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We study the early-time behavior of isotropic and homogeneous solutions in vac-

uum as well as radiation-filled cosmological models in the full, effective, four-

dimensional gravity theory with higher derivatives. We use asymptotic methods

to analyze all possible ways of approach to the initial singularity of such universes.

In order to do so, we construct autonomous dynamical systems that describe the

evolution of these models, and decompose the associated vector fields. We prove

that, at early times, all flat vacua as well as general curved ones are globally at-

tracted by the ‘universal’ square root scaling solution. Open vacua, on the other

hand show in both, future and past directions a dominant asymptotic approach to

horizon-free, Milne states that emerge from initial data sets of smaller dimension.

Closed universes exhibit more complex logarithmic singularities. Our results on

asymptotic stability show a possible relation to cyclic and ekpyrotic cosmologies

at the passage through the singularity. In the case of radiation-filled universes

of the same class we show the essential uniqueness and stability of the resulting

asymptotic scheme, once more dominated by t1/2, in all cases except perhaps that

of the conformally invariant Bach-Weyl gravity. In all cases, we construct a for-

mal series representation valid near the initial singularity of the general solution

of these models and prove that curvature as well as radiation play a subdominant

role in the dominating form. A discussion is also made on the implications of these

results for the generic initial state of the theory.
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PANEPISTHMIO AIGAIOU

Tm ma Mhqanik¸n Plhroforiak¸n kai Epikoinwniak¸n Susthm�twn

PerÐlhyh
Didaktorik c diatrib c

Asumptwtikèc Idiìthtec Kosmologi¸n se JewrÐec

BarÔthtac Uyhlìterhc T�xhc

GEWRGIOU KOLIWNH

Melet�me thn pr¸imh sumperifor�, isìtropwn kai omogen¸n lÔsewn tìso

sto kenì ìso kai se kosmologik� montèla me aktinobolÐa stic pl reic, lusiteleÐc

(effective), tetradi�statec barutikèc jewrÐec uyhlìterhc t�xhc. QrhsimopoioÔme

asumptwtikèc mejìdouc gia na analÔsoume ìlouc touc pijanoÔc trìpouc prosèggishc

thc arqik c idiomorfÐac se tètoiou eÐdouc sÔmpanta. Efarmìzoume aut� ta majh-

matik� ergaleÐa kataskeu�zontac autìnoma dunamik� sust mata pou perigr�foun

thn exelixh aut¸n twn montèlwn kai diasp�me ta antÐstoiqa dianusmatik� pedÐa.

ApodeiknÔoume ìti se pr¸imo qrìno ìla ta epÐpeda kaj¸c epÐshc kai ta kam-

pulwmèna kèna sÔmpanta èlkontai sunolik� apì thn `kajolik ' lÔsh tou par�gonta

klÐmakac wc tetragwnik c rÐzac thc qronik c sunist¸sac. Ta anoiqt� ken� sÔmpanta

epideiknÔoun pio polÔplokec logarijmikèc idiomorfÐec. Ta apotelèsmat� mac gia

thn asumptwtik  sumperifor�, anadeiknÔoun mia pijan  susqètish me tic kuklikèc

kai ekpurwtikèc kosmologÐec kat� th met�bash diamèsou thc idiomorfÐac. Sthn

Ðdia kathgoria sump�ntwn me aktinobolÐa, deÐqnoume thn ousi¸dh monadikìthta kai

eust�jeia twn prokuptìntwn asumptwtik¸n sqhm�twn, sta opoÐa kai p�li epikrateÐ

h t1/2, se ìlec tic peript¸seic ektìc Ðswc apì th sÔmmorfh analloÐwth barÔthta

Bach-Weyl. Se k�je perÐptwsh kataskeÔazoume mia anapar�stash twn genik¸n

lÔsewn aut¸n twn montèlwn se morf  tupik c (formal), seir�c gÔrw apì thn ar-

qik  idiomorfÐa kai apodeiknÔoume ìti ta qarakthristik� tìso thc kampulìthtac ìso

kai thc aktinobolÐac diadramatÐzoun upoleÐponta rìlo sthn epikratoÔsa sumperi-

for�. Anaferìmaste epÐshc stic genikìterec sunepeiec twn apotelesm�twn mac gia

thn tupik  arqik  kat�stash thc en lìgw jewrÐac.
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Chapter 1

Introduction

It is generally accepted that modern cosmology was born with the discovery of the

theory of general relativity (GR)[1, 2] about 100 years ago. GR was developed as

a theory about the nature of gravity. However, since gravity holds a special place

among the fundamental forces of nature in the sense that it is the only one that

seems to play an essential role at the macroscopic level, gravitational theories are

those that form the basis upon which the cosmological models are built. Therefore,

naturally the discovery of such a radical and universal gravitational theory gave rise

to a dizzying development of cosmology. In just 100 years and in combination with

the rapid technological development that boosted both our observational as well

as our experimental capability, our knowledge about the universe rocketed to such

an extent that the creation of a universal unified theory of ‘everything’ escaped

the realm of fiction and began to be considered a feasible scientific objective.

The original mathematical background of GR is Riemannian geometry which

had been already developed from the mid-19th century. In the mathematical basis

of GR we consider a four-dimensional Lorentzian manifold, which is the unified

expression of space and time in a single entity called spacetime. Gravitational

phenomena are implemented through the metric defined on this manifold, a rank-

2 tensor gµν for which we employ the space-like convention, such that it has the

signature (− + + + ) when diagonalized and thus, the line element has the form

ds2 = −dt2 + dx2 + dy2 + dz2. (1.1)

Following the sign conventions of [3], the Riemann and Einstein tensors are given

by

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα (1.2)

1
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Gµν = Rµν −
1

2
gµνR (1.3)

where

Rµν = Rσ
µσν and R = Rσ

σ (1.4)

are the Ricci tensor and the scalar curvature respectively. Under these conventions

we write the field equation of GR, also known as the Einstein equation, as

Rµν −
1

2
gµνR = 8πGTµν − gµνΛ (1.5)

Here Tµν is the energy-momentum tensor and Λ is the cosmological constant. This

equation forms a set of 10 partial differential equations (PDEs) - one for each of

the 10 independent components of the metric tensor - which contain up to second-

order derivatives of the metric gµν in 4 variables.

Within this general mathematical background and simultaneously with the

formulation of GR, David Hilbert showed [4] that the derivation of the Einstein

equation under the Hamiltonian formulation of a classical field theory was possible

for a Lagrangian density of the form

L =
1

16πG
(R− 2Λ) + LM(gµν , ψ). (1.6)

The assumption that the action

S =
1

16πG

∫
(R− 2Λ)dµg +

∫
LM(gµν , ψ)dµg (1.7)

where dµg =
√
−gd4x, is an extremum under arbitrary variations of the metric

gµν leads to Eq. (1.5). As we will see below very soon it became apparent that a

different Lagrangian density could lead to other more exotic gravity theories.

Since a detailed presentation of GR deviates from the purpose of this thesis

we refer the interested reader to the classical textbooks [3, 5–10].

In order to built a cosmological model based on GR one must basically de-

termine a metric gµν that will satisfy the Einstein equations (1.5) under certain

constraints based on specific assumptions about the physical interpretation of the

specific model. The assumption of homogeneity and isotropy of the universe leads

to the well known Friedmann-Robertson-Walker (FRW) metric gµν given, in spher-

ical coordinates, by the line element [11–16],

ds2 = −dt2 + a2(t) (
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)) ≡ gµνdx

µdxν , (1.8)
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where a(t) is the scale factor and k is the constant curvature of the spacetime,

normalized to take the three values 0,+1 or −1 for the complete, simply connected,

flat, closed or open space sections respectively [3, 5, 17]. We note that by assuming

this form of the metric one imposes the assumption of homogeneity and isotropy

in the cosmological model under consideration regardless of the chosen gravity

theory which is generaly expressed through the specific form of the gravitational

field equations. During the course of this thesis we will assume homogeneity and

isotropy over the universes we will be studying, hence it is exactly the form (1.8)

that will be imposed on the field equations of the modified theory of gravity we

will be studying and will be explained in the next section.

An important FRW cosmological solution of the Einstein equations, (1.5),

which plays a key role in the interpretation of our results is the Milne universe.

In this cosmological model the constant curvature k takes the value −1 and the

universe is considered to be completely empty. In this case a(t) = t and the metric

takes the form [18]

ds2 = −dt2 + t2 (
dr2

1 + r2
+ r2(dθ2 + sin2 θdφ2)) ≡ gµνdx

µdxν , (1.9)

As expected, since the Milne universe is an exact solution of GR for an isotropic

universe without matter, it is in fact a piece of the Minkowski spacetime in ex-

panding coordinates [3, 19].

1.1 Modified theories of gravity

Despite the enormous influence and impact of GR on the scientific community, it

did not take long at all for the first proposals to appear either for its modification

or its expansion. The task for its unification with the quantum theory of fields

which constitutes the other pillar of modern science in order to be led to a unified

theory, is definitely one of the strongest motives for every scientist in this field

ever since. Already before 1920, the ideas of Eddington [20], Weyl [21] and Kaluza

[22] set out the basic guidelines for some of the most influential and productive

modifications of GR.

The investigation of the possibility of the dependence of Newton’s constant

of the time, led to the creation in 1961 of the theory of Brans-Dicke [23–25],

which in turn became the foundation of the so called scalar-tensor theories. In

this great class of gravity theories which in general assumes the existence of extra
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fields in the Lagrangian of the theory, one can also include the Einstein-Aether

theories [26], the bimetric theories of gravity [27–29] and the tensor-vector-scalar

theories [30] among others. While in GR gravity is mediated through a 2nd order

tensor field, nothing precludes the existence in the field equations of other fields,

scalar, vector, tensor or even of higher order. The existence of such fields is usually

implemented through weak couplings in order to enable their study in scales which

are comparable to the GR. This does not mean of course that there have not been

efforts in other directions.

Another feature of GR which turned to a great incentive for the creation of

a large class of modified gravity theories, is that GR is the most general theory

whose field equations contain at most second order derivatives of a single metric

[31, 32]. The development of generalized gravitational theories with higher-order

derivatives of the metric was based largely on the hypothesis that the Einstein-

Hilbert action is a simplification of a more general action which due to quantum

fluctuations of spacetime contains higher power corrections. These corrections

may take many different forms, and the exploration of this class of theories has

given rise to a large discussion on its phenomenological implications. In the next

section we will discuss more specifically this class of gravity theories since the

cosmological models that will be explored during the course of this thesis will be

built on a specific subset of such higher-order gravity (HOG) theories.

The systematic studies for the construction of a quantum field theory of

gravity has been the third major motivation for the creation of modified gravity

theories. Given that developement of Riemannian geometry is not restricted to

four dimensions, the mathematical tools were already available for evolving any

kind of proposal in higher dimensional spaces. The work of Kaluza and Klein

already introduced in 1919 the extra dimensions in the study of gravity, and was

the ideal substrate for the subsequent development of superstring and supergrav-

ity theories that followed the appearance of the notion of supersymmetry. The

discovery of D-branes [33] made a great impact towards that direction as well.

Since there exists a fundamental contradiction between the experimental behavior

of gravity in more than four dimensions and the lack of ability of superstring the-

ory to be formulated consistently in less than ten, there has been a considerable

effort for the solution of that problem and various proposals have been presented

to that end. The most prominent of them along with some references for more

detailed descriptions being the Kaluza-Klein theories [22], Randal-Sundrum grav-

ity [34, 35], brane-world gravity [36], Dvali-Gabadadze-Porrati gravity [37] and
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Lovelock gravity [31, 32, 38] among many others.

Modified theories of gravity have been developed in a multitude of directions

that are impossible to meet the narrow scope of this Introduction. For a more

complete description of modified gravity theories and their implications in cosmol-

ogy see [39, 40]. In the next section, we take a closer look to the higher-order

gravity theories which constitute the main core of this thesis.

1.1.1 Higher-order gravity theories

As mentioned earlier, allowing the action to include higher-than-second deriva-

tives of the metric, is the main feature of the large and extensively studied class

of HOG theories. One of the most important advantages of such theories is the

fact that they show improved renormalization properties, by allowing the graviton

propagator to drop off faster in the violet spectrum. There are quite a few ways

that can lead to that result, and have been followed by different researchers of

this class of gravity theories. The simplest of them include either adding specific

higher order scalar curvature invariants to the Einstein-Hilbert action or, a more

straightforward approach, considering the Lagrangian as a general function of the

scalar curvature. This latter kind of HOG theories are generally known as f(R)

theories and as we will see right after they show some very interesting phenomeno-

logical behavior addressing several problems of modern cosmology. f(R) theories

manage to avoid certain instabilities that emerge from the higher order derivatives

of the metric by causing them to act in a way that turns some commonly non-

dynamical sectors into dynamical ones [39]. Similar approaches involve adding to

the Einstein-Hilbert action general combinations of the Ricci and the Riemann

curvature invariants or, as it happens in the case of Hořava-Lifschitz gravity [41–

44], allowing only higher-order spatial derivatives and excluding the higher-order

time derivatives in order to prevent the existence of ghost instabilities. Since the

cosmological models that this thesis describes fall, as shown in Chapter two in the

category of the f(R) HOG theories, we will now see these theories in greater detail.

1.1.2 f(R) Theories

As discussed previously, f(R) gravity theories belong to the general class of HOG

theories that admit higher-order derivatives of the metric in the field equations.

More specificaly, due to Lovelock’s theorem [31, 32] f(R) theories contain up to

fourth-order derivatives of the metric in their field equations. One of the arguably
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most important reasons which acted as a strong motive for the f(R) generalizations

of the Einstein-Hilbert action, is the fact, that while GR is not renormalizable and

as a consequence cannot be part of a quantum gravity field theory since it cannot

by quantized in a conventional way, in 1962 it was shown by Utiyama and DeWitt

[45] that by adding higher-order curvature invariants in the Einstein-Hilbert action,

the theory could admit renormalization properties at one loop. A result which was

confirmed in 1977 by the results of Stelle [46].

In addition to that, the key role that quadratic corrections to the GR La-

grangian might play near spacetime singularities has been stressed both by the

Starobinski’s work [47] concerning the inflationary scenario for an R+aR2 cosmo-

logical model, as well as by the work Branderberger, Mukhanov and Sornborger

[48–51] concerning non-singular universes.

1.1.3 Action and field equations of f(R) gravity theories in

metric formalism

In order to write the field equations in the general case of f(R) theories one has to

consider an action of the form

S =
1

16πG

∫
f(R)dµg (1.10)

which by adding a matter term becomes

S =
1

16πG

∫
f(R)dµg + SM (gµν , ψ) (1.11)

where ψ denotes the matter fields. Variation with respect to the metric gµν up to

the surface terms leads to [52]

f ′(R)Rµν −
1

2
f(R)gµν −∇µ∇νf

′(R) + gµν�f
′(R) = 8πGTµν (1.12)

where

Tµν =
−2√
−g

δSM
δgµν

. (1.13)

A prime denotes differentiation with respect to the scalar curvature R, � ≡ ∇µ∇µ

and ∇µ is the covariant derivative associated with the Levi-Civita connection.

In the derivation of the field equations (1.12) there is a number of surface area

terms that occur in the same way as in the respective case of GR. Nevertheless,

in GR these terms can be grouped into a total divergence which in turn can be
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‘eliminated’ by the addition of the Gibbons-Hawking-York surface term [53, 54].

On the contrary in the general case of an f(R) Lagrangian the surface terms cannot

be obtained from a total divergence because of the f ′(R) term present in them [40,

55]. In order to avoid this, it is assumed that the higher-order derivatives included

in the action, permit the fixing of more degrees of freedom on the boundary than

those of the metric. Following this hypothesis we accept that the boundary terms

vanish and thus, Eqs. (1.12) are obtained. We note also that the same reasons

that apply to the field equations of GR for the general covariance, also apply for

Eq. (1.12).

Subsequently, there is another important issue concerning the derivation of

the field equations (1.12) that has to be addressed. It is well known [3, 5] that

the field equations of GR can be obtained by applying two different variational

principles to the Einstein-Hilbert action. The first of the them is the metric

variation where it is accepted that the connection is the Levi-Civita one and the

variation takes place with respect to the metric. This was also the way that Eqs.

(1.12) where obtained by the action (1.11). The second way is the one termed the

Palatini variation which is performed under the hypothesis that the metric and

the connection are independent and as such, the variation of the action should be

performed with respect to both variables. While the application of the Palatini

variation in the case of GR leads to the demand that the connection is the Levi-

Civita one and hence both variational principles lead to the Einstein equations, this

is not the case in the f(R) theories of gravity, where the two different variational

principle lead to two completely different field equations. Although the variational

principle which will be used through out this thesis is the standard metric one, we

give here the forms of the field equations in the Palatini version [55],

f ′(R)R(µν) −
1

2
f(R)gµν = 8πGTµν ,

∇̄λ

[√
−gf ′(R)gµν

]
= 0 (1.14)

where (µν) shows symmetrization over the indices µ and ν, ∇̄µ denotes the co-

variant derivative defined by the independent connection Γλµν and R is the scalar

curvature constructed with that same connection. In addition to that there is even

a third variational method, the metric-affine variation, that occurs in the case of

the Palatini variation with the additional assumption that the matter action is

also depended on the connection [55, 56]. For an overview of the f(R) gravity

theories see [55, 57–60].
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1.2 Asymptotic stability

Cosmology in HOG theories has advanced into a field of special importance for

a number of interesting questions concerning the structure of the early universe.

More specifically, an already formed subfield of HOG theories involves the stabil-

ity of cosmological solutions in generalized gravity theories. This area combines

the search for fundamental physical phenomena that might have taken place dur-

ing the earliest moments of the universe with intriguing mathematical problems.

There exist two main facets of the cosmological stability problem. The first is the

perturbation theory aspect which plays an important role in studies of structure

formation. The second is the asymptotic stability aspect which is used mainly for

issues involving geometric and nonlinear dynamics. The latter problem naturally

comes to surface when we investigate whether or not there is a possibly more

general significance in a given exact solution of the field equations, whether there

are any common properties in a certain set of solutions, or whether we need to

understand what will be the fate, if we wait long enough, of a particular universe

in this context.

The asymptotic stability of homogeneous and isotropic solutions of cosmo-

logical models in HOG theories is a problem that has two major aspects itself. On

one hand, there is the question about the late-time stability -that is, deciding the

behavior of these universes in the distant future. On the other hand, there is the

early-time stability which is about examining the evolution towards the past, at

early times, in the neighborhood of a possible initial singularity. The seminal work

of Barrow and Ottewill [61] examined the issue of existence and stability of various

cosmological solutions emphasizing on the de Sitter and FRW ones and renewed

interest in late-time evolution cosmological problems in higher order gravity (for

related general late-time stability results for FRW universes in the same context

see also [62]).

The cosmic no-hair conjecture is one such interesting late-time stability prob-

lem that has received a lot of attention. The original cosmic no-hair theorems in

HOG theories, have been evolved in [63–65], while one can see [66–68] for limita-

tions of this property. For generalizations in higher-order gravity of the respective

situation that emerges in general relativistic cosmology, cf. [69? –74].

Another important late-time stability issue is the recollapse problem. In [75,

76] various recollapse theorems in generalized cosmological theory are examined,

while [77–79] include more elaborate and complete approaches and results on this

subject. It is a probably true that cosmic no-hair and recollapse of closed models
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are not unrelated. A “premature” recollapse problem in closed universes that

inflate has been formulated and studied in [80] in an interesting approach of those

two issues.

The problem of the early-time evolution for homogeneous and isotropic uni-

verses in HOG theories is concerned with clarifying the different possible behaviors

that could exist on approach to the initial singularity. In the first papers on this

issue, cf. [81, 82] there was already present a duality between bouncing and singu-

lar early time solutions. While in [83] these first solutions were shown to have the

impressive characteristic of being horizon-breaking, it was later shown that they

could be unstable [84]. These first results were the ones that also led to the better

understanding of the fact that the problem of the possible early time asymptotes

of the admissible cosmological solutions of the higher order gravity equations was

more involved [85, 86]. In fact, it became quite clear that even from the simplest

‘radiation fluid’ solution t1/2, a completely different set of properties than the cor-

responding situation in GR could be obtained, since it is a solution in both the

radiation filled case and in vacuum in these theories.

Conditions concerning instability as well as general properties of the early-

time stability of the flat and the curved, radiation-filled, isotropic solutions were

studied in [87]. In that paper, there are various possible stability results that one

could derive from the general conditions and equations by the appropriate selection

of various constants in order of specific forms to be taken, although the interest

of the study was in finding certain instability properties of these systems as they

advance towards the initial singularity. We recall that, with respect to any kind of

perturbation, the corresponding radiation solutions in GR are unstable and also

non generic, cf. [8].

In the interesting as well as important works [88, 89], stable solutions in

vacuum were found in the neighborhood of the initial singularity in the case of a

flat isotropic cosmology with a term of the form Ric2n, n ∈ Q, added in the basic

quadratic Lagrangian R+αR2. In these two papers, a linear perturbation analysis

of the t1/2 solution in vacuum, flat FRW universes is used as a method to show

that the various perturbations vanish asymptotically at early times.

It has been shown that this vacuum solution is stable under anisotropic,

spatially homogeneous perturbations, cf. [90, 91]. Therefore, the precise extent

that a generic perturbation of the flat, vacuum, t1/2 solution occupies in the whole

space of solutions of the higher order gravity equations is an interesting open

question.
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As a consequence, we can distinguish two separate asymptotic problems con-

cerning the early-time stability of the flat FRW t1/2 solution in HOG. One one

hand, we need to examine its stability as a solution of the vacuum field equations,

and, on the other hand, that as solution of the HOG field equations filled with a

radiation fluid. Both problems need to be in all different levels of stability. We

know [92] that, in four spacetime dimensions, the flat, radiation solution is asymp-

totically stable at early times in the space of all flat solutions of the theory. What

remains to be examined is the precise behavior of this solution consecutively with

respect to curved FRW perturbations, anisotropic perturbations and generic in-

homogeneous perturbations. As far as it regards the vacuum early-time problem,

as noted above, there are clear indications that the flat, vacuum solution is stable

with respect to various FRW and anisotropic perturbations, the strongest known

results being its stability with respect to anisotropic perturbations [91], and with

respect to perturbations in the R+βR2 action by adding a term of the form Ric2n,

cf. [88, 89].

In GR, one cannot trivially obtain vacuum states for simple isotropic uni-

verses. We have to go beyond them to anisotropic, or more general inhomogeneous

cosmologies for a vacuum to start making sense [10]. Nevertheless, in effective the-

ories with higher derivatives, isotropic vacua are very common, see e.g., [47, 89].

Such classical vacua are usually thought of as acquiring a physical significance

when viewed as possible low-energy manifestations of a more fundamental super-

string theory, although their treatment shows an intrinsic interest quite indepen-

dently of the various quantum considerations.

In the first part of this thesis, we consider the possible asymptotic limits to-

wards singularities of vacuum universes coming from effective theories with higher

derivatives. Such a study is related to the existence and stability of an inflationary

stage at early times in these contexts, and also to the intriguing possibilities of

solutions with no particle horizons. For flat vacua, we find the general asymptotic

solution with an early-time singularity. This result is then extended to cover gen-

eral curved vacuum isotropic solutions and we give the precise form of the attractor

of all such universes with a past singularity. We also obtain special asymptotic

states valid specifically for open or closed vacua starting from lower-dimensional

initial data. These results have a potential importance for the ekpyrotic and cyclic

scenarios as they strongly point to the dynamical stability of the reversal phase

under higher derivative corrections in these universes.

