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Abstract:

Treatment of spectral information is
an essential tool for the examination
of various cultural heritage materials.
Raman Spectroscopy has become an
everyday practice for compound iden-
tification due to its non-intrusive na-
ture, but often it can be a complex
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done with the aid of already exist-
ing spectral databases and spectrum
matching algorithms. We demonstrate
that with a machine learning method
called Extremely Randomised Trees,
we can learn a model in a super-
vised learning fashion, able to accu-
rately match an entire-spectrum range
into its respective mineral. Our ap-
proach was tested and was found to
outperform the state-of-the-art meth-
ods on the corrected RRUFF dataset,
while maintaining low computational
complexity and inherently supporting
parallelisation.
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Chapter 1

Introduction

Treatment of spectral information is an active field of ongoing research. Mineral
identification is a fundamental step in a wide range of analyses and applications,
such as planetary exploration, geological field expeditions, materials research,
medical diagnosis, etc. Especially in the field of cultural heritage, the identifi-
cation of artists’ materials of mineral origin, such as traditional paint pigments,
is a valuable tool. One successful spectroscopy method in cultural heritage, Ra-
man spectroscopy, has become a daily practice, due to its non-destructive and
non-invasive nature [1].

Raman spectroscopy is a method that exploits the monochromatic light inter-
action with the vibrations in molecules that results in energy shifts of the source
light, which is being detected to provide information about vibrational, rotational
or other low-frequency modes [2, 3]. Conservation of energy during the interaction
of the source light with the material in study describes the shift in energy of the
source light in respect to the change of state of the material. Still, for the material
to exhibit the desired Raman effect (or Raman shift), a change in its polarisability
connected with the vibrational coordinate should occur, and the detected effect is
proportional to this change. Typically, Raman shifts are described in wavenumbers,
and conversion from spectral wavelength is based on

∆w =

(
1

λ0
− 1

λ1

)
(1.1)

∆w being the the Raman shift typically expressed in inverse centimetres (cm−1), λ0

the excitation wavelength, and λ1 the spectrum wavelength. Raman spectra can be
recorded over a range of 4000− 10, cm−1 [4].

Experts in heritage science use the technique of Raman spectroscopy under
controlled experimental conditions, such that the materials under examination are
not damaged in any way. A Raman spectrum can be considered as a fingerprint
that could be used for compound identification, and is effective and useful when a

1



2 Chapter 1. Introduction

database of standard spectra is available for comparison. However, the matching of
spectra with respective minerals can be complex. Limitations can be introduced as
a result of the equipment involved, leading in loss of focus during analysis in rel-
atively light objects or in size restrictions due to the use of traditional microscopes
that prohibit the analysis of large objects. In addition, there are limitations inherent
within the Raman technique like the effect of fluorescence. Often, the laser beam
can excite electronic transitions that may mask the Raman signal. Thus, analysis of
spectra requires detailed knowledge of group theory and involves lengthy calcula-
tion. There is a growing volume of scientific publications regarding the application
of Raman spectroscopy in heritage science that shows the great interest of the com-
munity on the method and the benefits it can bring to the domain [5, 6, 7, 8].

In practice, in order to analyse a spectrum’s identity scientists rely either on
matching software e.g., CrystalSleuth or on direct manual comparisons with a
database of reference spectra. These types of identification have critical limita-
tions, as there is not a unique measured spectrum that can be considered as a
mineral’s true identity, since the impurity of chemical mixtures can result in dif-
ferences in the measured spectra. Thus, there is no database that can be entirely
comprehensive, or no software that can unequivocally claim that any spectrum is
a perfect match.

1.1 Motivation

Raman spectroscopy has advanced in recent years where its use in both industry
and academia has increased significantly, and is drawing an increasing attention of
experts in biomedical and pharmaceutical research. Only in the past decade there
was an explosion of published research regarding this technique due to techno-
logical advancements in instrumentation has decreased the cost and enhanced the
user-friendliness, such that there was not required a user to be a laser specialist
any more. Alongside the instrumentation improvements, there was also the devel-
opment of Raman techniques such as SERS and TERS (surface-enhanced Raman
scattering and tip-enhanced Raman scattering, respectively) and many other ex-
citing variants of the ‘normal’ Raman technique that assisted on the researchers’
interest growth. Novel applications of Raman spectroscopy variants, illustrate the
diverse nature of this technique and its extraordinary ability to be involved in the
solutions of many biological problems that concern the pharmaceutical industry,
forensics and medicine. Raman spectroscopy is now well established as a comple-
mentary technique to much of the analytical instrumentation currently available.

In cultural heritage the Raman spectroscopy presents several desirable attributes,
which make this spectroscopic method as a routinely used tool by the experts.
These attributes are summarized bellow [6]:

• Non-destructive analysis of materials
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• No chemical, mechanical preparation or desiccation necessary for specimens
prior to analysis

• Assessment of degradation for buried artefacts and human tissues which
informs the previous depositional history

• Specific biomolecular spectral marker recognition for the identification of
genuine and fake objects which may have been made for fraudulent purposes

• Geographical sourcing of ethnobotanical and biological materials, such as
resins

Given this widespread use of Raman spectroscopy, we found our motivation
in providing a method that accurately identifies a mineral from its Raman spec-
trum. Every compound has its own unique Raman spectrum which can be used
for sample detection and quantification. The differences in energy between the in-
cident photons (usually provided by a laser) and the scattered photons correspond
to vibrations in the molecule or crystal, and provide a “fingerprint” of the sample’s
composition and molecular structure [7]. Ideally, all samples coming from differ-
ent specimens but of the same mineral species should have similar fingerprints.
However, in practice irregular compound mixture impurities found in samples’
composition make the identification of minerals a difficult task.

1.2 Objectives

The scope of this project is to investigate the effectiveness of ensemble learning
techniques within the domain of mineral spectral identification. We will examine
the existing use of tree based algorithms and then use this established information
to experiment with current methods and a novel approach. We wish to evaluate
how different ensemble learning techniques are suited to the problem, how the
various parameters involved affect the outcome and whether this leads to a frame-
work that could be used as a daily practice tool by experts.

Overall, the very nature of Raman Spectra leads this research to face many in-
teresting challenges, mentioning a few, the noise within the measured spectra with
low intensities may mistakenly matched with other spectra in the database due to
the similarities in the vibrations produced by that noise, the existing methods for
mineral matching are either computationally demanding or trivial and assump-
tive. Thus, we aim at providing a method that is able to accurately discriminate
the intensity irregularities due to induced noise and correctly identify the species
or other label groupings using the mineral’s spectrum as a fingerprint.
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1.3 Contributions

In our work we propose the use of two off-the-shelf machine learning methods,
namely the Random Forest [9] and the Extremely Randomized Trees [10] for the
task of mineral recognition on already baseline corrected Raman spectra. The Ran-
dom Forest (RF) and the Extremely Randomized Trees (XT) are ensemble learning
methods based on multiple decision trees that they are particularly successful in
tackling with the problem of overfitting. The ensemble learning methods gained a
significant attention in the machine learning community over the last decade, prior
to the widespread popularity of the CNN. Many works suggested that when com-
pared with PCA-LDA and RBF SVM on Raman microspectroscopy data [11, 12, 13]
it performed poorly. However, in this paper we demonstrate that with the proper
treatment of the data (i.e., preprocessing and augmentation) XT becomes particu-
larly efficient in correctly classifying the spectra into their respective minerals. In
addition, we utilize the RRUFF database for the evaluation of our experiment. We
tested our algorithm against a large number of spectra following the experimental
setup of [12]. We compared Random Forest and Extremely Randomized Trees with
the following methods: (i) 1-nearest neighbor classifier, which it is believed Crys-
talSleuth’s matching software is based upon [12, 13]; (ii) weighted neighbor (WN)
classifier; (iii) vector metric, the cosine similarity after normalization and squash-
ing [12] and with the work of [13], which is the current state-of-the-art. We found
that our method is not only competitive in terms of accuracy, but it also does not
sacrifice computational speed during training or testing nor it is a computational
demanding procedure.

1.4 Publications and Other Submitted Manuscripts

Parts of this thesis have been submitted for publication in a conference and a jour-
nal. The paper titled “Hierarchical classification for improved compound identi-
fication in Raman spectroscopy” has been accepted at the CAA-Gr 2018-Spreading
Excellence in Computer Applications for Archaeology and Cultural Heritage. Moreover,
a paper submitted to the Journal of Cultural Heritage is pending review.

1.5 Outline of Contents

We conclude this introduction with a brief outline of the contents of our paper.

• Chapter 2 will aim to introduce the relevant background material covering
the Raman Effect, the Raman Spectroscopy, the relevant work in mineral iden-
tification via Raman Spectra, and the necessary machine learning concepts
that we will make use of.
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• In chapter 3, we will propose our novel approach to extending the ensemble
learning framework into the domain of mineral identification.

• Chapter 4 provides a documentation of our design choices for the proposed
systems, as well as we are justifying our design choices for the system.

• Chapter 5 concludes the project with discussions regarding the success of our
objectives and a summary of our achievements.





Chapter 2

Background Material

2.1 Raman Spectroscopy

2.1.1 Basic Principles

Raman spectroscopy was discovered by C. V. Raman (Figure 2.1) and K.S. Krishnan
in 1928, which gained the former the Nobel Prize for Physics in 1930. Naturally,
the method, which was named after him in his honor, was praised by the scientific
community as one of the most important discoveries in physics made up to that
time.

Figure 2.1: C. V. Raman

Raman spectroscopy (RS) is a versatile
method for analysis of a wide range of
forensic samples. It resolves most of
limitations of other spectroscopic tech-
niques, for instance Water can be used
as a solvent, the sample preparation is
not very elaborate since it can be in
any state, it gives an indication of co-
valent character in the molecule. It can
be used for both qualitative as well as
quantitative purpose. Qualitative ana-
lysis can be performed by measuring
the frequency of scattered radiations
while quantitative analysis can be per-
formed by measuring the intensity of
scattered radiations, and Raman Spec-
troscopy needs relative short time to
perform detections [14, 15].

