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Abstract

This thesis is conducted at the Department of Statistics and Actuarial-Financial Mathe-

matics of the University of the Aegean, in the context of the MSc program in Statistics

and Data Analysis. Its purpose is to present and analyze measures of divergence and in-

formation criteria but most importantly to check the performance of a novel information

criterion, namely the Pseudodistance Information Criterion (PIC).

The structure of the thesis consists of three Chapters. In Chapter 1, measures of diver-

gence and information criteria are presented. Some of the most well known divergence

measures, namely Kullback-Leibler and the BHHJ measures are de�ned. Also, the most

common model selection criteria like Akaike Information Criterion (AIC) and its varia-

tions, as well as the Bayesian Information Criterion (BIC), are discussed.

In Chapter 2, recent model selection like the Divergence Information Criterion (DIC) and

the Modi�ed Divergence Information Criterion (MDIC) are analyzed. Furthermore, a new

model selection criterion, the Pseudodistance Information Criterion (PIC), is presented.

Finally, in Chapter 3, a simulation study and a real case study are performed in order to

investigate the appropriateness and the performance of this new criterion.
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Περίληψη

Η παρούσα διπλωματική εργασία εκπονήθηκε στο Τμήμα Στατιστικής και Αναλογιστικών

- Χρηματοοικονομικών Μαθηματικών του Πανεπιστημίου Αιγαίου, στα πλαίσια του Προ-

γράμματος Μεταπτυχιακών Σπουδών ”Στατιστική και Ανάλυση Δεδομένων”. Σκοπός της

είναι η ανάλυση μέτρων απόστασης και κριτηρίων πληροφορίας αλλά κυρίως η διερεύνηση

των επιδόσεων ενός νέου κριτηρίου πληροφορίας, του Pseudodistance Information Crite-

rion (PIC).

Η δομή της διπλωματικής αποτελείται από τρία Κεφάλαια. Στο Κεφάλαιο 1, παρου-

σιάζονται μέτρα απόστασης και κριτήρια πληροφορίας. Ορίζονται κάποια από τα πιο γνωστά

μέτρα απόστασης όπως το Kullback-Leibler αλλά και το BHHJ μέτρο. Επίσης, συζητιούνται

τα πιο συνήθη κριτήρια επιλογής μοντέλου, όπως το Akaike Information Criterion (AIC)

και οι παραλλαγές του, καθώς και το Bayesian Information Criterion (BIC).

Στο Κεφάλαιο 2, παρουσιάζονται πρόσφατα κριτήρια επιλογής μοντέλου όπως το Di-

vergence Information Criterion (DIC) και το Modified Divergence Information Criterion

(MDIC). Επιπλέον, παρουσιάζεται ένα νέο κριτήριο επιλογής μοντέλου, το Pseudodistance

Information Criterion (PIC).

Τέλος, στο Κεφάλαιο 3, πραγματοποιείται μελέτη προσομοίωσης αλλά και μελέτη σε

πραγματικά δεδομένα, με σκοπό να διερευνήσει την καταλληλότητα του νέου αυτού κριτηρίου.
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Chapter 1

Measures of Divergence and

Information Criteria

In this chapter, measures of divergence and information criteria will be presented. Mea-

sures of divergence are used as indices of similarity or dissimilarity between populations to

measure mutual information about two variables and they can also be used to construct

model selection criteria.

A model selection criterion can be considered as an approximately unbiased estimator

of the expected overall discrepancy between a candidate model and the true model. If the

value of the criterion is small, then the approximated candidate model can be chosen.

In 1951 Kullback-Leibler measure was developed to capture the information that is lost

while approximating reality [18]. Some years later, in 1998, BHHJ measure of divergence

was introduced [4]. Numerous other measures have been introduced in between. Based

on Kullback-Leibler, several criteria have been developed. Other measures, like BHHJ,

give rise to other criteria, the most common of which will be presented in Chapter 2.

Akaike Information Criterion (AIC) and its variations as well as the Bayesian Information

Criterion (BIC) will be discussed in the following sections, together with the associated
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measures of divergence.

1.1 Measures of divergence

1.1.1 Kullback-Leibler Measure

Let x = (x1, . . . , xn) a realization of a random vector X = (X1, . . . , Xn) so that the Xi’s

are independent and identically distributed random variables each with true unknown

density function g(·, θ0), with θ0 = (θ01, . . . , θ0p)
′ the true but unknown value of the p-

dimensional parameter of the distribution. Assume a candidate model fθ(·) and let θ̂ be

the maximum likelihood estimator (MLE) of θ0 in some hypothesized set Θ ∈ Rp, i.e.

l(θ̂;x) =
n∑
i=1

log(fθ̂(xi)) = max
θ∈Θ

l(θ;x)

so that fθ̂(·) could be considered as an estimate of g(·, θ0) and l(·;x) the log-likelihood

function.

The divergence between the candidate model and the true density can be measured

by the Kullback-Leibler (K-L) measure (see [17]).

IKLX (g, fθ̂) =

∫
g(y, θ0) log

(g(y, θ0)

fθ̂(y)

)
dy

where θ0 is the true value of the parameter of g(·) and θ̂ the estimate of the parameter.

Notice that IKLX (g, fθ̂) can also be written in the following form:

IKLX (g, fθ̂) = Eg[log(g(X, θ0)]− Eg[log(fθ̂(X))]. (1.1)

where Eg represents the expectation with respect to the true probability distribution g.
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Observe that the first term is independent of the candidate model and therefore the

divergence can be evaluated using only the second term, which is known as the expected

log-likelihood.

In the case of discrete models, K-L can be measured by:

IKLX (g, fθ̂) =
∞∑
i=1

g(yi, θ0) log
(g(yi, θ0)

fθ̂(yi)

)
. (1.2)

1.1.2 BHHJ Measure

Kullback-Leibler measure for a → 0 is a special case of the well known BHHJ measure

intoduced by Basu et al. (1998). The BHHJ measure is given by (see [4])

IaX (g, fθ̂) =

∫ {
f 1+a

θ̂
(y)−

(
1 +

1

a

)
g (y) fa

θ̂
(y) +

1

a
g1+a (y)

}
dy

where α is an index usually taken in (0, 1).

1.1.3 Other measures of divergence

Other well known divergence measures between two functions g and f are:

χ2(g; f) =
k∑
i=1

g2
i

fi
− 1 =

k∑
i=1

(fi − gi)2

fi
, χ2 -statistics [24]

IK(g; f) =

∫ {√
f(x)−

√
g(x)

}2
dx, Hellinger distance ([14], [23])

Dϕ(g; f) = ϕ(g)− ϕ(f)− (g − f)T 5 ϕ(f), Bregman divergences [7]

where T denotes the transpose.
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1.2 Information Criteria

Choosing a model with too few parameters can involve making non realistic assumptions,

bias and poor prediction. Such models are not capable of describing the sample and

therefore the entire population [13]. Another common problem in statistical modeling is

having too many parameters in the model which increases complexity.

By using different information criteria researchers are looking for a model that adapts

to the data while the true model is unknown.

According to the Principle of Parsimony, the model with the lowest number of param-

eters is selected, which is still capable to describe better the data. Also a simple model

is better than a complex one, not only for practical purposes but also for descriptive as

well as predictive purposes.

The general form of an information criterion (IC) is the following [13]:

IC = −2l(θ̂) + Anp

where l is the log-likelihood, An is a quantity that may or may not depend on the sample

size n also known as penalty weight and p is the number of parameters of the model.

The value of An changes accordingly to information criterion that has been used. In

the table below some typical values of An are presented, for different information criteria.

CRITERION PENALTY WEIGHT
AIC [2] An = 2
CAIC [6] An = log(n) + 1
BIC [26] An = log(n)
Adjusted BIC [27] An = log(n+2

24
)
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1.2.1 Akaike Information Criterion

The Akaike Information Criterion is one of the most popular criteria. The Kullback-

Leibler measure was the one used by Akaike [2] to develop AIC. Akaike proposed the

evaluation of the fit of the candidate model using minus twice the mean expected log-

likelihood given by

−2Eg
[
Eg[log(fθ̂(X))]

]
= −2

∫
. . .

∫
Eg[log(fθ̂(X))]

n∏
i=1

g(xi, θ0)dx1 . . . dxn

since the candidate model is close to the true model if the above quantity is small. He

also provided an unbiased estimator of the expected log-likelihood so that the resulting

criterion is given by:

AIC(p) = −2l(θ̂) + 2p

where θ is the vector of model parameters, L(θ̂) is the likelihood of the candidate model

and p is the number of parameters of the candidate model.

1.2.1.1 The proof of AIC

According to (1.1) we have

I(g, f) =

∫
g log

g

f
=

∫
g log g −

∫
g log f

so that

minI(g, f) = max

∫
g log f ≡ Eg log f

a natural estimator of which is:

' 1

n

n∑
i=1

log f(xi; θ) =
1

n
log

n∏
i=1

f(xi; θ) =
1

n
loglikelihood

10



Thus, the expected loglikelihood is analogous to likelihood:

E log f(x; θ) ' 1

n
log

n∏
i=1

f(xi; θ)⇒

nE log f(x; θ) ' log
n∏
i=1

f(xi; θ) ≡ l(θ)⇒

l∗(θ) = l(θ)

Let θ̂ be the MLE. Then,

l∗(θ̂) = l(θ̂)

l(θ̂) is a good estimate for l∗(·) provided that it is unbiased. For that it should satisfy the

property:

E(l∗(θ̂k)) ' E(l(θ̂k))

where E(l∗(θ̂)) is the mean expected log-likelihood. We will show below that l(θ̂) is not

an unbiased estimator of E(l∗(θ̂k)) but l(θ̂k)− k is, i.e.