Subsequently, we treat the problem of the early-time behavior of the flat
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radiation t1/2 solution of higher order gravity with respect to curved FRW per-

turbations. That is, considered as a solution of the curved FRW equations for

the R + βR2 action, what is the behavior as we approach the initial singularity,

i.e., as t → 0 of all solutions which are initially (that is, for some t∗ > 0) near

this radiation solution? For this purpose, as we will see in the next section, we

approach the problem via the use of the method of asymptotic splittings devel-

oped in [93, 94], and trace all possible asymptotic behaviors that solutions to the

higher-order curved FRW equations may develop at early times. Following this

geometric approach, we are able to show that the exact radiation solution is sta-

ble asymptotically at early times, meaning that the initial state of these universes

proves to be a very simple one indeed. Given that this theory is known to admit

an inflationary stage [47], this also means that any pre-inflationary period in such

universes is necessarily isotropic and flat.

1.3 Asymptotic solutions

In this thesis we are particularly interested in the behavior of quadratic, vacuum

or radiation-filled universes in the neighborhood of the initial singularity, taken at

t = 0. The position of the initial singularity is really arbitrary. We could have

placed it at any t0 and used the variable τ = t − t0 instead of t. We will fully

describe any such initial state by giving the possible modes of approach of the

various solutions to it. These modes are, subsequently, identified by the behavior

of the corresponding vector field near the initial singularity. In order to find this

behavior, we shall use the method of asymptotic splittings, cf. [93, 94]. According

to this method, the associated vector fields are asymptotically decomposed in such

a way as to reveal their most important dominant features on approach to the

singularity. This leads to a detailed construction of all possible local asymptotic

solutions valid near the finite-time singularity. These, in turn, provide a most

accurate picture of all possible dominant features that the fields possess as they

are driven to a blow up (for previous applications of this asymptotic technique to

cosmological singularities, apart from [92], we refer to [95–98]).

It is expected that the vector fields describing the evolution of this class of

universes will show some dominant features as on approach to the finite-time sin-

gularity at t = 0, and these will correspond to the different, inequivalent ways that

it splits in the neighborhood of the blow up. We need two definitions to describe

the situation precisely. Firstly, we say that a solution b(t) of the dynamical system
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describing the evolution of cosmological model is asymptotic to another solution

a(t) provided that the following two conditions hold (the first is subdivided):

(i) Either (1) a(t) is an exact solution of the system, or (2) a(t) is a solution of

the system (substitution gives 0 = 0) as t→∞,

(ii) b(t) = a(t)[1 + g(t)], g(t)→ 0, as t→∞.

If either of these two conditions is not satisfied, then b(t) cannot be asymptotic

to a(t). Additionaly, a solution of the dynamical system is called dominant near

the singularity if, for constants a = (θ, η, ρ) ∈ C3, and p = (p, q, r) ∈ Q3, it is

asymptotic to the form

x(t) = atp = (θtp, ηtq, ρtr). (1.15)

For any given dominant solution of a dynamical system describing our universe

near the singularity, we call the pair (a,p) a dominant balance of the associated

vector field.

Near their blow up singularities, vector fields are characterized by dominant

balances and the corresponding asymptotic integral curves. By a solution with a

finite-time singularity we mean one where there is a time at which at least one

of its components diverges. It must be noted that the usual dynamical systems

analysis through linearization is not relevant here, for in that one does not deal

with singularities but with equilibria. Each vector field f itself is decomposed

asymptotically into a dominant part and another, subdominant part:

f = f (0) + f (sub), (1.16)

and such a candidate asymptotic splitting (or decomposition) needs to be checked

for consistency in various different ways before it is to be admitted as such. By

direct substitution of the dominant balance forms in our system, we look for the

possible scale invariant solutions of the system. A vector field f is called scale

invariant if f(aτp) = τp−1f(a), for a more detailed treatment, cf. [93].

1.4 Structure of this Thesis

The structure of this Thesis is as follows.

In the first chapter we introduce the reader to the broader field of generalized

gravitational theories and describe more specifically the f(R) theories of gravity
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and more general theories that include various combinations of the Ricci and the

Riemann curvatures. We write the field equations in the general case and we close

with a discussion for the asymptotic stability of the solutions of these theories.

Additionally, we analyze some specific concepts that will help in understanding

the specific conclusions of this thesis.

In the second chapter we present the general field equations of vacuum f(R)

gravity theories focusing in the case of homogeneous and isotropic cosmological

models. We consider the equivalent autonomous dynamical system and the corre-

sponding vector field and give an outline of the mathematical method we will use

for the asymptotic analysis of the behavior of these cosmological models in the

neighborhood of the initial singularity.

The third chapter contains our analysis of the asymptotic behavior of the

solutions of the theory as we approach the singularity. In particular we analyze all

possible cases in which the vector field or the equivalent autonomous dynamical

system may decompose asymptotically. We present qualitative as well as analytical

arguments in order to decide which cases show a dominant asymptotic behavior of

the dynamical system and lead to the construction of asymptotic solutions of the

field equations. Then we proceed to the construction of these asymptotic solutions

in the form of Fuchsian series for the case of vacuum flat universes.

In the fourth chapter we proceed to the study of the case of vacuum curved

cosmological models for homogeneous and isotropic universes. Following again

the method of asymptotic splittings we construct asymptotic solutions of these

cosmologies in the neighborhood of the initial singularity after having analyzed

extensively all the possible ways of approaching the singularity. Additionally we

make specific comments on the stability of these solutions in the context of the

gradual modification of the specific characteristic of curvature.

In the fifth chapter the quadratic, curved, radiation-filled isotropic and homo-

geneous cosmologies are studied. We investigate thoroughly the asymptotic form

of specific solutions in the neighborhood of the singularity emphasizing in the way

that the characteristics of curvature and radiation interfere with the asymptotic

behavior of these cosmologies. We compare these new results with those of the

previous chapters. In any case we draw conclusions about the stability of the

solutions found based on their final form as Fuchsian series.

In the final chapter we summarize the conclusions of this work and we further

make various general remarks on the asymptotic behavior of the cosmologies we

studied in previous chapters. Our approach allows us to examine how this behavior
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changes with the gradual addition of certain features, such as the curvature and

the radiation. We also correlate our results with other gravitational theories and

examine cosmological models related to those we have seen here. We conclude this

work with a discussion about possible open problems emerging from our current

results and overall approach.



Chapter 2

The basic vacuum vector fields

In this chapter we derive the basic dynamical systems and the equivalent vector

fields which describe the dynamical evolution of any vacuum FRW universe in

higher order gravity.

2.1 Field equations

This section is devoted to the derivation of the field equations coming from the

most general quadratic action in four dimensions. As a first step, we start by giving

some basic properties of the general form of Lagrangian density which includes all

possible curvature invariants as quadratic corrections to terms linear in the scalar

curvature R,

S =

∫
M
L(R)dµg, (2.1)

where

L(R) = L(0) + aR + bR2 + cRµνRµν + dRµνκλRµνκλ, (2.2)

where L(0), a, b, c, d are constants and L(0) plays the role of the cosmological

constant. By a (Riemannian) curvature invariant we mean a smooth function of the

metric gµν and its derivatives which is a local invariant under smooth coordinate

transformations (diffeomorphisms)1. The fact that the Lagrangian (2.2) contains,

in addition to the last three quadratic curvature invariant terms, the two terms

L(0) and aR, implies the basic fact that this theory cannot be scale invariant. The

reason behind this is the fact that because of the presence of the first two terms

(2.2) cannot be a homogeneous polynomial in the derivatives of the metric.

1In distinction, a smooth function of the metric which is invariant under conformal transfor-
mations of the metric is called a local conformal invariant.

15
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Another property of the gravity theory defined by (2.2) is that not all

quadratic curvature invariants appearing in it are algebraically independent [99,

100]. To see this, we can use the following simple variational argument. We con-

sider, as usual, a family of metrics {gs : s ∈ R}, and denote its compact variation

by ġµν = (∂g/∂s)s=0 (cf. e.g., [9] page 65). Since in four dimensions we have the

Gauss-Bonnet identity,

ṠGB =

∫
M

(R2
GBdµg)

· = 0, R2
GB = R2 − 4Ric2 + Riem2, (2.3)

it follows that in the derivation of the field equations through a g-variation of the

action (2.2), only terms up to Ric2 will matter. In particular, because of Eq. (2.3)

there is no necessity to include the Riem2 term.

Hence, we may replace (2.2) by the following gravitational action in four

dimensions in which the curvature invariants are algebraically independent (we

set 8πG = c = 1, and the sign conventions are those of [3]),

S =

∫
M
L(R)dµg, L(R) = L(0) + αR + βR2 + γRµνRµν , (2.4)

where α = a, β = b− 1 and γ = c+ 4d. Each one of the terms in the action (2.4)

leads to the following variations2:

δ

∫
L(0)dµg =

∫
L(0)gµνδgµνdµg, (2.5)

δ

∫
αRdµg = α

∫ (
Rµν −

1

2
gµνδg

µν

)
dµg + α

∫
∂M

gµκδRµκdSµ, (2.6)

δ

∫
βR2dµg = β

∫
[−2RRµν +

1

2
R2gµν

+ 2
(
gµκgνλ − gµνgκλ

)
∇κ∇λR]δgµνδgµνdµg

+ β

∫
∂M

2[R∇νδgµν −∇νRδgµν

− R∇µ (gνρδgνρ) +∇µRg
νρδgνρ]dSµ, (2.7)

2We use δ to mean a compact variation of the fields, ‘·’, as above.
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δ

∫
γRµνRµνdµg = γ

∫
(−2RµλRν

λδgµν +
1

2
gµνRκλRκλ

− ∇κ∇κRµν − gκλ∇λ∇κR
κλ + 2∇κ∇νRκµ)δgµνdµg

+ γ

∫
∂M

(Rκλgαβ∇κδgλβ +Rκλgαβ∇λδgκβ −Rκλ∇αδgκλ

+ ∇αRκλδgκλ + gµν∇κR
καδgµν −Rαλgµν∇λδgµν

− 2∇βRαλδgλβ)dSµ, (2.8)

The boundary integrals in Eqs. (2.6), (2.7) and (2.8) can be set equal to
∫
∂M

ΦµdSµ,∫
∂M

XµdSµ,
∫
∂M

ΨµdSµ respectively with the vector fields Φµ, Xµ and Ψµ given by

Φµ = gµκδRµκ, (2.9)

Xµ = 2[R∇νδgµν −∇νRδgµν

− R∇µ (gνρδgνρ) +∇µRg
νρδgνρ], (2.10)

Ψµ = Rκλgαβ∇κδgλβ +Rκλgαβ∇λδgκβ −Rκλ∇αδgκλ

+ ∇αRκλδgκλ + gµν∇κR
καδgµν −Rαλgµν∇λδgµν

− 2∇βRαλδgλβ. (2.11)

These integrals are zero since the compact variation ġµν = (∂g/∂s)s=0 vanishes at

the boundary ∂M. So, we have∫
∂M

(αΦµ + βXµ + γΨµ)dSµ = 0 (2.12)
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Accordingly, the field equations that stem from the variation of the gravitational

action (2.4) read as follows:

1

2
L(0)gµν − α(Rµν − 1

2
gµνR)

+ β[−2RRµν +
1

2
R2gµν + 2(gµκgνλ − gµνgκλ)∇κ∇λR]

+ γ(−2RµλRν
λ +

1

2
gµνRκλRκλ −∇κ∇κRµν

− gκλ∇λ∇κR
κλ + 2∇κ∇νRκµ) = 0 (2.13)

By taking α = 1 (since 8πG = c = 1) and L(0) = 0, in order to focus in the case

where the cosmological constant vanishes, we get:

Rµν − 1

2
gµνR− β[−2RRµν +

1

2
R2gµν + 2(gµκgνλ − gµνgκλ)∇κ∇λR]

− γ(−2RµλRν
λ +

1

2
gµνRκλRκλ −∇κ∇κRµν

− gκλ∇λ∇κR
κλ + 2∇κ∇νRκµ) = 0 (2.14)

2.2 The vacuum vector fields

We consider a vacuum, FRW universe with scale factor a(t) determined by the

Friedmann-Robertson-Walker metric of the form

g4 = −dt2 + a2 g3. (2.15)

Each slice is given the 3-metric

g3 =
1

1− kr2
dr2 + r2g2, (2.16)

k being the (constant) curvature normalized to take the three values 0,+1 or −1

for the complete, simply connected, flat, closed or open space sections respectively,

and the 2-dimensional sections are such that

g2 = dθ2 + sin2 θdφ2. (2.17)
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Below we focus on the case where M is a homogeneous and isotropic universe

with the FRW metric (2.15). In this case, it is well known [61] that the following

identity holds: ∫
M

((R2 − 3Ric2)dµg)
· = 0. (2.18)

This further enables us to combine the contributions of the Ric2 and the R2 terms

into (2.13), altering only the arbitrary constants. Consequently, the field equations

(2.13) will become:

1

2
L(0)gµν − α(Rµν − 1

2
gµνR) + (β +

1

3
γ)[−2RRµν +

1

2
R2gµν +

+ 2(gµκgνλ − gµνgκλ)∇κ∇λR] = 0 (2.19)

Finally, the field equations derived from the variation of the gravitational action

(2.4) have the following form:

Rµν − 1

2
gµνR +

ξ

6

[
2RRµν − 1

2
R2gµν − 2(gµρgνσ − gµνgρσ)∇ρ∇σR

]
= 0, (2.20)

where we have set

ξ = 2(3β + γ). (2.21)

We note that (2.20) is identical to the field equations that result from the variation

of the purely quadratic action

S =

∫
M
L(R)dµg, (2.22)

where

L(R) = R + ζR2, (2.23)

with ζ arbitrary. However, this is not quite so true because the parameter ξ in

(2.21) depends not only on the coefficient b = β + 1 multiplying R2 in (2.2) but

also, through γ = c+4d, on the coefficients c and d of Ricci2 and Riem2. Therefore

we conclude that because of the form of the coefficient ξ, some ‘memory’ of the

original fully quadratic theory (2.2) remains, and the final effective action leading

to the field equations (2.20) is not equivalent to a ‘standard’ R+ ζR2 action with

ζ arbitrary, but here ζ is a function depending on β and γ, given by (2.21). A

use of the former action, in the present context, would imply taking into account

only the algebraic dependence of the action on the quadratic curvature invariants
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with ζ being a free parameter of the theory instead of a function of β = b− 1 and

γ = c+ 4d as it actually is.

We now proceed to the derivation of the field equations for the class of

universes in question. Eq. (2.20) naturally splits into 00- and ij-components

(i, j = 1, 2, 3). Using the metric (2.15), the field equation (2.20) takes the following

form (from now on an overdot denotes differentiation with respect to the proper

time, t) for the 00- and ij-components respectively,

k + ȧ2

a2
+ ξ

[
2

...
a ȧ

a2
+ 2

äȧ2

a3
− ä2

a2
− 3

ȧ4

a4
− 2k

ȧ2

a4
+
k2

a4

]
= 0, (2.24)

−2
ä

a
− ȧ2

a2
− k

a2
+ ξ[2

a(4)

a
+ 12

ȧ2ä

a3
− 4

ȧ
...
a

a2
− 3

ä2

a2
− 3

ȧ4

a4
+

+
k2

a4
+ 4k

ä

a3
− 2k

ȧ2

a4
] = 0. (2.25)

Due to symmetry reasons, it is sufficient to use the 00-component, (2.24), as

the only field equation [61, 82].

In what follows, we are interested in tracing all possible vacuum asymptotics,

especially those solutions for which curvature and vacuum enter in the dominant

part of the vector field asymptotically. In order to do that, we will introduce

new variables and write Eq.(2.26) below as an autonomous dynamical using the

method of asymptotic splittings presented in [93].

We expect that in terms of suitable variables, the eventual dynamical system

which will emerge during this process of reduction will show novel asymptotes

for the vacuum problem that are not obtainable from the radiation problem (cf.

Chapter 4) when letting the radiation terms tend to zero. These new asymptotes

will only be possible in decompositions allowing the curvature as well as other

terms characterizing the vacuum state be present in the dominant part of the field

asymptotically, something impossible in the radiation problem.

We also expect to find other decompositions in the new variables which will

indeed lead to vacuum solutions obtained from radiation ones by letting suitable

radiation terms tend to zero and these solutions will exactly correspond to, and

stem from, decompositions having the curvature and vacuum terms only in the

subdominant part asymptotically.

For the differential equation (2.24) we can obtain these new variables as

follows. First, we rewrite (2.24) using the Hubble expansion rate H = ȧ/a, in the
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form

Ḧ =
1

2

Ḣ2

H
− 3HḢ +

k

a2
H − 1

2

k2

a4
1

H
− 1

12ε
H − k

12εa2
1

H
(2.26)

where now we have put ε = ξ/6. We then introduce new variables for the present

problem by setting

x = H, y = Ḣ, z = a−2. (2.27)

Then Eq. (2.26) can be written as an autonomous dynamical system in the form

ẋ = y

ẏ =
y2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
(2.28)

ż = −2xz.

This can be expressed equivalently as a vacuum, 3-dimensional vector field fVAC :

R3 → R3 with

ẋ = fVAC(x), x = (x, y, z), (2.29)

and

fVAC(x, y, z) =

(
y,
y2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

)
. (2.30)

This vector field completely describes the dynamical evolution of a vacuum, flat

or curved, FRW universe in the gravity theory defined by the full quadratic action

(2.2). We shall assume that x 6= 0, that is ȧ/a 6= 0, that is we consider only

non-static universes in sharp contrast to the situation in GR (cf. [7]).

2.3 The solution space of higher-order gravity

There are various instances that indicate that the solution spaces of GR and HOG

theories derived from the action (2.1) are not identical. In particular, the solution

space of HOG includes that of GR. In the present case, for example, we can see

that by setting ρ = p = 0 in the standard FRW cosmological equations [7] which

govern an FRW universe with a perfect fluid in GR,

ρ

3
= H2 +

k

a2
(2.31)
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and

ρ̇ = −3H(ρ+ p) (2.32)

where p is the pressure and ρ is the mass-energy density of the fluid, one cannot

obtain expanding solutions for all k, that is solutions with x = ȧ/a > 0. On the

contrary, in equation (2.26) there is room for assuming the existence of non-static,

vacuum solutions whereas this is impossible in GR. So the ability to obtain non-

static solutions leads to the fact that the space of cosmological solutions of HOG

is larger than the space of such solutions in the framework of GR.

Not only do the Einstein equations have solutions which are included in the

solution space of HOG, but there are such solutions that do not belong to the set

of solutions of GR, making clear that the later is a subset of the former space. By

looking at the action (2.22)-(2.23) and taking ζ tending to zero, solutions of GR

will be obtained as limiting cases.

There is another way that we may view the solution space of the two theories,

GR and HOG. This is to regard HOG as a way of perturbing the solutions of GR

not ‘inside’ GR but ‘outside’ it, in the framework of HOG. The solutions of the

action (2.22)-(2.23) can be considered as ζ-perturbations of the Einstein equations

in the sense that the term ζR2 resembles the second term of a certain kind of a

Taylor expansion around zero. HOG Lagrangians viewed in such a way can be

considered as perturbations of the GR Lagrangian around zero. This is due to

the fact that being sufficiently close to zero scalar curvature, the linear term in

an expansion may be considered as a sufficiently reliable approximation but as we

approach higher values of the curvature we need to consider more terms in the

action to achieve the necessary precision.

As we will see in Chapter 5, the radiation solutions of GR can be obtained

from HOG as limiting cases asymptotically towards the singularity thus confirming

that such solutions maybe stable not with respect to perturbations inside GR but

outside it in the sense discussed about.

2.4 Conclusion

In this chapter we started with the most general action of a quadratic gravity

theory of the form (2.2) and reduced it to the new action (2.4) stating explicitly

its dependence on the various quadratic curvature invariants. We underlined the

dependence of the parameter ζ appearing in the reduced action R + ζR2 on the

coefficients of the curvature invariants in the original quadratic Lagrangian. This
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is in contrast to ζ being an arbitrary parameter appearing the theory. This is

important for, as we will see later, the coefficients tending to various limits will

indicate the relative importance of the associated quadratic invariants (a of R2, b

of Ric2 and d of Riem2).

Following that, we derived the basic field equations for the general quadratic

action, Eq. (2.4). In the second Section of this chapter, we specialized our cal-

culations to a vacuum FRW universe, and wrote down the basic field equations

corresponding to these solutions.

Finally, we introduced new variables in the field equations and derived the

autonomous dynamical system (2.28). This will provide a useful basis for further

study in later chapters of (the possible asymptotic regimes) a systematic asymp-

totic approach of such universes to the initial singularity.

In the following chapter, we will consider the case where the curvature terms

as well as terms describing vacuum terms enter the asymptotic decompositions

subdominantly.



Chapter 3

Asymptotic analysis of flat vacua

In this chapter we treat the flat cases of vacuum FRW universes in HOG. We use

asymptotic arguments to describe the behavior of the associated vector field and

its integral curves as we approach the spacetime singularity. These integral curves

- solutions of the relevant dynamical system - are obtained by asymptotically

decomposing the vector field in such a way as to reveal all possible dominant

characteristics emerging near the blow up singularity.

3.1 Asymptotic splittings of the flat-vacuum field

3.1.1 Flat vector field and the associated dynamical sys-

tem

In order to describe the asymptotics of the flat, quadratic, vacuum, FRW universe,

we set k = 0 in the general field equations (2.26) and obtain the simpler form,

Ḧ =
1

2

Ḣ2

H
− 3HḢ − 1

12ε
H, (3.1)

in terms of the expansion rate, H. Consequently, using the variables introduced in

(2.27), namely

x = H, y = Ḣ, (3.2)

and since the use of the variable z is not necessary currently, the autonomous

dynamical system (2.28) becomes

ẋ = y,

ẏ =
y2

2x
− 3xy − x

12ε
. (3.3)

24
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The equivalent expressions of Eqs. (2.29)-(2.30) are given by the following forms

which describe the flat, vacuum, 2-dimensional vector field f 0,VAC : R2 → R2.

ẋ = f 0,VAC(x), x = (x, z), (3.4)

f 0,VAC(x, y) =

(
y,
y2

2x
− 3xy − x

12ε

)
. (3.5)

We note here that in the notation f 0,VAC, the first index refers to the normalized

curvature k (zero in this case), while the second index, VAC , denotes the vacuum

state, in analogy to the curved, radiation-filled universes that we shall study in

later chapters, f k,RAD.

3.1.2 Definition of a finite-time singularity

Our main interest in the rest of this chapter is to study the behavior of the universe

according to Eqs.(3.3)-(3.5), assuming that the sought-for solutions admit a finite-

time, blow-up singularity appearing at some parameter value t∗ of the proper time

t. That is, we assume that there exists a t∗ ∈ R and an x0 ∈M, such that for all

M ∈ R there exists a δ > 0 with

‖x(t; x0)‖Lp > M, (3.6)

for all t satisfying |t− t∗| < δ. Here x : (0, b) → M is a solution x(t; c1, . . . , ck),

k ≤ 2 (ck being the arbitrary integration constants), x0 = x(t0) is a set of initial

conditions for some t0 ∈ (0, b), and ‖ · ‖ is any Lp-norm defined on the differentiable

manifoldM. Without any loss of generality, we set t∗ = 0, stressing the fact that

this specific value is really arbitrary since we could have placed it at any finite t∗

and used the variable τ = t− t∗ instead of t.

