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Abstract

Nowadays, steganography is the main mean of illegal secret
communication. Therefore, the need of detecting steganographic content and
especially stego images is becoming more compulsory. However, steganalysis
is a very difficult task and its success depends on many factors, like the presence
of the cover medium, evidence of the utilized steganographic algorithm etc. Early
steganalysis methods deploy statistical attacks on stego images while more
recent ones use deep learning techniques. The latter ones mainly utilize
convolutional neural networks and show promising results.

This dissertation deals with issues related to steganalysis and in particular
to image steganalysis. Basic concepts of image steganalysis along with a
taxonomy for classification of the different steganalysis methods used by a digital
forensic examiner are presented. Moreover, a detailed overview of state-of-the-
art methods proposed in literature is given. The research focuses in two major
research questions i.e. the proposal of a novel convolutional neural network, and
afterwards its utilization as a feature extractor.

The proposed method initially utilized a dilated convolutional neural
network - KarNet - to identify stego images from two different steganographic
algorithms i.e. Spatial-Universal Wavelet Relative Distortion (S-UNIWARD) and
Wavelet Obtained Weights (WOW). The proposed convolutional neural network
was compared against other state-of-the-art deep learning techniques and it
outperforms them.

Afterwards, KarNet was utilized as feature extractor and it was
investigated whether a machine learning classifier - Random Forest — can
replace the traditional softmax layer a convolutional neural network has, with
similar or better classification accuracy. Extensive experiments were conducted,
and the proposed model was also compared against state-of the-art feature
extraction methods, namely the Subtractive Pixel Adjacency Matrix (SPAM) and

Spatial Rich Model (SRM) methods. Results showed that the proposed method
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achieves high classification accuracy and outperforms other analogous

steganalysis approaches.



MepiAnyn

2TNV ONMEPIVA €TTOXN, N OTEyavoypagia gival o KUPIOG TPOTTOG YId TNV
ETTITEUEN TTAPAVOUNG MUCTIKAG ETTIKOIVWVIAG. Q¢ K TOUTOU, N avAyKn avixveuong
OTEYAVOYPOAPIKOU TTEPIEXOUEVOU Kal 10iWG OTEYAVOYPAPNUEVWV EIKOVWYV YiVETAI
ETMTAKTIKI. QOTO0O0, N oTEYaVAAUOH €ival Eva TTOAU BUOKOAO £pyO Kal N ETTITUXIO
NG e€€aptdtal amd TTOAAOUG TTAPAyovTeG, OTTWG N TTAPouUdia Tou HECOU
oTeyavoypaenong, TAa  ATTOOEIKTIKA  OTOIXEI TOU  XPNOIUOTTOIOUEVOU
oTeyvoypa@ikoU aAyopiBuou K.ATT. Or 1o ouvnBiouéveg uéBodol oTeyavaAuong
XPNOIMOTTOIOUV OTATIOTIKA METPA VIO VA QVOYVWPIOOUV OTEYAVOYPAPNUEVES
EIKOVEG, EVW Ol TTI0 TTPOCQPATEG XPNOIUOTTOIOUV TEXVIKEG BaBIGG paddnong (deep
learning). O1 TEAEUTAIEG XPNOIPMOTTOIOUV KUPIWG CUVEAIKTIKA VEUPWVIKA SiKTUO Kal
TTAPOUCIACOUV UTTOOXOUEVA OTTOTEAECUATA.

Auti n OloTpIBy aoxoAcital pe CnTAMOTA TTOU  OXETICOVTAI WE TN
oteyavaAuon kai €10IKOTEPA PE TN oTeyavaAuon eikovwy. lMapouoidalovrtal ol
Baoikég €vvoieg TNG oTeyavdAAuong €IKOVWVY padi ye upia Tagivounon Twv
OIAPOPETIKWYV PEBODBWYV OTEYAVAAUONG TTOU XPNOIYOTTOIoUVTAIl aTTd £vav £EETAOT
WYNQIOKWYV TTEIOTNPIWV. ETTITTAEOV, TTOPEXETAI YIO AETTTOMEPNAG ETTIOKOTTNON TWV
TTponyuévwy peBOGdwv TToUu  TTpoTteivovTal otn  BiIBAloypagia. H épeuva
ETTIKEVTPWVETAI € OUO PEYAAA EPEUVNTIKA EpWTHUATA, ONAAdK TNV TTPOTACT VOGS
VEOU OUVEAIKTIKOU VEUPWVIKOU OIKTUOU KOl OTn OUVEXEID TN XPrRon Tou wg
€CAYWYEQ XAPOKTNPIOTIKWV.

H mpoteivopevn péBodOG XpNOIKOTTOIEI APXIKA £VA KAIVOTOUO OUVEAIKTIKO
VEUPWVIKO DiKTUO - KarNet - yia TOV EVTOTTIONO OTEYAVOYPAPNUEVWYV EIKOVWY ATTO
OUo dIaQOPETIKOUG aAyopIBuoug oTeyavoypa@iag, Toug Spatial-Universal
Wavelet Relative Distortion (S-UNIWARD) kai Wavelet Obained Weights
(WOW). To mpoteivopevo OUVENIKTIKO VEUPWVIKO OIiKTUO CUYKPIBNKE PE AAAEG
TTPONYMEVEG TEXVIKEC BaBIAG NABNONG Kai TIG EETTEPVAL.

21n ouvéxela, 1o KarNet xpnoigotroieital wg epyaAeio eEaywyng
XOPAKTNPIOTIKWY Kal BIEPEUVOUUE €AV €vag TALIVOUNTAS MNXAVIKNAG udabnong -

Xi



Random Forest - pjmopei va avTikaTaoTAoEl TO TTAPAdOCIoKS  ETTITTEDO
Tagivopnong softmax 1mou TTapadooiakd XPNOIYOTIOIEl Eva TETOIO OIKTUO, ME
TTapouoIa i KaAUTEPN akpifela Tagivounong. Alegnxdnoav ekTeTauéva TTeipduaTa
KAl TO TTPOTEIVOUEVO POVTEAO OUYKPIBNKE €TTIONG PE TIG TIG TTIO JIOOEDOUEVES
MEBOOOUG £CaywyNG XapakTnPIoTIKwY, dNAadn Tig peBddoug Subtractive Pixel
Adjacency Matrix (SPAM) kai Spatial Rich Model (SRM). Ta amoreAéoparta
£€deI1gav OTI n TTPOTEIVOPEVN HEBODOG ETTITUYXAVEI UYNAN akpiBela Tagivounong Kai

EetTepva AAAeG avaAloyeg peBOdouG oTeyavaAuong.
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Chapter 1
Introduction

1.1 Introduction to Steganography and Digital
Forensics

Steganography is the art of covered or hidden messaging. It is far different from
cryptography which is the art of making something impossible to understand
(Figure 1.1)’ unless the cryptography key is known. Steganography hides a
message in a medium -which is in plain sight-, but no one understands hidden
message’s existence unless he is aware of it (Figure 1.2). It is an ancient
technique and the etymology of the word comes from Greek words: steganos

(cover) + grapho (write).

Luinr ituia tgrnv cip rtoe, dttumoeetii idecalafps eugu. pr nuan amnts, apilie uN nuinovee
sale, uumttcsse cuea Fdatht. uaelmhl uus uoCui iinor. stotssou claacneu lisgsp eisutat. xsicl
na ghtatl eriel. pmleitteu sieudrcavts atnrillgo tNaemo poteed vvgeeiais. tcuce onnmert
liraovnrrtl nuneeu, teisiiN irmdanaeluse imce oiligre suo. stlrpesmrea triuutn. geseuuct
bhaaafsil, eovdmm ea ecaurioso smstosuacnUo, rssn rtlr eeoAmo seeee, fmue eevirsin imi
nlacre ri Ismnr. odtctl tosp nptre aespefre, eqmnis eecla iuuag, ssrtse tesaoe. soapr em
uVveh rtvldma, uadisctu ce am, efnufu ilVs. osrssei ast innesindo tlsic, mbr Inounrhr urrolr.
galnr milaubn uaplNn isnncnsrisme. xmfn oFhn tio, arivleL pur icntrsit ntldpr, uedngaco Id
nuDnui. eshagtu uetraarv siea maV veelilm tnuiuei. nee ral vler snmideaia eulfl, Isi ariulSss
etDl. cnn riedser elisos iitceioo, ecnmelai varied udl, Ineamlm urd. sruii tsoaiiiiu tsbrbtfu
Ibieao. aet maincDn edeaaPtst icue, ect erantpe esoom unajelisg e. eeutSdd na cttc dih
rtdesu chupa enuumets. pgsl admeumsep iiu inch nstu pmlruocona. imls sdilef laeia ir, tuer
eotuars ioe esddmpr itu. teegt inuDegc umoeuiur ohri, mn ttenernm nncd mmotiibu Ns.
cvrrm iucle Npeus nni irpd, racetdsgtdu cupequistt lanu. la nle esu Emaseal, omunuia tenP
naci, tornsiuee mesde. eP smsaitiu ltuairrstias epseuip.

Figure 1.1: An encrypted text.



Figure 1.2: (left) An “innocent” stego image (right) the hidden image.

The first steganographic technique was developed in ancient Greece around
440 B.C. A Greek ruler named Histaeus shaved the head of a slave [1], tattooed
a message on his scalp, waited for his hair to growth, and sent the slave to deliver
the message. Everybody could see the slave, but no one - except the recipient -
could know that there was a hidden message. Obviously, the recipient would
reply in the same form of steganography. In this case the cover medium was the
slave’s head. About the same time period, other steganographic attempts were
deployed with different cover mediums. Demaratus can be referred as an
example, who delivered successfully a message to the Spartans warning them
of invasion from Xerxes. The message was carved on the wood of a wax tablet,
and then was covered with a fresh layer of wax. Many years later Sir Francis
Bacon used a variation in type face to carry each bit of the encoding.
Steganography continued over time to develop into new levels. The idea was
always the same. The only thing that changed from time to time was the cover
mediums.

Needless to say, steganography was extensively used during wars [1], [2].
During the American revolutionary war, both British and American forces used
invisible inks. The hidden text was written with invisible ink made from milk,

vinegar or fruit juice. Light or heat was then used to decipher these hidden
2



messages. During World War Il the Germans introduced microdots. The
microdots were complete documents, pictures, and plans reduced in size to the
size of a period and attached to common paperwork. Null ciphers were also used
to pass secret messages. Null ciphers are unencrypted messages with real
messages embedded in the current text. Hidden messages were hard to interpret
within the innocent messages. An example of an innocent message containing a

null cipher is:

‘Fishing freshwater bends and saltwater coasts rewards anyone feeling
stressed. Resourceful anglers usually find masterful leapers fun and admit

swordfish rank overwhelming any day.” [3]

If the third letter is extracted from each word — indicated in bold-, the following
message emerges: “Send Lawyers, Guns, and Money”.

The ongoing development of computer and network technologies provided an
excellent new channel for steganography. There are numerous examples that
can be referred. As mentioned, the only thing that changes from time to time, is
the cover medium. These cover mediums will be referred with more details in a
following chapter.

Steganography is also used for monitoring of radio advertisements to verify that
the advertisement is the original which, indexing of videomail (to embed
comments) and medical imaging (to embed information like patient name, DNA
sequences and other particulars) [4]. Other applications include smart video-
audio synchronization, secure and invisible storage of confidential information,
identity cards (to embed individuals’ details) and checksum embedding [5].

Watermarking is another application of steganography [6]. Watermarking
mainly involves the protection of intellectual property such as ownership
protection, file duplication management, document authentication (by inserting
an appropriate digital signature) and file annotation.

Steganalysis is the opposite procedure of steganography. Primarily, an attempt
is made to detect the existence of steganographic content in a digital device and

3



secondly to discover the hidden message. Therefore, under this perspective,
steganalysis can be classified into two major categories:

> passive

» active
Passive steganalysis tries to classify a cover medium as stego and identify the
steganographic embedding algorithm, while active steganalysis additionally tries
to estimate the embedded message length and ideally extract it from the cover
medium.

Digital forensics is a relative new field in Computer Science and focuses
on the acquisition, preservation and analysis of digital evidence. As Palmer said,
digital forensics are “the use of scientifically derived and proven methods toward
the preservation, collection, validation, identification, analysis, interpretation,
documentation, and presentation of digital evidence derived from digital sources
for the purpose of facilitation or furthering the reconstruction of events found to
be criminal, or helping to anticipate unauthorized actions shown to be disruptive

to planned operations.” [7].

1.2 Motivation

Nowadays in the digital era, steganography is becoming more and more
widespread. A lot of steganographic techniques have been proposed and many
software tools were developed and are accessible by everyone. Unfortunately,
besides the aforementioned uses of steganography, it can also be used for illegal
activities by criminals and terrorists.

There are many articles in newspapers (in printed or online version)
stating that steganography was used by terrorists like Al-Qaeda or ISIS [8]—[11].
These articles started to appear after the 9/11 incident, when everybody
wondered and tried to discover how terrorists communicated in order to organize
such a big terrorist strike.

Steganography may also be used in other criminal activities such as:



> Child abuse
> Economic frauds

» Pornography etc.

Nowadays information is -mainly- digital, a stego medium it can be very easily
transmitted through internet and can be found in many forms like documents,
images, sound files etc. All these types of digital information can be used to
embed steganographic content. There are many steganographic tools available
as commercial software or freeware, which can be easily downloaded. Steghide
[12] supports both image (jpeg and bmp format) and audio (wav and au format)
files. Invisible secrets [13] is a proprietary software tool that uses images and
sound files as cover mediums. Snow [14] is another free tool which uses
whitespaces to the end of text to hide messages. Thus, this criminal behavior is
becoming simpler while the authorities’ work (i.e. steganalysis) becomes more
difficult.

Depending on the cover medium, and the way a steganographic algorithm
embeds the secret information, researchers proposed many different methods to
discriminate clean from stego mediums but until now there is not a universal
(blind) approach [15]. Therefore, a more appropriate and effective set of

techniques should be developed.

1.3 Objectives

The main part of this dissertation is steganalysis of information hiding
techniques. The task of a steganalyst is to design an algorithm that can classify
a cover medium as stego (i.e. having embedded content) or clean. The research
methods published so far, deal with grayscale and color images and focus to
either specific steganographic algorithms or specific image formats [15]. This
dissertation proposes a novel research proposal which combines deep learning

and traditional machine learning techniques applicable to images of pgm format,



though it can easily be deployed to other image formats as well. Our main

objectives and contributions are as follows:

v

To study techniques that can be applied to distinguish the images
embedded with secret messages from those without.

To propose a novel convolutional neural network to classify images into
clean or stego.

To utilize the proposed convolutional neural network solely as feature
extractor. The extracted features afterwards will train a Random Forest
[16] classifier to identify the stego images. This technique will serve as an
automated system to perform the analysis on a large number of images.
To evaluate the discriminative capability of the hybrid classification
scheme described earlier in respect to the traditional softmax classifier a
typical convolutional neural network has.

To prove that the combination of deep learning techniques along with
traditional machine learning classifiers can be effective in steganalysis.
To evaluate the functionality of the proposed steganalysis technique
across different steganographic methods. In particular, it is investigated
how this steganalysis technique could be used to detect Spatial-Universal
Wavelet Relative Distortion (S-UNIWARD) [17] and Wavelet Obtained
Weights (WOW) [18] algorithms.

In addition, this feature selection technique should be easily refined and
used to detect a different type of steganographic method. This property is
important when dealing with an unknown and new steganographic
method. Therefore, a novel steganalysis technique that could be

characterized as universal should be provided.



1.4 Publications

Parts of the work described in this dissertation have been published in
scientific journals and conference proceedings. A complete list of related
publications is following:

e Karampidis K., Kavallieratou E., Papadourakis G. “Comparison of
Classification Algorithms for File Type Detection A Digital Forensics
Perspective”, in POLIBITS, vol.56, 2017, pp-15-20.

e Konstantinos Karampidis, Ergina Kavallieratou, Giorgos Papadourakis, “A
review of image steganalysis techniques for digital forensics”, Journal of
Information Security and Applications, Volume 40, 2018, Pages 217-235,
ISSN 2214-2126, https://doi.org/10.1016/].jisa.2018.04.005

e Jonescu B. et al. (2019) ImageCLEF 2019: Multimedia Retrieval in

Lifelogging, Medical, Nature, and Security Applications. In: Azzopardi L.,
Stein B., Fuhr N., Mayr P., Hauff C., Hiemstra D. (eds) Advances in
Information Retrieval. ECIR 2019. Lecture Notes in Computer Science, vol
11438. Springer, Cham.

e J|onescu B. et al. “ImageCLEF 2019: Multimedia retrieval in medicine,
lifelogging, security and nature” Experimental IR Meets Multilinguality,
Multimodality, and Interaction. Proceedings of the 10th International
Conference of the CLEF Association (CLEF 2019), LNCS Lecture Notes
in Computer Science, Springer, Lugano, Switzerland, September 9-12,
20109.

e Karampidis K. et al. “Overview of the ImageCLEFsecurity 2019: File
Forgery Detection Tasks”, Working Notes of CLEF 2019 - Conference and
Labs of the Evaluation Forum, vol 2380, Lugano, Switzerland, September
9-12, 20109.

e Karampidis K., Kavallieratou E., Papadourakis G. “A dilated convolutional
neural network as feature extractor — A hybrid classification scheme” to
be appeared in Pattern Recognition and Image Analysis, Issue 3, Vol. 30,
2020.


https://doi.org/10.1016/j.jisa.2018.04.005

1.5 ImageCLEF 2019

In September 2019, ImageCLEF 2019 [19] an evaluation campaign that is
being organized as part of the CLEF initiative labs [20] was held in Lugano
Switzerland. ImageCLEF 2019 hosted several research tasks where teams
around the world could participate. Among these research tasks were the File
Forgery Detection tasks [21] we have organized.

The security tasks were composed by three subtasks: a) Forged file
discovery, b) Stego image discovery and c) Secret message discovery. The data
set contained 6,400 images and pdf files, divided into 3 sets. There were 61
participants all over the world and most of them participated in all the subtasks.
Although the datasets were small, most of the participants used deep learning
techniques, especially in subtasks 2 & 3 [22].

The results obtained in subtask 3 — which proved to be the most difficult
one - showed that there is room for improvement, as more advanced techniques
are needed to achieve better results. Deep learning techniques adopted by many
researchers proved that they may provide a promising steganalysis tool to a

digital forensics’ examiner.

1.6 Organisation of the Dissertation

The rest of the dissertation is organized into seven chapters. Chapter 1
provides an introduction to steganography and Digital Forensics along with
objects and motivations of this dissertation. Chapter 2 gives short introductions
to the field, including the definitions, terms, synonyms and taxonomy.

Chapter 3 reviews the literature related to our work. Several steganalysis
technigues are presented and analyzed according to the taxonomy given in
Chapter 2. Most methods presented in the literature employ pattern recognition
methodology. Moreover, they focus finding a relevant feature set and afterwards

to apply traditional classifiers to distinguish clean from stego images. This



literature review describes former and modern classification techniques utilized
to discriminate clean from stego images. It also highlights gaps in this
methodology and shows that in feature selection part, there was room for
improvement.

Basic concepts regarding convolutional neural networks are presented in
Chapter 4. In this Chapter a description of the building layers / blocks utilized in
the proposed convolutional neural network is presented, in order to give an
insight why the specific ones were chosen.

In Chapter 5 a novel convolutional neural network architecture used for
classification of stego images is proposed. Its architecture is thoroughly analyzed
while it is compared to other state-of-the-art convolutional neural networks for
spatial image steganalysis.

In Chapter 6 a hybrid classification scheme is proposed. Furthermore, a
description of the chosen machine learning classifier is given. More specifically,
the proposed convolutional neural network - described in Chapter 5 - was utilized
as a feature extractor. Afterwards, the extracted feature vector trains a Random
Forest classifier and it is proved that the proposed hybrid classification scheme
outperforms other state-of-the-art feature extraction methods utilized in
steganalysis. Furthermore, it is proved that the utilized classifier achieves similar
results as the traditional softmax layer of a convolutional neural network. The
work presented in Chapters 5 & 6 can be considered an extension and
enhancement to existing steganalysis techniques.

This dissertation concludes in Chapter 7 where discussion about possible
future directions for the research is presented.

Finally, in Appendix, tables for each image steganalysis category are

provided.
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Chapter 2
Background and Concepts

2.1 Overview of Steganalysis

Both steganography and cryptography intend to hide information.
Steganography hides the existence of the message, cryptography makes the
message impossible to understand for outsiders, and both are often used
together. Though cryptographic messages are easily detectable while they are
meaningless, steganography messages appear to be normal at first sight. Based
on knowledge of the actual message, availability of the original cover file and the

steganography tool, the following types of steganalysis can be distinguished [23]:

» Stego only attack: only the stego object is available for analysis.

» Known cover attack: the cover and the stego object are both available for
analysis.

» Known message attack: the message is known and can be compared with
the stego object.

» Chosen stego attack: the stego object and the stego tool (algorithm) are
available for analysis.

» Chosen message attack: the steganalyst generates stego-media from
some steganography tool or algorithm from a known message. The goal
in this attack is to determine corresponding patterns in the stego-media
that may point to the use of specific steganography tools or algorithms.

» Known stego attack: the steganography tool (algorithm) is known and both

the original and stego-object are available.
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Figure 2.1: Forms of steganography / steganalysis.

There are lot of cover mediums someone can use to embed content. The

cover medium can be (Figure 2.1):

YV V. V V V

an image file,
an audio file,

a video file,

a text file.

a network packet,

In audio steganography (Figure 2.2) the main embedding techniques are [24]:

v’ Least Significant Bit (LSB), where the LSB of each byte of the audio cover

medium is replaced by one bit of secret message.

v' Echo Hiding, where secret message is embedded by introducing echo in

the cover medium.

v" Phase Coding, where the phase of the cover medium is modulated.
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v Parity Coding, where the audio cover is separated into samples and each
bit from the secret message is embedded in the parity bit of each sample
region.

v' Spread Spectrum, where secret message bits are spread over all audio’s

signal frequencies.

input audio

0.5
0
-0.5

=1

4] 0.5 1 1.5 2 2.5
x 10°
output audio

Figure 2.2: An example of audio steganography — Source: [25].

In video steganography, two different embedding techniques can be
distinguished [26]:
v Secret message’s embedding position is the raw video domain.

v' Secret message’s embedding position is the compressed domain.

In network steganography (Figure 2.3) classification may be: a) Intra-protocol,
where the modification concerns Protocol Data Units (PDUS) or b) Inter-protocol,
where more than one protocols from OSI layers are used like ARP, TCP, UDP or
ICMP [27].
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Figure 2.3: An example of network steganography - Source:[28].

Text steganography methods can be separated into two major categories [29]:
v Altering the format of the text

v Altering the meaning of the text

It must be noted that the embedded data could be of any type, i.e. an image
embedded to an image, audio embedded to image etc. Limitations may occur
due to file size of the cover medium or the embedded data.

In general, steganalysis becomes more efficient and effective as more
elements are known. Furthermore, steganalysis becomes more complex when
moving from detection only, to detecting and deciphering the embedded
message i.e. moving from passive to active steganalysis. As steganography
becomes more widely available and volume of data either on digital devices or
internet increases, the detection of steganographic content by digital forensics
examiners becomes highly important.

Theoretically, this concerns any type of digital objects, but practically -in most
cases- audiovisual files (e.g. child pornography) are more frequently met. This
dissertation deals with image steganalysis and this chapter analyzes some basic
concepts of steganalysis and proposes a taxonomy of steganalysis techniques.
The proposed taxonomy will be used in Chapter 3 to present the state-of-the-art

methods proposed in the literature.
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2.2 Taxonomy of steganalysis techniques

The simplest method of steganography is based on embedding a message
after the end of file (EOF) or by embedding hidden information into exif header.
Both methods are simple and fast, but they are vulnerable to steganalysts. Even
by looking the file with a hex editor, the message -if unencrypted- can be
revealed. In Figure 2.4 there is a stego image of Lena (left) embedded with a
secret message. FF D9 indicates EOF, while the underlined text is the hidden

message (right).

