

University of the Aegean Department of Information & Communication Systems
 Engineering

Thesis Master: Testbed for SDN applications using OpenFlow. Create
testbed that could be used for experimentation and research of software
defined network applications.

 ICSDM15057- Tsakalidou Elina

University of the Aegean

Department of Information &

Communication Systems

Engineering

 School of Science

University of the Aegean Department of Information & Communication Systems
 Engineering

 2 of 84

Table of Contents

1 Introduction ... 5

1.1 Traditional legacy network vs Software Defined Network ... 5

2 SDN Fundamentals ... 6

2.1 SDN basic programming logic ... 6

3 Understanding OpenFlow Protocol.. 8

3.1 OpenFlow Components .. 8

3.1.1 OpenFlow Flow Tables ... 8

3.1.2 OpenFlow Meters .. 10

3.2 OpenFlow Architecture .. 11

4 OpenDaylight Fundamentals ... 12

4.1 OpenDaylight Architecture ... 13

4.2 OpenDaylight Features/Applications .. 14

4.2.1 DLUX ... 14

4.2.2 L2 Switch .. 15

4.2.3 OpenFlow Plugin .. 15

5 OpeDaylight Deployment in VirtualBox ... 17

5.1 OpenDaylight Deployment Karaf Distribution .. 17

5.1.1 Preparing the VM machine to host the ODL controller ... 18

5.1.2 Java Installation .. 21

5.1.3 Downloading and running of the karaf container .. 21

5.1.4 Installing karaf features ... 22

5.2 ODL Deployment Clustering .. 23

5.2.1 Clustering Specifications .. 23

5.2.2 Clustering in Practice ... 23

6 Mininet ... 28

6.1 Why to use Mininet... 28

6.2 Mininet-Deployment ... 28

6.2.1 Installing Mininet VM ... 28

6.3 Mininet build-in Tools ... 31

7 Integration of Mininet with OpenDaylight Controller ... 34

8 Host isolation with Virtual Tenant Network (VTN) .. 65

9 AAA (Authentication-Authorization, Accounting) .. 78

10 Conclusion .. 83

11 References ... 83

University of the Aegean Department of Information & Communication Systems
 Engineering

 3 of 84

Figures

Figure 1: SDN architecture .. 6

Figure 2: OpenFlow protocol components .. 8

Figure 3: OpenFlow flow entry ... 9

Figure 4: L2 Switching ... 9

Figure 5: Flow with complex maching rules ... 9

Figure 6: Firewall ... 9

Figure 7: L3 Routing ... 9

Figure 8: VLAN Switching .. 10

Figure 9: Connection between SDN Elements .. 12

Figure 10: ODL architecture .. 14

Figure 11: OpenDaylight features ... 14

Figure 12: OpenFlow protocol implementation in ODL controller ... 16

Figure 13: OVS atchitecture .. 32

Tables

Table 1: L2 MAC Learning ... 15

Table 2: High –Availability requirements .. 23

University of the Aegean Department of Information & Communication Systems
 Engineering

 4 of 84

Abstract

Software-Defined Netwοrk (SDN) has becοme οne of the most impοrtant architectures fοr the

management of largescale cοmplex netwοrks, which may require re-pοlicing οr recοnfigurations from

time tο time. SDN achieves easy re-policing by decoupling the cοntrοl plane from data plane. Thus, the

network routers/switches just simply fοrward packets by fοllοwing the flοw table rules set by the cοntrοl

plane. Currently, OpenFlow is the mοst pοpular SDN prοtοcοl/standard and has a set of design

specifications. The Intorduction of this thesis will present the basic advantages to chοοse the SDN

configuration instead of traditional network configuration. Chapter 2 presents the SDN basic concepts

and architectures. Chapter 3 introduces the SDN protocol OpenFlow protocol, its usage and

components. Chapter 4 presents one widely used SDN controller the OpenDaylight which is used in this

testbed and it is meant to be the control plane of the SDN architecture. Chapter 5 presents the SDN

deployment on a virtual cloud infrastructure. Chapter 6 presents the Mininet tool which is the data

plane of the SDN architecture. Chapter 7 presents the deployment of the SDN testbed with Mininet and

OpenDaylight controller. Chapter 8 presents how to isolate a network via OpenDaylight feature Virtual

Tenant Network. And finally Chapter 9 uses the AAA service of OpenDaylight to configure a custom user

for the network configuration.

University of the Aegean Department of Information & Communication Systems
 Engineering

 5 of 84

1 Introduction

1.1 Traditional legacy network vs Software Defined Network

The last years in networking industry there is a tendency to have a centralized management system that

allows the network programmability and automation in order to develop intent based network (IBN).

Software-Defined Network (SDN) is a flourishing technology that approaches this type of management

and more network providers are convinced to build confidence on how SDN works and what are the

benefits of it. Demand for SDN solutions are rising rapidly due to existing problems in traditional legacy

networks. The advantages of the SDN technology are presented and they explain why SDN wins against

the traditional network.

Infrastructure: In order to deploy SDN solutions it does not require the existence of physical hardware

(switches, routers, cables, etc). SDN is composed of software-based infrastructure. Devices of the

network are software-based virtual entities both in control and data plane able to support any SDN

deployed application.

Scalability: The drawn inference from previous statement is that SDN is more scalable in contrast with a

traditional it is easier and faster to add and remove resources without generating side effects for the

rest of the network resources and functions. Resources demands are solved from mouse clicks. In a

traditional network however this means money cost and manual configuration that takes more time.

Another advantage of SDN is the in integration with cloud applications. SND provides integration with

cloud applications and network virtual functions (NFV) in data centers.

Traffic Management: Another main difference is that in a traditional network the decisions about traffic

management are configured in data plane. The data plane and control plane are in same box. In others

words, there is already build in software logic in switches that will handle the traffic. In SDN the traffic

management is configured from control plane. The data plane is not responsible to program the

forwarding logic of the traffic, it sends the packets as they are programmed from control plane.

Security: SDN provides customized security between the end user, the data center and the network

traffic. Security policies that are easily defined in end-to-end network comparing to the legacy network

[1]

University of the Aegean Department of Information & Communication Systems
 Engineering

2 SDN Fundamentals

Software Defined Network (SDN) was launched from collaboration of Stanford University and the

University of California at Berkeley in 2008. SDN is a dynamic network that separates the control plane

from data plane and its components consists of two main parts see Figure 1:

 The SDN controller or control system which is always located on the top layer in SDN

architecture refers to control plane.

 The SDN switches or forwarding elements which are always located in a layer below from the

control plane in the SDN architecture.

 Interface between the control plane and data plane, a common interface that is connects the

SDN elements are the OpenFlow protocol.

Figure 1: SDN architecture

The network control plane is composed of the SDN controller which is the “brain” of the network and is

responsible to manage the functions of data plane components. SDN uses the OpenFlow protocol in

order to manage configurations of switches and/or routers. Nowadays, there are plenty of open-source

SDN controllers, but also many companies have privatized they own controllers for commercial

purposes.

The data plane is a lower layer that is included the SDN switches. The management of the forwarding

packets take place in the data plane, however how the packets will be forwarded is decision of the

control plane using the OpenFlow protocol or any other SDN protocol.

2.1 SDN basic programming logic

Traditional network switches have already pre-installed programming logic in their software. Also, a

traditional network switch contains fixed table entries that define the routing rules by switch software,

consequently a switch has already a prior-knowledge on how to forward the received frame/packet.

SDN has different programming logic comparing to traditional network, there is no built-in programmed

traffic logic in switches and the controller decides what to do with the received packet from switch and

then fills in the tables that are called in SDN world flow tables with flow entries of the switch. The

controller programs the traffic logic of the switch based on SDN southbound protocols. There are plenty

University of the Aegean Department of Information & Communication Systems
 Engineering

 7 of 84

of southbound protocols, a widely-known southbound protocol is the OpenFlow protocol. OVSDB

protocol along with the NETCONF are also familiar SDN southbound protocols. Next chapter analyzes

the OpenFlow protocol, since it is used in this testbed. The rest of protocols will be presented in the

section of the OpenDaylight features.

University of the Aegean Department of Information & Communication Systems
 Engineering

3 Understanding OpenFlow Protocol

OpenFlow protocol was the first protocol that was adopted from SDN, it was created by ONF (Open

Networking Foundation) which is an organization that creates standards for SDN. OpenFlow protocol is

a key component in SDN solutions and it stands between the data and control plane. Its initial intention

was slightly different comparing to the current functionality. The first version 1.0 of the OpenFlow

protocol specification was released in December 2009, the latest version is 1.6. In aspect of this research

the used version is 1.3. OpenFlow is software running on each switch in SDN and communicates with the

SDN controller.

The main purpose of the OpenFlow is to update the flow tables of the switch or router through SDN

controller involvement, since the control plane is the one that configures how the flow tables will be

updated.

 3.1 OpenFlow Components

OpenFlow defines flow tables, groups tables, and meter tables, Figure 2 presents how they distributed

in an SDN switch [2].

Figure 2: OpenFlow protocol components

3.1.1 OpenFlow Flow Tables

OpenFlow tables define a pipeline to process a packet header. A pipeline may contain one or many flow

tables. Every table in the pipeline handles the input received from the previous flow table.

Each flow table consist of table flow entries, flow entry has data such as see Figure 3:

 Matching rules: When a packet is reached the port the packer header is matched regarding the

fields it has in its header e.g port number, destination port, source port etc.

 Instructions: Another important field in a flow table entry is the instruction, which is a decision

taken on what to do with the packet obeying the matching fields. The instructions field is a set

of actions. An action can be anything among apply_actions, clear_actions, write_actions,

write_metadata, goto_table.

 Statistics: Keeps track of the number of times the flow has been matched.