E(l(θ̂k)− k) = E(l∗(θ̂k))

To show the above we will consider the simplest case.

Let x1, . . . , xn i.i.d., g be the true model which followsN (0, 1) and f is the approximate

or candidate model that follows N (µ, 1). The log-likelihood of g is given by:

l(µ) = log
n∏
i=1

f(xi, µ) =
n∑
i=1

log

(
1√
2π

exp
−(xi−µ)

2

2

)
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= −n
2

log 2π − 1

2

n∑
i=1

(xi − µ)2.

Recall that X̄ is the MLE of µ. Then the above becomes:

−n
2

log 2π − 1

2

n∑
i=1

(xi − x̄+ x̄− µ)2

= −n
2

log 2π − 1

2

n∑
i=1

(xi − x̄)2 − n

2
(x̄− µ)2 ⇒

l(µ) = l(µ̂)− n

2
(x̄− µ)2.

Then, for µ = 0:

l(0) = l(µ̂)− n

2
(x̄− 0)2.

Taking expectations on both sides we have:

E(l(0)) =

E(l(µ̂))− n
2
· 1
n

= E(l(µ̂))− 1
2

−n
2

log 2π − 1
2
· n · 1 = −n

2
log 2π − n

2

(1.3)

On the other hand,

l∗(µ) = nE log f(x;µ)

= n

∫
1√
2π

exp−
z2

2 log

(
1√
2π

exp
−(z−µ)2

2

)
dz

= . . . = −n
2

log 2π − n

2
(1 + µ)2 (1.4)
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which for µ = 0 and using (1.3) becomes

l∗(0) = −n
2

log 2π − n

2
≡ E(l(0)) ≡ E(l(µ̂))− 1

2
. (1.5)

Taking now Taylor expansion of l∗(µ) at point µ = 0 we have:

l∗(µ) ≈ l∗(0) + n(µ− 0)E
d log f

dµ

∣∣∣∣
µ=0

+ n(µ− 0)2E
d2 log f

dµ2

∣∣∣∣
µ=0

(1.6)

where the derivatives can be easily obtained as follows:

E
d

dµ
[log f ]

∣∣∣∣
µ=0

= E
d

dµ

[
− 1

2
log 2π − (z − µ)2

2

]∣∣∣∣
µ=0

= E(z − µ)

∣∣∣∣
µ=0

= 0

E
d2

dµ2
[log f ]

∣∣∣∣
µ=0

= E
d

dµ

[
+ (z − µ)

]∣∣∣∣
µ=0

= −1

Thus (1.6) for µ = µ̂ takes the form:

l∗(µ̂) = l∗(0)− n

2
(µ− 0)2 = l∗(0)− n

2
µ2 ⇒

l∗(µ̂) = l∗(0)− n

2
µ̂2 ⇒

E(l∗(µ̂)) = l∗(0)− E
[n

2
µ̂2
]
. (1.7)

Due to the asymptotic normality of µ̂,

√
n(µ̂− 0) −→ N (0, 1)

13



we have that (1.7) becomes:

E(l∗(µ̂)) = l∗(0)− 1

2
.

By (1.6) we get:

E(l∗(µ̂)) = E(l(µ̂))− 1

2
− 1

2
= E(l(µ̂))− 1 = E[(l(µ̂))− 1]

which shows that l(µ̂)− 1 is unbiased for l∗(µ̂).

The above can be easily generalized to

E(l∗(θ̂k)) = E[(l(θ̂k))− 1]

where 1 represents the number of unknown parameters (the mean µ).

Since we need to maximize the expected log-likelihood:

≡ maxmodelE log f ≡ maxmodel(l
∗(θ)) = max(l∗(θ̂k))

In order to make the result independent of the specific estimator and the associated

sample, we use instead:

maxmodelE(l∗(θ̂k))

which for a model with k parameters is equal to

= maxmodel[l(θ̂k)− k]

Thus the unbiasedness is established as long as the l(θ̂k) is reduced by the number of

parameters k. Then, the AIC is given by

AIC = −2[l(θ̂k)− k] = −2l(θ̂k) + 2k

14



with the best model being the one with k parameters that minimizes AIC.

Remark 1. Based on the above discussion, we have that AIC is an unbiased estimator

of the mean expected log-likelihood, namely:

E(AIC) = −2E[l(θ̂k)− k] = −2[l∗(θ̂k)] = −2[Mean Expected Loglikelihood].

1.2.1.2 Akaike Information Criterion and Entropy

As mentioned previously, Akaike used Kullback-Leibler (K-L) to develop Akaike Informa-

tion Criterion (AIC). K-L informantion quantity is the one called negative entropy and it

is based on Boltzmann’s entropy in [5]. Indeed,

Boltzmann’s entropy = − log

(
g(x)

f(x)

)
⇔

−Boltzmann’s entropy = log

(
g(x)

f(x)

)
In the case where the model is continuous and has a probability density function, K-L

information quantity of the true distribution with respect to the model, is given in terms

of Boltzmann’s entropy by:

K − L = Eg(−Boltzmann’s entropy) = Eg
(

log

(
g(x)

f(x)

))

=

∫
g(x) log

(
g(x)

f(x)

)
dx

or for the discrete case:

=
∑

gi log
gi
fi

where g(x) is the true density function and f(x) is the density function that specifies

15



the model [25]. Consequently K-L’s minimization is equal to entropy’s maximization.

Nevertheless, entropy’s maximization can lead to a model with high uncertainty, while

K-L’s minimization is a better approach as it leads to an approximate model with a little

loss of data information.

In the case that the distribution is discrete and n is the sample size, consider the

situation where fi = ni
n

for some integers n1, . . . , nk such that n1 + n2 + . . .+ nk = n and

g = (g1, . . . , gk) is our model. The probability that we obtain the frequency distribution

n1, . . . , nk from n observations that follow this distribution is:

W =
n!

n1! . . . nk!
gn1

1 , . . . , gnkk

By taking logarithm and Stirling’s approximation log n! ∼ n log n− n we have

logW = log n!−
k∑
i=1

log ni! +
k∑
i=1

ni log gi

∼ n log n− n−
k∑
i=1

ni log ni +
k∑
i=1

ni +
k∑
i=1

ni log gi

= −
k∑
i=1

ni log

(
ni
n

)
+

k∑
i=1

ni log gi

=
k∑
i=1

ni log

(
gi
fi

)

= n

k∑
i=1

gi log

(
g

fi

)

16



= nI(g; f)

Thus it follows that I(g; f) ∼ n−1 logW .

1.2.1.3 Consistent Akaike Information Criterion

Bozdogan [6] proposed a corrected version of AIC, CAIC in order to overcome its tendency

of overestimating the complexity of the underlying model. Akaike Information Criteria

(AIC) does not directly depend on sample size and that is the reason for not possesing

the consistency property [1]. In formulating CAIC, a correction factor based on the

sample size is employed to compensate for the overestimating nature of AIC [3]. Below

is presented the form of the Consistent Akaike Information Criterion (CAIC):

CAIC(p) = −2 logL(θ̂) + ((log n) + 1)p

where θ is the vector of model parameters, n is the sample size, logL(θ̂) is the log-

likelihood l(θ̂) of the candidate model and p is the number of parameters of the candidate

model.

AIC differs from CAIC in the second term which now takes into account sample size

n.

1.2.1.4 Corrected Akaike’s Information Criterion

Hurvich and Tsai [15] found a small sample bias adjustment and this led to a ”corrected”

criterion (AICc) where the additional penalty is a function of the sample size n. AICc is

given by:

AICc(p) = AIC +
2(p+ 1)(p+ 2)

n− p− 2

17



where p is the number of estimated parameters in the model and n is the number of

observations used in the model. AICc provides a stronger penalty than AIC for smaller

sample sizes, and stronger than BIC for very small sample sizes [8]. This value can be

used to compare various models for the same data set to determine the best-fitting model.

The model having the smallest value is usually the preferred model [3].

1.2.2 Bayesian Information Criterion

Bayesian Information Criterion (BIC) was introduced by Schwarz [26] and it is given by:

BIC(p) = −2 logL(θ̂) + p log n

where θ is the vector of model parameters, n is the sample size, logL(θ̂) is the log-

likelihood l(θ̂) of the candidate model and p is the number of parameters of the candidate

model.

Observe that BIC is based partly on the likelihood function, and it is closely related

to Akaike information criterion (AIC) but the penalty is harsher than AIC. Thus, BIC

tends to choose simpler models. BIC assumes that one of the models is true and that we

are trying to find the model most likely to be true in the Bayesian sense, on the other

hand AIC is trying to find the model that predict the best.

The BIC criterion has a number of advantages worth to be mentioned. First of all,

it has been shown to be consistent [26] which means that it chooses the correct model

with probability 1 as n tends to infinity. Secondly BIC depends on log n instead of n and

therefore it downweights the effect of sample size, which in some cases can prevent the

erroneous rejection of the null hypothesis for large sample sizes. A discussion about the

properties of AIC and BIC is presented in the following section.
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1.2.3 A comparison between AIC and BIC

Classical ways of evaluation of information criteria are consistency (strong or weak) and

efficiency. These two properties which are associated with BIC and AIC respectively are

briefly presented below.

