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ABSTRACT

The data that will be analyzed in this thesis is a Liver Cancer data set which was collected

at Shanghai Cang-zheng Hospital in China. The data set includes 145 subjects, of which

54 patients have hepatoma, 39 patients have hepatitis and hepatocirrhosis - chronic liver

disease and 52 individuals are healthy. To each subject corespondents 236 Markers. For

simplicity, we create two types of groups. The first group consists of healthy individuals

and the second group consists of diseased patients.

The goal is to correctly classify a subject in one of the two classes, diseased-non-diseased.

For this classification task we use two supervised classification methods: Logistic

Regression and Support Vector Machines. Logistic Regression was developed by David Cox

in 1958 and is one of the most traditional parametric classification methods. Support

Vector Machines was created by Vladimir Vapnik (1995). It can efficiently perform a

non-linear classification using what is called the kernel trick, by mapping the inputs into a

high-dimensional feature spaces.

In many cases the goal is to develop a model which can explain the relationship between

the features and the dependent variable. A severe mathematical problem is when the

dimension of the data is greater than the number of the available data points. For this

purpose we will describe methods for feature selection and regularization, including subset
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selection and lasso.
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Chapter 1

Introduction

1.1 Liver Cancer Data

The liver is located in the upper right of the abdominal cavity and lies beneath the diaphragm.
It is the largest glandular organ. The liver can be divided into two parts: a right lobe and a
left lobe. Blood vessels and bile ducts also define the boundaries of eight separate segments.
The liver is the only internal organ capable of natural regeneration of lost tissue. As little as
25% of a liver can regenerate into a whole liver. The liver stores a multitude of substances and
also produces coagulation factors that are critical to cessation of blood loss from damaged
vessels. Due to its wide range of functions the liver is absolutely essential for sustaining life.

Primary liver cancer originates either in the gallbladder 1 or liver. The majority of cancer
instances are a result of spreading from other organs. Cancer cells can separate from the
tumor and be transported via the bloodstream to the liver where they can attach and establish
secondary sites 2. If the tumor is not too large and remaining liver tissue is healthy, surgical
removal is possible. After the excision the liver can regenerate back to full size within a
few months. Hepatoma, also known as hepatocellular carcinoma, is a type of primary liver
cancer. Common causes of hepatoma include hepatitis. Hepatitis - and hepatocirrhosis -
is the inflammation of the liver. Hepatitis and hepatocirrhosis are chronic liver diseases.
This means that the scar tissue replaces healthy liver tissue and stops the liver from working
normally.

The data that will be analyzed in this thesis are liver cancer data and were collected at
Shanghai Cang-zheng Hospital in China. The data includes 145 subjects, of which 54
patients have hepatoma (H) , 39 patients have hepatitis and hepatocirrhosis - chronic liver
disease (LD) and 52 individuals are healthy/normal (No). To each subject corresponds a
serum. Each serum sample is measured by the Surface-enhanced laser desorption/ionization
(SELDI), which is a soft ionization 3 method in mass spectrometry 4 (MS) for its protein

1The gallbladder is a small organ that lies beneath the liver.
2Secondary site is the place where the cancer has transported and grows.
3Ionisation is the process by which an atom acquires a negative or positive charge by gaining or

losing electrons to form atoms that have a non-zero net electrical charge.
4Mass spectrometry is an analytical technique.
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and peptide abundance. The peak detection and the alignment procedures are performed
with Ciphergen ProteinChip Software 3.0. The mass range is from 1.000 to 4.000 Da 5. For
all the samples, there are 236 peaks identified. Each peak is a Marker, that means we have
236 Markers for each subject.

For simplicity, we create two types of groups. The first group consists of normal individuals
(No) and the second group consists of diseased patients, so the LD and H patients are both
in a group denoted as LDH. We demonstrate a scatter plot (see appendix), which at the x
axes shows the diseased group (as 1) and the non-diseased group (as 0) and at the y axes
shows one of the 236 Markers.

1.2 Training and test set

Our original data set is a sample that represents the population. In order to evaluate the
performance of the statistical methods we divide the data into a training set and a test set.
The training set is used to fit the model and the test set is used to test the performance of
our model.

1.3 Sensitivity and Specificity

In this section we will determine how we can measure the accuracy of a diagnostic method.
A test in medicine is considered as diagnostic when it can detect a disease. Thus, it should
correctly classify individuals in one of the following categories: ”healthy” or ”diseased”. The
outcome of that kind of test can be summarised in a 2 × 2 table, known as Classification
Table. There are two basic concepts related to the accuracy of a test: sensitivity and
specificity. These two concepts become more clear through the classification table which
can be used for all types of dichotomous tests.

We denote true status as D=1 for disease and D=0 for non-disease. The variable Y is the
outcome of the test. We denote Y=1 as the positive for disease outcome of the diagnostic
test and Y=0 is the negative outcome.

A classificaton table is depicted in table (1.1).

Note: TP represents the number of the true positive (diseased patients with positive test), FP the false

positive (healthy patients with positive test), TN the true negative (healthy patients with negative test) and

FN the false negative (diseased patients with negative test)

5Dalton (Da) is an unified atomic mass. It is a standard unit of mass that quantifies mass on an
atomic scale.
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Table 1.1: Classifiation table that summarizes the results of a dichotomous diagnostic
test

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 TN FP n0

Disease, D=1 FN TP n1

Total m0 m1 N

� True Positive Rate (TPR) or Sensitivity is the conditional probability of cor-
rectly classifying diseased patients.

TPR = Sensitivity = P (Y = 1|D = 1) =
TP

TP + FN
=
TP

n1

� True Negative Rate (TNR), or Specificity is the conditional probability of
correctly classifying healthy patients.

TNR = Specificity = P (Y = 0|D = 0) =
TN

TN + FP
=
TN

n0

� False Negative Rate (FNR), or 1-sensitivity is the conditional probability of
falsely classifying diseased patients.

FNR = 1− Sensitivity = P (Y = 0|D = 1) =
FN

FN + TP
=
FN

n1

� False Positive Rate (FPR), or 1-specificity is the conditional probability of
falsely classifying healthy patients.

FPR = 1− Specificity = P (Y = 1|D = 0) =
FP

FP + TN
=
FP

n0

The result Y can either be binary or quantitative. In the case of a quantitative outcome
we have to define a cut-off value c to separate patients into two groups. The one group
is classified with the condition Y ≥ c (diseased group) and the second if Y < c (healthy
group). Note that different cut-off values have different classification tables and sensitivity-
specificity strongly depend on the chosen cut-off value. As c increase, sensitivity decrease
but specificity increases and vice versa when c decrease.

Example
In the next example we will work with a quantitative outcome Y. Let’s say that we have two
populations, healthy and disease and each follows a normal distribution. Suppose that the
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healthy one follows the standard normal distribution and the disease population follows the
normal distribution with mean 2 and variance 1. In the figure (1.1) the blue curve is the
healthy population distribution while with red is the disease population distribution. The
chosen cut-off line is set to point 0. From the graph we can observe how sensitivity and
specificity depend from the cut-off line. Sensitivity or the True Positive fraction is the area
under the red curve, from 0 to 6. 1-Specificity or False Negative fraction is the area under
the blue curve from -4 to 0.

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4 6

x

y

Fig. 1.1: Relation between cut off line and Sensitivity-Specificity

1.4 ROC curve

The Receiver Operating Characteristic Curve (ROC) was developed in 1950 for signal detec-
tion. 20 years later it was used to evaluate the performance of any kind of diagnostic tests,
consequently the accuracy of statistical models that divide populations into two classes.

A ROC curve is a graphical plot that demonstrates the capability of a binary classifier ,while
its threshold is varied from 0 to 1. By taking into account all possible values of the cut-off
point c, which is in fact a decision point, the ROC curve can be constructed as a plot of
sensitivity (TP) versus 1-specificity (FP). As we saw in the previous example for any cut off
point c, we define:

TPF (c) = P (Y > c|D = 1)

FPF (c) = P (Y > c|D = 0)
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Thus the ROC curve is

ROC(·) = {FPF (c), TPF (c), c ∈ (0, 1)}

The Area under the curve (AUC) can take values from 0 to 1. The AUC is equal to 1 if
the ROC curve consists of the line (0,0)-(0,1) and the line (0,1)-(1,1). This ROC curve
represents a perfect diagnostic method. Contrary, if the AUC is equal to 0, we have a
perfect inaccurate diagnostic method. In the event that AUC is equal with the line (0,0)-
(1,1), (resulting AUC = 0.5) the diagnostic method has no diagnostic value, or equivalently,
the decision if a person is healthy or not is taken by flipping a coin.

1.5 Example

From our liver data set, we select Marker 197 and Marker 154. For simplicity we use only
one explanatory variable, X. We fit a univariate logistic regression model 6 for each Marker
to obtain the probability of each subject to be diseased and, based on this probability we
classify each subject as healthy or diseased.

Marker 197
In the scatter plot bellow (figure 1.2) we denote the diseased subjects as 1 and the healthy
subjects as 0. We can see that higher values of Marker 197 correspond to the diseased
group. The mean of the diseased group is 4.58 and the mean of the healthy group is 1.11.

The logistic regression model is the following:

p̂(X) =
exp{−4.0955 + 2.5996X}

1 + exp{−4.0955 + 2.5996X},
(1.1)

which gives the probability of a subject to be diseased, given the known value of X.
Equivalently, equation (1.1) can be written as:

p̂(X)

1− p̂(X)
= exp{−4.0955 + 2.5996X} (1.2)

log

(
p̂(X)

1− p(X)

)
= −4.0955 + 2.5996X (1.3)

The left-hand side of the equation (1.3) is called logit and it is linear in X. This logit
model gives values from − inf to inf, where values which are less than 0 are related with
probabilities less than 0.5 (diseased).

For each subject we give the true disease Status (1 denotes disease, 0 denotes healthy), the
Marker value (for Marker 197), together with the probabilities from the equation (1.1) and

6for more details, see chapter 2
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Fig. 1.2: Scatter Plot for Marker 197

the score values from the equation (1.3), in table 5.1 (see appendix).

We can plot each of the probabilities of disease given the Marker 197 (see Figure 1.3). We
denote 1 (red points) for disease and 0 (black points) for healthy.

We set a cut off point at 0.5 on probability scale. Every subject that has a higher probability
of 0.5 is classified as diseased and every subject that has a lower probability of 0.5 is classified
as healthy. Taking into account their true diseased status and the probability of disease we
construct the classification table.
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Fig. 1.3: Predicted probabilities of disease using logistic regression

Table 1.2: Classification Table using logistic regression for Marker 197

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 40 12 52

Disease, D=1 12 81 93

Total 52 93 145

Here we see that 81 subjects of diseased people are correctly classified as diseased, 12 subjects
are incorrectly classified as non-diseased, 40 subjects are correctly classified as non-diseased
and 12 are incorrect classified as diseased.

� The True Positive Rate (sensitivity) is equal with: TPR = 81
93

= 0.87

� The False Positive Rate (1-specificity) is equal with: FPR = 12
52

= 0.23

� The True Negative Rate is equal with: TNR = 40
52

= 0.76
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� The False Negative Rate is equal with: FNR = 12
93

= 0.12

AUC = 0.931
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Fig. 1.4: ROC Curve for Marker 197

In this example we set a cut of value at 0.5. From the ROC curve, we see for all cut off values
the relationship between sensitivity and FPR. For False Positive Rate (or 1-specificity) 23%
we have 87% sensitivity. This means that for FPR=0.23, the ability to detect a diseased
subject is 87%, or in other words 87% of the diseased subjects are classified correctly by
using this model. The area under the ROC curve (AUC) is equal with 0.931.

Marker 154
In the scatter plot bellow we denote the subjects who are diseased as 1 and the subjects who
are healthy as 0. We can see that lower values of Marker 154 are more likely to correspond
to the diseased group. The mean of the diseased group is 14.48 and the mean of the healthy
group is 23.18.

The logistic regression model is:

p̂(X) =
exp{2.939− 0.126X}

1 + exp{2.9393− 0.1267X}
(1.4)

and the logit transformation is:

log

(
p̂(X)

1− p̂(X)

)
= 2.939− 0.126X (1.5)

where X is a vector with the values of Marker 152.
From equation (1.4) and (1.5) we obtain the probabilities of each subject to be diseased and
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Fig. 1.5: Scatter Plot for Marker 154

the score values (see appendix).

We see that b̂1 = −0.126. This indicates that an increase in the value of Marker 154 is
associated with a dicrease in the probability of disease. To be precise, a one-unit increase in
Marker 154 is associated with a decrease in the log odd of disease by −0.126 units.

