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Abstract

Cross-domain authorship attribution is a category of realistic authorship at-
tribution problems on terms of applications mainly in forensics. In a cross-
domain scenario the texts of known authorship (training set) are on dif-
ferent domain (cross-domain) than the texts of unknown authorship (test
set). The use of pre-trained language models in various natural language
processing tasks inspired us to explore their potentialities in authorship at-
tribution problem. In this paper, we experiment with four architectural dif-
ferent pre-trained language models (BERT, ELMo, GPT-2 and ULMFiT).
The proposed method is a modification of a successful authorship verification
approach based on a multi-headed neural network language model to combine
with pre-trained language models. We evaluated the proposed method on two
corpora (CMCC, PAN18) on three cross-domain scenarios (cross-topic, cross-
genre and cross-fandom). The achieved results are very promising and they
demonstrate the crucial effect of the normalization corpus in cross-domain
attribution.

Περίληψη

Η δια-τομεακή αναγνώριση συγγραφέα είναι μια κατηγορία ρεαλιστικών προβ-

λημάτων αναγνώρισης συγγραφέων με όρους εφαρμογών κυρίως στην εγκλη-

ματολογία. Στα δια-τομεακά σενάρια τα κείμενα με γνωστό συγγραφέα (σετ

εκπαίδευσης) είναι σε διαφορετικό τομέα (δια-τομεακή) από τα κείμενα αγνώσ-

του συγγραφέα (σετ δοκιμών). Η χρήση προ-εκπαιδευμένων γλωσσικών μον-

τέλων σε διάφορα καθήκοντα επεξεργασίας φυσικής γλώσσας μας ενέπνευσε

να διερευνήσουμε τις δυνατότητές τους στο πρόβλημα της αναγνώρισης του

συγγραφέα. Σε αυτή την εργασία, πειραματιζόμαστε με τέσσερα διαφορετικής

αρχιτεκτονικής προ-εκπαιδευμένα γλωσσικά μοντέλα (BERT, ELMo, GPT-2
και ULMFiT). Η προτεινόμενη μέθοδος είναι μια τροποποίηση μιας επιτυχούς
προσέγγισης επαλήθευσης συγγραφέα, που βασίζεται σε ένα μοντέλο γλώσ-

σας νευρωνικών δικτύων πολλαπλών κεφαλών για να συνδυαστεί με τα προ-

εκπαιδευμένα γλωσσικά μοντέλα. Αξιολογήσαμε την προτεινόμενη μέθοδο σε

δύο συλλογές κειμένων (CMCC, PAN18) σε τρία δια-τομεακά σενάρια. Τα επι-
τευχθέντα αποτελέσματα είναι πολύ ελπιδοφόρα και καταδεικνύουν την κρίσιμη

επίδραση του σετ κανονικοποίησης στην δια-τομεακή αναγνώριση συγγραφέα.
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Introduction

Authorship Attribution (AA) is a very active area of research dealing with the
identification of persons who wrote specific texts [21, 33]. Typically, there is
a list of suspects and a number of texts of known authorship by each suspect
and the task is to assign texts of disputed authorship to one of the suspects.
The basic forms of AA are closed-set attribution (where the list of suspects
necessarily includes the true author), open-set attribution (where the true
author could be excluded from the list of suspects), and author verification
(where there is only one candidate author). The main applications of this
technology are in digital forensics, cyber-security, digital humanities, and
social media analytics [13, 26].

In real life scenarios the known and the unknown texts may not share the
same properties. The topic of the texts may differ but also the genre (e.g.,
essay, email, chat). Cross-domain AA examines those cases where the texts
of known authorship (training set) differ with respect to the texts of unknown
authorship (test set) in topic (cross-topic AA) or in genre (cross-genre AA)
[30, 36]. The main challenge here is to avoid the use of information related
to topic or genre of documents and focus only on stylistic properties of texts
related to the personal style of authors.

Another cross-domain and more challenging than cross-topic and cross-
genre scenarios is the cross-fandom scenario, where the documents of un-
known authorship are fics from the same fandom (target fandom) and the
document of known authorship are fics of several fandoms other than the
target fandom. Because of the explicit intertextuality (i.e. borrowings from
the original canon), it can be anticipated that the style and content of the
original canon shave a strong influence on the fanfics, because these often
aim to imitate the style of the canon’s original authors.

Recently, the use of pre-trained language models (e.g., BERT, ELMo,
ULMFiT, GPT-2) has been demonstrated to obtain significant gains in sev-
eral text classification tasks including sentiment analysis, emotion classifi-
cation, and topic classification [4, 11, 22, 24]. However, it is not yet clear
whether they can be equally useful for style-based text categorization tasks.
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Especially, in cross-topic AA, information about the topic of texts can be
misleading.

An approach based on neural network language models achieved top per-
formance in recent shared tasks on authorship verification and authorship
clustering (i.e., grouping documents by authorship) [27, 37]. This method is
based on a character-level recurrent (RNN) neural network language model
and a multi-headed classifier (MHC) [1]. So far, this model has not been
tested in closed-set attribution which is the most popular scenario in rele-
vant literature. In this paper, we adopt this approach for the task of closed-
set AA and more specifically the challenging and realistic cross-domain AA
scenarios.

We examine the use of pre-trained language models (e.g., BERT, ELMo,
ULMFiT, GPT-2) in AA and the potentials of MHC. We also demonstrate
that in cross-domain AA conditions, the effect of an appropriate normaliza-
tion corpus is crucial.
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Previous Work

The vast majority of previous work in AA focus on the closed-set attribution
scenario. The main issues is to define appropriate stylometric measures to
quantify the personal style of authors and the use of effective classification
methods [21, 33].