1.2.3.1 Consistency

There are two types of consistency, strong and weak. Assume that the data were generated

from a model assumed to be the true model and belongs to the class of candidate models.

By using model selection methods we wish to identify and select this model as the true

model. This is related to the concept of consistency. If the selection method is capable of

selecting the true model from a set of candidate models with probability tending to 1, then

this method is called weakly consistent. On the other hand, we have strong consistency

when the true model is selected almost surely [11].

If we don’t want to make the assumption that the true model is among the set of the

candidate models, we assume there is a candidate model that is closest in the sense of the

Kullback-Leibler measure to the true model. Weak consistency is the property that such

a closest model is selected by model selection criteria, with probability tending to one.

Both AIC and BIC are constructed using minus twice the mean expected log-likelihood

plus a penalty term for the complexity of the model. BIC’s penalty is bigger than AIC’s.

This shows that BIC is not choosing models with too many parameters.

As previously mentioned the general form of information criteria is the following:

IC = −2l(θ̂) + Anp ≡ −2l(θ̂) + Cn,k
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where Cn,k > 0 is the penalty term for candidate model Mk. Specifically,

Cn,k =

2(dim(θ)), for AIC

log n(dim(θ)), for BIC

.

The two types of consistency are given in Theorem 1 & 2 and Theorem 3 & 4 respectively

[11].

Theorem 1. (Weak Consistency). Assume that there is one model Mk0 among the set of

the candidate models for which the minimum Kullback-Leibler distance is reached. That

is, for this model it holds that:

1.

lim
n→∞

infmink 6=k0
1

n

n∑
i=1

(KL(g; fk,i)−KL(g; fko,i)) > 0

and

2. The penalty term is Cn,k = Op(n)

Then, the information criterion chooses model Mk0 as the best model with probability one.

So, using the above theorem for AIC and BIC it appears that:

AIC :
Cn,k
n

= lim
n→∞

2

n
dim(θ) = 0

and

BIC :
Cn,k
n

= lim
n→∞

log n

n
dim(θ) = 0

Therefore, both AIC and BIC are weakly consistent.

Theorem 2. (Strong Consistency). Assume that there is one model Mk0 among the set

of the candidate models which reaches the minimum Kullback-Leibler distance. That is,

for this model it holds that:
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1.

lim
n→∞

infmink 6=k0
1

n

n∑
i=1

(KL(g; fk,i)−KL(g; fko,i)) > 0

and

2. Let penalty Cn,k = Op(n) almost surely.

Then,

P (mini 6=k0(IC(Mko)− IC(Mi)) > 0, for almost all n) = 1

Thus, AIC and BIC are strongly consistent selectors of the model, namely they are

best in minimising the Kullback-Leibler distance to the true model.

Theorem 3. (Weak Consistency). Denote by I the set of candidate models that all reach

the minimum Kullback-Leibler distance to the true model, and I0 is the subset of I con-

taining model with the smallest dimension. Assume that:

• For all k0 6= I0 ⊂ I:

lim
n→∞

sup
1

n

n∑
i=1

(KL(g; fk0,i)−KL(g; fIo,i)) <∞

• For all i ∈ I0 and for all k∈ I\I0:

P

(
Cn,i − Cn,i0√

n
−→∞

)
= 1

• For all k0 6= i0 ∈ I and for the log-likelihood ratio:

n∑
i=1

log
fk0,i(yi; θ

∗
k0

)

fI0,i(yi; θ
∗
I0

)
= Op(1)
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and that for any i0 ∈ I0 and i ∈ I\I0

P (Cn,i − Cn,i0) = 1

Then, with probability −→ 1 the information criterion will select such small model:

lim
n→∞

P

[
mini∈I\I0(IC(Mio)− IC(Mi)) > 0

]
= 1

Let Cn,i, Cn,i0 be the penalty terms for models Mi and Mi,0 respectively.

For AIC

Cn,i = 2dim(θi)

and

Cn,i0 = 2dim(θi0)

The limit

lim
n→∞

(Cn,i − Cn,i0) = lim
n→∞

(dim(θi)− dim(θi0)) = c

Therefore,

P ( lim
n→∞

(dim(θi)− dim(θi0))) < 1

and AIC is not consistent.

For BIC

Cn,i = log ndim(θi)

and

Cn,i0 = log ndim(θi0)

For dim(θi) > dim(θi0)

lim
n→∞

(Cn,i − Cn,i0) = lim
n→∞

(dim(θi)− dim(θi0)) =∞
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Therefore,

P ( lim
n→∞

(Cn,i − Cn,i0)) = 1

and BIC is consistent.

Theorem 4. (Strong Consistency). Denote by I the set of candidate models that all

reach the minimum Kullback-Leibler distance to the true model, and I0 is the subset of I

containing model with the smallest dimension. Assume that:

• For all k0 6= i0 ⊂ I:

lim
n→∞

sup
1√

n log log n

n∑
i=1

(KL(g; fk0,i)−KL(g; fio,i)) ≤ ∞

• For all k0 6= i0 ∈ I the log-likelihood ratio:

n∑
i=1

log
fk0,i(yi; θ

∗
k0

)

fI0,i(yi; θ
∗
I0

)
= 0(log log n), almost surely.

Then, the require condition on the penalty is that

P (Cn,k ≥ bn log log n, for almost all n) = 1

where bn is a random sequence, almost surely bounded below by a strictly positive number.

1.2.3.2 Efficiency

The property where an information criterion behaves ’almost as well’ in terms of Mean

Squared Error, or expected squared prediction error as the theoretically best model for

the type of squared error loss is called efficiency [11].

Let us assume that we wish to choose the best set of candidate variables in the regres-
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sion model:

Yi = β0 + β1X1,i + . . .+ βkXk,i + εi, i = 1, . . . , n.

For prediction, the loss is usually taken to be the squared prediction error. We wish to

choose a set of covariates that minimizes the mean squared error.

n∑
i=1

E[(ŶS,i − Yt,i)2 | Y1,...,n]

where

ŶS,i: the predicted value of the true value Yt,i based on data Y1, . . . , Yn.

Let S0 ⊂ S the set of covariates of the model that were selected by the information

criterion and let S∗0 ⊂ S be the set of covariates that minimizes the mean squared error.

A model selection criterion is called efficient when

∑n
i=1E[(ŶS0,i − Yt,i)2]∑n
i=1E[(ŶS∗0 ,i − Yt,i)2]

−→ 1, as n −→∞.

Theorem 5. Under regularity assumptions (see e.g. Lee and Karagrigoriou, 2001):

(i) The criteria AIC and AICc are asymptotically efficient.

(ii) BIC is not asymptotically efficient.
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Chapter 2

New Developments in Model

Selection Criteria

The criteria discussed in the previous chapter are the most popular ones, which are based

on the log-likelihood function. In this chapter recent model selection criteria are presented.

These criteria are based on measures of divergence or distance. Mattheou et al. [21]

proposed the Divergence Information Criterion (DIC), while Mantalos et al. [20] proposed

an improvement of DIC, called the Modified Divergence Information Criterion (MDIC).

Finally, based on the so called pseudodistance we will present a novel criterion, the

Pseudodistance Information Criterion (PIC), introduced by Toma et al. [29].

2.1 Divergence Information Criterion

In the previous chapter, Basu-Harris-Hjort-Jones (BHHJ) measure of divergence was pre-

sented, which is indexed by a positive parameter α. This measure was used for the

development of a minimum divergence estimation method for robust parameter estima-

tion. The index α controls the trade-off between robustness and asymptotic efficiency
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of the parameter estimators that are the values of θ that minimize the measure over a

parametric space Θ.

In order to develop the Divergence Information Criterion [21], the BHHJ measure was

used, applying the same methodology used for AIC.

Assume a random sample X1, . . . , Xn with a true distribution g and let fθ be a candi-

date model, θ ∈ Θ, where Θ is a p-dimensional space.

The goodness of fit quantity in this case is given by:

Wθ =

∫
f 1+α
θ (z)− (1 + α−1)g(z)fαθ (z)dz, α > 0 (2.1)

The above is the same as the BHHJ measure without the last term which is constant

irrespectively of the model fθ used. Note that it can also be written as:

Wθ = Efθ(f
α
θ (z))− (1 + α−1)Eg(f

α
θ (z)), α > 0 (2.2)

2.1.1 The expected overall discrepancy

The expected overall discrepancy between g and fθ is given by:

EWθ̂ = E(Wθ|θ = θ̂) (2.3)

where θ̂ is a consistent and asymptotically normal estimator of θ.

Under standard regularity assumptions, the expected overall discrepancy at θ = θ̂ is

given by:

EWθ̂ = Wθ0 +
(α + 1)

2
E[(θ̂ − θ0)′J(θ0)(θ̂ − θ0)] + ERn (2.4)
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where Rn = o(‖ θ̂ − θ0 ‖2), θ0 is the true value of the parameter and J(θ0) is given by

J(θ0) =

∫
uθ0(z)u

′

θ0
(z)f 1+α

θ0
(z)dz (2.5)

The natural estimator of (2.2) with respect to g is given by:

Qθ =

∫
f 1+α
θ (z)dz −

(
1 +

1

α

) 1

n

n∑
i=1

fαθ (xi). (2.6)

Theorem 6. (see Mattheou et al. [21]). The expectation of Qθ evaluated at the true point

θ0 is given by:

EQθ0 = EQθ̂ +
α + 1

2
E[(θ0 − θ̂)′J(θ0)(θ0 − θ̂)] + ERn (2.7)

and the expected overall discrepancy evaluated at θ̂ is given by:

EWθ̂ = E[Qθ̂ + (α + 1)(θ̂ − θ0)′J(θ0)(θ̂ − θ0) +Rn] (2.8)

where Rn and J(θ0) the same as mentioned previously.

