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Abstract

Uncertainty is endemic in geospatial data due to the imperfect means of recording,
processing, and representing spatial information. Propagating geospatial model inputs
inherent uncertainty to uncertainty in model predictions is a critical requirement in each
model’s impact assessment and risk-consious policy decision-making. It is still extremely
difficult, however, to perform in practice uncertainty analysis of model outputs, partic-
ularly in complex spatially distributed environmental models, partially due to computa-
tional constraints. In the field of groundwater hydrology, the ”stochastic revolution” has
produced an enormous number of theoretical publications and greatly influenced our per-
spective on uncertainty and heterogeneity; it has had relatively little impact, however, on
practical modeling. Monte Carlo simulation using simple random (SR) sampling from a
multivariate distribution is one of the most widely used family of methods for uncertainty
propagation in hydrogeological flow and transport model predictions, the other being an-
alytical propagation. Real-life hydrogeological problems however, consist of complex and
non-linear three dimensional groundwater models with millions of nodes and irregular
boundary conditions. The number of Monte-Carlo runs required in these cases, depends
on the number of uncertain parameters and on the relative accuracy required for the
distribution of model predictions. In the context of sensitivity studies, inverse modelling
or Monte-Carlo analyses, the ensuing computational burden is usually overwhelming and
computationally impractical. These tough computational constrains have to be relaxed
and removed before meaningful stochastic groundwater modeling applications are possi-
ble.

A computationally efficient alternative to classical Monte Carlo simulation based on
SR sampling is Latin hypercube (LH) sampling, a form of stratified random sampling.
The latter yields a more representative distribution of model outputs (in terms of smaller
sampling variability of their statistics) for the same number of input simulated realiza-
tions. The ability to generate unbiased LH realizations becomes critical in a spatial
context, where random variables are geo-referenced and exhibit spatial correlation, to
ensure unbiased outputs of complex models. On this regard, this dissertation offers a
detailed analysis of LH sampling and compares it with SR sampling in a hydrogeological
context. Additionally, two alternative stratified sampling methods, here named stratified
likelihood (SL) sampling and minimum energy (ME) sampling, are examined (proposed
in a spatial context) and their efficiency is further compared to SR and LH in a hydro-
geological context; also accounting for the uncertainty related to the particular model at
hand via a two step sampling method. All three stratified sampling methods (accounting
for model sensitivity in the second case study) were found in this work to be more efficient
than simple random sampling.

Additionally, this thesis proposes a novel method for the expansion of the application
domain of LH sampling to very large regular grids which is the common case in environ-
mental (hydrogeological or not) models. More specifically, a novel combination of Stein’s
Latin Hypercube sampling with a Monte Carlo simulation method applicable over high
discretization domains is proposed, and its performance is further validated in 2D and
3D hydrogeological problems of flow and transport in a mid-heterogeneous porous media,
both consisting of about 1 million nodes. Last, an additional novel extension of the pro-
posed LH sampling on large grids is adopted for conditional high discretized problems.
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In this case too, the performance of the proposed approach is evaluated in a 3D hydroge-
ological model of flow and transport. Results indicate that both extensions (conditional
and not) of LH sampling on large grids facilitate efficient uncertainty propagation with
fewer model runs due to more representative model inputs.

Overall, it could be argued that all the proposed methodological approaches could
reduce the time and computer resources required to perform uncertainty analysis in hy-
drogeological flow and transport problems. Additionally, since it is the first time that
stratified sampling is performed over high discretization domains, it could be argued that
the proposed extensions of LH sampling on large grids could be considered a milestone for
future uncertainty analysis efforts. Moreover, all the proposed stratified methods could
contribute to a wider application of uncertainty analysis endeavors in a Monte Carlo
framework for any spatially distributed impact assessment study.
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Chapter 1

Introduction

Geostatistics and spatial statistics (Journel and Huijbregts, 1978; Ripley, 1981; Cressie,
1993) is a branch of multivariate statistics that deals with the analysis and modeling
of spatial data and has seen significant development over the past thirty years. In con-
trast to what is assumed in classical statistics, geostatistics handle geospatial data as
interdependent, and the phenomenon they describe having a regular variation with re-
gards to space, which is partly known as spatial association/correlation. The lack of
independence of observations can create significant inference problems when spatial data
are examined by methods of classical statistics (Anselin and Griffith, 1988). Geostatis-
tics provide a comprehensive statistical framework for analyzing and interpreting spatial
patterns in geospatial data, for integrating measurements from different sources and res-
olutions, and for assessing uncertainty in models with spatially distributed parameters.
All these tasks are extremely important in scientific research across diverse disciplines
(National US Research Council, 1997; National US Research Council, 1998a; National
US Research Council, 1998b), such as (hydro)geology (Davis, 1986; de Marsily, 1986) at-
mospheric sciences (Daley, 1991), oceanography (Emery and Thomson, 1997) and ecology
(Zuur et al., 2007).

Modeling is generally the process of representing a real-world object or phenomenon
as a set of mathematical equations. Models whose parameters are distributed (vary) in
space are called spatially explicit models. The objective in spatial modeling is to be
able to study and simulate spatial objects or physical processes that occur in the real
world and facilitate problem solving and planning. Modeling of spatial phenomena in
earth sciences is performed on a local, regional or global scale, for various scientific or
engineering purposes; meteorologists build climate models, geologists build deep earth’s
structure, hydrologists build subsurface flow models. In any case, the relevant uncertainty
analysis should always be part of the overall modeling procedure. The availability of tools
in modern science, the huge growth in the use of geographic information systems, remote
sensing platforms and spatial databases constitute spatial modeling a major advantage
in the hands of researchers, thus more commonly adopted. Spatial modeling can be used
for example, to analyze the projected path of tornadoes by layering a map with different
spatial data, like roads, houses, the path of the tornado and even its intensity at different
points. This allows researchers to determine a tornado’s real path of destruction. When
juxtaposed with other models from tornadoes that have affected the area, this model can
be used to show path correlations and geographical factors. Other examples of spatial
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models and how they can influence policy making are:

� the modeling of overland flow to predict flood probabilities based on using historical
precipitation measurements and a digital elevation model, as well as other factors
related to soils and/or geology

� the modeling of ground pollution due to factory discharges and the risk level of
reaching the aquifer and endangering the lives of people

� the modeling of animal movement as a result of a year’s drought and how it can
change the affected landscape

� the modeling of human evacuation behavior used for disaster planning due to, for
example, seismic activity

� the modeling of human health risk related to a sudden animal disease outbreak

As it can be easily understood the list of spatial models and their relevance to planning
decisions is vast; such models are used in almost every scientific discipline that accounts
for spatial data information.

The uncertainty in spatial model results is often a major concern, since it has policy,
regulatory, and management implications (Shirmohammadi et al., 2006). Spatial uncer-
tainty is defined as the difference between the contents of a spatial database and the corre-
sponding phenomena in the real world (Goodchild, 2008). Since all spatial models are rep-
resentations of the real world, it is inevitable that differences will exist between them and
the real phenomena. The differences may be due to various sources of uncertainty result-
ing from input data and parameter variability, model structure, model calibration, spatial
and/or temporal scale, model boundary conditions, etc. (Beven, 1989; Haan, 1989; Luis
and McLaughlin, 1992), generally categorized into uncertainty related to input parame-
ters and model structure specifications. This thesis mainly focuses on uncertainty related
to the input parameters of a spatial model and how this uncertainty is efficiently propa-
gated to spatial model outputs.

1.1 Main objectives

Many efforts have been made, (e.g. Tarantola (2005); Bilcke et al. (2011)), in order to
examine uncertainty in spatial models but there is room for further analysis dealing with
spatial explicit models and the contribution of spatial uncertainty to optimal sampling
design. A holistic uncertainty analysis approach indicates that every single aspect of
uncertainty must be carefully appraised and reformulated into ranges of values for each
parameter separately. All these ranges should then be compiled into a global model
of input parameter uncertainty, and in combination with the uncertainty related to the
model parameters should be examined in terms of contribution to the model output
uncertainty.
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Scientific questions addressed

In this dissertation, an effort is made to contribute to the formulation of answers to the
following research questions:

� How to effectively propagate uncertainty related to the inputs of models with spatial
distributed parameters to the outputs of such models?

� How to expand the above efficient uncertainty propagation in models operating on
highly discretized domains?

� How to apply the above methods when only global statistics (attribute histogram
and spatial correlation function) are available (unconditional simulation), and when
the location of sample data is also known (conditional simulation)?

� How to apply the proposed methods in a hydreological framework of flow and trans-
port pollutants in heterogeneous porous media, appraising their benefits related to
other existing methods?

Expected significance

The findings of this dissertation are expected to contribute to:

� Enhanced uncertainty analysis in outputs of complex models with spatially dis-
tributed parameters in highly discretized domains.

� Risk-conscious decision making accounting for uncertainty in model parameters and
outputs.

� Development of novel methods for uncertainty analysis in models operating on very
large (possibly with million of nodes) regular grids.

� Applications in three dimensional complex hydro(geo)logical models of flow and
transport of pollutants in heterogeneous porous media.

1.2 Uncertainty

”Uncertainty factors” are endemic to nearly all environmental characterization and must
be accounted for in risk-conscious natural resources management. A wide spectrum of
scientific disciplines, such as engineering science (Ang and Tang, 1990), and ecology
(Zuur et al., 2007), deal with uncertainty in almost any aspect of data analysis and
modeling. Moreover, uncertainty is endemic in geospatial data due to the imperfect means
of recording, processing, and representing spatial information (Zhang and Goodchild,
2002). Geospatial data often serve as inputs in environmental models, hence the need for
propagating their inherent uncertainty to uncertainty in model predictions.

Limited data, most often unverified and from several different primary sources, are
usually available to support spatial analysis. In addition, methods used in the analysis of
spatial explicit models (e.g. Dunning et al. (1995)) confront the same uncertainty issues,
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as they usually involve subjective expert opinion knowledge. Yet outputs of geostatistical
analyses are used by managers and relevant agencies in making regulatory decisions.
These scientific and technical uncertainty factors should first be studied in order to enable
risk-conscious decision making.

Uncertainty analysis is often difficult since it stretches our understanding of the mea-
surements to the limit. In most cases, the lower the uncertainty level required in the
analysis the greater the understanding required in terms of both data acquisition and
model structure (Nicholas and White, 2001). For this reason, detailed uncertainty anal-
ysis has a second purpose: it provides a measure of our competence. This is one of
the reasons for emphasizing uncertainty analysis in calibration and testing environments,
especially where laboratory accreditation is sought.

Variability and uncertainty

The distinction between uncertainty and variability is critical in environmental modeling.
According to Cormack (1988), spatial variability in the measurements of environmental
variables is a critically important feature of natural systems, and should not be neglected
in modeling. As noted above, variability reflects a type of heterogeneity between indi-
vidual members of a population, it may refer to several different varying quantitative
parameters that characterize individuals, and it is expressed using a frequency distribu-
tion. Thus, the frequency distribution of a population acknowledges differences between
individuals, hence the term variability. This frequency distribution is used for determin-
ing whether the population should be disaggregated into smaller groups that are more
homogeneous and should be examined on a case by case basis.

Uncertainty, however, often results from measurement error or other sources as de-
scribed above. In addition, there is an amount of uncertainty endemic in the construction
of a frequency distribution of individuals, i.e., in the distribution itself that characterizes
variability. For example, assume a model characterizing the potential amount of water
absorbed by the ground, and consider one (of many) input variable, e.g., precipitation,
measured at ten meteorological stations. Total model uncertainty, could be partitioned
into:

1. Variability, due to the fact that precipitation varies across the study region,

2. Uncertainty, due to the interpolation of precipitation from limited samples, and

3. Overall uncertainty, although simplified in this example, enters into the model due
to the small amount of sample data and due to variability in the different distribu-
tions of precipitation at each sample location.

Both notions of ’uncertainty and variability’ of measurements, contribute to the proce-
dure of statistical analysis and it is desirable to separately characterize them. Uncertainty
represents partial ignorance or lack of perfect information about poorly-characterized
phenomena or models and calls for further investigation of alternative research proce-
dures and measurement techniques in order to reduce it. Variability represents diversity
or heterogeneity in a well characterized population providing information on frequency
distributions and recognizes significant subpopulations which merit more focused study.

4



Variability is usually not reducible through further measurement or study. For example,
different people have different body weights, no matter how carefully we measure them
(Frey and Burmaster, 1997).

1.2.1 Taxonomy of uncertainty

As mentioned before, environmental model predictions are uncertain due to uncertainty
stemming from different sources. Sources of uncertainty have been thoroughly studied
by several authors, including Morgan and Henrion (1990), Frey and Cullen (1999), and
others. The main concepts involved are highlighted hereafter:

Model uncertainty

The structure of mathematical models used in statistical or environmental analysis is
a key source of uncertainty, as they are only a simplified representation of a real-world
system, and hence models may be incomplete or incorrect. Building a model requires
significant approximations, different scientific or technical assumptions and limited spatial
or temporal resolution (e.g., grid size), which may all introduce uncertainty into model
results. Different expressions of model uncertainties are summarized according to Frey
(1992) as follows:

� Model Structure: Alternative sets of scientific or technical assumptions may be
available for developing a model. The implications of these alternative foundations
may be evaluated by constructing alternative models and comparing results from
each alternative model. If similar results are obtained by different competing models
that lead to similar decisions, then analysts can be confident that the decision
is ’right’ even in the face of alternative theories. If, on the contrary, different
conclusions are reached, the judgment of an analyst or a decision maker may be
required to choose the most suitable decision for a given problem.

� Model Detail : Simplifications of complex models (non linear to linear), often adopted
for the sake of convenience, induce uncertainty in the outcomes of a model. Sim-
plifications are also made due to lack of knowledge for the basic structure of the
actual model.

� Model Resolution: A model characteristic that is affected by uncertainty is model
resolution. Usually the decision maker has to strike a balance between accuracy and
computation time, although the main factor for deciding on the proper grid size is
the data resolution of most input variables. Standard techniques are often available
to help select the appropriate grid size for reaching the desirable model accuracy.
This type of model uncertainty is thus dealt with through the appropriate selection
of model domain parameter values, or by comparing results based on different grid
sizes. NOTE: Here resolution means parameter resolution, i.e., how many values
will one place between 0 and 100 for example.

� Model Boundaries : The selection of a models boundaries may be a type of simpli-
fication. Reality often sees no boundaries. If, for example, a model is examined
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within a certain region, the dependent variables may interact with variables outside
these boundaries that are not included in the model and hence are ignored.

� Validation: Model validation is an indispensable procedure for conducting research
whose outcomes might not be placed under controversial dispute. Uncertainties
regarding model parameters for which few data are available to test model outcomes
may rely on experts opinion in order to evaluate their predictions.

� Extrapolation: Even validated models that end up with conclusions for a certain
portion of the model’s region may be completely inappropriate for making predic-
tions in other regions of the study area or over the whole study area.

� Scenario Reasonableness : A set of alternative scenarios must be developed in every
model building procedure. For pollutant emissions for example, the analyst should
decide on the source, the pathways of pollutant transport and deposition, the pop-
ulations exposed to the pollutant, and so on. Uncertainty will be introduced to the
extent that the scenario fails to consider all factors affecting model outputs. Similar
to the uncertainty associated with model boundaries, only the analysts creativity
and knowledge of the real possible variables related to the problem can minimize
uncertainty.

Parameter uncertainty

Uncertainty of measurable empirical quantities (e.g. precipitation, disease incidents, veg-
etation), provided as spatial inputs in model predictions is unambiguously inherent in
any model (e.g. Hansen et al. (1999); Bennett et al. (2000); Hunsaker et al. (2001);
Elith et al. (2002)). Some identifiable sources of uncertainty in empirical quantities are
highlighted below according to Morgan and Henrion (1990):

� Random Error and Statistical Variation: Imperfect measurement techniques create
this type of uncertainty in data. Statistical analysis of test data is thus one method
for developing a representation of uncertainty in a variable, often visualized in terms
of histograms of attribute values.

� Systematic Error : The mean value or variance of a measured quantity may not
converge to the ”true” corresponding value because of biases in measurements and
procedures, such as inaccuracies in the conjectures used to translate actual quan-
tities of interest from proxy variables. For example, there is often systematic error
involved in using small scale tests to estimate the values of quantities for large scale
systems.

� Variability : Some quantities are variable over time, space, or some population of
individuals (broadly defined) rather than for any individual event or component.
Such variability is rather tricky to be modeled, usually because of the boundaries
imposed to the model’s analysis and bears a great amount of uncertainty that is up
to the analyst to detect.
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� Inherent Randomness or Unpredictability : Some quantities may be irreducibly ran-
dom even in principle. This concept of uncertainty is also applied to variables that
can be measured precisely, but due to cost or difficulties in calibration they may
appear random.

� Dependence and Correlation: Multiple uncertain variables in a model may be sta-
tistically or functionally dependent. Ignoring this inter-dependence may lead to
an incorrect prediction of the output’s variance. Dependence among model input
variables often arises because of model simplifications which fail to explicitly model
the source and form of dependence between them.

1.2.2 Methods of uncertainty analysis

In developing estimates of the values of key quantities in environmental problems, a
common approach is to assume a ”best guess” point-value of a parameter or variable
based on some combination of data and technical judgment. However, the basis for many
assumptions, and the scope of thought that went into them, are often not explicitly
documented in policy studies. Moreover, the degree of confidence that a decision-maker
should place in parameter estimates when evaluating regulatory alternatives is often not
rigorously considered.

Uncertainties are often handled by the use of simple ”sensitivity” analysis, a tech-
nique for systematically changing the values of one or few model input variables at a
time in order to determine the effects of such changes in model outputs. In practical
problems with a large amount of uncertain input variables, the possible combinations in
sensitivity analysis (e.g., one variable ”high”, another ”low,” and so on) become unman-
ageable. Furthermore, sensitivity analysis provides no indication on how each outcome
should be weighted and which is the most representative state of reality (Frey, 1992).
Sensitivity analysis is a rather deterministic procedure, based on subjective decisions,
not providing decision makers with the magnitude and main source of the underlying
uncertainties. These deterministic estimations do not provide a complete consideration
of interactions and correlations among multiple uncertain variables, which can be rather
misleading, especially when dealing with outcomes of complex nonlinear models. Accord-
ing to McCarthy et al. (1995) and Bart (1995), sensitivity and uncertainty analysis are
two different procedures that spatially explicit models must be subjected to, as part of
their development and testing.

Many facets of uncertainty involved in environmental modeling are usually ignored
or seldom considered using sensitivity analysis, since it can only rank parameters ac-
cording to their relative influence on model predictions. According to Frey (1992), the
most appropriate way to analyze and finally delimit uncertainty calls for quantitative ap-
proaches. Quantitative estimates of uncertainty, using simple methods, e.g. Monte Carlo
techniques, provide decision makers with the real magnitude of uncertainties in each vari-
able separately and cumulatively in the entire model. Dealing with the uncertainty of
each variable separately may lead to down-weighting or excluding variables whose un-
certainty might be critical for model performance. According to Jager and King (2004),
sensitivity analysis may be considered as a preparatory stage of uncertainty analysis,
since its purpose is to identify key parameters for more careful measurement in the hope
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of reducing uncertainty. Moreover, sensitivity analysis, often leads to non-quantitative
results, hence the need of a more integrated approach for the assessment of uncertainty.

A more comprehensive approach to uncertainty analysis is the use of probability
distributions; see, for example, Kyriakidis (2001). Based on these distributions, statistical
simulation techniques provide a more robust insight at simultaneous uncertainties of input
variables due to their spatial correlation and can examine their combined effect on model
outputs. Statistical simulation provides both the possible range of values for model output
parameters, and information about the likelihood of obtaining various model results.

The most common means for assigning parameters (mean and variance) to a prob-
ability distribution is to base inference on empirical data. However, in many practical
cases, the lack of abundant data relevant to the problem may not suffice for a rigorous
statistical analysis. Instead, the analyst might resort to other auxiliary information in
order to augment the model’s input parameters, and this may lead to additional un-
certainties which are difficult to quantify. Thus, available data should be examined in
terms of their relevance to the nature of the problem at hand. Additionally, it is well
known that even the application of certain statistical procedures requires ’expert opinion
’, such as goodness of fit tests, where the analyst makes judgments about what types of
parametric distributions should be used for the representation of variability on a given
data set (Anderson and Hattis, 1999). Even in Bayesian uncertainty assessment, distri-
butions may be based on empirical data and considerations, such as technically informed
distribution selection. People with different information or theoretical beliefs may choose
different distributions for the same variable (Morgan and Henrion, 1990).

Linear & Nonlinear models

Linear regression was the first model to be studied rigorously, and to be used exten-
sively in practical applications. This is because models which depend linearly on their
unknown parameters are easier to fit than models which are non-linearly related to their
parameters, and because the statistical properties of the resulting estimators are easier
to determine. According to Hoef et al. (2001), statistical models such as linear regres-
sion posit simple relationships among the variables that may be unrealistic, but have
the virtue that the uncertainty of the estimated parameters in the model can typically
be quantified. Following this trend, uncertainty of linear model outputs is easily quan-
tified from the uncertainty of input parameters. With a simple quantitative uncertainty
analysis of the model’s parameters, we can compute the mean and variance of model
outputs

On the contrary, when dealing with nonlinear models, more complicated methods
should be employed in order to evaluate total uncertainty in model predictions or outputs.
The two most commonly used methods of quantifying uncertainty in non-linear models
are

1. Linearization: Piece-wise or segmented linear regression is a type of regression
in which the independent variable is partitioned into intervals and a separate line
segment is fitted to each interval. Segmented regression is useful when the indepen-
dent variables, clustered into different groups, exhibit different relationships with
the dependent variable in these regions. The boundaries between the segments are
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breakpoints. Oosterbaan et al. (1990) have presented a method for calculating con-
fidence intervals of the breakpoints so that the breakpoint with the smallest interval,
i.e. the optimum break point, can be selected. After segmentation, each separate
part of the overall nonlinear pattern can be examined in terms of first-order linear
models.

2. Monte Carlo simulation: Monte Carlo simulation is also used to quantify un-
certainty into complex nonlinear models. As opposed to analytical approximation
of model output uncertainty, it consists of generating alternative samples (realiza-
tions) from the input parameters, evaluating the model response for each of these
realizations, and constructing the corresponding distribution of model predictions.
Any realistic uncertainty analysis, however, calls for the availability of a represen-
tative distribution of model outputs, and can become extremely expensive in terms
of both time and computer resources in the case of complex models (Helton and
Davis, 2002). In a spatial context, where variables are spatially correlated, Monte
Carlo simulation calls for the Cholesky decomposition of the covariance matrix be-
tween variables to generate simple random samples (realizations) based on the mean
and variance of the random variables assumed for each point, as well as on the cor-
relations between them; in a spatial context, correlations among random variables
are expressed in terms of correlograms and variograms (Helton and Davis, 2002).

1.3 Uncertainty analysis of models with spatially dis-

tributed parameters

Uncertainty is the result of the imperfectness of our knowledge when trying to charac-
terise any (spatial or not) phenomenon, It is inherently present in every possible (spatial)
model due to potential lack (either in availability or accuracy) of data and more possibly
lack of holistic understanding of the underlying phenomena and processes taking place.
Uncertainty essentially stems from the fact that it is impossible to characterise the true
distribution of a studied property between data. Thus, uncertainty is not an attribute
of the studied process itself, and unlike error, it cannot be measured in an absolute
way. It is rather an attribute of the interpretation of the available empirical data - it is a
model-dependent property. Various tools exist for modeling uncertainty of complex Earth
systems, and they should be incorporated in every modelling attempt under the prism of
the impact of uncertainty on practical decision problems (Caers, 2011). The importance
of analyzing, visualizing and communicating the uncertainties is unquestionable. How-
ever, there is no generally accepted unified approach for this task. Ignoring uncertainty
can at best lead to slightly incorrect predictions and at worst can be completely fatal
regarding the policy making decision and trust which might have been put in the work
of the system or operator. Although various books and papers have been written on
spatial modeling, spread over many scientific disciplines of earth sciences, the issue of
uncertainty is often mentioned just as a side note; it is still rarely used for quantitative
and predictive purposes. On the other hand, the usefulness of any model depends in
part on the accuracy and reliability of its output. Yet, because all model outputs are
subject to imprecision, it is of crucial importance to all users of earth systems modeling
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that awareness of uncertainty and error should be as widespread as possible. A minimal
response to uncertainty awareness should be that users are aware of the possible compli-
cations to their analysis caused by uncertainty, and at best deliver the model results with
a report of the uncertainty and a variety of plausible outcome influences. An exhaus-
tive uncertainty survey is to present the results of a full modeling exercise which takes
into account all types of uncertainty related to the different parameters employed in the
analysis (Fisher, 1999).

According to Caers (2011), any modeling of uncertainty is only relevant if made
dependent on the particular decision question or practical application for which such
modeling is called for. The first step of an exhaustive uncertainty analysis should be to
quantify the impact of the relevant uncertainty to the decision problem at hand. There
is no particular reason to perform uncertainty analysis of neither the model inputs nor
the model specifications without first thoroughly examine the impact it will have on the
original question: e.g. do we build a damn in this stream? Is contamination going to
reach the aquifer? The possible uncertainty factors in an uncertainty analysis of a real
world spatial model could be infinite but there is no added value in their inclusion unless
they are related to the analysis objectives. Performing uncertainty analysis taking into
account the purpose of it, makes the task of building a model of uncertainty efficient
computationally (less time consuming and computer resources needed) and effective in
terms of the application envisioned. Another important aspect of the preliminary work
for an efficient uncertainty analysis is the inclusion of the scale factor. When assessing
uncertainty, the first important decision is the scale of the assessments. Models of local
uncertainty are specific to a single location; spatial or regional uncertainty modeling
requires uncertainty assessment of attribute values at several locations taken together
(Goovaerts, 2001).

This thesis spatial uncertainty analysis is preformed through various hydrogeological
case studies of flow and transport in a porous medium. It is a difficult area for modeling
uncertainty, since the subsurface is complex, the data are sparse or at best indirect, a
medium exists that can be porous and/or fractured. Along the lines of this thesis many
simplifications are made in order to focus on methodological approaches that highlight
efficient uncertainty analysis of spatial models. My future hope is to further employ these
methods in real multi-parametric problems.

Quantitative hydrogeology is considered born in 1856 when Henry Darcy published
The Fountains of the City of Dijon (Darcy, 1856), which contained the first description
of the law governing the flux of water through porous media. The same year Paramelle
published a book entitled The Art of Discovering Ground Water (Paramelle, 1856) which
overcame Darcy’s book becoming the best seller of that time. It was analyzing ground
water observations in thousands of places in France and developed empirical rules to infer
the presence of ground water according to geological and geomorphological observations.
For a detailed reference on the history of stochastic hydrogeology the reader is referred
to Renard (2007).

This thesis employs quantitative hydrogeoloy in a Monte Carlo context to highlight
several proposed novel methods of uncertainty analysis. Uncertainty analysis has a wide
range of applications and actually delves and should be accounted for, in every possible
effort to model a physical process. Along the lines of this dissertation an excessive lit-
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erature review on uncertainty analysis in models with spatially distributed parameters
(hydrogeological or not) was performed to thoroughly explore all possible aspects/meth-
ods/applications. This exploration of different scientific approaches of uncertainty anal-
ysis contributes in the general perspective of this work, offering the groundwork upon
which this PhD thesis is structured.

Reservoir modeling

Uncertainty analysis in geostatistical reservoir modeling is a necessity when it comes to
decision making problems like ’Where should we drill next?’ for every possible geological
reservoir (water, oil, gas etc.). Many different methods/approaches of estimating geolog-
ical reservoirs exist and during the last years uncertainty analysis has an important role
in every modeling attempt. Caers (2001) employed the use of training images in spatial
locations considered jointly. He claimed traditional practice of two point geostatistics for
reservoir characterization via the variogram study as incapable of capturing the measure
of geological continuity. The proposed method is based on the ability of training images
to enhance the model construction with important curvi-linear geological information, be-
yond the modelling capabilities of the variogram. Through this lens, stochastic reservoir
simulation consists of anchoring the borrowed geostructures in the form of multiple-point
statistics to the actual subsurface hard and soft data. The proposed method was fur-
ther investigated in Caers (2011), which can be considered as a milestone in the latest
geostatistical uncertainty analysis within a reservoir modeling framework.

Another holistic example of uncertainty and sensitivity analysis in geostatistical reser-
voir modelling is the one of Kamali et al. (2013). According to this work, ”Underground
modeling utilizes a wide variety of data, probably in different scales and accuracy to
construct reservoir models which are able to represent geological heterogeneities”; quan-
tifying uncertainties in this context produces numbers of possible model output enabling
the end user to mitigate the risk of any decision. Modeling of ”estimation error” in form
of uncertainty analysis is always very important since all geostatistical methods used in
estimation of reservoir parameters are inaccurate. In the work of Kamali et al. (2013)
sequential gaussian simulation and stochastic models adopting this method is thoroughly
reviewed. More specifically, uncertainty quantification of the adopted stochastically pop-
ulated models is performed and further sensitivity study of the model properties are also
quantified. The case studied reservoir is located at carbonate sequences of Sarvak Forma-
tion, Zagros, Iran and it comprises of three layers holding different portions of the reserve.
Reservoir simulation is clearly defined by the sensitivity analysis on the parameters of
stochastic models and petrophysical properties adopted.

