

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Ευφυής Διαχείριση Δεδομένων Μεγάλου Όγκου

Συγγραφέας

Χρήστος Καλύβας-Κασοπατίδης

Επιβλέπων

Μανώλης Μαραγκουδάκης

ΔΙΑΤΡΙΒΗ

για την απόκτηση Διδακτορικού Διπλώματος στο Τμήμα Μηχανικών
Πληροφοριακών και Επικοινωνιακών Συστημάτων, Πανεπιστήμιο Αιγαίου

Σάμος, Οκτώβριος, 2020

UNIVERSITY OF THE AEGEAN

SCHOOL OF ENGINEERING

Department of Information and Communication Systems Engineering

DOCTORAL THESIS

Intelligent Big Data Management

Author

Christos Kalyvas-Kasopatidis

Supervisor

Manolis Maragoudakis

A thesis submitted in Total Fulfilment of the Requirements for the Degree of
Doctor of Philosophy (Ph.D.) at the Department of Information and

Communication Systems Engineering, University of the Aegean

Samos, October 2020

Υπεύθυνη Δήλωση

Εγώ ο Χρήστος Καλύβας-Κασοπατίδης δηλώνω ότι είμαι ο αποκλειστικός
συγγραφέας της υποβληθείσας διδακτορικής διατριβής µε τίτλο «Ευφυής Διαχείριση
Δεδομένων Μεγάλου Όγκου». Η συγκεκριμένη διδακτορική διατριβή είναι
πρωτότυπη και εκπονήθηκε αποκλειστικά για την απόκτηση του διδακτορικού
διπλώματος του Τμήματος Μηχανικών Πληροφοριακών και Επικοινωνιακών
Συστημάτων. Κάθε βοήθεια, την οποία είχα για την προετοιμασία της, αναγνωρίζεται
πλήρως και αναφέρεται επακριβώς στην εργασία.

Επίσης, επακριβώς αναφέρω στην εργασία τις πηγές, τις οποίες χρησιμοποίησα, και
μνημονεύω επώνυμά τα δεδομένα ή τις ιδέες που αποτελούν προϊόν πνευματικής
ιδιοκτησίας άλλων, ακόμη κι εάν η συμπερίληψη τους στην παρούσα εργασία υπήρξε
έμμεση ή παραφρασμένη. Γενικότερα, βεβαιώνω ότι κατά την εκπόνηση της
διδακτορικής διατριβής έχω τηρήσει απαρέγκλιτα όσα ο νόμος ορίζει περί διανοητικής
ιδιοκτησίας και έχω συμμορφωθεί πλήρως µε τα προβλεπόμενα στο νόμο περί
προστασίας προσωπικών δεδομένων και τις αρχές Ακαδημαϊκής δεοντολογίας.

Υπογραφή:

Ημερομηνία: Οκτώβριος, 2020

Declaration of Authorship

I, Christos Kalyvas-Kasopatidis, declare that this Thesis entitled, “Intelligent Big Data

Management” and the work presented in it are my own. I confirm that:

• This work was done wholly while in candidature for a research degree at this

University.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this Thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the Thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date: October, 2020

Advising Committee of this Doctoral Thesis

Professor Manolis Maragoudakis (Supervisor)

Department of Informatics

Ionian University, Greece

Professor Efstathios Stamatatos (Advisor)

Department of Information and Communication Systems Engineering

University of the Aegean, Greece

Assistant Professor Panagiotis Rizomiliotis (Advisor)

Department of Informatics and Telematics

Harokopio University, Greece

University of the Aegean, Greece

2020

Approved by the Examining Committee

Manolis Maragoudakis

Professor, Ionian University, Greece

 Efstathios Stamatatos

Professor, University of the Aegean, Greece

Panagiotis Rizomiliotis

Assistant Professor, Harokopio University, Greece

Demosthenes Vouyioukas

Professor, University of the Aegean, Greece

Spyros Sioutas

Professor, University of Patras, Greece

Phivos Mylonas

Associate Professor, Ionian University, Greece

Katia Lida Kermanidis

Associate Professor, Ionian University, Greece

University of the Aegean, Greece

2020

Copyright©2020

Christos Kalyvas-Kasopatidis

Department of information and communication systems engineering
School of engineering

University of the Aegean

All rights reserved. No parts of this book may reproduced or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the author.

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

v

ABSTRACT

Department of Information and Communication Systems Engineering

School of Engineering

University of the Aegean

Doctor of Philosophy

by Christos Kalyvas-Κasopatidis

Rapidly evolving technologies are constantly expanding the need for analysis and utilization of
existing data. Many organizations base their business viability on the analysis of market data as
well as the data they produce either by exporting inherent useful statistics and performance
indicators or by using them in the decision-making processes, where one of the most important
parameters in their analysis is the parameter of time. To store and analyze the huge volume of
data, new methods of data management and analysis are created. This was especially noticeable
with the advent of Big Data. The technologies that were developed gave the opportunity to expand
the methods that existed for conventional data but also to create new methods, techniques and
systems so that they can provide the same or even better analytics. However, as technology
advances with the advent of IoT, the volume of data and the number of data flows are increasing
rapidly. These flows should be stored, analyzed and combined with other data to extract useful
information. With the advent of ML / AI, more and more processes can be automated to generate
new knowledge. One of the main problems, however, is the lack of marked data.

One of the most common queries performed to retrieve information from data are the skyline
queries. The skyline queries belong to the category of multi-objective optimization problems and
aim to retrieve a set of answers that meets some usually conflicting criteria. Using such queries
is always helpful as it has many areas of application and can be very helpful in the decision-
making process, where there are multiple criteria for achieving a goal and an optimal solution may
not be unique. So far, the literature in this field of research shows a significant number of works
is mainly concerned with conventional data and there is room for research in the field of Big Data.

Taking into account all the above, this Thesis aims to carry out an extensive review in the field of
skyline queries, the detection of specifications and needs in data of an information system for
maritime environments, the analysis of the time parameter in skyline queries, the development of
skyline queries on tree structures specifically designed for Big Data and the implementation of a
classifier specifically designed for Big Data environments.

More specifically, the first contribution is an extensive review of the existing work on skyline
queries in which the skyline family is presented with a wide number of variations over the initial
skyline query algorithm, the difference between index based and non-index-based methods and
the applications that skyline queries have for problem solving. This review shows that skyline
queries have evolved and allows readers to find areas that can be further explored.

The second contribution explores the various aspects of data in the context of a maritime
information system. This analysis reviews the existing research area and the data needed to
implement a maritime information system as well as the limitations that exist in processing and
distributing the data. Through this research, the concept of Big Data became apparent, large data
sets that are available for analysis were detected and was made clear that time parameterization
is very important for performing data analytics.

The third contribution studied how can the dimension of time be integrated in skyline queries. The
time dimension is an important parameter in data analysis and queries processing that is in many

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
vi

cases is overlooked. This research reveals that the time parameter can affect the skyline, which
shows that a special analysis needs to be made regarding the time dimension and to properly
modification of the skyline queries in order to integrate the time dimension in them.

The fourth contribution examines the application of skyline queries in the field of Big Data and
specifically SpatialHadoop. SpatialHadoop is an extension of the conventional Hadoop, which
tries to integrate known tree structures that exist for conventional data in Hadoop. Through this
analysis we can see the behavior of both types of skyline algorithms, that are indexed-based (or
not) in Big Data environments and how the hybrid combinations work using skyline algorithms
that are not based on an index over the indexed dataset created by the SpatialHadoop.

Finally, one of the biggest problems in deploying a machine learning model is the lack of labeled
data. This lack is even more noticeable in Big Data environments as it is more difficult to point
them out due their large volume. In the literature there are many mechanisms for labeling data
depending on their application but there are no mechanisms for the efficient labeling of large
volumes of data. Thus, in the fifth contribution, a classifier was created based on skyline
questions. The use of skyline allows the creation of decision boundaries consisting of a small
number of points.

Keywords: Skyline, Optimization, Temporal Skyline, Reverse Skyline, GIS, Maritime Data
Technology and Applications, MapReduce, SpatialHadoop, Big Data, Classification, Decision
Boundary

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

vii

GREEK ABSTRACT

(Εκτεταμένη Περίληψη)

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Διδακτορική Διατριβή

Του Χρήστου Καλύβα-Κασοπατίδη

Οι ραγδαία αναπτυσσόμενες τεχνολογίες δημιουργούν ολοένα και μεγαλύτερες ανάγκες για την
ανάλυση και την αξιοποίηση των υφιστάμενων δεδομένων. Πολλοί οργανισμοί βασίζουν την
βιωσιμότητα τους στην ανάλυση των δεδομένων της αγοράς αλλά και των δεδομένων που
παράγουν οι ίδιοι είτε μέσω της εξαγωγής χρήσιμων στατιστικών και δεικτών απόδοσης είτε
αξιοποιώντας τα κατά τη διαδικασία λήψης αποφάσεων όπου μια από τις σημαντικότερες
παραμέτρους στην ανάλυση τους είναι η παράμετρος του χρόνου. Για να μπορέσει να
αποθηκευτεί και να αναλυθεί ο πολλές φορές τεράστιος όγκος δεδομένων δημιουργήθηκαν νέοι
μέθοδοι διαχείρισης και ανάλυσης δεδομένων. Αυτό έγινε ιδιαίτερα αισθητό με την έλευση των Big
Data. Οι τεχνολογίες που αναπτύχθηκαν έδωσαν την ευκαιρία της επέκτασης των μεθόδων που
υπήρχαν για τα συμβατικά δεδομένα αλλά και την δημιουργία νέων μεθόδων, τεχνικών και
συστημάτων ώστε να μπορούν να παρέχουν την ίδια ή ακόμα και καλύτερη ανάλυση. Καθώς
όμως η τεχνολογία προχωράει με την έλευση του IOT ο όγκος των δεδομένων αλλά και οι ροές
δεδομένων αυξάνονται ραγδαία. Οι ροές αυτές θα πρέπει να αποθηκευτούν να αναλυθούν και να
συνδυαστούν με άλλα δεδομένα ώστε να εξαχθούν χρήσιμες πληροφορίες. Με την έλευση του
ΜL/AI ολοένα και περισσότερα διαδικασίες μπορούν να αυτοματοποιηθούν παράγοντας
αυτόματα καινούργια γνώση. Ένα από το κυριότερα προβλήματα που υπάρχουν όμως είναι η
έλλειψη επισημασμένων δεδομένων.

Ένα από τα πιο διαδεδομένα ερωτήματα που υπάρχουν για την εξαγωγή συμπερασμάτων από
τα δεδομένα είναι τα ερωτήματα κορυφογραμμής. Τα ερωτήματα κορυφογραμμής ανήκουν στην
κατηγορία των multi-objective optimization προβλημάτων και έχουν ως στόχο την ανάκτηση ενός
συνόλου απαντήσεων που ικανοποιεί κάποια συνήθως αντικρουόμενα κριτήρια. Η χρήση τέτοιου
τύπου ερωτημάτων είναι πάντα χρήσιμη καθώς έχει πολλά πεδία εφαρμογής και μπορεί να
βοηθήσει ιδιαίτερα στην διαδικασία λήψης αποφάσεων όπου υπάρχουν πολλαπλά κριτήρια για
την επίτευξή ενός στόχου και η βέλτιστη λύση μπορεί να μην είναι μοναδική. Μέχρι στιγμής η
βιβλιογραφία στο συγκεκριμένο ερευνητικό πεδίο εμφανίζει ένα σημαντικό πλήθος εργασιών οι
οποίες κατά κύριο λόγο ασχολούνται με συμβατικά δεδομένα και υπάρχει χώρος για έρευνα στο
πεδίο των Big Data.

Λαμβάνοντας υπόψη όλα τα παραπάνω η διατριβή αυτή έχει ως στόχο την πραγματοποίηση μιας
εκτενούς ανασκόπησης στον χώρο των ερωτημάτων κορυφογραμμής, την ανίχνευση των
προδιαγραφών και των αναγκών σε δεδομένα ενός πληροφοριακού συστήματος για θαλάσσιο
περιβάλλον, την ανάλυση της παραμέτρου του χρόνου στα ερωτήματα κορυφογραμμής, την
ανάπτυξη ερωτημάτων κορυφογραμμής σε δενδρικές δομές ειδικά σχεδιασμένες για Big Data και
την δημιουργία ενός ταξινομητή (classifier) για μεγάλα δεδομένα.

Πιο αναλυτικά η πρώτη συνεισφορά είναι μια εκτενής ανασκόπηση του χώρου των ερωτημάτων
κορυφογραμμής όπου θα παρουσιαστεί η οικογένεια των ερωτημάτων κορυφογραμμής με όλες
τις παραλλαγές τους, την διαφοροποίηση ανάμεσα στις μεθόδους που βασίζονται η όχι σε
ευρετήριο καθώς και τις εφαρμογές που έχουν τα ερωτήματα κορυφογραμμής για την επίλυση
πληθώρας προβλημάτων. Μέσα από αυτή της ανασκόπηση παρουσιάζεται πως τα ερωτήματα

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
viii

κορυφογραμμής εξελίχθηκαν και ανοίγει ο δρόμος για την εύρεση τομέων οι οποίοι μπορούν να
διερευνηθούν περαιτέρω.

Στην δεύτερη συνεισφορά θα δούμε τις διάφορες πτυχές των δεδομένων στο πλαίσιο ενός
θαλάσσιου πληροφοριακού συστήματος. Η ανάλυση που έγινε αφορούσε την ανασκόπηση του
χώρου και των δεδομένων που χρειάζονται για την υλοποίηση ενός θαλάσσιου πληροφοριακού
συστήματος καθώς και τους περιορισμούς που υπάρχουν στην επεξεργασία και την διακίνηση
των δεδομένων αυτών. Μέσω της συγκεκριμένης έρευνας έγινε φανερή η έννοια των Big Data,
ανιχνευθήκαν μεγάλα σύνολα δεδομένων τα οποία είναι διαθέσιμα για ανάλυση και είδαμε ότι η
παράμετρος του χρόνου είναι πολύ σημαντική για την πραγματοποίηση αναλύσεων στα
δεδομένα. Επίσης είδαμε του βασικότερους περιορισμούς στην διακίνηση και επεξεργασία των
δεδομένων.

Στην τρίτη συνεισφορά μελετάτε ο τρόπος με τον οποίο μπορεί να ενσωματωθεί η διάσταση του
χρόνου στα ερωτήματα κορυφογραμμής. Η διάσταση του χρόνου είναι μια σημαντική παράμετρος
στην ανάλυση των δεδομένων και στην πραγματοποίηση επερωτήσεων η οποία πολλές φορές
δεν λαμβάνεται υπόψη. Με αυτήν της έρευνα θα δούμε ότι η παράμετρος του χρόνου μπορεί να
επηρεάσει τα αποτελέσματα ενός ερωτήματος κορυφογραμμής κάτι που καταδεικνύει πως
χρειάζεται να γίνει ιδιαίτερη ανάλυση ως προς την διάσταση του χρόνου και να
παραμετροποιηθούν κατάλληλα το ερώτημα κορυφογραμμής ώστε να ενσωματωθεί η διάσταση
του χρόνου σε αυτά.

Η τέταρτη συνεισφορά εξετάζει την εφαρμογή των ερωτημάτων κορυφογραμμής στον χώρο των
Big Data και συγκεκριμένα του SpatialHadoop. To SpatialHadoop είναι μια επέκταση του
συμβατικού Hadoop το οποίο προσπαθεί να ενσωματώσει τις δενδρικές δομές που υπάρχουν για
τα συμβατικά δεδομένα στο Hadoop. Μέσω αυτής της ανάλυσης μπορούμε να δούμε την
συμπεριφορά των αλγορίθμων κορυφογραμμής που δεν χρησιμοποιούν κάποια ευρετηρίαση
αλλά και αυτών που χρησιμοποιούν σε περιβάλλοντα Big Data και πως αποδίδουν οι υβριδικοί
συνδυασμοί που χρησιμοποιούν αλγόριθμους επερωτήσεων κορυφογραμμής που δεν βασίζονται
σε ευρετήρια στο ευρετηριασμένο σύνολο δεδομένων που δημιουργεί το SpatialHadoop.

Τέλος ένα από τα μεγαλύτερα προβλήματα που υπάρχουν κατά την διάρκεια ανάπτυξης ενός
μοντέλου μηχανικής μάθησης είναι η ελλείψει επισημασμένων δεδομένων. Η έλλειψη αυτή γίνεται
ακόμα πιο αισθητή σε περιβάλλοντα Big Data καθώς εκεί λόγω όγκου είναι πιο δύσκολη η
επισήμανση τους. Στην βιβλιογραφία υπάρχουν πολλοί μηχανισμοί επισήμανσης δεδομένων
ανάλογα με την εφαρμογή τους αλλά δεν υπάρχουν όμως μηχανισμοί για την αποδοτική
επισήμανση μεγάλου όγκου δεδομένων. Στην πέμπτη συνεισφορά δημιουργήθηκε ένας
μηχανισμός επισήμανσης δεδομένων που βασίζεται στο ερωτήματα κορυφογραμμής. Η χρήση
ερωτημάτων κορυφογραμμής επιτρέπει την δημιουργία των ορίων αποφάσεως αποτελούμενων
από μικρό αριθμό σημείων.

Λέξεις Κλειδιά: Ερωτήματα Κορυφογραμμής, Βελτιστοποίηση, χρονικά Ερωτήματα
Κορυφογραμμής, Ανάστροφα Ερωτήματα Κορυφογραμμής, Γεωγραφικά Πληροφοριακά
Συστήματα, Θαλάσσια Δεδομένα-Τεχνολογίες-Εφαρμογές, MapReduce, SpatialHadoop, Μεγάλα

Δεδομένα, Ταξινόμηση, Όρια Αποφάσεων.

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Professor Manolis Maragoudakis for
his support, encouragement and guidance during this study. I would also like to thank Dr.
Theodoros Tzouramanis for his guidance and support on my early stages of my Phd studies.

A special thanks goes to my wife Eirini for being always next to me, in good times and bad.

I want to sincerely thank every person that helped and contributed on this long journey.

Finally, I would like to thanks my parents Vasilis, Eleni and my brother Alexandros for the moral
and financial support they offered me during my studies as long as the love for sciences and
gaining knowledge.

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
x

Dedicated to my family

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

xi

CONTENTS

1. INTRODUCTION ... 1

1.1. Identifying Optimal Solutions.. 1

1.2. Optimization Approaches ... 1

1.3. A Multi-Objective Optimization Example ... 2

1.4. The Case of Skyline Queries .. 3

1.5. Contributions... 4

1.6. Thesis Structure... 6

2. LITERATURE REVIEW ... 7

2.1. An Introductory Example .. 7

2.2. The Skyline Problem and its Properties .. 8

2.3. Fundamental Skyline Algorithms .. 10

2.3.1. Block Nested Loop (BNL) .. 10

2.3.2. Divide & Conqueror (D&C).. 11

2.3.3. Bitmap ... 12

2.3.4. Index ... 13

2.3.5. Nearest Neighbor (NN) ... 14

2.3.6. Branch and Bound Skyline (BBS) ... 16

2.3.7. Sort Filter Skyline (SFS) ... 17

2.3.8. Linear Elimination Sort for Skyline (LESS) ... 18

2.3.9. Sort and Limit Skyline Algorithm (SaLSa) .. 19

2.3.10. Summary .. 20

2.4. Skyline Family .. 22

2.4.1. Constrained Skyline Queries ... 22

2.4.2. Dynamic Skyline Queries (DSQ) .. 23

2.4.3. Reverse Skyline Queries (RSQ).. 26

2.4.4. Group-by and Join Skyline Query ... 28

2.4.5. Top-k Skyline Query .. 31

2.4.6. Thick Skyline Query ... 31

2.4.7. K-representative and Distance-based Representative Skyline Queries ... 32

2.4.8. ε-skyline .. 34

2.4.9. Enumerating and K-dominating Queries .. 35

2.4.10. k-skyband Query ... 37

2.4.11. Summary .. 37

2.5. Applications ... 39

2.5.1. Skyline Queries Over Temporal Data .. 39

2.5.2. Parallel and Big Data Skyline Computation .. 40

2.5.3. Data mining ... 42

2.5.4. Other Applications .. 42

3. ONLINE SOURCES OF GEOSPATIAL DATA ... 51

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
xii

3.1. Introduction .. 51

3.2. Examples of Historical & Modern Maritime Information Systems .. 51

3.3. Setting Out the Problem and Applying the Solution .. 51

3.4. Maritime Geospatial Data Classification .. 52

3.5. Data Sources ... 54

3.5.1. Vessel Tracking and Monitoring Services ... 54

3.5.2. Vessels and Shipping Companies Data ... 55

3.5.3. Protected and Other Sensitive Areas ... 56

3.5.4. Marine Accidents .. 58

3.5.5. Flags of Convenience .. 59

3.5.6. Port State Control Data .. 59

3.5.7. Anti-shipping Activities ... 59

3.5.8. Nautical Weather Forecast and Climate Data .. 59

3.5.9. Natural Hazards .. 60

3.5.10. Navigational Aid Systems ... 61

3.5.11. Sea Ports Locations and Facilities .. 61

3.5.12. Essential Naval Cartographic Data ... 61

3.5.13. Maritime Borders, Coastline and Land Areas .. 61

3.5.14. Naval Bathymetry Data Maps .. 62

3.5.15. Tides, Eddies and Sea Levels .. 62

3.5.16. Various Other Geospatial Data .. 63

3.5.17. Satellite Imagery .. 64

3.5.18. Sources that Reach Beyond the Maritime Domain ... 64

3.5.19. Marine Conservation Organizations .. 66

3.5.20. Restrictions Applying to Use of Data ... 66

3.6. Conclusions and Observations .. 68

4. SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA .. 70

4.1. Introduction .. 70

4.2. Problem Formulation .. 71

4.3. Skyline Query Processing Over Temporal Data .. 73

4.3.1. The Temporal Skyline Query .. 73

4.3.2. The Dynamic Temporal Skyline Query ... 75

4.3.3. The Reverse Temporal Skyline Query... 75

4.4. Experimental Study ... 77

4.5. Conclusions and Future Work ... 79

5. SKYLINE QUERIES OVER SPATIALHADOOP ... 82

5.1. Introduction .. 82

5.2. Preliminaries ... 83

5.2.1. MapReduce... 83

5.2.2. Hadoop and Spatial Awareness .. 85

5.2.3. SpatialHadoop .. 85

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

xiii

5.3. A sort-based Skyline algorithm in SpatialHadoop ... 87

5.4. A Reverse Skyline Algorithm in SpatialHadoop ... 90

5.5. Experiments .. 94

5.5.1. The case of the SSAS algorithm .. 96

5.5.2. The case of the SRSAS algorithm .. 104

5.6. Conclusions and Future Work ... 105

6. SKYLINE-BASED DECISION BOUNDARY ESTIMATION ... 107

6.1. Introduction .. 107

6.2. Methodology ... 108

6.2.1. Define the Origin Points.. 108

6.2.2. Identifying Skyline Points .. 109

6.2.3. Decision Boundary Construction .. 111

6.2.4. Classification Task ... 113

6.3. Experiments .. 113

6.3.1. Synthetic Dataset I .. 115

6.3.2. Synthetic Dataset II ... 116

6.3.3. Synthetic Dataset III .. 118

6.3.4. Real Dataset .. 119

6.4. Conclusions and Future Work ... 121

7. CONCLUSIONS AND FUTURE DIRECTIONS .. 123

7.1. Conclusions ... 123

7.2. Future Directions... 126

BIBLIOGRAPHY .. 128

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
xiv

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

xv

LIST OF FIGURES

Figure 1: Optimization Approaches ... 2

Figure 2: Top 10 Best Jobs in America in 2020 .. 3

Figure 3: Skyline of a set of houses .. 8

Figure 4: Transitivity dominance. .. 9

Figure 5: Incomparable points. .. 9

Figure 6: BNL without temporary file. .. 11

Figure 7: BNL with temporary file. ... 11

Figure 8: Divide and conqueror ... 12

Figure 9: Merging process ... 12

Figure 10: Bushy merge tree ... 12

Figure 11: Regions after 1st NN query. ... 16

Figure 12: Regions after 2nd NN query. ... 16

Figure 13: Dataset indexed by the R-tree ... 17

Figure 14: Minimum bounding rectangles (MBRs) .. 17

Figure 15: Chronological order of fundamental skyline algorithms. .. 22

Figure 16: Constrained Skyline. .. 23

Figure 17: Skyline with constrains. .. 23

Figure 18: Initial position of houses and their prices in a coordinate system with origin point the metro

station. ... 24

Figure 19: Dynamic skyline. .. 25

Figure 20: Convex Hull of the house-metro station dataset. ... 26

Figure 21: Voronoi diagram of the house-metro station dataset. .. 26

Figure 22: Global skyline and range queries... 27

Figure 23: Reverse skyline. ... 27

Figure 24: Group-by skyline. ... 30

Figure 25: Dense, hybrid and outlying skyline points. ... 32

Figure 26: Dominance region of H7’ with ε=0.01 34

Figure 27: ε-skyline with ε=-0.01 34

Figure 28: Exclusive dominance region of H7. .. 36

Figure 29: Skyline after removing H7 (final step of algorithm .. 36

Figure 30: (0, 1, and 2)-skyband query. .. 37

Figure 31: Chronological order of basic skyline queries. .. 39

Figure 32: The skyline of the dataset. ... 70

Figure 33: The dynamic temporal skyline of the dataset of Table 26 with regard to a query point q in the

time instant 5. .. 72

Figure 34: The reverse temporal skyline of the dataset of Table 26 with regard to a query point q in the

time instant 5. .. 73

Figure 35: The dataset of Figure 32 organized in four MBRs. ... 74

Figure 36: The 3D R-tree index size in a number of nodes, (a) for the synthetic dataset, and (b) for the

real dataset. ... 77

Figure 37: (a) The time cost, and (b) the Ι/Ο cost, in both cases for executing the temporal skyline query

algorithm for the synthetic dataset. ... 78

Figure 38: (a) The time cost, and (b) the Ι/Ο cost, in both cases for executing the temporal skyline query

algorithm for the real dataset. .. 78

Figure 39: The time cost, and (b) the Ι/Ο cost, for executing the dynamic temporal skyline query algorithm

for the synthetic dataset. ... 79

Figure 40: (a) The time cost, and (b) the Ι/Ο cost, for executing the reverse temporal skyline query

algorithm for the synthetic dataset. ... 79

Figure 41: Hadoop execution workflow as presented in [31]. ... 83

Figure 42: MapReduce job Execution. .. 84

Figure 43: SpatialHadoop execution workflow as in [31]. ... 86

Figure 44: Point access order with Manhattan and Euclidian distance measure. 87

Figure 45: SpatialHadoop's R-tree partitioning approach. .. 90

Figure 46: Local global skylines in SRSAS algorithm. .. 91

Figure 47: Execution time of SKY-FLT and SAS over the 100M datasets. .. 96

Figure 48: Execution time of SKY-FLT and SAS over the 2.7B datasets. .. 97

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
xvi

Figure 49: Execution time of SKY-FLT and SAS in Min-Min mode over the uniform datasets................... 97

Figure 50: Execution time of SKY-FLT and SAS in all modes over the Uniform datasets. 98

Figure 51: Execution time of SKY-FLT and SAS in Min-Min mode over the real datasets. 98

Figure 52: Execution time of SKY-FLT and SAS in all modes over the Real datasets. 99

Figure 53: Execution time of SKY-FLT and SAS in Min-Min mode over the correlated datasets............... 99

Figure 54: Execution time of SKY-FLT and SAS in Min-Min mode over the Anti-Correlated datasets. ... 100

Figure 55: Total number of points in the output of CellFilter as a percent of the initial dataset in min-min

mode. ... 100

Figure 56: Total number of points in the output of CellFilter. .. 101

Figure 57: Execution time of SAS to compute the Skyline in distributed and pseudo-distributed mode over

Uniform dataset in min-min mode.. 101

Figure 58: Execution time of SAS to compute the Skyline in distributed and pseudo-distributed mode over

the real dataset in min-min mode. ... 102

Figure 59: Execution time of SAS to compute the Skyline in distributed and pseudo-distributed mode over

the correlated dataset in min-min mode. ... 102

Figure 60: Execution time of SAS to compute the Skyline in distributed and pseudo-distributed mode over

an anti-correlated dataset in min-min mode. ... 103

Figure 61: Execution time of SAS to compute the Skyline in distributed and pseudo-distributed mode over

all datasets in min-min mode. .. 103

Figure 62: Total number of points in the output of CellFilter as a percent of the initial dataset. 104

Figure 63: Execution time of SAS and SRSAS in distributed mode over all datasets. 104

Figure 64: Execution time of SRSAS to compute the Reverse Skyline in distributed mode over all

datasets. .. 105

Figure 65: (a) The case of Single Skyline; (b) The case of Double Skyline .. 109

Figure 66: (a) The case of Opposite Skyline; (b) The case of smart Skyline. ... 110

Figure 67: (a) Convex dataset; (b) banana dataset. ... 111

Figure 68: (a) The case of SKY-Nearest Neighbor (SKY-NN) approach; (b) The case of parzen-window

approach. ... 111

Figure 69: The case of polynomial curve fitting approach... 112

Figure 70: (a) The Skyline points in comparison to the SVM points; (b) The separating line produced from

both Skyline sets. ... 112

Figure 71: The Single Skyline on the Synthetic Dataset I. .. 115

Figure 72: The Single Skyline on the Synthetic Dataset II. ... 117

Figure 73: The Dataset III. ... 118

Figure 74: The Real Dataset. .. 119

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020

xvii

LIST OF TABLES

Table 1: Dataset of houses .. 7

Table 2: Math Notations... 10

Table 3: Bitmapped dataset .. 13

Table 4: Index approach .. 14

Table 5: To-Do list based on NN query.. 16

Table 6: Heap contents of BBS .. 17

Table 7 : pre-sorted Dataset.. 18

Table 8: pre-sorted Dataset .. 20

Table 9: Classification of progressive algorithms. ... 21

Table 10: Classification of skyline query algorithms. .. 21

Table 11: 3-dimensional dataset of the house-metro station example. .. 24

Table 12: Original and dynamic dataset. ... 25

Table 13: House-metro station dataset with No. of bedrooms. ... 29

Table 14: Group-by Skyline. .. 29

Table 15: Specific algorithms for each query type. ... 38

Table 16: Skyline queries approaches ... 39

Table 17: MapReduce-based skyline query computation approaches. .. 41

Table 18: State of the art subspace skyline algorithms. ... 44

Table 19: Fundamental algorithms on parallel and distributed skyline computation. 46

Table 20: Fundamental algorithms on continuous skyline retrieval. .. 48

Table 21: Fundamental algorithm in In-route and road network skyline computation. 48

Table 22: Fundamental algorithms in skyline cardinality estimation. .. 50

Table 23: Data classes with their most commonly seen formats. .. 54

Table 24: Most notable data sources that reach beyond the martime domain. .. 66

Table 25: The most-commonly-used licenses for free and open-source data. 67

Table 26: A dataset with Temporal parameters. .. 70

Table 27: Processing steps of the example execution of Algorithm 1 .. 75

Table 28: Time needed to compute the decision boundaries. ... 114

Table 29: Accuracy with Python and R framework. .. 114

Table 30: Total time needed on average to perform a classification task on the Synthetic Datasets. 115

Table 31: Total time needed to perform a classification task on the Real Dataset. 115

Table 32: Single Skyline on Synthetic Dataset I. .. 116

Table 33: Double Skyline on Synthetic Dataset I. .. 116

Table 34: Opposite Skyline on Synthetic Dataset I.. 116

Table 35: Smart Skyline on Synthetic Dataset I. .. 116

Table 36: Polynomial Curve Fitting on Synthetic Dataset I. .. 116

Table 37: SKY-SVM on Synthetic Dataset I. ... 116

Table 38: Single Skyline on Synthetic Dataset II .. 117

Table 39: Double Skyline on Synthetic Dataset II. ... 117

Table 40: Opposite Skyline on Synthetic Dataset II... 117

Table 41: Smart Skyline on Synthetic Dataset II. ... 117

Table 42: Polynomial curve fitting on Synthetic Dataset II. .. 117

Table 43: SKY-SVM on Synthetic Dataset II. .. 118

Table 44: Single Skyline on Synthetic Dataset III. .. 118

Table 45: Double Skyline on Synthetic Dataset III. .. 118

Table 46: Opposite Skyline on Synthetic Dataset III.. 119

INTELLIGENT BIG DATA MANAGEMENT

Christos Kalyvas-Kasopatidis – October 2020
xviii

Table 47: Smart Skyline on Synthetic Dataset III. .. 119

Table 48: Polynomial curve fitting on Synthetic Dataset III. ... 119

Table 49: SKY-SVM on Synthetic Dataset III. ... 119

Table 50: Single Skyline on Real Dataset. .. 120

Table 51: Double Skyline on Real Dataset. .. 120

Table 52: Opposite Skyline on Real Dataset. ... 120

Table 53: Smart Skyline on Real Dataset. .. 120

Table 54: Polynomial curve fitting on Real Dataset. ... 120

Table 55: SKY-SVM on Real Dataset. ... 121

Table 56: Overall PhD Thesis Contributions .. 124

CHAPTER 1: INTRODUCTION

Christos Kalyvas-Kasopatidis –October 2020
1

1. INTRODUCTION

Living in the Information Age allows almost everyone to have access to a large amount of
information and options to choose from to fulfill their needs. In many cases, the amount of
information available and the rate of change may hide the optimal and truly desired solution. This
reveals the need of a mechanism that will highlight the best options to choose among every
possible scenario. Based on this the skyline query, which can be considered as a multi-objective
optimization approach in database systems, was proposed. This decision support mechanism is
based on Pareto optimality and retrieves the best options of a dataset by identifying the objects
that present the optimal combination of the characteristics of the dataset. In this PhD Thesis we
reason about data, big data management and supervised learning, which all of them can be part
of decision support system.

1.1. Identifying Optimal Solutions

The rapid growth of decision support systems and the increasing size of multidimensional data
lead researchers to seek for new efficient methods for data processing to retrieve useful insights.
In many cases solving problems that require to identify the optimal solutions among multiple
contradicting criteria is a difficult task since there may not exist a single optimal solution, or the
computation of all the possible outcomes may be inefficient. Among the various approaches in
multi-objective optimization some of these analytical methods may be rank-aware approaches
that contain scoring functions. However, in many cases it may not be desired to define a
cumulative scoring function to retrieve the best results of a dataset, since this will reduce the
potential multi-dimensional comparisons of data to a single scalar value.

Taking this into account, Pareto optimality deflects from the strict ranking approach imposed by
the rank-aware approaches that contain scoring functions and is directed to an approach that is
more understandable by humans. This is different for example to top-k queries in database
systems, where specific ranking functions and criteria are used, skyline queries assume that every
user has a series of preferences over the attributes of data. Those preferences indicate what
user’s likes and dislikes (e.g. “I like the sea more than the mountains” or “I prefer to go vacations
on an island rather than on a mountain). All the preferences are considered equivalent and this
will help to discard the items of the dataset that will not be preferred by anyone. This results in a
small subset that contains the most interesting and preferred items based on all the preferences
of all users. This set will be the skyline set or an equivalent to the Pareto optimal set.

In recent years, skyline query processing has become an important issue in database research
for extracting interesting objects from multi-dimensional datasets. The skyline query processing
is applicable in many applications that require multi-criteria decision making without using
cumulative functions to define the best results but based on user’s preferences. The skyline
operator filters out a set of interesting points based on a set of evaluation criteria from a potentially
large dataset of points. A point is considered interesting, if there is not any other point better than
that in all the evaluation criteria. The popularity of the skyline operator is mainly due the
paradigm’s simplicity and its applicability on multi-criterion decision support with respect to user
preferences.

1.2. Optimization Approaches

In many cases the optimization problems can be classified in two categories named single and
multi-objective optimization problems. The earliest approaches that tried to solve multi-objective
problems tried to transfer them into single objective problems and then solve them with the classic
approaches. In this case there was the need to define the degree of each objective function. One
case could be the use of a linear function like the weighted sum method of all the objective
functions. A categorization of Multi-objective trade-off optimization methods can be as in the
following Figure 1 where the Multi-objective optimization methods can be categorized to apriori,
interactive and posteriori. In the priori approach the decision-maker defines his/her preferences
in advance while in posteriori he/she identifies a set of optimal solutions to choose from. The
interactive approach allows to the decision-maker to interactively identify the desired solution. In
the interactive approaches there are solutions that provide exact and approximate solutions. In
the approximate solutions there are methods that are based on the dominance like the Pareto

CHAPTER 1: INTRODUCTION

Christos Kalyvas-Kasopatidis –October 2020
2

optimality or the skyline set of points, where the methods identifies a set of candidate
solution/points. Among them he/she choose the one that maximizes his desired preferences. One
of the most common algorithms to identify the set of Pareto points is the NSGA-II [1] in the scope
of Pareto optimality and the BBS [2, 3] algorithm in the skyline queries.

FIGURE 1: Optimization Approaches

1.3. A Multi-Objective Optimization Example

An example of a multi-objective optimization problem could be the case were and individual would
like to choose the best job Figure 2 that he would like to apply based on certain preferences. In
the following example, the top 10 jobs are presented along with a median base salary for each
job, a satisfaction factor and the number of job openings for each one of them. If an individual
would like to select his dream job, he could do it in numerous ways by considering single or
multiple criteria. Based on a single optimization criterion he could simply sort the jobs based on
the satisfaction factor or the number of job openings. With that in mind he could select the Strategy
Manager that has the greatest satisfaction factor or the Software Engineer which has the greatest
number of job openings. If an applicant would like to select a job based on more than one criterion
the problem becomes a multi-objective optimization problem and thus a little more complicated.
Note that in this case there might not be a single optimal solution but rather a set of optimal
solutions.

Furthermore, the optimization criteria might be contradicting, like the case of the base salary and
the job satisfaction, where in some cases jobs with high salary have a low satisfaction factor. In
this case an optimal combination would indicate the Strategy Manager if our optimization criteria
are based on maximizing the salary and job satisfaction and the Strategy Manager, Business
Development Manager, Java Developer, Speech Language Pathologist and Software Engineer,
if the optimization criteria are to maximize the job satisfaction and job openings. For example, the
Strategy Manager has the largest salary and satisfaction factor combined. On the other hand, a
Software Engineer might be a good solution in comparison to the Strategy Manager since, despite
the lowest satisfaction factor it has the most job openings.

CHAPTER 1: INTRODUCTION

Christos Kalyvas-Kasopatidis –October 2020
3

FIGURE 2: Top 10 Best Jobs in America in 2020

1.4. The Case of Skyline Queries

The computation of the skyline in database research is equivalent to determining the maximal
vector problem in computational geometry [4], or equivalently the Pareto optimal set [4, 5]
problem in operations research. The maximal vector problem is to find the subset of a set of
vectors such that each one of them is not dominated by any other vector from that set. Considering
that those vectors are points in a k-dimensional space, then the maximal vectors [6] can also be
called admissible points [7] and the maximal set of vectors as Pareto set. This class of problems
was extensively studied by the mathematical community in the 1960s.

As mentioned in [8] the skyline problem considers that the dataset cannot fit completely in the
main memory (RAM) in order to be processed. This is more likely to be the case in modern
database systems, where the dataset is retrieved from an external memory such as disks.
Methods that do not rely on external memory are DD&C [4], LD&C [6] and FLET [9].

Authors in [10] proved that the initial algorithms, proposed for maximals [4, 5], which are based
on the divide-and-conquer approach [11] (that divides the initial problem in equal sub-problems
and then tries to solve each one separately, combining the results in the last step of the process)
have quite bad performance with respect to the dimensionality of the initial problem. Additionally,
these algorithms assume that the whole dataset fits into memory and they do not account for
memory limitations and thus cannot be directly applied in a database scenario. Such kind of
approaches suffers for the “curse of dimensionality” [12] which was first used by Bellman [13] and
is often used to indicate that high dimensionality causes problems in resolving due to increased
computational cost. This problem was observed and solved with the introduction of the skyline
operator [8], which proposes a divide and conquer algorithm suitable for external memory and
shows how it can be integrated into a database system.

Through the years many algorithms were proposed to efficient compute the skyline query problem
either by using and indexed based approach or without using any index. Such an algorithm is he
BBS [2, 3] which is an index-based algorithm that used the R-tree and a Branch and Bound
approach. A non-index-based approach is the BNL [8] algorithm, which retrieves the whole
dataset to identify final answer. Additionally, a large number of variations of the original skyline
algorithm were proposed with the most common to be the Reverse [14] Skyline queries. Some
indicative applications areas for which skyline queries [8] are useful are customer information
services, decision support and decision-making systems. For instance, a skyline query can be
used by travel agencies to find a reasonable priced hotel near the sea or to find good
salespersons, which have low salary [8]. Additionally, reverse skyline queries [14] can assist in
market research applications to find if a specific product is appealing to consumers or to identify
the best location for a new branch store. Also it can be applied in economics [15], where it can

CHAPTER 1: INTRODUCTION

Christos Kalyvas-Kasopatidis –October 2020
4

support microeconomic data mining or even in continuous data stream environments [16] such
as stock exchange systems. Additionally, it can be used on location-based systems (LBS) in order
to identify the shortest route to a destination or the closest point of interest among many [17, 18].
Another application is distributed query optimization. This can be particularly useful in cloud
architectures, where data are scattered among servers or in the case where Quality of (web)
services [19] is the primary goal. Skyline queries can also be used to focus on a subspace of
attributes [20] in order to identify the skyline on a small subset of the dimensions of the dataset
that are defined. Skyline queries have also applications in computer security and especially on
problems concerning privacy [21] and authentication [22]. Skyline computation in metric space
[23] can assist the DNA searching problem in bioinformatics. Finally, skyline queries are
applicable in a wide variety of data types such as partial ordered [24] and incomplete [25] or
uncertain data [26, 27].

Many similar problems and operators related with skyline queries have been studied in the
literature. For example, the Top-K query [28] retrieves the best K objects that minimize a specific
preference function. The difference from skyline query is that the output changes according to a
user-specified input function and the retrieved points are not necessary part of the skyline. The k-
nearest neighbor (k-NN) query [29], in another example, requires the existence of a query point
p and outputs the k objects closest to p, in increasing order of their distance. In this case the
difference from the skyline query is that k-NN query retrieves answers according to the proximity
of a given point and not based on domination to other points. Finally, convex hull [30, 4] contains
the points that are enclosed by the polygon that is defined from the minimum and maximum
skyline (i.e. minimizing and maximizing values based on the evaluation criteria) of the given set
of points. The main difference from a skyline is that it defines an area of interest rather than a line
with individual interesting points.

1.5. Contributions

The main contribution of this Thesis is focused on four different topics. The first topic is data-
related and analyzes the various data sources and requirements that a maritime information
system has. Following a new query method that considers the temporal properties of the dataset
is examined. Furthermore, a study was conducted to research new approaches in handling data
over big data environments and especially in SpatialHadoop [31]. Finally, a new approach was
studied on how to efficient estimate the decision boundaries in a classification process. More
specifically,

the study on the data sources and requirements of a maritime information system identifies the
type of data needed to implement such a system and surveys all the available data sources related
to them. In addition, examines the restrictions in processing and distributing those data and gives
useful insights about the real-life current needs in data processing. The key contributions of this
study are:

• Defines the classes of data, which are valuable resources towards the development,
performance tuning and efficient operation of maritime information systems

• Surveys both the open and restricted data sources that provide free-of-charge real-world
geospatial data.

• Outlined data sources in international scale and special cases of sources that are
significant for their propensity to provide specialized high-quality data relating to specific
areas of the planet, such as specific countries or continents.

• Provide a thesaurus of high-precision real-word geospatial data to serve the needs of
scientific research and development or educational work in the maritime information
systems domain for purposes such as operational or benchmarking and experimentation
or pattern recognition and data mining.

• Provides useful insights on the current needs in query processing, big data management
and applied machine learning that will assist in identifying open research topics in relation
to skyline queries.

CHAPTER 1: INTRODUCTION

Christos Kalyvas-Kasopatidis –October 2020
5

The study on temporal skylines proposes the extension of the skyline query for temporal data and
aims to demonstrate how the strategy for calculating the traditional skyline query is affected when
also considering the time factor. Algorithms for processing modified versions of the static,
dynamic, and reverse skyline queries for temporal data will be proposed. The key contributions of
this study are:

• A new dominant method for evaluating temporal data using the skyline operator,

• Algorithms for computing temporal skylines and two of its well-known variants,

• An extensive experimentation on the efficiency of the above algorithms for optimizing the
skyline query processing to handle temporal data.

The study of skyline and reverse skyline queries over SpatialHadoop proposes the extension of
the skyline queries over Hadoop and especially the customized Hadoop implementations that
intergrade non-distributed indexing methods like the r-tree. In summary, the key contributions of
this study are the following:

• The proposal of an alternative approach to the one proposed in [32] for skyline query
computation that will be used to enhance SpatialHadoop with reverse skyline queries.

• The proposal of a baseline algorithm for reverse skyline queries computation that
incorporates a multiple filtering mechanism to allow for the pruning of the dataset as soon
as possible.

• To perform experiments in large-scale synthetic, real datasets and different environments
in order to demonstrate the performance benefits.

Finally, the study of a binominal skyline classifier proposes the use of skyline queries in estimating
the decision boundaries in a classification problem. This approach best fits in Big Data
environments, where the performance of well-known classifiers degrades due to the large number
of data points. The key contributions of this study are:

• The decision boundaries are described by a small number of points even in a very large
dataset; thus, a classification process needs to perform only a small number of
computations to infer on the correct class.

• The decision boundaries can be independently computed, allowing for full parallelization
of the whole modelling process.

• It is applicable in a wide range of multi-dimensional environments and specifically in any
environment that its dataspace has an ordering, a feature that is inherited from the Skyline
query family.

• The model can be easily explained and visualized allowing for greater interpretability.

• The decision boundaries can be easily transferred, reused and easily re-optimized
allowing Transfer Learning.

Based on the work and results of this Thesis the following publications have been made:

Journal papers:

• Kalyvas, C., Kokkos, A., & Tzouramanis, T. (2017). A survey of official online sources of
high-quality free-of-charge geospatial data for maritime geographic information systems
applications. Information Systems, 65, 36-51.

• Kalyvas, C., & Maragoudakis, M. (2019). Skyline and reverse skyline query processing in
SpatialHadoop. Data & Knowledge Engineering, 122, 55-80.

• Kalyvas, C., & Maragoudakis, M. (2020). A Skyline-based Decision Boundary Estimation
Method for Binominal Classification in Big Data. Computation, 8.3:80.

Conference papers:

CHAPTER 1: INTRODUCTION

Christos Kalyvas-Kasopatidis –October 2020
6

• Kalyvas, C., Tzouramanis, T., & Manolopoulos, Y. (2017, April). Processing skyline
queries in temporal databases. In Proceedings of the Symposium on Applied
Computing (pp. 893-899).

• Kalyvas, C., & Maragoudakis, M. (2020, September). A Skyline-based Decision Boundary
Estimation Method for Binominal Classification in Big Data. In 2020 5th South-East Europe
Design Automation, Computer Engineering, Computer Networks and Social Media
Conference (SEEDA-CECNSM). IEEE.

Other:

• Kalyvas, C., & Tzouramanis, T. (2017). A survey of skyline query processing. arXiv
preprint arXiv:1704.01788.

1.6. Thesis Structure

The next chapter will present the fundamental background on the skyline queries. At first will be
presented the basic skyline algorithms that can be separated in indexed based and non-indexed
based. The following chapter will present the variations of skyline queries that consist the skyline
family and finally will be presented some of the applications of skyline queries.

The third chapter deals with the variety of the data and the various data sources. Through this
study we understand the overall complex nature of the data that are available from the various
open data sources and the need to build new efficient mechanisms to perform a numerous data
related task. Additionally, we studied the percent of open sources available for a maritime-based
information system and the various licenses applied.

The fourth chapter will deal with the temporal nature of skyline queries. Time is a fundamental
part of our everyday life and can provide useful insights if studied along with existing queries. In
this novel work we will present how time intervals can alter the final skyline result set.

In the fifth chapter we study the skyline queries in Big Data Environments. Since the volume of
data needed to be analyzed continuously increases new mechanisms were designed such as
Hadoop [33]. Furthermore, current indexing mechanisms like R-trees [34] were integrated in the
Hadoop ecosystem. One of these approaches is the SpatialHadoop, which among other
integrates a wide variety of classic index mechanisms.

The last chapter deals with efficient mechanisms to identify the decisions boundaries by exploiting
the properties of skyline queries. The benefits for using this method is the small computation cost
and the small number of points needed to describe the boundaries. Due to the small number of
points produced they can also further be used to refine the boundaries without many additional
computations.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
7

2. LITERATURE REVIEW

In this section we will present the skyline problem and its properties, the fundamental skyline
algorithms and their algorithmic approach in identifying the skyline set and the skyline family which
consists of the variations of the initial skyline algorithm. To demonstrate the numerous algorithmic
approaches for computing the skyline and the results produced by the various algorithms in the
skyline family, an introductory example is presented that will be used in the rest of this section.
This example considers how a typical skyline query is applied for a house purchase.

2.1. An Introductory Example

In this problem, it is supposed that a house might be of interest for someone if no other house is
both cheaper and closer to a metro-station. It is considered that as the distance of a house from
a point of highly (general) interest is decreased (in this case a metro-station), the objective value
(price) of the house is increased. So, the user tries to find the best money-to-value ratio that
satisfies his/her own preferences.

Table 1 presents a collection of eight houses that a user found to be sold in the vicinity of a
particular metro station. Each row in the table contains information, which can be used to identify
the most interesting houses. To make the example simple there exist only two numeric attributes
(dimension) for the houses. One attribute will be price and the other will be distance from the
metro-station. In this case first evaluation criterion is minimizing the distance from the metro-
station and the second one is minimizing price. Every evaluation criterion is considered as a single
dimension in the d-dimensional space.

TABLE 1: DATASET OF HOUSES

In Figure 3 is presented the skyline of the existing set of houses. Houses H2, H3, H4, H5, H10
and H11 do not belong on the skyline as they are no one’s top choice because for each one of
them exists at least one house, which is better in terms of price or distance. Houses H1, H6, H7,
H8 and H9 are the most interesting ones and so belong to the skyline. All the skyline points are
connected by a line. The skyline is essentially the boundaries of the union of dominance area of
all skyline point. To make it easily understood, the dominance area of a 2-dimensional point is the
North-East quadrant of the space that occurs by imaginably drawing a x-y axis system with origin
point the point of interest that is examined. The dominance area of a point will be inside the
dominance area of a second point, noted as the first point dominates the second one, only if the
first point is as good or better in all dimensions and better in at least one dimension based on the
evaluation criteria. The skyline would refer to those points that are not dominated by any other
point. In the house-metro station example “better” is minimizing the values.

House
price (in

thousand €)
Distance from

station (m)

H1 100 1500

H2 1400 500

H3 700 600

H4 1300 1000

H5 900 1300

H6 1600 100

H7 400 300

H8 200 1200

H9 1000 200

H10 500 1400

H11 500 900

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
8

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

FIGURE 3: SKYLINE OF A SET OF HOUSES

Skyline queries can also involve more than two dimensions. For instance, a buyer could be
interested in houses that are near to a metro-station, are cheap, have high square footage and
low communal costs. The main idea of the skyline operator is to give the user the overall view of
all interesting results and then let him/her to decide.

2.2. The Skyline Problem and its Properties

Skyline queries are a popular and powerful paradigm for incorporating user preferences into
relational queries and extracting interesting points from a set of points. The main difference from
the previous described problems is that instead of finding vectors or points, a skyline queries finds
the maximals over a set of tuples or the so-called set of Pareto-optimal tuples. Those tuples are
those that are not dominated by any other tuple in the same relation. One of the nice properties
of the Skyline of a given set Ds of points is that any set of evaluation criteria that arise from user’s
preferences can be modeled in the form of a monotone scoring function𝑓: 𝐷𝑖 → 𝑅, like L1 norm

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 or Euclidian norm 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2. If p ∈ Ds and minimizes (or maximizes) the

scoring function, then p is in the Skyline. That means, regardless how a user weights his/her
preferences towards price and distance of houses, s/he will find a house that matches his/her
preferences in the Skyline. In this example for simplicity, is assumed that skylines are computed
with respect to minimum (min) conditions (minimizing the scoring function) on all dimensions. In
particular, using the min condition, a point p dominates another point r if the coordinate of p on at
least one axe is smaller than the corresponding coordinate of r, and no larger on any of the
remaining axis. This implies that p is preferable to r according to any preference (scoring) function,
which is monotone on all attributes. Furthermore, for every point p in the Skyline, there exists a
monotone scoring function f such that p minimizes (or maximizes) that scoring function. This
ensures that the skyline will contain all the preferable houses no matter how users weight their
preferences. More formally, given a d-dimensional space D={d1 ,…, dd} and a set Ds of points that
belongs in D, a point p ∈ Ds can be represented as P = {p.d1,…,p.dj}, 1<=j<=d, where p.dj is the
value of the jth-dimension of the point. Assume that the dataset Ds contains the points Ds={p1

,…, pn}. The notation pi.dj ≥ 0, with 1 ≤ j ≤ d and 1 ≤ I ≤ n, is used to denote the j-th dimensional
value of the pi point. Assume that for each dimension dj there exists a total ordering relation,
denoted by ‘<’ or ‘>’ according to the user’s preferences. Without loss of generality in our examples
we will use the ‘<’ relation.

Definition 1: Dominate
Given points p, r ∈ Ds, p dominates r, denoted as p ≺ r, if and only if ∃ j∈ [1, d] such that p.dj<r.dj

and ∀ i ∈ [1, d]-{j}: p.di ≤ r.di ∎

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
9

Dominance has the property of a transitive relation. That is if p dominates r and r dominates t,
then p also dominates t (Figure 4). This is given more formally in the next proposition.

Proposition 1: Transitivity
Given points p, r, t∈ Ds, if p≺r and r≺t, then p≺t. ∎

Transitivity can be used to eliminate from further consideration a single point or a group of points
that are dominated by a point p, which in its turn is dominated by a new point r.

Through previous analysis, the domination between two points was explained. In contradiction if
two points p, r ∈ Ds do not dominate (denoted with ≺≻) each other simultaneously (that is p≺≻r

and r≺≻p) (Figure 5) are considered as incomparable in Ds, and denoted with p ∼Ds r or simply
p ~ r. More formally:

Proposition 2: Incomparability
Given two points p, r ∈ Ds, if p≺≻r and simultaneously r ≺≻ p, then p and r are incomparable on
Ds (i.e. p~r). This property helps in determining if one or more points can be skyline points. A
point in the skyline set must be incomparable to all other points of the set.

For example, consider the partitions on Figure 5 that could be derived from the original dataset
using a divide & conqueror approach. If we first examine partition 1 and identify at least a single
skyline point (in any location inside of it) then partition 4 could be completely pruned. Furthermore,
since partitions 3 and 2 are incomparable the skyline points in one partition do not affect the
skyline points in the other partition and there is no case that points from partition 3 dominate points
in partition 2 and vice versa.

x

 y

Ο

p

r

t

FIGURE 4: TRANSITIVITY DOMINANCE.

x

 y

Ο

p

r

4

1 2

3

FIGURE 5: INCOMPARABLE POINTS.

The skyline of a dataset of n points refers to those points that are not dominated (are
incomparable) by any other point. That is, a data point p is a skyline point if there does not exist
any point on the dataset that dominates p.

Definition 2: Skyline
A data point p ∈ Ds is a skyline point iff ∄ r∈ Ds such that r≺p. ∎

Notice that in order a point to be a skyline point it is not needed necessary to dominate another
point in the dataset. Additionally, the skyline set of a dataset is unique.

The math notations that will be used in the subsequent discussion are summarized in Table 2.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
10

Notation Definition
D d-dimensional space
Ds Input dataset for skyline computation (set of points)
d Number of dimensions of DS
di one dimension (1 ≤ i ≤ d)

p, r, t Data points
s Skyline point

p.di i-th dimension of the point p
q query

SDS Set of skyline points of DS
f Monotone function

p ≺ r
p ≺q r

p dominates r
p dominates r with regard to q

p ≺Ds r

p q
Ds q

p ε≺ r
p≺≻r
p ∼ r
SDS

q

p dominates r in the Dataset Ds
p dominates r in the Dataset Ds with regard to q
p ε-dominates r
p does not dominates r
p and r are incomparable
Skyline set S of dataset Ds with regard to the query point q

TABLE 2: MATH NOTATIONS

Apart from the formal definition of the skyline there are some additional related interesting
features. A skyline query tries to find an optimal solution for a user, based on multiple, and
sometimes conflicting, goals. For example, a user may be interested in buying an economic house
in Athens that is also close to a metro-station. In general case, houses that are near to a metro-
station are expected to be more expensive (because they are preferred by the majority of buyers),
therefore his/her preference for an economic house contradicts his preference for a house close
to the metro station. Additionally, there may be no single optimal answer (or answer set) that
satisfies exactly the preferences of the user, but rather there could be numerous answers that are
close in satisfaction of his/her preferences. In the same example, it is unlikely that there exists a
house that is the cheapest among all houses and is at the same location with the metro-station,
(because houses near the metro-station are preferred by most buyers and a house in a distance
will try to attract buyers with a lower price). Instead, one can expect to find in the skyline, among
others, a list of economic houses such that those nearer to the metro-station to be slightly more
expensive. Thus, users are typically looking for satisficing answers (decision making support). For
the same query, different users with similar personal preferences, which are not exactly satisfied
by a single optimal answer, may finally find different answers appealing. A person may be willing
to pay a little more to be closer to the metro-station and another may be contented with a cheaper
house as long as it is convenient to go by foot. In conclusion, it is important to present all
interesting answers that may fulfill a user's need.

2.3. Fundamental Skyline Algorithms

Existing skyline computation methods can be classified into two categories, depending on whether
(or not) to rely on pre-computed indexes on data. Index-based methods have better performance,
since they avoid accessing the entire data collection, but have limited applicability due to the
necessity of an indexed dataset. Additionally, multi-dimensional indexes like R-trees have their
own limitations as they suffer from the well-known curse of dimensionality. Not index-based
methods are more generic, in the sense that they do not require any specialized access structure
to compute the skyline.