A relatively small number of previous studies examine the case of cross-
topic AA. In early approaches, features like function words or part-of-speech
n-grams have been suggested as less likely to correlate with topic of docu-
ments [16, 17]. However, one main finding of several studies is that low-level
features, like character n-grams, can be quite effective in this challenging task
[30, 34]. Typed character n-grams provide a means for focusing on specific
aspects of texts [28]. Interestingly, character n-grams associated with word
affixes and punctuation marks seem to be the most useful ones in cross-topic
AA. Another interesting idea is to apply structural correspondence learning
using punctuation-based character n-gram as pivot features [29]. Recently, a
text distortion method has been proposed as a pre-processing step to mask
topic-related information in documents while keeping the text structure (i.e.,
use of function words and punctuation marks) intact [36].

There have been attempts to use language modeling for AA including
traditional n-gram based models as well as neural network-based models
[1, 7, 8]. The latter is closely related to representation learning approaches
that use deep learning methods to generate distributed text representations
[5, 15]. In all these cases, the language models are extracted from the texts
of known authorship. As a result, they heavily depend on the size of the
training set per candidate author.

A series of digital text forensics tasks named PAN started in 2009 [23],
in 2018 included also a closed-set cross-domain AA task [38], where the se-
lected scenario was a cross-fandom scenario. There were eleven submissions
in total from several countries. Most of the approaches based on character
and word n-grams, while TF and TF-IDF where the most popular weight-
ing/normalization schemes. The winning method of Custódio and Paraboni
[3] was an ensemble of three simple authorship attribution approaches based
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on character and word n-gram features and a distorted version of texts [35].
The second-best method of Murauer et al. [20] used dynamic adaptation
of parameter values for each attribution problem separately and the and
third-best method of Halvani and Graner [10] based on text compression. In
overall, the results of the task indicate that simple and language-independent
features are more effective in comparison to more sophisticated approaches
based on linguistic analysis and deep learning.
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The Proposed Method

The Model

An AA task can be expressed as a tuple (A,K,U) where A is the set of
candidate authors (suspects), K is the set of known authorship documents
(for each a ∈ A there is a Ka ⊂ K) and U is the set of unknown authorship
documents. In closed-set AA, each d ∈ U should be attributed to exactly
one a ∈ A. In cross-domain (e.g. topic, genre, fandom) AA, the domain of
documents in U is distinct with respect to the domains found in K.

Bagnall introduced an AA method
1

[1] and obtained top positions in
shared tasks in authorship verification and authorship clustering [27, 37].
The main idea is that a character-level RNN is produced using all available
texts by the candidate authors while a separate output is built for each author
(MHC). Thus, the recurrent layer models the language as a whole while each
output of MHC focuses on the texts of a particular candidate author. To
reduce the vocabulary size, a simple pre-processing step is performed (i.e.,
uppercase letters are transformed to lowercase plus a symbol, punctuation
marks and digits are replaced by specific symbols) [1].

The model, as presented in Figure 1, consists of three parts, the language
model, a Filter which filters the representations of the LM and the multi-head
classifier (MHC). The LM consists of a tokenization layer and the pre-trained
language model, its role is to generate a representation for each token in the
given text, Algorithm 1. The Filter allows to pass only the representations
that are referring to tokens whose next token belonging to vocabulary, Al-
gorithm 2. That way for each representation given to MHC, the token to
be predicted will belong to vocabulary, which contains the N most frequent
tokens in K set. We filter the representations and not the tokens, in that
way the information of all tokens (even those that are not belonging to the
vocabulary) is encapsulated in the representations. The calculations made
for the rejected representations are affecting the representations through the

1
https://github.com/pan-webis-de/caravel
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Figure 1: The proposed model consists of two parts, the language model
(LM) and the multi-headed classifier (MHC). The DEMUX layer in MHC
part functions as a demultiplexer, its state is defined by the selector. During
training phase the selector is defined by the author of the input text and
during calculation of normalization vector or test phase the input of DEMUX
is connected to all its outputs.

hidden states of the LM.
MHC comprises a set of ∣A∣ classifiers, where ∣A∣ is the number of candi-

date authors and a demultiplexer which helps to select the desirable classifier,
Algorithm 2. Each classifier has N inputs, where N is the dimensionality of
the LM’s representation, and V outputs, where V is the size of the vocab-
ulary. During training only one classifier is connected to the LM, the one
that corresponds to the author of the given text, Algorithm 4. But during
evaluation or test phase all classifiers are connecting to the LM in order to
obtain the winner author by comparing the outputs, Algorithm 5. Moreover,
only the classifiers in MHC are trained during training phase and not the
LM.

Each classifier in MHC is trained to predict the text flow on documents
of the corresponding author. Given a document, as output we obtain the
cross-entropy error of each classifier and at this points we could obtain the
winner author for each document in U by simply comparing the outputs of
MHC.

Summarizing the above, the idea of the approach is that since the doc-
uments are on the same language, most of their content is similar. So, the
use of a common LM for each classifier will force the classifiers to respond
similar to the common content and each classifier will perform better than
the other classifiers on the idioms of the author it has been trained on.

However, the scores obtained for each candidate author (classifier) are not
directly comparable due to different bias at each classifier of MHC. To handle
this drawback, the outputs are normalized with the help of normalization
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vector n [1], Equation 1.

n =
1

∣C∣ ∑
d∈C

H(d) (1)

where C is the normalization corpus and H a vector that denotes the cross-
entropy errors produced by the MHC for the given document. In other words,
vector n is the average cross-entropy error of each author on all documents
in C. As you may already noticed in Equation 1, the normalization corpus
C is an unlabeled corpus, there is no need to be known the authors of its
documents. So, C may be an arbitrary set of documents but it may even
be the documents of known authorship, set K or even the documents of
unknown authorship, set U , since only the text and not the author of each
document is required to estimate normalization vector n, Algorithm 6.

Finally, Equation 2 indicates the criterion of how the winner author a for
a document d ∈ U is determined and the way the normalization vector is
applied, Algorithm 5.

arg min
a

(H(d) − n) (2)

In this paper, we extended Bagnall’s model in order to accept tokens as
input and we propose the use of a pre-trained language model to replace
RNN in the aforementioned AA method. The RNN proposed by Bagnall [1]
is trained using a small set of documents (K for closed-set AA). In contrast,
pre-trained language models have been trained using millions of documents
in the same language. Moreover, RNN is a character-level model while the
pre-trained models used in this study are token-level approaches.