Ecological modeling

Spatial uncertainty underlies in all ecological models that are used to understand and
manage natural systems, propagates into model predictions, thus hindering any crucial
policy making decision. Jager and King (2004) offers a comprehensive overview of un-
certainty analysis in ecological modeling. Offering a thorough understanding of why
ecological modeling should be performed through spatial models (nature of the problems
to be answered, interdependence of various systems with spatial reference in one problem,
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wide availability of spatial data), the authors further present a classification scheme for
questions about the relationship between predictions of an ecological model and variation
in its spatial inputs:

1. Uncertainty analysis. How does uncertainty in spatial data influence uncertainty in
model predictions?

2. Sensitivity analysis. Which spatially distributed input variables are the model most
sensitive to?

3. Error analysis. How do measurement and cartographic errors propagate through
the model?

4. Error budget analysis. What sources of error in the processes used to obtain spatial
input data cause the largest variation in model predictions?

5. Decision analysis and risk assessment. Given the variation known to exist among
realistic alternative input maps, what is the optimal decision (or, alternatively, the
ecological risk) predicted by the model?

6. Hypothesis testing using neutral models. What influence does variation in spatial
structure have on model predictions?

This classification could be adopted in the mostly multilevel sense of ecological prob-
lem, thus offering an analysis framework to reveal relationships between ecological model
predictions and spatial uncertainty.

In continuation of the above work, Jager et al. (2005) published a work on uncertainty
analysis of spatial population models, which illustrates the ecological consequences of
spatial uncertainty for complex multi-parametric landscapes. More specifically this work
compiles a detailed overview of habitat population ecological analysis within a Monte
Carlo conditional simulation framework. Results show that processes forming variables
of attraction for a habitat population mostly control the effects of spatial uncertainty.
Complex dynamics generated by combinations of attributes and environments are most
sensitive to spatial uncertainty, hence habitat populations residing in chaotic dynamics
are more sensitive to slight shifts in demographic parameters forming a particular land-
scape. The proposed conditional stochastic simulation approach produces lower levels
of uncertainty than alternative methods used in landscape ecology since local values of
descriptive parameters are taken into account in the spatial modeling. Along these lines
the authors refer to their method of efficiently simulating realizations of landscape by
the proverb: ”To draw an analogy with painting, a random map is non-representational,
modern art, whereas each of our maps is an impressionists rendering of the original land-
scape”.

Another proof of the necessity of uncertainty analysis and how it impacts and should
predetermine an environmental model analysis is the exhaustive technical report/overview
of IPCC (2000) discussing uncertainties in greenhouse gas inventories. The Annex fur-
ther develops a methodology of estimating inventory uncertainty and sets the following
necessary requirements:
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� A method of determining uncertainties in individual terms used in the inventory;

� A method of aggregating the uncertainties of individual terms to the total inventory;

� A method of determining the significance of year to year differences and long term
trends in the inventories taking into account the uncertainty information;

� An understanding of the likely uses for this information which include identifying
areas requiring further research and observations and quantifying the significance
of year to year and longer term changes in national greenhouse gas inventories;

� An understanding that other uncertainties may exist, such as those arising from
inaccurate definitions that cannot be addressed by statistical means.

The report covers a wide range of the uncertainty analysis potential parameters to
be accounted for and pathways to be followed setting the channel for a comprehensive
conceptual uncertainty analysis in spatial models of the greenhouse phenomenon and
ecological models in general.

A sector of ecological science where uncertainty analysis has an important role in
existing literature is landscape classification. The impact of human activity on the struc-
ture of the landscape is of great interest in the past decades, especially in areas with a
high population pressure where the preservation of certain landscape features are con-
sidered important. Landscape monitoring, highlights areas that are more susceptible to
changes in land cover, and can propose actions to prevent valuable landscape features
from disappearing. Canters et al. (2002) offers a study example aimed at assessing the
effects of input uncertainty on the outcome of a raster-based model for structural land-
scape classification. The proposed model uses a DEM and a land-cover map as input,
and defines multiple structural landscape classification types in a Monte Carlo simulation
framework, to further classify the effect of the input parameters. Simulation experiments
proved uncertainty in land-cover classification mostly affecting the determination of the
degree of homogeneity of the landscape, whereas DEM error proved to have much less
impact on the determination of the landscape type. Study results indicate that input
uncertainty may have a substantial effect on the outcome of classification models. Hence,
more attention should be paid to the issue of uncertainty propagation assessment when
using classification techniques which are probably more appropriate for the modeling of
spatially continuous phenomena.

Further discussion on landscape ecology and how it can be examined through con-
nectivity, as a measure expressing the accessibility of a location to individuals from a
source area (Fahrig and Merriam, 1985), is offered in the work of De Genst et al. (2001).
This paper studies the potential connectivity of red squirrels in a fragmented landscape,
using a buffer operation that takes into account the difficulty of moving through the land-
scape. This difficulty is quantified by the dispersal capacity which expresses how far an
individual is prepared to move from a source area (species dependent), and by the char-
acteristics of the landscape separating the location from a source area which expresses
the difficulty an individual experiences when moving through the landscape (dependent
on the land-cover type). Uncertainty related to the inputs of the model is quantified
in terms of a multivariate statistical classification of remotely sensed data and studied
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using spatial Monte Carlo simulation. Uncertainty related to the model specifications is
examined by adopting deterministic model parameters regarding the dispersal capacity
and the landscape effect, and studied using fuzzy set theory. Comparing the outcome
of error sensitized models to the observed dispersal activity of squirrels, demonstrates
how modeling of uncertainty can help to explain the dispersal activity of red squirrels
and more generally how far taking uncertainty into account can improve any landscape
connectivity model.

Soil modeling

A well known dilemma of geostatical uncertainty analysis literature is whether one should
use stochastic simulation or kriging interpolation techniques. Goovaerts (2001), exam-
ined spatial uncertainty in modeling continuous soil attributes through kriging-based and
simulation-based techniques. The primary question of this research is whether stochastic
simulation is always performing better than the computationally cheaper kriging ap-
proach in uncertainly analysis assessment. According to the results there are two cases
were stochastic simulation is the best alternative and the relative computational con-
straints should be put aside. When propagation of uncertainty is performed through
multiple-point transfer functions, such as flow simulators, and when the modeling of un-
certainty is performed over much larger supports than the measurement supports for
attributes that do not average linearly in space. In all other situations which may rep-
resent the majority of current applications of geostatistics in soil science a kriging-based
model should be the first choice.

Hydrological modeling

Hydrological models have been widely used in the past to provide catchment manage-
ment with information on the interaction of water, energy and vegetation processes dis-
tributed over space and time (Wagener and Gupta, 2005). Computational models can be
used to quantify surface and groundwater contributions to streamflow and salt export at
catchment scale, and have particular importance with respect to the effect of changes in
land-use. In general, hydrological models incorporate many parameters (some statistical
and some with physical significance), most of which require measurements from resource-
intensive field exercises which are used to calibrate the model by statistical methods. A
typical hydrological model consists of a large number of coupled equations describing the
direction of water flow and providing predictions of e.g. monthly and annual stream-
flow or salt deposition. Potential inputs may include the spatial mosaic of climate, soil
type, topography, land use, estimates of surface runoff, sub-surface lateral flow, recharge,
and potential evaporation. In Benke et al. (2008), various computational approaches
were investigated for analyzing the impact of parameter uncertainty on predictions of
stream flow for a water-balance hydrological model used. The parameters and associated
equations which had greatest impact on model output were determined by combining
differential error analysis and Monte Carlo simulation with stochastic and deterministic
sensitivity analysis. Their approach aim in the simplification of the model by identifying
parameters redundant or insignificant and further examining their influence on the model
outputs. More specific aims of this work were (i) to investigate the transfer of uncertainty
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from designated key parameters to the model output by means of appropriate metrics,
(ii) to examine the influence of the shape (skewness) in the parameter distributions on
prediction error, and (iii) to conduct sensitivity analysis using both point estimates and
parameter distributions.

A very interesting synergism of uncertainty and sensitivity analysis in models with
spatially distributed parameters is the one of Crosetto and Tarantola (2001), suited to
GIS-based models of any degree of complexity, accepting any type of spatial input data
and emphasizing in data error modeling. The authors present two applications of uncer-
tainty and sensitivity analysis in GIS modeling:

� The first application highlights the optimization of the allocation of resources
needed for data acquisition, thus optimizing GIS-based models whose output can
reliably support the decision process; possible in a low cost strategy, based on nu-
merical simulations on a small prototype of the GIS-based model.

� The second application regards the stage of model building for a new GIS applica-
tion, offering a novel procedure which supports a scientifically sound choice of the
model; it avoids subjective preferences of the modeler.

Last, a comprehensive hydrologic case study of flood forecasting modeling is described,
thus putting in practice the theoretical aspects discussed and proving their importance
in practical spatial modeling

Hydrogeological modeling

Uncertainty in conceptual model structure and in environmental data is of essential inter-
est when dealing with uncertainty in water resources management. To make quantifica-
tion of uncertainty possible it is necessary to identify and characterize the uncertainty in
geological and hydrogeological data (Nilsson et al., 2006). Uncertainty analysis within a
hydrogeological context is the overall thematic umbrella of this dissertation. Many efforts
to date have examined uncertainty related to various factors of a hydrogeological model
and how in particular they relate to the uncertainty of the relevant model outputs.

Many of the parameters in subsurface flow and transport models cannot be estimated
directly at the scale of interest, but can only be derived through inverse modeling. During
this process, the parameters are adjusted in such a way that the behavior of the model
approximates, as closely and consistently as possible, the observed response of the system
under study (Vrugt et al., 2008). According to Zhou et al. (2014), forward model requires
specification of a variety of parameters, such as, hydraulic conductivity, storativity and
sources or sinks together with initial and boundary conditions. It is rather impossible
though to build an exhaustive model through sparse data due to the inherent complex-
ity of the hydrogeological context. Inverse models are used to identify input parameters
at unsampled locations by incorporating observed model responses, e.g., hydraulic con-
ductivities are derived based on hydraulic head and/or solute concentration data. Zhou
et al. (2014), thoroughly explores and tracks the evolution of the inverse methods over
the last decades, mostly within the realm of hydrogeology, revealing their transformation,
motivation and recent trends. The same paper offers four concluding features for inverse
modeling:
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� The goal of inverse problem is not just parameter identification, but also improved
predictions.

� Stochastic inverse methods are becoming the trend for the generation of multiple
realizations, which will serve to build a model of uncertainty on both parameters
and states.

� There is a need for methods that are capable to generate geological models as
diverse as possible while matching observed data to ensure that the uncertainty in
the predictions is properly captured.

� Multiple sources of observations are integrated in the inverse modeling, multiple
scale problems are handled and multiple new algorithms are introduced into the
inverse modeling, for instance, multiple point geostatistics and wavelet transform.

Another approach representing attractive alternatives to deal with model error in risk
estimation and decision analysis is offered by Gaganis and Smith (2008), comparing two
alternative approaches to quantify the conceptual model error in a single groundwater
model of 90Sr migration to water wells at Chernobyl, Ukraine. The two methods are a per-
datum calibration methodology (Gaganis and Smith, 2006) and a Bayesian model error
analysis (Gaganis and Smith, 2001). The comparison of the two methods demonstrate
their utility to accounting for the uncertainty due to model error in estimating risks
in decision models. Bayesian method for model error quantification resulted in a more
conservative estimate of the probability of the Pripyat Town well field contamination
than did the per-datum calibration approach. This difference in risk estimates is a result
of the conceptual differences between the two methods that result from different weights
placed on the probability distributions assigned to uncertain parameters based on prior
information. The uncertainty related to model and measurement errors estimated by
per-datum calibration is primarily based on information drawn from measurements of the
dependent variable. In the Bayesian method, prior information on the parameters and
measurements of the dependent variable are effectively equally weighted, thus allowing
the incorporation of a more informative description of the parameter space, as well as
subjective judgement into a risk analysis. In general, per-datum calibration may be best
suited in the case of a large database regarding measurements of the dependent variables,
while the Bayesian method may be more suitable when measurements of the dependent
variables are limited.

The work of Jang and Liu (2004) evaluated in the Choushui River alluvial fan in Tai-
wan, using ordinary kriging and sequential Gaussian simulations. A flow model was build
and simulated heads using different conductivity realizations were then compared with
historically measured heads. Simulated and measured heads were utilized to assess the
different spatial variabilities of various estimated conductivity distributions. Evaluating
a flow and transport model via Modflow software (also used in this dissertation) showed
that ordinary kriging generates realizations with better overall reproduction capability
(with lower values of absolute simulation errors) and can be applied to perform a deter-
ministic inverse calibration. Sequential simulation method on the other hand proved a
better solution when the application focuses on extreme values of estimated parameters
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(e.g. in a simulation of contaminant transport in heterogeneous aquifers) and is con-
sidered useful in stochastically assessing the spatial uncertainty of highly heterogeneous
aquifers.

Simulated annealing is a probabilistic technique for approximating the global optimum
of a given function. Specifically, it is a metaheuristic method based on the analogy with
the physical annealing process, approximating global optimization in a large search space.
Lin et al. (2017) adopted simulated annealing simulation for obtaining limited sets of
realizations of hydraulic conductivity of multiple aquifers and spatial correlations among
aquifers to simulate realizations of hydraulic heads and quantify their uncertainty in the
Pingtung Plain, Taiwan. More specifically, simulated annealing was used to generate large
sets of natural logarithm hydraulic conductivity realizations in multiple aquifers based on
spatial correlations among them. Moreover, small sets of conductivity realizations were
selected from large sets of realizations by ranking the differences among cross-variograms
derived from the measured and simulated conductivity realizations between the pairs of
aquifers. The uncertainty analysis of simulated realizations of hydraulic conductivity was
performed via the generalized likelihood uncertainty estimation. Results indicate that the
proposed approach could minimize simulation iterations and uncertainty, and could be
effectively applied to evaluate uncertainty in hydrogeological properties and groundwater
modeling.

Along the lines of the available literature for stochastic simulation, a great effort was
made to try and minimize the computation effort of the demanding iterative simulation
process and the relative model output estimation for each simulation at hand. One of
the efforts along this way is the one of Jakab (2016), that proposed a distance-based clas-
sification of stochastic simulation outputs based on their derived connectivity features.
Uncertainty characterization is performed by outlining subsets within the space of output
realizations; defining groups that represent characteristically the different model scenar-
ios. To perform the grouping of outcomes, instead of the traditional ranking measures, a
static connectivity measure was used as the basis for dissimilarity between the stochastic
images. Based on these metrics of dissimilarity, model results holding the same character-
istics are easily distinguishable, thus building relationships between output realizations.
In that way, one is capable of creating groups of inputs leading to relevant groups of
outputs, enabling the selection of representative realizations within these groups that
yield a more realistic representation of the smaller scale heterogeneities than all individ-
ual stochastic realizations. These advantages of distance based grouping may be of high
significance when deriving further reservoir geological or flow properties for petroleum
or hydrogeological applications, or spatial patterns of soil or groundwater contaminants.
The proposed method offers means to separate the stochastic images representing poten-
tial different levels of uncertainties. Additionally, this distance based grouping of outputs
is able to calculate the number of realizations that can build an efficient assessment of
uncertainty, diminish subjectivity and support reproducible decision-making when the
task is to select stochastic realizations to run the full - expensive model.

Other similar attempts aiming at identifying subsets of representative realizations
instead of using every single output of the simulation model are those of Scheidt and
Caers (2009) in petroleum applications, where the realizations are assigned to subsets
based on the dissimilarity distances calculated between them, and Armstrong et al. (2013)
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in mining, which is also based on stochastic optimization.
Uncertainty in hydrogeological model predictions is usually related to uncertainty

in the hydraulic parameters, whereas according to He et al. (2013), uncertainty in the
geological structure should be considered to the same extent. The multiple-point geosta-
tistical method integrated in the Stanford Geostatistical Modeling Software (SGeMS) is
used in this work to explore the impact of geological uncertainty on groundwater flow
patterns for a particular site in Denmark. Modflow was also used in this work in order
to model underwater flow. The relative simulation of groundwater head distribution and
travel time were accounted for comparison of three different scenarios. The analysis re-
sults indicate that the uncertainty of the conceptual geological model is as significant as
the uncertainty related to the embedded hydraulic parameters.

Stratified stochastic simulation methods have also played an important role in un-
certainty analysis assessment efforts. The most common stratified simulation method is
Latin hypercube sampling, which is thoroughly investigated along this thesis. An exam-
ple of Latin hypercube application in a hydrogeological context is the work of Dowing
et al. (1985). More specifically, in this work Latin hypercube is compared to a sampling
method accounting for the functional links between model inputs and outputs; mentioned
above as inverse modeling. Latin hypercube method referred by the authors as the ”em-
pirical approach” performs iterative sampling from the set of all inputs, evaluates the
response surface model for all inputs and obtains the empirical cumulative distribution
function of the outputs. The second technique referred by the authors as the ”response-
surface technique” consists of the following steps: (a) screening to determine the subset
of important inputs, (b) response-surface modeling to achieve a proxy to the original
code, (c) obtaining moments of the response surface model, and (d) fitting a Pearson or
Johnson distribution to the moments to obtain a statistical model of the proxy to the
output distribution. The model of dose assessment developed by Hoffman et al. (1982)
is employed to determine the efficiency of the two statistical techniques in evaluating
model uncertainties. Comparison of the two methods prove the response surface method
less adequate and reliable, whereas Latin hypercube is simpler to implement and more
reliable estimator of the cumulative distribution function of the model output.

1.4 Contribution of this thesis

Literature dealing with uncertainty analysis prevails in various scientific disciplines and
the discussion on methods, procedures and applications is vast. The reference to all
the above efforts focuses on highlighting the foreground of major publications that built
the theoretical basis of this work and helped in identifying potential gaps that need
further evolution and enrichment. Uncertainty quantification in complex spatial models is
often performed through least square regression analysis, Bayesian inference approaches,
stochastic simulation methods and/or combination of various methods currently available
in the literature. On this front, what is identified to be missing is the specialization in
stratified stochastic simulation methods, in order to benefit from all the advantages (e.g.
efficient uncertainty analysis with minimum computational costs and demanding time)
that could derive from the enrichment of existing methods or the proposal of new ones.
Along these lines, Chap. 2 presents a detailed overview of Latin hypercube sampling
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from random fields and how it applies in 2D and 3D hydrogeological problems of flow and
transport in a mid-heterogeneous porous media. More specifically, a detailed introduction
to simple random (classical Monte Carlo) and Latin hypercube sampling is presented,
along with a detailed analysis on how they are applied to univariate, multivariate and
random fields problems. Additionally, two hydrogeological case studies are introduced,
highlighting the efficiency of Latin hypercube sampling method.

In addition to Latin hypercube, another stratified sampling method is introduced
named in this thesis ”Stratified Sampling”. This method is herewith firstly employed in
a spatial (hydrogeological) context, and is further evolved to a more efficient sampling
version here named ”Minimum Energy Sampling”. Moreover, the proposed methods are
also combined with a two step sampling method accounting for the uncertainty related
to the parameters of the specific hydrogeological model at hand. These innovative ap-
proaches of stratified two step sampling methods could constitute a new proposition for
uncertainty analysis via spatial simulation; Chap. 3) offers a detailed overview of all the
above.

The overarching objective of this dissertation is to expand the domain of application
of Latin hypercube sampling and make it feasible for very large grids. On this regard,
Chap. 4 proposes a novel combination of Stein’s Latin Hypercube sampling with a Monte
Carlo simulation method applicable over high discretization domains and moreover val-
idate its performance in 2D and 3D hydrogeological problems of flow and transport in
a mid-heterogeneous porous media, both consisting of about 1 million nodes. The pro-
posed LH sampling method reduces the time and computer resources required to perform
uncertainty analysis in hydrogeological flow and transport problems discretized by very
large regular grids. Since it is the first time that stratified sampling is performed over
high discretization domains, it could be argued that the proposed extension of LH could
be considered a milestone for future uncertainty analysis efforts.

Spatial problems recently tend to rely more on spatial data available in the relevant
region of each case study, since low cost high detailed data exist due to the constantly
improving recording tools. The wide availability and increasing accuracy of data recording
tools along with the constantly improving computer resources, play an important role in
the number and efficiency of data that can easily (with a relevant low cost) be incorporated
in a model. The need to incorporate the available data along the modeling procedure is
also considered of great importance, since it is rather more probable to better characterize
the entire model by reproducing accurate values in known locations. Along these lines, we
further adopt conditional LH sampling on large grids and also evaluate the performance
of the proposed approach in a 3D hydrogeological model of flow and transport (Chap.
5).

Summarizing, this work offers novel extensions of stratified sampling in random fields,
with demonstrated applications in a hydrogeological context. All the proposed method-
ological approaches could contribute to a wider application of uncertainty analysis en-
deavors in any spatially distributed impact assessment study. The proposed methods
can, and should be accounted for, potentially in combination with other principles (e.g.
inverse modeling), in any future attempt to efficiently quantify uncertainty in any com-
plex environmental model; for a more detailed reference to potential future applications
of the proposed methods of this thesis, the reader is referred to Chap. 6.
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Chapter 2

Latin Hypercube Sampling from
Random Fields

Monte Carlo simulation, or simple random (SR) sampling from a univariate or multi-
variate probability distribution, is routinely used for uncertainty and sensitivity analysis
of model predictions in a wide spectrum of scientific disciplines, such as engineering sci-
ence, hydrology, and more generally earth sciences, to name but a few. Monte Carlo
simulation consists of generating alternative samples (realizations) from the input pa-
rameters, evaluating the model response for each of these realizations, and constructing
the corresponding distribution of model predictions. In a spatial context, the spatial
distribution of geo-referenced variables is typically modeled within a geostatistical frame-
work via a random field; that is, a set of spatially correlated random variables, one per
location (Chilès and Delfiner, 1999). In hydrogeological investigations involving flow and
transport in heterogeneous porous media, for example, the spatial distribution of satu-
rated hydraulic conductivity is often parameterized in terms of a lognormal random field
model. Realizations of such a random field are then used along with physically-based
simulators of flow and transport in a Monte Carlo framework for evaluating, for example,
the uncertainty in the spatial distribution of solute concentration due to the uncertainty
in the spatial distribution of hydraulic conductivity and possibly other relevant variables
(Gutjahr and Bras, 1993).

Any realistic uncertainty analysis, however, calls for the availability of a representa-
tive distribution of model outputs, and can quickly become expensive in terms of both
time and computer resources in the case of complex models (Helton and Davis, 2002).
This problem is far more pronounced in earth and environmental science applications,
where, in hydrogeology for example, three dimensional grids of hydraulic conductivity
values are used along with other parameters to simulate flow and transport in porous
media (Gutjahr and Bras, 1993). An efficient alternative to classical Monte Carlo simu-
lation is Latin hypercube (LH) sampling, a form of stratified random sampling, aiming
at generating representative samples or realizations from a set of random variables with
a given multivariate probability distribution. Here, the term representative implies real-
izations spanning efficiently the range of possible attribute realizations corresponding to
that probability distribution.

Latin Hypercube is a statistical method for generating a near-random sample of pa-
rameter values from a multidimensional distribution. It is adopted in many scientific
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papers (e.g. Urban and Fricker (2010), Minasny and McBratney (2006), Olsson and
Sandberg (2002), to name but a few) dealing with various disciplines and spatial or not
models. The sampling method first described by McKay et al. (1979), is often used for
Monte-Carlo integration. The name originates from Latin square; in experimental design
Latin square is an n×n array filled with n different symbols, each occurring exactly once
in each row and exactly once in each column. An example of a 3 × 3 Latin square is
depicted in Fig. 2.1. The name ”Latin square” was inspired by mathematical papers by
Euler (1782) who used Latin characters as symbols. A Latin hypercube is the generali-
sation of this concept to an arbitrary number of dimensions, whereby each sample is the
only one in each axis-aligned hyperplane containing it.

A

A

B

C

B

C

C

A

B

Figure 2.1: Example of 3× 3 latin square further colored for better visualization.

LH sampling has been shown to lead to model outputs with smaller sampling vari-
ability in their statistics than SR sampling for the same number of input simulated
realizations; that efficiency, however, decreases the more non-linear that model becomes
in the parameters (McKay et al., 1979; Helton and Davis, 2003; Helton et al., 2006).

The most widely used methods for generating LH samples from a multivariate dis-
tribution are those of Iman and Conover (1982) and Stein (1987). In the first method,
the entries of an uncorrelated SR or LH sample are re-arranged to match a target rank
correlation matrix. In the second method, a correlated SR sample is transformed into a
correlated LH sample based on the ranks of the former; correlation is inherited in the LH
sample from the correlation in the ranks of the original SR sample. These methods do not
rely on any Gaussian assumption, and both can be used for simulation with or without
conditioning data. Relevant representative applications in a spatial context include the
work of Zhang and Pinder (2003) and Pebesma and Heuvelink (1999), respectively.

This chapter describes in detail Latin Hypercube sampling in a spatial context fur-
ther comparing its efficiency to Simple Random sampling in a hydrogeological case study.
More specifically, the remainder of the chapter is structured as follows: Section 2.1 de-
scribes Latin hypercube sampling from a univariate distribution, Section 2.2 illustrates
the extension of Latin hypercube sampling to the general multivariate case, Section 2.3
introduces the concept of a random field and describes algorithms for Latin hypercube
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sampling of Gaussian random fields, and Section 2.4 presents two synthetic case studies
involving flow and transport in a heterogeneous porous medium illustrating the benefits
of Latin hypercube over simple random sampling.

2.1 Latin hypercube sampling: Univariate case

In this Section, the concepts of simple random and Latin hypercube sampling are in-
troduced as means for generating realizations (samples) from a single random variable
(univariate case). More precisely, Subsection 2.1.1 introduces simple random sampling,
Subsection 2.1.2 presents Latin hypercube sampling, whereas Subsection 2.1.3 provides
a performance comparison for the two sampling methods.

2.1.1 Simple random sampling

Consider the general case of a random variable (RV) Y with arbitrary cumulative distri-
bution function (CDF) FY (y). A simple random (SR) sample of size S can be readily
generated from the RV Y via the inversion method, as (Kroese et al., 2011)

y = F−1Y (u) or ys = F−1Y (us), s = 1, . . . , S (2.1)

where y = [ys, s = 1, . . . , S]T is a (S× 1) vector with S realizations (simulated quantiles)
from Y , F−1Y (·) denotes the inverse CDF or quantile function of Y , and u = [us, s =
1, . . . , S]T is a (S × 1) vector of uniformly distributed random numbers within the [0, 1]
interval. Essentially, ys is the quantile of Y associated with the probability us.

For a RV Y with a parametric Gaussian distribution with mean µY and standard
deviation σY , i.e., y ∼ G(µY , σ

2
Y ), Equation (2.1) becomes

y = G−1(u, µY , σY ) or ys = G−1(us, µY , σY ), s = 1, . . . , S (2.2)

where G−1(·) denotes the inverse Gaussian CDF (Fig. 2.2).
Of particular interest for many environmental applications is the case of a lognormal

RV Z ∼ L(µZ , σ
2
Z) with mean µZ and variance σ2

Z , linked to a Gaussian RV Y = log(Z)
∼ G(µY , σ

2
Y ) with mean µY and variance σ2

Y . Due to the functional link Z = exp(Y ), the
statics of RV Z are linked to those of RV Y (Chilès and Delfiner, 1999)

µZ = exp(µY + σ2
Y /2) and σ2

Z = exp(2µY + σ2
Y )(exp(σ2

Y )− 1) (2.3)

and a SR sample of size S from a lognormal RV Z can then be generated as

z = exp(y) = exp
(
G−1(u;µY , σY )

)
(2.4)

where z = [zs, s = 1, . . . , S]T is vector with S lognormal deviates (Fig. 2.2).
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Figure 2.2: Example of simple random sampling of size S = 10 from a standard Gaussian RV
(left) and a lognormally distributed RV with mean 1 and standard deviation 0.5 (right).

2.1.2 Latin hypercube sampling

Latin hypercube (LH) sampling of S realizations or samples from Y is accomplished
by stratifying the probability axis in S equal intervals or strata, generating S stratified
random numbers, one within each probability stratum, and computing the corresponding
S quantiles from the inverse CDF of Y (McKay et al., 1979)

yL = F−1Y (uL) = F−1Y

(
i− u

S

)
(2.5)

where yL = [yLs , s = 1, . . . , S]T is a (S × 1) vector with LH realizations (simulated
stratified quantiles) from Y , uL = [uLs , s = 1, . . . , S]T is a (S × 1) vector of stratified
random numbers within the interval [0, 1], and i = [is, s = 1, . . . , S]T is a (S × 1) vector
of random permutations of S integers {1, 2, . . . , S} generated independently of u.