This simple technique is effective for people with little or no knowledge of
steganography, but it is very easy for a digital forensic examiner to detect and

retrieve the hidden information from the cover medium.

Eﬂ.01.02.03A 04 05 06 07 08 09 0A 0B 0OC 0D OE OF Eh23ﬂ567§9ABFDEﬁ
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2 TF80:(BE AE 64 78 31 3A AD BA EE 31 29 12 83 72 EC AD|..dxl:...1)..zI..
2 7F90:| 1E C9 00 35 AE 35 09 EE 84 F7 D2 4D 2C FE 53 CA[...5.5.....M,.5,
2 7FR0:| 05 DF 96 B2 49 1C C9 1IC 6F 14 4C A2 40 D1 49 34|,,,.I...0.L.0.I4
2 TFBO:| DF 22 C5 29 68 C4 4F 24 73 27 98 B8 SC 7D 3B 48(.".)h.0$s'..\};H

2 TFC0:| D& BC 4B 77 15 AE SF 3F DA E7 BE DF 0B BA EC 7D|..KW...2 000004 }
2 TEDO:( F2 93 0B 34 22 55 79 A2 88 C9 E6 BC 47 CD 85 9D|...4"Oy..... G..
2 TFE0:( OC A6 37 FD D3 2A 2E 9F 81 B4 98 DD 4E F2 D4 D8

2 TFF0:( 44 EA 90 CD 04 AB 2B DC 31 DC CO 85 23 90 86 BC

> 8000: 52 43 70 EC 1587 1021 F3 4324 91 D
: E9 F3 77 FO AR D7 4C D2 E2 26 DA 06 BE SE 56 68[..W...L..&....Vh
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i(72CL 93 85 4F 2E 48 DD 5D 95 03|FF D9|48 €5 6C|r...0.H.]..b.Hel
(6CEF2077 6FT26C64 20212120 [ o |loworld ! T

EOF

Figure 2.4: (left) Stego image (right) the image opened in a hex editor.

Consequently, new steganography techniques were developed and new
steganalytic approaches were proposed. Depending on the attack method a

forensic examiner uses, six major categories are introduced [15]:

» visual steganalysis
» signature or specific steganalysis

» statistical steganalysis
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» spread spectrum steganalysis
» transform domain steganalysis

» universal or blind steganalysis

In this dissertation, statistical steganalysis methods will be examined and a
novel universal steganalysis framework will be proposed. Afterwards, the
proposed universal method will be compared against similar state-of-the-art

techniques to prove our research questions.
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Chapter 3
State of the art

3.1 Introduction

In this chapter state-of-the-art methods are presented, extended to any type of
image steganalysis. Two major approaches were adopted by scientists. The first
one refers to extraction of statistical features from stego and clean images. These
statistical features are compared then, in order to discriminate clean from stego
images.

The second general approach is by employing machine learning techniques.
Thus, features are extracted from images (both clean and stego), a classifier is
trained, and finally unseen images are presented to the model for evaluation.
Typical paradigms of the utilized classifiers are mostly Support Vector Machines
(SVM) [30] and atrtificial neural networks [31]. In both approaches an interesting
subject discussed widely in each paper — and a critical step for achieving best
results- is feature extraction and feature selection. Many technigues were used
for this, such as statistics (mean, kurtosis, skewness, histogram analysis etc.),
covariance matrix, similarity measures between pixels etc. [15].

Apart from the two prementioned approaches, modern methods employ deep
learning techniques such as convolutional neural networks or deep
autoencoders, where feature extraction and selection is made in an almost
automatic way [32]. The performance and the quantitative analysis of the
techniques discussed in the following sections has also been given, by using
metrics such as the detection rate, the error rate and Receiver Operating
Characteristic curves (ROC curves) in specific embedding rates.

In appendix, tables for each steganalysis category are provided. These tables
besides basic information (i.e. author, date, method in brief) also indicate the
evaluation metric, dataset and number of images used, in order to make the

comparison between methods from the same steganalysis category more
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distinct.

3.2 Visual Steganalysis

Visual attacks are the simplest form of steganalysis. A visual attack is the
examination of the suspicious image with the naked eye to identify any noticeable
discrepancies. This turns to be very difficult, since the alterations made to an
image when a message is embedded, do not result in quality degradation.

Most steganographic algorithms create stego objects that are similar to their
cover medium. However, when unaltered parts of a stego image are removed, it
is possible to observe signs of manipulation. Hence, if a steganalyst can identify
those features of the image that characterize it as stego, a visual attack may
reveal the existence of a hidden message.

The most common form of a visual attack concerns Least Significant Bit (LSB)
steganography. The image is converted to its binary form and the bits in the LSB
plane are retrieved. In an image usually there are as many even values as there
are odd, typically saying that there are approximately as many 1’s as there are
O’s in its LSB plane. When text is converted to binary however, there are often
more 0’s than 1’s. This indicates a visual inconsistency and helps the digital
forensic examiner to classify the image as stego.

However, this steganalytic technique is successful only when a poor
steganographic algorithm was used to produce the stego image. Typical software
paradigms following that embedding technique are Camouflage and JpegX [33],
[34], both early steganographic software that nowadays are outdated and least
used due to their ease of detection [35]. A poor algorithm will embed the message
bits directly after converting from ASCII to binary, and this will lead to the increase
in O’s. This attack is usually related to palette images for LSB embedding in
indices to the palette. Nevertheless, this technique has very poor results when

trying to distinguish noisy images from stego images.
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Figure 3.1: Clean image. Figure 3.2: Stego image.

In the less likely case that a forensic examiner detects the cover images in a
digital device, the stego images are compared with the respective original cover
images and differences are observed. Another indication of the existence of
hidden messages is by trying to detect blank spaces in the possible stego
images.

That is, because some stego algorithms crop and pad the image in order to
fit it into a fixed size [36]. Moreover, differences in file size between cover image
and stego images, increase or decrease of unigue colors in stego images can
also be used as indicators for the detection of hidden messages.

Figure 3.1 shows a clean (unaltered) image, while Figure 3.2 is the same
image with an embedded text file. Figure 3.3 shows the LSB plane of Figure 3.1,
while Figure 3.4 shows the LSB plane of Figure 3. 2.
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These examples show that sequential LSB embedding is easily
detectable. For this reason, new steganographic software was developed, which
embedds data to the carrier file in a randomized way.

Figure 3.5 shows the LSB plane of Figure 3.1 and Figure 3.6 shows the LSB
plane, when randomized LSB embedding was performed. When figures 3.3-3.4
with 3.5-3.6 are compared respectively, it is obvious that randomized LSB

embedding is very strong to visual attacks.
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3.3 Sighature Steganalysis

Another steganalytic technique is to observe any repetitive patterns
(signatures) of a steganography software. These techniques search for signature
patterns to determine the presence of a hidden message. For example, the string

CDN is always added in the end of file when a message is embedded in an image

with Hiderman steganography software as shown in Figure 3.7.
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Figure 3.7: Signature embedded to the end of file.

Masker [37] — another steganography software — uses the last 77 bytes of a
stego file for its signature. Jpegx [34] —a rather old tool- before embedding the
hidden message at the end of jpeg’s file marker, adds the sequence 5B 3B 31
53 00.

There are many steganalytic software tools which scan files and identify
signatures from various embedding algorithms. StegSpy [38] for example can
identify stego content embedded by Masker, Invisible Secrets and Hiderman
among other steganography algorithms. Therefore, it is rather easy for a digital
forensic examiner to discover steganographic content if the stego image was
produced with a tool which embeds its signature in the stego file. A method for
identifying steganographic content in JPEG images regardless the tool’s
signature was proposed by Fridrich [39], [40]. The image is divided into 8 x 8
blocks and the quantization matrix is extracted by analyzing the values of
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Discrete Cosine Transform (DCT) coefficients in all 8 x 8 blocks. The quantization
table is then compared with standard JPEG quantization table for compatibility.
If there are any incompatible blocks the image is characterized as stego.
Although at this time, this method could discriminate clean from jpeg stego
images later Newman et al. [41] overcome JPEG compatibility steganalysis by
encoding the embedded data in the JPEG coefficients.

3.4 Statistical Steganalysis

Statistical steganalysis concerns those techniques developed by analyzing
the embedding procedure and determining certain statistics that get modified as
a result of the embedding process. Therefore, an in depth understanding of
embedding process is needed in order to achieve maximum steganalytic
accuracy.

In spatial domain, the steganographic algorithm is applied directly on the
pixels of the image. One of the earliest techniques are the so-called Least
Significant Bit Substitution (LSB) techniques. Two different LSB approaches
were introduced i.e. LSB replacement [42]-[46] and LSB matching [47]-[50].

3.5 LSB Replacement

In LSB Replacement, the cover image bytes have their least significant bits
replaced by the secret data. There are two different embedding schemes in
Least Significant Bit Substitution algorithms i.e. sequential and randomized.

Sequential embedding denotes that the algorithm starts at the first pixel of
the cover image and embeds the bits of the message data in order until the whole
message is embedded. Randomized embedding disperses the positions of the
values that will be modified to contain the bits of the embedded data.

Westfeld and Pfitzmann [42] proposed the first statistical steganalysis
technique. The technique identifies Pairs of Values (POVs) exchanged during
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message embedding. POVs can be pixel values, quantized DCT coefficients, or
palette indices that differ in the LSB. Westfeld and Pfitzmann claimed that the
frequencies of each of the two-pixel values in each POV tend to lie far from the
mean of the POV. The Chi-squared attack detects these near-equal POVs in
images and consequently embedded information. The Chi-squared method
reliably detects sequentially embedded messages but has low success when
embedding is randomized. A more generalized approach of chi square attack
was used to detect messages that are randomly scattered in an image [43], [44].

Fridrich et al. [45] proposed a method for detecting LSB embedding in 24-bit
colour images, the so called Raw Quick Pair (RQP) method. RQP analyzes close
pairs of colors created by LSB embedding. Close color pairs indicate that two
colors differ only at LSB. The process of embedding messages into images
increases the number of close color pairs. Therefore, by counting the number of
close color pairs an image can be characterized as stego or not. Authors showed
that even for secret message capacities of 0.1 — 0.3 bits per pixel, it is possible
to achieve a high degree of detection reliability. The drawback of this method is
that it can be applied only to color images.

For this reason, Fridrich et al. proposed a new scheme for detection of LSB
embedding in color and grayscale images, the so-called RS steganalysis [46].
This technique divides the image into groups and measures noise in every group.
Afterwards, flipping of the LSBs (Figure 3.8) of a fixed set of pixels within each
group (by using a mask i.e. the pattern of pixels to flip) is performed and every
group is classified as regular or singular depending on whether the pixel noise
within the group is increased or decreased. The classification is repeated for a
dual type of flipping. RS steganalysis proved to be more reliable than Chi-square

method.

23



RS-diagram of Japan. bmp

% 70 T T T

&0 | : : Al P2)

50t i

40 .

a0 F H

20l '
i 5, (pi2) .

10 o ! S l1-Pi2)!

n 1 : L | 1 : L A 1 : L

0 m2 50 100-pi2 100 %%

Figure 3.8: RS-diagram of a typical image - Source: [46].

Avcibas et al. [51] used image quality metrics -selected based on the analysis
of variance (ANOVA) technique- as feature sets, to distinguish between cover-
images and stego-images. The classifier between cover and stego-images was
built using multivariate regression on the selected quality metrics and was trained
based on an estimate of the original image. The embedded message sizes were
1/10, 1/40 and 1/100 of the cover image size depending on steganographic
scheme used. The detection rate varied from 65% to 80%.

Lyu et al. [52] used higher-order statistics to capture certain properties from
natural images. These properties were used as features to train an SVM. Several
experiments were conducted depending on the varied embedding rate and the
steganographic algorithm. The obtained classification accuracy reached a
maximum of 94%.

Dumitrescu et al. based on Fridrich’s work, presented a generalized case
of methods given in [53]-[55]. They used a finite state machine whose states

were selected multisets of sample pairs called trace multisets. This finite state
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machine helped them to formulate a quadratic function that estimates the length
of embedded information with high precision.

Roue et al. [56] proposed an improvement in this method, by using
marginal and joint probabilistic distributions of the image.

Lu et al. [57] also proposed a variation of method presented in [53]. They
combined the statistical measures developed in [53] and a new least square
estimation. The proposed method in comparison to SPA, showed less false alarm
rate (13.79% when SPA false rate is 5%). Moreover, the estimating precision is
approximately 9% higher than that of SPA method (88%) if the embedding ratio
is lower than 10%.

Avcibas et al. [58] proposed a method which searches the 7th and 8th bit
planes of an image and calculates several similarity measures. Their approach
was based on the fact that correlation between the specific planes of the image
and the binary texture characteristics within these bit planes, are different in a
stego and a cover image. Several features were calculated, and these features
were utilized to train an SVM to classify images as clean or stego. The classifier
was trained with all embedding percentages from 1% to 15% and the detection
rate varied from 48.80% to 92.17% depending also on the steganographic
scheme used.

Dumitrescu et al. [59] also proposed another method that exploits high-
order statistics of the samples in order to derive a detection equation. They
estimated the hidden message’s length by measuring signature statistical
guantity. This method proved to be effective on both color and grayscale images.

Li Zhi et al. [60] proposed Gradient Energy-Flipping Rate Detection
(GEFR). GEFR calculates the gradient energy both of the cover and the stego
image. Then the Gradient Energy curve is utilized to estimate the message
length. When embedding rate is more than 0.05 bits per pixel, the technique
reliably detects the presence of the secret message.

Zhang and Ping [61] proposed another technique for grayscale images.
The technique is based on the difference image histogram. Translation

coefficients between difference image histograms were utilized as the measure
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to indicate the weak correlation between the least significant bit (LSB) plane and
the remaining bit planes. This measure was then used to construct a classifier in
order to discriminate the stego-image from the carrier-image. Embedding rates
varied from 0 to 100% in 10% increments, while the detection rate reached an
average of 96.03% at topmost. The proposed algorithm works well both for
sequential or random LSB replacement and shows better performance and
computation speed than RS analysis.

A method for 8-bit GIF images known as Pairs Analysis was proposed by
Fridrich et al. [62]. The technique uses patterns formed by pairs of colors (color
cuts) to estimate the length of the secret message. The structure of the color cuts
is measured using an entropy-like quantity R -which is in fact a quadratic function
of the secret message length- and based on R, they estimate the unknown
message length from the stego image. This technique outperforms the Chi-
square attack [51] and for BMP and palette images it produces more reliable
results than RS steganalysis [46]. Nevertheless, for grayscale images, Pairs
Analysis is slightly worse than RS steganalysis.

Ker et al. [63] evaluated both Pairs Analysis and RS steganalysis
techniques and proposed improvements in both of them for grayscale images
[64].

Another method was presented by Celik et al. [65]. Based on the
observation that hidden message embedding increases image’s entropy and
various hiding method introduce small imperceptible distortions, they formed a
feature set based on rate-distortion characteristics of images. This feature set
was utilized to train a Bayesian classifier preceded by a Karhunen-Loeve
transform and eventually classify images as clean images or stego. Embedding
rate was 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 bits per pixel (bpp) and 27% of the cover
images were mislabeled as stego-images, while the miss rate decreased with
increasing embedding rate.

Benton and Chu [66] used decision trees and neural networks in order to
discriminate clean from stego images. In order to extract features, they used the

RS method with a slightly different approach than the original RS, as the goal of
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their approach is to decide whether the image contains hidden data and not in
estimating the embedding probability.

Fridrich et al. [67] introduced the concept of a weighted stego image and
then formulated the problem of determining the unknown message length as a
simple optimization problem. The accuracy of this method in detection of hidden
information and estimation of embedding ratio is relatively high.

Ker et al. [68] revisited weighted stego image steganalysis for estimating
LSB replacement payload sizes in digital images. They suggested new WS
estimators by upgrading the method’s three components i.e. cover pixel
prediction, least-squares weighting, and bias correction. These new methods
compared to other structural detectors, managed to improve accuracy while not
being complex.

Chen et al. [69] proposed a technique based on 7th and 8th bit plane
randomness tests. A scan of the two-bit planes was performed, and two binary
sequences were obtained. Afterwards, the randomness of these two sequences
were tested by several randomness tests respectively. The results of the
randomness tests were used as attributes to construct a classifier to distinguish
between stego and cover images. The results showed the detection accuracy of
method was higher than 95% to stego images with an embedding rate higher
than 0.05 bits per pixel.

Bhattacharyya et al. [30] used an auto-regressive model and a SVM
classifier to detect the presence of the hidden messages, along with multiple
regression parameters in order to predict the length of the hidden information.
Embedding rates varied from 10% to 100% with 10% increments and maximum
accuracy achieved.

H.B.Kekre et al. [70] used feature extraction and distance measures to
detect stego images. The extracted feature vectors were derived from gray level
co-occurrence matrix (GLCM) as they noticed that there is a difference between
the features of stego and non-stego images. Afterwards, they compared distance

metrics like Absolute distance and Euclidean distance for classification and they
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concluded that Euclidean distance gives the best results. Their method works in
case of both grayscale and color images.

Fillatre [71] designed an adaptive statistical test that its probability
distribution is always independent of the unknown image parameters i.e. the
mean level and the covariance matrix of the image. The unknown parameters
are replaced by estimates based on a local linear regression model. Experiments
were conducted on real natural images derived from BOSSBase image set [72]
and the proposed method was also compared to other state of the art. The
resulted ROC curve showed the effectiveness of the method.

Fridrich et al [73] proposed a machine learning based detector utilizing co-
occurrences of neighboring noise residuals as features. Researchers adapted
the features for detection of LSB replacement by making them aware of pixel
parity. Then they introduced two key novel concepts — calibration by parity and
parity-aware residuals. It was shown that, for a known cover source when a
binary classifier can be built, its accuracy is better in comparison with the best
structural and WS detectors in both uncompressed images and in decompressed
JPEGs. This improvement is especially significant for very small change rates.

Verma et al. [74] used a Difference Image Histograms (DIH) for both
suspicious and original image, then flipped LSB bits to both images,
reconstructed the DIH and compared them in order to characterize the suspicious

image as stego or clean.

3.6 LSB Matching

LSB replacement technique proved to be very vulnerable to steganalysts. In
order to avoid certain statistical attacks, Sharp, [47] introduced LSB matching
steganography technique. In the LSB Matching embedding algorithm each secret
data bit is compared with the least significant bit of the corresponding cover byte.
If the two compared bits match, no change is made while in the case of a
mismatch the cover byte is incremented or decremented at random. Let Cbe the

cover image, C;the i LSB bit, M the hidden message, M;the ix bit of M, S the
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resulted stego image and S;the it LSB of the stego image. Equation 1 shows the
embedding process for LSB matching
C;,if M; = C;

LSB Matching retains the characteristics of LSB replacement but it is more
difficult to be detected from statistical perspective. Consequently, previous
mentioned methods on LSB replacement have low detection accuracy on LSB
matching.

Zou et al [75] proposed a steganalysis system based on 2-D Markov chain
of thresholded prediction-error image. A non-linear Support Vector Machine
(SVM) was utilized as classifier and extensive experiments were conducted
which showed very good results. Embeddings rates varied from 0.01bpp to
0.3bpp and the average detection rate was 52.28% to 97.75% respectively. This
method also performs well as a universal stego detector.

Malekmohamadi et al [76] proposed a method for steganalysis of
grayscale images using spatial and Gabor features. They used spatial
relationships between pixels of clean and stego images for feature selection.
Those features were utilized to train an SVM classifier. Gabor filter coefficients
were also used to form their input vectors for training an agent. First and higher
order statistics from the whole image and its DCT transform have been
employed. The trained model was then applied to unseen altered and clean
images. The results showed a high correct detection rate i.e. 93% for altered
images and 96% for clean images while the embedding rate for the algorithm
was 14.1%.

Pevny et al. [48] proposed a novel approach to steganalysis of LSB
matching by introducing a new feature set, the so-called SPAM feature set. The
local dependences between differences of neighboring cover elements are

modeled as a Markov chain, whose empirical probability transition matrix is taken
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as a feature vector. The conducted experiments showed that this feature set can
reliably detect algorithms hiding in the block DCT domain as well.

Zhang et al. [77] proposed a LSB matching steganalytic method based on
statistical modeling of pixel difference distributions. The method examines the
number of non-zero difference values from stego-images and the number of the
zero-difference value. Afterwards, the estimation of the relative error between the
estimated and actual values of the number of the zero-difference value is used
as the classification feature.

Fridrich et al. [49] attacked a content-adaptive steganographic algorithm
(HUGO) and identified features capable of detecting payload embedded using
such schemes. Afterwards they utilized ensemble classifiers obtained by fusing
decisions of base learners trained on random subspaces of the feature space.
The best performance achieved on BOSSRank test set [72] was 80.3% and the
embedding rate was 0.4bpp.

Gul et al. [78] attacked HUGO as well. First, they extracted features by
applying a function to the image constructing the k variate probability density
function (PDF) estimates, and downsampling it by a suitable downsampling
algorithm. Images from BOSSBase were used as training set while BOSSRank
was the test set, with an embedding rate at 0.4bpp. Feature selection improved
very slightly the detection accuracy i.e. 0.3% in average. The best detection rate
attained was 85% when 957 features were selected, and a Support Vector
Machine was utilized as classifier.

Fridrich et al. [79] used rich image models combined with ensemble
classifiers in order to automate steganalysis for a wide spectrum of
steganographic schemes. They assembled a rich model of the noise component
by considering various qualitatively diverse relationships between pixels. Then,
ensemble classifiers were used to assemble the model and the final
steganalyzer.

In [80] the authors used a 275-dimensional feature vector to discriminate
stego from clean images. This feature vector was consisted of 193 features

(calculated from DCT coefficients) and 81 calibrated Markov features, while the
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275th feature improved the accuracy of the steganalyzer, helping it to adjust to
different values of features on images of different size. Then, by using regression
they learned the relation between the feature’s location and the change rate. This
method is applicable for both LSB replacement and matching steganography.

Cogranne et al. [81] presented a test for LSB Matching detection. Authors
introduced a test -based on the likelihood ratio test-, which maximizes the
detection power regardless the embedding rate is. Afterwards, they calculated
the statistical properties of this test and finally they presented a generalized
likelihood ratio test by replacing the unknown medium parameters by their
estimation. The proposed test was performed on BOSSBase and BOWS [82]
image sets, both publicly available. Authors also compared their proposed
method with other state of the art such those described in [83] , [84] and the
resulted ROC curves showed that the proposed method performs well.

In [85] Holub et al. proposed an alternative statistical representation. The
authors projected neighboring residual samples onto a set of random vectors and
took the first-order statistic (histogram) of the projections as the features. To
evaluate the performance of their method authors attacked three steganographic
schemes on two different test sets, with an embedding rate from 0.1bpp to
0.4bpp. Authors also contrasted the results against several state-of-the-art
domain specific features sets.

Xia et al. [86] showed that LSB matching smoothes the histogram of multi-
order differences by some filters. Based on this observation, they used the co-
occurrence matrix to model the differences with the small absolute value to
extract features. Support vector machine classifiers were trained with these
features to distinguish stego images from original ones. Experiments were
carried out on three test sets, the embedding rate varied from 0.1bpp to 1.0bpp
and comparison to other state of the art methods has also been made.