We can plot each of the probabilities of diseased given the Marker 154 (see Figure 1.6). We
denote 1 for disease and 0 for healthy.

From the plot we can see that higher values of Marker 154 have in average a lower probability
of disease. In figure 1.6 there are many overlaps of the probabilities from the diseased and
healthy subjects. We will use two different cut off values and discus their classification
performance.

Cut-off value at 0.6 on probability scale.

Taking into account the true diseased status and the probability of disease given Marker 154
we construct the classification table based on the classification rule on probability scale 0.6.
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Fig. 1.6: Predicted probabilities of disease using logistic regression

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 34 18 52

Disease, D=1 19 74 93

Total 53 92 145

Table 1.3: Classification Table using logistic regression for Marker 154 with cut off value
at 0.6 on probability scale

Here we see that 74 subjects of diseased people are correctly classified as diseased, 19 subjects
are incorrectly classified as non-diseased, 34 subjects are correctly classified as non-diseased
and 18 are incorrect classified as diseased.

� The True Positive Rate (sensitivity) is equal with: TPR = 74
93

= 0.79

� The False Positive Rate (1-specificity) is equal with: FPR = 18
52

= 0.34

Cut-off value at 0.5 on probability scale
We set the cut off point at 0.5. The classification table is:
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Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 27 25 52

Disease, D=1 16 77 93

Total 43 102 145

Table 1.4: Classification Table using logistic regression for Marker 154 with cut off value
at 0.5 on probability scale

with corresponding Sensitivity and FPR:

� The True Positive Rate (sensitivity) is equal with: TPR = 77
93

= 0.82

� The False Positive Rate (1-specificity) is equal with: FPR = 25
52

= 0.48

A good model has high sensitivity and high specificity (or low FPR).

� For a cut off value on probability scale at 0.6 we have
(sensitivity, specificity) = (sensitivity, 1−FPR) = (0.79, 1−0.34) = (0.79, 0.66)

� For a cut off value on probability scale at 0.5 we have
(sensitivity, specificity) = (sensitivity, 1−FPR) = (0.82, 1−0.48) = (0.82, 0.52)

For the cut off value 0.6 the model is more specific and less sensitive than the model with
cut off value 0.5. Thus the first model has a better ability to correctly detect subjects which
are diseased making less false positives and, the second model has a higher probability to
detect diseased subjects but by making more false positives. Depending on how specific and
sensitive we want our model to be we choose the cut-off value. The choice of the cut-off
value is also associated with how expensive the test is and how a false positive result can
harm the subject we choose the cut-of value.

As we saw before an increase of the Marker 154 value is associated with a decreased prob-
ability of disease. This type of relationship affects the ROC curve which is below the line
(0,0)-(1,1).

On every Marker in our liver data set we use a logistic regression model, in which we try
to predict if a subject is diseased or not diseased, considering only one Marker. For each
Marker we created a ROC curve (see Appendix for ROC curves).

From each ROC graph we observe the Area Under the ROC Curve and choose the 10 highest
AUC values were:

AUCi = max{AUCi, 1− AUCi}, i ∈ 1, ..., 236
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AUC = 0.22
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Fig. 1.7: ROC Curve for Marker 154 with AUC=0.22

The 10 highest values of the AUCi corresponds to the Markers:

197, 188, 189, 196, 193, 187, 192, 190, 205, 206

with corresponding AUC:

AUCi = (0.931, 0.897, 0.892, 0.891, 0.882, 0.881, 0.869, 0.864, 0.864, 0.860).

The correlation matrix between the 10 Markers is given below. We observe that many
markers are highly correlated. For example markers 205 and 206 have correlation of 0.9 and
Markers 190, 187 have correlation of 0.96.

Marker 206 Marker 205 Marker 190 Marker 192 Marker 187 Marker 193 Marker 196 Marker 189 Marker 188 Marker 197

Marker 206 1 0.903 -0.227 -0.175 -0.214 -0.199 0.474 -0.229 -0.218 -0.365

Marker 205 1 -0.207 -0.167 -0.199 -0.183 -0.382 -0.205 -0.202 -0.331

Marker 190 1 0.848 0.962 0.873 0.378 0.917 0.909 0.868

Marker 192 1 0.880 0.941 0.233 0.833 0.918 0.897

Marker 187 1 0.839 0.275 0.856 0.900 0.841

Marker 193 1 0.352 0.940 0.942 0.903

Marker 196 1 0.411 0.336 0.521

Marker 189 1 0.950 0.855

Marker 188 1 0.881

Marker 197 1

Table 1.5: Correlation matrix for 10 Markers

We choose the first two Markers, Marker 197 and Marker 188. From the correlation matrix
we see that the correlation between them is 0.88.

Before we analyze the multiple logistic regression model for two variables Marker 197 and
Marker 188 we can see how well performs each one separately.
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Marker 197
We analyzed Marker 197 in a previous example. We saw that the using a logistic model the
AUC was equal to 0.931.

Marker 188
In the scatter plot bellow we denote the subjects who are diseased as 1 and the subjects who
are healthy as 0. We can see that higher values of Marker 188 correspond to the diseased
group. The mean of the diseased group is 8.48 and the mean of the healthy group is 0.63.
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Fig. 1.8: Scatter Plot for Marker 188

The logistic regression model is:

p̂(X) =
exp{−1.59 + 1.77X}

1 + exp{−1.59 + 1.77X}
(1.6)

where X is a vector with the values of Marker 188.
From this model we can obtain the probability for each subject to be diseased.
Equivalently, equation (1.6) can be written as:

p̂(X)

1− p̂(X)
= exp{−1.59 + 1.77X} (1.7)

log

(
p̂(X)

1− p̂(X)

)
= −1.59 + 1.77X (1.8)

We plot each of the probabilities of disease given the Marker 188 (see Figure 1.9). We
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denote 1 for disease and 0 for healthy.
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Fig. 1.9: Predicted probabilities of disease using logistic regression

Taking into account their true diseased status and the probability of disease given Marker
188 we create the classification table based on the classification rule on probability scale 0.5.

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 44 8 52

Disease, D=1 16 77 93

Total 53 92 145

Table 1.6: Classification Table using logistic regression for Marker 188 with cut off value
at 0.5 on probability scale
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In Table 1.6 the 77 subjects of diseased people are correctly classified as diseased, 16 subjects
are incorrectly classified as non-diseased, 44 subjects are correctly classified as non-diseased
and 8 are incorrect classified as diseased.

� The True Positive Rate (sensitivity) is equal with: TPR = 77
93

= 0.82

� The False Positive Rate (1-specificity) is equal with: FPR = 8
52

= 0.15

The ROC curve is given in figure (1.10)and the AUC is equal with 0.897.
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Fig. 1.10: ROC Curve for Marker 188

Here we see that using for example a cut off value with FPR equal with 0.15 (or equivalently
a test with specificity 0.75) has a sensitivity up to 0.82. This means that for a false positive
rate 0.15, 82% of the subjects are correctly classified as diseased.

Multiple Logistic model for Marker 197 and Marker 188

The logistic regression model that using Marker 197 and Marker 188 as variables is:

p̂(X) =
exp(−4.175 + 2.113X1 + 0.784X2)

1 + exp(−4.175 + 2.113X1 + 0.784X2)
(1.9)

Where X = (X1, X2) = (Marker197,Marker188).

Both Markers are statistical significant in the presence of the other, with p-values < 0.05.
This indicates that using both markers improves the classification. The ROC curve is given
and the area under the curve is equal with 0.946. Here we see that using for example a
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cut off value with FPR equal with 0.08 (or equivalently a test with specificity 0.92) has a
sensitivity up to 0.75. This means that for a false positive rate 0.08, 75% of the subjects
are correctly classified as diseased.

AUC = 0.946
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Fig. 1.11: ROC Curve using Marker 197 and Marker 188

The corresponding classification table on the classification rule on probability scale at 0.5 is
given below.

Table 1.7: Classification Table on the classification rule on probability scale at 0.5

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 44 8 52

Disease, D=1 9 84 93

Total 53 92 145

Here we see that 84 patients are correctly classified as diseased, 44 healthy individuals are
correctly classified as healthy, 8 healthy individual are incorrectly classified as diseased and
9 patients are incorrectly classified as healthy.
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� The True Positive Rate (sensitivity) is equal with: TPR = 84
93

= 0.90

� The False Positive Rate (1-specificity) is equal with: FPR = 8
52

= 0.15

Conclusions:

AUC Sensitivity FPR Specificity

Marker 197 0.931 0.87 0.23 0.77

Marker 188 0.897 0.82 0.15 0.85

Marker 197 and 188 0.946 0.90 0.15 0.85

Table 1.8: Results, based on the classification rule on probability scale at 0.5

In table 1.8 we see the AUC values for marker 197, marker 188 and the AUC value using
both markers. Sensitivity, FPR and specificity is given for the same classification rule on
probability scale at 0.5. Using both markers the AUC has a higher value and also both
Sensitivity and Specificity have equal or higher values, than using each marker separately.
Using marker 197 we have a higher value in sensitivity but a lower value in specificity, than
using marker 188 which has a lower value in sensitivity and a higher value in specificity.

Logistic Regression for all 10 Markers
We apply a multiple logistic regression model on the liver data set with 10 variables (10
markers) and we want to predict if a subject is diseased or not. The multiple logistic
regression model is of the form:

p(X) =
exp(b0 + b1X1 + b2X2 + ...+ b10X10)

1 + exp(b0 + b1X1 + b2X2 + ...+ b10X10)
(1.10)

Where X = (X1, X2, , ..., X10) = (Marker206,Marker205, ...,Marker197).

The ROC curve is given in figure (1.12) and the area under the curve is equal with 0.969.
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Here we see that using for example a cut off value with FPR equal with 0.11 (or equivalently
a test with specificity 0.89) has a sensitivity up to 0.92. This means that for a false positive
rate 0.11, 92% of the subjects are correctly classified as diseased.
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ROC curve using logistic model for 10 Markers

Fig. 1.12: ROC Curve using training set for 10 Markers

The corresponding classification table on the classification rule on probability scale at 0.5 is
given below.

Table 1.9: Classification Table on the classification rule on probability scale at 0.5

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 46 6 52

Disease, D=1 7 86 93

Total 53 92 145

Here we see that 86 patients are correctly classified as diseased, 46 healthy individuals are
correctly classified as healthy, 6 healthy individual are incorrectly classified as diseased and
7 patients are incorrectly classified as healthy.
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� The True Positive Rate (sensitivity) is equal with: TPR = 86
93

= 0.92

� The False Positive Rate (1-specificity) is equal with: FPR = 6
52

= 0.11

Validation

We use the validation method to estimate the test error. We divide the data set into two
groups. In the first group we randomly choose 50% of the diseased subjects and 50% of
the non-diseased subjects. This is our training set. The remaining 50% and 50% consists
the test set. More specifically, the diseased group consists in total of 93 patients and the
healthy group of 52 individuals. That means in the training set we have 46 diseased patients
and 26 healthy individuals. In the test set we have the remaining 47 diseased patients and
the 26 remaining healthy individuals.

We apply a multivariate logistic regression model on the training set with 10 variables and
we want to predict if a subject is diseased or not. The multivariate logistic regression model
is of the form:

p(X) =
exp(b0 + b1X1 + b2X2 + ...+ b10X10)

1 + exp(b0 + b1X1 + b2X2 + ...+ b10X10)
(1.11)

Where X = (X1, X2, , ..., X10) = (Marker206,Marker205, ...,Marker197) from the
training set.

Training set

The ROC curve is given and the area under the curve is equal with 0.987 by using the logistic
model and apply it to the training set itself. Here we see that using for example a cut off
value with FPR equal with 0.07 (or equivalently a test with specificity 0.93) has a sensitivity
up to 0.93. This means that for a false positive rate 0.07, 93% of the subjects are correctly
classified as diseased.
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AUC = 0.987
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ROC curve using Training set

Fig. 1.13: ROC Curve using training set for 10 Markers

The corresponding classification table on the classification rule on probability scale at 0.5 is
given below.

Table 1.10: Classification Table on the classification rule on probability scale at 0.5

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 24 2 26

Disease, D=1 3 43 46

Total 27 45 72

Here we see that 43 patients are correctly classified as diseased, 24 healthy individuals are
correctly classified as healthy, 2 healthy individual are incorrectly classified as diseased and
3 patients are incorrectly classified as healthy.

� The True Positive Rate (sensitivity) is equal with: TPR = 43
46

= 0.93

� The False Positive Rate (1-specificity) is equal with: FPR = 2
26

= 0.07
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The estimated training error is 3+2
72

= 0.06. That is a 6.94% training error rate.