University of the Aegean Department of Information & Communication Systems
 Engineering

 9 of 84

Figure 3: OpenFlow flow entry

The next figures present the taken action based on the matching rule.

Figure 4 is relevant to L2 switching the matching rule is the destination MAC address (00:1f) and the

action is to forward the packet to port 6 of the switch. In other words, this means that when the packet

header contains 00:1f... for a destination MAC address then this packet must be forwarded to port 6 of

switch.

Figure 4: L2 Switching

Figure 5 presents flow switching with the complex combination of matching rules in order for the packet

to be forwarded to port 6.

Figure 5: Flow with complex maching rules

Figure 6 presents packet filtering, flow entry is a firewall that will drop the packet.

Figure 6: Firewall

Figure 7 defines a L3 routing flow where the matching rule is the destination IP address (5.6.7.8) and

the action is to forward the packet to port 6 of the switch.

Figure 7: L3 Routing

University of the Aegean Department of Information & Communication Systems
 Engineering

 10 of 84

When the packet header contains the VLAN it isolates the network. Figure 8 presentas a flow entry with

VLAN in header and destination MAC address will be outcast this packet to ports 6,7,9.

Figure 8: VLAN Switching

3.1.2 OpenFlow Meters

OpenFlow meters are another component of the OpenFlow protocol. It was first introduced in

OpenFlow version 1.3.0 as an optional feature. A meter is a switch element which measures and

controls the ingress rate of traffic of packets. Ingress rate is the rate of packets prior to the output.

Similar to flows meters are generated in the meter table and consist of meter entries which define the

meters. The meters are attached directly to the flow entries. Each flow entry can specify a meter in its

instructions set. The meter measures and controls the rate of the aggregate of all flow entries to which

it is attached. Flows direct packets to the specified meter using the goto-meter instruction, thus the

meter can perform operation based on the rate it receives. Per-flow meters enable OpenFlow to

implement various Quality of Service operations, such as rate-liming which is the main application of

the meters. However, meters can be combined with other features like queues to provide more

advanced services.

 A meter entry in the meter table is composed of the following elements:

 meter identifier: a 32 bit unsigned integer uniquely identifying the meter

 meter bands: an unordered list of meter bands, where each meter band specifies the rate of the

band and the way to process the packet

 counters: updated when packets are processed by a meter

The main element of the meter entry is the meter band which specifies the rate at which meter is

applied and the way packets should be processed. A meter can have one or more-meter bands but only

a single band is applied for a flow at a time based on the measured packets rate. The meter applies the

meter band with the highest configured rate that is lower than the current measured rate. If the current

rate is lower than any specified meter band rate, no meter band is applied. The meter triggers a meter

band if the packet rate or byte rate passing through the meter exceeds a predefined threshold. If the

meter band drops the packet, it is called a rate limiter.

Each meter band is identified by its rate and contains:

 band type: defines how packets are processed

 rate: used by the meter to select the meter band, defines the lowest rate at which the band can

apply

 counters: updated when packets are processed by a meter band

 type specific arguments: some band type has optional arguments

A meter is for example a simple token bucket policer that can be instantiated and configured to a certain

rate and burst. Whenever a flow exceeds the bucket’s rate, the packet is dropped. In this case the meter

is identified as late limiter and this is the main application of the meters. If the packet complies with its

traffic definition and the burst is not exceeded, the remaining actions in the action set will be executed.

Another functionality of the meters is to achieve a specific (Quality of Service) [4] [5].

3.1.3 OpenFlow Groups

An OpenFlow group was first introduced in version 1.1. Similar to a Flow and Meter, a group also

consists of entries, as result the group entries make the Group table. OpenFlow groups are also

elements defined from the OpenFlow specification and they created to support functions that flows are

unable to execute. OpenFlow groups provide advanced services in order to solve real-time networking

University of the Aegean Department of Information & Communication Systems
 Engineering

 11 of 84

issues. Groups are forwarding the packets when the flows are unable to perform any actions to them.

Unlike flows OpenFlow groups do not define matching rules nor instructions. OpenFlow specification

supports different group types and each group type is dedicated to apply specific actions to the packet.

When the packet enters the group table, it receives actions, however the group is not allowed to

forward the packet to any flow table, neither meter tables. Each group contains a list of actions lists that

are known as list of buckets and they are applied to the ingress packets. Each group may define zero to

many buckets. When a group does not contain any bucket, this means the packet remains untouched.

Also, there are cases that the bucket contains a list of actions that order the packets to be sent to the

next groups.

The group types are classified in four categories [5] [6]:

 ALL: This is the simplest group type. Takes as an input the ingress packets and reproduces it in

order to handle it in each bucket. As a result, for each replica of the original packet different set

of actions are performed.

 SELECT: This group is using for load balancing. Every bucket that contains a list of actions has a

specified weight. An ingress packet is forwarded to a single bucket, target bucket is selected

based on the bucket weight.

 INDIRECT: This group contains only one bucket and all packets are transferred to this bucket.

This group consolidates a common set of actions, as a result memory consumption is

significantly reduced.

 FAST-FAILOVER: This is the most significant group of all group types dedicated to handle the

cases of network failures. This group has many buckets and each bucket is defined from watch

port and an optional watch group. The watch port and/or group detects the active status of the

indicated port and/or group. Only in case the port is active the bucket is usable. When a specific

bucket is used other buckets cannot be used. Bucket will be replaced with other when the watch

port or group will be deactivated. The bucket selection of the FAST-FAILOVER will be the nearest

bucket in the bucket list with a watch port or group that is up.

3.2 OpenFlow Architecture

Based on ONF OpenFlow protocol is an interface that communicates the control plane with the data

plane of SDN architecture. The OpenFlow architecture is a composition of three elements sees following

Figure 9 [7]:

 The OpenFlow controller

 The OpenFlow switch

 The OpenFlow channel

The ΟpenFlοw channel is the interface that cοnnects each ΟpenFlow Logical Switch tο an ΟpenFlοw

cοntrοller. Through this interface, the cοntroller cοnfigures and manages the switch, receives events

frοm the switch, and sends packets οut the switch. The Cοntrol Channel οf the switch may suppοrt a

single ΟpenFlοw channel with a single cοntrοller, οr multiple ΟpenFlow channels enabling multiple

cοntrοllers tο share management of the switch. Between the datapath and the ΟpenFlοw channel, the

interface is implementation-specific, hοwever all ΟpenFlοw channel messages must be fοrmatted

accοrding tο the OpenFlοw switch prοtοcοl. The ΟpenFlοw channel is usually encrypted using TLS, but

may be run directly οver TCP [5].

University of the Aegean Department of Information & Communication Systems
 Engineering

 12 of 84

Figure 9: Connection between SDN Elements

4 OpenDaylight Fundamentals

This chapter provides general information about the OpenDaylight (ODL) which is an open-source SDN

project implemented in Java language. It was created by the Linux Foundation and its first release

(Hydrogen) was announced in February 2014. The purpose of the ODL project is to decouple the

networking hardware from the software and allow the end users to build networking applications with

the concept of plug-n-play architecture. The ODL controller platform is considered as a modular SDN

controller due to many modules that are embraced in one single platform. It can be installed on Linux,

Windows, Macintosh Operating Systems and any other that supports Java. Up to this time, there are ten

releases Hydrogen, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine and Neon.

Each release name of the ODL is based on the periodic table elements. ODL community announces at

least two releases every year. The Oxygen SR4 (Stable Release 4) will be used as an SDN controller.

OpenDaylight supports [8]:

 OSGi container: OSGi (Open Services Gateway Initiative) is a framework, also known as the

Dynamic System for Java defines a specification for deploying modular applications. Allows to

break the applications into many modules that can be dynamically loaded and managed as

bundles in the container. OSGi bundles are .JAR files with a MANIFEST.MF file with the last

containing configuration for the OSGi. When a bundle is dependent from other bundles OSGi

will start first these dependencies and next the bundle itself, otherwise the bundle will not start.

As a result, a user can start, stop, install and uninstall modules without affecting the container.

Currently, there are many open-source OSGi containers. Apache Karaf is a bundle used by the

ODL in order to create the OSGI container where all OSGi bundles can be loaded and started [9]

[10] [11].

 Maven: Maven is a tool for build automation usually for Java applications. Maven uses pom.xml

(Project Object Model) to define the dependencies which are nothing that already implemented

libraries to be used between the modules. It also can download libraries from a remote

repository. Currently the most used remote repository for the ODL dependencies is the Nexus

https://nexus.opendaylight.org/. Maven contains many phases which are the build lifecycles like

install, test, clean, deploy, generate-sources etc. The next examples show how to define a

dependency in a pom.xml and how to execute maven goal phase.

https://nexus.opendaylight.org/

University of the Aegean Department of Information & Communication Systems
 Engineering

 13 of 84

 <dependency>
 <groupId>org.opendaylight.mdsal.binding.model.ietf</groupId>
 <artifactId>rfc8345-ietf-network-topology</artifactId>
 <version>1.2.6</version>
 </dependency>

A maven dependency containes a groupId, an artifactId and version all fields included in tag

<dependency> defined in XML language.

The next command shows how to build a maven project “testbed”.

~/testbed$ mvn clean install

 Java Interfaces: Java interfaces are used fοr event listening, specifications, and fοrming

patterns. This is the main way in which specific bundles implement call-back functiοns fοr events

and alsο tο indicate awarenessοof specific state.

 Rest APIs: These are part northbound interface. These RESTful APIs are implemented in order to

be integrated custοm applicatiοns. They alsο suppοrt GUI (Graphical User Interface) fοr ΟDL.

 YANG: ODL platform supports the YANG (Yet Another Next Generation) language, used fοr data

mοdeling and generated payload for NETCONF prοtοcοl.

