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Abstract

In statistics and other fields one of the main goals is the investigation and the com-
parison of the probabilistic behaviour of random processes. A very important tool in the
‘quiver’ of a researcher, for that purpose, is the concept of Divergence Measures. This
type of measures quantify the dissimilarities between two random processes based only
on their probabilistic behaviour.

Many times in statistics, we do not only want to emphasize in the quantitative dis-
similarities but also in the qualitative ones. For example, in financial risk analysis it is
common to take under consideration the existence of fat tails in the distribution of returns
of an asset (especially the left tail) and in biostatistics to use robust statistical methods
to trim extreme values. Motivated by these needs, through this thesis, we will present
and study the concept of Weighted Divergence Measures. These measures, quantify the
dissimilarities between two random processes with greater significance in specific parts
(or events) of their probability distribution, so they take under consideration both their
probabilistic behaviour and their qualitative characteristics.
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Abstract

Στη στατιστική όπως και σε άλλες επιστήμες ένας από τους βασικούς στόχους είναι η

διερεύνηση και η σύγκριση της πιθανοθεωρητικής συμπεριφοράς τυχαίων διαδικασιών. ΄Ενα

πολύ σημαντικό εργαλείο στη ῾῾φαρέτρα᾿᾿ του ερευνητή, για το σκοπό αυτό, είναι η έννοια

των Μέτρων Απόκλισης. Αυτός ο τύπος των μέτρων ποσοτικοποιεί τις ανομοιότητες μεταξύ

δύο τυχαίων διαδικασιών βασιζόμενος μόνο στη πιθανοθεωρητική συμπεριφορά τους.

Πολλές φορές στη στατιστική δεν μας ενδιαφέρει να επικεντρωθούμε μόνο στις ποσο-

τικές ανομοιότητες αλλά και στις ποιοτικές. Για παράδειγμα, στην χρηματοοικονομική α-

νάλυση ρίσκου είναι σύνηθες να μεριμνούμε για παχιές ουρές στη κατανομή των αποδόσεων

ενός χρηματοοικονομικού περιουσιακού στοιχείου και στη βιοστατιστική να χρησιμοποιο-

ύμε ῾ἑύρωστες᾿᾿ στατιστικές μεθόδους για να περικόψουμε τις ακραίες τιμές. Εμπνευσμένοι

από αυτές τις ανάγκες, στη παρούσα διπλωματική εργασία, θα παρουσιάσουμε και θα μελε-

τήσουμε την έννοια των Σταθμισμένων Μέτρων Απόκλισης. Αυτά τα μέτρα, ποσοτικοποιούν

τις ανομοιότητες μεταξύ δύο τυχαίων διαδικασιών δίνοντας μεγαλύτερη σημασία σε συγκε-

κριμένα υποδιαστήματα (ή γεγονότα) του στηρίγματός τους και έτσι μεριμνούν και για τη

πιθανοθεωρητική συμπεριφορά αλλά και για τα ποιοτικά χαρακτηριστικά τους.
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Chapter 1

Introduction

In statistics and other fields one of the most challenging aspects is to investigate the
probabilistic behaviour of a random process with respect to specific events. From finance
to signal processing researchers try to distinguish random processes from each other
and study their behaviour. A very important tool for this distinction is the concept of
Divergence Measures. This type of measures quantify the dissimilarities between random
processes based only on their probabilistic behaviour. We often state that they measure
the discrepancy between two probability distributions or the information needed in order
to distinguish one from the other. There is plethora of estimators and hypothesis tests
associated with such measures for several cases, many tests of fit defined via measures of
divergence and take into account dissimilarities between the distributions involved. Also,
famous model selection criteria (like Akaike Information Criterion) are based on such
type of measures.

The challenge here, is to construct such measures which will take into account not
only the probabilistic aspects of random processes but also the qualitative characteristics
of them. These characteristics sometimes are subjective and someone would say that they
are related to the significance, the relevance or the utility of the information contained
which is related to a specific goal. This type of measures are called Weighted Divergence
Measures. These divergences do not assume that all possible states of a random pro-
cess have the same significance to a goal (like the classical ones assume), so they apply
specific weights in different states or parts of these processes. For example, in financial
risk analysis it is common to take under consideration the existence of heavy tails with
emphasis on the left one, of the distribution associated with an asset and in biostatistics
to use robust statistical methods to trim the extreme values. So, applying these weighted
measures we can distinguish small dissimilarities in the probabilistic behaviour of two
random processes which in other cases would be difficult to notice.

The present thesis is structured as follows. Chapter 3 is devoted to basic knowledge
about measure theory, probability spaces and random variables. This background is
essential to continue in the core part. In Chapter 4 we will study divergence measures,
their properties, the most important families and their applications in statistical inference.
In the fifth Chapter we will present the existing research on the weighted divergence
measures, we will try to surpass some problems and we will try to extend this concept. In
Chapter 6 there will be simulations based on the formulas presented in Chapter 5. There
will be a plethora of combinations between distributions both discrete and continuous.
In the last Chapter we will give a short conclusion for the above results.
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Chapter 2

Literature Review

Divergence measures have their roots in the notion of entropy which is a fundamental
concept in information theory. The roots of information theory can be found in the work
of Shannon, a mathematician who was working in Bell labs, published his pioneer arti-
cle “A mathematical theory of communication” (Shannon, 1948). In his work, Shannon
proposed and studied two new concepts: the entropy and the mutual information. The
entropy is a measure that quantifies the amount of uncertainty involved in the value of a
random variable or the outcome of a random process. The mutual information measures
the mutual dependence between two variables by quantifying the ‘amount of information’
(in units like “shannons” or bits) which is collected regarding one of the variable via the
observation of the other. Many years earlier, from a different perspective Sir Ronald
Fisher (1925) was the first who introduced the term information, known as Fisher Infor-
mation, to quantify the amount of information hidden in a random variable X regarding
an unknown parameter θ involved in the distribution of X. A detailed description of
Information Theory has been given by Verdu (1998): “A unifying theory with profound
intersections with Probability, Statistics, Computer Science, and other fields. Information
Theory continues to set the stage for the development of communications, data storage
and processing, and other information technologies”.

Since 1948 many scientists have worked on the concept of Information Theory as well
as the tools (and their usage) associated with it. The relationship between Information
Theory and Statistics was established by Kullback and Leibler (1951). By extending the
notion of Shannon’s entropy they introduced the so called Kullback-Leibler measure of
divergence which is also known as ‘relative entropy’. The book “Information Theory and
Statistics” (Kullback, 1959) can be viewed as the starting point of the scientific field of
‘Statistical Information Theory’. At this point we have to point out that the concept of
divergence measures in a more primitive form, started earlier with Mahalanobis (1936)
and later Bhattacharyya (1943) but Kullback and Leibler popularized it.

The need for divergence measures lies on a plethora of subjects.In probability theory,
statistics, economics and many other fields we have to identify the distribution of a ran-
dom variable and the behaviour of a random process. Solutions to such issues can be
provided by divergence measures. With the term divergence measure we mean a func-
tion which measures the ‘distance’ between two functions or in our setting between two
probability distributions. Most of such measures are not metrics, from the mathematical
point of view, since most of them do not fulfil the symmetry and the triangle inequality.
Divergence measures establish the ‘distance’ between two samples or between the pro-
posed model and the true one. There are many divergence measures in the bibliography

11



12 CHAPTER 2. LITERATURE REVIEW

and some of them belong to certain families with certain characteristics. The most com-
mon families are the φ-divergence class of measures (Csiszar, 1964), (Morimoto, 1963),
(Ali and Silvey 1966), the Cressie and Read power divergence family (Cressie and Read,
1984) and the BHHJ power divergence family (Basu et al., 1998). For a more extensive
discussion on the concept of divergence measures and statistical inference see the books
by Pardo (2018) and Basu et al (2011).

In statistical inference, divergence measures play a crucial role. The most common
applications of them are in point estimation, hypothesis testing and goodness of fit and
they are presented bellow. In point estimation it is frequently hard and occasionally
impossible to obtain the Maximum Likelihood Estimator (MLE). For instance in the
mixture of two normal populations with unknown proportion, mean and variance pa-
rameters, we are not able to obtain the maximum likelihood estimator in closed form.
For other examples refer to Le Cam (1990). Many scientists tried to give an answer to
the above estimation problem. Wolfowitz (1957) was the first who introduced the Mini-
mum Distance Estimators, later Choi and Bulgren (1968) and MacDonald (1971) try to
estimate the proportion of each known distribution by minimizing the sum of squares
distance between the empirical and the theoretical distributions. For the parameter esti-
mation, Quandt and Ramsey (1978) minimized the sum of squares distance between the
empirical and the theoretical moment generating functions. Finally inferential statistics
based on the minimum divergence was established and in subsequent years such estima-
tors were proposed. In 1958 we have the first one which is the Kullback-Leibler minimum
divergence estimator (an alternative to the MLE). The most important such estimators
following the work of Kullback-Leibler where the minimum power divergence estimator
(Cressie and Read, 1984) based on the Cressie and Read divergence and is an alternative
of the MLE or the Chi-Squared estimator, the minimum φ-divergence estimator (Morales
et al., 1995) which relies on the φ-divergence family and the minimum density power
divergence estimator (Basu et al., 1998) which is based on the BHHJ divergence and has
the invariance property.

In the domain of hypothesis testing divergence measures have a pivotal role. Tra-
ditionally for testing hypothesis like the following H0 : θ = θ0 vs H1 : θ 6= θ0 we
use Wald test statistics, Rao test statistics and likelihood ratio tests but Kupperman
(1957,1958) proposed a new ground-breaking way. He established a test statistic based
on the Kullback-Leibler divergence which is asymptotically distributed as a chi-square
random variable. After the pioneer work of Kupperman who “connected” divergence
measure theory with hypothesis testing, several alternatives have been proposed. Later,
Simon (1973) connected the likelihood ratio test statistic for hypothesis testing under the
exponential distribution family with the Kullback-Leibler divergence. Nayak (1983,1985)
used entropy measures to construct statistical tests for multinomial distributions. Cressie
and Read (1984) proposed the family of power divergence test statistics which is based
on power divergence family and includes the likelihood ratio test statistic and Pearson’s
chi-squared test. Sutrick (1986) used the Kullback-Leibler divergence to construct a like-
lihood ratio test for data from multinomial distribution and compared the asymptotic
power of chi-squared test statistic and likelihood ratio test. Motivated by Kupperman,
Salicru et al. (1994) introduced the φ-divergence test statistic, as well as its properties
and asymptotic behaviour.

Following the previous if we partition the range of data in disjoint sets and test the
hypothesis H0 : p = ph about the vector of parameters of a multinomial distribution then
we can construct a goodness of fit test. The most common test statistics for the previous
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hypothesis are the chi-squared test and the likelihood ratio test statistics. Based on the
same philosophy Cressie and Read (1984) constructed a goodness of fit test based on the
power-divergence test statistics. For particular λ values in this statistic we obtain the chi-
squared test statistic, the likelihood ratio test statistic, the Freeman-Tukey test statistic,
the modified likelihood ratio test statistic or minimum discrimination information statistic
(Gokhale and Kullback, 1978) and the Cressie-Read test statistic. A more general family
of test statistics which has all the above as special cases and based on which a goodness of
fit test can be constructed are the φ-divergence test statistics. Zografos et al. (1990) study
the asymptotic distribution of the φ-divergence test statistic family. A more extended
study in this domain can be found in Cressie and Pardo (2002).

Other applications of divergence measures are in model selection. The famous Akaike
Information Criterion (Akaike, 1973) is based on the Kullback-Leibler divergence. It is
an asymptotically unbiased estimator of the relative expected KL divergence. Also the
Divergence Information Criterion (Mattheou et al., 2009) has the same methodology and
thinking as the AIC but this is based on BHHJ divergence. Mantalos et al. (2010)
proposed a modification of the DIC which is an asymptotically unbiased estimator of the
expected overall discrepancy. Another model selection criterion which is based on the
family of pseudodistances (Jones et al., 2001) is the Pseudodistance Information Criterion
(Toma et al., 2019), this criterion has been constructed with the same thinking as the
AIC.

A different concept of divergence measures is the local form of them. Avlogiaris et al.
(2016) proposed the local divergence measures as a way to measure the information and
study the certain characteristics in a subset of the support. They construct a method of
localization for every divergence measure family. Also, they proposed the local divergence
information criterion (LDiv.IC) which has the similar thinking as the AIC but it depends
on the BHHJ divergence measure. In this point we want to emphasize that the concept
of local divergence measures was what led us to deal with the issue to focus on a certain
subset of the whole distribution without losing the whole information of the remaining
part. We do that through weighted divergence measures.

The main theme of this thesis which is also an area of recent developments is the
weighted form of divergence measures. The first who introduced the concept of weighting
each event according to their utility to measure the information were Belis and Guiasu
(1968). They claimed that the occurrence of an event has a double uncertainty: ”the
quantitative one which is based on the probability of the occurrence and the qualita-
tive one which is related to it’s utility for the fulfilment of the goal”. Guiasu (1971)
constructed the weighted form of Shannon entropy and studied the properties, the ax-
ioms and the maximum value (according to the maximum information principle) of the
weighted entropy.

After that, Guiasu (1986) through weighted entropy proposed a clustering to unequal
subsets of the ordered dataset based on the information balance produced by the sum of
information and degree of homogeneity. More specifically we have a trade off between
the information that is lost due to the partition and the increased data homogeneity.
The amount of information contained in the initial dataset is decreased to the amount
of information contained in the classes of the partition due to the lack of distinction is
made between the observations of the same class. This method is based on the concept
of weighted entropy and it is directly proportional to the importance one wishes to place
on specific regions of the domain.

Later, Kapur (1994) set the rules that a weighted divergence measure must have. He
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proposed the ‘corrected’ Kullback-Leibler divergence measure, which is positive every-
where in the support and the weighted form of it. He also gave some other weighted di-
vergence measures. Taneja (1998) proposed the weighted generalizations of J-divergence,
Jensen difference divergence and the arithmetic and geometric divergence measures. Pak
and Basu (1998) introduced the minimum disparity estimator in linear regression models
which is based on weighted Hellinger distance between a weighted kernel density estima-
tor of the errors and a smoothed model density of errors. Also, they have shown that if
the weights chosen appropriately then the estimators would be asymptotically normally
distributed and sufficient. Barbu et al. (2018) gave the weighted form of the general-
izations of Alpha divergence measures and Beta divergence measures for Markov chains.
They also studied their asymptotic behaviour.



Chapter 3

Basic Background

3.1 Measure Theory

We will start with a short introduction of basic concepts of measure theory needed for the
mathematical foundation of divergence measures. This introduction of measure theory
is not complete and its only scratches the surface. For the more in depth and complete
introduction to measure theory see ‘Measure Theory’ by John K. Hunter (2011) on whose
notes we where heavily based or ‘Measure Theory’ by Halmos (2013).

Some of the concepts that could be useful in this thesis are those of a ‘topological
space’, ‘σ-Algebra’, ‘Borel σ-Algebra’, ‘measurable space’, ‘measure’, ‘measure space’,
‘measurable function’ etc. The proper definitions of all the above notions are provided in
the Appendix A1 for the convenience of the reader.

3.2 Probability Spaces

We shall define the probability space (Ω,F , P ) using the terminology of measure theory.
The sample space Ω is a set of all possible outcomes ω ∈ Ω of some random experiment.
Probabilities are assigned by a probability measure P : A 7−→ P (A) where A ⊆ F of all
possible sets of outcomes. The event space F represents both the amount of information
available as a result of the experiment conducted and the collection of all subsets of
possible interest to us, where we denote elements of F as events. A pleasant mathematical
framework results by imposing on F the structural conditions of a σ-algebra.

Some of the notions that could be used here are ‘probability measure’, ‘random vari-
able’, ‘distribution’, ‘probability density function’, ‘probability mass function’ etc. The
proper definitions of all the above notions are provided in the Appendix A2 for the con-
venience of the reader.

3.3 Classification of Random Variables

Regarding the classification of random variables some of the useful notions are the ‘ab-
solute continuity’, ‘singular continuity’, ‘discrete’ and ‘continuous measures’ etc. The
proper definitions of all the above notions are provided in the Appendix A3 for the con-
venience of the reader.

15
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Chapter 4

Divergence Measures

Distance, as a general notion of closeness, plays an important role in statistics and sets
the fundamentals for statistical inference. In order to determine the structural form of the
data we use the position of the values of a population and their distance from a reference
point, often the mean. For this reason there are a plethora of functions to determine the
‘distance’, its one with its own properties. Still they have to fulfil some conditions. In
the following, we will give the definition of distance (or metric).

