differentiation of the responsibilities and 

functions among various organizations - such as Ministry of Environment, Energy and 

Climate Change, Organization on the Regulatory Planning and Protection of the 

Environment of Athens, Local Authorities, Forest Service of Penteli etc. - that manage 

in some capacity the area (Papageorgiou and Vogiatzakis, 2006). As a consequence, 
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some land-uses may not be compatible based on the current institutional framework 

(Tsiafouli et al., 2013) in some cases. As it is understood, Hymettus mountain is no 

exception to all aforementioned inconsistencies. To complicate even more the situation, 

a very complex ownership in the area, including the church, municipalities, military, 

cooperatives and individuals, usually functions as a stumbling block. A major concern 

is also the scheduled road network expansion (approximately 83 km) that will intensify 

the fragmentation of the forested ecosystem.  

Thus, forest fragmentation can be largely attributed to the pursuit of economic 

development, such as self-driven land use policies and land tenure arrangements, 

demographic pressure and urban sprawl. This arbitrary land use policies are ambivalent 

to environmental sustainability and directly lead to mismanagement or passive 

management of the forested areas and lack of interest or awareness by the general 

public. Finally, the increasing density of the transportation network and high frequency 

of forest wildfires inevitably tend to further degrade the remaining natural reserves. 

Given the importance of Greek biodiversity and the governmental failure to 

confront this neglected conservation policy, strong strategies should be designed, and 

decisions should be made. Effective management in the Natura 2000 sites in Greece 

has been lagging due to lack of science-based data that leads to incorrect interpretation 

of what the desirable state of an ecosystem is (Apostolopoulou and Pantis, 2009). 

Sustainable forest management, in any region or country has to rely on science-based 

information about the condition of the remaining forests in regard to their ownership, 

composition and structure. This type of information can act as a baseline to help 

establish efficient policy, by promoting the adaptation of sustainable forest 

management, public awareness and science-based decision making. Innovative use of 

technologies, such as satellite remote sensing, GIS analysis and landscape metrics, can 

facilitate in the spatio-temporal considerations of landscape patterns and processes. 

Medium resolution Landsat imagery provide a cost-effective primary data source, to 

facilitate the monitoring of such a phenomenon (Loveland and Dwyer, 2012), compared 

to high resolution satellite data that are often prohibitive because of their high cost. 

Additionally, the cost effectiveness and therefore, the wide applicability can be 

enhanced with the utilization of open source GIS software (Steiniger and Hunter, 2013). 

A potential limitation that can be encountered, if the presented methodology is adopted, 

is the availability of free satellite data, especially for past decades and their relative 
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efficient reference data. Nevertheless, additional criteria for the suitability of data 

selection (as discussed in 2.2) are also mandatory, a fact that complicates even more 

the situation.  

2.4 Conclusions 

 

The Hymettus Mountain is an area of great conservation significance, since it is a 

biodiversity hotspot near Athens.  The PC results suggest that the fragmentation of 

woody vegetation of Hymettus Mountain had been increasing during the study period. 

The majority of the LULCCs in expense of forests extent occurred in areas where the 

forested areas bordering with artificial land uses. A general conclusion drown upon the 

transition maps is that the “woody vegetation to sva/bare” along with the “woody 

vegetation to artificial land use” patches, increased during the second and third interval 

in comparison with the first. 

   The LM results come also to support these conclusions for our study area. The 

woody vegetation class successively tends to be more isolated and less compact, 

whereas the artificial land uses are highly aggregated with slight fLULCtuations during 

the study period. In particular, woody vegetation areas tend to be subdivided after 2003, 

a crucial period for the area, due to pressures that resulted from increased development 

during this period. 

Changes in the spatial configuration of the boundaries indicated that the woody 

vegetation patches are progressively becoming more geometrically complicated. The 

examinations of the inter-patch connectivity with respect to the size of the patches have 

shown that core and larger areas of woody vegetation class remain relatively constant. 

These together with the findings of the shape complexity show that the majority of the 

transitions are made at the boundaries of the woody vegetation areas. 

    The methodology presented here uses these technologies to determine the 

variability of forest extent through time in a nationally and internationally protected 

area via earth observation accurately and cost-effectively. It can also provide valuable 

information about the effectiveness of past activities. Such a cost-effective method 

could provide science-based information to the involved parties enhancing the 

development of effective and realistic management plans for Natura 2000 sites and thus 

promoting the collaboration among various managing organizations.   
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Abstract 

Information about land cover (LC) and land use is fundamental in various areas of 

research regarding the Earth’s surface. However, field campaigns are costly and time 

consuming while existing data sets have strong limitations. Classification of LC by 

remote sensing, although considered a technically and methodologically challenging 

task, can facilitate mapping initiatives at various scales. This study suggests an efficient 

and robust methodology of LC classification with minimal user requirements. The 

study site is Greece which faces a lack of up to date LC maps at national scale. In this 

context we employed Landsat imagery, open source software and the random forest 

classification algorithm to produce a high resolution national LC map for 2010. The 

algorithm was trained semi-automatically, extracting information from available data 

sets. The results are promising, achieving an overall accuracy of 83%. The methodology 

presented minimizes many obstacles that lead to data deficiencies and can act as a 

baseline for future LC mapping initiatives. 

 

Keywords:  Land cover mapping; Greece; Landsat; random forests; semi-automated 

classification; open source software 
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3.1 Introduction 

 

A vast portion of the Earth’s land cover (LC) is directly influenced and shaped 

by human activities through its land use (LU) (Turner, 1994). Hence, long term 

observation of LC, at various scales, is essential to understanding Earth surface 

processes and the anthropogenic influence on human and natural systems (Turner, 

Lambin, and Reenberg, 2007). Research concerning LC has intensified, especially after 

discovering the impacts on climate and the environment (Foley et al., 2005). To this 

end, accurate and up to date LU and LC spatial information serves as a principal 

component in a variety of research, management and planning activities, while for 

studies related to global, environmental and/or climate change it is considered a pre-

requisite.  

Traditional field campaigns are limited by their local extent and high resource 

demand (personnel, cost, time). Recent advances in Remote Sensing (RS) and 

Geographic Information Systems (GIS) can successfully provide spatially consistent 

multi-spectral and multi-temporal LC information. However, very high resolution 

(VHR) imagery is costly particularly for small scale mapping. In this respect, a number 

of recent studies conducted virtual “field visits” utilizing VHR imagery provided by 

Google Earth or similar engines either for data training or to validate outputs (e.g. 

Knorn et al., 2009; Schneider, 2012) with good results. 

Currently, various global LC datasets exist, with different spatial resolutions 

and each with specific limitations (Giri et al. 2014; Herold et al. 2008). Regarding 

Europe, two significant databases exist, the Coordinate Information on the Environment 

(CORINE), a pan-European LC map for the years 1990, 2000 and 2006 provided by 

the European Environmental Agency (EEA) and the Pan-European Land Cover 

Monitoring (PELCOM) database (Mucher et al., 2001). The CORINE database is 

available at 100 m spatial resolution with a minimum mapping unit (MMU) of 25 ha 

(Bossard et al. 2000), while the PELCOM database was constructed at 1 km spatial 

resolution. These two frequently used databases suffer from limitations, to resolution 

and MMU, inconsistency from one country to another, lack of rigorous accuracy 

assessments and reliability (Neumann et al. 2007). One important limitation, of most 

available datasets, still unaddressed, is the discrepancy between LC classes, their 

overarching definitions, their nomenclature and thus the heterogeneity of information 
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provided. For instance, the CORINE database, although it is established and recognized 

as an LC database, strictly represents a mixture of LU and LC classes (Comber et al. 

2005). Another serious issue of the CORINE LC database, emanating from the fact that 

it is produced by each country separately, is the out dated information available for 

some countries. For instance, the latest update of LC information for Greece was for 

the year 2000.  

To meet the need for consistent and accurate LC maps, increasingly 

sophisticated approaches have been introduced that are less source data demanding and 

less labour intensive (Symeonakis et al. 2012), showing a trend in developing 

automated (e.g. Chen et al. 2012; Radoux et al., 2014) or semi-automated (e.g. Jiang et 

al., 2012) LC classification methodologies. An effective way to minimize user 

intervention is the utilization of existing LC data, to train the classifier (Chen et al., 

2012; Jiang et al., 2012; Radoux et al., 2014). Additionally, cost effective 

methodologies utilizing open source software (OSS) (Steiniger and Hunter, 2013) and 

freely available satellite data (Wulder et al. 2012) are increasingly being adopted by the 

research community. 

This study aims to cover the observed gap in LC data for Greece at a national 

scale, demonstrating a robust and cost-effective methodology. In this context we 

utilized the NASA–USGS Global Land Survey (GLS) Landsat data for 2010 with a 

nominal pixel size of 30 m (Gutman et al. 2013). Classification is performed 

implementing the Random Forests (RF) machine learning algorithm (Breiman, 2001) 

that has proven to perform well with heterogeneous classes (Rodriguez-Galiano et al. 

2012). To train the algorithm we used the existing CORINE 2000 dataset of Greece. 

Visual inspection of the training samples was conducted utilizing VHR imagery, from 

the Google and Bing engines, which are accessible via the OpenLayers plugin for QGIS 

(Quantum GIS Development Team, 2013)  
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3.2 Materials and Methods 

 

3.2.1 Study Area 

 

Greece is a Mediterranean country, located in the Balkan peninsula (Figure 1), 

covering an estimated total area of 131,957 km2, with its coastline stretching for 15,021 

km while 20% of that territory is distributed on its approximately - both inhabited and 

uninhabited - 3000 islands (Minetos and Polyzos, 2010). According to the 2011 census, 

the resident population is approximately 11 million (Hellenic Statistical Authority, 

2013). Dominant vegetation types are broadleaved and coniferous forests, 

sclerophyllous maquis and garrigue (Arianoutsou et al., 1997).  

 

Figure 1. Location of the study site, Greece 

 

The climate is typical Mediterranean, with hot and dry summers and relatively 

mild and wet winters. Geomorphologically, two thirds of the Greek territory are 

mountainous or hilly and more than 40% of the land exceeds 500 m in altitude (EEA, 
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2010) while extensive agricultural plains are primarily located in Thessaly, Central 

Macedonia and Thrace regions. Socioeconomic development in Greece has been 

depended largely on land-based economic activities, including agriculture, farming, 

forest cultivation for timber and mining. These are closely related to the structure and 

function of the land's surface constituting a source of income for its residents 

(Demoussis, 2003; Papanastasis et al. 2009). 

 

3.2.2 Landsat data 

We employed the GLS 2010 Landsat imagery dataset that uses a combination 

of Landsat 5 TM and Landsat 7 ETM+ images acquired between 2008 and 2011. The 

GLS datasets are created using the Landsat sensor operating at the time, meeting quality 

and cloud cover standards and undergoing a level of pre-processing (Gutman et al., 

2013). A total of 27 images (spanning path: 180–186 and row: 31–36) were selected, 

achieving full coverage of the country. The successive steps of the procedure in order 

to achieve the goals of this research are summarized in Fig. 2. 

 

3.2.2.1 Data pre-processing 

 

Initially, all images were re-projected to the Greek Geodetic Reference System 

(GGRS 1987). Data analysis was conducted at the prefecture level using the 

“Kapodistrias” administrative division system (NUTS III), which divides Greece into 

51 prefectures. To avoid any discrepancies due to the multi-temporal and double-sensor 

analysis, all images underwent a series of corrections and calibration (Gounaridis et al. 

2014). To radiometrically and atmospherically correct the Landsat images the initial 

DN values were converted to top of atmosphere reflectance (TOA). To obtain surface 

reflectance and achieve data normalization, we used the 6S model (Vermote et al. 

1997). Finally, to correct any topographic effects we applied the C-correction method 

(Teillet et al. 1982). The 27 corrected images were clipped into 51 parts according to 

every prefecture boundary (Figure 1). In cases where a prefecture was covered by more 

than one image, the clipped pieces were mosaiced into one.  
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Figure 2. Flowchart of the successive steps followed in the methodology 

 

3.2.2.2 Image classification with Random forests 

 

We implemented the Random Forest (RF) classification algorithm. The 

algorithm starts with a random selection of the predictor variables resulting in a 

collection of, independent to each other and identically distributed, tree structured 
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classifiers. Each individual tree casts a unit vote for the most popular class while the 

outputs of classification are determined from the majority of votes for each class 

(Breiman, 2001). The nomenclature adopted for this study, is in line with the 

CORINE’s classification scheme at Level 2 (Table 1). As mentioned in the 

introduction, the CORINE classes do not refer literally to pure LC but rather to a 

mixture of LC and LU and thus this applies to our approach as well (referred to as the 

LC map hereafter). 

 

Table 1. Classification scheme and the portion occupied by each class. For complete description of the 

classes the reader is referred to Bossard et al. (2000). 

 

  Class Name % of coverage 

1 Urban fabric 1.53% 

2 Industrial, commercial and transport units 0.22% 

3 Mine, dump and construction sites 0.09% 

4 Arable land 18.15% 

5 Permanent crops 14.09% 

6 Pastures 0.10% 

7 Heterogeneous agricultural areas 5.48% 

8 Forests 17.03% 

9 Scrub and/or herbaceous vegetation associations 41.26% 

10 Open spaces with little or no vegetation 1.18% 

11 Inland wetlands 0.15% 

12 Inland waters 0.72% 

 

3.2.2.3 Sample design for training 

Training samples are a crucial part to any classification process and at the same 

time the main source of errors (Foody and Arora, 1997). We used the CORINE 2000 

dataset, which is a universally adopted nomenclature and the only available dataset at 

national scale for Greece. To train the classifier, 500 - 1000 randomly distributed points 

(depending on the complexity of the landscape) were applied to each of the 51 scenes, 

achieving a balance in the representation of all classes. A 50m buffer was drawn around 

all points and these areas were assigned class values from the CORINE 2000 dataset. 

Subsequently, we verified the class membership visually by inspecting the points over 

VHR images of the area (via the OpenLayers plugin in QGIS). In several cases we had 
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to relocate, delete or re-assign values for problematic points. All points close to the 

boundaries of the classes were either relocated or eliminated so as to provide a clear 

sample. This was an important step in order to avoid misclassified training samples due 

to differences in spatial resolution and MMU, between CORINE and Landsat data. 

Special attention was given to areas whose classification results were not satisfying, 

enhancing the training data with extra points originating from visual interpretation of 

the VHR imagery. 

 

3.2.3 Predictor variables 

The RF algorithm can handle multiple types of auxiliary data, biophysical and 

spectral variables, both continuous and categorical, to improve classification 

performance and discrimination between LC classes. In addition to the 6 reflective 

Landsat bands (bands 1-5 & 7), we used Principal Components Analysis (PCA) 

separately for the three visible bands (1, 2 & 3) and the middle infrared bands (5 & 7). 

The first of the principal components produced for each run was used (Gounaridis et 

al., 2014; Symeonakis et al. 2007). We also included Landsat’s thermal band (band 6) 

since different LC classes have specific temperature ranges (Southworth, 2004). We 

used Tasseled Cap (TC) transformations Soil Brightness Index (SBI) and Green 

Vegetation Index (GVI) since they are capable of discerning vegetation from bare 

features (Kolios and Stylios, 2013). In order to further enhance the representation of 

vegetation we extracted the normalized difference vegetation index (NDVI). 

Additionally we tested several band ratios that provide unique information and subtle 

spectral reflectance differences between surface materials (Southworth, 2004; Weiser 

et al. 1986); we used five of them in our model (band 4/band 3; band 7/band 2; band 

3/band 2; (band 2-band 6)/(band 2+band 6); TC.GVI/band 6). We also derived auxiliary 

variables (elevation and slope) from the Global Land Survey Digital Elevation Model 

(GLSDEM) as they helped in discriminating between bare and sparsely vegetated areas. 

Assuming that human activity and the artificial environment are connected to the 

existence of a road network we derived a distance-from-the road-network layer based 

on the Euclidean distance function (Gounaridis et al., 2014). Finally, all predictor 

variables were merged into a single layer stack containing 20 layers in total. 
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3.2.4 Random forests model implementation 

Training and predictor variable data were collated in a database. The values of 

the 20 merged layers were sampled on the location of every training point, already 

containing LC class values and manipulated as predictor values. The next step included 

the classification process, implemented through the use of the RandomForest package 

in R (Liaw and Wiener, 2002). RF requires two primary parameters being (i) the 

number of predictor variables randomly sampled at each decision tree split and (ii) the 

number of classification trees. We used five (5) predictor variables for each tree split 

(equal to the square root of the total number of predictor variables) and 1000-2000 trees 

for each run. 

 

3.2.5 Classification post processing 

All classification outputs, originally at the prefecture level were mosaiced into 

a single LC layer. In order to further improve the final product, we removed isolated 

patches (smaller than 0.1 ha) which are often unreliably classified, usually due to a mix 

up of spectral values. We replaced the values of isolated pixels with the mode of their 

neighborhood pixels, defined by a 3x3 window centered on the pixel to be eliminated 

(Gounaridis et al., 2014). Lastly, we calculated the percentage of coverage occupied by 

each of the 12 classes and incorporated our findings in Table 1.  

 

3.2.6 Accuracy Assessment 

To evaluate the results, we assessed the accuracy using a randomly distributed 

sample of 10599 -independent to the original training- points employing VHR imagery 

(via the OpenLayers plugin in QGIS) in order to visually interpret and label them 

according to the adopted nomenclature. Accuracy was assessed by generating a 

confusion matrix that compared the visually interpreted samples with the final map. 

Additionally, we computed both the overall accuracy of the map and the errors of 

commission and omission for each category. 
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3.3 Results and Discussion 

 

3.3.1 RF performance 

Results obtained from this study demonstrate that RF discriminated 12 classes 

relatively well (Figure 3). The performance of the RF classifier was influenced by the 

computational demands and the depiction of a landscape's composition heterogeneity 

at medium scales (e.g. as for Landsat's). Performing all the analysis on a single PC, lead 

us to divide the study area into smaller parts due to the computational demands of the 

algorithm. This in turn, increased the workload as we needed to calibrate the model 

separately for each part of the study area. With regard to landscape composition 

heterogeneity, even though Landsat’s 30 m spatial resolution is acceptable for LC 

characterization, when working with more semantically complex and with less 

pronounced differences in spectral reflectance classes, a higher spatial resolution is 

likely required. Nevertheless, our study shows that Landsat’s resolution achieved 

satisfactory results for the production of a medium scale classification of 12 classes for 

Greece.  

RF performance, as expected for all machine learning family algorithms, 

significantly depends on the predictor variables and training data quality. Extracting 

information from a known dataset instead of independently classifying the remotely 

acquired images is good, especially when dealing with a large extent, with respect to 

workload and required sources. Under the assumption that under normal circumstances 

changes only occur to a small proportion of land and especially at the edges, utilizing 

unchanged areas as a training source is reasonable (Chen et al., 2012; Jiang et al., 2012; 

Radoux et al., 2014; Xian et al., 2009). However, susceptibility to errors exists due to 

the complexity of CORINE class definitions, with some of them unsuitable for 

algorithmic classification and certainly due to incompatibility concerning different 

scales between the image to be classified and the reference data (in our case CORINE 

data with a MMU of 25 ha were used to train Landsat data with spatial resolution of 30 

m). 

3.3.2 Accuracy assessment 

Results were satisfactory, with an overall accuracy (percent correctly classified) 

of 83% (table 1). Of the 1773 (out of 10599) validation points assigned as misclassified, 
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940 (53%) could be considered minor misclassifications (confusion between certain 

classes due to visual or spectral similarities). Most “disagreements” were discovered in 

“Heterogeneous agricultural areas”, “Permanent crops”, “Scrub and/or herbaceous 

vegetation associations” and “Forests”. These classes are spectrally heterogeneous due 

to different cropping systems and cycles in the region, resulting in confusion between 

the spectral signatures (or sometimes an interpreter’s mislabeling). If classes were 

aggregated (e.g. to adopt the level 1 scheme of CORINE) the overall accuracy would 

significantly increase. Using the current validation data, an accuracy assessment at level 

1 yields an approximate overall accuracy of 91% (table 2).  

 

Table 2.  Error matrix. The reference corresponds to validation points visually interpreted utilizing 

VHR imagery 

 

 

Note: The reference corresponds to validation points visually interpreted utilizing VHR imagery. 

