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ABSTRACT 

 

Department of Information and Communication Systems Engineering 

School of Engineering 

University of the Aegean 

 

Doctor of Philosophy 

by Christos Kalyvas-Κasopatidis 

 

Rapidly evolving technologies are constantly expanding the need for analysis and utilization of 
existing data. Many organizations base their business viability on the analysis of market data as 
well as the data they produce either by exporting inherent useful statistics and performance 
indicators or by using them in the decision-making processes, where one of the most important 
parameters in their analysis is the parameter of time. To store and analyze the huge volume of 
data, new methods of data management and analysis are created. This was especially noticeable 
with the advent of Big Data. The technologies that were developed gave the opportunity to expand 
the methods that existed for conventional data but also to create new methods, techniques and 
systems so that they can provide the same or even better analytics. However, as technology 
advances with the advent of IoT, the volume of data and the number of data flows are increasing 
rapidly. These flows should be stored, analyzed and combined with other data to extract useful 
information. With the advent of ML / AI, more and more processes can be automated to generate 
new knowledge. One of the main problems, however, is the lack of marked data. 

One of the most common queries performed to retrieve information from data are the skyline 
queries. The skyline queries belong to the category of multi-objective optimization problems and 
aim to retrieve a set of answers that meets some usually conflicting criteria. Using such queries 
is always helpful as it has many areas of application and can be very helpful in the decision-
making process, where there are multiple criteria for achieving a goal and an optimal solution may 
not be unique. So far, the literature in this field of research shows a significant number of works 
is mainly concerned with conventional data and there is room for research in the field of Big Data.  

Taking into account all the above, this Thesis aims to carry out an extensive review in the field of 
skyline queries, the detection of specifications and needs in data of an information system for 
maritime environments, the analysis of the time parameter in skyline queries, the development of 
skyline queries on tree structures specifically designed for Big Data and the implementation of  a 
classifier specifically designed for Big Data environments. 

More specifically, the first contribution is an extensive review of the existing work on skyline 
queries in which the skyline family is presented with a wide number of variations over the initial 
skyline query algorithm, the difference between index based and non-index-based methods and 
the applications that skyline queries have for problem solving. This review shows that skyline 
queries have evolved and allows readers to find areas that can be further explored. 

The second contribution explores the various aspects of data in the context of a maritime 
information system. This analysis reviews the existing research area and the data needed to 
implement a maritime information system as well as the limitations that exist in processing and 
distributing the data. Through this research, the concept of Big Data became apparent, large data 
sets that are available for analysis were detected and was made clear that time parameterization 
is very important for performing data analytics.  

 

The third contribution studied how can the dimension of time be integrated in skyline queries. The 
time dimension is an important parameter in data analysis and queries processing that is in many 
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cases is overlooked. This research reveals that the time parameter can affect the skyline, which 
shows that a special analysis needs to be made regarding the time dimension and to properly 
modification of the skyline queries in order to integrate the time dimension in them. 

The fourth contribution examines the application of skyline queries in the field of Big Data and 
specifically SpatialHadoop. SpatialHadoop is an extension of the conventional Hadoop, which 
tries to integrate known tree structures that exist for conventional data in Hadoop. Through this 
analysis we can see the behavior of both types of skyline algorithms, that are indexed-based (or 
not) in Big Data environments and how the hybrid combinations work using skyline algorithms 
that are not based on an index over the indexed dataset created by the SpatialHadoop. 

Finally, one of the biggest problems in deploying a machine learning model is the lack of labeled 
data. This lack is even more noticeable in Big Data environments as it is more difficult to point 
them out due their large volume. In the literature there are many mechanisms for labeling data 
depending on their application but there are no mechanisms for the efficient labeling of large 
volumes of data. Thus, in the fifth contribution, a classifier was created based on skyline 
questions. The use of skyline allows the creation of decision boundaries consisting of a small 
number of points. 

Keywords: Skyline, Optimization, Temporal Skyline, Reverse Skyline, GIS, Maritime Data 
Technology and Applications, MapReduce, SpatialHadoop, Big Data, Classification, Decision 
Boundary  
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GREEK ABSTRACT 

(Εκτεταμένη Περίληψη) 

 

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 

Πολυτεχνική Σχολή 

Πανεπιστήμιο Αιγαίου 

 

Διδακτορική Διατριβή 

Του Χρήστου Καλύβα-Κασοπατίδη 

 

Οι ραγδαία αναπτυσσόμενες τεχνολογίες δημιουργούν ολοένα και μεγαλύτερες ανάγκες για την 
ανάλυση και την αξιοποίηση των υφιστάμενων δεδομένων. Πολλοί οργανισμοί βασίζουν την 
βιωσιμότητα τους στην ανάλυση των δεδομένων της αγοράς αλλά και των δεδομένων που 
παράγουν οι ίδιοι είτε μέσω της εξαγωγής  χρήσιμων στατιστικών και δεικτών απόδοσης είτε 
αξιοποιώντας τα κατά  τη διαδικασία λήψης αποφάσεων όπου μια από τις σημαντικότερες 
παραμέτρους στην ανάλυση τους είναι η παράμετρος του χρόνου. Για να μπορέσει να 
αποθηκευτεί και να αναλυθεί ο πολλές φορές τεράστιος όγκος δεδομένων δημιουργήθηκαν νέοι 
μέθοδοι διαχείρισης και ανάλυσης δεδομένων. Αυτό έγινε ιδιαίτερα αισθητό με την έλευση των Big 
Data. Οι τεχνολογίες που αναπτύχθηκαν έδωσαν την ευκαιρία της επέκτασης των μεθόδων που 
υπήρχαν για τα συμβατικά δεδομένα αλλά και την δημιουργία νέων μεθόδων, τεχνικών και 
συστημάτων ώστε να μπορούν να παρέχουν την ίδια ή ακόμα και καλύτερη ανάλυση. Καθώς 
όμως η τεχνολογία προχωράει  με την έλευση του IOT ο όγκος των δεδομένων αλλά και οι ροές 
δεδομένων αυξάνονται ραγδαία. Οι ροές αυτές θα πρέπει να αποθηκευτούν να αναλυθούν και να 
συνδυαστούν με άλλα δεδομένα ώστε να εξαχθούν χρήσιμες πληροφορίες. Με την έλευση του 
ΜL/AI ολοένα και περισσότερα διαδικασίες μπορούν να αυτοματοποιηθούν παράγοντας 
αυτόματα καινούργια γνώση. Ένα από το κυριότερα προβλήματα που υπάρχουν όμως είναι η 
έλλειψη επισημασμένων δεδομένων. 

Ένα από τα πιο διαδεδομένα ερωτήματα που υπάρχουν για την εξαγωγή συμπερασμάτων από 
τα δεδομένα είναι τα ερωτήματα κορυφογραμμής. Τα ερωτήματα κορυφογραμμής ανήκουν στην 
κατηγορία των multi-objective optimization προβλημάτων και έχουν ως στόχο την ανάκτηση ενός 
συνόλου απαντήσεων που ικανοποιεί κάποια συνήθως αντικρουόμενα κριτήρια. Η χρήση τέτοιου 
τύπου ερωτημάτων είναι πάντα χρήσιμη καθώς έχει πολλά πεδία εφαρμογής και μπορεί να 
βοηθήσει ιδιαίτερα στην διαδικασία λήψης αποφάσεων όπου υπάρχουν πολλαπλά κριτήρια για 
την επίτευξή ενός στόχου και η βέλτιστη λύση μπορεί να μην είναι μοναδική. Μέχρι στιγμής η 
βιβλιογραφία στο συγκεκριμένο ερευνητικό πεδίο εμφανίζει ένα σημαντικό πλήθος εργασιών οι 
οποίες κατά κύριο λόγο ασχολούνται με συμβατικά δεδομένα και υπάρχει χώρος για έρευνα στο 
πεδίο των Big Data.  

Λαμβάνοντας υπόψη όλα τα παραπάνω η διατριβή αυτή έχει ως στόχο την πραγματοποίηση μιας 
εκτενούς ανασκόπησης στον χώρο των ερωτημάτων κορυφογραμμής, την ανίχνευση των 
προδιαγραφών και των αναγκών σε δεδομένα ενός πληροφοριακού συστήματος για θαλάσσιο 
περιβάλλον, την ανάλυση της παραμέτρου του χρόνου στα ερωτήματα κορυφογραμμής, την 
ανάπτυξη ερωτημάτων κορυφογραμμής σε δενδρικές δομές ειδικά σχεδιασμένες για Big Data και 
την δημιουργία ενός ταξινομητή (classifier) για μεγάλα δεδομένα.  

Πιο αναλυτικά η πρώτη συνεισφορά είναι μια εκτενής ανασκόπηση του χώρου των ερωτημάτων 
κορυφογραμμής όπου θα παρουσιαστεί η οικογένεια των ερωτημάτων κορυφογραμμής με όλες 
τις παραλλαγές τους, την διαφοροποίηση ανάμεσα στις μεθόδους που βασίζονται η όχι σε 
ευρετήριο καθώς και τις εφαρμογές που έχουν τα ερωτήματα κορυφογραμμής για την επίλυση 
πληθώρας προβλημάτων. Μέσα από αυτή της ανασκόπηση παρουσιάζεται πως τα ερωτήματα 
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κορυφογραμμής εξελίχθηκαν και ανοίγει ο δρόμος για την εύρεση τομέων οι οποίοι μπορούν να 
διερευνηθούν περαιτέρω.  

Στην δεύτερη συνεισφορά θα δούμε τις διάφορες πτυχές των δεδομένων στο πλαίσιο ενός 
θαλάσσιου πληροφοριακού συστήματος. Η ανάλυση που έγινε αφορούσε την ανασκόπηση του 
χώρου και των δεδομένων που χρειάζονται για την υλοποίηση ενός θαλάσσιου πληροφοριακού 
συστήματος καθώς και τους περιορισμούς που υπάρχουν στην επεξεργασία και την διακίνηση 
των δεδομένων αυτών. Μέσω της συγκεκριμένης έρευνας έγινε φανερή η έννοια των Big Data, 
ανιχνευθήκαν μεγάλα σύνολα δεδομένων τα οποία είναι διαθέσιμα για ανάλυση και είδαμε ότι η 
παράμετρος του χρόνου είναι πολύ σημαντική για την πραγματοποίηση αναλύσεων στα 
δεδομένα. Επίσης είδαμε του βασικότερους περιορισμούς στην διακίνηση και επεξεργασία των 
δεδομένων.  

Στην τρίτη συνεισφορά μελετάτε ο τρόπος με τον οποίο μπορεί να ενσωματωθεί η διάσταση του 
χρόνου στα ερωτήματα κορυφογραμμής. Η διάσταση του χρόνου είναι μια σημαντική παράμετρος 
στην ανάλυση των δεδομένων και στην πραγματοποίηση επερωτήσεων η οποία πολλές φορές 
δεν λαμβάνεται υπόψη. Με αυτήν της έρευνα θα δούμε ότι η παράμετρος του χρόνου μπορεί να 
επηρεάσει τα αποτελέσματα ενός ερωτήματος κορυφογραμμής κάτι που καταδεικνύει πως 
χρειάζεται να γίνει ιδιαίτερη ανάλυση ως προς την διάσταση του χρόνου και να 
παραμετροποιηθούν κατάλληλα το ερώτημα κορυφογραμμής ώστε να ενσωματωθεί η διάσταση 
του χρόνου σε αυτά. 

Η τέταρτη συνεισφορά εξετάζει την εφαρμογή των ερωτημάτων κορυφογραμμής στον χώρο των 
Big Data και συγκεκριμένα του SpatialHadoop. To SpatialHadoop είναι μια επέκταση του 
συμβατικού Hadoop το οποίο προσπαθεί να ενσωματώσει τις δενδρικές δομές που υπάρχουν για 
τα συμβατικά δεδομένα στο Hadoop. Μέσω αυτής της ανάλυσης μπορούμε να δούμε την 
συμπεριφορά των αλγορίθμων κορυφογραμμής που δεν χρησιμοποιούν κάποια ευρετηρίαση 
αλλά και αυτών που χρησιμοποιούν σε περιβάλλοντα Big Data και πως αποδίδουν οι υβριδικοί 
συνδυασμοί που χρησιμοποιούν αλγόριθμους επερωτήσεων κορυφογραμμής που δεν βασίζονται 
σε ευρετήρια στο ευρετηριασμένο σύνολο δεδομένων που δημιουργεί το SpatialHadoop.  

Τέλος ένα από τα μεγαλύτερα προβλήματα που υπάρχουν κατά την διάρκεια ανάπτυξης ενός 
μοντέλου μηχανικής μάθησης είναι η ελλείψει επισημασμένων δεδομένων. Η έλλειψη αυτή γίνεται 
ακόμα πιο αισθητή σε περιβάλλοντα Big Data καθώς εκεί λόγω όγκου είναι πιο δύσκολη η 
επισήμανση τους. Στην βιβλιογραφία υπάρχουν πολλοί μηχανισμοί επισήμανσης δεδομένων 
ανάλογα με την εφαρμογή τους αλλά δεν υπάρχουν όμως μηχανισμοί για την αποδοτική 
επισήμανση μεγάλου όγκου δεδομένων. Στην πέμπτη συνεισφορά δημιουργήθηκε ένας 
μηχανισμός επισήμανσης δεδομένων που βασίζεται στο ερωτήματα  κορυφογραμμής. Η χρήση 
ερωτημάτων κορυφογραμμής επιτρέπει την δημιουργία των ορίων αποφάσεως αποτελούμενων 
από μικρό αριθμό σημείων.  

 

Λέξεις Κλειδιά: Ερωτήματα Κορυφογραμμής, Βελτιστοποίηση, χρονικά Ερωτήματα 
Κορυφογραμμής, Ανάστροφα Ερωτήματα Κορυφογραμμής, Γεωγραφικά Πληροφοριακά 
Συστήματα, Θαλάσσια Δεδομένα-Τεχνολογίες-Εφαρμογές, MapReduce, SpatialHadoop, Μεγάλα 

Δεδομένα, Ταξινόμηση, Όρια Αποφάσεων.  
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1. INTRODUCTION 

Living in the Information Age allows almost everyone to have access to a large amount of 
information and options to choose from to fulfill their needs. In many cases, the amount of 
information available and the rate of change may hide the optimal and truly desired solution. This 
reveals the need of a mechanism that will highlight the best options to choose among every 
possible scenario. Based on this the skyline query, which can be considered as a multi-objective 
optimization approach in database systems, was proposed. This decision support mechanism is 
based on Pareto optimality and retrieves the best options of a dataset by identifying the objects 
that present the optimal combination of the characteristics of the dataset. In this PhD Thesis we 
reason about data, big data management and supervised learning, which all of them can be part 
of decision support system. 

1.1. Identifying Optimal Solutions 

The rapid growth of decision support systems and the increasing size of multidimensional data 
lead researchers to seek for new efficient methods for data processing to retrieve useful insights. 
In many cases solving problems that require to identify the optimal solutions among multiple 
contradicting criteria is a difficult task since there may not exist a single optimal solution, or the 
computation of all the possible outcomes may be inefficient. Among the various approaches in 
multi-objective optimization some of these analytical methods may be rank-aware approaches 
that contain scoring functions. However, in many cases it may not be desired to define a 
cumulative scoring function to retrieve the best results of a dataset, since this will reduce the 
potential multi-dimensional comparisons of data to a single scalar value. 

Taking this into account, Pareto optimality deflects from the strict ranking approach imposed by 
the rank-aware approaches that contain scoring functions and is directed to an approach that is 
more understandable by humans. This is different for example to top-k queries in database 
systems, where specific ranking functions and criteria are used, skyline queries assume that every 
user has a series of preferences over the attributes of data. Those preferences indicate what 
user’s likes and dislikes (e.g. “I like the sea more than the mountains” or “I prefer to go vacations 
on an island rather than on a mountain). All the preferences are considered equivalent and this 
will help to discard the items of the dataset that will not be preferred by anyone. This results in a 
small subset that contains the most interesting and preferred items based on all the preferences 
of all users. This set will be the skyline set or an equivalent to the Pareto optimal set. 

In recent years, skyline query processing has become an important issue in database research 
for extracting interesting objects from multi-dimensional datasets. The skyline query processing 
is applicable in many applications that require multi-criteria decision making without using 
cumulative functions to define the best results but based on user’s preferences. The skyline 
operator filters out a set of interesting points based on a set of evaluation criteria from a potentially 
large dataset of points. A point is considered interesting, if there is not any other point better than 
that in all the evaluation criteria. The popularity of the skyline operator is mainly due the 
paradigm’s simplicity and its applicability on multi-criterion decision support with respect to user 
preferences.  

1.2. Optimization Approaches 

In many cases the optimization problems can be classified in two categories named single and 
multi-objective optimization problems. The earliest approaches that tried to solve multi-objective 
problems tried to transfer them into single objective problems and then solve them with the classic 
approaches. In this case there was the need to define the degree of each objective function. One 
case could be the use of a linear function like the weighted sum method of all the objective 
functions.  A categorization of Multi-objective trade-off optimization methods can be as in the 
following Figure 1 where the Multi-objective optimization methods can be categorized to apriori, 
interactive and posteriori. In the priori approach the decision-maker defines his/her preferences 
in advance while in posteriori he/she identifies a set of optimal solutions to choose from. The 
interactive approach allows to the decision-maker to interactively identify the desired solution. In 
the interactive approaches there are solutions that provide exact and approximate solutions. In 
the approximate solutions there are methods that are based on the dominance like the Pareto 
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optimality or the skyline set of points, where the methods identifies a set of candidate 
solution/points. Among them he/she choose the one that maximizes his desired preferences. One 
of the most common algorithms to identify the set of Pareto points is the NSGA-II [1] in the scope 
of Pareto optimality and the BBS  [2, 3] algorithm in the skyline queries.  

 
FIGURE 1: Optimization Approaches 

1.3. A Multi-Objective Optimization Example 

An example of a multi-objective optimization problem could be the case were and individual would 
like to choose the best job Figure 2 that he would like to apply based on certain preferences. In 
the following example, the top 10 jobs are presented along with a median base salary for each 
job, a satisfaction factor and the number of job openings for each one of them. If an individual 
would like to select his dream job, he could do it in numerous ways by considering single or 
multiple criteria. Based on a single optimization criterion he could simply sort the jobs based on 
the satisfaction factor or the number of job openings. With that in mind he could select the Strategy 
Manager that has the greatest satisfaction factor or the Software Engineer which has the greatest 
number of job openings. If an applicant would like to select a job based on more than one criterion 
the problem becomes a multi-objective optimization problem and thus a little more complicated. 
Note that in this case there might not be a single optimal solution but rather a set of optimal 
solutions.  

Furthermore, the optimization criteria might be contradicting, like the case of the base salary and 
the job satisfaction, where in some cases jobs with high salary have a low satisfaction factor. In 
this case an optimal combination would indicate the Strategy Manager if our optimization criteria 
are based on maximizing the salary and job satisfaction and the Strategy Manager, Business 
Development Manager, Java Developer, Speech Language Pathologist and Software Engineer, 
if the optimization criteria are to maximize the job satisfaction and job openings. For example, the 
Strategy Manager has the largest salary and satisfaction factor combined. On the other hand, a 
Software Engineer might be a good solution in comparison to the Strategy Manager since, despite 
the lowest satisfaction factor it has the most job openings.  
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FIGURE 2: Top 10 Best Jobs in America in 2020 

1.4. The Case of Skyline Queries 

The computation of the skyline in database research is equivalent to determining the maximal 
vector problem in computational geometry [4], or equivalently the Pareto optimal set [4, 5] 
problem in operations research. The maximal vector problem is to find the subset of a set of 
vectors such that each one of them is not dominated by any other vector from that set. Considering 
that those vectors are points in a k-dimensional space, then the maximal vectors [6] can also be 
called admissible points [7] and the maximal set of vectors as Pareto set. This class of problems 
was extensively studied by the mathematical community in the 1960s. 

As mentioned in [8]  the skyline problem considers that the dataset cannot fit completely in the 
main memory (RAM) in order to be processed. This is more likely to be the case in modern 
database systems, where the dataset is retrieved from an external memory such as disks. 
Methods that do not rely on external memory are DD&C [4], LD&C [6]  and FLET [9]. 

Authors in [10] proved that the initial algorithms, proposed for maximals [4, 5], which are based 
on the divide-and-conquer approach [11] (that divides the initial problem in equal sub-problems 
and then tries to solve each one separately, combining the results in the last step of the process) 
have quite bad performance with respect to the dimensionality of the initial problem. Additionally, 
these algorithms assume that the whole dataset fits into memory and they do not account for 
memory limitations and thus cannot be directly applied in a database scenario. Such kind of 
approaches suffers for the “curse of dimensionality” [12] which was first used by Bellman [13] and 
is often used to indicate that high dimensionality causes problems in resolving due to increased 
computational cost. This problem was observed and solved with the introduction of the skyline 
operator [8], which proposes a divide and conquer algorithm suitable for external memory and 
shows how it can be integrated into a database system.  

Through the years many algorithms were proposed to efficient compute the skyline query problem 
either by using and indexed based approach or without using any index. Such an algorithm is he 
BBS [2, 3] which is an index-based algorithm that used the R-tree and a Branch and Bound 
approach. A non-index-based approach is the BNL [8] algorithm, which retrieves the whole 
dataset to identify final answer. Additionally, a large number of variations of the original skyline 
algorithm were proposed with the most common to be the Reverse [14] Skyline queries. Some 
indicative applications areas for which skyline queries [8] are useful are customer information 
services, decision support and decision-making systems. For instance, a skyline query can be 
used by travel agencies to find a reasonable priced hotel near the sea or to find good 
salespersons, which have low salary [8]. Additionally, reverse skyline queries [14] can assist in 
market research applications to find if a specific product is appealing to consumers or to identify 
the best location for a new branch store. Also it can be applied in economics [15], where it can 
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support microeconomic data mining or even in continuous data stream environments [16] such 
as stock exchange systems. Additionally, it can be used on location-based systems (LBS) in order 
to identify the shortest route to a destination or the closest point of interest among many [17, 18]. 
Another application is distributed query optimization. This can be particularly useful in cloud 
architectures, where data are scattered among servers or in the case where Quality of (web) 
services [19] is the primary goal. Skyline queries can also be used to focus on a subspace of 
attributes [20] in order to identify the skyline on a small subset of the dimensions of the dataset 
that are defined. Skyline queries have also applications in computer security and especially on 
problems concerning privacy [21] and authentication [22]. Skyline computation in metric space 
[23] can assist the DNA searching problem in bioinformatics. Finally, skyline queries are 
applicable in a wide variety of data types such as partial ordered [24] and incomplete [25] or 
uncertain data [26, 27].  

Many similar problems and operators related with skyline queries have been studied in the 
literature. For example, the Top-K query [28] retrieves the best K objects that minimize a specific 
preference function. The difference from skyline query is that the output changes according to a 
user-specified input function and the retrieved points are not necessary part of the skyline. The k-
nearest neighbor (k-NN) query [29], in another example, requires the existence of a query point 
p and outputs the k objects closest to p, in increasing order of their distance. In this case the 
difference from the skyline query is that k-NN query retrieves answers according to the proximity 
of a given point and not based on domination to other points. Finally, convex hull [30, 4] contains 
the points that are enclosed by the polygon that is defined from the minimum and maximum 
skyline (i.e. minimizing and maximizing values based on the evaluation criteria) of the given set 
of points. The main difference from a skyline is that it defines an area of interest rather than a line 
with individual interesting points. 

1.5. Contributions 

The main contribution of this Thesis is focused on four different topics. The first topic is data-
related and analyzes the various data sources and requirements that a maritime information 
system has. Following a new query method that considers the temporal properties of the dataset 
is examined. Furthermore, a study was conducted to research new approaches in handling data 
over big data environments and especially in SpatialHadoop [31]. Finally, a new approach was 
studied on how to efficient estimate the decision boundaries in a classification process. More 
specifically, 

 

the study on the data sources and requirements of a maritime information system identifies the 
type of data needed to implement such a system and surveys all the available data sources related 
to them. In addition, examines the restrictions in processing and distributing those data and gives 
useful insights about the real-life current needs in data processing. The key contributions of this 
study are: 

• Defines the classes of data, which are valuable resources towards the development, 
performance tuning and efficient operation of maritime information systems  

• Surveys both the open and restricted data sources that provide free-of-charge real-world 
geospatial data.  

• Outlined data sources in international scale and special cases of sources that are 
significant for their propensity to provide specialized high-quality data relating to specific 
areas of the planet, such as specific countries or continents.  

• Provide a thesaurus of high-precision real-word geospatial data to serve the needs of 
scientific research and development or educational work in the maritime information 
systems domain for purposes such as operational or benchmarking and experimentation 
or pattern recognition and data mining.  

• Provides useful insights on the current needs in query processing, big data management 
and applied machine learning that will assist in identifying open research topics in relation 
to skyline queries. 
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The study on temporal skylines proposes the extension of the skyline query for temporal data and 
aims to demonstrate how the strategy for calculating the traditional skyline query is affected when 
also considering the time factor. Algorithms for processing modified versions of the static, 
dynamic, and reverse skyline queries for temporal data will be proposed. The key contributions of 
this study are: 

• A new dominant method for evaluating temporal data using the skyline operator, 

• Algorithms for computing temporal skylines and two of its well-known variants, 

• An extensive experimentation on the efficiency of the above algorithms for optimizing the 
skyline query processing to handle temporal data. 

 

The study of skyline and reverse skyline queries over SpatialHadoop proposes the extension of 
the skyline queries over Hadoop and especially the customized Hadoop implementations that 
intergrade non-distributed indexing methods like the r-tree. In summary, the key contributions of 
this study are the following: 

• The proposal of an alternative approach to the one proposed in [32] for skyline query 
computation that will be used to enhance SpatialHadoop with reverse skyline queries. 

• The proposal of a baseline algorithm for reverse skyline queries computation that 
incorporates a multiple filtering mechanism to allow for the pruning of the dataset as soon 
as possible.  

• To perform experiments in large-scale synthetic, real datasets and different environments 
in order to demonstrate the performance benefits. 

 

Finally, the study of a binominal skyline classifier proposes the use of skyline queries in estimating 
the decision boundaries in a classification problem. This approach best fits in Big Data 
environments, where the performance of well-known classifiers degrades due to the large number 
of data points. The key contributions of this study are: 

• The decision boundaries are described by a small number of points even in a very large 
dataset; thus, a classification process needs to perform only a small number of 
computations to infer on the correct class. 

• The decision boundaries can be independently computed, allowing for full parallelization 
of the whole modelling process. 

• It is applicable in a wide range of multi-dimensional environments and specifically in any 
environment that its dataspace has an ordering, a feature that is inherited from the Skyline 
query family. 

• The model can be easily explained and visualized allowing for greater interpretability. 

• The decision boundaries can be easily transferred, reused and easily re-optimized 
allowing Transfer Learning. 

 

Based on the work and results of this Thesis the following publications have been made: 

Journal papers: 

• Kalyvas, C., Kokkos, A., & Tzouramanis, T. (2017). A survey of official online sources of 
high-quality free-of-charge geospatial data for maritime geographic information systems 
applications. Information Systems, 65, 36-51. 

• Kalyvas, C., & Maragoudakis, M. (2019). Skyline and reverse skyline query processing in 
SpatialHadoop. Data & Knowledge Engineering, 122, 55-80. 

• Kalyvas, C., & Maragoudakis, M. (2020). A Skyline-based Decision Boundary Estimation 
Method for Binominal Classification in Big Data. Computation, 8.3:80.  

 

Conference papers: 
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• Kalyvas, C., Tzouramanis, T., & Manolopoulos, Y. (2017, April). Processing skyline 
queries in temporal databases. In Proceedings of the Symposium on Applied 
Computing (pp. 893-899). 

• Kalyvas, C., & Maragoudakis, M. (2020, September). A Skyline-based Decision Boundary 
Estimation Method for Binominal Classification in Big Data. In 2020 5th South-East Europe 
Design Automation, Computer Engineering, Computer Networks and Social Media 
Conference (SEEDA-CECNSM). IEEE. 

 

Other: 

• Kalyvas, C., & Tzouramanis, T. (2017). A survey of skyline query processing. arXiv 
preprint arXiv:1704.01788.  

1.6. Thesis Structure 

The next chapter will present the fundamental background on the skyline queries. At first will be 
presented the basic skyline algorithms that can be separated in indexed based and non-indexed 
based. The following chapter will present the variations of skyline queries that consist the skyline 
family and finally will be presented some of the applications of skyline queries. 

The third chapter deals with the variety of the data and the various data sources. Through this 
study we understand the overall complex nature of the data that are available from the various 
open data sources and the need to build new efficient mechanisms to perform a numerous data 
related task. Additionally, we studied the percent of open sources available for a maritime-based 
information system and the various licenses applied.    

The fourth chapter will deal with the temporal nature of skyline queries. Time is a fundamental 
part of our everyday life and can provide useful insights if studied along with existing queries. In 
this novel work we will present how time intervals can alter the final skyline result set. 

In the fifth chapter we study the skyline queries in Big Data Environments. Since the volume of 
data needed to be analyzed continuously increases new mechanisms were designed such as 
Hadoop [33]. Furthermore, current indexing mechanisms like R-trees [34] were integrated in the 
Hadoop ecosystem. One of these approaches is the SpatialHadoop, which among other 
integrates a wide variety of classic index mechanisms. 

The last chapter deals with efficient mechanisms to identify the decisions boundaries by exploiting 
the properties of skyline queries. The benefits for using this method is the small computation cost 
and the small number of points needed to describe the boundaries. Due to the small number of 
points produced they can also further be used to refine the boundaries without many additional 
computations. 
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2. LITERATURE REVIEW 

In this section we will present the skyline problem and its properties, the fundamental skyline 
algorithms and their algorithmic approach in identifying the skyline set and the skyline family which 
consists of the variations of the initial skyline algorithm. To demonstrate the numerous algorithmic 
approaches for computing the skyline and the results produced by the various algorithms in the 
skyline family, an introductory example is presented that will be used in the rest of this section. 
This example considers how a typical skyline query is applied for a house purchase. 

2.1.  An Introductory Example  

In this problem, it is supposed that a house might be of interest for someone if no other house is 
both cheaper and closer to a metro-station. It is considered that as the distance of a house from 
a point of highly (general) interest is decreased (in this case a metro-station), the objective value 
(price) of the house is increased. So, the user tries to find the best money-to-value ratio that 
satisfies his/her own preferences.   

 
Table 1 presents a collection of eight houses that a user found to be sold in the vicinity of a 
particular metro station. Each row in the table contains information, which can be used to identify 
the most interesting houses. To make the example simple there exist only two numeric attributes 
(dimension) for the houses. One attribute will be price and the other will be distance from the 
metro-station. In this case first evaluation criterion is minimizing the distance from the metro-
station and the second one is minimizing price. Every evaluation criterion is considered as a single 
dimension in the d-dimensional space.  

 

 

TABLE 1: DATASET OF HOUSES 

In Figure 3 is presented the skyline of the existing set of houses. Houses H2, H3, H4, H5, H10 
and H11 do not belong on the skyline as they are no one’s top choice because for each one of 
them exists at least one house, which is better in terms of price or distance. Houses H1, H6, H7, 
H8 and H9 are the most interesting ones and so belong to the skyline. All the skyline points are 
connected by a line. The skyline is essentially the boundaries of the union of dominance area of 
all skyline point. To make it easily understood, the dominance area of a 2-dimensional point is the 
North-East quadrant of the space that occurs by imaginably drawing a x-y axis system with origin 
point the point of interest that is examined. The dominance area of a point will be inside the 
dominance area of a second point, noted as the first point dominates the second one, only if the 
first point is as good or better in all dimensions and better in at least one dimension based on the 
evaluation criteria. The skyline would refer to those points that are not dominated by any other 
point. In the house-metro station example “better” is minimizing the values.   

House 
price (in 

thousand €) 
Distance from 

station (m) 

H1 100 1500 

H2 1400  500  

H3 700  600  

H4 1300  1000  

H5 900  1300  

H6 1600  100  

H7 400  300  

H8 200  1200  

H9 1000  200  

H10 500  1400  

H11 500  900  
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FIGURE 3: SKYLINE OF A SET OF HOUSES 

Skyline queries can also involve more than two dimensions. For instance, a buyer could be 
interested in houses that are near to a metro-station, are cheap, have high square footage and 
low communal costs. The main idea of the skyline operator is to give the user the overall view of 
all interesting results and then let him/her to decide.  

2.2. The Skyline Problem and its Properties 

Skyline queries are a popular and powerful paradigm for incorporating user preferences into 
relational queries and extracting interesting points from a set of points. The main difference from 
the previous described problems is that instead of finding vectors or points, a skyline queries finds 
the maximals over a set of tuples or the so-called set of Pareto-optimal tuples. Those tuples are 
those that are not dominated by any other tuple in the same relation. One of the nice properties 
of the Skyline of a given set Ds of points is that any set of evaluation criteria that arise from user’s 
preferences can be modeled in the form of a monotone scoring function𝑓: 𝐷𝑖 → 𝑅, like L1 norm 

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 or Euclidian norm 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2. If p ∈ Ds and minimizes (or maximizes) the 

scoring function, then p is in the Skyline. That means, regardless how a user weights his/her 
preferences towards price and distance of houses, s/he will find a house that matches his/her 
preferences in the Skyline. In this example for simplicity, is assumed that skylines are computed 
with respect to minimum (min) conditions (minimizing the scoring function) on all dimensions. In 
particular, using the min condition, a point p dominates another point r if the coordinate of p on at 
least one axe is smaller than the corresponding coordinate of r, and no larger on any of the 
remaining axis. This implies that p is preferable to r according to any preference (scoring) function, 
which is monotone on all attributes. Furthermore, for every point p in the Skyline, there exists a 
monotone scoring function f such that p minimizes (or maximizes) that scoring function. This 
ensures that the skyline will contain all the preferable houses no matter how users weight their 
preferences. More formally, given a d-dimensional space D={d1 ,…, dd} and a set Ds of points that 
belongs in D, a point p ∈ Ds can be represented as P = {p.d1,…,p.dj}, 1<=j<=d,  where p.dj is the 
value of the jth-dimension  of the point. Assume that the dataset Ds contains the points Ds={p1 

,…,  pn}. The notation pi.dj ≥ 0, with 1 ≤ j ≤ d and 1 ≤ I ≤ n, is used to denote the j-th dimensional 
value of the pi point. Assume that for each dimension dj there exists a total ordering relation, 
denoted by ‘<’ or ‘>’ according to the user’s preferences. Without loss of generality in our examples 
we will use the ‘<’ relation.  

 

Definition 1: Dominate 
Given points p, r ∈ Ds, p dominates r, denoted as p ≺ r, if and only if ∃ j∈ [1, d] such that p.dj<r.dj 

and ∀ i ∈ [1, d]-{j}:   p.di  ≤ r.di ∎ 
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Dominance has the property of a transitive relation. That is if p dominates r and r dominates t, 
then p also dominates t (Figure 4). This is given more formally in the next proposition.   

 

Proposition 1: Transitivity  
Given points p, r, t∈ Ds, if p≺r and r≺t, then p≺t. ∎ 

Transitivity can be used to eliminate from further consideration a single point or a group of points 
that are dominated by a point p, which in its turn is dominated by a new point r.  

 

Through previous analysis, the domination between two points was explained. In contradiction if 
two points p, r ∈ Ds do not dominate (denoted with ≺≻) each other simultaneously (that is p≺≻r 

and r≺≻p) (Figure 5) are considered as incomparable in Ds, and denoted with p ∼Ds r or simply 
p ~ r. More formally: 

 

Proposition 2: Incomparability  
Given two points p, r ∈ Ds, if  p≺≻r and simultaneously r ≺≻ p, then p and r are incomparable on 
Ds  (i.e. p~r). This property helps in determining if one or more points can be skyline points. A 
point in the skyline set must be incomparable to all other points of the set. 

 

For example, consider the partitions on Figure 5 that could be derived from the original dataset 
using a divide & conqueror approach. If we first examine partition 1 and identify at least a single 
skyline point (in any location inside of it) then partition 4 could be completely pruned. Furthermore, 
since partitions 3 and 2 are incomparable the skyline points in one partition do not affect the 
skyline points in the other partition and there is no case that points from partition 3 dominate points 
in partition 2 and vice versa.  
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FIGURE 4: TRANSITIVITY DOMINANCE. 
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FIGURE 5: INCOMPARABLE POINTS. 

 

The skyline of a dataset of n points refers to those points that are not dominated (are 
incomparable) by any other point. That is, a data point p is a skyline point if there does not exist 
any point on the dataset that dominates p. 

 

Definition 2: Skyline 
A data point p ∈ Ds is a skyline point iff ∄ r∈ Ds such that r≺p. ∎ 

Notice that in order a point to be a skyline point it is not needed necessary to dominate another 
point in the dataset. Additionally, the skyline set of a dataset is unique. 

 

The math notations that will be used in the subsequent discussion are summarized in Table 2.  
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Notation Definition 
D d-dimensional space 
Ds Input dataset for skyline computation (set of points) 
d Number of dimensions of DS  
di one dimension (1 ≤ i ≤ d) 

p, r, t Data points 
s Skyline point 

p.di  i-th dimension of the point p 
q query 

SDS Set of skyline points of DS 
f Monotone function 

p ≺ r 
p ≺q r 

p dominates r 
p dominates r with regard to q 

p ≺Ds r 

p q
Ds q 

p ε≺ r   
p≺≻r 
p ∼ r  
SDS

q 

p dominates r in the Dataset Ds 
p dominates r in the Dataset Ds with regard to q 
p ε-dominates r 
p does not dominates r  
p and r are incomparable 
Skyline set S of dataset Ds with regard to the query point q 

TABLE 2:  MATH NOTATIONS 

Apart from the formal definition of the skyline there are some additional related interesting 
features. A skyline query tries to find an optimal solution for a user, based on multiple, and 
sometimes conflicting, goals. For example, a user may be interested in buying an economic house 
in Athens that is also close to a metro-station. In general case, houses that are near to a metro-
station are expected to be more expensive (because they are preferred by the majority of buyers), 
therefore his/her preference for an economic house contradicts his preference for a house close 
to the metro station. Additionally, there may be no single optimal answer (or answer set) that 
satisfies exactly the preferences of the user, but rather there could be numerous answers that are 
close in satisfaction of his/her preferences. In the same example, it is unlikely that there exists a 
house that is the cheapest among all houses and is at the same location with the metro-station, 
(because houses near the metro-station are preferred by most buyers and a house in a distance 
will try to attract buyers with a lower price). Instead, one can expect to find in the skyline, among 
others, a list of economic houses such that those nearer to the metro-station to be slightly more 
expensive. Thus, users are typically looking for satisficing answers (decision making support). For 
the same query, different users with similar personal preferences, which are not exactly satisfied 
by a single optimal answer, may finally find different answers appealing. A person may be willing 
to pay a little more to be closer to the metro-station and another may be contented with a cheaper 
house as long as it is convenient to go by foot. In conclusion, it is important to present all 
interesting answers that may fulfill a user's need. 

2.3.  Fundamental Skyline Algorithms 

Existing skyline computation methods can be classified into two categories, depending on whether 
(or not) to rely on pre-computed indexes on data. Index-based methods have better performance, 
since they avoid accessing the entire data collection, but have limited applicability due to the 
necessity of an indexed dataset. Additionally, multi-dimensional indexes like R-trees have their 
own limitations as they suffer from the well-known curse of dimensionality. Not index-based 
methods are more generic, in the sense that they do not require any specialized access structure 
to compute the skyline. 

2.3.1. Block Nested Loop (BNL) 

Authors in [8] introduces a Block Nested Loop (BNL) algorithm, which like the naive nested-loop 
algorithm repeatedly reads the set of tuples and eliminates points by finding other points in the 
dataset that dominate them. BNL allocates a buffer (window) in main memory that contains a 
number of points to sequentially track the dominance between them (Figure 6). The algorithm 
reads the input data and each point is retrieved and compared against the points in the buffer. In 
the first run of the algorithm no point will exist in the buffer so it is trivial to insert the first point in 
the buffer. For the next runs if the point retrieved is dominated by at least one point in the buffer 
there is no need to continue the comparison with the others points that maybe exist in it and the 
point is discarded.  Otherwise if the point is incomparable or dominates one or more points in the 
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buffer, those points that are dominated are removed from the buffer and the new point is inserted. 
Figure 6 illustrates the algorithm in its fifth iteration in which has processed houses H1, H2, H3, 
H4, H5 from the input dataset. As seen points H4 and H5 are dominated by one or more points in 
the buffer and so are discarded from further processing. For further considerations suppose that 
the buffer has size 3, meaning that can store up to three entries. 

If in any stage the buffer becomes full, a different approach is followed. Once this happens, the 
rest of the input is processed differently and a temporary overflow disk file is used (Figure 7) to 
store the points that were compared and characterized as incomparable or dominated existing 
points in the list and cannot be further placed in the window. Such a point is house H6, which is 
incomparable with the houses already existing in the buffer and thus is placed on the temporary 
file. Nevertheless, the dominated points in the window are still discarded as before right after each 
dominance comparison. After the dataset has been read now the temporary file is used as input 
for the next passes of the algorithm.  After the first run all the points of the input will be either 
inside the window or in the temporary file. Points that inserted in the window before any other 
point was inserted in the temporary file are guaranteed to be skyline points. This can be checked 
by assigning a timestamp to each point that exists in the window and the temporary file.  

 
FIGURE 6: BNL WITHOUT TEMPORARY FILE. 

 
FIGURE 7: BNL WITH TEMPORARY FILE.

 

The algorithm may require a large number of passes until the complete skyline is computed and 
eventually terminate as at the end of each pass the size of the temporary file will be decreased. 
BNL works well if the size of the resulted skyline is small and in best case fits into the window, 
which will result in the termination of the algorithm in one iteration. BNL algorithm cannot compute 
skyline points progressively. Its performance is very sensitive to the number of dimensions and to 
the underlying data distribution. Especially, it is good for up to five dimensions for a uniform 
distribution, but its performance degrades if the distribution tends towards an anti-correlated 
distribution.  

2.3.2. Divide & Conqueror (D&C) 

The divide-and-conqueror (D&C) algorithm proposed in [8] is an extension of the two-way 
partitioning divide-and-conqueror algorithms proposed in [4, 5]. These earlier proposed 
algorithms do not scale well for large datasets, since they do not take into account main memory 
limitations. The D&C algorithm recursively divides the input dataset in m partitions {P1,….Pm} (m-
way partitioning), in order for each of them to fit in the main memory Figure 8. The partitions 
boundaries are determined by computing the q-quintiles of the dataset, which results in the 
division of the dataset into q-1 equal subsets. Then a local (partial) skyline Si is computed for each 
partition Pi with 1≤i≤m. Finally, the algorithm computes the global skyline by progressively merging 
the local ones based on a bushy merge tree Figure 9 and Figure 10. This way points that belong 
to one partition and are dominated by points of another partition can be removed. The points that 
left from the merging process are the skyline points and the algorithm terminates returning the 
resulted set. 
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FIGURE 8: DIVIDE AND CONQUEROR 

As BNL algorithm, so to the D&C cannot produce skyline points progressively since the first 
skyline point can be generated only when the entire dataset has been scanned. Moreover, as the 
main memory size increases it performs better as it requires the partitions to be in-memory. D&C 
is less sensitive than the BNL to the number of dimensions and correlations in the database.  

 

 
FIGURE 9: MERGING PROCESS 

 
FIGURE 10: BUSHY MERGE TREE 

     

2.3.3. Bitmap 

To resolve the problem of progressive skyline computation, [35] proposed the index-based Bitmap 
algorithm, which encodes all data into a bitmap structure to identify the skyline points by exploiting 
the speed of a bitwise & operation. Bitmap is a progressive algorithm, which means that it does 
not need to scan the complete dataset to return results and is based on a bitmap structure, which 
encodes all the information required to determine if a point belongs in the skyline. 

To describe the algorithm assume that a point p={p .d1 ,…., P.dj }, 1≤j≤d in a d-dimensional space 
is represented by an m-bit vector. From those m-bits each p.di is represented by a number of ki 
bits. Each ki has as many bits as the number of distinct coordinate values of all the points of the 

dataset in that dimension and thus 𝑚 = ∑ 𝑘𝑖
𝑑
𝑖=1 .  

To incorporate the house-metro station example, there are 10 distinct values for dimension price 
and 11 distinct values for dimension distance. That means k1+k2=10+11=21 and thus m=21.  
Considering the min annotation and assuming that p.dm is the j-th smallest number on the i-th 
dimension it can be represented by the ki bits setting the (ki-ji+1) most significant bits to 1 and the 
rest to 0.  In detail, value 400 is the third largest value among the 10 in the first dimension so in 
its bit-representation the first (10-3) +1=8 most significant bits will be assigned to 1 and all the 
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other to 0. The results of the mapping process are shown in Table 3. Next the algorithm needs to 
determine if a point is a part of the skyline or not.  

In our case we will check points H7, which from the previous example is a skyline point and H4, 
which is an ordinary point. For the algorithm to compare the points, it obtains the array of bit-
vectors of all points and transposes it in an m-length array of bit-slices. Each bit-slice Vi 

corresponds to the sum of the i-th bit-value of the dimension, of all points. The bit-length of bit-
slices depends on the number of points. The two bit-slices of House H7 for the two dimensions 
are shown in bold in the Table 3.  

After the construction of the bit-slices the algorithm performs 3 bitwise operations among 2 sets 
of bit-slices. The first set contains the bit-slices Vx, Vy (one for each dimension), where the last bit 
of the point resides, which is equal with one. The second set contains the next in order bit-slices 
Vx+1 , Vy+1 of those that selected in the previous set. In the case that the bit-slices of the previous 
step is the last in order, then is used the zero bit-slice (all bits zero). The first bitwise operation A 
will be an AND operation between Vx and Vy. The second bitwise operation B will be an OR 
operation between Vx+1 and Vy+1 . The third bitwise operator C would also be an AND operation 
between the results of the two previous operations. If the result of the final operation is zero then 
the tested point is a skyline point. 

