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Abstract

This thesis is conducted at the Department of Statistics and Actuarial-Financial
Mathematics of the University of the Aegean, in the context of the MSc program
in Statistics and Data Analysis. Its purpose, is to analyze and evaluate the most
commonly used transformation methods in off-line quality control. To that end,
among others, Box-Cox and Yeo-Johnson methods are presented along with perfor-
mance measures and fundamental elements of statistical quality control. Based on
the aforementioned, a new transformation approach for time-series monitoring data
is proposed.

The structure of the thesis consists of four Chapters. Chapter 1 constitutes an
introduction to statistical quality control. Thus, the basics of the latter are pre-
sented. Control charts such as X−S and X−R for monitoring process statistics as
well as joint schemes for monitoring two statistics simultaneously, are also discussed.

In Chapter 2, the need of power transformations in statistical quality control
is raised. Therefore, various power transformations (i.e., Box-Cox, Yeo-Johnson,
Logothetis, etc.) as well as noise and target performance measures are presented.

In Chapter 3, Analysis of Variance (ANOVA) is described and properly im-
plemented in Experimental Designs. Among others, Two-Way ANOVA, Two-Way
Repeated Measures ANOVA and mixed models are presented.

Finally, in Chapter 4, new adjusted transformation methods for off-line quality
control are proposed, which result in proper performance measures for the determi-
nation of the controllable factors that affect the mean and variability of the response
variable of interest. The proposed adjusted transformations are compared with the
well-known transformations of Box-Cox and Logothetis. The performance abilities
of the proposed methodology are demonstrated on quality control data, considering
both a real dataset and a simulated one.



Περίληψη

Η παρούσα διατριβή εκπονήθηκε στο Τμήμα Στατιστικής και Αναλογιστικών - Χρη-

ματοικονομικών Μαθηματικών του Πανεπιστημίου Αιγαίου, στα πλαίσια του Προγράμ-

ματος Μεταπτυχιακών Σπουδών ῾῾Στατιστική και Ανάλυση Δεδομένων᾿᾿. Σκοπός της

είναι η ανάλυση και αξιολόγηση μεθόδων μετασχηματισμού που χρησιμοποιούνται συ-

χνά για τον έλεγχο της ποιότητας ενός προϊόντος πριν την παραγωγή (off-line Quality
Control). Για τον σκοπό αυτό, μεταξύ άλλων, παρουσιάζονται οι μετασχηματισμοί των
Box-Cox και Yeo-Johnson μαζί με μέτρα επίδοσης καθώς και θεμελιώδη στοιχεία του
στατιστικού ελέγχου ποιότητας. Με βάση τα προαναφερθέντα, προτείνεται μία νέα

προσέγγιση μετασχηματισμού για την παρακολούθηση χρονολογικών δεδομένων.

Η δομή της διατριβής αποτελείται από τέσσερα Κεφάλαια. Το Κεφάλαιο 1 αποτελεί

εισαγωγή στον στατιστικό έλεγχο ποιότητας. ΄Ετσι, τα βασικά του χαρακτηριστικά

παρουσιάζονται. Επιπλέον, παρουσιάζονται Διαγράμματα ελέγχου όπως τα X − S
και X − R, για την παρακολούθηση στατιστικών διεργασίας καθώς και από κοινού
διαγράμματα για την ταυτόχρονη παρακολούθηση δύο στατιστικών.

Στο Κεφάλαιο 2, περιγράφεται η χρησιμότητα του μετασχηματισμού δεδομένων

πάνω στο στατιστικό έλεγχο ποιότητας. Επομένως, παρουσιάζονται διάφοροι μετα-

σχηματισμοί (όπως αυτοί των Box-Cox, Yeo-Johnson, Logothetis κλπ.), καθώς και
μέτρα επίδοσης θορύβου και στόχου.

Στο Κεφάλαιο 3, γίνεται περιγραφή και εφαρμογή της Ανάλυσης Διακύμανσης

(ANOVA) σε Πειραματικούς Σχεδιασμούς. Μεταξύ άλλων, παρουσιάζονται πειρα-
ματικοί σχεδιαμοί για Ανάλυση Διακύμανσης Δύο Παραγόντων (Two-Way ANOVA),
Ανάλυση Διακύμανσης Δύο Παραγόντων με Επαναλαμβανόμενες Μετρήσεις (Two-
Way Repeated Measures ANOVA ), καθώς και μεικτά μοντέλα (Mixed Models).
Τέλος στο Κεφάλαιο 4, παρουσιάζονται νέες προσαρμοσμένενες μέθοδοι μετασχη-

ματισμού δεδομένων για τον έλεγχο ποιότητας πριν την παραγωγή, οι οποίες με την

σειρά τους οδηγούν σε κατάλληλα μέτρα απόδοσης για τον προσδιορισμό ελεγχόμενων

παραγόντων οι οποίοι επηρεάζουν τον μέσο όρο και την μεταβλητότητα όσον αφορά της

υπό μελέτη μεταβλητής απόκρισης. Στην συνέχεια πραγματοποιείται σύγκριση μεταξύ

των προτεινόμενων μεθόδων, με τους μετασχηματισμούς Box-Cox και Logothetis. Η
ικανότητα απόδοσης των προτεινόμενων μεθοδολογιών παρουσιάζεται πάνω σε πραγ-

ματικά και προσομοιωμένα δεδομένα ελέγχου ποιότητας.
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Chapter 1

Control Charts

With the rise of industrial revolution, the majority of companies aim in constantly
improving the quality of their product in order to be reliable and competitive in
the market. In this Chapter, basic elements of statistical quality control will be
discussed. More specifically, three classical statistical quality control charts will be
presented which are frequently used by decision makers of a company for monitoring
charts, the behaviour of the products line.

1.1 Introduction

Nowadays, human consuming behaviours depend on the price and the quality of a
product or service. In order to achieve so, a company or business must adopt various
techniques for quality control.

Statistical quality control (SQC) is one of the most important techniques
used for decision making regarding the production and quality of products. With
the use of SQC, defective products can be detected and hence, proper actions could
take over and remove them in order to maintain the quality of the product line.

Most companies or businesses aim in constantly improving the quality of their
product in order to produce reduced or ideally zero errors. To achieve so, they
monitor products, via properly trained staff, for significant variations in order to
increase the quality control.

Quality has a multidimensional meaning. A simple definition of quality is given
by Joseph Juran in [18] “quality means the fitness for use”. More specifically, if a
product satisfies the needs of a marketplace, it is referred as quality product. In
statistical terms “quality is mainly determined by the amount of variability in what is
being measured”. Depending on consumer preferences, some of the product quality
dimensions are: reliability, output, aesthetics, capability of a product and company
reputation. To operate effectively the SQC process, it is considered beneficial for
companies to affiliate a plan in order to ensure the constant quality improvement
in all sections of a business. The aforementioned plan is known as Total Quality
Management.

Statistical quality control can be divided into three categories of statistical meth-
ods for data analysis:

• Design of Experiments (DoE)
It is related with detecting which factor levels affect the quality characteristics
of a product.
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• Statistical Process Control (SPC)
It is responsible for controlling the production process through statistical tech-
niques.

• Acceptance Sampling (AS)
Helps in deciding if a sample characteristic that is under examination should
be excluded or not from the process.

In a SQC process there exist two main reasons that can cause variation. The
first one is “common variability” and the causes that lead to this kind of variation
are called common or chance causes of variation. Regardless of how fine is the raw
material of a product or how good are the machine operators, variation will always
exist because of uncontrollable factors. When the aforementioned reasons appear,
the process is in a stable state or in control (IC).

The second one is called “special variability” and the causes that lead to this
kind of variation are called special or assignable causes of variation (e.g., incorrectly
adjusted machines, poor quality of raw material, etc.). When special variability
occurs, then the process is considered out of control (OOC) or operates in an unstable
state.

During the design of a product, the specifications limits and the Target value (T)
are determined for the quality characteristics. There are two specifications limits i.e.,
the lower and upper specification limit [LSL, USL] and between them should
fall all quality characteristics so that a product is quality accepted. The value T
represents the value that is desirable for maximizing the quality of a product and it
is usually located in the center of the interval [LSL, USL].

The products with at least one quality feature outside the specifications limits are
called non conforming products. There are cases where the size and seriousness
of the defects is not big enough and thus, the companies instead of disposing them,
let them in market.

In SQC, it is essential to examine the performance ability of a process. To achieve
so, a set of statistical techniques is applied known as process capability analysis. By
comparing the sample values of a distribution with the specification limits, process
capability analysis achieves in identifying the number of non conforming products
produced. Procedures like the one above, assumes normality and stability and thus,
the quality characteristics must be derived from an IC process.

The use of control charts allows the real time monitoring of special causes of
variation. Hence, SQC charts are used such as Shewhart, CUSUM and EWMA.
Finally, control charts are divided into two main categories based on the quality
characteristic under examination:

• Control Charts for attributes described by discrete random variables;

• Control Charts for attributes described by continuous random variables.

For more details on SQC, the interested reader may refer to [2];[10];[25]; and [31].
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1.2 Quality Control Chart

1.2.1 Definition

A quality control chart is a special type of graph which reenacts whether the char-
acteristics of the data under examination are meeting the indented specifications or
not. It displays values of statistical functions, e.g., mean, variance, standard devi-
ation, etc., as points in a x-y axis system, where x-axis represents the number of
samples collected or time and y-axis represents the values of the statistic function.
When a control chart analyzes a specific characteristic of a product, it is referred as
“univariate quality control chart”, while in case of analyzing more than one product
characteristic it is referred as “multivariate quality control chart”.

A typical quality control chart consists of three horizontal lines: (1) the center
line (CL); (2) the lower control limit (LCL); and (3) the upper control limit (UCL),
where the CL stands for the mean or average value of the characteristic which is
represented in the control chart. If the sample values fall between the control limits,
then the process is considered IC, while if at least one point is out of the control
limits then the process is considered OOC. In the case of an OOC process, the
problem needs to be investigated and finally fixed before a big amount of faulty
products are produced.

Figure 1.1: A typical quality control chart

In Figure 1.1 the points are randomly distributed and between the LCL and
UCL which indicates that the process is IC.

There are cases where the points fall between the two limits but the process is
OOC. This occurs when the points are non-randomly distributed and they act in
a systematic way. Due to this fact many analysts are using a set of limits known
as warning limits. This new set of limits are usually designated for two sigma
(outer) and one-sigma (inner) warning limits and indicate if an IC process has to be
reexamined. In case of two sigma warning limits, the sensitivity of the control chart
is increased and as a result it is easier to identify the cause of possible systematic
patterns.

Figure 1.2 represents a X control chart (which monitors whether the sample
means are IC) with one, two and three sigma control limits creating three zones (A,
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B and C).