Classes 

Level 1: Artificial surfaces 

1: Urban fabric 

2: Industrial, commercial and transport units 

3: Mine, dump and construction sites 

      Reference                 

  
  1 2 3 4 5 6 7 8 9 10 11 12 Total 

Commission 

error 

  1 256 28 1 8 1  6  4 1 1 1 307 16.6% 

C
la

ss
if

ie
d

  

2 6 46 8 1        2 63 27.0% 

3 
 2 43   1 2  1   1 50 10.0% 

4 22 31 30 1711 31 4 34 4 39 7 47 27 1987 13.9% 

5 1 2  20 381 1 26 1 22  1  455 16.3% 

6 
   3  15 1  2    21 14.3% 

  7 45 19 8 147 183 4 707 18 134  5 4 1274 44.5% 

  8 
  1 5 3  16 1692 103  4 8 1832 7.6% 

  9 27 8 27 23 83 4 148 165 3567 8 3 6 4069 12.3% 

  10 3 2 11 2     49 96 1 2 166 38.6% 

  11 
  1 4       50 6 61 20.0% 

  12 
          52 262 314 16.6% 

  Total 360 138 130 1924 682 29 940 1880 3921 112 164 319 10599   

  

Omission 

error 
28.1% 66.7% 66.9% 11.1% 44.1% 48.3% 24.8% 10.0% 9.0% 14.3% 68.9% 17.6% 

    

  Overal Acuuracy : 83%                     
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Level 1: Agricultural areas 

4: Arable land 

5: Permanent crops 

6: Pastures 

7: Heterogeneous agricultural areas 

Level 1: Forests and semi natural areas 

8: Forests 

9: Scrub and/or herbaceous vegetation associations 

10: Open spaces with little or no vegetation 

Level 1: Wetlands 

11: Inland wetlands 

Level 1: Water bodies 

12: Inland waters 

 

 

3.4 Conclusions 

 

This study demonstrated an efficient and cost-effective approach to produce an 

LC map, in order to fill the observed gap in up to date LU and LC data at the national 

scale for Greece (Figure 3). The high cost of VHR imagery acquisition, the need for 

time consuming and labor-intensive field surveys, inconsistency and incomparability 

of the existing databases and the need for exhaustive and advanced methodologies in 

order to train classification algorithms, prevents many researchers from producing LC 

and LU maps. The presented sequences of methodologies minimize many of these 

obstacles that in turn have led to data deficiencies especially for large extents. The 

approach presented can act as a baseline to continuously monitor LC and to assist 

ongoing and upcoming LC mapping initiatives.  
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Abstract 

Urban land cover mapping has lately attracted a vast amount of attention as it closely 

relates to a broad scope of scientific and management applications. Late methodological 

and technological advancements facilitate the development of datasets with improved 

accuracy. However, thematic resolution of urban land cover has received much less 

attention so far, a fact that hampers the produced datasets utility. This paper seeks to 

provide insights towards the improvement of thematic resolution of urban landcover 

classification. We integrate existing, readily available and with acceptable accuracies 

datasets from multiple sources, with remote sensing techniques. The study site is 

Greece and the urban land cover is classified nationwide into five classes, using the 

Random Forests algorithm. Results allowed us to quantify, for the first time with a good 

accuracy, the proportion that is occupied by each different urban landcover class. The 

total area covered by urban land cover is 2280 km2(1.76% of total terrestrial area), the 

dominant class is discontinuous dense urban fabric (50.71% of urban land cover) and 

the least occurring class is discontinuous very low density urban fabric (2.06% of urban 

land cover). 

 

Keywords: Urban land cover, Thematic disaggregation, Urban atlas, Landsat, Random 

Forests.  
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4.1 Introduction 

 

Urban areas determine, both positively and negatively, several functions of the 

Earth system, from local to global scales (DeFries et al. 2010; Folke et al. 1997). 

Accurate information about urban land cover (ULC) is critical to a wide range of social, 

economic, and environmental research questions not only for descriptive but also for 

analytical and predictive modeling purposes. Thus, reliable spatial information about 

ULC composition and configuration serves as a principal component in a variety of 

scientific activities, across several disciplines, while for studies related to global, 

environmental and/or climate change it is considered a pre-requisite (Grimm et al. 2008; 

Mills, 2007).  

In pursuit of spatial information about land cover (LC), traditional field data 

approaches face certain drawbacks as they are limited to a local extent due to their 

prohibitively expensive nature in means of time, costs and personnel. Technological 

and methodological advances in remote sensing (RS) and geographic information 

systems (GIS) successfully provide spatially consistent LC information. Nowadays, an 

increased number of satellite sensors has been launched and facilitate the growing 

demand for multi-spectral and multi-temporal information of the Earth’s surface over a 

wide range of scales and data types (Belward and Skøien, 2014).  

A number of studies have generated several datasets regarding ULC, or LC in 

general. The majority of them consider studies at the scale of individual cities, 

analyzing changes and patterns over multiple years or exploiting spatial information 

and structure on a single date (Yu et al. 2014). On a global scale, more than ten datasets 

have been produced with spatial resolutions ranging from approximately 10km to 30m 

(Chen et al. 2014; Potere et al. 2009). The limitations and drawbacks of these global 

datasets have been discussed in detail by several researchers (Congalton et al. 2014; 

Giri et al. 2013; Potere et al. 2009). The predominant conclusion stressed by these 

studies is that the most prominent drawback is the variability in ULC definition.  

On a regional scale, for Europe, the CORINE land cover (CLC) is the most 

frequently used dataset with a hierarchical classification scheme comprising of 44 

classes (at level 3) and a minimum mapping unit of 25 ha. The urban category denoted 

as ‘urban fabric’ is divided in two classes (continuous and discontinuous). Recently, 
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the Copernicus land monitoring service has released the Urban Atlas (UA) database. It 

consists of LC maps for 305 European large urban zones with more than 100.000 

inhabitants for the reference year 2006 (European Commission, 2011). It has been 

derived by very high-resolution satellite data (spatial resolution between 2.5 and 5 m) 

and has a significantly lower minimum mapping unit of 0.25 ha, compared to CLC. The 

thematic resolution of UA, regarding ULC is also much more detailed than CLC -

although it has limited geographic coverage- dividing the urban class into five classes 

differentiated by their degree of imperviousness.  

Despite the unquestionable value of the datasets produced so far, their application 

to a range of research applications and management activities is inefficient. The reason 

is their resolution, both spatial and thematic, a constraint in cases when these data are 

to be used in studies that finer scale of analysis is mandatory (e.g. urban planning) or 

in studies that require sufficient thematic ULC detail (e.g. population density mapping). 

As far as spatial resolution is concerned, the previous efforts mainly employed coarse 

resolution satellite data for feasibility reasons (data availability, technical innovation, 

human and financial resources). However, ULC delineation employing coarse 

resolution primary data is not a simple task. On the one hand, ULC class has a limited 

areal extent in comparison with other classes, while on the other hand, it is a class with 

extreme variability in terms of spectral and textural characteristics. Thus, data derived 

by coarse spatial resolution are due to the mixed pixel effect, especially for the ULC 

class, where small area urban areas are often completely omitted, spatial details are 

lacking and the edges are erroneously presented (Potere et al. 2009; Schneider et al. 

2010). Thematic resolution refers to the number of classes and the detail in their 

definition that determines the amount of geospatial information of hard classified 

categorical data. The more detail in a land user/cover map, the more meaningful and 

insightful the map is for a wide range of research questions. Several authors have 

explored the effects of thematic resolution in land use modeling (Conway, 2009; 

Pontius and Malizia, 2004), land-cover pattern analyses (Buyantuyev and Wu, 2007) 

and landscape indices behavior (Bailey et al. 2007), converging that the outcomes are 

significantly influenced. Whilst thematic resolution is important to a range of 

applications, available regional and global datasets in most cases represent ULC 

lumped into one or two broad classes, a fact that is far from reality on the ground, given 

the heterogeneity of urban areas across space (Potere et al. 2009).  
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In this paper we successfully disaggregate ULC patterns into five categories 

achieving nationwide coverage (for Greece). Additionally, we demonstrate a sequence 

of steps towards the improvement of existing shortcomings and scarcity of high quality 

data related to ULC. Our main focus was to achieve the highest possible thematic 

resolution without compromising accuracy. To this end, we employ the Random 

Forests (RF) machine learning algorithm (Breiman, 2001) that is proven to perform 

well in the face of heterogeneous classes. Our model is trained intensively by the 

polygon centroids of the UA dataset -available for nine cities- to finally ‘predict’ ULC 

for the rest of the geographic coverage of Greece. Road density, population, LC and 

spectral indices derived by Landsat satellite, serve as predictor variables.  

The rest of the paper is structured as follows: We first present the study site, Greece, 

along with information about morphology, recent population dynamics and some causal 

factors that contributed to the existing ULC scenery. Next, we present an overview and 

the data used as both response and predictor variables to train our models, along with 

the data pre-processing steps. Then, the RF classifier application and the accuracy 

assessment process are described in detail. In the next section, we present the obtained 

results and we discuss the model performance. Finally, in the last section we discuss 

the conclusions drown and we highlight some key points.  

 

4.2 Material and methods 

 

4.2.1 Study site 

 

Greece is a Mediterranean country of Southeast Europe situated between latitudes 

34° and 42° N, and longitudes 19° and 30° E (Figure 1) and is populated by 

approximately 11 million inhabitants. Two-thirds of the inhabitants live in urban areas, 

while the remaining one-third are rural inhabitants (Hellenic Statistical Authority, 

2013). Almost two thirds of the Greek territory are mountainous, with Mount Olympus 

being the highest at 2.917m (European Environment Agency, 2010). Extensive 

agricultural plains are primarily located in Thessaly, Central Macedonia and Thrace 

regions, constituting key economic sources.  
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Figure 1. Study site Greece, divided into nine areas containing one UA city each 

 

Greece has a long history of land use, ranging from prehistoric to present times 

constituting a country of people with strong dependency on the land. The last decades 

of the 20th century the economic potential of urban centers motivated a constant societal 

demand to capture new economic opportunities, a fact that consequently triggered a 

shift of rural population (Kasimis et al. 2003). In turn, rural land abandonment 

progressively led to marginalization of remote areas especially in the uplands 

(MacDonald et al., 2000) while leading to agricultural and farming intensification at 

the lowlands (Beopoulos and Skuras, 1997). Significant expansion of the tourism sector 

as well as a trend in second homes gave a boost in growth dynamics of the built 

environment, especially in the coastal zones. At the same time, the aforementioned 
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developments are perceived as both consequences and driving forces of public works 

and transport infrastructures expansion. Thus, the demographic dynamics and the major 

socio-economic changes that have taken place progressively brought radical changes in 

Greek landscapes (Zomeni et al. 2008). 

Statistics clearly advocate all the aforementioned. According to the latest census of 

2011, the Greek ULC scenery consists of 13220 settlements, 746 (5.6 %) of which are 

uninhabited, 6897 (52.2 %) have less than 100 residents and 8806 (66.6 %) have less 

than 200 inhabitants. At the same time, according to the 2011 census, Attica prefecture 

is inhabited by 3.827.624 residents (35% of total population) and the prefecture of 

Thessaloniki by 1.880.058 residents (17% of total population).  

 

4.2.2 Overview 

 

The RF algorithm is a robust non-parametric machine learning algorithm (Breiman, 

2001) that has been widely used for LC classification. Initially, the algorithm uses a 

randomly selected part of training observations (response variable) as well as a sample 

of predictor variables, resulting in a number of independent to each other classification 

trees. This process is repeated several hundreds of times, thus forming a 'forest' of 

classifiers. Each tree contributes with a single vote to the assignment of the most 

frequent class. The final outputs of classification are determined from the majority of 

votes for each class (Breiman, 2001). The main advantages of adopting RF in our task 

are: i) the independency of each classification tree, on the one hand, and the randomness 

of variable selection, on the other, reduce the problem of overfitting and at the same 

time make the models insensitive to noise and outliers (Breiman, 2001; Chan and 

Paelinckx, 2008). ii) The algorithm can efficiently handle predictor variables, with 

different nature (both continuous and categorical) and from multiple sources 

(Gounaridis et al. 2014; Gounaridis et al. 2015) which is the case for our approach. iii) 

The first two advantages of RF contribute to good performance in the classification of 

heterogeneous landscapes (Rodriguez-Galiano et al. 2012a; Timm and McGarigal, 

2012) such as ULC. iv) RF can handle large datasets and thousands of input variables 

being computationally faster than other classifiers (Rodriguez-Galiano et al. 2012b) and 

thus can efficiently handle broad scale tasks. v) The importance of each input variable 



84 
 

is quantified allowing for several tests to determine whether a variable will be included 

in the model or not.  

Discrimination and classification of ULC with the use of remote sensing techniques 

is not a simple task due to the complex nature of this LC category. Built-up environment 

is commonly characterized by heterogeneous patterns and a variety of mixed land uses. 

Residential buildings, transportation networks, industrial and commercial 

infrastructures, open spaces and vegetated patches co-exist in a ULC patch and are often 

composed by a wide range of surface types, materials and thus, spectral responses. A 

number of authors attempted to delineate built-up areas and at the same time deal with 

the challenge of the mixed pixel problem. The majority of studies exploit full spectral 

information combined with texture information (Lu and Weng, 2005), spectral indices 

(Xu, 2007), spectral unmixing techniques (Wu, 2004) and Nighttime Lights (Elvidge et 

al. 2007). Lately, the use of auxiliary non-spectral variables has been found to improve 

the classification accuracy of certain LC classes (Rodriguez-Galiano and Chica-Olmo, 

2012). Additionally, methodological advancements of algorithms that can usefully 

handle different type of data, such as RF, increase the inclusion of more and more 

morphological and socioeconomic variables to serve as proxies to ULC classification.  

 

4.2.3 Data processing 

 

4.2.3.1 Response variable 

To train the RF algorithm we extracted the polygon centroids of the UA dataset. By 

using the centroids instead of another sampling strategy, we ensured taking clear 

samples of each category avoiding at the same time any sampling near boundaries of 

adjacent categories that would lead to discrepancies. The major advantages of using the 

UA dataset as training for our models was that i) it has the highest thematic resolution 

available, distinguishing ULC into five categories. ii) Despite its limited geographic 

coverage, it is derived from high resolution imagery and providing thousands of 

accurate samples and thus consisting a valuable source for extensive training for our 

task. iii) It is free and readily available. For Greece nine cities in total have been mapped 

so far (Figure 1). The UA data were re-projected to the Greek Geodetic Reference 

System (GGRS 1987) and reclassified into six final classes. Table 1 presents the 

training used for each of the nine regions of this study.  
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Table 1. Number of UA polygon centroids used to train the RF algorithm for each of the nine areas 

depicted in Figure 1.  

 

 
1* 2* 3* 4* 5* 6* Total 

Kavala 774 352 126 49 8 1151 2460 

Thessaloniki 7313 3925 962 111 43 8963 21317 

Ioannina 1731 1584 740 372 56 6308 10791 

Larisa 2827 1909 535 130 78 5502 10981 

Volos 2065 655 155 110 71 2001 5057 

Athens 28562 19638 11260 7428 1329 30847 99064 

Patra 1311 1430 855 458 21 2754 6829 

Kalamata 685 425 398 461 240 1703 3912 

Iraklio 1160 593 506 405 102 1858 4624 

 

1*. Continuous urban fabric  

2*. Discontinuous dense urban fabric  

3*. Discontinuous medium density urban fabric  

4*. Discontinuous low density urban fabric  

5*. Discontinuous very low density urban fabric  

6*. Other use 

 

4.2.3.2 Predictor variables 

Several datasets can be used as predictor variables for ULC classification. RF 

algorithm offers the flexibility that data of different nature and value scaling can be 

incorporated in the model. After several tests (not presented here) we concluded to a 

set of predictor variables that best facilitate the discrimination of ULC classes, while 

taking into account two criteria: 1) Simplicity of the model and feasibility in terms of 

computational cost and 2) availability of data to enhance reproducibility of our 

approach to other regions.  

Assuming that human activity and artificial environment are connected with the 

existence of roads, one of the most prominent proxies of ULC is the road network 

(Gounaridis et al. 2014; Gounaridis et al. 2015; Hawbaker et al. 2004). Another useful 



86 
 

proxy with apparent interrelation with ULC is population density (Mesev, 1998). 

Additionally, the last few decades there have been efforts towards the impervious 

surface mapping with the use of remote sensing (Sutton et al. 2009). Inclusion of 

impervious surface information can serve as a base and enhances the accuracy of ULC 

mapping (Lu and Weng, 2006). 

4.2.4 Data processing  

Spectral indices: To retrieve spectral information, for our case study, we employed the 

Global Land Survey (GLS) 2010 Landsat imagery dataset that uses a combination of 

Landsat 5 TM and Landsat 7 ETM+ images acquired between 2008–2011 (Gutman et 

al., 2013). A total of 27 GLS images (spanning path: 180–186 and row: 31–36) were 

selected and processed, achieving full coverage of the country. To avoid any 

discrepancies due to the multi-temporal and double-sensor type of analysis all images 

underwent a series of corrections and calibration. To radiometrically and 

atmospherically correct the Landsat images, first we converted the DN numbers into 

top of atmosphere reflectance and second to obtain surface reflectance and achieve data 

normalization, we applied the 6S model (Vermote et al. 1997). Finally, to correct for 

topographic effects, we applied the C-correction method (Teillet et al. 1982). The 

corrected bands of the 27 Landsat images were processed in order to calculate two 

spectral indices, the normalized difference built-up index (NDBI) (Zha et al. 2003) and 

the enhanced built-up and bareness index (EBBI) (As-Syakur et al. 2012). NDBI has 

the capacity to help classification models in distinguishing built-up areas and barren 

land as it involves spectral information of near and middle infrared wavelengths which 

are sensitive to the spectral response of these classes. EBBI both involves near and 

middle infrared wavelengths spectral information and incorporates the thermal band of 

Landsat as well. This was reported that it enhances the distinction between built-up 

areas and barren land classes, thus achieving better results compared to other similar 

spectral indices (As-Syakur et al. 2012).  

Population: The latest national population census data of 2011 (Hellenic Statistical 

Authority, 2013) were acquired and geo-coded in point vector format. Next, the point 

data were spatially aggregated in administrative polygons and finally converted into 

raster format. We did not use the raster of population density surface available by the 

European Environment Agency (EEA), as it is outdated and of coarser resolution 

(Gallego, 2010).  
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Road network: Spatial representation of the national road network was acquired from 

the OpenStreetMap (OSM) project. The OSM project is one of the most established 

sources of voluntarily derived, free access and up to date datasets (Ramm et al.  2011). 

The degree of completeness specifically of the road network is high especially for the 

cities, and the data coverage is expected to be improved in the coming years (Jokar 

Arsanjani et al. 2013). The data were re-projected onto the Greek Geodetic Reference 

System (GGRS 1987). Roads are constructed for a variety of purposes and thus 

different types of roads may not indicate ULC, a fact that might diminish the model’s 

performance. To this end, the lines assigned as “residential road” and “living street” 

class were extracted. Finally, a raster density map was generated using a moving 

Gaussian kernel density function with equal split and a bandwidth of 200m (Okabe et 

al. 2009).  

Land cover: We used a newly produced land cover dataset for Greece for the year 2010 

(Gounaridis et al. 2015). This dataset was derived by the 2010 Landsat GLS imagery 

and the RF algorithm. The algorithm was trained semi-automatically, extracting 

information from the CORINE 2000 LC dataset. The overall accuracy is 83%. The 

nomenclature adopted was similar to CORINE at hierarchical level 2, thus ULC is 

represented in one single class.  

Soil sealing: We acquired the sealed land dataset produced as part of the Global 

Monitoring for Environment and Security (GMES) Fast Track Service on Land 

Monitoring in 2006–2008 and disseminated by EEA in 2009. This dataset, available in 

20m spatial resolution, refers to the degree of soil sealing (continuously ranging from 

0% to 100%) for 2006, with classification accuracy higher than 85% per hectare 

(European Environment Agency 2011). From this dataset, our case study area, Greece, 

was extracted and the resulting raster map was re-sampled to 30m and re-projected on 

the GGRS 1987 system.  

 

4.2.5 Variables exploratory analyses 

 

We concluded in a set of predictor variables that best describe ULC. Figure 2 

illustrates the interrelationships between the predictors and response variable for the 

five ULC classes, excluding “other use” (Table 1). The values of EBBI and NDBI are 

within a certain range for all road density and soil sealing values, where negative values 

correspond to non-built-up areas. The population values coincide with almost all values 
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of sealed land. Unsurprisingly, higher population values coincide with high values of 

the soil sealing layer, while smaller values (including classes of lower ULC densities) 

can be encountered in less sealed areas. The values of road density behave similarly. 