The Pre-trained Language Models

In this study we selected to experiment with four different pre-trained LMs
BERT, GPT-2, ELMo and ULMFiT. The selection of the LMs based on the
directionality, depth and the acceptance from Natural Language Processing
community.

BERT (Bidirectional Encoder Representations from Transformer) is a LM
that creates contextualized word representations. Its architecture is a multi-
layer bidirectional Transformer encoder as introduced in [39]. Initially, two
variations of the same model tested the base model and the large model. The
base/large model consist of 12/24 layers of Transformer blocks, the hidden
size is 768/1024, the number of self-attention heads are 12/16 and contains
110/340 million parameters in total. The input format of BERT’s model
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allows the use of one or two sentences at once. In case of two sentences the
format is “[CLS] A [SEP] B [SEP]”, where A and B are the two sentences,
and “[CLS]” and “[SEP]” are special tokens indicating the beginning of an
input and the end of a tokens sequence, respectively. In case of using just
one sentence the format is “[CLS] A [SEP]”. In both cases the maximum
length in tokens is 512 including “[CLS]” and “[SEP]” tokens.

BERT was trained on two different tasks Masked LM (MLM) and Next
Sentence Prediction (NSP). On MLM, some percentage of the input tokens
are masked at random, and then the model trying to predict only those
masked tokens. On NSP, two sentences (sequences of tokens) A and B are
given to the model in order to decide whether the sentence B is the actual next
sentence that follows A or not. The corpus used were BooksCorpus (800 mil-
lion words) and English Wikipedia (2500 million words) for a vocabulary of
30k tokens. BERT achieved state-of-the-art on 11 Natural Language Process
(NLP) tasks, General Language Understanding Evaluation (GLUE) task set
consisting of 9 tasks, Stanford Question Answering Dataset (SQuAD) v1.1
and v2.0 and Situations With Adversarial Generations (SWAG). On Octo-
ber 25, 2019, Google Search announced that they applying BERT on search
queries.

GPT-2 (Generative Pre-trained Transformer 2) model is the successor of
the OpenAI GPT [25] model with modified initialization procedure, weight
scaling and normalization layers. Additionally, the vocabulary expanded to
50257 tokens and the input sequence from 512 to 1024 tokens. GPT-2 is
a left-to-right unidirectional model and instead of being a word-level or a
byte-level LM, it makes use of Byte Pair Encoding (BPE) [31] which allows
to combine the empirical benefits of word-level LM with the generality of
byte-level approaches. The model’s architecture is based on Transformers
and four different variations of model’s size were used with 117, 345, 762 and
1542 millions of parameters each and 12, 24, 36 and 48 layers, respectively.
GPT-2 was trained on WebText created by OpenAI which consists of scraped
web pages which have been curated/filtered by human and test on zero-shot
tasks achieving state-of-the-art accuracy and perplexity on 7 out of 8.

ELMo (Embeddings from Language Models) is a feature-based approach
that uses the representations of all hidden layers of a bidirectional LM that
consists of two identical unidirectional LMs (a left-to-right and a right-to-
left), to generate a contextualized word representation that encapsulate the
information of each layer, including the output of the Softmax layer. In other
words ELMo is a linear combination of the LM’s representations. While
training the weights of the LM are freezed and only the coefficients of the
linear combination are updated. The bidirectional LM adopter for their
experiments based on the architectures used in [12, 14] with modifications
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to support joint training of both directions and the addition of a residual
connection between LSTM layers. The final model provides three layers of
representation for input token, while the size of the ELMo representation
is 1024 ELMo representations evaluated and achieved state-of-the-art on six
NLP tasks SQuAD, SNLI, SRL, Coref, NER and SST-5.

ULMFiT (Universal Language Model Fine-Tuning) is based on AWD-
LSTM [18] LM and its contribution is on the training techniques that ap-
plies to enhance the performance of the LM. Initially, the model trained
on Wikitext-103 [19] and then during fine-tuning they apply discriminative
fine-tuning and slanted triangular learning rates. Instead of using the same
learning rate for all layers of the model, discriminative fine-tuning allows
to tune each layer with different learning rates. Slanted triangular learning
modifies triangular learning rates [32] with a short increase and a long decay
period. Additionally, concat pooling and gradual unfreezing where used. The
concat pooling representation is a concatenation of three representations (i)
the representation of the last token, (ii) the maxpool of the representations of
the N previous tokens and (iii) the meanpool of the representations of the N
previous tokens. Gradual unfreezing is a technique similar to chain-thaw [6]
that gradually unfreezes the model’s layers during training starting from the
last layer. ULMFiT evaluated on six widely-studied datasets on three com-
mon text classification tasks sentiment analysis, question classification and
topic classification, achieving state-of-the-art results.
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Experiments

Corpus

In this study, we experiment on two corpuses the CMCC corpus and the
PAN2018 corpus. The former applies on cross-topic and cross-genre scenar-
ios, and the later on cross-fandom scenario.

CMCC

The CMCC corpus introduced in [9] and also used in previous cross-domain
AA works [30, 36]. CMCC is a controlled corpus in terms of genre, topic
and demographics of subjects. It includes samples by 21 undergraduate stu-
dents as candidates authors (A), covering six genres (blog, email, essay, chat,
discussion, and interview) and six topics (catholic church, gay marriage, pri-
vacy rights, legalization of marijuana, war in Iraq, gender discrimination) in
English. To ensure that the same specific aspect of the topic is followed, a
short question was given to subjects (e.g., Do you think the Catholic Church
needs to change its ways to adapt to life in the 21th Century?). In two genres
(discussion and interview) the samples were audio recordings and they have
been transcribed into text as accurately as possible maintaining information
about pauses, laughs etc. For each subject, there is exactly one sample for
each combination of genre and topic. More details about the construction of
this corpus are provided in [9].