2.3.1. Block Nested Loop (BNL)

Authors in [8] introduces a Block Nested Loop (BNL) algorithm, which like the naive nested-loop
algorithm repeatedly reads the set of tuples and eliminates points by finding other points in the
dataset that dominate them. BNL allocates a buffer (window) in main memory that contains a
number of points to sequentially track the dominance between them (Figure 6). The algorithm
reads the input data and each point is retrieved and compared against the points in the buffer. In
the first run of the algorithm no point will exist in the buffer so it is trivial to insert the first point in
the buffer. For the next runs if the point retrieved is dominated by at least one point in the buffer
there is no need to continue the comparison with the others points that maybe exist in it and the
point is discarded. Otherwise if the point is incomparable or dominates one or more points in the



CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
11

buffer, those points that are dominated are removed from the buffer and the new point is inserted.
Figure 6 illustrates the algorithm in its fifth iteration in which has processed houses H1, H2, H3,
H4, H5 from the input dataset. As seen points H4 and H5 are dominated by one or more points in
the buffer and so are discarded from further processing. For further considerations suppose that
the buffer has size 3, meaning that can store up to three entries.

If in any stage the buffer becomes full, a different approach is followed. Once this happens, the
rest of the input is processed differently and a temporary overflow disk file is used (Figure 7) to
store the points that were compared and characterized as incomparable or dominated existing
points in the list and cannot be further placed in the window. Such a point is house H6, which is
incomparable with the houses already existing in the buffer and thus is placed on the temporary
file. Nevertheless, the dominated points in the window are still discarded as before right after each
dominance comparison. After the dataset has been read now the temporary file is used as input
for the next passes of the algorithm. After the first run all the points of the input will be either
inside the window or in the temporary file. Points that inserted in the window before any other
point was inserted in the temporary file are guaranteed to be skyline points. This can be checked
by assigning a timestamp to each point that exists in the window and the temporary file.

FIGURE 6: BNL WITHOUT TEMPORARY FILE.

FIGURE 7: BNL WITH TEMPORARY FILE.

The algorithm may require a large number of passes until the complete skyline is computed and
eventually terminate as at the end of each pass the size of the temporary file will be decreased.
BNL works well if the size of the resulted skyline is small and in best case fits into the window,
which will result in the termination of the algorithm in one iteration. BNL algorithm cannot compute
skyline points progressively. Its performance is very sensitive to the number of dimensions and to
the underlying data distribution. Especially, it is good for up to five dimensions for a uniform
distribution, but its performance degrades if the distribution tends towards an anti-correlated
distribution.

2.3.2. Divide & Conqueror (D&C)

The divide-and-conqueror (D&C) algorithm proposed in [8] is an extension of the two-way
partitioning divide-and-conqueror algorithms proposed in [4, 5]. These earlier proposed
algorithms do not scale well for large datasets, since they do not take into account main memory
limitations. The D&C algorithm recursively divides the input dataset in m partitions {P1,….Pm} (m-
way partitioning), in order for each of them to fit in the main memory Figure 8. The partitions
boundaries are determined by computing the q-quintiles of the dataset, which results in the
division of the dataset into q-1 equal subsets. Then a local (partial) skyline Si is computed for each
partition Pi with 1≤i≤m. Finally, the algorithm computes the global skyline by progressively merging
the local ones based on a bushy merge tree Figure 9 and Figure 10. This way points that belong
to one partition and are dominated by points of another partition can be removed. The points that
left from the merging process are the skyline points and the algorithm terminates returning the
resulted set.

H1
H2
H3
H4
H5
H6
H7
H8
H9

H1
H2
H3

Buffer (window)

Input Data File
H4
H5

Pruned points

Dominance
check

H1
H2
H3
H4
H5
H6
H7
H8
H9

H1
H2
H3

Buffer (window)

Input Data File

H4
H5

Pruned points

Dominance
check

H6

Temporary File

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
12

FIGURE 8: DIVIDE AND CONQUEROR

As BNL algorithm, so to the D&C cannot produce skyline points progressively since the first
skyline point can be generated only when the entire dataset has been scanned. Moreover, as the
main memory size increases it performs better as it requires the partitions to be in-memory. D&C
is less sensitive than the BNL to the number of dimensions and correlations in the database.

FIGURE 9: MERGING PROCESS

FIGURE 10: BUSHY MERGE TREE

2.3.3. Bitmap

To resolve the problem of progressive skyline computation, [35] proposed the index-based Bitmap
algorithm, which encodes all data into a bitmap structure to identify the skyline points by exploiting
the speed of a bitwise & operation. Bitmap is a progressive algorithm, which means that it does
not need to scan the complete dataset to return results and is based on a bitmap structure, which
encodes all the information required to determine if a point belongs in the skyline.

To describe the algorithm assume that a point p={p .d1 ,…., P.dj }, 1≤j≤d in a d-dimensional space
is represented by an m-bit vector. From those m-bits each p.di is represented by a number of ki
bits. Each ki has as many bits as the number of distinct coordinate values of all the points of the

dataset in that dimension and thus 𝑚 = ∑ 𝑘𝑖
𝑑
𝑖=1 .

To incorporate the house-metro station example, there are 10 distinct values for dimension price
and 11 distinct values for dimension distance. That means k1+k2=10+11=21 and thus m=21.
Considering the min annotation and assuming that p.dm is the j-th smallest number on the i-th
dimension it can be represented by the ki bits setting the (ki-ji+1) most significant bits to 1 and the
rest to 0. In detail, value 400 is the third largest value among the 10 in the first dimension so in
its bit-representation the first (10-3) +1=8 most significant bits will be assigned to 1 and all the

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600)

H7

(400,300)
H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

x

 y

Ο

S1 S2

S4 S3

2
1

2

3

2

merge merge

merge

merge merge merge merge

S1 S2 S3 S4 S5 S6 S7 S8

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
13

other to 0. The results of the mapping process are shown in Table 3. Next the algorithm needs to
determine if a point is a part of the skyline or not.

In our case we will check points H7, which from the previous example is a skyline point and H4,
which is an ordinary point. For the algorithm to compare the points, it obtains the array of bit-
vectors of all points and transposes it in an m-length array of bit-slices. Each bit-slice Vi

corresponds to the sum of the i-th bit-value of the dimension, of all points. The bit-length of bit-
slices depends on the number of points. The two bit-slices of House H7 for the two dimensions
are shown in bold in the Table 3.

After the construction of the bit-slices the algorithm performs 3 bitwise operations among 2 sets
of bit-slices. The first set contains the bit-slices Vx, Vy (one for each dimension), where the last bit
of the point resides, which is equal with one. The second set contains the next in order bit-slices
Vx+1 , Vy+1 of those that selected in the previous set. In the case that the bit-slices of the previous
step is the last in order, then is used the zero bit-slice (all bits zero). The first bitwise operation A
will be an AND operation between Vx and Vy. The second bitwise operation B will be an OR
operation between Vx+1 and Vy+1 . The third bitwise operator C would also be an AND operation
between the results of the two previous operations. If the result of the final operation is zero then
the tested point is a skyline point.

For point H7 A=Vx AND Vy ={10111011111 AND 00000110100} = 00000010000, which indicates
that the points that have values in each dimensions that are greater or equal to this point is only
the point H7. The second operations B= Vx+1 OR Vy+1= {10000001000 OR 00000100100} =
10000101100, which shows that points which have some of it is dimension better than H7 are the
points H1, H6, H8 and H9. The last operation C=A AND B={00000010000 AND 10000101100} =
00000000000 which shows that there is no house that dominates H7.

In the case of House H4 A=Vx AND Vy ={10111011111 AND 01110110101}= 00110010101 which
indicates that houses H3, H4, H7, H9, H11 are equal or better in each dimension. Operation Vx+1

OR Vy+1= {10101011111 OR 01100110101} = 11101111111 indicates that points {H1-H3}, and
{H5-H11} are better in at least one dimension from H4. The final operation C=A AND B =
{00110010101 AND 11101111111} = 00100010101 indicates that points H3, H7, H9, H11
dominate point H4.

House coordinates Bitmap representation

H1 (100 , 1500) (1111111111 , 10000000000)

H2 (1400 , 500) (1100000000 , 11111111000)

H3 (700 , 600) (1111110000 , 11111110000)

H4 (1300 , 1000) (1110000000 , 11111000000)

H5 (900 , 1300) (1111100000 , 11100000000)

H6 (1600 , 100) (1000000000 , 11111111111)

H7 (400 , 300) (1111111100 , 11111111100)

H8 (200 , 1200) (1111111110 , 11110000000)

H9 (1000 ,200) (1111000000 , 11111111110)

H10 (500 , 1400) (1111111000 , 11000000000)

H11 (500 , 900) (1111111000 , 11111100000)

TABLE 3: BITMAPPED DATASET

Even if Bitmap is a progressive algorithm it must consider all points of the dataset to compute the
full Skyline, which tends to be an expensive operation because for each point inspected must
retrieved the bitmaps of all points. Additionally, the algorithm does not allow the user to give
preferences in which order the results are produced but rather points are returned depending on
the clustering of the data. Finally, bitmaps perform well when the number of distinct values per
dimension is small.

2.3.4. Index

Among the Bitmap algorithm [35] authors additionally proposed the Index algorithm, inspired from
the rank aggregation algorithm proposed in [36], which partitions the entire d-dimensional dataset

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
14

into d ordered lists. It uses a specialized B-tree to index each point by a transformation mechanism
that maps high-dimensional points into single dimension point. Note that it can use any single
dimension index structure and not only a b-tree. The data points are mapped to y and ordered as
y=dmin + xmin. A point p = (p.d1, p.d2, . . . , p.dd) of the dataset belongs to the i-th list (1 ≤ i, j ≤ d)
if it’s p.di value is minimum among all p.dj values, that is p.d i≤p.dj for all i ≠ j. In each list points are
organized in batches and sorted in an ascending (or non-ascending) order of their distinct
minimum (or maximum) value in that dimension. Each batch is identified by the minimum value of
the point that represents. Points with the same minimum value in each list are organized in the
same batch. Each batch is processed according to its ascending index value and the algorithm
tries to determine if it belongs to the skyline. If a batch has more than one point a local skyline is
computed, which is then checked if it can be merged to a global one.

In the case of the hotel metro-station example the houses that belong to the first list and have
their first coordinate minimum among the two are H1, H5, H8, H10, H11 and houses that have
their second coordinate minimum and belong to the second list are Houses H2, H3, H4, H6, H7
and H9 (Table 4). Houses H10 and H11 have the same minimum value so they belong to the
same batch. When the algorithm starts, it loads the first batch from each list. The two first batches
have minimum value 100, so the algorithm process with the batch from the first list. Point H1 is
added to the skyline list because is a single point and the skyline list is empty. The next batch the
algorithm handles is H6, which was considered previously. The point is incomparable so is added
to the list. The next batches from each list loaded are H8 and H9 that again have the same Min
value, which is 200, so the algorithm continues with the one on the first list. H8 is incomparable
so it is added to the list. The next point in the first list has Min value 500 so the algorithm continues
with the previous considered H9, which is added to the list. Algorithm continues by loading the
batches {H10, H11} and H7 from each list respectively. The batch with the smallest minimum
value is H7 which is added to the list because it’s not dominated by any point in it. At this step the
algorithm terminates because both the coordinates of H7 are smaller than or equal to the minimum
value of the next batch {H11, H10}, H2 on the two lists. In this case the algorithm does not need
to proceed further because all the remaining point will be dominated by H7 and thus algorithm
terminates returning the set of skyline point.

For clarity, we explain what should happen in the case {H11, H10} was processed. This batch has
two points so in that case the algorithm would calculate the local skyline of the batch. The resulted
point (or points) would be checked if they could be a part of the skyline. Both points do not
dominate each other so both belong to the local skyline. In this case algorithm will check both
points if can be added to the skyline list.

Min1 Dimension 1 Dimension 2 Min2
Min1= 100 H1 (100 , 1500) H6 (1600 , 100) Min2= 100

Min1= 200 H8 (200 , 1200) H9 (1000 , 200) Min2= 200

Min1= 500 { H11 (500 , 900) ,
H10 (500 , 1400) }

H7 (400 , 300) Min2= 300

Min1= 900 H5 (900 , 1300) H2 (1400 , 500) Min2= 500

 H3 (700 , 600) Min2= 600

 H4 (1300 , 1000) Min2= 1000

TABLE 4: INDEX APPROACH

The Index algorithm can quickly return skyline points in bursts (since it examines collection of
points together) but does not support user-defined preferences since the order of the skyline
points that are returned is fixed and depends on the value distribution of the data.

2.3.5. Nearest Neighbor (NN)

The Nearest Neighbor (NN) algorithm [37] is the first algorithm that uses the widespreaded R*-
tree [38, 34] index structure to massively eliminate points by avoiding redundant dominance
checks. The algorithm recursively applies the NN search, using an existing algorithm such as [39,
40] which is based on any monotone distance function (i.e. L1-norm or Euclidean norm(L2-norm)).
At the beginning an NN search is applied to find the point with the minimum distance (mindist)
from the beginning of the axes (when the problem is to be minimized) and inserts the resulted
point into the skyline. This point partitions the space in four partitions. One partition contains only

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
15

points that are dominated by this point and thus can be removed. A second partition contains no
point according to NN search and the other two partitions will be processed recursively through a
to-do list to output the skyline result. If a region is empty is not sub divided any further and is
removed from the to-do list. The algorithm terminates when the to-do list is empty.

Algorithm starts by searching for the nearest neighbor from the origin point defined (in this case
the start of axes). The nearest point to the origin is H7 (400,300) with mindist 700, based on the
L1, and is guaranteed to be a skyline point. This point partitions the dataspace into four regions
as presented in Figure 11. Region 1 contains no points according to the definition and properties
of nearest neighbor. Region 4 contains all the points that have greater coordinate values than
those of the nearest neighbor point. Thus, the points that belong to this region are dominated by
the NN point and so they can be pruned massively (this could efficiently done with the r-tree
implementation). Region 2 contains the points [0, 400) [300, ∞) and region 3 that contains all the
points that belong to [400, ∞) [0, 300). The set of partitions resulted after the discovery of a skyline
point must be inserted in a to-do list so the algorithm removes the initial region and inserts in their
position regions 2 and 3, which are needed to be investigated. The algorithm recursively calls
itself on Region 2 and Region 3.

In the recursion of Region 2, which is the first region of the to-do list, the algorithm makes again
an NN search to find the next skyline point. The NN point that is retrieved on R2 {[0,400) [300, ∞)}
is H8 (200, 1200) with mindist 1400 which is inserted in the skyline list. Due to the discovery of
the NN point Region 2 is divided in 4 partitions (Figure 12). Region 2.1 will be [0,200) [300, 1200),
region 2.2 [0,200)[1200, ∞), region 2.3 [200,400) [300, 1200), and region 2.4 [200,400)[1200,∞).
As mentioned before regions 2.1 and 2.4 are not needed to be considered. As a final step the
algorithm removes region 2 from the to-do list and inserts regions 2.2 and 2.3. Next the algorithm
will recursively call itself on the first region on the to-do list which is region 2.2. An NN query in
this region will return point H1 (100, 1500) with mindist 1600 that is added to the skyline list. Due
to the discovery of the NN point, region 2.3 is divided in 4 partitions which are region 2.2.1
[0,100)[1200,1500), region 2.2.2 [0,100)[1500,∞), region 2.2.3 [100,200)[1200,1500) and region
2.2.4 [100,200)[1500,∞). As previously regions 2.2.2 and 2.2.3 are inserted in the To-Do list and
processed recursively.

The algorithm will perform the next NN query starting with the first region on the to-do list which
is 2.2.2. The region is empty, so the algorithm discards it and process the next one. Region 2.2.2
is also empty so it is discarded and so the region 2.3. The only region remaining is Region 3. As
with Region 2 the algorithm will recursively call itself until the to-do list is empty, where in that
case algorithm terminates and returns the final skyline list. The skyline points returned by
processing Region 3 are H9 (1000, 200) with mindist 1200 and H6 (1600, 100) with mindist 1700.

The algorithm improves the divide-and-conquer algorithm by applying the D&C framework on
datasets indexed by R*-trees. NN is the first algorithm that gives the user control over the process
by tendentiously selecting on-demand the preferred region to be processed and allows him/her to
give preferences by altering the scoring function on-the-fly. On the downside, the algorithm has
large I/O overhead, especially in high dimensional spaces, due to the recurrent access of the R*-
tree. Additionally, the to-do list size may exceed the size of the dataset for as low as 3 dimensions
[2]. Finally, is mentioned that in the general case of d>2, regions overlap in such a way that the
same Skyline point can be found more than once. For that reason, authors proposed some
additional elimination methods for datasets with d>2.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
16

FIGURE 11: REGIONS AFTER 1ST NN QUERY.

FIGURE 12: REGIONS AFTER 2ND NN QUERY.

of NN
query

To-do List space partitions Skyline Points

0 [0,∞),[0,∞) ∅
1st R2{ [0,400) [300, ∞) } and R3{ [400,∞) [0,300) } H7
2nd R2.2{ [0,200)[1200, ∞) }, R2.3{ [200,400)[300,1200) } and R3{ [400,∞)

[0,300) }
H7, H8

3rd R2.2.2{ [0,100)[1500,∞) } , R2.2.3{ [100,200)[1500,∞) } , R2.3{
[200,400)[300,1200) } and R3{ [400,∞) [0,300) }

H7, H8, H1

4th R2.2.2{ [0,100)[1500,∞) } , R2.2.3{ [100,200)[1500,∞) } , R2.3{
[200,400)[300,1200) } and R3.2{ [400,1000)[200,300) } , R3.3{

[1000,∞)[0,200) }

H7, H8, H1, H9

5th R3.2{ [400,1000)[200,300) } , R3.3.2 { [100,200)[100,1600) } , R3.3.3{
[1600,∞)[0,100) }

H7, H8, H1, H9,H6

6th Empty H7, H8, H1, H9,H6

TABLE 5: TO-DO LIST BASED ON NN QUERY.

2.3.6. Branch and Bound Skyline (BBS)

Both NN and Branch and Bound Skyline algorithm (BBS) [2, 3] apply nearest neighbor search
techniques mentioned previously to progressively output skyline points from datasets that are
indexed by R*-trees to massively eliminate points from being checked for dominance. BBS
algorithm is an improvement of NN algorithm. In contradiction with NN that searches R*-tree many
times, BBS traverses the R*-tree once. Table 6 illustrates the indexed dataset. Data points are
organized in the R*-tree, in which each internal R-tree node can hold up to three entries, and that
each leaf node can hold also up to three entries. In the example, an intermediate entry ei of the
R-tree of Figure 13 corresponds to the minimum bounding rectangle (MBR) of a node Ni of the
R-tree, while a leaf entry corresponds to a data point Hi (Figure 14). As in the NN algorithm
mindist denotes the minimum distance of a point or an MBR from an origin point. The mindist of
a point is computed according to the L1 norm as the sum of its coordinates and the mindist of a
MBR as the distance of its lower-left corner from the origin point. The algorithm uses the best-first
search paradigm to traverse the R-tree, in such order that it always evaluates and expands,
among all un-visited nodes, the tree node closest to the origin. All the candidate entries are kept
in a heap until they are no longer useful. Entries in the heap are sorted in ascending order of their
mindist. Skyline points are generated iteratively and stored in a list in the main memory, for
dominance validation. Initially, the root of the R-tree is inserted in the heap. At each step, the top
heap entry with the smaller mindist is removed. If it is a R*-tree node, its children, which are not
dominated by any current skyline point, are inserted into the heap. If it is a point (leaf node), it is
tested for dominance with the skyline points found so far by issuing an enclosure query. If the
examined point (or region) is entirely enclosed by any skyline candidate’s dominance region, then
the point (or the entire region) is dominated. Notice that every entry is checked twice for

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

H8

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

H3

H7

H9

H6

H1

H4

H5

H10

Region 2

Region 1
Region 3

Region 4

NN1 query

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

H8

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

H3

H7

H9

H6

H1

H4

H5

H10

R
eg

io
n

 2
.1

Region 1
Region 3

Region 4

NN1 query

NN2 query

R
eg

io
n

 2
.2

R
eg

io
n

 2
.3

R

eg
io

n
 2

.4

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
17

dominance because an entry in the heap may become dominated by skyline points discovered
after its insertion. In the end all the points, except of those where one of its ancestor nodes has
been pruned, will be examined. To efficiently examine the dominance relationship, is maintained
an in-memory R-tree that contains the skyline points found so far. When the heap is empty the
algorithm terminates. Initially, BBS inserts all the child entries of the root of the R-tree into the
heap.

The algorithm begins with region e1 in its heap. As it proceeds it iteratively processes the
(leaf/intermediate) entry which has the minimum mindist value and if it’s an intermediate entry ei
is expanded and its non-dominated children are inserted to the heap, ordered by their mindist.
After the expansion of e3 the first entry of the heap is a leaf node. The list of skyline points is
empty so H7 is inserted in the list. Next e8 is expanded and H9 is inserted to the list since it is not
dominated by H7. In the next step e2 is expanded. Region e4 is inserted in the heap, but region e5

is dominated by the found skyline point H7 so the region is discarded. Next region to be expanded
is e4 . The points on the heap are sequentially checked if they are dominated by any so-far found
skyline point and if not are inserted to the list. From this comparison points H8, H1, H6 are inserted
to the list and point H8 is discarded. Now the only region left in the heap is e7 which is not expanded
because is dominated by the skyline point H7 and H9.

Action Heap contents Skyline points

Initial state (e1,200) ∅

Expand e1 (e3,500), (e2,1300) ∅

Expand e3 (e6,700), (e8,1100), (e2,1300), (e7,1800) ∅

Expand e6 (H7,700), (e8,1100), (e2,1300), (H3,1300), (H11,1400), (e7,1800) H7

Expand e8 (H9,1200), (e2,1300), (H3,1300), (H11,1400), (H6,1700), (e7,1800) H7, H9

Expand e2 (e4,1300), (H3,1300), (H11,1400), (H6,1700), (e5,1800), (e7,1800) H7, H9

Expand e4 (H3,1300), (H8,1400), (H11,1400), (H1,1600), (H6,1700), (e7,1800) H7, H9, H8 ,H1 , H6

Expand e7 empty H7, H9, H8 ,H1 , H6

TABLE 6: HEAP CONTENTS OF BBS

FIGURE 13: DATASET INDEXED BY THE R-TREE

FIGURE 14: MINIMUM BOUNDING RECTANGLES (MBRS)

One of the most important properties of BBS is that it guarantees the minimum I/O costs and
equivalently R-tree page accesses. Additionally, along with the NN algorithm can incorporate user
preferences in general skyline computation. However its performance can deteriorate due to many
unnecessary dominance checks and due to high dimensionality based on the curse of
dimensionality [12] since an R-tree is efficient for up to 5 dimensions.

2.3.7. Sort Filter Skyline (SFS)

The sort-filter-skyline (SFS) algorithm [41] improves BNL performance by presorting the input
dataset in an ascending order according to a monotone preference function f, such as the sum of
coordinates of a point on all dimensions, or optimized as entropy (assuming in both cases that
values have been normalized in (0,1) non-inclusive). Presorting enforce that a point p dominating

e5

 e4

e3 e2

e7

e8

e6

H8

H1 H10

H5

H7 H11

H3

H4

H2

H9

H6

Root

node N1

node N4

node N3

node N2

node N5 node N7 node N6 node N8

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

H8

price 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

H3

H7

H9 H6

H1

H4

H5
H10

e1

e8

e6

e2

e5

e3

e4

e7

Ο

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
18

another point q will be visited before q. This ensures the progressive behavior of SFS and the
reduction of the number of pairwise comparisons between points. The algorithm examines the
data points by the ascending order of their scores and keeps an in-memory buffer that has the till
now found skyline candidate points in a similar way as that on BNL. At beginning the buffer is
initially empty. A point is read from the sorted dataset and if it is not dominated by a skyline point
in the buffer is inserted into it. The dominance tests in SFS are performed by an exhaustive search
on the existing skyline points.

Authors have found that the entropy scoring function 𝐸𝐷(𝑝) = ∑ ln⁡(𝑝′. 𝑑𝑖 + 1)𝑑
𝑖=1 , where p’.di is

the normalize value of p.di in (0,1) non-inclusive, yields the most effective discarding during the
skyline computation. Intuitively, the smaller entropy value a point has, the less likely is to be
dominated.

Value Normalization: There are several ways to normalize the values of a dataset. One case is
to divide all the values of the dataset with the maximum value found over this. That is

𝑓(𝑝. 𝑑𝑖) =

(𝑝. 𝑑𝑖/𝑚𝑎𝑥), where max is the maximum value observed in the dataset. In this case the dataset
would be normalized in the [0,1] inclusive which uses efficiently all the range of [0,1]. But in this
example, this is not the case because the values are needed to be normalized in (0, 1) non-
inclusive. A case to achieve this is by dividing all the values of the dataset with a higher value
than the maximum value of the dataset. For memorization reasons and simplicity of numbers and
computations we choose to divide all values by 10.000. That is 𝑓(𝑝. 𝑑𝑖) = (𝑝. 𝑑𝑖/10000). We note
that this is not considered as a user preference since in another case we could assume that the
distance between the two furthest locations of the town is 2000 meters and divide with this
number.

To demonstrate the algorithm the entropy scoring function was used. Points of the dataset of the
house metro-station example will be normalized and sorted as in Table 7 by an ascending order
of their score and will be processed in this order. The first point that is inserted in the buffer is H7
since the buffer is empty. The second point is H9 which is incomparable to H7 so its inserted to
the buffer. H3 is dominated by H7 so it is discarded. H8 is incomparable with H7 and H9 that are
already in the buffer so it is added. Point H11 is dominated by H7 so it is discarded. Point H1 is
incomparable to the points that belong in the buffer so it is added to the buffer. The same hold for
point H6. The rest four points are dominated by a point in the buffer (H2 by H7 and H9, H10 by
H7 and H8, H5 by H7 and H8, H4 by H7 and H9) so they are discarded. It is observed that the
killer-dominant points are first in the presorted dataset which ensures maximum discarding with
minimum comparisons. An indication for this is that the algorithm processed seven points to find
the five skyline points out of the total eleven points.

House

(hi)
Price Distance ED(hi)

points that
dominate

H7 0,04 0,03 0,068779515 6
H9 0,1 0,02 0,115112807 2

H3 0,07 0,06 0,125927557 -
H8 0,02 0,12 0,133131313 2
H11 0,05 0,09 0,13496786 -
H1 0,01 0,15 0,149712273 0
H6 0,16 0,01 0,158370336 0

H2 0,14 0,05 0,179818427 -
H10 0,05 0,14 0,179818427 -
H5 0,09 0,13 0,208395329 -
H4 0,13 0,1 0,217527813 -

TABLE 7 : PRE-SORTED DATASET

The main drawback of SFS is that it cannot adapt to different user preferences and must scan the
entire dataset to return a complete skyline, as with BNL. Nevertheless, it can be stopped early
returning some of the skyline points. The significant advantage over BNL is that reduces the
number of comparisons needed.

2.3.8. Linear Elimination Sort for Skyline (LESS)

Skyline algorithm Linear Elimination Sort for Skyline (LESS) [10] is an optimized version of SFS,
which achieves a better average performance. As with SFS it sorts the dataset based on the

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
19

entropy scoring function which has the advantage of pushing the killer-dominant points in the
beginning of the sorted dataset. The algorithm implements two optimizations.

The first optimization in the first pass of the external sorting process makes use of a buffer called
elimination-filter (EF), which keeps a small set of points (copies of them) that have the best entropy
scores seen so far. This set will be used to prune efficiently and as early as possible the dominated
tuples of the dataset. The input dataset is divided in b blocks and each block of points is read in
order to be sorted (i.e. using quicksort). During sorting the algorithm compares the points of the
block with those of the EF. If the point from the block is dominated by a point in the EF, it is
discarded. Otherwise if the point is incomparable or dominates other points in the EF it is inserted
(a copy of it) in the EF and the points of EF that are dominated are discarded. It is noted that
points of the EF buffer are not guaranteed to be maximals.

The second optimization combines the final pass of the external sorting process (last merge step
of the b blocks) with the first pass of the skyline-filter (SF) process (i.e. first pass of the BNL
component of SFS), which eliminates the remaining dominated tuples to get the final skyline. As
in SFS and BNL, may be required multiple passes of the SF component to compute the final
skyline. If the SF buffer becomes full, then an overflow file will be created. In general, the EF filter
reduces effectively the size of the input dataset that will be processed by the SF process and
additionally the combination of the final pass of the EF process with the first pass of the SF
process saves always one pass from the computation of the skyline. LESS is not be applicable in
scenarios in which one has no direct control on the algorithm used to sort tuples. Additionally, as
in SFS all points on the dataset should be scanned at least once after sorting.

2.3.9. Sort and Limit Skyline Algorithm (SaLSa)

The Sort and Limit Skyline Algorithm (SaLSa) algorithm [42] is an improvement of SFS and LESS
which strives to avoid scanning the complete sorted dataset as opposed with the two previous
algorithms. As SFS and LESS, it does not have an index structure and is the first algorithm that
exploits the values of a monotone scoring (limiting) function to sort the dataset and effectively limit
the number of point to be read and compared by using a threshold value.

The author’s suggestion is an optimal sorting function, which orders the points according to the
value 𝑓𝑚𝑖𝑛(𝑝) = (min

𝑖∈[1,𝑑]
𝑝. 𝑑𝑖 , 𝑠𝑢𝑚(𝑝)), which is the minimum coordinate value of a point among

all dimensions and 𝑠𝑢𝑚(𝑝) = ∑ 𝑝. 𝑑𝑖
𝑑
𝑖=1 is the second sorting element that works as a tie-breaking

rule. Letting S be the current set of skyline points, for each point⁡𝑝𝑖 ∈ 𝑆 let ⁡𝑝𝑖 = max
𝑗
{𝑝𝑖 . 𝑑𝑗}, which

is the maximum coordinate value of a point. The threshold value that is used during the filter-scan
process to check whether all points in the rest of the sorted dataset are dominated and for the
algorithm to stop, is set as 𝑝𝑠𝑡𝑜𝑝 = argmin

𝑖∈𝑆
{⁡𝑝𝑖}. That is Pstop equals with the minimum 𝑝𝑖 value

calculated so far based on the existing skyline points. The computation of Pstop can be done
incrementally by simply updating the value at each skyline point insertion in O(1) time.

The algorithm during the filter-scan process reads and examines the points one at a time. Each
time a new point is read, is compared against the current skyline list. If its dominated by any point
is discarded, otherwise is inserted in the skyline list and algorithm checks its termination trigger.
If the current threshold Pstop is smaller or equal than the point’s fmin value, then the algorithm
terminates and returns the set of skyline points. This termination condition guarantees that all later
examined data points should not be part of the skyline list, avoiding this way scanning the entire
dataset.

For algorithm to compute the skyline, the values of the dataset are needed to be normalized in
the range of [0,1] inclusive. Since this is not applicable in many cases the author suggest as a
solution to normalize the values of the dataset as 𝑓(𝑝. 𝑑𝑖) = (𝑝. 𝑑𝑖 −𝑚𝑖𝑛𝑖) (𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖⁄), where
mini is the minimum coordinate value on the i-th dimension and maxi is the maximum coordinate
value. To demonstrate the algorithm the house-metro station dataset is normalized as sawn in
Table 8. The first point of the sorted dataset is H1. At this point, before point H1 is read, 𝑝𝑖

and

Pstop are undefined. Since the set of skyline points is empty H1 is inserted in it. Values 𝑝1, 𝑝5 and

Pstop are calculated since a skyline point was found. The new

𝑝1

value is 1, which is the largest

value among the two coordinate values of the point and 𝑝𝑠𝑡𝑜𝑝 = 𝑝1 since it’s the only 𝑝𝑖

value due

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
20

to the only one skyline point. Next point in the dataset is H6 which is a skyline point because it is
not dominated by H1. Because of the insertion of H6 in the skyline list 𝑝2 is set to 1 since it is the

largest coordinate among the two of the point H6. Pstop remains 1 since the new 𝑝𝑖

value is not

smaller than the old one. Next point in the dataset is H8. It is not dominated and thus is a skyline
point which triggers the computation of the 𝑝3 value that equals with 0,785714. The Pstop value is

now set to 0,785714 also, since the value 𝑝3 was smaller than the current Pstop value. Next point

in the dataset is H9 with a 𝑝4

value equals with 0,6. Since 𝑝4 is smaller than the current Pstop value,

Pstop is set to 0,6. Next point is H7. It’s 𝑝5

value is 0,2 since is the biggest value among the two

coordinate values of the point, which also triggers the altering of the Pstop value to 0,2 since the
new value is smaller. Next point is H11, for which the fmin(H11) value is bigger than the current
Pstop value which terminates the algorithm and returns the list with the skyline points. It is observed
that were processed only points that were actually skyline points and the rest were discarded
saving unnecessary computations. On the downsides of the algorithm is that its performance is
affected by data distribution and high dimensionality, since the pruning power of the stop object
is limited. Additionally, because the dataset is based on a fixed ordering for each attribute, the
algorithm cannot be used for arbitrary preference specifications. The advantage of the algorithm
is that it can stop efficiently before the complete dataset is readied.

House Price Distance fmin(h) Sum(h) Pstop

H1 0 1 0 1 1 1

H6 1 0 0 1 1 1

H8 0,067 0,786 0,067 0,853 0,786 0,786

H9 0,600 0,071 0,071 0,671 0,600 0,600

H7 0,200 0,143 0,143 0,343 0,200 0,200

H11 0,267 0,571 0,267 0,838 -
Stop!

Fmin(H11) ≥
Pstop

H10 0,267 0,929 0,267 1,196 -
H2 0,867 0,286 0,286 1,153 -

H3 0,400 0,357 0,357 0,757 -
H5 0,530 0,857 0,533 1,387 -
H4 0,800 0,643 0,643 1,443 -

TABLE 8: PRE-SORTED DATASET

2.3.10. Summary

In general, a batch-oriented algorithm will return the complete skyline faster than an online
algorithm. In contrast an online algorithm will return faster than the batch-oriented algorithm a part
of the skyline but it will take much longer to compute the complete skyline. Authors in [43, 37]
suggested a set of criteria for evaluating the behavior and applicability of a progressive algorithm.

• Progressiveness: A part of the final set of skyline points should returned instantly and
the remaining skyline points gradually.

• Absence of false negative: The algorithm, given enough reasonable time, should
eventually produce the complete set of skyline points.

• Absence of false positives: The points that the algorithm returns should be guaranteed
to be skyline points and not a temporary skyline points that will be discarded later.

• Fairness: The algorithm should not favor points that are particularly good in one
dimension.

• Incorporation of preferences: User should be able to make preferences on the order
that the skyline points are returned, while the algorithm is running.

• Universality: The algorithm should be easily integrated into an existing database system
and be applicable to any dataset distribution and dimensionality making use of
standardized technology.

ip

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
21

In Table 9 the algorithms are classified based on those criteria.

Algorithm Progressiveness

Absence of false
misses / Absence

of temporary
false hits

Absence
of false

hits
Fairness

Incorporation
of preferences

Universality

D&C × √ √ √ × √
Bitmap √ √ √ √ × √
Index √ √ √ × × ×
NN √ √ √ √ √ √

BBS √ √ √ √ √ √
BNL × √ × √ × √
SFS √ √ √ √ × √

LESS √ √ √ √ × √

SaLSa √ √ √ √ × √

TABLE 9: CLASSIFICATION OF PROGRESSIVE ALGORITHMS.

The problem of skyline computation has its roots in the fields of computational geometry and
pareto-optimality and derived due to the need to retrieve pareto-optimal sets of points over
datasets that do not fit directly into memory. The research approached can be distinguished on
index-based and non-index-based (sorting) methods. The state-of-the-art index-based skyline
algorithm is BBS. BBS is based on the R-tree to exploit the properties of nearest neighbors and
identify the final skyline. The BBS algorithm is the most broadly applicable algorithm and its
limitations are the curse of dimensionality derived from the R-tree. On the other hand, the state-
of-the-art algorithm that does not require indexing is SaLSa. SaLSa is based on sorting to identify
the most interesting points through the use of a scoring function. Those points are placed in the
beginning of the dataset in order to identify the final skyline as early as possible. One of the
requirements of the algorithm is to have the dataset normalized in the range of [0,1] inclusive. In
addition, the algorithm is affected by the underlying data distribution. Finally, the simple BNL
algorithm, due to its simple implementation and the lack of indexing and sorting mechanisms, is
commonly used in numerous applications where a skyline set is needed and indexing or sorting
mechanisms on top of the whole dataset are inapplicable. Table 10 summarizes some basic
properties of all the fundamental skyline algorithms.

Algorith

m
Based-on Index D&C

Pre–
processing

Sorted data Main problem

Nested-
loop join

Θ-joins [44] × × × × Join cost

Bitmap
[35]

- Bit mapping × bitmaps ×
Lack of user

interaction and
bitmapping

Index [35] -
Specialized

B-tree

√

Index -
based

Scoring function
Lack of user
interaction

NN [37]
NN search and
D&C scheme

Multi-
dimensional
index (R*-

tree)

√
Index -
based

Minimum distance
from origin point

I/O accesses

BBS [2, 3] NN

Multi-
dimensional
index (R*-

tree)

√
Index -
based

Minimum distance
from origin point

many dominance
checks / R-tree
dimensionality

D&C [8]
maximal vector
computation [4,

5]
× √

× (Partial
skylines can
be assumed)

×

Not online/ curse
of dimensionality

BNL [8]
Naive Nested-

loop
× × × × Not online

SFS [41] BNL × × Sort - based
Entropy scoring

function

reads all dataset /
Lack of user
interaction

LESS [10] SFS × × Sort - based
Entropy scoring

function
Sorting / reads all

the dataset

Salsa [42] SFS × × Sort - based
Min/Max Scoring

function
Sorting / reads all

the dataset

TABLE 10: CLASSIFICATION OF SKYLINE QUERY ALGORITHMS.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
22

Finally, Figure 15 illustrates the skyline algorithms via a tree structure in chronological order. The
entries [4, 5] concern the maximal vector computation. Black lines indicate that the algorithm
heavily depends or improves a previous algorithm and red dashed line indicates that the algorithm
shares some general main ideas for computing the skyline.

year 06 70-80 01 02 03 04 05 07 81-90 91-00

SFS [41]

LESS [10] SaLSa [42]
BBS [2,3]

NN [37]

BNL [8]

D&C

[8]

Bitmap [35]

Index [35]

Computational

Geometry

[4]

Maxima of a

set of vectors

[5]

FIGURE 15: CHRONOLOGICAL ORDER OF FUNDAMENTAL SKYLINE ALGORITHMS.

2.4. Skyline Family

This section will reason about the variants of skyline queries. The main idea and notion of skyline
query is maintained. Each outlined variation is applicable and can solve different aspects of a
problem.

2.4.1. Constrained Skyline Queries

There are cases where a skyline query may return too many objects. This can happen if the
dimensionality of the dataset is large or the dataset is anti-correlated. Additionally, users may be
interested to investigate a particular subspace than the whole data space. For the previous
reasons user may specify constrains on some dimensions to express those restrictions. Each
constraint is typically expressed as a range along a dimension of the dataset. The constrained
skyline queries are very useful in skyline maintenance in the presence of point deletions or
insertions.

For this type of problems, a general variant of the skyline queries are the constrained skyline
queries [2, 3] In this type of queries users are interesting in finding the skyline points of a subset
of the original dataset, which satisfies one or more constraints. Given a set of constraints, a
constrained skyline query, will return the most “interesting” points of the dataset defined by these
constraints. For example, the user may be only interested in “interesting” houses in the distance
range from the metro-station of 400 to 1250 and price range from 100 to 1500. For the house-
metro example the constrained skyline query will return points H8, H11, H3, H2 [Figure 16] that
are enclosed in the shaded region and are skyline points in that region. Point H4 which also
belongs in the region will be discarded since it is dominated by H11 and H3.

Definition 3: Constrained Region
Given a d-dimensional dataset Ds a constrained region C={c1,c2,…cd} is determined by d sub-
constraints ci where each one expresses a range along each dimension of the dataset. That is
ci={cimin, cimax} where cimin and cimax are the minimum and maximum range restriction values
on the i-th dimension.∎

Definition 4: Constrained Skyline

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
23

Given a dataset Ds and a constrained region C⊆Ds, a constrained skyline will contain all the

points p∈C (p.di∈ ci , ∀ i ∈[1,d]) where ∀p,r∈C, ∃ j∈[1,d] such that p.dj<r.dj and ∀ i ∈[1,d]-{j}:p.di

≤ r.di∎

FIGURE 16: CONSTRAINED SKYLINE.

FIGURE 17: SKYLINE WITH CONSTRAINS.

Another type of queries with similar name that might confuse the reader, are skyline queries with
constraints [45]. This type of queries, given a set of constraints, returns the computed skyline set
of the whole dataset restricted by the constraints that were placed. For the house-metro example
and the constraints mentioned above, the skyline queries with constraints computes the skyline
of the whole dataset and then applies the constraints to the retrieved skyline set and returns only
the point H8 [Figure 17].

In general, a constrained skyline query is computed over the restricted dataset by the constraints
that were placed, while the skyline query with constraints is computed over the whole dataset and
then the resulted set is restricted by the constraints. Thus, the results of both types of queries will
be different (in the majority of cases) for the same dataset.

2.4.2. Dynamic Skyline Queries (DSQ)

A Dynamic skyline query is a variation of the original skyline query, which was first introduced in
[2, 3]. In this type of queries the dynamic coordinates of each point are given by a set of distance

(dynamic) functions that are based on the distance between a given query/reference point q and
a point p of the original dataset. The term original space/dataset refers to the original d-
dimensional space/dataset and equivalently the term original coordinates to the coordinates of a
point in the original space. The produced data space that occurs from the distance functions and
the query point will be called dynamic space and the coordinates of a point in it, dynamic
coordinates.

A dynamic skyline query of a d-dimensional data space DS specifies a new d’-dimensional data
space DS’ based on the original space and depicted as an inner coordinate system. To achieve
this transformation specifies m (m≤d) dimension functions f. Each function takes as parameters
one or more original coordinates of each point and maps them in a new single dynamic coordinate.
That is, each point p of the original d-dimensional data space is mapped to a new d’-dimensional
point p’ = (f1(p), . . . , fd’(p)) where each fi is referred as a distance function. Then the dynamic
skyline applied on DS with respect of functions fi specified by a query point q returns the original
skyline of the new transformed d’-dimensional space DS’.

To simplify the definition of the dynamic skyline it is assumed, without loss of generality, that DS
and DS’ have the same dimensionality (d=d’). Additionally for a given query point q each distance
function is defined as the obsolete distance, of the i-th dimension’s value of point p of the dataset
DS from the i-th dimension’s value of query point q, fi(p)=|q.di-p.di|.

di
st

an
ce

10

0
10

00

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

11
00

12

00

13
00

14

00

15
00

16

00

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900) H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
24

Note that dynamic skylines can have a more general class of distance functions such as Euclidian
distance. In addition, they can be employed in conjunction with constrained and ranked queries
(by placing weights on dimensions). An example, is the case where the absolute distance
functions can receive different weights and the result of distance functions is constrained by a
threshold value, i.e. find the top-3 houses within 1km given that the price is twice as important as
the distance, where k is specified by user.

Definition 5: Dynamic dominance.
Given a dataset Ds, a query-reference point q in the workspace and two points p, r ∈ Ds, point p

dynamically dominates point r with regard to the query point q, denoted as p ≺q r if and only if ∃

j∈[1,d] such that |q.di - p.dj|<|q.di - r.dj| and ∀ i ∈[1,d]-{j}: |q.di - p.dj|≤|q.di - r.dj| ∎

Definition 6: Dynamic skyline.
Given a query-reference point q in the workspace , the dynamic skyline set of Ds with regard to
the query point q, denoted as SDS

q , consists of the points of the dataset that are not dynamically

dominated by any other point. That is, SDS
q ={p∈DS|∄r∈DS:r ≺q p} ∎

House
price (in

thousand
€)

Coordinate
X

Coordinate
Y

H1 100 +900 +1200
H2 1400 +300 +400
H3 700 -360 +480
H4 1300 +600 -800

H5 900 +500 -1200
H6 1600 +60 -80
H7 400 +240 +180
H8 200 -960 +720

H9 1000 -192 +56
H10 500 -1120 -840
H11 500 -720 -540

TABLE 11: 3-DIMENSIONAL DATASET OF THE HOUSE-METRO

STATION EXAMPLE.

H2 (1400)

H8 (200)

H11 (500)

H3 (700)

H7 (400) H9 (1000)

H6 (1600)

H1 (100)

H4 (1300)

H5 (900)

H10 (500)

y
-1

6
0
0
 -

1
4
0
0
 -

1
2
0
0
 -

1
0
0
0

-8

0
0

-6
0
0

-4
0
0

-2
0
0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1

4
0
0

1
6
0
0

M
x -1600 -1400 -1200 -1000 -800 -600 -400 -200 200 800 1000 1200 1400 400 600 1600

Distance:

1500m

FIGURE 18: INITIAL POSITION OF HOUSES AND THEIR PRICES IN A

COORDINATE SYSTEM WITH ORIGIN POINT THE METRO STATION.

In a dedicated example assume that the 2-dimensional dataset of the house- metro station
example (Table 1) was calculated dynamically from a previous 3-dimensional dataset (Table 11)
that had as attributes the price of each house and it’s position (X,Y) in a 2-dimensional map with
origin point O(0,0) the metro station’s position Figure 18. In the case of this example and its
needs, the 3-dimensional dataset is projected in a 2-dimensional one by using as a query point
the position of the metro station and as distance functions the functions f1(H)=(H.d1) and 𝑓2(𝐻) =

(√(𝑞. 𝑑2 −𝐻. 𝑑2)2 + (𝑞. 𝑑3 − 𝐻. 𝑑3)2). This way the relative coordinated position of a house with

respect the metro station is converted to the Euclidean distance of the house from the metro
station (with price attribute intact) as shown in table (Table 1).

As with the original skyline, for the BBS to compute a dynamic skyline query, it processes the
(leaf/intermediate) R-tree entries in ascending order of their mindist. In this case the mindist of a
point (leaf entry) from the query point q is computed as, 𝑓(𝐻) =

(√(𝐻. 𝑑2 − 𝑞. 𝑑2)2 + (𝐻. 𝑑3 − 𝑞. 𝑑3)2 +𝐻. 𝑑1) . The mindist of an MBR with range

([e.d1min,e.d1max][e.d2min,e.d2max][e.d3min,e.d3max]), from the query point q, is computed as
the mindist([e.d1min,e.d1max][e.d2min,e.d2max],(q.d1,q.d2)) + e.d3min where the first term is the
mindist between the query point and the lower-left corner of the 2D rectangle [e.d1min,e.d1max]
[e.d2min,e.d2max].

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
25

In a more general example, it is assumed that the user needs to find the dynamic skyline of the
house-metro station dataset DS. The dynamic functions that will be used are the obsolete
distances of points in the dataset from the specified query point and thus points of DS are mapped
in the new space as shown in [Figure 19], with the same dimensionality as the original space
(d=d’). In detail points H1, H2, H3, H6, H7, H8, H9, H10, H11 are projected to points H1’, H2’, H3’,
H6’, H7’, H8’, H9’, H10’, H11’ respectively [Table 12] with regard the query point q and the
dimension functions f1(H)=|q.d1 - H.d1| and f2(H)=|q.d2 - H.d2|. The dynamic skyline for the
selected query point contains houses H3’, H11’ which are essentially points H3, H11.

Hous
e

price (in
thousan

d €)

Distanc
e (m)

Dynamic
price (in
thousan

d €)

Dynami
c

Distanc
e (m)

H1 100 1500 1500 1500
H2 1400 500 1400 1100
H3 700 600 900 1000
H4 1300 1000 1300 1000

H5 900 1300 900 1300
H6 1600 100 1600 1500
H7 400 300 1200 1300
H8 200 1200 1400 1200
H9 1000 200 1000 1400

H10 500 1400 1100 1400
H11 500 900 1100 900

TABLE 12: ORIGINAL AND DYNAMIC DATASET.

FIGURE 19: DYNAMIC SKYLINE.

A DSQ query can be seen as a query from the buyer’s perspective, by identifying the houses that
are most interesting to him.

2.4.2.1. Spatial Skyline Queries (SSQ)

The spatial skyline query (SSQ) [46, 47] can be considered as a more restricted special case of
the dynamic skyline queries. It considers multiple query points at the same time and relies on the
existence of a multi-dimensional Euclidean space to derive geometric bounding structures, such
as convex hull and Voronoi diagram to reduce the search space. Given a dataset DS and a set of
query points Q, a Spatial Skyline Query retrieves those points of DS, which are not spatially
dominated by any other point in DS with respect to Q. Specifically, a point p∈DS spatially

dominates a point r∈DS with respect to Q, if and only if p is closer to at least one query point q∈Q
as compared to r and has in the best case the same distance as r to the rest of the query points,
i.e. no other object is closer to all the given query points simultaneously.

Geometric notations

Convex Set: A set S of points, that exist on a plane over ℝ, is called convex set if and only if for

any two points p,r∈S, the segment (line) that connects them resides entirely in S (i.e. all the points
of a circle or a hexagon)∎

Convex Hull: The convex hull of a set S of points over ℝ, is the intersection of all the convex
sets containing S ∎

A counter example of a convex hull would involve the dashed line in Figure 20. If the segment of
the red line, which belongs between houses H4 and H6 was replaced be the dashed line that
contains house H2, the set S would not be a convex set since the line that connects houses H4
and H6 would not reside in S.

H2

H8

price 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

H3

H7

H9

H6

H1

H4

H5

H10

price'

Ο

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0
 d
is

ta
n

ce
'

H1'

H10'

H8'

H6'

H2'

H7'

H9'

H11'

H3'

q

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
26

Voronoi diagram: Given a set S of n points over ℝ that exist on a plane, the Voronoi diagram of
S, is the subdivision of the plane in n cells, where each cell contains only one point of S, called
generator. The important property is that any point (except the generator) in a particular cell will
be always closer to the point that generates this cell (Figure 21)∎

FIGURE 20: CONVEX HULL OF THE HOUSE-METRO STATION

DATASET.

di
st

an
ce

10

0
10

00

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

11
00

12

00

13
00

14

00

15
00

16

00

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900) H3

(700,600)

H7

(400,300) H9

(1000,200) H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300) H10

(500,1400)

FIGURE 21: VORONOI DIAGRAM OF THE HOUSE-METRO STATION

DATASET.

To reduce the search space authors give two important theorems; the spatial skyline points, which
are those points, which either within the convex hull [48] of query points or having their own
Voronoi cells [48] intersect with boundaries of the convex hull of query points. Also, they proposed
the R-tree-based B2S2 algorithm and the Voronoi-based VS2 algorithm for the spatial skyline
queries. Both algorithms are efficient in cases where only Euclidean distances are considered as
dimension functions, but their search structures are inefficient in high-dimensional and metric
spaces. Additionally, authors proposed a Voronoi-based continuous VCS2 algorithm to efficiently
update a spatial skyline taking into account that the location of query point q can change.
Moreover, they extended their work in [47] by computing the spatial skyline query in the metric
space of Spatial Network Databases (SNDB), such as the road networks, in which the spatial
objects are restricted in predefined locations/routes.

To demonstrate the use of spatial skyline queries, consider the example from a set of home
heating oil delivery stations (data points P) where their user wants to identify a candidate subset
to dispatched delivery trucks to multiple houses (query points Q). This candidate subset includes
those stations that are not dominated by any other station with respect to all the houses, and
hence they are the spatial skylines.

In [49] is proposed the Multi-Source Skyline Query (MuSSQ) in road networks where the network
distance between two locations needs to be computed on-the-fly and the attributes are defined to
be the shortest path length from data points to query points. In [50] it is proposed the Location-
Dependent Skyline Query (LDSQ) for multi-objective distance optimization, considering a
continuous changing user location (query point). In [51] authors consider spatial skyline
computation with user preference information in addition to distances. Also, they extend the query
processing algorithm to return at least k good objects (where k is a user specified number) even
when the original skyline contains fewer than k items. In [52] is proposed the Direction-based
Spatial Skyline Query (DSSQ), which finds the best objects by comparing them in terms of
distance from a mobile user and also by considering the direction that the user moves, rather than
only distance as in traditional spatial skyline queries. In [53, 54] authors propose Manhattan
Spatial Skyline Queries (MaSSQ) and develop an efficient algorithm for spatial skyline queries
using the L1 norm, also known as Manhattan distance. Readers must not associate Manhattan
Spatial Skyline Queries (MaSSQ) with Multi-Source Skyline Queries (MuSSQ).

2.4.3. Reverse Skyline Queries (RSQ)

A Reverse Skyline Query [14] retrieves these points in the database whose dynamic skylines
contain a given query point. This type of query, as opposed to the DSQ, is a query from the
perspective of real estate company. For example, given the ideal preferences of potential house

di
st

an
ce

10

0
10

00

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

11
00

12

00

13
00

14

00

15
00

16

00

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900) H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
27

buyers, as points in a two-dimensional space, the reverse skyline query can answer the question
if it make sense to offer a house q (as a query point) to one of the potential buyers. The house q
(becoming an origin point) will be interesting for a buyer, if it will be part of the dynamic skyline of
his preferences (that represent the dataset points). Another example would be the selection of a
new store’s location. A reverse skyline query on a customer database, with respect to a query
point q that represents the new location of the store would return those customers who are
potentially interested in the new store. Then the strategy is to select the location that maximizes
the number of customers.

Definition 7: Reverse skyline.

Given a dataset Ds in a d-dimensional space D and a query point q (q1, q2, ..., qd)  D, the reverse

skyline query of Ds with regards to q retrieves the set of points RSLq(Ds)  Ds for which q is a

dynamic skyline point of Ds with regards to all points in RSLq(Ds), that is, RSLq(Ds) = {p  Ds | ∄

r  Ds: r q
Ds p}. The points in RSLq(Ds) are called reverse skyline points of Ds with regards to

q∎

Definition 8: Global Domination

Given a dataset Ds in a d-dimensional space D, a query point q (q.d1, q.d2, ..., q.dd)  D and two

points p(p.d1, p.d2, ...,p.dd) ,r(r.d1, r.d2, ..., r.dd) D, point p will globally dominate r with regard to

the query point q (denoted as p q r) if ∀i{1, . . . , d}: { (p.di − q.di)(r.di - q.di) > 0 and |p.di −

q.di|≤|r.di − q.di|} and ∃j{1, . . . , d}: |p.dj−q.dj| < |r.dj−q.dj|∎

Definition 9: Global Skyline

Given a dataset Ds in a d-dimensional space D and a reference point q  D, The global skyline
of a point q, GSL(q), will contains the points which are not globally dominated by another point
according to q∎

FIGURE 22: GLOBAL SKYLINE AND RANGE QUERIES.

FIGURE 23: REVERSE SKYLINE.

To compute the reverse skyline (RSL) of the house-metro station example, with regards the query
point q (800,800), it is first needed to compute the global skyline GSL(q) as shown in Figure 22.
As illustrated, the GSL(q) will contain the (reverse skyline candidate) points H11, H7, H5, H4, H9

and H2. The resulted reverse skyline Figure 23 will eventually contain the points H5, H7, H11. The
rest of the points are discarded because, in order for a reverse skyline candidate p to be a reverse
skyline point must not exist any point q in the GSL that is (strictly) better, in terms of distance from
q, on all dimension simultaneously.





d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600) H7

(400,300)

H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

q (800,800)

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600) H7

(400,300)

H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

q (800,800)

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
28

With the existing introduced algorithms, in order to compute the RSQ of a dataset DS, given a
query point q, it is needed to examine all the points of DS by performing a dynamic query (e.g.
using BBS) for each point to find the points that have q as part of their dynamic skyline. The points
that will be retrieved would be the reverse skyline set. A first optimization in this approach would
be to stop processing the dynamic skyline of a point when q is already identified as a skyline point
since there is no need to compute the entire skyline. To further optimize the identification of
Reverse skyline point authors proposed two algorithms Branch-and-bound algorithm (BBRS) and
Reversed Skyline Search with Approximation (RSSA). BBRS is an improved customization of the
original BBS algorithm and uses a Multidimensional index (e.g. R-tree). Its goal is to process the
reversed skyline of a query point q without applying a space transformation. To achieve this, it
retrieves the proposed Global Skyline GSL(q) that returns a small subset of the dataset as
candidates for RSQ (this subset is still a superset of RSQ), which essentially reduces the search
space for the reverse skyline computation. Algorithm RSSA computes the dynamic skyline for
each point of the dataset and uses an accurate pre-computed approximation of the skyline in a
filter-refinement step to compute the reverse skyline. Along with the RSSA algorithm, authors
proposed an optimal algorithm to compute approximations for two-dimensional skylines and a
greedy algorithm for higher dimensions. The basic idea of the approximation scheme is to pre-
compute the dynamic skyline of each point of the dataset and select a fixed number k of Kmax
dynamic skyline points (k≤Kmax).

Some additional applications where the reverse skyline can be applied is the case when needed
to identify customers that would be interested in a particular product by exploring the dominance
relationships between other competitor’s products, with respect of the user preferences. The
reverse skyline can also be applied in situations such as environmental monitoring, where several
sensors are deployed to monitor the area and report data such as temperature and humidity.

In [55] authors try to answer the so called why-not questions in reverse skyline queries To answer
this type of question we need to find why a point does not belong in the reverse skyline and what
actions are needed to be performed (to the query point but also to the why-not point) to be part of
the reverse skyline by incurring only minimum changes to both.

2.4.4. Group-by and Join Skyline Query

In this section are introduced the Group-by Skyline queries [3] and skyline queries over joins [56].