A monotonic transformation of the stratified probability values in uL, such as that
incurred by the inverse CDF F−1Y (·), does not ruin stratification; this entails that each
entry of vector yL (each simulated quantile) falls within a different stratum in the original
variable space, no matter the distributional form of FY (y). The independence of vectors
i and u ensures that there is a uniform probability 1/S for a simulated value y within
any two consecutive quantiles corresponding to a fixed probability interval.

A LH sample of size S from a Gaussian RV Y can be generated as

yL = G−1(uL, µY , σY ) (2.6)

where yL now contains S stratified Gaussian deviates generated via the inverse Gaussian
CDF G−1(·); see Fig. 2.3.

Similarly, a LH sample can be generated from a lognormal RV Z as

zL = exp(yL) = exp
(
G−1(uL;µY , σY )

)
(2.7)

where zL = [zLs , s = 1, . . . , S]T is of S stratified lognormal deviates (Fig. 2.3).
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Figure 2.3: Example of Latin hypercube sampling of size S = 10 from a standard Gaussian
RV (left) and a lognormally distributed RV with mean 1 and standard deviation 0.5 (right).

Although LH sampling yields stratified simulated quantiles, simulated values can still
be similar to one another if they lie at the edges of strata. To reduce this effect, one
could draw random numbers from a triangular distribution Tri(0, 0.5, 1) in the [0, 1]
interval centered at 0.5 within each probability stratum; this preferentially simulates
random numbers near the strata centers (Fig. 2.4). Such triangularly distributed ran-
dom numbers can be generated by adding uniform random numbers in [0, 0.5] (Ang and
Tang, 1990; Kroese et al., 2011). At the limit, one could select the S midpoints of the
probability strata, hence the S midpoints (quantiles) of the associated intervals in the
original variable space; this LH sampling version is termed midpoint or lattice sampling.
In this case, us = 0.5, ∀s, and vector u contains S replicates of 0.5 (Fig. 2.4. Midpoint LH
sampling, however, might be considered too deterministic, as it amounts to re-using the
same quantiles in different order; this might be undesirable for certain applications where
extreme values are particularly consequential and simulation involves few samples (small
S). Variations of the above basic LH sampling procedure to further control sampling
variability include variance reduction techniques, such as antithetic and control variates,
as well as correlated sampling (Ang and Tang, 1990; Kroese et al., 2011).

2.1.3 SR and LH comparison

As stated in the introduction, LH sampling has been shown to lead to model outputs
(functions of model inputs) with smaller sampling variability in their statistics than SR
sampling for the same number of input simulated realizations (McKay et al., 1979; Helton
and Davis, 2003; Helton et al., 2006). In what follows, the relative performance of the
two sampling methods is evaluated in terms of the reproduction of the known parameters
of a standard Gaussian univariate distribution G(0, 1). That reproduction is evaluated
via the sampling distribution of the mean and standard deviation computed from 10, 000
sampling repetitions using SR and LH sampling from a standard Gaussian RV, each
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Figure 2.4: Example of midpoint or lattice sampling of size S = 10 a standard Gaussian RV
(left) and triangular LH sampling from a lognormal RV (right).

sample containing S = 10, 25, 50 values. Sampling distributions are presented in terms of
their means and medians, as well as their 75% and 95% probability intervals. The better
the reproduction of a reference parameter from simulations of a sampling method with a
given sample size, the narrower the sampling distribution of the corresponding statistic,
and the closer the center of that distribution to the reference parameter.
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Figure 2.5: Quantiles of the sampling distributions of mean (left) and standard deviation
(right) obtained via SR and LH sampling from a standard Gaussian RV with different sample
sizes, S = 10, 25, 50; see text for details.

More precisely, Fig. 2.5 summarizes the sampling distribution of the mean and stan-
dard deviation computed via SR and LH sampling from a standard Gaussian RV using
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different sample sizes. 75% probability intervals are depicted with horizontal line seg-
ments, whereas 95% probability intervals with × symbols; median values are depicted
as asterisks (∗), whereas mean values as circles (◦). Horizontal lines running across each
plot depict the reference parameters µY = 0 (right) and σY = 1 (left). It can be seen that
LH sampling leads to much narrower probability intervals than SR sampling, particularly
for the case of the sample mean. The efficiency of LH over SR is smaller for the sample
standard deviation, since that statistic is non linear in the data values.

A similar illustration is given in Fig. 2.6 for the case of the probability not exceeding
two thresholds, namely 0.675 and 1.645 corresponding to the 0.75 and 0.95 quantiles of
a standard Gaussian RV. Horizontal lines running across each plot depict the reference
parameters p1 = 0.75 (right) and p2 = 0.95 (left). Note again, that LH sampling is
more efficient that SR sampling for the same number of samples; that efficiency, however,
decreases the more extreme the threshold becomes.
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Figure 2.6: Quantiles of the sampling distributions of the probability of not exceeding 0.675
and 1.645 obtained via SR and LH sampling from a standard Gaussian RV with different sample
sizes, S = 10, 25, 50; see text for details.

2.2 Latin hypercube sampling: Multivariate case

In a multivariate context, one defines M random variables (RVs) comprising a (M × 1)
random vector [Ym,m = 1, . . . ,M ]T , where Ym denotes the m-th RV whose realization
is ym. Notation-wise, y will be used to denote both a random vector and its realiza-
tion; the distinction between the two will be evident from the context of the discus-
sion. The multivariate probability density function (PDF) of the M RVs comprising
the random vector is denoted as fY (y), and in the Gaussian case it is assumed to be
M -variate Gaussian. Consequently, the random vector y is assumed to follow a mul-
tivariate Gaussian PDF y ∼ G(µY ,ΣY ), fully parameterized by the (M × 1) expecta-
tion vector µY = [µY

m,m = 1, . . . ,M ]T , and the (M ×M) pairwise covariance matrix
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ΣY = [σY
m,m′ ,m = 1, . . . ,M,m′ = 1, . . . ,M ], where σmm′ = Cov{Ym, Ym′} denotes the

covariance between two RVs Ym and Ym′ . In what follows, we assume without loss of
generality a zero mean expectation vector µ = 0, where 0 denotes a (M × 1) vector with
zero entries.

In what follows, Subsection 2.2.1 presents methods for simple random sampling from
a multivariate distribution, whereas Subsection 2.2.2 illustrates the application of Latin
hypercube sampling in a multivariate context.

2.2.1 Simple random sampling

Let w = [Wm,m = 1, . . . ,M ]T denote a standard Gaussian random vector with a (M×M)
identity covariance matrix I, i.e., w ∼ G(0, I), where Wm denotes a standard (zero-mean,
unit-variance) Gaussian RV. The above random vector w can be transformed into a
random vector y with covariance matrix Σ as (Johnson, 1987):

y = Hw (2.8)

where H denotes a (M ×M) transformation matrix satisfying HHT = Σ.
Indeed, one can easily show that the resulting random vector y has the desired co-

variance matrix Σ

E
{
yyT

}
= E

{
Hw(wTHT )

}
= HE

{
wwT

}
HT = HIHT = Σ

where E{·} denotes the expectation operator.
There exist multiple definitions of matrix H satisfying HHT = Σ, the most computa-

tionally efficient being derived from the Cholesky decomposition of the covariance matrix
Σ

Σ = LLT (2.9)

hence H = L, with L being a (M ×M) lower triangular matrix termed the Cholesky
factor of Σ.

An alternative definition of matrix H is derived from the spectral decomposition of
matrix Σ

Σ = QEQT = (Q
√

E)(
√

EQT ) (2.10)

hence, H = Q
√

E, where Q is a (M ×M) orthonormal matrix with QTQ = I, hence
QT = Q−1, whose m-th column Q(·,m) is the m-th eigenvector of Σ, and E is a (M×M)
diagonal matrix of eigenvalues of Σ, i.e., E = diag(e), where e = [em,m = 1, . . . ,M ]T is
a (M × 1) vector of eigenvalues; similarly,

√
E = diag(

√
e).

A third definition of the transformation matrix H can be derived from the square root
decomposition of the covariance matrix Σ, an extension of the spectral decomposition of
Eq. (2.10)

Σ = Q
√

E
√

EQT = Q
√

E(QTQ)
√

EQT = (Q
√

EQT )(Q
√

EQT ) (2.11)

hence, H = Q
√

EQT =
√

Σ. Matrix
√

Σ is a (M ×M) square and symmetric matrix
termed the square root of the covariance matrix Σ, since

√
Σ
√

Σ = Σ.
Computing the eigenvectors and eigenvalues of an arbitrary covariance matrix Σ,

however, is a computationally expensive operation, even more so than the Cholesky
decomposition of Σ. This has led to the Cholesky decomposition being the most widely
used method for simulating realizations from a multivariate Gaussian random vector.
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Simulation: Simple random (SR) sampling from a, zero-mean, multivariate Gaussian
random vector y ∼ G(0,Σ) amounts to generating a (S ×M) matrix YR = [yR

m,m =
1, . . . ,M ], whose m-th column holds a SR sample of size S from the m-th RV Ym; the
(column-wise) mean of YR is approximately 0 and the pairwise (column-to-column) co-
variance approximates Σ. Due to computational reasons, the generation of matrix YR is
most often performed using the Cholesky factor L of the covariance matrix Σ

YR = WRLT (2.12)

where WR is a (S×M) matrix of uncorrelated standard Gaussian deviates generated via
SR sampling, and LT is a (M×M) upper triangular matrix. Fig. 2.7 gives an application
example of Eq. 2.12 for the generation of a sample of size S = 300 from a set of M = 3,
zero-mean, Gaussian RVs with pairwise correlations ρ12 = 0.7, ρ13 = 0.5, ρ23 = 0.3, and
st. deviations σ1 = 4, σ2 = 5 and σ3 = 6.
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Figure 2.7: A sample of size S = 300 from three uncorrelated standard Gaussian RVs (left)
and three correlated Gaussian RVs with zero mean and non-identity covariance matrix (right);
see text for details.

Multi-lognormal case: Under the multivariate lognormal model, one can generate a
SR sample ZR from a M -variate lognormal distribution L(µZ ,ΣZ) by transforming a SR
sample YR generated from a multivariate Gaussian distribution G(µY ,ΣY )

ZR = exp(YR) (2.13)

where the entries of the lognormal mean vector µZ and covariance matrix ΣZ are derived
using Eq. (2.3). In what follows, every sample generated from a Gaussian distribution
will be converted in a lognormal one via the above transformation.
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2.2.2 Stein’s method for Latin hypercube sampling

Latin hypercube (LH) sampling from M random variables amounts to generating a (S ×
M) matrix YL = [yL

m,m = 1, . . . ,M ], whose m-th column holds a LH sample for the
m-th RV Ym. In other words, LH sampling amounts to generating a marginally stratified
sample (of size S) from M correlated RVs.

A widely used method for multivariate LH sampling is that of Stein (1987), in which
a SR sample matrix YR = [ym,m = 1, . . . ,M ], generated for example via Eq. (2.12), is
transformed into a LH sample matrix YL. In the Gaussian case, the SR sample ym for
the m-th RV Ym, i.e., the m-th column of matrix YR, is transformed into a LH sample
yL
m for that RV, as

yL
m = G−1

(
rank(ym)− vm

N

)
(2.14)

where vm is a (S × 1) vector of uniform random numbers in [0, 1], independent of ym,
and rank(ym) = rm denotes a (S× 1) vector of integers from 1 to S corresponding to the
ranks of the entries of the SR sample ym: the smallest simulated y-value for the m-th
RV Ym is assigned a rank of 1, whereas the largest a rank of S.

The LH sample matrix YL contains (column-wise) correlated entries, due to the cor-
relation present in the SR sample matrix YR. In addition, the entries of any column
of matrix YL are stratified, as opposed to the entries of any column of matrix YR. In
essence, Stein’s method introduces correlation in the univariate stratification procedure
of Eq. (2.5), by replacing the array p of random permutations for the m-th RV Ym by
the array rm = rank(ym) of SR sample ranks for that RV (Eq. 2.14).

Fig. 2.8 gives an example of a LH sample of size S = 10 from M = 2 standard
Gaussian RVs with correlation ρ12 = 0.75, along with the corresponding SR sample; see
Eq. (2.14). The vertical and horizontal lines correspond to deciles of a standard Gaussian
RV and delineate strata of equal probability. It can be readily seen that the LH sample
is marginally stratified; that is, viewed from either the abscissa or ordinate axis, each
stratum contains one simulated value. Evidently, this is not the case for simple random
sampling, since no marginal stratification has been induced in the simulation procedure.

Stein’s LH sampling algorithm, however, does not fully reproduce the correlation in
the original SR sample matrix YR. The terms in Eq. (2.14) through which correlation
can be induced between two LH samples yL

m and yL
m′ of any two RVs Ym and Ym′ are

the vectors of ranks rm = rank(ym) and rm′ = rank(ym′) of the original SR samples ym

and ym′ from those two RVs. The corresponding vectors vm and vm′ of uniform random
numbers in Eq. (2.14), however, are generated independently one from another. For small
sample sizes (small S) this can affect the reproduction of a target correlation by the LH
sample. Fig. 2.9 provides an assessment of that bias in correlation reproduction for LH
sampling from two standard Gaussian RVs with correlation ρ12 = 0.75 and ρ12 = 0.9.
It can be seen that the mean of the sampling distribution of the correlation coefficient
for LH sampling is further away from the target correlation. In addition, the sampling
distribution of the correlation coefficient under LH sampling has a similar spread as the
corresponding sampling distribution under SR sampling. This is expected, since LH
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Figure 2.8: Latin hypercube (left) and simple random (right) samples of size S = 10 from two
standard Gaussian RVs with correlation coefficient ρ12 = 0.75. Vertical and horizontal lines
correspond to deciles of a std Gaussian RV and delineate strata of equal probability.

sampling aims for marginal stratification; hence, there is no expectation for a closer
reproduction of that correlation.
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Figure 2.9: Quantiles of the sampling distributions of the correlation coefficient from two
standard Gaussian RVs with correlation ρ12 = 0.75 (left) and ρ12 = 0.9 (right), obtained via SR
and LH sampling using different sample sizes, S = 10, 25, 50, 100; see text for details. Horizontal
lines running across each plot depict the reference correlations ρ12 = 0.75 (left) and ρ12 = 0.9
(right).

The YL can be easily transformed into lognormal ZL via Eq.2.13. The same applies
for midpoint LH samples.
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2.3 Latin hypercube simulation of random fields

Latin hypercube sampling from a multivariate distribution introduced in Section 2.2 is
applied here to the spatial analog of a random vector; that is, a random field modeling
the spatial distribution of a geo-referenced attribute. More precisely, Subsection 2.3.1
introduces the basic concepts behind a random field and its common parameterization in
the multivariate Gaussian case, and Subsection 2.3.2 describes the application of simple
random and Latin hypercube sampling in a spatial context for generating realizations
from a random field model.

2.3.1 Random field models

Let y(c) denote the value of a geospatial attribute Y , e.g., hydraulic conductivity, at
an arbitrary location with coordinate vector c within a study region A. The (typically
unknown) spatial distribution of attribute Y constitutes an attribute surface or field
{y(c), c ∈ A}. In geostatistics, that attribute surface is conceptualized as a realization
of a random field {Y (c), c ∈ A}, i.e., an infinite collection of geo-referenced random
variables (RVs), one per location (Fig. 2.10); here, Y (c) denotes the RV corresponding
to an arbitrary location c, whose realization is denoted as y(c).

Gaussian RVs at grid nodes

Figure 2.10: Conceptual representation of marginal (local) distributions of geo-referenced ran-
dom variables comprising (at the limit) a random field; note that the concept of spatial corel-
lation is missing from this figure

A random field is fully characterized by the multivariate distribution of its constituent
RVs, also termed the spatial law of the random field (Chilès and Delfiner, 1999). The
inference of that multivariate distribution in a spatial context, where only one (partial)
realization of the random field is available from RVs at sample locations, typically calls
for the working hypothesis of second-order stationarity of its (univariate and bivariate)
moments.

Under second-order stationarity the expectation of any RV Y (c) is constant within
the study area

E{Y (c)} = µY ∀c ∈ A (2.15)
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and the covariance between any two RVs Y (c) and Y (c′) defined at two locations c and c′

is a function of the magnitude (norm) and possibly orientation (in the anisotropic case)
of the separation vector h = c− c′ between those two locations

Cov{Y (c), Y (c′)} = σY (c− c′) = σY (h), ∀c, c′ ∈ A (2.16)

An arbitrary distance decay function, however, can serve as a valid covariance model
if and only if it is positive definite; that is, it satisfies

M∑
m=1

M∑
m′=1

λmλm′σY (cm − cm′) ≥ 0 ∀λm, λm′ ,∀cm, c
′
m (2.17)

ensuring that the variance of a linear combination of RVs
∑M

m=1 λmY (cm) is non-negative
no matter the weights λm and the locations cm involved. For this reason, only functions
known to be positive definite are used as valid covariance models; see Chilès and Delfiner
(1999) for a list of such models.

Parametric distance decay functions σY (h; p) are typically used as covariance models
for random fields, parameterized by a sill parameter σY (0) – the a priori variance σ2

Y of the
random field Y – and a range parameter r corresponding to the distance at which a zero
covariance is attained. A frequently used covariance model is the isotropic exponential
covariance function

σY (h;σ2
Y , r) = σY (0) exp(−3h/r) (2.18)

where h = ‖h‖ denotes the magnitude (norm) of vector h and r is the effective range
corresponding to 5% of the model sill.

In many cases, including the case study presented at Section 2.5, the spatial vari-
ability of the attribute depends on the direction, a situation termed anisotropy (Chilès
and Delfiner, 1999). A particular case of anisotropic spatial variability is geometrical
anisotropy, whereby the range of the covariance function changes along different direc-
tions while the sill remains the same. In 3D, geometric anisotropy leads to ellipsoidal
iso-covariance surfaces, and the locus of 0 covariance values defines an anisotropy ellip-
soid; the lengths of the semi-axes of that ellipsoid identify the ranges of the anisotropic
covariance model.

When the axes of the anisotropy ellipsoid are aligned with the three cardinal directions
and have semi-lengths rx, ry and rz, a unit-sill (with σY (0) = 1) covariance model becomes
a function of the reduced (scaled) separation distance

σY (h; rx, ry, rz) = σY

√(hx
rx

)2

+

(
hy
ry

)2

+

(
hz
rz

)2
 (2.19)

instead of the Euclidean distance h =
√
h2x + h2y + h2z used in the isotropic case (Eq 2.18),

where hx, hy, and hz are the components of the separation vector h = c − c′ along the
three cardinal directions.

By defining the component vector h = [hx hy hz]
T and arranging the covariance model

ranges in a vector r = [rx ry rz], Eq. 2.19 can be also expressed in matrix form as

σY (h; r) = σY (‖Rh‖) (2.20)
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where R = [diag(r)]−1 is a (3 × 3) diagonal matrix with the reciprocal ranges along
its diagonal, and ‖Rh‖ represents the norm of the scaled version Rh of the original
component separation vector h.

The general case of a anisotropy ellipsoid, however, involves axes that are not aligned
with the three cardinal directions. Following (Deutsch and Journel, 1998), we denote
as θ1 the (azimuth) angle of the principal axis from the 0◦ along the horizontal plane
(positive being clock-wise), as θ2 the (dip) angle from the horizontal plane (positive being
downwards), and as θ3 the plunge angle (increasing counter clock-wise). By arranging
these anisotropy orientation parameters in a vector θ = [θ1 θ2 θ3], and denoting as
r = [r1 r2 r3] the covariance model ranges along the corresponding directions, a general
anisotropic covariance model is expressed as

σY (h; r,θ) = σY (‖RQh‖) (2.21)

where Q is a (3× 3) combined rotation matrix defined as

Q =

 1 0 0
0 cos(θ3) sin(θ3)
0 − sin(θ3) cos(θ3)

 cos(−θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(−θ2)

 cos(90− θ1) sin(90− θ1) 0
− sin(90− θ1) cos(90− θ1) 0

0 0 1


(2.22)

with 90−θ1 corresponding to a rotation of the horizontal plane about the Oz axis, leading
to new Ox′ and Oy′ axes, −θ2 corresponding to a rotation around the Oy′ axis, leading to
new Ox′′ and Oz′ axes, and θ3 corresponding to a rotation around the Ox′′ axis leading
to the final rotated axes Ox′′, Oy′′ and Oz′′ (Ying, 2001).

An example of such a covariance model is given in Fig. 2.11 using an exponential
function with sill σ2

Y = 1.79, and an anisotropy ellipsoid with maximum range r1 = 120
distance units along the 45◦ direction, r2 = 20 units along the perpendicular direction,
and r3 = 8 units along the vertical (hence, θ1 = 45, and θ2 = θ3 = 0); these parameters
are also used in the case study for generating realizations of hydraulic conductivity fields.

In practice, for both isotropic and anisotropic cases, the study area A is typically
discretized by a regular grid comprised of M = MxMy nodes, where Mx and My denote
the number of grid nodes along the two cardinal directions. In this case, the continuous
random field {Y (c), c ∈ A} is approximated by a discrete M -variate spatial random
vector y = [Y (cm),m = 1, . . . ,M ]T (Chilès and Delfiner, 1999). In addition, a realization
y(cm) of the RV Y (cm) defined at the m-th grid node cm is assumed representative of an
elementary area am = a ∀m around cm; that is, a represents a constant grid cell of size
|a| (Fig. 2.13).

When the random vector y is assumed multivariate Gaussian, i.e., y ∼ G(µY ,ΣY ), it
is fully parameterized by the (M × 1) expectation vector µY = [µY (cm),m = 1, . . . ,M ]T ,
and the (M ×M) pairwise covariance matrix ΣY = [σY (cm, cm′),m = 1, . . . ,M,m′ =
1, . . . ,M ], where µY (cm) = E{Y (cm)} and σY (cm, cm′) = Cov{Y (cm), Y (cm′)}. More-
over, under second-order stationarity µY is a constant vector µY = µY 1, where 1 is
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Figure 2.11: Two different viewing perspectives of 3D covariance function grid: any grid node
corresponds to a separation vector h between two locations and is specified by its components
h = [hx hy hz] along the three cardinal directions. The color scale represents covariance values
for each grid node, with the zero separation h = [0 0 0] placed at the center of the grid.

a (M × 1) vector of ones, and ΣY is constructed using the M × M distances (in the
isotropic case) between the M grid nodes and a valid covariance function σY (h;θ), i.e.,
ΣY = [σY (hmm′ ;θ),m = 1, . . . ,M,m′ = 1, . . . ,M ], where hmm′ = ‖cm − cm′‖ is the dis-
tance between nodes cm and cm′ . An example of such a covariance matrix ΣY is given in
Fig. 2.13 using the exponential model of Eq. 2.18 with the parameters used in Fig. 2.12.

2.3.2 LH sampling from random fields

Sampling from a random field amounts to generating S alternative realizations (images
in 2D) of the spatial distribution of a geo-referenced variable Y over the study area
A. As in the general multivariate case (Sec. 2.2.2), LH sampling from a random field
amounts to (a) generating a spatially correlated SR sample from the random field, and
(b) transforming that SR sample into a spatially correlated LH sample with marginally
stratified entries.

We denote as YR = [ys(cm), s = 1, . . . , S,m = 1, . . . ,M ] the (S×M) matrix contain-
ing S realizations (a sample of size S) of the random field generated via SR sampling on
a set of M = MxMy grid nodes discretizing A, where ys(cm) is the s-th simulated value
at the m-th location cm. Alternatively, array YR can be thought of as a collection of
M vectors, each containing S simulated values; i.e., YR = [y(cm),m = 1, . . . ,M ], where
ym = [ys(cm), s = 1, . . . , S]T denotes a (S × 1) vector of simulated values at location cm.

Per Eq. 2.23, the SR sample array YR can be generated from a (S ×M) array of
standard Gaussian deviates WR and the upper triangular Cholesky factor LT of the
covariance matrix ΣY as

YR = WRLT (2.23)

and the results can be displayed as 2D images by reshaping arrays WR and YR to be of
dimensions (Mx ×My × S); see Fig. 2.14.
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Figure 2.12: Exponential distance decay covariance function with sill and effective range pa-
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Figure 2.14: Set of 10 realizations (sample of size S = 10) of a standard Gaussian random
field with an isotropic exponential covariance model with sill 1 and effective range 20 (right),
generated from 10 realizations of a, white-noise (with no spatial correlation), standard Gaussian
random field (left); see text for details.

Per Eq. 2.14, Stein’s method for LH sampling from a random field amounts to trans-
forming the SR sample matrix YR into a (S ×M) LH sample matrix YL = [yLs (cm), s =
1, . . . , S,m = 1, . . . , S] as

yLs (cm) = G−1
(
rs(cm)− vs(cm)

S

)
, s = 1, . . . , S (2.24)

where rs(cm) = rank(ys(cm)) denotes the rank of the s-th value ys(cm) of the SR sample
y(cm) at location cm.

In essence, Eq. 2.24 involves a set of S spatially correlated probability values (the
argument of the inverse Gaussian CDF), which are also marginally (location-wise) strati-
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Figure 2.13: Left: Example of a 50× 50 regular grid of unit spacing. Grid nodes are depicted
with blue dots and each such node is the center of a grid cell of size 1 × 1. The grid origin
(0.5, 0.5) is the node at the center of the lower left cell. Right: Example of a covariance matrix
constructed using distances between all pairs of grid nodes (left) and an isotropic exponential
covariance model with sill 10 and effective range 20 (Fig. 2.12).

fied. The rank value rs(cm) identifies the probability stratum associated with an original
value ys(cm) of the SR sample at location cm. The addition of a random number vs(cm)
uniformly distributed in [0, 1] furnishes a random probability perturbation within than
stratum. Those stratified probability values are then used to derive the corresponding
stratified Gaussian quantiles via the inverse CDF; see, Fig. 2.15.
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A: Ranks of simple random sample
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B: Uncorrelated uniform random numbers in [0,1]
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C: Correlated & stratified probabilities
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D: Correlated Latin hypercube sample
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Figure 2.15: A: Rank transformation (rs(cm) in Eq. 2.24) of SR sample of Fig. 2.14, B:
Uniform random numbers in [0, 1] (vs(cm)), simulated independently at each grid node, C:
Correlated probability values, stratified at each grid node, derived from A and B (rs(cm) −
vs(cm)), D: Final LH sample of size S = 10, whose values are derived as quantiles of a standard
Gaussian RV for the stratified probabilities in C.

To verify marginal (per grid node) stratification of the LH sample above, Fig. 2.16
shows two scatter plots of simulated values yL(cm) and yL(cm + h) extracted from the
LH sample of Fig. 2.15D at two randomly selected pairs of nodes separated by distances
h = ‖h‖ set to 1 and 4. The covariance values for those two scatter plots approach
their model counterparts σY (1) and σY (4) given by the unit-sill exponential covariance
function with effective range 20. In addition, LH sampling yields marginally stratified
simulated values at any grid node, as expected by theory.
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Figure 2.16: Two scatter plots of simulated values extracted from the LH sample of Fig. 2.15D
at two pairs of randomly selected nodes separated by distance 1 (left) and 4 (right). Vertical
and horizontal lines correspond to deciles of a std Gaussian RV and delineate strata of equal
probability; see text for details.

2.4 Synthetic hydrogeological case studies

In this Section two simple hydrogeological case studies are adopted - one two dimensional
isotropic and one three dimensional anisotropic - comparing simple random and Latin hy-
percube sampling from a lognormal random field. In both case studies lognormal random
fields model the spatial distribution of saturated hydraulic conductivity in hydrogeologi-
cal context involving flow and transport in a heterogeneous porous medium. Regarding
both case studies respectively, in Subsections 2.4.1 and 2.5.1, the two sampling methods
are evaluated in terms of their ability to reproduce model conductivity field parameters.
In Subsections 2.4.2 and 2.5.2, simple random and Latin hypercube are evaluated here
again in terms of their ability to reproduce ensemble concentration statistics computed
by solving the hydrogeological model of flow and transport for the above large set of
hydraulic conductivity fields.

2.4.1 2D hydraulic conductivity

A two-dimensional synthetic groundwater flow system is considered in this case study,
similar to that used in Zhang and Pinder (2003). The dimensions of the flow system
are 5100 m by 5100 m discretized into a 51 × 51 grid with uniform rectangular cells of
size 100 m by 100 m (Fig. 2.17). Porosity was assumed constant throughout the domain
and equal to 0.25, and the parametrization of hydraulic conductivity is described below.
Flow boundary conditions consisted of constant head of 0 m at the four corner cells and
a constant head of 250 m at the central cell of the domain (Fig. 2.17). No flow conditions
(∂h/∂n = 0) were assigned to the rest of the domain boundaries, whereas the Modflow
code (McDonald and Harbaugh, 1988) was used in this study to obtain the steady state
flow solution.
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Figure 2.17: Two-dimensional simulation domain of size 5100 m by 5100 m discretized into a
51× 51 grid with uniform cell size of 100 m by 100 m.

