University of the Aegean Department of Informatio
Engineeri

University of the Aegean

Department of Information &
Communication Systems
Engineering

School of Science

Thesis Master: Testbed for SDN applications using OpenFlow. Create
testbed that could be used for experimentation and research of softwar
defined network applications.

ICSDM15057- Tsakalidou Elina

University of the Aegean Department of Information & Communication Systems

Engineering

Table of Contents
L INEFOAUCTION ittt sttt et e bt e bt e s bt e sat e st e e bt e bt e beesbeesmeeeateenbeesbeesaeesanenas 5
1.1 Traditional legacy network vs Software Defined NetWOorkccccvviiicieiiiiiien e 5
2 SDN FUNAAMENTAIS... ettt ettt ettt e sab e st e s bt e e s b e e e bte e saseesabeeesabeesabeeeneeesareeennnes 6
YD1\ o= Y (ol o o T={ = 11101 0 411 s V=4 o -4 Tolu SRRt 6
3 Understanding OpenFIOW ProtOCOL.........eiiiiiiii ettt ertee e e e ette e e e etee e e e eaaae e e e sasaeeeeenraeas 8
N 0] o 1= o 1o 1V oY o oY g T=T o 3R 8
3.1.1 OpeNnFIOW FIOW TabIESuuiiiiiiiee ettt rbee e e e e e s s sabe e e s e nabee e e ennreeas 8
3.1.2 OPENFIOW IMIELEIS ...vviiiiiiiee ettt ettt ettt ettt e e st e e s s ebte e e s sbte e e s sabeeeessnbeeeessnteeessaseaeessnnes 10
I 0] o 1= o 1o 1V Y o o 11 =T 1 PP 11
4 OpenDaylight FUNAAMENTAISooiiiiiieecieee ettt e e et e e e et a e e e et b e e e eatbeeesensraeesannsneenan 12
4.1 0OpenDaylight ArChItECLUIEiii i e e e et ee e e s eabe e e e e snbeeeeenabeeas 13
4.2 OpenDaylight Features/ApPliCatioNS......ccvciieiieecieccieeeestee ettt et re e beebe e teesbeesaaesabeensen 14
o N D] K U GO PPTPUPPPPPPTPTRt 14
A.2.2 L2 SWIECR ettt st st b bbbt sae e e it e et e e beenbeesheesaeeea 15
B e R0 oY=T o] ol 1o 1V A o V=T ORI 15
5 OpeDaylight Deployment in VirtUAIBOXccueiiiiciiieeieiiieecciieeseeciieee sttt e e ssevee e e s svee e e s sveeeessveeeessnneeessnnes 17
5.1 OpenDaylight Deployment Karaf Distributionccueeiiiiiiiiiiiiiscec e 17
5.1.1 Preparing the VM machine to host the ODL controller.........ccvevveciieeiecieie e 18
5.1.2 JaVa INSEAllation .. .coouee ittt e b e e saee e 21
5.1.3 Downloading and running of the karaf container..........ccooeeeciiii e 21
5.1.4 Installing Karaf fEATUIESccoi i e e e e s sbee e e s s aeaeeesanes 22
5.2 ODL Deployment ClUSTEIING.....cc.uviiieiiieecciiee ettt e et e e et e e e st e e e e s abe e e e s nbeeessnsbeeeeenasenas 23
5.2.1 ClUStering SPECITICAtIONS ...ccccceiiiee ettt e e e et te e e e e bt e e e e e bteeeeentaeeeennes 23
I A O V1 =T T o= T T 2 = Vot ol YU PPNt 23
B IVIININET ...ttt e st e e e e e s e b et e e s s b e e e e s e et e e s s re et e s s nrneeennee 28
6.1 WhHY t0 USE IMIININET.....iiiiiiiiiie ettt e et e e s s e e e e s bt e e e e e abaeeessbaeessnsbeeeeensenas 28
Lo\ a1 T o 1=y 2 1T o] (o3 Va0 =T o | SRR 28
6.2.1 INStalliNg MININEE VIM......oiiiiiiiee ettt et e e e et e e e e e ett e e e e sbte e e e ebteeeeeastsaeesstanaesnnes 28
6.3 MiININEt DUIIA-IN TOOISeeiiiiiieeie ettt sbe e st et eesbe e sbeesaeesaeenas 31
7 Integration of Mininet with OpenDaylight CONtrollercueiiiiciiei i 34
8 Host isolation with Virtual Tenant NetWOork (VTN)cocveeieiiieeiceeee ettt et e eevreeeeetreeeeenreeeeeanns 65
9 AAA (Authentication-Authorization, ACCOUNTING)......ccveiciiieiiiie et eree e re e e te e e reeeeraeesaree s 78
K0 o] 0 Tol (V1Yo o OO PSSRSO 83
10 REFEIENCES ...ttt ettt ettt et e bt e sae e s at e st e et e e bt e sbe e saeeeateeabeeabeeeheesabesabeebeebeenas 83

2 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

Figures

= U I Y D LN B T o 11 =Tl U] U SPPP 6
Figure 2: OpenFlow protocol COMPONENTSccccuiiiiieiiiie ettt ectee e e et e e e rrre e e s sta e e e ssaaaeeeesasaeeesnnnaeeanas 8
Figure 3: OpenFIOW flOW ENTIY.....iiii ettt e e s e e e s b e e e s sabaeeeesasreeesnnnraeenan 9
FIGUIE 4: L2 SWItCRING weveeeeiiiie et e e et e e ettt e e s ata e e e saateeeesaataeeeennsaeeesnnseaeenan 9
Figure 5: Flow with compleX Maching FUIES..........ooo i e e e areeeeas 9
FIBUIE B: FIFEWAIL. . eeii ettt e s e e st e e e e ta e e e sat e e e e ssbeeeesnsseeesasseeeeennseeaesanssanennn 9
T8 I N (o U A1 o V= P PPPPPPPRRY 9
FIgUIe 8: VLAN SWILCRING c...eveeiice ettt et e e e et e e e e e tb e e e e e aabe e e s enbeeeeeabaeeeenteeeeenrenas 10
Figure 9: Connection between SDN El&MENTSuiiiiiiiiiiiiiee e e s e e s aree s 12
= U I O @1 0TI Y ol oY1 Yot (U TP 14
Figure 11: OpenDaylight fEAtUIEScccuiiii e e s e e s bee e s enareeas 14
Figure 12: OpenFlow protocol implementation in ODL controller.........ccvvcieeeiiiiiieiciee e, 16
= U T T @ LYY= ol o 11 Yot o U o <SSP 32
Tables

LI Lo 1Tl R I |V Y O =T T o o 11 V= TSP 15
Table 2: High —Availability reqUIr€mMENTS........ooi e et e e e e b e e e enreeas 23

30f84

University of the Aegean Department of Information & Communication Systems
Engineering

Abstract

Software-Defined Network (SDN) has become one of the most important architectures for the
management of largescale complex networks, which may require re-policing or reconfigurations from
time to time. SDN achieves easy re-policing by decoupling the control plane from data plane. Thus, the
network routers/switches just simply forward packets by following the flow table rules set by the control
plane. Currently, OpenFlow is the most popular SDN protocol/standard and has a set of design
specifications. The Intorduction of this thesis will present the basic advantages to choose the SDN
configuration instead of traditional network configuration. Chapter 2 presents the SDN basic concepts
and architectures. Chapter 3 introduces the SDN protocol OpenFlow protocol, its usage and
components. Chapter 4 presents one widely used SDN controller the OpenDaylight which is used in this
testbed and it is meant to be the control plane of the SDN architecture. Chapter 5 presents the SDN
deployment on a virtual cloud infrastructure. Chapter 6 presents the Mininet tool which is the data
plane of the SDN architecture. Chapter 7 presents the deployment of the SDN testbed with Mininet and
OpenDaylight controller. Chapter 8 presents how to isolate a network via OpenDaylight feature Virtual
Tenant Network. And finally Chapter 9 uses the AAA service of OpenDaylight to configure a custom user
for the network configuration.

4 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

1 Introduction

1.1 Traditional legacy network vs Software Defined Network

The last years in networking industry there is a tendency to have a centralized management system that
allows the network programmability and automation in order to develop intent based network (IBN).
Software-Defined Network (SDN) is a flourishing technology that approaches this type of management
and more network providers are convinced to build confidence on how SDN works and what are the
benefits of it. Demand for SDN solutions are rising rapidly due to existing problems in traditional legacy
networks. The advantages of the SDN technology are presented and they explain why SDN wins against
the traditional network.

Infrastructure: In order to deploy SDN solutions it does not require the existence of physical hardware
(switches, routers, cables, etc). SDN is composed of software-based infrastructure. Devices of the
network are software-based virtual entities both in control and data plane able to support any SDN
deployed application.

Scalability: The drawn inference from previous statement is that SDN is more scalable in contrast with a
traditional it is easier and faster to add and remove resources without generating side effects for the
rest of the network resources and functions. Resources demands are solved from mouse clicks. In a
traditional network however this means money cost and manual configuration that takes more time.
Another advantage of SDN is the in integration with cloud applications. SND provides integration with
cloud applications and network virtual functions (NFV) in data centers.

Traffic Management: Another main difference is that in a traditional network the decisions about traffic
management are configured in data plane. The data plane and control plane are in same box. In others
words, there is already build in software logic in switches that will handle the traffic. In SDN the traffic
management is configured from control plane. The data plane is not responsible to program the
forwarding logic of the traffic, it sends the packets as they are programmed from control plane.

Security: SDN provides customized security between the end user, the data center and the network
traffic. Security policies that are easily defined in end-to-end network comparing to the legacy network

(1]

50f84

University of the Aegean Department of Information & Communication Systems
Engineering

2 SDN Fundamentals

Software Defined Network (SDN) was launched from collaboration of Stanford University and the
University of California at Berkeley in 2008. SDN is a dynamic network that separates the control plane
from data plane and its components consists of two main parts see Figure 1:

e The SDN controller or control system which is always located on the top layer in SDN
architecture refers to control plane.

e The SDN switches or forwarding elements which are always located in a layer below from the
control plane in the SDN architecture.

e Interface between the control plane and data plane, a common interface that is connects the
SDN elements are the OpenFlow protocol.

S S S
.L»"(,» A S

h 4

w

vy v v h 4 h 4

aVad aVad SDN and
:_,,-“(_} o/ r Routers

N

h 4
h 4
h 4

> =~
AR :—f&,\

Forwarding/Data Flane

Figure 1: SDN architecture

The network control plane is composed of the SDN controller which is the “brain” of the network and is
responsible to manage the functions of data plane components. SDN uses the OpenFlow protocol in
order to manage configurations of switches and/or routers. Nowadays, there are plenty of open-source
SDN controllers, but also many companies have privatized they own controllers for commercial
purposes.

The data plane is a lower layer that is included the SDN switches. The management of the forwarding
packets take place in the data plane, however how the packets will be forwarded is decision of the
control plane using the OpenFlow protocol or any other SDN protocol.

2.1 SDN basic programming logic

Traditional network switches have already pre-installed programming logic in their software. Also, a
traditional network switch contains fixed table entries that define the routing rules by switch software,
consequently a switch has already a prior-knowledge on how to forward the received frame/packet.
SDN has different programming logic comparing to traditional network, there is no built-in programmed
traffic logic in switches and the controller decides what to do with the received packet from switch and
then fills in the tables that are called in SDN world flow tables with flow entries of the switch. The
controller programs the traffic logic of the switch based on SDN southbound protocols. There are plenty

University of the Aegean Department of Information & Communication Systems
Engineering

of southbound protocols, a widely-known southbound protocol is the OpenFlow protocol. OVSDB
protocol along with the NETCONF are also familiar SDN southbound protocols. Next chapter analyzes
the OpenFlow protocol, since it is used in this testbed. The rest of protocols will be presented in the
section of the OpenDaylight features.

70f84

University of the Aegean Department of Information & Communication Systems
Engineering

3 Understanding OpenFlow Protocol

OpenFlow protocol was the first protocol that was adopted from SDN, it was created by ONF (Open
Networking Foundation) which is an organization that creates standards for SDN. OpenFlow protocol is
a key component in SDN solutions and it stands between the data and control plane. Its initial intention
was slightly different comparing to the current functionality. The first version 1.0 of the OpenFlow
protocol specification was released in December 2009, the latest version is 1.6. In aspect of this research
the used version is 1.3. OpenFlow is software running on each switch in SDN and communicates with the
SDN controller.

The main purpose of the OpenFlow is to update the flow tables of the switch or router through SDN
controller involvement, since the control plane is the one that configures how the flow tables will be
updated.

3.1 OpenFlow Components

OpenFlow defines flow tables, groups tables, and meter tables, Figure 2 presents how they distributed
in an SDN switch [2].

Controller Controller
IC:WOpenFlow Protocol
l J OpenFlow Switch

Datapath
OpenFlow | | OpenFlow

Channel Channel Group | | Meter
Control Channel | Table | | Table
Port Port
Flow Flow Flow
T | Table [| Table [Z "7 Table |
Port P Port
ipeline
- e

Figure 2: OpenFlow protocol components

3.1.1 OpenFlow Flow Tables

OpenFlow tables define a pipeline to process a packet header. A pipeline may contain one or many flow
tables. Every table in the pipeline handles the input received from the previous flow table.

Each flow table consist of table flow entries, flow entry has data such as see Figure 3:

e Matching rules: When a packet is reached the port the packer header is matched regarding the
fields it has in its header e.g port number, destination port, source port etc.

e Instructions: Another important field in a flow table entry is the instruction, which is a decision
taken on what to do with the packet obeying the matching fields. The instructions field is a set
of actions. An action can be anything among apply_actions, clear_actions, write_actions,
write_metadata, goto_table.

e Statistics: Keeps track of the number of times the flow has been matched.

University of the Aegean Department of Information & Communication Systems
Engineering

| When to delete the entry|

| # of Packet/Bytes processed by the rule |

H 1. Forward packet to zero or more ports
2. Encapsulate and forward to controller
: 3. Send to normal processing pipeline

4. Modify Fields

Switch[vian | vLAN] mac | mac | Eth P 1P P JIP L4 L4
Port |ID pcp | src dst type | Src | Dst | ToS | Prot | sport | dport

Figure 3: OpenFlow flow entry

The next figures present the taken action based on the matching rule.

Figure 4 is relevant to L2 switching the matching rule is the destination MAC address (00:1f) and the
action is to forward the packet to port 6 of the switch. In other words, this means that when the packet
header contains 00:1f... for a destination MAC address then this packet must be forwarded to port 6 of
switch.

Switching

Switch MAC |MAC [Eth VLAN (IP P P TCP [TCP Action
Port krc dst type |D Src Dst rot |sport Hdport

* * 00:1f-.. * * * * * * * port6

Figure 4: L2 Switching

Figure 5 presents flow switching with the complex combination of matching rules in order for the packet
to be forwarded to port 6.

Flow Switching

Action

Switch MAC |MAC [Eth VLAN (IP P P TCP [TCP
Port fsrc dst type |ID Src Dst rot |sport dport

port3 00:20.. 00:1f. 0800 wlanl 1.2.34 5678 4 17264 80 port6

Figure 5: Flow with complex maching rules

Figure 6 presents packet filtering, flow entry is a firewall that will drop the packet.

Firewall

Switch MAC |MAC [Eth [VLAN (IP P P TCP [TCP ction
Port krc dst |type |D Src Dst rot [sport Hdport ¢

* * * = * * * * 22 drop

Figure 6: Firewall

Figure 7 defines a L3 routing flow where the matching rule is the destination IP address (5.6.7.8) and
the action is to forward the packet to port 6 of the switch.

Routing
Switch MAC |MAC [Eth VLAN (IP P P TCP [TCP ction
Port src dst type |ID Src Dst Prot |sport Hdport
* * * * * * 5.6.7.8 * * * portﬁ

Figure 7: L3 Routing

90f84

University of the Aegean Department of Information & Communication Systems
Engineering

When the packet header contains the VLAN it isolates the network. Figure 8 presentas a flow entry with
VLAN in header and destination MAC address will be outcast this packet to ports 6,7,9.

VLAN Switching

Switch MAC |MAC [Eth VLAN |IP P IP TCP TCP Action
Port Brc dst type |ID ISrc Dst IProt |sport Hdport
porte,
* * 00:1f. = vlanl = * * * * port?,
port9

Figure 8: VLAN Switching

3.1.2 OpenFlow Meters

OpenFlow meters are another component of the OpenFlow protocol. It was first introduced in
OpenFlow version 1.3.0 as an optional feature. A meter is a switch element which measures and
controls the ingress rate of traffic of packets. Ingress rate is the rate of packets prior to the output.
Similar to flows meters are generated in the meter table and consist of meter entries which define the
meters. The meters are attached directly to the flow entries. Each flow entry can specify a meter in its
instructions set. The meter measures and controls the rate of the aggregate of all flow entries to which
it is attached. Flows direct packets to the specified meter using the goto-meter instruction, thus the
meter can perform operation based on the rate it receives. Per-flow meters enable OpenFlow to
implement various Quality of Service operations, such as rate-liming which is the main application of
the meters. However, meters can be combined with other features like queues to provide more
advanced services.

A meter entry in the meter table is composed of the following elements:

e meter identifier: a 32 bit unsigned integer uniquely identifying the meter

e meter bands: an unordered list of meter bands, where each meter band specifies the rate of the
band and the way to process the packet

e counters: updated when packets are processed by a meter

The main element of the meter entry is the meter band which specifies the rate at which meter is
applied and the way packets should be processed. A meter can have one or more-meter bands but only
a single band is applied for a flow at a time based on the measured packets rate. The meter applies the
meter band with the highest configured rate that is lower than the current measured rate. If the current
rate is lower than any specified meter band rate, no meter band is applied. The meter triggers a meter
band if the packet rate or byte rate passing through the meter exceeds a predefined threshold. If the
meter band drops the packet, it is called a rate limiter.

Each meter band is identified by its rate and contains:

e band type: defines how packets are processed

e rate: used by the meter to select the meter band, defines the lowest rate at which the band can
apply

e counters: updated when packets are processed by a meter band

e type specific arguments: some band type has optional arguments

A meter is for example a simple token bucket policer that can be instantiated and configured to a certain
rate and burst. Whenever a flow exceeds the bucket’s rate, the packet is dropped. In this case the meter
is identified as late limiter and this is the main application of the meters. If the packet complies with its
traffic definition and the burst is not exceeded, the remaining actions in the action set will be executed.
Another functionality of the meters is to achieve a specific (Quality of Service) [4] [5].

3.1.3 OpenFlow Groups

An OpenFlow group was first introduced in version 1.1. Similar to a Flow and Meter, a group also
consists of entries, as result the group entries make the Group table. OpenFlow groups are also
elements defined from the OpenFlow specification and they created to support functions that flows are
unable to execute. OpenFlow groups provide advanced services in order to solve real-time networking

10 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

issues. Groups are forwarding the packets when the flows are unable to perform any actions to them.
Unlike flows OpenFlow groups do not define matching rules nor instructions. OpenFlow specification
supports different group types and each group type is dedicated to apply specific actions to the packet.

When the packet enters the group table, it receives actions, however the group is not allowed to
forward the packet to any flow table, neither meter tables. Each group contains a list of actions lists that
are known as list of buckets and they are applied to the ingress packets. Each group may define zero to
many buckets. When a group does not contain any bucket, this means the packet remains untouched.
Also, there are cases that the bucket contains a list of actions that order the packets to be sent to the
next groups.

The group types are classified in four categories [5] [6]

e ALL: This is the simplest group type. Takes as an input the ingress packets and reproduces it in
order to handle it in each bucket. As a result, for each replica of the original packet different set
of actions are performed.

e SELECT: This group is using for load balancing. Every bucket that contains a list of actions has a
specified weight. An ingress packet is forwarded to a single bucket, target bucket is selected
based on the bucket weight.

e INDIRECT: This group contains only one bucket and all packets are transferred to this bucket.
This group consolidates a common set of actions, as a result memory consumption is
significantly reduced.

e FAST-FAILOVER: This is the most significant group of all group types dedicated to handle the
cases of network failures. This group has many buckets and each bucket is defined from watch
port and an optional watch group. The watch port and/or group detects the active status of the
indicated port and/or group. Only in case the port is active the bucket is usable. When a specific
bucket is used other buckets cannot be used. Bucket will be replaced with other when the watch
port or group will be deactivated. The bucket selection of the FAST-FAILOVER will be the nearest
bucket in the bucket list with a watch port or group that is up.

3.2 OpenFlow Architecture

Based on ONF OpenFlow protocol is an interface that communicates the control plane with the data
plane of SDN architecture. The OpenFlow architecture is a composition of three elements sees following
Figure 9 [7]:

e The OpenFlow controller
e The OpenFlow switch
e The OpenFlow channel

The OpenFlow channel is the interface that connects each OpenFlow Logical Switch to an OpenFlow
controller. Through this interface, the controller configures and manages the switch, receives events
from the switch, and sends packets out the switch. The Control Channel of the switch may support a
single OpenFlow channel with a single controller, or multiple OpenFlow channels enabling multiple
controllers to share management of the switch. Between the datapath and the OpenFlow channel, the
interface is implementation-specific, however all OpenFlow channel messages must be formatted
according to the OpenFlow switch protocol. The OpenFlow channel is usually encrypted using TLS, but
may be run directly over TCP [5].

11 0of 84

University of the Aegean Department of Information & Communication Systems
Engineering

Controller

o

Figure 9: Connection between SDN Elements

4 OpenDaylight Fundamentals

This chapter provides general information about the OpenDaylight (ODL) which is an open-source SDN
project implemented in Java language. It was created by the Linux Foundation and its first release
(Hydrogen) was announced in February 2014. The purpose of the ODL project is to decouple the
networking hardware from the software and allow the end users to build networking applications with
the concept of plug-n-play architecture. The ODL controller platform is considered as a modular SDN
controller due to many modules that are embraced in one single platform. It can be installed on Linux,
Windows, Macintosh Operating Systems and any other that supports Java. Up to this time, there are ten
releases Hydrogen, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine and Neon.
Each release name of the ODL is based on the periodic table elements. ODL community announces at
least two releases every year. The Oxygen SR4 (Stable Release 4) will be used as an SDN controller.