2.4.4.1. Group-by Skyline Query

To illustrate a Group-by skyline query [3] example based on the initial house-metro station
dataset, a third attribute is inserted into the original dataset Table 1 (without altering any of its
values) represents the number of bedrooms that each house has (Table 13). This way a potential
buyer can find individual skylines depending on the number of bedrooms. That is to group the
houses by the number of their bedrooms and then compute the skyline of each group. In this case
the cardinality of distinct values of bedrooms will be equal to the number of individual skylines that
will be found. In Figure 24 the individual skylines of each group based on the number of bedrooms
are illustrated.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
29

House
price (in

thousand
€)

Distance
(m)

No. of
bedrooms

H1 100 1500 1
H2 1400 500 3

H3 700 600 2
H4 1300 1000 3
H5 900 1300 2
H6 1600 100 3

H7 400 300 1
H8 200 1200 1
H9 1000 200 2
H10 500 1400 1
H11 500 900 1

TABLE 13: HOUSE-METRO STATION DATASET WITH NO. OF

BEDROOMS.

House price (in
thousand

€)

Distance
(m)

No. of
bedrooms

H1 100 1500 1
H7 400 300 1

H8 200 1200 1
H10 500 1400 1
H11 500 900 1
H3 700 600 2

H5 900 1300 2
H9 1000 200 2
H2 1400 500 3
H4 1300 1000 3
H6 1600 100 3

TABLE 14: GROUP-BY SKYLINE.

To give a formal definition of the Group-by dominance property and the Group-by skyline it is
needed to define the following:

Given a relational table instance DS (dataset), in a d-dimension space with equal numeric
attributes and a schema A= (A1, A2,…Ad), the notation p[Ai] represents the value of a tuple p in
the attribute Ai. Additionally, given a set G ⊂ A of attributes of DS that will be used for grouping
and an instance g of G (i.e. one distinct value from the total values of number of bedrooms), DS(g)
is defined as the set of tuples of DS that belong to the group instance of g. That is: 𝐷𝑆(𝑔) = {𝑝 ∈
𝐷|∀𝐴𝑖 ∈ 𝐺, 𝑝[𝐴𝑖] = 𝑔[𝐴𝑖]}

Definition 10: Group-by Dominance
Given a set S ⊂ A (S∩G=∅) which this time contains the skyline attributes (that will be checked
for dominance), a tuple p dominates another tuple r with respect of S, (denoted by p ≻s r) if and

only if ∃ Aj∈S such that p[Aj]<r[Aj] and ∀ Ai∈S -{Aj}: p[Ai]≤r[Ai] ∎

Definition 11: Group-by Skyline
Eventually the Group-by skyline query will contain all the tuples p that are not Group-by dominated
by any other tuple r with respect of S and that is: 𝛹(𝐷𝑆, 𝑆) = {𝑝 ∈ 𝐷𝑆|∄𝑟 ∈ 𝐷𝑆, 𝑟 ≻𝑆 𝑝}∎

Summarizing a group-by skyline query Q= (G, S), with G representing the grouping attributes and
S the skyline attributes (S∩G=∅), computes the skyline result set ψ(DS(g),S) for each group
instance g defined on G and the overall query result can be represented as Q (DS).

Based on the dataset DS of Table 13, to find the group-by skyline with respect to the No. of
bedrooms, the grouping attributes are defined to be G= {No. of bedrooms} and the skyline
attributes S= {Price, Distance} (S∩G=∅). The dataset DS of Table 13, is partitioned into groups
(Table 14) based on G and then the skyline tuples of each group are computed with respect of S.

A naïve approach to process a Group-by skyline is to create a separate R-tree for each one of
the distinct values of bedrooms. Each R-tree will contain the corresponding house entries with
their two remaining attributes, depending on the number of bedrooms (grouping attribute), and
then an original BBS algorithm on each tree will be invoked. Nevertheless, this approach is
inefficient since the performance of queries when all attributes are involved is compromised as it
may be needed to maximize or minimize the grouping attribute. A more efficient approach, which
operates on the R-tree that indexes all the attributes is achieved with a variation of BBS [2]. This
variation stores the already found skyline points for every group, in a secondary (d-1)-dimensional
(in this case) R-tree and maintains a heap with the visited entries. The sorting measure that is
used is based only on the d-1 remaining attributes (without the group-by attribute). The dominance
check of a retrieved point, from the original R-tree, is performed on the corresponding by its group
R-tree and is inserted in it only if it is not dominated by any of the existing points. Dominance
checks for intermediate entries (regions) are more complicated because it is likely to contain
hotels of several classes.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
30

FIGURE 24: GROUP-BY SKYLINE.

Authors in [57] proposed the aggregate skyline query which combines the skyline and group-by
queries. Essentially, the aggregate skyline is the set of groups not dominated by other groups.
The various groups are defined based on a common property of tuples. In addition, authors
discussed the differences between the efficiency of the aggregate skyline query processing in
relation to the sequential execution of the skyline and group by query.

In [58, 59] authors studied the problem of identifying the k-tuple skyline groups. In this problem
authors try to identify groups of k tuples that are not dominated by other, equal sized, groups. To
compare the groups, each group is associated with an aggregate vector which is computed based
on a common aggregate function such as SUM, MIN, MAX. The aggregate values of vectors are
computed based on all the attributes of all tuples in a group. A naïve approach to compute the k-
tuples skyline groups is to compute the aggregate functions for each k-tuple combination and then
invoke a traditional skyline algorithm to identify the skyline groups.

2.4.4.2. Skyline Queries Over Joins

Most of the existing work discusses the computation of skyline queries over data that are stored
in a single table. In [56] authors discuss the case where data are stored in multiple tables and
thus is required to perform join operations among them to compute the final skyline and propose
efficient methods to share the join processing cost with skyline computation cost. More specifically
assuming the existence of two (or more) tables (which have one common join attribute) and apply
a join operation on them, there is a case that may appear new skyline points that are not in the
skyline of the individual tables. Based on this observation a naïve approach would be to compute
the join of the two tables and produce a new table that contains the joined records. Afterwards
apply a skyline query to the derived table to compute the skyline. The problem that may arise in
this case is the potential increment of the computational cost of skylines on the joined table due
to its increased cardinality and dimensionality. As a solution authors proposed a sort-merge join
approach where they group the tuples in three groups according to the values of join attributes
and based on whether or not are local skylines in their group and skyline points in the whole table.
This involves a first phase of pruning from each table which is achieved with the use of an R-tree.
Afterwards each tuple in each group is sorted based on its join attribute value. The next step
involves a third (in this case) table which will host the join operation. Each group is inserted
individually and merged with the existing tuples by additionally performing a dominance check for
each tuple to compute final skyline of the join relation.

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
31

2.4.5. Top-k Skyline Query

Top-K skyline queries (or ranked skyline queries) were proposed in [2, 3] and return the K “most
interesting” skyline points of a given dataset, based on a monotone preference function f. The
user specifies the parameter K, which represents the number of points to be reported and the
monotone preference function f based on the weighting that wants to apply over the attributes.
The query will return the K points of the dataset with the minimum (or maximum) score according
to the function f. To demonstrate this with an example assume that K=3 and the preference
function is f(x)=x+2y (i.e. a lower distance (y) is more important than price (x) to the user). The
Top-3 points of the house-metro station dataset that will be returned are {(H7, 1000), (H9, 1400),
(H6, 1800)}. This type of queries can be efficiently solved with BBS algorithm by replacing the
mindist function with the given preference function. In this case the algorithm will terminate when
exactly K points have been retrieved.

2.4.6. Thick Skyline Query

A Thick Skyline [60] extends the conventional skyline by returning the conventional skyline points
and additionally their nearby non-skyline neighbors that exist within ε–distance, which are similar
but not as good as the skyline points. This approach can help the user in cases of nearest
neighbor search where the cardinality of the dataset is high and the points of the dataset forms
groups. In their work the author extend the concept of skyline to generalized skyline by adding a
user-specific constraint, defined as the ε-neighbor of any skyline point, into skyline search space.
A Thick skyline is composed by a subset of the generalized skyline points.

Definition 12: Generalized Skyline.
Given a d-dimensional dataset DS and a set SL={s1, s2, s3,… }, which contains the conventional
skyline points of DS, the generalized skyline GL is consisted from the conventional skyline points
and additionally the non-skyline points that exist in their vicinity within ε-distance. That is
GL=SL∪{p|p∈DS^p∈si+ε, ∀i, 1≤i≤d}∎

Definition 13: Thick Skyline.
Given a d-dimensional dataset DS, a thick skyline is composed by the skyline points of the
generalized skyline (named dense skyline points), that have in their vicinity (defined by ε) another
(strictly) skyline point(s), and additionally the skyline points of the generalized skyline (named
hybrid skyline points) that have in their vicinity another skyline point(s) and some non-skyline
points. Thus, a thick skyline contains all the skyline points of the generalized skyline except of
those that do not contain any other point in their vicinity (outlying skyline points) as defined by the

generalized Skyline ∎

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
32

FIGURE 25: DENSE, HYBRID AND OUTLYING SKYLINE POINTS.

Figure 25 shows the main differences between the dense, hybrid and outlying skyline points in a
plane that is consisted of random points, because in the house-metro station dataset this would
not be obvious. Point p1, p3, p4 are outline skyline points since are skyline points but they do not
contain any point in their vicinity. Point p7 and p6 are dense skyline points since are skyline points
and contain another skyline point in their vicinity. Point p2, p8, p9 and p5 are hybrid skyline points
since are skyline points and contain other non-skyline points in their vicinity. Additionally, point p9
and p8 contain another skyline point in their vicinity.

Authors proposed three algorithms, Sampling and Pruning, Indexing and Estimating and
Microcluster-based algorithm for mining thick skylines under three typical scenarios. The first
scenario concerns a single file to represent the dataset where the sampling and pruning technique
exploits statistics from the database, such as order and quantile in each dimension, to identify the
thick skyline points by comparing the points of the dataset according to the defined Strongly
Dominating Relationship.

Definition 14: Strongly domination relationship.
A point p strongly dominates a point q (denoted as p⊳q), if p+ε dominates q. That is ∀i∈[1,d],

pi+ε≤qi and ∃j∈[1,d]-{j}, pi+ε<qi∎

The second scenario concerns a general index structure such as Index algorithm [35] where
points are partitioned in lists ordered by their minimum coordinate and compared in a similar order.
The final scenario concerns the partitioning of the dataset into microclusters based on the CF-
tree structure [61]. Then the algorithm follows a similar approach as BBS [2] to identify the desired
points using bounding and pruning techniques. In each case the thick skyline performs
approximate selections, as it employs approximate measures and increases the size of the final
result set (compared to the conventional skyline) that is returned to users.

2.4.7. K-representative and Distance-based Representative Skyline Queries

K-representative skylines points (top-k RSP) were proposed in [62] to identify a set of k skyline
points that maximize the total number of (distinct) points dominated by one of the k skyline points.
This type of query was proposed to allow users to have a good approximation (returning few but
representative skyline points) of the final skyline and let them make a good and quick selection
when the skyline is consisted from too many points. Authors also developed an efficient, scalable,
index-based randomized algorithm. Authors in their implementation employed the BBS [2, 3]
algorithm and the FM probabilistic counting algorithm [63]. The FM algorithm is a bitmap based

x Ο

y

P1

P2

P3

P4

P5

P8 P9

P6

P7

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
33

algorithm that can efficiently estimate the number of distinct elements (data points) dominated by
a skyline point, overcoming multiple-domination counting.

2.4.7.1. K- Representative Skyline (Top-k RSP)

Given a dataset Ds and an integer k, ∀p∈Ds, D({p}) is denoted as the set of points in Ds that are

(strictly) dominated by p. For a set S of data points, with S⊆DS, D({S}) denotes the set of points
each of which is strictly dominated by a point s∈S. The set K of the k-representative skyline points

will contain k skyline points that Maximizes |D(K)|∎

The problem of identifying the K-representative skyline is known to be NP-hard [62] in 3 or higher
dimensional space. This approach is scale invariant but cannot be considered stable since adding
a non-skyline point may alter the final k-representative skyline set. Top-k RSP can be transformed
in the maximum coverage problem [64] and solved approximately by the author’s proposed
greedy heuristic.

2.4.7.2. Distance-based Representative skyline

Authors in [65] proposed the distance-based representative skyline, which is an alternative
solution for the problem of k-representative skyline points (referred as max-dominance
representative skyline in this work) where they redefined it. The reasoning was that the set K of k
points returned by the k-representative skyline can turn out not to be representative, because the
produced points may belong to the same cluster or the set K fails to represent the extreme points.
From the authors perspective a good representative skyline should have for every non
representative skyline point, a nearby representative. Therefore, in their work they defined the
problem of identifying the k-representative skyline points as the set of k points that minimizes the
distance between a non-representative skyline point and its nearest representative. The proposed
approach it is not a scale invariant, as the previous approach (k-representative skyline), since it
is based on distances. As opposed, it can be considered to be stable since by adding a non-
skyline point in the dataset will not change the final representation (due to the initial algorithm
construction).

In this approach it is considered that the data space is normalized in the range [0, 1]. The distance-
based representative skyline can be an optimal solution for k-center problem [66] of the full
skyline. Except from the distance-based representative skyline authors introduced the concept of
representation error of K, denoted as Er(K, S) to quantify and check the quality of the
representation K of the full skyline S of the dataset Ds, by the k identified representatives. This is
achieved by checking the maximum of all distances, between any of the non-representative
skyline points in the set S−K and their nearest representative in K.

Definition 15: Distance-based Representative Skyline.
Given a dataset Ds, its skyline set S and an integer value k, the distance-based representative
skyline K of Ds is consisted of k-skyline points of S that minimizes the representation error
Er(K,S)∎

For the 2-dimensional space authors developed a dynamic programming algorithm that optimally
finds a solution in polynomial time. For 3-dimensional spaces and higher authors propose a 2-
approximate [67] polynomial algorithm and prove that the problem is still NP-hard [62]. The
algorithm can quickly identify the k representatives without extracting the entire skyline by utilizing
a multidimensional access method (i.e. R-tree). The proposed algorithm is progressive and does
not require a specific k value from the user as it continuously returns representatives that are
guaranteed to be a 2-approximate solutions at any moment, until either manually terminated by
the user or eventually producing the full skyline.

The k-representative skyline gives to the user a high-level summary of the entire skyline as it
returns only a few points that reflect to the contour of the final skyline and then progressively
refines it (contour) by reporting more skyline points. The user may identify interesting
representative points and request only the skyline points that are similar to those representatives
(i.e. belong to a specific part of the contour).

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
34

2.4.8. ε-skyline

The proposed type of query claims that solves the limitations and drawbacks of the original skyline
by taking into account that there was no algorithm that can simultaneously control the resulted
size of the skyline, has built-in ranking for the points and weighting on dimensions. According to
previous considerations authors proposed the ε-skyline [68] which allows users to control the
number of output skyline points (by increasing or decreasing them depending on an appropriate
ε parameter that the user defines), provides a built-in ranking system and integrates weighting
factors for each dimension.

The algorithm takes as input a d-dimensional dataset (with its values normalized as on SFS [41]
in [0, 1] (section 2.3.7), a weight vector W that will contain the weight factors W i, (i∈[1, d]) for
each dimension (if no weighting is needed all the factors will be equal to 1) and a parameter ε∈[-
1, 1]. The dominance property is relaxed according to the ε parameter. To manage the dominance
relations, authors defined some additional properties such as irriflexivity, loose transitivity and
loose asymmetry. The weights that the user inserts are incorporated in the dominance
comparisons. For the built-in ranking system to work every point p in the dataset has a
corresponding ε-max value which represents the largest value of ε, which makes p to be a skyline
point. Thus, the points have a natural order based on ε-max value. This ordering can be used to
place top-k ε-skyline queries.

Definition 16: ε-domination.
Given a d-dimensional dataset DS, a weighting vector W={Wi |i∈[1, d],0<wi<1}, a parameter ε∈[-

1, 1] and two points p,r∈DS, p ε-dominates r, denoted with p ε≺ r if and only if ∃ j∈[1,d] such that

p.dj<r.dj and ∀ i ∈[1,d]-{j}: p.di *wi ≤ r.di *wi+ε∎

Definition 17: ε-Skyline.
The ε-Skyline of a dataset DS contains all the points p∈DS that are not ε-dominated by any other

point on the dataset∎

In their work, [68], authors proposed two algorithms, ε-SFS which is progressive and based on
the SFS [41] algorithm and IFR (index-based Filter-Refinement) algorithm which uses an index

structure such as an R-tree and a filter-refinement framework.

H2

(0.14,0.05)

H8

(0.02,0.12)

price Ο 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.13 0.14 0.15 0.16 0.11 0.12

H11

(0.05,0.09)

H3

(0.07,0.06)

H7

(0.04,0.03) H9

(0.1,0.02)

H6

(0.16,0.01)

H1

(0.01,0.15)

H4

(0.13,0.1)

H5

(0.09,0.13)

H10

(0.05,0.14)

 ε

H7’

 ε

H8’

di
st

an
ce

0.

01

0.

10

0.
02

0.

03

0.
04

0.

05

0.
06

0.

07

0.
08

0.

09

0.
11

0.

12

0.
13

0.

14

0.
15

0.

16

FIGURE 26: DOMINANCE REGION OF H7’ WITH Ε=0.01 .

H2

(0.14,0.05)

H8

(0.02,0.12)

price Ο 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.13 0.14 0.15 0.16 0.11 0.12

H11

(0.05,0.09)

H3

(0.07,0.06)

H7

(0.04,0.03) H9

(0.10,0.02)
H6

(0.16,0.01)

H1

(0.01,0.15)

H4

(0.13,0.10)

H5

(0.09,0.13)
H10

(0.05,0.14)

di
st

an
ce

0.

01

0.

10

0.
02

0.

03

0.
04

0.

05

0.
06

0.

07

0.
08

0.

09

0.
11

0.

12

0.
13

0.

14

0.
15

0.

16

 ε

FIGURE 27: Ε-SKYLINE WITH Ε=-0.01 .

An ε-skyline can monotonically vary from an empty set to the whole dataset depending on the
value of ε. An ε-skyline with ε=0 represents the conventional skyline. An ε-skyline with value ε=-1
will return the whole dataset and with value ε=1 the empty set. More generally the case of an ε-
skyline, with ε>0 is shown in Figure 26. In this case ε=0.01 and as shown the dominance region

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
35

of (i.e.) H7 will be visualized as the point H7 was moved to the location of H7’ to fulfil the ε-
domination. This way point H7 ε-dominates point H9 which for that reason will not be in the final
skyline set. Similar H8 ε-dominates H4 and H9 ε-dominates H6. The final skyline set for ε=0.01 will
be S= {H7, H8}. The case of an ε-skyline, with ε<0 is shown in Figure 27. In this case the ε-skyline
will contain the conventional skyline points and additionally the points that are in the shaded area,
as this happens with point H11.

2.4.8.1. Approximately Dominating Representatives

In [69] authors introduced the notion of approximately dominating representatives (ADRs). The
scenario has a set of n points in a d-dimensional space and a value ε>0, where it is desired to
find the minimum set of points, named ε-ADR, that approximately dominate all the points of the
dataset. With this approach they try to minimize the number of (skyline) points to be reported at a
small loss of accuracy. The approximation is imposed by a user-defined value ε that extends the
dominating region of each point. The data points retrieved by the algorithm when ε=0 (ε-ADR)
are guaranteed to be skyline points. In this case the algorithm will return all the existing skyline
points. In the cases of ε>0 may exist many different ε-ADRs (for a specific value ε). In this case
the points returned are not guaranteed to be skyline points. An example of a case where ε>0 can
be considered a dataset that contains a point that approximately dominates all others (i.e. a point
very close to the origin of axes if minimization of preferences is desired). In this case the algorithm
will return only this point, although it may not be a pure skyline point.

2.4.9. Enumerating and K-dominating Queries

Enumerating queries and K-dominating queries (Top-k dominating queries in general
bibliography) were proposed in [2, 3]. These types of queries do not produce skylines but can
work as a measure of “goodness” in various cases.

2.4.9.1. Enumerating Queries

An enumerating query [2, 3] returns the set of skyline points and additionally the number of points
that each skyline point p dominates (denoted as num(p)). This kind of result could be used to
investigate which skyline points are more interesting by means of “number of points that they
dominate”. To compute the enumerating query the first step is to retrieve the skyline points of the
dataset with an existing algorithm (i.e. BBS). The second step performs a query in the R-tree, for
every skyline point, to count the number of points that exist in their dominance region. To avoid
multiple node visits with the previous technique (since a node may be dominated by more than
one skyline points), a solution is to apply the inverse procedure which is, for each non-skyline
point in the dataset, perform a query in the R-tree to find the dominance regions that contains it
and accordingly increase the appropriate counters of the skyline points that dominates it. As an
example in the house-metro station dataset the enumeration query will return for the house H7,
num(H7)= 6, for the house H11, num(H8)= 2 and for the house H6, num(H6)=0.

2.4.9.2. k-dominating Queries

A variation of the above problem (and also the predecessor of the k-representative skyline query)
that incorporates the enumerating query (and the constrained skyline queries) is the K-dominating
query [2, 3]. This type of query returns the K points that dominate the largest number of other
points. The points that are returned do not necessary belong to the skyline of the dataset.

The first step to retrieve the K-dominant points is to perform an enumerating query. The query will
return the skyline points and the number of points that each one of them dominates. The items
that are retrieved are sorted by their descending order of the number of points that they dominate
and the first K points are placed in a list. The first point of the list is the first result of the k-
dominating query and it is returned to the user, removed from the list and pruned from further
computations. Next is applied a local (constrained) skyline with boundaries the (exclusive)
dominance region (Figure 28) that was defined by the point removed, to efficiently find the skyline
of the dataset after the removal of the first point and identify potential candidate K-dominant points
(that may outnumber points in the list). The second step of the enumeration query is applied on
the newly found skyline points (if they exist and are possible candidates) and returns the number
of points that they dominate. If any of the points found outnumbers the last point of the list, it

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
36

replaces it and the list is rearranged. The first point of the list will be the second K-dominating
point. The algorithm terminates when it finds the K most dominant points, thus when the new
points retrieved from the local skyline cannot outnumber the points in the list. For the House-metro
station example a K-dominant query for K=3 will return the points {(H7,6),(H11,3), (H8,2)}. More
analytically after the initial enumerating query the list will contain the points {(H7,6), (H8,2), (H9,2)}.
Point H7 will be the first K-dominant point and returned to the user. After removing point H7, the
local skyline point H11 is checked and is inserted in the list (the last point of the list is removed
resulting in {(H11,3), (H8,2)}. The local skyline point H3 is also checked, after the removal of H7, but
is not inserted in the list because it does not outnumbers any point in it. Thus, the second K-
dominant point H11 is returned to the user but the algorithm terminates (Figure 29) since a local
skyline, by removing H11, has not any candidate that may outnumber the last (and in this case the
final) point of the list. So point H8 is also returned to the user.

FIGURE 28: EXCLUSIVE DOMINANCE REGION OF H7.

FIGURE 29: SKYLINE AFTER REMOVING H7 (FINAL STEP OF

ALGORITHM

di
st

an
ce

10

0
10

00

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

11
00

12

00

13
00

14

00

15
00

16

00

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900) H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

di
st

an
ce

10

0
10

00

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

11
00

12

00

13
00

14

00

15
00

16

00

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900) H3

(700,600)

H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
37

2.4.10. k-skyband Query

A K-skyband query [3] returns the points that are dominated by at most K points with the case of
K=0 representing the original skyline. A K-skyband query follows similar logic with K nearest-
neighbor query with K representing the thickness of the skyline.

FIGURE 30: (0, 1, AND 2)-SKYBAND QUERY.

Figure 30 illustrates a 0-skyband query (red line), a 1-skyband query (yellow line) and a 2-
skyband query (green line) of the house-metro station dataset. In detail a 2-skyband query will
return points H1, H6, H7, H8, H9 (which are dominated by at most 0 points) , H3, H11 (which are
dominated by at most 1 points) and H2 (which is dominated by at most 2 points).

A naïve approach to process a k-skyband query is to perform an enclosure (window) query on the
R-tree, for every point p(p.d1,p.d2)∈ DS, to count the points that exist in the region [0,p.d1)[0,p.d2).
If there exist up to k points in this region then the point p belongs to the skyband. Since this
approach is inefficient, because the number of enclosure (window) queries required is equal to
the cardinality of the dataset, a more efficient approach involves the processing of k-skyband
query with the BBS algorithm. As with the original skyline the algorithm maintains its
progressiveness and its only difference is that an entry is rejected only if it is dominated by more
than k discovered skyline points.

2.4.11. Summary

The user can apply a dynamic skyline query if in addition with the original skyline computation,
wants to apply a space transformation from a (i.e) 3-dimensional space to a 2-dimensional space,
(and vice versa) or to find the skyline set based on a given query point. A reverse skyline query
can help the user to identify if a given query point is desirable and interesting based on an existing
dataset that may represent his/her preferences. A spatial skyline query can be applied when the
user wants to find the skyline according to multiple query points such as the case of deploying
several police cars to respond to multiple incidents. The Group-by skyline can help the user to
identify the interesting points based on some common attributes. i.e find the best hotels in each
5-star category. A thick skyline can help the user to retrieve not only the skyline points but also
some additionally points that may be interested to know even if they are not truly-interesting points
but only nearly-interesting points (are very close to a truly interesting point). A top-K skyline query
can help the user to retrieve the interesting points of a dataset even if his/her preferences are
biased. In this example he/she prefers cars with twice as low consumption even if its horsepower
is tripled lowered. With a k-representative skyline the user can retrieve a representation of the

d
is

ta
n

ce

1
0
0

1
0
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

H2

(1400,500)

H8

(200,1200)

price Ο 100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1100 1200

H11

(500,900)

H3

(700,600)

H7

(400,300) H9

(1000,200)
H6

(1600,100)

H1

(100,1500)

H4

(1300,1000)

H5

(900,1300)
H10

(500,1400)

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
38

original skyline, which is consisted from a smaller number of points than the original skyline. This
representation can be based on dominance or distance from other representatives, depending on
the selected query type. This type of query can be useful if the user wants to retrieve a general
view of the skyline fast, without retrieving the full skyline. With a ε-skyline the user can incorporate
the idea of top-k, k-dominating, thick and the k-representative skyline with one algorithm. An
enumerating query will help the user to retrieve the skyline points and additionally the number of
points that each skyline point dominates while with a k-dominating query can retrieve the k-points
that dominate the most points. Finally, a k-skyband query will let him to retrieve points based on
the number of points that dominate a point which can be useful in cases where the user wants to
know the dominance relations.

A performance analysis between BBS [2, 3] and NN [37] based on the application of the various
queries types can be found in [3].

Query type Specific Algorithms Based-on incorporates

Constrained Skyline [2, 3] Modified BBS or NN BBS or NN MBRs

Dynamic Skyline [2, 3] BBS BBS mindist, distance functions
Spatial Skyline [46, 47] B2S2 BBS Convex hull

 VS2 - Voronoi diagram / Delaunay graph

 VCS2 VS2 Voronoi diagram Delaunay graph

Reverse Skyline [14] BBRS BBS Global skyline

 RSSA - Global skyline / Approximation of skyline

Group-by Skyline [3] Modified BBS BBS Secondary R-tree / sorting
Top-k Skyline [2, 3] Modified BBS BBS mindist, distance function

Thick skyline [60] Sampling & Pruning -
sampling / Strongly Dominating

Relationship

 Indexing & Estimation Index [35] sorting

 Microcluster-based - microcluster-based index

K-representative [62] Greedy BBS sort-merge paradigm

 FMGreedy
Greedy -

BBS
FM-algorithm[63] / FM sketches

 RFM-tree BBS RFM-tree [62] / FM sketches
Distance-based K-
representative [65]

2D-opt - R-tree / Covering circles

 l-greedy - R-tree / farthest neighbor search

ε-skyline [68] ε-sfs SFS specific monotone function

 IFR - extra set ToExpand whith MBRs

Enumerating query [2, 3] Modified BBS BBS R-tree, find dominance regions

K-dominating query [2, 3] Modified BBS BBS Enumerating query, constrained skyline

K-skyband query [3] Modified BBS BBS pruning restrictions

TABLE 15: SPECIFIC ALGORITHMS FOR EACH QUERY TYPE.

Table 15 outlines the basic algorithms developed for the various types of queries mentioned and
notes the fundamental skyline algorithm that is based (if applicable) and the specific structures
(geometric) or techniques (approximation) that may incorporate.

Type Method Size of resulted set

Constraint skyline Region restrictions K ≤ S

Dynamic Skyline Space transformation S

Spatial Skyline Geometric structures S

Reverse Skyline Space transformation S

Group-by skyline Grouping attributes S

Thick skyline Approximate selection K ≥ S

Top-K (ranked) Point-wise ranking Exactly k points, ∅⊂ K ⊆Ds

K-representative Exclusive domination Exactly k points, K < S

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
39

Distance-based K-representative Distance aware Exactly k points, K < S

ε-skyline Multiple methods ∅⊆ K ⊆Ds

Κ-skyband query Domination K ≥ S

Enumerating query Domination S

k-dominating query Exclusive Domination Exactly k points

TABLE 16: SKYLINE QUERIES APPROACHES

Table 16 illustrates the various skyline related approaches, the general method that is used to
retrieve the skyline points of a dataset Ds and the size k of the resulted skyline set in a general
case, compared to the size S of conventional skyline query.

year 08 03 04 05 06 07 09 11 10

Constrained Skyline [2,3]

Group-by skyline [2,3]

Skyline with

Constrains [45]
Dynamic Skyline [2,3]

MuSSQ[49]

Spatial Skyline [46]

Reverse Skyline [14]

LDSQ [50] MaSSQ [53,54]

DSSQ [52]

Skyline over

joins [56]

Thick skyline [60]

Top-k skyline [2,3]

K-representative skyline [62]

Distance-Based

representative

skyline [65]

ε-Skyline [68]

k-skyband query [2,3]

k-dominating [2,3]

enumerating query [2,3]

FIGURE 31: CHRONOLOGICAL ORDER OF BASIC SKYLINE QUERIES.

Figure 31 illustrates the various queries. The black lines indicate that the algorithm heavily
depends or improves a previous algorithm and the red dashed line indicates that the algorithm
shares some general main ideas to compute the skyline.

2.5. Applications

Through several years of research skyline queries where applied in many applications and data
specific environments. This section primarily outlines the applications of skyline queries that are
related to this Thesis and then summarizes the work on the numerous research topics that exist.

2.5.1. Skyline Queries Over Temporal Data

The increasing interest in maintaining numerous time-varying data versions and in supporting
queries and trends analysis for decision making using these data led to the publication of over
2,000 research papers, to a comprehensive glossary of terminology [70], surveys and books in
temporal databases. These usually refer to two types of time, valid time and transaction time. The
first corresponds to the time when a fact is true in the real world. The second is the time during
which a piece of data is stored in the database. These time intervals might be different for the
same data tuple. Databases that combine both these types of time are called bi-temporal.

Surveys of access methods for efficient query processing over temporal data are found in [71]
and [72]. A large number of these methods are modifications of the traditional B+-tree access
structure, such as the Multi-Version B-tree [73] and the Overlapping B+-trees [74]. They usually
index tuples in the form <k, t1, t2> in which k is the key to a database relation and [t1, t2] is a time
interval, which in most of these cases is the transaction time. Another group of methods employs
mapping strategies and transformations such as the mapping of time intervals to single-

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
40

dimensional points in MAP21 [75] or the interval transformation in the Interval Space
Transformation method [76]. These methods usually index valid time ranges of the form [v1, v2].
Another cluster are extensions of space partitioning indexing structures such as the Segment R-
tree [77], 4R-tree [78], 3D R-tree [79], MV3R-tree [80], the RI-tree [81], etc. Most of these
methods can efficiently support tuples of the form <k, t1, t2, v1, v2>, and can index both temporal
and bi-temporal data.

While several temporal queries, joins and semi-joins have been explored for several application
domains, a query that has not been discussed yet in temporal databases is the skyline query and
its variants. This Thesis will be addressing the problem and propose algorithms for computing
efficiently the well-known static, dynamic and reverse skylines for temporal data. A closely related
work is provided in [82], in which the interval skyline query is introduced for time series
applications. The query returns the time series which are not dominated by any other time series
in a time interval. However, the properties that hold in the time series environment are totally
different than that in the field of general temporal (non time-series) data and therefore the
proposed algorithm is not applicable in temporal and bi-temporal databases. Finally, the authors
in [83] refer to the term temporal skyline which is also introduced in this thesis, however with a
different meaning to support the so called convex skyline query for sets of spatiotemporal objects
in privacy aware environments in which the disclosure of aggregated values of objects is only
allowed.

2.5.2. Parallel and Big Data Skyline Computation

With vast amount of data available and the presence of fast networks, large clusters of commodity
machines, multi-core processors and large amounts of shared memory many parallel
programming frameworks were developed. Two of the most common programming frameworks
used in skyline computation for parallel and distributed processing are the MPI (Message Passing
Interface) [84] and MapReduce [85]. Each one of them fits best for particular problems [86]
depending on whether there are data exchanges between nodes or not [87]. Another parallel
programming framework commonly used is OpenMP (Open Multi-Processing) [88]. Each
programming framework is designed to solve problems in different environments with OpenMP to
fit best in shared memory systems, MPI in distributed memory systems and MapReduce in big
data processing [86]. In the Era of AI, we cannot ignore parallel computing on general-purpose
graphics processing units (GPGPU) that can be performed with CUDA [89] and OpenCL [90].

Taking into account the previous frameworks, a study on skyline computation in OpenMP was
conducted in [91], where the authors parallelized the BBS [3] and SFS [41] algorithms and
proposed the nested-loop-based SSkyline and the divide-and-conquer-based PSkyline algorithms
for skyline query computation. In [92], the authors proposed the Hybrid and Q-Flow skyline
algorithms, which use a data structure maintained in the shared memory managed by OpenMP.
A pivot-based technique to partition the space in such a way to minimize the number of
comparisons, taking into account the incomparability of points and partitions, was proposed in
[93]. In a similar concept, [94] uses an angular-based space partitioning technique to solve the
skyline computation problem. For parallel skyline computation, the authors of [95] used angle-
based space partitioning based on hyperspherical coordinates. A similar approach [96] performed
partitioning based on Hyperplane-projections. In [97], the authors proposed four algorithms based
on load balanced grid-based partitioning techniques.

In a different environment, the authors of [98] implemented the SFS [41] and SaLSa [42]
algorithms in CUDA [89] and compared them with the GNL algorithm [99], a nested-loop skyline
algorithm for GPU, based on CPU-based BNL [8]. Another work for GPU-based skyline
computation is the one in [100] where the authors proposed the SkyAlign algorithm along with a
GPU-friendly, grid-based tree structure and compared them with the work on [98].

The first work that studies skyline queries on the MapReduce programming framework is [101]
that ported the original BNL [8], SFS [41] and Bitmap [35] algorithms, in MapReduce with the
MR-BNL, MR-Bitmap and MR-SFS. In [102] the authors used the BNL [8] algorithm with an
angular partitioning approach to solve the skyline problem. Through their work, they proposed the
MR-Dim, MR-Grid and MR-Angle algorithms. The idea of minimal algorithms in MapReduce,

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
41

which have in goal the load balancing among nodes and the minimization of space, CPU, I/O and
network, was proposed in [103]. Among ranking, group-by and semi-join algorithms, the skyline
queries were discussed developing the Minimal-Sky algorithm and compared it to the MR-SFS
from [101]. The authors of [104] proposed the computation of histograms to initially prune the
non-interesting points and consequently partition the dataset in a later phase. With this technique,
they managed to compute the skyline and reverse skyline queries with the SKY-MR and RSKY-
MR algorithm respectively. It is worth mentioning that the most relevant work to this is the
algorithm MR-BNL [101]. Their work is also applicable to the MPI framework and to multicore
environments such as in OpenMP. In [105], the skyline computation by the MR-GPSRS and MR-
GPMRS algorithms was achieved with a bitstring representation on the original tuples and a grid-
based partitioning approach which reminds of the approach followed by the Bitmap [35] and D&C
[8] algorithms. The authors compared their algorithms with the MR-BNL [101] and MR-Angle
[102]. The angle-based partitioning approach was also used in [106] with the PGPS algorithm
which works similar to the BNL [8] and SFS [41]. Additional partition-aware filtering approaches
were proposed and used in the APF-PGPS and PPF-PGPS algorithms to balance the skyline
candidates over the partitions. Moreover, the authors compared their work with the algorithms in
[102] and [105]. In [32] the authors use the spatial and geometric properties of the dataset to
prune the dataset with the use of SpatialHadoop, an extension of Hadoop. Their proposed
algorithms SKY-FLT and SKY-FLT-SORT for skyline computation efficiently maintain checkpoints
to prune the rest of the dataset.

method
query
type

novelty
Indexing /
sorting /

partitioning

Pruning
techniques

No. Jobs
Skyline

algorithm
in use

Dimensional
ity /

Cardinality

nodes
/

memo
ry

[101] Skyline Porting Horizontal Inherited 2 jobs
BNL, SFS,

Bitmap
10d /1B

8 /
4GB

[102] Skyline
Angular

partitioning
Vertical &
Horizontal

Inherited 2 jobs BNL 10d / 10TH
32/ 4
GB

[103]
Skyline
& others

Minimizing
costs

TeraSort Inherited 2 jobs BNL 2d/ 2.5B
56 /
4GB

[104]

Skyline
&

Reverse
Skyline

Sampling,
histograms

QuadTree
Partition aware
with local filter

points
2 jobs - 10d / 4B

20 /
4GB

[105] Skyline

Sampling, Grid
partitioning with

BitString
representation

Grid with
BitString
mapping

Partition aware
with local filter

points
2 jobs - 8d / 3M

13 / 28
GB

(total)

[106] Skyline

multiple
partition-aware

filtering
mechanisms

Angle-based
& Grid-
based

partitioning

several
partition aware

filtering
approaches

2 jobs - 5d / 13M
12 / 2

GB

[32] Skyline
SpatialHadoop
(sampling with
two level index)

R-tree checkpoints

1 job & (1-
time job

for
indexing)

Similaritie
s to BNL

2d/ 500M 17 / -

[107] Skyline
Single job,

sampling with
two level index

TLG (Two-
level Grid)

index

Partition and
intra-partition

filtering
1 job - 4d / 10M

8 / 16
GB

[108]

Skyline
&

Reverse
Skyline

Reverse Skyline
in

SpatialHadoop,
high cardinality

datasets

R-tree
Partition and
intra-partition

filtering

1 job for
Skyline,

2 jobs for
Reverse
Skyline &

(1-time job
for

indexing)

Similaritie
s to BNL

2d / 2.4B
6 / 16

GB

TABLE 17: MAPREDUCE-BASED SKYLINE QUERY COMPUTATION APPROACHES.

Finally, Table 17 summarizes the work on skyline query processing related to MapReduce. The
table organizes the work in chronological order and highlights the novelty, the approach followed
and some basic technical aspects of each work. As indicated, the trend followed in the early
stages of MapReduce was to port the existing sort-based algorithms for skyline computation. The
research evolved by proposing sampling techniques to build indexes or identify points with high
pruning power in multiple jobs. The use of indexes with additional pruning mechanisms seems to
be the defacto approach nowadays in which two level indexes appear with techniques that try to
solve the problem in one MapReduce job. To the best of our knowledge, the only work that studies

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
42

reverse skyline queries [14] in MapReduce is the one in [104]. Moreover, the only work that
studies skyline queries in SpatialHadoop is the one in [32]. The only work that retrieves the skyline
set in a single job is [107], the [32] and the work presented in this Thesis [108] which needs a
one-time job to perform the indexing of dataset in contrast to other works that re-index the dataset
in every execution of the algorithm. Additionally, it is the only one that studies reverse skyline
queries in SpatialHadoop and additionally shows how the skyline queries on SpatialHadoop
performs in a high cardinality dataset of 2.4B points.

2.5.3. Data mining

The work of skyline queries related with data mining approaches is quite limited. In most cases
researchers use clustering approaches to estimate the skyline or use the skyline operator to select
the best candidates or undominated solutions.

More specifically, clustering approaches are employed in [109] where authors use k-means
clustering to identify k-representative skyline and in [110] where a multi-objective genetic
algorithm-based clustering approach is used to identify the pareto-optimal front and find the
skyline. The notion of dominance is used in [111] where authors use the skyline operator to
identify a set of approximate undominated graph clustering solutions and in [112] to identify un-
dominated subgraphs. In authors [113] use the skyline operator as a filtering approach in a
classification task over biological data. In terms of identifying the best candidate solutions authors
of [114] try to identify the most suitable classifier in terms of accuracy, detection rate and false
alarm rate using the skyline operator. Finally, in the work [115, 116] presented in this Thesis the
skyline operator is used to estimate the decision boundaries in a classification process.

2.5.4. Other Applications

This section will present the rest numerous research topics on skyline queries. This includes the
skyline computation of skyline queries in a portion of the original dataspace, distributed skyline
computation, applications of skyline queries in specific data environments, continues skyline
computation in streaming environments, security related skyline applications, the use of skyline
queries to maintain the Quality of Services, the computation of skyline queries in spaces different
from the Euclidean such as metric space, the cardinality estimation of the answer of a skyline
query and the efficient update and maintenance of skyline queries when the original dataset
changes.

2.5.4.1. Subspace and Space Partitioning

The fundamental methods for skyline computation are optimized and rely on the fact that the
dimensionality of queries is fixed and concerns the full space of the dataset (take into account all
the dimensions/attributes of the dataset). Nevertheless, different users may be interested about
different dimensions/attributes of data and therefore may want to retrieve the skyline by comparing
only a specific subset of all dimensions/attributes. Additionally, a full space skyline query in high
dimensional space may return too many interesting points to the user which will not allow him/her
to make an appropriate decision. This problem reveals a different scenario in which a query is
placed over fewer dimensions than those of the full space. Formally, given a set of d-dimensional
points, a skyline query can be issued on any subset of the d dimensions. This subset will be called
subspace and the corresponding skyline query on those dimensions subspace skyline query.

MULTIPLE SUBSPACE COMPUTATION

Multidimensional subspace skyline computation was proposed simultaneously by two different
groups of authors in [20] and [117]. The methodology that they follow is different but the main
idea remains the same and is to compute the skylines of all possible subspaces forming a lattice
structure similar to the data cube [118, 119]. The authors of both groups combined, extended and
improved their works in [120]. The initial problem that they state is that none of the existing
methods considered skyline computation in subspaces. Authors in [121, 122] proposed the
Compressed SkyCube (CSC) which represents the complete SkyCube preserving the essential
information of subspace skylines without accessing the whole dataset. The initial reason for this
work was that the previously described method SkyCube (or complete SkyCube) did not take into
account that the dataset is not always static but rather could be dynamic (not to be confused with

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
43

the dynamic skyline). Authors in [117] discussed primarily the semantics of subspace skyline
queries and the importance of the dominance relationships in the subspaces. They studied the
skyline membership query, which tackles “why and in which subspaces an object belongs to the
skyline”, by introducing the notions of skyline group and using the general idea of decisive
subspaces. In [123] authors improved their work on [117] in order to sufficiently address the
efficient skyline group and decisive subspaces computation. In this work also developed the
Stellar algorithm which computes skyline groups and decisive subspaces without searching all
subspaces for skyline points, by exploiting the skyline groups formed by the full space skyline
points.

SINGLE SUBSPACE COMPUTATION

Previously proposed methods, related with the subspace skyline computation computed the
skylines of all the possible subspaces. This approach was selected because it is not known
(unpredictable) in which and how many dimensions a user may want to retrieve the subspace
skyline, so it is needed to compute every possible subspace skyline. From another perspective
many times most of the users perform queries that are related with a small subset of dimensions
(and might also be the same in their majority) with respect the full space. Differentiating, authors
in [124] studied the computation of the skyline of one specified subspace, as opposed to all. In
[125] extended their work where they discuss about the applicability of existing full-space skyline
algorithms in subspace and extend the SUBSKY algorithm to compute k-skyband [3] and top-k
queries [2, 3] in subspace.

TOP-K AND K-DOMINANT

To deal with the problem of returning to many interesting points in high dimensional spaces, when
different subspaces are considered, authors in [126] focused on ranking skyline objects and
introduced a new metric called skyline frequency. This metric ranks the interestingness of a
skyline point and retrieves the skyline points in a top-k fashion. Moreover, as dimensionality
increases the chance of one point to dominate another is very low. This leads in the retrieval of
numerous skyline points, which cancels any interesting insights on the dataset. An efficient
approach is to relax the notion of dominance to k-dominance in order to consider only k among d
dimensions and retrieve only important and meaningful skyline points. For that reason, same
authors of previous work ([126]) proposed in [127] the k-dominant skyline query (not to be
confused with k-dominating queries). A k-dominant skyline query retrieves a representative subset
of skyline points from a high d-dimensional dataset.

SPACE PARTITIONING

The access order of data points has direct impact on the performance of algorithms since the
early identifications of dominant and highly-dominating points can eliminate unnecessary
domination comparisons. Additionally, pairwise point-to-point dominance comparisons have
considerably computational and time cost which can be avoided by block based-comparisons.
Taking into account the previous considerations authors in [128] proposed an approach based on
the popular dimension reduction technique, Z-order space filling curve (or Z-order curve, in short)
[129, 130] which carry many good geometric properties for skyline processing. In [131] authors
extended their work, proposed new algorithms and studied the problem of ranking and subspace
skyline query processing. Authors in [132] proposed the Lattice Skyline (LS), to answer skyline
queries of low-cardinality domains, which uses a static lattice structure to determine the
dominance between the various combinations of distinct attribute values in the dataset.

INCORPORATING INCOMPARABILITY

While most of the methods are dominance based, incomparability is very useful in high-
dimensional spaces since most pair of points become incomparable. To minimize the
computational cost in high dimensional spaces authors in [133] proposed a progressive object-
based space partitioning (OSP) algorithm, which recursively divides the d-dimensional space into
2d separate partitions taking into account the incomparability property. Authors in [134] proposed
the BSkyTree which tries to find a cost-optimal strategy for skyline processing by exploiting the
properties of both dominance and incomparability.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
44

In multiple subspace skyline computation the algorithms SkyCube [20] and Skyey [117] where
parallel developed by a different group of authors, reasoning about the same problem. Continuing,
their works where individually extended. From previous described algorithms, partition-based
approaches are the algorithms Z-search, LS, OSP and BskyTree. Partitioned based approaches
that are based on incomparability are OSP and BSkyTree. From these approaches Z-search can
be extend on subspace, k-dominant and k-skyband. The OSP can be extended to k-dominant
skyline. Z-search and LS are based on dominance comparisons while OSP and BSkyTree on
incomparability.

The Table 18 summarizes the state-of-the-art algorithms related with subspace and space
partitioned skyline computation. The column Approach corresponds to whether the algorithm pre-
computes the results, uses indexes or sorting and counting techniques to answer a requested
query. The No. of subspaces corresponds to whether the algorithms make their computations for
all the possible subspaces, a single subspace or is generally applicable to full-space computation
as with the partitioned based approaches. The column Dataset corresponds to weather the
algorithm is applicable in dynamic datasets where updates and deletions occur.

 Algorithm Approach No. of

Subspaces
Dataset incorporates

SkyCube [20] pre-materializing all static cost sharing strategies
Compresed
SkyCube [121, 122]

pre-materializing all dynamic minimum subspaces

Skyey [117]
pre-materializing all static

Skyline groups – decisive
subspace

Stellar [123]
pre-materializing all static

skyline groups – decisive
subspace

Subsky [124, 125] index single dynamic L∞ distance, anchor points
Skyline frequency
[126]

counting single static
maximal dominating

subspace
k-dominant [127]

counting/ sorting single static
conventional skyline -

nested loops
Space Partitioning

Z-search / Z-sky
[128, 131]

sorting - index full space/single dynamic Z-order curve, ZBtree

OSP [133]
Index full space dynamic

incomparability, LCRS tree,
bitmaps

LS [132] Lattice structure exploration full space static lattice structure

BSkyTree [134] Cost-based partitioning full space static pivot points, incomparability

TABLE 18: STATE OF THE ART SUBSPACE SKYLINE ALGORITHMS.

2.5.4.2. Distributed Skyline Computation

Due to the high skyline query processing cost of centralized architectures, research has focused
in distributed skyline query processing. However, previously proposed algorithms cannot be
directly applied in distributed environments and thus specialized approached where proposed.1

VERTICAL PARTITIONING

An early proposed work on distributed skyline computation considers the vertical partitioning of
the dataset. This partitioning approach was not adopted by the rest of the researchers due to the
wide adoption of horizontal partitioning on highly distributed environments, such as peer-to-peer
networks. More specifically, the work in [135] was the first that studied the problem of skyline
query processing in distributed environments and especially in a specialized Web setting where
each one of the dimensions are stored on a different Web-accessible site (source/database).
Authors in [136] improved the previous work by proposing the PDS (progressive distributed
skylining) algorithm. Another work related with vertical data partition is the one in [137] where
authors assume that the dataset is vertical partitioned in a number of arbitrary servers and each
server stores an arbitrary number of dimensions.

1The work of [469] is the only survey in skyline query processing, which is focused on parallel distributed skyline query processing.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
45

HORIZONTAL DATA PARTITIONING

The following methods concern horizontal data partitioning, in which a portion of the dataset is
stored by a peer without taking into account the partitioning imposed on the dataspace. This defers
from the approach of horizontal dataspace partitioning where a partitioning scheme is applied to
the dataspace and the points of each partition are assigned to peers. In these methods peers
(servers) can communicate with their neighboring peers, through a coordinator, or through the
use of a backbone structure. Thus, this approach does not consider any kind of overlay structure,
in which a logical network is built on top of a physical one without considering its physical network
structure. More specifically, the work on [138] is focused in distributed skyline computation on
mobile devices that communicate without routing information in shared-nothing environments and
especially over ad-hoc networks (MANETs). In this scenario data are stored in a number of light-
weighted mobile devices where each device is able to communicate only with its neighbors
(devices that are in its communication range) by exchanging messages. The communication
between all devices can be achieved via multi-hops. Each mobile device stores a portion of the
whole dataset (that can be overlapping) which corresponds to a portion of the data that are related
with the geographic area that it covers. The partitioning placed in this case concerns horizontal
data partitioning. On [139] authors study the problem of subspace skyline query processing in
super-peer networks (large scale P2P networks) and proposed the SKYPEER framework where
the dataset is horizontally distributed across peers. In this type of networks there exist a number
of super-peers among the ordinary peers which have special abilities due to their enhanced
features. Super-peers are linked through a backbone and peers are connected to super-peers.
Each super-peer maintains information about the peers that have assigned on him to achieving
efficient routing.

HORIZONTAL DATA PARTITIONING WITHOUT OVERLAY NETWORKS

The works that follow are based on horizontal data partitioning but do not consider any underling
overlay network. That is the query originator can communicate with all the existing peers to
compute the skyline set. Based on this, in [140, 141] authors proposed the filter-based
PaDSkyline algorithm for parallel constrained skyline query processing in which they assume that
no overlay exists and any query originator can directly communicate with all servers. This
approach employee and extends the single-point filtering method of MANET [138] with the
difference that uses multiple filtering points rather than just one, considering that wired
connections are faster and more reliable than the wireless. In [142] authors proposed a
progressive feedback-based distributed skyline (FDS) algorithm which assumes that a small
number of servers are geographically distributed and connected through the internet. Data are
partitioned horizontally and assume no overlay structure. FDS is focused on minimizing the
transferred data among the network.

HORIZONTAL SPACE PARTITIONING

The following works reasons about distributed skyline computation assuming the incorporations
of a dataspace partitioning technique. Thus, each node will be responsible for a disjoint partition
of the data space. This scenario differs from this in the previous since the partitioning is imposed
to the dataspace rather to the dataset itself. The methods that will be described can by categorize
into two classes. DHT – based (distributed hash table-based), such as CAN [143] and balanced-
tree based such as BATON [144]. On this scope, in [145] proposed the progressive and parallel
distributed skyline algorithm (DSL). The algorithm deals with constrained skyline queries, which
return the skyline set of a given region, on a shared-nothing architecture. DSL is based on grid-
based data space partitioning techniques which horizontally partition the space. The data
partitioning is determined by the structured P2P overlay networks CAN [143]. CAN is a distributed,
decentralized P2P infrastructure, based on a logical d-dimensional Cartesian coordinate space,
which incorporates a distributed hash table (DHT) for point and server multi-dimensional indexing.
Authors of [146] proposed the Skyline Space Partitioning (SSP) approach which is based on
BATTON [144]. BATON instead of using a distributed hash table (DHT) as CAN [143] uses a
distributed balanced tree for indexing of nodes. As opposed with the previous method SSP
processes the unconstrained skyline queries which retrieves skyline points from the whole space.
Authors in [147] extended their work on [146] and proposed the SkyFrame framework which can
be applicable on BATON and other structured P2P overlay networks. In [148, 149] authors
proposed the iSky algorithm which is similar to the SSP/skyframe [146, 147] and is based on the

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
46

BATON overlay network [144]. The differences from the SSP/SkyFrame, is the use of the iMinMax
[150, 151] data transformation, as similarly used in the Index algorithm (section 2.3.4).

ANGLE-BASED PARTITIONING

Previously proposed methods for distributed skyline computation widely adopt grid-base space
partition techniques. In [95] authors proposed an angle-based space partitioning approach which
uses hyper-spherical coordinates [152] of points in order to partition the space in such a way to
increase the efficiency of parallel distributed skyline query processing.

Algorithm Incorporates Routing Topology
Skyline

Query Type
Main

drawbacks

BDS-IDS / PDS
[135]

Vertical partitioning –
sorting

Direct / initiator to
peer

Web
Vertical

partitioning

MANET [138] Filtering point
Breadth/depth

first
Manet

Subspace/
Constrained/

Dynamic

Exhaustive
routing

SKYPEER/
SKYPEER+ [139]

Sorting / threshold
value Ext-skyline

Super-peers Super-peers
Subspace

Existence of
super-peers

PaDSkyline [140,
141]

Multiple filtering points
& MBRs

Cluster-heads Clusters
Subspace/

Constrained/
Dynamic

Flooding /
Heavy load on
cluster-heads

FDS [142]
Multiple-round filtering

/sorting
Direct / initiator to

peer
Web

Subspace/
Constrained/

Dynamic

Many rounds on
large networks

DSL [145] Partial ordering
Local routing

table / neighbors
CAN

Constrained

Load balance –
High cost on

updates

SSP [146]
Filtering

points/Partition
ordering (z-order)

Balanced tree
adjacent nodes

BATON
Constrained

Load balance

SKYFRAME
[147]

As SSP + Border
regions

Balanced tree
adjacent nodes

BATON-
CAN

Constrained

Load balance

Isky [148, 149]
Sorting/ filtering
points/ threshold

value /

Balanced tree
range search

BATON Load balance

Angle-based
partitioning [95]

Hyper-spherical
coordinates

- - -
Issues on its
application

TABLE 19: FUNDAMENTAL ALGORITHMS ON PARALLEL AND DISTRIBUTED SKYLINE COMPUTATION.

The Table 19 outlines the fundamental key aspects of the previous proposed methods.

2.5.4.3. Attribute & Data-Specific Applications

Previous methods considered that all attributes of all dimensions are available, for all points.
Additionally, there is the case of incomplete datasets, where the points miss some of their
dimensions/attribute values, partial order datasets, where the ordering of attributes can’t be
defined or is defined differently by each user and finally uncertain datasets where an object may
have different instances that can occur with different probabilities.

PARTIALLY ORDERED DATASPACE

The previous studies focused on total order (TO) domains (dataspace). That is datasets where
their attributes have an internal ordering such as numbers. In these domains it is easy to
understand which attributes are preferable than others. The lack of ordering or preference among
a pair of attributes indicates that a domain is partially ordered (PO). Authors in [24] focused on
skyline computation over partial-ordered domains. This type of domains among others can include
intervals, hierarchies, domains of set values and preferences. In [153] authors extended the work
of [24] and presented a progressive framework named Topologically-sorted Skyline (TSS). The
work in [154, 155] considers the case where different users have different preferences and thus
the ordering imposed on the dataset changes for each user.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
47

INCOMPLETE DATA

Another data-related skyline computation approach is the one in [25] which assumes that data
are incomplete, meaning that have missing values in some of their dimensions/attributes. Most of
the algorithms assume data completeness on all dimensions and transitivity in the dominance
relation. However, this is not always the case. On incomplete data, the transitivity does not always
hold. The closest work to this is the one in [127], which also does not assume that transitivity
holds. In [156] authors studied the skyline queries over crowd-enabled databases. Crowd-enabled
databases deal with incomplete data during runtime by requesting missing values or complete
tuples from other sources.

UNCERTAIN DATA

The problem of skyline computation on uncertain data was tackled in [26, 27] where authors
proposed a probabilistic skyline model and additionally the p-skyline. Some conditions that may
impose uncertainty on data are limitations on receiving and measuring data, missed or delayed
data reports and randomness of data. In general, the probability of an object to be in the skyline,
is the probability that the object is not dominated by another object. Moreover, in [157] authors
propose efficient methods to compute the skyline probabilities on all objects. In their work
proposed a more general uncertain model where the instances of each uncertain object may have
different probabilities to occur and that the probabilities of all instances may sum up to less than
1, meaning that may exist an instance of an object that is not known to us. In [158] authors study
the same problem with [157] and propose an asymptotically faster algorithm for the worst-case.
The algorithm uses the same partitioning technique as in [157] but handles the partitioned sets
more efficiently. In [159] authors further studied the problem of [157]. In their work compute the
exact skyline probabilities of all objects in high-dimensional datasets by incorporating a ZB-tree
[128]. In [160], authors reason about reverse skyline computation over uncertain data in
monochromatic and bichromatic cases. In the monochromatic case the point (object) of interest
and the query point (object) are of the same type and thus from the same dataset, while in the
bichromatic case there exist two different types of points (objects). In [161] authors extended their
work on [160] and proposed the probabilistic reverse furthest skyline (PRFS) which considers the
case where minimization of preferences is desired rather than the maximization. Authors in [162,
163] reason about distributed skyline computation over uncertain data. Their scenario is based
on the existence of a number of distributed sites that each one of them contains a number of
uncertain data and a centralize server that processes the query. In [164], authors reason about
contextual skylines taking into account the uncertainty in user’s preferences rather the uncertainty
of attribute values. Authors in [165] further studied the problem of [164] without taking into account
the independent object dominance assumption that was considered in [164] and in which the
object’s dominances are considered as mutually independent events. Authors in [166] reason
about the top-k skyline query computation on uncertain data.