PAN18

The PAN18 corpus created for Cross-Domain Authorship Attribution 2018
task of PAN 2018 [38]. The corpus consists of a development set with 10
problems (2 for each language

2
) and an evaluation set with 20 problems (4

for each language). Each problem has 7 documents for each candidate author
(documents of known authorship), but the number of documents of unknown

2
English, French, Italian, Polish and Spanish
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authorship is different for each author. In this study we use the 4 problems
on English language of the evaluation set, which differ only on the number of
candidate authors (5, 10, 15 and 20). All documents of unknown authorship
are fics of the same fandom (target-fandom) while the documents of known
authorship by the candidate authors are fics of several fandoms (other than
the target-fandom). The documents are selected texts from Archive of Our
Own, a project of the Organization for Transformative Works

3
. The selected

texts have at least 500 tokens and in case of having more than 1000 tokens
were restricted to middle 1000 tokens. All texts were encoded as plain text
(UTF8) and tokenization was done using NLTK’s ”WordPunctTokenizer” [2].

Experimental Setup

In this study, our focus is on cross-domain AA and more specifically on cross-
topic, cross-genre and cross-fandom scenarios. Based on previous works for
comparison reasons, we use CMCC corpus on cross-topic and cross-genre
scenarios and PAN2018 on cross-fandom scenario. Following are the details
of the setup on each scenario:

• Cross-topic We assume that the topic of training texts (K) is different
from the topic of test texts (U) while all texts (both K and U) belong
in the same genre. Similar to [36] and [30], we perform leave-one-topic-
out cross-validation where all texts on a specific topic (within a certain
genre) are included in the test corpus and all remaining texts on the
remaining topics (in that genre) are included in the training corpus.
This is repeated six times so that all available topics to serve exactly
once as the test topic. Mean classification accuracy over all topics is
reported.

• Cross-genre Similar to cross-topic, we perform leave-one-genre-out cross-
validation as in [36], where all texts on a specific genre (within a certain
topic) are included in the test corpus and all remaining texts on the re-
maining genres (in that topic) are included in the training corpus. The
number of available genres is also six like topics, and though we repeat
the leave-one-genre-out cross-validation six times and report the mean
classification accuracy. In both scenarios, cross-topic and cross-genre,
the candidates authors set A consists of 21 undergraduate students as
mentioned in section .

3
https://archiveofourown.org
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• Cross-fandom We use the four problems in English from the evaluation
set of PAN18 dataset, where the training and test document sets are
predefined by the creator of the dataset. On each problem, the training
texts (K) are on different fandoms than the test texts (U) fandom and
the number of candidate authors is different (5, 10, 15, and 20). As
on [38] where the same dataset were used, the F1 score on each problem
and the macro-averaged F1 score over all four problems are reported.

All the examined models use a MHC on top of a language modeling
method. First, we study the original Bagnall’s approach where a character-
level RNN is trained over K. Then, each one of the pre-trained language
models described in previous section, with minor differences on the setup, in
case of:

• BERT we used only the one sentence format, as presented on Section ,
to extract the representations and due to restriction of 512 tokens per
input, we split each text to segments of 510 tokens maximum (e.g. a
text with 1200 tokens splitted in three segments of 510, 510 and 180
tokens, respectively).

• GPT-2, we split each text to segments of 1024 tokens maximum (e.g. a
text with 1200 tokens splitted in two segments of 1024 and 176 tokens
respectively).

• ELMo, we adopted the implementation from Google
4
, which has no

limitation on the size of the input sequence.

• ULMFiT, we used the representation of concat pooling produced by the
left-to-right AWD-LSTM. The size of the input sequence in ULMFiT
is not restricted.

All of the pre-trained LMs was fine-tuned for the specific AA task with MHC
as classifier without further training the language model, since our goal is to
explore the potential of pre-trained models obtained from general domain
corpora.

In MHC, each author corresponds to a separate classifier with N inputs
and M outputs, where N is the dimensionality of text representation, Table 1,
and M is equal to vocabulary size V . During training, each classification
layer is trained only with the documents of the corresponding author. The
vocabulary is defined as the most frequent tokens in the corpus. These are
less likely to be affected by topic shifts and the reduced input size increases

4
https://tfhub.dev/google/elmo/2
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the efficiency of our approach. The selected values of V are 100, 500, 1k,
2k and 5k. Each model used its own tokenization stage except from ELMo
(where ULMFiT’s tokenization was used). Note that RNN is a character-
level model while all pre-trained models are token-based.

Table 1: Dimensionality of representation (N) for each language model in
this study.

Model RNN BERT ELMo GPT-2 ULMFiT
N 149 768 1024 768 400

Since RNN is trained from scratch for a corpus of small size, it is con-
siderably affected by initialization. As a result, there is significant variance
when it is applied several times to the same corpus. To compensate this, we
report average performance results for 10 repetitions. Regarding the training
phase of each method, we use 100 epochs for RNN and examine four cases
for the pre-trained models: the minimal training of 1 epoch and the cases of
5, 10 and 20 epochs of training. As concerns the normalization phase three
different approaches were examined (1) without normalization (C = ∅), (2)
using the (unlabeled) training texts as normalization corpus (C = K) and
(3) using the test texts as normalization corpus (C = U), as noted in Section
in all cases the texts are unlabeled.

Results on Cross-topic AA

Table 2 presents the leave-one-topic-out cross-validation accuracy results for
each one of the six available genres as well as the average performance over
all genres for each method. Two cases of normalization corpus are presented:
one using the (unlabeled) training texts as normalization corpus (C = K) and
another where the (unlabeled) test texts are used as normalization corpus
(C = U). The former means that C includes documents with distinct topics
with respect to the document of unknown authorship while the latter ensures
that there is perfect thematic similarity. As can be seen, the use of a suitable
normalization corpus is crucial to enhance the performance of the examined
methods. The third case where no normalization is applied (C = ∅) is not
worth mentioning on this scenario.