A second-order stationary and isotropic lognormal random field is adopted with pa-
rameters borrowed from Sudicky et al. (2010). More precisely, the mean and variance
of log conductivity are taken as µY = −5.64 and σ2

Y = 1.79, respectively, corresponding
to conductivity statistics µZ = 0.0087 m/sec and σ2

Z = 0.01942 (m/sec)2. The semivar-
iogram of log conductivity is assumed to be of exponential form, with no nugget effect,
and effective range 1000 m, corresponding to one fifth of the domain extent along the
cardinal directions. Two realizations of this random field model at the nodes of the grid
shown in Fig. 2.17 are given in Fig. 2.18.
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Figure 2.18: Two realizations of a lognormal random field; see text for details.

Reference ensemble statistics consist of: (i) the ensemble average field – a constant
equal to µZ = 0.0087, (ii) the ensemble standard deviation field – a constant equal to
σZ = 0.0194, (iii) the ensemble pairwise correlation between grid cells – this involves
entries of the upper triangular part of the covariance matrix ΣZ (iv) the ensemble global
proportion of grid nodes with conductivity values exceeding a threshold of z = 0.007
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m/sec corresponding to the 0.695 quantile of a lognormal distribution with mean mZ =
0.0087 and variance σ2

Z = 0.01942 – hence a constant p = 1 − 0.695 = 0.305, and (v)
the ensemble local probability field of exceeding that conductivity threshold of z = 0.007
m/sec.

Three sampling or simulation methods are considered in this case study for gener-
ating realizations of a lognormal hydraulic conductivity field with the parameterization
(mean, variance and correlation length) given above on the 51×51 simulation grid. These
methods include simple random (SR) sampling, Latin hypercube (LH) sampling and its
midpoint version (LHM). In terms of sample size or number of realizations per method,
five such sizes are considered; namely, S = 10, 25, 50, 75, and 100. Once a sample, say of
size S = 25, is generated, the discrepancy between the statistics of the simulated ensem-
ble and the reference conductivity statistics listed above is quantified using the root mean
squared error (RMSE) for summary statistics (mean, variance, correlation).The compu-
tation of such error statistics is repeated over a set of I = 500 batches of realizations,
with each batch containing the same sample size, S = 25 for example, thus estimating the
sampling distributions of RMSE values for each sample size and for each method; these
distributions are presented in terms of their means and medians, as well as their 75%
and 95% probability intervals. The better the reproduction of a reference statistic from
simulations of a sampling method with a given sample size, the narrower the sampling
distribution of the resulting, say, RMSE values, and the smaller (closer to 0) the center
of that distribution.
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Figure 2.19: Reproduction of reference ensemble mean (A) and ensemble standard deviation
(B) hydraulic conductivity fields from various sampling methods; see text for details.

More precisely, the reproduction of the reference ensemble mean and ensemble stan-
dard deviation of hydraulic conductivity from the three sampling methods and the five
sample sizes considered is shown in Fig. 2.19. Reproduction is quantified in terms of the
sampling distribution of RMSE between reference and simulated ensemble conductivity
statistics over the 51×51 grid cells. In this and all subsequent figures, 75% RMSE or MAE
depending on the statistic selected) probability intervals are depicted with horizontal line
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segments, whereas 95% probability intervals with × symbols; median RMSE values are
depicted as asterisks (∗), whereas mean values as circles (◦). From Fig. 2.19, it can be
readily appreciated that midpoint LH sampling (LHM) yields the closest reproduction
for both the ensemble mean and standard deviation statistics, followed by standard LH
sampling. This is expected, since LH sampling aims at marginal stratification, hence
should best reproduce marginal hydraulic conductivity statistics at each grid node.
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Figure 2.20: Reproduction of reference hydraulic conductivity ensemble correlation matrix
between first-order neighboring grid cells.

Figure 2.20 shows the reproduction of ensemble correlation for first-order neighboring
grid nodes for the three sampling methods and the five sample sizes considered. First-
order neighbors of an arbitrary grid node are here defined using 8-point connectivity; that
is, such neighbors include the four immediate neighbors in the four cardinal directions, as
well as the four grid nodes to the main diagonals of the central node under consideration.
Reproduction is quantified in terms of the sampling distribution of RMSE computed
between the pairwise correlations of the reference and simulated hydraulic conductivity
fields at first-order neighboring grid cells. From Fig. 2.20, it can be easily appreciated
that LH and LHM sampling exhibit a bias in that short-scale correlation reproduction.
It should also be noted that all three methods yield the same RMSE reproduction when
the correlation for both reference and simulated conductivity fields is computed for all
possible pairs of grid nodes; i.e., when evaluating the reproduction of the entire upper
diagonal part of the conductivity covariance matrix ΣZ .

Figure 2.21A shows the reproduction of the global proportion of grid nodes with
conductivity values greater than 0.007 m/sec for the three sampling methods and the five
sample sizes considered. This conductivity threshold corresponds to the 0.695 quantile
of a lognormal distribution with mean mZ = 0.0087 and variance σ2

Z = 0.01942 – hence a
constant p = 1−0.695 = 0.305. Reproduction is quantified here in terms of the sampling
distribution of RMSE computed between the reference and simulated global proportions
of conductivity values exceeding that threshold. LH sampling yields the best reproduction
for all sample sizes in this case, whereas LHM demonstrates a bias of not efficiently
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Figure 2.21: Reproduction of reference global (A) and local (B) ensemble probability of ex-
ceeding a conductivity threshold value of 0.007 m/sec, derived for various sampling methods.

reproducing RMSE values probably because it does not sample the extreme values of
the distribution. Figure 2.21B shows the reproduction of that probability of exceedance
p = 0.305 at each simulation grid node. Reproduction is quantified here in terms of
the sampling distribution of RMSE computed between the reference and simulated local
proportions of conductivity values exceeding that threshold; the RMSE here is calculated
via a double summation over nodes and realizations. As expected, LH and LHM sampling
yield the best reproduction in this case, due to the marginal stratification they impose on
the simulated conductivity realizations at each node. Contrary to the global case, LHM
here shows no bias in the results since the high correlation of nodes accounted for the
calculation of local probability of exceedance shows small relevance to the non inclusion
of extreme values of the distribution.

2.4.2 2D solute concentration

For the solute transport problem, an initial concentration equal to 0 is assumed through-
out the model domain. At time t = 0, a contaminant is introduced at the central cell,
along the upstream constant head boundary, with constant concentration C0 = 100 mg/l
(Fig. 2.17). No transport conditions (∂C/∂n = 0) are assigned along the domain bound-
aries. Longitudinal and transverse horizontal dispersivities are assumed to be equal to 5 m
and 0.5 m, respectively. In terms of software, the MT3D code (Zheng, 1990) was used to
obtain breakthrough curves at the four observation wells located at the four corner nodes
of the domain, as well as the solute transport solution up to time t = 2·106 sec. Reference
ensemble statistics for solute concentration are derived from a set of 10000 solutions of
the transport problem based on the 10000 hydraulic conductivity realizations generated
in the previous subsection via SR sampling. Two such concentration realizations derived
from the conductivity realizations shown in Fig. 2.18 are given in Fig. 2.22.
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Figure 2.22: Two solute concentration realizations corresponding to the two hydraulic conduc-
tivity realizations shown in Fig. 2.18; see text for details.

The performance of the various sampling methods considered in this work for sample
sizes S = 10, 25, 50, 75, 100 is then quantified in terms of reproduction of these refer-
ence ensemble concentration statistics via the sampling distribution of error summary
statistics (RMSE and/or MAE). Reference statistics for solute concentration consist of:
(i) the ensemble average field shown in Fig. 2.23 upper left, (ii) the ensemble standard
deviation field also shown in Fig. 2.23 upper left, (iii) the ensemble pairwise correla-
tion between grid nodes – this involves all the entries of the upper triangular part of
the concentration correlation matrix without focusing on short-scale reproduction due
to the non-stationarity of the concentration field (that is, each covariance is computed
separately for each absolute separation vector and compared with the relative reference
value), and (iv) the ensemble distribution of first arrival times (Fig. 2.23 bottom) at any
of the four observation wells (Fig. 2.17).
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Figure 2.23: Reference ensemble average (top left), ensemble standard deviation (top right)

concentration fields, and ensemble first arrival time CDF (bottom), computed from 10000 con-

centration realizations derived from 10000 hydraulic conductivity realizations generated via

simple random sampling; see text for details.
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Figure 2.24: Reproduction of reference ensemble mean (A) and ensemble standard deviation
(B) concentration fields (shown in Fig. 2.23) from various sampling methods; see text for details.

Figure 2.24 shows the reproduction of the ensemble average and ensemble standard
deviation concentration fields (Fig. 2.23) for the three sampling methods and the five
sample sizes considered. Reproduction is quantified here in terms of the sampling distri-
bution of RMSE between reference and simulated ensemble concentration statistics over
the 51× 51 grid cells. It is easily appreciated that LH and LHM yield a better reproduc-
tion of these ensemble fields than SR sampling, particularly in the case of the ensemble
average concentration field.
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Figure 2.25: Reproduction of reference concentration ensemble correlation matrix.

Figure 2.25 gives the reproduction of the reference concentration correlation matrix
(upper triangular part) for the three sampling methods and the given sample sizes. Re-
production is quantified here in terms of the sampling distribution of RMSE computed
between the pairwise correlations of the reference and simulated concentration fields at
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all pairs of grid cells. LH and LHM sampling achieve a similarly better reproduction than
SR sampling.

Last, Fig. 2.26 gives the reproduction of the reference cumulative distribution function
(CDF) of first arrival times at any of the four observation wells at the corners of the
domain, and the corresponding CDFs obtained from the three sampling methods and the
five sample sizes considered. Discrepancy between any two CDFs is quantified in terms
of MAE between their corresponding percentiles, and the sampling distribution of this
statistic is established over I = 500 batches of realizations as before.
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Figure 2.26: Reproduction of reference first arrival time cumulative distribution function
(CDF), derived for various sampling methods; see text for details.

2.5 Anisotropic three dimensional hydrogeological

case study

Latin Hypercube is here again compared with Simple Random sampling in generating
realizations from a lognormal random field modeling the spatial distribution of saturated
hydraulic conductivity in an anisotropic 3D hydrogeological context. The generated con-
ductivity fields are further used to derive solute concentration fields through flow and
transport simulation. The two sampling methods are then compared again in terms of
their ability to reproduce ensemble statistics of the solute concentration field. Midpoint
Latin hypercube was not examined hereafter because the excessively targeted sampling
of values, concluding in the exclusion of any randomness, was considered sub-optimal and
beyond the Monte Carlo framework of this dissertation. On this regard, all the results
of Sec. 2.4.1 show that midpoint Latin hypercube hold almost zero variance in the re-
production of RMSE values, thus minimizing the inherent randomness of the simulation
procedure.

The evaluation of the performance of the two sampling methods in generating rep-
resentative realizations from a (log)Gaussian random field is performed using a three-
dimensional synthetic hydrogeological problem involving flow and transport in a porous
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medium. The dimensions of the synthetic flow system are 820 m by 820 m by 180 dis-
cretized into a 41× 41× 9 grid with uniform uniform cells of size 20 m by 20 m by 20 m
(Fig. 2.27).

Figure 2.27: Top view of the three-dimensional simulation domain of size 820 m by 820 m by
180 discretized into a 41× 41× 9 grid with uniform cells of size 20 m by 20 m by 20 m.

The flow boundary conditions consist of constant head of 0 m at the cells B(x, y, z),
where x = 1, 1 ≤ y ≤ 13, 1 ≤ z ≤ 9 (lower part of the left hand boundary), and a
constant head of 10 m at the cells B(x, y, z), where x = 41, 29 ≤ y ≤ 41, 1 ≤ z ≤ 9
(upper part of the right hand boundary). No flow conditions (∂h/∂n = 0) are assigned to
the rest of the domain boundaries. Porosity is assumed constant throughout the domain
and equal to 0.25. The Modflow code (McDonald and Harbaugh, 1988) is used in this
study to obtain the steady state flow solution.

2.5.1 3D hydraulic conductivity

A second-order stationary, lognormal anisotropic random field is adopted with parameters
borrowed from (Sudicky et al., 2010). More precisely, the mean and variance of log
conductivity are taken as µY = −5.64 and σ2

Y = 1.79, respectively, corresponding to
conductivity statistics µZ = 0.0087 m/sec and σ2

Z = 0.01942 (m/sec)2. The semivariogram
of log conductivity is assumed to be of exponential form, with no nugget effect. The
effective range is 450 m along the major axis oriented 45◦ increasing clockwise from the
zero azimuth (North - South), 80 m along the minor axis perpendicular to the major axis,
and 35 m along the z axis. This implies a six fold anisotropy along the horizontal plane.
No further anisotropy and/or directionality is considered along the vertical z axis where
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the effective range corresponds to the one fifth of the vertical extend of the domain. Two
realizations of this random field model are given in Fig. 2.28.

Figure 2.28: Two realizations of a lognormal random field; see text for details.

Reference ensemble statistics are derived from a set of 1000 realizations of hydraulic
conductivity generated via simple random (SR) sampling, and consist of: (i) the ensemble
average field, and (ii) the ensemble standard deviation field. Both ensemble statistics are
depicted in Fig. 2.29.

Figure 2.29: Reference ensemble average (left) and ensemble standard deviation (right) con-
ductivity fields, computed from 1000 hydraulic conductivity realizations generated via simple
random sampling; see text for details.

Simple random (SR) and Latin hypercube (LH) are considered in this case study for
generating realizations of a lognormal hydraulic conductivity field with the parameteri-
zation (mean, variance and correlation length) given above on the 41× 41× 9 simulation
grid. In terms of sample size or number of realizations per method, three such sizes are
considered; namely, S = 20, 50, and 80. Once a sample, say of size S = 20, is generated,
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the discrepancy between the statistics of the simulated ensemble and the reference con-
ductivity statistics listed above is quantified using the root mean squared error (RMSE)
for the summary statistics (i)mean, and (ii)variance.
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Figure 2.30: Reproduction of reference ensemble mean (A) and ensemble standard deviation
(B) hydraulic conductivity fields from various sampling methods; see text for details.

More precisely, the reproduction of the reference ensemble mean and ensemble stan-
dard deviation of hydraulic conductivity from the two sampling methods and the three
sample sizes considered is shown in Fig. 2.30. Reproduction is quantified in terms of the
sampling distribution of RMSE between reference and simulated ensemble conductivity
statistics over the 41× 41× 9 grid cells.

From Fig. 2.30, it can be readily appreciated that LH sampling (LH) yields the closest
reproduction for both the ensemble mean and standard deviation statistics. This is
expected, since LH sampling aims at marginal stratification, hence should best reproduce
marginal hydraulic conductivity statistics at each grid node.

2.5.2 3D Solute concentration

For the solute transport problem, an initial concentration equal to 0 is assumed through-
out the model domain. At time t = 0, a contaminant is introduced at the injection well
C(x, y, z), depicted as a red dot in Fig. 2.27, where x = 38, y = 30, z = 5 that is located
near the top right corner of the 3D domain, close to the upstream constant head bound-
ary, with constant concentration C0 = 1000 mg/l. Longitudinal, transverse horizontal
and transverse vertical dispersivities are assumed to be equal to 5 m and 0.5 m and 0.05
m respectively.

Reference ensemble statistics for solute concentration are derived from a set of 1000
solutions of the transport problem based on the 1000 hydraulic conductivity realizations
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Figure 2.31: Two solute concentration realizations corresponding to the two hydraulic conduc-
tivity realizations shown in Fig. 2.28; see text for details.

generated in the previous subsection via SR sampling. Two such concentration real-
izations derived from the conductivity realizations shown in Fig. 2.28 are given in Fig.
2.31.

Figure 2.32: Reference ensemble average (A) and ensemble standard deviation (B) concentra-

tion fields, computed from 1000 concentration realizations derived from 1000 hydraulic conduc-

tivity realizations generated via simple random sampling; see text for details.

The performance of the various sampling methods considered in this work for sample
sizes S = 20, 50, 80 is then quantified in terms of reproduction of these reference ensemble
concentration statistics via the sampling distribution of error summary statistics (RMSE).
Reference statistics for solute concentration consist of: (i) the ensemble average field
shown in Fig. 2.32 A, (ii) the ensemble standard deviation field also shown in Fig. 2.32
B.

Figure 2.33 shows the reproduction of the ensemble average and ensemble standard
deviation concentration fields (Fig. 2.32) for the two sampling methods and the three
sample sizes considered. Reproduction is quantified here in terms of the sampling distri-
bution of RMSE between reference and simulated ensemble concentration statistics over
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Figure 2.33: Reproduction of reference ensemble mean (A) and ensemble standard deviation
(B) concentration fields (shown in Fig. 2.32) from various sampling methods; see text for details.

the 41× 41× 9 grid cells. It is easily appreciated that LH yield a better reproduction of
these ensemble fields than SR sampling, particularly in the case of the ensemble average
concentration field.

2.6 Conclusions and Discussion

The spatial distribution of saturated hydraulic conductivity is often parameterized in
terms of a lognormal random field model in stochastic two or three dimensional hydro-
geological case studies. Simulated realizations of such a random field are often used
along with physically-based models of flow and transport in a Monte Carlo framework
for evaluating the uncertainty in the spatial distribution of solute concentration due to
the uncertainty in the spatial distribution of hydraulic conductivity. In practical applica-
tions, however, classical Monte Carlo simulation, or simple random (SR) sampling, from
a random field model can quickly become computationally expensive. A more computa-
tionally efficient alternative to classical Monte Carlo simulation is Latin hypercube (LH)
sampling, aiming at reducing the number of realizations that are too similar by chance.
In a spatial context, LH sampling aims at generating representative realizations from a
random field model, where term representative implies realizations spanning efficiently
the range of possible attribute realizations corresponding to the multivariate probability
distribution (lognormal in this work) associated with the random field.

This Chapter is an introduction to Monte Carlo simulation procedure and moreover
to Stein’s LH method (Stein, 1987), both in a spatial context. The purpose here is to get
the reader familiar with the concept of stratified simulation by applying Stein’s method
and highlighting its benefits compared to classical Monte Carlo. Apart from the simple
introductory character, this chapter introduces a synthetic hydrogeological case study.
The case study includes the computation of arrival times of the pollutant at certain
observation wells. It is a rather more stringent evaluation of the proposed method, which
might reveal the small added value of the method due to the high degree of non-linearity.
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Moreover, it is natural for the reader to expect a discussion regarding conditioning to
specific data (like the measurements data at the four corners of the domain for both case
studies); this is treated separately in Chap. 5.

More specifically, the performance of simple random (SR) and Latin hypercube (LH)
sampling is compared in two case studies (one 2D and an anisotropic 3D) within a hy-
drogeological context involving flow and transport in a heterogeneous porous medium.
The two methods are evaluated as per their ability of reproducing reference conductivity
ensemble statistics. The statistics considered for the first case study included the ensem-
ble mean, standard deviation, global and local probabilities of threshold exceedance, as
well as short-scale correlation, whereas for the second case study the ensemble mean and
standard deviation. The reproduction of the same statistics for the ensemble concentra-
tion field resulting from solving a flow and transport boundary value problem for each
hydraulic conductivity realization, was also evaluated in the second part of the two case
studies respectively.

As expected for the case of hydraulic conductivity, LH sampling (and its Midpoint
extension regarding the 2D case study) achieved the best reproduction of marginal refer-
ence statistics, for the ensemble mean and standard deviation (Fig. 2.19 and Fig. 2.30).
Regarding the results of the 2D case alone, LH sampling achieved a better reproduction
of the marginal reference local probability of exceeding a relatively high concentration
threshold, close to the 70-th percentile of the global distribution (Fig. 2.21B). Note that
the above reductions in sampling variability brought by LH sampling as compared to
SR sampling might be even more visible and appreciable had the error analyses been
conducted using Gaussian realizations instead of their lognormal counterparts.

In terms of solute concentration, LH sampling (and its Midpoint extension regarding
for the 2D case study) showed significantly better reproduction of the ensemble mean and
standard deviation concentration fields than SR sampling, in the case of the ensemble
average concentration field (Fig. 2.24 and Fig. 2.33). Regarding the two dimensional
case studies, the three sampling methods considered yielded comparable reproductions
of the ensemble concentration correlation (Fig. 2.25) and lastly, LH sampling showed the
best reproduction of the reference distribution of first arrival times at any of the four
observation wells at the four corner nodes of the simulation grid (Fig. 2.26).

It is easily appreciated considering the results for both two dimensional and anisotropic
three dimensional case studies, that LH sampling yields a better reproduction of these
ensemble average fields than SR sampling, for both model inputs and outputs. It could be
further argued that LH sampling offers smaller sampling variability for the same number
of simulated realizations than SR sampling. Consequently, LH sampling could lead to
more efficient uncertainty propagation with fewer model runs due to more representative
inputs, thus reducing the time and computer resources for such an endeavor.
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Chapter 3

Stratified Sampling from Random
Fields

In this Chapter two alterations of an innovative sampling method are introduced, scarcely
known in the geostatistical literature, here named ”Stratified Likelihood sampling” (SL)
and ”Minimum Energy sampling” (ME), in which representative realizations are gen-
erated by exploring in a systematic way the structure of the multivariate distribution
function itself. Term representative implies realizations spanning efficiently the range
of possible attribute realizations corresponding to the multivariate probability distribu-
tion (lognormal in this work) associated with the random field. All three controlled or
stratified sampling methods (LH, SL and ME), are capable of generating representative
realizations from (log)Gaussian random fields, i.e., spanning efficiently the range of values
corresponding to the (log)Gaussian multivariate probability distribution. Although such
realizations often serve as parameters for physical process simulators, existing controlled
sampling methods do not account for model sensitivity; hence, they need not yield repre-
sentative realizations of model outputs. To address this shortcoming, controlled sampling
methods are embedded within a two-step simulation procedure. The first step involves
stratified sampling at a set of control points where attribute values are expected to ex-
ert a large impact on model predictions and/or where uncertainty in such predictions is
expected to be largest. In the second step, control point samples are used to generate
attribute realizations over the entire study region using classical geostatistical simulation.
The proposed controlled, two-step geostatistical simulation approach is further evaluated
via two synthetic case studies involving physically-based simulation of flow and transport
in a porous medium with known boundary and initial conditions over a simple geometrical
domain; their performance is evaluated for different sample sizes (number of realizations)
in terms of the reproduction of ensemble statistics of hydraulic conductivity and solute
concentration computed from a very large ensemble set generated via simple random
sampling. The results show that Latin hypercube, stratified likelihood and minimum
energy sampling are more efficient than simple random sampling, in that they can overall
reproduce to a similar extent statistics of the conductivity and concentration fields, yet
with smaller sampling variability than the latter.

The remainder of the chapter is structured as follows: Section 3.1 introduces stratified
likelihood sampling, Section 3.3 describes minimum energy sampling and presents a sim-
ple hydrogeological case study of flow and transport in a heterogeneous porous medium
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highlighting the benefits of the proposed method, and Section 3.2 illustrates the two-step
simulation procedure and compares the controlled simulation methods via a hydroge-
ological case study also underlying the need to account for the uncertainty related to
respective Hydrogeological flow and transport model applied.

3.1 Stratified Likelihood Sampling

An alternative method for representative sampling from a multivariate (log)normal distri-
bution, namely, stratified likelihood (SL) sampling, is described hereafter. First proposed
in a conference proceedings paper by Switzer (2000) in the context of Gaussian random
fields, brought a different perspective on the generation of representative realizations
from a multivariate Gaussian probability distribution. Kyriakidis and Gaganis (2013)
enhanced the method in a spatial context further investigating its performance in a hy-
drogeological case study. The basic idea is to generate in a structured (controlled or
stratified) way representative realizations from the multi-Gaussian distribution by cap-
italizing on the geometrical properties of the associated likelihood function; hence, the
name stratified likelihood sampling coined in this paper. The metric of representativity
of a realization is taken here as the Mahalanobis distance of that realization to the mul-
tivariate (multi-point) attribute expectation, conditional or not to sample data. Unlike
LH sampling, SL sampling does not aim at marginal stratification but at generating rep-
resentative realizations by exploring in a systematic way the underlying multi-Gaussian
likelihood model. The basic idea is to select via stratification representative points (at-
tribute realizations) in a hyper-dimensional space from that likelihood. Although the
method is in principle also applicable to non-Gaussian distributions, the focus of this
paper is primarily on the multivariate (log)normal case which is frequently encountered
in hydrogeological applications. For a more comprehensive approach to efficient sampling
that capitalizes on approximate knowledge regarding the links between model inputs and
model outputs for a wide range of applications, the reader is referred to Scheidt and Caers
(2009), and Caers (2011).

In what follows, Subsection 3.1.1 introduces the basic concepts behind multi-Gaussian
likelihood sampling, and Subsection 3.1.2 describes the extension of the multivariate
lognormal stratified likelihood sampling.

3.1.1 Multi-Gaussian likelihood sampling

At the heart of SL sampling lies the squared Mahalanobis distance d2M between a real-
ization y and the expectation vector µY , defined as Johnson and Wichern (1998)

d2M(y) = [y − µY ]TΣ−1Y [y − µY ] = d2M(y,µY ; ΣY ) (3.1)

where Σ−1Y denotes the inverse of the covariance matrix ΣY , and the notation
d2M(y,µY ; ΣY ) could be used to explicate that the distance between y and µY is param-
eterized in terms of ΣY . In a nutshell, the Mahalanobis distance between two points y
and µY in a M -dimensional scatter plot takes into account the geometry of the variability
of that scatter plot as encapsulated by the covariance matrix ΣY . More specifically, the
squared Mahalanobis distance is a version of a standardized squared Euclidean distance,
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whose components are measured along the directions specified by the eigenvectors of the
covariance matrix ΣY . The component of distance along the m-th direction specified by
the m-th eigenvector of ΣY quantifies distance between the m-th entries of y and µY

in terms of standard deviation along that direction given by the m-th eigenvalue of the
ΣY . Although the Mahalanobis distance is not tied to any multivariate distribution, it
is often used in a multi-Gaussian context, due to the fact that a multivariate Gaussian
distribution is fully specified by the expectation vector µY and the covariance matrix ΣY .

Figure 3.1: Bivariate Gaussian density function; it should be noted that for 3 variables
the iso-likelihood contours become ellipsoids

For the case of a M -variate Gaussian PDF G(µY ,ΣY ), (bivariate example illustrated
in Fig. 3.1) the squared Mahalanobis distance d2M(y) determines the likelihood of realiza-
tion y up to a normalizing constant, since the multivariate Gaussian PDF is a function of
d2M(y) Johnson and Wichern (1998). Two realizations y and y′ with the same likelihood
also correspond to the same squared Mahalanobis distance d2M(y). Such realizations can
be represented as points lying on a hyper-ellipsoid (bivariate example illustrated in Fig.
3.2) centered at µY with axes orientations identified by the M eigenvectors of the covari-
ance matrix ΣY , and axes lengths proportional to the square root of the corresponding
M eigenvalues of ΣY ; the proportionality constant is dM(y). For a more recent and com-
prehensive exposition of the links between the Mahalanobis distance and multi-Gaussian
likelihood, the reader is referred to (Bourgault, 2012).

In addition, for a M -variate Gaussian PDF the squared Mahalanobis distance d2M
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Figure 3.2: Point corresponding to equally likely pairs of realizations on a bivariate
Gaussian density function

follows a chi square distribution with M degrees of freedom d2M ∼ χ2(M), and the
associated Mahalanobis distance dM follows a chi distribution with the same degrees of
freedom dM ∼ χ(M). This implies that selecting, for example, the 0.95 quantile x0.95 of
a chi distribution with M degrees of freedom, amounts to selecting a hyper-ellipsoid of
constant likelihood; Fig. 3.3. There are multiple realizations y on this hyper-ellipsoid
indexed by x0.95, all of which are equally likely. SL sampling amounts to generating
efficiently such multivariate Gaussian realizations by selecting representative points on
likelihood-indexed hyper-ellipsoids.

More precisely, it can be shown that a realization y from a multivariate Gaussian PDF
G(µY ,ΣY ) can be represented in terms of a chi deviate x and a unit norm realization ũ
or point on the surface of a unit hyper-sphere, as Switzer (2000)

y = CTw + µY = CTxũ + µY (3.2)

where C is the (upper triangular) Cholesky factor of the covariance matrix ΣY , w is a
(M × 1) vector of standard Gaussian deviates, ũ is a (M × 1) vector of uniform deviates
in [−1, 1] constrained to a unit norm, ‖ũ‖ =

√
ũT ũ = 1, and x is a scalar from a chi

distribution with M degrees of freedom, x ∼ χ(M), independent of the entries of ũ.
Term xũ in Eq. (3.2) is essentially a generalization of the polar method for generating
a realization w of M uncorrelated standard Gaussian deviates Kroese et al. (2011): the
entries of ũ define a random point on the surface of a unit hyper-sphere in M dimensions,
or equivalently a random orientation, and the chi deviate x defines a random radius; Fig
3.4.

Vector ũ can be efficiently generated by constraining a (M×1) vector v of uncorrelated
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standard Gaussian deviates to have a unit norm, as ũ = v/
√

vTv Kroese et al. (2011).
Multiplication by the Cholesky factor C in Eq. (3.2) amounts to rotating and scaling
the entries of ũ so that they now define a point lying on the surface of a M -dimensional
hyper-ellipsoid whose geometry is specified by the eigenvectors and eigenvalues of the
covariance matrix ΣY .