TRADE-OFF & STOCHASTIC SKYLINE

The Trade-off skylines were first proposed in [167]. A trade-off is defined as, how much is willing
to give from one dimension to gain an improvement to another dimension/attribute. This concept
is primary reflected by the top-k retrieval paradigm using weighting over each attribute. This
constructs a scoring (or utility) function which is used to compute the overall ranking of an object
based on all of its attributes.

Finally, Stochastic Skyline queries where proposed in [168, 169]. In a stochastic model, the
subsequent state of the system can be determined probabilistically based on previous states. As
an example, a future stock price will be equal to the current stock price plus an unknown change
that can be determined probabilistically. The proposed model uses, for each user, one scoring
function for every dimension.

2.5.4.4. Continuous Skyline Computation

The existing skyline algorithms are designed to compute skylines over static datasets rather than
dynamic, that occurs in streaming environments. Dynamic streaming data can be retrieved with
the use of data-streams [170] which is a continuous stream of received data point.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
48

In [16] authors reason about on-line computation in the presence of rapid updates of data such
as in data-streams. Particularly the scenario concerns append-only data-streams [170] where
there is not any deletion of the data elements till they expire and the elements are positioned and
labeled according to their relative arrival ordering. Such type of streams are those of wireless
sensors networks, where the data collected prior a specific time interval are discarded because
they are not representative in comparison with the existing readings of sensors. Authors in [171]
also proposed the skyline computation in data stream environments. In this scenario, they take
into account only the tuples that arrive in a sliding time window [170]. That is the W most recent
timestamps, where W is a parameter that defines the length of the window. The work in [172]
studied the problem of continuous skyline computation on datastreams where the validity and
expiration of points is determined with the use of time intervals. Each point received is associated
with an arrival and an expiration time which essentially defines the time interval that the point will
be valid. In [82] authors studied the problem of skyline query computation on time series [173].
Time series are useful since they can give information about events that happen in a specific time
interval. As an example, these events could include the upload bandwidth consumption or the
visiting rate of a web page, along the day, moth, year or any other time interval. The Table 20
outlines the fundamental key aspects of the previous proposed methods.

Algorithm Incorporates Environment
Indexing
method

Skyline on # points

[16] Stabbing queries [16]
Sliding-
windows

R-tree
n-of-N &

(n1,n2)-of-N

[171]
Dominance & anti-dominance

regions
Sliding-
windows

R-tree N most recent

[172] continuous time-interval skyline Time-intervals
R-tree / Quad-

tree All valid received points

[82] interval skyline Time series
Radix priority

tree
#Time-series*
#timestamps

TABLE 20: FUNDAMENTAL ALGORITHMS ON CONTINUOUS SKYLINE RETRIEVAL.

2.5.4.5. Route Skylines Queries and Road Networks

Following will be discussed the in-route skyline algorithms that are related with the identification
of efficient routes or detours on road networks and efficient locations that satisfy the desired
minimization criteria among several user-defined points.

In [17] authors reason about skyline computation on road networks and particularly in-route
skyline queries and in-route kth-order skyline queries which concern normal domination and the
points that are dominated by less than k other points respectively. The work on [18] consider route
skylines in road networks with multiple preferences as opposed with the previous method. Authors
of [49] reasoned about multi-source skyline queries where multiple query points are considered
at the same time, in constrained space and especially on road networks. The multiple query points
represent the locations or the points of interest from which a user wants to minimize its distance.
The Table 21 outlines the fundamental key aspects of the previous proposed methods.

Algorithm Skyline of Data model Incorporates Attributes
Query
points

[17] detours graph
NN-search / network

distance
Single

(length)
single

[49]
distance from
data points

graph

NN-search / Euclidian-
network distance &

Dynamic/spatial skyline [2,
Error! Reference source

not found.]/ [46, 47]

Single
(length)

Multiple

[18]
preference-

based routes
multiple-attribute

graph
Pareto optimality

Multiple
attributes

start /
destination

TABLE 21: FUNDAMENTAL ALGORITHM IN IN-ROUTE AND ROAD NETWORK SKYLINE COMPUTATION.

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
49

2.5.4.6. Security

The works that follow outline security related approaches that are based or use skyline queries
and more particularly location-based skyline queries, user’s privacy on anonymized datasets and
queries over encrypted data.

Authors in [22] study the problem of authentication of location-based skyline queries. The
scenario that is followed assumes that the spatial data are stored in a spatial database and are
outsourced to a location-based service provider (LBS) which will handle the queries issued by
users. In [174] authors proposed an additional method to generate VOs for spatial skyline
queries. Their goal is to reduce the communication cost by reducing the number of digests to be
reported and thus the size of the VO that is sent to the user. The work on [175] reasons about
privacy in the presence of external knowledge. Their work builds upon and extends the work of
[176] and quantifies the adversary’s external knowledge in order to identify privacy threats and
enforce privacy requirements. Authors in [177] reason about skyline queries over encrypted data.
Their approach uses the SFS algorithm [41] in order to identify the skyline and a set of invertible
matrices as the key of their encryption scheme.

2.5.4.7. Quality of (web) Services

The identification of the best web service among several similar is a multi-criterion decision
problem since the optimization of various criteria is needed. In [19] authors study the problem of
efficient selection of web services.

In [178] authors additionally considered the problem where the quality of the various services and
service providers change over time. In many cases the aggregate QoS values may not perfectly
reflect the actual performance of a service that is given by a service provider. Additionally, a
service provider may not deliver the services according to the quality that declares. In [179]
authors reason about the cloud-based web service composition. In their work, they use the skyline
operator to prune unqualified services and reduce the related search space. In the next step they
perform a Particle Swarm Optimization (PSO) [180] in order to find the optimal services based on
the user’s QoS constrains.

2.5.4.8. Metric Space

Skyline computation in metric space [181] was first proposed in [23]. In this work the dataset
belongs to a metric space rather than a multi-dimensional space (i.e. Euclidean) as opposed in
previous works. The reason that metric spaces involved to the skyline computation is because in
many cases the dataset cannot be represented as vectors, something that is fundamental for the
Euclidean space. An example in bioinformatics is the DNA searching problem where the DNA
sequences are usually modeled and represented by strings and is desired to find the strongest
sequence similarity.

In [23] authors proposed a triangle-based pruning method that incorporates the triangle inequality
property in order to safely and efficiently prune the dataset (since distance computation can be
very expensive [182] in metric spaces). Additionally they proposed an efficient Metric Skyline
Query (MSQ) procedure that incorporates the M-tree [183] metric index structure, in order to
retrieve the metric skyline points without scanning the whole dataset and without making any
particular assumption about the data format and the metric distance function. In [184] authors
extended their work on [23] by constructing an optimized metric index structure in order to
minimize the cost of the metric skyline retrieval. In [185] authors try to improve [23] by proposing
the dynamic indexing and the k-dispersion techniques in order to minimize the number of
computations.

2.5.4.9. Cardinality Estimation

In general skyline cardinality computation tackles the problem of “curse of dimensionality” of
skyline computation in high dimensional spaces. The estimation of the cardinality of the dataset
can help to perform specific queries to reduce the size of the skyline set that is returned.
Techniques that try to reduce the number of skyline points that are returned are the skyline
frequency and k-dominant (section 2.5.4.1).

CHAPTER 2: LITERATURE REVIEW

Christos Kalyvas-Kasopatidis –October 2020
50

The cardinality of skyline queries was studied in [186] which proves that the skyline cardinality
can be defined as Θ((ln n)d−1/(d − 1)!), where n is the cardinality of the dataset and d its
dimensionality. This indicates that the skyline cardinality increases with the dimensionality.
Specifically, in [186] authors try to estimate the cardinality of the skyline query results based on
the initial dataset, without any other assumption. In [187] authors extend the work of [186] in order
to handle numerical and categorical attributes and additionally different distributions by proposing
a Log Sampling (LS) approach. The drawback of the previous proposed algorithm is that is based
in a hypothetical empirical model. Authors of [188] extended the work on [187] and proposed the
kernel-based (KB) skyline cardinality estimation approach which is heavily based on kernels
[189]. The drawback that the KB approach has is that it needs to perform complex computations.
Additionally, the integration of PDF function over IDR regions suffers from the curse of
dimensionality. For that reason, authors in [190] proposed the purely sampling-based (PS)
approach and compared their method with LS and KS method. The Table 22 outlines the
fundamental key aspects of the previous proposed methods.

Algorithm Estimation
Dataset

applicability
General approach

Log Sampling
(LS) [187]

|𝑆𝐾𝑌𝑑𝑠| = 𝐴(log(𝑛)𝐵)
Not on

clustered
Two samples

Kernel-based
(KB) [188]

ANY Samples based on Kernels

PS [190] |𝑆𝐾𝑌𝑑𝑠| = (
|𝑆𝐾𝑌𝑠|

𝑚
) × 𝑛 ANY Single sample

TABLE 22: FUNDAMENTAL ALGORITHMS IN SKYLINE CARDINALITY ESTIMATION.

2.5.4.10. Skyline Updates & Maintenance

Researchers focused on skyline maintenance in order to efficient maintain the skyline when
updates or deletions occur on the dataset. The reason of this research interest is that the update
of an already computed skyline will have less computation cost than the recomputation of the
skyline from scratch. This section does not assume the existence of data-streams or time series
but rather considers that the updates (insertions or deletions) of points are placed over the existing
stored dataset. From this perspective, authors in [3] where the first that studied the problem of
incremental skyline maintenance when updates occur over the stored dataset. Their approach is
named BBS-update. This approach was proposed by the authors that proposed the BBS algorithm
and essentially discuss how BBS algorithm can efficiently maintain the skyline when various
insertions or deletions occur. In [191] the Deltasky algorithm proposed that extends the BBS-
Update [3] and reasons only about deletions since the insertion process was sufficient studied by
the author that proposed BBS-Update. The drawback of DeltaSky is that it must scan all the sorted
lists. In addition, if the skyline is issued on a high dimensional dataset the sorted lists will be large.
ZUpdate and ZInsert + ZDelete [128, 131] efficiently update the skyline results if insertions or
deletions occur by utilizing the sorting property of Z-order curve.

| | | |1
| | | | (1)

| |
s

ds s

ds p

p SKY

SKY ds
s

−



=  −

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
51

3. ONLINE SOURCES OF GEOSPATIAL DATA

In order to produce useful insights and new knowledge we should understand the data that we
have and their nature. In order to build an information system for a specific sector an extensive
study should be conducted about the available data, their quality and their integrability. This
section examines geospatial free-of-charge data sources and discusses the various classes of
available data. Those data can be used in maritime information systems which are innovative
geographic information systems for study, monitoring and action-taking in maritime areas. In
addition, this study will assist in identifying open research topics in relation to query processing,
big data management or applied machine learning by understanding which are the main tasks
that are performed over data.

3.1. Introduction

A maritime information system is a geographic information system (GIS) designed to capture,
store, integrate, manipulate, analyze, manage, and visualize all classes of maritime geospatial
data, capabilities which are serving a cross-section of disciplines. An increasingly cost-effective
active maritime information systems market has also been developed, benefiting from an ongoing
process of improvements in the hardware and software components of GIS. A variety of fields
have benefited from the application of maritime information systems, made possible by this
technological boost, from science, research, education, government, business, and industry, to
domains such as public health, homeland security, natural resources management, astronomy,
meteorology, climatology, naval archaeology, shipping transportation and logistics, etc.

Following are defined the classes of data which constitute valuable resources towards the
development, performance tuning and efficient operation of maritime information systems, and
subsequently surveys both the open and restricted data sources which provide free-of-charge
these classes of real-world geospatial data. This is the first comprehensive study that classifies
and analyses a spectrum of official online resources this wide, providing a thesaurus of high-
precision real-word geospatial data to serve the needs of scientific research and development or
educational work in the maritime information systems domain for purposes such as operational
or benchmarking and experimentation or pattern recognition and data mining.

3.2. Examples of Historical & Modern Maritime Information Systems

The evolution and increasing importance of maritime technology has led to the current
development of numerous powerful maritime information systems and projects at national and
international levels. A number of examples include the Pattern Mining and Monitoring Ocean
Eddies project [192]; the Long Range Identification and (Ships’) Tracking system [193], the
SafeSeaNet [194], and the ClearSeaNet project [195], all three of the European Maritime Safety
Agency [196]; the European Border Surveillance System [197]; the Maritime Surveillance project
[198] of the European Defence Agency [199]; the CISE (Common Information Sharing of the
Environment for the surveillance of the European Union Maritime Domain) initiative [200] and the
Copernicus (European Space Agency’s Global Monitoring for Environment and Security) program
[201], both of the European Commission’s Directorate-General for Maritime Affairs and Fisheries
[202], together with the Copernicus’ supporting projects DOLPHIN (Development of Pre-
operational Services for Highly Innovative Maritime Surveillance Capabilities), NEREIDS (New
Service Capabilities for Integrated and Advanced Maritime Surveillance) and SIMTISYS
(Simulator for Moving Target Indicator System) [203] and the project related to the Copernicus,
MyOcean2 [204], [205]. A non-negligible number of such systems relate to specific seas, such
as the Baltic Sea, which figures on the International Maritime Organization (IMO) [206] list for
Particularly Sensitive Sea Areas [207], and for which a large number of related programs has
been developed, such as the Monalisa 2.0 [208], the EfficienSea [209], the BaSSy [210], the
SafetyAtSea [211], etc.

3.3. Setting Out the Problem and Applying the Solution

Before discussing the various marine geospatial data classes and sources provided online, we
will briefly discuss the steps that need to be taken when such data is required for the operational

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
52

needs of maritime software applications. The first step –prior to the data collection– is to identify
the classes of data required in order to make the system work efficiently and reliably.
Subsequently, a variety of data sources for each kind of data are surveyed towards the selection
process. These sources are refined on the basis of a number of predefined criteria to which
minimum standards apply in respect of quality and precision, as well as on the basis of the area
covered by the data needing to be found. Once usage restrictions (which will be adhered to for
the extent of the life circle of the marine information system) for these data have been duly taken
into account, the data are collected from their sources and appropriate software tools are adopted
or developed towards the efficient integration and storage of these data in the database of the
maritime information system.

The backbone storage system can be any of the open access database management systems,
from the PostgreSQL and the MySQL to any of the commercial ones, such as the Oracle Database
and the Microsoft (MS) SQL Server, necessarily accompanied by their specialized extension
subsystems for the efficient handling of the geometric nature of these data. At this point a
selection process of the data needs to be initiated in order to eliminate duplicate entries that might
occur since data that are collected from heterogeneous sources could partially overlap. There
might also be a need to transform the format of the data –e.g. from raster to vector or vice-versa–
because the manipulation and joining of related datasets that appear to be in different formats is
both difficult and time-consuming. The collected data are then safely stored and their optimization
for efficient manipulation in the database system is performed: database indices for fast retrieval
might need to be built; the responses of users’ popular queries for data that are not dynamically
changed overtime (i.e., such as coastline static data) might need to be pre-computed and their
results stored separately in the database so as to minimize avoidable delays in the future
operating of the system, etc. Once these steps are taken, the data become available in answer to
the requirements of the maritime information system.

3.4. Maritime Geospatial Data Classification

The wide range of nautical or marine data needed to develop and operate an efficient maritime
information system, to be analysed further subsequently, falls into one or more of the following
wide categories:

• up-to-date geospatial data related to human-life on or near the seas, such as ship traffic
data and technical data regarding the several characteristics of ships, data related to
maritime areas of particular interest to humans (e.g., harbors, fishing areas), etc.,

• geospatial data related to marine biome and wild-life in/on or around the seas, such as
data regarding particularly sensitive maritime areas for wild-life and data for fish and sea
animals reproduction areas, etc.,

• annotated data related to accidents history at sea,

• marine meteorological forecasts and climate data,

• nautical cartographic data related to geospatial objects of critical importance in/on or
around the seas, etc.

Maritime traffic data are usually transmitted in the form of real-time streams of Automatic
Identification System (AIS) messages [212]. The benefit of AIS for all mariners lies mainly in its
capabilities with regard to increasing navigational awareness, to assisting with avoiding collisions
and with the port authorities’ more efficient control of maritime traffic.

The technical characteristics of the ships are mostly static or rarely affected by changes. If they
are affected, the changes take place under certain conditions (e.g. the type of usage of the ship
changes):

• type (passenger, tanker, etc.), size (length, etc.),

• manufacturer, year of manufacture,

• owner/manager, firm, home port, flag,

• fuel consumption, maximum speed, draught,

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
53

• type of cargo, weight of cargo, tonnage,

• Froude number (related to wave resistance), several coefficients related to the hull of the
ship (e.g., block/midship/prismatic/waterplane coefficients), etc.

• photographs and videos (if they exist) depicting the ship and some of its characteristics,
etc.

The geographic regions of marine areas with particular sensitivity and restrictions may include:

• environmentally protected areas (e.g. parks that are strictly protected by laws and
legislations),

• significant areas for marine biodiversity (e.g. marine mammals, sea turtles, birds),

• island wetlands and coastal waters surfaces,

• major fishing areas,

• areas where fish farms are located and demarcated areas of organized aquaculture,

• military shooting ranges,

• hazardous shipwrecks (location and depth),

• submersible cables (location and depth), etc.

As regards accidents history at sea, the following data are of great weight:

• exact geographic coordinates and description of marine accidents which have occurred in
the past, involving either ships/vessels (e.g., collision or contact or capsizing or grounding
of vessels, including the IMO numbers of the ships involved if any), or oil and gas drilling
platforms (e.g., explosions, oil spills), or any other on-sea or on-land source around the
sea (e.g., marine chemical pollution incidents caused by factories near a coastline), etc.

• up-to-date tracked information for any man-made source near or on the sea with a heavily
documented accident history (e.g., ships, oil and gas platforms, underwater pipelines, on-
land installations of several types), and with a history of violations or of incidents of non-
compliance with international and national maritime regulations,

• incidents involving dangerous ship movements and trajectories on record,

• the list of ‘flag of convenience’ countries [213] under the protection of which some ships
are registered for the purpose of avoiding regulations and tax obligations in the owners’
country, etc.

The supply of highly accurate location-based meteorological forecast data in real-time streams is
a major factor for efficiency and may include the following parameters:

• weather forecast: surface wind, rain fall, cloud cover, temperature, atmospheric pressure,
etc.,

• wave forecast: wave height, swell height, swell period,

• sailing forecast: wind speed and direction, wave height and direction, visibility, etc.,

• sea level forecast: total elevation, tidal elevation,

• sea traffic forecast: surface temperature, salinity, surface movement, free surface
elevation,

• ecosystem forecast: chlorophyll, nitrates, phosphates, bacterial biomass, phytoplankton
biomass, etc.,

• oil spill, satellite imagery, high-frequency telemetry, etc.

Additional statistical data can also be extracted on the basis of historical weather data in order to
analyze the level of influence of every weather data parameter in monitoring the health of the
maritime wildlife and climate change (e.g., phytoplankton, temperature, oxygen levels), in
safeguarding maritime navigation and transportation, in minimizing the risk of accidents, etc.

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
54

Nautical cartographic data related to geospatial objects of critical importance in/on or around the
seas may include:

• nautical digital charts containing the land and sea boundaries of countries worldwide; the
geographic names for regions near, over and under the sea; etc.,

• bathymetry data in geometry and raster formats,

• ports and harbors (i.e. their exact geographic location and their surface, whether they are
in operation, etc.),

• shores, beaches and land along the coastline,

• lighthouses (i.e., their exact geographic location, type, color and lighting periods, size,
range, if they are in operation), etc.

Additional advanced knowledge can be indirectly extracted (for example such as in [214] and
[215]) from combinations of existing datasets of heterogeneous nature using machine learning
[216] and data mining [217] techniques, that for example will identify hazardous regions and ship
routes in the sea, suspicious and dangerous vessel movements, traffic patterns and popular
highways in the sea, high accident risk areas, areas with strong sea currents, highly polluted
areas, etc.

Such data can provide critical information such as the navigation behavior and performance of a
ship or of a type of a ship in relation to and depending on the meteorological conditions (inclination,
route deviation), the condition of the sea surface and the intensity of sea currents in relation again
to the meteorological conditions, the habits of fish and sea animals depending on the season of
the year, the impact of human activity on the sea near fish reproduction areas, the sea pollution
depending on the weather conditions, and several other related findings depending on their
application.

Data class description Most common data format Real-time
Current &

recent historical

Long term

historical

AIS data AIS RAW messages   no existing data

Vessels’ data Clear text –  –

Marine biome-related data Clear text & geospatial –  –

Accidents-related data Clear text –  

Weather data XML   

Climate data Clear text –  

Nautical cartographic data Clear text & geospatial –  –

TABLE 23: DATA CLASSES WITH THEIR MOST COMMONLY SEEN FORMATS.

Table 23 summarizes some selected data classes surveyed in this section along with their most
commonly seen data formats. The time categorization gives a rough estimation of the lifetime and
validity of the importance of the data. The ‘Real-time’ column refers to data that are continuously
updated (stream data), the ‘Current & recent historical’ column refers to data that could be up to
10 years old, and the ‘Long term historical’ column refers to data considered to be highly important
for most relative applications even many years after their production.

3.5. Data Sources

This section will outline the various resources for collecting maritime related data such as vessel
positioning data, weather and climate data, data related to protected and sensitive areas, marine
accidents, flags of convenience, port related data, data related to anti-shipping activities, natural
hazards, navigational aid systems, cartographic and coastline data, bathymetry data and others.

3.5.1. Vessel Tracking and Monitoring Services

MarineTraffic [218] is the most popular interactive maritime information system developed by the
University of the Aegean. Its key objective is the online monitoring of ship movement worldwide,

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
55

while providing the public with real-time information about port arrivals and departures. The
success of the coverage provided relies on voluntary participation in the community and on local
authorities installing receivers and sending the collected data in real-time to the central
MarineTraffic server that in turn collects the data and visualizes them on an online map. The data
are sent and collected in raw AIS messages format through UDP channels. Additional TCP
requests can be performed in order to retrieve data in XML and JSON format. Historical data can
be retrieved on demand, using requests in XML format.

Vesseltracker [219] is a provider of AIS vessel movements on the global scale and of maritime
information services such as maritime news and events, vessel information, reports and statistics.
More specifically, Vesseltracker provides its registered members with customized real-time and
historical AIS data; a comprehensive vessels database of specifications, characteristics,
equipment, ownership and management information; alerts on vessels status and on
customizable regions via email, SMS and phone; information and alerts on expected, arrived and
departed vessels for a single port or a list of ports; information about the distance to be covered
by vessels to ports; port events; map views and layers including nautical charts; global and local
piracy information; and weather forecasts information.

MariWeb [220] is a monitoring service for the movement of ships and for other relevant maritime
information, such as the characteristics of ships, their destination, estimated time of arrival,
photographic data, traffic statistics for ports, etc. The platform is developed by the IMIS Global
[221] which is a technology-oriented company focusing on offering AIS network management
software tools, i.e. tools that efficiently collect, store and display AIS data securely providing
navigational and fleet monitoring services to its customers in the maritime context. The company
uses its own private network of receivers that forward the collected data to the central server of
MariWeb for visualization.

ShipFinder [222] and FleetMon [223] are services with characteristics similar to MarineTraffic,
Vesseltracker and MariWeb services. Lloyd's List Intelligence [224] is a specialized service of the
Lloyd's List Group, dedicated to the global maritime community. Access to the monitoring service
of ships is limited to certified members on a subscription basis.

VesselFinder [225] is another popular service that provides visualization of various real-time,
time-evolving and static maritime data. The service is developed by the AIS Hub [226] data
sharing center which is the only online service worldwide that distributes freely all its real-time
collected vessel traffic data to any party volunteering to contribute reliable real-time AIS data to
its network, constituting thus a valuable resource for maritime professionals and software
applications developers. Its Web service can provide data in XML, JSON or CSV formats via TCP
requests.

Free-of-charge real-time test data in the form of raw AIS messages can also be retrieved from
Exploratorium [227] for non-commercial use. This source is also registered at the MarineTraffic
service. It is considered to be an excellent source for educational and software applications
development and testing purposes. The real-time raw data come from vessels in the region of the
San-Francisco Bay.

Real-time satellite data in the form of raw AIS messages can be retrieved on a subscription basis
from the MarineTraffic service [218] or from the IMIS Global [221]. Satellite AIS data guarantee
coverage in every sea location on the Earth via dedicated hardware the cost of which has meant
that vessels are not yet mandatorily equipped with it under the current international legislation.
This approach has been developed in order to address the poor quality or absence altogether of
AIS coverage in the larger oceans.

3.5.2. Vessels and Shipping Companies Data

Over 160,000 ships, passenger and cargo vessels of 100 tons and over are sailing the seas or
are stationed at more than 13,000 ports globally. For this reason, several specialized online
databases have been developed, providing accurate, detailed, both historical and current, data
related to vessels and shipping companies.

The IMO Numbers Database [228] is a freely accessible -through free registration - database
provided by the IMO and which was promoted after 9/11 to enhance the security of vessels and

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
56

ports facilities. Every passenger carrier and seagoing vessel of 100 tons or above receives a
mandatory and unique IMO number. For every ship identified by its IMO number, the database
provides accurate information about its name, its flag, its type, its overall capacity and weight, and
its year of manufacture. ShipList [229] provides a free access database of characteristics that
partially complement that of the IMO Numbers Database. The service stores important details for
every ship but, in practice however, some fields of information often remain void and the data
elusive, especially as regards the maximum ship speed, net tonnage, fuel capacity, etc.
ShipNumber [230] is another freely accessible online source that provides information, for a
specific ship name or IMO number, about the ship’s flag, call sign, ship type, gross tonnage, dead
weight, total length, extreme breadth, draught and year of construction,. VesselFinder [225] is
another free access database containing information about the identity, the dimensions and other
technical features of the ships. The information partially overlaps with the data that can be
retrieved through other similar databases on this list. Equasis [231] is an excellent service that
has been developed to become a powerful and reliable tool dedicated to the safety of ships and
shipping. The service provides to its registered members free-of-charge details about the history
of the ships, the owner companies or consecutive owner companies, inspection, manning, and
other categories of data. Very importantly, it also provides information not to be found elsewhere
regarding the status of blacklisted ships. Veristar [232] is a database that shares some features
with the Equasis database. Overall the service provides free-of-charge information about vessels
and shipping companies, about inspection history data and so on. Maritime-Connector [233] is an
online database providing historical information about the identity, the manager/owner, the
manufacturer and also the safety category/class of every vessel. The IMO [206] also provides,
among other information, a number of technical details for every ship travelling on the seas across
the globe (it is to be noted that this data source is different from the IMO Numbers Database
mentioned earlier). GrossTonage [234] provides its registered members with a free access
repository containing technical information about the ships along with a brief description of marine
incidents that can be visualized on a map.

3.5.3. Protected and Other Sensitive Areas

The cartographic data of aquatic areas protected by international conventions (BIOGEN,
BIOSPHERE, DIPLOMA, MPK, BARCELONA, etc.) can be collected from the Protected Planet
portal [235], the largest online geographic database of marine protected areas, which has been
developed by the agencies that constitute the International Union for Conservation of Nature
(IUCN) [236]. IUCN is the oldest and largest global organization for the protection of the
environment. The source provides cartographic data in electronic form for various protected
areas, national parks, wildlife refuges, island wetlands, etc.

A notable example of protected areas is the Natura 2000 network [237], which is a European
Ecological Network of designated terrestrial and marine areas hosting natural habitat types and
habitats of species that are important at the European level and are thereby protected by
European Union (E.U.) laws. The network includes hundreds of special protection areas and sites
of communal importance that have already been designated for strict legal protection, with
numerous others waiting to be included. The Natura 2000 Network Viewer can be accessed from
[238]. The complete and up-to-date Natura 2000 dataset is shared freely by the European
Environment Information and Observation Network Central Data Repository [239].

The United Nations Educational, Scientific and Cultural Organization (UNESCO) Geoparks are
geographic areas in which sites and landscapes of international geological significance are
managed within a holistic concept of protection, education and sustainable development. The list
of the geoparks around the globe can be found in [240]. As of at the time of writing, 116 national
geoparks from 31 countries and 4 transnational geoparks have been included in the list with many
others awaiting inclusion.

Many sources exist which contain data related to biodiversity and wildlife. The Global Biodiversity
Information Facility [241] provides free and open access to biodiversity data around the world.
The VertNet [242] is a National Science Foundation-funded collaborative project [243] thanks to
which biodiversity data is free and available on the Web. The backbone of the VertNet project
consists of four individual networks, the MaNIS database with mammals-related data [244], the
HerpNet database with amphibians and reptiles-related data [245], the FishNet database with

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
57

fish-related data [246], and the ORNIS database with birds-related data [247]. The OBIS [248] is
a marine species database repository for the world's oceans, provided by the UNESCO. The users
can identify biodiversity hotspots and large-scale ecological patterns, analyze dispersions of
species over time and space, and plot species' locations with temperature, salinity, and depth.
The World Conservation Monitoring Centre (WCMC) [249] is the specialist biodiversity
assessment arm of the United Nations Environment Programme (UNEP) [250]. It provides,
among other data about biodiversity such as marine ecoregions and pelagic provinces of the
world, global maps of various biodiversity indexes, chlorophyll-a concentration, global distribution
of whales, dolphins, seals, turtle nesting and feeding seamounts and knolls, mangroves, etc.

The ReefBase [251] is an online collection of all available data and knowledge about coral reefs.
The FishBase [252] is the premier biodiversity data website for all the fishes of the world. The
Biodiversity Information System for Europe [253] and the European Nature Information System
[254] provide data about the species, habitat types and protected sites across Europe, while other
data exist that relate to land, water, soil, air, marine, agriculture, forestry, fisheries, tourism,
energy, land-use, and transport. The European Marine Observation and Data Network’s
(EMODnet, [255]) portal for seabed habitats [256] is a free resource for marine habitat data in
Europe.

The WWF Conservation Science Data and Tools [257] provides, among other instruments, a
toolkit to visualize the global distribution of animal species. The portal also provides a variety of
datasets of the Earth’s freshwater and terrestrial biodiversity, marine ecoregions, hydrographic
data for analysis and planning, biogeographical data of grassland ecosystems, etc. The IUCN
Red List of Threatened Species [258] contains spatial data and assessments for just over 76,000
species. The portal provides taxonomic, conservation status and distribution information on
plants, fungi and animals that have been globally evaluated to determine the relative risk of
extinction.

The sensitive area of offshore archaeological sites is acknowledged in the creation of several
online resources such as Pleiades [259] which is a gazetteer of ancient on-land and under-water
places that provides archeological geospatial data. It offers an extensive coverage of the Greek
and Roman world, and is expanding into Ancient Near-Eastern, Byzantine, Celtic, Early Islamic
and Early Medieval geography. The Ancient World Mapping Center [260] provides free maps with
data related elevation tints, labels, point symbols and shaded relief for the Roman Empire, the
Byzantium, the Aegaeum Mare, the Iberian Peninsula, as well as about aqueducts, inland waters
and cultural geography metadata, such as Greek geographic names in Greek nominative forms
(in UTF-8). The Greek archeological cadastre [261] and the American School of Classical Studies
at Athens [262] provide archeological geospatial data on the ancient Greek world, such as a large
number of ancient cities and locations, rivers, elevation data, and so on. A digital Atlas of the
Roman Empire can be found at [263]. The Pelagios Commons [264] is a community and online
resource for linked open geodata in the Humanities. Its Peripleo service is a map-based search
engine for exploring archaeological, textual and image-based data that has been annotated by
the Pelagios community. Its Recogito service is a Web-based tool that makes it easy to identify
and record the places referred to in historical texts, maps and tables.

World Heritage sites (cities, islands, lakes, mountains, etc.) are listed by the UNESCO and an
extensive list can be found in [265]. The dataset can be downloaded as an MS Excel or XML or
KML document. At the time of writing, 1031 sites from 163 countries that have signed and ratified
the World Heritage Conventions are included in the list, most of which appear on it on the basis
of culture and nature criteria. The Managing Cultural Heritage Underwater project [266] provides
a tool to exchange and explore underwater cultural heritage information.

The Ocean Energy Systems initiative [267] offers an interactive map of global offshore marine
energy facilities and resources. The WindFarm Action Group [268] provides the location and other
related information of onshore and offshore wind farms.

The Greg's Cable Map [269] is an interactive map with data related to currently active or planned
undersea telecommunication cables. The dataset can be retrieved in raw, KML or ArcGIS format.
Similarly, the TeleGeography Submarine Cable Map [270] provides information about submarine
telecommunication cables and their landing points. On the Subsea Cables Consultants Ltd [271]
site a number of maps can be found that represent the location of several submarine power cables
on the global level. The International Cable Protection Committee portal [272]

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
58

https://www.iscpc.org/cable-data/ provides an up-to-date database of information relating to the
majority of active and planned international submarine telecommunication, power and scientific
cables, i.e., cables for scientific research purposes (e.g. oceanographic or seismic). The Kis-Orca
interactive map [273] is an offshore renewables and cables awareness project that in addition
provides data about offshore power cables, oils and gas pipes and renewable energy construction
on the UK territory.

Because of the impact on the maritime environment of any malfunction, the EMODnet’s human
activities marine portal provides oil rig and gas rig data, boreholes and offshore drilling sites with
their locations [274]. The Peace Research Institute Oslo (PRIO) network [275] hosts a petroleum
dataset containing data concerning all known onshore and offshore oil and gas deposits along
with additional potentially relevant data about diamond resources, length of international
boundaries, shared rivers and other non-geographic data such as economic and socio-
demographic and warfare data. The U.S. Geological Survey (USGS) World Petroleum
Assessment [276] provides information pertaining to the 2012 assessment of undiscovered,
technically recoverable conventional world oil and gas resources. The Theodora World Pipelines
maps website [277] provides information about the diameter, length and capacity of several crude
oil (petroleum) and natural gas pipeline installations across the globe.

3.5.4. Marine Accidents

On the national level, Maritime accidents history data can be retrieved from government agencies,
such as the Search & Rescue Department or the Maritime Security Department, if they exist or,
alternatively, from other agencies under the supervision of relevant national ministries and
governmental departments dealing with the merchant navy and the maritime domain or the
environmental protection domain, etc. Whenever data history is provided on the condition that it
is not to be published, its value lies in the possibility of extracting useful knowledge about
hazardous areas and vessel routes and trajectories, and about ships and man-made above-the-
sea-surface installations with a documented accident history. Some of these datasets may only
provide approximate descriptions of the site of the incident, rather than the exact location. While
some of these descriptions define specific bounded areas (e.g. ‘2NM West of Heraklion, Crete’)
others might refer to less defined areas (e.g. ‘in the sea area on the east of the Mauritius Island’),
therefore a user would need to geocode this information in order to extract the relative geographic
coordinates or the estimated wider region in which the accident took place.

In several countries, organizations such as the National Bureau for Marine Casualties
Investigation Organization (for example, in [278] and in [279]) might be able to provide information
about a number of marine accidents that have taken place on the country’s territory and also to
provide detailed investigation reports for every accident. Statistics derived from the accidents can
be provided along with the national and international legislation related to marine accidents.

Lists recording vessel accidents can also be freely available on the Web. An example is the list of
114 marine accidents available from the U.S. National Transportation Safety Board [280]. For
every accident the list includes its geographic position and an analysis of the various parameters
that caused it. Another list of seven accidents accompanied by analyses of the ships’ routes prior
to accidents is available at [281]. Also, a detailed list of major maritime accidents that have been
recorded across the world since the year 1120 AD can be found on [282]. The analysis (via links
to Wikipedia pages with details for every accident) also includes the geographical location in which
every one of these accidents occurred. Another detailed list of accidents involving ships on the
international scale is available from the IMO [206]. The accidents data provided by the IMO can
be obtained free-of-charge on the condition that they will be strictly used for non-commercial
purposes. The WreckSite [283] database provides extensive online information about 163,020
shipwrecks worldwide, including data such as geographical location, ship details, images, owners
and builders, maritime charts, etc. A list to access the national accident investigation reports from
24 counties is provided on the Marine Accident Investigator’s International Forum [284]. Also, the
Maritime Bulletin [285] provides a list of marine accidents around the globe, along with piracy
reports and weekly reports regarding shipping hazards. The European Maritime Safety Agency in
[286] provides summaries and safety recommendations from marine investigation reports, as they
have been compiled by the competent authorities of E.U. Member States.

https://www.iscpc.org/cable-data/

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
59

Data relating specifically to oil spill accidents can be retrieved freely online, for example from the
International Tanker Owners Pollution Federation (ITOPF) portal [287]. The source also provides
additional information for the 20 most catastrophic oil spills since 1970. The IncidentNews website
[288] of the U.S. National Oceanic and Atmospheric Administration (NOAA) [289] provides
abundant data about selected oil spills (and other incidents) for which the NOAA's Office of
Response and Restoration (OR&R) [290] provided scientific response-support for the incident.
The software and datasets publications, training, and othe resources of the NOAA's OR&R are
dedicated to environmental restoration and provide response tools for oil and chemicals spills and
marine debris.

3.5.5. Flags of Convenience

A renewable list [291] of 26 countries with a flag of convenience [213] has been compiled by the
Fair Practices Committee of the International Transport Workers Federation (i.e. a joint committee
of the federation of seafarers and dockers unions) and a slightly different list including a few more
countries can be found in [292].

3.5.6. Port State Control Data

Port state control [293] refers to the inspection of foreign ships in national ports to verify their
compliance with the requirements of international regulations and rules. Nine regional agreements
exist on state control of ports, or Memorandum of Understanding (MoU). A list of nine online
databases that contain all vessels currently detained by regional authorities around the globe can
be retrieved from the following sources: for Europe and the north Atlantic (Paris MoU) [294]; for
Asia and Pacific (Tokyo MoU) [295]; for Latin America (Acuerdo de Viña del Mar) [296]; for the
Caribbean (Caribbean MoU) [297]; for West and Central Africa (Abuja MoU) [298]; for the Black
Sea (Black Sea MoU) [299]; for the Mediterranean (Mediterranean MoU) [300]; for the Indian
Ocean (Indian Ocean MoU) [301]; and for the Riyadh MoU [302]. U.S. port state control is carried
out by the U.S. Coast Guard [303].

Data about the ships complying with the regional regulations of the Paris MoU, Tokyo MoU and
the U.S. Coast Guard Port State Control can be retrieved from the Equasis portal [231].

3.5.7. Anti-shipping Activities

The U.S. National Geospatial Intelligence Agency provides freely an up-to-date spatial dataset of
more than 7,000 anti-shipping activity messages [304]. The dataset includes the exact
geographical location and description of specific hostile acts against ships and mariners from
1985 until today. These data can be useful for the recognition, prevention and avoidance of
potential hostile activity in the future. The dataset can be downloaded as a KMZ file, ESRI
shapefile or as a personal Geodatabase in MS Access database format.

3.5.8. Nautical Weather Forecast and Climate Data

Several services provide meteorological data via an application programming interface (API)
which allows researchers and developers to access weather forecast conditions for both land and
sea. The services provide data for temperature, any precipitation or presence of fog, speed and
wind direction, the height of sea waves, the direction of sea waves, and include weather
description icons, etc.

Some services make the data available for free for personal use or for empirical purposes, while
others allow the development of applications for commercial use. The data are usually available
in XML or JSON. An extensive list of 76 relevant services via API can be found in [305].

Nautical or marine meteorological forecast data for research and development purposes tends to
be scarce. In shipping applications, detailed weather forecast data of up to six to seven days
ahead is important, hence a brief reference to some of the few providers of free-of-charge
meteorological forecast data for marine applications.

World Weather Online [306] provides land and marine meteorological forecast data through the
use of a free account and a specific API key. The marine forecast data have a time window of 24

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
60

hours, regularly updated and covering a time span of 6-8 hours and include: temperature,
humidity, visibility, cloud cover, wind speed, wave height, swell height, precipitation, pressure, etc.
The user of the free service can obtain meteorological forecasts for up to 500 requests per hour
and no more frequently than every 15 minutes for the same location. Land weather forecast data
are updated every 3-4 hours. The available information is sent to the user via XML, JSON and
CSV format. The data request has to be accompanied by the longitude and latitude of the relevant
location on the Earth. The meteorological forecast is retrieved from the nearest weather station to
that location. World Weather Online also provides weather and tidal data history.

Weather Underground [307] provides detailed meteorological forecast data per hour for the
following 24 hours and as well as a prediction of the weather for the next three to ten days ahead,
together with dynamic animated satellite images. The available data are accessed via API and
can be obtained in the JSON or XML form. Rather more restricted than the Word Weather Online
service, Weather Underground provides free usage of the service for up to 10 times per minute
and up to 500 times per day.

The Severe Weather Information Center [308] provides global warnings about tropical cyclones,
heavy rain, snow, thunderstorms, gales and fog. Its equivalent system for Europe is named
Meteoalarm [309]. The Arizona State University [310] holds an interactive map and an archive
for extreme global weather and climate conditions.

The NASA Earth Observatory [311] provides 16 global animated maps and datasets which are
related to weather and climate conditions such as sea and land surface temperature and
anomalies, rainfall, snow cover, etc. over a time span of 12 months.

Daily reports acquired through sensors about air pollution and ozone can be retrieved on the
national level from environmental agencies or from the ministry of the environment of a country
concerned, such as in [312] which provides live and historical data. Additional information about
air quality, air pollutants and emissions can be retrieved from such sources, as for example the
Air Quality database [313] which is provided by the European Environment Agency (EEA) [314].

And last, there are online databases that offer historical weather and climate data and some useful
statistics:

• the collection of global daily measurements of weather features (temperature, wind speed,
humidity, pressure, etc.) for the period 1929-2009, from over 9,000 meteorological stations
around the world, which data have been uploaded from Infochimps.org onto the Amazon
Web Services [315];

• the Climatological Database for the World's Oceans [316] which is based on the climatic
data contained in ship logbooks for the period 1750 to 1850;

• the European Climate Assessment and Dataset project collection [317] which provides
historical data for the period January 1, 1950 - December 31, 2012; etc.

3.5.9. Natural Hazards

Because of their close relation to tsunami phenomena, seismic and volcanic activity monitoring is
crucial. Such data are usually provided in almost-real-time by the institutes for geodynamics on
the national and international levels, such as [318] and correspondingly [319], the latter a globally-
recognized creditable online center for almost-real-time information for European-Mediterranean
earthquakes and for worldwide earthquakes with M4.0+. Earthquakes and waveform data for
Europe are also provided by the GEOFON Program [320] and for the U.S. by the USGS
Earthquake Hazards Program [321]. Both sites provide almost-real-time data feeds.

The International Tsunami Information Center [322] provides international tsunami warnings and
contains further data related to seismic activity and sea level stations along with historical data.
The Global Risk Data Platform on Natural Events [323] covers data related to tropical cyclones,
storms, surges, drought, earthquakes, biomass fires, floods, landslides, tsunamis and volcanic
eruptions. And last, Volcanoes of the World [324] is an online database describing the physical
characteristics of volcanoes and their eruptions.

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
61

3.5.10. Navigational Aid Systems

A database of international navigational aid systems around the globe can be retrieved via the
MarineTraffic service [218], with every entry containing information related to the name of the
navigational aid system, its location, a representative photo, its type, its range, color of light, flash
duration, time interval of operation, and whether or not it is active. The geospatial sea surface
region covered by a navigational aid system can be computed by its range, taking into account
the local coastline.

3.5.11. Sea Ports Locations and Facilities

The U.S. National Geospatial Intelligence Agency provides the geographical locations and
characteristics of the ports around the Earth through the dataset "The World Port Index (Pub150)"
[325], which keeps a record of the locations of 3,717 ports worldwide. The dataset is provided
free-of-charge for non-commercial use in an MS Access database or in an ESRI shapefile, and
provides useful detailed technical information such as the size, type, anchor depth and tidal range
of harbors, their fuel/oil supply facilities, available repairs support, and much more. Wikimapia
[326] provides similar data in KML geoformat that includes 10,478 port facilities worldwide. No
other important technical information about the available ports is provided by this particular
dataset.

Additional information about ports worldwide can be found in VesselFinder [225]. This database
contains the name of the port, the country in which it is located, its size (in such categories as:
small, medium-sized port, etc.) and its geographic position on the map. Information about ports
can also be found in MarineTraffic [218], including the name and location of every port, together
with real-time data about the presence of vessels and the expected arrival and departure times
into and out of the ports.

Finally, data about airports, runways, airlines, radio navigation aids and waypoints that can
become relevant in the domain of a maritime GIS application can be found at OurAirports [327],
OpenFlights [328], and WELT2000 [329].

3.5.12. Essential Naval Cartographic Data

Borders between countries, while they are mainly static data, are occasionally updated when
affected by changes. Such a dataset can be retrieved from several online sources in various
formats and sizes (i.e. resolution). An excellent source for this dataset is the Blue Marble
Geographics [330] which provides country boundaries in ESRI shapefile or TBA files format.

An unclassified vector-based digital dataset compiled from a portfolio of approximately 5,000
nautical charts and containing the boundaries of countries worldwide enriched with several
additional maritime features is provided free-of-charge by the Digital Nautical Chart portal of the
U.S. National Geospatial-Intelligence Agency [331]. It is available in 29 subsets of data divided
by the region of the planet to which they correspond.

3.5.13. Maritime Borders, Coastline and Land Areas

The coastline (or shoreline) is an important dataset that defines which areas of the Earth are land
and which are ocean or sea. Several online sources provide global coastline datasets in different
resolution and formats. An excellent example is the high resolution and complete (without gaps
due to missing data) related dataset which is provided by the U.S. NOAA Shoreline website [332].
A dataset of coastlines of the world in ESRI shapefile format which the U.S. Defense Mapping
Agency developed from various sources is also provided by the Pacific Disaster Center in Hawaii
[333]. Finally, the global coastline with the exception of Antarctica, can be retrieved in several
resolutions (full, high, intermediate, low and crude) and formats (ESRI shapefile and native binary
files) from the GSHHG database [334], which is a global geographic database that is kept
constantly updated.

Many organizations and projects produce and distribute high resolution national or continental
coastline data. Focusing for example on the European continent, the geographic data of the

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
62

European coastline [335] and the European maritime borders [336] that have been produced in
the context of the EUROSION project [337] derived from the United Nations Convention for the
Law on Sea, can be retrieved from the list of datasets in [338] which are provided by the EEA
[314], which is responsible for the independent provision of information relating to the
environment. High-resolution data for the European Coastline (and land surfaces) [335] may also
be obtained from the EU-Hydro, which is a set of hydrological data developed under the program
Copernicus [201], the largest scale Earth observation program. Interested parties might find it
worthwhile to give priority to the first of the above-mentioned geospatial datasets (i.e., that of the
EEA), and to consider the second (i.e., that of the EU-Hydro) as a support dataset because the
coastline from the EU-Hydro represents the separation between land and sea, as indicated by
satellite images of the dataset in [339], provided by the European Space Agency. The tidal data
depend on the date and time when the images were taken, hence the dataset’s insufficiency in
respect of the requirements to define the coastline.

3.5.14. Naval Bathymetry Data Maps

Bathymetric data can be retrieved from various heterogeneous sources. The datasets may share
overlapping information in different data formats or precision, therefore appropriate data
transformation and refining processes may need to be undertaken prior to the process of
integrating the data into the same database. Important data sources that can be accessed online
are:

The Marine Geology & Geophysics and the Bathymetry & Global Relief discipline of the National
Center for Environmental Information [340] of the NOAA [289] provides access to sonar data
(single-beam trackline bathymetry surveys), magnetic, seismic and other data [341] that have
been collected on the basis of marine survey trips since 1939 until today. The source also provides
rich multi-beam sonar bathymetry data [342] that contain over 1,187 international marine trips
that collected bathymetry data from several areas around the world.

The International Hydrographic Organization (IHO) [343] collects and quality-checks globally
oceanic sounding data acquired by hydrographic, oceanographic and other vessels during
surveys or while on passage. The IHO members have also made additional contributions with
shallow water sonar data derived from electronic nautical charts.

The International General Bathymetric Chart of the Oceans Cooperation [344], [345] which is
maintained by the British Oceanographic Data Center (BODC) [346] provides free-of-charge
bathymetry data that are related to all the seas across the globe. The data are collected by echo-
sounding and the dataset is enhanced with satellite data.

Another notable example of high-precision bathymetry data is offered freely by the EMODnet
bathymetry portal [347] of the European Marine Observation and Data Network which contributes
to the provision of reliable and interoperable marine data in public and private organizations. The
bathymetry dataset of the EMODnet service covers a wide range of marine areas across and
around Europe, providing highly accurate Digital Imaging Modeling Soil data and substantial
coverage for the corresponding seas.

3.5.15. Tides, Eddies and Sea Levels

The NOAA Center for Operational Oceanographic Products and Services [348] has gathered
oceanographic data for over 200 years, serving both the public and government agencies. Its data
include sea-level measurements over time; tide prediction locations; a history of currents activity
at different levels of depth; etc. The dataset can be downloaded in KML format from [349].

Sea-level data on a worldwide scale can also be retrieved from the Sea-Level Station Monitoring
Facility [350] which utilizes an interactive map illustrating the locations of stations that measure
the sea-level in real-time. A disclaimer on the portal indicates that quality control has not been
applied to the data on display and that they are provided as received.

The mesoscale ocean eddies are currents that transport heat, salt, energy, and nutrients across
the world seas. Their accurate identification and tracking is crucial for understanding future marine

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
63

and terrestrial ecosystems and their sustainability. A rich historical dataset of oceans eddies from
1992 to 2011 can be found in [205].

3.5.16. Various Other Geospatial Data

The Global Earth Observation System of Systems (GEOSS) portal [351] provides worldwide data
in relation to water, ecosystems, agriculture, climate, natural disasters, etc. A number of datasets
in raster and vector format related to land-cover; administrative boundaries; parks; hydrology and
ocean water; drainages with lakes; etc. on several scales of resolution (large, medium and small)
is provided by Natural Earth [352]. The NASA’s Earth Observation System provides Earth science
data that can be retrieved from [353]. A large number of GIS datasets regarding elevation,
transportation, demographics, environment, imagery, water, etc., for almost all the countries
around the globe is provided by the Massachusetts Institute of Technology (MIT) Geodata
Repository [354].

The NOAA’s Office of Coast Survey [355] offers a large number of links for U.S. national charts,
surveys wrecks, historical data and other useful nautical GIS information. In [356] several
datasets relating to administrative boundaries, biological data, climate, land-cover, etc. are
provided for the U.S. region. The EEA hosts more than a hundred sets of environmental data
related to the E.U. territory in [357]. The same portal also hosts a large number of related maps
and informational graphs. Another large number of related datasets is hosted by the European
Space Agency in [358]. In [359], a number of datasets relating to land-cover, elevation,
hydrography, protected sites and other data for the E.U. territory is provided by the EuroStat
European Statistics Organization. The BODC [346] distributes biological, chemical, physical and
geophysical marine data and also hosts various related portals and project websites. Most of the
data maintained and re-distributed by the BODC are not restricted to the U.K. territory.

The Marine Plan website [360] provides a number of datasets that include the major regional
fisheries areas controlled by governing bodies across the globe; the state of fish stocks; waters
under the sovereignty of countries in other regions of the world (this includes the waters of
outermost regions and of overseas territories); territorial disputes conflict zones, piracy hazards;
international straits and channels; oceans and continents; nuclear marine areas, oil and gas in
the world; etc.

A large number of links to worldwide marine and coastal GIS data and image portals is provided
in [361]. An extensive framework for sharing world maps and digital geospatial data about the
Earth's frozen regions (including snow cover, sea ice extent and concentration, glaciers, ice
sheets, permafrost, and other critical components of the Earth's cryosphere) can be retrieved from
the Atlas of the Cryosphere [362] in image, GML and GeoTiff formats. Also, the Quantarctica
raster datasets [363] include geographical, glaciological and geophysical data for the region of
Antarctica.

DIVA-GIS [364] is primarily a free and open-access software tool for data mapping and
geographic analysis. Its corresponding portal also provides freely available spatial data, either at
the country level (such as administrative boundaries, inland water, roads, railroads, altitude, land-
cover, population density, etc.) for any country in the world, or at the worldwide level (such as
high resolution satellite images, global boundaries between countries, global climate data, species
occurrence data, etc.). The data can be used in DIVA-GIS and other software tools.

A list of over twenty useful links to services databases for the marine science community, with
resources such as abstracts, bibliographies, glossaries and directories, as well as conference
proceedings papers which are otherwise not available online are hosted by the Hellenic Centre
for Marine Research [365]. Among them and of particular interest is the link to the Institute of
Oceanography of the Hellenic Centre for Marine Research [366] which provides access to its
Online Search and Download Service database [367] in relation to physical, chemical and
biological parameters in the European and international waters; the European Directory of Marine
Environmental Datasets [368] which contains datasets collected by Hellenic scientific
laboratories, research institutes, universities, etc.; and the EDIOS database [369] which provides
measuring and monitoring data with regard to sea observation in the Eastern Mediterranean and
the Black Sea.

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
64

Another categorized list of links to over three hundred portals providing freely available geographic
datasets can be found on FreeGISData [370]. The datasets are related to physical geography
(weather and climate, rivers, lakes, elevation, hydrology, etc.) and human geography (land-use,
wars, population, etc.) worldwide, while individual datasets for specific areas or countries are also
available.

FreeGIS [371] is a blogspot which also offers links and detailed descriptions of numerous portals
which provide free and open-access GIS software; remote sensing; and spatial and hydrology
data. The following sources [372], [373], [374], and [375] direct the reader to some data sources
worth noting, which provide maps, articles of international interest, etc., that are also relevant to
this study.

Finally, the GEOnet Names Server (GNS) [376] is a repository of standard spellings of global
geographic names for regions near, over and under the seas.

3.5.17. Satellite Imagery

Copernicus [201] is a European GIS for monitoring the Earth. It consists of a complex set of
systems which collect data from multiple sources, such as Earth observation satellites, ground
stations and airborne and sea-borne sensors. Copernicus services address six main thematic
areas: land, marine, atmosphere, climate change, emergency management and security [377].
The collected data can be accessed by performing a free registration to the Copernicus Sentinels
Scientific Data Hub [378] which at the time of writing contains Sentinel-1 and Sentinel-2 satellites
data. Direct access to the data, along with additional information about the various Sentinel
satellites missions can be retrieved via the European Space Agency (ESA)'s Sentinel Online
portal [379] or via its data mirror site at [380]. Satellite data for a number of ESA’s missions
dedicated to Earth observation can be found in [381].

And last, the eoPortal Directory [382] offers a database of an extensive list of past, operational
and future spaceborne missions and a complementary database of several flight missions and
projects involving airborne sensors.

3.5.18. Sources that Reach Beyond the Maritime Domain

The previous sections report on sources and repositories that provide maritime and maritime-
related data. However, a large number of sources exists with a wider variety of data that reach
well beyond the maritime domain but which can, in some circumstances, become relevant in a
maritime GIS application. Among these, one of the most popular sources is the collaborative
mapping project OpenStreetMap [383], which also offers free-of-charge data about roads; trails;
cafés; railway stations; etc. In a similar way, Wikimapia [326] provides data about roads; railroads;
rivers and ferry lines; various types of points and areas of interest such as parks, villages, cities;
etc. The GeoCommons Archive [384] is a community-contributed collection of hundreds of
thousands of open datasets from around the world. OpenEI [385] provides energy datasets on
hundreds of topics, crowdsourced from industry and government agencies in relation to energy
efficiency, consumption, demand, and much more.

International and national public open data portals are also great sources for continental and
governmental or country-specific data. For example, the INSPIRE Geo-portal [386] provides the
means to search and access open geographic data provided by European governmental,
commercial, and non-commercial organizations within the framework of the E.U. INSPIRE
Directive [387], which aims at the creation of an E.U. spatial data infrastructure. The EEA’s data
and maps repository [388] of the E.U. provides sound and independent data on the environment.
Some major datasets on this repository are related to air, water, land, biodiversity, climate change,
noise, etc. [389]. A Web map service for the repository is available in [390], while code and APIs
(divided into specific topics) for developing GIS applications are available in [391].

The European Data Portal [392] harvests the metadata of public sector information available on
public data portals across E.U. countries and offers governmental open data that were collected,
produced or paid for by the public bodies and public sectors. The E.U. Open Data Portal [393] is
the single point of access to a growing range of data from the institutional and other bodies of the
E.U.. The portal is not restricted to GIS data and thus some of its main subjects are employment
and working conditions, economics, finance, trade, industry, education, science, etc.

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
65

On a national level, a governmental source paradigm for providing geographic-related data that
also serves as a compliant data infrastructure center at a continental level (for example, for the
E.U. INSPIRE and for the European Data portals), is the geospatial open repository of the territory
of Greece [394], which offers open data for topics related to biodiversity, water, the environment,
the economy, elevation, transportation, health, planning cadastre, social dimensions and many
more. The data provided by this source can be complemented by the central library of public data
[395] which offers access to the databases of the country’s governmental bodies. Several other
countries (such as Ireland in [396], etc.) offer similar data repositories, and it is expected that, in
the years to come, every country (and possibly every municipal sector and region in the country)
will offer similar services to the public.

The EMODnet [255] network is a Joint European Coastal Mapping Programme which consists of
more than 100 organizations assembling quality-controlled and expert-validated marine data that
are offered through the EMODnet portal, such as data on bathymetry (water depth), coastlines,
and geographical locations of underwater features and wrecks; data on seabed substrate, sea-
floor geology, coastal behavior, geological events and minerals; data on modeled seabed habitats
based on seadbed substrate, energy, biological zone, and salinity; data on the concentration of
nutrients, organic matter, pesticides, heavy metals, radionuclides and antifouling in water,
sediment and biota; data on the temporal and spatial distribution of species abundance and
biomass from several taxa; data on salinity, temperature, waves, currents, sea-level, light
attenuation, and FerryBoxes (i.e., kits with instruments that are placed on board to commercial
ships such as ferries in order to monitor the temperature, salinity and other water properties); data
on the intensity and spatial extent of human activities at sea; etc.

The EUMETSAT Product Navigator [397] is the catalogue of satellite data and products with
regard to weather, climate and the environment that are offered in near real-time by the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) [398].