OpenDaylight supports [8]:

e 0SGi container: OSGi (Open Services Gateway Initiative) is a framework, also known as the
Dynamic System for Java defines a specification for deploying modular applications. Allows to
break the applications into many modules that can be dynamically loaded and managed as
bundles in the container. OSGi bundles are .JAR files with a MANIFEST.MF file with the last
containing configuration for the OSGi. When a bundle is dependent from other bundles OSGi
will start first these dependencies and next the bundle itself, otherwise the bundle will not start.
As a result, a user can start, stop, install and uninstall modules without affecting the container.
Currently, there are many open-source OSGi containers. Apache Karaf is a bundle used by the
ODL in order to create the OSGI container where all OSGi bundles can be loaded and started [9]
[10] [11].

e Maven: Maven is a tool for build automation usually for Java applications. Maven uses pom.xml
(Project Object Model) to define the dependencies which are nothing that already implemented
libraries to be used between the modules. It also can download libraries from a remote
repository. Currently the most used remote repository for the ODL dependencies is the Nexus
https://nexus.opendaylight.org/. Maven contains many phases which are the build lifecycles like
install, test, clean, deploy, generate-sources etc. The next examples show how to define a
dependency in a pom.xml and how to execute maven goal phase.

12 of 84

https://nexus.opendaylight.org/

University of the Aegean Department of Information & Communication Systems

Engineering

<dependency>
<groupld>org.opendaylight.mdsal.binding.model.ietf</groupld>
<artifactld>rfc8345-ietf-network-topology</artifactid>
<version>1.2.6</version>

</dependency>

A maven dependency containes a groupld, an artifactld and version all fields included in tag
<dependency> defined in XML language.

The next command shows how to build a maven project “testbed”.
~/testbedS mvn clean install

Java Interfaces: Java interfaces are used for event listening, specifications, and forming
patterns. This is the main way in which specific bundles implement call-back functions for events
and also to indicate awarenessoof specific state.

Rest APIs: These are part northbound interface. These RESTful APIs are implemented in order to
be integrated custom applications. They also support GUI (Graphical User Interface) for ODL.
YANG: ODL platform supports the YANG (Yet Another Next Generation) language, used for data
modeling and generated payload for NETCONF protocol.

ODL supports the southbound OpenFlow protocol as well as other protocols. ODL allows to develop new
applications and also use the already build applications to make an enhancement of any feature.

4.1 OpenDaylight Architecture

ODL supports a layered architecture with clear integration points and APIs that allow end users and
networking vendors to participate in the power SDN capabilities of ODL. ODL supports a layered
architecture with clear integration points and APIs that allow end users and networking vendors to
participate in the power SDN capabilities of ODL. In general, ODL architecture consists of next four
layers, each layer will be described separately [12] see Figure 10 :

Northbound Layer: is meant for communication with upper, Application layer and would be in
general realized through REST APIs of SDN controllers.

Controller Platform Layer: Is meant for communication with lower layers, Infrastructure layer
of network elements and would be in general realized through southbound protocols

Service Abstraction Layer: Service abstraction layer is a component that is introduced only from
ODL controller and it is located between the southbound protocols and the northbound
protocols where third-party applications are supported. The first release of the ODL launched
the API-driven Service Abstraction Layer (AD-SAL) which in next releases was enhanced and
renamed to Model-driven service abstraction layer (MD-SAL).

Data plane Layer: Is composed of various networking equipment which forms underlying
network to forward network traffic. It could be a set of network switches and routers in the data
center. This layer would be the physical one over which network virtualization would be laid
down through the control layer (where SDN controllers would sit and manage underlying
physical network

13 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

Network --------- s
applications, user
orchestration, interfaces
and services

network applications, orchestration, and services ‘ T

OpenDaylight APIs (REST)

Controller network service functions
platform

Southbound
interfaces &
protocols OpenFlow

Data plane
elements (virtual
switches, physical
device interfaces)

Figure 10: ODL architecture

4.2 OpenDaylight Features/Applications

This section will sum up all ODL existing features and their functions see Figure 11. The features used in
testbed will be analyzed in detail:

o Networking: ALTO, BGPLS PCEP, BIER, CAPWAP, DIDM, FaaS, L2-Switch, LACP, LISP, NATApp
Plugin, NETCONF, OF-CONFIG, OpenFlow, OpFlex, OVSDB, NetVirt, NIC, Neutron Northbound,
P4, Packet Cable, SFC,TTP, VTN, VPN Service, Unimrg.
Security: AAA, Controller Shield, USC.
Management: Cardinal, DluxApps, EMAN, Federation, GBR, loTDM, NEMO, NetIDE, OCP, SNMP,
SNMP4SDN, SXP.

e Core: MD-SAL, OpenDaylight Controller, ODL-SDNi, YANG Tools.

e Data Collectors: Centinel, TSDR

g OPEN :
r..3 OpenDaylight Oxygen Release

Data Store (Config & Operational) OpenDaylight Platform (Yangtools, MD-SAL) Messaging (Netifcations / RPCs)

Southbound Interfaces &
Protoenl Plagin

Figure 11: OpenDaylight features
4.2.1 DLUX

This module is the web user interface of the ODL implemented in Angular JS. It is an OpenFlow
management application for the ODL [13]. It provides authentication, navigation and lists the following
features:

o Topology: Shows the OpenFlow topology components.
e Nodes: This is a very simple inventory node manager.

14 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

e YANG visualizer: This provides visualization of YANG models in graphical form.

o YANGMAN: This is an advanced and more user-friendly YANG Ul replacement.

e YANG GUI: This is a simple Ul for interaction with the controller. It is based on Yang models,
and it renders a form so that users can read or write data even if they have no knowledge of
the models.

For accessing the DLUX any web browser will work by entering the URL
http://localhost:8181/index.html/ providing the credentials “admin” for both fields access to this
feature is offered.

4.2.2 L2 Switch

L2 switch is an ODL module that provides Layer 2 switch functionality specifying how the packets should
be forwarded [14]. L2 Switch comes along with other useful features:

o Packet Handler: This feature processes and decodes the incoming packets and forwards them
appropriately.

e Loop Remover: Removes loops from the network.

e Arp Handler: Manages the decoded ARP packets

e Address Tracker: Retrieves the MAC Addresses and IP addresses of the elements existing in the
network.

o Host Tracker: Tracks the host locations in the network

e L2 Switch Main: Installs flows on switches based on specific rules that must follow the network
traffic.

When 12 switch receives a packet that does not match any entry in flow table it encapsulates the packet
in an OpenFlow PACKET_IN message and sends this packet to the controller. Then L2 switch feature
finds where it should be sent. The MAC address must be identified through OpenFlow PACKET_IN
message. The next table summarizes how the L2 switch module identifies the MAC address see Table 1.

Source MAC Destination MAC Action

Unknown Unknown Broadcast the packet to all
external ports except the
ingress port

Unknown Known L2 module sends the packet
to the node where the
target is attached. The
attachment point refers to
the target that is physically
attached.

Know Unknown Broadcast packets to all
external ports. L2 switch
module knows the source
MAC.

Known Known Packet forwarded from
source MAC to target MAC
and installed flows in the
flow tables of switches.
Table 1: L2 MAC Learning

4.2.3 OpenFlow Plugin

The OpenFlow plugin is belongs to a southbound plugin of the ODL and defines is a communication
Interface that allows interaction between the control and forwarding plane of an SDN. This plugin
implements the OpenFlow standard [15]. The current versions of OpenFlow 1.0. and 1.3.x are
supported, however it gives the opportunity to adopt the other version too. Similar to other modules of
the ODL this plugin also is based on the Model Driven Service Abstraction Layer (MD-SAL). It allows TLS

15 of 84

http://localhost:8181/index.html/

University of the Aegean Department of Information & Communication Systems
Engineering

secure connection on port 6633 and non-secure connection on port 6653 to listen for OpenFlow
messages coming from OpenFlow devices.

The following features are supported from the ODL plugin [15] see Figure 12:

e Connection Handling

e Session Management

e State Management.

e Error Handling.

e Mapping function (Infrastructure to OF structures).

e Connection establishment will be handled by the OpenFlow library using opensource netty.io
library.

e Message handling for example Packet in.

e Event handling and propagation to upper layers.

e Plugin will support both MD-SAL and Hard SAL.

e Will be backward compatible with OF 1.0.

Model Driven SAL e Hard SAL

e

g [S] OpenFlow Plugin

o

- o—

°

§ [OF Codec (100r13)] Topology Flow Stats Packet
° 4 Service Service Service Handler
o

.6 (OF Frame Decoder j

ﬂ Error Handling
TLS/DTLS
Connection and State
[TCP/UDP Handler] Session Manager Manager
I:[Controller

OpenFlow 1.0 Openfiow 1.3.1

Figure 12: OpenFlow protocol implementation in ODL controller

Netty.io 4.x

16 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

5 OpeDaylight Deployment in VirtualBox

Nowadays, plenty amount of virtualization software exists free to download. The chosen virtualization
program for this testbed is the VirtualBox that will host the ODL controller and next the Mininet tool. It
can be installed easily without many manual configurations. Similar to other virtualization solutions, it
provides specific network card, hard disk, graphics and RAM for every virtual machine.

This section prepares the VM that will host the ODL controller. Presents step-by-step guide to start and
deploy features of SDN ODL controller.

Host operating system is Windows 10 Pro and hypervisor software is VirtualBox for hosting a virtual
machine (Ubuntu 16.04) for ODL controller. The environment settings of VM are as follows:

Host Operating System Settings:

e QOperating System Windows 10 Pro Version 1903
e Installed Memory RAM: 16GB

e Processor: Inter(R) Core(TM) i5-9600K CPU @ 3.70 GHz
e Operating System type: 64-bit x64-based processor
e Disk: 400GB

Software Settings:

e Operating System: Windows 10 Professional
e Hypervisor: Oracle VM VirtualBox Manager version 6.1
= QOperating System: Ubuntu Desktop Image 16.04.1 LTS
= ODL Version: Oxygen SR4 having:
e 40GB hard disk, 2048 MB RAM, 2 CPUs

There are two options to deploy the ODL controller:

e Standalone deployment: The ODL controller will run as one server. Used for simple use cases.
Karaf container will be used in order to install any ODL feature.

e Distributed deployment [16]: In distributed deployment there is a cluster where exist many ODL
server instances that are working together as one entity and sharing a common configuration.
Deploying ODL servers in a cluster assures there will be at least one ODL instance running in
case of any other ODL server failure occurs. This is very important for real enterprise network
systems that cannot accept failure. Consequently, when multiple ODL instances are running
there are some advantages such as:

o Scaling: Data can be shared among smaller chunks (known as shards) and either
distribute that data across the cluster or perform certain operations on certain
members of the cluster.

o High-Availability: From multiple controllers running if one of them crashes, other
instances working and available.

o Data Persistence: Data will not erased gathered by controller after a manual restart or
a crash.

5.1 OpenDaylight Deployment Karaf Distribution

This section will present how to start the ODL controller as karaf distribution. The ODL as karaf
distribution is an OSGI container that provides all features available to install, but none of them will start
automatically, only after user command. The ODL karaf distribution version that is used in the scope of
this investigation is Oxygen SR4 karaf-0.8.4.zip or karaf-0.8.4.tar.gz file format downloaded from [17]

University of the Aegean Department of Information & Communication Systems
Engineering

5.1.1 Preparing the VM machine to host the ODL controller

The next images show step-by —step ODL deployment in virtual host.

7 * ? *
Create Virtual Machine € Create Virtual Machine
Name and operating system Memory size
Please choose a descriptive name and destination folder for the new virtual Select the amount of memory (RAM) in megabytes to be allocated to the
machine and select the type of operating system you intend to install on it virtual machine.
The name you choose will be used throughout VirtualBox to identify this
machine. The recommended memory size is 1024 MB.
Name: [oDL_yM | | 048 =] me
Machine Falder: | Ci\Users'bnbuserWirtualBox VMs 4MB 16334 MB
Type: |Linus e @’
Version: | Ubuntu (64-bit) h

Create Virtual Hard Disk

? x
Hard disk file type
“ Create Virtual Machine
Flease choose the type of file that you would like to use for the new virtual
. hard disk. If you do not need to use it with other virtualization software you
Hard disk can leave this setting unchanged.

VDI (VirtualBox Disk Image:
If you wish you can add a virtual hard disk to the new machine. You can ® v %)
either create a new hard disk file or select one from the list or from another (O VHD (virtual Hard Disk)

location using the folder icon,) o
() ¥MDK {virtual Machine Disk)

If you need a more complex storage set-up you can skip this step and make
the changes to the machine settings once the machine is created.

The recommended size of the hard disk is 10,00 GB.
(O Do not add a virtual hard disk

(® Create a virtual hard disk now

(O Use an existing virtual hard disk file

Empty

18 of 84

University of the Aegean

€ Create Virtual Hard Disk

Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow as itis used
{dynamically allocated) or if it should be created at its maximum size (fixed
size),

A dynamically allocated hard disk file will only use space on your physical
hard disk as it fills up {up to a maximum fixed size), although it will not shrink
again automatically when space on it is freed.

A ficed size hard disk file may take longer to create on some systems butis
often faster to use.

(@ Dynamically allocated
() Fixed size

Cancel

Department of Information & Communication Systems

Engineering

€ Create Virtual Hard Disk

File location and size

Flease type the name of the new virtual hard disk file into the box below or didk
on the folder icon to select a different folder to create the file in.

Select the size of the virtual hard disk in megabytes. This size is the limit on the
amount of file data that a virtual machine will be able to store on the hard disk.

0

2,00TB

|C:\JJsers\,bnbuser\,\l'irmalBox WMsYODL_VMYODL_WM, vdi

Cancel

Acceleration:

(™) pisplay

video Memory:

Graphics Contraller:
Remote Desktop Server:
Recording:

Storage

Controller: IDE

IDE Secondary Master:
Controller: SATA

SATA Port 0:
n Audio
Host Driver:
Controller:

EF Metwork

ICH AC97

¥ Oracle VM VirtualBox Manager - a X
File Machine Help
i
0 Tools :: -
New Settings Discard Start
=, | ODL VM ; =] General ~
-
@ Powered OFf . Name: oDL_WM
Operating System: Ubuntu (64-bit)
Settings File Location: C:Users\bnbuser\VirtualBox vMs\ODL_vM
[®] system
Base Memory: 2048 MB
Boot Order: Floppy, Optical, Hard Disk

VT-x/AMD-V, Nested Paging, KVM Paravirtualization

Windows DirectSound

16 MB

VMSVGA
Disabled
Disabled

[Optical Drive] Empty

ODL_VM.vdi (Normal, 40,00 GB)

{23 ODL_VM - Settings ? ®
E General Network { ,
w
@ System Adapter 1 Adapter 2 Adapter 3 Adapter 4
|§| Display [/ Enable Metwork Adapter
Attached to: |Host-only Adapter ~
Storage A = ost-only Adapter
Mame: |VirtualBox Host-Only Ethernet Adapter -

Audi
(D:l — > Advanced
@ MNetwork
@ Serial Ports
_ﬁ? USE
Ij Shared Folders
Ifl User Interface

Cancel

19 of 84

University of the Aegean

Department of Information & Communication Systems

Engineering

{2} ODL_VM - Settings ? X
E General Storage

Ii‘ System Storage Devices Attributes

|§| Disal @ Controller: IDE Cptical Drive: |IDE Secondary Master - @,

1splay :
® O ubuntu-15.04. 1-desktop-amds. .. [Live cojovp
ey & Controller: SATA Information
i . . Type: Image
Audic || (=] ODL_WM.vdi
(D] Lo Size: 1,41GB
@ Metwork Location: D:\My Documents\Downloads\virt...
Attached to: —

@ Serial Ports

ﬁ Use

D Shared Folders

Ifl User Interface

{2} ODL_VM - Settings

File Mschine Help

458

2, gl ODL VF1
=» Running

Q@ 09,

New Settings Discard Show
(] General

Name: oDL_WM
Operating System: Ubuntu (54-bit)

Settings File Location: C:\Users!prbuser VirtualBox VMs\ODL_vM
= system

Base Memory: 2048 MB
BootOrder: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization
= pisplay
Video Memory: 16 MB

Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled

Storage
Controller: IDE

DE Secondary Master:
Controller: SATA

SATA Port O:
o Audie

Host Driver: Windows DirectSound
Controller: ICH ACS7

@ Network
Adapter 1: Intel PRO/1000 MT Desktop {NAT)

ODL_VM.vdi (Normal, 40,00 GB)

E General System
E System Motherboard Processor Acceleration ‘
|§| Display Processor(s): ' 2 =
I 1 1 1 1 1 1 1 1 1 1 1
1CPU 12 CPUs
@ Storage '
Execution Cap: 100% =
o i
udio 1% 100%
lﬁ Network Extended Features: [_] Enable PAEMX
Enable Nested WT-x/AMD-V
@ Serial Ports
ﬁ Use
|__-| Shared Folders
El User Interface
Cancel
¥ Oracle VM VirtualBox Manager - a X

=] preview

[Optical Drive] ubuntu-16.04. 1-desktop-amdé-.iso (1,41 GB)

Adapter 2: Intel PRO/1000 MT Desktop {Host-only Adapter, 'VirtualBox Host-Only Ethernet Adapter’)

20 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

sdn@sdn-opendaylight:~5$ ifconfig
enpds3 Link encap:Ethernet HWaddr 08:00:27:67:9f:12
inet addr:10.0.2.15 Bcast:10.8.2.255 Mask:255.255.255.0
inet6 addr: fe80::2cda:5256:ef60:62c1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1
RX packets:526351 errors:0 dropped:® overruns:® frame:@
TX packets:204735 errors:0 dropped:@ overruns:@ carrier:@
collisions:® txqueuelen:1800
RX bytes:492862787 (492.8 MB) TX bytes:12449398 (12.4 MB)

Link encap:Ethernet HWaddr 08:00:27:57:f2:a4

inet addr:192.168.56.101 Bcast:192.168.56.255 Mask:255.255.255.8
inet6 addr: fe80::512b:b930:f993:b03b/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1

RX packets:910 errors:0 dropped:® overruns:0 frame:@

TX packets:67 errors:® dropped:® overruns:0 carrier:0

collisions:® txqueuelen:1800

RX bytes:274746 (274.7 KB) TX bytes:8260 (8.2 KB)

The main requirement for the deployment is the proper JDK version.

5.1.2 Java Installation

The latest releases of the ODL controller features require Java Development Kit (JDK) version 1.8. or
later. The OpenlDK 1.8 will be installed, to resolve this requirement with the next command:

sdn@sdn-opendaylight:~$ sudo apt-get install openjdk-8-
Verification of the JDK installed version.

sdn@sdn-opendaylight:~5 java -version

openjdk version "1.8.0 222"

OpenJDK Runtime Envirenment (build 1.S. 2-b18-1ubuntul~16.04.1-b18)
OpenJDK 64-Bit Server VM (build 25.22 , mix ed mode)
sdn@sdn-opendaylight:~$

sdnmadn opendaylight: fusr/1 a C

sdn@sdn-opendaylight:~5 export]HVH HDHE juqrfllbf]vmf]ava -openjdk-amde4
sdn@sdn-opendaylight:~5 export PATH=SJAVA_HOME/bin:SPATH
sdn@sdn-opendaylight:~5 echo S$JAVA HOME

Jusr/lib/jvm/java-8-openijdk-amd64

sdn@sdn-opendaylig

5.1.3 Downloading and running of the karaf container

The next images show how to downlaod the distributed karaf Oxygen version [17].

< c [ORON opendaylight.org w m » =

4% OpenDaylight Documentation Neon

» Release Notes

Oxygen-SR4

Announcement: https://www.opendaylight.org/about/news/blogs/opendaylight-releases-oxygen-with-
new-p4-and-container-support

Original Release Date:
March 22,2018
Service Release Date:

Dec12,2018

Downloads: -IOpenDavlight Oxygen SR4 Tar
OpenDaylight Oxygen SR4 Zip
» OpenDaylight Oxygen SR4 RPM
» OpFlex

Documentation: e Getting Started Guide _

» Developers Guide
» User Guide

21 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

Opening karaf-0.8.4.tar.gz

You have chosen to open:
[karaf-0.8.4.tar.gz

which is: Gzip archive (348 MB)
from: https://nexus.opendaylight.org

What should Firefox do with this file?
Openwith | Archive Manager (default) ~

© saveFile

Do this automatically for files like this from now on.

Cancel OK

Moving the karaf-0.8.4.tar.kar file to VM home directory.

sdn@sdn-opendaylight:~$ cd Downloads/
sdn@sdn-opendaylight:~/Downloadss 11

total 356672

drwxr-xr-x 2 sdn sdn 4096 Zen 5 ./

drwxr-xr-x 16 sdn sdn 4096 Zen 3 o
-rW-rw-r-- 1 sdn sdn 365223735 Zen
sdn@sdn-opendaylight:~/ 1Le s$ mv karaf-0.8.4.tar.gz ~/l}

- owEmGmmy wmga

- y -
sdn@sdn-opendaylight:~$ tar zvf karaf-0.8.4.tar.gz

Once the downloaded file is unziped. Starting the ODL karaf can take place next. The following
command shows how to start the ODL container.

S sdn@sdn-opendaylight:~/karaf-0.8.4S ./bin/karaf

sdn@sdn-o)F-ndai.rli(:lht:--. .4% ./bin/karaf
ache f startin nter to open the shell now

Karaf started in O0s. Bundle stats: 13 active, 13 total

<tab>' for a list of available commands
'[emd] --help' for help on a specific command.
'<ctrl-d>' or type 'system:shutdown' or "logout’ to shutdown OpenDaylight.

5.1.4 Installing karaf features

Once the OD is in running state any feature can be installed and used as an SDN application. Any ODL
feature can be activated by the following command in ODL CLI, where featurel is the feature name.

opendaylight-user@root>feature:install <featurel>

There is an option to install many features simultaneously, by separating the features names with space,
the next command shows how to install all DLUX modules.

11 pdl-dluxapps-applications features-dluxapps

Another useful ODL commands are:
opendaylight-user@root>feature:uninstall <featurel> : uninstalls the featurel from ODL karaf.
opendaylight-user@root>feature:list: shows all active features to be installed in ODL karaf.

opendaylight-user@root>feature:list -i: shows all installed features of ODL karaf.