ODL supports the southbound OpenFlow protocol as well as other protocols. ODL allows to develop new

applications and also use the already build applications to make an enhancement of any feature.

4.1 OpenDaylight Architecture

ODL supports a layered architecture with clear integration points and APIs that allow end users and

networking vendors to participate in the power SDN capabilities of ODL. ODL supports a layered

architecture with clear integration points and APIs that allow end users and networking vendors to

participate in the power SDN capabilities of ODL. In general, ODL architecture consists of next four

layers, each layer will be described separately [12] see Figure 10 :

 Nοrthbοund Layer: is meant fοr cοmmunication with upper, Applicatiοn layer and would be in

general realized thrοugh REST APIs οf SDN cοntrοllers.

 Controller Platform Layer: Ιs meant fοr cοmmunication with lower layers, Infrastructure layer

οf netwοrk elements and wοuld be in general realized thrοugh sοuthbound prοtοcοls

 Service Abstraction Layer: Service abstraction layer is a cοmpοnent that is intrοduced οnly frοm

ΟDL cοntrοller and it is lοcated between the sοuthbοund prοtοcοls and the nοrthbοund

prοtοcοls where third-party applicatiοns are suppοrted. The first release οf the ΟDL launched

the API-driven Service Abstraction Layer (AD-SAL) which in next releases was enhanced and

renamed to Mοdel-driven service abstraction layer (MD-SAL).

 Data plane Layer: Ιs cοmpοsed οf variοus netwοrking equipment which fοrms underlying

network tο fοrward netwοrk traffic. It could be a set of network switches and routers in the data

center. This layer would be the physical οne οver which network virtualization wοuld be laid

down thrοugh the cοntrοl layer (where SDN cοntrοllers wοuld sit and manage underlying

physical network

University of the Aegean Department of Information & Communication Systems
 Engineering

 14 of 84

Figure 10: ODL architecture

4.2 OpenDaylight Features/Applications

This section will sum up all ODL existing features and their functions see Figure 11. The features used in

testbed will be analyzed in detail:

 Networking: ALTO, BGPLS PCEP, BIER, CAPWAP, DIDM, FaaS, L2-Switch, LACP, LISP, NATApp
Plugin, NETCONF, OF-CONFIG, OpenFlow, OpFlex, OVSDB, NetVirt, NIC, Neutron Northbound,
P4, Packet Cable, SFC,TTP, VTN, VPN Service, Unimrg.

 Security: AAA, Controller Shield, USC.
 Management: Cardinal, DluxApps, EMAN, Federation, GBR, IoTDM, NEMO, NetIDE, OCP, SNMP,

SNMP4SDN, SXP.
 Core: MD-SAL, OpenDaylight Controller, ODL-SDNi, YANG Tools.
 Data Collectors: Centinel, TSDR

Figure 11: OpenDaylight features

4.2.1 DLUX

This module is the web user interface of the ODL implemented in Angular JS. It is an OpenFlow

management application for the ODL [13]. It provides authentication, navigation and lists the following

features:

 Topology: Shows the OpenFlow topology components.

 Nodes: This is a very simple inventory node manager.

University of the Aegean Department of Information & Communication Systems
 Engineering

 15 of 84

 YANG visualizer: This provides visualization of YANG models in graphical form.

 YANGMAN: This is an advanced and more user-friendly YANG UI replacement.

 YANG GUI: This is a simple UI for interaction with the controller. It is based on Yang models,

and it renders a form so that users can read or write data even if they have no knowledge of

the models.

For accessing the DLUX any web browser will work by entering the URL

http://localhost:8181/index.html/ providing the credentials “admin” for both fields access to this

feature is offered.

4.2.2 L2 Switch

L2 switch is an ODL module that provides Layer 2 switch functionality specifying how the packets should

be forwarded [14]. L2 Switch comes along with other useful features:

 Packet Handler: This feature processes and decodes the incoming packets and forwards them

appropriately.

 Loop Remover: Removes loops from the network.

 Arp Handler: Manages the decoded ARP packets

 Address Tracker: Retrieves the MAC Addresses and IP addresses of the elements existing in the

network.

 Host Tracker: Tracks the host locations in the network

 L2 Switch Main: Installs flows on switches based on specific rules that must follow the network

traffic.

When l2 switch receives a packet that does not match any entry in flow table it encapsulates the packet

in an OpenFlow PACKET_IN message and sends this packet to the controller. Then L2 switch feature

finds where it should be sent. The MAC address must be identified through OpenFlow PACKET_IN

message. The next table summarizes how the L2 switch module identifies the MAC address see Table 1.

Source MAC Destination MAC Action

Unknown Unknown Broadcast the packet to all
external ports except the
ingress port

Unknown Known L2 module sends the packet
to the node where the
target is attached. The
attachment point refers to
the target that is physically
attached.

Know Unknown Broadcast packets to all
external ports. L2 switch
module knows the source
MAC.

Known Known Packet forwarded from
source MAC to target MAC
and installed flows in the
flow tables of switches.

Table 1: L2 MAC Learning

4.2.3 OpenFlow Plugin

The OpenFlow plugin is belongs to a southbound plugin of the ODL and defines is a communication

Interface that allows interaction between the control and forwarding plane of an SDN. This plugin

implements the OpenFlow standard [15]. The current versions of OpenFlow 1.0. and 1.3.x are

supported, however it gives the opportunity to adopt the other version too. Similar to other modules of

the ODL this plugin also is based on the Model Driven Service Abstraction Layer (MD-SAL). It allows TLS

http://localhost:8181/index.html/

University of the Aegean Department of Information & Communication Systems
 Engineering

 16 of 84

secure connection on port 6633 and non-secure connection on port 6653 to listen for OpenFlow

messages coming from OpenFlow devices.

The following features are supported from the ODL plugin [15] see Figure 12:

 Connection Handling

 Session Management

 State Management.

 Error Handling.

 Mapping function (Infrastructure to OF structures).

 Connection establishment will be handled by the OpenFlow library using opensource netty.io

library.

 Message handling for example Packet in.

 Event handling and propagation to upper layers.

 Plugin will support both MD-SAL and Hard SAL.

 Will be backward compatible with OF 1.0.

Figure 12: OpenFlow protocol implementation in ODL controller

University of the Aegean Department of Information & Communication Systems
 Engineering

5 OpeDaylight Deployment in VirtualBox

Nowadays, plenty amount of virtualization software exists free to download. The chosen virtualization

program for this testbed is the VirtualBox that will host the ODL controller and next the Mininet tool. It

can be installed easily without many manual configurations. Similar to other virtualization solutions, it

provides specific network card, hard disk, graphics and RAM for every virtual machine.

This section prepares the VM that will host the ODL controller. Presents step-by-step guide to start and

deploy features of SDN ODL controller.

Host operating system is Windows 10 Pro and hypervisor software is VirtualBox for hosting a virtual

machine (Ubuntu 16.04) for ODL controller. The environment settings of VM are as follows:

Host Operating System Settings:

 Operating System Windows 10 Pro Version 1903

 Installed Memory RAM: 16GB

 Processor: Inter(R) Core(TM) i5-9600K CPU @ 3.70 GHz

 Operating System type: 64-bit x64-based processor

 Disk: 400GB

Software Settings:

 Operating System: Windows 10 Professional

 Hypervisor: Oracle VM VirtualBox Manager version 6.1

 Operating System: Ubuntu Desktop Image 16.04.1 LTS

 ODL Version: Oxygen SR4 having:

 40GB hard disk, 2048 MB RAM, 2 CPUs

There are two options to deploy the ODL controller:

 Standalone deployment: The ODL controller will run as one server. Used for simple use cases.

Karaf container will be used in order to install any ODL feature.

 Distributed deployment [16]: In distributed deployment there is a cluster where exist many ODL

server instances that are working together as one entity and sharing a common configuration.

Deploying ODL servers in a cluster assures there will be at least one ODL instance running in

case of any other ODL server failure occurs. This is very important for real enterprise network

systems that cannot accept failure. Consequently, when multiple ODL instances are running

there are some advantages such as:

o Scaling: Data can be shared among smaller chunks (known as shards) and either

distribute that data acrοss the cluster or perfοrm certain οperations οn certain

members οf the cluster.

o High-Availability: From multiple cοntrollers running if οne of them crashes, οther

instances working and available.

o Data Persistence: Data will nοt erased gathered by cοntroller after a manual restart οr

a crash.

5.1 OpenDaylight Deployment Karaf Distribution

This section will present how to start the ODL controller as karaf distribution. The ODL as karaf

distribution is an OSGI container that provides all features available to install, but none of them will start

automatically, only after user command. The ODL karaf distribution version that is used in the scope of

this investigation is Oxygen SR4 karaf-0.8.4.zip or karaf-0.8.4.tar.gz file format downloaded from [17]

University of the Aegean Department of Information & Communication Systems
 Engineering

 18 of 84

5.1.1 Preparing the VM machine to host the ODL controller

The next images show step-by –step ODL deployment in virtual host.

University of the Aegean Department of Information & Communication Systems
 Engineering

 19 of 84

University of the Aegean Department of Information & Communication Systems
 Engineering

 20 of 84

University of the Aegean Department of Information & Communication Systems
 Engineering

 21 of 84

The main requirement for the deployment is the proper JDK version.

5.1.2 Java Installation

The latest releases of the ODL controller features require Java Development Kit (JDK) version 1.8. or

later. The OpenJDK 1.8 will be installed, to resolve this requirement with the next command:

Verification of the JDK installed version.

Settings for the environment variables JAVA_HOME to JAVA installed location and PATH.

5.1.3 Downloading and running of the karaf container

The next images show how to downlaod the distributed karaf Oxygen version [17].