Areas with all values of road density coincide with higher amounts of soil sealing, while 

there is a small portion of areas with less dense road network that can be encountered 

in less sealed land. All predictor values, except the LC_2010 dataset, follow a 

reasonable route across different ULC densities. Soil sealing, road density, EBBI and 

NDBI seem to decrease accordingly as ULC density also decreases, while population 

has, as expected, higher values for continuous and discontinuous dense urban fabric. 

All five categories of ULC though coincide with all LC_2010 categories, where they 

should be expected to coincide with only urban values. The fact that ULC values 

coincide with non-urban categories indicates that LC_2010 dataset underestimates the 

ULC extent.  

 

4.2.6 Model implementation 

 

Figure 3 summarizes the sequence of procedures followed for our analyses. 

Initially, Greece was split into nine, relatively equal parts, each one containing an UA 

city (Figure 1). All data were masked into these nine parts, trained and run individually. 

This step allowed the process to be held, otherwise the computational demand at a 

national scale of analysis would be prohibitively high. The values of each predictor 

variable layer were collected on the location of the UA centroid, already containing LC 

class values (Table 1) and used as predictor values. Next, the classification was 

implemented through the use of randomForest package (Liaw and Wiener, 2002) in R 

open-source statistical software. For classification, RF requires two primary 

parameters: (i) the number of predictor variables randomly sampled at each decision 

tree split and (ii) the number of decision trees. We used the value of three (3) predictor 

variables for each tree split (equal to the square root of the total number of predictor 

variables). We did not apply any optimization method, as it increases the computational 

sources demand. The number of decision trees was set to 5000 for each run since it was 

found that the higher the number, the more the classification error converges 

(Rodriguez-Galiano et al., 2012a). 
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Figure 2. Inter-relationship between predictor and response variables to be used in RF models. The 

values consist a 10% random sample of the dataset used to train the model of Athens. The 6th category 

(other use - please see table 1) was excluded. 
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Figure 3. Workflow of the presented methodology 
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4.2.7 Accuracy assessment 

 

We assessed the classification’s accuracy at two levels, both for positional errors and 

thematically. Initially, we used the geo-coded data of the population census, in point 

vector format. Given the small portion of ULC compared to other LC classes, a random 

distribution of points to our map would result in weak assessment of the ULC classes 

accuracy. By using geo-coded points, this weakness was diminished as this dataset 

actually represents all settlements of Greece for the year 2011, recorded via in situ 

survey. Moreover, we included a validation dataset consisting of a set of points that 

were photo-interpreted using very high-resolution imagery (Gounaridis et al. 2015). To 

assess the accuracy for the thematic categorization, we re-classified the soil sealing 

layer according to Lu and Weng (2006). The re-classified soil sealing values along with 

the values of the resulting map were collected at the settlements location. Results were 

tabulated, generating an error matrix that allowed the computation of overall accuracy 

and the errors of commission and omission for each class.  

 

4.3 Results and discussion 

 

Table 2 shows that results were mainly satisfactory with an overall accuracy of 

81.8 %. We also estimated omission and commission errors at the class level. Some 

errors were from the confusion between adjacent classes, which is a frequently 

encountered issue in classification. The major disagreement appears between the 

“Discontinuous very low density urban fabric” with “Discontinuous low density urban 

fabric” and “Other use”. These two classes represent very sparse built-up urban fabric 

with less than 10 % and 10 - 30 % sealed land respectively. They consist of 

heterogeneous areas encompassing irregularly, incompact and scattered settlements 

with significant differences from adjacent LC classes (e.g. agricultural fields, forests). 

Especially in the “Discontinuous very low density urban fabric” the asphalt road 

network is often absent. Thus, in many cases the adjacent LC dominates the spectral 

response of the area leading to ‘weak’ evidences of their built-up patches existence. In 

other words, the mixed pixel effect is particularly noticeable in such heterogeneous 

landscapes.   
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Table 2. Error matrix 

 
Resulting map 

  
Reference 1* 2* 3* 4* 5* 6* Total Omission Error (%) 

1* 980 314 71 34 19 83 1501 34,7 

2* 224 1765 102 33 11 29 2164 18,4 

3* 38 55 707 46 19 49 914 22,6 

4* 42 23 69 394 22 90 640 38,4 

5* 14 26 22 47 65 53 227 65,2 

6* 51 95 42 41 54 4249 4532 6,7 

Total  1349 2278 1013 595 190 4553 9978   

Comission Error (%) 27,3 22,5 30,2 33,7 65,7 6,6 
  

Overal accuracy 81,8% 
       

1*. Continuous urban fabric  

2*. Discontinuous dense urban fabric  

3*. Discontinuous medium density urban fabric  

4*. Discontinuous low density urban fabric  

5*. Discontinuous very low density urban fabric  

6*. Other use 

 

A sound way to overcome these shortcomings would be the utilization of very high 

resolution (both spatial and spectral) imagery. The nature and the extent of our analyses 

ruled out this option. Medium to high spatial resolution data and Landsat imagery for 

spectral derivatives were the only viable way. RF model’s performance, as expected for 

all machine learning algorithms, was found to be highly dependent on the predictor 

variables and training data quality. All included predictor variables were datasets of 

acceptable accuracies, as discussed in the “2.3.2 Predictor variables” section. The UA 

centroids, used as training, were also of acceptable accuracy and quantity (165,035 in 

total). One important part regarding quantity is the relatively equal representation of 

classes that in our case, was an unreached goal. Nevertheless, the nine cities that have 

already been mapped by UA had inequalities in size and composition resulting in 

unequal representation of classes (Table 1).  

However, the distinction of ULC classes and our primary objective to achieve high 

thematic resolution has been met. Our models performed well in cases were previous 

efforts failed due to spectral and textural confusion of similar but different adjacent LC 
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classes. All six variables included in our models contributed more or less to obtain 

satisfactory results. Figure 5 illustrates the variables ordered top-to-bottom as most to 

least important. The mean decrease in accuracy is a score calculated during the out of 

bag error calculation phase and it informs about how much the accuracy decreases if a 

variable would be permuted or in other words excluded from the model. Therefore, the 

larger the value of mean decrease, the higher the importance of a variable is. The mean 

decrease in Gini coefficient is a score informing about each variable’s contribution to 

the impurity of the resulting random forest. Variables with a high value in the decrease 

Gini score, have nodes with high purity and thus contributes to the model’s 

homogeneity. In all cases, the road density had the most important role in the models 

while the population and the EBBI were the second most important variables. The order 

of importance for both scores varied slightly between the models of the nine sub-

regions.  

 

   

   

   

1a 2a 3a 

1b 2b 3b 

1c 2c 3c 
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Figure 4. Representative examples of results and predictor variables. 1a;2a;3a: Google earth imagery 

with the red line representing the residential road network. 1b;2b;3b: Degree of soil sealing. 1c;2c;3c: 

EBBI. 1d;2d;3d: LC 2010 dataset. 1e;2e;3e: Resulting map. 

 

Figure 4 illustrates three representative examples of RF good performance and 

highlights how the combination of predictor variables used allowed the adequate 

discrimination of ULC. The first example depicts the city of Karditsa, which lies in the 

plain of Thessaly. The city is surrounded by a highway, industrial facilities, agricultural 

fields and smaller ULC patches dispersed in the peri-urban zone (Figure 1a). The soil 

sealing layer (Figure 1b), as expected, has higher values of imperviousness in the 

highway than in many ULC areas, while the 2010 LC dataset considers all bult-up areas 

1d 2d 3d 

1e 2e 3e 
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as ULC (Figure 1d). EBBI index alone (Figure 1c) fails to delineate ULC as the area is 

surrounded by agricultural fields in the dry season, where soil dominates and spectral 

responses are confusing.  

However, our model achieved an adequate discrimination of the classes (Figure 1e). 

The second example depicts a settlement of the prefecture of Fthiotida in central 

Greece. This landscape is a typical example of very low density built-up area, 

surrounded by forests, schrublands and tree crops (Figure 2a). The mixed pixel effect 

is particularly evident here, as it can be seen by the soil sealing values (Figure 2b). 

Following, the 2010 LC dataset partially underestimates the ULC extent (Figure 2d) 

while EBBI (Figure 2c) is prone to the mixed pixel problem, underestimating, in most 

parts, the actual ULC area and in other parts overestimating due to confusion with 

barren land (left part of Figure 2c). As seen in Figure 2e, our model classifies accurately 

this landscape. The third example depicts the city of Ierapetra, located in the southeast 

of Crete. The economy of Ierapetra relies mainly on farming and agriculture. Thus, the 

area next to the city is occupied by agricultural fields, pastures and farms (Figure 3a). 

The landscape is dominated by numerous greenhouses and tin roofed farm 

establishments. As a result, the impervious surfaces expand extensively outside of the 

city (Figure 3b). At the same time, EBBI successfully distinguishes the greenhouses 

from ULC materials but failes to distinguish ULC from bare rocks (Figure 3c). Finally, 

2010 LC dataset (Figure 3d) delineates rather well the area, with minor overestimation 

of ULC. Results show (Figure 3e) that our model confuses neither greenhouse material 

nor bare rock with ULC.  
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Figure 5. Importance of variables used for the nine RF models. 

 

Results allowed us to quantify, with a certainty, the total area occupied by each ULC 

class (Table 3). ULC occupies an area of approximately 2280 km2 which is 

approximately 1.8 % of the total terrestrial area (including the inland water). Dominant 

ULC type is discontinuous dense urban fabric, whereas the least occurring is 

discontinuous very low density urban fabric with 50.71 % and 20.06 % respectively. 

These numbers provide an insight into the ULC scenery of Greece and can be attributed 



97 
 

to the developmental and demographic shifts that took place during the last decades of 

the 20th century.  

 

Table 3. Quantification of the area occupied by each ULC class.  

 

Urban land cover class 

 

Area (km2) 

 

Percentage of total 

terrestrial land cover 

(%) 

Percentage of 

urban land cover 

(%) 

Continuous urban fabric  456,66 0,35 20,03 

Discontinuous dense urban fabric  1155,92 0,89 50,71 

Discontinuous medium density urban fabric  391,53 0,30 17,18 

Discontinuous low density urban fabric  228,39 0,18 10,02 

Discontinuous very low density urban fabric  46,93 0,04 2,06 

Other use 127,792,48 98,25 
 

Total 130,071,91 100,00 100 

 

 

4.4 Conclusions 

 

The objectives of this paper were to investigate if we can effectively fuse existing 

datasets and remote sensing techniques in order to classify ULC into five classes and 

finally to accurately quantify the area occupied by each class. To do so, we integrate 

data of soil sealing, population, road network density, LC and two spectral indices for 

built-up area delineation. We demonstrate that data from multiple sources, meeting 

certain criteria (e.g. costs, quality, computational feasibility), can be combined in a 

modeling framework and provide satisfactory results and high thematic resolution. 

Considering the general characteristics of the described approach, we expect that the 

present paper will contribute to the generation of improved ULC mapping, which was 

also one of our goals. The modeling framework discussed here is suitable for a wide 

range of applications and can act as a baseline in planning, steering and monitoring of 

LC and its associated changes.  
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Abstract 

Simulation modeling along with scenario analysis is a useful tool for urban planning, 

by providing an appraisement of different alternatives and tradeoffs and thus 

contributing to improved decision making. The objective of this study is to explore 

potential future urban dynamics in the Messoghia plain, (peri-urban Athens, Greece) 

under four scenarios that reflect future growth traits in the area related to different 

economic performance realities and alternative policies. Messoghia, a predominantly 

rural area, experienced significant and unregulated urban growth, during the past 

decades, due to the construction of the international airport in the area, the significant 

allocation of funds triggered by 2004 Olympics and the absence of planning controls. 

However, the late economic circumstances significantly affected the growth trends in 

the area. First, the paper looks at the periodic changes occurred during the past three 

decades (1980–2015) employing remote sensing techniques and Landsat data. The 

observed changes are then combined with 20 dynamic, biophysical, socio-economic 

and legislative factors, to produce transition potential maps using the Random Forests 

algorithm. Scenarios are projected until 2045 by implementing a spatially explicit 

Cellular Automata model. Under an economically optimistic scenario which means 

high or medium development circumstances, and given the absence of an adequate 

controlling mechanism, the artificial surfaces are expected to nearly double in size, by 

2045. In case of a continuation of economic scarcity which can be translated in low or 

very low development, the artificial surfaces are expected to increase by 9% or 6% 

respectively, by 2045. 

 

Keywords: Urban growth, Random forests, Cellular automata, Simulation, 

Development scenarios, Land use planning 
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5.1 Introduction 

 

Changes in land cover and land use are among the most important human made 

alterations on earth, reflecting a wide range of interactions between society and the 

environment (Turner II, Lambin & Reenberg, 2007). The rapid transformation of land 

into artificial surfaces, has rightfully attracted the attention of scholars, planners and 

policy makers, concerned with the negative environmental implications it entails 

(Johnson, 2001). Research on the environmental impact of unregulated urban expansion 

centres on a number of issues, ranging from soil sealing, ecosystem fragmentation and 

the increased consumption of rural and natural land (Hasse & Lathrop, 2003; Jongman, 

2002; Milesi, 2003), to broader concerns regarding the demotion of “urban 

sustainability” goals (Wilson & Chakraborty, 2013).  

In view of these consequences, emphasis in the literature is placed on the capacity 

of land-use planning to influence the form, degree and direction of urban growth 

tendencies.  Key in the fruitfulness of such efforts - aptly termed “smart growth” policy 

initiatives (EEA, 2006) - is the availability of two distinct types of information.  First, 

an appraisal of urban growth trends, encompassing the pivotal factors that influence 

urban expansion. Second, an estimation of the impact of particular spatial planning 

choices on future land cover patterns (Xiang & Clarke, 2003). In the absence of such 

insights, spatial planning is insufficiently informed to adequately intervene and regulate 

urban growth pressures, risking the emergence of sprawl type phenomena 

(Chorianopoulos, Pagonis, Koukoulas & Drymoniti, 2010).  

Spatially explicit modeling, constitutes a useful tool for conducting computational 

experiments that quantify the importance of various driving forces of change, 

contributing to an enhanced understanding of such a complex phenomenon (Veldkamp 

& Lambin, 2001). Modeling of growth dynamics is meaningful when adopting a two-

phase approach. To start with, the history of the place explored has to be 

comprehensively looked at, part of an attempt to identify the key socio-spatial variables 

influencing the traits and direction of urban growth. Subsequently, by quantifying the 

driving forces of local change, a model can be build, capable of predicting possible 

future growth trajectories in the area under certain scenarios.  

Scenario-based analysis has emerged in order to explore variations for a limited, 

but consistent, set of model parameters, delineating feasible future development trends 
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under a set of pre-defined conditions (Feng & Liu, 2016; Murray-Rust, Rieser, 

Robinson, Milicic & Rounsevell, 2013). The key step in such an attempt is the creation 

of the so-called transition potential maps, an exercise that draws from an area’s 

recorded trends and performances, to indicate the degree of potential change in the 

future. This process is based on the change detection outputs of the historical land cover 

and the quantification of the ways in which the respective driving forces contributed to 

such changes (Kolb, Mas & Galicia, 2013).  

While, by definition, models cannot replicate complex interactions and nonlinear 

socio-economic relations, spatial simulation approaches are increasingly being adopted 

and used. Advancements in geo-informatics as well as in computer capacity triggered 

the proliferation of modeling techniques (Berling-Wolff & Wu, 2004), the availability 

of geographic datasets and the methodological achievements in data processing and 

change detection (Tewkesbury, Comber, Tate, Lamb, & Fisher, 2015). Various 

approaches have been adopted to model the dynamics of the built-up environment and 

to explore future scenarios, using regression modeling (Feng, Liu, Chen, & Liu, 2016, 

Poelmans & Van Rompaey, 2010), agent based modeling (Batty, Xie, & Zhao, 2007), 

markov chains (Ku, 2016), system dynamics (He, Okada, Zhang, Shia, & Zhang, 2006; 

Zheng et al. 2012), and cellular automata (CA) (Lagarias, 2012; Vliet, White, & 

Dragicevic, 2009).  

Accounting for the increased interest in CA applications (Sante et al. 2010), the 

literature stresses the capacity of the respective approach to represent stochastic, non-

linear processes in a conceptually simple way (Batty et al, 1997). Additionally, CA are 

spatially-explicit and application-oriented and therefore fully consistent with 

Geographic Information Systems (GIS) and remote sensing (Feng, 2017, Liu & Feng, 

2016; Feng, Yang, Hong, & Cui, 2016). Another important advantage of the CA 

approach is their incorporation in a plethora of modeling frameworks and platforms 

(Aburas, Ho, Ramli & Ash’aari, 2016). Examples include, among others, SLEUTH 

(Clarke, Gaydos, & Hoppen ,1997), Environment Explorer (Engelen, White, & de Nijs, 

2003), the MOLAND (Lavalle et al., 2004), IDRISI’s CA_MARKOV (Paegelow & 

Camacho Olmedo, 2005), iCity (Stevens, Dragicevic, & Rothley, 2007) and Dinamica 

EGO (Soares-Filho, Pennachin, & Cerqueria, 2002). However, some of these 

frameworks and platforms are restricted to certain methodologies, steady schemes and 

fixed parameters. Instead, Dinamica EGO is a flexible open platform where modelers 
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are able to elaborate and to extend the methodological procedures according to their 

specific needs. Recently, Mas et al. (2014) in a comparative assessment of four 

modeling frameworks, outlined two key advantages of Dinamica EGO that are crucial 

for simulating growth dynamics (section 2.2.6).  

In this paper we employ and elaborate this particular methodology to explore a 

challenging example of a dynamically growing peri-urban area. The case in point is the 

Messoghia plain in Athens, Greece. Since the early 1980s and for the following two 

decades, Athenian urban growth was channeled towards Messoghia, initiating a rural 

to urban transformation process with marked environmental implications.  During this 

time, land use planning controls were not in place, as unregulated built-up expansion 

was approached as a shortcut to economic growth (Chorianopoulos et al., 2014). 

Environmental deterioration, however, triggered a belated planning response (2003), 

aiming to curb emergent sprawling tendencies. Built-up expansion has also been 

affected by the insolvency crisis the country is facing since 2010. The Messoghia plain, 

therefore, is an area that faces strong development pressures that have only been 

temporarily weakened as a result of extreme economic circumstances. In fact, the area’s 

strong development potential is underscored and encouraged in the city’s revised 

Master Plan (2014), shaping a pro-growth policy trajectory for the forthcoming decade 

(GGN, 2014).   

In this paper we argue that estimating the future growth traits in the area in light of 

different economic performance realities and land-use planning contexts and choices, 

is a prerequisite in any attempt to address the undesirable consequences of unregulated 

urban expansion. From this perspective, we attempt to delineate the future growth 

dynamics in Messoghia under four different economic and spatial policy scenarios and 

to illustrate accordingly the respective the urban scenery in the medium (10 years) and 

the long (30 years) term.   With regard to key concepts of reference, urban land is 

defined in respect to all human-constructed elements, such as continuous or 

discontinuous residential areas (hereafter called urban fabric) and industrial, 

commercial, infrastructure and transport units (hereafter called artificial non-urban 

areas).  

The paper is organized in four parts. In the first part, we look at the case study area, 

contextualizing the research exercise. In the second part, we outline the research 
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methodology followed for imagery processing, classification and change detection 

along with the 20 factors description and processing, including the calculation of the 

Leap-frog development index. Accordingly, we present the sequence of methodologies 

for the transition potential modeling, the scenarios development, the model calibration 

and the projection of results to the future. In the third part of the paper, we illustrate and 

discuss in detail the results obtained. In the concluding section, we revisit the area’s 

prospective futures, highlighting the relevance or our approach to the quest for effective 

planning responses and sustainable urban development trajectories.  

 

5.2 Material and Methods 

 

5.2.1 Study site 

 

The Messoghia plain is located eastwards of the Athens conurbation (Figure 1). 

Until the early 1980s the area retained at large a rural character, escaping the rapid 

urbanization wave that transformed Athens in the postwar years. The main reason for 

this particularity is the Hymettus Mountain, a physical barrier separating the plain from 

the city that obstructed accessibility and delayed the development of an adequate 

transportation network. Since the mid-1980s, however, the area displayed notable urban 

expansion signs, associated in the literature with the sprawling tendencies of Athens; a 

congested city with rapidly deteriorating environmental conditions (Leontidou, et al., 

2007). In the succeeding decades, change in Messoghia was swift and multifaceted, a 

turn of events bringing to the foreground the fundamental antagonism between 

economic growth preoccupations and regulated urban expansion goals. The key 

developments that altered the area’s features are hereafter discussed and categorized 

for methodological purposes in four distinct chronological frames of reference. 