22 of 84

Department of Information & Communication Systems
Engineering

University of the Aegean

5.2 ODL Deployment Clustering

5.2.1 Clustering Specifications

ODL clustering is using the AKKA technology which is compatible with the design of the MD-SAL. In order
to deploy distributed environment, at least three nodes of ODL must be configured. ODL require at least
three nodes in order to verify high-availability, however if in a 4-node cluster two of nodes crash, again
this cluster is not functional. The clustering mechanism switches between nodes when the minimum
number of nodes in a cluster is valid. The next table shows how many nodes must exist in a cluster [16]
[18].

Node number Minimum number of servers
must exist
2 2
3 2
4 3
5 3
6 3
7 4

Table 2: High —Availability requirements
Before setting the cluster, a brief description of ODL clustering mechanism will be described.

Shards: The MD-SAL datastore uses chunks to store data, in ODL word they are known as shards. Shard
is a partition of data that can be stored either on one server or many servers. For example, one shard
can contain all the inventory data while another shard contains all of the topology data. Thus, the data
are stored in default shard unless, a specific shard configuration is done then, the data will be stored in a
datastore regarding the shard configuration too. Shards configuration takes place in a modules-
shards.conf file. This file allows configuring shards replicas for the clustering mechanism. A X-node
cluster to be able to tolerate any single node crashing, a replica of every defined data shard must be
running on all three cluster nodes.

Roles: Another detail that must be clarified is the role. Assuming that, a cluster consists of three nodes
there must be a way to identify each node. Every node in a cluster must have unique identifier. ODL has
introduced the concept of node role. In particular, the roles of nodes are defined as member-X
depending on X number of nodes exist in a cluster. This configuration takes place in an akka.conf file.
For example, if the nodes-1 role is defined as member-1, ODL recognizes the node-1 by the member-1.

To make a cluster operational multiple seed node must be configured. When a cluster member is
started, it sends a message to all its seed nodes. Once the seed node (any of them) responds, the cluster
member sends a join command to the first seed node that initiated the response. If none of the seed
nodes respond, the cluster member repeats the process until it successfully establishes a connection
with one of the seed nodes else, it remains shutdown. In case a any node fails for any reason, it needs to
be restarted to be able active and take part in a cluster. When a node is restarted after any failure first it
searches for lead node and then joins the cluster.

This means that for a particular shard you need to verify that member-1 is hosting (lead node) and the
replica of this shard is stored on both member-2 and member-3 servers (seed node).

5.2.2 Clustering in Practice

The clustering environment that will be demonstrated will contain three ODL nodes running in the same
hypervisor as depicted in table.

Cluster Nodes Virtual Machine IP-Address RAM (MB) Hard Disk (GB)
Name

ODL Server 1 oDL_01 192.168.56.101 2048 20

ODL Server 2 ODL_02 192.168.56.102 2048 20

ODL Server 3 ODL_03 192.168.56.103 2048 20

23 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

Network configurations adding the host only adapter to ODL_VMs

{3} ODL_02 - Settings ? % | €3 oDL_02 - Settings ? %
9] General Network) General Network
IE‘ System Adapter | | Adapter2 Adapter 3 Adapter 4 E‘ System Adapter 1 = Adapter 2 | Adapter 3 Adapter 4
[oisplay Enable Network Adapter [Display Enable Network Adapter
. = Attached to; |Hostonly Adapter ~
Storage Attached to: | NAT Storage Attache: jost-only Adapter
Name: Name: | VirtualBox Host-Only Ethernet Adapter -
i Aud
Do audio @ Advanced ©n e @ Agvanced
B Network Adapter Type: | Intel PROJ1000 MT Desktop (32540EM) B Network Adspter Type: |Intel PROJ100D MT Desktop (32540EM)
@ Serial Ports Promiscuous Mode: |Deny. @ Serial Ports Promiscuous Mode: | Deny hd
MAC Address: |080027DC4B67 @ MAC Address: &
ﬁ uss MAC Address: |080027DC4B67 ‘0> use MAC Addre: &
Cable Connected Cable Connected
7] Shared Folders 2] shared Folders
Port Forwarding Port Forwarding
] usernterface [F] userinterface
Conce cone

The following figure shows the configured ODL VMs for the clustering environment:

V¥ Oracle VM VirtualBox Manager - O *
File Machine Help

- R

Mew Settings Discard Show

= DDL @ =] General = preview ~
g Mame: QpL_o1
Operating System: Ubuntu (64-bit)
Settings File Location: C:\Usersibnbuser\VirtualBox YMs\ODL_01
—— g WUsers\brbuser} \oDL_
f E& Running IE‘ System
Base Memory: 2043 MB
(=] oDL 03 Boot Order: Floppy, Optical, Hard Disk
r |::> R_unnin Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization
g
@ Display
Video Memory: 16 MB
Graphics Controller: VMSVGA

Remote Desktop Server: Disabled
Recording: Disabled

Storage

Controller: IDE

IDE Secondary Master: [Optical Drive] Empty
Controller: SATA

SATA Port 0: ODL_01.vdi (Mormal, 20,13 GB)

o Audio

Host Driver: Windows DirectSound
Controller: ICH ACS7

B Network

Adapter 1: Intel PRO/1000 MT Desktop (MAT)
Adapter 2: Intel PRO/1000 MT Desktop (Host-only Adapter, 'VirtualBox Host-Only Ethernet Adapter”)

All ODL VMs are in a running state and each node has the ODL Oxygen SR4 release hosted on it.

There are several steps in order to manage an ODL cluster. For this purpose, ODL allows to configure a
clustering with build-in scripts.

Step 1: This step defines which are the seed nodes and which are the lead node. As has been mentioned
before on seed nodes replicas of data shards will be stored. In this step akka.conf and module-
shards.conf files will be configured. In /home/opendaylight/karaf-0.8.4/bin directory exist an executable file
with a name configure_cluster.sh. This file allows to define the clustering parameters. The command
must be executed as following:

./configure_cluster.sh <index> <seed_nodes_list>

Where

<index>: is the number that defines the seed nodes number. This indicates which controller node is
configured by the script and

<seed_nodes_list>: defines the sed nodes IP addresses separated by comma.

The IP address at the provided index should belong to the member executing the script. When running
this script on multiple seed nodes, keep the seed_node_list the same, and vary the index from 1 through
N.

The next command shows an example of the aforementioned command

24 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4/bin$./configure_cluster.sh 1 192.168.56.101
192.168.56.102 192.168.56.103

The above command will configure the member 1 (IP address 192.168.56.102) of a cluster made of
192.168.56.101 192.168.56.12 192.168.56.103.

opendaylight@opendaylight-VirtualBox:~/karaf- .4/bin% ./configure_cluster.sh 1 192.168.5
6.101 192.168.56.182 192.168.56.103

R R R R RN R R R R RN R R R R RS

nfigure Cluster

A R R R R R R R R R R R R

Configuring unique name in akka.conf

Configuring hostname in akka.conf

Configuring data and rpc seed nodes in akka.conf

modules = [

name = "inventory"
namespace = “Urn:openda}"light:in'-.rentory“
shard-strategy = "module”

name = "topology"
namespace = "urn:TBD:params:xml:ns:yang:network-topology"
shard-strategy = "module”

name = "toaster"
namespace = "http://netconfcentral.org/ns/toaster”
shard-strategy = "module"

Configuring replication type in module-shards.conf
R R A A A R R A A R A A A S
NOTE: Manually restart controller to ##
apply configuration. ##
2 .

Navigating the directories of the /configuration/initial/ all configuration files for this ODL controller
have been created.
opendaylight@opendaylight-VirtualBox:~/ 4/configuration/initials 11

opendaylight opendaylight 489¢ 149 ./
opendaylight opendaylight 489¢ 4 /

-MW-r--r--
-MW-r--r--

2
3 .l
1 opendaylight opendaylight 14 :49 akka.conf
1 opendaylight opendaylight 6 X :49 modules.conf
1 opendaylight opendaylight i
opendaylight@opendaylight-VirtualBox:~/kara

The akka.conf file verifies that the applied configuration by the script has been set. The next figure
shows that the IP address of ODL node is 192.168.56.101 (netty.tcp field). The seed-nodes field indicates
that ODL controllers join the cluster are these that defined running the script file. Finally, the ODL _01 is
assigned to “member-1" role.

250f 84

http://192.168.56.101/?fbclid=IwAR0ULHfek7NVeNIQdqWyme0Tu4QfIlnC8kQBu8GT4qwMVXz9UrYNQlkPc9Q
http://192.168.56.102/?fbclid=IwAR2XAgRYL4dl5Bmh-o5LRH11oAoz-lcwYuUIq-n0V4C_DUIC2rhyA-kKjao
http://192.168.56.103/?fbclid=IwAR1_uC9FFCMzsd5KXJ8RtWvxrL0BCPxO3W4cg6f0QP5SFeXl2k8OBC9-nPk

University of the Aegean Department of Information & Communication Systems
Engineering

-rw-r--r-- 1 opendaylight opendaylight 336 Zem 12 23:23 modules.conf
-rw-r--r-- 1 opendaylight opendaylight 555 Tem 12 23:23 module-shards.conf
opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4/configuration/initial$ cat akka.conf

odl-cluster-data {
akka {
remote {
artery {
enabled = off
canonical.hostname = "192.168.56.101"
canonical.port = 2558
1
netty.tcp {
hostname = "192.168.56.101"
port = 2550
1
when under load we might trip a false positive on the failure detector
transport-failure-detector {
heartbeat-interval = 4 s
acceptable-heartbeat-pause = 16s
}
}

cluster {
Remove ".tcp" when using artery.
seed-nodes = ["akka.tcp://opendaylight-cluster-data@192.168.56.161:2558",
"akka.tcp://opendaylight-cluster-data@l92.168.56.102:2558"

"akka.tcp://opendaylight-cluster-data@l92.168.56.103:2558"

roles = ["member-1"]

¥

persistence {
By default the snapshots/journal directories live in KARAF HOME. You can choose to
put it somewhere else by

Checking the next file modules-shards.conf assignment for the replicas has been set.

opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4/configuration/initial$ cat module-shards.conf
module-shards = [
i
name = "default"
shards = [
i
name = "default"
replicas = ["member-1",
"member-2",
"member-3"]

name = "inventory"
shards

name="inventory"
replicas = ["member-1",
"member-2",

"member-3"]

name = "topology"
shards = [
i
name="topology"
replicas = ["member-1",
"member-2",
"member-3"]

name = "toaster"
shards = [
i
name="toaster"
replicas = ["member-1",
"member-2",
"member-3"]

The next configuration is to run the ODL instances on every VM with the following command:

opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4$ JAVA_MAX_MEM=4G
JAVA_MAX_PERM_MEM=512m ./bin/karaf

And the final command is to install odl-mdsal-clustering.

26 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

opendaylight-user@root>feature:install odl-mdsal-clustering

opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4% JAVA MAX MEM=4G JAVA MAX PERM_MEM=512Zm
./bin/karaf

karaf: JAVA HOME not set; results may vary

i Press Enter to open the shell now

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '=ctrl-d=' or type 'system:shutdown' or 'logout' to shutdown OpenDaylight.

11 odl-mdsal-clustering]]

Same configuration must be applied for the rest of ODL _01 and ODL_02 servers changing just the index
parameter.

Using the ODL CLI command opendaylight-user@root>log:tail the logging messages verify that a
candidate node can be a lead node and backward.

Finally, if an ODL_01 node will be crashed in the cluster, the logs of any of the rest ODL nodes will notify
that the ODL_01 node is not running. However, when this node will be recovered it immediately
became again a candidate node.

27 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

6 Mininet

Mininet is an open source tool that creates virtual network environment with one single command. In
particular it is used for creating the data plane elements (switches) for the SDN environment. Mininet
networks usually are a composition of hosts, switches, routes, controllers and links with the last being
represented as virtual Ethernet connections. Mininet not only creates a network but it also allows to
configure it and test it. Using Mininet it is possible to develop a network based on a single GNU/Linux
kernel [19].

6.1 Why to use Mininet

Mininet is the best choice to simulate virtual networks because it is compatible with many SDN
controllers and switches. Also, it comes with built-in SDN switch Open vSwitch that supports the
OpenFlow protocol and many other utilities that will be presented afterwards. Also, it allows easy to
create custom topologies based on Python language. Furthermore, the command line interface (CLI)
allows to test and configure the network topologies with real conditions, such as setting up link
bandwidth, link delay, and loss characteristics. Finally, it supports the miniedit GUI (Graphical User
Interface) to create a network topology [19].

6.2 Mininet-Deployment

In order to set up a Mininet tool that will be used to create virtual network topology, a virtualization
platform is required. However, the Mininet tool can be used without being hosted in any hypervisor.
There are three options to install the Mininet tool [19]:

e Installing Mininet VM in hypervisor which is the recommended
e Native Installation from Source
e Installing Mininet from packages

6.2.1 Installing Mininet VM

The required VM images are downloaded from [19] in order to set up the Mininet VM. The retrieved zip
file contains two files as demonstrated in following figure.

Next step-by-step Mininet Deployment in VirtualBox hypervisor will be presented.

Step 1: Since the VirtualBox is in running state selecting from File-> Import Appliance a new wizard pops-
up to browse an appliance.

University of the Aegean Department of Information & Communication Systems
Engineering

¥ Oracle VM VirtualBox Manager — O *
]
File Machine Help
Preferences... Ctrl+G
-
{5 Import Appliance... Ctrl+] Mew Settings Discard Show
@ Export Appliance... Ctrl+E E @ General ~
= . " Mame: oDL_vm
Virtual Media Manager... Ctrl+D Operating System: Ubunty (64-bit) R
Host Network Manager... Ctrl+H Settings File Location: C:\Users'bnbuserVirtualBox VMs\ODL_vM E .
B o
S_b. Metwork Operations Manager... IE‘ System s |
@ Check for Updates... Base Memory: 2048 MB b
Boot Order: Floppy, Optical, Hard Disk]
A\ Reset All Warnings Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization] ..
L]
[pisplay -
Exit Ctrl
v ! [+ Video Memary: 16 MB il -
Graphics Controller: VMSVGA =
Remote Desktop Server: Disabled
Recording: Disabled
Storage
Controller: IDE
IDE Secondary Master: [Optical Drive] Empty
Controller: SATA
SATA Port 0: QDL_YM.vdi (Mormal, 40,00 GB)
iln Audio
Host Driver: Windows DirectSound
Controller: ICHACS7
=P Network
Adapter 1: Intel PRO/1000 MT Desktop (NAT) b
Adapter 2: Intel PRO/1000 MT Desktop (Host-only Adapter, 'VirtualBox Host-Only Ethernet Adapter’)
W
r
Step 2: The next wizard browses the .ovf (Open Virtualization Format) image.
!,‘i Please choose a virtual appliance file to import X

i v » ThisPC » Downloads » virtualbox » rest » mn-trusty32server-170321-14-13-31 v | O Search mn-trus

Organize « MNew folder
[Desktop " MName Date modified Type Size
¥ Downloads “# mininet-2.2.2-170321-ubuntu-14.04.4-server-i386.ovf 21/3/2017 11:25 pp Open Virtualizatio... 4KB
| My Documer

| Pictures

& This PC
. 3D Objects
[Desktop
* Downloads
D Music
|=] My Documents
| Pictures
m Videos
- Data ([1)

users (4,192,168,
v

2!

File name: | mininet-2.2.2-170321-ubuntu-14.04.4-cerver-i386.ovf V| Open Virtualization Format (.0

This will unpack and import the VM in your local machine. It will take a while, as the unpacked image is
about 3 GB. Once the Mininet VM is completed, Mininet version 2.2.2 is installed along with Wireshark,
Openflow13, Open vSwitch, a POX and NOX SDN controllers and other useful utilities on Ubuntu 14.04.4
LTS (GNU/Linux 4.2.0-27-generic x86_64) operating system.

Import Virtual Appliance

Appliance to import

VirtualBox currently suppeorts importing appliances saved in the Open Virtualization Format (OWF). To continue, select the
file to import below.

|wnloads'|,virb_|al boxrestymn-trusty32server-170321-14-13-31\mininet-2, 2, 2- 17032 1-ubuntu-14, D4.4—server-i386.0vﬂ| @

Step 3: This step shows the assigned memory to 1GB RAM, 1 CPU and OS type Ubuntu for the VM. The
provided values are sufficient to assure that the Mininet tool will work effectively.

29 of 84

University of the Aegean

&

Appliance settings

Department of Information & Communication Systems
Engineering

Import Virtual Appliance

These are the virtual machines contained in the appliance and the suagested settings of the imported VirtualBox machines,
‘You can change many of the properties shown by double-clicking on the items and disable others using the check boxes

below.
Virtual Systern 1 ~
25 MName Mininet-Vii
B Guest 05 Type Pa Ubuntu (32-bit)
{1} cru 1
& rem 1024 MB
5:9 USE Controller
@‘ Metwork Adapter Intel PRO/1000 MT Server (82545EM)
v <> Storage Controller (SCSI) LsiLogic W
You can modify the base folder which will host all the virtual machines. Home folders can also be individually {per virtual
machine) modified.
| C:\Wsers\bnbuser\VirtualBox VMs ~
MAC Address Policy: | Indude only NAT network adapter MAC addresses A
Additional Options: Import hard drives as VDI
Appliance is not signed
Restore Defaults Cancel
Step 4: Similar to ODL configuration Host-only Adapter is configured.
{2 Mininet-VM - Settings ? X
E General Network
II‘ Systermn Adapter 1 Adapter 2 Adapter 3 Adapter 4
|§| Display Enable Network Adapter
Fa Attached to: Host-only Adapter =
Storage Attache: ost-only Adapter
Mame: | VirtualBox Host-Only Ethernet Adapter -
(Dj Audio
T Advanced
@ Metwork Adapter Type: |Intel PRO/1000 MT Desktop (32540EM) w7
@ Serial Ports Promiscuous Mode; | Deny -
ﬁ UsE MAC Address: |080027DBF2C0 | ®
Cable Connected
|__-| Shared Folders R
lfl User Interface

When the Mininet VM is running it starts booting and throws a login prompt, providing the default

credentials for username and
root permissions are available

password “mininet” allows access to It. This user is a sudoer, as a result,
for any command. It is worth to mention, that this VM does not include

Graphical User Interface, so the built—in X server of the host machine will be used to solve this problem.

ininet-um login: mininet

Password:

Last login: Tue Mar 21 21:13:43 PDT 2017 on ttyso0
elcome to Ubuntu 14.04.4 LTS (GNU-Linux 4.Z.0-Z7-generic ibB86)

Documentation:

https:sshelp.ubuntu.comns

Next, the IP address is retrieved in order to set up the X forwarding. The next figure shows the ethO
interface with IP address 192.168.56.102, which means this is the Mininet VM IP address is
192.168.56.102 and there is access to it via SSH (Secure Shell).

30 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

buntu 14.04.4 LTS nininet-um ttyl

ininet-vm login: mininet

assword:

ast login: Tue Mar 21 21:13:43 PDT 2017 on ttys0

elcome to Ubuntu 14.04.4 LTS (GNU-Linux 4.Z2.0-Z7-generic i686)

Documentation: https: - help.ubuntu.cons
ininet@mininet-um:~$ ifconfig
tho Link encap:Ethernet HWaddr 08:00:27:90:f8:5c
inet addr|192.168.56.102] Bcast:192.168.56.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:Z21 errors:0 dropped:0 overruns:0 frame:0
TX packets:Z errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgueuelen:1000
R¥ bytes:6975 (6.9 KB) TX bytes:684 (684.0 B)

§% Oracle VM VirtualBox Manager‘ [E=SEER
File Machine Help
nRM a0t W ey’
BHE roots Tt W2 -
Mew Settings Discard Show
EJ™ opL_vn (=] General (5] preview -
, ©» Running Name: Mininet-yM
Operating System: Ubuntu (32-bit) " N
o Settings File Location: C:Wsers\c4shareirtualBox VMsWMininet-vi
LJ =
|{> 8_ [#] system
Base Memory: 1024 MB
' Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging, PAE/MX, KVM
Paravirtualization
= pisplay =
Video Memory: 16 MB
Graphics Contraller: VBOXVGA
Remote Deskiop Server: Disabled
Recording: Disabled
Storage
Controller: SCSI
SCSI Port 0: mininet-vm-i386.vdi (Normal, 8,00 GE)
o Audio
Host Driver: Windows DirectSound
Controller: ICH ACS7
& MHetwork
i Adapter 1: Intel PROf1000 MT Server (NAT)
Adapter 21 Intel PRO/1000 MT Desktop (Host-only Adapter, 'VirtualBox Host-Only Ethernet Adapter)
I (9 usB <

From now on, all actions that will take place in this VM will be accomplished after SSH (Secure Shell)
connection and forwarding the X server from the host machine terminal as shown from figure bellow.

sdn@sdn-opendaylight:~S ssh -X mininet@192.168.56.162

The authenticity of host '192.168.56.102 (192.168.56.102)' can't be established.
ECDSA key fingerprint is SHA256:NGco/tf+bXePOQT4AqoCLIMO9OSUWE2Vj7FTogGXbHg.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.56.102' (ECDSA) to the list of known hosts.
mininet@192.168.56.102's password:

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.2.8-27-generic i686)

* Documentation: https://help.ubuntu.com/

Last login: Mon Sep 23 20:36:04 2019

Jusr/bin/xauth: file /home/mininet/.Xauthority does not exist
mininet@mininet-vm:~$§ ‘

6.3 Mininet build-in Tools

Mininet VM has already pre-installed many tools networking presented next:

e Mininet: command line tool, creates a virtual network that is composed of controller, virtual
switches, hosts, and links.

e Open vSwitch (OVS)[22]: Is a virtual OpenFlow-enabled switch and it is used in many open
source and commercial networks and virtualization platforms. It was implemented by Nicira
company. OVS in based on Linux Kernel Module. It supports different technologies and
protocols, such as 802.1Q, BFD, NetFlow, sFlow, port mirroring, VLANs, LACP, VXLAN, GENEVE
GRE Overlays, STP, and IPv6. Virtual Ethernet ports pair are used in order to connect hosts by
OVS. Virtual Ethernet ports are equivalent to a pair of physical Ethernet interfaces
interconnected by a cable however, they are implemented using software. The virtual port
connection is implemented at a link layer. OVS works like a regular MAC learning and forwarding
switch when no controller is configured and OpenFlow rules are not programmed (standalone).
It programs the OpenFlow flow tables when it receives inputs from the SDN OpenFlow-enabled
controller. It also supports the OVSDB southbound protocol. OVS is always layered below the

310f84

University of the Aegean Department of Information & Communication Systems
Engineering

OpenFlow interface. The release of the switch that is hosted in Mininet -VM is 2.0.2 The next
figure verifies this version.

mininet@mininet-vm:~% ovs-dpctl -V
ovs-dpctl (Open vSwitch) 2.8.2

el e]

Compiled Dec 9 2815 14:08:08
mininet@mininet-vm:~%

Figure 13 illustrates the structure of the OVS:

Application Database
Web server ‘ ‘ Web server ‘ server server
Linux | | Linux ‘ Linux Linux
[wNIC | vNIC [wNIC [wNIC
C Distributed virtual switch (Open vSwitch)
Hypervisor ‘ Hypervisor ‘
Server ‘ Server ‘

Figure 13: OVS atchitecture

e POX Controller: Is a built-in OpenFlow controller, but can also function as an OpenFlow switch
that resides in Mininet VM. In terms of this research the ODL controller will be used. Every
OpenFlow controller is located above of the OpenFlow interface. The controller communicated
with the switch with the OpenFlow protocol.

e dpctl: Is a command line tool that configures flow tables in OpenFlow switch. It allows to adds
flows, modifies the flows, queries for switch features and status [20][21].

e ovs-ofctl: command line utility that sends quick OpenFlow messages, useful for viewing switch
port and flow stats or manually inserting flow entries [20][21].

e ovs-vsctl: command line utility that allows queries and configuration on ovs-vswitchd which is
an OVS deamon [20][21].

e Wireshark: Tool with GUI for analyzing the packets. In particular it will dissect OpenFlow packets
[19].

