
M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. i

UNIVERSITY OF THE AEGEAN
SCHOOL OF ENGINEERING

DEPARTMENT OF INFORMATION AND COMMUNICATION SYSTEMS ENGINEERING

POSTGRADUATE STUDIES PROGRAMME

MSc IN INFORMATION AND COMMUNICATION SYSTEMS SECURITY

IMPLEMENTATION OF OBLIVIOUS DATA

STRUCTURES

POSTGRADUATE THESIS

by

Orestis Th. Anavaloglou

Supervisor: Assistant Professor Dr. Panagiotis Rizomiliotis

Members of examination committee: Prof. Dr. S. Kokolakis, Assoc. Prof. Dr. M. Karyda

Samos, September 2020

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. ii

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. iii

Acknowledgements

First of all, I would like to thank my wife, Katerina and my children, Fanis, Irini and Christina for

their patience and support throughout this endeavor. Τhe Academic and Scientific achievements of

my close friends, Dr. Stelios Choulis and Dr. Ifigenia Klaoudatou, have always been an inspiration

for me. I deeply thank them for that, but I mostly thank them for being my friends all these years. I

also want to thank my sister, Electra Anavaloglou, for the time she spent checking and discussing

every linguistic detail of the text with me. Her degree in English literature has proven to be

invaluable. A truly inspirational person for me for many years has been Dr. Dimos Charmpis. I

treasure our long conversations and I deeply thank him for his support. I definitely feel indebted to

many of my teachers since my school days, but I would like to express my deepest gratitude to my

supervisor, Dr. Panagiotis Rizomiliotis, for his insight and precious help whenever I needed them.

Lastly, I would like to thank my parents for all their sacrifices. I know I cannot ever repay them, but

I promise to do the same for my children when the time comes. After all, every generation asks for

nothing more from the next one.

© 2020

by

ORESTIS THEOFANIS ANAVALOGLOU

Department of Information and Communication Systems Engineering

UNIVERSITY OF THE AEGEAN

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. iv

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. v

 Contents

Acknowledgements ... iii

Abstract .. vii

1 Introduction ... 1

 A brief history of Cryptography .. 1

2 Oblivious RAM (ORAM) .. 4

 Overview... 4

 The evolution of ORAM ... 5

 The Path ORAM algorithm ... 8

3 Oblivious Data Structures ... 11

 Overview... 11

 The ODS framework ... 12

 ODS framework architecture .. 13

4 Python Implementation... 19

 Oblivious Stack ... 19

 Oblivious Queue ... 22

 Oblivious Heap (Priority Queue) .. 25

 Conclusions ... 34

References .. 35

Appendix [Code listing] ... 36

odenode.py... 36

bintree.py ... 36

crypt.py .. 38

ObliviousDataStructs.py .. 38

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. vi

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. vii

Abstract

We present the key historical advances in Cryptography that led to the concept of Oblivious RAM

(ORAM) by Goldreich and Ostrovsky in 1993. We briefly present their first algorithmic construct,

Hierarchical ORAM, followed by a very different approach, the Binary-tree based ORAM by Shi

et al. (2011) and its improvement for Multi-Party Computation (MPC), Circuit ORAM. We

thoroughly examine Path-ORAM algorithm by Stefanov et al. (2012) and we present our Python

implementation of it. We move on to the definition of an Oblivious Data Structure (ODS) and the

description of the pointer-based technique to handle Oblivious Data Structures proposed by Shi et

al. along with their ODS framework. We examine the architecture of the framework and we present

our python implementation. We finally present three basic ODS algorithms and their Python

counterparts. Namely, Oblivious Stack, Oblivious Queue and Oblivious Heap (priority queue).

Keywords: Cryptography, ORAM, Oblivious Data Structures, ODS framework, Python, Oblivious

Stack, Oblivious Queue and Oblivious Heap (priority queue).

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. viii

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 1

1

Introduction

 A brief history of Cryptography

One of the core structural elements of human society that can be traced back to the beginnings of

writing, is “secrets”. Spanning from ancient Egypt and Greece to our technologically advanced era,

secrecy has proven to be a necessity for all the central civilizations of this planet through the ages.

People need to protect all kinds of messages, all the time, in almost every aspect of their lives. The

knowledge of a sole secret strategic move of the opponent can be decisive for a battle, even for a

whole war. In politics, in diplomacy, in economic life, even in personal affairs, there is a definite

and continuous need to conceal and safeguard vast amounts of information.

 Essentially, two methods are selectively implemented in order to achieve the protection of a

secret piece of information. Namely, Cryptography and Steganography. The latter could be defined

as the practice of concealing a secret message inside a publicly accessible carrier-message in such

a way that there is no evidence for the mere existence of the secret one. A good example of this

technique is the embedding of a message in a jpeg image by properly altering some of its LSB’s

(Least Significant Bits). The resulting image is practically the same with the initial one thus the

hidden message is untraceable. Although the historical and practical importance of Steganography

is not a matter of debate, its innate weakness - the fact that once the hidden message has been

discovered, it is simultaneously also recovered by the attacker – makes Cryptography stand out as

the dominant tool to rely on for keeping humanity’s secrets safe and sound.

 One of the earliest examples of a form of encryption would be the hieratic writing of the

priests in ancient Egypt which was considered sacred and was kept secret from the laymen under

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 2

the orders of the Pharaohs. Plutarch, in his biography of Lysander, the Spartan admiral, gives the

description of a subsequent cryptographic method supposedly applied at the city-state of Sparta, in

ancient Greece in the 5th century B.C. It was called the Skytale and was used to safely convey

messages between the military and the city officials, the five “ephors”. In its simplest form, a strip

of cloth or parchment was wrapped around a cylindrical wooden stick and the message was written

on it. Then the strip was unwound rendering the message unintelligible. To recover the message,

the recipient had only to rewrap the strip around a cylinder of exactly the same radius with the one

used in the first place.

Among the several simplistic methods of encryption in antiquity, probably the most advanced

was the one used by Julius Caesar in ancient Rome. The “Caesar cipher”, as it is called, consists in

substituting each letter of the message with the letter sitting a fixed number of places to its left or

right in the alphabet. Julius Caesar, for example, usually used a right shift of three places. This

meant that ‘A’ would be replaced by ‘D’, ‘B’ would be replaced by ‘E’ and so on. Although such a

monoalphabetic substitution cipher was considered unbreakable for a thousand years, this notion

could not be further from the truth. During the Middle Ages, the Arab world was flourishing in the

fields of Science and Mathematics. In such a favorable environment, an Arab scholar discovered

that each letter of an alphabet has a certain frequency of appearance in any given text. This led to

the development of a cryptanalytic method, called “frequency analysis”, which resulted in breaking

a substitution cipher with comparatively small effort.

The evolution from monoalphabetic ciphers to polyalphabetic ones came from Leon Battista

Alberti and his treatise De Cifris of 1467 where he describes the design and use of his cipher disk.

A device consisting of two concentric rings with the outer ring being stationary holding an alphabet

for plaintext and the inner one being movable holding a garbled alphabet for ciphertext. In mid-

sixteenth century, Italian cryptologist Giovan Battista Bellaso described a polyalphabetic

substitution cipher that added a new element in the world of Cryptography. Misattributed to French

diplomat, cryptographer and alchemist Blaise de Vigenère (1523–1596), the now known as the

Vigenère cipher introduced the concept of the encryption key. This exceptional cipher for the

history of Cryptography was finally broken by the German infantry officer Friedrich Kasiski in

1863.

In 1882, Frank Miller described a system for securing telegraphy. A secret message could be

encrypted by adding respectively each letter of the message with the corresponding letter of a

sequence (at least equal to the message in length) of random letters using modular addition (mod

26). In 1917 his idea was further improved by Gilbert Vernam who two years later was granted a

U.S. patent for the XOR operation used in his method of encryption now called “Vernam cipher” or

“One-time pad”. In the 1940’s, exceptional mathematician and information theorist Claude Shannon

proved that the One-time pad system actually provided what is known as “perfect secrecy”. This

means that if the key (pad) used to encrypt the message has the following characteristics:

1) it is truly random,

2) its length is at least equal to that of the plaintext message,

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 3

3) it is never reused in whole or partially,

4) it is successfully kept completely secret,

then the ciphertext produced by the one-time pad system will be impossible to decrypt. Despite that

these four prerequisites were serious drawbacks and a wide adoption of the system was quite

unlikely, the high level of security it provides has given One-time pad a special place in the world

of Cryptography. A quite indicative fact is that the NSA used One-time pad tapes even until the ‘70s

while the modern stream ciphers essentially emulate the One-time pad scheme by XORing the

plaintext with their keystream to produce the ciphertext.

 Around the end of WWI, German engineer Arthur Scherbius invented a cryptographic rotor

machine which produced the ciphertext while the plaintext was being typed on its keyboard. Its

name was “Enigma” and it was massively used by Nazi Germany during WWII. The initial

cryptanalysis efforts to break it were carried out by French and Polish cryptanalysts while in

Bletchley Park, England, a team of codebreakers (including Alan Turing) developed the technology

to decrypt the daily keys which in Enigma’s case meant the initial state of its rotors. The monumental

achievements of the Government Code and Cypher School (GC&CS) in Bletchley Park contributed

enormously to the victory of the Allies and the end of the Second World War but they also marked

the beginning of our computer era through the invention of Colossus, the world's first programmable

digital computer.

 The incredibly fast pace at which computer technology advanced in the coming years paved

the way to the advent of the modern cryptographic primitives such as the one-way hash functions,

the stream and block ciphers as well as a whole new concept of encryption: Public-key

cryptography, which also provided the base for Digital Signature schemes, another immensely

important development. On the other hand, the increasing dependence of our modern technological

society on computer systems as well as the milestones conquered concerning the available

computational power and the inevitable roll-out of such powerful hardware to consumers world-

wide, introduced a variety of new threats and a completely new level of potential damages that

malevolent third parties could inflict. One of the most serious problems that arose in the last few

decades is software piracy which has evolved into a scourge for the software developers and the

companies operating in the software production sector. Another, more recent issue, appeared due to

the fact that much of today’s computer related work is done through the Internet one way or the

other and a significant percentage of the data produced are stored in servers across the “cloud”. So,

it was necessary to develop tools in order to protect all kinds of sensitive data from potentially

untrusted servers. As strange as it may seem, an idea proposed for software protection, also offered

a solution for the “untrusted server” problem.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 4

2

Oblivious RAM (ORAM)

 Overview

Oded Goldreich introduced the idea of Oblivious RAM (or “ORAM”) in the late ‘80s. In 1993 he

co-authored a paper [6] with Rafail Ostrovsky in an effort to establish theoretically the software

protection problem. They set their starting point by concluding that it is impossible to ensure that

a person with a legitimate copy of a program would not be able to produce executable copies of it,

given that only software measures of prevention are taken. The reason is that any computer software

(even if it is encrypted) is nothing more than a sequence of bits that can be copied, one by one,

resulting in an executable copy of the whole program. Since therefore the hardware has to play a

role as well, seems plausible to examine whether a hardware-only approach would suffice. But this

would lead to the manufacturing of different computer systems, designed specifically for each

application in the market which would be, of course, insanely impractical. In other words, the

solution should be a mixture of software and hardware. For example, a physically shielded (secure)

CPU holding a cryptographic key, combined with an encrypted program. This Software-Hardware-

package (SH-package) could be installed by connecting the secure CPU to the user’s computer and

loading the program in its encrypted form to its memory. During runtime, the secure CPU would be

charged with the following tasks:

• Decrypt the program’s instructions and execute them.

• Encrypt everything the program writes to computer’s RAM.