For point H7 A=Vx AND Vy ={10111011111 AND 00000110100} = 00000010000, which indicates 
that the points that have values in each dimensions that are greater or equal to this point is only 
the point H7. The second operations B= Vx+1 OR Vy+1= {10000001000 OR 00000100100} = 
10000101100, which shows that points which have some of it is dimension better than H7 are the 
points H1, H6, H8 and H9. The last operation C=A AND B={00000010000 AND 10000101100} = 
00000000000 which shows that there is no house that dominates H7. 

In the case of House H4 A=Vx AND Vy ={10111011111 AND 01110110101}= 00110010101  which 
indicates that houses H3, H4, H7, H9, H11 are equal or better in each dimension. Operation Vx+1 

OR Vy+1= {10101011111 OR 01100110101} = 11101111111 indicates that points {H1-H3}, and 
{H5-H11} are better in at least one dimension from H4. The final operation C=A AND B = 
{00110010101 AND 11101111111} = 00100010101 indicates that points H3, H7, H9, H11 
dominate point H4.  

 

House coordinates Bitmap representation 

H1 ( 100 , 1500 ) ( 1111111111 , 10000000000 ) 

H2 ( 1400 , 500 ) ( 1100000000 , 11111111000 ) 

H3 ( 700 , 600 ) ( 1111110000 , 11111110000 ) 

H4 ( 1300 , 1000 ) ( 1110000000 , 11111000000 ) 

H5 ( 900 , 1300 ) ( 1111100000 , 11100000000 ) 

H6 ( 1600 , 100 ) ( 1000000000 , 11111111111 ) 

H7 (  400 , 300 ) ( 1111111100 , 11111111100 ) 

H8 (  200 , 1200 ) ( 1111111110 , 11110000000 ) 

H9 (1000 ,200 ) ( 1111000000 , 11111111110 ) 

H10 ( 500 , 1400 ) ( 1111111000 , 11000000000 ) 

H11 ( 500 , 900 ) ( 1111111000 , 11111100000 ) 

TABLE 3: BITMAPPED DATASET 

Even if Bitmap is a progressive algorithm it must consider all points of the dataset to compute the 
full Skyline, which tends to be an expensive operation because for each point inspected must 
retrieved the bitmaps of all points. Additionally, the algorithm does not allow the user to give 
preferences in which order the results are produced but rather points are returned depending on 
the clustering of the data. Finally, bitmaps perform well when the number of distinct values per 
dimension is small. 

2.3.4. Index 

Among the Bitmap algorithm [35] authors additionally proposed the Index algorithm, inspired from 
the rank aggregation algorithm proposed in [36], which partitions the entire d-dimensional dataset 
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into d ordered lists. It uses a specialized B-tree to index each point by a transformation mechanism 
that maps high-dimensional points into single dimension point. Note that it can use any single 
dimension index structure and not only a b-tree. The data points are mapped to y and ordered as 
y=dmin + xmin.   A point p = (p.d1, p.d2, . . . , p.dd) of the dataset belongs to the i-th list  (1 ≤ i, j ≤ d) 
if it’s p.di value is minimum among all p.dj values, that is p.d i≤p.dj for all i ≠ j. In each list points are 
organized in batches and sorted in an ascending (or non-ascending) order of their distinct 
minimum (or maximum) value in that dimension. Each batch is identified by the minimum value of 
the point that represents. Points with the same minimum value in each list are organized in the 
same batch.  Each batch is processed according to its ascending index value and the algorithm 
tries to determine if it belongs to the skyline. If a batch has more than one point a local skyline is 
computed, which is then checked if it can be merged to a global one.   

In the case of the hotel metro-station example the houses that belong to the first list and have 
their first coordinate minimum among the two are H1, H5, H8, H10, H11  and houses that have 
their second coordinate minimum and belong to the second list are Houses H2, H3, H4, H6, H7 
and H9 (Table 4). Houses H10 and H11 have the same minimum value so they belong to the 
same batch. When the algorithm starts, it loads the first batch from each list. The two first batches 
have minimum value 100, so the algorithm process with the batch from the first list. Point H1 is 
added to the skyline list because is a single point and the skyline list is empty. The next batch the 
algorithm handles is H6, which was considered previously. The point is incomparable so is added 
to the list. The next batches from each list loaded are H8 and H9 that again have the same Min 
value, which is 200, so the algorithm continues with the one on the first list. H8 is incomparable 
so it is added to the list. The next point in the first list has Min value 500 so the algorithm continues 
with the previous considered H9, which is added to the list. Algorithm continues by loading the 
batches {H10, H11} and H7 from each list respectively. The batch with the smallest minimum 
value is H7 which is added to the list because it’s not dominated by any point in it. At this step the 
algorithm terminates because both the coordinates of H7 are smaller than or equal to the minimum 
value of the next batch {H11, H10}, H2 on the two lists. In this case the algorithm does not need 
to proceed further because all the remaining point will be dominated by H7 and thus algorithm 
terminates returning the set of skyline point. 

For clarity, we explain what should happen in the case {H11, H10} was processed. This batch has 
two points so in that case the algorithm would calculate the local skyline of the batch. The resulted 
point (or points) would be checked if they could be a part of the skyline. Both points do not 
dominate each other so both belong to the local skyline. In this case algorithm will check both 
points if can be added to the skyline list.  

Min1 Dimension 1 Dimension 2 Min2 
Min1= 100 H1 ( 100 , 1500 ) H6 ( 1600 , 100 ) Min2= 100 

Min1= 200 H8 (200 , 1200) H9 (1000 , 200 ) Min2= 200 

Min1= 500 { H11 (500 , 900 ) , 
H10 (500 , 1400) } 

H7 ( 400 , 300 ) Min2= 300 

Min1= 900 H5 ( 900 , 1300) H2 ( 1400 , 500 ) Min2= 500 

  H3 ( 700 , 600 ) Min2= 600 

  H4 ( 1300 , 1000 ) Min2= 1000 

TABLE 4: INDEX APPROACH 

The Index algorithm can quickly return skyline points in bursts (since it examines collection of 
points together) but does not support user-defined preferences since the order of the skyline 
points that are returned is fixed and depends on the value distribution of the data.  

2.3.5. Nearest Neighbor (NN) 

The Nearest Neighbor (NN) algorithm [37] is the first algorithm that uses the widespreaded R*-
tree [38, 34] index structure to massively eliminate points by avoiding redundant dominance 
checks. The algorithm recursively applies the NN search, using an existing algorithm such as [39, 
40] which is based on any monotone distance function (i.e. L1-norm or Euclidean norm(L2-norm)). 
At the beginning an NN search is applied to find the point with the minimum distance (mindist) 
from the beginning of the axes (when the problem is to be minimized) and inserts the resulted 
point into the skyline. This point partitions the space in four partitions. One partition contains only 



CHAPTER 2: LITERATURE REVIEW 

Christos Kalyvas-Kasopatidis –October 2020 
15 

points that are dominated by this point and thus can be removed. A second partition contains no 
point according to NN search and the other two partitions will be processed recursively through a 
to-do list to output the skyline result. If a region is empty is not sub divided any further and is 
removed from the to-do list. The algorithm terminates when the to-do list is empty.   

Algorithm starts by searching for the nearest neighbor from the origin point defined (in this case 
the start of axes). The nearest point to the origin is H7 (400,300) with mindist 700, based on the 
L1, and is guaranteed to be a skyline point. This point partitions the dataspace into four regions 
as presented in Figure 11. Region 1 contains no points according to the definition and properties 
of nearest neighbor. Region 4 contains all the points that have greater coordinate values than 
those of the nearest neighbor point. Thus, the points that belong to this region are dominated by 
the NN point and so they can be pruned massively (this could efficiently done with the r-tree 
implementation). Region 2 contains the points [0, 400) [300, ∞) and region 3 that contains all the 
points that belong to [400, ∞) [0, 300). The set of partitions resulted after the discovery of a skyline 
point must be inserted in a to-do list so the algorithm removes the initial region and inserts in their 
position regions 2 and 3, which are needed to be investigated.  The algorithm recursively calls 
itself on Region 2 and Region 3. 

In the recursion of Region 2, which is the first region of the to-do list, the algorithm makes again 
an NN search to find the next skyline point. The NN point that is retrieved on R2 {[0,400) [300, ∞)} 
is H8 (200, 1200) with mindist 1400 which is inserted in the skyline list. Due to the discovery of 
the NN point Region 2 is divided in 4 partitions (Figure 12). Region 2.1 will be [0,200) [300, 1200), 
region 2.2 [0,200)[1200, ∞), region 2.3 [200,400) [300, 1200),  and region 2.4 [200,400)[1200,∞). 
As mentioned before regions 2.1 and 2.4 are not needed to be considered.  As a final step the 
algorithm removes region 2 from the to-do list and inserts regions 2.2 and 2.3. Next the algorithm 
will recursively call itself on the first region on the to-do list which is region 2.2. An NN query in 
this region will return point H1 (100, 1500) with mindist 1600 that is added to the skyline list. Due 
to the discovery of the NN point, region 2.3 is divided in 4 partitions which are region 2.2.1 
[0,100)[1200,1500), region 2.2.2 [0,100)[1500,∞), region 2.2.3 [100,200)[1200,1500) and region 
2.2.4 [100,200)[1500,∞). As previously regions 2.2.2 and 2.2.3 are inserted in the To-Do list and 
processed recursively.  

The algorithm will perform the next NN query starting with the first region on the to-do list which 
is 2.2.2. The region is empty, so the algorithm discards it and process the next one. Region 2.2.2 
is also empty so it is discarded and so the region 2.3. The only region remaining is Region 3. As 
with Region 2 the algorithm will recursively call itself until the to-do list is empty, where in that 
case algorithm terminates and returns the final skyline list. The skyline points returned by 
processing Region 3 are H9 (1000, 200) with mindist 1200 and H6 (1600, 100) with mindist 1700. 

The algorithm improves the divide-and-conquer algorithm by applying the D&C framework on 
datasets indexed by R*-trees. NN is the first algorithm that gives the user control over the process 
by tendentiously selecting on-demand the preferred region to be processed and allows him/her to 
give preferences by altering the scoring function on-the-fly. On the downside, the algorithm has 
large I/O overhead, especially in high dimensional spaces, due to the recurrent access of the R*-
tree. Additionally, the to-do list size may exceed the size of the dataset for as low as 3 dimensions 
[2]. Finally, is mentioned that in the general case of d>2, regions overlap in such a way that the 
same Skyline point can be found more than once. For that reason, authors proposed some 
additional elimination methods for datasets with d>2.  
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FIGURE 11: REGIONS AFTER 1ST NN QUERY. 

 
FIGURE 12: REGIONS AFTER 2ND NN QUERY. 

  
# of NN 
query 

To-do List space partitions Skyline Points 

0 [0,∞),[0,∞) ∅ 
1st R2{ [0,400) [300, ∞) }  and R3{ [400,∞) [0,300) } H7 
2nd R2.2{ [0,200)[1200, ∞) }, R2.3{ [200,400)[300,1200) }  and R3{ [400,∞) 

[0,300) } 
H7, H8 

3rd R2.2.2{ [0,100)[1500,∞) } , R2.2.3{ [100,200)[1500,∞ ) } , R2.3{  
[200,400)[300,1200) }  and R3{ [400,∞) [0,300) } 

H7, H8, H1 

4th R2.2.2{ [0,100)[1500,∞) } , R2.2.3{ [100,200)[1500,∞ ) } , R2.3{  
[200,400)[300,1200) }  and R3.2{ [400,1000)[200,300) } , R3.3{  

[1000,∞)[0,200) } 

H7, H8, H1, H9 

5th R3.2{ [400,1000)[200,300) } , R3.3.2 { [100,200)[100,1600) } , R3.3.3{ 
[1600,∞)[0,100) } 

H7, H8, H1, H9,H6 

6th Empty H7, H8, H1, H9,H6 

TABLE 5: TO-DO LIST BASED ON NN QUERY. 

2.3.6. Branch and Bound Skyline (BBS) 

Both NN and Branch and Bound Skyline algorithm (BBS) [2, 3] apply nearest neighbor search 
techniques mentioned previously to progressively output skyline points from datasets that are 
indexed by R*-trees to massively eliminate points from being checked for dominance. BBS 
algorithm is an improvement of NN algorithm. In contradiction with NN that searches R*-tree many 
times, BBS traverses the R*-tree once. Table 6 illustrates the indexed dataset. Data points are 
organized in the R*-tree, in which each internal R-tree node can hold up to three entries, and that 
each leaf node can hold also up to three entries. In the example, an intermediate entry ei of the 
R-tree of Figure 13 corresponds to the minimum bounding rectangle (MBR) of a node Ni  of the 
R-tree, while a leaf entry corresponds to a data point Hi (Figure 14).  As in the NN algorithm 
mindist denotes the minimum distance of a point or an MBR from an origin point. The mindist of 
a point is computed according to the L1 norm as the sum of its coordinates and the mindist of a 
MBR as the distance of its lower-left corner from the origin point. The algorithm uses the best-first 
search paradigm to traverse the R-tree, in such order that it always evaluates and expands, 
among all un-visited nodes, the tree node closest to the origin. All the candidate entries are kept 
in a heap until they are no longer useful.  Entries in the heap are sorted in ascending order of their 
mindist. Skyline points are generated iteratively and stored in a list in the main memory, for 
dominance validation. Initially, the root of the R-tree is inserted in the heap. At each step, the top 
heap entry with the smaller mindist is removed. If it is a R*-tree node, its children, which are not 
dominated by any current skyline point, are inserted into the heap. If it is a point (leaf node), it is 
tested for dominance with the skyline points found so far by issuing an enclosure query.  If the 
examined point (or region) is entirely enclosed by any skyline candidate’s dominance region, then 
the point (or the entire region) is dominated. Notice that every entry is checked twice for 
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dominance because an entry in the heap may become dominated by skyline points discovered 
after its insertion. In the end all the points, except of those where one of its ancestor nodes has 
been pruned, will be examined. To efficiently examine the dominance relationship, is maintained 
an in-memory R-tree that contains the skyline points found so far. When the heap is empty the 
algorithm terminates. Initially, BBS inserts all the child entries of the root of the R-tree into the 
heap.  

The algorithm begins with region e1 in its heap. As it proceeds it iteratively processes the 
(leaf/intermediate) entry which has the minimum mindist value and if it’s an intermediate entry ei 
is expanded and its non-dominated children are inserted to the heap, ordered by their mindist. 
After the expansion of e3 the first entry of the heap is a leaf node. The list of skyline points is 
empty so H7 is inserted in the list. Next e8 is expanded and H9 is inserted to the list since it is not 
dominated by H7. In the next step e2 is expanded. Region e4 is inserted in the heap, but region e5 

is dominated by the found skyline point H7 so the region is discarded. Next region to be expanded 
is e4 . The points on the heap are sequentially checked if they are dominated by any so-far found 
skyline point and if not are inserted to the list. From this comparison points H8, H1, H6 are inserted 
to the list and point H8 is discarded. Now the only region left in the heap is e7 which is not expanded 
because is dominated by the skyline point H7 and H9.  

 
Action Heap contents Skyline points 

Initial state (e1,200) ∅ 

Expand e1 (e3,500), (e2,1300) ∅ 

Expand e3 (e6,700), (e8,1100), (e2,1300), (e7,1800) ∅ 

Expand e6 (H7,700),  (e8,1100), (e2,1300), (H3,1300), (H11,1400), (e7,1800) H7 

Expand e8 (H9,1200), (e2,1300), (H3,1300), (H11,1400), (H6,1700), (e7,1800) H7, H9 

Expand e2 (e4,1300), (H3,1300), (H11,1400), (H6,1700), (e5,1800), (e7,1800) H7, H9 

Expand e4 (H3,1300), (H8,1400), (H11,1400), (H1,1600), (H6,1700),  (e7,1800) H7, H9, H8 ,H1 , H6 

Expand e7 empty H7, H9, H8 ,H1 , H6 

TABLE 6: HEAP CONTENTS OF BBS 

 
 

 
FIGURE 13: DATASET INDEXED BY THE R-TREE  

FIGURE 14: MINIMUM BOUNDING RECTANGLES (MBRS)

One of the most important properties of BBS is that it guarantees the minimum I/O costs and 
equivalently R-tree page accesses. Additionally, along with the NN algorithm can incorporate user 
preferences in general skyline computation. However its performance can deteriorate due to many 
unnecessary dominance checks and due to high dimensionality based on the curse of 
dimensionality [12] since an R-tree is efficient for up to 5 dimensions.  

2.3.7. Sort Filter Skyline (SFS) 

The sort-filter-skyline (SFS) algorithm [41] improves BNL performance by presorting the input 
dataset in an ascending order according to a monotone preference function f, such as the sum of 
coordinates of a point on all dimensions, or optimized as entropy (assuming in both cases that 
values have been normalized in (0,1) non-inclusive). Presorting enforce that a point p dominating 
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another point q will be visited before q.  This ensures the progressive behavior of SFS and the 
reduction of the number of pairwise comparisons between points. The algorithm examines the 
data points by the ascending order of their scores and keeps an in-memory buffer that has the till 
now found skyline candidate points in a similar way as that on BNL. At beginning the buffer is 
initially empty. A point is read from the sorted dataset and if it is not dominated by a skyline point 
in the buffer is inserted into it. The dominance tests in SFS are performed by an exhaustive search 
on the existing skyline points.  

Authors have found that the entropy scoring function  𝐸𝐷(𝑝) = ∑ ln(𝑝′. 𝑑𝑖 + 1)𝑑
𝑖=1 , where p’.di is 

the normalize value of p.di in (0,1) non-inclusive, yields the most effective discarding during the 
skyline computation. Intuitively, the smaller entropy value a point has, the less likely is to be 
dominated. 

Value Normalization:  There are several ways to normalize the values of a dataset. One case is 
to divide all the values of the dataset with the maximum value found over this. That is

 
𝑓(𝑝. 𝑑𝑖) =

(𝑝. 𝑑𝑖/𝑚𝑎𝑥), where max is the maximum value observed in the dataset. In this case the dataset 
would be normalized in the [0,1] inclusive which uses efficiently all the range of [0,1]. But in this 
example, this is not the case because the values are needed to be normalized in (0, 1) non-
inclusive. A case to achieve this is by dividing all the values of the dataset with a higher value 
than the maximum value of the dataset.  For memorization reasons and simplicity of numbers and 
computations we choose to divide all values by 10.000.   That is 𝑓(𝑝. 𝑑𝑖) = (𝑝. 𝑑𝑖/10000). We note 
that this is not considered as a user preference since in another case we could assume that the 
distance between the two furthest locations of the town is 2000 meters and divide with this 
number.  

To demonstrate the algorithm the entropy scoring function was used. Points of the dataset of the 
house metro-station example will be normalized and sorted as in Table 7 by an ascending order 
of their score and will be processed in this order. The first point that is inserted in the buffer is H7 
since the buffer is empty. The second point is H9 which is incomparable to H7 so its inserted to 
the buffer. H3 is dominated by H7 so it is discarded. H8 is incomparable with H7 and H9 that are 
already in the buffer so it is added. Point H11 is dominated by H7 so it is discarded. Point H1 is 
incomparable to the points that belong in the buffer so it is added to the buffer. The same hold for 
point H6. The rest four points are dominated by a point in the buffer (H2 by H7 and H9, H10 by 
H7 and H8, H5 by H7 and H8, H4 by H7 and H9) so they are discarded. It is observed that the 
killer-dominant points are first in the presorted dataset which ensures maximum discarding with 
minimum comparisons. An indication for this is that the algorithm processed seven points to find 
the five skyline points out of the total eleven points. 

 
House 

(hi) 
Price Distance ED(hi) 

# points that 
dominate 

H7 0,04  0,03 0,068779515 6 
H9 0,1  0,02  0,115112807 2 

H3 0,07 0,06  0,125927557 - 
H8 0,02  0,12  0,133131313 2 
H11 0,05 0,09  0,13496786 - 
H1 0,01 0,15 0,149712273 0 
H6 0,16  0,01  0,158370336 0 

H2 0,14  0,05  0,179818427 - 
H10 0,05  0,14  0,179818427 - 
H5 0,09 0,13  0,208395329 - 
H4 0,13  0,1  0,217527813 - 

TABLE 7 : PRE-SORTED DATASET 

The main drawback of SFS is that it cannot adapt to different user preferences and must scan the 
entire dataset to return a complete skyline, as with BNL. Nevertheless, it can be stopped early 
returning some of the skyline points. The significant advantage over BNL is that reduces the 
number of comparisons needed.  

2.3.8. Linear Elimination Sort for Skyline (LESS)  

Skyline algorithm Linear Elimination Sort for Skyline (LESS) [10] is an optimized version of SFS, 
which achieves a better average performance.  As with SFS it sorts the dataset based on the 
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entropy scoring function which has the advantage of pushing the killer-dominant points in the 
beginning of the sorted dataset. The algorithm implements two optimizations. 

The first optimization in the first pass of the external sorting process makes use of a buffer called 
elimination-filter (EF), which keeps a small set of points (copies of them) that have the best entropy 
scores seen so far. This set will be used to prune efficiently and as early as possible the dominated 
tuples of the dataset. The input dataset is divided in b blocks and each block of points is read in 
order to be sorted (i.e. using quicksort). During sorting the algorithm compares the points of the 
block with those of the EF. If the point from the block is dominated by a point in the EF, it is 
discarded. Otherwise if the point is incomparable or dominates other points in the EF it is inserted 
(a copy of it) in the EF and the points of EF that are dominated are discarded. It is noted that 
points of the EF buffer are not guaranteed to be maximals. 

The second optimization combines the final pass of the external sorting process (last merge step 
of the b blocks) with the first pass of the skyline-filter (SF) process (i.e. first pass of the BNL 
component of SFS), which eliminates the remaining dominated tuples to get the final skyline. As 
in SFS and BNL, may be required multiple passes of the SF component to compute the final 
skyline. If the SF buffer becomes full, then an overflow file will be created. In general, the EF filter 
reduces effectively the size of the input dataset that will be processed by the SF process and 
additionally the combination of the final pass of the EF process with the first pass of the SF 
process saves always one pass from the computation of the skyline. LESS is not be applicable in 
scenarios in which one has no direct control on the algorithm used to sort tuples. Additionally, as 
in SFS all points on the dataset should be scanned at least once after sorting. 

2.3.9. Sort and Limit Skyline Algorithm (SaLSa) 

The Sort and Limit Skyline Algorithm (SaLSa) algorithm [42] is an improvement of SFS and LESS 
which strives to avoid scanning the complete sorted dataset as opposed with the two previous 
algorithms. As SFS and LESS, it does not have an index structure and is the first algorithm that 
exploits the values of a monotone scoring (limiting) function to sort the dataset and effectively limit 
the number of point to be read and compared by using a threshold value.  

The author’s suggestion is an optimal sorting function, which orders the points according to the 
value 𝑓𝑚𝑖𝑛(𝑝) = ( min

𝑖∈[1,𝑑]
𝑝. 𝑑𝑖 , 𝑠𝑢𝑚(𝑝)), which is the minimum coordinate value of a point among 

all dimensions and 𝑠𝑢𝑚(𝑝) = ∑ 𝑝. 𝑑𝑖
𝑑
𝑖=1  is the second sorting element that works as a tie-breaking 

rule. Letting S be the current set of skyline points, for each point𝑝𝑖 ∈ 𝑆 let 𝑝𝑖 = max
𝑗
{𝑝𝑖 . 𝑑𝑗}, which 

is the maximum coordinate value of a point. The threshold value that is used during the filter-scan 
process to check whether all points in the rest of the sorted dataset are dominated and for the 
algorithm to stop, is set as 𝑝𝑠𝑡𝑜𝑝 = argmin

𝑖∈𝑆
{𝑝𝑖}. That is Pstop equals with the minimum 𝑝𝑖 value 

calculated so far based on the existing skyline points. The computation of Pstop can be done 
incrementally by simply updating the value at each skyline point insertion in O(1) time. 

The algorithm during the filter-scan process reads and examines the points one at a time. Each 
time a new point is read, is compared against the current skyline list. If its dominated by any point 
is discarded, otherwise is inserted in the skyline list and algorithm checks its termination trigger. 
If the current threshold Pstop is smaller or equal than the point’s fmin value, then the algorithm 
terminates and returns the set of skyline points. This termination condition guarantees that all later 
examined data points should not be part of the skyline list, avoiding this way scanning the entire 
dataset.  

For algorithm to compute the skyline, the values of the dataset are needed to be normalized in 
the range of [0,1] inclusive. Since this is not applicable in many cases the author suggest as a 
solution to normalize the values of the dataset as 𝑓(𝑝. 𝑑𝑖) = (𝑝. 𝑑𝑖 −𝑚𝑖𝑛𝑖) (𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖⁄ ), where 
mini is the minimum coordinate value on the i-th dimension and maxi is the maximum coordinate 
value. To demonstrate the algorithm the house-metro station dataset is normalized as sawn in 
Table 8. The first point of the sorted dataset is H1. At this point, before point H1 is read, 𝑝𝑖 

 
and 

Pstop are undefined. Since the set of skyline points is empty H1 is inserted in it. Values 𝑝1, 𝑝5 and 

Pstop are calculated since a skyline point was found. The new 
 
𝑝1

 
value is 1, which is the largest 

value among the two coordinate values of the point and  𝑝𝑠𝑡𝑜𝑝 = 𝑝1 since it’s the only 𝑝𝑖
 
value due 
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to the only one skyline point. Next point in the dataset is H6 which is a skyline point because it is 
not dominated by H1. Because of the insertion of H6 in the skyline list 𝑝2 is set to 1 since it is the 

largest coordinate among the two of the point H6. Pstop remains 1 since the new 𝑝𝑖
 
value is not 

smaller than the old one. Next point in the dataset is H8. It is not dominated and thus is a skyline 
point which triggers the computation of the 𝑝3 value that equals with 0,785714.  The Pstop value is 

now set to 0,785714 also, since the value 𝑝3 was smaller than the current Pstop value. Next point 

in the dataset is H9 with a 𝑝4
 
value equals with 0,6. Since 𝑝4 is smaller than the current Pstop  value, 

Pstop is set to 0,6. Next point is H7. It’s 𝑝5
 
value is 0,2 since is the biggest value among the two 

coordinate values of the point, which also triggers the altering of the Pstop value to 0,2 since the 
new value is smaller. Next point is H11, for which the fmin(H11) value is bigger than the current 
Pstop value which terminates the algorithm and returns the list with the skyline points. It is observed 
that were processed only points that were actually skyline points and the rest were discarded 
saving unnecessary computations. On the downsides of the algorithm is that its performance is 
affected by data distribution and high dimensionality, since the pruning power of the stop object 
is limited. Additionally, because the dataset is based on a fixed ordering for each attribute, the 
algorithm cannot be used for arbitrary preference specifications. The advantage of the algorithm 
is that it can stop efficiently before the complete dataset is readied.  

  
House Price Distance fmin(h) Sum(h)  Pstop  

H1 0 1 0 1 1 1 

H6 1 0 0 1 1 1 

H8 0,067 0,786 0,067 0,853 0,786 0,786 

H9 0,600 0,071 0,071 0,671 0,600 0,600 

H7 0,200 0,143 0,143 0,343 0,200 0,200 

H11 0,267 0,571 0,267 0,838 - 
Stop! 

Fmin(H11) ≥ 
Pstop 

H10 0,267 0,929 0,267 1,196 -  
H2 0,867 0,286 0,286 1,153 -  

H3 0,400 0,357 0,357 0,757 -  
H5 0,530 0,857 0,533 1,387 -  
H4 0,800 0,643 0,643 1,443 -  

TABLE 8: PRE-SORTED DATASET 

2.3.10. Summary 

In general, a batch-oriented algorithm will return the complete skyline faster than an online 
algorithm. In contrast an online algorithm will return faster than the batch-oriented algorithm a part 
of the skyline but it will take much longer to compute the complete skyline. Authors in [43, 37] 
suggested a set of criteria for evaluating the behavior and applicability of a progressive algorithm. 

• Progressiveness: A part of the final set of skyline points should returned instantly and 
the remaining skyline points gradually. 

• Absence of false negative: The algorithm, given enough reasonable time, should 
eventually produce the complete set of skyline points.  

• Absence of false positives: The points that the algorithm returns should be guaranteed 
to be skyline points and not a temporary skyline points that will be discarded later. 

• Fairness: The algorithm should not favor points that are particularly good in one 
dimension. 

• Incorporation of preferences: User should be able to make preferences on the order 
that the skyline points are returned, while the algorithm is running. 

• Universality: The algorithm should be easily integrated into an existing database system 
and be applicable to any dataset distribution and dimensionality making use of 
standardized technology. 

ip
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In Table 9 the algorithms are classified based on those criteria.  

Algorithm Progressiveness 

Absence of false 
misses / Absence 

of temporary 
false hits 

Absence 
of false 

hits 
Fairness 

Incorporation 
of preferences 

Universality 

D&C × √ √  √ × √  
Bitmap √ √ √ √ × √ 
Index √ √ √ × × × 
NN √ √ √ √  √ √  

BBS √ √ √ √  √ √  
BNL × √ × √ × √ 
SFS √ √ √ √ × √ 

LESS √ √ √ √ × √ 

SaLSa √ √ √ √ × √ 

TABLE 9: CLASSIFICATION OF PROGRESSIVE ALGORITHMS. 

The problem of skyline computation has its roots in the fields of computational geometry and 
pareto-optimality and derived due to the need to retrieve pareto-optimal sets of points over 
datasets that do not fit directly into memory. The research approached can be distinguished on 
index-based and non-index-based (sorting) methods. The state-of-the-art index-based skyline 
algorithm is BBS. BBS is based on the R-tree to exploit the properties of nearest neighbors and 
identify the final skyline. The BBS algorithm is the most broadly applicable algorithm and its 
limitations are the curse of dimensionality derived from the R-tree. On the other hand, the state-
of-the-art algorithm that does not require indexing is SaLSa. SaLSa is based on sorting to identify 
the most interesting points through the use of a scoring function. Those points are placed in the 
beginning of the dataset in order to identify the final skyline as early as possible. One of the 
requirements of the algorithm is to have the dataset normalized in the range of [0,1] inclusive. In 
addition, the algorithm is affected by the underlying data distribution. Finally, the simple BNL 
algorithm, due to its simple implementation and the lack of indexing and sorting mechanisms, is 
commonly used in numerous applications where a skyline set is needed and indexing or sorting 
mechanisms on top of the whole dataset are inapplicable. Table 10 summarizes some basic 
properties of all the fundamental skyline algorithms. 

 
Algorith

m 
Based-on Index D&C 

Pre–
processing 

Sorted data Main problem 

Nested-
loop join 

Θ-joins [44] × × × × Join cost 

Bitmap 
[35] 

- Bit mapping × bitmaps × 
Lack of user 

interaction and 
bitmapping 

Index [35] - 
Specialized 

B-tree 
 
√ 

Index - 
based 

Scoring function 
Lack of user 
interaction 

NN  [37] 
NN search and 
D&C scheme 

Multi-
dimensional 
index ( R*-

tree) 

√ 
Index - 
based 

Minimum distance 
from origin point 

I/O accesses 

BBS [2, 3] NN 

Multi-
dimensional 
index ( R*-

tree) 

√ 
Index - 
based 

Minimum distance 
from origin point 

many dominance 
checks / R-tree 
dimensionality 

D&C  [8] 
maximal vector 
computation [4, 

5] 
× √ 

×    (Partial 
skylines can 
be assumed) 

× 
 

Not online/ curse 
of dimensionality 

BNL  [8] 
Naive Nested-

loop 
× × × × Not online 

SFS [41] BNL × × Sort - based 
Entropy scoring 

function 

reads all dataset / 
Lack of user 
interaction 

LESS [10] SFS × × Sort - based 
Entropy scoring 

function 
Sorting / reads all 

the dataset 

Salsa [42] SFS × × Sort - based 
Min/Max Scoring 

function 
Sorting / reads all 

the dataset 

TABLE 10: CLASSIFICATION OF SKYLINE QUERY ALGORITHMS. 
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Finally, Figure 15 illustrates the skyline algorithms via a tree structure in chronological order. The 
entries [4, 5] concern the maximal vector computation. Black lines indicate that the algorithm 
heavily depends or improves a previous algorithm and red dashed line indicates that the algorithm 
shares some general main ideas for computing the skyline.  

 

 

 

  

 

 

 

year 06 70-80 01 02 03 04 05 07 81-90 91-00 

SFS [41] 

LESS [10] SaLSa [42] 
BBS [2,3]  

NN [37] 

BNL [8] 

D&C 

[8] 

Bitmap [35] 

Index [35] 

Computational 

Geometry 

[4] 

Maxima of a 

set of vectors 

[5] 

 
FIGURE 15: CHRONOLOGICAL ORDER OF FUNDAMENTAL SKYLINE ALGORITHMS. 

2.4. Skyline Family 

This section will reason about the variants of skyline queries. The main idea and notion of skyline 
query is maintained. Each outlined variation is applicable and can solve different aspects of a 
problem. 

2.4.1. Constrained Skyline Queries 

There are cases where a skyline query may return too many objects. This can happen if the 
dimensionality of the dataset is large or the dataset is anti-correlated. Additionally, users may be 
interested to investigate a particular subspace than the whole data space. For the previous 
reasons user may specify constrains on some dimensions to express those restrictions. Each 
constraint is typically expressed as a range along a dimension of the dataset. The constrained 
skyline queries are very useful in skyline maintenance in the presence of point deletions or 
insertions. 

For this type of problems, a general variant of the skyline queries are the constrained skyline 
queries [2, 3] In this type of queries users are interesting in finding the skyline points of a subset 
of the original dataset, which satisfies one or more constraints. Given a set of constraints, a 
constrained skyline query, will return the most “interesting” points of the dataset defined by these 
constraints. For example, the user may be only interested in “interesting” houses in the distance 
range from the metro-station of 400 to 1250 and price range from 100 to 1500.  For the house-
metro example the constrained skyline query will return points H8, H11, H3, H2 [Figure 16] that 
are enclosed in the shaded region and are skyline points in that region. Point H4 which also 
belongs in the region will be discarded since it is dominated by H11 and H3.  

 

Definition 3: Constrained Region 
Given a d-dimensional dataset Ds a constrained region C={c1,c2,…cd} is determined by d sub-
constraints ci where each one expresses a range along each dimension of the dataset. That is 
ci={cimin, cimax} where cimin and cimax are the minimum and maximum range restriction values 
on the i-th dimension.∎ 

 

Definition 4: Constrained Skyline 
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Given a dataset Ds and a constrained region C⊆Ds, a constrained skyline will contain all the 

points p∈C (p.di∈ ci , ∀ i ∈[1,d]) where ∀p,r∈C,  ∃ j∈[1,d] such that  p.dj<r.dj and ∀ i ∈[1,d]-{j}:p.di  

≤ r.di∎

 

 

FIGURE 16: CONSTRAINED SKYLINE. 

 

FIGURE 17: SKYLINE WITH CONSTRAINS.

 

Another type of queries with similar name that might confuse the reader, are skyline queries with 
constraints [45]. This type of queries, given a set of constraints, returns the computed skyline set 
of the whole dataset restricted by the constraints that were placed. For the house-metro example 
and the constraints mentioned above, the skyline queries with constraints computes the skyline 
of the whole dataset and then applies the constraints to the retrieved skyline set and returns only 
the point H8 [Figure 17].  

In general, a constrained skyline query is computed over the restricted dataset by the constraints 
that were placed, while the skyline query with constraints is computed over the whole dataset and 
then the resulted set is restricted by the constraints. Thus, the results of both types of queries will 
be different (in the majority of cases) for the same dataset.  

2.4.2. Dynamic Skyline Queries (DSQ) 

A Dynamic skyline query is a variation of the original skyline query, which was first introduced in 
[2, 3]. In this type of queries the dynamic coordinates of each point are given by a set of distance 

(dynamic) functions that are based on the distance between a given query/reference point q and 
a point p of the original dataset. The term original space/dataset refers to the original d-
dimensional space/dataset and equivalently the term original coordinates to the coordinates of a 
point in the original space. The produced data space that occurs from the distance functions and 
the query point will be called dynamic space and the coordinates of a point in it, dynamic 
coordinates.  

A dynamic skyline query of a d-dimensional data space DS specifies a new d’-dimensional data 
space DS’ based on the original space and depicted as an inner coordinate system. To achieve 
this transformation specifies m (m≤d) dimension functions f. Each function takes as parameters 
one or more original coordinates of each point and maps them in a new single dynamic coordinate. 
That is, each point p of the original d-dimensional data space is mapped to a new d’-dimensional 
point p’ = (f1(p), . . . , fd’(p)) where each fi is referred as a distance function. Then the dynamic 
skyline applied on DS with respect of functions fi  specified by a query point q returns the original 
skyline of the new transformed d’-dimensional space DS’.  

To simplify the definition of the dynamic skyline it is assumed, without loss of generality, that DS 
and DS’ have the same dimensionality (d=d’). Additionally for a given query point q each distance 
function is defined as the obsolete distance, of the i-th dimension’s value of point p of the dataset 
DS from the i-th dimension’s value of query point q, fi(p)=|q.di-p.di|.  
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Note that dynamic skylines can have a more general class of distance functions such as Euclidian 
distance. In addition, they can be employed in conjunction with constrained and ranked queries 
(by placing weights on dimensions). An example, is the case where the absolute distance 
functions can receive different weights and the result of distance functions is constrained by a 
threshold value, i.e. find the top-3 houses within 1km given that the price is twice as important as 
the distance, where k is specified by user. 

 

Definition 5: Dynamic dominance. 
Given a dataset Ds, a query-reference point q in the workspace and  two points p, r ∈ Ds, point p 

dynamically dominates point r with regard to the query point q, denoted as p ≺q r  if and only if  ∃ 

j∈[1,d] such that  |q.di - p.dj|<|q.di - r.dj| and ∀ i ∈[1,d]-{j}:   |q.di - p.dj|≤|q.di - r.dj| ∎ 

 

Definition 6: Dynamic skyline. 
Given a query-reference point q in the workspace , the dynamic skyline set of Ds with regard to 
the query point q, denoted as SDS

q , consists of the points of the dataset that are not dynamically 

dominated by any other point. That is, SDS
q ={p∈DS|∄r∈DS:r ≺q p} ∎ 

 

House 
price (in 

thousand 
€) 

Coordinate 
X 

Coordinate 
Y 

H1 100 +900 +1200 
H2 1400 +300 +400 
H3 700 -360 +480 
H4 1300 +600 -800 

H5 900 +500 -1200 
H6 1600 +60 -80 
H7 400 +240 +180 
H8 200 -960 +720 

H9 1000 -192 +56 
H10 500 -1120 -840 
H11 500 -720 -540 

TABLE 11: 3-DIMENSIONAL DATASET OF THE HOUSE-METRO 

STATION EXAMPLE. 
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FIGURE 18: INITIAL POSITION OF HOUSES AND THEIR PRICES IN A 

COORDINATE SYSTEM WITH ORIGIN POINT THE METRO STATION.

 

In a dedicated example assume that the 2-dimensional dataset of the house- metro station 
example (Table 1) was calculated dynamically from a previous 3-dimensional dataset (Table 11) 
that had as attributes the price of each house and it’s position (X,Y) in a 2-dimensional map with 
origin point O(0,0) the metro station’s position Figure 18. In the case of this example and its 
needs, the 3-dimensional dataset is projected in a 2-dimensional one by using as a query point 
the position of the metro station and as distance functions the functions f1(H)=(H.d1) and 𝑓2(𝐻) =

(√(𝑞. 𝑑2 −𝐻. 𝑑2)2 + (𝑞. 𝑑3 − 𝐻. 𝑑3)2). This way the relative coordinated position of a house with 

respect the metro station is converted to the Euclidean distance of the house from the metro 
station (with price attribute intact) as shown in table (Table 1). 

As with the original skyline, for the BBS to compute a dynamic skyline query, it processes the 
(leaf/intermediate) R-tree entries in ascending order of their mindist. In this case the mindist of a 
point (leaf entry) from the query point q is computed as, 𝑓(𝐻) =

(√(𝐻. 𝑑2 − 𝑞. 𝑑2)2 + (𝐻. 𝑑3 − 𝑞. 𝑑3)2 +𝐻. 𝑑1) . The mindist of an MBR with range 

([e.d1min,e.d1max][e.d2min,e.d2max][e.d3min,e.d3max]), from the query point q, is computed as 
the mindist([e.d1min,e.d1max][e.d2min,e.d2max],(q.d1,q.d2)) + e.d3min where the first term is the 
mindist between the query point and the lower-left corner of the 2D rectangle [e.d1min,e.d1max] 
[e.d2min,e.d2max]. 
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In a more general example, it is assumed that the user needs to find the dynamic skyline of the 
house-metro station dataset DS. The dynamic functions that will be used are the obsolete 
distances of points in the dataset from the specified query point and thus points of DS are mapped 
in the new space as shown in [Figure 19], with the same dimensionality as the original space 
(d=d’). In detail points H1, H2, H3, H6, H7, H8, H9, H10, H11 are projected to points H1’, H2’, H3’, 
H6’, H7’, H8’, H9’, H10’, H11’ respectively [Table 12] with regard the query point q and the 
dimension functions f1(H)=|q.d1 - H.d1| and f2(H)=|q.d2 - H.d2|. The dynamic skyline for the 
selected query point contains houses H3’, H11’ which are essentially points H3, H11.  

 

Hous
e 

price (in 
thousan

d €) 

Distanc
e (m) 

Dynamic 
price (in 
thousan

d €) 

Dynami
c 

Distanc
e (m) 

H1 100 1500 1500 1500 
H2 1400 500 1400 1100 
H3 700 600 900 1000 
H4 1300 1000 1300 1000 

H5 900 1300 900 1300 
H6 1600 100 1600 1500 
H7 400 300 1200 1300 
H8 200 1200 1400 1200 
H9 1000 200 1000 1400 

H10 500 1400 1100 1400 
H11 500 900 1100 900 

TABLE 12: ORIGINAL AND DYNAMIC DATASET. 

 
FIGURE 19: DYNAMIC SKYLINE. 

 

A DSQ query can be seen as a query from the buyer’s perspective, by identifying the houses that 
are most interesting to him. 

2.4.2.1. Spatial Skyline Queries (SSQ) 

The spatial skyline query (SSQ) [46, 47] can be considered as a more restricted special case of 
the dynamic skyline queries. It considers multiple query points at the same time and relies on the 
existence of a multi-dimensional Euclidean space to derive geometric bounding structures, such 
as convex hull and Voronoi diagram to reduce the search space. Given a dataset DS and a set of 
query points Q, a Spatial Skyline Query retrieves those points of DS, which are not spatially 
dominated by any other point in DS with respect to Q. Specifically, a point p∈DS spatially 

dominates a point r∈DS  with respect to Q, if and only if p is closer to at least one query point q∈Q 
as compared to r and has in the best case the same distance as r to the rest of the query points, 
i.e. no other object is closer to all the given query points simultaneously.  

 
Geometric notations 
 
Convex Set: A set S of points, that exist on a plane over ℝ, is called convex set if and only if for 

any two points p,r∈S, the segment (line) that connects them resides entirely in S (i.e. all the points 
of a circle or a hexagon)∎ 
 

Convex Hull: The convex hull of a set S of points over ℝ, is the intersection of all the convex 
sets containing S ∎ 
 

A counter example of a convex hull would involve the dashed line in Figure 20. If the segment of 
the red line, which belongs between houses H4 and H6 was replaced be the dashed line that 
contains house H2, the set S would not be a convex set since the line that connects houses H4 
and H6 would not reside in S. 
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Voronoi diagram: Given a set S of n points over ℝ that exist on a plane, the Voronoi diagram of 
S, is the subdivision of the plane in n cells, where each cell contains only one point of S, called 
generator. The important property is that any point (except the generator) in a particular cell will 
be always closer to the point that generates this cell (Figure 21)∎ 
 

 
FIGURE 20: CONVEX HULL OF THE HOUSE-METRO STATION 

DATASET. 
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FIGURE 21: VORONOI DIAGRAM OF THE HOUSE-METRO STATION 

DATASET. 

 

To reduce the search space authors give two important theorems; the spatial skyline points, which 
are those points, which either within the convex hull [48] of query points or having their own 
Voronoi cells [48] intersect with boundaries of the convex hull of query points. Also, they proposed 
the R-tree-based B2S2 algorithm and the Voronoi-based VS2 algorithm for the spatial skyline 
queries. Both algorithms are efficient in cases where only Euclidean distances are considered as 
dimension functions, but their search structures are inefficient in high-dimensional and metric 
spaces. Additionally, authors proposed a Voronoi-based continuous VCS2 algorithm to efficiently 
update a spatial skyline taking into account that the location of query point q can change. 
Moreover, they extended their work in [47] by computing the spatial skyline query in the metric 
space of Spatial Network Databases (SNDB), such as the road networks, in which the spatial 
objects are restricted in predefined locations/routes. 

To demonstrate the use of spatial skyline queries, consider the example from a set of home 
heating oil delivery stations (data points P) where their user wants to identify a candidate subset 
to dispatched delivery trucks to multiple houses (query points Q). This candidate subset includes 
those stations that are not dominated by any other station with respect to all the houses, and 
hence they are the spatial skylines. 

In [49] is proposed the Multi-Source Skyline Query (MuSSQ) in road networks where the network 
distance between two locations needs to be computed on-the-fly and the attributes are defined to 
be the shortest path length from data points to query points. In [50] it is proposed the Location-
Dependent Skyline Query (LDSQ) for multi-objective distance optimization, considering a 
continuous changing user location (query point). In [51] authors consider spatial skyline 
computation with user preference information in addition to distances. Also, they extend the query 
processing algorithm to return at least k good objects (where k is a user specified number) even 
when the original skyline contains fewer than k items. In [52] is proposed the Direction-based 
Spatial Skyline Query (DSSQ), which finds the best objects by comparing them in terms of 
distance from a mobile user and also by considering the direction that the user moves, rather than 
only distance as in traditional spatial skyline queries. In [53, 54] authors propose Manhattan 
Spatial Skyline Queries (MaSSQ) and develop an efficient algorithm for spatial skyline queries 
using the L1 norm, also known as Manhattan distance. Readers must not associate Manhattan 
Spatial Skyline Queries (MaSSQ) with Multi-Source Skyline Queries (MuSSQ). 