As concerns individual pre-trained language models, BERT and ELMo
are better able to surpass the RNN baseline while ULMFiT and GPT-2
are not that competitive. In addition, BERT and ELMo methods need small
number of training epochs while ULMFiT and GPT-2 improve with increased
number of epochs.
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Table 2: Accuracy results (%) on Cross-Topic AA. The reported performance
of baseline models is taken from the corresponding publications.

‡ LM V epochs Blog Email Essay Chat Disc. Interv. Avg.

C
=
K

RNN - 100 47.94 44.37 41.00 73.41 75.71 72.54 59.16
BERT 2k 1 57.14 49.21 60.32 84.92 79.37 80.16 68.52
BERT 5k 1 53.97 52.38 58.73 86.51 77.78 78.57 67.99
ELMo 2k 1 56.35 55.56 56.35 80.95 72.22 76.98 66.40
ELMo 5k 1 55.56 53.17 57.14 82.54 70.64 76.19 65.87
GPT-2 2k 20 60.32 57.94 54.76 76.98 63.49 79.37 65.48
GPT-2 5k 20 58.73 59.52 61.11 84.13 63.49 76.98 67.33
ULMFiT 2k 10 50.00 43.65 52.38 79.37 72.22 71.43 61.51
ULMFiT 5k 20 46.83 40.48 50.79 80.16 69.84 70.64 59.79

C
=
U

RNN - 100 61.67 56.43 68.36 81.27 86.90 84.52 73.19
BERT 2k 5 72.22 64.29 76.98 90.48 84.13 90.48 79.76
BERT 5k 5 73.81 61.11 77.78 92.86 84.13 90.48 80.03
ELMo 2k 10 72.22 65.08 75.40 89.68 76.19 91.27 78.31
ELMo 5k 10 72.22 67.46 76.98 88.10 76.98 89.68 78.57
GPT-2 2k 20 72.22 64.29 73.02 80.16 67.46 82.54 73.28
GPT-2 5k 20 69.84 65.87 69.84 84.13 73.81 85.71 74.87
ULMFiT 1k 10 64.29 57.94 73.02 87.30 80.16 88.89 75.26
ULMFiT 2k 10 64.29 54.76 73.81 88.89 78.57 88.10 74.74
ULMFiT 5k 20 58.73 54.76 75.40 88.89 75.40 84.13 72.88
C3G-SVM [30] - - 33.41 36.53 36.66 57.46 49.91 56.35 45.05
PPM5 [36] - - 52.38 39.68 50.00 57.94 36.51 47.62 47.35
DV-MA [36] - - 43.65 65.87 60.32 71.43 80.16 67.46 64.81

Table 2 also shows the corresponding results from previous studies on
cross-topic AA using exactly the same experimental setup. These baselines
are based on character 3-grams features and a SVM classifier (C3G-SVM)
[30], a compression-based method (PPM5) [36], and a method using text
distortion to mask thematic information (DV-MA) [36]. As can be seen,
when C = U all of the examined methods surpass the best baseline in average
performance and the improvement is high in all genres. It is remarkable
that all models except ULMFiT achieve to surpass the baselines (in average
performance) even when C = K.

Figure 2 presents the mean classification accuracy with respect to vocab-
ulary size on cross-topic AA. Each sub-figure correspond to different LM.
The type of the line indicates the normalization corpus, a dashed line in-
dicates the use of training texts (C = K) as normalization corpus, while a
continuous line indicates the use of test texts (C = U), as noted in section
in both cases the texts are unlabeled. The shape of each point correspond
to epochs of training, 1, 5, 10 and 20 for circle, triangle, square and x-mark
respectively.

From the aspect of vocabulary size, in contradiction to the state of the
art [36], where the best results achieved for vocabularies that consisted of
less than 1k words (most frequent), in our set up the most appropriate value
seems to be above 2k. Despite the gap between 2k and 5k words in vocabulary
size BERT and ELMo have minor difference in accuracy indicating that above
2k words the affect of vocabulary size is minor. GPT-2 continues to increment
the accuracy and ULMFiT started to decrement for values above 1k words,
Table 2. Experiments with values over 5k were prohibitive due to runtime
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of training, with 5k words the runtime was approximately 4 days for each
model running on GPU.

From the aspect of training epochs, BERT and ELMo achieved their best
performance in C = K cace with minimal training. In C = U case their per-
formance is slightly affected by the number of training epochs. This behavior
raises the question of over-fitting. As mentioned in section the selection cri-
terion Equation 2, is based on the cross-entropy of each text. MHC is trained
on predicting the text flow and thus the cross-entropy decreases after each
epoch of training. Having in mind the cross-entropy, if we have a second look
on Figure 2, the case of over-fitting is rejected since the behavior of accuracy
in relevance with the number of training epochs (indicated by the shape of
point) do not have the characteristics of over-fitting (increment of training
epochs decrements the accuracy).

Results on Cross-Genre AA

The experiments on cross-genre performed on the same set up as in cross-
topic. Table 3 presents the accuracy results on leave-one-genre-out cross-
validation for each one of the six available topics and the average performance
over all topics, similar to Table 2. Based on the results of Section the most
reasonable value of V in order to check the performance of each method is
V = 2k. The case of V = 5k is very time consuming without offering valuable
gain and below 1k the performance is not remarkable. For the experiments
on cross-genre the values of 1k and 2k were selected for V . Comparing the
two cases, the results with V = 2k surpass in all experiments the results with
V = 1k and thus we selected to present only the case of V = 2k on Table 3.