Figure 1.2: Zone rules applied in a X Control chart

There are rules where if at least one of them is applied then the process might
be OOC:

1. One or more points outside of the control limits.

2. Two out of three consecutive points outside the two-sigma warning limits but
still inside the control limits.

3. Four out of five consecutive points beyond the one-sigma limits.

4. A run of eight consecutive points on one side of the center line.

5. Six or more points in a row steadily increasing or decreasing.

6. Fifteen points in a row in zone C (both above and below the center line).

7. Fourteen points in a row alternating up and down.

8. Eight points in a row on both sides of the center line with none in zone C.

9. An unusual or non-random pattern in the data.

10. One or more points near a warning or control limit.

Rules (1-4) are called Western Electrics or Zone Rules for the control charts.

When the process is OOC, a sequence of activities and decisions must be made
in order to maintain the quality of the products and thus, an out-of-control-plan
(OCAP) must be applied.
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1.3 Phase I and Phase II

To properly use a control chart, the researcher/operator must know in which Phase
he is currently in, Phase I or Phase II.

The goal in Phase I is to determine and examine if a set of data collected
over time is IC. If the process is IC, the constructed limits can be used for future
monitoring of the process. If the process is OOC, then the operator first brings it
in control and then uses the new pair of limits for future monitoring, which is the
purpose that Phase I serves. When points are spotted out of the control limits, they
are excluded from the analysis. The most common number of samples that are used
in such a procedure is m=20 or m=25. That specific use of the control charts in
Phase I is called retrospective.

In Phase II the control charts are used to constantly monitor if the procedure
is in or out of control. New data are collected at regular intervals and using the in
control limits of Phase I, the operator decides if the process falls between the two
control limits. Different mathematical formulas are used for each phase and that is
why the operator must know a-priory in which phase the process must be planned.

1.4 Three-Sigma Control Limits

The Three-Sigma (3σ) rule refers to the data that are within three standard devia-
tions from the mean. Sigma (σ), i.e., the standard deviation, measures the amount
of variation that exists between the observed data and the average.
For example the basic equations of control limits are the following:

LCL = µ− Lσ,
UCL = µ+ Lσ,

(1.1)

where µ, σ are the mean and standard deviation respectively and L represents the
distance between the control limits from the center line. In the special case of
L = 3, the limits presented in equation (1.1) are called Three-Sigma Control
Limits (TSCL). Approximately for a normally distributed dataset the 99.7% of
the values lie underneath the curve and it can be expressed as follows:

Pr(µ− 3σ ≤ X ≤ µ+ 3σ) = 0.9973, (1.2)

that is the probability of a value exceeding the TSCL (“false alarm”) is 0.27%.

1.5 X −R Control Chart

The X −R charts constitute a pair of charts that are used to plot and monitor the
behavior of the mean (X) and the range (R) over time for continuous data. The X
control limits are calculated via the R− chart and as a result if a R−chart is OOC
then the control limits of the X−chart are incorrect and display Type I or Type II
error. Typically X−R charts are used when the sample or subgroup size is between
two and ten.
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1.5.1 Statistical Formulas

In order to construct control charts, the population parameters µ and σ need to be
estimated from the precursory samples. Let us suppose that there are m samples
(usually twenty to twenty-five in number) and each sample has n observations (usu-
ally the number of observations varies from four to six). Let also x1, x2, ..., xm be
the average value of each sample. Then the overall average x is the best estimator
of µ and is given by the following equation:

x =
x1 + x2 + ...+ xn

m
. (1.3)

Note that x constitutes the CL of the X−chart.

To construct the control limits of the X−R chart an estimation of the standard
deviation σ must be available. The estimation can be derived through the standard
deviations or ranges of the m samples. In our case, since we try to construct the
X − R chart, we will make use of the range method. Let x1, x2, ..., xn denote the
observations within a sample. Then the range is defined as:

R = xmax − xmin. (1.4)

For the estimation of the control limits we need the average value of all ranges
among the m samples. To do so we make use of the expression

R =
R1 +R2 + ...+Rm

m
. (1.5)

1.5.2 R-Chart Control Limits

The TSCL for the R− chart (Phase I) are given by:

R± 3σ̂R. (1.6)

If the characteristic comes from a normal distribution, σ̂R can be calculated from
the relative range defined as:

W =
R

σ′
. (1.7)

The estimator of the standard deviation for R is given by:

σ̂R = d3σ
′, (1.8)

where d3 represents the estimator for the standard deviation of W and σ′ = R/d2.
Hence, equation (1.8) can be rewritten as :

σ̂R = d3
R

d2
, (1.9)

where d2 is an adjustment factor used for the estimation of the standard deviation
and its values depend on the sample that is used. Note that d2 and d3 can be
calculated via Duncan Table M, Appendix, p.886 [10].
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In conclusion, the TSCL and the CL for the R−chart can be calculated from the
equations bellow:

LCL = R− 3σ̂R = R− 3d3
R

d2
= D3R,

CL = R,

UCL = R + 3σ̂R = R + 3d3
R

d2
= D4R,

(1.10)

where D3 = (1− 3)d3/d2 , D4 = (1 + 3)d3/d2.
For Phase II the TSCL for the R−chart are given by the equations

LCL = µRi − 3σRi = (d2 − 3d3)σ = D1σ,

CL = µRi ,

UCL = µRi + 3σRi = (d2 + 3d3)σ = D2σ.

(1.11)

In the special case of n ≤ 6 then D1 < 0 and LCL = 0.

1.5.3 X-Chart Control Limits

The TSCL for the X−chart are given by the following expression:

X ± 3σ̂x, (1.12)

where

σ̂x =
σ̂x√
n
. (1.13)

The statistic σ̂x is calculated from the subgroup of ranges and has the following
form:

σ̂x =
R

d2
. (1.14)

As for the X control limits, with the standard deviation considered as the average
of ranges, are presented below

X ± 3σ̂x = X ± 3
σ̂x√
n

= X ± 3

(
R/d2

)
√
n

= X ± A2R,

(1.15)

where A2 = 3/d2
√
n .

Finally the TSCL and CL for the X−chart are as follows:

LCL = X − A2R,

CL = X,

UCL = X + A2R.

(1.16)
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1.6 X − S Control Chart

Although the R−chart is widely used for many years, it has a defect: when the
subgroup size increases, it cannot explain adequately the within group variation.
Thus, for large subgroup sizes, X − S control charts are preferable since they give
better solutions regarding the variation of larger subgroup sizes. They are used
for continuous variables (e.g., time, weight, length, etc.) and are composed by two
charts: one chart for the representation of X and another one for the representation
of S.

1.6.1 S-Chart Control Limits

When the value of σ is known (Phase II), E(S) = c4σ represents the CL and the
TSCL can be calculated as follows:

LCL = c4σ − 3σ
√

1− c24,

UCL = c4σ + 3σ
√

1− c24,

where c4 represents a constant, which depends on the sample size n and σ
√

1− c24
is the standard deviation of S. The above equations can be also written as:

LCL = B5σ,

CL = c4σ,

UCL = B6σ,

(1.17)

where

B5 = c4 − 3
√

1− c24,

B6 = c4 + 3
√

1− c24.
(1.18)

In addition the control limits and the center line for X can be expressed as:

LCL = µ− Aσ,
CL = µ,

UCL = µ+ Aσ,

(1.19)

where A = 3/
√
n .

When the values of a characteristic are normally distributed and the σ is unknown
(Phase I), the TSCL for the S−chart are given by the formula:

S ± 3σ̂s, (1.20)

where S is the average of all the subgroup standard deviations and it is calculated
by

S =
1

m

m∑
i=1

si. (1.21)
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We previously discussed about the standard deviation of (S) which is equal to

σ
√

1− c24, (1.22)

where σ̂ = S/c4. Thus, the TSCL and the CL of the S−chart for Phase I takes the
form:

LCL = S − 3
S

c4

√
1− c24,

CL = S,

UCL = S + 3
S

c4

√
1− c24.

If B3 = 1− 3
c4

√
1− c24 and B4 = 1 + 3

c4

√
1− c24, then the S−chart control limits

can be written as:

LCL = B3S,

CL = S,

UCL = B4S.

(1.23)

1.6.2 X-Chart Control Limits

Having the estimator S/c4 one can calculate the TSCL and the CL of the X−chart
as follows:

LCL = X − 3S

c4
√
n
,

CL = X,

UCL = X +
3S

c4
√
n
.

In addition, if A3 = 3/(c4
√
n) the above equations can be written as:

LCL = X − A3S,

CL = X,

UCL = X + A3S.

(1.24)

Example (Montgomery, (2009), p.260). The dataset concerns piston rings
diameter and contain forty samples (m = 40) with five observations each (n = 5).
We are going to use the first 30 samples for Phase I and the rest 10 samples for Phase
II. The TSCL for the X−S chart in Phase I are calculated via equations (1.23) and
(1.24), respectively (see Fig 1.3 and 1.4).

We observe that all the points in Figures 1.3 and 1.4 fall between the control
limits. Hence, both processes are in control and we can use their control limits for
future monitoring. For Phase II, the same control limits from Phase I will be used
and the graphs will be plotted again with the starter values and the rest ten samples.
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Figure 1.3: X−chart for pistonrings dataset with TSCL, including the first m = 30
samples (Phase I)

Figure 1.4: S−chart for pistonrings dataset with TSCL, including the first m = 30
samples (Phase I)
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Figure 1.5: X − chart for pistonrings dataset with TSCL, including all samples
m = 40 (Phase II)

Figure 1.6: S − chart for pistonrings dataset with TSCL, including all samples
m = 40 (Phase II)

Once again, the process for the S−chart for n = 40 samples remains in control.
However, in the X−chart two points (in red color) fall outside the control limits. In
this case we must find the reason why this shift occurred and fix it.
The points that fall outside the control limits will be omitted and new control limits
will be created. The aforementioned will be repeated until the process becomes
stable.
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1.7 Individuals and Moving-Range (I−MR) Con-

trol Charts

When the subgroup size is n = 1, I−MR control charts are used for monitoring the
variation of the process and the individuals values for continuous over time data.

Let us suppose that the characteristic under investigation is normally distributed
and a random sample X1, X2, ..., Xm is available. For the I−chart we can use the
MR of two consecutive observations which is defined as:

MRi = |Xi −Xi−1| , 2 ≤ i ≤ m, (1.25)

where
µMRi = E(MRi) = σd2, σMRi = σd3.