Xia et al. [87] proved that after embedding a message with LSB Matching,
the histogram of the differences between pixel gray values is smoothed by the
stego bits even if there is a large distance between the pixels. Also, the center of
mass of the characteristic function of difference histogram (DHCF COM)
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decreases after messages are embedded. Thus, the DHCF COMs were
calculated and used as features and an SVM was trained to detect the existence
of hidden messages. Feature sets from adjacent and non-adjacent pixels were
made, namely DHCF COMs#1 and DHCF COMs#2. BOSSBase and NRCS [88]
were the two image sets utilized as test sets. Moreover, the proposed method
was compared with the methods described in [84] and [48]. Features extracted
from nonadjacent pixels do not depend on image correlation. This may be the
reason that the combination of SPAM and features in DHCF COMs#2 can get a
better detection result.

In [50] an extension of the spatial rich model [79] for steganalysis of color
images was proposed. The additional features used, were extracted by three-
dimensional co-occurrences of residuals computed from all three-color channels.
These features can capture dependencies across color channels. Experiments
were conducted on three image databases - different color versions of
BOSSBase v1.01 - with an embedding rate 0.1 bpp for LSB Matching and 0.4
bpp for WOW. These experiments showed that the proposed feature set (18157
features) proved to be extremely powerful for detection of LSB Matching
steganography in images. The average detection error for one payload is 0.0297
—0.1790 (LSB Matching for the three test sets), while for different payloads (0.05-
0.5 bpc) is also small as shown in paper’s figures 2 & 3.

Chen et al. [89] proposed a method that calculates the differences among
pixel pairs and proved that the histogram of difference values is smoothed by
stego noises. They calculated the difference histogram characteristic function
(DHCF) and the moment of DHCFs (DHCFM) and used them as discriminative
features. Features were calibrated by decreasing the influence of image content
on them and an SVM classifier based on the calibrated features, was trained.
BOSSBase and NRCS were used as training and test sets and the embedding
rate was 0.25bpp. Experimental results demonstrate that the DHCFMs calculated
with nonadjacent pixels were helpful to detect stego messages hidden by LSB

matching.
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Lerch-Hostalot et al. [90] provided an unsupervised steganalysis method that
combined artificial training sets and supervised classification. This method
assumes that the embedding algorithm and the approximate bit rate used by the
steganographer are known. BOSSBase image set was used to produce stego
images with various embedding rates (0.10bpp, 0.20bpp, 0.25bpp and 0.40bpp).
The model has been tested on three steganographic methods and the extensive
comparative experiments done, showed that the proposed method achieves
better classification accuracy than that obtained of traditional supervised
steganalysis (Rich Models, Ensemble Classifiers etc.)

In [91] Sandoval et al. chose the 12 most relevant features based on the
probability density function (PDF) of difference of adjacent pixels and the co-
occurrence matrix of the image. This feature vector trained an SVM to distinguish
stegoimages from the natural images. To evaluate the proposed steganalysis
scheme, they used two image data sets, BOWS and UCID [92] under four
different embedding rates or payloads, i.e. 100%, 75%, 50% and 25%.
Experimental results showed that the proposed scheme provides better

performance - 87.2% in average- than previously proposed methods.

3.7 Spread Spectrum Steganalysis

Spread Spectrum Image Steganography (SSIS) was first described by
Marvel et al. [93]. SSIS embeds the hidden information within noise, which is
then added to the digital image (Figure 3.9). This noise if kept at low levels, is not

distinguishable to the human eye.
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Figure 3.9: Additive noise model - Source: [94].
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Harmsen et al [94] presented a spread-spectrum steganalysis method for
color images, using Histogram Characteristic Function (HFC) -which is the
Fourier Transform of image histogram- and exploiting the properties of center of
mass of HCF where center of mass is the first order moment. Two different
experiments were conducted. The first detected images when the embedding
method was known, and the detection rate was 94.68%. The second one
detected images when the embedding method was unknown. The detection rate
in this case was 95.89%.

Chandramouli et al. [95] proposed two other steganalysis schemes for
spread spectrum steganography. The first scheme does not exploit higher order
statistics. It uses regression techniques to estimate cover image from stego
image. Afterwards in order to obtain the estimate of the secret message, the
estimated value is subtracted from the stego image. The second exploits higher
order statistics. Experiments showed that in comparison to the first proposed
scheme, exploiting higher order statistics improved performance of steganalysis.

Wang et al. [96] proposed a technique for block DCT based steganography.
Authors noticed that pairs of neighboring pixels within an 8 x 8 block have
different statistics from those across two 8 x 8 blocks. Two histograms of pixel
differences were computed for which a Kolmogorov—Smirnov (KS) binary
hypothesis test discriminates stego from clean images.

Another method is given by Rongrong et al. [97]. This method is based on
block-based scatter (variance) difference detection. Primary, after applying a
spatial filter, the cover image is restored. Afterwards, the spread spectrum
process is performed on the test image several times and the scatter of low
frequency coefficients in each DCT block is estimated. The same process is
applied over the estimated cover image and its own scatter is estimated as well.
Finally, the difference between the two scatters determines if there is a spread
spectrum message.

Sullivan et al. [98] proposed a steganalysis method suitable for grayscale

images. They modeled the correlation between pixels in an image, by utilizing a
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Markov random chain. Afterwards an SVM was trained with both clean images
and images embedded with spread spectrum steganography.

Li et al. [99] developed a low complexity multicarrier iterative generalized
least-squares core algorithm to extract unknown messages, hidden in image

hosts via spread-spectrum embedding.

3.8 Transform Domain Steganalysis

As more attacks on various steganographic schemes were presented by
steganalysts, there was the need of finding steganographic methods more robust
to attacks such as compression, filtering etc. Various transform domains
techniques were utilized such as Discrete Cosine Transform (DCT), Discrete
Wavelet Transform (DWT) and Fast Fourier Transform (FFT) in order to hide
information in transform coefficients of the cover images.

Liu et al. [31] transformed digital images (both clean and stego) in DFT,
DCT, DWT transform domains. Each image was divided into 8x8 sub-block and
DCT was performed in each sub-block. In DFT and DWT data hiding process,
selected metrics were based on magnitude (two statistics, image and its sub
block). Then the three levels of DWT were taken under consideration in each
training image, and the mean value, variance, skewness and kurtosis of each
part of every level was calculated. This procedure produced 36 features for each
image. Added with DCT'’s 4 statistics-based image metrics, a 40-d feature vector
was created. An artificial neural network was trained then, and the average
detection rate was 80.2%.

Another approach was given in [100]. They proposed a method specific for
wavelet domain quantization modulation technique [101]. It has been observed
that histogram shape of cover image is smoother than stego image. Spectrum
analysis and energy differences was used to score for differences in the
histograms of clean and stego image and a threshold was used to determine

whether the image was stego or clean.
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Liu et al. [102] proposed another technique based on statistical analysis of
the texture of the image. Once more, they used a neural network as a classifier
for clean and stego images but their approach for extracting features was
different from [31]. Specifically, wavelet coefficients in each sub-band of a three-
level wavelet transform were modeled as a Generalized Gaussian distribution
(GGD) with two parameters a and (. Consequently, nine pairs of those
parameters i.e. eighteen image features were utilized as inputs of the neural
network. Authors hided a 64x64 binary bitmap in images from two test sets and
the average correct detection rate reached up 84 %.

Sullivan et al. [103] proposed a steganalysis method specific to
Quantization Index Modulation (QIM) data hiding. They tested QIM that embeds
in 8 x 8 blockwise DCT coefficients of an image. They used the histogram as an
empirical probability mass factor (PMF) for acquiring a 300-dimensional feature
vector. A supervised learning procedure was employed later to train the classifier.
Three different image sets were used as training and test sets. Experiments were
conducted in a supervised learning approach and showed that even when the
quality factor was unknown on a mixed (from all three datasets) set of images,
the detection error was low i.e. 0.01-0.083.

Shi et al [104] presented a new steganalysis scheme to effectively detect
the advanced JPEG steganography. They worked on JPEG 2-D arrays formed
from the magnitudes of JPEG quantized block DCT coefficients. Difference JPEG
2-D arrays along horizontal, vertical and diagonal directions were then used to
enhance changes caused by JPEG steganography and Markov process was
applied to modeling these difference JPEG 2-D arrays so as to utilize the second
order statistics for steganalysis. Furthermore, a thresholding technique was
developed to reduce the dimensionality of feature vectors, in order to make the
computational complexity of the proposed scheme wieldy.

Westfeld [105] proposed a methodology to apply higher order steganalytic
attacks from the spatial domain to the transform domain. More specifically, 72
methods derived from the spatial domain were examined. There was also

examined the proposed method’s detection power and precision compared to

36



prior methods and finally designated the way properties like image size and
JPEG quality effect the ranking of the proposed attacks.

Kodovsky et al [106] introduced two approaches for detecting hidden data
using LSB embedding in quantized DCT coefficients of a JPEG file. At first, a
change rate estimation using the maximum likelihood principle was introduced.
Due to this model’s high complexity, another method was proposed also, based
on minimizing a penalty function on cover images while increasing it on stego
images.

Liu et al. [107] expanded the work in [104] and proposed a new scheme.
The features of the joint density of the differential neighboring in the DCT and the
DWT domains and the errors of the polynomial fitting on the histogram of the
DCT coefficients constitute the original ExPanded Features (EPF). Features
were also extracted from the calibrated version i.e. the so-called reference EPF
features. The difference between the original and the reference EPF features
was calculated then, and finally the original EPF features and the difference were
merged to form the feature vector for classification. Feature selections
techniques were applied and an SVM was used to detect stego-images.

Sheikhan et al. [108] extracted statistical features of Contourlet coefficients
and cooccurrence metrics of sub-band images. In order to decrease extracted
features, the ANOVA method was performed, and the selected features were
utilized to train a nonlinear SVM for classifying images as stego or clean.

Kodovsky et al. [109] proposed the use of an ensemble classifier instead of
a SVM due to the fact that ensemble classifiers are computationally less complex
compared to SVMs. The lower training complexity makes possible to work with
high-dimensional cover models and train on larger training sets. A 7.850-
dimensional Cartesian- calibrated feature set (CF*) was used to train the
ensemble classifier to detect nsF5 (an improved version of F5 [110])
steganographic algorithm. When unknown test images were presented to the
model, the obtained testing error was 0.1702. Authors also tested their method
with stego images produced from other steganographic schemes such as YASS
[111] and MBS [112] with payload from 0.01 to 0.05 bpac. The performance of
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the ensemble classifier using CF* features was also compared to the state-of-
the-art classifiers. The reported median (MED) testing error as well as the median
absolute deviation (MAD) values showed that the proposed method performs
well.

Cho et al. [113] discriminated a stego image from its cover image based on
steganalysis of decomposed image blocks. They decomposed the image into
blocks, classified those blocks into multiple classes and found a classifier for
each class. Afterwards by integrating results of all image blocks via decision
fusion, the whole image was classified as stego or clean. During their research
they observed that the performance of block-based image steganalysis is less
sensitive to the decision fusion methods but more sensitive to the classifier
choice.

In [114] Lakshmi et al exploited a 3-Level DWT and calculated the energy
value for both training and testing dataset. The extracted features trained an SVM
which was utilized for classification. Stego images were created by hiding
multiple images in the cover medium and the accuracy obtained was 90%.

Holub et al. [115] introduced a novel feature set for steganalysis of JPEG
images. The features are first-order statistics of quantized noise residuals
obtained from the decompressed JPEG image using 64 kernels of the DCT (the
so-called undecimated DCT). The proposed steganalysis feature set has low
computational complexity, lower dimensionality in comparison with other rich
models, and a competitive performance with respect to previously proposed

JPEG domain steganalysis features.

3.9 Universal (blind) steganalysis

Universal steganalysis tries to detect the embedded messages regardless
the steganographic technique applied to cover image. The main difficulty is to
find relevant features which are characteristic for stego images. Afterwards
machine learning techniques are used to build a detection model from the
experimental data. When the method identifies stego images, regardless the
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steganographic method the hidden message was embedded in cover medium it
can be characterized as a universal (blind) method, while when the method
attacks specific steganographic algorithms it can be considered as a semi-blind
one.

The first attempt to build a universal steganalyzer was made from Avcibas
[51]. This method was based clearly on statistical measures as already stated
earlier.

Farid [116] used a wavelet-like decomposition to build higher order
statistical models of natural images. A Fisher linear discriminant analysis was
then used to discriminate between untouched and altered images. Accuracy
varied from 1.3% to 94% depending on steganographic algorithm and message
length (32x32 to 256x256).

Lyu et al. [52] also used wavelet-like decomposition to build higher-order
statistical models of natural images. An SVM was used afterwards to discriminate
clean and stego images. An extension was proposed in [117] from the same
researchers in order to apply their model to color images. A one class SVM (OC-
SVM) was used to simplify the training process of the classifier.

Harmsen et al. [94] considered hidden information as additive noise.
Therefore, they introduced a blind detection scheme that used only statistics from
unaltered images. By calculating the Mahalanobis distance from a test Center of
Mass (COM) to the training distribution, a threshold was used to identify
steganographic images.

Trivedi et al. [118] presented a steganalysis method for sequential
steganography. Abrupt changes in statistics due to sequential steganography
were exploited to estimate the message location and length. These abrupt
changes were used as a feature that distinguishes sequential steganography
embedding from other types of embedding. Sequential probability ratio test was
employed as a mathematical tool, and as a result cumulative sum (CUSUM) test
statistics was derived for detecting steganography.

Lafferty et al. [119] proposed a method which utilizes the local binary pattern

texture operator to examine the pixel texture patterns within neighborhoods
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across the color planes. An artificial neural network was used as classifier. For
the training set the embedding rate was 0.0049 bpp, while for the test image sets
the embedding rate was 0.0082 bpp. Accuracy depending on steganograhic
algorithm used, varied from 86.5% to 88.6%.

A semi blind steganalysis technique based on multiple features formed by
statistical moments of wavelet characteristic functions was proposed by Xuan et
al. [120]. A 39-d feature vector was formed from the first three moments of
characteristic function of wavelet sub-bands with the 3-level Haar wavelet
decomposition. A Bayes classifier was used for classification. This method is also
effective for spread spectrum hiding methods.

Shietal. [121] proposed a blind steganalysis system, in which the statistical
moments of characteristic functions of the prediction-error image, the test image,
and their wavelet sub-bands were selected as features. An artificial neural
network was utilized as the classifier and the model’s average accuracy reached
98.7%. Authors also compared the classifier by deploying their method with a
Bayes classifier and proved that the artificial neural network had better
classification results.

Lie et al. [122] used two image features in order to build a blind model. Their
technique is based on the analysis of two properties in the spatial and DCT
domains. A non-linear neural classifier based on these two extracted features
was used to achieve classification. A database composed of 2088 plain and
stego images (generated by using six different embedding schemes) was used
for evaluation. The proposed model managed to give 90% positive detection rate
regardless the embedding technique. The embedding rate varied from 0.01-2.66
bpp depending on the steganographic scheme.

Farid and Lyu again extended [123] their model to include phase statistics
in addition to first and higher order magnitude statistics, extracted from multi-
scale, multi-orientation image decompositions. Experiments were conducted on
a large collection of images, concerning eight different steganographic

embedding algorithms and results showed that this method is reliable.
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Chen et al. [124] used the projection histogram of EM to extract features
composed of two parts i.e. the moments of projection histogram (PH) and the
moments of the characteristic function of PH. Features were extracted also from
prediction-error image in order to enhance performance. An SVM was utilized as
classifier. The proposed model was tested on six (6) different steganographic
schemes and the average detection rate was 98.1%.

Sun et al. in [125] introduced a universal steganalysis method based on co-
occurrence matrix of differential image. They calculated the forward difference in
three directions (horizontal, vertical and diagonal), towards adjacent pixels to
obtain three-directional differential images for a natural image. Then they set a
threshold and removed the redundant information. The co-occurrence matrices
of thresholded differential images was used as features for steganalysis. An SVM
with RBF kernel was used as a classifier to discriminate stego images and cover
images. This method is effective in steganographic schemes applied in spatial
domain.

Zhao et al. [126] proposed a steganalysis algorithm for palette-Based
images. More specifically they focused on cover images of GIF format,
transformed from natural images. They extracted features from generalized
difference images and color correlogram. A two-class classification scheme was
used to differentiate cover images and stego images, with high accuracy when
the embedding rate was no less than 20%.

Zong et al. [127] proposed a blind JPEG steganalysis method based on the
correlation of inter- and intra-wavelet sub-bands in the wavelet domain and
feature extraction from the co-occurrence matrix. A two-order wavelet
decomposition was performed, the joint probability density of each sub-band’s
difference coefficients (with adjoining coefficients in the horizontal, vertical, and
diagonal directions) is calculated and the entropy and energy were extracted
from the joint probability density matrix as features. Then, the image was
decomposed into three sub-bands, and the Probability Density Function (PDF)
was extracted from each sub-band’s wavelet coefficient. Finally, these three kind

features were combined to detect the image. An SVM was utilized as a classifier.
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Ghanbari et al. [128] proposed a new algorithm for steganalysis using
GLCM matrix properties (Figure 3.10). They used a combined method of
steganography based on both location and conversion to hide the information in

the original image and called it image-stegl image.
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Figure 3.10: Creation of GLCM. Image (I) has 8 color levels — Source: [128].

Then, they hided the information in image-stegl again and called it image-steg2.
Using GLCM matrix properties, they discovered some different features in the
GLCM of the original image and stego images. These features were extracted
and used for training a multilayer perceptron (MLP) neural network.

Zhang et al. proposed [129] a universal steganalysis method for jpeg
images based on sparse representation. Sparse representation, is to convey the
main body of information with as little information as possible, thus simplifying
the solving process of information processing. This method has high detection
accuracy and overcomes the “over-fitting” problem of traditional classifiers.

Devi et al. [130] presented four different steganalysis techniques applicable
when binary images (black and white) are used as a cover image. Their method
improved steganalysis techniques by minimizing image-to image variations.
Image-to-image variation is defined as the difference between the underlying
statistic of one image and that of another. They estimated the cover image from
the stego image, then they computed the difference between the two to minimize

the image-to image variation and finally they extracted the feature set from this
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difference. Their method can detect the stego object and estimate the length of
the embedded message.

Verma [131] used a multilayer perceptron with backpropagation algorithm
as a model for image classification. Moreover, he used Pre-processed Vectors
Diagonal Back Propagation Algorithm (PVDBPA) to perform the operations which
can detect the presence of hidden message. Furthermore, BMP steganalysis
using Gray Level Co-Occurrence Matrix has been examined by using feature
vectors and analyzed them through Euclidean distance which was taken as a
measure.

In [132] Lu et al. proposed a steganalytic feature selection method based
on the Fisher criterion, in which the separability of single-dimension and multiple
dimension features, combined with measurement of the Euclidean distance, is
analyzed. The proposed method has been used to analyze the features (in
spatial and frequency domain) and select feature components to reduce the
dimensionality. Experimental results showed that the proposed method can
effectively reduce the feature dimension and also improve the steganalytic
efficiency.

Tang et al. [133] proposed an adaptive steganalytic scheme based on
embedding probabilities of pixels. Six different embedding rates (0.05 bpp to 0.5
bpp) to images from BOSSBase image set, were tested. Experiments evaluated
on four typical adaptive steganographic methods, have shown the effectiveness
of the proposed scheme, especially for low embedding rates, for example, lower
than 0.20 bpp.

Qian et al. [134] were the first to introduce convolutional neural networks
(CNN) in order to detect the existence of steganographic content. The proposed
model (Figure 3.11) can capture the complex dependencies that are useful for
steganalysis. Compared with other existing methods, this model can
automatically learn feature representations with several convolutional layers. The
feature extraction and classification steps are unified under a single architecture,
which means the guidance of classification can be used during the feature
extraction step. To evaluate the effectiveness of the developed model for
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steganalysis, authors conducted experiments on three spatial domain
steganographic algorithms on various payloads (0.3bpp -0.5bpp). Results

compared to other state-of-the-art steganalysis methods were slightly worse.
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Figure 3.11: Qian's CNN Source: [134].

Desai et al. [135] developed a reduced dimensional merged feature set for
universal image steganalysis using Fisher Criterion and ANOVA technigues.
Features were extracted from wavelet sub-bands and binary similarity patterns
extracted from DCT of an image were merged to make a combined feature set.
Fisher criterion and ANOVA test were then applied to evaluate the combined
feature vector score and then only those features were selected which were
found sensitive in both feature selection methods. The reduced 15-dimensional
feature vector was utilized to train an SVM classifier with RBF kernel. The
proposed algorithm was tested against various steganography methods at
different embedding rates. Stego images were generated using state of the art
steganographic algorithms and two standard image databases: CorelDraw [136]
and BSDS500 [137]. A 10-fold cross validation process was performed. The
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proposed algorithm achieved overall 97% detection accuracy against various
steganography methods.

Couchot et al. [138] proposed an architecture which embeds less
convolutions, with much larger filters in the final convolutional layer. This
approach is more general; therefore, it is able to deal with larger images and
lower payloads. For a payload of 0.4 bpp the proposed CNN can detect stego
images with an accuracy higher than 98%, whatever the steganographic
algorithm chosen among three state-of-the-art, while it falls at most to 73.30% for
the payload of 0.1.

Sajedi [139] proposed a method to discover special patterns that a
steganography algorithm embeds in an image, the so-called Steganography
Pattern Discovery (Figure 3.12) . An evolutionary method was utilized to extract
the signature of stego images against clean images via fuzzy if-then rules. Then,
an SVM classifier was employed to detect stego images with high accuracy.
Embedding rate was 0.05bpp to 0.4bpp and the average accuracy on different

steganographic methods varied from 79% to 91%.
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Figure 3.12: The block diagram of Steganograpy Pattern Discovery Source:
[139].

Rostami et al. [140] proposed a feature selection method based on based

on optimization process of Particle Swarm Optimization (PSO). In order to
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improve the performance of the method, the proposed PSO is used along with
the measure of Area Under the receiver operating characteristics Curve (AUC)
as the fitness function. Experimental results of the proposed method on
BOSSBase image set showed that even that PSO method leads to a higher
feature vector, it outperforms other state of the art feature selection approaches
as the classification accuracy is higher. Moreover, the embedding rate in the
dataset was 0.4bpp and the classification accuracy reached 82.62% when an
SVM was utilized as classifier.

Wu et al. [141] proposed a very deep CNN model, the deep residual network
(DRN). DRN model usually has a large number of network layers, which proves
to be effective to capture the complex statistics of digital images (Figure 3.13).
Furthermore, DRN's residual learning (ResL) method actively strengthens the
signal coming from secret messages, which is extremely beneficial for the

discrimination between cover images and stego images.
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Figure 3.13: Architecture of the Deep Residual Network — Source: [141].

Experiments on BOSSBase dataset (embedding rate 0.4bpp) showed that
the DRN model achieves low detection error rates — 6.48% in average - for the
state of the art steganographic algorithms and outperforms the classical rich

model method and several recently proposed CNN based methods.
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Ye et al. [142] proposed a CNN based steganalyzer. The proposed CNN
had different structure compared to the ones designed for computer vision tasks.
Rather than a random strategy, the weights in first layer of the CNN are initialized
with the basic high-pass filter set used in calculation of residual maps in Spatial
Rich Model (SRM) [79]. Furthermore, a new activation function called truncated
linear unit (TLU) was adopted in the model. Finally, the performance of the CNN
based steganalyzer was boosted by incorporating the knowledge of selection
channel. This approach proved capable of detecting several state-of-the-art
steganographic schemes in spatial domain for a wide variety of payloads
(0.05bpp — 0.5bpp) with high accuracy.

Nouri et al. [143] proposed a scheme in which the alteration of singular
value curve was used to construct the steganalysis feature vector. Two spatial
and JPEG based feature vectors were extracted in the proposed statistical
exploitation. Experimental results on images from two datasets, embedded with
relative payloads of 0.05, 0.1, 0.2 and 0.4 bpp showed the acceptable
performance of the proposed feature vectors for both universal and JPEG based
steganalysis methods.