Test set

The ROC curve has AUC = 0.934.
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ROC curve using Test set

Fig. 1.14: ROC Curve using test set for 10 Markers

The classification table that we observe using a classification rule on probability scale at 0.5
is the following.

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 19 7 26

Disease, D=1 5 42 47

Total 24 49 73

Table 1.11: Classification Table using logistic regression for 10 Markers with cut off
value at 0.5 on probability scale
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Here we see that 42 out of 47 diseased patients are correctly classified as diseased, 19 out of
the 26 healthy individuals are correctly classified as healthy, 7 healthy individual is incorrectly
classified as diseased and 5 patients are incorrectly classified as healthy.

� The True Positive Rate (sensitivity) is equal with: TPR = 42
47

= 0.89

� The False Positive Rate (1-specificity) is equal with: FPR = 7
26

= 0.26

The estimated test error is 5+7
73

= 0.16. That is a 16.43% test error rate.

Note: The way we created this validation set is by randomly selecting 50% and 50% from
the diseased and non-diseased group. If we try to do this again we will see that we will
create another test set and classification table. It can be shown that the test error that we
will observe each time has a significant variance. As we have already mention, this problem
can be solved by cross-validation. We must also consider the fact that we use only half of
the information that is available to us, because we use only 50% of the data set for fitting
the model.

Conclusions:

AUC Sensitivity FPR Specificity

liver data set 0.969 0.92 0.11 0.89

training set 0.987 0.93 0.07 0.93

test set 0.934 0.89 0.26 0.74

Table 1.12: Results based on the classifiaction rule on probability scale at 0.5

From table 2.8 we see that all AUC values are very high. The highers AUC value corresponds
to the training set with AUC equal with 0.987. The values from sensitivity and specificity
are also the highest for the training set. Using half of the data that are available to us and
fitting a model, creates a more flexible model than fitting a model to all the data set. The
better the model fit the training set the worst will the model fit the test set. The training
error (0.06) is lower than the test error (0.16). Also to the test set corresponds the lowest
AUC value and the lowest sensitivity and specificity value.
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1.6 Supervised and Unsupervised Learning

Most of the statistical learning problems fall into one of the following two categories: super-
vised or unsupervised. The two categories have one main difference, in a supervised problem
the dependent variable y is known whereas in an unsupervised problem the dependent variable
is unknown.

Supervised Learning

In a supervised setting for each observation xi, i = 1, ..., n there is an associated response
measurement yi. The goal is to fit a model that accurately predicts the dependent variable
y and to understand the relationship between the independent variables x the the dependent
variable y (if it is possible). Many statistical learning methods operate in this setting, for
example linear regression, logistic regression and support vector machines.

Unsupervised Learning

In an unsupervised setting we don’t have a dependent variable but only the observations xi.
It is for example not possible to to fit a linear regression model since there is no response
measurement for each xi. The goal here is to understand the relationships between the
variables or between the observations.

1.7 Resampling Methods

Resampling methods help us obtain additional information about the fitted model by repeat-
edly drawing samples from a training set and refitting our model on each sample. In this
way we have more information that would not be available by using only once the original
training set. In this chapter we will discuss two common resampling methods, validation and
cross-validation.

Before we describe what validation and cross-Validation exactly is and how it works we will
first briefly mention what a a training error and a test error is.

Training error

In general we fit the model to the training set. If we apply the same training set to our
model the error of the model is called training error.

The training error is given by:

Training Error =
Total number of misclassification in the training set

Total number of training set observations

As we increase the complexity of our model, the model usually adjust to the training set but
in many cases it doesn’t fit well to the unseen data (test set). This is called over fitting
which is the inability of the model to generalise well the data. For example a polynomial of
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degree n + 1 can perfectly fit (training error = 0) to n data points, but what about a new
unseen point?

Test error

In order to evaluate the performance of our model we use the test set. The average error
that results from applying these new observations to our model is called test error.

The test error is given by:

Test Error =
Total number of misclassification in the test set

Total number of test set observations

Ideally we want to find the the model complexity which has the smallest test error. Some
methods use only the training set to estimate the test error, for instance, Cp statistic, AIC
and BIC. These methods try to increase the training error, taking into account the amount
of fitting and the variance.

1.7.1 Validation

Validation is a method used for estimating the test error, also known as prediction error. It
divides randomly the data set into two parts. We name the one part training set and the
second part test set. We fit the model to the training set and estimate the test error using
the test set. One drawback is that if we divide the data again we will end up with different
training and test set thus we will have a different test error. The variance from the test error
is quite high.

Fig. 1.15: Source: An Introduction to Statistical Learning with Applications in R. A
schematic display of the validation set approach. A set of n observations are randomly
split into a training set (shown in blue, containing observations 7, 22, and 13, among
others) and a validation set (shown in beige, and containing observation 91, among
others). The statistical learning method is fit on the training set, and its performance
is evaluated on the validation set.
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1.7.2 k-Fold Cross-Validation

A more common way to estimate the test error from a given model, is to use k-fold cross-
validation, in order to evaluate the models performance (known as model assessment) or to
select the appropriate level of flexibility (known as model selection).

In k-fold cross-validation we divide the data into k approximately equal parts. The first part is
treated as the test set, and we fit the model on the remaining k−1 parts. We then compute
the test error Test.Error1. This procedure is repeated k times, each time, a different k
part is treated as a test set. We end up with k estimates of the test error: Test.Error1,
Test.Error2, Test.Errork. The k-fold CV estimate is computed by averaging these values:

CVk =
1

k

k∑
i=1

Test.Errori

Common values of k are 5 and 10 fold cross validation. Using k-fold cross validation often
gives more accurate estimates of the test error.

1.8 Bias-Variance Trade-off

Assessing Model Accuracy

Suppose that we have a model h(x) and we fit it to the training set. We wish to see how
well the model performs. One way of assessing the models accuracy is by computing the
mean squared training error. But this may be biased towards more overfit models. As we
saw in the previous section we can instead use the test set and compute the mean squared
test error.

Example

In the figure (1.16) on the left side we see a black curve which is simulated. This is our true
function that we want to estimate. The points were generated by this curve with error.

We also have three different models fit to this data (the orange, the blue and the green
model) and they are ordered in complexity. The orange model is a linear model, the blue
model is a more flexible model and the green model is an even more flexible model than the
blue one (we can see that is gets closer to the data points).

Since this is a simulated example we can compute the mean squared error on a very large
test data set. On the right figure we plot the mean squared error for the test set (red curve).
It starts of high for the linear model, then it drops down for the in-between model and then
for the more flexible model it’s starts increasing again.
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Fig. 1.16: Source: An Introduction to Statistical Learning with Applications in R. Left:
Data simulated from h shown in black. Three estimates of h are shown: the linear
regression line (orange curve), and two non linear lines (blue and green curves). Right:
Training MSE (grey curve), test MSE (red curve), and minimum possible test MSE over
all methods (dashed line). Squares represent the training and test MSEs for the three
fits shown in the left-hand panel.

The mean squared error for the training set (grey curve) keeps on decreasing. The more
flexible the models is, the more closer it gets to the data points.

For the MSE for the test set, we see that there is an optimal point which minimises the MSE.
In this example this optimal point is the blue point on the red curve which corespondents
to the medium flexible (blue) model. We also see that the blue curve gets very close to the
black curve. Because this is a simulation model, the dotted line in the right figure is the
MSE that the true function makes and this is the irreducible error V ar(ε).

If we want to have a model that has good prediction error (this is measured here in terms
of MSE on the test set. We would like to estimate the red curve from the right side figure
and we can do that by having a test data set which we can use to evaluate the performance
of the different models.
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Bias-Variance Trade-off

Suppose the we have fit a model ĥ(x) to a training set and let (x0, y0) be a test observation
drawn from the population. If the true model is Y = h(x) + ε with h(x) = E(Y |X = x),
then

E(y0 − ĥ(x0))
2 = V ar(ĥ(x0)) + [Bias(ĥ((x0))]

2 + V ar(ε)

� V ar(ε): irreducible error that comes from the random variation in the new test point
y0.

� V ar(ĥ): is the variance that comes from having different training sets. If we got a
new training set and fit our model again, we would get a different function h. But if
we have many different training sets, there would be variability in the prediction at x0.

� Bias(ĥ(x0)): is the difference between the average prediction at x0 over all these
different training sets E[(x0)] and the true h(x0).

Typically as the flexibility of ĥ increases, its variance increases because it’s going after the
individual training set, but its bias decreases. So choosing the flexibility bases on average
test error amounts to a bias-variance trade-off.

Continuing previous example

Continuing the previous example, we have that as the flexibility of the model increases, the
bias decreases and the variance increases. By adding these two components (bias which is
shown in blue in figure (1.17) and variance which is shown in orange), we get the MSE (red
curve) of the test set.

Choosing the amount of flexibility of a model amounts to a bias-variance trade off. Depend-
ing on the problem we might want to make the trade off in a different place. We can use
the test set to help us make that choice.
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Fig. 1.17: Source: An Introduction to Statistical Learning with Applications in R. The
red curve is the MSE of the test set. Then we have the two important components of
the MSE: the bias and the variance. The bias is shown with blue and the variance with
orange.
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1.9 Curse of Dimensionality

Suppose that we want to estimate a model h where ĥ(x) = E(Y |X = x). Suppose also that
we want to estimate the h for x = 4 and we have few if any data points with x = 4 . We will
relax the definition and let ĥ(x) = E(Y |X ∈ N(x)) where N(x) is some neighborhood of x.
This is called nearest neighbor averaging and it can be good for small number of dimensions
p and large number of training set. Nearest neighbor methods can be lousy when p is large
and the reason is the curse of dimensionality. Nearest neighbors tend to be far away in high
dimensions.

We need to get a reasonable fraction of the N values of yi to average to bring the variance
down - e.g. 10%. A 10% neighborhood in high dimensions need no longer be local, so we
lose the spirit of estimating E(Y |X = x) by local averaging.

Example

Suppose that we have two variables x1 and x2. They are uniformly distributed from -1 to 1
in the left plot of figure (1. 18). We form two 10% neighborhoods. The first neighborhood
is just involving the variable x1 ignoring x2. This is indicated by the vertical dotted lines.
The target point is at 0 and we spread out a neighborhood to the left and the right until we
capture 1-% of the data points with respect to the variable x1. The dotted line indicates
the width of the neighborhood.

Alternatively, if we want to find a neighborhood in two dimensions, we spread out a circle
centered at the target point (the red dot) until we have captured 10% of the points. Note
that the radius of the circle in two dimensions is much bigger than the radius of the circle
in one dimension which is the width between the two dotted lines.

Fig. 1.18: Source: An Introduction to Statistical Learning with Applications in R.

To capture 10% of the points in two dimensions, we have to go out further and so we are
less local than we are in one dimension.
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On the right hand plot we can see how far we have to go out in p = 1, 2, 3, 5, 10 dimensions
in order to capture a certain fraction of the volume.

If we take for example 10% or 0.1 fraction of the volume, for p = 1, if the data are uniform,
we have to go out 10% of the distance. In two dimensions, as we saw before we have to go
out more. On 5 dimensions we have to go out about 0.9 on each coordinate axes to get 10%
of the data which is about the whole radius of the sphere of the left plot. In 10 dimensions
we actually have to go break out of this sphere in order to get points in the corner to capture
the 10%.

So is it very hard to find neighborhoods in high dimensions and stay local. In chapter 3 we
will describe methods that avoid the curse of dimensionally.
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Chapter 2

Classification

In a classification problem the goal is to classify correctly a subject, depending on some
characteristics (features). An example of a classification problem is to predict if a person is
diseased or not diseased. In this (binary) classification problem we try to predict if a person
y is either 0 (for non diseased for instance) or 1 (for diseased). That is y ∈ {0, 1} . In this
chapter we will see why the linear model is not appropriate for a classification problem and
how a transformation of the linear predictor–logistic regression can produce more sensible
results. An alternative to this transformation is to use kernel methods and specifically the
method support vector machines.

2.1 Linear Models

The most common linear model is the linear regression model. It is seldom the case that
a linear regression model fits well to our data, though linear model is a first order Taylor
approximation and it gives an easy interpretation to our problem.

2.1.1 Cost function

In linear regression the cost function helps us to fit the best possible straight line to our
data. The model has the following form, hθ(x) = θ0 + θ1x and θ0 and θ1 are the parameter.
One problem is how to choose the values of the parameters. With different combinations of
the parameters we get different h functions.

One way to estimate θ0 and θ1 is to select those values that fit hθ(x) as close as possible to
y –least squares method. In other words, we have a minimisation problem where we want
to minimise over θ0 and θ1:

m∑
i=1

(hθ(x
(i))− y(i))2 (2.1)

where m is the size of the training sample. For convenience we will minimize

1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 (2.2)
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which gives the same values of θ0 and θ1 like (2.1).