Definition 1. (Metric)

A metric on a set X is a function d(·, ·) : X × X −→ R+ ∪ {0} that satisfies the
following conditions:

1. d(x, y) = 0 iff x = y ∀x, y ∈ X

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

Someone would think that if we measure the mean distance between the values of a
population and a reference point we will take the diversity within the population around
this point. If this point is the mean of population and as a distance we take the square
difference then we have the variance of the population. The diversity from this point of
view is closely related to the variation of the population.

A different concept related to the diversity within a population is the entropy. Entropy
is connected with uncertainty through the probability of each event to occur. Shannon
(1948) proposed the information entropy to measure the information that a stochastic
source contains. The following definition gives the entropic formula proposed by Shannon.

17
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Definition 2. (Shannon Entropy)

Let a stochastic source described by a discrete random variable X with distribution
PX , support SX and probability mass function pX . The entropy of X is

H(X) = E

[
log

1

PX(X)

]
=
∑
x∈SX

pX(x) log
1

pX(x)

The maximum value of entropy is taken if all possible values in the support are
equiprobable (or the population is discretely uniformly distributed) and the least value
if one has a probability close to one. Also, we have that the diversity in the first case is
bigger than the second case (like entropies). From this point of view we can express the
diversity within a population as the uncertainty of the outcome of a sampling process.

From the concept of diversity within the population arises the following question. If we
can determine the diversity within population, then can we determine the dissimilarities
between different populations through the same concept?

Pearson (1900) was the first who tried to answer this question by measuring the dis-
similarities between two statistical populations. A completely different approach, also
one of the most famous, was given by Kolmogorov (1933) who measure the dissimilari-
ties using a statistical metric. He proposed the distance called ‘Kolmogorov metric’ to
compare two cumulative distributions as follows.

Definition 3. (Kolmogorov metric)

Consider a space S of all one dimensional distributions, dK is the Kolmogorov metric
between cumulative distributions P,Q ∈ S and is defined as

dK(P,Q) = sup
x∈R
|P (x)−Q(x)|

Based on this metric Smirnov (1948) construct the famous Kolmogorov-Smirnov test
of goodness of fit. It was the first time that a statistical distance used to construct this
type of non-parametric tests to stand out two distributions.

Slightly later, Mahalanobis (1936) from a completely different point of view had the
initial idea to set the distance between two distributions by taking into account the
variance-covariance matrix of the data. But, a disadvantage of this method is that for
complex variance-covariance matrix it is difficult to find the inverse form.

For many years after the pioneer works by Kolmogorov and Mahalanobis mathe-
maticians didn’t get involved with the concept of measure the similarity between two
statistical populations until the cornerstone work by Kullback and Leibler (1951). They
were motivated by the concept of measuring the amount of information needed to dis-
criminate one distribution from an other. For this reason they use entropy, as proposed
by Shannon, to set a measure that is not a metric, from the mathematical point of view,
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but it measures the similarity between two statistical populations. With this work, the
concept of measuring the discrepancy between two distributions has come to the front.
These type of measures are called divergence measures.

Definition 4. (Divergence Measure)

Suppose S is a space of all probability distributions with same support. Then a diver-
gence on S is a function D(·, ·) : S × S → R+ ∪ {0} satisfying:

D(P,Q) = 0, iff P = Q ∀P,Q ∈ S

As we can see divergence measures are not metrics because they does not have to be
symmetric and fulfil the triangular inequality.

After the work by Kullback and Leibler many researchers proposed different diver-
gences with different properties and usage. They used them as a tool for statistical infer-
ence. The main difference between them is focused in the functional form of divergence.
Different divergences have been proposed for different reasons, such as robust parameter
estimation, multinomial goodness of fit or model selection criteria. In 4.1 we provide the
continuity of divergence measures (based on Kullback-Leibler divergence). Then, in 4.2
we present the most important divergence families and we focus in φ-divergence and it’s
properties. Finally, in 4.3 we study the main concepts in statistical inference based on
divergence measures.

Before we proceed further we have to define some notations. We have a random
variable X which takes values on a space X and FX is the distribution function of X.
With θ˜ ∈ Θ ⊂ Rk, k ≥ 1 we denote the vector of unknown parameters. Let (X ,F , Pθ)θ∈Θ

be the probability space associated with X. With F we denote the σ-field of Borel subsets
B ∈ X and {Pθ}θ∈Θ a family of probability distributions defined on the measurable space
(X ,F) with Θ an open subset of Rk, k ≥ 1. The support of probability distribution Pθ
is denoted by SX . We assume a σ-finite measure µ on (X ,F), this measure can be the
Lebesgue measure or a counting measure. Following we will make a distinction between
probability density (fθ(x)) and mass (pθ(x)) function according to the measure µ:

dPθ
dµ

(x) =

{
fθ(x), x ∈ SX , if µ is the Lebesgue measure

Pθ(X = x) = pθ(x), x ∈ SX , if µ is a counting measure

Definition 4 of divergence measures can be expressed in several ways according to
the problem. For example, if we want to emphasize in the divergence between two
distributions Pθ1 , Pθ2 related to the parameters θ1, θ2, then the formula of divergence
measure would be:

D(Pθ1 , Pθ2) ≡ D(θ1, θ2)
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As we can see this formula computes the divergence between two distributions from
the same family but with different parameters. This form of divergence is usually used in
statistical inference via divergence measures, so we will extensively use it in the following.
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4.1 Continuity and Properties of Divergence Mea-

sures

One of the most important issues we have to mention before providing properties, types
and applications of divergence measures is the concept of continuity. In reality, if P
and Q are complex, it is often difficult to compute directly D(P,Q). Instead of this, we
discretized and compute them numerically. We want continuity of divergence to guarantee
that this procedure converges to a real value. Following, Theorem 1 shows that divergence
on a general support (e.g. infinite) can be defined as a divergence on finite support, after
discretization. As the partition becomes thinner the descretized divergence approaches
the true value of divergence.

Theorem 1. (Gelfand-Yaglom-Perez, Pinsker (1960))

Let P,Q be two probability measures on SX with σ-algebra F . Then

D(P,Q) = sup
{E1,...,En}

n∑
i=1

P [Ei] log
P [Ei]

Q[Ei]

where the supremum is over all finite F-measurable partitions:
n⋃
j=1

Ej = SX , Ej∩Ei =

∅, and 0 log
1

0
= 0 and log

1

0
=∞.

The proof of divergence continuity in discrete random variables is easier than the
proof in continuous case. The proposition bellow provide the continuity in discrete case
of Kullback-Leibler divergence, a particular and very important measure that in the
following sections we will study in depth.

Definition 5. (Kullback-Leibler Divergence)

Consider two distributions P,Q with probability mass functions p˜ = (p1, ..., pn)
′

and

q˜ = (q1, ..., qn)
′

respectively. Then the discrete version of Kullback-Leibler divergence (or

relative entropy) is the following:

DKL(P,Q) =
n∑
i=1

pi log

(
pi
qi

)

Proposition 1. (Continuity of discrete Kullback-Leibler divergence measure)

Let SX be finite. Fix a distribution Q on SX with Q(x) > 0 ∀x ∈ SX . Then the map

P 7→ D(P,Q)

is continuous, where P is a distribution.
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Proof. The discrete Kullback-Leibler divergence is

D(P,Q) =
∑
x

P (x) log
P (x)

Q(x)

Each term is a continuous function of P (x).

Following, the next task is to work in general supports to study the continuity prop-
erties. As we have already seen divergence measures depend on the σ-algebra F of the
space of probability measures. So, this dependence will be clearly denoted by D(PF , QF).

Note also that divergence is continuous under monotone limits, which is verified by
the following finding.

Finding 1. (Theoretic properties of divergence measures)

Let P,Q be probability measures on the measurable space (X ,H). Assume all algebras
below are sub-algebras of H, F ,G ⊂ H. Then:

1. If F ⊆ G then

D(PF , QF) ≤ D(PG, QG)

2. Let F1 ⊆ F2... be an increasing sequence of algebras and let F =
⋃
n

Fn be their

limit, then

D(PFn , QFn)↗ D(PF , QF)

where ↗ defines the continuity from bellow.

3. If (P +Q)-dense in G then

D(PF , QF) = D(PG, QG)

Note that F is µ-dense in G if ∀E ∈ G, ε > 0 ∃E ′ ∈ F such that µ[E∆E
′
] ≤ ε.

4. Let F1 ⊆ F2... be an increasing sequence of algebras and let F = ∨nFn be the
σ-algebra generated by them, then

D(PFn , QFn)↗ D(PF , QF)

5. If Pn → P and Qn → Q pointwise on the algebra F , then

D(PF , QF) ≤ limn→∞D(Pn,F , Qn,F)

Where Pn → P pointwise on some algebra F is ∀E ∈ F : Pn[E]→ P [E].
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So if:

Fn ↗ F ⇒ D(PFn , QFn)↗ D(PF , QF) (4.1)

Fn ↘ F ⇒ D(PFn , QFn)↘ D(PF , QF) (4.2)

We have to note that if F is not a σ-algebra and P,Q are not σ-additive then Radon-
Nikodym theorem is not applicable so the original definition of divergence does not exist.

Finally we will prove the continuity of decreasing σ-algebra as in (4.2).

Proposition 2. Let Fn ↘ F be a sequence of decreasing σ-algebras and P,Q two prob-
ability measures on F0. If D(PF0 , QF0) <∞ then we have

D(PFn , QFn)↘ D(PF , QF)

The condition D(PF0 , QF0) <∞ must be fulfilled.

Proof. (Polyanskiy-Wu, 2014)

Let X−n =
dP

dQ
|Fn . Since X−n = E

[
dP

dQ
|Fn
]
, we have that (..., X−1, X0) is a uniformly

integrable martingale. By the martingale convergence theorem in reversed time we have
almost surely

X−n → X−∞ ,
dP

dQ
|Fn (4.3)

We need to prove that

EQ[X−n logX−n]→ EQ[X−∞ logX−∞].

We will do so by decomposing x log x as follows

x log x = x log+ x+ x log− x,

where log+ x = max(log x, 0) and log− x = min(log x, 0). Since x log− x is bounded, the
bounded convergence theorem ensures that:

EQ[X−n log−X−n]→ EQ[X−∞ log−X−∞].

To prove a similar convergence for log+ we need to notice first that the function
x 7→ x log+ x is convex. Furthermore, for any non-negative convex function φ such that
E[φ(X0)] <∞ the collection {Zn = φ(E[X0|Fn]), n ≥ 0} is uniformly integrable. Indeed,
we have from Jensen’s inequality

P [Zn > c] ≤ 1

c
φ(E[X0|Fn]) ≤ φ(E[X0|Fn])

c

and thus P [Zn>c]→ 0 as c→∞. Therefore, we have again by Jensen’s inequality,
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E[Zn1{Zn>c}] ≤ E[φ(X0)1{Zn>c}]→ 0, c→∞.

Finally, since X−n log+ X−n is uniformly integrable, we have from (4.3)

EQ[X−n log+ X−n]→ EQ[X−∞ log+X−∞]

and this concludes the proof.
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4.2 Divergence Measures and their Families

Divergence measures is a general label covering the general concept of measuring the
similarity of two random processes. In this section we will study some of the most
popular divergence families and some of their most important properties. Different types
with different functional form have been introduced over the years and they are available
in the literature.

4.2.1 φ-Divergence Family and its Properties

One of the most important divergence families is the φ-divergence family of measures
proposed separately by Csiszar (1963), Morimoto (1963) and Ali-Silvey (1966). The
main family is characterized by the φ-function which plays a key role while its properties
are provided in the definition below.

Definition 6. (φ-divergence measure)

The φ-divergence measure between two continuous probability distributions Pθ1 , Pθ2
with θ1, θ2 ∈ Θ associated with densities fθ1 , fθ2 is defined by

Dφ(Pθ1 , Pθ2) = Dφ(θ1, θ2) =

∫
X
fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dµ(x) = Eθ2

[
φ

(
fθ1(X)

fθ2(X)

)]
, φ ∈ Φ∗

(4.4)

where Φ∗ is the class of all convex functions φ(x), x ≥ 0 such that at x = 1, φ(1) = 0,

at x = 0, 0φ(
0

0
) = 0 and 0φ(

p

0
) = limu→∞

φ(u)

u
.

As mentioned above the convex φ-function plays an important role as in the case
of the increasing rate of divergence as the two distributions move apart, which can be
expressed by the second derivative of the φ-function. This concept will be studied further
in subsequent chapters.

Remark 1. (Pardo, 2018)

Suppose φ ∈ Φ∗ be differentiable at x = 1, then the fuction

ψ(x) ≡ φ(x)− φ′(1)(x− 1)

also belongs to Φ∗ and has the additional property that ψ
′
(1) = 0. This property plus

convexity, implies that ψ(x) ≥ 0, for any x ≥ 0.

Proof. Observe that

ψ
′
(x) = φ

′
(x)− φ′(1)⇒ ψ

′
(1) = 0
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and

ψ
′′
(x) = φ

′′
(x) ≥ 0

We prove that ψ function is convex.

So, from Jensen inequality we have: E [ψ(X)] > ψ [E(X)]. For x =
f(x)

g(x)
, where f, g

are two densities, we have x ∈ R+, so E(x) ∈ R+. Since ψ has minimum at 1 we have
that ψ [E(X)] ≥ ψ(1) = 0 ⇒ E [ψ(X)] ≥ 0. We prove that ψ is positive on average
∀x ∈ R+.

Finally, note that ψ ≥ 0, ∀ x ∈ R+.

Further, we will prove that Dψ(θ1, θ2) = Dφ(θ1, θ2)

Dψ(θ1, θ2) =

∫
X

fθ2(x)

(
φ

(
fθ1(x)

θ2(x)

)
− φ′(1)

(
fθ1(x)

fθ2(x)
− 1

))
dµ(x) =

=

∫
X

fθ2(x)φ

(
fθ1(x)

θ2(x)

)
dµ(x)−

∫
X

fθ2(x)φ
′
(1)

(
fθ1(x)

fθ2(x)
− 1

)
dµ(x) =

=

∫
X

fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dµ(x) = Dφ(θ1, θ2)

Since the two divergence measures coincide, we can consider the set Φ∗ to be equivalent
to the set:

Φ ≡ Φ∗ ∩
{
ψ : ψ

′
(1) = 0

}

For example observe that Kullback-Leibler divergence is obtained for φ(x) = x log(x)
or equivalently ψ(x) = x log(x)− x+ 1.
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In the following table (Pardo, 2018) we present some of the most important divergence
measures which are particular cases of the φ-divergence family (according to ψ-function):

ψ−function Divergence
x log(x)−x+1 Kullback-Leibler (1959)
− log(x)+x−1 Minimum Discrimination Information
(x−1) log(x) J - Divergence
1

2
(x−1)2 Pearson (1900), Kagan (1963)

(x−1)2

(x+1)2
Balakrishnan and Sanghvi (1968)

−xs+s(x−1)+1

1−s
, s 6= 1 Rathie and Kannappan (1972)

1−x
2
−(1+x

−r

2
)

−1
r , r > 0 Harmonic Mean (Mathai and Rathie (1975))

(1−x)2

2(α+(1−α)x)
, 0 ≤ α ≤ 1 Rukhin (1994)

αx log(x)−(αx+1−α) log(αx+1−α)
α(1−α)

, α 6= 0, 1 Lin (1991)

xλ+1−x−λ(x−1)
λ(λ+1)

, λ 6= 0,−1 Cressie and Read (1984)

|1−xα| 1α , 0 < α < 1 Matusita (1964)

|1−x|α, α ≥ 1

{
χ−divergence of order α (Vajda, 1973)

Total Variation if α = 1 (Saks, 1937)

In the following propositions we will present some of the most important properties
of the φ-divergence family. Proposition 3 gives an upper bound of the divergence and the
increasing property when two distributions move apart. This is one of the most important
properties because sets the fundamentals.Proposition 4 stress that any transformation
of the data decreases the divergence except that if the transformation is sufficient with
respect to the probability distributions. Lastly, Proposition 5 provides the layout property
of divergence with respect to the arguments (parameters). These propositions and their
proofs are based on Vajda (1989), where the interested reader could referred to for an in
depth study.