BERT and ELMo achieved high results as expected from their perfor-
mance on cross-topic, with ELMo achieving the highest accuracy result.
Unexpectedly, ULMFiT which had the worst performance in cross-topic
achieved the second best performance. GPT-2 performed lower than RNN
baseline in both cases of C = K and C = U . Comparing Table 2 and Ta-
ble 3 is noticeable that ELMo and BERT are more stable in performance
than GPT-2 and ULMFiT. The main diference between the former and the
latter is the directionality, the former two are bidirectional while the latter
are unidirectiocal, we suspect that this is the main reason that affects the
stability in performance.
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Figure 2: Accuracy results for vocabulary sizes (V ) 100, 500, 1k, 2k and 5k
for each pre-trained model. Colored symbols blue circle, red triangle, yellow
square and green x-mark correspond to 1, 5, 10 and 20 training epochs, re-
spectively. The type of the line indicates the normalization corpus, a dashed
line indicates the use of training texts (C = K) as normalization corpus,
while a continuous line indicates the use of test texts (C = U).
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Table 3: Accuracy results (%) on cross-genre AA for vocabulary size 2k
(V = 2k) and each topic (Church (C), Gay Marriage (G), War in Iraq (I),
Legalization of Marijuana (M), Privacy Rights (P), Gender Discrimination
(S)). The reported performance of the baseline models (only available in
average across all topics) is taken from the corresponding publications.

‡ LM epochs C G I M P S Avg.

C
=
K

RNN 100 58.89 68.33 71.59 60.24 50.40 62.22 61.94
BERT 10 70.63 77.78 83.33 73.81 62.70 76.98 74.21
ELMo 10 68.25 78.57 78.57 71.43 55.56 65.08 69.58
GPT-2 20 52.38 67.46 61.11 57.94 50.79 53.17 57.14
ULMFiT 20 72.22 77.78 79.37 70.63 61.11 68.25 71.56

C
=
U

RNN 100 75.32 75.95 86.11 79.52 69.37 74.21 76.75
BERT 5 84.13 87.30 88.10 82.54 77.78 78.57 83.07
ELMo 20 87.30 88.89 88.89 83.33 76.98 81.75 84.52
GPT-2 20 69.84 76.98 74.60 67.46 61.11 72.22 70.37
ULMFiT 10 88.10 89.68 85.71 82.54 77.78 79.37 83.86
C3G-SVM [30] -
PPM5 [36] - 60.00
DV-MA [36] - 33.00

Results on Cross-Fandom AA

Figure 3 presents the macro-averaged F1 scores with respect to vocabulary
size on PAN18 dataset. Each sub-figure correspond to different LM. The
type of the line indicates the normalization corpus, a dashed line indicates
the use of training texts (C = K) as normalization corpus, a continuous line
indicates the use of test texts (C = U) and a dotted line indicated that no
normalization applied (C = ∅), as noted in section in all cases the texts are
unlabeled. The shape of each point correspond to epochs of training, 1, 5,
10 and 20 for circle, triangle, square and x-mark respectively.

Normalization corpus has significant impact on how the vocabulary size
affects the results. When no normalization is applied the optimal vocabulary
size for all methods in general seems to be somewhere between 500 and 1k
tokens. If normalization is applied (training set or test set) the optimal
vocabulary size transfers around 2k tokens. Vocabularies with 100 tokens
expected to have better results, since generally the most frequent words are
more valuable in AA [33, 36].

In each sub-figure of Figure 3, if we isolate the results according to the
normalization set, we may notice that the layout according to epochs of
training remains the same. Moreover the layout in almost all cases is stable
to vocabulary size. This observations indicates that the optimal number of
training epochs is characteristic of the LM. BERT and ELMo perform better
with few training epochs, in contradiction to GPT-2 an ULMFiT.

The performance of BERT with minimal training raises the question of

18



over-fitting. As mentioned in section the selection criterion Equation 2, is
based on the cross-entropy of each text. MHC is trained on predicting the
text flow and thus the cross-entropy decreases after each epoch of training.
Having in mind the cross-entropy, if we have a second look on Figure 3, the
case of over-fitting is rejected since the behavior of scores in relevance with
the number of training epochs (indicated by the shape of point) do not have
the characteristics of over-fitting (increment of training epochs decrements
the score).

(a) BERT (b) ELMo

(c) GPT-2 (d) ULMFiT

Figure 3: Macro-averaged F1 scores for vocabulary sizes (V ) 100, 500, 1k,
2k and 5k for each pre-trained model. Colored symbols blue circle, red tri-
angle, yellow square and green x-mark correspond to 1, 5, 10 and 20 training
epochs, respectively. The type of the line indicates the normalization corpus,
a dashed line indicates the use of training texts (C = K) as normalization
corpus, a continuous line indicates the use of test texts (C = U) and a dotted
line indicates that no normalization applied (C = ∅).

Table 4 presents the best runs according to macro-averaged F1 score over
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Table 4: Macro-averaged F1 scores on PAN18. The reported performance of
baseline models is taken from the corresponding publications. In each column
(problem) underline indicates the best performance on our experiments while
bold indicates the best performance among all.

‡ LM V epochs Prob.1 Prob.2 Prob.3 Prob.4 Macro-F1

C
=
∅

RNN - 100 0.433 0.537 0.497 0.526 0.499
BERT 2k 1 0.598 0.644 0.721 0.758 0.680
GPT-2 500 20 0.490 0.612 0.844 0.670 0.654
ELMo 1k 10 0.617 0.723 0.767 0.758 0.716
ULMFiT 2k 20 0.609 0.652 0.747 0.795 0.701

C
=
K

RNN - 100 0.439 0.513 0.639 0.820 0.603
BERT 2k 10 0.444 0.453 0.563 0.795 0.564
GPT-2 2k 20 0.435 0.490 0.540 0.800 0.566
ELMo 2k 20 0.498 0.505 0.509 0.800 0.578
ULMFiT 1k 20 0.427 0.507 0.562 0.800 0.574

C
=
U

RNN - 100 0.369 0.362 0.535 0.635 0.475
BERT 2k 1 0.522 0.597 0.597 0.800 0.629
GPT-2 2k 10 0.551 0.582 0.598 0.756 0.622
ELMo 5k 1 0.516 0.525 0.591 0.741 0.593
ULMFiT 1k 5 0.492 0.529 0.712 0.532 0.566
BASELINE [38] - - - - - - 0.697
Murauer et al. [20] - - 0.730 0.689 0.800 0.830 0.762

all four problems, of each method in all three normalization cases: (1) with-
out applying any normalization corpus (C = ∅), (2) using the (unlabeled)
training texts as normalization corpus (C = K) and (3) using the (unlabeled)
test texts as normalization corpus (C = U).