For Phase I

µ̂ = X =
1

m

m∑
i=1

Xi, σ̂ = MR/d2, (1.26)

where

MR = (MR2 +MR3 + ...+MRm)/(m− 1). (1.27)

The TSCL for Phase I and the CL for the MR−chart are given by

MR± 3σ̂MR, (1.28)

where σ̂MR = σ̂d3.
According to equation (1.26), the estimation of σ̂MR can be rewritten as

σ̂MR =
d3
d2
MR. (1.29)

The TSCL for the MR−chart are given by the following formulas:

LCL =

(
1− 3

d3
d2

)
MR = D3MR,

CL = MR,

UCL =

(
1 + 3

d3
d2

)
MR = D4MR,

(1.30)

where D3, D4 are calculated for n=2 (see Duncan Table M in Appendix, p.886) [10].
The TSCL for the I−chart are given by

µ̂± 3σ̂.

By replacing the estimators µ̂ and σ̂ the following equations are derived

LCL = X − 3
MR

d2
,

CL = X,

UCL = X + 3
MR

d2
.

(1.31)
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In Phase II, where µ and σ are known, the TSCL for the I−MR control charts
are as follows:
For the I−chart:

LCL = µ− 3σ,

CL = µ,

UCL = µ+ 3σ,

(1.32)

and for the MR−chart:

LCL = µMRi − 3σMRi = (d2 − d3)σ = D1σ,

CL = d2σ,

UCL = µMRi + 3σMRi = (d2 + d3)σ = D2σ,

(1.33)

where D1, D2 are calculated for n=2.

1.8 Joint Monitoring Schemes for Mean and Vari-

ance

In various cases, it is preferable to monitor simultaneously the mean and variance
of a distribution in a process because where special causes of variability exist, a
small shift in the variance can change the control limits of the X−chart or they can
simultaneously change at the same time point. Thus, a number of schemes combine
the mean and variance in one chart in order to locate the shifts that occur in specific
time intervals in either mean or variance. When normality cannot be assumed, then
distribution free or non parametric charts can be applied.

One chart monitoring schemes are quite popular and attractive because of their
simplicity. They often contain one charting statistic which is located in a single
graph. The charting statistic is a combination of mean and variance, and control
limits can be found via the distribution of the statistic.

When the standard deviation and mean are known and they come from normal
distribution, the one chart joint monitor schemes are called “case K” or “standards
known”.

Chart joint monitoring schemes in case K are divided in two classes:

1. simultaneous control charts with two statistics and

2. single control charts with one statistic, which is the combination of the mean
and variance.

Furthermore, single control charts can be divided into those with ordinary control
limits and those with a two dimensional control region.

In simultaneous control charts, there are two different statistics; one for the
mean and one for the variance, and they are plotted on the same graph.

The single charting statistic that single charts with ordinary control limits
use, is usually a function of the minimal sufficient statistics X and S2. The most
popular chart in this category is the Max−chart proposed by Chen and Cheng in
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[7], which considers the maximum of the absolute values of two normalized statis-
tics. The first normalized statistic refers to mean and the other to variance. The
combination of these statistics can be written as follows:

M = max(|Ui| , |Vi|), (1.34)

where

Ui =
X i − µ
σ/
√
ni

and Vi = Φ−1
{
H

[
(ni − 1)S2

i

σ2
;ni − 1

]}
, (1.35)

where H denotes the cumulative distribution function (cdf) of the chi-square distri-
bution with ni− 1 degrees of freedom, ni refers to the size of the i-th sample and Φ
denotes the cdf of the standardized normal distribution.

In Single charts with control regions, data are represented in a two di-
mensional plane and if they are spotted within an appointed control region then
the process is considered IC otherwise is considered OOC. The problem with such
graphs is that trend, which is related with time, cannot be spotted.

A plethora of charts like the aforementioned have been developed with semi-
circular, circular or elliptical control regions and each one has its own advantages.
For example, rectangular control regions are eligible for changes in mean and ellip-
tical control regions are eligible for both mean and variance.

Chao and Cheng in [6] proposed a control chart which the points (X i, S
∗
i ) are

plotted on the (X i, S
∗
i ) plane, where

S∗i =

√√√√(1/n)
n∑
i=1

(Xi −X)2, for i = 1, 2, ..., n. (1.36)

The statistic T = (X − µ0)
2 + S∗2 is used for the creation of the control region.

When the sample data come from normal distribution, (n/σ2
0)T has a chi-square

distribution with n degrees of freedom and the statistic T determines a circular
region. Note that S∗i must be positive and for that reason only the half of the
control region is needed. This kind of control chart is called Semi-Circle chart (SC-
chart).

Later, Chao and Cheng in [5] constructed a SC−chart s.t. minimum coverage
area known as EWMA−SC chart. The control region of this chart is not the area
under a semi circle, but the area under a line and the T statistic is disintegrated
into mean and variance components,

Ui =

[
n(Xi − µ0)

2

σ2
0

− 1

]
and Vi =

[
(n− 1)

(
S2
i

σ2
0

− 1

)]
. (1.37)

If the sample points are located in the U−V plane and they are below the line, then
the process is IC. For a more detailed overview in joint monitoring schemes please
refer in [24].
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Chapter 2

Power Transformations

In statistics, a power transformation family includes functions that are used to create
monotonic transformations of data. The use of power functions for data transfor-
mation, helps in achieving constancy of variance and makes skewed distributed data
come closer to normal distribution (i.e., more symmetrical). In addition, simplicity
or linearity of the model structure can be achieved. In SQC there is a variety of
procedures in which normality is assumed in order to obtain robust results. Pro-
cess capability analysis, consists one of those procedures that take for granted the
normality assumption and thus, in order to achieve reliability and robust results,
suitable transformations have to be implemented.

2.1 The Box-Cox Transformation

One way for transforming data into normally distributed is by applying the Box-
Cox transformation [4]. In the Box-Cox transformation, there exists an exponential
parameter λ which plays a key role and its values vary from -5 to 5. The optimal
value for λ is the one that gives the best approach to a normal distribution curve.

Tukey in [36], proposed a transformation family where the transformed values
are a monotonic function of the observations over some allowable range and is given
by

y
(λ)
i =

{
yλi , if λ 6= 0

log yi, if λ = 0
, yi > 0, (2.1)

for yi > 0 where yi are the values of the response variable. The problem of equa-
tion (2.1) is that: (1) the order is not preserved and; (2) there is discontinuity in
the case of λ = 0.

Box and Cox in [4] solved the aforementioned problems by subtracting one and
dividing with λ the transformation yλi . The original Box-Cox transformation applies
with parametric families of transformations and takes the following form:

y
(λ)
i =


yλi − 1

λ
, if λ 6= 0

log yi, if λ = 0

. (2.2)

The transformation in the above equation (2.2) applies only for strictly positive
numbers (yi > 0 for i = 1, ..., n). The upper leg of the 2.2 is a scaled version of

the Tukey transformation yλi . As for the lower leg, when λ→ 0, y
(λ)
i → log yi. Note
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that for the 0th power y0i = 1, there is no meaning and the formula is rewritten as
follows:

y
(λ)
i =

eλ log yi − 1

λ
≈
(
1 + λ log (yi) + 1

2
λ2 log (yi)

2 + ...
)
− 1

λ
→ log (yi), (2.3)

as λ→ 0. This result can also be achieved by using l’Hôpital’s rule.
The fact that equation (2.2) can be applied only when yi > 0, led Box and Cox

to develop a second transformation, known as “two-parameter Box-Cox transforma-
tion”, which can also be used for negative values (yi < 0).

Thus, the form of the transformation is as follows:

y
(λ)
i =


(yi + λ2)

λ1 − 1

λ1
, if λ1 6= 0

log(yi + λ2), if λ1 = 0

. (2.4)

In this case λ = (λ1, λ2)
′, where yi > −λ2 or yi + λ2 > 0. The parameter λ2 is set

manually and is calculated for all yi so that yi + λ2 is always positive.

2.1.1 Estimation of the Transformation Parameter

For the estimation of the parameter λ, Box and Cox considered two approaches. The
first approach is the use of the Maximum Likelihood method. It is the most
commonly used method since its easy to calculate the profile likelihood function and
obtain approximate confident intervals for λ due to the asymptotic properties of the
ML method. The second approach is based on the use of Bayesian method.

2.1.1.1 Maximum Likelihood Method

Consider that there is an n× 1 vector of observations y
∼

= {y1, y2, ..., yn} and for an
unknown λ

y
∼

(λ) =
{
yλ1 , y

λ
2 , ..., y

λ
n

}
= Aθ∼ + ε∼, (2.5)

where y
∼
(λ) is a vector which contains the transformed observations, A is a known

n × k matrix of constants, θ∼ is a k × 1 vector which contains unknown parameters
related with the transformed values and ε∼ ∼ Nn(0∼, σ

2In) is the residuals vector. By
calculating the mean of equation (2.5) we have

E(y
∼

(λ)) = Aθ∼. (2.6)

In this case, it can be presumed that the transformed observations y
∼
(λ) ∼

Nn(Aθ∼, σ
2In) satisfy the assumption of normality and the model parameters are

(λ, θ∼, σ
2). The probability density function (pdf) of the transformed observations is

obtained by the formula:

f(y
∼

(λ)) =
1

(2π)
1
2
nσn

exp

{
−(y

∼
(λ) − Aθ∼)

′(y
∼
(λ) − Aθ∼)

2σ2

}
. (2.7)

By multiplying equation (2.7) with the Jacobian determinant of the transformed
values y

∼
λ, the pdf of y

∼
can be calculated, i.e., the likelihood for the whole model:
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L(λ, θ∼, σ
2|y
∼
,A) = f(y

∼
) =

1

(2π)
1
2
nσn

exp

{
−(y

∼
(λ) − Aθ∼)

′(y
∼
(λ) − Aθ∼)

2σ2

}
J(λ; y

∼
), (2.8)

where

J(λ; y
∼
) =

n∏
i=1

∣∣∣∣∣dy(λ)i

dyi

∣∣∣∣∣ .
For each fixed λ, equation (2.8) results in the maximum likelihood estimators for

(θ∼, σ
2)

θ̂∼(λ) = (A′A)−1Ay
∼

(λ), (2.9)

and

σ̂2(λ) =
y
∼
(λ)′Ary∼

(λ)

n
=
S(λ)

n
, (2.10)

where S(λ) denotes the residual sum of squares of y
∼
(λ). When A is a full rank matrix,

then
Ar = I − A(A′A)−1A′. (2.11)

By substituting σ̂2(λ) and θ̂∼(λ) into equation (2.8), the maximized log likelihood
function (i.e., the profile log likelihood) for fixed λ can be written as:

Lmax(λ) = L(λ|y
∼
,A, θ̂∼(λ), σ̂2(λ)) = C − n

2
log(σ̂2(λ)) + log J(λ; y

∼
), (2.12)

where C = n
2

log(2π/n)− n
2
.