2.4.3. Reverse Skyline Queries (RSQ) 

A Reverse Skyline Query [14] retrieves these points in the database whose dynamic skylines 
contain a given query point. This type of query, as opposed to the DSQ, is a query from the 
perspective of real estate company. For example, given the ideal preferences of potential house 
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buyers, as points in a two-dimensional space, the reverse skyline query can answer the question 
if it make sense to offer a house q (as a query point) to one of the potential buyers. The house q 
(becoming an origin point) will be interesting for a buyer, if it will be part of the dynamic skyline of 
his preferences (that represent the dataset points).  Another example would be the selection of a 
new store’s location. A reverse skyline query on a customer database, with respect to a query 
point q that represents the new location of the store would return those customers who are 
potentially interested in the new store. Then the strategy is to select the location that maximizes 
the number of customers.  

 

Definition 7: Reverse skyline. 

Given a dataset Ds in a d-dimensional space D and a query point q (q1, q2, ..., qd)  D, the reverse 

skyline query of Ds with regards to q retrieves the set of points RSLq(Ds)  Ds for which q is a 

dynamic skyline point of Ds with regards to all points in RSLq(Ds), that is, RSLq(Ds) = {p  Ds | ∄ 

r  Ds: r q
Ds p}. The points in RSLq(Ds) are called reverse skyline points of Ds with regards to 

q∎  

 

Definition 8: Global Domination 

Given a dataset Ds in a d-dimensional space D, a query point q (q.d1, q.d2, ..., q.dd)  D  and two 

points p(p.d1, p.d2, ...,p.dd) ,r(r.d1, r.d2, ..., r.dd) D, point p will globally dominate r with regard to 

the query point q (denoted as p q r ) if ∀i{1, . . . , d}: { (p.di − q.di )(r.di - q.di ) > 0 and |p.di  − 

q.di|≤|r.di − q.di|} and ∃j{1, . . . , d}:  |p.dj−q.dj| < |r.dj−q.dj|∎ 

 

Definition 9: Global Skyline 

Given a dataset Ds in a d-dimensional space D and a reference point q  D, The global skyline 
of a point q, GSL(q), will contains the points which are not globally dominated by another point 
according to q∎ 

 
FIGURE 22: GLOBAL SKYLINE AND RANGE QUERIES. 

 
FIGURE 23: REVERSE SKYLINE. 

 

To compute the reverse skyline (RSL) of the house-metro station example, with regards the query 
point q (800,800), it is first needed to compute the global skyline GSL(q) as shown in Figure 22. 
As illustrated, the GSL(q) will contain the (reverse skyline candidate) points H11, H7, H5, H4, H9 

and H2. The resulted reverse skyline Figure 23  will eventually contain the points H5, H7, H11. The 
rest of the points are discarded because, in order for a reverse skyline candidate p to be a reverse 
skyline point must not exist any point q in the GSL that is (strictly) better, in terms of distance from 
q, on all dimension simultaneously.  
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With the existing introduced algorithms, in order to compute the RSQ of a dataset DS, given a 
query point q, it is needed to examine all the points of DS by performing a dynamic query (e.g. 
using BBS) for each point to find the points that have q as part of their dynamic skyline. The points 
that will be retrieved would be the reverse skyline set. A first optimization in this approach would 
be to stop processing the dynamic skyline of a point when q is already identified as a skyline point 
since there is no need to compute the entire skyline. To further optimize the identification of 
Reverse skyline point authors proposed two algorithms Branch-and-bound algorithm (BBRS) and 
Reversed Skyline Search with Approximation (RSSA). BBRS is an improved customization of the 
original BBS algorithm and uses a Multidimensional index (e.g. R-tree). Its goal is to process the 
reversed skyline of a query point q without applying a space transformation. To achieve this, it 
retrieves the proposed Global Skyline GSL(q) that returns a small subset of the dataset as 
candidates for RSQ (this subset is still a superset of RSQ), which essentially reduces the search 
space for the reverse skyline computation. Algorithm RSSA computes the dynamic skyline for 
each point of the dataset and uses an accurate pre-computed approximation of the skyline in a 
filter-refinement step to compute the reverse skyline. Along with the RSSA algorithm, authors 
proposed an optimal algorithm to compute approximations for two-dimensional skylines and a 
greedy algorithm for higher dimensions. The basic idea of the approximation scheme is to pre-
compute the dynamic skyline of each point of the dataset and select a fixed number k of Kmax 
dynamic skyline points (k≤Kmax ). 

Some additional applications where the reverse skyline can be applied is the case when needed 
to identify customers that would be interested in a particular product by exploring the dominance 
relationships between other competitor’s products, with respect of the user preferences. The 
reverse skyline can also be applied in situations such as environmental monitoring, where several 
sensors are deployed to monitor the area and report data such as temperature and humidity. 

In [55] authors try to answer the so called why-not questions in reverse skyline queries To answer 
this type of question we need to find why a point does not belong in the reverse skyline and what 
actions are needed to be performed (to the query point but also to the why-not point) to be part of 
the reverse skyline by incurring only minimum changes to both.  

2.4.4. Group-by and Join Skyline Query 

In this section are introduced the Group-by Skyline queries [3] and skyline queries over joins [56]. 

2.4.4.1. Group-by Skyline Query 

To illustrate a Group-by skyline query [3] example based on the initial house-metro station 
dataset, a third attribute is inserted into the original dataset Table 1 (without altering any of its 
values) represents the number of bedrooms that each house has (Table 13). This way a potential 
buyer can find individual skylines depending on the number of bedrooms. That is to group the 
houses by the number of their bedrooms and then compute the skyline of each group. In this case 
the cardinality of distinct values of bedrooms will be equal to the number of individual skylines that 
will be found. In Figure 24 the individual skylines of each group based on the number of bedrooms 
are illustrated. 
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House 
price (in 

thousand 
€) 

Distance 
(m) 

No. of 
bedrooms 

H1 100 1500 1 
H2 1400  500  3 

H3 700  600  2 
H4 1300  1000  3 
H5 900  1300  2 
H6 1600  100  3 

H7 400  300  1 
H8 200  1200  1 
H9 1000  200  2 
H10 500  1400  1 
H11 500  900  1 

TABLE 13: HOUSE-METRO STATION DATASET WITH NO. OF 

BEDROOMS. 

House price (in 
thousand 

€) 

Distance 
(m) 

No. of 
bedrooms 

H1 100 1500 1 
H7 400  300  1 

H8 200  1200  1 
H10 500  1400  1 
H11 500  900  1 
H3 700  600  2 

H5 900  1300  2 
H9 1000  200  2 
H2 1400  500  3 
H4 1300  1000  3 
H6 1600  100  3 

TABLE 14: GROUP-BY SKYLINE. 

 

To give a formal definition of the Group-by dominance property and the Group-by skyline it is 
needed to define the following: 

Given a relational table instance DS (dataset), in a d-dimension space with equal numeric 
attributes and a schema A= (A1, A2,…Ad),  the notation p[Ai] represents the value of a tuple p in 
the attribute Ai. Additionally, given a set G ⊂ A of attributes of DS that will be used for grouping 
and an instance g of G (i.e. one distinct value from the total values of number of bedrooms), DS(g) 
is defined as the set of tuples of DS that belong to the group instance of g. That is:  𝐷𝑆(𝑔) = {𝑝 ∈
𝐷|∀𝐴𝑖 ∈ 𝐺, 𝑝[𝐴𝑖] = 𝑔[𝐴𝑖]} 

 

Definition 10: Group-by Dominance  
Given a set S ⊂ A (S∩G=∅) which this time contains the skyline attributes (that will be checked 
for dominance), a tuple p dominates another tuple r with respect of S, (denoted by p ≻s r) if and 

only if ∃ Aj∈S such that p[Aj]<r[Aj] and ∀ Ai∈S -{Aj}:   p[Ai]≤r[Ai] ∎ 

 

Definition 11: Group-by Skyline  
Eventually the Group-by skyline query will contain all the tuples p that are not Group-by dominated 
by any other tuple r with respect of S and that is:  𝛹(𝐷𝑆, 𝑆) = {𝑝 ∈ 𝐷𝑆|∄𝑟 ∈ 𝐷𝑆, 𝑟 ≻𝑆 𝑝}∎ 

 

Summarizing a  group-by skyline query Q= (G, S), with G representing the grouping attributes and 
S the skyline attributes (S∩G=∅), computes the skyline result set ψ(DS(g),S) for each group 
instance g defined on G and the overall query result can be represented as Q (DS). 

Based on the dataset DS of Table 13, to find the group-by skyline with respect to the No. of 
bedrooms, the grouping attributes are defined to be G= {No. of bedrooms} and the skyline 
attributes S= {Price, Distance} (S∩G=∅). The dataset DS of Table 13, is partitioned into groups 
(Table 14) based on G and then the skyline tuples of each group are computed with respect of S.   

A naïve approach to process a Group-by skyline is to create a separate R-tree for each one of 
the distinct values of bedrooms. Each R-tree will contain the corresponding house entries with 
their two remaining attributes, depending on the number of bedrooms (grouping attribute), and 
then an original BBS algorithm on each tree will be invoked. Nevertheless, this approach is 
inefficient since the performance of queries when all attributes are involved is compromised as it 
may be needed to maximize or minimize the grouping attribute.  A more efficient approach, which 
operates on the R-tree that indexes all the attributes is achieved with a variation of BBS [2]. This 
variation stores the already found skyline points for every group, in a secondary (d-1)-dimensional 
(in this case) R-tree and maintains a heap with the visited entries. The sorting measure that is 
used is based only on the d-1 remaining attributes (without the group-by attribute). The dominance 
check of a retrieved point, from the original R-tree, is performed on the corresponding by its group 
R-tree and is inserted in it only if it is not dominated by any of the existing points. Dominance 
checks for intermediate entries (regions) are more complicated because it is likely to contain 
hotels of several classes. 
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FIGURE 24: GROUP-BY SKYLINE. 

Authors in [57] proposed the aggregate skyline query which combines the skyline and group-by 
queries. Essentially, the aggregate skyline is the set of groups not dominated by other groups. 
The various groups are defined based on a common property of tuples. In addition, authors 
discussed the differences between the efficiency of the aggregate skyline query processing in 
relation to the sequential execution of the skyline and group by query. 

In [58, 59] authors studied the problem of identifying the k-tuple skyline groups. In this problem 
authors try to identify groups of k tuples that are not dominated by other, equal sized, groups. To 
compare the groups, each group is associated with an aggregate vector which is computed based 
on a common aggregate function such as SUM, MIN, MAX. The aggregate values of vectors are 
computed based on all the attributes of all tuples in a group. A naïve approach to compute the k-
tuples skyline groups is to compute the aggregate functions for each k-tuple combination and then 
invoke a traditional skyline algorithm to identify the skyline groups.  

2.4.4.2. Skyline Queries Over Joins 

Most of the existing work discusses the computation of skyline queries over data that are stored 
in a single table. In [56] authors discuss the case where data are stored in multiple tables and 
thus is required to perform join operations among them to compute the final skyline and propose 
efficient methods to share the join processing cost with skyline computation cost. More specifically 
assuming the existence of two (or more) tables (which have one common join attribute) and apply 
a join operation on them, there is a case that may appear new skyline points that are not in the 
skyline of the individual tables. Based on this observation a naïve approach would be to compute 
the join of the two tables and produce a new table that contains the joined records. Afterwards 
apply a skyline query to the derived table to compute the skyline. The problem that may arise in 
this case is the potential increment of the computational cost of skylines on the joined table due 
to its increased cardinality and dimensionality. As a solution authors proposed a sort-merge join 
approach where they group the tuples in three groups according to the values of join attributes 
and based on whether or not are local skylines in their group and skyline points in the whole table.  
This involves a first phase of pruning from each table which is achieved with the use of an R-tree. 
Afterwards each tuple in each group is sorted based on its join attribute value. The next step 
involves a third (in this case) table which will host the join operation. Each group is inserted 
individually and merged with the existing tuples by additionally performing a dominance check for 
each tuple to compute final skyline of the join relation.  
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2.4.5. Top-k Skyline Query 

Top-K skyline queries (or ranked skyline queries) were proposed in [2, 3] and return the K “most 
interesting” skyline points of a given dataset, based on a monotone preference function f. The 
user specifies the parameter K, which represents the number of points to be reported and the 
monotone preference function f based on the weighting that wants to apply over the attributes. 
The query will return the K points of the dataset with the minimum (or maximum) score according 
to the function f. To demonstrate this with an example assume that K=3 and the preference 
function is f(x)=x+2y (i.e. a lower distance (y) is more important than price (x) to the user ). The 
Top-3 points of the house-metro station dataset that will be returned are {(H7, 1000), (H9, 1400), 
(H6, 1800)}. This type of queries can be efficiently solved with BBS algorithm by replacing the 
mindist function with the given preference function. In this case the algorithm will terminate when 
exactly K points have been retrieved. 

2.4.6. Thick Skyline Query 

A Thick Skyline [60] extends the conventional skyline by returning the conventional skyline points 
and additionally their nearby non-skyline neighbors that exist within ε–distance, which are similar 
but not as good as the skyline points. This approach can help the user in cases of nearest 
neighbor search where the cardinality of the dataset is high and the points of the dataset forms 
groups. In their work the author extend the concept of skyline to generalized skyline by adding a 
user-specific constraint, defined as the ε-neighbor of any skyline point, into skyline search space. 
A Thick skyline is composed by a subset of the generalized skyline points.   

 

Definition 12: Generalized Skyline. 
Given a d-dimensional dataset DS and a set SL={s1, s2, s3,… }, which contains the conventional 
skyline points of DS, the generalized skyline GL is consisted from the conventional skyline points 
and additionally the non-skyline points that exist in their vicinity within ε-distance. That is 
GL=SL∪{p|p∈DS^p∈si+ε, ∀i, 1≤i≤d}∎ 

 
Definition 13: Thick Skyline. 
Given a d-dimensional dataset DS, a thick skyline is composed by the skyline points of the 
generalized skyline (named dense skyline points), that have in their vicinity (defined by ε) another 
(strictly) skyline point(s), and additionally the skyline points of the generalized skyline (named 
hybrid skyline points) that have in their vicinity another skyline point(s) and some non-skyline 
points. Thus, a thick skyline contains all the skyline points of the generalized skyline except of 
those that do not contain any other point in their vicinity (outlying skyline points) as defined by the 

generalized Skyline ∎ 
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FIGURE 25: DENSE, HYBRID AND OUTLYING SKYLINE POINTS. 

Figure 25 shows the main differences between the dense, hybrid and outlying skyline points in a 
plane that is consisted of random points, because in the house-metro station dataset this would 
not be obvious. Point p1, p3, p4 are outline skyline points since are skyline points but they do not 
contain any point in their vicinity. Point p7 and p6 are dense skyline points since are skyline points 
and contain another skyline point in their vicinity. Point p2, p8, p9 and p5 are hybrid skyline points 
since are skyline points and contain other non-skyline points in their vicinity. Additionally, point p9 
and p8 contain another skyline point in their vicinity. 

Authors proposed three algorithms, Sampling and Pruning, Indexing and Estimating and 
Microcluster-based algorithm for mining thick skylines under three typical scenarios. The first 
scenario concerns a single file to represent the dataset where the sampling and pruning technique 
exploits statistics from the database, such as order and quantile in each dimension, to identify the 
thick skyline points by comparing the points of the dataset according to the defined Strongly 
Dominating Relationship.   

 

Definition 14: Strongly domination relationship. 
A point p strongly dominates a point q (denoted as p⊳q), if p+ε dominates q. That is ∀i∈[1,d], 

pi+ε≤qi and ∃j∈[1,d]-{j}, pi+ε<qi∎ 

 

The second scenario concerns a general index structure such as Index algorithm [35] where 
points are partitioned in lists ordered by their minimum coordinate and compared in a similar order. 
The final scenario concerns the partitioning of the dataset into microclusters based on the CF-
tree structure [61]. Then the algorithm follows a similar approach as BBS [2] to identify the desired 
points using bounding and pruning techniques. In each case the thick skyline performs 
approximate selections, as it employs approximate measures and increases the size of the final 
result set (compared to the conventional skyline) that is returned to users.  

2.4.7. K-representative and Distance-based Representative Skyline Queries 

K-representative skylines points (top-k RSP) were proposed in [62] to identify a set of k skyline 
points that maximize the total number of (distinct) points dominated by one of the k skyline points. 
This type of query was proposed to allow users to have a good approximation (returning few but 
representative skyline points) of the final skyline and let them make a good and quick selection 
when the skyline is consisted from too many points. Authors also developed an efficient, scalable, 
index-based randomized algorithm. Authors in their implementation employed the BBS [2, 3] 
algorithm and the FM probabilistic counting algorithm [63]. The FM algorithm is a bitmap based 
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algorithm that can efficiently estimate the number of distinct elements (data points) dominated by 
a skyline point, overcoming multiple-domination counting.   

2.4.7.1. K- Representative Skyline (Top-k RSP) 

Given a dataset Ds and an integer k, ∀p∈Ds, D({p}) is denoted as the set of points in Ds that are 

(strictly) dominated by p. For a set S of data points, with S⊆DS, D({S}) denotes the set of points 
each of which is strictly dominated by a point s∈S. The set K of the k-representative skyline points 

will contain k skyline points that Maximizes |D(K)|∎ 

The problem of identifying the K-representative skyline is known to be NP-hard [62] in 3 or higher 
dimensional space. This approach is scale invariant but cannot be considered stable since adding 
a non-skyline point may alter the final k-representative skyline set. Top-k RSP can be transformed 
in the maximum coverage problem [64] and solved approximately by the author’s proposed 
greedy heuristic. 

2.4.7.2. Distance-based Representative skyline 

Authors in [65] proposed the distance-based representative skyline, which is an alternative 
solution for the problem of k-representative skyline points (referred as max-dominance 
representative skyline in this work) where they redefined it. The reasoning was that the set K of k 
points returned by the k-representative skyline can turn out not to be representative, because the 
produced points may belong to the same cluster or the set K fails to represent the extreme points. 
From the authors perspective a good representative skyline should have for every non 
representative skyline point, a nearby representative. Therefore, in their work they defined the 
problem of identifying the k-representative skyline points as the set of k points that minimizes the 
distance between a non-representative skyline point and its nearest representative. The proposed 
approach it is not a scale invariant, as the previous approach (k-representative skyline), since it 
is based on distances.  As opposed, it can be considered to be stable since by adding a non-
skyline point in the dataset will not change the final representation (due to the initial algorithm 
construction). 

In this approach it is considered that the data space is normalized in the range [0, 1]. The distance-
based representative skyline can be an optimal solution for k-center problem [66] of the full 
skyline. Except from the distance-based representative skyline authors introduced the concept of 
representation error of K, denoted as Er(K, S) to quantify and check the quality of the 
representation K of the full skyline S of the dataset Ds, by the k identified representatives. This is 
achieved by checking the maximum of all distances, between any of the non-representative 
skyline points in the set S−K and their nearest representative in K. 

 

Definition 15: Distance-based Representative Skyline. 
Given a dataset Ds, its skyline set S and an integer value k, the distance-based representative 
skyline K of Ds is consisted of k-skyline points of S that minimizes the representation error 
Er(K,S)∎ 

 

For the 2-dimensional space authors developed a dynamic programming algorithm that optimally 
finds a solution in polynomial time. For 3-dimensional spaces and higher authors propose a 2-
approximate [67] polynomial algorithm and prove that the problem is still NP-hard [62]. The 
algorithm can quickly identify the k representatives without extracting the entire skyline by utilizing 
a multidimensional access method (i.e. R-tree). The proposed algorithm is progressive and does 
not require a specific k value from the user as it continuously returns representatives that are 
guaranteed to be a 2-approximate solutions at any moment, until either manually terminated by 
the user or eventually producing the full skyline. 

The k-representative skyline gives to the user a high-level summary of the entire skyline as it 
returns only a few points that reflect to the contour of the final skyline and then progressively 
refines it (contour) by reporting more skyline points. The user may identify interesting 
representative points and request only the skyline points that are similar to those representatives 
(i.e. belong to a specific part of the contour). 
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2.4.8. ε-skyline 

The proposed type of query claims that solves the limitations and drawbacks of the original skyline 
by taking into account that there was no algorithm that can simultaneously control the resulted 
size of the skyline, has built-in ranking for the points and weighting on dimensions. According to 
previous considerations authors proposed the ε-skyline [68] which allows users to control the 
number of output skyline points (by increasing or decreasing them depending on  an appropriate 
ε parameter that the user defines), provides a built-in ranking system and integrates weighting 
factors for each dimension.  

The algorithm takes as input a d-dimensional dataset (with its values normalized as on SFS [41] 
in [0, 1] (section 2.3.7), a weight vector W that will contain the weight factors W i, (i∈[1, d]) for 
each dimension (if no weighting is needed all the factors will be equal to 1) and a parameter ε∈[-
1, 1]. The dominance property is relaxed according to the ε parameter. To manage the dominance 
relations, authors defined some additional properties such as irriflexivity, loose transitivity and 
loose asymmetry. The weights that the user inserts are incorporated in the dominance 
comparisons. For the built-in ranking system to work every point p in the dataset has a 
corresponding ε-max value which represents the largest value of ε, which makes p to be a skyline 
point. Thus, the points have a natural order based on ε-max value. This ordering can be used to 
place top-k ε-skyline queries.  

 

Definition 16: ε-domination. 
Given a d-dimensional dataset DS, a weighting vector W={Wi |i∈[1, d],0<wi<1}, a parameter ε∈[-

1, 1] and two points p,r∈DS, p ε-dominates r, denoted with p ε≺ r  if and only if ∃ j∈[1,d] such that  

p.dj<r.dj and ∀ i ∈[1,d]-{j}:   p.di *wi ≤ r.di *wi+ε∎ 

 

Definition 17: ε-Skyline. 
The ε-Skyline of a dataset DS contains all the points p∈DS that are not ε-dominated by any other 

point on the dataset∎ 

 

In their work, [68], authors proposed two algorithms, ε-SFS which is progressive and based on 
the SFS [41] algorithm and IFR (index-based Filter-Refinement) algorithm which uses an index 

structure such as an R-tree and a filter-refinement framework.  
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FIGURE 26: DOMINANCE REGION OF H7’ WITH Ε=0.01 . 
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FIGURE 27: Ε-SKYLINE WITH Ε=-0.01 . 

 

An ε-skyline can monotonically vary from an empty set to the whole dataset depending on the 
value of ε. An ε-skyline with ε=0 represents the conventional skyline. An ε-skyline with value ε=-1 
will return the whole dataset and with value ε=1 the empty set. More generally the case of an ε-
skyline, with ε>0 is shown in Figure 26. In this case ε=0.01 and as shown the dominance region 
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of (i.e.) H7 will be visualized as the point H7 was moved to the location of H7’ to fulfil the ε-
domination. This way point H7 ε-dominates point H9 which for that reason will not be in the final 
skyline set. Similar H8 ε-dominates H4 and H9 ε-dominates H6. The final skyline set for ε=0.01 will 
be S= {H7, H8}. The case of an ε-skyline, with ε<0 is shown in Figure 27. In this case the ε-skyline 
will contain the conventional skyline points and additionally the points that are in the shaded area, 
as this happens with point H11.  

2.4.8.1. Approximately Dominating Representatives 

In [69] authors introduced the notion of approximately dominating representatives (ADRs). The 
scenario has a set of n points in a d-dimensional space and a value ε>0, where it is desired to 
find the minimum set of points, named ε-ADR, that approximately dominate all the points of the 
dataset. With this approach they try to minimize the number of (skyline) points to be reported at a 
small loss of accuracy. The approximation is imposed by a user-defined value ε that extends the 
dominating region of each point.  The data points retrieved by the algorithm when ε=0 (ε-ADR) 
are guaranteed to be skyline points. In this case the algorithm will return all the existing skyline 
points. In the cases of ε>0 may exist many different ε-ADRs (for a specific value ε). In this case 
the points returned are not guaranteed to be skyline points. An example of a case where ε>0 can 
be considered a dataset that contains a point that approximately dominates all others (i.e. a point 
very close to the origin of axes if minimization of preferences is desired). In this case the algorithm 
will return only this point, although it may not be a pure skyline point.  

2.4.9. Enumerating and K-dominating Queries 

Enumerating queries and K-dominating queries (Top-k dominating queries in general 
bibliography) were proposed in [2, 3]. These types of queries do not produce skylines but can 
work as a measure of “goodness” in various cases.  

2.4.9.1. Enumerating Queries 

An enumerating query [2, 3] returns the set of skyline points and additionally the number of points 
that each skyline point p dominates (denoted as num(p)). This kind of result could be used to 
investigate which skyline points are more interesting by means of “number of points that they 
dominate”. To compute the enumerating query the first step is to retrieve the skyline points of the 
dataset with an existing algorithm (i.e. BBS). The second step performs a query in the R-tree, for 
every skyline point, to count the number of points that exist in their dominance region. To avoid 
multiple node visits with the previous technique (since a node may be dominated by more than 
one skyline points), a solution is to apply the inverse procedure which is, for each non-skyline 
point in the dataset, perform a query in the R-tree to find the dominance regions that contains it 
and accordingly increase the appropriate counters of the skyline points that dominates it. As an 
example in the house-metro station dataset the enumeration query will return for the house H7, 
num(H7)= 6, for the house H11, num(H8)= 2 and for the house H6,  num(H6)=0. 

2.4.9.2. k-dominating Queries 

A variation of the above problem (and also the predecessor of the k-representative skyline query) 
that incorporates the enumerating query (and the constrained skyline queries) is the K-dominating 
query [2, 3]. This type of query returns the K points that dominate the largest number of other 
points. The points that are returned do not necessary belong to the skyline of the dataset.  

The first step to retrieve the K-dominant points is to perform an enumerating query. The query will 
return the skyline points and the number of points that each one of them dominates. The items 
that are retrieved are sorted by their descending order of the number of points that they dominate 
and the first K points are placed in a list. The first point of the list is the first result of the k-
dominating query and it is returned to the user, removed from the list and pruned from further 
computations. Next is applied a local (constrained) skyline with boundaries the (exclusive) 
dominance region (Figure 28) that was defined by the point removed, to efficiently find the skyline 
of the dataset after the removal of the first point and identify potential candidate K-dominant points 
(that may outnumber points in the list). The second step of the enumeration query is applied on 
the newly found skyline points (if they exist and are possible candidates) and returns the number 
of points that they dominate.  If any of the points found outnumbers the last point of the list, it 
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replaces it and the list is rearranged. The first point of the list will be the second K-dominating 
point. The algorithm terminates when it finds the K most dominant points, thus when the new 
points retrieved from the local skyline cannot outnumber the points in the list. For the House-metro 
station example a K-dominant query for K=3 will return the points {(H7,6),(H11,3), (H8,2)}. More 
analytically after the initial enumerating query the list will contain the points {(H7,6), (H8,2), (H9,2)}.  
Point H7 will be the first K-dominant point and returned to the user. After removing point H7, the 
local skyline point H11 is checked and is inserted in the list (the last point of the list is removed 
resulting in {(H11,3), (H8,2)}. The local skyline point H3 is also checked, after the removal of H7, but 
is not inserted in the list because it does not outnumbers any point in it. Thus, the second K-
dominant point H11 is returned to the user but the algorithm terminates (Figure 29) since a local 
skyline, by removing H11, has not any candidate that may outnumber the last (and in this case the 
final) point of the list. So point H8 is also returned to the user.

 

 
FIGURE 28: EXCLUSIVE DOMINANCE REGION OF H7. 

 
FIGURE 29: SKYLINE AFTER REMOVING H7 (FINAL STEP OF 
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2.4.10. k-skyband Query 

A K-skyband query [3] returns the points that are dominated by at most K points with the case of 
K=0 representing the original skyline. A K-skyband query follows similar logic with K nearest-
neighbor query with K representing the thickness of the skyline. 

 

 

FIGURE 30: (0, 1, AND 2)-SKYBAND QUERY. 

Figure 30 illustrates a 0-skyband query (red line), a 1-skyband query (yellow line) and a 2-
skyband query (green line) of the house-metro station dataset. In detail a 2-skyband query will 
return points H1, H6, H7, H8, H9 (which are dominated by at most 0 points) , H3, H11 (which are 
dominated by at most 1 points) and H2 (which is dominated by at most 2 points).  

A naïve approach to process a k-skyband query is to perform an enclosure (window) query on the 
R-tree, for every point p(p.d1,p.d2)∈ DS,  to count the points that exist in the region [0,p.d1)[0,p.d2). 
If there exist up to k points in this region then the point p belongs to the skyband. Since this 
approach is inefficient, because the number of enclosure (window) queries required is equal to 
the cardinality of the dataset, a more efficient approach involves the processing of k-skyband 
query with the BBS algorithm. As with the original skyline the algorithm maintains its 
progressiveness and its only difference is that an entry is rejected only if it is dominated by more 
than k discovered skyline points.  

2.4.11. Summary 

The user can apply a dynamic skyline query if in addition with the original skyline computation, 
wants to apply a space transformation from a (i.e) 3-dimensional space to a 2-dimensional space, 
(and vice versa) or to find the skyline set based on a given query point. A reverse skyline query 
can help the user to identify if a given query point is desirable and interesting based on an existing 
dataset that may represent his/her preferences. A spatial skyline query can be applied when the 
user wants to find the skyline according to multiple query points such as the case of deploying 
several police cars to respond to multiple incidents. The Group-by skyline can help the user to 
identify the interesting points based on some common attributes. i.e find the best hotels in each 
5-star category. A thick skyline can help the user to retrieve not only the skyline points but also 
some additionally points that may be interested to know even if they are not truly-interesting points 
but only nearly-interesting points (are very close to a truly interesting point).  A top-K skyline query 
can help the user to retrieve the interesting points of a dataset even if his/her preferences are 
biased. In this example he/she prefers cars with twice as low consumption even if its horsepower 
is tripled lowered. With a k-representative skyline the user can retrieve a representation of the 
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original skyline, which is consisted from a smaller number of points than the original skyline. This 
representation can be based on dominance or distance from other representatives, depending on 
the selected query type. This type of query can be useful if the user wants to retrieve a general 
view of the skyline fast, without retrieving the full skyline. With a ε-skyline the user can incorporate 
the idea of top-k, k-dominating, thick and the k-representative skyline with one algorithm. An 
enumerating query will help the user to retrieve the skyline points and additionally the number of 
points that each skyline point dominates while with a k-dominating query can retrieve the k-points 
that dominate the most points. Finally, a k-skyband query will let him to retrieve points based on 
the number of points that dominate a point which can be useful in cases where the user wants to 
know the dominance relations. 

A performance analysis between BBS [2, 3] and NN [37] based on the application of the various 
queries types can be found in [3].  

 

Query type Specific Algorithms Based-on incorporates 

Constrained Skyline  [2, 3]  Modified BBS or NN BBS or NN MBRs 

Dynamic Skyline  [2, 3]    BBS BBS mindist, distance functions 
Spatial Skyline [46, 47] B2S2 BBS Convex hull 

 VS2 - Voronoi diagram / Delaunay graph 

 VCS2 VS2 Voronoi diagram Delaunay graph 

Reverse Skyline [14]  BBRS BBS Global skyline 

 RSSA - Global skyline / Approximation of skyline 

Group-by Skyline [3]  Modified BBS BBS Secondary R-tree / sorting 
Top-k Skyline  [2, 3]   Modified BBS BBS mindist, distance function 

Thick skyline [60]  Sampling & Pruning - 
sampling / Strongly Dominating 

Relationship 

 Indexing & Estimation Index [35] sorting 

 Microcluster-based - microcluster-based index 

K-representative [62]  Greedy BBS sort-merge paradigm 

 FMGreedy 
Greedy - 

BBS 
FM-algorithm[63] / FM sketches 

 RFM-tree BBS RFM-tree [62]  / FM sketches 
Distance-based K-
representative [65]  

2D-opt - R-tree / Covering circles 

 l-greedy - R-tree / farthest neighbor search 

ε-skyline [68]  ε-sfs SFS specific monotone function 

 IFR - extra set ToExpand whith MBRs 

Enumerating query  [2, 3]    Modified BBS BBS R-tree, find dominance regions 

K-dominating query  [2, 3]  Modified BBS BBS Enumerating query, constrained skyline 

K-skyband query [3]   Modified BBS BBS pruning restrictions 

TABLE 15: SPECIFIC ALGORITHMS FOR EACH QUERY TYPE. 

Table 15 outlines the basic algorithms developed for the various types of queries mentioned and 
notes the fundamental skyline algorithm that is based (if applicable) and the specific structures 
(geometric) or techniques (approximation) that may incorporate. 

 
Type Method Size of resulted set 

Constraint skyline Region restrictions K ≤ S 

Dynamic Skyline Space transformation S 

Spatial Skyline Geometric structures S 

Reverse Skyline Space transformation S 

Group-by skyline Grouping attributes S 

Thick skyline Approximate selection K ≥ S 

Top-K (ranked) Point-wise ranking Exactly k points, ∅⊂ K ⊆Ds 

K-representative Exclusive domination Exactly k points, K < S 
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Distance-based K-representative Distance aware Exactly k points, K < S 

ε-skyline Multiple methods ∅⊆ K ⊆Ds 

Κ-skyband query Domination K ≥ S 

Enumerating query Domination S 

k-dominating query Exclusive Domination Exactly k points 

TABLE 16: SKYLINE QUERIES APPROACHES 

Table 16 illustrates the various skyline related approaches, the general method that is used to 
retrieve the skyline points of a dataset Ds and the size k of the resulted skyline set in a general 
case, compared to the size S of conventional skyline query. 
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FIGURE 31: CHRONOLOGICAL ORDER OF BASIC SKYLINE QUERIES. 

Figure 31 illustrates the various queries. The black lines indicate that the algorithm heavily 
depends or improves a previous algorithm and the red dashed line indicates that the algorithm 
shares some general main ideas to compute the skyline.  

2.5. Applications 

Through several years of research skyline queries where applied in many applications and data 
specific environments. This section primarily outlines the applications of skyline queries that are 
related to this Thesis and then summarizes the work on the numerous research topics that exist. 

2.5.1. Skyline Queries Over Temporal Data 

The increasing interest in maintaining numerous time-varying data versions and in supporting 
queries and trends analysis for decision making using these data led to the publication of over 
2,000 research papers, to a comprehensive glossary of terminology [70], surveys and books in 
temporal databases. These usually refer to two types of time, valid time and transaction time. The 
first corresponds to the time when a fact is true in the real world. The second is the time during 
which a piece of data is stored in the database. These time intervals might be different for the 
same data tuple. Databases that combine both these types of time are called bi-temporal.  

Surveys of access methods for efficient query processing over temporal data are found in [71] 
and [72]. A large number of these methods are modifications of the traditional B+-tree access 
structure, such as the Multi-Version B-tree [73] and the Overlapping B+-trees [74]. They usually 
index tuples in the form <k, t1, t2> in which k is the key to a database relation and [t1, t2] is a time 
interval, which in most of these cases is the transaction time. Another group of methods employs 
mapping strategies and transformations such as the mapping of time intervals to single-
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dimensional points in MAP21 [75] or the interval transformation in the Interval Space 
Transformation method [76]. These methods usually index valid time ranges of the form [v1, v2]. 
Another cluster are extensions of space partitioning indexing structures such as the Segment R-
tree [77], 4R-tree [78], 3D R-tree [79], MV3R-tree [80], the RI-tree [81], etc. Most of these 
methods can efficiently support tuples of the form <k, t1, t2, v1, v2>, and can index both temporal 
and bi-temporal data. 

While several temporal queries, joins and semi-joins have been explored for several application 
domains, a query that has not been discussed yet in temporal databases is the skyline query and 
its variants. This Thesis will be addressing the problem and propose algorithms for computing 
efficiently the well-known static, dynamic and reverse skylines for temporal data. A closely related 
work is provided in [82], in which the interval skyline query is introduced for time series 
applications. The query returns the time series which are not dominated by any other time series 
in a time interval. However, the properties that hold in the time series environment are totally 
different than that in the field of general temporal (non time-series) data and therefore the 
proposed algorithm is not applicable in temporal and bi-temporal databases. Finally, the authors 
in [83] refer to the term temporal skyline which is also introduced in this thesis, however with a 
different meaning to support the so called convex skyline query for sets of spatiotemporal objects 
in privacy aware environments in which the disclosure of aggregated values of objects is only 
allowed.  

2.5.2. Parallel and Big Data Skyline Computation 

With vast amount of data available and the presence of fast networks, large clusters of commodity 
machines, multi-core processors and large amounts of shared memory many parallel 
programming frameworks were developed. Two of the most common programming frameworks 
used in skyline computation for parallel and distributed processing are the MPI (Message Passing 
Interface) [84] and  MapReduce [85]. Each one of them fits best for particular problems [86] 
depending on whether there are data exchanges between nodes or not [87]. Another parallel 
programming framework commonly used is OpenMP (Open Multi-Processing) [88]. Each 
programming framework is designed to solve problems in different environments with OpenMP to 
fit best in shared memory systems, MPI in distributed memory systems and MapReduce in big 
data processing [86]. In the Era of AI, we cannot ignore parallel computing on general-purpose 
graphics processing units (GPGPU) that can be performed with CUDA [89] and OpenCL [90]. 

Taking into account the previous frameworks, a study on skyline computation in OpenMP was 
conducted in [91], where the authors parallelized the BBS [3] and SFS  [41]  algorithms and 
proposed the nested-loop-based SSkyline and the divide-and-conquer-based PSkyline algorithms 
for skyline query computation. In [92], the authors proposed the Hybrid and Q-Flow skyline 
algorithms, which use a data structure maintained in the shared memory managed by OpenMP. 
A pivot-based technique to partition the space in such a way to minimize the number of 
comparisons, taking into account the incomparability of points and partitions, was proposed in 
[93]. In a similar concept, [94] uses an angular-based space partitioning technique to solve the 
skyline computation problem. For parallel skyline computation, the authors of [95] used angle-
based space partitioning based on hyperspherical coordinates. A similar approach [96] performed 
partitioning based on Hyperplane-projections. In [97], the authors proposed four algorithms based 
on load balanced grid-based partitioning techniques. 

In a different environment, the authors of [98] implemented the SFS [41] and SaLSa [42] 
algorithms in CUDA [89] and compared them with the GNL algorithm [99], a nested-loop skyline 
algorithm for GPU, based on CPU-based BNL [8]. Another work for GPU-based skyline 
computation is the one in [100] where the authors proposed the SkyAlign algorithm along with a 
GPU-friendly, grid-based tree structure and compared them with the work on [98].  

 

The first work that studies skyline queries on the MapReduce programming framework is [101] 
that ported the original BNL [8], SFS [41]  and Bitmap [35] algorithms, in MapReduce with the 
MR-BNL, MR-Bitmap and MR-SFS. In [102] the authors used the BNL [8] algorithm with an 
angular partitioning approach to solve the skyline problem. Through their work, they proposed the 
MR-Dim, MR-Grid and MR-Angle algorithms. The idea of minimal algorithms in MapReduce, 



CHAPTER 2: LITERATURE REVIEW 

Christos Kalyvas-Kasopatidis –October 2020 
41 

which have in goal the load balancing among nodes and the minimization of space, CPU, I/O and 
network, was proposed in [103]. Among ranking, group-by and semi-join algorithms, the skyline 
queries were discussed developing the Minimal-Sky algorithm and compared it to the MR-SFS 
from [101]. The authors of [104] proposed the computation of histograms to initially prune the 
non-interesting points and consequently partition the dataset in a later phase. With this technique, 
they managed to compute the skyline and reverse skyline queries with the SKY-MR and RSKY-
MR algorithm respectively. It is worth mentioning that the most relevant work to this is the 
algorithm MR-BNL [101]. Their work is also applicable to the MPI framework and to multicore 
environments such as in OpenMP. In [105], the skyline computation by the MR-GPSRS and MR-
GPMRS algorithms was achieved with a bitstring representation on the original tuples and a grid-
based partitioning approach which reminds of the approach followed by the Bitmap [35] and D&C 
[8] algorithms. The authors compared their algorithms with the MR-BNL [101] and MR-Angle 
[102]. The angle-based partitioning approach was also used in [106] with the PGPS algorithm 
which works similar to the BNL [8] and SFS [41]. Additional partition-aware filtering approaches 
were proposed and used in the APF-PGPS and PPF-PGPS algorithms to balance the skyline 
candidates over the partitions. Moreover, the authors compared their work with the algorithms in 
[102] and [105]. In [32] the authors use the spatial and geometric properties of the dataset to 
prune the dataset with the use of SpatialHadoop, an extension of Hadoop. Their proposed 
algorithms SKY-FLT and SKY-FLT-SORT for skyline computation efficiently maintain checkpoints 
to prune the rest of the dataset. 

 

method 
query 
type 

novelty 
Indexing /  
sorting /  

partitioning 

Pruning 
techniques 

No. Jobs 
Skyline 

algorithm 
in use 

Dimensional
ity / 

Cardinality 

nodes 
/ 

memo
ry 

[101] Skyline Porting Horizontal Inherited 2 jobs 
BNL, SFS, 

Bitmap 
10d /1B 

8 / 
4GB 

[102] Skyline 
Angular 

partitioning 
Vertical & 
Horizontal 

Inherited 2 jobs BNL 10d / 10TH 
32/ 4 
GB 

[103] 
Skyline 
& others 

Minimizing 
costs 

TeraSort Inherited 2 jobs BNL 2d/ 2.5B 
56 / 
4GB 

[104] 

Skyline  
& 

Reverse 
Skyline 

Sampling, 
histograms 

QuadTree 
Partition aware 
with local filter 

points 
2 jobs - 10d / 4B 

20 / 
4GB 

[105] Skyline 

Sampling, Grid 
partitioning with 

BitString 
representation 

Grid with 
BitString 
mapping 

Partition aware 
with local filter 

points 
2 jobs - 8d / 3M 

13 / 28 
GB 

(total) 

[106] Skyline 

multiple 
partition-aware 

filtering 
mechanisms 

Angle-based 
& Grid-
based 

partitioning 

several 
partition aware 

filtering 
approaches 

2 jobs - 5d / 13M 
12 / 2 

GB 

[32] Skyline 
SpatialHadoop 
(sampling with 
two level index) 

R-tree checkpoints 

1 job & (1-
time job 

for 
indexing) 

Similaritie
s to BNL 

2d/ 500M 17 / - 

[107] Skyline 
Single job, 

sampling with 
two level index 

TLG  (Two-
level Grid) 

index 

Partition and 
intra-partition 

filtering 
1 job - 4d / 10M 

8 / 16 
GB 

[108] 

Skyline 
& 

Reverse 
Skyline 

Reverse Skyline 
in 

SpatialHadoop, 
high cardinality 

datasets 

R-tree 
Partition and 
intra-partition 

filtering 

1 job for 
Skyline, 

2 jobs for 
Reverse 
Skyline & 

(1-time job 
for 

indexing) 

Similaritie
s to BNL 

2d / 2.4B 
6 / 16 

GB 

TABLE 17: MAPREDUCE-BASED SKYLINE QUERY COMPUTATION APPROACHES. 

Finally, Table 17 summarizes the work on skyline query processing related to MapReduce. The 
table organizes the work in chronological order and highlights the novelty, the approach followed 
and some basic technical aspects of each work. As indicated, the trend followed in the early 
stages of MapReduce was to port the existing sort-based algorithms for skyline computation. The 
research evolved by proposing sampling techniques to build indexes or identify points with high 
pruning power in multiple jobs. The use of indexes with additional pruning mechanisms seems to 
be the defacto approach nowadays in which two level indexes appear with techniques that try to 
solve the problem in one MapReduce job. To the best of our knowledge, the only work that studies 
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reverse skyline queries [14] in MapReduce is the one in [104]. Moreover, the only work that 
studies skyline queries in SpatialHadoop is the one in [32]. The only work that retrieves the skyline 
set in a single job is [107], the [32]  and the work presented in this Thesis [108] which needs a 
one-time job to perform the indexing of dataset in contrast to other works that re-index the dataset 
in every execution of the algorithm. Additionally, it is the only one that studies reverse skyline 
queries in SpatialHadoop and additionally shows how the skyline queries on SpatialHadoop 
performs in a high cardinality dataset of 2.4B points. 

2.5.3. Data mining 

The work of skyline queries related with data mining approaches is quite limited. In most cases 
researchers use clustering approaches to estimate the skyline or use the skyline operator to select 
the best candidates or undominated solutions.  

More specifically, clustering approaches are employed in [109] where authors use k-means 
clustering to identify k-representative skyline and in [110] where a multi-objective genetic 
algorithm-based clustering approach is used to identify the pareto-optimal front and find the 
skyline. The notion of dominance is used in [111] where authors use the skyline operator to 
identify a set of approximate undominated graph clustering solutions and in [112] to identify un-
dominated subgraphs. In authors [113] use the skyline operator as a filtering approach in a 
classification task over biological data. In terms of identifying the best candidate solutions authors 
of [114] try to identify the most suitable classifier in terms of accuracy, detection rate and false 
alarm rate using the skyline operator. Finally, in the work [115, 116] presented in this Thesis the 
skyline operator is used to estimate the decision boundaries in a classification process. 

2.5.4. Other Applications 

This section will present the rest numerous research topics on skyline queries. This includes the 
skyline computation of skyline queries in a portion of the original dataspace, distributed skyline 
computation, applications of skyline queries in specific data environments, continues skyline 
computation in streaming environments, security related skyline applications, the use of skyline 
queries to maintain the Quality of Services, the computation of skyline queries in spaces different 
from the Euclidean such as metric space, the cardinality estimation of the answer of a skyline 
query and the efficient update and maintenance of skyline queries when the original dataset 
changes. 

2.5.4.1. Subspace and Space Partitioning 

The fundamental methods for skyline computation are optimized and rely on the fact that the 
dimensionality of queries is fixed and concerns the full space of the dataset (take into account all 
the dimensions/attributes of the dataset). Nevertheless, different users may be interested about 
different dimensions/attributes of data and therefore may want to retrieve the skyline by comparing 
only a specific subset of all dimensions/attributes. Additionally, a full space skyline query in high 
dimensional space may return too many interesting points to the user which will not allow him/her 
to make an appropriate decision. This problem reveals a different scenario in which a query is 
placed over fewer dimensions than those of the full space. Formally, given a set of d-dimensional 
points, a skyline query can be issued on any subset of the d dimensions. This subset will be called 
subspace and the corresponding skyline query on those dimensions subspace skyline query.  