Primarily, Raman spectroscopy is a

7
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scattering technique. It is based on Ra-
man Effect, i.e., frequency of a small
fraction of scattered radiation is different from frequency of monochromatic inci-
dent radiation. It is based on the inelastic scattering of incident radiation through
its interaction with vibrating molecules [15, 16, 17]. A Raman spectrum is pre-
sented as an intensity vs. wavelength shift [16]. Raman spectra can be recorded
over a range of 4000–10 cm−1 [18]. However, Raman active normal modes of vi-
bration of organic molecules occur in the range of 4000– 400∆cm−1. Depending on
spectrophotometer’s design and optical components, typical Raman spectra cover
the wavenumber region between 400–5∆cm−1 and 4000– 3800∆cm−1 [17]. A Raman
spectrum is significantly simpler than their Infrared (IR) counterparts because in
normal Raman overtones, combination and difference bands are rare [15, 16]

When a sample’s molecules are being illuminated by the beam of a monochro-
matic laser (radiation) with a wavenumber ν̃0 is incident on systems the phe-
nomenon of scattering light (at all directions) is being observed. If the frequency
content of the scattered radiation is analyzed, there will be observed to be present
not only the wavenumber ν̃0 associated with the incident radiation but also, in
general, pairs of new wavenumbers of the type νL = ν̃0 + ν̃M. Principally, the
wavenumbers ν̃M belong in the ranges associated with the transitions between ro-
tational, vibrational, and electronic levels. Since the scattered light has different
frequency from that of incident light (inelastic scattering), it is used to construct a
Raman spectrum. Therefore, Raman spectra arise due to inelastic collision between
incident monochromatic radiation and the sample’s molecules.

The origin of the modified frequencies found in Raman scattering is explained
in terms of energy transfer between the scattering system and the incident radi-
ation. When a system interacts with radiation of wavenumber ν̃0, it makes an
upward transition from a lower energy level E1 to an upper energy level E2. It
must then acquire the necessary energy, ∆E = E2E1, from the incident radiation.
The energy ∆E is expressed in terms of a wavenumber ν̃M associated with the two
levels involved, where:

∆E = hcν̃M (2.1)

This energy requirement is regarded as being provided by the absorption of
one photon of the incident radiation of energy hcν̃0 and the simultaneous emission
of a photon of smaller energy hc(ν̃0)− ν̃M), so that scattering of radiation of lower
wavenumber, ν̃0)− ν̃M, occurs. Alternatively, the interaction of the radiation with
the system may cause a downward transition from a higher energy level E2 to a
lower energy level E1, in which case it makes available energy

E2 − E1 = hcν̃M (2.2)
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Again a photon of the incident radiation of energy hcν̃0 and the simultaneous
emission of a photon of higher energy hc(ν̃0) + ν̃M), so that scattering of radiation
of higher wavenumber, ν̃0 + ν̃M, occurs.

Much of this scattered radiation has a frequency which is equal to the frequency
of the incident radiation and constitutes the Rayleigh scattering. Even though
there is no effective difference in the energy state of the system, it still contributes
directly in the scattering act, resulting to the simultaneous absorption and emission
of the incident radiation’s photon hcν̃0 so that the scattering radiation of unchanged
wavenumber, hcν̃0, occurs.

It is clear that, as far as wavenumber is concerned, a Raman band is to be char-
acterized not by its absolute wavenumber, νL = ν̃0 + ν̃M, but by the magnitude
of its wavenumber shift ν̃M from the incident wavenumber. The small fraction
of scattered radiation which has different frequency than the incident’s it consti-
tutes the Raman scattering as such wavenumber shifts are often referred to as
Raman wavenumbers. When the frequency of incident radiation is higher than
the frequency of scattered radiation Stokes lines appear in the Raman spectrum.
Otherwise, when the frequency of incident radiation is lower than the frequency
of scattered radiation, anti-Stokes lines appear in the Raman spectrum. Scattered
radiation is usually measured at right angle to incident radiation [14, 15]. Where it
is necessary to distinguish Stokes and anti-Stokes Raman scattering we shall define
∆ν̃ to be positive for Stokes scattering and negative for anti-Stokes scattering, that
is ∆ν̃ = ν̃0 + νL, as shown in Figure 2.21.

In summary, the magnitude of Raman shifts does not depend on wavelength
of incident radiation [14]. Raman scattering depends on wavelength of incident ra-
diation [16]. A change in polarizability during molecular vibration is an essential
requirement to obtain Raman spectrum of sample. The amplitude of the vibration
is called the nuclear displacement. The monochromatic laser beam induces excita-
tion of molecules which transforms them into oscillating dipoles emitting light of
three different frequencies, as described bellow:

1. A molecule with no Raman-active modes absorbs a photon with the fre-
quency ν̃0. The excited molecule returns back to the same basic vibrational
state and emits light with the same frequency ν̃0 as an excitation source. This
type if interaction is called an elastic Rayleigh scattering. About 99.999% of all
incident photons in spontaneous Raman undergo elastic Rayleigh scattering.
This type of signal is useless for practical purposes of molecular character-
ization. Only about 0.001% of the incident light produces inelastic Raman
signal. Spontaneous Raman scattering is very weak and special measures
should be taken to distinguish it from the predominant Rayleigh scattering.
Instruments such as notch filters, tunable filters, laser stop apertures, double

1based on work of Moxfyre and User:Pavlina2.0 vectorization of File:Raman energy levels.jpg, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7845122
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Figure 2.2: Energy transfer model of Rayleigh scattering, Stokes Raman and anti-Stokes Raman
scattering. The blue arrows represent ν̃0, the red arrow ν̃0, the green arrow ν̃0 − ν̃M and the purple
ν̃0 + ν̃M energy transfers, while the yellow arrow represents the infrared absorption ν̃M.

and triple spectrometric systems are used to reduce Rayleigh scattering and
obtain high-quality Raman spectra.

2. A photon with frequency ν̃0 is absorbed by Raman-active molecule which at
the time of interaction is in the basic vibrational state. Part of the photon’s
energy is transferred to the Raman-active mode with frequency ν̃M and the
resulting frequency of scattered light is reduced to ν̃0 − ν̃M. This Raman fre-
quency is called Stokes frequency, or just “Stokes”. Stokes bands are more
intense than anti-Stokes bands and hence are measured in conventional Ra-
man spectroscopy [14, 19]

3. A photon with frequency ν̃0 is absorbed by a Raman-active molecule, which,
at the time of interaction, is already in the excited vibrational state. Excessive
energy of excited Raman active mode is released, molecule returns to the ba-
sic vibrational state and the resulting frequency of scattered light goes up to
ν̃0 + ν̃M. This Raman frequency is called AntiStokes frequency, or just “Anti-
Stokes”. Anti-Stokes bands are measured with fluorescing samples because
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fluorescence causes interference with Stokes bands.

2.1.2 Instrumentation

A sample is normally illuminated with a laser beam in the ultraviolet (UV), visible
(Vis) or near infrared (NIR) range. Scattered light is collected with a lens and is
sent through interference filter or spectrophotometer to obtain Raman spectrum of
a sample. A Raman system typically consists of four major components:

1. Excitation source (Laser)
2. Sample illumination system and light collection optics.
3. Wavelength selector (Filter or Spectrophotometer).
4. Detector (Photodiode array, CCD or PMT).

Excitation source

Raman’s fascination about the phenomenon of light scattering lead him to an ex-
tensive series of measurements of scattered light. Much of the early work on the
analysis of light scattered by a liquid was done by the visual observation of color
rather than precise measurements of the light’s wavelength, as shown in Figure 2.3

In 1927 Raman obtained a seven-inch (18 cm) refracting telescope, which en-
abled him to condense the sunlight and create a more powerful light source for his
studies. Also, during the same time period, mercury arc lamps were commercially
available, and he switched to this even more intense light source. This type of light
source was used until the 60’s. Nevertheless, it was evident that the more intense
the light sources the better the observations they could make. A new invention of
light sources at the end of the 60’s, namely the laser, provided an even more intense
source of light that not only could serve as a probe exploring the properties of the
molecule but could also induce dramatically new effects. Laser sources completely
replaced the mercury arc lamps, since they could provide a constant, stable and
more intense beam of radiation. Table 2.1 summarizes the wavelengths provided
by different kind of light sources.

Note that, short wavelength sources such as argon ion and krypton ion lasers
can produce significant fluorescence and cause photodecomposition of the sample.
However, long wavelength sources such as diode or Nd:YAG lasers can be oper-
ated at much higher power without causing photodecomposition of sample and
eliminates or reduces fluorescence in most cases [20, 21].

As visual and qualitative observations alone would not be sufficient informa-
tion there was a need to measure the exact wavelengths of the incident and Raman
scattering. Thus, they replaced the observer with a pocket spectroscope, which
was later replaced by a quartz spectrograph. The quartz spectrograph could pho-
tograph the spectrum of the scattered light and enable the measurement of its
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Figure 2.3: A triangular prism, dispersing light; waves shown to illustrate the differing wavelengths
of light.

Table 2.1: Wavelengths for different light sources

Light Source Wavelength (nm)
Mercury arc lamps 435.8
Argon ion laser 488 and 514.5
Krypton ion laser 530.9 and 647.1
Near Infrared (IR) diode lasers 785 and 830
Neodymium-Ytrium Aluminum Garnet (Nd:YAG) 1064
Neodymium-Ytrium Ortho-Vanadate (Nd:YVO4) 1064
Frequency doubled Nd:YAG diode lasers 522
Frequency doubled Nd:YVO4 diode lasers 532

wavelength. A quartz spectrograph is shown in Figure 2.42.

Light collection

It is usually necessary to "clean up" the laser output, which may consist of discrete
plasma lines or broadband fluorescence background in addition to the principal
laser line. If the laser is delivered to the sample with an optical fiber, it is especially
critical to remove the Raman modes and fluorescence that are excited in the silica
fiber by the laser.

2Courtesy the Indian Association for the Cultivation of Science
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Figure 2.4: A quartz spectrograph

Background removal can be accomplished in several ways. If there is sufficient
space between the laser output and sample, spatial filtering may be used. In this
method, an optical element is used to disperse the laser output, which then travels
some distance and passes through an aperture. Ideally, this physically blocks all
but the laser line of interest. Another option for cleaning up the laser beam is to
send it through a monochromator set to pass only the line of interest. This has the
disadvantage of low throughput of the laser line. Perhaps the simplest and most
cost-effective method is the use of an interference filter which passes only the laser
line with transmission usually > 80%. Interference filters are also known as laser
line filters or bandpass filters.

There are four basic types of filters to choose from: a long wave pass (LWP)
edge filter, a short wave pass (SWP) edge filter, a notch filter, and a laser line
filter (each shown below). Laser line filters transmit only the laser and block all
other light, while notch filter block only the laser line while passing both long and
shorter wavelengths. By using these two filters together, both Stokes and Anti-
Stokes Raman scattering can be measured simultaneously.

People use commercially available interference (notch) filters which cut-off spec-
tral range of ±80− 120cm−1 from the laser line. This method is efficient in stray
light elimination but it does not allow detection of low-frequency Raman modes.