Proposition 3. Suppose Pθ1 and Pθ2 be two probability distributions and let φ ∈ Φ∗ be
differentiable at t = 1. Then

0 ≤ Dφ(θ1, θ2) ≤ φ(0) + lim
r→∞

φ(r)

r

where

Dφ(θ1, θ2) = 0 if Pθ1 = Pθ2 (4.5)

and
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Dφ(θ1, θ2) = φ(0) + lim
r→∞

φ(r)

r
if S1 ∩ S2 = ∅. (4.6)

If φ is also strictly convex at t = 1, then (4.5) holds iff Pθ1 = Pθ2. If moreover,

φ(0) + lim
r→∞

φ(r)

r
<∞

then (4.6) holds iff S1 ∩ S2 = ∅, where Si, i = 1, 2, is the support of the probability
distribution Pθi , i = 1, 2.

The proof can be found in Appendix B1.

Remark 2. Proposition 3 consists of two consequences and when they are equivalences.
Mainly:

We have that if Pθ1 = Pθ2 (S1 = S2) ⇒ Dφ(θ1, θ2) = 0 . Also if φ is strictly convex
for x = 1 then we have Pθ1 = Pθ2 ⇔ Dφ(θ1, θ2) = 0.

We have that if S1 ∩ S2 = ∅ ⇒ Dφ(θ1, θ2) = φ(0) + lim
r→∞

φ(r)

r
. If moreover φ(0) +

lim
r→∞

φ(r)

r
< +∞ then we have Pθ1 = Pθ2 ⇔ Dφ(θ1, θ2) = 0.

Let X1, ..., Xn be a sample from Pθ, θ ∈ Θ. For µ being the Lebesgue measure or

a counting measure, let fθ(x) =
dPθ
dµ

(x) where x = (x1, ..., xn). Suppose that T is a

measurable transformation from (X ,FX ) onto a measurable space (Y ,FY) . We denote

Qθi(A) = Pθi(T
−1(A)), i = 1, 2 (4.7)

with A ∈ FY and

gθi(t) =
dQθi

dµ
(t), fθi(

x

t
) =

dPθi
dQθi

, = 1, 2 (4.8)

with t denoting the values of T . In this context we have the following property.

Proposition 4. Assume that θ1, θ2 ∈ Θ ⊂ R. Let φ ∈ Φ∗ and Qθi, Pθi, i = 1, 2, be
probability measures defined by (4.7) and (4.8). Then we have

Dφ(Qθ1 , Qθ2) ≤ Dφ(Pθ1 , Pθ2)
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The equality holds if T is sufficient for the probability distributions Pθ1 and Pθ2.

Proof. (Vajda, 1995)

We have

Dφ(Pθ1 , Pθ2) =

∫
X

fθ2(x)φ

(
fθ1
fθ2

)
dµ(x) =

=

∫
X

∫
Y

fθ2(x/t)gθ2(t)φ

(
fθ1
fθ2

)
dµ(t)dµ(x) =

=

∫
Y

gθ2(t)

(∫
X

fθ2(x/t)φ

(
fθ1
fθ2

)
dµ(x)

)
dµ(t).

Applying Jensen’s inequality we obtain

Dφ(Pθ1 , Pθ2) ≥
∫
Y

gθ2(t)

(
φ

(∫
X

fθ2(x/t)
fθ1(x)

fθ2(x)
dµ(x)

))
dµ(t).

But

fθ1(x)

fθ2(x)
=

dPθ1
dµ

dPθ2
dµ

=
gθ1(t)fθ1(

x
t
)

gθ2(t)fθ2(
x
t
)

(4.9)

then,

Dφ(Pθ1 , Pθ2) ≥
∫
Y

gθ2(t)φ

(
gθ1(t)

gθ2(t)

)
dµ(t) = Dφ(Qθ1 , Qθ2).

If φ is strictly convex, the equality holds iff

fθ1(x)

fθ2(x)
=

∫
X

fθ2(
x

t
)
fθ1(x)

fθ2(x)

dµ(x), ∀x.

The second term in the previous inequality is equal to
gθ1(t)

gθ2(t)
by (4.9). Then, using the

Factorization Theorem, the equality holds if T is sufficient for the probability distributions
Pθ1 and Pθ2 .
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In the following proposition {Pθ}θ∈Θ, Θ ⊂ R, is a family of probability measures
defined on the σ-field of Borel subsets of the real line with monotone likelihood ratio

in x, i.e., if for any θ1 < θ2, fθ1(x) and fθ2(x) are distinct and the ratio
fθ1(x)

fθ2(x)
is a

non decreasing function of x. It is also possible to define families of densities with non
increasing monotone likelihood ratio in x, but such families can be treated by symmetry.

Proposition 5. Assume that θ1, θ2 ∈ Θ ⊂ R. Suppose that the probability distributions
{Pθ}θ∈Θ are on the real line, θ ∈ (a, b) ⊂ R and let Pθ be absolutely continuous with
respect to a σ-finite measure µ (Lebesgue measure or counting measure). Suppose also
that the corresponding density functions or probability mass functions have monotone
likelihood ratio in x. If a < θ1 < θ2 < θ3 < b and the function φ is continuous, it holds

Dφ(θ1, θ2) ≤ Dφ(θ1, θ3), φ ∈ Φ∗ (4.10)

The proof can be found in Appendix B2.

Remark 3. If we consider a function φ ∈ Φ∗ which is strictly convex at x = 1, the
corresponding φ-divergence is a reflexive distance on the space P = {P}θ∈Θ . It is possible
to define a new measure of divergence, based on a given φ-divergence, in such a way that
the new measure of divergence will be not only reflexive but also symmetric. This is
possible if we consider the measure of divergence associated with the function φ(t) =
φ(t) + tφ(1/t). For more details see Vajda (1995).

4.2.2 Cressie and Read Power Divergence Family

Another important divergence family is the Cressie and Read Power Divergence (1984).
This family of measures leads to the family of power divergence test statistics which are
used in multinomial goodness of fit tests. This family of test statistics include as special
cases Pearson’s chi-squared test, log likelihood ratio test, the Freeman-Tukey test and
the Neyman modified chi-squared test statistic.

Definition 7. (Cressie-Read Power Divergence Family)

The Cressie and Read power divergence measure between two continuous probability
distributions Pθ1 , Pθ2 with θ1, θ2 ∈ Θ associated with densities fθ1 , fθ2 is defined by

Dλ
CR(Pθ1 , Pθ2) =

1

λ(λ+ 1)

(∫
X

fθ1(x)λ+1

fθ2(x)λ
dµ(x)− 1

)
=

1

λ(λ+ 1)

(
Eθ1

[(
fθ1(X)

fθ2(X)

)λ]
− 1

)
,

for −∞ < λ <∞.

As particular cases for λ→ 0 we have the Kullback-Leibler divergence and for λ = 1
we have the Pearson’s chi squared divergence.
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4.2.3 BHHJ Power Divergence Family

A more recent family of measures proposed by Basu et al. (1998) is the BHHJ (Basu-
Harris-Hjort-Jones) or density power divergence family which is characterized by a non-
negative index α. This index plays an important role in the trade-off between robustness
and asymptotic efficiency of the BHHJ estimator of the parameter involved. This esti-
mator is that which minimizes the BHHJ divergence.

Definition 8. (BHHJ Power Divergence Family)

The BHHJ density power divergence measure between two continuous probability dis-
tributions Pθ1 and Pθ2 with θ1, θ2 ∈ Θ associated with densities fθ1 , fθ2, corresponding to
index α is defined by

Dα(Pθ1 , Pθ2) =

∫
X

{
f 1+α
θ2

(x)−
(

1 +
1

a

)
fθ1(x)fαθ2(x) +

1

α
f 1+α
θ1

(x)

}
dx, α > 0.

The divergence for α = 1 reduces to the Euclidean distance. When α = 0 the diver-
gence D0(Pθ1 , Pθ2) is undefined but the limit is the Kullback-Leibler divergence,

lim
α−→0

Dα(Pθ1 , Pθ2) = DKL(Pθ1 , Pθ2) =

∫
X
fθ1(x) log

fθ1(x)

fθ2(x)
dx.
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4.3 Statistical Inference based on Divergence Mea-

sures

4.3.1 Point Estimation

According to φ-divergence family Morales et al. (1995) propose the least φ-divergence
estimator.

Suppose a statistical space (X ,F , Pθ˜∈Θ) associated with the random variable X,

{Pθ˜}θ˜∈Θ is a family of probability distributions with Θ ⊂ Rk, k ≥ 1. Let P = {Ei}i=1,...,L

be a partition of the sample space X in L intervals. Then Pθ˜(Ei) = pi(θ˜), i = 1, ..., L

defines a random sample from the population described by the random variable X.

Let Y1, ..., YN be a random sample from distribution F, also ni =
n∑
j=1

IEi(Yj) and

p̂i =
ni
N

.

First of all we will show that the maximum likelihood estimator (MLE) of a parameter
θ˜ equals the minimum Kullback-Leibler divergence estimator.

Theorem 2. (Equivalence between maximum likelihood and minimum Kullback-Leibler
divergence estimators)

Estimating an unknown parameter θ˜ ∈ Θ by maximum likelihood method, under the
discrete statistical model, equals to minimizing Kullback-Leibler divergence on θ˜ ∈ Θ.

Proof. (Pardo, 2018)

Pθ˜(N1 = n1, ..., NL = nL) =
n!

n1! · · ·nL!
p1(θ˜)n1 · · · pL(θ˜)nL

l(θ˜) = log
n!

n1! · · ·nL!
+ n

L∑
i=1

p̂i log pi(θ˜) =

= log
n!

n1! · · ·nL!
− n

L∑
i=1

p̂i log
1

pi(θ˜) + n

L∑
i=1

p̂i log p̂i − n
L∑
i=1

p̂i log p̂i =

= log
n!

n1! · · ·nL!
− n

L∑
i=1

p̂i log
p̂i
pi(θ)

+ n
L∑
i=1

p̂i log p̂i =

= k − n
L∑
i=1

p̂i log
p̂i
pi(θ)

=

= k − nDKL(p̂˜, p˜(θ˜)),

where k = log
n!

n1! · · ·nL!
−n

L∑
i=1

p̂i log p̂i, p̂˜ = (p̂1, .., p̂L)T and p˜(θ˜) = (p1(θ˜), ..., pL(θ˜))T .
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So we can easily see that maximizing the log-likelihood l(θ˜) is equivalent to minimizing
the DKL(p̂˜, p˜(θ˜)) with respect to θ˜.

With the same procedure we can easily show that we can choose an estimator of θ˜that:

D(p̂˜, p˜(θ̂˜)) = inf
θ˜∈Θ

D(p̂˜, p˜(θ˜)),
where D is any divergence measure.

Following we will see some of the most important minimum divergence estimators.

With θ˜0 ∈ Θ we denote a value that exists when a given model is correct, so π˜ = p˜(θ˜0),

where π is the true value of the multinomial probability distribution.

Definition 9. (Minimum φ-divergence estimator)

Let Y1, ..., Yn be a random sample from a population described by the random variable
X with associated statistical space (X ,F , Pθ˜)θ˜∈Θ. The minimum φ-divergence estimator

of θ˜0 is any θ̂˜φ ∈ Θ verifying

Dφ(p̂˜, p˜(θ̂˜φ)) = inf
θ˜∈Θ

Dφ(p̂˜, p˜(θ˜)),
or the minimum φ-divergence estimator satisfies the following condition

θ̂˜φ = arg inf
θ˜∈Θ

Dφ(p̂˜, p˜(θ˜))
Theorem 3. (Cressie-Read minimum power divergence estimator)

In the family of power divergence measures we get the power divergence estimator
studied by Cressie and Read (1984). This is given by the condition

θ̂˜(λ) = arg inf
θ˜∈Θ

Dλ
CR(p̂˜, p˜(θ˜)),

where

Dλ
CR(p̂˜, p˜(θ˜)) =

1

λ(λ+ 1)

L∑
i=1

p̂i

((
p̂i
pi(θ˜)

)λ
− 1

)
.
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For particular values of λ we have various estimators. For example, for λ −→ 0 we
have the maximum likelihood estimator, for λ = 1 the minimum chi-square estimator

and for λ =
2

3
the Cressie-Read estimator.

In the following we will denote as θ̂˜D the maximum likelihood estimator in the dis-

cretized model and θ̂˜ the maximum likelihood estimator of the original data.

Before presenting the properties of the minimum φ-divergence estimator, we provide
some regularity conditions about parameter θ˜0 proposed by Birch (1964). We assume
that the model is correct, so π˜ = p˜(θ˜0) and k ≤ L− 1.

Remark 4. (Birch’s regularity conditions)

1. θ˜0 is an interior point of Θ.

2. πi = pi(θ˜0) > 0 for i = 1, ..., L. Thus π˜ = (π1, ..., πL)T is an interior point of the
set ∆L.

3. The mapping p˜ : Θ→ ∆L is totally differentiable at θ˜0 so that partial derivatives of

pi(θ˜0) with respect to each θj exist at θ˜0 and pi(θ˜) has a linear approximation at θ˜0

given by:

pi(θ˜) = pi(θ˜0) +
L∑
j=1

(θj − θ0j)
∂pi(θ˜0)

∂θj
+ o(||θ˜− θ˜0||)

where o(||θ˜− θ˜0||) denotes a function verifying

lim
θ˜→θ˜0

o(||θ˜− θ˜0||)
(||θ˜− θ˜0||)

= 0.

4. The Jacobian matrix

J(θ˜0) =

(
∂p˜(θ˜)
∂θ˜

)
θ˜=θ˜0

is full ranked.

5. The inverse mapping p˜−1 : T → Θ is continuous at p˜(θ˜0) = π˜.

6. The mapping p˜ : Θ→ ∆L is continuous at every point θ˜ ∈ Θ.

Where, ∆L is a convex set of probability measures on X defined as

∆L =

{
p˜ = (p1, ..., pL)T : pi ≥ 0, i = 1, ..., L,

L∑
i=1

pi = 1

}
.
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The following theorems set that under Birch’s conditions the minimum φ-divergence
estimator is a best asymptotically normal estimator.

Theorem 4. (Minimum φ-divergence Estimator)

Let φ ∈ Φ∗ be a twice continuously differentiable function in x > 0 with φ
′′
(1) > 0

and π˜ = p˜(θ˜0). Under the Birch regularity conditions and assuming that the function

p˜ : Θ→ ∆L has continuous second partial derivatives in a neighbourhood of θ˜0, it holds

θ̂˜φ = θ˜0 + IF (θ˜0)−1B(θ˜0)Tdiag(π˜−1/2)(p̂˜− π˜) + o(||p̂˜− π˜||),
where θ̂˜φ is unique in a neighbourhood of θ˜0, IF (θ˜0) is the k × k Fisher information

matrix associated with the multinomial model and B(θ˜0) = diag(π˜−1/2)J(θ˜0).

Theorem 5. (Asymptotic Distribution of Minimum φ-divergence Estimator)

Under the assumptions of Theorem 4, it holds

√
n(θ̂˜φ − θ˜0)

L−→
n→∞

N
(
0˜, IF (θ˜0)−1

)
.



36 CHAPTER 4. DIVERGENCE MEASURES

4.3.2 Hypothesis testing in general populations

After that, we can use divergence measures for hypothesis testing in general populations.

Assume the probability measures Pθ associated with densities fθ(x) =
dPθ
dµ(x)

with µ

is a σ-finite measure on (X ,F).

Kupperman (1957, 1958) was the first who proposed the idea of a test statistic based
on the Kullback-Leibler divergence to test the simple null hypothesis H0 : θ˜ = θ˜0 against
the composite one H1 : θ˜ 6= θ˜0. The proposed test statistic given by

TKLn (θ̂˜, θ˜0) ≡ 2nDKL((θ̂˜, θ˜0))

is found to be asymptotically chi-squared distributed with k degrees of freedom (as
the number of unknown parameters).

In the same philosophy as Kupperman, Salicru et al. (1994) introduced the φ-
divergence test statistic as follows:

T φn (θ̂˜, θ˜0) =
2n

φ′′(1)
Dφ(θ̂˜, θ˜0)

This statistic is an interesting alternative to Wald test statistics and Rao test statistics.

Before we proceed with the asymptotic distribution of φ-divergence test statistic we
have to make the following regularity assumptions:

1. ∀θ˜1 6= θ˜2 ∈ Θ ⊂ Rk, k ≥ 1

µ({x ∈ X : fθ1˜(x) 6= fθ2˜(x)}) > 0.

2. The set S X = {x ∈ X : fθ˜(x) > 0} is independent of θ˜.
3. The first, second and third partial derivatives

∂fθ˜(x)

∂θi
,
∂2fθ˜(x)

∂θi∂θj
,
∂3fθ˜(x)

∂θi∂θj∂θk
i, j, k = 1, ..., k

exist everywhere ∀1 ≤ i, j, k ≤ k.