Note that scalar x serves as an index of likelihood-based hyper-ellipsoid selection;
this likelihood is linked to the Mahalanobis distance dM associated with a given hyper-
ellipsoid. Indeed, the procedure of simulating a chi deviate x and using Eq. (3.2) to
generate a (zero mean for simplicity) realization y from a multivariate Gaussian PDF
G(0,ΣY ) ensures that realization y has a Mahalanobis distance equal to the chi square
deviate x2, since

yTΣ−1Y y = ũTCx(CTC)−1xCT ũ = x2ũT ũ = x2 = d2M(y)

using the fact that (CTC)−1 = C−1(CT )−1, and ũ has unit norm.
Equation (3.2) can be generalized to the simulation of a (S ×M) matrix Y with a

simple random (SR) sample of size S from a multivariate Gaussian PDF G(µY ,ΣY ), as

Y = WC + MY = diag(x)ŨC + MY (3.3)

where diag(x) is a (S×S) diagonal matrix having as diagonal entries a set of S deviates
x = [xn, n = 1, . . . , N ]T from a chi distribution with M degrees of freedom. Note that the
s-th row of matrix ŨC is multiplied by the s-th chi deviate xn; that is, the (s, s) entry
of matrix diag(x) or the s-th element of x. Term Ũ is a (S ×M) matrix with uniform
deviates in [−1, 1], all rows of which are constrained to have a unit norm; that is, if ũs

denotes the s-th row of Ũ, then
√

ũT
s ũs = 1. Matrix Ũ can be generated as vector ũ

above by: (i) simulating a (S×M) matrix V of uncorrelated standard Gaussian deviates,
(ii) forming the (S×1) vector ‖V‖ containing the norms of its S rows, and (iii) computing
the product [diag(‖V‖)]−1V, with [diag(‖V‖)]−1 denoting a (S×S) diagonal matrix with
the reciprocals of the entries of vector ‖V‖ along its diagonal. Term diag(x)Ũ is a (S×M)
matrix W with uncorrelated standard Gaussian deviates, which can be transformed as
WC into a SR sample Y of size S from a M -variate Gaussian PDF G(µY ,ΣY ). Matrix
Y can be finally transformed into a SR sample Z from a M -variate lognormal distribution
as Z = exp(Y).

Equation (3.3) is essentially an alternative but equivalent version of Eq. (2.23), now
expressed in terms of S chi deviates (entries of vector x) and S sets of M uniform deviates
in [−1, 1] (rows of matrix Ũ) representing points constrained to lie on a S-dimensional
unit hyper-sphere. Considering S points uniformly distributed on the surface of a M -
dimensional unit hyper-sphere (rows of Ũ) and rotating/stretching them as ŨC to lie onto
the surface of a M -dimensional hyper-ellipsoid, however, leads to a non-uniform point
distribution on the hyper-ellipsoid (clumping of points near the poles) due to the non-
constant curvature of the latter (Borovkov, 1994; Kroese et al., 2011). One has to keep
in mind, however, that it is the matrix W of uncorrelated standard Gaussian deviates
in Eq. (3.3) that is generated as diag(x)Ũ. That matrix W is then transformed into a
matrix Y of correlated Gaussian deviates via WC, a procedure well-known to produce
realizations from a multivariate Gaussian distribution. Viewed alternatively, since the
chi distribution approaches a Gaussian one as M increases Kendall (1945), the S chi
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deviates in vector x are more likely to attain values near the center of that distribution.
This implies that uniformly distributed points on the unit hyper-sphere (rows of Ũ) are
less likely to be displaced (due to scaling by the entries of x) onto hyper-spheres with
much larger radii or with locus far away from the center of the unit hyper-sphere; hence,
differential clumping near the poles of a hyper-ellipsoid due to subsequent rotation of
those points by diag(x)ŨC affects fewer points.

3.1.2 Multivariate lognormal stratified likelihood sampling

The objective here is to generate a representative sample of size S from a multivariate
lognormal PDF L(µZ ,ΣZ), which is tantamount to generating a representative sample
from a multivariate Gaussian PDF G(µY ,ΣY ) per the monotonicity of the transformation
Z = exp(Y ). A closer inspection of Eq. (3.3) reveals that the terms through which such an
objective could be achieved are: (i) the matrix Ũ of S sets of uniform deviates defining
S points on the M -dimensional unit hyper-sphere, generated as Ũ = diag(‖V‖)−1V,
where V is a matrix of uncorrelated standard Gaussian deviates and ‖V‖ contains the S
scalar norms of the S rows of V, and (ii) the vector x of S chi-square deviates displacing
these S points on hyper-spheres with different radii. Stratified likelihood (SL) sampling
amounts to: (i) generating a representative matrix ŨL whose S rows define S points that
span efficiently the M -dimensional unit hyper-sphere, and (ii) generating a representative
(Latin hypercube) sample xL of size S from a chi distribution with M degrees of freedom.
A trivariate example of a random and a stratified point design of 100 samples, along with
the relevant cdf of the nearest neighbor distances are illustrated in Fig. 3.5. It is easily
comprehended that the stratified point design has the maximum possible nearest neighbor
distances among all sampled values.

Task (ii) can be accomplished via a straightforward application of Eq. (2.5) for LH
sampling from a univariate (chi in this case) distribution. For task (i), (Switzer, 2000)
proposed to induce stratification across the rows of Ũ via stratification of the entries of
each column of V; this is the approach followed in this work, too. Since the entries of any
column of V are generated independently of the entries of any other column, (Switzer,
2000) proposed to employ Eq. (2.5) for univariate LH sampling M times to generate a
(S ×M) matrix VL whose columns contain S stratified standard Gaussian deviates. It
should be noted, here, that Switzer’s proposal for addressing task (i) does not guarantee
that the S points defined by the rows of matrix ŨL span efficiently, e.g., repel each other
hence cover uniformly, the unit hyper-sphere. Consequently, the current preliminary
implementation of SL sampling offered in this work is approximate and therefore sub-
optimal. Section 3.3 present an improvement on this front by stratifying across the rows
of Ṽ via a multiple steps procedure maximizing the nearest neighbor distances of the
generated samples (state of convergence).

Simulation flowchart: In summary, stratified likelihood (SL) sampling, as imple-
mented in this work, for generating a sample of size S from a M -variate lognormal
PDF L(µZ ,ΣZ); that is, S representative realizations from that PDF, proceeds in the
following steps:
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1. Compute the (upper triangular) Cholesky factor C of the covariance matrix ΣY of
the multivariate Gaussian PDF G(µY ,ΣY ) associated with L(µZ ,ΣZ).

2. Generate a (S ×M) matrix VL with a stratified sample of size S from M uncorre-
lated standard Gaussian deviates; the entries of the columns of VL can be generated
using standard or midpoint LH sampling.

3. Compute the vector ‖VL‖ with the S scalar norms of the rows of VL, and compute
the (S × M) matrix ŨL = diag(‖VL‖)−1VL; the S rows of ŨL approximate S
stratified, unit norm, realizations or points on the surface of a unit hyper-sphere in
a S dimensional space.

4. Generate a vector xL of S LH deviates from a chi distribution with M degrees
of freedom, independent of VL, hence of ŨL; the S entries of xL, which can be
also generated via standard or midpoint LH sampling, identify S representative
hyper-ellipsoids of a M -variate Gaussian PDF via their corresponding Mahalanobis
distances.

5. Scale/rotate and translate the entries of ŨL as diag(xL)ŨLC + MY so that they
now define S, spatially correlated realizations with mean µY , or S points lying
on the surfaces of S different hyper-ellipsoids centered at µY and whose geometry
is dictated by the eigenvalues and eigenvectors of the covariance matrix ΣY ; each
such hyper-ellipsoid is indexed by the corresponding chi deviate in xL. This step is
summarized as

YL = WLC + MY = diag(xL)ŨLC + MY (3.4)

where WL is a (S ×M) matrix with stratified uncorrelated Gaussian deviates; Eq.
(3.4) is a stratified version of Eq. (3.3).

6. Last, matrix YL can be transformed into a LH sample ZL from a multivariate
lognormal distribution as ZL = exp(YL). The result is a set of S realizations
from a lognormal random field, selected in a representative way from the associated
likelihood model, thus ensuring that realizations are not too similar by chance as
in simple random sampling.

A pictorial representation of generating S correlated samples on 3 points of a spatial
setting via stratified likelihood sampling is depicted in Fig. 3.6.
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Figure 3.6: Stratified point design of S samples of 3 variables on a unit sphere ŨL,
displacement on the new hyper-spheres of diag(xL) radii, transformation/rotation to
ellipsoids of different axes lengths according to C

3.2 Accounting for model specific information

As stated in the introduction, the objective of efficient sampling is to construct a rep-
resentative set of model responses using fewer – with respect to simple random (SR)
sampling – realizations of model inputs, and consequently reduce the computational bur-
den associated with model output uncertainty analysis due to multiple model evaluations.
A major obstacle towards that objective for the stratified or controlled sampling methods
presented above (likelihood sampling and Latin hypercube sampling) is that they operate
exclusively on the space of model inputs. In other words, these methods capitalize on the
statistics of model inputs only, and do not account for model-specific information, such
as model sensitivity. Consequently, stratified likelihood or Latin hypercube sampling of
model inputs need not necessarily lead to representative realizations of model outputs.

To mitigate this drawback, and along the lines of Switzer (2000), it is proposed that
controlled sampling is conducted in a lower dimensional space – a smaller (than M) set of
control locations – over which representative realizations of model inputs are generated.
The specification of such locations is necessarily context-specific, and should be guided by
the particular application at hand. When simulating radial flow and transport around an
injection well and conductivity is assumed isotropic, for example, control points could be
located radially away from the injection well, to account for the fact that concentration
patterns are radially symmetric in this case. As suggested by Switzer (2000), one could
also consider control points at regions of highest uncertainty in terms of data control, or
alternatively in terms of model response uncertainty. The spatial pattern of such regions
could be furnished from a preliminary analytical solution of the particular (e.g., initial
and boundary value) problem at hand, when possible, or alternatively from a small set
of model evaluations using attribute realizations generated via SR sampling.

An additional reason for selecting a relatively small number of control locations for
the case of stratified likelihood sampling pertains to the exploration of the multivariate
Gaussian distribution in terms of Mahalanobis distances and their associated chi distri-
bution – the vector x of chi deviates in Eq. (3.3). More precisely, for a large number
of simulation grid nodes M , the chi distribution with M degrees of freedom approaches
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a Gaussian distribution with mean
√
M − 0.5 and variance equal to 0.5; see, for exam-

ple Switzer (2000). This implies that the relative difference between a low and a high
quantile of the chi distribution becomes smaller as M increases; which in turn implies
that the exploration of the multivariate Gaussian likelihood of Eq. (3.3) becomes more
concentrated and thus less informative; that is, one is simulating more realizations with a
Mahalanobis distance close to

√
M − 0.5; see also Bourgault (2012). Considering a lower

dimensional multivariate Gaussian distribution via a small (less than 30) set of control
locations, thus renders the efficient exploration of the associated likelihood function less
concentrated (Switzer, 2000).

In what follows, a two-step, controlled sampling procedure is adopted to account for
model sensitivity in stratified (log)Gaussian likelihood (and classical Latin hypercube)
sampling. At the first step, attribute values at a small number of control locations are
simulated using the stratified sampling methods described above. Stratified simulations
at these few locations cover efficiently the range of possible attribute values and create
a wider range of controlled variability at each control locations. At the second step,
attribute values at the remaining locations are generated conditional on the fist step’s
simulated values. Representative realizations are thus generated across the entire simu-
lation domain, due to the effects of spatial autocorrelation in attribute values.

More specifically, we denote as y1 the set of N simulated (and stratified) attribute
values at a set of N control points {cn, n = 1, . . . , N}, and as y2 the set of simulated
values at the remaining M − N locations {cm,m = N + 1, . . . ,M}. Given a set of N
stratified simulated values y1, a conditional realization y2 can be generated as (Chilès
and Delfiner, 1999)

y2 = Σ21Σ
−1
11 y1 + Clow

22|1w2 (3.5)

where Σ−111 is the (N×N) inverse covariance matrix between the N control points, Σ21 is
the ((M−N)×N) covariance matrix between the M−N remaining simulation locations
and the N control points; term Σ21Σ

−1
11 defines the matrix of Simple Kriging weights

given at the N control points for prediction at the M − N remaining locations. Term
w2 is a ((M −N)× 1) vector of standard Gaussian deviates, and term Clow

22|1 is the lower

triangular Cholesky factor of the ((M − N) × (M − N)) conditional covariance matrix
Σ22|1 defined as (Chilès and Delfiner, 1999)

Σ22|1 = Σ22 −Σ21Σ
−1
11 Σ12 (3.6)

where Σ22 is the ((M −N)× (M −N)) covariance matrix between the M −N remaining
simulation locations, and Σ12 is the transpose of matrix Σ21 defined above. Term Clow

22|1w2

in Eq. (3.5) represents a simulated realization – a SR sample of size 1 – of the Simple
Kriging error via the Cholesky decomposition method of the conditional covariance matrix
Σ22|1 (Chilès and Delfiner, 1999).

The above procedure can be repeated S times, resulting in a set of S stratified real-
izations over the entire simulation domain, per the stratification of the control values and
the effects of spatial autocorrelation. Last, simulated realizations can be transformed to
a lognormal distribution using the antilog transform to arrive at simulated realizations
of hydraulic conductivity over the study region.
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3.2.1 Two step - simulation case study

The efficiency of the various sampling methods described above in generating represen-
tative realizations from a (log)Gaussian random field model is evaluated within a hydro-
geological context involving flow and transport in a porous medium, where the unknown
spatial distribution of saturated hydraulic conductivity is modeled a as realization of a
lognormal random field. More precisely, a simplified two-dimensional synthetic ground-
water flow system is considered, similar to that used in Zhang and Pinder (2003). The
dimensions of the flow system are 5100 m by 5100 m discretized into a 51 × 51 grid
(M = 2601) with uniform rectangular cells of size 100 m by 100 m. Porosity is assumed
constant throughout the domain and equal to 0.25. Flow boundary conditions consist of
constant head of 0 m at the four corner cells and a constant head of 250 m at the central
cell of the domain. No flow conditions (∂h/∂n = 0) are assigned to the rest of the domain
boundaries, whereas the Modflow code (McDonald and Harbaugh, 1988) is used in this
study to obtain the steady state flow solution.

A second-order stationary and isotropic lognormal random field is adopted with pa-
rameters borrowed from Sudicky et al. (2010). More precisely, the mean and variance of
log conductivity are taken as µY = −5.64 and σ2

Y = 1.79, respectively, corresponding to
conductivity statistics µZ = 0.0087 m/sec and σ2

Z = 0.000382 (m/sec)2. The semivari-
ogram of log conductivity is assumed to be of exponential form, with no nugget effect,
and effective range 1000 m, corresponding to one fifth of the domain extent along the car-
dinal directions. Two realizations of this random field model at the nodes of the domain
described above are given in Fig. 3.7.
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Figure 3.7: Two realizations of a lognormal random field modeling the spatial distribution
of saturated hydraulic conductivity; see text for details.

For the solute transport problem, an initial concentration equal to 0 is assumed
throughout the model domain. At time t = 0, a contaminant is introduced at the central
cell, along the upstream constant head boundary, with constant concentration C0 = 100
mg/l. No transport conditions (∂C/∂n = 0) are assigned along the domain boundaries.
Longitudinal and transverse horizontal dispersivities are assumed to be equal to 5 m and
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0.5 m, respectively. The MT3D code (Zheng, 1990) was then used to obtain breakthrough
curves at the four observation wells located at the four corner nodes of the domain, as
well as the solute transport solution up to an end time of t = 2 · 106 sec; this end time
represents a conservative time to a well-field failure and was selected, based on an initial
set of simulations, as the maximum solute travel time to at least one observation well.

Reference ensemble statistics for solute concentration are derived from a set of 10000
solutions of the transport problem based on 10000 hydraulic conductivity realizations
generated via simple random (SR) sampling. Two such concentration realizations derived
from the conductivity realizations shown in Fig. 3.7 are given in Fig. 3.8.
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Figure 3.8: Two concentration realizations corresponding to the saturated hydraulic con-
ductivity realizations of Fig. 3.7.

Reference statistics for solute concentration used for comparison of the various sam-
pling methods considered in this work consist of: (i) the ensemble average field shown in
Fig. 3.9A, (ii) the ensemble standard deviation field shown in Fig. 3.9B, (iii) the ensem-
ble pairwise correlation between grid nodes – this involves all the entries of the upper
triangular part of the concentration correlation matrix, (iv) the ensemble distribution
of Mahalanobis distances between simulated concentration realizations and the ensemble
average concentration field of Fig. 3.9A, and (v) the ensemble cumulative distribution
function (CDF) of arrival times at 25% and 75% of the total concentration at any of the
four observation wells.

The various sampling methods are compared in this work using a sample size equal
to S = 30. Once a sample is generated, the discrepancy between the statistics of the
simulated ensemble and the reference concentration statistics listed above is quantified
using the root mean squared error (RMSE) for the case of summary statistics (mean,
variance, correlation) or the mean absolute error (MAE) for the case of distribution per-
centiles (distribution of Mahalanobis distances). The computation of such error statistics
is repeated over a set of I = 100 batches of realizations, each batch containing a sample
size S = 30, thus estimating the sampling distributions of RMSE and MAE values for
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Figure 3.9: Reference ensemble average (A) and ensemble standard deviation (B) con-
centration fields computed from 10000 concentration realizations corresponding to 10000
hydraulic conductivity realizations generated via simple random sampling; see text for
details.

each method; these distributions are presented in terms of their means and medians, as
well as their 75% and 95% probability intervals. All subsequent figures, 75% RMSE (or
MAE depending on the statistic selected) probability intervals are depicted with hori-
zontal line segments, whereas 95% probability intervals with × symbols; median RMSE
values are depicted as asterisks (∗), whereas mean values as circles (◦); horizontal dashed
lines are also overlayed on the plots to facilitate visual comparison among the distribu-
tions. The better the reproduction of a reference statistic from simulations of a sampling
method, the narrower the sampling distribution of the resulting, say, RMSE values, and
the smaller (closer to 0) the center of that distribution.

3.2.2 Control point selection

In the proposed two-step sampling method accounting for model sensitivity, the gener-
ation of hydraulic conductivity fields consists of two steps. In the first step, efficient
sampling methods (SL or LH) are employed to generate representative realizations of
hydraulic conductivity at control points located within study region. In the second step,
realizations of hydraulic conductivity are generated – using SR sampling – over the entire
study region taking into account (conditional on) the representative samples generated
in the first step. In what follows, an attempt is made to investigate the impact of control
point selection (number of points and their location) on the quality of reproduction of
the reference ensemble concentration statistics from the various sampling methods.

Control points should correspond to application-specific important locations, possibly
controlling the variance of model outputs; in this case, the ensemble standard deviation
of solute concentration of Fig. 3.9B. Control points are thus located radially away from
the injection well, to account for the fact that concentration patterns were expected to be
radially symmetric due to the isotropic random field. In addition, control points include
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locations in regions of large concentration standard deviation (doughnut-shaped area in
Fig. 3.9B), and are varied in numbers from 1 to 25 points; see Fig. 3.10.

The central point of the study region is also included as an application-specific im-
portant point, since it corresponds to the location of the central injection well where the
contaminant is first introduced in the region. Three more sampling schemes are consid-
ered for comparison, the two comprising a fine and coarse 4 × 4 grid (Fig. 3.11), and
the third being a set of 16 random points changing locations in each of the 100 different
iterations considered (Fig. 3.12).
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Figure 3.10: Two sets (16 points on the left, and 25 points on the right) of application-
specific control points plotted on the ensemble standard deviation field of concentration.

Control points on a 4x4 grid
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Control points on a sparse 4x4 grid
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Figure 3.11: Two gridded sets of control points plotted on the ensemble standard devi-
ation field of concentration: A) Control points chosen on 4 × 4 regular grid, B) Control
points on a sparser 4× 4 regular grid.
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Random control points: set 1 out of 100

 

 

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

5

10

15

20

25

30

35

Random control points: set 20 out of 100
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Figure 3.12: Two random sets of control points plotted on the standard deviation field
of concentration; see text for details.

Overall, twelve different sets of control points are considered as candidates for fist-
stage sampling, as follows:

� Only the central point of the region (circular marker in Fig. 3.10A), where the
contaminant is first introduced to each model solution, denoted in the figures that
follow as src.

� The central point along with 8 points radially emanating at the first areola (aster-
isk markers in Fig. 3.10A) corresponding to locations with concentration standard
deviation values larger than 20mg/l, denoted as a1LHs and a1SLs in the following
figures; the first corresponds to LH and the second to SL sampling; a1 denotes the
first areola and s the source well.

� As above, but excluding the central point; denoted in the figures as a1LH and a1SL.

� Eight points radially emanating along the areola holding the largest values of stan-
dard deviation of the solute concentration field (star marker in Fig. 3.10A); denoted
in the figures as a2LH and a2SL

� As previously, but including the central point; denoted in the figures as a2LHs and
a2SLs

� The central point along with the points on the two areolae, excluding one point
(different one for each iteration) from the second areola; denoted in the figures as
a12LH- and a12SL-.

� Both of the above areolae excluding the central point(16 points in total); denoted
in the figures as a12LH and a12SL.

� Sixteen points on a 4× 4 regular grid (Fig. 3.11A); denoted in the figures as g1LH

and g1SL.
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� Sixteen points on a sparser 4 × 4 regular grid (Fig. 3.11B); denoted in the figures
as g2LH and g2SL.

� Sixteen random points scheme: a different scheme is generated for each of the 100
iterations; denoted in the figures as rndLH and rndSL. Two random point schemes
are displayed in Fig. 3.12.

� Twenty five control points including points in the two areolae, the central point, and
four corner points near the observation wells (Fig. 3.10B); denoted in the figures as
25LH and 25SL.

All the above combinations of sampling schemes for the two sampling methods are
compared in terms of their ability to reproduce the reference ensemble statistics computed
via 10000 realizations generated via SR sampling. The results from above methods and
control point locations are compared to the results obtained from 100 iterations of S = 30
SR samples. In all the figures that follow, the results of SR sampling are displayed at the
end of each plot and denoted as SR.

3.2.3 Results

Figure 3.13 shows the reproduction of the ensemble average hydraulic conductivity field
for the 22 combinations of control point schemes and the two stratified sampling methods
(SL and LH), along with the results for simple random (SR) sampling. Reproduction is
quantified here in terms of the sampling distribution of RMSE between reference and
simulated ensemble conductivity statistics over the 51 × 51 grid cells. Since the repro-
duction ability for the different combination of sampling schemes and methods here is
not conditioned to the application, the best reproduction depends only on the number of
points and their dispersion over the study region. According to Fig. 3.13, the 25 sampling
scheme, denoted as 25LH and 25SL, achieves the best reproduction of the reference mean
conductivity field. Since there is no model-specific information, a better reproduction
would be achieved by an equal number (25) of gridded points, where the stratification of
control points would inform a larger area than the 25 points sampling scheme accounting
for model sensitivity.

Figure 3.14 shows the reproduction of the ensemble average concentration field (Fig.
3.9A) for the 22 combinations of control point schemes and the two stratified sampling
methods, along with the results for SR sampling. Reproduction is quantified here in
terms of the sampling distribution of RMSE between reference and simulated ensemble
concentration statistics over the 51 × 51 grid cells. One could easily state that the four
control sampling schemes comprising the central point, apart from the one with only the
second areola and the central point, surprisingly even the one with only the central control
point, denoted as src, have a better reproductive ability than the other schemes. The
scheme comprising the points at the second areola and the central point, denoted as a2LHs
and a2SLs is not performing as good, due to the large distance between the central point
and the second areola. Since there are no conditioning data in the area in between, i.e.,
the area through which the pollutant is transported at the beginning of each simulation,
the central point does not play such a critical role in the simulation, thus not efficiently
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Figure 3.13: Reproduction of ensemble mean hydraulic conductivity field for various
sampling schemes of control points; see text for details.

reproducing the reference ensemble mean. Moreover, all controlled sampling schemes
yield better performance than SR sampling, and furthermore, no conclusive inference can
be made with respect to the reproduction properties of the two sampling methods, LH
and SL, across all sampling schemes.
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Figure 3.14: Reproduction of ensemble mean concentration field (shown in Fig. 3.9A) for
various sampling schemes of control points; see text for details.

Figures 3.15 and 3.16 show the reproduction of the ensemble standard deviation con-
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centration field (Fig. 3.9B) and the reproduction of the reference concentration correlation
matrix (upper triangular part) for the 22 combinations of sampling methods and con-
trol point schemes. One could notice that here again the best reproduction is obtained
via the sampling scheme with 25 application- specific control points, followed by LH on
both areolae and the center point, and LH on first areola and center. All other meth-
ods or schemes yield approximately the same results, with few of them leading to worst
reproduction than SR sampling.
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Figure 3.15: Reproduction of ensemble standard deviation concentration field (shown in
Fig. 3.9B) for various sampling schemes of control points; see text for details.

Figure 3.17 shows the reproduction of the ensemble distribution of Mahalanobis dis-
tances between the simulated concentration realizations and the ensemble average con-
centration field (Fig. 3.9A). Reproduction is here quantified in terms of the sampling
distribution of MAE computed between percentiles of the reference and simulated en-
semble Mahalanobis distance distributions. All sampling schemes have approximately
the same results, although one could notice the slightly better reproduction achieved by
SL sampling compared to LH sampling, for the majority of control point schemes.

The effect of control point selection on the reproduction of the statistics of the solute
concentration field over multiple time steps is investigated through Fig. 3.18 and Fig.
3.19. These figures show the reproduction of the reference cumulative distribution func-
tion (CDF) of arrival times for the 25% and 75%, respectively, of the total concentration
at any of the four observation wells, and the corresponding CDFs obtained from the var-
ious combinations of sampling methods and schemes considered. Discrepancy between
any two CDFs is quantified in terms of MAE between their corresponding percentiles,
and the sampling distribution of this statistic is established over I = 100 batches of real-
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Figure 3.16: Reproduction of ensemble correlation matrix for various sampling schemes
of control points; see text for details.
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Figure 3.17: Reproduction of distribution of Mahalanobis distances between simulated
realizations and the ensemble mean field, derived for various schemes of control points;
see text for details.
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izations as before. These last two figures investigate the efficiency of the various sampling
methods and control point schemes considered at intermediate time steps corresponding
to two proportions of total concentration for the observation well with the largest such
concentration value. The three sampling schemes that include the central well and the
first areola control points yield the best reproduction results.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

6

src
a1LHs

a1SLs

a1LH

a1SL

a2LH

a2SL

a2LHs

a2SLs

a12LH−

a12SL−

a12LH

a12SL
g1LH

g1SL
g2LH g2SL

rndLH

rndSL 25LH

25SL

SR

Reproduction of arrival time CDF for 25% of total concentration

m
e
a

n
 a

b
s
o
lu

te
 q

u
a
n
ti
le

 d
e
v
ia

ti
o
n

sampling methods and control point schemes

Figure 3.18: Reproduction of arrival times CDF for the 25% of total concentration,
derived for various schemes of control points; see text for details.
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Figure 3.19: Reproduction of arrival times CDF for the 75% of total concentration,
derived for various schemes of control points; see text for details.

3.3 Minimum energy sampling

As stated in Sec. 3.1 stratified likelihood sampling does not guarantee an optimal (with
minimum energy) placing of the N points on the surface of a unit (hyper)sphere ŨL.
In this section an alternative method of generating stratified points on the surface of
the (hyper)sphere is proposed, named hereafter ”Minimum Energy Sampling” (ME). ME
sampling first generates N random points on the surface of the unit (hyper)sphere. Then
a repulsive force vector, based on 1/r2 , where r denotes the smallest linear distance
between two neighbouring points, is calculated for each point. The resultant force vector
is normalized, and then each point is displaced a distance d = 1 in the direction of that
force, and finally projected back down onto the unit sphere (Bowman, n.d.). When the
system nears convergence, the displacement vector for a given point is nearly in the same
direction as the radius vector for that point due to the points being equally distributed
(Hardin and Saff, 2004). The steps for generating N stratified points using ME sampling
are shown in Fig. 3.20, where the point, depicts the transition from random points (small)
to the system minimum energy convergence (large).

The ability of the three stratified sampling methods (LH-SL-ME) considered in this
study, at furnishing representative attribute values, in terms of maximum dissimilarity
between them, was explored by generating 100 batches of correlated hydraulic conductiv-
ity values at nine control points of a case study domain similar to that of Sec. 2.4.1. This
case study only focuses in the exploration of the dissimilarities of the simulated values
at the control points and how they relate to the ability of the sampling method to repro-
duce values covering the largest possible range of the attribute distribution; the larger
discrepancies of values indicate highest coverage of the distribution range by the sam-
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Figure 3.20: Three dimensional depiction for generating a sample of N points on the
surface of the unit (hyper)sphere

pling method, thus a better reproductive ability with fewer realizations. The results are
illustrated in Fig. 3.21 (top), where for both sample sizes under consideration −10/30−,
ME sampling displays the largest nearest neighbor dissimilarities distribution (expressed
in terms of the relevant cumulative distribution function) of the simulated hydraulic con-
ductivity values. Figure 3.21 (bottom) depicts the dissimilarities of concentration values
at the same control points, resulting from the hydrogeological model evaluation similar
to that of Sec. 2.4.2. In this case, a slightly better reproductive ability (larger nearest
neighbor distances) can be distinguished for ME sampling especially in the left graph
referring to the 10 realizations sample size.