We define a cost function J(θ0, θ1) so that:

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 (2.3)

Goal: We want to find θ0 and θ1 so that they minimize J(θ0, θ1). This cost function is
also called the squared error cost function. In the case where we have only two parameters
θ0 and θ1 the form of the cost function is as shown in the graph below.

Fig. 2.1: Source: Coursera, Machine Learning by Stanford University with Andrew Ng.
Linear regression cost function for θ0 and θ1

Note that for different values of θ0 and θ1 we get a different value of J(θ0, θ1) which is given
by the hight of the surface. So J(θ0, θ1) is a function of the parameters θ0 and θ1, and
hθ(x) for fixed θ0 and θ1 is a function of x.

2.1.2 Gradient Descent

A numerical solution to the optimisation problem can be given by algorithms like Gradient
Descent.

The idea of Gradient descent is to:

� Start with some θ0 and θ1.

� Keep changing θ0, θ1 to reduce J(θ0, θ1) until we hopefully end up at a minimum.
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Algorithm 1 Gradient descent Algorithm

1: Initialize θ0 and θ1
2: Repeat until convergence θj := θj − a ∂

∂θj
J(θ0, θ1) for j = 0 and j = 1

Note that by := we denote assignment. The a is the learning rate and it controls how big
is the step we take with gradient descent. So if a is very large, then that corresponds to a
very aggressive gradient descent procedure where we take huge steps. If a is very small then
we are taking small steps. We update simultaneously θ0 and θ1.

Suppose that we have only one parameter θ1 and we want to minimize J(θ1), θ1 ∈ R.
∂
∂θj
J(θ1) gives us either a positive or a negative number indicating the direction of where

the next step should be to get closer to the minimum. Gradient descent can converge to a
local minimum even with the learning rate a fixed because as we approach a local minimum,
gradient descent will automatically take smaller steps.

2.1.3 Gradient Descent for Linear regression

The linear regression model is
hθ(x) = θ0 + θ1x

and the cost function is

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2

The goal is to minimize J(θ0, θ1).

Let’s find the gradient descent for linear regression. We have that

∂

∂θj
J(θ0, θ1) =

∂

∂θj

1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 =

∂

∂θj

1

2m

m∑
i=1

(θ0 + θ1x
(i) − y(i))2

For θ0 , j = 0 :
∂

∂θ0
J(θ0, θ1) =

1

m

∑
(hθ(x(i)− yi)

For θ1 , j = 1 :
∂

∂θ1
J(θ0, θ1) =

1

m

∑
(hθ(x(i)− yi)x(i)

Note that the cost function for the linear regression function is a convex function, therefore
it has one global optimum.
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Algorithm 2 Gradient descent Algorithm for Linear regression

1: Initialize θ0 and θ1
2: Repeat until convergence

θ0 := θ0 − a 1
m

∑
(hθ(x(i)− yi)x(i)

θ1 := θ1 − a 1
m

∑
(hθ(x(i)− yi)x(i)

Why not linear regression

To attempt classification, one method is to use linear regression and map all predictions
greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this method doesn’t work
well because classification is not actually a linear function. The classification problem is like
the linear regression problem, except that the values we want to predict are between 0 and
1. We will focus on the binary classification problem in which y can take only two values, 0
and 1.

2.2 Classification of liver data

The liver data set, which we described in Chapter 1, comprise diseased and non-diseased
individuals (two categories). In such cases we want to classify the subjects si, in these
categories. In general the categories can be more than two. In the liver data set, the
response variable Y is the true diseases status and the observations are the 236 Markers. To
each subject si belongs 236 measurements and to each measurement corresponds a marker.
That is:

S =


s1
s2
s3
...

s145

 , Y =


Y1
Y2
Y3
...

Y145

 , X =


x11 x12 x13 . . . x1,236
x21 x22 x23 . . . x2,236
x31 x32 x3,3 . . . x3,236

...
...

...
. . .

...
x1,451 x1,452 x1,453 . . . x145,236

 =


X
′
1

X
′
2

X
′
3

...
X
′
451


Where

� The matrix S consists of the 145 subjects

� Y comprise the disease status of each subject

� Yi is a binary variable Yi =

{
0, if the subject is healthy

1, if the subject is diseased

� X is a 145 × 236 matrix. Each row corresponds to a subject and consists of 236
measurements and each column consists of the values of a marker.
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� The subject si has 236 measurements: Xi =
[
xi1 xi2 xi3 . . . xi236

]
where i ∈

1, 2, ..., 145

� Each marker has 145 values: Markeri =
[
x1i x2i x3i . . . x145i

]
where i ∈

1, 2, ..., 236

In the remaining part of this Chapter we will cover two classification methods, Logistic
Regression which is one of the most traditional parametric classification methods and Support
Vector Machines which is a kernel method and closely related to logistic regression.

2.3 Logistic Regression

The Logistic regression model was developed by David Cox in 1958 and is used in various
fields. Logistic regression is a supervised classification method.

In the Logistic regression model we want 0 ≤ hθ(x) ≤ 1 so that our predictions (which are
probabilities) are between 0 and 1. In Linear regression the form of h is hθ(x) = θTx. For
Logistic regression we modify this function as

hθ(x) = g(θTx) (2.4)

with

g(z) =
1

1 + e−z
(2.5)

so that g(z) ∈ (0, 1).

g(z) is called the sigmoid function or logistic function. If we put the equations (2.5) and
(2.6) together we have:

hθ(x) =
1

1 + e−θT x
(2.6)
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The form of the sigmoid function is shown in figure (2.2):

Fig. 2.2: Source: An Introduction to Statistical Learning with Applications in R . Here
we see the predicted probabilities using logistic regression. All probabilities (the blue
curve) lie between 0 and 1. The orange points represent the data set with is used to fit
the model.

Notice that the sigmoid function, while z goes to minus infinity, g(z) approaches 0, and as
z goes to infinity, g(z) approaches 1.

The next step is to fit the parameters θ. Given a training set we need to pick a value for
the parameters θ and then hθ(x) will help us to make predictions.

Interpretation of the hθ(x) output:

hθ(x) gives us the estimated probability that y = 1 on input x. That is:

hθ(x) = P (y = 1|x, θ)

which is the probability that y = 1, given x, parameterized by θ. Because y is either 0 or 1,
we have that:

P (y = 1|x, θ) + P (y = 0|x, θ) = 1

P (y = 0|x, θ) = 1− P (y = 1|x, θ)

Notice that:

hθ(x) = P (y = 1|x, θ) =
1

1 + e−θT x
=

eθ
T x

1 + eθT x

� For θTx→ +∞ , eθ
T x → +∞ and eθ

T x

1+eθT x
→ 1.

� For θTx→ −∞ , eθ
T x → 0 and eθ

T x

1+eθT x
→ 0.

� So P (y = 1|x, θ) ∈ [0, 1] for any values of θTx.
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Decision Boundary

The function hθ(x) estimates the probability that y is equal to 1, given x parameterized by
θ. So if we want to predict if y is equal to 1 or if y is equal to 0, here’s something we might
do: whenever hθ(x) outputs that the probability of y is greater or equal to 0.5, then we
predict that y equals 1. And otherwise, if the estimated probability of y being 1 is less than
0.5, then we predict that y equals 0.

The way the logistic function g behaves is that when its input is greater or equal to zero,
it’s output is greater or equal to 0.5:

g(z) ≥ 0.5 when z ≥ 0

So if our input to g is θTX, then that means:

hθ(x) = g(θTx) ≥ 0.5 when θTx ≥ 0

From these statements we can say:

θTx ≥ 0 : y = 1

θTx < 0 : y = 0

The decision boundary is the line that separates the area where y = 0 and where y = 1 and
it is created by the hθ(x) function.

2.3.1 Cost function of the logistic regression

We can not use the same cost function that we use for linear regression because the logistic
function will cause the output to be wavy, causing many local optima. In other words, it will
not be a convex function. In logistic regression a reasonable assumption is that yi follows
Bernoulli distribution.

We have that:

P (yi = 1|x, θ) = hθ(x)

thus
P (yi = 0|x, θ) = 1− hθ(x)

Because yi follows Bernoulli distribution we have:

P (yi|x, θ) = (hθ(x))yi (1− hθ(x))(1−yi)
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Then the likelihood is:

P (yi|x, θ) =
m∏
i

(hθ(x))yi (1− hθ(x))(1−yi)

and the negative log likelihood is:

−
m∑
i

yi log hθ(x) + (1− yi) log(1− hθ(x))

or
−ylog(hθ(x))− (1− y)log(1− hθ(x))

which is the cost function.

Fig. 2.3: Plot of the cost function J(θ). If the correct answer for y is 0, then the cost
function will be 0 if hθ(x) outputs 0. If hθ(x) approaches 1, then the cost function will
approach infinity.

We can fully write out our entire cost function as follows:

J(θ) =
1

m
Cost(hθ(x), y)

where:
Cost(hθ(x), y) = − log(hθ(x)) if y = 1

Cost(hθ(x), y) = − log(1− hθ(x)) if y = 0

Also:
Cost(hθ(x), y) = 0 if hθ(x) = y

and
Cost(hθ(x), y)→ +∞ if y = 0 and hθ(x)→ 1
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Fig. 2.4: Plot of the cost function J(θ). If the correct answer for y is 1, then the cost
function will be 0 if the hθ(x) function outputs 1. If hθ(x) approaches 0 , then the cost
function will approach infinity.

Cost(hθ(x), y)→ +∞ if y = 1 and hθ(x)→ 0

If the correct answer for y is 0, then the cost function will be 0 if hθ(x) outputs 0. If hθ(x)
approaches 1, then the cost function will approach infinity.

If the correct answer for y is 1, then the cost function will be 0 if the hθ(x) function outputs
1. If hθ(x) approaches 0 , then the cost function will approach infinity.

J(θ) = − 1

m
[y(i)log(hθ(x

(i))) + (1− y(i))log(1− hθ(x(i)))]

The cost function J(θ) is convex for logistic regression.

A vectorized implementation is:
h = g(Xθ)

J(θ) =
1

m
(−yT log(h)− (1− y)T log(1− h))

For this optimisation problem we don’t have a close form solution, but since this is a convex
optimisation problem and we can use numerical solutions.
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2.3.2 Gradient Descent of the logistic regression

As we saw before, the general form of the gradient descent is:

Algorithm 3 General form of Gradient descent Algorithm

1: Initialize θ0 and θ1
2: Repeat until convergence θj := θj − a ∂

∂θj
J(θ)

By using the cost function J(θ) and calculating the derivative part, we have:

Algorithm 4 Gradient descent for Logistic regression

1: Initialize θ0 and θ1
2: Repeat until convergence θj := θj − a

m

∑m
i=1(hθ(x

(i))− y(i))x(i)j

As before, we have to simultaneously update all values in θ.

Advantages of Logistic regression

� Logistic regression is interpretable

� Logistic regression can be extended for more categories.

� It forms the foundation for some more complex methods like neural networks.

Disadvantages of Logistic regression

� The performance is not necessarily as good as some other methods but it always
depends on the problem.
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2.4 Support Vector Machines

Support Vector Machines (SVM) is a supervised classification method, created by Vladimir
Vapnik (1995). It approaches the classification problem directly, making no use of densities
or a probability model but it tries to separate the feature space by finding the largest margin
between the decision boundary and the features. We start this section by describing the
relationship between logistic regression and support vector machine.

2.4.1 An alternative view of logistic regression

As we saw in Chapter 2, the logistic regression model is

hθ(x) =
1

1 + e−θT x

For z = θTx we have hθ(x) = g(z), where g(x) is the sigmoid function.

If we have an example where y = 1 (in the training or in the test set), then we hope that
the logistic model will output a value close to 1, hθ(x) ≈ 1 or in other words θTx� 0.

Conversely, if we have an example where y = 0 (in the training or in the test set), then we
want hθ(x) ≈ 0 or in other words θTx� 0.

The cost function of logistic regression for one example (x, y) is:

− (y log hθ(x)) + (1− y)log(1− hθ(x))) =

−y log
1

1 + e−θT x
− (1− y) log(1− 1

1 + e−θT x
)

In the first case suppose that y = 1 (we want θTx� 0):

In this case only the first term in the cost function matters (the second term is equal with
0).

So when y = 1 we have:

− log
1

1 + e−θT x

If we plot this function as a function of z (where z = θTx) we get the blue curve in figure
(2.5). Thus we see that when z is equal to some large number, θTx is large and that
corresponds to a very small contribution of θTx to the cost function (-log 1

1+e−θT x
is small).

