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Abstract 

The aim of the present thesis is to introduce the concepts of Lévy processes and 

jump-diffusion models. At first, we focus on the theory of Lévy processes. Then, 

there will be presented and analyzed a Lévy jump diffusion process, which is the 

simplest Lévy process and offers significant insight into the distributional and path 

structure of a Lévy process. Afterwards, we will state some important results, such as 

infinite divisibility, Lévy-Khintchine formula and the Lévy-Itô decomposition. 

Therefore, the Lévy measure and path properties, as well as the elements from 

martingale theory are presented for better understanding of the features of Lévy 

processes. Later, we will present some examples as well as applications of Lévy 

processes in different fields of science, such as financial mathematics and actuarial 

science. In particular, we will show how important the Lévy processes are in financial 

modeling, option pricing, construction of optimal hedging portfolios and risk 

management e.g. computation of risk measures for portfolios in presence of jumps 

in asset prices. Finally, we will implement Monte Carlo simulation in R for jump-

diffusion models with correlational companies and we will also show some numerical 

results from option pricing. 
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Chapter 1 

1. Introduction 

In this chapter we give the general Definition of Lévy process and study some 

examples of Lévy processes. By doing so, we will use stochastic analysis to formulate 

some theoretical results as well as their applications. Specifically we will study the 

jump processes and the role that certain subtle behavior concerning their 

fluctuations play in explaining different types of Phenomena appearing in a number 

of classical models of applied probability. 

2. Stochastic Process 

Let   (𝛺, ℱ, 𝐹, ℙ)  denote a stochastic basis, or filtered probability space, i.e. a 

probability space (𝛺, ℱ, ℙ) endowed with a filtration   𝐹 = (ℱ𝑡)𝑡∈[0.𝑇].The stochastic 

basis satisfies the usual conditions if it is right-continuous i.e.  ℱ𝑡 = ℱ𝑡+, where 

ℱ𝑡+ = ⋂ ℱ𝑠𝑠>𝑡  , and is complete, i.e. the σ-algebra ℱ is ℙ-complete and every ℱ𝑡 

contains all ℙ-null sets of ℱ. Let 𝑇 ∈ [0,∞]  denote the time horizon which, in 

general, can be infinite. 

Definition 2.1.(Stochastic Process) 

Suppose that (𝛺, ℱ, 𝑃) is a probability space, and that 𝐼 ⊂ ℝ is of infinite cardinality. 

Suppose further that for each 𝑡 ∈ ℝ , there is a random variable 𝑋𝑡: 𝛺 → ℝ defined 

on (𝛺, ℱ, 𝑃) .The function 𝑋: 𝐼 × 𝛺 → ℝ defined by 𝑋(𝑡, 𝜔) = 𝛸𝑡(𝜔) is called a 

stochastic process with indexing set  𝐼 , and is written 𝑋 = {𝑋𝑡, 𝑡 ∈ 𝐼}. 

Remark 2.2. 

A stochastic process 𝑋 = {𝑋(𝑡): 𝑡 ∈ 𝑇} is a family of random variables which are 

defined in the same probability space (𝛺, ℱ, 𝑃). We will always assume that the 

cardinality of 𝐼 is infinite, either countable or uncountable. If 𝐼 = ℤ+ then, we call X a 

discrete time Stochastic process, and if 𝐼 = [0,∞) then X is said to be a continuous 

time Stochastic process. 
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3. Lévy processes 

The term “Lévy process” honours the work of the French mathematician Paul Lévy 

who, although not alone in his contribution, played an instrumental role in bringing 

together an understanding and characterization of processes with stationary 

independent increments. In earlier literature, Lévy processes can be found under a 

number of different names. In the 1940s, Lévy himself referred to them as a sub-

class of processus additif (additive processes), that is processes with independent 

increments. For the most part however, research literature through the 1960s and 

1970s refers to Lévy processes simply as processes with stationary independent 

increments. One sees a change in language through the 1980s and by the 1990s the 

use of the term “Lévy process” had become standard. For a detailed discussion on 

Lévy processes, see e.g. the manuscript [1]. 

Definition 3.1.(Lévy Process)  

A càdlàg, adapted, 𝑅𝑑- valued stochastic process  𝑋 = (𝑋𝑡)0≤𝑡≤𝑇 with  𝑋0 = 0  a.s.  is 

called a Lévy process if the following conditions are satisfied: 

(L1) X has independent increments, i.e. 𝑋𝑡 − 𝑋𝑠 is independent of ℱ𝒔  for any 0 ≤ 𝑠 <

𝑡 ≤ 𝑇 

(L2)X has stationary increments, i.e. for any 0 ≤ 𝑠, 𝑡 ≤ 𝑇 the distribution of 𝑋𝑡+𝑠 −

𝑋𝑡 does not depend on t. 

(L3) X is stochastically continuous, i.e. for any 0 ≤ 𝑡 ≤ 𝑇 and  𝜀 > 0 : 

 lim
𝑠→𝑡

𝑃(|𝑋𝑡 − 𝑋𝑠| > 𝜀) = 0 .  

     

Examples of Lévy process 

• The linear drift is the simplest Lévy process, a deterministic process. 

• The Brownian motion is the only non-deterministic Lévy process with 
continuous sample paths. 

• The Poisson, the Compound Poisson and the Compensated Poisson processes 
are also examples of Lévy processes. 

 

The sum of a linear drift, a Brownian motion and a Poisson process is again a Lévy 
process. It’s also called a “jump-diffusion” process and we can see it in figure1. We 
shall call it a Lévy jump-diffusion process. 
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 Definition3.2. (Brownian Motion) 

A real-valued process 𝐵 = {𝐵𝑡    : 𝑡 ≥ 0}defined on a probability space (𝛺, ℱ, 𝑃)is 

said to be a Brownian motion if the following hold: 

i. The paths of B are P-almost surely continuous. 

ii. ℙ(𝑩𝟎 = 𝟎) = 𝟏 

iii. For 𝟎 ≤ 𝒔 ≤ 𝒕 , 𝑩𝒕 − 𝑩𝒔 is equal in distribution to 𝑩𝒕−𝒔 

iv. For 𝟎 ≤ 𝒔 ≤ 𝒕 , 𝑩𝒕 − 𝑩𝒔 is independent of {𝑩𝒖 : 𝒖 ≤ 𝒔}. 

v. For each  𝒕 > 𝟎 , 𝑩𝒕 is equal in distribution to a normal random variable with 
variance t. 

Definition3.3. (Poisson Process) 

A process valued on the non-negative integers  𝑁 = {𝑁𝑡: 𝑡 ≥ 0}, defined on a 

probability space (𝛺, ℱ, 𝑃) , is said to be a Poisson process with intensity λ>0 if the 

following hold: 

i. The paths of N are P-almost surely right continuous with left limits. 

ii. ℙ(𝑵𝟎 = 𝟎) = 𝟏 

iii. For  𝟎 ≤ 𝒔 ≤ 𝒕 , 𝑵𝒕 −𝑵𝒔 is equal in distribution to 𝑵𝒕−𝒔. 

iv. For 𝟎 ≤ 𝒔 ≤ 𝒕, 𝑵𝒕 −𝑵𝒔 is independent of {𝑵𝒖: 𝒖 ≤ 𝒔}. 

v. For each t>0, 𝑵𝒕 is equal in distribution to a Poisson random variable with 
parameter λt. 

 

4. ‘Toy’ Example: A Lévy jump-diffusion 

Assume that the process 𝑋 = (𝑋𝑡)𝑡≥0 is a Lévy jump-diffusion i.e. a linear 

deterministic process plus Brownian motion plus a compensated compound Poisson 

process. The Lévy jump-diffusion process is the simplest Lévy process that contains 

both a diffusive part and a jump part [3]. The paths of this process are described by 

𝑋𝑡 =  𝑏𝑡 + 𝜎𝐵𝑡 + (∑𝐽𝑘

𝑁𝑡

𝑘=1

− 𝑡𝜆𝛽) 

• 𝑩 = (𝑩𝒕)𝒕≥𝟎 is a standard Brownian motion 

• 𝑵 = (𝑵𝒕)𝒕≥𝟎 is a Poisson process with intensity 𝝀 ∈ ℝ≥𝟎(i.e. 𝑬[𝑵𝒕]=λt) 
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• 𝑱 = (𝑱𝒌)𝒌≥𝟏 is an i.i.d sequence of random variables with probability  
distribution F and 𝑬[𝑱𝒌] = 𝜷 < ∞  . Here F describes the distribution of the  
jumps, which arrive according to the Poisson process N. All sources of 
randomness are assumed mutually independent. 

 

 

Figure 1. Sample paths of a linear drift process (top-left), a Brownian motion (top-right), a compound 
Poisson process (bottom-left) and a Lévy-jump diffusion. 

 

Definition 4.1.(Characteristic function) 

Let 𝑋 = (𝑋1, … . , 𝑋𝑑) be a vector of random variables defined on the probability 

space (𝛺, ℱ, ℙ) and takes values on   𝑅𝑑. The characteristic function 

                                  𝛷𝑋 (𝑢) = 𝐸[𝑒
𝑖〈𝑢,𝑋〉] = 𝐸[𝑒𝑖 ∑ 𝑢𝑗𝑋𝑗 

𝑑
𝑗=1 ]  

for all   𝑢 = (𝑢1, 𝑢2, … 𝑢𝑑) ∈ 𝑅
𝑑, where  〈𝑢, 𝑋〉 = ∑ 𝑢𝑗𝑋𝑗

𝑑
𝑗=1  is the inner product of 

vectors 𝑢, 𝑋 ∈ 𝑅𝑑. Generally the characteristic function of the probability measure μ 

(or Fourier transform) defined on space (𝑅𝑑, ℬ(𝑅𝑑)) is  

                                  𝜑(𝑢) = ∫ 𝑒𝑖〈𝑢,𝑋〉
𝑅𝑑

𝜇(𝑑𝑥) for all  𝑢 ∈ 𝑅𝑑. 

The characteristic function defines unambiguously the distribution of the random 

variable. Therefore, a probability measure μ on the space (𝑅𝑑, ℬ(𝑅𝑑)) is determined 

uniquely by its characteristic function. 
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We will calculate the characteristic function of the Lévy jump-diffusion[3], since it 

offers significant insight into the structure of the characteristic function of general 

Lévy processes. The characteristic function of 𝑿𝒕, taking into account that all sources 

of randomness are independent , is     

𝐸[𝑒𝑖𝑢𝑋𝑡] = 𝐸[exp (𝑖𝑢(𝑏𝑡 + 𝜎𝐵𝑡 +∑𝐽𝑘 − 𝑡𝜆𝛽))]

𝑁𝑡

𝑘=1

 

= exp [𝑖𝑢𝑏𝑡]𝐸[exp(𝑖𝑢𝜎𝐵𝑡)]𝐸[exp (𝑖𝑢 ∑ 𝐽𝑘 − 𝑖𝑢𝑡𝜆𝛽)]
𝑁𝑡
𝑘=1   

recalling that the  characteristic functions of the normal and the Compound Poisson  

distributions are 

𝐸[𝑒𝑖𝑢𝜎𝐵𝑡] = 𝑒−
𝜎2𝑢2𝑡
2 , 𝐵𝑡~ℕ(0, 𝑡) 

𝐸 [𝑒𝑖𝑢∑ 𝐽𝑘
𝑁𝑡
𝑘=1 ] = 𝑒𝜆𝑡(𝐸[𝑒

𝑖𝑢𝐽𝑘−1]), 𝑁𝑡~𝑃𝑜𝑖(𝜆𝑡) 

                           = exp[𝑖𝑢𝑏𝑡] exp [−
u2𝜎2

2
t] exp [𝜆𝑡(𝐸[𝑒𝑖𝑢𝐽𝑘 − 1] − 𝑖𝑢𝐸[𝐽𝑘])]

= exp[𝑖𝑢𝑏𝑡] exp [−
𝑢2𝜎2

2
𝑡] exp [𝜆𝑡(𝐸[𝑒𝑖𝑢𝐽𝑘 − 1 − 𝑖𝑢𝐽𝑘])] 

And since the distribution of 𝐽𝑘 is F we have 

= exp[𝑖𝑢𝑏𝑡] exp [−
𝑢2𝜎2

2
𝑡] exp [λt∫ (eiux

ℝ

− 1 − iux)F(dx)] 

Finally, since t is a common factor, we can rewrite the above equation as  

𝐸[𝑒𝑖𝑢𝑋𝑡] = exp [t (𝑖𝑢𝑏 −
𝑢2𝜎2

2
+ ∫ (𝑒𝑖𝑢𝑥

ℝ
− 1 − 𝑖𝑢𝑥)𝜆𝐹(𝑑𝑥))](1.1) 

We can make the following observations based on the structure of the characteristic 

function of the random variable 𝑋𝑡 from the Lévy jump-diffusion: 

a) Time and space factorize; 

b) The drift, the diffusion and the jump parts are seperated; 

c) The jump part decomposes to  𝝀 × 𝑭, where λ is the expected number of 
jumps and F is the distribution of jump size. 
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Question: Are these observations true for any Lévy process? 

The answer for a) and b) is yes, because Lévy processes have stationary and 

independent increments. The answer for c) is no, because there exist Lévy processes 

with infinitely many jumps (on any compact time interval) thus their expected 

number of jumps is also infinite [3]. 

The basic connections. The next section will be devoted for establishing the 

connection between the following mathematical objects: 

• Lévy processes 𝑿 = (𝑿𝒕)𝒕≥𝟎 

• Infinitely divisible distributions 𝝆 = 𝓛(𝑿𝟏) 

• Lévy triplets (𝒃, 𝒄, 𝒗). 

The following diagram displays how these connections can be proved, where 
𝑳𝑲stands for the Lévy-Khintchine formula, 𝑳𝑰 for the Lévy-Itô decomposition, 𝑪𝑭𝑬 
for the Cauchy functional equation and 𝑺𝑰𝑰 for stationary and independent 
increments[3]. 

 

Figure2. Basic connections between Lévy processes, infinitely divisible 

distributions and Lévy triplets. 

• Show that the law of 𝑿𝒕 is infinitely divisible using the stationarity and 
independence of the increments. (Lemma 5.5) 

• Show that for every Lévy triplet (𝒃, 𝒄, 𝒗) that satisfies (6.1) the measure ρ is 
infinitely divisible. 

• Use Kolmogorov’s extension theorem to show that for every infinitely divisible 
distribution ρ, there exists a Lévy process 𝑿 = (𝑿𝒕)𝒕≥𝟎 such that 𝑷𝑿𝟏 = 𝝆; 

• Prove the following version of the Lévy-Itô decomposition: every Lévy process 
admits the path decomposition(7.1) . (see analytically [2]). 
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Theorem 4.2.(Lévy continuity Theorem) 

Let (𝜌𝑛)𝑛∈ℕ be a probability measure on ℝ𝑑 whose characteristic functions �̂�𝑛(𝑢) 

converges to some function  �̂�(𝑢), for all u, where �̂� is continuous at 0. Then �̂�  is the 

characteristic function of a probability distribution ρ and 𝜌𝑛
𝑑
→ 𝜌. 