University of the Aegean Department of Information & Communication Systems
 Engineering

 22 of 84

Moving the karaf-0.8.4.tar.kar file to VM home directory.

Once the downloaded file is unziped. Starting the ODL karaf can take place next. The following

command shows how to start the ODL container.

$ sdn@sdn-opendaylight:~/karaf-0.8.4$./bin/karaf

5.1.4 Installing karaf features

Once the OD is in running state any feature can be installed and used as an SDN application. Any ODL

feature can be activated by the following command in ODL CLI, where feature1 is the feature name.

opendaylight-user@root>feature:install <feature1>

There is an option to install many features simultaneously, by separating the features names with space,

the next command shows how to install all DLUX modules.

Another useful ODL commands are:

opendaylight-user@root>feature:uninstall <feature1> : uninstalls the feature1 from ODL karaf.

opendaylight-user@root>feature:list: shows all active features to be installed in ODL karaf.

opendaylight-user@root>feature:list -i: shows all installed features of ODL karaf.

University of the Aegean Department of Information & Communication Systems
 Engineering

 23 of 84

5.2 ODL Deployment Clustering

5.2.1 Clustering Specifications

ODL clustering is using the AKKA technology which is compatible with the design of the MD-SAL. In order

to deploy distributed environment, at least three nodes of ODL must be configured. ODL require at least

three nodes in order to verify high-availability, however if in a 4-node cluster two of nodes crash, again

this cluster is not functional. The clustering mechanism switches between nodes when the minimum

number of nodes in a cluster is valid. The next table shows how many nodes must exist in a cluster [16]

[18].

Node number Minimum number of servers
must exist

2 2

3 2

4 3

5 3

6 3

7 4
 Table 2: High –Availability requirements

Before setting the cluster, a brief description of ODL clustering mechanism will be described.

Shards: The MD-SAL datastore uses chunks to store data, in ODL word they are known as shards. Shard

is a partition of data that can be stored either on one server or many servers. For example, one shard

can contain all the inventory data while another shard contains all of the topology data. Thus, the data

are stored in default shard unless, a specific shard configuration is done then, the data will be stored in a

datastore regarding the shard configuration too. Shards configuration takes place in a modules-

shards.conf file. This file allows configuring shards replicas for the clustering mechanism. A X-node

cluster to be able to tolerate any single node crashing, a replica of every defined data shard must be

running on all three cluster nodes.

Roles: Another detail that must be clarified is the role. Assuming that, a cluster consists of three nodes

there must be a way to identify each node. Every node in a cluster must have unique identifier. ODL has

introduced the concept of node role. In particular, the roles of nodes are defined as member-X

depending on X number of nodes exist in a cluster. This configuration takes place in an akka.conf file.

For example, if the nodes-1 role is defined as member-1, ODL recognizes the node-1 by the member-1.

To make a cluster operational multiple seed node must be configured. When a cluster member is

started, it sends a message to all its seed nodes. Once the seed node (any of them) responds, the cluster

member sends a join command to the first seed node that initiated the response. If none of the seed

nodes respond, the cluster member repeats the process until it successfully establishes a connection

with one of the seed nodes else, it remains shutdown. In case a any node fails for any reason, it needs to

be restarted to be able active and take part in a cluster. When a node is restarted after any failure first it

searches for lead node and then joins the cluster.

This means that for a particular shard you need to verify that member-1 is hosting (lead node) and the

replica of this shard is stored on both member-2 and member-3 servers (seed node).

5.2.2 Clustering in Practice

The clustering environment that will be demonstrated will contain three ODL nodes running in the same

hypervisor as depicted in table.

Cluster Nodes Virtual Machine
Name

IP-Address RAM (MB) Hard Disk (GB)

ODL Server 1 ODL_01 192.168.56.101 2048 20

ODL Server 2 ODL_02 192.168.56.102 2048 20

ODL Server 3 ODL_03 192.168.56.103 2048 20

University of the Aegean Department of Information & Communication Systems
 Engineering

 24 of 84

Network configurations adding the host only adapter to ODL_VMs

The following figure shows the configured ODL VMs for the clustering environment:

All ODL VMs are in a running state and each node has the ODL Oxygen SR4 release hosted on it.

There are several steps in order to manage an ODL cluster. For this purpose, ODL allows to configure a

clustering with build-in scripts.

Step 1: This step defines which are the seed nodes and which are the lead node. As has been mentioned

before on seed nodes replicas of data shards will be stored. In this step akka.conf and module-

shards.conf files will be configured. In /home/opendaylight/karaf-0.8.4/bin directory exist an executable file

with a name configure_cluster.sh. This file allows to define the clustering parameters. The command

must be executed as following:

./configure_cluster.sh <index> <seed_nodes_list>

Where

<index>: is the number that defines the seed nodes number. This indicates which controller node is

configured by the script and

<seed_nodes_list>: defines the sed nodes IP addresses separated by comma.

The IP address at the provided index should belong to the member executing the script. When running

this script on multiple seed nodes, keep the seed_node_list the same, and vary the index from 1 through

N.

The next command shows an example of the aforementioned command

University of the Aegean Department of Information & Communication Systems
 Engineering

 25 of 84

opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4/bin$./configure_cluster.sh 1 192.168.56.101

192.168.56.102 192.168.56.103

The above command will configure the member 1 (IP address 192.168.56.102) of a cluster made of

192.168.56.101 192.168.56.12 192.168.56.103.

Navigating the directories of the /configuration/initial/ all configuration files for this ODL controller

have been created.

The akka.conf file verifies that the applied configuration by the script has been set. The next figure

shows that the IP address of ODL node is 192.168.56.101 (netty.tcp field). The seed-nodes field indicates

that ODL controllers join the cluster are these that defined running the script file. Finally, the ODL _01 is

assigned to “member-1" role.

http://192.168.56.101/?fbclid=IwAR0ULHfek7NVeNIQdqWyme0Tu4QfIlnC8kQBu8GT4qwMVXz9UrYNQlkPc9Q
http://192.168.56.102/?fbclid=IwAR2XAgRYL4dl5Bmh-o5LRH11oAoz-lcwYuUIq-n0V4C_DUIC2rhyA-kKjao
http://192.168.56.103/?fbclid=IwAR1_uC9FFCMzsd5KXJ8RtWvxrL0BCPxO3W4cg6f0QP5SFeXl2k8OBC9-nPk

University of the Aegean Department of Information & Communication Systems
 Engineering

 26 of 84

Checking the next file modules-shards.conf assignment for the replicas has been set.

The next configuration is to run the ODL instances on every VM with the following command:

opendaylight@opendaylight-VirtualBox:~/karaf-0.8.4$ JAVA_MAX_MEM=4G

JAVA_MAX_PERM_MEM=512m ./bin/karaf

And the final command is to install odl-mdsal-clustering.

University of the Aegean Department of Information & Communication Systems
 Engineering

 27 of 84

opendaylight-user@root>feature:install odl-mdsal-clustering

Same configuration must be applied for the rest of ODL _01 and ODL_02 servers changing just the index

parameter.

Using the ODL CLI command opendaylight-user@root>log:tail the logging messages verify that a

candidate node can be a lead node and backward.

Finally, if an ODL_01 node will be crashed in the cluster, the logs of any of the rest ODL nodes will notify

that the ODL_01 node is not running. However, when this node will be recovered it immediately

became again a candidate node.

University of the Aegean Department of Information & Communication Systems
 Engineering

6 Mininet

Mininet is an open source tool that creates virtual network environment with one single command. In
particular it is used for creating the data plane elements (switches) for the SDN environment. Mininet
networks usually are a composition of hosts, switches, routes, controllers and links with the last being
represented as virtual Ethernet connections. Mininet not only creates a network but it also allows to
configure it and test it. Using Mininet it is possible to develop a network based on a single GNU/Linux
kernel [19].

6.1 Why to use Mininet

Mininet is the best choice to simulate virtual networks because it is compatible with many SDN
controllers and switches. Also, it comes with built-in SDN switch Open vSwitch that supports the
OpenFlow protocol and many other utilities that will be presented afterwards. Also, it allows easy to
create custom topologies based on Python language. Furthermore, the command line interface (CLI)
allows to test and configure the network topologies with real conditions, such as setting up link
bandwidth, link delay, and loss characteristics. Finally, it supports the miniedit GUI (Graphical User
Interface) to create a network topology [19].

6.2 Mininet-Deployment

In order to set up a Mininet tool that will be used to create virtual network topology, a virtualization

platform is required. However, the Mininet tool can be used without being hosted in any hypervisor.

There are three options to install the Mininet tool [19]:

 Installing Mininet VM in hypervisor which is the recommended

 Native Installation from Source

 Installing Mininet from packages

6.2.1 Installing Mininet VM

The required VM images are downloaded from [19] in order to set up the Mininet VM. The retrieved zip
file contains two files as demonstrated in following figure.

Next step-by-step Mininet Deployment in VirtualBox hypervisor will be presented.

Step 1: Since the VirtualBox is in running state selecting from File-> Import Appliance a new wizard pops-
up to browse an appliance.

University of the Aegean Department of Information & Communication Systems
 Engineering

 29 of 84

Step 2: The next wizard browses the .ovf (Open Virtualization Format) image.

This will unpack and import the VM in your local machine. It will take a while, as the unpacked image is
about 3 GB. Once the Mininet VM is completed, Mininet version 2.2.2 is installed along with Wireshark,
Openflow13, Open vSwitch, a POX and NOX SDN controllers and other useful utilities on Ubuntu 14.04.4
LTS (GNU/Linux 4.2.0-27-generic x86_64) operating system.

Step 3: This step shows the assigned memory to 1GB RAM, 1 CPU and OS type Ubuntu for the VM. The
provided values are sufficient to assure that the Mininet tool will work effectively.