MULTIPLE SUBSPACE COMPUTATION 

Multidimensional subspace skyline computation was proposed simultaneously by two different 
groups of authors in [20] and [117].  The methodology that they follow is different but the main 
idea remains the same and is to compute the skylines of all possible subspaces forming a lattice 
structure similar to the data cube [118, 119]. The authors of both groups combined, extended and 
improved their works in [120].  The initial problem that they state is that none of the existing 
methods considered skyline computation in subspaces. Authors in [121, 122] proposed the 
Compressed SkyCube (CSC) which represents the complete SkyCube preserving the essential 
information of subspace skylines without accessing the whole dataset. The initial reason for this 
work was that the previously described method SkyCube (or complete SkyCube) did not take into 
account that the dataset is not always static but rather could be dynamic (not to be confused with 
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the dynamic skyline). Authors in [117] discussed primarily the semantics of subspace skyline 
queries and the importance of the dominance relationships in the subspaces. They studied the 
skyline membership query, which tackles “why and in which subspaces an object belongs to the 
skyline”, by introducing the notions of skyline group and using the general idea of decisive 
subspaces. In [123] authors improved their work on [117] in order to sufficiently address the 
efficient skyline group and decisive subspaces computation. In this work also developed the 
Stellar algorithm which computes skyline groups and decisive subspaces without searching all 
subspaces for skyline points, by exploiting the skyline groups formed by the full space skyline 
points.  

SINGLE SUBSPACE COMPUTATION 

Previously proposed methods, related with the subspace skyline computation computed the 
skylines of all the possible subspaces. This approach was selected because it is not known 
(unpredictable) in which and how many dimensions a user may want to retrieve the subspace 
skyline, so it is needed to compute every possible subspace skyline. From another perspective 
many times most of the users perform queries that are related with a small subset of dimensions 
(and might also be the same in their majority) with respect the full space. Differentiating, authors 
in [124] studied the computation of the skyline of one specified subspace, as opposed to all. In 
[125] extended their work where they discuss about the applicability of existing full-space skyline 
algorithms in subspace and extend the SUBSKY algorithm to compute k-skyband [3] and top-k 
queries [2, 3] in subspace. 

TOP-K AND K-DOMINANT 

To deal with the problem of returning to many interesting points in high dimensional spaces, when 
different subspaces are considered, authors in [126] focused on ranking skyline objects and 
introduced a new metric called skyline frequency. This metric ranks the interestingness of a 
skyline point and retrieves the skyline points in a top-k fashion. Moreover, as dimensionality 
increases the chance of one point to dominate another is very low. This leads in the retrieval of 
numerous skyline points, which cancels any interesting insights on the dataset. An efficient 
approach is to relax the notion of dominance to k-dominance in order to consider only k among d 
dimensions and retrieve only important and meaningful skyline points. For that reason, same 
authors of previous work ([126]) proposed in [127] the k-dominant skyline query (not to be 
confused with k-dominating queries). A k-dominant skyline query retrieves a representative subset 
of skyline points from a high d-dimensional dataset.  

SPACE PARTITIONING  

The access order of data points has direct impact on the performance of algorithms since the 
early identifications of dominant and highly-dominating points can eliminate unnecessary 
domination comparisons. Additionally, pairwise point-to-point dominance comparisons have 
considerably computational and time cost which can be avoided by block based-comparisons. 
Taking into account the previous considerations authors in [128] proposed an approach based on 
the popular dimension reduction technique, Z-order space filling curve (or Z-order curve, in short) 
[129, 130] which carry many good geometric properties for skyline processing. In [131] authors 
extended their work, proposed new algorithms and studied the problem of ranking and subspace 
skyline query processing. Authors in [132] proposed the Lattice Skyline (LS), to answer skyline 
queries of low-cardinality domains, which uses a static lattice structure to determine the 
dominance between the various combinations of distinct attribute values in the dataset.  

INCORPORATING INCOMPARABILITY 

While most of the methods are dominance based, incomparability is very useful in high-
dimensional spaces since most pair of points become incomparable. To minimize the 
computational cost in high dimensional spaces authors in [133] proposed a progressive object-
based space partitioning (OSP) algorithm, which recursively divides the d-dimensional space into 
2d separate partitions taking into account the incomparability property. Authors in [134] proposed 
the BSkyTree which tries to find a cost-optimal strategy for skyline processing by exploiting the 
properties of both dominance and incomparability.  
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In multiple subspace skyline computation the algorithms SkyCube [20] and Skyey [117] where 
parallel developed by a different group of authors, reasoning about the same problem. Continuing, 
their works where individually extended.  From previous described algorithms, partition-based 
approaches are the algorithms Z-search, LS, OSP and BskyTree. Partitioned based approaches 
that are based on incomparability are OSP and BSkyTree. From these approaches Z-search can 
be extend on subspace, k-dominant and k-skyband. The OSP can be extended to k-dominant 
skyline. Z-search and LS are based on dominance comparisons while OSP and BSkyTree on 
incomparability.  

The Table 18 summarizes the state-of-the-art algorithms related with subspace and space 
partitioned skyline computation. The column Approach corresponds to whether the algorithm pre-
computes the results, uses indexes or sorting and counting techniques to answer a requested 
query. The No. of subspaces corresponds to whether the algorithms make their computations for 
all the possible subspaces, a single subspace or is generally applicable to full-space computation 
as with the partitioned based approaches. The column Dataset corresponds to weather the 
algorithm is applicable in dynamic datasets where updates and deletions occur. 

 
 Algorithm Approach No. of 

Subspaces 
Dataset incorporates 

SkyCube [20]  pre-materializing all static cost sharing strategies 
Compresed 
SkyCube [121, 122] 

pre-materializing all dynamic minimum subspaces 

Skyey  [117]  
pre-materializing all static 

Skyline groups – decisive 
subspace 

Stellar [123]  
pre-materializing all static 

skyline groups – decisive 
subspace 

Subsky [124, 125] index single dynamic L∞ distance, anchor points 
Skyline frequency 
[126] 

counting single static 
maximal dominating 

subspace 
k-dominant [127] 

counting/ sorting single static 
conventional skyline - 

nested loops 
Space Partitioning 

Z-search / Z-sky  
[128, 131] 

sorting - index full space/single dynamic Z-order curve, ZBtree 

OSP [133]  
Index full space dynamic 

incomparability, LCRS tree, 
bitmaps 

LS [132] Lattice structure exploration full space static lattice structure 

BSkyTree [134] Cost-based partitioning full space static pivot points, incomparability 

TABLE 18: STATE OF THE ART SUBSPACE SKYLINE ALGORITHMS. 

2.5.4.2. Distributed Skyline Computation 

Due to the high skyline query processing cost of centralized architectures, research has focused 
in distributed skyline query processing. However, previously proposed algorithms cannot be 
directly applied in distributed environments and thus specialized approached where proposed.1  

VERTICAL PARTITIONING 

An early proposed work on distributed skyline computation considers the vertical partitioning of 
the dataset. This partitioning approach was not adopted by the rest of the researchers due to the 
wide adoption of horizontal partitioning on highly distributed environments, such as peer-to-peer 
networks. More specifically, the work in [135] was the first that studied the problem of skyline 
query processing in distributed environments and especially in a specialized Web setting where 
each one of the dimensions are stored on a different Web-accessible site (source/database). 
Authors in [136] improved the previous work by proposing the PDS (progressive distributed 
skylining) algorithm. Another work related with vertical data partition is the one in [137] where 
authors assume that the dataset is vertical partitioned in a number of arbitrary servers and each 
server stores an arbitrary number of dimensions.  

 
1The work of [469] is the only survey in skyline query processing, which is focused on parallel distributed skyline query processing. 
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HORIZONTAL DATA PARTITIONING 

The following methods concern horizontal data partitioning, in which a portion of the dataset is 
stored by a peer without taking into account the partitioning imposed on the dataspace. This defers 
from the approach of horizontal dataspace partitioning where a partitioning scheme is applied to 
the dataspace and the points of each partition are assigned to peers. In these methods peers 
(servers) can communicate with their neighboring peers, through a coordinator, or through the 
use of a backbone structure. Thus, this approach does not consider any kind of overlay structure, 
in which a logical network is built on top of a physical one without considering its physical network 
structure. More specifically, the work on [138] is focused in distributed skyline computation on 
mobile devices that communicate without routing information in shared-nothing environments and 
especially over ad-hoc networks (MANETs). In this scenario data are stored in a number of light-
weighted mobile devices where each device is able to communicate only with its neighbors 
(devices that are in its communication range) by exchanging messages. The communication 
between all devices can be achieved via multi-hops. Each mobile device stores a portion of the 
whole dataset (that can be overlapping) which corresponds to a portion of the data that are related 
with the geographic area that it covers. The partitioning placed in this case concerns horizontal 
data partitioning.  On [139] authors study the problem of subspace skyline query processing in 
super-peer networks (large scale P2P networks) and proposed the SKYPEER framework where 
the dataset is horizontally distributed across peers. In this type of networks there exist a number 
of super-peers among the ordinary peers which have special abilities due to their enhanced 
features. Super-peers are linked through a backbone and peers are connected to super-peers. 
Each super-peer maintains information about the peers that have assigned on him to achieving 
efficient routing.  

HORIZONTAL DATA PARTITIONING WITHOUT OVERLAY NETWORKS 

The works that follow are based on horizontal data partitioning but do not consider any underling 
overlay network. That is the query originator can communicate with all the existing peers to 
compute the skyline set. Based on this, in [140, 141] authors proposed the filter-based 
PaDSkyline algorithm for parallel constrained skyline query processing in which they assume that 
no overlay exists and any query originator can directly communicate with all servers. This 
approach employee and extends the single-point filtering method of MANET [138]  with the 
difference that uses multiple filtering points rather than just one, considering that wired 
connections are faster and more reliable than the wireless. In [142] authors proposed a 
progressive feedback-based distributed skyline (FDS) algorithm which assumes that a small 
number of servers are geographically distributed and connected through the internet. Data are 
partitioned horizontally and assume no overlay structure. FDS is focused on minimizing the 
transferred data among the network.  

HORIZONTAL SPACE PARTITIONING 

The following works reasons about distributed skyline computation assuming the incorporations 
of a dataspace partitioning technique. Thus, each node will be responsible for a disjoint partition 
of the data space. This scenario differs from this in the previous since the partitioning is imposed 
to the dataspace rather to the dataset itself. The methods that will be described can by categorize 
into two classes. DHT – based (distributed hash table-based), such as CAN [143] and balanced-
tree based such as BATON [144]. On this scope, in [145] proposed the progressive and parallel 
distributed skyline algorithm (DSL). The algorithm deals with constrained skyline queries, which 
return the skyline set of a given region, on a shared-nothing architecture. DSL is based on grid-
based data space partitioning techniques which horizontally partition the space. The data 
partitioning is determined by the structured P2P overlay networks CAN [143]. CAN is a distributed, 
decentralized P2P infrastructure, based on a logical d-dimensional Cartesian coordinate space, 
which incorporates a distributed hash table (DHT) for point and server multi-dimensional indexing. 
Authors of [146] proposed the Skyline Space Partitioning (SSP) approach which is based on 
BATTON [144].  BATON instead of using a distributed hash table (DHT) as CAN [143] uses a 
distributed balanced tree for indexing of nodes. As opposed with the previous method SSP 
processes the unconstrained skyline queries which retrieves skyline points from the whole space. 
Authors in [147] extended their work on  [146] and proposed the SkyFrame framework which can 
be applicable on BATON and other structured P2P overlay networks. In [148, 149] authors 
proposed the iSky algorithm which is similar to the SSP/skyframe [146, 147] and is based on the 
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BATON overlay network [144]. The differences from the SSP/SkyFrame, is the use of the iMinMax 
[150, 151] data transformation, as similarly used in the Index algorithm (section 2.3.4).  

ANGLE-BASED PARTITIONING 

Previously proposed methods for distributed skyline computation widely adopt grid-base space 
partition techniques. In [95] authors proposed an angle-based space partitioning approach which 
uses hyper-spherical coordinates [152] of points in order to partition the space in such a way to 
increase the efficiency of parallel distributed skyline query processing.  

 

Algorithm Incorporates Routing Topology 
Skyline 

Query Type 
Main 

drawbacks 

BDS-IDS / PDS 
[135] 

Vertical partitioning – 
sorting 

Direct / initiator to 
peer 

Web  
Vertical 

partitioning 

MANET [138] Filtering point 
Breadth/depth 

first 
Manet 

Subspace/ 
Constrained/ 

Dynamic 

Exhaustive 
routing 

SKYPEER/ 
SKYPEER+ [139] 

Sorting / threshold 
value Ext-skyline 

Super-peers Super-peers 
Subspace 

 
Existence of 
super-peers 

PaDSkyline [140, 
141] 

Multiple filtering points 
& MBRs 

Cluster-heads Clusters 
Subspace/ 

Constrained/ 
Dynamic 

Flooding / 
Heavy load on 
cluster-heads 

FDS [142] 
Multiple-round filtering 

/sorting 
Direct / initiator to 

peer 
Web 

Subspace/ 
Constrained/ 

Dynamic 

Many rounds on 
large networks 

DSL [145] Partial ordering 
Local routing 

table / neighbors 
CAN 

Constrained 
 

Load balance – 
High cost on 

updates 

SSP [146] 
Filtering 

points/Partition 
ordering (z-order) 

Balanced tree 
adjacent nodes 

BATON 
Constrained 

 
Load balance 

SKYFRAME 
[147] 

As SSP + Border 
regions 

Balanced tree 
adjacent nodes 

BATON-
CAN 

Constrained 
 

Load balance 

Isky [148, 149] 
Sorting/ filtering 
points/ threshold 

value / 

Balanced tree 
range search 

BATON  Load balance 

Angle-based 
partitioning [95] 

Hyper-spherical 
coordinates 

- - - 
Issues on its 
application 

TABLE 19: FUNDAMENTAL ALGORITHMS ON PARALLEL AND DISTRIBUTED SKYLINE COMPUTATION. 

The Table 19 outlines the fundamental key aspects of the previous proposed methods. 

2.5.4.3. Attribute & Data-Specific Applications 

Previous methods considered that all attributes of all dimensions are available, for all points. 
Additionally, there is the case of incomplete datasets, where the points miss some of their 
dimensions/attribute values, partial order datasets, where the ordering of attributes can’t be 
defined or is defined differently by each user and finally uncertain datasets where an object may 
have different instances that can occur with different probabilities. 

PARTIALLY ORDERED DATASPACE 

The previous studies focused on total order (TO) domains (dataspace). That is datasets where 
their attributes have an internal ordering such as numbers. In these domains it is easy to 
understand which attributes are preferable than others. The lack of ordering or preference among 
a pair of attributes indicates that a domain is partially ordered (PO). Authors in [24] focused on 
skyline computation over partial-ordered domains. This type of domains among others can include 
intervals, hierarchies, domains of set values and preferences. In [153] authors extended the work 
of [24] and presented a progressive framework named Topologically-sorted Skyline (TSS). The 
work in [154, 155] considers the case where different users have different preferences and thus 
the ordering imposed on the dataset changes for each user.   
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INCOMPLETE DATA 

Another data-related skyline computation approach is the one in [25] which assumes that data 
are incomplete, meaning that have missing values in some of their dimensions/attributes. Most of 
the algorithms assume data completeness on all dimensions and transitivity in the dominance 
relation. However, this is not always the case. On incomplete data, the transitivity does not always 
hold. The closest work to this is the one in [127], which also does not assume that transitivity 
holds. In [156] authors studied the skyline queries over crowd-enabled databases. Crowd-enabled 
databases deal with incomplete data during runtime by requesting missing values or complete 
tuples from other sources.  

UNCERTAIN DATA 

The problem of skyline computation on uncertain data was tackled in [26, 27] where authors 
proposed a probabilistic skyline model and additionally the p-skyline. Some conditions that may 
impose uncertainty on data are limitations on receiving and measuring data, missed or delayed 
data reports and randomness of data. In general, the probability of an object to be in the skyline, 
is the probability that the object is not dominated by another object. Moreover, in [157] authors 
propose efficient methods to compute the skyline probabilities on all objects. In their work 
proposed a more general uncertain model where the instances of each uncertain object may have 
different probabilities to occur and that the probabilities of all instances may sum up to less than 
1, meaning that may exist an instance of an object that is not known to us. In [158] authors study 
the same problem with [157] and propose an asymptotically faster algorithm for the worst-case. 
The algorithm uses the same partitioning technique as in [157]  but handles the partitioned sets 
more efficiently. In [159] authors further studied the problem of [157]. In their work compute the 
exact skyline probabilities of all objects in high-dimensional datasets by incorporating a ZB-tree 
[128]. In [160], authors reason about reverse skyline computation over uncertain data in 
monochromatic and bichromatic cases. In the monochromatic case the point (object) of interest 
and the query point (object) are of the same type and thus from the same dataset, while in the 
bichromatic case there exist two different types of points (objects). In [161] authors extended their 
work on [160] and proposed the probabilistic reverse furthest skyline (PRFS) which considers the 
case where minimization of preferences is desired rather than the maximization. Authors in [162, 
163] reason about distributed skyline computation over uncertain data. Their scenario is based 
on the existence of a number of distributed sites that each one of them contains a number of 
uncertain data and a centralize server that processes the query. In [164], authors reason about 
contextual skylines taking into account the uncertainty in user’s preferences rather the uncertainty 
of attribute values. Authors in [165] further studied the problem of [164] without taking into account 
the independent object dominance assumption that was considered in [164] and in which the 
object’s dominances are considered as mutually independent events. Authors in [166] reason 
about the top-k skyline query computation on uncertain data. 

TRADE-OFF & STOCHASTIC SKYLINE 

The Trade-off skylines were first proposed in [167]. A trade-off is defined as, how much is willing 
to give from one dimension to gain an improvement to another dimension/attribute. This concept 
is primary reflected by the top-k retrieval paradigm using weighting over each attribute. This 
constructs a scoring (or utility) function which is used to compute the overall ranking of an object 
based on all of its attributes.  

Finally, Stochastic Skyline queries where proposed in [168, 169]. In a stochastic model, the 
subsequent state of the system can be determined probabilistically based on previous states. As 
an example, a future stock price will be equal to the current stock price plus an unknown change 
that can be determined probabilistically. The proposed model uses, for each user, one scoring 
function for every dimension.  

2.5.4.4. Continuous Skyline Computation 

The existing skyline algorithms are designed to compute skylines over static datasets rather than 
dynamic, that occurs in streaming environments. Dynamic streaming data can be retrieved with 
the use of data-streams [170] which is a continuous stream of received data point. 
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In [16] authors reason about on-line computation in the presence of rapid updates of data such 
as in data-streams. Particularly the scenario concerns append-only data-streams [170] where 
there is not any deletion of the data elements till they expire and the elements are positioned and 
labeled according to their relative arrival ordering. Such type of streams are those of wireless 
sensors networks, where the data collected prior a specific time interval are discarded because 
they are not representative in comparison with the existing readings of sensors. Authors in [171] 
also proposed the skyline computation in data stream environments. In this scenario, they take 
into account only the tuples that arrive in a sliding time window [170]. That is the W most recent 
timestamps, where W is a parameter that defines the length of the window. The work in [172] 
studied the problem of continuous skyline computation on datastreams where the validity and 
expiration of points is determined with the use of time intervals. Each point received is associated 
with an arrival and an expiration time which essentially defines the time interval that the point will 
be valid. In [82] authors studied the problem of skyline query computation on time series [173]. 
Time series are useful since they can give information about events that happen in a specific time 
interval. As an example, these events could include the upload bandwidth consumption or the 
visiting rate of a web page, along the day, moth, year or any other time interval. The Table 20 
outlines the fundamental key aspects of the previous proposed methods. 

 

 

Algorithm Incorporates Environment 
Indexing 
method 

Skyline on # points 

[16] Stabbing queries [16] 
Sliding-
windows 

R-tree 
n-of-N & 

(n1,n2)-of-N 

[171] 
Dominance & anti-dominance 

regions 
Sliding-
windows 

R-tree N most recent 

[172] continuous time-interval skyline Time-intervals 
R-tree / Quad-

tree All valid received points 

[82] interval skyline Time series 
Radix priority 

tree 
#Time-series* 
#timestamps 

TABLE 20: FUNDAMENTAL ALGORITHMS ON CONTINUOUS SKYLINE RETRIEVAL. 

2.5.4.5. Route Skylines Queries and Road Networks 

Following will be discussed the in-route skyline algorithms that are related with the identification 
of efficient routes or detours on road networks and efficient locations that satisfy the desired 
minimization criteria among several user-defined points.  

In [17]  authors reason about skyline computation on road networks and particularly in-route 
skyline queries and in-route kth-order skyline queries which concern normal domination and the 
points that are dominated by less than k other points respectively. The work on [18] consider route 
skylines in road networks with multiple preferences as opposed with the previous method. Authors 
of [49] reasoned about multi-source skyline queries where multiple query points are considered 
at the same time, in constrained space and especially on road networks. The multiple query points 
represent the locations or the points of interest from which a user wants to minimize its distance. 
The Table 21 outlines the fundamental key aspects of the previous proposed methods. 

   

Algorithm Skyline of Data model Incorporates Attributes 
Query 
points 

[17] detours graph 
NN-search / network 

distance 
Single 

(length) 
single 

[49] 
distance from 
data points 

graph 

NN-search / Euclidian-
network distance & 

Dynamic/spatial skyline [2, 
Error! Reference source 

not found.]/ [46, 47] 

Single 
(length) 

Multiple 

[18] 
preference-

based routes 
multiple-attribute 

graph 
Pareto optimality 

Multiple 
attributes 

start / 
destination 

TABLE 21: FUNDAMENTAL ALGORITHM IN IN-ROUTE AND ROAD NETWORK SKYLINE COMPUTATION. 
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2.5.4.6. Security 

The works that follow outline security related approaches that are based or use skyline queries 
and more particularly location-based skyline queries, user’s privacy on anonymized datasets and 
queries over encrypted data. 

Authors in [22] study the problem of authentication of location-based skyline queries. The 
scenario that is followed assumes that the spatial data are stored in a spatial database and are 
outsourced to a location-based service provider (LBS) which will handle the queries issued by 
users.  In [174] authors proposed an additional method to generate VOs for spatial skyline 
queries. Their goal is to reduce the communication cost by reducing the number of digests to be 
reported and thus the size of the VO that is sent to the user. The work on [175] reasons about 
privacy in the presence of external knowledge. Their work builds upon and extends the work of 
[176] and quantifies the adversary’s external knowledge in order to identify privacy threats and 
enforce privacy requirements. Authors in [177] reason about skyline queries over encrypted data. 
Their approach uses the SFS algorithm [41] in order to identify the skyline and a set of invertible 
matrices as the key of their encryption scheme.  

2.5.4.7. Quality of (web) Services 

The identification of the best web service among several similar is a multi-criterion decision 
problem since the optimization of various criteria is needed. In [19] authors study the problem of 
efficient selection of web services.   

In [178] authors additionally considered the problem where the quality of the various services and 
service providers change over time. In many cases the aggregate QoS values may not perfectly 
reflect the actual performance of a service that is given by a service provider. Additionally, a 
service provider may not deliver the services according to the quality that declares. In [179] 
authors reason about the cloud-based web service composition. In their work, they use the skyline 
operator to prune unqualified services and reduce the related search space. In the next step they 
perform a Particle Swarm Optimization (PSO) [180] in order to find the optimal services based on 
the user’s QoS constrains.  

2.5.4.8. Metric Space 

Skyline computation in metric space [181] was first proposed in [23]. In this work the dataset 
belongs to a metric space rather than a multi-dimensional space (i.e. Euclidean) as opposed in 
previous works. The reason that metric spaces involved to the skyline computation is because in 
many cases the dataset cannot be represented as vectors, something that is fundamental for the 
Euclidean space. An example in bioinformatics is the DNA searching problem where the DNA 
sequences are usually modeled and represented by strings and is desired to find the strongest 
sequence similarity.  

In [23] authors proposed a triangle-based pruning method that incorporates the triangle inequality 
property in order to safely and efficiently prune the dataset (since distance computation can be 
very expensive [182] in metric spaces). Additionally they proposed an efficient Metric Skyline 
Query (MSQ) procedure that incorporates the M-tree [183] metric index structure, in order to 
retrieve the metric skyline points without scanning the whole dataset and without making any 
particular assumption about the data format and the metric distance function. In [184] authors 
extended their work on [23] by constructing an optimized metric index structure in order to 
minimize the cost of the metric skyline retrieval. In [185] authors try to improve [23] by proposing 
the dynamic indexing and the k-dispersion techniques in order to minimize the number of 
computations. 

2.5.4.9. Cardinality Estimation 

In general skyline cardinality computation tackles the problem of “curse of dimensionality” of 
skyline computation in high dimensional spaces. The estimation of the cardinality of the dataset 
can help to perform specific queries to reduce the size of the skyline set that is returned. 
Techniques that try to reduce the number of skyline points that are returned are the skyline 
frequency and k-dominant (section 2.5.4.1). 
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The cardinality of skyline queries was studied in [186] which proves that the skyline cardinality 
can be defined as Θ((ln n)d−1/(d − 1)!), where n is the cardinality of the dataset and d its 
dimensionality. This indicates that the skyline cardinality increases with the dimensionality.  
Specifically, in [186] authors try to estimate the cardinality of the skyline query results based on 
the initial dataset, without any other assumption. In [187] authors extend the work of [186] in order 
to handle numerical and categorical attributes and additionally different distributions by proposing 
a Log Sampling (LS) approach. The drawback of the previous proposed algorithm is that is based 
in a hypothetical empirical model. Authors of  [188] extended the work on [187] and proposed the 
kernel-based (KB) skyline cardinality estimation approach which is heavily based on kernels 
[189].  The drawback that the KB approach has is that it needs to perform complex computations. 
Additionally, the integration of PDF function over IDR regions suffers from the curse of 
dimensionality. For that reason, authors in [190] proposed the purely sampling-based (PS) 
approach and compared their method with LS and KS method. The Table 22 outlines the 
fundamental key aspects of the previous proposed methods. 

 

Algorithm Estimation 
Dataset 

applicability 
General approach 

Log Sampling 
(LS) [187] 

 

|𝑆𝐾𝑌𝑑𝑠| = 𝐴(log(𝑛)𝐵) 
Not on 

clustered 
Two samples 

Kernel-based 
(KB) [188] 

 

ANY Samples based on Kernels 

PS [190] |𝑆𝐾𝑌𝑑𝑠| = (
|𝑆𝐾𝑌𝑠|

𝑚
) × 𝑛 ANY Single sample 

TABLE 22: FUNDAMENTAL ALGORITHMS IN SKYLINE CARDINALITY ESTIMATION. 

2.5.4.10. Skyline Updates & Maintenance 

Researchers focused on skyline maintenance in order to efficient maintain the skyline when 
updates or deletions occur on the dataset. The reason of this research interest is that the update 
of an already computed skyline will have less computation cost than the recomputation of the 
skyline from scratch. This section does not assume the existence of data-streams or time series 
but rather considers that the updates (insertions or deletions) of points are placed over the existing 
stored dataset. From this perspective, authors in [3] where the first that studied the problem of 
incremental skyline maintenance when updates occur over the stored dataset. Their approach is 
named BBS-update. This approach was proposed by the authors that proposed the BBS algorithm 
and essentially discuss how BBS algorithm can efficiently maintain the skyline when various 
insertions or deletions occur. In [191] the Deltasky algorithm proposed that extends the BBS-
Update [3] and reasons only about deletions since the insertion process was sufficient studied by 
the author that proposed BBS-Update. The drawback of DeltaSky is that it must scan all the sorted 
lists. In addition, if the skyline is issued on a high dimensional dataset the sorted lists will be large. 
ZUpdate and ZInsert + ZDelete [128, 131] efficiently update the skyline results if insertions or 
deletions occur by utilizing the sorting property of Z-order curve. 
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3. ONLINE SOURCES OF GEOSPATIAL DATA 

In order to produce useful insights and new knowledge we should understand the data that we 
have and their nature. In order to build an information system for a specific sector an extensive 
study should be conducted about the available data, their quality and their integrability. This 
section examines geospatial free-of-charge data sources and discusses the various classes of 
available data. Those data can be used in maritime information systems which are innovative 
geographic information systems for study, monitoring and action-taking in maritime areas. In 
addition, this study will assist in identifying open research topics in relation to query processing, 
big data management or applied machine learning by understanding which are the main tasks 
that are performed over data.  

3.1. Introduction 

A maritime information system is a geographic information system (GIS) designed to capture, 
store, integrate, manipulate, analyze, manage, and visualize all classes of maritime geospatial 
data, capabilities which are serving a cross-section of disciplines. An increasingly cost-effective 
active maritime information systems market has also been developed, benefiting from an ongoing 
process of improvements in the hardware and software components of GIS. A variety of fields 
have benefited from the application of maritime information systems, made possible by this 
technological boost, from science, research, education, government, business, and industry, to 
domains such as public health, homeland security, natural resources management, astronomy, 
meteorology, climatology, naval archaeology, shipping transportation and logistics, etc. 

Following are defined the classes of data which constitute valuable resources towards the 
development, performance tuning and efficient operation of maritime information systems, and 
subsequently surveys both the open and restricted data sources which provide free-of-charge 
these classes of real-world geospatial data. This is the first comprehensive study that classifies 
and analyses a spectrum of official online resources this wide, providing a thesaurus of high-
precision real-word geospatial data to serve the needs of scientific research and development or 
educational work in the maritime information systems domain for purposes such as operational 
or benchmarking and experimentation or pattern recognition and data mining.  

3.2. Examples of Historical & Modern Maritime Information Systems  

The evolution and increasing importance of maritime technology has led to the current 
development of numerous powerful maritime information systems and projects at national and 
international levels. A number of examples include the Pattern Mining and Monitoring Ocean 
Eddies project [192]; the Long Range Identification and (Ships’) Tracking system [193], the 
SafeSeaNet [194], and the ClearSeaNet project [195], all three of the European Maritime Safety 
Agency [196]; the European Border Surveillance System [197]; the Maritime Surveillance project 
[198] of the European Defence Agency [199]; the CISE (Common Information Sharing of the 
Environment for the surveillance of the European Union Maritime Domain) initiative [200] and the 
Copernicus (European Space Agency’s Global Monitoring for Environment and Security) program 
[201], both of the European Commission’s Directorate-General for Maritime Affairs and Fisheries 
[202], together with the Copernicus’ supporting projects DOLPHIN (Development of Pre-
operational Services for Highly Innovative Maritime Surveillance Capabilities), NEREIDS (New 
Service Capabilities for Integrated and Advanced Maritime Surveillance) and SIMTISYS 
(Simulator for Moving Target Indicator System) [203] and the project related to the Copernicus, 
MyOcean2 [204], [205]. A non-negligible number of such systems relate to specific seas, such 
as the Baltic Sea, which figures on the International Maritime Organization (IMO) [206] list for 
Particularly Sensitive Sea Areas [207], and for which a large number of related programs has 
been developed, such as the Monalisa 2.0 [208], the EfficienSea [209], the BaSSy [210], the 
SafetyAtSea [211], etc. 

3.3. Setting Out the Problem and Applying the Solution 

Before discussing the various marine geospatial data classes and sources provided online, we 
will briefly discuss the steps that need to be taken when such data is required for the operational 
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needs of maritime software applications. The first step –prior to the data collection– is to identify 
the classes of data required in order to make the system work efficiently and reliably. 
Subsequently, a variety of data sources for each kind of data are surveyed towards the selection 
process. These sources are refined on the basis of a number of predefined criteria to which 
minimum standards apply in respect of quality and precision, as well as on the basis of the area 
covered by the data needing to be found. Once usage restrictions (which will be adhered to for 
the extent of the life circle of the marine information system) for these data have been duly taken 
into account, the data are collected from their sources and appropriate software tools are adopted 
or developed towards the efficient integration and storage of these data in the database of the 
maritime information system.  

The backbone storage system can be any of the open access database management systems, 
from the PostgreSQL and the MySQL to any of the commercial ones, such as the Oracle Database 
and the Microsoft (MS) SQL Server, necessarily accompanied by their specialized extension 
subsystems for the efficient handling of the geometric nature of these data.  At this point a 
selection process of the data needs to be initiated in order to eliminate duplicate entries that might 
occur since data that are collected from heterogeneous sources could partially overlap. There 
might also be a need to transform the format of the data –e.g. from raster to vector or vice-versa– 
because the manipulation and joining of related datasets that appear to be in different formats is 
both difficult and time-consuming. The collected data are then safely stored and their optimization 
for efficient manipulation in the database system is performed: database indices for fast retrieval 
might need to be built; the responses of users’ popular queries for data that are not dynamically 
changed overtime (i.e., such as coastline static data) might need to be pre-computed and their 
results stored separately in the database so as to minimize avoidable delays in the future 
operating of the system, etc. Once these steps are taken, the data become available in answer to 
the requirements of the maritime information system. 

3.4. Maritime Geospatial Data Classification 

The wide range of nautical or marine data needed to develop and operate an efficient maritime 
information system, to be analysed further subsequently, falls into one or more of the following 
wide categories:  

• up-to-date geospatial data related to human-life on or near the seas, such as ship traffic 
data and technical data regarding the several characteristics of ships, data related to 
maritime areas of particular interest to humans (e.g., harbors, fishing areas), etc., 

• geospatial data related to marine biome and wild-life in/on or around the seas, such as 
data regarding particularly sensitive maritime areas for wild-life and data for fish and sea 
animals reproduction areas, etc., 

• annotated data related to accidents history at sea, 

• marine meteorological forecasts and climate data,  

• nautical cartographic data related to geospatial objects of critical importance in/on or 
around the seas, etc. 

 

Maritime traffic data are usually transmitted in the form of real-time streams of Automatic 
Identification System (AIS) messages [212]. The benefit of AIS for all mariners lies mainly in its 
capabilities with regard to increasing navigational awareness, to assisting with avoiding collisions 
and with the port authorities’ more efficient control of maritime traffic.  

The technical characteristics of the ships are mostly static or rarely affected by changes. If they 
are affected, the changes take place under certain conditions (e.g. the type of usage of the ship 
changes): 

• type (passenger, tanker, etc.), size (length, etc.), 

• manufacturer, year of manufacture, 

• owner/manager, firm, home port, flag, 

• fuel consumption, maximum speed, draught,  
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• type of cargo, weight of cargo, tonnage, 

• Froude number (related to wave resistance), several coefficients related to the hull of the 
ship (e.g., block/midship/prismatic/waterplane coefficients), etc. 

• photographs and videos (if they exist) depicting the ship and some of its characteristics, 
etc. 

 

The geographic regions of marine areas with particular sensitivity and restrictions may include: 

• environmentally protected areas (e.g. parks that are strictly protected by laws and 
legislations), 

• significant areas for marine biodiversity (e.g. marine mammals, sea turtles, birds), 

• island wetlands and coastal waters surfaces, 

• major fishing areas, 

• areas where fish farms are located and demarcated areas of organized aquaculture, 

• military shooting ranges, 

• hazardous shipwrecks (location and depth), 

• submersible cables (location and depth), etc. 

 

As regards accidents history at sea, the following data are of great weight: 

• exact geographic coordinates and description of marine accidents which have occurred in 
the past, involving either ships/vessels (e.g., collision or contact or capsizing or grounding 
of vessels, including the IMO numbers of the ships involved if any), or oil and gas drilling 
platforms (e.g., explosions, oil spills), or any other on-sea or on-land source around the 
sea (e.g., marine chemical pollution incidents caused by factories near a coastline), etc. 

• up-to-date tracked information for any man-made source near or on the sea with a heavily 
documented accident history (e.g., ships, oil and gas platforms, underwater pipelines, on-
land installations of several types), and with a history of violations or of incidents of non-
compliance with international and national maritime regulations,  

• incidents involving dangerous ship movements and trajectories on record, 

• the list of ‘flag of convenience’ countries [213] under the protection of which some ships 
are registered for the purpose of avoiding regulations and tax obligations in the owners’ 
country, etc. 

 

The supply of highly accurate location-based meteorological forecast data in real-time streams is 
a major factor for efficiency and may include the following parameters:  

• weather forecast: surface wind, rain fall, cloud cover, temperature, atmospheric pressure, 
etc., 

• wave forecast: wave height, swell height, swell period, 

• sailing forecast: wind speed and direction, wave height and direction, visibility, etc., 

• sea level forecast: total elevation, tidal elevation, 

• sea traffic forecast: surface temperature, salinity, surface movement, free surface 
elevation, 

• ecosystem forecast: chlorophyll, nitrates, phosphates, bacterial biomass, phytoplankton 
biomass, etc., 

• oil spill, satellite imagery, high-frequency telemetry, etc. 

 

Additional statistical data can also be extracted on the basis of historical weather data in order to 
analyze the level of influence of every weather data parameter in monitoring the health of the 
maritime wildlife and climate change (e.g., phytoplankton, temperature, oxygen levels), in 
safeguarding maritime navigation and transportation, in minimizing the risk of accidents, etc. 
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Nautical cartographic data related to geospatial objects of critical importance in/on or around the 
seas may include: 

• nautical digital charts containing the land and sea boundaries of countries worldwide; the 
geographic names for regions near, over and under the sea; etc., 

• bathymetry data in geometry and raster formats,  

• ports and harbors (i.e. their exact geographic location and their surface, whether they are 
in operation, etc.), 

• shores, beaches and land along the coastline,  

• lighthouses (i.e., their exact geographic location, type, color and lighting periods, size, 
range, if they are in operation), etc. 

 

Additional advanced knowledge can be indirectly extracted (for example such as in [214] and 
[215]) from combinations of existing datasets of heterogeneous nature using machine learning 
[216] and data mining [217] techniques, that for example will identify hazardous regions and ship 
routes in the sea, suspicious and dangerous vessel movements, traffic patterns and popular 
highways in the sea, high accident risk areas, areas with strong sea currents, highly polluted 
areas, etc.  

Such data can provide critical information such as the navigation behavior and performance of a 
ship or of a type of a ship in relation to and depending on the meteorological conditions (inclination, 
route deviation), the condition of the sea surface and the intensity of sea currents in relation again 
to the meteorological conditions, the habits of fish and sea animals depending on the season of 
the year, the impact of human activity on the sea near fish reproduction areas, the sea pollution 
depending on the weather conditions, and several other related findings depending on their 
application. 

 

Data class description Most common data format Real-time 
Current & 

recent historical 

Long term 

historical 

AIS data AIS RAW messages   no existing data 

Vessels’ data Clear text –  – 

Marine biome-related data Clear text  & geospatial –  – 

Accidents-related data Clear text –   

Weather data XML    

Climate data Clear text –   

Nautical cartographic data Clear text  & geospatial –  – 

TABLE 23: DATA CLASSES WITH THEIR MOST COMMONLY SEEN FORMATS. 

Table 23 summarizes some selected data classes surveyed in this section along with their most 
commonly seen data formats. The time categorization gives a rough estimation of the lifetime and 
validity of the importance of the data. The ‘Real-time’ column refers to data that are continuously 
updated (stream data), the ‘Current & recent historical’ column refers to data that could be up to 
10 years old, and the ‘Long term historical’ column refers to data considered to be highly important 
for most relative applications even many years after their production. 

3.5. Data Sources 

This section will outline the various resources for collecting maritime related data such as vessel 
positioning data, weather and climate data, data related to protected and sensitive areas, marine 
accidents, flags of convenience, port related data, data related to anti-shipping activities, natural 
hazards, navigational aid systems, cartographic and coastline data, bathymetry data and others. 

3.5.1. Vessel Tracking and Monitoring Services 

MarineTraffic [218] is the most popular interactive maritime information system developed by the 
University of the Aegean. Its key objective is the online monitoring of ship movement worldwide, 



CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA 

Christos Kalyvas-Kasopatidis –October 2020 
55 

while providing the public with real-time information about port arrivals and departures. The 
success of the coverage provided relies on voluntary participation in the community and on local 
authorities installing receivers and sending the collected data in real-time to the central 
MarineTraffic server that in turn collects the data and visualizes them on an online map. The data 
are sent and collected in raw AIS messages format through UDP channels. Additional TCP 
requests can be performed in order to retrieve data in XML and JSON format. Historical data can 
be retrieved on demand, using requests in XML format. 

Vesseltracker [219] is a provider of AIS vessel movements on the global scale and of maritime 
information services such as maritime news and events, vessel information, reports and statistics. 
More specifically, Vesseltracker provides its registered members with customized real-time and 
historical AIS data; a comprehensive vessels database of specifications, characteristics, 
equipment, ownership and management information; alerts on vessels status and on 
customizable regions via email, SMS and phone; information and alerts on expected, arrived and 
departed vessels for a single port or a list of ports; information about the distance to be covered 
by vessels to ports; port events; map views and layers including nautical charts; global and local 
piracy information; and weather forecasts information. 

MariWeb [220] is a monitoring service for the movement of ships and for other relevant maritime 
information, such as the characteristics of ships, their destination, estimated time of arrival, 
photographic data, traffic statistics for ports, etc. The platform is developed by the IMIS Global 
[221] which is a technology-oriented company focusing on offering AIS network management 
software tools, i.e. tools that efficiently collect, store and display AIS data securely providing 
navigational and fleet monitoring services to its customers in the maritime context. The company 
uses its own private network of receivers that forward the collected data to the central server of 
MariWeb for visualization. 

ShipFinder [222] and FleetMon [223] are services with characteristics similar to MarineTraffic, 
Vesseltracker and MariWeb services. Lloyd's List Intelligence [224] is a specialized service of the 
Lloyd's List Group, dedicated to the global maritime community. Access to the monitoring service 
of ships is limited to certified members on a subscription basis. 

VesselFinder [225] is another popular service that provides visualization of various real-time, 
time-evolving and static maritime data. The service is developed by the AIS Hub [226] data 
sharing center which is the only online service worldwide that distributes freely all its real-time 
collected vessel traffic data to any party volunteering to contribute reliable real-time AIS data to 
its network, constituting thus a valuable resource for maritime professionals and software 
applications developers. Its Web service can provide data in XML, JSON or CSV formats via TCP 
requests. 

Free-of-charge real-time test data in the form of raw AIS messages can also be retrieved from 
Exploratorium [227] for non-commercial use. This source is also registered at the MarineTraffic 
service. It is considered to be an excellent source for educational and software applications 
development and testing purposes. The real-time raw data come from vessels in the region of the 
San-Francisco Bay.  

Real-time satellite data in the form of raw AIS messages can be retrieved on a subscription basis 
from the MarineTraffic service [218] or from the IMIS Global [221]. Satellite AIS data guarantee 
coverage in every sea location on the Earth via dedicated hardware the cost of which has meant 
that vessels are not yet mandatorily equipped with it under the current international legislation. 
This approach has been developed in order to address the poor quality or absence altogether of 
AIS coverage in the larger oceans.  

3.5.2. Vessels and Shipping Companies Data 

Over 160,000 ships, passenger and cargo vessels of 100 tons and over are sailing the seas or 
are stationed at more than 13,000 ports globally. For this reason, several specialized online 
databases have been developed, providing accurate, detailed, both historical and current, data 
related to vessels and shipping companies. 

The IMO Numbers Database [228] is a freely accessible -through free registration - database 
provided by the IMO and which was promoted after 9/11 to enhance the security of vessels and 
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ports facilities. Every passenger carrier and seagoing vessel of 100 tons or above receives a 
mandatory and unique IMO number. For every ship identified by its IMO number, the database 
provides accurate information about its name, its flag, its type, its overall capacity and weight, and 
its year of manufacture. ShipList [229] provides a free access database of characteristics that 
partially complement that of the IMO Numbers Database. The service stores important details for 
every ship but, in practice however, some fields of information often remain void and the data 
elusive, especially as regards the maximum ship speed, net tonnage, fuel capacity, etc. 
ShipNumber [230] is another freely accessible online source that provides information, for a 
specific ship name or IMO number, about the ship’s flag, call sign, ship type, gross tonnage, dead 
weight, total length, extreme breadth, draught and year of construction,. VesselFinder [225] is 
another free access database containing information about the identity, the dimensions and other 
technical features of the ships. The information partially overlaps with the data that can be 
retrieved through other similar databases on this list. Equasis [231] is an excellent service that 
has been developed to become a powerful and reliable tool dedicated to the safety of ships and 
shipping. The service provides to its registered members free-of-charge details about the history 
of the ships, the owner companies or consecutive owner companies, inspection, manning, and 
other categories of data. Very importantly, it also provides information not to be found elsewhere 
regarding the status of blacklisted ships.  Veristar [232] is a database that shares some features 
with the Equasis database. Overall the service provides free-of-charge information about vessels 
and shipping companies, about inspection history data and so on. Maritime-Connector [233] is an 
online database providing historical information about the identity, the manager/owner, the 
manufacturer and also the safety category/class of every vessel. The IMO [206] also provides, 
among other information, a number of technical details for every ship travelling on the seas across 
the globe (it is to be noted that this data source is different from the IMO Numbers Database 
mentioned earlier). GrossTonage [234] provides its registered members with a free access 
repository containing technical information about the ships along with a brief description of marine 
incidents that can be visualized on a map. 

3.5.3. Protected and Other Sensitive Areas 

The cartographic data of aquatic areas protected by international conventions (BIOGEN, 
BIOSPHERE, DIPLOMA, MPK, BARCELONA, etc.) can be collected from the Protected Planet 
portal [235], the largest online geographic database of marine protected areas, which has been 
developed by the agencies that constitute the International Union for Conservation of Nature 
(IUCN) [236]. IUCN is the oldest and largest global organization for the protection of the 
environment. The source provides cartographic data in electronic form for various protected 
areas, national parks, wildlife refuges, island wetlands, etc.  

A notable example of protected areas is the Natura 2000 network [237], which is a European 
Ecological Network of designated terrestrial and marine areas hosting natural habitat types and 
habitats of species that are important at the European level and are thereby protected by 
European Union (E.U.) laws. The network includes hundreds of special protection areas and sites 
of communal importance that have already been designated for strict legal protection, with 
numerous others waiting to be included. The Natura 2000 Network Viewer can be accessed from 
[238]. The complete and up-to-date Natura 2000 dataset is shared freely by the European 
Environment Information and Observation Network Central Data Repository [239]. 