Definition4.3. (Markov property) 

Let X be a Lévy process and 𝑡 ≥ 0 a fixed time, then the pre-t process (𝑋𝑟)𝑟≤𝑡 is 

independent of the post-t process (𝑋𝑡+𝑠 − 𝑋𝑡)𝑠≥0 ,and the post-t process has the 

same distribution as X[5]. 

Theorem 4.4.(Kac’s theorem)  

The random variables 𝑋1, …𝑋𝑛 are independent if and only if 𝛷𝑋1,…𝑋𝑛(𝑢1, … 𝑢𝑛) =

𝐸(exp [𝑖 ∑ (𝑢𝑗 , 𝑋𝑗)]) = 𝛷𝛸1 ∙∙∙ 𝛷𝛸𝑛
𝑛
𝑗=1  for all 𝑢 ∈ 𝑅𝑑. 

 

5. Lévy processes and Infinite Divisibility 

In this chapter we will attempt to give some indication of how rich a class of 

processes the Lévy processes form. To illustrate the variety of processes captured 

within the definition of a Lévy process, we explore briefly the relationship of Lévy 

processes with the infinite divisible distributions. De Finetti (1929) introduced the 

notion of an infinitely divisible distribution and showed that they have an intimate 

relationship with Lévy processes. This relationship gives a reasonably good 

impression of how varied the class of Lévy processes really is. 

Definition 5.1. (Infinite Divisibility) 

A random variable X is infinitely divisible if for all  𝑛 ∈ ℕ, there exist i.i.d random 

variables 𝑋1
(𝑛),, … , 𝑋𝑛

(𝑛)
 such that  𝑋 = 𝑋1

(𝑛)+𝑋2
(𝑛). . . . +𝑋𝑛

(𝑛). (5.1) 

Definition 5.2.A probability measure ρ is infinitely divisible if, for all 𝑛 ∈ ℕ, there 

exists another probability measure 𝜌𝑛 such that  

𝜌 = 𝜌𝑛 ∗ 𝜌𝑛 …∗ 𝜌𝑛⏟        
𝑛−𝑡𝑖𝑚𝑒𝑠

 

Proposition 5.3. A probability measure ρ is infinitely divisible if and only if, for all ∈ ℕ 

, there exists another another probability measure 𝜌𝑛 such that 

                                                           �̂�(𝑢) = (�̂�𝑛(𝑢))
𝑛. 
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Lemma 5.4.If (𝜌𝑘)𝑘≥0 is a sequence of infinitely divisible distributions and  𝜌𝑘
𝑤
→𝜌 , 

then ρ is also infinitely divisible. 

Examples of infinitely divisible distributions are the Normal, Poisson, Exponential, 

Geometric, the Negative Binomial, the Cauchy and the strictly stable distributions. 

Counter examples are the uniform and the binomial distributions. 

Lévy processes have Infinitely divisible laws 

Lemma 5.5.Let 𝑋 = (𝑋𝑡)𝑡≥0 be a Lévy process. The random variables  𝑋𝑡, 𝑡 ≥ 0, are 

infinitely divisible. 

Proof. Let 𝑋 = (𝑋𝑡)𝑡≥0 be a Lévy process; for any 𝑛 ∈ ℕ and any 𝑡 > 0 we trivially 

have that 

                           𝑋𝑡 = 𝑋𝑡
𝑛

+ (𝑋2𝑡
𝑛

− 𝑋𝑡
𝑛

) + ⋯+ (𝑋𝑡 − 𝑋(𝑛−1)𝑡
𝑛

)         (5.2) 

the stationarity of the increments of the Lévy process yields that 

                                    𝑋𝑡𝑘
𝑛

− 𝑋𝑡(𝑘−1)
𝑛

≜ 𝑋𝑡
𝑛

 for any 𝑘 ≥ 1,  

where ≜ is equality in distribution, while the independence of the increments yields 

that the random variables 

                                                   𝑋𝑡𝑘
𝑛

− 𝑋𝑡(𝑘−1)
𝑛

 
, 𝑘 ≥ 1 

are independent of each of other.   

Thus, (𝑋𝑡𝑘
𝑛

− 𝑋𝑡(𝑘−1)
𝑛

)
𝑘≥1

 is i.i.d sequence of random variables and, from Definition 

5.1. we conclude that the random variable 𝑋𝑡 is infinitely divisible. 

We showed that for any Lévy process  𝑋 = (𝑋𝑡 )𝑡≥0 the random variables 𝑋𝑡are 

infinitely divisible. Next, we would like to compute the characteristic function of 𝑋𝑡. 

Since 𝑋𝑡 is infinitely divisible for any 𝑡 ≥ 0 we know that 𝑋1is infinitely divisible and 

has the Lévy-Khinchine representation in terms of some triplet (𝑏, 𝑐, 𝑣). 

6.The Lévy-Khintchine representation 

The next result provides a complete characterization of infinitely divisible 

distributions in terms of their characteristic functions. This is the celebrated Lévy-

Khintchine formula. B.de Finetti and A.Kolmogorov were the first to prove versions 

of this representation under certain assumptions. P.Lévy and A.Khintchine 

independently proved it in general case, the former by analyzing the sample paths of 

the process and the latter by a direct analytic methods. 
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Definition 6.1.We will call (𝑏, 𝑐, 𝑣) the Lévy or characteristic triplet of the infinitely 

divisible measure ρ. We call b the drift term, c the Gaussian or diffusion coefficient 

and v the Lévy measure (see definition 9.1). 

Theorem 6.2. (Lévy-Khintchine) 

A measure ρ is infinitely divisible if and only if there exists a triplet (𝑏, 𝑐, 𝑣) with 𝑏 ∈

𝑅𝑑, c a symmetric, non-negative definite, dxd matrix, and v a Lévy measure, such 

that 

               �̂�(𝑢) = exp ( i〈u, b〉 −
〈u,cu〉

2
+ ∫ (ei〈u,x〉 − 1 − i〈u, x〉

Rd
1D) v(dx)   (6.1) 

 where D=closed ball in  𝑅𝑑, i.e 𝐷 ≔ {|𝑥 ≤ 1|} . 

 

Truncation function and Uniqueness 

Definition 6.3. A Truncation function is a bounded function ℎ: 𝑅𝑑 → 𝑅𝑑 that satisfies 

h(x)=x in a neighborhood of zero. 

 Definition 6.4. A truncation function ℎ′: ℝ𝑑 → ℝ is a bounded and measurable 

function, satisfying          

                                                  ℎ′(𝑥) = 1 + 𝑜(|𝑥|), 𝑎𝑠 |𝑥|  → 0      

                                                  ℎ′(𝑥) = 𝑂(1 |𝑥|⁄ ), 𝑎𝑠 |𝑥| → ∞  

Remark 6.5. The two definitions are related via ℎ(𝑥) = 𝑥 ∙ ℎ′(𝑥). 

Example 6.6.The following are some well known examples of truncation functions: 

I. 𝒉(𝒙) = 𝒙𝟏𝑫(𝒙) , typically called the canonical truncation function 

II. 𝒉(𝒙) ≡ 𝟎 𝒂𝒏𝒅 𝒉(𝒙) ≡ 𝒙, are also commonly used truncation functions. 

III. 𝒉(𝒙) =
𝒙

𝟏+|𝒙|𝟐
 , a continuous truncation function. 

Τhe Lévy-Khintchine representation of �̂� depends of the choice of the truncation 

function. Indeed, if we use another truncation function h instead of the canonical 

one, then (6.1) can be rewritten as 

            �̂�(𝑢) = exp (𝑖〈𝑢, 𝑏ℎ〉 −
〈𝑢,𝑐𝑢〉

2
+ ∫ (𝑒𝑖〈𝑢,𝑥〉 − 1 − 𝑖〈𝑢, ℎ(𝑥)〉)𝑣(𝑑𝑥))

ℝ𝑑
 𝑤𝑖𝑡ℎ  𝑏ℎ   

defined as follows:   

𝑏ℎ = 𝑏 +∫ (ℎ(𝑥) − 𝑥1𝐷(𝑥))𝑣(𝑑𝑥)
ℝ𝑑
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If we want to stress the dependence of the Lévy triplet on the truncation function, 

we will denote it by 

(𝑏ℎ,𝑐, 𝑣) 𝑜𝑟 (𝑏, 𝑐, 𝑣)ℎ 

Note that the diffusion characteristic c and the Lévy measure v are invariant with 

respect to the choice of the truncation function(see figure3). 

 

Figure 3.Illustration of the canonical and the continuous truncation functions 
 

Proposition 6.7.The representation of �̂� by (𝑏, 𝑐, 𝑣) in (6.1) is unique. 

Remark  6.8. There is no rule about which truncation function to use, among the 

permissible ones. One has to be consistent with ones choice of a truncation function. 

That is the same choice should be made for the Lévy-Khintchine representation of 

the characteristic function, the Lévy triplet and the path decomposition of the Lévy 

process. 

Example 6.9.Let us revisit the Lévy jump-diffusion process. In this example since we 

have assumed that the Lévy measure is finite and we have assumed that 𝐸[𝐽𝑘] < ∞, 

all truncation functions are permissible. The distribution of the random variable 𝑋1 

from the Lévy jump-diffusion is infinitely divisible and have Lévy triplet with respect 

to the canonical truncation function is  (𝑏 − ∫ 𝑥𝜆𝐹(𝑑𝑥), 𝜎2
𝐷𝑐

, 𝜆 × 𝐹). The triplets 

with respect to the zero and the linear truncation functions are 

                         (𝑏 − ∫ 𝑥𝜆
ℝ

𝐹(𝑑𝑥), 𝜎2, 𝜆 × 𝐹)0   and  (𝑏, 𝜎2, 𝜆 × 𝐹)𝑖𝑑. 
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The Lévy Exponent 

One way to establish whether a given random variable has an infinitely divisible 

distribution is via its characteristic exponent. Suppose that Θ has characteristic 

exponent 𝛹(𝑢) ≔ −log 𝔼(𝑒𝑖𝑢𝛩) for all 𝑢 ∈ ℝ. Then Θ has an infinitely divisible 

distribution if for all 𝑛 ≥ 1, there exists a characteristic exponent of a probability 

distribution, say 𝛹𝑛 , such that 𝛹(𝑢) = 𝑛𝛹𝑛(𝑢) for all 𝑢 ∈ ℝ [1].The full extent to 

which we may characterize infinitely divisible distributions is described by the 

characteristic exponent Ψ and an expression known as the Lévy-Khintchine formula. 

Definition 6.10. ( The Lévy Exponent) 

We define the Lévy exponent ψ of X by 

              𝜓(𝑢) = 𝑖〈𝑢, 𝑏〉 −
〈𝑢,𝑐𝑢〉

2
+ ∫ (𝑒𝑖〈𝑢,𝑥〉 − 1 − 𝑖〈𝑢, 𝑥〉1𝐷𝑅

(𝑥)𝑣(𝑑𝑥) (6.2) 

where [𝑒𝑖〈𝑢,𝑋1〉] = 𝑒𝜓(𝑢) . 

A special case of Lévy-Khintchine formula was established by Kolmogorov (1932) for 

infinitely divisible distributions with second moments. However it was Lévy (1934) 

who gave a complete characterization of infinitely divisible distributions and in doing 

so he also characterized the general class of processes with stationary independent 

increments.  Let us now discuss in further detail the relationship between infinitely 

divisible distributions and processes with stationary independent increments. 

From the definition of a Lévy process we see that for any t>0, 𝑋𝑡 is a random variable 

belonging to the class of infinitely divisible distributions. According to [1], this 

follows from the fact that for any n=1,2,… 

𝑋𝑡 = 𝑋𝑡 𝑛⁄ + (𝑋2𝑡
𝑛⁄
− 𝑋𝑡

𝑛⁄
) + ⋯+ (𝑋𝑡 − 𝑋(𝑛−1)𝑡

𝑛⁄
) 

Together with the fact that X has stationary independent increments. Suppose now 

that we define for all 𝜃 ∈ ℝ, 𝑡 ≥ 0, 

𝛹𝑡(𝜃) = −log 𝐸(𝑒
𝑖𝜃𝑋𝑡) 

And hence for rational t>0, 𝛹𝑡  (𝜃) = 𝑡𝛹1(𝜃). 

In conclusion, any Lévy process has the property that for all 𝑡 ≥ 0 

                                                      𝐸[𝑒𝑖𝜃𝑋𝑡] = 𝑒−𝑡𝛹(𝜃) , 

Where 𝛹(𝜃) ≔ 𝛹1(𝜃) is the characteristic exponent of  𝑋1, which has an infinitely 

divisible distribution. 
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Theorem 6.11. 

Let 𝑋 = (𝑋 𝑡)𝑡≥0 be a Lévy process, then 𝐸[𝑒𝑖〈𝑢,𝑋𝑡〉] = 𝑒𝑡𝛹(𝑢) where ψ is the Lévy 

exponent of X. 

Proof.Define the function 𝜑𝑢(𝑡) = 𝐸[𝑒
𝑖〈𝑢,𝑋𝑡〉]. Using the independence and 

stationarity of the increments we have that    

                              𝜑𝑢(𝑡 + 𝑠) = 𝐸[𝑒
𝑖〈𝑢,𝑋𝑡+𝑠〉] = 𝐸[𝑒𝑖〈𝑢,𝑋𝑡+𝑠−𝑋𝑠〉𝑒𝑖〈𝑢,𝑋𝑠〉] = 

𝐸[𝑒𝑖〈𝑢,𝑋𝑡+𝑠−𝑋𝑠〉]𝐸[𝑒〈𝑖𝑢,𝑋𝑠〉] = 𝜑𝑢(𝑡)𝜑𝑢(𝑠).(6.3) 

Moreover,  𝜑𝑢(0) = 𝐸[𝑒
𝑖〈𝑢,𝑋0〉] = 1 by definition. Since X is stochastically 

continuous, we can show that 𝜑 ⊢> 𝜑𝑢(𝑡) is continuous. Note that (6.3) is Cauchy’s 

second functional equation and the unique continuous solution to this equation has 

the form𝜑𝑢(𝑡) = 𝑒
𝑡𝜃(𝑢), where 𝜃: ℝ𝑑 → ℂ.Now the result follows since 𝑋1 is 

infinitely divisible, which yields  𝜑𝑢(1) = 𝐸[𝑒
𝑖〈𝑢,𝑋1〉] = 𝑒𝜓(𝑢). 