Alternatively, the above precise definition of a finite-time singularity in the

solutions of our dynamical system can be translated, using the vector field (3.5),

to a condition about the existence of an integral curve passing through the point

x0 of M, such that at least one of its Lp-norms diverges at t = t∗, that is

lim
t→t∗
‖x(t; x0)‖Lp =∞. (3.7)

Additionally, we note that we can assign the meaning ‘now’ to t0 since it is an

arbitrary point in the domain (0, b). In the following, a finite-time singularity can
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be characterized for that matter to be a past singularity when t∗ < t0, or a future

singularity when t∗ > t0.

3.1.3 Possible behavior of the vector field in the neighbor-

hood of the singularity

In order to describe the behavior of the vector field in the neighborhood of the ini-

tial singularity, we will follow the approach of the method of asymptotic splittings

of Refs.[93, 94, 101]. The basic notion is the fact that there are two different be-

haviors a vector field can adopt sufficiently close to the singularity. The first is to

show some dominant feature meaning that the most nonlinear terms of the vector

field approaching the singularity will determine a distinctly dominant behavior of

the solutions. The second possible behavior is for the solutions of the vector field

to ‘spiral’ around the singularity forever in a way that condition (3.6) is satisfied

and the dynamics of the system are controlled by the subdominant terms.

3.1.4 Definition of weight-homogeneous decompositions

As a first step in the study of possible dominant behavior of solutions of the vector

field (3.5) in the neighborhood of the initial singularity, we need to find suitable

asymptotic decompositions of the vector field. That is to know all possible ways

it can be split in dominant and subdominant components.

We say that a nonlinear vector field f onMn admits a weight-homogeneous

decomposition with respect to a given vector p, if it splits as a combination of the

form [93],

f = f(0) + f(1) + · · ·+ f(k), (3.8)

where the components f(j), j = 0, · · · , k, are weight-homogeneous vector fields.

That is

f(j)(aτp) = τp+1(q(j)−1)f(j)(a), j = 0, · · · , k, (3.9)

for some non-negative numbers q(j) and all a in some domain E of Rn. This last

condition (3.9) can be written for each individual component in the form,

f
(j)
i (aτp) = τ pi+q

(j)−1f
(j)
i (a), i = 0, · · · , n, j = 0, · · · , k. (3.10)

From the previous definition, Eq. (3.8), it follows that a weight-homogeneous

decomposition splits the field f into k + 1 weight-homogeneous components each
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with degree p + 1(q(j)− 1), j = 0, · · · , k,. The first of these vector fields, namely

f (0), is the lowest order component and is scale invariant, since the non-negative

numbers q(j), also called subdominant exponents can be ordered so that,

0 = q(0) < q(j1) < q(j2), when j1 < j2. (3.11)

3.1.5 Vector field decompositions

Accordingly, we find that the vector field (3.5) possesses the following 23 − 1 = 7

possible asymptotic decompositions of the form (3.8), or more specifically,

f 0,VAC = f
(0)
0,VAC + f

(sub)
0,VAC, (3.12)

where f
(0)
0,VAC is the dominant part, and f

(sub)
0,VAC ≡

∑k
j=1 f(j) the subdominant part in

each asymptotic decomposition valid in the neighborhood of the initial singularity.

We have:

f1 0,VAC = f1
(0)
0,VAC + f1

(sub)
0,VAC,

f1
(0)
0,VAC(x) =

(
y,
y2

2x
,−2xz

)
, f1

(sub)
0,VAC(x) =

(
0,− x

12ε
− 3xy, 0

)
, (3.13)

f2 0,VAC = f2
(0)
0,VAC + f2

(sub)
0,VAC,

f2
(0)
0,VAC(x) = (y,−3xy,−2xz) , f2

(sub)
0,VAC(x) =

(
0,
y2

2x
− x

12ε
, 0

)
, (3.14)

f3 0,VAC = f3
(0)
0,VAC + f3

(sub)
0,VAC,

f3
(0)
0,VAC(x) =

(
y,− x

12ε
,−2xz

)
, f3

(sub)
0,VAC(x) =

(
0,
y2

2x
− 3xy, 0

)
, (3.15)
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f4 0,VAC = f4
(0)
0,VAC + f4

(sub)
0,VAC,

f4
(0)
0,VAC(x) =

(
y,
y2

2x
− 3xy,−2xz

)
, f4

(sub)
0,VAC(x) =

(
0,− x

12ε
, 0
)
, (3.16)

f5 0,VAC = f5
(0)
0,VAC + f5

(sub)
0,VAC,

f5
(0)
0,VAC(x) =

(
y,
y2

2x
− x

12ε
,−2xz

)
, f5

(sub)
0,VAC(x) = (0,−3xy, 0) , (3.17)

f6 0,VAC = f6
(0)
0,VAC + f6

(sub)
0,VAC,

f6
(0)
0,VAC(x) =

(
y,−3xy − x

12ε
,−2xz

)
, f6

(sub)
0,VAC(x) =

(
0,
y2

2x
, 0

)
, (3.18)

f7 0,VAC = f7
(0)
0,VAC + f7

(sub)
0,VAC,

f7
(0)
0,VAC(x) =

(
y,
y2

2x
− 3xy − x

12ε
,−2xz

)
, f7

(sub)
0,VAC(x) = (0, 0, 0) . (3.19)

We will eventually construct convergent, asymptotic series solutions that encode

information about the leading order behavior of all solutions, as well as their

generality (number of arbitrary constants) near the spacetime singularity at t = 0.

3.1.6 Dominant balances

For any given dominant asymptotic decomposition (3.13)-(3.19) of the system

(3.3), we call the pair (a,p) a dominant balance of the vector field f 0,VAC, where

a = (θ, η) ∈ C2 are constants and p = (p, q) ∈ Q2, and look for a leading-order

behavior of the form,

x(t) = atp = (θtp, ηtq). (3.20)
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Such behaviors geometrically correspond to the possible asymptotic forms of the

integral curves of the vacuum field f 0,VAC, as we take it to a neighborhood of the

singularity.

Substituting the forms (3.20) into the dominant system

ẋ(t) = f
(0)
0,VAC(x(t)) (3.21)

and solving the resulting nonlinear algebraic system to determine the dominant

balance (a,p) as an exact, scale invariant solution, we find that only three of the

seven possible decompositions (3.13)-(3.19) lead to acceptable dominant balances.

Namely, asymptotic decompositions (3.13),(3.14) and (3.16) lead to the following

dominant balances B 0,VAC ∈ C2 × Q2, which need to be further tested in order

to be fully accepted for the construction of the asymptotic solutions of the initial

dynamical system.

B1.1
0,VAC = (a1.1,p1.1) = ((θ, 0) , (0,−1)) , (3.22)

B1.2
0,VAC = (a1.2,p1.2) = ((θ, 2θ) , (2, 1)) , (3.23)

B2
0,VAC = (a2,p2) =

((
2

3
,−2

3

)
, (−1,−2)

)
, (3.24)

B4
0,VAC = (a4,p4) =

((
1

2
,−1

2

)
, (−1,−2)

)
, (3.25)

where we note that we use the notation Bi.j0,VAC for the j-th dominant balance

corresponding to the f i 0,VAC asymptotic decomposition of the flat, vacuum vector

field f 0,VAC. In particular, this means that the vector fields f1
(0)
0,VAC, f2

(0)
0,VAC and

f4
(0)
0,VAC are scale-invariant systems, cf. [93, 94, 101].

3.1.7 Subdominant condition for each possible asymptotic

balance

Further, we need to show that the terms f1
(sub)
0,VAC(x), f2

(sub)
0,VAC(x) and f4

(sub)
0,VAC(x)

in the basic decompositions (3.13), (3.14) and (3.16) of the flat-vacuum field (3.5)

are themselves weight-homogeneous with respect to the corresponding flat-vacuum

balances (3.22)-(3.25) for this splittings to be finally acceptable. For this we
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need to check that these candidate subdominant parts are indeed subdominant by

calculating the expression,

lim
t→0

f
(sub)
0,VAC(atp)

tp−1
. (3.26)

Using the balances B1.2
0,VAC,B1.1

0,VAC,B2
0,VAC and B4

0,VAC defined by Eqs. (3.22)-

(3.25), we find that,

f1
(sub)
0,VAC(a1t

p1)

tp1−1
= f1

(sub)
0,VAC(a1) t2 =

(
0,− θ

12ε

)
t2, (3.27)

f1
(sub)
0,VAC(a2t

p2)

tp2−1
=

(
0,− θ

12ε

)
t2 + (0, θ) t3, (3.28)

f2
(sub)
0,VAC(atp)

tp−1
=

(
0,

1

3

)
t0 +

(
0,

1

18ε

)
t2, (3.29)

f4
(sub)
0,VAC(atp)

tp−1
= f4

(sub)
0,VAC(a) t2 =

(
0,− 1

24ε

)
t2. (3.30)

Taking the limit of these expressions as t→ 0, we can see that all of them, except

(3.29), go to zero asymptotically. This, on one hand, means that asymptotic

decomposition (3.14) is not an acceptable decomposition of the vector field (3.5),

however, on the other hand that dominant balances (3.22), (3.23) and (3.25) are

indeed candidates for the construction of an asymptotic solution of (3.5) around

the initial singularity, provided that the forms f1
(sub)
0,VAC(a1) and f4

(sub)
0,VAC(a) are

different from zero.

This happens only when ε 6= 0, that is for all cases except when 3β + γ = 0.

We conclude that when this constraint holds true the basic decompositions (3.13)

and (3.16) are acceptable asymptotically in any higher order gravity theory. The

so-called conformally invariant Bach-Weyl gravity cf. [21] is a physical example

that is excluded from this analysis and consequently needs a separate treatment.

We note that the same constraint appears in the stability analysis of purely radi-

ation universes in these theories, cf. Chapter 5.

3.1.8 Section conclusion

We have completed in this Section the first part of our asymptotic analysis via the

method of asymptotic splittings, that is we found all possible asymptotic systems
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on approach to the initial singularity. This process amounts to dropping all terms

that are small, and replace exact by asymptotic relations (by this we mean using

(3.21) in conjunction with (3.12) and (3.26) instead of (3.3) and (3.5)).

This first part of the application of the method of asymptotic splittings

allows us to conclude that there are essentially two such systems, and we were

able to extract preliminary qualitative results about the behavior of our basic

vector field, without actually solving the systems. In the next Section, we shall

proceed to study solutions of our asymptotic systems through the processes of

balance, subdominance and consistency.

3.2 Dominant solutions

3.2.1 Construction of the K-matrices

We now proceed to test our asymptotic solutions in terms of their internal con-

sistency with respect to the general framework of our asymptotic analysis (cf.

[93, 94, 101] for more details and proofs). We will eventually construct series

representations of these asymptotic solutions valid locally around the initial sin-

gularity, so that it is dominated by the dominant balance solutions we have built

so far.

The degree of generality of these formal series solutions depends on the num-

ber of arbitrary constants in them. As explained in [93], the arbitrary constants of

any (particular or general) solution first appear in those terms in the asymptotic

series solution whose coefficients ci have indices i = %s, where % is a non-negative

K-exponent, and s denotes the least common multiple of the denominators of the

set of all subdominant exponents and those of all the K-exponents with positive

real parts. These exponents are complex numbers belonging to the spectrum of

the Kovalevskaya matrix given by

K = D f
(0)
0,VAC(a)− diag(p), (3.31)

for which the following expression also stands,

Kap = −ap, (3.32)

Hence, the K-matrix always has %1 = −1 as an eigenvalue with ap = f
(0)
0,VAC(a) in

this case, as the corresponding eigenvector. In this way the K-exponents depend
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on the dominant part of the vector field as well as the dominant balance.

In the present case, the Kovalevskaya matrices for each of the possible dom-

inant balances are,

K1.1
0,VAC =

(
0 1

0 1

)
, (3.33)

with spectrum,

spec(K1.1
0,VAC) = {1, 0}. (3.34)

K1.2
0,VAC =

(
−2 1

−2 1

)
, (3.35)

with spectrum

spec(K1.2
0,VAC) = {−1, 0}. (3.36)

K4
0,VAC =

(
1 1

1 −1/2

)
, (3.37)

with spectrum

spec(K4
0,VAC) = {−1, 3/2}. (3.38)

We conclude that K1.1
0,VAC does not correspond to valid asymptotic balance, since

it does not have −1 as an eigenvalue, while K1.2
0,VAC which does not have any

eigenvalues with positive real parts, leads to an acceptable balance but it is one

that may be valid at infinity.

3.2.2 Final asymptotic balance

Thus, it is only the asymptotic balance (3.25) that is fully consistent with overall

approximation scheme we are using and can lead to a series representation of the

asymptotic solutions valid locally around the initial singularity. The least common

multiple of the denominators of the set of all subdominant exponents and those

of all the K-exponents with positive real parts, s = 2 in this case.

As we discussed, the number of non-negative K-exponents equals the number

of arbitrary constants that appear in the series expansions. The −1 exponent

corresponds to the position of the singularity, and because the spec(K4
0,VAC) in our
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case possesses one non-negative eigenvalue, the balance B4
0,VAC indeed corresponds

to the dominant behavior of a general solution having the form of a formal series

and valid locally around the initial singularity.

3.2.3 Construction of the formal series

In order to find that solution, we substitute the Fuchsian series expansions 1 and

their derivatives

x(t) =
∞∑
i=0

c1i t
i
2
−1, y(t) =

∞∑
i=0

c2i t
i
2
−2, (3.39)

ẋ(t) =
∞∑
i=0

c1i

(
i

2
− 1

)
t
i
2
−2, ẏ(t) =

∞∑
i=0

c2i

(
i

2
− 2

)
t
i
2
−3, (3.40)

where because of the form of the balance, Eq. (3.25), we have c10 = 1/2 and

c20 = −1/2, in the following equivalent form of the original system (3.3), assuming

x 6= 0,

ẋ = y,

2xẏ = y2 − 6x2y − 1

6ε
x2, (3.41)

from which we will be led to various recursion relations that determine the un-

knowns c1i, c2i term by term.

More specifically, from the first equation of (3.41), after substitution we have,

∞∑
i=0

c1i

(
i

2
− 1

)
t
i
2
−1 =

∞∑
i=0

c2it
i
2
−2, (3.42)

which leads to,

c1i

(
i

2
− 2

)
= c2i . (3.43)

From the second equation of (3.41), we calculate separately each term after sub-

stitution:

1A series expansion with no constant first term and rational exponents.
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2xẏ = 2

(
∞∑
i=0

c1it
i
2
−1

)(
∞∑
i=0

c2i

(
i

2
− 2

)
t
i
2
−3

)

= 2t−4
∞∑
i=0

i∑
k=0

c2(i−k)

(
i− k

2
− 2

)
c1kt

i
2 , (3.44)

y2 =

(
∞∑
i=0

c2it
i
2
−2

)(
∞∑
i=0

c2it
i
2
−2

)

= t−4
∞∑
i=0

i∑
k=0

c2(i−k)c2kt
i
2 , (3.45)

−6x2y = −6

(
∞∑
i=0

c1it
i
2
−1

)(
∞∑
i=0

c1it
i
2
−1

)(
∞∑
i=0

c2it
i
2
−2

)

= −6t−4
∞∑
i=0

i∑
k=0

k∑
l=0

c1(i−k)c1(k−l)c2lt
i
2 , (3.46)

− 1

6ε
x2 = − 1

6ε

(
∞∑
i=0

c1it
i
2
−1

)(
∞∑
i=0

c1it
i
2
−1

)

= − 1

6ε
t−2

∞∑
i=0

i∑
k=0

c1(i−k)c1kt
i
2 . (3.47)

Consequently, we are led to the following form of the second equation of (3.41),

2t−4
∞∑
i=0

i∑
k=0

c2(i−k)

(
i− k

2
− 2

)
c1kt

i
2 = t−4

∞∑
i=0

i∑
k=0

c2(i−k)c2kt
i
2 −

−6t−4
∞∑
i=0

i∑
k=0

k∑
l=0

c1(i−k)c1(k−l)c2lt
i
2 − 1

6ε
t−2

∞∑
i=0

i∑
k=0

c1(i−k)c1kt
i
2 (3.48)
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3.2.4 Calculation of the final series coefficients

Eqs. (3.43) and (3.48) constitute the system from which we may solve for the

coefficients c1i and c2i in the expansions,

x(t) = θ tp + c11 t
−1/2 + c12 t

0 + c13 t
1/2 + c14 t

1 + · · · ,

y(t) = η tq + c21 t
−3/2 + c22 t

−1 + c23 t
−1/2 + c24 t

0 + · · · . (3.49)

Below, we will construct a set of equations from each of the Eqs. (3.43) and

(3.48) by comparing the coefficients of the various powers of t.

1st set of equations

For the coefficients of the different powers of t, Eq. (3.43) will lead to the following

equations,

for the coefficients of the term t−3/2, c11
(
1
2
− 1
)

= c21 , (3.50)

for the coefficients of the term t−1, c12
(
2
2
− 1
)

= c22 , (3.51)

for the coefficients of the term t−1/2, c13
(
3
2
− 1
)

= c23 , (3.52)

for the coefficients of the term t0, c14
(
4
2
− 1
)

= c24 . (3.53)

2nd set of equations

Following that, we now examine the coefficients of the various powers of t in Eq.

(3.48) which give the following, for the coefficients of the term t−7/2, we have,

2
1∑

k=0

c2(1−k)

(
1− k

2
− 2

)
c1k =

1∑
k=0

c2(1−k)c2k − 6
1∑

k=0

k∑
l=0

c1(1−k)c1(k−l)c2l, (3.54)

for the coefficients of the term t−3, we have,

2
2∑

k=0

c2(2−k)

(
2− k

2
− 2

)
c1k =

2∑
k=0

c2(2−k)c2k − 6
2∑

k=0

k∑
l=0

c1(2−k)c1(k−l)c2l, (3.55)
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for the coefficients of the term t−5/2, we have,

2
3∑

k=0

c2(3−k)

(
3− k

2
− 2

)
c1k =

3∑
k=0

c2(3−k)c2k − 6
3∑

k=0

k∑
l=0

c1(3−k)c1(k−l)c2l, (3.56)

for the coefficients of the term t−2, we have,

2
4∑

k=0

c2(4−k)

(
4− k

2
− 2

)
c1k =

4∑
k=0

c2(4−k)c2k − 6
4∑

k=0

k∑
l=0

c1(4−k)c1(k−l)c2l −
1

6ε
c201.

(3.57)

Consequently, solving the sets of Eqs. (3.50)-(3.50) and (3.54)-(3.57) we find,

c11 = c21 = 0, (3.58)

c12 = c22 = 0, (3.59)

c13 = 2c23, (3.60)

and

c14 = c24 = − 1

36ε
. (3.61)

Thus, the final series representation of the solution has the form:

x(t) =
1

2
t−1 + c13 t

1/2 − 1

36ε
t+ · · · , (3.62)

y(t) = −1

2
t−2 +

c13
2

t−1/2 − 1

36ε
t0 + · · · , (3.63)

and, since x = H = ȧ/a, we arrive at the asymptotic form of the scale factor

around the singularity:

a(t) = α t1/2 +
2c13α

3
t2 − α

72ε
t5/2 +

4α c213
9

t7/2 + · · · , (3.64)

where α is a constant of integration.

3.2.5 Fredholm’s alternative

As a final test for admission of this solution, we use Fredholm’s alternative to be

satisfied by any admissible solution. This leads to a compatibility condition for the
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positive eigenvalue 3/2 and the associated eigenvector,

v> ·
(
K − j

s
I

)
cj = 0, (3.65)

where I denotes the identity matrix, and we have to satisfy this at the j = 3 level.

This gives the following orthogonality constraint,

(2, 1,−8ρ

3
) ·


−1

2
c13 + c23

c13 − 2c23

−2ρc13 − 3
2
c33

 = 0. (3.66)

which leads to

c13 = 2c23. (3.67)

This exactly Eq. (3.60), thus leading to the conclusion that Eqs. (3.62)-(3.63)

correspond to a valid asymptotic solution around the singularity.

Our series solution (3.62)-(3.63) has two arbitrary constants, namely, c13 and

a second one corresponding to the arbitrary position of the singularity (taken here

to be zero without loss of generality), and is therefore a local expansion of the

general solution around the initial singularity. Since the leading order coefficients

are real, by a theorem of Goriely and Hyde, cf. [94], we conclude that there is an

open set of initial conditions for which the general solution blows up at the finite

time (initial) singularity at t = 0. This proves the stability of our solution in the

neighborhood of the singularity.

3.3 Conclusion

In this chapter we have considered the possible singular behaviors and asymptotic

limits of vacuum, flat isotropic universes in the fully quadratic gravity theory in

four dimensions which apart from the Einstein term also contains terms propor-

tional to a linear combination of R2,Ric2 and Riem2. Using various asymptotic

and geometric arguments, we were able to built a solution of the field equations

in the form of a Fuchsian formal series expansion compatible with all other con-

straints, dominated asymptotically to leading order by this solution and having

the correct number of arbitrary constants that makes it a general solution of the

field equations. In this way, we conclude that this exact solution is an early time
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attractor of all homogeneous and isotropic flat vacua of the theory, thus proving

stability against such ‘perturbations’.

In the next chapter we will proceed with the curved cases of the same class of

cosmological models. Namely, we will analyze asymptotically the vacuum, curved

FRW universes thus completing the profile of the asymptotic uniqueness of the

vacuum isotropic universes in the fully quadratic gravity theory and their stability

in the neighborhood of the initial singularity.



Chapter 4

Curved vacua

In this chapter we extend our analysis of the vacuum higher-order cosmological

models to the curved cases. In these cases the vector field which describes the

evolution of the universe takes a three-dimensional form and a number of extra

terms appear that increase the possible ways of asymptotic behavior on approach

to the initial singularity. The behavior of the extra terms in our asymptotic

analysis will lead us at the end of the chapter to certain conclusions about the

way curvature affects the asymptotic of this class of universes.

4.1 Introduction

As we have seen in the previous chapter when we have a flat vacuum FRW model

in the fully quadratic theory of gravity defined by the action (2.2), the vector field

f 0,VAC described by the Eq.(3.5) has one admissible asymptotic solution near the

initial singularity, namely, the form (3.62)-(3.63). In this family, all flat vacua are

asymptotically dominated (or ‘attracted’) at early times by the form a(t) ∼ t1/2,

thus proving the stability of this solution in the flat case.

In order to study the situation of a vacuum but curved family of FRW

universes, we will apply the method of asymptotic splittings to the vector field

(2.30) which was obtained in Chapter 2 from the general quadratic action (2.2). In

this case, there are two extra complications which have to be analyzed separately.

Firstly, when k 6= 0, the vacuum field fVAC is 3-dimensional instead of planar as

it was in the flat case. Secondly, it has more terms than those present in the flat

case, namely, those that contain k in (2.30).

Below we shall use the suggestive notation f k,VAC instead of fVAC to signify

that we are dealing with non-flat vacua. The general form of the vector field

39
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presently is given by,

f k,VAC(x, y, z) =

(
y,
y2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

)
. (4.1)

4.2 Vector field decompositions

As described in Chapter 3, firstly, we are interested in finding the complete list of

all possible weight-homogeneous decompositions for the field given by Eq. (4.1)

of the general form

f k,VAC = f
(0)
k,VAC + f

(sub)
k,VAC. (4.2)

The vector field f k,VAC (or the basic system (2.28)) can decompose precisely in

26 − 1 = 63 different ways presented in the table of the Appendix A. In this table

f
(0)
k,VAC denotes the candidate dominant part of the field, and f

(sub)
k,VAC its subdominant

one. Each of these 63 different decompositions represents the possible ways the

field may dominate the evolution of the system. However, for any one of these ways

to be an admissible one, certain conditions have to be satisfied as our subsequent

asymptotic analysis will show.