• 1985-1995: In the mid-1980s, and in light of urban expansion tendencies noted 

in the region, the planning authorities decided to intervene.  The introduction of 

the Master Plan of Athens (1985) was expected to guide urban growth in the 

region via the launch of detailed land-use plans. In the case of Messoghia, the 

Master Plan was geared towards the protection of the area’s rural character.   

This, however, did not happen.  In a parallel trajectory, the decision to relocate 

the Athens international airport in Messoghia was taken, cancelling de facto the 
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respective Master Plan directions. Consequently, the implementation of the 

spatial planning framework for Messoghia was indefinitely postponed, enabling 

the unobstructed continuation of the sprawling tendencies noted in the area.  

• 1995-2006: In the mid-1990s, the national authorities put Athens forward as a 

candidate city for hosting the 2004 Olympic Games. The bid was successful 

(1997), and a number of large scale physical infrastructure projects were 

expeditiously initiated in Messoghia, including Olympics’ related venues 

(Equestrian Centre, Shooting Centre) and transportation networks of 

metropolitan importance (ring road, suburban railway). Investment in 

transportation infrastructure, in particular, enhanced Messoghia’s accessibility, 

triggering a population influx and a concurrent increase in urban land-uses.  The 

inflexible deadline of the 2004 Olympics resulted in the prioritization of 

development planning goals over the spatial planning ones (Souliotis, 2013). 

The land-use zoning scheme that was supposed to guide growth in Messoghia, 

for instance, was put into force as late as in 2003. In the intervening period, rural 

to urban transformation in the region proceeded apace. 

• 2006-2010: The post-Olympics era is characterized by the relative soundness of 

the economy, displaying annual growth rates that exceeded, on average, three 

per cent of the GDP (Bank of Greece, 2014).  Alongside, the long-awaited land-

use planning scheme for Messoghia was finally in place. This period of stability, 

however, was cut short by the impact of the global financial crisis (2008) on the 

state of public finances.  

• 2010-2015: In the wake of the global financial crisis, the general government 

deficit and the public debt stretched respectively to 15.4 and 126.8 percent of 

Gross Domestic Product (GDP). As the state practically lost access to the 

international financial markets, and in order to avoid a solvency crisis, the 

government agreed a series of loans with the European Commission, the 

European Central Bank and the IMF. The loans were conditional upon Greece 

implementing an adjustment programme including, amongst others, the 

introduction of steep austerity measures and the privatization of state owned 

assets (Eurogroup, 2015).  As a result, between 2008 and 2015 the economy lost 

a cumulative 27 percent of its GDP (Bank of Greece, 2016). The relevance of 

these developments for Messoghia are twofold. Fist, by reason of the economic 
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depression, transactions in the real estate market in the region fell by 78 percent, 

grinding the built-up expansion trend to a halt (Municipality of Athens, 2014). 

Second, the ownership and, hence, the fate of key state owned real estate 

properties in Messoghia (land and structures) was transferred to a privatization 

fund, the sales of which aim to reduce the government’s debt burden.  The future 

usage of these sites in not regulated by the area’s planning framework, arresting 

in practice the effectiveness of the respective land use planning scheme (Pagonis 

& Chorianopoulos, 2015). 

 

Figure 1. Location of the Messoghia plain (background from Landsat 8 OLI, 6 May 2015, path/row: 

183/34, Bands: 4;3;2). 

 

These four chronological frames marked with uneven development, different 

economic performance realities and land-use planning, will consist our basis for the 

scenario analysis in our attempt to explore potential future growth dynamics in 

Messoghia.  
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5.2.2 Approach 

5.2.2.1 Images pre-processing and classification 

 

We employed seven Landsat images (Table 1) spanning 30 years (1985-2015). 

Four images (1990; 2000; 2006 and 2010) were part of the Global Land Survey (GLS) 

datasets which are a collection of images that meet high quality and minimum cloud 

cover standards (Gutman, Huang, Chander, Noojipady, & Masek, 2013). The rest of 

the images (1985; 1995 and 2015) also meet the quality standards and had no cloudiness 

in the study area. Ideally all images should be acquired the same month and preferably 

during summer where phenological variations are less evident. However due to 

availability of images that meet certain standards, and the scope of the study (artificial 

surfaces) we use images acquired from May to August.  

To avoid any discrepancies due to the multi-temporal and double-sensor type of 

analysis, and to compute spectral indices (Song, Woodcock, Seto, Pax Lenney & 

Macomber, 2001), all images underwent radiometric and atmospheric correction. We 

first converted the DN numbers into top of atmosphere reflectance using the dark-object 

subtraction method introduced by Chavez (1988). To obtain surface reflectance and 

achieve data normalization, we applied the 6S model introduced by Vermote, Tanré, 

Deuzé, Herman, & Morcrette (1997). 

Table 1. Characteristics of the Landsat satellite images  

Date Satelite Sensor Path Row Resolution 

19/5/1985 Landsat 5 Thematic Mapper (TM) 183 34 30 

14/8/1990 Landsat 5 Thematic Mapper (TM) 182 34 30 

11/7/1995 Landsat 5 Thematic Mapper (TM) 182 34 30 

30/6/2000 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 34 30 

30/5/2006 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 34 30 

12/8/2010 Landsat 5 Thematic Mapper (TM) 183 34 30 

6/5/2015 Landsat 8 Operational Land Imager (OLI) 183 34 30 

 

We classified all images into three categories, implementing the RF classification 

algorithm through the RandomForest package available in R (Liaw & Wiener, 2002). 

The three categories were i) urban fabric, ii) artificial non-urban and iii) Other land 
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cover/uses (cultivated land, vegetation, bare land). To train the model, a set of randomly 

distributed points (n = 650) was plotted against the Landsat images and very high-

resolution images available via Google Earth. Category values assigned by visual 

interpretation. All points close to the boundaries of adjacent categories were relocated, 

ensuring that clear samples of each category were taken and thus eliminating any source 

of confusion to the model. As predictor variables, besides the 6 reflective Landsat bands 

(bands 1–5 & 7 for Landsat 5 TM and Landsat 7 ETM+, bands 2-7 for Landsat 8 OLI), 

we used the first layer produced by principal components analysis (PCA) separately for 

the three visible bands (1, 2 and 3) and the infrared bands (5 and 7), as it appears to 

increase classification accuracy (Gounaridis, Zaimes & Koukoulas, 2014; Gounaridis, 

Apostolou & Koukoulas, 2015). In addition, we included the normalized difference 

built-up index (NDBI) (Zha, Gao, & Ni, 2003) and the enhanced built-up and bareness 

index (EBBI) (As-Syakur, Adnyana, Arthana, & Nuarsa, 2012).  

Since RF requires two primary parameters to be specified by the user being (i) the 

number of predictor variables randomly sampled at each decision tree split and (ii) the 

number of classification trees to be built, we used three (3) predictor variables for each 

tree split, which is equal to the square root of the total number of predictor variables 

and 500 trees for each run. Last, to sidestep the so called ‘salt n pepper effect’ we 

removed the isolated patches (area less than 0.1 ha), by replacing their category value 

with the mode of their neighborhood pixels, defined by a 3x3 window (Gounaridis et 

al., 2014; 2015).  

To assess the accuracy of each classified map, a group of 200 to 350 random points 

were distributed and values assigned via visual interpretation. Overall accuracy for all 

images ranged from 90% to 93%, while the two categories of focus had omission and 

commission errors that ranged from 88% to 93% (Table 2). 

Table 2. Error matrix - Resulting map per year against reference samples (20% of initial samples). 

 

O.E: Omission Error; C.E: Commission Error; O.A: Overall Accuracy 

Resulting maps

1 2 3 O.E (%) 1 2 3 O.E (%) 1 2 3 O.E (%) 1 2 3 O.E (%) 1 2 3 O.E (%) 1 2 3 O.E (%) 1 2 3 O.E (%)

1 77 2 5 91,7 76 2 7 89,4 77 2 3 93,9 79 2 6 90,8 86 1 5 93,5 88 4 4 91,7 104 3 6 92,0

2 3 53 3 89,8 1 57 7 87,7 2 54 5 88,5 2 77 8 88,5 7 72 2 88,9 5 80 3 90,91 5 80 3 90,9

3 5 4 90 90,9 1 6 106 93,8 2 4 113 95,0 2 3 112 95,7 3 6 117 92,9 3 3 120 95,2 2 5 121 94,5

C.E 90,6 89,8 91,8 97,4 87,7 88,3 95,1 90,0 93,4 95,2 93,9 88,9 89,6 91,1 94,4 91,7 92,0 94,5 93,7 90,9 93,1

O.A:90,9 90,9 93,1 92,1 92,0 92,9 92,7

2015
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Figure 2. Resulting maps after classifying the nine Landsat images. 
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5.2.2.2 Predictor variables 

 

Given that human decisions and actions drive the growth dynamics, we aimed at 

incorporating, in the model, factors and processes that explain peoples’ choices about 

residential and infrastructure location. Social shifts, economic motives, inherent quality 

and attractiveness of a given place, the effects of neighboring areas and proximity to 

basic needs were assumed to play a key role. Taking into account previous efforts and 

data availability and accessibility we concluded to a suite of 20 predictor variables 

(Table 3). We hypothesized that these biophysical, socioeconomic, legislative and land 

use factors can spherically explain the changes occurred during the last decades in 

Messoghia.  

Territorial variables such as elevation, slope and aspect influence the quality of a 

certain location. Proximity to the sea as well as to areas of high nature value are also an 

adding value in pursuit of a better quality of life and aesthetics for both primary or 

second-homes (Leontidou et al. 2007). City center of Athens as well as of nearest towns 

consist important poles for markets, services and jobs (Aburas et al. 2016). Distance to 

transportation is strongly related to urban dynamics, both acting as a cause and a 

consequence of urban expansion, while access to health provision centers is considered 

a prerequisite for many people. Demography and socio-economic variables such as 

changes in population density, employment and unemployment rates reflect the shifts 

in population dynamics and the labour market that shape the socio-economic profile of 

the area. Regarding land use, livestock, agriculture and building rates delineate the 

socio-economic restructuring occurred during the last decades. Additionally, business 

activity in Messoghia, in the last 25 years was recorded by the respective local champers 

of the area (Chorianopoulos, Tsilimigkas, Koukoulas & Balatsos, 2014). Details of all 

enterprises established throughout this period were obtained by the Athens Chamber of 

Commerce and Industry and geocoded using BatchGeo (https://www.batchgeo.com/). 

Finally, the Urban Development Control Areas zoning scheme is the only available 

planning mechanism for regulating the urban expansion (Chorianopoulos et al. 2010). 

Variables available at the prefecture level were not included, since the 

municipalities in Greece are responsible for local land management and thus 

representing a meaningful spatial unit for this type of analysis (Salvati, Mavrakis, Serra 

& CarLULCci, 2015). All census data were then collated in a GIS environment at the 

https://www.batchgeo.com/
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municipality level while all distances computed using the Euclidean distance function. 

All variables were converted to raster format and resampled at 30m spatial resolution. 

Table 3. List of predictors used in the transition potential modeling process.  

Acronym Variable Discription Source 
Time 

interval 

Territorial variables 

DEM Elevation Elevation in m GLSDEM1 (-) 

SL Slope Slope in degrees GLSDEM (-) 

AS Aspect Aspect in degrees GLSDEM (-) 

DS Distance from the sea Euclidean distance from the shoreline in m  (-) 

Socio-economic variables 

DATH Distance from Athens 
Euclidean distance from the centre of Athens in 

m 
OSM2 (-) 

DT Distance from nearest town 

Euclidean distance from the center of the nearest 

town (Markopoulo, Paiania, Koropi, Keratea, 

Artemida) in m 

OSM (-) 

DAIR Distance from airport Euclidean distance from the airport in m OSM (-) 

DPH Distance from public health 
Euclidean distance from public hospitals and 

other public health care units in m 
OSM (-) 

DPT Distance from public transport 
Euclidean distance from public transport stops 

(bus, metro, suburban train) in m 
OSM (-) 

DR Distance from road network Euclidean distance from road network in m OSM (-) 

POP Demographics 
Changes in population density at the 

municipality level 
ELSTAT3 1991-2011 

EMP Employment rate 

Difference between: Total number of employed 

persons per total population at the municipality 

level  

ELSTAT 1991-2001 

UNEMP Unemployment rate 

Difference between: Total number of 

unemployed persons per total population at the 

municipality level  

ELSTAT 1991-2001 

Legislative 

UDCA UDCA zones 
Urban Development Control Areas (UDCAs) 

zoning scheme 
 2003 

Land use         

DGU 
Distance from green urban 

areas 

Euclidean distance from green urban patches in 

m 
UA4 2006 

LIV Livestock rate 

Difference between: Total number of animals 

(cuttle, pigs, goats, poultry, rabbits) per 

municipality total area 

ELSTAT 1991-2000 

AGR Agriculture rate 
Difference between: Total area devoted for 

agriculture per municipality total area 
ELSTAT 1991-2000 

BU Built-up rate 
Cumulative total number of new houses built per 

municipality total area  
ELSTAT 2000-2008 

ENT Enterprises rate 
Cumulative total number of new enterprises 

registered to ACCI per municipality total area  
ACCI5 1985-2010 

DN Distance from nature 
Euclidean distance from forested patches, areas 

of high nature value and protected areas in m 
OSM (-) 

 

1 Global Land Survey Digital Elevation Model (GLSDEM) http://glcf.umd.edu/data/glsdem/ 
2 OpenStreetMap https://www.openstreetmap.org/ 
3 Hellenic Statistical Authority http://www.statistics.gr/ 
4 Urban Atlas provided by European Environmental Agency http://www.eea.europa.eu/data-and-

maps/data/urban-atlas 
5 Athens Chamber of Commerce and Industry http://www.acci.gr/acci/Home/tabid/28/language/el-

GR/Default.aspx 

http://glcf.umd.edu/data/glsdem/
https://www.openstreetmap.org/
http://www.statistics.gr/
http://www.eea.europa.eu/data-and-maps/data/urban-atlas
http://www.eea.europa.eu/data-and-maps/data/urban-atlas
http://www.acci.gr/acci/Home/tabid/28/language/el-GR/Default.aspx
http://www.acci.gr/acci/Home/tabid/28/language/el-GR/Default.aspx
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4.2.3 Leap-frog development index 

 

Based on the 1985 and 2010 land cover maps, we calculated the Leap-frog 

development index, originally proposed by Xu et al. (2007). The index is calculated by 

dividing the length of the common boundaries of newly developed artificial patches (in 

our case patches appeared in 2010) with already existing artificial patches (1985) with 

the perimeter of the newly developed patches. When the result is more than 0.5 the 

growth type is identified as infilling, when the result is less than 0.5 it is identified as 

edge growth while when the result is 0, which mean that there is not shared boundary, 

the growth is identified as Leap-frog development.  

Initially, both land cover maps converted to vector format. Artificial areas of 

1985 along with artificial areas of 2010 were moved in a new vector layer after being 

assigned a different value. Subsequently, common boundaries length and perimeter 

were calculated using GIS functions. The index was then calculated and the file 

converted to a raster format at 30m spatial resolution.  

 

4.2.4 Transition potential modeling 

 

Probability maps in Dinamica EGO, are usually computed using the weights of 

evidence method which is based on the Bayes theorem of conditional probability 

(Bonham-Carter, 1994). In this method, it is necessary to select independent 

explanatory variables in order to avoid collinearity issues, and this could be considered 

a limitation. Another possible limitation of this method is that continuous variables have 

to be transformed into categorical.  

Recently, Kamusoko & Gamba, (2015) combined CA with the Random Forest 

(RF) algorithm for simulating urban growth. To test the effectiveness of their approach, 

they compared the performance of RF, support vector machines and logistic regression 

for producing transition potential maps. The RF model outperformed the two others. 

The only drawback reported is that in general all models failed to detect the so-called 

leap-frog development.  

RF is a robust, non-parametric machine learning algorithm introduced by 

Breiman (2001) and has certain advantages when coping with complex systems such as 
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built-up growth dynamics: i) RF can efficiently handle both categorical and continuous 

variables facilitating the incorporation of any type of inputs in terms of data type and 

scaling of values. Thus, data from multiple sources like remote sensing or census can 

be incorporated in the model (Gounaridis et al. 2015; Gounaridis & Koukoulas, 2016). 

ii) RF is insensitive to overfitting, to collinearity issues as well as to noise and outliers 

(Chan and Paelinckx, 2008). iii) Normal distribution of inputs is not a prerequisite. iv) 

The algorithm performs well when coping with non-linear relationships between 

response and predictor variables (Kamusoko & Gamba, 2015). v) The importance of 

each predictor variable is computed using several metrics, allowing the user to 

determine whether a variable will be incorporated in the model or not (Gounaridis & 

Koukoulas, 2016). 

All predictors were included in a single stack and served as independent 

variables. To overcome the limitation of failure in detecting leap-frog development, 

which is widely evident in Messoghia (Chorianopoulos et al. 2010), we incorporated in 

the model the Leap-frog development index. The initial maps resulted from 

classification had 3 categories, urban fabric, artificial non-urban and other (Figure 2). 

To train the model, we used 2500 randomly placed points. Values assigned as to 

indicate change (from Other to Artificial) and no change. The regression version of RF 

(Breiman, 2001) was then implemented in R using the RandomForest package (Liaw 

& Wiener, 2002). To fine tune the RF, we used five (5) predictor variables (equal to the 

square root of the total number of predictor variables) for each tree split and 700 trees 

for each run.  

 

5.2.5 Scenarios 

 

Our aim was to project future changes under four scenarios sketching out 

different economic development policies and options. Thus, our scenarios are based on 

the observed historical trends during the last three decades. Looking at the resulting 

land cover maps, it is evident that the built-up dynamics in (Messoghia were 

dramatically uneven, reflecting different phases of economic development (Figure 3). 

Thus, we delineated four scenarios of projected residential development, distinguished 

by different levels of development. The scenarios include:  
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Medium development reflects the period 1985-1995 and High development 

reflects the period 1995-2006. In these scenarios (Messoghia are re-brought to the fore 

and into the development path, experiencing an exponential rise in economic sectors 

and industries following the trends observed during the past decades. Planning and 

spatial policies contribute towards this direction, allocating funds into the area and 

promoting the socio-economic restructuring. Consequently, infrastructure, firm 

headquarters, enterprises and shopping centers colonize the area, leading to an 

economic polarization and economic functions re-concentration. Extensive 

regeneration of the waterfront also takes place, channeling changes in real estate 

dynamics towards tourism-specialized settlements and second homes. Last but not 

least, a steady population increase as a result of Athenian de-concentration, rural 

depopulation and external migration because of the job opportunities and better quality 

of life, increases the housing demand and in turn the housing construction.  

The Low development scenario reflects the period 2006-2010 while the Very 

low development reflects the period 2010-2015 and keeps the development pace very 

low as a consequence of economic scarcity and lack of investments. The economic 

functions as well as the population flows remain stable following a low to very low 

pace. An amount of already built residences, intended to meet the needs for both second 

or primary housing, remain uninhabited (unsold or unfinished) while many already 

constructed industrial and commercial facilities remain unexploited. At the same time 

the demand, shaped by economic scarcity and population low rates, is lower than the 

already built and available buildings leading to a low to very low building rate in the 

area.  

In these scenarios, we assume that profound social and political changes will 

not occur, accessibility in the area will remain stable and new roads and railway links 

will not be constructed. As far as land use regulations and legislative frameworks are 

concerned, we assume that especially in the first two scenarios, will continue to be loose 

in the face of development potential.  
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Figure 3. Summary of statistics based on the nine classified maps and relative percentages of artificial 

areas. The observed trends reflect four different levels of development during the last 30 years in 

Messoghia. 

 

5.2.6 Model calibration and simulation 

 

We used the Dinamica EGO platform in order to develop a CA model able to 

simulate the changes occurred in Messoghia. We opted to use this platform because of 

certain advantages: Firstly, Dinamica EGO incorporates two complimentary, but 

distinct, allocation functions, i) the Patcher, which generates new patches based on a 

seeding mechanism and ii) the Expander, which expands previously formed patches. 