Wavelength selector

The wavelength selector is the most critical component in a Raman spectrome-
ter, through which the intensity information of individual frequencies is extracted.
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There are basically two types of wavelength selection mechanisms, dispersive and
non-dispersive. A dispersive spectrometer uses prism or grating since it relies on
e dispersive components to separate light spatially according to the wavelength.
Stray light is generated in the spectrometer mainly upon light dispersion on grat-
ings and strongly depends on grating quality. Raman spectrometers typically use
holographic gratings which normally have much less manufacturing defects in
their structure then the ruled once. Stray light produced by holographic gratings
is about an order of magnitude less intense then from ruled gratings of the same
groove density. Using multiple dispersion stages is another way of stray light re-
duction. Double and triple spectrometers allow taking Raman spectra without use
of notch filters. In such systems Raman-active modes with frequencies as low as
3-5 cm-1 can be efficiently detected. The non-dispersive spectrometer selects light
either with an interferometer such as Michelson interferometer in Fourier Trans-
form Raman spectrophotometer or by an optical filter. The measured signal is the
interferogram in time domain, and the Raman spectrum can be obtained by the
Fourier transformation of the interferogram. Compared with the dispersive Ra-
man spectrometer, the FT-Raman spectrometer has a higher throughput, excellent
frequency accuracy and precision, and higher resolution. FT-Raman spectrome-
ters are mainly used when samples fluoresce, such as in forensic analysis [22] and
pharmaceutical applications [23] because Raman scattering efficiency in the longer
wavelength (NIR) region is lower than that in the short wavelength (visible) re-
gion. The lower Raman scattering efficiency limits the sensitivity of the FT-Raman
spectrometer, which is important in applications e. g., to detect water contaminants
[24].

Commercial Fourier Transform-Raman spectrophotometers (FT-Raman) were
introduced in late 1980’s to improve the detection system capable of overcoming
the limitations of CCD and other detectors for operating in the near-IR region when
using 1064nm laser excitation [25]. FT-Raman spectrophotometer uses a Michelson
interferometer and continuous wave laser such as Nd–YAG which emits the radia-
tion at 1064 nm. In GaAs and germanium (Ge) detectors are operated at cryogenic
temperatures in order to reduce noise and thus raise the signal-to-noise ratio [14].
Cryogenic temperature is a temperature at which molecular motion comes as close
as theoretically possible to ceasing completely. At cryogenic temperature, materi-
als are as close to a static and highly ordered state as is possible [15]. Since water
absorbs in the 1000nm region, aqueous samples cannot be analyzed by FT-Raman
spectrophotometer [16, 15].

Depending on the area of use, Raman spectrophotometers can be categorized
into two broad classes: lab based spectrophotometers and in-field, in-situ or down-
field use Raman spectrophotometers which include portable and hand-held de-
vices or remote or stand-off systems [17]. The basic principle is same in each case
and these systems are differentiated by versatility of an instrument and size and
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relative cost of its components. More compact components are used in on-site
Raman spectrophotometers. Benchtop, handheld, portable, remote or stand-off
Raman spectrophotometers are available for on-site analysis and research purpose
[17].

Detectors

World War II was the point of turn for using the Raman spectroscopy as later
it became quickly the basic analytical tool.Before that, infrared spectroscopy was
improved with the use of sensitive detectors. Raman spectroscopy was not a match
to the infrared technique until another technological advancement, namely the
laser. The development of laser had a major impact to Raman spectroscopy as it
had formed a new beginning for the method in the 1960s. Infrared measurements
became daily practice even for non-experts. On the other hand the application
of the Raman technique still required trained operators and darkroom conditions.
Data handling with computers and the the Fourier transform (FT) technique, led
to commercial FT-Raman spectrometers in the late 1980s, resulting in the rebirth of
the original Raman Effect.

Because of the low Raman scattering efficiency, detection of the Raman signal
is very challenging, and the detector should be sensitive. The detectors exploit
the photoelectric effect which uses the incoming light energy to generate charge
carriers that are separated and can subsequently be measured as a current at the
terminals. Two key parameters associated with a detector are the quantum effi-
ciency (QE) and the noise. QE defines the efficiency of a detector to convert optical
photons to free charges and noise refers to the dark current caused by the ther-
mal generated charge carriers. Accordingly, to observe the weak Raman signal,
the detector should have high QE in the related wavelength band, low noise level
and high dynamic range. To date, several types of detectors have been successfully
used in Raman spectrometers, and most of them are discussed in the following
subsections [24].

Single-point detectors such as Thermoelectrically cooled photomultiplier tubes
(PMT) was the mainstream component which early experts used to utilize. How-
ever, it was time consuming the procedure of collecting a single Raman spec-
trum with a PMT detector in wavenumber scanning mode. Nowadays, advances
in instrumentation and technology replace these detectors with more sensitive
charge transfer devices (CTDs) such as charge-coupled devices (CCDs) and charge-
injection devices (CIDs) to detect the Raman scattered light. These devices act as
a detector and used in the form of arrays. In CTD’s arrays, photosite converts the
incoming optical signal into charge which is integrated and transferred to readout
devices.1 Multichannel CCD detectors are used with laser wavelengths of less than
1 lm while single element low band-gap semiconductor such as Germanium (Ge)
or Indium–Gallium–Arsenic (InGaAs) detectors are used with laser wavelengths of
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greater than 1 lm [25, 19]. Nowadays, the factors of sensitivity and performance
of CCD detectors are advancing technologically thus the CCD detectors are the
component of choice for Raman spectroscopy.

2.1.3 Raman Variants

Raman spectroscopy has seen major recognition by the scientific and industrial
communities resulting a wide range of diversity on its applications. Subsequently,
different needs had to be met leading to the development of several variations of
Raman spectroscopy. The usual purpose is to enhance the sensitivity (e.g., surface-
enhanced Raman) or to improve the spatial resolution.

Surface Enhanced Raman Spectroscopy (SERS)

Surface enhanced Raman spectroscopy (SERS) is to date the most efficient Raman
technique for very low concentration detection. Since its first observation in 1974,
SERS has been broadly researched in academia. SERS is a modified technique in
which a sample is adsorbed on a colloidal metallic surface (silver, gold or copper)
such that it improves the intensity of Raman signals. Additionally, fluorescence
caused by diluents and matrices is being eliminated [16, 26]. A detailed review
of SERS including the fundamentals, active substrates and its application can be
found in the literature broadly [27, 28, 29, 24].

Time-Gated Raman Spectroscopy

Noise reduction can enhance the Raman scattering by improving the signal-to-
noise ratio. Sources of noise in Raman measurement can be either from the detector
or from the incoming optical signal. Raman detectors, are responsible for most of
the noise being introduced due to the CCDs and APDs. The most efficient way
to reduce that effect is to cool the detector during measurement. On the other
hand, Rayleigh scattering and fluorescence emission can produce additional noise
alone or in combination. The difference between Raman scattering and Rayleigh
scattering in terms of wavelength allows to eliminate the influence of Rayleigh
scattering by using an optical filter. In contrast, the fluorescence emission band
overlaps with the Raman peak for certain excitation wavelengths, which blurs or
masks the Raman peaks. Overall, reducing background fluorescence and detector
noise are of great importance for a high signal-to-noise ratio [24].

Kerr Gated Raman System

The Kerr gate is the most well-known optical shutter in time-gated Raman spec-
trometers for its fast response. A Kerr gate with picoseconds (25 ps) response and
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high repetition rate was proposed as early as the 1970s [30, 24]. As technology ad-
vanced the Kerr gate it achieved a response time of 3 ps [31, 24]. Currently, the Kerr
gate has become a very popular optical shutter in time-gated Raman detection.

This Kerr gate system consisted of two crossed polarizers, and a Kerr medium
was placed between the polarizers. A gating pulse was used to gate on and off
the Kerr gate, by varying the polarization orientation of light passing through the
Kerr medium. Otherwise, no light could pass the Kerr gate due to the crossed
polarizers. In the Kerr gate system, if the short gating pulse temporal overlaps
with the Raman signal, then the Raman signal would be able to pass the gate with
the fluorescence signal being suppressed.

However, its benefit as a fast response system is also its disadvantage due to its
complex setup. The fast response provided by the Kerr gate is sufficient to perform
the function of fluorescence rejection limiting it to laboratory use. Nevertheless,
this setup has also been used in a diverse spectrum of applications ranging from
plant auto-fluorescence [32] to depth profiling of calcifications in breast tissue [33,
24].

Fast Time-Gated Raman Systems

Fluorescence rejection can also be met in fast gated detectors. The most commonly
used detector is the intensified CCD (ICCD). Different from the normal CCD, the
ICCD can be operated in the time-gated mode performing ultra-sensitive detec-
tions. A gain voltage controlled image intensifier tube is positioned in front of the
CCD, such that incident photons are multiplied inside the intensifier before being
focused onto the detector. The ICCD has been used as an alternative technique to
the Kerr gate system. Although not as fast as the Kerr gate system, most of the
modern ICCDs can achieve hundreds picoseconds gating width, which is adequate
for normal Raman spectroscopy [34, 35, 36, 24].

Portable Raman Spectrometers for Field Applications

For purpose of field applications, a variety of portable Raman spectrometers have
been developed in the industry. Comparing with benchtop Raman spectrometers,
the portable Raman spectrometers are low cost, light weight, and more compact.
These spectrometers can be battery powered with several hours operational time
and fast acquisition can be achieved. The 785 nm laser is widely used in these
instruments for general purposes of applications. These instruments provide wide
spectrum range with 1̃0cm−1 spectral resolution. They can be used for raw material
identification or manufacturing process material validation.
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2.1.4 Applications

As mentioned before, application of the Raman technique is extremely diverse.
Detection and identification of single molecules represents the final goal of trace
analysis and is of great scientific and practical interest in many fields, such as
physics, chemistry, biology, medicine, pharmacology, materials, and environmental
science. Bellow it is mentioned a few of its major applications and contributions.

Pharmaceutical analysis

Raman spectroscopy has evolved to include several variants of the normal dis-
persive technique. From the perspective of pharmaceutical analysis, Raman scat-
tering has enabled the rapid non-invasive volumetric analysis of pharmaceutical
formulations which could lead to many important applications in pharmaceutical
settings, including imaging and the quantitative analysis of pharmaceutical tablets
and capsules in process and quality control [37, 38]. They have been used in protein
pharmaceutical characterization, raw material verification, manufacturing process
monitoring and product quality control [39, 40, 41].

Biology

Recently there has been a particular interest in variants of Raman spectroscopy for
the investigation of viruses and microorganisms24, in particular bacteria and yeasts
for medical and pharmaceutical applications. In an interesting study by Harz et al.
[42] Raman techniques such as Raman microscopy, Raman optical activity (ROA),
UV-resonance Raman (UVRR)-spectroscopy, SERS and TERS were employed.