If all the observations of the response variable are positive, according to equa-
tion (2.2) the term log J(λ; y) takes the form:

(λ− 1)
n∑
i=1

log(yi). (2.13)

However, if negatives values are observed, according to equation (2.4) the term
log J(λ; y) transforms into:

(λ1 − 1)
n∑
i=1

log(yi + λ2). (2.14)

Note that the maximized log likelihood can be plotted against a series of values
λ. From this plot the maximizing value of λ can be identified and an approximate
100(1− a)% confidence region can be derived from:

Lmax(λ̂)− Lmax(λ) <
1

2
χν2λ(α), (2.15)

where νλ is the number of independent components in λ.
In case of different λ′s, their comparison could be achieved by working with the

normalized transformation:
z∼
(λ) = y

∼

(λ)/J
1
n , (2.16)

where J = J(λ; y) is the Jacobian determinant of the transformation.
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The profile log-likelihood can be simplified corresponding to equations (2.2) and
(2.4) as:

z∼
(λ) =


y
∼
λ − 1

λẏλ−1
, if λ 6= 0

ẏ log y
∼
, if λ = 0

, (2.17)

while in the shifted location case, equation (2.17) can be written as:

z∼
(λ) =


(y
∼

+ λ2)
λ1 − 1

λ1gm(y
∼

+ λ2)λ1−1
, if λ1 6= 0

gm(y
∼

+ λ2) log(y
∼

+ λ2), if λ1 = 0

, (2.18)

where, ẏ = (
∏n

i=1 yi)
1
n is the geometric mean of the observations and gm(y

∼
+ λ2) is

the geometric mean of the (y
∼

+ λ2)’s.
The profile log likelihood can be written as:

Lmax(λ) = C − 1

2
n log σ̂2(λ; z∼), (2.19)

where

σ̂2(λ; z∼) =
z∼
(λ)′Arz∼

(λ)

n
=
S(λ; z∼)

n
, (2.20)

where S(λ; z∼) is the residuals sum of squares of z∼
(λ). The maximum likelihood can

be acquired by minimizing S(λ; z∼) with respect to λ.

2.1.1.2 Bayesian Method

An alternative way for parameter estimation can be achieved via Bayes’s theorem.
In order to obtain the posterior distribution of λ, the prior distributions of θ’s and
log σ must be considered uniformly distributed over the region where the likelihood
is significant.

By using this approach the model must be recognizable and the design matrix
must be of full column rank (i.e., each of the columns of the matrix are linearly
independent) [28], otherwise θ’s cannot be estimated. By rewriting the likelihood in
equation (2.8) the conditional pdf of likelihood is:

p(y
∼
|θ∼, σ

2, λ) =
1

(2π)
1
2
nσn

exp

{
−νrs

2(λ) + (θ∼− θ̂∼λ)′A
′A(θ∼− θ̂∼λ)

2σ2

}
J(λ; y

∼
), (2.21)

where

s2(λ) =
y
∼
(λ)′Ary∼

(λ)

νr
=
S(λ)

νr
, (2.22)

is the residual mean square of y
∼
(λ), νr = n− rank(A) are the degrees of freedom of

the residuals and θ̂∼λ is the least squares estimation of θ∼ for a given λ.
The θ∼’s are parameterized so that they are linearly independent and have n− νr

degrees of freedom. Suppose that p0(λ) represents the marginal prior density of λ.
For given λ the conditional prior distribution is

g(λ)dθ∼λd(log σλ). (2.23)
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The term g(λ) indicates the existence of dependence between λ and the range of the
values of y

∼
(λ). It can be specified by fixing a value of λ, say λ1 and let us suppose

that there exists a linear relationship between y
∼
(λ) and y

∼
(λ1)

y
∼

(λ) = const+ lλy∼
(λ1). (2.24)

For every g(λ) that corresponds to equation (2.24), the conditional prior distribu-
tions from equation (2.23) appears to be consistent for different values of λ. From
equation (2.24) the following expression can be derived:

log σ2
λ = const+ log σ2

λ1
, (2.25)

where σ2
λ is independent of λ. However,

dθ∼λ
dθ∼λ1

= lλ,

where
lλ = {J(λ; y

∼
)}1/n . (2.26)

Therefore, the conditional prior density is given by

dθ∼λd(log σλ)

{J(λ; y
∼
)}(n−νr)/n

, (2.27)

and by combining it with the marginal prior density of λ, the final form of equa-
tion (2.27) is obtained

dθ∼d(log σ)

{J(λ; y
∼
)}(n−νr)/n

p0(λ)dλ. (2.28)

With the help of the likelihood (equation (2.21)) and the prior density (equa-
tion (2.28)) the marginal posterior distribution can be estimated by applying the
Bayes’s theorem and hence, the posterior takes the form

K ′y
I(λ|y

∼
)p0(λ)

{J(λ; y
∼
)}(n−νr)/n

, (2.29)

where K ′y denotes a normalizing constant which is independent from λ and

I(λ|y
∼
) =

∫ ∞
−∞

d(log σ)

∫ ∞
−∞

dθ∼p(y∼|θ∼, σ
2, λ). (2.30)

By calculating equation (2.30) the posterior distribution in equation (2.29) can be
rewritten as

K ′y
J(λ; y

∼
)νr/n

{s2(λ)}
1
2
νr
p0(λ). (2.31)

The quantity,

J(λ; y
∼
)νr/n

{s2(λ)}
1
2
νr
, (2.32)

represents the contribution of the values y
∼

to the posterior distribution of λ and on
a log scale

Lb(λ) = −1

2
νr log s2(λ) + (νr/n) log J(λ; y

∼
). (2.33)
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If we consider the normalized transformation z∼
(λ) = y

∼
(λ)/J

1
n , the above equa-

tion (2.33) can be rewritten as:

Lb(λ) = −1

2
νr log s2(λ; z∼) = −1

2
νr log {S(λ; z∼)/νr} . (2.34)

Observe that the difference between the log scale of the contribution to the
posterior and the maximum likelihood in equation (2.19) is the replacement of n by
νr.

Table 2.1 provides a list of some common transformations of the variable yλi for
specific λ values.

Table 2.1: Common Box-Cox Transformations

λ Transformed data
-3 y−3i = 1/y3i
-2 y−2i = 1/y2i
-1 y−1i = 1/y1i

-0.5 y−0.5i = 1/(
√
yi)

0 log(yi)

0.5 y0.5i =
√

(yi)
1 y1i = yi
2 y2i
3 y3i

2.2 The Yeo-Johnson Transformation

Besides the Box-Cox transformation for negative values (equation (2.4)), a number
of alternative transformation families for yi have been suggested that can handle the
problem of non-positivity.

Among them, Yeo and Johnson in [37], suggested a transformation family that
negative values are allowed without restrictions on yi and have adapted many of the
properties of the Box-Cox family:

ψ(λ, y
∼
) = yλi =


((yi + 1)λ − 1)/λ, if λ 6= 0, yi ≥ 0

log(yi + 1), if λ = 0, yi ≥ 0

−[(−yi + 1)2−λ − 1]/(2− λ), if λ 6= 2, yi < 0

− log(−yi + 1), if λ = 2, yi < 0

. (2.35)

Notice that when λ 6= 0 and yi ≥ 0, the transformation of (yi + 1) is the same as
the one of Box-Cox, while when λ 6= 2 and yi < 0, the transformation of (−y + 1)
is once again the Box-Cox transformation with power (2 − λ). In case that both
negative and positive values are present, then the transformation is calculated by
using both types of transformations.

In the case of Yeo and Johnson, the estimated transformation parameter λ,
minimizes the distance of Kullback-Leibler measure between the transformed values
and the normal distribution.
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2.3 Alternative Box-Cox Transformations

Manly in [23], proposed an alternative version of the Box-Cox transformation which
can be applied for negative observations and it is considered a preferable choice
when transforming skewed unimodal distributions into symmetric normal-like dis-
tributions and is given by

y
(λ)
i =


e(λyi) − 1

λ
, if λ 6= 0

yi, if λ = 0

. (2.36)

John and Draper in [17], suggested a modification of the Box-Cox transformation
known as “Modulus Transformation”. This transformation can also handle negative
values and works better at normalizing distributions that have a bit of symmetry.
It can be written as follows:

y
(λ)
i =

{
sign(yi)

(|yi|+1)λ−1
λ

, if λ 6= 0

sign(yi) log(|yi|+ 1), if λ = 0
. (2.37)

Bickel and Doksum in [3], introduced another slightly different Box-Cox transfor-
mation that can include distributions of yλi with unbounded support like the normal
distribution. The formula they suggested is the following:

y
(λ)
i =

∣∣yλi ∣∣ sign(yi)− 1

λ
, for λ > 0, (2.38)

where

sign(yi) =

{
1, if yi ≥ 0

−1, if yi < 0
.

Hawkins and Weisberg in [16], proposed a Box-Cox family with negative values
allowed. The Hawkins-Weisberg family consists of a modification of the two pa-
rameter Box-Cox family, which allows negative responses. It uses the scaled power
transformation of yi + λ2 in equation (2.4) and based on that calculates

zi = 0.5
(
yi +

(
y2i + λ22

)1/2)
, for i = 1, ..., n. (2.39)

The location parameter λ2 is either estimated or manually selected. The quantity
z is always positive for every possible value of yi. The Box-Cox transformation is
then applied to zi’s in (2.2) according to the following expression:

z
(λ)
i =


zλi − 1

λ
, if λ 6= 0

log zi, if λ = 0

. (2.40)

2.4 Box-Cox Transformation in Taguchi Analysis

The estimation of the optimum value of λ with the ordinary Box-Cox procedure by
using maximum likelihood estimation, carries the risk of inconsistency of the error
variance. In this section, we discuss the Taguchi procedure where the assumption
of constant variance must be fulfilled and describe a method to achieve so.
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2.4.1 Taguchi Procedure

Genichi Taguchi, a Japanese engineer and statistician, developed several methods
for off-line quality control. The term off-line quality control refers to quality and cost
control activities of a product. Taguchi by using design techniques such as robust
design method, improved reliability and reduced product costs. That is he made the
product procedure less sensitive to unexplained and uncontrolled variability factors
(e.g., environmental variables) [19]. In statistical terms, Taguchi’s purpose is to
minimize the variability which is caused by unpredictable factors known as noise.
The product in a robust design method is disturbed and controlled in general by the
designer and noise factors. The noise factors can be controlled and simulated via
controlled experimentation and an optimum combination of values can be derived
that can handle the noise effects [35].

The results of the experimental trials are called Performance Measures. By
analyzing the Noise Performance Measures (NPM), useful results can be de-
rived regarding the variability control factors and their optimal combination. There-
fore, the analysis of Target Performance Measures (TPM), which are connected
with the process mean, can indicate which factors, except the ones of variability, have
a significant effect on the mean response.

Figure 2.1, describes the robust design method. Notice that there are control and
noise factors that effect the product or process. The variation between the response
and the target value should be ideally the minimum possible.