Additionally, the user is able to manually set parameters like patch size variance, 

isometry of transitions and mean patch size. These advantages of the platform allow the 

user to directly intervene and calibrate the model in a way that complies with the reality 

of a specific area. Secondly, Dinamica EGO allows multi-resolution accuracy 

assessment employing a fuzzy similarity index (Hagen, 2003). By employing this 



118 
 

methodology, accuracy of simulated versus observed patterns is not restricted to a strict 

cell by cell overlay but gradually considers the cells in the neighborhood.  

To calibrate the model and evaluate the goodness of fit, a comparison of 

simulated maps with a reference/observed maps is the most efficient way. Therefore, 

we trained the model based on the 1985-2010 period, simulated these changes up to 

2015 and compared the simulated result with the 2015 classified land cover map. To do 

so, we calculated the annual rates of change between 1985 and 2010 using the transition 

matrix function (Soares-Filho et al. 2002). Next, we adjusted the mean and the variance 

of new patch sizes and the patch isometry in order to replicate the actual conditions of 

the area in terms of structure and composition. In general, an increased patch size results 

in less-fragmented landscapes, while the patch size variance denotes the diversity of 

newly developed patches. Isometry usually varies from 0 to 2 and thus, the greater the 

isometry the more isometric (equal) the newly developed patches. We calibrated the 

CA model by computing the mean patch size and mean patch variance of the input land 

cover map (2010) and adjusted the isometry through trial and error. We set the model 

to run at a 5-year time step from 1985 to 2015. To evaluate the model’s performance, 

we compared the simulated land cover map of 2015 to the observed land cove map of 

2015 using the fuzzy similarity index at multiple resolutions. Finally, taking 2015 as 

the initial year and 2045 as the final year, we simulated the land-use changes for 

Messoghia in a 5-year time step under the four scenarios 

 

5.3 Results and discussion 

 

5.3.1 Historical land cover change 

 

Results generated by the classification of the nine Landsat images and the 

subsequent aggregation of classes are depicted in Figure 2. During the 80s the built-up 

scenery of Messoghia was characterized by small towns (Paiania, Spata, Markopoulo, 

Kalivia and Koropi) and a few sea-side resorts while during the 90s and before the 

airport, the Olympic venues and the transport infrastructure as well as the effects of a 

loose regulatory framework are evident. Especially in the north-western (Palini) and 

south-western (Vari) parts of the area, which are closer to Athens urban conurbation, 

changes in the form of sprawl can be observed. At the same time the small towns show 
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a tendency to infill and expand while the sea-side residences (Porto rafti and Artemida) 

start to increase. These trajectories during the 90s are attributed to the gains in 

population of the area, as a result of the decentralization trends of the Athenians seeking 

better quality of life and the waves of internal rural-urban immigrants. The figures after 

2000, clearly portray the effects of the Olympics-related large-scale projects and the 

infrastructural investments in Messoghia. Especially the effects of the airport and the 

road expansion are more than evident. All types of sprawl (namely suburban growth, 

leap-frog development, strip development and scattered development), in both urban 

fabric and artificial non-urban classes, can be observed in the area after 2000. 

Quantification of the results (Figure 3) reveals that the period between 1985 and 1995 

reflects the first boost in terms of development while the next decade 1995-2006 is the 

peak. After 2006 the development trends remain positive but obviously start to decline 

reflecting the post-Olympic era with the dramatic decrease of investments and the 

deterioration of economy.  

 

5.3.2. Model calibration and performance 

 

Using the fuzzy similarity index, we evaluated the model’s performance over a 

range of resolutions. We found a spatial fit of 82.72 % within a 1x1 window size radius 

which improved to 91.72 % when widened to a 15x15 window size (Figure 4).  

Figure 5 shows the result after comparing the observed and simulated land cover 

maps of 2015. The model was relatively accurate at predicting the allocation of urban 

fabric and artificial non-urban surfaces both in the form of suburban growth, strip 

development and scattered development. The good performance suggests that the suite 

of 20 predictor variables explains the observed historical changes efficiently while the 

RF algorithm performed well with an adequate fit. Most importantly, the model 

achieved to predict accurately the leap-frog development and this is mainly attributed 

to the incorporation of the Leap-frog development index and the extensive training of 

the RF model.  
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Figure 4. Results of multi-resolution spatial evaluation of model fitting using the fuzzy similarity 

index. 

 

Figure 5. a) Transition potential surface obtained through the RF modeling with 20 predictors. b) 

Result of cross classification between the simulated vs the observed map of 2015. 
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5.3.3 Simulations  

 

In this last substantive section, we demonstrate the simulated results on how 

Messoghia will look in the future under four scenarios related to different levels of 

economic development and policies. Figure 6 illustrates a prediction of the built-up 

expansion, over a 30-year period, generated by the CA model while Figure 7 illustrates 

the quantification of results in a 5-year timestep. The black line indicates a ten-year 

projection in respect of the stated life span of the Athens Master Plan, expected to be 

revised in 2025 (Hellenic Parliament, 2014: 5).   

 

Figure 6. Artificial areas extent, simulated for 2045, under the four different development level 

scenarios. 

 

Under the medium and high development scenarios the artificial surfaces expand 

predominantly along the transportation links. Pre-existing urban and industrial clusters 
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infill, expand and finally appear connected especially along the nodal points where the 

radial roads inter-connect the small towns (Paiania, Spata, Markopoulo, Kalivia and 

Koropi) and Athens. The waterfront also acts as a remarkable core of agglomeration. 

Seashore existing towns obviously expand and become densely infilled, servicing 

second or permanent housing demands and tourism related activities. Leap-frog 

development has also increased sharply around junctions of infilled areas and main 

roads, mostly in areas previously occupied by agriculture, indicating that the 

development pressures and the assumed permissive planning scheme allowed the high 

consumption of land at the expense of other less profitable land uses.  

 

 

Figure 7. Rates of artificial areas simulated for 2045 in a 5 year step, under the four different 

development level scenarios. 
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The artificial surfaces are expected to increase considerably under the medium and 

high development scenarios (Figure 7) and with a pace of development equivalent to 

that of 1985-1995 and 1995-2006 periods. Under the high development scenario, the 

artificial surfaces are expected to occupy almost half of the total surface of the study 

area by 2045 while for both development scenarios the artificial surfaces are expected 

to nearly double in size (16.87% in 2015).  

Under the low and very low scenarios, expansion of artificial surfaces is also 

observed but in a lower extent, less dispersed and with a considerably lower magnitude. 

Again, the changes observed are mostly around the road network and the waterfront. 

Already existing patches of artificial surfaces appear infilled rather than expanded while 

leap-frog development is also evident throughout the area. Notably, the leap-frog 

development can be observed mostly around areas characterized by favorable 

conditions such as proximity to the town centers (Paiania, Spata, Markopoulo, Kalivia 

and Koropi), proximity to Athens (around the motorway Vari-Koropi in the south-west 

part and around Pallini in the north west part) and proximity to the sea (seashore towns 

of Artemida and Markopoulo). Results indicate that these areas are the most likely to 

become urban in the future. The pace of development of the low and very low scenarios, 

follows equivalent trends of the 2006-2010 and 2010-2015 periods respectively and the 

total area occupied by artificial surfaces is expected to be 28.88 % for the low 

development scenario and 25.02 % for the very low scenario.  

 

5.4 Conclusions 

 

We explored potential future growth dynamics in the Messoghia plain under 

certain scenarios that reflect different economic development trajectories and policy 

options. Methodologically, coupling of CA and RF proved to be a sound way to 

overcome certain limitations reported in previous efforts. On the one hand, 

implementing the RF algorithm in order to generate transition potential surfaces 

allowed us to incorporate in the model spatial determinants of different nature in terms 

of scale and origin, sidestepping collinearity and distribution issues. The suite of 20 

predictors proved to describe well the complicated issue of built-up expansion in 

Messoghia plain, while the incorporation of the Leap-frog index boosted the 

performance of the models in the face of sprawl detection and, in turn, prediction. On 
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the other hand, implementing CA modeling through the Dinamica EGO framework 

proved fully compatible with transition potential generated in a different environment 

and provided certain advantages. The two complimentary sub-models Patcher and 

Expander are fully operational with the built-up growth dynamics concept allowing the 

user to intervene efficiently and calibrate models according to case specific needs by 

taking into account actual parameters of the study area. Thus, coupling these two 

frameworks reduces several limitations that are commonly encountered. An important 

limitation in our case, one that is also commonly encountered by researchers, is data 

scarcity in terms of both spatial, thematic and temporal resolution.  

Regarding Messoghia, the area maintained a predominantly rural character up 

until the early 80s, due to cumbersome accessibility and limited attraction of 

investments. The construction of the international airport in the area and the significant 

allocation of funds set off by 2004 Olympics, did transform the region. The pace of 

transformation, however, declined considerably during the last decade as a result of 

insolvency and the subsequent sovereign debt crisis. In light of this inopportune 

economic reality, Messoghia escaped the exhaustive consequences of unordered urban 

expansion, retaining noteworthy reserves of agricultural and natural land. The four 

simulation models illustrate how Messoghia would feature in the future under a set of 

different circumstances. The simulation of the pre-Olympics period, based on a sound 

economic growth record and the absence of an overarching spatial planning framework, 

is expected to yield an unprecedented development of artificial surfaces, at the expense 

of agricultural and natural land. Although this is a promising scenario with respect to 

economic growth in the short-term, it also carries significant negative environmental 

externalities (such as pollution, congestion, and sub-optimal land allocation), capable 

of undermining the very economic prospects of the area in the medium term (Cervero, 

2001).  

Of course, scenario modeling is meaningful when dealing with plausible and 

realistic projections, based on present data and trends. In that sense, the low and very 

low development scenarios are deemed as the ones that are closer to the current course 

of events. However, as economic development goals are taking precedence over 

virtually all other spatial planning priorities, the medium and high development 

scenarios cannot be dismissed as implausible. In this case, results generated from the 

model stress out the major impact of artificial areas expansion on natural resources, 
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agriculture and environmental quality indicators. From this spectrum, the presence of a 

spatial planning tool that is capable to capture and quantify the potential consequences 

of prospective spatial planning strategies is key in invigorating the opposite to 

sustainable development socio-political responses. 

In short, simulation modeling is a tool that contributes to the endeavor of 

researchers and planners to approach and apprehend a broader spectrum of growth 

issues. By incorporating social, economic and political aspects into the analysis, it 

brings to surface conflicts and synergies in land use allocation and planning. In this 

light, it provides a sound framework for a richer spatial analysis, also facilitating well-

informed decision-making processes. 
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Chapter 8: Multi-scale modelling of land use/land cover (LULC) change 

with Geoinformatics and scenario-based simulations: The case of Attica 

region.  

 

Abstract 

The objective of this final chapter is to explore potential future land use/cover (LULC) 

dynamics in the terrestrial Attica region, under three scenarios that reflect future growth 

traits in the area related to different economic performance realities and alternative land 

use planning options. Attica experienced significant and, in places, unregulated urban 

growth, during the past decades, due to the absence of planning controls and the 

substantial increase of demand, as a consequence of migration and a boost in second 

homes, especially in the coastal zones. First, this chapter looks at the periodic LULC 

changes occurred during a period of 25 years (1991–2016) employing remote sensing 

techniques and Landsat satellite data. The observed changes are then related with 27 

dynamic, biophysical, socio-economic and territorial factors, to generate transition 

potential maps implementing Random Forests (RF) regression modeling. Scenarios are 

projected until 2040 by implementing a spatially explicit Cellular Automata (CA) 

model. Finally, the resulting maps, are subject to a multiple resolution sensitivity 

analysis. Change detection reveal that the vast majority of the built-up land expansion 

took place at the expense of natural areas and croplands and during the last decades 

Attica region experienced remarkable land transformations. However, the late 

economic circumstances significantly affected the growth trends. Under an 

economically optimistic scenario which means high development, and assuming the 

absence of an adequate controlling mechanism, the built-up surfaces are expected to 

increase by almost 24%, by 2040, and consequently the natural areas and croplands are 

expected to decrease significantly. In case the economic scarcity persists, which can be 

translated in low development, the artificial surfaces are expected to slightly increase 

by approximately 7.5%, by 2040. 
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6.1 Introduction 

 

In this last chapter the area of focus is the terrestrial part of Attica region which 

serves as a perfect example, that paradigmatically mirrors the rapid socio-economic 

transformations, the demographic dynamics and the population redistribution (mostly 

in the form of rural depopulation) occurred in Greece during the last decades. The 

region includes Athens, the capital of Greece, which has been the central pole of job 

opportunities and economic prosperity, and according to the late census (2010) is 

inhabited almost 4 million residents which accounts for the 35% of the total population. 

During the recent decades, the population influx triggered a persistent increase in 

housing demand and supply (Mantouvalou et al, 1995). In turn, concurrent socio-

economic transformations triggered the redistribution of middle-class Athenian 

residents, seeking better quality of life, in areas outside the compact Athenian center, 

within a commuting distance from their jobs (Leontidou et al. 2007). At the same time, 

the socio-economic conditions favored a persistent amenity-driven second homes trend 

along the sea coast (Arapoglou and Sayas, 2009). As a consequence, to all the 

aforementioned, the landscape of the area, especially the peri-urban Athens, has 

changed substantially over the years. The whole structure of unplanned development 

was encouraged, or even forced, by the total absence of actual, on the ground, regulation 

mechanism and the weak land use planning (Pagonis, 2013). In fact, urban planning of 

the area was legally established since decades ago, but in the actual mechanisms that 

shape urban development on the ground, are not evident. On the contrary, development 

was permitted at any environmental, functional or operative cost. Moreover, after 

successfully attracting national and foreign funds and in the face of hosting the Olympic 

games of 2004, the demand for construction sites to accommodate commercial, 

industrial, transportation and recreational activities further increased the built-up 

transformation of the urban periphery (Chorianopoulos et al. 2010). However, after the 

phase of progressive economic growth the area has been exposed to the negative 

consequences of the sovereign crisis and the economic recession, attributed to the 

global financial crisis, that in turn had a drastic influence on the development rates and 

significantly altered the housing and construction industries (Gounaridis et al.2018).  
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Topographically, Athens also constitutes an interesting case for study since it is 

characterized by undulated morphology (Figure 1). The geomorphological features of 

the region dictate the land availability and determine the accessibility and the optimal 

conditions for construction of built-up land. The plain of Athens is surrounded by large 

mountains (Aegaleo, Parnitha, Penteli and Hymettus), and this acts as a constraint, that 

separates Athens from the proximate flat districts (Thriasio, Messoghia, Marathonas), 

making them the only available areas to host residential and industrial settlements.  

 

 

Figure 1. Topography of Attica region. 
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The aim of this chapter is to explore potential future LULC dynamics in the 

terrestrial Attica region, under three scenarios that reflect different economic 

performance realities and alternative planning options. To achieve this, it was deemed 

critical to implement an integrated methodological framework that combines the 

advantages of methodologies discussed is the previous chapters. The central premise 

was to simulate all categories of LULC changes (a total of 18 different possible LULC 

transitions identified) at the regional level, to evaluate the effects of different proximate 

and underlying causes (chapter 4 - Gounaridis et al. 2018). Since the area experienced 

vast land transformations during the recent decades, which are mostly related to built-

up categories, a scientific objective of this approach was to achieve a very high thematic 

resolution in these categories, following the methodological framework described in 

chapter 3 (Gounaridis and Koukoulas, 2016). The non-artificial land categories were 

efficiently discriminated following the approach presented in chapter 2 (Gounaridis et 

al. 2016). Change detection techniques in the form of cross-classification and cross-

tabulation were applied in order to map and quantify the periodic LULC changes 

occurred during the study period, following the methodology presented in chapter 1 

(Gounaridis et al. 2014). Attempting to geographically associate the driving forces with 

the observed historical LULC changes, a suite of 27 different factors derived from 

multiple different sources and expressed in different scales, units and resolutions was 

incorporated in the modeling framework. The effective fusion of these data was 

achieved implementing the Random Forests (RF) algorithm following a similar 

approach to chapter 4 (Gounaridis et al. 2018). The models generated the transition 

probability surfaces that served as a basis to simulate the observed LULC changes and 

project future changes under different scenarios (chapter 4 - Gounaridis et al. 2018). 

Three different scenarios were composed that fully reflect the phases of uneven 

development observed in the area. To calibrate and fine tune the simulation models, 

landscape metrics were computed and introduced to the models (chapter 1 - Gounaridis 

et al. 2014). Finally, the results were subject to a multi-resolution sensitivity analysis 

in order to be more robust and unaffected by the technical details of inputs and the bias 

they entail. In this process the outputs generated by each model run were compared at 

several spatial resolutions in order to identify areas of future LULC change regardless 

the spatial resolution of the inputs. The results are expected to shed light in different 

economic performance realities and land-use planning contexts and choices while the 
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whole attempt will quantify the importance of various driving forces of change, 

contributing to an enhanced understanding of such a complex phenomenon.  

 

6.2 Material and methods 

 

6.2.1 Images pre-processing and classification 

 

Since the Attica region is fully covered by two consecutive images (path: 183, 

row: 033 - 034), 10 Landsat images (Table 1) spanning 25 years (1991-2016) were 

chosen to achieve full geographical coverage. The acquired images meet certain quality 

standards, namely no cloudiness in the study area, acquisition during summer months 

to avoid phenological variations and absence of the scan line corrector problem of 

Landsat 7 after 2003. 

Table 1. The characteristics of the satellite images that were used as the primary data to corroborate the 

change detection analysis. 

Date Sensor Satelite type Resolution (m) Path/Row 

17/9/1991 Thematic Mapper (TM) Landsat 4 30 183/034 

29/6/1991 Thematic Mapper (TM) Landsat 4 30 183/033 

22/8/1999 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/034 

22/8/1999 Enhanced Thematic Mapper Plus (ETM+) Landsat 7 30 183/033 

12/10/2003 Thematic Mapper (TM) Landsat 5 30 183/034 

12/10/2003 Thematic Mapper (TM) Landsat 5 30 183/033 

12/8/2010 Thematic Mapper (TM) Landsat 5 30 183/034 

12/8/2010 Thematic Mapper (TM) Landsat 5 30 183/033 

29/9/2016 Operational Land Imager (OLI) Landsat 8 30 183/034 

29/9/2016 Operational Land Imager (OLI) Landsat 8 30 183/033 

 

To avoid any discrepancies due to the multi-temporal and multi-sensor type of 

analysis and to efficiently compute spectral indices, all images underwent radiometric 

as well as atmospheric correction following the methods described in Chapters 1 and 2. 

Topographic correction was also important in order to minimize the topographical 

effects due to the mountainous nature of the study area. The methodology followed for 

this step is also described in Chapters 1 and 2. Next, the two consecutive calibrated 

images per year were mosaiced ending up with five images spanning 25 years (1991, 

1999, 2003, 2010, 2016).  



137 
 

All images were classified into eight LULC categories, implementing the RF 

classification algorithm through the RandomForest package available in R (Liaw & 

Wiener, 2002). Since the objective was to obtain LULC information with the best 

possible thematic resolution, especially for the urban land types, the LULC categories 

were i) continuous urban fabric, ii) discontinuous dense urban fabric, iii) discontinuous 

medium density urban fabric, iv) discontinuous low density urban fabric, v) industrial, 

commercial and transport units, vi) arable land and permanent crops, vii) forests, scrubs 

and other natural areas and viii) other (includes open spaces bare, mines and inland 

water bodies).  