2.1.2 The development of DIC criterion

An asymptotically unbiased estimator of n-times the expected overall discrepancy evalu-

ated at θ̂ is given by:

DIC (p) = nQθ̂ + (α + 1 )(2π)−
α
2

(
1 + α

1 + 2α

)1+ p
2

p (2.9)

where θ̂ is a consistent and asymptotically normal estimator of θ and p the dimension of

θ.

If the maximum likelihood estimating method is used, then the correction term is
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adjusted accordingly and the adjusted DIC is given by:

DICMLE(p) = nQθ̂ + (2π)−
α
2 (1 + α)−

p
2 p (2.10)

In order to penalize strictly more complex models DIC and DICMLE are adjusted

accordingly by removing the denominator [1 + 2α] in (2.9) and they are both given by:

DIC STR(p) = nQθ̂ + (2π)−
α
2 (1 + α)2+ p

2 p (2.11)

2.2 Modified Divergence Information Criterion

2.2.1 The development of MDIC criterion

DIC criterion, mentioned in the previous section, in preliminary simulation studies for

regression models [22] showed that for medium sample size DIC had a very good perfor-

mance for values of α close to zero. The calculation of the first part of Qθ̂ where

Qθ̂ =

∫
f 1+α

θ̂
(z)dz −

(
1 +

1

α

) 1

n

n∑
i=1

fα
θ̂

(xi)

namely the integral
∫
f 1+α

θ̂
(z)dz is not computationally attractive for practitioners.

Additional by a simulation study shows [22] that the difference in the calculations

of the above integral for the different candidate models is negligible compared with the

calculation for the entire quantity Qθ̂. That means that the integral term does not affect

significantly the choice of the appropriate model and therefore the criterion can be prop-

erly modified. For this reason, Mantalos et al. in [20] proposed a modified version of the

DIC criterion, namely the Modified Divergence Information Criterion (MDIC), which is
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given by:

MDIC (p) = nMQθ̂ + (2π)−
α
2 (1 + α)2+ p

2 p (2.12)

where

MQθ̂ = −
[(

1 +
1

α

) 1

n

n∑
i=1

fα
θ̂

(xi)
]

(2.13)

Note that as usual MDIC can be considered as an approximately unbiased estimator of

the expected overall discrepancy up to a constant, a non-negative quantity that measures

the distance between the true unknown model and the candidate model. If we choose the

model with the smallest estimator of the expected overall discrepancy, we may end up

with a selection with an unnecessarily large order.

2.2.2 Optimal choice for the index α

For practical purposes someone has to decide the optimal choice of the positive index

α. Therefore, Mantalos et al. proceeded with a simulation study in [20] using 100 ob-

servation series for five different time series models with α ∈ [0.01, 0.5]. In the figure

below we provide the power of the selection according to the specified value of the index α.
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Figure 2.2.1: Optimal choice of the index α.

The models considered for the simulation are:

• AR(1) : xt = 1 + 0.65xt−1 + εt

• AR(2) : xt = 1 + 1.5xt−1 − 0.5xt−2 + εt

• AR(3) : xt = 1 + 0.2xt−1 + 0.5xt−2 − 0.35xt−3 + εt

• AR(4) : xt = 1 + 0.2xt−1 + 0.5xt−2 − 0.35xt−3 − 0.22xt−4 + εt

• AR(5) : xt = 1 + 0.23xt−1 − 0.22xt−3 − 0.45xt−5 + εt

Figure 2.2.1 shows that the power increases as the value of α increases for small lags

(models AR(1) and AR(2)). For lags ≥ 3 the power increases up to a value of α and then

decreases. In conclusion, Mantalos et al. in [20] shows that an optimal index α value

equals 0.25 since it appears to serve a fair balance between small and large lag models.
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2.3 Pseudodistance based Information Criterion

2.3.1 Pseudodistances

In order to define new criteria for model selection, we consider the following family of

pseudodistances (see [9]). For two probability measures P and Q, admitting densities p

and q with respect to the Lebesgue measure, the family of pseudodistances of order γ > 0

is defined by:

Rγ(P,Q) =
1

γ + 1
ln

(∫
pγdP

)
+

1

γ(γ + 1)
ln

(∫
qγdQ

)
− 1

γ
ln

(∫
pγdQ

)
(2.14)

and satisfies the limit relation

lim
γ→0

Rγ(P,Q) = R0(P,Q)

where R0(P,Q) :=
∫

ln q
p
dQ is the modified Kullback-Leibler information.

This family of pseudodistances was originally introduced by Jones et al. [16] where

they are called ”type 0” divergences. They are also introduced in Broniatowski, Toma

and Vajda [9] in the context of decomposable pseudodistances. A pseudodistance satisfies

two propeties. It is non-negative and equals to zero if and only if the two measures are

equal. Divergences satisfy these two properties, but they are moreover characterized by

the so called ”information processing property” referring to the invariance of divergences

with respect to transformations of the observation space [28]. This property is useful but

probably not unavoidable, and pseudodistances may not satisfy this property. That is

why the term pseudodistance was adopted, but in literature we can also meet the term

”divergence” for this concept.

The concept of pseudodistance cames from the need to place under the same general

umbrella all statistical criteria most if not all of which are associated with a distance. Since
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the distance used for criteria may or may not be a typical metric, the term ”pseudodis-

tance” appeared to be sufficient to include all possible distances that are non-negative

with equally if the two arguments coincide.

2.3.2 Minimum Pseudodistance Estimators

Let (Pθ) be a parametric model indexed by θ ∈ Θ, where Θ is a p-dimensional parameter

space, and pθ corresponding densities with respect to the Lebesgue measure λ [29]. Let

X1, . . . , Xn be a random sample on Pθ0 , θ0 ∈ Θ. For γ > 0 fixed, minimum pseudodistance

estimators are defined by

θ̂n = arg min
θ∈Θ

{
1

γ + 1
ln

(∫
pγ+1
θ dλ

)
− 1

γ
ln

(
1

n

n∑
i=1

pγθ (Xi)

)}
(2.15)

or equivalently by

θ̂n = arg max
θ∈Θ
{Cγ(θ)−1 · 1

n

n∑
i=1

pγθ (Xi)} (2.16)

where Cγ(θ) = (
∫
pγ+1
θ dλ)γ/(γ+1). Denoting h(x, θ) := Cγ(θ)

−1 · pγθ (x), these estimators

take the form

θ̂n = arg max
θ∈Θ

1

n

n∑
i=1

h(Xi, θ). (2.17)

Assume the following regularity conditions of the model (see [29]):

(C1) The density pθ(x) has continuous partial derivatives with respect to θ up to third

order (for all x λ-a.e.).

(C2) There exists a neighborhood Nθ0 of θ0 such that the first-, the second- and the

third- order partial derivatives with respect to θ of h(x, θ) are dominated on Nθ0 by some

Pθ0-integrable functions.

(C3) The integrals
∫

[ ∂
2

∂2θ
h(x, θ)]θ=θ0dPθ0(x) and

∫
[ ∂
∂θ
h(x, θ)]θ=θ0 [

∂
∂θ
h(x, θ)]tθ=θ0dPθ0(x)

exist.
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Theorem 7. (Broniatowski et al., 2012) Assume that the conditions (C1), (C2) and (C3)

are fulfilled. Then

(a) Let B :=
{
θ ∈ Θ; ‖θ − θ0‖ ≤ n−1/3

}
. Then, as n → ∞, with probability one, the

function θ 7→ 1
n

∑n
i=1 h(Xi, θ) attains a local maximal value at some point θ̂n in the

interior of B, which implies that the estimator θ̂n is n1/3-consistent.

(b)
√
n
(
θ̂n − θ0

)
converges in distribution to a centered multivariate normal random

variable with covariance matrix

V = S−1MS−1 (2.18)

where S := −
∫

[ ∂
2

∂2θ
h(x, θ)]θ=θ0dPθ0(x) and M :=

∫
[ ∂
∂θ
h(x, θ)]θ=θ0 [

∂
∂θ
h(x, θ)]tθ=θ0dPθ0(x).

(c)
√
n
(
R̂γ(θ0)−Rγ(θ0)

)
converges in distribution to a centered normal variable with

variance σ2(θ0) =
∫
h(x, θ0)2dPθ0(x)−

(∫
h(x, θ0)dPθ0(x)

)2
, where

Rγ(θ0) := max
θ∈Θ

∫
h(x, θ)dPθ0(x) =

∫
h(x, θ0)dPθ0(x)

and

R̂γ(θ0) = max
θ∈Θ

1

n

n∑
i=1

h(Xi, θ) =
1

n

n∑
i=1

h(Xi, θ̂n).

2.3.3 The Expected Overall Discrepancy

For γ > 0 fixed, a simplified form of the pseudodistance is given by:

Wθ =
1

γ + 1
ln

(∫
pγ+1
θ dλ

)
− 1

γ
ln

(∫
pγθqdλ

)
(2.19)

which is the same as Rγ(Pθ, Q) given in (2.14) without the middle term that remains

constant irrespectively of the model pθ used.
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Under the above setting the Expected Overall Discrepancy, up to a constant is

E[Wθ̂n
] = E[Wθ|θ = θ̂n] (2.20)

where θ̂n is the minimum pseudodistance estimator, needs to be approximated by an

asymptotically unbiased estimator [29]. Note that (2.20) is the same as (2.3).