Figure 2.1: Aim of robust design

2.4.2 Independence, Secure and Proper Transformation

To obtain robust results in Taguchi analysis, independence between population mean
and variance must occur. It can be achieved through proper transformation of the
data with the condition of a well established functional relationship.
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For instance, suppose that

σY = f(µY ) = a(µY )β, (2.41)

is a functional relationship between µY and (σ2
Y ) of the raw data, and T (Y ) is a

transformation for stabilizing the variance (i.e., σ2
T constant). By elaborating T (Y )

in a Taylor series (see [15]) the following equation is derived:

T (Y ) = T (µY ) + T ′(µY )(Y − µY ) + ... . (2.42)

By applying a variance operator in both sides of equation (2.42) and with the help
of equation (2.41) we obtain:

T ′(µY ) = σT/σY =
σT

a(µY )β
, (2.43)

where σ2
T is the variance of the transformed T(Y).

To make σ2
T constant, equation (2.43) must be integrated with respect to the

mean such that:

T (µY ) ≈
∫

c

f(µY )
dµ =

∫
σT

a(µY )β
dµ. (2.44)

The above approximation results in:

T (µY ) '

{
C1µ

1−β
Y , if β 6= 1

C1 log µY , if β = 1
, (2.45)

where C1 is a constant parameter. Suppose now that we want to apply the Box-Cox
transformation. To ensure that the transformation can stabilize variance, λ must
be approximately equal to:

λ = 1− β. (2.46)

By using equation (2.46) the transformation in equation (2.45) can be rewritten as:

T (µY ) '

{
C1µ

λ
Y , if λ 6= 0

C1 log µY , if λ = 0
. (2.47)

Let us suppose that there are n samples from the same population, x̄i denotes the
sample mean and si denotes the sample variance for the i−th sample. By considering
the logarithm on both sides of σY = a(µY )β, log a and β can be estimated through
the least squares method.

log si = log a+ β log x̄i + εi for i = 1, ..., n. (2.48)

Equation (2.48) consists a linear regression model and thus, if the estimator of
β holds approximately for λ = 1 − β, where λ is estimated by the regular Box-
Cox maximum likelihood method, then the Box-Cox transformation stabilizes the
variance.

In case that non-positive observations are present in the dataset, equation (2.41)
can be expressed as:

σ ≈ α(µ+ β1)
β, (2.49)
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where y > −β1. Estimates of β and β1 can be derived through

log si = log a+ b log(x̄i + b1), for i = 1, ..., n. (2.50)

Considering that the transformed mean and variance are independent, proper
performance measures can be established:

NPM = −10 log10 s
2
T

TPM = yT
. (2.51)

When the calculation of the integral in (2.44) in the original scale is hard to com-
pute and the functional relationship between µY and σ2

Y is known, the performance
measures presented in equation (2.51) can be written as:

NPM = 10 log10 {f(y)/s}2

TPM = y
. (2.52)

In case that equation (2.41) is applied and b denotes the estimator of β, the
NPM of equation (2.52) can be rewritten as follows:

NPM = 10 log10

(
yb

s

)2

, (2.53)

and in the special case of b = 1, equation (2.53) is equivalent to that of Taguchi’s
signal to noise ratio (S/N).
For a more detailed discussion on performance measures, the interested reader may
refer to [21]; and [22].
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Chapter 3

Analysis of Variance (ANOVA)

3.1 One-way ANOVA

Analysis of Variance has been proposed by Fisher (see in [11]) and it can be con-
sidered as an extension of the well known t-test, for the comparison of two means.
Specifically it allows the comparison of k (k > 2) population means.

One-Way ANOVA, also called one-factor ANOVA, is a statistical test which in-
vestigates the equality of the population means. The term one-way points out that
the populations are determined by only one explanatory variable (i.e., independent
variable), usually referred to as factor.
The states of the explanatory variable are called levels, while the combination of
factor levels that used to determine the response variable is called treatment. In
One-Way ANOVA the factor can have at least two independent levels and each
level can be viewed as a population. For example, suppose that we wish to study
a population of children in high school and intent to examine the impact of three
different teaching methods (A,B and C) in mathematics by their score on an arith-
metic test. In this case, score is the dependent variable and teaching method is the
factor which consists of three levels. Since there is only one factor, the means of the
three populations will be compared based on one-way ANOVA.

3.1.1 Hypothesis Testing and Assumptions

Suppose that we want to compare k means µ1, µ2, ..., µk. Thus, we are going to
examine the following hypothesis:

H0 : µ1 = µ2 = ... = µk = 0

vs

Ha : At least one of µi is different i = 1, 2, ..., k

. (3.1)

The null hypothesis (H0) indicates that there exists equality between the groups,
while the alternative hypothesis (Ha) indicates that there is no equality between the
groups.

To make use of One-Way ANOVA, the following assumptions must be satisfied:

1. The samples associated with each level must be derived from a normally
distributed population;

2. The errors must be independent;
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3. The variance of the populations must be equal (homoskedasticity), and;

4. The values of each sample must be derived from independent observa-
tions.

3.1.2 One-Way ANOVA Model

Consider a single-factor variable with k treatments (populations) and n replicates
(observations) for each level. Then the observations of an experiment for the One-
Way ANOVA, could be modeled by:

yij = µi + εij,

{
i = 1, 2, ..., k

j = 1, 2, ..., n
, (3.2)

where yij the j-th observation of the i-th level, µi the mean which corresponds to
the i-th level (population) and εij the random error of the j-th observation of the
i-th level. By replacing the component µi with the following equation:

µi = µ+ ai, i = 1, 2, ..., k ,

equation (3.2) can be rewritten as:

yij = µ+ ai + εij,

{
i = 1, 2, ..., k

j = 1, 2, ..., n
, (3.3)

where µ is the total (overall) mean of all levels and ai represents the effect of the
i-th level and expresses the deviation between µ and the i-th level.

In the above setting, we assume that the number of observations per population
is equal (n). It should be noted that as in the case of the standard t-test for two
populations, the sample sizes could be different (n1, n2, ..., nk).

One-Way ANOVA can be easily extended to the case where two or more factors
are involved. In such a case, factors may act independently or interactively on the
response variable. Thus, two settings should be considered: (1) Interaction between
factors and; (2) No interaction between factors. The more general case of Two-Way
ANOVA with interaction will be discussed in the following section.

3.2 Two−Way ANOVA

In order to gain reliable results for quality improvement, the majority of the exper-
iments involve more than one factor. These kind of designs, which consist of two
or more factors, are called factorial designs. The factorial designs contain in each
replicate all the possible combinations of the factors levels. Based on the exam-
ple presented in Section (3.1), we want to investigate if the three different teaching
methods (A,B and C) and the age of each student (15,16,17 and 18 years old) affect
their performance in an arithmetic test. In this case there are two factors: teaching
methods which consists of three levels and age which consists of four levels. Each
replicate of the experiment will include all 3×4 possible combinations of the factors
levels and hence, Two-Way ANOVA will be used.
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3.2.1 Two-Way ANOVA in Completely Randomized Design
(CRD)

Generally, the randomization technique is used in designs in order to prevent sys-
tematic effects of noise factors. In a CRD, the treatments are randomly distributed
in the experimental units. It is most commonly used in labs where uncontrollable
factors are easy to control and the variability is exclusive derived from the noise
factors.

Let us consider the general case of a two-factor experiment, where the first factor
A has a levels (i = 1, 2, ..., a) and the second factor B has b levels (j = 1, 2, ..., b).
The replicates have all equal sizes (k = 1, 2, ..., n) and thus, the design is considered
balanced. The effects model, including interaction, can be written as follows:

yijk = µ+ ai + βj + (aβ)ij + εijk,


i = 1, 2, ..., a

j = 1, 2, ..., b

k = 1, 2, ..., n

, (3.4)

where yijk is the ijk−th observation, µ is the overall mean, ai is the i−th level
effect of factor A, βj is the j−th level effect of factor B, (aβ)ij the interaction effect
between the components ai, βj, and εijk denotes the random error component, where

εijk
iid∼ N(0, σ2). The term (aβ)ij describes whether the treatment mean differs from

the additive model which is the same with the one in equation (3.4) excluding the
interaction term.

3.2.1.1 Fixed Effects Model

The fixed effects model, reflects the situation where the data are collected from all
levels of the factors of interest or all treatments conditions are contained in the
study. In case that both factors have fixed effects, to avoid overparameterization in
equation (3.4), constraints must be set to make the parameters interpretable. The
following parameter restrictions for balanced designs are considered:

a∑
i=1

ai =
b∑

j=1

βj =
a∑
i=1

(aβ)ij =
b∑

j=1

(aβ)ij = 0 . (3.5)

Thus, the hypotheses testing for the case of Two-Way ANOVA by applying fixed
effects in both factors are as follows:

H0 : a1 = a2 = ... = aa = 0 vs H1 : at least one ai 6= 0

H0 : β1 = β2 = ... = βb = 0 vs H1 : at least one βj 6= 0 .
(3.6)

Because there is an interaction term in the model presented in equation (3.4), the
next hypothesis must be considered:

H0 : (aβ)ij = 0 ∀ i, j vs H1 : at least one (aβ)ij 6= 0 . (3.7)

For testing the above null hypotheses a plethora of calculations must be held.
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The parameters of the model in (equation (3.4)) are estimated by:

µ̂ = y...
α̂i = yi.. − y...
β̂j = y.j. − y...

α̂βij = yij. − yi.. − y.j. + y...

, (3.8)

where y... is the overall mean of all sample data, yi.. is the total number of all the
mean responses under the i−th level of factor A, y.j. denotes the total mean responses
under the j−th level of factor B and yij. is the total number of all observations that
corresponds to the ij−th cell. The quantity yij. is also known as cell mean.

Sum of Squares (SS) is a statistical technique which is used in ANOVA in order
to measure the deviation of data points from the mean. The total variability of the
observed response yijk can be calculated by the Corrected Total Sum of Squares
(SST ) and it can be expressed as follows:

SST =
a∑
i=1

b∑
j=1

n∑
k=1

(yijk − y...)2 =
a∑
i=1

b∑
j=1

n∑
k=1

[(yi.. − y...) + (y.j. − y...)

+(yij. − yi.. − y.j. + y...) + (yijk − yij.)]2

=bn
a∑
i=1

(yi.. − y...)2 + an
b∑

j=1

(y.j. − y...)2

+n
a∑
i=1

b∑
j=1

(yij. − yi.. − y.j. + y...)
2

+
a∑
i=1

b∑
j=1

n∑
k=1

(yijk − yij.)2 .

(3.9)

An alternative way of writing equation (3.9) is by using the next abbreviations,

SST = SSA + SSB + SSAB + SSE , (3.10)

where

SSA = bn
a∑
i=1

(yi.. − y...)2

SSB = an
b∑

j=1

(y.j. − y...)2

SSAB = n

a∑
i=1

b∑
j=1

(yij. − yi.. − y.j. + y...)
2

SSE =
a∑
i=1

b∑
j=1

n∑
k=1

(yijk − yij.)2 .