The LULC categories distinguished by devising a semi-automated sampling 

extraction based on a context that combined the no-change areas, prior knowledge and 

spectral controlling. More specifically, starting with 2010 and 2016, an extensive 

sampling was designed based on visual interpretation of very high spatial resolution 

data from Google Earth and on existing available reference LULC data. Particularly, 

the datasets created by Gounaridis and Koukoulas (2016) as described in chapter 3 and 

by Gounaridis et al. (2016) as described in chapter 2, were used as reference data for 

the semi-automated sampling extraction. For the non-artificial LULC types of 

croplands, natural areas and other, additional samples from the Urban Atlas and Corine 

datasets were also assembled to strengthen the training. Last but not least, a quality 

control mechanism based on the spectral signatures of the samples to remove outliers 

from the analysis was applied (Radoux et al. 2014) (Figure 2). For the 1991, 1999 and 

2003 images, a backwards automated training strategy was adopted. Given that changes 

usually occur on a fraction of the total area, the use of the unchanged areas as training 

samples for the desired past date is reasonable (Chen et al. 2012; Kim et al. 2014). No-

change areas were identified via visual interpretation of very high spatial resolution 

data from Google Earth. These no-change areas were then used to semi-automatically 

generate training samples as input for the subsequent classification of each year. Special 

attention was payed to avoid taking points close to the boundaries of adjacent LULC 

categories, ensuring that clear samples of each category were taken and thus eliminating 

any source of confusion to the model. 70% of the samples were used to train the RF 

algorithm while the other 30% were kept independently for the accuracy assessment of 

the results (Table 2). 
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Figure 2. Example of spectral controlling (TM image 2010 – Red; Green; Blue; IR bands. i) Continuous urban fabric, ii) Discontinuous dense urban fabric, iii) Discontinuous 

medium density urban fabric, iv) Discontinuous low density urban fabric). 
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Table 2. Training and validation samples used for classification 

 Training     

 1991 1999 2003 2010 2016 

Continuous urban fabric 1798 2321 2622 4095 5707 

Discontinuous dense urban fabric 969 1401 1808 2329 3159 

Discontinuous medium density urban fabric 1021 1286 1446 1888 2617 

Discontinuous low density urban fabric 502 895 1175 2331 3221 

Industrial, commercial and transport units 473 685 991 1245 1717 

Arable land and permanent crops 2009 2119 2409 2009 2776 

Forests, Scrubs and other natural areas 1449 1463 1559 1568 1974 

Other (open spaces, bare land, mine, inland water) 453 460 475 525 574 

Total 8674 10630 12485 15990 21745 

 Validation 

 3637 4319 5419 6919 9399 
 

Since RF has proven efficient with large data handling, provides reduced likelihood 

of over-fitting and is suitable for multi-source inputs (Gounaridis et al. 2014; 

Gounaridis and Koukoulas 2016, Gounaridis et al 2016, Gounaridis et al. 2018), the 

classification models involved 20 variables in total. Besides the 6 reflective Landsat 

bands (bands 1–5 & 7 for Landsat 5 TM and Landsat 7 ETM+, bands 2-7 for Landsat 

8 OLI), the thermal band was also used as it provenly helps in the classification process 

(Rodríguez-Galiano and Chica-Olmo, 2012). In addition, the first layer produced by 

principal components analysis (PCA) separately for the three visible bands (1, 2 and 3) 

and the infrared bands (5 and 7), was also incorporated as it appears to increase 

classification accuracy (Gounaridis et al. 2014; Gounaridis et al. 2016). In addition, 

following the approach by Gounaridis and Koukoulas, (2016), the normalized 

difference built-up index (NDBI) and the enhanced built-up and bareness index (EBBI) 

were also computed and incorporated in order to enhance the urban LULC types 

discrimination. The Enhanced Vegetation Index (EVI), the Normalized Difference 

Moisture Index (NDMI), the Normalized Difference Bareness Index (NDBaI) and the 

Normalized Differential Vegetation Index (NDVI) were also included because of their 

capacity to separate vegetation from bare features during the classification process. The 

three widely used Tasseled Cap (TC) transformations namely, Soil Brightness Index 

(SBI), Green Vegetation Index (GVI) and Moisture Content of Soil/Vegetation 
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(Wetness) were also computed and incorporated (Gounaridis et al. 2014; Gounaridis et 

al. 2016). Finally, auxiliary variables (elevation and slope) acquired from the Global 

Land Survey Digital Elevation Model (GLSDEM) were also included.  

To set up the models, RF requires two primary parameters to be specified by the 

user: the number of predictor variables randomly sampled at each decision tree split 

and the number of classification trees to be built. Four (4) predictor variables were 

chosen for each tree split, which is equal to the square root of the total number of 

predictor variables and 500 trees for each run. The variables’ importance for each 

classification run is illustrated in Figure 3. The elevation and slope always rank among 

the top, showing the major influence these attributes have on different types of LULC. 

The inclusion of the thermal band had also an influence in most of the models.  

To sidestep the so called ‘salt n pepper effect’ of the resulting maps, all isolated 

patches (defined as area less than 0.1 ha), were removed by replacing their category 

value with the mode of their neighborhood pixels, defined by a 3x3 window 

(Gounaridis et al. 2014; Gounaridis and Koukoulas 2016, Gounaridis et al 2016, 

Gounaridis et al. 2018). Results were plotted against the 30% of the initial samples and 

validated using the cross-tabulation approach.  

 

6.2.2 Leap-frog development index 

To enhance the accuracy of the model, and to ensure the accurate detection and 

representation of scattered development, the Leap-frog development index, originally 

proposed by Xu et al. (2007) was calculated and included in the modeling scheme. The 

index applies to artificial LULC types and has been proved to effectively delineate any 

type of scattered development, classifying the historical changes according to sharing 

boundaries properties (Gounaridis et al. 2018). Based on the 1991 and 2016 maps, the 

index was calculated following the methodology described in chapter. 
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Figure 3. Predictor variables’ importance for each classification model  
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6.2.3 Transition potential modeling 

6.2.3.1 Predictor variables 

This section introduces the suite of predictors used to model the transition 

probabilities. Taking into account previous efforts, data availability and accessibility, a 

suite of 27 variables was concluded to best represent the LULC change phenomenon 

occurred throughout Attica region during the period of focus (1991-2016). Since the 

changes related to artificial surfaces were dominant in Attica, the majority of the chosen 

variables represent factors and processes that explain peoples' choices about residential 

and infrastructure location. Social shifts, economic motives, inherent quality and 

attractiveness of a given place, the effects of neighboring areas and proximity to basic 

needs and amenities were assumed to play a key role (Table 3). It was hypothesized 

that these biophysical, socioeconomic, territorial and land use factors can spherically 

explain the changes occurred during the last decades in Attica region (Gounaridis et al. 

2018).  Similarly to chapter 4, the variables used are of different nature (both categorical 

and continuous), derived from multiple sources, with different scales and resolutions. 

Many of these variables act as proxies to other non-measurable factors. It is worth 

noting that, variables available at the prefecture or regional level were not included, 

since the municipalities in Greece are responsible for local land management and thus 

representing a meaningful spatial unit for this type of analysis (Salvati, et al. 2015; 

Panori et al. 2016; Gounaridis et al. 2018). After processing, all no-spatial data were 

then collated in a GIS environment at the municipality level while all distances were 

computed using the Euclidean distance function. The last step was to convert all 

variables to raster format after resampling them at 30 m spatial resolution to match the 

resolution of the classification products. 
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Table 3. List of predictors used in the transition potential modeling process. 

Acronym Variable Discription Source 
Time 

interval 

Territorial variables 

DEM Elevation Elevation in m GLSDEMa (-) 

SL Slope Slope in degrees GLSDEM (-) 

AS Aspect Aspect in degrees GLSDEM (-) 

CQI Climate Quality Climate quality index EEAb 1961-1990 

VIEW Viewshed 
Visibility from residential areas at the parcel level 

(centroids from UA).  
GLSDEM and Urban Atlasc (-) 

DB Distance from beaches 
Euclidean distance from beaches signed with a 

blue flag in m 
Ministry of Environment & 

Energyd 
2010 

DS Distance from the sea Euclidean distance from the shoreline in m  (-) 

Socio-economic variables 

DEDU 
Distance from Education 

centers 
Euclidean distance from public education centers 

(all levels) 
Ministry of Education & 

OSMe 
2010 

DPH 
Distance from public 

health centers 
Euclidean distance from public health centers 

Society of Informationf & 
OSM 

(-) 

DT 
Distance from nearest 

town 
Euclidean distance from the center of the nearest 

town in m 
OSM (-) 

DPB 
Distance from public 

buildings 
Euclidean distance from public buildings  

Society of Information & 
OSM 

 

DPH 
Distance from public 

health 
Euclidean distance from public hospitals and other 

public health care units in m 
OSM (-) 

DPT 
Distance from public 

transport 
Euclidean distance from public transport stops 

(bus, metro, tram, suburban train) in m 
OSM & opendata (-) 

DRN 
Distance from road 

network 
Euclidean distance from road network in m OSM (-) 

POP Demographics 
Changes in population density at the municipality 

level 
ELSTATg 1991-2011 

EMP Employment rate 
 Total number of employed persons per total 

population at the municipality level  
ELSTAT 1991-2011 

UNEMP Unemployment rate 
Total number of unemployed persons per total 

population at the municipality level  
ELSTAT 1991-2011 

LVI 
Landscape values 

Instagram 
Landscape values quantified using Instagram data van Zanten et al. (2016)h 2004-2015 

LVF Landscape values Flickr Landscape values quantified using Flickr data van Zanten et al. (2016) 2004-2015 

LVP 
Landscape values 

Panoramio 
Landscape values quantified using Panoramio data van Zanten et al. (2016) 2004-2015 

Land use         

DGU 
Distance from green 

urban areas 
Euclidean distance from green urban patches 

(centroids from UA) in m 
Urban Atlas 2006 

SSM Soil Sealing rate Average soil sealing per municipality EEA 2006-2012 

MTC Tree cover 
Average tree cover canopy percentage per 

municipality 
USGSi 2010 

BU Built-up rate 
Cumulative total number of new houses built per 

municipality  
ELSTAT 1997-2016 

ENTH HeatMap of Enterprizes HeatMap of new enterprises registered to ACCI  ACCIj 1991-2016 

ENT Enterprises count 
Cumulative total number of new enterprises 

registered to ACCI per municipality 
ACCI 1991-2016 

DN 
Distance from natural 

reserves 
Euclidean distance from forested patches, areas of 

high nature value and protected areas in m 

Ministry of Environment & 
Energy & OSM & Natura 

2000  
(-) 
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a Global Land Survey Digital Elevation Model (GLSDEM) http://glcf.umd.edu/data/glsdem/  
b European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/climate-quality-

index-map  
c European Environmental Agency. Urban Atlas. GMES/Copernicus land monitoring services. 

https://www.eea.europa.eu/data-and-maps/data/urban-atlas 

d Ministry of Environment & Energy. http://geodata.gov.gr/dataset/poioteta-udaton-akton-kolumbeses-

2013  
e Open Street Map. https://www.openstreetmap.org  
f Society of Information. http://geodata.gov.gr/dataset/demosia-kteria 
g Hellenic statistical authority. http://www.statistics.gr/ 
h van Zanten et al. (2016). PNAS. http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-of-

landscape-values-using-social-media-data 
i USGS. Global Tree Canopy Cover. 

https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php  
j Athens chamber of commerce and industry http://www.acci.gr/acci/catalogue/search.jsp?context=201  
 

 

6.2.3.2 Random Forests regression models 

Following the approach adopted by Gounaridis et al. (2018), the transition 

probability surfaces were generated by employing the regression type of the RF 

algorithm. All predictor variables, including the calculated Leap-frog index, were 

combined in a single stack and served as independent variables for the model. The 

initial maps resulted from classification had eight categories, as depicted in Figure 8. 

The possible transitions identified were 18 (Table 4), under three assumptions: it is 

impossible a) the urban fabric to convert to any other land type as well as to decrease 

in density, b) the industrial, commercial and transport units to convert to any other land 

type and c) the “other” category that includes inland waters, bare land and mines to 

interact with other classes. To train each of the 18 models, 5000 randomly placed points 

were dispersed throughout the extent of the study area. Values assigned in binary scale 

to indicate change (from category A to category B) and no change. The regression 

version of RF was then implemented in R using the RandomForest package (Liaw & 

Wiener, 2002). To fine tune the RF, five (5) predictor variables (equal to the square 

root of the total number of predictor variables) were used for each tree split and 700 

trees for each run. The modeling process generated 18 transition probability surfaces, 

each one of them indicating the degree of potential change in the future per transition. 

The performance of the models was assessed using the Areas Under Curve (AUC) 

metric, derived from the Receiver Operating Characteristic (ROC) curve (Figure 13). 

The importance of each predictor variable was computed using the Mean Decrease 

Accuracy (%IncMSE) and the Mean Decrease Gini (IncNodePurity) metrics (Figure 17 

and 18).  

http://glcf.umd.edu/data/glsdem/
https://www.eea.europa.eu/data-and-maps/figures/climate-quality-index-map
https://www.eea.europa.eu/data-and-maps/figures/climate-quality-index-map
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
http://geodata.gov.gr/dataset/poioteta-udaton-akton-kolumbeses-2013
http://geodata.gov.gr/dataset/poioteta-udaton-akton-kolumbeses-2013
https://www.openstreetmap.org/
http://geodata.gov.gr/dataset/demosia-kteria
http://www.statistics.gr/
http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-of-landscape-values-using-social-media-data
http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-of-landscape-values-using-social-media-data
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
http://www.acci.gr/acci/catalogue/search.jsp?context=201


145 
 

Table 4. Transition probabilities of the eight LULC categories.  

 

 From To 

1 Discontinuous dense urban fabric Continuous urban fabric 

2 Discontinuous medium density urban fabric Continuous urban fabric 

3 Discontinuous medium density urban fabric Discontinuous dense urban fabric 

4 Discontinuous low density urban fabric Continuous urban fabric 

5 Discontinuous low density urban fabric Discontinuous dense urban fabric 

6 Discontinuous low density urban fabric Discontinuous medium density urban fabric 

7 Arable land and permanent crops Continuous urban fabric 

8 Arable land and permanent crops Discontinuous dense urban fabric 

9 Arable land and permanent crops Discontinuous medium density urban fabric 

10 Arable land and permanent crops Discontinuous low density urban fabric 

11 Arable land and permanent crops Industrial, commercial and transport units 

12 Arable land and permanent crops Forests, Scrubs and other natural areas 

13 Forests, Scrubs and other natural areas Continuous urban fabric 

14 Forests, Scrubs and other natural areas Discontinuous dense urban fabric 

15 Forests, Scrubs and other natural areas Discontinuous medium density urban fabric 

16 Forests, Scrubs and other natural areas Discontinuous low density urban fabric 

17 Forests, Scrubs and other natural areas Industrial, commercial and transport units 

18 Forests, Scrubs and other natural areas Arable land and permanent crops 

 

 

6.2.4 Scenarios 

 

The overarching aim was to design scenarios that reflect different economic 

performance realities and planning options. The scenarios were based on the observed 

historical trends during the 25 years period of focus. After mapping (Figure 8) and 

quantifying (Figure 4) the historical trends, it is evident that the LULC change 

dynamics in Attica region were notably uneven, a fact that clearly reflects different 

phases of economic development and performance.  
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Figure 4. Summary of statistics based on the classified maps and relative percentages of artificial 

areas. Three different trends reflect three different levels of development during the last 25 years. 

 

Thus, similarly to the idea behind the approach presented in chapter 4, three 

scenarios, namely “medium development”, “high development” and “low 

development”, were composed in order to reflect the uneven historical trends occurred 

in Attica region:   

Medium development reflects the period 1991–1999 where the outskirts of Athens 

conurbation, especially the uplands and Messoghia plain are re-brought to the fore and 

into the development path. The Athens conurbation experiences a steady population 

increase as a result of rural depopulation and external migration because of the 

economic potential, the job opportunities and the social amenities that Athens has to 

offer. This constant societal demand to capture new economic opportunities and the 

centralization tendency triggered another tendency where Athenians, seeking a better 

quality of life, moved to the outskirts of Athens to areas with less urban density. 

Consequently, an increase in the housing demand and in turn the housing construction 
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led to a boost in urban growth at the expense of other less profitable land uses and 

progressively brought radical changes in the peri-urban landscape.  

High development reflects the period 1999–2010 where the Attica region experiences 

exponential rise and permissive urban policies following the trends observed during the 

pre-olympic and meta-olympic period when the fiscal crisis was still less evident. 

During this time, the steady population increase along with the housing demand 

culminates while extensive regeneration of the waterfront also takes place, channeling 

changes in real estate dynamics towards tourism-specialized settlements and second 

homes. Planning and spatial policies contribute towards this direction, allocating funds 

and promoting the socio-economic restructuring. Specifically, investment in 

transportation infrastructure, enhances the accessibility to both three sides of Athenian 

growth (Northern outskirts- Maranthon, Oropos, Messoghia and Thriasio plains), 

triggering a population influx and a concurrent increase in housing construction. 

Consequently, infrastructure, firm headquarters, enterprises and shopping centers 

colonize these areas, leading to an economic polarization and economic functions re-

concentration. Last but not least, during this time, land use planning controls are not in 

place, as unregulated built-up expansion is approached as a shortcut to economic 

growth.  

Low development scenario reflects the period 2010–2016 and keeps the development 

pace very low as a consequence of economic scarcity and lack of investments. The 

economic functions as well as the population flows remain stable following a low pace. 

An amount of already built residences, intended to meet the needs for both second or 

primary housing, remain uninhabited (unsold or unfinished) while many already 

constructed industrial and commercial facilities remain unexploited. At the same time 

the demand, shaped by economic scarcity and population low rates, is lower than the 

already built and available buildings leading to a low to very low building rate in the 

area. All three scenarios were composed under the assumptions that profound social 

and political changes will not occur, as well as any other extreme events and 

accessibility in the area will remain stable. As far as land use regulations and legislative 

frameworks are concerned, it is assumed that especially in the medium and high 

development scenarios, will continue to be loose in the face of development potential. 
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6.2.5 Model calibration  

The CA model designed and implemented in Dinamica EGO platform following 

a similar methodology to chapter 4. A crucial step, prior to the prediction phase is the 

model’s calibration. To calibrate the model and evaluate the goodness of fit, a 

comparison of simulated maps with a reference/observed maps is the most efficient way 

(Gounaridis et al. 2018). Any CA modeling framework involves four components: the 

probability maps, the historical LULC maps, the transition rules and the neighborhood 

characteristics that define the parameters of the simulation.  

In this case, initially the model was set to train based on the 1991-2010 period, 

and the observed changes were used to predict the landscape structure and composition 

on 2016. To do so, the annual rates of change per LULC category between 1991 and 

2010 were calculated employing the transition matrix function. Next, the 

parameterization set up required the computation of two landscape metrics, the mean 

and the variance of patch size and the patch isometry in order to replicate the actual 

conditions of the area in terms of structure and composition. In general, an increased 

patch size results in less-fragmented landscapes, while the patch size variance denotes 

the diversity of newly developed patches. Isometry usually varies from 0 to 2 and thus, 

the greater the isometry the more isometric (equal) the newly developed patches. The 

first metric was computed for the input LULC map (2010) while the latter was adjusted 

through the trial and error process. Last, the 18 transition probabilities were stacked and 

consisted the cell allocation target area where cells with the highest likelihood values 

are supposed to change first. The model was then set to run and predict 2016. To 

evaluate the model's performance, the simulated LULC map of 2016 was compared 

with the observed LULC map of 2016 (resulted from classification) using the fuzzy 

similarity index at multiple resolutions (Gounaridis et al. 2018, Hagen, 2003).  

 

6.2.6 Scenarios simulation 

After calibration, the projection of LULC changes under the three scenarios 

implemented taking 2016 as the initial year and 2040 as the final year, in a 5-year time 

step. The parameters used to calibrate the model were kept constant and only the 

quantity of LULC transitions per scenario were changed. A transition matrix was 

constructed for each epoch (1991-1999; 1999-2010; 2010-2016), to reveal the quantity 
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of each possible transition per scenario (Table 5). Ideally, the predictor variables (Table 

4) and in turn the transition probabilities surfaces would also change per scenario, to 

better reflect the socio-economic conditions of each epoch, but in this case this option 

was impossible due to data unavailability and temporal mismatch.  

Table 5. Transition probabilities allocated per scenario. The numbers indicate transition rates per year 

in hectares.  