In support vector machine we modify − log 1
1+e−z

. The new cost function is shown in red
in figure (2.5). It is flat for z > 1 and linear for z < 1. We call this function cost1(z) (for
y = 1).
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Fig. 2.5: Plot of the cost function of the logistic and SVM for y = 1. The blue curve
corresponds to the cost function of the logistic regression for y = 1 and the red line
corresponds to the cost function of the support vector machine for y = 1

In the second case suppose that y = 0 (we want θTx� 0):

In this case only the second term in the cost function matters (the first term is equal with
0).

So when y = 0 we have:

− log(1− 1

1 + e−θT x
)

If we plot this function as a function of z (where z = θTx) we get the blue curve in figure
(2.6). Thus we see that when z is equal to some small number, θTx is small and that
corresponds to a very small contribution of z to the cost function − log(1− 1

1+e−z
) is small).

Fig. 2.6: Plot of the cost function of the logistic and SVM for y = 0. The blue curve
corresponds to the cost function of the logistic regression for y = 0 and the red line
corresponds to the cost function of the support vector machine for y = 0

In support vector machine as before we modify − log(1 − 1
1+e−z

). The new cost function
is shown in red in figure (2.6). It is flat for z < −1 and linear for z > −1. We call this
function cost0(z) (for y = 0).
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The cost function for logistic regression is:

minθ
1

m

m∑
i=1

[
y(i)
(
− log(hθ(x

(i)))
)

+ (1− y(i))(−log(1− hθ(x(i))))
]

Thus the cost function for support vector machine is:

minθ
1

m

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

By minimizing this as a function of the parameters θ the cost function we get the parameters
for support vector machine. Unlike logistic regression, support vector machine does not
output a probability. The support vector machine makes a prediction of y being equal to 1
or 0, directly.

2.4.2 Large Margin Classifier

In this section we will include the regularization term (see Chapter 3) in the cost function
in order to describe how the large margin classifier works.

The cost function of support vector machine with the regularization term (see Chapter 3)
is:

minθC
m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

+

p∑
j=1

|θj|

When we take a positive example, then cost1(z) = 0 only when z ≥ 1, or in other words
θTx ≥ 1.

Fig. 2.7: Plot of the cost function of the SVM for y = 1. For a positive example the
cost1(z) = 0 only when z ≥ 1
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Conversely, if y = 0 then cost1(z) = 0 only when z ≤ −1, or in other words θTx ≤ −1.
Notice that by putting z ≥ 1, z ≤ −1 and not 0, in the support vector machine we don’t
want to get barely the example right. Instead we want this to be a lot bigger or smaller than
0 (≥ 1 or ≤ −1). This builds an extra safety factor into the support vector machine.

Fig. 2.8: Plot of the cost function of the SVM for y = 0. For a negative example the
cost1(z) = 0 only when z ≤ −1.

The cost function of support vector machine with the regularization term is:

minθC
m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

+

p∑
j=1

|θj|

Suppose that C is some very large value. By minimizing the cost function as a function of
θ we choose the parameters θ so that:

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

= 0

So we have the following optimaization problem:

minθC ∗ 0 +

p∑
j=1

|θj| =

minθ

p∑
j=1

|θj|

So when y(i) = 1 : θTx(i) ≥ 1 and when y(i) = 0 : θTx(i) ≤ −1. The decision boundary we
get by minimizing this as function of the parameters θ is shown in the following example.
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Example 1

Suppose that the red points are the positive samples and the blue crosses are the negative
samples in figure (2.9). We can see that we can draw a straight line that can separate the
positive and the negative samples perfectly.

Fig. 2.9: Scatter plot of the data for example 1. With red we have the positive examples
and with blue the negative examples.

We can for example plot these three lines shown in figure (2.10) with green, red and black.

Fig. 2.10: There are many decision boundaries which can separate the data, here we see
three of them in green, pink and black.

The black line looks to be a better decision boundary than the other two because it seems
to be more robust. The black decision boundary has the largest distance from the samples.
This distance is called the margin of the support vector machine (see figure (2.11), the
dotted lines). The margins give the support vector machine a robustness because it tries
to separate the data with a margin as large as possible. For this reason the support vector
machine is often called large margin classifier. This is also a consequence of the optimization
problem which will be discussed later.
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Fig. 2.11: The optimal decision boundary seems to be the black one because it has the
largest distance with the data, thus the largest margin.

Example 2
Given a data set shown in figure (2.12) in the case when C (the regularisation parameter)
is very large, the large margin classifier is the black line in figure (2.12).

Fig. 2.12: Scatter plot of the data for example 2. For C some large number the decision
boundary is the black line.

But by using only the large margin classifier the SVM can be sensitive to outliers. If we add
an extra blue cross we can get a very different decision boundary (see figure (2.13)).
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Fig. 2.13: By adding one only outlier and keeping the value of C large, the decision
boundary changes from the black line to the green line.

So based on a single outlier the decision boundary has changed from the black one, over to
the green one. So if the regularisation parameter C is very large then the SVM will have as
decision boundary the green line. But if C is small (or if the data are not linearly separable)
the SVM will have the black line as the decisions boundary (see figure (2.14)). All the above
statements will became more clear later in this Chapter.

Fig. 2.14: Adding more outliers to the data, choosing the optimal value of C can be
difficult. For C large the decision boundary will fit the (training) data as good as
possible being also more sensitive to outliers. For C small the decision boundary will
remain the black line and being also more robust to outliers.
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2.4.3 Some mathematic background

Vector Inner Products

Suppose that we have 2 two dimensional vectors u and v. The inner product is uTv and
the euclidian length of u (or the norm) is ||u|| =

√
u21 + u22 ∈ R. For computing the inner

product of u and v we project the vector v onto the vector u as shown in figure (2.15). We
measure the length of p (see figure) which is the length of the projection of the vector v
onto the vector u.

Fig. 2.15: By projecting u onto v (or v onto u ) we get the length of p. The inner
product of uTv is p||u| where p is the length shown in pink and ||u|| is the norm of u.

The inner product is equal to:

uTv = p||u|| = u1v1 + u2v2 = vTu

where p ∈ R and ||u|| ∈ R. Note also that p can be positive or negative. For example, in
the case where the angle between the two vectors is greater than 90o then if we project v
onto u , p is negative (see figure 2.16).
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Fig. 2.16: The length of p can also be negative if the angle between the two vectors is
greater than 90o.

2.4.4 Minimizing the cost function

In section ”large margin classifier” we saw that for C some large number the cost function
is:

minθ

p∑
j=1

|θj|

Suppose that θ0 = 0 we we have only two features x1 and x2. Then:

minθ

p∑
j=1

|θj| = minθ|θ1 + θ2| = minθ

√
θ21 + θ22 = minθ||θ||

Given a parameter θ and an example x (only one!) the inner product of the vector θ and x
is equal with the length p times the norm of the vector θ.

θTx = p||θ|| = θ1x1 + θ2x2

So we have for an example xi that :

θTx(i) = p(i)||θ||

Therefore:
θTx(i) ≥ 1 if y(i) = 1

θTx(i) ≤ −1 if y(i) = 0
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Fig. 2.17: Projection from the vector x onto the vector θ. Regarding where the vector
x is the value of p can be positive or negative.

and:

p(i)||θ|| ≥ 1 if y(i) = 1

p(i)||θ|| ≤ −1 if y(i) = 0

where p(i) is the projection of the i training example x(i) onto the parameter θ.

Example

Suppose the data set shown in figure (2.18) and θ0 = 0. Suppose also that the decision
boundary is the green line in the same figure.

Fig. 2.18: Suppose that the red points and the blue crosses is our data set. The blue
cross x1 is our first example, we project it onto the vector θ - which is the blue vector,
and we get the distance p(1).
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The vector θ is shown in the figure (2.19) with blue. Because θ0 = 0 the θ vector passes
through the origin (0, 0).

Suppose that the blue cross x1 is the first example. The projection of this example to the
parameter θ is p(1) which is a small number.

Fig. 2.19: For the red point x2 the projection onto the parameter θ is p(2), where
p(2) < 0.

For the red point x2 the projection of this example onto the parameter θ is p(2) (where
p(2) < 0 ) as shown in the figure.

For this decision boundary the p(i) are small numbers. For positives examples we need
p(i)||θ|| ≥ 1 , but if p(i) is small we need the ||θ|| to be large. Similarly, for a negative
example, we need p(i)||θ|| ≤ −1, but if p(i) is small we need the ||θ|| to be large.

This comes in contrast with what we want to do to the cost function θTx(i) = p(i)||θ||,
where we try to find a setting of parameters where the norm ||θ|| is small.

Suppose the green line in figure (2.20) is another decision boundary. The vector θ is shown
in blue. The projection of x(1) and x(2) onto θ is p(1) and p(2) respectively. So p(1) and p(2)

are bigger now and θ can be smaller than by using the previous decision boundary.
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Fig. 2.20: By choosing this green line for our decision boundary the p(1) and p(2) values
are larger than for the previous decision boundary. The margin is also larger, therefore
this green decision boundary is a better choice.

By choosing this decision boundary instead of the previous one, the SVM can make the norm
||θ|| of the parameter smaller, therefore the cost function smaller. This is also the reason
of why the SVM will choose this decision boundary. By making the p(i) large, we make the
margin large, so that the SVM can have smaller values of θ which is our goal.

In this example we supposed that θ0 = 0 therefore the decision boundaries will cross through
the origin. So when θ0 6= 0 the decision boundary doesn’t have to cross the origin (0, 0).

2.4.5 Non-linearities and Kernels

Support vector machine can also be used to develop more complex nonlinear classifiers. The
technique for doing that is by using kernels. We will start with the normal kernel which is
the most popular.

Normal Kernel

To explaining the normal kernel we start with an example.

Example

Suppose that we have the training set shown in figure (2.21) and we would like to distinguish
the red (positive) and the blue (negative) examples.
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Fig. 2.21: Training set containing red circles and blue crosses. The decision boundary
is a more complex function (the black circle)

Ideally the decision boundary would look like the black circle. One way to do this is to come
up with a set of complex polynomial features:

θ0 + θ1x1 + θ2x2 + +θ3x1x2 + θ4x
2
1 + θ5x

2
2 + ... (2.7)

So we have:

hθ(x) =

{
1, if θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x

2
1 + θ5x

2
2 + ... ≥ 0

0, if otherwise

The function (2.7) can also be written as:

θ0 + θ1f1 + θ2f2 + θ3f3 + θ4f4 + ...

where with fi we denote the features (f1 = x1, f2 = x2, f3 = x1x2, ... )

Is there a better choice of the features f1, f2, f3, ... that we can use?

We will answer this question in the following example.

Example

In this example we define three red points l1, l2, l3. The goal is to find new features
f1, f2, f3, ... bases on the similarity of the training set with the l1, l2, l3.

Suppose that we have two features x1 and x2. We will define the new features as follows:
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Given x:
The first feature f1 is some measure of the similarity between the training example x and
l1. One form to measure the similarity is:

exp

(
−||x− l

1||2

2σ2

)
where ||x− l1||2 is the euclidean distance between the point x and l1.

Similarly the next feature f2 is the similarity between the training example x and l2:

exp

(
−||x− l

2||2

2σ2

)
And f3 is the similarity between the training example x and l3:

exp

(
−||x− l

3||2

2σ2

)
The different similarity functions are called kernels. This specific choice of similarity measure
is called the Gaussian kernel denoted as:

k(x, l(i))

So for l1, the similarity between x and l1 is

f1 = similarity(x, l(1)) = exp

(
−||x− l

1||2

2σ2

)
= exp

(
−
∑m

j=1(xj − l
(1)
j )2

2σ2

)

Suppose that x is close to l(1): Then the euclidean distance ||x− l1||2 will be close to 0. So

f1 ≈ exp

(
− 0

2σ2

)
≈ 1

Conversely, if x is far from l1:

f1 ≈ exp

(
−( large number )2

2σ2

)
≈ 0

So what these f1, f2, f3, ... features do is to measure how similar x’s are with one of the l.
The feature f is close to 1 when x is close to l and f is close to 0 when x is far from to l.
Each l1, l2, l3 defines a new feature f1, f2, f3. So given a new example x we can compute
three new featuresf1, f2, f3 given l1, l2, l3.

How do we choose the li and how many should we choose?

Suppose that we have the training set shown in figure (2.22). The idea is to take the
m examples (red or blue) and for every training example that we have we put li where
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Fig. 2.22: Training set containing red circles and blue crosses. For every training point
x(i) we compute an l(i).

i = 1, 2, ...,m as exactly the same location as the training examples. So we have m l’s:
l1, l2, ..., lm for m training examples.

