
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

Τμήμα Μηχανικών Πληροφοριακών & Επικοινωνιακών Συστημάτων

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΠΛΗΡΟΦΟΡΙΑΚΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

«

Smart Fridge, an object detection application for android»

ΜΟΥΖΑΚΑ ΘΕΟΔΩΡΑ

ΑΜ: icsdm417007

Επιβλέπων: Μαραγκουδάκης Μανώλης

Τριμελής Επιτροπή:

Μαραγκουδάκης Μανώλης

Βουγιούκας Δημοσθένης

Γκουμόπουλος Χρήστος

ΣΑΜΟΣ 2020

Ευχαριστίες

Η παρούσα εργασία αποτελεί διπλωματική εργασία στα πλαίσια του μεταπτυχιακού

προγράμματος «ΠΛΗΡΟΦΟΡΙΑΚΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ» του

τμήματος Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων.

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή Μανώλη Μαραγκουδάκη για τη

καθοδήγηση και την συνεργασία μας.

Επίσης, θα ήθελα να ευχαριστήσω την οικογένειά μου για τη στηριξή της.

Table of Contents
0.0 Introduction ... 4

0.1 Summary ... 4

0.2 Structure .. 4

1.0 Machine Learning ... 5

1.0.1 What is Machine Learning ... 5

1.0.2 Types of machine learning algorithms ... 7

1.0.3 Machine learning in real life ... 10

2.0 Deep Learning .. 11

2.0.1 What is Deep Learning.. 12

2.0.2 Types of deep learning techniques ... 12

2.0.3 Deep learning in real life ... 16

3.0 Tensorflow .. 17

3.0.1 What is Tensorflow .. 17

3.0.2 How Tensorflow works .. 18

3.0.3 Where Tensorflow is being used ... 18

4.0 Python ... 21

4.0.1 What is Python ... 21

4.0.2 Python and Data Science ... 22

5.0 Dataset .. 23

5.0.1 Collecting the dataset .. 23

5.0.2 Labeling the images ... 24

5.0.3 Generate TFRECORD .. 25

5.0.4 Creation of label map .. 30

5.1 Training .. 34

5.2 Evaluation .. 41

5.2.1 Tensorboard ... 42

5.2.2 Jupyter Notebook .. 48

6.0 Android Studio .. 53

6.0.1 What is Android Studio .. 53

6.0.2 Building the application .. 54

7.0 Conclusion .. 80

8.0 Future Implementation ... 80

9.0 Bibliography ... 80

0.0 Introduction

 0.1 Summary

The aim of this thesis entitled <<Smart Fridge, an object detection application for android>>

is to create a machine learning algorithm, train it with a suitable dataset in order to be able to

detect and classify objects that can be found inside a fridge and create an android application

that can detect and classify the objects from a mobile phone's camera or have the option to

import an image for classification.

 0.2 Structure

This thesis has four sections.

The first section refers to:

 What is Machine Learning and where it is being used

 What is Deep Learning and where it is being used

 What is Tensorflow and where it is being used

 The programming language python

The second section refers to:

 Collecting the dataset

 Training the model

 Evaluation of the results

The third section refers to:

 What is IDE Android Studio

 The programming language Java

 The implementation of the application

Section One

1.0 Machine Learning

1.0.1 What is Machine Learning

Machine Learning is a data analysis method, which is based on the idea that the

machine will learn from the data, will identify patterns and it will be able to take

decisions with minimal human supervision.

The machine learning algorithms use statistics in order to find patterns in huge

amount of data, and by the word data here, we mean text, images, numbers, clicks and

everything that is digitally stored.

Examples:

 Image Recognition

This is one of the most common use of machine learning.

It is used to classify objects inside a digital image, for example in the black

and white images; the intensity of each pixel is one of the measurements and

in colored images, each pixel provides 3 measurements of intensities in three

different colors – red, green and blue (RGB).

In addition, it is possible to detect a face into an image. There is a separate

category for each person in a database of several people.

 Speech recognition.

This is the translation of spoken words into text. The measurement in this

application can be a set of numbers that represent the speech signal. We can

also segment the speech signal by intensities in different time-frequency

bands. Speech recognition can be used in voice search, appliance control, data

entry or the preparation of structured documents.

 Medical diagnosis

In the healthcare sector, machine learning is used to analyze disease

progression, patient monitoring and therapy planning. The goal is to achieve

successful integration of computer-based systems in this sector.

 Classification

Classification is the way to analyze the measurements of an object and place it

to the category, which it belongs. For example, in the banking sector it is

being used to identify if a customer that requests a loan will be able to pay it

by using as factors customer’s financial history, savings and earnings.

 Prediction

Making predictions is one of the top machine learning applications. We can

used it after classification and calculate the probability of fault.

 Information extraction

It is the process of extracting structured information from the unstructured

data like emails, reports, blogs etc.

 Financial Services

Financial institutions and banks have great advantages using machine-learning

techniques. They can make smarter decisions through machine learning, predict

customer’s behavior, track spending patterns and predict market analysis.

The algorithms can identify the trends easily and can react in real time.

1.0.2 Types of machine learning algorithms

Algorithms can be divided into four main categories:

1. Supervised machine learning algorithms

In the supervised machine learning algorithms, we have a monitored learning and the

developer acts like a «teacher» providing the appropriate training data and the desired

output. Each training example has one or more inputs and the desired output, also

known as a supervisory signal.

Supervised learning algorithms include classification and regression. Classification

algorithms are used when the outputs are restricted to a limited set of values, and

regression algorithms are used when the outputs may have any numerical value within

a range.

2. Unsupervised machine learning algorithms

Unsupervised machine learning algorithms infer patterns from a dataset without

reference to known or labeled outcomes. In contrast with the supervised machine

learning, this method cannot be applied directly for regression or classification since

we have no idea what the output will be and this makes difficult to determine how

accurate the outcome is.

3. Semi-supervised machine learning algorithms

This method is a combination of supervised machine learning and unsupervised

machine learning. A small amount of labeled data is used together with a large

amount of unlabeled data during training. This method produces better learning

accuracy.

4. Reinforcement machine learning algorithms

Reinforcement machine learning is called also approximate dynamic programming, or

neuro-dynamic programming. It differs from supervised learning in not needing

labelled input/output pairs be presented, and in not needing sub-optimal actions to be

explicitly corrected. The main goal of this method is finding a balance between

unknown territory and current knowledge (exploration and exploitation).

Software agents and machines are working together to determine the ideal behavior

within a specific context and maximize its performance.

1.0.3 Machine learning in real life

2. Social Media

 Brand monitoring tools

The question here : With so much traffic in social media feeds at any given

time, how can a brand keep track of what people think?

Tools such as Brands Eye and BuzzSumo can send an alert when your brand

name is mentioned on any social network, and provide you with information

about the context and the sentiment of the post.

 Recommendations

With machine learning in social media playing a major role, the

recommendations based on user’s profile, page likes, places they visited, etc.

are more than common.

 Face Recognition

 Chatbots

Instead of browsing a brand’s website to look for new products, customers can

enable a Facebook messenger chatbot and ask it questions about what’s in

stock, what’s discounted, what’s new, and much more questions.

3. Automotive Industry

In the automotive industry, Artificial Intelligence and machine learning techniques

together are trying to achieve the recognition of road signs, identification of patterns

of human behavior to make data-driven decisions on the road. AI algorithms can

predict travel time, traffic congestion, and even vehicle breakdowns. The adoption of

machine learning and AI in automotive industry can also offer route recommendations

based on fuel consumption and even parking availability.

Hand free driving will make drivers more focused to the road; also the safety will be

highly improved with the help of machine learning algorithms, since multiple vehicle

behavior models will help cars recognize the world around them.

4. Healthcare Industry
Today, machine learning is helping to streamline administrative processes in

hospitals, map and treat infectious diseases and personalize medical treatments.

The rate of progress keeps increasing in this sector, for example, KenSci uses

machine learning to predict illness and treatment to help physicians and payers

intervene earlier, predict population health risk by identifying patterns and surfacing

high risk markers and model disease progression and more.