 

From To 
Medium 

development 
High 

development 
Low 

development 

Discontinuous dense urban fabric Continuous urban fabric 0,319 0,392 0,051 

Discontinuous medium density 
urban fabric 

Continuous urban fabric 
0,029 0,040 0,005 

Discontinuous medium density 
urban fabric 

Discontinuous dense urban fabric 
0,356 0,384 0,070 

Discontinuous low density urban 
fabric 

Continuous urban fabric 
0,001 0,004 0,001 

Discontinuous low density urban 
fabric 

Discontinuous dense urban fabric 
0,044 0,049 0,008 

Discontinuous low density urban 
fabric 

Discontinuous medium density 
urban fabric 0,383 0,436 0,022 

Arable land and permanent crops Continuous urban fabric 0,001 0,002 0,000 

Arable land and permanent crops Discontinuous dense urban fabric 0,010 0,019 0,001 

Arable land and permanent crops 
Discontinuous medium density 
urban fabric 0,026 0,043 0,005 

Arable land and permanent crops 
Discontinuous low density urban 
fabric 0,049 0,174 0,055 

Arable land and permanent crops 
Industrial commercial and 
transport units 0,018 0,045 0,014 

Arable land and permanent crops 
Forests Scrubs and other natural 
areas 0,090 0,099 0,083 

Forests Scrubs and other natural 
areas 

Continuous urban fabric 
0,000 0,000 0,000 

Forests Scrubs and other natural 
areas 

Discontinuous dense urban fabric 
0,001 0,002 0,000 

Forests Scrubs and other natural 
areas 

Discontinuous medium density 
urban fabric 0,002 0,004 0,001 

Forests Scrubs and other natural 
areas 

Discontinuous low density urban 
fabric 0,007 0,029 0,002 

Forests Scrubs and other natural 
areas 

Industrial commercial and 
transport units 0,001 0,002 0,001 

Forests Scrubs and other natural 
areas 

Arable land and permanent crops 
0,060 0,064 0,056 
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6.2.7 Multi-resolution sensitivity analysis 

 

After completing the simulation process per scenario at 30m spatial resolution, 

a sensitivity analysis conducted following an approach with multiple resolutions. The 

central premise behind this step was that the spatial resolution of the models’ inputs can 

have important and substantial effects on the output, and thus potentially this parameter 

can limit or even enhance the ability of a model to project future scenarios of LULC 

change. Sensitivity analysis is a process that examines the variation in model outputs 

in response to variation in a set of model parameters, in this case the spatial resolution 

of input data. It was hypothesized that when all other parameters of the model are held 

constant and only spatial resolution of inputs changes, the quantities, the spatial 

allocation and thus the spatial patterns of outputs can differ.  

 

Figure 5. Variation of Patch Size Std landscape metric used to feed each calibration model, according 

to spatial resolution 
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Thus, the overarching aim of this step was to compare the outputs of models at 

the native resolution (30m) and at several coarser resolutions (100m, 250m, 500m) and 

identify areas of change that are common regardless the spatial resolution of the inputs. 

To do so, the outputs of the initial LULC classifications were resampled to 100, 250 

and 500 meters respectively and change detection was performed for each case. Next, 

the transition probabilities were re-constructed through RF regression after resampling 

all predictors for each case. The calibration followed the same steps as aforementioned. 

The landscape metrics along with the transition quantities were re-calculated and 

introduced to the models for each case (Figures 5 & 6). After calibration, each scenario 

was simulated based on the transitions observed throughout each of the three epochs. 

Finally, all maps generated from each run were overlapped using a cross classification 

technique, in order to produce the final map per scenario.  

 

Figure 6. Variation of Mean Patch Size landscape metric used to feed each calibration model, 

according to spatial resolution 
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6.3 Results and discussion 

 

6.3.1 Historical land use/cover change  

 The classification of the five mosaiced Landsat images reveal the LULC 

changes occurred in Attica region during a 25 years period. Overall accuracy for all 

images ranged from 90.5% to 93.5%. (Table 6). Results are depicted in Figure 8. Apart 

from mapping, the resulting maps were also quantified in order to have a quantitative 

insight on the transitions occurred. In conjunction with Figure 4 which depicts the 

increase in the built-up land categories, Figure 7 provides a quantified picture of the 

LULC changes observed in Attica region.  

 

Figure 7. Summary of statistics based on the five classified maps and relative percentages of LULC 

categories.
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Figure 8: Results of the LULC classification 
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Table 6. Error matrix - Resulting map per year against reference samples. O.E: Omission Error; C.E: Commission Error; O.A: Overall Accuracy. 1: Continuous urban fabric. 

2: Discontinuous dense urban fabric. 3: Discontinuous medium density urban fabric. 4: Discontinuous low density urban fabric. 5: Industrial commercial and transport units. 

6: Arable land and permanent crops. 7: Forests Scrubs and other natural areas. 8: Other (open spaces, bare land, mine, inland water) 

 

  1991  1999  
  Result         Result         

  1 2 3 4 5 6 7 8 O.E 1 2 3 4 5 6 7 8 O.E 

R
ef

er
en

ce
 

1 681 11 3  9    97% 1012 28 6  8    96% 
2 14 631 28  12 2 2 2 91% 58 1174 22  18 2 6 14 91% 
3 31 51 1710 58 4 6 6 4 91% 32 67 1833 15 15 6 3 11 92% 
4 8 20 104 1288 12 20 10 8 88%  28 90 1426 36 24 12 4 88% 

 5  10 15 10 515 15 5 10 89% 25 20 15 5 859 15  10 91% 

 6 12 13 40 148 24 6576 168 28 94% 6 46 48 196 26 4946 120 26 91% 

 7  8 6 42 11 109 2337 11 93%  21 63 22 16 188 2427 19 88% 

 8     1 7 10 16 11 258 85%     10 24 14 28 14 456 84% 

 C.E 91% 85% 90% 83% 86% 98% 92% 80%  89% 85% 88% 84% 87% 95% 94% 84%  
 O.A 92,2%         90,5%         
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2003 

 

 
                                         2010 

  Result         Result         

  1 2 3 4 5 6 7 8 O.E 1 2 3 4 5 6 7 8 O.E 

R
ef

er
en

ce
 

1 1323 42 10  19   1 95% 1838 51 21  14  1  95% 
2 56 1658 52 4 20 8 6 4 92% 72 2241 42 10 36 4 8 12 92% 
3 30 35 2276 30 38 3 12 16 93% 21 46 2299 63 31 15 21 9 92% 
4  48 86 2682 56 64 24 12 90%  48 91 3246 76 42 40 10 91% 

 5 25 20 15 20 1165 30 10 10 90% 33 20 40 21 1798 25  7 92% 

 6  32 46 228 38 4128 60 16 91%  6 18 162 54 4091 64 12 93% 

 7  7 21 61 21 224 2860 24 89%  14  48 28 207 3528 14 92% 

 8     8 6 14 20 19 443 87%   8   16 11 14 20 490 88% 

 C.E 92% 90% 91% 88% 85% 92% 96% 84%  94% 92% 92% 91% 88% 93% 96% 88%  
 O.A 90,7%         92,3%         
  2016    
  Result                  

  1 2 3 4 5 6 7 8 O.E          

R
ef

er
en

ce
 

1 2683 59 19  24  2 2 96%          
2 80 3252 76 18 42 22 10 8 93%          
3 24 61 2964 101 35 17 36 20 91%          
4 4 32 92 5446 78 112 44 1 94%          

 5 55 30 30 30 2325 105  17 90%          
 6  6 12 36 30 4866 66 26 97%          
 7  14  35 28 182 4823 22 94%          
 8       16 16 34 24 616 87%          

 C.E 94% 94% 93% 96% 90% 91% 96% 87%           
 O.A 93,5%                  
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The most significant changes are the urban and industrial expansion which 

started to be evident since 1999 and culminated in 2010. Especially the discontinuous 

low density urban fabric started to increase rapidly by 2003, reaching 7% (from 2.5% 

in 1991) and this trend continued until 2016, reaching 12%. The continuous as well as 

the discontinuous dense urban fabric, almost doubled throughout the study period, 

reaching 5.5% and 4.8% respectively in 2016, while in 1991 they were about 2.6% and 

2.3% respectively. These trends clearly reflect the previously discussed 

decentralization of Athenians to areas with less density. It is worth noting that after 

2010 the development trends remain positive but start to decline as a consequence of 

the dramatic decrease of investments and the overall economic deterioration of the 

demand and supply equilibrium. All the aforementioned development trajectories took 

place at the expense of agricultural areas which were about 40% in 1991 and declined 

to 23.5% in 2016.  

 

Figure 9. Urban trajectories observed between 1991-2016 (includes all urban fabric categories). 
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The forests and natural areas category remained relatively stable, decreasing 

only by 3% in 25 years. To even better highlight the observed trajectories of the most 

prominent changes, a suite of maps portraying each major LULC change was created. 

Figure 9 depicts the urban expansion as well as the increase in density occurred during 

the last 25 years in Attica region. As can be seen, urban sprawl is obvious mostly in the 

northern and eastern parts of Attica, while in the west, it is less but still evident. The 

majority of sprawl occurred in the waterfront, especially in the Messoghia, in 

Marathonas, in Oropos and in the south east of Athens. The northern suburbs of Athens 

also experienced an amount of expansion, but the most dominant type of change in this 

area was the infill that consequently led to significant increase in density. Also notable 

is the pattern of uneven development between the three different periods. The majority 

of LULC changes took place during the 1999-2010 period in all types of urban 

categories while the period 2010-2016 demonstrates the less changes. Regarding the 

types of sprawl, all types (namely suburban growth, leap-frog development, strip 

development and scattered development), can be observed in the area, a fact that can 

be attributed to a loose regulatory framework and to the absence of a planning scheme.  

Figure 10 depicts the expansion of industrial, commercial and transport units, 

occurred the last 25 years in Attica region. Thriassian plain, located in the west of 

Athens as well as Messoghia plain located to the east, experienced the largest amount 

of this type of LULC change. During the period 1991-1999, Thriassian plain faced a 

notable industrial expansion while during 1999-2010 period the constraction of the new 

international airport in Messoghia, dominates. These two areas facilitated the expansion 

and were targeted due to two main advantages. First, they were both interlinked with 

Athens both in terms of easy access from and to Athens and as a pole of working hands. 

Additionally, they had morphological features suitable for construction activities, with 

available land and very low land costs. However, these two areas have different 

attributes. Thriassian plain, is mainly occupied by industrial facilities such as oil 

refineries, steel mills, military bases and centers of transshipment. Messoghia plain, on 

the other hand, is occupied by commercial clusters surrounding the newly development 

transport units and by large physical infrastructure facilities such as the Olympics 

related venues and the new international airport.  

Urban and industrial expansion occurred the last 25 years in Attika region, 

mostly affected the agricultural land leading to a considerable amount to be consumed 
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over built-up land categories. Figure 11 depicts the aggregated loss of agricultural land 

over the past 25 years. As can be seen, almost all the surrounding areas of the greater 

Athens, experienced severe agricultural land loss. In an analogous fashion with the 

urban and industrial expansion (Figures 9 & 10), the agricultural land loss is more than 

evident in the Thriassian plain, west Attica, Oropos, Marathonas, Messoghia plain and 

southeast of Athens. The vast majority of this loss occurred during the period 1991-

2010.  

 

 

 

Figure 10. Industrial expansion observed between 1991-2016. 
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This is primarily due to the socio-economic and political changes occurred in 

each of these localities, encouraging population shifts that in turn affected the housing 

(both residential and second home) demand as well as the demand for construction sites 

and thus leading to different land uses competing for the available land. Urban 

development commonly associates with an increase in the market value of nearby lands 

uses and this why usually, residential, industry and commercial uses tend to dominate 

over less profitable lands in the bid for space. Consequently, owners of proximate 

agricultural lands may welcome nearby urban development, considering it as a way to 

expand the value of their properties. Moreover, land owners of Attica, were encouraged 

by the weak regulation mechanism. The only available land for development at low 

costs, in the case of Attica, was agricultural land and in conjunction with the loose 

regulatory mechanisms, land owners switched their land use into more profitable 

pathways.  

Finally, Figure 12 depicts the changes related to the forests and natural areas 

land. As revealed also from the quantitative information (Figure 7), the forests and 

natural areas had a relatively slight decrease. Changes are located mostly in the urban 

periphery especially in the boundaries of already established urban agglomerations, in 

the northern part of Athens. Also, notable losses can be seen in the northern suburbs of 

Athens, in the boundaries of Hymettus mountain and in cape of Sounio. Most of these 

changes are associated with urban sprawl tendencies as well as forest fires which are 

frequent in the region and often accused of being human-intended due to land 

speculation.  
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Figure 11. Agriculture loss observed between 1991-2016. 
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Figure 12. Forests and natural areas loss observed between 1991-2016. 

 

6.3.2 Transition probability modeling performance 

 The transition probability surfaces were constructed using the RF modeling 

framework. The performance of the models was assessed using the Areas Under Curve 

(Figure 13). As can be seen, the algorithm efficiently handled 27 heterogenous factors 

derived from multiple sources and expressed in different scales, units and resolutions.  
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Figure 13. Performance of the transition probability modeling based on Relative operating 

characteristic curves (ROC) and area under curves (AUC) (LULC types are aggregated for 

demonstration purpose. 
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6.3.3 Model calibration and performance 

One common way to assess the level of model calibration and performance is 

to compare the simulated map for a given year versus the observed map which is often 

derived from classification of satellite data. Figure 14 depicts the resulting map of 2016 

after calibration versus the reality (observed map of 2016). A visual comparison of 

these maps shows the relatively high similarity. This suggests that the RF-CA model 

was relatively accurate at allocating the LULC patterns of change in the study area.  

 

Figure 14. The simulated map of 2016 versus the observed of 2016 (reality).  

 

Figure 15 illustrates the fuzzy similarity index computed based on the overlay 

of the two maps. The fuzzy similarity index evaluates the model’s performance over a 

range of resolutions. The accuracy assessment yielded a spatial fit of 85.18% within the 

1x1 window size radius which improved to 95.08 % when widened to a 15x15 window 

size. Again, the high scores in performance suggests that the suite of 27 predictor 

variables were used efficiently and the RF algorithm performed well with an adequate 

fit. 
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Figure 15. Multi-resolution evaluation of model fitting using the fuzzy similarity index. 

 

Figure 16 depicts the components of agreement and disagreement between the 

simulated versus the observed maps. This type of accuracy assessment reveals 

information about the (i) observed change simulated correctly as change (hits), (ii) 

observed persistence (that is, LULC remained unchanged) simulated correctly as 

persistence (null successes), (iii) observed change simulated incorrectly as persistence 

(misses), and (iv) observed persistence simulated incorrectly as change (false alarms). 

Most importantly, the model predicted accurately the leap-frog development and this 

proves the added value of the Leap-frog development index and the extensive training 

of the RF model.  
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Figure 16. Result of cross classification between the simulated vs the observed map of 2016. 

 

6.3.4 Factors contribution to land use/cover changes 

 The process of model calibration involved a critical step for the transition 

probabilities surfaces construction. In the form of spatial variables, 27 factors (Table 4) 

that were able to serve as proxies that describe the historical LULC patters were 

incorporated into a RF regression model. The variables spanned a range of different 

aspects, assumed to geographically explain the phenomenon and can be broadly 

categorized into territorial, socio-economic and land use factors. Given that the majority 

of transformations experienced in the case study, were related to urban and industrial 

categories, the list of variables was formed with an aim to incorporate in the model, 

spatial determinants that reflect that peoples' choices about residential and 

infrastructure location. For instance, territorial variables such as elevation, slope and 
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aspect influence the inherent quality of a certain location and define the land suitability 

for built-up expansion. Proximity to the sea, to blue flagged beaches as well as to areas 

of high nature value or urban green are also an adding value in pursuit of a better quality 

of life and aesthetics for both primary or second-homes. Proximity to the city center of 

Athens or to nearest towns, to public transport, and the road density are proxies that 

reflect the commuting distance to work while distance to education, health, public 

buildings and enterprises density serving as proxies to amenities. Demographic and 

socio-economic proxies such as changes in population density, employment and 

unemployment rates provide insights on the shifts in the socio-economic profile of the 

area (per municipality).  

This suite of geographical data was derived from multiple different sources and 

represented in different scales, units and resolutions. The modeling scheme employing 

the RF regression, efficiently (Figure 13) handled the fusion of these data in order to 

produce the transition probabilities surfaces and to quantify each variable’s contribution 

to the outcomes (Figures 17 & 18). Certain advantages for adopting the RF algorithm 

for data fusion (also demonstrated in chapters 1,2,3 & 4) were notable in this case. First, 

RF efficiently handled different types of data expressed in both categorical and 

continuous variables facilitating the incorporation of any type of inputs. Second, RF 

proved insensitive to overfitting and collinearity of inputs was not an issue.  Third, 

normal distribution of inputs was not a prerequisite and the algorithm performed well 

when coping with non-linear relationships between response and predictor variables. 

Fourth, RF offers meaningful metrics about the importance of each predictor variable. 

To quantify the actual importance and contribution for each of the 27 predictor 

variables, two metrics, the Mean Decrease Accuracy (%IncMSE) and the Mean 

Decrease Gini (IncNodePurity) were computed.  
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The mean decrease in Gini coefficient informs about each variable’s 

contribution to the impurity of the resulting random forest model. Variables with a high 

value in the decrease of Gini score, tend to have nodes with high purity which is a 

measure of model’s homogeneity. As can be seen in Figure 17, road density, enterprises 

density and elevation contributed the most for changes related to dense urban fabric, 

while the same variables along with the distance to shoreline and education centers are 

the most related to discontinuous dense and medium density urban fabric. For the 

discontinuous low density urban fabric, which is a category broadly related to second 

homes, distance to shoreline, to blue flag beaches, elevation, road density and 

enterprises density were the most influential variables.  

 

Figure 17. Mean Decrease Gini (IncNodePurity) as assigned by the RF regression algorithm 
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The mean decrease in accuracy is a score that informs about how much the 

accuracy decreases if a variable would be excluded from the model. Therefore, the 

larger the value of mean decrease, the higher the importance of a variable is. As shown 

in Figure 18, road density, distance to natural reserves, to prefecture center and to 

shoreline, as well as slope and elevation were the most influential variables for changes 

related to dense urban fabric. The same variables along with the distance to beaches, to 

urban green areas and to public buildings were the most influential to changes related 

to discontinuous dense and medium density urban fabric. For the discontinuous low 

density urban fabric, the elevation slope, road density along with the distance to urban 

green, to shoreline, to natural reserves and to prefecture center contributed the most into 

the spatial changes description.  

 

Figure 18. Mean Decrease Accuracy (%IncMSE) as assigned by the RF regression algorithm 
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6.3.5 Multi-resolution sensitivity analysis 

The simulation models implemented in order to explore alternative trajectories 

of LULC changes that will occur in Attica region by 2040, under the three scenarios. 

To gain in robustness of predictions and to obtain unbiased results in regard to the 

spatial resolution of inputs, the modeling process was subject to a multiple resolution 

sensitivity analysis. To do so, besides the nominal resolution of 30m, the whole process 

was repeated resampling all inputs, required for the CA modeling, at 100m, 250m and 

500m. It is worth noting that all models were identical in terms of inputs and 

parameters. Transition probabilities were re-modeled and the landscape metrics were 

re-calculated and re-introduced to the model for each case. The outputs of each model, 

implemented in different resolutions, were overlapped and cross classified in order to 

produce the final map for each of the three scenarios. Figures 19-21 depict the results 

for the medium, high and low development scenarios respectively. As can be observed, 

the models yield similar patterns for each scenario but as the resolution increases, the 

patterns tend to become more aggregated and smaller patches of change tend to be lost. 

This provides evidence that the technical characteristics and quality of inputs have 

substantial impact to the outputs of a model and thus to the observed patterns and to the 

conclusions drawn. Even if a model is rigorously calibrated the predictability will 

decrease analogously to the spatial resolution, and the patterns revealed in the results 

will become less informative. Figure 22 illustrates the correlation between transition 

probabilities for continuous urban fabric per different spatial resolution. It is another 

evident of the influence the spatial resolution has on various consecutive steps of the 

modeling process. The values were collected at the location of 1000 random samples, 

dispersed across the transition probability surface generated at 30m, 100m, 250m and 

500m. Gradually as the pixel size increases, the correlation between the transition 

probability surfaces tend to decrease. The higher correlation value can be observed 

between the 30m and 100m pixel size while the 500m is the least correlated with the 

rest.  
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Figure 19. Resulting map of “medium development” scenario at various spatial resolutions 
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Figure 20. Resulting map of “high development” scenario at various spatial resolutions 
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Figure 21. Resulting map of “low development” scenario at various spatial resolutions 
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Figure 22. Pearson correlation between transition probabilities for continuous urban fabric category. 

The values derived from 1000 random samples, dispersed across the study area 

 



174 
 

6.3.5 Final results 

After the multiple resolution sensitivity analysis, the final maps illustrate the 

LULC synthesis and configuration of Attica region in 2040. Figures 23-25 depict the 

land use/cover changes projection under the three scenarios and Figure 26 provides a 

quantified insight to the final results.  