7. The Lévy-Itô Decomposition 

In the previous section, we showed that for any Lévy process 𝑋 = (𝑋𝑡)𝑡≥0 the 

random variables 𝑋𝑡, 𝑡 ≥ 0  have an infinitely divisible distribution and determined 

this distribution using the Lévy-Khintchine representation. The aim of this section if 

to prove an «inverse» result: starting from an infinitely divisible distribution ρ, or 

equivalently from a Lévy triplet (𝑏, 𝑐, 𝑣), we want to construct a Lévy process 𝑋 =

(𝑋𝑡)𝑡≥0 such that 𝑃𝑋1 = 𝜌.  

Theorem 7.1. (Lévy-Itô Decomposition) 

Let ρ be an infinitely divisible distribution with Lévy triplet (𝑏, 𝑐, 𝑣), where 𝑏 ∈ 𝑅𝑑 , 

𝑐 ∈ 𝑆𝑑≥0  and v is a Lévy measure. Then there exists a probability space (𝛺, ℱ, 𝑃)on 

which four independent Lévy processes exist, 𝑋(1),𝑋(2), 𝑋(3), 𝑋(4), where : 𝑋(1) is a 

constant drift , 𝑋(2)is a BM, 𝑋(3) is a compound Poisson process and 𝑋(4) is a square 

integrable, pure jump martingale with a.s countable number of jumps of magnitude 

less than 1 in each finite time interval.  Setting 𝑋 = 𝑋(1)+𝑋(2)+𝑋(3) + 𝑋(4), we have 

that there exists a probability space on which  a Lévy process 𝑋 = (𝑋𝑡)𝑡≥0 is defined, 

with Lévy exponent 𝜓(𝑢) = 𝑖〈𝑢, 𝑏〉 −
〈𝑢,𝑐𝑢〉

2
+ ∫ (𝑒𝑖〈𝑢,𝑥〉 − 1 − 𝑖〈𝑢, 𝑥〉

𝑅𝑑
1𝐷(𝑥))𝑣(𝑑𝑥), 

for all 𝑢 ∈ 𝑅𝑑 , and path, or Lévy –Itô Decomposition 

                   𝑋𝑡 = 𝑏𝑡 + √𝑐𝐵𝑡 + ∫ ∫ 𝑥𝜇𝜒
𝐷𝑐

𝑡

0
(𝑑𝑠, 𝑑𝑥) + ∫ ∫ 𝑥(𝜇𝑥 − 𝑣𝑥)(𝑑𝑠, 𝑑𝑥)

𝐷

𝑡

0
  (7.1) 

where 𝑣𝑥 = 𝐿𝑒𝑏 ⊗ 𝑣 . 
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As we see the Lévy-Itô decomposition describes the structure of a general Lévy 

process in terms of three independent auxialary Lévy processes, each of which with 

different types path behavior. Understanding the Lévy- Itô decomposition will allow 

to distinguish a number of important general subclasses of Lévy processes according 

to their path type. In doing so it will be necessary to digress temporarily into the 

theory of Poisson random measures and associated square integrable martingales. 

8. Analysis of jumps and Poisson random measures 

The jump process 𝛥𝑋 = (𝛥𝑋𝑡)0≤𝑡≤𝑇 associated to the Lévy Process X is defined for 

each 0 ≤ 𝑡 ≤ 𝑇 via 

                                                  𝛥𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−  

where  𝑋𝑡− = lim
𝑠→𝑡

𝑋𝑠 .  The condition of stochastic continuity of Lévy process yields 

immediately that for any Lévy process X and fixed t>0 then 𝛥𝑋𝑡 = 0  a.s; hence a 

Lévy process has no fixed times of discontinuity. In general, the sum of the jumps of a 

Lévy process does not converge, in other words it is possible that 

                                                     ∑ |𝛥𝑋𝑠|𝑠≤𝑡 = ∞ a.s  

but we always have that  

                                                     ∑ |𝛥𝑋𝑠|
2

𝑠≤𝑡 < ∞ a.s  

which allows us to handle Lévy processes by martingale techniques.A convenient 

tool for analyzing the jumps of a Lévy Process is the random measure of jumps of the 

process. Consider a set 𝐴 ∈ ℬ(ℝ\{0}) such that 0 ∉ �̅� and let 0 ≤ 𝑡 ≤ 𝑇; define the 

random measure of the jumps of the Lévy process Χ by    

                    𝜇𝐿(𝜔; 𝑡, 𝐴) = #{0 ≤ 𝑠 ≤ 𝑡; 𝛥𝑋𝑠(𝜔) ∈ 𝛢} = ∑ 1𝐴(𝛥𝑋𝑠𝑠≤𝑡 (𝜔)) ,  

hence the measure 𝜇𝐿(𝜔; 𝑡, 𝐴) counts the jumps of the process X of size in A up to 

the time t.   

Definition 8.1. (Poisson random measure) 

Let (𝐸, ℰ, 𝑣) be a σ-finite measure space. Consider a mapping 𝜇: ℰ → ℕ ∪ {∞} such 

that {𝜇(𝐴): 𝐴 ∈ ℰ} is a family of random variables defined on some probability space 

(𝛺, 𝐹, ℙ). Then μ is called a Poisson random measure with intensity 𝑣 if  

(1) μ is ℙ-a.s.a measure on (𝐸, ℰ); 

(2) for each 𝐴 ∈ ℰ, 𝜇(𝛢) is Poisson distributed with parameter 𝑣(𝐴), where 

𝑣(𝐴) ∈ [0,∞]; 

(3) for mutually disjoint sets 𝐴1, … 𝐴𝑛 in ℰ, the random variables 𝜇(𝛢1), … 𝜇(𝛢𝑛) 

are independent. 
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Hence, 𝜇𝑋(∙, 𝐴)is a Poisson process and 𝜇𝑋 is a Poisson random measure. The 

intensity of this Poisson process is 𝑣(𝐴) = 𝐸[𝜇𝑋(1, 𝐴)]. 

Definition8.2.The measure v defined by 𝑣(𝐴) = 𝐸[𝜇𝐿(1, 𝐴)] = 𝐸[∑ 1𝐴(𝛥𝑋𝑠𝑠≤1 (𝜔))] 

is the Lévy measure οf the Lévy process Χ. 

Remark 8.3. The process (∫ �̌�(𝑡, 𝑑𝑥), 𝑡 ≥ 0)
|𝑥|<1

 describes the ‘small jumps’ that 

happen to the Lévy process, and the process (∫ 𝑥𝑁(𝑡, 𝑑𝑥), 𝑡 ≥ 0)
|𝑥|≥1

 describes the 

‘big jumps’ and is called Compound Poisson process. 

Poisson random measures and Stochastic processes 

In this sequel, we want to make the connection between Poisson random measures 

and Stochastic processes. 

We will work in the following σ-finite space  (𝐸, ℰ𝛸 , 𝑣𝑋) = (ℝ≥0 ×ℝ
𝑑 , (ℬ(ℝ≥0) ×

ℬ(ℝ𝑑), 𝐿𝑒𝑏 ⊗ 𝑣) where v is a Lévy measure. We will denote the Poisson random 

measure on this space by  𝜇𝛸.  

If we consider a time space interval of the form [𝑠, 𝑡] × 𝐴, 𝑠 ≤ 𝑡  where 𝐴 ⊂ ℝ𝑑  such 

that 0 ∉ �̅� then the integral with respect to  𝜇𝑋, denoted by 

                                                ∫ ∫ 𝑥𝜇𝑋
𝐴[𝑠,𝑡]

(𝑑𝑠, 𝑑𝑥) =:𝑋                

is a Compound Poisson random variable  with intensity (𝑡 − 𝑠)𝑣(𝐴).  

Let us consider the collection of random variables  (∫ ∫ 𝑥𝜇𝑋(𝑑𝑠, 𝑑𝑥)
𝐴

𝑡

0
)𝑡≥0. This is a 

Compound Poisson stochastic process. 

9. The Lévy measure and path properties 

The Lévy measure is the most interesting part of a Lévy process and is responsible 

for the richness of the class of these processes (and carries useful information about 

the structure of the process). The behavior of the sample paths of a Lévy process, as 

well as many properties, e.g. existence of moments, smoothness of densities, etc, 

can be completely characterized based on the Lévy measure and the presence or 

absence of a Brownian component.  

Definition 9.1.(Lévy measure) 

Let v be a Borel measure on 𝑅𝑑.We say that v is a Lévy measure if it satisfies            

                                𝑣({0}) = 0        and        ∫ (|𝑥|2
𝑅𝑑

∧ 1)𝑣(𝑑𝑥) < ∞ . (9.1) 
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We can deduce that the Lévy measure satisfies 𝔼[𝜇𝑋([0,1] × 𝐴)] = 𝑣(𝐴) for every 

set  𝐴 ∈ ℬ(ℝ𝑑  ∖ {0}) . 

In other words the Lévy measure describes the expected number of jumps of certain 

height in a time interval of length one.The relation between Poisson random 

measures and Lévy measures allows us to draw the following conclusion about the 

sample paths of Lévy processes based on their Lévy measure: the Lévy measure has 

no mass at the origin while singularities (i.e. infinitely many jumps) can occur around 

the origin (i.e. small jumps), thus a Lévy process can have an infinite number of small 

jumps-“small” here means bounded by one in absolute value, although we can 

consider any ε>0 instead of one. Moreover, the mass away from the origin is 

bounded, hence only a finite number of big jumps can occur again, “big” here means 

greater than one in absolute value. 

In the figures bellow we see the distribution functions as well as the density 

functions of the Levy measure of some distributions of particular interest. 

 

Figure 4. The distribution function of the Lévy measure of the standard Poisson process (left) and the 
density of the Lévy measure of a compound Poisson process with double-exponentially distributed 
jumps. 
 

 

Fιgure 5. The density of the Lévy measure of a normal inverse Gaussian (NIG, left) and a α-stable 
process. 
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Recall the example of the Lévy jump-diffusion; the Lévy measure is 
                                                    𝑣(𝑑𝑥) = 𝜆 × 𝐹(𝑑𝑥)  
from that we can deduce that the expected number of jumps is λ and the jump size 
is distributed according to F .More generally, if v is a finite measure, i.e.     

                                             𝜆 ≔ 𝑣(ℝ) = ∫ 𝑣(𝑑𝑥) < ∞
ℝ

    

then we can define  

                                                     𝐹(𝑑𝑥) ≔
𝑣(𝑑𝑥)

𝑣
    

which is a probability measure. If 𝑣(ℝ) = ∞, then an infinite number of (small) 

jumps is expected. 

Path properties 

We would like to discuss some finer properties of the paths of a Lévy process, in 

particular, when are paths continuous or piecewise constant and when they have 

finite or infinite variation. Throughout in this section we assume that 𝑋 = (𝑋𝑡)𝑡≥0 is 

a Lévy process with triplet (𝑏, 𝑐, 𝑣). 

Prοposition 9.2.The paths of 𝑋 = (𝑋𝑡)𝑡≥0 are a.s. continuous if and only if 𝑣 ≡ 0. 

Prοposition 9.3.The paths of (𝑋𝑡)𝑡≥0 are a.s. piecewise constant if and only if X is a 

compound Poisson process without drift. 

Definition 9.4.A Lévy process X has an infinite activity if the sample paths of X have 

an a.s. countably infinite number of jumps on every compact time interval [0,T]. 

Otherwise, X has finite activity. 

Prοposition 9.5. 

       (1)    If 𝑣(ℝ𝑑) = ∞ then X has infinite activity 

(2)   If 𝒗(ℝ𝒅) < ∞ then X has finite activity. 

Intuitively speaking, a Lévy process with infinite activity will jump more often than a 

process with finite activity. 

Prοposition 9.6. 

Let X be a Lévy process with triplet (𝑏, 𝑐, 𝑣) 

(1)If c=0 and ∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≤1

, then almost all paths of X have finite variation. 

(2)If 𝑐 ≠ 0 and ∫ |𝑥|
|𝑥|≤1

𝑣(𝑑𝑥) = ∞, then almost all paths of X have infinite variation. 
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 Bellow are graphically exhibited the different functions a Lévy measure has to 

integrate in order to have finite activity or variation (see figure6). The compound 

Poisson process has finite measure, hence it has finite variation as well; on the 

contrary, the NIG Lévy process has an infinite measure and has infinite variation. In 

addition, the CGMY Lévy process has infinite activity, but the paths have finite 

variation.  

 

Figure 6. The Lévy measure must integrate |𝑥|2 ∧ 1 (red line); It has finite variation if it integrates 
|𝑥| ∧ 1 (blue line); it is finite if it integrates 1 (orange line). 

 

The Lévy measure also carries information about the finiteness of the moments of a 

Lévy process. This is particularly useful information in mathematical finance, related 

to the existence of a martingale measure. The finiteness of the moments of a Lévy 

process is related to the finiteness of an integral over the Lévy measure (more 

precisely, the restriction of the Lévy measure to jumps larger than 1 in absolute 

value, i.e. big jumps). 

Proposition 9.7. 

Let X be a Lévy process with triplet  (𝑏, 𝑐, 𝑣). Then  

(1) 𝑿𝒕 has finite p-th moment for 𝒑 ∈ ℝ≥𝟎 (𝔼|𝑿𝒕|
𝒑 < ∞)  if and only if 

∫ |𝒙|𝒑
|𝒙|≥𝟏

𝒗(𝒅𝒙) < ∞. 

(2) 𝑿𝒕 has finite p-th exponential moment for 𝒑 ∈ ℝ (𝔼[𝒆𝒑𝑿𝒕] < ∞ if and only if 

∫ 𝒆𝒑𝒙𝒗(𝒅𝒙) < ∞
|𝒙|≥𝟏

. 
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Figure 7. A Lévy process has first moment if the Lévy measure integrates |𝑥| for |𝑥| ≥ 1 (blue line) and 

second moment if it integrates 𝑥2 for |𝑥| ≥ 1 (orange line). 
 

In the figure8 are presented the simulated sample paths of a continuous Lévy 

process with infinite variation (i.e. Brownian motion) and a purely discontinuous one 

(i.e. NIG process). We can observe that, locally, the pure-jump infinite variation 

process behaves like a Brownian motion, as it proceeds by infinitesimally small 

movements. However, these small jumps are interlaced with, less frequent, big 

jumps. 

 

 

Figure 8. Simulated paths of two infinite variation Lévy processes: Brownian motion (left) and NIG 
process. 
 

Remark 9.8. As can be observed from the propositions (9.5),(9.6) and (9.7), the 

variation of a Lévy process depends on the small jumps (and the Brownian motion), 

the moment properties depend on the big jumps, while the activity of a Lévy process 

depends on all the jumps of the process. 
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Remark 9.9. 

Assume that the jump part of the Lévy process X has finite variation, i.e. it holds that  

                                                    ∫ |𝑥|
|𝑥|≤1

𝑣(𝑑𝑥) < ∞.  