The United Nations Educational, Scientific and Cultural Organization (UNESCO) Geoparks are 
geographic areas in which sites and landscapes of international geological significance are 
managed within a holistic concept of protection, education and sustainable development. The list 
of the geoparks around the globe can be found in [240]. As of at the time of writing, 116 national 
geoparks from 31 countries and 4 transnational geoparks have been included in the list with many 
others awaiting inclusion.   

Many sources exist which contain data related to biodiversity and wildlife. The Global Biodiversity 
Information Facility [241] provides free and open access to biodiversity data around the world. 
The VertNet [242] is a National Science Foundation-funded collaborative project [243] thanks to 
which biodiversity data is free and available on the Web. The backbone of the VertNet project 
consists of four individual networks, the MaNIS database with mammals-related data [244], the 
HerpNet database with amphibians and reptiles-related data [245], the FishNet database with 
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fish-related data [246], and the ORNIS database with birds-related data [247]. The OBIS [248] is 
a marine species database repository for the world's oceans, provided by the UNESCO. The users 
can identify biodiversity hotspots and large-scale ecological patterns, analyze dispersions of 
species over time and space, and plot species' locations with temperature, salinity, and depth. 
The World Conservation Monitoring Centre (WCMC) [249] is the specialist biodiversity 
assessment arm of the United Nations Environment Programme (UNEP) [250]. It provides, 
among other data about biodiversity such as marine ecoregions and pelagic provinces of the 
world, global maps of various biodiversity indexes, chlorophyll-a concentration, global distribution 
of whales, dolphins, seals, turtle nesting and feeding seamounts and knolls, mangroves, etc.  

The ReefBase [251] is an online collection of all available data and knowledge about coral reefs. 
The FishBase [252] is the premier biodiversity data website for all the fishes of the world. The 
Biodiversity Information System for Europe [253] and the European Nature Information System 
[254] provide data about the species, habitat types and protected sites across Europe, while other 
data exist that relate to land, water, soil, air, marine, agriculture, forestry, fisheries, tourism, 
energy, land-use, and transport. The European Marine Observation and Data Network’s 
(EMODnet, [255]) portal for seabed habitats [256] is a free resource for marine habitat data in 
Europe. 

The WWF Conservation Science Data and Tools [257] provides, among other instruments, a 
toolkit to visualize the global distribution of animal species. The portal also provides a variety of 
datasets of the Earth’s freshwater and terrestrial biodiversity, marine ecoregions, hydrographic 
data for analysis and planning, biogeographical data of grassland ecosystems, etc.  The IUCN 
Red List of Threatened Species [258] contains spatial data and assessments for just over 76,000 
species. The portal provides taxonomic, conservation status and distribution information on 
plants, fungi and animals that have been globally evaluated to determine the relative risk of 
extinction.  

The sensitive area of offshore archaeological sites is acknowledged in the creation of several 
online resources such as Pleiades [259] which is a gazetteer of ancient on-land and under-water 
places that provides archeological geospatial data. It offers an extensive coverage of the Greek 
and Roman world, and is expanding into Ancient Near-Eastern, Byzantine, Celtic, Early Islamic 
and Early Medieval geography. The Ancient World Mapping Center [260] provides free maps with 
data related elevation tints, labels, point symbols and shaded relief for the Roman Empire, the 
Byzantium, the Aegaeum Mare, the Iberian Peninsula, as well as about aqueducts, inland waters 
and cultural geography metadata, such as Greek geographic names in Greek nominative forms 
(in UTF-8). The Greek archeological cadastre [261] and the American School of Classical Studies 
at Athens [262] provide archeological geospatial data on the ancient Greek world, such as a large 
number of ancient cities and locations, rivers, elevation data, and so on. A digital Atlas of the 
Roman Empire can be found at [263]. The Pelagios Commons [264] is a community and online 
resource for linked open geodata in the Humanities. Its Peripleo service is a map-based search 
engine for exploring archaeological, textual and image-based data that has been annotated by 
the Pelagios community. Its Recogito service is a Web-based tool that makes it easy to identify 
and record the places referred to in historical texts, maps and tables.  

World Heritage sites (cities, islands, lakes, mountains, etc.) are listed by the UNESCO and an 
extensive list can be found in [265]. The dataset can be downloaded as an MS Excel or XML or 
KML document. At the time of writing, 1031 sites from 163 countries that have signed and ratified 
the World Heritage Conventions are included in the list, most of which appear on it on the basis 
of culture and nature criteria. The Managing Cultural Heritage Underwater project [266] provides 
a tool to exchange and explore underwater cultural heritage information.   

The Ocean Energy Systems initiative [267] offers an interactive map of global offshore marine 
energy facilities and resources. The WindFarm Action Group [268] provides the location and other 
related information of onshore and offshore wind farms.   

The Greg's Cable Map [269] is an interactive map with data related to currently active or planned 
undersea telecommunication cables. The dataset can be retrieved in raw, KML or ArcGIS format. 
Similarly, the TeleGeography Submarine Cable Map [270] provides information about submarine 
telecommunication cables and their landing points. On the Subsea Cables Consultants Ltd [271] 
site a number of maps can be found that represent the location of several submarine power cables 
on the global level. The International Cable Protection Committee portal [272] 
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https://www.iscpc.org/cable-data/ provides an up-to-date database of information relating to the 
majority of active and planned international submarine telecommunication, power and scientific 
cables, i.e., cables for scientific research purposes (e.g. oceanographic or seismic). The Kis-Orca 
interactive map [273] is an offshore renewables and cables awareness project that in addition 
provides data about offshore power cables, oils and gas pipes and renewable energy construction 
on the UK territory. 

Because of the impact on the maritime environment of any malfunction, the EMODnet’s human 
activities marine portal provides oil rig and gas rig data, boreholes and offshore drilling sites with 
their locations [274]. The Peace Research Institute Oslo (PRIO) network [275] hosts a petroleum 
dataset containing data concerning all known onshore and offshore oil and gas deposits along 
with additional potentially relevant data about diamond resources, length of international 
boundaries, shared rivers and other non-geographic data such as economic and socio-
demographic and warfare data. The U.S. Geological Survey (USGS) World Petroleum 
Assessment [276] provides information pertaining to the 2012 assessment of undiscovered, 
technically recoverable conventional world oil and gas resources. The Theodora World Pipelines 
maps website [277] provides information about the diameter, length and capacity of several crude 
oil (petroleum) and natural gas pipeline installations across the globe.  

3.5.4. Marine Accidents 

On the national level, Maritime accidents history data can be retrieved from government agencies, 
such as the Search & Rescue Department or the Maritime Security Department, if they exist or, 
alternatively, from other agencies under the supervision of relevant national ministries and 
governmental departments dealing with the merchant navy and the maritime domain or the 
environmental protection domain, etc. Whenever data history is provided on the condition that it 
is not to be published, its value lies in the possibility of extracting useful knowledge about 
hazardous areas and vessel routes and trajectories, and about ships and man-made above-the-
sea-surface installations with a documented accident history. Some of these datasets may only 
provide approximate descriptions of the site of the incident, rather than the exact location. While 
some of these descriptions define specific bounded areas (e.g. ‘2NM West of Heraklion, Crete’) 
others might refer to less defined areas (e.g. ‘in the sea area on the east of the Mauritius Island’), 
therefore a user would need to geocode this information in order to extract the relative geographic 
coordinates or the estimated wider region in which the accident took place.  

In several countries, organizations such as the National Bureau for Marine Casualties 
Investigation Organization (for example, in [278] and in [279]) might be able to provide information 
about a number of marine accidents that have taken place on the country’s territory and also to 
provide detailed investigation reports for every accident. Statistics derived from the accidents can 
be provided along with the national and international legislation related to marine accidents. 

Lists recording vessel accidents can also be freely available on the Web. An example is the list of 
114 marine accidents available from the U.S. National Transportation Safety Board [280].  For 
every accident the list includes its geographic position and an analysis of the various parameters 
that caused it. Another list of seven accidents accompanied by analyses of the ships’ routes prior 
to accidents is available at [281]. Also, a detailed list of major maritime accidents that have been 
recorded across the world since the year 1120 AD can be found on [282]. The analysis (via links 
to Wikipedia pages with details for every accident) also includes the geographical location in which 
every one of these accidents occurred. Another detailed list of accidents involving ships on the 
international scale is available from the IMO [206]. The accidents data provided by the IMO can 
be obtained free-of-charge on the condition that they will be strictly used for non-commercial 
purposes. The WreckSite [283] database provides extensive online information about 163,020 
shipwrecks worldwide, including data such as geographical location, ship details, images, owners 
and builders, maritime charts, etc. A list to access the national accident investigation reports from 
24 counties is provided on the Marine Accident Investigator’s International Forum [284]. Also, the 
Maritime Bulletin [285] provides a list of marine accidents around the globe, along with piracy 
reports and weekly reports regarding shipping hazards. The European Maritime Safety Agency in 
[286] provides summaries and safety recommendations from marine investigation reports, as they 
have been compiled by the competent authorities of E.U. Member States.  

https://www.iscpc.org/cable-data/
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Data relating specifically to oil spill accidents can be retrieved freely online, for example from the 
International Tanker Owners Pollution Federation (ITOPF) portal [287]. The source also provides 
additional information for the 20 most catastrophic oil spills since 1970. The IncidentNews website 
[288] of the U.S. National Oceanic and Atmospheric Administration (NOAA) [289] provides 
abundant data about selected oil spills (and other incidents) for which the NOAA's Office of 
Response and Restoration (OR&R) [290] provided scientific response-support for the incident.  
The software and datasets publications, training, and othe resources of the NOAA's OR&R are 
dedicated to environmental restoration and provide response tools for oil and chemicals spills and 
marine debris.  

3.5.5. Flags of Convenience 

A renewable list [291] of 26 countries with a flag of convenience [213] has been compiled by the 
Fair Practices Committee of the International Transport Workers Federation (i.e. a joint committee 
of the federation of seafarers and dockers unions) and a slightly different list including a few more 
countries can be found in [292].   

3.5.6. Port State Control Data 

Port state control [293] refers to the inspection of foreign ships in national ports to verify their 
compliance with the requirements of international regulations and rules. Nine regional agreements 
exist on state control of ports, or Memorandum of Understanding (MoU). A list of nine online 
databases that contain all vessels currently detained by regional authorities around the globe can 
be retrieved from the following sources: for Europe and the north Atlantic (Paris MoU) [294]; for 
Asia and Pacific (Tokyo MoU) [295]; for Latin America (Acuerdo de Viña del Mar) [296]; for the 
Caribbean (Caribbean MoU) [297]; for West and Central Africa (Abuja MoU) [298]; for the Black 
Sea (Black Sea MoU) [299]; for the Mediterranean (Mediterranean MoU) [300]; for the Indian 
Ocean (Indian Ocean MoU) [301]; and for the Riyadh MoU [302]. U.S. port state control is carried 
out by the U.S. Coast Guard [303]. 

Data about the ships complying with the regional regulations of the Paris MoU, Tokyo MoU and 
the U.S. Coast Guard Port State Control can be retrieved from the Equasis portal [231]. 

3.5.7. Anti-shipping Activities 

The U.S. National Geospatial Intelligence Agency provides freely an up-to-date spatial dataset of 
more than 7,000 anti-shipping activity messages [304]. The dataset includes the exact 
geographical location and description of specific hostile acts against ships and mariners from 
1985 until today. These data can be useful for the recognition, prevention and avoidance of 
potential hostile activity in the future. The dataset can be downloaded as a KMZ file, ESRI 
shapefile or as a personal Geodatabase in MS Access database format. 

3.5.8. Nautical Weather Forecast and Climate Data 

Several services provide meteorological data via an application programming interface (API) 
which allows researchers and developers to access weather forecast conditions for both land and 
sea. The services provide data for temperature, any precipitation or presence of fog, speed and 
wind direction, the height of sea waves, the direction of sea waves, and include weather 
description icons, etc.  

Some services make the data available for free for personal use or for empirical purposes, while 
others allow the development of applications for commercial use. The data are usually available 
in XML or JSON. An extensive list of 76 relevant services via API can be found in [305].  

Nautical or marine meteorological forecast data for research and development purposes tends to 
be scarce. In shipping applications, detailed weather forecast data of up to six to seven days 
ahead is important, hence a brief reference to some of the few providers of free-of-charge 
meteorological forecast data for marine applications. 

World Weather Online [306] provides land and marine meteorological forecast data through the 
use of a free account and a specific API key. The marine forecast data have a time window of 24 



CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA 

Christos Kalyvas-Kasopatidis –October 2020 
60 

hours, regularly updated and covering a time span of 6-8 hours and include: temperature, 
humidity, visibility, cloud cover, wind speed, wave height, swell height, precipitation, pressure, etc. 
The user of the free service can obtain meteorological forecasts for up to 500 requests per hour 
and no more frequently than every 15 minutes for the same location. Land weather forecast data 
are updated every 3-4 hours. The available information is sent to the user via XML, JSON and 
CSV format. The data request has to be accompanied by the longitude and latitude of the relevant 
location on the Earth. The meteorological forecast is retrieved from the nearest weather station to 
that location. World Weather Online also provides weather and tidal data history.  

Weather Underground [307] provides detailed meteorological forecast data per hour for the 
following 24 hours and as well as a prediction of the weather for the next three to ten days ahead, 
together with dynamic animated satellite images. The available data are accessed via API and 
can be obtained in the JSON or XML form. Rather more restricted than the Word Weather Online 
service, Weather Underground provides free usage of the service for up to 10 times per minute 
and up to 500 times per day. 

The Severe Weather Information Center [308] provides global warnings about tropical cyclones, 
heavy rain, snow, thunderstorms, gales and fog. Its equivalent system for Europe is named 
Meteoalarm [309]. The Arizona State University [310] holds an interactive map and an archive 
for extreme global weather and climate conditions. 

The NASA Earth Observatory [311] provides 16 global animated maps and datasets which are 
related to weather and climate conditions such as sea and land surface temperature and 
anomalies, rainfall, snow cover, etc. over a time span of 12 months.  

Daily reports acquired through sensors about air pollution and ozone can be retrieved on the 
national level from environmental agencies or from the ministry of the environment of a country 
concerned, such as in [312] which provides live and historical data. Additional information about 
air quality, air pollutants and emissions can be retrieved from such sources, as for example the 
Air Quality database [313] which is provided by the European Environment Agency (EEA) [314]. 

And last, there are online databases that offer historical weather and climate data and some useful 
statistics: 

  

• the collection of global daily measurements of weather features (temperature, wind speed, 
humidity, pressure, etc.) for the period 1929-2009, from over 9,000 meteorological stations 
around the world, which data have been uploaded from Infochimps.org onto the Amazon 
Web Services [315];  

• the Climatological Database for the World's Oceans [316] which is based on the climatic 
data contained in ship logbooks for the period 1750 to 1850;  

• the European Climate Assessment and Dataset project collection [317] which provides 
historical data for the period January 1, 1950 - December 31, 2012; etc. 

3.5.9. Natural Hazards 

Because of their close relation to tsunami phenomena, seismic and volcanic activity monitoring is 
crucial. Such data are usually provided in almost-real-time by the institutes for geodynamics on 
the national and international levels, such as [318] and correspondingly [319], the latter a globally-
recognized creditable online center for almost-real-time information for European-Mediterranean 
earthquakes and for worldwide earthquakes with M4.0+. Earthquakes and waveform data for 
Europe are also provided by the GEOFON Program [320] and for the U.S. by the USGS 
Earthquake Hazards Program [321]. Both sites provide almost-real-time data feeds.  

The International Tsunami Information Center [322] provides international tsunami warnings and 
contains further data related to seismic activity and sea level stations along with historical data. 
The Global Risk Data Platform on Natural Events [323] covers data related to tropical cyclones, 
storms, surges, drought, earthquakes, biomass fires, floods, landslides, tsunamis and volcanic 
eruptions. And last, Volcanoes of the World [324] is an online database describing the physical 
characteristics of volcanoes and their eruptions. 
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3.5.10. Navigational Aid Systems 

A database of international navigational aid systems around the globe can be retrieved via the 
MarineTraffic service [218], with every entry containing information related to the name of the 
navigational aid system, its location, a representative photo, its type, its range, color of light, flash 
duration, time interval of operation, and whether or not it is active. The geospatial sea surface 
region covered by a navigational aid system can be computed by its range, taking into account 
the local coastline. 

3.5.11. Sea Ports Locations and Facilities 

The U.S. National Geospatial Intelligence Agency provides the geographical locations and 
characteristics of the ports around the Earth through the dataset "The World Port Index (Pub150)" 
[325], which keeps a record of the locations of 3,717 ports worldwide. The dataset is provided 
free-of-charge for non-commercial use in an MS Access database or in an ESRI shapefile, and 
provides useful detailed technical information such as the size, type, anchor depth and tidal range 
of harbors, their fuel/oil supply facilities, available repairs support, and much more. Wikimapia 
[326] provides similar data in KML geoformat that includes 10,478 port facilities worldwide. No 
other important technical information about the available ports is provided by this particular 
dataset. 

Additional information about ports worldwide can be found in VesselFinder [225]. This database 
contains the name of the port, the country in which it is located, its size (in such categories as: 
small, medium-sized port, etc.) and its geographic position on the map. Information about ports 
can also be found in MarineTraffic [218], including the name and location of every port, together 
with real-time data about the presence of vessels and the expected arrival and departure times 
into and out of the ports.  

Finally, data about airports, runways, airlines, radio navigation aids and waypoints that can 
become relevant in the domain of a maritime GIS application can be found at OurAirports [327], 
OpenFlights [328], and WELT2000 [329]. 

3.5.12. Essential Naval Cartographic Data 

Borders between countries, while they are mainly static data, are occasionally updated when 
affected by changes. Such a dataset can be retrieved from several online sources in various 
formats and sizes (i.e. resolution). An excellent source for this dataset is the Blue Marble 
Geographics [330] which provides country boundaries in ESRI shapefile or TBA files format.  

 

An unclassified vector-based digital dataset compiled from a portfolio of approximately 5,000 
nautical charts and containing the boundaries of countries worldwide enriched with several 
additional maritime features is provided free-of-charge by the Digital Nautical Chart portal of the 
U.S. National Geospatial-Intelligence Agency [331]. It is available in 29 subsets of data divided 
by the region of the planet to which they correspond. 

3.5.13. Maritime Borders, Coastline and Land Areas 

The coastline (or shoreline) is an important dataset that defines which areas of the Earth are land 
and which are ocean or sea. Several online sources provide global coastline datasets in different 
resolution and formats. An excellent example is the high resolution and complete (without gaps 
due to missing data) related dataset which is provided by the U.S. NOAA Shoreline website [332]. 
A dataset of coastlines of the world in ESRI shapefile format which the U.S. Defense Mapping 
Agency developed from various sources is also provided by the Pacific Disaster Center in Hawaii 
[333]. Finally, the global coastline with the exception of Antarctica, can be retrieved in several 
resolutions (full, high, intermediate, low and crude) and formats (ESRI shapefile and native binary 
files) from the GSHHG database [334], which is a global geographic database that is kept 
constantly updated. 

Many organizations and projects produce and distribute high resolution national or continental 
coastline data. Focusing for example on the European continent, the geographic data of the 
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European coastline [335] and the European maritime borders [336] that have been produced in 
the context of the EUROSION project [337] derived from the United Nations Convention for the 
Law on Sea, can be retrieved from the list of datasets in [338] which are provided by the EEA 
[314], which is responsible for the independent provision of information relating to the 
environment. High-resolution data for the European Coastline (and land surfaces) [335] may also 
be obtained from the EU-Hydro, which is a set of hydrological data developed under the program 
Copernicus [201], the largest scale Earth observation program. Interested parties might find it 
worthwhile to give priority to the first of the above-mentioned geospatial datasets (i.e., that of the 
EEA), and to consider the second (i.e., that of the EU-Hydro) as a support dataset because the 
coastline from the EU-Hydro represents the separation between land and sea, as indicated by 
satellite images of the dataset in [339], provided by the European Space Agency. The tidal data 
depend on the date and time when the images were taken, hence the dataset’s insufficiency in 
respect of the requirements to define the coastline. 

3.5.14. Naval Bathymetry Data Maps 

Bathymetric data can be retrieved from various heterogeneous sources. The datasets may share 
overlapping information in different data formats or precision, therefore appropriate data 
transformation and refining processes may need to be undertaken prior to the process of 
integrating the data into the same database. Important data sources that can be accessed online 
are: 

The Marine Geology & Geophysics and the Bathymetry & Global Relief discipline of the National 
Center for Environmental Information [340] of the NOAA [289] provides access to sonar data 
(single-beam trackline bathymetry surveys), magnetic, seismic and other data [341] that have 
been collected on the basis of marine survey trips since 1939 until today. The source also provides 
rich multi-beam sonar bathymetry data [342] that contain over 1,187 international marine trips 
that collected bathymetry data from several areas around the world. 

The International Hydrographic Organization (IHO) [343] collects and quality-checks globally 
oceanic sounding data acquired by hydrographic, oceanographic and other vessels during 
surveys or while on passage. The IHO members have also made additional contributions with 
shallow water sonar data derived from electronic nautical charts. 

 

The International General Bathymetric Chart of the Oceans Cooperation [344], [345] which is 
maintained by the British Oceanographic Data Center (BODC) [346] provides free-of-charge 
bathymetry data that are related to all the seas across the globe. The data are collected by echo-
sounding and the dataset is enhanced with satellite data.  

Another notable example of high-precision bathymetry data is offered freely by the EMODnet 
bathymetry portal [347] of the European Marine Observation and Data Network which contributes 
to the provision of reliable and interoperable marine data in public and private organizations. The 
bathymetry dataset of the EMODnet service covers a wide range of marine areas across and 
around Europe, providing highly accurate Digital Imaging Modeling Soil data and substantial 
coverage for the corresponding seas. 

3.5.15. Tides, Eddies and Sea Levels 

The NOAA Center for Operational Oceanographic Products and Services [348] has gathered 
oceanographic data for over 200 years, serving both the public and government agencies. Its data 
include sea-level measurements over time; tide prediction locations; a history of currents activity 
at different levels of depth; etc. The dataset can be downloaded in KML format from [349].  

Sea-level data on a worldwide scale can also be retrieved from the Sea-Level Station Monitoring 
Facility [350] which utilizes an interactive map illustrating the locations of stations that measure 
the sea-level in real-time. A disclaimer on the portal indicates that quality control has not been 
applied to the data on display and that they are provided as received. 

The mesoscale ocean eddies are currents that transport heat, salt, energy, and nutrients across 
the world seas. Their accurate identification and tracking is crucial for understanding future marine 
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and terrestrial ecosystems and their sustainability.  A rich historical dataset of oceans eddies from 
1992 to 2011 can be found in [205].  

3.5.16. Various Other Geospatial Data 

The Global Earth Observation System of Systems (GEOSS) portal [351] provides worldwide data 
in relation to water, ecosystems, agriculture, climate, natural disasters, etc. A number of datasets 
in raster and vector format related to land-cover; administrative boundaries; parks; hydrology and 
ocean water; drainages with lakes; etc. on several scales of resolution (large, medium and small) 
is provided by Natural Earth [352]. The NASA’s Earth Observation System provides Earth science 
data that can be retrieved from [353]. A large number of GIS datasets regarding elevation, 
transportation, demographics, environment, imagery, water, etc., for almost all the countries 
around the globe is provided by the Massachusetts Institute of Technology (MIT) Geodata 
Repository [354]. 

The NOAA’s Office of Coast Survey [355] offers a large number of links for U.S. national charts, 
surveys wrecks, historical data and other useful nautical GIS information. In [356] several 
datasets relating to administrative boundaries, biological data, climate, land-cover, etc. are 
provided for the U.S. region. The EEA hosts more than a hundred sets of environmental data 
related to the E.U. territory in [357]. The same portal also hosts a large number of related maps 
and informational graphs. Another large number of related datasets is hosted by the European 
Space Agency in [358]. In [359], a number of datasets relating to land-cover, elevation, 
hydrography, protected sites and other data for the E.U. territory is provided by the EuroStat 
European Statistics Organization. The BODC [346] distributes biological, chemical, physical and 
geophysical marine data and also hosts various related portals and project websites. Most of the 
data maintained and re-distributed by the BODC are not restricted to the U.K. territory. 

The Marine Plan website [360] provides a number of datasets that include the major regional 
fisheries areas controlled by governing bodies across the globe; the state of fish stocks; waters 
under the sovereignty of countries in other regions of the world (this includes the waters of 
outermost regions and of overseas territories); territorial disputes conflict zones, piracy hazards; 
international straits and channels; oceans and continents; nuclear marine areas, oil and gas in 
the world; etc.   

A large number of links to worldwide marine and coastal GIS data and image portals is provided 
in [361]. An extensive framework for sharing world maps and digital geospatial data about the 
Earth's frozen regions (including snow cover, sea ice extent and concentration, glaciers, ice 
sheets, permafrost, and other critical components of the Earth's cryosphere) can be retrieved from 
the Atlas of the Cryosphere [362] in image, GML and GeoTiff formats. Also, the Quantarctica 
raster datasets [363] include geographical, glaciological and geophysical data for the region of 
Antarctica. 

DIVA-GIS [364] is primarily a free and open-access software tool for data mapping and 
geographic analysis. Its corresponding portal also provides freely available spatial data, either at 
the country level (such as administrative boundaries, inland water, roads, railroads, altitude, land-
cover, population density, etc.) for any country in the world, or at the worldwide level (such as 
high resolution satellite images, global boundaries between countries, global climate data, species 
occurrence data, etc.). The data can be used in DIVA-GIS and other software tools. 

A list of over twenty useful links to services databases for the marine science community, with 
resources such as abstracts, bibliographies, glossaries and directories, as well as conference 
proceedings papers which are otherwise not available online are hosted by the Hellenic Centre 
for Marine Research [365]. Among them and of particular interest is the link to the Institute of 
Oceanography of the Hellenic Centre for Marine Research [366] which provides access to its 
Online Search and Download Service database [367] in relation to physical, chemical and 
biological parameters in the European and international waters; the European Directory of Marine 
Environmental Datasets [368] which contains datasets collected by Hellenic scientific 
laboratories, research institutes, universities, etc.; and the EDIOS database [369] which provides 
measuring and monitoring data with regard to sea observation in the Eastern Mediterranean and 
the Black Sea.  



CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA 

Christos Kalyvas-Kasopatidis –October 2020 
64 

Another categorized list of links to over three hundred portals providing freely available geographic 
datasets can be found on FreeGISData [370]. The datasets are related to physical geography 
(weather and climate, rivers, lakes, elevation, hydrology, etc.) and human geography (land-use, 
wars, population, etc.) worldwide, while individual datasets for specific areas or countries are also 
available.  

FreeGIS [371] is a blogspot which also offers links and detailed descriptions of numerous portals 
which provide free and open-access GIS software; remote sensing; and spatial and hydrology 
data. The following sources [372], [373], [374], and [375] direct the reader to some data sources 
worth noting, which provide maps, articles of international interest, etc., that are also relevant to 
this study. 

Finally, the GEOnet Names Server (GNS) [376] is a repository of standard spellings of global 
geographic names for regions near, over and under the seas. 

3.5.17. Satellite Imagery 

Copernicus [201] is a European GIS for monitoring the Earth. It consists of a complex set of 
systems which collect data from multiple sources, such as Earth observation satellites, ground 
stations and airborne and sea-borne sensors. Copernicus services address six main thematic 
areas: land, marine, atmosphere, climate change, emergency management and security [377]. 
The collected data can be accessed by performing a free registration to the Copernicus Sentinels 
Scientific Data Hub [378] which at the time of writing contains Sentinel-1 and Sentinel-2 satellites 
data. Direct access to the data, along with additional information about the various Sentinel 
satellites missions can be retrieved via the European Space Agency (ESA)'s Sentinel Online 
portal [379] or via its data mirror site at [380]. Satellite data for a number of ESA’s missions 
dedicated to Earth observation can be found in [381]. 

And last, the eoPortal Directory [382] offers a database of an extensive list of past, operational 
and future spaceborne missions and a complementary database of several flight missions and 
projects involving airborne sensors.  

3.5.18. Sources that Reach Beyond the Maritime Domain 

The previous sections report on sources and repositories that provide maritime and maritime-
related data. However, a large number of sources exists with a wider variety of data that reach 
well beyond the maritime domain but which can, in some circumstances, become relevant in a 
maritime GIS application. Among these, one of the most popular sources is the collaborative 
mapping project OpenStreetMap [383], which also offers free-of-charge data about roads; trails; 
cafés; railway stations; etc. In a similar way, Wikimapia [326] provides data about roads; railroads; 
rivers and ferry lines; various types of points and areas of interest such as parks, villages, cities; 
etc. The GeoCommons Archive [384] is a community-contributed collection of hundreds of 
thousands of open datasets from around the world. OpenEI [385] provides energy datasets on 
hundreds of topics, crowdsourced from industry and government agencies in relation to energy 
efficiency, consumption, demand, and much more.   

International and national public open data portals are also great sources for continental and 
governmental or country-specific data. For example, the INSPIRE Geo-portal [386] provides the 
means to search and access open geographic data provided by European governmental, 
commercial, and non-commercial organizations within the framework of the E.U. INSPIRE 
Directive [387], which aims at the creation of an E.U. spatial data infrastructure. The EEA’s data 
and maps repository [388] of the E.U. provides sound and independent data on the environment. 
Some major datasets on this repository are related to air, water, land, biodiversity, climate change, 
noise, etc. [389]. A Web map service for the repository is available in [390], while code and APIs 
(divided into specific topics) for developing GIS applications are available in [391].  

The European Data Portal [392] harvests the metadata of public sector information available on 
public data portals across E.U. countries and offers governmental open data that were collected, 
produced or paid for by the public bodies and public sectors. The E.U. Open Data Portal [393] is 
the single point of access to a growing range of data from the institutional and other bodies of the 
E.U.. The portal is not restricted to GIS data and thus some of its main subjects are employment 
and working conditions, economics, finance, trade, industry, education, science, etc.  
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On a national level, a governmental source paradigm for providing geographic-related data that 
also serves as a compliant data infrastructure center at a continental level (for example, for the 
E.U. INSPIRE and for the European Data portals), is the geospatial open repository of the territory 
of Greece [394], which offers open data for topics related to biodiversity, water, the environment, 
the economy, elevation, transportation, health, planning cadastre, social dimensions and many 
more. The data provided by this source can be complemented by the central library of public data 
[395] which offers access to the databases of the country’s governmental bodies. Several other 
countries (such as Ireland in [396], etc.) offer similar data repositories, and it is expected that, in 
the years to come, every country (and possibly every municipal sector and region in the country) 
will offer similar services to the public.  

The EMODnet [255] network is a Joint European Coastal Mapping Programme which consists of 
more than 100 organizations assembling quality-controlled and expert-validated marine data that 
are offered through the EMODnet portal, such as data on bathymetry (water depth), coastlines, 
and geographical locations of underwater features and wrecks; data on seabed substrate, sea-
floor geology, coastal behavior, geological events and minerals; data on modeled seabed habitats 
based on seadbed substrate, energy, biological zone, and salinity; data on the concentration of 
nutrients, organic matter, pesticides, heavy metals, radionuclides and antifouling in water, 
sediment and biota; data on the temporal and spatial distribution of species abundance and 
biomass from several taxa; data on salinity, temperature, waves, currents, sea-level, light 
attenuation, and FerryBoxes (i.e., kits with instruments that are placed on board to commercial 
ships such as ferries in order to monitor the temperature, salinity and other water properties); data 
on the intensity and spatial extent of human activities at sea; etc.  

The EUMETSAT Product Navigator [397] is the catalogue of satellite data and products with 
regard to weather, climate and the environment that are offered in near real-time by the European 
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) [398].  

 

GEOSS links Earth observation resources worldwide across multiple societal benefit areas. The 
GEOSS portal [351] provides data about biodiversity and ecosystem sustainability; disaster 
resilience; energy and mineral resources management; food security and sustainable agriculture; 
infrastructure and transportation management; public health surveillance; sustainable urban 
development; water resources management; etc. 

The Red List of Ecosystems (RLE) [399] of the International Union for Conservation of Nature 
[400] evaluates the conservation status of ecosystems around the globe. The RLE provides the 
ecosystem locations information and valuable assessments on the basis of a protocol which 
includes criteria for assessing the risk of an ecosystem collapse and several categories of risk for 
every ecosystem. 

NASA is a great resource for geospatial data, not only in respect of space exploration but also in 
respect of the Earth. The numerous domains it encompasses provide the material for the creation 
of an enormous data center. The EarthData portal [401] provides a variety of Earth-related data. 
A worldview map of those data can be accessed via [402]. The NASA’s Earth Observing System 
[403] is a coordinated series of polar-orbiting and low inclination satellites for long-term global 
observations of the land surface, biosphere, solid earth, atmosphere, and oceans which consists 
of the NASA’s Earth Observations database [404], the NASA’s Earth Observatory database [405], 
the NASA Visible Earth database [406] and other repositories, every one of which provide a 
variety of data. The Earth Science Projects Division [407] manages the missions which advance 
the understanding of Earth. The NASA’s Science portal [408] provides data of NASA missions 
related to the Earth as well as several links to other related portals. 

The NOAA [289] as well as the USGS Earth Explorer [409] portals are both great resources for 
various datasets in numerous disciplines, especially but not exclusively in relation to the U.S. 
territory. 

Natural Earth [352] provides also geospatial data related to populated places; disputed areas and 
breakaway regions; glaciated areas and Antarctic ice shelves; cross-blended hypsometric tints; 
grayscale shaded relief of land areas; worldwide terrain depicted monochromatically in shades of 
gray; etc. The ESRI Data & Maps portal [410] contains data across the globe, such as country 
boundaries, aquatic areas roads, railroads, major cities, topography, bathymetry, population, 
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gross domestic product, night time views of the Earth, etc. The PRIO network [275] contains also 
some unique spatial and non-spatial datasets of specific interest, such as diamond resources, 
shared rivers between neighboring countries and data related to armed conflicts [411].  

 

Data source Land & marine 
data 

Atmosphere & 
climate data 

Governmental & 
human activities data 

Cultural 
data 

Copernicus [201]    – – 

EMODnet [255]     – 

NOAA [289]    – – 

FreeGISData [370]     

Natural Earth [159]   – –  

EEA [314]     

European Data Portal [392]     

E.U. Open Data Portal [393]      

TABLE 24: MOST NOTABLE DATA SOURCES THAT REACH BEYOND THE MARTIME DOMAIN. 

Table 24 outlines the most notable sources and repositories containing rich data that reach 
beyond the maritime domain and are mentioned in this study, along with the most characteristic 
examples of types of data that they provide. 

3.5.19. Marine Conservation Organizations 

Hundreds of non-profit and non-governmental marine institutes and organizations (such as the 
ones listed in [412] and [413]) work either independently or by forming societies and coalitions 
(such as the Deep Sea Conservation Coalition [414]) on marine conservation and other 
environmental issues such as biodiversity and global warming. These organizations are 
committed to researching and to ensuring the protection of the marine environment, and pursuing 
terrestrial wildlife conservation and they are actively involved in lowering the risk of accidents on 
and near the sea, and in providing statistics, scientific research reports, and case studies data 
analysis.  

Much of this extensive and high-quality work is made available to the public and can therefore be 
utilized to enrich maritime information systems. For example, in [415] several datasets are 
provided for areas that are environmentally and economically sensitive to oil and other hazardous 
materials spills, areas to which sailing restrictions apply, areas to be avoided, shallow banks, 
rivers, lakes, manatee population locations, sea turtles nests locations, submerged shipwrecks 
and other obstructions in coastal waters, public access boat ramps, color aerial photographs, 
coast guard facilities etc., throughout the State of Florida and, more widely, the U.S.. The data 
are published by the marine conservation Florida Fish and Wildlife Research Institute which works 
for the protection of the sea across the entire South East of the U.S.. 

3.5.20. Restrictions Applying to Use of Data 

This section discusses the various types of restrictions applying to the use of data, established by 
the sources providing these data in order to protect the rights of the owners over the data that are 
made available to inspect and download for the purpose of maritime applications.  

Datasets acquired by ministries and governmental agencies and other organizations can be 
accessed free-of-charge by the public for any use at any time, irrespective of commercial use 
purposes; alternatively, the datasets might be strictly confidential, which means that while they 
may remain available for data mining, they may not be published under any condition. A number 
of sources might allow a degree of use of their datasets in combination with a license of Creative 
Commons [416] attribution, which means that the grantee of the data will need to indicate their 
source in the applications in which they are used and will need to take into account some other 
restrictions as well, those that define the extent to which the data can be copied, distributed, 
edited, remixed, and built upon, all within the boundaries of copyright law. 

The detailed data for vessels and shipping companies from the IMO Numbers Database [228], 
the ShipList [229], the Maritime-Connector [233], and the VesselFinder [225] services can be 
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collected via their freely accessible online databases. The data, however, cannot be re-published 
although they remain useful resources to ensure the efficiency of maritime information systems.  
The data from the Equasis service [231] cannot circulate freely on the Web and can only be 
accessed freely by registered members.  

The vessels accident data that can be obtained via the IMO service [206] requires, in return for 
free-of-charge access, the creation of an account and can be used within the limits of the 
restrictions imposed on the service. 

The use of the datasets of maritime protected areas that can be found online on the Protected 
Planet portal [235] is limited to use that is of a non-commercial nature [417] and cannot be 
obtained without prior written authorisation of the UNEP-WCMC [249] which is the data supplier. 
The same exclusively non-commercial use restrictions of [418] hold also for several other online 
data banks provided by the UNEP-WCMC, such as for the Ocean Data Viewer [419], etc. 

In the terms of use of the data [420], the World Weather Online service [306] makes it clear that 
researchers and developers must not share their API key with other users. The terms of use also 
indicate that the data are protected by strict copyright and must not be distributed, modified or 
reproduced in part or in whole, without the prior written authorization of the service.  

Most of the types of bathymetry data that can be collected from the data sources as mentioned 
above cannot, according to the restrictions applying, be used for navigational purposes and, when 
they can be used, it is for personal use only (a free account is required for this). However, the 
largest and most precise bathymetry dataset that can be found online which, as has already been 
mentioned, can be retrieved from the EMODnet bathymetry portal [347], is not accompanied by 
restrictions of use. While it is indicated that this voluminous dataset is available to the public; for 
legal reasons, however, its source indicates that the data may not be used for navigation 
purposes.  

The port state control data related with most of the MoUs, and specifically for the Paris MoU [294], 
Tokyo MoU [295], Black Sea MoU [299], Caribbean MoU [297], Abuja MoU [298], and Acuerdo 
de Viña del Mar [296] state that the data should not be used for any commercial purpose, 
reproduced in any other sites, stored in a retrieval system, or transmitted in any form, or by any 
means, without the prior authorization in writing from the owners of the data. 

The use of the datasets of global, continental and national coastlines in most of the sources is 
provided free-of-charge on condition that the source of the data is mentioned. One example is the 
dataset of the European coastline [421] that is provided by the EEA [314] which is its copyright 
owner. Also, the maritime borders provided online within the framework of the EUROSION project 
[337] are available free of restrictions. 

 

License Linking Distribution Modification 

CC-0 Public domain Public domain Public domain 

CC-BY Permissive Permissive Permissive 

CC-BY-SA Copyleft Copyleft Copyleft 

CC-BY-NC Non-commercial Non-commercial Non-commercial 

GPLv3 With  restrictions Copyleft Copyleft 

ODbL Copyleft Copyleft Copyleft 

TABLE 25: THE MOST-COMMONLY-USED LICENSES FOR FREE AND OPEN-SOURCE DATA2. 

Table 25 outlines the most-commonly-used published licenses for free and open-source data, 
and their restrictions on linking, distributing and modifying the data [422].  

The data on the Greg's Cable Map [269] are provided under the GNU General Public License v3 
(GPLv3). The USGS World Petroleum Assessment [276] requires copyright permissions [423]. 
The owner of the archeological data provided in [262] states that the data are offered under the 
Creative Commons CC-0 licensing. Pleiades [259] states that sharing and remixing data is 

 
2 A ‘Public domain’ label states that there is absolutely no ownership such as copyright, trademark, or patent. A ‘Permissive’ 
license has some limited requirements, such as crediting the original authors. A ‘Copyleft’ license permits people to freely copy, 
modify and redistribute the data as long as they do not keep others from also having the same rights. 



CHAPTER 3: ONLINE SOURCES OF GEOSPATIAL DATA 

Christos Kalyvas-Kasopatidis –October 2020 
68 

permitted under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. The 
ReefBase [251] states that the data may be used for non-commercial purposes, including 
research, education, presentations, and non-commercial publication [424]. The FishBase [252] 
states that this work is licensed under a Creative Commons Attribution-NonCommercial 3.0 
Unported (CC-BY-NC) License. The OBIS [248] makes the data available under the Creative 
Commons licenses CC-0 or CC-BY or CC-BY-NC [425]. The IUCN Red List of Threatened 
Species [258] states that the data is made freely available to the public for non-commercial use.  
The Global Risk Data Platform on Natural Events [323] states that all rights are reserved and 
none of the materials provided on the website may be used, reproduced or transmitted without 
permission in writing from the publisher [426]. The Quantarctica datasets [363] are free for non-
commercial use. The data from the Copernicus Sentinels Scientific Data Hub [378] are offered to 
the public for free, except when the E.U. law allows for specific limitations of access and use in 
the rare cases of security concerns, protection of third party rights or risk of service disruption. 
The ESA's Sentinel full online terms and conditions can be retrieved from [427]. The 
OpenStreetMap open data [383] provided by the OpenStreetMap Foundation [428] are licensed 
under the Open Data Commons Open Database License (ODbL 1.0). The WELT2000 [329] 
database is also made available under the ODbL 1.0 license. The data from Wikimapia [326] are 
provided under the Creative Commons License Attribution-ShareAlike (CC BY-SA). The E.U. 
Open Data [393] portal provides the data for free for use and reproduction for commercial or non-
commercial purposes. The Theodora World Pipelines maps [277] states that all the rights on the 
data are reserved by its sponsored Information Technology Associates Company. The ESRI Data 
& Maps [410] data usage policy can be viewed in [429]. For the data hosted by the NOAA's OR&R 
[290] along with many sources from U.S. data portals [289], [409] specific restrictions may apply 
for use and reproduction outside the U.S. 

3.6. Conclusions and Observations 

The last decade has led to the full recognition of the crucial role played by this new age of decision-
support information systems in transportation; the environment; hydrology; meteorology; 
oceanography; emergency, hazard and disaster management; defense and intelligence; public 
safety and law enforcement etc. When developing such a demanding information system 
application or research model, obtaining the sufficient amount of the appropriate real-world data, 
to make the application or the model work effectively, is a requirement of crucial importance. This 
section aims to provide comprehensive insights into the exploitation of maritime geospatial 
datasets available to the public and highlights the fact that integrating these datasets from the 
available online open sources will improve advantageously the building of efficient maritime GIS, 
while combining them with other restricted and non-free-of-charge data is also made possible.   

To the best of the authors’ knowledge this study represents the first endeavor to compile a 
comprehensive survey of carefully selected official online sources, which have been classified 
under several distinct categories and which, can provide an up-to-date thesaurus of reliable high-
precision real-world maritime geospatial data on the international global level. The section also 
stresses the need to pay due attention to the legal binds that must be taken into account before 
downloading and using data which are available free-of-charge. 

Moreover, this study allowed us to identify open research topics in query processing, big data 
management and applied machine learning. Focused on skyline queries, we identified that the 
temporal parameter, which is quite important in data analytics, is not considered in the query 
process and thus, we focused our research on temporal skyline queries. Moreover, the volume of 
most of the datasets is large and simple, non-distributed approaches struggle to perform. Based 
on this we managed to compute the skyline and the even more resource demanding reverse 
skyline query over one of the largest datasets identified (OpenstreetMap All_nodes dataset [383]) 
using an index-based approach over Hadoop, named SpatialHadoop. Finally, one of the most 
common issues identified is the lack of labeled data which is an especially hard process to perform 
in high volume datasets. Based on this we used the properties of skyline queries to build a 
classifier that efficiently works in big data environments.  

 

http://www.esri.com/legal
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4. SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA 

The computation of skyline has been studied across a wide range of environments and types of 
data. Through our previous study we identified that the notion of time has a great importance in 
data analytics and query processing.  On this scope, a field of study that has remained unexplored 
in the context of skyline query computation and which would greatly benefit from a study is skyline 
queries considering the time domain. In many cases time is a critical variable that in many cases 
is omitted. Specific time intervals may alter the results or even produce different insights. In this 
study we present that time and its intervals has a great impact on skyline queries since an 
optimization approach considering the whole-time domain may not be efficient or practical. 

4.1. Introduction 

In recent years, the skyline query [8] has received a considerable amount of attention because of 
its ability to highlight in an efficient way the most eligible subset of a set of objects on the basis of 
a bunch of user-defined criteria. In the following example it is assumed that a traveler does a 
search for a hotel room. The price of a room is expected to increase as the distance of the hotel 
from the city center decreases. On the basis of the dataset of Table 26, and by taking into account 
the first two columns as the primary decision criteria, the potential optimal selection for the user’s 
preferences would be {a, b, d} as presented in Figure 32.  

 
 

Hotel 
Price 

(€) 

Distance 
from the 

city’s center  
(Km) 

Operation 
Season 

(months of the 
year) 

Start End 

a 15 1,200 1 10 
b 25 550 4 8 
c 45 1,000 6 10 
d 95 200 5 7 

e 103 350 3 10 
f 147 275 6 7 
g 80 850 5 7 
h 70 670 6 8 
i 65 1,400 5 10 

j 83 1,300 7 12 

TABLE 26: A DATASET WITH TEMPORAL PARAMETERS. 
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FIGURE 32: THE SKYLINE OF THE DATASET. 

Nevertheless, the skyline operator has not been optimized yet to handle temporal data. For 
example, it is not known how the skyline query can handle the case in which the traveler plans to 
book a room months ahead by comparing hotels that do not operate all year around. Hence the 
focus of this study is the efficient temporal extension of the skyline query for temporal data. In this 
class of data the time period of interest needs to be added as an additional constraint to be 
evaluated together with the decision criteria of the traditional skyline query. On this basis, the 
optimal selection that will cover the desired scenario on the dataset of the example of Figure 32 
for hotels operating in the 4th month of the year would be the set of hotels {a, b, e} which differs 
from the set retrieved by applying the traditional skyline query without considering the time 
domain.  