4.3 The all-terms-dominant decomposition

Having found a complete profile of the dynamical field decompositions, the next

step is to look for the admissible dominant feature allowed by each vector field

splitting, the so-called dominant balances of the field near the finite-time singu-

larity.

4.3.1 Dominant exponents analysis

In order to search for the possible dominant balances, we begin with an analysis

of the last decomposition, f63 k,VAC (also called the all-terms-dominant decompo-

sition), from which we can extract useful qualitative conclusions for the total of

the possible dominant decompositions. Substituting the forms,

x(t) = atp = (θtp, ηtq, ρtr). (4.3)

into the dominant system (ẋ, ẏ, ż)(t) = f63
(0)
k,VAC, we obtain a nonlinear algebraic

system for the coefficients and the principal exponents of the dominant balance.
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Solving this system, we may determine the dominant balance (a,p), as an exact,

scale invariant solution, where a = (θ, η, ρ) ∈ C3 are constants and p = (p, q, r) ∈
Q3. The dominant system takes the form,

θptp−1 = ηtq, (4.4)

ηqtq−1 =
η2

2θ
t2q−p − 3θη tp+q + kθρ tp+r − k2ρ2

2θ
t2r−p

− θ

12ε
tp − kρ

12θε
tr−p, (4.5)

ρrtr−1 = −2θρtp+r. (4.6)

We can make the following general observations for the components of the expo-

nents vector p = (p, q, r). Since the term −2xz is the third component in the

dominant part of every one of the 63 asymptotic decompositions, Eq. (4.6) leads

to p = −1. Consequently this is the only possible value of p common in any

dominant balance.

Following that, and since Eq. (4.4) gives p− 1 = q we conclude that q = −2

and this is also the only possible common value of q in any dominant balance,

the term y being the first component in the dominant part of every asymptotic

decomposition.

Each term of the RHS of Eq. (4.6) leads to certain equations for the com-

ponents of p = (p, q, r) which have to be satisfied for the specific values p = −1

and q = −2 found from solving Eqs. (4.4) and (4.6). Hence, we find that,

q − 1 = 2q − p, for the term +
η2

2θ
t2q−p (4.7)

q − 1 = p+ q, for the term − 3θη tp+q (4.8)

q − 1 = p+ r, for the term + kθρ tp+r (4.9)

q − 1 = 2r − p, for the term − k2ρ2

2θ
t2r−p (4.10)

q − 1 = p, for the term − θ

12ε
tp (4.11)

q − 1 = r − p, for the term − kρ

12θε
tr−p (4.12)
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Consequently, there is no vector p = (p, q, r) that satisfies the dominant system

(4.4)-(4.6), so we conclude that the all-terms-dominant decomposition f63 k,VAC

does not admit a dominant balance asymptotically towards the singularity.

In addition, there are a number of very useful observations which can be

advanced based on the above analysis:

• The values p = −1 and q = −2 are the only acceptable ones for any possible

dominant balance.

• Having said that, we can see that, for these values of p and q, Eq.(4.11),

which is coming from the only linear term of the system, becomes impossible

to satisfy. Consequently, the 32 asymptotic decompositions that contain the

linear term − x
12ε

in their dominant parts cannot admit a dominant balance

and may be ignored in our list in Table (A.1) leaving us with 31 possible

asymptotic decompositions.

• For p = −1 and q = −2, Eq. (4.12) leads to r = −4 while Eqs. (4.9)

and (4.10) lead to r = −2. Consequently, the term − kz
12εx

cannot coexist

with neither one of the terms +kxz and −k2z2

2x
in the dominant part of an

acceptable asymptotic decomposition. Thus 12 of the remaining 31 possible

asymptotic decompositions can be crossed out as well, leaving 19 candidates

in all.

This last observation leads to an interesting interpretation of our current results.

This is related to the fact that Eqs. (4.9),(4.10) and (4.12) are obtained from the

terms − kz
12εx

, +kxz and −k2z2

2x
respectively, namely, the only terms of the vector

field (4.1) that contain the curvature term k. As shown above the appearance of

those terms in the dominant part of a specific possible asymptotic decomposition

forces r to take some specific value (i.e. r = −2 or r = −4), while their simul-

taneous appearance in the subdominant part leaves r as an arbitrary parameter

in this phase of the procedure. As we will see later in this Chapter, it is exactly

this fact that causes the appearance of one more arbitrary parameter in one of our

final asymptotic solutions which subsequently identifies the obtained solution as a

general asymptotic solution of the dynamical system corresponding to the vector

field f k,VAC.
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4.3.2 Coefficients analysis

Before we conclude the analysis of the all-terms-dominant decomposition we study

the equations satisfied by the coefficients of the dominant system (4.4)-(4.6), that

is the components of the vector a = (θ, η, ρ) in the dominant balance. We have

θp = η, (4.13)

ηq =
η2

2θ
− 3θη + kθρ− k2ρ2

2θ

− θ

12ε
− kρ

12θε
, (4.14)

ρr = −2θρ. (4.15)

Therefore, substituting the values −1 and −2 for p and q respectively, we find

−θ = η, (4.16)

−2η =
η2

2θ
− 3θη + kθρ− k2ρ2

2θ

− θ

12ε
− kρ

12θε
, (4.17)

ρ (r + 2θ) = 0. (4.18)

Since the first and third components of the vector field (4.1), namely, y and −2xz,

have only one single term we conclude that Eqs. (4.16) and (4.18) must be satisfied

by the components of any possible vector a = (θ, η, ρ) in the balance. More

specifically:

• The vector a of any admissible dominant balance (a,p) will have the form

a = (θ, −θ, ρ).

• From Eq. (4.18), we have that ρ = 0 or θ = − r
2
.

4.4 The hypothetical all-terms-subdominant de-

composition

Although it is impossible to have an all-terms-subdominant asymptotic decomposi-

tion since in that case by definition there would not exist any dominant asymptotic
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behavior in the first place, it is instructive to study the hypothetical case where

the subdominant part of a possible asymptotic decomposition would contain all

the terms of the initial vector field (4.1) and the rest would comprise the domi-

nant part f
(0)
k,VAC, so that their sum would be the same, namely that which in this

chapter we denote by f k,VAC. Therefore, let us suppose that there exists a possible

asymptotic decomposition whose subdominant part has the form

fh
(sub)

k,VAC =

(
0,
y2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
, 0

)
, (4.19)

where h stands for hypothetical. Then, as we have already seen in Chapter 3 we

need to examine the limit of the following expression as t→ 0, in order to confirm

that the subdominant part is indeed subdominant asymptotically.

f
(sub)
k,VAC(atp)

tp−1
. (4.20)

Of course, in this case we do not have an admissible dominant balance (a,p) but

we may use a dominant balance that satisfies all the conditions that we have found

so far. More specifically, we will use a dominant balance of the form (ah,ph) =

((θ, −θ, ρ), (−1,−2, r)), having in mind that r can either take the values −2, −4

or else be unspecified. In this case, we have

fh
(sub)

k,VAC (aht
ph) =

(
0,

η2

2θ
t2q−p − 3θη tp+q + kθρ tp+r

−k
2ρ2

2θ
t2r−p − θ

12ε
tp − kρ

12θε
tr−p, 0

)
,

(4.21)

and

tp−1 =
(
tp−1, tq−1, tr−1

)
. (4.22)

Subsequently, after substituting for (ah,ph), Eqs. (4.21) and (4.22) take the form,

fh
(sub)

k,VAC (aht
ph) =

(
0,

θ

2
t−3 + 3θ2 t−3 + kθρ tr−1

−k
2ρ2

2θ
t2r+1 − θ

12ε
t−1 − kρ

12θε
tr+1, 0

)
,

(4.23)

and

tph−1 =
(
t−2, t−3, tr−1

)
, (4.24)
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which gives,

fh
(sub)
k,VAC(aht

ph)

tph−1
=

(
0, −θ

2
t0 + 3θ2 t0 + kθρ tr+2

−k
2ρ2

2θ
t2r+4 − θ

12ε
t2 − kρ

12θε
tr+4, 0

)
,

(4.25)

or, equivalently,

fh
(sub)
k,VAC(aht

ph)

tph−1
=

(
0, −θ

2
, 0

)
︸ ︷︷ ︸

1st term

+
(
0, 3θ2, 0

)︸ ︷︷ ︸
2nd term

+ (0, kθρ, 0) tr+2︸ ︷︷ ︸
3rd term

+

(
0, −k

2ρ2

2θ
, 0

)
t2(r+2)︸ ︷︷ ︸

4th term

+

(
0, − θ

12ε
, 0

)
t2︸ ︷︷ ︸

5th term

+

(
0, − kρ

12θε
, 0

)
tr+4︸ ︷︷ ︸

6th term

. (4.26)

Taking now the limit as t → 0, although we cannot reach to a conclusion about

the actual subdominant part of an existing possible asymptotic decomposition, we

can gain a valuable insight of the subdominant behavior of each term of the second

component of (4.1). Below we examine separately the subdominant behavior of

each term of the second component of (4.1) in comparison with their corresponding

terms in Eq. (4.26) and we explain the reasons for which 16 more of the 19 possible

asymptotic decompositions left fail to lead to an asymptotic solution leaving us

finally with 3 admissible asymptotic decompositions out of the initial 63.

• The first term, y2

2x
, which corresponds to the first term of the RHS of Eq.

(4.26) has a strongly dominant character in the sense that when it appears

in the subdominant part it is most likely that the expression (4.20) will not

vanish as t → 0 except in the cases when θ = 0 or when θ might take

such a value that the term − θ
2

will be eliminated by addition to a term

with the opposite sign. Solving one by one the dominant systems of the

19 left possible asymptotic decompositions of the initial vector field, (4.1),

we find that the appearance of y2

2x
in the subdominant part leads indeed to

the exclusion of the relevant decompositions, except of one interesting case

which we will study in the next section.
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• The second term, −3xy, which corresponds to the second term of the RHS

of Eq. (4.26) has also a strongly dominant character in the same sense

as the first term. Again solving one by one the dominant systems of the

19 remaining asymptotic decompositions, we find that its appearance in the

subdominant part of a possible asymptotic decomposition leads in every case

to the exclusion of that specific decomposition.

• The third and fourth terms, +kxz and −k2z2

2x
, corresponding to the third

and fourth terms respectively of the RHS of Eq. (4.26) are, as we have seen

previously, the ones responsible for r taking the value −2 when they appear

in the dominant part of a possible asymptotic decomposition. For that same

value of r, both terms do not vanish as t→ 0, except in the case when ρ = 0

or θ = 0, for the third term only. Thus, one might expect these two terms

are in general ‘bound’ to one another, in the sense that either they both

have to appear in the dominant part of a decomposition (causing r to take

the value −2), or they both have to appear in the subdominant part. If they

are split, the one appearing in the dominant part will cause r to take the

value −2, while the other (appearing in the subdominant part) will cause

the expression (4.20) not to vanish as t→ 0 for that same value of r. Again,

we note that this is one more reason causing some of the possible asymptotic

decompositions to fail to lead to an acceptable asymptotic solution of the

dynamical system in question. Although the above argument makes it highly,

below we also treat the case, where these two terms have different dominant

behavior but the values of the dominant balance are such that they allow

the specific decomposition to lead to an asymptotic solution.

• The fifth term, − x
12ε

, corresponds to the fifth term of the RHS of Eq. (4.26).

As expected, this linear term shows an absolute subdominant asymptotic

behavior. It was already clear from the previous subsection that it was im-

possible to exist in the dominant part of any valid asymptotic decomposition

and it was also met presently.

• Finally, the sixth term − kz
12εx

which corresponds to the sixth term of the

RHS of Eq. (4.26), is one of the terms which include the curvature term k.

Its subdominant behavior depends on the value of r, and as we have already

seen it cannot coexist with the third and fourth terms in the dominant part

of an admissible asymptotic decomposition.
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4.5 The admissible asymptotic decompositions

For the reasons explained so far, only 3 of the 63 decompositions of Table (A.1)

eventually lead to fully acceptable dominant balances, while the rest 60 decompo-

sitions fail to do so. Therefore, the only acceptable asymptotic splittings of the

vector field f k,VAC of the general form f k,VAC = f
(0)
k,VAC + f

(sub)
k,VAC, have the following

dominant parts

f7
(0)
k,VAC =

(
y,
y2

2x
− 3xy,−2xz

)
, (4.27)

f12
(0)
k,VAC = (y,−3xy + kxz,−2xz) , (4.28)

f42
(0)
k,VAC =

(
y,
y2

2x
− 3xy + kxz − k2z2

2x
,−2xz

)
, (4.29)

while their subdominant parts are given respectively by the forms,

f7
(sub)
k,VAC =

(
0, kxz − k2z2

2x
− x

12ε
− kz

12xε
, 0

)
, (4.30)

f12
(sub)
k,VAC =

(
0,
y2

2x
− k2z2

2x
− x

12ε
− kz

12xε
, 0

)
, (4.31)

f42
(sub)
k,VAC =

(
0,− x

12ε
− kz

12xε
, 0

)
. (4.32)

In the next section, we present the asymptotic analysis of the first of the three

finally accepted decompositions and construct the asymptotic solution in the form

of a formal series expansion.

4.6 General asymptotic solutions

4.6.1 The dominant balance of the general solution

We now proceed with the construction of the asymptotic solution for the first of

the three admissible asymptotic decompositions, namely, the one that leads to

a general solution which will also allow us to make certain conclusions for the

stability of that solution. The decomposition that leads to the general solution is

f7 k,VAC of Table (A.1).

To obtain its asymptotic balance B 7 k,VAC ∈ C3 ×Q3, we solve the dominant

system ẋ(t) = f7
(0)
k,VAC obtained by substituting a scale-invariant solution of the
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form,

x(t) = atp = (θtp, ηtq, ρtr). (4.33)

That is we find,

θptp−1 = ηtq, (4.34)

ηqtq−1 =
θ2

2η
t2q−p − 3θη tp+q, (4.35)

ρrtr−1 = −2θρtp+r. (4.36)

Consequently, we are led to the dominant balance,

B 7 k,VAC = (a,p) =

((
1

2
,−1

2
, ρ

)
, (−1,−2,−1)

)
. (4.37)

In particular, this means that the vector field f7
(0)
k,VAC is a scale-invariant system.

4.6.2 Subdominant condition

Subsequently, we need to show that the higher-order terms (4.30) in the basic de-

composition of the vacuum field are themselves weight-homogeneous with respect

to the balance (4.37) for this to be an acceptable one. To prove this, we first split

the subdominant part (4.30) by writing

f7
(sub)
k,VAC(x) = f7

(1)
k,VAC(x) + f7

(2)
k,VAC(x) + f7

(3)
k,VAC(x), (4.38)

where

f7
(1)
k,VAC(x) = (0, kxz, 0) ,

f7
(2)
k,VAC(x) =

(
0,−k

2z2

2x
− x

12ε
, 0

)
,

f7
(3)
k,VAC(x) =

(
0,− kz

12xε
, 0

)
, (4.39)

and using the balance B 7 k,VAC defined by Eq. (4.37), we find that
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f7
(1)
k,VAC(atp)

tp−1
= f7

(1)
k,VAC(a)t =

(
0,
k ρ

2
t, 0

)
, (4.40)

f7
(2)
k,VAC(atp)

tp−1
= f7

(2)
k,VAC(a)t2 =

(
0,

(
−k2ρ2 − 1

24ε

)
t2, 0

)
, (4.41)

f7
(3)
k,VAC(atp)

tp−1
= f7

(3)
k,VAC(a)t3 =

(
0,−kρ

6ε
t3, 0

)
. (4.42)

Hence, taking the limit as t→ 0, we see that these forms go to zero asymptotically

provided that f
(i)
k,VAC1

(a), i = 1, 2, 3 are all different from zero. This happens only

when ε 6= 0, that is for all cases except when 3β + γ = 0. Since the subdominant

exponents

q(0) = 0 < q(1) = 1 < q(2) = 2 < q(3) = 3, (4.43)

are ordered, we conclude that the subdominant part (4.30) is weight-homogeneous

as promised.

4.6.3 Construction of the K-matrix

Further, we calculate the Kovalevskaya matrix given by

K7
k,VAC = D f7

(0)
K,VAC(a)− diag(p), (4.44)

which leads to,

K7
k,VAC =


1 1 0

1 −1/2 0

−2ρ 0 0

 , (4.45)

with spectrum

spec(K7
k,VAC) = {0,−1, 3/2}. (4.46)

4.6.4 Substitution of the Fuchsian series expansion

In order to find that solution, we substitute the Fuchsian series expansions and

their derivatives

x(t) =
∞∑
i=0

c1it
i
2
−1, y(t) =

∞∑
i=0

c2it
i
2
−2, z(t) =

∞∑
i=0

c3it
i
2
−1, (4.47)
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ẋ(t) =
∞∑
i=0

c1i

(
i

2
− 1

)
t
i
2
−2, ẏ(t) =

∞∑
i=0

c2i

(
i

2
− 2

)
t
i
2
−3,

ż(t) =
∞∑
i=0

c3i

(
i

2
− ρ
)
t
i
2
−2,

(4.48)

where c10 = 1/2 and c20 = −1/2, c30 = ρ, in the following equivalent form of the

original system (2.28), namely

ẋ = y, (4.49)

2xẏ = y2 − 6x2y + 2kx2z − k2z2 − 1

6ε
x2 − k

6ε
z, (4.50)

ż = −2xz. (4.51)

from which we will be led to various recursion relations that determine the un-

knowns c1i, c2i, c3i term by term. More specifically from Eq. (4.49) after substitu-

tion we have

∞∑
i=0

c1i

(
i

2
− 1

)
t
i
2
−2 =

∞∑
i=0

c2it
i
2
−2, (4.52)

which leads to

c1i

(
i

2
− 2

)
= c2i . (4.53)

From Eq. (4.50) we calculate separately each term after substitution:

2xẏ = 2

(
∞∑
i=0

c1i t
i
2
−1

)(
∞∑
i=0

c2i

(
i

2
− 2

)
t
i
2
−3

)

= 2 t−4
∞∑
i=0

i∑
l=0

c2(i−l)

(
i− l

2
− 2

)
c1l t

i
2 , (4.54)
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y2 =

(
∞∑
i=0

c2i t
i
2
−2

)(
∞∑
i=0

c2i t
i
2
−2

)

= t−4
∞∑
i=0

i∑
l=0

c2(i−l)c2l t
i
2 , (4.55)

−6x2y = −6

(
∞∑
i=0

c1i t
i
2
−1

)(
∞∑
i=0

c1i t
i
2
−1

)(
∞∑
i=0

c2i t
i
2
−2

)

= −6 t−4
∞∑
i=0

i∑
l=0

k∑
m=0

c1(i−l)c1(l−l)c2m t
i
2 , (4.56)

2kx2z = 2k

(
∞∑
i=0

c1i t
i
2
−1

)(
∞∑
i=0

c1i t
i
2
−1

)(
∞∑
i=0

c3i t
i
2
−1

)

= 2k t−3
∞∑
i=0

i∑
l=0

k∑
m=0

c1(i−l)c1(m−l)c3l t
i
2 , (4.57)

−k2z2 = −k2
(
∞∑
i=0

c3i t
i
2
−1

)(
∞∑
i=0

c3i t
i
2
−1

)

= −k2 t−2
∞∑
i=0

i∑
l=0

c3(i−l)c3l t
i
2 , (4.58)

− 1

6ε
x2 = − 1

6ε

(
∞∑
i=0

c1i t
i
2
−1

)(
∞∑
i=0

c1i t
i
2
−1

)

= − 1

6ε
t−2

∞∑
i=0

i∑
k=0

c1(i−k)c1k t
i
2 , (4.59)

− k

6ε
z = − k

6ε
t−1

∞∑
i=0

c3i t
i
2 . (4.60)
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Subsequently, we are led to the following form of (4.50),

2 t−4
∞∑
i=0

i∑
l=0

c2(i−l)

(
i− l

2
− 2

)
c1l t

i
2 = t−4

∞∑
i=0

i∑
l=0

c2(i−l)c2l t
i
2

−6 t−4
∞∑
i=0

i∑
l=0

k∑
m=0

c1(i−l)c1(l−m)c2m t
i
2 + 2k t−3

∞∑
i=0

i∑
l=0

k∑
m=0

c1(i−l)c1(m−l)c3lt
i
2

−k2 t−2
∞∑
i=0

i∑
l=0

c3(i−l)c3l t
i
2 − 1

6ε
t−2

∞∑
i=0

i∑
k=0

c1(i−k)c1k t
i
2 − k

6ε
t−1

∞∑
i=0

c3i t
i
2(4.61)

Finally, from Eq. (4.51) after substitution we have

∞∑
i=0

c3i

(
i

2
− 1

)
t
i
2
−2 = −2

(
∞∑
i=0

c1it
i
2
−1

)(
∞∑
i=0

c3i t
i
2
−1

)
, (4.62)

which leads to

t−2
∞∑
i=0

c3i

(
i

2
− 1

)
t
i
2 = −2 t−2

∞∑
i=0

i∑
l=0

c1(i−l)c3l t
i
2 . (4.63)

4.6.5 Calculation of the final series coefficients

Eqs. (4.53),(4.61) and (4.63) constitute the system from which we calculate term

by term the coefficients c1i, c2i and c3i of the asymptotic solution of the initial

dynamical system (4.49)-(4.51) in the form of the Fuchsian series expansions (4.47),

that is

x(t) =
1

2
t−1 + c11 t

−1/2 + c12 t
0 + c13 t

1/2 + c14 t
1 + · · · ,

y(t) = −1

2
t−2 + c21 t

−3/2 + c22 t
−1 + c23 t

−1/2 + c24 t
0 + · · · ,

z(t) = ρt−1 + c31 t
−1/2 + c32 t

0 + c33 t
1/2 + c34 t

1 + · · · , (4.64)

We determine for each of the Eqs. (4.53), (4.61) and (4.63) a different set of

equations for the coefficients of the various powers of t which will eventually give

us the values of c1i, c2i and c3i.
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1st set of equations

For the coefficients of the different powers of t, Eq. (4.53) leads to the following

equations,

for the coefficients of the term t−3/2, c11
(
1
2
− 1
)

= c21 , (4.65)

for the coefficients of the term t−1, c12
(
2
2
− 1
)

= c22 , (4.66)

for the coefficients of the term t−1/2, c13
(
3
2
− 1
)

= c23 , (4.67)

for the coefficients of the term t0, c14
(
4
2
− 1
)

= c24 . (4.68)

2nd set of equations

Subsequently, for the coefficients of the different powers of t, Eq. (4.61) leads to

the following equations:

For the coefficients of the term t−7/2, we have

2
1∑
l=0

c2(i−l)

(
i− l

2
− 2

)
c1l =

1∑
l=0

c2(i−l)c2l − 6
1∑
l=0

k∑
m=0

c1(i−l)c1(l−m)c2m , (4.69)

which leads to

c11 = c21. (4.70)

For the coefficients of the term t−3, we have

2
2∑
l=0

c2(i−l)

(
i− l

2
− 2

)
c1l =

2∑
l=0

c2(i−l)c2l − 6
2∑
l=0

l∑
m=0

c1(i−l)c1(l−m)c2m

+2k
0∑
l=0

l∑
m=0

c1(i−l)c1(m−l)c3l ,

(4.71)

which leads to

c12 =
kρ

2
. (4.72)
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For the coefficients of the term t−5/2, we have

2
3∑
l=0

c2(i−l)

(
i− l

2
− 2

)
c1l =

3∑
l=0

c2(i−l)c2l − 6
3∑
l=0

l∑
m=0

c1(i−l)c1(l−m)c2m

+2k
1∑
l=0

l∑
m=0

c1(i−l)c1(m−l)c3l ,

(4.73)

which leads to

c23 =
c13
2
. (4.74)

For the coefficients of the term t−2, we have

2
4∑
l=0

c2(i−l)

(
i− l

2
− 2

)
c1l =

4∑
l=0

c2(i−l)c2l − 6
4∑
l=0

k∑
m=0

c1(i−l)c1(l−m)c2m

+2k
2∑
l=0

k∑
m=0

c1(i−l)c1(m−l)c3l − k2
0∑
l=0

c3(i−l)c3l −
1

6ε

0∑
l=0

c1(i−l)c1l

(4.75)

which leads to

5c24 − 2c14 = −3ρ2

2
− 1

12ε
. (4.76)

3rd set of equations

Finally, for the coefficients of the different powers of t, Eq. (4.63) leads to the

following equations:

For the coefficients of the term t−3/2,

c13

(
1

2
− 1

)
= −2

1∑
l=0

c1(1−l)c3l , (4.77)

leading to

c13 = −4ρc11. (4.78)

For the coefficients of the term t−1,

c32

(
2

2
− 1

)
= −2

2∑
l=0

c1(2−l)c3l, (4.79)

which leads to

2ρc12 + c32 + 2c11c31 = 0. (4.80)
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for the coefficients of the term t−1/2,

c33

(
3

2
− 1

)
= −2

3∑
l=0

c1(3−l)c3l, (4.81)

which lead to

3c33 + 4ρc13 + 4c12c31 + 4c11c32 = 0, (4.82)

for the coefficients of the term t0,

c14

(
4

2
− 1

)
= −2

4∑
l=0

c1(4−l)c3l, (4.83)

which lead to

c34 + ρc14 + c13c31 + c12c32 + c11c33 = 0. (4.84)

4.6.6 Final form of the general solution

Consequently, we arrive at the following asymptotic series representation for the

decomposition (4.27):

x(t) =
1

2
t−1 − kρ

2
+ c13 t

1/2 −
(
k2ρ2

4
+

1

36ε

)
t+ · · · , (4.85)

while the corresponding series expansion for y(t) is given by the first time derivative

of the above expression, while that for z(t) is given by

z(t) = ρ t−1 − kρ2 − 4ρ c13
3

t1/2 +

(
k2ρ2(1 + 2ρ)

4
+

1

36ε

)
t+ · · · . (4.86)

For the scale factor, we find

a(t) = α t1/2 − kρα

2
t3/2 +

2c13α

3
t2 −

(
k2ρ2α

8
+

α

72ε

)
t5/2 + · · · , (4.87)

where α is a constant of integration and α−2 = ρ.