Then the Lévy-Itô decomposition of X takes the form 

                             𝑋𝑡 = 𝑏0𝑡 + √𝑐𝑊𝑡 + ∫ ∫ 𝑥𝜇𝑥(𝑑𝑠, 𝑑𝑥)
ℝ𝑑

𝑡

0
  

and the Lévy-Khintchine formula can be written as 

                     𝐸[𝑒𝑖〈𝑢,𝑋1〉] = exp (𝑖〈𝑢, 𝑏0〉 −
〈𝑢,𝑐𝑢〉

2
+ ∫ (𝑒𝑖〈𝑢,𝑥〉

ℝ𝑑
− 1)𝑣(𝑑𝑥)).  

In other words, we can use the truncation function h(x)=0 and the drift term relative 

to this truncation function(denoted by 𝑏𝑜) is related to the drift term b in (6.1) via 

𝑏𝑜 = 𝑏 −∫ 𝑥𝑣(𝑑𝑥)
|𝑥|≤1

 

Note that, this process is not necessarily a compound Poisson process as the activity 

of the process might be infinite. (i.e.𝑣(𝐷) = ∞ )[3]. 

 

Remark 9.10. 

Consider a Lévy process X with triplet such that the following properties holds: 

       𝑏 ≥ 0, 𝑐 ≥ 0 , 𝑣((−∞, 0]) = 0           and        ∫ |𝑥|
(0,1]

𝑣(𝑑𝑥) = ∞ 

This process has the Lévy-Itô decomposition  

𝑋𝑡 = 𝑏𝑡 + ∫ ∫ 𝑥(𝜇𝑥 − 𝑣𝑥)(𝑑𝑠, 𝑑𝑥)
ℝ+

𝑡

0

 

Its paths are fluctuating but are not increasing- the paths have infinite variation –and 

this process is not a subordinator(an almost surely increasing Lévy process). The 

intuitive explanation for this behavior is that the jump part will converge only if we 

add an “infinitely strong” deterministic term in the negative direction to compensate 

for the divergent sum of jumps. This term cannot be negated, however large we 

choose b[3]. 
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Variation of the paths 

Next we will analyze the variation of the paths of a Lévy process. We will consider a 

real-valued Lévy process for simplicity, although the main result is also valid for ℝ𝑑 

valued Lévy processes. 

Definition 9.11. 

Consider a function  𝑓: [𝑎, 𝑏] → ℝ. The total variation of f over [a,b] is 

                                   𝑇𝑉 = 𝑠𝑢𝑝𝜋 ∑ |𝑓(𝑡𝑖) − 𝑓(𝑡𝑖−1)|
𝑛
𝑖=1  

where 𝜋 = {𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛=b} is a partition of the interval [a,b]. 

 

Quadratic Variation  

A commonly used measure of continuous time processes in financial economics, 

financial econometrics, derivative pricing and stochastic analysis is the quadratic 

variation (QV) process. This has two steps. First, time is split into small intervals  

𝑡0
𝑟 = 0 < 𝑡1

𝑟 < ⋯ < 𝑡𝑚𝑟
𝑟 = 𝑡 

Then the QV process is 

                                       [𝑌](𝑡) = 𝑃 − lim
𝑟→∞

∑{𝑌(𝑡𝑖
𝑟 + 1) −  𝑌 (𝑡𝑖

𝑟)}2 

where sup{𝑡𝑖+1
𝑟 −𝑡𝑖

𝑟} → 0 𝑓𝑜𝑟 𝑟 → ∞ .  

It’s sometimes helpful to work with an alternative and equivalent definition of QV 

which is written in terms of a Stochastic Integral. It’s that 

                                                 [𝑌]𝑡 = 𝑌𝑡
2 − 2∫ 𝑌𝑢−𝑑𝑌𝑢

𝑡

0
. 

This series looks at the partial sum of squared increments over tiny intervals of time. 

In general the QV process of a Lévy process is a (different) Lévy process whose the 

increments are independent and stationary (because QV is just sums the squares of 

independent and stationary increments). Further, it can be regarded as a 

subordinator for the increments are non-negative. 
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10. Martingales and Lévy processes 

Proposition 10.1. 

Let 𝛸 = (𝛸𝑡)0≤𝑡≤𝑇 be a Lévy process with Lévy triplet (𝑏, 𝑐, 𝑣) and assume that 

𝐸[|𝛸𝑡|] < ∞. Χ is a martingale if and only if b=0. Similarly, Χ is a submartingale if b>0 

and a supermartingale if b<0.  

Proposition 10.2. 

Let X be an ℝ𝑑-valued, Lévy process with Lévy triplet (𝑏, 𝑐, 𝑣) characteristic 

exponent ψ and cumulant generating function φ([3]).  

(1) If ∫ |𝒙|
|𝒙|>𝟏

𝒗(𝒅𝒙) < ∞, then X is a martingale if and only if 𝒃 +

∫ 𝒙𝒗(𝒅𝒙) = 𝟎
|𝒙|>𝟏

 

(2) If ∫ |𝒙|
|𝒙|>𝟏

𝒗(𝒅𝒙) < ∞, then (𝑿𝒕 − 𝔼[𝑿𝒕])𝒕≥𝟎 is a martingale  

(3) If ∫ 𝒆〈𝒖,𝒙〉
|𝒙|>𝟏

𝒗(𝒅𝒙) < ∞ for some 𝒖 ∈ ℝ𝒅, then 𝑴 = (𝑴𝒕)𝒕≥𝟎 is a 

martingale, where  𝑴𝒕 =
𝒆〈𝒖,𝑿𝒕〉

𝒆𝒕𝝋(𝒖)
 . 

(4) The process 𝑵 = (𝑵𝒕)𝒕≥𝟎 is a complex-valued martingale, where  𝑵𝒕 =
𝒆𝒊〈𝒖,𝑿𝒕〉

𝒆𝒕𝝍(𝒖)
. 

Definition 10.3. 

A random variable X is square integrable if 𝐸(𝑋2) < ∞. A process X(t) on the time 

interval [0,T],where T can be infinite, is square integrable if 𝑠𝑢𝑝𝑡∈[0,𝑇]𝐸𝑋
2 < ∞ i.e. 

second moments are bounded. 

Examples 

1. Brownian Motion B(t) on a finite time interval 0 ≤ 𝑡 ≤ 𝑇 is a square 

integrable martingale, since 𝐸𝐵2(𝑡) = 𝑡 < 𝑇 < ∞. Similarly,𝐵2(𝑡) − 𝑡 is a 

square integrable martingale. They are not square integrable when 𝑇 = ∞. 

2. If f(x) is a bounded and continuous function on ℝ, then Itô integrals 

∫ 𝑓(𝐵(𝑠))𝑑𝐵(𝑠)
𝑡

0
 and ∫ 𝑓(𝑠)𝑑𝐵(𝑠)

𝑡

0
 are square integrable martingales on any 

finite time interval 0 ≤ 𝑡 ≤ 𝑇. Since, |𝑓(𝑥)| ≤ 𝐾 

𝐸 (∫ 𝑓(𝐵(𝑠))𝑑𝐵(𝑠)
𝑡

0

)

2

= 𝐸 (∫ 𝑓2
𝑡

0

(𝐵(𝑠))𝑑𝑠) ≤ 𝐾2𝑡 ≤ 𝐾2𝑇 < ∞ 

If moreover, ∫ 𝑓2(𝑠)𝑑𝑠 < ∞
𝑡

0
 then ∫ 𝑓(𝑠)𝑑𝐵(𝑠)

𝑡

0
 is a square integrable 

martingale on [0,∞). 
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Lemma 10.4. 

Assume that ∫ |𝑥|𝑣(𝑑𝑥) < ∞
𝔸

. Then, 𝑀𝑡 = ∫ 𝑥𝜇
𝑋𝑡

0
(𝑑𝑠, 𝑑𝑥) − 𝑡 ∫ 𝑥𝑣(𝑑𝑥), 𝑡 ≥ 0

𝔸
 is 

a ℙ-martingale relative to the filtration generated by the Poisson random random 

measure 𝜇𝑋 ℱ𝑡 ≔ 𝜎(𝜇𝑋(𝒢): 𝒢 ∈ ℬ([0, 𝑡]) × ℬ(ℝ𝑑)) , 𝑡 ≥ 0. If in addition, 

∫ |𝑥|2
𝔸

𝑣(𝑑𝑥) < ∞ then M is a square-integrable martingale. 

 

11. Some classes of particular interest 

Subordinator 

A Subordinator is an a.s. increasing (in t) Lévy process[2]. Equivalently, for Χ to be a 

subordinator, the triplet must satisfy 

 𝑣(−∞, 0) = 0, 𝑐 = 0, ∫ 𝑥𝑣(𝑑𝑥) < ∞ 𝑎𝑛𝑑 𝛾 = 𝑏 − ∫ 𝑥𝑣(𝑑𝑥) > 0.
(0,1)

 
(0,1)

 

The Lévy –Itô decomposition of a subordinator is  

𝛸𝑡 = 𝛾𝑡 + ∫ ∫ 𝑥𝜇𝐿
(0,∞)

𝑡

0
(𝑑𝑠, 𝑑𝑥)     (11.1) 

And the Lévy-Khintchine formula takes the form 

                                𝐸[𝑒𝑖𝑢𝛸𝑡] = exp [𝑡 (𝑖𝑢𝛾 + ∫ (𝑒𝑖𝑢𝑥
(0,∞)

− 1) 𝑣(𝑑𝑥))].  

Two examples of subordinators are the Poisson and the inverse Gaussian processes. 

 

Figure 9. Simulated paths of a finite activity (left) and an infinite activity subordinator. 
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Jumps of finite variation  

A Lévy process has jumps of finite variation if and only if ∫ |𝑥|𝑣(𝑑𝑥) < ∞.
|𝑥|≤1

 In this 

case, the Lévy –Itô decomposition of Χ resumes the form 

                             𝛸𝑡 = 𝛾𝑡 + √𝑐𝑊𝑡 + ∫ ∫ 𝑥𝜇𝛸
ℝ

𝑡

0
(𝑑𝑠, 𝑑𝑥)   (11.2) 

 and the Lévy-Khintchine formula takes the form 

                    𝐸[𝑒𝑖𝑢𝛸] = exp [𝑡(𝑖𝑢𝛾 −
𝑢2𝑐

2
+ ∫ (𝑒𝑖𝑢𝑥 − 1)𝑣(𝑑𝑥))]

ℝ
  

where γ is defined as in the previous section in the definition of  the subordinator. 

Moreover, if 𝑣([−1,1]) < ∞, which means that 𝑣(ℝ) < ∞, then the jumps of Χ 

correspond to a compound Poisson process. 

Spectrally one sided 

A Lévy process is called spectrally negative if it has only negative jumps. The Lévy-Itô 

decomposition of a spectrally negative Lévy process has the form 

𝛸𝑡 = 𝑏𝑡 + √𝑐𝑊𝑡 + ∫ ∫ 𝑥𝜇𝛸(𝑑𝑠, 𝑑𝑥) + ∫ ∫ 𝑥(𝜇𝛸 − 𝑣𝛸
−1<𝑥<0

𝑡

0𝑥<−1

𝑡

0
)(𝑑𝑠, 𝑑𝑥) (11.3) 

and the Lévy-Khintchine formula takes the form 

𝐸[𝑒𝑖𝑢𝛸𝑡] = exp [𝑡(𝑖𝑢𝑏 −
𝑢2𝑐

2
+ ∫ 𝑒𝑖𝑢𝑥

(−∞,0)

− 1 − 𝑖𝑢1{𝑥>−1}𝑣(𝑑𝑥)] 

Similarly, a Lévy process is called spectrally positive if –Χ  is spectrally negative. 

Finite first moment 

As we have seen already, a Lévy process has a finite first moment if and only if 

∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≥1

. Therefore, we can also compensate the big jumps to form a 

martingale hence the Lévy-Itô decomposition of X resumes the form   

𝛸𝑡 = 𝑏
′𝑡 + √𝑐𝑊𝑡 + ∫ ∫ 𝑥(𝜇𝛸−𝑣𝛸

ℝ

𝑡

0
)(𝑑𝑠, 𝑑𝑥) (11.4) 

hence the Lévy-Khintchine formula takes the form 

𝐸[𝑒𝑖𝑢𝛸𝑡] = exp [𝑡(𝑖𝑢𝑏′ −
𝑢2𝑐

2
+ ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥)𝑣(𝑑𝑥))]

ℝ

 

where 𝑏′ = 𝑏 + ∫ 𝑥𝑣(𝑑𝑥)
|𝑥|≥1

. 
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Examples of Lévy Processes 

1. Poisson Processes 

For each λ>0 consider a probability distribution 𝜇𝜆 which is concentrated on 𝑘 =

0,1,2… such that  𝜇𝜆 = ({𝜅}) =
𝑒−𝜆𝜆𝜅

𝜅!⁄ . That is to say the Poisson distribution. An 

easy calculation reveals that  

 ∑ 𝑒𝑖𝜃𝜅𝜅≥0 𝜇𝜆({𝜅}) = 𝑒
−𝜆(1−𝑒𝑖𝜃) = [𝑒−

𝜆(1−𝑒𝑖𝜃)

𝑛 ]

𝑛

. 

The right hand side is the characteristic function of the sum of n independent 

Poisson processes, each of which with parameter λ/n. In the Lévy-Khintchine 

decomposition we see that 𝑏 = 𝑐 = 0  and 𝑣 = 𝜆𝛿1, the Dirac measure supported 

on {1}. 

Recall that a Poisson process{𝑁𝑡: 𝑡 ≥ 0}, is a Lévy Process with distribution at time 

t>0, which is Poisson with parameter λt. From the above calculations we have 

𝐸(𝑒𝑖𝜃𝑁𝑡) = 𝑒−𝜆𝑡(1−𝑒
𝑖𝜃) and hence its characteristic exponent is given by 𝛹(𝜃) =

𝜆(1 − 𝑒𝜄𝜃) for 𝜃 ∈ ℝ.(see manuscript [1]) 

 

2. Compound Poisson Processes 

Suppose that N is a Poisson random variable with  parameter  λ>0 and that {𝜉𝑖: 𝑖 ≥

1} is  an i.i.d. sequence of random variables(independent of N) with common law F 

having no atom at zero. By first conditioning on N, we have for ∈ ℝ ,  

𝐸 (𝑒𝑖𝜃 ∑ 𝜉𝜄
𝑁
𝑖=1 ) =∑𝐸(𝑒𝑖𝜃 ∑ 𝜉𝑖

𝛮
𝜄=1 )𝑒−𝜆

𝑛≥0

𝜆𝑛

𝑛!
=∑(∫ 𝑒𝑖𝜃𝑥

ℝ

𝐹(𝑑𝑥))

𝑛

𝑒−𝜆
𝜆𝑛

𝑛!
𝑛≥0

= 𝑒−𝜆∫ (1−𝑒𝑖𝜃𝑥)𝐹(𝑑𝑥)
ℝ . 