4. The first, second and third partial derivatives of fθ˜(x) with respect to θ˜ are abso-

lutely bounded by functions α, β and γ with integrals∫
X
α(x)dµ(x) <∞,

∫
X
β(x)dµ(x) <∞,

∫
X
γ(x)dµ(x) <∞.
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5. For each θ˜ ∈ Θ, the Fisher information matrix

IF(θ˜) =

(∫
X

∂ log fθ˜(x)

∂θi

∂ log fθ˜(x)

∂θj
fθ˜(x)dµ(x)

)
i,j=1,...k

exists and is positive definite, with elements continuous in the variable θ˜.
The function φ used in φ-divergence test statistic has to satisfy the following assump-

tions:

• Φ(1) The function φ ∈ Φ∗ is twice continuously differentiable, with φ
′′
(1) > 0

• Φ(2) For each θ˜0 ∈ Θ there exists an open neighbourhood N(θ˜0) such that for all
θ˜ ∈ N(θ˜0) and 1 ≤ i, j ≤ k it holds:

∂

∂θi

∫
X
fθ˜0(x)φ

(
fθ˜(x)

fθ˜0(x)

)
dµ(x) =

∫
X

∂

∂θi

(
fθ˜0(x)φ

(
fθ˜(x)

fθ˜0(x)

))
dµ(x),

∂2

∂θi∂θj

∫
X
fθ˜0(x)φ

(
fθ˜(x)

fθ˜0(x)

)
dµ(x) =

∫
X

∂2

∂θi∂θj

(
fθ˜0(x)φ

(
fθ˜(x)

fθ˜0(x)

))
dµ(x),

and these expressions are continuous on N(θ˜0).

The following theorem presents the asymptotic distribution of the φ-divergence test
statistic given in Salicru et al. (1994).

Theorem 6. (Asymptotic Distribution of φ-divergence test statistic)

Let the model (X ,F , Pθ˜)θ˜∈Θ. Suppose φ satisfies the assumptions 1)-5) and Φ(1) −
Φ(2). Under the null hypothesis

H0 : θ˜ = θ0˜
the asymptotic distribution of the φ-divergence test statistic is chi-square with k degrees

of freedom:

T φn (θ̂˜, θ˜0)
L−→

n→∞
X2
k
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Later Morales et al. (1997) studied the φ-divergence test statistic for the composite
null hypothesis H0 : θ˜ ∈ Θ0 ⊂ Θ:

T φn (θ̂˜, θ˜∗) =
2n

φ′′(1)
Dφ(θ̂˜, θ˜∗)

Where θ̂˜ is the MLE of θ˜ in Θ and θ˜∗ is the MLE under the null hypothesis Θ0.
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4.3.3 Goodness of Fit based on Divergence Measures

Goodness of fit tests play a crucial role in statistical theory. Through goodness of fit
tests we can identify the behaviour of a random process. The simple null hypothesis
H0 : F = Fh can be tested if we partition the range of data in disjoint intervals
and then testing the hypothesis H0 : p˜ = p˜h for the vector of parameters of a

multinomial distribution using various divergence test statistics.

Suppose P = {Ei}i=1,...,L be a partition of R in L intervals. Let p˜ = (p1, ..., pL)T and

p˜h = (ph1 , ..., p
h
L)T be the true and hypothetical probabilities of intervals Ei, i = 1, ..., L

respectively. Then pi = PF (Ei) i = 1, ..., L and phi = PFh(Ei) =

∫
Ei

dFh, i = 1, ..., L.

Let Y1, ..., YN be a random sample from F , also ni =
n∑
j=1

IEi(Yj), where IEi(Yj) = 1 if

Yj ∈ Ei and 0 otherwise, p̂˜ = (p̂1, ..., p̂L)T with p̂i =
ni
N
, i = 1, ..., L.

Now if we want to test the simple null hypothesis:

H0 : p˜ = p˜h
we can use the various divergence test statistics about them we talked in the previous

subsection.

The first who introduce this concept was Cressie and Read (1984) with the family of
Cressie-Read power divergence test statistics:

T λn (p̂˜, p˜h) =
2N

λ(λ+ 1)

L∑
i=1

p̂i

((
p̂i
phi

)λ
− 1

)
, −∞ < λ <∞, λ 6= 0,−1.

The Cressie-Read power divergence test statistics is a more general family and includes
the chi-square test (λ = 1) introduced by Pearson (1900) and is defined as:

X2 =
L∑
i=1

(ni −Nphi )2

Nphi

and the likelihood ratio test (λ→ 0) given by:

G2 = 2
L∑
i=1

ni log

(
ni
Nphi

)
.
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For (λ = 2
3
) we have the Cressie-Read test statistic . Also, Cressie and Read (1984)

prove that

T λn (p̂˜, p˜h) L−→
n→∞

X2
L−1 ,

under H0 : p˜ = p˜h, ∀λ ∈ R.

Another option would be to use the family of φ-divergence test statistics:

T φn (p̂˜, p˜h) =
2N

φ′′(1)

L∑
i=1

phi φ

(
p̂i
phi

)
, φ ∈ Φ∗

In the following theorem we will study the asymptotic distribution of φ-divergence
test statistic under multinomial testing with a fixed number of classes, as proposed by
Zografos et al. (1990).

Theorem 7. (Asymptotic Distribution of φ-divergence test statistic under multinomial
testing with a fixed number of classes)

Under the null hypothesis H0 : p˜ = p˜h = (ph1 , ..., p
h
L)T , the asymptotic distribution of

the φ-divergence test statistic, T φn (p̂˜, p˜h), is chi-square with L− 1 degrees of freedom.

Based on Theorem 7 if the sample size is large enough someone would propose the
following testing ‘rule’:

‘Reject H0, with a significance level α, if T φn (p̂˜, p˜h) > X2
L−1,α’,

where α = P (X2
L−1 ≥ X2

L−1,α).
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4.3.4 Model Selection based on Divergence Measures

As we mention in introduction of this chapter, divergence measures have major appli-
cations in model selection criteria. The first who make this relationship clear was the
famous statistician Akaike (1973). He proposed the Akaike Information Criterion (AIC)
by constructing an unbiased estimator of the expected Kullback-Leibler divergence.

Let f be the ‘reality’ (or the true model) and g a model which is used to estimate f .
The Kullback-Leibler divergence (in continuous case) between f and g, as we saw earlier,
is:

DKL(f, g) =

∫
X

f(x) log
f(x)

g(x|θ)
dx

Here, the DKL represents the information lost when g is used to estimate f . Equiva-
lently we can write:

DKL(f, g) =

∫
X

f(x) log f(x)dx−
∫
X

f(x) log(g(x|θ))dx = Ef [log f(x)]−Ef [log(g(x|θ))].

The first expectation is constant (z) across model, so

DKL(f, g) = z − Ef [log(g(x|θ))]⇒ DKL(f, g)− z = −Ef [log(g(x|θ))].

Following the computation of quantity Ef [log(g(x|θ))] is the key to find the relative
DKL(f, g)− z distance between f, g. But, this quantity can not be computed. So Akaike
found that the expectation:

Ef [Ef [log(g(x|θ))]]

can be computed. Finally, he proposed the asymptotically unbiased estimator of the
relative expected Kullback-Leibler information:

log(L(θ̂|x˜))− p

where p is the number of estimating parameters in model g. Then the AIC is:

AIC = −2 log(L(θ̂|x˜)) + 2p

where θ̂ is the maximum likelihood estimator (or equivalently the minimum Kullback-
Leibler divergence estimator). Selecting the model with the smallest AIC value is related
to the model with the least Kullback-Leibler divergence between the true one and the
estimated.
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Chapter 5

Weighted Divergence Measures

A common issue in statistics and other fields dealing with random events is to take into
account both the probabilistic aspect and the qualitative characteristics of them. Let us to
determine what we mean with the term ‘qualitative characteristics’. This is a subjective
term and someone would say that it is related to the significance, the relevance or the
utility of the information they carry with respect to a goal. But, a question arises. How
we will measure the information or the uncertainty with respect to certain characteristics
of such events? The foundations of the answer lye on the work of Belis and Guiasu (1968)
while the answer itself was given by Guiasu (1971) who proposed the weighted entropy. He
explicitly defined the axioms, the properties and the maximum value of weighted entropic
formula. After this pioneer work Guiasu (1986) used the weighted entropy to group data
with respect to the importance of specific regions of the domain. Later, Narowcki and
Harding (1986) proposed the use of weighted entropy as a measure of investment risk,
Di Crescenzo and Longobardi (2007) propose the weighted residual and past entropies
and Suhov and Zohren (2014) proposed the quantum version of weighted entropy and its
properties in quantum statistical mechanics.

Following these, the concept of measuring the dissimilarities between random pro-
cesses with a higher significance in certain regions of them arise. Several times in statistics
we want to emphasize and study a random process with respect to certain characteris-
tics. For example, in financial risk analysis it is common to take care of fat tails in the
distribution of an asset (especially the left tail) and in biostatistics to use robust sta-
tistical methods to trim the extreme values. These concepts create the need for special
statistical methods to study their behaviour. Motivated by these, through this chapter,
we will present and study the concept of weighted divergence measures. In contrast with
weighted entropy, the weighted form of divergence measures has not extensively studied
by researchers. In the previous chapter we stress that divergence measures is a concept to
measure the probabilistic dissimilarities between two statistical populations. Correspond-
ingly, the weighted form of divergences measure the probabilistic dissimilarities between
two statistical populations while taking into account the qualitative characteristics of
each region of the support.

The Chapter 5 will be divided in two sections. In Section 5.1 we will present, in discrete
case, the weighted form of Shannon entropy and the weighted φ-divergence family, then
we will extend it to the weighted Kullback-Leibler divergence. Also, we will underline
some problems arising from this concept and we will try to surpass them. In Section 5.2
the continuous case will be presented.

43
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5.1 Discrete Case

5.1.1 Weighted Shannon Entropy

As we mentioned earlier in the introduction of chapter, the first who proposed the
weighted form of Shannon entropy and its properties was Guiasu (1971). The relevant
definition is presented bellow.

Definition 10. (Weighted Shannon Entropy)

Let a stochastic source described by a discrete random variable X of n possible states,
with distribution PX , probability mass function p˜ = (p1, ..., pn)T and w˜ = (w1, ..., wn)T be

a vector of weights associated with these states, where wi ≥ 0, i = 1, ..., n. The weighted
Shannon entropy measure is defined by:

Hw(X) = Hw(w˜ , p˜) =
n∑
i=1

wipi log
1

pi
. (5.1)

We proceed below with the properties of the above weighted entropy as proposed by
Guiasu.

Proposition 6. (Weighted Shannon Entropy Properties)

1. Hw(X) ≥ 0.

2. If w1 = w2 = ... = wn = w, then Hw(X) = wH(X)

where H(X) is the Shannon entropy.

3. If pi = 1 for some i = 1, ..., n then Hw(X) = 0 irrespectively of the values of the
weights w˜.

This property stresses that if only one event is possible then there is no uncertainty
and does not provide any information. So the weighted Shannon entropy is equal to
zero.

4. If pi = 0, wi 6= 0 ∀i ∈ I and pj 6= 0, wj = 0 ∀j ∈ J where I ∪ J = {1, 2, ..., n},
I ∩ J = ∅, then Hw(X) = 0.

This property stresses that if an experiment whose useless or non-significant events
are possible and whose useful or significant events are impossible then the total
‘weighted’ information is equal to zero. We have to notice here that the correspond-
ing Shannon entropy is different from zero (if set J has at least two elements).

5. Hw(w1, ..., wn+1; p1, ..., pn, 0) = Hw(w1, ..., wn; p1, ..., pn) = Hw(X), for any wn+1.

6. For every non-negative, real number λ we have Hw(λw˜ ; p˜) = λHw(w˜ , p˜) = λHw(X).

Until now we did not require any restrictions about the weights (except that they are
non-negative real numbers). Suppose that E,F are two incompatible events of the



5.1. DISCRETE CASE 45

experiment. We require that the weight of the union of these events is equal to the
mean value of the weights of the respective events, i.e.:

w(E ∪ F ) =
p(E)w(E) + p(F )w(F )

p(E) + p(F )
(5.2)

where w(F ) is the weight of event F and p(F ) the probability of the same event.

In addition if E,F are complementary events, then:

w(E ∪ F ) = p(E)w(E) + (1− p(E))w(F ).

7. If the rule (4.2) for the weights holds, then:

Hw(w1, ..., wn, w
′, w′′; p1, ..., pn−1, p

′, p′′) = Hw(w1, ..., wn; p1, ..., pn)+pnH
w(w′, w′′;

p′

pn
,
p′′

pn
)

where wn =
p′w′ + p′′w′′

p′ + p
, pn = p′ + p′′.

Also, Guiasu proposed the axioms of weighted entropy and provided the conditions
that maximized it. We will suppose that the following axioms hold from now on.

Axiom 1. Hw(w1, w2; p, 1− p) is a continuous function of p on the interval [0, 1].

Axiom 2. Hw(w˜ , p˜) is a symmetric function with respect to all pairs of variables (wi, pi), i =

1, ..., n. This means that it is invariable in any permutation that keeps the pairs (wi, pi), i =
1, ..., n unchanged.

Axiom 3. If wn =
p′w′ + p′′w′′

p′ + p′′
, pn = p′+p′′ then Hw(w1, ..., wn−1, w

′, w′′; p1, ..., pn−1, p
′, p′′) =

Hw(w˜ , p˜) + pnH
w(w′, w′′;

p′

pn
,
p′′

pn
).

Axiom 4. If all probabilities are equal (pi =
1

n
, i = 1, ..., n), then:

Hw(w1, ..., wn;
1

n
, ...,

1

n
) = log n

(w1 + ...+ wn)

n
,

where log n > 0, ∀n > 1.

The following theorem states the condition between p and w that maximizes the
weighted entropy.
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Theorem 8. (Maximized Weighted Entropy)

Consider the random variable X associated with the discrete probability distribution

pi ≥ 0, i = 1, ..., n,
n∑
i=1

pi = 1 and the weights wi ≥ 0, i = 1, ..., n. The weighted entropy:

Hw(X) = Hw(w˜ , p˜) =
n∑
i=1

wipi log
1

pi

is maximum if and only if:

pi = e
−( α

wi
)−1
, (i = 1, ..., n)

where α is the solution of the equation:

n∑
i=1

e
−( α

wi
)−1

= 1

and the maximum value of Hw(X) is:

α +
n∑
i=1

wie
−( α

wi
)−1
.

Proof. We have that −xlogx ≤ 1

e
, ∀x ≥ 0 and −xlogx =

1

e
if and only if x =

1

e
, we

obtain, by using Lagrange multipliers method:

Hw(w˜ ; p˜)− α =
n∑
i=1

wipilog
1

pi
− α

n∑
i=1

pi = (5.3)

=
n∑
i=1

pi

(
wilog

1

pi
− α

)
= (5.4)

=
n∑
i=1

wie
−α
wi (pie

α
wi logpie

α
wi ) ≤

n∑
i=1

wie
−( α

wi
)−1
. (5.5)

The equality holds if and only if:

pi = e
−( α

wi
)−1
, (i = 1, ..., n),

but these probabilities must verify
n∑
i=1

pi =
n∑
i=1

e
−( α

wi
)−1

= 1.
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5.1.2 Weighted Divergence Measures

As we mentioned on Chapter 4 the relative entropy is the Kullback-Leibler divergence
DKL(P,Q) between distributions P and Q. This is one of the most popular and exten-
sively used divergence measures in the literature. From the statistical point of view, as a
divergence, it quantifies the ‘distance’ between two distributions with the same support.
On the other hand, in information theory Kullback-Leibler divergence DKL(P,Q) quan-
tifies the amount of information gained by learning that a variable previously thought to
be distributed as P is actually distributed as Q.

But, as in the case of Shannon entropy, the Kullback-Leibler divergence does not
take into account the qualitative characteristics of random events. The idea here is to
determine the ‘distance’ between two distributions with specific weight in each part of
the support. In the discrete case this is resolved by putting weights on each event of the
sample space. The concept of weighting is equivalent to the concept of weighted Shannon
entropy. The weights are related to the significance of each event with respect to a
specific goal. If one would have thought that the weighted Kullback-Leibler divergence,
in discrete case, is analogous to weighted entropy then he/she would have concluded to
the following.

Consider two probability mass functions p˜ = (p1, ..., pn)T , q˜ = (q1, ..., qn)T and w˜ =

(w1, ..., wn)T be a vector of weights. Then the discrete version of weighted Kullback-
Leibler divergence would be the following:

Dw
KL(p˜, q˜) =

n∑
i=1

wipi log

(
pi
qi

)
(5.6)

This is not correct because the Kullback-Leibler divergence is not positive everywhere
in the support.