2.0 Deep Learning

2.0.1 What is Deep Learning

Deep learning, also known as deep structured learning or differential programming, is a

machine learning method based on neutral networks. The goal of deep learning is to imitate

the human’s brain process of analyzing information and decision-making. Andrew Ng from

Coursera says «Using brain simulations, hope to:

– Make learning algorithms much better and easier to use.

– Make revolutionary advances in machine learning and AI.

I believe this is our best shot at progress towards real AI»

2.0.2 Types of deep learning techniques

https://en.wikipedia.org/wiki/Andrew_Ng

Deep learning techniques can be divided into four main categories:

1. Unsupervised Pre-trained Networks

Unsupervised pre-training sets a discriminative neural net from another which was

trained using an unsupervised condition, such as a deep belief network or a deep auto

encoder. This method can sometimes help with both the optimization and the

overfitting issues.

2. Convolutional Neural Networks

A convolutional neural network (CNN) is a technique of artificial neural network used

in image recognition and processing that is designed to process mainly pixel data.

It works by taking an input image, assign importance (learnable weights and biases) to

various aspects/objects in the image and differentiate one from the other

3. Recurrent Neural Networks

Recurrent Neural Networks or RNNs can use their internal memory to process

variable length. This makes them applicable to tasks such as unsegmented, connected

handwriting recognition or speech recognition.

4. Recursive Neural Networks

As Wikipedia describes it:

«A recursive neural network is a kind of deep neural network created by applying the

same set of weights recursively over a structured input, to produce a structured

prediction over variable-size input structures, or a scalar prediction on it, by traversing

a given structure in topological order. RNNs have been successful, for instance, in

learning sequence and tree structures in natural language processing, mainly phrase

and sentence continuous representations based on word embedding»

https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Structured_prediction
https://en.wikipedia.org/wiki/Structured_prediction
https://en.wikipedia.org/wiki/Topological_sort
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Word_embedding

2.0.3 Deep learning in real life

Here are some deep learning examples in practice:

 Translations

Although automatic translation is not something new, deep learning is

helping improve automatic translation of text by using stacked networks of

neural networks and making possible the translations from images.

 Colorization

The process of adding color to an image that was a time consuming task

for humans can now be done automatically with deep-learning models.

 Language recognition

Deep learning machines are able to differentiate dialects of a language.

The machine can decide that the language that a human is speaking is for

example Greek and can tell as the differences between dialects.

 Computer vision

Deep learning has achieved great accuracy for image classification, object

detection, image restoration and image segmentation—even handwritten

digits can be recognized. Deep learning using enormous neural networks is

teaching machines to automate the tasks performed by human visual

systems.

 Deep-learning robots

In the robotics field, deep learning applications are great and powerful.

Through deep learning models, we have a housekeeping robot that it was

trained by observing human actions. Similar to how a human brain

processes input from past experiences, current input from senses and any

additional data that is provided, deep-learning models will help robots

execute tasks based on the input of many different AI opinions.

 News aggregator based on sentiment

Advanced natural language processing and deep learning are being used to

filter the news. News aggregators using sentiment analysis, can help you

create news streams that only cover the good news happening.

 Text generation

The machines can learn the punctuation, grammar and style of a piece of

text and can use the model it developed to automatically create entirely

new text with the proper spelling, grammar and style of the example text.

 Autonomous vehicles

Artificial intelligence, machine learning algorithms and deep learning

methods are combined together in order to make models used by cars that

are able to recognize pedestrians, signs and other obstacles in the road.

3.0 Tensorflow

3.0.1 What is Tensorflow

According to Wikipedia: «TensorFlow is a free and open-source software library for dataflow

and differentiable programming across a range of tasks. It is a symbolic math library, and is

also used for machine learning applications such as neural networks. It is used for both

research and production at Google. TensorFlow was developed by the Google Brain team for

internal Google use. It was released under the Apache License 2.0 on November 9, 2015». It

allows developers to create large-scale neural networks with many layers. The main use of

Tensorflow is for Classification, Perception, Understanding, Discovering and Prediction.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Library_%28computing%29
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Neural_networks
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Google_Brain
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Apache_License_2.0

3.0.2 How Tensorflow works

TensorFlow allows programmers to create dataflow structures that describe how data moves

through a graph, or a series of processing nodes. Each node in the graph represents a

mathematical operation, and each connection or edge between nodes is a multidimensional

data array, or tensor. TensorFlow provides all of this to the developer using Python language.

The math operators however are not written in Python but in C++. TensorFlow applications

can be ran on most targets like a local machine, a cluster in the cloud, iOS and Android

devices, CPUs or GPUs.

As described in Infoworld: « The single biggest benefit TensorFlow provides for machine

learning development is abstraction. Instead of dealing with the nitty-gritty details of

implementing algorithms, or figuring out proper ways to hitch the output of one function to

the input of another, the developer can focus on the overall logic of the application.

TensorFlow takes care of the details behind the scenes. It also offers additional conveniences

for developers who need to debug and gain introspection into TensorFlow applications. The

eager execution mode lets you evaluate and modify each graph operation separately and

transparently, instead of constructing the entire graph as a single opaque object and

evaluating it all at once. The TensorBoard visualization suite lets you inspect and profile the

way graphs run by way of an interactive, web-based dashboard. »

Noticeable algorithms supported by Tensorflow:

 Linear regression: tf.estimator.LinearRegressor

 Classification:tf.estimator.LinearClassifier

 Deep learning classification: tf.estimator.DNNClassifier

 Deep learning wipe and deep: tf.estimator.DNNLinearCombinedClassifier

 Booster tree regression: tf.estimator.BoostedTreesRegressor

 Boosted tree classification: tf.estimator.BoostedTreesClassifier

3.0.3 Where Tensorflow is being used

We will analyze below some examples of platforms/applications that use Tensorflow;

 Airbnb

Until recently, when a customer was searching photos of houses in Airbnb

there was no way he can see the most informative ones.

With image classification by Tensorflow, we have the room-type

classification. The developers trained a model based on Tenroflow in order

to recognize which is the room type displayed in every photo (living room,

https://www.infoworld.com/article/3263764/database/what-is-a-graph-database-a-better-way-to-store-connected-data.html

bedroom, bathroom etc.) so now when the user is searching for a house in

Airbnb he has the photos available listed by room type and this has highly

improved the his experience.

 Twitter

Twitter like any other social media, uses machine learning for the

following different aspects:

Ads: Personalize ads according to the user’s interest.

 Timelines: Providing with interesting relevant context of timelines to the users.

Abuse: The information reached should be safe for work and healthy for the platform.

Recommendations: Provides recommendations to tweets based on the user interest.

Twitter deals with petabytes of data, each tweet has to be addressed in very few seconds

before being rendered on the timeline. Thus, the models besides being accurate in prediction

should also be supersonic. This is why machine learning is always required to platforms like

this.

 Dropbox

Dropbox now with the tensorflow deep learning framework can automatically recognize text

in images (including PDFs containing images). People have stored more than 20 billion

image and PDF files in Dropbox. Of those files, 10-20% are photos of documents—like

receipts and whiteboard images—as opposed to documents themselves. These are now

candidates for automatic image text recognition. Similarly, 25% of these PDFs are scans of

documents that are also candidates for automatic text recognition. Making document images

searchable is the first step towards a deeper understanding of the structure and content of

documents. Automatic image text recognition is a prime example of the type of large scale

projects involving computer vision and machine learning

 Airbus

This is what is written in Airbus’s website:

«A further area where deep learning has made considerable progress is in image

recognition – and the Group is benefitting here, too. Since 29 September 2016, ‘One

Atlas’ has been providing employees and customers with a large database of satellite

images that can be accessed online. However, before these images from space end up in

the database, clouds need to be identified and removed.

“That’s a lot harder than it sounds,” says Laurent Gabet, who manages optical research

and development at Airbus Defence and Space. In fact it is sometimes very difficult to

determine, even for the human eye, whether a particular area on a satellite image is

cloud or snow.

Airbus Defence and Space uses an algorithm to identify these objects, but it has an error

rate of 11%, which has prompted Gabet and his colleagues to test the deep-learning

platform TensorFlow. This open source software from Google can be used and changed

by anyone; Google provides the toolbox for others to work with. TensorFlow analyses a

large number of images, looks for recurring patterns, and uses this to learn how to

identify objects by itself.