Before starting the Wireshark, capture privileges and permissions to specific files
Jurs/bin/dumpcap directory must be set by following commands

mininet@mininet-vm:~$ sudo chgrp mininet fusr/bin/dumpcap

mininet@mininet-vm:~% sudo chmod 754 Jfusr/bin/dumpcap
mininet@mininet-vm:~% sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' [fusr/bin/dumpcap

The bellow command starts the Wireshark and filtering OpeFlow packets:

mininet@mininet-vm:~$ wireshark

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
© ® m A =R E & 5 NENS | & & @ B s 5| 8

Filter: I ~ | Expression...

Interface List = Open o Website
Live list of the capture interfaces Open a previously captured file Visit the praject's website
(counts incoming packets)
Open Recent: + User's Guide
Start B
A The User's Guide (nline version)

Choose one or more interfaces to capture from, then Start Sample Captures

& etho Arich assortment of example capture files on the wiki Security

nflog Work with Wireshark as securely as possible

] nfqueue

an
{2 any =

Capture Options

Start a capture with detailed options

Capture Help

~ Hnaw A Cantura)

‘ Ready to load or capture ‘ No Packets Profile: Default

32 0f 84

University of the Aegean Department of Information & Communication Systems
Engineering

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help |

4- =EHXE @ E R ﬁglé -
Filter: I@ j Expression... Clear AM}J -

r

The World's Most Popular Network Protog

___T
W'RESHARK Version 1.10.6 (v1.10.6 from master-1.10)
| Files |

 Interface List = Open

y
6 Live list of the capture interfaces Open a previously captured file
{counts incoming packets)

Open Recent:

Start
Choose one or more interfaces to capture from, then Start @ Sample captures

A rich assortment of example cz

&l nflog

2] nfqueue

gl any - =|
El A |

Ready to load or capture No Packets ‘ Profile: Default

e iperf: Tool for testing the speed of hosts.

o chench: Cbench is a software for testing OpenFlow controllers by generating packet-in events
for new flows. Cbench emulates a bunch of switches, which connect to a controller, sends
packet-in messages, and waits for flow-mods to get pushed down.

33 of 84

Department of Information & Communication Systems
Engineering

University of the Aegean

7 Integration of Mininet with OpenDaylight Controller

In this chapter, will present how to build a virtual SDN lab using ODL and Mininet. Mininet is a tool for
virtualizing OVS-based virtual switches and Linux container hosts. ODL and Mininet communicate with
each other and how hosts in a virtual lab can ping each other by leveraging the SDN controller to
program the flows inside the switches. In order to create the virtual network, the Mininet VM and the
Opendaylight controller must be in running state. Connect to Mininet VM with default
username:mininet and password:mininet

The ODL controller must be in running state. In addition, L2Switch feature must be installed, along with
DLUX Web Interface and restconf API.

The next steps verify that required ODL modules are installed and are accessible. Also verify that
Mininet VM is connected to ODL via OpenFlow.

e Running ODL

The following command starts the ODL container.

sdn@sdn-opendaylight:~/Downloads/karaf-0.8.4$./bin/karaf

sdnésdn-mpendakliéht:~ raf-0.8.4% ./bin/karaf

Karaf started in O0s. Bundle stats: 13 active, 13 total

<tab>' for a list of available commands
'[emd] --help' for help on a specific command.
'<ctrl-d>' or type 'system:shutdown’' or "logout’ to shutdown OpenDaylight.

Since the controller is in running state, it allows installing any ODL module.

e FEnabling L2Switch

In order to make Mininet to connect with the Opendaylight we need to install the [2switch feature.

After installing the 12switch in OpenDaylight karaf, the port 6633 will be activated to accept incoming
TPC/TLS connections with mininet. Also, there is another TCP/TLS port which is 6653 and establishes a
secure channel connection with the Opendayligh and Mininet.

odl-12switch-switch
L2switch

od all 8.7
OpenDaylight :: L2Switch :: All
od1- -packeth p 0.7.4 Started
OpenDayligh : PacketHandler
odl swit 2 | » Started switch
OpenDaylight : 1 Switch

Uninstalled odl all

-packethandler

odl Uninstalled . ~switch-ul
openDayligh 25 1z Switch UI

od1 -addr 3 0.7. | Started addresstracker

OpenDayligh
odl 1

OpenDaylight :

features-
features

od1 ar
OpenDayligh

odl h

OpenDayligh
-swit

OpenDaylight ::

Tracker

:: ArpHandler
h :: HostTracker

:: Switch REST

Started

Uninstalled

ted

Started

Uninstalled

arphandler
hosttracker

-switch-rest

34 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

=p openflow
0.6.4 | started |

java :: odl- java-
0.6.4
OpenDaylight ::

| started |
Openflow Plugin :: Appli

plugin-app-arbitraterreconciliation
plugin-app-arbitratorreconciliation

| started

0.6.4 |
OpenflowPlugin :: NSF ::

OpenDaylight ::

plugin-nsf-model
plugin-nsf-model

| started

plugin-southbound 08.6.4

plugin-8.6.4

plugin-libraries
plugin-libraries

plugin-app-reconciliation-framework
plugin-app-reconciliation-framework

plugin-flow-services
plugin-flow-services

plugin-app-topology
plugin-app-topology

plugin-app-forwardingrules-manager

OpenDaylight ::

0.6.4

OpenDaylight ::

0.6.4

OpenDaylight ::

0.6.4

OpenDaylight ::

0.6.4

OpenDaylight ::

0.6.4

Openflow Plugin :: Li

Openflow

|
Openflow

Openflow

Openflow

| started
Plugin :: Libra

| started |
Plugin :: Appli

| started |
Plugin :: Flow

| started |
Plugin :: Appli

| started |

plugin-app-forwardingrules-manager OpenDaylight :: Openflow Plugin :: Appli

| started |
Appli

0.6.4 |
OpenDaylight :: Openflow Plugin ::

plugin-app-config-pusher
plugin-app-config-pusher

[

After installing the odl-I2switch-switch, verify that the ports 6653 and 6633 are activated in order to
receive calls from Mininet.

sdn@sdn-opendaylight:~$ ps -eaf| grep ":6633"

daylight:

3803 3061
sdn-opendaylight:~

3809 3061
@sdn-opendaylight:~

grep

132 pts/6

-eaf | grep ":6

:33 pts/6 B8:08:00 grep --color=auto

-eaf |

e FEnabling DLUX web interface

Enable the DLUX web interface through command.
opendaylight-user@root>feature:install features-dlux

The “Started” annotation indicates that dlux modules have been started successfully. The next figure
verifies that the DLUX Web interface is accessible.

L: ¢ o

£ Mioat Visited i Getting Started [I] b

9 Topology

lecalhast - @ +

frvenus apend

Controls
Raload

35 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

e Enabling restconf A Pl

To access the REST ODL apply navifate to http://localhost:8181/apidoc/explorer/index.html

@ localhost:

ed [I] https://nexus.opend... = opendaylight:maven...

% OpenDaylight RestConf API Documentation
Mounted Resources

Below are the list of APIs supported by the Controller.

From here on, a virtual network topology can be created and every switch will be defined as 12-learning-
enabled switch. The controller is responsible to handle the forwarding rules of tables.

In order to create a virtual network in the VM, the following command.

mininet@mininet-vm:~$ sudo mn --topo=linear,3 --mac --controller=remote,ip=192.168.56.102 --
switch ovsk,protocols=OpenFlow13

where

mac: will assign MAC address for every host equal to its IP address e.g. 00:00:00:00:00:01
ip: defines the IP address of the remote controller.

controller: is the IP address of the ODL controller where the virtual switches are connected,

topo: linear defines a network topology with three switches and three hosts, switches and hosts are
connected with a virtual ethernet cable.

switch: is a parameter to identify the switch type in this case is an OpenFlow-enabled Open vSwitch.

protocols: which is set to OpenFlow13 means that this switch is compatible with this protocol. The next
figure shows the result of this command.

36 of 84

http://localhost:8181/apidoc/explorer/index.html

University of the Aegean Department of Information & Communication Systems
Engineering

mininet@mininet-vm:~% sudo mn --topo=linear,3 --mac --controller=remote,ip=192.168.56.181
--switch ovsk,protocols=0penFlowl3

#%#% Creating network

#%#% Adding controller

Connecting to remote controller at 192.168.56.181:6653
#%#% Adding hosts:

hl h2 h3

*** Adding switches:

51 s2 s3

#=#% Adding links:

(h1, s1) (h2, s2) (h3, s3) (s2, sl)

##% Configuring hosts

hl h2 h3

*** Starting controller

c@

*** Starting 3 switches

s1 s2 53 ...

#%#% Starting CLI:

Using the mininet “net” command information about swich nodes aand links are provided.

mininet> net
hl-eth@:s51l-ethl
h2-eth@:s52-ethl
h3-eth@:s53-ethl
lo: sl-ethl:hl-eth® sl-eth2
lo: s2-ethl:h2-eth® s2-eth2
lo: s3-ethl:h3-eth8 s3-eth2
cB
mininet> links
>51-ethl (0K OK)
2-ethl (DK OK)
3-ethl (0K OK)
=51l-eth2 (0K OK)
=-52-2th2 (0K OK)
mininet> nodes
avallable nodes are:
c® hl h2 h3 s1 52 53
mininet> [j

Using the web interface of the controller created network topology is depicted in topology tab.

L = 2 localiopt

@ Mait vitited i Cotping Srared] merpdfnemui opend opendaylight : maeen

% Topology

Conirols

Navigating through the GUI various data about nodes, flows, etc. are provide for the user.

37 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

E ® Logout (admin)

Node Id Node Name Node Connectors Statistics
openflow:1 Hone 3 Flows | Mode Connectors
openflow:2 None Flows | Node Connectors

openflow:3 Hone 3 Flows | Mode Connectors

* OPEN .:. Nodes E O Logout (admin)

Node Connector Statistics for Node Id - openflow:1
Node Connector Rx Tx Rx Tx Rx Rx Frame Rx OverRun
Id Bytes Drops Drops Errs Errs Errs Collisions
openflow:1:1 15725
openflow:1:2 15725

openflow:1:LOCAL 17760

Model - network-topology
™

Mode! depth from top - —————————————————————————————————————

save model layout | reset model layout

View: Defauit Types Modules Namespaces . [2Joetermtep
@ tink-rer
Legend: : [1] link-ref

a Display all labels supporting-ink
container @ A Network Linkc...

® Yang Visualizer

destination

tist -
® rey @ node-id link fink-id The identifier of .

@ The list o getwo... @ sting
@ The eta objects ¢
link-id . source

'Y Smg Itis presumed t . [2] source-tp
[21 source-node

@ (description [1]tp-id
=1 @ The data objects - node
@ type @ tp-id{ termination-point
resence -
@ @31 tp-rer supporting-node

p
i A termination poi. @ This list defines. topology-id
. featist b " network-topology
config @ nod

e-ref @ _This is the mode.
choice 111 node gl i@ige identfier of .. topolof 1opology-ia
@ case
@ patiem @ topology-tRideriay-topology
length topola@yTHesontainer is...
@ range topology-ref
ot @ Identifies the to...

@ postion @ leafret
enum

In addition, Wireshark tool will allow to analyze the packets of the network.

Setting as a filter the “of” key, which stands for OpenFlow protocol, then pressing the “apply” button
will show only OpenFlow packets. The figure bellow presents filtered OpenFlow packets.

38 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
© ©® 4 m | B X 8| @ @--ﬁ&ﬂ -

Filter: Iof « | Expression... Clear -

No» | Time Source Destination Protocol Length Info J
192.168.56.18, 192.168.56.181

181
8.56.181

of_hello
hello

,_
[¥=)
=]

[I o R o R I o R o Y |

hello

—
w

hello + of features request

—
o

hello

—
o

tures reply

=
w

o + of features reguest

[= =t =]
w0 w00

barrier request

—
w
O e e e

L R Y e o L S R VR W i =

—
=)

barrier reply

[» Transmission Control Protocol, Src Port: 44736 (44736), Dst Port: openflow (6653), Seq: 1, Ack: 1, Len: 16

S ————— =
[|

060 6B B8 27 57 T2 ad 6B 6B 27 98 1B 5c 0B 0O 45 c@ ..'W.... '..\..E.

8016 6O 44 3= 2a 40 00 48 66 60 ae cB a8 38 66 O aB .D=*@.@.Bf..

8020 38 65 ae cB 19 fd Bd 58 la da 1f d5 5c 55 88 18 Be.....P\U..

030 60 3a 2 52 00 60 61 B1 OB Ba 06 13 24 1 00 62 .:.R.... 5...

8048 cd ©7 B4 06 00 10 60 68 60 B1 B 01 60 B8 60 B0

ARSA AR 1A j
@ & | Ready to load or capture Packets: 10567 - D... Profile: Default

Wireshark verifies that there is packet exchange between the ODL controller 192.168.56.101 and virtual
network topology from Mininet 192.168.56.102 These packets are called “of _hello” are of type
OFPT_HELLO.

The communication is initialized during the TCP handshake, the controller sends its version number to
each switch through the of hello packet, whereupon each switch responses with its supported version
number through the of hello packet. Finally, the controller requests to see the available ports throught
of features request. Since there are three switches three pair of OFPT_HELLO-
OFTP_FEATUES_REQUEST generated.

The OF_HELLO packet contains, version, type, length , of_hello_elemets, xid.

No. Time Source Destination Protoco | Lemgt | Info

394 5.568779000 192.168.56.162 192.168.56.101 82 of_hello
395 5.568841 192.168.56.182 192.168.56.181 82 of_hello

[* Transmission Control Protocol, Src Port: 44736 (44736), Dst Port: openflow (6653), Seq: 1., Ack:
=~ OpenFlow (LOXI)
version: 4
type: OFPT_HELLD (@)
length: 16
xid: 1
=7 of_hello elem list
=7 of_hello elem versionbitmap
type: 1
length: 8
=7 of_uwint32 list
=7 of uint32
value: 16

DpeE 08 00 27 57 f2 a4 0B 00 27 909 T8 5c 08 680 45 B ..'W.... "..\LLE.
Be16 00 44 3e 23 40 00 40 06 09 ae c@ ad 38 66 cO a8 .D=%@.@.8F..
628 38 65 ae cb 19 fd Bd 50 la da 1f d5 5c 55 80 18 &8e..... P ..o
BE30 00 33 f2 52 0O B0 P1 81 08 B3 08 13 24 f1 80 B2 .:.R....5%...

BE40 cd B7 B4 00 B0 10 00 B0 90 01 DO 91 B0 B3 B BD sieeiaas
ARSA AR 1A

@ | Ready to load or capture Packets: 10567 - D... Profile: De

The OFTP_FEATUES_REQUEST packet contains also version, type length and xid.

39 of 84

University of the Aegean

192.168.56.181

-

-

92.
192,
92,
92.

=

Department of Information & Communication Systems

Engineering

192.168.56.182

W

g of_features_repl
of barrier reg
of_barrier_re
of barrier reply

OpenFlow (LOXI)
version: 4

length: 8

type: OFPT_FEATURES REQUEST (5)

[» Frame 418: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface @

[+ Ethernet ITI, Src: CadmusCo 57:72:84 (B8:00:27:57:72:84), Dst: CadmusCo 98:T8:5c (B8:00:27:98:78:5c)

[» Internet Protocol Version 4, Src: 192.168.56.181 (192.168.56.101), Dst: 192.168.56.182 (192.168.56.102)
[

Transmission Control Protocol, Src Port: openflow (6653), Dst Port: 44736 (44736), Seq: 17, Ack: 17, Len: B

Bees
Ba1e
Be2e
Be3e
Be4e

B8 BB 27 90 f8 5c 68 80
B8 3c 91 54 48 88 48 86
38 B6 19 fd ae cB 1f d5
B8 e3 ab 46 06 88 81 81
24 fd 84 B85 06 B8 60 80

27 57 T2 a4 B8 00 45 88
b7 4b cB 38 38 65 cB ad
5c B5 8d 50 la ea 80 18
B8 Ba 60 B2 cd 12 60 13
Be 83

@ * | Ready to |load or capture

The content of the OFTP_FEATURES_REPLY packet

414 5.618711800

192.168.56.102

192.168.56.101 OF 1.3

Packets: 10567 - D...

Profile: Default

98 of features reply

= DpenFlow (LOXI)
version: 4

length: 32

xid: 3
datapath_id: 3
n_buffers: 256
n_tables: 254
auxiliary id: @

reserved: 0

type: OFPT_FEATURES_REPLY (6)

capabilities: Unknown (BxBEEEBE4T)

[> Transmission Control Protocol, Src Port: 44736 (44736), Dst Port: openflow (6653), Seq: 17, Ack: 25, Len: 32

0E6E 68 60

BPeE 88 80 27 57 f2 a4 B8 0@ 27 90 f& 5c @8 80 45 c@
0010 ©0 54 3e 2d 40 60 40 66 089 9b c@ ab 38 66 cb ad
0020 38 65 @e c@ 19 fd 8d 50 la ea 1f d5 5c 6d 80 18
0030 60 3a T2 62 00 6@ 61 1 ©F 0a 00 13 24 fe 00 62
0040 cd 12 04 06 00 20 0D D@ 0O O3 00 0D B0 00 00 00
0050 00 63 00 00 01 o0 fe 0@ OO 0O OO 0D @0 47 00 00

® ¥ ‘ Ready to load or capture

Packets: 10567 - D...

Two pair of add flow mod exist in packet analyzation.

Profile: Default

Destination

Lengt

L

port
port

W e e b e e e e

Wold W oW oW oW WL

flow add + of flow add

queL st

queue stat

barrier reguest

barrier reply

set config + of flow add + of flow add
packet out

I+ |

K1
|
|
|
|

=7 OpenFlow (LOXI)

Frame 659: 218 bytes on wire (1744 bits), 218 bytes captured (1744 bits) on interface @

Ethernet II, Src: CadmusCo 57:T2:a4 (08:00:27:57:f2:a4), Dst: CadmusCo 98:f8:5c (B5:00:27:98:18:5c)
Internet Protocol Version 4, Src: 192.168.56.101 (192.168.56.181), Dst: 192.168.56.1082 (192.168.56.1082)
Transmission Control Protocol, 5rc Port: openflow (8853), Dst Port: 44736 (4473k), Seq: 285, Ack: 7949, Len: 152

+

Bgees 88 80 27 90 f8 5c 68 B0 27
8016 86 cc 91 6b 40 0O 46 B6 b6
0020 38 66 19 fd ae c 1f d5 5d
0030 01 7a 0d 1c 60 09 @1 91 68
0840 26 de 04 Oe 00 58 0B 0D B0
ARSA AR A1 AR AR AR AR AR AR AR

57 f2 a4 68 68 45 ee
al ch ad 38 65 cb ad
71 8d 58 39 =6 80 18
Bz 80 82 ce T4 00 13
Bc 2b B0 60 60 80 69
AR AR AR AR AR AR AR

® & | Ready to load or capture

Packets: 10567 - D...

Profile: Default

40 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

OFTP_FLOW_ MOD message which does not has matching rules and sends the packet to the controller
via instruction apply actions since it is not know how to handle the packet. All this action is presented in
figures in detail.