Proposition 1. (Toma et al. [29]). When the true model Q belongs to the parametric

model (Pθ) for q = pθ0 and θ = θ0, the expected overall discrepancy is given by

E[Wθ̂n
] = Wθ0 +

1

2
E[(θ̂n − θ0)tMγ(θ0)(θ̂n − θ0)] + E[Rn] (2.21)

where Rn = o(‖θ̂n − θ0‖2), θ0 is the true value of the parameter and

Mγ(θ0) :=
(
∫
pγ−1
θ0

ṗθ0 ṗ
t
θ0

dλ)(
∫
pγ+1
θ0

dλ)− (
∫
pγθ0 ṗθ0dλ)(

∫
pγθ0 ṗθ0dλ)t

(
∫
pγ+1
θ0

dλ)2
(2.22)

where ṗθ is the first order derivatives of pθ with respect to θ.

As in (2.6), for a given θ ∈ Θ, a natural estimator of Wθ is defined by

Qθ :=
1

γ + 1
ln

(∫
pγ+1
θ dλ

)
− 1

γ
ln

(
1

n

n∑
i=1

pγθ (Xi)

)
. (2.23)

and satisfies the following two propositions (see [29]):

Proposition 2. When Q belongs to (Pθ), under regularity conditions, it holds

E[Wθ̂n
] = E[Qθ̂n

] + E[(θ0 − θ̂n)tMγ(θ0)(θ0 − θ̂n)] +

+
1

2γn

[
1−

∫
p2γ+1
θ0

dλ(∫
pγ+1
θ0

dλ
)2

]
+ E [Rn] +

1

γ
E [R′n] , (2.24)

where Rn = o(‖θ̂n − θ0‖2) and R′n = o(‖ 1
n

∑n
i=1 p

γ
θ0

(Xi)−
∫
pγ+1
θ0

dλ‖2).
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Proposition 3. Under regularity conditions, when Q = Pθ0, it holds

(a) Qθ̂n
converges to Wθ0 in probability.

(b)
√
n(Qθ̂n

− Wθ0) converges in distribution to a centered univariate normal with

variance σ2(θ0)
γ2Rγ(θ0)2

.

2.3.4 The development of PIC criterion

2.3.4.1 The case of univariate normal family

For the case where the candidate model (Pθ) is the univariate normal model with θ = (µ, σ)

and the true model Q belongs to (Pθ) it is easy to see that

Mγ(θ0) =
(γ + 1)2

(2γ + 1)3/2
A(γ)V −1

where V is the asymptotic covariance matrix given in Theorem 7 and A(γ) is a matrix

which can be approximated by the identity matrix Id for small values of γ ∈ (0, 0.4).

The distribution of
√
n(θ̂n − θ0) is asymptotically multivariate normal so that the

statistic n(θ0 − θ̂n)tV −1(θ0 − θ̂n) has approximately a χ2
p distribution (see [29]).

For small values of γ and large n we have:

E[(θ0 − θ̂n)tMγ(θ0)(θ0 − θ̂n)] ≈ (γ + 1)2

(2γ + 1)3/2
· d
n

(2.25)

Furthermore, under the normal model we have:

∫
p2γ+1
θ0

dλ(∫
pγ+1
θ0

dλ
)2 =

γ + 1√
2γ + 1
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Thus, Proposition 2 becomes:

E[Wθ̂n
] ∼= E[Qθ̂n

] +
(γ + 1)2

(2γ + 1)3/2
· d
n

+
1

2γn

[
1− γ + 1√

2γ + 1

]
+ E [Rn] +

1

γ
E [R′n] . (2.26)

Proposition 4. An asymptotically unbiased estimator of the expected overall discrepancy

in (2.20) is given by

Qθ̂n
+

(γ + 1)2

(2γ + 1)3/2
· d
n

+
1

2γn

[
1− γ + 1√

2γ + 1

]
(2.27)

where θ̂n is a minimum pseudodistance estimator.

The selection criteria based on Proposition 4 are consistent [29].

2.3.4.2 The case of linear regression models

Consider the linear regression model:

Y = α + βtX + e (2.28)

where e ∼ N (0, σ) and e is independent of X. Suppose we have a sample given by the

i.i.d. random vectors Zi = (Xi, Yi), i = 1, ..., n, such that Yi = α + βtXi + ei.

Consider the joint distribution of the entire data and write a pseudodistance between

the hypothesized model and the true model corresponding to the data. Let Pθ, θ :=

(α, β, σ), be the probability measure associated with the hypothesized model given by

the random vector Z = (X, Y ) and Q the probability measure associated with the true

model corresponding to the data [29]. Denote by pθ and q the corresponding densities.
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For γ > 0, the pseudodistance between Pθ and Q is defined by:

Rγ(Pθ, Q) :=
1

γ + 1
ln

(∫
pγθ (x, y)dPθ(x, y)

)
+

1

γ(γ + 1)
ln

(∫
qγ(x, y)dQ(x, y)

)
−

−1

γ
ln

(∫
pγθ (x, y)dQ(x, y)

)
(2.29)

Then the estimator Qθ̂n
can be written as

Qθ̂n
= min

α,β,σ

{
1

γ + 1
ln

(
1

(σ
√

2π)γ
√
γ + 1

)
− 1

γ
ln

(
1

n

n∑
i=1

1

(σ
√

2π)γ
· exp

(
− γ

2σ2
(Yi − α− βtXi)

2
))}

(2.30)

An asymptotically unbiased estimator of the expected overall discrepancy in this case

is given by:

Qθ̂n
+

1

n
· (γ + 1)2

(2γ + 1)3/2

[
(d− 1) +

3γ2 + 4γ + 2

2(γ + 1)(2γ + 1)

]
+

1

2γn

[
1−

(
γ + 1√
2γ + 1

)d]
. (2.31)

For different linear regression models, we can ignore the terms depending only on n

and γ. Therefore the following model selection criterion can be used:

Qθ̂n
+

(γ + 1)2

(
√

2γ + 1)3
· d
n
− 1

2γn

(
γ + 1√
2γ + 1

)d
. (2.32)
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Chapter 3

Case Studies

In this chapter, a simulation study will be presented in order to check how Pseudodistance

Information Criterion (PIC) performs. We also applied PIC in a real case study to evaluate

the accuracy of PIC in a real problem. Finally, are formulated the conclusions regarding

the use of PIC.

3.1 Simulation Study

In order to check the performance of PIC we proceed with a simulation study using the

PIC, the Modified Divergence Information Criterion MDIC [20], the Akaike Information

Criterion AIC [2] and the Bayesian Information Criterion BIC [26].

The simulation study has the following characteristics:

• A set of 20, 30, 40, 50, 75, 100, 200, 500 observations were used.

• 4 variables X1, X2, X3, X4 were independently generated from the normal distribu-

tions N(0, 3), N(1, 3), N(2, 3), and N(3, 3) respectively.

• The first 2 of these variables were planned to be used to generate values of Yi,
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i=1,. . . ,(20, 30, 40, 50, 75, 100, 200, 500) using the following model specification:

Yi = a0 + a1X1,i + a2X2,i + εi

• with a0 = a1 = a2 = 1

• and εi ∼ N(0,1).

Due though to contamination of the above model from the model

Yi = 1 +X1,i +X2,i + ε∗i

with ε∗i ∼ N(5, 1) the simulated values were generated from the model

Yi = d1(1 +X1,i +X2,i + εi) + d2(1 +X1,i +X2,i + ε∗i )

with d1, d2 ∈ (0, 1) such that d1 + d2 = 1.

Different values of d1 and d2 have been used in the present study. Two such examples

for d1 = 0.8, d2 = 0.2 and d1 = 1, d2 = 0 are presented below:

Yi = 0.8(1 +X1,i +X2,i + εi) + 0.2(1 +X1,i +X2,i + ε∗i )

and

Yi = 1 +X1,i +X2,i + εi.

In addition to the above, the cases:

• d1 = 0.9, d2 = 0.1

• d1 = 0.95, d2 = 0.05

have also been used in the present simulation study. Different values of γ were also been

used in this study.
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The reason for introducing contamination into the simulation study was to put into a test

the robust features of the PIC criterion.

With a set of 4 possible regressors there are 24 − 1 = 15 possible specifications that

include at least one regressor. These 15 possible regression specifications constitute the

set of candidate models for the experiment. As a result the candidate set consists of the

full model (X1, X2, X3, X4) given by

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + ε

as well as all 14 possible subsets of the full model consisting of one (Xj1), two (Xj1 , Xj2)

and three (Xj1 , Xj2 , Xj3), with ji ∈ {1, 2, 3, 4}, i = 1, 2, 3 of the 4 regressors X1, X2, X3,

and X4. 50 such experiments were performed with the intention to select the best model

among the available candidate models.

First we consider the standard AIC criterion given by

AIC = n log σ̂2
p + 2 (p+ 2)

where n the sample size, p the number of covariates of the model and σ̂2
p the estimate of

the variance of the model with p variables. The above form of AIC is the one associated

with the normal distribution.

We have also chosen to include in the simulations the Bayesian Information Criterion

[26] because of its consistency property. The BIC is given by

BIC = n log σ̂p
2 + (p+ 2) log n.

The MDIC given by

MDIC(p) = nMQθ̂ + (2π)−α/2(1 + α)2+p/2p
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has also been used with α = 0.25 with

MQθ̂ = −
[
(1 + α−1)

1

n

n∑
n=1

fαθ (Xi)

]
.