GEOSS links Earth observation resources worldwide across multiple societal benefit areas. The
GEOSS portal [351] provides data about biodiversity and ecosystem sustainability; disaster
resilience; energy and mineral resources management; food security and sustainable agriculture;
infrastructure and transportation management; public health surveillance; sustainable urban
development; water resources management; etc.

The Red List of Ecosystems (RLE) [399] of the International Union for Conservation of Nature
[400] evaluates the conservation status of ecosystems around the globe. The RLE provides the
ecosystem locations information and valuable assessments on the basis of a protocol which
includes criteria for assessing the risk of an ecosystem collapse and several categories of risk for
every ecosystem.

NASA is a great resource for geospatial data, not only in respect of space exploration but also in
respect of the Earth. The numerous domains it encompasses provide the material for the creation
of an enormous data center. The EarthData portal [401] provides a variety of Earth-related data.
A worldview map of those data can be accessed via [402]. The NASA’s Earth Observing System
[403] is a coordinated series of polar-orbiting and low inclination satellites for long-term global
observations of the land surface, biosphere, solid earth, atmosphere, and oceans which consists
of the NASA’s Earth Observations database [404], the NASA’s Earth Observatory database [405],
the NASA Visible Earth database [406] and other repositories, every one of which provide a
variety of data. The Earth Science Projects Division [407] manages the missions which advance
the understanding of Earth. The NASA’s Science portal [408] provides data of NASA missions
related to the Earth as well as several links to other related portals.

The NOAA [289] as well as the USGS Earth Explorer [409] portals are both great resources for
various datasets in numerous disciplines, especially but not exclusively in relation to the U.S.
territory.

Natural Earth [352] provides also geospatial data related to populated places; disputed areas and
breakaway regions; glaciated areas and Antarctic ice shelves; cross-blended hypsometric tints;
grayscale shaded relief of land areas; worldwide terrain depicted monochromatically in shades of
gray; etc. The ESRI Data & Maps portal [410] contains data across the globe, such as country
boundaries, aquatic areas roads, railroads, major cities, topography, bathymetry, population,

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
66

gross domestic product, night time views of the Earth, etc. The PRIO network [275] contains also
some unique spatial and non-spatial datasets of specific interest, such as diamond resources,
shared rivers between neighboring countries and data related to armed conflicts [411].

Data source Land & marine
data

Atmosphere &
climate data

Governmental &
human activities data

Cultural
data

Copernicus [201]   – –

EMODnet [255]    –

NOAA [289]   – –

FreeGISData [370]    

Natural Earth [159]  – – 

EEA [314]    

European Data Portal [392]    

E.U. Open Data Portal [393]    

TABLE 24: MOST NOTABLE DATA SOURCES THAT REACH BEYOND THE MARTIME DOMAIN.

Table 24 outlines the most notable sources and repositories containing rich data that reach
beyond the maritime domain and are mentioned in this study, along with the most characteristic
examples of types of data that they provide.

3.5.19. Marine Conservation Organizations

Hundreds of non-profit and non-governmental marine institutes and organizations (such as the
ones listed in [412] and [413]) work either independently or by forming societies and coalitions
(such as the Deep Sea Conservation Coalition [414]) on marine conservation and other
environmental issues such as biodiversity and global warming. These organizations are
committed to researching and to ensuring the protection of the marine environment, and pursuing
terrestrial wildlife conservation and they are actively involved in lowering the risk of accidents on
and near the sea, and in providing statistics, scientific research reports, and case studies data
analysis.

Much of this extensive and high-quality work is made available to the public and can therefore be
utilized to enrich maritime information systems. For example, in [415] several datasets are
provided for areas that are environmentally and economically sensitive to oil and other hazardous
materials spills, areas to which sailing restrictions apply, areas to be avoided, shallow banks,
rivers, lakes, manatee population locations, sea turtles nests locations, submerged shipwrecks
and other obstructions in coastal waters, public access boat ramps, color aerial photographs,
coast guard facilities etc., throughout the State of Florida and, more widely, the U.S.. The data
are published by the marine conservation Florida Fish and Wildlife Research Institute which works
for the protection of the sea across the entire South East of the U.S..

3.5.20. Restrictions Applying to Use of Data

This section discusses the various types of restrictions applying to the use of data, established by
the sources providing these data in order to protect the rights of the owners over the data that are
made available to inspect and download for the purpose of maritime applications.

Datasets acquired by ministries and governmental agencies and other organizations can be
accessed free-of-charge by the public for any use at any time, irrespective of commercial use
purposes; alternatively, the datasets might be strictly confidential, which means that while they
may remain available for data mining, they may not be published under any condition. A number
of sources might allow a degree of use of their datasets in combination with a license of Creative
Commons [416] attribution, which means that the grantee of the data will need to indicate their
source in the applications in which they are used and will need to take into account some other
restrictions as well, those that define the extent to which the data can be copied, distributed,
edited, remixed, and built upon, all within the boundaries of copyright law.

The detailed data for vessels and shipping companies from the IMO Numbers Database [228],
the ShipList [229], the Maritime-Connector [233], and the VesselFinder [225] services can be

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
67

collected via their freely accessible online databases. The data, however, cannot be re-published
although they remain useful resources to ensure the efficiency of maritime information systems.
The data from the Equasis service [231] cannot circulate freely on the Web and can only be
accessed freely by registered members.

The vessels accident data that can be obtained via the IMO service [206] requires, in return for
free-of-charge access, the creation of an account and can be used within the limits of the
restrictions imposed on the service.

The use of the datasets of maritime protected areas that can be found online on the Protected
Planet portal [235] is limited to use that is of a non-commercial nature [417] and cannot be
obtained without prior written authorisation of the UNEP-WCMC [249] which is the data supplier.
The same exclusively non-commercial use restrictions of [418] hold also for several other online
data banks provided by the UNEP-WCMC, such as for the Ocean Data Viewer [419], etc.

In the terms of use of the data [420], the World Weather Online service [306] makes it clear that
researchers and developers must not share their API key with other users. The terms of use also
indicate that the data are protected by strict copyright and must not be distributed, modified or
reproduced in part or in whole, without the prior written authorization of the service.

Most of the types of bathymetry data that can be collected from the data sources as mentioned
above cannot, according to the restrictions applying, be used for navigational purposes and, when
they can be used, it is for personal use only (a free account is required for this). However, the
largest and most precise bathymetry dataset that can be found online which, as has already been
mentioned, can be retrieved from the EMODnet bathymetry portal [347], is not accompanied by
restrictions of use. While it is indicated that this voluminous dataset is available to the public; for
legal reasons, however, its source indicates that the data may not be used for navigation
purposes.

The port state control data related with most of the MoUs, and specifically for the Paris MoU [294],
Tokyo MoU [295], Black Sea MoU [299], Caribbean MoU [297], Abuja MoU [298], and Acuerdo
de Viña del Mar [296] state that the data should not be used for any commercial purpose,
reproduced in any other sites, stored in a retrieval system, or transmitted in any form, or by any
means, without the prior authorization in writing from the owners of the data.

The use of the datasets of global, continental and national coastlines in most of the sources is
provided free-of-charge on condition that the source of the data is mentioned. One example is the
dataset of the European coastline [421] that is provided by the EEA [314] which is its copyright
owner. Also, the maritime borders provided online within the framework of the EUROSION project
[337] are available free of restrictions.

License Linking Distribution Modification

CC-0 Public domain Public domain Public domain

CC-BY Permissive Permissive Permissive

CC-BY-SA Copyleft Copyleft Copyleft

CC-BY-NC Non-commercial Non-commercial Non-commercial

GPLv3 With restrictions Copyleft Copyleft

ODbL Copyleft Copyleft Copyleft

TABLE 25: THE MOST-COMMONLY-USED LICENSES FOR FREE AND OPEN-SOURCE DATA2.

Table 25 outlines the most-commonly-used published licenses for free and open-source data,
and their restrictions on linking, distributing and modifying the data [422].

The data on the Greg's Cable Map [269] are provided under the GNU General Public License v3
(GPLv3). The USGS World Petroleum Assessment [276] requires copyright permissions [423].
The owner of the archeological data provided in [262] states that the data are offered under the
Creative Commons CC-0 licensing. Pleiades [259] states that sharing and remixing data is

2 A ‘Public domain’ label states that there is absolutely no ownership such as copyright, trademark, or patent. A ‘Permissive’
license has some limited requirements, such as crediting the original authors. A ‘Copyleft’ license permits people to freely copy,
modify and redistribute the data as long as they do not keep others from also having the same rights.

CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA

Christos Kalyvas-Kasopatidis –October 2020
68

permitted under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. The
ReefBase [251] states that the data may be used for non-commercial purposes, including
research, education, presentations, and non-commercial publication [424]. The FishBase [252]
states that this work is licensed under a Creative Commons Attribution-NonCommercial 3.0
Unported (CC-BY-NC) License. The OBIS [248] makes the data available under the Creative
Commons licenses CC-0 or CC-BY or CC-BY-NC [425]. The IUCN Red List of Threatened
Species [258] states that the data is made freely available to the public for non-commercial use.
The Global Risk Data Platform on Natural Events [323] states that all rights are reserved and
none of the materials provided on the website may be used, reproduced or transmitted without
permission in writing from the publisher [426]. The Quantarctica datasets [363] are free for non-
commercial use. The data from the Copernicus Sentinels Scientific Data Hub [378] are offered to
the public for free, except when the E.U. law allows for specific limitations of access and use in
the rare cases of security concerns, protection of third party rights or risk of service disruption.
The ESA's Sentinel full online terms and conditions can be retrieved from [427]. The
OpenStreetMap open data [383] provided by the OpenStreetMap Foundation [428] are licensed
under the Open Data Commons Open Database License (ODbL 1.0). The WELT2000 [329]
database is also made available under the ODbL 1.0 license. The data from Wikimapia [326] are
provided under the Creative Commons License Attribution-ShareAlike (CC BY-SA). The E.U.
Open Data [393] portal provides the data for free for use and reproduction for commercial or non-
commercial purposes. The Theodora World Pipelines maps [277] states that all the rights on the
data are reserved by its sponsored Information Technology Associates Company. The ESRI Data
& Maps [410] data usage policy can be viewed in [429]. For the data hosted by the NOAA's OR&R
[290] along with many sources from U.S. data portals [289], [409] specific restrictions may apply
for use and reproduction outside the U.S.

3.6. Conclusions and Observations

The last decade has led to the full recognition of the crucial role played by this new age of decision-
support information systems in transportation; the environment; hydrology; meteorology;
oceanography; emergency, hazard and disaster management; defense and intelligence; public
safety and law enforcement etc. When developing such a demanding information system
application or research model, obtaining the sufficient amount of the appropriate real-world data,
to make the application or the model work effectively, is a requirement of crucial importance. This
section aims to provide comprehensive insights into the exploitation of maritime geospatial
datasets available to the public and highlights the fact that integrating these datasets from the
available online open sources will improve advantageously the building of efficient maritime GIS,
while combining them with other restricted and non-free-of-charge data is also made possible.

To the best of the authors’ knowledge this study represents the first endeavor to compile a
comprehensive survey of carefully selected official online sources, which have been classified
under several distinct categories and which, can provide an up-to-date thesaurus of reliable high-
precision real-world maritime geospatial data on the international global level. The section also
stresses the need to pay due attention to the legal binds that must be taken into account before
downloading and using data which are available free-of-charge.

Moreover, this study allowed us to identify open research topics in query processing, big data
management and applied machine learning. Focused on skyline queries, we identified that the
temporal parameter, which is quite important in data analytics, is not considered in the query
process and thus, we focused our research on temporal skyline queries. Moreover, the volume of
most of the datasets is large and simple, non-distributed approaches struggle to perform. Based
on this we managed to compute the skyline and the even more resource demanding reverse
skyline query over one of the largest datasets identified (OpenstreetMap All_nodes dataset [383])
using an index-based approach over Hadoop, named SpatialHadoop. Finally, one of the most
common issues identified is the lack of labeled data which is an especially hard process to perform
in high volume datasets. Based on this we used the properties of skyline queries to build a
classifier that efficiently works in big data environments.

http://www.esri.com/legal

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
69

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
70

4. SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

The computation of skyline has been studied across a wide range of environments and types of
data. Through our previous study we identified that the notion of time has a great importance in
data analytics and query processing. On this scope, a field of study that has remained unexplored
in the context of skyline query computation and which would greatly benefit from a study is skyline
queries considering the time domain. In many cases time is a critical variable that in many cases
is omitted. Specific time intervals may alter the results or even produce different insights. In this
study we present that time and its intervals has a great impact on skyline queries since an
optimization approach considering the whole-time domain may not be efficient or practical.

4.1. Introduction

In recent years, the skyline query [8] has received a considerable amount of attention because of
its ability to highlight in an efficient way the most eligible subset of a set of objects on the basis of
a bunch of user-defined criteria. In the following example it is assumed that a traveler does a
search for a hotel room. The price of a room is expected to increase as the distance of the hotel
from the city center decreases. On the basis of the dataset of Table 26, and by taking into account
the first two columns as the primary decision criteria, the potential optimal selection for the user’s
preferences would be {a, b, d} as presented in Figure 32.

Hotel
Price

(€)

Distance
from the

city’s center
(Km)

Operation
Season

(months of the
year)

Start End

a 15 1,200 1 10
b 25 550 4 8
c 45 1,000 6 10
d 95 200 5 7

e 103 350 3 10
f 147 275 6 7
g 80 850 5 7
h 70 670 6 8
i 65 1,400 5 10

j 83 1,300 7 12

TABLE 26: A DATASET WITH TEMPORAL PARAMETERS.

price Ο

b [4, 8]

d
is

ta
n

c

e

25 125 100 75 50

2
5

0

1
2

5
0

1
0

0
0

7
5

0

5
0

0

a [1, 10]

c [6, 10]

d [5, 7]

e [3, 10]

f [6, 7]

h [6, 8]

g [5, 7]

j [7, 12]

i [5, 10]

FIGURE 32: THE SKYLINE OF THE DATASET.

Nevertheless, the skyline operator has not been optimized yet to handle temporal data. For
example, it is not known how the skyline query can handle the case in which the traveler plans to
book a room months ahead by comparing hotels that do not operate all year around. Hence the
focus of this study is the efficient temporal extension of the skyline query for temporal data. In this
class of data the time period of interest needs to be added as an additional constraint to be
evaluated together with the decision criteria of the traditional skyline query. On this basis, the
optimal selection that will cover the desired scenario on the dataset of the example of Figure 32
for hotels operating in the 4th month of the year would be the set of hotels {a, b, e} which differs
from the set retrieved by applying the traditional skyline query without considering the time
domain.

The extension of the skyline query for temporal data aims to demonstrate how the strategy for
calculating the traditional skyline query is affected when also considering the time factor.
Algorithms for processing modified versions of the static, dynamic, and reverse skyline queries
for temporal data are proposed. The key contributions of this study are:

• a new dominant method for evaluating temporal data using the skyline operator,

• algorithms for computing temporal skylines and two of its well-known variants,

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
71

• an extensive experimentation on the efficiency of the above algorithms for optimizing the
skyline query processing to handle temporal data.

4.2. Problem Formulation

The study involves the extensions of the static, dynamic and reverse skyline queries for the
handling of temporal data. It will focus in one dimension of time, which can be either the
transaction or the valid time and will comment on the straightforward extension of the proposed
solution to handle both time dimensions. The following definitions will make clear the main angles
of this study.

Definition 1 - Temporal dominance: Given a time-varying point dataset P in a d-dimensional

space D and a point p (p1, p2, ..., pd)  P with validity in the time interval tp, the point p temporally

dominates in the time interval t another point r (r1, r2, ..., rd)  P with validity in the time interval

tr, denoted as p  t r, if and only if t is the non-null intersection between the time intervals tp and

tr and ∀ i  {1, ..., d} we have pi  ri and  j  {1, ..., d}: pj < rj.

Definition 2 - Temporal Skyline Query: Given a time-varying point dataset P in a d-dimensional
space D, the temporal skyline query in the time interval ts retrieves the set of time-varying points

SLts(P)  P which are not temporally dominated by any other point in P in any non-null time interval

t  ts, that is, SLts(P) = {(p, t), where p  P | ∄ r  P: r  t p, where t  ts is the time interval in
which p dominates r}. SLts(P) is called the temporal skyline of P in the time interval ts.

The Table 26 presented the temporal database of ten data tuples represented in Figure 32 by
time-varying points P = {a, b, ..., j} in the two-dimensional space. Some data points in the figure
temporally dominate others: Point b, temporally dominates point c in the time interval [6, 8]. The
temporal skyline of P in the time interval [3, 8] is the set SL[3, 8](P) = {(a, [3, 8]), (b, [4, 8]), (d, [5,
7]), (e, [3, 4]), (e, [8, 8])}. Note that point e is part of the temporal skyline of P in two different time
intervals.

Definition 3 - Dynamic Temporal Dominance: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time

interval tq, a point p (p1, p2, ..., pd)  P with validity in the time interval tp dynamically temporally

dominates another point r (r1, r2, ..., rd)  P with validity in the time interval tr with regard to q in

the non-null time interval t, denoted as p  (q, t) r, if and only if t is the non-null intersection

between the time intervals tp, tr and tq, and ∀ i  {1, ..., d} we have |qi − pi|  |qi − ri| and  j  {1,

..., d}: |qj − pj| < |qj − rj|.

Definition 4 - Dynamic Temporal Skyline Query: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time

interval tq, the dynamic temporal skyline query of P with regard to q in the time interval tq retrieves

the set SL(q, tq)(P) of points in P which are not dynamically temporally dominated by any other

point in P in any non-null time interval t  tq, that is, SL(q, tq)(P) = {(p, t), where t  tq and p  P

| ∄ r  P: r  (q, t) p}. SL(q, tq)(P) is called the dynamic temporal skyline of P with regard to q in

the time interval tq.

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
72

price Ο

b [4, 8]

d
is

ta
n

c

e

25 125 100 75 50

2
5

0

1
2

5
0

1
0

0
0

7
5

0

5
0

0

a [1, 10]

c [6, 10]

d [5, 7]

e [3, 10]

f [6, 7]

h [6, 8]

g [5, 7]

j [7, 12]

i [5, 10]

q [5, 5]

b' [4, 8]

c' [6, 10]

a' [1, 10]

e' [3, 10]

f' [6, 7]
d' [5, 7]

FIGURE 33: THE DYNAMIC TEMPORAL SKYLINE OF THE DATASET OF Table 26 WITH REGARD TO A QUERY POINT Q IN THE TIME

INSTANT 5.

In

Figure 33 every database point p(px, py) in the original 2-dimensional space of Figure 32 is
transformed into a point p'(|qx − px|, |qy − py|) in a new 2-dimensional space, the origin in which is
the query point q (50, 600) with validity in the time interval [5, 5], i.e. in the time instant 5. The
dynamic temporal skyline of P with regard to q in the time interval [5, 5] consists of the set SL(q, [5,

5])(P) = {(b, [5, 5]), (i, [5, 5])}, whereas the dynamic temporal skyline of P with regard to the same
query point q in the time interval [5, 7] consists of the set SL(q, [5, 7])(P) = {(b, [5, 7]), (c, [6, 7]), (h,
[6, 7]), (i, [5, 5])}. Again, it is possible for a data point to be part of the dynamic temporal skyline
of a dataset in more than one subinterval.

Definition 5 - Reverse Temporal Skyline Query: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time

interval tq, the reverse temporal skyline query of P with regard to q in the time interval tq retrieves

the set RSL(q, tq)(P) of points in P which take q as one of their dynamic temporal skyline points

in the non-null time-interval t  tq. This means that a point p  P with validity in the time interval

tp belongs to the set RSL(q, tq)(P) and therefore is a reverse temporal skyline of q in the time-

interval t, if there does not exist any other point r  P with validity in the time interval tr such that

(1) t is the non-null intersection between the time intervals tp, tr and tq, (2)  i  {1, ..., d}: |ri − pi|

 |qi − pi| and (3)  j  {1, ..., d}: |rj − pj| < |qi − pj|. RSL(q, tq)(P) is called the reverse temporal

skyline of P with regard to q in the time interval tq.

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
73

price Ο

b [4, 8]
d

is
ta

n
c

e

25 125 100 75 50

2
5

0

1
2

5
0

1
0

0
0

7
5

0

5
0

0

a [1, 10]

c [6, 10]

d [5, 7]

e [3, 10]

f [6, 7]

h [6, 8]

g [5, 7]

j [7, 12]

i [5, 10]

q [5, 5]

FIGURE 34: THE REVERSE TEMPORAL SKYLINE OF THE DATASET OF TABLE 26 WITH REGARD TO A QUERY POINT Q IN THE TIME

INSTANT 5.

In the example of Figure 34, the reverse temporal skyline of P with regard to query point q (50,
600) in the time interval [5, 5], i.e. in the time instant 5, consists of the set RSL(q, [5, 5])(P) = {(a, [5,
5]), (b, [5, 5]), (g, [5, 5]), (i, [5, 5])}. For instance, since the dynamic temporal skyline of data point
g in the time instant 5 contains the query point q (i.e., this holds because no any other data point
exists in the grey range of Figure 34 in the time instant 5), g is a reverse skyline point of q in that
time instant.

4.3. Skyline Query Processing Over Temporal Data

This section will formally present the algorithms for implementing efficiently the three new
extensions of the skyline query in the temporal databases domain, i.e., the static, dynamic and
reverse temporal skyline queries.

4.3.1. The Temporal Skyline Query

The algorithm for computing the temporal skyline of a time-varying point dataset is an extension
of the original BBS algorithm [3] for traditional (non-temporal) data. Since BBS uses a typical
data-partitioning method, such as the R-tree, to serve as the backbone indexing method, in this
paper the 3D R-tree access method [79] is considered to be the best choice for maintaining the
temporal data. The reason for this choice is that the description of the 3D R-tree differs only slightly
from that of the traditional R-tree in respect of its ability to store transaction and/or valid time data
as extra data dimensions in the tree. Another reason for selecting the 3D R-tree is that it is
accompanied by a simple implementation and requires the fewest possible modifications to the
built-in functionalities of modern database management systems as compared to its competitors
in the temporal databases domain. The 3D R-tree can straightforwardly support as many user-
defined data dimensions as required for any skyline query processing application as compared to
most of its temporal indices competitors, which can support only a single dimension for the key of
the data tuples, plus of course one or two time dimensions.

Algorithm 1: The temporal skyline query ()

Input: A dataset P, indexed using a 3D R-tree

 and a requested time interval ts.

Output: The temporal skyline SLts(P).

1:

2:

3:

SLts = H = ∅;//H is a heap

FOR every 3D R-tree root entry e with validity

 in the time interval te DO

 IF te  ts  ∅⁡THEN insert (e, te  ts) into H;

WHILE H is not empty DO

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
74

4.

5:

6:

7:

8:

9:

10:

11:

 Remove top entry (e, te) of H;

 FOR every interval t  te in which e is not

 temporally dominated by any point in SLts DO

 IF e is an intermediate entry THEN

 FOR every child ee of e, with validity

 in the interval tee with t  tee  ∅⁡DO

 FOR every time interval t’  t  tee

 in which ee is not temporally

 dominated by any point in SL DO

 Insert (ee, t’) into H;

 ELSE // e is a data point

 Insert (e, t) into SLts;

RETURN SLts;

ALGORITHM 1: THE TEMPORAL SKYLINE QUERY.

The pseudo code of the algorithm for computing the temporal skyline is illustrated in Algorithm
1. The proposed algorithm makes temporal dominance checks by considering independently the
time dimension. The point dataset of Figure 32 will be used, organized in the four MBRs R1, R2,
R3 and R4 that are illustrated in Figure 35. For simplicity, it will be assumed that the root node of
the 3D R-tree holds only these four MBRs. The distances are computed according to L1 norm,
i.e., the mindist of a data point to the origin point O of the data space is equal to the sum of its
coordinates while the corresponding mindist of an MBR equals the mindist of its lower-left corner
point.

The requested time interval to compute the temporal skyline is assumed to be the ts = [3, 8]. The
algorithm in Lines 1-2 starts from the 3D R-tree root node and inserts all its entries with time
validity overlapping the requested time interval in a heap H, in the form {(R2, [3, 8]), (R1, [3, 8]),
(R3, [5, 8]), (R4, [3, 8])}, sorted according to the MBRs’ mindist. Then, by executing the Lines 4-9
of the algorithm, the MBR entry (R2, [3, 8]) with the minimum mindist will be replaced in the heap
by its data entries, in the form: (d, [5, 7]), (f, [6, 7]), and (e, [3, 8]).

price Ο

b [4, 8]

d
is

ta
n

c

e

25 125 100 75 50

2
5

0

1
2

5
0

1
0

0
0

7
5

0

5
0

0

a [1, 10]

c [6, 10]

R1 [1, 10]

d [5, 7]

e [3, 10] f [6, 7]

R2 [3, 10]

h [6, 8]

g [5, 7]
R3 [5, 8]

j [7, 12]

i [5, 10]

R4 [1, 12]

FIGURE 35: THE DATASET OF Figure 32 ORGANIZED IN FOUR MBRS.

The next entry to be extracted from the heap according to Table 27 is (d, [5, 7]), which, according
to Line 11 of the algorithm, is inserted into the temporal skyline list. The next entry to be extracted
from the heap is (f, [6, 7]) for which, in Line 5 of the algorithm, it is discovered that it is temporally
dominated in every time instant in the interval [6, 7] by entry (d, [5, 7]) of the temporal skyline. The
next entry to be extracted from the heap is (e, [3, 8]) for which, in Line 5 of the algorithm, it is
discovered that it is not temporally dominated in the time intervals [3, 4] and [8, 8], therefore the
corresponding entries (e, [3, 4]) and (e, [8, 8]) are inserted in the temporal skyline. The MBR R1
is then expanded and, as Table 27 shows, its contents are inserted in the heap. Then entry (b,
[4, 8]) of the heap is inserted in the temporal skyline. Subsequently, the entry of the MBR R3 is
extracted from the heap and it is found that it is temporally dominated by the data point b in every

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
75

time instant in the interval [5, 8] in which the MBR is valid. Finally, after processing some more
data entries, the MBR R4 is extracted from the heap, which, however, is temporally dominated in
the entire requested time interval [3, 8] of the query.

action H content SL[3, 8] () content

expand root in

[3, 8]

(R2, [3, 8]), (R1, [3, 8]), (R3, [5, 8]), (R4, [3, 8]) –

expand R2 in

[3, 8]

(d, [5, 7]), (f, [6, 7]), (e, [3, 8]),

(R1, [3, 8]), (R3, [5, 8]), (R4, [3, 8])

(d, [5, 7]), (e, [3, 4]), (e, [8, 8])

expand R1 in

[3, 8]

(b, [4, 8]), (R3, [5, 8]), (c, [6, 8]),

(a, [3, 8]), (R4, [3, 8])

(d, [5, 7]), (e, [3, 4]), (e, [8, 8]), (b, [4, 8]), (a, [3,

8])

TABLE 27: PROCESSING STEPS OF THE EXAMPLE EXECUTION OF ALGORITHM 1

The correctness of the proposed algorithm is straightforwardly inherited from the corresponding
correctness [3] of the BBS algorithm for traditional (non-temporal) data. This means that every

data point added into the temporal skyline during the execution of the algorithm is guaranteed to
be a final temporal skyline point for the time interval under consideration. Also, every data point
in the 3D R-tree will be examined by the algorithm, unless one of its ancestor nodes has been
pruned for the whole time interval of the validity of the data point. The proposed algorithm is also
progressive, it provides neither false misses nor false hits and it is able to allow the user to
determine the order in which skyline points will be returned.

In the case of bi-temporal data, the algorithm can perform temporal dominance checks by
considering every time dimension independently, which means that a data point belongs to the
temporal skyline only if it is not temporally dominated by any other point in the dataset in both the
valid and transaction time dimensions.

4.3.2. The Dynamic Temporal Skyline Query

While the static temporal skyline evaluates the data objects on the basis of the minimum (or
maximum) values of their coordinates, the dynamic temporal skyline evaluates the data objects
in respect of a customer’s given preference point q (q1, q2, …, qd) in a specified time interval tq (a
hotel at 50 euros, at a 600 meters from the city center, the following April). Therefore, the dynamic
temporal skyline query with regard to q in the time interval tq, for every data point p (p1, p2, …, pd)

with validity in the time interval tp which overlaps tq, specifies d functions of the form  i  {1, ...,
d}: fi = |qi − pi|, and the goal is to return the static temporal skyline of P in the time interval tq, in
the transformed/dynamic workspace which has q as its point of origin and the coordinates of every
object p in every dimension are defined by the functions fi.

The Algorithm 1 is applicable to dynamic temporal skylines by storing in the heap the entries
according to their mindist in the dynamic workspace. See [3] for more details. The main
modifications that are needed so that Algorithm 1 can process the dynamic temporal skyline
query is the replacement of the temporal dominance checks in Lines 5 and 8 by dynamic temporal
dominance checks, as they are set out in Definition 3.

4.3.3. The Reverse Temporal Skyline Query

As with the dynamic temporal skyline, the reverse temporal skyline evaluates the data objects
with regard to a given query point q on a specified time interval tq. However, the main difference
between these two queries is that the dynamic temporal skyline query can be seen as a query
from the customer’s perspective whereas the reverse temporal skyline can be seen as a query
from the company’s perspective. Therefore in the reverse temporal skyline case the customer’s
preferences are represented by data points in the workspace and the query point q is set by the
company to determine the effectiveness of a particular product (which customers would be
interested in a hotel room at 50 euros, at 600 meters from the city center, between October and
May?).

Four different algorithms for processing the reverse skyline query for traditional (non-temporal)
data are proposed in [14] and [430], with the Branch and Bound Reverse Skyline (BBRS)
algorithm [14] to be the one selected to serve as a backbone algorithm for extension in order to

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
76

support the reverse temporal skyline. The BBRS algorithm is chosen for the simplicity of its
implementation and its ability to run without the need to preprocess the dynamic skyline of every
point in the dataset. The drawback of the BBRS in comparison to its three competitors is that it
requires that the index be traversed once for every candidate reverse skyline point that is found
in the final filtering step of the algorithm. This can be easily overcome by ensuring that the
algorithm is accompanied by a buffer to hold the most frequently- or the least recently- used nodes
of the index in memory for faster potential future usage.

Algorithm 2: The reverse temporal skyline query ()

Input: A dataset P, indexed using a 3D R-tree,

 a query point q (q1, q2, …, qd) and a

 time interval tq.

Output: The reverse temporal skyline RSL(q, tq)(P)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

RSL = H = ∅;//H is a heap

FOR every 3D R-tree root entry e with validity

 in the time interval te DO

 IF te  ts  ∅⁡THEN insert (e, te  ts) into

H;

WHILE H is not empty DO

 Remove top entry (e, te) of H;

 FOR every interval t  tq  te in which e is

 not globally temporally dominated by any

 point in RSL DO

 IF e is an intermediate entry THEN

 FOR every child ee of e, with validity

 in the interval tee with t  tee  ∅⁡DO

 FOR every time interval t’  t  tee in

 which ee is not globally temporally

 dominated by any point in RSL DO

 Insert (ee, t’) into H;

 ELSE // e is a data point

 Execute a range query based on e, q, t;

 IF the range query is empty in any time

 interval t’  t THEN

 Insert (e, t’) into RSL;

RETURN RSL;

ALGORITHM 2: THE REVERSE TEMPORAL SKYLINE QUERY.

The pseudo code of the proposed algorithm is illustrated in Algorithm 2. The algorithm in Lines
5 and 8 makes global temporal dominance checks according to the following definition.

Definition 6: Global Temporal Dominance: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time

interval tq, a point p (p1, p2, ..., pd)  P with validity in the time interval tp globally temporally

dominates another point r (r1, r2, ..., rd)  P with validity in the time interval tr with regard to q in
the non-null time interval t if and only if (1) t is the non-null intersection between the time intervals

tp, tr and tq, (2)  i  {1, ..., d}: (pi − qi)(ri − qi) > 0, (3)  i  {1, ..., d}: |pi − qi|  |ri − qi|, and, (4)  j

 {1, ..., d}: |pj − qj| < |ri − qj|.

On the basis of the definition and of the example of Figure 34, it can be said that the point g
globally temporally dominates the point j in the time interval [5, 5].

The global temporal dominance checks in the algorithm help with the pruning of intermediate
index nodes (and data points) which cannot store (or be, respectively) reverse temporal skyline
points. The first ten lines of the algorithm are executed in a similar manner to Algorithm 1 for the
(static) temporal skyline. However, for every point e with validity te overlapping the time interval tq

of the given query q that is not globally temporally dominated in a time interval t  te  tq, a further
examination is required. This examination is performed in Lines 11-12 of the algorithm by issuing
a range query, with e being in the centre of the range window and q in its corner, similarly to that
illustrated in grey around the data point g in Figure 34. As [14] shows for the case of non-temporal

data, if this range query returns no data point for a time interval t'  t, then e is a reverse temporal
skyline point with regard to q in the interval t'. Therefore, in this case in Line 13 of the algorithm
the tuple (e, t') is inserted into the RSL(q, tq) list.

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
77

In the reverse skyline query of Figure 34 with regard query point q (50, 600) and time instant 5,
the data entries which are valid and not globally temporally dominated by any other point in this
instant are a, i, h, b, d, and e. However, after performing the range query checks of Lines 11-12
of the algorithm, only the first four of these data points is found to belong to the reverse temporal
skyline of the dataset with regard to q in the time instant 5.

The handling of bi-temporal data can be treated in an analogous manner to the (static and
dynamic) temporal skyline query, i.e., by performing global temporal dominance checks in every
time dimension independently.

4.4. Experimental Study

The proposed query algorithms were implemented in Java (JDK version 8). The 3D R-tree
implementation is based on the R*-tree implementation in Java that can be downloaded from the
ChoroChronos portal3. The workstation that was used for evaluation, was equipped with Intel I7
6GB RAM running the Windows 8.1 Professional 64-bit OS. The Java Virtual Machine Heap was
set to its default values.

The experiments have been conducted using two datasets. The first is a synthetic dataset which
is constructed by 1,000,000 uniformly distributed time-varying two-dimensional points with a
uniformly distributed time interval validity of maximum 20% of the lifespan of the scenario, which
is 1,000 time instants. The second is the real-life Major Hotel Chain dataset [431] having 147,029
bookings collected from five U.S. properties of a major hotel chain. In order to construct a two-
dimensional point for every booking record, the Nightly_Rate column was considered plus a
uniformly distributed artificial column with values between 0 and 100, which could for example
represent the customer’s rating score for the service provided by the hotel. The validity time
interval of every booking is constituted by the combination of the columns Check_In_Date and
Check_Out_Date as they are given by the data provider.

Every experiment has been repeated 10 times and the average value of every measured
parameter has been calculated. As with regard to the dynamic and the reverse temporal skyline
queries, at every run a different randomly selected query point has been used. In the following,
unless otherwise stated, the findings of the performance investigation of the proposed query
processing algorithms are qualitatively comparable, whether the synthetic or the real data are
used, therefore in some cases only half of them (i.e., either with the synthetic or with the real data)
is depicted in the paper. Finally, four different values are considered in the experiments for the file
system page size, i.e., 1K, 2K, 4K and 8K. The 3D R-tree node size is set to be equal to the page
size.

(a) (b)

FIGURE 36: THE 3D R-TREE INDEX SIZE IN A NUMBER OF NODES, (A) FOR THE SYNTHETIC DATASET, AND (B) FOR THE REAL DATASET.

The first two graphs in Figure 36 show the size of the 3D R-tree index for the synthetic (on the
left) and for the real (on the right) datasets. The index size has been measured every 20% percent

3 http://chorochronos.datastories.org

http://chorochronos.datastories.org/

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
78

of the data being inserted. These results will help the measurement of the % percentage of the
index that is accessed when processing every query in the graphs that will be follow.

(a) (b)

FIGURE 37: (A) THE TIME COST, AND (B) THE Ι/Ο COST, IN BOTH CASES FOR EXECUTING THE TEMPORAL SKYLINE QUERY ALGORITHM

FOR THE SYNTHETIC DATASET.

The next two graphs in Figure 37 illustrate the time cost in seconds (on the left) and the I/O cost
in page accesses (on the right) for answering the temporal skyline query using the synthetic
dataset. The query is executed every 20% percent of the data being inserted, and in every case
for a time interval that is equal to the lifespan of the scenario, thus the skyline is computed for
every time instant in the lifetime of the scene. By comparing the I/O cost to the corresponding
index size that is shown in Figure 36(a), it is concluded that the temporal skyline algorithm
accesses about the 8% to 23% of the index. This cost is justified by the large number of the 1,000
time instants for which the skyline is calculated with only a single tree traversal using the
Algorithm 1.

(a) (b)

FIGURE 38: (A) THE TIME COST, AND (B) THE Ι/Ο COST, IN BOTH CASES FOR EXECUTING THE TEMPORAL SKYLINE QUERY ALGORITHM

FOR THE REAL DATASET.

The next graphs in Figure 38 illustrate the time (on the left) and the I/O (on the right) efficiency of
the temporal skyline query algorithm for the real-life dataset. The query is again executed for
computing the skyline for every time instant in the lifetime of the scene. By comparing the I/O cost
to the corresponding index size that is shown in Figure 36(b), it is found that the temporal skyline
algorithm accesses about the 3% to 19% of the index. This cost is also justified by the large
number of the time instants for which the skyline is calculated with only a single tree traversal.
The difference in cost, between the synthetic and the real dataset, is due to the distribution of time
instances that allow more nodes to be dominated in the real dataset.

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
79

(a) (b)

FIGURE 39: THE TIME COST, AND (B) THE Ι/Ο COST, FOR EXECUTING THE DYNAMIC TEMPORAL SKYLINE QUERY ALGORITHM FOR THE

SYNTHETIC DATASET.

The next graphs in Figure 39 show the time cost (on the left) and the I/O cost (on the right) for
the execution of the dynamic temporal skyline query algorithm using the synthetic dataset. The
I/O cost for the execution of the algorithm for this "dynamic" query is larger than in the case of the
"static" query since it must access a larger portion of the dataset.

 (a) (b)

FIGURE 40: (A) THE TIME COST, AND (B) THE Ι/Ο COST, FOR EXECUTING THE REVERSE TEMPORAL SKYLINE QUERY ALGORITHM FOR

THE SYNTHETIC DATASET.

The graphs of the last experiment in Figure 40 show the time cost (on the left) and the I/O cost
(on the right) for the execution of the reverse temporal skyline query algorithm using the synthetic
dataset. The results show an expected difference in I/O cost and much higher time cost
performance in relation to the dynamic temporal skyline even if both of these queries access quite
similar parts of the data space (thus of the index) when the same reference query points q are
used. This happens because the reverse temporal skyline has an additional overhead due to the
empty/Boolean range query. In every case the distribution and the length of the time intervals
make a large impact on the execution time and the I/O cost. Two extreme examples will be the
case where all time intervals in the dataset to be distinct and non-overlapping and the other to be
identical. In the first case the algorithm must traverse the entire tree and return all its points and
in the second case the algorithm becomes the initial simple variant of each query. These problems
need a more sophisticated solution and multiple refinement mechanisms in order to compute the
time variant efficiently. In every case the computation of the temporal variant in the whole temporal
dimension will be an expensive task.

4.5. Conclusions and Future Work

The skyline query is a decision support mechanism which, in essence, retrieves the so-called
value-for-money options of a dataset by identifying the objects which present the optimal
combination of the characteristics of the dataset. This study is the first to take the time factor into
consideration and it optimizes the skyline operator as well as two of the most well-known of its

CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA

Christos Kalyvas-Kasopatidis –October 2020
80

variants, i.e. the dynamic and the reverse skyline operators, to handle temporal data. It is
anticipated that the results of this research pave the way for the construction of other solutions for
processing efficiently skyline-based queries for a variety of temporal and bi-temporal data
applications.

Future plans are to investigate the impact of the backbone temporal indexing method on the
performance of the queries execution cost, by comparing the performance of several appropriate
indexing methods or by suggesting new efficient ones for the problem into consideration.
Additional plans are to investigate the impact on the performance of the queries of the existence
of many objects with relatively small or large time interval lifespans. Another interesting issue for
future research is the introduction of efficient algorithms for processing extensions of other skyline
query variants that can be also applied to temporal data, such as for example, the support of the
so called why-not reverse skyline query [55]. The aim of this temporal query will be to make a
product (time-varying query point) interesting to a customer (time-varying why-not point) by
modifying the product’s features (query attributes) and/or the customer preferences.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
81

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
82

5. SKYLINE QUERIES OVER SPATIALHADOOP

Through our first study on data sources we identified that many of the datasets fall into the big
data domain in terms of volume, variety, velocity and veracity. The vast amount of data and the
need to process them produced new technologies like the Hadoop ecosystem. Based on this
existing querying approaches should be studied over those new environments in order to see the
insights that they produce. In this chapter, we study the problem of skyline and reverse skyline
computation using SpatialHadoop, an extension of Hadoop that enhances its capabilities with
spatial awareness. The exploitation of spatial indexing structures and the spatial properties of
data can exploit MapReduce-based methods by reducing the reading, writing, computational and
communicational overhead. Through our study, we propose two methods for skyline and reverse
skyline computation, which operates in the spatial aware environment that SpatialHadoop
provides. This environment allows for performing filtering on the initial dataset to retrieve an
answer efficiently by using existing state-of-the-art indexing approaches. The proposed
algorithms make use of the full capabilities of the indexing mechanisms provided by the
SpatialHadoop and have been tested against large-scale datasets including a real-life, large-scale
OpenStreetMap dataset. To the best of our knowledge, this is the first work that studies reverse
skyline over SpatialHadoop.

5.1. Introduction

The trend of Big Data was one of the most discussed research topics in the past years. Nowadays,
this trend has managed to be a well-established technology that has changed the way many
industries operate. Beyond that, Big Data is the driving force behind many new technologies in
Artificial Intelligence (AI), Internet of Things (IoT) and data science. The Big Data Era started with
the need for processing the vast amount of structured, semi-structured and unstructured data in
a batch or streaming way. Since then, additional aspects were included, based on the scope
behind the data such as the value of data in socio-economical terms and the veracity of data in
terms of quality and accuracy. In the present time, the term Big Data is inseparable from our
everyday life since data created in the past two years exceeds all data generated through the
whole period of human’s digital era. The amount of data generated from a single person’s
smartphone, activity tracker or shopping habits or even the data generated by a Formula 1 car
which is equipped with hundreds of different sensors, is trivial under the trend that even cities are
getting smarter and can generate their own data and information.

Storing vast amounts of data can be achieved with Hadoop’s HDFS [432] distributed file system.
However, simply storing the data gives no further value to their existence. It is vital to convert data
to information in order to acquire knowledge [433]. The first step to this direction is to process the
stored data in a distributed way with Hadoop’s MapReduce [85]. With MapReduce and the use of
various methods [434], [435] it is possible to retrieve a wide range of information based on the
query that is performed. However, even MapReduce finds it difficult to compute all types of
queries, since many of them rely on the geometric properties of the dataset like the proximity of
points in NN and k-NN queries. At this point, a system like SpatialHadoop [31] fits best in these
types of problems. The SpatialHadoop is an extension of Hadoop that injects spatial awareness
into it. SpatialHadoop is not applicable only on spatial data as the idea of GIS systems. It is
applicable to any kind of data that may have spatial or geometric properties and is designed to
harvest the power of those properties to produce methods that will retrieve answers efficiently.

Based on the aforementioned scope, it is shown that range queries and spatial joins are made
much faster by using SpatialHadoop [31]. Similarly, skyline [8] and reverse skyline queries [14]
could benefit from this system, as this study will present. The primary goal in the design of these
algorithms is to prune as many points or even partitions as soon as possible and thus minimize
the data transfers between mappers and reducers. To achieve these goals we used
SpatialHadoop that will help in the pruning process by exploiting the spatial and geometric
properties of the dataset.

In summary, the key contributions of this study are the following:

• An alternative approach to the one in [32] for skyline query computation is proposed that
is used to enhance SpatialHadoop with reverse skyline queries.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
83

• An algorithm for reverse skyline queries computation is proposed that incorporates a
multiple filtering mechanism to allow for the pruning of the dataset as soon as possible.

• Extensive experimentation in large-scale synthetic, real datasets and different
environments is performed in order to demonstrate the performance benefits.

5.2. Preliminaries

This section will discuss the basic concepts of MapReduce, along with its key components and
the mechanisms of SpatialHadoop used in different implementations of the skyline and reverse
skyline query computation.

5.2.1. MapReduce

The MapReduce framework can perform processing of massive amount of data in parallel, over
multi-node clusters efficiently. The data that the framework processes can be stored in the HDFS.
The framework primarily consists of two main phases, named map and reduce.

In the MapReduce framework, every value has an associated key. These keys allow identifying
related values. The map phase processes splits of the input dataset that contains the key-value
pairs and can output a different number of altered key-value pairs. Figure 41 describes the
workflow from reading the dataset/records up to the point where the map phase processes the
key-value pairs. The reduce phase retrieves the values from the map phase, sorted and grouped
by the keys and produces a different set of key-value pairs. A job is the whole mechanism that
handles and processes the data and consists of many map, reduce and other phases in which
the output of one phase becomes the input in another one. Each phase can process data in the
following sequence: Mapper→ Combiner→ Partitioner→ Shuffling→ Sorting→ Reducer. Figure
42 illustrates the complete workflow of a job.

FIGURE 41: HADOOP EXECUTION WORKFLOW AS PRESENTED IN [31].

Two important aspects that researchers faced during skyline computations were the early pruning
of the dataset and the possibility of sorting it in order to identify the most promising points in an
early stage. Τhe two branches of skyline query computation that proposed index-based methods
and sort-based methods reflect the importance of these two aspects.

The first and major pruning mechanism in a MapReduce job should be integrated into the map
phase in order to minimize the network communication cost [85] that exists between the map and
reduce phase. The work on [107] captures this idea, where the authors build an on-the-fly index

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
84

that is used inside the map phase to prune a large part of the dataset. Further refinement
techniques can be placed in the combiner and reduce phase.

The other important aspect that MapReduce must handle is the tuple traversal order and thus the
desire of sorting the dataset. Since for indexing we used an R-tree, both the BBS [3] algorithm for
skyline computation and the BBRS [14] algorithm for reverse skyline computation rely on the
Branch & Bound paradigm. This paradigm dictates to visit the nodes based on the shorter distance
from the origin of the axis, which is accomplished with a sorted heap. The same approach can
hold with a Grid index, which is supported by SpatialHadoop, by additionally incorporating the
incomparability property. In the MapReduce framework, the order that the key-value pairs appear
in a map phase is the order in which they are stored in the HDFS files or as fetched from another
source. Even if the reduce phase uses a built-in sorting mechanism (Comparator) that sorts data
to be fed in the reducer in ascending order of their keys, the only way to have a sorted input in
the map phase is to perform an in-memory sort operation to the assigned split.

FIGURE 42: MAPREDUCE JOB EXECUTION.

A mechanism that can help in pruning and sorting of the dataset is the combiner phase, which is
primarily designed to reduce the communication cost between the map and reduce phase. A
combiner can act as a local reduce phase bind to each map phase and can be a secondary
pruning mechanism by inheriting the sorting and refinements properties of a reducer. A combiner’s
class can be an instance of the reducer’s class or a custom one if the refinement approach on the
reduce phase is too early to be performed at this stage of the algorithm. A delicate issue is that
this mechanism is designed to be optional and is called when the map output becomes too large.
Thus, we cannot prove the correctness of an algorithm based on its capabilities. In general, if we
perform a sorting and filtering operation in the map phase, a combiner may not be useful. On the
other hand, the use of a combiner can potentially assist by computing the local skyline on the
assigned split to reduce the amount of data transfers and the processing cost in the reducers.

With or without the use of a combiner, the key-value pairs outputted on each map phase will be
grouped based on their keys and each or multiple groups will be directed to specific reducers in
the process of shuffling. With the term partition, we describe the set of groups directed to a single
reducer. The number of partitions can be equal to the number of reducers. By default, the key-
value pairs are partitioned based on the hashcode of the key modulo the total number of partitions
divided by the number of reducers. An example where a custom partitioner could be useful is
[102] in which the key-value pairs could be partitioned using the MR-Angle approach. A primary
goal will be to distribute the key-value pairs evenly to the reducers.

An important parameter for the pruning, sorting and partitioning phases is the assigned key since
all the operations are performed based on that. In the case where the key is the distance from the
origin point, most of the key-value pairs will have a unique key. The combination of this key with
the built-in sorting mechanism of reduces will guarantee the desired tuple traversal order based
on the optimization criteria of the user. When the cardinality of each final map output that will be
fed to the reducers is small, a null key could be considered. This would result in the initialization
of one reducer that will process all the data from the map phase. A single reducer fits in our case
since the result set can only be computed using the data from all partitions. One further approach
in key selection is the use of a composite key, which holds two separate keys. Using a composite
key there is the need for a custom sorting mechanism, which should override the built-in sorting
mechanism.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
85

5.2.2. Hadoop and Spatial Awareness

The MapReduce framework allows the parallel processing of massive amounts of data that can
be stored in a distributed file system, named HDFS [432] that exists over many independent
physical machines. The MapReduce inherits parallelism in the computation of different problems,
but by design, it does not provide any indexing mechanism. The way that it handles data is by
reading the whole or parts of the dataset simultaneously and further processing it sequentially.
This may not be the ideal case for many queries, which exploit the geometric and spatial
properties of the dataset. A survey that reasons on how the spatial data cope with MapReduce is
the [436] in which authors review the indexing mechanisms for spatial query processing in
traditional and MapReduce-based approaches. In [437] the authors proposed a Z-Curve based
approach along with a sweeping algorithm and pending files to efficiently answer certain queries.
Moreover, in [438] an R-tree construction mechanism in MapReduce was proposed. For a
complete view of the advantages and disadvantages of MapReduce as long as the proposed
improvements, the reader can consult [439]. Finally, the work on [440] studies the subject of
query processing in MapReduce, which among others, categorizes the weaknesses and the
solving techniques as well as techniques for efficient query processing on MapReduce.

A mechanism that enhances MapReduce with spatial awareness is the SpatialHadoop [31], [441].
The [442] reasons about the four main layers, namely, language, indexing, query processing and
visualization of SpatialHadoop while the work on [443] demonstrates the specific approaches to
solve Computational Geometry problems like polygon union, skyline, convex hull, farthest pair,
and closest pair in SpatialHadoop. The algorithm for the skyline problem in this work is a simple
divide & conquer approach. An experimentation on the indexing mechanisms of SpatialHadoop
can be found in [444] while the authors of [445] categorize the various systems similar to
SpatialHadoop.

5.2.3. SpatialHadoop

As already mentioned, the SpatialHadoop [31] is a MapReduce extension designed to add spatial
awareness to it. Each job in SpatialHadoop is an ordinary MapReduce job that uses specific
SpatialInputFormat and SpatialRecordReader methods to handle indexed spatial data in the form
of multi-level partitions. It does not alter the functionality of MapReduce but instead, adds methods
to process spatial data. Thus, along with the standard map and reduce functions SpatialHadoop
contains a filter function (CellFilter) whose purpose is to prune block of data, before the map
phase, which will not contribute to the final answer, by examining the minimal bounding rectangles
(MBRs) of each partition. The use of SpatialHadoop’s built-in queries, deployed on top of the
indexed partitions, can provide vital information for the optimization of an algorithm in a similar
way to the process of sampling. In general, this filtering mechanism reduces the total number of
map tasks since each block of data that will pass the phase of pruning will invoke a different map
task. Figure 43 describes the similar workflow of a job in SpatialHadoop to the one of MapReduce
Figure 41.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
86

FIGURE 43: SPATIALHADOOP EXECUTION WORKFLOW AS IN [31].

The three different approaches to get SpatialHadoop’s benefits is by using a distribution package,
a portable runnable jar or a runnable jar. Depending on the case, all the required classes and
libraries can be loaded on every node startup or installed permanently in the system. Thus,
SpatialHadoop is portable to run in Apache Hadoop4 , Cloudera5 and Hortonworks6 Hadoop
distributions even in their sandboxed version.

The four main layers of SpatialHadoop are language, indexing, query processing and
visualization. The language layer has a spatial MapReduce language named Pigeon [446].
Pigeon7 allows Pig Latin scripts to handle spatial data with the use of ESRI-geometry-API8. The
indexing layer involves many spatial data types such as points, polygons, rectangles and an
extensible shape class to create your own data types and shapes. Since SpatialHadoop’s source
code9 is available, multi-dimensional data, greater than 2d, can be handled by extending or
modifying its classes. The indexing mechanisms that are available are the Grid, R-tree, R+-tree,
STR, STR+, Quad-tree, K-d tree, Z-Curve, and Hilbert Curve. An index can consist of global and
local indexes. The global index organizes the partitions across different nodes while the local
index organizes the data inside each node. For the case of the R-tree, its global index contains
all the partitions, while each local index contains a local R-tree structure with all the data records.
With the use of the SpatialInputFormat, researchers can access the global index to prune
partitions and with the SpatialRecordReader they can access, inside the map phase, the local
index to process only the desired records of the whole partition. The K-d tree and Grid are local-
only indexes. The query processing layers allow running spatial operations using the existing
indexing mechanisms. The spatial operation includes Range, k-Nearest Neighbor (k-NN), Spatial
Join, Voronoi Diagram, Delaunay Triangulation, Polygon Union, Convex Hull, Farthest Pair,
Closest Pair and Skyline queries. Every operation is customizable and extendible allowing
researchers to develop their own algorithms.

The visualization layer [447] allows users to retrieve a single-level or multi-level image
representation of the dataset. A single-level image has a standard resolution while the multi-level

4 http://hadoop.apache.org/

5 https://www.cloudera.com/downloads/quickstart_vms.html

6 https://hortonworks.com/products/sandbox/

7 https://github.com/aseldawy/pigeon

8 https://github.com/Esri/geometry-api-java

9 https://github.com/aseldawy/spatialhadoop2

http://hadoop.apache.org/
https://www.cloudera.com/downloads/quickstart_vms.html
https://hortonworks.com/products/sandbox/
https://github.com/aseldawy/pigeon
https://github.com/Esri/geometry-api-java
https://github.com/aseldawy/spatialhadoop2

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
87

image consists of many small image tiles on different regions and at different zoom levels.
Researchers can find this feature useful since they can retrieve insights over the dataset with an
optical representation.

An important aspect of SpatialHadoop is that it can access the global and local indices in
MapReduce or in standalone mode. In the case of MapReduce mode, the global index can be
accessed prior to the map phase and the local index inside the map phase. The case of
standalone mode is useful in interactive queries and when the initialization of a new MapReduce
job is not desired.

5.3. A sort-based Skyline algorithm in SpatialHadoop

The SpatialHadoop comes with a built-in algorithm for skyline query computation. The algorithm
follows the Divide & Conquer paradigm in a similar way to the one in [8], where the BNL algorithm
was also proposed. One of the main drawbacks of both algorithms is that they need to process
the whole dataset before they are able to identify the first skyline point. This violates the property
of progressiveness in the set of criteria [43, 37] that must be met by all the skyline algorithms.
Based on these criteria, the state-of-the-art BBS [3] and Z-SKY [131] algorithms were proposed.

In the MapReduce environment, the authors of [32] proposed the algorithms SKY-FLT and SKY-
FLT-SORT for skyline computation and compared them to the built-in D&C-based CG-HADOOP
[443] approach. In their work, they showed that both algorithms perform better than CG-
HADOOP. The SKY-FLT algorithm follows a BNL-like approach that uses a list of candidate
skyline points and the SKY-FLT-SORT uses the sorting mechanism of MapReduce in order to
access the points based on their distance to the origin point in the reduce phase. Both algorithms
perform an initial pruning process with the use of SpatialHadoop’s R-tree. In their work, they
showed that even if the BBS is the state-of-the-art index-based algorithm that outperforms the
original BNL algorithm, the BNL-like, SKY-FLT algorithm performed better in most of the
experiments. Additionally, the experimentation made in [101] shows that the MR-BNL and MR-
SFS, a variant of the original sort-based SFS algorithm, has a similar performance.

FIGURE 44: POINT ACCESS ORDER WITH MANHATTAN AND EUCLIDIAN DISTANCE MEASURE.

Based on the research in [32], the authors state that their work will not invoke a sorting mechanism
inside the map and reduce phases. We show that with a sort-based model and the pruning power
of filtering points, we can achieve better results and the benefit of having a local skyline in the
output of each map phase, which minimizes the communication cost. The SKY-FLT-SORT in
[32] uses checkpoints to filter non-skyline points and the built-in sorting mechanism of
combiners/reducers to access the records/points in an ascending order based on the key value
p.x+p.y which is the sum of values in each dimension as defined by the Manhattan distance which

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
88

is also known as L1-norm. The use of Manhattan distance as a distance measure has the benefit
of a reduced computational cost since it avoids the additional cost of computing the power and
especially the square root that exists in the Euclidian distance (L2-norm). This work uses the
Euclidian distance and investigates if there is any performance benefit compared to the Manhattan
distance. The access order of points with Euclidian distance and Manhattan distance is presented
in Figure 44. To achieve sorted access on the dataset the algorithm can use any scoring function
just like the distance metric. The SKY-FLT-SORT algorithm cannot fulfil all user’s preferences
since it cannot provide an answer out-of-the-box when the user wants for example to maximize
his/her preferences. This happens because the distance measure does not take into account the
preferred origin of space. This leads into points with the largest coordinates to have the largest
distance from the preferred point of origin. This has also an impact on the checkpoint selection.
To avoid this issue, the output key and hence the distance metric should be 𝐷(p, o) =
∑ (|𝑝𝑖 − o𝑖|)𝑖Î𝐷 , where o is the origin point of preferences.

The checkpoint selection in the mapper phase of SKY-FLT algorithm is susceptible to the access
order of records/points. In more detail, the map phase accesses the points as written in the
indexed file. This way there are cases that the checkpoint loses its pruning ability due to
continuous updates. In an extreme case, this would lead to outputting to the combiner/reducer a
large number of points, or even a whole partition, even if the true output should be a single point.
This extreme case could exist if the data is written in the reverse order of the user’s preferences.
Note that a sorted dataset that achieves the best min-min skyline performance would have the
worst max-max skyline performance.