University of the Aegean Department of Information & Communication Systems
 Engineering

 30 of 84

Step 4: Similar to ODL configuration Host-only Adapter is configured.

When the Mininet VM is running it starts booting and throws a login prompt, providing the default
credentials for username and password “mininet” allows access to It. This user is a sudoer, as a result,
root permissions are available for any command. It is worth to mention, that this VM does not include
Graphical User Interface, so the built–in X server of the host machine will be used to solve this problem.

Next, the IP address is retrieved in order to set up the X forwarding. The next figure shows the eth0
interface with IP address 192.168.56.102, which means this is the Mininet VM IP address is
192.168.56.102 and there is access to it via SSH (Secure Shell).

University of the Aegean Department of Information & Communication Systems
 Engineering

 31 of 84

From now on, all actions that will take place in this VM will be accomplished after SSH (Secure Shell)
connection and forwarding the X server from the host machine terminal as shown from figure bellow.

6.3 Mininet build-in Tools

Mininet VM has already pre-installed many tools networking presented next:

 Mininet: command line tool, creates a virtual network that is composed of controller, virtual

switches, hosts, and links.

 Open vSwitch (OVS)[22]: Is a virtual OpenFlow-enabled switch and it is used in many open

source and commercial networks and virtualization platforms. It was implemented by Nicira

company. OVS in based on Linux Kernel Module. It supports different technologies and

protocols, such as 802.1Q, BFD, NetFlow, sFlow, port mirroring, VLANs, LACP, VXLAN, GENEVE

GRE Overlays, STP, and IPv6. Virtual Ethernet ports pair are used in order to connect hosts by

OVS. Virtual Ethernet ports are equivalent to a pair of physical Ethernet interfaces

interconnected by a cable however, they are implemented using software. The virtual port

connection is implemented at a link layer. OVS works like a regular MAC learning and forwarding

switch when no controller is configured and OpenFlow rules are not programmed (standalone).

It programs the OpenFlow flow tables when it receives inputs from the SDN OpenFlow-enabled

controller. It also supports the OVSDB southbound protocol. OVS is always layered below the

University of the Aegean Department of Information & Communication Systems
 Engineering

 32 of 84

OpenFlow interface. The release of the switch that is hosted in Mininet -VM is 2.0.2 The next

figure verifies this version.

Figure 13 illustrates the structure of the OVS:

Figure 13: OVS atchitecture

 POX Controller: Is a built-in OpenFlow controller, but can also function as an OpenFlow switch

that resides in Mininet VM. In terms of this research the ODL controller will be used. Every

OpenFlow controller is located above of the OpenFlow interface. The controller communicated

with the switch with the OpenFlow protocol.

 dpctl: Is a command line tool that configures flow tables in OpenFlow switch. It allows to adds

flows, modifies the flows, queries for switch features and status [20][21].

 ovs-ofctl: command line utility that sends quick OpenFlow messages, useful for viewing switch

port and flow stats or manually inserting flow entries [20][21].

 ovs-vsctl: command line utility that allows queries and configuration on ovs-vswitchd which is

an OVS deamon [20][21].

 Wireshark: Tool with GUI for analyzing the packets. In particular it will dissect OpenFlow packets

[19].

Before starting the Wireshark, capture privileges and permissions to specific files

/urs/bin/dumpcap directory must be set by following commands

The bellow command starts the Wireshark and filtering OpeFlow packets:

University of the Aegean Department of Information & Communication Systems
 Engineering

 33 of 84

 iperf: Tool for testing the speed of hosts.

 cbench: Cbench is a software for testing OpenFlow controllers by generating packet-in events

for new flows. Cbench emulates a bunch of switches, which connect to a controller, sends

packet-in messages, and waits for flow-mods to get pushed down.

University of the Aegean Department of Information & Communication Systems
 Engineering

 34 of 84

7 Integration of Mininet with OpenDaylight Controller

In this chapter, will present how to build a virtual SDN lab using ODL and Mininet. Mininet is a tool for

virtualizing OVS-based virtual switches and Linux container hosts. ODL and Mininet communicate with

each other and how hosts in a virtual lab can ping each other by leveraging the SDN controller to

program the flows inside the switches. In order to create the virtual network, the Mininet VM and the

Opendaylight controller must be in running state. Connect to Mininet VM with default

username:mininet and password:mininet

The ODL controller must be in running state. In addition, L2Switch feature must be installed, along with

DLUX Web Interface and restconf API.

The next steps verify that required ODL modules are installed and are accessible. Also verify that

Mininet VM is connected to ODL via OpenFlow.

 Running ODL

The following command starts the ODL container.

sdn@sdn-opendaylight:~/Downloads/karaf-0.8.4$./bin/karaf

Since the controller is in running state, it allows installing any ODL module.

 Enabling L2Switch

In order to make Mininet to connect with the Opendaylight we need to install the l2switch feature.

After installing the l2switch in OpenDaylight karaf, the port 6633 will be activated to accept incoming

TPC/TLS connections with mininet. Also, there is another TCP/TLS port which is 6653 and establishes a

secure channel connection with the Opendayligh and Mininet.

University of the Aegean Department of Information & Communication Systems
 Engineering

 35 of 84

After installing the odl-l2switch-switch, verify that the ports 6653 and 6633 are activated in order to

receive calls from Mininet.

sdn@sdn-opendaylight:~$ ps -eaf| grep ":6633"

 Enabling DLUX web interface

Enable the DLUX web interface through command.

opendaylight-user@root>feature:install features-dlux

The “Started” annotation indicates that dlux modules have been started successfully. The next figure

verifies that the DLUX Web interface is accessible.

University of the Aegean Department of Information & Communication Systems
 Engineering

 36 of 84

 Enabling restconf A PI

To access the REST ODL apply navifate to http://localhost:8181/apidoc/explorer/index.html

From here on, a virtual network topology can be created and every switch will be defined as l2-learning-

enabled switch. The controller is responsible to handle the forwarding rules of tables.

In order to create a virtual network in the VM, the following command.

mininet@mininet-vm:~$ sudo mn --topo=linear,3 --mac --controller=remote,ip=192.168.56.102 --

switch ovsk,protocols=OpenFlow13

where

mac: will assign MAC address for every host equal to its IP address e.g. 00:00:00:00:00:01

ip: defines the IP address of the remote controller.

controller: is the IP address of the ODL controller where the virtual switches are connected,

topo: linear defines a network topology with three switches and three hosts, switches and hosts are

connected with a virtual ethernet cable.

switch: is a parameter to identify the switch type in this case is an OpenFlow-enabled Open vSwitch.

protocols: which is set to OpenFlow13 means that this switch is compatible with this protocol. The next

figure shows the result of this command.

http://localhost:8181/apidoc/explorer/index.html

University of the Aegean Department of Information & Communication Systems
 Engineering

 37 of 84

Using the mininet “net” command information about swich nodes aand links are provided.

Using the web interface of the controller created network topology is depicted in topology tab.

Navigating through the GUI various data about nodes, flows, etc. are provide for the user.

University of the Aegean Department of Information & Communication Systems
 Engineering

 38 of 84

In addition, Wireshark tool will allow to analyze the packets of the network.

Setting as a filter the “of” key, which stands for OpenFlow protocol, then pressing the “apply” button

will show only OpenFlow packets. The figure bellow presents filtered OpenFlow packets.

University of the Aegean Department of Information & Communication Systems
 Engineering

 39 of 84

Wireshark verifies that there is packet exchange between the ODL controller 192.168.56.101 and virtual

network topology from Mininet 192.168.56.102 These packets are called “of_hello” are of type

OFPT_HELLO.

The communication is initialized during the TCP handshake, the controller sends its version number to

each switch through the of_hello packet, whereupon each switch responses with its supported version

number through the of_hello packet. Finally, the controller requests to see the available ports throught

of_features_request. Since there are three switches three pair of OFPT_HELLO-

OFTP_FEATUES_REQUEST generated.

The OF_HELLO packet contains, version, type, length , of_hello_elemets, xid.

The OFTP_FEATUES_REQUEST packet contains also version, type length and xid.

University of the Aegean Department of Information & Communication Systems
 Engineering

 40 of 84

The content of the OFTP_FEATURES_REPLY packet

Two pair of add flow mod exist in packet analyzation.

University of the Aegean Department of Information & Communication Systems
 Engineering

 41 of 84

OFTP_FLOW_ MOD message which does not has matching rules and sends the packet to the controller

via instruction apply actions since it is not know how to handle the packet. All this action is presented in

figures in detail.

University of the Aegean Department of Information & Communication Systems
 Engineering

 42 of 84

Since an Openflow based topology is created relevant data about the network can be retrieved from

feature inventory: nodes of the OpenFlow of the ODL.

Using the Restconf API of the ODL we retrieve the nodes fetching related data from bellow end-point.

Note that, the flows data behavior must be similar to the packet anatomy from Wireshark tool described

before.

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

Three switches network impy to free nodes with openflow:1, openflow:2 and openflow:3 for the

OpenFlow protocol.

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

University of the Aegean Department of Information & Communication Systems
 Engineering

 43 of 84

Looking in detail, the node-connector implies to port connections for the OpenFlow protocol. Thus

switch 1 is connected with switch 2.

University of the Aegean Department of Information & Communication Systems
 Engineering

 44 of 84

Next, digging deeper and going into to openflow 1:1 which is the switch’s port 1 packet statistics details

are provided it.