The application of these Raman techniques allowed for the analysis of chemi-
cal components of cells and sub-cellular regions along with monitoring chemical
differences (characterisation) which arose as a result of the growth of microor-
ganisms. The interaction of microorganisms with active pharmaceutical agents
was demonstrated which, in combination with chemometric methods, showed that
these techniques could be applied to identify microorganisms in microcolonies and
on single cells.

Forensic science

Raman spectroscopic techniques have been introduced in forensic science. The
portability of Raman spectrometers, enabled both the detection and identification
of chemical and biological hazards. Within the contexts of forensic and home-
land security, conducting analysis in the field while adapting a non-contact ap-
proach to the hazard is the preferred method. In many cases there is a need
for non-contact/non-invasive chemical analysis of hazards concealed within non-
transparent containers and packaging [43].
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Disease diagnosis

A particularly novel variant of the SERS technique named SESORS (surface-enhanced
spatially-offset Raman spectroscopy) has also been recently reported in the litera-
ture [44]. It enables the detection and identification of vibrational fingerprints
within tissue and has obvious applications within medicine. In particular this pro-
vides an opportunity to adapt these particles and technique for potential clinical
applications for disease diagnosis where a tumour may not be readily accessible,
or surgery is too invasive. Furthermore, it has been demonstrated whole-body
Raman imaging, nanoparticle pharmacokinetics, multiplexing, and in vivo tumour
targeting, using an imaging system adapted for small-animal Raman imaging.

Manufacturing process monitoring

Raman spectroscopy has been used to monitor manufacturing processes also in the
petrochemical Chemists can watch paint dry and understand what reactions are
occurring as the paint hardens. Using a fiber-optic probe, they can analyze nuclear
waste material from a safe distance. Surface-enhanced Raman spectroscopy is used
for studying surfaces and reactions on surfaces. Additionally, the incorporation
of short wavelength lasers in Raman spectrophotometers opens the doors for use
of telecommunications-type optical fibers such as remote-fiber-optic probes which
can be operated over long distances (>10 m in some instances) and are well suited
for in-situ or on-site analysis of samples. These fiber optic probes can also be used
to record the Raman spectra in locations remote from the sample site and thereby
prevent the exposure of investigator to hazardous environment [15].

2.1.5 Raman Spectroscopy in Cultural Heritage

Until 1975 infrared spectroscopy was the preferred method for the analysis of art
objects. The advent of of the MOLE (Molecular Optical Laser Examiner) [45]
changed the scenery dramatically and the employment of the Raman technique
was soon adopted for the determination of pigment composition on manuscripts.
Not long the technique was employed for the molecular characterization on gen-
uine archaeological materials.

The first reports came in the 90’s with samples taken from biodeterioration ex-
posed Renaissance frescoes [46, 47], biodeteriorated cave art [48], archaeologically
excavated biomaterials (notably, the mummified skin of Otzi the Alpine Iceman)
[49]. Technical advancements such as a wider range of options in the selection of
excitation wavelengths, the portability and transportability led to a rapid growth in
the field [50]. Hand-held instrumentation efficiently brought the laboratory to the
specimen, art work or artefact taken from archaeological excavations and deposi-
tional environments [51, 52]. The non-destructive or minimally destructive nature
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of Raman spectroscopy established the technique as the practice of choice for re-
searchers at the arts/science community. This has given rise to the field of ‘forensic
art’ investigations, which are now seen as an essential prerequisite for the estab-
lishment of a holistic analytical portfolio of an art work [17]. In this context, Raman
spectroscopic data have been involved in several high-profile case studies [53]. An
important role played the capability for mobile Raman spectroscopy. Quite often
there are large sample collections that an expert needs to examine at the collec-
tion’s environment. Each artifact’s uniqueness and frangibility might prohibit their
movement (i.e., parts of architectural monuments [54]) or risk exposure to different
environments. On-site measurements are requested for many objects which cannot
be sampled and moved outside museums [55]. Certainly, it is easier to reach each
object than to gather all in one lab. Nevertheless, Raman spectroscopy is used ex-
tensively for archaeometric purposes, such as color and pigment characterization,
degradation of materials studies, forensic art investigations.

Colors, Pigments and Technologies

One of the most regular applications of Raman spectroscopy is the characterization
of pigments and binding media. The synthesis and properties of pigments have
been studied extensively using this technique, answering questions such as the
structure and stability of pigments [56]. A great variety of studies both in terms
of time span (e. g., rock art [57]) and cultural diversity have been carried out (e. g.,
paintings [58]). Often, Raman analysis is part of the general analytical strategy
complementing other measurement techniques such as SEM-EDS, XRF, LIBS or
XRD.

The study of color manufacturing technologies concerns also ceramics. Raman
spectroscopy assists the documentation process of technical and production aspects
in Mediterranean Antiquity [59], North America prehistory [60], renaissance [61]
and contemporary art [7, 62]

Studies Dealing with Degradation Processes

Conservation of cultural heritage is of great importance. The field which studies
the degradation processes is under development as it constitutes a technical and
economical challenge for present and future societies. Additionally, pigment iden-
tification on partly or highly damaged materials reinforces the attempt to get a bet-
ter idea of the original object [63]. Degradation of numerous materials is explored
in both cases of organic to mineral substances. Waterlogged wood degradation
and their conservation treatments optimisation was studied in [64]. Paper [65] and
textile [66] degradation states can be dealt with the use of Raman spectroscopy as
a diagnostic function. A study of complementary spectroscopy techniques (e. g.,
IR and Raman) has been presented for the comprehension of alteration mecha-
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nism in fossil samples like amber [67]. Raman spectroscopy has been used to
revise iron atmospheric corrosion mechanisms [68]. Sharp description of material
micro-heterogeneity and organization can be accessed by Raman structural imag-
ing. These features are closely related to degradation mechanisms and structural
imaging for low crystallized phases can suggest methods to improve mechanisms
descriptions [7].

An other example of the use of Raman spectroscopy is on hair samples. Ana-
lysis of hair samples contibute on the evaluation of historical and archaeological
biodeterioration in depositional environments [69]; hair consists of keratin based
proteins, which can survive for an extensive time in adverse burial conditions.
Other features present in the Raman spectra of the historical hair sample can
be attributed to the identification of additives and cosmetics in use in the mid-
nineteenth century.

Disambiguation has been gratified on the opinions regarding a unique speci-
men of an eye-bead from an Egyptian eighteenth dynasty cat-mummy ( 1350 BC),
which it was believed to be be either amber or brown glass by the archaeologists.
The Raman spectrum indicated to be neither [70], as it presented the characteristics
of a keratin based material, which closely matched that of an animal claw or horn.
Thus, the assumptions ware altered leading to the belief that the cat’s claws had
been heat-processed into a bead [6].

Forensic art investigations

Forensic archeology involves the use of archaeological principles and techniques
for the location, recovery, and interpretation of evidence for past events within
the constraints of the criminal justice system. The need for a relatively rapid,
non-destructive analytical method is paramount for the enforcement and preven-
tion of illegal trafficking. As an example, ivory has been highly valued for many
centuries as a practical and decorative art medium. Raman spectroscopy can pro-
vide a discrimination analysis on mammalian species from which information on
trade routes of ancient cultured can be acquired as well as it can hint geographical
sources of seized contraband materials in modern forensic science scenarios. In the
case of ivory, Raman spectra can be acquired from suspicious specimens leading
to the discrimination between modern ivories and specimens of ivory which have
been stored in museum collections from their Raman band signatures [71, 6].

The use of Raman spectroscopy as a botanical discriminator aids the geograph-
ical sourcing of ancient resins on museum artefacts, which can provide the ar-
chaeologist and historian with information about ancient trade routes and cultures
[50, 6]. Dragon’s blood resins have been known in decorative art and medicine in
ancient cultures for several thousand years. initially coming from an East African
source on the island of Socotra, the Dracaena cinnabari resin gives a significantly
different spectrum to that of Daemonorops draco, which was used in medieval
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times. A familiar forensic application is generated here by the non-destructive Ra-
man identification of a genuine resin and the fake or counterfeit alternatives being
marketed [6].

2.2 Mineral Identification

The first chemical analyses of artworks and archaeological artefacts were accom-
plished historically in the early 18th century by Rene-Antoine Ferchault de Réau-
mur [?, 50] who focused on pottery, glass and porcelains. A century later Sir
Humphry Davy [72] performed pigment identification on wall painting fragments.
The identification of the pigments used by ancient artists, in both studies led to the
complete destruction of the specimens was undertaken. [53] A highly regarded ad-
vantage of Raman spectroscopy is its non-destructive nature. The determination of
the substances and their state can provide conservators with a warning notice for
emergency restoration. Additionally, Raman spectra can provide a disambiguation
mechanism for unique materials for which the experts’ prior knowledge might be
limited. Since the Raman spectra give information about the organic and inorganic
components of a specimen, it has been possible to identify areas of wall-paintings,
frescoes and rock art. However, in each case, characteristic Raman band signatures
were provided for these minerals with established databases such as those in the
literature [50, 73, 6].

2.2.1 Related Work

While early efforts relied on expert knowledge of spectral features, more recent ap-
proaches have made use of a wide range of statistical and machine learning tools.
Specifically in the geosciences, pioneering work in automated mineral identifica-
tion has been performed on ExoMars [74, 75, 76], building upon earlier insights
[77]. Automated identification of minerals using univariate analysis has been stud-
ied [78, 79, 80], but it is not fully adaptable to mineral mixtures.

Some early approaches were limited to the task of identifying specific compo-
nents [81, 82], while others attempted to cluster spectra into logical groups [83, 84].
The majority of methods perform a variety of spectrum preprocessing steps, in or-
der to reduce the influence of noise and fluorescence [85, 86]. Additionally, many
studies investigated spectra projections into lower-dimensional feature spaces, us-
ing Principal Components Analysis (PCA) [83, 87].

Recently, a wide use of Support Vector Machines (SVMs) [88] has been con-
nected with small-scale medical related investigations. SVM, a powerful machine
learning tool, outperformed linear discriminant analysis (LDA) and partial least
squares discriminant analysis (PLS-LDA) [89, 90, 91]. Also, SVMs have been used
for applications on mineral detection with near-infrared spectroscopy [82], as well
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as in composition prediction with Raman spectra [92].
Artificial neural networks (ANNs) have seen increasing use in applications in

the domain of spectroscopy [84, 93]. Similarity-based methods for both peak-
feature [74] and full-spectrum matching [94, 95] have also been explored.

Most of the aforementioned studies set the basis for mineral identification in
pure phases, yet their applications were qualified to a specific domain using small-
scale customized datasets for their respective tasks. In addition, they haven’t uti-
lized the full RRUFF Raman dataset [96] as a benchmark reference set, in order to
test algorithms against its large number of spectra.