The pseudocode in Algorithm 1: describes a sort-based algorithm for skyline computation in
SpatialHadoop that uses filtering points and a sorting technique. The algorithm in the first phase
reads the indexed dataset from the HDFS. It identifies which partitions may contain candidate
skyline points. Each map task processes the records/points of a single partition. Then, it computes
the local skyline for each partition and finally, the reduce phase collects all the local skylines,
merges them and outputs the result set.

The main difference from the two algorithms described in [32] and this proposed implementation
is that the previous work shares the computation cost of the skyline in both map and reduce
phases. This work, on the other hand, stresses the map phase a lot more in order to get local
skylines which will have small cardinality [448, 449]. The approach of computing and merging of
local skylines in SpatialHadoop was also followed in the CG_HADOOP skyline algorithm but is a
usual practice in multi-core and distributed environments. This minimizes the communication cost
and allows a single reducer to identify the result set from a small portion of the initial dataset.
Alongside, the identification of local skylines is crucial for the reverse skyline algorithm proposed
in section 5.4.

Algorithm 1: SSAS: A Sort-based Skyline Algorithm for SpatialHadoop.

1: function CELLSFILTER(C: setofcells)

2 Initialize candidatepartitionList list

3: for all cell cC do
4: if c is not dominated by candidatePartitionList then

5: Add (c, candidatePartitionList)

6: Update candidatePartitionList

7: end if

8: end for

9: Load every ccandidatepartitionList in a map function.
10: end function

11: function MAP(P: Setofpoints)

12: Initialize origin & filter points based on user’s preferences and LIST.

13: for all points pP do
14: if p is notdominatedby filter then

15: Add (p, LIST)

16: if distance (p,origin) < distance (filter,origin) then

17: Update filter

18: end if

19: end if

20: end for

21: SORT LIST based on the distance from origin Initialize skylist

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
89

22: for all points pLIST do
23: if p is notdominatedby filter then

24: if p is notdominatedby skylist then

25: Add (p, skylist)

26: output (null, p)

27: end if

28: end if

29: end for

30: end function

31: function REDUCE (null, P: Setofpoints)

32: Initialize origin based on the user’s preferences and LIST.

33: Add all pP into LIST
34: SORT LIST based on the distance from the origin

35: Initialize skylist

36: for all points pLIST do
37: if p is notdominatedby skylist then

38: Add (p, skylist)

39: output (null, p)

40: end if

41: end for

42: end function

As soon as the MapReduce job has started, the CellFilter (lines1-9) reads the global index stored
in the HDFS. By reading the global index, the algorithm (line 3) has access to the entry of all
partitions that contain the data. Each of these partitions is stored as a single file in HDFS. At this
point, a pruning process must be performed (line 4-6) to identify the partitions that contribute to
the final answer. This identification process reads only the boundaries of each partition and not
the actual data. This minimizes the read operations from the HDFS. Each partition is checked
against the list of partitions that have been processed so far and fulfil the criteria to be a candidate,
thus containing candidate skyline points. If the new partition is not dominated by any other partition
in candidatepartitionList, it is inserted in the list removing any dominated partitions by it. In the
end, every partition will invoke a map phase (line 9) that will process the data inside each partition.

Following, a map phase (line 11) will run for each partition. The order that the records/points will
appear in the map phase is the order in which they are written in the indexed files. The origin point
of the data space is defined by the user’s preferences (line 12). During the map phase, a filter
point with the greatest pruning power is maintained in order to filter the dataset (line 12). Initially,
the filter point is set to be the point of the data space with the greatest distance from the origin
point (line 12). If the boundaries of data space are unknown, this point could be set to the
maximum or minimum programmatically value. In the next step, all the points p reaching the map
phase (line 13) are inserted into a LIST (line 15) under the condition that are not dominated by
the filter point (line14). Additionally, if the new point p is closer to the origin than the filter point
(line 16), the filter point is updated (line 17). At this stage, the filter point has the greatest pruning
power among all points examined since it is the closest to the origin. Additionally, the LIST has a
portion of the records that have reached the map phase due to the pruning power from the filter
point. By taking advantage of the LIST’s smaller cardinality, we perform a sort operation based
on the distance of points to the origin point (line 21) to ensure that the algorithm will access first
the most promising point to be a (local) skyline point. This is the same approach followed by BBS
algorithm to access the nodes inside its list. With a sorting operation over the dataset, we achieve
to identify the candidate skyline points early in the LIST. A drawback of the algorithm is that it
must traverse the complete sorted list. A workaround can be found in the SFS [41] , LESS [10],
or SALSA [42] algorithms to avoid the complete traversal of the list when the values of the dataset
are in a specific domain or when the normalization of values is acceptable. Following, we check
all the points in the LIST (line 22) if they are dominated by the filter point (line 23) and then if
dominated by the skylist (line 24), which contains all the local skyline points. At this stage, the
filter point has the maximum pruning power leading in discarding almost every point that will not
be part of this local skyline. If neither of the previews holds, the point p under examination
definitely belongs to the local skyline, thus inserted in the skylist (line 25) and outputted (line 26).
As a result, each map phase computes a local skyline for its assigned partition. The cardinality of
the records/points of each local skyline will be small in comparison to the dataset and in particular

𝛩(⁡(ln 𝑛)𝑑−1 (𝑑 − 1)!⁄)⁡[448, 449] for uniform distribution. Furthermore, the use of a combiner will

not provide any benefits since each local skyline contains the minimal set of data needed to

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
90

produce a correct answer. Since the cardinality of each local skyline is small, a null key will be
used in order to process all the points in a single reducer. Similarly, the use of a single reducer is
also the case for the reverse skyline computation in section 5.4 . The reduce phase (line 31-42)
collects all the local skylines and produces the final skyline. Since the number of points reaching
the map phase is small, the algorithm does not maintain a filtering point. As with the map phase,
all points are inserted into a LIST (line 33) and are sorted based on the distance to the origin point
(line 34). Finally, all points are checked against the list of candidate skyline points. Since the
dataset to be processed is sorted, any point not dominated by the skylist will be a final skyline
point and it is inserted into the skylist (line 38) to help in the pruning process and outputted (line
39).

The key aspect of the algorithm is that the CELLFILTER performs the major pruning of the dataset.
Each map task computes the local skyline of its assigned partition. The sorting mechanism
guarantees that the local skylines computed in the map phase are correct. Due to the local
skylines, the cardinality of data transferred to the reducer is minimal.

5.4. A Reverse Skyline Algorithm in SpatialHadoop

The previous section proposed the SSAS skyline algorithm. This section will build on top of SSAS
a reverse skyline algorithm named SRSAS. As described in the preliminaries section, we can
compute the reverse skyline on top of a two-step filtering approach with an additional refinement
workload. Initially, for every map phase, a local global skyline is computed. All the global skyline
points from each partition will form a superset of the reverse skyline result set. The reduce phase
will compute the final global skyline of the dataset and at the end, a refinement over the global
skyline is performed, with a second job to retrieve the final answer. As with the SSAS algorithm,
the idea is to harvest the power of the CellFilter function provided by SpatialHadoop to prune
every partition that is warranted not to contribute in the final solution, minimizing the amount of
data to be processed.

The identification of promising partitions and points in a reverse skyline query is more complex
than the skyline since the origin/query point is inside the data space and not on the boundaries
as with the simple skyline algorithm. In order to present the pruning approach of the SRSAS
algorithm, Figure 45 illustrates a possible outcome of the partitions derived from the R-tree
indexing mechanism of SpatialHadoop.

FIGURE 45: SPATIALHADOOP'S R-TREE PARTITIONING APPROACH.

In a reverse skyline, the query point is usually a point that does not exist in the dataset since, in
the simpler scenario, the question to be answered is how the new product/service (query point)
fits in the customer’s preferences. Nevertheless, if the query point matches a point from the
dataset, this point will be the final answer. Intuitively, the query point q splits the data space into

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
91

four quadrants, defined by the two parallel lines xq, yq to the y-axis and x-axis respectively, which
intersect the query point as presented in Figure 45.

Based on the space division imposed by the query point q, a partition may be intersected by the
xq-axis, the yq-axis or both. For the set of partitions that do not intersect with one of the xq or yq
axes, like the partitions p1, p3, p4, p6, p10, p12, p13, p14 in Figure 45, we can identify if they contribute
to the final answer by simply performing dominance comparisons among them. For the case
where a partition intersects with both xq, yq, like the partition p8 in Figure 45, then the query point
q will belong into this partition. This leads that the most promising points to be candidates for
reverse skyline points and consequently global skyline filtering points will belong into this partition.
This happens because these points will have, among all other points in the dataset, the greatest
pruning power in terms of maximizing their dominance region. In the case were the partitions
intersect with one of the xq or yq axes, like the partition p2, p5, p7, p9, p11, p14 in Figure 45, there is
a probability to contain candidate reverse skyline points near or on the axis xq or yq. Those points,
especially the ones on top of the axis xq or yq, will also have among the greatest pruning power
and they are guaranteed to be candidate reverse skyline points since they always have the best
value in at least one dimension. Those points can prune partitions in both of the quadrants that
belong and are the only ones to have the ability to prune partitions that intersect with the same
axis and are further apart.

At this point, an important issue in the design of the CellFilter is that it performs the pruning based
on partitions, without knowing the points contained. In a reverse skyline computation, this imposes
restrictions to the pruning process, as previously described, in which we cannot directly prune the
partitions that are intersected by the xq-axis or yq-axis since it is not possible to guarantee that
they do not contribute to the final solution. This also occurred in the original BBRS algorithm of
[14].

As an example, consider the partitions p8, p11 and p14 in Figure 45 that are intersected by the yq-
axis as defined by query point q and infinity (qyq). Intuitively, the further a point is from the
query/origin point q, the closer to the axis it must be in order to be a skyline or a reverse skyline
point. If a point exists on top of the yq-axis in p11, as shown in Figure 46, it could prune partitions
p13, p14, p15 and all the points on the right of the dashed line that intersects it, but we are not able
to identify it within the CellFilter without performing further processing in the partition.

FIGURE 46: LOCAL GLOBAL SKYLINES IN SRSAS ALGORITHM.

Up to this point, the partitions intersected with the axis have not helped in the pruning process
because we are unaware of the location of points inside them. Additionally, the MBRs in
SpatialHadoop follows a different approach from the one in R-trees since there is no guarantee

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
92

that a point exists in the lower left or in the upper right corner of the MBR. By the design of
SpatialHadoop, it is guaranteed that at least one point exists on each edge of the MBR. Based on
the previous facts, the CellFilter of SRSAS assigns to map tasks all the partitions that are
intersected by an axis and from the rest of the partitions the ones that are not globally dominated
with each other. To compute whether or not a partition globally dominates another partition, we
follow a similar approach to the one used in the CellFilter of SSAS, SKY-FLT and the r-tree based
BBS algorithm. That is, we represent each of the two partitions with their vertex (point) that is
closer to the query point. Using those points, one for each partition, the query point and Definition
8 we can identify if a partition globally dominates another one. More precisely, based on Figure
46 the CellFilter initially receives all the partitions. At first, it outputs the partitions p2, p5, p7, p8, p9,
p11 and p14 that are intersected by an axis. Next, for the rest of the partitions p1, p3, p4, p6, p10, p12,
p13 and p15 it must check and discard every partition that is globally dominated, with respect of the
query point q and output the rest. Thus, partitions p1, p3 and p13 are discarded since they are
globally dominated by partitions p4, p6 and p10 respectively allowing partitions p4, p6, p10, p12 and
p15 to be outputted, and assigned to a map task for further process, along with the partitions
intersected by an axis. Further pruning mechanisms could be designed if we were aware of the
location of points inside the partition, but this would require additional cost for query processing
and multiple MapReduce jobs.

The rest of the SRSAS algorithm follows the same general approach as with the SSAS. Just like
SSAS, after the pruning imposed by the CellFilter, the mapper handles the remaining partitions.
In the case of the reverse skyline, the mapper is dedicated to compute the local global skylines
(Definition 9:) for each partition. When the map task assigned to this partition finishes, all the
data outputted would belong to the global skyline of that partition. Since the global skyline is a
superset [14] of the reverse skyline, its computation will make a great refinement on the dataset.
Following the same approach as with the SSAS in order to identify all the global skyline points of
a partition in one map task, we must sort the points based on their distance from the query/origin
point. Note that the query/origin point may be outside of the partition under examination and thus
the origin point of space, to which the global skyline will be computed, will not match with any of
the edges of the partition. Nevertheless, this does not create any implication. Intuitively, for the
partitions that do not intersect with the axis xq or yq, the result of a global skyline will be seen as
a simple skyline, since all the points of that partition will be contained in one quadrant according
to the axis derived by the query point q. With the same logic, if the partitions are intersected by
one of the axis xq or yq, the global skyline will appear as two disjoint skylines, while if the query
point resides inside a partition, the global skyline on this partition will appear as four disjoint
skylines, as presented in Figure 46. As with the SSAS algorithm, by computing the local global
skyline inside each map phase, the total output records to be transferred in the reducer will be
minimized.

Following, the reducer will collect the output records from all the mappers. The set of collected
data will be a superset of the reverse skyline since all points belong to the global skyline of the
same partition. In order to compute the correct final global skyline in one iteration, we must sort
the data and perform a global dominance comparison on each point. To retrieve the reverse
skyline, a final refinement process must be performed in the form of a range queries as in the
original algorithm [14]. One restriction is that in order to retrieve the minimal superset of the
reverse skyline query in the form of a global skyline query, the algorithm needs to know all the
reverse skyline candidates from all the partitions that were processed. Thus, the reduce phase
cannot be performed in more than one task.

The pseudocode in Algorithm 2: and Algorithm 3: describes the sort-based algorithm for reverse
skyline computation in SpatialHadoop, which incorporates the power of global skyline, a sorting
technique and a refinement process in the form of range queries.

Algorithm 2: SRSAS: A Sort-based Reverse Skyline Algorithm for SpatialHadoop.
1: function CELLSFILTER(C: setofcells)

2: Initialize requisiteypartitions list

3: Initialize candidatepartitions list

4: Compute xq and yq axis

5: for all cell cC do

6: if c is intersected by xq and yq then

5: Add (c, requisiteypartitions list)

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
93

7: else if c is not globalydominated by candidatePartitions then

8: Add (c, candidatePartitions)

9: Update candidatePartitions

10: end if

11: end for

12: Load every ccandidatepartitions and crequisiteypartitions in a map function.

13: end function

14: function MAP(P: Setofpoints)

15: Initialize four filter points fll, flr, ful, fur, one for each quadrant, one temporary

filter point, and a MAPLIST.

16: for all points pP do
17: Identify the quadrant of p and assign to filter the corresponding value of

 fll, flr, ful or fur

18: if p is not globalydominated by filter then

19: Add (p, MAPLIST)

20: if distance (p,query) < distance (filter,query) then

21: Update the corresponding value of fll, flr, ful or fur

22: end if

23: end if

24: end for

25: SORT MAPLIST based on the distance from query point and initialize

localglobalskylist

26: for all points pMAPLIST do
27: Identify the quadrant of p and assign to filter the corresponding value of

 fll, flr, ful or fur

28: if p is not globalydominatedby filter then

29: if p is not globalydominated by Localglobalskylist then

30: Add (p, localglobalskylist)

31: output (null, p)

32: end if

33: end if

34: end for

35: end function

36: function REDUCE (null, P: Setofpoints)

37: Initialize REVLIST & candidaterevskylist

38: Add all pP into REVLIST
39: SORT REVLIST based on the distance from the query point

40: for all points pREVLIST do

41: if p is not globalydominated by candidaterevskylist then

42: Add (p, candidaterevskylist)

43: output (null, p)

44: end if

45: end for

46: end function

Since the SRSAS algorithm follows a similar approach to the one of SSAS, we will highlight only
the key differences. The algorithm in the CellFilter (line 1-13) has access to the global index, which
is the entry of all partitions that contain the data. In addition to the candidatepartitions list (line 3)
found in SSAS, the SRSAS algorithm maintains a requisiteypartitions list in which the partitions
intersected by the xq and yq axis are stored. The axis xq and yq axis are computed as a rectangle
with zero height (line 4). Following, the algorithm iterates through all the partitions (line 5). If a
partition is intersected by the xq or yq axis, it is placed in the requisiteypartitions list (line 5-6),
otherwise it is checked if it is globally dominated (line 7-10), just like with simple dominance in the
SSAS algorithm. After iterating all partitions of the global index, the algorithm assigns each one
of the partitions in candidatepartition and requisiteypartitions list to a map task (line 12).

The map phase in SRSAS maintains four filtering points (line 15), one for each quadrant defined
by the xq and yq axis instead of one in SSAS. For every point (line 16-24) in a map task, it is
identified in which quadrant it belongs (line 17). The global dominance is performed only between
the retrieved point and the filter point that corresponds to the point’s quadrant. If needed only this
point is updated (line 20-22). When the iteration over all points finishes each filter point will have
the greatest pruning power in its quadrant. A sorting operation in the MAPLIST (line 25), based
on the distance to the query point, will guarantee that the most promising points will be accessed
first. A second iteration (line 26-34) will produce the local global skyline. In this step, most of the
point will be pruned from the filter point (line 28) minimizing the need to iterate through the
candidate points of localglobalskylist (line 29).

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
94

The reduce phase (line 36-49) collects the points from all map tasks into a REVLIST (line 38) and
sorts them based on the distance from the query point (line 39). With an iteration over all the
points in the REVLIST (line 40-45), the final global skyline of the dataset is produced and written
to the HDFS.

As with the BBRS algorithm, the final check that every point in the global skyline should pass in
order to be true reverse skyline points involves a range query [14]. The MBR of each range query
has its center over the global skyline point under examination and its edge on the query point of
the reverse skyline, as shown in Figure 46. The query is performed in order to identify if there is
any point in the window defined. If no point is found, the global skyline point under examination is
promoted to a reverse skyline point. In our approach, we make use of the built-in range query
algorithm of SpatialHadoop in a final refinement process.

Algorithm 3: Refinement process of the SRSAS algorithm.
1: function RANGEREFINEMENT(GS: globalskylineset)

2: Initialize revskylist

3: for all points pGS do

4: Compute the range area rpi based on p and query point

5: execute the range query(rpi)

6: if range query is empty and p is not globally dominated by revskylist then

7: add p to the revskylist;

8: end if

9: end for

10: output (revskylist);

11: end function

The refinement process (Algorithm 3:), for every point that belongs to the global skyline set GS
(line 3), accessed in sorted order of their distance from the origin, we compute the range area
(line 4) that will be used in the window query. Each one of the range areas, in the form of a
rectangle parallel to the axes, is computed using a global skyline point and the query point as
defined in [14]. The global skyline point must be in the center of the rectangle (the point where
the diagonals intersect) and the query point must be a vertex of this rectangle. Given those two
conditions, a single rectangle can be computed which will represent the range area. Then, the
algorithm performs a window query for the given range area over the initial dataset (line 5). To
accomplish this task, the refinement process of SRSAS uses the range query that is integrated
into SpatialHadoop, which spawns one new job for each range query. The range query uses only
the map function since the existence of a point can be identified with the use of the built-in map
counters of MapReduce.

As with the SSAS algorithm, the key aspects of the SRSAS algorithm is that the CELLFILTER
performs the major pruning of the dataset. Each map task computes the local global skyline, which
assists in minimizing the data needed to be processed by the reducer. The sorting mechanism in
the map and reduce phase, along with the range refinement process guarantees that the final
answer is correct.

5.5. Experiments

This section studies the performance and effectiveness of our proposed algorithms for skyline
and reverse skyline computation. For the evaluation, we used synthetic and real datasets over a
distributed and pseudo-distributed platform. The performance metrics involve the time cost, in
terms of the total time spent to retrieve an answer and the time spent in the various phases of our
algorithms along with the amount of data transfers needed. All algorithms were written in Java
and the source code10along with the commands to recreate the datasets are available under
the Apache License 2.0. For the accuracy of our results, we ran each experiment 10 times and
the average cost of all tries was estimated. We compared our SSAS skyline algorithm with the
SKY-FLT algorithm from [32], which performed better in comparison to the SKY-FLT-SORT and

the CG-HADOOP in large datasets. In the rest of the section, it is shown that our proposed SSAS

10 https://github.com/ChristosKalyvas/SkylineQueriesInSpatialHadoop

https://github.com/ChristosKalyvas/SkylineQueriesInSpatialHadoop

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
95

algorithm improves over the SKY-FLT algorithm with up-to 15%. The case of the reverse skyline
in SpatialHadoop is also studied for the first time.

The deployment, management and administration of Hadoop clusters was performed with the
open source Apache Ambari 2.5 management platform over CentOS 6.4 Linux nodes. The
communication of nodes was performed over a Gigabyte network. The version of SpatialHadoop
was 2.4 and the installation involved adding the dedicated libraries to the Hadoop installation
directory of each node. The infrastructure consisted of 4 physical machines, which hosted 6 virtual
nodes. Each node had 16 logical processors with 16GB of RAM. We additionally compared our
algorithms over a pseudo-distributed environment in order to isolate any factor that may affect the
accuracy of the results. The pseudo-distributed node consisted of 32 logical processors with 32GB
of RAM.

The datasets that were used are three synthetic and one real dataset. The official SpatialHadoop
Site11 provides numerous real datasets including many datasets extracted from OpenStreetMap

[450]. A study that presents a large number of real datasets can be found in [451]. The real dataset

used in this work is the All nodes12 dataset of OpenStreetMap [450] which holds all the points on

the planet and contains 2.7 Billion records with an initial size of 96 GB. The initial dataset was
refined to hold only the coordinates of each point that lead to a size reduction to 60 GB. This
dataset is the newer version of the one used in [32]. The synthetic datasets were created with the

random spatial data generator of SpatialHadoop. The distribution of each synthetic dataset was
uniform, correlated and anti-correlated respectively with 2.7 Billion points each and a size of
approximately 81 - 134 GB. For the correlated datasets, the selected ρ-value (rho-value) was 0.8
in order to produce a dataset that will give a large number of skyline points. The ρ-value defines
the correlation between the variables of our dataset, which in term defines the way the points
generated over the data space.

To investigate the scalability of our algorithms, for each of the four datasets with 2.7 Billion records
we produced 4 smaller datasets of 1M, 10M, 100M and 1B records with the process of sampling.
The size of those datasets varied from 25 MB to 134 GB. The smaller 1M dataset was used to
investigate how the algorithms performed in local mode without using the MapReduce framework.
The sampling process was executed with the built-in method of SpatialHadoop. All datasets were
indexed by an R-tree. The number of partitions in each index varied from 1 to 900 depending on
the dataset. For the indexing process, we used the default values of the parameters. That includes
the value of spatialHadoop.storage.IndexingOverhead, which controls the number and size of
partitions to be 0.1 and the value of spatialHadoop.storage.SampleRatio, which controls the
quality of the index in terms of time cost and memory to be 0.01.

Since a sorting operation on a large dataset may not be desirable or even feasible, SpatialHadoop
has the ability to index the dataset in smaller partitions. This approach is useful in low memory
systems since every map phase will have to sort a smaller portion of the dataset. The use of
smaller partitions would also be beneficial to the CellFilter function since the number of partitions
would increase but each partition would have fewer data. The increased number of partitions
would lead to a better partition-level pruning of the dataset. A partition related parameter of
SpatialHadoop that can be used for this purpose is the spatialHadoop.storage.IndexingOverhead.
By default, it is set to 0.1 meaning that for 1GB of dataset, 100mb additional data, related with
partition boundaries, will be written. For an even more efficient partitioning, the selection of a
spatialHadoop.storage.SampleSize parameter can result in a more accurate representation of the
dataset before the initialization of the indexing mechanism. In order to identify our datasets we
used the number of records instead of the dataset size as a descriptor, since the file size may not
always be an appropriate measure. For example, consider two datasets with 1M records each,
where the first stores the points with a precision of two decimal points and the other with six. The
file size of the second one will be larger but the records will be the same.

11 http://spatialhadoop.cs.umn.edu/index.html

12 http://spatialhadoop.cs.umn.edu/datasets.html

http://spatialhadoop.cs.umn.edu/index.html
http://spatialhadoop.cs.umn.edu/datasets.html

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
96

5.5.1. The case of the SSAS algorithm

In order to compare the performance of our algorithm we implemented and used the SKY-FLT
algorithm from [32]. In their work, the authors tested their algorithms in minimizing all preferences
(min-min mode) in an environment with strictly non-negative values and through their research
they state that the SKY-FLT performs better in the largest of their datasets. In this work, we
equipped the SKY-FLT algorithm with the Euclidian distance metric, which makes it applicable in
the rest of the modes and in negative and non-negative value environments without any
implication. The SKY-FLT-SORT, on the other hand, needs more attention in environments with
negative values like the real dataset used in this work due to its construction. Moreover, the
author’s research belongs to the 1M-100M range of our datasets where the 1M case is our
implementation activates the pure local approach without the use of the MapReduce environment.
With this in mind, we consider that SKY-FLT is the appropriate algorithm to be compared with
ours.

Hadoop, by design, reads a vast amount of data from HDFS, even when reading a single block.
As an example, each one of the approximately 900 blocks in our 2.7B records datasets holds on
average 3M points. Thus, the order that the records are written in the files has an impact on the
time needed to retrieve an answer. In SpatialHadoop’s case, the points inside a block of the R-
tree are written in a partially ascending sorted order of their first and second coordinate value.
The ordering in which the partitions, produced by SpatialHadoop, as presented in Figure 45 and
written to the master index, also depicts this ordering. This ordering has an impact on the
computation time of the skyline under various preferences, as presented in Figure 47. Through
our experimentation, the use of Euclidian distance had no significant performance gain in
comparison to the Manhattan distance.

FIGURE 47: EXECUTION TIME OF SKY-FLT AND SAS OVER THE 100M DATASETS.

More specifically, in a 2-dimensional environment there can exist four preferred modes, in terms
of minimizing or maximizing the values on each dimension, named min-min, max-max, min-max,
max-min. For the case of the uniform dataset, the min-max case needs approximately 30% more
time than the case of min-min in both algorithms. The same holds in computing the equivalent
min-min case and the max-max case in the anti-correlated dataset.

The difference of the min-min mode in the anti-correlated dataset in comparison to the equivalent
min-max mode of the correlated dataset is more clear in the 2.7B dataset presented in Figure 48
in which there is a 7% difference in time. At this point, we show that the mode of operation has
an impact on the computation time of both algorithms due to the order in which the points are
stored in the index file. This could potentially affect the computation of reverse skyline and convex
hull since certain mappers may need more time to accomplish their task delaying the whole
process. Furthermore, note that the case of the real dataset seems to perform equivalently in both
100M (Figure 47) and 2.7B (Figure 48) datasets, which will be discussed further in this section.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
97

FIGURE 48: EXECUTION TIME OF SKY-FLT AND SAS OVER THE 2.7B DATASETS.

At this point, we will discuss the time cost of computing the skyline with both SKY-FLT and SAS
algorithm over all four datasets in our pseudo-distributed environment. The evaluation was
performed over the complete datasets as well as in the five sampled versions of each original
dataset. In addition to the min-min mode, we present the cost to compute the skyline over all four
modes.

FIGURE 49: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE UNIFORM DATASETS.

In Figure 49 the time needed by both SKY-FLT and SAS algorithms to compute the skyline in
min-min mode is presented. The SAS algorithm outperforms the SKY-FLT in the datasets over
10M. In the 2.7B case, SAS performs 10% better than the SKY-FLT. The same improvement
appears in the max-min case. For datasets smaller than 10M, SKY-FLT is slightly faster.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
98

FIGURE 50: EXECUTION TIME OF SKY-FLT AND SAS IN ALL MODES OVER THE UNIFORM DATASETS.

The total time cost as the sum of the time cost to compute all four modes of the skyline is
presented in Figure 50. As previously, SAS outperforms SKY-FLT in datasets over 10M points.
The improvement of SAS on all modes over SKY-FLT, in the 2.7B dataset, is 7% percent. Both
SKY-FLT and SAS seems to reach a time cost limit as the dataset size increases. This is due to
the CellFilter function that is part of SpatialHadoop.

An initial implementation of CellFilter, related to the skyline queries, can be found in the CG-
HADOOP algorithm. Its BNL-like implementation works quite efficiently since it needs only 3
milliseconds to select the partitions even in the 2.7B datasets which has 900 partitions. An
alternative implementation could be useful only in datasets with hundreds of thousands or even
million partitions. This can occur in extremely large datasets or in datasets where the indexing
factors are set to produce a large number of partitions.

FIGURE 51: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE REAL DATASETS.

The time cost for computing the skyline in the real dataset is presented in Figure 51. The
improvement of SAS over the SKY-FLT in the min-min case of the 1B dataset is 14% while in the
max-max case is 15%. The time cost in the real dataset has many fluctuations. More particularly,
the time cost in 10M and 100M, for both algorithms, is approximately the same. In both cases, the
CellFilter function returns a single partition. The difference is that in the 10M dataset each partition
holds 3.5M points and the 100M dataset 4M points. The time cost in the case of the 2.7B dataset
is also similar to this of the 10M and 100M datasets because, as previously only one partition is
processed, but in this case with 4.8M points. For the case of the 1B dataset, four partitions are
returned with 5M points each.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
99

FIGURE 52: EXECUTION TIME OF SKY-FLT AND SAS IN ALL MODES OVER THE REAL DATASETS.

The overall cost in computing the skyline in all modes over the real dataset, as presented in Figure
52, follows a time cost similar to the uniform case with the exception of the 2.7B dataset. In the
2.7B case, a single partition dominates all the other ones and this happens in every mode. This
behaviour appears due to the type of dataset and the existence of points that could be considered
as outliers. The improvement of SAS over SKY-FLT in the 2.7B dataset is 7% in min-min mode,
12% in max-max mode and 8% on average over all modes.

FIGURE 53: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE CORRELATED DATASETS.

For the case of the correlated dataset, as presented in Figure 53, the 10M and 100M cases
handle 1.7M and 3.8M points respectively, which belong to more than one partitions. Interestingly,
both algorithms perform better in the larger 2.7B dataset rather in the smaller 1B dataset. This
happens because the CellFilter function outputs in total 15M points for the case of the 1B dataset
and 12M points for the case of the 2.7B dataset. The improvement of SAS over SKY-FLT in the
case of the 2.7B dataset is 9%.

At this point, we omit presenting the total cost in all modes of the correlated and anti-correlated
dataset since computing the min-max and max-min case in the correlated dataset is
computationally equivalent to compute the min-min and max-max case on the anti-correlated
dataset, due to their specific distributions. The same holds with the min-max and max-min case
of the anti-correlated dataset which is computationally equivalent to the min-min and max-max
case of the correlated dataset. For that reason following we will present the last remaining case
of computing the min-min skyline over the anti-correlated dataset.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
100

FIGURE 54: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE ANTI-CORRELATED DATASETS.

The computation of min-min and max-max skyline in an anti-correlated dataset is one of the most
expensive operations. This happens because the dominance comparisons are not capable of
pruning the dataset enough even with the existence of the CellFilter function. More particularly,
the map phase for the 1B and 2.7B datasets needs to handle 27 and 44 partitions respectively,
which is up to 130M points. As presented in Figure 54, as the dataset size increases, the number
of points needed to be processed grows rapidly which affects the time cost, especially for the
cases of 1B and 2.7B datasets due to the large number of spilled records. The overall gain of
SAS over SKY-FLT in this scenario is 7.5% in the 2.7B dataset. From the previous discussion, we
conclude that the BNL-like lists that maintain candidate skyline points in SKY-FLT incur a
considerably larger overhead than a sorting mechanism in SAS.

As previously discussed, a key part of both SKY-FLT and SAS algorithms is the CellFilter function,
which is the first pruning mechanism. The CellFilter function performs the same in both the
pseudo-distributed and distributed environments. Following, we present, for the case of min-min
mode, the percent of dataset that is outputted by the CellFilter and that will be processed by the
numerous map tasks.

FIGURE 55: TOTAL NUMBER OF POINTS IN THE OUTPUT OF CELLFILTER AS A PERCENT OF THE INITIAL DATASET IN MIN-MIN MODE.

The CellFilter function performs better as the number of partition increases. As presented in
Figure 55 for the 10M dataset, 33% on average or 2 out of 6 partitions must be handled by the
map phase. As the size of the dataset grows along with the number of partitions, the percent of
the dataset to be processed by the map phase declines. The hardest case among all is the one
of the anti-correlated dataset where the dominance comparisons between partitions do not prune
many partitions due to the specific distribution of the dataset. In the case of the 2.7B dataset less
than 5% of the dataset is handled to the map phase, less than 8% in the case of the 1B dataset
and less than 8.5% for the 100M dataset with the anti-correlated case as an exception. An
improvement, especially for on the smaller datasets, can be achieved by setting the appropriate
parameter of the indexing mechanism to produce smaller partitions in size, with the drawback of
additional storage cost.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
101

FIGURE 56: TOTAL NUMBER OF POINTS IN THE OUTPUT OF CELLFILTER.

The total number of points to be processed by the map phase is reverse analogues to the percent
of the dataset needed to be processed, according to Figure 56. Even if the whole 10M dataset
needs to be processed is in fact quite small in comparison to a portion of the dataset that is
processed in one of the larger datasets. In the worst case of our experiments, for the 2.7B anti-
correlated dataset, a total of 130M points are handed over to the map phase. In all other cases,
the algorithms need to handle at most 20M points with the case of the 1B anti-correlated dataset
to be at 81M. An indexing approach with smaller partitions, with the help of dominance
comparisons in the CellFilter function, would drastically decrease those numbers.

In the following section, we compare the time cost of computing the min-min skyline in the pseudo-
distributed environment over the distributed environment with the SAS algorithm. We omit the
case of the 1M dataset since, as previously mentioned, this dataset was selected to explore only
the local aspects of the algorithms.

The time cost to compute the min-min skyline over the uniform dataset in the pseudo-distributed
environment increases, as the dataset gets larger following a linear approach. The computation
of min-min skyline in the distributed environment remains almost constant, as presented in Figure
57. For the distributed case, this is also an indication that the number of partitions produced by
the CellFilter are evenly handled to the nodes in the distributed environment.

FIGURE 57: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER UNIFORM

DATASET IN MIN-MIN MODE.

The comparison of the time cost to compute the min-min skyline over the real dataset in the
pseudo-distributed and distributed environment, as presented in Figure 58, reveals that the data
size received from the CellFilter is small enough to allow the pseudo-distributed node to reach the
efficiency of the fully distributed cluster. An exception to this is the 1B case where the pseudo-
distributed node handles a large number of points and thus produces a large number of spilled
records. Those records diminish in the 2.7B dataset due to a new skyline point that exists in the

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
102

larger dataset which prunes effectively the aforementioned points in the CellFilter function or in
the map phase.

FIGURE 58: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER THE REAL

DATASET IN MIN-MIN MODE.

 In comparison to Figure 51, we conclude that the SKY-FLT algorithm, with the 1B dataset,
produces more spilled records than the SAS. This happens in the cases where the pruning power
of the filtering mechanisms in the map phase of SKY-FLT degrades leading to continuous
checkpoint updates due to the tuple ordering in HDFS files. In this case, the map phase outputs
a large amount of data that triggers the combiner. In the SAS algorithm, there is no need for a
combiner since the cardinality of the local skyline from each map phase is small.

FIGURE 59: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER THE

CORRELATED DATASET IN MIN-MIN MODE.

A similar time cost, with the real dataset presented previously, can be seen in the correlated
dataset as presented in Figure 59, which is expected since in this type of dataset the CellFilter
works efficiently producing the least amount of data. As previously stated, the case of the 1B
dataset produces more points than the case of the 2.7B dataset and this leads to more spilled
records. In all other cases, the size of the data output is small enough and comparable to the one
produced by the real dataset. Nevertheless, the correlated case seems to handle more points
than the real dataset and that is confirmed from the slightly increased time cost of the correlated
dataset in comparison to the equivalent case of the real dataset.

When conducting our research we did not expect that the real dataset would have a similar and
even smaller time cost to the correlated dataset. Through our experimentation, we conclude that
this behaviour is due to the large number of points that exist in the real dataset and act as outlier
points. Those points, especially in the min-min case, prune the majority of the dataset due to their
positions inside the dataset. Nevertheless, this behaviour does not exist in the reverse skyline
queries and may be absolute in the case of constrained skyline queries where the computation of
skyline is performed in a restricted area of the dataset.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
103

FIGURE 60: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER AN ANTI-

CORRELATED DATASET IN MIN-MIN MODE.

The computation of the min-min skyline over the anti-correlated dataset is presented in Figure
60. The distributed cluster seems to handle quite well the large number of data needed to be
processed in this type of dataset. An exception is the case of the 2.7B dataset for which the
capabilities of our cluster are exceeded, leading to abnormal behaviour. A solution to improve the
time cost, in this case, is to add more nodes or configure the indexing mechanism to produce
more, smaller in size, partitions which would lead to a smaller set of data to be processed by each
map task.

FIGURE 61: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER ALL DATASETS

IN MIN-MIN MODE.

A summary on the time cost of the SAS algorithm in a pseudo-distributed and distributed
environment over all datasets and their sampled versions is presented in Figure 61. The true
benefit of a real distributed cluster is visible in the anti-correlated and uniform dataset. In the
majority of cases, the time cost in a distributed environment is between 20 and 50 seconds except
for the single case of the anti-correlated, 2.7B dataset. In the pseudo-distributed environment, for
the majority of cases, the time cost is between 20 and 75 seconds without considering the anti-
correlated dataset for which the time cost starts from 88 seconds in the 100M version of the
dataset.

A further reduction in the time cost of skyline computation can be achieved in environments with
specific datasets or if value normalization can be an option. For example, the properties of the
sort-based SaLSa [42] algorithm could be injected into SAS in order to sort the dataset based on

a specific scoring function and use an early termination mechanism to avoid scanning the
complete list of sorted points at the beginning of the map phase.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
104

5.5.2. The case of the SRSAS algorithm

In the following section, we will discuss the case of the SRSAS algorithm. The experiments for
the SRSAS algorithms were performed on the distributed cluster since it is a computationally and
data intensive query and can fully exploit its capabilities. Moreover, we omitted from our
experiments the 1M dataset, since its cardinality is small to give insights in a distributed
environment. In addition, we omitted the 2.7B dataset in order to maintain the soundness of our
results by avoiding abnormal behaviours as with the 2.7B anti-correlated dataset mentioned
previously. Moreover, the query point was selected randomly following the distribution of each
dataset.

FIGURE 62: TOTAL NUMBER OF POINTS IN THE OUTPUT OF CELLFILTER AS A PERCENT OF THE INITIAL DATASET.

As presented in Figure 62, the CellFilter function in the SRSAS algorithm is more data demanding
than the SAS (Figure 55). In the case of the reverse skyline, the algorithm needs to retrieve all
the partitions that may contain global skyline points and that includes all the partitions that are
intersected by the axis created by the query point. In small datasets, with a small number of
partitions, this is equivalent to the whole dataset as with the case of the 10M dataset that has 6
partitions in total. Nevertheless, as the total number of partition in the dataset increases the
number of partitions needed to be processed declines. In all the sampled versions of our datasets,
the most demanding case is the one of the uniform dataset, which specifically for the 100M case
needs on average 30% more data. Nevertheless, as the dataset size and partition number
increases the pruning power of the CellFilter function increases. This can be seen in the 1B
datasets where on average 12% of the dataset is needed.

FIGURE 63: EXECUTION TIME OF SAS AND SRSAS IN DISTRIBUTED MODE OVER ALL DATASETS.

The time cost to compute the reverse skyline over the various datasets is presented in Figure 63.
For comparison, we also provide the time cost to compute the min-min skyline. As presented, the
time cost to compute the SRSAS is considerably more in all cases due to the nature of the query.
Additionally, in comparison to Figure 62, the time cost is not analogous to the points retrieved
from the CellFilter function but it is susceptible to the number of global skyline points that are
identified, as we present in the following paragraphs.

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
105

FIGURE 64: EXECUTION TIME OF SRSAS TO COMPUTE THE REVERSE SKYLINE IN DISTRIBUTED MODE OVER ALL DATASETS.

As presented in Figure 64, the total time cost in the reverse skyline query can be divided in the
cost to compute the global skyline and the cost imposed by the range queries needed to identify
the reverse skyline set. In almost all cases, at least 50% of the time is consumed by the range
queries, which reaches up to 85% in cases like the 10M correlated dataset concluding that the
range queries is the major bottleneck. We remind that for each global skyline point, one range
query is performed and each range queries may require to access data in several nodes producing
multiple map tasks in the cluster. Since the global skyline set is the minimum superset of points
to answer the reverse skyline query, the only way to effectively reduce the time cost is to identify
overlapping regions and perform only one range query over each region or implement additional
indexing structures.

To reduce the cost of reverse skyline computation we can set two objectives. The first is to reduce
the data handled by the map phase, which could be achieved through a sophisticated CellFilter
function or even with a modified indexing mechanism. The second objective could involve the
creations of efficient range query plans or dedicated structures to avoid searching in the same
area multiple times.

5.6. Conclusions and Future Work

The amount of data to be processed in order to retrieve an answer to a specific question
continuously grows, while in many cases it is critical to get an answer in the minimum time. The
SpatialHadoop framework allows using computational geometry to efficiently answer complex
queries by pruning the dataset as early as possible. Furthermore, is a great framework to
experiment with various queries over MapReduce since it supports a large number of indexes and
space-filling curves.

Among many others, a family of queries that benefits from SpatialHadoop are the skyline and
reverse skyline queries. By having an indexed dataset, we can answer consecutive queries faster
in comparison to a non-indexed dataset. Since the result of a skyline query in a static dataset will
always be the same, an indexing mechanism is more intuitive in constrained skylines, where the
user defines the region in which the query to be performed or reverse skylines where the possible
outcomes are infinite.

In this study, was proposed an alternative, sort-based approach to compute skyline queries and
the SpatialHadoop was enhanced with reverse skyline queries. Intuitively, both the proposed
methods can be considered as index-based and sort-based approaches simultaneously due to
the SpatialHadoop indexing and the sorting mechanism in the map phase.

 This work allows researchers to study similar queries such as reverse k-skyband and ranked
reverse queries. Since SpatialHadoop is also capable of supporting temporal data, the temporal
skyline and temporal reverse skyline query that were proposed in Section 1 can be studied in

conjunction with the constrained skyline. An alternative research direction would be to study the
applicability and performance aspects of the z-order based skyline algorithm Z-SKY and the

CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP

Christos Kalyvas-Kasopatidis –October 2020
106

Quad-Tree based skyline algorithm for MapReduce SKY-MR since SpatialHadoop also supports
indexing based on Z-order and Quad-Trees.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
107

6. SKYLINE-BASED DECISION BOUNDARY ESTIMATION

One of the most common tasks nowadays in Big Data environment is the need to classify large
amount of data but based on the research conducted in Section 3 the amount of labeled data to
perform such a task is limited. There are numerous classification models, designed to perform
best in different environments and datasets and each one of them has its advantages and
disadvantages. However, when dealing with Big Data, their performance is significantly degraded
because they are not designed or even capable of handling such large datasets. The approach
proposed in this study is based on a novel proposal of exploiting the dynamics of Skyline queries
to efficiently identify the decision boundary and classify Big Data. The novelty of this method is
based on the fact that only small number of computations are needed in order to make a
prediction, while its full potential is revealed in very large datasets.

6.1. Introduction

To deal with the problems imposed by the volume, one may consider the reduction of cardinality—
or dimensionality—of the data for which various methods have been proposed. Such a problem
occurs with the R-trees [38] when the space has more than 4–5 dimensions—named as the curse
of dimensionality. The simplest case of volume reduction can be achieved by sampling techniques
[452] that directly reduce the cardinality of the dataset. The dimensionality reduction approach
can be performed either through feature elimination, extraction or selection techniques [453, 454],
or by directly mapping a multi-dimension dataset to a lower dimensionality space. The last
approach can be performed with statistical data mining such as principle component analysis
(PCA) [455], stochastic approaches such as t-distributed stochastic neighbours embedding (t-
SNE) [456] or neural network approaches such as auto encoders [457].

Dimensionality reduction techniques are commonly used to improve the performance of a
classifier. However, ML methods have reached a point at which we can combine even a set of
weak classifiers using ensemble learning techniques [458] to produce good results. With this in
mind, each time a new classifier is proposed, questions arise if we really need one more [459].

Even with these techniques, it is not always feasible to perform a classification task with low
processing costs in a big data environment, since traditional classification algorithms are designed
primarily to achieve exceptional accuracy with trade-off between space or time complexity. In a k-
nearest neighbours (K-NN) classifier, the main cost reflects to the cost of computing the distances
from every element, in naïve Bayes to compute a large number of conditional probabilities, in
probabilistic neural networks (PNN) or its radial basis function (RBF) alternative to sum local
decision functions and in support vector machine (SVM) to compute complex hyperplane
equations

In this work [115, 116], we propose a straightforward method for classification which is
significantly more efficient than traditional classification algorithms in big data environments. The
proposed method uses skyline queries to identify boundary points and construct final decision
boundaries. Primarily skyline queries were designed to identify the most preferable options based
on certain, sometimes contradicting, optimization criteria. Skyline queries are categorized as a
dominance-based multiobjective optimization approach that was developed under the scope that
the dataset in use does not entirely fit in memory. The multiobjective optimization problem of
efficiently identifying the skyline points has its root in the Pareto optimality problem (V. Pareto
1906) which was used in aerospace for aerodynamic shape optimization [460] and in economics
for optimal investment portfolio [461]. In computational geometry, the problem is equivalent to the
maximal vector problem [462].

To our knowledge, this is the first work that tries to harvest the power of skyline queries in a
classification process for big data. The benefits of using such an approach are:

• Even in a very large dataset, decision boundaries are described by a small number of
points; thus, a classification process needs to perform only a small number of
computations in order to infer the correct class;

• Decision boundaries can be independently computed, allowing for full parallelization of the
whole modeling process;

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
108

• It is applicable in a wide range of multidimensional environments and specifically in any
environment that its dataspace has an ordering, a feature that is inherited from the skyline
query family;

• The model can be easily explained and visualized allowing for greater interpretability;

• The decision boundaries can be easily transferred, reused and easily re-optimized
allowing Transfer Learning.

6.2. Methodology

As described in the previous section, there exist numerous variations and different factors on how
the skyline queries can be applied on a set of data in order to extract the decision boundaries.
Since this is a novel and naïve approach based on skyline search, it can be further improved and
expanded. The proposed method does not rely on any specific skyline algorithms or index. To
retrieve the skyline set, the BNL algorithm was chosen for its simplicity, but any other algorithm
can be used. This way, the proposed method computes one skyline for each class which will
eventually be part of the decision boundary construction process.

In an abstract approach, the proposed method has one preprocessing task and three normal tasks
as follows:

1. Define origin points.

2. Identify Skyline points.

3. Construct decision boundaries.

4. Perform classification process

The preprocessing task deals with identifying the origin points (preferences) for which each one
of the skyline queries will be performed. The first task computes the skyline based on the
preferences set by the preprocessing task. The second task determines the boundaries based on
the points returned by the skyline and the third one performs the classification task. Through our
research we identified four different approaches on how to compute the skyline set and three
different approaches on how to compute the boundaries. By using different skyline identification
approaches we study how our method behaves when we retrieve a broader set of skyline points
and if this assists in the estimation of the decision boundaries. Through the rest of this paper, we
assume that the datasets consists of two classes (since the proposed method is binominal). As
our proposed method performs best in big data environments, we targeted on a synthetic dataset
of 1 M points randomly generated in space, following the Gaussian distribution. From a wide
number of real datasets, we focused on a dataset that has at least 10,000 records. We note that
the skyline computation is independent from the underlying distribution

6.2.1. Define the Origin Points

In order to compute the skyline set from a dataset, first we must define the preferences. It is
common in literature, if not mentioned, that the minimization of preferences is desired. In our case,
since we have a binominal classifier, which classifies an object between two classes, we must
compute two skylines and thus we must define two origin points. In a 2-dimensional space, we
have four options as preferences based on the combination of minimizing or maximizing each
dimension. Each one of these points depicts one of the corners of the dataspace. Thus, in the
preprocessing, we manually select which corner of the dataspace we would like to be the origin
for each class, and thus, each skyline that we need to compute. This process could have been
automated by taking into account the location of classes in space. Nevertheless, there should be
a different approach for each case in the skyline retrieval that will be described in the following
subsection. Note that the origin points that are assigned to each class are never on the same
corner of dataspace. Moreover, in a 2d space there are four corner points and, in a d-dimensional

space the number of required points is 2𝑑 . Thus, for every experiment we need to perform 2𝑑
skyline queries. The curse of dimensionality is a common issue in r-trees and skyline queries.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
109

6.2.2. Identifying Skyline Points

Having defined the origin points, we can now compute the skyline for each class. This phase is
completely independent for each class and thus we can parallelize the whole process.
Additionally, skyline queries over Hadoop MapReduce are extendedly studied, making our
method compatible with MapReduce. To accomplish this process, we studied different
approaches on how we could perform one or more skyline queries in order to get a set of points
that best describes a decision boundary.

Among those cases there are the single skyline which performs a single skyline for each class,
the double skyline, similar to the single skyline, but it computes two skylines for each class, the
opposite skyline, which tries to retrieve the skyline points that reside in two opposites sides of
each class and the smart skyline which takes into account the relative location of the two classes
of the dataset. Each approach has its benefits, like better accuracy, computation time and
boundary approximation, but this comes to the expense of computation due to multiple skyline
queries.

As previously mentioned, we use the BNL algorithm for skyline computation which has 𝑂(𝑘𝑛2)
complexity. Thus, the complexity of identifying the points that will assist in estimating the decision
boundaries is 2 ∗ 𝑂(𝑘𝑛2), where k is the number of dimensions and n the cardinality of each class.
Below we present in detail the four different approaches for skyline computation:

1. single skyline: In this option, we define the origin points and perform a single skyline for
each cluster, as depicted in Figure 65 (a). This approach performs better in dense data
as the boundaries can be straightforwardly defined. This is the simplest case with the

minimum computation cost as 2 ∗ 𝑂(𝑘𝑛2).

2. double skyline: This case, as seen in Figure 65 (b) is similar to the one above, but it
computes two skylines for each cluster using the same origins. The process computes the
first skyline, removes the points from the initial dataset, but stores them in a list and then
performs the second skyline computation. Then, it merges the points from the two skylines.
This is done for both Cluster A and Cluster B and when completed, it proceeds to the next

phase. This approach may have additional overhead as 4 ∗ 𝑂(𝑘𝑛2), but the resulted
boundaries are more accurate in sparse data.

(a)

(b)

FIGURE 65: (A) THE CASE OF SINGLE SKYLINE; (B) THE CASE OF DOUBLE SKYLINE

3. opposite skyline: The opposite skyline, depicted in Figure 66 (a) tries to retrieve the skyline
points that reside in two opposite sides of each cluster. In this way, we try to enclose the
area where the data on each cluster are. Even though this approach may not be desirable
in many cases, it has very good results even in overlapping clusters, but it has increased

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
110

overhead as 4 ∗ 𝑂(𝑘𝑛2). An exception to this approach is the need of four origin points,
two for each cluster which will be in the opposite side.

4. smart skyline: The smart skyline of Figure 66 (b) takes into account the relative location
of the two clusters in order to maximize the length of the boundary line. This approach,
instead of collecting more points in the same vicinity, such as the double skyline, retrieves
points in such a way that it extends the boundary line around the cluster in order to get
more chances in dividing them. This method has the same complexity as the double and
opposite skyline approach.

(a)

(b)

FIGURE 66: (A) THE CASE OF OPPOSITE SKYLINE; (B) THE CASE OF SMART SKYLINE.

Current research on skyline computation over big data employees MapReduce-based skyline
query computation approaches and have managed to compute the skyline in up to 10 dimensions
and 4B records [108]. In such an extreme case, using a uniform distributed dataset, the number

of skyline points would be approximately 3.5 M, based on θ((lnn)d−1 (d − 1)!⁄), where n is the

cardinality of the dataset, d its dimensionality and 𝜃 denotes the average case scenario and is
used to calculate the number of skyline points in a normal distribution [188]. It is common in
skyline query computation that as dimensionality increases, the number of skyline points may
become too numerous because the chance of one point to dominate another decreases. Taking
this into account, researchers have proposed approaches to control the output size k of a skyline
query and retrieve a subset of the original skyline set which holds its properties and maximizes
insights. Some of those approaches are the Top-k skyline [2, 3], k-representative [62], Distance-
based k-representative [65], ℇ-skyline [68]. In highly demanding datasets where the total number
k of skyline points exceeds certain thresholds, the aforementioned proposed skyline variants can
be used instead of the BNL for skyline identification.

Through our experimentation, we studied the case of large scale convex shaped datasets.
Reasoning about nonconvex datasets, our method can be applied in cases like the one presented
in Figure 67 (a) following the same steps as described previously in order to define the origin
points and retrieve the skyline. In more complex nonconvex datasets like a 2-class banana
dataset (Figure 67 (b)) the identification of the skyline is more complex. In this case the two origin
points that can be defined to retrieve the skyline for each class are presented in Figure 67 (b).
Moreover, for this case, for each origin/query point two skyline queries should be issued to
properly form the decision boundaries. For the case of Class A, the two skyline queries should be
issued in the upper left and lower left quadrants. For the case of Class B, the two skyline queries
should be issued in the upper right and lower right quadrant. Issuing skyline queries in different
quadrants can be performed by setting the appropriate preferences on minimizing or maximizing
a dimension. In the case of nonconvex datasets, the variant of constrained skyline queries [2, 3]
can be found useful in order to form partial boundaries. The case of noncontiguous datasets does
not affect the skyline identification process and a single origin point can be used for each class
as described in the general case.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
111

(a)

(b)

FIGURE 67: (A) CONVEX DATASET; (B) BANANA DATASET.

6.2.3. Decision Boundary Construction

The boundary construction process uses the skyline points retrieved in the previous step and uses
them to estimate the decision boundaries. The construction process is based on four different
approaches as presented below.

1. SKY-nearest neighbor (SKY–NN): This is the simplest case where the decision is made
based on the K-NN paradigm (Figure 68 (a)) by retrieving the k nearest skyline points.
This method does not make any further computations to produce a boundary, but it uses
the skyline points that were retrieved from the previous step as is. This approach is the
easiest case to be scaled up in more than two dimensions due to the simplicity and the
inherited properties of the K-NN paradigm.

2. Parzen-window method: The Parzen approach, visualized in Figure 68 (b) computes the
probability that a point belongs to a certain class, based on the set of skyline points. It is
a probabilistic approach that estimates a distribution or data points via a linear combination
of kernels centered on the observed points of the skyline. We note that in this case only
the simple skyline is used and not any variation like the probabilistic skyline.

(a)

(b)

FIGURE 68: (A) THE CASE OF SKY-NEAREST NEIGHBOR (SKY-NN) APPROACH; (B) THE CASE OF PARZEN-WINDOW APPROACH.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
112

3. Dual curve with Polynomial Curve Fitting: In this method, we use a curve-fitting method to
compute a curve (polynomial function) Figure 69 that best fits to our data, which in this
case, are the skyline points. This case computes two curves, one for each class. A factor
of importance is the degree of the polynomial function.

FIGURE 69: THE CASE OF POLYNOMIAL CURVE FITTING APPROACH.

4. Single curve with Polynomial Curve Fitting: Throughout our experimental phase, we
observed that many and in some cases even all of the skyline points are a subset of the
support vectors used by the final SVM (Figure 70 (a)). Based on this observation, this
approach uses the skyline points identified from the two classes, to compute one curve or
a straight line in the case presented in Figure 70 (b). This final curve (line) resembles an
SVM, but it is different. It can be considered as an approximate vector similar to an SVM
that can be easily computed in big data environments.

(a)

(b)

FIGURE 70: (A) THE SKYLINE POINTS IN COMPARISON TO THE SVM POINTS; (B) THE SEPARATING LINE PRODUCED FROM BOTH SKYLINE

SETS.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
113

6.2.4. Classification Task

After computing the decision boundaries, the classification phase starts. From the previous phase
there exist two sets of points or curves that depict to the decision boundaries. During the
classification process, for each point we want to classify, we compute its distance from each
boundary line, or its probability based on the skyline points. The exact approach is described
below.

1. SKY-Nearest Neighbor (SKY–NN): From each of the two sets of skyline points we retrieve
the k-closest points to the point under consideration. Its class can be defined based on
two alternatives, either by majority voting or by computing the total distance of the point
under consideration from all the selected points of each class. The set from which the
point has the smallest distance determines its class.

2. Parzen-window method: This method computes the probability of a point to belong to the
one or the other class based on the two sets of skyline points that were retrieved. After
computing the probability for the two sets of skyline points, the method assigns the point
to the class with the highest probability.

3. Dual curve with Polynomial Curve-fitting: In this case, there exist two curves and thus two
polynomial functions. Each function receives as input the x-value of the point under
consideration. Both functions produce a y-value which is compared to the y-value of the
point under consideration. The point will belong to the class where its y-value is closer to
the one produced by the polynomial function.

4. Single curve with Polynomial Curve-fitting: In this case, we use the skyline points from
both classes to produce a single curve and in the simplest case that we examine, a straight
line. The function that represents the line receives the x-value of the point under
consideration as input. It produces a y-value, which is compared to the y-value of the point.
Depending on whether or not the y-value under consideration is greater or smaller than
the y-value produced by the function we can infer the class that the point belongs to.

As described and presented with the previous figures, the model can be easily visualized and
explained. This gives the user the ability to understand its structure and explain its output reducing
the chances to produce a biased algorithm. Moreover, the boundaries can be easily transferred
either in the form of a set of points or in a polynomial function and re-optimized easily in a new
system if needed. Note that the computation of skylines on each class is independent and thus
parallelization can be achieved. Since the proposed method is based on skyline queries, it is
applicable in every environment that the skyline queries exist, like the text dataspace, which has
an alphanumerical order.

The most important fact is that the skyline queries produce a small number of points, relative to
the original dataset thus, the proposed method uses a very small number of points from the
original dataset to estimate the boundaries. More precisely, in a 2 M dataset with two balanced
classes our approach needs 14 points for each, which equals to 28 points in total. The small
number of points needed to define the boundaries consecutively leads to a small number of
computations during the identification of the class of a new point.