Yedroudj et. al. [144] used the 30 filters of SRM [79] for the preprocessing
step, a different activation function and a Batch Normalization Layer associated
with a Scale Layer [145]. Furthermore, besides BOSSBase they utilized also
BOWS2 database [82]. In a second experiment they virtually augmented the
training set by performing the label-preserving flips and rotations and the results
were satisfactory.

Finally, authors in [146] selected a manual design filter for the
preprocessing layer. In addition, they integrated the knowledge of selection
channel into the image preprocessing to enhance crucial residuals and initialized
the network with parameters trained with a high payload rate data set to improve
the performance of the network. The proposed network has fewer residual
extractions and convolutional computations and therefore needs less

computational resources.
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3.10 Discussion

In this Chapter state-of-the-art research methods were thoroughly
presented for every type of image steganalysis, according to the taxonomy
presented in Section 2.2. Visual steganalysis is the simplest form of steganalysis.
A Digital Forensics examiner depends solely into manual inspection of the image
and tries to identify visual inconsistencies, in order to discriminate clean from
stego images. This approach has good results when a) the cover medium is
present and b) data were embedded into the cover medium by a poor
steganography algorithm.

As more complex steganography algorithms were introduced throughout
time, visual steganalysis became insufficient. On the contrary, specific
steganalysis has excellent results in identifying a stego image. The major
weakness of this approach is that the digital forensic examiner must have clues
regarding the stegnography algorithm that was utilized. If not, the results will be
be poor because the examiner would not know the appropriate software
steganalysis tool to use.

The two most utilized methods of steganography concerns LSB and LSB
matching steganography. The steganalysis methods proposed in the literature
mainly focus on extracting relevant statistical features of the clean and stego
images and utilize them to train machine learning classifiers. Although many of
the aforementioned statistical methods have promising results, there are some
disadvantages that should be stated:

- Datasets utilized by researchers are in general small. Their size varies
from a few hundred to a few thousand images. To overcome this, many
techniques were adopted like augmentation but there is always the risk of
the overfitting [147].

- The proposed feature extraction methods typically output large
dimensional feature vectors. Although, large dimensional feature vectors

are very informative they are also more complex to train a classifier. This
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leads to larger computational resources and generally larger training
times.

Furthermore, the proposed models can either identify specific
steganography algorithms i.e. find the pattern for each one of them to
classify images into clean and stego, or examine images of specific
format. Hence, when stego images with data embedded by another
steganography algorithm are examined, the proposed models should be

trained again to identify these new algorithms.

Therefore, there is the need to employ new techniques that should

incorporate:

The ability to identify more complex steganography algorithms.

The ability to be easily expanded in order to identify stego images derived
from new steganography algorithms.

To extract low dimensional feature vectors. This will decrease the
computational complexity, lower significantly the training times and even
when the model should be retrained, this will not be time consuming. Time
waste in a digital investigation is crucial. It may lead to wrong conclusions,

misjudgment of evidence and possible escape of guilt.

Models who have the aforementioned abilities should be considered as

universal, which is the ultimate goal of steganalysis i.e. a model that can identify

stego images regardless the embedding algorithm used. In recent times,

researchers are working on this direction and employ deep learning technigues.

The most utilized deep learning method for image steganalysis are the

convolutional neural networks. Although this seems odd since convolutional

neural networks need large training times, they are excellent feature extractors.

Hence, lower - but very informative - dimensional feature vectors can be

extracted and utilized to feed a classifier, which will discriminate then the images

into clean and stego. This research direction was the one followed in this

dissertation. A novel convolutional neural network is proposed, thoroughly
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analyzed and compared against other similar CNNs and aforementioned state-
of-the-art statistical feature extraction methods.
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Chapter 4
Convolutional Neural Networks

4.1 Introduction

Convolutional neural networks are deep learning techniques that are widely
used in conventional computer vision tasks [148] and proved to achieve state-of-
the-art performance. Convolutional derives from the Latin word convolvere - “to
convolve” which means to roll together. In a mathematical perspective, a
convolution is the integral measuring how much two functions overlap as one
passes over the other.

Typically, Convolutional Neural Networks consist of only three types of layers:
Convolution, Pooling (Max or Average) and Fully Connected. By stacking many
of the prementioned layers, a convolutional neural network can be build. A typical
CNN architecture is illustrated in Figure 4.1.
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Figure 4.1: A simple convolutional neural network — Source: [149].
After presenting thousands or millions of images to the CNN, image descriptors
can be learnt from layers close to the output i.e. the fully connected layers. These
features can be used then to feed a classifier.

The last few years CNNs were also used in image steganalysis and compared
to statistical methods showed promising results. Qian et al [134], Yang et al
[150], Pibre et al [151] , Couchot [138], Bayar [152], Yedroudj et al. [144], Ye et
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al.[142], Xu et al. [153] and Jin et. al. [146] implemented and proposed CNNs
suitable for image steganalysis. The differences to these proposals concerned
network structure (i.e. the number of filters, the number of feature maps and the
number of layers) and the examined steganographic algorithms. Qian et al [154]
had a different approach which is similar with ours but in a very different manner.
More specifically, they trained a CNN with stego images of high embedding rates
and then they used the extracted features from various layers, to classify stego
images with lower embedding rate.

In this dissertation a novel convolutional neural network for steganalysis is
designed and implemented. The utilized layers are briefly described below.

4.2 Convolutional Layer

The principal purpose of a convolutional layer is to extract features from
the input layer. The convolutional layer captures the spatial relationship between
image pixels by learning its features utilizing small amount of input data. This is
done by convolving the input image with a filter. Let 7/ be an image which is fed
to the input layer of the Convolutional Neural Network and F a fixed sized filter
(nxm), which convolves with the image. The filtered image /ris then determined

as in equation 2:

Ir=I'F (2
where * indicates a 2D convolution.

A filter Fis a matrix which slides over the image and convolves in parallel
to a region of the input image. Large sized filters capture more features than
smaller sized filters. The output of a convolutional layer is also known as feature
map. Afterwards, the next convolutional layer similarly extracts features from the
feature maps previously learned by a former convolutional layer. The output of
these hierarchical feature extractors is feeding a fully connected neural network

that performs the classification task and discriminates clean from stego images.
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The information a feature map has after each convolution, relies on

parameters like stride and padding. Stride ($) is the size of the step the
convolution filter moves along the input image, while padding (P) pads the image
volume with zeros around the border. Stride size is usually 1, meaning that the
filter Fslides pixel by pixel. By increasing the stride size, the filter slides over the
input with larger intervals and thus has less overlap between the cells. As the
filter slides over the input image the sum of the convolution goes into the feature
map. In a convolutional neural network layer, different filters can be utilized for
each one of the convolutional layers. In steganalysis, typical filter sizes are 3x3
and 5x5, but there are also some implementations with larger filters as well.
Let 7 (wixhixd:) an image fed into a convolutional neural layer where wz is the
width, Az the height and d:the depth (hnumber of channels). The output volume
produced by the convolutional layer will be an image lonv (Wzxhzxdz) where dzis
the number of filters also denoted as 4. Its parameters are calculated as in
equations 3-4.

wz = (wi-F+2P)/5+1 (3)

hz = (hi-F+2P)/S+1 (4)

The total number of learnable parameters after each convolutional layer is
shown in equation 5.
parameters = ((mxn)+1) xk (5)

where m is the width of the filter and n is the height of the filter.

4.3 Dilated Convolutions

In a typical convolutional layer when more and larger feature maps are
needed, larger filters are utilized, but this inevitably leads to an exponential
growth of parameters that need to be calculated. Therefore, the computational
needs are large. A dilated convolutional layer [155] on the other hand, performs
convolution operations with modified filters. The layer expands the filters by

inserting zeros between each filter element according to a dilation factor. The
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dilation factor determines the increase to the field of view of the filter. Dilated
convolution is then defined as in equation 6.

Ir=1%F (6)
where i is the dilation factor.

The main advantages the dilated convolutional layer has are the larger
receptive field, the more efficient computation, the reduced memory consumption
and the faster convergence of the network. In dilated convolutions, a k x k sized
filter, with a dilation factor ris enlarged to k& + (k — 1)x(r - 1) [156]. Due to these
advantages, in the proposed convolutional neural network dilated convolutional
layers are utilized, where the filter sizes are 7x7 and 5x5 with a dilation factor of
3. These values were emerged from extreme experimentation as described in
Chapter 5.

4.4 Pooling Layer

A pooling layer divides the input information into regions and then
computes the average or maximum values of each region. Therefore, an Average
Polling Layer or a Max Pooling Layer can be exploited. Pooling layers are used
to reduce the size of the inputs, reduce the number of parameters and hence
speed up the computation.

Typically, CNNs use pooling layers with filter size 2x2, applied with a stride
of 2. This filter downsamples every depth slice in the input by 2 along both width
and height, discarding 75% of the activations. Let V; (wixhixd:) an input volume
to the pooling layer. After performing pooling operation, an output volume V;
(w2xhaxd2) with d2=d1 is produced, where its parameters are calculated as in

equations 7-8.

w2 = (wi1-F)/S+1 (7)
hz=(hi-F)/5+1 (8)
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4.5 Batch Normalization Layer

A batch normalization (BN) layer [157] is used to speed training. It
normalizes each input channel across a mini batch. The batch normalization
layer subtracts the mini-batch mean and divides by the mini-batch standard
deviation. Afterwards, the layer shifts the input by an offset and scales it by a
scale factor. Let B={x:....} @ mini batch, ugz the mini batch mean, o3 the mini
batch variance, X; the normalized values, ¢ is a constant for numerical stability,
yis the scale factor, g is the offset and y; the linear transformations of the input

(i.e.the output) which are calculated as shown in equations 9-12.
1

Hp = — i=1Xi (9)

0f =~ ¥, (xi — up)? (10)
£ = % (11)
Yi=VXi+p (12)

Parameters y and g are learnable parameters that are updated during
network training. In the proposed convolutional neural network, a batch

normalization layer was used after each convolutional layer.

4.6 Dropout Layer

Dropout [158], is a technique used to improve or avoid the phenomenon
of overfitting on neural networks. The specific layer during the training phase
deactivates a percentage of neurons. This technique improves generalization
because it forces the layer to activate different neurons each time to learn the
same thing.

It must be noted that during the test phase the dropout is deactivated. In

the proposed network one dropout layer was used with probability 0.5.
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4.7 Activation Function - Leaky RelLU Layer

The most common used activation function in a convolutional neural
network is the Rectified Linear Unit (ReLU). A ReLU activation function (equation

13) sets all negative inputs to zero.

o ={3 128 ®

The main disadvantage of the ReLU activation function is the so called
“‘dying” problem. A RelLU neuron is called “dead” if the output of the RelLU
function for any given input is zero, i.e. the input to the activation function is less
than zero. When a neuron gets negative and because the slope of ReLU in the
negative range is also 0, the neuron will not recover. Therefore, the specific
neuron cannot discriminate the input and becomes impractical. In this way and
after training for a large number of epochs, a large part of the network may
become absolutely useless.

A variation to ReLU is the Leaky ReLU activation function. A leaky ReLU
layer also performs a threshold operation, but when an input value is less than

zero it multiplies it by a fixed scalar (equation 14).

x, x=0

axx, x<0 (14)

feo ={

where a is a fixed scalar. A common value of a is 0.01. In the conducted
experiments (presented in Chapter 6) the ‘dying’ problem was confirmed. Thus,
Leaky ReLU was used as the activation function of the proposed convolutional

neural network.
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4.8 Fully Connected Layer

A fully connected layer is a layer in which its neurons are fully connected
with the activations in the previous layer. Typically, there is one fully connected
layer (at the end of the CNN) and the number of its neurons equals to the number
of the classes. There are also many proposed architectures - depending on the
classification task - that embed two or more fully connected layers. In the

proposed method two fully connected layers are utilized.
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Chapter 5
KarNet — A novel CNN for image
steganalysis

5.1 Introduction

Embedded secret information to an image is considered as additive noise.
Thus, a common strategy in steganalysis, is to enhance this noise and therefore
increase signal-to-noise ratio between the weak stego signal (stego images only)
and the image signal. Hence, a high-pass filter is applied to every image coming
to the input layer of the convolutional neural network., This step makes CNNs to
converge sooner and to capture better the discrepancies between a stego and a
clean image. A high pass filter F (equation 15) is applied to every image of the
dataset as a preprocessing step prior to presenting the image to the input layer
of the CNN.

Another similar approach was proposed by Kim et al. in [159]. Authors
suggested a binarized differential filter (BDF - equation 16) and made
experiments with both BDFand the high-pass filter F. In this dissertation the high
pass filter F was utilized as a preprocessing step. Therefore, every grayscale
image sized 256x256x1 is filtered and the resulted size of the image which is
presented to the input layer of the CNN is 252x252x1.

-1 2 =2 2 -1
2 —6 8 -6 2

F=—| -2 8 -12 8 -2 (15)
2 —6 8 -6 2
-1 2 =2 2 -1
— <
—1, otherwise
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Each one of the images entering the input layer of our proposed
convolutional neural network utilizes the filter described in equation 15. Other
state-of-the-art convolutional neural networks [144] for spatial image
steganalysis make use of the 30-basic high-pass filters used in the computation
of residual maps from SRM method.

5.2 The examined architectures

In order to propose a novel convolutional neural network and to examine its
discriminative capability as: i) a classifier and ii) a feature extractor, numerous
experiments were conducted. These experiments concerned different
architectures where the basic network elements that changed in each network

were.

» the preprocessing steps i.e. the utilization of filter For BDF,

» the number of layers,

> the type of layers (convolutional, batch normalization, dropout,
pooling type, number of fully connected etc.),

» each layer settings (stride, filter size, dilation factor, padding etc.),

» number of neurons in the first fully connected layer,

> the hyperparameters settings (learning rate, learning decay,
optimizer, etc.),

» the convergence times.

The criterion to keep or to change the examined architecture was the
detected accuracy with respect to convergence time, especially for low
embedding rates. The conducted experiments can be summarized in Table 5.1,
while in Figure 5.1 the detected accuracy from each one of the examined

convolutional neural networks is shown.
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Table 5.1: The examined architectures.

ID Number of Dilation Dilation Accuracy on validation set
layers Factor (%) — S-UNIWARD
1 14 Yes 2 72.79
2 14 Yes 2 74.01
3 14 Yes 2 74.29
4 14 Yes 3 78.05
5 17 Yes 3 76.62
6 17 Yes 3 76.24
7 20 Yes 3 73.95
8 17 Yes 3 75.69
9 17 Yes 3 73.04
10 17 Yes 3 74.38
11 17 Yes 3 77.45
12 17 Yes 3 78.91
13 17 Yes 3 78.97
14 17 Yes 3 79.40
15 17 Yes 4 71.29
16 17 Yes 4 72.37
17 17 Yes 4 72.04
18 17 Yes 2 75.81
19 17 Yes 2 75.79
20 17 Yes 2 76.41
21 17 Yes 2 75.83
22 17 Yes 2 75.38
23 17 Yes 2 75.79
24 20 Yes 2 75.79
25 19 Yes 2 78.29
26 19 Yes 2 71.56
27 19 Yes 2 72.64
28 19 Yes 2 76.00
29 19 Yes 2 78.15
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ID Number of Dilation Dilation Accuracy on validation set
layers Factor (%) — S-UNIWARD
30 17 Yes 3 81.06

It must be noted that Table 5.1 summarizes only the most important

elements that changed to each network and not all of them. The number of the

neurons in the first fully connected layer for all the experiments, were initially set

to 1500 but in the final architecture of the proposed convolutional neural network

this number was set to 250.
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Figure 5.1: Accuracy on validation set of the examined CNN architectures.

Along with the above examined architectures, other proposals found in

literature such as those in [134],[151] (Figures 5.2&5.3) were also examined and

compared against each network.
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Figure 5.3: CNN in [151].

After deciding the network architecture, more experiments were conducted
concerning the hyperparameters of the convolutional neural network i.e. the

optimizer, the learning rate, learning decay, the validation patience etc.

5.3 The proposed architecture — KarNet

The following novel convolutional neural network - also known as the
KarNet - shown in Figure 5.4 is proposed, which will be:
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a) first evaluated as a novel dilated convolutional neural network for
spatial image steganalysis and

b) utilized strictly as a feature extractor.
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Figure 5.4: KarNet — The proposed CNN.
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Initially, each one of the images of the training set is filtered (noise
enhancement block in Figure 5.4) with the filter F described in equation 15. As a

result, a filtered image sized 252x252x1 enters the first convolutional block.

Three (3) convolutional blocks i.e. convl, conv2, conv3 block were used as

illustrated in Figure 5.4.

A conv block is defined as the utilization of:

- adilated convolutional layer

- abatch normalization layer and

- alLeaky ReLU layer.

Moreover, dilated convolutional layers were used to increase the receptive

field without increasing the number of learnable parameters. Thus, less

computational resources were needed, and this led to faster training of the

network. An example of dilated convolutions is shown in Figure 5.5.

o |
olefe
100 of Ie
100
o |e
(a) (b) ()

Figure 5.5: (a) 1-dilated convolution b) 2-dilated convolution c) 4-dilated
convolution. Source : [155].
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The dilation factor in the proposed architecture is three (3), meaning that the
first filter sized 7x7 corresponds to an effective filter size of 19x19, while the
second filter sized 5x5 corresponds to an effective filter size of 13x13.

The batch normalization layer was used to speed training and reduce the
sensitivity to network initialization. KarNet uses three batch normalization layers,
each one after the respective dilated convolutional layer. Layer weights are
initialized by sampling from a normal distribution with zero mean and variance
0.01.

The activation function was the Leaky RelLU, to avoid and overcome the
‘dying neurons’ problem. Experiments that were also made in the beginning with
ReLU as an activation function, confirmed the problem and highlighted the
utilization of Leaky ReLU.

Additionally, an average pooling layer was used. Average pooling was
chosen against max pooling, to consider all the activations in the pooling region.
A stego signal is very weak and the modifications made to the image after
embedding the secret message slightly alter pixels value. Therefore, the more
information kept the better classification results can be achieved. Average
pooling retains more information than max pooling, although in some scenarios
max pooling may perform better. In our experiments both max and average
pooling were examined but average pooling had better behavior.

Finally, a typical softmax layer followed by a classification layer was

utilized to perform classification of the input images into clean or stego.

5.4 Network’s training parameters

As described in Section 5.1 each one of the images in the dataset was
filtered with the filter Fshown in equation 15. Thus, the input layer of the CNN
was fed with an 252x252x1 image.

Afterwards, each image moved from the input layer to the convolutional

blocks described earlier. Each image was convolved with the respective filter in
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each convolutional block and produced the respective feature maps. KarNet was
set to be trained either for a maximum of 5000 epochs and early stopping with
validation patience of 10 which means that if the validation loss was larger or
equal to the previously smallest loss for 10 consecutive epochs, the network
stopped its training. Typical adopted values of validation patience for CNN
training are 2 [160], 3 [161], [162] or 5 [163]-[165] . In order to be more certain
that our convolutional neural network is robust against overfitting, validation
patience was set to 10.

The stochastic gradient descent with momentum (SGDM) optimizer was
utilized and the momentum was set to 0.9. The learning rate was 0.0005 and a
batch size of 256 (128 cover/stego pairs) was used. All the experiments were
conducted into a workstation with two XEON processors (56 cores), 64GB of
RAM and two Nvidia GTX 1080ti GPUs (3584 CUDA cores each) working in
parallel. The average training time for all examined architectures was about 10
hours whilst there were architectures (the ones tried to classify images with the

lowest embedding rate) which needed much more training time.

5.5 Determining the number of neurons in fully
connected layer

Two fully connected layers were used. The first one consists of 250
neurons and the second one of two neurons (the number of classes i.e. clean /
stego). The reason was to capture global image features and not local like
convolutional layers that operate on a window of certain size. The first fully
connected layer can model more complex global patterns.

This section concerns the conducted experiments to determine the
optimal number of neurons in the first fully connected layer in respect to ratio
accuracy/complexity. Moreover, performance of KarNet was examined for having
20,100,250,500,750,1000,1250 and 1500 neurons in the first fully connected
layer, for both steganographic algorithms and all embedding rates.
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Furthermore, for each examined number of neurons the feature vector
was also extracted and trained the Random Forest classifier. The results
obtained for KarNet are summarized in Tables 5.2&5.4 while Tables 5.3&5.5
show the respective results for the Random Forest classifier, for both

steganographic algorithms and all embedding rates.

Table 5.2: KarNet accuracy - S-UNIWARD.

Embedding rate Number of neurons in first fully connected layer
(bpp) 20 250 | 500 | 750 | 1000 | 1250 | 1500
0.4 86.55 | 86.95 | 86.00 | 84.55 | 85.85 | 85.65 | 86.70
0.3 83.80 | 82.60 | 82.65 | 83.25 | 82.35 | 80.80 | 82.60
0.2 76.30 | 76.55 | 77.20  76.35 | 76.10 | 74.85 | 76.65
0.1 63.80 | 66.30 | 67.75  66.50 | 65.65 | 65.30 | 65.95

Table 5.3: Random Forest accuracy - S-UNIWARD.

Embedding rate Number of neurons
(bpp) 20 250 | 500 | 750 | 1000 | 1250 | 1500
0.4 86.45 | 85.85 | 86.35 | 86.00 | 85.90 | 86.50 | 86.95
0.3 83.00 | 82.70 | 82.35 | 82.90 | 81.95 |81.30 | 81.65
0.2 76.65 | 76.35 | 77.25 | 76.40 | 76.00 | 75.95 | 75.30
0.1 65.15 | 66.25 | 67.20 | 67.75 | 65.90 | 66.85 | 66.80

Table 5.4: KarNet accuracy — WOW.

Embedding rate Number of neurons in first fully connected layer
(bpp) 20 250 | 500 | 750 | 1000 | 1250 | 1500
0.4 84.60 | 85.10 | 85.25 | 85.30 | 85.45 | 83.55 | 81.50
0.3 80.85 | 79.80 | 79.30 | 80.50 | 79.75 | 80.25 | 79.05
0.2 70.25 | 72.35 | 72.25 | 72.50 | 73.40 | 73.10 | 70.90
0.1 58.70 | 61.50 | 60.85 | 59.70 | 60.20 | 59.25 | 60.90
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Table 5.5: Random Forest accuracy — WOW.

Embedding rate Number of neurons
(bpp) 20 250 | 500 | 750 | 1000 | 1250 | 1500
0.4 84.70 | 84.80 [ 85.90 | 85.65 | 84.55 | 84.45 | 84.55
0.3 79.75 | 79.25 | 79.70 | 80.65 | 79.90 | 79.30 | 79.40
0.2 72.45 | 73.10 | 72.75 | 72.40 | 73.70 | 72.60 | 71.45
0.1 59.35 | 62.30 | 61.25 | 59.85 | 60.75 | 58.80 | 60.20

The criterions to choose the “best” number of neurons were to achieve:

a) high accuracy in relation to low computational complexity

b) very good network performance to low embedding rates and

c) similar or better results for Random Forest classifier.

Comparing the above tables, it is obvious that for S-UNIWARD steganographic

algorithm, the best average behavior is achieved when selecting 500 neurons in

the first fully connected layer while for the WOW algorithm this number is 250.

The number of the learnable parameters for each one of the examined networks

is shown in Table 5.6

Table 5.6: Number of parameters per network.

Number of
neurons in Fully

Connected 1 layer

Number of parameters

20 1,337614 x 106
250 15,944224 x 10°
500 31,820974 x 10°
750 47,697724 x 106
1000 63,574474 x 10°
1250 79,451224 x 10°
1500 95,327974 x 10°
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From Table 5.6 it is noticed that if the number of neurons in the first fully

connected layer is set to 250, a 50% decrease in the number of learnable

parameters is achieved, compared to the ones if 500 neurons were chosen.