• Decrypt everything the program reads from RAM.

Even though the SH-package approach described above is certainly in the correct direction,

there is still a serious issue it is not addressing. Since the memory locations of the sequence of RAM

calls are not concealed, the whole access pattern of the RAM (“memory access pattern”) is

observable and exploitable. Of course, this is catastrophic because the information it leaks (e.g. the

loop structure of the code) can lead even to the complete reconstruction of the encrypted program.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 5

In this context, Goldreich and Ostrovsky proposed the idea of Oblivious RAM which they

defined as a probabilistic RAM for which the probability distribution of the sequence of memory

addresses accessed during an execution depends only on the running time (i.e. it is independent of

the particular input). Alternatively, this means that the sequence of memory accesses reveals no

information about the input (to the ORAM) beyond the running-time for this specific input.

This inspiring idea turned out to be extremely useful when cloud computing begun being

widely used and the need to fully protect large amounts of data residing on outsourced (untrusted

by default) servers became clear and imperative. It is sufficient to just perform the thought

experiment of replacing the secure CPU and RAM components of the RAM model with a client

and an untrusted server respectively and it immediately becomes evident that the problem of

leaking information through the data access patterns emerges, equally severe, in both cases.

 The evolution of ORAM

Ostrovsky’s proposed solution called Hierarchical ORAM achieved an overhead of 𝑂(𝑙𝑜𝑔3𝑁)

through continuous shuffling and re-encrypting of the sensitive data and many of the ORAM

algorithms that have been developed since, are based on it. In a nutshell, the algorithm allocates

memory for 𝑵 = (𝟏 + ⌈𝒍𝒐𝒈𝟒𝒕⌉) “buffers” where the ith level buffer is a hash table containing 4i

“buckets”. Each bucket is of size 𝑚 = 𝑂(𝑙𝑜𝑔𝑡), where 𝒕 is equal to the input length. Apparently,

the Nth level buffer will contain 4𝑁 = 4(1+⌈𝑙𝑜𝑔4𝑡⌉) = 4 ∙ 4⌈𝑙𝑜𝑔4𝑡⌉ = 4𝑡 buckets (Fig. 1). For each

level, a random 𝑠𝑖 and a hash function ℎ𝑠𝑖
(∙) associated with it are chosen and kept secret. During a

read operation, one data block of each buffer level is read even if the requested one may have been

found before reaching the last Nth level. It is essential for the obliviousness of the whole procedure

to keep on reading dummy blocks until N of them are read from the ORAM. The write operation is

always performed on the 1st level buffer; thus, it is expected to become full quite fast. So, in order

to avoid overflows, the contents of buffer level i are moved to buffer level i+1 (every 4𝑖−1 retrieves)

where they are obliviously hashed together with the pre-existing contents of this level. A high-level

description of the Hierarchical ORAM algorithm would be the following:

Read/Write block a

01: Scan all buckets in level 1 for block a

02: If found, store block a locally and continue with dummy block b as input

03: For i = 2 to N:

04: Compute ℎ𝑠𝑖
(a) [or ℎ𝑠𝑖

(b) if block a is already found]

05: Read the corresponding bucket

06: Scan the bucket for block a

07: If found, store a locally and continue with dummy block b as input

08: Write the bucket back

09: (Write) Modify the data in block a if necessary

10: Write block a back on the first level

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 6

Hierarchical data structure

Fig. 1 [6]

 A totally different approach to ORAM was proposed by Shi E., Chan T.H.H., Stefanov E.,

Li M. [7] in 2011. The Binary-tree based ORAM maintains the same amortized cost (𝑂(𝑙𝑜𝑔3𝑁)

using Trivial Bucket scheme) but achieves a much lower worst-case cost of 𝑂(𝑙𝑜𝑔3𝑁) compared to

the 𝑂(𝑁𝑙𝑜𝑔2𝑁) of the Hierarchical ORAM. In their construction, the server storage is organized

into a binary tree whose nodes are small “buckets” with a fixed number of slots each. A slot can

contain either a real data block or a “dummy” one. Every data block is randomly assigned to a leaf

node of the binary tree and performing a read operation translates into reading the whole path from

the root to this leaf node (Fig. 2). If a block is to be written back in the ORAM, it is first assigned

to a new random path and then added to the root bucket to avoid linkability between the two paths

given that the root node belongs to every possible path of the binary-tree. As expected, an “eviction”

method is also included to prevent overflows of the root bucket through percolating the data blocks

towards the leaves of the tree. In order to keep track of the path that is assigned to each block, a

relatively small position map is stored on the client. Applying the ORAM construction recursively

over this position map eventually leads to 𝑂(1) client-side storage.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 7

Binary-tree based ORAM

Fig. 2 [7]

 Building further upon the idea of tree based ORAM and the improvements of its performance

for multi-party computation (MPC) achieved by Gentry et al. [8], Wang, Chang and Shi came up

with the concept of Circuit ORAM [9]. An ORAM’s circuit complexity is the total circuit size of

the ORAM client algorithm over all rounds of interaction and as for several MPC protocols, XOR

operations are essentially free, the primary performance metric for the MPC case should be the

number of AND gates. The aim of Circuit ORAM algorithm is to improve the eviction method

(requiring 𝑙𝑜𝑔𝑁 data block scans in previous tree-based ORAMs) through two metadata scans (to

compute all the information necessary for the client to develop foresight) and only one scan of the

data blocks on the eviction path from the stash to the leaf. A very informative table (found in [9])

comparing several ORAM schemes with respect to their asymptotic and concrete circuit size is the

following :

 Scheme Circuit Size (asymptotic)* # AND gates (concrete)**

Hierarchical ORAM [6] 𝑂(𝐷𝑙𝑜𝑔3𝑁 + 𝐶𝑃𝑅𝐹𝑙𝑜𝑔
2𝑁) ≥ 476.1M

Binary-tree ORAM [7] 𝑂((𝐷 + 𝑙𝑜𝑔2𝑁)𝑙𝑜𝑔2𝑁)𝜔(1) 30.1M

Path ORAM (naive circuit) [10] 𝑂((𝐷 + 𝑙𝑜𝑔2𝑁)𝑙𝑜𝑔2𝑁)𝜔(1) 56.6M

Path ORAM (o-sort circuit) [11] 𝑂((𝐷 + 𝑙𝑜𝑔2𝑁)𝑙𝑜𝑔𝑁𝑙𝑜𝑔𝑙𝑜𝑔𝑁)𝜔(1) 41.4M

Circuit ORAM [9] 𝑶((𝑫 + 𝒍𝒐𝒈𝟐𝑵)𝒍𝒐𝒈𝑵)𝝎(𝟏) 0.97M

*: The variable 𝐶𝑃𝑅𝐹 denotes the circuit size of a PRF function with input size of 𝑂(𝑙𝑜𝑔𝑁) bits.

**: The concrete circuit size is calculated based on 4GB data with a 32-bit block size, with 2−80 security failure

probability.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 8

 The Path ORAM algorithm

A real breakthrough on Oblivious RAMs came from Emil Stefanov et al. in 2012 [10] when they

presented their Path ORAM algorithm. An extremely simple and efficient approach that requires

only a small client storage and achieves 𝑂(𝑙𝑜𝑔𝑁) overhead for data blocks of size 𝐵 = 𝛺(𝑙𝑜𝑔2𝑁)

bits. The key idea is to treat the storage space (e.g. the untrusted server) as a binary tree where each

one of its nodes (called a bucket) contains a fixed number of encrypted data blocks. On the other

side, the client maintains a local data structure (called the stash) where it keeps a small number of

the data blocks. Also, at any given moment, each block is mapped to a uniformly random leaf node

of the binary tree. These (block, leaf) tuples form the position map that is also kept on the client

side. Thus, if a block a is mapped to position x, it means that a resides either in a bucket along the

path from the root to the xth leaf node of the ORAM’s binary tree or in the stash.

Fig. 3 [10]

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 9

The read and write operations are implemented using a single protocol called Access (Fig. 3) which

can be concisely described as follows:

Lines 1-2: Remap block → Assign a new random position to block a while x holds its old position.

Lines 3-5: Read path → Read the path 𝑃(𝑥) that contains block a.

Lines 6-9: Update block → If the user performs a write operation, update the data in block a.

Lines 10-15: Write path → Write the path back to the ORAM, starting from the leaf and including

blocks from the stash whose paths intersect at a certain tree level with the one being written. In other

words, satisfying the condition: 𝑃(𝑥, 𝑙) = 𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑎′], 𝑙).

Our python implementation of Path ORAM as a function called oramAccess (excluding some lines

of code for clarity that can be found anyway in the Appendix) is shown below:

def oramAccess(op, block_node):

 global S

 S = [] # Initialize local stash as a list of tuples

 oramPath = []

 if op != 'readandremove' and op != 'add': raise ValueError

 jnode = json.dumps(block_node.__dict__) # Serialize object block_node to JSON

 dnode = json.loads(jnode) # Turn JSON into python dictionary

 x = dnode['pos']

 oramPath = oram.P(oram.nod[L, x]) # Get path of leaf x and store it locally in a list

 # Read the block in question from the local stash

 block = next((a for a in S if a[0] == dnode['label']), ('None', 'Null', 0, {}))

 if op == 'add': # If the operation is 'add':

 print('(Add)')

 if block in S:

 S.remove(block) # Remove the old block from the stash if it's there

 # Add the new block, data and its children positions or the old block with new data

 S.append((dnode['label'], dnode['data'], dnode['pos'], dnode['chPos']))

 if block in S:

 S.remove(block)

 S_temp = []

 for l in range(L, -1, -1):

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 10

 # S_temp = {b in S : P(x, l) = P(position[b], l)}

 S_temp = [b for b in S if oram.Pl(oram.nod[L, x], l) == oram.Pl(oram.nod[L, b[2]], l)])]

S_temp = {Select min(|S_temp|, Z) elements from S_temp}

 S_temp = S_temp[:min(len(S_temp), Z

 # S = S - S_temp

 S = [item for item in S if item not in S_temp]

 # WriteBucket(P(x, l), S_temp)

 writeBucket(oram.Pl(oram.nod[L, x], l), S_temp)

 if op == 'readandremove':

 print('(ReadAndRemove)')

 askedBlock = odnode.Odnode(block[0], block[1], block[2], json.loads(str(block[3]).replace("'", '"')

))

 return askedBlock

One of the key choices we made concerning the whole project is the data type to represent the

concept of a node in the oblivious data structures. Given the fact that this data type should be able

to hold several data fields of various types themselves, we came up with the following python class,

called Odnode (Oblivious data node):

class Odnode:

 def __init__(self, label, data, pos, chPos):

 self.label = label

 self.data = data

 self.pos = pos

 self.chPos = chPos

So, every Odnode object holds the node’s:

• id → label (type: string)

• payload → data (type: string)

• position tag in the ORAM → pos (type: integer)

• children’s id’s and positions in the ORAM → chPos (type: dictionary)

The reason why the Odnode class contains the fields pos and chPos that are not directly connected

with the functionality of Path ORAM will become evident in the next chapter where the ODS

framework is discussed.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 11

3

Oblivious Data Structures

 Overview

A data structure can be generally defined as a specialized format for organizing, processing,

retrieving and storing data. The important role data structures play in Computer Science is

undoubtedly proclaimed in the title of the book “Algorithms + Data Structures = Programs”,

written by Turing Award winner Niklaus Emil Wirth. The idea behind the oblivious data structures

is that it should be possible to create more efficient constructions that achieve lower asymptotic

blowup than the generic ORAM schemes because the algorithms of building and managing common

data structures exhibit a certain predictability in their access patterns. The access pattern of general

RAM programs can be a complete graph since they make arbitrary random accesses to data but

common data structures have a sparser access pattern graph than generic RAM programs because

there are some obvious limitations depending on the type of the structure. For example, memory

accesses on a binary search tree can only go from one tree node to an adjacent one. This observation

led to the assumption that there is an efficiency margin to be gained compared to ORAMs by not

hiding some publicly known aspects of the common data structures’ access patterns.