This series (4.85) has three arbitrary constants, ρ, c13 with the third one

corresponding to the arbitrary position of the singularity. Therefore, this repre-

sents a local expansion of a general solution around the initial singularity. The

transformation c13 = 3c
′
13/2α and ε = k/6 in the series expansion (4.87), leads to

the form which is obtained by setting ζ = 0 in the series expansion found for the
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curved, radiation case, cf. Eq. (4.13) of [102]. In addition, by setting k = 0 we

are lead to the form (3.62)-(3.63) found for the flat vacuum.

We note that because of the square root, limits can only be taken in the

backward direction, t ↓ 0, in the solution (4.87), another way of expressing the

curious fact that this solution (along with Eq. (3.64) found in the previous Section)

is only valid at early times and corresponds to a past singularity.

4.7 Milne states

4.7.1 Milne - Dominant balance

We now move on to the analysis of the last two decompositions, namely, those with

dominant parts (4.28) and (4.29). We show below that these lead to particular

solutions (meaning having less number of arbitrary constants than in a general

solution) for k = −1 and k = +1.

In the case of open universes, k = −1, and the dominant parts take the forms

f12
(0)
−1,VAC = (y,−3xy − xz,−2xz) , (4.88)

f42
(0)
−1,VAC =

(
y,
y2

2x
− 3xy − xz − z2

2x
,−2xz

)
, (4.89)

with subdominant parts given by

f12
(sub)
−1,VAC =

(
0,
y2

2x
− z2

2x
− x

12ε
+

z

12xε
, 0

)
, (4.90)

f42
(sub)
−1,VAC =

(
0,− x

12ε
+

z

12xε
, 0
)
, (4.91)

These two forms lead, however, to the same acceptable asymptotic balance, namely,

B12,42
−1,VAC = (a,p) = ((1,−1, 1) , (−1,−2,−2)) , (4.92)

4.7.2 Milne - subdominant condition

As we have already seen in Chapter 3, we have to examine the limit of the following

expression

f
(sub)
−1,VAC(atp)

tp−1
. (4.93)
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as t → 0, in order to confirm that the subdominant part is indeed subdominant

asymptotically. Accordingly, we need to show that the higher-order terms (4.90)

and (4.91) in the basic decompositions f12−1,VAC and f42−1,VAC respectively, are

themselves weight-homogeneous with respect to the balance (4.92) for this to be

an acceptable one. To prove this, we first split the subdominant parts (4.90) and

(4.91) by writing

f12
(sub)
−1,VAC(x) = f12

(1)
−1,VAC(x)+f12

(2)
−1,VAC(x)+f12

(3)
−1,VAC(x)+f12

(4)
−1,VAC(x), (4.94)

f42
(sub)
−1,VAC(x) = f42

(1)
−1,VAC(x) + f42

(2)
−1,VAC(x). (4.95)

Thus, we are led to the forms

f12
(sub)
k,VAC(x) =

(
0,
y2

2x
, 0

)
+

(
0,− z

2

2x
, 0

)
+
(

0,− x

12ε
, 0
)

+
(

0,
z

12ε
, 0
)
, (4.96)

f42
(sub)
k,VAC(x) =

(
0,− x

12ε
, 0
)

+
(

0,
z

12ε
, 0
)
. (4.97)

And, subsequenlty,

f12
(sub)
k,VAC(atp) =

(
0,
η2

2θ
t2q−p, 0

)
+

(
0,−ρ

2

2θ
t2r−p, 0

)
+

+

(
0,− θ

12ε
tp, 0

)
+
(

0,
ρ

12εθ
tr−p, 0

)
,

(4.98)

f42
(sub)
k,VAC(atp) =

(
0,− θ

12ε
tp, 0

)
+
(

0,
ρ

12εθ
tr−p, 0

)
. (4.99)

Now, using the B12,42
−1,VAC defined by Eq. (4.92), we find that

f12
(sub)
k,VAC(atp) =

(
0,−1

2
t−3, 0

)
+

(
0,

1

2
t−3, 0

)

+

(
0,− 1

12ε
t−1, 0

)
+

(
0,

1

12ε
t−1, 0

)
= (0, 0, 0)

(4.100)

f42
(sub)
k,VAC(atp) =

(
0,− 1

12ε
t−1, 0

)
+

(
0,

1

12ε
t−1, 0

)
= (0, 0, 0) (4.101)

As we can see, in the case of open universes, the subdominant parts of the asymp-

totic decompositions f12−1,VAC and f42−1,VAC deviate, by suitable values of the

asymptotic balance, the conditions described in our analysis of the subdominant

character of each term and vanish for every value of t. Thus, there is no need to
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examine the limit of the expression (4.93) for any of those two decompositions.

Looking at the above equations more carefully (as well as the ones below for the

closed case) we observe the key role of the curvature term kxz underlying the fact,

that in contradiction with the flat case studied in Chapter 3, curvature is a key

feature of the universe for the existence of those Milne states in the neighborhood

of the spacetime initial singularity.

4.7.3 Milne - K-matrices

Following that, we find that the structure of the K-matrices is

K12
−1,VAC =


1 1 0

2 −1 −1

−2 0 0

 , spec(K12
−1,VAC) = {−1,−1, 2}, (4.102)

and

K42
−1,VAC3

=


1 1 0

2 −2 −2

−2 0 0

 , spec(K42
−1,VAC) = {−1,−2, 2}. (4.103)

4.7.4 Milne - Solutions

Since we are interested in the behavior of solutions near finite-time singularities

(as opposed to singularities at infinity), we may set the arbitrary constants cor-

responding to the negative eigenvalues equal to zero, and led to a form for x(t)

common for both decompositions, namely,

x(t) = t−1 + c12 t−
(
c12 − 18 ε c212

60ε

)
t3 + · · · . (4.104)

The corresponding series expansion for y(t) is given by the first time derivative of

the above expression, while the corresponding series expansion for z(t) is given by

z(t) = t−2 − c12 +

(
c12 ( 42ε c12 + 1 )

120ε

)
t2 + · · · . (4.105)

Finally, we arrive at the following asymptotic form for the scale factor α(t) around

the singularity:

a(t) = α t+
α c12

2
t3 − α (c12 − 18 ε c212)

240ε
t5 + · · · , (4.106)
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where α = ±1 as dictated by the definition z(t) = 1/a(t)2.

This solution has therefore two arbitrary constants, c12 and a second one

corresponding to the arbitrary position of the singularity (taken here to be zero

without loss of generality), and is therefore a local expansion of a particular so-

lution around the singularity. Since the time singularity can be approached here

from either the past or the future direction, we conclude that it represents a 2-

parameter family of past, or future Milne states for these open vacua. This is

also reminiscent of the Frenkel-Brecher horizonless solutions, cf. [83], with the

important difference that their solutions are matter-filled an possibly valid only in

the past direction.

4.7.5 Milne - Closed universe

On the other hand, when k = +1, the decomposition (4.28) does not lead to an

acceptable dominant balance, but (4.29) does, namely,

f42
(0)
+1,VAC =

(
y,
y2

2x
− 3xy + xz − z2

2x
,−2xz

)
, (4.107)

with subdominant part

f
(sub)
+1,VAC3

=
(

0,− x

12ε
− z

12xε
, 0
)
, (4.108)

and we obtain

B42
+1,VAC = (a,p) = ((1,−1, 3) , (−1,−2,−2)) . (4.109)

The corresponding K-matrix is

K42
+1,VAC =


1 1 0

10 −2 −2

−6 0 0

 , spec(K+1,VAC3) = {−1,−2
√

3, 2
√

3}, (4.110)

and we expect particular solutions in this case with the given leading order, how-

ever, due to the irrational Kowalevskaya exponents the resulting series will contain

logarithmic terms.



Chapter 4. Curved vacua 60

4.8 Conclusion

It turns out that a prominent role in the early asymptotic evolution of both flat and

curved vacua in this theory is played by a scaling form that behaves as t1/2 near the

initial singularity. Using various asymptotic and geometric arguments, we were

able to built a solution of the field equations in the form of a Fuchsian formal se-

ries expansion compatible with all other constraints, dominated asymptotically to

leading order by this solution and having the correct number of arbitrary constants

that makes it a general solution of the field equations. In this way, we conclude

that this exact solution is an early time attractor of all homogeneous and isotropic

vacua of the theory, thus proving stability against such ‘perturbations’.

For open vacua, there is a 2-parameter family of Fuchsian solutions that is

dominated asymptotically by the Milne form both for past and future singulari-

ties. In the case of closed models, we have logarithmic solutions coming from a

manifold of initial conditions with smaller dimension than the full phase space but

dominated asymptotically by the same a(t) ∼ t form.



Chapter 5

Radiation-filled universes

In this chapter we will start from the basic dynamical system and the equivalent

vector field which describe the dynamical evolution of any radiation-filled FRW

universe in higher order gravity and, assuming the existence of a finite time sin-

gularity (taken here to lie at t=0 without loss of generality) in its set of solutions,

we will study its asymptotic behavior in the neighborhood of the singularity.

5.1 Introduction

In this section we shall derive the basic vector field and the equivalent dynamical

system which completely describe the dynamical evolution of any radiation-filled

FRW universe in higher order gravity.

These cosmological models are determined by the Robertson-Walker metric,

which is derived by assuming homogeneity and isotropy of a universe with constant

curvature and has the general form (2.15).

We assume that these spaces are filled with a radiation fluid and the energy-

momentum tensor has the form Tµν = (p+ ρ)uµuν + pgµν , where the fluid velocity

4-vector is uµ = δµ0 an equation of state of the form, p = ρ/3.

The general higher-order action is the same as the one we have used so far,

namely, Eq. (2.2) which as it has already been discussed in Chapter 2 leads to the

field equations,

Rµν − 1

2
gµνR +

ξ

6

[
2RRµν − 1

2
R2gµν − 2(gµρgνσ − gµνgρσ)∇ρ∇σR

]
= T µν , (5.1)

61
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Using the metric (2.15), the field equation (5.1) leads to our basic cosmolog-

ical equation in the form

k + ȧ2

a2
+ ξ

[
2

...
a ȧ

a2
+ 2

äȧ2

a3
− ä2

a2
− 3

ȧ4

a4
− 2k

ȧ2

a4
+
k2

a4

]
=
ζ2

a4
, (5.2)

where ζ is a constant defined by the constraint

ρ

3
=
ζ2

a4
, (from ∇µT

µ0 = 0). (5.3)

This is exactly like Eq. (2.24) except for the RHS where the ‘radiation’ term, ζ2

a4
,

appears instead of zero. Setting in this case

x = a, y = ȧ and z = ä, (5.4)

Eq. (5.2) can be written as an autonomous dynamical system of the form

ẋ = f k,RAD(x), x = (x, y, z), (5.5)

where

ẋ = y, (5.6)

ẏ = z, (5.7)

ż =
ζ2

2ξx2y
− k2

2x2y
+

3y3

2x2
+
z2

2y
− yz

x
− y

2ξ
− k

2ξy
+
ky

x2
, (5.8)

equivalent to the curvature-radiation vector field f k,RAD : R3 → R3 : (x, y, z) 7→
f k,RAD(x, y, z) with

f k,RAD(x, y, z) =

(
y, z,

ζ2

2ξx2y
− k2

2x2y
+

3y3

2x2
+
z2

2y
− yz

x
− y

2ξ
− k

2ξy
+
ky

x2

)
.

(5.9)

The curvature-radiation field f k,RAD, or equivalently the dynamical system (5.6)-

(5.8), combines the effects of curvature and radiation, and completely describes the

dynamical evolution of any radiation-filled FRW universe in higher-order gravity.

In the following Section we shall see how this field can split asymptotically and

determine all dominant asymptotic modes developing on approach to the initial

singularity in higher-order gravity.
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5.2 Asymptotic splittings of the curvature-radiation

vector field

How many admissible asymptotic decompositions does the vector field f k,RAD given

by Eq. (5.9) possess on approach to the initial state at t = 0? We recall that when

k = 0, as shown in [92], the vector field f 0,RAD has two admissible asymptotic

solutions near the initial singularity. In the first family, all flat, radiation solutions

are dominated (or attracted) at early times by the form a(t) ∼ t1/2, thus proving

the stability of this solution in the flat case. There is also a second possible

asymptotic form near the singularity in the flat case, a(t) ∼ t, but this contains

only two arbitrary constants and hence it corresponds to a particular solution of

the theory (cf. [92]).

When k 6= 0, and we have the present situation of a radiation-filled, curved

family of FRW universes to follow asymptotically near the past singularity, the field

f k,RAD has more terms - those that contain k in (5.9) - than in the flat case. Since

we already have a precise picture of the asymptotic forms of the flat case, we can

now study the combined effects of curvature and radiation alone asymptotically.

A simple combinatorial calculation shows that f k,RAD (or the basic system (5.6)-

(5.8)) can decompose precisely in

(
8

1
) + (

8

2
) + · · ·+ (

8

8
) = 255 (5.10)

different ways. Each one of these 255 different modes leads to an asymptotic

splitting of the form (1.16), which may contain many possible dominant balances

and so needs to be checked for admissibility. Any candidate asymptotic splitting of

the form (1.16) will accordingly be acceptable in principle, provided the candidate

subdominant part tends to zero asymptotically, that is it indeed behaves as a

subdominant contribution to the dominant asymptotic form the field splits into

(1.16). The complete list of the 255 asympototic splittings of the vector field

(5.9) is given in the Appendix B. In that table f
(0)
k,RAD denotes the candidate

dominant part of the field, and f
(sub)
k,RAD its subdominant one. Each one of these

255 decompositions represents the possible ways the vector field may dominate the

evolution of the system. However, as discussed, for any one of these asymptotic

splittings to be an admissible one, certain conditions that will be examined below,

have to be satisfied.
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5.3 The all-terms-dominant decomposition

5.3.1 Dominant exponents analysis

In order to take a quick glance at the general picture and make some preliminary

qualitative observations, we start our asymptotic decomposition analysis with the

case of the all-terms-dominant decomposition, f255k,RAD, that is the asymptotic split-

ting where,

f255
(sub)
k,RAD = 0, (5.11)

and by consequence,

f
(0)
k,RAD =

(
y, z,

ζ2

2ξx2y
− k2

2x2y
+

3y3

2x2
+
z2

2y
− yz

x
− y

2ξ
− k

2ξy
+
ky

x2

)
. (5.12)

Substituting the dominant solution

x(t) = atp = (θtp, ηtq, ρtr). (5.13)

into the corresponding dominant system, (5.6)-(5.8), we find,

θp tp−1 = η tq, (5.14)

ηq tq−1 = ρ tr, (5.15)

ρr tr−1 =
ζ2

2ξθ2η
t−2p−q − k2

2θ2η
t−2p−q +

3η3

2θ2
t−2p+3q +

ρ2

2η
t2r−q −

− ηρ

θ
tq+r−p − η

2ξ
tq − k

2ξη
t−q +

kη

θ2
t−2p+q. (5.16)

Firstly, we need to solve the above system for the dominant exponents, that is for

the components p = (p, q, r) ∈ Q3. Eqns. (5.14) and (5.15) lead to,

p− 1 = q and q − 1 = r. (5.17)

We note, that, these two equations must be satisfied by all possible dominant

balances since they are derived from Eqns. (5.14) and (5.15) as are part of every

possible dominant system of the 255 possible asymptotic decompositions. Thus,

any possible vector p = (p, q, r) will have the form,

p = (q − 1, q, q + 1). (5.18)
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Eq. (5.16) then leads to a set of equations for each one of the eight terms in the

right-hand side. The first and second terms, namely, ζ2

2ξθ2η
t−2p−q and − k2

2θ2η
t−2p−q,

become,

r − 1 = 2p− q. (5.19)

Similarly, the third term, namely, 3η3

2θ2
t−2p+3q, gives

r − 1 = −2p+ 3q, (5.20)

the fourth term, namely, ρ2

2η
t2r−q, gives

r − 1 = 2r − q, (5.21)

the fifth term, namely, −ηρ
θ
tq+r−p, gives

r − 1 = q + r − p, (5.22)

the sixth term, namely, − η
2ξ
tq, gives

r − 1 = q, (5.23)

the seventh term, namely, − k
2ξη

t−q, gives

r − 1 = −q, (5.24)

and finaly, the eighth term, namely, kη
θ2

t−2p+q, leads to

r − 1 = −2p+ q. (5.25)

Since this is the all-terms-dominant decomposition, it is clear that the domi-

nant exponents in any other asymptotic splitting will satisfy a subset of the Eqs.

(5.19)-(5.25) depending on the way that the terms of the RHS of Eq. (5.16) are

distributed between the dominant and the subdominant part.

By substituting the general form (5.18) in Eqs. (5.19)-(5.25), we are led to

the following observations:

1. Eq. (5.23) is impossible and the linear term − y
2ξ

cannot be included in the

dominant part of any asymptotic splitting as expected. Since there are 127

asymptotic splittings that contain the linear term − y
2ξ

in their dominant
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part, we may cross them out of the list of Table (B.1) and left with 128

possible asymptotic decompositions.

2. Eq. (5.24) leads to the value q = 1, and thus when the term − k
2ξη

t−q is

included in the dominant part of an asymptotic splitting the only possible

value for the vector p is

p = (p, q, r) = (2, 1, 0). (5.26)

3. Each one of Eqs. (5.19) and (5.25) lead to the value q = 0, and thus when

any of the terms ζ2

2ξθ2η
t−2p−q , − k2

2θ2η
t−2p−q , or kη

θ2
t−2p+q , is included in

the dominant part of an asymptotic splitting, we find

p = (p, q, r) = (1, 0, −1). (5.27)

4. Taking into consideration the last two observations we can safely conclude

that it is impossible for an asymptotic splitting to lead to an acceptable

dominant balance when it contains in its dominant part in addition to the

seventh term, − k
2ξη

t−q, any one of the first, second or eighth term, namely,

the terms ζ2

2ξθ2η
t−2p−q , − k2

2θ2η
t−2p−q or kη

θ2
t−2p+q respectively. Of the

128 remaining asymptotic splittings of the Table (B.1), there are precisely

57 that satisfy this condition and can be safely deleted from our list, thus

leaving 71 possible asymptotic decompositions whose behavior remains to

be examined. One of these 57 rejected decompositions is f255k,RAD.

5.3.2 Coefficients analysis

Since the dominant system, (5.14)-(5.16) corresponding to the all-terms-dominant

possible asymptotic decomposition, f255 k,RAD cannot be solved for the dominant

exponents p = (p, q, r), Eq. (5.16) cannot lead to a general qualitative conclusion

for the conditions needed to be satisfied by the coefficients a = (θ, η, ρ) in order to

have an acceptable dominant balance from any other asymptotic splitting. Nev-

ertheless, Eqs. (5.14) and (5.15) are valid in the dominant system of any possible

asymptotic decomposition and thus, we may proceed and examine below the pos-

sible forms of the coefficient vector a for each one of the special cases (5.26) and

(5.27) for the values of the exponent vector p.
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First case p=(2,1,0)

When p = (2, 1, 0), that is, when the seventh term of the RHS of (5.8) is considered

as the dominant one. Eqs. (5.14)-(5.15) take the form,

2θ t = η t, (5.28)

η t0 = ρ t0, (5.29)

so that,

2θ = η, (5.30)

η = ρ. (5.31)

Concluding, in the cases where the term − k
2ξη

t−q appears in the dominant part of

an asymptotic splitting, the only possible form of a dominant balance is

B k,RAD = (a,p) = ((θ, 2θ, 2θ) , (2, 1, 0)) . (5.32)

Second case p=(-1,0,1)

When p = (−1, 0, 1), that is, when at least one of the first, second or eighth term

of the RHS of (5.8) is considered as the dominant one. Eqs. (5.14)-(5.15) take the

form,

θ t0 = η t0, (5.33)

0 t−1 = ρ t−1, (5.34)

so that,

θ = η, (5.35)

ρ = 0. (5.36)

Concluding, in the cases where at least one of the terms ζ2

2ξθ2η
t−2p−q , − k2

2θ2η
t−2p−q

or kη
θ2

t−2p+q appear in the dominant part of an asymptotic splitting the only

possible form of a dominant balance is

B k,RAD = (a,p) = ((θ, θ, 0) , (1, 0,−1)) . (5.37)
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In any other case, the dominant balance takes the form,

B k,RAD = (a,p) = ((θ, η, ρ) , (q + 1, q, q − 1)) . (5.38)

5.3.3 The hypothetical all-terms-subdominant decomposi-

tion

Let us now move on to examine the possible subdominant behavior of each of the

terms in (5.6)-(5.8), f k,RAD, with respect to the specific forms of possible dominant

balances that we have found in the previous subsection, namely, (5.32), (5.37) and

(5.38).