659 7.544513000 192.168.56.101 192.168.56.102 OF 1.3 + OF 1.3 218 of_flow_add + of_

D Transmission Control Protocol, Src Port: openflow (6653), Dst Port: 44736 (44736), 5eq: 285, Ack: 7949, Len: 152 =
=7 OpenFlow (LOXI)
version: 4
type: OFPT_FLOW MOD (14)
length: B8
xid: 12
cookie: 3098476543630001249
cookie mask: @
table id: ©
_command: 0
idle timeout: 8
hard_timeout: 6
priority: 188
buffer_id: 4294967295
out_port: 4294967295
out_group: 4294967295
flags: Unknown (BxB8008088)
= of_match
type: OFPMT_ (XM (1)
length: 18
=7 of_oxm list
=7 of oxm eth type
type len: 2147486216
value: 35026
[> of_instruction list
[* OpenFlow (LOXI)

IET] |
BEBE 27 BB 27 57 f2 a4 B3 68 45 8g L -

ee1e 9 i) b6 a4 ch ad

0028 KX : 5d 71 8d

0030 B B e B8 8a o

ee4e

ARSA

659 7.544513000 192.168.56.101 192.168.56.102 OF 1.3 + OF 1.3 218 of_flow_add + of_

_command: @ =
idle timeout: @
hard timeout: @
priority: 166
buffer_id: 4294967295
out_port: 4294967295
out _group: 4294967295
flags: Unknown (8xB00E8068)
= of_match
type: OFPMT_OXMM (1)
length: 18
<7 of_oxm list
=7 of_oxm_eth_type
type len: 2147486218
value: 35828
= of_instruction list
=7 of_instruction_apply actions
type: OFPIT_APPLY ACTIONS (0x00000004)
len: 24
<~ of_action list
=7 of_action_output
type: OFPAT OUTPUT (8)
len: 16
port: 4294967293
max_len: 65535
[> DpenFlow (LOXI)

27 57 T2
b6 a4 cB at

41 0f 84

University of the Aegean Department of Information & Communication Systems
Engineering

apng [Wireshark 1.10.6 (v1.10.6 from master-1.10)] 1 m Q) 12:44nM

659 7.544513000 192.168.56.101 192.168.56.102 OF 1.3 + OF 1.3 218 of_Flow_add + of_

len: 16 =
port: 4294967293
max_len: 65535
=~ OpenFlow (LOXI)
version: 4
type: OFPT FLOW MOD (14)
length: 64
xid: 13
[cookie: smmamssasmamoniase
cookie mask: 8
table id: ©
_command: @
idle timeout: 8
hard timecut: O
priority: @
buffer id: 4294967295
out_port: 4294967295
out_group: 4294967295
flags: Unknown (BxBBEEBBEE)
=7 of_match
type: OFPMT_OXM (1)
length: 4
= of_instruction list
= of_instruction apply actions
type: OFPIT_APPLY ACTIONS (0x00000004)

len: 8 :
q I |
B0 T fd Tf {7 0O 6O 0O 66 00 60 B4 Oe B6 40 B0 B0 Q.. al
ecae 00 od FENEIEEEEECIEEE 0 o0 00 60 .. 00NN
BBbO B BO BO BO OO BB DO BB OO B0 Tf Ff ff FF Ff ff coees
00cO Ff Ff £f ff £f £ 00 00 00 00 B0 01 08 04 B0 B0 eeees J
6D B0 B0 6O B4 DO B3 DO BB BB GO =

Since an Openflow based topology is created relevant data about the network can be retrieved from
feature inventory: nodes of the OpenFlow of the ODL.

Using the Restconf APl of the ODL we retrieve the nodes fetching related data from bellow end-point.

Note that, the flows data behavior must be similar to the packet anatomy from Wireshark tool described
before.

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

Three switches network impy to free nodes with openflow:1, openflow:2 and openflow:3 for the
OpenFlow protocol.

42 of 84

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

University of the Aegean Department of Information & Communication Systems
Engineering

=
"nodes”:{ B
"node”:[&
=]
"id": "openflow:1",
"node-connector”:[=
{81
{81
=
1.
"flow-node-inventory :port-number”: 59808,
"flow-node-inventory:serial-number™: "None”,
"flow-node-inventory:table”:[& 1.
"flow-node-inventory:hardware™: "Open vSwitch”,
"flow-node-inventory:description™: "None",
"flow-node-inventory:software”: "2.9.2",
"flow-node-inventory:switch-features”:{ & }.
"flow-node-inventory :manufacturer” : "Nicira, Inc.",
"flow-node-inventory:ip-address™: "192 165 5&_ 182",
"flow-node-inventory:snapshot-gathering-status-start”:{ & }.
"flow-node-inventory:snapshot-gathering-status-end”:{ &5 }
}.
=
*id": "openflow:2",
"node-connector:[=
=
=
=
1@}
1.
"flow-node-inventory:port-number”: 59553,
"flow-node-inventory:serial-number”: "Hone",
"flow-node-inventory:table”:[& 1.
"Flow-node-inventory:hardware”: "Open vSwitch”,
"flow-node-inventory:description”: "None",
"flow-node-inventory:software®: "2 82",
"flow-node-inventory:switch-features”:{ & I,
"flow-node-inventory:manufacturer” - "Nicira, Inc.",
"flow-node-inventory:ip-address™:"132 185 56 _1@2",
"flow-node-inventory:snapshot-gathering-status-start”:{ & }.
"flow-node-inventory:snapshot-gathering-status-end”:-{ = }
}.
=]
"id": "openflow:3",
"node-connector”:[&
{@}.
{@}.
181}
1.
"flow-node-inventory:port-number™: 535595,
"flow-node-inventory:serial-number™: "Hone",
"flow-node-inventory:table”:[@ 1.
"flow-node-inventory:hardware™: "Open vowitch”,
"flow-node-inventory:description™: "None",
"flow-node-inventory:software”: "2.9.2",
"Flow-node-inventory:switch-features”:{ @ 1.
"flow-node-inventory:manufacturer” : "Nicira, Inc.",
"flow-node-inventory:ip-address™: "192 188 _5&_ 182",
"flow-node-inventory:snapshot-gathering-status-start”:{ & },
"flow-node-inventory:snapshot-gathering-status-end”:{ = }
¥
1
H
H

Looking in detail, the node-connector implies to port connections for the OpenFlow protocol. Thus
switch 1 is connected with switch 2.

43 of 84

University of the Aegean

=

"nodes”:{ B
"node”:[=

{8
“id": "openflow:1",
"node-connector”:[=

=

L

1.

I

Department of Information & Communication Systems

"id":"openflow:1:1",

"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"opendaylight-port-statistics:flow-capable-node-connector-statistics™:{ & }

=

I

“id":"openflow:1:2",

"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"opendaylight-port-statistics:flow-capable-node-connector-statistics™:{ &

{a
“id": "openflow: L:LOCAL",

}

"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory: .
shardware-address” - "b&:Bo:38:23: 94427
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:

"flow-node-inventory

"flow-node-inventory:
"flow-node-inventory:
"opendaylight-port-statistics:flow-capable-node-connector-statistics™:{ &

Engineering

supported” ;"
peer-features™:"",

port-number®:1,
advertised-features":"",
hardware-address":"a2:37:7d:ed:c7: 1",
current-feature" : "ten-gh-fd copper",
16630000,

current-spead”:
configuration”

maximum-speed” -3,
nape”:"s1-gthl",
state”:{ B }.

supported”:""

peer-features™:"",

port-number”:z,
advertised-features™-"",
hardware-address":"62:72:60:26:5a:8e",
current-feature" : "ten-gh-fd copper",
current-speed” : 10680688,
configuration™:"",

Raximum-speed” @,

nape”:"s1-gth2",

state”:{ B }.

supported”: "
peer-features” .
port-number”: 4234567254,

advertised-features

current-feature”: """,
current-speed”: @,
configuration™:"",
Raximum-speed” @,
nape”:"s1",
state”:{ & }.

"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:
"flow-node-inventory:

port-number” 59508,

serial-number™: "Nang",

table":[& 1.

hardware”: "Open vSwitch",
description”: "None",
software™:"2.0.2",

switch-features":{ @ }.
manufacturer” : "Nicira, Inc.",
ip-address™:"132 168 _5&_182",
snapshot-gathering-status-start":{ & .
snapshot-gathering-status-end”:{ & 7}

Next, digging deeper and going into to openflow 1:1 which is the switch’s port 1 packet statistics details

are provided it.

44 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

=
"id":"openflow:1:1",
"flow-node-inventory:supported” ",
"flow-node-inventory:peer-features™:"",
"flow-node-inventory:port-number®: 1,
"flow-node-inventory:advertised-features”:"",
"flow-node-inventory:hardware-address” - "a2:57:7d:ed:c7: 1",

"flow-node-inventory:current-feature” : "ten-gb-fd copper”.
"flow-node-inventory:current-speed” : 10000060,
“"flow-node-inventory:configuration™:"",
“"flow-node-inventory :maxinum-spead” -0,
"flow-node-inventory:namre”: "s1-ethl”,
"flow-node-inventory:state”:{ =

"blocked” :falze,

"Link-down":falze,

Mive":falze

"opendaylight-port-statistics:flow-capable-node-connector-statistics":{ &
"receive-frame-error”: 4,
"packets”:{ &
"received”: g,
“transeitted” 326

"collision-count™:@,

“transeit-errors”: 9,

"bytes":{ =
"received” o,
"transeitted" 27718

"duration”:{ =
"nanosecond” - 212085088,
"sacond”: 1624

"receilve-crc-error” :8,
"receive-drops”: 9,
"recelve-errors” @,
"receive-over-run-error”:9,
“transeit-drops" -8

Analyzing a random node for example the openflow:1 node from table=0, the matching rules, action
sets of each flow follows the OpenFlow protocol rules and the expected result based on Wireshark
analysis.

http://192.168.56.101:8181/restconf/operational/opendaylight-
inventory:nodes/node/openflow:1/table/0/

{

"flow-node-inventory:table": [
{
"id": 0,
"opendaylight-flow-table-statistics:flow-table-statistics": {
"active-flows": 4,
"packets-looked-up": 9144,
"packets-matched": 9144

2
"flow": [
{
"id": "#UFSTABLE*0-3",
"priority": 100,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 606,
"byte-count": 51510,
"duration": {
"nanosecond": 712000000,
"second": 3025

45 of 84

http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/
http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

University of the Aegean Department of Information & Communication Systems
Engineering

}
2
"table_id": 0,
"cookie_mask": 0,
"hard-timeout": 0O,
"match": {
"ethernet-match": {
"ethernet-type": {

"type": 35020
}
}
2
"cookie": 3098476543630901000,
"flags": "",

"instructions": {
"instruction": [
{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

}

"idle-timeout": 0

"id": "#UFSTABLE*0-4",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 0,
"byte-count": 0,
"duration": {
"nanosecond": 804000000,
“second": 3021
}
2
"“table_id": 0,
“cookie_mask": 0,
"hard-timeout": 0,
"match": {
"in-port": "1"
2
"cookie": 3098476543630901000,

Ilflagsﬂ: llII'
"instructions": {

"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,

"output-action": {
"max-length": 65535,
|'0utput'node_connectorll: o

46 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

}
}I
{

"order": 1,

"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

}I

"idle-timeout": 0

"id": "L2switch-0",
"priority": 0,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": O,
"byte-count": 0,
"duration": {
"nanosecond": 715000000,
"second": 3025
}
2
"table_id": 0,
"cookie_mask": 0,
"hard-timeout": O,
"match": {},
"cookie": 3098476543630901000,
"flags": "",
"idle-timeout": 0

"id": "L2switch-1",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 0,
"byte-count": 0,
"duration": {
"nanosecond": 804000000,
“second": 3021
}
2
"“table_id": 0,
“cookie_mask": 0,
"hard-timeout": 0,

"match": {
"in-port": II2II
2
"cookie": 3098476543630901000,
Ilflagsﬂ: llII'

"instructions": {
"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,

"output-action": {
"max-length": 65535,

47 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

"output-node-connector": "1"
}
2
{

"order": 1,

"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

}I

"idle-timeout": 0

The next links presents the network topology from the aspect of OpenFlow protocol.

http://localhost:8181/restconf/operational/network-topology:network-topology

48 of 84

http://localhost:8181/restconf/operational/network-topology:network-topology

University of the Aegean Department of Information & Communication Systems
Engineering

"network-topology™:{ =
"topology”:[B

"topology-id": "flow:1", @

"node”: [=

- _"nu:-de-"Ld": "openflow:1", @

"opendaylight-topolegy-inventory:inventory-node-ref”: " jopendaylight-
inventory:nodes fopendaylight-inventory:node[opendaylight-inventory:id="openflow:1']"
"termination-point”:[£
"tp-id": "openflow:1:2",

"opendaylight-topology-inventory:inventory-node-connector-ref” " fopendaylight-

inventory:nodes fopendaylight-inventory:node[opendaylight-inventory:id="openflow: 1"] fopendaylight-inventory:node-

connector [opendaylight-inventory:id="openflow:1:2']

:{ .

"link-id": "openflow:3:2", @

"source”:{ =

"source-tp": "openflow:3:2
"source-node”: "openflow:3"

I
"destination”:{ &
"dest-tp":"openflow:2:3 @
"dest-node" : "openflow: 2
1
1.
"Link-id": "openflow:2:3",
"source”:{ =
"source-tp”: "openflow:Z:3", @
"source-node” : "openflow:2"
1.
"destination”:{ &
"dest-tp":"openflow:3:2
"dest-node" : "openflow:3 @
1
1.

Finally, using Mininet command details about the network are retrieved for each switch and each link

between them.

Link encap:Ethernet HWaddr 6a:d6:e9 2

UP BROADCAST RUNNING MTU:15088 Metr 1

RX packets:1115 errors:® dropped:1115 overruns:® frame:0
TX packets:® errors:® dropped:® overruns:® carrier:0
collisions:@ txqueuelen:@

RX bytes:187848 (187.8 KB) TX bytes:0 (8.8 B)

Link encap:Ethernet HWaddr b6:b2:
UP BROADCAST RUNNING MTU:1588 Metric:1
X packets:1115 errors:@ dropped:1115 overruns:@ frame:@

bytes:107040 (107.0 KB) TX bytes:0 (6.6 B)

Link encap:Ethernet HWaddr 2a3:308:94:1e:c4:47

UP BROADCAST RUNNING MTU:1500 Metric:1

RX packets:® errors:0 dropped:® overruns:@ frame:@
TX packets:® errors:0 dropped:® overruns:@ carrier:@
collisions:0 txqueuelen:@

RX bytes:@ (8.0 B) TX bytes:® (8.8 B)

49 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

sl-eth2 Link encap:Ethernet HWaddr 5a:40:d5:c0:4b:19
UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:1
X ckets:1115 errors:0 dropped:® overruns:0 frame:@
ts:1115 errors:8 dropped:® overruns:® carrier:8
lisions:@ txqueuelen:leee
RX bytes:94775 (94.7 KB) TX byte 4775 (94.7 KB)

s2-eth2 Link encap:Ethernet HWaddr ca: 9:c3:00
UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:1
RX packets:1115 errors:® dropped:® overruns:@ frame:@
TX packets:1115 errors:0 dropped:® overruns:8 carrier:
collisions:8 txqueuelen:1808
RX bytes:94775 (94.7 KB) TX bytes:94775 (94.7 KB)

52-eth3 Link encap:Ethernet HwWaddr 12:b4:93:71:43:0d
UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:1
X ts:1115 errors:® dropped:® overruns:® frame:@
ts:1115 errors:® dropped:® overruns:® carrier:
ions:@ txqueuelen:108880
{ bytes:94775 (94.7 KB) TX bytes:94775 (94.7 KB)

Link encap:Ethernet HwWaddr 1a:90:4c:73:58:5b

UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:l

X packets:1115 errors:@ dropped:® overruns:® frame:@

X packets:1115 errors:@ dropped:® overruns:® carrier:
lisions:@ txqueuelen:1000

X bytes:94775 (94.7 KB) TX bytes:94775 (94.7 KB)

mininet@mininet-vm:~%

Mininet allows you to use the “dpctl” command to communicate with the virtual switch and get the
status of the flows. The next figure shows this command output and verifies the existence of flows for
flow table 0.

1-eth2 (0K OK)
52-eth3 (0K OK)
mininet> nodes
available nodes are:
c® hl h2 h3 s1 s2 s3
mininetb dpctl dump-flows -0 OpenFlowl3

=1330.951s, table=0, n_packets=0, n_bytes=0, priority=2,in port=1 a
=1330.951s, table=0, n_packets=0, n_bytes=0, priority=2,in_port=2 a

durdtinn 1334.859s, table=0, n_packets=268, n_bytes=22780, priority=100,dl_
RDLLER 65535
GGGG, duration=1334. , table=0, n_packets=0, n_bytes=0, priority=0 actions=dro

DFPHT FLOW reply (OF1l.3) (xid=0x2):
3 Grgbﬂ&ﬂﬂ&&ﬂ&&ﬂﬂ&ﬂd durdtlﬂﬂ 1330.95s, table=8, n_packets=0, n_bytes=0, priority=2,in port=3 ac

.953s, table=0, n_packets=0, n_bytes=8, priority=2,in_port=1 a
2,output:3
Grgb@ﬂﬂﬂﬂﬂ@@ﬂﬂ ati . :, table=0, n_packets=0, n_bytes=08, priority=2,in_port=2 a
utput:1,output
2b0AREBREAAA i .789s, table=0, n packets=534, n bytes=45390, priority=100,d1l

, table=0, n_packets=0, n_bytes=08, priority=0 actions=dro

OFPST_FLOW reply (OF1.3) (xid=8x2}:

0x2b000ODABOEROAOES, duration=1330.947s, table=B, n packets=0, n bytes=0, priority=2,in port=1 a

utput:2, CONTROLLER: 65535
cooki —ﬂxzbﬂﬂﬂﬂﬂﬂﬂ&ﬂﬂ@ﬂﬂﬁ. duration=1330.946s5, table=0, n packets=0, n bytes=0, priority=2,in port=2 a

cti utput:1, CONTROLLER: 65535
aeoe 8801, duration=1334.864s, table=0, n_packets=268, n_bytes=22780, priority=100,dl_

WOLLER: 65535

8001, duration=1334.864s, table=0, n_packets=0, n_bytes=8, priority=0 actions=dro

P
mininet> |

As yet, the process that has been presented registers the OpenFlow-enabled switches with the ODL and
are stores related data to inventory and network topology. The registration process is accomplished via
an OpenFlow HELLO packet coming from the OpenFlow switch to the ODL controller. Then ODL
controller accepts the request and check whether the switch is allowed to be part of ODL's SDN domain.
The verification of the expect result is same in Wireshark dissection, CLI commands outputs of mininet
and from flow entries of the OpenFlow protocol.

Moving to the next step, the handling of host connection and traffic generation will be presented. For
this scenario the “ping” command of the Mininet tool will be used.

The next figure shows how a h1 from switch 1 (s1) pings the h2 of switch (s2).

50 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

mininet> hl ping h2
PING 10.0.0.2 (10.0.8.2 bytes of data.
64 bytes from 10.0.0.
64 bytes from 10.0.0.
64 bytes from 10.0.0.
64 bytes from 10.0.0.

HE _seg=1 ttl=64 time=598 ms
2 ttl=64 =
ttl=64
4 ttl=64
ttl=64
ttl=64
ttl=64
ttl=64

64 bytes from 10.0.0.
64 bytes from 10.0.0.
64 bytes from 10.0.0.
64 bytes from 10.0.0.
64 bytes from 10.0.0.
64 bytes from 10.0.0.

MR RN RN NN NN

The first figure of the DLUX Ul included only the switches, but after the connection between the hosts
h1 and h2 the hosts of the switches s1 and s2 have been generated.

The explanation for hosts appearance after ping is related to how the ODL handles the connection
between the hosts. There are several steps in order to retrieve the response from h2 host. ODL starts to
identify the existence of the hosts only when there is a request for connection between them. Next the
process of the host connection will be analyzed in detail.

&« c @ @ localhost je t gy 90% w
£* Most Visited @ Getting Started [J] https://nexus.opend... = opendaylight: maven...

G Topology

Controls

Reload

host:00:00:p0:00:00:02

/65»}\

flow:
openflow:3 openflow:

N

N

host:00:00:00:00:00:01

The SDN controller knows the exiting switches and not for hosts, but the switches do not know how to
handle the received frame that contains for destination a specific MAC address or the broadcast MAC.

All starts, when the h1l notices that it does not know the MAC address the h2 then, it sends ARP
(Address Resolution Protocol) packet (frame layer 2) to switch sl to find the IP address of the h2. This
packet received from the switch does not has IP source and destination is just a broadcast frame.

However, when the switch s1 receives the ARP packet it checks in its flow tables for this broadcast frame
if exists any matching flow entry, in this case it does not find any and then it encapsulates the packet in
an OpenFlow packet_in packet and sends it to the ODL controller. The ODL decides what to do with this
packet utilizing the Arp Handler feature.

Once the ARP packet is forwarded to all the switch ports and the ARP reply is forwarded back to host 1,
which was the main ARP queried, host 1 starts sending layer 3 ICMP packets to host 2. The packets have
a source and destination IP address as well as a MAC address. Again, the OVS switch does not know how
to forward the packet as it does not have any flow entry for host 1 and host 2 MAC addresses yet.

The explanation for this step is that the controller sends the ARP packet to every switches port. Each
switch knows about the connected hosts to its ports, as a result h2 responses to the h1l.

Then the response packet that comes contains for source the MAC address of the h2 and destination the
hi.

However, the controller has no prior knowledge of these MAC addresses. As a result, a flow_mod packet
is sent from the controller to the switch, in order to add a flow to its flow table. Then, the ICMP packets

51 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

are send from h1 to h2. Since the flow tables are not empty, the ping continues without controller
corporation. The next figure shows the steps of the host h1 and h2 connection.

The packets in lines 1952, 1956, 1958 describe how the packets are broadcasted, next, in line the 1957
verifies that the response comes from source address 00:00:00:00:00:02. After that the flow add packets
is forwarded from ODL to switches. Finally, we see that the final packets exchanging is completed from
IP address 10.0.0.1 to 10.0.0.2 and backward.

The [2-switch module that is install in ODL is responsible to handle the received packets from switches.
As a result, when the controller receives the packets it forwards the packets to all ports.