In the TensorFlow test phase, the error rate has already improved to just 3%. Gabet is

convinced that these new applications will make a huge difference: “Now that these

programmes are freely available, the field of image recognition will progress in leaps and

bounds and open up new opportunities,” he says»

4.0 Python

4.0.1 What is Python

According to Python’s official website: «Python is an interpreted, high-level, general-purpose

programming language. Its high-level built in data structures, combined with dynamic typing

and dynamic binding, make it very attractive for Rapid Application Development, as well as

for use as a scripting or glue language to connect existing components together. Python's

simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program

maintenance. Python supports modules and packages, which encourages program modularity

and code reuse. The Python interpreter and the extensive standard library are available in

source or binary form without charge for all major platforms, and can be freely distributed.».

Python's design and philosophy have influenced many other programming languages:

 Ruby

 Kotlin

 Cobra

 Boo

 CoffeeScript

 Swift

 Groovy

 Nim

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Programming_language

4.0.2 Python and Data Science

Python language is getting more and more popular for many reasons as it is

described in the previous chapter but it is considered also a language that

somebody needs to master if want to be involved with the data analytics/data

science field since it the most flexible programming language.

 Data Analysis

Data analysis is the methodology of gathering data and processing it in

order to get useful information. A Data Analyst utilizes the major

techniques related to data visualization and manipulation. All these

insights allow the companies to formulate better strategies and to make

even better decisions. The steps here are:

 Data Requirements

 Data collection

 Data processing

 Data cleaning

 Exploratory data analysis (the variety of techniques to understand

what data contain)

 Modeling and algorithms

 Data product

 Data Science

Data Science is a scientific field that uses high level methods and

techniques to process structured and unstructured data to extract

insights. It combines statistics, data analysis and machine learning

in order to «understand data».

Section Two

5.0 Dataset

5.0.1 Collecting the dataset

Creating the dataset is the first of the many steps required to successfully train the model. For

this project, I collected photos of fridges inside from my friends, family, work and

downloaded some from Google. The total photos were 50 and they include many objects

multiple times inside.

The objects that are included in the photos are the following:

 Mustard

 Beer

 Juice

 Ketchup

 Lemon

 Orange

 Jam

 Eggs

 Yogurt

 Lettuce

 Tomato

 Milk

 Butter

 Tabasco

 Bread

 Cucumber

 Pineapple

 Olives

 Watermelon

 Banana

 Mango

 Meat

 Carrot

 Water

 Coca Cola

 Apple

 Cheese

 Sausage

 Pepper

We need to note here that for better accuracy the photos needed for training a model to detect

an object with 90% and higher precision are about 200-250 per object but this was not feasible

in this project.

5.0.2 Labeling the images

Now that the dataset is ready, the next step is to label the images. Since we are doing object

detection, we need a ground truth of what exactly the object is. For this, we need to draw a

bounding box around the object, in order system to understand that this object inside the box

is the actual object we want to learn. The software used for this task is labelImg

(https://github.com/tzutalin/labelImg). LabelImg is a graphical image annotation tool. It is

written in Python and uses Qt for its graphical interface. Annotations are saved as XML files

in PASCAL VOC format, the format used by ImageNet. Besides, it also supports YOLO

format. The project is implemented in Linux environment so we performed the build from

source suggested by the developer for Linux\Ubuntu:

After the installation, launch the application and follow the steps:

1. Click 'Change default saved annotation folder' in Menu/File

2. Click 'Open Dir'

https://github.com/tzutalin/labelImg

3. Click 'Create RectBox'

4. Click and release left mouse to select a region to annotate the rect box

5. You can use right mouse to drag the rect box to copy or move it

The annotation will be saved to the folder you specify.

Once we have labeled all the images and have their corresponding xml files, the next step is

to split the dataset into a train and test dataset. Inside the same directory where the images

are, we need to create a directory named “train” and “test” and add around 70% of the images

and their respective XML to the training directory and the remaining 30% to the test

directory.

5.0.3 Generate TFRECORD

In this step, we need to covert the images and their XML files to a format that is readable by

Tensorflow. This format is called tfrecord. In order to proceed with the creation of these files

we first need to convert the xml of Train images to a CSV file and then the xml of the Test

images to another CSV file. This was done by the tool xml_to_csv.py that can be found

(https://github.com/qdraw/tensorflow-face-object-detector-tutorial/blob/master/003_xml-to-

csv.py). Below we can see the script (The only change required is replace the paths with ours)

https://github.com/qdraw/tensorflow-face-object-detector-tutorial/blob/master/003_xml-to-csv.py
https://github.com/qdraw/tensorflow-face-object-detector-tutorial/blob/master/003_xml-to-csv.py

The code:

import os

import glob

import pandas as pd

import xml.etree.ElementTree as ET

def xml_to_csv(path):

xml_list = []

for xml_file in glob.glob(path + '/*.xml'):

tree = ET.parse(xml_file)

root = tree.getroot()

for member in root.findall('object'):

value = (root.find('filename').text,

int(root.find('size')[0].text),

int(root.find('size')[1].text),

member[0].text,

int(member[4][0].text),

int(member[4][1].text),

int(member[4][2].text),

int(member[4][3].text)

)

xml_list.append(value)

column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']

xml_df = pd.DataFrame(xml_list, columns=column_name)

return xml_df

def main():

image_path = os.path.join(os.getcwd(), 'annotations')

xml_df = xml_to_csv(image_path)

xml_df.to_csv('raccoon_labels.csv', index=None)

print('Successfully converted xml to csv.')

main()

After we have the two CSV files (Train and Test) we need to convert the tfrecords. Then,

using the script generate_tfrecord.py

(https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py). Please note

that before running the script you have to specify the class of your objects in the function

class_text_to_int. The script:

Usage:

From tensorflow/models/

Create train data:

python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record

Create test data:

python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record

"""

from __future__ import division

from __future__ import print_function

from __future__ import absolute_import

import os

import io

import pandas as pd

import tensorflow as tf

from PIL import Image

from object_detection.utils import dataset_util

from collections import namedtuple, OrderedDict

flags = tf.app.flags

flags.DEFINE_string('csv_input', '', 'Path to the CSV input')

flags.DEFINE_string('output_path', '', 'Path to output TFRecord')

flags.DEFINE_string('image_dir', '', 'Path to images')

FLAGS = flags.FLAGS

TO-DO replace this with label map

def class_text_to_int(row_label):

if row_label == 'raccoon':

return 1

else:

None

def split(df, group):

data = namedtuple('data', ['filename', 'object'])

gb = df.groupby(group)

return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]

def create_tf_example(group, path):

with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:

encoded_jpg = fid.read()

encoded_jpg_io = io.BytesIO(encoded_jpg)

image = Image.open(encoded_jpg_io)

width, height = image.size

filename = group.filename.encode('utf8')

image_format = b'jpg'

xmins = []

xmaxs = []

ymins = []

ymaxs = []

classes_text = []

classes = []

for index, row in group.object.iterrows():

xmins.append(row['xmin'] / width)

xmaxs.append(row['xmax'] / width)

ymins.append(row['ymin'] / height)

ymaxs.append(row['ymax'] / height)

classes_text.append(row['class'].encode('utf8'))

classes.append(class_text_to_int(row['class']))

tf_example = tf.train.Example(features=tf.train.Features(feature={

'image/height': dataset_util.int64_feature(height),

'image/width': dataset_util.int64_feature(width),

'image/filename': dataset_util.bytes_feature(filename),

'image/source_id': dataset_util.bytes_feature(filename),

'image/encoded': dataset_util.bytes_feature(encoded_jpg),

'image/format': dataset_util.bytes_feature(image_format),

'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),

'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),

'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),

'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),

'image/object/class/text': dataset_util.bytes_list_feature(classes_text),

'image/object/class/label': dataset_util.int64_list_feature(classes),

}))

return tf_example

def main(_):

writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

path = os.path.join(FLAGS.image_dir)

examples = pd.read_csv(FLAGS.csv_input)

grouped = split(examples, 'filename')

for group in grouped:

tf_example = create_tf_example(group, path)

writer.write(tf_example.SerializeToString())

writer.close()

output_path = os.path.join(os.getcwd(), FLAGS.output_path)

print('Successfully created the TFRecords: {}'.format(output_path))

if __name__ == '__main__':

tf.app.run()