In general all methods performed better if no normalization is used (C =

∅), exept from RNN. ELMo and ULMFiT surpasses the baseline, with ELMo
achieving higher score but still being behind Marauer et al. [20], the winner
of Cross-Domain Authorship Attribution 2018 task of PAN 2018 [38].

The F1 scores of for each one of the four available problems as well as the
macro-averaged F1 score over all problems for each method. All the three
cases of normalization are presented:

Exploring Normalization Corpus

In cross-domain AA, the documents in training set K are on different domain
(e.g. topic, genre, fandom) than the documents in test set U . To limit the
effect that differentiation of domain has on MCH, we use a vocabulary created
by the most frequently appeared tokens which have a greater relation to the
author’s style than to the domain [38]. A side effect of training a classifier
using the most frequent appeared tokens is the bias that develops to the
tokens with respect to the their frequency. The role of normalization corpus
C is to overcome that side effect by reducing the bias with normalization

20



vector n, Equation 1.
The results of the experiments with different variations of normalization

corpuses, indicates the significance of the normalization corpus and its re-
lation to the characteristics of each dataset. More specifically, comparing
the scores between C = K (dashed lines) and C = U (continuous lines)
cases on Figure 2, confirms the significance of normalization corpus. In all of
four LMs, regardless the values of the other parameters (vocabulary size and
epochs of training) the use of C = K results in significant improvement of ac-
curacy. Figure 3 on the other hand reflects the significance of normalization
corpus with a different manner. The absence of normalization (dotted lines)
results in significant better results, while the cases of C = K and C = U have
similar results without being clear which of those two normalization corpuses
is better in general. In Figure 2, the results without the use of normalization
corpus where omitted since the best accuracy achieved is less than 0.5.

In order to explore the relation between the frequency of tokens and nor-
malization corpus, we defined the set M , Equation 3, as set of the average
difference in frequency of appearance in common tokens of known and un-
known document sets for each candidate author a ∈ A.

M = { 1

∣Ta∣
∑

token∈Ta

∣FKa
(token) − FUa

(token)∣
»»»»»»»»»»
∀a ∈ A} (3)

where Ta is the set of common tokens in Ka and Ua sets of documents,
where Ka and Ua are author’s a sets of known and unknown documents,
respectively. The function F is defined by

FD(t) = the frequency of appearance of token t in document set D (4)

We create an M set for each problem on each scenario (cross-topic, cross-
genre and cross-fandom) and for each tokenization method applied in our
experiments. There are 36 cross-topic problems in total, 36 cross-genre
problems and 4 cross-fandom problems, 76 problems in total. Three tok-
enization methods, each LM make use of its own tokenization method except
from ELMo, where ULMFiT’s tokenization method where used. We name
each tokenization method by the name of the LM used by. Concluding in
3 × 76 = 228M sets in total. Then we merged those sets according to their
scenario and tokenization method into nine sets as Table 5 indicates.

Table 5 presents some descriptive measures of the nine sets created by
merging the 228M sets according to their scenario and tokenization method.
As mentioned above the values m ∈M are indicating the mean difference in
frequency of appearance of the common tokens between known and unknown
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Table 5: Descriptive measures of the m values for each scenario

Corpus Scenario Tokenization Min Max Mean ± Std

CMCC

Cross-topic
BERT 0.686 13.918 2.944 ± 1.440
GPT-2 0.673 12.611 2.625 ± 1.334

ULMFiT/ELMo 0.779 13.751 3.072 ± 1.490

Cross-genre
BERT 0.980 14.179 3.401 ± 1.413
GPT-2 1.151 13.563 3.667 ± 1.541

ULMFiT/ELMo 1.233 14.001 3.574 ± 1.494

PAN18 Cross-fandom
BERT 0.297 2.180 1.036 ± 0.602
GPT-2 0.296 1.886 0.942 ± 0.513

ULMFiT/ELMo 0.324 2.315 1.145 ± 0.625

documents of an author. In other words, an m value is a similarity index
of know documents (training set) and unknown documents (test set) of an
author. The lower the m value the higher the similarity.

Comparing the values between CMCC and PAN18 its is obvious that the
similarity of each author’s known and unknown documents is significantly
higher on PAN18 problems that it is on CMCC problems. That difference in
similarity affects the impact of the normalization corpus. Comparing Figure 2
and Figure 3 on the difference that the results have between the use of K as
normalization corpus C and the use of U as C, on Figure 2 the gap is clear,
but on Figure 3 there is no gap. Moreover, the absence of normalization
corpus, Figure 3, achieved the higher scores allowing us to conjecture that
in case of high similarity the use of K or U as normalization corpus is like
increasing a bit the noise level.

Shallower Layers

Two out of the four LM we examine of this study (BERT and GPT-2) are
deep networks with twelve layer each, with each layer capable of producing
a representation for each token given as input. On Sections , and the
results obtained by the use of the last layer’s representation (layer 12), on
this Section, we are examining the representations from other layers by ex-
perimenting on layers 1, 4, 7, 10 and 12 of BERT’s LM. Despite the fact
that GPT-2 is also a deep network and we could run similar experiments on
its layers too, we selected only BERT, since BERT surpassed GPT-2 on all
scenarios (cross-topic, cross-genre and cross-fandom).