Finally the PIC [29] is given by

PIC = Qθ̂n
+

(γ + 1)2

(
√

2γ + 1)3
· d
n
− 1

2γn

(
γ + 1√
2γ + 1

)d
. (3.1)

For each of the 50 experiments the value of each of the above model selection criteria

was calculated for each of the 15 possible regression specifications under consideration.

As a result, for each of the 50 experiments and for each model selection criterion the 15

candidate models were ranked from 1st to 15th according to the value of the criterion.

Recall that the model chosen by a criterion is the one for which the value of the criterion

is the lowest among all 15 candidate models.

3.2 Simulation Results

The tables in this section present for each selection criterion, the proportion of times each

candidate model has been selected by the criterion for different values of γ and different

values of contamination (1, 0.95, 0.9, 0.8). Observe that all selections contain the correct

variables of the model, namely X1 and X2.
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3.2.1 10% Contamination

Table 3.1: Selected models by model selection criteria (n = 20)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 80 84 90 82 82 80 80 86

X1, X2, X3

(20)
(16)

(10)
(18)

(18)
(20)

(20)
(14)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 60 52 56 62 64 54 52 50
X1, X2, X3

(40)
(48)

(44)
(38)

(36)
(46)

(48)
(50)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 76 70 78 72 84 76 76 74
X1, X2, X3

(24)
(30)

(22)
(28)

(16)
(24)

(24)
(26)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 76 88 74 92 78 86 80
X1, X2, X3

(14)
(24)

(12)
(26)

(8)
(22)

(14)
(20)

X1, X2, X4

X1, X2, X3, X4

Table 3.2: Selected models by model selection criteria (n = 30)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 84 88 86 88 92 80 88 86

X1, X2, X3

(16)
(12)

(14)
(12)

(8)
(20)

(12)
(14)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 66 76 70 62 58 54 60 68
X1, X2, X3

(34)
(24)

(30)
(38)

(42)
(46)

(40)
(32)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 80 86 82 78 82 78 76 84
X1, X2, X3

(20)
(14)

(18)
(22)

(18)
(22)

(34)
(16)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 84 86 84 84 86 84 82 86
X1, X2, X3

(16)
(14)

(16)
(16)

(14)
(16)

(18)
(14)

X1, X2, X4

X1, X2, X3, X4
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Table 3.3: Selected models by model selection criteria (n = 40)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 96 88 80 92 86 86 86 92

X1, X2, X3

(4)
(12)

(20)
(8)

(14)
(14)

(14)
(8)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 60 70 62 58 74 64 74
X1, X2, X3

(30)
(40)

(30)
(38)

(42)
(26)

(36)
(26)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 92 90 90 82 76 88 76 90
X1, X2, X3

(8)
(10)

(10)
(18)

(24)
(12)

(24)
(10)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 86 88 82 76 92 78 90
X1, X2, X3

(10)
(14)

(12)
(18)

(24)
(8)

(22)
(10)

X1, X2, X4

X1, X2, X3, X4

Table 3.4: Selected models by model selection criteria (n = 50)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 92 88 92 90 82 94 86 90

X1, X2, X3

(8)
(12)

(8)
(10)

(18)
(6)

(14)
(10)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 64 62 64 66 74 72 74
X1, X2, X3

(30)
(36)

(38)
(36)

(34)
(26)

(28)
(26)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 92 88 82 92 88 88 86 88
X1, X2, X3

(8)
(12)

(18)
(8)

(12)
(12)

(14)
(12)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 92 86 76 88 84 88 86 88
X1, X2, X3

(8)
(14)

(24)
(12)

(16)
(12)

(14)
(12)

X1, X2, X4

X1, X2, X3, X4
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Table 3.5: Selected models by model selection criteria (n = 75)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 90 96 92 80 92 90 88 90

X1, X2, X3

(10)
(4)

(8)
(20)

(8)
(10)

(12)
(10)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 72 72 60 70 66 66 68 68
X1, X2, X3

(28)
(28)

(40)
(30)

(34)
(34)

(32)
(32)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 92 94 90 92 88 92 88 92
X1, X2, X3

(8)
(6)

(10)
(8)

(12)
(8)

(12)
(8)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 92 86 90 84 92 84 84
X1, X2, X3

(10)
(8)

(14)
(10)

(16)
(8)

(16)
(16)

X1, X2, X4

X1, X2, X3, X4

Table 3.6: Selected models by model selection criteria (n = 100)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 88 92 96 88 88 88 86 96

X1, X2, X3

(12)
(8)

(4)
(12)

(12)
(12)

(14)
(4)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 68 72 78 66 70 78 60 76
X1, X2, X3

(32)
(28)

(22)
(34)

(30)
(22)

(40)
(24)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 98 98 96 88 92 94 92 98
X1, X2, X3

(2)
(2)

(4)
(12)

(8)
(6)

(8)
(2)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 90 96 84 82 90 82 88
X1, X2, X3

(10)
(10)

(4)
(16)

(18)
(10)

(18)
(12)

X1, X2, X4

X1, X2, X3, X4
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Table 3.7: Selected models by model selection criteria (n = 200)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 86 88 86 90 88 82 92 96

X1, X2, X3

(14)
(12)

(14)
(10)

(12)
(18)

(8)
(4)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 72 80 78 68 78 56 66 66
X1, X2, X3

(28)
(20)

(22)
(32)

(22)
(44)

(34)
(34)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 98 96 98 92 96 92 96 98
X1, X2, X3

(2)
(4)

(2)
(8)

(4)
(8)

(4)
(2)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 86 96 80 86 82 88 90
X1, X2, X3

(10)
(14)

(4)
(20)

(14)
(18)

(12)
(10)

X1, X2, X4

X1, X2, X3, X4

Table 3.8: Selected models by model selection criteria (n = 500)

d1 = 0.9
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 92 94 94 94 90 94 84 92

X1, X2, X3

(8)
(6)

(6)
(6)

(10)
(6)

(16)
(8)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 78 72 56 70 60 82 76 74
X1, X2, X3

(22)
(28)

(44)
(30)

(40)
(18)

(24)
(26)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 98 98 96 100 94 100 94 100
X1, X2, X3

(2)
(2)

(4)
(6)

(6)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 92 88 82 90 78 94 88 88
X1, X2, X3

(8)
(12)

(8)
(10)

(22)
(6)

(12)
(12)

X1, X2, X4

X1, X2, X3, X4
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3.2.2 5% Contamination

Table 3.9: Selected models by model selection criteria (n = 20)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 82 88 80 94 82 88 86 86

X1, X2, X3

(18)
(12)

(20)
(6)

(18)
(12)

(14)
(14)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 78 50 66 70 66 64 66 70
X1, X2, X3

(22)
(50)

(34)
(30)

(34)
(36)

(34)
(30)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 84 64 74 84 84 76 82 84
X1, X2, X3

(16)
(36)

(26)
(16)

(16)
(24)

(18)
(16)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 74 82 88 88 80 88 90
X1, X2, X3

(10)
(26)

(18)
(12)

(12)
(20)

(12)
(10)

X1, X2, X4

X1, X2, X3, X4

Table 3.10: Selected models by model selection criteria (n = 30)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 80 88 94 92 82 82 86 94

X1, X2, X3

(20)
(12)

(6)
(8)

(18)
(18)

(14)
(6)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 66 58 68 72 68 72 58 70
X1, X2, X3

(34)
(42)

(32)
(28)

(32)
(28)

(42)
(30)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 86 74 82 90 82 96 80 84
X1, X2, X3

(14)
(26)

(18)
(10)

(18)
(4)

(20)
(16)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 92 74 84 90 86 96 82 86
X1, X2, X3

(8)
(26)

(16)
(10)

(14)
(4)

(18)
(14)

X1, X2, X4

X1, X2, X3, X4
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Table 3.11: Selected models by model selection criteria (n = 40)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 82 90 90 94 92 92 88 90

X1, X2, X3

(18)
(10)

(10)
(6)

(8)
(8)

(12)
(10)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 72 66 64 62 72 78 56 60
X1, X2, X3

(28)
(34)

(36)
(38)

(28)
(22)

(44)
(40)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 86 88 88 76 86 88 84 86
X1, X2, X3

(14)
(12)

(12)
(24)

(14)
(12)

(16)
(14)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 88 86 74 86 88 82 84
X1, X2, X3

(14)
(12)

(14)
(26)

(14)
(12)

(18)
(16)

X1, X2, X4

X1, X2, X3, X4

Table 3.12: Selected models by model selection criteria (n = 50)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 94 92 92 88 84 90 88 80

X1, X2, X3

(6)
(8)

(8)
(12)

(16)
(10)

(12)
(20)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 62 66 68 70 72 58 64
X1, X2, X3

(30)
(38)

(34)
(32)

(30)
(28)

(42)
(36)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 82 92 86 92 92 86 88
X1, X2, X3

(4)
(18)

(8)
(14)

(8)
(8)

(14)
(12)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 78 88 86 86 90 82 82
X1, X2, X3

(10)
(22)

(12)
(14)

(14)
(10)

(18)
(18)

X1, X2, X4

X1, X2, X3, X4
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Table 3.13: Selected models by model selection criteria (n = 75)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 94 92 82 94 92 84 92 86

X1, X2, X3

(6)
(8)

(18)
(6)

(8)
(16)

(8)
(14)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 66 72 54 62 66 62 60 78
X1, X2, X3

(34)
(28)