We see that the distributions of the form ∑ 𝜉𝑖
𝑁
𝑖=1  are infinitely divisible with triplet 

𝑏 = −𝜆 ∫ 𝑥𝐹(𝑑𝑥),
0<|𝑥|<1

 𝜎 = 0 𝑎𝑛𝑑 𝑣(𝑑𝑥) = 𝜆𝐹(𝑑𝑥). When F has an atom of unit 

mass at 1 then we have simply a Poisson distribution.  

Suppose now that {𝑁𝑡: 𝑡 ≥ 0} is a Poisson process with parameter λ and consider a 

compound Poisson process {𝑋𝑡: 𝑡 ≥ 0} defined by 

𝑋𝑡 = ∑ 𝜉𝑖
𝑁𝑖
𝑖=0 , 𝑡 ≥ 0.     (11.5) 

Using the fact that N has stationary independent increments together with the 

mutual independence of random variables  {𝜉𝜄: 𝑖 ≥ 1}, for 0 ≤ 𝑠 < 𝑡 < ∞, by writing 
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 𝑋𝑡 = 𝑋𝑠 + ∑ 𝜉𝑖
𝑁𝑡
𝑖=𝑁𝑠+1

   (11.6) 

it is clear that 𝑋𝑡 is the sum of 𝑋𝑠 and an independent copy of 𝑋𝑡−𝑠. Right continuity 

and left limits of the process N also ensure right continuity and left limits of X. Thus 

compound Poisson processes are Lévy Processes. From the calculations in the 

previous paragraph, for each 𝑡 ≥ 0 we may substitute 𝑁𝑡 for the variable N to 

discover that the Lévy-Khintchine formula for a compound Poisson process takes the 

form 𝛹(𝜃) = 𝜆(1 − 𝑒𝑖𝜃𝑥)𝐹(𝑑𝑥). Note in particular that the Lévy measure of a 

compound Poisson process is always finite with total mass equal to the rate λ of the 

underlying process N. 

Compound Poisson processes provide direct link between Lévy processes and 

random walks; that is discrete time processes of the form 𝑆 = {𝑆𝑛: 𝑛 ≥ 0} 

Where 𝑆0 = 0 𝑎𝑛𝑑 𝑆𝑛 = ∑ 𝜉𝑖  𝑓𝑜𝑟 𝑛 ≥ 1.
𝑛
𝑖=1  

Indeed a compound Poisson process is nothing more than a random walk whose 

jumps have been spaced out with independent and exponentially distributed 

periods[1]. 

3.Linear Brownian Motion 

Take the probability law 

𝜇𝑠,𝛾 ≔
1

√2𝜋𝑠2
𝑒
−(𝑥−𝛾)2

2𝑠2 𝑑𝑥 

supported on ℝ where 𝛾 ∈ ℝ  and s>0; the well-known Gaussian distribution with 

mean γ and variance 𝑠2 .It is known that  

∫ 𝑒𝑖𝜃𝑥𝜇𝑠,𝛾
ℝ

(𝑑𝑥) = 𝑒−
𝑠2𝜃2+𝑖𝜃𝛾

2 = [𝑒
−
1
2
(
𝑠

√𝑛
)
2

𝜃2+𝑖𝜃
𝛾
𝑛]

𝑛

 

showing again that it is an infinitely divisible distribution, this time with 𝑏 = −𝛾, 𝜎 =

𝑠 and 𝑣 = 0. 

We immediately recognize the characteristic exponent 𝛹(𝜃) =
𝑠2𝜃2

2
− 𝑖𝜃𝛾 is also 

that of a scale Brownian motion with linear drift, 𝑋𝑡: = 𝑠𝐵𝑡 + 𝛾𝑡, 𝑡 ≥ 0 , where 𝐵 =

{𝐵𝑡: 𝑡 ≥ 0} is a standard Brownian; that is to say a linear Brownian motion with 

parameters 𝜎 = 1 and 𝛾 = 0. It is trivial exercise to verify that X has stationary 

independent increments with continuous paths as a consequence of the fact that B 

does[1]. 
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4. Stable processes 

Stable processes are the class of Lévy processes whose characteristic exponent 

corresponds to those of stable distributions. Stable distributions were introduced by 

Lévy (1924,1925) as a third example of infinitely divisible distributions after Gaussian 

and Poisson distributions. A random variable, Y, is said to have a stable distribution if 

for all  𝑛 ≥ 1 it observes the distributional equality 

                                                 𝑌1+⋯+ 𝑌𝑛 ≜ 𝑎𝑛𝑌 + 𝑏𝑛 ,   (11.7) 

where 𝑌1, … , 𝑌𝑛 are independent copies of Y, 𝑎𝑛 > 0 and  𝑏𝑛 ∈ ℝ. By subtracting 

𝑏𝑛
𝑛⁄  from each part of the terms on the left-hand side of (11.7) one sees in 

particular that this definition implies that any stable random variable is infinitely 

divisible. It turns out that necessarily 𝑎𝑛 = 𝑛
1
𝑎⁄   for 𝑎 ∈ (0,2]; In that case we refer 

to the parameter α as the index. A smaller class of distributions are the strictly stable 

distributions. A random variable Y is said to have strictly stable distribution if it 

observes (11.7) but with 𝑏𝑛 = 0.  

In this case, we necessarily have  

                                                  𝑌1+⋯+ 𝑌𝑛 ≜ 𝑛
1
𝑎⁄ 𝑌. 

 The case α=2 corresponds to zero mean Gaussian random variables. 

Stable random variables observing the relation (11.7) for 𝛼 ∈ (0,1) ∪ (1,2) have 

characteristic exponents of the form 

                              𝛹(𝜃) = 𝑐|𝜃|𝛼 (1 − 𝑖𝛽𝑡𝑎𝑛
𝜋𝛼

2
𝑠𝑔𝑛𝜃) + 𝑖𝜃𝜂    (11.8) 

where 𝛽 ∈ [−1,1],   𝜂 ∈ ℝ 𝑎𝑛𝑑 𝑐 > 0.  

 Stable random variables observing the relation 11.7 for 𝛼 = 1, have characteristic 

exponents of the form 

                              𝛹(𝜃) = 𝑐|𝜃| (1 + 𝑖𝛽
2

𝜋
𝑠𝑔𝑛𝜃𝑙𝑜𝑔|𝜃|) + 𝑖𝜃𝜂   (11.9) 

where 𝛽 ∈ [−1,1], 𝜂 ∈ ℝ 𝑎𝑛𝑑 𝑐 > 0. 

Here we work with the definition of the sign function 𝑠𝑔𝑛𝜃 = 1(𝜃>0) − 1(𝜃<0).  

Το make the connection with the Lévy-Khintchine formula, one needs σ=0 and 

𝑣(𝑑𝑥) = {
𝑐1𝑥

−1−𝑎𝑑𝑥 𝑓𝑜𝑟 𝑥 ∈ (0,∞)

     𝑐2|𝑥|
−1−𝑎𝑑𝑥 𝑓𝑜𝑟 𝑥 ∈ (−∞, 0)

 

where 𝑐 = 𝑐1 + 𝑐2, 𝑐1, 𝑐2 ≥ 0 and 𝛽 =
(𝑐1−𝑐2)

(𝑐1+𝑐2)
 if 𝑎 ∈ (0,1) ∪ (1,2) and 𝑐1 = 𝑐2  if a=1. 
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Unlike the previous examples, the distributions that lie behind these characteristic 

exponents are heavy tailed in the sense that the tails of their distributions decay 

slowly enough to zero so they only have moments strictly less than α. The value of 

the parameter β gives a measure of asymmetry in the Lévy measure and likewise for 

the distributional asymmetry. The densities of stable processes are known explicitly 

in the form of convergent power series. 

Suppose that 𝑆(𝑐, 𝑎, 𝛽, 𝜂) is the distribution of a stable random variable with 

parameters c, α, β and η. For each choice of c>0, 𝛼 ∈ (0,2), 𝛽 ∈ [−1,1] 𝑎𝑛𝑑 𝜂 ∈ ℝ 

there exists a Lévy process, with characteristic exponent given by 11.8 or 11.9 

according to the choice of parameters. Further, form the definition of its 

characteristic exponent it’s clear that at each fixed time the α-stable process will 

have distribution 𝑆(𝑐𝑡, 𝛼, 𝛽, 𝜂). 

We sometimes refer to an α-stable process to mean a Lévy process based on a 

strictly stable distribution. Necessarily this means that the associated characteristic 

exponent takes the form  

𝛹(𝜃) = {
𝑐|𝜃|𝛼(1 − 𝑖𝛽𝑡𝑎𝑛

𝜋𝛼

2
𝑠𝑔𝑛𝜃   , 𝑓𝑜𝑟 𝛼 ∈ (0,1) ∪ (1,2) 

𝑐|𝜃| + 𝑖𝜂                                         𝑓𝑜𝑟 𝛼 = 1                  
  

where the parameters ranges for c and β as above. The reason for the restriction to 

the strictly stable distribution is essentially that we shall want to use the following 

fact. If {𝑋𝑡: 𝑡 ≥ 0} is an X α-stable process, then from its characteristic exponent (or 

equivalently the scaling properties of strictly stable random variables) we see that 

for all λ>0  {𝑋𝜆𝑡: 𝑡 ≥ 0} has the same law as {𝜆
1

𝛼𝑋𝑡: 𝑡 ≥ 0}. 
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Chapter 2 

Applications 

Lévy processes play a central role in several fields of science, such as physics, in the 

study of turbulence, laser cooling and in quantum field theory; in engineering, for 

the study of networks, queues and dams; in economics, for continuous time- series 

models; in the actuarial science, for the calculation of insurance and re-insurance 

risk; and of course, in mathematical finance and biology. 

In mathematical finance, Lévy processes are becoming extremely fashionable 

because they can describe the observed reality of financial markets in a more 

accurate way than models based on Brownian motion. In the ‘’real’’ world we 

observe that asset price processes have jumps (e.g. big price changes) or spikes, and 

risk managers have to take them into consideration. Moreover, the empirical 

distribution of asset returns exhibits fat tails and skewness, behavior that deviates 

from normality. Hence, models that accurately fit return distributions are essential 

for the estimation of profit and loss (P& L) distributions. 

Similarly in the ‘’risk-neutral’’ world, we observe that implied volatilities are constant 

neither across strike nor across maturities. Therefore, traders need models that can 

capture the behavior of the implied volatility smiles more accurately, in order to 

handle the risk of traders. Lévy processes provide us with the appropriate tools to 

adequately and consistently describe all these observations, both in the ‘’real’’ and   

in the ‘’risk-neutral’’ world. 

We describe the possible approaches in modeling the price process of a financial 

asset using Lévy processes under ‘’real’’ and ‘’risk-neutral’’ world, and give a brief 

account of market incompleteness which links the two worlds. Then we present a 

primer of Lévy models in the mathematical finance literature. Furthermore, there 

will be implemented the Monte Carlo simulation for various stochastic processes as 

well as for stock and option pricing. 

We review applications which emphasize the importance of jumps in stock price 

modeling, namely construction of optimal hedging portfolios and computation of risk 

measures for dynamically insured portfolios in presence of jumps in asset prices. 

These examples show how Lévy-based models provide a better understanding of 

risk. In the last years, the research departments of major banks started to accept 

jump-diffusions and Lévy processes as a valuable tool in their modeling. The 

increasing interest to jump models in finance is mainly due to the following reasons. 

First, in a model with continuous paths like a diffusion model, the price process 

behaves locally like a Brownian motion and the probability that the stock moves by a 

large amount over a short period of time is very small. In such models the prices of 
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options should be much lower than it is in real markets. On the other hand, if stock 

prices are allowed to jump, even the time to maturity is very short, there is a non-

negligible probability that after a sudden change in the stock price the option will 

move in the money. 

Second, from the point of view of hedging, continuous models of stock price 

behavior generally lead to a complete market or to a market, which can be 

completed. In such a market every terminal payoff can be replicated and the very 

existence of traded options is a problem. This can be solved by using discontinuous 

models. In real markets, due to the presence of jumps in the prices, perfect hedging 

is impossible and the options enable to hedge risks that cannot be hedged using 

underlying only. 

Last but not least, from a risk management perspective, jumps allow to quantify and 

take into account the risk of strong price movements over short time intervals, which 

appears non-existant in the diffusion model. 

 

12. Lévy Processes and some applied Probability models 

In this section we introduce some classical probability models, which are structured 

around basic examples of Lévy processes. This section provides a particular 

motivation for the study of fluctuation theory that follows. 

 Insurance ruin 

A compound Poisson process (𝑍𝑡)𝑡≤0 with positive jump sizes can be interpreted as a 

claim process recording the total claim amount incurred before time t. If there is 

linear premium income at rate c>0, then also the gain process  𝑐𝑡 − 𝑍𝑡 , 𝑡 ≥ 0 , is a 

Lévy process. For an initial reserve of x >0, the reserve process 𝑥 + 𝑐𝑡 − 𝑍𝑡 is a 

shifted Lévy process starting from a non-zero initial value x. 

Cramer-Lundberg Risk Process 

Consider the following model of the revenue of an insurance company as a process 

in time proposed by Lundberg(1903).The insurance company collects premiums at a 

fixed rate c>0 from its customers. At times of a Poisson process, a customer will 

make a claim causing the revenue to jump downwards. The size of claims is 

independent and identically distributed. If we call 𝑋𝑡 the capital of the company at 

time t, then the latter description amounts to  

𝑋𝑡 = 𝑥 + 𝑐𝑡 −∑𝜉𝜄

𝑁𝑡

𝑖=1

 , 𝑡 ≥ 0 
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where 𝑥 > 0 is the initial capital of the company, 𝑁 = {𝑁𝑡 ∶ 𝑡 ≥ 0} is a Poisson 

process with rate λ>0, and { 𝜉𝜄 ∶ 𝑖 ≥ 1}  is a sequence of positive, independent and 

identically distributed random variables also independent of N. The process 𝑋 =

{𝑋𝑡 ∶ 𝑡 ≥ 0} is nothing more than a compound Poisson process with drift of rate c, 

initiated from 𝑥 > 0. 

Financial ruin in this model (or just ruin for short) will occur if the revenue of the 

insurance company drops below zero. Since this will happen with probability one if  

𝕡(lim
𝑡→∞

𝑖𝑛𝑓𝑋𝑡 = −∞) = 1, an additional assumption imposed on the model is that 

lim
𝑡→∞

𝑋𝑡 = ∞ . 

 A sufficient condition to guarantee the latter is that the distribution of ξ has finite 

mean, say μ>0, and that 

                                                      
𝜆𝜇

𝑐
< 1, the so-called net profit condition. 