3.3.1 Two step simulation example

The above methods, along with the LH sampling method are applied in a dimensionality
reduction context by selecting flow-controlling points over which representative sampling
of hydraulic conductivity is performed, thus also accounting for the sensitivity of the flow
and transport model to the input hydraulic conductivity field (Caers, 2011). According
to Kyriakidis and Gaganis (2013), one could consider control points at regions of highest
uncertainty in terms of data control, or alternatively in terms of model response un-
certainty. Moreover, control points should correspond to application-specific important
locations in terms of controlling the variance of realizations of model outputs; in this
case, the ensemble standard deviation of solute concentration (Fig. 3.22).

Similarly to Sec. 2.4, the performance of sampling methods, LH, SL, and ME, is
compared for different sample sizes N(10−30), to that of SR sampling in terms of repro-
duction of ensemble statistics of reference fields; a set of 10000 SR realizations hydraulic
conductivity and solute concentration fields. More specifically, the same 51× 51 simula-
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Figure 3.21: 5th, 50th, and 95th percentiles of CDF of nearest neighbor distances dis-
similarities between simulated values of hydraulic conductivity (top) and concentration
(bottom), at nine control points (eight points radially emanating along the first areola
depicted as stars along with the central point depicted as circle in Fig. 3.22).The met-
rics considered are: (i) cosine, for hydraulic conductivity (top) and (ii) mahalanobis, for
concentration (bottom).
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Figure 3.22: Application - specific control points plotted on the ensemble standard devi-
ation field of concentration

tion grid was adopted. Once a sample, say of size S = 10, is generated, the discrepancy
between the statistics of the simulated ensemble and the reference conductivity statistics
listed above is quantified using the root mean squared error (RMSE) for summary statis-
tics (mean, standard deviation, correlation and Mahalanobis distances).The computation
of such error statistics is repeated over a set of I = 100 batches of realizations, with
each batch containing the same sample size, S = 10 for example, thus estimating the
sampling distributions of RMSE values for each sample size and for each method; these
distributions are presented in terms of their means and medians, as well as their 75%
and 95% probability intervals. The better the reproduction of a reference statistic from
simulations of a sampling method with a given sample size, the narrower the sampling
distribution of the resulting, say, RMSE values, and the smaller (closer to 0) the center of
that distribution. Fig. 3.23 illustrates the ensemble mean and standard deviation fields
of the 10000 reference SR realizations.

3.3.2 Results

The performance of the proposed ME sampling method was investigated in a hydrogeo-
logical context via a simple case study involving flow and transport in a heterogeneous
porous medium, in comparison to stratified sampling methods LH and SL along with
SR sampling. The statistics considered for hydraulic conductivity included the ensemble
mean, standard deviation, as well as short-scale correlation. The reproduction of the
ensemble mean, standard deviation and distribution of Mahalanobis distances from the
ensemble mean for the ensemble concentration field resulting from solving a flow and
transport boundary problem for each hydraulic conductivity realization, was also eval-
uated in the second part of the case study. For all statistics considered for both model
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Figure 3.23: Ensemble mean (left) and standard deviation (right) reference concentration
fields

inputs (Fig. 3.24) and outputs (Fig. 3.25), ME sampling constitutes an equal if not more
efficient simulation method than LH and SL sampling, as it can reproduce to a similar
extent statistics of the reference conductivity and concentration fields, yet with a slightly
smaller sampling variability than SR sampling. Concluding, the proposed ME sampling
method offers a viable alternative to existing stratified sampling methods.

Figure 3.24: Reproduction of ensemble statistics i) mean, ii) std deviation and iii) cor-
relation, between hydraulic conductivity realizations and the ensemble average hydraulic
conductivity field. Reproduction is quantified here in terms of the sampling distribution
of RMSE between reference and simulated ensemble concentration statistics
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Figure 3.25: Reproduction of ensemble statistics i) mean, ii) std deviation and iii) maha-
lanobis distances, between concentration realizations and the ensemble average concen-
tration field

3.4 Conclusions and Discussion

This Chapter adopted two different methods of stratified sampling, based on different
properties than Latin Hypercube, and applied these methods for the first time in a
spatial (and hydrogeological) context. Moreover, the concept of two step sampling was
further employed for the simulation procedure, thus accounting for the uncertainty of the
particular case study at hand. The novelty of the proposed approaches are summarized
below along with potential future methodological and application related extensions.

Methods Uncertainty analysis is often employed in earth and environmental sciences
applications for evaluating the impact of spatial uncertainty or variability in model pa-
rameters to model predictions. In many applications, the spatial distribution of model
parameters is often conceptualized in terms of a (log)Gaussian random field. Realiza-
tions from such a random field are typically generated via simple random (SR) sampling,
and are then used through repeated model evaluations in a Monte Carlo framework for
assessing the uncertainty in the spatial distribution of model predictions. Deriving a rep-
resentative set of model predictions, however, is often computationally demanding due
the need for repeated complex model evaluations.

Three controlled or stratified simulation methods, namely stratified likelihood (SL),
minimum energy (ME) and Latin hypercube (LH) sampling, were considered in this work
for generating a smaller set of more representative – than SR sampling – attribute realiza-
tions (spanning or covering more efficiently the range of possible values) of model inputs;
hence, it is expected, by extension, of model outputs. Controlled sampling of model
inputs, however, capitalizes on the statistics of those inputs only, and does not account
for model-specific information, such as model sensitivity. Consequently, controlled sam-
pling of model inputs need not necessarily lead to representative realizations of model
outputs. To address this lack of application or model-specific information, a two step
simulation procedure was proposed in this work: in the first step, representative samples
are generated at control sites over the study region; model input values at these control
sites should be most influential on model predictions. These simulated attribute values
are subsequently used as conditioning data for generating, via simple random sampling,
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attribute realizations over the remaining set of simulation locations.

Case Studies The performance of the proposed two-step simulation procedure for con-
trolled sampling was investigated in a hydrogeological context via two synthetic case
studies involving flow and transport over a simple geometrical domain, assuming known
initial and boundary conditions. Simulated hydraulic conductivity fields were generated
using multiple control point schemes, and three stratified sampling methods (SL, ME
and LH) in addition to SR sampling. The simulated conductivity fields were utilized
in a Monte Carlo framework to conduct simulations of solute transport and compute
the associated concentration fields. The end time for the solute transport solution was
set to 2 · 106 sec, representing a conservative time to a well-field failure; this end time
was selected as the maximum solute travel time to at least one observation well, based
on an initial set of model evaluations. Reference ensemble concentration statistics were
computed by evaluating the flow and transport model using a very large number – 10000
– of conductivity realizations generated via SR sampling. The concentration statistics
considered included the ensemble mean, standard deviation, as well as correlation and
distribution of Mahalanobis distances from the ensemble mean field.

To investigate the sensitivity of concentration statistics reproduction on control point
specification, many combinations of such points were considered in the case study of
Sec. 3.2.1, varying both the number and their location, accounting for (Fig. 3.10) and
ignoring (Fig. 3.11 and Fig. 3.12) model sensitivity. In the former case, control points
were located radially away from an injection well and in regions of highest uncertainty in
terms of expected model response. Flow and transport, however, is a dynamic process,
and consequently the location of such regions of higher uncertainty is inevitably tied to
the simulation end time (2 · 106 sec); this implies that the specification of control points
also depends on that end time. If one were to account for the time varying nature of the
model in this particular application, control points should only be located radially away
from the central well, not targeting any elusive region with (expected) higher uncertainty.

Overall, two-step controlled sampling performed better than simple random sampling;
the best reproduction of ensemble statistics (except for the Mahalanobis distance for
which all methods yield similar results) was achieved by the sampling scheme denoted as
25LH and 25SL consisting of 25 control points (Fig. 3.10), followed by the 16 and 9 control
points schemes including the central well, denoted as a12LH-, a12SL- and a1LHs, a1SLs,
respectively. Schemes that excluded the central (most influential) point corresponding to
the injection well location did not effectively reproduce ensemble concentration statistics.
Similarly, sampling schemes that included points in the first areola (closer to the central
well) were in general more efficient. Moreover, point schemes that did not account for
model-sensitivity information, i.e., the random and gridded point sets of Fig. 3.12 and Fig.
3.11, did not efficiently reproduce the reference statistics. The second most important
feature of control sampling was the number of control points, since the order of the three
better reproducing point schemes was found to be regulated by this factor, following an
“efficiency order” of 25− 16− 9 points. LH sampling involving all M = 2601 simulation
locations, i.e., not taking into account any model sensitivity, resulted in a very close
reproduction of ensemble statistics (mean and variance) of the concentration field for this
particular application; the corresponding error statistics exhibited the smallest variability
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in their sampling distributions across all controlled methods considered. It is argued that
such a close reproduction of ensemble statistics might be deemed undesirable, as it might
provide rather narrow bounds of model output variability.

Conclusions and future work Controlled sampling from (log)Gaussian random fields
(pertaining here to hydraulic conductivity) accounting for model (here of flow and trans-
port) sensitivity was found in this work to be more efficient than simple random sampling,
i.e., reproduced better the ensemble statistics of model predictions (here of solute concen-
tration for a simplified transport problem). For highly non-Gaussian random field models
and for highly non-linear transfer functions, the uncertainty modeling framework advo-
cated by (Caers, 2011), which calls for a proxy model to evaluate the links between model
inputs and outputs (including sensitivity to initial and boundary conditions), provides a
more general framework to efficient uncertainty analysis.

For the (log)Gaussian case and the simplified flow and transport problem considered
in this work, effective first step simulation control provided reasonable control of the
entire simulation due to the effects of spatial autocorrelation. Evidently, the careful se-
lection of key locations whose attribute values are expected to exert significant impact
on model predictions, is critical for controlling sampling variability across multiple sim-
ulations. Such a selection is necessarily context-specific, and should be guided by the
particular application at hand. Control points were here located radially away from an
injection well, to account for the fact that concentration patterns were expected (due to
the isotropic random field) to be radially symmetric. Control points also included loca-
tions in regions of highest uncertainty in terms of model response, tied to the particular
design of the simulation experiment adopted in the case study. The spatial pattern of
such regions could be furnished from a preliminary analytical solution of the particular
problem at hand, when possible, or alternatively from a small set of model evaluations
using simulated attribute realizations generated via simple random sampling.

In a real case hydrogeological flow and transport problem scenario, control points could
be guided by the available independent parameters related to each particular problem.
Potentially available seismic data could guide the user’s selection of uncertain regions,
based on the distribution range of data per location; that is, a larger range of historic seis-
mic data indicating a higher uncertainty in the presumed hydraulic conductivity values.
The complexity of geological features could also indicate regions of higher uncertainty; the
more complex the geological formations, the higher uncertainty in the presumed hydraulic
conductivity fields. Both of the above examples and any other multivariate analysis could
lead the relevant stakeholders to locations where additional geological samples should be
extracted from in order to minimize the underlying uncertainty. Since sampling is highly
cost related and parameters related to hydrogeological problems are continuous in space
additional sampling always meets the limitation of not examining the underground as
exhaustively as a researcher might want. Control sampling could really help on that
front by choosing locations of high uncertainty, potentially close to locations of addi-
tional samples. This way, the uncertainty analysis simulation procedure would ensure
a more efficient quantification of uncertainty by combining information from additional
samples with the stratified simulation on control points, both located on areas of high
uncertainty. This combination is offering to the modeler, low computational cost by
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performing the fewest possible additional samples, and high performance by employing
stratified simulation in well targeted locations of high uncertainty.
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Chapter 4

Latin Hypercube Sampling on Large
Grids

In this chapter, a novel Latin Hyperube sampling method is proposed for efficiently
generating realizations of lognormal random fields on very large (order of millions of
nodes) regular grids. LH sampling methods typically rely in practice on the Cholesky
decomposition of a covariance matrix pertaining to all possible pairs of simulation grid
nodes (Zhang and Pinder, 2003). Consequently, the routine application of LH sampling is
computationally prohibitive for large simulation grids, since it becomes difficult to store
it in computer memory and even more difficult (time consuming) to compute its Cholesky
decomposition. In other words, for large grids, which unfortunately is the typical case in
a hydrogeological context (Chilès and Delfiner, 1999), simulation via the Cholesky factor
of the covariance matrix (Eq. 2.23) becomes prohibitive, due to storage requirements
and computational costs associated with the covariance matrix decomposition (Chilès
and Delfiner, 1999). Although there exist simulation methods for generating realizations
of random fields on large regular grids, these methods have not been employed to date
within a Latin hypercube sampling context.

In a nutshell, the proposed methodology combines an existing method of Latin hy-
percube sampling Stein (1987) with an efficient simulation method for simple random
sampling of Gaussian (or transformed Gaussian) random fields with stationary covari-
ance functions (Dietrich, 1997). The result is a practical and efficient methodology for
extending LH sampling on large grid domains, thus promoting the use of uncertainty
analysis techniques in practice for potentially real-life models with spatially distributed
parameters.

The remainder of the chapter is structured as follows: Section 4.1 describes the pro-
posed method of LH sampling of Gaussian or transformed to be Gaussian random fields
that can handle simulation on very large grids with possibly millions of nodes, and Section
4.2 presents two high discretization (a 2D and one 3D) synthetic case studies involving
flow and transport in a heterogeneous porous medium illustrating the benefits of the
proposed Latin hypercube over simple random sampling.
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4.1 Latin hypercube simulation of random fields on

large grids

In this Section, a novel method is developed for Latin hypercube (LH) sampling of second-
order stationary Gaussian random fields on large regular grids. Subsection 4.1.1 provides
the motivation for developing the proposed LH sampling method, Subsection 4.1.2 de-
scribes the computational properties of covariance matrices derived from second-order
stationary covariance models evaluated at distances corresponding to pairs of nodes of
a regular grid, whereas Subsection 4.1.3 presents the procedure for LH simulation of
Gaussian fields on large regular grids and provides some pertinent examples.

4.1.1 Introduction

A solution to this aforementioned computational problem related to the Cholesky decom-
position is proposed in this Chapter, based on the fact that LH sampling is essentially a
post-processing method that transforms a spatially correlated simple random (SR) sam-
ple into a marginally stratified correlated LH sample; see Sec. 2.3.2. The key observation
is that Stein’s LH sampling method is independent of the simulation algorithm used to
generate the SR sample. Hence, LH sampling is not tied to the Cholesky decomposition
of a possibly large covariance matrix and can be in principle applied for LH simulation
on very large grids, as long as a suitable method is available to generate SR samples at
those grids.

In what follows, we develop a novel LH simulation method that is capable of gen-
erating LH samples from second-order stationary Gaussian random fields on very large
regular grids (order of millions of nodes). In a nutshell, the proposed LH sampling
methods amounts to combining an existing method for generating realizations of second-
order stationary random fields on large regular grids using simple random (SR) sampling
(Dietrich, 1997) with the LH sampling method of Stein (1987).

The SR sampling algorithm used in the proposed LH sampling method assumes a
multivariate Gaussian PDF G(0,Σ) and is based on the square root decomposition of the
covariance matrix Σ given in Eq. (2.11). A (M × 1) correlated Gaussian random vector
is then generated from a (M × 1) uncorrelated standard Gaussian random vector w, as

y =
√

Σw (4.1)

where
√

Σ the (M ×M) square root of the covariance matrix Σ; note that subscript Y
is dropped from ΣY for simplicity.

Since
√

Σ = Q
√

EQT , Eq. (4.1) becomes

y = Q
√

EQTw = Q[diag(
√

e)]QTw = Q
(√

e� (QTw)
)

(4.2)

where � denotes element-by-element multiplication or the Hadamard product. Equation
(4.2) implies that a vector y of M correlated Gaussian deviates can be generated from a
vector w of uncorrelated standard Gaussian deviates by: (i) computing the matrix-vector
product QTw; the result is a (M × 1) vector, (ii) computing the Hadamard product of√

e and QTw; the result is a (M×1) vector, and (iii) finally computing the matrix-vector
product Q

(√
e� (QTw)

)
to derive the resulting (M × 1) vector y.
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At a first glance, the simulation method for SR sampling of Eq. (4.2) seems compu-
tationally inefficient, since computing the eigenvectors and eigenvalues of an arbitrary
covariance matrix Σ is a more expensive operation than the Cholesky decomposition.
Fortunately, however, there is a very particular (albeit very useful) case whereby the
computation of eigenvectors and eigenvalues of Σ can be done very efficiently. This is the
case of a stationary covariance model evaluated for separation distances corresponding
to distances between the nodes of a regular grid.

4.1.2 Computationally exploitable covariance

When considering M RVs corresponding to the M nodes of a regular grid and a stationary
covariance model σ(h), the structure of the covariance matrix Σ is highly exploitable from
a storage and computational perspective (Zimmerman, 1989). More precisely, in 1D, Σ
is a symmetric Toeplitz matrix and is completely characterized only by its first row (or
column). In higher dimensions, Σ is a symmetric block Toeplitz matrix with Toeplitz
blocks and is completely characterized only by its first block row.

For a regular 1D grid of M nodes with unit spacing, for example, the corresponding
covariance matrix Σ becomes

Σ =


σ(0) σ(1) · · · σ(M − 2) σ(M − 1)
σ(1) σ(0) · · · σ(M − 3) σ(M − 2)

...
...

. . .
...

...
σ(M − 2) σ(M − 3) · · · σ(0) σ(1)
σ(M − 1) σ(M − 2) · · · σ(1) σ(0)


and is completely characterized by its first row vector [σ(0) · · ·σ(M − 1)]. The (j+ 1)-th
row of the above array is constructed by shifting the preceding j-th row one position
to the right, and filling the leading empty position in the (j + 1)-th row with the j-th
element of vector [σ(1) · · ·σ(M − 1)].

Even more computationally exploitable covariance matrices arise when considering a
stationary covariance model σ(h) evaluated at distances corresponding to the distances
between the M̃ = 2M nodes of an embedded regular grid with toroidal boundaries; that
is a ”wrapped” covariance matrix whose lower right value (block of values in 3D) is
”neighbor” to the upper left value. Smaller embeddings (with M̃ < 2M) are possible,
depending on the range of the covariance model σ(h) adopted (Dietrich, 1997). The
computational benefit now stems from the structure of the new covariance matrix Σ̃ =
[σmm′ ,m = 1, . . . , M̃ ,m′ = 1, . . . , M̃ ], due to the toroidal geometry of the grid and the
stationary covariance model σ(h). More precisely, matrix Σ̃ is a circulant matrix in 1D,
and a block circulant matrix with circulant blocks in higher dimensions (Davis, 1994). A
circulant matrix is completely characterized by its first row or column in the 1D case; in
higher dimensions one considers the first block row or column. Storage and computation
become very efficient, since they only involve the M̃ entries of the first row or column of
Σ̃ instead of all its (M̃ × M̃) entries.

For a regular 1D grid of M nodes with unit spacing, for example, the new (M̃ × M̃)
embedded covariance matrix Σ̃, with M̃ = 2M , becomes
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Σ̃ =


σ(0) σ(1) · · · σ(M − 1) σ(M) σ(M − 1) · · · σ(1)
σ(1) σ(0) · · · σ(M − 2) σ(M − 1) σ(M) · · · σ(2)

...
...

. . .
...

...
...

. . .
...

σ(2) σ(1) · · · σ(M − 3) σ(M − 2) σ(M − 1) · · · σ(1)
σ(1) σ(2) · · · σ(M − 2) σ(M − 1) σ(M − 2) · · · σ(0)


which is again completely characterized by its first (1× M̃) row vector
[σ(0) · · ·σ(M) · · · σ(1)]. The (j + 1)-th row of Σ̃ is constructed by shifting the preceding
j-th row one position to the right, and filling the leading empty position in the (j+ 1)-th
row with the last element of the j-th row.

Most importantly, the square root matrix
√

Σ̃ of a (M̃ × M̃) circulant covariance
matrix Σ̃ can be computed as (Davis, 1994)√

Σ̃ = F̃
√

ẼF̃H (4.3)

where F̃ denotes the (M̃×M̃) unitary and Hermitian Fourier matrix, Ẽ = diag(ẽ) denotes
the (M̃ × M̃) diagonal matrix of eigenvalues of Σ̃ stored in the (M̃ × 1) vector ẽ, and
F̃H = F̃−1 denotes the (M̃×M̃) inverse Fourier matrix, which is the Hermitian transpose
of F̃, i.e., the transpose of its complex conjugate. In other words, the eigenvectors of
(block) circulant matrices are actually the columns of the Fourier matrix F̃.

The vector ẽ of eigenvalues of Σ̃ can be computed efficiently from the first column σ̃1

of matrix Σ̃ as (Davis, 1994)

ẽ =
√
M̃FHσ̃1 =

√
M̃F{σ̃1} (4.4)

where F{σ̃1} denotes the Discrete Fourier Transform of vector σ̃1 and is computed very
efficiently via the Fast Fourier Transform (FFT) without storing all the entries of matrix
F̃H .

4.1.3 Simulation on large regular grids

Returning to the simulation or sampling objective, one could to use Eq. (4.2) for gen-
erating a realization (at the M nodes of a regular grid) from a random vector with a
zero-mean multivariate Gaussian distribution y ∼ G (0,Σ). Instead, one resorts to the
more computationally efficient simulation of a random vector at the M̃ nodes of an ex-
tended regular grid with toroidal geometry. The new random vector ỹ follows a zero-mean

multivariate Gaussian distribution ỹ ∼ G
(
0̃, Σ̃

)
, with a (M̃ × M̃) circulant covariance

matrix Σ̃.
A (M̃×1) vector ỹ with simulated Gaussian deviates at M̃ locations, can be generated

using Eq. (4.2), as

ỹ =
√

Σ̃w̃ = Q̃
(√

ẽ� (Q̃T w̃)
)

When those M̃ locations coincide with the nodes of an extended regular grid with
toroidal geometry, and the covariance model used is stationary, the above equation, hence
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Eq. (4.2), can be re-expressed as (Dietrich, 1997):

ỹ = F̃
(√

ẽ� (F̃Hw̃)
)

= F−1
{√√

M̃F{σ̃1} � F{w̃}
}

(4.5)

where F−1{v} denotes the inverse DFT (IDFT) of an arbitrary vector v, which is again
computed very efficiently via the inverse FFT. The result is a (M̃ × 1) vector ỹ with
simulated Gaussian deviates at the nodes of the extended grid, from which one extracts
the (M × 1) vector y of simulated values at the original M grid nodes; see, Fig. (4.1.
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Figure 4.1: Schematic example illustrating the generation of one realization from a Gaussian
random field model on a large grid; see text for details; the figure is not drawn to scale
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Simulation flowchart: In summary, our proposed method for Latin hypercube sam-
pling of a Gaussian random field with a stationary covariance model σ(h) proceeds in the
following steps:

1. Compute and store only the first (block) column σ̃1 of the (M̃ × M̃) embedded
covariance matrix Σ̃

2. Compute the square root of the M̃ eigenvalues of matrix Σ̃ via FFT of σ̃1 as:
√

ẽ =

√√
M̃F{σ̃1} – Eq. (4.4)

3. Loop over the S realizations of the Gaussian random field and:

(a) generate a (M̃ × 1) vector w̃ of uncorrelated standard Gaussian deviates and
compute its FFT F{w̃} – see Eq. (4.5)

(b) compute the Hadamard product of
√

ẽ and F{w̃} as:

√√
M̃F{σ̃1}�F{w̃},

and compute the inverse FFT of the result – see Eq. (4.5). This step yields
a (M̃ × 1) vector ỹ of zero-mean Gaussian deviates at the M̃ nodes of the
extended grid; the spatial correlation of those values is controlled by the co-
variance function σ(h)

(c) extract the (M ×1) vector y of simulated Gaussian deviates at the original M
simulation grid nodes, and add the (M × 1) expectation (mean) vector µ

Repeating the above steps S times yields a SR sample of size S from the Gaussian
random field model; these S realizations can be stored into a (S ×M) matrix YR,
whose covariance approximates Σ

4. Transform the above SR sample of matrix YR into a LH sample, a (S×M) matrix
YL, using Stein’s method in Eq. (2.24); the entries of the M columns of matrix YL

are marginally stratified into S strata, and are pairwise correlated with the entries
of any other column of YL

The result of the above procedure is a LH sample of size S from a Gaussian random
field on a possibly very large (with millions of nodes) regular grid.

Two realizations (out S = 10 generated) from a second-order stationary Gaussian
random field on a 2D regular grid of 1000×1000 nodes with unit node spacing are shown
in Fig. (4.2). The covariance model specified is of exponential form with a unit sill and
an effective range of 100 distance units.
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Figure 4.2: Realizations from Gaussian random field models with isotropic (left) and anisotropic
(right) covariance function, on a 1000× 1000 grid with unit spacing.

Last, Fig. (4.3) shows scatter plots of simulated values at two randomly selected pairs
of grid nodes verifying the marginal stratification of LH sampling in both cases.
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Figure 4.3: Two scatter plots of simulated values extracted from two randomly selected pairs
of nodes separated by distance 10 (left) and 20 (right). Vertical and horizontal lines correspond
to deciles of a std Gaussian RV and delineate strata of equal probability; see text for details.

4.2 Synthetic case studies

This Section presents two case studies (2D and 3D) comparing simple random and Latin
hypercube sampling from a lognormal random field modeling the spatial distribution of
saturated hydraulic conductivity in hydrogeological context involving flow and transport

89



in a partially heterogeneous porous medium. The comparison between the two methods
is performed along the lines of Sec. 2.4. More precisely, the two sampling methods are
firstly evaluated in terms of their ability to reproduce ensemble statistics of the random
field; these statistics are computed from a very large set of conductivity realizations
generated via simple random sampling. That large set of conductivity fields is used to
derive a large set of solute concentration fields through flow and transport simulation.
The two sampling methods are then compared again in terms of their ability to reproduce
ensemble statistics of the solute concentration field.

4.2.1 2D Hydraulic conductivity

A two-dimensional synthetic groundwater flow system is considered, similar to that used
in (Zhang and Pinder, 2003). The dimensions of the flow system are 5005 m by 5005
m discretized into a 1001 × 1001 grid with uniform rectangular cells of size 5 m by 5
m. Porosity was assumed constant throughout the domain and equal to 0.25, and the
parametrization of hydraulic conductivity is described below. Flow boundary conditions
consisted of constant head of 0 m at the four corner cells and a constant head of 250 m
at the central cell of the domain. No flow conditions (∂h/∂n = 0) were assigned to the
rest of the domain boundaries, whereas the Modflow code of McDonald and Harbaugh
(1988) was used in this study to obtain the steady state flow solution.

A second-order stationary and isotropic lognormal random field is adopted with pa-
rameters borrowed from (Sudicky et al., 2010). More precisely, the mean and variance
of log conductivity are taken as µY = −5.64 and σ2

Y = 1.79, respectively, corresponding
to conductivity statistics µZ = 0.0087 m/sec and σ2

Z = 0.01942 (m/sec)2. The semivar-
iogram of log conductivity is assumed to be of exponential form, with no nugget effect,
and effective range 1001 m, corresponding to one fifth of the domain extent along the
cardinal directions. Two realizations of this random field model at the nodes of the grid
are given in Fig. 4.4.
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Figure 4.4: Two realizations of a lognormal random field; see text for details.
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Reference ensemble statistics are derived from a set of 1000 realizations of hydraulic
conductivity generated via simple random (SR) sampling, and consist of: (i) the ensemble
average field, – a constant equal to µZ = 0.0087 and (ii) the ensemble standard deviation
field.

Two sampling or simulation methods are considered in this case study for generating
realizations of a lognormal hydraulic conductivity field. These methods include simple
random (SR) sampling and Latin hypercube (LH). In terms of sample size or number
of realizations per method, three such sizes are considered; namely, S = 20, 50, and 80.
Once a sample, say of size S = 20, is generated, the discrepancy between the statistics of
the simulated ensemble and the reference conductivity statistics listed above is quantified
using the root mean squared error (RMSE) for summary statistics (mean, variance).
The computation of such error statistics is repeated over a set of I = 100 batches of
realizations, with each batch containing the same sample size, S = 20 for example, thus
estimating the sampling distributions of RMSE values for each sample size and for each
method; these distributions are presented in terms of their means and medians, as well
as their 75% and 95% probability intervals. The better the reproduction of a reference
statistic from simulations of a sampling method with a given sample size, the narrower
the sampling distribution of the resulting RMSE values and the smaller (closer to 0) the
center of that distribution.
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Figure 4.5: Reproduction of reference ensemble mean (A) and ensemble standard deviation
(B) hydraulic conductivity fields from the two sampling methods; see text for details.