(46)
(38)

(34)
(38)

(40)
(22)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 90 96 88 90 94 84 94 90
X1, X2, X3

(10)
(4)

(12)
(10)

(6)
(16)

(6)
(10)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 94 74 84 92 82 84 88
X1, X2, X3

(14)
(6)

(26)
(16)

(8)
(18)

(16)
(12)

X1, X2, X4

X1, X2, X3, X4

Table 3.14: Selected models by model selection criteria (n = 100)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 90 88 92 90 98 96 92 90

X1, X2, X3

(10)
(12)

(8)
(10)

(2)
(4)

(8)
(10)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 78 78 66 82 68 68 58
X1, X2, X3

(30)
(22)

(22)
(34)

(18)
(32)

(32)
(42)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 92 92 94 96 94 88 96
X1, X2, X3

(4)
(8)

(8)
(6)

(4)
(6)

(12)
(4)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 88 82 90 94 84 88 88
X1, X2, X3

(10)
(12)

(18)
(10)

(6)
(16)

(12)
(12)

X1, X2, X4

X1, X2, X3, X4
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Table 3.15: Selected models by model selection criteria (n = 200)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 94 92 92 84 92 96 92 86

X1, X2, X3

(6)
(8)

(8)
(16)

(8)
(4)

(8)
(14)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 74 74 62 68 72 64 86 84
X1, X2, X3

(26)
(26)

(38)
(32)

(28)
(36)

(14)
(16)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 100 96 96 96 96 94 100 100
X1, X2, X3

(4)
(4)

(4)
(4)

(6)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 94 88 80 88 86 90 96 94
X1, X2, X3

(6)
(12)

(20)
(12)

(14)
(10)

(4)
(6)

X1, X2, X4

X1, X2, X3, X4

Table 3.16: Selected models by model selection criteria (n = 500)

d1 = 0.95
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 92 92 88 94 92 88 86 92

X1, X2, X3

(8)
(8)

(12)
(6)

(8)
(12)

(14)
(8)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 74 68 72 66 62 78 66 64
X1, X2, X3

(26)
(32)

(28)
(34)

(38)
(22)

(34)
(36)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 98 100 100 96 98 98 100
X1, X2, X3

(4)
(2)

(4)
(2)

(2)
X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 94 86 90 90 78 88 86 86
X1, X2, X3

(6)
(14)

(10)
(10)

(22)
(12)

(14)
(14)

X1, X2, X4

X1, X2, X3, X4
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3.2.3 0% Contamination (no-contaminated data)

Table 3.17: Selected models by model selection criteria (n = 20)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 86 86 86 86 88 82 92 80

X1, X2, X3

(14)
(14)

(14)
(14)

(12)
(18)

(8)
(20)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 64 74 62 58 64 62 70 60
X1, X2, X3

(36)
(26)

(38)
(42)

(36)
(38)

(30)
(40)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 78 90 78 80 82 80 74 72
X1, X2, X3

(22)
(10)

(22)
(20)

(18)
(20)

(26)
(28)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 84 92 88 88 88 88 80 72
X1, X2, X3

(16)
(8)

(12)
(12)

(12)
(12)

(20)
(28)

X1, X2, X4

X1, X2, X3, X4

Table 3.18: Selected models by model selection criteria (n = 30)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 82 86 92 82 82 84 84 90

X1, X2, X3

(18)
(14)

(8)
(18)

(18)
(16)

(16)
(10)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 64 70 56 58 66 64 66 64
X1, X2, X3

(36)
(30)

(44)
(42)

(34)
(36)

(34)
(36)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 88 86 78 78 82 74 82 82
X1, X2, X3

(12)
(14)

(22)
(22)

(18)
(26)

(18)
(18)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 88 84 80 78 84 74 80 82
X1, X2, X3

(12)
(16)

(20)
(22)

(16)
(26)

(20)
(18)

X1, X2, X4

X1, X2, X3, X4
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Table 3.19: Selected models by model selection criteria (n = 40)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 82 88 88 80 90 84 82 92

X1, X2, X3

(18)
(12)

(12)
(20)

(10)
(16)

(18)
(8)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 78 62 56 62 64 72 64
X1, X2, X3

(30)
(22)

(38)
(44)

(38)
(36)

(28)
(36)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 88 88 92 74 86 84 92 84
X1, X2, X3

(12)
(12)

(8)
(26)

(14)
(16)

(8)
(16)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 82 90 88 72 80 84 90 82
X1, X2, X3

(18)
(10)

(12)
(28)

(20)
(16)

(10)
(18)

X1, X2, X4

X1, X2, X3, X4

Table 3.20: Selected models by model selection criteria (n = 50)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 94 90 80 84 90 94 88 90

X1, X2, X3

(6)
(10)

(20)
(16)

(10)
(6)

(12)
(10)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 64 68 62 68 66 64 62 44
X1, X2, X3

(34)
(32)

(38)
(32)

(34)
(36)

(38)
(56)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 86 86 86 90 86 94 82 82
X1, X2, X3

(14)
(14)

(14)
(10)

(14)
(6)

(18)
(18)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 84 84 82 88 84 90 82 74
X1, X2, X3

(16)
(16)

(18)
(12)

(16)
(10)

(18)
(26)

X1, X2, X4

X1, X2, X3, X4
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Table 3.21: Selected models by model selection criteria (n = 75)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 90 88 92 78 84 86 86 82

X1, X2, X3

(10)
(12)

(8)
(22)

(16)
(14)

(14)
(18)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 66 56 70 68 74 70 66 78
X1, X2, X3

(34)
(44)

(30)
(32)

(26)
(30)

(34)
(22)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 88 94 90 90 90 92 92 92
X1, X2, X3

(12)
(6)

(10)
(10)

(10)
(8)

(8)
(8)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 86 82 82 86 80 84 86
X1, X2, X3

(14)
(14)

(18)
(18)

(14)
(20)

(16)
(14)

X1, X2, X4

X1, X2, X3, X4

Table 3.22: Selected models by model selection criteria (n = 100)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 94 96 92 92 96 90 94 82

X1, X2, X3

(6)
(4)

(8)
(8)

(4)
(10)

(6)
(18)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 78 74 72 74 70 62 74 72
X1, X2, X3

(22)
(26)

(28)
(26)

(30)
(38)

(26)
(28)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 100 92 96 94 90 100 94
X1, X2, X3

(4)
(8)

(4)
(6)

(10)
(6)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 94 92 86 90 86 80 94 90
X1, X2, X3

(6)
(8)

(14)
(10)

(14)
(20)

(6)
(10)

X1, X2, X4

X1, X2, X3, X4
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Table 3.23: Selected models by model selection criteria (n = 200)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 90 88 86 88 90 92 90 82

X1, X2, X3

(10)
(12)

(14)
(12)

(10)
(8)

(10)
(18)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 54 68 68 70 78 64 60 64
X1, X2, X3

(46)
(32)

(32)
(30)

(22)
(36)

(40)
(36)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 100 96 96 98 94 100 90 92
X1, X2, X3

(4)
(4)

(2)
(6)

(10)
(8)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 82 90 82 86 88 92 78 82
X1, X2, X3

(18)
(10)

(18)
(14)

(12)
(8)

(22)
(18)

X1, X2, X4

X1, X2, X3, X4

Table 3.24: Selected models by model selection criteria (n = 500)

d1 = 1
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 98 82 82 94 96 88 84 98

X1, X2, X3

(2)
(18)

(18)
(6)

(4)
(12)

(16)
(2)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 82 74 76 68 74 62 70 78
X1, X2, X3

(18)
(26)

(24)
(32)

(26)
(38)

(30)
(22)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 94 96 98 96 98 96 100 100
X1, X2, X3

(6)
(4)

(2)
(4)

(2)
(4)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 90 82 90 84 86 76 88 94
X1, X2, X3

(10)
(18)

(10)
(16)

(14)
(24)

(12)
(6)

X1, X2, X4

X1, X2, X3, X4
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3.2.4 20% Contamination

Table 3.25: Selected models by model selection criteria (n = 20)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 90 84 88 84 92 90 86 74

X1, X2, X3

(10)
(16)

(12)
(16)

(8)
(10)

(14)
(26)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 62 56 52 56 66 56 60 60
X1, X2, X3

(38)
(44)

(48)
(44)

(34)
(44)

(40)
(40)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 74 76 60 74 72 68 70 74
X1, X2, X3

(26)
(24)

(40)
(26)

(28)
(32)

(30)
(26)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 86 64 78 84 80 74 82
X1, X2, X3

(14)
(14)

(36)
(22)

(16)
(20)

(26)
(18)

X1, X2, X4

X1, X2, X3, X4

Table 3.26: Selected models by model selection criteria (n = 30)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 88 88 92 80 78 72 82 82

X1, X2, X3

(12)
(12)

(8)
(20)

(22)
(28)

(18)
(18)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 68 68 66 66 64 56 60 62
X1, X2, X3

(32)
(32)

(34)
(34)

(36)
(44)

(40)
(38)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 88 84 82 82 82 88 82 84
X1, X2, X3

(12)
(16)

(18)
(18)

(18)
(12)

(18)
(16)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 88 94 86 88 82 88 88 86
X1, X2, X3

(12)
(6)

(14)
(12)

(18)
(12)

(12)
(14)

X1, X2, X4

X1, X2, X3, X4
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Table 3.27: Selected models by model selection criteria (n = 40)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 92 94 92 86 94 92 84 86

X1, X2, X3

(8)
(6)