To see why this presents a sufficient condition, note that the Strong Law of Large 

Numbers and the obvious fact that lim
𝑡→∞

𝑁𝑡 = ∞ imply that 

                            Lim
𝑡→∞

𝑋𝑡

𝑡
= lim
𝑡→∞

(
𝑥

𝑡
+ 𝑐 +

𝑁𝑡

𝑡

∑ 𝜉𝑖
𝑁𝑡
𝑖=1

𝑁𝑡
) = 𝑐 − 𝜆𝜇 > 0,  

under the net profit condition  it follows that ruin will occur only with probability less 

than one. Fundamental quantities of interest in this model thus become the 

distribution of the time to ruin and the deficit at ruin; otherwise identified as 

                           𝑟0
− ≔ inf{𝑡 > 0: 𝑋𝑡 < 0} 𝑎𝑛𝑑 𝑋𝑟0−  𝑜𝑛 {𝑟0

− < ∞}  

when the process X drifts to infinity. The following classic result links the probability 

of ruin to the conditional distribution  

                                         𝜂(𝑥) = ℙ(−𝑋𝑟0− ≤ 𝑥|𝑟0
− < ∞). 

The M/G/1 queue 

Let us recall the definition of M/G/1 queue. Customers arrive at a service desk 

according to a Poisson process and join a queue. Customers have service times that 

are independent and identically distributed. Once served, they leave the queue. 

The workload  𝑊𝑡, at each time 𝑡 ≥ 0, is defined to be the time it will take a 

customer who joins the back of the queue at that moment to reach the service desk, 

that is to say the amount of processing time remaining in the queue at time t. 

Suppose that at an arbitrary  moment, which we shall call time zero, the server is not 
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idle and the workload is equal to w>0 . On the event that t is before the first time the 

queue becomes empty, we have that 𝑊𝑡 is equal to 

𝑤 +∑𝜉𝑖

𝑁𝑡

𝑖=1

− 𝑡 

where, as with the Cramer-Lundberg risk process, 𝑁 = {𝑁𝑡: 𝑡 ≥ 0}  is a Poisson 

process with intensity λ>0, and  {𝜉𝑖: 𝑖 ≥ 0} are positive variables that are 

independent and identically distributed with common distribution F and mean 𝜇 <

∞. Τhe process N represents the arrival of new customers and {𝜉𝑖: 𝑖 ≥ 0} are 

understood as their respective service times that are added to the workload. The 

negative unit drift simply corresponds to the decrease in time as the server deals 

with jobs. Thanks to the lack of memory property, once the queue becomes empty, 

the queue remains empty for an exponentially distributed period of time with the 

parameter λ after which a new arrival incurs a jump in W, which has distribution F. 

The process proceeds as the Compound Poisson process described above until the 

queue next empties and so on. 

The workload is clearly not a Lévy process as it is impossible for 𝑊𝑡: 𝑡 ≥ 0 to 

decrease in value from the state zero whereas  it can decrease in value from any 

other state x>0. However, it turns out that it is quite easy to link the workload to a 

familiar functional of a Lévy process, which is also a Markov process. 

13. Popular models 

In this section we review some popular models in the mathematical finance 

literature from the point of view of Lévy processes. (see manuscript [2]). 

Black-Scholes 

The most famous asset price model based on a Lévy process is that of Samuelson 

(1965), Black-Scholes (1973) and Merton (1973). The log-returns are normally 

distributed with mean μ and variance 𝜎2, i.e. 𝑋𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎
2) and  the density is 

𝑓𝛸1(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑥−𝜇)2

2𝜎2
]. The canonical decomposition of the X is 

 𝑋𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 and the Lévy triplet is (𝜇, 𝜎2, 0).  

Merton 

 Merton was one of the first to use a discontinuous price process to model asset 

returns. The canonical decomposition of the driving process is  
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𝑋𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 + ∑ 𝐽𝑘
𝑁𝑡
𝑘=1   where  𝐽𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝐽, 𝜎𝐽

2), 𝑘 = 1… hence the 

distribution of the jump size has density 𝑓𝐽(𝑥) =
1

𝜎𝐽√2𝜋
exp [−

(𝑥−𝜇𝐽)
2

2𝜎𝐽
2 ] and Lévy 

triplet (𝜇, 𝜎2, 𝜆 × 𝑓𝐽). 

 

Normal Inverse Gaussian 

The NIG distribution is a special case of the GH (Generalized Hyperbolic) distribution  

for λ=-1/2. It was introduced to finance in Barndoff-Nielsen (1997). The canonical 

decomposition is 

                            𝑋𝑡 = 𝑡𝔼[𝑋1] + ∫ ∫ 𝑥(𝜇𝑥 − 𝑣𝑁𝐼𝐺
ℝ

𝑡

0
)(𝑑𝑠, 𝑑𝑥)  

where the Lévy measure has the simplified form 

                                     𝑣𝑁𝐼𝐺(𝑑𝑥) = 𝑒𝛽𝑥
𝛿𝛼

𝜋|𝑥|
𝐾1(𝑎|𝑥|)𝑑𝑥   

where 𝐾1 is the modified Bessel function of the second kind. 

CGMY 

The CGMY Lévy process was introduced by Carr, Geman, Madan and Yor(2002); 

another name for this process is (generalized) tempered stable process. 

The Lévy measure of this process admits the representation 

                            𝑣𝐶𝐺𝑀𝑌(𝑑𝑥) = 𝑐
𝑒−𝑀𝑥

𝑥1+𝑌
1{𝑥<0}𝑑𝑥 + 𝑐

𝑒𝐺𝑥

|𝑥|1+𝑌
1{𝑥<0}𝑑𝑥,  

where C>0,G>0,M>0 and Y<2. The CGMY process is a pure jump Lévy process with 

canonical decomposition  

                             𝑋𝑡 = 𝑡𝔼[𝑋1] + ∫ ∫ 𝑥(𝜇𝑋 − 𝑣𝐶𝐺𝑀𝑌)(𝑑𝑠, 𝑑𝑥)
ℝ

𝑡

0
  

and Lévy triplet (𝔼[𝑋1], 0, 𝑣
𝐶𝐺𝑀𝑌) 

 

14. Lévy Processes in Asset pricing 

Financial Stock prices 

Brownian Motion (𝐵𝑡)𝑡≥0 or linear Brownian Motion (𝜎𝐵𝑡 + 𝜇𝑡, 𝑡 ≥ 0)  was the first 

model of stock prices, introduced by Bachelier in 1900. Black, Scholes and Merton 

studied Geometric Brownian Motion  exp (𝜎𝐵𝑡 + 𝜇𝑡) in 1973, which is not itself a 
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Lévy Process but can be studied with similar methods. The Economics Nobel price in 

1997 was awarded to them for their work. Several deficiencies of Black-Scholes 

model have been identified, e.g. the Gaussian density decreases quickly, no variation 

of the volatility σ over time, no macroscopic jumps in the price processes. The 

deficiencies can be addressed by models based on Lévy processes. 

 Asset price model – real world measure 

Exponential Lévy models 

To ensure positivity as well as the independence and stationarity of log-returns, 

stock prices are usually modeled as exponentials of Lévy processes[6]. Under the 

real-world measure, we model the asset price process as the exponential of a Lévy 

process, that is 

                                                    𝑆𝑡 = 𝑆0𝑒𝑥𝑝𝑋𝑡 ,   0 ≤ 𝑡 ≤ 𝑇     (14.1) 

where, X is the Lévy process whose infinitely divisible distribution has been 

estimated from the data set available for the particular asset. Hence, the log-returns 

of the model have independent and stationary increments, which are distributed-

along time intervals of specific length, e.g. 1-according to an infinitely divisible 

distribution. Naturally, the path properties of the process X carry over to S; This fact 

allows us to capture, up to certain extent, the microstructure of the price 

fluctuations, even on an intraday time scale.  

In the jump-diffusion case this gives  

𝑆𝑡 = 𝑆𝑜exp (𝜇𝑡 + 𝜎𝐵𝑡 + ∑ 𝑌𝑖
𝑁𝑡
𝑖=1 )   (14.2) 

Between the jumps the process evolves like a geometric Brownian motion, and after 

each jump, the value of 𝑆𝑡 is multiplied by 𝑒𝑌𝑖  . This model is a generalization of the 

Black-Scholes model: 

𝑑𝑆𝑡

𝑆𝑡_
= �̅�𝑑𝑡 + 𝜎𝑑𝐵𝑡 + 𝑑𝐽𝑡   (14.3) 

This is a Stochastic differential equation that we use to represent the GBM. Here, 𝐽𝑡 

is a Compound Poisson process such that the i-th jump of J is equal to   𝑒𝑌𝑖 − 1. For 

instance, if  𝑌𝑖 has Gaussian distribution, S will have log-normally distributed jumps. 

The notation 𝑆𝑡−means that whenever there is a jump, the value of the process just 

before the jump is used on the left-hand side of the formula[9]. 

Definition 14.1. 

The market is said to be complete if each claim is either attainable or asymptotically 

attainable. 
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Theorem 14.2.(The second Fundamental Theorem of Asset Pricing) 

Assuming that the model is arbitrage free, it is complete iff  𝒫(P) contains exactly 

one measure[4]. 

We denote by 𝒫(𝑃)  the class of all probability measures on  (𝛺, ℱ) which are 

equivalent to P and under which the discounted process 𝑆̅ is a martingale. 

Remark 14.3. The fact that the price process is driven by a Lévy process makes the 

market in general incomplete[2]. The only exceptions are the markets driven by the 

normal (Black-Scholes model) and Poisson distributions. Therefore, there exists a 

large set of equivalent martingale measures, i.e. candidate measures for risk-neutral 

valuation.  

Eberlein and Jacod (1997) provide an analysis and characterization of the set of 

equivalent martingale measures for Lévy-driven models. Moreover, they prove that 

the range of option process for a convex payoff function, e.g. a call option, under all 

possible equivalent martingale measures spans the whole no-arbitrage interval, e.g.   

[(𝑆𝑜 − 𝐾𝑒
−𝑟𝑇)+, 𝑆𝑜]  for a European call option with strike K. Selivanov (2005) 

discusses the existence and uniqueness of the martingale measures for exponential 

Lévy models in finite and infinite time horizon and various specifications of the no-

arbitrage condition. 

The Lévy market can be completed using particular assets, such as moment 

derivatives (e.g. variance swaps), and then there exists a unique equivalent 

martingale measure. For example, if an asset is driven by a Lévy jump-diffusion      

𝑋𝑡 = 𝑏𝑡 + √𝑐𝐵𝑡 + ∑ 𝐽𝑘
𝑁𝑡
𝑘=1 , then the market can be completed using only variance 

swaps on this asset;  

Risk-Neutral measure 

Under the risk-neutral measure  �̅� we model the asset price process as an 

exponential Lévy process 𝑆𝑡 = 𝑆0𝑒𝑥𝑝𝑋𝑡  where the Lévy process X has the triplet 

(�̅�, 𝑐̅, �̅�).The process X has the canonical decomposition 

                              𝑋𝑡 = �̅�𝑡 + √𝑐̅�̅�𝑡 + ∫ ∫ 𝑥(𝜇𝛸 − �̅�𝑋
ℝ

𝑡

0
)(𝑑𝑠, 𝑑𝑥)  

where �̅� is a �̅� -Brownian motion and  �̅�𝑋 is the �̅� –compensator of the jump 

measure 𝜇𝑋. 

15. Empirical motivation 

The main empirical motivation of using Lévy processes in finance comes from fitting 

asset return distributions[6]. For example, consider the daily returns of S&P 500 
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index (SPX) from June 1, 2015 to May 29, 2020. We plot the histogram of normalized 

daily log-returns in SPSS along with the standard normal density function.   

 

Figure 10. Histogram of normalized S&P 500 index Daily log-returns and the Standard Normal Density 

The histogram displays a high peak and two asymmetric heavy tails (leptokurtic 

feature). This is true for almost all financial asset prices, e.g. worldwide stock indices, 

foreign exchange rates, interest rates, individual stocks. In fact it’s so evident that a 

name “leptokurtic distribution” is given, which means the kurtosis of the distribution 

is large. The kurtosis and the skewness are defined as 

                                         𝐾 = 𝐸 (
(𝑋−𝜇)4

𝜎4
), 𝑆 = 𝐸 (

(𝑋−𝜇)3

𝜎3
).   

For standard normal density K=3, and if K>3 then the distribution is called leptokurtic 

and the distribution will have a higher peak and two heavier tails than those of the 

normal distribution. 

The classical geometric BM model, which models the stock price as 

                                                      𝑆𝑡 = 𝑆(0)𝑒
𝜇𝑡+𝜎𝐵𝑡   

with 𝐵𝑡 the standard BM, is inconsistent with this feature, because in this model the 

return, ln (
𝑆(𝑡)

𝑆(0)
) has a normal distribution. Lévy processes, among other processes 

have been proposed to incorporate the leptokurtic feature. 

Lévy processes provide a natural generalization of the sum of independent and 

identically distributed (i.i.d) random variables. Any Lévy process can be written as a 

drift term μt, a BM with variance and covariance matrix A, and a possible infinite 
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sum of independent compound Poisson processes which are related to an intensity 

measure v(dx). 

This implies that a Lévy process can be approximated by jump-diffusion processes. 

This has important numerical applications in finance, as jump-diffusion models are 

widely used in finance.  

Volatility clustering Effect 

In addition to the leptokurtic feature, returns distributions also have an interesting 

dependent structure, called the volatility clustering effect; (see Engle 1995). More 

precisely, the volatility of returns (which are correlated to the squared returns) are 

correlated, but asset returns themselves have almost no autocorrelation. In other 

words, a large movement in asset prices, either upside or downside tend to generate 

large movements in the future asset prices, although the direction of the movements 

is unpredictable. In particular any model for stock returns with independent 

increments (such as Lévy processes) cannot incorporate the volatility clustering 

effect. However, one can combine Lévy processes with other processes (e.g, Duffie, 

Pan, Singleton, 2000, Barndoff Nielsen and Shepherd 2001) or consider time changed 

Brownian motion and Lévy processes to incorporate the volatility clustering effect. 

 

16. Monte Carlo Simulation in R for various Stochastic processes 

Brownian Motion, which is non-standard, will have two parameters just like Normal 

Distribution, known as drift and diffusion[10]. Using B(t) we therefore give a 

Stochastic Differential Equation for any Brownian Motion 

𝑑𝑋(𝑡) = 𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝐵(𝑡) 

where μ is a drift component and 𝜎2 is a diffusion coefficient. 

 

Sample Paths Generations 

Solving the SDE presented above we can write the equation in terms of 

𝑋(𝑡𝑖), 𝜇(𝑠), 𝜎(𝑡)        

𝑋(𝑡𝑖+1) = 𝑋(𝑡𝑖) + ∫ 𝜇(𝑠)𝑑𝑠 + √∫ 𝜎2(𝑢)𝑑𝑢

𝑡𝑖+1

𝑡𝑖

𝑡𝑖+1

𝑡𝑖

 𝑍𝑖+1 

In the R-code we present later we have assumed that μ and σ are constant. 
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Figure 11. Simulation of Standard Brownian Motion. 