The extension of the skyline query for temporal data aims to demonstrate how the strategy for 
calculating the traditional skyline query is affected when also considering the time factor. 
Algorithms for processing modified versions of the static, dynamic, and reverse skyline queries 
for temporal data are proposed. The key contributions of this study are: 

 

• a new dominant method for evaluating temporal data using the skyline operator, 

• algorithms for computing temporal skylines and two of its well-known variants, 
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• an extensive experimentation on the efficiency of the above algorithms for optimizing the 
skyline query processing to handle temporal data. 

4.2. Problem Formulation 

The study involves the extensions of the static, dynamic and reverse skyline queries for the 
handling of temporal data. It will focus in one dimension of time, which can be either the 
transaction or the valid time and will comment on the straightforward extension of the proposed 
solution to handle both time dimensions. The following definitions will make clear the main angles 
of this study.  

 
Definition 1 - Temporal dominance: Given a time-varying point dataset P in a d-dimensional 

space D and a point p (p1, p2, ..., pd)  P with validity in the time interval tp, the point p temporally 

dominates in the time interval t another point r (r1, r2, ..., rd)  P with validity in the time interval 

tr, denoted as p  t r, if and only if t is the non-null intersection between the time intervals tp and 

tr and ∀ i  {1, ..., d} we have pi  ri and  j  {1, ..., d}: pj < rj.  
 

Definition 2 - Temporal Skyline Query: Given a time-varying point dataset P in a d-dimensional 
space D, the temporal skyline query in the time interval ts retrieves the set of time-varying points 

SLts(P)  P which are not temporally dominated by any other point in P in any non-null time interval 

t  ts, that is, SLts(P) = {(p, t), where p  P | ∄ r  P: r  t p, where t  ts is the time interval in 
which p dominates r}. SLts(P) is called the temporal skyline of P in the time interval ts. 

  

The Table 26 presented the temporal database of ten data tuples represented in Figure 32 by 
time-varying points P = {a, b, ..., j} in the two-dimensional space. Some data points in the figure 
temporally dominate others: Point b, temporally dominates point c in the time interval [6, 8]. The 
temporal skyline of P in the time interval [3, 8] is the set SL[3, 8](P) = {(a, [3, 8]), (b, [4, 8]), (d, [5, 
7]), (e, [3, 4]), (e, [8, 8])}. Note that point e is part of the temporal skyline of P in two different time 
intervals. 

 

Definition 3 - Dynamic Temporal Dominance: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time 

interval tq, a point p (p1, p2, ..., pd)  P with validity in the time interval tp dynamically temporally 

dominates another point r (r1, r2, ..., rd)  P with validity in the time interval tr with regard to q in 

the non-null time interval t, denoted as p  (q, t) r, if and only if t is the non-null intersection 

between the time intervals tp, tr and tq, and ∀ i  {1, ..., d} we have |qi − pi|  |qi − ri| and  j  {1, 

..., d}: |qj − pj| < |qj − rj|. 

 

Definition 4 - Dynamic Temporal Skyline Query: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time 

interval tq, the dynamic temporal skyline query of P with regard to q in the time interval tq retrieves 

the set SL(q, tq)(P) of points in P which are not dynamically temporally dominated by any other 

point in P in any non-null time interval t  tq, that is, SL(q, tq)(P) = {(p, t), where t  tq and p  P 

| ∄ r  P: r  (q, t) p}. SL(q, tq)(P) is called the dynamic temporal skyline of P with regard to q in 

the time interval tq.  
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FIGURE 33: THE DYNAMIC TEMPORAL SKYLINE OF THE DATASET OF  Table 26 WITH REGARD TO A QUERY POINT Q IN THE TIME 

INSTANT 5. 

In 

Figure 33 every database point p(px, py) in the original 2-dimensional space of Figure 32 is 
transformed into a point p'(|qx − px|, |qy − py|) in a new 2-dimensional space, the origin in which is 
the query point q (50, 600) with validity in the time interval [5, 5], i.e. in the time instant 5. The 
dynamic temporal skyline of P with regard to q in the time interval [5, 5] consists of the set SL(q, [5, 

5])(P) = {(b, [5, 5]), (i, [5, 5])}, whereas the dynamic temporal skyline of P with regard to the same 
query point q in the time interval [5, 7] consists of the set SL(q, [5, 7])(P) = {(b, [5, 7]), (c, [6, 7]), (h, 
[6, 7]), (i, [5, 5])}. Again, it is possible for a data point to be part of the dynamic temporal skyline 
of a dataset in more than one subinterval. 

 

Definition 5 - Reverse Temporal Skyline Query: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time 

interval tq, the reverse temporal skyline query of P with regard to q in the time interval tq retrieves 

the set RSL(q, tq)(P) of points in P which take q as one of their dynamic temporal skyline points 

in the non-null time-interval t  tq. This means that a point p  P with validity in the time interval 

tp belongs to the set RSL(q, tq)(P) and therefore is a reverse temporal skyline of q in the time-

interval t, if there does not exist any other point r  P with validity in the time interval tr such that 

(1) t is the non-null intersection between the time intervals tp, tr and tq, (2)  i  {1, ..., d}: |ri − pi| 

 |qi − pi| and (3)  j  {1, ..., d}: |rj − pj| < |qi − pj|. RSL(q, tq)(P) is called the reverse temporal 

skyline of P with regard to q in the time interval tq.  
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FIGURE 34: THE REVERSE TEMPORAL SKYLINE OF THE DATASET OF  TABLE 26  WITH REGARD TO A QUERY POINT Q IN THE TIME 

INSTANT 5. 

In the example of Figure 34, the reverse temporal skyline of P with regard to query point q (50, 
600) in the time interval [5, 5], i.e. in the time instant 5, consists of the set RSL(q, [5, 5])(P) = {(a, [5, 
5]), (b, [5, 5]), (g, [5, 5]), (i, [5, 5])}. For instance, since the dynamic temporal skyline of data point 
g in the time instant 5 contains the query point q (i.e., this holds because no any other data point 
exists in the grey range of Figure 34 in the time instant 5), g is a reverse skyline point of q in that 
time instant.   

4.3. Skyline Query Processing Over Temporal Data  

This section will formally present the algorithms for implementing efficiently the three new 
extensions of the skyline query in the temporal databases domain, i.e., the static, dynamic and 
reverse temporal skyline queries. 

4.3.1. The Temporal Skyline Query 

The algorithm for computing the temporal skyline of a time-varying point dataset is an extension 
of the original BBS algorithm [3] for traditional (non-temporal) data. Since BBS uses a typical 
data-partitioning method, such as the R-tree, to serve as the backbone indexing method, in this 
paper the 3D R-tree access method [79] is considered to be the best choice for maintaining the 
temporal data. The reason for this choice is that the description of the 3D R-tree differs only slightly 
from that of the traditional R-tree in respect of its ability to store transaction and/or valid time data 
as extra data dimensions in the tree. Another reason for selecting the 3D R-tree is that it is 
accompanied by a simple implementation and requires the fewest possible modifications to the 
built-in functionalities of modern database management systems as compared to its competitors 
in the temporal databases domain. The 3D R-tree can straightforwardly support as many user-
defined data dimensions as required for any skyline query processing application as compared to 
most of its temporal indices competitors, which can support only a single dimension for the key of 
the data tuples, plus of course one or two time dimensions.  

 

Algorithm 1: The temporal skyline query () 

Input:   A dataset P, indexed using a 3D R-tree  

    and a requested time interval ts. 

Output:  The temporal skyline SLts(P). 

 

1: 

 

2: 

3: 

SLts = H = ∅;//H is a heap  

FOR every 3D R-tree root entry e with validity  

 in the time interval te DO 

 IF te  ts  ∅THEN insert (e, te  ts) into H; 

WHILE H is not empty DO 
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4. 

5: 

 

6: 

7: 

 

8: 

 

 

9: 

10: 

11: 

 Remove top entry (e, te) of H; 

 FOR every interval t  te in which e is not 

  temporally dominated by any point in SLts DO 

  IF e is an intermediate entry THEN 

   FOR every child ee of e, with validity  

    in the interval tee with t  tee  ∅DO 

    FOR every time interval t’  t  tee 

     in which ee is not temporally 

     dominated by any point in SL DO 

     Insert (ee, t’) into H; 

  ELSE // e is a data point 

   Insert (e, t) into SLts; 

RETURN SLts; 

ALGORITHM 1: THE TEMPORAL SKYLINE QUERY. 

The pseudo code of the algorithm for computing the temporal skyline is illustrated in Algorithm 
1. The proposed algorithm makes temporal dominance checks by considering independently the 
time dimension. The point dataset of Figure 32 will be used, organized in the four MBRs R1, R2, 
R3 and R4 that are illustrated in Figure 35. For simplicity, it will be assumed that the root node of 
the 3D R-tree holds only these four MBRs. The distances are computed according to L1 norm, 
i.e., the mindist of a data point to the origin point O of the data space is equal to the sum of its 
coordinates while the corresponding mindist of an MBR equals the mindist of its lower-left corner 
point.  

The requested time interval to compute the temporal skyline is assumed to be the ts = [3, 8]. The 
algorithm in Lines 1-2 starts from the 3D R-tree root node and inserts all its entries with time 
validity overlapping the requested time interval in a heap H, in the form {(R2, [3, 8]), (R1, [3, 8]), 
(R3, [5, 8]), (R4, [3, 8])}, sorted according to the MBRs’ mindist. Then, by executing the Lines 4-9 
of the algorithm, the MBR entry (R2, [3, 8]) with the minimum mindist will be replaced in the heap 
by its data entries, in the form: (d, [5, 7]), (f, [6, 7]), and (e, [3, 8]).  
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FIGURE 35: THE DATASET OF  Figure 32 ORGANIZED IN FOUR MBRS. 

The next entry to be extracted from the heap according to Table 27 is (d, [5, 7]), which, according 
to Line 11 of the algorithm, is inserted into the temporal skyline list. The next entry to be extracted 
from the heap is (f, [6, 7]) for which, in Line 5 of the algorithm, it is discovered that it is temporally 
dominated in every time instant in the interval [6, 7] by entry (d, [5, 7]) of the temporal skyline. The 
next entry to be extracted from the heap is (e, [3, 8]) for which, in Line 5 of the algorithm, it is 
discovered that it is not temporally dominated in the time intervals [3, 4] and [8, 8], therefore the 
corresponding entries (e, [3, 4]) and (e, [8, 8]) are inserted in the temporal skyline. The MBR R1 
is then expanded and, as Table 27 shows, its contents are inserted in the heap. Then entry (b, 
[4, 8]) of the heap is inserted in the temporal skyline. Subsequently, the entry of the MBR R3 is 
extracted from the heap and it is found that it is temporally dominated by the data point b in every 
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time instant in the interval [5, 8] in which the MBR is valid. Finally, after processing some more 
data entries, the MBR R4 is extracted from the heap, which, however, is temporally dominated in 
the entire requested time interval [3, 8] of the query.  

 

action H content SL[3, 8] () content 

expand root in 

[3, 8] 

(R2, [3, 8]), (R1, [3, 8]), (R3, [5, 8]), (R4, [3, 8]) – 

expand R2 in 

[3, 8] 

(d, [5, 7]), (f, [6, 7]), (e, [3, 8]),  

(R1, [3, 8]), (R3, [5, 8]), (R4, [3, 8]) 

(d, [5, 7]), (e, [3, 4]), (e, [8, 8]) 

expand R1 in 

[3, 8] 

(b, [4, 8]), (R3, [5, 8]), (c, [6, 8]),  

(a, [3, 8]), (R4, [3, 8]) 

(d, [5, 7]), (e, [3, 4]), (e, [8, 8]), (b, [4, 8]), (a, [3, 

8]) 

TABLE 27: PROCESSING STEPS OF THE EXAMPLE EXECUTION OF ALGORITHM 1 

The correctness of the proposed algorithm is straightforwardly inherited from the corresponding 
correctness [3] of the BBS algorithm for traditional (non-temporal) data. This means that every 

data point added into the temporal skyline during the execution of the algorithm is guaranteed to 
be a final temporal skyline point for the time interval under consideration. Also, every data point 
in the 3D R-tree will be examined by the algorithm, unless one of its ancestor nodes has been 
pruned for the whole time interval of the validity of the data point. The proposed algorithm is also 
progressive, it provides neither false misses nor false hits and it is able to allow the user to 
determine the order in which skyline points will be returned.  

In the case of bi-temporal data, the algorithm can perform temporal dominance checks by 
considering every time dimension independently, which means that a data point belongs to the 
temporal skyline only if it is not temporally dominated by any other point in the dataset in both the 
valid and transaction time dimensions. 

4.3.2. The Dynamic Temporal Skyline Query 

While the static temporal skyline evaluates the data objects on the basis of the minimum (or 
maximum) values of their coordinates, the dynamic temporal skyline evaluates the data objects 
in respect of a customer’s given preference point q (q1, q2, …, qd) in a specified time interval tq (a 
hotel at 50 euros, at a 600 meters from the city center, the following April). Therefore, the dynamic 
temporal skyline query with regard to q in the time interval tq, for every data point p (p1, p2, …, pd) 

with validity in the time interval tp which overlaps tq, specifies d functions of the form  i  {1, ..., 
d}: fi = |qi − pi|, and the goal is to return the static temporal skyline of P in the time interval tq, in 
the transformed/dynamic workspace which has q as its point of origin and the coordinates of every 
object p in every dimension are defined by the functions fi.  

The Algorithm 1 is applicable to dynamic temporal skylines by storing in the heap the entries 
according to their mindist in the dynamic workspace. See [3] for more details. The main 
modifications that are needed so that Algorithm 1 can process the dynamic temporal skyline 
query is the replacement of the temporal dominance checks in Lines 5 and 8 by dynamic temporal 
dominance checks, as they are set out in Definition 3. 

4.3.3. The Reverse Temporal Skyline Query 

As with the dynamic temporal skyline, the reverse temporal skyline evaluates the data objects 
with regard to a given query point q on a specified time interval tq. However, the main difference 
between these two queries is that the dynamic temporal skyline query can be seen as a query 
from the customer’s perspective whereas the reverse temporal skyline can be seen as a query 
from the company’s perspective. Therefore in the reverse temporal skyline case the customer’s 
preferences are represented by data points in the workspace and the query point q is set by the 
company to determine the effectiveness of a particular product (which customers would be 
interested in a hotel room at 50 euros, at 600 meters from the city center, between October and 
May?). 

Four different algorithms for processing the reverse skyline query for traditional (non-temporal) 
data are proposed in [14] and [430], with the Branch and Bound Reverse Skyline (BBRS) 
algorithm [14] to be the one selected to serve as a backbone algorithm for extension in order to 
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support the reverse temporal skyline. The BBRS algorithm is chosen for the simplicity of its 
implementation and its ability to run without the need to preprocess the dynamic skyline of every 
point in the dataset. The drawback of the BBRS in comparison to its three competitors is that it 
requires that the index be traversed once for every candidate reverse skyline point that is found 
in the final filtering step of the algorithm. This can be easily overcome by ensuring that the 
algorithm is accompanied by a buffer to hold the most frequently- or the least recently- used nodes 
of the index in memory for faster potential future usage. 

 

Algorithm 2: The reverse temporal skyline query () 

Input:   A dataset P, indexed using a 3D R-tree, 

    a query point q (q1, q2, …, qd) and a  

    time interval tq. 

Output:  The reverse temporal skyline RSL(q, tq)(P) 

 

1: 

 

2: 

3: 

4: 

5: 

 

 

6: 

7: 

 

8: 

 

 

9: 

10: 

11: 

12: 

 

13: 

14: 

RSL = H = ∅;//H is a heap 

FOR every 3D R-tree root entry e with validity  

 in the time interval te DO 

 IF te  ts  ∅THEN insert (e, te  ts) into 

H; 

WHILE H is not empty DO 

 Remove top entry (e, te) of H; 

 FOR every interval t  tq  te in which e is  

  not globally temporally dominated by any  

  point in RSL DO 

  IF e is an intermediate entry THEN 

   FOR every child ee of e, with validity  

    in the interval tee with t  tee  ∅DO 

    FOR every time interval t’  t  tee in 

     which ee is not globally temporally 

     dominated by any point in RSL DO 

     Insert (ee, t’) into H; 

  ELSE // e is a data point 

   Execute a range query based on e, q, t;  

   IF the range query is empty in any time  

    interval t’  t THEN 

    Insert (e, t’) into RSL; 

RETURN RSL; 

ALGORITHM 2: THE REVERSE TEMPORAL SKYLINE QUERY. 

The pseudo code of the proposed algorithm is illustrated in Algorithm 2. The algorithm in Lines 
5 and 8 makes global temporal dominance checks according to the following definition. 

 

Definition 6: Global Temporal Dominance: Given a time-varying point dataset P in a d-

dimensional space D and a reference query point q (q1, q2, ..., qd)  D with validity in the time 

interval tq, a point p (p1, p2, ..., pd)  P with validity in the time interval tp globally temporally 

dominates another point r (r1, r2, ..., rd)  P with validity in the time interval tr with regard to q in 
the non-null time interval t if and only if (1) t is the non-null intersection between the time intervals 

tp, tr and tq, (2)  i  {1, ..., d}: (pi − qi)(ri − qi) > 0, (3)  i  {1, ..., d}: |pi − qi|  |ri − qi|, and, (4)  j 

 {1, ..., d}: |pj − qj| < |ri − qj|.  

On the basis of the definition and of the example of Figure 34, it can be said that the point g 
globally temporally dominates the point j in the time interval [5, 5].  

The global temporal dominance checks in the algorithm help with the pruning of intermediate 
index nodes (and data points) which cannot store (or be, respectively) reverse temporal skyline 
points. The first ten lines of the algorithm are executed in a similar manner to Algorithm 1 for the 
(static) temporal skyline. However, for every point e with validity te overlapping the time interval tq 

of the given query q that is not globally temporally dominated in a time interval t  te  tq, a further 
examination is required. This examination is performed in Lines 11-12 of the algorithm by issuing 
a range query, with e being in the centre of the range window and q in its corner, similarly to that 
illustrated in grey around the data point g in Figure 34. As [14] shows for the case of non-temporal 

data, if this range query returns no data point for a time interval t'   t, then e is a reverse temporal 
skyline point with regard to q in the interval t'. Therefore, in this case in Line 13 of the algorithm 
the tuple (e, t') is inserted into the RSL(q, tq) list.  
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In the reverse skyline query of  Figure 34 with regard query point q (50, 600) and time instant 5, 
the data entries which are valid and not globally temporally dominated by any other point in this 
instant are a, i, h, b, d, and e. However, after performing the range query checks of Lines 11-12 
of the algorithm, only the first four of these data points is found to belong to the reverse temporal 
skyline of the dataset with regard to q in the time instant 5. 

The handling of bi-temporal data can be treated in an analogous manner to the (static and 
dynamic) temporal skyline query, i.e., by performing global temporal dominance checks in every 
time dimension independently. 

4.4. Experimental Study  

The proposed query algorithms were implemented in Java (JDK version 8). The 3D R-tree 
implementation is based on the R*-tree implementation in Java that can be downloaded from the 
ChoroChronos portal3. The workstation that was used for evaluation, was equipped with Intel I7 
6GB RAM running the Windows 8.1 Professional 64-bit OS. The Java Virtual Machine Heap was 
set to its default values.  

The experiments have been conducted using two datasets. The first is a synthetic dataset which 
is constructed by 1,000,000 uniformly distributed time-varying two-dimensional points with a 
uniformly distributed time interval validity of maximum 20% of the lifespan of the scenario, which 
is 1,000 time instants. The second is the real-life Major Hotel Chain dataset [431] having 147,029 
bookings collected from five U.S. properties of a major hotel chain. In order to construct a two-
dimensional point for every booking record, the Nightly_Rate column was considered plus a 
uniformly distributed artificial column with values between 0 and 100, which could for example 
represent the customer’s rating score for the service provided by the hotel. The validity time 
interval of every booking is constituted by the combination of the columns Check_In_Date and 
Check_Out_Date as they are given by the data provider.  

Every experiment has been repeated 10 times and the average value of every measured 
parameter has been calculated. As with regard to the dynamic and the reverse temporal skyline 
queries, at every run a different randomly selected query point has been used. In the following, 
unless otherwise stated, the findings of the performance investigation of the proposed query 
processing algorithms are qualitatively comparable, whether the synthetic or the real data are 
used, therefore in some cases only half of them (i.e., either with the synthetic or with the real data) 
is depicted in the paper. Finally, four different values are considered in the experiments for the file 
system page size, i.e., 1K, 2K, 4K and 8K. The 3D R-tree node size is set to be equal to the page 
size. 

 

 

(a)                                                     (b) 

FIGURE 36: THE 3D R-TREE INDEX SIZE IN A NUMBER OF NODES, (A) FOR THE SYNTHETIC DATASET, AND (B) FOR THE REAL DATASET. 

The first two graphs in Figure 36 show the size of the 3D R-tree index for the synthetic (on the 
left) and for the real (on the right) datasets. The index size has been measured every 20% percent 

 
3 http://chorochronos.datastories.org 

http://chorochronos.datastories.org/
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of the data being inserted. These results will help the measurement of the % percentage of the 
index that is accessed when processing every query in the graphs that will be follow. 

 

 

(a)                                                (b) 

FIGURE 37: (A) THE TIME COST, AND (B) THE Ι/Ο COST, IN BOTH CASES FOR EXECUTING THE TEMPORAL SKYLINE QUERY ALGORITHM 

FOR THE SYNTHETIC DATASET. 

The next two graphs in Figure 37 illustrate the time cost in seconds (on the left) and the I/O cost 
in page accesses (on the right) for answering the temporal skyline query using the synthetic 
dataset. The query is executed every 20% percent of the data being inserted, and in every case 
for a time interval that is equal to the lifespan of the scenario, thus the skyline is computed for 
every time instant in the lifetime of the scene. By comparing the I/O cost to the corresponding 
index size that is shown in Figure 36(a), it is concluded that the temporal skyline algorithm 
accesses about the 8% to 23% of the index. This cost is justified by the large number of the 1,000 
time instants for which the skyline is calculated with only a single tree traversal using the 
Algorithm 1. 

 

 

(a)                                              (b) 

FIGURE 38: (A) THE TIME COST, AND (B) THE Ι/Ο COST, IN BOTH CASES FOR EXECUTING THE TEMPORAL SKYLINE QUERY ALGORITHM 

FOR THE REAL DATASET. 

The next graphs in Figure 38 illustrate the time (on the left) and the I/O (on the right) efficiency of 
the temporal skyline query algorithm for the real-life dataset. The query is again executed for 
computing the skyline for every time instant in the lifetime of the scene. By comparing the I/O cost 
to the corresponding index size that is shown in Figure 36(b), it is found that the temporal skyline 
algorithm accesses about the 3% to 19% of the index. This cost is also justified by the large 
number of the time instants for which the skyline is calculated with only a single tree traversal. 
The difference in cost, between the synthetic and the real dataset, is due to the distribution of time 
instances that allow more nodes to be dominated in the real dataset. 
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(a)                                             (b) 

FIGURE 39: THE TIME COST, AND (B) THE Ι/Ο COST, FOR EXECUTING THE DYNAMIC TEMPORAL SKYLINE QUERY ALGORITHM FOR THE 

SYNTHETIC DATASET. 

The next graphs in Figure 39 show the time cost (on the left) and the I/O cost (on the right) for 
the execution of the dynamic temporal skyline query algorithm using the synthetic dataset. The 
I/O cost for the execution of the algorithm for this "dynamic" query is larger than in the case of the 
"static" query since it must access a larger portion of the dataset.  

 

 

                         (a)                                                (b) 

FIGURE 40: (A) THE TIME COST, AND (B) THE Ι/Ο COST, FOR EXECUTING THE REVERSE TEMPORAL SKYLINE QUERY ALGORITHM FOR 

THE SYNTHETIC DATASET. 

The graphs of the last experiment in Figure 40 show the time cost (on the left) and the I/O cost 
(on the right) for the execution of the reverse temporal skyline query algorithm using the synthetic 
dataset. The results show an expected difference in I/O cost and much higher time cost 
performance in relation to the dynamic temporal skyline even if both of these queries access quite 
similar parts of the data space (thus of the index) when the same reference query points q are 
used. This happens because the reverse temporal skyline has an additional overhead due to the 
empty/Boolean range query. In every case the distribution and the length of the time intervals 
make a large impact on the execution time and the I/O cost. Two extreme examples will be the 
case where all time intervals in the dataset to be distinct and non-overlapping and the other to be 
identical. In the first case the algorithm must traverse the entire tree and return all its points and 
in the second case the algorithm becomes the initial simple variant of each query. These problems 
need a more sophisticated solution and multiple refinement mechanisms in order to compute the 
time variant efficiently. In every case the computation of the temporal variant in the whole temporal 
dimension will be an expensive task.  

4.5. Conclusions and Future Work 

The skyline query is a decision support mechanism which, in essence, retrieves the so-called 
value-for-money options of a dataset by identifying the objects which present the optimal 
combination of the characteristics of the dataset. This study is the first to take the time factor into 
consideration and it optimizes the skyline operator as well as two of the most well-known of its 



CHAPTER 4: SKYLINE QUERIES OVER SPATIO-TEMPORAL DATA 

Christos Kalyvas-Kasopatidis –October 2020 
80 

variants, i.e. the dynamic and the reverse skyline operators, to handle temporal data. It is 
anticipated that the results of this research pave the way for the construction of other solutions for 
processing efficiently skyline-based queries for a variety of temporal and bi-temporal data 
applications. 

Future plans are to investigate the impact of the backbone temporal indexing method on the 
performance of the queries execution cost, by comparing the performance of several appropriate 
indexing methods or by suggesting new efficient ones for the problem into consideration. 
Additional plans are to investigate the impact on the performance of the queries of the existence 
of many objects with relatively small or large time interval lifespans. Another interesting issue for 
future research is the introduction of efficient algorithms for processing extensions of other skyline 
query variants that can be also applied to temporal data, such as for example, the support of the 
so called why-not reverse skyline query [55]. The aim of this temporal query will be to make a 
product (time-varying query point) interesting to a customer (time-varying why-not point) by 
modifying the product’s features (query attributes) and/or the customer preferences. 
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5. SKYLINE QUERIES OVER SPATIALHADOOP 

Through our first study on data sources we identified that many of the datasets fall into the big 
data domain in terms of volume, variety, velocity and veracity. The vast amount of data and the 
need to process them produced new technologies like the Hadoop ecosystem. Based on this 
existing querying approaches should be studied over those new environments in order to see the 
insights that they produce. In this chapter, we study the problem of skyline and reverse skyline 
computation using SpatialHadoop, an extension of Hadoop that enhances its capabilities with 
spatial awareness. The exploitation of spatial indexing structures and the spatial properties of 
data can exploit MapReduce-based methods by reducing the reading, writing, computational and 
communicational overhead. Through our study, we propose two methods for skyline and reverse 
skyline computation, which operates in the spatial aware environment that SpatialHadoop 
provides. This environment allows for performing filtering on the initial dataset to retrieve an 
answer efficiently by using existing state-of-the-art indexing approaches. The proposed 
algorithms make use of the full capabilities of the indexing mechanisms provided by the 
SpatialHadoop and have been tested against large-scale datasets including a real-life, large-scale 
OpenStreetMap dataset. To the best of our knowledge, this is the first work that studies reverse 
skyline over SpatialHadoop.  

5.1. Introduction 

The trend of Big Data was one of the most discussed research topics in the past years. Nowadays, 
this trend has managed to be a well-established technology that has changed the way many 
industries operate. Beyond that, Big Data is the driving force behind many new technologies in 
Artificial Intelligence (AI), Internet of Things (IoT) and data science. The Big Data Era started with 
the need for processing the vast amount of structured, semi-structured and unstructured data in 
a batch or streaming way. Since then, additional aspects were included, based on the scope 
behind the data such as the value of data in socio-economical terms and the veracity of data in 
terms of quality and accuracy. In the present time, the term Big Data is inseparable from our 
everyday life since data created in the past two years exceeds all data generated through the 
whole period of human’s digital era. The amount of data generated from a single person’s 
smartphone, activity tracker or shopping habits or even the data generated by a Formula 1 car 
which is equipped with hundreds of different sensors, is trivial under the trend that even cities are 
getting smarter and can generate their own data and information. 

Storing vast amounts of data can be achieved with Hadoop’s HDFS [432] distributed file system. 
However, simply storing the data gives no further value to their existence. It is vital to convert data 
to information in order to acquire knowledge [433]. The first step to this direction is to process the 
stored data in a distributed way with Hadoop’s MapReduce [85]. With MapReduce and the use of 
various methods [434], [435] it is possible to retrieve a wide range of information based on the 
query that is performed. However, even MapReduce finds it difficult to compute all types of 
queries, since many of them rely on the geometric properties of the dataset like the proximity of 
points in NN and k-NN queries. At this point, a system like SpatialHadoop [31] fits best in these 
types of problems.  The SpatialHadoop is an extension of Hadoop that injects spatial awareness 
into it. SpatialHadoop is not applicable only on spatial data as the idea of GIS systems. It is 
applicable to any kind of data that may have spatial or geometric properties and is designed to 
harvest the power of those properties to produce methods that will retrieve answers efficiently.  

Based on the aforementioned scope, it is shown that range queries and spatial joins are made 
much faster by using SpatialHadoop [31]. Similarly, skyline [8] and reverse skyline queries [14] 
could benefit from this system, as this study will present. The primary goal in the design of these 
algorithms is to prune as many points or even partitions as soon as possible and thus minimize 
the data transfers between mappers and reducers. To achieve these goals we used 
SpatialHadoop that will help in the pruning process by exploiting the spatial and geometric 
properties of the dataset.  

In summary, the key contributions of this study are the following: 

 

• An alternative approach to the one in [32] for skyline query computation is proposed that 
is used to enhance SpatialHadoop with reverse skyline queries. 
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• An algorithm for reverse skyline queries computation is proposed that incorporates a 
multiple filtering mechanism to allow for the pruning of the dataset as soon as possible.  

• Extensive experimentation in large-scale synthetic, real datasets and different 
environments is performed in order to demonstrate the performance benefits. 

5.2. Preliminaries  

This section will discuss the basic concepts of MapReduce, along with its key components and 
the mechanisms of SpatialHadoop used in different implementations of the skyline and reverse 
skyline query computation. 

5.2.1. MapReduce  

The MapReduce framework can perform processing of massive amount of data in parallel, over 
multi-node clusters efficiently. The data that the framework processes can be stored in the HDFS. 
The framework primarily consists of two main phases, named map and reduce.    

In the MapReduce framework, every value has an associated key. These keys allow identifying 
related values. The map phase processes splits of the input dataset that contains the key-value 
pairs and can output a different number of altered key-value pairs. Figure 41 describes the 
workflow from reading the dataset/records up to the point where the map phase processes the 
key-value pairs. The reduce phase retrieves the values from the map phase, sorted and grouped 
by the keys and produces a different set of key-value pairs. A job is the whole mechanism that 
handles and processes the data and consists of many map, reduce and other phases in which 
the output of one phase becomes the input in another one. Each phase can process data in the 
following sequence: Mapper→ Combiner→ Partitioner→ Shuffling→ Sorting→ Reducer. Figure 
42 illustrates the complete workflow of a job. 

 

 
FIGURE 41: HADOOP EXECUTION WORKFLOW AS PRESENTED IN [31]. 

Two important aspects that researchers faced during skyline computations were the early pruning 
of the dataset and the possibility of sorting it in order to identify the most promising points in an 
early stage. Τhe two branches of skyline query computation that proposed index-based methods 
and sort-based methods reflect the importance of these two aspects. 

 

The first and major pruning mechanism in a MapReduce job should be integrated into the map 
phase in order to minimize the network communication cost [85] that exists between the map and 
reduce phase. The work on [107] captures this idea, where the authors build an on-the-fly index 
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that is used inside the map phase to prune a large part of the dataset. Further refinement 
techniques can be placed in the combiner and reduce phase. 

The other important aspect that MapReduce must handle is the tuple traversal order and thus the 
desire of sorting the dataset. Since for indexing we used an R-tree, both the BBS [3] algorithm for 
skyline computation and the BBRS [14] algorithm for reverse skyline computation rely on the 
Branch & Bound paradigm. This paradigm dictates to visit the nodes based on the shorter distance 
from the origin of the axis, which is accomplished with a sorted heap. The same approach can 
hold with a Grid index, which is supported by SpatialHadoop, by additionally incorporating the 
incomparability property. In the MapReduce framework, the order that the key-value pairs appear 
in a map phase is the order in which they are stored in the HDFS files or as fetched from another 
source. Even if the reduce phase uses a built-in sorting mechanism (Comparator) that sorts data 
to be fed in the reducer in ascending order of their keys, the only way to have a sorted input in 
the map phase is to perform an in-memory sort operation to the assigned split.   

 

 
FIGURE 42: MAPREDUCE JOB EXECUTION. 

A mechanism that can help in pruning and sorting of the dataset is the combiner phase, which is 
primarily designed to reduce the communication cost between the map and reduce phase. A 
combiner can act as a local reduce phase bind to each map phase and can be a secondary 
pruning mechanism by inheriting the sorting and refinements properties of a reducer. A combiner’s 
class can be an instance of the reducer’s class or a custom one if the refinement approach on the 
reduce phase is too early to be performed at this stage of the algorithm. A delicate issue is that 
this mechanism is designed to be optional and is called when the map output becomes too large. 
Thus, we cannot prove the correctness of an algorithm based on its capabilities. In general, if we 
perform a sorting and filtering operation in the map phase, a combiner may not be useful. On the 
other hand, the use of a combiner can potentially assist by computing the local skyline on the 
assigned split to reduce the amount of data transfers and the processing cost in the reducers. 

With or without the use of a combiner, the key-value pairs outputted on each map phase will be 
grouped based on their keys and each or multiple groups will be directed to specific reducers in 
the process of shuffling. With the term partition, we describe the set of groups directed to a single 
reducer. The number of partitions can be equal to the number of reducers. By default, the key-
value pairs are partitioned based on the hashcode of the key modulo the total number of partitions 
divided by the number of reducers. An example where a custom partitioner could be useful is 
[102] in which the key-value pairs could be partitioned using the MR-Angle approach. A primary 
goal will be to distribute the key-value pairs evenly to the reducers.  

An important parameter for the pruning, sorting and partitioning phases is the assigned key since 
all the operations are performed based on that. In the case where the key is the distance from the 
origin point, most of the key-value pairs will have a unique key. The combination of this key with 
the built-in sorting mechanism of reduces will guarantee the desired tuple traversal order based 
on the optimization criteria of the user. When the cardinality of each final map output that will be 
fed to the reducers is small, a null key could be considered. This would result in the initialization 
of one reducer that will process all the data from the map phase. A single reducer fits in our case 
since the result set can only be computed using the data from all partitions. One further approach 
in key selection is the use of a composite key, which holds two separate keys. Using a composite 
key there is the need for a custom sorting mechanism, which should override the built-in sorting 
mechanism. 
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5.2.2. Hadoop and Spatial Awareness  

The MapReduce framework allows the parallel processing of massive amounts of data that can 
be stored in a distributed file system, named HDFS [432] that exists over many independent 
physical machines. The MapReduce inherits parallelism in the computation of different problems, 
but by design, it does not provide any indexing mechanism.  The way that it handles data is by 
reading the whole or parts of the dataset simultaneously and further processing it sequentially. 
This may not be the ideal case for many queries, which exploit the geometric and spatial 
properties of the dataset. A survey that reasons on how the spatial data cope with MapReduce is 
the [436] in which authors review the indexing mechanisms for spatial query processing in 
traditional and MapReduce-based approaches. In [437] the authors proposed a Z-Curve based 
approach along with a sweeping algorithm and pending files to efficiently answer certain queries. 
Moreover, in [438] an R-tree construction mechanism in MapReduce was proposed. For a 
complete view of the advantages and disadvantages of MapReduce as long as the proposed 
improvements, the reader can consult [439]. Finally, the work on [440] studies the subject of 
query processing in MapReduce, which among others, categorizes the weaknesses and the 
solving techniques as well as techniques for efficient query processing on MapReduce. 

A mechanism that enhances MapReduce with spatial awareness is the SpatialHadoop [31], [441]. 
The [442] reasons about the four main layers, namely, language, indexing, query processing and 
visualization of SpatialHadoop while the work on [443] demonstrates the specific approaches to 
solve Computational Geometry problems like polygon union, skyline, convex hull, farthest pair, 
and closest pair in SpatialHadoop. The algorithm for the skyline problem in this work is a simple 
divide & conquer approach. An experimentation on the indexing mechanisms of SpatialHadoop 
can be found in [444] while the authors of [445] categorize the various systems similar to 
SpatialHadoop.  

5.2.3. SpatialHadoop 

As already mentioned, the SpatialHadoop [31] is a MapReduce extension designed to add spatial 
awareness to it. Each job in SpatialHadoop is an ordinary MapReduce job that uses specific 
SpatialInputFormat and SpatialRecordReader methods to handle indexed spatial data in the form 
of multi-level partitions. It does not alter the functionality of MapReduce but instead, adds methods 
to process spatial data. Thus, along with the standard map and reduce functions SpatialHadoop 
contains a filter function (CellFilter) whose purpose is to prune block of data, before the map 
phase, which will not contribute to the final answer, by examining the minimal bounding rectangles 
(MBRs) of each partition. The use of SpatialHadoop’s built-in queries, deployed on top of the 
indexed partitions, can provide vital information for the optimization of an algorithm in a similar 
way to the process of sampling. In general, this filtering mechanism reduces the total number of 
map tasks since each block of data that will pass the phase of pruning will invoke a different map 
task. Figure 43 describes the similar workflow of a job in SpatialHadoop to the one of MapReduce 
Figure 41. 
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FIGURE 43: SPATIALHADOOP EXECUTION WORKFLOW AS IN [31]. 

The three different approaches to get SpatialHadoop’s benefits is by using a distribution package, 
a portable runnable jar or a runnable jar. Depending on the case, all the required classes and 
libraries can be loaded on every node startup or installed permanently in the system. Thus, 
SpatialHadoop is portable to run in Apache Hadoop4 , Cloudera5  and Hortonworks6  Hadoop 
distributions even in their sandboxed version. 

The four main layers of SpatialHadoop are language, indexing, query processing and 
visualization. The language layer has a spatial MapReduce language named Pigeon [446]. 
Pigeon7 allows Pig Latin scripts to handle spatial data with the use of ESRI-geometry-API8. The 
indexing layer involves many spatial data types such as points, polygons, rectangles and an 
extensible shape class to create your own data types and shapes. Since SpatialHadoop’s source 
code9 is available, multi-dimensional data, greater than 2d, can be handled by extending or 
modifying its classes. The indexing mechanisms that are available are the Grid, R-tree, R+-tree, 
STR, STR+, Quad-tree, K-d tree, Z-Curve, and Hilbert Curve. An index can consist of global and 
local indexes. The global index organizes the partitions across different nodes while the local 
index organizes the data inside each node. For the case of the R-tree, its global index contains 
all the partitions, while each local index contains a local R-tree structure with all the data records. 
With the use of the SpatialInputFormat, researchers can access the global index to prune 
partitions and with the SpatialRecordReader they can access, inside the map phase, the local 
index to process only the desired records of the whole partition. The K-d tree and Grid are local-
only indexes. The query processing layers allow running spatial operations using the existing 
indexing mechanisms.  The spatial operation includes Range, k-Nearest Neighbor (k-NN), Spatial 
Join, Voronoi Diagram, Delaunay Triangulation, Polygon Union, Convex Hull, Farthest Pair, 
Closest Pair and Skyline queries. Every operation is customizable and extendible allowing 
researchers to develop their own algorithms. 

 

The visualization layer [447] allows users to retrieve a single-level or multi-level image 
representation of the dataset. A single-level image has a standard resolution while the multi-level 

 
4 http://hadoop.apache.org/  

5 https://www.cloudera.com/downloads/quickstart_vms.html  

6 https://hortonworks.com/products/sandbox/  

7 https://github.com/aseldawy/pigeon 

8 https://github.com/Esri/geometry-api-java 

9 https://github.com/aseldawy/spatialhadoop2  

http://hadoop.apache.org/
https://www.cloudera.com/downloads/quickstart_vms.html
https://hortonworks.com/products/sandbox/
https://github.com/aseldawy/pigeon
https://github.com/Esri/geometry-api-java
https://github.com/aseldawy/spatialhadoop2
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image consists of many small image tiles on different regions and at different zoom levels. 
Researchers can find this feature useful since they can retrieve insights over the dataset with an 
optical representation. 

An important aspect of SpatialHadoop is that it can access the global and local indices in 
MapReduce or in standalone mode. In the case of MapReduce mode, the global index can be 
accessed prior to the map phase and the local index inside the map phase. The case of 
standalone mode is useful in interactive queries and when the initialization of a new MapReduce 
job is not desired. 

5.3. A sort-based Skyline algorithm in SpatialHadoop  

The SpatialHadoop comes with a built-in algorithm for skyline query computation. The algorithm 
follows the Divide & Conquer paradigm in a similar way to the one in [8], where the BNL algorithm 
was also proposed. One of the main drawbacks of both algorithms is that they need to process 
the whole dataset before they are able to identify the first skyline point. This violates the property 
of progressiveness in the set of criteria [43, 37] that must be met by all the skyline algorithms. 
Based on these criteria, the state-of-the-art BBS [3] and Z-SKY [131] algorithms were proposed. 

In the MapReduce environment, the authors of [32] proposed the algorithms SKY-FLT and SKY-
FLT-SORT for skyline computation and compared them to the built-in D&C-based CG-HADOOP 
[443] approach. In their work, they showed that both algorithms perform better than CG-
HADOOP. The SKY-FLT algorithm follows a BNL-like approach that uses a list of candidate 
skyline points and the SKY-FLT-SORT  uses the sorting mechanism of MapReduce in order to 
access the points based on their distance to the origin point in the reduce phase. Both algorithms 
perform an initial pruning process with the use of SpatialHadoop’s  R-tree. In their work, they 
showed that even if the BBS is the state-of-the-art index-based algorithm that outperforms the 
original BNL algorithm, the BNL-like, SKY-FLT  algorithm performed better in most of the 
experiments. Additionally, the experimentation made in [101] shows that the MR-BNL and MR-
SFS, a variant of the original sort-based SFS algorithm, has a similar performance. 

 

 
FIGURE 44: POINT ACCESS ORDER WITH MANHATTAN AND EUCLIDIAN DISTANCE MEASURE. 

Based on the research in [32], the authors state that their work will not invoke a sorting mechanism 
inside the map and reduce phases. We show that with a sort-based model and the pruning power 
of filtering points, we can achieve better results and the benefit of having a local skyline in the 
output of each map phase, which minimizes the communication cost. The  SKY-FLT-SORT in 
[32] uses checkpoints to filter non-skyline points and the built-in sorting mechanism of 
combiners/reducers to access the records/points in an ascending order based on the key value 
p.x+p.y which is the sum of values in each dimension as defined by the Manhattan distance which 
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is also known as L1-norm. The use of Manhattan distance as a distance measure has the benefit 
of a reduced computational cost since it avoids the additional cost of computing the power and 
especially the square root that exists in the Euclidian distance (L2-norm). This work uses the 
Euclidian distance and investigates if there is any performance benefit compared to the Manhattan 
distance. The access order of points with Euclidian distance and Manhattan distance is presented 
in Figure 44. To achieve sorted access on the dataset the algorithm can use any scoring function 
just like the distance metric. The SKY-FLT-SORT algorithm cannot fulfil all user’s preferences 
since it cannot provide an answer out-of-the-box when the user wants for example to maximize 
his/her preferences. This happens because the distance measure does not take into account the 
preferred origin of space. This leads into points with the largest coordinates to have the largest 
distance from the preferred point of origin. This has also an impact on the checkpoint selection.  
To avoid this issue, the output key and hence the distance metric should be 𝐷(p, o) =
∑ (|𝑝𝑖 − o𝑖|)𝑖Î𝐷 , where o is the origin point of preferences.  

The checkpoint selection in the mapper phase of SKY-FLT algorithm is susceptible to the access 
order of records/points. In more detail, the map phase accesses the points as written in the 
indexed file. This way there are cases that the checkpoint loses its pruning ability due to 
continuous updates. In an extreme case, this would lead to outputting to the combiner/reducer a 
large number of points, or even a whole partition, even if the true output should be a single point. 
This extreme case could exist if the data is written in the reverse order of the user’s preferences. 
Note that a sorted dataset that achieves the best min-min skyline performance would have the 
worst max-max skyline performance.  

The pseudocode in Algorithm 1: describes a sort-based algorithm for skyline computation in 
SpatialHadoop that uses filtering points and a sorting technique. The algorithm in the first phase 
reads the indexed dataset from the HDFS. It identifies which partitions may contain candidate 
skyline points. Each map task processes the records/points of a single partition. Then, it computes 
the local skyline for each partition and finally, the reduce phase collects all the local skylines, 
merges them and outputs the result set.  

The main difference from the two algorithms described in [32] and this proposed implementation 
is that the previous work shares the computation cost of the skyline in both map and reduce 
phases. This work, on the other hand, stresses the map phase a lot more in order to get local 
skylines which will have small cardinality [448, 449]. The approach of computing and merging of 
local skylines in SpatialHadoop was also followed in the CG_HADOOP skyline algorithm but is a 
usual practice in multi-core and distributed environments. This minimizes the communication cost 
and allows a single reducer to identify the result set from a small portion of the initial dataset. 
Alongside, the identification of local skylines is crucial for the reverse skyline algorithm proposed 
in section 5.4.  

 
Algorithm 1:  SSAS: A Sort-based Skyline Algorithm for SpatialHadoop. 

1:   function CELLSFILTER(C: setofcells) 

2         Initialize candidatepartitionList list 

3:      for all cell cC do 
4:         if c is not dominated by candidatePartitionList then 

5:             Add (c, candidatePartitionList) 

6:             Update candidatePartitionList  

7:          end if 

8:       end for 

9:     Load every ccandidatepartitionList in a map function.  
10:   end function 

11: function MAP(P: Setofpoints) 

12:  Initialize origin & filter points based on user’s preferences and LIST.  