6.3. Experiments

This section presents the time needed to perform a classification task and the accuracy of our
proposed method. Our intention is to show how this method behaves in close or overlapping
clusters since in separable clusters 100% accuracy can be achieved. In this study we focused on
two dimensional datasets since the case of high dimensional datasets would be greatly benefit by
additionally studying if and how the representative and approximate skyline query computation
approaches would assist in the computation of decision boundaries. In our experimentation, we
used three synthetic and one real dataset consisting of a large number of points in order to
describe how our method behaves in big data environments. Both datasets consist of two
balanced classes. The synthetic datasets are randomly generated following a Gaussian
distribution, the classes have a varying overlapping factor in order to demonstrate how our method
performs and consists of 1 M points in total. The real dataset can be retrieved from [463] and has
labeled data that describes if a person is female or male based on their height and weight. It

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
114

consists of 10,000 points and its classes have a high level of overlap. For a ground truth accuracy
on the three datasets, we performed a classification task using python open-source tools for
applying the k-NN, naïve Bayes and SVM classifiers. In the case of the SVM classifier we used a
linear kernel and a C-value of 1. We selected those classifiers because they resemble the SKY–
NN, Parzen and polynomial fit approaches that we follow. The proposed method is implemented
in Java SE and all the experiments were performed with an Intel Core i5 with 6 GB RAM.

For the synthetic datasets that consist of 1 M points the naïve Bayes approach finished in less
than a second, the SVM took several minutes (Table 28 with time in milliseconds) and the k-NN
did not finish in a reasonable time. This behavior reveals the problems that arise in a classification
task due to the large number of computations needed in an environment with a large number of
points. In terms of accuracy, both naïve Bayes and SVM achieved 100% accuracy as presented
in Table 29. For the real dataset which consists of 10,000 points all algorithms were able to
produce a result in a reasonable time (Table 28 with time in milliseconds). Their accuracy is
around 90% (Table 29) since the classes of the dataset have a high degree of overlap.

 k-NN Naïve-Bayes SVM

Synthetic Dataset I (in ms) DNF 918 362,255

Synthetic Dataset II (in ms) DNF 449 173,397

Synthetic Dataset III (in ms) DNF 493 175,627

Real Dataset (in ms) 500 20 1500

TABLE 28: TIME NEEDED TO COMPUTE THE DECISION BOUNDARIES.

In section 6.2 we discussed about the approaches of retrieving the skyline points in order to
construct the boundaries and perform the classification process. Nevertheless, there are many
fine-tune approaches on how many or which of the skyline points are needed to be used in the
decision process for each point. Retrieving the k-NN skyline points requires 𝑂(𝑛) time and

assuming that there are m points to be classified, the total overhead will be 𝑚 ∗ 𝑂(𝑛) . The
complexity of the polynomial curve-fitting approach depends on the method that is selected.

 k-NN Naïve-Bayes SVM

Synthetic Dataset I (in ms) DNF 100.00 100.00

Synthetic Dataset II (in ms) DNF 100.00 100.00

Synthetic Dataset III (in ms) DNF 100.00 100.00

Real Dataset (in ms) 91.13 87.97 92.13

TABLE 29: ACCURACY WITH PYTHON AND R FRAMEWORK.

After we outlined the various approaches that can be followed, we present (Table 30 and Table
31) the total time (in milliseconds) needed to identify the boundaries and perform a classification
task, using three skyline points. For the polynomial case, the degree of the function is two. As
presented the SKY–NN method is the fastest, while the Parzen performs better in larger datasets
and the polynomial approach in smaller ones. Because the SKY–SVM is not applicable with
opposite skyline, for continuity, the time and accuracy metrics will be presented at the end of each
subsection that follows.

Skyline Mode SKY-NN Parzen Polyn.

Single 2751 3999 12,438

Double 5423 6513 11,306

Opposite 4659 5180 13,048

Smart 4256 5360 15,833

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
115

TABLE 30: TOTAL TIME NEEDED ON AVERAGE TO PERFORM A CLASSIFICATION TASK ON THE SYNTHETIC DATASETS.

Skyline Mode SKY-NN Parzen Polyn.

Single 57 103.56 89.6

Double 180.9 251.07 225.32

Opposite 117.87 201.65 178.9

Smart 70.16 160.58 105.3

TABLE 31: TOTAL TIME NEEDED TO PERFORM A CLASSIFICATION TASK ON THE REAL DATASET.

Taking into account the previously mentioned state-of-the-art classifiers, our method is faster than
the k-NN and the SVM, but slower than the naïve Bayes. In terms of accuracy, as it will be
presented, it achieves remarkable results achieving 100% accuracy in many cases. Those results
are achieved at a reasonable time by using a small number of points, during the classification
process, due to the skyline. This is ideal for a classification task in a big data environment allowing
our approach to scale up in even bigger datasets where an k-NN or an SVM classifier may struggle
to perform.

6.3.1. Synthetic Dataset I

The synthetic dataset (Figure 71) was constructed to have a large number of points in order to
present how the method behaves in classifying a large dataset. The first of the synthetic datasets
(Figure 71) is the one that stresses our method the most since the two classes slightly overlap.

FIGURE 71: THE SINGLE SKYLINE ON THE SYNTHETIC DATASET I.

As presented in Table 32, Table 33, Table 34, Table 35, the Parzen approach outperforms the
SKY–NN approach. This reveals that in this slightly overlapping scenario the distance metric that
is used in the SKY–NN approach does not always infer the correct prediction in comparison to
the probabilistic nature of the Parzen approach. As far as the skyline identification method the
single (Table 32) and double (Table 33) skyline approaches perform worse than the opposite
(Table 34) and smart (Table 35) skyline, especially when the number k of selected points is small.

Method
k

1 2 3 4 5 6

SKY-NN (%) 73.24 85.77 89.76 86.71 84.83 83.17

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
116

Parzen (%) 94.66 99.70 99.91 99.98 99.99 99.99

TABLE 32: SINGLE SKYLINE ON SYNTHETIC DATASET I.

Method
k

1 2 3 4 5 6

SKY-NN (%) 91.01 93.87 93.87 93.78 93.48 93.23

Parzen (%) 99.06 99.68 99.83 99.86 99.89 99.91

TABLE 33: DOUBLE SKYLINE ON SYNTHETIC DATASET I.

Method
k

1 2 3 4 5 6

SKY-NN (%) 99.99 99.99 99.99 99.99 99.99 99.99

Parzen (%) 99.94 99.96 99.98 99.99 99.99 99.99

TABLE 34: OPPOSITE SKYLINE ON SYNTHETIC DATASET I.

Method
k

1 2 3 4 5 6

SKY-NN (%) 99.98 99.98 99.98 99.98 99.97 99.96

Parzen (%) 99.97 99.99 99.99 100 99.99 100

TABLE 35: SMART SKYLINE ON SYNTHETIC DATASET I.

The polynomial curve-fitting approach (Table 36) shows that even with a small degree polynomial
curves the method performs well, and its accuracy increases as the polynomial degree increases
since it better describes the overlapping regions. From all the skyline approaches, the single
skyline performs best, since the selected skyline points best describe the boundaries.

Degree
Single

Skyline

Double

Skyline

Opposite

Skylines

Smart

Skylines

2-nd 95.42 99.87 94.44 82.50

3-rd 98.57 60.60 99.82 98.39

5-th 99.92 99.86 99.72 97.99

7-th 99.92 99.33 99.81 93.49

8-th 99.95 99.86 99.91 99.90

11-th 99.99 99.97 99.93 99.92

TABLE 36: POLYNOMIAL CURVE FITTING ON SYNTHETIC DATASET I.

The Table 37 shows that the SKY–SVM approach is very accurate and performs better than the
polynomial curve-fitting approach. Despite that the SKY–SVM is slower that the SKY–NN and
Parzen approach.

Method Single Skyline Double Skyline Smart Skylines

Accuracy 99.99 99.92 97.65

Time 7270 8068 8182

TABLE 37: SKY-SVM ON SYNTHETIC DATASET I.

6.3.2. Synthetic Dataset II

The second synthetic dataset (Figure 72) is an easier case than the previous one for our method,
since the classes are very close, but not overlapping. In the single skyline (Table 38) the
probabilistic approaches perform better. The double skyline (Table 39), which defines the
boundaries better by using more points, works considerably better than all the methods, while the
methods on Table 40 and Table 41 perform very well even with a small k value

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
117

FIGURE 72: THE SINGLE SKYLINE ON THE SYNTHETIC DATASET II.

Method
k

1 2 3 4 5 6

SKY-NN (%) 99.98 99.96 99.87 99.82 99.75 99.69

Parzen (%) 100 100 100 100 100 100

TABLE 38: SINGLE SKYLINE ON SYNTHETIC DATASET II

Method
K

1 2 3 4 5 6

SKY-NN (%) 100 100 99.99 99.99 99.98 99.97

Parzen (%) 100 100 100 100 100 100

TABLE 39: DOUBLE SKYLINE ON SYNTHETIC DATASET II.

Method
k

1 2 3 4 5 6

SKY-NN (%) 100 100 100 100 100 100

Parzen (%) 100 100 100 100 100 100

TABLE 40: OPPOSITE SKYLINE ON SYNTHETIC DATASET II.

Method
k

1 2 3 4 5 6

SKY-NN (%) 100 100 100 100 100 100

Parzen (%) 100 100 100 100 100 100

TABLE 41: SMART SKYLINE ON SYNTHETIC DATASET II.

This time, for the polynomial curve-fitting approach (Table 42), we present the cases where the
minimum polynomial degree can achieve the best results. In this case, even a 2nd degree
polynomial achieves 100% accuracy.

Degree
Single

Skyline

Double

Skyline

Opposite

Skylines

Smart

Skylines

2-nd 100.00 100.00 99.94 100.00

3-rd 33.62 100.00 99.44 72.88

TABLE 42: POLYNOMIAL CURVE FITTING ON SYNTHETIC DATASET II.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
118

Table 43 presents the accuracy and the time needed by the SKY–SVM method to perform a
classification task. The method performs better than in the Dataset I with slightly better time.

Method Single Skyline Double Skyline Smart Skylines

Accuracy (%) 100 100 99.90

Time (ms) 7719 8779 7864

TABLE 43: SKY-SVM ON SYNTHETIC DATASET II.

6.3.3. Synthetic Dataset III

The third and last synthetic dataset Figure 73) is the easiest case for our method, since the
classes have a degree of clearance between them in such a way that a straight line could easily
distinguish them. In this case all the approaches (Table 44, Table 45, Table 46, Table 47) and
especially the one of Table 44 and Table 45 perform very well.

FIGURE 73: THE DATASET III.

Method
k

1 2 3 4 5 6

SKY-NN (%) 99.95 99.91 99.96 99.97 99.98 99.97

Parzen (%) 99.68 99.79 99.86 99.93 99.97 99.98

TABLE 44: SINGLE SKYLINE ON SYNTHETIC DATASET III.

Method
k

1 2 3 4 5 6

SKY-NN (%) 99.99 99.98 99.99 99.99 99.99 99.99

Parzen (%) 99.84 99.85 99.86 99.86 99.86 99.88

TABLE 45: DOUBLE SKYLINE ON SYNTHETIC DATASET III.

Method
k

1 2 3 4 5 6

SKY-NN (%) 100 100 100 100 100 100

Parzen (%) 100 100 100 100 100 100

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
119

TABLE 46: OPPOSITE SKYLINE ON SYNTHETIC DATASET III.

Method
k

1 2 3 4 5 6

SKY-NN 100 100 100 100 100 100

Parzen 100 100 100 100 100 100

TABLE 47: SMART SKYLINE ON SYNTHETIC DATASET III.

Again—as with the previous approaches—the polynomial curve-fitting approach (Table 48),
performs very well for a 3rd degree polynomial.

Degree Single Skyline Double Skyline Opposite Skylines Smart Skylines

2-nd 100 100 100 100

TABLE 48: POLYNOMIAL CURVE FITTING ON SYNTHETIC DATASET III.

Table 49 reveals that the SKY–SVN with the single skyline is the fastest and more accurate
between the double and smart skyline.

Method Single Skyline Double Skyline Smart Skylines

Accuracy (%) 100 100 99.97

Time (ms) 7763 10019 10229

TABLE 49: SKY-SVM ON SYNTHETIC DATASET III.

6.3.4. Real Dataset

The real dataset (Figure 74) is the one that stresses our method the most since the classes have
a high degree of overlap. Additionally, as it will be presented, the correlated nature of the classes
also affects the performance of our methods. In this case the value of k skyline points that are
selected for the classification task varies from 7 to 13, since it gives more accurate results.

FIGURE 74: THE REAL DATASET.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
120

As presented in Table 50, in this scenario the SKY–NN approach performs better than the Parzen
approach. In addition, the SKY–NN method needs less Skyline points to infer to a correct result
than the Parzen method showing that the SKY–NN method is more suitable in cases where the
dataset is corelated. The double (Table 51) and opposite (Table 52) skyline perform worse than
the single and the performance of the Parzen approach degrades significantly. This is due to the
large number of skyline points produced that do not always infer the correct result. The SKY–NN
method with the smart (Table 53) skyline has slightly better results than the double and opposite
skyline even with a smaller number of skyline points meaning that the smart skyline defines the
boundaries better with fewer points in this case. Overall, the single and smart skyline have
comparable results on this dataset.

Method
k

7 8 9 10 11 12 13

SKY-NN (%) 92.40 91.80 91.30 90.83 90.87 90.80 90.93

Parzen (%) 71.67 72.73 77.27 83.20 86.37 87.40 87.67

TABLE 50: SINGLE SKYLINE ON REAL DATASET.

Method
k

7 8 9 10 11 12 13

SKY-NN (%) 86.66 85.96 86.1 86.4 86.3 86.3 86.1

Parzen (%) 65.66 67.2 69.13 71.8 74.36 76.76 78.56

TABLE 51: DOUBLE SKYLINE ON REAL DATASET.

Method
k

7 8 9 10 11 12 13

SKY-NN (%) 87.66 88.1 88 88.1 88.06 87.76 87.23

Parzen (%) 62.76 62.23 61.46 60.66 61.06 61.8 64.56

TABLE 52: OPPOSITE SKYLINE ON REAL DATASET.

Method
k

7 8 9 10 11 12 13

SKY-NN (%) 89.46 89.23 89.06 88.76 89 89.03 89.06

Parzen (%) 76.32 77.23 82.247 88.4 91.32 92.5 92.78

TABLE 53: SMART SKYLINE ON REAL DATASET.

The polynomial curve-fitting approach (Table 54) shows that in this case a small degree
polynomial gives better results in comparison to the case of the synthetic dataset.

Degree
Single

Skyline

Double

Skyline

Opposite

Skylines

Smart

Skylines

2-nd 87 72 69 86

3-rd 82.04 68 65 81.5

TABLE 54: POLYNOMIAL CURVE FITTING ON REAL DATASET.

The accuracy of the SKY–SVM approach for the real dataset is presented in Table 55. As with
the synthetic dataset the SKY–SVM approach is very accurate but takes more time to infer to a
result than the SKY–NN and Parzen approach. In this case the single and smart skyline have
similar results.

Method
Single

Skyline

Double

Skyline

Smart

Skylines

Accuracy (%) 90.06 85.3 90.03

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
121

Method
Single

Skyline

Double

Skyline

Smart

Skylines

Time (ms) 87.5 100.5 99.8

TABLE 55: SKY-SVM ON REAL DATASET.

With the use of the three synthetic datasets we present that the factor of distance between the
classes does not affect the final result as opposed to the overlapping factor of classes. Based on
Dataset II and III, which are not overlapping and have a variable distance between the classes,
we see that all the proposed approaches can always infer to a correct result. In the case of the
Dataset I for which the classes slightly overlap, we can see that the methods which are affected
the most are the single and double skyline which need a larger number of k to infer to a correct
result, while the opposite and smart can still infer the correct result even with a small number of
k. The use of larger k-value due to the overlapping nature of classes is also presented in the case
of the real dataset.

Overall, the SKY–NN approach is faster than the Parzen approach, while the number of k selected
skyline points affects both methods. In addition, the SKY–NN performs better in small datasets
while the Parzen in the bigger ones. In a correlated dataset, the SKY–NN performs better with
fewer skyline points while the Parzen approach performs better in non-correlated datasets. The
Polynomial approach works best when the polynomial function can describe the boundaries of
the dataset and, in general, it is slower than the SKY–NN and Parzen method. The correlation of
the dataset affects the degree of the polynomial function. The SKY–SVM approach is the slowest
method and is not affected by the correlation but achieves very good results. In cases where the
classes of the dataset have a high degree of overlap, we need to use more skyline points to infer
in a correct result. The single skyline approach almost in all cases achieves very good results with
the least cost. The double and opposite skyline in many cases achieve very good results, but the
cost is double. The smart skyline is a good alternative to the single skyline which, with small
number of additional skyline points, can achieve better results.

6.4. Conclusions and Future Work

To the best of author’s knowledge, this is the first work that studies the use of skyline queries in
a classification process. Through our experimentation we showed that the proposed method is
faster than the k-NN and the SVM, but slower than the naïve Bayes, yet having comparable
accuracy when classifying large datasets. The full potential of our proposed method is visible on
big datasets in which the decision boundaries are better described, and the number of points
selected by the skyline operator, in comparison to the whole dataset, is small. Due to the small
number of points used to describe the decision boundaries, our approach needs to perform only
a small number of comparisons in order to infer the correct class. This makes our approach fast
and capable of handling very large datasets for which the performance of other classifiers
degrades. This was presented with the case of the K-NN approach, which did not succeed to infer
in a result at a reasonable time for the case of 1 M synthetic datasets. With the use of different
skyline identification methods, we showed that with a broader set of skyline points we can achieve,
in some cases, better results, but with additional computation cost. Our approach can also
parallelize the decision boundary computation since we can compute independently and in
parallel the skyline for each class which can be beneficial when using big data technologies like
Hadoop. In addition, the decision boundaries can be easily updated and optimized due to the
small number of points that consists them. Moreover, due to the properties and variants of the
skyline, the number of points will remain small despite the increase of the dataset size or the
dimensionality. Finally, the decision boundaries can be easily visualized and interpreted by a
human being allowing him to fully understand the reason for which our approach inferred to a
specific result in each case.

Furthermore, our approach could be expanded by defining a metric of uncertainty in the
classification process. Based on this metric the proposed method could automatically classify
points and simultaneously compute a factor of uncertainty in every decision. If the uncertainty for
classifying a given point drops to a certain threshold, human assistance could be requested. The
user could easily identify the class and allow the system to refine the decision boundaries instantly
and on the fly.

CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION

Christos Kalyvas-Kasopatidis –October 2020
122

Finally, in this work we studied the case of high cardinality datasets. A future research approach
is to study the case of high dimensional and high cardinality datasets which stresses the notion
of skyline queries even more. In the case of high dimensional spaces in conjunction with high
cardinality datasets the skyline query might return a large number of points that do not necessarily
contribute, in respect with the other points of the skyline set, in defining a better decision boundary.
In such a case, we can study if the approximate and representative skyline approaches can help
in defining an accurate decision boundary, more efficiently, with a reduced set of skyline points.

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Christos Kalyvas-Kasopatidis –October 2020
123

7. CONCLUSIONS AND FUTURE DIRECTIONS

This section concludes about the research conducted in this PhD Thesis and additionally presents
some future directions for research in skyline queries based on the work presented.

7.1. Conclusions

In many cases, the amount of information available and the rate of change may hide the optimal
and truly desired solution. This reveals the need of a mechanism that will highlight the best options
to choose among every possible scenario. Based on this the skyline query, which can be
considered as a multi-objective optimization approach in database systems, was proposed. The
skyline queries have a great importance in retrieving the optimal set from a given dataset, under
give criteria. This mechanism is based on Pareto Optimality and retrieves the best options of a
dataset by identifying the objects that present the optimal combination of the characteristics of the
dataset. The research community is working in numerous topics in the field of skyline queries . As
the technology advances some of these topics are Parallel and Distributed Computing, Big Data
environments, Data Mining and Machine Learning which gives the opportunity of research in
cutting edge research areas.

This PhD Thesis tries to give a horizontal overview on the research area of skyline queries
reasoning about data, big data, big data management and supervised learning, under the
spectrum of skyline queries which is a multi-objective optimization approach that can be part of
decision support system. The main contribution of this Thesis is focused on five different topics:

• study the state-of-the art work on skyline queries to identify the research community trends
and interests

• analyse the various data sources and the requirements that a maritime information system
has

• propose a new skyline query method that considers the temporal properties of the dataset

• research new approaches in handling data over big data environments and especially in
SpatialHadoop

• efficient estimate the decision boundaries in a classification process

A first step on our research approach was to study the state-of-the art work related to the skyline
family and the various applications that were proposed based on numerous environments and
data-specific applications. This led to the work,

• Kalyvas, C., & Tzouramanis, T. (2017). A survey of skyline query processing. arXiv preprint
arXiv:1704.01788.

through which we identified the research trends that revealed the topics that are most interesting
in the research community.

The next step was to study the nature of the data that exist in order to understand the overall
complex nature of them and identify key areas of research that lead to the work,

• Kalyvas, C., Kokkos, A., & Tzouramanis, T. (2017). A survey of official online sources of high-quality
free-of-charge geospatial data for maritime geographic information systems applications.
Information Systems, 65, 36-51

through which we identified the complexity of combining data from different sources, that time and
location are the common key dimensions in almost every dataset and the need of new queries
and the deployment of existing ones over new environments.

From those two studies we manage to identify three research topics related to skyline queries
over temporal data, big data environments and supervised learning. The first of those studies, as
presented in,

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Christos Kalyvas-Kasopatidis –October 2020
124

• Kalyvas, C., Tzouramanis, T., & Manolopoulos, Y. (2017, April). Processing skyline queries in
temporal databases. In Proceedings of the Symposium on Applied Computing (pp. 893-899).

reasons about the time variable over skyline queries and how this impacts the skyline result set.
The next study reasons about the need of spatial-aware big data processing environments and
how this can assist in the computation of skyline and the resource intensive reverse skyline query,
as presented in

• Kalyvas, C., & Maragoudakis, M. (2019). Skyline and reverse skyline query processing in
SpatialHadoop. Data & Knowledge Engineering, 122, 55-80.

Finally, through the first two studies we came across the difficulty in finding and producing labeled
data that lead as to propose a new mechanism to identify decision boundaries and classify data
using the properties of skyline queries, as presented in

• Kalyvas, C., & Maragoudakis, M. (2020). A Skyline-based Decision Boundary Estimation Method
for Binominal Classification in Big Data. Computation, 8.3:80.

• Kalyvas, C., & Maragoudakis, M. (2020, September). A Skyline-based Decision Boundary
Estimation Method for Binominal Classification in Big Data. In 2020 5th South-East Europe Design
Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-
CECNSM). IEEE.

An overview of the contribution of this Thesis is presented in Table 56.

Objective Chapter Contribution Publication

1 2

An extensive study on the skyline queries, its variations
that consists the skyline family and the various approaches
that are applicable in specific environments and useful
insights on open research topics that skyline queries can
be applied.

[464]

2 3

An extensive study, classification, analysis of restrictions in
use and distribution on the various available data sources
that can be used in a maritime information system and
useful insights on open research topics that skyline
queries can be applied.

[451]

3 4
The proposal of a new type of skyline query named
“Temporal Skyline” which integrates the dimension of time
in a skyline query

[465]

4 5
The proposal of Skyline and Reverse Skyline Queries over
the SpatialHadoop which encompasses indexing
mechanisms in Hadoop

[108]

5 6
The proposal of a decision boundary estimation method
that is based on skyline queries for binominal classification

[115, 116]

TABLE 56: OVERALL PHD THESIS CONTRIBUTIONS

Overall, the extensive study on [464] present the state of the art work related to skyline query

computation. At first it presents the fundamental algorithms in skyline query computation and the
basic distinction between index and non-index-based algorithms. This work also highlights the
two different approaches of research in skyline queries. The first approach is related with the need
to answer queries that are similar to the skyline queries and thus forming a family of skyline-
related queries Some of the queries that form the skyline query family are the Constrained Skyline
Queries, Dynamic Skyline Queries (DSQ), Spatial Skyline Queries (SSQ), Reverse Skyline
Queries (RSQ), Group-by and Join Skyline Query, Skyline Queries Over Joins, Top-k Skyline
Query, Thick Skyline Query, K-representative and Distance-based Representative Skylines, ε-
Skyline, Enumerating and k-dominant Queries and the k-Skyband Queries.The second approach
tries to find solutions for applying the skyline query in specific environments. Those environments
can be parallel and distributed computing, wireless sensor networks and subspace skyline
computation or data specific environments like skyline queries over uncertain data or metric

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Christos Kalyvas-Kasopatidis –October 2020
125

spaces. Moreover, this study highlights the research direction on skyline queries and assists the
reader to identify the research gaps that are needed to be studied.

Due to the large research related to data-related application of skyline queries a study was
conducted [451] to give a better understanding of which are the major data types that exist and

identify the need to propose new queries to answer specific questions. Alongside, the restriction
on use and distribution of those data was studied. Through this study was identified that time is
an important aspect of data giving us the opportunity to study the skyline queries over temporal
data. Furthermore, most of the datasets have a very large number of rows directing us that there
is the need to study the skyline queries over the field of big data. Since we did not identify a large
number of streaming data, we studied the case of skyline queries over Hadoop based
environments. Finally, the problem of finding and creating label dataset in big data environments
lead us to propose a skyline-based decision boundary estimation method.

As previously mentioned, the variable of time is an important aspect of data. Based on this
observation the temporal skyline [465], tries to answer the skyline query taking into account time.

The temporal skyline differentiates from the original BBS algorithm and uses the 3d-Rtree instead
of the standard R-tree and additionally uses a modified dominance function. One example in
which the temporal skyline can be very useful is the case of a hotel reservation system in which
the availability and price of rooms heavily depends on the date. Through our study we identified
that the results of temporal skyline queries can be quite different from the original skyline providing
more useful results to the user. In addition, depending on the nature of the dataset and the
existence of many unique intervals the size of the resulted query may be affected More
particularly, in the extreme case where all time intervals in the dataset are distinct and non-
overlapping the algorithm must traverse the entire tree and return all points. In this case Big Data
processing approaches may be suitable. In the extreme case where all the time intervals are
identical, the algorithm becomes the initial simple skyline query.

One of the technologies that was created to efficiently handle big data is Hadoop. With the broad
adoption of Hadoop researchers continued to explore new ways to improve and expand its
capabilities. One of the existing research directions is to design new technologies that incorporate
well known indexing mechanisms into Hadoop. One of those technologies is SpatialHadoop which
is continuously enhance with new type of queries. Based on this, in [108] we proposed an

improved skyline query algorithm and enchased SpatialHadoop with reverse skyline queries. In
this way we showed that we can perform skyline and reverse skyline queries over very large
datasets by using the indexing capabilities of SpatiaHadoop. Through this work we identified that
SpatialHadoop is a great framework to experiment with various queries over MapReduce since it
supports a large number of indexes and space-filling curves, it can efficiently compute the
resource demanding reverse skyline query and since it indexes the datasets can answer
consecutive queries faster in comparison to cases with a non-indexed dataset.

At last, taking into account the rapid advances in data mining and machine learning we observed
that skyline queries can be effectively used in a classification process. Based on the optimality of
the skyline queries we used the skyline points to form the decision boundaries in a binominal
classification process [115, 116]. The benefits of this approach is that the skyline set of points is

small even in large datasets thus, the number of comparisons needed to infer to a result in a
classification process will be small allowing the proposed method to be deployed in big data
environments where the size of the dataset is very large. Moreover, the small number of points,
that form the decision boundaries, makes the re-use and transferring and updating of boundaries
an easy task. In overall, the SKY-NN approach is faster than the Parzen approach, while the
number of k selected skyline points affects both methods. SKY-NN performs better in correlated
datasets while the Parzen approach performs better in non-correlated. The SKY-SVM approach
has consistent highly accurate results but is slower than the SKY-NN and Parzen approach. In
addition, with high degree of overlap, more skyline points are needed with the most affected
methods to be the single and double skyline. Through our study we have sawn better results with
different skyline identification methods but with additional computation cost.

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Christos Kalyvas-Kasopatidis –October 2020
126

7.2. Future Directions

This PhD Thesis has contributed in the fields of data discovery, data management, big data

processing, data mining and machine learning. Through the study of the state of the art work in

the field of skyline queries [464] and the analysis of the various data sources [451] that exist, in

relation to a maritime information system, we identified a large number of research topics that

could be further studied. The first research topics among those involve the enhancement of the

skyline query family with temporal skyline queries [465], taking into account the parameter of time

which is quite of an importance in data analytics. The second one involved the identification of

specialized indexing structures, like SpatialHadoop for big data processing and the proposal of

algorithms for computing the skyline and the even more resource demanding reverse skyline

query over large datasets [108], like the OpenStreetMap All_nodes. The third one, due to the issue

of lacking large sets of labeled data, lead us to use the properties of skyline queries to build a

classifier that efficiently works under big data environments and efficiently estimates decision

boundary [115, 116].

In addition to the woks [465], [108], [115, 116] derived from the data analysis [451] and the state-

of-the-art work in skyline queries [464] numerous potential research topics where derived. Related

with Temporal skylines [465] the future work involves a study on the impact on the performance
of the queries under the existence of many objects with relatively small or large time interval
lifespans , the introduction of efficient algorithms for extending other skyline query variants that
can be also applied to temporal data and the support of the so called why-not reverse skyline
query that will aim to make a product (time-varying query point) interesting to a customer (time-
varying why-not point) by modifying the product features (query attributes) and/or the customer
preferences.

With regards the work on SpatialHadoop, a future study would involve the proposal of algorithms
for similar queries such as reverse k-skyband and ranked reverse queries over SpatialHadoop. In
addition, since SpatialHadoop is also capable of supporting temporal data, the temporal skyline
and temporal reverse skyline query can be studied. Moreover, a future study would involve the
applicability and performance aspects of the z-order based skyline algorithm Z-SKY and the
Quad-Tree based skyline algorithm in comparison to MapReduce SKY-MR. Finally, it can be
studied if ANN (Approximate Nearest Neighbor) mapreduced-based approaches are useful in
identifying skyline queries in SpatialHadoop and Hadoop in general.

With regards to the work related with the decision boundary estimation through the use of skyline
queries a future work involves the expansion of the proposed approach by defining a metric of
uncertainty in the classification process. If the uncertainty for classifying a given point drops to a
certain threshold, human assistance could be requested. Finally, a separate study should be done
to identify if and how the proposed approach can assist in training of Neural Networks.

Based on the outcomes of this PhD Thesis we identified the following major future research
directions:

• Temporal skyline over SpatialHadoop – The temporal skyline [465] retrieves the skyline
query taking into account the dimension of time. Nevertheless, if the time intervals on the
dataset are distinct the temporal skyline will return a large part of the dataset. This can be
computationally intensive in very large datasets. Since SpatiaHadoop development is
working to add the time parameter in their indexing mechanism a great future research
direction would be to enhance SpatialHadoop with temporal skyline queries.

• Skyline queries and neural networks - Since neural networks have gained attentions again
the attention of the research community after the AI winter, a good research approach
would be to investigate the detection of skyline points through the use of neural networks.
Such an approach could infer with high probability if a point belongs to the skyline set.
Similar approaches [466] try to reduce the search space by using skyline filters based on
neural networks.

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Christos Kalyvas-Kasopatidis –October 2020
127

• Intelligent big data management – The latest trends on database research and machine
learning have come up with new database systems [467] that take into account the
distribution of data. A core part of this implementation is the use of learned sorting
algorithms [468]. Since there are numerous skyline algorithms that rely on the sorting of
the dataset to identify the skyline an interesting research direction would be to study the
use of this sorting algorithm in skyline query computation.

• Data representation – Through our research on the data sources we identified that storing,
managing and processing such vast information is a complicated task. One trade-off
between the information that those datasets provide in total is accuracy over time. A
primary goal would be to study how accurate we want our data to be in different real-life
applications and if the accuracy we want depends on time. Then, through sampling or
pattern extraction techniques we can maintain a fair trade between accuracy and dataset
size for each real-life application. The reduced dataset size will allow us to makes
computations, predictions or pattern identification faster allowing us to find better solutions
in less time.

• Decision Optimization - Skyline queries are a multi-objective optimization approach that
retrieves the optimal solutions over a large number of possible solutions. In many cases
the objectives are contradicting which is usual in decision making. In addition, there are a
lot cases that decisions are made under biased environments. The use of skyline queries
can assist in identifying the optimal solutions in order to make a more precise and bias-
free decision.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
128

BIBLIOGRAPHY

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE

transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[2] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm for skyline queries,” in

Proceedings of the 2003 ACM SIGMOD international conference on Management of data, 2003, pp. 467–478.

[3]Papadias, D., Tao, Y., Fu, G., and Seeger, B. , “Progressive skyline computation in database systems,” ACM

Transactions on Database Systems (TODS), vol. 30, no. 1, pp. 41–82, 2005.

[4] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction. Springer Science & Business Media,

2012.

[5] H.-T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” Journal of the ACM

(JACM), vol. 22, no. 4, pp. 469–476, 1975.

[6] J. L. Bentley, H.-T. Kung, M. Schkolnick, and C. D. Thompson, “On the average number of maxima in a set of

vectors and applications,” Journal of the ACM (JACM), vol. 25, no. 4, pp. 536–543, 1978.

[7] O. Barndorff-Nielsen and M. Sobel, “On the distribution of the number of admissible points in a vector random

sample,” Theory of Probability & Its Applications, vol. 11, no. 2, pp. 249–269, 1966.

[8] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings 17th international conference

on data engineering. IEEE, 2001, pp. 421–430.

[9] J. L. Bentley, K. L. Clarkson, and D. B. Levine, “Fast linear expected-time algorithms for computing maxima and

convex hulls,” Algorithmica, vol. 9, no. 2, pp. 168–183, 1993.

[10] P. Godfrey, R. Shipley, J. Gryz et al., “Maximal vector computation in large data sets,” in VLDB, vol. 5, 2005, pp.

229–240.

[11] J. L. Bentley, “Multidimensional divide-and-conquer,” Communications of the ACM, vol. 23, no. 4, pp. 214–229,

1980.

[12] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is β€�nearest neighborβ€� meaningful?” in

International conference on database theory. Springer, 1999, pp. 217–235.

[13] R. E. Bellman, Adaptive control processes: a guided tour. Princeton university press, 2015, vol. 2045.

[14] E. Dellis and B. Seeger, “Efficient computation of reverse skyline queries.” in VLDB, vol. 7, 2007, pp. 291–302.

[15] C. Li, B. C. Ooi, A. K. Tung, and S. Wang, “Dada: a data cube for dominant relationship analysis,” in Proceedings

of the 2006 ACM SIGMOD international conference on Management of data, 2006, pp. 659–670.

[16] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: Efficient skyline computation over sliding windows,” in

21st International Conference on Data Engineering (ICDE’05). IEEE, 2005, pp. 502–513.

[17] X. Huang and C. S. Jensen, “In-route skyline querying for location-based services,” in Proceedings of the 4th

international conference on Web and Wireless Geographical Information Systems, ser. W2GIS’04. Springer-Verlag,

2005, pp. 120–135.

[18] H.-P. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: A multi-preference path planning approach,” in

2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, 2010, pp. 261–272.

[19] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for qos-based web service composition,” in

Proceedings of the 19th international conference on World wide web, 2010, pp. 11–20.

[20] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, “Efficient computation of the skyline cube,” in

Proceedings of the 31st international conference on Very large data bases, 2005, pp. 241–252.

[21] B.-C. Chen, K. LeFevre, and R. Ramakrishnan, “Privacy skyline: Privacy with multidimensional adversarial

knowledge,” University of Wisconsin-Madison Department of Computer Sciences, Tech. Rep., 2007.

[22] X. Lin, J. Xu, and H. Hu, “Authentication of location-based skyline queries,” in Proceedings of the 20th ACM

international conference on Information and knowledge management, 2011, pp. 1583–1588.

[23] L. Chen and X. Lian, “Dynamic skyline queries in metric spaces,” in Proceedings of the 11th international

conference on Extending database technology: Advances in database technology. ACM, 2008, pp. 333–343.

[24] C.-Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified computation of skylines with partially-ordered domains,” in

Proceedings of the 2005 ACM SIGMOD international conference on Management of data, 2005, pp. 203–214.

[25] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query processing for incomplete data,” in 2008 IEEE

24th International Conference on Data Engineering. IEEE, 2008, pp. 556–565.

[26] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data,” in Proceedings of the 33rd

international conference on Very large data bases. Citeseer, 2007, pp. 15–26.

[27] B. Jiang, J. Pei, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data: model and bounding-pruning-

refining methods,” Journal of Intelligent Information Systems, vol. 38, no. 1, pp. 1–39, 2012.

[28] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query processing techniques in relational database

systems,” ACM Computing Surveys (CSUR), vol. 40, no. 4, pp. 1–58, 2008.

[29] A. N. Papadopoulos and Y. Manolopoulos, Nearest Neighbor Search:: A Database Perspective. Springer Science

& Business Media, 2006.

[30] C. Böhm and H.-P. Kriegel, “Determining the convex hull in large multidimensional databases,” in International

Conference on Data Warehousing and Knowledge Discovery. Springer, 2001, pp. 294–306.

[31] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for spatial data,” in 2015 IEEE 31st

international conference on Data Engineering. IEEE, 2015, pp. 1352–1363.

[32] D. Pertesis and C. Doulkeridis, “Efficient skyline query processing in spatialhadoop,” Information Systems, vol. 54,

pp. 325–335, 2015.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
129

[33] D. Borthakur, “The hadoop distributed file system: Architecture and design,” Hadoop Project Website, vol. 11, no.

2007, p. 21, 2007.

[34] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceedings of the 1984 ACM SIGMOD

international conference on Management of data, 1984, pp. 47–57.

[35] K.-L. Tan, P.-K. Eng, B. C. Ooi et al., “Efficient progressive skyline computation,” in VLDB, vol. 1, 2001, pp. 301–

310.

[36] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for middleware,” Journal of computer and

system sciences, vol. 66, no. 4, pp. 614–656, 2003.

[37] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online algorithm for skyline queries,” in

VLDB’02: Proceedings of the 28th International Conference on Very Large Databases. Elsevier, 2002, pp. 275–286.

[38] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: an efficient and robust access method for

points and rectangles,” in Proceedings of the 1990 ACM SIGMOD international conference on Management of data,

1990, pp. 322–331.

[39] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in Proceedings of the 1995 ACM

SIGMOD international conference on Management of data, 1995, pp. 71–79.

[40] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” ACM Transactions on Database Systems

(TODS), vol. 24, no. 2, pp. 265–318, 1999.

[41] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in ICDE, vol. 3, 2003, pp. 717–719.

[42] I. Bartolini, P. Ciaccia, and M. Patella, “Salsa: computing the skyline without scanning the whole sky,” in

Proceedings of the 15th ACM international conference on Information and knowledge management, 2006, pp. 405–

414.

[43] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and P. J. Haas, “Interactive data

analysis: The control project,” Computer, vol. 32, no. 8, pp. 51–59, 1999.

[44] P. Mishra and M. H. Eich, “Join processing in relational databases,” ACM Computing Surveys (CSUR), vol. 24,

no. 1, pp. 63–113, 1992.

[45] M. Zhang and R. Alhajj, “Skyline queries with constraints: Integrating skyline and traditional query operators,” Data

& Knowledge Engineering, vol. 69, no. 1, pp. 153 – 168, 2010.

[46] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in VLDB, 2006, pp. 751–762.

[47] M. Sharifzadeh, C. Shahabi, and L. Kazemi, “Processing spatial skyline queries in both vector spaces and spatial

network databases,” ACM Transactions on Database Systems (TODS), vol. 34, no. 3, p. 14, 2009.

[48] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Computational geometry: algorithms and

applications. Springer, 2008.

[49] K. Deng, X. Zhou, and H. T. Shen, “Multi-source skyline query processing in road networks,” in 2007 IEEE 23rd

international conference on data engineering. IEEE, 2007, pp. 796–805.

[50] B. Zheng, K. C. Lee, and W.-C. Lee, “Location-dependent skyline query,” in The Ninth International Conference

on Mobile Data Management (mdm 2008). IEEE, 2008, pp. 148–155.

[51] K. Kodama, Y. Iijima, X. Guo, and Y. Ishikawa, “Skyline queries based on user locations and preferences for

making location-based recommendations,” in GIS-LBSN, 2009, pp. 9–16.

[52] X. Guo, Y. Ishikawa, and Y. Gao, “Direction-based spatial skylines,” in Proceedings of the Ninth ACM International

Workshop on Data Engineering for Wireless and Mobile Access. ACM, 2010, pp. 73–80.

[53] W. Son, S. won Hwang, and H.-K. Ahn, “Mssq: Manhattan spatial skyline queries,” in SSTD, 2011, pp. 313–329.

[54] W. Son, S.-W. Hwang, and H.-K. Ahn, “Mssq: Manhattan spatial skyline queries,” Information Systems, vol. 40,

pp. 67–83, 2014.

[55] M. S. Islam, R. Zhou, and C. Liu, “On answering why-not questions in reverse skyline queries,” in 2013 IEEE 29th

International Conference on Data Engineering (ICDE). IEEE, 2013, pp. 973–984.

[56] W. Jin, M. Ester, Z. Hu, and J. Han, “The multi-relational skyline operator,” in ICDE, 2007, pp. 1276–1280.

[57] M. Magnani and I. Assent, “From stars to galaxies: skyline queries on aggregate data,” in EDBT, 2013, pp. 477–

488.

[58] C. Li, N. Zhang, N. Hassan, S. Rajasekaran, and G. Das, “On skyline groups,” in CIKM, 2012, pp. 2119–2123.

[59] N. Zhang, C. Li, N. Hassan, S. Rajasekaran, and G. Das, “On skyline groups,” IEEE Transactions on Knowledge

and Data Engineering, vol. 26, no. 4, pp. 942–956, 2013.

[60] W. Jin, J. Han, and M. Ester, “Mining thick skylines over large databases,” in PKDD, 2004, pp. 255–266.

[61] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering method for very large databases,”

ACM sigmod record, vol. 25, no. 2, pp. 103–114, 1996.

[62] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most representative skyline operator,” in ICDE,

2007, pp. 86–95.

[63] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applications,” Journal of computer

and system sciences, vol. 31, no. 2, pp. 182–209, 1985.

[64] D. S. Hochbaum, “Approximation algorithms for the set covering and vertex cover problems,” SIAM Journal on

Computing, vol. 11, no. 3, pp. 555–556, 1982.

[65] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative skyline,” in ICDE, 2009, pp. 892–903.

[66] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” Theoretical Computer Science,

vol. 38, no. 0, pp. 293 – 306, 1985.

[67] D. S. Hochbaum, Approximation algorithms for NP-hard problems. PWS Publishing Co., 1996.

[68] T. Xia, D. Zhang, and Y. Tao, “On skylining with flexible dominance relation,” in ICDE, 2008, pp. 1397–1399.

[69] V. Koltun and C. H. Papadimitriou, “Approximately dominating representatives,” Theoretical Computer Science,

vol. 371, no. 3, pp. 148–154, 2007.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
130

[70] C. S. Jensen, C. E. Dyreson, M. Böhlen, J. Clifford, R. Elmasri, S. K. Gadia, F. Grandi, P. Hayes, S. Jajodia,

W. Käfer et al., “The consensus glossary of temporal database conceptsβ€”february 1998 version,” in Temporal

Databases: Research and Practice. Springer, 1998, pp. 367–405.

[71] B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-evolving data,” ACM Computing Surveys

(CSUR), vol. 31, no. 2, pp. 158–221, 1999.

[72] G. Ozsoyoglu and R. T. Snodgrass, “Temporal and real-time databases: A survey,” IEEE Transactions on

Knowledge and Data Engineering, vol. 7, no. 4, pp. 513–532, 1995.

[73] D. B. Lomet and B. Salzberg, “Transaction-time databases.” 1993.

[74] T. Tzouramanis, Y. Manolopoulos, and N. Lorentzos, “Overlapping b+-trees: an implementation of a transaction

time access method,” Data & Knowledge Engineering, vol. 29, no. 3, pp. 381–404, 1999.

[75] M. A. Nascimento and M. H. Dunham, “Indexing valid time databases via b+-trees,” IEEE Transactions on

Knowledge and Data Engineering, vol. 11, no. 6, pp. 929–947, 1999.

[76] C. H. Goh, H. Lu, B.-C. Ooi, and K.-L. Tan, “Indexing temporal data using existing b+-trees,” Data & Knowledge

Engineering, vol. 18, no. 2, pp. 147–165, 1996.

[77] C. P. Kolovson and M. Stonebraker, Segment indexes: Dynamic indexing techniques for multi-dimensional

interval data. ACM, 1991, vol. 20, no. 2.

[78] R. Bliujute, C. S. Jensen, S. Saltenis, and G. Slivinskas, “Light-weight indexing of general bitemporal data,” in

Scientific and Statistical Database Management, 2000. Proceedings. 12th International Conference on. IEEE, 2000,

pp. 125–138.

[79] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-temporal indexing for large multimedia applications,” in

Multimedia Computing and Systems, 1996., Proceedings of the Third IEEE International Conference on. IEEE, 1996,

pp. 441–448.

[80] Y. Tao and D. Papadias, “The mv3r-tree: A spatio-temporal access method for timestamp and interval queries,”

in Proceedings of Very Large Data Bases Conference (VLDB), 11-14 September, Rome, 2001.

[81] H.-P. Kriegel, M. Pötke, and T. Seidl, “Managing intervals efficiently in object-relational databases.” in VLDB,

2000, pp. 407–418.

[82] B. Jiang and J. Pei, “Online interval skyline queries on time series,” in 2009 IEEE 25th International Conference

on Data Engineering. IEEE, 2009, pp. 1036–1047.

[83] Y. Morimoto and M. A. Siddique, “Skyline sets query and its extension to spatio-temporal databases,” in

International Workshop on Databases in Networked Information Systems. Springer, 2010, pp. 317–329.

[84] W. Gropp and E. Lusk, “Using mpi-2,” in 12th European PVM/MPI Users’ Group Meeting-Recent Advances in

Parallel Virtual Machine and Message Passing Interface, 2005.

[85] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of the

ACM, vol. 51, no. 1, pp. 107–113, 2008.

[86] S. J. Kang, S. Y. Lee, and K. M. Lee, “Performance comparison of openmp, mpi, and mapreduce in practical

problems,” Advances in Multimedia, vol. 2015, p. 7, 2015.

[87] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel spectral clustering in distributed systems,” IEEE

transactions on pattern analysis and machine intelligence, vol. 33, no. 3, pp. 568–586, 2011.

[88] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory programming,” IEEE

computational science and engineering, vol. 5, no. 1, pp. 46–55, 1998.

[89] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with cuda,” Queue, vol. 6, no. 2,

pp. 40–53, 2008.

[90] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for heterogeneous computing

systems,” Computing in science & engineering, vol. 12, no. 3, pp. 66–73, 2010.

[91] H. Im, J. Park, and S. Park, “Parallel skyline computation on multicore architectures,” Information Systems,

vol. 36, no. 4, pp. 808–823, 2011.

[92] S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh, “Scalable parallelization of skyline computation for multi-

core processors,” in Data Engineering (ICDE), 2015 IEEE 31st International Conference on. IEEE, 2015, pp. 1083–

1094.

[93] J. Lee and S.-W. Hwang, “Scalable skyline computation using a balanced pivot selection technique,” Information

Systems, vol. 39, pp. 1–21, 2014.

[94] S. Liknes, A. Vlachou, C. Doulkeridis, and K. Nørvåg, “Apskyline: Improved skyline computation for multicore

architectures.” in DASFAA (1), 2014, pp. 312–326.

[95] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based space partitioning for efficient parallel skyline

computation,” in Proceedings of the 2008 ACM SIGMOD international conference on Management of data. ACM, 2008,

pp. 227–238.

[96] H. Köhler, J. Yang, and X. Zhou, “Efficient parallel skyline processing using hyperplane projections,” in

Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM, 2011, pp. 85–96.

[97] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman, “Parallel skyline queries,” Theory of Computing Systems,

vol. 57, no. 4, pp. 1008–1037, 2015.

[98] K. S. Bøgh, I. Assent, and M. Magnani, “Efficient gpu-based skyline computation,” in Proceedings of the Ninth

International Workshop on Data Management on New Hardware. ACM, 2013, p. 5.

[99] W. Choi, L. Liu, and B. Yu, “Multi-criteria decision making with skyline computation,” in Information Reuse and

Integration (IRI), 2012 IEEE 13th International Conference on. IEEE, 2012, pp. 316–323.

[100] K. S. Bøgh, S. Chester, and I. Assent, “Skyalign: a portable, work-efficient skyline algorithm for multicore and gpu

architectures,” The VLDB Journal, vol. 25, no. 6, pp. 817–841, 2016.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
131

[101] B. Zhang, S. Zhou, and J. Guan, “Adapting skyline computation to the mapreduce framework: Algorithms and

experiments,” Database Systems for Adanced Applications, pp. 403–414, 2011.

[102] L. Chen, K. Hwang, and J. Wu, “Mapreduce skyline query processing with a new angular partitioning approach,”

in Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International.

IEEE, 2012, pp. 2262–2270.

[103] Y. Tao, W. Lin, and X. Xiao, “Minimal mapreduce algorithms,” in Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data. ACM, 2013, pp. 529–540.

[104] Y. Park, J.-K. Min, and K. Shim, “Parallel computation of skyline and reverse skyline queries using mapreduce,”

Proceedings of the VLDB Endowment, vol. 6, no. 14, pp. 2002–2013, 2013.

[105] K. Mullesgaard, J. L. Pedersen, H. Lu, and Y. Zhou, “Efficient skyline computation in mapreduce,” in 17th

International Conference on Extending Database Technology (EDBT), 2014, pp. 37–48.

[106] J. Zhang, X. Jiang, W.-S. Ku, and X. Qin, “Efficient parallel skyline evaluation using mapreduce,” IEEE

Transactions on Parallel and Distributed Systems, vol. 27, no. 7, pp. 1996–2009, 2016.

[107] H.-C. Ryu and S. Jung, “Mapreduce-based skyline query processing scheme using adaptive two-level grids,”

Cluster Computing, pp. 1–12, 2017.

[108] C. Kalyvas and M. Maragoudakis, “Skyline and reverse skyline query processing in spatialhadoop,” Data &

Knowledge Engineering, vol. 122, pp. 55–80, 2019.

[109] Z. Huang, Y. Xiang, B. Zhang, and X. Liu, “A clustering based approach for skyline diversity,” Expert Systems with

Applications, vol. 38, no. 7, pp. 7984–7993, 2011.

[110] T. Özyer, M. Zhang, and R. Alhajj, “Integrating multi-objective genetic algorithm based clustering and data

partitioning for skyline computation,” Applied Intelligence, vol. 35, no. 1, pp. 110–122, 2011.

[111] W. Dhifli, N. E. I. Karabadji, and M. Elati, “Evolutionary mining of skyline clusters of attributed graph data,”

Information Sciences, vol. 509, pp. 501–514, 2020.

[112] W. Zheng, X. Lian, L. Zou, L. Hong, and D. Zhao, “Online subgraph skyline analysis over knowledge graphs,”

IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 7, pp. 1805–1819, 2016.

[113] S. F. Nimmy, M. S. Kamal, M. I. Hossain, N. Dey, A. S. Ashour, and F. Shi, “Neural skyline filtering for imbalance

features classification,” International Journal of Computational Intelligence and Applications, vol. 16, no. 03, p.

1750019, 2017.

[114] A. Alem, Y. Dahmani, and B. Mebarek, “Skyline computation for improving nave bayesian classifier in intrusion

detection system,” Journal homepage: http://iieta. org/journals/isi, vol. 24, no. 5, pp. 513–518, 2019.

[115] C. Kalyvas and M. Maragkoudakis, “A skyline-based decision boundary estimation method for binominal

classification in big data,” in 2020 5th South-East Europe Design Automation, Computer Engineering, Computer

Networks and Social Media Conference (SEEDA-CECNSM), accepted. IEEE, 2020.

[116] C. Kalyvas and M. Maragkoudakis , “A skyline-based decision boundary estimation method for binominal

classification in big data,” Computation, vol. 8, no. 3, p. 80, 2020.

[117] J. Pei, W. Jin, M. Ester, and Y. Tao, “Catching the best views of skyline: A semantic approach based on decisive

subspaces,” in VLDB, 2005, pp. 253–264.

[118] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi, “On the

computation of multidimensional aggregates,” in VLDB, 1996, pp. 506–521.

[119] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh, “Data

cube: A relational aggregation operator generalizing group-by, cross-tab, and sub totals,” Data Min. Knowl. Discov.,

vol. 1, no. 1, pp. 29–53, 1997.

[120] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao, J. X. Yu, and Q. Zhang, “Towards

multidimensional subspace skyline analysis,” ACM Trans. Database Syst., vol. 31, no. 4, pp. 1335–1381, 2006.

[121] T. Xia and D. Zhang, “Refreshing the sky: the compressed skycube with efficient support for frequent updates,” in

SIGMOD Conference, 2006, pp. 491–502.

[122] T. Xia, D. Zhang, Z. Fang, C. X. Chen, and J. Wang, “Online subspace skyline query processing using the

compressed skycube,” ACM Trans. Database Syst., vol. 37, no. 2, p. 15, 2012.

[123] J. Pei, A. W.-C. Fu, X. Lin, and H. Wang, “Computing compressed multidimensional skyline cubes efficiently,” in

ICDE, 2007, pp. 96–105.

[124] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient computation of skylines in subspaces,” in ICDE, 2006, p. 65.

[125]Tao, Y., Xiao, X., and Pei, J. , “Efficient skyline and top-k retrieval in subspaces,” IEEE Trans. Knowl. Data

Eng., vol. 19, no. 8, pp. 1072–1088, 2007.

[126] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang, “On high dimensional skylines,” in EDBT,

2006, pp. 478–495.

[127]Chan, C. Y., Jagadish, H. V., Tan, K. L., Tung, A K., and Zhang, Z. , “Finding k-dominant skylines in high

dimensional space,” in SIGMOD Conference, 2006, pp. 503–514.

[128] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching the skyline in z order,” in VLDB, 2007, pp. 279–290.

[129] V. Gaede and O. Günther, “Multidimensional access methods,” ACM Comput. Surv., vol. 30, no. 2, pp. 170–231,

1998.

[130] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer, “Integrating the ub-tree into a database system

kernel,” in VLDB, 2000, pp. 263–272.

[131] K. C. K. Lee, W.-C. Lee, B. Zheng, H. Li, and Y. Tian, “Z-sky: an efficient skyline query processing framework

based on z-order,” VLDB J., vol. 19, no. 3, pp. 333–362, 2010.

[132] M. D. Morse, J. M. Patel, and H. V. Jagadish, “Efficient skyline computation over low-cardinality domains,” in

VLDB, 2007, pp. 267–278.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
132

[133] S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable skyline computation using object-based space partitioning,”

in SIGMOD Conference, 2009, pp. 483–494.

[134] J. Lee and S. won Hwang, “Bskytree: scalable skyline computation using a balanced pivot selection,” in EDBT,

2010, pp. 195–206.

[135] W.-T. Balke, U. Güntzer, and J. X. Zheng, “Efficient distributed skylining for web information systems,” in EDBT,

2004, pp. 256–273.

[136] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung, “Progressive skylining over web-accessible databases,” Data Knowl.

Eng., vol. 57, no. 2, pp. 122–147, 2006.

[137] G. Trimponias, I. Bartolini, D. Papadias, and Y. Yang, “Skyline processing on distributed vertical decompositions,”

IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp. 850–862, 2013.

[138] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, “Skyline queries against mobile lightweight devices in manets,” in

ICDE, 2006, p. 66.

[139] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis, “Skypeer: Efficient subspace skyline computation over

distributed data,” in ICDE, 2007, pp. 416–425.

[140] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou, “Parallel distributed processing of constrained skyline queries

by filtering,” in ICDE, 2008, pp. 546–555.

[141] L. Chen, B. Cui, and H. Lu, “Constrained skyline query processing against distributed data sites,” IEEE Trans.

Knowl. Data Eng., vol. 23, no. 2, pp. 204–217, 2011.

[142] L. Zhu, Y. Tao, and S. Zhou, “Distributed skyline retrieval with low bandwidth consumption,” IEEE Trans. Knowl.

Data Eng., vol. 21, no. 3, pp. 384–400, 2009.

[143] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker, “A scalable content-addressable network,” in

SIGCOMM, 2001, pp. 161–172.

[144] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “Baton: A balanced tree structure for peer-to-peer networks,” in VLDB,

2005, pp. 661–672.

[145] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. El Abbadi, “Parallelizing skyline queries for scalable

distribution,” in EDBT, 2006, pp. 112–130.

[146] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu, “Efficient skyline query processing on peer-to-peer networks,” in

ICDE, 2007, pp. 1126–1135.

[147] S. Wang, Q. H. Vu, B. C. Ooi, A. K. H. Tung, and L. Xu, “Skyframe: a framework for skyline query processing in

peer-to-peer systems,” VLDB J., vol. 18, no. 1, pp. 345–362, 2009.

[148] L. Chen, B. Cui, H. Lu, L. Xu, and Q. Xu, “isky: Efficient and progressive skyline computing in a structured p2p

network,” in ICDCS, 2008, pp. 160–167.

[149] B. Cui, L. Chen, L. Xu, H. Lu, G. Song, and Q. Xu, “Efficient skyline computation in structured peer-to-peer

systems,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 7, pp. 1059–1072, 2009.

[150] B. C. Ooi, K.-L. Tan, C. Yu, and S. Bressan, “Indexing the edges - a simple and yet efficient approach to high-

dimensional indexing,” in PODS, 2000, pp. 166–174.

[151] S. Wang, C. Yu, and B. C. Ooi, “Compressing the index - a simple and yet efficient approximation approach to

high-dimensional indexing,” in WAIM, 2001, pp. 291–304.