On the contrary, the most recent work [83, 12] has focused on identifying min-
eral species contained in RRUFF’s larger-scale dataset3 using nearest neighbor
methods with different similarity metrics, such as cosine similarity and correlation.
[12] achieved a species classification accuracy on a subset of the RRUFF database
of 84.8% using a weighted neighbor (WN) classifier. Square root squashing, max-
imum intensity normalization, and sigmoid transformations were applied to the
data prior to classification. Accuracy was determined using cross validation with
semi-randomized splits over a number of trials. The WN classifier compared fa-
vorably with the k = 1 nearest neighbor (82.1% accuracy). Finally, [13] proposed
a deep convolutional neural network (CNN) architecture for Raman spectra recog-
nition and baseline correction. They performed one-leave-out cross-validation for
their experiments, while they suggested an augmentation strategy for the training
set, in order to meet the data volume requirements for the training of their archi-
tecture. The accuracy of spectra recognition on the already baseline corrected data
reached 88.4%, while they achieved an accuracy of 93.3%, when they set up their
architecture to perform baseline correction on raw data prior to the identification.

2.2.2 The Machine Learning Approach

The term Machine learning was coined by Arthur Samuel in 1959, and it refers to
a field which has evolved from the study of pattern recognition and computational
learning theory. It is a major branch of the artificial intelligence family [3] and it ex-
plores the study and development of algorithms that can learn from data and make
predictions [4]. Machine learning is used in a vast range of tasks, where designing
an otherwise explicit algorithm customized for solving a particular problem would
wield poor performance. These tasks for example span the range of email filtering,
to optical character recognition (OCR),[7] and computer vision.

A machine learning algorithm can be expressed as a function y(x) which takes
a new input vector x (mentioned also as feature vector) and generates an output
vector y, encoded in the same way as the target vectors[REF BISHOP]. The behavior
of the function of y(x) is formed during the training phase on the basis of the

3it is believed that RRUFF has been also used in commercial software such as CrystalSleuth [12, 13]
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training data. After the training phase the model is capable to meet its purpose
by recognizing the identity of unseen feature vectors, which they belong in a test
set. Usually, machine learning algorithms have the an advantageous characteristic,
namely the ability to generalize, that is it has the capacity to perform well the task
it was designed for at examples that differ from those that were used during the
training phase.

Usually, the original input variables are preprocessed, in order to be trans-
formed into a new space of variables. This serves the purpose of enabling the ma-
chine learning algorithm to better recognize the emergent patterns. For instance,
a typical problem in computer vision is recognition of objects within images. As
images come in many shapes and the objects within them are not always depicted
in a similar fashion, the input images are pre-processed in terms of translation and
scale so that meet a fixed size. This pre-processing stage is sometimes also called
feature extraction. Pre-processing might also be performed in order to speed up
computation. Often, there is a need for real-time predictions, thus the features be-
ing extracted should contain only the most relevant information in a meaningful
way, so that they enable the model to learn how to discriminate them.

Supervised learning problem is known to be the setting where for each input
vector its corresponding output vector is known during the training phase and is
being used by the algorithm to model the relationship between them. Supervised
learning is suitable for tasks such as classification or regression. When the aim is to
assign each feature vector to one of a finite number of discrete categories, it called
a classification problem. On the other hand, if the desired output consists of one
or more continuous variables, then the task is called regression.

In contrast with the supervised learning problems, there is an other category in
which the training data consist of a set of input vectors x without any correspond-
ing target values. The goal in such unsupervised learning problems may be to
discover groups of similar examples within the data, where it is called clustering,
or to determine the distribution of data within the input space, known as density
estimation, or to project the data from a high-dimensional space down to two or
three dimensions for the purpose of visualization. [rEF BISHOP]

Finally, the technique of reinforcement learning (Sutton and Barto, 1998) is
concerned with the problem of finding suitable actions to take in a given situation
in order to maximize a reward. Here the learning algorithm is not given examples
of optimal outputs, in contrast to supervised learning, but must instead discover
them by a process of trial and error. Typically there is a sequence of states and
actions in which the learning algorithm is interacting with its environment.

In this work we will deal with the problem of mineral identification as a su-
pervised learning problem. We will regard as feature vector the measured spec-
trum itself, while for each spectrum there is a corresponding known a-priori label,
namely its species name.
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Mineral Identification as a Supervised Learning Problem

Supervised learning is simply a formalization of the idea of learning from exam-
ples. In supervised learning, the sample space is divided between two sets of data,
a training set and a test set. The idea is for the algorithm to learn from a set of
labeled examples in the training set, so that it can identify the label of unseen ex-
amples in the test set with the highest possible accuracy. The goal of the learning
algorithm is to develop a rule (or a function) that classifies new examples (in the
test set) by analyzing examples with class label it has been already given during
the training phase.

For example, a training set might consist of images of different types of animals
(say, dogs and cats), where the identity of the animal in each image is given to the
learning algorithm. The test set would then consist of more unidentified images
of animals, but from the same classes. The goal is for the learning algorithm to
develop a function that can identify the elements in the test set. There are many
different approaches that attempt to build the best possible method of classifying
examples of the test set by using the data given in the training set.

Formally, in supervised learning, the training set consists of n ordered pairs
(x1, y1), (x2, y2), ..., (xn, yn), where each xi is some measurement or set of measure-
ments of a single example data point, and yi is the label for that data point. For
example, an xi might be a group of five measurements (a vector) for a swimmer
in a team including height, weight, preferred swimming style, and lap records for
different distances. The corresponding yi might be a classification of the swimmer
as “fast” or “not fast”. The test data in supervised learning is another set of m
measurements without labels: (xn+1, xn+2, ..., xn+m). As described above, the goal
is to make educated guesses about the labels for the test set (such as “fast” or “not
fast”) by drawing inferences from the training set.

Following the above example in this work we will consider that each xi is a
mineral’s spectrum and the yi gives the species name of the mineral. To train
such a classifier, we would provide sample spectra (a training set) for each type
of mineral. Then we would use the classifier by having it label new spectra of
minerals (a test set).

Solving the Problem

In this work we propose a supervised learning approach for the problem of mineral
identification. The proposed method belongs in the ensemble learning tree based
classification algorithms family. As it is discussed in the next chapter a decision tree
is a type of supervised learning algorithm (having a pre-defined target variable)
that is mostly used in classification problems. It works for both categorical and
continuous input and output variables. In this technique, we split the population
or sample into two or more homogeneous sets (or sub-populations) based on most
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significant splitter/differentiator in input variables. All the splits are being made
with the use of some criteria, such as the entropy or the information gain. At the
end of the splitting process the tree can predict the possibility of a sample to belong
in a given class. On the other hand, the combination of the opinions gathered
from different trees, is called an ensemble. Where the tree models yield poor
performance (weak learner), the ensemble is proved to perform better. Therefore,
the class of ensemble learning methods is what we deem suitable for solving the
aforementioned problem, since we can exploit its merits, while its disadvantages
seem not to affect considerably our approach.

2.2.3 Organizational Systems for Minerals

Mineral classification can be an organizational nightmare. With over 3,000 different
types of minerals a system is needed to make sense of them all. There are many
ways which are in current use to help with the classification of minerals, such as:
Dana’s New Mineralogy [97], the Strunz classification [98], A Systematic Classi-
fication of Minerals [99] and the various volumes of Deer, Howie and Zussman
(Rock-forming Minerals series), which use combinations of mineral structure and
chemical composition to classify minerals. Mineral species can be grouped in a
number of different ways, on the basis of chemistry, crystal structure, occurrence,
association, genetic history, or resource, for example, depending on the purpose to
be served by the classification. We have chosen to sort the minerals and synthetics
using the Dana classification in Dana’s New Mineralogy [97] devised by Professor
James Dana of Yale University way back in 1848. The Dana system provides an
hierarchical organization system as a four-part number that classifies minerals into
classes, types, groups, and species accordingly [100].

The hierarchical division is nested, such that each class is described in types,
the types into groups and the groups in species.
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Tree structured models

3.1 Decision Trees

A decision tree can be described in many ways depending from which perspective
is examined. From graph theory perspective is directional graph, while from in-
formation theory is a constant binary division of the feature space. In general, a
decision tree is a classifier expressed as a recursive partition of the sample space.
Decision trees can be organized in two types. Categorical Variable Decision Tree:
A Decision Tree which has categorical target variable then it called as categorical
variable decision tree. Example:- In above scenario of student problem, where the
target variable was “Student will play cricket or not” i.e., YES or NO. Continuous
Variable Decision Tree: A Decision Tree has continuous target variable then it is
called as Continuous Variable Decision Tree. The decision tree consists of nodes
that form a rooted tree, meaning the root is the beginning of the tree structure. All
other nodes have exactly one incoming edge and two outgoing edges leading to
the children nodes. The nodes that have no children nodes connected to them are
considered to be the terminal nodes (also called leaves). In a decision tree, each
internal node splits the sample space into two (or more) sub-spaces according to a
certain discrete function. In the simplest and most frequent case, each splitting test
considers a single attribute, such that the instance space is partitioned according
to the attribute’s value.

Each leaf is assigned to one class representing the most appropriate target
value. Alternatively, the leaf may hold a probability vector indicating the prob-
ability of the target attribute having a certain value. The samples are classified by
traversing them through the tree from the root down to a leaf, according to the
outcome of the tests along the path. FIGURE represents a tree, where the internal
nodes are represented as black circles, whereas leaves are denoted as squares. Note
that a decision tree can deal with both nominal and numeric attributes.

A geometrical interpretation of the numerical attributes in the internal nodes

27
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of a decision tree is that of a collection of hyperplanes, each orthogonal to one of
the axes. The tree complexity affects its accuracy (breiman 87) and is explicitly
influenced by the stopping criteria. The total number of nodes, total number of
leaves, tree depth and number of attributes used are the usual measurements for
the determination of the tree complexity.

The induction of a decision tree is closely related to rule induction. Each path
from the root of a decision tree to one of its leaves can be transformed into a rule
simply by conjoining the tests along the path to form the antecedent part, and
taking the leaf’s class prediction as the class value. (Quinlan, 1987).

Minimum samples for a node split Defines the minimum number of samples (or
observations) which are required in a node to be considered for splitting. Used to
control over-fitting. Higher values prevent a model from learning relations which
might be highly specific to the particular sample selected for a tree. Too high values
can lead to under-fitting hence, it should be tuned using CV. Minimum samples
for a terminal node (leaf) Defines the minimum samples (or observations) required
in a terminal node or leaf. Used to control over-fitting similar to min samples split.
Generally lower values should be chosen for imbalanced class problems because
the regions in which the minority class will be in majority will be very small.
Maximum depth of tree (vertical depth) The maximum depth of a tree. Used to
control over-fitting as higher depth will allow model to learn relations very specific
to a particular sample. Should be tuned using CV. Maximum number of terminal
nodes The maximum number of terminal nodes or leaves in a tree. Can be defined
in place of max depth. Since binary trees are created, a depth of n would produce
a maximum of 2n leaves. Maximum features to consider for split The number
of features to consider while searching for a best split. These will be randomly
selected. As a thumb-rule, square root of the total number of features works great
but we should check upto 30-40% of the total number of features. Higher values
can lead to over-fitting but depends on case to case.