Filter: Iof v| Expression... Clear “pplv Save

No. Time Source Destination Protocol | Length | Info

.395524000 : : Broadcast o5 B of packet_in
1954 43.397749000 00:00:00 _00:00:02 00:00:00 _00:00:01 OF 1.3 150 of_packet_in
1955 43.398358000 96:3d:88:bb:3c:ed CayeeCom_00:00:01 OF 1.3 193 of_packet_in
1956 43.398892000 00:00:00_00:00:01 Broadcast OF 1.3 150 of_packet_in
1957 43.399224000 00:00:00 _00:00:02 00:00:00 _00:00:01 OF 1.3 150 of_packet_in
1958 43.399627000 00:00:00_00:00:01 Broadcast OF 1.3 150 of_packet_in
1959 43.399901000 00:00:00 _00:00:02 00:00:00 _00:00:01 OF 1.3 150 of_packet_in
1967 43.444651000 192.168.1.2 192.168.122.7 OF 1.3 74 of_barrier_request
1968 43.446352000 192.168.1.2 192.168.122.7 OF 1.3 74 of_barrier_request
1976 43.448007000 192.168.1.2 192.168.122.7 OF 1.3 74 of_barrier_request
1973 43.488073000 10.8.0.1 10.6.0.2 OF 1.3 206 of_packet_in
1977 43.595424000 192.168.122.7 192.168.1.2 OF 1.3 74 of_barrier_reply
1981 43.748543000 10.8.0.1 10.6.0.2 OF 1.3 206 of_packet_in
1985 43.792061000 10.0.0.2 10.6.0.1 OF 1.3 206 of_packet_in
1986 43.793805000 192.168.122.7 192.168.1.2 OF 1.3 74 of_barrier_reply
1987 43.796409000 10.0.0.2 10.6.0.1 OF 1.3 206 of_packet_in
1991 43.811850000 192.168.122.7 192.168.1.2 OF 1.3 74 of_barrier_reply
1995 43.862642000 10.8.0.1 10.6.0.2 OF 1.3 206 of_packet_in
1997 43.868227000 10.0.0.2 10.6.0.1 OF 1.3 206 of_packet_in

1.3

2002 44.823270000 192.168.1.2 192.168.122.7 OF

7| S S — S =
[> Internet Protocol Version 4, Src: 192.168.122.7 (192.168.122.7), Dst: 192.168.1.2 (192.168.1.2)

[> Transmission Control Protocol, Src Port: 39052 (39052), Dst Port: openflow (6653), Seq: 83504, Ack: 5099, Len: 84
=7 OpenFlow (LOXI)

0000 fe 54 00 71 9e 28 52 54 00 71 9e 28 08 00 45 c®@ .T.q.(RT .qg.(..E.

82 of_table stats_request

9010 00 88 81 29 40 00 40 86 bc 2c ¢ a8 7a 07 ¢0 a8 ...)@.@. .,..Z...
9020 01 A2 98 8c 19 fd 91 7a 11 18 3f f9 c0 9e 80 18 z 7
9030 01 69 fc d4 G0 00 0L O1 08 @a 00 cf b2 76 d1 65 .i...... v.e
0040 f1 e4 04 0a OO 54 00 00 00 00 ff ff ff ffE0 23 TJao cooasao =
@ | Ready to load or capture | Packets: 13244 - Displayed: 3547 (26.8%) - Dropped: 1 (0.0%)

The of_packet_in contains: version, type, xid, buffer_id, total_len, reason, table_id, of _match, Ethernet
packet. The most important field of the packet that is the Ethernet packet.

52 of 84

University of the Aegean Department of Information & Communication Systems

Engineering
Filter: |of - | Expression... Clear ~Apply Save
No. Time Source Destination Protocol | Length | Info

1952 43.395524000 00:00:00 60:00:01 Broadcast 1568 of packet in
1954 43.397749000 00:00:00 _00:00:02 00:00:00 00:00:01 OF 1.3 158 of packet in

AACEC AT BAODCOAAA [T T R T T Y e | P s e AR AR AT Ar 13 AAD of cnclend i

(El
[> Frame 1952: 150 bytes on wire (1280 bits), 158 bytes captured (12080 bits) on interface @
[Ethernet II, Src: RealteklU 71:9e:28 (52:54:80:71:9e:28), Dst: fe:54:00:71:%9e:28 (fe:54:00:71:%e:28)
[Internet Protocol Version 4, Src: 192.168.122.7 (192.168.122.7), Dst: 192.168.1.2 (192.168.1.2)
[Transmission Control Protecol, Src Port: 39852 (39052), Dst Port: openflow (6653), Seq: 83504, Ack: 5099, Len: 84
~~ OpenFlow (LOXI)
version: 4
type: OFPT PACKET IN (16}
length: 84
xid: @
total_len: 42
reason: OFPR_ACTION (1)
table_id: @
cookie: 3898476543630901261
[> of match
[> Ethernet packet

0008 fe 54 @0 71 9e 28 52 54 @0 71 9e 28 08 00 45 c®@ .T.q.(RT .qg.(..E.

0610 ©0 88 81 20 48 @O 40 06 bc 2c cA a8 7a 7 cO a8)@.@. .,..Z...
0620 ©1 82 98 8c 19 fd 91 7a 11 18 3f fO cH % 80 18 N S
0030 01 69 fc d4 60 @0 01 01 08 Oa 80 cf b2 76 d1 65 .i...... v.e
0048 f1 e4 04 Ga 00 54 00 00 00 00 [FIEAdRAMRR 00 2a T.. .. .+

0056 ©1 00 2b 00 00 0O OO 00 00 Ad 0O OL OO Oc 80 B ..+.....
0o60 00 04 00 00 00 02 00 0O 00 6@ 68 B0 ff ff ff ff
gave ff ff 00 00 00 00 GO 1 08 06 00 O1 68 60 06 B4
0080 0O 01 0D OO0 0O OO 0D 01 Oa OO0 00 B1 0O 00 00 B0 coeiuunn
6E9® ©0 00 03 @@ GG B2 L.

® & | buffer_id (ofl13.packet_in.b... ‘ Packets: 13244 - Displayed: 3547 (26.8%) - Dropped: 1 (0.0%)

The figure bellow verifies that the of packet_in packet Source MAC address is 00:00:00:00:00:01 and
destination is the broadcast frame (ff:ff:ff:ff:ff:ff). In ARP part the Source IP address 10.0.01 and
Destination IP address is 10.0.0.2.

=7 Ethernet II, Src: 00:00:00 00:00:01 (00:00:00:00:00:01), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
[* Destination: Broadcast (ff:ff:ff:ff:ff:ff)
[» Source: 00:00:00 PO:PO:01 (0O:00:00:00:00:01)
Type: ARP (0x0806)
=7 Address Resolution Protocol (request)
Hardware type: Ethernet (1)
Protocol type: IP (Bx0800)
Hardware size: 6
Protocol size: 4
Opcode: request (1)
Sender MAC address: 00:00:00 00:00:01 (00:00:00:00:00:01)
Sender IP address: 18.08.0.1 (10.0.08.1)
Target MAC address: 00:00:00 00:00:00 (00:00:00:00:00:00)
Target IP address: 18.6.08.2 (18.0.0.2)

The of packet_in packet is broadcasted to OpenDaylight controller and since the 12switch module is
installed it starts to take control of the of _packet_in packet. L2switch module also does not know where
the target host h2 is located. The only information that is retrieved from 12switch is the source and
target ip address along with MAC address when it reads the packet. So, it uses the ofpt_flow_mod
packet of table with id 0 in order to clarify to switches how to broadcast the packet to all active ports.

No. Time Source Destination Protocol | Lengthl Info
2026 44.294872000 192.168.1.2 192.168.122.7 1.3 + OF 1.3 of _flow add + of flow add
2028 44.300924000 10.0.68.1 10.0.8.2 OF 1.3 206 of packet_in
2030 44.308578000 10.08.08.2 10.0.0.1 OF 1.3 206 of packet in
2032 44.326033000 10.0.08.1 10.0.8.2 OF 1.3 206 of packet_in
2034 44.332252000 192.168.1.2 192.168.122.7 OF 1.3 + OF 1.3 258 of flow add + of_ flow add
2036 44.335759000 10.08.8.2 10.0.0.1 OF 1.3 206 of packet in

[T |
[> Frame 2026: 258 bytes on wire (2064 bits), 258 bytes captured (2064 bits) on interface @
[Ethernet II, Src: fe:54:00:71:9e:28 (fe:54:00:71:9e:28), Dst: RealtekU 71:9e:28 (52:54:00:71:9e:28)

» Internet Protocol Version 4, Src: 192.168.1.2 (192.168.1.2), Dst: 192.168.122.7 (192.168.122.7)

[» Transmission Control Protocol, Src Port: openflow (6653), Dst Port: 39854 (39854), Seq: 6232, Ack: 88271, Len: 192
[> OpenFlow (LOXI)

[> openFlow (LOXI)

53 of 84

University of the Aegean

Department of Information & Communication Systems

Engineering

The content of the OpenFlow ofpt_flow_mod packet is presented in the figured.

= OpenFlow (LOXI}
version: 4
type: OFPT_FLOW MOD (14)
length: 96
xid: 8200
cookie: 3826418949592973312
cookie _mask: 8
table id: @
_command: 8
idle timeout: 668
hard_timeouwt: 380
priority: 18
buffer_id: 4294967295
out_port: 4294967295
out_group: 4294967295
flags: Unknown (BxB808080E)

= of_match
type: OFPMT OXM (1)
length: 24

=7 of owxm 1ist
=7 of _oxm_eth_dst
type len: 2147485190
value: 00:00:00 00:00:02 (00:00:00:00:00:02)
=7 of oxm eth src
type len: 2147485702
value: DD:00:00 DO:00:01 (00:00:00:00:00:81)
=7 of_instruction list
=7 of _instruction apply actions
type: OFPIT_APPLY ACTIONS (8x88000084)
len: 24
=7 of action list
=7 of action output
type: OFPAT OUTPUT (@)
len: 16
port: 1
max_len: 65535

= OpenFlow (LOXI)

version: 4
type: OFPT_FLOW MOD (14)
length: 96
xid: B201
cookie: 3026418949592973313
cookie mask: @
table id: @
_command: @
idle timeout: 608
hard timeout: 308
priority: 18
buffer_id: 4294967295
out_port: 4294967295
out_group: 4294967295
flags: Unknown (BxB0000000)
=7 of_match
type: OFPMT_OXM (1)
length: 24
=7 of _oxm list
=7 of _owxm_eth dst
type_len: 2147485198
value: B0:00:00 D0:00:01 (60:00:00:00:800:01)
=7 of oxm eth src
type len: 2147485702
value: BO:00:00 B0:00:02 (00:00:00:00:00:82)
= of _instruction list
=7 of_instruction_apply actions
type: OFPIT_APPLY ACTIONS (0xB00DOOEG4)
len: 24
=7 of action list
= of _action output
type: OFPAT OUTPUT (8)
len: 16
port: 2
max_len: 65535

The flows above verify that there are two active ports, port 1 and port 2.

=7 OpenFlow (LOXI)
version: 4
type: OFPT_FLOW MOD (14)
length: 96
xid: 7558
cookie: 30826415949592973314
cookie mask: 8
table id: @
_command: @
idle timeout: 6OB
hard_timeout: 300
priority: 18
buffer id: 4294967295
out port: 4294957295
out_group: 4294967295
flags: Unknown (BxB0000008)
= of_match
type: OFPMT_OXM (1)
length: 24
=7 of_owm list
=7 of_owm eth dst
type len: 2147485190
value: DB:00:00 BO:00:02 (0D:00:00:00:00:82)
=7 of_owm eth_src
type len: 2147485702
value: DD:00:00 DO:00:81 (DD:00:00:00:00:01)
= of_instruction list
=7 of_instruction_apply actions
type: OFPIT_APPLY ACTIONS (0x00020004)
len: 24
=7 of_action list
=7 of _action output
type: OFPAT OUTPUT (@)
len: 16
port: 2

max_len: 85535

= OpenFlow (LOXI)

version: 4

type: OFPT FLOW MOD (14)
length: 96

xid: 7551

cookie: 3026418949592973315
cookie mask: @

table id: @

_command: 8

idle timeout: GEE

hard timeout: 308

priority: 18

buffer id: 4294367295
out_port: 4294967295
out_group: 4294967295
flags: Unknown (BxBB20B0E)

= of _match

type: OFPMT_0XM (1)
length: 24
=7 of _owxm list
= of _oxm_eth dst
type len: 2147485190
value: BO:00:00 BO:00:01 (B0:00:00:00:00:81)
=7 of oxm eth src
type_len: 2147485702
value: 00:00:00 00:00:02 (00:00:00:00:00:82)

= of_instruction list

=7 of_instruction apply actions
type: OFPIT APPLY ACTIONS (BxB8088884)
len: 24
= of action list

= of_action output
type: OFPAT OUTPUT (@)
len: 16
port: 1
max_lem: 65535

54 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

Verification through dpctl dump-flows command.

mininet> dump

: hl-eth8:18.8.0.1 pid=2277=>

: h2-ethe:1e i

: h3-ethd:18

ch{'protocols 'OpenFlowl3'} sl: lo:127.8.0.1,sl-ethl:None,sl-eth2:None pid=2286>

'OpenFlowl3'} s2: lo:127.8.0.1,s52-ethl:None,s2-eth2:None,s2-eth3: None pid=2289=

<0VSSwitch{'protocols "OpenFlowl3'} s3: lo:127.0 1,53-ethl:None,s3-eth2:None pid=
<RemoteController{'ip’': "192.168.1.2'} cB: 192.168.1.2.6653 pld—ZZTl‘
mininet> [l

lﬂ&, duratlan =5199.639s, table=0, n packets=58, n_bytes=5484, priority=2,in port
MTROLLER: 65535
101, duration=5199.639s, table=0, n packets=58, n_bytes=5404, priority=2,in port
NTROLLER: 65535
188, duration=5203.547s, table=0, n packets=1042, n bytes=88570, priority=1686,dl
ONTROLLER: 6553
[: p023, duratio s, table=B, n_packets=247, ytes 6, idle timeout=600,
hard timeou , priority=10,dl B0 : 00 : .ﬂ&-&ﬂ-&l dl d :00: tions=output:2
conkie=ﬂanﬂE Gﬂﬂﬂﬂﬂﬂ¢¢, duratinn— table=8, n_pack 47 S 8, idle timeout=600,

Uﬂd, duration=5199.637s, table=08, n_packets=8, n_bytes=8, priority=2,in port=3 a
1Gn£ Gutput 1,output:2, CONTROLLER: 65535
i I!tbﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂg, duration=5199.64s, table=8, n packets=58, n_bytes=5484, priority=2,in port=
wtput:2, output:3, CONTROLLER: 65535
l!ib@ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂE duration=5199.639s, table=0, n packets=58, n_bytes=5484, priority=2,in port
utput 1,output:3, CONTROLLER:655
00 102, duration=5203.476s, table=0, n_packets=2082, n_bytes=176970, priority=100,d

11f, duratio table=8, n packets=247, n_bytes=23870, idle timeout=600,

priority=10,dl s :00:00:00:00:01,d1_dst=00:00:00:00:00:02 actions=output:l
)60000000001e, duration= , table=8, n_pa =247, n_bytes=23 idle timeout=600,

, priority=10,dl B0 : OF 60:00:02,d1 d :00:00:00:01 actions=output:2
cookie=0x2hDOOAEEAOAGA00Z, duratio B3. 5, table=0, n_p S _by @, priority=0 actions=dro

Ix

ﬂﬂﬂﬂﬂﬂﬂﬂS duratlan:SlQQ.EESs, table=8, n_packets=0, n_bytes=0, priority=2,in port=1 a
ions=output:2,CONTROLLER:65535

1e=0x2b00OOOROOO0OO0G, duration=5199.634s, table=0, n_packets=108, n_bytes=10024, priority=2,in_po

181, duration=5203.552s, table=0, n packets=1042, n bytes=88570, priority=1608,dl
ONTROLLER: 65535
0001, duration=5203.552s5, table=0, n packets=8, n bytes=0, priority=0 actions=dro

After MAC addresses learning the packets are forwarded directly to the target ports.

Analyzing the openflow:1 and openflow:3 nodes of table=0, matching rules, action sets of each flow
follows the OpenFlow protocol again after the ping command. New flows added to table=0 after L2
MAC address learning and the packets are forwarded to specific port instead of the first scenario where
each packet was sent to controller.

http://192.168.56.101:8181/restconf/operational/opendaylight-
inventory:nodes/node/openflow:1/table/0/

"flow-node-inventory:table": [
{
"id": 0,
"opendaylight-flow-table-statistics:flow-table-statistics": {
"active-flows": 6,
"packets-looked-up": 12086,
"packets-matched": 12086
b
"flow": [
{
"id": "#UFSTABLE*0-3",
"priority": 100,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 842,
"byte-count": 71570,
"duration": {
"nanosecond": 700000000,
"second": 4201

55 of 84

http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/
http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

University of the Aegean Department of Information & Communication Systems
Engineering

2
"table_id": 0,
"cookie_mask": 0,
"hard-timeout": O,
"match": {
"ethernet-match": {
"ethernet-type": {

"type": 35020
}
}
2
"cookie": 3098476543630901000,
"flags": "",

"instructions": {
"instruction": [
{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

}

"idle-timeout": 0

"id": "HUFSTABLE*0-4",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 18,
"byte-count": 1652,
"duration": {
"nanosecond": 792000000,
"second": 4197
}
2
"“table_id": 0,
“cookie_mask": 0,
"hard-timeout": O,
"match": {
"in-port": "1"
2
"cookie": 3098476543630901000,

Ilflagsﬂ: llII'
"instructions": {

"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,

"output-action": {
"max-length": 65535,
I'Output'node_connectorll: o

}

56 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

}I
{

"order": 1,
"output-action": {
"max-length": 65535,

"output-node-connector": "CONTROLLER"

}I

"idle-timeout": 0

"id": "L2switch-0",
"priority": 0,

"opendaylight-flow-statistics:flow-statistics": {

"packet-count": O,
"byte-count": 0,
"duration": {

"nanosecond": 703000000,

"second": 4201

}
2
"table_id": 0,
"cookie_mask": 0,
"hard-timeout": O,
"match": {},
"cookie": 3098476543630901000,
"flags": ",
"idle-timeout": 0

"id": "L2switch-11",
"priority": 10,

"opendaylight-flow-statistics:flow-statistics": {

"packet-count": 174,
"byte-count": 16772,
"duration": {
"nanosecond": 422000000,
"second": 167
}
2
"table_id": 0,
“cookie_mask": 0,
"hard-timeout": 300,
"match": {
"ethernet-match": {
"ethernet-source": {
"address": "00:00:00:00:00:01"
}I
"ethernet-destination": {
"address": "00:00:00:00:00:02"

}
}
b
"cookie": 3026418949592973300,
"flags": "",

"instructions": {
"instruction": [

{

"order": 0,

57 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "2"

|8
"idle-timeout": 600

"id": "L2switch-1",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 18,
"byte-count": 1652,
"duration": {
"nanosecond": 792000000,
“second": 4197
}
2
“table_id": 0,
"cookie_mask": 0,
"hard-timeout": 0,
"match": {
"in-port": "2"
2
"cookie": 3098476543630901000,
"flags": ",
"instructions": {
"instruction": [
{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "1"
!
2
{
"order": 1,
"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

b
"idle-timeout": 0
|3
{
"id": "L2switch-10",

58 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

"priority": 10,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 174,
"byte-count": 16772,
"duration": {
"nanosecond": 422000000,
"second": 167
}
2
"table_id": O,
"cookie_mask": 0,
"hard-timeout": 300,
"match": {
"ethernet-match": {
"ethernet-source": {
"address": "00:00:00:00:00:02"
b
"ethernet-destination": {
"address": "00:00:00:00:00:01"

}
}
b
"cookie": 3026418949592973300,
"flags": "",

"instructions": {
"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{
“order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "1"
}
}
]
}
}
]
2

"idle-timeout": 600

http://192.168.56.101:8181/restconf/operational/opendaylight-
inventory:nodes/node/openflow:2/table/0/

{
"flow-node-inventory:table": [
{

"id": 0,

"opendaylight-flow-table-statistics:flow-table-statistics": {
"active-flows": 7,
"packets-looked-up": 12598,
"packets-matched": 12596

}

"flow": [

{

59 of 84

http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:2/table/0/
http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:2/table/0/

University of the Aegean Department of Information & Communication Systems
Engineering

"id": "#UFSTABLE*0-5",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 18,
"byte-count": 1652,
"duration": {
"nanosecond": 641000000,
"second": 4315
}
2
"table_id": O,
"cookie_mask": 0,
"hard-timeout": 0,

"match": {
“in-pOI’t": ||1||
2
"cookie": 3098476543630901000,
llflagS“: llll’

"instructions": {
"instruction": [
{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "2"

}

"order": 1,

"output-action": {
"max-length": 65535,
"output-node-connector": "3"

}

"order": 2,

"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

}

"idle-timeout": 0

"id": "L2switch-6",
"priority": 10,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 296,
"byte-count": 28504,
"duration": {
"nanosecond": 271000000,
"second": 285
}

2
"table_id": 0,

60 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

"cookie_mask": 0,
"hard-timeout": 300,
"match": {
"ethernet-match": {
"ethernet-source": {
"address": "00:00:00:00:00:02"
b
"ethernet-destination": {
"address": "00:00:00:00:00:01"

}
}
2
"cookie": 3026418949592973300,
"flags": "",

"instructions": {
"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "2"
}
}
]
}
}

3
"idle-timeout": 600

"id": "L2switch-7",
"priority": 10,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 296,
"byte-count": 28504,
"duration": {
"nanosecond": 271000000,
"second": 285
}
2
"table_id": 0,
“cookie_mask": 0,
"hard-timeout": 300,
"match": {
"ethernet-match": {
"ethernet-source": {
"address": "00:00:00:00:00:01"
}I
"ethernet-destination": {
"address": "00:00:00:00:00:02"

}
}
b
"cookie": 3026418949592973300,
"flags": "",

"instructions": {
"instruction": [

{

"order": 0,

61 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "1"

|8
"idle-timeout": 600

"id": "#UFSTABLE*0-2",
"priority": 100,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 1728,
"byte-count": 146880,
"duration": {
"nanosecond": 477000000,
“second": 4319
}
2
“table_id": 0,
"cookie_mask": 0,
"hard-timeout": 0,
"match": {
"ethernet-match": {
"ethernet-type": {
"type": 35020
}
}

2
"cookie": 3098476543630901000,
"flags": ",
"instructions": {
"instruction": [
{
"order": 0,
"apply-actions": {
"action": [
{
"order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

L

"idle-timeout": 0

"id": "L2switch-2",

"priority": 0,

"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 0,

62 of 84

University of the Aegean

Engineering

"byte-count": 0,

"duration": {
"nanosecond": 485000000,
"second": 4319

}
2
"table_id": 0,
"cookie_mask": 0,
"hard-timeout": O,
"match": {},
"cookie": 3098476543630901000,
"flags": ",
"idle-timeout": 0

"id": "L2switch-3",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 18,
"byte-count": 1652,
"duration": {
"nanosecond": 640000000,
“second": 4315
}
2
“table_id": 0,
"cookie_mask": 0,
"hard-timeout": O,

"match": {
"in-port": II2II
2
"cookie": 3098476543630901000,
llflagS“: llll'

"instructions": {
"instruction": [

{
"order": 0,
"apply-actions": {
"action": [
{

"order": 0,

"output-action": {
"max-length": 65535,
"output-node-connector": "1"

1

2
{

"order": 1,

"output-action": {
"max-length": 65535,
"output-node-connector": "3"

}

2
{

"order": 2,

"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"

}

}
]
}
}

Department of Information & Communication Systems

63 of 84

University of the Aegean Department of Information & Communication Systems

Engineering
2
"idle-timeout": 0
2
{
"id": "L2switch-4",
"priority": 2,
"opendaylight-flow-statistics:flow-statistics": {
"packet-count": 0,
"byte-count": 0,
"duration": {
"nanosecond": 638000000,
"second": 4315
}
2
"table_id": 0,
"cookie_mask": 0,
"hard-timeout": 0,
"match": {
"in-port": "3"
2
"cookie": 3098476543630901000,
"flags": "",
"instructions": {
"instruction": [
{
"order": 0,
"apply-actions": {
"action": [
{
“order": 0,
"output-action": {
"max-length": 65535,
"output-node-connector": "1"
!
2
{
"order": 1,
"output-action": {
"max-length": 65535,
"output-node-connector": "2"
}
2
{
"order": 2,
"output-action": {
"max-length": 65535,
"output-node-connector": "CONTROLLER"
1
}
]
}
}
]
2
"idle-timeout": 0
}

64 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

8 Host isolation with Virtual Tenant Network (VTN)

Virtual Tenant Network (VTN) is one of the key modules of ODL. It has many features, such as virtual
routers and bridges. An OpenDaylight Plugin that interacts with other modules to implement the
components of the VTN model. It also provides a REST interface to configure VTN components in
OpenDaylight. VTN Manager is implemented as one plugin to the OpenDaylight. This provides a REST
interface to create/update/delete VTN components [23]. will be used along with a custom network
topology to create VLANSs to set a lab for isolating host traffic between different VLANSs.