University of the Aegean Department of Information & Communication Systems
 Engineering

 45 of 84

Analyzing a random node for example the openflow:1 node from table=0, the matching rules, action

sets of each flow follows the OpenFlow protocol rules and the expected result based on Wireshark

analysis.

http://192.168.56.101:8181/restconf/operational/opendaylight-

inventory:nodes/node/openflow:1/table/0/

{
 "flow-node-inventory:table": [
 {
 "id": 0,
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "active-flows": 4,
 "packets-looked-up": 9144,
 "packets-matched": 9144
 },
 "flow": [
 {
 "id": "#UF$TABLE*0-3",
 "priority": 100,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 606,
 "byte-count": 51510,
 "duration": {
 "nanosecond": 712000000,
 "second": 3025

http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/
http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

University of the Aegean Department of Information & Communication Systems
 Engineering

 46 of 84

 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 35020
 }
 }
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "#UF$TABLE*0-4",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 0,
 "byte-count": 0,
 "duration": {
 "nanosecond": 804000000,
 "second": 3021
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "1"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "2"

University of the Aegean Department of Information & Communication Systems
 Engineering

 47 of 84

 }
 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "L2switch-0",
 "priority": 0,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 0,
 "byte-count": 0,
 "duration": {
 "nanosecond": 715000000,
 "second": 3025
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {},
 "cookie": 3098476543630901000,
 "flags": "",
 "idle-timeout": 0
 },
 {
 "id": "L2switch-1",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 0,
 "byte-count": 0,
 "duration": {
 "nanosecond": 804000000,
 "second": 3021
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "2"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,

University of the Aegean Department of Information & Communication Systems
 Engineering

 48 of 84

 "output-node-connector": "1"
 }
 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }
]
}

The next links presents the network topology from the aspect of OpenFlow protocol.

http://localhost:8181/restconf/operational/network-topology:network-topology

http://localhost:8181/restconf/operational/network-topology:network-topology

University of the Aegean Department of Information & Communication Systems
 Engineering

 49 of 84

Finally, using Mininet command details about the network are retrieved for each switch and each link
between them.

University of the Aegean Department of Information & Communication Systems
 Engineering

 50 of 84

Mininet allows you to use the “dpctl” command to communicate with the virtual switch and get the

status of the flows. The next figure shows this command output and verifies the existence of flows for

flow table 0.

As yet, the process that has been presented registers the OpenFlow-enabled switches with the ODL and

are stores related data to inventory and network topology. The registration process is accomplished via

an OpenFlow HELLO packet coming from the OpenFlow switch to the ODL controller. Then ODL

controller accepts the request and check whether the switch is allowed to be part of ODL's SDN domain.

The verification of the expect result is same in Wireshark dissection, CLI commands outputs of mininet

and from flow entries of the OpenFlow protocol.

Moving to the next step, the handling of host connection and traffic generation will be presented. For

this scenario the “ping” command of the Mininet tool will be used.

The next figure shows how a h1 from switch 1 (s1) pings the h2 of switch (s2).

University of the Aegean Department of Information & Communication Systems
 Engineering

 51 of 84

The first figure of the DLUX UI included only the switches, but after the connection between the hosts

h1 and h2 the hosts of the switches s1 and s2 have been generated.

The explanation for hosts appearance after ping is related to how the ODL handles the connection

between the hosts. There are several steps in order to retrieve the response from h2 host. ODL starts to

identify the existence of the hosts only when there is a request for connection between them. Next the

process of the host connection will be analyzed in detail.

The SDN controller knows the exiting switches and not for hosts, but the switches do not know how to

handle the received frame that contains for destination a specific MAC address or the broadcast MAC.

 All starts, when the h1 notices that it does not know the MAC address the h2 then, it sends ARP

(Address Resolution Protocol) packet (frame layer 2) to switch s1 to find the IP address of the h2. This

packet received from the switch does not has IP source and destination is just a broadcast frame.

However, when the switch s1 receives the ARP packet it checks in its flow tables for this broadcast frame

if exists any matching flow entry, in this case it does not find any and then it encapsulates the packet in

an OpenFlow packet_in packet and sends it to the ODL controller. The ODL decides what to do with this

packet utilizing the Arp Handler feature.

Once the ARP packet is forwarded to all the switch ports and the ARP reply is forwarded back to host 1,

which was the main ARP queried, host 1 starts sending layer 3 ICMP packets to host 2. The packets have

a source and destination IP address as well as a MAC address. Again, the OVS switch does not know how

to forward the packet as it does not have any flow entry for host 1 and host 2 MAC addresses yet.

The explanation for this step is that the controller sends the ARP packet to every switches port. Each

switch knows about the connected hosts to its ports, as a result h2 responses to the h1.

Then the response packet that comes contains for source the MAC address of the h2 and destination the

h1.

However, the controller has no prior knowledge of these MAC addresses. As a result, a flow_mod packet

is sent from the controller to the switch, in order to add a flow to its flow table. Then, the ICMP packets

University of the Aegean Department of Information & Communication Systems
 Engineering

 52 of 84

are send from h1 to h2. Since the flow tables are not empty, the ping continues without controller

corporation. The next figure shows the steps of the host h1 and h2 connection.

The packets in lines 1952, 1956, 1958 describe how the packets are broadcasted, next, in line the 1957

verifies that the response comes from source address 00:00:00:00:00:02. After that the flow add packets

is forwarded from ODL to switches. Finally, we see that the final packets exchanging is completed from

IP address 10.0.0.1 to 10.0.0.2 and backward.

The l2-switch module that is install in ODL is responsible to handle the received packets from switches.

As a result, when the controller receives the packets it forwards the packets to all ports.

The of_packet_in contains: version, type, xid, buffer_id, total_len, reason, table_id, of_match, Ethernet

packet. The most important field of the packet that is the Ethernet packet.

University of the Aegean Department of Information & Communication Systems
 Engineering

 53 of 84

The figure bellow verifies that the of_packet_in packet Source MAC address is 00:00:00:00:00:01 and

destination is the broadcast frame (ff:ff:ff:ff:ff:ff). In ARP part the Source IP address 10.0.01 and

Destination IP address is 10.0.0.2.

The of_packet_in packet is broadcasted to OpenDaylight controller and since the l2switch module is

installed it starts to take control of the of_packet_in packet. L2switch module also does not know where

the target host h2 is located. The only information that is retrieved from l2switch is the source and

target ip address along with MAC address when it reads the packet. So, it uses the ofpt_flow_mod

packet of table with id 0 in order to clarify to switches how to broadcast the packet to all active ports.

University of the Aegean Department of Information & Communication Systems
 Engineering

 54 of 84

The content of the OpenFlow ofpt_flow_mod packet is presented in the figured.

The flows above verify that there are two active ports, port 1 and port 2.

University of the Aegean Department of Information & Communication Systems
 Engineering

 55 of 84

Verification through dpctl dump-flows command.

After MAC addresses learning the packets are forwarded directly to the target ports.

Analyzing the openflow:1 and openflow:3 nodes of table=0, matching rules, action sets of each flow

follows the OpenFlow protocol again after the ping command. New flows added to table=0 after L2

MAC address learning and the packets are forwarded to specific port instead of the first scenario where

each packet was sent to controller.

http://192.168.56.101:8181/restconf/operational/opendaylight-

inventory:nodes/node/openflow:1/table/0/

{
 "flow-node-inventory:table": [
 {
 "id": 0,
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "active-flows": 6,
 "packets-looked-up": 12086,
 "packets-matched": 12086
 },
 "flow": [
 {
 "id": "#UF$TABLE*0-3",
 "priority": 100,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 842,
 "byte-count": 71570,
 "duration": {
 "nanosecond": 700000000,
 "second": 4201
 }

http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/
http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

University of the Aegean Department of Information & Communication Systems
 Engineering

 56 of 84

 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 35020
 }
 }
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "#UF$TABLE*0-4",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 18,
 "byte-count": 1652,
 "duration": {
 "nanosecond": 792000000,
 "second": 4197
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "1"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "2"
 }

University of the Aegean Department of Information & Communication Systems
 Engineering

 57 of 84

 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "L2switch-0",
 "priority": 0,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 0,
 "byte-count": 0,
 "duration": {
 "nanosecond": 703000000,
 "second": 4201
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {},
 "cookie": 3098476543630901000,
 "flags": "",
 "idle-timeout": 0
 },
 {
 "id": "L2switch-11",
 "priority": 10,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 174,
 "byte-count": 16772,
 "duration": {
 "nanosecond": 422000000,
 "second": 167
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 300,
 "match": {
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:00:00:01"
 },
 "ethernet-destination": {
 "address": "00:00:00:00:00:02"
 }
 }
 },
 "cookie": 3026418949592973300,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,

University of the Aegean Department of Information & Communication Systems
 Engineering

 58 of 84

 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "2"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 600
 },
 {
 "id": "L2switch-1",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 18,
 "byte-count": 1652,
 "duration": {
 "nanosecond": 792000000,
 "second": 4197
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "2"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "1"
 }
 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "L2switch-10",

University of the Aegean Department of Information & Communication Systems
 Engineering

 59 of 84

 "priority": 10,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 174,
 "byte-count": 16772,
 "duration": {
 "nanosecond": 422000000,
 "second": 167
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 300,
 "match": {
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:00:00:02"
 },
 "ethernet-destination": {
 "address": "00:00:00:00:00:01"
 }
 }
 },
 "cookie": 3026418949592973300,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "1"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 600
 }
]
 }
]
}

http://192.168.56.101:8181/restconf/operational/opendaylight-

inventory:nodes/node/openflow:2/table/0/

{
 "flow-node-inventory:table": [
 {
 "id": 0,
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "active-flows": 7,
 "packets-looked-up": 12598,
 "packets-matched": 12596
 },
 "flow": [
 {

http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:2/table/0/
http://192.168.56.101:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:2/table/0/

University of the Aegean Department of Information & Communication Systems
 Engineering