(3.11)

To that end, SST can be divided into the next individual components: (1) The
component SSA expressing the variation related solely to the level of factor A or the
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the variability among the rows; (2) SSB expressing the variation that is related solely
to the level of factor B or the variability among columns; (3) SSAB expressing the
variation that occurs between the factors A and B or the variation between each row
and column, and; (4) SSE expressing the variation that occurs from the residuals
among replicates.

Equation (3.9) or (3.10) is essential for the construction of the Two-Way ANOVA
table. According to equation (3.5) the sum of the main effects for factors A and
B, which have a and b levels respectively, is restricted to sum up to zero. This
restriction indicates that the degrees of freedom (df) for factor A are a − 1 and
for factor B are b− 1. The interaction effect also sum up to zero and by subtracting
the df of the factors effects A and B from the df of the cells (ab− 1), we obtain the
df of the interaction effect which are:

ab− 1− (a− 1)− (b− 1) = (a− 1)(b− 1). (3.12)

Within each cell of the AB levels there are (n− 1) df and hence, the df for the
error term of all the cells will be ab(n− 1). By summing up the degrees of freedom
for each SS in equation (3.10), the df for SST are derived as follows:

df(SST ) = df(SSA) + df(SSB) + df(SSAB) + df(SSE)

= (a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1)

= abn− 1 .

(3.13)

By dividing SSA, SSB, SSAB and SSE with their corresponding df, the mean
squares (MS) MSA, MSB and MSAB are derived. The expected values of the
aforementioned MS are given by the following equations:

E(MSA) = E

(
SSA
a− 1

)
= σ2 +

bn
a∑
i=1

a2i

a− 1

E(MSB) = E

(
SSB
b− 1

)
= σ2 +

an
b∑

j=1

β2
j

b− 1

E(MSAB) = E

(
SSAB

(a− 1)(b− 1)

)
= σ2 +

n
a∑
i=1

b∑
j=1

(aβ)2ij

(a− 1)(b− 1)

E(MSE) = E

(
SSE

ab(n− 1)

)
= σ2 .

(3.14)

The steps that must be followed in order to determine the expected MS, are pre-
sented in [26] and [13].

Under the null hypothesis the F−test statistic for each case is defined as follows:

H0 : ai = 0 , F =
MSA
MSE

H0∼ Fa−1,ab(n−1)

H0 : βj = 0 , F =
MSB
MSE

H0∼ Fb−1,ab(n−1)

H0 : (aβ)ij = 0 , F =
MSAB
MSE

H0∼ F(a−1)(b−1),ab(n−1)

. (3.15)
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Based on (3.15) the form of the Two-Way ANOVA table is presented in Table 3.1.

Table 3.1: Two-Way ANOVA Table for Balanced CRD
(Fixed Effects for Both Factors)

SOURCE SS df MS F
Corrected Model SSR ab− 1 MSR MSR/MSE

Intercept c 1 c c/MSE
A SSA a− 1 MSA MSA/MSE
B SSB b− 1 MSB MSB/MSE

A*B SSAB (a− 1)(b− 1) MSAB MSAB/MSE
Error SSE ab(n− 1) MSE -
Total c+ SSA + SSB + SSAB + SSE abn - -

Corrected Total SST abn− 1 - -

The Corrected Model term with df ab− 1, represents the overall model. This
model includes the variation of the two factors separately as well as the variation
of the interaction between the two factors. It does not include the variation of
the residuals. When the experiment is balanced, the SS of the corrected model is
denoted by:

SSR = SSA + SSB + SSAB

or

SSR = SST − SSE
. (3.16)

Note that the intercept term in Table 3.1 is used to test if the total mean differs
from zero.

3.2.1.2 Random Effects Model

The random effects model, is used in the case that the experimenter makes use of
sampled levels of factors from a larger population of factors with the goal
of deriving conclusions about the population in each level. To that end, not all the
treatments of interest are included, but a random sample of them is used in the
experiment. The response observations can be described in a same manner as in
the linear model in equation (3.4). Let us consider the case of both factors effects
being random. The model parameters ai, βj, (aβ)ij and εijk are independent random
variables and normally distributed with zero mean and different variances. Thus,
the assumptions for the random effects model are:

ai
iid∼ N(0, σ2

a)

βj
iid∼ N(0, σ2

β)

(aβ)ij
iid∼ N(0, σ2

aβ)

εijk
iid∼ N(0, σ2)

, (3.17)

where σ2
a, σ

2
β, σ2

aβ and σ2
ε are called variance components. The sum of the variance

components reenacts the variance for each response observation at the ijk−th level.
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Therefore, the variance of yijk is expressed as:

V ar(yijk) = σ2
y = σ2

a + σ2
β + σ2

aβ + σ2 , (3.18)

which indicates that every effect has different variance.
The hypotheses testing for Two-Way ANOVA by applying random effects in

both factors will be the following:

H0 : σ2
a = 0 vs H1 : σ2

a > 0

H0 : σ2
β = 0 vs H1 : σ2

β > 0

H0 : σ2
aβ = 0 vs H1 : σ2

aβ > 0

. (3.19)

The formulas to obtain SS, df and MS are the same with the ones used in the fixed
effects model. However, to build the F-statistics for testing the above hypotheses,
the expected MS need to be examined based on the following formulas (see in [26]):

E(MSA) = σ2 + nσ2
aβ + bnσ2a

E(MSB) = σ2 + σ2
aβ + anσ2

β

E(MSAB) = σ2 + nσ2
aβ

E(MSE) = σ2

. (3.20)

For example, for testing H0 by using the F−ratio, one has to compare two ex-
pected MS and examine if under the H0 are equal. Thus, in the F−ratio the MS with
the biggest expected value will be the numerator while the MS with the lower ex-
pected value will be the denominator. Hence, F−tests under H0 in equation (3.19),
will be the following:

H0 : σ2
a = 0, F =

MSA
MSAB

H0∼ Fa−1,(a−1)(b−1)

H0 : σ2
β = 0, F =

MSB
MSAB

H0∼ Fb−1,(a−1)(b−1)

H0 : σ2
aβ = 0, F =

MSAB
MSE

H0∼ F(a−1)(b−1),ab(n−1)

. (3.21)

Table 3.2, presents the Two-Way ANOVA table for random effects.

Table 3.2: Two-Way ANOVA Table for Balanced CRD
(Random Effects for Both Factors)

SOURCE SS df MS F
Corrected Model SSR ab− 1 MSR MSR/MSE

Intercept c 1 c c/MSE
A SSA a− 1 MSA MSA/MSAB
B SSB b− 1 MSB MSB/MSAB

A*B SSAB (a− 1)(b− 1) MSAB MSAB/MSE
Error SSE ab(n− 1) MSE -
Total c+ SSA + SSB + SSAB + SSE abn - -

Corrected Total SST abn− 1 - -
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3.2.1.3 Mixed Effects Model

In a mixed effects model, the effect of the one factor is fixed and of the other is
random.

Let us consider that A is a fixed factor and B is a random factor. We will consider
two approaches about this setting. Suppose a table with a rows from factor A and
b columns are selected at random from factor B. In this case, if the experiment
is repeated and the same column is derived twice, then the same column will be
projected in both experiments. As a result, the main effects of column will specify
the differences between the columns and thus, the sum of the interactions effect in
a column will equal zero. Because of this restriction the model is called restricted
model.

In the second approach, a sample of columns effects regarding factor B, is chosen
randomly and independently from the whole column population. The same one goes
for the interactions effects which also are chosen randomly and independently from
the population interaction effects. This approach is referred to as unrestricted
model and is mainly used in unbalanced designs because of its ease of use in that
specific occasion. For more information about unrestricted models, the interested
reader may refer to [26].

In this Section the case of the restricted model will be discussed. The model
which describes it, is the same as in equation (3.4), where ai is a fixed effect for
factor A and βj is a random effect for factor B or vice-versa and εijk is the random
error term.
Thus, the restricted model is based on the following assumptions:

βj
iid∼ N(0, σ2

β)

εijk
iid∼ N(0, σ2)
α∑
i=1

ai = 0

. (3.22)

In addition, the interaction term (aβ)ij is a random effect from normal distribu-
tion with zero mean and variance [(a− 1)/a]σ2

aβ (instead of the regular σ2
aβ in order

to make the form of the expected mean squares simpler and easier to describe). The
sum of the interaction term over the fixed factor A will be equal to zero.

α∑
i=1

(aβ)ij = (aβ).j = 0. (3.23)

The restriction in (3.23) indicates that some interaction effects over different levels
of the fixed factor (i 6= i′) will be dependent to each other and thus, the covariance
of the interaction effects for i 6= i′ will be

Cov[(aβ)ij(aβ)i′j] = −1

a
σ2
aβ, (3.24)

while the covariance of the interaction effects for j 6= j′ will be equal to zero. The
hypotheses testing for the restricted model is as follows:

H0 : ai = 0 vs H1 : at least one ai 6= 0, i = 1, ..., a

H0 : σ2
β = 0 vs H1 : σ2

β > 0

H0 : σ2
aβ = 0 vs H1 : σ2

aβ > 0

. (3.25)
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Before defining proper test statistics, the expected MS are defined as follows (see in
[26]):

E(MSA) = σ2 + nσ2
aβ +

bn
∑α

i=1 a
2
i

α− 1

E(MSB) = σ2 + anσ2
β

E(MSAB) = σ2 + nσ2
aβ

E(MSE) = σ2 .

(3.26)

Thus, based on (3.26) the appropriate F−tests under H0 in (3.25) will be the fol-
lowing:

H0 : ai = 0 , F =
MSA
MSAB

H0∼ Fa−1,(a−1)(b−1)

H0 : σ2
β = 0 , F =

MSB
MSE

H0∼ Fb−1,ab(n−1)

H0 : σ2
aβ = 0, F =

MSAB
MSE

H0∼ F(a−1)(b−1),ab(n−1)

. (3.27)

Notice that the MS of the fixed factor A is divided by the MS of the interaction AB
while the rest of the factors, which are random, are divided by the MS of the errors.

Finally, the Two-Way ANOVA table for mixed effects (A fixed, B random) is
presented in Table 3.3 .