5.0.4 Creation of label map

A labels map indicating the labels and their indexes is required. Always start with index 1

because 0 is reserved. The file was saved as object-detection.pbtxt in a new directory named

“training”. This is how our label map looks:

item {

 id: 1

 name: 'Mustard'

}

item {

 id: 2

 name: 'Beer'

}

item {

 id: 3

 name: 'Juice'

}

item {

 id: 4

 name: 'Ketchup'

}

item {

 id: 5

 name: 'Lemon'

}

item {

 id: 6

 name: 'Orange'

}

item {

 id: 7

 name: 'Jam'

}

item {

 id: 8

 name: 'Eggs'

}

item {

 id: 9

 name: 'Yogurt'

}

item {

 id: 10

 name: 'Lettuce'

}

item {

 id: 11

 name: 'Tomato'

}

item {

 id: 12

 name: 'Milk'

}

item {

 id: 13

 name: 'Butter'

}

item {

 id: 14

 name: 'Tabasco'

}

item {

 id: 15

 name: 'Bread'

}

item {

 id: 16

 name: 'Cucumber'

}

item {

 id: 17

 name: 'Pineapple'

}

item {

 id: 18

 name: 'Olives'

}

item {

 id: 19

 name: 'Watermelon'

}

item {

 id: 20

 name: 'Banana'

}

item {

 id: 21

 name: 'Mango'

}

item {

 id: 22

 name: 'Meat'

}

item {

 id: 23

 name: 'Carot'

}

item {

 id: 24

 name: 'Water'

}

item {

 id: 25

 name: 'Coca Cola'

}

item {

 id: 26

 name: 'Apple'

}

item {

 id: 27

 name: 'Cheese'

}

item {

 id: 28

 name: 'Sausage'

}

item {

 id: 29

 name: 'Pepper'

}

5.1 Training

The complete training process of the model is being handled by a configuration file

known as pipeline. The pipeline is divided into five main structures that are responsible

for defining the model, the training and evaluation process parameters, and both the

training and evaluation dataset inputs. It is not recommended though to create our own

model from scratch. TensorFlow developers suggest using one of their own and already

trained models as a starting point. TensorFlow provides several configuration files that

only need a minimal amount of changes to make it work in a new training environment.

The model I used was ssd_mobilenet_v1_coco.config.

The model:

https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs

SSD with Mobilenet v1 configuration for MSCOCO Dataset.

Users should configure the fine_tune_checkpoint field in the train config as

well as the label_map_path and input_path fields in the train_input_reader and

eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that

should be configured.

model {

ssd {

num_classes: 90

box_coder {

faster_rcnn_box_coder {

y_scale: 10.0

x_scale: 10.0

height_scale: 5.0

width_scale: 5.0

}

}

matcher {

argmax_matcher {

matched_threshold: 0.5

unmatched_threshold: 0.5

ignore_thresholds: false

negatives_lower_than_unmatched: true

force_match_for_each_row: true

}

}

similarity_calculator {

iou_similarity {

}

}

anchor_generator {

ssd_anchor_generator {

num_layers: 6

min_scale: 0.2

max_scale: 0.95

aspect_ratios: 1.0

aspect_ratios: 2.0

aspect_ratios: 0.5

aspect_ratios: 3.0

aspect_ratios: 0.3333

}

}

image_resizer {

fixed_shape_resizer {

height: 300

width: 300

}

}

box_predictor {

convolutional_box_predictor {

min_depth: 0

max_depth: 0

num_layers_before_predictor: 0

use_dropout: false

dropout_keep_probability: 0.8

kernel_size: 1

box_code_size: 4

apply_sigmoid_to_scores: false

conv_hyperparams {

activation: RELU_6,

regularizer {

l2_regularizer {

weight: 0.00004

}

}

initializer {

truncated_normal_initializer {

stddev: 0.03

mean: 0.0

}

}

batch_norm {

train: true,

scale: true,

center: true,

decay: 0.9997,

epsilon: 0.001,

}

}

}

}

feature_extractor {

type: 'ssd_mobilenet_v1'

min_depth: 16

depth_multiplier: 1.0

conv_hyperparams {

activation: RELU_6,

regularizer {

l2_regularizer {

weight: 0.00004

}

}

initializer {

truncated_normal_initializer {

stddev: 0.03

mean: 0.0

}

}

batch_norm {

train: true,

scale: true,

center: true,

decay: 0.9997,

epsilon: 0.001,

}

}

}

loss {

classification_loss {

weighted_sigmoid {

}

}

localization_loss {

weighted_smooth_l1 {

}

}

hard_example_miner {

num_hard_examples: 3000

iou_threshold: 0.99

loss_type: CLASSIFICATION

max_negatives_per_positive: 3

min_negatives_per_image: 0

}

classification_weight: 1.0

localization_weight: 1.0

}

normalize_loss_by_num_matches: true

post_processing {

batch_non_max_suppression {

score_threshold: 1e-8

iou_threshold: 0.6

max_detections_per_class: 100

max_total_detections: 100

}

score_converter: SIGMOID

}

}

}

train_config: {

batch_size: 24

optimizer {

rms_prop_optimizer: {

learning_rate: {

exponential_decay_learning_rate {

initial_learning_rate: 0.004

decay_steps: 800720

decay_factor: 0.95

}

}

momentum_optimizer_value: 0.9

decay: 0.9

epsilon: 1.0

}

}

fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"

from_detection_checkpoint: true

Note: The below line limits the training process to 200K steps, which we

empirically found to be sufficient enough to train the pets dataset. This

effectively bypasses the learning rate schedule (the learning rate will

never decay). Remove the below line to train indefinitely.

num_steps: 200000

data_augmentation_options {

random_horizontal_flip {

}

}

data_augmentation_options {

ssd_random_crop {

}

}

}

train_input_reader: {

tf_record_input_reader {

input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-?????-of-00100"

}

label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"

}

eval_config: {

num_examples: 8000

Note: The below line limits the evaluation process to 10 evaluations.

Remove the below line to evaluate indefinitely.

max_evals: 10

}

eval_input_reader: {

tf_record_input_reader {

input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-?????-of-00010"

}

label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"

shuffle: false

num_readers: 1

}

The changes made here were to the num_classes where I put 29,The num_steps to halt the

training earlier, the fine_tune_checkpoint to point to the location of the model downloaded,

and the input_path and label_map_path variables of the train_input_reader and

eval_input_reader to point to the training and test dataset and the labels map.

SSD, which stands for Single Shot Detector, is a neural network architecture, based on a

single feed-forward convolutional neural network. It is called “single shot” because it

predicts the class of the image and the position of the box that represents the detection

(known as the anchor) during the same step. The opposite of this is an architecture that

requires a second component known as the “proposal generator” to predict the exact position

of the box.

MobileNet is a convolutional feature extractor, designed to work on mobile devices, that is

used to obtain the high-level features of the images.

Once the pipeline is ready, we add it to the “training” directory. Then, we start the training

using the following command:

python object_detection/train.py --logtostderr

--train_dir=path/to/training/

--pipeline_config_path=path/to/training/ ssd_mobilenet_v1_coco.config.

5.2 Evaluation

Firstly we start by exporting our model.

Before exporting it, we need to make sure we have the following files in the training

directory:

model.ckpt-${CHECKPOINT_NUMBER}.data-00000-of-00001,

model.ckpt-${CHECKPOINT_NUMBER}.index

model.ckpt-${CHECKPOINT_NUMBER}.meta

then we execute the following command:

python object_detection/export_inference_graph.py

input_type image_tensor

pipeline_config_path=path/to/training/ssd_mobilenet_v1_pets.config

trained_checkpoint_prefix=path/to/training/model.ckpt-xxxxx

output_directory path/to/output/directory

The output will be a file that holds a “frozen” version of the model named

frozen_inference_graph.pb.

5.2.1 Tensorboard

The evaluation of the training we performed can be done using TensorFlow’s visualization

platform, TensorBoard. In this platform, we can monitor several metrics such as the training

time, total loss, number of steps and many more. Different Views of TensorBoard

Different views take inputs of different formats and display them differently. You can change

them on the orange top bar.

 Scalars - Visualize scalar values, such as classification accuracy.

 Graph - Visualize the computational graph of your model, such as the neural

network model.