 60 of 84

 "id": "#UF$TABLE*0-5",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 18,
 "byte-count": 1652,
 "duration": {
 "nanosecond": 641000000,
 "second": 4315
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "1"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "2"
 }
 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "3"
 }
 },
 {
 "order": 2,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "L2switch-6",
 "priority": 10,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 296,
 "byte-count": 28504,
 "duration": {
 "nanosecond": 271000000,
 "second": 285
 }
 },
 "table_id": 0,

University of the Aegean Department of Information & Communication Systems
 Engineering

 61 of 84

 "cookie_mask": 0,
 "hard-timeout": 300,
 "match": {
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:00:00:02"
 },
 "ethernet-destination": {
 "address": "00:00:00:00:00:01"
 }
 }
 },
 "cookie": 3026418949592973300,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "2"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 600
 },
 {
 "id": "L2switch-7",
 "priority": 10,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 296,
 "byte-count": 28504,
 "duration": {
 "nanosecond": 271000000,
 "second": 285
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 300,
 "match": {
 "ethernet-match": {
 "ethernet-source": {
 "address": "00:00:00:00:00:01"
 },
 "ethernet-destination": {
 "address": "00:00:00:00:00:02"
 }
 }
 },
 "cookie": 3026418949592973300,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,

University of the Aegean Department of Information & Communication Systems
 Engineering

 62 of 84

 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "1"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 600
 },
 {
 "id": "#UF$TABLE*0-2",
 "priority": 100,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 1728,
 "byte-count": 146880,
 "duration": {
 "nanosecond": 477000000,
 "second": 4319
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 35020
 }
 }
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 },
 {
 "id": "L2switch-2",
 "priority": 0,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 0,

University of the Aegean Department of Information & Communication Systems
 Engineering

 63 of 84

 "byte-count": 0,
 "duration": {
 "nanosecond": 485000000,
 "second": 4319
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {},
 "cookie": 3098476543630901000,
 "flags": "",
 "idle-timeout": 0
 },
 {
 "id": "L2switch-3",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 18,
 "byte-count": 1652,
 "duration": {
 "nanosecond": 640000000,
 "second": 4315
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "2"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "1"
 }
 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "3"
 }
 },
 {
 "order": 2,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]

University of the Aegean Department of Information & Communication Systems
 Engineering

 64 of 84

 },
 "idle-timeout": 0
 },
 {
 "id": "L2switch-4",
 "priority": 2,
 "opendaylight-flow-statistics:flow-statistics": {
 "packet-count": 0,
 "byte-count": 0,
 "duration": {
 "nanosecond": 638000000,
 "second": 4315
 }
 },
 "table_id": 0,
 "cookie_mask": 0,
 "hard-timeout": 0,
 "match": {
 "in-port": "3"
 },
 "cookie": 3098476543630901000,
 "flags": "",
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 0,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "1"
 }
 },
 {
 "order": 1,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "2"
 }
 },
 {
 "order": 2,
 "output-action": {
 "max-length": 65535,
 "output-node-connector": "CONTROLLER"
 }
 }
]
 }
 }
]
 },
 "idle-timeout": 0
 }
]
 }
]
}

University of the Aegean Department of Information & Communication Systems
 Engineering

 65 of 84

8 Host isolation with Virtual Tenant Network (VTN)

Virtual Tenant Network (VTN) is one of the key modules of ODL. It has many features, such as virtual

routers and bridges. An OpenDaylight Plugin that interacts with other modules to implement the

components of the VTN model. It also provides a REST interface to configure VTN components in

OpenDaylight. VTN Manager is implemented as one plugin to the OpenDaylight. This provides a REST

interface to create/update/delete VTN components [23]. will be used along with a custom network

topology to create VLANs to set a lab for isolating host traffic between different VLANs.

VTN features overview:

 odl-vtn-manager provides VTN Manager’s JAVA API. For creation of virtual bridges

 odl-vtn-manager-rest provides VTN Manager’s REST API.

Following the previous step new Mininet VM and ODL controller are hosted in hypervisor. The IP

address of the ODL controller is 192.168.56.101 and Mininet’s VM IP address is 192.168.56.102

respectively.

University of the Aegean Department of Information & Communication Systems
 Engineering

 66 of 84

A custom network topoly is created for this use case. VLANs are configured between the h1,h2,h2 with

VLAN id =100 and VLAN id = 200 for h4,h5,h6.

#!/usr/bin/python

from mininet.node import Host, RemoteController

from mininet.topo import Topo

import apt

#package check Start

cache = apt.Cache()

if cache['vlan'].is_installed:

print "Vlan installed"

else:

print "ERROR:VLAN package not installed please run sudo apt-get install vlan"

exit(1)

#package check End

class VLANHost(Host):

def config(self, vlan=1, **params):

"""Configure VLANHost according to (optional) parameters:

vlan: VLAN ID for default interface"""

r = super(Host, self).config(**params)

intf = self.defaultIntf()

remove IP from default, "physical" interface

self.cmd('ifconfig %s inet 0' % intf)

create VLAN interface

self.cmd('vconfig add %s %d' % (intf, vlan))

assign the host's IP to the VLAN interface

self.cmd('ifconfig %s.%d inet %s' % (intf, vlan, params['ip']))

update the intf name and host's intf map

newName = '%s.%d' % (intf, vlan)

update the (Mininet) interface to refer to VLAN interface name

intf.name = newName

add VLAN interface to host's name to intf map

self.nameToIntf[newName] = intf

return r

class MyTopo(Topo):

"Simple topology example."

University of the Aegean Department of Information & Communication Systems
 Engineering

 67 of 84

def __init__(self):

"Create custom topo."

Initialize topology

Topo.__init__(self)

Add hosts and switches

host1=self.addHost('h1', cls=VLANHost, vlan=100)

host2=self.addHost('h2', cls=VLANHost, vlan=200)

host3=self.addHost('h3', cls=VLANHost, vlan=100)

host4=self.addHost('h4', cls=VLANHost, vlan=200)

host5=self.addHost('h5', cls=VLANHost, vlan=100)

host6=self.addHost('h6', cls=VLANHost, vlan=200)

s1 = self.addSwitch('s1')

s2 = self.addSwitch('s2')

s3 = self.addSwitch('s3')

self.addLink(s1,host1)

self.addLink(s1,host2)

self.addLink(s1,s2)

self.addLink(s2,host3)

self.addLink(s2,host4)

self.addLink(s2,s3)

self.addLink(s3,host5)

self.addLink(s3,host6)

topos = { 'simplevlan': (lambda: MyTopo()) }

Connection from ODL_VM to MININET VM to forward the X server

University of the Aegean Department of Information & Communication Systems
 Engineering

 68 of 84

sudo mn --controller=remote,ip=192.168.56.101 --custom ~/mininet/mininet/vlan.py --topo

simplevlan --mac --switch ovsk,protocols=Openflow13

Using the mininet command “dump” verify that the switches send their packet only to the controller

and ports that are directly connected to them.

University of the Aegean Department of Information & Communication Systems
 Engineering

 69 of 84

Setting up the VTN modules in OpenDaylight

opendaylight-user@root>feature:install odl-vtn-manager odl-vtn-manager-rest

ODL provides a HTTP based REST API in order to interact with the ODL. Since VTN features are loaded to

ODL restconf API valid end-points are provided for the user to construct payload and send them to the

controller. The high-lighted features of the VTN project will be used in order to isolate the network for

the SDN environment.

Navigating to the end-point the vtn nodes are modeled

http://192.168.56.101:8181/restconf/operational/vtn-inventory:vtn-nodes

{

 "vtn-nodes":{

http://192.168.56.101:8181/restconf/operational/vtn-inventory:vtn-nodes

University of the Aegean Department of Information & Communication Systems
 Engineering

 70 of 84

 "vtn-node":[

 {

 "id":"openflow:3",

 "openflow-version":"OF13",

 "vtn-port":[

 {

 "id":"openflow:3:3",

 "cost":1000,

 "enabled":true,

 "name":"s3-eth3"

 },

 {

 "id":"openflow:3:2",

 "cost":1000,

 "enabled":true,

 "name":"s3-eth2"

 },

 {

 "id":"openflow:3:1",

 "cost":1000,

 "enabled":true,

 "name":"s3-eth1",

 "port-link":[

 {

 "link-id":"openflow:2:4",

 "peer":"openflow:2:4"

 },

 {

 "link-id":"openflow:3:1",

 "peer":"openflow:2:4"

 }

]

 }

]

 },

 {

 "id":"openflow:2",

 "openflow-version":"OF13",

 "vtn-port":[

 {

 "id":"openflow:2:4",

 "cost":1000,

 "enabled":true,

 "name":"s2-eth4",

 "port-link":[

 {

 "link-id":"openflow:2:4",

 "peer":"openflow:3:1"

 },

 {

 "link-id":"openflow:3:1",

 "peer":"openflow:3:1"

 }

]

University of the Aegean Department of Information & Communication Systems
 Engineering

 71 of 84

 },

 {

 "id":"openflow:2:3",

 "cost":1000,

 "enabled":true,

 "name":"s2-eth3"

 },

 {

 "id":"openflow:2:2",

 "cost":1000,

 "enabled":true,

 "name":"s2-eth2"

 },

 {

 "id":"openflow:2:1",

 "cost":1000,

 "enabled":true,

 "name":"s2-eth1",

 "port-link":[

 {

 "link-id":"openflow:2:1",

 "peer":"openflow:1:3"

 },

 {

 "link-id":"openflow:1:3",

 "peer":"openflow:1:3"

 }

]

 }

]

 },

 {

 "id":"openflow:1",

 "openflow-version":"OF13",

 "vtn-port":[

 {

 "id":"openflow:1:3",

 "cost":1000,

 "enabled":true,

 "name":"s1-eth3",

 "port-link":[

 {

 "link-id":"openflow:2:1",

 "peer":"openflow:2:1"

 },

 {

 "link-id":"openflow:1:3",

 "peer":"openflow:2:1"

 }

]

 },

 {

 "id":"openflow:1:2",

 "cost":1000,

University of the Aegean Department of Information & Communication Systems
 Engineering

 72 of 84

 "enabled":true,

 "name":"s1-eth2"

 },

 {

 "id":"openflow:1:1",

 "cost":1000,

 "enabled":true,

 "name":"s1-eth1"

 }

]

 }

]

 }

}

Using the Rest API to create a virtual tenant, virtual bridge and VLAN mapping

University of the Aegean Department of Information & Communication Systems
 Engineering

 73 of 84

{
 "vtn:input": {
 "vtn:tenant-name": "tenant_sdn",
 "vtn:description": "Virtual tenant"
 }
}

University of the Aegean Department of Information & Communication Systems
 Engineering

 74 of 84

Creating virtuall bridges bridge_sdn1 bridge_sdn2

{
 "vtn-vbridge:input": {
 "vtn-vbridge:tenant-name": "tenant_sdn",
 "vtn-vbridge:bridge-name": "bridge_sdn1"
 }
}

Mapping VLAN-id 100 to bridge_sdn1 and VLAN- id 200 to bridge_sdn2 respectively.