In summary, the basic terminology used with Decision trees:

• Root Node: It represents entire population or sample and this further gets
divided into two or more homogeneous sets.

• Splitting: It is a process of dividing a node into two or more sub-nodes.

• Decision Node: When a sub-node splits into further sub-nodes, then it is
called decision node.

• Leaf/ Terminal Node: Nodes do not split is called Leaf or Terminal node.

• Pruning: When we remove sub-nodes of a decision node, this process is
called pruning. You can say opposite process of splitting.

• Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree.
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• Parent and Child Node: A node, which is divided into sub-nodes is called
parent node of sub-nodes where as sub-nodes are the child of parent node.

3.1.1 Splitting Criteria

The simplest case of discrete splitting functions is of univariate nature e. g., an
internal node is split according to the value of a single attribute from the feature
vector. Naturally, the inducer searches for the best attribute upon which to split.
There are various univariate criteria. These criteria can be characterized in different
ways, such as:

• According to the origin of the measure: information theory, dependence, and
distance.

• According to the measure structure: impurity based criteria, normalized im-
purity based criteria and Binary criteria.

Bellow there are mentioned the criteria which are used most frequently.

Impurity-based Criteria

Given a random variable x with k discrete values, distributed according to P =

(p1, p2, ..., pk), an impurity measure is a function φ : [0, 1]k → R that satisfies the
following conditions:

• φ(P) ≥ 0

• φ(P) is minimum if i such that component pi = 1

• φ(P) is maximum if ∀i, 1 ≤ i ≤ k, pi =
1
k

• φ(P) is symmetric with respect to components of P

• φ(P) is smooth (differentiable everywhere) in its range

Note that if the probability vector has a component of 1 (the variable x gets
only one value), then the variable is defined as pure. On the other hand, if all
components are equal, the level of impurity reaches maximum. Given a training
set S, the probability vector of the target attribute y is defined as:

Py(S) = (
|σy=c1 S|
|S| , ...,

|σy=cd(y)S|
|S| ) (3.1)

The goodness–of–split due to discrete attribute ai is defined as reduction in
impurity of the target attribute after partitioning S according to the values vi,j in
d(αi):

∆φ(αi, S) = φ(Py(S))−
d(αi)

∑
j=1

|σαi=vi,j S|
|S|

˙φ(Py(σαi=vi,j S)) (3.2)
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Information Gain

Information gain is an impurity-based criterion that uses the entropy measure (ori-
gin from information theory) as the impurity measure (Quinlan, 1987).

In f ormationGain(αi, S) = Entropy(y, S)−
d(αi)

∑
j=1

|σαi=vi,j S|
|S|

˙Entropy(y, σαi=vi,j S) (3.3)

where:

Entropy(y, S) = ∑
cj∈d(y)

−
|σy=cj S|
|S| ˙log2

|σy=cj S|
|S| (3.4)

Gini Index

Gini index is an impurity-based criterion that measures the divergences between
the probability distributions of the target attribute’s values. The Gini index has
been used in various works such as (Breiman et al., 1984) and (Gelfand et al., 1991)
and it is defined as:

Gini(y, S) = 1− ∑
cj∈d(y)

(
|σy=cj S|
|S| )2 (3.5)

Consequently the evaluation criterion for selecting the attribute ai is defined as:

G(αi, S) = G(y, S)− ∑
vi,j∈d(y)

|σαi=cj S|
|S| Gini(y, σα=vi,j S) (3.6)

3.1.2 Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The following
conditions are common stopping rules:

1. All instances in the training set belong to a single value of y.

2. The maximum tree depth has been reached.

3. The number of cases in the terminal node is less than the minimum number
of cases for parent nodes.

4. If the node were split, the number of cases in one or more child nodes would
be less than the minimum number of cases for child nodes.

5. The best splitting criteria is not greater than a certain threshold.
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3.1.3 Advantages vs. Disadvantages of Decision Trees

Advantages

Several advantages of the decision tree as a classification tool have been pointed
out in the literature:

1. Decision trees are self–explanatory and when compacted they are also easy to
follow. In other words if the decision tree has a reasonable number of leaves,
it can be grasped by non professional users. Furthermore decision trees can
be converted to a set of rules. Thus, this representation is considered as
comprehensible.

2. Decision trees can handle both nominal and numeric input attributes.

3. Decision tree representation is rich enough to represent any discrete value
classifier

4. Decision trees are capable of handling datasets that may have errors.

5. Decision trees are capable of handling datasets that may have missing values.

Disadvantages

Decision trees are considered to be a nonparametric method. This means that
decision trees have no assumptions about the space distribution and the classifier
structure.

On the other hand, decision trees have such disadvantages as (Quinlan, 1993):

1. Most of the algorithms (like ID3 and C4.5) require that the target attribute
will have only discrete values.

2. As decision trees use the “divide and conquer” method, they tend to perform
well if a few highly relevant attributes exist, but less so if many complex in-
teractions are present. One of the reasons for this is that other classifiers can
compactly describe a classifier that would be very challenging to represent
using a decision tree. A simple illustration of this phenomenon is the repli-
cation problem of decision trees (Pagallo and Huassler, 1990). Since most
decision trees divide the instance space into mutually exclusive regions to
represent a concept, in some cases the tree should contain several duplica-
tions of the same sub-tree in order to represent the classifier. For instance if
the concept follows the following binary function: then the minimal univari-
ate decision tree that represents this function is illustrated in Figure 9.3. Note
that the tree contains two copies of the same subtree.
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3. The greedy characteristic of decision trees leads to another disadvantage that
should be pointed out. This is its over–sensitivity to the training set, to irrel-
evant attributes and to noise.

3.2 Random Forest

Random forests are a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribu-
tion for all trees in the forest. Some random forests reported in the literature have
consistently lower generalization error than others. For instance, random split se-
lection (Dieterrich [1998]) does better than bagging. Breiman’s introduction of ran-
dom noise into the outputs (Breiman [1998c]) also does better. But none of these
three forests do as well as Adaboost (Freund and Schapire [1996]) or other algo-
rithms that work by adaptive reweighting (arcing) of the training set (see Breiman
[1998b], Dieterrich [1998], Bauer and Kohavi [1999]).

To improve accuracy, the randomness injected has to minimize the correlation
ρ while maintaining strength. The forests studied here consist of using randomly
selected inputs or combinations of inputs at each node to grow each tree. The
resulting forests give accuracy that compare favorably with Adaboost. This class
of procedures has desirable characteristics:

1. Its accuracy is as good as Adaboost and sometimes better.

2. It’s relatively robust to outliers and noise.

3. It’s faster than bagging or boosting.

4. It gives useful internal estimates of error, strength, correlation and variable
importance.

5. It’s simple and easily parallelized.

Following the pioneering work of Breiman [9], bellow it is described the defini-
tion of Random Forest in a formal manner as well as the theorem which gives the
convergence characteristic of the algorithm .

The common element in all of these procedures is that for the kth tree, a random
vector Θk is generated, independent of the past random vectors Θ1, ..., Θk−1 but
with the same distribution; and a tree is grown using the training set and Θk,
resulting in a classifier h(x, k) where x is an input vector. For instance, in bagging
the random vector Θ is generated as the counts in N boxes resulting from N darts
thrown at random at the boxes, where N is number of examples in the training set.
In random split selection Θ consists of a number of independent random integers
between 1 and K. The nature and dimensionality of Θ depends on its use in tree
construction.
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After a large number of trees is generated, they vote for the most popular class.
We call these procedures random forests.

Definition 3.1 A random forest is a classifier consisting of a collection of tree-structured
classifiers h(x, Θk), k = 1, ... where the Θk are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x.

Given an ensemble of classifiers h1(x), h2(x), ..., hK(x), and with the training set
drawn at random from the distribution of the random vector Y, X, define the
margin function as

mg(X, Y) = avk I(hk(X) = Y)−max
j 6=Y

(hk(X) = j) (3.7)

where I is the indicator function. The margin measures the extent to which the
average number of votes at X, Y for the right class exceeds the average vote for any
other class. The larger the margin, the more confidence in the classification. The
generalization error is given by

PE∗ = PX,Y(mg(X, Y) ≤ 0) (3.8)

where the subscripts X, Y indicate that the probability is over the X, Y space. In
random forests, hk(X) = h(X, Θk). For a large number of trees, it follows from the
Strong Law of Large Numbers and the tree structure that:

Theorem 3.2 As the number of trees increases, for almost surely all sequences Θ1, ..., Θk,
PE∗ converges to

PX,Y(PΘ(h(X, Θ) = Y)−maxj 6=qPΘ(h(X, Θ) = j) ≤ 0) (3.9)

This result explains why random forests do not overfit as more trees are added,
but produce a limiting value of the generalization error.

3.3 Extremely Randomized Trees

The Extra-Trees algorithm builds an ensemble of unpruned decision trees accord-
ing to the classical top-down procedure. Its two main differences with other tree-
based ensemble methods are that it splits nodes by choosing cut-points fully at
random and that it uses the whole learning sample (rather than a bootstrap replica)
to grow the trees [10].

The Extra-Trees splitting procedure for numerical attributes has two parame-
ters: K, the number of attributes randomly selected at each node and nmin, the
minimum sample size for splitting a node. It is used several times with the (full)
original learning sample to generate an ensemble model (we denote by M the num-
ber of trees of this ensemble). The predictions of the trees are aggregated to yield
the final prediction, by majority vote in classification problems.
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From the bias-variance point of view, the rationale behind the Extra-Trees method
is that the explicit randomization of the cut-point and attribute combined with en-
semble averaging should be able to reduce variance more strongly than the weaker
randomization schemes used by other methods. The usage of the full original
learning sample rather than bootstrap replicas is motivated in order to minimize
bias. From the computational point of view, the complexity of the tree growing
procedure is, assuming balanced trees, on the order of N log N with respect to
learning sample size, like most other tree growing procedures. However, given the
simplicity of the node splitting procedure we expect the constant factor to be much
smaller than in other ensemble based methods which locally optimize cut-points.

The parameters K, nmin and M have different effects: K determines the strength
of the attribute selection process, nmin the strength of averaging output noise, and
M the strength of the variance reduction of the ensemble model aggregation. These
parameters could be adapted to the problem specifics in a manual or an automatic
way (e.g. by cross-validation). However, it is suggested the use of default settings
for them in order to maximize the computational advantages and autonomy of the
method [10].