Moreover, the results for both methods (KarNet — Random Forest) and for both

number of neurons (250 — 500) are nearly the same. Therefore, the number of

neurons in the first fully connected layer of KarNet was set to 250 due to lowest

computational complexity.

5.6 Learnable parameters

The activations and the number of learnable parameters (per layer/total

network) of the proposed convolutional neural network were calculated and are

presented in Table 5.7.

Table 5.7: Learnable paramaters of KarNet.

Layer Activations Layer Total Layer | Total Network
Parameters Parameters Parameters
Analysis
Input 252x252x1 0 0 0
comvolutions. Side Weighs
L ’ 126x126x64 | 7x7x1x64 3200 3200
2, Dilation Factor .
Bias 1x1x1x64
3x3
Batch Offset 1x1x64
Normalization 126x126x64 Scale 1x1x64 128 3328
geoalky Relu—scale | 1,6,126x64 0 0 0
Sc?r?\)/ju_tigﬁssxsstﬁ?ji Weights
o ’ 126x126x32 | 5x5x64x32 51232 54560
1, Dilation Factor .
Bias 1x1x1x32
3x3
Batch Offset 1x1x32
Normalization 126x126x32 Scale 1x1x32 64 54624
Beoalky Relu—scale | ;,6,126x32 0 0 54624
ggr?:;u_tigr?s&g)r(i?(;ze Weights
’ 126x126x16 | 5x5x32x16 12816 67440

1, Dilation Factor
3x3

Bias 1x1x1x16
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Batch Offset 1x1x16
Normalization 126x126x16 Scale 1x1x16 32 67472
Beoalky Relu—scale | 156.106x16 0 0 67472
Average Pooling,
Stride 2x2 63x63x16 0 0 67472
FC1, fully Weights 15943722
connected with 250 | 1x1x250 250x63504 15876250
neurons Bias 250x1
Beoalky Relu — scale 1x1x250 0 0 15943722
Dropout — 50% 1x1x250 0 0 15943722
FC2, fully . 15944224
connected with 2 1x1x2 Welghts 2x250 502

Bias 2x1
neurons
Softmax Ix1x2 0 0 15944224
Classification 1x1x2 0 0 15944224

Therefore, the number of learnable parameters of the proposed network

was 15,944224*1068.

5.7 Proposed architecture’s differences with other
state-of-the-art networks

Apart from the design and implementation of KarNet the differences

between the proposed CNN with other state of-the-art CNNs utilized for spatial
image steganalysis like IAS-CNN [146], Ye-Net [142], and Yedrouj-Net [144] are

examined. Each architecture of the aforementioned convolutional neural

networks is shown in Figures 5.6-5.8.
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Figure 5.6: Yedrouj-Net architecture — Source: [144].
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Figure 5.7: Ye-Net architecture— Source: [142].
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Figure 5.8: IAS-CNN architecture - Source:[146].

Table 5.8 summarizes the most important building blocks of each state-of-
the-art- convolutional neural networks used for spatial image staganalysis and

highlights the differences to our proposed CNN, the KarNet.

Comparing the state-of-the-art CNNs with KarNet several similarities and

differences can be distinguished:

» KarNet uses the high pass filter F described in equation 15. The other
networks use one (IAS-CNN) or the 30 basic filters described in SRM
method either for preprocessing input images (Yedroudj-Net) or to
initialize the weights of the first layer (Ye-Net).

» All proposed convolutional neural networks utilize images sized 256x256.

» KarNet uses less convolutional layers than the others and moreover it is
the only CNN that uses dilated convolutions.

» KarNet and IAS-CNN use dropout layer to prevent overfitting. The rest

examined architectures do not.
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» Average pooling is utilized except Ye-Net which uses mean pooling.

» A significant difference between the networks is the activation function.

KarNet is the only one that uses LeakyReLU.

» There is a plethora of different number of fully connected layers. KarNet
and IAS-CNN use two (2).

Table 5.8: Basic building blocks of KarNet and state-of-the-art CNNs.
Convolutional Neural Network

Features KarNet Yedroudj-Net Ye-Net IAS-CNN
Number of filters for 1 30 1 1
preprocessing
Input _image (prior 10| g 556 256x256 256x256 | 256x256
preprocessing)

Number of conv layers 3 5 9 5

Dilated convolutions Yes No No No

Batch Normalization Yes Yes No No

layer

Absolute Value layer No Yes No No

Pooling Average Average -Global Mean Average
Average

Activation Function LeakyReLU Trulggﬁ'tljon- TLU - RelLU RelU

Dropout layer Yes No No Yes

Number of fully

connected layers 2 3 ! 2

5.8 The dataset

The literature review in Chapter 3, besides the presentation of state-of-the-

art methods in every domain of steganalysis also gave us useful information

regarding the datasets (public or proprietary) that other researchers used. This

information is presented in Table 5.9. The links where each one of these datasets

can be found online are given in Appendix (Table 1.6).
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Table 5.9: Datasets and Number of papers that they were used.

Image dataset Number of papers Publicly available
found found
BOSSBase 22 Yes
Corel 8 Yes
NRCS 7 Yes
UCID 5 Yes
USC 5 Yes
BOWS — BOWS2 4 Yes
Philip Greenspun 4 Yes
BSDS 2 Yes
CBIR 2 Yes
Kodak 2 Yes

Observing Table 5.9 some useful conclusions can be obtained:

v" The majority of the authors chose to use publicly available datasets as
benchmark. This makes the comparison between similar methods
easier and the reader of their articles can determine the added value
that the proposed method contributes in steganalysis.

v BOSSBase [72] is by far the most utilized dataset.

In order our results to be directly comparable with the ones to the literature,
BOSSBase v1.01 was used as the main dataset. BOSSBase v1.01 contains
10000 grayscale images of pgm format sized 512x512 (Figure 5.9).

These images were split into four (4) equal parts and thus 40000 images
sized 256x256 were extracted (Figure 5.10). It must be stated here that images
were split the images prior to embedding, to avoid manipulation of the classifiers

results.
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Figure 5.9: Sample cover images from BOSSBase dataset.

Figure 5.10: A cover image split into four equal parts.
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Two different adaptive steganographic algorithms were examined by their
Matlab implementations [166], i.e. Spatial-Universal Wavelet Relative Distortion
(S-UNIWARD) [17] and Wavelet Obtained Weights (WOW) [18]. These two
steganographic algorithms first estimate the distortion caused in an image when
a message is embedded, and afterwards embed a small quantity of the
embedded message in image regions where the distortion was found small. This
embedding procedure makes statistical steganalysis more difficult because the
alterations in the statistical features of the images produced by the embedded
message are very small.

In total, 40000 stego images were produced with different embedding rates
(0.1-0.2-0.3-0.4bpp) and an overall of 80000 clean and stego images were in

each one of the four datasets (one per embedding rate).

a b c

Figure 5.11: a) Cover image b) Image after applying the S-UNIWARD algorithm
¢) The distortion the stego algorithm resulted +1=white -1=black.

Figures 5.11&5.12 show an example of each steganographic algorithm (S-
UNIWARD & WOW respectively) applied to the same image along with the
resulted distortion, while Figure 5.13 shows the LSB plane for both

steganographic algorithms.
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a b c

Figure 5.12: a) Cover image b) Stego image after applying the WOW algorithm
c) The distortion the stego algorithm resulted. +1=white -1=black.

In order to see if our proposed convolutional neural network generalizes

well, 2000 of these images (1000 clean and 1000 stego) were never presented
to KarNet and were used as a test set to evaluate our method’s performance.
The rest of the dataset - i.e.78000 images - was then split into a training set and

a validation set (90%-10% respectively) as shown in Table 5.10.
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Table 5.10: Dataset split.
Number of images

Set Clean Stego Total
Training 35100 35100 | 70200
Validation 3900 3900 7800
Test 1000 1000 2000

5.9 Metrics used

Although the dataset was perfectly balanced, in order to evaluate better the
proposed method, other metrics such as Precision, Recall, F1 score and the
Receiver Operating Characteristic (ROC) Area were also used. Prior giving the
definitions for these metrics, other terms such as True Positive (TP), True
Negative (TN), False Positive (FP), False Negative (FN) must be defined.

True Positive (TP) False Negative (FN)

\ Predicted Predicted
N\ Stego Clean

Stego ! b “

Clean C d

e S

False Positive (FP) True Negative (TN)

Figure 5.14: Basic statistical terms.

Figure 5.14 shows a confusion matrix according to our binary (stego and
clean images) classification problem indicating each one of aforementioned
terms. Let a, b, ¢ & d be the predictions of our classifier, where a & d represent
correct predictions and b & c false predictions.

A true positive occurs when the model correctly predicts the positive class,

i.,e. the stego Iimage. Likewise, atrue negative occurs when the

model correctly predicts the negative class i.e. the clean image. A false
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positive occurs when the model incorrectly predicts the positive class, i.e. the
stego image. Likewise, a false negative occurs when the
model incorrectly predicts the negative class, i.e. the clean image.

True Positive rate (TPR) is also called sensitivity, while the True Negative
Rate (TNR) is also called specificity. Sensitivity and specificity are inversely
proportional, meaning that as the sensitivity increases, the specificity decreases
and vice versa. Equations 17&18 show the formulas for both Precision & Recall

respectively.

TP correctly predicted stego

Precision = a7)

TP+FP correctly predicted stego+false predicted stego

Recall TP  _ correctly predicted stego
ecall = =
TP+FN  correctly predicted stego+false predicted clean

(18)

Likewise, in equation 19 the formula for F1 score is given, which actually

represents the harmonic mean of precision and recall.

% precisionx*recall

F1=

(19)

precision+recall

The Receiver Operating Curve (ROC) can show whether a classifier is
performing well in general. They give the same result regardless of what the class
probabilities are, i.e. they consider equally the positive (stego) and negative
(clean) classes. In contrast, a Precision Recall Curve (PRC) would be more
useful if the proposed method were focused in how the classifier was behaving
on one class. Therefore, the Area Under Curve (AUC) value was chosen as a
metric for the proposed model. The ROC curve is plotted with TP rate against the

FP rate where TP rate is on y-axis and FP rate is on the x-axis.
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5.10 Experimental results

Initially, KarNet was used as a typical convolutional neural network to
discriminate clean from stego images. After training the network, the 2000
unseen images from the test set were presented to KarNet and the metrics
discussed in Section 5.9 were calculated. Precision, recall and F1 score detected
for each steganographic algorithm and for all embedding rates is shown in Tables
5.11&5.12, while Figures 5.15 — 5.18 show classification metrics such as
accuracy, detection error, sensitivity and specificity of the proposed convolutional
neural network. Figures 5.19&5.20 show the ROC curve for each one of the
examined steganographic algorithms for all embedding rates along with the

respective AUC value.

Table 5.11: Combined output matrix for S-UNIWARD - all embedding rates.

Embedding | Class | Precicion | Recall | F1 ROC | Accuracy
rate (bpp) Area
0.4 Clean 0.862 0.880 | 0.871 0.947 86.95%

Stego 0.877 0.859 | 0.868

Clean | 0824 | 0.829 | 0.826 )
0.3 Steqo | 0.828 | 0823 | 0.825 | 0916 | 82.60%

Clean | 0.734 | 0.832 | 0.780 )
o2 Stego | 0.806 | 0.699 | 0.748 | 08°% | 76.55%

Clean | 0.644 | 0.730 | 0.684 :
> Stego | 0688 | 0.596 | 0.639 | /29 | ©0:30%

Table 5.12: Combined output matrix for WOW - all embedding rates.

Embedding | Class | Precicion | Recall | F1 ROC | Accuracy
rate (bpp) Area
0.4 Clean 0.808 0.920 | 0.861 0.931 85.10%

Stego 0.907 0.782 | 0.840

Clean | 0.795 | 0.803 | 0.799 .
03 Stego | 0.801 | 0.793 | 0.797 | 0881 | 79.80%

Clean 0.746 0.678 | 0.710 .
> Stego | 0.705 | 0.769 | 0.736 | 0802 | 72.3%%

Clean | 0.605 | 0.662 | 0.632 :
> Stego | 0627 | 0.568 | 0596 | 073 | ©61-50%
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Figure 5.15: Detected accuracy of KarNet.
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Figure 5.16: Sensitivity of KarNet.
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Figure 5.17: Specificity of KarNet.
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Figure 5.18: ROC curve for KarNet - S-UNIWARD.
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Figure 5.19: ROC curve for KarNet — WOW.

The obtained results shown in Tables 5.11&5.12 and in Figures 5.15-5.19
show that KarNet can identify clean from stego images very well. In this point it
must also be noted accuracy of the KarNet is denoted as the mean accuracy of
both classes i.e. clean and stego.

The resulted confusion matrices in Tables 5.13&5.14 shows the accuracy
of the proposed dilated convolutional neural network per class, while Figures
5.20-5.23 show the accuracy per class and for all embedding rates for every
examined steganographic algorithm i.e. S-UNIWARD & WOW.
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Table 5.13: KarNet confusion matrix for S-UNIWARD and all embedding rates.

Embedding
—> 0.4bpp 0.3bpp 0.2bpp 0.1bpp
Rate
Classified as

Actual

Clean | Stego | Clean | Stego | Clean | Stego | Clean | Stego
Class
Clean 880 120 829 171 832 168 730 270
Stego 141 859 177 823 301 699 404 596

Table 5.14: KarNet confusion matrix for WOW and all embedding rates.

Embedding 0.4b 0.3b 0.2b 0.1b
Rate m— 4Dbpp -Sbpp -2bpp -1bpp
Classified as

Actual

Clean | Stego | Clean | Stego | Clean | Stego | Clean | Stego
Class
Clean 920 80 803 197 678 322 662 338
Stego 218 782 207 793 231 769 432 568

90
80
70
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50
40
30
20
10

Accuracy for clean images - S-UNIWARD

28
82,9 83,2
73

B Embedding rate

M Accuracy

Figure 5.20: KarNet's accuracy for clean images — S-UNIWARD.
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Figure 5.21: KarNet's accuracy for stego images — S-UNIWARD.
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Figure 5.22: KarNet's accuracy for clean images — WOW.
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Figure 5.23: KarNet's accuracy for stego images — WOW.
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5.11 Comparison of KarNet performance against to
state-of-art CNNs

KarNet was compared against other state-of-art convolutional neural
networks such as those described in [144],[142],[146] and summarized in Table
5.8. Experimental results are shown in Table 5.15. In Figures 5.24-5.27 the
comparison of KarNet against the aforementioned CNN’s for embedding rates of

0.4bpp & 0.2bpp is given.

Table 5.15: Steganalysis error probability (%) - KarNet against state-of-the-art

CNNSs.
S-UNIWARD WOW
Method Embedding rate (bpp) 0.2 0.4 0.2 0.4
KarNet 23.45 13.05 27.65 14.90
Yedrudj-Net 36.70 22.80 27.80 14.10
Ye-Net 33.18 23.74 28.08 20.44
IAS-CNN 37.60 24.95 31.85 19.25

Detection Error - SS-UNIWARD Embedding rate 0.4bpp

0.3

0.25

0.2

0.15

Error

0.1

0.05

Examined CNN

mKarNet mYedrudjNet YeNet mIAS-CNN

Figure 5.24: Error of KarNet against other CNNs — S-UNIWARD - 0.4bpp.
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Detection Error - SSUNIWARD - Embedding rate 0.2bpp
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Figure 5.25: Error of KarNet against other CNNs — S-UNIWARD - 0.2bpp.
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Figure 5.26: Error of KarNet against other CNNs — WOW - 0.4bpp.

88



Detection Error - WOW - Embedding rate 0.2bpp
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Figure 5.27: Error of KarNet against other CNNs — WOW - 0.2bpp.

5.12 Discussion

A novel convolutional neural network was designed and implemented for
spatial image steganalysis. The main differences against other state-of the-art
similar convolutional neural networks are the utilization of dilated convolutions
and the use of Leaky ReLU as an activation function.

Dilated convolutions were utilized to increase the receptive field of the
convolution without increasing the size of the kernel. This way the number of
learnable parameters was not increased, and the computational complexity was
lower. Furthermore, the utilization of LeakyReLU as an activation function has
overcome the ReLU ‘dying neuron’ problem. These two factors were crucial to
achieve excellent classification results even for very low embedding rates.

Moreover, KarNet was compared against other state-of-the-art

convolutional neural networks used in spatial image steganalysis and it was
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proved that our proposed CNN outperforms them. For S-UNIWARD algorithm,
KarNet outperforms all other state-of-the-art CNNs. It achieves a lowest error
from 9.75% to 13.25% than Yedrudj-Net. The comparison with IAS-CNN shows
the same results; KarNet is better from 11.90% to 14.15%. The results when
comparing with Ye-Net are the same; the error is lowest from 9.73% to 10.69%.
For WOW algorithm the obtained results are almost identical. KarNet
outperforms Ye-Net and IAS-CNN and only Yedrudj-Net shows slightly worse
error probability (0.15% at 0.2 bpp) or slightly better (0.8% at 0.4bpp).
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Chapter 6
KarNet as Feature Extractor

6.1 Introduction

The second major objective of this research was to investigate whether
the softmax layer of a convolutional neural network could be replaced by another
traditional machine learning classifier with the same or better results. Thus, the
efficiency of the convolutional neural network solely as a feature extractor, should
be examined.

The idea of using a CNN for feature extraction is not new [148],[167].
Feature extraction from a CNN can be performed either from a pretrained CNN
(transfer learning) [168] or by designing and training a CNN from scratch which
is the case studied in this dissertation.

In order to use a convolutional neural network as a feature extractor, the
activations of the first fully connected layer have to be extracted and form the
feature vector for each one of the images in the training set. KarNet was trained
with a training set consisting of 70200 images and the number of neurons in the
first fully connected layer were 250. Consequently, a feature matrix sized
70200x250 was formed and utilized to train the Random Forest classifier. Figure

6.1 shows the block diagram of the process.
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Figure 6.1: KarNet as feature extractor with Random Forest classifier.

The three convolutional blocks of the KarNet were used as a feature
extractor/selector and the extracted 250-dimensional feature vector (from the first
fully connected layer) was utilized to feed a Random Forest classifier. Figure 6.2

shows the extracted features in each one of the three conv blocks.

Convl Conv2 Conv3

Figure 6.2: The extracted features in the three conv blocks.
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6.2 The classifier

The extracted feature vector was utilized to feed a Random Forest
classifier. A Random Forest is an ensemble of Decision Trees (DT), usually
trained with the “bagging” method (Figure 6.3) [16]. Random forest actually
improves bagging, by using at each split of each tree only a small subset of

features rather than the total.

Instance
Random Forest _— |
— = | 3
_~ V a .
AN AN AN
A P\ AC b y ol
X X X X RR X ™ X X2 X0
0000000 0GOS0 GO 0000 00'00
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

l
‘ Majority-Voting |
Final-Class

Figure 6.3: A typical Random Forest - Source : [169].

Given n available features, a subset will have a total of +/n features
selected at random. Therefore, the algorithm by following the above strategy
decorrelates each utilized tree. Each tree is making a decision (class) and the
class with the maximum number of votes becomes the algorithm’s prediction.

It is a very handy and fast algorithm, typically with high accuracy even with
the default hyperparameters and it is robust to overfitting [16]. The only limitation

relies on the number of trees; the larger the number of trees the slower the
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algorithm becomes but the higher the accuracy. It is found [16], [170] that 1000

is a well-chosen number of trees to have accurate results.

were.

The reasons why a Random Forest classifier was chosen instead of others

» The algorithm can easily handle binary features, categorical

features, and numerical features. The data need almost no pre-
processing since they do not need to be rescaled or transformed.
Parallel execution can be chosen. This leads to less computation
time.

Since the algorithm uses subsets of features, the algorithm can
handle high dimensional data as well. Furthermore, this leads to
faster training times than a simple decision tree.

The algorithm is robust to outliers.

Although this is not our case, the algorithm balances the error in
unbalanced data sets. Random forest tries to minimize the overall

error rate.

The number of leaves of the Random Forest classifier was set to 16

(~V250) and 1000 trees were constructed. Experiments with more (2000-3000-

5000-10000) and less (500) trees were also conducted but the optimal number
was found to be 1000.

6.3 Experimental Results

Tables 6.1 — 6.4 show the combined confusion matrix of the trained

Random Forest classifier along with other classification metrics, while Figure 6.4

shows the classification accuracy of the Random Forest classifier for both

embedding algorithms and for all embedding rates.
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Table 6.1: Combined confusion matrix for S-UNIWARD - all embedding rates.

Embedding

Rate :> 0.4bpp 0.3bpp 0.2bpp 0.1bpp
Classified as

Actual Class Clean | Stego | Clean | Stego | Clean | Stego | Clean | Stego

Clean 881 119 863 137 805 195 754 246

Stego 164 836 209 791 278 722 429 571

Table 6.2: Combined output matrix for S-UNIWARD - all embedding rates.

Embedding | Class | Precicion | Recall | F1 ROC Accuracy

rate Area
Clean 0.843 0.881 | 0.862 | (.944

0.4 85.85%
Stego 0.875 0.836 | 0.855
Clean 0.805 0.863 | 0.833 | 0.917

0.3 82.70%
Stego 0.852 0.791 | 0.821
Clean 0.743 0.805 | 0.773 | 0.857

0.2 76.35%
Stego 0.787 0.722 | 0.753
Clean 0.637 0.754 | 0.691| 0.740

0.1 66.25%
Stego 0.699 0.571 | 0.629

Table 6.3: Combined confusion matrix for WOW and all embedding rates.

Embedding

Rate = 0.4bpp 0.3bpp 0.2bpp 0.1bpp
Classified As

Actual Class | Clean | Stego | Clean | Stego | Clean | Stego | Clean | Stego

Clean 871 129 829 171 764 236 675 325

Stego 175 825 244 756 302 698 429 571
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Table 6.4: Combined output matrix for WOW and all embedding rates.

Embedding | Class | Precicion | Recall | F1 ROC Accuracy

rate Area

Clean 0.833 0.871 | 0.851
0.4 0.930 84.80%

Stego 0.865 0.825 | 0.844

Clean 0.773 0.829 | 0.800

0.3 0.884 79.25%
Stego 0.816 0.756 | 0.785

Clean 0.717 0.764 | 0.740
0.2 0.807 73.10%
Stego 0.747 0.698 | 0.722

Clean 0.611 0.675 | 0.642

0.1 0.678 62.30%
Stego 0.637 0.571 | 0.602

In Figures 6.5 - 6.6 the accuracy detected by KarNet's softmax classifier
and the Random Forest classifier for both steganographic algorithms is

compared.

Random Forest Accuracy

—@—S-UNIWARD —@—WOW

100
) /

20

[oa)
(=]

=Y
o

Accuracy (%)

0 0,1 0,2 0,3 0,4
Embedding Rate

Figure 6.4: Detected accuracy of the Random Forest classifier.
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Figure 6.5: Comparison of the Softmax and the Random Forest Classifier for
the S-UNIWARD algorithm.
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Figure 6.6: Comparison of the Softmax and the Random Forest Classifier for
the WOW algorithm.
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Looking at the obtained results concerning the classification accuracy from
the softmax classifier a typical CNN has, in comparison with the ones of the
Random Forest classifier (trained by the extracted feature vector), it is clear that
the Random Forest classifier has equal (S-UNIWARD) or better (WOW) results.
This proves our research question that a CNN could be used as a feature
extractor and the classification step could be done by another traditional machine

learning method.

6.4 Comparison of the proposed method to state-of-
the-art feature extractors

Furthermore, our method (KarNet as feature extractor) was compared to
the state-of-the-art methods proposed to the literature i.e. Subtractive Pixel
Adjacency Matrix (SPAM) [48] and Spatial Rich Model (SRM). SPAM method
extracts only 686 image features while SRM extracts 34671 features.