The following theorem gives the average positivity of Kullback-Leibler divergence
measure.

Theorem 9. (Average positivity of Kullback-Leibler divergence)

The Kullback-Leibler divergence DKL(P,Q) between two distributions P,Q is positive
on average.

Proof. Firstly, we have that f(x) = log(x) is concave for x =
q(x)

p(x)
∈ R+.

Let SX be the support of the random variable X and p(x), q(x) the probability mass
functions associated with the distributions P,Q respectively. Then:

−DKL(P,Q) = −
∑
x∈SX

p(x) log
p(x)

q(x)
=
∑
x∈SX

p(x) log
q(x)

p(x)
= Ep

[
log

q(X)

p(X)

]
.
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From Jensen inequality for a concave function we have that:

−DKL(P,Q) = Ep

[
log

q(X)

p(X)

]
≤ log

[
Ep

(
q(X)

p(X)

)]
= log

∑
x∈SX

p(x)
q(x)

p(x)

= log
∑
x∈SX

q(x) = log 1 = 0.

We prove that −DKL(p, q) = Ep

[
log

q(X)

p(X)

]
≤ 0 ⇒ DKL(p, q) = Ep

[
log

p(X)

q(X)

]
≥ 0

with equality if and only if p(x) = q(x), ∀x ∈ SX .

Even though it is positive on average, i.e. for the ‘finite case of equal weights’ it is not
positive in general. The following example will make clear that the weighted Kullback-
Leibler divergence could be negative.

Example 1. Let P be a binomial distribution with n = 2, p = 0.4 and P (X = 0) =
0.36, P (X = 1) = 0.48, P (X = 2) = 0.16 and Q a discrete uniform distribution with the
three possible outcomes X = 0, 1, 2 each with probability p = 1/3. The Kullback-Leibler
divergence between P and Q is DKL(P,Q) = 0.08529. Now, if we give the event X = 2 an
enormously greater significance than the others, for example we put the following weights
w˜ = (1, 1, 4)′, then the weighted Kullback-Leibler divergence, according to the previous
definition, will be Dw

KL(P,Q) = −0.11342. This is due to the fact that the logarithm in
the interval (0, 1) is negative.

Due to this fact, Kapur (1994) stressed that a weighted divergence measure will be
an appropriate measure of weighted directed divergence if the following conditions are
satisfied:

1. It is a continuous function of p˜, q˜ and w˜ .

2. It is permutationally symmetric function of p˜, q˜ and w˜ , i.e. it does not change

when the triplets (p1, q1,w1), (p2, q2,w2) , . . . , (pn, qn, wn) are permuted among
themselves.

3. It is always greater than or equal to zero for all possible choices of weights w˜ and
vanishes when pi = qi for each i = 1, ..., n.

4. It is a convex function of p1, p2, . . . , pn which has its minimum value zero when
pi = qi for each i = 1, ..., n.

5. It reduces to an ordinary measure of directed divergence upon ignoring weights
(wi = c, c > 0, ∀ i = 1, ..., n).
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The most important of these limitations is the Condition 3, which is violated for most
of the usual measures. The solution to this problem is quite simple. We just need to
transform the usual measure to it’s positive equivalent. In Section 4.2.1 we presented the
ψ-transformation of the φ-function in φ-divergence family which makes the divergence
everywhere in the support positive.

One of the most popular divergences of φ-family is the Kullback-Leibler divergence
which is obtained for φ(x) = x log x. If we transform the φ-function to the ψ(x) = x log x+
x − 1 we have the corrected Kullback-Leibler divergence which is positive everywhere.
Then we can construct the weighted form of the Kullback-Leibler divergence which meets
the Condition 3.

An other approach to the previous problem was given by Kapur (1994) with the
following φ-function he introduced:

φ(x) = p(x) log

(
p(x)

q(x)

)
− p(x) + q(x) (5.7)

This function is everywhere in the support positive (φ(x) ≥ 0, ∀ x ∈ SX). So
the divergence which is based on this φ-function is also positive for every subset of the
support.

As a result for Kapur’s corrected Weighted Kullback-Leibler divergence measure we
have the following definition.

Definition 11. (Corrected Weighted Kullback-Leibler Divergence)

Consider two probability mass functions p˜ = (p1, ..., pn)T , q˜ = (q1, ..., qn)T and w˜ =

(w1, ..., wn)T be a vector of weights. Then the discrete version of Kapur’s corrected
weighted Kullback-Leibler divergence is the following:

Dw
CKL(p˜, q˜) =

n∑
i=1

wi

(
pi log

(
pi
qi

)
− pi + qi

)

Where Dw
CKL(p˜, q˜) ≥ 0, ∀x ∈ SX .

According to information monotonicity we have to be very cautious with the partition
of the support. To make it clear the information monotonicity states that the partition of
the support may reduce the divergence between two probability distributions. Consider
a probability distribution p˜ = (p0, ..., pn) with pi = P (X = xi) and the support SX =

{x0, ..., xn}. Let {Gi |i = 1, ...,m, (m < n+ 1)} be a partition of SX , where

SX =
m⋃
i=1

Gi
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Gi ∩Gj = ∅ for i 6= j.

Let us assume that we do not know the exact value of xi but we know the group Gj

it belongs to, this is coarse-graining of SX .
Thus, coarse-graining generates a new probability distribution p˜∗ over G1, ..., Gm,

p∗j = P (Gj) =
∑
xi∈Gj

P (X = xi).

Because the coarse-graining effect of SX summarizes some of xi into one group, Gj, de-
tailed information is lost. Assume a divergence measure, D∗(p∗, q∗), between probability
distributions p∗ and q∗, then we have

D∗(p˜∗, q˜∗) ≤ D(p˜, q˜).
Now we will study when the equality holds. Assume that the outcome xi for two dis-

tributions p˜, q˜ belongs to group Gj, then if we want to distinguish these two distributions

we want specific information inside each group. Since xi belongs to group Gj we consider
the conditional probability distributions

p(xi|Gj), q(xi|Gj).

Now if they are equal we have no further information to distinguish p˜ from q˜ by

observing the outcome xi inside Gj. So,

D∗(p˜∗, q˜∗) = D(p˜, q˜)
holds if and only if

p(xi|Gj) = q(xi|Gj).

A divergence that fulfils the above is called an invariant divergence and has the
property of information monotonicity.
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5.2 Continuous Case

5.2.1 Weighted Entropy

Before we propose the continuous version of the weighted entropy, we have to present the
continuous version of entropy. Here the problem arises. Let us to take the thread from the
beginning. Shannon, as we told earlier in Chapter 4, proposed the entropy as a function
which measures the uncertainty or the information of a random source. He proposed the
famous entropic formula for a discrete random source, to describe the uncertainty (or the
information) a discrete signal contains. But in statistical information theory the nature
of a signal could be not only discrete but also continuous. So, there is a need to introduce
a formula which will measure the uncertainty in the continuous case. In the literature
the continuous entropy is described by the following definition.

Definition 12. (Continuous Entropy)

Let a stochastic source X which is described by the continuous probability distribution
P with support SX , µp be an absolutely continuous probability measure with respect to µ
and p be the induced density. Then, the continuous entropy measure is defined by:

h(X) = −
∫
SX

p(x) log(p(x))dµ(x). (5.8)

This function, also called differential entropy, satisfies some of the properties of
a suitable measure of uncertainty but fails to fulfil two of them, the positivity and the
invariance under the change of variables. The following examples will make it clear.

Example 2. Suppose a stochastic source X that is uniformly distributed in the interval
(a, b), X ∼ U(a, b). The entropy of X is given by:

h(X) = log(b− a).

As it can be easily seen, if b − a < 1 ⇒ b < a + 1 then the entropy of X will be
negative.

Example 3. Suppose a stochastic source X that is exponentially distributed as X ∼
Exp(λ) with p.d.f. pX(x) = λe−λx. The entropy of X is given by:

h(X) = 1− log(λ).

As it can be easily seen, if log λ > 1⇒ λ > base of logarithm, then the entropy of X
will be negative.
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Since results like the above are meaningless, one should focus on the elements that
result in a negative uncertainty.

The problem, in our point of view, is that the probability density function (pdf)
could take values greater than one. So, the log p(x) is not negative and sometimes not
bounded function. A solution to this problem could be to ‘normalize’ the probability
density function. This possible solution is categorized in two forms according to the
support. Definition 13 gives the measure in a bounded support and Definition 14 in an
unbounded.

Definition 13. (Entropy in bounded Continuous Supports)

Let a stochastic source X which is described by the continuous probability distribution
P with a bounded connected support SX , µp be an absolutely continuous probability mea-
sure with respect to µ and p be the induced density. Then, the entropy measure would
be:

h1(X) = −
∫
SX

p(x)

maxx∈SX (p(x))
logb

(
p(x)

maxx∈SX (p(x))

1

bc

)
dµ(x),

where c is the range of the support and b the base of the logarithm we use.

Definition 14. (Entropy in unbounded Continuous Supports)

Let a stochastic source X which is described by the continuous probability distribution
Q with a unbounded connected support SX , µq be an absolutely continuous probability
measure with respect to µ and q be the induced density. Then, the entropy measure would
be:

h2(X) = −
∫
SX

q(x)

maxx∈SX (q(x))
log

(
q(x)

maxx∈SX (q(x))

)
dµ(x).

In the following examples we will re-evaluate the entropy of uniform and exponential
distributions, under the above mentioned measures.

Example 4. Suppose a stochastic source X that is uniformly distributed in the interval
(a, b), X ∼ U(a, b). The support is a bounded connected subset of R so we will use the
first form. The entropy of X is given by:

h1(X) = (b− a)2.

This result is now meaningful in the sense that it is always non-negative, zero if and
only if b = a and proportional to the range of the support.
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Example 5. Suppose a stochastic source X that is exponentially distributed as X ∼
Exp(λ) with p.d.f. qX(x) = λe−λx. The support is an unbounded connected subset of R
so we will use the second form. The entropy of X is given by:

h2(X) =
1

λ
,

which is inversely proportional to the parameter λ. This makes sense because it is al-
ways non-negative, zero if and only if λ→∞ and the measure decreases (as the variance)
as the parameter increases.

Although, this could be considered as an appropriate solution we have to restrict the
measure in the family of probability density functions that they have a maximum. This
concept needs further investigation. For the rest of this Chapter we will assume that the
continuous entropy of a random variable X is of the form (5.8) but we have to mention
that this formula is inefficient in some cases.

We will present the definition of continuous weighted entropy in a similar way as
Guiasu proposed the weighted Shannon entropy.

Definition 15. (Weighted Continuous Entropy)

Let a stochastic source X described by a continuous probability distribution P , µp be an
absolutely continuous probability measure with respect to µ and p be the induced density.
If w(x) is a weighted function assumed to be measurable and positive, then the weighted
continuous entropy measure is defined by:

Hw(X) = −
∫
w(x)p(x) log(p(x))dµ(x)

where w(x) represents the utility or the significance function of each region of the support.

We have to mention some measure theoretic properties about the function w(x), the
indicator function and simple functions.

Definition 16. (Indicator Function)

The characteristic function (or indicator function) of a subset E ⊂ X is the function
IE : X → R defined by:

IE(x) =

{
1, x ∈ E
0, x 6∈ E

The function IE is measurable if and only if E is a measurable set.
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Definition 17. (Simple Function)

A simple function φ : X → R on a measurable space (X,A) is a function of the form

φ(x) =
N∑
i=1

ciIEi(x)

where c1, ..., cN ∈ R and E1, ..., EN ∈ A.

Note that, according to this definition, a simple function is measurable. Also, note
that the representation of φ is not unique. If the constants ci are distinct and the sets Ei
are disjoint the representation is called standard.

Definition 18. (Measure of a Positive Simple Function)

Consider a simple function φ : X → [0,∞) , as provided by Definition 17. This
function will be called positive if ci ≥ 0, ∀i = 1, ..., N . Then the integral of φ with respect
to µ is:

∫
φdµ =

N∑
i=1

ciµ(Ei).

Applying a positive simple function as the weighting function w(x) in Definition 15
we get the following result for the continuous weighted Shannon entropy.

Definition 19. (Weighted Continuous Entropy)

Let a stochastic source X described by a continuous probability distribution P with

probability density p, Ai ∈ A be a partition of support SX , i.e.
n⋃
i=1

Ai = SX , Ai ∩ Aj =

∅ ∀ i 6= j. Then if w(x) =
n∑
i=1

wiIAi(x) and µp|Ai are the restrictions of µp at Ai, where

µp is an absolutely continuous probability measure with respect to µ, then the weighted
continuous entropy measure is defined by:

Hw(X) = −
n∑
i=1

∫
wip(x) log(p(x))dµ|Ai (x) ≡ −

n∑
i=1

∫
SX

IAi(x)wip(x) log(p(x))dµ(x).

(5.9)
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5.2.2 Weighted Divergence Measures

According to Section 5.1.2 the continuous form of weighted divergence measures have a
slightly different thinking of construction. In discrete case we multiply each data point of
the support with the desirable weight. In the continuous case we have to take into account
that the support is infinite, so we have to partition it and apply the appropriate weight in
each interval. The thinking is the same as the continuous form of weighted entropy and
therefore in the same way as in (5.6) the continuous weighted Kullback-Leibler divergence
should be given by the following.

Consider two absolutely continuous probability measures µf and µg with correspond-
ing densities f, g with respect to a certain measure µ and Ai ∈ A be a partition of

support SX , i.e.
n⋃
i=1

Ai = SX , Ai ∩ Aj = ∅ ∀ i 6= j. Then, if the weighting function

is w(x) =
n∑
i=1

wiIAi(x) the continuous version of weighted Kullback-Leibler divergence

measure would be the following:

Dw
KL(f, g) =

n∑
i=1

wi

(∫
SX

IAi(x)

(
f(x) log

(
f(x)

g(x)

))
dµ(x)

)
(5.10)

As expected, the same issues appear as in the discrete case. Indeed, in some regions of
the support the Kullback-Leibler divergence is negative, so if by applying specific weights
the divergence would be negative.

According to Kapur’s restricted conditions for a weighted divergence measure we can
construct the weighted Kullback-Leibler divergence by taking into account the correction
given in (5.7).

Definition 20. (Corrected Weighted Kullback-Leibler Divergence)

Consider two absolutely continuous probability measures µf and µg with correspond-
ing densities f, g with respect to a certain measure µ and Ai ∈ A be a partition of

support SX , i.e.
n⋃
i=1

Ai = SX , Ai ∩ Aj = ∅ ∀ i 6= j. Then if the weighting function is

w(x) =
n∑
i=1

wiIAi(x) the continuous version of corrected weighted Kullback-Leibler (KL)

divergence measure is the following:

Dw
CKL(f, g) =

n∑
i=1

wi

(∫
SX

IAi(x)

(
f(x) log

(
f(x)

g(x)

)
− f(x) + g(x)

)
dµ(x)

)
(5.11)

where Dw
CKL(f, g) ≥ 0, ∀x ∈ SX .
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For understanding Kapur’s corrected Kullback-Leibler divergence we need to focus on
its functional form. The function of Kapur’s corrected divergence has the following form:

f(x) log

(
f(x)

g(x)

)
− f(x) + g(x)

where, after mathematical transformations we have:

f(x) log

(
f(x)

g(x)

)
− f(x) + g(x) ≥ 0⇔

f(x) log

(
f(x)

g(x)

)
+ g(x) ≥ f(x)

f(x)6=0⇔

log

(
f(x)

g(x)

)
− g(x)

f(x)
≥ 1

λ=
f(x)
g(x)⇔

log(λ)− 1

λ
≥ 1.

The restriction f(x) 6= 0 it is not an irrational one, since if we work on the support
of the distribution this restriction is always met. From this point on, in the function
of Kapur’s corrected divergence we will ignore the g(x). So that the ‘x-form’ and the
‘λ-form’ forms of the measure would be:

x-form of the divergence measure: κ(x) = x log(x)− x
λ-form of the divergence measure: κ̃(λ) = log(λ)− 1

λ
.