In order to do that we suppose the existence of a hypothetical possible asymp-

totic decomposition which contains in its subdominant part all the terms in the

initial radiation-curved vector field (5.9). In that case the subdominant part would

have the form,

fh
(sub)

k,RAD =

(
0, 0,

ζ2

2ξx2y
− k2

2x2y
+

3y3

2x2
+
z2

2y
− yz

x
− y

2ξ
− k

2ξy
+
ky

x2

)
, (5.39)

where h stands for ‘hypothetical’. As discussed in the previous Chapter, it is

impossible to have such a possible asymptotic decomposition since, in that case,

we would have no terms left to justify the existence of a dominant asymptotic

behavior.

Nevertheless, our current discussion aims at shedding light on the subdom-

inant character of each term by finding the conditions under which it remains

weight-homogeneous with respect to the dominant balances (5.32), (5.37) and

(5.38). To examine this, we first split the subdominant part (5.39) in the follow-

ing way,

fh
(sub)

k,RAD(x) = fh
(1)

k,RAD(x) + fh
(2)

k,RAD(x) + fh
(3)

k,RAD(x) + fh
(4)

k,RAD(x)+

+fh
(5)

k,RAD(x) + fh
(6)

k,RAD(x) + fh
(7)

k,RAD(x) + fh
(8)

k,RAD(x),

(5.40)
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where

fh
(1)

k,RAD(x) =

(
0, 0,

ζ2

2ξx2y

)
, (5.41)

fh
(2)

k,RAD(x) =

(
0, 0, − k2

2x2y

)
, (5.42)

fh
(3)

k,RAD(x) =

(
0, 0,

3y3

2x2

)
, (5.43)

fh
(4)

k,RAD(x) =

(
0, 0,

z2

2y

)
, (5.44)

fh
(5)

k,RAD(x) =
(

0, 0, −yz
x

)
, (5.45)

fh
(6)

k,RAD(x) =

(
0, 0, − y

2ξ

)
, (5.46)

fh
(7)

k,RAD(x) =

(
0, 0, − k

2ξy

)
, (5.47)

fh
(8)

k,RAD(x) =

(
0, 0,

ky

x2

)
, . (5.48)

Subsequently, we are going to describe the contribution of each of the forms (5.41)-

(5.48) to the behavior of the expression,

f
(sub)
k,RAD(atp)

tp−1
, (5.49)

as t→ 0 for each one of the possible dominant balances (5.32), (5.37) and (5.38)

separately.

First case p=(2,1,0)

The first case is when the dominant balance is of the form (5.32), that is,

B k,RAD = (a,p) = ((θ, 2θ, 2θ) , (2, 1, 0)) . (5.50)

As discussed earlier, this happens when the seventh term of the RHS of (5.8) is

included in the dominant part of a possible asymptotic splitting. We also note that

in this case, θ 6= 0 because a cannot vanish. In order to deal with the expression
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(5.49), we substitute the dominant balance (5.50) in Eqs. (5.41)-(5.48) and we

divide by tp−1. Thus, we have,

fh
(1)
k,RAD(atp)

tp−1
= fh

(1)

k,RAD(a) t−4 =

(
0, 0,

ζ2

4ξθ3

)
t−4, (5.51)

fh
(2)
k,RAD(atp)

tp−1
= fh

(2)

k,RAD(a) t−4 =

(
0, 0, − k2

4θ3

)
t−4, (5.52)

fh
(3)
k,RAD(atp)

tp−1
= fh

(3)

k,RAD(a) t0 = ( 0, 0, 12θ) t0, (5.53)

fh
(4)
k,RAD(atp)

tp−1
= fh

(4)

k,RAD(a) t0 = ( 0, 0, 2θ) t0, (5.54)

fh
(5)
k,RAD(atp)

tp−1
= fh

(5)

k,RAD(a) t0 = ( 0, 0, −4θ) t0, (5.55)

fh
(6)
k,RAD(atp)

tp−1
= fh

(6)

k,RAD(a) t2 =

(
0, 0, −θ

ξ

)
t2, (5.56)

fh
(7)
k,RAD(atp)

tp−1
= fh

(7)

k,RAD(a) t0 =

(
0, 0, − k

2ξθ

)
t0, (5.57)

fh
(8)
k,RAD(atp)

tp−1
= fh

(8)

k,RAD(a) t−2 =

(
0, 0,

2k

θ

)
t−2, . (5.58)

Since, the balance (5.50) occurs only when the term − k
2ξy

is in the dominant part

of a decomposition, Eq. (5.57) does not have a ‘real’ meaning in this context and

we will not use it to make any conclusions. From the rest of the above expressions

we can make the following general observations:

1. Firstly, we recall that the expressions (5.51), (5.52) and (5.58) will always

be included in the subdominant part of any asymptotic splitting leading to

(5.50), since their corresponding terms lead to a different balance, namely,

(5.37).

2. Taking the limit of the expression (5.58) as t→ 0, we see that it always goes

to infinity. Hence, it is impossible for the eighth term, at least, to exist in

the subdominant part of any splitting of this case, in direct contradiction

with our first observation above. Consequently, the specific balance (5.50)
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is not a valid one and the term − k
2ξy

can never be part of the dominant part

of any possible asymptotic decomposition. Of the 71 remaining asymptotic

splittings of the Table (B.1), there are 8 that still contain that term in their

dominant part, and so we are left with 63 possible asymptotic decompositions

whose behavior remains to be examined.

3. Taking the limit of the expressions (5.51) and (5.52) as t → 0 they go to

infinity because of the negative exponent −4, revealing the strong dominant

character of the corresponding terms.

4. Expressions (5.53), (5.54) and (5.55) go to 12θ, 2θ and −4θ respectively

as t → 0 showing as well a strongly dominant behavior in this case while

exrpession (5.56) corresponding to the only linear term is the only one which

shows a strongly subdominant character.

We will now continue this ‘subdominant analysis’ with the second possible form

of dominant balance.

Second case p=(-1,0,1)

The only other case is when the dominant balance is of the form (5.37), that is,

B k,RAD = (a,p) = ((θ, θ, 0) , (1, 0,−1)) . (5.59)

This dominant balance occurs when at least one of the first, second or eighth term

of the RHS of (5.8) is present in the dominant part of an asymptotic splitting. In

order to construct the expression (5.49) we substitute the dominant balance (5.59)

in Eqs. (5.41)-(5.48) and we divide by tp−1. Thus, we have,

fh
(1)
k,RAD(atp)

tp−1
= fh

(1)

k,RAD(a) t0 =

(
0, 0,

ζ2

2ξθ3

)
t0, (5.60)

fh
(2)
k,RAD(atp)

tp−1
= fh

(2)

k,RAD(a) t0 =

(
0, 0, − k2

2θ3

)
t0, (5.61)

fh
(3)
k,RAD(atp)

tp−1
= fh

(3)

k,RAD(a) t0 =

(
0, 0,

3θ

2

)
t0, (5.62)
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fh
(4)
k,RAD(atp)

tp−1
= fh

(4)

k,RAD(a) t0 = ( 0, 0, 0) t0 = 0, (5.63)

fh
(5)
k,RAD(atp)

tp−1
= fh

(5)

k,RAD(a) t0 = ( 0, 0, 0) t0 = 0, (5.64)

fh
(6)
k,RAD(atp)

tp−1
= fh

(6)

k,RAD(a) t2 =

(
0, 0, − θ

2ξ

)
t2, (5.65)

fh
(7)
k,RAD(atp)

tp−1
= fh

(7)

k,RAD(a) t2 =

(
0, 0, − k

2ξθ

)
t2, (5.66)

fh
(8)
k,RAD(atp)

tp−1
= fh

(8)

k,RAD(a) t0 =

(
0, 0,

k

θ

)
t0, . (5.67)

From the above expressions (5.60)-(5.67) we can make the following general ob-

servations:

1. As t→ 0, the expressions (5.60) and (5.61) go to ζ2

2ξθ3
and − k2

2θ3
respectively

revealing a strong dominant character of the corresponding terms. Conse-

quently, when one of the first or the second term of the RHS of (5.8) shows

a dominant behavior in an asymptotic splitting, and thus leads to the bal-

ance (5.59), the other one cannot be part of the subdominant part of that

same asymptotic splitting. In other words these two terms, namely ζ2

2ξx2y

and − k2ξ
2ξx2y

, cannot be separated between the dominant and the subdomi-

nant parts of a possible asymptotic decomposition. This happens in 32 cases

of the 63 possible asymptotic decompositions we have left. Hence, we are

now left with 31 candidates which can still lead to an asymptotic solution of

our initial radiation-curved dynamical system.

2. The third expression, (5.62), goes to 3θ
2

as t → 0. Consequently, the corre-

sponding term 3y3

2x2
shows a very strong dominant character in this case and

it is impossible to occur in the subdominant part in any possible asymp-

totic decomposition that admits the dominant balance (5.59). There are

11 asymptotic splittings that have this characteristic out of the 31 we have

left from the previous observation and accordingly we have now 20 possible

asymptotic splittings whose asymptotic behavior needs further analysis.

3. The fourth, fifth, sixth and seventh term of the RHS of (5.8) all reveal a

very strong subdominant character for different reasons. More specifically,
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in Eqs. (5.63) and (5.64) there is no need to take the limit as t → 0 since

the value r = 0 causes fh
(4)
k,RAD(a) and fh

(5)
k,RAD(a) to vanish independently

of t. Expression (5.56) corresponds to the linear term and as expected it

vanishes as t → 0. The same happens for the expression (5.66) which was

also expected since that term is the one that leads to a different dominant

balance, namely (5.50) which was studied in the previous case.

4. The last expression, (5.63), corresponds to the eighth term of (5.8) and

one of the terms that leads to the dominant balance of the present case.

Consequently, that term was expected to show a dominant character as it

does. Taking the limit of (5.67) as t→ 0, it goes to k
θ
. Hence, it is impossible

for an asymptotic splitting which admits the dominant balance (5.59), i.e.

has the first and second terms in its dominant part, to have the term ky
x2

in its

subdominant part. There 4 asymptotic spllitings left with this characteristic

out of the 20 we have in total, thus leaving 16 asymptotic splittings to be

examined.

There are 9 more asymptotic splittings, out of the 16 we have left, that admit

the dominant balance (5.59). Five of them, namely f8 k,RAD, f26 k,RAD, f76 k,RAD,

f79 k,RAD and f150 k,RAD admit the present dominant balance, (5.59), because the

eighth term is included in their dominant part while the first and second terms of

the RHS of (5.8) are included in their subdominant part. Combining the first and

fourth observations above it is clear that for these five asymptotic splittings the

expression (5.49) does not vanish as t→ 0. The other four asymptotic splittings,

namely f97 k,RAD, f166 k,RAD, f169 k,RAD and f221 k,RAD contain in their dominant

part all of the necessary terms, i.e. the first, the second and the eighth, and

lead to an admissible dominant balance of the form (5.59) but the spectrum of

their Kovalevskaya matrices does not contain the eigenvalue -1, which as we have

discussed in earlier chapters, corresponds to the position of the singularity in the

final asymptotic solution. Hence, they fail to show consistency with the overall

scheme of the method of asymptotic splittings.

The general form of dominant balance p=(q+1,q,q-1)

After having discussed extensively the two special cases of the forms of possible

dominant balances, namely (5.50) and (5.59), we have explained the reasons for

which 248 asympotic splittings out of the 255 which are listed in Table (B.1) at
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the end of this chapter, fail to lead to an asymptotic solution of the radiation-

curved vector field (5.9) or the associated dynamical system (5.6)-(5.8), we are

left with 7 asympotic splittings that do not fall in any of these two categories,

namely f3 k,RAD, f4 k,RAD, f5 k,RAD, f22 k,RAD, f23 k,RAD, f27 k,RAD and f73 k,RAD. If

any of these 8 asymptotic splittings admits a dominant balance, it must be of the

general form (5.38), that is

B k,RAD = (a,p) = ((θ, η, ρ) , (q + 1, q, q − 1)) . (5.68)

5.3.4 The unique asymptotic decomposition

After solving one by one the dominant systems of the final 7 asympotic splittings

we conclude that the only acceptable asymptotic splitting of the vector field f k,RAD

is

f73 k,RAD = f73
(0)
k,RAD + f73

(sub)
k,RAD, (5.69)

with dominant part

f73
(0)
k,RAD(x) =

(
y, z,

3y3

2x2
+
z2

2y
− yz

x

)
, (5.70)

and subdominant part

f73
(sub)
k,RAD(x) =

(
0, 0,

ζ2

2ξx2y
− k2

2x2y
− y

2ξ
− k

2ξy
+
ky

x2

)
. (5.71)

A final comment about the asymptotic splittings of the field equations of the

present Section is in order. It is interesting that the dominant part of the vector

field given by Eq. (5.70) is precisely the same as that of the field in the flat,

radiation dominated case treated in [92] (see Eq. (16) in that paper). Their

difference lies in the subdominant parts of the two cases, the curved one treated

here and the flat case in [92]: Here the subdominant part given by (5.71) contains

precisely the terms of the vector field f
(sub)
0,RAD (radiation and linear terms), plus the

three curvature terms (those with a k in Eq. (5.9).

In this Section we have found that the dynamical system describing radiation

universes with curvature admits one and only one possible asymptotic behavior as

we approach the finite-time singularity. This unique asymptotic splitting allows

us to construct in the following sections an asymptotic solution of the radiation-

curved vector field (5.9) or the associated dynamical system (5.6)-(5.8) in the
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neighborhood of the initial singularity. We described some basic qualitative char-

acteristics of the behavior of the basic vector field by examining the exhaustive

list of all possible dominant asymptotic systems without solving them. Thus, we

completed the first part of our asymptotic analysis through the method of asymp-

totic splittings. In the next Section we will examine further the consistency of

the found asymptotic decomposition and we will construct the final asymptotic

solution in the form of a Fuchsian series.

5.4 Stability of the curvature-radiation asymp-

totic solution

5.4.1 Dominant balance

In this Section we will look for the possible asymptotic solutions, asymptotic forms

of integral curves of the curvature-radiation field f k,RAD. In other words, we search

for the dominant balances determined by the dominant part f73
(0)
k,RAD given by Eq.

(5.70). In order to do that, we substitute the forms (4.3) in the dominant system

(ẋ, ẏ, ż)(t) = f
(0)
k,RAD and solve the resulting nonlinear algebraic system aiming to

determine the dominant balance (a,p) in the form of an exact, scale invariant

solution. Hence, we have

θp tp−1 = η tq, (5.72)

ηq tq−1 = ρ tr, (5.73)

ρr tr−1 =
3η3

2θ2
t−2p+3q +

ρ2

2η
t2r−q − ηρ

θ
tq+r−p. (5.74)

This leads to the unique curvature-radiation balance B73
k,RAD ∈ C3 ×Q3, with

B73
k,RAD = (a,p) =

((
θ,
θ

2
,−θ

4

)
,

(
1

2
,−1

2
,−3

2

))
, (5.75)

where θ is a real, arbitrary constant. Consequently, for reasons that we have

discussed in previous chapters we are lead to the fact that the vector field f
(0)
k,RAD

is a scale invariant system.
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5.4.2 Subdominant condition

Accordingly, we must also check that, in the basic decomposition of the curvature-

radiation field, (1.16), the higher order terms (5.71)are weight-homogeneous with

respect to the curvature-radiation balance (5.75). We begin by splitting the sub-

dominant part (5.70) in the following way,

f73
(sub)
k,RAD(x) = f73

(1)
k,RAD(x) + f73

(2)
k,RAD(x) + f73

(3)
k,RAD(x), (5.76)

where

f73
(1)
k,RAD(x) =

(
0, 0,

ky

x2

)
, (5.77)

f73
(2)
k,RAD(x) =

(
0, 0,

ζ2 − k2ξ
2ξx2y

− y

2ξ

)
, (5.78)

f73
(3)
k,RAD(x) =

(
0, 0,− k

2ξy

)
. (5.79)

and we can now look for the required condition by examining the subdominant

character of these expressions. Using the balance B73
k,RAD defined by Eq. (5.75),

and taking into consideration that tr−1 = t−5/2, we construct the fractions,

f73
(1)
k,RAD(atp)

tp−1
= f73

(1)
k,RAD(a)t, (5.80)

f73
(2)
k,RAD(atp)

tp−1
= f73

(2)
k,RAD(a)t2, (5.81)

f73
(3)
k,RAD(atp)

tp−1
= f73

(3)
k,RAD(a)t3. (5.82)

Provided that the forms f
(i)
k,RAD(a), i = 1, 2, 3, do not vanish, these fractions go to

zero asymptotically as t→ 0. This happens for all cases except when 3β + γ = 0,

that is when ξ 6= 0. We conclude that this result is true in all higher order gravity

theories except perhaps the so-called conformally invariant Bach-Weyl gravity1, cf.

[21, 103]. We conclude that the subdominant part (5.71) is weight-homogeneous

because the subdominant exponents are ordered,

q(0) = 0 < q(1) = 1 < q(2) = 2 < q(3) = 3. (5.83)

1Apparently, this case needs a separate treatment altogether.
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5.4.3 Construction of the K-matrix

In this last phase of the asymptotic analysis, our aim is to construct a final series

representation of the asymptotic solutions of the curved, radiation-filled vector

field valid in the neighborhood of the singularity in such a way that will allow

the dominant balance solutions we have construct until now to dominate it. The

number of arbitrary constants in that final series expansion will determine whether

we have a general or a particular solution and it is expected that such constants

will appear in certain places of our final formal developments. Subsequently, we

move on to check the consistency of our asymptotic solutions with the broader

mathematical context we are using and proceed to the calculation of the precise

positions of the arbitrary constants in the final series representation.

We recall that the arbitrary constants of any solution first appear in those

terms in the asymptotic series expansion whose coefficients ci have indices i =

%s, where % is a non-negative K-exponent. The least common multiple of the

denominators of the set of all subdominant exponents (5.83) and those of all the

K-exponents with positive real parts is denoted by s (in our case, s = 2). In order

to calculate those exponents we need to find the spectrum of the Kovalevskaya

matrix of the dominant part of our asymptotic decomposition with respect to the

dominant balance,

K73
k,RAD = D f73

(0)
k,RAD(a)− diag(p). (5.84)

Hence, the K-exponents depend of the dominant part of the vector field as well as

the dominant balance. In our case, the Kovalevskaya matrix is

K73
k,RAD =


−1/2 1 0

0 1/2 1

−1/2 5/4 1/2

 , (5.85)

with spectrum

spec(K73
k,RAD) = {−1, 0, 3/2}, (5.86)

and corresponding eigenvectors

{(4,−2, 3), (4, 2,−1), (1, 2, 2)}. (5.87)

The number of non-negative K-exponents equals the number of arbitrary con-

stants that appear in the series expansions. There is always the −1 exponent that

corresponds to an arbitrary constant, the position of the singularity, and because
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the spec(K k,RAD) in our case possesses two non-negative eigenvalues, the balance

B73
k,RAD indeed corresponds to the dominant behavior of a general solution having

the form of a formal series and valid locally around the initial singularity.

5.4.4 Construction of the formal expansion series

To find it, we substitute the Puiseux series expansions

x(t) =
∞∑
i=0

c1it
i
2
+ 1

2 , y(t) =
∞∑
i=0

c2it
i
2
− 1

2 , z(t) =
∞∑
i=0

c3it
i
2
− 3

2 , (5.88)

ẋ(t) =
∞∑
i=0

c1i

(
i

2
+

1

2

)
t
i
2
− 1

2 , ẏ(t) =
∞∑
i=0

c2i

(
i

2
− 1

2

)
t
i
2
− 3

2 ,

ż(t) =
∞∑
i=0

c3i

(
i

2
− 3

2

)
t
i
2
− 5

2 ,

(5.89)

where c10 = θ, c20 = θ/2, c30 = −θ/4, in the following equivalent form of the

original system(5.6)-(5.8),

ẋ = y, (5.90)

ẏ = z, (5.91)

x2yż = −x
2y2

2ξ
+
x2z2

2
− xy2z +

3y4

2
+
ζ2ξ

2ξ
− k2

2
− kx2

2ξ
+ ky2, (5.92)

and we are led to various recursion relations that determine the unknowns c1i, c2i,

c3i term by term. More specifically from Eq. (5.90) after substitution we have

∞∑
i=0

c1i

(
i+ 1

2

)
t
i−1
2 =

∞∑
i=0

c2i t
i−1
2 , (5.93)

which leads to (
i+ 1

2

)
c1i = c2i . (5.94)

From Eq. (5.91) after substitution we have

∞∑
i=0

c2i

(
i− 1

2

)
t
i−3
2 =

(
∞∑
i=0

c3it
i−3
2

)
, (5.95)
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which leads to

c3i =

(
i− 1

2

)
c2i . (5.96)

From Eq. (5.92) we calculate separately each term after substitution:

x2yż =

(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c3i

(
i

2
− 3

2

)
t
i
2
− 5

2

)

= t−2
∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

c3(i−l)c2(l−m)c1(m−n)c1n

(
i− l

2
− 3

2

)
t
i
2 , (5.97)

−x
2y2

2ξ
= − 1

2ξ

(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c2i t
i−1
2

)

= − 1

2ξ
t0
∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

c2(i−l)c2(l−m)c1(m−n)c1n t
i
2 , (5.98)

x2z2

2
=

1

2

(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c3i t
i−3
2

)(
∞∑
i=0

c3i t
i−3
2

)

=
1

2
t−2

∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

c3(i−l)c3(l−m)c1(m−n)c1n t
i
2 , (5.99)

−xy2z = −

(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c3i t
i−3
2

)

= −t−2
∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

c3(i−l)c1(l−m)c2(m−n)c2n t
i
2 , (5.100)

3y4

2
=

3

2

(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c2i t
i−1
2

)

=
3

2
t−2

∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

c2(i−l)c2(l−m)c2(m−n)c2n t
i
2 , (5.101)
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−kx
2

2ξ
= − k

2ξ

(
∞∑
i=0

c1i t
i+1
2

)(
∞∑
i=0

c1i t
i+1
2

)

= − k

2ξ
t

∞∑
i=0

i∑
k=0

c1(i−k)c1k t
i
2 , (5.102)

ky2 = k

(
∞∑
i=0

c2i t
i−1
2

)(
∞∑
i=0

c2i t
i−1
2

)

= k t−1
∞∑
i=0

i∑
l=0

c2(i−l)c2l t
i
2 , (5.103)

Subsequently, we are led to the following form of (5.92),

∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

(
c3(i−l)c2(l−m)c1(m−n)c1n

(
i− l

2
− 3

2

)
− 1

2
c3(i−l)c3(l−m)c1(m−n)c1n+

+c3(i−l)c1(l−m)c2(m−n)c2n −
3

2
c2(i−l)c2(l−m)c2(m−n)c2n

)
t
i
2
−2 =

=
ζ2

2ξ
− k2

2
+
∞∑
i=0

i∑
l=0

(
k c2(i−l)c2l

)
t
i
2
−1 −

∞∑
i=0

i∑
l=0

(
k

2ξ
c1(i−l)c1l

)
t
i
2
+1−

−
∞∑
i=0

i∑
l=0

l∑
m=0

m∑
n=0

(
1

2ξ
c2(i−l)c2(l−m)c1(m−n)c1n

)
t
i
2 .