3.4 Considerations

Despite the merits of the Random Forest technique, there are several aspects of the
data which affect the performance of the proposed method and need to be taken
into consideration. Our work is based on the following assumptions, which can
also be found commonly in the literature. First, we consider that the spectra are
not raw measurements but they are baseline corrected. Second, we exclude all
the spectra samples that exhibit overwhelming fluorescence masking. Third, we
observed that the spectra samples span different wavenumber ranges as well as
different sampling ratios. Therefore, we apply a re-sampling technique. Finally,
we reduct the wavenumber range between some limits, so that only the features
drawn from them contain meaningful information. The aforementioned assump-
tions and the strategies we followed regarding them are described throughout the
next chapter.

3.5 Proposed Approach

The systematic study of the spectra dataset reveals various characteristics, which
make the classification task extremely challenging even for a human expert. Con-
sequently, we devised a data engineering workflow, to carefully select and trans-
form the data in order to be able to harness the (otherwise) expected classification
power of the Random Forest method in such problems. The proposed method
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is referenced as Random Forest P&A (from Preprocessing and Augmentation), and is
explained in the following paragraphs.

3.5.1 Preprocessing

In the field of machine learning, it is a common approach and usually desired to
pre-process the data, in such a way that the learning algorithm is encouraged to
learn better the discrimination between the samples. Pre-processing can be any
transformation process that maps a feature space into an another.

The Raman spectra act as unique fingerprints themselves. Hence, the measure-
ments of a spectrum, namely the intensity-wavenumber pair, can be used directly
as a feature vector. In practice though, differences in equipment or the acquisition
process can introduce a number of artifacts (sampling rates, noise, fluorescence
effect or the Raman effect is weak) that prevent the direct comparison of such spec-
tra. Therefore, a pre-processing step is required before shaping the feature vector.
The pre-processing approach we found in the literature [12], which enhances the
nature of the spectra, without projecting them in a substantially different space is
the following:

• Re-sampling

• Square root transformation: f (x) =
√

x

• Sigmoid transformation: f (x) = 1−cos πx
2

• Intensity normalization with L∞ norm: ‖x‖∞ = max(|xi|)

Re-sampling

As a result of differences in the acquisition sources during the collection of the
data, the spectra correspond to different sampling rates and measurement ranges.
Therefore, it is crucial to resample the spectra into a common set of wavenumbers.
For that reason, it is recommended the use of interpolation. Interpolation is a pro-
cess of finding a formula (often a polynomial) whose graph will pass through a
given set of points (x, y), in such a way that it replaces a set of data points (xi, yi)

with a function given analytically. Since the measurement rates in the spectra are
dense (despite the differences between them in separate spectra), linear interpo-
lation is applied, in order to map the intensity, wavenumber pair into a common
axis.

y = y0 + (x− x0)
y1 − y0

x1 − x0
=

y0(x1 − x) + y1(x− x0)

x1 − x0
(3.10)
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3.5.2 Signal enhancing

Another difference between the spectra is the intensity range. The Raman intensity
is a function of the polarizability and symmetry and therefore probes the bonding
covalence and structure. Since the spectrum’s intensity is concentration dependent,
there might be subtle or severe differences in two different spectra acquired from
separate samples of the same species. However, if one checks the ratio of two
peaks just by height or area and compare the ratio of the same peaks and if both
these ratios are roughly the same then one can infer that the difference in intensity
is just an artifact in sample preparation and the concentration of the sample to
be properly adjusted before measurement, as shown in Figure ??. Therefore, the
following signal enhancing strategy deals with the shape of the peaks, while it
brings them into the same intensity range.

Figure 3.1: Example of samples before pre-processing. Note that both samples belong in the same
family of species, despite the differences in the peak-intensity values.

First, intensity squashing is performed by transforming the signal as a function
of its square root f (x) =

√
x, as shown in Figure 3.2

Subsequently, a sigmoidal transformation is performed f (x) = 1−cos πx
2 , such

that the signal’s noise is moderated and smoothed. Finally, in Figure 3.3, it is
shown the last step of the pre-processing (along with all the aforementioned trans-
formations), which is intensity normalization. Intensity normalization, brings all
spectra into the same intensity range, that is between 0 and 1, using the L∞ norm.
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Figure 3.2: Example of samples after square root transformation.

Figure 3.3: Example of samples after all pre-processing steps. The peak intensities are normalized
and belong in the same range.

3.5.3 Data Augmentation

As described in [13] data augmentation can be applied in cases in which the train-
ing data volume is not enough for a successful training of a machine learning
method. We performed the following augmentation procedure: (1) we shifted each
spectrum left or right a few wavenumbers randomly; (2) we added random noise,
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proportional to the magnitude at each wavenumber. The result of the augmenta-
tion is illustrated by an example shown in Figure 3.4.

Figure 3.4: An example of sample data augmentation.



Chapter 4

Experimental Design and Implemen-
tation

4.1 Motivation

The principal aim of this research is to investigate the effectiveness of the ensemble
learning methods on the task of mineral identification. To achieve that, we wish
to discover how well the ensemble learning methods perform on an individual
species basis, as well as in other particular mineral description groupings following
the Dana Mineral Organizational Scheme. Therefore, two kind of experiments will
be demonstrated.

In the first experiment, we show the effectiveness of various methods regarding
the task of identifying the individual mineral species given their respective Raman
spectra. Since the goal of this experiment is for a given method to learn how to
distinguish and classify each spectrum to the correct mineral name, the samples
set of the RRUFF database was split in two subsets, one for training the methods
and the other for testing them respectively. Both the training and testing subsets
contained the Raman spectra as features and their corresponding species names as
labels. The splitting process is described in detail in this Chapter.

The second experiment, on the other hand, aims at measuring the effectiveness
of the compared methods in identifying in which class, type and group a Raman
spectrum belongs to alongside with its respective species label. We follow a similar
experimental structure as the first experimental design, namely we use the Raman
spectra as feature but the labels change from species to mineral class, type and
group according to the Dana Mineral Organizational Scheme. Thus, in this exper-
imental design we show the effectiveness of each method in classifying correctly a
mineral’s spectrum to more than one corresponding label.

39
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4.2 Choice of Dataset

In today’s world, many people rely on the availability of databases to perform
daily activities such as checking meteorological forecast, finding a recipe, or ver-
ifying the spelling of a word. These are examples of actions that anyone can do
quickly, routinely, and often at little cost, because of access to the Internet and the
development of extensive databases.

The science community has always relied on databases, which in the earlier
years were only available through collations of journals, books and data records.
The analog nature of these data resources dramatically limits the process of search-
ing records and establishing relations between datasets.

Mineral identification using Raman spectroscopy is normally performed by
search/match routines that compare the acquired spectrum with reference spec-
tra from a database. The purpose of the RRUFF project is to develop such a Raman
database by measuring the chemistry, X-ray diffraction patterns, Raman, and in-
frared spectra of the known minerals and to make these data readily and freely
available to the scientific community, industry, and the general public. RRUFF
database currently contains about 7000 mineral samples representing 3500 mineral
species.

As of this moment, 3527 of the 4985 known mineral species have been incor-
porated into the RRUFF sample collection. As data from a sample is collected,
it is posted into the database with password restricted access, referred to as non-
public access. After a review process, if the data appears to be representative of the
sample, then the password restriction is removed and the data becomes publicly
accessible. As a consequence, measurements from only 2128 mineral species are
currently publicly accessible. When possible, data from at least two samples of
each species, ideally from different localities, are included in the database. Hav-
ing multiple samples provides a means to con rm data and capture the chemical
variability frequently observed in minerals. For instance, the database currently
contains 42 records on the important olivine forsterite-fayalite series, with asso-
ciated Mg-Fe chemical variations. In total, data from 3791 samples are publicly
accessible through the RRUFF database.

The RRUFF project includes an extensive reference library of publications di-
rectly linked to their associated minerals. For the most part, these articles are
focused on spectroscopy, structure, and chemistry of minerals. The complete list of
collaborators can be found at: http://rruff.info/about/about_publishers.php.

The RRUFF database contains both raw and already baseline corrected spectra.
In our study, we used the set of spectra that were already baseline corrected with
piecewise linear interpolation between smoothed off-peak segments, and further
preprocessed for artifact removal.

http://rruff.info/about/about_publishers.php
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4.2.1 Dataset Statistics

The RRUFF database contains both raw and already baseline corrected spectra. In
our study, we used the set of spectra that were already baseline corrected with
piecewise linear interpolation between smoothed off-peak segments, and further
preprocessed for artifact removal. The acquisition of these spectra was performed
at random orientations. Similar to [12], spectra with overwhelming specimen fluo-
rescence were removed from our selection from the dataset. Even though perform-
ing piece-wise interpolation is a trivial procedure, it is our intention to leave the
data untampered and use the provided preprocessed data, since implementing an
in house solution for the raw spectra might introduce deviations from the initial
dataset and the comparison with others’ works would have been unfair. Hence, we
adopted the provided baseline corrected data unaltered. Additionally, according
to the aforementioned study, it is a common practice that experts of the Raman
community, who use the data provided by the RRUFF database and the Crystal-
Sleuth software, avoid further modification and work with the standard RRUFF
processed data.

The subset of the RRUFF database we used it had more than 5000 spectra,
which according to the DANA organization scheme except for the species label,
also it could be described in groups, types and classes. Table 4.1 summarizes the
dataset’s statistical information from the DANA perspective.

Table 4.1: Dataset description according to DANA

Organization level # labels
Class 79
Type 307
Group 977
Species 1683

4.2.2 Grooming the Dataset

As mentioned before, the RRUFF dataset has numerous samples for a wide range
of species, but not all of them were suitable for the purpose of our experiments.
A grooming procedure was employed, such that irrelevant samples to the purpose
of his work were excluded. First, each mineral name was matched with its four-
part Dana classification number, some minerals had no match, thus they were
excluded.[33] Many minerals in the RRUFF database are represented by a small
amount of spectra, as depicted in Figure 4.1, thus, performing random splits in
our dataset would result to some subsets in the testing sets, in which the classifier
would have no knowledge of their label. To avoid this problem we follow the
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Figure 4.1: Statistical profile of the dataset.

same semi-randomized split strategy as in [12], where for each query spectrum
to have at least one true match in the reference set, the reference set for each
trial is constructed by selecting three spectra per mineral species at random. All
remaining spectra are assigned to the trial’s query set. As a result, species with
three or fewer total spectra are not present in the query set for any trial and always
appear in the reference set. According to this strategy, there are 2934 reference
spectra and 1356 query spectra for each trial. Note, that our numbers differ from
[12] because the RRUFF dataset has been updated since that study.