VTN features overview:

e odl-vtn-manager provides VTN Manager’s JAVA API. For creation of virtual bridges
e odl-vtn-manager-rest provides VTN Manager’s REST API.

@ >feature:install odl-vin-manager odl-vtn-manager-rest

@ >feature:1list | grep vtn
odl-J§&]-manager-rest | 8.7.2 | x | Started | odl-JE-
manager-rest | OpenDaylight :: WTN Manager :: REST API
c»dl-ﬂﬂ-manager | 8.7.2 | x | Started | W& -mana

ger-0.7.2 | OpenDaylight :: WTN Manager :: Java API
features-[l{-manager | 8.7.2 | | Uninstalled | features
-IET - manager | features-Jfd]-manager
odl -] -manager -neutron | 8.7.2 | | Uninstalled | odl-JE&Q-
manager-neutron | OpenDaylight :: VTN Manager :: Neutron Interface

@ :

Following the previous step new Mininet VM and ODL controller are hosted in hypervisor. The IP
address of the ODL controller is 192.168.56.101 and Mininet’s VM IP address is 192.168.56.102
respectively.

sdn@sdn-opendaylight:~$ ifconfig
enps3 Link encap:Ethernet Hwaddr 08:00:27:f3:2a:7b
inet addr:10.8.2.15 Bcast:10.0.2.255 M:
inet6 addr: fe80::3982:5697:585c:25%a/64 Scope:lLink
UP BROADCAST RUNNING MULTICAST MTU:1580 Metric:1
R¥ packets:1122458 errors:0 dropped:® overruns:® frame:@
TX packets:483262 errors:0 dropped:® overruns:8 carrier:@
collisions:0® txqueuelen:1808
RX bytes:1090508882 (1.8 GB) TX bytes:25336006 (25.3 MB)

Link encap:Ethernet Hwaddr 08:80:27:d1:47:dd

inet addr:192.168.56.1081 | Bcast:192.168.56.255

inets addr: feB0::8862:802d:5ece:411/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:158@ Metric:1l

R¥ packets:14570 errors:0 dropped:® overruns:® frame:@
TX packets:3412 errors:8 dropped:® overruns:® carrier:8
collisions:® txqueuelen:1808

RX bytes:5906832 (5.9 MB) TX bytes:483264 (483.2 KB)

Link encap:Local Loopback

inet addr:127.8.8.1 Mask:255.0.8.08

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX¥ packets:4336 errors:0 dropped:® overruns:8 frame:8
TX packets:4336 errors:® dropped:® overruns:® carrier:8
collisions:@ txqueuelen:1l

RX bytes:6665958 (6.6 MB) TX bytes:6665958 (6.6 MB)

sdn@sdn-opendaylight:~$ []

ru-ru-r—— 1 mininet mnininet 21504 Mar 21 2017 util.py
ru-r--r— 1 root root 21872 Mar 21 2017 util.pyc
ru-ru-r-— 1 mininet mininet 2356 Sep 19 00:48 vlan.py
ininetBmininet-un:"snininet mininets
ininet@mininet-um:“/mininetsmininets
ininet@mininet-um:“/mininetsmininets
ininet@mininet-vm:“/mininet mininets
ininet@mininet-um: " /nininet mininet$ cd
ininet@mininet-un:~§ ifocnfig
o command 'ifocnfig’ found, did you mean:
Command ' ifconfig’ from package 'net-tools’ (main)
ifocnfig: command not found
ininet@mininet-um: "5 ifconfig
ethO Link encap:Ethernet HWaddr 0§:00:27:53:75:49
inet addr:192,.168.56.102| Bcast:192.168.56.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Hetric:1
RX packetz:9468 errorz:0 dropped:0 overruns:0 frame:0
TX packets:4480 errorz:0 dropped:0 overruns:0 carrier:0
collisions:0 txgueuelen:1000
RX bytes:2267336 (2.2 MB) TX bytes:4957528 (4.9 MB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LODPBACK RUNNING MTU:65536 HMetric:1

RX packetz:4645 errorz:0 dropped:0 overruns:0 frame:0
TX packets:4645 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgueuelen:0

RX bytes:2733100 (2.7 MB) TX bytes:2733100 (2.7 MB)

ininet@mininet-wn: "5

65 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

A custom network topoly is created for this use case. VLANs are configured between the h1,h2,h2 with
VLAN id =100 and VLAN id = 200 for h4,h5,h6.

from mininet.node import Host, RemoteController
from mininet.topo import Topo

import apt

cache = apt.Cache()

if cache['vlan'].is_installed:

print "Vlan installed"

else:

print "ERROR:VLAN package not installed please run sudo apt-get install vlan"

exit(1)

class VLANHost(Host):

def config(self, vlan=1, **params):

Configure VLANHost according to (optional) parameters:

vlan: VLAN ID for default interface"""

r = super(Host, self).config(**params)

intf = self.defaultIntf()

self.cmd('ifconfig %s inet @' % intf)

self.cmd('vconfig add %s %d' % (intf, vlan))

self.cmd('ifconfig %s.%d inet %s' % (intf, vlan, params['ip']))

newName = '%s.%d' % (intf, vlan)

intf.name = newName

self.nameToIntf[newName] = intf

return r

class MyTopo(Topo):

"Simple topology example."

66 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

def init_ (self):

"Create custom topo."

Topo. init_ (self)

hostl=self.addHost('hl', cls=VLANHost, vlan=100)
host2=self.addHost('h2', cls=VLANHost, vlan=200)
host3=self.addHost('h3', cls=VLANHost, vlan=100)
host4=self.addHost('h4', cls=VLANHost, vlan=200)
host5=self.addHost('h5', cls=VLANHost, vlan=100)

host6=self.addHost('h6', cls=VLANHost, vlan=200)

sl = self.addSwitch('s1')
s2 = self.addSwitch('s2')
s3 = self.addSwitch("'s3')

self.addLink(s1,hostl)
self.addLink(s1,host2)
self.addLink(s1,s2)

self.addLink(s2,host3)
self.addLink(s2,host4)
self.addLink(s2,s3)

self.addLink(s3,host5)
self.addLink(s3,host6)

topos = { 'simplevlan': (lambda: MyTopo()) }

sdn@sdn-opendaylight:~$ scp vlan.py mininet@192.168.56.102:~/mininet/mininet/
mininet@192.168.56.102"'s password:

vlan.py lee% 2229 2.2KB/s
sdn@sdn-opendaylight:~$ |

Mar
mininet mininet Mar
root root Mar
mininet mininet Mar
mininet mininet Mar topolib.py
mininet mininet Mar topo.py
mininet mininet Mar util.py
rU-r—r—-— root root Mar util.pyc
TU-TW-r—— mininet mininet 2356 Sep vlan.py
ininet@mininet-um: " /nininet nininety

TWXTWX—X
TW—ru-r—
TrU-ru-r—
TU-rwu-r——

1
1
1
2
1
1
1
1
1

Connection from ODL_VM to MININET VM to forward the X server

67 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

asdn-opendaylight:~% ssh -X mininet@®192.168.56.182
mininet@192.168.56.1082"'s password:
Welcome to Ubuntu 14.084.4 LTS (GNU/Linux 4.2.8-27-generic i686)

* Documentation: https://help.ubuntu.com/
Last login: Fri Sep 20 22:56:47 2819
fusr/bi auth: file /home/mininet/.Xauthority does not exist
mininet@mininet-vm:~% 11
total 72
drwxr-xr-x mininet mininet
drwxr-xr-x 3 root root
- mininet mininet

mininet mininet
-TW-r--r-- mininet mininet
-rwW-r--r-- mininet mininet
drw: mininet mininet . C /
-W-TwW-r-- mininet mininet Mar 21 2817 .gitconfig
-rwW-r--r-- mininet mininet Aug 2816 .profile

root root Mar 2017

mininet mininet Mar 2017 .wireshark/

mininet mininet 30 Mar 2017 1 all-mininet-wvm.sh

mininet mininet Mar 2017 xige

mininet mininet Mar 2017

mininet mininet Mar 2017

mininet mininet Mar 2017

mininet mininet Mar 2017

mininet mininet Mar 2817

Sep 21 @8:08 ./

Aug 3 2016 ../

Sep 21 80:00 .Xauthority
Mar 21 2017 .bash_history
Aug 3 2816 .bash logout
Mar 21 2817

Mar 21 2817

@ @

W WM DLW D

4
2
B
@

3
4

Ui @@e o O

o
]

sudo mn --controller=remote,ip=192.168.56.101 --custom ~/mininet/mininet/vlan.py
simplevlan --mac --switch ovsk,protocols=Openflow13

mininet@mininet-vm:~% sudo mn --controller=remote,ip=192.168.56.101 --custom ~/mininet/min
inet/vlan.py --topo simplevlan --mac --switch ovsk,protocols=OpenFlowl3
Vlan installed
Creating network
Adding controller
onnecting to remote controller at 192.168.56.101:6653
*** Adding hosts:
hl h2 h3 h4 h5 hé
*** Adding switches:
sl s2 s3
*** Adding links:
(s1, hl) (s1, h2) (s1, s2) (s2, h3) (s2, h4) (s2, s3) (s3, h5) (s3, he)
*** Configuring hosts
hl h2 h3 h4 h5 hé
*** Starting controller
c@
*** Starting 3 switches
sl s2 53 ...
*** Starting CLI:

mininet> net

hl-ethe.1@8:51-ethl

h2-eth®.200:s51-eth2

h3-ethe.100:52-eth2

h4-eth®.200:52-eth3

h5-ethe.100:53-eth2

hé-eth®.200:53-eth3

lo: sl-ethl:hl-eth8.188 sl-eth2:h2-eth6.200 sl-eth3:s2-ethl

lo: s2-ethl:sl-eth3 s2-eth2:h3-eth6.100 s2-eth3:h4-eth8.200 s2-ethd:s3-ethl
lo: s3-ethl:s2-eth4 s3-eth2:h5-eth0.100 s3-eth3:h6-ethe.200

sl-ethl=-: .100 (0K OK)
sl-eth2< .200 (0K OK)
(0K 0K)
.1ee (0K OK)
.200 (0K OK)
(0K 0K)
.100 (0K OK)
.200 (0K OK)
mininet> nodes
available nodes are:
cB® hl h2 h3 h4 h5 hé s1 s2 53
mininet> []

--topo

Using the mininet command “dump” verify that the switches send their packet only to the controller

and ports that are directly connected to them.

68 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

B.909s, table=8, n_packets=8, n_bytes=0, priority=2,in_port=3 a

duration=2220.988s, table=8, n_packets=8, n_bytes=8, priority=2,in_port=1 a
CONTROLLER: 65
duration=2220.9089s, table=8, n_packets=8, n_bytes=8, priority=2,in_port=2 a
CONTROLLER:6553
P01, duration=2224.871s, table=0, n_packets=446, n_bytes=37910, priorit
INTROLLER : 65535
e= r¢b@ﬂﬂﬂ@&@ﬂ@&@ﬂ@& duration=2224.871s, table=0, n_packets=0, n_bytes=0, priority=8 actions=dro

0 on=2220.925s, table=0, n_packets=0, n_bytes=0, priority=2,in port=3 a
t:1,output:4, CONTROLLER: ESS 35
102, duratlun-"22u 918s, table=0, n_packets=0, n_bytes=0, priority=2,in port=1 a
coutput:4
3, duration=2220.916s, table=0, n_packets=0, n_bytes=0, priority=2,in port=4 a
Loutput:1
E@ﬂ@@@ﬂ@l. duration=2220.9 table=8, n_packets=0, n_bytes=8, priority=2,in_port=2 a
output:1,output:4, CONTROLLE 35
0000000002, duration=2224.874s, table=8, n_ tets=892, n_bytes=75820, priority=1@0,dl_

.874s, table=8, n_packets=8, n_bytes=8, priority=8 actions=dro

duration=2220.914s, table=d, _packets=B, n_bytes=8, priority=2,in port=3 a
CONTROLLER:65
duration=2228.916s, table=8, n_packets=8, n_bytes=8, priority=2,in_port=1 a

duration=2220.917s, table=0, n_packets=8, n_bytes=0, priority=2,in_port=2 a
NTROLLER:65535
duration=2224.874s, table=8, n_packets=446, n_bytes=37918, priority=100,dl_

)0001, duration=2224.874s, table=0, n_packets=B, n_bytes=0, priority=0 actions=dro

mininet>

Setting up the VTN modules in OpenDaylight
opendaylight-user@root>feature:install odl-vtn-manager odl-vtn-manager-rest

ODL provides a HTTP based REST API in order to interact with the ODL. Since VTN features are loaded to
ODL restconf API valid end-points are provided for the user to construct payload and send them to the
controller. The high-lighted features of the VTN project will be used in order to isolate the network for
the SDN environment.

SRR

vtn-port-map(2015-l}9-07) ShowsHide | List Operations Expand Operations

Raw

Navigating to the end-point the vtn nodes are modeled

http://192.168.56.101:8181/restconf/operational/vtn-inventory:vtn-nodes

"vtn-nodes":{

69 of 84

http://192.168.56.101:8181/restconf/operational/vtn-inventory:vtn-nodes

University of the Aegean Department of Information & Communication Systems

Engineering

"vtn-node":|
{

"id":"openflow:3",

"openflow-version":"OF13",

"vtn-port":[

{

"id":"openflow:3:3",
"cost":1000,
"enabled":true,
"name":"s3-eth3"

"id":"openflow:3:2",
"cost":1000,
"enabled":true,
"name":"s3-eth2"

"id":"openflow:3:1",
"cost":1000,
"enabled":true,
"name":"s3-eth1",
"port-link":[

{

"link-id":"openflow:2:4",

"peer":"openflow:2:4"

}I
{

"link-id":"openflow:3:1",

"peer":"openflow:2:4"

}

"id":"openflow:2",
"openflow-version":"OF13",
"vtn-port":[
{
"id":"openflow:2:4",
"cost":1000,
"enabled":true,
"name":"s2-eth4",
"port-link":[
{

"link-id":"openflow:2:4",

"peer":"openflow:3:1"
2
{

"link-id":"openflow:3:1",

"peer":"openflow:3:1"
}
]

70 of 84

University of the Aegean Department of Information & Communication Systems

Engineering

"id":"openflow:2:3",
"cost":1000,
"enabled":true,
"name":"s2-eth3"

"id":"openflow:2:2",
"cost":1000,
"enabled":true,
"name":"s2-eth2"

"id":"openflow:2:1",
"cost":1000,
"enabled":true,
"name":"s2-eth1",
"port-link":[

{

"link-id":"openflow:2:1",

"peer":"openflow:1:3"

1
{

"link-id":"openflow:1:3",

"peer":"openflow:1:3"

}

"id":"openflow:1",
"openflow-version":"OF13",
"vtn-port":[
{
"id":"openflow:1:3",
"cost":1000,
"enabled":true,
"name":"s1-eth3",
"port-link":[
{

"link-id":"openflow:2:1",

"peer":"openflow:2:1"

17
{

"link-id":"openflow:1:3",

"peer":"openflow:2:1"

"id":"openflow:1:2",
"cost":1000,

71 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

"enabled":true,
"name":"s1l-eth2"
2
{
"id":"openflow:1:1",
"cost":1000,
"enabled":true,

"name":"sl-ethl"

Using the Rest API to create a virtual tenant, virtual bridge and VLAN mapping

th{201 5'03'28) Show/Hide List Oiperations Expand Operations
JoperationalAtnivtns

Implementation Notes

The root container of all VTNs (Virtual Tenant Network). Mote that the VTN configuration must be modified by RPC. Do not edit this container
directly.

Raw

Response Class
Madel

(operationaljins

Response Content Type | applicationfjson ¥

Try it out!

Request URL

http://192.168.56.1081:8181/restconf/operational/vtnivtns

Response Body
"wtns": {}

Response Code

200

Response Headers

{
"Expires": "Thu, 81 Jan 1978 @e:oe:88 GMT",
"Content-Encoding™: "gzip”,
"Transfer-Enceding”: "chunked",
"Wary": "Accept-Encoding, User-agent”,
"Content-Type": "application/json”

72 of 84

{

}

University of the Aegean Department of Information & Communication Systems

Engineering

Joperations/vtn:remove-vtn

Joperationsfvtn:update-vin @ 1

Implementation Notes

Create or modify the VTN specified by the name. Upon successful completion, the result of this operation will be set to the “status’ field in the
RPC output. ~CREATED' indicates that the specified VTN has been newly created. "CHANGED' indicates that the configuration for the specified
VTN has been changed. Null indicates that the configuration for the specified VTN was not changed. On failure, one of vtn-error-tag value which
indicates the cause of error is set into application tag in RPC error. “BADREQUEST' is set if the RPC input contains invalid data. " COMNFLICT' is set
if “update-mode’ field in the RPC input is ~CREATE' and the specified VTN is present. "NOTFOUND' is set if “update-mode’ field in the RPC input
is "MODIFY" and the specified VT is not present. "INTERMALERROR' is set if the operation failed due to internal error.

Response Class

Model Model Schema
{update-vtn)output-TOP {
vin:output (object[{update-vin)output], optional)
1
(update-vtn)output {
vin:status (CREATED, optional) = [CREATED' or 'REMOVED' or "CHANGED: Describes the status of the RPC result.
}

Payload retrieved from Model
Schema. Define your own

Response Content Type

P values for the attributes. 2
ARG Not all attributes are
Parameter Value mandatory. Description _Pl_yaFr;:meter Data Type
i W
(upd.?te— { -~ body lodel Model Schema
vin)input- "wtn:input™: {
TOP "vin:tenant-name": "Some tenant-name", 3 {
"wvin:update-mode “wtnrinput™: {
“vtn:operation”: — - P -
"vtn:description”: "Some description”, "v‘:":te"ant'"a“": "mme tfnant'"a"' !
“vtn:idle-timeout ", "\"‘:"-Updatejmfe UEU»'-UE ,
"vtn:hard-timeout™: "@" . vtn:operation™: "ADO",
T "vtn:description™: "Some description”,
1 o "vtn:idle-timeout 8",
Parameter content type: | application/json v R REE
Hy
Click to set 2z parameater valug
;
n . ",
vtn:input": {
n . n,on "
vtn:tenant-name"™: tenant_sdn ,
n . R ", s n
vtn:description": "Virtual tenant
Parameter Value
{update- {
vtn)input- "win:input®: {
TOP "win:tenant-name®: “tenant sdn®.
"win:description®™: "Wirtual tenant”

Parameter content type: | application/json

Try it out!

Request URL

http://localhost:8181/restconf/operations/vtn:update-vtn

Response Body

"output®: {
"status™: “CREATED"

73 of 84

University of the Aegean Department of Information & Communication Systems

Engineering
Request URL
http://localhost:8181/restconf/operational/vtn:vtns
Response Body
{
"vtns®: {
"wtn": [
{
“name”: “tenant_sdn”,
"vtenant-config®: {
“hard-timeout®: 8,
"description®: "Virtual tenant®,
"idle-timeout®™: 388
H
}
1
}
}
Response Code
266
Creating virtuall bridges bridge_sdn1 bridge sdn2
"vtn-vbridge:input": {
"vtn-vbridge:tenant-name": "tenant_sdn",
"vtn-vbridge:bridge-name": "bridge_sdn1"
{update- 1 (update- {
vbridge)input- "win-vhridge:input®: { vbridge)input- “vtn-vbridge:input®: {
Top “vin.vbridge:tenant-name™: “tenant sdn”. TOP “vtn-vbridge:tenant-name”: “tenant_sdn”
"yin-ybridge:bridge-name”: "bridge sdnl” i “vtn-vbridge:bridge-name”: “bridge_sdn2”
Parameter content type: | application/json Parameter content type: | application/json v
Try it out! Try it out!
Request URL Request URL

http://localhost:B181/restconf/operations/vtn-vbridge:update-vbridge http://localhost:8181/restconf/operations/vin-vbridge: update-vbridge

Response Body Response Body

{ {
“output®: { “output®: {
"status®: “CREATED" "status®: "CREATED"
} }
} }
Request URL "bridge-status": {
"path-faults": @,
http:/flocalhost:B1BL restconf /operational/vin:vtns P
"state": "UNKNOWN"
Response Body b
i 1
"wtns": { {

V:n: I "name"”: "bridge sdn2",
"name": "tenant sdn", "vbridge-config": {
"wtenant-config": { "age-interval”: 600

"hard-timeout”: @, 1,

"description”: "Virtual tenamt”, whr
"igle timeout": 300 bridge-status”: {

h "path-faults": @,
"vbridge": ["state": "UNKNOWN"
4 }
"name”: "bridge_sdnl", }
“vbridge-config”: {
“age-interval”: G0
}, +
"bridge-status": {]
"path-faults": @, }
"state": "LIMKNDWN"

Response Code Response Code

B 208

Mapping VLAN-id 100 to bridge_sdnl and VLAN- id 200 to bridge_sdn2 respectively.