 Distributions - Visualize how data changes over time, such as the weights of a

neural network.

 Histograms - A fancier view of the distribution that shows distributions in a 3-

dimensional perspective

 Projector - Can be used to visualize word embeddings (that is, word embeddings

are numerical representations of words that capture their semantic relationships)

 Image - Visualizing image data

 Audio - Visualizing audio data

 Text - Visualizing text (string) data

To execute TensorBoard, we run the following command:

tensorboard --logdir=path/to/training/

Once the tensorboard opens we go to the first tab named «Scalars» and we check the Losses.

Below is presented a screenshot from the TotalLoss of our model VS the one that should be

according to Tensorflow in order to have a good trained model :

After the total loss, moving to the performance per category section, some examples of the

categories are shown in the below screenshots:

The conclusions of the above statistics about performance per category are that as we can

observe for items that are similar like apple and tomato the performance is nearly zero, this

issue can be resolved by having more training dataset. The ideal pictures per item are about

200-250 in order to have high accuracy.

In the section of Precision, we see below that the total precision of the model we trained is

about 58%.

In the Images tab we can see how the model worked and what detected in the images we have

in the test directory.

We see in the above photos that the trained model detected the Yogurt in both photos, in the

first picture with 78% accuracy and in the second with 58%. We also see though that in the

first photo, the model did not recognize the apples or the orange in this specific picture.

5.2.2 Jupyter Notebook

According to Wikipedia and the official site of Jupyter the project Jupyter is a nonprofit

organization created to "develop open-source software, open-standards, and services for

interactive computing across dozens of programming languages". Spun-off from IPython in

2014 by Fernando Pérez, Project Jupyter supports execution environments in several dozen

languages. Project Jupyter's name is a reference to the three core programming languages

supported by Jupyter, which are Julia, Python and R, and also a homage to Galileo's

notebooks recording the discovery of the moons of Jupiter. Project Jupyter has developed and

supported the interactive computing products Jupyter Notebook, JupyterHub, and JupyterLab,

the next-generation version of Jupyter Notebook.

Jupyter Notebook (formerly IPython Notebooks) is a web-based interactive computational

environment for creating Jupyter notebook documents. The "notebook" term can colloquially

make reference to many different entities, mainly the Jupyter web application, Jupyter Python

web server, or Jupyter document format depending on context. A Jupyter Notebook

document is a JSON document, following a versioned schema, and containing an ordered list

of input/output cells which can contain code, text (using Markdown), mathematics, plots and

rich media, usually ending with the ".ipynb" extension.

A Jupyter Notebook can be converted to a number of open standard output formats (HTML,

presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through "Download

As" in the web interface, via the nbconvert library or "jupyter nbconvert" command line

interface in a shell.

To simplify visualisation of Jupyter notebook documents on the web, the nbconvert library is

provided as a service through NbViewer which can take a URL to any publicly available

notebook document, convert it to HTML on the fly and display it to the user.

Jupyter Notebook interface

Jupyter Notebook provides a browser-based REPL built upon a number of popular open-

source libraries:

 IPython

 ØMQ

 Tornado (web server)

 jQuery

 Bootstrap (front-end framework)

 MathJax

Jupyter Notebook can connect to many kernels to allow programming in many languages. By

default Jupyter Notebook ships with the IPython kernel.

The jupyter notebook do not give us statistics but we can evaluate the model in terms that we

can import photos and check how the model works.

We can open Jupyter Notebook by writing Jupyter Notebook to the command prompt.

In the page that opens, we go to the path that we have the object_detection_tutorial.ipynb file

and open it.

The code :

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

from distutils.version import StrictVersion

from collections import defaultdict

from io import StringIO

from matplotlib import pyplot as plt

from PIL import Image

This is needed since the notebook is stored in the object_detection folder.

sys.path.append("..")

from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):

 raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')

This is needed to display the images.

%matplotlib inline

from utils import label_map_util

from utils import visualization_utils as vis_util

What model to download.

MODEL_NAME = 'smart_fridge_graph'

Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('training', 'object-detection.pbtxt')

detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.GraphDef()

 with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:

 serialized_graph = fid.read()

 od_graph_def.ParseFromString(serialized_graph)

 tf.import_graph_def(od_graph_def, name='')

PATH_TO_TEST_IMAGES_DIR = 'test_images'

TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR,

'image{}.jpg'.format(i)) for i in range(3, 9)]

Size, in inches, of the output images.

IMAGE_SIZE = (12, 8)

def run_inference_for_single_image(image, graph):

 with graph.as_default():

 with tf.Session() as sess:

 # Get handles to input and output tensors

 ops = tf.get_default_graph().get_operations()

 all_tensor_names = {output.name for op in ops for output in op.outputs}

 tensor_dict = {}

 for key in [

 'num_detections', 'detection_boxes', 'detection_scores',

 'detection_classes', 'detection_masks'

]:

 tensor_name = key + ':0'

 if tensor_name in all_tensor_names:

 tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(

 tensor_name)

 if 'detection_masks' in tensor_dict:

 # The following processing is only for single image

 detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])

 detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])

 # Reframe is required to translate mask from box coordinates to image coordinates and

fit the image size.

 real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)

 detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])

 detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])

 detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(

 detection_masks, detection_boxes, image.shape[1], image.shape[2])

 detection_masks_reframed = tf.cast(

 tf.greater(detection_masks_reframed, 0.5), tf.uint8)

 # Follow the convention by adding back the batch dimension

 tensor_dict['detection_masks'] = tf.expand_dims(

 detection_masks_reframed, 0)

 image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

 # Run inference

 output_dict = sess.run(tensor_dict,

 feed_dict={image_tensor: image})

 # all outputs are float32 numpy arrays, so convert types as appropriate

 output_dict['num_detections'] = int(output_dict['num_detections'][0])

 output_dict['detection_classes'] = output_dict[

 'detection_classes'][0].astype(np.int64)

 output_dict['detection_boxes'] = output_dict['detection_boxes'][0]

 output_dict['detection_scores'] = output_dict['detection_scores'][0]

 if 'detection_masks' in output_dict:

 output_dict['detection_masks'] = output_dict['detection_masks'][0]

 return output_dict

for image_path in TEST_IMAGE_PATHS:

 image = Image.open(image_path)

 # the array based representation of the image will be used later in order to prepare the

 # result image with boxes and labels on it.

 image_np = load_image_into_numpy_array(image)

 # Expand dimensions since the model expects images to have shape: [1, None, None, 3]

 image_np_expanded = np.expand_dims(image_np, axis=0)

 # Actual detection.

 output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)

 # Visualization of the results of a detection.

 vis_util.visualize_boxes_and_labels_on_image_array(

 image_np,

 output_dict['detection_boxes'],

 output_dict['detection_classes'],

 output_dict['detection_scores'],

 category_index,

 instance_masks=output_dict.get('detection_masks'),

 use_normalized_coordinates=True,

 line_thickness=8)

 plt.figure(figsize=IMAGE_SIZE)

 plt.imshow(image_np)

When we run the above code in Jupyter, it takes as inputs the images we want to see if our

model recognizes and runs the model. We see an example below, how it detected the orange

and the yogurt in the below image:

Section Three

6.0 Android Studio

6.0.1 What is Android Studio

According to Wikipedia, Android Studio is the official integrated development environment

(IDE) for Google's Android operating system, built on JetBrains' IntelliJ IDEA software and

designed specifically for Android development. It is available for download on Windows,

macOS and Linux based operating systems. It is a replacement for the Eclipse Android

Development Tools (ADT) as the primary IDE for native Android application development.

The following features are provided in the current stable version:

 Gradle-based build support

 Android-specific refactoring and quick fixes

 Lint tools to catch performance, usability, version compatibility and other problems

 ProGuard integration and app-signing capabilities

 Template-based wizards to create common Android designs and components

 A rich layout editor that allows users to drag-and-drop UI components, option to preview

layouts on multiple screen configurations

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Eclipse_%28software%29#Android_Development_Tools
https://en.wikipedia.org/wiki/Eclipse_%28software%29#Android_Development_Tools

 Support for building Android Wear apps

 Built-in support for Google Cloud Platform, enabling integration with Firebase Cloud

Messaging (Earlier 'Google Cloud Messaging') and Google App Engine

 Android Virtual Device (Emulator) to run and debug apps in the Android studio.