Consequently, in their 2014 paper [12], Elaine Shi, Emil Stefanov et al. presented the

following definition of an Oblivious Data Structure (ODS):

Definition (Oblivious data structure). We say that a data structure 𝐷 is oblivious if there exists a

polynomial-time simulator 𝑆, such that for any polynomial-length sequence of data structure

operations 𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗ = ((𝑜𝑝1, 𝑎𝑟𝑔1), … , (𝑜𝑝𝑀, 𝑎𝑟𝑔𝑀))

𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠𝐷(𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗) ≡ 𝑆(𝐿(𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗))

where 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠𝐷(𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗) is the physical addresses generated by the oblivious data structure during

a sequence of operations 𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗; and 𝐿(𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗) is referred to as the leakage function. Typically, we

consider that 𝐿(𝑜𝑝𝑠⃗⃗⃗⃗⃗⃗ ⃗) = 𝑀, i.e., the number of operations is leaked, but nothing else.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 12

 This definition implies that a data structure is oblivious if the access pattern produced by a

sequence of operations on the data structure reveals only the total number of these operations and

nothing else. In other words, no polynomial-time distinguisher can distinguish the sequence of real

addresses generated by the oblivious data structure from a sequence of addresses produced by a

polynomial-time simulator 𝑆 with knowledge of only the total number of operations.

 Two different techniques to create and handle oblivious data structures are described in the

paper depending on the type of sparse access pattern graph each data structure generates:

• Locality-based, for access pattern graphs with low doubling dimensions (out of the scope of

this thesis).

• Pointer-based, for access pattern graphs that are rooted trees with bounded degree which

can achieve 𝑂(𝑙𝑜𝑔𝑁) (Fig. 4) bandwidth blowup, a significant improvement compared to

best known ORAM.

Fig. 4 [12]

 The ODS framework

Building further upon the core concept of oblivious data structures, Shi’s team came up with a

practical construction of their approach. A generalized framework where the nodes of the data

structure are stored (in encrypted form) in a non-recursive, position-based ORAM on the server.

Due to its overall very good performance and simplicity, Path ORAM was their scheme of choice.

Each node of the data structure has the following format:

𝐧𝐨𝐝𝐞 ≔ (𝐢𝐝,𝐝𝐚𝐭𝐚, 𝐩𝐨𝐬, 𝐜𝐡𝐢𝐥𝐝𝐫𝐞𝐧𝐏𝐨𝐬)

Where data is the payload of the node, id is its identifier and pos, its position tag in the ORAM.

What makes this construction special though, is the 𝐜𝐡𝐢𝐥𝐝𝐫𝐞𝐧𝐏𝐨𝐬 field. This is a mapping from

every child node’s id to its position tag. Keeping this information in every node means that the need

of a position map on the client side is obsolete. It is obviously sufficient to just store the id and pos

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 13

of the root node to be able to actually traverse the whole data structure as long as its access pattern

graph is a rooted tree of bounded degree.

The framework communicates with the underlying ORAM through two basic functions:

• 𝐑𝐞𝐚𝐝𝐀𝐧𝐝𝐑𝐞𝐦𝐨𝐯𝐞(𝐢𝐝,𝐩𝐨𝐬): fetches the node identified by id which is at position pos in

the ORAM and removes it from the server.

• 𝐀𝐝𝐝(𝐢𝐝, 𝐩𝐨𝐬, 𝐝𝐚𝐭𝐚): writes the node identified by id, which contains the payload data to

some location among a set of locations indicated by pos.

Once a node is fetched from the server through a ReadAndRemove call, its position tag is

revealed to the server. So, there is a need for a new position tag to be generated for this node. Of

course, this means the position tag in its parent’s children position list should also be updated.

The functionality of the framework relies on a relatively small client-side cache of 𝑂(𝑙𝑜𝑔𝑁)

size that stores all the nodes which are read and removed from the server when they are needed for

an operation. This way the client is able to perform whatever updates are requested locally and more

importantly without fetching any nodes twice from the server before the operation is complete and

they are written back. The aforementioned updates can be insertions, removals as well as

modifications of graph structures. When these have finished, the cache nodes are assigned new

uniformly random position tags, their parent nodes are updated in order to point to the correct

positions of their children, they are written back to the server and finally, the cache is emptied.

An important detail that, if not taken care of, can lead to information leakage is that every

cache miss during an operation will generate requests to the server. Thus, the number of accesses to

the server should always be the same independently of the operation being performed on the data

structure. Therefore, the operations are padded with dummy ReadAndRemove and Add calls to the

maximum number required by any data structure operation.

 ODS framework architecture

The oblivious data structures algorithms are implemented through calls to the ODS client. Its Access

protocol supports four types of operations:

1. (Read, id) → Read the node identified by id

2. (Write, id, data*) → Write the node id holding the payload data*

3. (Insert, id, data*) → Insert a new node id with payload data*

4. (Del, id) → Delete the node id

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 14

Assuming the untrusted server supports two basic functions, such as GET(physical_address) and

PUT(physical_address, data), a high-level overview of the framework’s architecture (Fig. 5) can

be described as follows:

1) One single call to ODS.Start in order to prepare for the operation (fetch the root node).

2) A sequence of ODS.Access calls in order to read and remove from the server the nodes for the

requested operation and perform all the necessary updates to them locally (in cache). It is worth

noting that not every ODS.Access call will result to a ReadAndRemove operation, since nodes

in cache can be directly returned. However, as mentioned before, this cannot lead to information

leakage thanks to the padding performed by the ODS client on the next stage which ensures that

every operation results in the same number of ReadAndRemove and Add calls to the ORAM.

3) One single call to ODS.Finalize in order to:

a) Assign new random positions (for the ORAM) to all the nodes in cache and update their

parents’ childrenPos entries to match them.

b) Write all the nodes in cache back to the server through a sequence of Add calls to the ORAM.

c) Perform the necessary padding to ensure that every data structure operation generates the

same number of ReadAndRemove and Add calls to the underlying position-based ORAM.

ODS Framework Architecture

Fig. 5

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 15

ODS Framework Algorithm

Fig. 6 [12]

The pseudo code of the ODS client for dynamic data structures published by Shi et al. can be seen

in Fig. 6 while our python implementation is the following:

############################## ODS Framework Functions ##############################

def odsStart(): # Update cache to contain the root

 global cache

 global root

 cache.clear()

 if root != None:

 cache.append(root)

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 16

################### Read ###################

def read(nodeLabel):

 global cache

 isInCache = any(x.label == nodeLabel for x in cache) # True if the block is already in cache

 if isInCache == False:

 n = 0

 while isInCache == False: #

 childDictKeys = list(cache[n].chPos.keys()) #

 childName = childDictKeys[0] #

 childPosition = cache[n].chPos[childName] # Traverse through the ..

 if not any(x.label == childName for x in cache): # .. nodes using their ..

 ask = odnode.Odnode(childName, 'null', childPosition, {}) # .. children positions ..

 fetch = oramAccess('readandremove', ask) # .. until the ..

 cache.append(fetch) # .. requested one ..

 isInCache = any(x.label == nodeLabel for x in cache) # .. is found.

 n += 1 #

 return cache[-1] # Return the last object (node) in cache

#################### Insert ####################

def insert(newNodeLabel, newNodeData):

 global cache

 global root

 global top

 newNode = odnode.Odnode(newNodeLabel, newNodeData, 0, {}) # Create Odnode instance for the new block

 if root != None: oramAccess('readandremove', root) # Remove root from ORAM

 cache.insert(0, newNode) # Insert new block in cache at index 0

 root = newNode # newNode is the new root

 if top == None: # If the structure was empty, newNode is..

 top = newNode # .. also the new top.

################ Update(Write) ################

def write(nodeLabel, newData):

 global cache

 isInCache = any(x.label == nodeLabel for x in cache) # True if the block is already in cache

 if isInCache == False:

 read(nodeLabel)

 next((n for n in cache if n.label == nodeLabel)).data = newData

################# Delete #################

def delete(nodeLabel):

 global cache

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 17

 global root

 if len(cache) == 0:

 print('\nThe Oblivious Data Structure is empty!\n')

 else:

 if root != None: oramAccess('readandremove', root) # Remove root from ORAM

 read(nodeLabel) # Get the node from ORAM

 del cache[-1] # Delete from cache

################ Finalize ################

def finalize(typeIs):

 print('finalize()')

 global cache

 global root

 global top

 if cache != [] and typeIs != 'enqueue':

 # Assign new random position to each node in cache

 for n in cache:

 pos = random.randint(0, 2**L - 1)

 n.pos = pos

 # Update children's positions in each node

 if typeIs == 'linear':

 for i, j in enumerate(cache):

 if i < len(cache)-1:

 cName = cache[i+1].label # Assign to cName current block's child label

 cPos = cache[i+1].pos # Assign to cPos current block's child position

 j.chPos = {cName : cPos} # Add to current block the pair {Child_id : position}

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 if typeIs == 'heap':

 cacheNodeDict = dict((x.label, x.pos) for x in cache)

 for i, j in enumerate(cache):

 if i < len(cache)-1:

 childrenList = list(j.chPos.keys())

 if len(childrenList) > 0:

 if childrenList[0] in list(cacheNodeDict.keys()):

 j.chPos[childrenList[0]] = cacheNodeDict[childrenList[0]]

 if len(childrenList) > 1:

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 18

 if childrenList[1] in list(cacheNodeDict.keys()):

 j.chPos[childrenList[1]] = cacheNodeDict[childrenList[1]]

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 # Write cahe back to ORAM

 for k in cache:

 oramAccess('add', k)

 # Empty client cache

 cache.clear()

Although it may seem strange that the finalize function takes the type of the data structure as an

argument, it will become evident in the next chapter that it is due to certain features of the oblivious

data structures algorithms that this was actually necessary.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 19

4

Python Implementation

 Oblivious Stack

As it can be seen in Fig. 7, the pseudocode of the Oblivious Stack algorithm consists of the two basic

functions of a stack: Push(datanode) and Pop(). In Push, variable id is assigned a new value by the

function nextid() and the new node is pushed to the stack by calling ODS.Access and inserting it at

the top of the stack. Before calling ODS.Finalize, the variable top is updated to point to the new

top node of the stack. Pop just reads the top node of the stack (so, it is removed from the ORAM)

and keeps it locally. Then deletes it from cache and assigns to the pointer top the next node in the

stack.

Fig. 7 [12]

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 20

In our application, we have implemented two functions that appear in all the data structures’ option

menus and are not specific to this one. These are:

• IsEmpty(): checks if the oblivious structure is empty. Once the odsStart() is called at the

beginning of every operation, the root node is expected to reside in cache. So, the only case

where the size of the cache equals zero (len(cache) == 0 → True) is when the oblivious

structure is actually empty.

• Path ORAM explorer: displays the contents of the ORAM’s binary tree on the server.