University of the Aegean Department of Information & Communication Systems
 Engineering

 75 of 84

{
 "vtn-vlan-map:input": {
 "vtn-vlan-map:tenant-name": "tenant_sdn",
 "vtn-vlan-map:bridge-name": "bridge_sdn1",
 "vtn-vlan-map:vlan-id": "100"
 }
}

After mapping the new status of the network.

 Sending traffic via “pingall” commad which generates traffic between hosts, MAC address learning

process is triggered between them.

University of the Aegean Department of Information & Communication Systems
 Engineering

 76 of 84

Using the “dump” command network isolation is achieved packets are broadcasted to only valid hosts.

Swich s1 flows:

Swich s2 flows:

University of the Aegean Department of Information & Communication Systems
 Engineering

 77 of 84

Swich s3 flows:

University of the Aegean Department of Information & Communication Systems
 Engineering

9 AAA (Authentication-Authorization, Accounting)

The AAA project provides authentication, authorization and accounting. This service is based on the

Apache Shiro Java Security Framework. AAA plugin utilizes the Shiro Realms to support this service.

Authentication verifies users who are granted access to the system resources. This function is achieved

while providing valid credentials (user name and password). ODL controller’s default user is the

administrator. However, this service allows to create other users who also will have access the system.

Authorization comes exactly after the authentication and specifies what an authenticated user can do in

the system, in other words set user’s permissions. Accounting is the process that keep records of the

authenticated user in system.

The AAA service is easily configured by manipulating the realms. There are two methods to achieve this:

 Utilizing the idmtool configuration tool used in order to perform basic user management

operations, allows to list, add, delete, change password, delete roles and add roles, and assignes

to the users.

 Utilizing the odl-aaa-shiro feature from REST API

 Utilizing the odl-aaa-cli (command line interface) of karaf console

If the second option is selected in order to make any configuration, the odl-aa-shiro feature must be

installed before restconf API. The main configuration file for AAA is located at “etc/shiro.ini” relative to

the ODL Karaf home directory.

ODL provides the “admin” user, who is permitted to do any operation in the ODL controller this chapter

will present how to create a user with specific permissions.

The next figure verifies the existing “admin” user in ODL using the curl command.

Next, custom user configuration will be presented. In order to proceed CRUD operation on ODL users

some additional tools will be used:

 Firefox web browser

 Curl command

The above tools are not mandatory, there are also alternatives for example, Chrome web browser could

be used with Postman REST API client or a curl command instead. Also, the DLUX module will be

installed for testing the applied configuration on users.

Installing AAA features executing the command opendaylight-user@root>feature:install features-aaa

Before starting, the existence of the only user (admin) is verified by the next figure.

University of the Aegean Department of Information & Communication Systems
 Engineering

 79 of 84

Now the creation of a new user “elina” will take place using the curl command.

JSON file payload models the data required to create the custom user.

Sending the payload to the control via HTTP POST

The endpoint URL that configures the users is http://localhost:8181/auth/v1/users. User “elina” is

created.

There is only one domain the default “sdn”.

http://localhost:8181/auth/v1/users

University of the Aegean Department of Information & Communication Systems
 Engineering

 80 of 84

In order to enable the user “elina” to have access grand a role will be needed.

opendaylight-user@root>feature:install features-dluxapps odl-dluxapps-applications

Verification of the action that is received from controller may be checked by logging system of the

controller in running state.

Finally to, in order to check if the user “elina” is functional dlux UI will be used as depicted in the next

images.

University of the Aegean Department of Information & Communication Systems
 Engineering

 81 of 84

The final image verifies the the user “elina” has access to the ODL applications.

University of the Aegean Department of Information & Communication Systems
 Engineering

 82 of 84

University of the Aegean Department of Information & Communication Systems
 Engineering

10 Conclusion

In this project SDN and OpenFlow basic specifications are presented. For practice an SDN lab was

configured and set in order to have a functional environment to test build-in ODL services. The use cases

that presented utilized the Mininet tool in order to act as data place and next the L2 Switch feature of

the ODL is triggered launch the MAC learning. OpenFlow feature is fundamental for the L2 Switch, it

managed all flows configuration for the service. Next network isolation is presented to isolate host

connection using other ODL feature, the VTN and restconf API. Finally, AAA service of the ODL

presented how to configure a custom user to define its own policies for the network.

11 References

[1] https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html

 [2] https://www.researchgate.net/figure/OpenFlow-switch-atchitecture-An-OpenFlow-Switch-consists-

of-one-or-more-flow-tables-and-a_fig4_320346909

[3]https://www.slideshare.net/bdnog/introduction-to-software-defined-networking-

sdn?from_action=save

[4] P. Heise, F. Geyer, and R. Obermaisser. Deterministic OpenFlow: Performance evaluation of SDN

hardware for avionic networks. In Network and Service Management (CNSM), 2015 11th International

Conference on, pages 372–377. IEEE, 2015.

[5] Open Networking Foundation, OpenFlow Switch Specification Version 1.3.1 (Wire Protocol 0x04)

September 6, 2012 ONF TS-007

[6]https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/7995427/How+to+Work+with

+Fast-Failover+OpenFlow+Groups#HowtoWorkwithFast-FailoverOpenFlowGroups-OpenFlowGroups

[7] http://confignetworks.com/inside-openflow/

[8] https://docs.opendaylight.org/en/stable-neon/user-guide/opendaylight-controller-overview.htm

[9] https://www.javaworld.com/article/2077837/java-se-hello-osgi-part-1-bundles-for-beginners.html

[10] https://www.baeldung.com/osgi

[11] http://sdntutorials.com/opendaylight-and-osgi/

[12] https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-

openflow/

[13]https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-

features/dlux.html

[14] https://docs.opendaylight.org/en/stable-fluorine/user-guide/l2switch-user-guide.html

[15] https://docs.opendaylight.org/en/stable-neon/user-guide/openflow-plugin-project-user-guide.htm

[16]nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userg

uide/bk-user-guide/content/_clustering_overview.html

[17] https://docs.opendaylight.org/en/latest/downloads.html

[18] https://docs.opendaylight.org/en/stable-oxygen/getting-started-guide/clustering.html

[19] http://mininet.org/overview/

[20] https://github.com/CPqD/ofsoftswitch13/wiki/Dpctl-Documentation

https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html
https://www.researchgate.net/figure/OpenFlow-switch-atchitecture-An-OpenFlow-Switch-consists-of-one-or-more-flow-tables-and-a_fig4_320346909
https://www.researchgate.net/figure/OpenFlow-switch-atchitecture-An-OpenFlow-Switch-consists-of-one-or-more-flow-tables-and-a_fig4_320346909
https://www.slideshare.net/bdnog/introduction-to-software-defined-networking-sdn?from_action=save
https://www.slideshare.net/bdnog/introduction-to-software-defined-networking-sdn?from_action=save
http://confignetworks.com/inside-openflow/
https://docs.opendaylight.org/en/stable-neon/user-guide/opendaylight-controller-overview.htm
https://www.javaworld.com/article/2077837/java-se-hello-osgi-part-1-bundles-for-beginners.html
https://www.baeldung.com/osgi
http://sdntutorials.com/opendaylight-and-osgi/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-openflow/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-architecture-and-role-of-openflow/
https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/dlux.html
https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/dlux.html
https://docs.opendaylight.org/en/stable-fluorine/user-guide/l2switch-user-guide.html
https://docs.opendaylight.org/en/stable-neon/user-guide/openflow-plugin-project-user-guide.htm
https://docs.opendaylight.org/en/latest/downloads.html
https://docs.opendaylight.org/en/stable-oxygen/getting-started-guide/clustering.html
http://mininet.org/overview/
https://github.com/CPqD/ofsoftswitch13/wiki/Dpctl-Documentation

University of the Aegean Department of Information & Communication Systems
 Engineering

 84 of 84

[21] http://ranosgrant.cocolog-nifty.com/openflow/dpctl.8.html

[22] https://www.openvswitch.org/

[23] https://docs.opendaylight.org/en/stable-fluorine/user-guide/virtual-tenant-network-(vtn).html

[24] https://docs.opendaylight.org/en/stable-oxygen/user-guide/authentication-and-authorization-

services.html

http://ranosgrant.cocolog-nifty.com/openflow/dpctl.8.html
https://www.openvswitch.org/
https://docs.opendaylight.org/en/stable-oxygen/user-guide/authentication-and-authorization-services.html
https://docs.opendaylight.org/en/stable-oxygen/user-guide/authentication-and-authorization-services.html