Android Studio supports all the same programming languages of IntelliJ (and CLion) e.g.

Java, C++, and more with extensions, such as Go; and Android Studio 3.0 or later supports

Kotlin[20] and "all Java 7 language features and a subset of Java 8 language features that

vary by platform version." External projects backport some Java 9 features. While IntelliJ

that Android Studio is built on supports all released Java versions, and Java 12, it's not clear

to what level Android Studio supports Java versions up to Java 12 (the documentation

mentions partial Java 8 support). At least some new language features up to Java 12 are

usable in Android.

6.0.2 Building the application
Firsty we download the Android Studio, clone the Tensorflow repository and import it to

Android Studio as a new project using the directory from the repository we cloned.

In the MainActivity we have the following code:

import android.app.Activity;

import android.app.ProgressDialog;

import android.content.Intent;

import android.content.res.Configuration;

import android.database.Cursor;

import android.graphics.Bitmap;

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

import android.provider.MediaStore;

import android.support.v4.content.FileProvider;

import android.view.View;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.TextView;

import com.nostra13.universalimageloader.core.DisplayImageOptions;

import com.nostra13.universalimageloader.core.ImageLoader;

import com.nostra13.universalimageloader.core.ImageLoaderConfiguration;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.text.SimpleDateFormat;

import java.util.Date;

public class MainActivity extends Activity {

 private ProgressDialog dialog;

 static final int REQUEST_IMAGE_CAPTURE = 2;

 private String mCurrentPhotoPath;

 private ImageView mImageView;

 private TextView image_name_tv;

 private int column_index;

 private String imagePath;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 dialog = new ProgressDialog(this);

 dialog.setIndeterminate(true);

 dialog.setCancelable(false);

 dialog.setMessage("Loading. Please wait..."); // showing a dialog for loading the data

 // Create default options which will be used for every

 // displayImage(...) call if no options will be passed to this method

 DisplayImageOptions defaultOptions = new DisplayImageOptions.Builder()

 .cacheInMemory(true)

 .cacheOnDisk(true)

 .build();

 ImageLoaderConfiguration config = new

ImageLoaderConfiguration.Builder(getApplicationContext())

 .defaultDisplayImageOptions(defaultOptions)

 .build();

 ImageLoader.getInstance().init(config); // Do it on Application start

 Button startDetector;

 startDetector = (Button) findViewById(R.id.startDetector);

 startDetector.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 startDetector();

 }

 });

 /* Button startClassifier;

 startClassifier = (Button) findViewById(R.id.startClassifier);

 startClassifier.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 startClassifier();

 }

 });*/

 Button getPictureIntent = (Button) findViewById(R.id.capturePhoto);

 getPictureIntent.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 pickPhoto();

 }

 });

 setTitle("Smart Fridge Application");

 }

 private void startDetector() {

 Intent detectorActivity = new Intent(this, DetectorActivity.class);

 startActivity(detectorActivity);

 }

 private void startClassifier() {

 Intent classifierActivity = new Intent(this, ClassifierActivity.class);

 startActivity(classifierActivity);

 }

 private void pickPhoto() {

 Intent photoPickerIntent = new Intent(Intent.ACTION_PICK);

 photoPickerIntent.setType("image/*");

 startActivityForResult(photoPickerIntent, 1);

 }

 @Override

 public void onConfigurationChanged(Configuration newConfig) {

 super.onConfigurationChanged(newConfig);

 // your code here, you can use newConfig.locale if you need to check the language

 // or just re-set all the labels to desired string resource

 }

 /* @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == 1)

 if (resultCode == Activity.RESULT_OK) {

 Uri selectedImage = data.getData();

 String filePath = getPath(selectedImage);

 String file_extn = filePath.substring(filePath.lastIndexOf(".") + 1);

 image_name_tv.setText(filePath);

 if (file_extn.equals("img") || file_extn.equals("jpg") || file_extn.equals("jpeg") ||

file_extn.equals("gif") || file_extn.equals("png")) {

 //FINE

 } else {

 //NOT IN REQUIRED FORMAT

 }

 }

 }

 public String getPath(Uri uri) {

 String[] projection = {MediaStore.MediaColumns.DATA};

 Cursor cursor = managedQuery(uri, projection, null, null, null);

 column_index = cursor

 .getColumnIndexOrThrow(MediaStore.MediaColumns.DATA);

 cursor.moveToFirst();

 imagePath = cursor.getString(column_index);

 return cursor.getString(column_index);

 }*/

 private void resultActivity() {

 Intent goToResults = new Intent (this, ResultActivity.class);

 startActivity(goToResults);

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == REQUEST_IMAGE_CAPTURE) {

 if (resultCode == Activity.RESULT_OK) {

 File file = new File(Environment.getExternalStorageDirectory().getPath(),

"photo.jpg");

 Uri uri = Uri.fromFile(file);

 Bitmap bitmap;

 try {

 bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);

 // bitmap = crupAndScale(bitmap, 300); // if you mind scaling

 mImageView.setImageBitmap(bitmap);

 } catch (FileNotFoundException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 }

 @Override

 public void onBackPressed(){

 Intent intent = new Intent(MainActivity.this, ResultActivity.class);

 startActivity(intent);

 }

}

We also have the DetectorActivity which is called from the MainActivity,

This activity does all the detection job and in here we have our trained frozen model.

Below the code:

/*

 * Copyright 2016 The TensorFlow Authors. All Rights Reserved.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.tensorflow.demo;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.Bitmap.Config;

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.Matrix;

import android.graphics.Paint;

import android.graphics.Paint.Style;

import android.graphics.RectF;

import android.graphics.Typeface;

import android.media.ImageReader.OnImageAvailableListener;

import android.os.SystemClock;

import android.util.Size;

import android.util.TypedValue;

import android.view.Display;

import android.view.Surface;

import android.widget.Toast;

import java.io.IOException;

import java.util.LinkedList;

import java.util.List;

import java.util.Vector;

import org.tensorflow.demo.OverlayView.DrawCallback;

import org.tensorflow.demo.env.BorderedText;

import org.tensorflow.demo.env.ImageUtils;

import org.tensorflow.demo.env.Logger;

import org.tensorflow.demo.tracking.MultiBoxTracker;

import org.tensorflow.demo.R; // Explicit import needed for internal Google builds.

/**

 * An activity that uses a TensorFlowMultiBoxDetector and ObjectTracker to detect and then

track

 * objects.

 */

public class DetectorActivity extends CameraActivity implements

OnImageAvailableListener {

 private static final Logger LOGGER = new Logger();

 // Configuration values for the prepackaged multibox model.

 private static final int MB_INPUT_SIZE = 224;

 private static final int MB_IMAGE_MEAN = 128;

 private static final float MB_IMAGE_STD = 128;

 private static final String MB_INPUT_NAME = "ResizeBilinear";

 private static final String MB_OUTPUT_LOCATIONS_NAME =

"output_locations/Reshape";

 private static final String MB_OUTPUT_SCORES_NAME = "output_scores/Reshape";

 private static final String MB_MODEL_FILE = "file:///android_asset/multibox_model.pb";

 private static final String MB_LOCATION_FILE =

 "file:///android_asset/multibox_location_priors.txt";

 private static final int TF_OD_API_INPUT_SIZE = 300;

 private static final String TF_OD_API_MODEL_FILE =

 "file:///android_asset/ssd_mobilenet_v1_android_export.pb";

 private static final String TF_OD_API_LABELS_FILE =

"file:///android_asset/coco_labels_list.txt";

 // Configuration values for tiny-yolo-voc. Note that the graph is not included with

TensorFlow and

 // must be manually placed in the assets/ directory by the user.