Figure 23. LULC spatial configuration simulated for 2045, under the Medium development scenario. 
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Figure 24. LULC spatial configuration simulated for 2045, under the High development scenario. 
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Figure 25. LULC spatial configuration simulated for 2045, under the Low development scenario. 
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Figure 26. Rates of LULC simulated for 2040 in a 5-year step, under the three different development level scenarios
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Under the medium development scenario and with a pace of development 

equivalent to that of 1991–1999, the artificial surfaces are expected to expand 

predominantly at the expense of other less profitable land uses. Urban areas are 

expected to reach 41%, of which 17% will be discontinuous low density urban fabric.  

Industrial areas are expected to occupy almost 8% of the total area. At the same time 

agricultural areas are expected to decline from 23.5% in 2016 to 10% in 2040. Most 

changes will occur along the waterfront and to the urban periphery of Athens, 

particularly at the Messoghia, Thriassian, Marathonas, Oropos and Sounio areas. 

Additionally, in these areas, pre-existing urban and industrial clusters portray a 

tendency to infill, to become denser and to expand considerably, ending up almost 

connected with the Athens urban fringe, especially the northern suburbs. The waterfront 

especially in Messoghia, Marathonas, Oropos and Sounio, is also expected to exhibit 

remarkable changes as the existing towns obviously tend to expand and become densely 

infilled while the shoreline almost will almost convert to a large and solid low density 

urban patch. Leap-frog development is also expected to increase sharply around 

junctions of infilled areas, main roads and already established urban patches.  

Under the high development scenario, where the pace of development reflects 

the period between 1999 and 2010, the artificial surfaces are expected to increase 

remarkably and occupy more than half of the total surface of Attica region (56.7%). 

The urban use, is expected to occupy an area of almost 48% in 2040 which can be 

translated to a 21% increase while at the same time the agricultural areas are expected 

to decrease by 18%, occupying only 5.2% of the total area (Figure 24). Discontinuous 

low density urban fabric will reach a high peak of almost 21% of the total area, while 

continuous dense and discontinuous high density urban fabric are expected to reach 9% 

and 10% respectively. All these accelerated landscape transformations are expected to 

occur throughout Attica region leading to a mosaic of mixed land uses of which the 

settlements dominate. Again, most changes are observed along the waterfront and to 

the surroundings of Athens, particularly at the Northern suburbs of Athens, Messoghia, 

Thriassian, Marathonas, Oropos and Sounio areas. Pre-existing urban and industrial 

clusters will infill, become denser and expand considerably. The urban fringe of Athens 

will be channeled to all directions and is expected to completely connect with the 

waterfront existing patches (Marathonas, Messoghia, Sounio, Thriassian, west Attica) 

and the northern suburbs up to Oropos area forming a large and solid urban patch with 
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low, and at places, medium density. The effect of proximity to the shoreline as well as 

the amenity driven residential tendency is especially pronounced in the outer city due 

to the residential preferences. In the western part of Attica, the Thriassian plain is 

expected to experience a considerable increase in industrial development and a notable 

increase in medium density urban use. Last but not least, the density of urban areas will 

increase sharply, especially in the northern and eastern suburbs of Athens.  

Under the low development scenario, an increase of approximately 6% in the 

area occupied by artificial surfaces is also expected but with considerably lower 

magnitude, in terms of landscape structure and composition, compared to the previous 

scenarios. For instance, the discontinuous low density urban fabric is expected to 

occupy 15% of the total area, which is only a 3% increase from 2016. Continuous dense 

and discontinuous high density urban fabric are expected to reach 6.5% and 5% 

respectively. Following the pace of the “recession period” between 2010 and 2016, 

expansion is observed throughout the study area but in lower extent and in a more 

compact form. The expected changes will mostly occur around the road network and 

the waterfront (particularly to areas of the eastern and northern parts of Attica). Already 

existing patches of urban areas appear infilled rather than expanded while leapf-rog 

development is also expected mostly around areas characterized by favorable 

conditions such as proximity to Athens as well as to the town centers and around the 

motorways connecting Athens to the periphery. Regarding the urban density, slight 

changes are expected in the northern suburbs of Athens.  

 

6.4 Conclusions 
 

Methodologically, the semi-automated sampling used for classifying the LULC 

categories proved efficient and reduced significantly the limitations regarding the 

resources consumption. The spectral controlling approach also played an important role 

in building robust and accurate models for each year as well as to the uncompromised 

backwards automated training strategy. For the modeling part, in accordance with the 

approach described in chapter 4, coupling of CA and RF proved to be a sound way to 

combine the advantages of each approach. Implementing the RF algorithm for 

transition potential modeling, allows the efficient fusion of qualitative and quantitative 

data derived from multiple sources, with different nature in terms of scale and origin, 
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overcoming the collinearity and distribution issues. The predictors incorporated in the 

models proved capable to spatially determine the phenomenon while the incorporation 

of the Leap-frog index, at the regional level this time, assisted the models in the face of 

sprawl detection and, in turn, prediction. In this approach, a total of 18 distinct 

transitions were identified and equal transition probability surfaces were generated. 

Their combination in a CA modeling environment seemed challenging and required 

intense training and calibration through trial and error. Currently, most models can only 

simulate limited possible transitions due to complexity in definitions, attributes and 

transition rules. But in reality, even to a locality, different LULC dynamics occur 

simultaneously and affect each other. Thus, a comprehensive outlook of these processes 

is much more effective in order to determine realistically the future trajectories. The 

interactions and competition among different type of LULC was explored by using a 

simple yet effective competition mechanism, in which the combined probabilities are 

manipulated as a single layer stack containing all the probability surfaces. Each layer 

represents one single possible transition while each cell contains values denoting the 

dominant LULC type and the likelihood to retain the current land type or transform to 

another type. The reproduction of LULC patterns and the calibration procedure, as a 

whole, improved considerably with the inclusion of landscape metrics, that fed the two 

complimentary sub-models Patcher and Expander, by taking into account actual 

parameters of the study area. The adoption of the fuzzy similarity index at multiple 

resolutions for assessing the models’ spatial fit was another advantage of the approach 

as it performs comparisons of simulated versus observed data within a neighborhood 

context and not in a strict per pixel context. Finally, the approach presented in this 

chapter provided results that are insensitive to spatial resolution bias, after 

implementing the multiple resolution sensitivity analysis. Since the modeling 

approaches generate outputs that are more or less driven by the parameters and 

characteristics of input data, the results obtained by this approach and the patterns 

demonstrated, are consistent to all pixel sizes and thus insensitive to the effect of pixel 

size. 

This chapter demonstrated an integrated approach to explore potential future 

LULC dynamics in the Attica region under three scenarios that reflect different 

economic performances and policy options. The third scenario which is linked to low 

development can be translated to the so-called business as usual scenario where the 
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current economic functions continue relatively unchanged and the financial crisis 

persists and keeps the building demand and supply at low levels. Results obtained from 

the medium and high development scenarios, can be translated in various ways. Apart 

from the straightforward research question of how LULC of Attica will be structured 

and composed under potential economic development rates, it can also be translated to 

how Attica would look like in case the economic crisis would be sidestepped. Another 

important aspect could be in regard to the absence of a regulation mechanism and the 

permissive and weak overarching spatial planning framework. The results obtained can 

be valuable in gaining insights and visualizing the outcomes of economic development 

goals that take precedence over virtually all other spatial planning priorities. They can 

be informative about the significant negative environmental and cultural externalities, 

carried by each alternative economic performance reality and land-use planning context 

and choice. The results stress that the negative consequences can undermine the very 

economic prospects and the sustainability of the area. The various ways the results can 

be interpreted, makes the scope of the findings to become wider and forms a broader 

foundation for debate. In the absence of intervention and adequate regulation, the first 

two scenarios demonstrate continued expansion of urbanization-driven development 

that is expected to compete with, and likely consume, a large amount of areas occupied 

by agricultural land uses and natural areas, throughout the region. The magnitude and 

distribution of development, demonstrated in both scenarios, can diminish the 

ecological and cultural equilibrium of the region, and this finding underscores a 

significant tradeoff.  
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Chapter 9: Conclusions 
 

This dissertation aimed to explore part of the complexity that characterizes the 

LULC changes system and accomplished to meet the primary objectives and the 

scientific challenges that emerged during the process. A range of state of the art 

methodologies that lie in the Geoinformatics, satellite remote sensing and spatial 

modeling disciplines were assembled in order to build an integrated methodological 

framework for detecting historical changes, delineating and quantifying the factors and 

sub-factors that drive these changes and sketching alternative future LULC trajectories.  

The integrated methodological framework was devised in order to sufficiently 

i) take into account the multiple scales involved in LULC systems, ii) provide insights 

into hidden patterns, by taking into account not only the prominent changes between 

major LULC categories, but also changes in density, iii) detect LULC changes in a 

temporal resolution that enables the identification of uneven patterns throughout the 

study period which in turn enables the sound delineation of scenarios, iv) take into 

account socioeconomic, biophysical, legislative and land use factors spanning a broad 

spectrum of LULC change driving forces and finally to v) provide results that are 

subject to sensitivity analysis and unbiased to the technical details of inputs.  

To answer the research question of how can heterogenous data, be 

efficently combined in a LULC modeling framework, it is demonstrated in 

two case studies by incorporating in the modeling framework data derived 

from multiple sources, expressed at various scales and resolution. Given that, the data 

used as input in any model, affect the outcomes, the validity, usefulness and the 

accuracy of the model, studies that utilize only data that concern a single scale or spatial 

resolution, fail to account for a wide range of information and their transferability is 

limited. Data expressed at coarse scales might hold information and patterns that are 

invincible at more detailed scales and vice versa. Furthermore, factors that determine a 

LULC change, might operate at a distance from the area of focus. Thus, when dealing 

with a system that involves multiple nonlinear relationships and various proximate and 

underlying factors, it is necessary to consider all available information. This 

dissertation exploited all possible resources and efficiently fused and integrated the 

available multi-scale and multi-resolution data. ii) The models’ calibration was based 

on a fuzzy similarity index that considers the similarities of neighborhood in a growing 
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moving window and not a strict cell by cell comparison. To overcome the fact that the 

spatial resolution of inputs plays a major role to the outcomes of models, a multiple 

resolution sensitivity analysis was also applied. iii), The simulation results were subject 

to a multiple resolution sensitivity analysis.  Under the assumption that the spatial 

resolution of the models’ inputs can have important effects on the output, this parameter 

is central to the ability of a model to project future scenarios of LULC change. Thus, it 

was hypothesized that when the spatial resolution of inputs changes while all other 

parameters of the model are held constant the quantities, the spatial allocation and the 

spatial patterns of outputs can differ. The results after this step identify areas of future 

LULC change disregarding the spatial resolution of inputs and are unaffected by the 

bias they entail. iv) Finally, this dissertation included a modeling case study at the local 

scale (Messoghia plain) and one at the regional scale (Attica region). After detecting 

and quantifying the historical LULC changes, it was noted that the results were uneven. 

For instance, Messoghia (which are located inside the wider Attica region) experienced 

four distinct periods of development, while for Attica region, the periods of 

development were three. This fact underscores the aforementioned that different scales 

of analysis reveal different patterns and that the results obtained from a scale specific 

case study are not representative for the wider context. 

Regarding the spatial determinants to the different types of LULC changes, the 

dissertation incorporated a total of 27 variables into the modeling process. By 

implementing 18 different models representing every possible LULC transition, the 

contribution of each factor was quantified using two meaningful metrics. After applying 

all these models, four clear messages emerge: First, the results demonstrate that 

depending on the LULC type, different factors are dominant in spatial determination of 

changes. Especially the interrelations of urban related categories, can be clearly 

distinguished according to density which translates in different residential use (eg 

second homes). In densely built urban areas, spatial determinants such as road density, 

enterprises density, amenities (health, education) and accessibility to the municipality 

center were the most dominant. In urban areas with less density, distance to shoreline, 

to blue flagged beaches were among the most important. The results converge with the 

literature about those factors, especially with studies that looked at the coastal zone of 

Mediterranean countries. Second, many of these factors that deemed as “drivers of 

change”, can be actually “driven by” the changes. In other words, it is hard to interpret 
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whether these factors are causes or consequences of urban growth. As an example, the 

road or the enterprises densities that rank among the top correlations, might actually 

just follow the patterns of settlements. Third, some factors that rank among the top 

determinants for a type of LULC change, may have a strong positive or negative 

correlation coefficient with the phenomenon. For instance, the slope and elevation 

variables, rank high in the urban categories and this is mostly due to the geomorphology 

of Attica region, where a large amount of settlements is concentrated into plains. 

Finally, it is important to be noted that all these patterns and numbers are case specific 

and the conclusions drawn from the quantitative insights are not necessarily fully 

transferable to other regions. Even if Attica region can be aptly categorized into groups 

like coastal areas, Mediterranean cities or regions containing a big metropolitan area, 

and apparently share some common attributes or patterns. This is mostly due to 

specificities apparent only in the region, for example the physical constraints related to 

geomorphology, might be less pronounced in other areas. Another aspect would be the 

peoples’ choices for residency, or the presence or absence of a regulation mechanism 

which, more or less, shapes the urban patterns in other countries.  

Regarding how the socio-economic circumstances relate to the changes in 

LULC, this dissertation included two approaches that clearly advocate their importance. 

The economy dictates the development trends and in turn forms the demand and supply 

chain. In particular the built-up expansion rates are highly correlated with the level of 

economic development as demonstrated by the LULC change detection performed in 

two cases spanning a three decades period. The spatio-temporal dynamics that Attica 

region experienced, revealed uneven development trends that fully reflect the 

conditions of each epoch. Higher development rates were evident in conjunction with 

significant fund allocation, competitiveness and economic soundness and at the same 

time the built-up land expanded remarkably. During economic depression times, 

transactions in the real estate market followed the opposite way. It should be stressed 

though that all the historical LULC changes were driven by the development as well as 

by the absence of a regulation mechanism. Observing these uneven historical trends, 

served as a basis to sketch distinct and alternative scenarios and project the observed 

trends to future decades exploring plausible alternative pathways.   

Several other conclusions can be drawn from this dissertation and should be noted:  
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Earth observation coupled with Geoinformatics is a sound way to provide a 

wide range of spatio-temporal information accurately and cost-effectively. Landsat 

imagery are particularly suitable for applications related to detecting historical LULC 

changes, since the satellite was launched in the early 1970s and constitutes the longest 

record of the Earth's surface. The long archives are readily available for download with 

no costs, and this makes it the only feasible option for studies that span some decades 

of time.  It is obvious that for studies that require large extents. The only compromise 

a researcher has to make, is the spatial resolution since Landsat data come with a 

nominal pixel size of 30m. Satellite sensors record the emitted energy of objects and 

each satellite image is therefore a file of spectral signatures, translated by users as 

information about the objects and each pixel represents the spectral characteristics of 

all objects found in a 900 m2 area. Apparently, this translates to much loss of 

information and might be crucial to the results. However, the ratio price/spatial 

resolution/size is almost inversely proportional and for this reason, it is necessary to be 

taken into account that the level of detail, the available budget and the purpose of study 

are complementary. For example, for detecting historical LULC changes over Attica 

region, instead of using more than 10 Landsat images at 30 m spatial resolution, would 

engage considerably more images if very high spatial resolution was deemed important. 

Apart from the high costs, the sizes of files and thus the time and computational costs 

for all processes would proliferate. Thus, given that the analysis was operated at the 

regional level and not on the block, such amount of information was not imperative.  

The semi-automated techniques demonstrated, are proven a sound way to 

overcome the need of exhaustive methodologies in order to train classification 

algorithms, which, in fact, prevent many researchers from producing LULC data in high 

temporal resolution. Given that changes usually occur in a small fraction of land and 

especially at the edges, extracting information as training from already available 

datasets, utilizing unchanged areas as a training source, can be reasonable. For doing 

so, the potential error that will likely propagate undermining the whole process would 

be due to incompatibility and unsuitability between datasets and scales. To overcome 

this obstacle, relocation and elimination of points close to the boundaries between 

adjacent categories is the only option. The semi-automated techniques demonstrated, 

are fully transferable and can act as a baseline for continuous monitoring of LULC. 

Also, additional conclusions, regarding the classification process, emerged throughout 
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this dissertation. The amount of training samples, was crucial for accurate 

classifications and also the whole process benefits from samples that are proportional 

to the occurrence of each LULC category. Generally, it was found that classification 

accuracy will increase with larger training data but sample distribution with a good 

range of intra-class variability to be represented, is of equal importance.  

The RF algorithm for classification and later for regression analysis was proven 

to be robust and advantages of using it are stressed in all chapters. Especially the 

variable importance functions were efficient as they report on not only the influence of 

each predictor separately, but also their multivariate interactions. The algorithm 

successfully handled the fusion of multiple and heterogenous data allowing the 

accomplishment of very high thematic resolution disaggregating the urban-related 

LULC categories. The discrimination of LULC categories according to their density 

and continuity was an important step, because the detection and quantification of such 

changes and their projection provided unique insights into the whole process of LULC 

system. In case this step was avoided, and a more conventional and straightforward 

nomenclature of categories, was adopted, the majority of changes would have been 

ignored (e.g the changes in density observed in the northern suburbs of Athens where 

the extent remained relatively constant while the density increased dramatically).  

The good performance of the models designed for Messoghia and for Attica 

suggests that the predictors incorporated were capable to spatially determine historical 

LULC changes for each case. But an important challenge was the accurate identification 

of scattered unplanned development patches, the so-called leap-frog development. In 

both models, the incorporation of the Leap-frog index boosted the performance of the 

RF algorithm facilitating an adequate fit in the face of sprawl detection. This task was 

previously reported by several researchers as difficult to detect and predict since this 

type of sprawl forms patches that vary in shape, structure, composition and place of 

occurrence. 

The attempt to couple CA and RF was a sound way to overcome certain 

limitations in an approach that combines the advantages of each method. On the one 

hand, the RF algorithm provided a robust modeling option to generate accurate 

transition potential surfaces, by fusing heterogenous data without overfitting and 

collinearity issues, while on the other hand CA modeling proved fully compatible with 



189 
 

transition probability surfaces produced by the RF models. Additionally, the two 

separate sub-models Patcher and Expander allowed the efficient calibration of the 

models according to case specific needs by taking into account actual parameters of the 

study area. Thus, coupling these two frameworks is fully operational and reduces 

several limitations that are commonly reported in the literature. In fact, recent 

comparative approaches stress that the combination of RF and CA, outperforms other 

methods.   

As for Attica region and the wide transformations evident throughout the 

previous decades, it should be noted that scenarios reveal plausible outcomes that 

reflect the envisioned and encouraged economic re-growth. The economic goals set by 

the policy makers, appear capable of taking precedence over virtually all other spatial 

planning priorities undermining the enforcement of actual regulation, once more. 

Therefore, the scenarios presented in this dissertation can not be dismissed as 

implausible, not even the most optimistic in terms of economic growth. Results 

generated from the models stress out the major impact that would arise from unplanned 

artificial areas expansion. From this spectrum, the presence of a spatial planning 

scheme that is visually and quantitatively informed about the potential consequences is 

a key step towards finding the optimal balance between development and sustainability. 

A regulatory mechanism should be operational and unobtrusive, reducing the negative 

consequences of development without hindering growth, by shifting the distribution of 

new development to locations that are more ecologically suitable.  

Projecting LULC patterns is a useful experiment for evaluating the causes and 

identifying the impact of these changes. The scenario-based simulations are a useful 

way to sketch out how the LULC patterns evolve under different pathways with a level 

of plausibility. Embedded in every analysis engaging scenarios, there will always be a 

level of potential uncertainties originated from the general nature relating to the 

socioeconomic predictions that drive the scenarios, the inability to foresee any 

unexpected circumstances and integrate any emerging discontinuities or the data used 

for the models. Especially when dealing with complex systems such as LULC changes, 

those assumptions are unavoidable. Combining an empirical analysis and sketching 

different scenarios attributes and conditions that deviate from historic trends in LULC 

changes, is a way to minimize the uncertainty. Another important aspect is the careful 

observation of these trends, identifying any uneven patterns throughout the study 
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period, that should be taken into account in the design process. Finally, a central point 

of the LULC system science that should be noted is that the LULC system as a whole 

requires scientific advances by bringing together diverse disciplines to co-design 

integrated approaches and jointly work towards such a multi-disciplinary scientific 

problem. This is why this dissertation avoided to explicitly deal with subjects pertaining 

to different disciplines, like policy making, spatial planning, environmental 

management or socio-economics and human geography and is rather centered to the 

perspective of how geo-informatics can advance the methodological framework in 

various ways and how the wide array of methodologies it entails, can be assembled in 

an integrated multidisciplinary approach.  
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