(8)
(14)

(6)
(8)

(16)
(14)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 68 64 66 54 70 66 62 58
X1, X2, X3

(32)
(36)

(34)
(46)

(30)
(34)

(38)
(42)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 84 86 86 80 90 92 88 86
X1, X2, X3

(16)
(14)

(14)
(20)

(10)
(8)

(12)
(14)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 86 88 80 90 90 88 88
X1, X2, X3

(14)
(14)

(12)
(20)

(10)
(10)

(12)
(12)

X1, X2, X4

X1, X2, X3, X4

Table 3.28: Selected models by model selection criteria (n = 50)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 86 96 94 90 88 86 90 88

X1, X2, X3

(14)
(4)

(6)
(10)

(12)
(14)

(10)
(12)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 74 64 82 62 64 78 72 68
X1, X2, X3

(26)
(36)

(18)
(38)

(36)
(22)

(28)
(32)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 94 86 96 86 90 88 90 90
X1, X2, X3

(6)
(14)

(4)
(14)

(10)
(12)

(10)
(10)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 94 82 98 82 86 88 90 88
X1, X2, X3

(6)
(18)

(2)
(18)

(14)
(12)

(10)
(12)

X1, X2, X4

X1, X2, X3, X4

55



Table 3.29: Selected models by model selection criteria (n = 75)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 92 82 92 94 90 80 92 92

X1, X2, X3

(8)
(18)

(8)
(6)

(10)
(20)

(8)
(8)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 74 72 74 58 78 68 68 62
X1, X2, X3

(26)
(28)

(26)
(42)

(22)
(32)

(32)
(38)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 98 88 98 90 94 92 92 92
X1, X2, X3

(2)
(12)

(2)
(10)

(6)
(8)

(8)
(8)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 96 88 94 88 92 90 90 90
X1, X2, X3

(4)
(12)

(6)
(12)

(8)
(10)

(10)
(10)

X1, X2, X4

X1, X2, X3, X4

Table 3.30: Selected models by model selection criteria (n = 100)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 94 94 94 92 88 88 94 92

X1, X2, X3

(6)
(6)

(6)
(8)

(12)
(12)

(6)
(8)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 82 78 70 68 68 72 72
X1, X2, X3

(30)
(18)

(22)
(30)

(32)
(32)

(28)
(28)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 90 96 98 90 96 94 88 90
X1, X2, X3

(10)
(4)

(2)
(10)

(4)
(6)

(12)
(10)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 86 96 92 86 92 90 88 82
X1, X2, X3

(14)
(4)

(8)
(14)

(8)
(10)

(12)
(18)

X1, X2, X4

X1, X2, X3, X4
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Table 3.31: Selected models by model selection criteria (n = 200)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 92 94 88 88 94 84 92 88

X1, X2, X3

(14)
(8)

(14)
(6)

(8)
(2)

(14)
(42)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 78 66 66 74 62 68 64 78
X1, X2, X3

(22)
(34)

(34)
(26)

(38)
(32)

(36)
(22)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 96 98 96 92 96 94 96 98
X1, X2, X3

(4)
(2)

(4)
(8)

(4)
(6)

(4)
(2)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 96 90 88 92 88 84 86 96
X1, X2, X3

(4)
(10)

(12)
(8)

(12)
(16)

(14)
(4)

X1, X2, X4

X1, X2, X3, X4

Table 3.32: Selected models by model selection criteria (n = 500)

d1 = 0.8
%

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.4
PIC X1, X2 88 92 90 92 90 94 88 94

X1, X2, X3

(12)
(8)

(10)
(8)

(10)
(6)

(12)
(6)

X1, X2, X4

X1, X2, X3, X4

AIC X1, X2 70 78 72 64 76 60 58 64
X1, X2, X3

(30)
(22)

(28)
(36)

(24)
(40)

(42)
(36)

X1, X2, X4

X1, X2, X3, X4

BIC X1, X2 98 96 92 100 98 100 98 98
X1, X2, X3

(2)
(4)

(8)
(2)

(2)
(2)

X1, X2, X4

X1, X2, X3, X4

MDIC X1, X2 84 92 86 90 90 88 86 86
X1, X2, X3

(16)
(8)

(14)
(10)

(10)
(12)

(14)
(14)

X1, X2, X4

X1, X2, X3, X4

57



The simulation study showed that for d1 = 0.9 and d1 = 0.95 PIC has the highest

success rate for small sample sizes. For medium sample sizes PIC is comparable to BIC,

while for large sample sizes PIC ranked second and BIC ranked first.

For the case where we don’t have contamination and d1 = 1 for small sample sizes PIC

has the highest success rate while for medium and large sample sizes PIC ranked second

and BIC was first.

For the case where d1 = 0.8 PIC has the highest success rate for small sample sizes,

while the second one was MDIC. For medium sample sizes PIC is comparable to BIC.

Finally, PIC ranked second for large sample sizes and BIC was first.

Also, the results of the simulation study show that for small and medium sample sizes,

values of γ between 0.1 and 0.25 are associated with a very good performance of the new

PIC criterion both in the uncontaminated case, as well as for a fraction of contamination

smaller than 20%. This leads to the idea of choosing of an optimal value of the tuning

parameter γ in order to assure the robustness and the efficiency of the procedure. This

issue will be considered in future research studies.

For a visual evaluation of the proposed PIC model selection criterion against all other

competitors we provide a representative set of four (4) graphs for sample size n = 40,

one for each of the contamination proportions considered in this work (Figures 3.1-3.4),

where on the horizontal axis are the different values of γ. The graphs show the propor-

tion of the correct model selection for each γ. All figures show the satisfactory perfor-

mance of the proposed PIC criterion (blue) in comparison with AIC (red), BIC(grey) and

MDIC(yellow).
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Figure 3.1: Proportion of the correct model selected (n = 40,
20% contamination).
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Figure 3.2: Proportion of the correct model selected (n = 40,
10% contamination).
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Figure 3.3: Proportion of the correct model selected (n = 40,
5% contamination).
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Figure 3.4: Proportion of the correct model selected (n = 40,
0% contamination).
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3.3 Real Case Study

3.3.1 Cement Hardening Data

This example is a small set of data on variables thought to be related to the heat evolved

during the hardening of Portland cement [30]. This data set has been used by various

authors (see [10], [12]) and represents a popular example for multiple linear regression

analysis.

Table 3.33: Cement hardening data

X1 X2 X3 X4 Y
7 26 6 60 78.5
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4

The data include 4 predictor variables with a sample size of 13. The predictor variables

(as a percentage of the weight) are:

• X1 = calcium aluminate (3CaO · Al2O3)

• X2 = tricalcium silicate (3CaO · SiO2)

• X3 = tetracalcium alumino ferrite (4CaO · Al2O3 · Fe2O3)

• X4 = dicalcium silicate (2CaO · SiO2,)
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while the response variable is

• Y = total calories given off during hardening per gram of cement after 180 days.

3.3.2 Set of Candidate Models and Model Selection Criteria

Because there are 4 variables available, we considered all (24− 1 = 15) 15 possible candi-

date models, involving at least one regressor for this dataset.

The model selection criteria that have been used are PIC [29], AIC [2], BIC [26] and

MDIC [20]. In addition, because of the small sample size we also added AICc [15] in the

study.

3.3.3 Results

The following table shows which model was selected by PIC, AIC, AICc, BIC and MDIC.

Observe that PIC chooses different models as the value of γ changes. We note, however,

that the 4 single-variable models should be excluded from the analysis because cement

involves a mixture of at least two compounds that react chemically (see [10]).

• PIC for γ = 0.3 chooses X1X2X4 model as AIC.

• PIC for γ = 0.4 chooses X1X2X3 model like MDIC.

• AICc and BIC both choose X1X2 model.
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Table 3.34: Selected models by model selection criteria

Criteria γ Variables Criteria Variables
PIC 0.01 X1 AIC X1X2X4

AICc X1X2

0.05-0.25 X2

BIC X1X2

0.3 X1X2X4 MDIC X1X2X3

0.4 X1X2X3

We observe that PIC behaves similarly to AIC and MDIC having a slight tendency of

overestimation. Note though that for the specific dataset the collinearity is quite strong

with X1 and X3 as well as X2 and X4 being seriously correlated.

3.4 Conclusions

In this work we performed a comparative study of model selection criteria in order to

investigate the practical implications of the new criterion PIC.

The simulation study showed that for d1 = 0.9 and d1 = 0.95 PIC has the highest

success rate for small sample sizes. For medium sample sizes PIC is comparable to BIC,

while for large sample sizes PIC ranked second and BIC ranked first.

For the case where we don’t have contamination and d1 = 1 for small sample sizes PIC

has the highest success rate while for medium and large sample sizes PIC ranked second

and BIC was first.

For the case where d1 = 0.8 PIC has the highest success rate for small sample sizes,

while the second one was MDIC. For medium sample sizes PIC is comparable to BIC.

Finally, PIC ranked second for large sample sizes and BIC was first.

The real case study showed that PIC gives different results for the different values of

γ, but it has the same behaviour as AIC for γ = 0.3 and the same behaviour as MDIC
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for γ = 0.4.

Based on the results of the simulation study we conclude that the performance of

PIC is satisfactory for all possible settings according to the sample size, underlying error

distribution and contamination rate. An important issue that needs further investigation

is the choice of the appropriate value for the tunning parameter γ.

We hope to address and provide a satisfactory solution to this problem in a future

work. We also intent to explore the capabilities of PIC in various other settings.
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