More precisely, the reproduction of the reference ensemble mean and ensemble stan-
dard deviation of hydraulic conductivity from the two sampling methods and the three
sample sizes considered is shown in Fig. 4.5. Reproduction is quantified in terms of the
sampling distribution of RMSE between reference and simulated ensemble conductivity
statistics over the 1001× 1001 grid cells. In this and all subsequent figures, 75% RMSE
(or MAE depending on the statistic selected) probability intervals are depicted with hor-
izontal line segments, whereas 95% probability intervals with × symbols; median RMSE
values are depicted as asterisks (∗), whereas mean values as circles (◦). From Fig. 4.5,
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it can be readily appreciated that LH sampling (LH) yields the closest reproduction for
both the ensemble mean and standard deviation statistics. This is expected, since LH
sampling aims at marginal stratification, hence should best reproduce marginal hydraulic
conductivity statistics at each grid node.

4.2.2 2D Solute concentration

For the solute transport problem, an initial concentration equal to 0 is assumed through-
out the model domain. At time t = 0, a contaminant is introduced at the central cell,
along the upstream constant head boundary, with constant concentration C0 = 100 mg/l.
No transport conditions (∂C/∂n = 0) are assigned along the domain boundaries. Longi-
tudinal and transverse horizontal dispersivities are assumed to be equal to 5 m and 0.5
m, respectively. In terms of software, the MT3D code Zheng (1990) was used to obtain
breakthrough curves at the four observation wells located at the four corner nodes of the
domain, as well as the solute transport solution up to time t = 5 · 106 sec. Reference
ensemble statistics for solute concentration are derived from a set of 1000 solutions of the
transport problem based on the 1000 hydraulic conductivity realizations generated in the
previous subsection via SR sampling. Two such concentration realizations derived from
the conductivity realizations shown in Fig. 4.4 are given in Fig. 4.6.
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Figure 4.6: Two solute concentration realizations corresponding to the two hydraulic conduc-
tivity realizations shown in Fig. 4.4; see text for details.

The performance of the two sampling methods considered in this work for sample
sizes S = 20, 50, 80 is then quantified in terms of reproduction of these reference ensemble
concentration statistics via the sampling distribution of error summary statistics (RMSE
or MAE). Reference statistics for solute concentration consist of: (i) the ensemble average
field shown in Fig. 4.7, (ii) the ensemble standard deviation field also shown in Fig. 4.7
and (iv) the ensemble distribution of first arrival times (Fig. 4.7) at any of the four
observation wells.
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Ensemble average concentration field (mg/l)
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Figure 4.7: Reference ensemble average (top left), ensemble standard deviation (top right) con-

centration fields, and ensemble first arrival time CDF (bottom), computed from 1000 concen-

tration realizations derived from 1000 hydraulic conductivity realizations generated via simple

random sampling; see text for details.

Figure 4.8 shows the reproduction of the ensemble average and ensemble standard
deviation concentration fields (Fig. 4.7) for the two sampling methods and the three
sample sizes considered. Reproduction is quantified here in terms of the sampling distri-
bution of RMSE between reference and simulated ensemble concentration statistics over
the 1001×1001 grid cells. It is easily appreciated that LH yields a better reproduction of
these ensemble fields than SR sampling, particularly in the case of the ensemble average
concentration field.

Last, Fig. 4.9 gives the reproduction of the reference cumulative distribution function
(CDF) of first arrival times at any of the four observation wells at the corners of the
domain (Fig. 4.7 bottom), and the corresponding CDFs obtained from the two sampling
methods and the three sample sizes considered. One can easily identify the shorter range
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Figure 4.8: Reproduction of reference ensemble mean (A) and ensemble standard deviation
(B) concentration fields (shown in Fig. 4.7) from two sampling methods; see text for details.

of the 100 CDFs corresponding to the sampling method of LH for the three different sam-
ple sizes 20− 50− 80 (titled as Stein at 4.9B), compared to the CDFs corresponding to
the SR sampling method (titled as Simple Random at 4.9A). The more efficient reproduc-
tive ability of the stratified method is more distinct at Fig. 4.10, where the discrepancy
between any two CDFs is quantified in terms of the mean absolute error (MAE) between
their corresponding percentile. The sampling distribution of this statistic is established
over I = 100 batches of realizations as before.
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Figure 4.9: Reproduction of reference first arrival time cumulative distribution function (CDF)
derived for two sampling methods; see text for details.
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4.2.3 3D Hydraulic conductivity

The following two subsections describe a synthetic case study involving a three dimen-
sional groundwater flow system, discretized using a very large grid (> 1.000.000 nodes).
Simple random (SR) and Latin hypercube (LH) sampling are also considered in this case
study for generating realizations from a lognormal random field, modelling the spatial
distribution of saturated hydraulic conductivity in a hydrogeological flow and transport
problem.

More precisely, the dimensions of the flow system are 1005 m by 1005 m by 125 m,
discretized into a 201 × 201 × 25 grid with uniform cells of size 5 m by 5 m. Poros-
ity is assumed constant throughout the domain and equal to 0.25. No flow conditions
(∂h/∂n = 0) are assigned to the rest of the domain boundaries, and the Modflow soft-
ware of McDonald and Harbaugh (1988) is used to obtain the steady state flow solution.
For the solute transport problem, an initial concentration equal to 0 mg/l is assumed
throughout the model domain. At time t = 0, a contaminant is introduced at the central
cell (middle of three dimensional domain), along the upstream constant head boundary,
with constant concentration C0 = 100 mg/l, and the MT3D software Zheng (1990) is
used to solve the transport problem. Fig. 4.11 illustrates a pictorial representation of
a three dimensional simulated conductivity field (left) and the respective concentration
realization (right).

Figure 4.11: A realization of a 3D lognormal random field (left), and corresponding 3D
solute concentration realization (right).

Reference ensemble statistics are derived from a set of 1000 realizations of hydraulic
conductivity generated via SR sampling and consist of: (i) the ensemble average field
– a constant equal to 0.0087 m/sec, and (ii) the ensemble standard deviation field – a
constant equal to 0.0194 m/sec.

In terms of sample size or number of realizations per method, three such sizes are
considered; namely, S = 20, 50, and 80. Once a sample, say of size S = 20, is gener-
ated, the discrepancy between the statistics of the simulated ensemble and the reference
statistics is quantified using the root mean squared error (RMSE). The computation of
such error statistic is repeated over a set of I = 100 batches of realizations, with each
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batch containing the same sample size, S = 20 for example, thus estimating the sampling
distributions of RMSE values for each sample size and for each method; these distribu-
tions are presented in terms of their means and medians, as well as their 75% and 95%
probability intervals.

Fig. 4.12 depicts the reproduction of the ensemble average and ensemble standard
deviation of hydraulic conductivity for the two sampling methods and the three sam-
ple sizes considered. It is easily appreciated from both figures that LH yields a better
reproduction of these ensemble average and standard deviation fields than SR sampling.

20 50 80
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

SR

LH SR

LH

SR

LH

Ensemble mean 

 conductivity reproduction (m/sec)

ro
o
t 
m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r 

(R
M

S
E

)

number of simulations
20 50 80

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

SR

LH
SR

LH

SR

LH

         Ensemble std. deviation  

conductivity reproduction (m/sec)

ro
o

t 
m

e
a

n
 s

q
u

a
re

d
 e

rr
o

r 
(R

M
S

E
)

number of simulations

Figure 4.12: Reproduction of reference ensemble mean (left) and standard deviation
(right) fields for hydraulic conductivity; see text for details.

4.2.4 3D Solute concentration

Reference ensemble statistics for solute concentration are derived from a set of 1000
solutions of the transport problem based on the 1000 hydraulic conductivity realizations
generated in the previous subsection via SR sampling. The reference statistics for solute
concentration consist of: (i) the ensemble average field shown in Fig. 4.13 (left), and (ii)
the ensemble standard deviation field shown in Fig. 4.13 (right).

Fig. 4.14 depicts the reproduction of the ensemble mean and standard deviation fields
of concentration for the two sampling methods and the three sample sizes considered.
Here again, LH yields a better reproduction of these ensemble average and standard
deviation fields than SR sampling for solute concentration.
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Figure 4.13: Reference ensemble average (left) and standard deviation (right) concentra-
tion fields, computed from 1000 concentration realizations derived from 1000 hydraulic
conductivity realizations generated via simple random sampling.
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Figure 4.14: Reproduction of reference ensemble mean (left) and standard deviation
(right) fields for concentration; see text for details.

99



4.3 Conclusions and Discussion

In hydrogeological investigations involving flow and transport in heterogeneous porous
media, the spatial distribution of saturated hydraulic conductivity is often parameterized
in terms of a lognormal random field model. Simulated realizations of such a random field
(simulated attribute values arranged on two or three dimensional grids) are then used
along with physically-based models of flow and transport in a Monte Carlo framework for
evaluating, for example, the uncertainty in the spatial distribution of solute concentration
due to the uncertainty in the spatial distribution of hydraulic conductivity and possibly
other relevant variables. In practical applications, however, classical Monte Carlo simu-
lation, or simple random (SR) sampling, from a random field model can quickly become
computationally expensive as the size of the simulation grid involved is typically very
large, particularly for 3D investigations.

A more computationally efficient alternative to classical Monte Carlo simulation is
Latin hypercube (LH) sampling, a form of stratified random sampling, which aims at
reducing the number of realizations that are too similar by chance. In a spatial context,
LH sampling aims at generating representative realizations from a random field model,
where term representative implies realizations spanning efficiently the range of possible
attribute realizations corresponding to the multivariate probability distribution (lognor-
mal in this work) associated with the random field. In practice, LH sampling amounts
to generating S spatially correlated realizations (a sample of size S) of hydraulic con-
ductivity from the random field model, whose S simulated values at each grid node are
also (marginally) stratified in S strata. Existing methods for Latin hypercube sampling
of random fields, however: (i) require storage of a covariance matrix pertaining to all
possible pairs of grid nodes, and (ii) call for the Cholesky decomposition of that covari-
ance matrix. Consequently, such methods cannot handle a large number of simulation
locations Chilès and Delfiner (1999).

The proposed solution to the above problem derives from the fact that LH sampling is
actually a post-processing method, that transforms correlated SR samples into marginally
stratified correlated LH samples; Sec 2.3. More precisely, Stein’s LH sampling method
uses a SR sample as input at generating the LH stratified sample. Hence, since the
proposed LH method does not incorporate the Cholesky decomposition of the covariance
matrix, can be applied at very large grids, if a proper method exists for generating SR
samples at those grids.

Along these lines, this paper proposes a novel simulation method for generating Latin
hypercube samples from second order stationary Gaussian random fields at very large
grids (with millions of nodes). The proposed LH sampling method combines an existing
simulation method for creating SR samples from second order stationary random fields
in large regular grids Dietrich (1997), with the LH sampling method of (Stein, 1987).

The performance of the proposed LH sampling method was compared to that of simple
random (SR) sampling via a synthetic case study involving a three dimensional flow and
transport system, assuming a porous medium whose saturated hydraulic conductivity is
parameterized in terms of a lognormal random field with a stationary covariance model.
Performance comparison for the two methods included reproduction of: (a) the reference
ensemble average and ensemble standard deviation conductivity, and (b) the reference
ensemble average and standard deviation concentration fields derived from concentration
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realizations obtained by solving a flow and transport boundary value problem for each
hydraulic conductivity realization, along with the first arrival times of a non zero pollutant
at one of the four observation wells at the corners of the domain. The results indicate
that LH sampling exhibits a much smaller sampling variability, than SR sampling, for
the same number of simulated realizations, both for the case of hydraulic conductivity
and solute concentration. In this case, LH facilitates efficient uncertainty propagation
with fewer model runs due to more representative model inputs. It could be thus argued
that the proposed LH sampling method could reduce the time and computer resources
required to perform uncertainty analysis in hydrogeological flow and transport problems
discretized by very large regular grids.

According to an extensive study of the literature that was carried out, it is the first
time the stratified LH sampling method is applied for the simulation of random fields
in large grids. Hence, it is the first time that efficiently geostatistical simulation can be
preformed at models with detailed discretization of the spatially distributed parameters.
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Chapter 5

Conditional Latin Hypercube
Sampling

The propagation of the inherent spatial variability of petrophysical attributes, such as
hydraulic conductivity, to the predictions of physically-based, numerical models simulat-
ing flow and transport is a critical requirement in hydrogeological investigations. In a
classical, two-point, geostatistical context, that spatial attribute variability is typically
modelled via a random field, log-normal in the case of hydraulic conductivity, which is
often parameterized by a spatially constant mean and a variogram model. Conditional
realizations from such a random field generated via geostatistical simulation using simple
random (SR) sampling are employed, along with the numerical simulators of flow and
transport, in a Monte Carlo framework for evaluating, for example, the uncertainty in the
spatial distribution of solute concentration. The number of model runs, however, required
to furnish a representative distribution of model outputs, often renders classical Monte
Carlo simulation based on SR sampling computationally challenging, thus hindering the
widespread application of uncertainty and/or sensitivity analyses in practice.

In this chapter, a novel conditional simulation method based on Latin hypercube
(LH) sampling is presented, a form of stratified random sampling, for generating, very
fast, marginally (per node) stratified conditional realizations of stationary Gaussian (or
transformed Gaussian) random fields. Contrary to existing methods of spatial LH sam-
pling that rely on the Cholesky decomposition of the covariance matrix, the proposed
method can furnish realizations on very large (comprised of millions of nodes) three
dimensional (in the implemented case study) regular grids. The proposed LH-based sim-
ulation method is employed for generating three dimensional realizations of hydraulic
conductivity in a synthetic case study involving flow and transport in a mildly hetero-
geneous porous medium, whereby the classical (two-point) geostatistical framework is
typically adopted. Even when the additional uncertainty in the parameters (mean and
variogram model) of the random field are accounted for, the results indicate that the
proposed conditional LH simulation method can reproduce statistics of the conductivity
and concentration fields with smaller sampling variability than SR sampling for the same
number of realizations. Viewed from a computational perspective, LH sampling requires
approximately one third of the time needed by SR sampling to reach model results of
equal reliability (sampling error).

In this Chapter, a novel method is developed for conditional Latin hypercube (LH)
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sampling of second-order stationary Gaussian random fields on large regular grids. Sec-
tion 5.1 describes in detail the theory of conditional sampling and provides two alternative
methods of implying it, Section 5.5 describes the combination of LH sampling of random
fields on very large grids, and conditional simulation via indirect simulation of the Kriging
error, and Section 5.6 presents a synthetic case study involving flow and transport in a
heterogeneous porous medium illustrating the benefits of the proposed conditional Latin
hypercube over simple random sampling.

5.1 Introduction

This section describes a conditional sampling method for generating S alternative joint
realizations of y-values at all M target supports, given (conditioned on) the sample data
vector d available at the N source supports and the known expectations; in statistical
jargon: generate S samples from conditional multivariate distribution of M (target)
RVs given realizations or samples of N (source) RVs. The generated S realization is
reproducing (i) sample data at their supports with no artifact discontinuities, (ii) data
variogram, or a model for it, and (iii) data histogram, or a model for it. Fig. 5.1 holds the
unknown attribute values (left) on the M target supports and the known source attribute
values (right) on the N source supports.
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Figure 5.1: Example of target attribute values (left) and source data (right)

Fig. 5.2 illustrates two generated conditional realizations from the source attribute
values and the histogram and variogram of the target unknown attribute values.

Conditional sampling generates (M×1) vector y = [y(tm),m = 1, . . . ,M ]T of attribute
values at M target supports (these M values are viewed as a realization of a (M × 1)
Gaussian random vector). Applying conditional sampling considers as known (i) the
(M × 1) vector µY = [µY (tm),m = 1, . . . ,M ]T = E{y} of prior (to any measurement
acquisition) attribute expectations at M target supports, (ii) the (N × 1) data vector
d = [d(sn), n = 1, . . . , N ]T of measurements at N source supports, possibly corrupted by
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Conditionally simulated target realization #1
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Conditionally simulated target realization #2
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Figure 5.2: Example of simulated values conditioned on reproducing the source data (5.1
right) and the histogram and variogram of the unknown target attribute values (5.1 left)

measurement error; these N data values are regarded as a realization of a (N×1) Gaussian
random vector, and (iii) the (N × 1) vector µD = [µD(sn), n = 1, . . . , N ]T = E{d} of
prior attribute expectations at N source supports.

Taking into account the above prior information all three combinations of covariances
between random variables on source (data) and target locations are calculated as:

� target-to-target covariance matrix:
Σtt = [σY (tm, tm′),m = 1, . . . ,M,m′ = 1, . . . ,M ] = (M ×M) matrix of covariance
values between all pairs of target RVs:

ΣY Y = E{[y − µY ][y − µY ]T} = Cov{y}

� target-to-source covariance matrix:
ΣY D = [σY D(tm, sn),m = 1, . . . ,M, n = 1, . . . , N ] = (M ×N) matrix of covariance
values between all pairs of target and source RVs:

ΣY D = E{[y − µY ][d− µD]T} = Cov{y,d}

note that: ΣDY = E{[d− µD][y − µY ]T} = ΣT
Y D

� source-to-source covariance matrix:
Σss = [σD(sn, sn′), n = 1, . . . , N, n′ = 1, . . . , N ] = (N × N) matrix of covariance
values between all pairs of source RVs:

ΣDD = E{[d− µD][d− µD]T} = Cov{d}

For additive measurement error d = ys + e, independent of the error-free source
values ys, ΣDD = Σss

Y Y + ΣEE, where ΣEE is a (N × N) matrix of measurement
error (co)variances

In what follows, we assume second-order stationarity, i.e.: µY = µY 1m, and µD = µY 1n;
µY = stationary mean
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5.2 Simple Kriging

Kriging is a group of geostatistical techniques to interpolate the value of a random field at
an unobserved location from observations of its value at nearby locations. The main idea
of kriging is that near sample points should get more weight in the prediction to improve
the estimate. Thus, kriging relies on the knowledge of some kind of spatial structure,
which is modeled via the variogram of the underlying random function. Depending on the
stochastic properties of the random field and the various degrees of stationarity assumed,
different methods for calculating the weights can be deduced, i.e. different types of kriging
alternative methods; some of the classical methods are Ordinary Kriging, Simple Kriging,
Universal Kriging, and Indicator Krigig. For a more detailed reference Kriging methods
the reader is referred to (Goovaerts, 1997).

Simple Kriging predictions ŷ = [ŷ(tm),m = 1, . . . ,M ]T on the M target supports is
an (M × 1) vector of interpolated values expressed in matrix terms as:

[ŷ − µY ] = ΛT [d− µD] (5.1)

where ΛT = [wm(sn),m = 1, . . . ,M, n = 1, . . . , N ] is an (M ×N) matrix of weights:

Λ =

 λ1(s1) · · ·λm(s1) · · · λM(s1)
...

...
...

λ1(sN) · · ·λm(sN) · · · λM(sN)

 = [λ1 · · ·λm · · ·λM ]

and has as many columns (M) as target supports. Its m-th row is the (1 × N) vector
of weights λTm assigned to N source data for prediction at m-th target support. Simple
Kriging system is equal to

ΣDDΛ = ΣDY or ΣDD[λ1 · · ·λm · · ·λM ] = [σ1 · · ·σm · · ·σM ]

where ΣDY is

ΣDY =

 σDY (s1, t1) · · ·σDY (s1, tm) · · · σDY (s1, tM)
...

...
...

σDY (sN , t1) · · · σDY (sN , tm) · · · σDY (sN , tM)

 = [σ1 · · ·σm · · ·σM ]

and has as many columns (M) as target supports; same as Λ. Simple Kriging weights Λ
can be expressed as:

Λ = Σ−1DDΣDY ⇒ ΛT = ΣY DΣ−1DD (5.2)

and according to Eq. 5.1 and 5.2, the SK target predictions can be expressed as:

ŷ = µY + ΣY DΣ−1DD[d− µD]

In terms of target supports the SK target prediction ŷ(tm) at the m-th target support
tm is equal to:

ŷ(tm) = µY (tm) +
N∑

n=1

λm(sn)[d(sn)− µD(sn)]

= µY (tm) + λTm[d(sn)− µD(sn)] = µY (tm) + σT
mΣ−1DD[d(sn)− µD(sn)]
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The (M × 1) unknown target attribute vector y contains M point support attribute
values, and the (N × 1) source data vector d is assumed to be linked to these unknown
point values via a (N ×M) known sampling function array G as d = Gy:


d(s1)

...
d(sn)

...
d(sN)

 =


g1(t1) · · · · · · g1(tm) · · · · · · g1(tM)

...
. . .

...
. . .

...
gn(t1) · · · · · · gn(tm) · · · · · · gn(tM)

...
. . .

...
. . .

...
gN(t1) · · · · · · gN(tm) · · · · · · gN(tM)





y(t1)
...
...

y(tm)
...
...

y(tM)


where the n-th row of G contains information on the contribution of the M unknown
point values to the n-th known source datum: d(sn) =

∑M
m=1 gn(tm)y(tm)

For point support source data, G contains only 1 non-zero value in each of its N rows,
meaning that N (out of M) target locations coincide with the N source data locations.
For non-point support source data, there are multiple non-zero entries in each row of G.
The general statistics of source data and target values are shortly summarized as follows:

� The functional link between source data and target values is:

Gy = d

� Statistics of the N RVs pertaining to the source supports are linked to the statistics
of the M RVs pertaining to the target supports

� The expectation vectors of the source support RVs is : µD = GµY

� Covariance matrices between target and source support RVs are: ΣY D = ΣY Y GT

� Covariance matrices between source support RVs are: ΣDD = GΣY Y GT = GΣY D.

Simple Kriging interpolation exactly reproduces the source data; the application of
the definition of the source data d = Gy to the vector ŷ of SK target predictions, yields
back the original source data, i.e., Gŷ = d as follows:

Gŷ = G
(
µY + ΣY DΣ−1DD[d− µD]

)
= GµY + GΣY DΣ−1DD[d− µD]

= µD + ΣDDΣ−1DD[d− µD] = µD + [d− µD] = d

The data reproduction property of SK is independent of the covariogram model σY (h)
used to populate ΣY Y , hence ΣY D = ΣY Y GT and GΣY Y GT ; one need to only link consis-
tently all covariance matrices to the point covariance matrix ΣY Y . Kriging predictions
reproduce (up to discretization approximations) any source datum that can be expressed
as a linear combination of unknown point values; this includes point values, unequally
weighted volume averages, as well as derivatives. Moreover, SK prediction errors at N
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source supports are zeros; point source data are reproduced only if their sample locations
coincide with prediction locations.

The (M × 1) vector y of true (unknown) target values can be decomposed in terms
of the Kriging prediction ŷ (5.3 left) and the Kriging error (5.3 right) as:

y = ŷ + [y − ŷ] (5.3)

where [y− ŷ] is a (M × 1) vector of SK prediction errors. In general, SK prediction error
[y − ŷ] is not considered known, since y is unknown.
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Unknown SK prediction errors
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Figure 5.3: Kriging prediction realization (left) and Kriging error surface (right)

Only the N SK prediction errors at the N source supports are known and equal to
0, provided that the source data are error-free: G[y − ŷ] = [d − d] = 0. However, the
statistics (mean and covariance) of that error are considered known, since they are linked
to the statistics of y which are assumed known. The expectation of SK predictor RVs is:

µŶ = E{ŷ} = E{µY }+ ΛTE{[d− µD]}
= µY + ΛT [µD − µD] = µY

and the expectation of SK prediction error RVs is:

µY−Ŷ = E{y − ŷ} = E{y} − E{ŷ} = µY − µY = 0

Prediction error RVs have zero expectations since Kriging is an unbiased predictor.
Conditional covariance (M ×M) matrix ΣŶ Ŷ of covariance values between all pairs

of predictor RVs at all M target supports is equal to:

ΣŶ Ŷ = E{[ŷ − µŶ ][ŷ − µŶ ]T} = E{ŷŷT} − µYµ
T
Y

= E{(µY + ΣY DΣ−1DD[d− µD])(µY + ΣY DΣ−1DD[d− µD])T} − µYµ
T
Y

= ΣY DΣ−1DDE{[d− µD][d− µD]T}Σ−1DDΣDY

= ΣY DΣ−1DDΣDY 6= ΣY Y
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whereas (M ×M) matrix ΣY Ŷ of covariance values between all pairs of target and pre-
dictor RVs at all M target supports:

ΣY Ŷ = E{[y − µY ][ŷ − µŶ ]T} = E{yŷT} − E{µYµ
T
Ŷ
}

= E{y(µY + ΣY DΣ−1DD[d− µD])T} − µYµ
T
Y

= E{y}µT
Y + E{y[d− µD]T}Σ−1DDΣDY − µYµ

T
Y

= ΣY DΣ−1DDΣDY = ΣŶ Y

and (M ×M) matrix Σ(Y−Ŷ )(Y−Ŷ ) of covariance values between all pairs of prediction
error RVs at all M target supports:

Σ(Y−Ŷ )(Y−Ŷ ) = ΣY Y −ΣY Ŷ −ΣŶ Y + ΣŶ Ŷ

= ΣY Y −ΣY Ŷ = ΣY Y −ΣY DΣ−1DDΣDY (5.4)

entries on the diagonal of Σ(Y−Ŷ )(Y−Ŷ ) constitute (M × 1) vector of prediction error

variances at all M target supports; m-th entry of that vector: σY (tm)−wT
mσm = Kriging

error variance. Lastly, (M ×M) matrix ΣŶ (Y−Ŷ ) of covariance values between all pairs
of predictor and prediction error RVs at all M target supports:

ΣŶ (Y−Ŷ ) = ΣŶ Y −ΣŶ Ŷ = 0

Predictor RVs and prediction error RVs are uncorrelated; homoscedasticity is a regression
characteristic.

Simple Kriging predictions are optimal in the least squares sense as they are unbiased
and have minimum prediction error variance among all other weighted linear combinations
of data; Kriging is the Best Linear Unbiased Predictor (BLUP) and yields the set of most
locally accurate predictions. Morevover the covariance matrix of prediction errors (as
well as all other conditional covariance matrices) is homoscedastic, i.e., does not depend
on the data values, but only on: (i) the configuration of source and target supports, and
(ii) the covariance model σY (h). The true value y(tm) at target support tm don’t need to
be known, in order to be able to calculate the associated prediction error variance σ̂(tm);
very important for sampling design purposes.

On the other hand, the covariance matrix ΣŶ Ŷ of Kriging predictor RVs is not the
same as the true covariance matrix ΣY Y ; Kriging predictions are not considered to
provide structural accuracy, i.e., variogram reproduction. To complicate things, ΣŶ Ŷ

is non-stationary, i.e., the conditional covariance between two pairs of predictor RVs
{Ŷ (tm), Ŷ (tm′)} and {Ŷ (tm′′), Ŷ (tm′′′)} at two pairs of target supports {tm, tm′} and
{tm′′ , tm′′′} separated by the same distance, is not the same. In spectral analysis terminol-
ogy, Kriging is a non-stationary low-pass filter. Furthermore, the conditional covariance
matrix Σ(Y−Ŷ )(Y−Ŷ ) of prediction error RVs is indeed homoscedastic only in the multi-
variate Gaussian case, i.e., when the joint distribution of all N source RVs and all M
target RVs is a (N +M)-variate Gaussian distribution.

Fortunately Kriging is used as an intermediate step in stochastic simulation, to condi-
tion Gaussian realizations to known measurements (conditional simulation); this can be
expressed as: y ∼ N(µY |d,ΣY Y |d) instead of y ∼ N(µY ,ΣY Y ) where N(µ,Σ) denotes
the multivariate Gaussian (normal) distribution with mean µ and covariance matrix Σ.
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5.3 Conditional Latin Hypercube simulation: Algo-

rithm 1

According to the previous subsection, parameter [y − ŷ] of equation 5.3, can now be
re-expressed as a (M × 1) vector of zero-mean SK prediction errors. Moreover, since ŷ is
independent from y − ŷ, the target covariance matrix can be decomposed as:

ΣY Y = ΣŶ Ŷ + Σ(Y−Ŷ )(Y−Ŷ )

Conditional attribute realizations in the multivariate Gaussian case can be constructed
by: (i) performing Kriging to obtain the SK predictions ŷ, (ii) generating a realization
[y − ŷ] from the SK prediction error random vector, and (iii) adding that realization to
the SK predictions ŷ to obtain a conditional realization yc. The issue is how to generate a
realization [y− ŷ] from the multivariate Gaussian distribution of the SK prediction error
random vector. One of the oldest and commonly used conditional simulation algorithms
is the ’Direct Simulation of Kriging Prediction Error’ (Journel, 1974). The relevant
flowchart can be described as:

1. Compute Kriging predictions ŷ; Fig. 5.4, left.

2. Compute conditional covariance matrix of Kriging prediction error RVs
Σ(Y−Ŷ )(Y−Ŷ ); Fig. 5.4, right

3. Simulate, independently of the Kriging component ŷ, a zero-mean realization [y−ŷ]
of the Kriging error component via Cholesky decomposition of the Kriging error
covariance matrix Σ(Y−Ŷ )(Y−Ŷ ). Since SK is an exact interpolator, the simulated
SK prediction errors at all N source supports are zeros: G[y − ŷ] = 0; Fig. 5.5,
right. Per the theory of Cholesky simulation, the simulated error realizations have
covariance Σ(Y−Ŷ )(Y−Ŷ ).