The above image (figure 11) represents 10 paths the code generated for the 

Standard Brownian Motion. 

 

 

Figure 12. Simulation of Brownian Motion. 
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The code used the formula defined for Brownian Motion to generate 10 paths for 

it and also used rnorm(1) a function defined in R to generate a Standard Normal 

Random Variable.  

Geometric Brownian Motion properties 

Suppose that 𝑆(𝑡) is Geometric Brownian Motion with drift parameter  𝜇 

volatility 𝜎 and initial value 𝑆𝑜 then 

(1) 𝑺 is a stochastic process with initial value 𝑺𝒐 

(2) 𝑆 has independent growth factors: for any sequence on non-overlapping 

intervals  (𝑡𝑗 , 𝑡𝑗 + ℎ𝑗]   the growth factors 
𝑆(𝑡𝑗+ℎ𝑗)

𝑆(𝑡𝑗)
 are independent.  

(3)For all 𝑡 ≥ 0  and ℎ > 0 the growth factor  
𝑆(𝑡+ℎ)

𝑆(𝑡)
    is log-normal 𝑒(𝑁(𝜇ℎ

 ,𝜎2ℎ))  

with mean 𝑒
(𝜇+

1

2𝜎2
)ℎ
  and variance  𝑒(2𝜇+𝜎

2)ℎ(𝑒𝜎
2ℎ − 1). 

The Stochastic Differential Equation that we use now to represent the Geometric 

Brownian Motion is    
𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵(𝑡). 

 The solution of S.D.E for Geometric Brownian Motion is 

                                  𝑆(𝑡) = 𝑆(0)𝑒𝑥𝑝 ([𝜇 −
1

2
𝜎2] 𝑡 + 𝜎𝐵(𝑡)) ,  

where 𝐵(𝑡) is replaced with  𝜎√𝑇𝑍𝑖  

and that’s how by using Monte Carlo Simulation we could also simulate the paths of 

a Stock price or of a Geometric Brownian Motion. 

For such simulation we would again have to discretize the time line into some N 

points to generate Stock Price at all such points. Let us take initial Stock price to be 

100. The plot looks 
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Figure 13. Simulation of Geometric Brownian Motion 

 

Hence we can use all such paths to finally get a S(t) and calculate the premium of 

European Option and finally give the average estimate of the European Option Price. 
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Chapter 3 

17. Lévy processes in Option Pricing 

Although the Black-Scholes model is one of the most widely used frameworks 

nowadays, the real prices show properties which contradict the assumptions of this 

model[7]. 

The assumptions of the model                                      The properties of real prices 

 

 

 

 

 

 

 

 

 

For option pricing, we will explicitly include the interest rate into the definition of the 

exponential Lévy model: 

𝑆𝑡 = 𝑆𝑜𝑒
𝑟𝑡+𝑋𝑡 (17.1) 

The model (18.1) admits no arbitrage opportunity if there exists an equivalent 

probability under which  𝑒𝑋𝑡 is a martingale. For Lévy processes it can be shown that 

this is always the case, namely an exponential Lévy model is arbitrage-free if and 

only if the trajectories of X are not almost surely increasing nor almost surely 

decreasing (thus we exclude the cases: constant drift, Poisson process, subordinator) 

Pricing Option CGMY model 

Nowadays, recently researchers have proposed CGMY process as the most suitable 

model to catch the assumptions fail. The model name refers to mathematician 

names: Carr, Geman, Madan and Yor allowing to take into account both 

phenomenon, indefinite activity (process incorporate frequent small moves and rare 

large jumps) and finite/infinite variation. CGMY model has been employed to study 

1. Asset log returns have been 
modeled in continuous time as 
diffusion  

2. Asset return increments  are 
normally distributed 

3. The implied volatility should be 
constant 

 

 

 

 

 

 

 

1. Return dynamics are devoid of diffusion 
component 

2. the increments are skewed to the left and 
have a fat tail than those of normal 
distribution  

3. the implied volatility curve resembles a 
smile /skew meaning it is a convex curve of 
the strike price 
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statistical process needed to assess risk-neutral process to pricing option through the 

characteristic function of return price. 

 The CGMY process 

Contrary to the Variance Gamma process which can be represented as time changed 

Brownian motion (i.e. Brownian motion subordinated to a Gamma subordinator), 

CGMY process is not known through such representation, it is only known by its Lévy 

measure. 

Let  (𝛺, ℱ𝑡∈[0,∞), ℙ) be a filtered probability space, we define the CGMY process 

𝑋𝐶𝐺𝑀𝑌(𝑡; 𝐶, 𝐺,𝑀, 𝑌) as a Lévy process with Lévy triplet (𝐴𝑥 = 0, 𝜌𝑥 , 𝑏𝑥 = 0) and 

Lévy measure 

                               𝜌𝐶𝐺𝑀𝑌
𝑥 =

𝐶𝑒𝑥𝑝(−𝐺|𝑥|)

|𝑥|1+𝑌
1𝑥<0 +

𝐶𝑒𝑥𝑝(−𝑀𝑥)

𝑥1+𝑌
1𝑥>0  (17.2) 

where 𝐶 > 0, 𝐺 ≥ 0,𝑀 ≥ 0 and 𝑌 < 2. The parameter C controls overall arrival rate 

of jumps, G and M are the exponential decay rates on the right and on the left of the 

Lévy measure leading to skewed distribution when they are unequal. When G=M, 

the Lévy measure is symmetric. For G<M, the left tail of the distribution of  𝑋𝑡 is 

heavier than the right tail. We say that the arrival rate of negative jumps is higher 

than that of positive jumps. The most interesting parameter is Y, it allows to 

understand the structure of the process since it describes the behavior of the Lévy 

measure i.e. whether it is completely monotone, it has finite/infinite activity and 

finite/infinite variation. 

European call option pricing under CGMY model 

CGMY asset price process 

Let   (𝛺, ℱ𝑡∈[0,𝑇], ℚ)  be a filtered risk neutral probability space. Asset price dynamics 

𝑆𝑡∈[0,𝑇] is an exponential Lévy process  𝑋𝑡∈[0,𝑇] of the form 

𝑆𝑡 = 𝑆0𝑒𝑥𝑝𝑋𝑡 

and the choice of the Lévy process is the CGMY process plus a drift 

 

𝑋𝑡 ≡ {(𝑟 − 𝛽)𝑡 + 𝑋𝐶𝐺𝑀𝑌(𝑡; 𝐶ℚ, 𝐺ℚ, 𝑀ℚ, 𝑌ℚ)} 

where 𝑟 ≥ 0 is the mean rate of return on the asset and  β  is the convexity 

correction in CGMY model. 
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Characteristic function formulation for solution  

In this section we are motivated to present closed-form solutions to know more 

about  the process structure and about pricing  the option under CGMY model. The 

risk-neutral log asset price dynamics have the form 

𝑙𝑛𝑆𝑡 = 𝑙𝑛𝑆0 + (𝑟 − 𝛽)𝑡 + 𝑋𝐶𝐺𝑀𝑌(𝑡; 𝐶ℚ𝐺ℚ𝑀ℚ𝑌ℚ) 

since the density of the process 𝑋𝑡is expressed in the equation (18.1) and then 

                                           𝑋𝑡 = 𝑙𝑛𝑆𝑡 − [𝑙𝑛𝑆0 + (𝑟 − 𝛽)𝑡] 

 

Fourier transform inversion 

We obtain the CGMY-FT call pricing formula [7] 

𝐶𝐶𝐺𝑀𝑌(𝑇, 𝐾) =
𝑒−𝑎𝑘

2𝜋
∫ 𝑒−𝑖𝜔𝑘
∞

−∞

𝑒−𝑟𝑇𝜑𝑇(𝜔 − (𝛼 + 1)𝑖)

𝑎2 + 𝑎 − 𝜔2 + 𝑖(2𝑎 + 1)𝜔
𝑑𝜔 

where 𝜑𝛵(𝜔) is the characteristic function of the log asset price, defined as 

  𝜑𝑇(𝜔) = exp{𝑖𝜔𝑆0 + (𝑟 − 𝛽)𝑇} × exp 

{
 
 

 
 𝑇𝐶𝐺𝑌𝐺(−𝑌) [(1 +

𝑖𝜔

𝐺
)
𝑌

− 1 −
𝑖𝜔𝑌

𝐺
] +

𝑇𝐶𝑀𝑌𝛤(−𝑌)[(1 −
𝜄𝜔

𝛭
)
𝛶

− 1 +
𝜄𝜔𝑌

𝑀
]
}
 
 

 
 

 

 

Numerical results 

The implementation of the CGMY Fourier transform formula with decay rates 

parameters G=2.0, M=3.5, overall arrival rate C=0.5 and Y=1.34. The common 

parameters are S0=100.0, r=0.05. While 𝜔𝑛 varies from 𝜔𝑛 = 1,…𝑁 and which is 

assumed to be equal in length. Considering the maturity T=1.0, time grid M=50 and 

finally, simulation size I=10000. Bellow we see the implementation of the CGMY 

model in Python. The illustration shows dynamic of stock price in market free-

arbitrage. 
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Figure 14. Option pricing with CGMY model In Python. 

 

Here we see the calibration of FT-CGMY option pricing approach with the modified 

call price. The calibration result suggests that the extra parameters of CGMY model 

allow the negative skewness and the excess of kurtosis (leptokurtic).Moreover the 

dynamics of implied Lévy density is asymmetric and has an infinite activity. Despite 

the efficiency of CGMY process, all option pricing models are biased. 

Monte Carlo Option pricing for tempered stable (CGMY) processes 

Lévy processes are popular models for stock price behavior since they allow to take 

into account jump risk and reproduce the implied volatility smile. The tempered 

stable (also known as CGMY) processes form a flexible 6-parameter family of Lévy 

processes with infinite jump intensity. It is shown that under an appropriate 

equivalent probability measure a tempered stable process becomes a stable process 

whose increments can be simulated exactly. This provides a fast Monte Carlo 

algorithm for computing the expectation of any functional of tempered stable 

process and this method can be used to price European options[8]. 

A method of Monte Carlo evaluates the functional of the tempered stable process 

which avoids direct simulation of the increments of this process. Instead, we 

construct an equivalent probability measure under which the original tempered 

stable process becomes a stable process. Since the method for direct simulation of 

stable random variables is well-known and the measure change is explicit, this 

provides the desired algorithm. 

The following theorem shows that under an appropriate change of measure the 

tempered stable process becomes a sum of one-sided stable process. 
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Tempered stable processes 

A one dimensional tempered stable process is obtained by taking a one-dimensional 

stable process and multiplying the Lévy measure with a decreasing exponential on 

each half of the real axis. Thus, a tempered stable process is a Lévy process on ℝ 

with no Gaussian component and Lévy density of the form: 

𝑣(𝑥) =
𝑐+𝑒

−𝜆+𝑥

𝑥1+𝑎
1𝑥>0 +

𝑐−𝑒
−𝜆−|𝑥|

|𝑥|1+𝑎
1𝑥<0 

with parameters satisfy 𝑐− > 0, 𝑐+ > 0, 𝜆− > 0, 𝜆+ > 0   and  0 < 𝛼 < 2 . 

In particular, the version when   𝑐+ = 𝑐− and  𝑎+ = 𝑎−   was studied under the name 

CGMY process with Lévy measure 

𝑣𝐶𝐺𝑀𝑌(𝑥) = 𝑐 [
𝑒−𝑀𝑥

𝑥1+𝑌
1𝑥>0 +

𝑒−𝐺|𝑥|

|𝑥|1+𝑌
1𝑥<0] 

Theorem17.1. 

Let   𝑋𝑡 be a (generalized) tempered stable Lévy process on the probability space  

(𝛺, ℱ, ℙ) with Lévy density 𝑣(𝑥) =
𝑐+𝑒

−𝜆+𝑥

𝑥1+𝑎+
1𝑥>0 +

𝑐−𝑒
−𝜆−|𝑥|

|𝑥|1+𝑎−
1𝑥<0, and let  (𝑋𝑡

+)and 

(𝑋𝑡
− ) be tempered stable Lévy processes such that 𝑋 = 𝑋+ + 𝑋− with characteristic 

triplets (0, 𝑣+, 𝛾
+)and  (0, 𝑣−, 𝛾

−) where 

                               𝑣+(𝑥) =
𝑐+𝑒

−𝜆+𝑥

𝑥1+𝑎+
1𝑥>0and 𝑣−(𝑥) =

𝑐−𝑒
−𝜆−|𝑥|

|𝑥|1+𝑎−
1𝑥<0 

Then the following holds: 

1. There exists a unique constant c such that  𝒆𝑼𝒕 is a P-martingale, where  𝑼𝒕 =
𝝀+𝜲𝒕

+ − 𝝀−𝑿𝒕
− + 𝒄𝒕. 

2. One can define a probability measure  ℚ such that ℚ|𝑭𝒕~ℙ|𝑭𝒕for every t by 
𝒅ℚ

𝒅ℙ
|𝓕𝒕 = 𝒆

𝑼𝒕  . 

3. Under ℚ, the processes (𝑿𝒕
+) and  (𝑿𝒕

−) are stable processes with 
characteristic  triplets (𝟎, �̃�+, 𝜸

+)  and  (𝟎, �̃�−, 𝜸
−) where 

�̃�+(𝒙) =
𝒄+

𝒙𝟏+𝒂+
𝟏𝒙>𝟎 and  �̃�−(𝒙) =

𝒄−

|𝒙|𝟏+𝒂−
𝟏𝒙<𝟎  

 

The expectation of any  𝐹𝑡 measurable random variable  𝐻𝑇  can be evaluated via 

𝐸𝑃[𝐻𝑇] = 𝐸𝑃[𝐻𝑇𝑒
−𝜆+𝑋𝑇

++𝜆−𝑋𝑇
−−𝑐𝑇] 
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In particular, if   𝐻𝑇 = 𝑓(𝑋𝑇)  then 𝐸𝑃[𝐻𝑇] = 𝐸
𝑃[𝑓(𝑋𝑇)] =

𝐸𝑄[𝑓(𝑋𝑇)𝑒
−𝜆+𝑋𝑇

++𝜆−𝑋𝑇
−−𝑐𝑇] 

The Monte Carlo estimator  �̅�   of   𝐸[𝐻𝑇]   is given by 

�̅� =
1

𝑁
∑𝐻𝑇

𝑖

𝑁

𝑖=1

exp (−𝜆+𝛸𝛵
+,𝜄 + 𝜆−𝛸𝛵

−,𝜄 − 𝑐𝑇] 

where  𝑋𝑇
𝑖  for   𝑖 = 1,…𝑁   are independent realizations of  𝑋𝑇  under ℚ  and  𝐻𝑇

𝑖     

are corresponding realizations of 𝐻𝑇 .(see [8]) 

 

18. Monte Carlo Option Pricing Algorithms for Jump Diffusion Models 

with Correlational Companies. 