After the dataset’s grooming procedure, its DANA description was as in Ta-
ble 4.2

Table 4.2: Dataset description according to DANA (after grooming)

Organization level # labels
Class 78
Type 306
Group 966
Species 1419
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4.3 Parameter Selection

After extensive experimentation with the RRUFF dataset and our first results us-
ing multiple scenarios it has become clear that the application of Decision Trees
or their extension, the Random Forest, although intuitively fitting the problem at
hand, are expected to have a limited discriminative power and thus, classification
efficiency. In addition, the systematic study of the dataset reveals various character-
istics, which make the classification task extremely challenging even for a human
expert. Consequently, we devised a data engineering workflow, to carefully se-
lect and transform the data in order to be able to harness the (otherwise) expected
classification power of the Random Forest method in such problems. The proposed
method is referenced as Random Forest P&A (from Preprocessing and Augmentation),
and is explained in the following paragraphs.

4.3.1 Baseline correction

Variations in intensity can significantly affect the success of the search/ match
routines. In certain cases, especially for rock-forming minerals, Raman spectra col-
lected in additional different orientations with respect to the polarization direction
of the incident laser are collected. CrystalSleuth is used to correct the spectral base-
line, using a subroutine from the Razor library http://www.spectrumsquare.com
by Spectrum Square Associates, to remove cosmic rays events from patterns [28],
to trim edges, to reverse X-axis display, and to visualize and compare multiple
spectra. Both raw and processed data are included on RRUFF as XY-ASCII files.
In figure we provide a comparison between a raw measurement and a baseline
corrected signal of the same species.

The acquisition of these spectra was performed at random orientations. Similar
to [12], spectra with overwhelming specimen fluorescence were removed from our
selection from the dataset. Even though performing piece-wise interpolation is
a trivial procedure, it is our intention to leave the data untampered and use the
provided preprocessed data, since implementing an in house solution for the raw
spectra might introduce deviations from the initial dataset and the comparison
with others’ works would have been unfair. Hence, we adopted the provided
baseline corrected data unaltered. Additionally, according to the aforementioned
study, it is a common practice that experts of the Raman community, who use
the data provided by the RRUFF database and the CrystalSleuth software, avoid
further modification and work with the standard RRUFF processed data.

4.3.2 Pre-processing parameters

As a result of differences in the acquisition sources during the collection of the
RRUFF data, the spectra correspond to different sampling rates and measure-

http://www.spectrumsquare.com
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Figure 4.2: Several samples prior to preprocessing (top) and the same samples after preprocessing
(bottom); the arrangement of peaks remain the same as the preprocessing aims at altering only the
intensities.

ment ranges. Therefore, it is crucial to resample the spectra into a common set
of wavenumbers. Using linear interpolation we opted for a measurement range
between 85 and 1315 cm−1 with uniform sampling of 2048 intensity values.

4.3.3 Data Augmentation Parameters

The augmentation parameters for the spectrum shifting were α = 0.5 for the ran-
dom chance of the signal shifting left or right, δ = 5 for the shifting range limit,
and µ = 0.1 as the proportion of noise imposed to the signal’s magnitude.

4.3.4 Decision Tree Parameters

The parameters concerning the DT were the number of features randomly selected
at each node m =

√
2048, the maximal depth was defined so as to let the nodes

expand until all leaves are pure, or until all leaves contain less than the minimal
number of samples, which was set to 3
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4.3.5 Random Forest Parameters

The parameters concerning the RF were K = 1000 trees, the number of features
randomly selected at each node m =

√
2048, the maximal depth was defined so as

to let the nodes expand until all leaves are pure, or until all leaves contain less than
the minimal number of samples, which was set to 3.

4.3.6 Extra Randomized Trees

The parameters concerning the RF were K = 1000 trees, the number of features
randomly selected at each node m = 30, the maximal depth was defined so as to
let the nodes expand until all leaves are pure, or until all leaves contain less than
the minimal number of samples, which was set to 3.

4.4 Implementation Details

For traceability and repeatability we note that all the experiments run on the same
Apple Macbook with a 2 GHz Intel Core i7 and 8 GB RAM, in which and where ap-
plicable (i.e., during the random forest training), we opted for GPU parallelization.
We used Matlab for the analysis and visualization of the dataset, as well as for its
grooming and the aforementioned transformation processes. The development of
the machine learning framework situated in the environment of Python, as it offers
many well established libraries for the training and testing of such algorithms.





Chapter 5

Results and Discussion

5.1 Performance

5.1.1 Species Identification

We evaluated our methods (Random Forest P&A and Extra Trees P&A) using the
RRUFF database as in [12, 13]. Since our experimental setup is similar to the work
in [12], we included their results for comparison in Table 5.1, where also the re-
sults by [13] (only for the case of the corrected RRUFF data) are included for a
fair comparison. The table includes the results obtained by k-Nearest Neighbour
classification after normalisation with k = 1 and k = 10 respectively; an accuracy
of 82.1% has been reported for k = 11, whereas increasing the number k up to
the 10 nearest neighbours didn’t actually have a significant impact. The Weighted
Neighbours method, after the square root, sigmoidal and maximum intensity nor-
malisation transformations, reported an accuracy score of 84.8%, indicating the
importance of the preprocessing step. A simple multilayer perceptron artificial
neural network is reported to have achieved a low accuracy of 35.6%.

More similar to our approach are the Decision Tree and the Random Forest
methods. As expected, the Decision Tree, being a weak learner in its nature, won’t
be able to learn well the classification. That has much to do with the complexities
of the Raman spectra, where a weak model yields poor discriminating power when
it comes to capturing the particular nuances of each mineral’s spectrum, due to a
sample’s irregular chemical mixtures, which ultimately leads to misclassifications.

Prior to applying the preprocessing transformations and the aforementioned
augmentation strategy, we tested the Random Forest with the unprocessed Raman
spectra. We found that the method performs better than the Decision Tree, as it
has achieved a higher classification performance, scoring 67.5%. However, after
we applied the preprocessing transformations and augmentation of the training

1It is mentioned as CrystalSleuth’s internal matching algorithm [12, 13]
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Table 5.1: Summary of results of Mineral Species Identification

Method Accuracy (%)
Decision Tree 31.6
Multilayer Perceptron 35.6
Random Forest 67.5
1-NN, norm 82.1
10-NN, norm 82.2
WN, sqrt+norm+sigmoid 84.8
Deep CNN (corrected data) 88.4
Random Forest P&A 81.3
Extra Trees P&A 88.8

dataset, the Random Forest has presented a significantly improved accuracy of
81.3%. Finally, the Extra Trees modification achieved an accuracy score of 88.8%,
outperforming all of other methods, and also the CNN approach, which achieved
an accuracy score of 88.4% on the already baseline corrected RRUFF subset.

5.1.2 Mineral Class, Type and Group Identification

In this section we present the results of the compared methods regarding their
ability to classify the Raman spectra according to their Class, Type, Group, and
Species classification label based on the Dana Organizational Scheme [97]. For each
sample’s spectrum instead of matching it with their respective species label, we
provided the aforementioned additional labels. This experimental approach was
presented previously in the literature [12]. The Decision Tree and the Multilayer
Perceptron scored low at all cases. However, we observe an accuracy increase as the
organizational hierarchy ascends. Note, that the Dana Scheme is a nested ontology
of a mineral’s identity description. Therefore, the top of the hierarchy being a Class
may contain many Types, a Type may contain many Groups, and consequently a
Group may contain many Species, which is the bottom tier of this hierarchy.

Similar improvement present all the methods, shown in Table 5.2. Interest-
ingly, the results provided by the method of k-Nearest Neighbour classification
after normalisation with k = 1 and k = 10 respectively; reached at an accuracy
performance, abov 90%, at the Dana Class and Type tiers. Again, increasing the
number k up to the 10 nearest neighbours didn’t actually have a significant im-
pact. The Weighted Neighbours method, after the square root, sigmoidal and
maximum intensity normalisation transformations, presented an accuracy score of
94.8%, 93.3%, and 92.0% for the Dana tiers of Class, Type and Group respectively,
placing this method at the top of the reported accuracy scores.

Our methods present comparable accuracy scores. From the two ensemble
learning methods the weaker was the Random Forest. Even though there was an
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Table 5.2: Summary of results of Mineral Identification in respect to Class, Type, Group, and Species
Classification labels

Accuracy (%)
Method Class Type Group Species
Decision Tree 44.3 40.5 37.3 31.6
Multilayer Perceptron 59 51.9 46 35.6
1-NN, norm 94.9 92.9 90.7 82.1
10-NN, norm 93.8 91.7 89.9 82.2
WN, sqrt+norm+sigmoid 94.8 93.3 92.0 84.8
Random Forest P&A 86.7 85.3 83.5 81.3
Extra Trees P&A 95.7 94.3 92.5 88.8

improvement for each ascending Dana tier, it seems that this method reached a
performance plateau. We speculate, that this was due to the method’s splitting
selection process, at its split criterion potentially satisfied the same requirements
irrespective to the label’s tier change. On the other hand, the Extra Randomized
Trees, present an outstanding performance at any Dana hierarchical tier outper-
forming all other methods.

5.2 Achievements

This research met successfully the following goals:

• The proposed methods are off-the-shelf machine learning methods, intuitive
and easy to understand by experts from fields other than Computer Science.

• Our proposed methods present accuracy scores that outperform the current
state of the art.

• In terms of computational intensity, our proposed methods are less demand-
ing than training a Deep Neural Network.

• The Extra Randomized Trees are able to discriminate between vibration noise
and produce accurate classifications.

• Both presented ensemble learning methods are able to make computations in
parallel, making them computationally faster.

5.3 Conclusion

The ensemble learning methods have seen an increased attention in the machine
learning community, prior the wide spread use of CNN architectures. Naturally,
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it has already been compared against other powerful methods such as SVMs in
many domains, including that of spectroscopy applications. In projects with binary
classification tasks or small customized datasets, Random Forest showed decent,
yet second-rate results. We believe that was due to the small number of training
examples that didn’t allow RF to reach its potential. However, in this thesis we
use a large-scale dataset, which contained numerous Raman spectra, we found
that RF scales well. Furthermore, an other ensemble of trees method, namely the
Extremely Randomized Trees, showed a remarkable performance as it surpassed
all previously reported methods and the state-of-the-art. Also, we demonstrated
that the dataset engineering through data augmentation and preprocessing made
it possible to boost the performance of both the Random Forest and the Extremely
Randomized Trees, without sacrificing any computational speed or imposing addi-
tional computational demanding procedures. Overall, we found that our proposed
method outperforms the best results previously reported by at least 4% in classifi-
cation accuracy at species identification, once again recognizing that the ensemble
learning methods are able to learn and discriminate efficiently the subtle discrep-
ancies of the chemical mixtures in spectral samples without computational burden.
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