The properties of the ‘x-form’ and the ‘λ-form’ will be studied separately. The ‘x-
form’ is needed to be convex with respect to x since convexity between Kapur’s function
κ(x) and density f(x) is required (Condition 4, §5.1.2).

x-form λ-form

κ(x) = x log(x)− x κ̃(λ) = log(λ) +
1

λ

κ
′
(x) = log x κ̃

′
(λ) =

1

λ
− 1

λ2
= 0⇒ λ = 1

κ
′′
(x) =

1

x
> 0, x > 0 κ̃

′′
(λ) =

−1

λ2
+

2

λ3
with κ̃

′′
(1) > 0

κ convex of x κ̃ ≥ 0
κ̃ min at 1
κ̃ faster
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The convexity of κ̃(λ), ∀λ ∈ R+ is verified by:

h(λ) = κ̃
′′
(λ) =

−1

λ2
+

2

λ3

h
′
(λ) =

2

λ3
− 6

λ4
= 0⇒ λ = 3

h
′′
(λ) =

−6

λ4
+

24

λ5
⇒ h

′′
(3) =

4

3
> 0

which implies that h(λ) > 0 ∀λ ∈ R+ ⇒ κ̃
′′
(λ) > 0 ∀λ ∈ R+.
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Chapter 6

Simulations

In this Chapter we will implement all the weighted cases from Chapter 5. More specif-
ically, we will present both discrete and continuous examples of weighted entropy and
weighted corrected Kullback-Leibler divergence. This Chapter will be divided in two sec-
tions. In Section 6.1 we will present examples of discrete cases for the weighted Shannon
entropy (proposed by Guiasu) and for the weighted corrected Kullback-Leibler divergence
(proposed by Kapur). In Section 6.2 we will present examples of continuous cases for the
weighted differential entropy and for the weighted corrected Kullback-Leibler divergence.

The simulations have been done with R Project for Statistical Computing (https:
//www.r-project.org/) version 3.6.2.

6.1 Discrete Case

6.1.1 Weighted Shannon Entropy

In this section we will present examples of weighted Shannon entropy based on discrete
distributions.

Example 6. (Bernoulli distribution)

Assume a coin toss, the random variable X which enumerates the probability of heads
is described by a Bernoulli distribution with probability p. In the following table we present
the weighted entropy of this variable for various p and w˜.

w˜ , p p = 0.1 p = 0.5 p = 0.9

w˜ = (1, 1)T 0.325 0.693 0.325

w˜ = (1.5, 0.5)T 0.392 0.693 0.257

w˜ = (0.5, 1.5)T 0.257 0.693 0.392

w˜ = (1.8, 0.2)T 0.433 0.693 0.216

w˜ = (0.2, 1.8)T 0.216 0.693 0.433

In the following graph we depict the above table.
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Example 7. (Binomial distribution)

Let a random variable X described by a binomial distribution with parameters n, p.
The weighted Shannon entropy for various w˜ , n, p will be given by the following table.

w˜ , (n, p) (2, 0.4) (2, 0.9) w˜ , (n, p) (3, 0.4) (3, 0.9)

w˜ = (1, 1, 1)T 1.013 0.525 w˜ = (1, 1, 1, 1)T 1.22 0.912

w˜ = (1.5, 0.5, 1.5)T 1.167 0.4794 w˜ = (1.5, 0.5, 0.5, 1.5)T 1.12 1.017

w˜ = (0.5, 2, 0.5)T 1.035 0.7256 w˜ = (0.5, 1.5, 1.5, 0.5)T 1.33 0.806

Example 8. (Weighted Shannon Entropy as a Risk Measure)

Inspired by the work of Nawrocki and Harding (1986) we extend the example they have
proposed. Consider two assets, A and B. The returns and the probability of each to occur
for each asset is given in the following table.

State i Return A(pi) B(qi)
1 1% 0.1 0.2
2 3% 0.2 0.1
3 5% 0.4 0.4
4 8% 0.2 0.1
5 10% 0.1 0.2

The Shannon entropy of each asset is H(A)=H(B)=1.47. But, someone could easily
recognize that the asset B is riskier than the asset A. Thus, using the weighted Shannon
entropy with specific weights on each state (according to its significance) we can get the
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uncertainty (or the riskiness) of each asset. In the following table we present the weighted
Shannon entropy for various vectors of weights w˜.

w˜ Hw(A) Hw(B)

w˜ = (1, 1, 1, 1, 1)T 1.47 1.47

w˜ = (2, 0.333, 0.333, 0.333, 2)T 1.25 1.56

w˜ = (0.75, 1.5, 0.5, 1.5, 0.75)T 1.49 1.35

w˜ = (0.5, 1, 2, 1, 0.5)T 1.61 1.51

So, if we apply larger weights on the riskier states we get bigger weighted entropy
which is directly related to higher risk.
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6.1.2 Weighted Corrected Kullback-Leibler Divergence

In this subsection we present examples of the corrected weighted Kullback-Leibler (CWKL)
divergence between two discrete distributions. We consider be cases based on several dis-
tributions and various weights.

Example 9. (Binomial and Discrete Uniform distribution)

Let P be a binomial distribution with n = 2, p = 0.4 hence P (X = 0) = 0.36, P (X =
1) = 0.48, P (X = 2) = 0.16 and Q a discrete uniform distribution with the three possible
outcomes Y = 0, 1, 2 each with probability P (Y = 0, 1, 2) = 1/3.

In the following table we present the CWKL between these distributions for various
w˜.

w˜ Dw
CKL(P,Q)

w˜ = (1, 1, 1)T 0.0852

w˜ = (1.25, 0.5, 1.25)T 0.0853

w˜ = (0.5, 2, 0.5)T 0.0851

w˜ = (0.5, 1.25, 1.25)T 0.106

w˜ = (2, 0.5, 0.5)T 0.044

It is clear that if we apply larger weights on states with the greatest ‘distance’ (like
(X, Y ) = (1, 1) and (X, Y ) = (2, 2)) we get a significant bigger CWKL divergence. On
the other hand, if we apply bigger weights on states with the least ‘distance’ (like (X, Y ) =
(0, 0)) we get a smaller CWKL divergence.

Example 10. (Binomial distributions)

In the following table we present the CWKL divergence between binomial distributions
P , Q with n = 3, different weights w˜ and probabilities p1, p2.

w˜ = (1, 1, 1, 1)T w˜ = (1.25, 0.75, 0.75, 1.25)T w˜ = (0.75, 1.25, 1.25, 0.75)T

(p1 = 0.4, p2 = 0.6) 0.234 0.264 0.204
(p1 = 0.2, p2 = 0.5) 0.578 0.648 0.507
(p1 = 0.1, p2 = 0.9) 0.11 0.105 0.114
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Example 11. (CWKL divergence between two assets)

Consider the assets, A, B, C, D, E and F . The returns associated with five states
and the probability of each to occur are given in the following table.

State i Return A(pi) B(qi) C(pi) D(qi) E(pi) F(pi)
1 1% 0.1 0.14 0.05 0.3 0.1 0.05
2 3% 0.21 0.22 0.25 0.1 0.25 0.15
3 5% 0.38 0.35 0.4 0.2 0.3 0.6
4 8% 0.21 0.22 0.25 0.1 0.25 0.15
5 10% 0.1 0.07 0.05 0.3 0.1 0.05

In the following table we present the CWKL divergence between the assets A,B,C,D,E
and F for various vectors of weights w˜.

w˜ Dw
CKL(PA,QB) Dw

CKL(PC,QD) Dw
CKL(PE,QF)

w˜ = (1, 1, 1, 1, 1)T 0.027 0.556 0.186

w˜ = (2, 0.333, 0.333, 0.333, 2)T 0.052 0.72 0.126

w˜ = (0.75, 1, 1.5, 1, 0.75)T 0.021 0.514 0.222

As we can easily see the probability distributions of the assets above, in some cases
like assets A and B, are quite similar. In this case, someone would observe that the
greater differences are in states 1 and 5, the extreme ‘states’. So, when we apply big-
ger weights in these states then the Dw

CKL(PA, QB) increases significantly (from 0.027 to
0.052). On the other hand, when we apply bigger weights in the more ‘similar’ states like
2,3,4 the Dw

CKL(PA, QB) decreases (from 0.027 to 0.021). In the case of assets C and D
the probability distributions are definitely different, so among all cases here we have the
biggest value for the divergence Dw

CKL(PC , QD) for bigger weights in the ‘extreme’ states.
In the last case of assets E and F the probability distributions are quite similar in the
‘extreme’ states 1, 5 and they distinct in the more frequent states 2, 4 and especially 3. As
a consequence the Dw

CKL(PE, QF ) is higher when we apply larger weights in the ‘middle’
states 2, 4 and 3. All the above are visualized in the following graph.
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6.2 Continuous Case

6.2.1 Weighted Entropy

In this subsection we present examples of the weighted differential entropy based on
different continuous distributions.

Example 12. (Normal distribution)

Let a stochastic source X described by a Normal distribution with parameters µ = 0
and σ2 = 1. In the table below we present the weighted entropy of this source for various
weights w˜ applied on different parts of the support.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1),S2 = (−1,1),S3 = (1,∞)

w˜ = (1, 1, 1)T 1.418 1.418

w˜ = (1.3, 0.4, 1.3)T 0.582 1.191

w˜ = (0.85, 1.3, 0.85)T 1.836 1.533

w˜ = (2, 0.5, 0.5)T 0.722 1.228

w˜ = (0.5, 2, 0.5)T 2.812 1.799

Now, let us assume that the stochastic source X is described by a Normal distribution
with parameters µ = 0 and σ2 = 9. In the table below we present the weighted entropy of
this source for various weights w˜ applied in different parts of the support.

w˜ S1 = (−∞,−9),S2 = (−9,9),S3 = (9,∞) S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞)

w˜ = (1, 1, 1)T 2.517 2.517

w˜ = (1.3, 0.4, 1.3)T 1.025 1.943

w˜ = (0.85, 1.3, 0.85)T 3.263 2.804

w˜ = (2, 0.5, 0.5)T 1.273 2.039

w˜ = (0.5, 2, 0.5)T 5 3.473

In the following graph we visualize the change of the weighted entropy of various
random variables described by a Normal distribution with µ = 0 and σ2 =Variance with
a fixed partition of the support S1 = (−∞,−3), S2 = (−3, 3), S3 = (3,∞).
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Following, we visualize the change of the weighted entropy, with various support par-
titions, of a random variable described by a Normal distribution with µ = 0 and σ2 = 1.

Example 13. (Student’s t-distribution)

Let a stochastic source X described by a Student’s t-distribution with one degree of
freedom (df = 1). In the table below we present the weighted entropy of this source for
various weights w˜ applied in different parts of the support.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1),S2 = (−1,1),S3 = (1,∞)

w˜ = (1, 1, 1)T 2.531 2.531

w˜ = (1.3, 0.4, 1.3)T 2.012 2.676

w˜ = (0.85, 1.3, 0.85)T 2.791 2.088

w˜ = (2, 0.5, 0.5)T 2.098 2.652

w˜ = (0.5, 2, 0.5)T 3.395 2.289

In this point it seems reasonable to refer that a Student’s t-distribution with df →∞
is an excellent alternative of Standard Normal distribution so all the values of Example
8 are almost the same as in the Example 7.

Example 14. (Cauchy-Lorentz distribution)

Let a stochastic source X described by a Cauchy distribution with location parameter
χ0 = 0 and scale parameter γ = 2. In the table below we present the weighted entropy of
this source for various weights w˜ applied in different parts of the support.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1),S2 = (−1,1),S3 = (1,∞)

w˜ = (1, 1, 1)T 3.224 3.224

w˜ = (1.3, 0.4, 1.3)T 2.953 3.683

w˜ = (0.85, 1.3, 0.85)T 3.359 2.994

w˜ = (2, 0.5, 0.5)T 2.998 3.612

w˜ = (0.5, 2, 0.5)T 3.675 2.458
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Example 15. (Negatively Skewed Normal distribution)

Let a stochastic source X described by a Negatively Skewed Normal distribution with
parameters ξ = 0, ω = 1 and α = −10. In the table below we present the weighted entropy
of this source for various weights w˜ applied in different parts of the support.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1),S2 = (−1,1),S3 = (1,∞)

w˜ = (1, 1, 1)T 0.797 0.797

w˜ = (1.3, 0.4, 1.3)T 0.909 0.744

w˜ = (0.85, 1.3, 0.85)T 0.741 0.824

w˜ = (2, 0.5, 0.5)T 0.398 1.107

w˜ = (0.5, 0.5, 2)T 1.383 0.398

w˜ = (0.5, 2, 0.5)T 0.611 0.886

Because the Skewed Normal Distribution is not a symmetric distribution then the
weighted entropy with higher significance in the left part (w˜ = (2, 0.5, 0.5)T ) is not equal

with the weighted entropy with higher significance in the right part (w˜ = (0.5, 0.5, 2)T ).
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6.2.2 Weighted Corrected Kullback-Leibler Divergence

In the last part of this Chapter we will present examples of the corrected weighted
Kullback-Leibler (CWKL) divergence between two continuous distributions. There will
be a variety in weights and probability distributions involved in.

Example 16. (Normal distributions)

Let P be a Normal distribution with parameters µ = 0, σ2 = 1 and Q an other Normal
distribution with parameters µ = 0, σ2 = 4. The CWKL divergence between P and Q for
various weights w˜ applied in different parts of the support is given in the following tables.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1.36),S2 = (−1.36,1.36),S3 = (1.36,∞)

w˜ = (1, 1, 1)T 0.318 0.318

w˜ = (1.3, 0.4, 1.3)T 0.236 0.322

w˜ = (0.85, 1.3, 0.85)T 0.358 0.316

w˜ = (2, 0.5, 0.5)T 0.251 0.321

w˜ = (0.5, 2, 0.5)T 0.453 0.311

w˜ S1 = (−∞,−6),S2 = (−6,6),S3 = (6,∞)

w˜ = (1, 1, 1)T 0.318

w˜ = (1.3, 0.4, 1.3)T 0.129

w˜ = (0.85, 1.3, 0.85)T 0.412

w˜ = (2, 0.5, 0.5)T 0.161

w˜ = (0.5, 2, 0.5)T 0.632

Example 17. (Normal and Student’s t-distributions)

Let P be a Normal distribution with parameters µ = 0, σ2 = 1 and Q a Student’s
t-distribution distribution with one degree of freedom (df=1). The CWKL divergence
between P and Q for various weights w˜ applied in different parts of the support is given
in the following table.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1.85),S2 = (−1.85,1.85),S3 = (1.85,∞)

w˜ = (1, 1, 1)T 0.259 0.259

w˜ = (1.3, 0.4, 1.3)T 0.278 0.297

w˜ = (0.85, 1.3, 0.85)T 0.249 0.241

w˜ = (2, 0.5, 0.5)T 0.275 0.291

w˜ = (0.5, 2, 0.5)T 0.226 0.196

Now, let P be a Normal distribution with parameters µ = 0, σ2 = 1 and Q a Student’s
t-distribution distribution with thirty degrees of freedom (df=30). The CWKL divergence
between P and Q for various weights w˜ applied in different parts of the support is given
in the following table.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−1.85),S2 = (−1.85,1.85),S3 = (1.85,∞)

w˜ = (1, 1, 1)T 0.00162 0.00162

w˜ = (1.3, 0.4, 1.3)T 0.0015 0.002

w˜ = (0.85, 1.3, 0.85)T 0.00169 0.00141

w˜ = (2, 0.5, 0.5)T 0.00152 0.00197

w˜ = (0.5, 2, 0.5)T 0.00183 0.0009
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In the following graph we visualize the variations of the CWKL between a Normal
distribution with µ = 0 and σ2 = 1 and a Student’s t-distribution with various degrees
of freedom (df). A plethora of weights are applied on a fixed partition of the support
S1 = (−∞,−3), S2 = (−3, 3), S3 = (3,∞).