 // Graphs and models downloaded from http://pjreddie.com/darknet/yolo/ may be converted

e.g. via

 // DarkFlow (https://github.com/thtrieu/darkflow). Sample command:

 // ./flow --model cfg/tiny-yolo-voc.cfg --load bin/tiny-yolo-voc.weights --savepb --verbalise

 private static final String YOLO_MODEL_FILE = "file:///android_asset/graph-tiny-yolo-

voc.pb";

 private static final int YOLO_INPUT_SIZE = 416;

 private static final String YOLO_INPUT_NAME = "input";

 private static final String YOLO_OUTPUT_NAMES = "output";

 private static final int YOLO_BLOCK_SIZE = 32;

 // Which detection model to use: by default uses Tensorflow Object Detection API frozen

 // checkpoints. Optionally use legacy Multibox (trained using an older version of the API)

 // or YOLO.

 private enum DetectorMode {

 TF_OD_API, MULTIBOX, YOLO;

 }

 private static final DetectorMode MODE = DetectorMode.TF_OD_API;

 // Minimum detection confidence to track a detection.

 private static final float MINIMUM_CONFIDENCE_TF_OD_API = 0.6f;

 private static final float MINIMUM_CONFIDENCE_MULTIBOX = 0.1f;

 private static final float MINIMUM_CONFIDENCE_YOLO = 0.25f;

 private static final boolean MAINTAIN_ASPECT = MODE == DetectorMode.YOLO;

 private static final Size DESIRED_PREVIEW_SIZE = new Size(640, 480);

 private static final boolean SAVE_PREVIEW_BITMAP = false;

 private static final float TEXT_SIZE_DIP = 10;

 private Integer sensorOrientation;

 private Classifier detector;

 private long lastProcessingTimeMs;

 private Bitmap rgbFrameBitmap = null;

 private Bitmap croppedBitmap = null;

 private Bitmap cropCopyBitmap = null;

 private boolean computingDetection = false;

 private long timestamp = 0;

 private Matrix frameToCropTransform;

 private Matrix cropToFrameTransform;

 private MultiBoxTracker tracker;

 private byte[] luminanceCopy;

 private BorderedText borderedText;

 @Override

 public void onPreviewSizeChosen(final Size size, final int rotation) {

 final float textSizePx =

 TypedValue.applyDimension(

 TypedValue.COMPLEX_UNIT_DIP, TEXT_SIZE_DIP,

getResources().getDisplayMetrics());

 borderedText = new BorderedText(textSizePx);

 borderedText.setTypeface(Typeface.MONOSPACE);

 tracker = new MultiBoxTracker(this);

 int cropSize = TF_OD_API_INPUT_SIZE;

 if (MODE == DetectorMode.YOLO) {

 detector =

 TensorFlowYoloDetector.create(

 getAssets(),

 YOLO_MODEL_FILE,

 YOLO_INPUT_SIZE,

 YOLO_INPUT_NAME,

 YOLO_OUTPUT_NAMES,

 YOLO_BLOCK_SIZE);

 cropSize = YOLO_INPUT_SIZE;

 } else if (MODE == DetectorMode.MULTIBOX) {

 detector =

 TensorFlowMultiBoxDetector.create(

 getAssets(),

 MB_MODEL_FILE,

 MB_LOCATION_FILE,

 MB_IMAGE_MEAN,

 MB_IMAGE_STD,

 MB_INPUT_NAME,

 MB_OUTPUT_LOCATIONS_NAME,

 MB_OUTPUT_SCORES_NAME);

 cropSize = MB_INPUT_SIZE;

 } else {

 try {

 detector = TensorFlowObjectDetectionAPIModel.create(

 getAssets(), TF_OD_API_MODEL_FILE, TF_OD_API_LABELS_FILE,

TF_OD_API_INPUT_SIZE);

 cropSize = TF_OD_API_INPUT_SIZE;

 } catch (final IOException e) {

 LOGGER.e(e, "Exception initializing classifier!");

 Toast toast =

 Toast.makeText(

 getApplicationContext(), "Classifier could not be initialized",

Toast.LENGTH_SHORT);

 toast.show();

 finish();

 }

 }

 previewWidth = size.getWidth();

 previewHeight = size.getHeight();

 sensorOrientation = rotation - getScreenOrientation();

 LOGGER.i("Camera orientation relative to screen canvas: %d", sensorOrientation);

 LOGGER.i("Initializing at size %dx%d", previewWidth, previewHeight);

 rgbFrameBitmap = Bitmap.createBitmap(previewWidth, previewHeight,

Config.ARGB_8888);

 croppedBitmap = Bitmap.createBitmap(cropSize, cropSize, Config.ARGB_8888);

 frameToCropTransform =

 ImageUtils.getTransformationMatrix(

 previewWidth, previewHeight,

 cropSize, cropSize,

 sensorOrientation, MAINTAIN_ASPECT);

 cropToFrameTransform = new Matrix();

 frameToCropTransform.invert(cropToFrameTransform);

 trackingOverlay = (OverlayView) findViewById(R.id.tracking_overlay);

 trackingOverlay.addCallback(

 new DrawCallback() {

 @Override

 public void drawCallback(final Canvas canvas) {

 tracker.draw(canvas);

 if (isDebug()) {

 tracker.drawDebug(canvas);

 }

 }

 });

 addCallback(

 new DrawCallback() {

 @Override

 public void drawCallback(final Canvas canvas) {

 if (!isDebug()) {

 return;

 }

 final Bitmap copy = cropCopyBitmap;

 if (copy == null) {

 return;

 }

 final int backgroundColor = Color.argb(100, 0, 0, 0);

 canvas.drawColor(backgroundColor);

 final Matrix matrix = new Matrix();

 final float scaleFactor = 2;

 matrix.postScale(scaleFactor, scaleFactor);

 matrix.postTranslate(

 canvas.getWidth() - copy.getWidth() * scaleFactor,

 canvas.getHeight() - copy.getHeight() * scaleFactor);

 canvas.drawBitmap(copy, matrix, new Paint());

 final Vector<String> lines = new Vector<String>();

 if (detector != null) {

 final String statString = detector.getStatString();

 final String[] statLines = statString.split("\n");

 for (final String line : statLines) {

 lines.add(line);

 }

 }

 lines.add("");

 lines.add("Frame: " + previewWidth + "x" + previewHeight);

 lines.add("Crop: " + copy.getWidth() + "x" + copy.getHeight());

 lines.add("View: " + canvas.getWidth() + "x" + canvas.getHeight());

 lines.add("Rotation: " + sensorOrientation);

 lines.add("Inference time: " + lastProcessingTimeMs + "ms");

 borderedText.drawLines(canvas, 10, canvas.getHeight() - 10, lines);

 }

 });

 }

 OverlayView trackingOverlay;

 @Override

 protected void processImage() {

 ++timestamp;

 final long currTimestamp = timestamp;

 byte[] originalLuminance = getLuminance();

 tracker.onFrame(

 previewWidth,

 previewHeight,

 getLuminanceStride(),

 sensorOrientation,

 originalLuminance,

 timestamp);

 trackingOverlay.postInvalidate();

 // No mutex needed as this method is not reentrant.

 if (computingDetection) {

 readyForNextImage();

 return;

 }

 computingDetection = true;

 LOGGER.i("Preparing image " + currTimestamp + " for detection in bg thread.");

 rgbFrameBitmap.setPixels(getRgbBytes(), 0, previewWidth, 0, 0, previewWidth,

previewHeight);

 if (luminanceCopy == null) {

 luminanceCopy = new byte[originalLuminance.length];

 }

 System.arraycopy(originalLuminance, 0, luminanceCopy, 0, originalLuminance.length);

 readyForNextImage();

 final Canvas canvas = new Canvas(croppedBitmap);

 canvas.drawBitmap(rgbFrameBitmap, frameToCropTransform, null);

 // For examining the actual TF input.

 if (SAVE_PREVIEW_BITMAP) {

 ImageUtils.saveBitmap(croppedBitmap);

 }

 runInBackground(

 new Runnable() {

 @Override

 public void run() {

 LOGGER.i("Running detection on image " + currTimestamp);

 final long startTime = SystemClock.uptimeMillis();

 final List<Classifier.Recognition> results =

detector.recognizeImage(croppedBitmap);

 lastProcessingTimeMs = SystemClock.uptimeMillis() - startTime;

 cropCopyBitmap = Bitmap.createBitmap(croppedBitmap);

 final Canvas canvas = new Canvas(cropCopyBitmap);

 final Paint paint = new Paint();

 paint.setColor(Color.RED);

 paint.setStyle(Style.STROKE);

 paint.setStrokeWidth(2.0f);

 float minimumConfidence = MINIMUM_CONFIDENCE_TF_OD_API;

 switch (MODE) {

 case TF_OD_API:

 minimumConfidence = MINIMUM_CONFIDENCE_TF_OD_API;

 break;

 case MULTIBOX:

 minimumConfidence = MINIMUM_CONFIDENCE_MULTIBOX;

 break;

 case YOLO:

 minimumConfidence = MINIMUM_CONFIDENCE_YOLO;

 break;