[152] M. Hazewinkel, Encyclopaedia of Mathematics. Springer, 1993, vol. 9.

[153] D. Sacharidis, S. Papadopoulos, and D. Papadias, “Topologically sorted skylines for partially ordered domains,”

in ICDE, 2009, pp. 1072–1083.

[154] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu, “Efficient skyline querying with variable user

preferences on nominal attributes,” PVLDB, vol. 1, no. 1, pp. 1032–1043, 2008.

[155] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang, “Online skyline analysis with dynamic preferences on nominal

attributes,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 1, pp. 35–49, 2009.

[156] C. Lofi, K. E. Maarry, and W. Balke, “Skyline queries in crowd-enabled databases,” in Joint 2013 EDBT/ICDT

Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, 2013, pp. 465–476.

[157] M. J. Atallah and Y. Qi, “Computing all skyline probabilities for uncertain data,” in PODS, 2009, pp. 279–287.

[158] M. J. Atallah, Y. Qi, and H. Yuan, “Asymptotically efficient algorithms for skyline probabilities of uncertain data,”

ACM Trans. Database Syst., vol. 36, no. 2, p. 12, 2011.

[159] D. Kim, H. Im, and S. Park, “Computing exact skyline probabilities for uncertain databases,” IEEE Trans. Knowl.

Data Eng., vol. 24, no. 12, pp. 2113–2126, 2012.

[160] X. Lian and L. Chen, “Monochromatic and bichromatic reverse skyline search over uncertain databases,” in

SIGMOD Conference, 2008, pp. 213–226.

[161]Lian, X., and Chen, L. , “Reverse skyline search in uncertain databases,” ACM Trans. Database Syst., vol. 35,

no. 1, 2010.

[162] X. Ding and H. Jin, “Efficient and progressive algorithms for distributed skyline queries over uncertain data,” in

ICDCS, 2010, pp. 149–158.

[163]Ding, X., and Jin, H. , “Efficient and progressive algorithms for distributed skyline queries over uncertain data,”

IEEE Trans. Knowl. Data Eng., vol. 24, no. 8, pp. 1448–1462, 2012.

[164] D. Sacharidis, A. Arvanitis, and T. K. Sellis, “Probabilistic contextual skylines,” in ICDE, 2010, pp. 273–284.

[165] Q. Zhang, P. Ye, X. Lin, and Y. Zhang, “Skyline probability over uncertain preferences,” in EDBT, 2013, pp. 395–

405.

[166] Y. Zhang, W. Zhang, X. Lin, B. Jiang, and J. Pei, “Ranking uncertain sky: The probabilistic top-k skyline operator,”

Inf. Syst., vol. 36, no. 5, pp. 898–915, 2011.

[167] C. Lofi, U. Güntzer, and W.-T. Balke, “Efficient computation of trade-off skylines,” in EDBT, 2010, pp. 597–608.

[168] X. Lin, Y. Zhang, W. Zhang, and M. A. Cheema, “Stochastic skyline operator,” in ICDE, 2011, pp. 721–732.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
133

[169] W. Zhang, X. Lin, Y. Zhang, M. A. Cheema, and Q. Zhang, “Stochastic skylines,” ACM Trans. Database Syst.,

vol. 37, no. 2, p. 14, 2012.

[170] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data stream systems,” in PODS,

2002, pp. 1–16.

[171] Y. Tao and D. Papadias, “Maintaining sliding window skylines on data streams,” IEEE Trans. Knowl. Data Eng.,

vol. 18, no. 2, pp. 377–391, 2006.

[172] M. D. Morse, J. M. Patel, and W. I. Grosky, “Efficient continuous skyline computation,” Inf. Sci., vol. 177, no. 17,

pp. 3411–3437, 2007.

[173] W. W.-S. Wei, Time series analysis. Addison-Wesley Redwood City, California, 1994.

[174] H. Lo and G. Ghinita, “Authenticating spatial skyline queries with low communication overhead,” in CODASPY,

2013, pp. 177–180.

[175] B.-C. Chen, R. Ramakrishnan, and K. LeFevre, “Privacy skyline: Privacy with multidimensional adversarial

knowledge,” in VLDB, 2007, pp. 770–781.

[176] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Y. Halpern, “Worst-case background knowledge for

privacy-preserving data publishing,” in ICDE, 2007, pp. 126–135.

[177] S. Bothe, P. Karras, and A. Vlachou, “eskyline: processing skyline queries over encrypted data,” Proceedings of

the VLDB Endowment, vol. 6, no. 12, pp. 1338–1341, 2013.

[178] Q. Yu and A. Bouguettaya, “Computing service skyline from uncertain qows,” IEEE T. Services Computing, vol. 3,

no. 1, pp. 16–29, 2010.

[179] S. Wang, Q. Sun, H. Zou, and F. Yang, “Particle swarm optimization with skyline operator for fast cloud-based

web service composition,” MONET, vol. 18, no. 1, pp. 116–121, 2013.

[180] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm intelligence, vol. 1, no. 1, pp. 33–57,

2007.

[181] J. R. Munkres, “Topology,” 2000.

[182] S. Brin, “Near neighbor search in large metric spaces,” in VLDB, 1995, pp. 574–584.

[183] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method for similarity search in metric spaces,”

in VLDB, 1997, pp. 426–435.

[184] L. Chen and X. Lian, “Efficient processing of metric skyline queries,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 21, no. 3, pp. 351–365, 2009.

[185] D. Fuhry, R. Jin, and D. Zhang, “Efficient skyline computation in metric space,” in EDBT, 2009, pp. 1042–1051.

[186] P. Godfrey, “Skyline cardinality for relational processing,” in FoIKS, 2004, pp. 78–97.

[187] S. Chaudhuri, N. N. Dalvi, and R. Kaushik, “Robust cardinality and cost estimation for skyline operator,” in ICDE,

2006, p. 64.

[188] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H. Tung, “Kernel-based skyline cardinality estimation,” in

SIGMOD Conference, 2009, pp. 509–522.

[189] J.-N. Hwang, S.-R. Lay, and A. Lippman, “Nonparametric multivariate density estimation: a comparative study,”

IEEE Transactions on Signal Processing, vol. 42, no. 10, pp. 2795–2810, 1994.

[190] C. Luo, Z. Jiang, W.-C. Hou, S. He, and Q. Zhu, “A sampling approach for skyline query cardinality estimation,”

Knowl. Inf. Syst., vol. 32, no. 2, pp. 281–301, 2012.

[191] P. Wu, D. Agrawal, Ö. Egecioglu, and A. El Abbadi, “Deltasky: Optimal maintenance of skyline deletions without

exclusive dominance region generation,” in ICDE, 2007, pp. 486–495.

[192] climatechange.cs.umn.edu, “Mesoscale Eddy Tracks,” http://climatechange.cs.umn.edu/eddies/index.html, 2016,

accessed 2016.08.30.

[193] emsa.europa.eu, “Long Range Identification and Tracking (LRIT) system,” http://www.emsa.europa.eu/-

component/flexicontent/117.html?Itemid=118, 2016, accessed 2016.08.30.

[194]europa.eu , “SafeSeaNet: Vessel traffic monitoring in E.U. waters,” http://www.emsa.europa.eu/ssn-main.html,

2016, accessed 2016.08.30.

[195]europa.eu , “ClearSeaNet: E.U. satellite-based oil spill and vessel detection service,” http://-

www.emsa.europa.eu/csn-menu.html, 2016, accessed 2016.08.30.

[196]europa.eu , “European Maritime Safety Agency,” http://www.emsa.europa.eu, 2016, accessed 2016.08.30.

[197] frontex.europa.eu, “European Border Surveillance system (EUROSUR),” http://frontex.europa.eu/intelligence/-

eurosur, 2016, accessed 2016.08.30.

[198] eda.europa.eu, “Maritime Surveillance (MARSUR),” https://www.eda.europa.eu/what-we-do/activities/activities-

search/maritime-surveillance-(marsur), 2016, accessed 2016.08.30.

[199]europa.eu , “European Defence Agency,” http://www.eda.europa.eu, 2016, accessed 2016.08.30.

[200] ec.europa.eu, “Common Information Sharing of the Environment (CISE),” http://ec.europa.eu/maritimeaffairs/-

policy/integrated_maritime_surveillance/index_en.htm, 2016, accessed 2016.08.30.

[201] copernicus.eu, “Copernicus: Europe’s eyes on Earth,” http://www.copernicus.eu, 2016, accessed 2016.08.30.

[202] ec.europa.eu, “Directorate-General for Maritime Affairs and Fisheries,” http://ec.europa.eu/dgs/-

maritimeaffairs_fisheries/, 2016, accessed 2016.08.30.

[203] maritimesurveillance.security-copernicus.eu, “Copernicus: supporting projects,” http://-

maritimesurveillance.security-copernicus.eu/fp7-supporting-projects, 2016, accessed 2016.08.30.

[204] myocean.eu, “MyOcean 2,” http://www.myocean.eu, 2016, accessed 2015.08.20 [currently redirected].

[205] en.wikipedia.org, “MyOcean 2,” https://en.wikipedia.org/wiki/MyOcean, 2016, accessed 2016.08.30.

[206] gisis.imo.org, “International Maritime Organization (IMO),” http://gisis.imo.org/Public/MCI/Default.aspx, 2016,

accessed 2016.08.30.

[207] pssa.imo.org, “Particularly Sensitive Sea Areas (PSSA),” http://pssa.imo.org/#/globe, 2016, accessed 2016.08.30.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
134

[208] sjofartsverket.se, “MONALISA 2.0: Securing the chain by intelligence at sea,” http://www.sjofartsverket.se/en/-

MonaLisa/MONALISA-20, 2016, accessed 2016.08.30.

[209] efficiensea.org, “EfficienSea: Efficient, Safe and Sustainable Traffic at Sea,” http://www.efficiensea.org, 2016,

accessed 2016.08.30.

[210] iala-aism.org, “Baltic Sea Safety (BaSSy),” http://www.iala-aism.org/wiki/iwrap/index.php/BaSSy_Project, 2016,

accessed 2016.08.30.

[211] archive.northsearegion.eu, “Safety at sea,” http://archive.northsearegion.eu/iiib/projectpresentation/details/-

&tid=34&theme=2, 2016, accessed 2016.08.30.

[212] navcen.uscg.gov, “U.S. Department of Homeland Security, Navigation Center: Automatic Identification System

(AIS) messages,” http://www.navcen.uscg.gov/?pageName=AISMessages, 2016, accessed 2016.08.30.

[213] en.wikipedia.org, “Wikipedia: Flag of convenience,” https://en.wikipedia.org/wiki/Flag_of_convenience, 2016,

accessed 2016.08.30.

[214] G. Pallotta, M. Vespe, and K. Bryan, “Vessel Pattern Knowledge Discovery from AIS Data: A Framework for

Anomaly Detection and Route Prediction,” Entropy, vol. 15, no. 6, pp. 2218–2245, 2013.

[215] J. Faghmous, M. Le, M. Uluyol, S. Chaterjee, and V. Kumar, “Parameter-Free Spatio-Temporal Data Mining to

Catalogue Global Ocean Dynamic,” in Proc. 13th IEEE Int. Conf. Data Mining, 2013, pp. 151–160.

[216] C. M. Bishop, Pattern Recognition and Machine Learning. Springer.

[217] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Elsevier, 2011.

[218] marinetraffic.com, “Marine Traffic: AIS Vessel Tracking,” http://www.marinetraffic.com, 2016, accessed

2016.08.30.

[219] vesseltracker.com, “Vesseltracker: Terrestrial and Satellite AIS Tracking Service in Realtime,” http://-

www.vesseltracker.com, 2016, accessed 2016.08.30.

[220] imisglobal.com, “IMIS GLOBAL: MariWeb,” http://www.imisglobal.com/mariweb, 2016, accessed 2016.08.30.

[221]imisglobal.com , “IMIS Global,” http://www.imisglobal.com/, 2016, accessed 2016.08.30.

[222] shipfinder.co, “ShipFinder: Live Marine Traffic Tracking App,” http://www.shipfinder.co, 2016, accessed

2016.08.30.

[223] fleetmon.com, “FleetMon: Live AIS Vessel Tracker,” http://www.fleetmon.com, 2016, accessed 2016.08.30.

[224] lloydslistintelligence.com, “Lloyd’s List Intelligence,” http://www.lloydslistintelligence.com, 2016, accessed

2016.08.30.

[225] vesselfinder.com, “Vessel Finder: Free AIS Ship Tracking of Marine Traffic,” http://www.vesselfinder.com, 2016,

accessed 2016.08.30.

[226] aishub.net, “AIS Hub data sharing center,” http://www.aishub.net, 2016, accessed 2016.08.30.

[227] ais.exploratorium.edu, “Exploratorium: San Francisco AIS Feed,” http://ais.exploratorium.edu:80, 2016, accessed

2016.08.30.

[228] imonumber.com, “IMO Number Database,” http://www.imonumber.com, 2016, accessed: 2016.03.14 [currently

redirected].

[229] shiplist.net, “Ship List,” http://www.shiplist.net, 2016, accessed: 2016.03.14 [currently redirected].

[230] shipnumber.com, “ShipNumber: Ship Number, IMO Number,” http://www.shipnumber.com, 2016, accessed

2016.08.30.

[231] equasis.org, “Equasis,” http://www.equasis.org, 2016, accessed 2016.08.30.

[232] veristar.com, “VeriSTAR: Fleet Monitoring Service,” http://www.veristar.com, 2016, accessed 2016.08.30.

[233] maritime-connector.com, “Maritime Connector,” http://maritime-connector.com, 2016, accessed 2016.08.30.

[234] grosstonnage.com, “GrossTonage,” http://grosstonnage.com, 2016, accessed 2016.03.14 [occasionally offline].

[235] protectedplanet.net, “Protected Planet: Explore Protected Areas,” http://www.protectedplanet.net, 2016, accessed

2016.08.30.

[236] iucn.org, “International union for conservation of nature (iUCN): Conservation tools,” https://www.iucn.org/-

resources/conservation-tools, 2016, accessed 2016.08.30.

[237] ec.europa.eu, “European Commission: The Natura 2000 network,” http://ec.europa.eu/environment/nature/-

natura2000/index_en.htm, 2016, accessed 2016.08.30.

[238] natura2000.eea.europa.eu, “Natura 2000 Network Viewer,” http://natura2000.eea.europa.eu/#, 2016, accessed

2016.08.30.

[239] cdr.eionet.europa.eu, “EIONET Repository: Natura Dataset,” http://cdr.eionet.europa.eu/gr/eu/n2000/envujeg6w,

2016, accessed 2016.08.30.

[240] globalgeopark.org, “UNESCO Global Geoparks Network,” http://www.globalgeopark.org/aboutGGN/list, 2016,

accessed 2016.08.30.

[241] gbif.org, “Global Biodiversity Information Facility,” http://www.gbif.org, 2016, accessed 2016.08.30.

[242] vertnet.org, “VertNet: Distributed Databases with Backbone,” http://vertnet.org, 2016, accessed 2016.08.30.

[243] nsf.gov, “NSF: National Science Foundation,” http://www.nsf.gov, 2016, accessed 2016.08.30.

[244] manisnet.org, “MaNIS: Mammal Networked Information System,” http://manisnet.org, 2016, accessed

2016.08.30.

[245] herpnet.org, “HerpNET: Global network of herpetological collections data,” http://herpnet.org, 2016, accessed

2016.08.30.

[246] fishnet2.net, “FishNet: Fish collections around the world,” http://fishnet2.net/aboutFishNet.html, 2016, accessed

2016.08.30.

[247] ornisnet.org, “ORNIS: Ornithological data,” http://www.ornisnet.org, 2016, accessed 2016.08.30.

[248] iobis.org, “OBIS: Ocean Biogeographic Information System,” http://www.iobis.org, 2016, accessed 2016.08.30.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
135

[249] unep-wcmc.org, “UNEP-WCMC: United Nations Environment Programme’s World Conservation Monitoring

Centre,” http://www.unep-wcmc.org, 2016, accessed 2016.08.30.

[250] unep.org, “United Nations Environment Programme,” http://www.unep.org, 2016, accessed 2016.08.30.

[251] reefbase.org, “ReefBase Directory,” http://www.reefbase.org/main.aspx, 2016, accessed 2016.08.30.

[252] fishbase.org, “FishBase,” http://www.fishbase.org, 2016, accessed 2016.08.30.

[253] biodiversity.europa.eu, “BISE: Biodiversity Information System for Europe,” http://www.biodiversity.europa.eu,

2016, accessed 2016.08.30.

[254] eunis.eea.europa.eu, “EUNIS: European Nature Information System,” http://eunis.eea.europa.eu, 2016, accessed

2016.08.30.

[255] emodnet.eu, “European Marine Observation and Data Network (EMODnet): Central Portal,” http://-

www.emodnet.eu, 2016, accessed 2016.08.30.

[256] emodnet-seabedhabitats.eu, “EMODnet: European Seabed Habitat Maps,” http://www.emodnet-

seabedhabitats.eu, 2016, accessed 2016.08.30.

[257] worldwildlife.org, “WWF: Conservation Science Data and Tools,” http://www.worldwildlife.org/pages/conservation-

science-data-and-tools, 2016, accessed 2016.08.30.

[258] iucnredlist.org, “The IUCN Red List of Threatened Species: Spatial Data,” http://www.iucnredlist.org/technical-

documents/spatial-data, 2016, accessed 2016.08.30.

[259] pleiades.stoa.org, “Pleiades: Ancient Places,” http://pleiades.stoa.org/places, 2016, accessed 2016.08.30.

[260] awmc.unc.edu, “Ancient World Mapping Center,” http://awmc.unc.edu/wordpress/map-files, 2016, accessed

2016.08.30.

[261] archaeocadastre.culture.gr, “Archaeological Cadastre,” http://archaeocadastre.culture.gr/el/data, 2016, accessed

2016.08.30.

[262] ascsa.edu.gr, “The American School of Classical Studies at Athens: Maps and GIS data for Corinth and Greece,”

http://www.ascsa.edu.gr/index.php/excavationcorinth/maps-and-gis-data-for-corinth-and-greece, 2016, accessed

2016.08.30.

[263] dare.ht.lu.se, “Digital Atlas of the Roman Empire,” http://dare.ht.lu.se, 2016, accessed 2016.08.30.

[264] commons.pelagios.org, “Pelagios Commons: Linked Open Geodata in the Humanities,” http://-

commons.pelagios.org, 2016, accessed 2016.08.30.

[265] whc.unesco.org, “UNESCO World Heritage list,” http://whc.unesco.org/en/list, 2016, accessed 2016.08.30.

[266] machuproject.eu, “MACHU: Managing Cultural Heritage Underwater,” http://www.machuproject.eu, 2016,

accessed 2016.08.30.

[267] ocean-energy-systems.org, “Ocean Energy Systems: Ocean Energy in the World,” https://www.ocean-energy-

systems.org/ocean-energy-in-the-world/, 2016, accessed 2016.08.30.

[268] windfarmaction.com, “Windfarm Action Group: World Windfarm List,” http://www.windfarmaction.com/world-

windfarm-lists.html, 2016, accessed 2016.08.30.

[269] cablemap.info, “Greg’s Cable Map,” http://www.cablemap.info, 2016, accessed 2016.08.30.

[270] telegeography.com, “TeleGeography: Submarine Cable Map,” https://www.telegeography.com/telecom-

resources/submarine-cable-map/index.html, 2016, accessed 2016.08.30.

[271] sccl.no, “Subsea cables consultants Ltd.” http://www.sccl.no/references.php, 2016, accessed 2016.08.30.

[272] iscpc.org, “International Cable Protection Committee: Cable Data,” https://www.iscpc.org/cable-data, 2016,

accessed 2016.08.30.

[273] kis-orca.eu, “KIS-ORCA: Interactive Map,” http://www.kis-orca.eu/map, 2016, accessed 2016.08.30.

[274] emodnet-humanactivities.eu, “EMODnet: Offshore Installations,” http://www.emodnet-humanactivities.eu/search-

results.php?dataname=Offshore+Installations, 2016, accessed 2016.08.30.

[275] prio.org, “PRIO: Geographical and Resource Datasets,” https://www.prio.org/Data/Geographical-and-Resource-

Datasets, 2016, accessed 2016.08.30.

[276] energy.usgs.gov, “USGS: World Petroleum Assessment,” http://energy.usgs.gov/OilGas/AssessmentsData/-

WorldPetroleumAssessment.aspx#3882216-data, 2016, accessed 2016.08.30.

[277] theodora.com, “Countries of the World: World Pipelines maps,” http://www.theodora.com/pipelines/-

world_oil_gas_and_products_pipelines.html, 2016, accessed 2016.08.30.

[278] bsu-bund.de, “Federal Bureau of Maritime Casualty Investigation in Germany,” http://www.bsu-bund.de/EN, 2016,

accessed 2016.08.30.

[279] hbmci.gov.gr, “Hellenic Bureau for Marine Casualties Investigation,” http://www.hbmci.gov.gr, 2016, accessed

2016.08.30.

[280] ntsb.gov, “National Transportation Safety Board: Marine Accidents Report,” http://www.ntsb.gov/investigations/-

AccidentReports/Pages/marine.aspx, 2016, accessed 2016.08.30.

[281]ntsb.gov , “National Transportation Safety Board: Marine Accidents Animation,” http://www.ntsb.gov/Pages/-

animations.aspx#MS, 2016, accessed 2016.08.30.

[282] en.wikipedia.org, “Wikipedia: List of maritime disasters,” http://en.wikipedia.org/wiki/List_of_maritime_disasters,

2016, accessed 2016.08.30.

[283] wrecksite.eu, “Wrecksite database,” http://www.wrecksite.eu/, 2016, accessed 2016.08.30.

[284] maiif.org, “The Marine Accident Investigator’s International Forum (MAIFF),” http://www.maiif.org/index.php/-

investigation-reports, 2016, accessed 2016.08.30.

[285] odin.tc, “Maritime Bulletin,” http://www.odin.tc/en2016/, 2016, accessed 2016.08.30.

[286] emsa.europa.eu, “European Maritime Safety Agency (EMSA),” http://www.emsa.europa.eu/implementation-

tasks/accident-investigation.html, 2016, accessed 2016.08.30.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
136

[287] itopf.com, “ITOPF: GIS Data Resources,” http://www.itopf.com/knowledge-resources/data-statistics/gis, 2016,

accessed 2016.08.30.

[288] incidentnews.noaa.gov, “NOAA: IncidentNews,” http://incidentnews.noaa.gov, 2016, accessed 2016.08.30.

[289] noaa.gov, “National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce,” http://-

www.noaa.gov, 2016, accessed 2016.08.30.

[290] response.restoration.noaa.gov, “NOAA: Office of Response and Restoration,” http://-

response.restoration.noaa.gov, 2016, accessed 2016.08.30.

[291] itfglobal.org, “International Transport Workers Federation,” http://www.itfglobal.org, 2016, accessed 2016.08.30.

[292] en.wikipedia.org, “Wikipedia: List of flags of convenience,” https://en.wikipedia.org/wiki/-

List_of_flags_of_convenience, 2016, accessed 2016.08.30.

[293] imo.org, “Port State Control,” http://www.imo.org/en/OurWork/MSAS/Pages/PortStateControl.aspx, 2016,

accessed 2016.08.30.

[294] parismou.org, “Europe and the north Atlantic Memorandum of Understanding (Paris MoU),” https://-

www.parismou.org/detentions-banning/current-detentions, 2016, accessed 2016.08.30.

[295] tokyo-mou.org, “Asia and the Pacific Memorandum of Understanding (Tokyo MoU),” http://www.tokyo-mou.org/-

inspections_detentions/psc_database.php, 2016, accessed 2016.08.30.

[296] acuerdolatino.int.ar, “Latin America Memorandum of Understanding (Acuerdo de Viña del Mar),” http://-

www.acuerdolatino.int.ar/ciala/index.php, 2016, accessed 2016.08.30.

[297] caribbeanmou.org, “Caribbean Memorandum of Understanding (Caribbean MoU),” http://-

www.caribbeanmou.org/, 2016, accessed 2016.08.30.

[298] abujamou.org, “West and Central Africa Memorandum of Understanding (Abuja MoU),” http://www.abujamou.org/-

index.php?pid=125disclaimer, 2016, accessed 2016.08.30.

[299] bsmou.org, “Black Sea Memorandum of Understanding (Black Sea MoU),” http://www.bsmou.org/database/,

2016, accessed 2016.08.30.

[300] medmouic.org, “Mediterranean Sea region Memorandum of Understanding (Mediterranean MoU),” http://-

www.medmouic.org, 2016, accessed 2016.08.30.

[301] iomou.org, “Indian Ocean Memorandum of Understanding (Indian Ocean MoU),” http://www.iomou.org/-

moumain.htm, 2016, accessed 2016.08.30.

[302] riyadhmou.org, “Riyadh Memorandum of Understanding (Riyadh MoU),” http://www.riyadhmou.org/-

basicsearch.html?lang=en, 2016, accessed 2016.08.30.

[303] uscg.mil, “USCG Memorandum of Understandings,” https://www.uscg.mil/auxiliary/administration/mou-

national.asp, 2016, accessed 2016.08.30.

[304] msi.nga.mil, “NGA Portal: Anti-shipping Activity Messages,” http://msi.nga.mil/NGAPortal/-

MSI.portal?_nfpb=true&_st=&_pageLabel=msi_portal_page_65, 2016, accessed 2016.08.30.

[305] programmableweb.com, “Programmable Web,” http://www.programmableweb.com/search/weather, 2016,

accessed 2016.08.30.

[306] worldweatheronline.com, “World Weather Online,” http://www.worldweatheronline.com, 2016, accessed

2016.08.30.

[307] wunderground.com, “Weather Underground,” http://www.wunderground.com/weather/api, 2016, accessed

2016.08.30.

[308] severe.worldweather.org, “Severe Weather Information Center,” http://severe.worldweather.org, 2016, accessed

2016.08.30.

[309] meteoalarm.eu, “Meteoalarm: Alerting Europe for extreme weather,” http://www.meteoalarm.eu, 2016, accessed

2016.08.30.

[310] wmo.asu.edu, “ASU World Meteorological Organization: Global Weather & Climate Extremes,” http://-

wmo.asu.edu, 2016, accessed 2016.08.30.

[311] earthobservatory.nasa.gov, “NASA: Earth Observatory,” http://earthobservatory.nasa.gov/GlobalMaps/-

?eocn=topnav, 2016, accessed 2016.08.30.

[312] ypeka.gr, “Hellenic Ministry of Environment, Energy and Climate Change (YPEKA): Air pollution reports,” http://-

www.ypeka.gr/Default.aspx?tabid=489&language=el-GR, 2016, accessed 2016.08.30.

[313] eea.europa.eu, “European Environment Agency (EEA): Air Quality Levels in Europe,” http://www.eea.europa.eu/-

themes/air/air-quality/map, 2016, accessed 2016.08.30.

[314]europa.eu , “European Environment Agency,” http://www.eea.europa.eu, 2016, accessed 2016.08.30.

[315] aws.amazon.com, “Daily Global Weather Measurements 1929-2009,” https://aws.amazon.com/datasets/daily-

global-weather-measurements-1929-2009-ncdc-gsod/, 2016, accessed 2016.08.30.

[316] pendientedemigracion.ucm.es, “Climatological Database for the World’s Oceans,” http://-

pendientedemigracion.ucm.es/info/cliwoc, 2016, accessed 2016.08.30.

[317] eca.knmi.nl, “European Climate Assessment & Dataset,” http://eca.knmi.nl, 2016, accessed 2016.08.30.

[318] gein.noa.gr, “Greek Institute of Geodynamics,” http://www.gein.noa.gr/el/teleutaia-anakoinothenta, 2016,

accessed 2016.08.30.

[319] emsc-csem.org, “The European-Mediterranean Seismological Centre (EMSC): Real-time earthquake

information,” http://www.emsc-csem.org, 2016, accessed 2016.08.30.

[320] geofon.gfz-potsdam.de, “GEOFON Program,” http://geofon.gfz-potsdam.de/mission, 2016, accessed 2016.08.30.

[321] earthquake.usgs.gov, “USGS: Earthquake Hazards Program,” http://earthquake.usgs.gov/data, 2016, accessed

2016.08.30.

[322] itic.ioc-unesco.org, “International Tsunami Information Center,” http://itic.ioc-unesco.org/-

index.php?option=com_content&view=category&layout=blog&id=1164&Itemid=1164, 2016, accessed 2016.08.30.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
137

[323] preview.grid.unep.ch, “Global Risk Data Platform On Natural Events,” http://preview.grid.unep.ch/index.php,

2016, accessed 2016.08.30.

[324] volcano.si.edu, “Volcanoes of the World,” http://volcano.si.edu, 2016, accessed 2016.08.30.

[325] msi.nga.mil, “NGA Portal: The World Port Index,” http://msi.nga.mil/NGAPortal/-

MSI.portal?_nfpb=true&_pageLabel=msi_portal_page_62&pubCode=0015, 2016, accessed 2016.08.30.

[326] wikimapia.org, “Wikimapia: Describing the world,” http://wikimapia.org, 2016, accessed 2016.08.30.

[327] ourairports.com, “OurAirports: Open Data,” http://ourairports.com/data, 2016, accessed 2016.08.30.

[328] openflights.org, “OpenFlights: Airport, airline and route data,” http://openflights.org/data.html, 2016, accessed

2016.08.30.

[329] segelflug.de, “WELT2000: Database of airports and waypoints worldwide,” http://www.segelflug.de/vereine/-

welt2000, 2016, accessed 2016.08.30.

[330] bluemarblegeo.com, “Blue Marble Geographics: World Data Map,” http://www.bluemarblegeo.com/products/-

world-map-data-download.php, 2016, accessed 2016.08.30.

[331] msi.nga.mil, “NGA Portal: Central Mediterranean Dataset,” http://msi.nga.mil/NGAPortal/-

DNC.portal?_nfpb=true&_st=&_pageLabel=dnc_portal_page_61®ionCode=09, 2016, accessed 2016.08.30.

[332] shoreline.noaa.gov, “NOAA Shoreline Website,” http://shoreline.noaa.gov, 2016, accessed 2016.08.30.

[333] ghin.pdc.org, “Global Hazards Information Network, Pacific Disaster Center,” http://ghin.pdc.org/ghin/catalog/-

main/home.page, 2016, accessed 2016.08.30.

[334] soest.hawaii.edu, “A Global Self-consistent, Hierarchical, High-resolution Geography Database,” http://-

www.soest.hawaii.edu/pwessel/gshhg, 2016, accessed 2016.08.30.

[335] eea.europa.eu, “EEA: Coastline for Analysis,” http://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-

analysis, 2016, accessed 2016.08.30.

[336]europa.eu , “EEA: Maritime Boundaries,” http://www.eea.europa.eu/data-and-maps/data/maritime-boundaries,

2016, accessed 2016.08.30.

[337] eurosion.org, “EUROSION: A European initiative for sustainable coastal erosion management,” http://-

www.eurosion.org, 2016, accessed 2016.08.30.

[338] eea.europa.eu, “EEA: Coasts and Sea Datasets,” http://www.eea.europa.eu/data-and-maps/-

data#c5=all&b_start=0&c9=waterbase&c0=20&c11=coast_sea, 2016, accessed 2016.08.30.

[339] earth.esa.int, “European Space Agency (ESA): IMAGE 2006,” https://earth.esa.int/web/guest/-/esa-datasets-

6287, 2016, accessed 2016.08.30.

[340] ngdc.noaa.gov, “National Center for Environmental Information,” http://www.ngdc.noaa.gov, 2016, accessed

2016.08.30.

[341] maps.ngdc.noaa.gov, “NGDC’s Trackline Geophysical Data,” http://maps.ngdc.noaa.gov/viewers/geophysics,

2016, accessed 2016.08.30.

[342]noaa.gov , “NGDC’s Bathymetry Data,” http://maps.ngdc.noaa.gov/viewers/bathymetry, 2016, accessed

2016.08.30.

[343] iho.int, “International Hydrography Organization,” http://iho.int/srv1/-

index.php?option=com_content&view=article&id=300&Itemid=744&lang=en, 2016, accessed 2016.08.30.

[344] gebco.net, “General Bathymetric Chart of the Oceans (GEBCO),” http://www.gebco.net, 2016, accessed

2016.08.30.

[345] bodc.ac.uk, “British Oceanographic Data Centre: GEBCO Dataset,” https://www.bodc.ac.uk/data/online_delivery/-

gebco, 2016, accessed 2016.08.30.

[346]bodc.ac.uk , “British Oceanographic Data Centre,” http://www.bodc.ac.uk, 2016, accessed 2016.08.30.

[347] portal.emodnet-hydrography.eu, “EMODnet Bathymetry Portal,” http://portal.emodnet-hydrography.eu, 2016,

accessed 2016.08.30.

[348] tidesandcurrents.noaa.gov, “NOAA’s Center for Operational Oceanographic Products and Services,” https://-

tidesandcurrents.noaa.gov, 2016, accessed 2016.08.30.

[349]noaa.gov , “NOAA: Tides & Currents,” http://tidesandcurrents.noaa.gov/googleearth.shtml, 2016, accessed

2016.08.30.

[350] ioc-sealevelmonitoring.org, “Sea Level Station Monitoring Facility,” http://www.ioc-sealevelmonitoring.org/-

map.php, 2016, accessed 2016.08.30.

[351] geoportal.org, “GEOSS Portal: Discover, Access, Contribute Earth Observations, Information and Services,”

http://geoportal.org/web/guest/geo_home_stp, 2016, accessed 2016.08.30.

[352] naturalearthdata.com, “The Natural Earth: A Portal for Free Vector and Raster Map Data,” http://-

www.naturalearthdata.com, 2016, accessed 2016.08.30.

[353] reverb.echo.nasa.gov, “NASA’s Earth Observation System,” http://reverb.echo.nasa.gov/reverb, 2016, accessed

2016.08.30.

[354] libguides.mit.edu, “MIT Geodata Repository,” http://libguides.mit.edu/gis/Geodata, 2016, accessed 2016.08.30.

[355] nauticalcharts.noaa.gov, “NOOA’s Office of Coast Survey,” http://www.nauticalcharts.noaa.gov, 2016, accessed

2016.08.30.

[356] gif.berkeley.edu, “Geospatial Innovation Facility,” http://gif.berkeley.edu/resources/data_subject.html, 2016,

accessed 2016.08.30.

[357] eea.europa.eu, “EEA: Datasets,” http://www.eea.europa.eu/data-and-maps/data#c17=&c5=all&c0=5&b_start=0,

2016, accessed 2016.08.30.

[358] earth.esa.int, “European Space Agency,” https://earth.esa.int/web/guest/data-access/browse-data-products,

2016, accessed 2016.08.30.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
138

[359] ec.europa.eu, “EuroStat: European Statistics,” http://ec.europa.eu/eurostat/data/database, 2016, accessed

2016.08.30.

[360] marineplan.es, “Marineplan: Maritime Policy and Marine Spatial Planning,” http://www.marineplan.es/ES/en/-

google-earth, 2016, accessed 2016.08.30.

[361] marinecoastalgis.net, “Davey Jones Locker,” http://marinecoastalgis.net, 2016, accessed 2016.08.30.

[362] J. Maurer, “Atlas of the Cryosphere,” National Snow and Ice Data Center (26 January 2012)., 2007, accessed

2016.08.30.

[363] quantarctica.npolar.no, “Quantarctica,” http://quantarctica.npolar.no, 2016, accessed 2016.08.30.

[364] diva-gis.org, “DIVAGIS: Free GIS Data,” http://www.diva-gis.org/Data, 2016, accessed 2016.08.30.

[365] hcmr.gr, “Hellenic Centre for Marine Research (HCMR),” http://www.hcmr.gr/en/articlepage.php?id=108, 2016,

accessed 2016.08.30.

[366] hnodc.hcmr.gr, “Institute of Oceanography: Hellenic Centre for Marine Research,” http://hnodc.hcmr.gr, 2016,

accessed 2016.08.30.

[367] mapserver.ath.hcmr.gr, “Hellenic Centre for Marine Research (HCMR): Online Search & Download Service,”

http://mapserver.ath.hcmr.gr/pagin/v27/index_new.php, 2016, accessed 2016.08.30.

[368] hnodc.ath.hcmr.gr, “European Directory of Marine Environmental Datasets,” http://hnodc.ath.hcmr.gr/edmed/-

SearchData.php, 2016, accessed 2016.08.30.

[369]hcmr.gr , “EDIOS database for Eastern Mediterranean and Black Sea,” http://hnodc.ath.hcmr.gr/edios/-

edios_db.html, 2016, accessed 2016.08.30.

[370] freegisdata.rtwilson.com, “FreeGISData: Free GIS Datasets,” http://freegisdata.rtwilson.com, 2016, accessed

2016.08.30.

[371] free-gis-data.blogspot.gr, “Free GIS Blogspot: Free GIS, Remote Sensing, Spatial and Hydrology Data,” http://-

free-gis-data.blogspot.gr, 2016, accessed 2016.08.30.

[372] N. Arundale, “AIS Decoder: Decodes All 27 AIS message types,” http://arundale.com/docs/ais/ais_decoder.html,

2016, accessed 2016.08.30.

[373] shipais.com, “Shipais: Watching the ships go by,” http://www.shipais.com/doc/links-2.php, 2016, accessed

2016.08.30.

[374] cruiseshipportal.com, “CruiseShip Portal: AIS live Ships Tracking,” http://www.cruiseshipportal.com/categories/-

other/ais-live-ship-tracking.html, 2016, accessed 2016.08.30.

[375] liveaisworld.yachtmarine.com, “LiveAISWorld,” http://liveaisworld.yachtmarine.com/LIVEAISWORLD.html, 2016,

accessed 2016.08.30.

[376] geonames.nga.mil, “GNS: NGA GEOnet Names Server,” http://geonames.nga.mil/gns/html, 2016, accessed

2016.08.30.

[377] copernicus.eu, “Copernicus: Services,” http://www.copernicus.eu/main/services, 2016, accessed 2016.08.30.

[378] scihub.copernicus.eu, “Copernicus: Sentinels Scientific Data Hub,” https://scihub.copernicus.eu, 2016, accessed

2016.08.30.

[379] sentinels.copernicus.eu, “ESA’s Sentinel Online,” https://sentinels.copernicus.eu/web/sentinel/home, 2016,

accessed 2016.08.30.

[380] sentinels.space.noa.gr, “Hellenic National Sentinel Data Mirror Site,” http://sentinels.space.noa.gr, 2016,

accessed 2016.08.30.

[381] esa.int, “ESA: Observing the Earth,” http://www.esa.int/Our_Activities/Observing_the_Earth, 2016, accessed

2016.08.30.

[382] eoportal.org, “eoPortal: Satellite Missions Database,” https://eoportal.org/web/eoportal/satellite-missions, 2016,

accessed 2016.08.30.

[383] openstreetmap.org, “OpenStreetMap,” https://www.openstreetmap.org, 2016, accessed 2016.08.30.

[384] geocommons.com, “GeoCommons Archive,” http://geocommons.com, 2016, accessed 2016.08.30.

[385] en.openei.org, “OpenEI: Open Energy Information,” http://en.openei.org/wiki/Main_Page, 2016, accessed

2016.08.30.

[386] inspire geoportal.ec.europa.eu, “INSPIRE Geo-portal,” http://inspire-geoportal.ec.europa.eu, 2016, accessed

2016.08.30.

[387] inspire.ec.europa.eu, “The E.U. INSPIRE Directive,” http://inspire.ec.europa.eu, 2016, accessed 2016.08.30.

[388] eea.europa.eu, “EEA: Data and Maps,” http://www.eea.europa.eu/data-and-maps, 2016, accessed 2016.08.30.

[389]europa.eu , “EEA: Data Topics,” http://www.eea.europa.eu/themes, 2016, accessed 2016.08.30.

[390] discomap.eea.europa.eu, “European Environment Agency: Discover Map Services,” http://-

discomap.eea.europa.eu, 2016, accessed 2016.08.30.

[391] eea.europa.eu, “EEA: Public Map Services,” http://www.eea.europa.eu/code/gis, 2016, accessed 2016.08.30.

[392] europeandataportal.eu, “European Data Portal,” http://www.europeandataportal.eu/en, 2016, accessed

2016.08.30.

[393] data.europa.eu, “E.U. Open Data Portal,” https://data.europa.eu/euodp/en/data, 2016, accessed 2016.08.30.

[394] geodata.gov.gr, “Geodata.gov.gr: Public, Open Data,” http://geodata.gov.gr, 2016, accessed 2016.08.30.

[395] data.gov.gr, “Data.gov.gr,” http://data.gov.gr, 2016, accessed 2016.08.30.

[396] data.gov.ie, “Ireland’s Open Data Portal,” https://data.gov.ie/data, 2016, accessed 2016.08.30.

[397] navigator.eumetsat.int, “EUMETSAT Product Navigator,” http://navigator.eumetsat.int/discovery/Start/Explore/-

Quick.do, 2016, accessed 2016.08.30.

[398] eumetsat.int, “European Organization for the Exploitation of Meteorological Satellites,” http://www.eumetsat.int/-

website/home/index.html, 2016, accessed 2016.08.30.

[399] iucnrle.org, “IUCN Red List of Ecosystems,” http://iucnrle.org/assessments/, 2016, accessed 2016.08.30.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
139

[400] iucn.org, “International Union for Conservation of Nature,” http://iucn.org/, 2016, accessed 2016.08.30.

[401] earthdata.nasa.gov, “EarthData,” https://earthdata.nasa.gov, 2016, accessed 2016.08.30.

[402] worldview.earthdata.nasa.gov, “EarthData: Worldview,” https://worldview.earthdata.nasa.gov, 2016, accessed

2016.08.30.

[403] eospso.nasa.gov, “NASA’s Earth Observing System,” http://eospso.nasa.gov, 2016, accessed 2016.08.30.

[404] neo.sci.gsfc.nasa.gov, “NEO: NASA Earth Observations,” http://neo.sci.gsfc.nasa.gov, 2016, accessed

2016.08.30.

[405] earthobservatory.nasa.gov, “NASA Earth Observatory,” http://earthobservatory.nasa.gov, 2016, accessed

2016.08.30.

[406] visibleearth.nasa.gov, “NASA Visible Earth,” http://visibleearth.nasa.gov, 2016, accessed 2016.08.30.

[407] espd.gsfc.nasa.gov, “NASA Earth Science Projects Division,” http://espd.gsfc.nasa.gov/index.html, 2016,

accessed 2016.08.30.

[408] science.nasa.gov, “NASA Science: Earth Science Data,” http://science.nasa.gov/earth-science/earth-science-

data, 2016, accessed 2016.08.30.

[409] earthexplorer.usgs.gov, “USGS: Earth Explorer,” http://earthexplorer.usgs.gov, 2016, accessed 2016.08.30.

[410] arcgis.com, “ESRI Data & Maps,” http://www.arcgis.com/home/-

group.html?owner=esri&title=ESRI%20Data%20%26%20Maps&content=all&focus=all, 2016, accessed 2016.08.30.

[411] N. P. Gleditsch, K. Furlong, H. Hegre, B. Lacina, and T. Owen, “Conflicts Over Shared Rivers: Resource Scarcity

or Fuzzy Boundaries?” Political Geography, vol. 25, no. 4, pp. 361–382, 2006.

[412] marinebio.org, “MarineBio: Marine Conservation Organizations,” http://marinebio.org/oceans/conservation/-

organizations, 2016, accessed 2016.08.30.

[413] helcom.fi, “HelCom: Observers,” http://helcom.fi/about-us/observers/international-non-governmental-

organisations, 2016, accessed 2016.08.30.

[414] savethehighseas.org, “Deep Sea Conservation Coalition,” http://www.savethehighseas.org, 2016, accessed

2016.08.30.

[415] geodata.myfwc.com, “Florida Fish and Wildlife Research Institute: GIS and Mapping Data Downloads,” http://-

geodata.myfwc.com, 2016, accessed 2016.08.30.

[416] creativecommons.org, “Creative Commons (CC),” https://creativecommons.org, 2016, accessed 2016.08.30.

[417] protectedplanet.net, “Protected Planet: Terms & Conditions,” http://www.protectedplanet.net/terms, 2016,

accessed 2016.08.30.

[418] unep-wcmc.org, “UNEP-WCMC: Terms and Conditions,” http://www.unep-wcmc.org/terms-and-conditions, 2016,

accessed 2016.08.30.

[419] data.unep-wcmc.org, “UNEP-WCMC’s Ocean Data Viewer,” http://data.unep-wcmc.org, 2016, accessed

2016.08.30.

[420] worldweatheronline.com, “World Weather Online: Terms & Conditions,” http://www.worldweatheronline.com/-

terms-and-conditions.aspx, 2016, accessed 2016.08.30.

[421] eea.europa.eu, “EEA: Terms & Conditions,” http://www.eea.europa.eu/legal/copyright, 2016, accessed

2016.08.30.

[422] en.wikipedia.org, “Wikipedia: Comparison of free and open-source software licenses,” https://en.wikipedia.org/-

wiki/Comparison_of_free_and_open-source_software_licenses, 2016, accessed 2016.08.30.

[423] usgs.gov, “USGS: Copyright permissions,” http://www.usgs.gov/laws/info_policies.html#nonusgs, 2016,

accessed 2016.08.30.

[424] reefbase.org, “ReefBase Directory: Use of Contents,” http://www.reefbase.org/useofcontents.aspx, 2016,

accessed 2016.08.30.

[425] iobis.org, “OBIS: Ocean Biogeographic Information System - Data Policy,” http://www.iobis.org/node/639, 2016,

accessed 2016.08.30.

[426] preview.grid.unep.ch, “Global Risk Data Platform On Natural Events: Permissions,” http://preview.grid.unep.ch/-

index.php?preview=about&cat=2&lang=eng, 2016, accessed 2016.08.30.

[427] sentinel.esa.int, “ESA’s Sentinel Online: Terms and Conditions,” https://sentinel.esa.int/web/sentinel/terms-

conditions, 2016, accessed 2016.08.30.

[428] openstreetmap.org, “OpenStreetMap: Copyright Terms,” http://www.openstreetmap.org/copyright, 2016,

accessed 2016.08.30.

[429] arcgis.com, “ESRI Legal Information,” http://www.esri.com/legal, 2016, accessed 2016.08.30.

[430] J. Lim, Y. Park, J. Lee, D. Seo, and J. Yoo, “An efficient method for processing reverse skyline queries,” in Mobile

Congress (GMC), 2010 Global. IEEE, 2010, pp. 1–5.

[431] T. Bodea, M. Ferguson, and L. Garrow, “Data set-choice-based revenue management: Data from a major hotel

chain,” Manufacturing & Service Operations Management, vol. 11, no. 2, pp. 356–361, 2009.

[432] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in Mass storage systems

and technologies (MSST), 2010 IEEE 26th symposium on. IEEE, 2010, pp. 1–10.

[433] J. Rowley, “The wisdom hierarchy: representations of the dikw hierarchy,” Journal of information science, vol. 33,

no. 2, pp. 163–180, 2007.

[434] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “Voronoi-based geospatial query processing

with mapreduce,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International

Conference on. IEEE, 2010, pp. 9–16.

[435] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng, “Spatial queries evaluation with mapreduce,” in Grid and

Cooperative Computing, 2009. GCC’09. Eighth International Conference on. IEEE, 2009, pp. 287–292.

BIBLIOGRAPHY

Christos Kalyvas-Kasopatidis –October 2020
140

[436] H. Singh and S. Bawa, “A survey of traditional and mapreduce-based spatial query processing approaches,”

SIGMOD Record, vol. 46, no. 2, 2017.

[437] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song, “Accelerating spatial data processing with mapreduce,” in

Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference on. IEEE, 2010, pp. 229–236.

[438] A. Cary, Z. Sun, V. Hristidis, and N. Rishe, “Experiences on processing spatial data with mapreduce,” in

International Conference on Scientific and Statistical Database Management. Springer, 2009, pp. 302–319.

[439] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel data processing with mapreduce: a survey,”

AcM sIGMoD Record, vol. 40, no. 4, pp. 11–20, 2012.

[440] C. Doulkeridis and K. Nørvåg, “A survey of large-scale analytical query processing in mapreduce,” The VLDB

Journal, vol. 23, no. 3, pp. 355–380, 2014.

[441] A. Eldawy and M. F. Mokbel, “A demonstration of spatialhadoop: An efficient mapreduce framework for spatial

data,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp. 1230–1233, 2013.

[442]Eldawy, A., and mokbel, M. F. , “The ecosystem of spatialhadoop,” SIGSPATIAL Special, vol. 6, no. 3, pp. 3–

10, 2015.

[443] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan, “Cg_hadoop: computational geometry in mapreduce,” in

Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.

ACM, 2013, pp. 294–303.

[444] A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial partitioning techniques in spatialhadoop,” Proceedings of the

VLDB Endowment, vol. 8, no. 12, pp. 1602–1605, 2015.

[445] A. Eldawy and M. F. Mokbel, “The era of big spatial data: A survey,” Information and Media Technologies, vol. 10,

no. 2, pp. 305–316, 2015.

[446]Eldawy, A., and mokbel, M. F. , “Pigeon: A spatial mapreduce language,” in Data Engineering (ICDE), 2014

IEEE 30th International Conference on. IEEE, 2014, pp. 1242–1245.

[447] A. Eldawy, M. F. Mokbel, and C. Jonathan, “Hadoopviz: A mapreduce framework for extensible visualization of

big spatial data,” in Data Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE, 2016, pp. 601–612.

[448] C. Buchta, “On the average number of maxima in a set of vectors,” Information Processing Letters, vol. 33, no. 2,

pp. 63–65, 1989.

[449] H. M. V. A. Maximal, Skyline cardinality for relational processing. Springer, 2004.

[450] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE Pervasive Computing, vol. 7,

no. 4, pp. 12–18, 2008.

[451] C. Kalyvas, A. Kokkos, and T. Tzouramanis, “A survey of official online sources of high-quality free-of-charge

geospatial data for maritime geographic information systems applications,” Information Systems, vol. 65, pp. 36–51,

2017.

[452] P. S. Levy and S. Lemeshow, Sampling of populations: methods and applications. John Wiley & Sons, 2013.

[453] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering,

vol. 40, no. 1, pp. 16–28, 2014.

[454] M. B. Kursa, W. R. Rudnicki et al., “Feature selection with the boruta package,” J Stat Softw, vol. 36, no. 11, pp.

1–13, 2010.

[455] E. Alpaydin, Introduction to machine learning. MIT press, 2009.

[456] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, no.

Nov, pp. 2579–2605, 2008.

[457] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Proceedings of ICML workshop on

unsupervised and transfer learning, 2012, pp. 37–49.

[458] C. Zhang and Y. Ma, Ensemble machine learning: methods and applications. Springer, 2012.

[459] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hundreds of classifiers to solve real

world classification problems?” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–3181, 2014.

[460] S. Jeong, K. Chiba, and S. Obayashi, “Data mining for aerodynamic design space,” Journal of aerospace

computing, information, and communication, vol. 2, no. 11, pp. 452–469, 2005.

[461] K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer, “Pareto ant colony optimization: A

metaheuristic approach to multiobjective portfolio selection,” Annals of operations research, vol. 131, no. 1-4, pp. 79–

99, 2004.

[462] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and analyses for maximal vector computation,” The VLDB

Journal - The International Journal on Very Large Data Bases, vol. 16, no. 1, pp. 5–28, 2007.

[463] “Kaggle,” https://www.kaggle.com/mustafaali96/weight-height, accessed: 2010-04-22.

[464] C. Kalyvas and T. Tzouramanis, “A survey of skyline query processing,” arXiv preprint arXiv:1704.01788, 2017.

[465] C. Kalyvas, T. Tzouramanis, and Y. Manolopoulos, “Processing skyline queries in temporal databases,” in

Proceedings of the Symposium on Applied Computing, 2017, pp. 893–899.

[466] Y.-C. Chen and C. Lee, “Neural skyline filter for accelerating skyline search algorithms,” Expert Systems, vol. 32,

no. 1, pp. 108–131, 2015.

[467] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan,

“Sagedb: A learned database system,” 2019.

[468] A. Kristo, K. Vaidya, U. Çetintemel, S. Misra, and T. Kraska, “The case for a learned sorting algorithm,” in

Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020, pp. 1001–1016.

[469] K. Hose and A. Vlachou, “A survey of skyline processing in highly distributed environments,” VLDB J., vol. 21,

no. 3, pp. 359–384, 2012.

	1. INTRODUCTION
	1.1. Identifying Optimal Solutions
	1.2. Optimization Approaches
	1.3. A Multi-Objective Optimization Example
	1.4. The Case of Skyline Queries
	1.5. Contributions
	1.6. Thesis Structure

	2. LITERATURE REVIEW
	2.1. An Introductory Example
	2.2. The Skyline Problem and its Properties
	2.3. Fundamental Skyline Algorithms
	2.3.1. Block Nested Loop (BNL)
	2.3.2. Divide & Conqueror (D&C)
	2.3.3. Bitmap
	2.3.4. Index
	2.3.5. Nearest Neighbor (NN)
	2.3.6. Branch and Bound Skyline (BBS)
	2.3.7. Sort Filter Skyline (SFS)
	2.3.8. Linear Elimination Sort for Skyline (LESS)
	2.3.9. Sort and Limit Skyline Algorithm (SaLSa)
	2.3.10. Summary

	2.4. Skyline Family
	2.4.1. Constrained Skyline Queries
	2.4.2. Dynamic Skyline Queries (DSQ)
	2.4.2.1. Spatial Skyline Queries (SSQ)

	2.4.3. Reverse Skyline Queries (RSQ)
	2.4.4. Group-by and Join Skyline Query
	2.4.4.1. Group-by Skyline Query
	2.4.4.2. Skyline Queries Over Joins

	2.4.5. Top-k Skyline Query
	2.4.6. Thick Skyline Query
	2.4.7. K-representative and Distance-based Representative Skyline Queries
	2.4.7.1. K- Representative Skyline (Top-k RSP)
	2.4.7.2. Distance-based Representative skyline

	2.4.8. ε-skyline
	2.4.8.1. Approximately Dominating Representatives

	2.4.9. Enumerating and K-dominating Queries
	2.4.9.1. Enumerating Queries
	2.4.9.2. k-dominating Queries

	2.4.10. k-skyband Query
	2.4.11. Summary

	2.5. Applications
	2.5.1. Skyline Queries Over Temporal Data
	2.5.2. Parallel and Big Data Skyline Computation
	2.5.3. Data mining
	2.5.4. Other Applications
	2.5.4.1. Subspace and Space Partitioning
	Multiple Subspace Computation
	Single Subspace Computation
	Top-k and K-dominant
	Space partitioning
	Incorporating Incomparability

	2.5.4.2. Distributed Skyline Computation
	Vertical partitioning
	Horizontal data partitioning
	Horizontal data partitioning without overlay networks
	Horizontal space partitioning
	Angle-based partitioning

	2.5.4.3. Attribute & Data-Specific Applications
	Partially Ordered Dataspace
	Incomplete Data
	Uncertain Data
	Trade-off & Stochastic Skyline

	2.5.4.4. Continuous Skyline Computation
	2.5.4.5. Route Skylines Queries and Road Networks
	2.5.4.6. Security
	2.5.4.7. Quality of (web) Services
	2.5.4.8. Metric Space
	2.5.4.9. Cardinality Estimation
	2.5.4.10. Skyline Updates & Maintenance

	3. ONLINE SOURCES OF GEOSPATIAL DATA
	3.1. Introduction
	3.2. Examples of Historical & Modern Maritime Information Systems
	3.3. Setting Out the Problem and Applying the Solution
	3.4. Maritime Geospatial Data Classification
	3.5. Data Sources
	3.5.1. Vessel Tracking and Monitoring Services
	3.5.2. Vessels and Shipping Companies Data
	3.5.3. Protected and Other Sensitive Areas
	3.5.4. Marine Accidents
	3.5.5. Flags of Convenience
	3.5.6. Port State Control Data
	3.5.7. Anti-shipping Activities
	3.5.8. Nautical Weather Forecast and Climate Data
	3.5.9. Natural Hazards
	3.5.10. Navigational Aid Systems
	3.5.11. Sea Ports Locations and Facilities
	3.5.12. Essential Naval Cartographic Data
	3.5.13. Maritime Borders, Coastline and Land Areas
	3.5.14. Naval Bathymetry Data Maps
	3.5.15. Tides, Eddies and Sea Levels
	3.5.16. Various Other Geospatial Data
	3.5.17. Satellite Imagery
	3.5.18. Sources that Reach Beyond the Maritime Domain
	3.5.19. Marine Conservation Organizations
	3.5.20. Restrictions Applying to Use of Data

	3.6. Conclusions and Observations

	4. SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA
	4.1. Introduction
	4.2. Problem Formulation
	4.3. Skyline Query Processing Over Temporal Data
	4.3.1. The Temporal Skyline Query
	4.3.2. The Dynamic Temporal Skyline Query
	4.3.3. The Reverse Temporal Skyline Query

	4.4. Experimental Study
	4.5. Conclusions and Future Work

	5. SKYLINE QUERIES OVER SPATIALHADOOP
	5.1. Introduction
	5.2. Preliminaries
	5.2.1. MapReduce
	5.2.2. Hadoop and Spatial Awareness
	5.2.3. SpatialHadoop

	5.3. A sort-based Skyline algorithm in SpatialHadoop
	5.4. A Reverse Skyline Algorithm in SpatialHadoop
	5.5. Experiments
	5.5.1. The case of the SSAS algorithm
	5.5.2. The case of the SRSAS algorithm

	5.6. Conclusions and Future Work

	6. SKYLINE-BASED DECISION BOUNDARY ESTIMATION
	6.1. Introduction
	6.2. Methodology
	6.2.1. Define the Origin Points
	6.2.2. Identifying Skyline Points
	6.2.3. Decision Boundary Construction
	6.2.4. Classification Task

	6.3. Experiments
	6.3.1. Synthetic Dataset I
	6.3.2. Synthetic Dataset II
	6.3.3. Synthetic Dataset III
	6.3.4. Real Dataset

	6.4. Conclusions and Future Work

	7. CONCLUSIONS AND FUTURE DIRECTIONS
	7.1. Conclusions
	7.2. Future Directions

	BIBLIOGRAPHY