Example 18. (Normal and Cauchy distributions)

Let P be a Normal distribution with parameters µ = 0, σ2 = 1 and Q a Cauchy
distribution with location parameter χ0 = 0 and scale parameter γ = 0.8. The CWKL
divergence between P and Q for various weights w˜ applied in different parts of the support
is given in the following table.

w˜ S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞) S1 = (−∞,−2),S2 = (−2,2),S3 = (2,∞)

w˜ = (1, 1, 1)T 0.205 0.205

w˜ = (1.3, 0.4, 1.3)T 0.222 0.234

w˜ = (0.85, 1.3, 0.85)T 0.196 0.191

w˜ = (2, 0.5, 0.5)T 0.219 0.229

w˜ = (0.5, 2, 0.5)T 0.176 0.156

Example 19. (Cauchy and Student’s t-distributions)

Let P be a Cauchy distribution with location parameter χ0 = 0 and scale parameter
γ = 1.05 and Q a Student’s t-distribution distribution with one degree of freedom (df=1).
The CWKL divergence between P and Q for various weights w˜ applied in different parts
of the support is given in the following tables.
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w˜ S1 = (−∞,−1),S2 = (−1,1),S3 = (1,∞) S1 = (−∞,−3),S2 = (−3,3),S3 = (3,∞)

w˜ = (1, 1, 1)T 59× 10−5 59× 10−5

w˜ = (1.3, 0.4, 1.3)T 51× 10−5 43× 10−5

w˜ = (0.85, 1.3, 0.85)T 63× 10−5 67× 10−5

w˜ = (2, 0.5, 0.5)T 52× 10−5 46× 10−5

w˜ = (0.5, 2, 0.5)T 74× 10−5 83× 10−5

w˜ S1 = (−∞,−3),S2 = (−3,−1),S3 = (−1,1),S4 = (1,3),S5 = (3,∞)

w˜ = (1, 1, 1, 1, 1)T 59× 10−5

w˜ = (1.5, 0.75, 0.5, 0.75, 1.5)T 42× 10−5

w˜ = (0.75, 1, 1.5, 1, 0.75)T 77× 10−5

w˜ = (0.5, 1, 2, 1, 0.5)T 94× 10−5

w˜ = (0.5, 1.5, 1, 1.5, 0.5)T 58× 10−5

w˜ = (1, 1.25, 0.5, 1.25, 1)T 41× 10−5
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Chapter 7

Conclusion

As it is clear from our study, the results between the classical and the weighted formulas
are completely different when we focus on specific parts of the distributions. This is
exactly what we want to showcase through this thesis.

In an experiment with two possible outcomes like Example 1 the Shannon Entropy
is symmetric around its maximum value which is the equiprobable condition but the
Weighted Shannon Entropy is not symmetric and takes larger values in the conditions with
larger weights (associated with bigger significance). On the other hand, in an experiment
with many possible outcomes like Example 8 with the assets, it is clear that the Weighted
Shannon Entropy is significantly better to detect riskiness than the classical Shannon
Entropy. We observe that if we apply larger weights on the riskier states of the assets we
get bigger Weighted Shannon Entropy which is directly related to higher risk.

As in the case of Weighted Shannon Entropy and the classical Shannon Entropy the
case of CWKL divergence between two assets is completely different from the classical
Corrected Kullback-Leibler divergence. It is clear that when the probability distributions
of the assets are quite similar then the CWKL with ideal weights performs better than the
classical Corrected Kullback-Leibler divergence for the detection of dissimilarities. Even
though when we apply bigger weights in the more ‘similar’ (from the probabilistic point
of view) states then the CWKL is smaller than the classical Corrected Kullback-Leibler
divergence. This seems logical because we seek for dissimilarities in the parts where they
do not exist.

To summarize, the CWKL divergence is larger than the Corrected Kullback-Leibler
divergence if we apply bigger weights in the parts with greater dissimilarities. From the
other hand, the CWKL divergence is less than the Corrected Kullback-Leibler divergence
when we apply bigger weights in the parts with less dissimilarities. Lastly, the CWKL
divergence coincides to Corrected Kullback-Leibler divergence if we apply equal weights
in all parts.

As it is clear from all the above, the appropriate choice of weights will result in
better discrimination between similar distributions. In addition, they provide us with a
framework for concentrating on the ‘important’ parts of the distribution.

These weighted measures could be a useful tool for the construction of ‘directed’
statistical tests on the parts of the distribution we wish to emphasize. Such tests could
include goodness of fit tests or model selection criteria which will concentrate on specific
parts of the distribution by assigning appropriate weights. Thus, there is much room for
improvement and research on this promising concept.
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Appendix A

A.1

Measure Theory material §3.1

Definition 21. (Topological Space)

A topological space (X, T ) is a set X and a collection T ⊆ P(X) of subsets of X,
called open sets, such that

1. ∅, X ∈ T

2. if {Ua ∈ T : a ∈ I} is an arbitrary collection of open sets, their union is open,
hence:

⋃
a∈I

Ua ∈ T

3. if {Ui ∈ T : i = 1, 2, ..., N} is a finite collection of open sets, then their intersection
is open, hence:

N⋂
i=1

Ui ∈ T

The complement of an open set in X is called a closed set, and T is called a topology
on X.

Note: P(X) is the power set of X which is the set of all possible subsets of X.

Definition 22. (σ-Algebra)

A σ-algebra (or field) on a set X is a collection A of subsets of X such that:

1. ∅, X ∈ A
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2. if A ∈ A then Ac ∈ A

3. if Ai ∈ A for i ∈ N then

∞⋃
i=1

Ai ∈ A,

(
or equivently

∞⋂
i=1

Ai ∈ A

)

From de Morgan’s laws, a collection of subsets is σ-algebra if it contains ∅ and is
closed under the operations of taking complements and countable unions (or, equivalently,
countable intersections).

Note: If the union of 3 is finite then the collection A of subsets is called Algebra.

Definition 23. (Generated σ-Algebra)

If F is any collection of subsets of a set X, then the σ-algebra generated by F is

σ(F) =
⋂
{A ⊂ P(X) : F ⊆ A and A is a σ − algebra}.

This intersection is nonempty, since P(X) is a σ-algebra that contains F , and an
intersection of σ-algebras is a σ-algebra. An immediate consequence of the definition is
the following result, which we will use repeatedly.

Definition 24. (Borel σ-Algebra)

Let (X , T ) be a topological space. The Borel σ-algebra

B(X) = σ(T )

is the σ-algebra generated by the collection T of open sets on X.

Definition 25. (Measurable Space)

A measurable space (X,A) is a non-empty set X equipped with a σ-algebra A on X.

Definition 26. (Measure)

A measure µ on a measurable space (X,A) is a function

µ : A → [0,∞]

such that

1. µ(∅) = 0
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2. if {Ai ∈ A : i ∈ N} is a countable disjoint collection of sets in A, then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai)

Definition 27. (Measure Space)

A measure space (X,A, µ) consists of a set X, a σ-algebra A on X, and a measure µ
defined on A.

From now on we will concentrate on Rn with the Euclidean norm. Whenever we are
referring to the standard topology of Rn we will be referring to the topology induced by the
Euclidean metric which by itself is induced by the Euclidean norm. So T (Rn) ( P(Rn)
we denote from now on the standard topology on Rn. That is, G ⊆ Rn belongs to T (Rn)
if for every x ∈ G there exists r > 0 such that Br(x) ⊆ G, where

Br(x) = {ψ ∈ Rn : ||x− ψ|| < r}

is the open ball of radius r centered at x ∈ Rn and || · || denotes the Euclidean norm.

Definition 28. (Borel Set)

The Borel σ-algebra B(Rn) on Rn is the σ-algebra generated by the open sets of Rn,
i.e. B(Rn) = σ(T (Rn)). A set that belongs to the Borel σ-algebra is called a Borel set.

At this point our goal should be to construct a notion of the volume of rather general
subsets of Rn that reduces to the usual volume of elementary geometrical sets such as
cubes or rectangles. These generalized notion of volume is the Lebesgue measure.

If L(Rn) denotes the collection of Lebesgue measurable sets and

µ : L(Rn)→ [0,∞]

denotes Lebesgue measure, then we want L(Rn) to contain all n-dimensional rectan-
gles and µ(R) should be the usual volume of a rectangle R. Moreover, we want µ to be
countably additive. That is, if

{Ai ∈ L(Rn) : i ∈ N}

is a countable collection of disjoint measurable sets, then their union should be mea-
surable and

µ

(
∞⋃
i=1

Ai

)
=
∑

µ(Ai)

The reason for requiring countable additivity is that finite additivity is too weak
to allow the justification of any limiting processes, while uncountable additivity is too
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strong; for example, it would imply that if the measure of a set consisting of a single
point is zero, then the measure of every subset of Rn would be zero.

It is not possible to define the Lebesgue measure of all subsets of Rn in a geometrically
reasonable way. Hausdorff (1914) showed that for any dimension n ≥ 1, there is no
countably additive measure defined on all subsets of Rn that is invariant under isometries
(translations and rotations) and assigns measure one to the unit cube. We will skip any
additional theoretical background needed to strictly define Lebesgue outer measures and
we will just provide two simple cases which will be needed later on.

Proposition 7. Every rectangle is Lebesgue measurable and its measure is the volume.

Before continuing we briefly consider a generalization of one-dimensional Lebesgue
measure, called Lebesgue-Stieltjes measures on R. These measures are obtained from an
increasing, right-continuous function F : R→ R, and assign to a half-open interval (a, b]
the measure

µF ((a, b]) = F (b)− F (a).

Theorem 10. Suppose that F : R→ R is an increasing, right-continuous function. Then
there is a unique Borel measure µF : B(R)→ [0,∞] such that

µF ((a, b]) = F (b)− F (a)

for every a < b.

Definition 29. (Measurable Function)

Let (X,A) and (Y,B) be measurable spaces. A function f : X → Y is measurable if
f−1(B) ∈ A for every B ∈ B.

In the following part we will briefly present Lebesgue integrability. We will not dive
in the full depth of it, since we are more concerned with Riemann integrability.

Definition 30. (Characteristic Function)
The characteristic function (or indicator function) of a subset E ⊂ X is the function

χE : X → R defined by

χE(x) =

{
1, x ∈ E
0, x 6∈ E

The function χE is measurable if and only if E is a measurable set.
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Definition 31. (Simple Function)

A simple function φ : X → R on a measurable space (X,A) is a function of the form

φ(x) =
N∑
n=1

cnχEn(x)

where c1, ..., cN ∈ R and E1, ..., EN ∈ A.

Note that, according to this definition, a simple function is measurable. The repre-
sentation of φ is not unique, we call it a standard representation if the constants cn are
distinct and the sets En are disjoint.

Definition 32. (Positive Simple Function)

If φ : X → [0,∞) is a positive simple function, given by

φ =
N∑
i=1

ciχEi

where ci ≥ 0 and Ei ∈ A, then the integral of φ with respect to µ is∫
φdµ =

N∑
i=1

ciµ(Ei).

Definition 33. (Lebesgue Integral)

If f : X → [0,∞] is a positive, measurable, extended (it can take infinity as a value)
real-valued function on a measure space X, then:∫

fdµ = sup

{∫
φdµ : 0 ≤ φ ≤ f, φ simple

}
A positive function f : X → [0,∞] is integrable if it is measurable and∫

fdµ <∞

Proposition 8. If A ⊂ X is a measurable set and f : X → [0,∞] is measurable, we
define ∫

A

fdµ =

∫
fχAdµ.
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Proposition 9. Suppose that X = [a, b] ( R is a compact interval and µ : L([a, b]) →
[0,∞] is Lesbegue measure on [a, b]. We note that any Riemann integrable function f :
[a, b] → R is integrable with respect to Lebesgue measure µ, and its Riemann integral is
equal to the Lebesgue integral, ∫ b

a

f(x)dx =

∫
[a,b]

fdµ

Thus, all of the usual integrals from elementary calculus remain valid for the Lebesgue
integral on R. We will write an integral with respect to Lebesgue measure on R, or Rn,
as ∫

fdx

Note :Even though the class of Lebesgue integrable functions on an interval is wider
than the class of Riemann integrable functions, some improper Riemann integrals may
exist even though the Lebesgue integral does not.
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A.2

Probability Spaces material §3.2

Definition 34. (Probability Measure)

If (Ω,F) is a measurable space and µ is a measure on (Ω,F), then with the additional
condition of µ(Ω) = 1 we have a probability measure and we often label it by P (it is then
straight forward that P (A) ≤ 1 for all A ∈ F).

Definition 35. (Probability Space)

A measure space is a triplet (Ω,F , µ), with µ a measure on the measurable space
(Ω,F). A measure space (Ω,F , P ) with P a probability measure is called a probability
space.

Definition 36. (Random Variable)

A function X : Ω → S between two measurable spaces (Ω,F) and (S, S) is called an
(S, S)-valued Random Variable if

X−1(B) := {ω : X(ω) ∈ B} ∈ F ∀B ∈ S
Hence, a random variable is a measurable function. A measurable function X : Ω→ S

is also called a random variable in S. It has the interpretation of a quantity, or state,
determined by chance. Where no space S is mentioned, it is assumed that X takes values
in R. Even though the first measurable space (Ω,F) doesn’t need to be a probability
space but we prefer to define random variables in probability spaces (Ω,F , P ). Hence, the
following definition.

Definition 37. (Random Variable)

A random variable on a probability space (Ω,F , P ) is a function X : Ω → R that is
measurable with respect to the Borel sets.

Definition 38. (Distribution of a Random Variable)

The measure µX = P ◦ X−1 is called the law or distribution of X. For real-valued
random variables, µX is uniquely determined by its values on the intervals (−∞, x], x ∈
R, given by

FX(x) = µX((−∞, x]) = P (X ≤ x)

The function FX is called the distribution function of X. Generalizing the above for
any Borel set we get the following definition.
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Definition 39. (Distribution)

Every random variable X induces a probability measure µX on R (called its distribu-
tion) by

µX(A) = P (X−1(A))

for all A ∈ B(R)

To check that µX is a probability measure, note that sinceX is a function, ifA1, A2, ... ∈
B(R) are disjoint, then so are X ∈ A1, X ∈ A2, ... ∈ F , hence

µX

(⋃
i

Ai

)
= P

(
{X ∈

⋃
i

Ai}

)
= P

(⋃
i

{X ∈ Ai}

)
=
∑
i

P ({X ∈ Ai}) =
∑
i

µX(Ai)

Theorem 11. If F is the distribution function of a random variable X, then
i)F is nondecreasing.
ii)F is right-continuous (i.e. lim

x→a+
F (x) = F (a) for all a ∈ R).

iii) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

iv)If F (x−) = lim
y→x−

F (y) then F (x−) = P (X < x).

v)P (X = x) = F (x)− F (x−)

Proof. For i), note that if x ≤ y, then {X ≤ x} ⊆ {X ≤ y}, so F (x) = P (X ≤ x) ≤
P (X ≤ y) = F (y) by monotonicity of the probability measure.
For ii), observe that if x ↘ a, then {X ≤ x} ↘ {X ≤ a}, and apply continuity of the
probability measure we have desired result.
For iii), we have {X ≤ x} ↘ ∅ as x↘ −∞ and {X ≤ x} ↗ R as x↗∞.
For iv), {X ≤ y} ↗ {X < x} as y ↗ x. (Note that the limit exists since F is monotone.)
For v), {X = x} = {X ≤ x}�{X < x}.

In fact, the first three properties in Theorem 11 are sufficient to characterize a distri-
bution function.

Theorem 12. If F : R → R satisfies properties i), ii), and iii) from Theorem 11, then
it is the distribution function of some random variable.

Theorem 12 shows that any function satisfying properties i) - iii) gives rise to a
random variable X, and thus to a probability measure µ, the distribution of X. The
following result shows that the measure is uniquely determined.
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Theorem 13. If F is a function satisfying i)− ii) in Theorem 10, then there is a unique
probability measure µ on (R,B) with µ((−∞, x]) = F (x) for all x ∈ R (as mentioned in
definitions 38,39).

To summarize, every random variable induces a probability measure on (R,B), every
probability measure defines a function satisfying properties i)− iii) in Theorem 11, and
every such function uniquely determines a probability measure.

Consequently, it is equivalent to give the distribution or the distribution function of a
random variable. However, one should be aware that distributions/distribution functions
do not determine random variables, even neglecting differences on null sets. For example,

if X is uniform on [−1, 1] (so that µX =
1

2
µ|[−1,1]) , then −X also has distribution µX , but

−X 6= X almost surely. When two random variables X and Y have the same distribution

function, we say that they are equal in distribution and write X
d
= Y . Note that random

variables can be equal in distribution even if they are defined on different probability
spaces.

Definition 40. (Probability Density Function of a Random Variable)

We say that a random variable X(ω) has a probability density function fX if and only
if its distribution function FX can be expressed as

FX(a) =

∫ a

−∞
fX(x)dx, ∀a ∈ R

Remark 5. To make Definition precise we temporarily assume that probability density
functions fX are Riemann integrable and interpret the integral in this sense. We construct
Lebesgue’s integral and extend the scope of Definition 40 to Lebesgue integrable density
functions fX ≥ 0 (in particular, accommodating Borel functions fX).

Remark 6. Conversely, if g is a nonnegative measurable function with

∫
R
g(x)dx = 1,

then G(x) =

∫ x

−∞
g(t)dt, satisfies i)− iii) in Theorem 11, so Theorem 12 gives a random

variable with density g. In undergraduate probability, such a X is called continuous. Of
course this cannot be used as a strict definition. Hence the Definition is provided bellow.

Definition 41. If the distribution of X has a density, then we say that X is absolutely
continuous.
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A.3

Classification of Random Variables material §3.3

Definition 42. (Absolute Continuity of Measures)

If µ and v are measures on measure space (X,A), then we say that v is absolutely
continuous with respect to µ (and write v � µ) if v(A) = 0 for all A ∈ A with µ(A) = 0.