Option is a one of the financial derivatives and its pricing is an important problem in 

practice. The process of the stock prices are represented as Geometric Brownian 

motion or jump diffusion processes. In the early 1970’s, Black and Scholes proposed 

a method in order to calculate option price. For option pricing, we solve numerically 

Black-Scholes equation, that is represented as a differential equation. The methods 

proposed are either to solve equations directly or by using Monte Carlo methods. In 

this section algorithms and visualizations are implemented by Monte Carlo method 

in order to calculate European option price for three equations by Geometric 

Brownian motion and jump diffusion processes and furthermore a model that 

presents jumps among companies which affect each other. 

Black-Scholes Model 

The process of stock prices are basically represented as Geometric Brownian motion. 

𝑑𝑆(𝑡) = 𝛼(𝑡)𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝐵(𝑡)    (18.1) 

where s(t) denotes stock price at time t, α  is the drift parameter and σ is the 

volatility. B(t) is Brownian motion. The solution of the equation is given by 

𝑆(𝑡) = 𝑆(0)exp {𝜎𝐵(𝑡) + (𝛼 −
1

2
𝜎2) 𝑡}     (18.2) 

Price of European option 

There are many types of options in the stock market. European call option can not 

execute until the duration T is finished, and its strike price is K. Option prices are 

calculated under the risk-neutral probability. The European call option price is given 

by 
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𝑃𝑟𝑖𝑐𝑒 = 𝔼[max(𝑆(𝑇) − 𝐾, 0)] 

where E[X] denotes expected value.  The European put option price is given by 

𝑃𝑟𝑖𝑐𝑒 = 𝔼[max(𝐾 − 𝑆(𝑇),0)] 

 

Correlational Companies Algorithm 

Initially, the Standard jump diffusion model causes jumps in one stock market and it 

does not affect other companies. In correlational jumps model, one jump among 

companies affects other stock prices of companies obeying correlation 

coefficients[11]. Therefore, the equations are given by 

                  𝑆𝑡 = 𝑆𝑜 exp {𝜎𝐵𝑡 + (𝛼 − 𝛽𝜆 −
1

2
𝜎2) 𝑡}∏ (𝑌𝑖

𝑁𝑡
𝑖=1 × 𝜌𝑥𝑦 + 1) 

where 𝜌𝑥𝑦 denotes a correlation coefficient between the x-th company and y-th 

company. 

As you can see in the next graph there are pair companies and the correlation 

coefficients between them. In the matrix bellow we see analytically the results of the 

correlation coefficients of all pair companies which we will use later to calculate 

option prices by correlational method of Monte Carlo. 

 

Figure 15. Circulation graph of the correlation coefficients between the companies. 
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The result of the correlation coefficients of the companies 

 

Table1. The correlation coefficients of the companies. 
 

We will use the Jdmbs: an R package for Monte Carlo Option Pricing Algorithms for 

Jump Diffusion Models with Correlational Companies.  

Methods 

This package has three methods. 

 This is a normal model by Monte Carlo: 

 

Source: Snapshot1 from R-package. R-code for Option pricing with normal Monte Carlo model. 

Jump diffusion mode by Monte Carlo: 

 

Source:Snapshot2 from R-package. R-code for Option pricing with jump-diffusion model of Monte 
Carlo. 
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This is a correlational method by Monte Carlo. Companies_matrix must be required: 

 

Source:Snapshot3 from R-package. R-code for Option pricing with correlational method of Monte 
Carlo. 

Let arguments be: 

• companies_matrix: a matrix of a correlation coefficient of companies 

• day: an integer of a time duration of simulation 

• monte_carlo: an integer of an iteration number for Monte Carlo 

• start_price: a vector of company’s initial stock prices 

• mu: a vector of drift parameters of Geometric Brownian Motion 

• sigma: a vector of volatility parameters of Geometric Brownian Motion. 

• lambda: an integer of how many times jump in unit time 

• K:a vector of option strike prices 

• plot: a logical type of whether plot a result or not 

Let return be: 

• price of a list of(call_price, put_price) 

Simulation 

It is a normal model by Monte Carlo: 

 

Source: Snapshot4 from R-package. R-code for Option pricing by normal model of Monte Carlo , 
simulation with numerical input. 
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The algorithm above for given stock prices, diffusion component and strike prices 

gives the Option price for time period 100 and simulation size 10.  

Jump Diffusion by Monte Carlo: 

 

Source: Snapshot5 from R-package. R-code for Option pricing by jump-diffusion model of Monte 
Carlo, simulation with numerical input 

 

In the Jump diffusion model by Monte Carlo, we can get the option prices by the 

same way by adding an extra parameter λ which symbolizes the intensity of the jump 

process. 

It is a correlational method by Monte Carlo. Companies_matrix must be required: 

 

Source: Snapshot6 from R-package. R-code for Option pricing by correlational method of Monte 
Carlo, simulation with numerical input 

 

 

 

 

 

 

 



54 
 

In the figures we can see how option prices are produced for related companies. 

 

            Figure16. Three stock prices. Square points are Strike prices. A normal model by Monte Carlo. 
 

The price for call option for the first stock is zero, the call option price for the second 

stock is 3172 and for the third stock 5811.  Furthermore, the put option price for the 

first stock is 2551, for the second 2353 and for the third stock 5911. 

 

 

                            Table2. Option prices by a normal model of Monte Carlo. 
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Bellow we can see the results for the other two methods presented. 

Figure17. Three stock prices. Square points are strike points. Big round points are jump points. Jump 

diffusion by Monte Carlo. 

 

 

 

 

Table3. Option prices by Jump diffusion model of Monte Carlo. 
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Figure18. Three Stock prices. Square points are strike prices. Big round points are jump points. 
Correlational method by Monte Carlo. 

 
 
 
 

 

 

Table4. Option prices by correlational method of Monte Carlo. 

 
 

19. Hedging the jump risk 

In the Black-Scholes model, the delta-hedging strategy completely eliminates the risk 

of an option position. This strategy consists in holding the amount of stock equal to     
𝜕𝐶

𝜕𝑆
  , the sensitivity of the option price with respect to the underlying. However, in 

presence of jumps, delta-hedging is no longer optimal. 

 Since typically the jump size is not known in advance, the risk associated to jumps 

cannot be hedged away completely, because we are in an incomplete market. In this 

setting, the hedging becomes an approximation problem: instead of replicating an 

option, one tries to minimize the residual hedging error. Strategies using only stock 
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lead to high levels of residual risk, and to obtain realistic hedges, liquid options 

should be added to the hedging portfolio. 

In this section we show how to compute optimal hedging strategies in presence of 

jumps. First, we treat the case when the hedging portfolio contains only stock and 

the risk-free asset. Let 𝑆𝑡 denote the stock price and φ the quantity of stock in the 

hedging portfolio, and suppose that S satisfies (14.3) with Lévy measure of the jump 

part denoted by 𝑣. Then the self-financing portfolio evolves as 

                                              𝑑𝑉𝑡 = (𝑉𝑡 −  𝜑𝑡𝑆𝑡)𝑟𝑑𝑡 + 𝜑𝑡𝑑𝑆𝑡 

The ‘forward’ values of the stock and the portfolio 

                                          𝑆𝑡
∗ = 𝑒𝑟(𝑇−𝑡)𝑆𝑡     and     𝑉𝑡

∗ = 𝑒𝑟(𝑇−𝑡)𝑉𝑡  

satisfy 

                                                     𝑉𝑇
∗ = 𝑒𝑟𝑇𝑉𝑜 + ∫ 𝜑𝑡𝑑𝑆𝑡

∗𝑇

0
 

We would like to compute the strategy which minimizes the expected squared 

residual hedging error under the martingale probability  

𝜑∗ = 𝑎𝑟𝑔𝑖𝑛𝑓𝔼[(𝑉𝑇 − 𝐻𝑇)
2] = 𝑎𝑟𝑔𝑖𝑛𝑓𝔼 [(𝑒𝑟𝑇𝑉𝑜 +∫ 𝜑𝑡

𝑇

0

𝑑𝑆𝑡
∗ −𝐻𝑇)

2

] 

The initial capital minimizing the hedging error is  𝑉𝑜 = 𝑒
−𝑟𝑇𝔼[𝐻𝑇] 

In the case that the residual hedging error is non-zero (and the market is 

incomplete), it’s minimized by 

                              𝜑∗(𝑡, 𝑆𝑡) =
𝜎2

𝜕𝐶

𝜕𝑆
+
1

𝑆𝑡
∫𝑣(𝑑𝑧)𝑧(𝐶(𝑡,𝑆𝑡(1+𝑧))−𝐶(𝑡,𝑆𝑡))

𝜎2+∫𝑧2𝑣(𝑑𝑧)
  

The optimal quadratic hedging strategy is a weighted sum of two terms: the 

sensitivity of option price to infinitesimal stock movements, and the average 

sensitivity to finitely-sized jumps. In a pure-jump Lévy model the first term 

disappears and the hedge ratio does not involve the derivative of the stock price.  
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Figure19. Delta-hedging strategy and optimal quadratic hedging strategy ratios as a function of stock 
price 

 

  The figure above shows the difference between the optimal strategy and the delta-

hedging strategy. These data were obtained in Merton’s jump diffusion model as it is 

described in Tankov.P [9]. 

As we see, the two strategies are not so different. The residual hedging errors are 

also similar. In conclusion,  

• Hedging with stock only in presence of jumps eliminates a large part risk but  

              still leads to an important residual hedging error. 

• Performances of delta hedging and of the optimal quadratic hedging with 
stock only are very similar. 

To eliminate the remaining hedging error, a possible solution is to introduce liquid 

options into the hedging portfolio. If, in addition to the stock, the hedging portfolio 

contains a European option, then the risk due to jumps becomes negligible. 

20. Risk management in jump models 

In this section, we review an application of Lévy processes to computing risk 

measures of dynamically managed portfolios (developed in [ 12]). We are interested 

in one of the most widely used portfolio insurance strategies: the constant 

proportion portfolio insurance (CPPI) introduced by Black and Jones [13]) for equity 

instruments [14] and for fixed income instruments. Under this strategy, the exposure 

to the risky asset is equal to the constant multiple m>1 of the cushion, i.e., the 
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difference between the current portfolio value and the guaranteed amount. In 

theory, that is, in the Black-Scholes model with continuous trading, this strategy has 

no downside risk, whereas in the real markets this risk is non-negligible and grows 

with the multiplier value. 

The CPPI strategy is a self-financing strategy such that at every moment t, a fraction 

of the portfolio is invested into the risky asset 𝑆𝑡 and the remainder is invested into 

zero-coupon bond with maturity T and nominal N, whose price is denoted by 𝐵𝑡 

• If  𝑽𝒕 > 𝑩𝒕 , the risky asset exposure (amount of money invested into the 
risky asset) is given by  𝒎𝑪𝒕 ≡ 𝒎(𝑽𝒕 − 𝑩𝒕), where 𝑪𝒕 is the ‘cushion’ and 

 m>1 is a constant multiplier. 

• If  𝑽𝒕 ≤ 𝑩𝒕, the entire portfolio is invested into the zero-coupon. 

We suppose that the price processes for the risky asset S and for the zero-coupon B 

may be written as 

                                                 
𝑑𝑆𝑡

𝑆𝑡−
= 𝑑𝛸𝑡     and       

𝑑𝐵𝑡

𝐵𝑡
= 𝑟𝑑𝑡    

where Χ is  a Lévy process with 𝛥𝛸𝑡 > −1 almost surely. 

Let    𝜏 = inf {𝑡: 𝑉𝑡 ≤ 𝐵𝑡} . Then, since the CPPI strategy is self-financing, up to time r 

the portfolio value satisfies 

𝑑𝑉𝑡 = 𝑚(𝑉𝑡− − 𝐵𝑡)
𝑑𝑆𝑡
𝑆𝑡−

+ {𝑉𝑡− −𝑚(𝑉𝑡− − 𝐵𝑡)}
𝑑𝐵𝑡
𝐵𝑡

 

 

which can be rewritten as      
𝑑𝐶𝑡

𝐶𝑡−
= 𝑚𝑑𝛸𝑡 + (1 −𝑚)𝑑𝑅𝑡 

Where we recall that 𝐶𝑡 = 𝑉𝑡 − 𝐵𝑡 denotes the cushion. 

Probability of loss 

A PCCI-insured portfolio incurs a loss (breaks through the floor) if, for some  𝑡 ∈

[0, 𝑇],  𝑉𝑡 ≤ 𝐵𝑡 . The event  𝑉𝑡 ≤ 𝐵𝑡 is equivalent to 𝐶𝑡
∗ ≤ 0. 

Proposition 1. 

Let X be a Lévy process with Lévy measure v. Then the probability of going below the 

floor is given by 

                              ℙ[∃𝑡 ∈ [0, 𝑇]: 𝑉𝑡 ≤ 𝐵𝑡] = 1 − 𝑒𝑥𝑝 (−𝑇 ∫ 𝑣(𝑑𝑥)
−1 𝑚⁄

−∞
) (20.1) 
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21. Application to an exponential Lévy model 

In this example we compute the loss probability of a CPPI-insured portfolio 

supposing that the risky asset follows the Kou’s model[15], that is, an exponential 

Lévy model where the driving Lévy process has a non-zero Gaussian component and 

a Lévy density of the form 

                                𝑣(𝑥) =
𝜆(1−𝑝)

𝜂+
𝑒
−𝑥

𝜂⁄ 1𝑥>0 +
𝜆𝑝

𝜂−
𝑒−

|𝑥|
𝜂⁄ 1𝑥<0    

Here, λ is the total intensity of positive and negative jumps, p is the probability that a 

given jump is negative and    𝜂−   and 𝜂+  are the characteristic lengths of 

respectively negative and positive jumps. 

The parameters of Kou’s jumps diffusion model were estimated by maximum 

likelihood for daily time series of French CAC40 index and of the Microsoft 

Corporation (MSFT) share price. For both series, 10 years of data, from December 1st 

1996 to December 1st 2006 were used, making a total of 2500 data points for each 

series. The jump intensity parameter λ was bounded from above by 250.The 

estimated parameter values are shown in table1of [9]. 

For Kou’s exponential Lévy model the equation 21.1 for loss probability yields 

ℙ[∃𝑡 ∈ [0, 𝑇]: 𝑉𝑡 ≤ 𝐵𝑡] = 1 − exp ((−𝑇𝑝𝜆𝜂−(1 −
1

𝑚
)

1
𝜂−−
⁄

) 

Figure20 shows the dependence of the loss probability on the multiplier for a CPPI 

portfolios containing Microsoft stocks and CAC40 as risky asset. 
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Figure20.Probabilty of loss as a function of the multiplier. 

 

 

 R code for Monte Carlo simulation for various Stochastic processes. 
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