(5.104)

5.4.5 Calculation of the final series coefficients

Eqs. (5.94), (5.96) and (5.104) constitute the system from which we will now

calculate term by term the coefficients c1i, c2i and c3i of the asymptotic solution

of the initial dynamical system (4.49)-(4.51) in the form of the Fuchsian series

expansions (4.47), that is

x(t) = θt1/2 + c11 t
1 + c12 t

3/2 + c13 t
2 + c14 t

5/2 + · · · ,

y(t) =
θ

2
t−1/2 + c21 t

0 + c22 t
1/2 + c23 t

1 + c24 t
3/2 + · · · ,

z(t) = −θ
4
t−3/2 + c31 t

−1 + c32 t
−1/2 + c33 t

0 + c34 t
1/2 + · · · . (5.105)
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In what follows we will calculate the values of c1i, c2i and c3i using Eqs. (5.94),

(5.96) and (5.104) For each one of these three, we will determine a different set of

equations for the coefficients of the various powers of t.

1st set of equations

Eq. (5.94) will lead to the following equations, for the coefficients of the different

powers of t,

for the coefficients of the term t0, c21 = c11 , (5.106)

for the coefficients of the term t1/2, c22 = 3
2
c12 , (5.107)

for the coefficients of the term t1, c23 = 2c13 , (5.108)

for the coefficients of the term t3/2, c24 = 5
2
c14 . (5.109)

2nd set of equations

Calculating the coefficients of the different powers of t in Eq. (5.96), we are led to

the following equations, for the coefficients of the term t−1 (i = 1), we have

c31 = 0 , (5.110)

for the coefficients of the term t−1/2 (i = 2), we have

c32 =
1

2
c22 , (5.111)

which, taking into consideration (5.107) leads to

c32 =
3

4
c12 , (5.112)

for the coefficients of the term t0 (i = 3), we have

c33 = c23 , (5.113)

which, taking into consideration (5.108) leads to

c33 = 2c13 , (5.114)
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for the coefficients of the term t1/2 (i = 4), we have

c34 =
3

2
c24 , (5.115)

which, taking into consideration (5.109) leads to

c34 =
15

4
c14 . (5.116)

3rd set of equations

Subsequently, Eq. (5.104) will lead to the following equations by writing the

conditions for the coefficients of the different powers of t,

for the coefficients of the term t−3/2, we have

1∑
l=0

l∑
m=0

m∑
n=0

c3(1−l)c2(l−m)c1(m−n)c1n

(
1− l

2
− 3

2

)
− 1

2
c3(1−l)c3(l−m)c1(m−n)c1n+

+c3(1−l)c1(l−m)c2(m−n)c2n −
3

2
c2(1−l)c2(l−m)c2(m−n)c2n = 0 ,

(5.117)

which leads to

2c11 = 5c21, (5.118)

for the coefficients of the term t−1, we have

2∑
l=0

l∑
m=0

m∑
n=0

c3(2−l)c2(l−m)c1(m−n)c1n

(
2− l

2
− 3

2

)
− 1

2
c3(2−l)c3(l−m)c1(m−n)c1n+

+c3(2−l)c1(l−m)c2(m−n)c2n −
3

2
c2(2−l)c2(l−m)c2(m−n)c2n = k

0∑
l=0

c2(0−l)c2l ,

(5.119)

which leads to

c12 = − k

2θ
, (5.120)
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for the coefficients of the term t−1/2, we have

3∑
l=0

l∑
m=0

m∑
n=0

c3(3−l)c2(l−m)c1(m−n)c1n

(
3− l

2
− 3

2

)
− 1

2
c3(3−l)c3(l−m)c1(m−n)c1n+

+c3(3−l)c1(l−m)c2(m−n)c2n −
3

2
c2(3−l)c2(l−m)c2(m−n)c2n = k

1∑
l=0

c2(1−l)c2l ,

(5.121)

which leads to

2c13 − 5c23 + 4c33 = 0, (5.122)

for the coefficients of the term t0, we have

4∑
l=0

l∑
m=0

m∑
n=0

c3(4−l)c2(l−m)c1(m−n)c1n

(
4− l

2
− 3

2

)
− 1

2
c3(4−l)c3(l−m)c1(m−n)c1n+

+c3(4−l)c1(l−m)c2(m−n)c2n −
3

2
c2(4−l)c2(l−m)c2(m−n)c2n =

=
ζ2

2ξ
− k2

2
+ k

2∑
l=0

c2(2−l)c2l −
1

2ξ

0∑
l=0

l∑
m=0

m∑
n=0

c2(0−l)c2(l−m)c1(m−n)c1n,

(5.123)

which leads to

c14 =
4ζ2 − θ4

12ξθ3
− k2

8θ3
. (5.124)

5.4.6 Final form of the general solution

In the end, we are lead to the final series representation of the solution in the form:

x(t) = θ t1/2 − k

2θ
t3/2 + c13 t

2 +

(
4ζ2 − θ4

12ξτ 3
− k2

8θ3

)
t5/2 + · · · . (5.125)

The corresponding series expansions for y(t) and z(t) are given by the first and

second time derivatives of the above expression respectively.

Fredholm’s alternative

As a final test for admission of this solution, we use Fredholm’s alternative to be

satisfied by any admissible solution. This leads to a compatibility condition for
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the positive eigenvalue 3/2 and the associated eigenvector: This condition has the

form

v> ·
(
K − j

s
I

)
cj = 0, (5.126)

where I denotes the identity matrix, and we have to satisfy this at the j = 3 level.

This gives the following orthogonality constraint,

(1, 2, 2) ·


−2c13 + c23

−c23 + c33

−1
2
c13 + 5

4
c23 − c33

 = 0 . (5.127)

Since this is indeed satisfied, we are led to the conclusion that (5.125) corresponds

indeed to a valid asymptotic solution around the singularity. We note that in

comparison with the series expansion we are led form found for the flat, radiation

case in [92] we arrive at the exact same form by setting k = 0, cf. Eq. (21)2.

Eq. (5.125) is a local expansion of a general solution around the initial

singularity since it has exactly three arbitrary constants, θ, c13 and a third one

corresponding to the arbitrary position of the singularity, taken here to be zero

without loss of generality. Additionaly, using a theorem of Goriely and Hyde, cf.

[94], we can safely conclude that there is an open set of initial conditions for which

the general solution blows up at the finite time (initial) singularity at t = 0, since

the leading order coefficients are real. Thus, the stability of our solutions in the

neighborhood of the singularity is proved.

5.5 Conclusion

In this Chapter we have analyzed the asympotic behavior of the curved, radiation-

filled FRW universes in the general quadratic gravity theory on approach to the

initial singularity. We concluded that all curved radiation solutions tend asymptot-

ically to the flat, vacuum t1/2 solution of these theories, with the possible exception

of the solutions in the conformally invariant Bach-Weyl theory.

We found a set of 255 different ways that the basic curvature-radiation vector

field of this problem can decompose asymptotically and we were able to formu-

late certain qualitative remarks. Each one of these asymptotic splittings could

in principle contain various solutions on approach to the initial singularity but

through performing a number of tests on necessary conditions that have to hold in

2In that reference, 12ξτ3 was mistakenly written as 24ξτ3.
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order to exist an admissible asymptotic solution, we are left with only one exact

solution of the scale invariant system of a unique possible asymptotic decompo-

sition. This form is precisely the one that, after the use of various asymptotic

and geometric techniques leads to the construction of a solution of the associated

dynamical system in the form of a Puiseux formal series expansion dominated by

the t1/2 solution near the singularity. Our formal series expansion possesses the

exact number of arbitrary constants in order to be a general solution, concluding

that this solution is stable under such ‘perturbations’ since it acts as an attractor

of all homogeneous and isotropic radiation solutions of the theory.

Compared with the results of the previous chapters where the stability of the

same solution was proved in the context of vacuum, flat universes and taking into

consideration the impressive restrictions placed by the higher order field equations

on the structure of the possible initial cosmological states of the theory we are lead

to believe that the initial state of radiation-filled universes of this class possibly

resembles the one of the vacuum, flat models. This remark is supported not only

by the fact that the unique possible mode of approach to the singularity was found

to be the one in which the curvature as well as the radiation parameters enter only

in the subdominant part of the vector field asymptotically but also by the general

behavior of these parameters through out our asymptotic analysis. Meaning that

in the great majority of the possible asymptotic decompositions, the existence of

these parameters was the main reason of their failure to lead to an asymptotic

balance.



Chapter 6

Discussion

In this thesis, we studied the asymptotic behavior of the vacuum flat and curved,

isotropic and homogeneous universes with a general action of the form,

S =

∫
M
L(R)dµg, (6.1)

where

L(R) = L(0) + aR + bR2 + cRµνRµν + dRµνκλRµνκλ, (6.2)

as well as the ones filled with radiation in the curved case. For each one of these

classes of cosmological models we constructed an autonomous dynamical system

and an associated vector field which fully describe their evolution. Subsequently,

we applied the method of asymptotic splittings presented in [93] through which

we decomposed the relevant vector fields in all the possible ways they could show

a dominant behavior on approach to the initial singularity. Through a series

of qualitative and analytical arguments we discovered the decompositions which

dominate asympoticaly the dynamical systems in question and constructed their

asymptotic solutions in the form of convergent formal series. The specific way we

performed our asymptotic analysis allows us to observe in great detail how the

different features of curvature and radiation affect the asymptotic behavior of the

universes we studied. Additionaly, the final form of the asymptotic solutions we

obtained proves the stability of those solutions with respect to such ‘pertubations’.

That is, to the addition of higher-order curvature invariants to the Einstein-Hilbert

action.

Our treatment showed that both radiation and vacuum, flat or curved cos-

mological models are attracted by the ‘universal’ t1/2 asymptote near the initial

86
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singularity and, in all these universes, this is the most dominant feature . How-

ever, open vacua show a more complex behavior in these models because they

admit particular asymptotic solutions, that is universes that emerge from initial

data sets of smaller dimension and valid for both early and late times. These

universes asymptote to the αt Milne form during their early and late evolution to-

ward finite-time singularities. On the other hand, closed vacua advance in time as

more complicated solutions that are identified by logarithmic formal series, but on

approach to the singularity their leading order is described again by singularities

similar to the open case studied here.

The solutions found for the radiation-curved universes indeed correspond

to the vacuum ones by letting the constant ζ tend to zero, meaning that these

forms are indeed possible in the general vacuum evolution. In the curved case

this comes from the asymptotic splitting f7 k,VAC. However, the vacuum field

has more decompositions, namely f12 k,VAC and f42 k,VAC, that now include the

effects of vacuum and curvature appearing in their dominant part asymptotically

(cf. beginning of Chapter 4) impossible in the radiation problem. Using these

forms, we were able to find new asymptotic vacua not having any relation to those

obtained from the radiation ones by letting the constant ζ tend to zero. These

in turn lead to Milne type attractors monitoring precisely the dominant effects of

vacuum and curvature in the asymptotic evolution.

As explained in Chapter 2, the Lagrangian of these theories is equivalent

to the form R + ξR2. Nevertheless, this case is not the same as the general

R + αR2, where α is a completely arbitrary parameter, since in the case studied

here the parameter ξ is a function of the coefficients of the quadratic corrections

in the general Lagrangian (6.2). Thus, it is an interesting problem to explore in

what ways the various results concerning the R + ξR2 Lagrangian are affected

by the different ‘weights’ of the higher curvature invariants in the initial general

Lagrangian. In our case specifically, we can easily see that by substituting the

parameter ε = ξ/6 with the equivalent expression b+ 1
3
c+ 4

3
d− 1) we will obtain

an equivalent system whose terms would include the parameters a, b, c and d.

Treating, this new vector field, with the method of asymptotic splittings, could

possibly reach to very interesting conclusions about the way each higher-order

curvature invariant affects the asymptotic behavior of these universes.

The attractor properties of our solutions and the existence of the Milne

singularity bear a potential significance for the ekpyrotic scenario and its cyclic
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extension, wherein the passage through the singularity in these models, ‘the linch-

pin of the cyclic picture’, depends on the stability of a Milne-type state under

various kinds of perturbations [104–107]. In particular, during the brane collision

it is found that the spacetime asymptotes to Milne and so it is expected that

higher derivative corrections will be small during such a phase, cf. [108–110]. Our

work indicates that such Milne states may indeed dynamically emerge as stable

asymptotes during the evolution in any theory with higher order corrections in

vacuum or with a radiation content. What remains is an interesting issue (that

can be fully addressed with our asymptotic methods), that is to find whether the

‘compactified Milne mod Z2’×R3 space monitoring the reversal phase in the ekpy-

rotic and cyclic scenarios also emerges asymptotically as a stable attractor in the

dynamics of higher order gravity when the matter content is a fluid with a general

equation of state.

As far as it regards the general problem of having pure radiation or vacuum

substituted by a fluid with a general equation of state p = wρ who would like to

point out that new terms would appear in place of simple radiation terms, in this

case, for instance of the form (
y, z,

ζ2

2ξx3w+1y

)
. (6.3)

In such an approach, we would need to consider all different ranges of values of the

fluid parameter w to see if new forms of asymptotic evolution are possible even

though in the limits of radiation and vacuum, it reduces to the known forms.
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Asymptotic splittings of the
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Table A.1: List of f k,VAC possible asymptotic decompositions.

Asymptotic splittings of the vacuum-curved vector field

fn k,VAC fn
(0)
k,VAC fn

(sub)
k,VAC

f1 k,VAC

(
y, y

2

2x
,−2xz

) (
0,−3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f2 k,VAC (y,−3xy,−2xz)
(

0, y
2

2x
+ kxz − k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f3 k,VAC (y,+kxz,−2xz)
(

0, y
2

2x
− 3xy − k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f4 k,VAC

(
y,−k2z2

2x
,−2xz

) (
0, y

2

2x
− 3xy + kxz − x

12ε
− kz

12εx
, 0
)

f5 k,VAC

(
y,− x

12ε
,−2xz

) (
0, y

2

2x
− 3xy + kxz − k2z2

2x
− kz

12εx
, 0
)

f6 k,VAC

(
y,− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
, 0
)

f7 k,VAC

(
y, y

2

2x
− 3xy,−2xz

) (
0,+kxz − k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f8 k,VAC

(
y, y

2

2x
+ kxz,−2xz

) (
0,−3xy − k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f9 k,VAC

(
y, y

2

2x
− k2z2

2x
,−2xz

) (
0,−3xy + kxz − x

12ε
− kz

12εx
, 0
)

f10 k,VAC

(
y, y

2

2x
− x

12ε
,−2xz

) (
0,−3xy + kxz − k2z2

2x
− kz

12εx
, 0
)
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Asymptotic splittings of the vacuum-curved vector field

fn k,VAC fn
(0)
k,VAC fn

(sub)
k,VAC

f11 k,VAC

(
y, y

2

2x
− kz

12εx
,−2xz

) (
0,−3xy + kxz − k2z2

2x
− x

12ε
, 0
)

f12 k,VAC (y,−3xy + kxz,−2xz)
(

0, y
2

2x
− k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f13 k,VAC

(
y,−3xy − k2z2

2x
,−2xz

) (
0, y

2

2x
+ kxz − x

12ε
− kz

12εx
, 0
)

f14 k,VAC

(
y,−3xy − x

12ε
,−2xz

) (
0, y

2

2x
+ kxz − k2z2

2x
− kz

12εx
, 0
)

f15 k,VAC

(
y,−3xy − kz

12εx
,−2xz

) (
0, y

2

2x
+ kxz − k2z2

2x
− x

12ε
, 0
)

f16 k,VAC

(
y,+kxz − k2z2

2x
,−2xz

) (
0, y

2

2x
− 3xy − x

12ε
− kz

12εx
, 0
)

f17 k,VAC

(
y,+kxz − x

12ε
,−2xz

) (
0, y

2

2x
− 3xy − k2z2

2x
− kz

12εx
, 0
)

f18 k,VAC

(
y,+kxz − kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy − k2z2

2x
− x

12ε
, 0
)

f19 k,VAC

(
y,−k2z2

2x
− x

12ε
,−2xz

) (
0, y

2

2x
− 3xy + kxz − kz

12εx
, 0
)

f20 k,VAC

(
y,−k2z2

2x
− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy + kxz − x

12ε
, 0
)

f21 k,VAC

(
y,− x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy + kxz − k2z2

2x
, 0
)
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Asymptotic splittings of the vacuum-curved vector field

fn k,VAC fn
(0)
k,VAC fn

(sub)
k,VAC

f22 k,VAC

(
y, y

2

2x
− 3xy + kxz,−2xz

) (
0,−k2z2

2x
− x

12ε
− kz

12εx
, 0
)

f23 k,VAC

(
y, y

2

2x
− 3xy − k2z2

2x
,−2xz

) (
0,+kxz − x

12ε
− kz

12εx
, 0
)

f24 k,VAC

(
y, y

2

2x
− 3xy − x

12ε
,−2xz

) (
0,+kxz − k2z2

2x
− kz

12εx
, 0
)

f25 k,VAC

(
y, y

2

2x
− 3xy − kz

12εx
,−2xz

) (
0,+kxz − k2z2

2x
− x

12ε
, 0
)

f26 k,VAC

(
y, y

2

2x
+ kxz − k2z2

2x
,−2xz

) (
0,−3xy − x

12ε
− kz

12εx
, 0
)

f27 k,VAC

(
y, y

2

2x
+ kxz − x

12ε
,−2xz

) (
0,−3xy − k2z2

2x
− kz

12εx
, 0
)

f28 k,VAC

(
y, y

2

2x
+ kxz − kz

12εx
,−2xz

) (
0,−3xy − k2z2

2x
− x

12ε
, 0
)

f29 k,VAC

(
y, y

2

2x
− k2z2

2x
− x

12ε
,−2xz

) (
0,−3xy + kxz − kz

12εx
, 0
)

f30 k,VAC

(
y, y

2

2x
− k2z2

2x
− kz

12εx
,−2xz

) (
0,−3xy + kxz − x

12ε
, 0
)

f31 k,VAC

(
y, y

2

2x
− x

12ε
− kz

12εx
,−2xz

) (
0,−3xy + kxz − k2z2

2x
, 0
)

f32 k,VAC

(
y,−3xy + kxz − k2z2

2x
,−2xz

) (
0, y

2

2x
− x

12ε
− kz

12εx
, 0
)
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Asymptotic splittings of the vacuum-curved vector field

fn k,VAC fn
(0)
k,VAC fn

(sub)
k,VAC

f33 k,VAC

(
y,−3xy + kxz − x

12ε
,−2xz

) (
0, y

2

2x
− k2z2

2x
− kz

12εx
, 0
)

f34 k,VAC

(
y,−3xy + kxz − kz

12εx
,−2xz

) (
0, y

2

2x
− k2z2

2x
− x

12ε
, 0
)

f35 k,VAC

(
y,−3xy − k2z2

2x
− x

12ε
,−2xz

) (
0, y

2

2x
+ kxz − kz

12εx
, 0
)

f36 k,VAC

(
y,−3xy − k2z2

2x
− kz

12εx
,−2xz

) (
0, y

2

2x
+ kxz − x

12ε
, 0
)

f37 k,VAC

(
y,−3xy − x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
+ kxz − k2z2

2x
, 0
)

f38 k,VAC

(
y,+kxz − k2z2

2x
− x

12ε
,−2xz

) (
0, y

2

2x
− 3xy − kz

12εx
, 0
)

f39 k,VAC

(
y,+kxz − k2z2

2x
− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy − x

12ε
, 0
)

f40 k,VAC

(
y,+kxz − x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy − k2z2

2x
, 0
)

f41 k,VAC

(
y,−k2z2

2x
− x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy + kxz, 0

)
f42 k,VAC

(
y, y

2

2x
− 3xy + kxz − k2z2

2x
,−2xz

) (
0,− x

12ε
− kz

12εx
, 0
)

f43 k,VAC

(
y, y

2

2x
− 3xy + kxz − x

12ε
,−2xz

) (
0,−k2z2

2x
− kz

12εx
, 0
)
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Asymptotic splittings of the vacuum-curved vector field

fn k,VAC fn
(0)
k,VAC fn

(sub)
k,VAC

f44 k,VAC

(
y, y

2

2x
− 3xy + kxz − kz

12εx
,−2xz

) (
0,−k2z2

2x
− x

12ε
, 0
)

f45 k,VAC

(
y, y

2

2x
− 3xy − k2z2

2x
− x

12ε
,−2xz

) (
0,+kxz − kz

12εx
, 0
)

f46 k,VAC

(
y, y

2

2x
− 3xy − k2z2

2x
− kz

12εx
,−2xz

) (
0,+kxz − x

12ε
, 0
)

f47 k,VAC

(
y, y

2

2x
− 3xy − x

12ε
− kz

12εx
,−2xz

) (
0,+kxz − k2z2

2x
, 0
)

f48 k,VAC

(
y, y

2

2x
+ kxz − k2z2

2x
− x

12ε
,−2xz

) (
0,−3xy − kz

12εx
, 0
)

f49 k,VAC

(
y, y

2

2x
+ kxz − k2z2

2x
− kz

12εx
,−2xz

) (
0,−3xy − x

12ε
, 0
)

f50 k,VAC

(
y, y

2

2x
+ kxz − x

12ε
− kz

12εx
,−2xz

) (
0,−3xy − k2z2

2x
, 0
)

f51 k,VAC

(
y, y

2

2x
− k2z2

2x
− x

12ε
− kz

12εx
,−2xz

)
(0,−3xy + kxz, 0)

f52 k,VAC

(
y,−3xy + kxz − k2z2

2x
− x

12ε
,−2xz

) (
0, y

2

2x
− kz

12εx
, 0
)

f53 k,VAC

(
y,−3xy + kxz − k2z2

2x
− kz

12εx
,−2xz

) (
0, y

2

2x
− x

12ε
, 0
)

f54 k,VAC

(
y,−3xy + kxz − x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
− k2z2

2x
, 0
)
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Asymptotic splittings of the vacuum-curved vector field

fn k,VAC fn
(0)
k,VAC fn

(sub)
k,VAC

f55 k,VAC

(
y,−3xy − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
+ kxz, 0

)
f56 k,VAC

(
y,+kxz − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
− 3xy, 0

)
f57 k,VAC

(
y, y

2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
,−2xz

) (
0,− kz

12εx
, 0
)

f58 k,VAC

(
y, y

2

2x
− 3xy + kxz − k2z2

2x
− kz

12εx
,−2xz

) (
0,− x

12ε
, 0
)

f59 k,VAC

(
y, y

2

2x
− 3xy + kxz − x

12ε
− kz

12εx
,−2xz

) (
0,−k2z2

2x
, 0
)

f60 k,VAC

(
y, y

2

2x
− 3xy − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

)
(0,+kxz, 0)

f61 k,VAC

(
y, y

2

2x
+ kxz − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

)
(0,−3xy, 0)

f62 k,VAC

(
y,−3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

) (
0, y

2

2x
, 0
)

f63 k,VAC

(
y, y

2

2x
− 3xy + kxz − k2z2

2x
− x

12ε
− kz

12εx
,−2xz

)
(0, 0, 0)
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Table B.1: List of f k,RAD possible asymptotic decompositions.

Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f1 k,RAD

(
y, z, ζ2

2ξx2y

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f2 k,RAD

(
y, z,− k2ξ

2ξx2y

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f3 k,RAD

(
y, z, 3y

3

2x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f4 k,RAD

(
y, z, z

2

2y

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f5 k,RAD

(
y, z,−yz

x

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f6 k,RAD

(
y, z,− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f7 k,RAD

(
y, z,− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f8 k,RAD

(
y, z, ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f9 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f10 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2

) (
0, 0,− −k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f11 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y

) (
0, 0,− −k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f12 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x

) (
0, 0,− −k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f13 k,RAD

(
y, z, ζ2

2ξx2y
− y

2ξ

) (
0, 0,− −k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f14 k,RAD

(
y, z, ζ2

2ξx2y
− k

2ξy

) (
0, 0,− −k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f15 k,RAD

(
y, z, ζ2

2ξx2y
+ ky

x2

) (
0, 0,− −k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f16 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f17 k,RAD

(
y, z,− k2

2x2y
+ z2

2y

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f18 k,RAD

(
y, z,− k2

2x2y
− yz

x

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f19 k,RAD

(
y, z,− k2

2x2y
− y

2ξ

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f20 k,RAD

(
y, z,− k2

2x2y
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f21 k,RAD

(
y, z,− k2

2x2y
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f22 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f23 k,RAD

(
y, z, 3y

3

2x2
− yz

x

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f24 k,RAD

(
y, z, 3y

3

2x2
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f25 k,RAD

(
y, z, 3y

3

2x2
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f26 k,RAD

(
y, z, 3y

3

2x2
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f27 k,RAD

(
y, z, z

2

2y
− yz

x

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

)
f28 k,RAD

(
y, z, z

2

2y
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy
+ ky

x2

)
f29 k,RAD

(
y, z, z

2

2y
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
+ ky

x2

)
f30 k,RAD

(
y, z, z

2

2y
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy

)
f31 k,RAD

(
y, z,−yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

)
f32 k,RAD

(
y, z,−yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f33 k,RAD

(
y, z,−yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

)
f34 k,RAD

(
y, z,− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
+ ky

x2

)
f35 k,RAD

(
y, z,− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy

)
f36 k,RAD

(
y, z,− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ

)
f37 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2

) (
0, 0, z

2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f38 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y

) (
0, 0, 3y

3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f39 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x

) (
0, 0, 3y

3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f40 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− y

2ξ

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f41 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− k

2ξy

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f42 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f43 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y

) (
0, 0,− k2

2x2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f44 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x

) (
0, 0,− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f45 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f46 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− k

2ξy

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f47 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f48 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

)
f49 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− y

2ξ

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy
+ ky

x2

)
f50 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− k

2ξy

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
+ ky

x2

)
f51 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy

)
f52 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
− y

2ξ

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

)
f53 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
− k

2ξy

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

)
f54 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f55 k,RAD

(
y, z, ζ2

2ξx2y
− y

2ξ
− k

2ξy
+
) (

0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
+ ky

x2

)
f56 k,RAD

(
y, z, ζ2

2ξx2y
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy

)
f57 k,RAD

(
y, z, ζ2

2ξx2y
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ

)
f58 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y

) (
0, 0, ζ2

2ξx2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f59 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f60 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− y

2ξ

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f61 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f62 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f63 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

)
f64 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− y

2ξ

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− k

2ξy
+ ky

x2

)
f65 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f66 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy

)
f67 k,RAD

(
y, z,− k2

2x2y
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

)
f68 k,RAD

(
y, z,− k2

2x2y
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

)
f69 k,RAD

(
y, z,− k2

2x2y
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

)
f70 k,RAD

(
y, z,− k2

2x2y
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
+ ky

x2

)
f71 k,RAD

(
y, z,− k2

2x2y
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy

)
f72 k,RAD

(
y, z,− k2

2x2y
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ

)
f73 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f74 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
− k

2ξy
+ ky

x2

)
f75 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ
+ ky

x2

)
f76 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f77 k,RAD

(
y, z, 3y

3

2x2
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− k

2ξy
+ ky

x2

)
f78 k,RAD

(
y, z, 3y

3

2x2
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ
+ ky

x2

)
f79 k,RAD

(
y, z, 3y

3

2x2
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy

)
f80 k,RAD

(
y, z, 3y

3

2x2
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
+ ky

x2

)
f81 k,RAD

(
y, z, 3y

3

2x2
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy

)
f82 k,RAD

(
y, z, 3y

3

2x2
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ

)
f83 k,RAD

(
y, z, z

2

2y
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− k

2ξy
+ ky

x2

)
f84 k,RAD

(
y, z, z

2

2y
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ
+ ky

x2

)
f85 k,RAD

(
y, z, z

2

2y
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy

)
f86 k,RAD

(
y, z, z

2

2y
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
+ ky

x2

)
f87 k,RAD

(
y, z, z

2

2y
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f88 k,RAD

(
y, z, z

2

2y
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ

)
f89 k,RAD

(
y, z,−yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
+ ky

x2

)
f90 k,RAD

(
y, z,−yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

)
f91 k,RAD

(
y, z,−yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ

)
f92 k,RAD

(
y, z,− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x

)
f93 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y

) (
0, 0,−yz

x
− y

2ξ
− k

2ξy
+ ky

x2

)
f94 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x

) (
0, 0, z

2

2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f95 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ

) (
0, 0, z

2

2y
− yz

x
− k

2ξy
+ ky

x2

)
f96 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− k

2ξy

) (
0, 0, z

2

2y
− yz

x
− y

2ξ
+ ky

x2

)
f97 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ ky

x2

) (
0, 0, z

2

2y
− yz

x
− y

2ξ
− k

2ξy

)
f98 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x

) (
0, 0, 3y

3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f99 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ

) (
0, 0, 3y

3

2x2
− yz

x
− k

2ξy
+ ky

x2

)
f100 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− k

2ξy

) (
0, 0, 3y

3

2x2
− yz

x
− y

2ξ
+ ky

x2

)
f101 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
+ ky

x2

) (
0, 0, 3y

3

2x2
− yz

x
− y

2ξ
− k

2ξy

)
f102 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ

) (
0, 0, 3y

3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

)
f103 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
− k

2ξy

) (
0, 0, 3y

3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

)
f104 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

)
f105 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− y

2ξ
− k

2ξy

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
+ ky

x2

)
f106 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− y

2ξ
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
− k

2ξy

)
f107 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− k

2ξy
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ

)
f108 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x

) (
0, 0,− k2

2x2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f109 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ

) (
0, 0,− k2

2x2y
− yz

x
− k

2ξy
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f110 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

) (
0, 0,− k2

2x2y
− yz

x
− y

2ξ
+ ky

x2

)
f111 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
+ ky

x2

) (
0, 0,− k2

2x2y
− yz

x
− y

2ξ
− k

2ξy

)
f112 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ

) (
0, 0,− k2

2x2y
+ z2

2y
− k

2ξy
+ ky

x2

)
f113 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− k

2ξy

) (
0, 0,− k2

2x2y
+ z2

2y
− y

2ξ
+ ky

x2

)
f114 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy

)
f115 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ
− k

2ξy

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x
+ ky

x2

)
f116 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy

)
f117 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ

)
f118 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− k

2ξy
+ ky

x2

)
f119 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− y

2ξ
+ ky

x2

)
f120 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f121 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− y

2ξ
− k

2ξy

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x
+ ky

x2

)
f122 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy

)
f123 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ

)
f124 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
+ ky

x2

)
f125 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

)
f126 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ

)
f127 k,RAD

(
y, z, ζ2

2ξx2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x

)
f128 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x

) (
0, 0, ζ2

2 x2y
− y

2ξ
− k

2ξy
+ ky

x2

)
f129 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− yz

x
− k

2ξy
+ ky

x2

)
f130 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− yz

x
− y

2ξ
+ ky

x2

)
f131 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− yz

x
− y

2ξ
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f132 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− k

2ξy
+ ky

x2

)
f133 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− y

2ξ
+ ky

x2

)
f134 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− y

2ξ
− k

2ξy

)
f135 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
+ ky

x2

)
f136 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
− k

2ξy

)
f137 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ

)
f138 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− k

2ξy
+ ky

x2

)
f139 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ
+ ky

x2

)
f140 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ
− k

2ξy

)
f141 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
+ ky

x2

)
f142 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f143 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ

)
f144 k,RAD

(
y, z,− k2

2x2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

)
f145 k,RAD

(
y, z,− k2

2x2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

)
f146 k,RAD

(
y, z, k2

2x2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ

)
f147 k,RAD

(
y, z,− k2

2x2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x

)
f148 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− k

2ξy
+ ky

x2

)
f149 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− y

2ξ
+ ky

x2

)
f150 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− y

2ξ
− k

2ξy

)
f151 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
+ ky

x2

)
f152 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
− k

2ξy

)
f153 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f154 k,RAD

(
y, z, 3y

3

2x2
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
+ ky

x2

)
f155 k,RAD

(
y, z, 3y

3

2x2
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− k

2ξy

)
f156 k,RAD

(
y, z, 3y

3

2x2
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ

)
f157 k,RAD

(
y, z, 3y

3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x

)
f158 k,RAD

(
y, z, z

2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ ky

x2

)
f159 k,RAD

(
y, z, z

2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ

)
f160 k,RAD

(
y, z, z

2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ

)
f161 k,RAD

(
y, z, z

2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x

)
f162 k,RAD

(
y, z,−yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y

)
f163 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x

) (
0, 0,− y

2ξ
− k

2ξy
+ ky

x2

)
f164 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ

) (
0, 0,−yz

x
− k

2ξy
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f165 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy

) (
0, 0,−yz

x
− y

2ξ
+ ky

x2

)
f166 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
+ ky

x2

) (
0, 0,−yz

x
− y

2ξ
− k

2ξy

)
f167 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ

) (
0, 0, z

2

2y
− k

2ξy
+ ky

x2

)
f168 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy

) (
0, 0, z

2

2y
− y

2ξ
+ ky

x2

)
f169 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
+ ky

x2

) (
0, 0, z

2

2y
− y

2ξ
− k

2ξy

)
f170 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy

) (
0, 0, z

2

2y
− yz

x
+ ky

x2

)
f171 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ
+ ky

x2

) (
0, 0, z

2

2y
− yz

x
− k

2ξy

)
f172 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− k

2ξy
+ ky

x2

) (
0, 0, z

2

2y
− yz

x
− y

2ξ

)
f173 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0,+ 3y3

2x2
− k

2ξy
+ ky

x2

)
f174 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0,+ 3y3

2x2
− y

2ξ
+ ky

x2

)
f175 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0,+ 3y3

2x2
− y

2ξ
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f176 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy

) (
0, 0,+ 3y3

2x2
− yz

x
+ ky

x2

)
f177 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0,+ 3y3

2x2
− yz

x
− k

2ξy

)
f178 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0,+ 3y3

2x2
− yz

x
− y

2ξ

)
f179 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, 3y

3

2x2
+ z2

2y
+ ky

x2

)
f180 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− k

2ξy

)
f181 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− y

2ξ

)
f182 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y
− yz

x

)
f183 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0,− k2

2x2y
− k

2ξy
+ ky

x2

)
f184 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0,− k2

2x2y
− y

2ξ
+ ky

x2

)
f185 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0,− k2

2x2y
− y

2ξ
− k

2ξy

)
f186 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
− yz

x
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f187 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
− yz

x
− k

2ξy

)
f188 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
− yz

x
− y

2ξ

)
f189 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0,− k2

2x2y
+ z2

2y
+ ky

x2

)
f190 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− k

2ξy

)
f191 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− y

2ξ

)
f192 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y
− yz

x

)
f193 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ ky

x2

)
f194 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− k

2ξy

)
f195 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− y

2ξ

)
f196 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
− yz

x

)
f197 k,RAD

(
y, z, ζ2

2ξx2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2
+ z2

2y

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f198 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0, ζ2

2ξx2y
− k

2ξy
+ ky

x2

)
f199 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− y

2ξ
+ ky

x2

)
f200 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− y

2ξ
− k

2ξy

)
f201 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− yz

x
+ ky

x2

)
f202 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− yz

x
− k

2ξy

)
f203 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− yz

x
− y

2ξ

)
f204 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ z2

2y
+ ky

x2

)
f205 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− k

2ξy

)
f206 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− y

2ξ

)
f207 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y
− yz

x

)
f208 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f209 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− k

2ξy

)
f210 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− y

2ξ

)
f211 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
− yz

x

)
f212 k,RAD

(
y, z,− k2

2x2y
− yz

x
− y

2ξ
+ ky

x2
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y

)
f213 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ ky

x2

)
f214 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− k

2ξy

)
f215 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− y

2ξ

)
f216 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
− yz

x

)
f217 k,RAD

(
y, z, 3y

3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ z2

2y

)
f218 k,RAD

(
y, z, z

2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2

)
f219 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ

) (
0, 0,− k

2ξy
+ ky

x2

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f220 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy

) (
0, 0,− y

2ξ
+ ky

x2

)
f221 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
+ ky

x2

) (
0, 0,− y

2ξ
− k

2ξy

)
f222 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy

) (
0, 0,−yz

x
+ ky

x2

)
f223 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2

) (
0, 0,−yz

x
− k

2ξy

)
f224 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− k

2ξy
+ ky

x2

) (
0, 0,−yz

x
− y

2ξ

)
f225 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, z

2

2y
+ ky

x2

)
f226 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0, z

2

2y
− k

2ξy

)
f227 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, z

2

2y
− y

2ξ

)
f228 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, z

2

2y
− yz

x

)
f229 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0,+ 3y3

2x2
+ ky

x2

)
f230 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0,+ 3y3

2x2
− k

2ξy

)
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f231 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0,+ 3y3

2x2
− y

2ξ

)
f232 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,+ 3y3

2x2
− yz

x

)
f233 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, 3y

3

2x2
+ z2

2y

)
f234 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0,− k2

2x2y
+ ky

x2

)
f235 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0,− k2

2x2y
− k

2ξy

)
f236 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
− y

2ξ

)
f237 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
+ ky

x2
− k

2ξy

) (
0, 0,− k2

2x2y
− yz

x

)
f238 k,RAD

(
y, z, ζ2

2ξx2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ z2

2y

)
f239 k,RAD

(
y, z, ζ2

2ξx2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,− k2

2x2y
+ 3y3

2x2

)
f240 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ζ2

2ξx2y
+ ky

x2

)
f241 k,RAD

(
y, z,− k2
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Asymptotic splittings of the radiation-curved vector field

fn k,RAD fn
(0)
k,RAD fn

(sub)
k,RAD

f242 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− y

2ξ

)
f243 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
− yz

x

)
f244 k,RAD

(
y, z,− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ z2

2y

)
f245 k,RAD

(
y, z,− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ2

2ξx2y
+ 3y3

2x2

)
f246 k,RAD

(
y, z, 3y

3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, ζ

2−k2ξ
2ξx2y

)
f247 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy

) (
0, 0, ky

x2

)
f248 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− y

2ξ
+ ky

x2

) (
0, 0,− k

2ξy

)
f249 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− yz

x
− k

2ξy
+ ky

x2

) (
0, 0,− y

2ξ

)
f250 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
+ z2

2y
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0,−yz

x

)
f251 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ 3y3

2x2
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, z

2

2y

)
f252 k,RAD

(
y, z, ζ2

2ξx2y
− k2

2x2y
+ z2

2y
− yz

x
− y

2ξ
− k

2ξy
+ ky

x2

) (
0, 0, 3y

3

2x2

)



A
p
p

en
d
ix

B
.

A
sym

ptotic
splittin

gs
of

the
radiation

-cu
rved

vector
fi

eld
120

Asymptotic splittings of the radiation-curved vector field
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[13] A. G. Lemâıtre. A homogeneous universe of constant mass and increas-

ing radius accounting for the radial velocity of extra-galactic nebulæ.

Monthly Notices of the Royal Astronomical Society, 91(5):483–490, 1931.

doi: 10.1093/mnras/91.5.483. URL http://mnras.oxfordjournals.org/

content/91/5/483.short.

[14] H. P. Robertson. Kinematics and World-Structure. The Astrophysical Jour-

nal, 82:284, November 1935. doi: 10.1086/143681.

[15] H. P. Robertson. Kinematics and World-Structure II. The Astrophysical

Journal, 83:187, April 1936. doi: 10.1086/143716.

[16] A. G. Walker. On milne’s theory of world-structure. Proceedings of the

London Mathematical Society, s2-42(1):90–127, 1937. doi: 10.1112/plms/

s2-42.1.90. URL http://plms.oxfordjournals.org/content/s2-42/1/

90.short.

[17] S. Weinberg. Cosmology. Oxford University Press, New York, 2008.

[18] E. A. Milne. Relativity, Gravitation and World Structure. Ox-

ford University Press, 1935. URL http://archive.org/details/

RelativityGravitationAndWorldStructure.

[19] V. Mukhanov. The Physical Foundations of Cosmology. Cambridge Univer-

sity Press, New York, November 2005.

http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01328280
http://dx.doi.org/10.1007/BF01328280
http://mnras.oxfordjournals.org/content/91/5/483.short
http://mnras.oxfordjournals.org/content/91/5/483.short
http://plms.oxfordjournals.org/content/s2-42/1/90.short
http://plms.oxfordjournals.org/content/s2-42/1/90.short
http://archive.org/details/RelativityGravitationAndWorldStructure
http://archive.org/details/RelativityGravitationAndWorldStructure


Bibliography 123

[20] A. S. Eddington. Mathematical Theory of Relativity. Cambridge University

Press, United Kingdom, 1923.

[21] H. Weyl. Eine neue erweiterung der relativitätstheorie. Annalen der Physik,

364(10):101–133, 1919. ISSN 1521-3889. doi: 10.1002/andp.19193641002.

URL http://dx.doi.org/10.1002/andp.19193641002.

[22] T. Kaluza. On the Problem of Unity in Physics. Sitzungsber. Preuss. Akad.

Wiss. Berlin (Math. Phys.), 1921:966–972, 1921.

[23] C. Brans and R. H. Dicke. Mach’s principle and a relativistic theory of grav-

itation. Physical Review, 124:925–935, Nov 1961. doi: 10.1103/PhysRev.

124.925. URL http://link.aps.org/doi/10.1103/PhysRev.124.925.

[24] R. H. Dicke. Mach’s principle and invariance under transformation of units.

Phys. Rev., 125:2163–2167, Mar 1962. doi: 10.1103/PhysRev.125.2163. URL

http://link.aps.org/doi/10.1103/PhysRev.125.2163.

[25] P. G. Bergmann. Comments on the scalar-tensor theory. International

Journal of Theoretical Physics, 1(1):25–36, 1968. ISSN 1572-9575. doi:

10.1007/BF00668828. URL http://dx.doi.org/10.1007/BF00668828.

[26] T. Jacobson and D. Mattingly. Gravity with a dynamical preferred frame.

Phys. Rev. D, 64:024028, 2001. doi: 10.1103/PhysRevD.64.024028. URL

http://link.aps.org/doi/10.1103/PhysRevD.64.024028.

[27] N. Rosen. A bi-metric theory of gravitation. General Relativity and Gravita-

tion, 4(6):435–447, 1973. ISSN 1572-9532. doi: 10.1007/BF01215403. URL

http://dx.doi.org/10.1007/BF01215403.

[28] N. Rosen. Bimetric gravitation theory on a cosmological basis. General

Relativity and Gravitation, 9(4):339–351, 1978. ISSN 1572-9532. doi: 10.

1007/BF00760426. URL http://dx.doi.org/10.1007/BF00760426.

[29] I. T. Drummond. Bimetric gravity and [dark matter]. Phys. Rev., D63:

043503, 2001. doi: 10.1103/PhysRevD.63.043503.

[30] J. D. Bekenstein. Relativistic gravitation theory for the modified new-

tonian dynamics paradigm. Phys. Rev. D, 70:083509, 2004. doi: 10.

1103/PhysRevD.70.083509. URL http://link.aps.org/doi/10.1103/

PhysRevD.70.083509.

http://dx.doi.org/10.1002/andp.19193641002
http://link.aps.org/doi/10.1103/PhysRev.124.925
http://link.aps.org/doi/10.1103/PhysRev.125.2163
http://dx.doi.org/10.1007/BF00668828
http://link.aps.org/doi/10.1103/PhysRevD.64.024028
http://dx.doi.org/10.1007/BF01215403
http://dx.doi.org/10.1007/BF00760426
http://link.aps.org/doi/10.1103/PhysRevD.70.083509
http://link.aps.org/doi/10.1103/PhysRevD.70.083509


Bibliography 124

[31] D. Lovelock. The Einstein tensor and its generalizations. J. Math. Phys.,

12:498–501, 1971. doi: 10.1063/1.1665613.

[32] D. Lovelock. The four-dimensionality of space and the einstein tensor. J.

Math. Phys., 13:874–876, 1972. doi: 10.1063/1.1666069.

[33] J. Polchinski. Dirichlet branes and ramond-ramond charges. Phys. Rev.

Lett., 75:4724–4727, 1995. doi: 10.1103/PhysRevLett.75.4724. URL http:

//link.aps.org/doi/10.1103/PhysRevLett.75.4724.

[34] L. Randall and R. Sundrum. Large mass hierarchy from a small extra dimen-

sion. Phys. Rev. Lett., 83:3370–3373, 1999. doi: 10.1103/PhysRevLett.83.

3370. URL http://link.aps.org/doi/10.1103/PhysRevLett.83.3370.

[35] L. Randall and R. Sundrum. An alternative to compactification. Phys.

Rev. Lett., 83:4690–4693, 1999. doi: 10.1103/PhysRevLett.83.4690. URL

http://link.aps.org/doi/10.1103/PhysRevLett.83.4690.

[36] R. Maartens. Brane-world gravity. Living Reviews in Relativity, 7(7),

2004. doi: 10.1007/lrr-2004-7. URL http://www.livingreviews.org/

lrr-2004-7.

[37] G. Dvali, G. Gabadadze, and M. Porrati. 4d gravity on a brane in 5d

minkowski space. Physics Letters B, 485(1–3):208 – 214, 2000. ISSN 0370-

2693. doi: http://dx.doi.org/10.1016/S0370-2693(00)00669-9. URL http:

//www.sciencedirect.com/science/article/pii/S0370269300006699.

[38] C. Charmousis. Physics of Black Holes: A Guided Tour, chapter Higher

Order Gravity Theories and Their Black Hole Solutions, pages 299–346.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-540-88460-

6. doi: 10.1007/978-3-540-88460-6 8. URL http://dx.doi.org/10.1007/

978-3-540-88460-6_8.

[39] T. Clifton, P. G. Ferreira, Padilla A., and C. Skordis. Modified gravity

and cosmology. Physics Reports, 513(1–3):1 – 189, 2012. ISSN 0370-1573.

doi: http://dx.doi.org/10.1016/j.physrep.2012.01.001. Modified Gravity and

Cosmology.

[40] T. Sotiriou. Modified actions for gravity: theory and phenomenology. PhD

Thesis, 2007. URL http://arxiv.org/pdf/0710.4438.pdf.

http://link.aps.org/doi/10.1103/PhysRevLett.75.4724
http://link.aps.org/doi/10.1103/PhysRevLett.75.4724
http://link.aps.org/doi/10.1103/PhysRevLett.83.3370
http://link.aps.org/doi/10.1103/PhysRevLett.83.4690
http://www.livingreviews.org/lrr-2004-7
http://www.livingreviews.org/lrr-2004-7
http://www.sciencedirect.com/science/article/pii/S0370269300006699
http://www.sciencedirect.com/science/article/pii/S0370269300006699
http://dx.doi.org/10.1007/978-3-540-88460-6_8
http://dx.doi.org/10.1007/978-3-540-88460-6_8
http://arxiv.org/pdf/0710.4438.pdf


Bibliography 125

[41] P. Horava. Membranes at Quantum Criticality. JHEP, 03:020, 2009. doi:

10.1088/1126-6708/2009/03/020.

[42] P. Horava. Quantum Gravity at a Lifshitz Point. Phys. Rev., D79:084008,

2009. doi: 10.1103/PhysRevD.79.084008.

[43] P. Horava. Spectral Dimension of the Universe in Quantum Gravity at a Lif-

shitz Point. Phys. Rev. Lett., 102:161301, 2009. doi: 10.1103/PhysRevLett.

102.161301.
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