The section of our program referring to the Oblivious Stack is the following:

 print('Oblivious Stack Options')

 print('_______________________')

 print('[1] --> Push(item)')

 print('[2] --> Pop()')

 print('[3] --> IsEmpty()')

 print('---------------------------')

 print('[4] --> Path ORAM explorer')

 print('[ENTER] --> EXIT')

 print('___________________________')

 select = input('Please enter your choice : ')

 if select == '':

 break

 odsStart()

 if select == '1':

 newBlockName = input('\nEnter the ID of the item you want to push : ')

 newBlockData = input("Enter the data of item '{0}' : ".format(newBlockName))

 print()

 def push(node, data):

 insert(node, data)

 finalize('linear')

 push(newBlockName, newBlockData)

 print('\nOperation finished successfully!')

 input('\nPlease press [ENTER] to continue...')

 if select == '2':

 print()

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 21

 def pop():

 global cache

 global root

 if root != None:

 oldTop = oramAccess('readandremove', root)

 if oldTop.chPos == {}: # If this is the last item

 newRoot = None

 else:

 rootChildKey = list(oldTop.chPos.keys())[0] # Get the root's child label

 newRoot = read(rootChildKey) # Read root's next item

 del cache[0] # Delete old root (top)

 root = newRoot

 finalize('linear')

 else:

 oldTop = None

 return oldTop

 topItem = pop()

 if topItem != None:

 print('\nItem ID :', topItem.label)

 print('Item Data :', topItem.data)

 else:

 print('\nThe Oblivious Stack is empty!')

 input('\nPlease press [ENTER] to continue...')

When the options menu is displayed, the user can select between Push(item) (insert a new data

block in the stack) and Pop() (display the top element of the stack and delete it from the data

structure). Their functionality is described below:

• Push(item): The new block’s label and data are provided by the user and then the function

push(node, data) is called which simply consists of calling insert(node, data) and then

finalize(‘linear’).

• Pop(): The top node (root) is assigned to variable oldTop and removed from the stack. Then

the next node is fetched by calling the function read(rootChildKey) where variable

rootChildKey holds the label (id) of the child of the old top node. This node becomes the

new top of the oblivious stack before the finalize() is called. Of course, certain precautions

are taken in case the stack is already empty or it has only one last element. The node oldTop

is returned by the function and its label and data are displayed to the user.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 22

 Oblivious Queue

In Oblivious Queue, the algorithm needs to maintain two pointers (head and tail) instead of one

(top) which was the case in Oblivious Stack. The pseudocode as presented in the original paper can

be seen below (Fig. 8).

Fig. 8 [12]

Our Oblivious Queue implementation is the following:

 print('Oblivious Queue Options')

 print('_______________________')

 print('[1] --> Enqueue(item)')

 print('[2] --> Dequeue()')

 print('[3] --> IsEmpty()')

 print('---------------------------')

 print('[4] --> Path ORAM explorer')

 print('[ENTER] --> EXIT')

 print('___________________________')

 select = input('Please enter your choice : ')

 if select == '':

 break

 odsStart()

 if select == '1':

 global nextID

 global nextPOS

 global queueSize

 newID = nextID

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 23

 newPOS = nextPOS

 queueSize += 1

 nextID = str(int(newID) + 1)

 nextPOS = random.randint(0, 2**L - 1) # Generate extra random pos for next enqueue()

 newBlockData = input("\nEnter the data of item '{0}' : ".format(newID))

 print()

 newNode = odnode.Odnode(newID, newBlockData, newPOS, {nextID : nextPOS})

 def enqueue(qnode):

 global root

 global queueSize

 cache.clear()

 cache.append(qnode)

 finalize('enqueue')

 if queueSize == 1:

 root = newNode

 enqueue(newNode)

 print('\nOperation finished successfully!')

 input('\nPlease press [ENTER] to continue...')

 if select == '2':

 print()

 def dequeue():

 global cache

 global root

 global queueSize

 if root != None:

 oldHead = oramAccess('readandremove', root)

 queueSize -= 1

 rootChildKey = list(oldHead.chPos.keys())[0]

 if queueSize == 0: # If this is the last item

 newRoot = None

 else:

 newRoot = read(rootChildKey) # Read root's next item

 del cache[0] # Delete old root (top)

 root = newRoot

 finalize('linear')

 else:

 oldHead = None

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 24

 return oldHead

 headItem = dequeue()

 if headItem != None:

 print('\nItem ID :', headItem.label)

 print('Item Data :', headItem.data)

 else:

 print('\nThe Oblivious Queue is empty!')

 input('\nPlease press [ENTER] to continue...')

 if select == '3':

 def isQueueEmpty():

 return (len(cache) == 0)

 ans = isQueueEmpty()

 if ans:

 print('\nTRUE - The Oblivious Queue is empty.')

 else:

 print('\nFALSE - The Oblivious Queue is NOT empty.')

 input('\nPlease press [ENTER] to continue...')

From this options menu the user can select between Enqueue(item) (insert a new data block at the

tail of the oblivious queue) and Dequeue() (display the head element of the queue and remove it

from the data structure). Their functionality is described below:

• Enqueue(item): The new block’s label (id) is provided by nextID (which equals the id of

the tail, incremented by 1) while its data come from user’s input. In order to be able to add

new elements at the tail without the obligation to update the previous tail’s child position tag

(and thus necessarily traverse the whole queue), three essential operations take place:

1. Increment nextID by 1.

2. Generate a new random position tag for nextPOS, and

3. Incorporate these features in the newNode object’s child position field in order to

prepare it for the next possible Enqueue().

• Dequeue(): The head node (root) is assigned to variable oldHead and removed from the

oblivious queue. Then the next node in the queue is fetched by calling the function

read(rootChildKey) and it is subsequently assigned to the head pointer (newRoot) before

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 25

finalize() is called. Of course, as in the Oblivious Stack section, certain precautions are again

taken in case the queue is already empty or it has only one last element. The node oldHead

is returned by the function and its id and data are displayed to the user.

 Oblivious Heap (Priority Queue)

The algorithm for Oblivious Heap (Fig. 9 and Fig. 10) consists of three functions:

1. ReadPath(): Reads and removes from the ORAM the path from the root of the heap to the

leaf that is its last node. Every node on this path is appended to a list which is eventually

returned by the function.

2. Insert(key): After the ODS.Start() and ReadPath() have been executed, the new key is

appended to the list returned by ReadPath(). Then the list is traversed once by a “for” loop

in order to restore the min-heap property wherever it has been violated. Finally, the nodes

are moved to the local cache by calling ODS.Access(Write) and then the ODS.Finalize() call

writes the whole path (together with the new node) back to the ORAM.

3. ExtractMin(): Exactly as in Insert(key) above, ODS.Start() and ReadPath() are executed at

the beginning of the whole process. As the structure is a min-heap the node carrying the

minimum key resides at the root of the tree. Therefore, it is the first node in the list returned

by ReadPath(). So, it is assigned to variable key* and then it is removed from the structure

and replaced by the last node of the list returned by ReadPath() (which happens to be also

the last node of the whole heap). Then the tree is traversed starting from the new root and

going down a path detecting and restoring the min-heap property throughout the heap. In the

end, the value of key* is returned by the function.

An important difference that should be noticed between the algorithms of the two “linear” oblivious

structures (stack and queue) and this binary tree structure is that in the former case, we have a

padding value of 1 (𝑝𝑎𝑑𝑉𝑎𝑙 = 1) while in the latter case of the oblivious heap 𝑝𝑎𝑑𝑉𝑎𝑙 = 3𝑙𝑜𝑔𝑁.

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 26

Oblivious Heap (Priority Queue)

Fig. 9 [12]

Fig. 10 [12]

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 27

In our ReadPath() python implementation we had to distinguish between the call from

ExtractMin() and the call from Insert(key). This had to be done due to the fact that in our heap, the

id’s of the nodes are given by the user and are NOT automatically attributed by the program as an

integer sequence starting from 0 or 1. This has the consequence that when Insert(key) is called,

ReadPath() must return, as last node of the path, the last candidate parent node for the new node to

be attached to, and not the actual last node of the heap that is needed for the ExtractMin() algorithm.

For example, if the last node of the tree is a leaf at the rightmost position of a certain level 𝑙, then

the new node must be attached to the leftmost node of this level in order to start level 𝑙 + 1. Another

difference is that our function does not return a list but draws the path directly into the cache instead:

def readPath(operation):

 global cache

 global root

 global last

 depth = math.floor(math.log2(last))

 currentNode = oramAccess('readandremove', root)

 binLast = last + 1

 if ((binLast & (binLast - 1)) != 0) or (operation == 'extract'): # Last node IS NOT at the end of a tree level ..

 for k in range(depth-1, 0, -1): # .. or the call is from extractMin()

 # Check if the last parent has already 2 children. If yes, go to the next

 if k == 1 and (last % 2 == 1) and (operation == 'insert'):

 ind = math.floor(last/2)

 else:

 ind = math.floor(last/math.pow(2,k)) - 1

 if (ind % 2) == 1:

 leftChildLabel = list(currentNode.chPos.keys())[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 else:

 rightChildLabel = list(currentNode.chPos.keys())[1]

 rightChildPos = currentNode.chPos[rightChildLabel]

 ask = odnode.Odnode(rightChildLabel, 'null', rightChildPos, {}) # Ask for the right child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(fetch) # Append fetched node to cache

 currentNode = fetch

 else: # Last node IS at the end of a level

 for k in range(depth):

 leftChildLabel = list(currentNode.chPos.keys())[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(fetch) # Append fetched node to cache

 currentNode = fetch

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 28

Our python version of Insert() function, as it can be seen below, is called insertKey and takes

the id and the key of the new node as arguments. Firstly, it creates the new Odnode instance with

the given arguments and appends it to the end of the cache after readPath() has been called. Then

the “Upheap” process starts which is responsible for restoring the min-heap property while at the

same time updates the children nodes mappings (chPos dictionaries’ keys) wherever is necessary.

def insertKey(id, key):

 global cache

 global root

 global last

 newNode = odnode.Odnode(id, key, 0, {}) # Create Odnode instance for the new node

 if last == 0:

 root = newNode

 oramAccess('add', newNode)

 last = 1

 else:

 readPath('insert')

 cache.append(newNode) # Append new node in cache

 cache[-2].chPos[cache[-1].label] = cache[-1].pos # Attach new node to the heap

 ################################# Upheap #################################

 k = len(cache)-1

 while (k > 0) and (int(cache[k].data) < int(cache[k-1].data)):

 cache[k-1].label, cache[k].label = cache[k].label, cache[k-1].label # Swap cache objects id's to restore order

 cache[k-1].data, cache[k].data = cache[k].data, cache[k-1].data # Swap cache objects keys to restore order

 childKeys = list(cache[k-1].chPos.keys())

 ## If swapped node was left child

 if childKeys[0] == cache[k-1].label:

 if len(childKeys) == 2:

 newPos = {cache[k-1].label : cache[k].label, childKeys[1] : childKeys[1]}

 cache[k-1].chPos = dict((newPos[key], value) for (key, value) in cache[k-1].chPos.items())

 else:

 newPos = {cache[k-1].label : cache[k].label}

 cache[k-1].chPos = dict((newPos[key], value) for (key, value) in cache[k-1].chPos.items())

 # If swapped node hasn't reached the root

 if k-2 >= 0:

 childKeysParent = list(cache[k-2].chPos.keys())

 # If swapped node was left child

 if childKeysParent[0] == cache[k].label:

 newPosParent = {cache[k].label : cache[k-1].label, childKeysParent[1] : childKeysParent[1]}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 29

 # If swapped node was right child

 if childKeysParent[1] == cache[k].label:

 newPosParent = {childKeysParent[0] : childKeysParent[0], cache[k].label : cache[k-1].label}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 ## If swapped node was right child

 if len(childKeys) > 1 and childKeys[1] == cache[k-1].label:

 newPos = {childKeys[0] : childKeys[0], cache[k-1].label : cache[k].label}

 cache[k-1].chPos = dict((newPos[key], value) for (key, value) in cache[k-1].chPos.items())

 # If swapped node hasn't reached the root

 if k-2 >= 0:

 childKeysParent = list(cache[k-2].chPos.keys())

 # If swapped node was left child

 if childKeysParent[0] == cache[k].label:

 newPosParent = {cache[k].label : cache[k-1].label, childKeysParent[1] : childKeysParent[1]}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 # If swapped node was right child

 if childKeysParent[1] == cache[k].label:

 newPosParent = {childKeysParent[0] : childKeysParent[0], cache[k].label : cache[k-1].label}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 k -= 1

 last += 1

 finalize('heap')

 Finally, our extractMin() python function executes first a readPath() call and fills the local

cache with the nodes belonging to the path from the root to the parent of the last node of the heap.