So given:
(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))

we choose
l(1) = x(1), l(2) = x(2), ..., l(m) = x(m)

Given an example x (in the training or in the test set):

f1 = similarity (x, l(1))

f2 = similarity (x, l(2))

...

fm = similarity (x, l(m))

we get a feature vector:

f =


f1
f2
...
fm


Suppose we have a training example (x(i), y(i)), the features that we will compute are:

f
(i)
1 = similarity (x(i), l(1))
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f
(i)
2 = similarity (x(i), l(2))

...

f (i)
m = similarity (x(i), l(m))

Somewhere in the middle we will have:

f
(i)
i = similarity (x(i), l(i))

where l(i) = x(i). So f
(i)
i will be the similarity between x and itself. By using the Gaussian

kernel we have:

f
(i)
i = similarity (x(i), l(i)) = exp

(
− 0

2σ2

)
= 1

So at least one of the features for this training example is 1.

We can also take all of these m features and group then into a feature vector. So instead
of x(i) we have

f (i) =


f
(i)
1

f
(i)
2
...

f
(i)
m


where f (i) the the new feature vector. These new feature vectors are also called support
vectors.

2.4.6 Support vector machines with Kernels

Given a set of parameters θ then for a value x we compute the feature f ∈ Rm+1 and we
predict y = 1 if θTf ≥ 0. Note that the new feature vector is called also support vector
because it can give us which f (i) plays a bigger role in classifying x. The f (i) which are
near the decision boundary have a greater value (f (i) ≈ 1 ) than those how are not close
(f (i) ≈ 0).

The parameters θ can be computed from the support vector machine cost function

minθC

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

+

p∑
j=1

|bj|

But instead of using the x(i) we use the new features f (i) so we have:

minθC

m∑
i=1

[
y(i)cost1(θ

Tf (i)) + (1− y(i))cost0(θTf (i))
]

+
m∑
j=1

|bj|
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By solving this minimization problem we get the parameters of θ for the support vector
machine. Note also what the number of new features is m (the amount of the training
example).

2.4.7 Other Kernels

Until now we have seen the Gaussian kernel and the linear kernel (when we basically don’t
use any kernel).

For the linear kernel we predict y = 1 if θTx ≥ 0. This type of kernel can be used if we
have a large number of features p and a small training set m. We can fit a linear decision
boundary and not try to fit a very complicated non-linear function because we might not
have enough data and we might risk overfitting.

The Gaussian kernel is useful when the feature space p is small and we have available a
large training set m. This way we can fit a more complex decision boundary and separate
the data better. Note also that if the features are in a different scale we need to do feature
scaling before using the Gaussian kernel. This is because if we have:

||x− l||2 = (x1 − l1)2 + (x2 − l2)2 + ...+ (xn − ln)2

If the range of the xi is different then some (xi − li)2 are going to be very large and some
(xi − li)2 very small.

Another option of kernel is the Polynomial kernel and here the similarity between x and
l is defined as (one version of similarity measure):

k(x, l) = (xT l)2

or
k(x, l) = (xT l)3

or
k(x, l) = (xT l + 1)3

The general form is:
k(x, l) = (xT l + constant )d

where the constant and the d parameters has to be specified. If x and l are very similar to
each other then the inner product between then is large.
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2.4.8 Bias variance trade off for SVM

How to choose the parameter C

If C some large number, this corespondents to not using much regularization and tend to
have lower bias and high variance (see chapter 1). If we use a smaller value for C we have
higher bias and low variance.

How to choose the parameter σ2 in the Gaussian kernel

If the σ2 is large then the features fi vary more smoothly. We have higher bias and lower
variance.

Fig. 2.23: Plot of f (i). If the σ2 is large then the feature f (i) vary more smoothly.

If σ2 is small the features fi vary less smoothly. We have lower bias and higher variance.

Fig. 2.24: Plot of f (i). If σ2 is small the feature f (i) vary less smoothly.
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2.4.9 Logistic regression vs SVM

When should we use logistic regression and when the support vector ma-
chine?

When the number of the feature space p is large relative to the number of training samples
then the best option is to use the logistic regression or the SVM without a kernel (linear
kernel) because a liner function would probably perform good and we don’t have enough
data to fit a more complicated nonlinear function.

If the feature space p is small and the number of training samples m is large (but not very
large) then a good choice is the SVM with Gaussian kernel.

If the feature space p is small and the number of training samples m is very very large then
a good choice is to create more features and then use logistic regression or SVM without a
kernel. The SVM with Gaussian kernel can also be used but because of the massive training
size will be slow to run.

Logistic regression and SVM without a kernel are similar algorithms and give similar per-
formance, but depending on the implementation details, one may be more efficient than
the other. The power of SVM can be seen then we use different kernels to learn complex
nonlinear functions.
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Chapter 3

Model Selection and Regularization
methods

In Chapter 1 we described the liver cancer data set which consist of n = 145 subjects and a
large number of independent variables (features), Xj, j = 1, ..., 236. Not all these features
have the same contribution in a statistical model (or in the problem). In many cases the
goal is to develop a model which can explain the relationship between the features and the
dependent variable. For example it is more preferable to use a linear model in comparison
with a complex model like support vector machines, but even in a linear model when the
number of features is huge is very difficult to interpret. A severe mathematical problem is
when the dimension of the data is greater than the number of the available data points. For
example in linear regression when the number of the features is larger than the number of
the observations there is no longer a unique least squares coefficient estimate, the variance
is infinite and the method cannot be used.

There are two main options to address the issue of reducing the number of features.

� Manually select which features to keep.

� Use a model selection method or to use a regularization method.

In this chapter we will describe methods for feature selection and regularization, including
subset selection and lasso.

3.1 Model Selection for Linear Regression

3.1.1 Subset Selection

Subset Selection includes Best Subset Selection and Stepwise Model Selection. We will see
that best Subset selection is only useful if the number of features is relatively small. Step-
wise Model Selection consists of two methods: Forward Stepwise Selection and Backward
Stepwise Selection.
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Best Subset Selection

Suppose that we have p features but we want to have a simpler model that contains only a
subset of these p features. The first step in best subset selection is to find the best model
with 0, then 1, then 2 and so on until p features. Best here is defined as having the largest
R2. Note that the value R2 indicates how well the model fits the data. Big R2 denotes a
model that fits the data well. We end up with p models, each one of them with different
size of features. The second step is to find the test error in each model and the model with
the smallest test error is the final best model.

Algorithm 5 Best Subset Selection
1: Let M0 denote the null model, which contains no features.
2: For k = 1, 2, ..., p:

� Fit all

(
p
k

)
models that contain exactly k features.

� Pick the best model among these

(
p
k

)
models and call it Mk. Here best is

defined as having the highest R2.

3: Select a single best model from M0,M1, ...,Mp using the test error.

This method requires the computation from 2p models. For a large number of p this is a
problem because we are looking at an enormous number of models, and the chance of finding
a model that fits our training data well, even it might not have any predictive power, is high.
This can lead us to overfitting the data and high variance of the coefficient estimates. In
the next two methods we will see that this problem can be reduced (but not entirely solved).

Stepwise Selection

Stepwise selection methods explore less subsets of the models in comparison with best
subset selection. It includes two methods: Forward stepwise selection and backward stepwise
selection.

Forward Stepwise Selection

Forward stepwise selection begins with the model M0 which has no features. At each step it
adds the feature that improves the model. At the final step, like in best subset selection we
end up with M0,M1, ...,Mp models and choose the best among them which is the model
with the smallest test error.
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Algorithm 6 Forward Stepwise Selection
1: Let M0 denote the null model, which contains no features.
2: For k = 0, 1, ..., p− 1:

� Consider all p-k models that augment the features in Mk with one additional
feature.

� Choose the best among these p-k models and call it Mk+1. Here best is defined
as having the highest R2.

3: Select a single best model from M0, ...,Mp using the test error.

Backward Stepwise Selection

Backward selection goes the opposite way from forward selection. We begin with the model
Mp that contains all the features. At each step we remove the feature which arise a
model with higher R2 value and name it Mp−1. At the last step we choose among the
the Mp,Mp−1,M0 models the best one which is the model with the smallest test error.

Algorithm 7 Backward Stepwise Selection
1: Let Mp denote the full model that has all p the features.
2: For k = p, p− 1, ..., 1:

� Consider all k models that contain all but one of the features in Mk, for a total
of k − 1 features.

� Choose the best among these k models and call it Mk−1. Here best is defined
as having the highest R2.

3: Select a single best model from M0, ...,Mp using the test error.

3.2 Model Selection for Logistic Regression

In Logistic regression we cannot use the R2 method because we have a binary response
variable. Instead we use two other methods called score test which test for inclusion of a
term, and the Wald test which can be used to test for exclusion of a term. Neither of these
require iterative fitting and are based on the maximum-likelihood fit of the current model.
Note also that for finding the best model between models with the same feature number
k-fold cross validation can also be used.

3.2.1 Wald test

The Wald test is used to find out if the independent variables in a model are statistical
significant, or in other words if they add information to the model. If they add nothing, the
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independent variables can be deleted without affecting the model in any meaningful way.
For the Wald test the hypothesis is:

H0 : θ = θ0

vs

H1 : θ 6= θ0

If the null hypothesis is rejected, it suggests that the variable with coefficient θ can be
removed without much harm to the model fit.

The Wald Test statistic formula is:

W = (θ̂ − θ0)[V ar(θ̂)]−1(θ̂ − θ0)

Where: θ̂ is the maximum likelihood estimator.

Under the null hypothesis W follows a χ2 distribution. The number of degrees of freedom
depends from the number of parameters we test. If we test p parameters we have p degrees
of freedom.

3.2.2 Score test

The Lagrange multiplier or score test, as with the Wald test, requires estimating only a
single model. The difference is that with the score test the model that is estimated does not
include the parameter(s) of interest. The test statistic is calculated based on the slope (or
score) of the likelihood function at the observed values of the independent variables in the
model. The scores are then used to estimate the improvement in the model fit if additional
independent variables were included in the model. The test statistic is the expected change
in the χ2 statistic for the model if independent variable(s) is/are added to the model.

Suppose l is the log-likelihood. We build the score vector S by evaluating the derivative of
the likelihood with respect to each of the parameters of the model:

S =

[
∂l

∂θ1
,
∂l

∂θ2
, ...

]T
The Score test formula is:

LM = S(θ0)
T [V ar(θ0)]

−1S(θ0)

Under the null hypothesis LM follows a χ2
p distribution, where p is the number of parameters.

Note that none of these terms involve the unconstrained maximum likelihood estimate of the
parameters. S(θ0) is just the values of the parameters under the null hypothesis. This has
the benefit of not needing to estimated the maximum likelihood for all parameters, which
can cause problems when we have many parameters (thous high dimensional data)
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3.2.3 Subset Selection

Best subset selection and Stepwise selection for logistic regression is the same with linear
regression except that we use the Wald and the Score test inserted of the R2. As we
mentioned before, for including an independent variable (feature) we use the score test and
for excluding an independent variable we use the Wald test.

3.3 Lasso

The Least Absolute Shrinkage and Selection Operator, or Lasso is a shrinkage method
introduced by Tibshirani (1996). This method adds a penalty term in existing methods
(linear regression, logistic regression, SVM), in order to shrink the coefficients towards zero
and shrink some of those to exactly zero. They are very useful when we have a huge number
of features.

The shrinkage methods (or in other words, the regularization methods) improve the perfor-
mance of the model of the unseen data (test set) by not picking up noise in the training set.
These methods put a penalty against complexity, the more features we have in our model,
the higher the complexity is. Increasing the regularization term, we have a higher penalty at
large coefficients.

The goal is to find a model which performs good to the test set and not memorising the
training set.

The Lasso uses an l1 penalty:

||θ||1 =
∑
|θj|

The l1 penalty has the effect of forcing some coefficient estimates to be exactly equal to
zero when the regularisation parameter λ is sufficiently large. Hence, like subset selection,
the lasso performs variable selection.

3.3.1 Lasso for logistic regression

As we saw in chapter 2, for logistic regression the goal is to minimize the cost function. If
we want to regularize the cost function with Lasso, we add the additional term λ

∑p
j=1 |θj|

that increases as the value of the parameter weights increase. The λ term controls the
regularization strength. When λ is sufficiently large some of the coefficient can be exactly
0. This means that by applying Lasso the model uses only a subset of the variables. For
selecting a good value for λ cross-validation can be used.

The goal is to minimize the cost function with the additional regularisation term and to
choose the optimal λ value.