13:   for all points pP do 
14:      if p is notdominatedby filter then 

15:          Add (p, LIST) 

16:  if distance (p,origin) < distance (filter,origin) then  

17:              Update filter 

18:          end if 

19:      end if 

20:   end for  

21:  SORT LIST based on the distance from origin Initialize skylist 
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22:   for all points pLIST do 
23:      if p is notdominatedby filter then 

24:         if p is notdominatedby skylist then 

25:              Add (p, skylist)  

26:              output (null, p) 

27:          end if 

28:       end if 

29:    end for 

30: end function 

31: function REDUCE (null, P: Setofpoints) 

32: Initialize origin based on the user’s preferences and LIST.  

33:  Add all pP   into LIST 
34:  SORT LIST based on the distance from the origin 

35:  Initialize skylist 

36:  for all points pLIST do 
37:      if p is notdominatedby skylist then 

38:              Add (p, skylist)  

39:              output (null, p) 

40:       end if 

41:   end for 

42: end function 

 

As soon as the MapReduce job has started, the CellFilter (lines1-9) reads the global index stored 
in the HDFS. By reading the global index, the algorithm (line 3) has access to the entry of all 
partitions that contain the data. Each of these partitions is stored as a single file in HDFS. At this 
point, a pruning process must be performed (line 4-6) to identify the partitions that contribute to 
the final answer. This identification process reads only the boundaries of each partition and not 
the actual data. This minimizes the read operations from the HDFS. Each partition is checked 
against the list of partitions that have been processed so far and fulfil the criteria to be a candidate, 
thus containing candidate skyline points. If the new partition is not dominated by any other partition 
in candidatepartitionList, it is inserted in the list removing any dominated partitions by it. In the 
end, every partition will invoke a map phase (line 9) that will process the data inside each partition.  

Following, a map phase (line 11) will run for each partition. The order that the records/points will 
appear in the map phase is the order in which they are written in the indexed files. The origin point 
of the data space is defined by the user’s preferences (line 12). During the map phase, a filter 
point with the greatest pruning power is maintained in order to filter the dataset (line 12). Initially, 
the filter point is set to be the point of the data space with the greatest distance from the origin 
point (line 12). If the boundaries of data space are unknown, this point could be set to the 
maximum or minimum programmatically value. In the next step, all the points p reaching the map 
phase (line 13) are inserted into a LIST (line 15) under the condition that are not dominated by 
the filter point (line14). Additionally, if the new point p is closer to the origin than the filter point 
(line 16), the filter point is updated (line 17). At this stage, the filter point has the greatest pruning 
power among all points examined since it is the closest to the origin. Additionally, the LIST  has a 
portion of the records that have reached the map phase due to the pruning power from the filter 
point. By taking advantage of the LIST’s smaller cardinality, we perform a sort operation based 
on the distance of points to the origin point (line 21) to ensure that the algorithm will access first 
the most promising point to be a (local) skyline point. This is the same approach followed by BBS 
algorithm to access the nodes inside its list. With a sorting operation over the dataset, we achieve 
to identify the candidate skyline points early in the LIST. A drawback of the algorithm is that it 
must traverse the complete sorted list. A workaround can be found in the SFS [41] , LESS [10], 
or SALSA [42] algorithms to avoid the complete traversal of the list when the values of the dataset 
are in a specific domain or when the normalization of values is acceptable. Following, we check 
all the points in the LIST (line 22) if they are dominated by the filter point (line 23) and then if 
dominated by the skylist (line 24), which contains all the local skyline points. At this stage, the 
filter point has the maximum pruning power leading in discarding almost every point that will not 
be part of this local skyline. If neither of the previews holds, the point p under examination 
definitely belongs to the local skyline, thus inserted in the skylist (line 25) and outputted (line 26). 
As a result, each map phase computes a local skyline for its assigned partition. The cardinality of 
the records/points of each local skyline will be small in comparison to the dataset and in particular 

𝛩((ln 𝑛)𝑑−1 (𝑑 − 1)!⁄ )[448, 449] for uniform distribution. Furthermore, the use of a combiner will 

not provide any benefits since each local skyline contains the minimal set of data needed to 
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produce a correct answer. Since the cardinality of each local skyline is small, a null key will be 
used in order to process all the points in a single reducer. Similarly, the use of a single reducer is 
also the case for the reverse skyline computation in  section 5.4 . The reduce phase (line 31-42) 
collects all the local skylines and produces the final skyline. Since the number of points reaching 
the map phase is small, the algorithm does not maintain a filtering point. As with the map phase, 
all points are inserted into a LIST (line 33) and are sorted based on the distance to the origin point 
(line 34). Finally, all points are checked against the list of candidate skyline points. Since the 
dataset to be processed is sorted, any point not dominated by the skylist will be a final skyline 
point and it is inserted into the skylist (line 38) to help in the pruning process and outputted (line 
39). 

The key aspect of the algorithm is that the CELLFILTER performs the major pruning of the dataset. 
Each map task computes the local skyline of its assigned partition. The sorting mechanism 
guarantees that the local skylines computed in the map phase are correct. Due to the local 
skylines, the cardinality of data transferred to the reducer is minimal.   

5.4. A Reverse Skyline Algorithm in SpatialHadoop 

The previous section proposed the SSAS skyline algorithm. This section will build on top of SSAS 
a reverse skyline algorithm named SRSAS.  As described in the preliminaries section, we can 
compute the reverse skyline on top of a two-step filtering approach with an additional refinement 
workload. Initially, for every map phase, a local global skyline is computed. All the global skyline 
points from each partition will form a superset of the reverse skyline result set. The reduce phase 
will compute the final global skyline of the dataset and at the end, a refinement over the global 
skyline is performed, with a second job to retrieve the final answer. As with the SSAS algorithm, 
the idea is to harvest the power of the CellFilter function provided by SpatialHadoop to prune 
every partition that is warranted not to contribute in the final solution, minimizing the amount of 
data to be processed.  

The identification of promising partitions and points in a reverse skyline query is more complex 
than the skyline since the origin/query point is inside the data space and not on the boundaries 
as with the simple skyline algorithm. In order to present the pruning approach of the SRSAS 
algorithm, Figure 45 illustrates a possible outcome of the partitions derived from the R-tree 
indexing mechanism of SpatialHadoop.  

 

 
FIGURE 45: SPATIALHADOOP'S R-TREE PARTITIONING APPROACH. 

In a reverse skyline, the query point is usually a point that does not exist in the dataset since, in 
the simpler scenario, the question to be answered is how the new product/service (query point) 
fits in the customer’s preferences. Nevertheless, if the query point matches a point from the 
dataset, this point will be the final answer. Intuitively, the query point q splits the data space into 
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four quadrants, defined by the two parallel lines xq, yq to the y-axis and x-axis respectively, which 
intersect the query point as presented in Figure 45.  

Based on the space division imposed by the query point q, a partition may be intersected by the 
xq-axis, the yq-axis or both. For the set of partitions that do not intersect with one of the xq or yq 
axes, like the partitions p1, p3, p4, p6, p10, p12, p13, p14 in Figure 45, we can identify if they contribute 
to the final answer by simply performing dominance comparisons among them. For the case 
where a partition intersects with both xq, yq, like the partition p8 in Figure 45, then the query point 
q will belong into this partition. This leads that the most promising points to be candidates for 
reverse skyline points and consequently global skyline filtering points will belong into this partition. 
This happens because these points will have, among all other points in the dataset, the greatest 
pruning power in terms of maximizing their dominance region. In the case were the partitions 
intersect with one of the xq or yq axes, like the partition p2, p5, p7, p9, p11, p14 in Figure 45, there is 
a probability to contain candidate reverse skyline points near or on the axis xq or yq. Those points, 
especially the ones on top of the axis xq or yq, will also have among the greatest pruning power 
and they are guaranteed to be candidate reverse skyline points since they always have the best 
value in at least one dimension. Those points can prune partitions in both of the quadrants that 
belong and are the only ones to have the ability to prune partitions that intersect with the same 
axis and are further apart. 

At this point, an important issue in the design of the CellFilter is that it performs the pruning based 
on partitions, without knowing the points contained. In a reverse skyline computation, this imposes 
restrictions to the pruning process, as previously described, in which we cannot directly prune the 
partitions that are intersected by the xq-axis or yq-axis since it is not possible to guarantee that 
they do not contribute to the final solution. This also occurred in the original BBRS algorithm of 
[14].  

As an example, consider the partitions p8, p11 and p14 in Figure 45 that are intersected by the yq-
axis as defined by query point q and infinity (qyq). Intuitively, the further a point is from the 
query/origin point q, the closer to the axis it must be in order to be a skyline or a reverse skyline 
point. If a point exists on top of the yq-axis in p11, as shown in Figure 46, it could prune partitions 
p13, p14, p15 and all the points on the right of the dashed line that intersects it, but we are not able 
to identify it within the CellFilter without performing further processing in the partition.  

 

 
FIGURE 46: LOCAL GLOBAL SKYLINES IN SRSAS ALGORITHM. 

Up to this point, the partitions intersected with the axis have not helped in the pruning process 
because we are unaware of the location of points inside them. Additionally, the MBRs in 
SpatialHadoop follows a different approach from the one in R-trees since there is no guarantee 
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that a point exists in the lower left or in the upper right corner of the MBR. By the design of 
SpatialHadoop, it is guaranteed that at least one point exists on each edge of the MBR. Based on 
the previous facts, the CellFilter of SRSAS assigns to map tasks all the partitions that are 
intersected by an axis and from the rest of the partitions the ones that are not globally dominated 
with each other. To compute whether or not a partition globally dominates another partition, we 
follow a similar approach to the one used in the CellFilter of SSAS, SKY-FLT and the r-tree based 
BBS algorithm. That is, we represent each of the two partitions with their vertex (point) that is 
closer to the query point. Using those points, one for each partition, the query point and Definition 
8 we can identify if a partition globally dominates another one. More precisely, based on Figure 
46 the CellFilter initially receives all the partitions. At first, it outputs the partitions p2, p5, p7, p8, p9, 
p11 and p14 that are intersected by an axis. Next, for the rest of the partitions p1, p3, p4, p6, p10, p12, 
p13 and p15 it must check and discard every partition that is globally dominated, with respect of the 
query point q and output the rest. Thus, partitions p1, p3 and p13 are discarded since they are 
globally dominated by partitions p4, p6 and p10 respectively allowing partitions p4, p6, p10, p12 and 
p15 to be outputted, and assigned to a map task for further process, along with the partitions 
intersected by an axis. Further pruning mechanisms could be designed if we were aware of the 
location of points inside the partition, but this would require additional cost for query processing 
and multiple MapReduce jobs. 

The rest of the SRSAS algorithm follows the same general approach as with the SSAS. Just like 
SSAS, after the pruning imposed by the CellFilter, the mapper handles the remaining partitions. 
In the case of the reverse skyline, the mapper is dedicated to compute the local global skylines 
(Definition 9:) for each partition. When the map task assigned to this partition finishes, all the 
data outputted would belong to the global skyline of that partition. Since the global skyline is a 
superset [14] of the reverse skyline, its computation will make a great refinement on the dataset. 
Following the same approach as with the SSAS in order to identify all the global skyline points of 
a partition in one map task, we must sort the points based on their distance from the query/origin 
point. Note that the query/origin point may be outside of the partition under examination and thus 
the origin point of space, to which the global skyline will be computed, will not match with any of 
the edges of the partition. Nevertheless, this does not create any implication. Intuitively, for the 
partitions that do not intersect with the axis xq or yq, the result of a global skyline will be seen as 
a simple skyline, since all the points of that partition will be contained in one quadrant according 
to the axis derived by the query point q. With the same logic, if the partitions are intersected by 
one of the axis xq or yq, the global skyline will appear as two disjoint skylines, while if the query 
point resides inside a partition, the global skyline on this partition will appear as four disjoint 
skylines, as presented in Figure 46. As with the SSAS algorithm, by computing the local global 
skyline inside each map phase, the total output records to be transferred in the reducer will be 
minimized. 

Following, the reducer will collect the output records from all the mappers. The set of collected 
data will be a superset of the reverse skyline since all points belong to the global skyline of the 
same partition. In order to compute the correct final global skyline in one iteration, we must sort 
the data and perform a global dominance comparison on each point. To retrieve the reverse 
skyline, a final refinement process must be performed in the form of a range queries as in the 
original algorithm [14]. One restriction is that in order to retrieve the minimal superset of the 
reverse skyline query in the form of a global skyline query, the algorithm needs to know all the 
reverse skyline candidates from all the partitions that were processed. Thus, the reduce phase 
cannot be performed in more than one task. 

The pseudocode in Algorithm 2: and Algorithm 3: describes the sort-based algorithm for reverse 
skyline computation in SpatialHadoop, which incorporates the power of global skyline, a sorting 
technique and a refinement process in the form of range queries. 

 

Algorithm 2:  SRSAS: A Sort-based Reverse Skyline Algorithm for SpatialHadoop. 
1: function CELLSFILTER(C: setofcells) 

2:   Initialize requisiteypartitions list 

3:   Initialize candidatepartitions list 

4:  Compute xq and yq axis 

5:     for all cell cC do 

6:       if c is intersected by xq and yq then 

5:          Add (c, requisiteypartitions list)  
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7:       else if c is not globalydominated by candidatePartitions then 

8:           Add (c, candidatePartitions) 

9:           Update candidatePartitions  

10:      end if 

11:     end for 

12:  Load every ccandidatepartitions and crequisiteypartitions in a map function.  

13: end function 

14: function MAP(P: Setofpoints) 

15:  Initialize four filter points fll, flr, ful, fur, one for each quadrant, one temporary 

filter point, and a MAPLIST.  

16:  for all points pP do 
17:   Identify the quadrant of p and assign to filter the corresponding value of 

        fll, flr, ful or fur  

18:        if p is not globalydominated by filter then 

19:         Add (p, MAPLIST) 

20:        if distance (p,query) < distance (filter,query) then                               

21:           Update the corresponding value of fll,  flr, ful or fur  

22:        end if 

23:     end if 

24:   end for  

25:   SORT MAPLIST based on the distance from query point and initialize 

localglobalskylist  

26:   for all points pMAPLIST do 
27:    Identify the quadrant of p and assign to filter the corresponding value of 

        fll, flr, ful or fur  

28:     if p is not globalydominatedby filter then 

29:        if p is not globalydominated by Localglobalskylist then 

30:          Add (p, localglobalskylist )  

31:          output (null, p) 

32:        end if 

33:     end if 

34:   end for 

35: end function 

36: function REDUCE (null, P: Setofpoints) 

37:    Initialize REVLIST & candidaterevskylist  

38:    Add all pP   into REVLIST  
39:    SORT REVLIST based on the distance from the query point 

40:    for all points pREVLIST do 

41:       if p is not globalydominated by candidaterevskylist then 

42:            Add (p, candidaterevskylist )  

43:           output (null, p) 

44:      end if 

45:    end for 

46: end function 

 

Since the SRSAS algorithm follows a similar approach to the one of SSAS, we will highlight only 
the key differences. The algorithm in the CellFilter (line 1-13) has access to the global index, which 
is the entry of all partitions that contain the data. In addition to the candidatepartitions list (line 3) 
found in SSAS, the SRSAS algorithm maintains a requisiteypartitions list in which the partitions 
intersected by the xq and yq axis are stored. The axis xq and yq axis are computed as a rectangle 
with zero height (line 4). Following, the algorithm iterates through all the partitions (line 5). If a 
partition is intersected by the xq or yq axis, it is placed in the requisiteypartitions list (line 5-6), 
otherwise it is checked if it is globally dominated (line 7-10), just like with simple dominance in the 
SSAS algorithm. After iterating all partitions of the global index, the algorithm assigns each one 
of the partitions in candidatepartition and requisiteypartitions list to a map task (line 12). 

The map phase in SRSAS maintains four filtering points (line 15), one for each quadrant defined 
by the xq and yq axis instead of one in SSAS. For every point (line 16-24) in a map task, it is 
identified in which quadrant it belongs (line 17). The global dominance is performed only between 
the retrieved point and the filter point that corresponds to the point’s quadrant. If needed only this 
point is updated (line 20-22). When the iteration over all points finishes each filter point will have 
the greatest pruning power in its quadrant. A sorting operation in the MAPLIST (line 25), based 
on the distance to the query point, will guarantee that the most promising points will be accessed 
first. A second iteration (line 26-34) will produce the local global skyline. In this step, most of the 
point will be pruned from the filter point (line 28) minimizing the need to iterate through the 
candidate points of localglobalskylist (line 29).  
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The reduce phase (line 36-49) collects the points from all map tasks into a REVLIST (line 38) and 
sorts them based on the distance from the query point (line 39). With an iteration over all the 
points in the REVLIST (line 40-45), the final global skyline of the dataset is produced and written 
to the HDFS. 

As with the BBRS algorithm, the final check that every point in the global skyline should pass in 
order to be true reverse skyline points involves a range query [14]. The MBR of each range query 
has its center over the global skyline point under examination and its edge on the query point of 
the reverse skyline, as shown in Figure 46. The query is performed in order to identify if there is 
any point in the window defined. If no point is found, the global skyline point under examination is 
promoted to a reverse skyline point. In our approach, we make use of the built-in range query 
algorithm of SpatialHadoop in a final refinement process. 

 
Algorithm 3:  Refinement process of the SRSAS algorithm. 
1: function RANGEREFINEMENT(GS: globalskylineset) 

2:    Initialize revskylist  

3:    for all points pGS do 

4:         Compute the range area rpi based on p and query point 

5:       execute the range query(rpi) 

6:         if range query is empty and p is not globally dominated by revskylist then  

7:             add p to the revskylist;  

8:           end if 

9:     end for 

10:    output (revskylist); 

11: end function 

 
The refinement process (Algorithm 3: ), for every point that belongs to the global skyline set GS 
(line 3), accessed in sorted order of their distance from the origin, we compute the range area  
(line 4) that will be used in the window query. Each one of the range areas, in the form of a 
rectangle parallel to the axes, is computed using a global skyline point and the query point as 
defined in [14]. The global skyline point must be in the center of the rectangle (the point where 
the diagonals intersect) and the query point must be a vertex of this rectangle. Given those two 
conditions, a single rectangle can be computed which will represent the range area. Then, the 
algorithm performs a window query for the given range area over the initial dataset (line 5). To 
accomplish this task, the refinement process of SRSAS uses the range query that is integrated 
into SpatialHadoop, which spawns one new job for each range query. The range query uses only 
the map function since the existence of a point can be identified with the use of the built-in map 
counters of MapReduce.   

As with the SSAS algorithm, the key aspects of the SRSAS algorithm is that the CELLFILTER 
performs the major pruning of the dataset. Each map task computes the local global skyline, which 
assists in minimizing the data needed to be processed by the reducer. The sorting mechanism in 
the map and reduce phase, along with the range refinement process guarantees that the final 
answer is correct. 

5.5. Experiments  

This section studies the performance and effectiveness of our proposed algorithms for skyline 
and reverse skyline computation. For the evaluation, we used synthetic and real datasets over a 
distributed and pseudo-distributed platform. The performance metrics involve the time cost, in 
terms of the total time spent to retrieve an answer and the time spent in the various phases of our 
algorithms along with the amount of data transfers needed. All algorithms were written in Java 
and the source code10along with the commands to recreate the datasets are available under 
the Apache License 2.0. For the accuracy of our results, we ran each experiment 10 times and 
the average cost of all tries was estimated. We compared our SSAS skyline algorithm with the 
SKY-FLT algorithm from [32], which performed better in comparison to the SKY-FLT-SORT and 

the CG-HADOOP in large datasets. In the rest of the section, it is shown that our proposed SSAS 

 
10 https://github.com/ChristosKalyvas/SkylineQueriesInSpatialHadoop 

https://github.com/ChristosKalyvas/SkylineQueriesInSpatialHadoop
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algorithm improves over the SKY-FLT algorithm with up-to 15%. The case of the reverse skyline 
in SpatialHadoop is also studied for the first time.  

The deployment, management and administration of Hadoop clusters was performed with the 
open source Apache Ambari 2.5 management platform over CentOS 6.4 Linux nodes. The 
communication of nodes was performed over a Gigabyte network. The version of SpatialHadoop 
was 2.4 and the installation involved adding the dedicated libraries to the Hadoop installation 
directory of each node. The infrastructure consisted of 4 physical machines, which hosted 6 virtual 
nodes. Each node had 16 logical processors with 16GB of RAM. We additionally compared our 
algorithms over a pseudo-distributed environment in order to isolate any factor that may affect the 
accuracy of the results. The pseudo-distributed node consisted of 32 logical processors with 32GB 
of RAM. 

The datasets that were used are three synthetic and one real dataset. The official SpatialHadoop 
Site11 provides numerous real datasets including many datasets extracted from OpenStreetMap 

[450]. A study that presents a large number of real datasets can be found in [451]. The real dataset 

used in this work is the All nodes12 dataset of OpenStreetMap [450] which holds all the points on 

the planet and contains 2.7 Billion records with an initial size of 96 GB. The initial dataset was 
refined to hold only the coordinates of each point that lead to a size reduction to 60 GB. This 
dataset is the newer version of the one used in [32]. The synthetic datasets were created with the 

random spatial data generator of SpatialHadoop. The distribution of each synthetic dataset was 
uniform, correlated and anti-correlated respectively with 2.7 Billion points each and a size of 
approximately 81 - 134 GB. For the correlated datasets, the selected ρ-value (rho-value) was 0.8 
in order to produce a dataset that will give a large number of skyline points. The ρ-value defines 
the correlation between the variables of our dataset, which in term defines the way the points 
generated over the data space.  

To investigate the scalability of our algorithms, for each of the four datasets with 2.7 Billion records 
we produced 4 smaller datasets of 1M, 10M, 100M and 1B records with the process of sampling. 
The size of those datasets varied from 25 MB to 134 GB. The smaller 1M dataset was used to 
investigate how the algorithms performed in local mode without using the MapReduce framework. 
The sampling process was executed with the built-in method of SpatialHadoop. All datasets were 
indexed by an R-tree. The number of partitions in each index varied from 1 to 900 depending on 
the dataset. For the indexing process, we used the default values of the parameters. That includes 
the value of spatialHadoop.storage.IndexingOverhead, which controls the number and size of 
partitions to be 0.1 and the value of spatialHadoop.storage.SampleRatio, which controls the 
quality of the index in terms of time cost and memory to be 0.01. 

Since a sorting operation on a large dataset may not be desirable or even feasible, SpatialHadoop 
has the ability to index the dataset in smaller partitions. This approach is useful in low memory 
systems since every map phase will have to sort a smaller portion of the dataset. The use of 
smaller partitions would also be beneficial to the CellFilter function since the number of partitions 
would increase but each partition would have fewer data. The increased number of partitions 
would lead to a better partition-level pruning of the dataset. A partition related parameter of 
SpatialHadoop that can be used for this purpose is the spatialHadoop.storage.IndexingOverhead. 
By default, it is set to 0.1 meaning that for 1GB of dataset, 100mb additional data, related with 
partition boundaries, will be written. For an even more efficient partitioning, the selection of a 
spatialHadoop.storage.SampleSize parameter can result in a more accurate representation of the 
dataset before the initialization of the indexing mechanism. In order to identify our datasets we 
used the number of records instead of the dataset size as a descriptor, since the file size may not 
always be an appropriate measure. For example, consider two datasets with 1M records each, 
where the first stores the points with a precision of two decimal points and the other with six. The 
file size of the second one will be larger but the records will be the same. 

 
11 http://spatialhadoop.cs.umn.edu/index.html  

12 http://spatialhadoop.cs.umn.edu/datasets.html  

http://spatialhadoop.cs.umn.edu/index.html
http://spatialhadoop.cs.umn.edu/datasets.html
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5.5.1. The case of the SSAS algorithm  

In order to compare the performance of our algorithm we implemented and used the SKY-FLT 
algorithm from [32]. In their work, the authors tested their algorithms in minimizing all preferences 
(min-min mode) in an environment with strictly non-negative values and through their research 
they state that the SKY-FLT performs better in the largest of their datasets. In this work, we 
equipped the SKY-FLT algorithm with the Euclidian distance metric, which makes it applicable in 
the rest of the modes and in negative and non-negative value environments without any 
implication. The SKY-FLT-SORT, on the other hand, needs more attention in environments with 
negative values like the real dataset used in this work due to its construction.  Moreover, the 
author’s research belongs to the 1M-100M range of our datasets where the 1M case is our 
implementation activates the pure local approach without the use of the MapReduce environment. 
With this in mind, we consider that SKY-FLT is the appropriate algorithm to be compared with 
ours.  

Hadoop, by design, reads a vast amount of data from HDFS, even when reading a single block. 
As an example, each one of the approximately 900 blocks in our 2.7B records datasets holds on 
average 3M points. Thus, the order that the records are written in the files has an impact on the 
time needed to retrieve an answer. In SpatialHadoop’s case, the points inside a block of the R-
tree are written in a partially ascending sorted order of their first and second coordinate value. 
The ordering in which the partitions, produced by SpatialHadoop, as presented in Figure 45 and 
written to the master index, also depicts this ordering. This ordering has an impact on the 
computation time of the skyline under various preferences, as presented in Figure 47. Through 
our experimentation, the use of Euclidian distance had no significant performance gain in 
comparison to the Manhattan distance. 

 

 

FIGURE 47: EXECUTION TIME OF SKY-FLT AND SAS OVER THE 100M DATASETS. 

More specifically, in a 2-dimensional environment there can exist four preferred modes, in terms 
of minimizing or maximizing the values on each dimension, named min-min, max-max, min-max, 
max-min. For the case of the uniform dataset, the min-max case needs approximately 30% more 
time than the case of min-min in both algorithms. The same holds in computing the equivalent 
min-min case and the max-max case in the anti-correlated dataset.  

The difference of the min-min mode in the anti-correlated dataset in comparison to the equivalent 
min-max mode of the correlated dataset is more clear in the 2.7B dataset presented in Figure 48 
in which there is a 7% difference in time. At this point, we show that the mode of operation has 
an impact on the computation time of both algorithms due to the order in which the points are 
stored in the index file. This could potentially affect the computation of reverse skyline and convex 
hull since certain mappers may need more time to accomplish their task delaying the whole 
process. Furthermore, note that the case of the real dataset seems to perform equivalently in both 
100M (Figure 47) and 2.7B (Figure 48) datasets, which will be discussed further in this section.  
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FIGURE 48: EXECUTION TIME OF SKY-FLT AND SAS OVER THE 2.7B DATASETS. 

At this point, we will discuss the time cost of computing the skyline with both SKY-FLT and SAS 
algorithm over all four datasets in our pseudo-distributed environment. The evaluation was 
performed over the complete datasets as well as in the five sampled versions of each original 
dataset. In addition to the min-min mode, we present the cost to compute the skyline over all four 
modes. 

 

 

FIGURE 49: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE UNIFORM DATASETS. 

In Figure 49 the time needed by both SKY-FLT and SAS algorithms to compute the skyline in 
min-min mode is presented. The SAS algorithm outperforms the SKY-FLT in the datasets over 
10M. In the 2.7B case, SAS performs 10% better than the SKY-FLT. The same improvement 
appears in the max-min case. For datasets smaller than 10M, SKY-FLT is slightly faster.  
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FIGURE 50: EXECUTION TIME OF SKY-FLT AND SAS IN ALL MODES OVER THE UNIFORM DATASETS. 

The total time cost as the sum of the time cost to compute all four modes of the skyline is 
presented in Figure 50.  As previously, SAS outperforms SKY-FLT in datasets over 10M points. 
The improvement of SAS on all modes over SKY-FLT, in the 2.7B dataset, is 7% percent. Both 
SKY-FLT and SAS seems to reach a time cost limit as the dataset size increases. This is due to 
the CellFilter function that is part of SpatialHadoop.  

An initial implementation of CellFilter, related to the skyline queries, can be found in the CG-
HADOOP algorithm. Its BNL-like implementation works quite efficiently since it needs only 3 
milliseconds to select the partitions even in the 2.7B datasets which has 900 partitions. An 
alternative implementation could be useful only in datasets with hundreds of thousands or even 
million partitions. This can occur in extremely large datasets or in datasets where the indexing 
factors are set to produce a large number of partitions. 

 

 

FIGURE 51: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE REAL DATASETS. 

The time cost for computing the skyline in the real dataset is presented in Figure 51. The 
improvement of SAS over the SKY-FLT in the min-min case of the 1B dataset is 14% while in the 
max-max case is 15%. The time cost in the real dataset has many fluctuations. More particularly, 
the time cost in 10M and 100M, for both algorithms, is approximately the same. In both cases, the 
CellFilter function returns a single partition. The difference is that in the 10M dataset each partition 
holds 3.5M points and the 100M dataset 4M points. The time cost in the case of the 2.7B dataset 
is also similar to this of the 10M and 100M datasets because, as previously only one partition is 
processed, but in this case with 4.8M points. For the case of the 1B dataset, four partitions are 
returned with 5M points each. 
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FIGURE 52: EXECUTION TIME OF SKY-FLT AND SAS IN ALL MODES OVER THE REAL DATASETS. 

The overall cost in computing the skyline in all modes over the real dataset, as presented in Figure 
52, follows a time cost similar to the uniform case with the exception of the 2.7B dataset. In the 
2.7B case, a single partition dominates all the other ones and this happens in every mode. This 
behaviour appears due to the type of dataset and the existence of points that could be considered 
as outliers. The improvement of SAS over SKY-FLT in the 2.7B dataset is 7% in min-min mode, 
12% in max-max mode and 8% on average over all modes. 

 

 

FIGURE 53: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE CORRELATED DATASETS. 

For the case of the correlated dataset, as presented in Figure 53, the 10M and 100M cases 
handle 1.7M and 3.8M points respectively, which belong to more than one partitions. Interestingly, 
both algorithms perform better in the larger 2.7B dataset rather in the smaller 1B dataset. This 
happens because the CellFilter function outputs in total 15M points for the case of the 1B dataset 
and 12M points for the case of the 2.7B dataset. The improvement of SAS over SKY-FLT in the 
case of the 2.7B dataset is 9%. 

At this point, we omit presenting the total cost in all modes of the correlated and anti-correlated 
dataset since computing the min-max and max-min case in the correlated dataset is 
computationally equivalent to compute the min-min and max-max case on the anti-correlated 
dataset, due to their specific distributions. The same holds with the min-max and max-min case 
of the anti-correlated dataset which is computationally equivalent to the min-min and max-max 
case of the correlated dataset. For that reason following we will present the last remaining case 
of computing the min-min skyline over the anti-correlated dataset. 
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FIGURE 54: EXECUTION TIME OF SKY-FLT AND SAS IN MIN-MIN MODE OVER THE ANTI-CORRELATED DATASETS. 

The computation of min-min and max-max skyline in an anti-correlated dataset is one of the most 
expensive operations. This happens because the dominance comparisons are not capable of 
pruning the dataset enough even with the existence of the CellFilter function. More particularly, 
the map phase for the 1B and 2.7B datasets needs to handle 27 and 44 partitions respectively, 
which is up to 130M points. As presented in Figure 54, as the dataset size increases, the number 
of points needed to be processed grows rapidly which affects the time cost, especially for the 
cases of 1B and 2.7B datasets due to the large number of spilled records.  The overall gain of 
SAS over SKY-FLT in this scenario is 7.5% in the 2.7B dataset. From the previous discussion, we 
conclude that the BNL-like lists that maintain candidate skyline points in SKY-FLT incur a 
considerably larger overhead than a sorting mechanism in SAS.  

As previously discussed, a key part of both SKY-FLT and SAS algorithms is the CellFilter function, 
which is the first pruning mechanism. The CellFilter function performs the same in both the 
pseudo-distributed and distributed environments. Following, we present, for the case of min-min 
mode, the percent of dataset that is outputted by the CellFilter and that will be processed by the 
numerous map tasks.  

 

 

FIGURE 55: TOTAL NUMBER OF POINTS IN THE OUTPUT OF CELLFILTER AS A PERCENT OF THE INITIAL DATASET IN MIN-MIN MODE. 

The CellFilter function performs better as the number of partition increases. As presented in 
Figure 55 for the 10M dataset, 33% on average or 2 out of 6 partitions must be handled by the 
map phase. As the size of the dataset grows along with the number of partitions, the percent of 
the dataset to be processed by the map phase declines. The hardest case among all is the one 
of the anti-correlated dataset where the dominance comparisons between partitions do not prune 
many partitions due to the specific distribution of the dataset. In the case of the 2.7B dataset less 
than 5% of the dataset is handled to the map phase, less than 8% in the case of the 1B dataset 
and less than 8.5% for the 100M dataset with the anti-correlated case as an exception. An 
improvement, especially for on the smaller datasets, can be achieved by setting the appropriate 
parameter of the indexing mechanism to produce smaller partitions in size, with the drawback of 
additional storage cost. 
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FIGURE 56: TOTAL NUMBER OF POINTS IN THE OUTPUT OF CELLFILTER. 

The total number of points to be processed by the map phase is reverse analogues to the percent 
of the dataset needed to be processed, according to Figure 56. Even if the whole 10M dataset 
needs to be processed is in fact quite small in comparison to a portion of the dataset that is 
processed in one of the larger datasets. In the worst case of our experiments, for the 2.7B anti-
correlated dataset, a total of 130M points are handed over to the map phase. In all other cases, 
the algorithms need to handle at most 20M points with the case of the 1B anti-correlated dataset 
to be at 81M. An indexing approach with smaller partitions, with the help of dominance 
comparisons in the CellFilter function, would drastically decrease those numbers. 

In the following section, we compare the time cost of computing the min-min skyline in the pseudo-
distributed environment over the distributed environment with the SAS algorithm. We omit the 
case of the 1M dataset since, as previously mentioned, this dataset was selected to explore only 
the local aspects of the algorithms. 

The time cost to compute the min-min skyline over the uniform dataset in the pseudo-distributed 
environment increases, as the dataset gets larger following a linear approach. The computation 
of min-min skyline in the distributed environment remains almost constant, as presented in Figure 
57. For the distributed case, this is also an indication that the number of partitions produced by 
the CellFilter are evenly handled to the nodes in the distributed environment. 

 

 

FIGURE 57: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER UNIFORM 

DATASET IN MIN-MIN MODE. 

The comparison of the time cost to compute the min-min skyline over the real dataset in the 
pseudo-distributed and distributed environment, as presented in Figure 58, reveals that the data 
size received from the CellFilter is small enough to allow the pseudo-distributed node to reach the 
efficiency of the fully distributed cluster. An exception to this is the 1B case where the pseudo-
distributed node handles a large number of points and thus produces a large number of spilled 
records. Those records diminish in the 2.7B dataset due to a new skyline point that exists in the 
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larger dataset which prunes effectively the aforementioned points in the CellFilter function or in 
the map phase. 

 

 

FIGURE 58: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER THE REAL 

DATASET IN MIN-MIN MODE. 

 In comparison to Figure 51, we conclude that the SKY-FLT algorithm, with the 1B dataset, 
produces more spilled records than the SAS. This happens in the cases where the pruning power 
of the filtering mechanisms in the map phase of SKY-FLT degrades leading to continuous 
checkpoint updates due to the tuple ordering in HDFS files. In this case, the map phase outputs 
a large amount of data that triggers the combiner. In the SAS algorithm, there is no need for a 
combiner since the cardinality of the local skyline from each map phase is small. 

 

 

FIGURE 59: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER THE 

CORRELATED DATASET IN MIN-MIN MODE. 

A similar time cost, with the real dataset presented previously, can be seen in the correlated 
dataset as presented in Figure 59, which is expected since in this type of dataset the CellFilter 
works efficiently producing the least amount of data. As previously stated, the case of the 1B 
dataset produces more points than the case of the 2.7B dataset and this leads to more spilled 
records. In all other cases, the size of the data output is small enough and comparable to the one 
produced by the real dataset. Nevertheless, the correlated case seems to handle more points 
than the real dataset and that is confirmed from the slightly increased time cost of the correlated 
dataset in comparison to the equivalent case of the real dataset.   

When conducting our research we did not expect that the real dataset would have a similar and 
even smaller time cost to the correlated dataset. Through our experimentation, we conclude that 
this behaviour is due to the large number of points that exist in the real dataset and act as outlier 
points. Those points, especially in the min-min case, prune the majority of the dataset due to their 
positions inside the dataset. Nevertheless, this behaviour does not exist in the reverse skyline 
queries and may be absolute in the case of constrained skyline queries where the computation of 
skyline is performed in a restricted area of the dataset. 
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FIGURE 60: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER AN ANTI-

CORRELATED DATASET IN MIN-MIN MODE. 

The computation of the min-min skyline over the anti-correlated dataset is presented in Figure 
60. The distributed cluster seems to handle quite well the large number of data needed to be 
processed in this type of dataset. An exception is the case of the 2.7B dataset for which the 
capabilities of our cluster are exceeded, leading to abnormal behaviour. A solution to improve the 
time cost, in this case, is to add more nodes or configure the indexing mechanism to produce 
more, smaller in size, partitions which would lead to a smaller set of data to be processed by each 
map task. 

 

FIGURE 61: EXECUTION TIME OF SAS TO COMPUTE THE SKYLINE IN DISTRIBUTED AND PSEUDO-DISTRIBUTED MODE OVER ALL DATASETS 

IN MIN-MIN MODE. 

A summary on the time cost of the SAS algorithm in a pseudo-distributed and distributed 
environment over all datasets and their sampled versions is presented in Figure 61. The true 
benefit of a real distributed cluster is visible in the anti-correlated and uniform dataset. In the 
majority of cases, the time cost in a distributed environment is between 20 and 50 seconds except 
for the single case of the anti-correlated, 2.7B dataset. In the pseudo-distributed environment, for 
the majority of cases, the time cost is between 20 and 75 seconds without considering the anti-
correlated dataset for which the time cost starts from 88 seconds in the 100M version of the 
dataset. 

A further reduction in the time cost of skyline computation can be achieved in environments with 
specific datasets or if value normalization can be an option. For example, the properties of the 
sort-based SaLSa [42] algorithm could be injected into SAS in order to sort the dataset based on 

a specific scoring function and use an early termination mechanism to avoid scanning the 
complete list of sorted points at the beginning of the map phase. 
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5.5.2. The case of the SRSAS algorithm  

In the following section, we will discuss the case of the SRSAS algorithm. The experiments for 
the SRSAS algorithms were performed on the distributed cluster since it is a computationally and 
data intensive query and can fully exploit its capabilities. Moreover, we omitted from our 
experiments the 1M dataset, since its cardinality is small to give insights in a distributed 
environment. In addition, we omitted the 2.7B dataset in order to maintain the soundness of our 
results by avoiding abnormal behaviours as with the 2.7B anti-correlated dataset mentioned 
previously. Moreover, the query point was selected randomly following the distribution of each 
dataset.  

 

FIGURE 62: TOTAL NUMBER OF POINTS IN THE OUTPUT OF CELLFILTER AS A PERCENT OF THE INITIAL DATASET. 

As presented in Figure 62, the CellFilter function in the SRSAS algorithm is more data demanding 
than the  SAS (Figure 55). In the case of the reverse skyline, the algorithm needs to retrieve all 
the partitions that may contain global skyline points and that includes all the partitions that are 
intersected by the axis created by the query point. In small datasets, with a small number of 
partitions, this is equivalent to the whole dataset as with the case of the 10M dataset that has 6 
partitions in total. Nevertheless, as the total number of partition in the dataset increases the 
number of partitions needed to be processed declines. In all the sampled versions of our datasets, 
the most demanding case is the one of the uniform dataset, which specifically for the 100M case 
needs on average 30% more data. Nevertheless, as the dataset size and partition number 
increases the pruning power of the CellFilter function increases. This can be seen in the 1B 
datasets where on average 12% of the dataset is needed. 

 

FIGURE 63: EXECUTION TIME OF SAS AND SRSAS IN DISTRIBUTED MODE OVER ALL DATASETS. 

The time cost to compute the reverse skyline over the various datasets is presented in Figure 63. 
For comparison, we also provide the time cost to compute the min-min skyline. As presented, the 
time cost to compute the SRSAS is considerably more in all cases due to the nature of the query. 
Additionally, in comparison to Figure 62, the time cost is not analogous to the points retrieved 
from the CellFilter function but it is susceptible to the number of global skyline points that are 
identified, as we present in the following paragraphs. 
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FIGURE 64: EXECUTION TIME OF SRSAS TO COMPUTE THE REVERSE SKYLINE IN DISTRIBUTED MODE OVER ALL DATASETS. 

As presented in Figure 64, the total time cost in the reverse skyline query can be divided in the 
cost to compute the global skyline and the cost imposed by the range queries needed to identify 
the reverse skyline set. In almost all cases, at least 50% of the time is consumed by the range 
queries, which reaches up to 85% in cases like the 10M correlated dataset concluding that the 
range queries is the major bottleneck. We remind that for each global skyline point, one range 
query is performed and each range queries may require to access data in several nodes producing 
multiple map tasks in the cluster. Since the global skyline set is the minimum superset of points 
to answer the reverse skyline query, the only way to effectively reduce the time cost is to identify 
overlapping regions and perform only one range query over each region or implement additional 
indexing structures.   

To reduce the cost of reverse skyline computation we can set two objectives. The first is to reduce 
the data handled by the map phase, which could be achieved through a sophisticated CellFilter 
function or even with a modified indexing mechanism. The second objective could involve the 
creations of efficient range query plans or dedicated structures to avoid searching in the same 
area multiple times. 

5.6. Conclusions and Future Work 

The amount of data to be processed in order to retrieve an answer to a specific question 
continuously grows, while in many cases it is critical to get an answer in the minimum time. The 
SpatialHadoop framework allows using computational geometry to efficiently answer complex 
queries by pruning the dataset as early as possible. Furthermore, is a great framework to 
experiment with various queries over MapReduce since it supports a large number of indexes and 
space-filling curves.  

Among many others, a family of queries that benefits from SpatialHadoop are the skyline and 
reverse skyline queries. By having an indexed dataset, we can answer consecutive queries faster 
in comparison to a non-indexed dataset. Since the result of a skyline query in a static dataset will 
always be the same, an indexing mechanism is more intuitive in constrained skylines, where the 
user defines the region in which the query to be performed or reverse skylines where the possible 
outcomes are infinite. 

In this study, was proposed an alternative, sort-based approach to compute skyline queries and 
the SpatialHadoop was enhanced with reverse skyline queries. Intuitively, both the proposed 
methods can be considered as index-based and sort-based approaches simultaneously due to 
the SpatialHadoop indexing and the sorting mechanism in the map phase.   

 This work allows researchers to study similar queries such as reverse k-skyband and ranked 
reverse queries. Since SpatialHadoop is also capable of supporting temporal data, the temporal 
skyline and temporal reverse skyline query that were proposed in Section 1 can be studied in 

conjunction with the constrained skyline. An alternative research direction would be to study the 
applicability and performance aspects of the z-order based skyline algorithm Z-SKY and the 



CHAPTER 5: SKYLINE QUERIES OVER SPATIALHADOOP 

Christos Kalyvas-Kasopatidis –October 2020 
106 

Quad-Tree based skyline algorithm for MapReduce SKY-MR since SpatialHadoop also supports 
indexing based on Z-order and Quad-Trees. 

 

 



CHAPTER 6: SKYLINE-BASED DECISION BOUNDARY ESTIMATION 

Christos Kalyvas-Kasopatidis –October 2020 
107 

6. SKYLINE-BASED DECISION BOUNDARY ESTIMATION 

One of the most common tasks nowadays in Big Data environment is the need to classify large 
amount of data but based on the research conducted in Section 3 the amount of labeled data to 
perform such a task is limited. There are numerous classification models, designed to perform 
best in different environments and datasets and each one of them has its advantages and 
disadvantages. However, when dealing with Big Data, their performance is significantly degraded 
because they are not designed or even capable of handling such large datasets. The approach 
proposed in this study is based on a novel proposal of exploiting the dynamics of Skyline queries 
to efficiently identify the decision boundary and classify Big Data. The novelty of this method is 
based on the fact that only small number of computations are needed in order to make a 
prediction, while its full potential is revealed in very large datasets. 

6.1. Introduction 

To deal with the problems imposed by the volume, one may consider the reduction of cardinality—
or dimensionality—of the data for which various methods have been proposed. Such a problem 
occurs with the R-trees [38] when the space has more than 4–5 dimensions—named as the curse 
of dimensionality. The simplest case of volume reduction can be achieved by sampling techniques 
[452] that directly reduce the cardinality of the dataset. The dimensionality reduction approach 
can be performed either through feature elimination, extraction or selection techniques [453, 454], 
or by directly mapping a multi-dimension dataset to a lower dimensionality space. The last 
approach can be performed with statistical data mining such as principle component analysis 
(PCA) [455], stochastic approaches such as t-distributed stochastic neighbours embedding (t-
SNE) [456] or neural network approaches such as auto encoders [457]. 

Dimensionality reduction techniques are commonly used to improve the performance of a 
classifier. However, ML methods have reached a point at which we can combine even a set of 
weak classifiers using ensemble learning techniques [458] to produce good results. With this in 
mind, each time a new classifier is proposed, questions arise if we really need one more [459]. 

Even with these techniques, it is not always feasible to perform a classification task with low 
processing costs in a big data environment, since traditional classification algorithms are designed 
primarily to achieve exceptional accuracy with trade-off between space or time complexity. In a k-
nearest neighbours (K-NN) classifier, the main cost reflects to the cost of computing the distances 
from every element, in naïve Bayes to compute a large number of conditional probabilities, in 
probabilistic neural networks (PNN) or its radial basis function (RBF) alternative to sum local 
decision functions and in support vector machine (SVM) to compute complex hyperplane 
equations 

In this work [115, 116], we propose a straightforward method for classification which is 
significantly more efficient than traditional classification algorithms in big data environments. The 
proposed method uses skyline queries to identify boundary points and construct final decision 
boundaries. Primarily skyline queries were designed to identify the most preferable options based 
on certain, sometimes contradicting, optimization criteria. Skyline queries are categorized as a 
dominance-based multiobjective optimization approach that was developed under the scope that 
the dataset in use does not entirely fit in memory. The multiobjective optimization problem of 
efficiently identifying the skyline points has its root in the Pareto optimality problem (V. Pareto 
1906) which was used in aerospace for aerodynamic shape optimization [460] and in economics 
for optimal investment portfolio [461]. In computational geometry, the problem is equivalent to the 
maximal vector problem [462]. 