It assigns the root node (which obviously holds the minimum value) to the variable min and then

fetches the last node of the heap from the ORAM and replaces the root with it. Of course, the last

node in cache must be deleted and the heap’s size must be reduced by 1. Then the “Downheap”

process starts, aiming to put the new root to the right place in the tree preserving the min-heap

property. During “Downheap”, if a parent node has a key with greater value than the smaller of the

two (or one) children nodes, their labels (id’s) and data (keys) are swapped and the algorithm

continues the comparison downwards until the “new root” reaches a node where the min-heap

property is not violated. Of course, when a swap takes place, the children nodes mappings (the keys

in chPos dictionaries showing which are the children nodes) must be updated on the current node

(parent) and on the previous one (parent’s parent) except when the current node in comparison is

the root and there is no previous one. The python code of extractMin() is the following:

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 30

def extractMin():

 global cache

 global root

 global last

 if last > 0:

 readPath('extract')

 currentNode = cache[-1]

 # If last node in cache is not a leaf, fetch another one

 if currentNode.chPos != {}:

 ind = last - 1

 if (ind % 2) == 1:

 leftChildLabel = list(currentNode.chPos.keys())[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 else:

 rightChildLabel = list(currentNode.chPos.keys())[1]

 rightChildPos = currentNode.chPos[rightChildLabel]

 ask = odnode.Odnode(rightChildLabel, 'null', rightChildPos, {}) # Ask for the right child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(fetch) # Append fetched node to cache

 min = (cache[0].label, cache[0].data) # Assign minimum element to min

 cache[0].label = cache[-1].label # Last element becomes the new ..

 cache[0].data = cache[-1].data # .. root leaving chPos's as they are

 del cache[-1] # Remove last element from cache

 if len(cache) > 0:

 del cache[-1].chPos[cache[0].label] # Remove previous last element from its parent's chPos dictionary

 last -= 1

 ################################# Downheap #################################

 if last > 0:

 currentNode = cache[0]

 previousNode = None

 k = 0

 while k <= math.floor(last/2) - 1:

 childKeys = list(currentNode.chPos.keys())

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 31

 if len(childKeys) > 0: # If current node has at least 1 child

 leftChildLabel = childKeys[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 isInCache = any(x.label == leftChildLabel for x in cache) # True if the node in question is already in cache

 if isInCache == False:

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 leftChild = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(leftChild) # Add left child to cache

 else:

 leftChild = next(n for n in cache if n.label == leftChildLabel)

 indexLeft = next((i for i, item in enumerate(cache) if item.label == leftChildLabel), -1)

 rightChild = None # Initialize right child node

 if len(childKeys) > 1: # If current node has 2 children

 rightChildLabel = childKeys[1]

 rightChildPos = currentNode.chPos[rightChildLabel]

 isInCache = any(x.label == rightChildLabel for x in cache) # True if the node in question is already in cache

 if isInCache == False:

 ask = odnode.Odnode(rightChildLabel, 'null', rightChildPos, {}) # Ask for the right child ..

 rightChild = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(rightChild) # Add right child to cache

 else:

 rightChild = next(n for n in cache if n.label == rightChildLabel)

 indexRight = next((i for i, item in enumerate(cache) if item.label == rightChildLabel), -1)

 if len(childKeys) == 0:

 # The node has no children

 break

 if rightChild != None:

 if int(leftChild.data) < int(rightChild.data):

 if int(currentNode.data) > int(leftChild.data):

 # Swap cache objects id's to restore order

 currentNode.label, cache[indexLeft].label = cache[indexLeft].label, currentNode.label

 # Swap cache objects keys to restore order

 currentNode.data, cache[indexLeft].data = cache[indexLeft].data, currentNode.data

 # Correction of the chPos dictionary (label:data) pairs in current node

 if len(childKeys) == 2:

 newPos = {currentNode.label : cache[indexLeft].label, childKeys[1] : childKeys[1]}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 else:

 newPos = {currentNode.label : cache[indexLeft].label}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 32

 # Correction of the chPos dictionary (label:data) pairs in previous node

 if previousNode != None:

 previousChildKeys = list(previousNode.chPos.keys())

 if cache[indexLeft].label == previousChildKeys[0]: # If swapped node was a left child

 newPos = {cache[indexLeft].label : currentNode.label, previousChildKeys[1] : previousChildKeys[1]}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 else: # If swapped node was a right child

 newPos = {previousChildKeys[0] : previousChildKeys[0], cache[indexLeft].label : currentNode.label}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 previousNode = currentNode # Assign current node to previousNode

 currentNode = cache[indexLeft] # Let current node be the left child

 k = 2*k + 1 # Move node index to left child

 else:

 # The root node reached the right position in the heap

 break

 else:

 if int(currentNode.data) > int(rightChild.data):

 # Swap cache objects id's to restore order

 currentNode.label, cache[indexRight].label = cache[indexRight].label, currentNode.label

 # Swap cache objects keys to restore order

 currentNode.data, cache[indexRight].data = cache[indexRight].data, currentNode.data

 # Correction of the chPos dictionary (label:data) pairs in current node

 newPos = {childKeys[0] : childKeys[0], currentNode.label : cache[indexRight].label}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 # Correction of the chPos dictionary (label:data) pairs in previous node

 if previousNode != None:

 previousChildKeys = list(previousNode.chPos.keys())

 if cache[indexRight].label == previousChildKeys[0]: # If swapped node was a left child

 newPos = {cache[indexRight].label : currentNode.label, previousChildKeys[1] : previousChildKeys[1]}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 else: # If swapped node was a right child

 newPos = {previousChildKeys[0] : previousChildKeys[0], cache[indexRight].label : currentNode.label}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 previousNode = currentNode # Assign current node to previousNode

 currentNode = cache[indexRight] # Let current node be the right child

 k = 2*k + 2 # Move node index to right child

 else:

 # The root node reached the right position in the heap

 break

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 33

 else: # rightChild = None

 if int(currentNode.data) > int(leftChild.data):

 # Swap cache objects id's to restore order

 currentNode.label, cache[indexLeft].label = cache[indexLeft].label, currentNode.label

 # Swap cache objects keys to restore order

 currentNode.data, cache[indexLeft].data = cache[indexLeft].data, currentNode.data

 # Correction of the chPos dictionary (label:data) pairs in parent node

 if len(childKeys) == 2:

 newPos = {currentNode.label : cache[indexLeft].label, childKeys[1] : childKeys[1]}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 else:

 newPos = {currentNode.label : cache[indexLeft].label}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 # Correction of the chPos dictionary (label:data) pairs in previous node

 if previousNode != None:

 previousChildKeys = list(previousNode.chPos.keys())

 if cache[indexLeft].label == previousChildKeys[0]: # If swapped node was a left child

 newPos = {cache[indexLeft].label : currentNode.label, previousChildKeys[1] : previousChildKeys[1]}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 else: # If swapped node was a right child

 newPos = {previousChildKeys[0] : previousChildKeys[0], cache[indexLeft].label : currentNode.label}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 previousNode = currentNode # Assign current node to previousNode

 currentNode = cache[indexLeft] # Let current node be the left child

 k = 2*k + 1 # Move node index to left child

 break

 finalize('heap')

 return min

 else:

 return ()

 After “Downheap” finishes, the cache contains all the nodes fetched by readPath() plus

some nodes that were needed to restore the heap property. In this case, finalize() should accomplish

the difficult task of attributing new random positions to all of them and of correctly updating all the

chPos python dictionaries of the nodes in accordance with these new random values. This explains

the different functionality of finalize() depending on its typeIs argument as it was pointed out in the

previous chapter (note: in enqueue(), the new random positions are created by the function itself).

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 34

 Conclusions

As stated by the authors of the original paper on which our work is based, the development of this

general framework for oblivious data structures achieves better performance than generic ORAM

both asymptotically and empirically (Fig. 11 and 12). This is a logical consequence of the fact that

the predictability certain data structures exhibit in their access patterns can be efficiently used in

designing their oblivious versions.

Bandwidth blowup in comparison with general ORAM - Payload = 64Bytes

Fig. 11 [12]

Secure Computation over ODS vs. ORAM - Payload = 32 bits

Fig. 12 [12]

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 35

References

1. Alexander D'Agapeyeff (2013), Codes and Ciphers - A History of Cryptography.

2. Donald Davies, A Brief History of Cryptography. Information Security Technical Report.

Vol. 2, No. 2 (1997) 14-17.

3. Huzaifa Sidhpurwala (2013), A Brief History of Cryptography,

https://access.redhat.com/blogs/766093/posts/1976023

4. William A, Kotas (2000), A Brief History of Cryptography, University of Tennessee Honors

Thesis Projects.

5. Gautham Sekar (2011), Cryptanalysis and Design of Symmetric Cryptographic Algorithms,

Katholieke Universiteit Leuven – Faculty of Engineering.

6. Goldreich O. and Ostrovsky R. (1993), Software Protection and Simulation on Oblivious

RAMs.

7. Elaine Shi, T-H. Hubert Chan, Emil Stefanov and Mingfei Li (2011), Oblivious RAM with

𝑂((𝑙𝑜𝑔𝑁)3) Worst-Case Cost.

8. Craig Gentry, Kenny Goldman, Shai Halevi and Charanjit Julta (2013), Optimizing ORAM

and Using it Efficiently for Secure Computation.

9. Xiao Shaun Wang, T-H. Hubert Chan and Elaine Shi (2016), Circuit ORAM: On Tightness

of the Goldreich-Ostrovsky Lower Bound.

10. Emil Stefanov, Marten van Dijkz, Elaine Shi, T-H. Hubert Chan, Christopher Fletcher, Ling

Ren, Xiangyao Yu and Srinivas Devadas (2012), Path ORAM: An Extremely Simple

Oblivious RAM Protocol.

11. X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. Scoram: Oblivious ram for

secure computation. In ACM Conference on Computer and Communications Security

(CCS), 2014.

12. Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine Shi, Emil Stefanov,

and Yan Huang (2014), Oblivious Data Structures.

https://access.redhat.com/blogs/766093/posts/1976023

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 36

Appendix [Code listing]

odenode.py

class Odnode:

 def __init__(self, label, data, pos, chPos):

 self.label = label

 self.data = data

 self.pos = pos

 self.chPos = chPos

bintree.py

import sys

import math

import random

import crypt as cr

import json

class Node:

 def __init__(self, id, val):

 self.id = id

 self.value = val

 self.left = None

 self.right = None

 self.parent = None

 def set_left(self, nod):

 self.left = nod

 self.left.parent = self

 def set_right(self, nod):

 self.right = nod

 self.right.parent = self

class binTree(Node):

 def __init__(self, height, blocksPerBucket, passH):

 self.h = height

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 37

 self.z = blocksPerBucket

 self.key = passH

 self.nod = {} # Create a dictionary to hold the tree nodes

 self.emptyBucket = [] # Initialize empty bucket

 self.dummyLabel = cr.E(b'----------------\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10', self.key)

 self.dummyData = cr.E(b'----------------\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10', self.key)

 self.dummyPos = cr.E(b'9999999999999999\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10', self.key)

 self.dummyCPos = cr.E(b'----------------\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10', self.key)

 for k in range(self.z): # Create an empty bucket of z dummy blocks

 self.emptyBucket.append((self.dummyLabel, self.dummyData, self.dummyPos, self.dummyCPos))

 for level in range(self.h + 1): # Loop through the tree levels

 for i in range(2**level): # Create 2^level nodes in every level

 self.nod[(level, i)] = Node((level, i), self.emptyBucket) # Create a node holding an empty bucket at level 'level

'

 if level != 0: # If the current node isn't the root do the following:

 self.nod[(level, i)].parent = self.nod[(level-1, math.floor(i/2))] # Set its parent node

 if i%2 == 0:

 self.nod[(level, i)].parent.set_left(self.nod[(level, i)]) #

 else: # Set its left and right children according to its position

 self.nod[(level, i)].parent.set_right(self.nod[(level, i)]) #

 # Function P returns the path from a leaf-node to the root of the tree (a list of buckets)

 def P(self, leaf):

 self.currentNode = leaf

 self.path = []

 while self.currentNode.parent != None: # Until you reach the root DO:

 self.path.append(self.currentNode.value) # Append current node's bucket to path (list)

 self.currentNode = self.currentNode.parent # Move to parent node

 self.path.append(self.currentNode.value) # Append root bucket to the list

 return self.path

 # Class method Pl returns the bucket id at level 'level' lying in the path from leaf-node 'leaf' to the root of the tree

 def Pl(self, leaf, level):

 self.currentNode = leaf

 self.currentLevel = self.h

 while self.currentLevel > level: # Until a certain level is reached DO:

 self.currentNode = self.currentNode.parent # Move upwards in the leaf's path

 self.currentLevel -= 1

 bucket_id = self.currentNode.id # Get the id of the node at this level of leaf's path

 return bucket_id

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 38

crypt.py

from Crypto import Random as rnd

from Crypto.Hash import SHA256

from Crypto.Cipher import AES

def H(x): # Method implementing SHA256 hash function

 key = bytes(str(x).encode('utf-8'))

 hash = SHA256.new()

 hash.digest_size = 16

 hash.update(key)

 return hash.digest()

def E(plaintext, key): # AES block cipher encryption method

 plain = plaintext

 k = key

 iv = rnd.new().read(AES.block_size)

 cipher = AES.new(k, AES.MODE_CBC, iv)

 return iv + cipher.encrypt(plain)

def D(ciphertext, key):

 ciphertext = ciphertext

 key = key

 iv = ciphertext[:AES.block_size]

 cipher = AES.new(key, AES.MODE_CBC, iv)

 plaintext = cipher.decrypt(ciphertext[AES.block_size:])

 return plaintext

ObliviousDataStructs.py

import os

import sys

import math

import random

import bintree as bt

import crypt as cr

import json

import odnode

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 39

password = 'myP@th0rAM' # Define the local password

passHash = cr.H(password) # Hash the local password in order to use it as a key for AES

Z = 4 # Define the number of blocks in a bucket

BS = 16 #

pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS) # pad and unpad methods used to match AES block size

unpad = lambda s: s[:-ord(s[len(s)-1:])] #

def oramAccess(op, block_node):

 global S

 S = [] # Initialize local stash as a list of tuples

 oramPath = []

 if op != 'readandremove' and op != 'add': raise ValueError

 def writeBucket(bucketID, block_list):

 while len(block_list) < Z: # Pad the bucket with dummy ..

 block_list.append(('----------------', '----------------', '9999999999999999', '----------------')) # .. blocks until its size is Z

 # Encrypt the bucket blocks to be written in the ORAM

 enBucket = [(cr.E(bytes(pad(bl[0]).encode('utf-8')), passHash),

 cr.E(bytes(pad(bl[1]).encode('utf-8')), passHash),

 cr.E(bytes(pad(str(bl[2])).encode('utf-8')), passHash),

 cr.E(bytes(pad(str(bl[3])).encode('utf-8')), passHash)) for bl in block_list]

 # Write the encrypted bucket in the ORAM

 oram.nod[bucketID].value = enBucket

 jnode = json.dumps(block_node.__dict__) # Serialize object block_node to JSON

 dnode = json.loads(jnode) # Turn JSON into python dictionary

 x = dnode['pos']

 oramPath = oram.P(oram.nod[L, x]) # Get the path of leaf x and store it locally in a list of buckets

 # Add to the local stash S the decrypted blocks of the oramPath list

 for l in range(L+1):

 for b in range(Z):

 blockContent = (unpad(cr.D(oramPath[l][b][0], passHash).decode('utf-8')),

 unpad(cr.D(oramPath[l][b][1], passHash).decode('utf-8')),

 int(unpad(cr.D(oramPath[l][b][2], passHash).decode('utf-8'))),

 unpad(cr.D(oramPath[l][b][3], passHash).decode('utf-8')))

 if blockContent[0] != '----------------':

 S.append(blockContent)

 block = next((a for a in S if a[0] == dnode['label']), ('None', 'Null', 0, {})) # Read the block in question from the local stash

 if op == 'add': # If the operation is 'add':

 print('(Add)')

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 40

 if block in S:

 S.remove(block) # Remove the old block from the stash if it's there

 S.append((dnode['label'], dnode['data'], dnode['pos'], dnode['chPos'])) # Add the new block, data and its children positions or the

 old block with new data

 if block in S:

 S.remove(block)

 S_temp = []

 for l in range(L, -1, -1):

 # S_temp = {b in S : P(x, l) = P(position[b], l)}

 S_temp = [b for b in S if oram.Pl(oram.nod[L, x], l) == oram.Pl(oram.nod[L, b[2]], l)]

 # S_temp = {Select min(|S_temp|, Z) elements from S_temp}

 S_temp = S_temp[:min(len(S_temp), Z)]

 S = [item for item in S if item not in S_temp] # S = S - S_temp

 writeBucket(oram.Pl(oram.nod[L, x], l), S_temp) # WriteBucket(P(x, l), S_temp)

 if op == 'readandremove':

 print('(ReadAndRemove)')

 askedBlock = odnode.Odnode(block[0], block[1], block[2], json.loads(str(block[3]).replace("'", '"')))

 return askedBlock

########################### Initial data entry functions ###########################

def dataInputStack(Ν):

 print('\n\nInitial data entry')

 print('\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 global root

 global top

 for i in range(N):

 blockLabel = input('Label of {} No. {}: '.format(blockAlias, i))

 blockData = input('Data of {} No. {}: '.format(blockAlias, i))

 print()

 pos = random.randint(0, 2**L - 1) # Generate random positions for the nodes

 blkNode = odnode.Odnode(blockLabel, blockData, pos, {}) # Create instance of Odnode class and assign the values of the current bloc

k (node)

 blocks.append(blkNode) # Construct a list holding the data blocks (nodes)

 # Store children's positions in a dictionary for each node

 for i, j in enumerate(blocks):

 if i < len(blocks)-1:

 cName = blocks[i+1].label # Assign to cName current block's child label

 cPos = blocks[i+1].pos # Assign to cPos current block's child position

 j.chPos = {cName : cPos} # Add to current block the pair {Child_id : position}

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 41

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 top = blocks[-1] # Store last node of the list in 'top'

 # Write given data blocks in ORAM

 for k in blocks:

 oramAccess('add', k)

def dataInputQueue(Ν):

 print('\n\nInitial data entry')

 print('\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 global root

 global top

 global nextID

 global nextPOS

 global queueSize

 queueSize = N

 for i in range(N):

 blockData = input('Data of {} No. {}: '.format(blockAlias, i))

 print()

 pos = random.randint(0, 2**L - 1) # Generate random positions for the nodes

 blkNode = odnode.Odnode(str(i), blockData, pos, {}) # Create instance of Odnode class and assign the values of the current block (node)

 blocks.append(blkNode) # Construct a list holding the data blocks (nodes)

 nextID = str(N)

 nextPOS = random.randint(0, 2**L - 1) # Generate an extra random position to be used in enqueue()

 # Store children's positions in a dictionary for each node

 for i, j in enumerate(blocks):

 if i < len(blocks)-1:

 cName = blocks[i+1].label # Assign to cName current block's child label

 cPos = blocks[i+1].pos # Assign to cPos current block's child position

 j.chPos = {cName : cPos} # Add to current block the pair {Child_id : position}

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 top = blocks[-1] # Store last node of the list in 'top'

 top.chPos = {nextID : nextPOS}

 # Write given data blocks in ORAM

 for k in blocks:

 oramAccess('add', k)

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 42

def heapify(nodelist, index, N):

 left = 2*index + 1

 right = 2*index + 2

 if (left < N) and (int(nodelist[left].data) < int(nodelist[index].data)):

 smallest = left

 else:

 smallest = index

 if (right < N) and (int(nodelist[right].data) < int(nodelist[smallest].data)):

 smallest = right

 if smallest != index:

 nodelist[index], nodelist[smallest] = nodelist[smallest], nodelist[index] # Perform swap if needed

 heapify(nodelist, smallest, N)

 blocks[:] = nodelist

def dataInputHeap(Ν):

 print('\n\nInitial data entry')

 print('\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 global root

 global last

 for i in range(N):

 blockLabel = input('ID of {} No. {}: '.format(blockAlias, i))

 blockData = input('Key of {} No. {}: '.format(blockAlias, i))

 print()

 pos = random.randint(0, 2**L - 1)

 blkNode = odnode.Odnode(blockLabel, blockData, pos, {}) # Create instance of Odnode class and assign the values of the current bloc

k (node)

 blocks.append(blkNode) # Construct a list holding the data blocks (nodes)

 # Calculate the last parent node depending on input size

 if len(blocks) > 1:

 lastParent = math.floor(len(blocks)/2) - 1

 else:

 lastParent = -1

 root = blocks[0]

 # Heapify

 for i in range(lastParent, -1, -1):

 heapify(blocks, i, N)

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 43

 last = len(blocks)

 # Store children's positions in a dictionary for each node

 for i, j in enumerate(blocks):

 if i <= lastParent: # Until we reach the index of the parent of last node in the heap

 indexLeft = 2*i + 1 # Calculate the index of left child

 indexRight = 2*i + 2 # Calculate the index of right child

 cLName = blocks[indexLeft].label # Assign to cLName current block's Left child label

 cLPos = blocks[indexLeft].pos # Assign to cLPos current block's Left child position

 if indexRight < len(blocks):

 cRName = blocks[indexRight].label # Assign to cRName current block's Right child label

 cRPos = blocks[indexRight].pos # Assign to cRPos current block's Right child position

 j.chPos = {cLName : cLPos, cRName : cRPos} # Add to current block the children positions dictionary

 else:

 j.chPos = {cLName : cLPos} # The current node has only a left child

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 # Write given data blocks in ORAM

 for k in blocks:

 oramAccess('add', k)

############################ Path ORAM Explorer ############################

def oramExplorer():

 while True:

 os.system('clear')

 print('\n\nPath ORAM explorer')

 print('\u203e\u

203e\u203e\

u203e\u203e\u203e\u203e\u203e\u203e')

 print("[1] --> Display path ORAM's content (Decrypted)")

 print("\n[2] --> Display path ORAM's raw content (Encrypted)")

 print('---')

 print('[ENTER] --> EXIT')

 print('___\n\n\n')

 com = input('Please enter your choice : ')

 if com == '':

 return

 ################### Display the ORAM (Decrypted) ###################

 elif com == '1':

 print()

 for k in sorted(oram.nod.keys()):

 print('\nBucket id =', k)

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 44

 blst = [(unpad(cr.D(oram.nod[k].value[i][0], passHash).decode('utf-8')),

 unpad(cr.D(oram.nod[k].value[i][1], passHash).decode('utf-8')),

 int(unpad(cr.D(oram.nod[k].value[i][2], passHash).decode('utf-8'))),

 unpad(cr.D(oram.nod[k].value[i][3], passHash).decode('utf-8'))) for i in range(Z)]

 print(blst)

 input('\nPlease press [ENTER] to continue...')