 }

 final List<Classifier.Recognition> mappedRecognitions =

 new LinkedList<Classifier.Recognition>();

 for (final Classifier.Recognition result : results) {

 final RectF location = result.getLocation();

 if (location != null && result.getConfidence() >= minimumConfidence) {

 canvas.drawRect(location, paint);

 cropToFrameTransform.mapRect(location);

 result.setLocation(location);

 mappedRecognitions.add(result);

 }

 }

 tracker.trackResults(mappedRecognitions, luminanceCopy, currTimestamp);

 trackingOverlay.postInvalidate();

 requestRender();

 computingDetection = false;

 }

 });

 }

 @Override

 protected int getLayoutId() {

 return R.layout.camera_connection_fragment_tracking;

 }

 @Override

 protected Size getDesiredPreviewFrameSize() {

 return DESIRED_PREVIEW_SIZE;

 }

 @Override

 public void onSetDebug(final boolean debug) {

 detector.enableStatLogging(debug);

 }

 @Override

 public void onBackPressed(){

 Intent intent = new Intent(DetectorActivity.this, ResultActivity.class);

 startActivity(intent);

 }

}

Here is the layout of the first screen activity_main.xml:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="org.tensorflow.demo.MainActivity">

 <ImageView

 android:id="@+id/imageView"

 android:layout_width="166dp"

 android:layout_height="200dp"

 android:layout_marginBottom="483dp"

 android:layout_marginLeft="40dp"

 android:src="@drawable/aegean_logo" />

 <ImageView

 android:id="@+id/imageView3"

 android:layout_width="325dp"

 android:layout_height="356dp"

 android:layout_above="@+id/author"

 android:layout_alignParentStart="true"

 android:layout_marginStart="29dp"

 android:layout_marginBottom="115dp"

 android:src="@drawable/logo" />

 <TextView

 android:id="@+id/editText4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/imageView"

 android:layout_centerHorizontal="true"

 android:layout_marginBottom="-55dp"

 android:clickable="false"

 android:ems="17"

 android:focusable="false"

 android:focusableInTouchMode="false"

 android:gravity="center"

 android:text="@string/smart_fridge_detector"

 android:textColor="@color/black"

 android:textSize="30sp"

 android:textStyle="bold" />

 <Button

 android:id="@+id/capturePhoto"

 android:layout_width="86dp"

 android:layout_height="52dp"

 android:layout_alignParentEnd="true"

 android:layout_alignParentBottom="true"

 android:layout_marginEnd="46dp"

 android:layout_marginBottom="70dp"

 android:background="@drawable/camera" />

 <!-- <Button

 android:id="@+id/startClassifier"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_alignParentBottom="true"

 android:layout_marginEnd="261dp"

 android:layout_marginBottom="22dp"

 android:text="@string/startClassifier"

 android:textAllCaps="false" />-->

 <Button

 android:id="@+id/startDetector"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_alignParentBottom="true"

 android:layout_marginEnd="180dp"

 android:layout_marginBottom="71dp"

 android:text="@string/startDetector"

 android:textAllCaps="false" />

 <TextView

 android:id="@+id/author"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentStart="true"

 android:textColor="@color/control_background"

 android:text="@string/author" />

</RelativeLayout>

Here is the final screen layout, activity_result.xml, appears after the model has run and detect

the objects:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="org.tensorflow.demo.ResultActivity">

 <ImageView

 android:id="@+id/imageView"

 android:layout_width="166dp"

 android:layout_height="200dp"

 android:layout_marginBottom="483dp"

 android:layout_marginLeft="40dp"

 android:src="@drawable/aegean_logo" />

 <ImageView

 android:id="@+id/imageView3"

 android:layout_width="266dp"

 android:layout_height="277dp"

 android:layout_above="@+id/author"

 android:layout_alignParentStart="true"

 android:layout_marginStart="81dp"

 android:layout_marginBottom="8dp"

 android:src="@drawable/logo" />

 <TextView

 android:id="@+id/choose_what_todo"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@+id/imageView"

 android:layout_centerHorizontal="true"

 android:layout_marginBottom="-101dp"

 android:clickable="false"

 android:gravity="center"

 android:ems="17"

 android:focusable="false"

 android:focusableInTouchMode="false"

 android:text="@string/choose_what_todo"

 android:textColor="@color/black"

 android:textSize="22sp"

 android:textStyle="bold" />

 <Button

 android:id="@+id/go_for_shopping"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_alignParentBottom="true"

 android:layout_marginEnd="42dp"

 android:layout_marginBottom="355dp"

 android:text="@string/go_for_shopping"

 android:textAllCaps="false" />

 <Button

 android:id="@+id/goBack"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_alignParentBottom="true"

 android:layout_marginEnd="304dp"

 android:layout_marginBottom="358dp"

 android:text="@string/goBack"

 android:textAllCaps="false" />

 <TextView

 android:id="@+id/author"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentStart="true"

 android:textColor="@color/control_background"

 android:text="@string/author" />

</RelativeLayout>

Below we will see the available screens of the application:

In the first picture, the user have the option to detect via mobile phone’s camera pressing the

button Detect or he can import a photo by pressing the button with the camera icon.

In the second picture, we see how the model recognizes the objects inside the fridge by

phone’s camer.

In the third picture, we can see the final screen that the user can either go back to the first

screen or press the button Go for shopping and a website of an online supermarket will open

in order to shop.

7.0 Conclusion

The conclusion of this thesis is that we can train an object detection model with tensroflow, evaluate it and

can make it run from an android application. This makes machine learning easy for everyone and the especially

the fact that the model can be successfully deployed in an android application gives million opportunities for

building applications that will make our lives much better.

8.0 Future Implementation

In the future the goal is for the the user to be able to create a profile in the application and add the items that

wants to have always inside his fridge. The user will open his camera, the application will detect and list the

object he has inside and the object he has not (based on the profile he have created) and finally it will connect

him to an online supermarket so he can shop the missing items.

9.0 Bibliography

https://www.technologyreview.com

https://www.spotlightmetal.com

https://en.wikipedia.org/wiki/Machine_learning

https://bigdata-madesimple.com

https://en.wikipedia.org/wiki/Unsupervised_learning

https://en.wikipedia.org/wiki/Semi-supervised_learning

https://en.wikipedia.org/wiki/Reinforcement_learning

https://www.blog.consultants500.com/web-mobile-design-and-development/machine-learning-social-media-

machines-impacting-social-networks/

https://medium.com/datadriveninvestor/the-place-of-machine-learning-and-artificial-intelligence-in-the-

automotive-industry-618368db80f9

https://builtin.com/artificial-intelligence/machine-learning-healthcare

https://en.wikipedia.org/wiki/Deep_learning

https://machinelearningmastery.com/what-is-deep-learning/

https://en.wikipedia.org/wiki/Recursive_neural_network

https://www.forbes.com/sites/bernardmarr/2018/08/20/10-amazing-examples-of-how-deep-learning-ai-is-

used-in-practice/#24c1f508f98a

https://www.tensorflow.org/

https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html

https://medium.com/airbnb-engineering/categorizing-listing-photos-at-airbnb-f9483f3ab7e3

https://analyticsindiamag.com/twitters-adoption-of-tensorflow-might-have-improved-its-user-experience-

dramatically/

https://blogs.dropbox.com/tech/2018/10/using-machine-learning-to-index-text-from-billions-of-images/

https://en.wikipedia.org/wiki/Python_(programming_language)

https://www.python.org/doc/essays/blurb/

https://thriveglobal.com/stories/why-python-is-good-for-data-analytics/

https://en.wikipedia.org/wiki/Data_analysis

https://github.com/tzutalin/labelImg

https://towardsdatascience.com/detecting-pikachu-on-android-using-tensorflow-object-detection-

15464c7a60cd

https://jupyter.org/

https://en.wikipedia.org/wiki/Android_Studio