SPAM method computes the differences between adjacent pixels along
eight directions and afterwards it uses a second order Markov chain to extract
the 686 image features. The model can be extended by changing the order of
the Markov chain and the range of differences between adjacent pixels 7. In the
conducted experiments a second order Markov chain was chosen, and the value
of T"'was 3.

SRM is another state-of-the-art method used in steganalysis. It computes
106 different submodels (co-occurrence matrices), including their differently
guantized versions and it produces a 34671-dimensional feature vector.

Both SRM and SPAM feature extractors were applied to the same dataset

and the extracted features were then used to train the same classifier i.e. the
Random Forest. The number of leaves of the classifier was set to 26 (~v686 )

for SPAM method, and 186 (~v34671 ) for SRM method.
The number of constructed trees was the same (i.e. 1000) as in our
proposed method. Tables 6.5 - 6.8 show the classification results for each one

of the examined steganographic algorithms and for all embedding rates, while
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Figures 6.7 & 6.8 show the accuracy achieved by state-of-the-art methods in

comparison to our hybrid classification model proposal.

Table 6.5: Output for SPAM method — S-UNIWARD.

Embedding | Class | Precicion | Recall | F1 ROC Area Accuracy
rate (bpp)
04 Siego | 070 | 05on [ogea] 07 | ©6830%
03 Siego | oems | 053 [osep| 072 | 633%
02 Siego | 061t | 04sn 05a0| 070 | 5850%
01 Sego | o08a0 | 0ar lo4sr| O0ST0 | 5288%
Table 6.6: Output for SPAM method — WOW.
Embedding Class | Precicion |Recall |F1 ROC Accuracy
rate (bpp) Area
0.4 g::gg 8;?82 8:232 8:222 0777 | 67.15%
03 |'Siego | oss0 | 0552 |osas| 0775 | 626%%
02 |'Siego | oso2 | 0506 | oss0| 0% | 5860%
01 [Giego | 053 | 043 |oaso| 0S8 | 5270%
Table 6.7: Output for SRM method — S-UNIWARD.
Embedding Class | Precicion |Recall |F1 ROC Accuracy
rate (bpp) Area
04 |Segs | o750 | 0610 |o67s | 0824 | 7065%
03 Seqo | oes0 | 0507 |oson| O7SL | 6450%
02 |Sega | 06rs | 04se |osa7| 0008 | 5900%
01 ['Giego | 0566 | 0290 | odgs | 0S89 | S46%
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Table 6.8: Output for SRM method — WOW.

Embedding rate | Class | Precicion | Recall |F1 ROC Area | Accuracy
oep) lean 0.717 0.796 | 0.755
o4 (S:tego 0.771 | 0.686 | 0.726 | %% 74.10%
93 ISeqo | 021 | o6 [osrr| 07 | 6955%
92 ISeqo | oes7 | ossr [os0| 0775 | 6400%
or || EN O] om | s
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20
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—
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Figure 6.7: Comparison of all methods for the S-UNIWARD algorithm.
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Figure 6.8: Comparison of all methods for the WOW algorithm.

6.5 Discussion

In this Chapter it was explored whether the softmax classification layer of a
convolutional neural network could be replaced by another classifier with similar
results. In order to do this, the activations from the first fully connected layer of
KarNet were extracted and formed the feature vector that trained a Random
Forest classifier. Experimental results showed that the research hypothesis is
correct. The same and, in many cases, better classification results were achieved
than the traditional softmax classifier that a convolutional neural network utilizes.

Moreover, the proposed hybrid classification scheme was compared
against state-of-the-art feature extraction methods ie. SPAM and SRM. The
obtained results proved that our proposed method outperforms in all cases (both
steganographic algorithms and all embedding rates), SPAM and SRM methods.

More specifically, concerning S-UNIWARD steganographic algorithm our method
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achieves 13.40% (at 0.1bpp) to 19.35% (at 0.3bpp) better classification accuracy
than the SPAM method, while for the SRM method the proposed research
approach is 11.60%-18.20% more accurate. The same comparison for WOW
steganographic algorithm shows that for the SPAM method 9.60% (at 0.1bpp) to
17.65% (at 0.4bpp) better classification accuracy was obtained and for the SRM
method the results are 5.05%-10.70% in favor of the proposed classification

scheme.
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Chapter 7
Conclusions and Future Work

Coming to a conclusion, about which method is more effective — in any
domain- is not an easy task. There are many parameters that a digital forensic
examiner must know in advance, in order to give a safe answer before deciding
which method to employ. These parameters include the existence or not of the
cover image, the prior knowledge of the embedded data, findings of
steganography software in a suspect’'s computer etc. However, if it is assumed
that in the majority of the cases only the stego object is known, statistical
steganalysis techniques - in any domain- are more robust and more effective
than signature steganalysis. This is met for both specific and universal statistical
steganalysis.

In specific statistical steganalysis the proposed methods focus to the
embedding procedure and attempt to find image features or statistical measures
changed by the embedding algorithm. Thus, this steganalytic approach has
excellent accuracy only when performed on the specific steganographic
algorithm, but even a small change in the embedding algorithm usually results to
low steganalytic accuracy. For this reason, universal statistical steganalysis is
used. These methods can detect hidden message’s existence regardless the
steganographic technique used to embed secret message to the digital image.
Typically, classification is performed based on extracted features that are
dependent to a widespread diversity of embedding procedures. These methods
provide less accurate results than specific statistical steganalysis methods, but
they can detect unseen steganographic content. Moreover, they are more flexible
than the specific ones and slight changes to classification schemes may lead to
the detection of more embedding algorithms as well. Nowadays utilization of
deep learning techniques boosted research in steganalysis domain and provided
new insights into research. In this dissertation it was demonstrated that only by

utilizing dilated convolutions achieved better results than other state-of-the-art
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methods, without increasing the number of learnable parameters i.e. reducing
computational complexity. Moreover, it was demonstrated that hybrid
classification schemes perform better and faster. Although convolutional neural
networks have shown excellent results in comparison to previous methods, their
main disadvantages i.e. the extensive training times for adding more
steganographic algorithms, limitations to image dimensions due to heavy
computational load etc. must be overcome to be more sufficient. Therefore, the
need to adopt hybrid classification schemes in order to overcome these
limitations, becomes critical.

The obtained promising results offer a good basis to investigate more
thoroughly the proposed convolutional neural network and the hybrid
classification scheme. In the future the proposed convolutional neural network
should be thoroughly reconsidered and slightly revised. More specifically, future
research directions could be:

» Make slight modifications to the KarNet in order to detect features
from more embedding steganography algorithms. These
modifications may need different preprocessing strategy, the
utilization of slightly different filters and changes to KarNet’s
training hyperparamaters.

» Experiment with images of larger size.

> Experiment with other initializers like He [171] or Glorot [172].

» Experiment with other steganography domains also, like transform
domain and Spread Spectrum Image Steganography (SSIS).

» Examine whether other hybrid deep neural network models can
capture and identify - in real time - images embedded with stego
content.

» Integrate fuzzy rules and evolutionary algorithms especially for

feature selection.
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The ultimate — yet unreachable - goal for a steganalyst, is to employ a
steganalysis technique that could detect any type of steganographic embedding
algorithm with low computational needs and excellent accuracy. We strongly
believe that universal steganalysis combined with deep learning techniques will
boost research and will provide digital forensic examiners new software tools to

uncover seen of the unseen.

105



106



Bibliography

[1] D. Kahn, The codebreakers : the story of secret writing, 1st ed. New York,
NY, USA: Macmillan, 1967.

[2] R. L. Tonsetic, Special Operations During the American Revolution.
Havertown, PA: Casemate Publishers, 2013.

[3] N. F. Johnson and S. Jajodia, “Exploring steganography: Seeing the
unseen,” IEEE Computer, vol. 31, no. 2, pp. 26—34, 1998.

[4] R.J.Andersonand F. A. P. Petitcolas, “On The Limits of Steganography,”
IEEE Journal of Selected Areas in Communications, vol. 16, no. 4, pp.
474-481, 1998.

[5] W. Bender, W. Butera, D. Gruhl, R. Hwang, F. J. Paiz, and S. Pogreb,
“Applications for data hiding,” IBM Systems Journal, vol. 39, no. 3.4, pp.
547-568, Apr. 2010.

[6] J. C.Ingemar, M. L. Miller, A. B. Jeffrey, J. Fridrich, and T. Kalker, Digital
Watermarking and Steganography, 2nd ed. Elsevier Inc., 2008.

[7] G. Palmer, “A Road Map for Digital Forensic Research,” in Proceedings of
the 2001 Digital Forensics Research Workshop (DFRWS 2004), New York,
2001, pp. 1-42.

[8] Daily Mail, “Porn video reveals Al Qaeda planns to hijack cruise ships and
execute passengers | Daily Mail Online,” 01-May-2012. [Online]. Available:
https://www.dailymail.co.uk/news/article-2137848/Porn-video-reveals-Al-
Qaeda-planns-hijack-cruise-ships-execute-
passengers.html#ixzzlulgxpire. [Accessed: 09-Jul-2019].

[9] Wired, “Bin Laden: Steganography Master? | WIRED,” Jul-2001. [Online].
Available: https://www.wired.com/2001/02/bin-laden-steganography-
master/?currentPage=all. [Accessed: 09-Jul-2019].

[10] Frank Gardner, “How do terrorists communicate? - BBC News,” 2013.
[Online]. Available: https://lwww.bbc.com/news/world-24784756.
[Accessed: 09-Jul-2019].

[11] H. N. Lily, “MuslimCrypt Steganography App Helps Jihadists Send Secret

Messages | WIRED,” Mar-2018. [Online]. Available:
https://www.wired.com/story/muslimcrypt-steganography/. [Accessed: 09-
Jul-2019].

[12] “Steghide.” [Online]. Available: http://steghide.sourceforge.net/index.php.
[Accessed: 04-May-2020].

[13] “Hide Files, Encrypt File Encryption Software | InvisibleSecrets.” [Online].
Available: https://www.east-tec.com/invisiblesecrets/. [Accessed: 04-May-

107



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

2020].

“The SNOW Home Page.” [Online]. Available:
http://www.darkside.com.au/snow/index.html. [Accessed: 04-May-2020].

K. Karampidis, E. Kavallieratou, and G. Papadourakis, “A review of image
steganalysis techniques for digital forensics,” Journal of Information
Security and Applications, vol. 40, pp. 217-235, Jun. 2018.

L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,
2001.

V. Holub, J. Fridrich, and T. Denemark, “Universal distortion function for
steganography in an arbitrary domain,” EURASIP Journal on Information
Security, vol. 2014, no. 1, p. 1, Dec. 2014.

V. Holub and J. Fridrich, “Designing steganographic distortion using
directional filters,” in WIFS 2012 - Proceedings of the 2012 IEEE
International Workshop on Information Forensics and Security,
Tenerife,Spain, 2012, pp. 234-239.

B. lonescu, H. Miller, R. Péteri, Y. D. Cid, V. Liauchuk, V. Kovalev, D.
Klimuk, A. Tarasau, A. Ben Abacha, S. A. Hasan, V. Datla, J. Liu, D.
Demner-Fushman, D. T. Dang-Nguyen, L. Piras, M. Riegler, M. T. Tran,
M. Lux, C. Gurrin, O. Pelka, C. M. Friedrich, A. Garcia Seco de Herrera, N.
Garcia, E. Kavallieratou, C. R. del Blanco, C. Cuevas, N. Vasillopoulos, K.
Karampidis, J. Chamberlain, A. Clark, and A. Campello, “ImageCLEF
2019: Multimedia Retrieval in Medicine, Lifelogging, Security and Nature,”
in CLEF 2019, Lugano Switzerland, 2019, vol. 11696 LNCS, pp. 358—-386.

“‘About CLEF.” [Online]. Available: http://www.clef-campaign.org/.
[Accessed: 06-May-2020].

“ImageCLEFsecurity | ImageCLEF / LifeCLEF - Multimedia Retrieval in
CLEF.” [Online]. Available: https://www.imageclef.org/2019/security.
[Accessed: 06-May-2020].

K. Karampidis, N. Vasillopoulos, C. Rodrguez, E. Kavallieratou, C. R. C.
del Blanco, and N. Garcia, “Overview of the ImageCLEFsecurity 2019
task,” Lugano, Switzerland, 2019.

S. Katzenbeisser and F. A. P. Petitcolas, Information hiding techniques for
steganography and digital watermarking. Artech House, Inc., 2000.

F. Djebbar, B. Ayad, K. A. Meraim, and H. Hamam, “Comparative study of
digital audio steganography techniques,” Eurasip Journal on Audio,
Speech, and Music Processing, vol. 2012, no. 1, pp. 1-16, Oct. 2012.

Rupanshi, “Audio Steganography by Direct Sequence Spread Spectrum,”
International Journal of Computer Trends and Technology, vol. 13, no. 2,
2014.

108



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. M. Sadek, A. S. Khalifa, and M. G. M. Mostafa, “Video steganography:
a comprehensive review,” Multimedia Tools and Applications, vol. 74, no.
17, pp. 7063-7094, Sep. 2015.

J. Lubacz, W. Mazurczyk, and K. Szczypiorski, “Principles and overview of
network steganography,” IEEE Communications Magazine, vol. 52, no. 5,
pp. 225-229, 2014.

J. Collins and S. Agaian, “Trends Toward Real-Time Network Data
Steganography,” International Journal of Network Security & Its
Applications, vol. 8, no. 2, pp. 01-21, Apr. 2016.

A. Febryan, T. W. Purboyo, and R. E. Saputra, “Steganography Methods
on Text, Audio, Image and Video: A Survey,” International Journal of
Applied Engineering Research, vol. 12, pp. 10485-10490, 2017.

S. Bhattacharyya and G. Sanyal, “Steganalysis of LSB Image
Steganography using Multiple Regression and Auto Regressive (AR)
Model,” International Journal of Computer Technology and Applications,
vol. 2, no. 4, pp. 1069-1077, 2011.

Liu Shaohui, Yao Hongxun, and Gao Wen, “Neural network based
steganalysis in still images,” in 2003 International Conference on
Multimedia and Expo. ICME °03. Proceedings (Cat. No.03TH8698),
Baltimore, MD, USA, 2003, pp. [I-509.

S. Tan and B. Li, “Stacked convolutional auto-encoders for steganalysis of
digital images,” in 2014 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference, APSIPA 2014, Chiang Mai,
Thailand, 2014, pp. 1-4.

“Breaking a steganography software: Camouflage.” [Online]. Available:
http://www.guillermito2.net/stegano/camouflage/index.html.  [Accessed:
07-Dec-2017].

“‘Breaking a steganography software: JpegX.” [Online]. Available:
http://www.guillermito2.net/stegano/jpegx/index.html. [Accessed: 07-Dec-
2017].

“Analyzing steganography softwares.” [Online]. Available:
http://www.guillermito2.net/stegano/. [Accessed: 28-Nov-2017].

M. Rana, “Parameter Evaluation and Comparison of algorithms used in
Steganography,” International Journal of Engineering Science and
Computing, p. 8134, 2016.

“‘Hide files and folders - Masker 7.5.” [Online]. Available:
http://www.softpuls.com/masker/. [Accessed: 28-Nov-2017].

“StegSpy.” [Online]. Available: http://www.spy-
hunter.com/stegspydownload.htm. [Accessed: 05-May-2020].

109



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

J. Fridrich and M. Goljan, “Practical steganalysis of digital images: state of
the art,” in Proc. SPIE 4675 , Security and Watermarking of Multimedia
Contents IV, San Jose, California, USA, 2002, vol. 4675, pp. 1-13.

J. Fridrich, M. Goljan, and R. Du, “Steganalysis based on JPEG
compatibility,” in Proc. SPIE 4518, Multimedia Systems and Applications
IV, Denver, USA, 2001, pp. 275-280.

R. E. Newman, I. S. Moskowitz, L. W. Chang, and M. M. Brahmadesam,
‘A steganographic embedding undetectable by JPEG compatibility
steganalysis,” in Petitcolas F.A.P. (eds) Information Hiding. IH 2002.
Lecture Notes in Computer Science, vol. 2578, Springer, Berlin,
Heidelberg, 2003, pp. 258-277.

A. Westfeld and A. Pfitzmann, “Attacks on Steganographic Systems,”
Springer Berlin Heidelberg, 2000, pp. 61-76.

A. Westfeld, “Detecting low embedding rates,” in Petitcolas F.A.P. (eds)
Information Hiding. IH 2002. Lecture Notes in Computer Science, 2003,
vol. 2578, pp. 324-339.

R. Chandramouli, M. Kharrazi, and N. Memon, “Image Steganography and
Steganalysis: Concepts and Practice,” in Kalker T., Cox I., Ro Y.M. (eds)
Digital Watermarking. IWDW 2003., Seoul, Korea, 2003, pp. 35-49.

J. Fridrich and M. Long, “Steganalysis of LSB encoding in color images,”
in 2000 IEEE International Conference on Multimedia and Expo.
ICME2000. Proceedings. Latest Advances in the Fast Changing World of
Multimedia (Cat. No.0OOTH8532), New York, NY, USA, 2000, vol. 3, pp.
1279-1282.

J. Fridrich, M. Goljan, and R. Du, “Reliable detection of LSB steganography
in color and grayscale images,” in Proceedings of the 2001 workshop on
Multimedia and security new challenges - MM&Sec ‘01, New York, NY,
USA, 2001, pp. 27-30.

T. Sharp, “An implementation of key-based digital signal steganography,”
in Moskowitz 1.S. (eds) Information Hiding. IH 2001. Lecture Notes in
Computer Science, Pittsburgh, PA, USA, 2001, vol. 2137, no. 9, pp. 13—
26.

T. Pevny, P. Bas, and J. Fridrich, “Steganalysis by subtractive pixel
adjacency matrix,” IEEE Transactions on Information Forensics and
Security, vol. 5, no. 2, pp. 215-224, Jun. 2010.

J. Fridrich, J. Kodovsky, V. Holub, and M. Goljan, “Steganalysis of content-
adaptive steganography in spatial domain,” in Filler T., Pevny T., Craver
S., Ker A. (eds) Information Hiding. IH 2011. Lecture Notes in Computer
Science, Prague, Czech Republic, 2011, vol. 6958, pp. 102-117.

M. Goljan, J. Fridrich, and R. Cogranne, “Rich model for Steganalysis of

110



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

color images,” in 2014 IEEE International Workshop on Information
Forensics and Security (WIFS), Atlanta, GA, USA, 2014, pp. 185-190.

I. Avcibas, N. Memon, and B. Sankur, “Steganalysis of watermarking
techniques using image quality metrics,” in Proceedings of SPIE, Security
and Watermarking of Multimedia Contents Ill, San Jose, CA, United States,
2001, vol. 4314, pp. 523-531.

S. Lyu and H. Farid, “Detecting hidden messages using higher-order
statistics and support vector machines,” in Petitcolas F.A.P. (eds)
Information Hiding. IH 2002. Lecture Notes in Computer Science,
Noordwijkerhout, The Netherlands, 2003, vol. 2578, pp. 340-354.

S. Dumitrescu, Xiaolin Wu, and Zhe Wang, “Detection of LSB
steganography via sample pair analysis,” IEEE Transactions on Signal
Processing, vol. 51, no. 7, pp. 1995-2007, Jul. 2003.

S. Dumitrescu, Xiaolin Wu, and N. Memon, “On steganalysis of random
LSB embedding in continuous-tone images,” in Proceedings. International
Conference on Image Processing, Rochester, NY, USA, 2002, vol. 3, pp.
641-644.

S. Dumitrescu and Xiaolin Wu, “Steganalysis of LSB embedding in
multimedia signals,” in Proceedings. IEEE International Conference on
Multimedia and Expo, Lausanne, Switzerland, 2002, pp. 581-584.

B. Roue, P. Bas, and J.-M. Chassery, “Improving LSB steganalysis using
marginal and joint probabilistic distributions,” in Proceedings of the 2004
multimedia and security workshop on Multimedia and security - MM&Sec
‘04, New York, NY, USA, 2004, pp. 75-80.

P. Lu, X. Luo, Q. Tang, and L. Shen, “An Improved Sample Pairs Method
for Detection of LSB Embedding,” Springer Berlin Heidelberg, 2004, pp.
116-127.

I. Avcibas, M. Kharrazi, N. Memon, and B. Sankur, “Image Steganalysis
with Binary Similarity Measures,” EURASIP Journal on Advances in Signal
Processing, vol. 2005, no. 17, pp. 2749-2757, 2005.

S. Dumitrescu and Xiaolin Wu, “A new framework of LSB steganalysis of
digital media,” IEEE Transactions on Signal Processing, vol. 53, no. 10,
pp. 3936-3947, Oct. 2005.

Li Zhi, Sui Ai Fen, and Yang Yi Xian, “A LSB steganography detection
algorithm,” in 14th IEEE Proceedings on Personal, Indoor and Mobile
Radio Communications, 2003. PIMRC 2003., Beijing, China, 2003, pp.
2780-2783.

T. Zhang and X. Ping, “Reliable detection of LSB steganography based on
the difference image histogram,” in 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP

111



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

'03)., Hong Kong, China, 2003, vol. 3, pp. 545-548.

J. Fridrich, M. Goljan, and D. Soukal, “Higher-order statistical steganalysis
of palette images,” in Proc. SPIE 5020, Security and Watermarking of
Multimedia Contents V, Santa Clara, CA, USA, 2003, vol. 5020, pp. 178—
190.

A. D. Ker, “Quantitative evaluation of pairs and RS steganalysis,” in Proc.
SPIE 5306, Security, Steganography, and Watermarking of Multimedia
Contents VI, San Jose, California, USA, 2004, pp. 83-97.

A. D. Ker, “Improved Detection of LSB Steganography in Grayscale
Images,” in Fridrich J. (eds) Information Hiding. IH 2004. Lecture Notes in
Computer Science, Toronto, Canada, 2004, pp. 97-115.

M. U. Celik, “Universal image steganalysis using rate-distortion curves,” in
Proc. SPIE 5306, Security, Steganography, and Watermarking of
Multimedia Contents VI, San Jose, California, USA, 2004, vol. 5306, pp.
467-476.

R. Benton and H. Chu, “Soft computing approach to steganalysis of LSB
embedding in digital images,” in ITRE 2005. 3rd International Conference
on Information Technology: Research and Education, 2005., Hsinchu,
Taiwan, 2005, pp. 105-109.

J. Fridrich and M. Goljan, “On estimation of secret message length in LSB
steganography in spatial domain,” in Proc. SPIE 5306, Security,
Steganography, and Watermarking of Multimedia Contents VI, San Jose,
California, USA, 2004, pp. 23-34.

A. D. Ker and B. Rainer, “Revisiting Weighted Stego-Image Steganalysis,”
in Proc. SPIE 6819, Security, Forensics, Steganography, and
Watermarking of Multimedia Contents X, San Jose, California, USA, 2008,
vol. 6819, pp. 1-17.

Xiang-dong Chen, Feng Sun, and Wei Sun, “Detect LSB Steganography
with Bit Plane Randomness Tests,” in 2006 6th World Congress on
Intelligent Control and Automation, Dalian, China, 2006, pp. 10306—10309.

H. B. Kekre, A. A. Athawale, and S. A. Patki, “Steganalysis of LSB
Embedded Images Using Gray Level Co- Occurrence Matrix images,”
International Journal of Image Processing (1JIP), vol. 5, no. 1, pp. 36—-45,
2011.

L. Fillatre, “Adaptive Steganalysis of Least Significant Bit Replacement in
Grayscale Natural Images,” IEEE Transactions on Signal Processing, vol.
60, no. 2, pp. 556-569, Feb. 2012.

“‘BOSS Web page.” [Online]. Available: http://agents.fel.cvut.cz/stegodatal.
[Accessed: 28-Nov-2017].