The cost function of Logistic Regression with the Lasso regularization term is:
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J(θ) = − 1

m

m∑
i=1

[y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i)))

]
+ λ

p∑
j=1

|θj|

3.3.2 Lasso for support vector machines

As we saw in Chapter 2 the cost function for support vector machines is

1

m

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

If we add the regularisation term the cost function becomes

1

m

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

+ λ

p∑
j=1

|θj|

Note that 1
m

is a constant so we can ignore it in the cost function because it will not change
the result of the minimum number of θ.

Going back in logistic regression, if we set

A =
1

m

m∑
i=1

[y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i)))

]
which is the cost that comes from the training set and

B =

p∑
j=1

|θj|

which is the regularization term. Then we can control the trade of of these two terms. We
want to minimize A + λB. By setting different values of λ we can trade off the weight of
how much we want to fit the training set well (minimizing A) versus how much we want to
keep the variables in the model (minimizing B).

For support vector machine we use (just by convention) instead of λ a parameter C where:

CA+B

and so the cost function becomes:

C
1

m

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

+

p∑
j=1

|θj|

So if we set to C a small value then that corresponds to giving the second term a much
larger rate than the first one. Note that in Chapter 4 we will use the notation C in the first
part of the cost function for both in Logistic regression and Support Vector Machines.
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Chapter 4

Results

In this chapter we apply the methods described in the previous chapters to our liver data set
(see Chapter 1). Our goal is to correctly predict if a person is diseased or not. We apply the
logistic regression model and the support vector machines in order fit a model to out data
for this classification task.

We start with the Logistic regression model using subset selection. From the best subset
selection, forward stepwise selection and backward stepwise selection we use only the forward
stepwise selection algorithm because using the other two methods requires to fit a logistic
regression model using all 236 features in a data set with 145 subjects. This is not possible as
we need at least p points to determine p free parameters. Then we continue with the Logistic
regression model using Lasso and finally we fit a support vector machines algorithm with
the regularisation term (Lasso). We start the support vector machines (SVM) subsection by
using only 2 features (SVM with a gaussian kernel) and then all features (SVM with a linear
kernel).

Before fitting any model we scale all the independent variables. We split the data into test
and training set and we keep the percentage of diseased and healthy subjects the same as
in the original data set. At the end of each method we fit the same test set in order to
evaluate the final performance of the model.

4.1 Logistic regression

In our data set the dependent variable is binary (diseased-healthy) therefore we will build a
binary logistic regression model. One assumption that is required is that the independent
variables (the features) have no high dependence between them and only the meaningful
features (a subset of them) should be included in the model.

In the figure (4.1) we can see all the correlations between the marker by colour. The yellow
colour means that there is a negative correlation starting from -0.6. As we approach the
light-blue colour the correction is near 0. As the colour is getting dark blue the correlation
tends to 1.

Markers that are close to the diagonal have in general a higher correlation in contrast with
the other markers. On the diagonal the correlation is 1 as we have corr(xi, xi) = 1 for each
marker.

66



Fig. 4.1: Correlation between variables scaled by colour. The yellow colour means
that there is a negative correlation -0.6 and as we approach the light-blue colour the
correction is near 0. As the colour is getting dark blue the correlation tends to 1.

As we have discussed in earlier chapters, by using all markers several problems arise. The
features space is very large and we can easily overfit the data. We use forward selection and
lasso to solve this problem.
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4.1.1 Forward selection

By using only the training set, we apply the forward subset selection algorithm with 3-fold
cross validation. By using cross validation we can estimate more accurate the accuracy of
the models with different number of features.

We use the forward selection algorithm and we select the best model for each number of
features. From these 145 models we obtain the Average Score (the percentage of accurate
predictions from the validation sets) by using 3-fold cross validation. In figure (4.2) we see all
the average scores for each number of features. Note that the best model for each number
of features is selected based on the average score using 3-fold cross validation.

Fig. 4.2: Forward feature selection with 3-fold cross validation. We select the best model
for each number of features. From the 145 models we plot the average score from the
validation sets.

In figure (4.2) we see that a good number of features to choose is 9 with average score 0.97
and for this model the best combination of Markers are: marker 18, 26, 47, 68, 71, 134,
150, 184, 197.

The correlation between these markers is shown in figure (4.3)

We use these markers in the logistic regression model. From the test set we also use only
these 9 markers.
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Fig. 4.3: Correlation between variables scaled by colour. The light yellow colour means
that there is a -1 negative correlation and as we approach the yellow colour the corre-
lation is near 0. As the colour is getting dark blue the correlation tends to 1.

Taking into account the true diseased status and the probability of disease given the 9
markers we create the classification table with 0.5 as the cut-off value.

In Table 4.1 we see that 13 healthy people out of 16 are correctly classified as healthy, 5
subjects are incorrectly classified as non-diseased, 23 subjects out of 28 are correctly classified
as diseased and 3 are incorrectly classified as diseased.
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Table 4.1: Classification Table

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 13 3 16

Disease, D=1 5 23 28

Total 18 26 44

� The True Positive Rate (sensitivity) is equal with: TPR = 23
28

= 0.82

� The False Positive Rate (1-specificity) is equal with: FPR = 3
16

= 0.18

The ROC curve is given in figure (4.4) and the AUC score is equal with 0.84.

The accuracy score is 81%

Fig. 4.4: ROC curve using a logistic regression model with 9 markers which were selected
using forward feature selection.

70



4.1.2 Lasso

The cost function of the Logistic regression with the regularisation term (Lasso) as we saw
in previous Chapters is:

J(θ) = − 1

m

m∑
i=1

[y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i)))

]
+ λ

p∑
j=1

|θj|

In this example we suppose that the regularisation term is at the left side of the cost function
and denoted as C:

J(θ) = −C 1

m

m∑
i=1

[y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i)))

]
+

p∑
j=1

|θj|

Thus if C is sufficiently small some of the coefficient can be exactly zero and vice versa.
In the case where p > m the lasso selects at most m variables before it regularizers the
parameters. The goal is to minimize the cost function as a function of θ and to choose
the optimal value C. As the value of the regularization term changes the values of the
coefficients changes also. In figure (4.5) the models are ordered from strongest regularized
to least regularized for C ∈ (0, 20). The 145 coefficients are plotted against the C value.
On the left-hand side of the figure we have a strong regularization and all the coefficients
are exactly 0. When regularization gets progressively looser, coefficients can get non-zero
values one after the other.

Fig. 4.5: The 145 coefficients are plotted for C ∈ (0, 20). On the left-hand side of
the figure we have a strong regularization and all the coefficients are exactly 0. When
regularization gets progressively looser, coefficients can get non-zero values one after the
other.
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In figure (4.6) we can visualise better the results for C ∈ (0, 1). On the left side of the plot
some coefficients are already zero because the maximum value of C here is 1, and so we
only see 23 non-zero values of the coefficients.

Fig. 4.6: On the left side of the plot some coefficients are already zero because the
maximum value of C here is 1, and so we only see 23 non-zero values of the coefficients.

We use a set of numbers for the value of C, C = 0.01, 0.04, 0.07, 0.1, 0.4, 0.6, 0.8, 1 and
use 3-fold cross-validation to find the optimal value of C, which is C = 0.04. The non-zero
coefficients corresponds to the 19 markers: 8, 84, 91, 92, 121, 122, 139, 145, 150, 151, 156,
163, 194, 196, 197, 206, 207, 217, 218.

The correlation between these markers is shown in figure (4.7)

72



Fig. 4.7: Correlation between variables scaled by colour. The light yellow colour means
that there is a -4 negative correlation and as we approach the light blue colour the
correlation is near 0. As the colour is getting dark blue the correlation tends to 1.

From the test set we choose these 19 markers. In Table 4.2 we see that 13 healthy people
from 16 are correctly classified as non-diseased, 3 subjects are incorrectly classified as non-
diseased, 25 subjects from the 28 are correctly classified as diseased and 3 are incorrectly
classified as diseased.

� The True Positive Rate (sensitivity) is equal with: TPR = 25
28

= 0.88

� The False Positive Rate (1-specificity) is equal with: FPR = 3
16

= 0.18
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Table 4.2: Classification Table

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 13 3 16

Disease, D=1 3 25 28

Total 16 28 44

The accuracy score is 86%.

The ROC curve is shown in figure (4.8)

Fig. 4.8: ROC curve using a logistic regression model with 19 markers which were
selected using Lasso.

AUC score is 0.93. AUC score 1 represents perfect classifier, and 0.5 represents a worthless
classifier.
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4.2 Support Vector Machines

In this section we start by selecting two markers, marker 40 and marker 100. We separate
the data into training set and test set which is the 20% of the data.

Fig. 4.9: Scatter plot of marker 40 and marker 100. In the first plot are is the hole data
set, in the second plot is the training set which consists of the 80% of the data points,
in the third plot is the test set which consists of the remaining 20% of the data points.
Notice that the data points are not linearly separable.

The data are not linearly separable. We use two features and we have 145 data points,
therefore we will use a Gaussian kernel. For different values of the regularisation parameter
C and the variance σ2 we get different decision boundaries. For example if we use C = 1000
and σ2 = 0.01 we get the decision boundary shown by the solid line and the margins shown
with the dotted lines in figure (4.10).
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Fig. 4.10: By using a Gaussian kernel with C = 100 and σ2 = 0.01 we get the decision
boundary shown by the solid line and the margins shown with the dotted lines.

The support vectors are denoted with black points in figure (4.11)

Fig. 4.11: The support vectors are shown in black.

But is this the best combination of the C and the σ2 value? To answer this question we use
3-fold cross validation and select the best combination of values for C = 0.1, 0.5, 10, 100
and σ2 = 1, 0.1, 0.01, 0.001 .
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The best combination that arises is for C = 10 and σ2 = 0.001. The decision boundary
together with the margin are shown in figure (4.8) on the left side. On the right side we see
how the test set gets separate from the optimal SVM decision boundary.

Fig. 4.12: On the left side we see the decision boundary together with the margin. On
the right side we see how the test set gets separate from the optimal SVM decision
boundary.

SVM using all the Markers

The cost function of the support vector machines with the lasso regularisation term is

C
1

m

m∑
i=1

[
y(i)cost1(θ

Tx(i)) + (1− y(i))cost0(θTx(i))
]

+

p∑
j=1

|θj|

Our liver data set has 145 subjects and 236 markers, which means that by using a more
complex kernel there is a high probability of overfitting therefore we will use a linear kernel.
We separate the data into training and test set (the test set is the same as in logistic
regression). Again by using different values of C (now we don’t have to choose a value for
σ2 because we use a linear kernel) we get a different decision boundaries.

As before we use 3-fold cross validation and for C = 0.01, 0.1, 0.3, 0.5, 0.8, 1 the best choice
is C = 0.01. To evaluate our model we use the classification table on the test set. We use
the predicted y′s for the X ′s from the test set and the true status y.

In Table 4.3 we see that 15 healthy people out of 16 are correctly classified as non-diseased,
2 subjects are incorrectly classified as non-diseased, 26 subjects from the 28 are correctly
classified as diseased and 1 is incorrectly classified as diseased.
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Table 4.3: Classification Table

Test result

True disease status Negative, Y=0 Positive, Y=1 Total

Healthy, D=0 15 1 16

Disease, D=1 2 26 28

Total 17 27 44

� The True Positive Rate (sensitivity) is equal with: TPR = 26
28

= 0.92

� The False Positive Rate (1-specificity) is equal with: FPR = 1
16

= 0.06

And the accuracy score is 93, 18%.

The number of support vectors for each class is 16 for the diseased and 13 for the non
diseased.
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4.3 Conclusions

In order to classify the healthy and the diseased subjects from the liver data set Logistic
Regression and Support Vector Machines were applied. Using forward feature selection and
Lasso we reduce the number of features.

First we split the liver data set into test and training set and we keep the percentage of
diseased and healthy subjects the same as in the original data set (stratification). At each
method we use the test set in order to evaluate the final performance of the model using
the accuracy score.

Using the Logistic regression algorithm with forward feature selection we use 3-fold cross
validation for evaluating the models with different number of features. We choose the model
with average score 0.97 which corresponds to a model with 9 features. The 9 markers are:
18, 26, 47, 68, 71, 134, 150, 184, 197. The accuracy score using the test set is 81%.

In Logistic regression with Lasso using 3-fold cross validation we found that the optimal
value of the regularisation parameter C is 0.04. The 19 Markers with non-zero coefficients
are marker: 8, 84, 91, 92, 121, 122, 139, 145, 150, 151, 156, 163, 194, 196, 197, 206,
207, 217, 218 (with only marker 150 and 197 be common from the previous method). The
accuracy score using the test set is 86%.