Table 3.3: Two-Way ANOVA Table for Balanced CRD
(Mixed Effects: A Fixed Effect and B Random Effect)

SOURCE SS df MS F
Corrected Model SSR ab− 1 MSR MSR/MSE

Intercept c 1 c c/MSE
A SSA a− 1 MSA MSA/MSAB
B SSB b− 1 MSB MSB/MSE

A*B SSAB (a− 1)(b− 1) MSAB MSAB/MSE
Error SSE ab(n− 1) MSE -
Total c+ SSA + SSB + SSAB + SSE abn - -

Corrected Total SST abn− 1 - -

Consider now the case where the factor A has random effects and the factor B
has fixed. By using the linear model in equation (3.4), ai is a random effect for A,
βj is a fixed effect for B, (aβ)ij is a random effect and εijk is the random error. The
assumptions in this case are the following:

ai
iid∼ N(0, σ2

a)

(aβ)ij
iid∼ N(0, σ2

aβ)

εijk
iid∼ N(0, σ2)

b∑
j=1

βj = 0∑
j

aβ = 0

. (3.28)
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and thus, the hypotheses for testing are:

H0 : σ2
a = 0 vs H1 : σ2

a > 0

H0 : βj = 0 vs H1 : at least one βj 6= 0

H0 : σ2
aβ = 0 vs H1 : σ2

aβ > 0

. (3.29)

Once again, before defining proper test statistics, the expected MS must be
defined (see in [29]):

E(MSA) = σ2 + bnσ2
a ,

E(MSB) = σ2 + nσ2
aβ +

an
∑b

j=1 β
2
j

b− 1

E(MSAB) = σ2 + nσ2
aβ

E(MSE) = σ2

. (3.30)

Thus, based on (3.30) the appropriate F−tests under the H0 presented in (3.29)
will be:

H0 : σ2
a = 0 , F =

MSA
MSE

H0∼ Fa−1,ab(n−1)

H0 : βj = 0 F =
MSB
MSAB

H0∼ Fb−1,(a−1)(b−1)

H0 : σ2
aβ = 0 F =

MSAB
MSE

H0∼ F(a−1)(b−1),ab(n−1)

. (3.31)

Table 3.4, presents the Two-Way ANOVA table for mixed effects (A random, B
fixed).

Table 3.4: Two-Way ANOVA Table for Balanced CRD
(Mixed Effects: A Random Effect and B Fixed Effect)

SOURCE SS df MS F
Corrected Model SSR ab− 1 MSR MSR/MSE

Intercept c 1 c c/MSE
A SSA a− 1 MSA MSA/MSE
B SSB b− 1 MSB MSB/MSAB

A*B SSAB (a− 1)(b− 1) MSAB MSAB/MSE
Error SSE ab(n− 1) MSE -
Total c+ SSA + SSB + SSAB + SSE abn - -

Corrected Total SST abn− 1 - -

3.2.2 Two-Way Repeated Measures ANOVA

In many aspects of statistical quality control, there exist differences between the
subjects (i.e., experimental units) which are used in a design. For example, different
people based on their experience or training, will produce different results in the
response variable. In such a case, that difference will affect the experimental error.
To that end, to test the equality of means we make use of a technique known as
Repeated Measures (RM). A RM design (also known as within-subject design),
is applied when each subject is exposed to each of the treatment conditions [27] and
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thus, it can be considered that the measurements are repeated over time. Note that
each treatment condition (or treatment level) represents a time point in which the
subject is measured.
In the following Sections brief discussion on Two-Way ANOVA with RM is made.

3.2.2.1 Between and Within Subjects Variability

In the repeated measures ANOVA, due to the fact that every participant appears in
every condition of the design, there are not individual differences in between subject
variation. In contrast to One and Two-Way ANOVA, those differences are expressed
through the error term and for such a reason, between subject variance is expressed
as:

between subject variance = treatment effect + experimental error .

In One Way ANOVA the variability within treatments conditions are composed
by the individual differences and the experimental error. In RM ANOVA the within
subject variability can be separated into: 1) variance resulting from individual dif-
ferences and; (2) variance resulting from the experimental error. Due to the fact
that, individuals are measured several times, the derived variance from individual
differences can be excluded. Thus, the F−ratio without individual differences will
be as follows:

F =
treatment effect + experimental error

experimental error
.

Note that since the variation of individual differences is removed, the F−ratio of
the repeated measures becomes more “powerful” than any type of ANOVA using
between subjects designs.

3.2.2.2 Repeated Measures Linear Model

Lets us suppose that A denotes the between subject factor with a levels and B
represents the within subject factor which is repeated with b levels. Also, a random
sample consisted of ni subjects are observed in factor A at i−th level. As a result,
the classical Two-Way RM ANOVA on one factor design can be described as follows:

yijk = µ+ ai + βj + (aβ)ij + πk(i) + (βπ)jk(i) + εijk,


i = 1, 2, ..., a

j = 1, 2, ..., b

k = 1, 2, ..., n

, (3.32)

where,

• ai is the i−th group fixed effect of factor A (
∑a

i=1 ai = 0);

• βj is the j−th treatment fixed effect of factor B (
∑b

j=1 βj = 0);

• (aβ)ij denotes the fixed interaction effect between the i−th group and j−th

treatment (
∑a

i=1(aβ)ij =
∑b

j=1(aβ)ij = 0);

• πk(i) are random effect parameters of the subject k nested within group i with
πk(i) ∼ N(0, σ2

π);

• (βπ)jk(i) is the random joint interaction effect of subject k and treatment j
nested within group i with (βπ)jk(i) ∼ N(0, b−1

b
σ2
βπ);
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• εijk is the random error term, which is assumed that εijk ∼ N(0, σ2) .

Thus, the statistical hypotheses for the model in (3.32) can be expressed as
follows:

H0 : a1 = a2 = ... = aa = 0 vs H1 : at least one ai 6= 0

H0 : β1 = β2 = ... = βb = 0 vs H1 : at least one βj 6= 0

H0 : (aβ)11 = ... = (aβ)ab = 0 vs H1 : at least one (aβ)ij 6= 0

. (3.33)

The expected MS of this process will be the following:

E(MSA) = σ2 + bσ2
π +

b
∑a

i=1 nia
2
i

a− 1

E(MSB) = σ2 + σ2
βπ +

N
∑b

j=1 β
2
j

b− 1

E(MSAB) = σ2 + σ2
βπ +

∑a
i=1

∑b
j=1 ni(aβ)2ij

(a− 1)(b− 1)

E(MSB×swg) = σ2 + σ2
βπ

E(MSswg) = σ2 + bσ2
π

, (3.34)

where the swg denotes the term subject within variability. Thus, based on (3.34)
the appropriate F−tests under H0 will be the following:

H0 : ai = 0, F =
MSA
MSswg

H0∼ Fa−1,N−a

H0 : βi = 0, F =
MSB

MSB×swg

H0∼ Fb−1,(N−a)(b−1)

H0 : (aβ)ij = 0, F =
MSAB

MSB×swg

H0∼ F(a−1)(b−1),(N−a)(b−1)

. (3.35)

For N =
∑a

i=1 ni (unbalanced design) the ANOVA table for the RM model presented
in (3.32) is given in Table 3.5.

Table 3.5: Two-Way RM ANOVA Table for Unbalanced Design
(Repeated Measures on One Factor)

SOURCE df SS MS F

Between Subjects

A a− 1 SSA MSA MSA/MSswg
Within Subjects (swg) N − a SSswg MSswg

Within Subjects

B b− 1 SSB MSB MSB/MSB×swg
AB (a− 1)(b− 1) SSAB MSAB MSAB/MSB×swg

B× Subjects Within Groups (B × swg) (N − a)(b− 1) SSB×swg MSB×swg

In case of a balanced design, i.e., n1 = n2 = ... = na = n, Table 3.5 will be the
same except quantity N = na which will represent the total number of observations.

Let us suppose now the case where B and C are both within subject factors
with b and c levels respectively and in each bc levels, a random sample of n people
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is assigned. This kind of design is known as Two-Way RM model with repeated
measures in both factors and the linear model that describes it is the following:

yjkl = µ+ βj + γk + (βγ)jk +Si + (βS)ji + (γS)ki + (βγS)jki + εjki ,


i = 1, ..., n

j = 1, ..., b

k = 1, ..., c

,

(3.36)
where

• βj is the j−th fixed effect of the within subject factor B ;

• γk is the k−th fixed effect of the within subject factor C ;

• (βγ)jk is the BjCk interaction effect;

• Si is the i−th subject random effect with Si ∼ N(0, σ2
i );

• (βS)ji denotes the interaction random effect of the i−th subject and factor Bj

with (βS)ji ∼ N(0, σ2
ji);

• (γS)ki denotes denotes the interaction random effect of the i−th subject and
factor Ck with (γS)ki ∼ N(0, σ2

ki);

• (βγS)jki is the interaction random effect of the i−th subject and factors Bj

and Ck with (βγS)jki ∼ N(0, σ2
jki);

• εjki is the random error term with εjki ∼ N(0, σ2) .

The ANOVA table for the RM model presented in (3.36) is presented in Table 3.6.

Table 3.6: Two-Way RM ANOVA Table for balanced Design
(Repeated Measures on Both Factors)

SOURCE df SS MS F

Between Subjects

Subjects (S) n− 1 SSS MSS
Within Subjects

B b− 1 SSB MSB MSB/MSB×S
C (c− 1) SSC MSC FC = MSC/MSC×S

C × S (c− 1)(n− 1) SSC×S MSC×S
BC (b− 1)(c− 1) SSBC MSBC FBC = MSBC/MSBC×S

BC × S (b− 1)(c− 1)(n− 1) SSBC×S MSBC×S

For more information on RM designs the interested reader may refer to [1]; [14];
and [9].
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Chapter 4

A New Transformation Approach
for Time-Series Monitoring Data

As mentioned in Chapter 2, independence of sample mean and variance in each
experimental trial, plays a key role for having sharply defined results in Taguchi
analysis. In this Chapter, new adjusted transformation methods will be proposed
and implemented. In addition, a comparison between the proposed transformations,
the original Box-Cox transformation and the safeguard against mean bias method
of Logothetis, will be held.

4.1 Introduction

Data transformations are widely used in many aspects of statistical quality control.
By using transformations one can deal with violations of the assumptions of the
response variable. The Box-Cox transformation [4] can also be used in a Taguchi
analysis (off-line quality control) in order to establish suitable measures for the noise
performance measures (see [34]). A plethora of transformations have been suggested
over the years for transforming positive or negative values that appear in a dataset.
Some of these remarkable transformations were created by Logothetis [21], Cook and
Weisberg [8] and Yeo and Johnson [37]. Thus, selecting a proper transformation for
the response variable, is very important in order to gain reliable results in statistical
quality control.

There are some datasets in a Taguchi analysis though, where the properties of
a Box-Cox transformation are valid except the constancy of the variance in each
experimental unit. For example, when running a Box-Cox transformation, there
exists the risk of oversimplification of the model which may result to a mean bias in
error variance (i.e., there is no constancy of error variance).

To that end, Logothetis in [21, 22] presented a safeguard method which although
ensures the independence between mean and variance in each trial, the model has
some flaws concerning its accuracy and predictive power.