J. Fridrich and J. Kodovsky, “Steganalysis of LSB replacement using
112



[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

parity-aware features,” in Kirchner M., Ghosal D. (eds) Information Hiding.
IH 2012. Lecture Notes in Computer Science, Berkeley, CA, USA, 2013,
vol. 7692, pp. 31-45.

S. Verma, S. Sood, and S. K. Ranade, “Relevance of Steganalysis using
DIH on LSB Stegnography,” International Journal of Advanced Research
in Computer Science and Software Engineering, vol. 4, no. 2, pp. 835-838,
2014.

D. Zou, Y. Q. Shi, W. Su, and G. Xuan, “Steganalysis based on Markov
model of thresholded prediction-error image,” in 2006 IEEE International
Conference on Multimedia and Expo, Toronto, Ont., Canada, 2006, vol.
2006, pp. 1365—-1368.

H. Malekmohamadi and S. Ghaemmaghami, “Steganalysis of LSB based
image steganography using spatial and frequency domain features,” in
2009 IEEE International Conference on Multimedia and Expo, New York,
NY, USA, 2009, pp. 1744-1747.

T. Zhang, W. Li, Y. Zhang, E. Zheng, and X. Ping, “Steganalysis of LSB
matching based on statistical modeling of pixel difference distributions,”
Information Sciences, vol. 180, no. 23, pp. 4685-4694, 2010.

G. Gul and F. Kurugollu, “A new methodology in steganalysis: Breaking
highly undetectable steganograpy (HUGO),” in Filler T., Pevny T., Craver
S., Ker A. (eds) Information Hiding. IH 2011. Lecture Notes in Computer
Science, Prague, Czech Republic, 2011, vol. 6958, pp. 71-84.

J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital
images,” IEEE Transactions on Information Forensics and Security, vol. 7,
no. 3, pp. 868—-882, 2012.

T. Pevny, J. Fridrich, and A. D. Ker, “From Blind to Quantitative
Steganalysis,” IEEE Transactions on Information Forensics and Security,
vol. 7, no. 2, pp. 445-454, Apr. 2012.

R. Cogranne and F. Retraint, “An Asymptotically Uniformly Most Powerful
Test for LSB Matching Detection,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 3, pp. 464-476, Mar. 2013.

‘BOWS-2 Web page.” [Online]. Available: http://bows2.ec-lille.fr/.
[Accessed: 28-Nov-2017].

A. D. Ker, “Steganalysis of LSB matching in grayscale images,” IEEE
Signal Processing Letters, vol. 12, no. 6, pp. 441-444, Jun. 2005.

J. Zhang, I. J. Cox, and G. Doerr, “Steganalysis for LSB Matching in
Images with High-frequency Noise,” in 2007 IEEE 9th Workshop on
Multimedia Signal Processing, Crete, Greece, 2007, pp. 385—388.

V. Holub and J. Fridrich, “Random Projections of Residuals for Digital
Image Steganalysis,” IEEE Transactions on Information Forensics and

113



[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Security, vol. 8, no. 12, pp. 1996-2006, Dec. 2013.

Z. Xia, X. Wang, X. Sun, and B. Wang, “Steganalysis of least significant bit
matching using multi-order differences,” Security and Communication
Networks, vol. 7, no. 8, pp. 1283-1291, Aug. 2014.

Z. Xia, X. Wang, X. Sun, Q. Liu, and N. Xiong, “Steganalysis of LSB
matching using differences between nonadjacent pixels,” Multimedia Tools
and Applications, vol. 75, no. 4, pp. 1947-1962, Feb. 2016.

“‘NRCS Photo Gallery Home.” [Online]. Available:
https://photogallery.sc.egov.usda.gov/res/sites/photogallery/. [Accessed:
28-Nov-2017].

X. Chen, G. Gao, D. Liu, and X. Zhihua, “Steganalysis of LSB matching
using characteristic function moment of pixel differences,” China
Communications, vol. 13, no. 7, pp. 66—73, Jul. 2016.

D. Lerch-Hostalot and D. Megias, “Unsupervised steganalysis based on
artificial training sets,” Engineering Applications of Artificial Intelligence,
vol. 50, pp. 45-59, 2016.

O. Juarez-Sandoval, M. Cedillo-Hernandez, G. Sanchez-Perez, K.
Toscano-Medina, H. Perez-Meana, and M. Nakano-Miyatake, “Compact
image steganalysis for LSB-matching steganography,” in 2017 5th
International Workshop on Biometrics and Forensics (IWBF), Coventry,
UK, 2017, pp. 1-6.

“UCIDv2.0.” [Online]. Available: http://jasoncantarella.com/downloads/.
[Accessed: 30-Nov-2017].

L. M. Marvel and C. G. Boncelet, “Methodology of Spread-Spectrum Image
Steganography,” Aberdeen, 1998.

J. J. Harmsen and W. A. Pearliman, “Steganalysis of additive-noise
modelable information hiding,” in Proc. SPIE 5020, Security and
Watermarking of Multimedia Contents V, Santa Clara, CA, USA, 2003, pp.
131-142.

R. Chandramouli and K. P. Subbalakshmi, “Active steganalysis of spread
spectrum image steganography,” in Proceedings of the 2003 International
Symposium on Circuits and Systems, 2003. ISCAS ’03., Bangkok,
Thailand, 2003, vol. 3, pp. 830-833.

Ying Wang and P. Moulin, “Steganalysis of block-DCT image
steganography,” in IEEE Workshop on Statistical Signal Processing, St.
Louis, MO, USA, 2003, pp. 339-342.

R. Ji, H. Yao, S. Liu, L. Wang, and J. Sun, “A new steganalysis method for
adaptive spread spectrum steganography,” in 2006 International
Conference on Intelligent Information Hiding and Multimedia, Pasadena,
CA, USA, 2006, pp. 365-368.

114



[98] K. Sullivan, U. Madhow, S. Chandrasekaran, and B. S. Manjunath,
“Steganalysis of spread spectrum data hiding exploiting cover memory,” in
Proc. SPIE 5681, Security, Steganography, and Watermarking of
Multimedia Contents VII, San Jose, California, USA, 2005, pp. 38—46.

[99] Ming Li, M. K. Kulhandjian, D. A. Pados, S. N. Batalama, and M. J. Medley,
“Extracting Spread-Spectrum Hidden Data From Digital Media,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 7, pp.
1201-1210, Jul. 2013.

[100] S. Liu, H. Yao, and W. Gao, “Steganalysis of data hiding techniques in
wavelet domain,” in Coding and Computing, 2004. Proceedings. ITCC
2004., Las Vegas, NV, USA, 2004, vol. 1, pp. 751-754.

[101] B. Chen and G. W. Wornell, “Quantization index modulation: a class of
provably good methods for digital watermarking and information
embedding,” IEEE Transactions on Information Theory, vol. 47, no. 4, pp.
1423-1443, May 2001.

[102] S. Liu, H. Yao, and W. Gao, “Steganalysis based on wavelet texture
analysis and neural network,” in Fifth World Congress on Intelligent Control
and Automation (IEEE Cat. No.04EX788), Hangzhou, China, 2004, vol. 5,
pp. 4066—4069.

[103] K. Sullivan, Z. Bi, U. Madhow, S. Chandrosekaran, and B. S. Manjunath,
“Steganalysis of quantization index modulation data hiding,” in 2004
International Conference on Image Processing, 2004. ICIP ’04.,
Singapore, Singapore, 2004, vol. 2, pp. 1165-1168.

[104] Y. Q. Shi, C. Chen, and W. Chen, “A Markov process based approach to
effective attacking JPEG steganography,” in Camenisch J.L., Collberg
C.S., Johnson N.F., Sallee P. (eds) Information Hiding. IH 2006. Lecture
Notes in Computer Science, Berlin, Heidelberg, 2007, vol. 4437 LNCS, pp.
249-264.

[105] A. Westfeld, “Generic Adoption of Spatial Steganalysis to Transformed
Domain,” in Solanki K., Sullivan K., Madhow U. (eds) Information Hiding.
IH 2008. Lecture Notes in Computer Science, Berlin, Heidelberg, 2008, pp.
161-177.

[106] J. Kodovsky and J. Fridrich, “Quantitative steganalysis of LSB embedding
in JPEG domain,” in Proceedings of the 12th ACM workshop on Multimedia
and security - MM&Sec ’10, Roma, Italy, 2010, pp. 187-198.

[107] Q. Liu, A. H. Sung, M. Qiao, Z. Chen, and B. Ribeiro, “An improved
approach to steganalysis of JPEG images,” Information Sciences, vol. 180,
no. 9, pp. 1643-1655, May 2010.

[108] M. Sheikhan, M. S. Moin, and M. Pezhmanpour, “Blind image steganalysis
via joint co-occurrence matrix and statistical moments of contourlet
transform,” in 2010 10th International Conference on Intelligent Systems

115



[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Design and Applications, Cairo, Egypt, 2010, pp. 368-372.

J. Kodovsky, J. Fridrich, and V. Holub, “Ensemble Classifiers for
Steganalysis of Digital Media,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 2, pp. 432-444, Apr. 2012.

A. Westfeld, “F5 — A Steganographic Algorithm High Capacity Despite
Better Steganalysis,” in Moskowitz I.S. (eds) Information Hiding. IH 2001.
Lecture Notes in Computer Science, Pittsburgh, PA, USA, 2001, vol. 2137,
pp. 289-302.

K. Solanki, A. Sarkar, and B. S. Manjunath, “YASS: Yet another
steganographic scheme that resists blind steganalysis,” in Furon T., Cayre
F., Doérr G., Bas P. (eds) Information Hiding. IH 2007. Lecture Notes in
Computer Science, 2007, vol. 4567, pp. 16-31.

Sallee P., “Model-Based Steganography,” in Digital Watermarking, vol.
2939, R. Y. M. Kalker T., Cox I., Ed. Springer, Berlin, Heidelberg, 2004, pp.
154-167.

S. Cho, B.-H. Cha, M. Gawecki, and C.-C. Jay Kuo, “Block-based image
steganalysis: Algorithm and performance evaluation,” Journal of Visual
Communication and Image Representation, vol. 24, no. 7, pp. 846-856,
2013.

N. V. S. Sree Rathna Lakshmi, “A novel steganalytic algorithm based on Il|
level DWT with energy as feature,” Research Journal of Applied Sciences,
Engineering and Technology, vol. 7, no. 19, pp. 4100-4105, 2014.

V. Holub and J. Fridrich, “Low-Complexity Features for JPEG Steganalysis
Using Undecimated DCT,” IEEE Transactions on Information Forensics
and Security, vol. 10, no. 2, pp. 219-228, Feb. 2015.

H. Farid, “Detecting hidden messages using higher-order statistical
models,” in Proceedings. International Conference on Image Processing,
Rochester, NY, USA, 2002, vol. 2, pp. 905-908.

S. Lyu and H. Farid, “Steganalysis using color wavelet statistics and one-
class support vector machines,” in SPIE 5306, Security, Steganography,
and Watermarking of Multimedia Contents VI, San Jose, California, USA,
2004, pp. 35-45.

S. Trivedi and R. Chandramouli, “Active steganalysis of sequential
steganography,” in Proc. SPIE 5020, Security and Watermarking of
Multimedia Contents V, Santa Clara, CA, USA, 2003, vol. 5020, no. 13, pp.
123-130.

P. Lafferty and F. Ahmed, “Texture-based steganalysis: results for color
images,” in Mathematics of Data/lmage Coding, Compression, and
Encryption VII, with Applications, Denver, USA, 2004, pp. 145-151.

G. Xuan, Y. Q. Shi, J. Gao, D. Zou, C. Yang, Z. Zhang, P. Chai, C. Chen,
116



and W. Chen, “Steganalysis Based on Multiple Features Formed by
Statistical Moments of Wavelet Characteristic Functions,” Springer Berlin
Heidelberg, 2005, pp. 262-277.

[121] Y. Q. Shi, G. Xuan, D. Zou, J. Gao, C. Yang, Z. Zhang, P. Chai, W. Chen,
and C. Chen, “Image steganalysis based on moments of characteristic
functions using wavelet decomposition, prediction-error image, and neural
network,” in 2005 IEEE International Conference on Multimedia and Expo,
Amsterdam, Netherlands, 2005, vol. 2005, pp. 269-272.

[122] Wen-Nung Lie and Guo-Shiang Lin, “A feature-based classification
technique for blind image steganalysis,” IEEE Transactions on Multimedia,
vol. 7, no. 6, pp. 1007-1020, Dec. 2005.

[123] S. Lyu and H. Farid, “Steganalysis Using Higher-Order Image Statistics,”
IEEE Transactions on Information Forensics and Security, vol. 1, no. 1, pp.
111-119, Mar. 2006.

[124] Xiaochuan Chen, Yunhong Wang, Tieniu Tan, and Lei Guo, “Blind Image
Steganalysis Based on Statistical Analysis of Empirical Matrix,” in 18th
International Conference on Pattern Recognition (ICPR’06), Hong Kong,
China, 2006, pp. 1107-1110.

[125] Z. Sun, M. Hui, and C. Guan, “Steganalysis Based on Co-occurrence
Matrix of Differential Image,” in 2008 International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, Harbin,
China, 2008, pp. 1097-1100.

[126] H. Zhao, H. Wang, and M. K. Khan, “Steganalysis for palette-based images
using generalized difference image and color correlogram,” Signal
Processing, vol. 91, no. 11, pp. 2595-2605, 2011.

[127] H. Zong, F. Liu, and X. Luo, “Blind image steganalysis based on wavelet
coefficient correlation,” Digital Investigation, vol. 9, no. 1, pp. 58-68, 2012.

[128] S. Ghanbari, M. Keshtegary, and N. Ghanbari, “New Steganalysis Method
using GLCM and Neural Network,” International Journal of Computer
Applications, vol. 42, no. 7, pp. 46-50, 2012.

[129] Z. Zhang, D. Hu, Y. Yang, and B. Su, “A Universal Digital Image
Steganalysis Method Based on Sparse Representation,” in 2013 Ninth
International Conference on Computational Intelligence and Security,
Leshan, China, 2013, pp. 437-441.

[130] M. Devi and N. Sharma, “Improvements of Steganography Parameter in
Binary Images and JPEG Images against Steganalysis,” International
Journal Of Engineering Sciences & Research Technology, vol. 2, no. 8,
2013.

[131] A. K. Verma, “A Non- Blind Steganalysis Through Neural Network
Approach,” International Journal of Multidisciplinary Consortium, vol. 1, no.

117



1, 2014.

[132] J. Lu, F. Liu, and X. Luo, “Selection of image features for steganalysis
based on the Fisher criterion,” Digital Investigation, vol. 11, no. 1, pp. 57—
66, 2014.

[133] W. Tang, H. Li, W. Luo, and J. Huang, “Adaptive steganalysis based on
embedding probabilities of pixels,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 4, pp. 734-744, 2016.

[134] Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for steganalysis
via convolutional neural networks,” in Proc. SPIE 9409, Media
Watermarking, Security, and Forensics 2015, 94090J, San Francisco,
USA, 2015.

[135] M. B. Desai, S. V Patel, and B. Prajapati, “ANOVA and Fisher Criterion
based Feature Selection for Lower Dimensional Universal Image
Steganalysis,” International Journal of Image Processing, vol. 10, no. 3,
pp. 145-160, 2016.

[136] “CorelDraw image database.” [Online]. Available: http://www.corel.com/.
[Accessed: 30-Nov-2017].

[137] “UC Berkeley Computer Vision Group.” [Online]. Available:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/se
gbench/. [Accessed: 30-Nov-2017].

[138] J.-F. Couchot, R. Couturier, C. Guyeux, and M. Salomon, “Steganalysis via
a Convolutional Neural Network using Large Convolution Filters for
Embedding Process with Same Stego Key,” arXiv:1605.07946, pp. 1-24,
May 2016.

[139] H. Sajedi, “Steganalysis based on steganography pattern discovery,”
Journal of Information Security and Applications, vol. 30, pp. 3-14, Oct.
2016.

[140] V. Rostami and A. S. Khiavi, “Particle Swarm Optimization based feature
selection with novel fithess function for image steganalysis,” in 2016
Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 2016, pp.
109-114.

[141] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image
steganalysis,” Multimedia Tools and Applications, Springer US, pp. 1-17,
15-Feb-2017.

[142] J. Ye, J. Ni, and Y. Yi, “Deep Learning Hierarchical Representations for
Image Steganalysis,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 11, pp. 2545-2557, Nov. 2017.

[143] R. Nouri and A. Mansouri, “Digital image steganalysis based on the
reciprocal singular value curve,” Multimedia Tools and Applications, vol.
76, no. 6, pp. 8745-8756, Mar. 2017.

118



[144] M. Yedroudj, F. Comby, and M. Chaumont, “Yedrouj-Net: An efficient CNN
for spatial steganalysis,” in CASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, Calgary, Alberta,
Canada, 2018, pp. 2092—-2096.

[145] “Caffe | Scale Layer.” [Online]. Available:
https://caffe.berkeleyvision.org/tutorial/layers/scale.html. [Accessed: 10-
May-2020].

[146] Z. Jin, Y. Yang, Y. Chen, and Y. Chen, “IAS-CNN: Image adaptive
steganalysis via convolutional neural network combined with selection
channel,” International Journal of Distributed Sensor Networks, vol. 16, no.
3, 2020.

[147] T. Dietterich, “Overfitting and Undercomputing in Machine Learning,” ACM
Computing Surveys, vol. 27, no. 3, 1995.

[148] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features
off-the-shelf: An astounding baseline for recognition,” arXiv:1403.6382,
2014.

[149] “Convolutional Neural Networks Tutorial in PyTorch - Adventures in
Machine Learning,” 2018. [Online]. Available:
https://adventuresinmachinelearning.com/convolutional-neural-networks-
tutorial-in-pytorch/. [Accessed: 27-Apr-2020].

[150] J. Yang, Y.-Q. Shi, E. K. Wong, and X. Kang, “JPEG Steganalysis Based
on DenseNet,” arXiv:1711.09335, Nov. 2017.

[151] L. Pibre, J. Pasquet, D. lenco, and M. Chaumont, “Deep learning is a good
steganalysis tool when embedding key is reused for different images, even
if there is a cover sourcemismatch,” in Media Watermarking, Security, and
Forensics, San Francisco, California, 2016, pp. 1-11.

[152] B. Bayar and M. C. Stamm, “A Deep Learning Approach to Universal
Image Manipulation Detection Using a New Convolutional Layer,” in
Proceedings of the 4th ACM Workshop on Information Hiding and
Multimedia Security - IH&MMSec ’16, New York, NY, USA, 2016, pp. 5—
10.

[153] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Structural Design of Convolutional Neural
Networks for Steganalysis,” IEEE Signal Processing Letters, vol. 23, no. 5,
pp. 708-712, May 2016.

[154] Y. Qian, J. Dong, W. Wang, and T. Tan, “Learning and transferring
representations for image steganalysis using convolutional neural
network,” in 2016 IEEE International Conference on Image Processing
(ICIP), Phoenix, AZ, USA, 2016, pp. 2752-2756.

[155] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated
Convolutions,” in International Conference on Learning Representations

119



[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

2016, San Huan, Puerto Rico, 2016.

Y. Li, X. Zhang, and D. Chen, “CSRNet: Dilated Convolutional Neural
Networks for Understanding the Highly Congested Scenes,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 2018, pp. 1091-1100.

S. loffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in ICML’15: Proceedings of
the 32nd International Conference on Machine Learning, Lille, France,
2015, pp. 448-456.

N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting,” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

Dong-Hyun Kim and Hae-Yeoun Lee, “Convolutional Neural Network-
based Steganalysis on Spatial Domain,” INTERNATIONAL JOURNAL OF
MATHEMATICS AND COMPUTERS IN SIMULATION, vol. 11, pp. 225-
229, 2017.

E. Ragusa, P. Gastaldo, and R. Zunino, “Fast Transfer Learning for Image
Polarity Detection,” in Oneto L., Navarin N., Sperduti A., Anguita D. (eds)
Recent Advances in Big Data and Deep Learning. INNSBDDL 2019.
Proceedings of the International Neural Networks Society, Sestri Levante,
Genova, ltaly, 2019, pp. 27-37.

A. B. Risum and R. Bro, “Using deep learning to evaluate peaks in
chromatographic data,” Talanta, vol. 204, pp. 255-260, Nov. 2019.

E. Casilari, R. Lora-Rivera, and F. Garcia-Lagos, “A wearable fall detection
system using deep learning,” in Wotawa F., Friedrich G., Pill 1., Koitz-
Hristov R., Ali M. (eds) Advances and Trends in Atrtificial Intelligence. From
Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science,
Graz, Austria, 2019, vol. 11606, pp. 445-456.

C. Kofler, R. Muhr, and G. Spock, “Classifying image stacks of specular
silicon wafer back surface regions: Performance comparison of CNNs and
SVMs,” Sensors (Switzerland), vol. 19, no. 9, May 2019.

S. Potluri, S. Ahmed, and C. Diedrich, “Convolutional neural networks for
multi-class intrusion detection system,” in Groza A., Prasath R. (eds)
Mining Intelligence and Knowledge Exploration. MIKE 2018. Lecture Notes
in Computer Science, Cluj-Napoca, Romania, 2018, vol. 11308, pp. 225—-
238.

N. F. Lepora, A. Church, C. De Kerckhove, R. Hadsell, and J. Lloyd, “From
Pixels to Percepts: Highly Robust Edge Perception and Contour Following
Using Deep Learning and an Optical Biomimetic Tactile Sensor,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 2101-2107, Apr. 2019.

120



[166] “DDE Download Section.” [Online]. Available:
http://dde.binghamton.edu/download/. [Accessed: 07-Nov-2019].

[167] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep Feature Extraction
and Classification of Hyperspectral Images Based on Convolutional Neural
Networks,” IEEE Transactions on Geoscience and Remote Sensing, vol.
54, no. 10, pp. 6232-6251, Oct. 2016.

[168] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359,
2010.

[169] “Random Forest Classification - Towards Data Science.” [Online].
Available:  https://towardsdatascience.com/random-forest-classification-
and-its-implementation-d5d840dbead0. [Accessed: 28-Apr-2020].

[170] D. R. Cutler, T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson,
and J. J. Lawler, “Random forests for classification in ecology.,” Ecology,
vol. 88, no. 11, pp. 2783-92, Nov. 2007.

[171] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 2015, pp. 1026—-1034.

[172] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Attificial Intelligence and Statistics, PMLR 9,
Sardinia, Italy, 2010, pp. 249-256.

121



122



Appendix

Table A.1: Synoptic presentation of LSB methods.