Definition 43. (Mutual Singularity of Measures)

If µ and v are measures on (X,A), then we say that µ and v are mutually singular
(and write µ ⊥ v) if there exist E,F ∈ A such that
i) E ∩ F = ∅
ii) E ∪ F = X
iii) µ(F ) = 0 = v(E)

A fundamental result in measure theory is the Lebesgue-Radon-Nikodym Theorem
(which we state only for positive measures).

Theorem 14. (Lebesgue-Radon-Nikodym)

If µ and v are σ-finite measures on (X,A), then there exist unique σ-finite measures
λ, ρ on (X,A) such that

1. λ ⊥ µ

2. ρ� µ

3. v = λ+ ρ

Moreover, there is a measurable function f : X → [0,∞) such that ρ(A) =

∫
A

fdµ for

all A ∈ A.

Remark 7. With σ-finite measures on (X,A) we mean that µX <∞ and vX <∞.

Note that :

• The function f from Theorem 14 is called the Radon-Nikodym derivative of ρ with

respect to µ, and one writes f =
dρ

dµ
(or dρ = fdµ).

• If v is a finite measure, then λ and ρ are finite, so f is µ-integrable.
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• If a random variable X has distribution µ which is absolutely continuous with
respect to Lebesgue measure, then we say that (the distribution of) X has density

function f =
dµ

dm
, where m is the Lebesgue measure.

Remark 8. Based on the above and Definitions 38, 39 we have that for all A ∈ Br, P (X ∈
A) = µ(A) =

∫
A

f(x)dx.

Remark 9. For f integrable and A ∈ F , we define the integral of f over A as

∫
A

fdµ =∫
fIAdµ. When we do not wish to emphasize the dependence on the argument, we write∫
fdµ, or sometimes

∫
f(x)µ(dx).

Proposition 10. For any a, b ∈ R and any integrable functions f, g,

∫
(af + bg)dµ =

a

∫
fdµ+ b

∫
gdµ. If f ≤ g a.e., then

∫
fdµ ≤

∫
gdµ.

Definition 44. (Discrete Measure)

A measure µ is said to be discrete if there is a countable set S with µ(SC) = 0. A
random variable, is called discrete if its distribution is.

Note that :

• if X is discrete, then µ⊥m.

• The set S in the above definition plays the role of support

Definition 45. (Continuous Measure)

A measure µ is called continuous if µ({x}) = 0 for all x ∈ R.

Remark 10. By countable additivity, a discrete probability measure is not continuous
and vice versa. Absolutely continuous distributions are continuous, but it is possible for
a continuous distribution to be singular with respect to Lebesgue measure.
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Definition 46. (Singular Continuity of a Random Variable)

A random variable X with continuous distribution µ ⊥ m is called singular continuous.

Analogous to the singular/absolutely continuous decomposition in the Theorem 14,
we have the following result for finite Borel measures on R.

Remark 11. An example is given by the ‘uniform distribution on the Cantor set’ formed
by taking [0, 1] and successively removing the open middle third of all remaining intervals.

Theorem 15. Any finite Borel measure can be uniquely written as

µ = µd + µc

where µd is discrete and µc is continuous.

Proof. Let E = {x ∈ R : µ({x}) > 0}.
For any countable F ⊆ E,

∑
x∈F

µ({x}) = µ(F ) < ∞ by countable additivity and

finiteness.
It follows that Ek = {x ∈ R : µ({x}) > k−1} is finite for all k ∈ N.

Consequently, E =
∞⋃
k=1

Ek is a countable union of finite sets and thus is countable.

The result follows by defining µd(A) = µ(A ∩ E), µc(A) = µ(A ∩ Ec).

Remark 12. Thus if µ is a probability distribution, then it follows from the Radon-
Nikodym Theorem that µ = µac + µs where µac << m and µs ⊥ m. By Theorem 14,
µs = µd +µsc where µd is discrete and µsc is singular continuous. Since µ is a probability
measure, each of µac, µd, µsc is finite and thus is identically zero or a multiple of a
probability measure.
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B.1

Proof. Proposition 3, §4.2.1 (Vajda, 1995)

Using the non-negativity of the function ψ(x) ≡ φ(x)−φ′(1)(x−1), we haveDψ(θ1, θ2) ≥
0, but we know that Dφ(θ1, θ2) = Dψ(θ1, θ2), then Dφ(θ1, θ2) ≥ 0.

It is known that for every convex function φ the following inequality holds

φ(t) ≤ φ(0) + t lim
r→∞

φ(r)

r
, (t ≥ 0) (B.1)

If φ is strictly convex at some t0 ∈ (0,∞) then the inequality in (B.1) is strict for all
t > 0. Using (B.1) we have

Dφ(θ1, θ2) ≤
∫
X

fθ2(x)

(
φ(0) +

fθ1(x)

fθ2(x)
lim
r→∞

φ(r)

r

)
dµ(x) = φ(0) + t lim

r→∞

φ(r)

r
.

It is clear that Pθ1 = Pθ2 implies Dφ(θ1, θ2) = 0.

If S1 ∩ S2 = ∅, we have

Dφ(θ1, θ2) =

∫
X

fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dµ(x) =

=

∫
Sc1∩S2

fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dµ(x) +

∫
S1∩Sc2

fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dµ(x) =

= φ(0) + t lim
r→∞

φ(r)

r
.

Now we are going to establish that if φ is strictly convex at t = 1, then Dφ(θ1, θ2) = 0
implies Pθ1 = Pθ2 .

91
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In fact, if φ is strictly convex at t = 1 then

ψ

(
fθ1(x)

fθ2(x)

)
> 0

for
fθ1(x)

fθ2(x)
> 1 and for

fθ1(x)

fθ2(x)
< 1. If Dψ(θ1, θ2) = 0 then

fθ1(x)

fθ2(x)
≤ 1 or

fθ1(x)

fθ2(x)
≥ 1.

First we suppose that
fθ1(x)

fθ2(x)
≤ 1. We know that

Dφ(θ1, θ2) = Dψ(θ1, θ2) = 0

and

0 = Dψ(θ1, θ2) =

∫
X

fθ2(x)ψ

(
fθ1(x)

fθ2(x)

)
dµ(x) =

=

∫
X

fθ2(x)

(
φ

(
fθ1(x)

fθ2(x)

)
− φ′(1)

(
fθ1(x)

fθ2(x)
− 1

))
dµ(x) =

= Dφ(θ1, θ2)− φ′(1)

∫
X

fθ2(x)

(
fθ1(x)

fθ2(x)
− 1

)
dµ(x) =

= 0− φ′(1)

∫
X

fθ2(x)

(
fθ1(x)

fθ2(x)
− 1

)
dµ(x) =

= −φ′(1)

∫
X

fθ2(x)

(
fθ1(x)

fθ2(x)
− 1

)
dPθ2 .

Since φ is strictly convex at t = 1, it must be Pθ1 = Pθ2 . For
fθ1(x)

fθ2(x)
≥ 1, the result

can be established in the same way.

The strict convexity of φ at t = 1 implies the strict inequality in (B.1), i.e.,

φ(t) < φ(0) + t lim
r→∞

φ(r)

r
, ∀t > 0.

Which implies that

l(t) = φ(0)− φ(t) + t lim
r→∞

φ(r)

r
> 0, ∀t > 0.

If we take x ∈ S1, i.e., x such that fθ1 > 0, then t =
fθ1(x)

fθ2(x)

> 0 and l

(
fθ1(x)

fθ2(x)

)
> 0.
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Therefore,

Dl(θ1, θ2) =

∫
X

fθ2(x)l

(
fθ1(x)

fθ2(x)

)
dµ(x) =

=

∫
X

fθ2(x)

(
φ(0)− φ

(
fθ1(x)

fθ2(x)

)
+
fθ1(x)

fθ2(x)
lim
r→∞

φ(r)

r

)
dµ(x) =

= −Dφ(θ1, θ2) + φ(0) + lim
r→∞

φ(r)

r
,

but by (4.6) we have

Dφ(θ1, θ2) = φ(0) + lim
r→∞

φ(r)

r

therefore,

Dl(θ1, θ2) =

∫
X

fθ2(x)l

(
fθ1(x)

fθ2(x)

)
dµ(x) = 0

with

l

(
fθ1(x)

fθ2(x)

)
> 0

Then, fθ2(x) = 0, because Dl(θ1, θ2) = 0 and l

(
fθ1(x)

fθ2(x)

)
> 0, i.e., x 6∈ S2. This

completes the proof.



94 APPENDIX B.

B.2

Proof. Proposition 5, §4.2.1 (Vajda, 1995)

We assume that µ is the Lebesgue measure. We define

D̃φ(θ1, θ2) =

∫
R
fθ1(x)φ

(
fθ2(x)

fθ1(x)

)
dx,

and we shall establish

D̃φ(θ1, θ2) ≤ D̃φ(θ1, θ3), φ ∈ Φ∗ (B.2)

If (B.2) holds, then (4.10) also holds, because if we consider the function

φ(t) = tφ(
1

t
) ∈ Φ∗

we have

D̃φ(θ1, θ2) =

∫
R
fθ1(x)

fθ2(x)

fθ1(x)
φ

(
fθ1(x)

fθ2(x)

)
dx = Dφ(θ1, θ2).

Since, by hypothesis, the family of distributions {Pθ}θ∈Θ⊂R has monotone non de-
creasing likelihood ratio, then

h2(x) =
fθ2(x)

fθ1(x)
and h3(x) =

fθ3(x)

fθ1(x)

are non decreasing functions of x. The same happens with

h3(x)

h2(x)
=
fθ3(x)

fθ2(x)
(B.3)

From (B.3) we recognize three possibilities:

1. h3(x) < h2(x), ∀x

2. h3(x) > h2(x), ∀x

3. ∃a s.t. h3(x) ≤ h2(x) for x < a and h3(x) ≥ h2(x) for x > a.
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We know that

Eθ1 [h3(X)] =

∫
R
fθ1(x)

fθ3(x)

fθ1(x)
dx = Eθ1 [h2(X)] = 1.

If Eθ1 [h3(X)] = Eθ1 [h2(X)] = 1, the possibilities (1) and (2) are not true, hence it
should be true (3). Using the monotonicity of h2(x) and h3(x) we have

x : h2(x) ≤ b ⊂ x : h3(x) ≤ b, if b < h2(a).

and

x : h2(x) ≤ b ⊃ x : h3(x) ≤ b, if b < h2(a)

If we denote

Fh2(X)(t) = Prθ1(h2(X) ≤ t) = Prθ1(x ∈ R : h2(x) ≤ t)

Fh3(X)(t) = Prθ1(h3(X) ≤ t) = Prθ1(x ∈ R : h3(x) ≤ t)

we have for t < h2(a)

Fh2(X)(t) = Prθ1(x ∈ R : h2(x) ≤ t) ≤ Prθ1(x ∈ R : h3(x) ≤ t) = Fh3(X)(t),

and for t > h2(a)

Fh2(X)(t) ≥ Fh3(X)(t).

Now we shall establish that the statements

1. Eθ1 [h3(X)] = Eθ1 [h2(X)]

2. Fh2(X)(t) ≤ Fh3(X)(t) for t < h2(a) and Fh2(X)(t) ≥ Fh3(X)(t) for t > h2(a)

imply ∀k,

Eθ1 [|h2(X)− k|] ≤ Eθ1 [|h3(X)− k|]. (B.4)
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It is well known that the expectation of a non negative random variable X can be
written as

E[X] =

∫ ∞
0

(1− FX(x))dx.

In our case,

Eθ1 [h3(X)] =

∫ ∞
0

(1− Fh3(X)(x))dx =

∫ ∞
0

(1− Fh2(X)(x))dx = Eθ1 [h2(X)].

Denoting

I1 ≡
∫ h2(a)

0

(1− Fh3(X)(x))− (1− Fh2(X)(x))dx

and

I2 ≡
∫ ∞
h2(a)

(1− Fh3(X)(x))− (1− Fh2(X)(x))dx

we have

I1 =

∫ h2(a)

0

(Fh2(X)(x)− Fh3(X))dx, I2 =

∫ ∞
h2(a)

(Fh2(X)(x)− Fh3(X))dx

Therefore,

Eθ1 [h3(X)]− Eθ1 [h2(X)] =

∫ h2(a)

0

(Fh2(X)(x)− Fh3(X))dx+

∫ ∞
h2(a)

(Fh2(X)(x)− Fh3(X))dx.

Finally, we have

∫ h2(a)

0

(Fh2(X)(x)− Fh3(X))dx =

∫ ∞
h2(a)

(Fh3(X)(x)− Fh2(X))dx. (B.5)

Now we prove (B.4). It is easy to check that
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Eθ1 [|hi(X)− k|] =

∫ k

0

Fhi(X)(x)dx+

∫ ∞
k

(1− Fhi(X)(x))dx.

Assuming that k ≥ h2(a), an analogous proof can be done if k < h2(a); we have

Eθ1 [|hi(X)− k|] =

∫ h2(a)

0

Fhi(X)(x)dx+

∫ k

h2(a)

Fhi(X)(x)dx+

∫ ∞
k

(1− Fhi(X)(x))dx,

for i = 2, 3. Let us define

s = Eθ1 [|h3(X)− k|]− Eθ1 [|h2(X)− k|],

so that

s =

∫ h2(a)

0

(Fh3(X)(x)−Fh2(X)(x))dx−
∫ k

h2(a)

(Fh2(X)(x)−Fh3(X)(x))dx+

∫ ∞
k

(Fh2(X)(x)−Fh3(X)(x))dx.

By (B.5) we have

∫ h2(a)

0

(Fh3(X)(x)−Fh2(X)(x))dx =

∫ ∞
h2(a)

(Fh2(X)(x)−Fh3(X)(x))dx ≥
∫ k

h2(a)

(Fh2(X)(x)−Fh3(X)(x))dx

Then we get that

s ≥
∫ ∞
k

(Fh2(X)(x)− Fh3(X)(x))dx

Thus,

Eθ1 [|h3(X)− k|] ≥ Eθ1 [|h2(X)− k|]. (B.6)

Finally we prove (B.2) or equivalently that

Eθ1 [φ(h3(X))] ≥ Eθ1 [φ(h2(X))]
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Since φ is continuous and convex we have

φ(z)− φ(0) =

∫ z

0

b(k)dk,

where b is non decreasing and bounded in [0, z]. Integrating by parts it yields,

φ(z)− φ(0) = zb(z)−
∫ z

0

kdb(k) =

∫ z

0

(z − k)db(k) + zb(0).

Now we consider the function

b∗(k) =

{
b(k), if k ∈ [0, z]

c, if k > z
.

Then we have

φ(z)− φ(0) =

∫ z

0

(z− k)db∗(k) + zb∗(0) +

∫ ∞
z

(z− k)db∗(k) =

∫ ∞
0

(z− k)db∗(k) + zb∗(0),

where we have taken into account that

∫ ∞
z

(z−k)db∗(k) = 0 and

∫ ∞
z

(z−k)db∗(k) = 0.

Therefore

E[φ(Z)] = E

[∫ ∞
z

(Z − k)db∗(k) + Zb∗(0) + φ(0)

]
=

=

∫ ∞
0

∫ ∞
0

(z − k)db∗(k)dFZ(z) + E[Z]b∗(0) + φ(0) =

=

∫ ∞
0

E[Z − k]db∗(k) + E[Z]b∗(0) + φ(0).

But,

∫ ∞
0

E[|Z − k|]db∗(k) =

∫ ∞
0

(∫ ∞
0

|z − k|dFZ(z)

)
db∗(k) =

=

∫ ∞
0

(∫ z

0

(z − k)db∗(k) +

∫ z

0

−(z − k)db∗(k)

)
dFZ(z).



B.2. 99

Then,

∫ ∞
0

E[|Z − k|]db∗(k) =

∫ ∞
0

E[Z − k]db∗(k),

and thus

E[φ(Z)] =
1

2

∫ ∞
0

E[(Z − k) + |Z − k|]db∗(k) + E[Z]b∗(0) + φ(0).

If we consider Z ≡ h2(X), we have

Eθ1 [φ(h2(X))] =
1

2

∫ ∞
0

1− k + E[|h2(X)− k|]db∗(k) + b∗(0) + φ(0)

because

Eθ1 [hi(X)] = 1, i = 2, 3.

In the same way

Eθ1 [φ(h3(X))] =
1

2

∫ ∞
0

1− k + E[|h3(X)− k|]db∗(k) + b∗(0) + φ(0).

Applying (B.6) we have the desired result.
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