Figure 4a shows the accuracy results of various BERT’s layers represen-
tations on the cross-topic scenario, for vocabulary size of V = 1k. Layers
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Figure 4: Accuracy results on (a) and (b), and macro-averaged F1 scores on
(c) for representations from different layers of BERT LM. The color of each
bar indicated the number of training epochs blue, red, yellow and green for
1, 5, 10 and 20 epochs, respectively.

12, 10, 7, and 4 are quite close, while layer 1 seems to performed better. In
absolute values, the difference in accuracy results is about 0.02 (2%). Ex-
amining further the response of layer 1, we test it on the same scenario for
vocabulary size of V = 2k. As can be seen on Figure 4b, the results are not
those that expected, layer 1 performed lower that the last layer.

Figure 4c similar to Figure 4a shows the macro-averaged F1 scores of
various BERT’s layers representations on the cross-fandom scenario, for vo-
cabulary size of V = 1k. On this scenario the we can not say clearly which
layer performed better, layer 1 has the best performance when the train-
ing epochs are one or 20, while layer 10 has the best performance when the
training epochs are 5 of 10.

Unfortunately, the results of our experiments on BERT’s representations
from layers 1, 4, 7, 10 and 12 are not allowing us to draw any safe conclusion.
Further experimentation is needed in order to clarify the potentials or the
kind of the information that shallower layers capture. Focusing on those
questions is out of the scope of this study, but the results we already obtained
are indicating that something is hiding on the first layers.
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Conclusions

In this paper, we explore the usefulness of pre-trained language models in
cross-domain AA. Based on Bagnall’s model [1], originally proposed for au-
thorship verification, we compare the performance when we use either the
original character-level RNN trained from scratch in the small-size AA corpus
or pre-trained token-based language models obtained from general-domain
corpora. We demonstrate that BERT and ELMo pre-trained models achieve
the best results in cross-topic and cross-genre scenarios, while being the most
stable approaches with respect to the results in both scenarios. In cross-
fandom scenario, unexpectedly ELMo and ULMFiT achieve the best results,
while BERT do not manage to surpass the baseline.

To explore further the unexpected results on cross-fandom, we present a
comparison between PAN18 corpus used in cross-fandom scenario and CMCC
corpus used in cross-topic and cross-genre scenarios. The results of the com-
parison reveal a connection between the properties of the corpus and the
normalization corpus. Moreover, experiments with shallower layers of BERT
to identify which layer captures the most useful information for an AA task,
show that despite the fact that there maybe remarkable differences on the
results on specific cases, in general it is not clear if there is a layer which is
better than the others.

A crucial factor to enhance performance is the normalization corpus used
in the MHC. In cross-domain AA, it is very important for the normalization
corpus to have exactly the same properties with the documents of unknown
authorship. In our experiments, using a controlled corpus, it is possible to
ensure a perfect match in all scenarios. In practice, this is not always feasi-
ble. A future work direction is to explore how one can build an appropriate
normalization corpus for a given document of unknown authorship. Other
interesting extensions of this work is to study the effect of extending fine-
tuning to language model layers.
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Algorithms

Algorithm 1: Pseudocode of LM

Function LM(document)
tokens = Tokenizer(document)
representations = PreTrainedModel(tokens)
return tokens, representations

end

Algorithm 2: Pseudocode of Filter

Function Filter(vocabulary, in tokens, in representations)
initialize out tokens and out representations as empty lists
n tokens = number of tokens in in tokens list
for i = 0 to n tokens do

if in tokens[i] ∈ vocabulary then
Append in tokens[i] to out tokens list
Append in representations[i − 1] to out representations
list

end

end
return out tokens, out representations

end

Algorithm 3: Pseudocode of MHC

Function MHC(author, input, label)
/* Classifiers is a list of classifiers (each

classifier is a linear fully-connected layer), one

classifier for each author. */

output = Classifiers[author](input)
cross entropy error = CrossEntropy(output, label)
return cross entropy error

end
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Algorithm 4: Pseudocode of training the proposed method

K = a list of tuples (a, d) where a is the author of document d
LM = a pre-trained language model
V = a vocabulary
Classifier a list of classifiers (a linear fully-connected layer), one
classifier for each author

Method Train
foreach (author, document) ∈ K do

tokens, representations = LM(document)
tokens, representations =
Filter(V, tokens, representations)
foreach (token, representation) ∈ (tokens, representations)
do

output = Classifier[author](representation)
cross entropy error = CrossEntropy(output, token)
back-propagate cross entropy error and update weights

end

end

end
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Algorithm 5: Pseudocode of predicting authors

document = the input document
A = the candidate authors
LM = a pre-trained language model
V = a vocabulary
Classifier a list of classifiers (a linear fully-connected layer), one
classifier for each author
Method Predict Authors

tokens, representations = LM(document)
tokens, representations = Filter(V, tokens, representations)
initialize score list with zeros
n tokens = number of tokens in tokens list
foreach author ∈ A do

foreach (token, representation) ∈ (tokens, representations)
do

output = Classifier[author](representation)
cross entropy error = CrossEntropy(output, token)
sums errors[author] += cross entropy error

end
score[author] /= n tokens
foreach author ∈ A do

score[author] −= normalization vector[author]
end

end
predicted author = arg min(score)

end
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Algorithm 6: Pseudocode of calculating normalization vectors

A = list of authors
C = list of documents (normalization corpus)
LM = a pre-trained language model
V = a vocabulary
Classifier a list of classifiers (a linear fully-connected layer), one
classifier for each author
Method Calculate Normalization Vector

initialize normalization vector with zeros
foreach document ∈ C do

tokens, representations = LM(document)
tokens, representations =
Filter(V, tokens, representations)

initialize sums errors list with zeros
n tokens = number of tokens in tokens list
foreach author ∈ A do

foreach
(token, representation) ∈ (tokens, representations) do

output = Classifier[author](representation)
cross entropy error = CrossEntropy(output, token)
sums errors[author] += cross entropy error

end
normalization vector[author] /= n tokens

end

end
nc = number of documents in C
foreach author ∈ A do

normalization vector[author] /= nc
end

end
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