Authors - Ref | Year Database # of Method Accuracy — Detection
images rate — Error rate
Westfeld and | 2000 | No database 5 Chi-squared Various tests depending
Pfitzmann [42] used detects of on steganography tool
POVs (Steganos, S-Tools,
Jsteg, EZStego) and siz¢
of embedding message
Westfeld [43] | 2003 | No database 7 Chi-squared Various tests for 10
used detects of versions per true colour
POVs image with different
steganographic
message sizes
Fridrich etal. | 2000 | Color images, 300 Raw Quick Various tests showing
[45] 350x250 Pairs method. threshold and error
pixels, stored Statistical probability for several
as JPEGs analysis of the | different test message
image colors sizes and different
in the RGB secret message
cube sizes.
Fridrich etal. | 2001 | No database 3 RS Various tests and
[46] used steganalysis results depending on
initial bias,
steganographic tool
(Steganos, S-Tools,
Hide4PGP) and image
used (its size).
Avcibas et al. | 2001 | Images were 1800 Similarity Various tests and
[51] obtained from measures results depending on
(1) between 7t embedding percentage
and 8% plane (1%-15%) and
steganographic
scheme (Outguess-,
Outguess+, F5, LSB,
LSB%).
Lyu et al. [52] | 2003 | Images were 1800 Higher order Various tests and
obtained from Statistics — results depending on
(1) SVM Classifier | embedding message
length (32x32-
256x256) and
steganographic
scheme (JSteg,
Outguess-, Outguess+,
EZStego,LSB) and
classification method
(Fisher Linear
discriminant analysis or
SVM).
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Authors - Ref | Year Database # of Method Accuracy — Detection
images rate — Error rate
Dumitrescu et | 2003 | No database 29 Finite state Various tests and
al. [53]-[55] used machine results depending on
embedding message
length
Roue et al. 2004 | Kodak image 108 Marginal and Accuracy 70%
[56] database (2) joint
probabilistic
distributions of
the image
Luetal [57] | 2004 | No database 4 Finite state Various tests and
used machine with results depending on
a new least embedding message
square length
estimation
Avcibas et al. | 2005 Images 22 Analysis of Performance varies
[58] obtained from Variance from 75% to 100%
3) (ANOVA) - depending the
multivariate watermarking algorithm
regression used.
Dumitrescu et | 2005 | Same as used 39 High-order Various tests and
al. [59] in [26-28] plus statistics of the | results depending on
ten colored samples embedding message
high-resolution length
(2310x1814)
uncompressed
scanned
images
Li Zhi et al. 2003 | No database 4 Gradient Various tests and
[60] used Energy- results depending on
Flipping Rate embedding rate.
Detection
(GEFR)
Zhang and 2003 USC-SIP1 5 Translation Various tests and
Ping [61] Image coefficients results depending on
database (4) between embedding ratio.
CBIR Image difference
Database (5) image
histograms
Fridrich et al. | 2003 | Color GIF 180 Pairs Analysis Various tests and
[62] images by 4 results
different digital
cameras,
stored as high-
quality JPEG
images and
later
resampled to
800x600 px.
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Authors - Ref | Year | Database # of Method Accuracy — Detection
images rate — Error rate
Ker [64] 2004 | 2200 24700 Improved RS Various tests and
uncompressed & Pair results depending on
images, 512 x Analysis embedding message
512. 5000 length
JPEG images,
900%600.
10000 JPEG
images, sizes
varying
between 890 x
560 and
1050%691.
7500 JPEG
images of very
variable
quality
Celik et al. 2004 | Kodak Photo 108 Feature set | Various tests and
[65] CD Images (2) based on rate- | results depending on
distortion embedding rate (0 bpp
characteristics | — 1.0bpp)
of images.
Bayes
classifier
preceded by a
Karhunen-
Loeve
transform
Benton and 2005 | No database 1000 | RS for feature | Various tests and
Chu [66] used extraction. DT | results depending on
and ANN for | embedding rate and
classification. classification =~ method
(decision tree & neural
network).

Fridrich etal. | 2004 | Images from a 60 Estimation of | Various tests and

[67] digital camera, hidden results.
downsampled message via
from original weighted
2272x1704 stego image
resolution to
800x600 and
converted to
grayscale.

Ker et al. [68] | 2008 | 1,600 raw 5640 | Improved new | Various tests and
digital camera weighted results depending on
images. 3,000 stego image set and
NRCS images estimators statistical measures
(6). 1040 (IRQ, Mean Eirror,
images Mean absolute error)
supplied by
Binghamton
University
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Authors - Ref | Year | Database # of Method Accuracy — Detection
images rate — Error rate
Bhattacharyya | 2011 | No database 20 Auto- Various tests and
et al. [30] used regressive results depending on
model and | embedding rate
SVM classifier | (0.01bpp-1.0bpp)
H.B.Kekre et | 2011 | BMP images 60 Feature Various tests showing
al. [70] (30 color and vectors detection accuracy per
30 grayscale) derived from feature per embedding
of size 128 x GLCM. length
128 Euclidean
distance as
classification
metric.
Fillatre [71] 2012 | BOSSBase 9074 | Adaptive Various statistical tests
v0.92 (7) statistical test | concerning BOSSBase
based on the | images and
likelihood ratio. | comparison with other
methods.
Fridrich et al 2013 | BOSSBase 9074 | Machine Various tests and
[73] v0.92 (7) learning results concerning
detector average detection error
utilizing co- | for different versions of
occurrences of | the rich model,
neighboring dependence on the
noise residuals | change rate for two

as features.

selected quality factors
etc.
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Table A.2: Synoptic presentation of LSB Matching steganalysis methods.

Authors- Ref | Year | Database # of Method Accuracy — Detection
images rate — Error rate
Zouetal [75] | 2006 | 2812 3908 2-D Markov 52.28% for 0.01 bpp
images from chain of embeding rate —
Vision thresholded 97.75% for 0.1 bpp
Research prediction-error
Lab (8). image along
1096 with horizontal,
images vertical and
included in diagonal
the directions
CorelDRAW serve as
Version features. SVM
10.0 with linear and
software non-linear
CD#3 (9) kernel
Malekmoham- | 2009 | Grayscale 200 Gabor filter 94.50% average
adi et al [76] images coefficients detection rate for
taken from and statistics claean and stego
USC-SIPI of the gray images. Embedding
(4) level co- rate 0.141 bpp.
occurrence
matrix of
images as
features. SVM
as classifier
Pevny et al. 2010 | 9200 raw | 30800 at | Local 0.08 — 0.057 error rate
[48] images from | topmost | dependences when Embedding rate
digital between is 0.25bpp. 0.02 —
camera. differences of 0.026 error rate when
BOWS2 neighboring Embedding rate is
(20) (10700 cover elements | 0.50bpp.
images). are modeled
NRCS (6) as a Markov
(1576 raw chain, whose
scans of film empirical
converted to probability
grayscale transition
sized 2100 matrix is taken
x 1500) - as a feature
JPEGS85 vector. SVM as
(9200 classifier
images from
camera
compressed
by JPEG
with gf 85).
JOINT
(images
from all four
databases
above,
30800
images)
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Authors - Ref

Year

Database

# of
images

Method

Accuracy — Detection
rate — Error rate

Zhang et al.
[77]

2010

NRCS
image
database

(6)

3185
TIFF
images
converted
to

grayscale.

Statistical
modeling of
pixel difference
distributions.

Embedding rate 50% -
100%: 68.48% -
98.27% True Positive
respectively

Fridrich et al.
[49]

2011

BOSSBase
v0.92 (7)

9074
grayscale
images

33963 feature
vector, along
with the use of
ensemble
classifiers
obtained by
fusing
decisions of
simple
detectors
implemented
using the
Fisher linear
discriminant.

Embedding rates from
0.1bpp — 0.5bpp. Error
rate from 21.0% to
7.3% respectively.

Gul et al. [78]

2011

BOSSBase
v 0.92 (7)
BOSSRank
image set

()

10074
images

Features
extracted by
applying a
function to the
image
constructing
the k variate
PDF
estimates, and
downsampling
it by a suitable
downsampling
algorithm.
Linear & SVM
classifier.

Accuracy 85% when
using a SVM.

Fridrich et al.
[79]

2012

BOSSBase
v0.92 (7)

9074
grayscale
images

Rich image
models
combined with
ensemble
classifiers

Payload from 0.0.5bpp
— 0.40bpp. Error
estimates on Mean
Absolute Deviation
from 0.065 — 0.0035.

Pevny et al.
[80]

2012

Raw
images
from digital
camera
converted
to grayscale
and to
JPEG (qf
80)

9200

Feature vector
extracted from
the
investigated
object and the
embedding
change rate.
Support
vector
regression was
utilized then.

Various tests and
results depending on
embedding rate and
comparison to prior art
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Authors - Ref | Year | Database # of Method Accuracy — Detection
images rate — Error rate
Cogranne et 2013 | BOSSBase | 9074 raw | Generalized Various tests and
al. [81] v0.92 (7) images likelihood ratio | results
BOWS 10000 test.
Database images
(10)
Holub et al. 2013 | BOSSBase 10000 Projection of Various test along with
[85] v1.01 (7) raw neighboring the detection error for
images residual different embedding
samples onto a | rate and three different
set of random | content adaptive
vectors. steganographic
Histogram of algorithms in the
the projections | spatial domain
was used as
feature vector.
Xia et al. [86] | 2014 | NRCS (6) 12644 Co-occurrence | Various test
3161 matrix was concerning the
images used to model | detection of HUGO
each of the differences | evaluated by “detection
them was with the small reliability” p (p=2A-1,
split to four absolute value | where A is the area
other in to extract below the ROC curve)
order and features. SVM
converted as classifier.
to grayscale
BOSSBase
v0.92 (7) -
9074 raw
images
Xia et al. [87] | 2016 | NRCS (6) 12644 Calculation of | Various test on
3161 the center of different embedding
images mass (COM) of | rate (0.10bpp to
each of the 1.0bpp) to two different
them was characteristic datasets, with
split to four function of minimized
other in difference classification error as
order and histogram metric.
converted (DHCF). SVM
to grayscale as classifier.
BOSSBase
v0.92 (7) -
9074 raw
images
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Authors - Ref | Year | Database # of Method Accuracy — Detection
images rate — Error rate
Goljan et al. 2015 | BOSSBase 10000 Method Various tests for
[50] v1.01 (7) raw discussed in different embedding
images [41] along with | rates (0.05bpp to
additional 0.5bpp) with average
features detection error as
extracted by metric, on variations of
three- BOSSBase dataset
dimensional and its grayscale
co- versions.
occurrences of
residuals
computed from
all three-color
channels.
Chen et al. 2016 | BOSSBase 13161 Calculation of Various test for
[89] (7) — 10000 the difference embedding rate
images histogram 0.25bpp. Results in
NRCS (6) — characteristic papers figures
3161 function
images (DHCF) and
the moment of
DHCFs and
used them as
features.
Features were
calibrated by
decreasing the
influence of
image content
on them. SVM
classifier
Lerch- 2016 | BOSSBase 10000 Unsupervised | Various tests for
Hostalot et al. (7) steganalysis different embedding
[90] method rates (0.1bpp, 0.2bpp,
combined with | 0.25bpp, 0.4bpp) for
artificial three different
training sets steganographic
and supervised | algorithms.
classification. Comparison results
with other methods
Sandoval et 2017 | BOWS (10) 11338 12 relevant Various tests for
al. [91] — 10000 features based | different embedding
images on the rates (100%, 75%,
UCID (11) - probability 50%, 25%). 87.2%
1338 density average detection
images function (PDF) | accuracy.

of difference of
adjacent pixels
and the co-
occurrence
matrix of the
image. SVM as
classifier
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Table A.3: Synoptic presentation of Spread Spectrum Image Steganography
(SSIS) steganalysis methods.

Authors- | Year Database # of Method Accuracy — Detection
Ref images rate — Error rate
Harmsen et 2003 | Images from 24 Histogram 95% accuracy at
al. [94] Kodak Characteristic embedding rate of 1bpp
PhotoCD Function (HFC) —
PCD0992 (12) Center of Mass
(COM).
Mahalanobis
distance as metric
Chandramouli | 2003 | 2D DCT 1 Ist technique 45% (approx.) estimation
et al. [95] coefficients of deploys of message hits for the
Lena image regression. 2" first technique.
technique exploits | 70% (approx.) estimation
higher order of message bits for the
statistics second technique.
Wang et al. 2003 | Lena, Jet and 3 Histograms of Authors don'’t provide
[96] Baboon pixel differences. experimental results on
Kolmogorov— large number of images.
Smirnov (KS)
binary
hypodissertation
test for
classification.
Rongrong et 2006 | No reference 300 Calculation of the Accuracy over 90%.
al. [97] by the scatter difference
authors. in both cover and
it's “possible”
stego image.
Difference
between the two
scatters for
classification.
Sullivan etal. | 2005 | 1. digital No Markov random 95% accuracy
[98] camera reference | chain for modeling
images, by the the correlation
partitioned authors | between pixels.
into smaller SVm for
sub-images 2. classification.
scanned
photographs
3. scanned,
downsampled,
cropped
photos 4.
Images from
Corel volume
Scenic Sites,
converted to
PNG. Color
images were
converted to
grayscale.
Li et al. [99] 2013 | Variations of 1 Multicarrier Authors compare their
Baboon image iterative method with other ones.
generalized least- | No experiments on a large
squares core database.
algorithm
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Table A.4: Synoptic presentation of Transform Domain Steganalysis methods.

Authors- | Year Database # of Method Accuracy — Detection
Ref images rate — Error rate
Liuetal. | 2003 | No reference 125 Extract features Average accuracy 80.2%

[31] by the authors. through DFT,
DCT, DWT
transform. Neural
network as
classifier.
Liuetal. | 2004 | Part of USC- 3056 | Spectrum Successful detection rate
[100] SIPI database analysis and of 99%
4) and energy
images differences score
acquired from differences in the
digital camera histograms of
and the clean and stego
internet. images. A
threshold
determines
whether the
image was stego
or clean.
Liuetal. | 2004 | Firstimage set 183 Statistical Successful detection rate
[102] includes analysis of the of 84%
images as texture of the
Lena, Peppers image. Neural
etc., digital network as
photography classifier.
taken by digital
camera.
Second image
set is from
corel image
database (9)
Sullivan 2004 | Digital 3000 | Histogram as an | Various tests on each
et al. orthophoto empirical image dataset. Error rate
[103] quarter- probability mass | varies from 0.001 —
quadrangle factor (PMF) for 0.083 when depending
aerial images, feature on images quality factor.
Corel PhotoCD extraction.
(9) images, Supervised
and images learning for
taken with a classification.
Canon digital
camera.
Shietal. | 2006 | No reference 7560 | Second order Various tests depending
[104] by the authors. statistics along on steganographic
with threshold algorithm.
utilization for
dimensionality
reduction. SVM
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Authors | Year | Database # of Method Accuracy — Detection
- Ref images rate — Error rate
Kodovsky | 2010 | JPEG images 6500 | First method of Various tests and results
etal. acquired by 22 estimation of on different estimators
[106] different digital change rate using median absolute
cameras at full using the error, median bias and
resolution in a maximum interquartile range (IQR)
raw format and likelihood as performance
then converted principle. Second | measures.
to grayscale. method based on
minimizing a
penalty function
on cover images
while increasing
it on stego
images.
Liuetal. | 2010 | Images from 17051 | Extended the Various tests and results
[107] (13) method
discussed in [60]
proposing a new
approach for
feature
extraction. SVM
as classifier
Sheikhan | 2010 | UCID (11) 1338 | Contourlet Average accuracy
et al. Images were coefficients and 96.29%
[108] converted from cooccurrence
TIFF to JPEG. metrics of sub-
band images for
features
extraction. SVM
as classifier
Kodovsky | 2012 | Images taken 6500 | Ensemble Various tests and results.
et al. from camera classifier Median (MED) testing
[109] error over ten different
splits of the CAMERA
database into a training
and testing set, as well
as the median absolute
deviation (MAD) values.
Choetal. | 2013 | UCID (11) 2829 | Decomposed Various tests and results
[113] INRIA image blocks depending on method
Holidays and classifier.
dataset (14)
Lakshmi 2014 | No reference 20 Authors exploited | Accuracy 90%
et al. by the authors. a 3-Level DWT
[114] and calculated

the energy value
for both training
and testing
dataset. SVM as
classifier
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Authors | Year | Database # of Method Accuracy — Detection
- Ref images rate — Error rate
Holub et | 2015 | BOSSBase 10000 | Features derived | Various tests and results
al. [115] v1.01 (7) first-order depending on quality

statistics of
guantized noise
residuals
obtained from
the
decompressed
JPEG image
using 64 kernels
of the DCT.
Tests on
selected state-of-
the-art JPEG
steganographic
schemes.

factor and
steganographic scheme.
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Table A.5: Synoptic presentation of Universal or Blind Steganalysis methods.

Authors- | Year Database # of Method Accuracy — Detection
Ref images rate — Error rate
Farid 2002 | Images were 1800 | Wavelet-like Accuracy varies from
[116] obtained from (1) decomposition | 1.3% (LSB — message
to build higher length 32x32) to 94%
order statistical | (Jsteg — message
models of length 256x256).
natural images.
Fisher linear
discriminant
analysis for
discrimination
of images
Lyu etal. | 2004 | Natural images 40000 | Extended their | Various results
[117] downloaded from work in [11] by | depending on image
www.freefoto.com applying their (grayscale or color),
method to color | embedded message
images. SVM length (from 10x10 to
as classifier. 80x80) and
steganographic
algorithm.
Lafferty 2004 | No reference by 2000 | Local binary Various results
et al. the authors pattern texture depending on
[119] operator as embedded message
feature length (60 bytes to 100
extractor. ANN | bytes) and
classifier. steganographic
algorithm.
Xuan et | 2005 | CorelDraw image 1096 | Feature vector | Various results
al. [120] database (9) formed from the | depending on
first three embedded message
moments of length (10x10 to 80x80)
characteristic and steganographic
function of algorithm.
wavelet sub-
bands with the
3-level Haar
wavelet
decomposition.
Bayes
classifier.
Shietal. | 2005 | CorelDraw image 1096 | Features Detection rate 99.5%
[121] database (9) derived from

the statistical
moments of
characteristic
functions of the
prediction-error
image, the test
image, and
their wavelet
sub-bands.
ANN as
classifier.
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Authors | Year | Database # of Method Accuracy — Detection
- Ref images rate — Error rate
Lie etal. | 2005 | Variations of 132 2088 | Features Detection rates approx.
[122] images such as extracted from 90%.
Lena, Baboon, spatial and
Barbara etc. DCT domains.
Nonlinear
neural
classifier.
Farid et | 2006 | Natural images 40000 | Extended their | Various results
al. [123] downloaded from work in [69] by | depending on quality
www.freefoto.com including phase | factor (70-90, jpeg
statistics in images) and
addition to first | steganographic
and higher algorithm used.
order
magnitude
statistics. SVM
classifier.
Chen et | 2006 | CorelDraw 1349 | Features Detection rate 98.1%
al. [124] version extracted from
11 CD#4 (9) projection
histogram of
Empirical Matrix
and from
prediction-error
image. SVM
classifier.
Sun et 2008 | Grayscale images 600 Features from Various tests and
al. [125] in raw format co-occurrence results depending on
downloaded from matrices of payload (0.1bpp —
the website of thresholded 0.3bpp) and
vision research differential steganographic method
lab, University of images. SVM used (LSB, £1).
California classifier. Combined Detection
rate 72.2%.
Zhao et 2011 | UCID (11) 1388 | Features from Detection rates from
al. [126] generalized 61.85% to 100%
difference depending on
images and steganographic scheme
color and payload.
correlogram.
Zong et 2012 | NRCS (6) plus 2056 Method based Various tests and
al. [127] some common on the detection rates

standard images.

correlation of
inter- and intra-
wavelet sub-
bands in the
wavelet domain
and feature
extraction from
the co-
occurrence
matrix. SVM
classifier

concerning feature
combination,
embedding method and
image size.
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Authors | Year | Database # of Method Accuracy — Detection

- Ref images rate — Error rate

Ghanbari | 2012 | USC-SIPI (4) 800 Features Accuracy 80%

etal. BSDS (15) extracted from

[128] Images from the GLCM of

internet the original

image and
stego image.
MLP as
classifier.

Zhang et | 2013 | Images were 5000 | Method based Various results

al. [129] obtained from (1) on sparse depending on
representation. | embedding rate (25%-
Sparse 100%), steganographic
Representation | scheme and
Classification classification method
algorithm. SVM | (SRC — SVM)
classifier

Devi et 2013 | No reference 5931 Method based Various results

al. [130] made by authors on minimizing depending on
image-to image | embedding rate (0%-
variations. 100%).

Verma 2014 | Gray scale BMP 60 Features Various results

[131] images of size extracted by depending on version of

256x256 GLCM. MPL algorithm used.

with Pre-
processed
Vectors
Diagonal Back
Propagation
Algorithm
(PVDBPA) as
classifier.

Luetal. | 2014 | BOSSBase v1.01 5000 | Feature Various results

[132] (7 selection depending on
method based embedding ratio (bpp)
on the Fisher and embedding method.
criterion.

Tang et | 2016 | BOSSBase v1.02 | 10000 | Feature Various results

al. [133] (7 selection depending on

method based
on the Fisher
criterion, in
which the
separability of
single-
dimension and
multiple
dimension
features,
combined with
measurement
of the
Euclidean
distance, is
analyzed.

embedding ratio (bpp)
and embedding method.
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Authors | Year | Database # of Method Accuracy — Detection
- Ref images rate — Error rate
Qian et 2015 | BOSSBase v1.01 | 120000 | Deep Learning | Various tests depending
al. [134] @) with on image database,
ImageNet (15) - convolutional embedding ratio (0.3bpp
100000 randomly neural networks | — 0.5bpp) and
selected images) (CNN) embedding method.
Error rate as metric.
Desai et | 2016 | CorelDraw (9) 1400 | A reduced 97% detection accuracy
al. [135] BSDS500 (17) dimensional in various
merged feature | steganographic
set for universal | methods.
image
steganalysis
using Fisher
Criterion and
ANOVA
techniques was
used. SVM with
RBF kernel as
classifier
Couchot | 2016 | BosBase v1.01 18156 | Deep Learning | Various tests depending
et al. @) with on embedding method
[138] Raise database convolutional and theor different
(18) neural networks | versions. Accuracy as
(CNN) metric.
Sajedi 2016 | Washington 4959 Feature Embedding rate
[139] University image extraction via 0.05bpp - 0.4bpp.
database (19) fuzzy if-then Average accuracy on
3959 images rules. SVM as different steganographic
were taken with classifier. methods from 79% -
Six cameras with 91%.
different
resolutions
Rostami | 2016 | BOSSBase (7) 10000 | Feature Embedding rate 0.4bpp,
etal. selection detection accuracy
[140] method based 82.62%.
on based on
optimization
process of
Particle Swarm
Optimization
(PSO) and AUC
as fitness
function. SVM
as classifier.
Wu etal. | 2017 | BOSSBase (7) 10000 | Deep residual Average error rate
[141] network (DRN). | 6.48%
Yeetal. | 2017 | BOSSBase (7) 20000 | Deep Learning | Various embedding
[142] BOWS (10) with rates. Low detection

convolutional
neural networks

error on various
steganographic
algorithms.
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Authors | Year | Database # of Method Accuracy — Detection ra
- Ref images Error rate

Nouriet | 2017 | UCID (11) 506 Alteration of Embedding rates of

al. [143] singular value 0.05,0.1,0.2and 0.4

curve was used
to construct the
steganalysis
feature vector.

bpp. Various results on
different steganographic
algorithms. Comparison
with other relevant
feature extraction
methods.
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Table A.6: Dataset links.

1 | Philip http://philip.greenspun.com/
Greenspun
2 | KODAK ftp://ftp.kodak.com/www/images/pcd/
3 | Noname http://www.petitcolas.net/fabien/watermarking/benchmark/image database.html
4 | USC-SIP1 http://sipi.usc.edu/services/database/Database.html
Image
database
5 | CBIR http://www.cs.washington.edu/research/imagedatabase/groundtruth/
Image
Database
6 | NRCS http://photogallery.nrcs.usda.gov/
7 | BOSSBase | http://agents.fel.cvut.cz/stegodata/
8 | Noname http://vision.ece.ucsb.edu/~sullivak/Research imgs/
9 | Corel http://www.corel.com
10 | BOWS 2 http://bows2.ec-lille.fr/
11 | UCID http://jasoncantarella.com/downloads/
http://vision.doc.ntu.ac.uk/
12 | Kodak (http://sgez.home.att.net/thumbs/Thumbnails.html)
photo cd
13 | Noname http://www.cs.nmt.edu/~IA/steganalysis.html)
14 | INRIA http://lear.inrialpes.fr/~jegou/data.php
15 | BSDS http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/fg
16 | ImageNet http://www.image-net.org/
17 | BSDS500 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
18 | Raise http://mmlab.science.unitn.it/RAISE/
19 | Washington | http://imagedatabase.cs.washington.edu/
University
image
database
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