4. Obtain a conditional realization as: yq = ŷ + [y − ŷ]; Fig. 5.5, left.

5. Repeat steps 2 and 3 S times, to generate S simulated vectors {y(s)
q , s = 1, . . . , S}

of target values with mean vector ' µY |d and covariance matrix ' ΣY Y |d

6. Transform this conditional Simple Random sample into a conditional Latin Hyper-
cube sample of size S using equation:

[y(s)q (cm)]LS = G−1

(
rank(y

(s)
q (cm))− v(s)q (cm)

S
; µ̂(cm), σ̂2(cm)

)
, s = 1, . . . , S (5.5)

where G−1 is the inverse CDF of the local Gaussian conditional distribution of RV
Yq(cm) with parameters the local conditional estimation provided by the Kriging pre-
diction µ̂(cm) and the local conditional variance provided by the Kriging prediction error

variance σ̂2(cm). Term rank(y
(s)
q (cm)) denotes the rank of the s-th value y

(s)
q (cm) in the

conditional SR sample yq(cm) at location cm.
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In essence, Eq. (5.5) involves a set of S spatially correlated probability values (the
argument of the inverse Gaussian CDF), which are also marginally (location-wise) strat-

ified. The rank value rank(y
(s)
q (cm)) identifies the probability stratum associated with an

original value y
(s)
q (cm) of the SR sample at location cm. The addition of a random num-

ber v
(s)
q (cm) uniformly distributed in [0, 1] furnishes a random probability perturbation

within than stratum. Those stratified probability values are then used to derive the corre-
sponding stratified Gaussian quantiles via the inverse local CDF G−1 (yq; µ̂(cm), σ̂2(cm)).
Note that spatial correlation is induced in the Latin hypercube realizations via the ranks
of the original (generated via SR sampling) conditional simulations.

SK target predictions
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Figure 5.4: Simple Kriging predictions (left) and error std deviations (right)

Conditional realization #1
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Figure 5.5: Conditional simulation (left) and prediction error (right)

In a nutshell the above steps 1 to 5 of the flowchart can be expressed according to
Alabert (1987) and Davis (1987) as the reproduction of a conditional simulation yq on

110



the M target supports in a Gaussian or transformed Gaussian setting can be expressed
as:

yq = ΣY DΣ−1DDd + L̂w = (simple Kringing value) + (simulated Kriging error) (5.6)

where ΣY DΣ−1DD = Λ, and Λ denotes the Kriging weights of the system, L̂ is the
Cholesky decomposition factor of Σ(Y−Ŷ )(Y−Ŷ ) and according to 5.4, Σ(Y−Ŷ )(Y−Ŷ ) =

ΣY Y −ΣY DΣ−1DDΣDY , and w is (M × 1) vector w = [w(tm),m = 1, . . . ,M ]T of random
values at M target supports. ΣY DΣ−1DDd is the component accounting for the condition-
ing data and L̂w the random component that serves for generating multiple realizations.
For a more detailed and comprehensive exposition of the conditional simulation via direct
simulation of the Kriging error, the reader is referred to (Alabert, 1987).

In the multivariate Gaussian case, the ensemble mean and variance of target real-
izations converge to Kriging predictions and variances, as the number of realizations
increases. The shortcoming is that since the algorithm is based on the Cholesky decom-
position, it works for not too many target supports, M < 10, 000 or so.

5.4 Condtional Latin Hypercube simulation: Algo-

rithm 2

A more widely applicable approach in terms of possible number of target supports M >>
10, 000 is the conditional simulation via the indirect simulation of Kriging prediction error
(Chilès and Delfiner (1999); Goovaerts (1997)); true value decomposition of Eq. 5.3. The
basic difference is the simulation of a realization of the Kriging error by simulating an
unconditional realization and using simulated source data extracted from this realization
for the simulation of the Kriging error; simulated source data are extracted with the same
sampling mechanism (same supports) as the original source data.

The basic concept is the simulation of a realization of the Kriging error [y − ŷ] by:
(i) simulating a realization y; this realization is unconditional and has covariance ΣY Y ,
e.g., it is generated using a stationary covariogram model σY (h), and (ii) repeating the
Kriging procedure using simulated source data extracted from the realization y. Simu-
lated Kriging should be performed using the same covariogram model used to generate
the unconditional realization y, as well as to compute the original Kriging predictions ŷ;
simulated source data are extracted with the same sampling mechanism (same supports)
as the original source data.

Thus, a conditional realization i.e., a (M × 1) vector yq of conditionally simulated
target values can be obtained as:

yq = ŷ + [y − ŷsim] (5.7)

where ŷ is a (M×1) vector of Kriging predictions, y is a (M×1) vector of unconditionally
simulated target values, and ŷsim is a (M × 1) vector of simulated Kriging predictions,
i.e., Kriging predictions with simulated source data. The algorithm flowchart can be
described as:
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1. Generate a (M×1) vector y of simulated target values with covariance matrix ΣY Y

using unconditional simulation, Fig. 5.6 (left); there exist efficient algorithms (e.g.
FFT-based method presented in subsection 4.1.3) to do so especially for very large
simulation domains.

2. Generate the (M×1) vector d of simulated source data as: d = Gy, Fig. 5.6 (right);
per stationarity and ergodicity, the mean of the simulated data is approximately
µY , and their (N ×N) covariance matrix is approximately ΣDD.

Unconditional target realization #1
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Figure 5.6: Unconditional target realization (left) and simulated source data (right)

3. Perform Simple Kriging using the simulated data vector d to obtain a (M × 1)
vector ŷsim of simulated SK predictions (Fig. 5.7, left) as:

ŷsim = µY + WT [d− µD] = µY ΣY DΣ−1DD[d− µD]

Since the source support configuration remains the same, and all conditional covari-
ance matrices are homoscedastic, the simulated Kriging realization has the same
properties as the original Kriging; simulated Kriging predictions reproduce the sim-
ulated source data: d = Gŷ.

4. Compute simulated Kriging prediction errors: [y − ŷsim], Fig. 5.7 (right). Per the
data reproduction property of Kriging, the simulated Kriging prediction error is
zero at any source support: d−Gŷ = 0

5. Obtain conditional realization as: yq = ŷ + [y − ŷsim]. Since the SK predictions
reproduce the source data at the source supports, the simulated SK prediction
errors are zero at those supports, hence the original source data are reproduced,
i.e.: d = Gyq

6. Transform this conditional Simple Random sample into a conditional Latin Hyper-
cube sample of size S using Eq. 5.5.

A representation of the above flowchart, showing the steps for generating a conditional
realization via indirect simulation of the Kriging error is depicted in Fig. 5.8.
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Simulated SK target predictions
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Figure 5.7: Simulated SK predictions (left) and simulated SK prediction errors (right)
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Figure 5.8: Conditional simulation via indirect simulation of the Kriging error flowchart
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Recap

Kriging provides the best linear prediction at any single target support and the conditional
covariance matrix of the prediction error RVs, whose diagonal elements are the classical
Kriging error variances. Kriging also reproduces any source datum that can be expressed
as a linear combination of unknown point values, as long as one consistently links all
required covariances to a point covariance matrix. Stochastic conditional simulation can
be regarded as the task of constructing realizations of the (zero-mean) Kriging prediction
error random vector and adding them to the Kriging predictions; the statistics of this
random vector can be computed from those of the original attribute random vector.

There are two ways to construct realizations of the Kriging prediction error random
vector: (i) direct simulation of the Kriging prediction error via Cholesky decomposition
of the conditional covariance matrix; prohibitive for very large simulation grids, and (ii)
indirect simulation of the Kriging prediction error by performing Kriging with simulated
data constructed from unconditionally simulated attribute realizations; the latter, further
employed in next section 5.5 for combining conditional sampling with LH sampling from
random fields on very large grids, allows for more efficient computations when simulation
locations coincide with the nodes of a regular grid of possibly million nodes.

5.5 Conditional Latin hypercube simulation of ran-

dom fields on large grids

Applying conditional Latin Hypercube simulation of random fields on very large grids is
actually a combination of: (i) simulation on very large regular grids, Sec. 4.1.3, (ii) Latin
Hypercube sampling from random fields, Sec. 2.3.2, and (iii) conditional simulation via
the indirect simulation of Kriging error; algorithm 2, Sec. 5.4.

The reference order of the above three algorithms is not random, since one has to first
simulate unconditional Simple Random realizations on very large grids, then apply the
post-processing transformation of these conditional Simple Random realizations to Latin
Hypercube realizations by marginally stratifying its entries and finally condition these
realizations on the available data (wells in the three dimensional case study adopted).
More specifically, the algorithm flowchart can be described as:

1. Equation 4.5 (Dietrich, 1997) is firstly employed S times, for generating a (S̃×M)
matrix Ỹ with simulated (possibly transformed) Gaussian deviates at the nodes of
the extended grid, from which one extracts the (S ×M) matrix Y of simulated
values at the original M grid nodes.

2. Following, Eq. 2.14 is employed to transform the previously generated S conditional
simple random realizations on very large grids, to S Latin hypercube realizations,
from which one extracts the (S ×M) matrix Y of simulated values at the original
M grid nodes.

3. Last, Eq. 5.7 is adopted to further condition the Y unconditional LH realizations
on the (N × S) conditioning data.
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The above algorithm sequence can be easily comprehended through the following
Figures holding the pictorial representation of the above three steps.

Non-conditional 
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Figure 5.9: Schematic example illustrating the generation of one realization from a Gaus-
sian random field model on a large grid; see text for details.
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A: Ranks of simple random sample
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B: Uncorrelated uniform random numbers in [0,1]
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C: Correlated & stratified probabilities
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D: Correlated Latin hypercube sample
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Figure 5.10: A: Rank ordered version of SR sample of Fig. 2.14, B: Uniform random
numbers in [0, 1], simulated independently at each grid node, C: Correlated probability
values, stratified at each grid node, derived from A and B, D: Final LH sample of size
S = 10, whose values are derived as quantiles of a standard Gaussian RV for the stratified
probabilities in C.
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Figure 5.11: Conditional simulation via indirect simulation of the Kriging error flowchart
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5.6 3D case study

This Section presents a three dimensional case study on a very large (> 1000000 nodes)
grids, comparing the proposed conditional LH sampling to SR sampling from a lognor-
mal random field. Both conditional sampling methods model the spatial distribution of
saturated hydraulic conductivity in hydrogeological context involving flow and transport
in a partial heterogeneous porous medium by employing indirect sampling of the Kriging
error (Sec. 5.4). Direct sampling of the Kriging error (Sec. 5.3) cannot be adopted
for this case study since it uses Cholesky decomposition which is prohibitive for large
grids. The comparison between the two methods is performed along the lines of Sec. 2.4.
More precisely, the two sampling methods are firstly evaluated in terms of their ability
to reproduce ensemble statistics of the random field; these statistics are computed from
a very large set of conductivity realizations generated via simple random sampling. That
large set of conductivity fields is used to derive a large set of solute concentration fields
through flow and transport simulation; the two sampling methods are then compared
again in terms of their ability to reproduce ensemble statistics of the solute concentration
field. Fig. 5.12 illustrates a pictorial representation of a three dimensional simulated
conductivity field (left) and the respective concentration realization (right).

Figure 5.12: A realization of a 3D lognormal random field (left), and corresponding 3D
solute concentration realization (right).

The following two subsections present a synthetic case study involving a three dimen-
sional groundwater flow system, discretized using a very large grid (> 1.000.000 nodes).
Simple random (SR) and Latin hypercube (LH) sampling are considered for generating
realizations from a lognormal random field, modeling the spatial distribution of saturated
hydraulic conductivity in a hydrogeological flow and transport problem.

5.6.1 Hydraulic conductivity

The dimensions of the flow system are 1005 m by 1005 m by 125 m, discretized into a
201× 201× 25 grid with uniform cells of size 5 m by 5 m. Porosity is assumed constant
throughout the domain and equal to 0.25. No flow conditions (∂h/∂n = 0) are assigned
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to the rest of the domain boundaries, and the Modflow software McDonald and Harbaugh
(1988) is used to obtain the steady state flow solution.

Hydraulic coductivity reference ensemble statistics are derived from a set of 1000
realizations generated via SR sampling. The reference statistics for hydraulic conductivity
fields consist of: (i) the ensemble average field shown in Fig. 5.13 (left), and (ii) the
ensemble standard deviation field shown in Fig. 5.13 (right).

Figure 5.13: Reference ensemble average (left) and standard deviation (right) conductiv-
ity fields, computed from 1000 hydraulic conductivity realizations generated via simple
random sampling.

In terms of sample size or number of realizations per method, three such sizes are
considered; namely, S = 20, 50, and 80. Once a sample, say of size S = 20, is gener-
ated, the discrepancy between the statistics of the simulated ensemble and the reference
statistics is quantified using the root mean squared error (RMSE). The computation of
such error statistic is repeated over a set of I = 100 batches of realizations, with each
batch containing the same sample size, S = 20 for example, thus estimating the sampling
distributions of RMSE values for each sample size and for each method; these distribu-
tions are presented in terms of their means and medians, as well as their 75% and 95%
probability intervals.

Fig. 5.14 depicts the reproduction of the ensemble average and standard deviation of
hydraulic conductivity fields for the two sampling methods and the three sample sizes
considered. It is easily appreciated from both figures that LH yields a better reproduction
of ensemble average and standard deviation fields than SR sampling.
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Figure 5.14: Reproduction of reference ensemble mean (left) and standard deviation
(right) field for hydraulic conductivity; see text for details.

5.6.2 Solute concentration

For the solute transport problem, an initial concentration equal to 0 mg/l is assumed
throughout the model domain. At time t = 0, a contaminant is introduced at the central
cell (middle of three dimensional domain), along the upstream constant head boundary,
with constant concentration C0 = 100 mg/l. MT3D software Zheng (1990) is further
used to solve the transport problem.

Here again, reference ensemble statistics are derived from the set of 1000 realizations
of solute concentration fields corresponding to the 1000 realizations of hydraulic conduc-
tivity generated via SR sampling in the previous section. Reference statistics for solute
concentration consist of: (i) the ensemble average field shown in Fig. 5.15 (left), and (ii)
the ensemble standard deviation field shown in Fig. 5.15 (right).

Fig. 5.16 depicts the reproduction of the ensemble average and standard deviation
concentration fields for the two sampling methods and the three sample sizes consid-
ered. LH sampling here again yields a better reproduction of these ensemble average and
standard deviation fields than SR sampling.
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Figure 5.15: Reference ensemble average (left) and standard deviation (right) concentra-
tion fields, computed from 1000 concentration realizations derived from 1000 hydraulic
conductivity realizations generated via simple random sampling.
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Figure 5.16: Reproduction of reference ensemble average (left) and standard deviation
(right) field for concentration; see text for details.
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5.7 Conclusions and Discussion

This chapter proposes a novel conditional simulation method for generating Latin hyper-
cube samples from second order stationary Gaussian random fields at very large grids
(with millions of nodes). LH sampling have been previously applied in an unconditional
simulation context, and specifically for improved uncertainty analysis in hydrogeologi-
cal settings. To the authors’ knowledge, however, and apart from very few exceptions
involving sequential Gaussian simulation, there is no published work investigating the
application of LH sampling in a conditional geostatistical simulation setting, and in par-
ticular how LH relates to uncertainty analyses in hydrogeological investigations. The
contribution of this chapter is precisely to propose methodological modifications so that
LH sampling be adapted for geostatistical conditional simulation on very large applica-
tion domains. To that respect, one could also suggest that this chapter proposes a novel
algorithm for efficient conditional simulation of Gaussian random fields. More specifically,
the proposed conditional LH sampling method combines an existing simulation method
for creating SR samples from second order stationary random fields in large regular grids
Dietrich (1997), with the LH sampling method of (Stein, 1987).

This work adapted LH sampling in a conditional simulation context. LH was con-
trasted with SR in terms of its ability to generate representative conditional realizations
from a random field model, with term representative implying realizations that span
efficiently the range of possible attribute outcomes corresponding to a conditional mul-
tivariate, (log)normal in this case, probability distribution. The performance of LH was
evaluated in a hydrogeological context via a simple synthetic case study involving flow
and transport in a heterogeneous porous medium. More precisely, the reproduction of
reference ensemble statistics of a lognormal hydraulic conductivity field from conditional
conductivity realizations generated via LH, was evaluated in the first part of the case
study. The statistics considered included the ensemble mean and standard deviation.
The reproduction of the same statistics for the ensemble concentration field resulting
from solving a flow and transport boundary value problem for each hydraulic conductiv-
ity realization, was also evaluated in the second part of the case study.

As expected for the case of hydraulic conductivity, LH sampling achieved the best
reproduction of marginal reference statistics for the ensemble mean and standard devia-
tion followed by SR sampling (Fig. 5.14). In terms of solute concentration, LH sampling
methods showed significantly better reproductions of the ensemble mean and standard
deviation concentration fields than SR sampling (Fig. 5.16).
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Chapter 6

Conclusions and future work

Uncertainty analysis of the outputs of each and every model is a critical requirement in
each model’s impact assessment and risk-consious policy decision-making. Uncertainty
analysis in models with spatially distributed parameters specifically, is often performed
within a Monte Carlo context in various engineering and scientific disciplines, including
earth and environmental sciences (Caers, 2011). Along these lines, the propagation of the
inherent spatial variability of petrophysical properties, such as hydraulic conductivity, to
the predictions of physically-based, numerical models simulating flow and transport is
an all-important task in hydrogeological investigations. In a classical, two-point, geosta-
tistical context, spatial attribute variability is typically characterized via a random field
model, log-normal in the case of hydraulic conductivity, which is often parameterized by
a spatial constant mean, and a permissible variogram model. Simulations from such a
random field, possibly reproducing known conductivity values at sample locations, are
typically employed, along with the numerical simulators of flow and transport, in a Monte
Carlo framework for evaluating, for example, the uncertainty in the spatial distribution
of solute concentration. The objective is to cover the range of possible outcomes of the
model at hand, and use that range of model outcomes to inform pertinent impact assess-
ment studies and risk-conscious decision-making. Geostatistical simulation is typically
performed using simple random (SR) sampling, a procedure that calls for the repeated
evaluation of the physical model on a large number of input parameter realizations to
arrive at a representative distribution of model outputs.

Latin hypercube sampling. The procedure of constructing a representative distribu-
tion of model outputs, however, can quickly become expensive in terms of both time and
computer resources, particularly for the case of complex environmental models (Helton
and Davis, 2002). More efficient alternatives to classical Monte Carlo simulation based
on Simple Random (SR) sampling are stratified sampling methods, including Latin hy-
percube (LH) sampling, aiming at generating representative samples or realizations from
a set of random variables with a given multivariate probability distribution. Here, term
representative implies realizations spanning efficiently the range of possible attribute
realizations corresponding to that probability distribution. In a more comprehensive
Monte Carlo framework for uncertainty analysis, however, one should account for the
functional links between model parameters and model outputs in the quest for repre-
sentative samples or realizations (Caers, 2011). Remaining within the class of sampling
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approaches that do not utilize the information provided by the model itself, LH sam-
pling has been shown to lead to model outputs with smaller sampling variability in their
statistics than SR sampling for the same number of input simulated realizations; that
efficiency, however, decreases the more non-linear that model becomes in its parameters
(McKay et al., 1979; Helton and Davis, 2003; Helton et al., 2006). Latin Hypercube
sampling is excessively explored in this thesis (Chap. 2) covering in detail the range from
the univariate distribution case to the LH sampling of Gaussian or transformed Gaussian
(an)-isotropic random fields. LH efficiency is further examined via two synthetic case
studies (2D isotropic and 3D anisotropic) involving flow and transport in a heteroge-
neous porous medium illustrating the benefits of Latin hypercube over simple random
sampling.

Stratified likelihood sampling. Along the lines of this dissertation two alterations
of an innovative stratified sampling method are introduced (Chap. 3), scarcely known
in the geostatistical literature, here named ”Stratified Likelihood sampling” (SL) and
”Minimum Energy sampling” (ME), in which representative realizations are generated
by exploring in a systematic way the structure of the multivariate distribution function
itself. This alternate approach of generating stratified realizations was first proposed in a
conference proceedings paper by Switzer (2000) in the context of Gaussian random fields
bringing a different perspective on the generation of representative realizations from a
multivariate Gaussian probability distribution. Kyriakidis and Gaganis (2013) enhanced
the method in a spatial context further investigating its performance in a hydrogeological
case study. The basic idea involves selecting via stratification representative “points”
(sample realizations) from a multivariate likelihood model; hence the term stratified like-
lihood sampling adopted in this work. These points or realizations lie on multidimen-
sional hyper-ellipsoids, whose geometry is dictated by the eigenvectors and eigenvalues
of the covariance matrix of the Gaussian random field model linked to the lognormal
model. Realizations lying on the same hyper-ellipsoid can be indexed by a common
quantile of the chi distribution, which is none other than the Mahalanobis distance be-
tween those realizations and the ensemble mean, as well as their likelihood; hence, such
realizations are equally likely. Representative sampling from a lognormal random field
in this context involves a controlled (stratified) selection of different hyper-ellipsoids and
the subsequent controlled (stratified) layout of points or realizations on the surfaces of
such hyper-ellipsoids. This different way of looking at representative sampling from a
random field model provides a fruitful alternative to marginal stratification involved in
LH sampling, and paves the way for exploring connections with the recent comprehensive
approach to uncertainty modeling advocated by (Caers, 2011).

Minimum energy sampling. Although SL sampling constitutes an innovative and
efficient stratified sampling within the alternate approach of systematically exploring the
multivariate distribution, it is exposed to defects related to the selection of points on the
surface of a unit (hyper)sphere; the current implementation of SL sampling is approximate
to this respect, and therefore sub-optimal. A similar task arises in geostatistics during
the selection of line orientations to efficiently span a unit-sphere in the turning bands
simulation algorithm in three dimensions (Chilès and Delfiner, 1999). This representative
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point placement problem is related to the celebrated best packing problem in mathematics
(Hardin and Saff, 2004), which is notoriously difficult to solve in a general way. Although
quasi-deterministic solutions exist for such point placement within the context of quasi-
Monte Carlo methods (Lemieux, 2009), we propose an energy reduction functional, here
named minimum energy (ME) sampling for describing point arrangement by quantifying
the minimum distance between nearest neighboring points and then proceed by solving
a stochastic optimization problem until the system reaches the state of convergence. ME
sampling (Sec. 3.3) is evaluated through a two step spatial hydrogeological case study of
flow and transport of a pollutant, along the same lines of previously adopted case studies,
and is proved to offer a viable alternative to existing stratified sampling methods.

Two step sampling. A shortcoming of stratified sampling methods is that they aim
exclusively at stratification of model parameters, e.g., simulated hydraulic conductivity
values, without accounting for the sensitivity of the particular model, e.g., flow and trans-
port, to those values. An additional contribution of this thesis lies in an attempt to fill
this gap by proposing a two-step implementation of stratified sampling methods (Sec.
3.2). More precisely, locations where uncertainty in model predictions is expected to be
highest, or where attribute values are expected to impact significantly model predictions,
are first identified as control locations. Stratified sampling is employed to generate rep-
resentative realizations of attribute values at those locations, and attribute values at all
remaining locations are then generated conditional on the previously simulated values
on control locations. The selection of control locations could be guided via analytical
solutions (when possible) or from a limited set of model evaluations using attribute real-
izations generated via simple random sampling. The impact of selecting a particular set
(location and number) of control locations on the reproduction of statistics of model out-
puts, is investigated in this work via a synthetic case study involving a flow and transport
model over a simple geometrical domain, assuming known boundary and initial condi-
tions. Results showed that careful selection of important sites, in terms of controlling
sampling variability of model outputs across multiple simulations, is proved to yield more
representative realizations of model outputs over the entire region.

LH sampling on large grids. Already existing literature on LH sampling methods
rely on the Cholesky decomposition of a covariance matrix related to all possible pairs of
simulation grid nodes. Since Cholesky decomposition is prohibitive for large covariance
matrices, it could be argued that all previously proposed LH sampling approaches are
considered computationally inapplicable to case studies composed by very large simu-
lation grids, which in many cases can be the context of hydrogeological investigations.
Although there exist simulation methods for generating realizations of random fields on
large regular grids, these methods have not been employed to date within a Latin hyper-
cube sampling context. Along these lines, this dissertation proposes a novel simulation
method for generating Latin hypercube samples from second order stationary Gaussian
random fields on very large grids (with millions of nodes). The proposed LH sampling
method (Chap. 4) combines an existing simulation method for creating SR samples from
second order stationary random fields in large regular grids (Dietrich, 1997), with the LH
sampling method of Stein (1987). The performance of the proposed LH sampling method
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was compared to that of simple random (SR) sampling via two synthetic case studies in-
volving a two dimensional and a three dimensional flow and transport system, assuming
a porous medium whose saturated hydraulic conductivity is parameterized in terms of a
lognormal random field with a stationary covariance model. Results proved the proposed
LH sampling more efficient than SR sampling, thus reducing the time and computer re-
sources required to perform uncertainty analysis in hydrogeological flow and transport
problems discretized by very large regular grids. According to an extensive study of the
literature, it is the first time LH sampling is applied for the simulation of random fields in
large grids; hence, it is the first time efficient geostatistical simulation can be preformed
at models with detailed discretization of the spatially distributed parameters.

Conditional LH sampling on large grids. Last but not least, we explored condi-
tional efficient sampling in terms of applying the LH simulation method on very large
grids to a conditional hydrogeological setting reproducing apart from the variogram model
of the lognormal random field, any measurements of conductivity at their sample loca-
tions. More precisely Chap. 5 thoroughly examines the theoretical context of conditional
sampling, and proceeds in proposing a novel combination of LH sampling on very large
grids, and conditional sampling via indirect simulation of the Kriging error; the latter
overtaking Cholesky decomposition of the covariance matrix, thus also applicable on very
large application domains. The proposed simulation method is compared to conditional
SR sampling in a synthetic hydrogeological case study of flow and transport on a three
dimensional very large simulation domain. Once again, results indicate that the proposed
conditional LH simulation method can reproduce statistics of the conductivity and con-
centration fields with smaller sampling variability than SR sampling for the same number
of realizations; thus reducing the computational cost for an uncertainty analysis related
to the dependency of variability of model inputs and model outputs.

Future work. In summary, this work offers novel extensions of stratified sampling in
a spatial context. All of the proposed methodological approaches could contribute to a
wider application of uncertainty analysis endeavors in environmental impact assessment
studies. However, stratified sampling approaches place more confidence than simple ran-
dom sampling on the parameters (mean vector and covariance matrix) of the random
field model, as they aim at generating realizations that closely match those statistics;
such hyper-parameters, however, are often highly uncertain. Viewed from this perspec-
tive, this work only addressed the propagation of spatial variability of input parameters
to model output uncertainty. Future work should involve the systematic propagation of
hyper-parameter uncertainty to the realizations of the random field and by extension to
the associated model predictions; this could be done, for example, within the context of
a sensitivity analysis to the overall attribute mean, as well as to the variogram model
type, sill and range. Such uncertainty has often a much more pronounced effect on model
predictions uncertainty than spatial variability.

Additionally, the most challenging extension of this work is to address real-life hydro-
geological problems consisting of complex and non-linear three dimensional groundwater
models with millions of nodes and irregular boundary conditions. The number of Monte-
Carlo runs required at these cases, depends on the number of uncertain parameters and
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on the relative accuracy required for the distribution of model predictions. In the context
of sensitivity studies, inverse modelling or Monte-Carlo analyses, the ensuing computa-
tional burden is usually overwhelming and computationally impractical. These tough
computational constrains have to be relaxed and removed before meaningful stochastic
groundwater modeling applications are possible (Li et al., 2003).

Future steps of this thesis will focus on the application of the proposed stratified
sampling in three dimensional non-linear settings, provided that the marginals of the
multivariate probability distribution of the random field model adopted are not tied to
any Gaussian assumption. Most sampling applications in a hydrogeological context to
date involve Gaussian-related, e.g., lognormal, random field models. However, real-world
applications of uncertainty propagation in the earth sciences, especially hydrogeological
and petroleum applications, involve (i) parameters with highly non-Gaussian spatial dis-
tributions, e.g., hydraulic conductivity fields exhibiting channel-type patterns, (ii) highly
non-linear transfer functions, e.g., models of multiphase flow, and (iii) uncertain reser-
voir geometry and boundary/initial conditions. To address issue (i), a multiple-point
geostatistical simulation will be adopted, similar to Mariethoz and Caers (2015), which
is capable of generating non-Gaussian spatial distributions by borrowing spatial patterns
’learned’ from training images. Addressing issues (ii) and (iii) will be accomplished by
using model evaluations in an iterative search to identify input realizations that do corre-
spond (through the lenses of the particular transfer function) to a representative sample
of model responses. Stratified sampling methods advocated in this work are planned
be used to frame an efficient set of initial 3D realizations for implementing the iterative
investigation.
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