 ################### Display the ORAM (Encrypted) ###################

 elif com == '2':

 print()

 for k in sorted(oram.nod.keys()):

 print('\nBucket id =', k)

 blst = [(oram.nod[k].value[i][0].hex(), oram.nod[k].value[i][1].hex(),

 (oram.nod[k].value[i][2].hex(), oram.nod[k].value[i][3].hex())) for i in range(Z)]

 print(blst)

 input('\nPlease press [ENTER] to continue...')

############################## ODS Framework Functions ##############################

def odsStart(): # Update cache to contain the root

 global cache

 global root

 cache.clear()

 if root != None:

 cache.append(root)

################### Read ###################

def read(nodeLabel):

 global cache

 isInCache = any(x.label == nodeLabel for x in cache) # True if the block in question is already in cache

 if isInCache == False:

 n = 0

 while isInCache == False: #

 childDictKeys = list(cache[n].chPos.keys()) #

 childName = childDictKeys[0] #

 childPosition = cache[n].chPos[childName] # Traverse through the nodes ..

 if not any(x.label == childName for x in cache): # .. using their children positions ..

 ask = odnode.Odnode(childName, 'null', childPosition, {}) # .. until the requested one is found.

 fetch = oramAccess('readandremove', ask) #

 cache.append(fetch) #

 isInCache = any(x.label == nodeLabel for x in cache) #

 n += 1 #

 return cache[-1] # Return the last object (node) in cache

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 45

#################### Insert ####################

def insert(newNodeLabel, newNodeData):

 global cache

 global root

 global top

 newNode = odnode.Odnode(newNodeLabel, newNodeData, 0, {}) # Create Odnode instance for the new block (node)

 if root != None: oramAccess('readandremove', root) # Remove root from ORAM

 cache.insert(0, newNode) # Insert new block in cache at index 0

 root = newNode # newNode is the new root

 if top == None: # If the structure was empty, newNode is also the new top

 top = newNode

################ Update(Write) ################

def write(nodeLabel, newData):

 global cache

 isInCache = any(x.label == nodeLabel for x in cache) # True if the block in question is already in cache

 if isInCache == False:

 read(nodeLabel)

 next((n for n in cache if n.label == nodeLabel)).data = newData

################# Delete #################

def delete(nodeLabel):

 global cache

 global root

 if len(cache) == 0:

 print('\nThe Oblivious Data Structure is empty!\n')

 else:

 if root != None: oramAccess('readandremove', root) # Remove root from ORAM

 read(nodeLabel) # Get the node from ORAM

 del cache[-1] # Delete from cache

################ Finalize ################

def finalize(typeIs):

 print('finalize()')

 global cache

 global root

 global top

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 46

 if cache != [] and typeIs != 'enqueue':

 # Assign new random position to each node in cache

 for n in cache:

 pos = random.randint(0, 2**L - 1)

 n.pos = pos

 # Update children's positions in each node

 if typeIs == 'linear':

 for i, j in enumerate(cache):

 if i < len(cache)-1:

 cName = cache[i+1].label # Assign to cName current block's child label

 cPos = cache[i+1].pos # Assign to cPos current block's child position

 j.chPos = {cName : cPos} # Add to current block the pair {Child_id : position}

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 if typeIs == 'heap':

 cacheNodeDict = dict((x.label, x.pos) for x in cache)

 for i, j in enumerate(cache):

 if i < len(cache)-1:

 childrenList = list(j.chPos.keys())

 if len(childrenList) > 0:

 if childrenList[0] in list(cacheNodeDict.keys()):

 j.chPos[childrenList[0]] = cacheNodeDict[childrenList[0]]

 if len(childrenList) > 1:

 if childrenList[1] in list(cacheNodeDict.keys()):

 j.chPos[childrenList[1]] = cacheNodeDict[childrenList[1]]

 if i == 0: # Store the root of the ..

 root = j # .. data structure in variable 'root'

 # Write cahe back to ORAM

 for k in cache:

 oramAccess('add', k)

 # Empty client cache

 cache.clear()

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 47

Main program loop ###

while True:

 blocks = [] # Initialize the list holding the data blocks (nodes)

 cache = [] # Initialize local (client) cache

 os.system('clear')

 print('\n\nODS (Oblivious Data Structure) CREATION')

 print('\u203e

\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 print('[1] --> Oblivious Stack')

 print('\n[2] --> Oblivious Queue')

 print('\n[3] --> Oblivious Heap')

 print('---------------------------------------')

 print('[ENTER] --> EXIT')

 print('_______________________________________\n\n\n')

 oblStruct = input('Please enter your choice : ')

 if oblStruct == '1' or oblStruct == '2' or oblStruct == '3':

 N = int(input('\nInitial number of items/nodes (>1) : ')) # Get the number of items the stack will contain

 L = math.ceil(math.log(N, 2)) # Calculate path-oram's tree height L

 oram = bt.binTree(L, Z, passHash) # Construct an instance of the binTree class with the given parametres

 if oblStruct == '1':

 cache.clear()

 os.system('clear')

 blockAlias = 'item'

 print('\n\nOBLIVIOUS STACK')

 print('\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 dataInputStack(N)

 while True:

 # present stack menu

 os.system('clear')

 print('\n\nOblivious Stack Options')

 print('\u203e\u20

3e\u203e\u203e\u203e\u203e\u203e\u203e')

 print('[1] --> Push(item)')

 print('\n[2] --> Pop()')

 print('\n[3] --> IsEmpty()')

 print('---------------------------')

 print('[4] --> Path ORAM explorer')

 print('\n[ENTER] --> EXIT')

 print('___________________________\n\n\n')

 select = input('Please enter your choice : ')

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 48

 if select == '':

 break

 odsStart()

 if select == '1':

 newBlockName = input('\nEnter the ID of the item you want to push : ')

 newBlockData = input("Enter the data of item '{0}' : ".format(newBlockName))

 print()

 def push(node, data):

 insert(node, data)

 finalize('linear')

 push(newBlockName, newBlockData)

 print('\nOperation finished successfully!')

 input('\nPlease press [ENTER] to continue...')

 if select == '2':

 print()

 def pop():

 global cache

 global root

 if root != None:

 oldTop = oramAccess('readandremove', root)

 if oldTop.chPos == {}: # If this is the last item

 newRoot = None

 else:

 rootChildKey = list(oldTop.chPos.keys())[0] # Get the root's child label

 newRoot = read(rootChildKey) # Read root's next item

 del cache[0] # Delete old root (top)

 root = newRoot

 finalize('linear')

 else:

 oldTop = None

 return oldTop

 topItem = pop()

 if topItem != None:

 print('\nItem ID :', topItem.label)

 print('Item Data :', topItem.data)

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 49

 else:

 print('\nThe Oblivious Stack is empty!')

 input('\nPlease press [ENTER] to continue...')

 if select == '3':

 def isStackEmpty():

 return (len(cache) == 0)

 ans = isStackEmpty()

 if ans:

 print('\nTRUE - The Oblivious Stack is empty.')

 else:

 print('\nFALSE - The Oblivious Stack is NOT empty.')

 input('\nPlease press [ENTER] to continue...')

 if select == '4':

 oramExplorer()

 if oblStruct == '2':

 cache.clear()

 os.system('clear')

 blockAlias = 'item'

 print('\n\nOBLIVIOUS QUEUE')

 print('\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 dataInputQueue(N)

 while True:

 # present queue menu

 os.system('clear')

 print('\n\nOblivious Queue Options')

 print('\u203e\u20

3e\u203e\u203e\u203e\u203e\u203e\u203e')

 print('[1] --> Enqueue(item)')

 print('\n[2] --> Dequeue()')

 print('\n[3] --> IsEmpty()')

 print('---------------------------')

 print('[4] --> Path ORAM explorer')

 print('\n[ENTER] --> EXIT')

 print('___________________________\n\n\n')

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 50

 select = input('Please enter your choice : ')

 if select == '':

 break

 odsStart()

 if select == '1':

 global nextID

 global nextPOS

 global queueSize

 newID = nextID

 newPOS = nextPOS

 queueSize += 1

 nextID = str(int(newID) + 1)

 nextPOS = random.randint(0, 2**L - 1) # Generate an extra random position for next enqueue()

 newBlockData = input("\nEnter the data of item '{0}' : ".format(newID))

 print()

 newNode = odnode.Odnode(newID, newBlockData, newPOS, {nextID : nextPOS})

 def enqueue(qnode):

 global root

 global queueSize

 cache.clear()

 cache.append(qnode)

 finalize('enqueue')

 if queueSize == 1:

 root = newNode

 enqueue(newNode)

 print('\nOperation finished successfully!')

 input('\nPlease press [ENTER] to continue...')

 if select == '2':

 print()

 def dequeue():

 global cache

 global root

 global queueSize

 if root != None:

 oldHead = oramAccess('readandremove', root)

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 51

 queueSize -= 1

 rootChildKey = list(oldHead.chPos.keys())[0]

 if queueSize == 0: # If this is the last item

 newRoot = None

 else:

 newRoot = read(rootChildKey) # Read root's next item

 del cache[0] # Delete old root (top)

 root = newRoot

 finalize('linear')

 else:

 oldHead = None

 return oldHead

 headItem = dequeue()

 if headItem != None:

 print('\nItem ID :', headItem.label)

 print('Item Data :', headItem.data)

 else:

 print('\nThe Oblivious Queue is empty!')

 input('\nPlease press [ENTER] to continue...')

 if select == '3':

 def isQueueEmpty():

 return (len(cache) == 0)

 ans = isQueueEmpty()

 if ans:

 print('\nTRUE - The Oblivious Queue is empty.')

 else:

 print('\nFALSE - The Oblivious Queue is NOT empty.')

 input('\nPlease press [ENTER] to continue...')

 if select == '4':

 oramExplorer()

 if oblStruct == '3':

 cache.clear()

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 52

 os.system('clear')

 blockAlias = 'element'

 print('\n\nOBLIVIOUS HEAP (PRIORITY QUEUE)')

 print('\u203e\u

203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e\u203e')

 dataInputHeap(N)

 def readPath(operation):

 global cache

 global root

 global last

 depth = math.floor(math.log2(last))

 currentNode = oramAccess('readandremove', root)

 binLast = last + 1

 if ((binLast & (binLast - 1)) != 0) or (operation == 'extract'): # Last node IS NOT at the end of a tree row ..

 for k in range(depth-1, 0, -1): # .. or the call is from extractMin()

 # Check if the last parent has already 2 children. If yes, go to the next

 if k == 1 and (last % 2 == 1) and (operation == 'insert'):

 ind = math.floor(last/2)

 else:

 ind = math.floor(last/math.pow(2,k)) - 1

 if (ind % 2) == 1:

 leftChildLabel = list(currentNode.chPos.keys())[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 else:

 rightChildLabel = list(currentNode.chPos.keys())[1]

 rightChildPos = currentNode.chPos[rightChildLabel]

 ask = odnode.Odnode(rightChildLabel, 'null', rightChildPos, {}) # Ask for the right child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(fetch) # Append fetched node to cache

 currentNode = fetch

 else: # Last node IS at the end of a tree row

 for k in range(depth):

 leftChildLabel = list(currentNode.chPos.keys())[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(fetch) # Append fetched node to cache

 currentNode = fetch

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 53

 while True:

 # present heap menu

 os.system('clear')

 print('\n\nOblivious Heap Options')

 print('\u203e\u20

3e\u203e\u203e\u203e\u203e\u203e\u203e')

 print('[1] --> Insert(element)')

 print('\n[2] --> ExtractMin()')

 print('\n[3] --> IsEmpty()')

 print('---------------------------')

 print('[4] --> Path ORAM explorer')

 print('\n[ENTER] --> EXIT')

 print('___________________________\n\n\n')

 select = input('Please enter your choice : ')

 if select == '':

 break

 odsStart()

 if select == '1':

 newBlockName = input('\nEnter the ID of the element you want to insert : ')

 newBlockData = input("Enter the key of element '{0}' : ".format(newBlockName))

 print()

 def insertKey(id, key):

 global cache

 global root

 global last

 newNode = odnode.Odnode(id, key, 0, {}) # Create Odnode instance for the new node

 if last == 0:

 root = newNode

 oramAccess('add', newNode)

 last = 1

 else:

 readPath('insert')

 cache.append(newNode) # Append new node in cache

 cache[-2].chPos[cache[-1].label] = cache[-1].pos # Attach new node to the heap

 ################################# Upheap #################################

 k = len(cache)-1

 while (k > 0) and (int(cache[k].data) < int(cache[k-1].data)):

 cache[k-1].label, cache[k].label = cache[k].label, cache[k-1].label # Swap cache objects id's to restore order

 cache[k-1].data, cache[k].data = cache[k].data, cache[k-1].data # Swap cache objects keys to restore order

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 54

 childKeys = list(cache[k-1].chPos.keys())

 ## If swapped node was left child

 if childKeys[0] == cache[k-1].label:

 if len(childKeys) == 2:

 newPos = {cache[k-1].label : cache[k].label, childKeys[1] : childKeys[1]}

 cache[k-1].chPos = dict((newPos[key], value) for (key, value) in cache[k-1].chPos.items())

 else:

 newPos = {cache[k-1].label : cache[k].label}

 cache[k-1].chPos = dict((newPos[key], value) for (key, value) in cache[k-1].chPos.items())

 # If swapped node hasn't reached the root

 if k-2 >= 0:

 childKeysParent = list(cache[k-2].chPos.keys())

 # If swapped node was left child

 if childKeysParent[0] == cache[k].label:

 newPosParent = {cache[k].label : cache[k-1].label, childKeysParent[1] : childKeysParent[1]}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 # If swapped node was right child

 if childKeysParent[1] == cache[k].label:

 newPosParent = {childKeysParent[0] : childKeysParent[0], cache[k].label : cache[k-1].label}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 ## If swapped node was right child

 if len(childKeys) > 1 and childKeys[1] == cache[k-1].label:

 newPos = {childKeys[0] : childKeys[0], cache[k-1].label : cache[k].label}

 cache[k-1].chPos = dict((newPos[key], value) for (key, value) in cache[k-1].chPos.items())

 # If swapped node hasn't reached the root

 if k-2 >= 0:

 childKeysParent = list(cache[k-2].chPos.keys())

 # If swapped node was left child

 if childKeysParent[0] == cache[k].label:

 newPosParent = {cache[k].label : cache[k-1].label, childKeysParent[1] : childKeysParent[1]}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 # If swapped node was right child

 if childKeysParent[1] == cache[k].label:

 newPosParent = {childKeysParent[0] : childKeysParent[0], cache[k].label : cache[k-1].label}

 cache[k-2].chPos = dict((newPosParent[key], value) for (key, value) in cache[k-2].chPos.items())

 k -= 1

 last += 1

 finalize('heap')

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 55

 insertKey(newBlockName, newBlockData)

 print('\nOperation finished successfully!')

 input('\nPlease press [ENTER] to continue...')

 if select == '2':

 print()

 def extractMin():

 global cache

 global root

 global last

 if last > 0:

 readPath('extract')

 currentNode = cache[-1]

 # If last node in cache is not a leaf, fetch another one

 if currentNode.chPos != {}:

 ind = last - 1

 if (ind % 2) == 1:

 leftChildLabel = list(currentNode.chPos.keys())[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 else:

 rightChildLabel = list(currentNode.chPos.keys())[1]

 rightChildPos = currentNode.chPos[rightChildLabel]

 ask = odnode.Odnode(rightChildLabel, 'null', rightChildPos, {}) # Ask for the right child ..

 fetch = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(fetch) # Append fetched node to cache

 min = (cache[0].label, cache[0].data) # Assign minimum element to min

 cache[0].label = cache[-1].label # Last element becomes the new ..

 cache[0].data = cache[-1].data # .. root leaving chPos's as they are

 del cache[-1] # Remove last element from cache

 if len(cache) > 0:

 del cache[-1].chPos[cache[0].label] # Remove previous last element from its parent's chPos dictionary

 last -= 1

 ################################# Downheap #################################

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 56

 if last > 0:

 currentNode = cache[0]

 previousNode = None

 k = 0

 while k <= math.floor(last/2) - 1:

 childKeys = list(currentNode.chPos.keys())

 if len(childKeys) > 0: # If current node has at least 1 child

 leftChildLabel = childKeys[0]

 leftChildPos = currentNode.chPos[leftChildLabel]

 isInCache = any(x.label == leftChildLabel for x in cache) # True if this node is already in cache

 if isInCache == False:

 ask = odnode.Odnode(leftChildLabel, 'null', leftChildPos, {}) # Ask for the left child ..

 leftChild = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(leftChild) # Add left child to cache

 else:

 leftChild = next(n for n in cache if n.label == leftChildLabel)

 indexLeft = next((i for i, item in enumerate(cache) if item.label == leftChildLabel), -1)

 rightChild = None # Initialize right child node

 if len(childKeys) > 1: # If current node has 2 children

 rightChildLabel = childKeys[1]

 rightChildPos = currentNode.chPos[rightChildLabel]

 isInCache = any(x.label == rightChildLabel for x in cache) # True if this node is already in cache

 if isInCache == False:

 ask = odnode.Odnode(rightChildLabel, 'null', rightChildPos, {}) # Ask for the right child ..

 rightChild = oramAccess('readandremove', ask) # .. to be fetched from ORAM

 cache.append(rightChild) # Add right child to cache

 else:

 rightChild = next(n for n in cache if n.label == rightChildLabel)

 indexRight = next((i for i, item in enumerate(cache) if item.label == rightChildLabel), -1)

 if len(childKeys) == 0:

 # The node has no children

 break

 if rightChild != None:

 if int(leftChild.data) < int(rightChild.data):

 if int(currentNode.data) > int(leftChild.data):

 # Swap cache objects id's to restore order

 currentNode.label, cache[indexLeft].label = cache[indexLeft].label, currentNode.label

 # Swap cache objects keys to restore order

 currentNode.data, cache[indexLeft].data = cache[indexLeft].data, currentNode.data

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 57

 # Correction of the chPos dictionary (label:data) pairs in current node

 if len(childKeys) == 2:

 newPos = {currentNode.label : cache[indexLeft].label, childKeys[1] : childKeys[1]}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 else:

 newPos = {currentNode.label : cache[indexLeft].label}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 # Correction of the chPos dictionary (label:data) pairs in previous node

 if previousNode != None:

 previousChildKeys = list(previousNode.chPos.keys())

 if cache[indexLeft].label == previousChildKeys[0]: # If swapped node was a left child

 newPos = {cache[indexLeft].label : currentNode.label, previousChildKeys[1] : previousChildK

eys[1]}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items

())

 else: # If swapped node was a right child

 newPos = {previousChildKeys[0] : previousChildKeys[0], cache[indexLeft].label : currentNode

.label}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items

())

 previousNode = currentNode # Assign current node to previousNode

 currentNode = cache[indexLeft] # Let current node be the left child

 k = 2*k + 1 # Move node index to left child

 else:

 # The root node reached the right position in the heap

 break

 else:

 if int(currentNode.data) > int(rightChild.data):

 # Swap cache objects id's to restore order

 currentNode.label, cache[indexRight].label = cache[indexRight].label, currentNode.label

 # Swap cache objects keys to restore order

 currentNode.data, cache[indexRight].data = cache[indexRight].data, currentNode.data

 # Correction of the chPos dictionary (label:data) pairs in current node

 newPos = {childKeys[0] : childKeys[0], currentNode.label : cache[indexRight].label}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 # Correction of the chPos dictionary (label:data) pairs in previous node

 if previousNode != None:

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 58

 previousChildKeys = list(previousNode.chPos.keys())

 if cache[indexRight].label == previousChildKeys[0]: # If swapped node was a left child

 newPos = {cache[indexRight].label : currentNode.label, previousChildKeys[1] : previousChild

Keys[1]}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items

())

 else: # If swapped node was a right child

 newPos = {previousChildKeys[0] : previousChildKeys[0], cache[indexRight].label : currentNod

e.label}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items

())

 previousNode = currentNode # Assign current node to previousNode

 currentNode = cache[indexRight] # Let current node be the right child

 k = 2*k + 2 # Move node index to right child

 else:

 # The root node reached the right position in the heap

 break

 else: # rightChild = None

 if int(currentNode.data) > int(leftChild.data):

 # Swap cache objects id's to restore order

 currentNode.label, cache[indexLeft].label = cache[indexLeft].label, currentNode.label

 # Swap cache objects keys to restore order

 currentNode.data, cache[indexLeft].data = cache[indexLeft].data, currentNode.data

 # Correction of the chPos dictionary (label:data) pairs in parent node

 if len(childKeys) == 2:

 newPos = {currentNode.label : cache[indexLeft].label, childKeys[1] : childKeys[1]}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 else:

 newPos = {currentNode.label : cache[indexLeft].label}

 currentNode.chPos = dict((newPos[key], value) for (key, value) in currentNode.chPos.items())

 # Correction of the chPos dictionary (label:data) pairs in previous node

 if previousNode != None:

 previousChildKeys = list(previousNode.chPos.keys())

 if cache[indexLeft].label == previousChildKeys[0]: # If swapped node was a left child

 newPos = {cache[indexLeft].label : currentNode.label, previousChildKeys[1] : previousChildKeys[

1]}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 else: # If swapped node was a right child

M.Sc. Thesis: Implementation of Oblivious Data Structures

Orestis Th. Anavaloglou, University of the Aegean, Dept. of I.C.S. Eng. 59

 newPos = {previousChildKeys[0] : previousChildKeys[0], cache[indexLeft].label : currentNode.lab

el}

 previousNode.chPos = dict((newPos[key], value) for (key, value) in previousNode.chPos.items())

 previousNode = currentNode # Assign current node to previousNode

 currentNode = cache[indexLeft] # Let current node be the left child

 k = 2*k + 1 # Move node index to left child

 break

 finalize('heap')

 return min

 else:

 return ()

 heapMin = extractMin()

 if heapMin != ():

 print('\nMinimun =', heapMin)

 else:

 print('\nThe Oblivious Queue is empty!')

 input('\nPlease press [ENTER] to continue...')

 if select == '3':

 def isEmpty():

 return (last == 0)

 ans = isEmpty()

 if ans:

 print('\nTRUE - The Oblivious Heap is empty.')

 else:

 print('\nFALSE - The Oblivious Heap is NOT empty.')

 input('\nPlease press [ENTER] to continue...')

 if select == '4':

 oramExplorer()

 if oblStruct == '':

 break