To our knowledge, this is the first work that tries to harvest the power of skyline queries in a 
classification process for big data. The benefits of using such an approach are: 

  

• Even in a very large dataset, decision boundaries are described by a small number of 
points; thus, a classification process needs to perform only a small number of 
computations in order to infer the correct class; 

• Decision boundaries can be independently computed, allowing for full parallelization of the 
whole modeling process; 
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• It is applicable in a wide range of multidimensional environments and specifically in any 
environment that its dataspace has an ordering, a feature that is inherited from the skyline 
query family; 

• The model can be easily explained and visualized allowing for greater interpretability; 

• The decision boundaries can be easily transferred, reused and easily re-optimized 
allowing Transfer Learning. 

 

6.2. Methodology 

As described in the previous section, there exist numerous variations and different factors on how 
the skyline queries can be applied on a set of data in order to extract the decision boundaries. 
Since this is a novel and naïve approach based on skyline search, it can be further improved and 
expanded. The proposed method does not rely on any specific skyline algorithms or index. To 
retrieve the skyline set, the BNL algorithm was chosen for its simplicity, but any other algorithm 
can be used. This way, the proposed method computes one skyline for each class which will 
eventually be part of the decision boundary construction process. 

In an abstract approach, the proposed method has one preprocessing task and three normal tasks 
as follows: 

1. Define origin points. 

2. Identify Skyline points. 

3. Construct decision boundaries. 

4. Perform classification process 

The preprocessing task deals with identifying the origin points (preferences) for which each one 
of the skyline queries will be performed. The first task computes the skyline based on the 
preferences set by the preprocessing task. The second task determines the boundaries based on 
the points returned by the skyline and the third one performs the classification task. Through our 
research we identified four different approaches on how to compute the skyline set and three 
different approaches on how to compute the boundaries. By using different skyline identification 
approaches we study how our method behaves when we retrieve a broader set of skyline points 
and if this assists in the estimation of the decision boundaries. Through the rest of this paper, we 
assume that the datasets consists of two classes (since the proposed method is binominal). As 
our proposed method performs best in big data environments, we targeted on a synthetic dataset 
of 1 M points randomly generated in space, following the Gaussian distribution. From a wide 
number of real datasets, we focused on a dataset that has at least 10,000 records. We note that 
the skyline computation is independent from the underlying distribution 

6.2.1. Define the Origin Points 

In order to compute the skyline set from a dataset, first we must define the preferences. It is 
common in literature, if not mentioned, that the minimization of preferences is desired. In our case, 
since we have a binominal classifier, which classifies an object between two classes, we must 
compute two skylines and thus we must define two origin points. In a 2-dimensional space, we 
have four options as preferences based on the combination of minimizing or maximizing each 
dimension. Each one of these points depicts one of the corners of the dataspace. Thus, in the 
preprocessing, we manually select which corner of the dataspace we would like to be the origin 
for each class, and thus, each skyline that we need to compute. This process could have been 
automated by taking into account the location of classes in space. Nevertheless, there should be 
a different approach for each case in the skyline retrieval that will be described in the following 
subsection. Note that the origin points that are assigned to each class are never on the same 
corner of dataspace. Moreover, in a 2d space there are four corner points and, in a d-dimensional 

space the number of required points is 2𝑑 . Thus, for every experiment we need to perform 2𝑑 
skyline queries. The curse of dimensionality is a common issue in r-trees and skyline queries. 
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6.2.2. Identifying Skyline Points 

Having defined the origin points, we can now compute the skyline for each class. This phase is 
completely independent for each class and thus we can parallelize the whole process. 
Additionally, skyline queries over Hadoop MapReduce are extendedly studied, making our 
method compatible with MapReduce. To accomplish this process, we studied different 
approaches on how we could perform one or more skyline queries in order to get a set of points 
that best describes a decision boundary. 

Among those cases there are the single skyline which performs a single skyline for each class, 
the double skyline, similar to the single skyline, but it computes two skylines for each class, the 
opposite skyline, which tries to retrieve the skyline points that reside in two opposites sides of 
each class and the smart skyline which takes into account the relative location of the two classes 
of the dataset. Each approach has its benefits, like better accuracy, computation time and 
boundary approximation, but this comes to the expense of computation due to multiple skyline 
queries. 

As previously mentioned, we use the BNL algorithm for skyline computation which has 𝑂(𝑘𝑛2) 
complexity. Thus, the complexity of identifying the points that will assist in estimating the decision 
boundaries is 2 ∗ 𝑂(𝑘𝑛2), where k is the number of dimensions and n the cardinality of each class. 
Below we present in detail the four different approaches for skyline computation: 

 

1. single skyline: In this option, we define the origin points and perform a single skyline for 
each cluster, as depicted in Figure 65 (a). This approach performs better in dense data 
as the boundaries can be straightforwardly defined. This is the simplest case with the 

minimum computation cost as 2 ∗ 𝑂(𝑘𝑛2). 

2. double skyline: This case, as seen in Figure 65 (b) is similar to the one above, but it 
computes two skylines for each cluster using the same origins. The process computes the 
first skyline, removes the points from the initial dataset, but stores them in a list and then 
performs the second skyline computation. Then, it merges the points from the two skylines. 
This is done for both Cluster A and Cluster B and when completed, it proceeds to the next 

phase. This approach may have additional overhead as 4 ∗ 𝑂(𝑘𝑛2), but the resulted 
boundaries are more accurate in sparse data. 

 

 

(a) 

 

(b) 

FIGURE 65: (A) THE CASE OF SINGLE SKYLINE; (B) THE CASE OF DOUBLE SKYLINE 

 

3. opposite skyline: The opposite skyline, depicted in Figure 66 (a) tries to retrieve the skyline 
points that reside in two opposite sides of each cluster. In this way, we try to enclose the 
area where the data on each cluster are. Even though this approach may not be desirable 
in many cases, it has very good results even in overlapping clusters, but it has increased 
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overhead as 4 ∗ 𝑂(𝑘𝑛2). An exception to this approach is the need of four origin points, 
two for each cluster which will be in the opposite side. 

4. smart skyline: The smart skyline of Figure 66 (b) takes into account the relative location 
of the two clusters in order to maximize the length of the boundary line. This approach, 
instead of collecting more points in the same vicinity, such as the double skyline, retrieves 
points in such a way that it extends the boundary line around the cluster in order to get 
more chances in dividing them. This method has the same complexity as the double and 
opposite skyline approach. 

 

 

(a) 

 

(b) 

FIGURE 66: (A) THE CASE OF OPPOSITE SKYLINE; (B) THE CASE OF SMART SKYLINE. 

Current research on skyline computation over big data employees MapReduce-based skyline 
query computation approaches and have managed to compute the skyline in up to 10 dimensions 
and 4B records [108]. In such an extreme case, using a uniform distributed dataset, the number 

of skyline points would be approximately 3.5 M, based on θ((lnn)d−1 (d − 1)!⁄ ), where n is the 

cardinality of the dataset, d its dimensionality and 𝜃 denotes the average case scenario and is 
used to calculate the number of skyline points in a normal distribution [188]. It is common in 
skyline query computation that as dimensionality increases, the number of skyline points may 
become too numerous because the chance of one point to dominate another decreases. Taking 
this into account, researchers have proposed approaches to control the output size k of a skyline 
query and retrieve a subset of the original skyline set which holds its properties and maximizes 
insights. Some of those approaches are the Top-k skyline [2, 3], k-representative [62], Distance-
based k-representative [65], ℇ-skyline [68]. In highly demanding datasets where the total number 
k of skyline points exceeds certain thresholds, the aforementioned proposed skyline variants can 
be used instead of the BNL for skyline identification. 

Through our experimentation, we studied the case of large scale convex shaped datasets. 
Reasoning about nonconvex datasets, our method can be applied in cases like the one presented 
in Figure 67 (a) following the same steps as described previously in order to define the origin 
points and retrieve the skyline. In more complex nonconvex datasets like a 2-class banana 
dataset (Figure 67 (b)) the identification of the skyline is more complex. In this case the two origin 
points that can be defined to retrieve the skyline for each class are presented in Figure 67 (b). 
Moreover, for this case, for each origin/query point two skyline queries should be issued to 
properly form the decision boundaries. For the case of Class A, the two skyline queries should be 
issued in the upper left and lower left quadrants. For the case of Class B, the two skyline queries 
should be issued in the upper right and lower right quadrant. Issuing skyline queries in different 
quadrants can be performed by setting the appropriate preferences on minimizing or maximizing 
a dimension. In the case of nonconvex datasets, the variant of constrained skyline queries [2, 3]  
can be found useful in order to form partial boundaries. The case of noncontiguous datasets does 
not affect the skyline identification process and a single origin point can be used for each class 
as described in the general case. 
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(a) 

 
(b) 

FIGURE 67: (A) CONVEX DATASET; (B) BANANA DATASET. 

6.2.3. Decision Boundary Construction 

The boundary construction process uses the skyline points retrieved in the previous step and uses 
them to estimate the decision boundaries. The construction process is based on four different 
approaches as presented below. 

1. SKY-nearest neighbor (SKY–NN): This is the simplest case where the decision is made 
based on the K-NN paradigm (Figure 68 (a)) by retrieving the k nearest skyline points. 
This method does not make any further computations to produce a boundary, but it uses 
the skyline points that were retrieved from the previous step as is. This approach is the 
easiest case to be scaled up in more than two dimensions due to the simplicity and the 
inherited properties of the K-NN paradigm. 

2. Parzen-window method: The Parzen approach, visualized in Figure 68 (b) computes the 
probability that a point belongs to a certain class, based on the set of skyline points. It is 
a probabilistic approach that estimates a distribution or data points via a linear combination 
of kernels centered on the observed points of the skyline. We note that in this case only 
the simple skyline is used and not any variation like the probabilistic skyline. 

 

 

 

(a) 

 

(b) 

FIGURE 68: (A) THE CASE OF SKY-NEAREST NEIGHBOR (SKY-NN) APPROACH; (B) THE CASE OF PARZEN-WINDOW APPROACH. 
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3. Dual curve with Polynomial Curve Fitting: In this method, we use a curve-fitting method to 
compute a curve (polynomial function) Figure 69 that best fits to our data, which in this 
case, are the skyline points. This case computes two curves, one for each class. A factor 
of importance is the degree of the polynomial function. 

 

 
FIGURE 69: THE CASE OF POLYNOMIAL CURVE FITTING APPROACH. 

4. Single curve with Polynomial Curve Fitting: Throughout our experimental phase, we 
observed that many and in some cases even all of the skyline points are a subset of the 
support vectors used by the final SVM (Figure 70 (a)). Based on this observation, this 
approach uses the skyline points identified from the two classes, to compute one curve or 
a straight line in the case presented in Figure 70 (b). This final curve (line) resembles an 
SVM, but it is different. It can be considered as an approximate vector similar to an SVM 
that can be easily computed in big data environments. 

 

 
(a) 

 
(b) 

FIGURE 70: (A) THE SKYLINE POINTS IN COMPARISON TO THE SVM POINTS; (B) THE SEPARATING LINE PRODUCED FROM BOTH SKYLINE 

SETS. 
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6.2.4. Classification Task 

After computing the decision boundaries, the classification phase starts. From the previous phase 
there exist two sets of points or curves that depict to the decision boundaries. During the 
classification process, for each point we want to classify, we compute its distance from each 
boundary line, or its probability based on the skyline points. The exact approach is described 
below. 

1. SKY-Nearest Neighbor (SKY–NN): From each of the two sets of skyline points we retrieve 
the k-closest points to the point under consideration. Its class can be defined based on 
two alternatives, either by majority voting or by computing the total distance of the point 
under consideration from all the selected points of each class. The set from which the 
point has the smallest distance determines its class. 

2. Parzen-window method: This method computes the probability of a point to belong to the 
one or the other class based on the two sets of skyline points that were retrieved. After 
computing the probability for the two sets of skyline points, the method assigns the point 
to the class with the highest probability. 

3. Dual curve with Polynomial Curve-fitting: In this case, there exist two curves and thus two 
polynomial functions. Each function receives as input the x-value of the point under 
consideration. Both functions produce a y-value which is compared to the y-value of the 
point under consideration. The point will belong to the class where its y-value is closer to 
the one produced by the polynomial function. 

4. Single curve with Polynomial Curve-fitting: In this case, we use the skyline points from 
both classes to produce a single curve and in the simplest case that we examine, a straight 
line. The function that represents the line receives the x-value of the point under 
consideration as input. It produces a y-value, which is compared to the y-value of the point. 
Depending on whether or not the y-value under consideration is greater or smaller than 
the y-value produced by the function we can infer the class that the point belongs to. 

As described and presented with the previous figures, the model can be easily visualized and 
explained. This gives the user the ability to understand its structure and explain its output reducing 
the chances to produce a biased algorithm. Moreover, the boundaries can be easily transferred 
either in the form of a set of points or in a polynomial function and re-optimized easily in a new 
system if needed. Note that the computation of skylines on each class is independent and thus 
parallelization can be achieved. Since the proposed method is based on skyline queries, it is 
applicable in every environment that the skyline queries exist, like the text dataspace, which has 
an alphanumerical order. 

The most important fact is that the skyline queries produce a small number of points, relative to 
the original dataset thus, the proposed method uses a very small number of points from the 
original dataset to estimate the boundaries. More precisely, in a 2 M dataset with two balanced 
classes our approach needs 14 points for each, which equals to 28 points in total. The small 
number of points needed to define the boundaries consecutively leads to a small number of 
computations during the identification of the class of a new point. 

6.3.  Experiments 

This section presents the time needed to perform a classification task and the accuracy of our 
proposed method. Our intention is to show how this method behaves in close or overlapping 
clusters since in separable clusters 100% accuracy can be achieved. In this study we focused on 
two dimensional datasets since the case of high dimensional datasets would be greatly benefit by 
additionally studying if and how the representative and approximate skyline query computation 
approaches would assist in the computation of decision boundaries. In our experimentation, we 
used three synthetic and one real dataset consisting of a large number of points in order to 
describe how our method behaves in big data environments. Both datasets consist of two 
balanced classes. The synthetic datasets are randomly generated following a Gaussian 
distribution, the classes have a varying overlapping factor in order to demonstrate how our method 
performs and consists of 1 M points in total. The real dataset can be retrieved from [463] and has 
labeled data that describes if a person is female or male based on their height and weight. It 
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consists of 10,000 points and its classes have a high level of overlap. For a ground truth accuracy 
on the three datasets, we performed a classification task using python open-source tools for 
applying the k-NN, naïve Bayes and SVM classifiers. In the case of the SVM classifier we used a 
linear kernel and a C-value of 1. We selected those classifiers because they resemble the SKY–
NN, Parzen and polynomial fit approaches that we follow. The proposed method is implemented 
in Java SE and all the experiments were performed with an Intel Core i5 with 6 GB RAM. 

For the synthetic datasets that consist of 1 M points the naïve Bayes approach finished in less 
than a second, the SVM took several minutes (Table 28 with time in milliseconds) and the k-NN 
did not finish in a reasonable time. This behavior reveals the problems that arise in a classification 
task due to the large number of computations needed in an environment with a large number of 
points. In terms of accuracy, both naïve Bayes and SVM achieved 100% accuracy as presented 
in Table 29. For the real dataset which consists of 10,000 points all algorithms were able to 
produce a result in a reasonable time (Table 28 with time in milliseconds). Their accuracy is 
around 90% (Table 29) since the classes of the dataset have a high degree of overlap. 

 

 k-NN Naïve-Bayes SVM 

Synthetic Dataset I (in ms) DNF 918 362,255 

Synthetic Dataset II (in ms) DNF 449 173,397 

Synthetic Dataset III (in ms) DNF 493 175,627 

Real Dataset (in ms) 500 20 1500 

TABLE 28: TIME NEEDED TO COMPUTE THE DECISION BOUNDARIES. 

In section 6.2 we discussed about the approaches of retrieving the skyline points in order to 
construct the boundaries and perform the classification process. Nevertheless, there are many 
fine-tune approaches on how many or which of the skyline points are needed to be used in the 
decision process for each point. Retrieving the k-NN skyline points requires 𝑂(𝑛)  time and 

assuming that there are m points to be classified, the total overhead will be 𝑚 ∗ 𝑂(𝑛) . The 
complexity of the polynomial curve-fitting approach depends on the method that is selected. 

 

 k-NN Naïve-Bayes SVM 

Synthetic Dataset I (in ms) DNF 100.00 100.00 

Synthetic Dataset II (in ms) DNF 100.00 100.00 

Synthetic Dataset III (in ms) DNF 100.00 100.00 

Real Dataset (in ms) 91.13 87.97 92.13 

TABLE 29: ACCURACY WITH PYTHON AND R FRAMEWORK. 

After we outlined the various approaches that can be followed, we present (Table 30 and Table 
31) the total time (in milliseconds) needed to identify the boundaries and perform a classification 
task, using three skyline points. For the polynomial case, the degree of the function is two. As 
presented the SKY–NN method is the fastest, while the Parzen performs better in larger datasets 
and the polynomial approach in smaller ones. Because the SKY–SVM is not applicable with 
opposite skyline, for continuity, the time and accuracy metrics will be presented at the end of each 
subsection that follows. 

 

Skyline Mode SKY-NN Parzen Polyn. 

Single 2751 3999 12,438 

Double 5423 6513 11,306 

Opposite 4659 5180 13,048 

Smart 4256 5360 15,833 
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TABLE 30: TOTAL TIME NEEDED ON AVERAGE TO PERFORM A CLASSIFICATION TASK ON THE SYNTHETIC DATASETS. 

 

Skyline Mode SKY-NN Parzen Polyn. 

Single 57 103.56 89.6 

Double 180.9 251.07 225.32 

Opposite 117.87 201.65 178.9 

Smart 70.16 160.58 105.3 

TABLE 31: TOTAL TIME NEEDED TO PERFORM A CLASSIFICATION TASK ON THE REAL DATASET. 

Taking into account the previously mentioned state-of-the-art classifiers, our method is faster than 
the k-NN and the SVM, but slower than the naïve Bayes. In terms of accuracy, as it will be 
presented, it achieves remarkable results achieving 100% accuracy in many cases. Those results 
are achieved at a reasonable time by using a small number of points, during the classification 
process, due to the skyline. This is ideal for a classification task in a big data environment allowing 
our approach to scale up in even bigger datasets where an k-NN or an SVM classifier may struggle 
to perform. 

6.3.1. Synthetic Dataset I 

The synthetic dataset (Figure 71) was constructed to have a large number of points in order to 
present how the method behaves in classifying a large dataset. The first of the synthetic datasets 
(Figure 71) is the one that stresses our method the most since the two classes slightly overlap. 

 

 

FIGURE 71: THE SINGLE SKYLINE ON THE SYNTHETIC DATASET I. 

As presented in Table 32, Table 33, Table 34, Table 35, the Parzen approach outperforms the 
SKY–NN approach. This reveals that in this slightly overlapping scenario the distance metric that 
is used in the SKY–NN approach does not always infer the correct prediction in comparison to 
the probabilistic nature of the Parzen approach. As far as the skyline identification method the 
single (Table 32) and double (Table 33) skyline approaches perform worse than the opposite 
(Table 34) and smart (Table 35) skyline, especially when the number k of selected points is small. 

 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 73.24 85.77 89.76 86.71 84.83 83.17 
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Parzen (%) 94.66 99.70 99.91 99.98 99.99 99.99 

TABLE 32: SINGLE SKYLINE ON SYNTHETIC DATASET I. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 91.01 93.87 93.87 93.78 93.48 93.23 

Parzen (%) 99.06 99.68 99.83 99.86 99.89 99.91 

TABLE 33: DOUBLE SKYLINE ON SYNTHETIC DATASET I. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 99.99 99.99 99.99 99.99 99.99 99.99 

Parzen (%) 99.94 99.96 99.98 99.99 99.99 99.99 

TABLE 34: OPPOSITE SKYLINE ON SYNTHETIC DATASET I. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 99.98 99.98 99.98 99.98 99.97 99.96 

Parzen (%) 99.97 99.99 99.99 100 99.99 100 

TABLE 35: SMART SKYLINE ON SYNTHETIC DATASET I. 

The polynomial curve-fitting approach (Table 36) shows that even with a small degree polynomial 
curves the method performs well, and its accuracy increases as the polynomial degree increases 
since it better describes the overlapping regions. From all the skyline approaches, the single 
skyline performs best, since the selected skyline points best describe the boundaries. 

 

Degree 
Single 

Skyline 

Double 

Skyline 

Opposite 

Skylines 

Smart 

Skylines 

2-nd 95.42 99.87 94.44 82.50 

3-rd 98.57 60.60 99.82 98.39 

5-th 99.92 99.86 99.72 97.99 

7-th 99.92 99.33 99.81 93.49 

8-th 99.95 99.86 99.91 99.90 

11-th 99.99 99.97 99.93 99.92 

TABLE 36: POLYNOMIAL CURVE FITTING ON SYNTHETIC DATASET I. 

The Table 37 shows that the SKY–SVM approach is very accurate and performs better than the 
polynomial curve-fitting approach. Despite that the SKY–SVM is slower that the SKY–NN and 
Parzen approach. 

 

Method Single Skyline Double Skyline Smart Skylines 

Accuracy 99.99 99.92 97.65 

Time 7270 8068 8182 

TABLE 37: SKY-SVM ON SYNTHETIC DATASET I. 

6.3.2. Synthetic Dataset II 

The second synthetic dataset (Figure 72) is an easier case than the previous one for our method, 
since the classes are very close, but not overlapping. In the single skyline (Table 38) the 
probabilistic approaches perform better. The double skyline (Table 39), which defines the 
boundaries better by using more points, works considerably better than all the methods, while the 
methods on Table 40 and Table 41 perform very well even with a small k value 
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FIGURE 72: THE SINGLE SKYLINE ON THE SYNTHETIC DATASET II. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 99.98 99.96 99.87 99.82 99.75 99.69 

Parzen (%) 100 100 100 100 100 100 

TABLE 38: SINGLE SKYLINE ON SYNTHETIC DATASET II 

Method 
K 

1 2 3 4 5 6 

SKY-NN (%) 100 100 99.99 99.99 99.98 99.97 

Parzen (%) 100 100 100 100 100 100 

TABLE 39: DOUBLE SKYLINE ON SYNTHETIC DATASET II. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 100 100 100 100 100 100 

Parzen (%) 100 100 100 100 100 100 

TABLE 40: OPPOSITE SKYLINE ON SYNTHETIC DATASET II. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 100 100 100 100 100 100 

Parzen (%) 100 100 100 100 100 100 

TABLE 41: SMART SKYLINE ON SYNTHETIC DATASET II. 

This time, for the polynomial curve-fitting approach (Table 42), we present the cases where the 
minimum polynomial degree can achieve the best results. In this case, even a 2nd degree 
polynomial achieves 100% accuracy. 

 

Degree 
Single 

Skyline 

Double 

Skyline 

Opposite 

Skylines 

Smart 

Skylines 

2-nd 100.00 100.00 99.94 100.00 

3-rd 33.62 100.00 99.44 72.88 

TABLE 42: POLYNOMIAL CURVE FITTING ON SYNTHETIC DATASET II. 
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Table 43 presents the accuracy and the time needed by the SKY–SVM method to perform a 
classification task. The method performs better than in the Dataset I with slightly better time. 

 

Method Single Skyline Double Skyline Smart Skylines 

Accuracy (%) 100 100 99.90 

Time (ms) 7719 8779 7864 

TABLE 43: SKY-SVM ON SYNTHETIC DATASET II. 

6.3.3. Synthetic Dataset III 

The third and last synthetic dataset Figure 73) is the easiest case for our method, since the 
classes have a degree of clearance between them in such a way that a straight line could easily 
distinguish them. In this case all the approaches (Table 44, Table 45, Table 46, Table 47) and 
especially the one of Table 44 and Table 45 perform very well. 

 

 

FIGURE 73: THE DATASET III. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 99.95 99.91 99.96 99.97 99.98 99.97 

Parzen (%) 99.68 99.79 99.86 99.93 99.97 99.98 

TABLE 44: SINGLE SKYLINE ON SYNTHETIC DATASET III. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 99.99 99.98 99.99 99.99 99.99 99.99 

Parzen (%) 99.84 99.85 99.86 99.86 99.86 99.88 

TABLE 45: DOUBLE SKYLINE ON SYNTHETIC DATASET III. 

Method 
k 

1 2 3 4 5 6 

SKY-NN (%) 100 100 100 100 100 100 

Parzen (%) 100 100 100 100 100 100 
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TABLE 46: OPPOSITE SKYLINE ON SYNTHETIC DATASET III. 

Method 
k 

1 2 3 4 5 6 

SKY-NN 100 100 100 100 100 100 

Parzen 100 100 100 100 100 100 

TABLE 47: SMART SKYLINE ON SYNTHETIC DATASET III. 

Again—as with the previous approaches—the polynomial curve-fitting approach (Table 48), 
performs very well for a 3rd degree polynomial. 

 

Degree Single Skyline Double Skyline Opposite Skylines Smart Skylines 

2-nd 100 100 100 100 

TABLE 48: POLYNOMIAL CURVE FITTING ON SYNTHETIC DATASET III. 

Table 49 reveals that the SKY–SVN with the single skyline is the fastest and more accurate 
between the double and smart skyline. 

 

Method Single Skyline Double Skyline Smart Skylines 

Accuracy (%) 100 100 99.97 

Time (ms) 7763 10019 10229 

TABLE 49: SKY-SVM ON SYNTHETIC DATASET III. 

6.3.4. Real Dataset 

The real dataset (Figure 74) is the one that stresses our method the most since the classes have 
a high degree of overlap. Additionally, as it will be presented, the correlated nature of the classes 
also affects the performance of our methods. In this case the value of k skyline points that are 
selected for the classification task varies from 7 to 13, since it gives more accurate results. 

 

 

FIGURE 74: THE REAL DATASET. 
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As presented in Table 50, in this scenario the SKY–NN approach performs better than the Parzen 
approach. In addition, the SKY–NN method needs less Skyline points to infer to a correct result 
than the Parzen method showing that the SKY–NN method is more suitable in cases where the 
dataset is corelated. The double (Table 51) and opposite (Table 52) skyline perform worse than 
the single and the performance of the Parzen approach degrades significantly. This is due to the 
large number of skyline points produced that do not always infer the correct result. The SKY–NN 
method with the smart (Table 53) skyline has slightly better results than the double and opposite 
skyline even with a smaller number of skyline points meaning that the smart skyline defines the 
boundaries better with fewer points in this case. Overall, the single and smart skyline have 
comparable results on this dataset. 

 

Method 
k 

7 8 9 10 11 12 13 

SKY-NN (%) 92.40 91.80 91.30 90.83 90.87 90.80 90.93 

Parzen (%) 71.67 72.73 77.27 83.20 86.37 87.40 87.67 

TABLE 50: SINGLE SKYLINE ON REAL DATASET. 

Method 
k 

7 8 9 10 11 12 13 

SKY-NN (%) 86.66 85.96 86.1 86.4 86.3 86.3 86.1 

Parzen (%) 65.66 67.2 69.13 71.8 74.36 76.76 78.56 

TABLE 51: DOUBLE SKYLINE ON REAL DATASET. 

Method 
k 

7 8 9 10 11 12 13 

SKY-NN (%) 87.66 88.1 88 88.1 88.06 87.76 87.23 

Parzen (%) 62.76 62.23 61.46 60.66 61.06 61.8 64.56 

TABLE 52: OPPOSITE SKYLINE ON REAL DATASET. 

Method 
k 

7 8 9 10 11 12 13 

SKY-NN (%) 89.46 89.23 89.06 88.76 89 89.03 89.06 

Parzen (%) 76.32 77.23 82.247 88.4 91.32 92.5 92.78 

TABLE 53: SMART SKYLINE ON REAL DATASET. 

The polynomial curve-fitting approach (Table 54) shows that in this case a small degree 
polynomial gives better results in comparison to the case of the synthetic dataset. 

 

Degree 
Single 

Skyline 

Double 

Skyline 

Opposite 

Skylines 

Smart 

Skylines 

2-nd 87 72 69 86 

3-rd 82.04 68 65 81.5 

TABLE 54: POLYNOMIAL CURVE FITTING ON REAL DATASET. 

The accuracy of the SKY–SVM approach for the real dataset is presented in Table 55. As with 
the synthetic dataset the SKY–SVM approach is very accurate but takes more time to infer to a 
result than the SKY–NN and Parzen approach. In this case the single and smart skyline have 
similar results. 

 

Method 
Single 

Skyline 

Double 

Skyline 

Smart 

Skylines 

Accuracy (%) 90.06 85.3 90.03 
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Method 
Single 

Skyline 

Double 

Skyline 

Smart 

Skylines 

Time (ms) 87.5 100.5 99.8 

TABLE 55: SKY-SVM ON REAL DATASET. 

With the use of the three synthetic datasets we present that the factor of distance between the 
classes does not affect the final result as opposed to the overlapping factor of classes. Based on 
Dataset II and III, which are not overlapping and have a variable distance between the classes, 
we see that all the proposed approaches can always infer to a correct result. In the case of the 
Dataset I for which the classes slightly overlap, we can see that the methods which are affected 
the most are the single and double skyline which need a larger number of k to infer to a correct 
result, while the opposite and smart can still infer the correct result even with a small number of 
k. The use of larger k-value due to the overlapping nature of classes is also presented in the case 
of the real dataset. 

Overall, the SKY–NN approach is faster than the Parzen approach, while the number of k selected 
skyline points affects both methods. In addition, the SKY–NN performs better in small datasets 
while the Parzen in the bigger ones. In a correlated dataset, the SKY–NN performs better with 
fewer skyline points while the Parzen approach performs better in non-correlated datasets. The 
Polynomial approach works best when the polynomial function can describe the boundaries of 
the dataset and, in general, it is slower than the SKY–NN and Parzen method. The correlation of 
the dataset affects the degree of the polynomial function. The SKY–SVM approach is the slowest 
method and is not affected by the correlation but achieves very good results. In cases where the 
classes of the dataset have a high degree of overlap, we need to use more skyline points to infer 
in a correct result. The single skyline approach almost in all cases achieves very good results with 
the least cost. The double and opposite skyline in many cases achieve very good results, but the 
cost is double. The smart skyline is a good alternative to the single skyline which, with small 
number of additional skyline points, can achieve better results. 

6.4.  Conclusions and Future Work 

To the best of author’s knowledge, this is the first work that studies the use of skyline queries in 
a classification process. Through our experimentation we showed that the proposed method is 
faster than the k-NN and the SVM, but slower than the naïve Bayes, yet having comparable 
accuracy when classifying large datasets. The full potential of our proposed method is visible on 
big datasets in which the decision boundaries are better described, and the number of points 
selected by the skyline operator, in comparison to the whole dataset, is small. Due to the small 
number of points used to describe the decision boundaries, our approach needs to perform only 
a small number of comparisons in order to infer the correct class. This makes our approach fast 
and capable of handling very large datasets for which the performance of other classifiers 
degrades. This was presented with the case of the K-NN approach, which did not succeed to infer 
in a result at a reasonable time for the case of 1 M synthetic datasets. With the use of different 
skyline identification methods, we showed that with a broader set of skyline points we can achieve, 
in some cases, better results, but with additional computation cost. Our approach can also 
parallelize the decision boundary computation since we can compute independently and in 
parallel the skyline for each class which can be beneficial when using big data technologies like 
Hadoop. In addition, the decision boundaries can be easily updated and optimized due to the 
small number of points that consists them. Moreover, due to the properties and variants of the 
skyline, the number of points will remain small despite the increase of the dataset size or the 
dimensionality. Finally, the decision boundaries can be easily visualized and interpreted by a 
human being allowing him to fully understand the reason for which our approach inferred to a 
specific result in each case. 

Furthermore, our approach could be expanded by defining a metric of uncertainty in the 
classification process. Based on this metric the proposed method could automatically classify 
points and simultaneously compute a factor of uncertainty in every decision. If the uncertainty for 
classifying a given point drops to a certain threshold, human assistance could be requested. The 
user could easily identify the class and allow the system to refine the decision boundaries instantly 
and on the fly.  
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Finally, in this work we studied the case of high cardinality datasets. A future research approach 
is to study the case of high dimensional and high cardinality datasets which stresses the notion 
of skyline queries even more. In the case of high dimensional spaces in conjunction with high 
cardinality datasets the skyline query might return a large number of points that do not necessarily 
contribute, in respect with the other points of the skyline set, in defining a better decision boundary. 
In such a case, we can study if the approximate and representative skyline approaches can help 
in defining an accurate decision boundary, more efficiently, with a reduced set of skyline points. 
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

This section concludes about the research conducted in this PhD Thesis and additionally presents 
some future directions for research in skyline queries based on the work presented. 

7.1. Conclusions 

In many cases, the amount of information available and the rate of change may hide the optimal 
and truly desired solution. This reveals the need of a mechanism that will highlight the best options 
to choose among every possible scenario. Based on this the skyline query, which can be 
considered as a multi-objective optimization approach in database systems, was proposed. The 
skyline queries have a great importance in retrieving the optimal set from a given dataset, under 
give criteria. This mechanism is based on Pareto Optimality and retrieves the best options of a 
dataset by identifying the objects that present the optimal combination of the characteristics of the 
dataset. The research community is working in numerous topics in the field of skyline queries . As 
the technology advances some of these topics are Parallel and Distributed Computing, Big Data 
environments, Data Mining and Machine Learning which gives  the opportunity of research in 
cutting edge research areas. 

This PhD Thesis tries to give a horizontal overview on the research area of skyline queries 
reasoning about data, big data, big data management and supervised learning, under the 
spectrum of skyline queries which is a multi-objective optimization approach that can be part of 
decision support system. The main contribution of this Thesis is focused on five different topics: 

 

• study the state-of-the art work on skyline queries to identify the research community trends 
and interests 

• analyse the various data sources and the requirements that a maritime information system 
has  

• propose a new skyline query method that considers the temporal properties of the dataset  

• research new approaches in handling data over big data environments and especially in 
SpatialHadoop  

• efficient estimate the decision boundaries in a classification process  

 

A first step on our research approach was to study the state-of-the art work related to the skyline 
family and the various applications that were proposed based on numerous environments and 
data-specific applications. This led to the work, 

• Kalyvas, C., & Tzouramanis, T. (2017). A survey of skyline query processing. arXiv preprint 
arXiv:1704.01788.   

through which we identified the research trends that revealed the topics that are most interesting 
in the research community. 

The next step was to study the nature of the data that exist in order to understand the overall 
complex nature of them and identify key areas of research that lead to the work, 

• Kalyvas, C., Kokkos, A., & Tzouramanis, T. (2017). A survey of official online sources of high-quality 
free-of-charge geospatial data for maritime geographic information systems applications. 
Information Systems, 65, 36-51 

through which we identified the complexity of combining data from different sources, that time and 
location are the common key dimensions in almost every dataset and the need of new queries 
and the deployment of existing ones over new environments. 

From those two studies we manage to identify three research topics related to skyline queries 
over temporal data, big data environments and supervised learning. The first of those studies, as 
presented in, 
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• Kalyvas, C., Tzouramanis, T., & Manolopoulos, Y. (2017, April). Processing skyline queries in 
temporal databases. In Proceedings of the Symposium on Applied Computing (pp. 893-899).  

reasons about the time variable over skyline queries and how this impacts the skyline result set. 
The next study reasons about the need of spatial-aware big data processing environments and 
how this can assist in the computation of skyline and the resource intensive reverse skyline query, 
as presented in  

• Kalyvas, C., & Maragoudakis, M. (2019). Skyline and reverse skyline query processing in 
SpatialHadoop. Data & Knowledge Engineering, 122, 55-80.  

Finally, through the first two studies we came across the difficulty in finding and producing labeled 
data that lead as to propose a new mechanism to identify decision boundaries and classify data 
using the properties of skyline queries, as presented in   

• Kalyvas, C., & Maragoudakis, M. (2020). A Skyline-based Decision Boundary Estimation Method 
for Binominal Classification in Big Data. Computation, 8.3:80.  

• Kalyvas, C., & Maragoudakis, M. (2020, September). A Skyline-based Decision Boundary 
Estimation Method for Binominal Classification in Big Data. In 2020 5th South-East Europe Design 
Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-
CECNSM). IEEE. 

 

An overview of the contribution of this Thesis is presented in Table 56.  

 
Objective Chapter Contribution Publication 

1 2 

An extensive study on the skyline queries, its variations 
that consists the skyline family and the various approaches 
that are applicable in specific environments and useful 
insights on open research topics that skyline queries can 
be applied. 

[464] 

2 3 

An extensive study, classification, analysis of restrictions in 
use and distribution on the various available data sources 
that can be used in a maritime information system and 
useful insights on open research topics that skyline 
queries can be applied. 

[451] 

3 4 
The proposal of a new type of skyline query named 
“Temporal Skyline” which integrates the dimension of time 
in a skyline query  

[465] 

4 5 
The proposal of Skyline and Reverse Skyline Queries over 
the SpatialHadoop which encompasses indexing 
mechanisms in Hadoop 

[108] 

5 6 
The proposal of a decision boundary estimation method 
that is based on skyline queries for binominal classification 

[115, 116] 

TABLE 56: OVERALL PHD THESIS CONTRIBUTIONS 

Overall, the extensive study on [464] present the state of the art work related to skyline query 

computation. At first it presents the fundamental algorithms in skyline query computation and the 
basic distinction between index and non-index-based algorithms. This work also highlights the 
two different approaches of research in skyline queries. The first approach is related with the need 
to answer queries that are similar to the skyline queries and thus forming a family of skyline-
related queries Some of the queries that form the skyline query family are the Constrained Skyline 
Queries, Dynamic Skyline Queries (DSQ), Spatial Skyline Queries (SSQ), Reverse Skyline 
Queries (RSQ), Group-by and Join Skyline Query, Skyline Queries Over Joins, Top-k Skyline 
Query, Thick Skyline Query, K-representative and Distance-based Representative Skylines, ε-
Skyline, Enumerating and k-dominant Queries and the k-Skyband Queries.The second approach 
tries to find solutions for applying the skyline query in specific environments. Those environments 
can be parallel and distributed computing, wireless sensor networks and subspace skyline 
computation or data specific environments like skyline queries over uncertain data or metric 
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spaces. Moreover, this study highlights the research direction on skyline queries and assists the 
reader to identify the research gaps that are needed to be studied. 

Due to the large research related to data-related application of skyline queries a study was 
conducted [451] to give a better understanding of which are the major data types that exist and 

identify the need to propose new queries to answer specific questions. Alongside, the restriction 
on use and distribution of those data was studied. Through this study was identified that time is 
an important aspect of data giving us the opportunity to study the skyline queries over temporal 
data. Furthermore, most of the datasets have a very large number of rows directing us that there 
is the need to study the skyline queries over the field of big data. Since we did not identify a large 
number of streaming data, we studied the case of skyline queries over Hadoop based 
environments. Finally, the problem of finding and creating label dataset in big data environments 
lead us to propose a skyline-based decision boundary estimation method. 

As previously mentioned, the variable of time is an important aspect of data. Based on this 
observation the temporal skyline [465], tries to answer the skyline query taking into account time. 

The temporal skyline differentiates from the original BBS algorithm and uses the 3d-Rtree instead 
of the standard R-tree and additionally uses a modified dominance function. One example in 
which the temporal skyline can be very useful is the case of a hotel reservation system in which 
the availability and price of rooms heavily depends on the date. Through our study we identified 
that the results of temporal skyline queries can be quite different from the original skyline providing 
more useful results to the user. In addition, depending on the nature of the dataset and the 
existence of many unique intervals the size of the resulted query may be affected More 
particularly, in the extreme case where all time intervals in the dataset are distinct and non-
overlapping the algorithm must traverse the entire tree and return all points. In this case Big Data 
processing approaches may be suitable. In the extreme case where all the time intervals are 
identical, the algorithm becomes the initial simple skyline query. 

One of the technologies that was created to efficiently handle big data is Hadoop. With the broad 
adoption of Hadoop researchers continued to explore new ways to improve and expand its 
capabilities. One of the existing research directions is to design new technologies that incorporate 
well known indexing mechanisms into Hadoop. One of those technologies is SpatialHadoop which 
is continuously enhance with new type of queries. Based on this, in [108] we proposed an 

improved skyline query algorithm and enchased SpatialHadoop with reverse skyline queries. In 
this way we showed that we can perform skyline and reverse skyline queries over very large 
datasets by using the indexing capabilities of SpatiaHadoop. Through this work we identified that 
SpatialHadoop is a great framework to experiment with various queries over MapReduce since it 
supports a large number of indexes and space-filling curves, it can efficiently compute the 
resource demanding reverse skyline query and since it indexes the datasets can answer 
consecutive queries faster in comparison to cases with a non-indexed dataset. 

At last, taking into account the rapid advances in data mining and machine learning we observed 
that skyline queries can be effectively used in a classification process. Based on the optimality of 
the skyline queries we used the skyline points to form the decision boundaries in a binominal 
classification process [115, 116]. The benefits of this approach is that the skyline set of points is 

small even in large datasets thus, the number of comparisons needed to infer to a result in a 
classification process will be small allowing the proposed method to be deployed in big data 
environments where the size of the dataset is very large. Moreover, the small number of points, 
that form the decision boundaries, makes the re-use and transferring and updating of boundaries 
an easy task. In overall, the SKY-NN approach is faster than the Parzen approach, while the 
number of k selected skyline points affects both methods. SKY-NN performs better in correlated 
datasets while the Parzen approach performs better in non-correlated. The SKY-SVM approach 
has consistent highly accurate results but is slower than the SKY-NN and Parzen approach. In 
addition, with high degree of overlap, more skyline points are needed with the most affected 
methods to be the single and double skyline. Through our study we have sawn better results with 
different skyline identification methods but with additional computation cost. 
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7.2. Future Directions 

This PhD Thesis has contributed in the fields of data discovery, data management, big data 

processing, data mining and machine learning. Through the study of the state of the art work in 

the field of skyline queries [464] and the analysis of the various data sources [451] that exist, in 

relation to a maritime information system, we identified a large number of research topics that 

could be further studied. The first research topics among those involve the enhancement of the 

skyline query family with temporal skyline queries [465], taking into account the parameter of time 

which is quite of an importance in data analytics. The second one involved the identification of 

specialized indexing structures, like SpatialHadoop for big data processing and the proposal of 

algorithms for computing the skyline and the even more resource demanding reverse skyline 

query over large datasets [108], like the OpenStreetMap All_nodes. The third one, due to the issue 

of lacking large sets of labeled data, lead us to use the properties of skyline queries to build a 

classifier that efficiently works under big data environments and efficiently estimates decision 

boundary [115, 116].  

In addition to the woks [465], [108], [115, 116] derived from the data analysis [451] and the state-

of-the-art work in skyline queries [464] numerous potential research topics where derived. Related 

with Temporal skylines [465] the future work involves a study on the impact on the performance 
of the queries under the existence of many objects with relatively small or large time interval 
lifespans , the introduction of efficient algorithms for extending other skyline query variants that 
can be also applied to temporal data and the support of the so called why-not reverse skyline 
query that will aim to make a product (time-varying query point) interesting to a customer (time-
varying why-not point) by modifying the product features (query attributes) and/or the customer 
preferences.  

With regards the work on SpatialHadoop, a future study would involve the proposal of algorithms 
for similar queries such as reverse k-skyband and ranked reverse queries over SpatialHadoop. In 
addition, since SpatialHadoop is also capable of supporting temporal data, the temporal skyline 
and temporal reverse skyline query can be studied. Moreover, a future study would involve the 
applicability and performance aspects of the z-order based skyline algorithm Z-SKY and the 
Quad-Tree based skyline algorithm in comparison to MapReduce SKY-MR. Finally, it can be 
studied if ANN (Approximate Nearest Neighbor) mapreduced-based approaches are useful in 
identifying skyline queries in SpatialHadoop and Hadoop in general. 

With regards to the work related with the decision boundary estimation through the use of skyline 
queries a future work involves the expansion of the proposed approach by defining a metric of 
uncertainty in the classification process. If the uncertainty for classifying a given point drops to a 
certain threshold, human assistance could be requested. Finally, a separate study should be done 
to identify if and how the proposed approach can assist in training of Neural Networks. 

Based on the outcomes of this PhD Thesis we identified the following major future research 
directions: 

 

• Temporal skyline over SpatialHadoop – The temporal skyline [465] retrieves the skyline 
query taking into account the dimension of time. Nevertheless, if the time intervals on the 
dataset are distinct the temporal skyline will return a large part of the dataset. This can be 
computationally intensive in very large datasets. Since SpatiaHadoop development is 
working to add the time parameter in their indexing mechanism a great future research 
direction would be to enhance SpatialHadoop with temporal skyline queries. 

• Skyline queries and neural networks - Since neural networks have gained attentions again 
the attention of the research community after the AI winter, a good research approach 
would be to investigate the detection of skyline points through the use of neural networks. 
Such an approach could infer with high probability if a point belongs to the skyline set. 
Similar approaches [466] try to reduce the search space by using skyline filters based on 
neural networks.   
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• Intelligent big data management – The latest trends on database research and machine 
learning have come up with new database systems [467] that take into account the 
distribution of data. A core part of this implementation is the use of learned sorting 
algorithms [468]. Since there are numerous skyline algorithms that rely on the sorting of 
the dataset to identify the skyline an interesting research direction would be to study the 
use of this sorting algorithm in skyline query computation. 

• Data representation – Through our research on the data sources we identified that storing, 
managing and processing such vast information is a complicated task. One trade-off 
between the information that those datasets provide in total is accuracy over time. A 
primary goal would be to study how accurate we want our data to be in different real-life 
applications and if the accuracy we want depends on time. Then, through sampling or 
pattern extraction techniques we can maintain a fair trade between accuracy and dataset 
size for each real-life application. The reduced dataset size will allow us to makes 
computations, predictions or pattern identification faster allowing us to find better solutions 
in less time. 

• Decision Optimization - Skyline queries are a multi-objective optimization approach that 
retrieves the optimal solutions over a large number of possible solutions. In many cases 
the objectives are contradicting which is usual in decision making. In addition, there are a 
lot cases that decisions are made under biased environments. The use of skyline queries 
can assist in identifying the optimal solutions in order to make a more precise and bias- 
free decision. 
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