One of the disadvantages in a Taguchi analysis, is the vagueness in the classifi-
cation of variability and target control values. Thus, straightforward results about
which factors affect the variation and mean cannot be clearly derived. When this
overlap in classification occurs, the assumption of constancy in error variance might
not apply. In such a case, a proper transformation is needed which can result to
independence between the mean and variance of each experimental trial. Logothetis
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proposed the functional relationship σ = f(µ) between the sample mean and sample
variance of the response variable for the original scale. By assuming the special case
where f(µ) = aµk, the non-linear relationship that results between the sample mean
and variance can be expressed as follows:

σ = aµk. (4.1)

In this case, the transformation that ensures constancy of the error variance can
be described by equation (2.45). When n is the total number of the experimental
trials, the power k can be estimated by converting equation (4.1) into a simple linear
regression model between log σ and log µ:

log σ = log a+ k log µ+ ε. (4.2)

In SQC, and more specifically in a Taguchi analysis, noise performance measures
are used in order to recognize the variability control factors. When no functional
relationship exists between the mean and variance, the NPM can be expressed as:

NPM = −10 log10(s
2
T ), (4.3)

where s2T is the variance of the transformed data, while in case a functional relation-
ship exists, like the one in equation (4.1), NPM is given by the following formula:

NPM = 10 log10

(
f(x)

σ

)2

. (4.4)

As aforementioned, in Logothetis method by converting equation (2.45) into a
simple linear model, k can be estimated. The flaw of this technique lies in the
fact that the estimated value of k is calculated based on the linear model in equa-
tion (2.48) or equation (2.50), for positive and negative values, respectively, and not
based on the non-linear model in equation (2.45). Thus, the analysis is based on
the modeling of the logarithm of standard deviation and not on the actual one.

In this Chapter we introduce an alternative approach to that of Logothetis for
model selection, which encounters the flaws of the latter. The proposed transforma-
tion satisfies the assumption of independence between the cell mean and variance of
each experimental trial and thus, a quite accurate model can be achieved. Finally,
the proposed approach is adequate for the case where negative values appear into
the analysis, and hence, no further formulas are needed.

4.2 Methodology

4.2.1 The Simple Polynomial

In order to establish the relation between cell mean and variance of the response
variable, we will make use of equation (4.1). The components a and k are being
estimated through least squares and an exhaustive search of possible values, respec-
tively. The resulted estimators are compared based on their mean squared error via
ANOVA. The estimators with the minimum mean square error, will be analyzed and
fitted in equation (4.1). This approach is similar to Akaike Criterion Information

41



(AIC), since all the compared models have the same penalty term. It is reminded
that AIC is expressed as follows:

AIC = −2 logLik + pn, (4.5)

where Lik denotes the likelihood, n is the sample size and p is the number of the
parameters which included in each one of the candidate models.

4.2.2 The Full Polynomial

Except the simple polynomial of equation (4.1) we also suggest a full polynomial
approach which is described by:

σ = a0 + a1µ+ a2µ
2 + ...+ akµ

k. (4.6)

The degree of the polynomial, and thus the form of the model, is chosen by model
selection techniques specifically via AIC, MSE, and R2.

Note that the model mentioned in equation (4.6), is appropriate for both positive
and negative values into the dataset. Observing the models proposed by Box-Cox
(equation (2.2)) and Logothetis (equation (2.41)), it is clear that both could be
considered as sub-cases of the one in equation (4.6).

According to the above methods concerning the polynomial models, the mean
and variability of a process can be expressed and monitored through adjusted control
charts such as X−chart, S−chart, etc.. These charts are considered beneficial in
gaining information about the state of a process. That is, we can determine if the
process is IC or changes are observed that shift the process in an OOC state. In the
following section, the proposed transformations are being implemented in both real
and simulated data.

In Section 4.3 we analyze a real dataset as well as simulated data, to explore the
capability of the two proposed methods.

4.3 Case Studies

4.3.1 Real Case

The dataset presented in Table 4.1, represents a Taguchi’s Orthogonal Array design
OA183

6 (see in [34]) and consists of eighteen (18) number of tests on each variable
(i.e., # of trials) and three (3) measurements for each combination of six (6) factors
with three (3) levels each.
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Table 4.1: Taguchi’s Orthogonal Array (OA183
6)

By applying the:

(a) standard Taguchi performance measure;

(b) Logothetis measure;

(c) original Box-Cox transformation;

(d) simple polynomial approach referred to as KKLP (Kalligeris-Karagrigoriou-
Ladopoulos-Parpoula);

(e) full polynomial approach referred to as Ladopoly (Ladopoulos polynomial).

to both mean and variance, the results presented in Tables 4.2−4.6 are obtained.

Table 4.2: General Linear Model: Average versus A; B; C; D; E; F

Source DF Adj SS Adj MS F-Value P-Value
A 2 9.645 4.823 1813.840 0.000
B 2 0.612 0.306 115.030 0.000
C 2 0.032 0.016 5.960 0.013
D 2 0.517 0.026 9.720 0.002
E 2 1.004 0.502 188.790 0.000
F 2 0.011 0.005 1.990 0.174
Error 14 0.037 0.003
Total 26 11.392
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Table 4.3: General Linear Model: NPM (Taguchi) versus A; B; C; D; E; F

Source DF Adj SS Adj MS F-Value P-Value
A 2 0.979 0.490 6.86 0.037
B 2 1.698 0.849 11.88 0.013
C 2 0.095 0.047 0.66 0.555
D 2 0.088 0.044 0.62 0.576
E 2 0.046 0.023 0.32 0.74
F 2 0.037 0.019 0.26 0.78
Error 5 0.357 0.071
Total 17 3.300

Table 4.4: General Linear Model: NPM (Logothetis) versus A; B; C; D; E; F

Source DF Adj SS Adj MS F-Value P-Value
A 2 146.039 73.019 10.24 0.017
B 2 2.189 1.094 0.15 0.862
C 2 43.208 21.604 3.03 0.137
D 2 11.316 5.658 0.79 0.502
E 2 4.379 2.190 0.31 0.749
F 2 2.800 1.400 0.2 0.828
Error 5 35.658 7.132
Total 17 245.588

Table 4.5: General Linear Model: NPM (Box-Cox) versus A; B; C; D; E; F

Source DF Adj SS Adj MS F-Value P-Value
A 2 0.059 0.030 6.95 0.036
B 2 0.103 0.051 12.06 0.012
C 2 0.006 0.003 0.66 0.555
D 2 0.005 0.003 0.59 0.587
E 2 0.003 0.001 0.33 0.731
F 2 0.002 0.001 0.25 0.787
Error 5 0.021 0.004
Total 17 0.199

Table 4.6: General Linear Model: NPM (KKLP) versus A; B; C; D; E; F

Source DF Adj SS Adj MS F-Value P-Value
A 2 88.317 44.158 4.56 0.075
B 2 12.942 6.471 0.67 0.553
C 2 33.252 16.626 1.72 0.271
D 2 8.570 4.285 0.44 0.665
E 2 7.279 3.639 0.38 0.705
F 2 2.119 1.059 0.11 0.899
Error 5 48.435 9.687
Total 17 200.915

44



Table 4.2 has been calculated based on the mean of the design while the rest of
the (Tables 4.3 - 4.6) have been calculated based on the variability of the design.
Tables 4.3 and 4.5, which correspond to the Taguchi and Box-Cox transformations,
respectively, can both detect that factors A and B are affecting the variability of the
process because of their small P-values (P−values< 0.05). Same conclusions can be
derived for Table 4.2, since factors A and B have also small P-values (P−values=
0.000). In Logothetis method (Table 4.4), the problem of noise is partially solved
since only factor A affects the variability (P−value< 0.05). The KKLP method
(Table 4.6), seems to fully resolve the problem of noise, since neither of the factors
A and B affect the variability of the experiment (P−values> 0.05).

4.3.2 Simulation

The simulated data were created based on the mean and standard deviation results
of eight (8) factors according to the design OA18(2×37) (Logothetis Table 4.2, p.103
[22]) with the use of R (see [12]). The sample statistics of mean and variance from
the suggested techniques will be calculated and depicted on a X − S control chart
[33] in order to evaluate the two basic characteristics of a procedure.

To achieve so we apply the:

(a) standard X − S control chart;

(b) Logothetis transformation given in equation (4.1), σ = f(µ) ≡ σ1 & µ =
f−1(σ) ≡ µ1 ;

(c) Box-Cox transformation as presented in equation (2.2), ybc = yλ−1
λ−1 ;

(d) Ladopoly given in equation (4.1), σ = fLadopoly(µ) ≡ σ3 ;

(e) KKLP given in equation (4.6), σ = fKKLP (µ) ≡ σ2 and µ = f−1KKLP (σ) ≡
µ2 + (σ) ≡ µ3.

In Figure 4.1, X, µ1, µ2 and µ3, are represented in a multiple X−Graph while
in (4.2) S, σ1, σ2, σ3 are represented in a multiple S−Graph. The sample which
corresponds to the time point t14, can be revealed OOC only from the Logothetis
and KKLP methods while the other two fail to reveal it. Observe that the Ladopoly
method is the closest one toX in terms of explaining it more accurate (i.e., there is no
much difference between the lines). Ladopoly method is describing more accurately
the observed values regressed on the S-values since it can detect the OOC point in
t14. Also, KKLP seems to be better than Logothetis method in terms of modeling
more precisely the underline characteristic σ. Eventually, Logothetis and KKLP
methods are comparable since they are both strong at detecting OOC points but
it should be highlighted that Logothetis estimation methodology is based on the
logarithmic transformation of σ in contrast to KKLP method which uses the raw
data.
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Figure 4.1: X-Graph

Figure 4.2: S-Graph

Note that “Ladopoly4” and “Ladopoly3” in Figures 4.1 and 4.2 describe the
degree k of the polynomial presented in (4.6) i.e., 4 and 3, respectively.

4.4 Conclusions

Data transformation constitutes a crucial component of statistical quality control
since it helps in achieving a satisfactory degree of homoskedasticity and at the same
time ensuring high accuracy and great applicability.
In this chapter, we suggested two adjusted transformations:

1. The KKLP method, which is described by the non-linear model in equa-
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tion (4.1), manages to identify and portray variations of noise behaviours
through the X−Graph under the transformation

µ =
(σ
α

)1/k
, (4.7)

and hence, the double X control chart (X, KKLP(INV)) is designated which
is enough to display the patterns of both noise and mean of the data. The
same evaluation holds for the double S-chart (S, KKLP). Also, the KKLP
succeeds in resolving entirely confusion issues in ANOVA.

2. The Ladopoly method, which is described by the linear model in equa-
tion (4.6), attempts to describe as accurately as possible the original X, S
charts. Also this method succeeds in identifying OOC points and being smooth
enough for the IC points.
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