74 of 84

University of the Aegean Department of Information & Communication Systems

Engineering
n H n
vtn-vlan-map:input": {
"vtn-vlan-map:tenant-name": "tenant_sdn",
"vtn-vlan-map:bridge-name": "bridge_sdn1",
"vtn-vlan-map:vlan-id": "100"
(add-vlan- [{ (add-vlan- [{
map)input- “win:vlan-map:input®: { map) input- “¥in-vlan.map:input®: {
Top "yin:ylan.map:tenant- : "tenant sdn”. TOP "yin:vlan-map:tenant-name®: “tenant_sdn”,
“vin-y i : “bridge sdnl”, "vin-vlan-map:bridge-name”: “bridge sdn2”,
’ “¥inzylan-man:lanzid": "280°

Parameter content type: application/json v Parameter content type: | application/json v

Try it out! Try it out!

Request URL Request URL

http://localhost:8181/restconf/operations/vtn-vian-map:add-vian-map http://localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map

Response Body Response Body

{

{

“output®: { “output®: {
"active®™: true, "active®: true,
"map-1d®: “ANY.188" “map-id*: “ANY.288"

1 }

} 1
After mapping the new status of the network.
Request URL Request URL

http://localhost:8181/restconf/operational/vtn:vtns http://localhost:8181/restconf/operational/vtn:vtns

Response Body Response Body

{ "name®: "bridge sdn2®,
"name®: "bridge sdnl”®, -vbridge-config=: {
“vbridge-config™: { "age-interval®: 606

"age-interval™: 660 '
?' . . "bridge-status®: {
bridge-status®: { “path-faults™: @
"path-faults®: @, cctate: 'UP'- '
“state™: “UP- state s
} e
"vlan-map®: [“vlan-map™: [
{ {
"map-id®: "ANY.188", "map-id®: "ANY.2887,
"vlan-map-config®: { '”}an'maF'EU”fiD'I {
“ylan-id=: 180 vian-id®: 280
I |
"vlan-map-status®: { “wlan-map-status™: {
"active®: true "active®: true
} ¥
} i
1 1

Sending traffic via “pingall” commad which generates traffic between hosts, MAC address learning
process is triggered between them.

mininet> pingall
*** Ping: testing ping reachability
X X h5 X

Results: 60% dropped (12/38 received)
mininet> [|

75 of 84

University of the Aegean

Department of Information & Communication Systems

Engineering

Using the “dump” command network isolation is achieved packets are broadcasted to only valid hosts.

Swich s1 flows:

44 .839s,
send_ f1ou rem prlorlt'—lo in_port=1,dl
actions=output:3
000000800886, duration=135.857s,
, send_flow _rem priority=10,in_port=2,dl
0:00 actions=output:3
00000008085, duration=135.883s
w_rem priority=1@,in_port=3,dl_vlan=200,dl_src=
- =
7f56000000000008, duration=132.84s,
send_ f1ou rem prlorltv 10,in_port=2,dl
actions=output:3
0e80808001, duration=147.607s
w_rem priority=1@,in_port=3,dl_vlan=laa,d1_5rL
ions=output:1
okie 7f56000000000002, duration=147.603s,
eout=380, send flow rem priority=10,in_port=1,dl_
B actions=output:3
00088088083, duration=144.873s,
w_rem priority=18,in_port=3,dl_vlan=100,dl_src
ctions=output:1
okie 7f56000000000007,
w_rem priority=18,in_port=3,dl
ctions=output:2
okie 2b0eeeeeeeeeee1b, duration=702.487s,
2,in_port=3 actions=output:2,output:1
cookie=0x2bo@
=2 1n _port=1

table=0,

duration=132.872s,
vlan=200,d1

utput:3,output:2,

duration=702.486s, table=8 n_

utput:3,output:1,

07, duration=788.358s, t: B, n_

rity=180,d1l_type=8x88cc a1t10n5— NTRULLER 95535
i JE57ffffffffffff, duration=708.354s,
rem priority=0 actions= LONTROLLER 65535

, duration=144.842s, table=0, n pa
80,dl s 00:00:00:00:01,d1_ds
)006, duration= 65 tdble =0, n_pi
d

,tmleﬂ,npdlﬂc-

:80:00:05, dl_dst=08
. dUrdthﬂ 14E . table 0, n_pa s
=2,d1l_vlan=180,d1l_sr HH:H]

duration=147
dl_vlan

0x7f56000000000001, table=0, n_pa
rem priority=18,in_port=2, 00:
OS5, duration=135.884s, table=0, n_pack
0,in_port=3,dl_wlan=200,dl_s 00:00
table=0, n_pa
0:06,dl_dst=0
table=0, n_pa
)0:06,d1_dst=00
table=0, n_pac
:00:05,d1_dst=00:
table=0, n_pack
10:02,d1_ds
table=0,
10:01,d1
table= =0, n_pa
),dl_s 0o:

0

rUGH. duration= 14E

,dl_vlan= 100 dl ST :
dUrdthﬂ

10‘1n port 1,dl_vlan= 100 dl Sre
f - duration—114.84
,dl_vlan

«2b0000E0000ODO14, duratio table=0, n_pa
10n =output:2,output:1, autput 4, CONTROLLER:65535
4bmmmmmummmmmmlf duration=702.499s, table=0,
,0utput:2,autput:4
100000017, duratio
Joutput:2,output
100000015, duration=762.5s,
1,output:4,CONTROLLER:65535
duration=708.284s, table=0, n_pa

702.494s5, table=8, n_pa

ions=output
tie= Dr;bﬂﬂﬂ@ﬂﬂﬂﬂ
TTSTTTTTTTTTTTTT duration=708
ONTROLLER: 65535

- 2505,

table=8, n_
_vlan=1008,dl_src=

table=8, n_
_vlan=260,

n_packet
wlan=200,dl p:00:00:00:00:02,d1_

table=8, n_
vlan=1088,

table=08, n_

0000 001d, duration=782.4 n_

table=8, n_

n_packets=26,
ets=26,

table=0, n_packets=15, n_bytes=858, priority=2

packets=2, n_bytes=148, idle_tim

0:00:00:01,d1_dst=

packets=2

n_bytes=148, idle_tim
dl_src= :

0:00:00:02,d1_dst=

send_flo

0 0o:008:082
n_bytes=148, idle_time
dst=0

send_flo
0 0e:088:081

idle_tim
:01,dl d5t=

packets=2, n bytes 148,
dl_src= pe : PO : @

send_flo

0 80:00:01

send_flo
0 00:00:02

packets=52, n_bytes=2840, priori

packets=17, n_bytes=894, priorit

packets=13, n_bytes=710, priorit

packets=946, n_bytes=88410, prio

packets=8, n_bytes=8, send_ flow_

ytes=148, send_flow_rem priorit
tions=output:4
, send_flow_rem priority

nd_flow_rem priorit
tlunf—output 1

296, idle timeout=3
:00:00:00:00:01

, 1idle_timeout=30
:00:00:00:00:02

priorit
priorit
priorit

nd_Tluu_rem priorit
=output:4
send_flow_rem priorit
tlan=—autput
148 1dle_t1meuut 300, sen
:00:00:00:00:06 ions=

168, priority=2,in_por a

n_bytes=14208, priority=2,in_port=

n_bytes=14208, priority=2,in_port=

in_port=2 a
60,dl

2, n_bytes=160820, priorit

table=0, n_packets=0, n_bytes=0, send_flow_rem priority=

76 of 84

University of the Aegean

Swich s3 flows:

OFPST_FLOW rephf (OF1.3)
560000000000

n_port=1,dl

qubGBBGGéBBGGBb, duration=114.891s,
send_flow_rem priority=18,in_port=3,dl
ions=output:1

00:00:00:84 a
cookie=Bx7f56000000000003

send_flow_rem priority=10,in_port=2,dl

Department of Information & Communication Systems
Engineering

duration=144.844s, tabl

, n_packets=2, n_bytes=148, send_flo
_vlan=180,dl_src=00:00:00:

0:00:01,d1_d :00:00:00:00:85

id1e tim

duration=126.882s, table=0, n_packets
i i | dst=

=2,dl_wlan=100,dl_src=

table=08, n_packets=4
_wlan=208,dl_src=

6, idle_tim
:00:80:06,d1l_dst=
duration=144.876s, table=0, n_packets=4
_wvlan=108,dl_src=

:00:00:05,d1

_dst=

ions=output:1
opeoeeeeees,

=10,in_port=1,dl

7f56000000000800a,

0,in_port=1,dl_

n_port=1,dl

7f56000000000007, duration=132.871s,
8, send_flow_rem priority=10,in_port=3,dl

duration=132.844s
_wvlan=200,dl_src

table=8, n_packets=2, n_bytes=148, send flo
:00:00:00:02,d1_dst :00:00:00:00:06

duration=126.846s,
vlan=100,dl_s

table=8, n_packets=2, n_bytes=148, send flo
0:00:00:00:00:03,d1l_dst=00:00:00:00:80:05

duration=114.843s, tabl
_vlan=200,dl_src=00: 8

, n pa1ket5 2, n_bytes
0:00:04,d1_d

idle tim

table=8, n_packets =
:00:00:06,d1l_dst=

_vlan=2008,dl_src=

ions=output:1
B0la,

actions=output:2,output:1

819,
ions=output:2,output:3

18,

2 actions output 1,output:3 IONTROLLER 65

duration=782 n_bytes=71@, priorit

duration=702.495s, n_bytes=2988, priori

duration=782.496s, table=0, n_packets=13, n_bytes=710@, priorit

35

5
2
duration=708. 519s, table=0, n_packets=946, n_bytes=80410, prio

cc actions=CONTROLLER: 95535

duration=788.489s, table=8, n_packets=8, n_bytes=0, priority=0

77 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

9 AAA (Authentication-Authorization, Accounting)

The AAA project provides authentication, authorization and accounting. This service is based on the
Apache Shiro Java Security Framework. AAA plugin utilizes the Shiro Realms to support this service.
Authentication verifies users who are granted access to the system resources. This function is achieved
while providing valid credentials (user name and password). ODL controller’s default user is the
administrator. However, this service allows to create other users who also will have access the system.
Authorization comes exactly after the authentication and specifies what an authenticated user can do in
the system, in other words set user’s permissions. Accounting is the process that keep records of the
authenticated user in system.

The AAA service is easily configured by manipulating the realms. There are two methods to achieve this:

e Utilizing the idmtool configuration tool used in order to perform basic user management
operations, allows to list, add, delete, change password, delete roles and add roles, and assignes
to the users.

e Utilizing the odl-aaa-shiro feature from REST API

e Utilizing the odl-aaa-cli (command line interface) of karaf console

If the second option is selected in order to make any configuration, the odl-aa-shiro feature must be
installed before restconf APIl. The main configuration file for AAA is located at “etc/shiro.ini” relative to
the ODL Karaf home directory.

ODL provides the “admin” user, who is permitted to do any operation in the ODL controller this chapter
will present how to create a user with specific permissions.

The next figure verifies the existing “admin” user in ODL using the curl command.

sdn@sdn-opendaylight:~% curl -u admin:admin http://localhost:8181/auth/v1/users
{"users":[{"userid":"admin@sdn", "name":"admin", "description":"admin user","enabled":1,"ema

~$

Next, custom user configuration will be presented. In order to proceed CRUD operation on ODL users
some additional tools will be used:

e Firefox web browser
e Curl command

The above tools are not mandatory, there are also alternatives for example, Chrome web browser could
be used with Postman REST API client or a curl command instead. Also, the DLUX module will be
installed for testing the applied configuration on users.

Installing AAA features executing the command opendaylight-user@root>feature:install features-aaa

features-aaalj

@ re:1i I
odl-aaa-netconf-plugi cluster | 1.4.4 | | Uninstalled | odl-
netconf-plugin-no-cluster OpenDaylight :: AAA :: ODL NETCONF Plugin - NO CL
8.7 | Started | edl-
0oL ::
| | features
0oL ::
| | edl-
- 0oL ::
-netconf-plugin | 4. | Uninstalled | odl-
-plugin OpenDay - :: ODL NETCONF PL
-encryption-service | | te | odl-
ooL | -encryption-s |
| |
| |

-api odl-
-api
odl-
opL
odl-

0oL ::

oL

{"users": [{"userid i dmin","description":"admin user","enabled":1,"ema
il":"", "password"”;"#*sssssasn gl g nexssxsxssx” “domainid”:"sdn"}]}sdn@sdn-opendaylight

University of the Aegean Department of Information & Communication Systems

Engineering

Now the creation of a new user “elina” will take place using the curl command.

JSON file payload models the data required to create the custom user.

elina.json
{
"name": "elina",
"description”: "elina user"
"email": "elina@gmail.com",
"password": "elina",
"salt": "elina",
"domainid": "sdn"
i

Sending the payload to the control via HTTP POST

@sdn-opendaylight:~% curl -u admin:admin -X POST -H "Content-Type: application/json” --
data-binary /elina.json http://localhost:8181/auth/vl/users
sdn", "name" :"elina", "description":"elina user","enabled":1,"email":"elina
domainid":"sdn"}sdn@sdn-opendayli

":"elina

@gmail.com”, "password":"#Essssssssn ,"salt”: '
ght:~§

The endpoint URL that configures the users is http://localhost:8181/auth/v1/users. User “elina” is
created.

«

J50N

c

Raw Data

(@ localhost
Headers
Save Copy Collapse All Expand All 57 Filker J50H

¥ USers:

v 0.
userid: "admingsdn"
name : "admin"
description: "admin user"
enabled: 1
email: wu
paiswurd' o o o o o o o o o e)
:%a-.-.: LE S s R
domainid: "sdn"

v 1:
userid: "elinagsdn"
name : "elina"
description: "elina user”
enabled: 1
email: "elinaggmail.com"

password:

domainid:

R T Tl

15 o o ok o o o o R R 1

"sdn"

[Authentic

<« C |G
JSON Raw Data

E openDay

(i) localhost

Headers

Save Copy Collapse All Expand All 57 Filter JS0OM

w roles:

v @
roleid:

name:

description:

domainid:

roleid:

name:

description:

domainid:

There is only one domain the default “sdn”.

"admin@gsdn"
"admin®
"a role for admins"

"sdn"

"usergsdn"
"user"
"a role for users"

"sdn"

79 of 84

http://localhost:8181/auth/v1/users

University of the Aegean Department of Information & Communication Systems
Engineering

f Facebook X [RNEIE LIS Error 405

<« C o @ localhost

JSON RawData Headers

Save Copy Collapse All Expand All

domains:
o:
domainid: "sdn"
name: "sdn"
description: "default odl sdn domain"
enabled: true

In order to enable the user “elina” to have access grand a role will be needed.

opendaylight-user@root>feature:install features-dluxapps odl-dluxapps-applications

Open ¥ [41

rule(1).json = rulejson = elina.json
{
"roleid":"admin@sdn",
"description”:"role grant to elina”

N

G curl -u POST -s -H "Content-type:application/j " --data-binary
ant.json htt ocalhost:8181/aut ‘domains/sdn/users/elina@sdn/roles
Enter host password for user 'POST

sdn@opendaylight:~$ curl -u admin:admin -X POST -s -H "Content-type:applic:
omains/sdn,

Verification of the action that is received from controller may be checked by logging system of the
controller in running state.

Finally to, in order to check if the user “elina” is functional dlux Ul will be used as depicted in the next

images.

features
opL ::
features
features-
angutils | 8.7.4
0oL :: apps :: O
-nodes 0.7.4
opL :: apps :: odl- apps-nod
-yangman | 8.7.4
yangman opL :: apps :: odl- apps-yangman
apps-yangui | 8.7.4 | started odl-
i opL :: apps :: odl- apps-yangui
0.7.4 | started odl-
Opendaylight feature
-topology | 8.7.4 | Starte odl-
opL :: apps ::

odl-

odl-

odl-

angvisualizer | 8.7.4 te odl-
opL :: apps :: 0 e
0.7.4

pplications odl-
apps-applications opL :: apps :: O

@ o>l

80 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

<« ¢ @ @ localhost:8181/index.html#/login aee w i »

Please Sign In

. OPEN

T Remember Me

Saved Logins

[©search

Logins For the following sites are stored on your computer

Site v Username Last Changed R
© http://localhost:8181 elina Sep 17,2019
% Autofill logins and passwords
Remove Remove All Show Passwords

Close

The final image verifies the the user “elina” has access to the ODL applications.

81 of 84

University of the Aegean Department of Information & Communication Systems

Engineering
§ Facebook X | |.Facebook.com/l bl OpenDaylight Dlux X [l & Kol
&« c o @ localhost:8181/index.html#/nod e w LI » =

= b Logout (elina)

Node Connectors Statistics
= Nodes

Mo data found

82 of 84

University of the Aegean Department of Information & Communication Systems
Engineering

10 Conclusion

In this project SDN and OpenFlow basic specifications are presented. For practice an SDN lab was
configured and set in order to have a functional environment to test build-in ODL services. The use cases
that presented utilized the Mininet tool in order to act as data place and next the L2 Switch feature of
the ODL is triggered launch the MAC learning. OpenFlow feature is fundamental for the L2 Switch, it
managed all flows configuration for the service. Next network isolation is presented to isolate host
connection using other ODL feature, the VTN and restconf API. Finally, AAA service of the ODL
presented how to configure a custom user to define its own policies for the network.

11 References

[1] https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html

[2] https://www.researchgate.net/figure/OpenFlow-switch-atchitecture-An-OpenFlow-Switch-consists-
of-one-or-more-flow-tables-and-a_fig4 320346909

[3]https://www.slideshare.net/bdnog/introduction-to-software-defined-networking-
sdn?from_action=save

[4] P. Heise, F. Geyer, and R. Obermaisser. Deterministic OpenFlow: Performance evaluation of SDN
hardware for avionic networks. In Network and Service Management (CNSM), 2015 11th International
Conference on, pages 372—-377. IEEE, 2015.

[5] Open Networking Foundation, OpenFlow Switch Specification Version 1.3.1 (Wire Protocol 0x04)
September 6, 2012 ONF TS-007

[6]https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/7995427/How+to+Work+with
+Fast-Failover+OpenFlow+Groups#tHowtoWorkwithFast-FailoverOpenFlowGroups-OpenFlowGroups

[7] http://confignetworks.com/inside-openflow/

[8] https://docs.opendaylight.org/en/stable-neon/user-guide/opendaylight-controller-overview.htm

[9] https://www.javaworld.com/article/2077837/java-se-hello-osgi-part-1-bundles-for-beginners.html

[10] https://www.baeldung.com/osgi

[11] http://sdntutorials.com/opendaylight-and-osgi/

[12] https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-

openflow/

[13]https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-
features/dlux.html

[14] https://docs.opendaylight.org/en/stable-fluorine/user-guide/I2switch-user-guide.html

[15] https://docs.opendaylight.org/en/stable-neon/user-guide/openflow-plugin-project-user-guide.htm

[16]nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userg
uide/bk-user-guide/content/_clustering_overview.html

[17] https://docs.opendaylight.org/en/latest/downloads.html

[18] https://docs.opendaylight.org/en/stable-oxygen/getting-started-guide/clustering.html

[19] http://mininet.org/overview/

[20] https://github.com/CPgD/ofsoftswitch13/wiki/Dpctl-Documentation

https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html
https://www.researchgate.net/figure/OpenFlow-switch-atchitecture-An-OpenFlow-Switch-consists-of-one-or-more-flow-tables-and-a_fig4_320346909
https://www.researchgate.net/figure/OpenFlow-switch-atchitecture-An-OpenFlow-Switch-consists-of-one-or-more-flow-tables-and-a_fig4_320346909
https://www.slideshare.net/bdnog/introduction-to-software-defined-networking-sdn?from_action=save
https://www.slideshare.net/bdnog/introduction-to-software-defined-networking-sdn?from_action=save
http://confignetworks.com/inside-openflow/
https://docs.opendaylight.org/en/stable-neon/user-guide/opendaylight-controller-overview.htm
https://www.javaworld.com/article/2077837/java-se-hello-osgi-part-1-bundles-for-beginners.html
https://www.baeldung.com/osgi
http://sdntutorials.com/opendaylight-and-osgi/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-openflow/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-openflow/
https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/dlux.html
https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/dlux.html
https://docs.opendaylight.org/en/stable-fluorine/user-guide/l2switch-user-guide.html
https://docs.opendaylight.org/en/stable-neon/user-guide/openflow-plugin-project-user-guide.htm
https://docs.opendaylight.org/en/latest/downloads.html
https://docs.opendaylight.org/en/stable-oxygen/getting-started-guide/clustering.html
http://mininet.org/overview/
https://github.com/CPqD/ofsoftswitch13/wiki/Dpctl-Documentation

University of the Aegean Department of Information & Communication Systems
Engineering

[21] http://ranosgrant.cocolog-nifty.com/openflow/dpctl.8.html

[22] https://www.openvswitch.org/

[23] https://docs.opendaylight.org/en/stable-fluorine/user-guide/virtual-tenant-network-(vtn).html

[24] https://docs.opendaylight.org/en/stable-oxygen/user-guide/authentication-and-authorization-
services.html

84 of 84

http://ranosgrant.cocolog-nifty.com/openflow/dpctl.8.html
https://www.openvswitch.org/
https://docs.opendaylight.org/en/stable-oxygen/user-guide/authentication-and-authorization-services.html
https://docs.opendaylight.org/en/stable-oxygen/user-guide/authentication-and-authorization-services.html