Continuing with Support Vector Machines first we used two random markers and applied
Support Vector Machines with a Gaussian Kernel. By choosing different values of C and
σ2 we saw that the decision boundary varies. Using all 236 markers we choose to use the
linear kernel because for fitting a more complicated nonlinear function usually requires more
subjects than features. The accuracy score using the test set is 93.18%.
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Chapter 5

Appendix

Scatter Plot

In the graphs below, the diseased group is denoted as 1 and the non-diseased group as 0.
We demonstrate a scatter plot, which at the x aces has the 1-0 group and at the y aces has
one of the 236 Markers.
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Fig. 5.1: Scatter Plot
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Outcome values

In table 3.1 and 3.2 the true disease status is given, the score value and the probability of
disease, from the logistic regression model, for each subject for Marker 197 and Marker 154.
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Table 5.1: Marker 197

Subject Status Marker value Score value Probability Subject Status Marker value Score value Probability

1 1 4.544 7.717 0.999 74 1 3.758 5.675 0.996
2 1 2.403 2.152 0.895 75 1 2.904 3.455 0.969
3 1 2.791 3.160 0.959 76 1 5.910 11.270 0.999
4 1 16.913 39.873 1.00 77 1 3.123 4.025 0.982
5 1 1.529 -0.119 0.470 78 1 2.442 2.253 0.904
6 1 2.060 1.260 0.779 79 1 1.956 0.989 0.729
7 1 0.665 -2.364 0.085 80 1 1.909 0.869 0.704
8 1 1.255 -0.831 0.303 81 1 2.169 1.543 0.823
9 1 4.131 6.645 0.998 82 1 2.060 1.261 0.779

10 1 4.685 8.085 0.999 83 1 2.689 2.895 0.947
11 1 2.086 1.32 20.790 84 1 1.919 0.894 0.709
12 1 18.686 44.483 1.00 85 1 3.348 4.608 0.990
13 1 2.598 2.658 0.934 86 1 3.890 6.018 0.997
14 1 9.497 20.595 1.00 87 1 2.435 2.236 0.903
15 1 1.057 -1.345 0.206 88 1 6.365 12.452 0.999
16 1 1.180 -1.027 0.263 89 1 5.632 10.546 0.999
17 1 1.707 0.343 0.584 90 1 7.289 14.854 0.999
18 1 2.382 2.098 0.890 91 1 6.425 12.608 0.999
19 1 2.910 3.471 0.969 92 1 3.073 3.895 0.980
20 1 7.349 15.011 0.999 93 1 3.678 5.466 0.995
21 1 1.782 0.537 0.631 94 0 1.095 -1.246 0.223
22 1 1.577 0.005 0.501 95 0 0.799 -2.016 0.117
23 1 7.056 14.249 0.999 96 0 0.880 -1.806 0.141
24 1 1.830 0.664 0.6660 97 0 1.349 -0.5877 0.357
25 1 2.100 1.364 0.796 98 0 0.799 -2.016 0.117
26 1 0.747 -2.15 0.104 99 0 0.890 -1.779 0.144
27 1 1.533 -0.109 0.472 100 0 0.937 -1.657 0.160
28 1 1.570 -0.012 0.496 101 0 1.121 -1.179 0.235
29 1 5.829 11.059 0.999 102 0 0.824 -1.953 0.124
30 1 11.161 24.921 1.000 103 0 0.701 -2.270 0.093
31 1 13.649 31.388 1.000 104 0 1.099 -1.236 0.225
32 1 5.547 10.326 0.999 105 0 1.717 0.369 0.591
33 1 2.184 1.582 0.829 106 0 0.805 -2.001 0.119
34 1 2.478 2.348 0.912 107 0 0.758 -2.124 0.106
35 1 1.875 0.780 0.685 108 0 1.676 0.261 0.565
36 1 2.169 1.543 0.823 109 0 0.403 -3.047 0.045
37 1 14.722 34.178 1.000 110 0 1.660 0.220 0.554
38 1 12.384 28.099 1.000 111 0 1.142 -1.125 0.245
39 1 22.781 55.093 1.000 112 0 0.983 -1.538 0.176
40 1 1.307 -0.696 0.332 113 0 0.300 -3.315 0.035
41 1 2.131 1.444 0.809 114 0 0.687 -2.307 0.090
42 1 13.519 31.050 1.00 115 0 0.943 -1.642 0.162
43 1 1.114 -1.198 0.231 116 0 -0.033 -4.181 0.015
44 1 1.453 -0.316 0.421 117 0 0.825 -1.949 0.124
45 1 3.410 4.770 0.991 118 0 0.828 -1.941 0.125
46 1 12.154 27.501 1.00 119 0 1.139 -1.132 0.243
47 1 8.242 17.331 0.999 120 0 1.110 -1.209 0.229
48 1 8.017 16.747 0.999 121 0 0.664 -2.369 0.085
49 1 5.487 10.170 0.999 122 0 0.621 -2.478 0.077
50 1 3.428 4.817 0.991 123 0 0.494 -2.803 0.056
51 1 12.594 28.645 1.000 124 0 1.726 0.393 0.597
52 1 4.756 8.270 0.999 125 0 0.810 -1.989 0.120
53 1 4.028 6.377 0.998 126 0 1.101 -1.230 0.226
54 1 8.636 18.357 0.9999 127 0 0.928 -1.680 0.157
55 1 3.031 3.785 0.977 128 0 2.237 1.721 0.848
56 1 2.534 2.494 0.923 129 0 0.805 -2.000 0.119
57 1 1.275 -0.780 0.314 130 0 1.401 -0.452 0.388
58 1 3.532 5.088 0.993 131 0 1.751 0.456 0.612
59 1 3.055 3.848 0.979 132 0 1.434 -0.365 0.409
60 1 1.911 0.873 0.705 133 0 2.618 2.712 0.937
61 1 2.738 3.023 0.953 134 0 2.271 1.808 0.859
62 1 6.975 14.038 0.999 135 0 0.911 -1.726 0.151
63 1 2.664 2.831 0.944 136 0 1.663 0.227 0.556
64 1 2.634 2.753 0.940 137 0 1.998 1.100 0.750
65 1 3.670 5.446 0.995 138 0 0.816 -1.974 0.121
66 1 2.289 1.856 0.864 139 0 1.237 -0.877 0.293
67 1 4.244 6.937 0.999 140 0 1.004 -1.483 0.184
68 1 2.682 2.878 0.946 141 0 1.023 -1.434 0.192
69 1 2.907 3.463 0.969 142 0 1.970 1.028 0.736
70 1 3.043 3.815 0.978 143 0 0.410 -3.027 0.046
71 1 2 .030 1.181 0.765 144 0 0.851 -1.881 0.132
72 1 2.193 1.607 0.833 145 0 1.803 0.594 0.644
73 1 6.308 12.303 0.999 · · · · ·
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Table 5.2: Marker 154

Subject Status Marker value Score value Probability Subject Status Marker value Score value Probability

1 1 7.154 2.033 0.884 74 1 30.218 -0.888 0.291
2 1 7.211 2.025 0.883 75 1 3.801 2.457 0.921
3 1 13.404 1.241 0.775 76 1 11.637 1.465 0.812
4 1 17.882 0.674 0.662 77 1 13.108 1.278 0.782
5 1 13.207 1.266 0.780 78 1 19.046 0.526 0.628
6 1 16.158 0.892 0.709 79 1 12.701 1.330 0.790
7 1 11.058 1.538 0.823 80 1 9.744 1.704 0.846
8 1 5.266 2.272 0.906 81 1 11.694 1.457 0.811
9 1 22.677 0.066 0.516 82 1 18.018 0.656 0.658

10 1 28.885 -0.719 0.327 83 1 15.483 0.977 0.726
11 1 17.985 0.660 0.659 84 1 13.626 1.213 0.770
12 1 25.383 -0.276 0.431 85 1 32.707 -1.203 0.230
13 1 19.385 0.483 0.618 86 1 7.057 2.045 0.885
14 1 19.121 0.517 0.626 87 1 3.724 2.467 0.921
15 1 18.759 0.562 0.637 88 1 5.621 2.227 0.902
16 1 18.204 0.633 0.653 89 1 8.488 1.863 0.865
17 1 6.768 2.081 0.889 90 1 4.965 2.310 0.909
18 1 30.189 -0.884 0.292 91 1 6.636 2.098 0.890
19 1 25.318 -0.267 0.433 92 1 17.288 0.749 0.679
20 1 22.509 0.087 0.521 93 1 5.240 2.275 0.906
21 1 11.567 1.473 0.813 94 0 17.081 0.775 0.684
22 1 12.322 1.378 0.798 95 0 15.536 0.971 0.725
23 1 15.618 0.960 0.723 96 0 22.222 0.124 0.531
24 1 7.220 2.024 0.883 97 0 21.491 0.216 0.553
25 1 30.415 -0.913 0.286 98 0 23.987 -0.099 0.475
26 1 25.194 -0.252 0.437 99 0 16.582 0.838 0.698
27 1 16.384 0.863 0.703 100 0 10.159 1.652 0.839
28 1 12.560 1.348 0.793 101 0 24.743 -0.195 0.451
29 1 26.097 -0.366 0.409 102 0 10.946 1.552 0.825
30 1 19.514 0.467 0.614 103 0 12.563 1.347 0.793
31 1 16.291 0.875 0.705 104 0 17.861 0.676 0.663
32 1 10.090 1.661 0.840 105 0 15.850 0.931 0.717
33 1 13.392 1.242 0.776 106 0 24.775 -0.199 0.450
34 1 12.272 1.384 0.799 107 0 19.071 0.523 0.627
35 1 23.907 -0.089 0.477 108 0 23.508 -0.038 0.490
36 1 10.233 1.643 0.837 109 0 32.469 -1.173 0.236
37 1 11.515 1.480 0.814 110 0 32.013 -1.116 0.246
38 1 7.774 1.954 0.875 111 0 29.549 -0.803 0.309
39 1 7.605 1.975 0.878 112 0 27.059 -0.488 0.380
40 1 8.539 1.857 0.865 113 0 23.969 -0.097 0.475
41 1 18.006 0.532 0.630 114 0 27.122 -0.496 0.378
42 1 23.380 -0.022 0.494 115 0 30.508 -0.925 0.283
43 1 11.581 1.472 0.813 116 0 7.821 1.948 0.875
44 1 12.636 1.338 0.792 117 0 33.442 -1.297 0.214
45 1 29.808 -0.836 0.302 118 0 34.190 -1.391 0.199
46 1 10.765 1.575 0.828 119 0 16.411 0.860 0.702
47 1 5.936 2.187 0.899 120 0 31.039 -0.992 0.270
48 1 6.062 2.171 0.897 121 0 27.745 -0.575 0.360
49 1 16.059 0.904 0.711 122 0 8.469 1.866 0.866
50 1 16.209 0.886 0.708 123 0 26.156 -0.374 0.407
51 1 6.491 2.116 0.892 124 0 40.294 -2.164 0.102
52 1 7.649 1.970 0.877 125 0 34.222 -1.395 0.198
53 1 30.525 -0.927 0.283 126 0 34.925 -1.484 0.184
54 1 7.384 2.003 0.881 127 0 24.177 -0.123 0.469
55 1 23.826 -0.078 0.480 128 0 20.207 0.379 0.593
56 1 20.392 0.356 0.588 129 0 26.089 -0.365 0.409
57 1 14.459 1.107 0.751 130 0 18.918 0.542 0.632
58 1 34.863 -1.477 0.185 131 0 20.733 0.312 0.577
59 1 6.256 2.146 0.895 132 0 21.832 0.173 0.543
60 1 12.440 1.363 0.796 133 0 23.985 -0.099 0.475
61 1 17.166 0.764 0.682 134 0 41.866 -2.364 0.085
62 1 6.318 2.138 0.894 135 0 27.412 -0.533 0.369
63 1 3.714 2.468 0.921 136 0 12.776 1.320 0.789
64 1 7.404 2.001 0.880 137 0 26.230 -0.383 0.405
65 1 11.864 1.436 0.807 138 0 10.182 1.649 0.838
66 1 8.997 1.799 0.858 139 0 22.593 0.077 0.519
67 1 10.446 1.615 0.834 140 0 37.308 -1.786 0.143
68 1 8.689 1.838 0.862 141 0 28.096 -0.618 0.349
69 1 11.201 1.520 0.820 142 0 22.518 0.086 0.521
70 1 8.486 1.864 0.865 143 0 18.603 0.582 0.641
71 1 25.631 -0.307 0.423 144 0 17.016 0.783 0.686
72 1 7.628 1.972 0.877 145 0 11.482 1.484 0.815
73 1 8.168 1.904 0.870 · · · · ·
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ROC curves for each Marker

On the following graphs, we used on every Marker a logistic regression model, in which we
tried to predict if a subject is diseased or not diseased, considering only one Marker.
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